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Anatolii I. Lurie

Anatolii Isakovich Lurie was born on the 19th of July, 1901, in Mogilev
on-the-Dnieper. In 1919 he graduated from gymnasium and was admitted
to the School of Prospecting, the Ural Institute of Mines, in Ekat erinburg.
Studies at this School did not satisfy him. The disciplines taught there
were perceived more like the recipes mandatory for use. Mine survey was
an exception, and he felt interest toward it. In 1923 he tr ansferred himself
to the Faculty of Physics and Mechanics of the Petrograd Polytechnic Insti
tute (originally, St. Petersburg Polyt echnic Institute named after Emp eror
Peter the Great) , where he has been working since graduation in 1925.
Academician A.F. Ioffe has founded this faculty in 1918; it had quite many
outstanding scholars with European reputation who served as Professors.
In 1939 A.I. Lurie was awarded the degree of Doctor of Science. He headed
the Department of Theoretical Mechanics from 1936 to 1941, and through
the period 1944 to 1977 he was the Head of the Department "Dynamics
and Strength of Machines" (which in 1960 was renamed "Mechanics and
Control Pro cesses") . A.I. Lurie was elected a Corresponding Member of
the Academy of Sciences of the USSR, Division of Mechanics and Control
Processes . He was a member of the Presidium of the National Commit
tee for Theoretical and Applied Mechanics and a member of the National
Committee for Automatic Control. A.I. Lurie was a member of the Edito
rial Boards of the renowned Russian journals "Applied Mathematics and
Mechanics" and" Mechanics of Solids'.

His scientific activities, lasting for more th an half a century, brought
about remarkable achievements. He wrote a number of magnificent books:
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1. Nikolai E .L., and Luri e A.I. Vibrations of the Frame-Type Founda
tions. Leningrad and Moscow, Gosstroyizdat, 1933, 83 pp.

2. Loitsianskii L.G. , and Luri e A.I. Theoretical Mechanics. Vols. 1 - 3.
Leningrad and Moscow, GMTI, 1934.

3. Luri e A.I. Statics of Thin-Walled Elastic Shells. Moscow, Gostekhiz
dat , 1947, 252 pp .

4. Luri e A.I. Some Nonlinear Problems in the Theory of Automatic Con
trol. Moscow, Gostekhizdat, 1951, 216 pp .

5. Luri e A.I. Operational Calculus and its Appli cation to the Problems
in Mechanics. Moscow, GITTL, 1951, 432 pp.

6. Lurie A.I. Three-dim ensional Problems of the Theory of Elasticity.
Moscow. GITTL, 1955, 492 pp.

7. Loitsianskii L.G. , and Luri e A.I. A Course in Theoretical Mechanics.
Vols. 1 and 2. Fifth edition. Moscow, GITTL, 1955, 380 pp ., 596 pp.

8. Lurie A. I. Analytical Mechanics. Moscow, Nauka, 1961, 824 pp.
9. Lurie A.I. Theory of Elasticity. Moscow, Nauka, 1970, 940 pp .
10. Luri e A.I. Nonlinear Theory of Elasticity. Moscow, Nauka, 1980,512

pp.
His books were translat ed into many languages (English , Germ an , French,

Chinese, Romanian, Bulgarian, and Armenian). The last book was written
when A.I. Luri e was already seriously ill. He did not live to see both the
proofs and the book out of print. This book was later translated into En
glish by his son K.A . Luri e and published by North Holland Publishers in
1990.

The main features of his scient ific style manifest ed itself in his early
works; i.e. the ability to apply the achievements of classical mechanics to
the needs of modern technology. His books are unp aralleled by the number
of practical applications. A. I. Lurie became an ardent promoter of the so
called direct or invari ant vector and lat er tensor calculus. It is now difficult
to imagine that once the relations in theoretical mechanics were expressed
and written in the cumbersome coordinate form!

The works by A.I. Luri e in the field of application of operational calculus
to the study of the stability of mechanical systems with distributed param
ete rs brought him great fame. This study as well as his direct contacts with
mathematicians stimulated research in the field of distribution of roots of
quasi-polynomials.

The works by Lurie A.I. on the theory of absolute st ability of control
syste ms received much interest from the scientific community. The very
statement of the problem and th e applicat ion of the Lyapunov function
method to its solution were pioneering and provoked a great flow of scien
tific publications.

Professor Lurie is also th e aut hor of a number of art icles and books on the
theory of elast icity. He devot ed the last fifteen years of his life exclusively
to the problems of the theory of elast icity. The typical feature of all these
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works was obtaining analytical results. He did not pay any attention to the
numerical methods that are so popular nowadays.

Professor Lurie was an extraordinary person . He was always eager to
share his ideas and listened with interest and respect to other people ex
pressing their ideas and views. This especially attracted young scientists
and lecturers to him. His study was always full of visitors seeking his advice,
his reference on papers, or simply his support. He worked hard all his life:
writing books, giving lectures , reviewing papers. He did not like and even
disapproved of lazy though possibly talented people. I'd like to note for
the sake of the Western reader that there is position of Professor Emeritus
neither in the Soviet Union nor in modern Russia which ensures a decent
salary and enables a Professor to work as much as he can or not to work
at all if he is no longer able to do so. That is why Russian professors have
to work until they die. The following episode is typical of him. In spring
1979 Professor Lurie underwent serious surgery. It took him the whole of
summer to recover after it. In September he came back from Moscow. He
looked fine. He said to me (I was already acting as the Head of the Chair):
"1 am going to read my favorite course "Theory of Elasticity". I tried to
object to this and offered to read his lectures as well as mine. He reacted
rather sharply and insisted on reading his own course. However he was able
to do so only until October. In November he gave up saying that it was too
difficult. He died on 12 February 1980. He was 78 yeas old.

Professor Vladimir A. Palmov



Foreword

The classical theory of elasticity maintains a place of honour in the science
of the behaviour of solids. Its basic definitions are general for all branches of
this science, whilst the methods for stating and solving these problems serve
as examples of its application. The theories of plasticity, creep, viscoelas
ticity , and failure of solids do not adequately encompass the significance
of the methods of the theory of elasticity for substantiating approaches for
the calculation of stresses in structures and machines . These approaches
constitute essential contributions in the sciences of material resistance and
structural mechanics.

The first two chapters form Part I of this book and are devoted to the
basic definitions of continuum mechanics; namely stress tensors (Chapter 1)
and strain tensors (Chapter 2). The necessity to distinguish between initial
and actual states in the nonlinear theory does not allow one to be content
with considering a single strain measure. For this reason , it is expedient to
introduce more rigorous tensors to describe the stress-strain state. These
are considered in Section 1.3 for which the study of Sections 2.3-2.5 should
precede. The mastering of the content of these sections can be postponed
until the nonlinear theory is studied in Chapters 8 and 9.

Deriving closed systems of equations for the linear theory of elasticity
and a description of the solution methods form the basic content of Part
2. In particular, Chapters 3 and 4 deal with constitutive laws and basic re
lationships. Part III (Chapters 5-7) is concerned with solving special prob
lems. The subject of Chapter 5 coincides with that of the author's mono
graph "Three-dimensional problems of the theory of elasticity" Gostekhiz
dat, 1955. However, the statement of the problems considered is completely
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revised and some problems absent from the monograph are included here.
These problems include: stresses due to a foreign inclusion, substantiation
of the Saint-Venant principle , some problems of stress concentration (Neu
ber ), elastostatic Robin 's problem , etc.

Limitations on space gave rise to difficulties when selecting the material
for Chapter 6 (the Saint-Venant problem ) and Chapter 7 (plane problem) .
In Chapter 6 the statement of the Saint-Venant problem , the theorem on
circulation, the question of the centre of rigidity, and variational methods
are treated in some detail, whilst obtaining solutions for particular profiles
is reduced to a minimum . In Chapter 7 applying the theory of a complex
variable is limited to considering simple boundary-value problems. In addi
tion , other methods of solut ion are demonstrated, which include: Mellin's
transformation in the problem for a wedge, the operational solutions of the
problems of a strip and a bar with a circular axis.

Part IV (Chapters 8 and 9) is devoted to the basics of the nonlinear the
ory of elasticity, namely statements of the constitutive law for the nonlinear
elastic body, considering some simple problems , statement of problems re
lating to second order effects and bifurcation of the equilibrium.

The Appendices include descriptions of the methods of tensor calculus
used in the book and some material on the theory of spherical and ellip
soidal functions .

Only "rigorous" statements of problems are considered in the book; that
is, the solutions are not only statically admissible but they also satisfy the
compatibility conditions. The original intention of including "technical"
theories on thin rods , plates and shells was withdrawn because it would
lead to an exorbitant increase in the volume of the book. For the same
reason , only static problems are considered.

The literature referred to throughout the book does not constitute a
comprehensive review of the principal investigations and solut ions of the
special problems of elasticity theory. To some extent, thi s shortcoming is
compensated for by the review papers and monographs referred to , which
contain an exhaustive bibliography on the special problems considered.

The book is addressed at readers who are interested in gaining deep
understanding and knowledge of the theory of elasticity and having practice
in solving problems . The book is also intended to be an aid for teaching a
course in the mathematical theory of elasticity.

The first readers of the book were L.M. Zubov, who checked the for
mulae and calculations, and V.A. Palmov , who suggested a number of im
provements and further explanations. It is a pleasant duty of the author to
express a sincere gratitude for their valuable advice and critical suggestions .

Professor 1.1. Vorovich and the staff involved in elasticity theory research
at Rostov State University took the trouble of reviewing the manuscript.
The author wishes to thank them for their fruitful and friendly crit ique.



Translator's preface

The book "Theory of Elasticity" by A.I. Lurie was printed in Russian with
the edition of eleven thousand copies and immediately became a biblio
graphic rarity. In Russia, this monograph is deservedly considered to be
a classical book in mechanics. Translation of this book is a great honour
for me. Being a member of Lurie's Chair and one of his numerous pupils I
consider this activity to be a debt of honour to perpetuate his memory in
mechanics. Also from a professional perspective, the translation was a very
interesting and cognitive experience.

The book can be viewed as an encyclopedia of closed-form solutions to a
series of particular problems and analytical approaches to solving general
problems. Despite the impressive progress of numerical methods, analytical
methods in the theory of elasticity have not lost their practical importance.
For example, new and rapidly developing areas of modern technology such
as smart structures need analytical results for some types of structure in
order to design the shape of sensors and actuators. It is important that all
of the solutions obtained in the present book satisfy not only the necessary
conditions for equilibrium (which is the case in the technical theories of
rods, plates etc .) but also satisfy the sufficient conditions for equilibrium
(i.e. the continuity or compatibility conditions) . The latter conditions are of
crucial importance for modern applications when structures are composed
of several materials.

Although I tried to do my best while translating the book, some typing
and other mistakes may have occurred in the translation, for which I would
like to apologize. Also, I did not always succeed in finding the original refer
ences in English, German, French, Italian and other languages, and had to
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re-translate them from Russian into English . I apologise to the authors and
the reader for possible inaccuracies in the titles of some references. While
translating the book into English I tried to keep the author's nomenclature
which does not always coincide with that adopted in Western books.

I am thankful to my son Nikita, from the State Polytechnical University
of St. Petersburg, for the considerable technical support he gave during
the translation. Also, I would like to express my sincere gratitude to Dr.
Stewart McWilliam, from the University of Nottingham, UK who took the
trouble of editing the manuscript which I translated into English. I am
greatly obliged to him for his thorough correction of the galley-proofs.
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1
Stress tensor

1.1 Field of stresses in a continuum

1.1.1 Systems of coordinates in continuum mechanics

A continuum is characterised by a mass dm = pdr contained in an ele
mentary volume dr . The proportionality factor p, referred to as the mass
density, is assumed to be a continuous function of the coordinates of the
material particles of the medium .

A material continuum which was originally in equilibrium and occupied
a volume v with a surface 0 reaches a new equilibrium state whose volume
and surface are denoted by V and 0 respectively. The first state is referred
to as the initial state (volume v or v-volume), whilst the second state is
called the final state (volume V or V -volume) . In what follows, the concept
of the natural state will be of importance. The natural state is the state
when the continuum is not stressed. Unless otherwise stated, the natural
state is not identified with an initial state.

A Cartesian coordinate system OX1X2X3 is introduced. The position M
of a material particle in the initial state is given by its Cartesian coordinates
aI,a2, a3 in the system

OX1X2X3 , or by the position vector

(1.1.1)

where is denotes the unit base vectors of the coordinate axes. The summa
tion over a dummy index is omitted throughout the text as suggested in
Appendices A-C.
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The final position M' of the considered particle is described by coordi
nat es XI,X2 ,x3 in the same coordinate system, or by the position vector!

(1.1.2)

The geometric difference R - r determines the displacement vector of point
M which is denoted by u , i.e.

(1.1.3)

The projections Us of the displacement vector , referred to as the displace
ments , are viewed as being functions of the initial coordinates al,a2, a3 of
the particle. The displacements and their derivatives with respect to vari
ables aI,a2 , a3 are assumed to be continuous functions of the order that is
necessary for further analysis. It is also assumed that equations (1.1.3) are
uniquely resolvable for variables as, that is

r = R - u , as = Xs - Us, (1.1.4)

Us now being considered as functions of coordinates Xs of the final state.
The condition for unique solvability of the system of equations (1.1.3) is
that the Jacobian

1
aUI+
aal

aU2

aal

aU3

aal

aUI

aa2

1
aU2+
aa2

aU3

aa2

aUI

aa3

aU2

aa3

1
aU3+
aa3
(1.1.5)

does not vanish in the closed domain v + o. It is taken that J > O. The
Jacobian is known to be a ratio of the elementary volumes in the initial
and final states

dr = Jdr« , (1.1.6)

see also Subsection 2.5.5. According to the law of mass conservation

dm = pdr = PodTo , (1.1.7)

1Translator'note. Equation numberin g is as follows. The first number in parentheses
indicate s the Secti on , the second - the Subsecti on , whil st the third - t he equa t ion number
in th e Subs ection. These three numbers appear when a cross-reference is made within th e
sam e chapter. When an equation from another cha p ter is referred to , they are completed
by an ind ication of the number of this particular cha pte r. Referen ce to an Appendix is
ind icated using capital let t te rs.
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so that

J= Po.
P

(1.1.8)

The Cartesian coordinates as of the material particle in its initial state
can be considered as variables related to this point and are thus retained
in the final state, where these coordinates play the role of curvilinear co
ordinates. For example, points along a straight line a2 = ag,a3 = ag which
is parallel to axis OXl in volume v are located on the curve

in volume V .
Due to the established terminology, as and x, are referred to as La

grangian and Eulerian coordinates, respectively. Better still, as are mate
rial coordinates which individualise a material particle and distinguish it
from other particles, whereas X s denote the coordinates of the particle in
volume V .

The square of the linear element, which is the distance between two
infinitesimally close points M and N in volume v,

becomes

ds2 = dr . dr = dai +da~ +da~ ,

dS2 = dR . dR = dxi + dx~ + dx~

(1.1.9)

(1.1.10)

when these points take the positions M' and N' respectively . In what fol
lows, for the sake of brevity we will use terms v-metric and the V -metric
depending upon what definition of the linear elements, eq. (1.1.9) or eq.
(1.1.10), is accepted in each particular consideration. Clearly, both metrics
are Euclidean (E3)'

Remark 1. A rigorous distinction between the initial and final states is
necessary for considering finite deformation in continuous media. As a rule,
there is no need in the framework of linear theory of elasticity to make such
distinctions.

Remark 2. The material coordinates of a point are not necessarily the
Cartesian coordinates as of the initial state. Presentation of the basics of
continuous mechanics becomes more rigorous if any curvilinear coordinates
ql, q2,q3 are taken as the material coordinates. Then

as well as

( 1 2 3)as = as q , q , q ,

(
1 2 3)Xs = Xs q ,q ,q ,

(1.1.11)

(1.1.12)

should be considered as the coordinates of the particle and its position
vector in volumes v and V , respectively.
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1.1.2 External forces

In the present chapter a continuum is considered in its final state. The
forces acting on the continuum are classified as external or internal forces.
External forces represent actions exerted by bodies outside the considered
volume V on the continuum particles. These may be surface and volume
forces.

The force acting on each particle of the continuum is called a mass force.
The vector of the mass force applied to a unit mass of the continuum is
denoted by K , then pKdr is the force acting on an elementary mass pdr
contained in volume dr whilst pK is the force acting on a unit volume and
is termed a volume force. The resultant vector and the resultant moment
of the mass forces about the origin of the coordinate system are given by

III pKdr, III RxpKdr.
v v

A simple example of the mass force is the gravity force

K = -kg,

(1.2.1)

(1.2.2)

where k denotes the unit vector of the upward vertical and g is the accel
eration due to gravity. When equilibrium of the continuum is considered
relative to a moving coordinate system the inertia force of the translational
motion

K = -We = - two +wX R +w X (w X R)] (1.2.3)

should be added to the mass forces. Here W e denotes the vector of the trans
lational acceleration which is equal to the geometric sum of the acceleration
Wo of the origin of the coordinate system, rotational acceleration wX R
and centripetal acceleration w x (w X R) , with wand wdenoting respec
tively the angular velocity and angular acceleration vectors . The Coriolis
acceleration is not included in the right hand side of eq. (1.2.3) because
the continuum does not move relative to the moving axes. In a particular
case of the uniform rotation of the continuum about an immovable axis the
centrifugal force

K = -w x (w x R) = w2 he , (1.2.4)

is a mass force. Here a particle is assumed to move along a circle of radius
hand e denotes a unit vector directed along this radius from the centre of
the circle. The origin of vector R lies on the rotation axis.

In the case of the potential mass forces we have

K = -gradIT, (1.2.5)
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where IT denotes the potential energy of a mass force field. For example,
for the fields of gravity force and centrifugal force we have

(1.2.6)

External surface forces are forces distributed over surface 0 of volume V .
A surface force per unit area of this surface is denoted by F. The resultant
vector and the resultant moment of the surface forces are given by

JJFdO ,
o

JJRx FdO.
o

(1.2.7)

Here dO denotes the area of surface 0, which is in contrast to the area
do of surface 0 bounding volume v of the continuum in the initial state.
The unit vector of the normal to dO directed outwards from volume V is
designated by N, whereas n denotes the unit vector of the normal to do
directed outwards from volume v. Moreover, NdO and ndo are referred to
as the vectors of the oriented surface on 0 and 0 , respectively. The normal
component of force F and the component of F in the plane tangential to
o are respectively given by

N . F, F - NN . F = (N x F) x N. (1.2.8)

An example of the surface force is the hydrostatic pressure in a fluid, in
which the body is immersed

F= -pN. (1.2.9)

Another example is a body resting on a foundation. In this case the reaction
force is distributed over the contact area .

A surface force is a potential force provided that it retains its absolute
value and direction during the deformation of the body from the initial to
the final state. Then

IT = -F· R = -F· (r + u) = ITo - F . u . (1.2.10)

1.1.3 Internal forces in the continuum

Consideration of the equilibrium of a continuum is based upon two state
ments : (i) when the whole continuum is in equilibrium, then any arbitrary
part of this continuum is also in equilibrium (the free-body principle), and
(ii) the equilibrium conditions for a rigid body are the necessary conditions
of equilibrium of the considered part of the continuum (the principle of
solidification) .

Let us mentally divide volume V into two volumes Vi and V2 . Let 0'
denote the surface separating two volumes and 0 1 denote that part of
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FIGURE 1.1.

o which bounds volume V1. In addition to the external feroesacting on
the continuum in volume V1 we should consider the reaction forces of the
continuum in volume V2 on volume V1 . If we do not inclnde the latter
forces, then the necessary conditions of equilibrium of the external forces,
which are mass forces in V1 and surface forces on 0 1 , are, in general, not
satisfied. These forces should be equilibrated by the forcesand moments
of the interaction forces distributed over the separating surface 0'. It is
assumed that the distribution of these forces over surface dO of surface 0'
is statically equivalent to force tNdO, the orientation of surface dO being
prescribed by a unit normal vector N directed outwards from V1 , see Fig.
1.1.

Therefore, for any oriented surface NdO at any location in thecontin
uum, there exists a force tNdO (a vector) which is the force exerted on
NdO by the part "above" this surface. By virtue of the principle ofact ion
and reaction we have

(1.3.1)

This interaction of the part of the continuum defines the field of internal
forces, or in other words, the stress field in continuum. Not only the quan
titative characteristics of the stress field vary from point to point, as in
scalar fields, but it is also not possible to indicate a certain direction at any
point, as in vector fields. The quantity prescribing the stress field must de
termine vector tNdO at any point of the field and for any oriented surface
NdO at this point (or vector tN in terms of vector N) . This means that
the physical state referred to as the stress field is determined by a quantity
which relates vector tN to vector N. Adopting a linear relationship between
these vectors (this question is considered in Subsection 1.4 in detail) means
that this quantity is a tensor of second rank". This tensor is referred to as
the stress tensor and denoted as T whilst its components in a Cartesian
coordinate system OX1X2X3 are denoted as tik. Vector tN is determined

2See the definition in Section A.3 (Appendix A) .
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by premultiplying f by N

tN =N .r. (1.3.2)

Postmultiplying 't by N , i.e. i: N, would only affect the notation of com
ponents of tensor f .

Remark 1. It was assumed that the distribution of forces over the oriented
surface NdO is statically equivalent to a single force tNdO. In other words,
we assumed a zero principle moment of this force about a point on the line of
action of this force. This assumption was omitted in the Cosserat continuum
mechanics developed by at the beginning of the twentieth century. The
reason for such a seemingly paradoxical statement that the moment has
the order of smallness of the principle vector (order dO) is apparently due
to the conditional character of the very concept of smallness in continuum
mechanics. The so-called infinitesimally small volume comprises a complex
object in itself and consists of a very large number of elementary particles,
and the force transferred via an oriented surface should be treated as an
integral effect of interaction of these particles. There is nothing logically
inconsistent in that the influence of the moments can be comparable with
that of the forces, at least at places of sharply changing stress state. In
recent years the Cosserat ideas have been developed in numerous papers
on non-symmetrical or moment theory of elasticity.

Remark 2. The adopted assumption that the reactive action of volume
V2 on VI can be replaced only by a system of forces distributed over surface
0' is substantiated by the physical concept of the short-range interaction.
In non-local theory of elasticity one also considers the mass forces of inter
action of the "removed" part with the rest of the body.

1.1.4 Equilibrium of an elementary tetrahedron

Let us replace the assumption about a linear relationship between the vec
tor of force tNdO and the oriented surface NdO by assuming the general
relationship

tNdO = f (NdO) . (1.4.1)

It is necessary to prove that f is a linear operation over vector N dO . To
this end, we consider equilibrium of the elementary tetrahedron with the- --vertex at point 0 and the edges OA, OB, OC prescribed by vectors AeI,
Ae2 , Ae3, with A denoting a small scaling parameter, see Fig . 1.2. The
outwards vectors of the oriented surfaces OAB, OBC, OCA are given by

3 1 2 11 2 21 2
N 3d0= 2 A e2 x ei , Nld 0= 2A e3 x e2, N 2d0= 2A ei x e3.

The right hand side of the easily proved identity
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o

FIGURE 1.2.

is proportional to and directed in the opposite direction to vector NdO of
the oriented surface ABC which is shown in Fig. 1.2. Hence

1 2
NdO = 2>' (e2 - el ) x (e3 - ei )

and thus

(1.4.2)

The resultant vector of surface and mass forces acting on the tet rahedron
vanishes, i.e,

1 2 3
t NI d O +tN2d 0 +tN3d 0 +tNdO + pKdT = O.

The latter term is proportional to the elementary volume

1 3
dr = '6>' el . (e2 x e3)

and should be neglected since the other terms are proportional to >.2 as
>. -+ o. Thus

1 2 3
-tNdO = t NI dO +tN2d 0 +tN3d 0 . (1.4.3)

Accounting for eqs. (1.4.2) and (1.4.3) and setting (1.3.1) in the following
form

f (-NdO ) = -f (N dO)

allows us to express eq. (1.4.1) as follows

(1.4.4)
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FIGURE 1.3.

This proves the linearity of the functional dependence (1.4.1). Relationship
(1.3.2) defines the st ress tensor T and, thus, is fundamental for construct ing
cont inuum mechanics.

By using a coordinate representation and eq. (1.4.2) we can write rela
tionship (1.3.2) in the form

t N l = i..». + t2l N2 + t 31N3 , }

tN2 = t12 N l + t22N2 + t 32N3,

t N 3 = t1 3N l + t 23N2 + t33N3'

(1.4.5)

Assuming N = h, so that N1 = 1, N2 = N3 = 0 yields the vector of force
act ing on the unit area with the outward normal i 1 . Let us refer to this
as stress vector tl. Its project ions on the axes of syste m OX 1X 2 X 3 , i.e.
t ll , t 12, t 13 are termed st resses, where tll is called the normal stress whilst
h 2 and t 13 are called shear stresses. By analogy we int roduce st ress vectors
t 2 and t 3 on the surfaces whose normals are the unit vecto rs of coordinate
axes i2 and h, respectively. In the matri x of components of tensor T

tll t 12 t 13

t 21 t 22 t 23

t31 t 32 t 33

(1.4.6)

the diagonal and non-diagonal elements present respectively normal and
shear stresses. Figure 1.3 displays an elementary parallelepiped whose edges
are parallel to the coordinate axes and the stresses on its three faces.

Remark 1. Relationships (1.4.5) were first obt ained by Cauchy in 1827 by
considering equilibrium of an elementary tetrahedron with edges parallel
to the coordinate axes.

Remark 2. Stresses tsk can only conditionally be called the project ions
of "vector" t , since these quant it ies are t ransformed as tensor components
rather than vector components under rotation of the coordinate system.
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Quasivectors t s , see eq. (1.5.12), can be introduced in terms of a dyadic
representation of the stress tensor

(1.4.7)

Remark 3. Figure 1.3 shows positive stresses tsk (tsk > 0) on faces with
the outward normals whose directions are coincident with those of the
coordinate axes. As t- s = -ts the positive stresses t sk have directions
of -ik on the faces with the normal -is. This means that positive normal
stresses are in tension whereas negative normal stresses are in compression.
The moments of the positive normal stresses t sk on faces is and -is about
axis i, have the sign of the corresponding Levi-Civit a symbol eskn see eq.
(A.1.2).

Remark 4. In the technical literature on the theory of elasticity the com
monly accepted notation for normal and shear stresses are a and 7 with
the corresponding indexes, so that the matrix of tensor T takes the form

a x = a1

7 y x = 7 21

7 zx = 7 31

7 x y = 712

a y = a2

7 zy = 732

7 x z = 7 13

7 y z = 723

a z = a3
(1.4.8)

This notation will be used in the present book along with notation (1.4.6).
There are a number of other systems of notation, for example ax = X x,
7 x y = X y etc.

1.1.5 The necessary conditions for equilibrium of a continuum

Let us consider an arbitrary volume V* bounded by a surface 0* . It is
assumed that V* lies completely within volume V , and 0 * has no common
points with surface 0 . The surface forces distributed over 0 * which are
internal for V and external for V* are caused by the stress state described
by tensor T. They are given by the basic relationship (1.3.2) in which N
denotes a unit vector of the external normal to 0* .

There are two groups of necessary condit ions of equilibrium, namely
equations of equilibrium in volume V and those on surface 0 .

The equations of equilibrium in the volume express the condition of van
ishing principal vector and the principal moment of the mass and surface
forces in an arbitrary volume V* within volume V. Referring to eqs. (1.2.1)
and (1.2.7) we have

fff R x pKd7+ ff R x t NdO = o.
v, o.
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Replacing tN by means of formula (1.3.2) yields

///PKdT+ //N.i'dO=O,
v, o.

/ / / R X pKdT + / / R x N . ivo = O.
v, o.

(1.5.1)

Transforming the surface integrals into volume integrals (see eqs. (B.5.5)
and (B.5.6)) we obtain

// N·i'dO= /// divi'dT ,
o. v.

//RXN .i'dO= ///(RXdivi'-2W)dT,
o, V.

(1.5.2)

where W denotes a vector accompanying tensor i: This vector is known to
be determined by the skew-symmetric part of tensor t: Then we arrive at
the following equalities

/ / / (pK + divi') dr = 0, /// [R x (pK + divi') - 2w] dr = O.
v, v,

(1.5.3)

It follows from the equality

where V* denotes an arbit rary volume and f is a continuous function of
the coordinate, that f == O. Indeed , if one assumes that f # 0 at a point of
volume V*, then this function , as it is continuous, keeps the same sign in
the vicinity of this point . This vicinity can be understood as a volume V*,
and the integral of a function with a constant sign can not vanish.

By virtue of the latter statement it follows from eq. (1.5.3) that

divi'+pK = o. (1.5.4)

This is the first equation of equilibrium for a continuum. Inserting it into
the second equation in (1.5.3) yields W = 0 which proves the symmetry of
tensor i'

(1.5.5)
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Equilibrium equations for a continuum, eqs. (1.5.4) and (1.5.5), are written
here in an invariant form. In Cartesian coordinates these equations have
the form of three differential equations of statics of a continuum

(1.5.6)

and three equations expressing symmetry of the stress tensor

(1.5.7)

By means of eqs. (1.5.6) and (1.5.7) a more general statement expressing
the latter property can be set as follows

(1.5.8)

where III and ll2 are two arbitrary unit vectors. The latter equation says
that the projection of the stress vector on the surface with normal III onto
direction ll2 is equal to the projection of the stress vector on the surface
with normal ll2 onto direction nr .

Equilibrium equations (1.5.6) and (1.5.7) can also be easily obtained by
equating the principal vector and the principal moment of the surface and
volume forces acting on an elementary parallelepiped to zero.

The surface forces of the faces perpendicular to axis h (the front and
rear faces) are as follows

tl (Xl + ~dXl' X2, X3) dx2dx3 = (tl + ~:: dXl) dX2dx3

Ll (Xl - ~dXl' X2, X3) dX2dx3 = (Ll - ~ ~;ll dxl)dX2dx3 ,

where tl (Xl, X2, X3) denotes the value of tl at the center of the paral
lelepiped. Taking the origin at the vertex of the parallelepiped, the posi
tion radius of the points where these forces are applied can be considered
as being equal to

where
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is the position vector of the center of the parallelepiped. Similarly, we can
construct expressions for the forces and the position vectors of the points
where these forces are applied for the right and left faces which are per
pendicular to i2

as well as for the upper and lower faces which are perpendicular to h

The volume force pKdx1dx2dx3 is considered as being applied at the center
of the parallelepiped. Equating the principal vector of the above forces and
the principal moment of these forces about point 0 to zero and taking eq.
(1.3.1) into account we arrive , after cancelling dX1dx2dx3 , at the following
two vector equations

(1.5.9)

where the terms in parentheses in eq. (1.5.10) disappear due to eq. (1.5.9).
Thus , we have derived relationships which are another form of equations
(1.5.6) and (1.5.7)

ots (Otst ) .oX
s

+ pK = oX
s

+ pKt 1t = 0,
otst
~ +pKt =0,
UXs

(1.5.11)

(1.5.12)

The three equilibrium equations (1.5.6) contain six components of the sym
metric stress tensor. Clearly, equations (1.5.6) are only the necessary con
ditions for equilibrium, obtaining sufficient conditions inevitably requires
consideration of a physical model of the continuum (elastic solid, viscous
fluid etc.). The problem of equilibrium of a continuum is statically indeter
minate.
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Equilibrium equations on surface 0 bounding volume V are obtained
from the basic relationship (1.3.2) where tN is replaced by force F dis
tributed over 0

N ·t=F.

Another form of this equality is

NItl + N2t2 + N3t3 = F

or

(1.5.13)

(1.5.14)

(1.5.15)
NItn + N2t2I + N3t3I = FI, }
N I t I2 + N2t22 + N3t32 = F2,
N I t I3 + N2t23 + N3t33 = F3,

where N, denote projections of the unit vector N on the coordinate axes.
Let us agree to say that any particular solution of the equilibrium equa

tions in the volume and on the surface determines a possible static state
of the continuum. Such a state is described by a particular solution of
the system of partial differential equations (1.5.6) with six unknown vari
ables satisfying three boundary conditions (1.5.15). The goal of statics of
a continuum is to determine a state corresponding to the adopted physical
model.

1.1.6 Tensor of stress functions

Equilibrium equations for a continuum (1.5.4) are linear in components of
the stress tensor, that is, the solution is the sum of a particular solution of
the equation

divt(1) + pK = 0

and the solution of the homogeneous equation

divt(2) = O.

(1.6.1)

(1.6.2)

The particular solution is assumed to be known; for p = const and the mass
forces encountered in practice (e.g. gravity force and centrifugal force) it
can be found easily. For this reason we study a general representation of a
tensor with zero divergence. In order to avoid notational complications we
will denote it by t rather than t(2). Such a tensor should be sought in the
form

t = rot?, (1.6.3)

cr. eq. (B.4.16) , where? is a tensor of second rank which, due to eq. (1.5.5) ,
must obey the following condition

rot? = (rot?) * (1.6.4)
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Referring to eq. (B.4.13) we can satisfy this condition by taking

(1.6.5)

where <I> denotes any symmetric tensor of second rank. Thus, tensor

t = rot (rot <I>r= inc <I> (1.6.6)

meets the required conditions because it is symmetric and its divergence is
equal to zero. The symmetric tensor <I> is referred to as the tensor of stress
functions.

Adopting a diagonal form of <I> , i.e.

(1.6.7)

leads, by means of eq. (B.4.15), to the following representation of stresses
in terms of Maxwell's stress functions

(1.6.8)

Representation of the stress tensor in terms of Morera's stress functions
is obtained by assuming zero diagonal components

In this case

(1.6.9)

Representation of the stress tensor in terms of Maxwell's functions is not
invariant since any diagonal tensor is no longer diagonal under a coordinate
transformation. Morera's representation is also not invariant. An invariant
representation of the stress tensor in the form of eq. (1.6.6) was suggested
independently by B. Finzi, Yu.A. Krutkov and V.1. Blokh.

In the plane problem of elasticity the stresses are independent of co
ordinate X3 and components t2:1 and bl of the stress tensor are absent.
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An expression for the tensor of stress functions which is invariant about
rotation about axis OX3 can be taken in the following form

(1.6.10)

where IJ = const . Then, by virtue of eq. (1.6.8)

Function U (x1, X2) is the Airy stress function. It is easy to see that expres
sions (1.6.11) identically satisfy the homogeneous equations of equilibrium
of the plane problem

Representation (1.6.6) suggests that for any stress tensor T the tensor
of stress functions is determined up to an additive tensor <1>(1) which is
symmetric and for which inc <1>(1) = O. Thus, as we can see in Subsection
2.2.1, this tensor is a tensor of linear deformation of any vector a

Hence, assuming

we have

<1>(1) = def a , inc <1>(1) = inc def a =: O.

<1> = <1>. + def a ,

T = inc <1> = inc <1> •.

(1.6.12)

(1.6.13)

(1.6.14)

Therefore, <1> contains three arbit rarily prescribed functions as. This allows
one to comprehend why six functions t sk related by three differential equa
tions (1.5.6) are expressed in terms of six rather than three stress functions
<Prt .

1.2 The properties of the stress tensor

1.2.1 Component transformation, principal stresses and
principal invariants

The stress tensor possesses all properties of the symmetric tensor as listed
in Appendix A.
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The law of transformation for the components of a stress tensor under
rotation of the Cartesian coordinate system is given by formulae (A.3.6).
These formulae can also be obtained from Cauchy 's dependence (1.4.5). Let
N be coincident with vector i~ then Ctks = i~ . is = Nm and the projections
of "quasivector" t~ on the old axes, i.e, stresses on the surface with the
normal i~, are given, due to eq. (1.4.5), by the following equations

whereas those on the new axes are

(2.1.1)

For example ,

t~2 = CtllCt21tll + Ct12Ct22t22 + Ct13Ct23t33 + (Ctll Ct22 + Ct12Ct2I) iI2 +
( Ct12Ct23 + Ct13Ct22) t23 + (Ct13Ct21 + CtllCt23) t 31, (2.1.3)

It is easy to derive these formulae with the help of the following identity

where the unit tensor E is set as follows

Again we obtain eq. (2.1.1)

(2.1.4)

The principal values of the stress tensor, referred to as the principal
stresses, are equal to the roots iI , t2, t3 of its characteristic equation

=0. (2.1.5)

The principal directions called principal axes form an orthogonal trihedron

of the unit vectors ~ , ~ , ~ whose cosines of the angles to the coordi

nate axes ek=e ·ik are determined by the following system of equations
(r = 1,2,3; s = 1,2,3)

(2.1.6)
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where the symbol Y/-s implies no summation over s. The diagonal represen
tation of the stress tensor in terms of the principal axes is written in the
form

, 11 ZZ 33
T = ti ee +tz ee +t3 ee, (2.1.7)

that is, the principal stresses t s on the surfaces with normal vectors ~ are
normal whilst shear stresses are absent. Expressions for the components of
the stress tensor in the system of axes iI, iz, i3 in terms of the principal
stresses take the form

(2.1.8)

(2.1.9)

Here G sm = is ' ';; since the principal axes play the role of the "old" axes.
The notion of the Cauchy dependences (1.4.5) simplifies as well

tN! = hN1, tNZ = tzNz, tN3 = t3N3, (Nk = N· ~) .

Due to eq. (2.1.8) the normal stress on a surface with the normal N is
expressed in terms of the principal stresses as follows

(2.1.10)

which can be easily obtained from eqs. (2.1.7) and (2.1.9). At the same
time, by virtue of eq. (2.1.9)

tz Z Z tZNZ zN.z tZN2N = aN + TN = 1 1 + tz Z + 3 3' (2.1.11)

(2.1.12)

which yields the square of the absolute value of quasivector tN which is the
total stress on the surface with normal N. The total shear stress on this
surface is denoted by TN, see Fig. 1.4.

The quantity aN represents the NN-component of tensor T while t'Jv is
the square of the magnitude of vector N .T. For this reason, in coordinate
axes is we have

aN=N .T .N=tstNsNt, }
Z " 'ztN=N ·T ·T.N=N·T ·N=tsktktNsNt,

T'Jv = t'Jv - a'Jv = NsNt (tsktkt - NkNrtsttkr) ,

where N, = N . is and axes is are assumed not to be the principal axes.
In the plane problem of elasticity axis OX3 is one of the principal axes

since tZ3 = t31 = O. Denoting the angles between axis i 1 and the principal
axes e1 and ez as tp and ~ - .p, respectively, we have due to eq. (2.1.8)

t ll = t1cosz tp+ tz sinz sp = t(t1 + tz) - t(tz - td cos 2tp, }
tzz = h sinz sp + tz cosz sp = ?(h + tz) + "2 (tz - td cos 2tp,
tlZ = (tz - td cos sp sin sp = "2 (tz - t1) sin 2tp.

(2.1.13)
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FIGURE 1.4.

Referring to eq. (1.6.11) it is easy to derive the basic relationships of the
plane problem

h + t2 = tll + t22 = \l2U, }
2' ( a a )2 (2.1.14)

(t2 - tl) e ~'P = t22 - tll +2it12 = aXl - i aX2 U.

Using eqs. (A .10A), (A.1O.10) and (A.lO.11) one can write the following
equations for the principal invariants of tensor T

t, (T) = h + t2 + t3 = tll + t22 + t33 = tss, }

12 (T) = ~ [(tss)2 -tSktkS] = ~ [If (T) - t, (T2)] ,

h (T) = h t2t3 = Itsk I= ~ [It (T) - 3h (T) t, (T 2) + u, (T3)] .
(2.1.15)

1.2.2 Mohr's circles of stress

We look for the surfaces on which the normal and shear stresses have a
priori prescribed values IJNand TN , respectively. The problem reduces
to a search for three unknown values Nf' Ni ,Nl from eqs. (2.1.10) and
(2.1.11) along with the following equation

N; + Ni + Nj = 1.

The sought-for solution is written down in the form

N 2 _ It (IJ N , TN) N,2 _ 12 (IJ N , TN) N 2 _ h (IJN , TN)

1 - (h - t2) (h - t3) ' 2 - (t2 - h) (t2 - t3) ' 3 - (t3 - h)(t3 - t2) '
(2.2.1)
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FIGURE 1.5.

where

(2.2.2)

Let us agree to label the principal stresses in order of decreasing values ,
i.e, t 1 > t2 > t3 . Clearly, only such (J N , TN are possible, for which N; > O.
Hence , the following inequalities

II > 0, h < 0, h > 0 (2.2.3)

must hold true. Curves Ck , which lie in the half-plane TN> 0 and for
which fk = 0, are the semicircles

C1 with a centre at point 0 1

C2 with a centre at point O2

C2 with a centre at point 0 3

t2 + t3 0
2 '

t3 +tl 0
2 '

tl + t2 0
2 '

· t2 - t3
of radius -2- '

· tl - t3
of radius -2- '

· t 1 - t2
of radius -2-'

(2.2.4)

At the centres of these circles !k < 0 (k = 1, 2, 3), thus I» > 0 in the parts
of the half-plane which are outside of Ci , It follows from inequalities (2.2.3)
that the region of possible (J N , TN is located outside of C3 and C1 and inside
of C2 , and is shown by the hatching in Fig. 1.5.

The point 8 2 of semicircle C2 corresponds to the maximum shear stress

(2.2.5)
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It is realised on the surfaces having the normal N(S2)

h (t1; t3,T2) ~
NF2) =€ - €

(t1 - t2)(t1- t3) - 2'

NJS
2) = 0, NJS

2) =€~' (z = ±1) .

The shear stresses corresponding to points 83 ,81 of semicircles C3 and C1

are designated by

(2.2.6)

The orientation of the corresponding surfaces are given by their normals

NJS3) = o.

Nf3) =€~.

As one can see from these equations the shear stresses Tk are observed on

the planes which pass through the principal direction ~ and bisect the right

angle between the principal coordinate planes intersecting in direction ~ .
One refers to Tk as the principal shear stresses.

By using notation (2.2.5) and (2.2.6) we can easily obtain from eqs.
(2.1.10) and (2.1.11) that

(2.2.7)

In particular, on the octahedron plane, that is the plane equally inclined
to the principal axes (Nf = Ni = Nl = 1/3) we have

On the other hand, due to eqs. (A.l1.6) and (A:IO.10) we obtain

T7v = t7v - C17v = ~ [It (1'2) - ~If (1')] = -~I2 (nev1'),
so that

(2.2.8)

(2.2.9)

(2.2.10)
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It is worth noting that eq. (A.l1.8) yields the same results. The value

/ ( A) 2 (2 2 2)7 = V- 12 Dev T = 3 7 1 + 72 + 73

is referred to as the intensity of shear stresses. The formulae obtained enable
a mechanical interpretation of the invariants of the stress tensor.

The construction of the region for possible values of (7Nand 7 N was given
by O. Mohr in 1882. Clearly, it is applicable for any symmetric tensor of
second rank Q, the role of (7Nand 71 being respectively played by N .Q.N

A

2andN·Q ·N.

1.2.3 Separating the stress tensor into a spherical tensor and
a deviator

The stress tensor is represented in the form of eq. (A.l1.1) , i.e.

A 1 (A) A A 1 A A
T = 3It T E + Dev T = 3(7E + Dev T. (2.3.1)

Here !(7 is the mean value of the sum of three normal stresses on mutually
orthogonal surfaces . Such a state of stress is realised in an ideal fluid or in
a viscous fluid at rest with an equal stress p = -!(7 on any surface. Such a
"hydrostatic" state of stress corresponds to the spherical part of the stress
tensor whereas the deviation from the hydrostatic state is characterised by
the deviator DevT.

1.2.4 Examples of the states of stress

First example. In the state of stress referred to as pure shear , the stresses
on the surfaces which are orthogonal to i3 as well as stresses tll, t22 are
absent. Tensor t is given by the equality

t = (i1i2 + i2i1) t 12

and the characteristic equation (2.1.5) takes the form

-t t12 0
t21 -t 0 =-t(t2-tI2) =0.
o 0 -t

The principal stresses are

t 1 = t12, t2 = 0, t3 = -t12'

(2.4.1)

(2.4.2)

System of equations (2.1.6) determining the principal axis of stresses ~ is
as follows

1 1 1 1 1 12 12 12

-t12 e1 +h2 e2= 0, t21 e1 -t12 e2= 0, - t12 e3= 0, e1 + e2 + e3= 1.
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!J

FIGURE 1.6.

One of these equations should be a consequence of the others. One can see
that the second equation repeats the first equat ion. Hence

1 1 1 1
e l =e2= ± J2 ' e3= O.

By analogy we obtain

The principal axes kand ~ are directed along the diagonals of the square,
2

see Fig. 1.6, and the principal axis e is coincident with i3 which follows
directly from eq. (2.4.1) for tensor T.

The locat ion of Mohr 's circles is shown in Fig. 1.6. The principal shear
stresses and the intensity of shear stresses are given by

T =

This explains the choice of multip lier 2/3 in definit ion (2.2.11) of quanti ty
T. In the case of pure shear the spherical part of T as well as the normal
stresses on the octahedron surfaces are absent , the total shear st ress on

these surfaces being equal to /j,t 12 '

In an isotropic non-linear elast ic medium the stat e of pure shear is not
accompanied by pure shear st ra in, see Subsect ion 2.6.3 for details. The
realisation of a pure shear strain requires the app lication of normal stresses .

Second example. Let us consider a linear elast ic rod subjected to tors ion
about axis h. The state of st ress in the rod is described by the tensor

(2.4.3)
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The invariants of the tensor are

(2.4.4)

and its characteristic equation, due to eq. (A.1O.3), is as follows

-t3+t(t5l
+t~3) =0.

The principal stresses are equal to

tl = Jt§l + t§3' t2 = 0, t3 = -Jt§l + t§3'

whilst the directions of the principal axes are given by the Table of the
direction cosines

D
1 E E E
e J2 coso: J2 sino: J2,,2 ,,2
2

- Esino: 0e E COS O:
3 E E E
e - J2 coso: - J2 sino: J2,,2 ,,2

Table 1.1 Table of the direction cosines

where cos 0: = t3dtl and sin 0: = t23/tl ' The state of stress on the faces of

the parallelepiped with edges having the directions i3 , the principal axis ~
and the normal m , see Fig. 1.7, is a pure shear stress of intensity y't5l + t§3'
In these axes the st ress tensor is set as follows

Third example. The tensor of equal shear stresses is given by the equalities

tik=70 (i:j:k), tll=t22=t33=0.

Its invariants are

(2.4.5)

It (f) = 0, 12 (f) = -375, h (f) = 27g,

while the princip al stresses are determined by the roots of the cubic equa
tion

_t3+ 375t + 27~ = 0

and are equal to
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m

FIGURE 1.7.

The direction of the first principal axis is determined by the vector of the
normal to the octahedron surface

1 ± 1 (' . ' )e= J3 II +12 +13 ,

whereas its principal axes ~,~ lie in the plane orthogonal to ~ and are
determined up to a rotation about t his axis. Using eq. (A.9.14) we can put
the st ress tensor in the form

, (11 ,)T=TO 3 ee -E .

A cylinder having axis of direction ~ is subjected to a tensile st ress 2To
along this axis and a compressive stress TO on t he side surface.

Fourth example. The elect rostatic system of Maxwell st resses is given by
the tensor

, kg ( 1 ' )T= - EE- -EE·E
4n 2 '

(2.4.6)

where g is the density of free charges, k is the dielectric constant which is
assumed to be independent of g and E denotes the vector of the electric
field st rengt h. The elect ric field appears in the field of volume forces act ing
on a dielectric

. ' kg. ( 1 ' )pK = - div T = - - div EE - - EE . E .
4n 2

Accounti ng for t he relationships

div E E = EdivE - E x rot E + ~ grad E · E , E = grad V, rotE = 0,
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where V denotes the electric potential, we have

pK = - :~EdiVE. (2.4.7)

One can immediately determine the principal axes and the principal stresses.
Due to the definition of the principal axes

kg ( 1 A )- EE - - EE . E . e = te
4n 2 '

and one can see that this equation is satisfied if one takes

1 E
e =e= lEI '

kg
t=-E·E=tl'

8n
(2.4.8)

The remaining solutions are obt ained by assuming arbitrary directions of
the unit vector e in the plane orthogonal to E

2 S kg
e · E = 0, e .E = 0, t2 = ts = --E · E.

8n
(2.4.9)

A tensile stress is seen to act in the direction of the field whilst the com
pressive stresses of the same magnitude act in the transverse directions.

Fifth example. We consider a vessel under uniform pressure. The state
of stress described by the spherical tensor

T= -pE, (2.4.10)

is possible in a vessel subj ected to an equal pressure inside and outside the
vessel. Indeed , for the stress tensor (2.4.10) and absent volume forces the
equilibrium equation (1.5.4) is satisfied in the volume whilst the condition

N.T=-pN

holds on any surface. This state is realised in a linearly elast ic body.

1.3 Material coordinates

Study of this section requires familiarity with the contents of Sections 2.3
2.5.

1.3.1 Representation of the stress tensor

In Sections 1 and 2 of the present chapter the stress tensor T was prescribed
by its components in the deformed medium (in volume V) . In what follows
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these components are denoted as t(sk) in a Cartesian coordinate system
OX1X2X3. Proceeding to material coordinates q" and a vector basis R,
we introduce the dyadic representations of the stress tensor

(3.1.1)

in terms of its contravariant tsk or mixed tk components (the covariant
components of the stress tensor are normally not used). At the same time

Comparing these expressions and referring to eqs. (3.1.6) and (3.1.8) of
Chapter 2 we obtain the following relationships

(3.1.2)

(3.1.3)

1.3.2 Cauchy's dependences

The initial definition of the stress tensor (1.3.2) is now set in the form

This yields

(N) (N) (N) (N) __

t · R k = t k = t-qkN-q, t R t tqN. k = k = k q'

(3.2.1)

(3.2 .2)

These are Cauchy 's dependences (1.4.5) expressing the contravariant and
(N)

covariant components of stress vector t on the surface with the normal N
in terms of the components (contravariant and mixed) of the stress tensor
in the basis of volume V. By virtue of eq. (3.5.2) of Chapter 2, the force
acting on this surface is presented by the expression

(3.2 .3)

1.3.3 The necessary condition for equilibrium

An invariant notion of the equations of statics was presented in Subsection
1.1.5 by two relationships

(3.3.1)



56 1. Stress tensor

As suggested in Subsection 2.3.1, the tilde sign denotes that the operation
of divergence is performed in the basis of volume V. Byeq. (E.4.7) in this
basis we have

1 8 r;:::; -st _
rr;-8 vGt n, + pK - O.

vG qS

The law of mass conservation and eq. (5.5.1) of Chapter 2 yield

pdr = PodTo, pVC = PoV9,

(3.3.2)

hence, the equation of statics in volume V can be taken in another form

8 r;:::; -st ;;;u
-8vG t R, + Povg~... = o.qS (3.3.3)

Referring to the rule of differentiation of the base vectors (E.2.2) we can
represent the vector on the left hand side of this equation in terms of the
contravariant components as follows

(3.3.4)

The condition of symmetry of tensor T in terms of its contravariant and
mixed components is written down in the standard form

(3.3.5)

This follows from relationships (D.5.5) and, of course, is confirmed by the
transformation formulae (3.1.3).

The equilibrium equations (3.3.3) can be easily derived by the following
illustrative representation. Consider an elementary body (parallelepiped)
bounded by surfaces qS and qS+ dq" (8 = 1,2, 3). Due to eqs. (3.2.3) and
(3.5.3) of Chapter 2, the forces acting on these surfaces are presented by
the expressions

-..JG fl tR tdq2dq3 ,

-..JG j2tR tdq3dql ,

-..JG [3tRtdq
1dq2 ,

since, for example, on the surface given by vectors R 2dq2 and R 3dq3 we
have
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The mass force acting on the considered volume is equal to

Equation (3.3.3) indicates that the principal vector of the mentioned forces
vanishes. The equilibrium equation on surface 0 bounding volume V sug-

N
gests that vector t determined via the stress tensor by eq. (3.2.1) is equal
to the vector of the external surface force F. Referring to eqs. (3.5.5) and
(3.2.2) of Chapter 2 we have

- 1 m ~F = N .T = J R n m ' t RsRt,
n·(;X-1·n

or

(3.3.6)

The latter equation written in terms of the contravariant components of
the surface force has the form

(3.3.7)

which can also be set as follows

(3.3.8)

Notion (3.3.7) has an advantage in that it utilises the normal n to surface
o of volume v which is given a priori, whilst surface 0 of volume V needs
to be sought.

1.3.4 Another definition of the stress tensor

Trefftz, Hamel, Kappus and other authors propose that the stress tensor 0'1'
is a tensor which is related to tensor '1' introduced earlier by the following
formula

Then, by virtue of eq. (3.2.3),

(N) dO _ (N )
t do = otSqRsnq = ot ,

(3.4.1)

(3.4.2)

(N)
where ot denotes the stress vector on the oriented surface NdO in volume
V. However, this stress vector is related to a unit area of this surface in its
initial state, i.e. in volume v .
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The equilibrium equations in the volume and on the surface take the
form

(3.4.3)

(3.4.4)

Here P denotes a surface force per unit area of surface 0 in volume v

Pdo = FdO. (3.4.5)

1.3.5 Elementary work of external forces

We consider equilibrium of a continuum in volume V bounded by surface 0,
the continuum being subjected to mass K and surface F forces. According
to the principle of virtual work, the elementary work done by all external
and internal forces due to virtual displacement of the continuum particles
from their equilibrium position is equal to zero

8'a(e) + 8'a(i) = O.

The field of virtual displacement is prescribed by the vector

8u = 8 (R - r) = 8R,

(3.5.1)

(3.5.2)

inasmuch as vector r identifying the considered particle in volume v remains
unchanged (8r = 0) under any virtual displacement from the equilibrium
position in volume V .

The elementary work of the external forces is expressed in the form

8'a(e) = fff pK·8udr+ ff F·8udO.
v 0

(3.5.3)

Replacing the surface force in the second integral by means of eq. (1.5.13),
transforming the surface integral into a volume one due to eq. (B.5.5) and
using eqs. (B.3.1O) , (B.3.10) and (1.5.5) yields

ff F ·8udO= ff N·t·8udO= fff V ·t·8udr
o 0 v

= fff[(v.t) .8u+t . .V8u] dr. (3.5.4)
v

Returning to eqs. (3.5.3) and (3.5.2) we obtain

8'a(e) = fff (pK+divt) · 8udr +fff t ..V8Rdr.
v v



1.3 Material coordinates 59

In accordance with definition (DA .3) of the nabla-operator in the metric
of volume V

and taking into account the symmetry of tensor t we have

Now referring to eqs. (3.3.1) and (3.3.3) of Chapter 2 we arrive at the
relationship

(3.5.5)

By eqs. (3.6.3) of Chapter 2

111
2GSq = 2gSq +e.; 82GSq = se.;

since tensor g remains unchanged under variation in volume V . This allows
us to reset eqs. (3.5.5) and (3.5.1) in the form

(3.5.6)

We next consider the specific elementary work of external (8'A (e)) and
internal (8'A(i)) forces

8'aiel = JJJ8'A(e)dTO ,

v

8'a( i) = JJJ8'A(i)dTo ,

v

(3.5.7)

that is, the elementary work is relat ed to a unit volume of the continuum
in its initial stat e (volume v). Then, due to eq. (3.5.6) and the arbitra riness
of volume V, we have

(3.5.8)

This expression can be derived in a simpler way by calculat ing the elemen
tary work done by forces (listed in Subsect ion 1.3.3) act ing in volume V on
the elementary body bounded by surfaces qS and qS + dq", It is necessary
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to bear in mind that the virtual displacements of particles on the opposite
faces differ in the following vector

In particular, if T is a spherical tensor describing a hydrostatic state of
stress (a uniform compression) of intensity -p we have

T = -so, i sq = _pGsq

and referring to eq. (A.7.9) we obtain

(3.5.9)

or

, (G
8 A(i) = -p8y9 = -8D. (3.5.10)

Here D denotes the relative volume change, see eq. (5.5.1) of Chapter 2.
Remark 1. Virtual displacements in volume V and on surface 0 are

those arbitrary infinitesimally small displacements which do not destroy
the continuity of the continuum in V and are compatible with the imposed
constraints on 0, respectively. For this reason, on the part 0 1 of the surface
with the prescribed displacement we have

8u= O. (3.5.11)

The surface forces F on 0 1 are not known in advance. These are the reac
tion forces of those constraints which ensure prescribed displacements u at
points on 0 1. For instance, this is the reaction force of an immovable sup
port ensuring u = O. However this does not prevent setting the elementary
work of the surface forces from being expressed in the form

JJF . 8udO = JJN .T .8udO,

o 0

as condition (3.5.11) holds on O2 .

Remark 2. A sign 8' in the expressions for the elementary work and
specific elementary work is used to denote infinitesimally small quantities.
A prime indicates that these quantities are not, in general, variations of
some functions . There does not exist such a quantity A(e) (or A(i)) whose
variation is equal to the specific work of external (or internal) forces.
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1.3.6 The energetic stress tensor

The strain measure is determined in the basis of volume v by eqs. (3.3.2)
and (3.3.3) of Chapter 2

so that

(3.6.1)

The stress tensor T is presented in terms of the contravariant components
in the basis of volume V by eq. (3.1.1). For this reason

(3.6.2)

i.e. the specific elementary work of the external forces is not equal to the
contraction (the first invariant of product) of stress tensor T and a variation
of the first strain measure 8G x .

For this reason let us introduce the following tensor

(3.6.3)

whose contravariant components in the basis of volume v are equal to the
contravariant components i st of the stress tensor in the basis of volume V.
Then

Q' I:C' X _ -sq m n I:C - -sq I:C
• • U - t rsrq • • r r u rnn - t u sq

and

(3.6.4)

Here the specific elementary work is presented by the contraction of tensor
Q and a variation of the first strain measure. For this reason tensor Q is
referred to here as the energetic stress tensor.

The relation between tensors T and Q can also be represented in an
invariant form. Referring to formula (3.2.3) of Chapter 2 we have

and thus
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Using eq. (3.6.3) as well as eq. (3.2.3) of Chapter 2 yields

f = (\7R)* . Q. \7R, Q= (~r) * . f . ~r. (3.6.5)

Let us notice that the equations of statics in the volume (3.3.3) and on the
surface (3.3.8) contain components isq of tensor f which are the compo
nents of tensor Q (but in another metric). Of course it would be an error
to writ e these equat ions down in the following form

Let us present tensors Q and 8£ by their spherical and deviatoric parts

Then, by virtue of eq. (3.6.4), we arrive at the expression for the specific
elementary work

Denoting the unit tensor in v- met ric by gand keeping in mind the follow
ing relationships

g. .g = h (g.g) = h (g) = 3,

g. · 8Dev£ = t, (g. 8 Dev £ ) = st, (Dev £) = 0,

DevQoog = 0,

DevQ .. 8Dev£ = It (Dev Q. 8Dev£) ,

we obtain the following representation of the specific elementary work as a
sum of two terms

(3.6.6)

In the linear theory of elasticity, the first and second terms are called the
elementary work of change in volume and form, respectively. Such an in
terpretation does not take place in nonlinear theory.
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1.3.1 Invariants of the stress tensor

Referring to eqs. (D.7.5) and (D.7.6) we have in volume V

h(1') =Gsdst, 13(1')=Glts
t l. (3.7.1)

Next , using first mixed and then cont ravariant components of tin formula
(D.7.11) we obt ain

I (1') = ~ (isir - iSir) = ~G G (isqirt - irqist)2 2 s r r s 2 sq rt

= ~isqirt (GsqGrt - GrqGsd. (3.7.2)

Also,

GsqGrt - GrqGst = (Rs . RqRr - R r . RqRs) . R t

= [(Rs x R r ) x R q] . R, = (R, x R r ) · (Rq x Rd

= EsrmEqtnRm . R n = GmnGesrmeqtn

which yields another representation for 12 (1')

I (T')- 1co»: -sq Trt:
2 - 2" eSTrn eqtnt t .

1.4 Integral estimates for the state of stress

(3.7.3)

The content of this section is not relat ed to the chapters that follow and
can be omitted without sacrifice of understanding the following text.

1.4.1 Moments of a function

Let us agree to refer to the integrals

JJJ f (Xl , X2 , X3 ) X~ l X~2X~3 dT , dr = d Xldx2dx 3 ,

V

where

8 1 + 82 + 83 = n

(4.1.1)

(4.1.2)

as the n-th order moments of a function f (Xl , X 2, X3 ) prescribed in volume
V . For 81 = 0 we have n + 1 numbers (82 ,83) whose sum is n, for 81 = 1
we have n numbers (82,83) whose sum is ti - 1 and so on. Hence, the total
number of N moments of order n equals

1
N = (n + 1) + n + .. .+ 1 = 2" (n + l)(n + 2) . (4.1.3)
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1.4.2 Moments of components of the stress tensor

The equilibrium equations in the volume , eq. (1.5.6), enable us to write the
following 3N relationships

if) 8 1 8 2 83 (8t lt + 8t2t + 8t3t) d +if) 81 8 2 83 K d - 0
Xl X2 X3 8 8 8 T X l X2 X 3 P t T - .

Xl X2 X3
V v

The first term is transformed by means of the Gauss-Ostrogradsky formula

if) 81 82 8 3 8tkt d - if) [8 (Xf1 X~2 x~3 tkd _ 81 8 2 8 3 ~ 8k t ] d
X l X2 x3 8 T - 8 X l X 2 X3 c: kt T

X k X k Xk
V V k=l

3

= JJXf1X~2X~3 FtdO - JJJXf1X~2X~3 L ;:tkt d T ,

o v k=l

where the equilibrium equation on the surface (1.5.15)

tktNk = F t

is used . Introducing the notion

t "",~ ~ [1!1x;' x;'x;' pK,dT+Jj x;'x;'x;'F'dO] ,

1 Jrrr 8 1 82 83t d ( 81 8 2 83t )V } } X l X 2 X3 kt T = Xl X2 X3 kt m '

V

we arrive at the following relationships

(4.2.1)

(4.2.2)

(4.2.3)

Given the volume and surface forces on the entire surface 0 bounding
volume V , the right hand sides of these equations are known. The total
number of equations in (4.2.3) is equal to ~ (n + 1) (n + 2) whereas the
number of unknown quantities is equal to the numb er of moments of order
(n - 1) for six functions t kt , i.e. 3n (n + 1).

1.4.3 The cases of n = 0 and n = 1

In t his case n = 1 ,81 = 82 = 83 = 0 and the t hree following equations

(4.3.1)
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express the condition of vanishing principal vector.
The case of n = 1 leads to nine equations in terms of six unknown values.

From these equations one obtains the mean values of the six components
of the stress tensor

t t t
(tlt)m =qlOO , (t2t)m =qolO, (t3t)m =qOOl,

the condit ion of symmetry of the stress tensor

(4.3.2)

2 1 321 3
(tI2)m - (t21)m =qlOO - qOlO= 0, qOlO - qOOl , qOOl - qlOO= 0 (4.3.3)

expressing the requirement that three components of the principal moment
of external forces are zero.

1.4.4 The first order moments for stresses

For n = 2 we arrive at 18 equations with the same number of unknown
values

The equations are split into two groups

t t t
2 (tltXl)m = q200, 2 (t2tX2)m = q020 , 2 (t3tX3)m = q002 ,

(4.4.1)

(4.4.2)

(4.4.3)

They yield all the first order moments for six components of the stress
tensor. For example , the first order moments of stresses tll, t12 (divided by
the volume) are

11 1 12 1 12
(tll Xl)m = 2 q200 , (tll X2)m = qllO -2 q200, (tll X3)m =qlOl -2 q200,

(4.4.4)

1 2 1
(it2XI)m = 2 q200 , (tI2X2)m =q020,
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1.4.5 An example. A vessel under external and internal
pressure

Let us denote the body volume and the volume of the internal space by Ve

and Vi, respectively. The surfaces bounding these volumes are respectively
denoted by O; and Oi. The surface forces are an external pressure Pe uni
formly distributed over Oe and internal pressure Pi uniformly distributed
over Oi, that is

(4.5.1)

Here N, and N, designate the unit vectors of the outward normals to
surfaces O; and Oi, respectively. Clearly, vector N, is directed into the
internal space Vi, The origin of the coordinate system is taken at the centre
of gravity of the body volume, so that

VeX~ - Vix~ = 0, S = 1,2,3, (4.5.2)

where x~ and x~ are respectively the coordinates of the centre of gravity of
volumes Ve and Vi,

Neglecting mass forces and accounting for eq. (4.2.1) yields

t 1 8 2 8 3 = - ~ (pe ]] X~l X~2 X~3Net dO + Pi ]] X~l X~2X~3NitdO)
o. o,

=-~ [pelf] 8~t (X~lX~2X~3)dT-Pi]]]8~t (XflX~2X~3)dT]'
Ve V,

where V = v"- Vi . Of course, the equilibrium conditions (4.3.1) and (4.3.3)
are satisfied . Taking into account eqs. (4.3.2), (4.4.2), (4.4.3) and (4.5.2),
we obtain the mean values of the normal stresses and their first moments

(4.5.3)

The mean values and the first moments of shear stresses are equal to zero

(4.5.5)
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1.4.6 An example. Principal vector and principal moment of
stresses in a plane cross-section of the body

Let body V be loaded by mass and surface forces. We consider a part of
the body which is cut by plane X3 = xg. Let us denote the volume of thi s
part as T , it is bounded by surface 0* +n, where 0* is the part of surface°of body V and n is the surface of the plane section. Taking X3 > xg in
volume T we have, due to eq. (4.2.1), that

(4.6.1)

since Nk = -83k for plane X3 = xg. The first terms in eq. (4.6.1) is deter
mined by the prescribed external forces. The equilibrium equations (4.3.1)
and (4.3.3) yield the following expressions for

a) th e trans verse force

(4.6.2)

b) the tensile force

(4.6.3)

c) the torque

(4.6.4)

d) the bending moments about axes OXI and OX2

(4.6.5)

Here m, denotes a mean value over surface n

~JJf (Xl ,x2,xg) dXldx2 = (f )m• .
n
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1.4· 7 An estimate of a mean value for a quadratic form of
components of the stress tens or

In order to simplify the notion we introduce a single subscript notation

We introduce a positive 6 x 6 matrix IIqrs II. Let us note in passing that
matrix IIqrsll is termed positive if the quadratic form qrsxsxr is posit ive
definite , i.e. this form vanishes only if all X s = 0. Let us enter the following
integral of the posit ive definite quadratic form over the body volume

~ ~ ~1[1 q" [r,- (GO +1;a~Xm)] [r,- (ao+t a;Xk)] dr ,

(4.7.2)

the summation signs over rand s being omit ted. The system of axes
OXIX2X3 is taken to be coincident with the principal central axes of in
ertia of body V

111 Xkdr = O, 111Xkxmdr = O, (k ,m= 1, 2, 3; k=/m). (4.7.3)
v v

We also introduce t he notion

111 x%dr = Vj~ (k =1,2 ,3) ,
v

so that

2 ·2 ·2 2 ·2 ·2 2 ·2 ·2
PI = 12 +13, P2 =13 + J1 , P3 = J1 +12

(4.7.4)

are t he squares of the inertia radii abo ut the central axes OXI, OX2 and
OX3, respectively.

Quantity 'ljJ considered as being a function of coefficients ag and ak has
a minimum under the following conditions

::; ~ -1[1 q" [r, - (ao+1;a:nxm) ] dr ~ - V q" [(r' )m - ao],

:: ~ -i[1q"xk[r,- (ao+i;, a~xm) ] dr



(4.7.7)
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As determinant !q1's I# 0 it follows from these equations that a stationary
value of'IjJ is a minimum due to the positive definiteness of 'IjJ . This minimum
occurs for the following values of ao and ak

ak= ~2(71'Xk)m
i;

calculated by eqs. (4.3.2), (4.4.2) and (4.4.3). Returning to formulae (4.7.3)
one can see that this minimum is as follows

(4.7.5)

We arrive at the inequality

which also holds with a sign 2': for a positive semidefinite form q1's71'7s , i.e.
a form which retains its sign and vanishes not only for zero values of its
variables. For example, let all qTS but only a single q1'1' be equal to zero,
then

( )

1/ 2 3 1/2

~ i[i T;dT ~ (T;j~' ~ [(Te);" +{; j~ (Te X');"]

In the problem of the vessel, Subsection 1.4.5, the inequality

if!q" T,T,dT~ ~ [(P' v, - PiVo)' + 1'.' (p, - Pi)'~ (~{] t q..

(4.7.8)

holds with an equality sign if Pe = Pi, see eqs. (4.5.3), (4.5.4) and (2.4.10).
Assuming now Pi = 0 and a single nontrivial value qss # 0, we obtain the
following inequality

(4.7.9)
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indicatin g that the presence of an internal space is accompanied by an
increase in st resses. This is because Ve = V and xk = 0 when no internal
space is present and eq. (2.4.10) requires an equality sign in formula (4.7.9).

1.4.8 An estimate for the specific potential energy of the
deformed lin ear-elastic body

As will be shown in Subsection 3.3.2, the specific potential energy is ex
pressed in ter ms of the invariants of the st ress tensor in the following way

A = 2~ [I f (T) - 2 (1 + lJ )12 (T)] , (4.8.1)

where E and lJ denote respectively Young's modulus and Poisson's ratio
of the mat erial. Inequality (4.7.6) provides one with an est imate of thi s
quantity in terms of th e prescribed external forces. Let us denote

and

12 (T) = (trr)m (tr+ l,r+dm - (tr,r+d~ ,
--;--~

12 (T <k)) = (trrxdm (tr+1,r+lXk)m - (tr,r+1Xk )~t '

where the summat ion is carried out over subscr ipt r from 1 to 3, with
r + 1 = 4 being replaced by 1. Then

(4.8.2)

(4.9.1)

1.4.9 An estimate of the specific intensity of shear stresses

Using eqs. (2.2.11), (A.11.8) and (A.1O.5) we can write the square of the
specific intensity of shear st resses, which is equal to the absolute value of
the second invariant of the deviator of the st ress tensor, as follows

T2 = ~ [(t l - t2)2 + (t2 - t3)2 + (t3 - td 2]

= ~ [(tll - t22)2 + (t22 - t33)2 + (t33 - t ll)2 + 6 (tI2 + t~3 + t~ l) ]

1 [ 2 2 ]= '6 (trr - tr+l ,r+d + 6tr,r+1 .
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It is a positive semidefinite form as it vanishes for tl2 = t23 = t31 = 0, tn =
t22 = t33 i- O. Due to eq. (4.7.6) we have

(T
2)m = ~ JJJT2dxldx2dx3 2: ~ [(trr)m - (t r+ l ,r+l)m]2 + (tr,r+l)~

v
3

+ ~ L ~2 {[(trrXk)m - (tr+l,r+I Xk)m]2 + 6 (tr,r+IXk)~} = T; . (4.9.2)
k=l Jk

According to the Mises yield criterion, inequality T < TT (TT denotes the
yield stress of the material) at any point in the body ensures the absence of

the plastic deformation zones. Inasmuch as (T
2)~2 < T max i the condition

TT > (T2)~2 presents a necessary, however not a sufficient, condition for
unattainability of the yield stress . For this reason, the inequality

(4.9.3)

provides sufficient evidence for the presence of plastic zones, whereas the
opposite inequality

TT > T* (4.9.4)

is a necessary condition for their absence. As mentioned above, these crite
ria are expressed with the help of the formulae of Subsection 1.4.3 in terms
of the external volume and surface forces, the latter being assumed to be
prescribed over the entire surface 0 of the body.

1.4.10 Moments of stresses of second and higher order

When n 2: 3, then the number of equations (4.2.3) is less than the number of
unknowns . For instance, for n = 3 we have 30 equations with 36 unknowns .
However for n 2: 3 it is possible to determine 15 unknowns. These are the
nine values

n (x~-ltls)m =qnoo, n (x~-lt2s)m =qono, n (x~-lt3s)m =qoon
(4.10.1)

as well as the six values of the following type

(
n-2 ) I 1 2(n-1) Xl x2hl =qn-llO--qnOO,

m ' n

( n-2 ) I 1 3
(n -1) Xl x3hl m =qn-I,OI -~ qnOO · (4.10.2)
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1.4.11 A lower bound for the maximum of the stress
components

The derivation of formula (4.7.6) for a lower bound of the mean value of
the quadratic form of the components of the stress tensor is based upon
only on the properties of orthonormality, eqs. (4.7.3) and (4.7.4), of four
polynomials of zeroth and first order

1
Po = VV' p-~s - jsVV (8=1,2,3) (4.11.1)

in volume V. This derivation can be carried out for a more general system
of orthonormalised polynomials

(4.11.2)

For example, one of the polynomials of second order

(4.11.3)

where

(4.11.4)

can be added to the basic system (4.11.1). The calculation becomes more
laborious when two polynomials, e.g. polynomial P4 and polynomial Ps
containing x~ , are added to the basic system . In this case one needs to
ensure the orthogonality of Ps to the basic polynomials as well as to P4 .

Let a system of polynomials orthonormalised in V be constructed, that
is

(4.11.5)

Instead of eq. (4.7.2) we introduce a more general form of the expression

Repeating the derivation of Subsection 1.4.7 we arrive at the inequality
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which is more general than (4.7.6). An equality sign can occur if qrqTrTq is
a positive semidefinite form.

Let all qrq but one with the coinciding subscripts be equal to zero. Taking
into account that

1 if! 2 2- T dr < TV q - I qlrnax
v

(4.11.6)

leads to the following lower bound of the maximum of the absolute value
for r«

(4.11.7)

This lower bound appears to be very rough and it can be made more precise
by adding new polynomials orthonormalised in V into the right hand side.
However in choosing the polynomials one should allow for the possibility
to express the values

(4.11.8)

in terms of the higher order moments (4.10.1) and (4.10.2) calculated by
the external loads.

For instance, if we restrict ourselves to n = 3 in these formulae, then for
h Imax we can use, along with the basic polynomials (4.11.1), the above
polynomial P4 . For a further refinement we can take one further polyno
mial with terms XIX2 or XIX3 orthonormalised with respect to the previous
five polynomials. A further refinement requires constructing a system of
seven orthonormalised polynomials (four basic and three quadratic ones
containing xi, XIX2, XIX3) . This exhausts the possibility of further refin
ing ITllmax for n = 3. Estimates for maxima for other components can be
constructed by analogy. For example , when n = 3 the best lower bound
for IT41max = It121max by formula (4.11.7) can be reached with the help of
six polynomials, which are Po, . . . ,P4 and a polynomial with x~ orthonor
malised to the others.

1.4.12 A refined lower bound

We start from the equality

(4.12.1)



74 1. Stress tensor

where /3q (q = 1, . .. , 6) and /3t (t = 1, . . . ,s) are some constants. Since the
absolute value of the integral on the left hand side does not exceed the
integral of absolute value of the integrand we have

Returning to eq. (4.12.1) we arrive at the inequality

max

(4.12.2)

The presence of the integral of the absolute value on the right hand side
complicates the calculation. However an advantage of this formula, in com
parison with eq. (4.11.6), is the presence of at. Carefully choosing them we
can increase the right hand side of the above inequality.

Assuming

~ qrqTrTq = (t/3qTq)

2

,
r,q-l q=l

we have, due to eq. (4.11.6), that

Let us now take
6

at = L/3q (TqPt)m
q=l

in inequality (4.12.2) and denote its right hand side as

tt [qt,f3q lr,P,)mr
')' = V---;---"'-------=----.----

s 6

JJJ 2: 2: /3q (TqPt)m Pt dr
V t=Oq=l

Setting sp = sgn 7jJ in the Bunyakovsky-Schwarz inequality

(4.12.3)

(4.12.4)

(4.12.5)



(4.12.6)

(4.12.7)
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we have

This inequality, being applied to the right hand side of eq. (4.12.5)' along
with eq. (4.11.5) yields

which implies that

Hence, the lower bound due to inequality (4.12.3) is worse than that given
by inequality (4.12.2) if all t he constants at are taken from eq. (4.12.4).
For example, if a single {3q is not zero then, by virt ue of eqs. (4.12.2) and
(4.12.4), we have

ITq lm ax ;::: V I t;O I
JfJ t~ (TqPd m PI dr

and this est imate is better than eq. (4.11.7).
As an example, we derive a lower bound for the maximum of the absolute

value of the temperature () under an adiabat ic loading. According to eq.
(3.5.8) of Chapter 3

aeO() = ---a,
cp

where () denotes the temperature difference from the natural state (i.e. the
unloaded state) , eo is the absolute temperature in the natural state, a
is the coefficient of linear expansion, cp is the heat capacity at constant
pressure and a = tll + t22 + t33 is the first invariant of the st ress tensor.
Taking only the basic polynomials (4.11.1) and using eq. (4.12.3) we obtain

{
3 }1/2aeo

1()l m ax ;:::~ V~ (aPd~,



76 1. Stress tensor

A more refined estimate by eq. (4.12.5) yields

(4.12.8)
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Deformation of a continuum

2.1 Linear strain tensor

2.1.1 Outline of the chapter

As already mentioned in Subsection 1.1.1, the transition from the initial
state (volume v) to the final state (volume V) is determined by prescrib
ing the displacement vector u of the medium particles. Construction of a
theory of continuum mechanics needs a mathematical means of describing
change in the distance between the particles and angles between the chosen
directions in terms of this vector field.

The problem is to follow the change in length and direction of an in
finitesimally small linear element of volume v described by the vector

dr = eldrl = eds

as well as the change in the vector

dR = ejdRl = edS

(1.1 .1)

(1.1.2)

in volume V provided that this vector contains the same particles. The
main issue is to relate vector dR to vector dr. It is clear that the solution
is bounded to introducing a second rank tensor. Indeed , let us consider the
position vector R of a particle in volume Vasa function of the material
coordinates (these are, for example, the Cartesian coordinates al, az, a3 of
this particle in volume v), then by virtue of eq. (B.2.1l) we have

dR = ds -9R = (9R)*· dr, (1.1.3)
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where V'R denotes the gradient of vector R and is a second rank tensor.
By means of this non-symmetrical tensor one can construct a symmetric
tensor of the second rank which is referred to in what follows as the first
measure of strain (Cauchy-Green) . It allows one to obtain the solution to
the above problem of the change in lengths and angles in volume v.

It does not exhaust the problem of determining the quantities charac
terising deformation since the inverse problem is also of importance. The
inverse problem is concerned with determining vector dr in volume v given
by vector dR in volume V and results in introducing the second measure
of strain.

Given a prescribed oriented surface ndo in volume v, another important
geometric problem is the determination of the corresponding surface N dO
in volume V. This problem and the inverse one, which is the determination
of ndo in terms of NdO, are solved by introducing two additional strain
measures defined by the second rank tensors which are inverse to the first
and second measures, see Section A.7.

It follows from eq. (1.1.3) of Chapter 1 that

A •• ( aUk)V'R = E + V'u = I slk 8sk + aa
s

. (1.1.4)

In the linear theory of elasticity, there is no need to deal with the above
strain measures. The linear theory is based on the assumption that the
elements of the matrix of tensor V'u are small

I
aUk Iaa

s
«1, (1.1.5)

which is quite acceptable when analysing deformations of massive and
slightly deformable bodies . Consequently, this assumption neglects the squa
res and the products of the components of tensor V'u compared with the
first order terms. Under such an assumption, in order to describe the de
formation it is sufficient to introduce a single second rank tensor which is
referred to in what follows as the linear strain tensor.

2.1.2 Definition of the linear strain tensor

Let us consider two infinitesimally close points M and N in volume v

(1.2.1)

see Fig. 2.1. Their positions M' and N' in volume V are given by the
following position vectors

M: R = r + u = isd(as + US)d' . (d d ) } (1.2.2)
N R + dR = r + r + u + u = Is as + as + Us + Us .
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FIGURE 2.1.

Here du represents the vector of the relative displacement of two infinites
imally close points in the medium. Then, due to eqs. (B.2.6) and (B.2.11)
we have

du ()*du = dr . dr = 'Vu . dr = dr . 'Vu . (1.2.3)

Tensor ~~ , which is th e derivative of vector u with respect to direction r ,

can be set as the sum of its symmetric and skew-symmetric parts

du 1 (dU ) 1 (dU ) "- = - - + 'Vu + - - - 'Vu = C + n,
dr 2dr 2dr

(1.2.4)

see eq. (A.4.8). Th e first component determines a symmet ric tensor of sec
ond rank which is called the linear st ra in tensor

E = def u = ~ (~~ +'Vu) = ~ [('Vu)* +'Vu] .

The matrix of the components of th is tensor is set in the form

(1.2.5)

(1.2.7)

Cll
_ 1 _ 1

c 12 - 2 1'12 c 13 - 2 1'1 3

c 21 = ~ I'21 c22 C23 = ~ I'23 (1.2.6)
1 1

C33c31 = 21'31 c32 = 2 1'32

The expressions for components c i k = Ci k in terms of the derivatives of the
displacement vector are, due to eq. (B.2.5), as follows

(JUI (JU2 (JU3
Cll =~, C22 = ~ , C33 = ~,

Ua] Ua2 ua3
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1 (aUI aU2) 1 (aU2 aU3) 1 (aU3 aUl)
£12 = 2 aa2 + aal , £ 23 = 2 aa3 + aa2 ,£31 = 2 aal + aa3 .

(1.2.8)

In linear elasticity theory the diagonal components of matrix (1.2.6) relate
to extensions, while the non-diagonal components 'Yik are referred to as
shearing strains. The origin of this notion is explained in Subsection 2.3.6.

The second term in formula (1.2.4) is the skew-symmetric tensor of sec
ond rank

A 1 (dU ) 1 [ * ]n = - - - V'u = - (V'u) - V'u
2 dr 2

with the following matrix of the components

(1.2.9)

o W12 = -W3
W21 = W3 0

W31 = -W2 W32 = WI

W13 = W2
W23 = -WI

o
(1.2.10)

(1.2.12)

Here the quantities

WI = ~ ( aU3 _ aU2) W2 = ~ ( aUI _ aU3) W3 = ~ ( aU2 _ aUl)
2 aa2 aa3' 2 aa3 aal' 2 Ba, aa2

(1.2.11)

represent the projections of vector w referred to as the vector of rotation.
This vector accompanies tensor (V'ur. Due to eq. (B.2.8) we have

1 aut. 1. . aUt In 1
w = 2erts 8a

r
Is = 21r X It8a

r
= 2v xu = 2rot u .

Rewriting formulae (1.2.5) and (1.2.9) in the form

du A A

dr = € +n, V'u = € - n

and referring to eqs. (1.2.3) and (A.4.lO) we obtain

du = € . dr +n.dr = € . dr + w X dr .

(1.2.13)

(1.2.14)

(1.2.15)

The second term in this formula presents the displacement due to a rigid
body rotation of an infinitesimally small vicinity of point M whereas the
first one determines the displacement of points of this vicinity due to de
formation i:

The definition given here for displacement vector u can be generalised
for any vector , see Section B.2. For instance, applying operation def to
position vector r leads to the unit tensor

1 (dr ) 1 ( A A) Adefr = 2 dr + \7r = 2 E + E = E,

so that

defR= E+€ . (1.2.16)
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2.2 Determination of the displacement in terms of
the linear strain tensor

2.2.1 Compatibility of strains (Saint- Venant's dependences)

We pose the problem of determining the displacement vector (or its pro
jections Us referred to, for the sake of brevity, as displacements) in terms
of the prescribed linear strain tensor e. This involves an integration of the
following system of six differential equations

where the right hand sides are assumed to be continuous together with
the derivatives of the first and second order. The number of equations
(six) exceeds the number of the unknowns (three), thus the problem will
have a solution only when certain additional conditions are imposed on the
components of tensor e. This can be illustrated by the following example.
Let us assume that a medium is divided into elementary blocks. Let each
block be subjected to a deformation in the form of small extensions and
small shears of the original right-angled block. The obtained bodies can be
a continuous (i.e. without gaps) medium only by properly matching the
deformation of separate blocks. This occurs when a displacement vector u
exists such that it is continuous along with the derivatives up to at least
third order and the prescribed tensor eis its deformation (e = def u) . These
are the conditions for integrability of the system of equations (2.1.1) and
this explains why these conditions are termed the conditions for continuity
or conditions for compatibility. It was Saint-Venant who pointed out the
importance of these conditions in continuum mechanics, and it explains
why the term "Saint-Venant 's dependences" is often used.

We start from formula (1.2.14). Its right hand side contains an unknown
skew-symmetric tensor 0 which should be excluded from consideration.
According to eq. (B.6.5), the condition for the integrability of relation
ship (1.2.14) (i.e. the condition for the existence of vector u) is to have a

vanishing rotor of tensor (e + 0) *, that is

rot (e +0) * = rot (€ - 0) ,

as e* = eand 0* = -0. We arrive then at the condition

rote = rotO. (2.1.2)
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The expression for the rotor of a skew-symmetric tensor is given by formula
(B.3.9)

since

A * A dw
rot n = (\7w) - E div w = dr'

divw = -~h (rot s) = 0,

(2.1.3)

inasmuch as the first invariant of the rotor of a symmetric tensor is equal
to zero.

Hence, we are led to the relationship

rot E= ~, dw = rot E. dr . (2.1.4)

Returning to eq. (B.6.5) we can reset the integrability condition in the form

rot (rot e)" = ince = O.

When this condition is satisfied, then eq. (2.1.4) yields

M

W = Wo + Jrot e.dr.

Mo

(2.1.5)

(2.1.6)

The right hand side in equation (1.2.14) for du is now known and the
condition for its integrability, eq. (2.1.3), is fulfilled. The latter equation
yields vector w provided that condition (2.1.5) is satisfied. For this reason ,
eq. (2.1.5) represents the condition for integrability ofrelationship (1.2.14).
In addition, this explains the nomenclature inc, namely condition inc f> =I- 0
is incompatible with the existence of a vector whose deformation is the
symmetric tensor f>, see Section BA.

The notion of six conditions for tensor inceto be zero follows from Table
(BA.15) of the components of tensor inc e. The same conditions can be ob
tained by eliminating displacements Ul, U2 ,U3 from the system of equations
(2.1.1). The elimination procedure is carried out as follows . Considering the
three equations

we notice that their left hand sides satisfy the identity

82 8Ul 82 8U2 82 (8Ul 8U2)
8a~ 8al + 8ar 8a2 = 8a18a2 8a2 + 8al .



2.2 Determinat ion of th e displacement in terms of th e linear st rain tensor 83

This immediat ely yields one of the three condit ions for ensuring that the
diagonal components of inc E are zero

02Cll 02 c 22 02"112
--2- + --2- = .
oa2 oa1 oal0a2

One of the identities of the second group is

(2.1.7)

(2.1.8)

which can be used in the following relationship

-2 02 c 33 +~ (0"131 + 0"123 _ 0"(12) = o.
oal0a2 oa3 oa2 Ba, oa3

The remaining conditions are obt ained from eqs. (2.1.7) and (2.1.8) by
means of a cyclic permutation of subscripts.

Let us also notice that formula (2.1.5) is applicable to any linear strain
tensor def a of any vector a

incdefa = 0 (2.1.9)

and not just to the displacement vector. Any symmet ric tensor with zero
"incompat ibility" represents the deformat ion of a certain vector. This stat e
ment was used in Subsection 1.1.6.

2.2.2 Displacement vector. The Cesaro formula

Using expression (2.1.6) for vector w we can rewrite relationship (1.2.14)
as follows

M

du = E. dr + Wo x dr - dr x Jrot E((J) . dr ((J) .

Mo

(2.2.1)

Let C denote the integration path, with j\.;[o and M being respectively the
start and end points. Also let M' and Mil denote two point on this path.
The position vectors ofthese points are denot ed by ro, r (s), r ((J) and r ((J') ,
respectively. Then

u(s) = Uo +wo x [r(s) - ral +
M M M'JE((J) . dr ((J) - Jdr ((J) x JrotE((J') . dr ((J') .

Mo Mo Mo



(2.2.2)
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The double integral is transformed into a single integral in the following
way

M ~ M M

- j dr (a) x j rot E(a') . dr (a') = j rot E(a') . dr (a') x j dr (a)

Mo Mo Mo M"

M

= j rot E(a') . dr (a') x [r (8) - r (a')].

Mo

Then we arrive at the Cesaro formula which determines the displacement
vector in terms of the linear strain tensor

M

U = Uo + Wo x (r - ro) + j {E (a) + [r (a) - r (8)] x rotE (an· dr (a)

Mo

M

=uo+wox(r-ro)+ jIT.dr(a).

Mo

Here a non-symmetrical tensor of second rank

IT = E' + (r' - r) x rot E' (2.2.3)

is introduced. In this notion r = r (8) and primes designate quantities at the
integration points. Making use of the dyadic representation of this tensor

(2.2.4)

we can put Cesaro's formula in the form

( ) . jM [ , (I ) (&~t &~t )] d IU = Uo + Wo x r - ro + Is Cst + aq - aq 8a~ - 8a~ at·
Mo

(2.2.5)

Naturally, the displacement vector is determined correct to an additive
vector

Uo +Wo x (r - ro) , (2.2.6)

representing a small rigid-body displacement of the medium . This displace
ment is a geometric sum of displacement Uo of point Mo and displacement
Wo x (r - ro) due to a rotation about this point.
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The integrability of expression (2.2.2) is proved directly. It is necessary
to prove that condition (B.6.5) is met, that is

rotTI' = rot [E' + (r' - r) x rotEr = rot [E' - (rotE')' x (r' - r)] = O.

(2.2.7)

Here we took into account identity (A.5.1l)

[(r' - r) x rotEr = - (rotE')' x (r' - r).

Assuming now Q= (rotE')' in the identity

rot (Q x r) = rot Q x r + Q' - Etr Q

yields the following result

(2.2.8)

rot [(rotE')' x (r' - r)] = rot (rotE')' x (r' - r) + (rotE')" - Etr (rotE')'

. A' (') A'= mc E x r - r + rot E ,

since the trace of the rotor of a symmetric tensor (and its transpose) is
zero. Inserting this result into eq. (2.2.7) we have

rotTI' = rot s' - inc s' x (r' - r) - rot s' = - inc s' x (r' - r) = 0,
(2.2.9)

and, due to the arbitrariness of vector r' - r we arrive again at condition
(2.1.5).

2.2.3 An example. The temperature field

Deformation of a single isotropic block in a temperature field B(aI,a2 ,a3)
is given by the expression

E= aBE (Ell = E22 = E33 = aB, 1'12 = 1'23 = 1'31 = 0) , (2.3.1)

where a denotes the coefficient of linear thermal expansion . In a solid such
a deformation is possible under condition (2.1.5)

inc aBE = rot (rotaBEr =isa~s x (ita~t XaBiqiqr

(i ') (' ') a
2aB

" a
2aB

= Is X 1q It X Iq -aa = eSqretqmIrIm-aa
as at as at

= (DstDrm - DsmDrt) irimaa2aaB = O.
as at
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Thus

(2.3.2)

Taking into account that

tr (E'V2
- 'V'V) aO = 0,

we have

(2.3.3)

The condition for a feasible deformation, due to law (2.3.1), is the require
ment that all second derivatives of 0 with respect to coordinates vanish , so
that 0 is a linear function of the coordinates . Supposing th at a = const we
have

(2.3.4)

where q = grad 0 is a constant vector.
We find the displacement vector by substituting this expression into

the Cesaro formula (2.2.5). Omitting the rigid-body displacement of the
medium we obtain

M

U = ais J[(00 + qkaD Ost + (a~ - ar) (qsOrt - qrosdl da~
Mo

M

=aJ[(Oo+q .rl)drl+iqdlrl-rI2_q .(rl-r)drl]

Mo

which can be expressed in the final form

1 2
U = aO (r - rO) - 2a [r - rol gradO. (2.3.5)

Under any non-linear law of temperature distribution, a free thermal expan
sion due to law (2.3.1) can not take place . Tensor EaO should be imposed
by a compensating tensor g* such that , under the deformation

A A * EA 0E=E + a ,

the compatibility condition

inc g* = - (E'V2
- 'V'V) aO

(2.3.6)

(2.3.7)
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is fulfilled. However it would be erroneous to think that the displacement
vector U can be represented by a geometric sum of vectors ui and U2
determined by the conditions

def Ul = aBE, def U2 = 8;*,

since tensors aBE and g*, taken separately, do not satisfy the compatibility
conditions and vectors u, and U2 do not exist .

2.2.4 The Volterra distort ion

In a simply connected region the vectors of rotation w and displacement U

given by integrals (2.1.6) and (2.2.2) are single-valued functions of coordi
nates a k of point M which is the upper limit of the integral. In the case of a
double connected region one needs to introduce the cyclic constant vectors

f rot 8;' . dr' = b, f (E:' + r' x rot g') . dr' = c, (2.4.1)

K K

where K is a contour which can not be reduced to zero by a continuous
transformation, see eq. (B.6.9). The values of wand U at point M can be
written as follows

M

W = Wo +Jrot g' . dr' + nb,

Mo

(2.4.2)

M

U = Uo + Wo x (r - ro) +J(E:' + (r' - r) x rotE') . dr' + n (c + b x r) ,

M o

(2.4.3)

where n denotes the number of revolutions along the integration path from
M« to M on contour K . Vector s wand U are no longer uniquely defined.
The uniqueness can be restored by introducing a barrier which transforms
the double connected region into a simply connect ed region. However the
transition through the barrier ensures th at these vectors are no longer con
tinuous .

Let a denote the surface of the barri er while a- and a+ designate two
surfaces which are congruent to a and located immediately "above" and
"below" the barrier. Let M ,M - and M+ be some points that are close to
each other on oo: and a+ respectively. Then, considering points M- and
M+ as being the st art and end points of the integration path, see Fig. 2.2,
we have

M +

W + = W - + Jrot 8;' . dr' ,

M -

(2.4.4)
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FIGURE 2.2.

M +

u+ = u" +w- x (r+ - r-) + J(€' + (r' - r+) X rot€') . dr'. (2.4.5)

M-

When we impose surfaces a- and a+ on barrier a

then integrals (2.4.4) and (2.4.5) are equal to the corresponding values
along the closed contour K . We arrive at the Weingarten formulae (1901)
yielding the jump in vectors wand u on the barrier

(2.4.6)

These formulae indicate that the material on one side of the barrier experi
ences a small displacement relative to the material on the other side of the
barrier. This displacement is a rigid-body displacement prescribed by the
vectors of rotation b and translation c. It can be explained as follows : a thin
layer of material is removed after a double connected body (for instance,
a torus) is cut along surface a and then the congruent ends a- and a+ of
the simply connected body obtained are connected together (into a torus) ,
these ends being subjected to a small translation c and a small rotation
described by b . Volterra referred to this operation of creating a new body
from the old one as a distortion whereas Love called it a dislocation. Nowa
days a more general meaning is associated in the literature with the term
"dislocat ion" . Stresses appear in the elastic body subjected to a distortion.
These stresses can be calculated theoretically for prescribed cyclic constant
vectors band c. The latter can be determined experimentally by means
of measuring displacements and rotations of the ends of the cut ring-like
body.

The distortion in a simply connected body is impossible since after re
moving, say, a thin wedge-shaped body and matching the free ends , the
strain tensor E and thus the stress tensor become discontinuous. As men
tioned above, it follows that the displacements in a simply connected body
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can not be multi-valued if tensor E: is continuous. This also explains why
we required removal of a layer with necessarily congruent edges when con
sidering the distortion. The reason is that the jump in vector u on the
barrier, which is compatible with the assumption of continuity of tensor E:,
is a rigid-body displacement. For any jump of a more complicated nature
this tensor is no longer continuous.

2.3 The first measure and the first tensor of finite
strain

Reading of this section assumes a knowledge of Appendixes D and E.

2.3.1 Vector basis of volumes v and V

A particle in a continuum is prescribed by the material coordinates ql, q2
and q3. The position of the particle in volume v is given by the position
vector

(3.1.1)

In volume V the position of this particle can be expressed by the position
vector

(3.1.2)

In particular, the Cartesian coordinates in volume v

(3.1.3)

can be taken as being the material coordinates. However we can equally
well adopt the Cartesian coordinates in volume V

x, = qS (3.1.4)

as the material coordinates. The vector basis in volume v is given by the
three vectors

while the basis in volume V is given by other vectors

R
_ fJR _. fJx k

S - fJ - lk fJ .qS qS

(3.1.5)

(3.1.6)
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The vectors of the cobasis in volumes v and V are constructed according
to eq. (E.1.5)

(3.1.7)

(3.1.8)

Here

(3.1.9)

with 9 and G denoting determinants of the matrices of the corresponding
covariant components

(3.1.10)

of the metric tensors g and Gof volumes v and V, so that

These tensors play the role of unit tensors in volumes v and V and have
the following dyadic notion

, s k sk k
9 = 9sk r r = 9 rsrk = r rk ,

G= G skRsRk = GskRsRk = RkRk .

(3.1.12)

(3.1.13)

Here the contravariant components of the metric tensors g and G are in
troduced in the standard way

(3.1.14)

As tensors g and Gare the unit tensors in volumes v and V , respectively,
each of these tensors is equal to its inverse tensor

(3.1.15)

Definitions (3.1.7) and (3.1.8) yield the well known relationships

s _ s _ {I, s = k,
r . rk - 9k - 0, s =f k, a- R - GS _ { 1,. k - k- 0,

s = k,
s =f k.

(3.1.16)

Inserting rk and Rk from eqs. (3.1.5) and (3.1.6) yields

s • 8at s RS.· 8x t _ GS
r . It 8qk = 9k, It 8qk - k :
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Then we have

S • Bat Bqk S 0 Bat s . S Bqk Bqs
r . I t Bqk Bar = r . I t Bar = r . Ir = gkBar = Ba; '

Th erefore

S . Bqs
r -r; = -B '

ar

and by analogy

R" . 10 , . = Bqs R S _ Bqs.
B ' - B I r ·X r X, .

As a sequence we obtain the above mentioned relationships

E = 9= G.
(3.1.18)

(3.1.19)

With the help of eqs. (3.1.10) and (3.1.14), we arrive at the formulae

Bat Bat G _ BXt BXt
gsk = BqS Bqk ' sk - BqS Bqk '

B S B k
sk q q9 ---

- Bat Bat '
(3.1.20)

The nabla-operator in volume v is determined by the following symbolic
vector

n S B
v= r -

B
,qS (3.1.21)

(3.1.22)

see eq. (E.4.3). In volume V vectors R S play the role of r S and the nabla
operator is denoted as follows

9 =RS~.
BqS

In what follows, the operations in volumes v and V need to be clearly
distinguished from each other. To this end, operations and quantities re
lating to volume V are marked by a tild e sign ("') . For example, a vector
can be prescribed by its components in th e basis of volume v as well as
in the basis of volume V . Its covariant and contravariant components in
the vector basis of volume v are denoted by as and as, whilst those in the
vector basis of volume V are denoted by asand as, so that

(3.1.23)



(3.1.24)

(3.1.25)
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According to the above, the tensor equal to the gradient of vector a is
written in the metric of volume v in the following form

" S 8a s" k s k"
v a = r -8 = r rk v sa = r r v sak.qS

However in the metric of volume V, we have another tensor

f'7 RS 8a RSR f'7 -k RSRkf'7-va = -8 = k v sa = v sak·qS

The difference is due to the fact that the transposed tensor (V'ar is de

fined as the derivative of awith respect to direction r , while ('\7a) * is the

derivative of a with respect to R

(3.1.26)

(3.1.28)

Performing operations of the covariant differentiation in v- and V -volumes,
it is necessary to distinguish between the Christoffel symbols, namely

------
k 8a

k {k} t - -k 8ci {k} -t ( )V'sa = 8qS + st a, V'sa = 8qS + st a . 3.1.27

The symbols with a tilde are calculated by means of components of tensor
G, and when the tilde is absent, the components of Gshould be taken as

{
k } = kr [st r] = ~ kr (89sr + 89tr _ 89st) }
st 9 , 29 8qt 8qS 8qr '

{k }= Gkr(st;] = ~Gkr ( 8Gsr + 8Gtr _ 8Gst) .
st ' 2 8qt 8qS aqr

Let us also notice the formulae

1 t k 1 t k ()rs = :t=stkr x r, R, = '2 Estk R x R , 3.1.29

which are inverse to eqs. (3.1.7) and (3.18). Here

Estk = r, . (rt x rk) = vgestk , Estk= R s ' (R, x R k) = JGestk' (3.1.30)

2.3.2 Tensorial gradients V'R and V'r
Using eqs. (3.1.21) and (3.1.22) and taking into account the definitions of
the basis vectors (3.1.5) and (3.1.6) yields the dyadic representations of
these tensors

"R saR -nv = r -8 = r s ,qS

- R s 8r R S
V'r= -8 = r s ·qS

(3.2.1)

(3.2.2)
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The transposed tensors, which are the derivative of R with respect to r
and the derivative of r with respect to R , are given by the equaliti es

(n R )* = ddRr = Rsrs, (oFJ)* dr R Sv v r =dR=rs .

These definitions yield th e formulae

dR = (V'R)* . dr = dr - V'R,

dr = (~7r) * . dR = dR · ~r ,

(3.2.3)

(3.2.4)

(3.2.5)

which are crucial for further analysis. One can immediat ely see th at tensors
V'R and ~r are mutually inverse to each other

vn oFJ -n Rk s A vn (oFJ) - 1 }v . v r = r s . rk = r r s = g, v = vr ,
- k A - 1V'r · V'R = R Srs . r R k = R SRs = G, V'r = (V'R) - .

(3.2.6)

Let us also notice that , in contrast to eqs. (3.2.1) and (3.2.2), tensors ~R
and V'r are the unit tensors in the basis of volumes v and V respectively

(3.2.7)

2.3.3 The first measure of strain (Cauchy-Green)

As already mentioned in Subsection 2.1.2 vector MN = dr , determined
by two infinitesimally close points M and N in volume 11, becomes equal
to vector M' N 1= dR in volume V . The relation between these vectors is
given by eq. (3.2.4). It allows one to find the formula for the square of the
linear element d.S in volume V

2 * A xdR · dR = d.S = ds: - V'R · (V'R) . dr = dr · G . dr . (3.3.1)

Here we introduced tensor 6 x referred to in what follows as th e first stra in
measure or the Cauchy st ra in measure. According to eq. (3.2.1) this tensor
is equal to

(3.3.2)

As follows from the lat ter equat ion, thi s tensor is determined in the vector
basis of volume v by the covariant components G~ equal to the covariant
components of the unit tensor 6 in volume V, see the dyadic represent ation
of 6, eq. (3.1.13),

(3.3.3)
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It is, however, erroneous to identify tensors ex and e relying on this
formula. The contravariant components c-» of the strain measure tensor
are determined according to the general rule (D.5.4) of transformation from
covariant to cont ravariant components

(3.3.4)

(3.3.6)

and do not equal the contravariant components G sk of tensor e. The latter
are given by formulae (3.1.14) and are the elements of the matrix inverse
to IIGskll .

We now return to the square of the linear element (3.3.1). Accounting for
eqs. (3.3.2) and (3.3.3) we arrive at the familiar represent ation of dS2 by a
quadr atic form of differentials dq" obt ained with the help of the covariant
components of tensor e

dS2 = ds -r SGskrk . dr = dlrt . rSGskrk . rmdqm = G skdqSdqk. (3.3.5)

Formulae (3.1.19) are used for calculat ing the covariant components of the
first stra in measure

. 8 x t • 8 x m 8 x t 8xt
Gsk = R s . R k = It 8 qs . 1m 8 qk - 8qS 8qk .

Let us introduce now tensor GX-
1

which is the inverse of GX. Referring
to eq. (1.7.14) we have

and making use of eqs. (3.2.6), (3.2.2), (3.2.3) and (3.1.14) we obt ain

(3.3.7)

In the vector basis of volume v the cont ravariant components of thi s tensor,
denoted by min the following, are equal to the contravariant components
of the unit tensor eof volume V.

Calculation of components Gsk involves the inversion of matrix G sk .
Alternatively let us assume for the time being that th e Cartesian coordinate
of points in volume V are the material coordinates

(- )* 8r.V'r = 8 x
s

Ik .

Then, using eqs. (3.3.7) and (3.1.15) and returning to the material coordi
nat es qS we have

(3.3.8)
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Hence, we obt ain again formulae (3.1.20)

c» = oqt oqm ,
oXs oXs

(3.3.9)

and it can be easily proved that matrices IICskl1 and Ilcstll are the inverse
of each other. Indeed, by virtue of eq. (3.3.7),

C tCtT = oXm oXm oqt oqr = oXm oXm oqT = oXm oqT = oqT = OT,
S oqS oqt OXlOXl oqS OXl OXl oqS Oxm oqS S

which is required. Calculation using formula (3.3.9) requires knowledge of
the transformation th at is the inverse of eq. (3.1.12), i.e. the expression for
the material coordinates in terms of the Cartesian coordinates of volume
V .

2.3.4 Geometric interpretation of the components of the first
strain measure

Let us represent an infinitesimally small vector dr in eq. (3.3.1) as a product
of its absolute value Idrl = ds and the unit vector representing its direction
e . Then we arrive at the equality

ddSs = (e .C' x . e)1/2dS 2 = e · ex .e ds2 ,

In particular , directin g dr along the base vector rt we have

and referring to eq. (3.3.2) we obtain

(3.4.1)

(3.4.2)

dS 2 1 C q m d 2 Ctt d 2= -rt ' qmr r . rt s = - s ,
gtt gtt

(3.4.3)

This result presents a geomet ric interpretation of the diagonal components
of matrix IICskll . Let Ot denote the extension of an elementary linear ele
ment directed along the basis vector rt in volume v , then we have

(3.4.4)

By eq. (3.2.4), a unit vector e having direct ion dR in volume V is deter
mined by the equality

dR = edS = eds -V'R = (V'R)* . eds,
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so that , according to eq. (3.4.1), we obt ain

e· V'Re= ----r'==::==
Ve·ax ·e

(V'R)* . e

Ve·ax ·e
(3.4.5)

Considering now two directions e and e' at a point M in volume v with the
angle (3 between them and denoting the corresponding directions in volume
Vase and e' we obt ain

- _ _I e . V'R · (V'R)* . e'
cos (3 = e . e = ---r=::::::::====~==Ve .ax.ee' . ax.e'

or, referring to eq. (3.3.2),

- e · ax.e'
cos (3 = .

Ve. ax.ee' · ax .e'
(3.4.6)

In particular , choosing e and e' along the directions of the basis vectors r s

and rt we arrive at the formula

- Gst
cos (3st = --;:;;;:::::=~.cza:

Gst 1

..}gss gtt (1 + 8s ) (1 +8t )
(3.4.7)

highlighting the geomet ric meaning of the non-diagonal components of ma
trix IIGstll .

Defining angle 'Pst , referred to as the angle of shear, by the equality

/3st = (3st - 'Pst,

we have

This enables one to put eq. (3.4.7) in the following form

(3.4.8)

2.3.5 Change in the oriented surface

The vector of the oriented surface ndo in volume v can be represented as
follows

ndo = ~e' X e"ds'ds" ,



(3.5.2)
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where e' and e" are t he uni t vecto rs in the plane of sur face do. In volume
V this vector transforms into the vecto r

N dO = ~(i' x (i"dB'd B"
2 '

and , due to eqs. (3.4.5), (3.4.1), (3,2,1) and (3.2.3), we have

NdO = ~ds'ds" [(V'R)* . e' ] x (e" . V'R) = ~ds'ds"Rs x R qe'se" q,

(3.5.1)

where e' s and e"q denote resp ecti vely the cont ravariant components of e'
and e" in the basis of volume v. Referring to eqs. (3.1.20) and (3.1.30) we
have

NdO = ~ds'ds" Esqt Rtel"e"q = ~ds'ds" fG (r s x rq)· rt e,Se"qRt
2 2 Vg
1~ , " (' " ) t ~ t= - -ds ds e x e . rtR = -n . rtR do
2 9 9

and by eq. (3.2.3)

fG (-)* fG -NdO = V9 n · V'r do = V9 V'r · ndo.

It follows from t his equation and eq. (3.3.7) that

dO {G _ * _ }1 /2 [G A -I ] 1/2
do = -g [no (V'r) ]. (V'r .n) = i r:" - n

(3.5.3)

(3.5.4)

provides a geometric interpret ation of te nsor c-:: It determines the ratio
of the areas of the oriente d surfaces in volumes V and v in the same way
t hat the deformation measure exdet ermines the ratio of the lengths of
t he line elements, see eq. (3.4.1).

Now by virtue of eq. (3.5.3) we have

~r ·n
N = ---r=====;;:==I n·ex -

I -n

This formul a is analogous to eq. (3.4.5).

(V'R)-l . n

vi A 1n·Gx- - n
(3.5.5)

2.3.6 The first tensor of finite strain

Expressing t he position vector R of a par ticl e in volume V in t he equa t ion
for t he first stra in measure in terms of t he displacement vecto r u introduces
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a symmetric tensor of second rank referred to as the first tensor of finite
strain or the Cauchy-Green tensor. It is denoted by

E= Defu,

in contrast to the linear strain tensor E = def u. Referring to eqs. (1.1.4)
and (3.3.2) and replacing the unit tensor E by g in the basis of volume v
according to eq. (3.2.7), we obtain

ax = (g + V'u) . [g + (V'u)*] = g+ V'u+ (V'u)* + V'u· (V'u)*. (3.6.1)

Introducing the definition

E= ~ [V'u + (V'u)* + V'u . (V'u)*] = E+ ~V'u . (V'u)* ,

we obtain

(3.6.2)

(3.6.3)

If the Cartesian coordinates as in the system of axes OX1X2X3are taken
as being the material coordinates and U(k) denotes projections of u on these

axes, then the components of tensor Ein these axes have the following form

1 [(aU(l))2 (aU(2))2 (aU(3))2]£(ss) = C(ss) + 2" aas + aas + aas ' (3.6.4)

where C(ss) and C(sk) are given by formulae (1.2.7) and (1.2.8) in which
Us is replaced by U(s) in order to distinguish the projections of u on the
axes of the Cartesian system (i.e. the displacements) from the covariant
components Usof this vector in the vector basis r s .

Expressions for the covariant components e: of the Cauchy deformation
tensor, in terms of the covariant components of the displacement vector ,
are written, due to eqs. (E.4.5) and (E.4.6) in the form

where

1 ( ) 1 (aus aUk) {rcsk = 2 V'sUk + V'kUs = 2 aqk + aqS - sk

(3.6.6)

(3.6.7)
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The formulae relating components of th e tensor of finite strain to exten
sions 15t of th e elementary lines directed along the basis vectors r s in volume
v and the angles of shear 'Pst are obtained directly from eqs. (3.4.4) and
(3.4.8) by replacing G tt and G st by g tt + 2 f tt and g st + 2 f st respectively.
They are set as follows

(3.6.8)

provided th at the Cartesian coordinates as in volume v are considered as
being the material coordinates .

As already mentioned in Subsection 2.1.1 th e linear th eory of elast ic
ity assumes that the components of tensor Vu are small and neglects the
squares of th ese values compared with th e linear terms. Under this condi
tion th e tensor of finite st ra in is replaced by th e linear st rain tensor

, 1 [ *]E = 2 \7u + (\7u) = E, Est = fst

and , by virtue of formulae (3.6.8),

(3.6.9)

(3.6.10)

The latter equat ion explains the terminology of th e linear th eory of elas
ticity, namely that the diagonal components of tensor Eare termed exten
sions while the non-diagonal ones are called shears. The latter represent
changes in the right angles between the lines which originally were parallel
to th e coordinat e axes.

More often th an not , extensions 15k and shears 'Pst turn out to be suffi
ciently small, which gives grounds to replace formulae (3.6.8) by approx
imat e equalit ies (3.6.10). However, t he smallness of extensions and shears
alone can not substant iate replacement of t by E. As already not ed, small
ness of all the components of the gradient of displacement \7u is required.
An example of a rigid-body rotation of a medium is given in Subsection
2.3.8. It will be shown that t = 0 whereas E=I- 0 and, moreover, th e compo
nent s of the latter tensor can be arbitrarily large. Evidently, tensors t and
E can not be identified in this particular case. Further analysis is carr ied
out in Subsection 2.3.9.

2.3.7 The principal strains and principal axes of strain

As exand t are symmetric tensors of second rank , th ey possess all of
th e prop erties list ed in Subsections 1.2.1 and 1.2.2. The principal st rains
denoted as E; are determined from the characterist ic equat ion for tensor
t

(3.7.1)
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or in the notation of eq. (D.7.4)

Ilr£sr - Eg;1 = O. (3.7.2)

Analogous to the principal shear stresses in Subsection 1.2.2 we introduce
the principal shear strains

E2 - E3 = fl, E 1 - E3 = f 2, E 1 - E2 = r, (E1 > E2 > E3 ) · (3.7.3)

The second invariant of the deviator of tensor t is expressed in terms of
the principal shears

(
') 1 (2 2 2) f2-i. Dev£ ="6 f l + f 2 + f 3 = 4' (3.7.4)

Here, similar to eq. (2.2.11) of Chapter 1 we introduced the intensity of
shear strains

(3.7.5)

2.3.8 Finite rotation of the medium as a rigid body

Under such a displacement, the position vector r does not change its length
and orientation with respect to the coordinate frame rotated together with
the medium and becomes equal to , see eq. (A.8.3),

\ R A' ••, .,r = =r · =r'lsls=asls'

where Adenotes the rotation tensor and i~ are the unit base vectors of the
rotated axes. In this case r , = is, R, = i~ so that , by virtue of eq. (3.2.1)

\7R = A, (\7R)* = A*, ex = \7R . (\7R)* = E = g
and due to eq. (3.6.3)

(3.8.1)

This is what to be expected since a rigid-body displacement of the medium
is not accompanied by changes in the elements' length and the angles be
tween them. However the linear strain tensor is not equal to zero

E= ~ [\7u + (\7u)*] = ~ [\7R + (\7R)* - 2E] = ~ (isi~ + i~is - 2isis).

(3.8.2)

For example, under a rotation through an angle of 90° about axis i3 we
have

ii = h, i~ = -h, i~ = i3 , E= - (i1il + hh)
which means that Cll = C22 = -1.

The linear vector of rotation is given by eq. (1.2.12)

1 1" (R ) 1. 8 (" .) 1..,w = - rot u = - v X - r = -21s x~ Ik - Ik ak = -21s x Is'
2 2 vas

(3.8.3)
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2.3.9 Expression for the tensor of finite strain in terms of the
linear strain tensor and the linear vector of rotation

Turning to eqs. (1.2.13) and (3.6.2) we have

£' , 1 (' rl) (' rl) , 1 (,2 , A A, A2)= E+ 2 E-H . E + H =E+ 2 E + E'H-H'E-H

and, referring to eq. (A.6.12), we arrive at the formula

t ' 1 [,2 ' ' ( ' )*]= E + 2 E + gw . w - ww - w X E - W X E

as E = 9 in the basis of volume v . It follows from this equation that
condit ions

(3.9.2)

are not sufficient for ident ifying tensors t and E: even if the components of
tensor t are small. According to eq. (3.9.2) vector w is small but it is not
inconceivable that values of Esk have a higher order of smallness than Wk.

In eq. (3.9.1) one needs to retain the terms that are quadratic in w , that is

£' , 1 ( ' ) ( )= E +2 gw · w - ww , 3.9.3

and for IEskl « IWkl one can take formula (3.9.1) in the following form

, 1
£ = 2 (gw . w - ww) . (3.9.4)

This formula can be applicable in problems of deforming bodies with dra
matic change in dimension in the some directions , for example a thin rod
or a thin plate, under certain loading conditions.

At the same time , it follows from eq. (3.9.1) that replacement of tensor
t by a linear strain tensor requires the same order of smallness not only of
the components Es k but also the components of vector w

IEskl « 1, IWkl « 1.

Using eq. (1.1.5) these condit ions are equivalent to

/

8 U k

l
8a

s
« 1.

(3.9.5)

(3.9.6)

2.4 The second measure and the second tensor of
finite strain

2.4.1 The second measure of finit e strain

Introducing the first measure of strain exand the inverse tensor c-:
allows us to show ways of determining geometric quantities such as line
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lengths, angles and oriented surfaces, in volume V in terms of those in
volume v. The inverse problem is considered here, namely determining the
quantit ies in volume v in terms of those in volume V. Clearly, the solut ion
reduces to replacing vector r by R and vice versa in the construct ions of
Section 2.3. We will consider bot h vectors as being functions of the material
coordinates s'.

Instead of eq. (3.2.4) the starting relat ionship is now eq. (3.2.5)

dr = dR · Vr = (Vrr.dR.

Assuming dR = eIdRI = edS and dr = e Idrl = ed s we obtain

(4.1.1)

The introduced symmetric tensor of second rank

(4.1.2)

is referred to as the second measur e of st ra in. Its components gsk in the
vector basis of volume V are equal to th e covariant components of the
unit tensor 9 in volume v , however these tensor can not be ident ified. The
contravariant components of the st ra in measure gXare given by

(4.1.3)

In order to find the covariant components of gXwe use the following for
mulae

(4.1.4)

Tensor r : = M, which is the inverse of gX, is as follows

where equalities (3.2.6) were used. By eq. (3.2.3) we have

' X -
1 R s kR sk R R9 = sr · r k = 9 s k· (4.1.6)

The components of this tensor are elements of the matrix inverse to g sk .

Repeatin g the calculat ion similar to eq. (3.3.9) we obtain

a s a ksk q q
9 = - - .

Ba; Ba;
(4.1.7)
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2.4.2 The geometric meaning of the component of the second
measure of strain

By eq. (4.1.1)

dB (_ AX _)-1 /2s:: e·g·e . (4.2.1)

In particular, considering the direction of basic vector R k in volume V we
return to formulae (3.4.3) and (3.4.4)

1
(4.2.2)

By analogy with eq. (3.4.5), we obtain the following relationship

(4.2.3)

determining th e unit vector in volume v which has direction e in volume
V . Then we have

e·fJ x . e'
e . e' = cos {3 = ----r=====;===Je .fJ x .ee' .fJx .e'

(4.2.4)

and directing e and e' along the basis vectors R, and R , in volume V we
arrive at the formula

Let us also notice the following equat ions

(4.2.5)

VR ·N
n = ---;:===;:::=I N .gX-1 .N

(9r) -1 . N

IN .gx I · N'
(4.2.6)

which are analogous to formulae (3.5.4) and (3.5.5).

2.4.3 The second tensor of finite strain (Almansi-Hamel)

Introducing into considerat ion the displacement vector and referring to eq.
(3.2.7), we have

(4.3.1)
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so that , due to eq. (3.2.7)

gX = ~r. (~rr= a- [V'u + (V'u)*] + V'u . (V'u)* = a- 2£. (4.3.2)

Here we introduced the Almansi-Hamel strain tensor

--::; 1( ' ) ~ 1- (-)*e ="2 G - gX = E- "2V'u . V'u ,

where i designates the linear strain tensor

(4.3.3)

(4.3.5)

calculated in the basis of volume V. Considering the Cartesian coordinates
X s in volume V as material ones we also have

Esk = ! [(8U(s) + 8U(k») _ 8u(t) 8U(t)] .
2 8Xk 8xs Bx; 8Xk

The Almansi-Hamel strain tensor is expressed in terms of the linear strain
tensor and the linear vector of rotation by the formula

:; ~ 1 [~2 G' - - - - - ~ (- ~) *]c- = E -"2 E + w, W - ww - W X E - W X E ,

which is analogous to eq. (3.9.1).
Comparing equalit ies (3.6.3) and (4.3.2)

£ = £skrsrk = ~ (ax- g) = ~ (Gsk - 9sk) rSrk , }

--::; - 1(') 1£ = £skR sR k ="2 G - gX ="2 (Gsk - 9sk)RSRk,

yields the following

(4.3.6)

(4.3.7)

(4.3.8)

,!,he covariant components of tensor t in the basis of volume v and those

of Ein the basis of volume V are coincident . However it would be erroneous
to set these tensors equal, i.e. £ I- i.

2.5 Relation between the strain measures

2.5.1 Strain measures and the inverse tensors

In Sections 3 and 4 of the present chapter we introduced into considerat ion
four strain measures : the Cauchy measure ax and the tensor if == gX-1
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which is the inverse of measure gX

ex = V'R . (V'R)* ,
- I 1

gX -1
= (~rr .(~r) - = (V'R)* . (V'R) = £1,

(5.1.1)

as well as the second measure gXand the tensor which is the inverse of the
Cauchy measure m= c-:'

gX= ~r . (~r) * , a-: = (V'R)*- I . (V'R) = (~r) * . ~r = m. (5.1.2)

Tensors exand mare determined in the basis of volume v

(5.1.3)

where Gsk and Gsk denote the covariant and contravariant components of
the unit tensor of volume V , respectively.

Represent ations of .qXand £1 in the basis of volume V have the form

M
A

skR R= g s k , (5.1.4)

with gsk and gsk denoting respectively the covariant and contravariant
components of the unit tensor of volume v.

The formulae for the components of the introduced tensors in the Carte
sian system of axes OX1X2X3 are written as follows

(5.1.5)

(5.1.6)

2.5.2 Relationships between the invariants

It is known, see eq. (A.9.16), th at the tensors Q. Q* and Q*. Qhave the
same principal values. For this reason, denotin g the principal values of
tensors (5.1.1) and (5.1.2) as Gs, Ms,gs,ms we have

(5.2.1)

Along with this , the principal values of tensor Q-l are equal to the inverse
of the principal values of Q. Thus

1 1
G.=-=-

. m s gs ' (5.2.2)
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This yields the following relationships, see eqs. (A.1O.15) and (A.1O.16),

(5.2.3)

and, of course, the formulae for the inverses

(5.2.5)

Formulae determining the principal invariants of the strain measures ax
and fix should be added to the above relations. Byeqs. (5.1.3) and (5.1.4)
we have

I, (ax) = Gskrs . r k = gSkGsk' I, (fiX) = gsk R S . R k = Gskgsk,

(5.2.6)

which is in agreement with definition (D.7.5). Furthermore, due to eq.
(D.7.6)

t; (ax) = IG;kl = ~, 13 (fiX) = Ig;1 = ~ .

Now, by virtue of eqs. (5.2.4) and (5.2.5), we obtain

12 (ax) = ~gsk G sk, h (fiX) = ~gSkGsk '

which corresponds to eq. (D.7.10).

(5.2.7)

(5.2.8)

2.5.3 Representation of the strain measures in terms of the
principal axes

Let ~ denote the unit vectors of the principal axes of the strain measures
ax and ax- 1

3 3 s S

GA X '"'G SS GA X -
1

_ '"' ee=~ see, - ~G .
s=1 s=1 s

(5.3.1)

Taking e =~ in eq. (3.4.5) yields

A S A S

e · GX
• e =e . GX

• e = Gs ,
s e·\7R \7R*· e
e= va; = va; , (5.3.2)
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so that
3 8 8

A' 8~ "'"""' ee vn C' X-
1

/
2 vn=ee=~ - . v = . v .

8=1 C8
(5.3.3)

This determines the tensor of rotation of the principal axes of tensor ax
under deformation of volume v. The trihedrons of the principal axes of
the tensors axand M having coincident principal values are related by a
transformat ion of rotation , see eq. (A.9.17), and the rotation of tensor ax
is carried out by the rotation tensor (5.3.3). For this reason, M is just a
"rotated tensor ax"and due to eq. (A.9.17)

3 3 3
, , , , ",""", 8 8 ' "'"""' qq "'"""' 8 8M = A* . C X

• A = Z:: ee -G" . Z:: ee= Z:: C8 ee,
8= 1 q=1 8= 1

which also implies that

3 88

-.x A'1- 1 "'"""' eeg - I -~_

- - 8= 1 C8 •

Let us also notice th at relation (5.3.3), reset in the form

V'R = c-:" .A V'R* = A* .c-:", ,

(5.3.4)

(5.3.5)

(5.3.6)

is in agreement with representation (A.10.17) for the non-symmetr ic tensor
in the form of a symmetric tensor premultiplied or postmultiplied by a
rotation tensor. Equation (5.3.6) yields relationship (5.3.4)

V'R* · V'R = AI = A* .ax.A.

A sequence of formulae (5.3.6) and (3.2.6) are representations of tensors
~r and ~r* in the form

- , '-1 / 2 - , - 1/ 2 ,
V'r = A* . C X , V'r * = C X

• A. (5.3.7)

Given the original t ransformat ions (3.1.1) and (3.1.2) of volume v into
volume V, determination of the rotation tensor requires knowledge of tensor
ax- 1 / 2 . To thi s end , the principal directions and principal values of ten
sor ax need to be found . Another approach is based upon searching the

, -1 /2
components of tensor C X

• By eq. (A.6.9) thi s reduces to the following
system of equations

C- 1/ 2C- 1/ 2 C- 1
(s t) (tq) - (8q)" (5.3.8)

The procedure for solving this system involves searching the principal di
rect ions and principal values of tensor ax. This procedure is simplified
considerably when a plane field of displacement is studied, see Subsection
2.6.2.
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2.5.4 The invariants of the tensors of finite strain

These are calculated in terms of the invariants of strain measures CX and
gX by means of the following relationships

t = ~ (c x - E) , t 2 = ~ (C X2- 2Cx+E),

t 3 = ~ (C X3_ 3CX2+ 3Cx - E) ,£= ~ (E _ gx) ,

t =~(gX2_2gX+E) ,t =~(_gX3+3gX2_3gX+E)
(5.4.1)

and formulae

see eqs. (A.1O.1O) and (A.10.H). The result is

t, (t) = ~ [h (c x) -3], t, (t) = ~ [h (c x) -2h (c x)
+3],

h(t) = ~ [h (c x) - /2 (c x) + t, (c x) - 1] , (5.4.3)

t, (£) = ~ [3 - t, (g X)], /2 (£) = ~ [h (g X) - 2h(g X) + 3] ,

/3 (£) = ~ [-/3 (gX) + /2 (gX) - II (gX) + 1] , (5.4.4)

The inverse relationships are as follows

t, (Cx) =2h (t) +3, h (cx) =4h (t) +4h (t) +3,

h (c x
) = 1 + zt, (t) + 4h (t) + 8h (t) , (5.4.5)

h (gX) = 3 - u, (£), t; (gX) = 3 - 4h (£) + 4/2 (£) ,
h (fiX) = 1- u, (£) + 4/2 (£) - 8h (£) . (5.4.6)

The ~ependences between the principal invariants of the strain tensors t
and t are more complicated and can be obtained by means of formulae
(5.2.4) . For example,
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and due to eq. (5.4.5)

(5.4.7)

2.5.5 Dilatation

The elementary volumes of the medium in the initial and actual st at e are
as follows

dro = r1 . (r2 x r3) dq1dq2dq3 = hr1 . r1dq1dq2dq3 = hdq1dq2dq3 ,

dr = R 1 . (R2 x R3 ) dq1dq2dq3 = VCR1 . R 1dq1dq2dq3 = VCdq1dq2dq3.

This yields

s: = fG, D = dr - dr o = fG _1.
dro yg dro Yg (5.5.1)

The quantity D which is a relat ive change of the elementary volume under
deformation is called dilat ation .

Referring to definition (D.7.6) of the third invari ant in a non-orthogonal
basis, eq. (D.7 .6) , we have

( AX) 1 G 2
13 G = gIGskl = g = (1 + D)

or by virtue of eq. (5.4.5)

(5.5.2)

(5.5.3)

Taking into account eqs. (5.2.5) and (5.4.6) we can reset this equation in
th e following form

D = [1 - u. (E) + 412 (E) - 8h (E)] - 1/2 - 1. (5.5.4)

A derivation of formulae (5.5.3) relies on the fact that the volume of a

unit cube with edges, directed along th e principal axes ~ of tensor exin
volume v, is equal to

in volume V . Here Os denotes th e principal extensions, whilst E.s denotes
princip al values of tensor t, see also eq. (3.6.8). It only remains to refer
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to formulae (A.1O.4)-(A.1O.6) which relate the principal invariant s to the
principal values of the tensor.

In a linear approximat ion, in which tensor E is identified with a linear
stra in tensor e, the dilatation usually denoted as f) (instead of D) is set in
the form

(5.5.5)

(5.5.6)

see eq. (5.5.3) as well as (D.7.5). Another form is due to eqs. (E.4.4) and
(E.4.6)

.Q sk 1 ('t"'7 't"'7) 't"'7 S d. 1 8.;gur

v= g "2 V sUk+ V kU s = Vs U = IVU= .;g~.

2.5.6 Similarity transformation

We consider two initial states of the medium: volume v and volume v., the
lat ter being obtained from the first state by the similarity t ransformation

(5.6.1)

Then the stra in measur es corresponding to the first and second initial states
are related as follows

(5.6.2)

which follows directly from eq. (3.3.6). In order to prove this, it is sufficient
to introduce Cart esian coordinates as in volume v .

The relat ion between the principal invariant s of the strain measures h
and Ii:, is given by the evident formulae

The formulae relatin g the invariants of the tensors of finite strain have a
more complicated appearance. Using eqs. (5.6.3) and (5.4.3) we have

t, (E.) = ;2[h (E) +~ {J] , 12(E.) = ;4[12(E) +{Jh (E) +~ {J2] ,

h(E.) = ;6 [h (E) + ~ {JI2 (E) + ~ {J2h (E) + ~ {J3] , (5.6.4)

where

(5.6.5)
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Similar equations in which K 2 and (3 are replaced r~pectiv~y by K- 2 and

K- 2 - 1 relate the invariants of the strain tensors £* and {
Dealing with the theory of finite rotation, strain measures are preferred

to strain tensors . As Kirchhoff said, "Introducing displacements instead
of the coordinates one wins nothing . Quite the contrary, the brevity and
clarity of equations are lost".

2.5.7 Determination of the displacement vector in terms of
the strain measures

The presentation of this particular material is due to discussions with M.A.
Zak.

Given strain measure ax (the matrix of components Csd, tensor aX
-

1

(the inverse matrix) can be found with the help of the Christoffel symbols
of the second kind

{
s } = cr [r;--:] = !cst (

8Ckt 8Cqt _ 8Ckq )
kq , q, t 2 8qq + 8qk 8qt . (5.7.1)

Clearly, it is assumed that the metric tensor gof volume v and the Christof
fel symbols corresponding to this tensor

(5.7.2)

are given.
Proceeding from the equalities

(5 .7.3)

we have

8V'R _ arS

R s 8Rs _ { s } qR {q} SR
8qk - 8qk s + r 8qk - - kq r s + ks r q

~ ({T}-{:s })r'R,~ ({T}-{:s })r'r,VR
Introducing the notion

(5.7.4)

we arrive at the system of linear differential equations for tensor V'R

8V'R A

aqk = r[k] . V'R. (5.7.5)
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The integrability conditions for this system follow from the relationships

8V'R (8r[k] A A )
8qr8qk

= 8qr + f[k] . fIr] . V'R

(
8r 1rJ A A) 82R

= 8
qk

+ fIr] . f[k] . V'R = 8qk8qr

and reduce to the following form

8r[kl 8r[r] A A A A

8qr - 8
qk

= f[r] . f[k] - f[k] . f[r]'

Performing the differentiation (by means of the formulae for differenti
ating basis vectors r" and r q ) and replacing r[kJ and r[r] byeq. (5.7.4) we
come to the relationships which are equivalent to the requirement that the
components of the Ricci tensor Amnare zero, cf. (E.6.14).

Assuming the solution of the system of equations (5.7.5) to be known
and using eq. (5.7.3), we find R by means of the complete differential

(5.7.7)

Given strain measure fJ x (and thus the inverse tensor fJ x - 1 = !VI) ,vector
r, determining the position of a particle in volume v, is sought whereas its
position vector R and the metric tensor G in volume V are known. For
example , they are given by the Cartesian coordinates x; and G= E = isis .

From the relationships

(5.7.8)

(5.7.9)

we obtain

8fJr = ({ q } _ {7}) R SR . fJr
8qk ks ks q

and the system of differential equations (5.7.5) is replaced by the following
system

~:: ~tlkl 'Vr, tiki ~ ({ is }-en) n-n..

Determining tensor fJr from this system we find r by means of the complete
differential

dr = dR· fJr .

The displacement vector u is then obtained as follows

u=R-r.

(5.7.10)
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2.6 Examples of deformations

2.6.1 Affine transformation

The affine transformation is defined by the equality

R - A- r- , (6.1.1)

(6.1.5)

where Ais a constant tensor of second rank. From the relationship

dR = A- dr= dr.A-

we obtain, by eqs. (3.2.4), (3.3.2) and (3.3.7), t hat

V'R =A-, (V'R)*=A, eX= A- .A, e X-1= m=(A- .A)-1,
(6.1.2)

and by eqs. (3.2.5), (4.1.2), (4.1.5) and (A.7.14) that

Vr =k-1
, (Vrr = A- l, gX = (k.A)-l , M=A.k . (6.1.3)

These formulae highlight the difference between the st rain measures in
tr oduced. In what follows, the Cartesian coordinates are used in the com
ponents' indices. For thi s reason, in violat ing the general rules of tensor
algebra (Appendix D) the dum my indices on the left and right hand sides
of the formula occupy various positions, and summation is carried out only
over the indices on the same level.

The components of the first measure of st rain and st rain tensor t =

~ (ex- g) are represented in the form

1
Gqt = AsqAst , £qt = 2 (AsqAst - 8qt) , (6.1.4)

and, due to eqs. (3.4.4) and (3.4.8), the formulae for the extensions and
shears are given by

(
2 2 2 ) 1/ 2 . - AsqAst

8t = Alt+ A2t+ A3t - 1, SlIl epqt= (1+8q)(1 +8t) '

Here Asr denotes the algebraic adjunct of element Asr of matrix II Asr II
divided by determinant A = IAs,·1 of this matrix. Then

and furthermore

g _ \ sr \ st c _ ~ (l: _ \sr \ st )rt - /\ /\ , " rt - 2 Urt /\ /\ (6.1.6)
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Let us notice that bt i= 15t for the following reason. In the first case, bt
denotes an extension of a linear element of unit length which was parallel
to axis it in volume v , and extends to length 1 + bt in volume V. In the
second case we speak about a linear element of length 1 + 15t in volume
V which becomes parallel to axis it in the same volume. In eq. (6.1.5) the
mat erial coordinates are as (the Cartesian coordinates of volume v) whereas
in eq. (6.1.6) the material coordinates are X s (the Cartesian coordinate s of
volume V) .

By eqs. (A.6.7) and (5.2.4) the invariants of the strain measure (]X are
represented in the form

t, (ax)= A* . .it = »; Ast, t. (ax) = ~: ~~: ~ = A2Ast Ast,

t; (ax) = A2
• (6.1.8)

2.6.2 A plan e field of displacement

The mapping of volume v into volume V is prescribed by the relationship

In order to simplify the notion we introduce

(6.2.1)

8xs ( )-;::;-- = Ask S, k = 1,2 , A3s = As3 = 0,
oai;

Then, by analogy with eq. (6.1.2), we have

dR = A. dr

(6.2.2)

and, referring to eq. (6.1.4), we obt ain

Cll = Ail +CA~l ' C12 = ACllA12 +0 A21 A2
C2

' C221= Ai2 + A~2'} (6.2.3)
23 = 0, 31 = , 33 = ,

System of equat ions (5.3.8) determining the components of tensor C X 1
/
2

,

is set in the form

( 1/2) 2 ( 1/2)2 }Gf1 + Gf2 = Gll ,

G
X1/2 (C X 1/ 2 GX1/2) - G12 II + 12 - 12 ,

(
X1 /2)2 ( X1/2)C12 + C22 = G22.

(6.2.5)
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The square of the second invariant of this tensor is expressed in te rms of
the principal values and, in turn , in terms of the invariants of tensor G X

Hence,

(6.2.6)

1 / 2

From the second equation in (6.2.5) we find G~2 and then the diagonal
X 1/ 2 X 1/ 2

elements Gu and G22

(6.2.7)

Denot ing

we can set eq. (6.2.7) in the following form

X 1 / 2 . }Gu = AU cos X + A21 SlIlX,
X 1 / 2

G12 = A12COSX + A22sin x = -All sin X + A21cos X,
x 1/2 .

G22 = -AU SlIl X+A22 COSX·

(6.2.8)

(6.2.9)

The particular sign in equat ion (6.2.8) for X is chosen such that the linear
transformat ion

is a rotation through angle X about axis i:.l . In thi s case, the choice

AU = A22 = cos X, A21 = -A12 = sin v , ,fl;. = 2

sat isfies definition (6.2.8) and moreover

. . R \ AA ./X1 = a1cosx -a2 SlI1X, x 2 = a1s1I1x +a2cosx, =r =r · =lsas,
(6.2.10)
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te

f
e

aA

Ct--.,.---":o-~--=;

FIGURE 2.3.

which is required .
Representation of tensor GX

1
/

2
is now set as follows

An expression for the rotation matrix is composed by means of eq. (5.3.6)

A, GX 1/2 (n)* (.. ....) Bx; .. aaq ••= . v r = Islk cos X - 13 X Islk sm X aak . lqlr aX
r

+ 1313

(
• • •.• . ) ax s aa q ••

= Islr cos X - 13 X Islr sin X -a-a + 1313
aq x;

and furthermore

(6.2.12)

The structure of this equation is coincident with that of eq. (A.8.8).

2.6.3 Simple shear

Simple shear should not be mixed up with pure shear, cf. Subsection 1.2.4.
Simple shear is a special case of the plane affine transformation prescribed
by the formulae

(6.3.1)

where a is a shear constant. Under a simple shear , a rectangle ABCD
becomes a parallelogram A' B'C'D', see Fig. 2.3. Matrices A and A* are
written down in the form

(6.3.2)
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and, by virtue of eqs. (6.1.3) and (6.1.4) , we obtain tensor exand the
following non-van ishing components of tensor £

G' X E' (i " ) 2 " c e S c 1 2= +S 1112 +1211 + S 1212, 012 =021= 2 ' C22 = 2s ,

By eq. (6.1.5) we have

83 = 81 = 0, 82 = v"f+S2 - 1, sin <P1 2 =~, (6.3.4)

which can be easily seen in Fig. 2.3. From the characterist ic equation for
tensor ex

1- G S

S 1+ S2 - G
o 0

o
o = (1 - G) [(1- G)2 - s2G] = 0

1- G

we find the principal values

G1 =~(2+ s2+ sJs2+ 4) , G2 =~(2+S2 _ sJs2+4) , G3=1.

(6.3.5)

The system of equations for determining t he principal directions of exis

(1- Gk) cos /3k + ssin /3k = 0, scos /3k + (1 + S2 - Gk) sin /3k = 0,
(6.3.6)

where cos /3k =~ . iI , sin /3k =~ .h . This yields

G1 - 1 1 ( ~) G2 - 1 1 ( ~)tan /31 = - S- = 2 S + V s2 + 4 , tan /32 = - s- = 2 S - V s2 + 4

(6.3.7)

implying t hat ~ :::; /31 :::; ~ and 3: :::; /32 < 1r if s > o.
The principal values of tensor gX, byeqs. (5.2.2) and (6.3.6), equal

1 1
91 = G

1
= G2 , 92 = G

2
= G1 ,

and the system of equat ions determining the principal values differs from
(6.3.6) in replacing s by - soFor thi s reason

- - - 1r
tan /31 = - tan /32' tan/32 = - tan /31' /31 + /31 = 2" '

The principal axes ~ and ~ of tensors exand gX are shown in Fig. 2.3.

The angle through which axes ~ need to be rotated about b in order to
s

make t hese axes coincident with axes e is given by

(6.3.8)
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On the other hand , in eqs. (6.2.6) , (6.2.8) All = A 22 = 1, A1 2 = S , A 21 = 0
so th at

.;;s. = vs2 +4, cos X = k , sinx = -~, tan X = -~s
s2 + 4 s2 + 4 2 '

which is confirmed by eq. (6.3.8) . That is, in the problem of simple shear ,
rot ation tensor A t akes the following form

(6.3.9)

2.6.4 Torsion of a circular cylinder

The coordinate transformation corresponding to this deformation can be
described as a finite rotation of the medium about the cylinder axis h. The
rot at ion angle X is a linear function of the abscissa measured along thi s
axis

X = Xo = "lj;a3, (6.4 .1)

where "lj; denotes the torsion angle. The rot ation tensor is given by formula
(6.2.12) , so th at

R = r . A, dR = dr . A + r . A'da3 = k .dr +k' .rda3, (6.4 .2)

with a prime denoting differentiation with respect to a3. Now we have

2 A A A AI

dB = dR . dR = dr . A . A* . dr + dr . A . A* . rda3 +
A A AI A I 2

r ·A'·A* · drda3+r ·A ·A* · rda3' (6.4.3)

Utilising the relationships

(h X E2 ) . E2 = hX E2 , (h X E2r = -h x E2 ,

(i3 X E2 ) . (hX E2r= E2

and taking into account the equalit ies

A . k = E, (A. k)' = A' . k + A . k ' = 0,

A' = - "lj; ( E2sin X+ h X E2cos X)

we have
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and , after substituting thi s result into eq. (6.4.3), we obt ain

dS2 = Gstdasdat = Dstdasdat +
'lji [dr . (h X E2) . r - r · (i3 X E2) . dr] da3+ 'lji2r . E2 . rda~ .

Therefore

and, by virtue of eq. (3.3.5), th e components of the st rain measure exare
as follows

Gll = G22 = 1, G33 = 'lji2 (at + a§) + 1,

G12 = 0, G23 = 'ljial, G31 = - 'ljia2'

The non-vanishing components of the stra in tensor are

(6.4.5)

(6.4.6)

The presence of component £ 33 caused by "the desire of the cylinder" to
change its length indicate s the necessity of an axial force. This force is
required since U3 is assumed to vanish , th at is the length of the cylinder
does not change. Then

u=R-r=r · (A- E) .
This is a manifestation of the effects which were found experimentally by
Poynting in 1909. Th is particular effect can not be explained in terms of
the linear theory of deformation.

The volume of the cylinder is retained under the deformation considered,
indeed

G= IGstl =
- 'ljia2
'ljial

1 + 'lji2 (at + a§)
=1

and dilat ation D = 0 due to eq. (5.5.1).

2.6.5 Cylindrical bending of a rectangular plate

Let us consider the following transformat ion

(6.5.1)
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which deforms the region of the parallelepiped

a~ <al :::; a~ + h, -i-: a2 :::; b -1:::; a3 :::; 1 (6.5.2)

modelling a rectangular plate of thickness h, width 2b and height 21 into
a cylindrical panel. The latter is a region bounded by the surfaces of two
coaxial cylinders of radii

(6.5.3)

planes

(6.5.4)

and planes X 3 = ±el, see Fig . 2.4. This deformation is assumed to occur
under the conservation of the volume of the material.

The components of the st rain measure (;X are determined by means of
eq. (3.3.6), the Cartesian coordinates of volume v being taken as material
ones. The only non-vanishing components are the diagonal components of
tensor (;X

2

Gll = o" (al) , G22 = ~2 C2 (al), G33 = e2.

From the condition of volume conservation, we have

JG = C'C
a
b
e = 1, C'C =..!?- .

a e

Integrating this equation and accounting for eq. (6.5.3) we find

(6.5.5)

(6.5.6)

C= (6.5.7)
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so that

c= (6.5.8)

Let us assume th at the deformed plate has such a plane al = ai that
the line segments -b ::; az ::; b on this plane which were parallel to axis iz
in volume v retain their length in volume V . Then, due to eqs. (6.5.5) and
(6.5.8), we obtain

(6.5.9)

and the components of the st rain measure are set in the form

(6.5.10)

Taking into account eq. (6.5.7) we can put equality (6.5.9) in the form of
a quadratic equat ion in (rr - r6) /r6, whose positive solution is given by
the formula

rr - r6 _ _2_h [ (a i - a~)Z ai - a~ ]
-=--z~- 1+ + .

ro roe roe roe
(6.5.11)

From the latter, as well as from eq. (6.5.7), we obtain the ratio of the height
of the rectangular strip to the length of the arc of the cross-section of the
inner cylinder

b
(6.5.12)

It follows from the formulae derived, that for e ~ 1 the components of
the stra in measure differ from unity in terms which are of the order h/b,
i.e, they are small for a thin plate. The components of the strain tensor
have the same order whereas the displacements are by no means small.

2.6.6 Radial-symmetric deformation of a hollow sphere

Let the spherical coordinates of volume v
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be taken as the material coordinates. Then, referring to Section C.8 we
have

8r 8r 8r.
r = reR , rl = 8

ql
= en, r2 = 8q2 = res , r3 = 8q3 = eAr sin {)

and the non-trivial covariant component of the unit tensor g of volume v
are

1 2 2 . 2 .0g11 = rl . rl = , g22 = r2 . r2 = r, g33 = r3 . r3 = r sm u .

Next , we have

(6.6.1)

(6.6.2)

and the contravariant components of this tensor, due to eq. (E.5.7), are

1 8g 1 1 1
g11 = = _ = 1, g22 = _ , g33 = .' (6.6.3)

9 8g11 g11 r 2 r 2sm2
{)

Under a radial-symmetric deformation of the sphere bounded in volume
v by the surfaces of the concentric spheres r = ro and r = rl , we have in
volume V

R = R (r) eR, R 1 = R' (r) eR, R 2 = R (r) et9, R 3 = R (r) e A sin {),
(6.6.4)

so that

G
,2

11=R,

For an incompressible material, i.e. for a material retaining the volume, we
have, byeq. (5.5.1) that

(6.6.5)

(6.6.6)

Integrating this equation, we obtain, as one would expect

R3 (r) - r3 = const = Rr - d = .R& - rg,

where R1 and Ro denote the sphere radii in the final state, that is in volume
V . The non-trivial components of the unit tensor e are equal to

r4

G11 = R4' G22 = R
2
,

G11 = R
4

G22 =~
r4 ' R2 '

The principal invariants of the strain measure ex are found with the
help of eq. (5.2.6) and (5.2.8)

(6.6.7)
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2.6.'l Axisymmetric deformation of a hollow cylinder

The calculation is fully analogous to that carr ied out in th e previous sub
section. The material coordinates are the cylindri c coordinates

ql = r, q2 = 'P, q3 = z .

Referring to formulae of Section C.7 we have

so th at according to eqs. (C.7.1) and (E.5.7)

(6.7.1)

g 33 = 1,

g 33 = 1.
(6.7.2)

Under the axisymmetric deformation the position radius R in volume v is
given by the equality

R = R (r) er + oz k,

so that

(6.7.3)

and

Gll = R P, G22 = R 2, G23 = a 2; G = R, 2R 2a 2.

For an incompressible material

G = 1, R, 2R 2" ,2 = r 2, R 2 2 t R 2 2 R 2 2u a - r = cons = a 0 - ro = a 1 - r 1 ,
g

(6.7.4)

where ro and rl denote the rad ii of the concentric cylinders in volume V ,
while Ro and R 1 are those in volume V. The covariant and contravariant
components of tensor o are equal to

r2

Gll = R2a 2'

R2 2
Gll = __a_

2 'r

(6.7.5)

while the principal invariant s of the tensor of str ain measure exare as
follows
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3
The constitutive law in the linear
theory of elasticity

3.1 Isotropic medium

3.1.1 Statement of the problem of the linear theory of
elasticity

As repeat edly mentioned earlier, see Subsect ions 2.3.6 and 2.3.9, th e tensors
of finite strain can be replaced by a linear strain tensor Eprovided that the
components of th e gradient of the displacement vector V'u are small. The
latter is equivalent to the components of tensor E and the rot ation vector
w being small

(1.1.1)

(1.1.2)

Under these condit ions th ere is no necessity to distinguish between the
derivatives with respect to th e coordinates of th e initi al as and final z,
states. Indeed, for a function f we have th e following derivatives

of = of oXs = of (8Sk+ ous ) = of + of ous

oak OX s oak OX s oak OXk OXs oak
and, under the above assumpt ion,

af af
aak aXk'

Unless stated otherwise, in th e linear th eory of elast icity by th e initi al state
we mean the natural st at e of th e medium , i.e. the state without stresses.
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The Cartesian coordinates of a particle in a stressed state are denoted by
Xl ,X2 ,X3 and those in the initial state as al ,a2 ,a3 , see Subsection 1.1.1

Xs = as + Us ' (1.1.3)

There is, however, no need to introduce these coordinates explicitly. The
body is assumed to have the same form in the initial and actual (loaded)
states. Thus, there is no necessity to distinguish between volumes v and V
as well as between surfaces 0 and O.

In contrast to the basic relationship (1.3.2) of Chapter 1, the stress tensor
is introduced as follows

t n = n· T. (1.1.4)

Here tndo denotes the force vector acting on the oriented surface ndo, with
n and do denoting respectively the unit normal vector of this surface and
the area of this surface , both in the initial state. The equilibrium equations
in the volume are set, as before, in the form of eqs. (1.5.4) or (1.5.6) of
Chapter 1. Relating mass to the initial volume, the mass density in the
expression pK for the volume force is set equal to the initial value, i.e.
p = Po . According to eq. (1.1.4), the equilibrium equations on the surface
are written in the form

F=n ·T, (1.1.5)

where F denotes the surface force related to the unit of the initial area of
surface 0 and n is the unit vector of the normal to this surface.

In the linear theory of equilibrium of solids there is no need to discrimi-

nate between the strain tensors of Cauchy-Green t and Almansi-Hamel f .
As follows from eqs. (3.6.5) and (4.3.5) of Chapter 2, both tensors should
be replaced , under conditions (1.1.1) and (1.1.2), by the linear strain tensor

,-::: 1 [ *[ = [ = E= '2 V'u + (V'u) ] (1.1.6)

regardless of what independent variables (», or as) are used for the nabla
operator. Further, x; is used to denote all these variables and V and 0
denote the volume and the bounding surface of the body, respectively.
While utilising curvilinear coordinates qS we adopt !J and gsk, gsk, g: =
8~ to denote the metric tensor and its components respectively. By eq.
(5.5.5) of Chapter 2 the first invariant of the linear strain tensor, that is
the dilatation in the linear approximation, is designated as follows

{) = I, (E) = divu. (1.1.7)

It was stated in Subsection 1.1.5 that the objective of the static analy
sis of a continuum is to search for that state, among all feasible states of



3.1 Isot ropic medium 129

stress (sat isfying the equations of stat ics throughout the volume and on
the surface) , which is act ually realised for the adopted physical model of
a particular medium . Th is model is determined by the const itutive law,
namely, for a large number of media it consists of prescribing relations be
tween the st ress tensor and the st rain tensor. In t he linear elast icity theory
it is a linear relationship between the stress tensor and the linear st rain
tensor. For a linear elast ic body this relat ionship presents a system of lin
ear equations relatin g the components of these tensors and expresses the
generalised Hooke law. (It will be shown below that lineari ty of the rela
t ionships between the tensors is not equivalent to a linear relation between
th eir components.) Also the temperature app ears in the expression for the
const itut ive law.

Prescribing the consti tu tive law leads to a closed system of differential
equations which allows one to determine the state of stress in the body and
the displacement vector of the particles of the medium . Therefore, in a lin
ear statement the problem as to determine the form and size of an elast ic
body in the final state is not import ant. These geometric characteristics
are found after the problem has been solved under the assumpt ion that
the initial form of the body remains unchanged. This approach enables an
inherent difficulty of the nonlinear elasticity theory to be avoided, namely,
that the state of st ress needs to be found in volume V which is a body with
an unknown bound ary O. The validity of the approach is substant iated us
ing the following observation. While solving the problems of the nonlinear
elasticity theory by the method of successive approximat ion, for example
in the form of a power series in ter ms of a small parameter characterising
the smallness of the grad ient of the displacement vector , the init ial approx
imat ion is the solut ion of the problem for a linear elast ic body, with the
const itut ive equations being related to the initi al volume and the initial
form of t he boundary.

In what follows, the st udy is carried out mostly in the Cartes ian coor
dinate system OX1X 2X3 . However the resultin g relat ionships are formu
lat ed in an invariant form of dependences between vectors, tensors and
tensor invariants . For this reason, a t ransit ion to curvilinear coordinates is
st raightforward.

3.1.2 Elementary work

Using the formulae of Subsections 1.3.5 and 1.3.6 one obtains an expression
for the specific elementary work of external forces 8' A (e) (and the equal
in value, but opposite in sign, specific elementary work of internal forces
8'A(i)) by replacing ratio G/ g and the stra in tensor respectively by unity
and the linear st rain tensor. In t he linear theory there is no necessity to
distinguish between the metrics of volumes v and V and thus the energet ic
st ress tensor is ident ical to stress tensor T. Hence, by virt ue of eq. (3.6.4)
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of Chapter 1 we have

(1.2.1)

tsk and Esk denoting respectively the components of tensors t and E in the
Cartesian coordinate system.

The first invariant of the stress tensor in further denoted by a . It is a
sum of three principal stresses or three normal stresses on the orthogonal
surfaces

(1.2.2)

Using notion (1.1.7) we can present the specific elementary work, eq. (3.6.6)
of Chapter 1, in terms of the spherical and deviatoric parts of tensor t and
E in the following form

I 1 ( A )8 A(e) = 3a8'l9 + I, DevT · 8DeVE . (1.2.3)

A link between the specific elementary work and the elementary work of
the entire volume of the body is performed by the following integration

(1.2.4)

3.1.3 Isotropic homogeneous medium of Hencky

The forthcoming consideration is restricted to media in which the stress
tensor is defined by prescribing the strain tensor and temperature difference
() from the initial state. The components of these tensors are related by
equations of the following type

(1.3.1)

along with certain invariance requirements, implying the validity of these
relations under coordinate transformation. This requirement excludes the
physical models with the stress tensor depending upon the tensors of strain
rate or the time-history of deformation or "age" of the material etc . We
also do not consider heterogeneous media for which coordinates Xl , X2 , X3

appear explicitly in dependence (1.3.1).
By isotropic elastic media we mean media with tensors of strain and

stress, that are aligned, d. Subsection A.12. An elementary cube cut from
such a medium deforms equally for any orientation of its edges. It follows
from the Cayley-Hamilton theorem that two aligned tensors are related by
a quadratic dependence of type (A.12.4). One of the difficulties of nonlinear
elasticity theory is the necessity to find that strain measure which corre
sponds to the stress tensor. In the linear elasticity theory this difficulty
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does not exist and the quadratic dependence is replaced by a linear one of
the type

(1.3.2)

where a and b depend on the invariants of tensor E and possibly on tem
perature. The unit tensor is denoted as E.

An isotropic elastic medium obeying the constitutive law (1.3.2) is re
ferred to as the Hencky medium . In terms of the components of tensors r
and E, the latter equation is set as follows

(1.3.3)

(1.3.4)

and, as a and b depend on the invariants of E, these relationships are non
linear. The Hencky medium is geometrically linear but it is physically non
linear. A particular case of this medium is the Hookean medium and a
description of its behaviour comprises the major portion of the present
book.'

Using eq. (1.3.2) we have

(11 = t, (r) = 3a + b19

so that

- - 1- ( 1-)DevT = T - 3(1E = b E - 373E = bDev E (1.3.5)

and the dependence between the second (quadr atic) invariants of the devi
ators of r and E is written in the form

lz (Devr) = b21
2 (Dev e) .

Referring to formulae (2.2.11) of Chapter 1 and (3.7.4) of Chapter 2

2 ( -) r
2

T = -12 DevT ' 4 = -12 (Dev Z) (1.3.6)

where T and r denote the intensity of the shear stresses and the shear
st rains , respectively, we introduce th e new notation

2T
b = 2{1 = f ' (1.3.7)

I The problems of the theory of elas ticity of ani sotropic media are not considered here .
The linear th eory of anisotr opic media is tr eated by S.G . Lekhnitsky in th e book Theory
of elas ticity of anisot ropic medium (in Ru ssian ), Gostekhizdat , Moscow, 1950, where as
th e book by A.E . Green and J .E. Adkin s, Large elas tic deformations, Claredon Press,
Oxford , 1970 considers in det ail the nonlinear problems of anisotropic elastic media .
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Changing the notation once again we can represent the coefficient Q as a
sum of two terms

a =)...{) + a',

where a' depends on temperature () and vanishes when the temperature is
equal to the temperature of the natural state. Then, due to eqs. (1.3.4) and
(1.3.7)

(1.3.8)

where

(1.3.9)

Here k and J1 are the bulk modulus and shear modulus, respectively. In what
follows , referring to much experimental data on the behaviour of materials
under uniform compression we assume that the bulk modulus does not
depend upon the strain invariants. A dependence on the change in volume
was observed by Bridgman only at extremely high pressures .

At temperature () and in the case of no external forces ((j = 0) , the strain
tensor e in the tested cube is spherical and given by

e = Q()E, It (e) = {) = 3Q(), (1.3.10)

where Q denotes the coefficient of linear expansion. Substitution into eq.
(1.3.8) yields

3kQ() + a' = 0, a' = -3kQ() .

Now we arrive at the equality

a = )...{) - 3kQ() = )...{) - (3)", + 2J1) Q()

and Hencky's constitutive law (1.3.2) is set in the form

or in the equivalent form

~(j=It (T) =k({)-3Q()), DevT=2J1Deve.

(1.3.11)

(1.3.12)

Returning to expression (1.2.3) for the specific elementary work we have

DevT · 6 Dev e = 2J1Deve ' 6Dev e = J16 (Dev e)2
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and, by virtue of eqs. (A.11.9) and (A.3.6),

i. [(Dev E)2] = -u, (Dev E) = ~2 , st, [(Dev E)2] = rsr.

The formula for the specific elementary work of external forces is presented
in the following expressive form

, ~

8 A(e) = k (19 - 30:0) 819 + /Lr8r = 3819 +T8r. (1.3.13)

The first and second terms represent the specific elementary work of the
change in volume and shape, respectively.

Let us recall that due to eqs. (A.ll .6), (A.lOA) and (A.1O.5)

r 2 = -412 (Dev s ) = 4 [~ll (E) - 12 (E )] (1.3 .14)

= 4 [~192 - (cllc22 + C22C33 + c33cll ) + ~ ('YI2 + 'Y~3 + 'Y~ 1 ) ] .

3.2 Strain energy

3.2.1 Internal energy of a linearly deformed body

Here and throughout th e chapters concerned with the linear theory of elas
t icity, the linear str ain tensor is called, for brevity, the strain tensor. For the
independent parameters of the state of the homogeneous isotropic Hencky's
medium, we take the dilatation 19 (the first invariant of the strain tensor) ,
the intensity of shear str ain I', and the temperature 19. A thermodynamic
quantity (pot ential) referred to as the specific internal energy E is assumed
to be a function of these parameters

E =E (19, r, O) . (2.1.1)

In accordance with the first law of thermodynamics the increment (varia
tion) 8E is equal to the sum of the specific elementary work of the external
forces 8'A (e) and the specific heat suppl y 8'Q. The latter is given by the
relationship

8'Q = c80 + X819. (2.1.2)

Here c denotes the specific heat at constant volume, i.e. at 819 = 0, and X819
is the heat required for a change in the volume. In what follows 8 stands
for the absolute temperature, that is

8 = 8 0 + 0, 88 = 80 , (2.1.3)
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with 8 0 designating the absolute temperature of the body in the natural
state.

Now, by virtue of eqs. (2.1.2) and (1.3 .13) we have

8E = 8' A(e) + 8'Q = [k ('l9 - 3aB) + x18'l9 + c8B+ p,r8r. (2.1.4)

The integrability conditions for this expression, that is the condit ions for
the existence of E as a function of the above listed parameters, are written
in the form

(2.1.5)

The second law of thermodynamics postulates the existence of a further
function of the parameters of the system st ate which is the entropy S . In a
reversible process, a variation of this quantity is determined by the equality

(2.1.6)

and the condit ions of integrability of this expression are set as follows

8c aX 8c
ar = 0, ar = 0, a'l9

aX X---
aB 8 ·

(2.1.7)

(2.1.8)

Since k does not depend on the st rain invariant s it follows from the first
two equalit ies in (2.1.5) and (2.1.7) th at

ap, ap,
aB = 0, a'l9 = 0, p, = p,(r) .

The remaining equalit ies yield

X = [3ka - ('l9 - 3aB) ~~] 8 . (2.1.9)

Here and in what follows it is supposed that aB is a value of the order of
'l9. According to the standard assumptions in the linear theory and because
of a weak dependence of k on temperature, one can replace eq. (2.1.9) by
the following relationship

X = 3ka8.

By virtue of eqs. (2.1.5) and (2.1.7) we have

8c 8c
a'l9 = 0, ar = 0, c = c (B)

(2.1.10)

(2.1.11)
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implying that for the adopted approximation the specific heat at constant
value depends only on the temperature.

Expressions /5'Q and /5E are now written down in th e form

/5'Q = 3k0:8/57) + c (e) /5e ,

/5E = k (7'J + 30:80) /57'J + j.lf/5f + c (e) /5e ,

(2.1.12)

(2.1.13)

and under the assumptions made k is independent of the temperature.

3.2.2 Isothermal process of deformation

Provided that the temperature is kept constant during deformation, then
e= 0,8 = 8 0 and due to eq. (1.3.13)

/5' A(e) = k7'J/57'J + j.lf/5f = ~a/57'J + T/5f. (2.2.1)

Referring to eqs. (2.1.2) , (2.1.4( and (2.1.6) we have

/5E = /5' A(e) + 8/5S = /5' A(e) + /5 (8S) - S/58.

The thermodynamic function (pot ential)

F=E-8S

(2.2.2)

(2.2.3)

is termed th e free energy of th e system . It s variation, due to eq. (2.2.2) , is
equal to

/5F = /5' A(e) - S/58, (2.2.4)

and thus under the isothermal process the specific elementary work of th e
external forces is equal to the variation of the free energy

/5F = /5' A(e) = k7'J/57'J + j.lf/5f.

3.2.3 Adiabatic process

Under this process /5'Q = 0 and by eq. (2.1.12)

c (e) /5() = -3k0:8/57'J.

According to the earlier assumptions we can writ e

(2.2.5)

(2.3.1)

c (e)
8 (1 9) [c(O) +ge' (0)+ ...J

8 0 1+-
8 0

= c(O) + J.- [c' (0) _ c(O) + ...J~~,
8 0 8 0 8 0 8 0
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where Co = C (0) denotes th e specific heat at the temperature of the initi al
state (B = 0,8 = 8 0) , Taking into account that {) = 0 at B = 0 we arrive
at the relationship

3ka8{) ~ -~8B B= - 3ka 8 0{) (2.3.2)
8 0 ' co'

determining the temperature change under the adiabat ic deformation pro
cess.

Due to eqs. (2.1.4) and (2.3.2) we have

, ( 9k(
28

0 )8E = 8 A(e) = k ({) - 3aB)8{) + j.Lf8f = k{) 1 + Co 8{) + j.Lf8f.

(2.3.3)

Using the not ation

k' = k (1 + 9k~:80 ) (2.3.4)

equat ion (2.3.3) is set in the form

8E = 8' A(e) = k'{)8{) + j.Lf8f. (2.3.5)

The coefficients k and k' are referred to as the adiabat ic and isothermal
bulk modulus, respectively. The bulk modulu s k has the same value under
adiabat ic and isothermal processes.

Under a free thermal expansion when 8{) = 3a8B, the total amount of the
heat received by a volume unit is 8'Q = cp8B, where Cp denotes the specific
heat at constant pressure. This parameter is measured in st ress-free tests.
For this reason, due to eqs. (2.1.12) and (2.1.10)

8'Q = cp 8B= c8B+ 3ka8 . 3a8B~ c8B (1 + 9k~:80 ) ,

so that by eq. (2.3.4)

k'cp

C k '
The values of thi s ratio for some metals at temperature 20° C are shown

in Table 3.1. From this table it appears that there is no difference between
the adiabat ic and isothermal processes to an accuracy sufficient for techni
cal calculat ions.

~ material I cplc I material cplc material cplc
aluminium 1.043 manganese 1.044 cobalt 1.020
molybdenum 1.007 lead 1.067 nickel 1.021
tungsten 1.006 iron 1.016 platinum 1.020
silver 1.004 copper 1.028 gold 1.038

Table 3.1
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3.2.4 Specific strain energy. Hencky 's media

Based on equalities (2.2.5) and (2.3.5), we introduce into consideration a
function of the st ra in invariants A (rJ , I') whose variat ion is given by the
equality

8A = krJ8rJ + pT8f = krJ8rJ + T8f. (2.4.1)

For the isothermal process, A is identified with the free energy F whilst
for the adiabatic process it is ident ified with the internal energy E and
in the lat ter case k should be replaced by the adiabatic bulk modulus k',
In both processes one can introduce a function of the state, referred to in
what follows as the specific strain energy,

r

A = ~ krJ2 +JT8f
r o

(2.4.2)

with practically coincident value of k for isothermal or adiabat ic processes
of deformation. In these processes the specific strain energy is equal to the
specific work of the external forces in a cont inuous sequence of equilibrium
states from the natural state to the act ual state.

Refining expression (2.4.2) requires a knowledge of the experimental de
pendence

T = p (r)f.

Particular cases of isot ropic Hencky's media are:
i) a linear elastic Hookean medium

p (I") = const ;

ii) a medium with the effects of yielding when

T = p (f ) I' = const = T s -

(2.4.3)

(2.4.4)

(2.4.5)

Here T s denotes the yield st ress for the mat erial.
The general case determines the medium with a hardening effect. Under

a permanent increase in the loading, the same material can pass through
three stages . Figure 3.1 schematically illustrates the behaviour of a plain
steel in the plane (I' ,T). Portion 0 A corresponds to a linear elast ic be
haviour , AB presents a port ion in which the steel yields with increasing
st ra in at unchanged T = T s - The portio n of hardening Be begins at I' = C
and a further growth of I' requires a growth in T . Rigid-plastic materials
act ually possess no linear portion, that is the material does not deform
unless T = T s and then a plastic flow begins which can be followed by
a hardening. For nonlinear elast ic materials, for instance copper, portions
OA and AB are each absent .
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FIGURE 3.1.

Under a uniaxial state of stress , which is approximately realised in tests
by means of axial forces, there is a single non-vanishing component ax of
the stress tensor. In this case, due to eq. (2.2.11) of Chapter 1, we obtain

ax
7= J3'

so that referring to as as that value of ax which corresponds to the yield
stress we have

(2.4.6)

In the case of pure shear 7 is equal to the shear stress that does not
vanish. Determining 7 s from pure shear tests realised by torsion of a thin
walled tube one can predict that in tension tests on a rod made of the same
material the yield stress will occur at as = J37s- This conclusion has been
confirmed by experiments on soft materials (tests by Rosch and Eichinger
etc.).

An extended form of condition (2.4.5), referred to as the Mises yield
condition, is written in the form

7
2 = -t, (Devt) = (2.4.7)

= ~ [(ax - ay)
2 + (ay - az)

2 + (az - ax)
2

] +7;y + 7~z + 7;x = 7; .

Estimates for the external forces enabling the formulation of sufficient
criterion for the presence of plastic zones in a loaded body and the necessary
condition for their absence are given in Subsect ion 1.4.9.

The above is applicable to a hypothetical material, which is a physical
model possessing the property of storing energy at the expense of the ex
ternal forces during loading and returning the energy without loss as the
initial (natural) state is restored. One of the assumptions for constructing



3.3 Generalised Hooke's law 139

this model was the reversibility of t he process. The behaviour of many real
materials is irreversible and t he sto red energy is par tially dissipated dur
ing unloadin g. This fact renders t he suggested model acceptable only for
processes wit h monotonically increasing inte nsity of t he shear stresses T .

Energy dissipat ion under unloading a linear -elastic (Hookean) body is neg
ligible; t his being so, the irreversibility of the process " loading-unloadin g"
is neglected.

3.3 Generalised Hooke's law

3.3.1 Elasticity moduli

T he constitut ive law of t he linear-elast ic body under an isothermal defor
mat ion process (B = 0), due to eq. (1.3.11), is writ ten down in the form

(3.1.1)

(3.1.2)

Here A and p are t he constant moduli of elastic ity called t he Lame moduli.
The form of this law is the same in t he ad iabat ic process, but , by eqs.
(1.3.9) and (2.3.4), A needs to be replaced by the adiabat ic modul us

A' = A+ 9ko:
28

0

c

which slight ly differs from A. By using eq. (3.1.1) one can easily express
t he strain tensor E in terms the stress tensor T. We have

so t hat

{) = (J

3A+ 2p '
(3.1.3)

(3.1.4)1(' A ,)
E= 2p T - 3A+ 2p (JE .

Equalities (3.1.1) and (3.1.4) express the generalised Hooke law. The be
haviour of a material is prescribed by means of two constants and this is a
consequence of assumptions on t he mediu m isotropy and smallness of t he
components of tensor \7u enabling one to keep only a linear term in t he
general quadratic dependence between the aligned tensors T and E.

Equations (3.1.1) and (3.1.4) are written in terms of the components of
tensors T and E in t he following way

(3.1.5)

ex = 2~ ((J;t - 3A~ 2p (J ) , (3.1.6)
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Lame's moduli are used in theoretical pap ers whereas in the technical
literature they are replaced by other moduli of elast icity, most commonly
by Young's modulus E and Poisson 's ratio u, In order to introduce these
parameters we separate the term with a x in eq. (3.1.6) for Ex

Using the not ation

A
---=v
2(A+Jj)

(3.1.7)

the generalised Hooke law (3.1.6) reduces to the form

1
Ex = E[ax-v(ay+az)],

1
Ey = E [ay - v (az + ax)] ,

1
Ez = E[az-v(aJ:+ay ) ] ,

(3.1.8)

In the uniaxial stat e of stress in which there is a single non-vanishing com
ponent ax , we have

(3.1.9)

and one can easily recognize the elementary law of deformation of a rod
extended by an axial force: the rod extension in the axial direction is pro
portional to the st ress with the proportionality factor E- 1 and this strain is
accompanied by a proportional transverse cont ract ion of the rod sizes, de
termined by Poisson's ratio . The general case of the three-axial stretching
can be interpreted as a result of superimposing three consequent uniax
ial st ates of st ress. Thi s reasoning assumes, of course, the linearity of the
deformation law.

The second group of formulae, eq. (3.1.8), expresses a proportionality
of the shear strain to the shear stress at pure shear. Provided that only
T x y is not equal to zero, then the only non-vanishing component is the
corresponding shear st rain "fxy. Nonlinearity of the strain introduces an
essential correction into this simple represent ation , see Subsection 2.6.3.

Using eq. (3.1.7), the expressions for Lame's moduli , in terms of E and
u, are put in the form

E
Jj= 2(1+v) '

v
A=2Jj-- .

1- 2v
(3.1.10)



3.3 Generalised Hooke' s law 141

The shear modulus J.l is often denoted as G and inste ad of Poisson 's ratio
one introduces an inverse value denoted by m

J.l=G,
1

m= - .
//

(3.1.11)

The first formula in (3.1.10) , expressing the shear modulus in te rms of
E and u, can be obt ained by means of a geomet ric construct ion in which
the elongat ion of the diagonals of a square is considered, the square's sides
being subjected to shear st resses which change t he right angles between
the sides.

Clearly, the generalised Hooke law can be written down in terms of any
pair of the introduced moduli

k , A, J.l=G,
1

E , //=- .
m

The pair J.l, u is often used. Then , relationships (3.1.1) and (3.1.4) take the
form which is predominantly used in t he present book

f = 2J.l (1 : 2//rJE+ E: ) , (3.1.12)

1 ( A // A)
E: = 2J.l T- l+// aE . (3.1.13)

The summary table below provides t he reader with formulae expressing
the elast icity moduli in terms of the basic pair of moduli.

basic pair
moduli

A,J.l k, J.l J.l , // E, // E, J.l

,\ ,\ k - ~J.l ~ vE (E -2fl )fl
1-2v (l+v)(1-2v) 3fl -E

J.l=G J.l /1 J.l
E

J.l2(l+v )

k ,\+ ~ J.l k 21,(1+v) E E I'
3 (1 -2v) 3(1 - 2v ) 3(31, - E )

E !'(3,X+2!') 9kl ' 2J.l (1 +//) E E
'x+I' 3k+ I'

//
,X 3k -2fl

// // 11!2 - 1
2('x+!, ) 5k+21' 2 I'

Table 3.2

3.3.2 Specific strain energy for a linear- elasti c body

By eqs. (2.4.2) and (2.4.4), the expression for the specific st rain energy in
the isothermal process is set as follows

(3.2.1)
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This formula can also be used for the adiabat ic process if k is replaced
by k' . Using transformation formulae (A.1O.1O) and (A.ll .6) and entering
moduli J.l and u, we obt ain

(3.2.2)

Taking into account that

I ( ' 2) 2 2 2 1 ( 2 2 2 )
1 10 = CtsCst = lOll + 1022 + 1033 + 2 1' 12 + 1'23 + 1'31 ,

we arrive at the following expression for the specific strain energy A (c) in
terms of the components of tensor E

Let us recall that in the processes under consideration a variation of the
specific st ra in energy (equal to var iation of the free energy in the first case
and variation of the internal energy in the second case) can be written, due
to eq. (1.2 .1) , in the form

oA = 0'A(e) = t: .DE

= tll ocll + t 22Oc22 + t33 Oc33 + t 1201'1 2 + t2301'23 + t3 101'31 ' (3.2.4)

This representation yields the formulae

1 ( OA OA) {tt-- --+-- -
s - 2 OCst OEts -

oA

oA
01's t '

t = s,

t =1= s ,

(3.2.5)

which hold not only for a isotropic linear-elastic body but also for any
medium for which one can introduce the concept of st rain energy as a
function of the st rain components determined by the external work.

In a linear-elastic (Hookean) body, A is a homogenous quadratic form of
the strain components and, by Euler 's theorem,

oA A

2A =~cst = t st Cst = T · . E.
UCst

Thus we are led to a bilinear representation of the specific st rain energy
which is denoted as

1 A I )
A (10 , a) = 2T. .E = 2 (a xcx + a yCy + a zcz + T xy1'xy + T yz1'yz + T zx1'zx .

(3.2 .6)
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From this formula , by using Hooke's law in the form of eq. (3.1.13) we
obtain the following expression for the specific strain energy in terms of
the stress tensor denoted as

or in the extended form

(3.2.8)

Aligned tensors appear in the bilinear equat ion (3.2.6) for the specific
strain. For this reason , along with eq. (3.2.4) the variation can be set in
the form

oA = f .. DE: = f; . . of (3.2.9)

This leads to relat ionships which are inverse of eq. (3.2.5)

8A
-8 = "fxy ,

T x y

8A
8(Jy = Cy,

8A
-8 = "f yz '

T yz

:~ ~E" }

8 - "f zx'
T zx

(3.2.10)

which are valid , similar to eq. (3.2.6), only for the Hookean body.

3.3.3 Clapeyron's formula. Limits for the elasticity moduli.

The strain energy of an elastic body is determined by the integral of the
specific strain energy over the volume

a = JJJ AdT.
v

(3.3.1)

This value is equal to half the work of the exte rnal forces in a sequence
of equilibrium states of the linear-elastic body beginning from the natural
state. The proof is based on the equality

JJJ u , (divf+pK) dT+ JJ (F - n . f ). udo = O.
v 0

(3.3.2)
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Indeed, due to eqs. (B.3.1O) and (3.2.6),

111 u· div TdT = 111 div (T . u) dr - 111T .. EdT
V V V

= 11n·T·udo- 111 2AdT

o V

and inserting this result into eq. (3.3.2) leads to the required relation

(3.3.3)

This is Clapeyron's formula. It states that the work of the external forces
is stored in the linear-elastic body in the form of the strain energy which is
returned in the form of work under a slow unloading (or kinetic energy in
the case of an abrupt unloading) . From this energy perspective, it follows
that a > O. This statement is equipollent to a local, i.e. in any part of
volume V , property

A >0, (3.3.4)

due to the arbitrariness of volume V.
Statement (3.3.4) is a property assigned to the elastic body, that is, there

is no regions with A < 0 in it . In a linear-elastic body this must be ensured
by the requirement imposed on the elasticity moduli

k> 0, J-l > O. (3.3.5)

This is immediately evident from eq. (3.2.1): for zero shear (I' = 0) in
equality (3.3.4) requires positiveness of the bulk modulus (k > 0) , whereas
for unchanged volume (19 = 0) it requires positiveness of the shear mod
ulus. Inequalities (3.3.5) correspond to habitual static concepts regarding
the behaviour of a solid, namely, in the pure shear stress state (Subsection
1.2.4) the shear strain and shear stress have coincident signs (J-l> 0) and
the volume of a cube decreases under a uniform pressure (k > 0).

From the expression for k

it follows that the first inequality holds true for the following values of
Poisson's ratio

1
-1 < 1/ < 2 '

(3.3.6)
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Elongation of a rod of material with negative u greater than -1 would be
accompanied by an increase in its transverse dimension. Existence of such
materials is not impossible from an energy perspective.

Let us notice that inequalities (3.3.5) can also be written in the form

3.\ + 2J-l > 0, J-l > O. (3.3 .7)

Remark. The squares of velocities of propagation of the shear waves and
compression waves in the elastic medium are respectively given by

J-l ,
p

1 2J-l 1 - //
- (.\+2J-l) = ---.
p p 1 - 2//

Hence J-l > 0 and u < ~ , i.e. propagation of compression waves is possible in
a solid with any // < O. The restriction // > -1 is a result of the independent
requirement (3.3.4) . In a hypothetical material with // > -1 the uniform
compression of the cube would be accompanied by an increase in its volume.

3.3.4 Taking account of thermal terms. Free energy

Let us disregard the assumption that the process is isothermal or adiabatic.
Then the variation of the specific elementary work of the external forces
can not be equated to the variation of the strain energy, since the very
concept of strain energy is no longer applicable. The role of strain energy
is played by one of the thermodynamic potentials: either the free energy or
the Gibbs potential.

Let us make use of eqs. (2.1.13) and (1.3 .13) and set the equation for the
specific internal energy DE in the following form

8E = k7'J87'J + J-lf8f + 3ka8087'J + e87'J

= 8'A(e) + 3ka (80 + B) 87'J + e87'J

or recalling eqs. (1.2.1) and (2.1.13) we obtain

DE = 8'A(e) + 3ka887'J + e87'J = tst 8E:st + 3ka887'J + eM). (3.4 .1)

Considering the internal energy and the entropy as functions of the strain
components and temperature yields

or

(3.4 .2)
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Comparison with eq. (3.4.1) leads to the formulae

8S {O, s =1= t,
8Es t = 3ka, s = t,

8S c
88 8 '

(3.4.3)

which yield the following expression for the entropy

8

S=3km9+ !C~)d8,
8 0

(3.4.4)

where 8 0 denotes the absolute temperature in the natural state of the body.
Using eq. (2.1.13) , in the case of the linear-elastic body we have

8

E = ~ (k192 + Mf2
) + 3ka8019 +! c (8) d8,

80

or
8

E=A(e)+3ka8019+ !C(8)d8,

80

(3.4.5)

with A (e) being a quadratic form of the strain components. Here A (e) is
formally coincident with the specific strain energy in the isothermal process .

Now, due to eqs. (3.4.5) and (3.4.4) and the definition of the free energy
(2.2.3) we have

8

F = A (e) - 3ka19B - ! C ~~) (8 -~) d~.
80

(3.4.6)

The derivatives of this function with respect to the strain components de
termine the components of the stress tensor. Indeed , by eqs. (3.2.3) and
(1.3.9) we have

8F 8F
~ = >"19 + 2Wx - (3)'' + 2M) aB, ~ = W'Ixy (3.4 .7)
vex v/xy

etc. This coincides with relationship (1.3.11) derived above for the case of
a Hookean body

T = >..19E + 2ME: - (3)'' + 2M) aBE. (3.4.8)

Taking the derivative of F with respect to B leads to the expression for the
entropy

~~ = - (3ka19 +Jc~~) d~) =-S
80

(3.4.9)
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which was derived earlier. Using eq. (3.4.8) we have

1 ( " u " ) "E= - T - - -(JE + a BE.
2J.l 1+ v

Th e term

E' = a BE

117

(3.4.10)

(3.4.11)

(3.4.13)

(3.4.12)

represents t he st rain tensor of a free elementary cube heated to temperature
B. The surrounding medium prevents any change in t he size of thi s cube
and t his leads to a state of st ress with tensor t which, in turn , produces
t he st rains given by Hooke's law for the isothermal process

_ II 1 ( " v ")E = - T - - -(JE .
21/. 1 + u

Th is st ra in should be sup erimp osed on the thermal strain (3.4.11) which
explains the st ructure of formula (3.4.10). Strictly speaking, tensors E' and
E" can not be termed strain tensors since the compatibility condit ions are
fulfilled for tensor E' + E" rather than for each separate term in this SUlIl .

Let us notice in passing th at. due to eq. (3.4.10)

1 1 - 2v
{) = It (E) = ---(J + 3aB.

21/. 1 + v

3.3.5 The Gibbs thermodynamic potential

This thermodynamic function is denoted by G and is related to the free
energy by t he Legendre transformation

G = f .< J..E" k - F = t ..E- F.

The independent variables of t he Gibbs potential are the components of
the st ress tensor T and temperature O. By virtue of eq. (3.4.10)

i: .E= It (t .E) = .l. [II (t 2) - _ V_(J 2] + a B(J
21'. 1 + v

= 2A ((J) + cdl a, (3.5.1)

where A ((J) is a quadratic form of the components of t he st ress tensor
(3.2.8). It remains to express the free energy F in terms of these compo
nents . We have

It (E) = It (E' ) + It (f" ) ,

I~ (E) = I~ (f") + 1( - 2v ) 3aB(J + 9a2B2,
11 1 + V

2 II~ 1 ( " v ") 2 2 "E = E + - aB T - - -(JE + 0' B E ,
Jl 1 + V

( " 2) ("~) 1 1-2v 22It E = II E + - a B--(J + 30' 0 .
Jt 1 + v
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Using eq. (3.2.2) and representing>. in terms of J.1 and v yields

A (e) = ~ [>.Ir (E") + 2J.1h (E"2

) ] + a(;/(r + J.1
1

1
~;}a

202

1 + v 2 2
= A (0') + aOO' + J.1

1
_ 2v 3a 0 (3.5.2)

and further, byeqs. (3.4.13) and (3.2.2)

8

1 + V 2 2 1 + v JC (~)F = A (0') + aOO' + J.1-
2-3a

0 - 2J.1-
1

-{jaO - -c- (8 -~) d~,
1- v - 2v <"

80

or

8
l+v 2 2 JC(~)

F=A(O')-J.1--3aO - -(8-~)d~.
1- 2v ~

8 0

(3.5.3)

Inserting into eq. (3.5.1) leads to the following expression for the Gibbs
potential

8

C=A(0')+aOO'+J.111~;v3a202+ JC~~) (8-0d~.
80

(3.5.4)

Using the property of the Legendre transformation, we arrive at the rela
tionships inverse to (3.4.7)

8C 1
"'(xy = -8 = -Tx y (3.5 .5)

T x y J.1

etc . The entropy is defined as follows

8

8C 2 1 + v JC (~)
s= 80 =aO'+6J.1a 1-2vO+ -~-d~.

8 0

(3.5.6)

Clearly, the same expression follows from eqs. (3.4.4) and (3.4.13) .
In the problems of thermal stresses, the free energy and the Gibbs po

tential play the part of the strain energy expressed respectively in terms of
the strains and stresses.

Assuming the specific heat at constant volume to be independent of the
temperature and the temperature change 0 = 8 - 8 0 to be small we have

8

Jc(~) 8 (0 ) 0
-d~ = cln -8 = cln 1 + -8 ~ c-8 '
~ -0 -0-0

8 0
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and referring to Table 3.2 we obt ain

(3.5.7)

In the natural state S = 0 and it remains equal to zero in the adiabat ic
process. For thi s reason, in thi s process the temperature change in a solid
is equal to

B
_ _ a (J
- c

9ka 2 +-eo

aeo= ---(J,
cl'

(3.5.8)

Cp denoting the specific heat at constant volume, see also eqs. (2.3.2), (2.3.4)
and (2.3.6). One can find lower estimates for the maximum of the absolute
value for thi s parameter in Subsection 1.4.12.

3.3.6 Equation of thermal conductivity

We introduce into consideration the vector of heat flux q which is propor
tional to the temperature gradient and directed toward the temperature
decrease

q = -K gradB, (3.6.1)

where K is the thermal conduct ivity coefficient . Vector q determines the
amount of heat leaving an arbit rary volume V in a unit of time across the
bounding surface 0

ff n ·qdo= - ff n · K grad Bdo = - fff divK gradBdr.
o 0 v

(3.6.2)

The amount of heat supplied to a unit of volume in a unit of time can be
expressed as follows

8'Q = edS = eli .
dt dt

Hence

JJJ (eli - div K grad B) dr = 0
v

and due to the arbit rariness of volume V

eli - div K grad B= O.

(3.6.3)

(3.6.4)
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Replacing here the entropy S by expression (3.4.4) , we obt ain

(3.\ + 2/-l) 0:8~ + c (8) e- div K grad () = o. (3.6.5)

(3.6.6)

(3.6.7)

As above, o:() is considered to have the order of smallness of {). Assuming
K as being constant, we arrive at the equation of thermal conductivity

2 1 · 0:8 0 .
V () - ~() - K (3.\ + 2/-l ) {) = 0,

where

K
a = - -

c( 8 0 )

is the coefficient of thermal diffusivity. Another form of the thermal con
ductivity equation is obt ained by replacing S in eq. (3.6.4) by means of eq.
(3.5.7) and takes the form

V 2() _ ~iJ - 0:8 0 a= 0
a' K '

where a' = K / cp as follows from eqs. (2.3.6) and (2.3.4) .
Usage of the concept of ent ropy in a stat ionary equilibrium process for

deriving the equation of non-st at ionary temperature distribution is based
on the assumpt ion of local equilibrium processes and slowly progressing
processes.

Equations (3.6.6) and (3.6.7) differ from the classical Fourier equat ion of
thermal conduct ivity

(3.6.8)

in the terms due to the deformation of the solid. In the general non
stat ionary case, th e problems of thermal conductivity and elast icity are
coupled: th e temperature distribution depends on the strain whilst the
latter is dependent upon the temperature distribution . The equat ions of
equilibrium of the solid must be replaced by the equations governing dy
namics of the solid. This effect can be considerable under abrupt changes
in temperature (under a " thermal shock") otherwise it is mostly negligi
ble. In the lat ter case, a "quasi-stat ic" consideration is used, that is, the
thermal conduct ivity equation takes the form of Fourier 's equation (3.6.8)
and the solid is assumed to be in equilibrium (acceleration is neglected) .
The problem of thermal conductivity is then solved independently of the
problem of the elast icity theory.

Under a stat ionary temperature distribution the thermal conduct ivity
equation takes the form

(3.6.9)



4
Governing relationships in the linear
theory of elasticity

4.1 Differential equations governing the linear
theory of elasticity

4.1.1 Fundamental relationships

The basic equat ions governing elast icity th eory can be classified into three
groups of relationships. The first group is presented by th e equat ions of
stati cs in volume V

div T+pK=O , (1.1. 1)

relating six components of the symmetric st ress tensor T by three equat ions.
The second group of equations determines the linear strain tensor E in

terms of th e displacement vector u

E = ~ [\7u + (\7u)*] . (1.1.2)

Here we have six equations determining th e components of the linear strain
tensor by means of th e first derivatives of the displacement vector.

The const itutive law for a linear elast ic body is formulat ed in th e third
group of six equat ions. For an isotropic solid in an isothermal or adiabatic
process this law, referred to as Hooke's law, is written in th e form

, (v ~ )T= 2p, --7JE+ E
1- 2v

(1.1.3)
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or in the form of the inverse relation

1 ( , V , )e= 2J.l T - 1 + vaE . (1.1.4)

The three groups contain a total of fifteen equations, which is the same
number of unknowns - twelve components of two symmetric tensors of
second rank T and eand three components of vector u.

4.1.2 Boundary conditions

The conditions on the surface need to be added to the system of equa
tions (1.1.1)-(1.1.3) determining the behaviour of the linear elastic body
in its volume. These conditions prescribe either the surface forces or the
displacement of the surface points. These distinguish the internal problem
for the elastic body bounded from outside from the external problem for an
unbounded medium with a cavity or cavities . For each of these problems
one states three types of problems .

In the first problem a kinematic boundary condition is posed. In volume
V the displacement vector is sought such that it takes a prescribed value
on the surface 0 bounding this volume

(1.2.1)

Evidently, coordinates Xl , X2, X3 are related by the surface equation.
The second boundary value problem is the static one. Given the distri

bution of surface forces F , the boundary condition implies the equilibrium
equation on the surface

(1.2.2)

The third boundary value problem is the mixed one. A kinematic con
dition is posed on part 0 1 of the surface, whereas on the other part O2 a
static boundary condition holds

(1.2.3)

Clearly, the above boundary conditions do not exhaust the possible vari
ety of problems of elasticity theory. For example, not all three components
of vector u or force F can be given on a certain part of the boundary. So
the boundary conditions for the contact surface of the body resting on a
rigid smooth bed are set as follows

u· n = 0, n x (F x n) = 0, (1.2.4)
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where n denotes the unit vector of the outward normal to the body sur
face. The first and second condition respectively express the absence of the
normal component of the displacement and the tangential component of
the force. In addition to this , the projection of force F on normal n , i.e.
the distributed reaction of the bedding n- F , is not known in advance. The
problem becomes considerably difficult in the case of a one-sided constra int,
th at is when the bed does not prevent the body displacement in direction
-noThen the inequality n· F ::; aneeds to be added to condition (1.2.4)
and on that part of surface (not known in advance) where this inequality
does not hold true it should be replaced by the condit ion F = O.

Two ways of solving the problems of elasti city theory are known. The
first one implies det ermining th e displacement vector u . Using this it is
not difficult to calculat e the stra in tensor E in terms of u and thus the
stress tensor in terms of E. This is the only way when the first boundary
value problem is considered. However thi s way is not always the simplest
one and in many cases the way of solving the problem in terms of stresses
is favoured. Then one poses the question of seeking a statically possible
stress tensor i' such that the corresponding st ress tensor E satisfies the
compatibility condition (2.1.5) of Chapter 2. The displacement vector u is
then obt ained by Cesaro 's formula (2.2.2) of Chapt er 2.

Both ways rely on the differential equations governing elast icity theory
but they do not exhaust all the possible approaches to solving the problems.
Other possibilities involve using the principles of minimum energy and the
direct methods of solving the variational problems.

4·1.3 Differential equations governing the linear theory of
elasticity in terms of displacements

Using the fundamental relationships of Subsection 4.1.1 it is easy to ob
tain the differential equat ions for vector u . To this end, it is sufficient to
substitute the expression for the st ress tensor in terms of this vector, to
obtain

[
2v A *]J.ldiv 1 _ 2v'l3E + V'u + (V'u) + pK = O. (1.3.1)

Inserting

div '13E = E .grad '13 = grad div u , div V'u = V' . V'u = V'2u ,

di (")* "(")* . a . . aUk . a2
u s d di

IV vU = v ' vU = Is-a <»: = Ita a = gra IVU
X s X t X t x;

(see also Section B.4) into eq. (1.3.1) yields the sought-for differential equa
tion

1 . 2 P
--2- grad div u + V' U+ -K = O.
1- v J.l

(1.3.2)
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Projecting this onto the axes of the Cartesian coordinate system we arrive
at three equations

where

1 8fJ 2 P
-12 -8 + Vu + - Kx = O,

- v x J.L

1 8fJ 2 P
--2--8 + Vv + - Ky = O,
1- u y J.L

1 8fJ 2 P
---+V w + - Kz = O,
1- 2v Bz J.L

8u 8v 8w .
fJ = 8x + 8y + 8z = div u,

(1.3.3)

(1.3.4)

(1.3.5)

(1.3.6)

(1.3.7)

These equat ions are referred to as the differenti al equat ions of elast icity
theory in terms of displacements. They were first derived by Navier in 1827
in t he framework of a "s ingle constant theory" (Poisson's ratio v = 1/4)
and simultaneously by Cauchy ill 1827-1828.

Equ ations (1.3.3) result in the following differential equation for the di
lat ation

V 2 fJ + 2P 1 - 2v div K = O.
J.L 1- v

Recalling t ransformation (B.4.5) one can reset eq. (1.3.2) in another form

2 (1 - v) P
2

grad fJ - rot rot U + - K = O.
1- v J.L

The analysis t hat follows relies on the following, easily proved, relat ionship

2 2 P 1- 2v
V R fJ = RV fJ + 2 grad fJ = - - - - R div K + 2 grad fJ,

2J.L 1- v

where R = isxs denotes the position vector. Replacing grad fJ in eq. (1.3.2)
using eq. (1.3.7) we obtain the equat ion in terms of displacements in the
form suggest ed by Tedone

2( 1 ) p( 1 . )V U + ( )R fJ + - K + ( )RdlV K = O.2 1- 2v J.L 4 1- v
(1.3.8)

When the volume forces are absent , dilat ation fJ , see eq. (1.3.5), is a
harmonic function whereas U is a biharmonic vector

(1.3.9)

The lat ter follows directly from eq. (1.3.3) . However it should be mentioned
that the three biharmonic functions are not independent . Indeed, using eq.
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(1.3.8), vector u can be represented (for K = 0) in terms of four harmoni c
functions which are a harmonic vector a and a harmonic function fJ

1
u = a - RfJ

2(1-2v)
(1.3.10)

(1.3.11)

related by condition (1.3.4).
On the par t of the bound ary where the surface forces are given, boundary

condition (1.2.2) is written down in terms of the displacement vector in th e
following form

F = n . t = 2f.L (_V_ fJn + n . E)
1- 2v

= 2J.1 (_V_ fJ n +n · V'u +!n x rotu) ,
1- 2v 2

where equalit ies (1.2.13) and (1.2.12) of Chapter 2 were used. Projecting
bound ary condit ion (1.3.11) on the axes of the Carte sian coordinate system
yields three scalar conditions

{
V ou 1 [ ( ou Ou) (OU ow)] }Fx=2J.1 --fJnx + - + - n --- -nz ---1- 2v on 2 y ox oy oz ox

(1.3.12)

etc. Here

OU ou ou Bu
on = na'ox+ n yoy + n z OZ

denotes the derivative of U with respect to the normal to the surface.

4.1.4 Solution in the Papkovich-Neuber form

The difficulty with finding the particular solutions of the system of equa
tions in terms of the displacements arises because each of the sought func
tions u,u and w appears in all three equat ions (1.3.3). Thi s difficulty was
alleviated by P.F. Papkovich (1932) and H. Neuber (1934) who suggested
that the displacement should be represented in terms of harmonic functions.
This enables one to use a well-known "catalogue" of particular solut ions
of the Laplace equat ion and sometimes it is even possible to reduce th e
problem, if not completely at least partly, to one of the classical problems
of the theory of harmonic functions (the theory of pot ential) .

One can suggest a wealth of representations of the type (1.3.10) for
solving the homogeneous (K = 0) system of equations of elast icity the
ory in terms of harmonic functions . Their shortcoming, remedied in the
Papkovich-Neuber solution , is th at the harmoni c function s introduced are
independent.
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Let B be a harmoni c vector whose Laplace operator vanishes, i.e.

(1.4.1)

The projections of this vector on the axes of the Cartesian coordinate sys
tem also sati sfy the Laplace equation

(1.4.2)

It is, however, erroneous to generalise this reasoning to the case of the
axes of a curvilinear coordin ate system, since the proj ections of Laplace's
operator on a vector of axes of varying directions are not equal to Laplace's
operator of th e proj ections on these axes.

Assuming the volume force as being potenti al

pK = -gradII

we look for the solution of eq. (1.3.2) in the form

u = 4 (1 - v) B + grad X.

Then noting that

divu = 4 (1 - v) divB + yo2X,

grad div u = grad [4(1 - v) div B + yo2X]

and taking into account eq. (1.4.1) we arrive at the relationship

[
1- 2v ]grad 4 (1 - v) div B + 2 (1 - v) yo2 X - -f.L-II = 0,

(1.4.3)

(1.4.4)

(1.4.5)

which can be fulfilled by requiring that X satisfies the following equation

2 . 1 - 2v
yo X = -2dlVB + ( )II .

2f.L 1- v

The general solution of thi s equation consists of the sum of the solut ion of
the equation

and any particular solut ion Xo of Poisson's equation

2 1- 2v
yo Xo = 2f.L (1 _ v) II.

The particular solut ion of eq. (1.4.6) can be taken in the form

X = -R · B = - (xBx + yBy + zB z ) ,

(1.4.6)

(1.4.7)

(1.4.8)
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which can be easily proved by direct calculat ion

(1.4.9)

since \72R = O. The general solution of this equat ion is obtained by adding
an arb itrary harmonic vector denoted as -Bo to eq. (1.4.8). Hence

x = - (R · B +Bo)

and the sought-for representation of the solution of the equation of elast icity
theory is writ ten as follows

u = 4 (1 - v) B - grad (R · B + Bo) + grad xo. (1.4.10)

The latter term is omitted if the volume forces are absent and it should be
replaced by a particular solut ion of eq. (1.3.3) in the case of nonpotential
volume forces. Such a part icular solut ion is usually obtained with ease, and
there exists a general approach for const ruct ing this solut ion, see Subsection
3.7 of the present chapter.

By virtue of eqs. (B.2.12) and (B.2.9) we have

\7R . B = R . (\7B)* + B = R . def B + ~R x rot B + B

which allows us to write down the Papkovich-Neuber solution (1.4.10) in
the following forms

u = (3 - 4v) B - R · (\7B)* - grad Bo+ grad Xo,
1

u = (3 - 4v) B - R · def B - 2R x rot B - grad Bo+ grad Xo.

The st rain tensor corresponding to solution (1.4.10) is equal to

E = 4 (1 - v ) def B - def grad (R· B + Bo) + def grad Xo .

(1.4.11)

(1.4.12)

Noticing th at the gradient of the vector which is the gradient of a scalar 'ljJ
is a symmetric tensor, we obt ain

def grad 'ljJ = ~ [\7\7'ljJ + (\7\7'ljJ)* ] = \7\7'ljJ .

For thi s reason

E= 4 (1 - v) def B - \7\7 (R· B + Bo) + \7\7Xo

and then

(1.4.13)
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or referring to eqs. (1.4.9) and (1.4.7)

1 - 2//
'l9 = 2(1 - 2//) div B + ( ) II.

2J.l 1 - //

By virtue of eq. (1.1.3) the st ress tensor takes the form

(1.4.14)

t = 2J.l [2vEdiv B + 4 (1 - v )def B - \7\7 (R· B + Bo)] + to, (1.4.15)

where t o is determined in terms of the volume forces

(1.4.16)

Making use of the relat ionship

\7\7R · B = isi t a a~ X k Bk = 2 def B + Xk \7\7B k ,
X s x ,

we can present tensor t in anot her form

t = 2J.l [2vEdiv B + 2 (1 - 2v)def B - Xk \7\7e; - \7\7Bo] + to .

(1.4.17)

Remark 1. The original system of homogeneous equat ions of equilibrium
in terms of displacements contain three unknown functions u , v and w .
Therefore it is an acceptable assumption that it is sufficient to keep only
three of the four harmonic functions B s , B o. Dropping B o (which enables
the symmetry with respect to the coordinates to be preserved) we arrive
at the solution

u = 4 (1 - v) B - \7R · B . (1.4.18)

However it can be proved that , in the case of a simply-connected region,
the general solut ion of the equilibrium equat ions in terms of displacements
can be presented in this form only under th e condit ion v #- 0.25 .

Remark 2. It follows directly from the equilibrium equations that their
solutions are the gradient of a harmoni c scalar (u = \7Bo, \72Bo = 0) as
well as the rotor of a harmoni c vector (u = \7 x C , \72C = 0). These so
lut ions are insipid since they describe only deformations with unchanged
volume ('l9 = \7 . u = \72Bo = 0, \7 . \7 x C = 0) .

Remark 3. It is easily proved that the displacement vector in the form of
I.S. Arzhanykh and M.G. Slobodyansky

u = 4 (1 - v) B + R · \7B - R \7· B , (1.4.19)

where B is a harmoni c vector, is also a solut ion of the equilibrium equations
in terms of displacements.
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Representation (1.4.19) is reset as follows

1
u = 4 (1 - v) B +R . def B - - R x rot B - R V' . B

2
(1.4.20)

(1.5.1)

and is a solution provided that the difference between this solut ion and t he
Papkovich-Neuber solut ion in the form of eq. (1.4.12)

A = 2R . def B + B - R V' . B

is also a solut ion of the equilibrium equations in terms of displacements.
This difference can then be put in the form of the rotor of a harmoni c
vector (A = rot C, V'2A = 0) . Hence it is necessary to prove th at

This follows from the relationships

V'. 2R· defB = 2R· V'. defB + li (defB)

= R · V'2B + R . V'V' . B + 2V' . B ,

V'. (RV'· B) = 3V'· B + R · V'V' . B ,

V'2R · def B = 2 (V'2B + V'V' . B) ,

V'2RV' . B = 2V'V' . B

and the condition V'2B = O.
M.G. Slobodyansky has proved that eq. (1.4.19) is the general solut ion

of the equations of elast icity theory for a simply-connected region and eq.
(1.4.18) is th at for an infinite region which is external for a closed surface,
both solut ions being valid for any v (v = 0.25 included) .

4.1.5 The solution in terms of stresses. Beltrami 's
dependences

Stress tensor T satisfying the equat ions of stat ics in the volume should be
chosen such that the corresponding st rain tensor obeys the compatibility
condit ions (2.1.5) of Chapter 2

1 ( - u - )inc E= 2ft inc T - 1 + v (JE = O.

Using the equation of statics one can transform this relationship to a form
which is easier to view and remember. The result of this transformat ion is
Beltrami's dependences (1892).

By virtue of eq. (2.3.2) of Chapter 2

(1.5.2)
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Then referring to formulae (B.4.15) and equilibrium equat ions (1.5.6) of

Chapter 1 we can represent the components (inct) ik of tensor inc t in

the form

(
inct) = 02t22 + 02t33 _ 2 02t23 = 02t22 + 02t33 +

11 oX5 oX§ OX20X3 oX5 oX§

(
02tl3 02t33 OK3) (02t12 02t22 OK2)

OX30XI + oX5 + p OX3 + OX20XI + oX§ + POX2

2 0
2

0 (Ot 12 Ot13)= V' (t22 + t33) - 0 2 (t22 + t33) + -0 -0 + -0 +
X l X l X2 X3

(
OK2 OK3) 2 02a . oKI

p -+- =V' (a-t11) --+pdIVK-2p- ,
OX2 OX3 OXI OXI

(. A) ( 2 . ) 02a 2 (OKs OKk )mcT =bsk V'a+pdlvK - 0 0 -V'tsk-P -0 +-0sk Xs Xk Xk Xs

yielding the following invariant (coordinate-free) representation

inct = (EV'2 - V'V') a - V'2t + Epdiv K - 2pdefK.

In general, for any symmetric tensor of second rank Q

(1.5.3)

incQ= - V'2Q + 2 def div Q+ ( EV'2 - V'V') i, (Q) - EV' . V' . Q.
(1.5.4)

Substituting now eqs. (1.5.2) and (1.5.3) into eq. (1.5.1) we obt ain

-V'2t + EpdivK - 2pdefK + 1 ~ v ( EV'2 - V'V') a = O. (1.5.5)

Evaluating the first invariant of the tensor on the left hand side of this
equation, we arrive at the relationship

2 l+v
V' a = ---pdivK

I-v '
(1.5.6)
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which clearly can be obtained from eq. (1.3.5) by replacing {) due to eq.
(3.1.3) of Chapter 3 in terms of (J .

Finally we arrive at the standard form of Beltrami 's dependences

2~ 1 ~ l/ ~
V' T + --V'V'(J + 2pdefK + E--pdiv K = O.

l+ v I-v
(1.5.7)

When the mass forces are absent these equations take the following simple
form

or in terms of the components in the Cartesian coordinate system

(1.5.8)

2 1 82
(J

V' TXY+-l-~ =0,
+ v uXUY

2 1 82
(J

V' T y z +-1-~ = 0,
+ vuyu Z

2 1 82
(J

V' T zx +-1-~ = O.
+ v uZuX

(1.5.9)

4.1.6 Krutkov 's transformation

Considering the case in which mass forces are absent and following eq.
(1.6.6) of Chapter 1, we represent st ress tens or T in terms of the tensor of
st ress functions

T = inc~ . (1.6.1)

The equations of statics are then identically satisfied and it remains only
to ensure th at <P satisfies Beltrami's dependences (1.5.8).

Referring to eq. (1.5.2) and (1.5.6) we have

V'V'(J = - inc (JE

which allows us to set eq. (1.5.8) in the form

inc (V'2~ - _(J_E) = O.
l +v

(1.6.2)

(1.6.3)

As the tensor in the parentheses is symmet ric the lat ter equation means
th at this tensor is a deformation of a vector, see Subsection 2.2.1, hence

2 ~ (J ~

V' <I> - --E = def c .
l+v

On the other hand

(J=h (inc~) = h (V'2~) -divdiv~

(1.6.4)

(1.6.5)



(1.6.6)

162 4. Governing relationships in the linea r th eory of elasticity

which can be easily proved by adding the diagonal elements of tensor inc <i> ,
see (B.4.15). Hence, denoting for brevity

t, (<i» = e, div<i> = b

we arrive at another form of relationship (1.6.4)

2 ' 1 , 2
'V q>---E('V q>-divb) =defc .

l+v
(1.6.7)

Vector c can be removed by equat ing the traces of the tensors on both sides
of the latter equat ion. The result is

t, ('V2 <i» = 'V2q>, t, (def c) = div c, 'V2q> = div grad q> , h (E) = 3.

For thi s reason

(
3 2-v )div --b - -- grad f - c = 0

l+v l+v
(1.6.8)

and the vector in the parentheses is the rotor of some vector such that

3 2-v
c = -- (b - rotq) - -- grad q> .

l+v l+v

Assuming that rot q is included in vector b we have now

3 2-v
c = --b - -- grad o ,

l+v l+v
3 2-v

def c = -- def b - --'V'Vq> ,
l+v l+v

and inserting this into eq. (1.6.7) leads to a different ial equations containing
only operations over tensor <i>

2' 1 , 2 3 2-v
'V q> = --E ('V q> - div b] +-- defb - --'V'Vq>.

l+v l+ v l+v
(1.6.9)

Relying on formulae (1.5.4) we can write the expression for stress tensor 't
in terms of the tensor of st ress functions as follows

i' = inc<i> = -'V2 <i> +2defb + (E'V2
- 'V'V) q> - E div b

or, afte r removing 'V2<i> by means of eq. (1.6.9) we have

, l/ A 2 1 - 2v
T = 1 + v E ('V q> - div b] - 1 + v (defb - 'V'Vq» .

From thi s equation we obt ain

a = h (i') = 'V2q> - divb,

(1.6.10)

(1.6.11)
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so that t he st rain tensor takes the form

A V A 1 - 2v
2f.LE = T - --aE = --- (defb - V'V'<P)

l+v l+v

or

1 - 2v
2f.LE= -- def (V'<P - b).

l+v
(1.6.12)

Usin g this equat ion we obtain the displ acem ent vect or u with accuracy up
to a rigid body displacement

1 - 2v 1 - 2v [ ( A ) A ]2f.Lu = -- (V'<P - b ) = -- V'h <P - div<p .
l+v l+v

(1.6 .13)

Formulae (1.6.10) and (1.6 .13) obtained by Yu.A. Krutkov in 1949 present
one of the form s of the general solut ion of the theory of linear elast icity.
The stress t ensor T and the displacement vect or u are det ermined by the
tensor of st ress functions sat isfying differential equat ion (1.6.9) and are de
pendent only on the first invari an t of <P and divergence b of tensor ~ . Thus,
there is no need to know all of t he compo nents of the latter tensor , it is
sufficient only to relate b and <P with the help of eq. (1.6.9).

4.1.7 The Boussuiesq-Galerkin solution

The sought-for express ion for b in t erms of <P can be obtain ed by equat ing
the divergence of both sides of equation (1.6 .9). We have

div V'2~ = V'2b , div E (V'2<p - b) = grad V'2<p - grad div b,

divV'V'<p = V'2V'2<p = grad V'2<p , divdefb = ~ (V'2b + grad div b]

and afte r substi t ut ion into eq. (1.6.9) we obtain

2 1 . 2(1-v) 2
V' b +-- grad div b = grad V' <P.

1 - 2v 1 - 2v
(1.7 .1)

One can satisfy this relationship by introducing the representation of b and
<p in terms of vector G in the following form

1 .
<p = --2- div G :

1 - v
(1.7 .2)

By virtue of eq . (1.7 .1) , vector G is proved to be biharmonic

(1.7 .3)
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With the help of eqs. (1.6.13) and (1.6.10) the expressions for the displace
ment vectors and the stress tensor in terms of vector G can be written
down as follows

2p,u = grad div G - 2 (1 - v) \72G ,

T = \7\7 div G - 2 (1 - v)def \72G - vBdiv \72G.

(1.7.4)

(1.7.5)

(1.7.6)

This form of the solution of the equat ion of elasticity theory was given by
B.G. Galerkin in 1930 and was earlier known to Boussinesq (1878).

Based upon eqs. (1.7.1) and (1.6.13) we can immediately obt ain the so
lution in the Papkovich-Neuber form, too . It is sufficient to notice that
equat ion (1.7.1) is coincident with the equation in terms of displacements

(1.3.2) if one identifies 21(~~~) p,\7 2ip with the potential of the volume

force II. Then, due to eq. (1.4.7) Xo = ip , and sett ing the solut ion of equa
tion (1.7.1) in the form of eq. (1.4.10)

l+ v
b = -1 _ 2v [4(1- v) B - grad (R · B + Bo)]+ \7ip ,

we arrive, using eq. (1.6.13), to the represent ation of the displacement vec
tor in the above form (without mass forces) .

It is also easy to establish the relation between vectors B and G. Using
eqs. (1.7.6) and (1.7.2) we have

2 l+v 1 .
\7 G = --- [4 (1 - v)B - grad (R · B + Bo)]+ --2- grad div ip ,

1- 2v 1- v

so that , due to eqs. (1.7.3) and (1.4.9),

1 + v \72R . B = __1_ div \72G,
1- 2v 1- 2v

div [4 (1 - v) B + 1 - 2v \72G] = 0,
l+v

and one can take that

1- 2v 2
4(1- v)B = ---\7 G.

l+ v
(1.7.7)

4.1.8 Curvilinear coordinates

In the above subsect ions the fundamental relationships are presented in the
invariant form of dependences between the vectorial and tensorial quanti
ties. For thi s reason the corresponding formulae in the curvilinear coordi
nat es require only a careful considerat ion of the rules of tensor calculus
(Appendices C-E).
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In the linear theory there is no need to distinguish between the basis of
the initial state and that of the final state. This allows the stress tensor t
to be represented in terms of its contravariant components in the vector
basis r s (instead of eq. (3.1.1) of Chapter 1)

(1.8.1)

By eq. (3.3.4) of Chapter 1, the equilibrium equations in volume are set as
follows

(1.8.2)

The linear strain tensor is represented in terms of its covariant components
by means of eq. (3.6.7) of Chapter 2, i.e.

(1.8.3)

where U r denotes covariant components of the displacement vector . Due
to eqs. (D.7.5) and (E.4.4) the dilatation can be expressed in one of the
following representations

(1.8.4)

Writing formulae relating the contravariant components of the stress tensor
with the covariant components of the strain tensor it is necessary to bear
in mind that the role of tensor E in the generalised Hooke's law (1.1.3) is
played now by tensor g. Therefore, referring to eq. (1.8.4) we have

(1.8.5)

The inverse relationships are set as follows

_ 1 ( mn V ) _ 1 ( v ) mn
Esk - 2/1 gsmgkn t - 1 + v g sk a - 2/1 gsmgkn - 1 + vgskgrnn t .

(1.8.6)

The bilinear representation of the specific strain energy, eq. (3.2.6) of
Chapter 2, is written in the form

A ( ) 1 sk
E, a = '2t Esk, (1.8.7)



(1.8.9)

(1.8.8)

(1.8.10)
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so th at , by virtue of eqs. (1.8.5) and (1.8.6), the formulae for A (E ) and
A ((J ) in terms of th e tensors of stra ins and stresses are given by

A (E) = f.L C:2//g Skgmn + gsmln) EskEmn ,

A () 1 ( // ) sk mn(J = 4f.L gsmgkn - 1+ //gskgmn t t .

The equilibrium equat ions in terms of displacements, eq. (1.3.2), is ob
tained by utilising eq. (E.4.9) in the form

1 o f) sk n n p}{
-12 -0 t + 9 v s v kUt + - t = O.- // q f.L

By virtue of eqs. (E.3.5) and (E.3.4) we have

n2TA n nT' mOm n tst mq n n istv = v . v = r -0 . r r srt v q = 9 r srt v mv o ,qm

nn _ 1I~ k O(J _ n kn O(J
v v (J - r oqn r oqk - r r v n oqk '

and in the case of no mass forces th e Beltrami dependences (1.5.8) take the
form

(1.8.11)

(1.9.1)

The expanded expressions for the operations of double covariant differ
ent iat ion in eqs. (1.8.10) and (1.8.11) are very cumbersome.

4.1.9 Orthogonal coordinates

In this subsection, subscripts denot e th e physical (rather than covariant )
components of vectors and tensors. The expressions for the differential op
erat ions used in what follows are collected in Section C.5.

The generalised Hooke law (in terms of the physical components) is writ
ten down as

tsk = 2f.L (1 :2// f)8 sk + ESk) ,

th e expressions for f) and Esk being given by formulae (C.5.3), (C.5.8) and
(C.5.9). In th ese formulae a s needs to be replaced by U s which is th e pro
jection of the displacement vector on the direction of th e unit vector es of
th e basis trihedron . Using eq. (C.5.10) th e equilibrium equation (1.1.1) is
set as follows

(1.9.2)
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In the cylindrical coordinates, see Sections C.1 and C.7, the components
of the strain tensor and the dilat ation are written down in the form

au ow
'Yrz = az + or ' (1.9.3)

where u , v and w denote the proj ections of the displacement vector on
axes en e <.p and k of the cylindrical coordinate system. The equilibrium
equations have the form

0(1 r (1r - (1 ip aTrip aTzr K 0-+ +--+--+p r = ,
or r ra<p az

aTr<.p 2Tr<.p 0(1 <.p aTZ<.p K - 0
~ + + ~ + ~ +p .p >: ,

or r roip uZ

aT,·z T,.z aTz<.p a(1z K - 0
~ + + ~ + ~ +p z >: •

or r r oip uZ

(1.9.4)

The expressions for th e components of the stra in tensor in the spherical
coordinates are more bulky, see Sections C.1 and C.8. Denoting the proj ec
tions of the displacement vector on axes eR, eti and e), by UR , Uti and u),

respectively we have

(1.9.5)



168 4. Governing relationships in the linear theory of elasticity

The equilibrium equations are put in the following form

aaR 1 aTR'19 1 aTm.,
aR + R -W + Rsin t)---a:x+

1
R (2aR - a'19 - a i; + TR'19 cott)) + pKR = 0,

aTR'19 1 aa'19 1 aT'I9)"
aR + R at) + Rsint)m+

1
R [(a'19 - a)..) cott) + 3TR'I9] + pK '19 = 0,

aTR).. 1 aT'I9)" 1 aa)..

aR + RM + Rsint) a>.. +
1
R (3T R>. + 2T'I9)" cot t)) + pK).. = O.

(1.9.7)

4.1.10 Axisymmetric problems. Love's solution

In the problem of equilibrium of the bodies of revolution (Section e.9)
under an axial symmetry of the loading (i.e. independence of the volume
and surface forces of the azimuthal angle cp) the stress tensor and the
displacement vector do not depend on cp and are functions of coordinates
ql and q2. In other words, the state of stress is the same in all meridional
planes.

Let Ul, U2 and v = u<p denote the projections of the displacement vector
on directions el, e2 and e<p of the basis trihedron respectively. Then

(1.10.2)

The components of the strain tensor are seen to be split into two sets: the
set for extensions and the set for two components 'YI<p and 'Y2<p' The static



(1.10.3)
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equations are also split into two equations for stresses <71,<72,712 and <7<p

__1_ (OH2r<71 + OHlr712) + 712 01nH1_
H1H2r oql oq2 H2 oq2

<72 0lnH2 _ <7<p olnr K _ 0
HI oql HI oql + P 1 - ,

__1_ (OHIT<72 + OH2r712) + 712 01nH2_
H1H2r oq2 oql HI oql

<71 Oln HI <7<p oln r K 0
H2~ - H2 oq2 + P 2 = ,

and the equation for stresses 7 <pI and 7 <p2

__1_ (OH2r7<Pl + OHlr7<P2) + 7<pl olnr + 7<p2 olnr + K = O.
H1H2r oql oq2 HI oql H2 oq2 P <p

Using the generalised Hooke law one can express the normal stresses
and shear stress 712 in terms of the strains (1.10.1) of the first set and
shear stresses 7 <pI and 7 <p2 in terms of the strains (1.10.2) of the second
set . Consequently, the axisymmetric problem is split into two uncoupled
problems. The first one is the problem of deformation in the meridional
plane where components v of the displacement is absent (however normal
stress <7<p is present) and the second one is the problem of torsion. The
latter problem yields displacement v (ql, q2) which is perpendicular to the
meridional plane and independent of the azimuthal angle ip.

The general solution of the problem of the axisymmetric deformation
can be expressed in terms of a single biharmonic function X referred to as
Love's function . The latter is a particular case of the Boussinesq-Galerkin
solution , eqs. (1.7.4) and (1.7 .5), in which the biharmonic vector G is given
by a single component along the symmetry axis

G=kx(r,z). (1.10.4)

In cylindrical coordinates using the notation of Subsection 4.1.9 we have

~X ~X 2
2f.lU = oroz' u = 0, 2f.lW = oz2 - 2 (1 - v) V' X, (1.10.5)

o ( 2 0
2
X) 0 ( 2 1 OX) }<77' = OZ -vV' X + or2 ' <7<p = OZ -vV' X + -;. or '

o [ 2 02X] 0 [ 2 02X]
<7z=oz -(2-v)V'X+ OZ2 ' 77'z=or -(1-v)V'X+ oz2 .

(1.10.6)

Here

2 1 0 oX 02Xn X r + n4X = O.v = --0 -0 0 2' vr r r z
(1.10.7)
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Relying on these formulae it is easy to generalise the approach to the
general coordinates of a body of revolution, see Section C.9. Using eq.
(C.9.8) we obtain

1 a ( 1 ax az 1 ax az) 1 az 2
2j..lUs=H-aS H2-aI-a1 + H2-a2a 2 -2(1-IJ)-H-asV' Xsq i oqr oq 2qq sq

(s = 1,2) , (1.10.8)

where, using eq. (C.5.5),

(1.10.9)

4.1.11 Torsion of a body of revolution

It is sufficient to set in the Papkovich-Neuber solution that the harmonic
vector has a single component which has direction e<p

(1.11.1)

Then

R · B = (re; + zk) . B = 0,

and if the volume force is absent the displacement v is proportional to B<p

whereas displacements Ul and U2 vanish. Hence, ve<p is a harmonic vector
and by eqs. (B.4.19) and (C.7.5)

such that by virtue of eqs. (C.7.4) and (C.7.5)

1 e, av
V'v· V'e = ---- . e e = 0

<p r H s aqS <p r ,

Therefore, v is governed by the differential equation

so that »e'" , rather than v, is a harmonic function , see eq. (C.5.5). Using
eq. (1.10.2) the stresses are determined from the following formulae

r a v
Tl<p = nt:-a1-'

1 q r
(1.11.3)
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4.1.12 Deformation of a body of revolution

Let us drop the assumption that the loading is axisymmetic, The quantities
characterising deformation of a body of revolution are periodic functions
of angle .p. Then the displacement can be sought in the form of a Fourier
series in variable ip . In cylindrical coordinates the general term of this series
is given by

u = u; (r, z) cos nip, v = v* (r, z) sin nip, w = ui; (r, z) cos nip. (1.12.1)

(Clearly, one could assume wand u to be proportional to sin nip and v
to be proportional to cos nip.) Instead of eq. (1.1.0.4) we can put in the
Boussinesq-Galerkin solution that

G = kx(r, z)cosnip.

Then, by virtue of eq. (1.7.4)

n8x
2/-Lv* = ---8 'r z

(1.12.2)

where now

2 2 n2 1 8 8X 82X n2
\7 X=\7 X--x=--r-+---x

* r2 r 8r 8r 8z2 r2'

that is function Xein'P is biharmonic. By cq. (1.7.5) we have

(1.12.3)

these quantities being factors in front of cos nip in the expressions for the
corresponding components of the stress tensor ((Jr = (J; cos nip etc .). The
remaining components are proportional to sin nip

* n 82X n 8X
T =----+--

1''1' r 8r8z r2 8z ' (1.12.5)

Contrary to the axisymmetric loading case, it is not possible to split the
problem into a deformation in the meridional plane and the torsion defor
mation.
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In the general coordinates of a body of revolution the formulae for the
displacements have the form

• 1 a (1 ax Bz 1 ax az ) 2 (1- v ) az Z }
2fJ.us = Hs aqs Hf aqi aqi + Hi aqz aqz - H, aqSV'.x,

211v. = _!!: (_1_ ax~ + _1_ ax~)
t'" Z Z (8 = 1,2) ,

r HI aqi aqi Hz aqz aqz
(1.12.6)

where, due to eq. (C.5.5)

By eq. (1.7.5) the st ress tensor is represented in the form

. ax z · a Z
T = V'V' az cosnrp - 2 (1 - v) defkV' (xcosncp ) - t/Eaz V' (xcosncp) .

(1.12.8)

Prescribing harmonic function Xcos tup in ter ms of two harmonic funct ions
XO cos tup and X3cos ncp

and adopting

X cos tup = (Xo + zX3) cos tup (1.12.9)

(1.12.10)

we arrive at the represent ation of the stress tensor T in the Papkovich
Neuber form (1.4.17) in which only two harmonic function B3 and Bo are
kept

1 • • aB3
-T = 2 (1 - 2v) defkB3 + 2vE-;;- - zV'V'B3 - V'V'Bo.
2fJ. u Z

Taking now

Bo = bocos tup, B3 = bs cos tup ,

(1.12.11)

(1.12.12)
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we obtain the following formulae for the factors associated with cos tup in
the expressions for components ()1, ()2, (}:p and 712 of the stress tensor

(1.12 .13)

The factors associated with sin rup in the expressions for components 71:p

and 72:p are

(1.12.14)

Finally, due to eq. (1.4.10) the displacement vector is as follows

(1.12.15)
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and, by eq. (1.12.12), is given by the formulae

Us = cos no [(3 - 4v) _1~b3 __1 ( 8bo + z 8b3)] , }n, 8qS n, 8qS 8qS
n .

v = - (bo+ zb3 ) sin tup.
r

(1.12.16)

4.1.13 The Papkovich-Neuber solution for a body of revolution

Let us now complete the solut ion from Subsection 4.1.12 by the terms
determined by proj ections B; and By of the harmonic vector. Assuming
now that

so that

R· B = (re, + zk) . B = rB»,

we have

(1.13.1)

Similar to eq. (1.12.12) we introduce into consideration functions b; (ql,q2)
and »; (q l,q2)

(1.13.2)

(1.13.3)

Then t he expressions for the displacements take the form

Us= ccs tup [(3- 4v) ~s :;sbr- ;s~~:] , }
v = sin tup [4(1 - v) b<p + nbrl .

Using eqs. (C.7.4), (C.7.5) and (B.4.19), th e system of differential equat ions
for functions br and b<p is obt ained from the relationship

V'2B = (er V'2B; + 2V'B; . Ve, + BT V'2e T ) +
(e<p V'2B<p + 2V'B<p . V'e<p + B<p V'2e<p)

( 2 BT 2 8E<p) ( 2 s; 2 8Br)
= e, V' BT• - -:;:2 - r2 8<p + e<p V' B<p - -;:2 + r 2 8<p .

The result is

(1.13.4)



(1.13.5)
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In the axisymmetric case (n = 0) it is split into two independent equations
expressing that brci<p and b<pci<p are harmonic functions .

The components of the stress tensor are found by the following formulae:
the factors associated with cos tup are

1 • r 8br 8 In r r Bb; mn r
2/-l o 1 = 2(1 - v) Hr 8ql 8ql + 2v Hi 8q2 8q2 +

2v ( 1 82br 1 mn HI 8br
-;: (nb<p + br) - r Hr 8q12 - Hr ---a;j'l8ql +

1 8lnHl8br)
Hi~8q2 '

1 • r 8br 8 In r r 8br 8 In r
2/-l(i2=2(1-v)Hi8q28q2 +2vHr8ql 8ql +

2v ( 1 82b,. 1 8lnH28br
-;: (nb<p + br) - r Hi 8q22 - Hr~ 8q2 +

1 8ln H2 8br )

Hr ---a;j'l8ql '

1 • ( r mn r 8br r 8 In r 8br)
2/-l (i<p = - (1 - 2v) Hr 8ql 8ql + Hi 8q2 8q2 +

(n2 - 1) br + 2 (2 - v) ~ (nb<p + br),
r r

~T' = .s.. [(1- 2v) (8br 8lnr + 8br 8Inr)_
2/-l 12 H1H2 8ql 8q2 8q2 8ql

82br + 8br 8 In H2 + 8b,. 8 In HI ]
8q18q2 8q2 8ql 8ql 8q2

and the factors associated with sin tup are given by

(1.13.6)

4.1.14 Account of thermal components

In this case the only change in the system of the fundamental equations of
elasticity theory, Subsection 4.1.1, is another form of the generalised Hooke
law. Using eq. (3.4.8) of Chapter 3 and Table 3.2 in Subsection 3.3.1 we
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have

A (// A 1+// A)
T = 2J.,l 1 _ 2//iJE + E- 1 _ 2//aOE , (1.14.1)

where 0 denotes the temperature measured from the temperature of the
natural state. The inverse relationship can be written down as follows

1 (A v A) AE = - T- --CTE +aOE.
2J.,l 1+ // (1.14.2)

(1.14.3)

In what follows, the external mass and surface forces are assumed to be
absent. The assumption that the problem of thermal conductivity can be
considered separately from the problem of elasticity theory, d . Subsection
3.3.5, does not affect the generality of the statement since the problem is
linear . For a solid obeying Hooke's law this means that one can superim
pose the states of stress caused by volume and surface forces as well as
temperature determined separately for each of the listed factors .

Repeating the derivation of the equations in terms of displacements
(1.3.2) and taking account of the thermal term in eq. (1.4.1) we obtain

1 . 2 1+//
-- grad div U + V' U - 2--2- grad aO = O.
1 - 2// 1 - v

Boundary condition (1.3.11) is set in the form

v. 1 l+v
--2-ndlVu + n· V'u + -2n x rot U - --2-naO = O.
1-// 1-//

(1.14.4)

(1.14.5)

(1.14.6)

A comparison shows that the influence of the thermal term in Hooke's
law can be formally reduced to prescribing mass forces with a potential
proportional to the temperature

1+//
IT = 2J.,l1 _ 2// cd),

and surface forces which are orthogonal to surface 0 of the body under
consideration

1+//
F = 2J.,l--2-aOn = nIT.

1- //

Comparing expressions (1.14.5) and (1.4.7) yields that equation (1.14.3)
admits a particular solution

(1.14.7)

where Xo obeys Poisson's equation

(1.14.8)
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Let us proceed to construct the differential equations in te rms of stresses.
The equat ion of statics in the case of no mass forces

divT = 0 (1.14.9)

(1.14.10)

(1.14.11)

needs to be completed, due to eqs. (1.5.1) and (1.1.4.2), by the condit ion

2p,incE = inc (t -_V_aE) + 2p, inc ci JE = O.
l+v

However , by eq. (1.5.2)

incaOE = (E'V 2
- 'V'V) aO,

and using eq. (1.5.3) one can set condit ion (1.14.10) in the following form

'V
2t + ('V'V - E'V

2
) C:v + 2P,ao) = O.

Estimating the first invariant we have

2 1 + V 2'V a = -4p,--a'V 0,I-v

so that

2' 1 (I+V '2)'V T + --'V'Va = -2p,a 'V'VO + --E'V 0 .l+v I-v

(1.14.12)

(1.14.13)

Provided that the temperature is a linear function in the coordinates, see
Subsection 2.2.3,

0= Oo+q · R,

then the term in eq. (1.14.13), described by this formula, vanishes. For this
reason, under the assumption that the surface forces vanish on the whole
body 's surface

n . t=O, (1.14.14)

we obtain that all equat ions (1.14.9), (1.14.14) and (1.14.13) for tensor t
are homogeneous. The solut ion

satisfies all above-mentioned boundary conditions and the equat ion in the
volume. Besides, it is the unique solution, see Subsection 4.4.1. Hence, no
thermal st resses appear in a solid under a linear law of the temperature
distribution. The displacement vector is calculated using formulae (2.3.5)
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of Chapter 2 in which one adds the terms of the type (2.2.6) of Chapter 2
describing a rigid-body rotation of the medium

1 2
U = oJ) (R-~) - 2aq IR - ~I +Uo +Wo x (R - Ro) , (1.14.15)

with R denoting the position vector.
The above said takes place only under the assumption that condition

(1.14.14) holds on the whole surface O. If such a displacement vector u is
prescribed on a part of the surface and differs from that given by formula
(1.14.15) then there appear stresses due to the constraint forces.

It is also easy to prove that, under a linear distribution of the tempera
ture, displacement vector (1.14.15) satisfies differential equation (1.14.13)
and boundary condition (1.14.4).

4.2 Variational principles of statics for a linear
elastic body

4.2.1 Stationarity of the potential energy of the system

First, only isothermal and adiabatic processes will be considered in Sub
sections 4.2.1-4.2.6. The elementary work of the external forces 8'a(e) can
be identified as a variation of the strain energy Sa which is equal to the
variation of the free energy in the isothermal process or the internal energy
in the adiabatic process

8'a(e) = Sa = 8III Adr = III pK · 8udr +11F· Svuio.
v v 0

(2.1.1)

From this equality one can obtain three different variational principles de
pending upon which variables are used for the specific strain energy. Pre
scribing the latter by a quadratic form of the strain components A (E) , see
eq. (3.2.3) of Chapter 3, we arrive at the principle of minimum potential
energy of the system whereas proceeding from a quadratic form of the stress
components A (0-), eq. (3.2.8) of Chapter 3, we obtain the principle of min
imum complementary work. In the first principle, the displacements are
varied whilst in the second principle the stress components are varied. Fi
nally, in the mixed stationarity principle the specific strain energy is given
by a bilinear form A (E, 0-) , in which both stresses and strains are varied.

Formula (2.1.1) contains the statement that the work of the external
mass and surface forces due to a virtual displacement 8u of particles from
the equilibrium position is equal to the variation of the strain energy. One
takes 8u = 0 on 0 1 , i.e. on that part of the surface where the displacements
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are prescribed. Thus

11 F ·8udo= 11 F ·8udo.
o O2

Two states of the solid are considered under the same forces pK in the vol
ume and F at par t O2 , the latter having not overlapped 0 1 . The first state
is the equilibrium state while the second one is a state which is infinitesi
mally close to it and differs from the first in a field of virtual displacement.
In other words , it is assumed that in volume V

8pK = 0, pK · 8u = 8 (pK · u)

and on surface 02

8F = 0, F· 8u = 8 (F · u).

It is legitimate to factor out t he sign of variation beyond the integral since
volume V and surface O2 are fixed . By doing so and taking into account
eq. (2.1.1) we obtain

(2.1.2)

One refers to

~ = 111 AdT - 111 pK · UdT - 11F . udo
v v 0 2

(2.1.3)

as the potential energy of the system. It is equal to the difference between
the strain energy and the work of the prescribed external forces (they are
not prescribed on 0d calculated und er the assumpt ion that these forces,
during the whole process of deformation from the natural st ate , retain the
values which they had in the considered equilibrium state.

The potential energy ~ is a functional over u and its numerical value
changes together with changing u . Within this set of numeri cal values of
~ , a particular value of~ , corresponding to the vector u in the equilibrium
position of the solid, possesses a remarkable property of stationarity

8~ = 0. (2.1.4)

This means that calculating ~ for the displacement field in the equilibrium
position and a second time for a displacement field u + 8u leads to the
same value provided that the calculation is carried out up to the values
of order of smallness of 8u. Under a virtual field of displacement from the
equilibrium position an increment in functional ~ is a value of higher order
of smallness than 8u .
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4.2.2 The principle of minimum potential energy of the
system

In this subsection it is proved that the stationary value of functional <I> in
the equilibrium position is a minimum.

In order to explain the forth coming reasoning let us make precise the con
cept of the increment in function F (Xl , X2, ... ,xn ) of n variables Xl, X2, . . . ,
Xn . Let 8XI,8x2, '" ,8xn denote the increments (or variat ions) of the cor
responding variables. Then the increment of the function b.F is given by

b.F = F (Xl +8XI , X2+8x2, ' " ,Xn +8xn ) - F (Xl, X2, ' " ,Xn )

= 8F + 82F + ... , (2.2.1)

where the first variation 8F denotes the term which is linear in 8xs whereas
82F contains the quadratic terms etc .

If F is a quadrat ic form in variables X s then

and therefore

which is the second variation of the quadratic form and is equal to thi s
form of the variations of the variables. Instead of eq. (2.2.1) we have

and if the form of F is linear , then

b.F = 8F.

Returning to functional <I> we have, using eq. (2.1.3), that

b.<I> = 111 b.Adr - 111 b.pK · udr - 11 b.F· udr ,
v v 0 2

(2.2.2)

(2.2.3)

Since pK and F do not depend on u we obt ain, referring to eq. (2.2.3),
that

b.pK . u = 8pK . u , b.F . u = 8F . u .
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On the other hand , by virtue of eq. (2.2.2)

tlA = A (E+&) - A (E ) = 8A +A (&),

because A is a quadr atic form of th e component of the strain tensor. Finally
we arrive at the equality

so that , by eqs. (2.1.2) or (2.1.4)

tl<I> = JJJA (8E) dr .
v

According to eq. (3.3.4) of Chapter 3 the specific strain energy is a posit ive
definite function , hence A >°for any nontrivial 8E:. This proves th at

tl<I> > 0,

that is, functional <I> increases for any deviation of the solid from the equi
librium state . In other words, this functional has a minimum at the equilib
rium. Thus, we have arr ived at the principle of minimum pot ential energy
of the system: The state of equilibrium of a linear solid differs from the
other possible states in that funct ional 1> (the potential energy of the sys
tem) has a minimum value in this state. By the word "possible" we indicate
that displacements u + 8u cont inuous in volume V are coincident with u
on that part 0 1 of surface 0 where the displacement is given.

It follows from Clapeyron's formula, eq. (3.3.3) of Chapte r 3, and eq.
(2.1.3) th at in the equilibrium position

<I> = <I>min = ~ [- JJJpK . iulr - JJF . udo +JJF . UdO] . (2 .2.4)

v 02 0,

Th e problem of searching for the equilibrium state of a linear solid is
thus reduced to a variational problem of determining the vector u render
ing a minimum to functional <I> and coinciding with given values on 0 1.

It is known that th is problem of variation al calculus is equipollent to a
bound ary-value problem. Its differential equations and the bound ary con
ditions are obt ained from the minimised functional and are respectively
Euler 's equati ons and the natural bound ary condit ions corresponding to
this function al.

Let us now proceed to construct this variation . Due to eq. (3.2.4) of
Chapt er 3 we have

8A 8A
8A = -;:;- & x + ...+ --;:;--8,,/zx = (J'x& x + .. .+ r zx8,,/zx'

uEx u"/zx
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where (Jx, .. . , r zx are the linear forms in the strain components determined
by equalit ies (3.1.5) of Chapter 3. In other not at ion, cf. eq. (B.3.1O) ,

8A = T . . 8E= div (T . 8u ) - 8u . div T . (2.2.5)

(2.2.6)

Tensor T is expressed here in terms of the strain tensor. Expressing the
latter in terms of th e displacement vector u and referring to the derivat ion
of the equat ions of the elast icity theory in Subsection 1.3 of the present
Chapte r, we have by eq. (1.3.2)

divT = jL (_1_ grad div u + \72u) = L (u)
1 - 21/

and simultaneously by eq. (1.3.12)

A (1 1)n·T=2jL --ndivu+n ·\7u+-n xrotu =M(u) .
1 - 21/ 2

By virtue of eqs , (2.2.5)-(2.2.7) we have

8111 Adr = 111div (T . 8u) Sr - 111 bu · div Tdr
v v v

= 11 n·T·8udo- 1118u . L (u ) dr
o v

=llM(u) . 8Udo- lJJL(u). 8udr.
O2 v

(2.2.7)

(2.2.8)

Here it is taken into account th at vector u is sought within a class of
functions taking a prescribed value on 0 1

so that 8u = 0 on 0 1,

Insertin g eq. (2.2.8) into eq. (2.1.2) leads to the equality

8<1> = - 111 [L(u) + pK] · budr +11 [M (u) - F] · Sudo.
V 02

(2.2.9)

(2.2.10)

As 8u is arbitrary in the volume and on t he part O2 of the surface where
the displacements are not given, fulfillment of the stationarity condition
(2.1.14) requires that the integrands in the volume and surface integrals
are zero. We are led to the differential equation of equilibrium in ter ms of
displacements

L(u) + pK = 0 (2.2.11)
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and the boundary condit ion on O2

M(u) = F. (2.2.12)

Naturally, we obtain the boundary-value problem in terms of displacements
as <I> is a function al over u . As mentioned above the definition of the pot en
tial energy of the system and the formulat ion of the minimum principle are
not relat ed to the state of stress in the system. The concept of stress is not
required for th is energet ic principle operating with a functional over the
displacement vector . Similar to Hamilton's principle from general mechan
ics, the principle of minimum potenti al energy synthesizes the properties
of the physical model taking into account the experimental dat a for the
behaviour of the st ressed body.

4.2.3 Ritz 's method

The variational statement of the problem of equilibrium in the form of the
principle of minimum potential energy suggests the possibility of applying
direct methods of variational calculus for solving problems of elasticity
theory.

In Ritz's method (1909) differential equat ion (2.2.11) and the stat ic
boundary condit ion (2.2.12) are not considered since it is known in advance
that they are automat ically satisfied if there exists a vector u rendering an
exact minimum to functional <I> . The approach allowing an approximate
determination of this vector consists of prescribing its proj ections by ap
proximate representations of the form

n

U = L ak IPk (x ,y, z) + Uo (z; y, z) ,
k= 1

n

V = L ak+nIPk+n (x , y, z ) + Vo(x , y , z ),
k= 1

n

W = L ak+2nIPk +2n (x , y , z ) + Wo (x , y , z) ,
k= 1

(2.3.1)

Here uo,Vo,Wo take given values (2.2.9) on 0 1 and functions IPs (8 = 1,2 ,
.. . , 3n ) are chosen to vanish on 0 1 which ensures th at the boundary con
dition for vector u is satisfied for any coefficients as. The system of ap
proximatin g ("coordinate") funct ions IPs should be taken in such a general
form that any system of displacements sat isfying condition (2.2.9) can be
approximately represented in the form of eq. (2.3.1) for sufficient ly large n.
Such a system represents, for example, the products of the integer powers
of the variables x q l yq2 z qJ mult iplied by a function vanishing on 0 1.

After subst itut ing chosen representations for displacements u, v, w , eq.
(2 .3.1) , into the exp res sion for t he potential energy of the system cI> the
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latter becomes a sum of quadratic and linear forms in coefficients as and a
constant term, i.e,

(2.3.2)

The quadratic form <P2 is just equal to the strain energy calculated by
vector u - Uo

(2.3.3)

and is a positive definite form of a1, a2, . . . ,a3n since A is a positive definite
form of the strain components. Thus, the determinant of matrix Cst is
positive

ICstl > 0. (2.3.4)

By the theorem of minimum potential energy of the system , the best ap
proximation in the chosen class of functions approximating vector u is pro
vided by the value of the coefficients rendering the minimum to expression
(2.3.2). This leads to the system of 3n linear equations

or

8
- (<P2 - <pd = 0, t = 1,2, ... ,3n
8at

3n
2::: Cstas = s; t = 1,2, ... ,3n
8=1

(2.3.5)

(2.3.6)

with the same number of unknowns. The existence and uniqueness of the
solution follows from inequality (2.3.4).

In such a manner, an approximate solution of the problem is constructed.
It is reasonable to assume that, when the system of approximating func
tions is sufficiently general, the calculated value of the potential energy
of the system tends to the minimum with the growth of n . However the
"convergence with respect to energy" does not imply that the sequence of
approximations (2.3.1) diverges to the sought-for solution. This particular
analysis is beyond the scope of the present book and is a subject of exten
sive literature", Under a reasonable choice of the form and number of the
approximating functions the calculation yields the values of vector u which
are close to the exact solution. Less accuracy is expected for the derivatives
of the displacements found by Ritz's method and, in turn, for stresses .

1 See for example Mikhlin S.G., Direct methods in mathematical physics (in Russian) .
Gostekhizdat, Moscow, 1950.
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4.2.4 Galerkin's method (1915)

For boundary-value problems admitting a variat ional st atement , in par
ticul ar , for the problems of elasti city th eory, this approximate method of
integrating differential equat ions present s a modification of Ritz 's method
which simplifies calculat ion. Approximation (2.3.1) is substituted into the
expression for th e variation of the potenti al energy of the system (2.2.10)
rather than into th e potenti al energy (2.1.3). This excludes the necessity
to square sum (2.3.1) for calculat ing A.

Replacing variations Su,S»,8w in eq. (2.2.10) by th e following expressions

n n n

8u = L 'Pk8ak, 8v = L 'Pk+n8ak+n, Su: = L 'Pk+2n8ak+2n, (2.4.1)
k= l k=l k=l

in which variations of the sought coefficients Sa; are arbitrary we arrive at
the equality

~D<I> = t, Oak {1il [Ll (u) + pKll l'.,dT - Jj [Ml (u) - Fll l'kdo} +

t, oaHn {lil [L2 (u) + pK21 l'k +ndT - Jj 1M2 (u) - F21 I'k+nda} +

t, oak+2n {1il [L3 (u) + pK31 l'k+2ndT - Jj 1M3 (u) - F31 1'k+2ndo}

= 0, (2 .4.2)

where L s and M; denot e respectively th e proj ections of vectors Land M
given by eqs. (2.2.6) and (2.2.7) on the coordinate axes. Clearly, u,v, w in
expressions for L s and M s are replaced by their representati ons (2.3.1).

Equating now th e coefficients of the arbitrary variations Sa; to zero we
obt ain th e following system of 3n linear equat ions for unknowns as

III Ldu) 'Pk dT - IIMdu) 'Pk do = - III pK1'Pk dT - IIF1 'Pk do,
v O2 v O2

III L2 (u) 'Pk+ndT - 11 M2 (u) 'Pk+ndo =
V O 2
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JJJ£ 3 (u) 'Pk+2 n dT - JJM3 (u) 'Pk+ 2n do =
V 0 2

= - JJJ pK3'Pk+ 2n dT - JJF3'Pk+2ndo. (2.4.3)
V 0 2

Of course, it is just anot her form of equat ions (2.3.6) obtained by anot her
sequence of calculations.

By Galerkin's equat ions one often underst ands the syst em of equat ions

JJJ (£1+ pK1 ) 'PkdT = 0, JJJ (£2+ pK2) 'Pk+ndT = 0,
V V

JJJ (£3 + pK3 ) 'Pk+2ndT = 0, (2.4.4)
V

for which only differenti al equat ions of the problem are utilised. However
the choice of functions 'Ps approximat ing the solut ion needs to be sub
jected not only to the kinematic boundary cond itions but also to the stat ic
boundary condit ions (2.2.12). The surface integrals in the system of equa
tions (2.4.3) drop out and this syste m transforms into system (2.4.4).

4.2.5 Principle of minimum complementary work

The principle of minimum potential energy of the system was obtained by
comparing t he displ acement field of the solid at the equilibrium state and
an infinitesimally close st at e admit ted by const ra ints. In the principle of
minimum complementary work, two stat ically admissible states of st ress are
compared: the t rue one given by the stress t ensor T and an infinitesimally
close state with the st ress tensor T+ si: Both st at es are considered under
the same prescrib ed forces which are the volume force pK and the surface
force on part O2 of the sur face 0 bounding the body. Hence, in volume V

div T+ pK = 0, div (T +OT) + pK =°
and on surface O2

so that

(2.5.1)

(2.5.2)

div oT = 0, n· ofl = 0.
02

(2.5.3)

Considerin g the specific st ra in energy A as a function of the st ress com
ponents (i.e. in the form of eq. (3.2.8) of Chapter 3) and account ing for eq.
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(3.2.9) of Chapter 3, as well as eq. (2.5.3) we have (d. eq. (B.3.1O))

8A (a) = E . . 8T = div (8T . u) - u . div 8T = div (8T . u) .

Hence

(2.5.4)

8a= 111 8Adr = 111div(8T.u)dr= 11 n ·8T ·udo= 11 u·8Fdo,
v v 0 0 1

(2.5.5)

where 8F denotes variation of the surface force on that part 0 1 of the
surface where the displacement vector is prescribed. On 0 1 we have

8u = 0, u . 8F = 8 (u . F ) ,

and equality (2.5.5) is reset in the form

s (1[1 A(a)dT-1jUFdO) ~O

The expression

(2.5.6)

\[1= 111 A(a)dr- 11u·Fdo= 111 A(a)dr- 11 n · T ·udo
v 0 1 v 0 1

(2.5.7)

is termed the complimentary work whereas relationship (2.5.6) expresses
the property of stat ionarity of th is function al over the stress tensor T in
the equilibrium state

8\[1 = 0. (2.5.8)

The stationary value of the complimentary work is a minimum . Indeed, by
virtue of eqs. (2.2.2) and (2.2.3)

t, \[1 = 111 8A (a)dr +111 A (8a) dr - 11 u -8F do
v v 0 1

= 8\[1 +111 A (8a) dr
v

and by eq. (2.5.8)

t,\[1 = If! A (8a) dr > 0,
v
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which proves the existence of the minimum in the equilibrium state .
Hence, the equilibrium state of a linear solid differs from all statically

admissible ones under the given external forces in that function al \lJ over
the stress tensor 1', referred to as the complimentary work, has a minimum
in the equilibrium state.

By eq. (2.5.7) and Clapeyron 's formula, eq. (3.3.3) of Chapt er 3, this
minimum is equal to

\lJmin = ~ (PK .ndr -11 F . udo + 11 F . UdO) .
0 1 02

(2.5.9)

It was stated in Subsection 4.2.2 that Euler 's equat ions and the natural
boundary conditions of the var iational problem on the minimum potential
energy of the system are nothing other than the equations of equilibrium in
terms of the displacements and the stat ic boundary condit ions. It is natural
to expect that the principle of minimum complementary work, which is the
function al over the stat ically admissible stress tensor 1', yields Beltrami's
dependences and the kinemat ic bound ary conditions (as natural boundary
conditions of the variational problem) .

In order to prove this, we represent the stat ionarity condition (2.5.8)

8\lJ = 1118A ((T) dr - 11u- 8Fdo
V 0 1

= 111 (:~ 8(Tx + .. .+ ~~x 8r zx) dr - 11 u - 8Fdo
V 0 1

= 111 (Ex8(Tx + .. .+ 1'zx8r zx)dr - 11u· 8Fdo
V 0 1

= Jll €· ·8T dr - 11 u ·8Fdo =0.
v 0 ,

(2.5.1O)

Here Ex, . .. l'zx are the linear forms in the components of the stress tensor
l' determined by means of eq. (3.1.8) of Chapter 3 and expressed by formu
lae (3.1.8) of Chapter 3, besides, € is the tensor given by these linear forms
and eq. (1.1.4). Variations of the components of tensor 1', i.e. 81', in the
integrand in eq. (2.5.10) are not independent and must satisfy dependences
(2.5.3). We thu s arr ive at the constrained problem of the calculus of varia
tions. Following the standard approach we introduce a Lagrange vector oX
in volume V. Representing eq. (2.5.10) in t he form

8\lJ = 111 (€"81'+ x .div 81') dr - 11 u · 8Fdo = 0,
v 0 1

(2.5.11)
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we can consider all six variations 8aJ: , • . . ,8Tzx, constrained by three con
dit ions (2.5.3), as being independent by a prop er choice of the three com
ponents of vector A.

Applying tr ansformation (B.3.1O)

,X . div 8T = div (8T . ,X) - def X . .8T,

we rewrite eq. (2.5.11) as follows

8\lJ= 111(E-def,X).. 8TdT+ IlldiV(8T .,X)dT- Ilu.8FdO=
v v 0 1

111(E-def,X) .. 8TdT+ II n·8T ·'xdo+ II (n .8T .,X-u .8F)do,
v 0 2 0 1

so that , referring to eq. (2.5.3), we obtain

8\lJ = I I I (E- def'x) .. 8TdT+ II 8F · (,X - u) do.
V 0 1

(2.5.12)

(2.5.13)

Expressing now the condition for which the multipliers of variations 8T and
8F in the integrand vanish , we arrive at t he relationships

1 ( , V , ) IE= -2 T - --aE = def X, (,X - u ) = O.
f..l 1 + V 0 1

The first equality shows that the tensor denoted here as E is th e defor
mation of Lagrange's vector ,X . The latter must be equal to the prescribed
displacement vector on OJ and nothing prohibits us from identifying Awith
th e displacement vector u in volume V and defining tensor Ein terms of th e
displacement field. The principle of complementary work does not operate
with the concept of the strain tensor. Hence we must additionally identify
,X with u because "the principle does not know about it" .

By eq. (2.1.9) of Chapter 2. any tensor which is a deformation needs to
sat isfy the condition

inc def X = 0, (2.5.14)

(2.5.15)

and thus excluding ,X from th e first formula in (2.5.13) result s in the rela
t ionship

inc (T- -v-ae) = O.
1+v

The latter, together with condition (1.1.1) stating that T is a stat ically
admissible tensor, leads to Beltrami's dependences, see Subsection 4.1.5.
This is exact ly what is required. As condition (2.5.14) is met , vector ,X =u
can be found by means of Cesaro's formula (2.2.2) of Chapte r 2.
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4.2.6 Mixed stationarity principle (E. Reissner, 1961)

While formulating the principle of minimum potential energy one consid
ers a functional over vector u and requires that the latter coincides with a
prescribed displacement on part 0 1 of the surface, the stress tensor being
excluded from consideration. The Euler differential equations prove to be
the equilibrium equations in terms of displacements whereas the natural
boundary conditions turn out to be the equilibrium conditions (in terms of
displacements) on the part of surface O2 where the external surface forces
are given. In contrast to this, the principle of minimum complementary
work deals with a functional over the stress tensor l' along with all stati
cally admissible states of stress with the tensors l' satisfying the necessary
conditions of statics of solids in the volume and on surface 02 where the
surface forces are prescribed. The constrained boundary-value problem ob
tained leads to Beltrami's dependences (which add the static equations to
the sufficient conditions) and the boundary conditions on part 0 1 of the
surface on which the displacement vector is prescribed.

The mixed stationary principle introduces a functional over the displace
ment vector u and the stress tensor l' which are considered as being mu
tually independent. This functional is written down in the form

J = JJJ [1' .. E- A ((J)] dr - JJJpK . UdT -

V v

JJrr -T · (u - u;) do - JJF · udo.

0 1 02

(2.6.1)

Here E is the tensor determined in terms of vector u by formulae (1.1.2),
F is the surface force given on 02 and u, is the displacement vector given
on 0 1. By A ((J) we denote the specific strain energy given by quadratic
form (3.2.8) of Chapter 3. The derivatives of this form with respect to the
components of the stress tensor are linear functions of these components de
termined by the left hand side of the relationships in eq. (3.1.8) of Chapter
3. They are the components of a tensor denoted as follows

(2.6.2)

so that, due to eq. (3.2.9) of Chapter 3

(2.6.3)



4.2 Variational prin ciples of statics for a linear elast ic body 191

Now we have

s: = 111 [OT .. (E - E*)+T · ·Of] dr - 111 pK ·OUdT-
V v

11 s .st . (u-u*)do- 11n ·T ·oudo-11F'Oudo,
0 1 0 1 O2

(2.6.4)

since of = 0 on O2 . It remains only to apply a well-known transformation

111T " EdT= 111div(T ,ou)dT- 1110U .divTdT
v v V

= 11n ·T ·oudo+ 11n ·T ·oudo- 1110u 'divTdT,
0 1 02 V

in order to write down the condition of stationarity of functional J in the
form

oJ=111[oT "(E- E*)-(div T+PK) .ou]dT-
v

11 n· oT · (u-u*)do+11 (n .T-F) ·oudo=O. (2 .6.5)
0 1 0 2

Due to the arbitrariness of sr and Ou in the volume, as well as n . si on
0 1 and Ou on O2 , we arrive at the equat ions of stati cs in the volume

div T + pK = 0,

the generalised Hooke law

1 ( A V A)E=E*= 2fJ T - 1+ vaE

and the bound ary condit ions

(2.6.6)

(2.6.7)

ul = u,;
0 1

n . TI =F.
O2

(2.6.8)

Here the Euler equations of the variation al problem on the stationarity
of functional J proved to be the fundament al relationships of the linear
theory of elast icity listed in Subsection 4.1.1, whilst the natural boundary
condit ions turned out to be the kinemat ic and stati c bound ary conditions.
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4.2.7 Variational principles accounting for the thermal terms

The thermal conductivity equation is considered in its classical form (the
Fourier form), eq. (3.6.8) of Chapter 3. The static statement of the problem
of th e theory of elasticity is taken, i.e. a time-variant change in the state
of stress due to the non-st ationarity of the temperature field is neglected .
This allows the temperature to be considered as a non-varying external
factor under variation of the state of stress and formally treats the temper
ature field as the field of the volume forces having potential (1.14.5) and
surface forces (1.14.6), see Subsection 4.1.14. It is also necessary to take
into account the reaction forces on 0 1 caused by constraints ensuring the
prescribed displacement on this part of the surface.

According to eqs. (2.1.3), (1.14.5) and (1.1.4.6) an analogue of functional
<1> in the principle of minimum potential energy is the following functional

<1>. = 111 A (c)dr + 2M:~;1I (111 u · grad o:OdT - 11o:On· UdO) ,
v v 0 2

(2.7.1)

where A (c) is the quadratic form of the components of the strain tensor
E: given by eq. (3.2.3) of Chapter 3. Applying the following easily proved
transformation

111 u· grad o:OdT = 11 n · Uo:OdT - 111 19o:0dT,
V 0 v

eq. (2.7 .1) is transformed to the form

<1>. = 111 FdT+2Mll~;// 11 n·uo:Odo .
v 0 1

(2.7.2)

(2.7.3)

Here, in view of eq. (3.4.6) of Chapter 3 (see also Table 3.2 in Chapter 3)
the quantity

1+//
F = A (c) - 2M 1 _ 2//190:0

represents a free energy of the system up to a term depending only on the
temperature.

We repeat the transformations of functional (2.7.3) resulting in formula
(2.2.8) and arrive at the relationship

b<1>. = 111 i: .Sedr + 2M 11~;// 11 n · buo:Odo (2.7.4)
v 0 1

= 11 n -t .budo - 111 bu · divTdT + 2M 11~;// 11 n · buo:Odo .
o v 01
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Here l' denotes the tensor defined by eqs. (3.4.7) and (3.4.8) of Chapter 3

, (v , ) l+v ,
T = 2j.L 1 _ 2v fJ E + E - 2/1 1 _ 2/J o:BE ,

so that

, l +v
div T = L (u) - 2/1--2- grad o:B,

1 - v
, 1 + v

n · T = M (u) - 2j.L--2-no:B,
1- v

where differential operators L (u) and M (u) are introduced by eqs. (2.2.6)
and (2.2.7) respectively.

Insertion into eq. (2.7.4) yields

8<1>* = - fff [L (u) - 2/1 1

1
-:;v grado:B] . Sudr +

v

ff [M (u) - 2/1
1

1-:;v no:e] . 8udo +ff M(u) . 8udo = 0, (2.7.5)

02 0 1

the latter term must vanish as 8u = 0 on 0 1.

Thus we have arr ived at the differential equat ion of equilibrium in terms
of displacements (1.14.3) and the boundary condition (1.14.4) . Repeating
the reasoning of Subsection 4.2.2 one can convince oneself that functional
<1>* has a minimum at the equilibrium.

An analogue of functional Win the principle of minimum complementary
work is the following functional

(2.7.6)

where C in the Gibbs potential, eq. (3.5.4) of Chapte r 3, whereas F denotes
the vector of the surface reaction forces on 0 1. Then we have

8C = E' · 81', (2.7.7)

where Edenotes the tensor whose components, given by eq. (3.5.5) of Chap
ter 3, are linear forms of the components of the stress tensor and the tem
perature. An expression for tensor E is also given by formulae (3.4.10) of
Chapt er 3.

The proof of the stationarity and minimality of the functional in the
equilibrium position does not differ from that in Subsection 4.2.5 provided
that the stat ically admissible states of stress are considered.

4.2.8 Saint- Venant 's principle. Energetic consideration

"The principle of th e elast ic equivalence of statically equivalent systems
of forces" was first formulated for the problem of the state of st ress of
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a prismatic rod loaded at its ends in the classical memoir "On torsion
of prisms" by Saint- Venant in 1855. A more general formulation of this
principle referred to as Saint-Venant's principle was given by Boussinesq
in 1885. Works by Mises (1945) and Sternberg (1954) are concerned with
refining Boussinesq's consideration.

Systems of forces F and Flare termed statically equivalent when their
resultant vectors and resultant moments about the same reduction point
are equivalent. Clearly, the system of forces F - F 1 is statically equivalent
to zero, that is, the principal vector and the principal moment are equal
to zero. Saint- Venant's principle states that a system of forces, which is
statically equivalent to zero and distributed over a small part of the surface
of a solid, creates only a local state of stress and becomes negligibly small
at distances sufficiently great in comparison with the size of the solid. For
example, the state of stress in a long prismatic bar loaded only at its end
cross-sections (end faces) is practically independent of the distribution of
the surface forces. At a certain distance from the end faces the state of stress
is determined only by the principal vector and the principal moment.

Thus one can speak about the possibility of replacing the boundary con
ditions by other ones under the above-specified conditions of the static
equivalence and "smallness" of the loading area. Deliberately or not, an
idealisation of the boundary conditions is always used for solving (correctly
stated) problems of mathematical physics. In the problems of elasticity the
ory it is all the more unavoidable since the details of the distribution of
the surface forces are most often unknown and the possibility of replace
ment by another distribution with the same integral properties seems to be
intuitively acceptable. It is, however, clear that the above formulation of
Saint-Venant's principle is of a qualitative character and needs to be com
pleted by some quantitative estimates. One of such attempts undertaken
by Zanaboni (1937) and Locatelli (1940, 1941) consisted in a comparison of
the strain energy in the parts of the solid loaded by a statically equivalent
system of forces, which are first taken close to the loading area and then
far from it .

Let us consider a body Ai loaded on a part of the surface by a system of
forces P which is statically equivalent to zero and denote the strain energy
of the body as ai (P) . Let us add a body A2 which is free of load to body
Ai on a free surface 8', see Fig. 4.1 and denote the strain energy of the
new body Ai + A2 by al+2 (P) . Let us prove that

(2.8.1)

Indeed , let R 12 denote a system of forces which is statically equivalent to
zero and acts in cross-section 8* of body Ai + A2 . Surface 8* denotes the
free part of surface 8 of body Ai which needs to be deformed in order to
unite Ai and A2 into a single body Ai + A2 . The strain energy of part
A2 of body Ai + A2 is a2 (R12) , while part Ai of this body possesses the
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ac=J

FIGU RE 4.1.

following st rain energy

where a; (R I 2 ) denotes t he work of the earlier applied forces P . This work
is done since the body par t Al subjected to t hese forces is deformed due
to forces R 12 acting on S' . Hence

(2.8.2)

Th e steps of t he reasoning are illustrat ed in Fig. 4.1a-d .
The true state of equilibrium in which forces P produce a state of st ress

resulting in the syste m of forces R 12 in cross-sect ion S' is compared with
the state in which thi s system (at the same P) is replaced by a proportion
ally changed system of forces (1 + E)R 12 . Notice th at we deal with a linear
system of st atic equations describing the behaviour of body A2 loaded by
a system R 12 on S ' which is stat ically equivalent to zero. Thus the system
of forces (1 + E) R 12 is due to a statically admissible system of st resses and
thi s allows th e principle of minimum complementary work to be applied.

Under the above proporti onal change in forces R 12 , the st rain energies
al (Rd and a2 (R I 2 ) become equal to (1 + E)2 al (R I 2 ) and (1 + E)2 a2 (R I 2 )

respectively. Next , a; (R I2 ) should be replaced by (1 + E) a; (R I 2 ) because
1+E implies that only st rains change and forces P remain unchanged. The
expression for the varied st rain energy of body Al + A2 takes t he form

a;+2 (P) = al (P) + (1 + E)2 al (R l2 ) + (1 + E)202 (Rd + (1 + E) a~ (R I 2 )
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Az+AJ S; AI ~ ~ P
J cS

R1,2+3

FIG URE 4.2.

and hence

~aH2 (P) = a~+2 (P) - aH2 (P) (2.8.3)

= E [2al (Rd + 2a 2 (R I2 ) + a~ (R I2 ) ] + E
2

[al (R I 2) + a2 (R I 2) ]

Here al (RI 2 ) > 0, a2 (RI2 ) > 0 and by the theorem on minimum comple
mentary work, the difference (2.8.3) must remain positive regardless of the
sign of E . For this reason

2aI (R I2 ) + 2a 2 (R I2 ) + a~ (R I2 ) = 0

and expression (2.8.2) is set in the form

(2.8.4)

(2.8.5)

An equality sign is impossible here as forces R I2 appear if P is present .
Statement (2.8.1) is thus proved. Continuing the imaginary process of
adding part A3 etc. to body Al +A2 we have

al (P) > aH2 (P) > aH2+3 (P) > ... (2.8.6)

The second step of t he consideration implies comparing the strain energies
due to systems of forces R I ,2+ 3 and R H 2,3 ' As follows from this notion
and Fig. 4.2, the first system of forces appears in cross-section Si of body
A1 attached to unloaded body A2 + A3 , whilst the second system appears
in cross-section S2 between bodies Al + A2 and A3 and is more remote
from the loading place P than the first .

For the second way of generating the body, we have by eq. (2.8.5)

aH2+3 (P) = aH2 (P) - aH2 (R H 2,3 ) - a3 (R H 2,3 ) (2.8.7)

= al (P) - al (R I 2 ) - a2 (R I 2 ) - aH2 (R H 2,3 ) - a3 (R H 2,3) ,

whereas for the first way

(2.8.8)

From these equalities we have

al (R 1,2+ 3 ) + a2+3 (R I ,2+ 3 ) = aH2 (R H 2,3 ) +
a3 (R H 2,3 ) + al (R I2 ) + a2 (R I2 )
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or, as one would expect ,

(2.8.9)

Functional a (R) is equal to the st rain energy of the solid and is calcu
lated in terms of the st resses caused by forces R appear ing in cross-sect ion
S due to the body being loaded by a syste m of forces P which is statically
equivalent to zero. The proved inequality (2.8.9) suggests that a (R) de
creases with the distance from the loading place. Since a (R) is a positive
definite funct ional, it can be taken as an integral measure of the st resses and
the est imates obtained indicate that these st resses decrease with a growth
in the distance from the applied loading and serve as a confirmation of
Saint-Venant 's principle.

Other est imates for stresses will be discussed later , in Subsections 5.2.12
5.2.14.

4.3 Reciprocity theorem. The potentials of
elasticity theory

4.3.1 Formulation and proof of the reciprocity theorem (Betti,
1872)

Let us consider two equilibrium states of a linear solid , these states being
called the first and the second in what follows. The displacement vectors
u' and u" corresponding to these states determine the strain tensors

E' = def u', E" = def u",

which in turn determine the st ress tensors

(3.1.1)

(3.1.2)

We can now find the mass and surface forces which can be applied to the
solid in order to realise the above states

pK' = - divi" , F' = n· i-, pK" = - divi''' , F" = n· i«. (3.1.3)

The objective is to prove that the work done by the external forces of the
first state in the displacements of the second state is equal to the work
of the exte rna l forces of the second state in the displacements of the first
state:

111 pK' · U"dT+11 F'· u"do = 111 pK"· U'dT +11 F" · u'do.
v 0 v 0

(3.1.4)
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Replacing the forces on the left hand side of this equality by expressions
(3.1.3) in terms of the st ress tensors and using tr ansformations (B.3.10)
and (B.5.5) we have

-111 u" . div f'dr + 11n· f' ~ u"do =
v 0

= 111 [-u" .divf' +div (u
ll

. f ' ) ] dr = 111 i" .'E"dr ,
v v

so that

111 pK' . u"dr +11F' . u"do = 111 f ' .. E"dr
v 0 v

and similarly

, (3.1.5)

: (:U .6)111 pK" ·u'dr+ 11F"·u'do= 111 f" ·· E'dr.
v 0 v

It remains to prove that the right hand sides of these equations are equal.
Th is follows from eq. (3.1.2)

T
A, All _ 2 ( V ,a'EA+ A') All _ 2 ( V , 0 ' , 0 " + A' All ).. I: - f-l --u 1: ' . I: - f-l --u tr 1: ' . I:

1- 2v 1- 2v '
(3.1.7)

as E . .E" = h (E") = ~" and addit ionally

A' All I (A' All ) , III: . . I: = 1 I: . I: = I: skI:ke :

Thus, the quantities of the first and second states appear equally on the
right hand side of eq. (3.1.6) which proves the theorem.

The formulation of the reciprocity theorem becomes more complicated
for multiple-connected volumes provided that mult iple-valued displacement s
are possible, see Subsect ion 5.3 of the present chapter.

4.3.2 The influence tensor. Maxwell's theorem

Let a solid be loaded by a unit concent rated force e at point Q, this force
being balanced by the const ra int forces. The constra ints are assumed to be
ideal, i.e. the work done by the constra int forces for any displacement of
solid's points is equal to zero.

The displacement vector of point M of the solid denoted as u (M ,Q) is
represented in the form

u (M ,Q) = G(M,Q ) . e . (3.2.1)
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Here C(M,Q) is a second rank tensor referred to as the influence tensor.
Component Gsk (M,Q) is the projection of the displacement of point M
on direction is due to unit force applied along ik .

Let us agree to refer to points Q and M as the points of source and
observation, respectively. We consider now two states of the solid: the first
implies that Q and M are respectively the points of source and observation,
i.e.

u(M,Q) = C (M,Q)' eQ ,

whereas the second state means th at M and Q are respectively the points
of source and observat ion, that is

u(Q,M) = C(Q,M). eu -

In accordance with the reciprocity theorem, the work of force eM in the
displacement of point M due to force eQ is equal to the work of force eQ
in the displacement of point Q due to force eM

eM ' u (M,Q ) = eQ ' u(Q,M)

or alternat ively

This expresses the prop erty of the influence tensor

C(M,Q) = C* (Q,M)

(3.2.2)

(3.2.3)

(3.2.4)

referred to as Maxwell's theorem. As always, an asterisk denotes the oper
at ion of transposing a tensor, so that

Gsk (M ,Q) = Gks (Q,M) , (3.2.5)

which is required.
Knowledge of the influence tensor C(M ,Q) allows one to represent the

displacement vector in terms of any given mass and surface forces

u(M)= 111 C(M,Q) .pK(Q)dTQ+ 11 C(M,Qo)·F(Qo)doQ() '
v 0

(3.2.6)

Clearly, an efficient construction of the influence tensor is of the same order
of difficulty as solving the bound ary value problem. The solution is easy
to find for an unbounded space for which th e boundary condit ions are not
needed, see Subsection 3.5 of the present chapte r.
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4.3.3 Application of the reciprocity theorem

As the first state one usually takes a particular simple state of stress . Given
external forces of the second state (these must be a system of forces which
are statically equivalent to zero), the reciprocity theorem enables certain
averaged quantities corresponding to this state to be determined.

Let us prescribe the displacement vector of the first state by an affine
transformation

u'=A.R, (3.3.1)

where A is a constant tensor of the second rank . By eqs. (1.2.3)-(1.2.5) of
Chapter 2

du' = (\i'u')*. dR = dR · \i'u' = A·dR = dR · A*,

so that, referring to eq. (1.2.13) of Chapter 2, we have

g' = ~ (A +A* ), A= g' +0' (3.3.2)

and then

T' = 2J1 ( 1 : 2v EX)' + g,), pK' = 0, F' = 2J1 (1 : 2v n~' + g' . n) .

(3.3.3)

By the reciprocity theorem (omitting the primes corresponding to the quan
tities of the second state) we obtain

111 pK.A.RdT+ 11F·A·Rdo=
v 0

~ 2~ (1 :2v~' Ij n·udo+ IjnIn~M)' (334)

Tensor Aon the left hand side can be replaced by E' since

111 pK .O .RdT+ 11F ·O·Rdo=
v 0

= 111 pK · (w x R) dr +11F · (w x R) do
v 0

~ ca- (IfIR x pKd7+ Ij R x FdO) ~ 0,



A' 1 JrfJ Ad A' A I (A' A )E " V } v E T = E . , Em = 1 E . Em .

V

4.3 Reciprocity theorem. The potentials of elasticity theory 201

where w denotes the vector accompanying tensor it, see Section A.4, and
the expression in parentheses is the principal moment of the external forces
of the second state which is equal to zero. In addition to this

JJ n ·udo = JJJ divudT= JJJ ~dr ,
o v v

JJn · s' .udo = JJJdiv (s' .u) dr = JJJu -div s'dr +s' ..JJJedr ,
o v v v

Denoting the volume-averaged value of a quantity by subscript m we have

~ JJJ ~dr = ~m ,
V

We arrive at the equality

1-"2v««: +Ir «'.em) ~ 2:V (Ill pK I Rdr+ lfF·C' . RdO)

(3.3.5)

which is transformed by means of the identity

Q..ab = h (Q.ab) = h (a. Q*b) = a . Q* .b

to th e following form

1 -"2vb'«; H' .. em ~ 2:V C' .. (I!! pKRdr+ lf FIW") .

(3.3.6)

Assuming that S' = E we have ti' = 3, S' . 'Em = ~m, s' · ·pK R = pK· R
and so on. We are then lead to the following expression for the averaged
dilatation

(3.3.7)

Inserting this into eq. (3.3.6) result s into the relationship

C' [Em- 2:V (Ill pKRdr+ lf FRdO)] +

1~'v 2:V (Ill pK Rdr +lfFRdo) ~ O. (338)
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For example, for E' = ili l, 19' = 1 we obtain the following expression for the
average extension

(Ell)m ~ 2~V [1.[1+Kx - ,:"RK) dT+

1j (XF' - ':vR . F) +(339)

whereas assuming g' = ilb +bil , 19' = 0 we obtain the average value of the
shear

bdm ~ 2~V (J.[I P(xKy + yK,) dr +1j<XFy +yFx1 dO) .

(3.3.10)

Now it is easy to find averaged values of the stresses

(Ux)m ~ ~ (J.[I pxK,dT+ 1jXFxdO) ,

(Tx, lm~ ~ (J.[I WKxdT +1jyFxdo)

etc . These expressions were obtained in Subsection 1.4.3 by using solely
the equations of statics and are valid for any continuum rather than for
a Hookean body. Using the derived equations and Hooke's law one can
obtain the above formulae for averaged values of the components of the
strain tensor in an elastic solid.

Taking the displacement vector u' in the form of the quadratic form
of the coordinates and using the reciprocity theorem one can obtain the
formulae of Subsection 1.4.4 for the first order moments of the stresses.

Prescribing components of g' in the form of quadratic forms of the coor
dinates means 36 coefficients related by six conditions of the strain com
patibility, see eq. (2.1.5) of Chapter 2. Using the reciprocity theorem in the
form of eq. (3.1.5)

leads to thirty equations corresponding to the number of independent co
efficients of these forms. The number of unknown second order moments of
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st resses

is equal to t hirty six. The same result was obtained in Subsection 4.4.1.

4.3.4 The reciprocity theorem taking account of thermal terms

The derivation offormulae (3.1.5) and (3.1.6) is not affected by the presence
of thermal terms in the expression for the stress tensor (1.14.1). However
the thermal terms should be taken into account while calculat ing t he right
hand sides of these formul ae

T" ' '' - 2 ( v ,0',0" + " ," 2 I+V e"o") }.. € - J1. --uu €. E - J1.D:-- u
1 - 2v 1 - 2v '

T' " " - 2 ( V ,0",0' + ," A' 2 1 + v e"'o').. E - J1. --uu € . E - J1.D:-- u .
1- 2v 1- 2v

Instead of eq. (3.1.4) we obtain

(3.4.1)

fff pK'· U"dT + ff F' · u"do+ 2J1.D: 11~;v fff e'{)"dT=

v 0 v

= fff pK"· U'dT+ ff F" · u'do+ 2J1.D: 11~; v fff e"{)'dT. (3.4.2)
v 0 v

It is evident that t he same result can be obtained by a formal replacement
of the temperature field by t he volume and surface forces (1.14.5) and
(1.14.6)

2PQll~;v (- iIJ u" g"MdT+ if nU"9'do) ~

= 2J1.D::~;v fffe' divu"dT,
v

which is required.
By way of an example let us consider the state of st ress due to a unit

force applied at point Q as t he first state for which it is assumed that
e' = O. Let the forces vanish in the second state , i.e. pK' = 0, F" = 0 and
the temperature be e. Applying formulae (3.4.2) and taking into account
eq. (3.2.1) leads to the equality

l+ vJfJ 'eo . u (Q) = 2J1.D:-- e(M) divM G (i"VI,Q) . eQdTM ,
1 - 2v

v
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and, since eQ is an arbitrarily directed vector, we have

l+v Jr f f A

U (Q) = 2J.lcx 1 _ 2v } } () (M) divM G (M ,Q) dTM.

v

(3.4.3)

Thus, a known influence tensor allows determination of the displacement
field in terms of the temperature field.

4.3.5 The influence tensor of an unbounded medium

Let us perform an imaginary cut of a finite volume Vi bounded by surface
o from an unbounded elastic medium and let v., denote the remaining
volume with cavity Vi .

A unit concentrated force e is applied at point Q of the elastic solid and
yields a state of stress described by tensor f. The equations of statics for
volume Vi are written down in the form

JJn - fdo + e = 0, JJR x (n . f) do = 0, Q c Vi ,
o 0

JJn·fdo = 0, JJR x(n. f) do = 0, Q c v.,.
o 0

(3.5.1)

(3.5.2)

Here R designates the position vector with the origin at point Q. If r M and
rQ denotes the position vectors of the points of observation M and origin
Q, then

(3.5.3)

A sphere of radius R with the centre at point Q is taken as surface
O. This assumption does not limit our consideration since the value of
the integrals in eq. (3.5.1) is the same on any surface enclosing sphere O.
Equation (3.5.1) takes now the form

R2 JJrr - fdo* + e = 0,

o·
(3.5.4)

where 0* and do* denote a sphere of a unit radius and an element of its
surface, respectively. It follows from the latter equation that the principal
vector of the stresses on any surface enclosing point Q is equal to e , i.e. it
has a value which is independent of R. This is possible only if the compo
nents of tensor f decrease as R- 2 . This implies that the magnitude of the
displacement vector must decrease as R- 1 .
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This reasoning suggests a particular character of the solution. The har
monic vector B in the Papkovich-Neuber solution (1.4.10) should be taken
in the form

A
B=-e

R'

since R-1 is the only harmonic function having such a decreasing character
at infinity, vector e must appear in the solution and A must denote a
constant determined from condition (3.5.1). Introducing harmonic vector
Eo is redundant and th e displacement vector, byeq. (1.4.10), is represented
as follows

(3.5.5)

since

1 e 1
V' -e· R = - - -Re . RR R R3 .

The stress tensor is calculated by eq. (1.4.15). The result is

. A Re 1A
div B = --e· R V'B = -A- defB = --- (Re + eR)

R3 ' R3 ' 2 R3 '

[
1 ~ e· R 3 ]V'V'R·B = -A - (Re+eR) +E- - -e·RRR

R3 R3 R5 '

and substitution yields

~ 2pA [ ( ~ ) 3e . R ]T= R3 (1-2/1) Ee ·R-eR-Re -R2R R .

The equality

(3.5.6)

2tLA Jrr[ 3e . R ]-e = R3 } (1 - 2/1) (ne . R - n . eR - n . Re) - R2 n . RR do

o

serves for determining A. On the surface of sphere 0

n = R- I R , ne· R - n . eR = 0, n R = R,

so that

e ·R
--n ·RR =e·RnR2 '

e ~ ~~ [(1 ~ 2v)Re1f do+ 31f ne RdO] .



(3.5.7)
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Since

11 do = 47rR
2

, 11 ne· Rdo = 111 \le· Rdr = e 111 dr = ~7rR3e ,
o 0 v v

we find

A= 1
167rfl (1 - v)

Inserting th e displacement vector in the form (3.2.1) we arrive at the equal
ity

u (M ,Q ) = U (M ,Q) .e, (3.5.8)

where the influence tensor U(M,Q) for an unbounded elast ic medium,
referred to as the Kelvin-Somigliana tensor , is given, due to eq. (3.5.5), by
th e formula

U= 1 [(3 _ 4v) E+ RR] = _1_ (E_ \l\lR )
167rfl (1 - v ) R R2 47rfl R 4 (1 - v ) .

(3.5.9)

The st ress tensor at point M on an element ary surface with normal nM is
equal to

A 1 [nM · T = (1 - 2v ) (nMe · R - nM · eR - nM· Re)-
87r (1 - v ) R3

3e~~nM . RR] (3.5.10)

and can be represented in th e form

nM . T = <i> (M ,Q) . e , (3.5.11)

where th e tensor of "force" influence is det ermined by the following formula

The equat ions of statics (3.5.1) and (3.5.2) are now set in the form

(3.5.13)
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and for any point Q we have

11R x ~(M,Q)doM =0.
o

An extended form of eq. (3.5.13) is as follows

(3.5.14)

11~(M,Q)doM =

o

= 1 Jj[(1-2V)~(nMR-RnM)-nM 'R\7\7..!..]dOM-
81r (1 - v) R3 R

o

~EJj nM ' R dOM = {-E, Q e Vi ,
41r R3 0, Q e Ve •

o

(3.5.15)

According to the Gauss t heorem on the double layer potential of the unit
density distributed over a closed surface

and thus

41r,
21r ,
0,

Q e Vi ,
QeO,
Qe Ve ,

(3.5.16)

11 [(1- 2v) ~3 (nMR - RnM) - nM ' R\7\7~] dOM = ° (3.5.17)
o

for any position of point Q, also on 0 . This allows eq. (3.5.13) to be set in
the form

11~(M,Q)doM = -Eb(Q) ,
o

where b (Q) is the function of the position of point Q

(3.5.18)

{

I ,

b(Q) = ~ ,
0,

Q e Vi ,
QeO,

Qe Ve ·

(3.5.19)

Equality (3.5.18) is repeatedly used in what follows and is referred to as
the generalised Gauss theorem.

Let us also notice that relationships (3.5.14) and (3.5.17) can be directly
proved with re lat ive ease.
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4.3.6 The potentials of the elasticity theory

In order to generalise the classic definition of the theory of Newtonian
potential we introduce into consideration two potentials of elasticity theory.

The first potential is analogous to the single layer potential and is deter
mined by the vector

A(Q)= IIa(Mo) ·(;(Mo,Q)doMo,
o

(3.6.1)

where t: (Mo,Q) is the Kelvin-Somigliana tensor (3.5.9). It is assumed that
o belongs to a class of Lyapunov surfaces and a (Mo) is the layer density
prescribed on O. Vector A (Q) is a function which is continuous in the
whole space (the normal derivative n· V7A has a discontinuity under passage
through the layer) and satisfies the homogeneous equations of the elasticity
theory in terms of displacements in Vi and ~

_1_ grad div A + V72A = O.
1 - 21/

(3.6.2)

The limiting values of potential A (Q) from inside and outside denoted
respectively as

AdQo) = lim A (Q), s, (Qo) = lim A (Q)
Vi~Q->Qo Ve ~Q->Qo

(3.6.3)

are equal to the "direct value" determined by the improper convergent
integral

A (Qo) = IIa(Mo) ·(;(Mo,Qo)doMo·
o

(3.6.4)

The notion Vi ::::> Q --; Qo (Ve ::::> Q --; Qo) means that point Q approaches
point Qo on the layer remaining in Vi (Ve ) along the normal to Q. In sum
mary

s, (Qo) = A (Qo) = s, (Qo) . (3.6.5)

The second potential of elasticity theory possesses the properties of the
double layer potential. It is determined by the vector

B (Q) = JJb (Mo) ' <I> (Mo,Q) doMo'
o

(3.6.6)

where <I> (Mo,Q) is the tensor of force influence (3.5.12). This vector also
satisfies the homogeneous equations in terms of displacements in Vi and Ve .
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Similar to the earlier introduced vector a (Mo) the density vector b (Mo)
is assumed to satisfy Holder's condition

Ib (M~) - b (M~)I < A !rM(\ - rM~f

with a positive constant "t. The integral

(3.6.7)

(3.6.8)B (Qo) = 11b (Mo) ' ~ (Mo,Qo) doMo,
o

referred to as the direct value of potential B (Q), is understood as a princi
pal value of the integr al. Let us remind ourselves that the principal value of
the integral is defined as th e limit of the integral over surface 0 - 0 (Qo ,s)
at e ---* 0, where 0 (Qo, e) denotes the vicinity of point Qo on 0 of diameter
2£. The limiting values n, (Qo) and Be (Qo) of potential B (Q)

B, (Qo ) = lim B (Q) , Be (Qo) = lim B (Q) ,
Vi :>Q->Qo Ve :>Q->Qo

(3.6.9)

are not equal to each other and do not coincide with its direct value, that
is, potential B (Q) experiences a jump while passing through the layer. The
Newtonian double layer pot ential

W(Q) = 11 p(Mo) nMR;RdoMo
o

(the density is denoted as p (Mo)) possesses the same prop erty. However it
is proved that the limiting values are equal to the direct value if Qo is the
point on 0 where the density vanishes, i.e. for p (Qo) = 0

W (Qo) = 11p (Mo) n
M
R

; R dOMo = w, (Qo) = We (QO) .
o

The second pot ent ial of the elast icity theory has thi s particular property
of the Newtonian pot ential, that is, if b (Qo) = 0, then

B (Qo) = a, (Qo) = B e (Qo) . (3.6.10)

(3.6.11)

Referring to the generalised Gauss theorem (3.5.18) we write down the
following equality

B (Q) = II [b (Mo) - b (Qo)] . ~ (Mo,Q) dOMo+
o

b(Qo)' II~(Mo,Q)doMo =
o

= II [b (Mo) - b (Qo)] . ~ (Mo,Q) dOMo _ { b (~o) ,
o
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The integral

JJ[b (Mo) - b (Qo)] .4> (Mo,Q) dOMo

o

represents a potential of the type of B (Q) but with the density

b* (Mo) = b (Mo) - b (Qo)

which vanishes at point Qo . For this reason , using eqs. (3.6.10), (3.6.11),
(3.6.8) and (3.5.18) we obtain

a, (Qo) = JJ[b (Mo) - b (Qo)] .4> (Mo,Qo) dOMo - b (Qo)
o

1 1
= B (Qo) + 2b (Qo) - b (Qo) = B (Qo) - 2b (Qo) ,

Be (Qo) = JJ[b (Mo) - b (Qo)] ' 4> (Mo,Qo) dOMo = B (Qo) + ~b (Qo) .
o

Therefore, we arrived at the Plemelj formulae for the second potential of
the elasticity theory

1a, (Qo) = B (Qo) - 2b (Qo) ,

1
Be (Qo) = B (Qo) + 2b (Qo) .

(3.6.12)

(3.6.13)

4.3.7 Determining the displacement field for given external
forces and displacement vector of the surface

Let a unit concentrated force e be applied at point Q of an unbounded
elastic media, then by eq. (3.5.11) the surface forces

(3.7.1)

appear on surface 0 bounding volume Vi which is an imaginary cut of the
medium . The displacement vector in this volume is equal to

u(M,Q) = U(M,Q). e. (3.7.2)

This particular state of volume Vi is taken as being the first state in the
reciprocity theorem. The state of the same body subj ected to external
volume (pK) and surface (F) forces is understood as the second state. The
displacement vector in this state is denoted by u (M) .
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The work done by the forces of the first state in the displacement of the
second state is

a' =
[u (Q) +1ju(MoH (Mo ,Q)doMO] .e, Q C 1';,

11 U (Mo) . <f? (Mo,Q)doMo . e, Q C v.,.
o

(3.7.3)

Referring to Plemelj's formulae (3.6.12) and (3.6.13) we have in both cases

lim a' = lim a'= [_21U(QO)+jrr U(Mo) .<f?(Mo,QO)dOMO] · e ,
Vi ~Q->Qo Ve ~Q->Qo }

o

so that recalling definition (3.5.19) of function 8 (Q) we have

(3.7.4)

provided th at , when Q C 0 , the integral on the right hand side is under
stood as a principal value

11 U (Mo) . <f? (Mo,Qo)doMo·
o

(3.7.5)

The work of the forces of the second state done in the displacement of
the first stat e is equal to

a" = [111 pK (M) . (; (M ,Q) dTM+11F (Mo) . i: (Mo,Q) dOMO] . e ,

~ 0

(3.7.6)

and, by virtue of eq. (3.6.5) this formula retains its validity for both Q C

Vi ,Q C Ve and Q C 0 . In the latter case t he improper integral converges
since the singularity of tensor (; (Mo,Q) as a function of point M« is weak
at point Qo (as R- 1) .

Applying the reciprocity theorem leads to the following relat ionship

8 (Q) U (Q) = 11 F (Mo) . t: (Mo,Q) doMo - (3.7.7)

o

11 U (Mo) . <f? (Mo, Q) doMo+111 pK (M) . (; (M ,Q) dTM ,
o Vi
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since the arbitrarily prescribed vector e can be omitted. The last term in
this formula

u, (Q) = 111 pK (M)· (; (M ,Q)dTM

Vi

(3.7.8)

presents the particular solution of the equilibrium equat ions in terms of
displacements corresponding to the volume forces. This proves that thi s
solution can be determined by a quadrature for any prescribed volume
force, see Subsection 4.1.4.

Relationship (3.7.7) determines the displacement vector for given exter
nal force F on surface 0 and the displacement vector u. For this reason, it
is not the solut ion of the boundary value problem.

Let us prove th at when the second case is a natural state, i.e. for pK = °
and F = 0, relat ionship (3.7.7) is sat isfied by a rigid body displacement

u (M) = Uo + w x r M = Uo + w x rQ + w x R.

Indeed, noticing that

(wx R) . ~ (Mo, Qo ) = w , [R X~(Mo,Q)]

we have

(3.7.9)

(3.7.10)

-11 u (Mo) . ~ (Mo,Q) dOMo =
o

= -(uo +w x rQ) ' 11~(Mo ,Q)doMo -w ·11R x ~(Mo ,Q)doMo
o 0

and referr ing to eqs. (3.5.14) and (3.5.18) we obtain

-JJu (Mo) . ~ (Mo, Q) doMo = (uo + w x rQ) 8 (Q),
o

which is required.

4.3.8 On behaviour of the potential of the elasticity theory at
infinity

When point Q C v;, is at a considerable dist ance from surface 0 , then

R = r M - rQ >::::; -rQ , R >::::; ra

and the kernel (3.5.9) of the first pot ential is set in the form

(3.8.1)
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Due to symmetry of tensor t: the factors (j and a are interchangeable in
formula (3.6.1), thus

A(Q) = 6 (1 ) [(3-4v)E+eQeQ] .jrr a(Mo)doM o '
V:>Q->Q 1 np. 1 - v rQ )

e = 0

(3.8.2)

By eq. (3.5.8) the latter formula presents the displacement vector at point
Q due to th e force

JJa (Mo)dou;
o

applied at the origin of the coordinate system. This force can be treat ed as
the principal vector of the system of forces on the surface of a small volume
Vi provided that the latter tends to zero. The displacement due to such a
system of forces and thus the first pot ential decreases at infinity as rQ

1
.

Under th e same replacement (3.8.1) the kernel (3.5.12) of the second
potential is given by

4> (Mo ,Q) =
Ve:>Q->Q=

( 1 ) 2 [(1 - 2v) (eQuM - uMeQ + nM . eQE) + 3UM . eQeQeQ]81f 1 - v rQ

and the potential takes the form

B(Q) ~ 8U(II- v} [(1- 2v) if (nMb - b · nME + bnM) doMo-

3eQ .if bnMdoM" . eQE] . ;b' (383)

This represents the displacement of point Q00 caused by a system of forces
distributed over the surface of a small volume Vi when the latter tends to
zero. The principal vector of this system of forces is equal to zero, oth
erwise the displacement decreases as rQ1 rather than rQ2 when Q is at
a distance well away from Vi . The second potential , similar to the double
layer pot ential, behaves as r (/ at great dist ances, see also Subsection 5.1.3.
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4.4 Theorems on uniqueness and existence of
solutions

4.4.1 Kirchhoff 's theorem

The fundament al system of equat ions and boundary conditions of elast icity
theory is given in Subsection 4.1.1. The following assumpt ions are intro
duced: (i) the initial stat e is the natural one, (ii) constants J-l and v in the
generalised Hooke law satisfy inequalities (3.3.5) and (3.3.6) of Chapter
3 ensuring positiveness of th e specific st ra in energy, th e latter vanishing
only in the natural state, and (iii) while formulating boundary condit ions
one adopts the standard assumpt ion of the linear theory of elast icity, that
is, that the surface 0 bounding the elastic solid in the equilibrium state
coincides with that in the natural state.

The Kirchhoff theorem states th at , under the listed conditions, the solu
tion of the boundary value problem is unique. Indeed, assuming existence
of two different solut ions u' ,T' and u",Til for the same volume forces in
V and surface forces on O2 as well as the same displacement vector on 0 1

we would obt ain that the differences

u = u" - u' , T = T' - Til

are the solution of the homogeneous boundary value problem

div T = 0, T = T*,

T = 2J-l (1 :.2v oE+E),
E= ~ [V'u + (V'u)*] ,

ulo l = 0, n · TI = 0.
O2

It follows from these equat ions, cf. (B.3.1O) , that

111 u ·divTdT= 111 div(T,u)dT- 111T " EdT
v v V

=11n- T . udo - 111T · .EdT = 0.
a v

By virtue of eq. (4.1.3) the surface integral vanishes, thus

fff T " EdT = 2fff AdT = 0,
V V

(4.1.1)

(4.1.2)

(4.1.3)

(4.1.4)
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and since the strain energy is positive definite we have

A == 0, € == 0, t == 0.

By eq. (4.1.1) we obtain

u' = u" , t' = i" ,

(4.1.5)

(4.1.6)

which contradicts the assumption regarding the existence of two different
solutions.

In the case of the mixed boundary value problem (1.2.3) as well as for
the first boundary value problem (1.2.1) it follows from eq. (4.1.5) that
u == 0 while in t he second boundary value problem the displacement vector
is determined up to a rigid body displacement

u =uo+wx(r-ro) . (4.1.7)

Remark 1. The Kirchhoff theorem reflects the properties of the equat ions
of the linear theory of elasticity. In particular, the linear theory is insuffi
cient for predicting the coexistence of th e different equilibrium states under
the same loading conditions, for example in the problem of the bending of
axially loaded rods. It is essent ial for the proof that the change in the body
form is negligible. If this assumpt ion is not made, then for any of the pos
sible equilibrium states one should state the following kinematic boundary
conditions

'I "Iu 0 ' = u, , u 0" = u• .
I J

Here O~ = O~ since prescribing displacement u , determines the same shape
of this part of the surface in the deformed state. However, the part of the
surface on which the surface forces are prescribed does not retain its shape,
i.e. 0&i= O~ , so th at N' i= N" and the st atic boundary condit ions should
be set as follows

N'.t'l =F
o~ , N" . t"l = F .

0 "2

For this reason, the boundary condit ion (4.1.3) for the difference in the
solutions does not hold.

Remark 2. It follows from the proof of the theorem that there appears
no state of stress in the solid if the external forces are absent . This does
not contradict the possibility of the existe nce of st resses in an unloaded
simply-connected elastic volume from which a wedge-shape is removed and
th en the cut surfaces are joined together. The field of displacement which
is cont inuous together with its derivatives and enables the solid to return
to the natural sta te from this state is not feasible in such a body. Under
these condit ions the above proof of Kirchhoff's theorem fails for no other
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reason than it is not possible to transform the volume integral into a surface
one since this transformation assumes continuity of i; u and their first
derivatives.

Remark 3. In a multiply-connected volume the continuity of the tensors
of strain and stress is also guaranteed in the case when the displacement
caused by Volterra's distortion is not single-valued, see Subsection 2.2.4. In
the above statement the Kirchhoff theorem is also not valid. It is completed
by the requirement that solutions u' and u" have coincident cyclic constant
vectors band c , i.e, the solutions must have the same distortion. Then
vector u = u' - u" is a continuous and single-valued function and the
above proof remains valid, see Section 5 of this chapter.

Remark 4. Kirchhoff 's theorem states that the solution is unique if it ex
ists . A proof of the existence of the solution of the first and second boundary
value problems is considered in Subsections 4.2-4.8 of this chapter.

Remark 5. Kirchhoff's theorem does not exclude the existence of discon
tinuous solutions of the homogeneous boundary value problems for which
the displacements (or the surface forces in the second boundary value prob
lem) vanish on the body surface. A solution which is continuous or even
analytical in body's volume can be constructed for values of Poisson's ratio
v beyond the admissible interval of its values, i.e. for v > 1/2 and v < -1.

Homogeneous boundary value problems for a hollow sphere bounded by
concentric spheres R = Ro and R = R 1 can serve as an example. The
solution can be constructed by means of the biharmonic functions of Love
(see Subsection 4.1.10) of the type

X = L (AsR
s+2 + R~~1 +c.n:+ ::1) r. (J.l) (J.l = cos 19) ,

s
(4.1.8)

where P, (J.l) is the solution of Legendre 's equation

d ( 2) dPs
dJ.l 1 - J.l dJ.l + 8 (8+ 1) P; = O.

Subscript 8 is determined by the condition of the existence of a nontrivial
solution of the homogeneous boundary value problem, i.e, the determi
nant b. of the system of linear homogeneous equations for unknown coef
ficients As, Bs' Gs, D, obtained from the boundary conditions. It depends
on 8, v, Ro/R1 and the roots of the equation

b. (8 V" Ro) = 0, 'R
1

(4.1.9)

(transcendental with respect to 8) are complex-valued in the admissible
interval of values of t/ ,

Prescribing integer values of 8, i.e. 8 = n 2:: 2, one obtains the solutions
continuous in the whole volume . For these values of 8 and for all Ro/R1
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eq. (4.1.9) yields the values of parameter v eq. (4.1.9) lying outside the
admissible interval.

4.4.2 Integral equations of the first boundary value problem

The solution is set in the form of the second potential of the elasticity
theory (3.6.6) with the unknown density vector b (Mo)

v (Q) = u (Q) - u, (Q) = JJb (Mo) . <I> (Mo, Qo) doM o = B (Q) . (4.2.1)

o

By u, (Q) we denote a particular solution corresponding to the mass forces.
When this solution is given by eq. (3.7 .8) then vector v (Q), due to eq.
(4.2.1), is the solution of the homogeneous equations of the elasticity theory
in terms of displacements both at Q C Vi and Q C Ve . The value v (Qo)
on surface 0 is given.

Referring to eqs. (3.6.12) and (3.6.13) we write the following equalities

1
v (Q) = v (Qo) = B, (Qo) = Bo (Qo) - -2 b (Qo) ,

Vi:>Q--->Qo

1
ve:>J--->Qo (Q) = v (Qo) = Be (Qo) = Bo (Qo) +2b (Qo) ,

(4.2.2)

(4.2.3)

where Bo (Qo) denotes the direct value of potential B (Q). We thus arrive at
the following integral equations of the first internal (I(i ) ) and first external
(I(e)) boundary value problems

I(i) ~b (Qo) - JJb (Mo) . <I> (Mo,Qo)doM o = -v (Qo) ,
o

I(e) ~b (Qo) +JJb (Mo) . <I> (Mo,Qo)doM o = v (Qo) ·
o

(4.2.4)

(4.2.5)

Remark 1. Let us consider the case I(i) and let the displacement vector
v (Qo) be a rigid body displacement

v (Qo) = Vo+ w x rQ o .

The solution of integral equation (4.2.4)

(4.2.6)

(4.2.7)

follows immediately from eq. (3.7.10) if /5 (Q) = 1/2. Indeed , putting eq.
(4.2.7) as follows

b (Mo) = - (vo + w x rQ o) - w x R
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yields

JJb (Mo) . <i> (Mo,Qo)doMo = ~ (vo + w x rQo) ,
o

(4.2.8)

and the above said follows when expressions (4.2.7) and (4.2.8) are substi
tuted into eq. (4.2.4). Using eq. (4.2.1) and taking 8(Q) = 1 we obtain

v (Q) = - JJ(vo + w x rMo) . <i> (Mo,Q) dOMo = vo + w x va (4.2.9)

o

Thus, when a rigid body displacement of surface 0 is prescribed, the whole
volume Vi moves as a rigid body and the st at e of stress is absent . By
Kirchhoff's theorem, this solution is unique.

Remark 2. It follows from the above analysis that vector

(4.2.10)

with Vo , w being arbitrary constant vectors, is a solution of the homoge
neous integral equation

1 0 1f 0 A"2 b (Qo) - b (Mo) · 1> (Mo,Qo)dOMo = O.

o

(4.2.11)

Hence, the density vector b (Mo) in problem I (e) can be determined only
up to term (4.2.10).

Remark 3. In accordance with eq. (3.8.3) the displacement vector (4.2.1)
decreases not slower than R- 1 in the external problem. This solution can
be obtained if the principal vector of the forces applied on 0 is equal to
zero under the prescribed surface displacement v (Qo). For this reason, the
solution of the first external problem in terms of the second pot ential (3.6.6)
does not exist for arbitrary v (Qo).

A similar phenomenon is known from electrostatics. The problem of de
termining the field of the electric potential v (Q) vanishing at infinity in
terms of the prescrib ed distribution v (Qo) on the conducting surface 0
reduces to the external problem of Dirichlet . The solution of the latter
problem can be represented by a double layer pot ential only under the con
dition that the total charge on 0 is equal to zero. For this reason the way
th at the problem is solved is to superimpose the double layer potential by
a solut ion of the Robin problem. In thi s problem the potential on 0 is con
stant whilst its value in Ve is presented by a single layer potential. Clearly,
the solut ion of the first exte rnal boundary value problem of the theory of
elast icity reduces to an analogous "elastostat ic Robin 's problem".
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4.4.3 Integral equations of the second boundary value problem

The solution of the homogeneous equations of th e elast icity theory in terms
of displacements is sought in the form of the first potential (3.6.1)

v (Q) = UQ - U * (Q) = JJa (Mo) . U(Mo,Q)doMo = A (Q) (4.3.1)

o

with an unknown density vector a (Mo). As shown in Subsection 4.3.5 the
stress tensor is as follows

A 1 JrrdOM [ ( A )T(Q) = 81f(1-v) J R 3 0 (1 - 2v) Ra+aR- ER ·a +
o

(4.3.2)

Here

(4.3.3)

and the difference in the sign from eq. (3.5.12) is at t ributable to the fact
that the different iation in eq. (4.3.2) is carried out with respect to the co
ordinates of point Q. The validity of differenti at ion in eq. (4.3.1) is beyond
question since point Q is not located on 0 , that is R # O.

The stress vector on the elementary surface with normal nQ is determined
by the equality

nQ . T (Q) = }J q, (Mo,Q) . a (Mo)dOMo ,

o

(4.3.4)

where eq. (4.3.2) suggests th at the following nonsymmetric tensor of t he
second rank should be introduced

(4.3.5)

Th is tensor differs essentially from ~ (Mo,Q) in th at its definition contains
the normal vector at point Q rather than at Mo. Due to eq. (3.5.12) the
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sum

implies a kernel of th e potenti al with a weak singularity (of the kind R-1 )

C(Q)= JJ[~(Mo,Q)+1>(Mo ,Q)] · a (Mo) doMo
o

whose limiting inward and outward values are coincident with its direct
value (similar to th e case of the first potential)

lim C (Q) = C, (Q) = lim C (Q) = C, (Q) = CO (Qo).
Vi"JQ-+Qo v, "JQ -+Qo

For this reason,

lim jrr~ (MO lQ) . a (Mo)dOMo =
Vi"JQ-+Qo J

o

= 11 [~(MO lQO)+<I>(MolQO)] . a (Mo)doMo -
o

lim jrr1> (Mo,Q) . a (Mo)dOMo'
Vi "JQ -+Qo J

o

However, similar to eq. (4.2.2)

lim jrr1> (MO lQ). a (Mo)doMo = jrr1> (MO lQo) . a (Mo)dOMo -
Vi"JQ-+Qo J J

o 0

so that

lim jrr~ (MO lQ) . a (Mo)dOMo = jrr~ (MO lQo) . a (Mo) dOMo+
Vi"JQ-+Qo J J

o 0
1
"2a(Qo) (4.3.7)
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and by analogy

lim Jrr~ (Mo,Q) .a (Afo) dOMo = Jrr~ (Mo,Qo)' a (Mo)doMo-
vc:;Q--->Qo J J

o 0

1
"2a(Qo) . (4.3.8)

Comparing eqs. (4.3.5) and (3.5.12) and account ing for -rQ - rM = -R,
we have

~ (Mo,Qo) = <I> (Qo , Mo) .

We introduce the distributed surface forces prescribed on 0

lim llQ . t = (llQ . t) = F (Qo),
Vi:;Q--->Qo i

lim llQ . t = (llQ . t) = F (Qo) ,
~:;Q--->Qo e

(4.3.9)

(4.3.10)

where in both cases llQ denotes the unit vector of the normal external to
volume Vi. Referring to eqs. (4.3.4) , (4.3.7), (4.3.8) and (4.3.9) we arrive at
the integral equations of the first internal (II(i)) and second exte rnal (n(e))
bound ary value problems

n (i) ~a(Qo)+ 11 <I>(Mo ,Qo) 'a(Mo)doMo =F(Qo) , (4.3.11)

o

n(e) ~a (Qo) - 11 <I> (Mo,Qo) . a (Mo)dOMo = -F (Qo) . (4.3.12)

o
Let us notice th at the surface force in the second line of eq. (4.3.10) has
the opposite sign to that in the standard definition of th e scalar product
of normal vector external to Vi and th e stress tensor.

Remark. Making use of eq. (3.5.9) we can rewrite the displacement vector
(4.3.1) in the following form

1 [Jrra (Mo) 1 Jrr a (Mo) ]
v (Q) = 41fp j -R-doMo+ 4 (1 _ v) gradQ j R· -R-doMo .

(4.3.13)

Replacing R by r Mo - rQ we obtain

1 [Jrra (Mo) 1 Jrra (Mo)
v (Q) = 41fp J -R-doMo - 4 (1 _ v) gradQ rQ ' J -R-doMo+

o 0

1 JrrrM O · a (Mo) ]
4 (1 _ v) gradQ j R doMo ' (4.3.14)
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This is the solut ion in t he Papkovich-Neuber form, eq. (1.4.10) , provided
that the following potent ials

(4.3.15)

are understood as the harmonic vector and scalar , respectively.

4-4.4 Comparison of the integral equations of the first and
second boundary value problems

Let us rewrite the integral equat ions of Subsections 4.4 .2 and 4.4.3 in the
following sequence

lI te)

~b (Qo) - lIb (Mo) . <I> (Mo,Qo) dOMo = -v (Qo) ,
o

~a(Qo) - 11 <I> (Qo ,Mo) . a (Mo)doMo = -F (Qo) ,

o

~b(Qo)+1[b (Mo)· <I> (Mo,Qo)doMo = v (Qo) , )

~a(Qo) + 11 <I> (Qo , Mo) ' a (Mo) dOMo = F (Qo).
o

(4.4 .1)

(4.4 .2)

It has been ment ioned above that the surface integrals are understood as
the pr incipal values, that is, t he equations are singular. T he basic theore ms
and Fredholm's alte rnative can be proved to be applicable for the values of
constants /1 and IJ for which the specific st ra in energy is posit ive, see eqs.
(3.3 .5) and (3.3 .6) of Chapter 3.

Integral equations comprising system (4.4.1) are conjugate, the same is
valid for system (4.4 .2). T he corres ponding systems of the homogeneous
equat ions can be writ ten in the form

I6
i
), I6

e
) ~bO (Qo) - All bO (Mo) . <I> (Mo,Qo)dOMo = 0,

o
1I6e), lIg ) ~ao (Qo) - All <I> (Qo , Mo) . aO (Mo)dOMo = 0,

o

(4.4.3)

where A = 1 for prob lems I6i), 1I6e), and A = -1 for problems I6e),1I6i).
The eigenvalues of the conjugate integral equations are known to coincide,
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i.e. these equations have simultaneously (for the same oX) either a trivial
solution or nontrivial proper solutions. According to Fredholm's alternative
it is known that in the first case the corresponding inhomogeneous equation
has only one solution, whereas in the second case this equation possesses no
solution for an arbitrary right hand side and may have non-unique solutions
under certain conditions imposed on the right hand side.

In what follows it is proved that oX = 1 is not the eigenvalue of the
system of conjugate equations (4.4.3). Thus, the first internal (I(i)) and
second external (II(e)) problems have a unique solution for an arbitrarily
prescribed right hand side.

On the contrary, for oX = -1 the homogeneous equation I6e) has a nontriv
ial family of solutions (4.2.10) depending on two arbitrary constant vectors

(six constant scalars). Hence, the homogeneous equation (II6i
) ) also has a

nontrivial family of solutions depending on six constants. Therefore, prob
lems II(i) and I(e) have in general no solutions. It is easy to understand
inasmuch as the free term F (Q) in problem II(i) determining the distribu
tion of the surface forces must satisfy the equations of statics and then the
displacement vector is determined up to a rigid body displacement. The
very statement of problem I(e) imposes an essential restriction on prescrib
ing vector v (Qo) , see Remark 3 in Subsection 4.4.2.

The problems (4.4.1) and (4.4.2) are considered in det ail below.

4.4.5 Theorem on the existence of solutions to the second
external and first internal problems

Let the homogeneous integral equation

~a (Qo) - ././ <i> (Qo, Mo) . a (Mo) dOMo = 0
o

have a nontrivial solution aO (Qo) . Due to eq. (4.3.1) the displacement vec
tor Y (Q) determined by the first potential

Y (Q) = A (Q ;aD) = ././ a'' (Mo) ' o(Mo,Q) dOMo

o

satisfies the homogeneous equations of the elasticity theory in terms of
displacements. At infinity it decreases not slower than R- 1 whereas the
surface forces calculated by eqs. (4.4.1) and (4.5.1) vanishes on 0 and have
the order of R-2 on the surface of the sphere of a sufficiently large radius R.
The double strain energy given by Clapeyron 's formula (3.3.3) of Chapter
3 is as follows

111 T ·· gdT= 11Y·Fdo+ 11Y ·Fdo=R
2 11 y ·Fdo*+ 11 Y·Fdo,

v, n 0 n* 0
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where do* denotes a surface element of sphere O*of a unit radius. The
integrand decreases not slower than R-3 so that

j j j t . .EdT = j j v . Fdo = 0,

Ve 0

and E = 0 because the specific strain energy is positive definite. This is
why v (Q) may be only a rigid body displacement. However, it vanishes at
infinity, thus

(4.5.3)

It remains only to prove that this equality contradicts the assumption
a'' i= O. To this end , we note that it follows from the continuity of the first
potential and eq. (4.5.3) that

(4.5.4)

'TUrning once again to Clapeyron's formula we obtain

jjjt .. EdT= jjv(Qo).FdOMo=O,
Ve 0

so that E= 0 and , byeq. (4.5.4), we have

v(Q) = 0, Q c v; (4.5.5)

The surface forces corresponding to zero displacement vector vanish, and
byeqs. (4.3 .10)-(4.3.12) we obt ain

(4.5 .6)

which is the required result . Integral equat ion n~e) , and thus the conjugate

equat ion I~i) admits only a trivial solution and>. = 1 is not the eigenvalue
of these equations. This proves the existence and uniqueness of the solution
of problems I(i) and n(e) for an arbitrary displacement vector v (Qo) on
o in the first problem and an arbitrary surface force F (Qo) in the second
problem.

4.4.6 The second internal boundary value problem (IjCi))

The homogeneous integral equation corresponding to this problem

n~i) ~ao (Qo) + j j eI> (Qo ,Mo) . aO (Mo)doMo = 0

o
(4.6.1)
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is conjugate to eq. (4.2.11):

I~e ) ~bO (Qo) +11 bO(Mo) . <I> (Mo,Qo) dOMo = o. (4.6.2)

o
The lat ter possesses a nontrivi al solution (4.2.10), thus, the first one has
a nontrivi al solution, too . Proceeding now to th e inhomogeneous integral
equation (4.4.2) of problem n<i) we have

11 bO (Qo) . F (Qo)dOQo = ~ 11 b
O (Qo) . a (Qo)dOQo+

o 0

IfMM, [If b" (Qol ~ (Qo, Mol MQ'] .a (Mo)

The internal integral is equal to - ~bo (Mo) so that

11 bO (Qo) . F (Qo) dOQo =

o

= ~ [If b
O

(Qo) · a (Qo) doQ, - If b
O

(Mol a (Mo)MM'] ~ 0

This proves one of the Fredholm theorems which states th at problem n (i)

may have a solution if the prescribed distribution of the surface force F (Qo)
is orthogonal to the family of eigensolut ions of the conjugate integral equa
t ion (4.6.2)

11 bO (Qo) . F (Qo) doQo = o.
o

Inserting the expression for bO (Qo) we have

Uo·11 F (Qo)dOQo+ w ·11 rQo x F (Qo)dOQo = 0,
o 0

and due to the arbitrariness of vectors un and w we arrive at the expected
stati c conditions requiring that the principal vector and the principal mo
ment of the surface forces in problem n (i) vanish , i.e.

v = 11 F (Qo )doQo = 0,
o

m'' = 11 r (Qo) x F (Qo)dOQo = O. (4.6.4)

o
When these condit ions are fulfilled then the displacement vector v (Q) is
determined up to a rigid body displacement , the lat ter being the eigen
solution of the conjugate equation (4.6.2) in accordance wit h Fredholm 's
theorem.
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4.4.7 Elastostatic Robin's problem

Let the nontri vial eigensolut ion a O (Qo) of problem II~i ) be taken as the
density of the first potential for problem n (e). By virt ue of eqs. (4.4.1),
(4.6.1) and (4.3.10) , the dist ribution of the surface forces corresponding to
this density is given by

-F (Qo) = - (nQ .r)e (4.7.1)

1 0 ) jr{A 0 0= 2a (Qo - ) <I> (Qo, Mo) . a (Mo)doM u = a (Qo) .

a

This provides us with a mechanical interpr etation of the eigensolution of
the second internal problem.

Let the first potential of the elast icity theory obt ained by means of den
sity aO (Mo) be denoted as

W (Q) = JJaO (Mo) . {; (Mo,Q) doM a ·

a
(4.7.2)

This function is cont inuous in the whole space and determines the displace
ment vector

{

wdQ ) ,

W (Q) = W (Qo)'

W e (Q) ,

Q e Vi ,
Q eO ,
Q c Ve .

(4.7.3)

Th e surface force on 0 , which is obtained by eq. (4.3.11) and corresponds
to the displacement vector w, (Q) of problem II(i ) , is zero, i.e.

1 0 jr{ A 0 [ A]2a (Qo)+ } <I> (Qo, Mo) . a (Mo)doM o = nQ ' T (w.] 0 = 0, (4.7.4)

a

and follows from definition (4.6.1) of density a'' (Qo). In the case of no
surface force th e displacement W i (Q) of the second internal problem may
only be a rigid body displacement

W i (Q) = Uo+ w x r Q

and due to cont inuity of the single layer potential (4.7.2) , we have

W i (Qo) = Uo+ w x r Qo = W e (Qo).

(4.7.4)

(4.7.6)

Let us imagine a rigid body filled in cavity Vi of an unbounded medium .
Let the displacement of this rigid body be given by vector (4.7.5) . It results
in a displacement field W e (Q) in Ve which is described by the first potential
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(4.7.2). The eigensolution -ao (Qo) of problem ngl (with a minus sign)
determines the reaction force of the medium to displacement of the rigid
body since llQ in eq. (4.7.1) denotes a unit vector of th e normal directed
into Ve •

This problem of the state of stress in the solid appearing due to a dis
placement of a fill-in rigid body is analogous to Robin 's problem in electro
stat ics. A constant pot ential on a conduct ing surface corresponds to a rigid
body displacement of volume Vi and a zero field of voltage corresponds to
a zero stat e of st ress in volume Vi , Robin 's problem reduces to seeking the
charge dist ribution on conductor 0 from a homogeneous integral equat ion
for density of the single layer potential while the corresponding elastostat ic
Robin 's problem reduces to searching for the eigenvector a'' (Qo ) of prob
lem n~i) . The existence of the solut ion of elastostati c Robin 's problem is
ensured by th e existence of the nontrivial eigensolution of integral equation
ngl .

The principal vector and the principal moment of the system of forces
which need to be applied to the rigid bod y filled into the medium for
providing displacement (4.7.5) are determined from the static equat ions

Let

v = 11a
O

(Qo)doQ o '

o
m e = 11 r (Qo) X aO (Qo) doQo ·

o
(4.7.7)

k k+3
a, a , (k = 1,2 , 3) (4.7.8)

k
denote distributions of the surface forces on 0 caused by a unit force V = ik

and respectively a unit moment kril3= ik , both being directed along axis C X k

and applied to the rigid body. Then by eq. (4.7.7)

11 r(Qo ) x ~doQo ' i, = 0, )
o

k + 3 •11 r (Qo) x a dOQ() ' I T = Db' ,
(4.7.9)

since axis CXk is the act ion line for the resultant force ~ and the force

distribution k~3 is stat ically equivalent to zero.
Let

k k+3
u= ik , U = i k x r (Qo) (4.7.10)

denote the system of eigensolut ions of integral equat ion I[)el . It is evident
that any displacement of the rigid body soldered into Vi is a linear com
bination of these elementary displacements . Formulae (4.7,9) are rewritten
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in th e form

(4.7.11)(k,r = 1,2, . . . , 6) .JJ~ .~ doQo = 8kr

o

This determines the distribution of the surface forces which are the eigenso
lutions of integral equations ug)and orthonormalised with system (4.7.10)

of the eigensolut ions of problem Ibe
) , see eq. (4.2.11).

4.4.8 The first external boundary value problem (j{e))

According to Fredholm 's theorem (Subsection 4.4.6) the integral equat ion
(4.4.2) of this problem has a solution only under th e condition of orthogo

nality of the free term to any eigensolut ion aO (Qo ) of problem Ubi):

(4.8.1)JJv (Qo) . a
O (Qo) dOQ o = o.

o

As mentioned in Remark 3 of Subsection 4.4.2 this condition stems from
representing v (Qo) in the form of th e second pot ential of the elasticity
theory ra ther than the essence of the problem. By eq. (3.8.3) , this vec
tor decreases not slower than R-2 with the distance from 0 , whereas th e
required decrease is not slower than R- 1 .

Instead of the prescribed distribution v (Qo) on 0 we introduce an aux
iliary vector

6

v * (Q) = v (Qo) - Z=Dr~,
r = l

(4.8.2)

with ~ denoting the elementary system of eigensolut ions (4.7.10) of integral
equation Ibe

) .

Condition (4.8.1) will hold for any eigenvector a O (Qo) if it holds for any
of vectors (4.7.8). Referring to eq. (4.7.11) we have

JJv" (Qo)· ~ (Qo) dOQ o = JJv (Qo)' ~ (Qo) dOQ o - o, = O. (4.8.3)

o 0

Coefficients Dr are determined now. Assuming

3

lio = z= i k JJv (Qo) . ~ (Qo) dOQo ,

k= l 0
3

W = z= i k JJv (Qo)· kii
3

(Qo) d OQo

k= l 0

(4.8.4)
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we put eq. (4.8.2) in the form

v" (Q) = v (Qo) - (uo + w x r Q). (4.8.5)

(4.8.6)

Looking for solut ion v " (Qo) in the form (4.2.1) of the second potential
of the elasticity theory we arr ive, instead of eq. (4.2.5), at the following
integral equation

~bO (QO ) + JJ bO(Mo)· <i> (Mo,Qo)doMo = v·(Qo),

o

which possesses a solut ion since the condit ion of ort hogonality of the free
term and the eigenvector of problem ng) is fulfilled.

It remains only to const ruct the first potential W e (Qo) in v". This po
tential solves the elastostatic Robin's problem corresponding to prescribing
the displacement vector

W e (Qo) = Uo +w x r Qo (4.8.7)

on O. The solution of the first external boundary value problem is presented
in the form

v (Q) = v " (Q) + W e (Q) . (4.8.8)

Indeed, this solut ion satisfies the homogeneous equat ions of elast icity the
ory in Ve (as each potential satisfy these) and , besides, by eqs. (4.8.5) and
(4.8.7), on 0

v (Qo) = v (Qo) - (uo + w x r Qo) + (uo + w x r Qo) = v (Qo)'

which completes the proof. The uniqueness of the solut ion is ensured by
Kirchhoff's theorem.

4.5 State of stress in a double-connected volume

4.5.1 Overview of the content

It is assumed in what follows that the components of the strain tensor € are
single-valued continuous functions of coordinates having continuous partial
derivatives of the first and second order and satisfying the compatibility
condition (2.1.5) of Chapter 2. Let us agree to refer to such a deformation
as a regular one.

Under a regular deformation of an elastic solid in a single-connected vol
ume, the displacement vector u and the linear rotation vector w obtained
by means of the st rain tensor are also single-valued and cont inuous. Accord
ing to Kirchhoff's theorem (Subsect ion 4.4.1) this vollime is in the natural
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state if it is not subjected to external forces. This is not to say that this
is the case for a double-connected volume (torus, hollow cylinder) where a
state of stress may appear under a regular deformation and absent exter
nal forces. A double-connected volume which was originally in the natural
state is stressed by means of Volterra's distortion, see Subsection 2.2.4. A
thin layer of material is removed by two congruent cuts and the ends of the
single-connected volume obtained are rigidly connected and the congruent
surfaces are called "the barrier". The characteristics of the distortion are
two cyclic constant vectors c and b referred to in what follows as the trans
lational and rotational vectors of distortion. They determine the translation
and rotation which is needed for one of the ends after cutting in order to
make it coincident with the other congruous end.

Prescribing external forces acting on the elastic solid in a single-connected
volume determines the state of stress and the single-valued displacement
vector whereas in a double-connected volume determining state of stress
is only possible when it is a priori known that the vectors of distortion
vanish.

Jumps in the rotation vector wand displacement vector u on the bar
rier are determined by Weingarten's formulae in terms of the distortion
vectors c and b whose components are termed by Volterra as the barrier
constants. For a double-connected volume the formulation of Kirchhoff's
theorem must be completed by the requirement of prescribing six barrier
constants. Provided that the elastic medium fills in a double-connected vol
ume and the deformation is regular then the state of stress is determined
not only by the external forces but also by the six barrier constants. This
will be proved in Subsection 4.5.2 by constructing the state of stress in an
unloaded body in terms of prescribed vectors c and b . A modified formu
lation of the reciprocity theorem in a double-connected volume is given in
Subsection 4.5.3, whilst Subsections 4.5.4 and 4.5.5 are concerned with the
expressions for the strain energy due to distortion. The boundary value
problem of the theory of distortion is obtained in Subsection 4.5.6. Exam
ples related to the distortion in a hollow cylinder are studied in Subsection
5.7.3.

4.5.2 Determination of the state of stress in terms of the
barrier constants

Let us consider a double-connected volume Vi and a volume \1;* bounded
by surface S . A barrier o is a part of S and transforms Vi into a single
connected volume. The surface of volume Vi is denoted by O. The volumes
outside of 0 and S are designated respectively as v;, and Ve* = v;, +Vi - \1;* ,
see Fig. 4.3.
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o

(5.2.1)

S-6

FIGURE 4.3.

Let the barrier constants c and b be prescribed. Referring to eqs. (3.7.9)
and (3.7.10) we have

8 (Q) (c + b x rQ) = - II (c + b x r Ms) . tI> (Ms,Q)doMs'
S

where 8 (Q) = 1 for Q C Vi* and 8 (Q) = 0 for Q C Ve*. The left hand side
of this equality can be represented as a jump in the displacement vector

v ( ) = { c + b x rQ, Q C Vi* ,
Q 0, Q C Ve*

(5.2.2)

when passing over barrier. The strain tensor E(vQ) obtained from this
vector vanishes identically

E(V(Q)) = O (QcVi*, Qc5, QCVe*) ·

Hence,

v(Q) = - II(c+ b x rMs ) ' tI>(Ms,Q)doMs'
S

The integral on th e right hand side is the sum of two integrals

u(Q) = - II (c+ b x rMJ · tI>(Ms,Q)doM" ,
a

u' (Q) = - II (c + b x r MJ . tI> (Ms ,Q)doMs'
S- a

(5.2.3)

(5.2.4)

(5.2.5)

(5.2.6)

Vectors u' (Q) and u (Q) remain cont inuous when passing over (1 and 5-(1,
respectively. The same is valid for st rain tensors E(u' (Q)) and E(u (Q))
obtained in terms of u' and u , respectively. By eq. (5.2.3)

E: (v (Q)) = E: (u (Q)) + E: (u' (Q)) = O.
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Tensor E(u ' (Q)) remains cont inuous when passing over (T , hence, tensor
E(u (Q)) is also cont inuous on (T . Due to the continuity of vector u ' (Q) on
(T the vector

u (Q) = v (Q) - u ' (Q)

is continuous everywhere except for barrier (T where it exhibits t he same
discontinuity as v (Q). Hence, by eq. (5.2.4)

u + (Qq) - u - (Qq) = c + b x r Q,,' (5.2.7)

Here, according to eq. (2.4.6) of Chapter 2, superscripts + and - indicat e
values of u " under" and "over" th e barri er , see Fig. 2.2.

By eq. (5.2.5) th e displacement vector u (Q) of particles of the solid is
set in th e form

u(Q) = -c· II~(Mq,Q)doM" - b· IIxu, x ~(Mq,Q)doM"
o a

(5.2.8)

and satisfies the equations of th e elast icity th eory in terms of displace
ments. The corresponding tensors of strain E(u(Q)) and stress t(u(Q))
are cont inuous everywhere. Vector u (Q) is cont inuous everywhere, except
on barri er (T , and experiences the required discontinuity (5.2.7).

Tensor t (u (Q)) determines the surface forces n .t (u (Q)) on surface 0
of the double-connected volume. Thi s system of forces is statically equiva
lent to zero since u (Q) results in an equilibrium state of st ress.

Let us now determine the state of st ress i: in volume Vi caused by th e
surface forces -n . t (u (Q)) in the case of no distortion. By th e theorem
of Subsection 4.4.6, such a state of st ress exists and is uniquely determined
since th e sought displacement vector u* is continuous and unique and the
system of th e surface forces -n· t (u (Q)) is statically equivalent to zero.
Superimposing th e states of stress t (u (Q)) and t * presents a stat e of
stress in the double-connected volume determined by the distortion only
since th e external forces are absent in this state.

4.5.3 The reciprocity theorem

Let us apply Clapeyron's formula (3.3.3) of Chapter 3 to the single-connected
elast ic solid which is obtained from a double-connected body by means of
a barri er

2a = JJJpK . udr +JJF . udo+
v 0

JJn+· i« .u+do +JJn-' t - .u -do, (5.3.1)
q + q -



4.5 State of stress in a double-connected volume 233

where n+ = -n- denotes th e unit vector of the normal to the barrier
directed into th e body cut by th e barrier. In addition to this , f+ = i- = f
on the barri er. Referring to eq. (5.2.7) and assuming that there are no
external forces we obtain

2a = JJn+· t .(e + b x r) do = Q. e + mO. b.

a

(5.3.2)

Here Qand m" denot e the principal vector and the principal moment about
the origin of th e chosen coordinate system of the stresses due to distortion
in the selected volume

(5.3.3)

a a

Considering two states of the elast ic double-connected volume, namely,
the first caused by th e mass and surface forces (pK' ,F') under distortion
e' , b' and the second with pK" , F" , e" , b" , one obtains by virtue of the
reciprocity theorem that

JJJpK' . u" dr +JJF' . u" do + Q' . e" + m O
' . b" =

v °
= JJJpK" · u'dr +JJF" · u'do + Q" . e' + mO" . b' . (5.3.4)

v °
In particular, when th e external forces are absent in the first stat e and
the distortions are absent in th e second st at e we arr ive at th e following
relationship (Colonnetti , 1912)

JJJpK" . u'dr +JJF" . u'do + Q" . e' + mO" . b' = 0.

v °
When the external forces are absent in both states, then

Q' . e" + m O' . b" = Q" . e' + mO" . b' .

(5.3.5)

(5.3.6)

In particular , considering th e translational distortion e as the first state
and the rot ational distortion b as the second state we have e' = e, b' = 0,
e" = 0, b" = b and, by eq. (5.3.6)

b .m~ = e ·Q* , (5.3.7)

where Q* and m~ are the principal vector and the principal vector of the
st resses due to the rotational (b) and translational (e) distortions respec
tively.
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4.5.4 The strain energy of distortion

In a linear elastic solid the principal vector Q and the principal moment
m'' of the stresses on the barrier due to the distortion are linear vectors
determining the distortion of vectors c and b

Q= 6.c + M.b,
0 ' ,

rn = N ·e+ B ·b, (5.4.1)

where 6,M, N, B are tensors of the second rank. Terms M .b and N · e
present the vectors denoted in eqs. (5.3.7) as Q* and rn;' respectively.
Hence

e· M·b=b· N·e ,

that is, tensor N is a tr anspose of M

N = M*.

The st rain energy of distortion (5.3.2) is now set in the form

1( ' , ' )a = 2 c - C . e + 2e . M . b + b . B . b .

(5.4.2)

(5.4.3)

(5.4.4)

In general, this expression contains 21 constants since tensors 6 and B
in eq. (5.4.1) are symmetric which follows from the reciprocity theorem.
Indeed, considering two states, for instance, translat ional distortion on the
same barrier , we have

e/= c1i1, b/= O, Q/= 6 .e/ = c16 ·i1,

e" = c2h, b" = 0, Q" = 6 . e" = c26 .h

and by eq. (5.3.6)

which is what we set out to prove. Notice, that the value of the poten
tial energy of th e distortion depends, generally speaking, on choice of the
barrier, i.e. on the location of the distortion.

4.5.5 The case of a body of revolution

Let axis O X 3 be the axis of revolution and the barrier be a plane region (T of
intersect ion of the body by the meridional plane. Let (To denote the barrier
formed by plane O X 3 X l . We introduce into consideration the trihedron of
unit vectors of the cylindrical coordinate system e r , e<p , k, see Section C.7.
Because of the symmetry, the state of st ress on barrier (To due to disto rt ion
c" , b" coincides with that due to e , b provided that the position of vectors
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c, b with respect to axes er , ell" k is coincident with that of vectors co, bO

with respect to axes e~, e~, k. Introducing the rotation tensors , see Section
A.8

(5.5.1)

we have

(5.5.2)

Let us insert the values of co, b" into the expression for the stra in energy
of distortion which is evidently the same under these two distortions. By
eq. (5.4.4) we have

2a = cO . CO . cO + 2co . J\10 . bO+ b'' . 130 • b''

= c . C · c +2c . M .b +b . 13 . b (5.5.3)
o A - -* 0 0 - - A* 0 0 - - - * 0= c . A . C . A . c + 2c . A . !vI . A . b + b . A . B . A . b ,

so that

(5.5.4)

The constant tensors C,M,13 are independent of angle sp (i.e. of the posi
tion of the barrier) which follows from the second expression for the strain
energy (5.5.3).

By virtue of eqs. (5.5.1) and (C.7.3) we have

dA 0 0 dA* 0 0
drp = e re<p - e<pe1'l drp = e<pe,. - e re<p

which allows the derivative of tensor A·P . A* with respect to rp (p is a
constant tensor of the second rank , for example C,M or B) to be deter
mined

d - - - * 0 0 - - * A - 0 0-A · p . A = (e e - e e .) . p . A + A· p . (e e - e e )dip r ip <p' <p r r <p

= (e~e~ - e~e~) (P21 + P12) + (e~e~ + e~e~) (P22 - Pu) +
e~kP23 + ke?,P32 - e~kP13 - ke~P31 '

The conditions when this tensor is zero are set as follows

so that



(5.5.5)
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and if tensor P is symmetri c, i.e. P = P*, then P12 = O. Being applied to
6,iJ and if the latter formula yields

6 = Cll (e..e; + e'Pe'P) + C33kk, }
iJ = B ll (erer + e'Pe'P) + B33kk ,
if = M ll (e,e, + e'Pe'P) + M33kk + M 12 (ere 'P - e'Per)

and the strain energy of the distortion (5.4.4) is as follows

2a = Cll (ci + c§) + C33C~ + 2Mll (bICI + b2C2) +
2MI2 (cIb2 - C2bt) + 2M33C3b3+ B ll (bi + b§) + B33b~. (5.5 .6)

A further simplification is possible if one takes into account the indifference
of the stra in energy of the distortion with respect to rotational b3 and
translational C2 distortions.

Let the only non-vanishing components be b3 and C3 . Then by eq. (5.5.6)

2a = C33C~ + 2M33C3b3 + B33b~

and this expression must not change under changes in the sign of the relative
rot ation b3 of the connected ends about the symmetry axis. For this reason
M33 = O. The same reasoning can be applied to the case of C2 # 0, bz # 0
and yields M ll = 0, since changing the sign of the translational disto rtion
C2 (perpendicular to the barri er) has also no influence on the value of the
strain energy of the dist ortion. Thus

M33 = 0, M ll = O. (5.5.7)

Now let only C2 # O. Because of the symmetry the shear stresses tI2 = T r'P
and t23 = T 'P Z are absent in this st ate of st ress, th at is due to eq. (5.3.3)

Q = e'P JJt22do = Q2e'P '
IY

rnG = JJ(re, +X3 k ) x e'Pt22do
IY

= k JJrt22do - erJJX3 t22do = kmg - erm~ . (5.5.8)
IY IY

Using eqs. (5.4.1), (5.5.5) and (5.5.6) we have

which means that Q2 # 0 and moment rnG has the direction of en i.e.
mg =mg=O.
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Let the centre of moments 0 be placed at point O. of axis O X3 , then by
eq. (5.5.8)

X 3 = x3+ h, m? = m~· + hQz ,

and h can be taken such that m~· = 0, which yields

o

h = ~>

Volterra referred to t his point O. on axis X3 as central. Provided t hat the
body has a symmet ry plane which is perpendicular to the axis of revolution ,
t he point of intersection of this axis with the symmet ry plane is the centra l
one. Choosing thi s as being the cent re of moment s we have by means of eq.
(5.5.8) that

0. - M - °m - - l ZCZe r - , khz = 0, (5.5.10)

and, by eq. (5.5.7), tensor !VI vanishes. Expression (5.5.6) for the st rain
energy of distortion is reduced to t he form

(5.5.11)

Only four constants appear here. By virt ue of eq. (5.4.1) the principal
vector and the principal moment of the stresses in the meridional sect ion
abo ut the centra l point are given by

Q = c.c = Cll (c.e, + czecp) + C33C3 k , }

m O. = B. b = Bll (b1e, + bzecp ) + B33b3k .
(5.5.12)

Thus, in any elastic double-connected solid possessing rotational symmet ry,
any elementary distortion results in a corresponding force provided that the
cent ral point is taken as t he cent re of moments. Th e st resses caused by a
translational distortion are statically equivalent to a resultant force through
the cent ral point while those due to a rotat ional distortion are st at ically
equivalent to a moment .

4.5.6 Boundary value problem for a double-conn ected body of
revolut ion

The following vector

u, = 2~ (c + b x R ) sp (cp = arctan :~ , R = err + k X3 = isx s)

(5.6.1)
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is multiple-valued (which is required in the case of a body of revolution) .
However the strains calculat ed by this vector are single-valued and contin
uous in the region except for axis X3 . Indeed, the gradient of this vector
and its transpose are equal to

(5.6.2)

and furthermore

(5.6.3)

so that

(5.6.4)

Vector v , does not satisfy the homogeneous equations of equilibrium in
terms of displacements. Hence we introduce a correct ing vector v which
is single-valued and continuous in the region with excluded axis O X 3 and
require that

u = v , +v (5.6.5)

(5.6.7)

is the particular solut ion of these equations. Direct calculat ion shows that
this solution is as follows

1 { [ 1 - 2v ] }u=2n (c+b xR) <p+ kxc+(kXb) xR+2(I_v/3re,. ln r .

(5.6.6)

The stress tensor corresponding to this vector is equal to

A f.l { [2V v ] AT(u) = - bs -- +-- (1+2lnr) E+
2n 1 - 2v 1 - u

1
- [ecpc + ce., + ecpb x R + b x Re., + e.k x c + k x cer+
r

1 - 2v }e" (k x b) x R + (k x b) x Re.] + --b3 [e, e, (1 + Inr) + ecpecp Inr] .
I-v

The boundary value problem of Volterra 's theory of distortion reduces
to obt aining the displacement vector U from the homogeneous equat ions
of equilibrium and the following boundary condition

n .T(U) = -n.T (u)

on surface 0 of the double-connected volume.

(5.6.8)
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The formulae obtained are cumbersome because the general case of dis
tortion is considered. In the case of rotational distortion about th e axis of
symmetry in which only b3 # 0 we have

1 ( 1 - 2v )
U= 27l'b3 rrpe<.p + 2(I_v)rln rer ,

and only normal stresses appear

/-l (1 1 )o ; = -2b3 --2- + --lnr ,
7l' 1- v I-v

/-l ( 2-3v 1)
(J = -b3 + --ln r

<.p 27l' (1 - v) (1 - 2v) I - v '

/-l ( 3v - 4v
z 2V)

(Jz = -b3 + --lnr .
27l' (l-v)(1-2v) I-v

(5.6.9)

(5.6.10)

Simple formulae are also obt ained for the translational distortion Cz

U = ;: [(e r sin rp + e<.p cos rp ) ip - (e, cos rp - e<.p sin rp ) In r] , }

/-l cos rp /-l cos rp /-l sin e (5.6.11)
(J r = - - Cz --, (J = - Cz --, T r = - Cz --.

7l' r <.p 7l' r <.p 7l' r

The solution of these problems for a hollow cylinder is obt ained in Subsec
tion 5.7.3.
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5
Three-dimensional problems in the
theory of elasticity

5.1 Unbounded elastic medium

5.1.1 Singularit ies due to concentrated forces

The displacement of the "point of observat ion" M in an unbounded elas
tic medium subj ected to a concent rated force P applied at the "point of
source" Q is determined by means of the Kelvin-Somigliana formula , eq.
(3.5.9) of Chapter 4,

Here

u (1'.1,Q) = (; (1'.1, Q) . P . (1.1.1)

A 1 [ A RR]
U = 161ffl (1 - v) R (3 - 4v) E + R2 , R = r M - r Q, R = IrM - rQI·

(1.1.2)

Placing point Q' close to Q such that

rQ = rQ + P (1.1.3)

and carrying out the calculat ion up to terms of the first order in p we have
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Under thi s displacement of the source point the Kelvin-Somigliana tensor
and the displacement vector are presented in the form

t: (M ,Qf) = (; (M , Q) +
1 [ A RR ]

167fJi (1 _ v) R3 (3 - 4v) ER · p - Rp - pR + 3 R2 R· P ,

u (M ,Qf) = u (M, Q) + 167fJi (/_ v) R3 X

[
R · PR.P](3 - 4v) R · pP - Rp · P - pR· P + 3R R2 .

(1.1.5)

(1.1.6)

In these expressions dyadic pR is presented as a sum of the symmetric
and skew-symmetric parts, the symmetric part, in turn, being a sum of the
deviator and the spherical tensor

A 1 A 1
pR = P+ 0 , P= "2 (pP + P p) , 0 = "2 (pP - P p) ,

p= Dev f + }E1dp) = Devp +}p, PE.

(1.1.7)

(1.1 .8)

Taking into account the following relationships

R· n· R= 0 R ·pP · R = R· DevpA. R+ !R2p . P, 3 '
A l l 1 Q

R·O = 2(R · pP - R · Pp) = 2 (p x P) x R = 2m (P) x R ,

where m Q (P) denotes the moment of force P about point Q one can set
formula (1.1.6) in the form

f _ 1 Q 1- 2v R
u(M,Q) - u(M,Q) + 87fJiR3m (P) x R+ 247fJi(1-v)P ' P R3 +

87fJi ~1-_2~) R3 [R . Dev f + 2 (1 _ 32V) R2RR · Dev ji- R]. (1.1.9)

Let us assume that p --t 0 and P --t 00 so that the components of
dyadic pP are finite and are referred to p,m Q (P) , p . P at point Q as a
result of the limit process as the force tensor, concent rated moment and
the intensity of the cent re of expansion, respectively. Introduction of these
"force singularit ies" allows the following interpretation of each term in eq.
(1.1.9):

a) the displacement caused by force P at point Q

Ul (M ,Q) = (; (M , Q) . P; (1.1.10)
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b) the displacement due to the concentrated moment at point Q

(1.1.11)

c) the displacement due to the cent re of expansion at point Q

1 - 211 R 1 - 211 1
u3(M,Q) = 247Tf-l(1-II)R3P 'P R3 = - 247T f-l (1 - II )P ' PV'R ;

(1.1.12)

d) the displacement caused by the force tensor

U 4 (M ,Q) = 87Tf-l ~1-_2:) R3 [R . Dev f + 2 (1 _ 3211 ) R2R R . Devji -R] .

(1.1.13)

With the growth of distance R from the source point the displacement
caused by a concent rated force decreases as R- 1 , while th at due other
concentrated singularities decreases as R-2 .

5.1.2 The system of forces distributed in a small volume.
Lauricella's formula

Let a system of forces P I , P 2, . .. , P n be applied in the vicinity of point Q at
points Ql , Q2 , . .. ,Qn with the position vectors PI' P2"" , Pn' each having
the origin at point Q. The displacement of point M is thus a geomet ric
sum of displacements (1.1.9) corresponding to each individu al force. We
introduce into considerat ion:

a) the princip al vector P of the system of forces

(1.2.1)

b) the principal moment about point Q

n

mQ = LmQ (P i) ,
i=1

c) the tensor of the system of forces

n 1 n

V = L Vi = 2L (PiP i +PiPi)
i = 1 i=1

and d) its first invar iant

n n

t, (V) = Lh (Vi) = LPi ' P i.
i = 1 i = 1

(1.2.2)

(1.2.3)

(1.2.4)
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If the forces are distributed along a line, on a surface or in a volume, the
above sums are replaced by the corresponding integrals.

The displacement vector at point M is presented in the form

A 1 Q 1 - 2v
u(M,Q) = U(M,Q) . p + 81rJ-lR3m x R+ 241rJ-l(1- v)R3h (p)R+

~-2V)R3 [R .Dev P+ ( ~ )R2RR .Devp .R] . (1.2.5)
81rJ-l 1 - v 2 1 - u

Let us consider the case of a force dipole, which is a system of two equal
but oppositely directed forces with a common action line. Let th e direction
of this line be given by unit vector e . then

PI = -eP, P 2 = eP, PI = 0, P2 = ep,

where the product pP = a and the tensor aee are named the intensity and
the moment of the dipole, respectively. In formulae (1.2.1)-(1.2.4)

P = 0, m Q = 0, p = aee, h (p) = a , Dev ji = (ee-}t) a (1.2 .6)

and , by virtue of eq. (1.2.5), the displacement at point M caused by the
dipole at point Q is as follows

a {I [ (R· e)
2

] }u (M,Q) = ( ) 3 - 3 R2 - 1 R + (1 - 2v) eR · e .81rJ-l 1 - v R 2

(1.2 .7)

The force tensor defined by three dipoles of equal intensity a in three
mutually orthogonal directions is an spherical one:

Such a singularity is referred to as th e cent re of expansion and its intensity
is denoted by q. Due to eq. (1.2.5) the corresponding displacement is equal
to

u M Q = (1 - 2v) q R = _ 1- 2v q\7..!.. .
( , ) 241rJ-l(1-v)R3 241rJ-l(1-v) R

(1.2.8)

The state of stress caused by the centre of expansion is thus given by

(1.2.9)
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The components of the stress tensor in the spherical coordinate system, see
eq. (1.9.4) of Chapter 4, can be written in the form

1 - 2v q 1 - 2v q
<7R = - 67f(1-v) R 3' <7,'} = (7).. = 127f(1-v) R3' TR,'} = T,'}).. = T)"R = 0.

(1.2.10)

Such a state of stress occurs in a solid with a cavity of radius Ro whose
surface is loaded by a normal stress of intensity

1 - 2v q
p = 67f(1 - v) R6 .

For this radial-symmetric st ate of stress the displacements and the stresses
are as follows

If three dipoles correspond to the mutually orthogonal directions and the
sum of their intensities vanish , then the displacement due to this system
is det ermined only by the fourth term in eq. (1.2.5) since in this case the
force tensor is a deviator .

The displacement caused by a pair is not equal to the displacement due
to its moment since the second term in eq. (1.2.5) presents the displacement
due to the pairs with the vanishing force tensor . This singularity is referred
to as the centre of rotation and it can be imagined to be a set of four forces
which are equal in magnitude, lie in the same plane and forming the pairs
of the same direction of rot ation, i.e.

PI = -e2 P,
P 3 = e-P,

For such a system of forces

P 2 = e2P,
P 4 = -eIP,

PI = 0,
P3 = 0,

P2 = he« ,
P4 = he2'

where m denotes the algebraic sum of moments of the pairs. By eq. (1.2.5)
the displacement given by the centre of rotation is as follows

Such a distribution of the displacement t akes place in an elast ic medium
provided that a rigid sphere of radius Ro placed in the medium experiences
a rot ation described by vector e. The simple elastostat ic Robin 's problem
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(Subsection 4.4.7) yields this solution. The stress vector on the elementary
surface with the normal vector n is equal to

(1.2.13)

and on the surface of sphere R = .R<J with the external normal vector
n=eR

( n . T) = 3/1-n x O.
R=Ro

(1.2.14)

The principal vector of this system of forces vanishes and the principal
moment is given by

m Q = 3/1-11R x (n X 0) do = 3/1-11 (nR · 0 - OR)do
o 0

= 3M (ip vn OdT - 4'R'I,O) ~ -S'MR'I,O~ -me, (1.215)

as V'R· 0 = O. A moment with the opposite sign needs to be applied to
the sphere and transmitted through the surface of the cavity. Therefore,
we arrive at the anticipated result (1.2.12).

These examples demonstrate the possibility of constructing force systems
(a force, a centre of rotation, a centre of expansion, a force dipole) corre
sponding to each of the introduced singularities alone. This proves that
each of the four sets of the terms in eq. (1.2.5) represents a particular solu
tion of the equations of the elasticity theory which is continuous together
with its derivatives in any region with the excluded singularity point.

The concept of singularities determined by the force tensor was used by
Lauricella (1895) for representing the components of the strain tensor of a
solid in terms of the external forces. The derivation of Lauricella 's formula
is based upon applying the Betty reciprocity theorem to the following two
states. The first state is created by the surface forces F in the case of
absent volume forces, u and T denoting the displacement vector and the
stress tensor respectively. The second state u", T* is prescribed by (i) the
force tensor at point Q which determines the displacement vector u] and
the stress tensor Ti, and (ii) a superposition of the state of stress U2' T;
which ensures vanishing stresses on surface 0 of the body. The displacement
vector and the stress tensor are respectively equal to

(1.2.16)

so that

(1.2.17)
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which defines functions u2,T; which are bounded and cont inuous in the
body volume.

The reciprocity theorem is applied to the volume bounded exte rnally
by the body surface 0 and internally by sphere E with a centre at Q. The
unit vector of the external normal to sphere (and internal to the considered
volume) is denoted by n =R - 1R. Then referring to eq. (1.2.17) we have

11 F·u*do- 11n .T .urdo- 11n .T ·u;do=
o E E

= - 11n. Tt ·udo - 11n .T; -udo,

E E

and applying the reciprocity theorem result s in the following relationship

11 F·u*do=11 n · (T.ur - ti; ,u) do.
o E

(1.2.18)

Equation (1.2.5) suggests that the displacements and the st resses caused
by the singularity of force tensor's type tend to infinity as R- 2 and R-3 at
point Q respectively. As it will be clear from the forthcoming analysis it is
sufficient to accept that

(1.2.19)

in the volume v of the sphere since the terms of the higher order in R vanish
when R ~ O.

Turning to eq. (1.2.5) and transforming the volume integrals into surface
integrals we have

JJn · T· urdo= 87fJL (1~ v) R 3 [(1 - 2v) aJJJV' . l' · lliiT +
E v

(1 - 2v ) IfI" T R Dev fidr + 2~2 I[J" t RR Devji Rdr] ,

where 3a = I I (p). Referring to eq. (B.3.1O) and taking into account that
V' . l' = 0 we obtain

V' . l' .R = l' ..E, V' . l' .R . Dev p= l' . .Dev p,

V' . l' .RR . Dev p.R = l' .. (ER . Dev p. R + 2R . Dev pR)
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and furth ermore

J J J 9 .t .RdT = ~7fR3
t, (t) ,

v

Jrrr ' 4 3'JJ 9· T . R . Dev pdT = "3 7fR T oo Dev p.
v

It is easy to see that

~5 J J JR. Dev p . RdT = ~ t, (Dev p) = 0,
v

~5 J J JR . Dev pRdT = ~ Dev p
v

and thus

3 Jf} , 47f '- 9 ·T ·RR·Devp·RdT = -T · . Devji,
2R5 5

v

Replacing tensor t and its first invariant by the following expressions

we find

jrrn .t ,uido= (1 ) [5a(1+v)'l9+(8 -lOv) g ooDevp] .J 15 1- v
E

Proceeding to the second term in formula (1.2.18) we notice that the stress
tensor calculated in terms of ui is equal to

, 1 { (, RR)T1* = 47f (1 _ v) R3 (1 - 2v) 0' E - 3 R2 + (1 - 2v) Dev p+

2~2 [(1- 2v) E- 5~~] R· Dev ji- R+ ~ (RR· Dev f + R · DevPR)}

and therefore

* 1
n· T 1 = 47f (1 _ v) R3 X

[- 2 (1 - 2v)an . Dev p + (1 + v) n . Dev p - ~2 nR . Dev p . R] .



(1.2 .20)

(1.2 .21)

(1.3 .1)
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Now we have

JJn · it .udo = 15 (11_ v) [-10 (1 - 2v) m9+ (-7 + 5v) g . . Dev p],
E

and the sought-for expression (1.2 .18) yields the form

JJF . u" do = m9+ g . . Devp= g . .p.
o

In particular, for a centre of expansion Dev p = 0, that is, putting (J = 1
we obtain

f) = JJF · u*do.
o

For a force dipole ee one has (J = 1/3 and by eqs. (1.2.20) and (1.2.6) the
extension along the dipole axis is given by

e . g . e = JJF . u "do . (1.2.22)

o
Finally, considering the singularity given by forces -hek , <he, at point Q
and hek ,he, at points h-1es, h-1ek (8 # k), respectively, we have

p = (eke s + esek) , h (p) = 0, p = Dev f

and, by virtue of eq. (1.2 .20) , we arrive at the expressions for the shears

2ek . g. es = 'Yks = JJF · u*do. (1.2.23)

o
The integrals in these formulae can be est imated only when we have the
displacement vector u2, th e sum u] + u2 being an analogue of Green's
function corresponding to this particular singularity.

5.1.3 Interpretation of the second potential of elasticity theory

The displacement vector in the first external boundary value problem (ICe))
of the theory of elast icity was presented in the form of the second potential
of elasticity theory which is an analogue of the double layer pot ential.
In order to reconcile the previous denot ation with the present one it is
necessary to interchange letters M and Q in formula (4.2.1) of Chapter 4.
Then recalling expression (3.5.12) of Chapter 4 we have

v (M) = 8;r (11_ v) JJ [(1- 2v)(-Rb · n + nb· R + bn R) +
o

R ] do
3R2R . bn . R R3'



(1.3.2)
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According to eq. (1.1.7) the force tensor is represented by the dyadic nb

nb = p+n, bn = p - n,
and the integrand is written down as follows

~3 [(1-211)(-Rldp)+2p .R)+3~R .P.R] =

2 , 1 [ , 1 R . Dev p.R 1 ]
= - - (1 + II) h (p) - - 2 (1 - 211) Dev p . \7- + 3 \7-

3 R R R2 R·

Therefore

1+11 Jr( , 1
v (M) = -121T (1 _ II) J t, (p) \7R do -

o
1 - 211 Jr([ 3 ,] 1

41T (1 - II) J Dev ji + 2 (1 _ 211) R2R . Dev ji -RE . \7R do.

o

A comparison with eq. (1.2.5) shows that the double layer in the elasticity
theory is formed by the distribution of the centres of expansion and the
force dipoles over the surface 0, the force and moment singularities being
absent. This incompleteness of the force system explains why problem I(e)
can not be solved with the help of the second potential only.

5.1.4 Boussinesq's potentials

Distribution of the singularities along the lines, over the surfaces and in
the volumes) yields particular solutions of the equations of the elasticity
theory for the unbounded medium with the removed geometric body under
consideration. The solution of the boundary value problem for a bounded
body is obtained by means of combining the constructed solutions.

In what follows we consider two examples of constructing the particular
solutions determined by the distributions of the centers of expansions and
the centres of rotation along a half-line. Its direction is given by the unit
vector e and the position of the point on it is described by abscissa A
measured from the origin 0 of the half-line. The position vector R' of point
M of the medium having the origin at the current point of the half-line is
set in the form

R' = R - eA, (1.4.1)

where R is measured from the origin O. Referring to eqs. (1.2.8) and
(1.2.12) we arrive at the particular solutions

00 00

u(M) = -AJdA\7M · ~" u(M) = -c x JdA\7M~, .
o 0

(1.4 .2)
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The first solution corresponds to the distribution of the centres of expansion
while the second is due to the cent res of rotation. The constants, i.e. scalar
A and vector C characterises the intensity of these singularit ies. We have

00 00 00

J
1 Jd>.. J( 2 2) - 1/ 2d>" \7M R' = \7 M R' = \7 M R - 2>..e . R + >.. d>"

o 0 0

= \7Min (R' + >.. - R · e) I ~ ,

Here the calculation of the gradient should be performed first and then
limits are substituted. The term corresponding to the upper limit X = co
vanishes and the result is

00Jd>" \7M ~' = -\7M In (R - R . e) =
o

R-Re
R(R-R ·e)'

Thus, introducing into considerat ion th e first Boussinesq potential

<PI =lu(R-R ·e) , (1.4 .3)

we arrive at the following represent at ions of the displacement vector

(1.4.4)

in any region with the excluded half-line. In thi s region <PI is a harmonic
function and it can be directly proved that it sati sfies Laplace's equation
however th ere is no need to do this . In the case of no mass forces the
displacement vector in elast icity theory can be represented in the form
of the gradient of a scalar. This scalar is a harmoni c function and can
be identified, for inst ance, with the harmonic scalar Bo of the Papkovich
Neuber solution.

Boussinesq's pot ential (1.4.3) increases as In R with the growth of R,
that is the corresponding displacement vector decreases as R- 1 . The st ress
tensor calculated in terms of <P I is given by

A 2J.lA { 1 A

T = 2AJ.l\7\7<Pl = - R2 (R _ R . e) RRR - ER+

R _~ . e [RR - R (Re + eR) + R2ee] } , (1.4.5)
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and provided that axis 0 z serves as the line of the expansion centres the
components of the stress tensor are as follows

1 A [ X
2

(2R + Z)]
21-" (Tx = R (R + z) 1 - R2 (R + z) ,

~(T _ A [1 _y2(2R + z)]
21-" y - R (R + z) R2 (R + z) ,

~T - - Axy(2R+z) ~T - -A~
21-" xy - R3 (R + Z)2' 21-" x z - R3'
1 y 1 z

21-" T yz = -A R3 ' 21-" (Tz = -A R3.

(1.4.6)

The simplicity of the expression for the stress components on the surfaces
perpendicular to axis z shows that potential <1>1 is an appropriate means
for solving the problem of the state of stress in the elastic half-space z > O.

Using the spherical coordinate system and directing e to the "south pole"
of the sphere yields

} (L47)

Another Boussinesq's potential is used for solving the boundary value
problems

z

<1>2 = JIn (R + z) dz = z In (R + z) - R, u = V'<1>2. (1.4.8)

Of course, it is a harmonic function in the region with the removed negative
axis z.

5.1.5 Thermoelastic displacements

Referring to formulae (3.4.3) and (3.5.9) of Chapter 4 we have

1+/1 ffY Au(Q) = 2w:v-- ()(M)divMU(M,Q)dTM.
1- 2/1

Vi

Here
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and the expression for the displacement vector can be presented in the form

(1.5.2)

where a new potential is introduced into considerat ion

(1.5.3)

(1.5.4)

Here 8 denotes the variation in the temp erature around the constant value
in the natural state and Vi is the volume in which the temperature distri
bution is given, i.e. 8 = 0 outside of this volume. According to eq. (1.1.12)
the same field of the displacement vector in the unbounded elast ic medium
is caused by the distribution of the cent res of expansions having intensity
proportional to 8 in volume Vi . Function X is a Newtonian potential of the
attracting masses with density proportional to the temperature. The first
derivatives of this potential (th e components of the force of at t ract ion or
the components of the displacement vector in the present case) are cont in
uous in the whole space (under the assumption of continuous density) . A
jump in the second derivatives und er the passage through surface 0 from
the outside (i.e. from volume Ve ) into volume Vi is given by the well-known
equat ion

l+v
(\7\7X)e - (\7\7X) i = n 1 _ v 80nn ,

where n is t he unit vector of the external norm al to 0 and 80 denotes the
value of 8 on O. Potenti al X satisfies Laplace's equation outside volume Vi
and Poisson's equation in volume Vi , that is

{

0,
\72X = _ 1 + v n8

I-v '

Q c \/;"
Q c Vi . (1.5.5)

If Q c Vi, the stress tensor determined by potential X, eq. (1.1.4.1) of
Chapter 4, is equal to

(1.5.6)

whilst the temp erature term is omitted if Q eVe' By virtue of eq. (1.5.4)
we obtain

(1.5.7)
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which means that the st ress tensor is continuous on surface 0

[n .v: -j (i )) ] 0 = 0, (1.5.8)

whereas on the surfaces perpendicular to the boundary (i.e. on the surfaces
with the normal n" where n*· n = 0) this vector experiences a jump in the
normal component at the points of the boundary

(1.5.9)

The tangential components are cont inuous.
Let Vi be the volume of the sphere of radius a heated to a constant

temperature eO. The theory of the Newtonian pot ential suggests that

Q c Vi ,
(1.5.10)

and by eq. (1.5.6)

j(i) = _~ j-L 1 + v QeoE, j (e) = ~ 11.
1 + V Qeo (E- 3eReR ) !C' (1.5.11)

3 1 - u 3r: 1 - V R3

In accordance with the above-said

(i) I - (e)I - 4 1 + v ()oa R - a R - - - j-L--Q ,
R=a R = a 3 1- V

(i) I _ (i) I _ 4 1 + v ()oa iJ - a >.. - - - j-L--Q ,
R=a R = a 3 1 - v

a~e)1 = a~e ) 1 =~/}+v Q()o ,
R =a R = a 3 1- v

so that a n is continuous in the whole space while a iJ and a i; experience a
discontinuity determined by formula (1.5.9).

5.1.6 The state of stress due to an inclusion

Increasing the temperature of the elementary volume is not the only means
of obtaining the so-called free deformation , i.e. t he deformation followed by
no st resses. One can imagine other physical processes accompanied by the
deformation. Eshelby assigned the crystal twinning, martensite transfor
mat ion and phase transit ion to another elementary cell. However a state
of st ress appears in the elast ic solid due to deformat ion EO in volume Vi
which would be a free deformation in this volume if t his volume was free.



5.1 Unbounded elastic medium 257

As a result the whole solid is deformed and the stra in tensor is related to
the stress tensor by the relationship

1 ( , // , ) °f = - T---17E + f
2J.L 1+ //

(1.6.1)

(1.6.2)

since the stresses are caused by "strain" f - fO. Relationship (1.6.1) is
a natural generalisation of Hooke's law, eq. (3.4.10) of Chapter 3, and
includes the temperature term Eod) , which can be substantiat ed by the
reasoning of Hooke's law, see the end of Subsection 3.3.4. It follows from
eq. (1.6.1) that

(
, ) 1+ // ( 0) ° (,0)

17 = h T = 2J.L 1 _ 2// {) - {) , {) = h e

and then

(1.6.3)

Here TO denotes a "st ress tensor" which is formally related to tensor f O by
Hooke's law

(1.6.4)

Introducing thi s "stress tensor" only reduces the formulae since the free
deformation is not accompanied by the stresses.

Let us consider two states of the elastic solid. In the first stat e a unit
concent rated force eQis applied at point Q whereas in the second state the
stresses are due to a free deformation in the case of no external forces.

Referring to eq. (3.1.5) of Chapte r 4 and considering volume V = Vi +Ve

we obtain

I " () Jr(( ' I " Jr( A I " Jr(( ' I "eQ . u Q = } } T · ·f dr - } n · T . u do = } } T ··f dr

V S V

= 111T'· 'f"dT+ 111T' · ·f " dT
v, v;

(1.6.5)

as the integral over the surface S of volume V tends to zero in the case of
an unbounded expansion of this volume.

The external forces are absent in the second state hence

111 T" . ·f'dr = 111T" . ·f'dr +111T" . ·f 'dr = O.
V ~ V;

(1.6.6)



258 5. Three-dimensional problems in the theory of elasticity

Stress tensor T' in the whole volume V and tensor T" in volume Ve are
determined with the help of Hooke's law

T' = 2 (_V_i)'E+ E') T" = 2 (_V_i)"E+ A")J..l 1 _ 2v ' J..l 1 - 2v €,

whilst by eq. (1.6.3) in volume Vi we have

T" = 2J..l (_V_i)"E+E" ) - TO.
1- 2v

Hence

T
A

, A" _2 ( V ,0 ' , 0 " + A' A")..€ - J..l 1_2v 'U 'U € •. € in V,

or

T
A

" A' 2 ( V ,0",0 ' + A" A') + { -TO .'E'. .€ = J..l --'U 'U € ..€
1- 2v 0

{
TA, A"A" A' .. €

T ..e = TA

, A" TAO A'• •€ - • •€

in Vi ,
in v.,

Returning to eqs. (1.6.6) and (1.6.5) we have

IlIT" .'E'dT + IlIT" .'E'dT= IlI T' .'E"dr + III T' .'E"dr -
~ ~ ~ ~

III TO "E'dT=eQ .u"(Q)- III fO "E'dT=O,
~ ~

so that

eQ 'u" (Q) = III TO "E'dT.
~

Expressing E' in terms of the Kelvin-Somigliana tensor, eq. (3.5.9) of Chap
ter 4, we obt ain

eQ 'u" (Q) = ~ III TO ..[\1U" eQ + (\1U') * . eQJ dr

Vi
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and dropping the arbitrary prescribed vector eQand primes (the latter are
unnecessary now) we arrive at the following equality

u (Q) = III fa . .\71140 (M,Q)dTM.
v,

(1.6 .7)

The integration is carr ied out over th e volume of th e inclusion subjected
to the free deformation. Moreover we take this deformation to be homoge
neous, i.e. EOand thus fa are constant. Then recalling eq. (3.5.9) of Chapter
4 for the Kelvin-Somigliana tensor we obtain th e Eshelby formula

u(Q) ~ - 4~/O ['JQE1[1~ -4 (1~ v) 'JQ'JQ'JQ1[,1Rdr] .
(1.6.8)

Introducing the potentials

~ = III~, ¢ = III RdT
v, V,

we can rewrite Eshelby 's formula as follows

(1.6.9)

(1.6.10)u(Q) = - 4~ttfO . . [\7QE~ - 4(1~ v) \7Q\7Q\7Q¢J .

Function ~ is a Newtonian potential of the at t ract ing masses of the unit
density

and by virtue of eqs. (1.5.3) and (1.5.4)

(1.6.11)

0,
-87r,

(1.6.12)

(1.6.13)

The relationships for the discontinuities on surface 0 of volume Vi are
analogous to those in eq. (1.5.4) and can be presented in the form

(\7\7~)" - (\7\7~) i = 47rnn, }
(\7\7\7\7¢)" - (\7\7\7\7¢)i = 87rnnnn

since the components of tensor \7\7¢ are Newtonian potentials with the
density equal to the corresponding component s of tensor - (47r)-1 \7\72~.

The components of th e strain tensor found by means of eq. (1.6.8) are
equal to
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In particular , when tensor TO is spherical, then

° 1 o 1 1+// °tqS = 3(T Oq s = 32fl 1 _ 2//o OqS

and according to eq. (1.6.11)

_ 1 1 + // {}o 82 cp
C:sk - - 41T 3 (1 - //) 8xs8xk '

(1.6.15)

(1.16.16)

(1.6.18)

For example, for // = 0.25 and under the temperature process {}o = 3aJ}
the dilatation constrained by the surrounding medium comprises only 5/9
of the free dilatation and is absent in the surrounding medium.

In the general case, in the medium surrounding the inclusion , the stress
components are calculated in te rms of the strain components (1.6.14) by
means of Hooke's law in its standard form (eq. (1.1.3) of Chapte r 3) and
in the inclusion they are given by eq. (1.6.3). Calculat ion requires both
potentials cp and 'l/J . Ind eed , by eqs. (1.6.11) and (1.6.14) we have

{} _ 1 - 2// ° 82
cp 1 - 2// mo nn ( )

- - ()tqS () r .. v v ip 1.6.17
81Tfl 1 - // 8x q8xs 81Tfl 1 - //

1 - 2// _ {I - 2// 1 (To , Q c Vi ,
= - 8 (1 ) DevTo . .V'V'cp + 2fl (1 - //) 3

1Tfl - // 0, Q eVe.

From this equat ion and eqs. (1.6.13), (1.6.15) we obtain the jump in {} on
the surface of t he inclusion

1 + // 1 ° 1 - 2// - 0
{}e - {}i = ----{} - -- Dev s . ·nn

1- 1/ 3 1-1/

as DevTo = 2flDev Eo. If Dev Eo = 0 we return to eq. (1.6.16).

5.2 Elastic half-space

5.2.1 The problems of Boussinesq and Cerrut i

The objective is to search for the state of stress in an elast ic half-space
z > 0 (i.e. in an elastic solid bounded by plane z = 0) under a prescrib ed
distribution of the surface forces in this plane

z = O: F=n ·T=-h · T (2.1.1)



(2.1.2)

(2.1.3)

(2.2.2)

(2.2.3)
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or

r; = ql (X,y) = -Tx z , }

Z = 0 : Fy :: q2(X,y)_= -Ty z ,

Fz - p(x,y) - -(Jz.

It is assumed that the mass forces are absent and the principal vector of
the surface forces is bounded

v= ffn Fdo (do = dxdy) ,

where n denotes the region of loading on plane z = O. At the specified
conditions it is required that the sought solution , for the displacement
vector and the stresses , decreases respectively not slower than R-1 and
R-2 as R --+ 00 .

There exist several strategies for solving this classical problem , as consid
ered by Boussinesq and Cerruti. In the particular Boussinesq problem , in
which ql = qz = 0 and the loading is due to a concentrated force Q normal
to the half-space boundary, the solution is easily obtained by superposition
of the state of stress (1.4.6) caused by a special line of the compression
centres on the state of stress in an unbounded elastic medium caused by a
concentrated force (the Kelvin-Somigliana solution, Subsection 4.3.5). The
generalisation to the general case of the normal loading p (x, y) is evident .
Another approach applies the Papkovich-Neuber solution, Subsection 4.1.4,
and can be generalised to the general problem of Boussinesq and Cerruti ,
that is, the case of loading (2.1.2).

5.2.2 The particular Boussinesq problem

In an unbounded elastic medium a force applied at the origin of the coor
dinate system and having the direction of axis Oz produces the following
state of stress , d . eq. (3.5.6) of Chapter 4

T= 2~7 [(1-2V) (Ez-i3R-Ri3 ) - ~~RR] (R=i1x+i2y+i3z),

(2.2.1)

where C is a proportionality factor to be determined in what follows . The
stress vector on plane z = 0 is equal to

A A 2J.LC
n·T=-h· T=-3 (1-2v)R.o (R.o=i1Xl+hx2) .

Ro

In accordance with eq. (1.4.6) this distribution coincides qualitatively with
that given by Boussinesq's potential (1.4.3)

A Ro
n -T = 2J.LA R3

o
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and the requirement of zero stresses on this plane can be satisfied if the
constants A and C are relat ed by the equality

A = -C (1 - 2v).

Using eqs. (3.5.5) and (3.5.6) of Chapter 4, as well as eqs. (1.4.4) and (1.4.5)
we obtain

U= C{~ [(3-4v)i3+ ~3R] -(1-2v)~ln(R+ Z)} ,

A { 1 [ ( A ) 3RR]T=2f.l,C R3 (1-2v) Ez-hR-Ri3 -Ji2z +

1 - 2v [RR A I ]}
R2 (R + z) If - ER + R + z (R + hR) (R + hR) .

(2.2.4)

(2.2.5)

(2.2.6)

The const ant C is determined from the equilibrium equation for a half
sphere of radius R with the cent re at the point where force i3Q is applied

i3Q+ R
2 JJo, eR' T do* = 0.

Here do; = sin rJdrJd>.. denotes t he area element of the surface of the unit
half-sphere 0* and

en = RR- 1 = i3 cosrJ + sin rJ (i1 cos >" + i2 sin X} .

Then we have

2 A [ 1 - 2v ]R eR ·T=2j.LC -(1-2v)h- 3eRcos rJ+ rJ (eR +h )
1 + cos

= -6j.LCh cos2 rJ + ... ,

where the dot s denote t he terms which do not cont ribute to t he integral in
eq. (2.2.6). The result is

21r rr / 2

Q - 6j.LCJd>" Jcos2 rJ sin rJdrJ = 0,

o 0

and this accomplishes the solution of the particular Boussinesq problem.
The expressions for t he displacements are reduced to the form

Q x ( z 1- 2V~u=-- ----
47rj.L R R2 R + z '
Q y z 1 - 2v

v - - - ----
- 47r j.LR R2 R+ z '

Q [ z2 ]
W = 47rj.LR R2 + 2 (1 - v) .

(2.2.7)
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The stresses on the planes parallel to the boundary of the half-space have
a simple form and turn out to be independent of Poisson's ratio

(2.2.8)

5.2.3 The distributed normal load

The solution of the above problem is easily generalised to an arbitrary
number of forces Qih which are normal to the boundary z = 0 and applied
at points with the coordinates (Xi, Yi,0)

I-II 2:n Q
1 2: [z ]}u = --i3 -!:. - - grad Qi - + (1 - 211) In (Ri + z) ,

ttu R · 41r1l R ·
r" i= l t r- i=l t

R i = i l (x - Xi ) + i2 (y - Yi) + hz.
(2.3.1)

The case of the distributed load p(x,y) is obtained by replacing Qi by
p (x', y') do' and integrating over the loading region n. The potentials

fJ P(x' , y' ) ,
W (x, y, z) = R' do ,

!l

WI (x ,y,z) = 11p(x' ,y')ln(R' +z)do' ,
!l

are introduced into considerat ion, where

(2.3.2)

(2.3.3)

In terms of these potentials the displacement vector is represented as follows

1 - II 1
u = --hw - - grad [zw + (1- 211) WI] ,

1rJ.L 41rJ.L
(2.3.4)

and the stresses on the surfaces perpendicular to axis z are given by

z 82
w Z 82

w 1 (8W 82W)
T xz = - 21r 8x8z ' T yz = - 21r 8y8z ' az = 21r 8z - Z 8z2 .

(2.3.5)

Function W (x,y ,z) is the simple layer potential distributed over th e loading
area with density p (x,y). This function is cont inuous everywhere, including
region n, and for large distances from n it decreases as P R- 1 , where P
denotes the principal vector of the surface forces

P = 11p( x,y)do
!l
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and R = (x2+ y2 + z2) 1/2 -+ 00.

It is known that the derivative of the simple layer potential with respect
to the normal to the surface of the layer experiences a jump under a passage
of the point through this surface. In particular, for the layer distributed over
region n on plane z = 0 we have

8wl _{ =f21fp (x , y) , (x,y) en,
8z z-dO - 0, (x,y) r:t. n. (2.3.6)

It follows once again from the latter result that the obtained solution
satisfies the boundary condition (2.1.2) for q1 = q2 = O.

Function W1 (x,y ,z) is harmonic in the half-space z > 0 and increases as

Pln(R+z) (2.3.7)

(2.3.8)

along with increasing R. However the displacement vector depends only on
the first derivatives of W1 with respect to the coordinates and decreases as
R-1 as R -+ 00. Let us notice the equality

8W 1
-=w
8z

determining, together with the condition at infinity (2.3.7), function W1 in
terms of w up to an inessential additive constant.

5.2.4 Use of the Papkooich-Neuber functions to solve the
Boussinesq-Cerruti problem

The expressions for the components of the stress tensor in terms of these
functions are set, by means of eq. (1.4.17) of Chapter 4, in the form

T x z ( 2) (8B1 8B3 ) (8
2B1 8

2B2 8
2B

3 8
2Bo)- = 1 - v -- +-- - x-- + y-- + z-- + - - ,

2J.t 8z 8x 8z8x 8z8x 8z8x 8z8x

Tyz = (1- 2v) (8B2 + 8B3) _ (x
82B1

+y8
2B2 + z8

2B3+ 8
2BO) ,

2J.t 8z 8y 8y8z 8y8z 8y8z 8y8z

~z 8B3 (8B1 8B2 8B3 )-=2(1-2v)-+2v -+-+- -
2J.t 8z 8x 8y 8z

(
82B1 82B2 [PB3 82Bo)

x 8z 2 + Y 8z2 + Z 8z2 + 8z2 .

(2.4.1)

If only the tangential loading is present it is sufficient to take

8Bo
8z = (1 - 2v) B3· (2.4.2)
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Then

1 82B3 1 82B3 1 8B3 82B
3

2jJ.Txz=-z8x8z ' 2jJ.Tyz=-Z8y8z ' 2jJ.O"z= 8z -z 8z2' (2.4.3)

The boundary conditions for the tangential stresses are satisfied automat
ically

(Txz)Z=O = (Tyz)z=O = 0

and the remaining boundary condit ion

(2.4.4)

(2.4.5)

(2.4.6)

-2
1

(o"z)z=o = -2
1

p(x ,y) = ( 88
B3)

jJ. jJ. Z z=o

suggests that , according to eq. (2.3.6), B3 is a simple layer potential with
the density (41T jJ.) -1 P(x , y). Function Bo is determined by the second equal
ity in eq. (2.4.2) and the condit ion of vanishing derivatives at infinity. Ev
idently, B3 and Bo differ from wand WI only in constant factors

1 1
B3 = - w, Bo = - (1- 2V)WI'

41TjJ. 41TjJ.

Pro ceeding to the general boundary value problem (2.1.2) we put expres
sions for Txz and Tyz in another form

1 8BI 8B3-Txz = 2(1-v)-+(1-2v)--
2jJ. 8z 8x

8 ~ 8BI 8B2 8B3 8Bo)
8x x 8z + Y 8z + z 8z + 8z '

1 8 2 8B3
2jJ.Tyz=2(1-v) 8z +(1-2v) 8y-

a (OBI aB2 aB3 aBo)
8y x 8z + Y 8z + z 8z + 8z .

The scalar Bo can be t aken as follows

oo

Bo = - (xBI + yB2 + zB3 ) - 2 (1 - v)JB3dz
z

(2.4.7)

(2.4.8)

(2.4.10)

provided that the right hand side of this relat ionship satisfies Laplace's
equation

By virtue of eq. (2.4.7) we then arrive at the simple boundary condit ions

8BI 8B2
4jJ.(1-v) 8z =-qI(x ,y) , 4jJ.(1 -v) 8z =-q2(X,y)
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which enable BI and B2 to be defined as the simple layer potentials

1 1
BI = 81Tf..L (1 _ v) <PI (x, y, z), B2 = 81Tf..L (1 _ v) <P2 (x, y, z), (2.4.11)

where

<Pi (x, y, z) = 11 qd~; y') do' (i = 1,2).

fl

Due to eq. (2.4.9) we also have

B3 - _ 1 (O'l/JI + O'l/J2) }
- 81Tf..L >1 - v) ox ox'

'l/Jdx, y, z) = if qdx', y') In(R' + z) do'.

By eqs. (2.4.1) and (2.4.9) the normal stress a z takes the form

(2.4.12)

(2.4.13)

(2.4.14)

It remains to satisfy the third boundary condition in eq. (2.1.2). This leads
to the considered problem of the state of stress in the half-space in which
the shear stresses are absent on the boundary z = °and the normal stresses
are equal to

oB3azlz-o=-p(x,y)-4(1-v)f..L-o.- z (2.4.15)

According to eqs. (2.4.2) and (2.4.6) the harmonic Papkovich functions
Bi solving this problem are given by the following equalities

Bi = 0, B2= 0, Bj = 4~f..Lw - 2 (1 - v) B3 , }

o~o = (1 - 2v) Bj.
(2.4.16)

The original boundary value problem is solved by superimposing these
solutions, to yield the following expressions for the stresses

1 0<PI 1 oa
T'x» = 21T OZ - 2(1+v)zox'

1 0<P2 1 oa
T ---- z-

yz - 21T OZ 2(1+v) oy'
1 ow 1 oa

a ---- z-
z - 21T OZ 2 (1 +v) oz'

(2.4.17)



(2.4.18)
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where

1 + u (0i.p1 Oi.p2 OW)a--- --+--+-
- tt ox iJy OZ ·

It will be proved below that a is a sum of three normal stresses. The
displacement vector is determined by superimposing the above solutions

u = 4(1 - v) (B + B*) - grad [R · (B + B*) + (Bo + Eo)] '

The result is presented in the form

21rJ.l71 = ip - ~Z~ (01/;1 + 01/;2) +v~ (OX1 + OX2~ _
1 2 ox ox oy ox ox oy

1 ow 1 W I

"2 ZoX- "2 (1 - 2v) ox '

21rJ.1V = C{'2 - ~Z~ (01/;1 + 01/;2) +v~ (OX1 + OX2 \ _
2 oy ox oy oy ox oy 1

1 ow 1 8W1
"2 Zoy - "2 (1 - 2v) oy ,

21rJ.11V = ~ (1- 2v) C{' (01/;1 + 01/;2) _ ~Z (0C{'1 + OC{'2 \ +
2 2 ox oy 2 ox oy 1

1 8w
(l-v) w-"2 zoz '

(2.4.19)

where the following potentials

Xi (x, y,z) = JJqdx' , y') [z In (R' + z) - R']do' (i = 1,2) (2.4.20)

II

are introduced. The dilat ation {} obtained by means of the above equat ions
is given by

.0 = 1 - 2v (0C{'1 + iJC{'2 + ow)
U >:I >:I >:I ' (2.4.21)

21rJ.1 uX uy uZ

that also leads to eq. (2.4.18).
Formulae (2.4.19) present th e solut ion of the Boussinosq-Cerruti prob

lem.

5.2.5 The influence tensor in elastic half-space

We seek th e state of stress in the elast ic half-space z > °caused by a
concent rate d force applied at point Q.

Into considerat ion are introduced the point Q* (0,0 , -h) and the force
p *

(2.5.1)
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which are the mirror mapping of point Q and force P in plane z = O. The
position vectors of the point of observation M (x, y, z) having origins at
points Q and Q* are denoted respectively as

The sought state of stress is presented as a sum of three states: two states
to and t~ in the unbounded elastic space caused by the concentrated forces
P and P * at points Q and Q*, respectively, and state i-, the latter having
no singularities in the half-space z > 0 and being chosen in such a way that
the boundary z= 0 is free of loading due to the state to + t~

- (-0 -0 -')1i3 . T = i3 · T + T* + T z=o = o. (2.5.3)

By virtue of eqs. (3.5.6) and (3.5.7) of Chapter 4 the tensors to and t~
are given by

On the plane z = 0

so that

(2.5.5)

and the boundary condition (2.5.3) leads to the problem of the state of
stress in the half-space under the normal loading of the bounding plane .
Clearly, this is to be expected because of the symmetry. The boundary
conditions are written down in the form

, P3h (1-2V 3h
2

) }
z = 0 : az = - 47f (1 - v) R~ + R8 -

PiX + P2 y (1- 2v 3h2
) , ,

47f (1 _ v) ~ - R8 ' T x z = 0, T yz = O.

(2.5.6)
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Let us next consider each of the groups of terms appearing in the bound
ary condit ion (2.5.6). The pairs of harmoni c functions solving thes e prob
lems are denoted by w' ,w~ and w" ,w~, see Subsection 5.2.3.

By eq. (2.3.5) we have

and

(2.5.7)

z + h
R3 '•

{j2 1 1 3 (z+h)2
OZ2If = - R3 + R5

• • •

This allows one to rewrite eq. (2.5.7) as follows

(2.5.8)

Both ow'/ oz and the function in the brackets are harmonic in the region
z > a and are coincident on the boundary of this region. Hence equality
(2.5.8) is fulfilled in the whole half-space z > O. For this reason, referring
to eq. (2.3.8) we obtain

An analogous calculation is performed for the second pair of terms in the
boundary condition (2.5.6), to give

x 0 1 02 3x (z + h)m= - Ox R. = - oxo z In (R. + z + h) , R~

Referring to eq. (1.4.8) we have

02 1
----
oxoz R.:

w" = 2 (1~ v) (PI :x+ P2 :y) [(1- 2v) In (R. + z+ h) + ;.J '
" 1 (p 0 0 )

WI = 2(1-v) lox +P20 y X

{(1 - 2v) (z + h) [In (R. + z + h) - R.] + h In (R. + z + h)} .
(2.5.10)
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The solution to the problem is thus given by the potentials

I /I 1 P3
W = W + W = 2 (1 _ v) R*+

1- 2v h 1
2 (1 _ v) P . V' In (R* + z + h) + 2 (1 _ v) P * . V' R* '

WI = w~ +w~ = 2 (1~ v) P3 ln (R* + z + h) +
1- 2v

2 (1 _ v )P . V' [(z + h) In (R* + z + h) - R *] +

h
( )P * . V' In (R* + z + h) .2 1- v

(2.5.11)

The displacement vector is calculated by means of formulae (3.5.8) and
(3.5.9) of Chapter 4 and eq. (2.3.4). This solves the problem of const ructing
the influence tensor for the elast ic half-space.

5.2.6 Thermal stresses in the elastic half-space

In what follows relationship (3.4.3) is applied under the assumption that
G(M,Q) denotes the influence tensor of the elast ic half-space. It is suffi
cient to know the divergence of thi s tensor which is equal to the sum of
divergences of displacements u" , u~ , u' corresponding to the stress tensors
i»,t~ , 1" introduced in Subsection 5.2.5. The expression for div u'' is given
by eq. (1.5.1) and divu~ is obtained from the latter by replacing R by R *.
The result is

. ° 1 - 2v 1 °dIVU (M,Q) = 8 ( )V'R ' P , divu*(M,Q)=
7rJ1 1 - v

= 1-2v V'~ .P*= 1-2v (V'~ 'P -2P3~~) '
87rJ1 (1 - v) R* 87rJ1 (1 - v) R* 8z R*

The divergence of displacement vector u' is found by means of formulae
(2.5.11) and (2.3.4)

div u' = 1 - 2v 8w
27rJ1 8z

1 - 2v [ 8 1 1 8 1]= P3--+(1-2v)P·V'-+hP* ·V'-- .
47rJ1 (1 - v) 8z R* R* 8z R*

Adding these expressions and substituting P * from eq. (2.5.1) we obt ain

1 - 2v [1 (1 3 - 4V) 8 1 8
2

1.]divu= -V' -+-- +hV'---2h--13 · P.
47rJ1 (1- v) 2 R R* 8z R* 8z2 R*

(2.6.1)
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[ 2 2 2]1/2 }R = (x -~) + (y - ry) + (z - () ,

[
2 2 2]1/2 (2.6.2)

R*= (x-~) +(y-ry) +(z+() .

By eq. (3.4.3) of Chapter 4 we have

Here V denot es a heated volume which completely lies in the half-space
z > a and () (M) denotes a temperature distribution in this volume. The
gradients are calculated at point M (x,y , z) which is the source point now.
Taking into account the relat ionships

1 181 81}grooM R = -gradQ -R ' --
8z R* 8( R* '

1 1. 8 1
gradM - = - grOOQ - + 213--

R* R* 8( R*

we can put eq. (2.6.3) in the form

u(Q) = V'QXI + (3 - 4v) (V'Q - 2h:() X2 + 2(:(V'QX2 ,

where the following pot entials are int roduced

(2.6.4)

(2.6.5)

1 + v Jrrr () (111) 1 + v Jrrr () (111)
Xl = - 41f (1- v)Q: )} ~dTM' X2 = - 41f(1- v) Q: }} ~dTM'

V V
(2.6.6)

Th e term determined by potential Xl described the field of displacement
which was considered in Subsection 5.1.5 for the unbounded elasti c medium .
Function X2 is harmonic in the half-space z > aand the stresses calculated
in terms of X2

(2.6.7)

annihilate the stresses due to potential Xl on plane z = O.
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5.2.1 The case of the steady-state temperature

In a steady-state regime, temperature 8 (x, y, z) is a harmonic function in
the half-space z > O. Its value on the boundary z = 0 is assumed to be
given by

8( O)-{ 80 (x ,y,0) , (x,y) en,
x,y, - 0, (x,y)ct.n. (2.7.1)

Introducing into consideration the simple layer potential with the density
-80/27r

<I> (x,y,z) = - 2~ 11 80 (x~,y"O) do', R' = [(x - x,)2 + (y - y,)2 + z2f/2

n
(2.7.2)

one can write the solution of the problem of thermal conductivity for the
half-space in the form

a<I>
8 (x, y, z) = az' (2.7.3)

Indeed, the function determined by this equation is harmonic and satisfies
boundary condition (2.7.1) which follows from eq. (2.3.6) .

Proceeding to solve the problem of the elasticity theory we use two har
monic functions (B3 and Bo) in the Papkovich-Neuber solution

(2.7.4)

The latter term takes into account the temperature field and function 'l/J is
a particular solution of eq. (1.1.4 .8) of Chapter 4

(2.7.5)

The stress components on the surfaces perpendicular to axis z are cal
culated using eq. (2.4.1) and taking account of \l'l/J in eq. (2.7.4)

aM aM (aB3 1+1I aM)
T xz = f-l ax ' T yz = f-l ay , a z = f-l 4 az - 2 1 _ 1I 0:8 + az ,(2.7.6)

where for brevity

(2.7.7)

It is possible to choose B 3 and Eo in such a way that M vanishes. To this
end we take

(2.7.8)



(2.7.9)
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It follows from the first equality and eqs. (2.7.5) and (2.7.3) that

n2zB3 = 28B3 = l+v n,e, B l+v -T..( )
V 8z 1-v'--' 3 = 2(1-v)a'¥ x , y, z,

which is possible as q> is a harmonic function . Returning to formulae (2.7.6)
we arrive at a result which was difficult to anticipate : under a steady-state
thermal regime the thermal stresses are absent on the planes parallel to the
boundary

Txz=O, Tyz=O, az=O (z2:0) . (2.7.10)

(2.7.13)

(2.7.14)

This property retains in the problem of thermal stresses in the elast ic layer
under a stead-state temperature.

By virtue of eqs. (2.7.8) and (2.7.2) we find

Bo = - 2~ (1 + v) a JJeo (x', y' ,0) In (R' + z) do', (2.7.11)

fl

and , referring to eq. (2.7.4), we can write down the expressions for the
projections of the displacement vector

8Bo 8Bo 8Bo
U = - 8x ' v = - 8y ' W = 8z . (2.7.12)

The temperature is also determined in terms of this harmonic function Bo

82BO
(l+v)ae(x ,y,z) = 8z2 '

The non-trivial components of the stress tensor are obtained by eq. (1.14.1)
of Chapter 4 and are given by

82Bo 82Bo
ax = 2/1 8y2 ' ay = 2/1 8x2 '

5.2.8 Calculation of the simple layer potential for the plane
region

As shown above the solution of the problem of the state of stress in the
elastic half-space essentially depends on knowledge of the potential of the
layer distributed over the plane region. First of all, th e simple layer poten
tial is required since the more complex potentials are determined in terms
of this potential by integration over x .

Let M 1 (x,y,0) denote the projection of the observation point M (x,y,z)
on the plane z = 0. Taking M 1 as being the origin of the polar coordinate
system (p,).) we have

x' - x = p cce ): y' - y = p sin). , do' = odod»; R,2 = p2 + z2. (2.8.1)
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!J

a

--+-~-+--:.:..+--- X

b

FIGURE 5.1.

The expression for the simple layer potential (2.3.2) is now set in the form

w (x,y,z) = 11 p(~,y') do'11p(x + PCOSA,y + psinA) ;::~Az2
n n

Al P2(A)

= 1dA 1p (x + pcos A,y + psin A) J pdP . (2.8.2)
p2 + z2

AO pdA)

Figure 5.1a explains the notation for M 1 et n. If M 1 c n then it is neces
sary to take PI (A) = 0, P2 (A) = P(A), Ao = 0, Al = 27r, see Fig. 5.1b.

The calculation is simplified if the value of the potentials is sought at
points on the plane z = 0. Then

Al

w(x,y,O) = 18(x,y,A)dA,

AO

where

P2(A)

8(X,y,A) = 1p(X+PCOsA,y+psinA)dp.

PI (A)

When the density is constant (p = const) then

Al

w(x,y,z) = 1(Jp~ (A) + z2 - JPI (A) + z2) dA

AO

(2.8.3)

(2.8.4)

(2.8.5)
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and , in particular, on plane z = 0

>' 1

W (x, y, 0) = p1[P2 (..\) - PI (..\) ] d..\ .

>'0

(2.8.6)

For example, calculating the potential of a circular region 0 of radius a

yields

{
4paE (~) , M e 0,

w( r ,O) = [(a) ( a2
) (a)]4pr E -;: - 1 - r 2 K -;: , M rt 0 ,

(2.8.7)

where r is the distance between the observation point M (x, y, 0) and the
cent re of th e disc, while K (k) and E (k) denote the complete ellipt ic inte
grals of the first and second kind respectively.

5.2.9 Dirichlet 's problem for the half-space

Function W. (x, y ,z) is harmonic in the half-space z > 0, represents the
double layer pot ential of density f.l (x ,y) distributed over region 0 in the
plane z = 0 and is given by

W (x y z) = Z Jr r f.l (~ , TJ )dCdTJ = _~ Jr r f.l (~ , TJ ) rlCdTJ = _ 8w
• " } tr <, 8z } R' U<" 8z '

n n
(2.9.1)

[
2 2] 1/ 2

where R' = (x - 0 + (y - TJ ) + Z2 and function

w( x,y ,z) = 11 f.l~'ITJ)d~dTJ
n

(2.9.2)

is the simple layer potential of the same density f.l (x ,y). By eq. (2.3.6)

W. (x ,y, z)l
z

-
d O

= _ ~w I = { ±27rf.l
0
(x,y) , ((x,y)) ~ g,

Z z-±o ' x,y .

For this reason the harmonic function

z Jr r f.l ( ~' TJ )
W (x,y,z) = 27r } ~d~dTJ

n

yields the solution of Dirichlet 's problem in the half-space z > 0

z = O: W (X,y, z)={ f.l (x,y) , (x ,y) c O,
0, (x, y) rt o.

(2.9.3)

(2.9.4)
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Let the observation point M (x, y, z) lie within the cylinder having the
base n and the generating line parallel to axis z . First, we consider the case
of the density which is constant on n, then by eqs. (2.8.5) and (2.8.6)

211"

w( x ,y, z)=/-l! (Jp2('x) + Z2 _ Z) d'x,

o
211"

W (x z) - - J!:...! zd'x
, y, - /-l 21T Jp2 (,X) + z2

o

and furth ermore

(2.9.5)

Let us notice that the right hand side is not constant as p (,X) depends on
the choice of the origin (x,y, 0) of the polar coordinate system p.); For the
arbit rary density one can put eq. (2.8.2) in the form

211" p(>')

w (x , y,Z ) = ! d,X ! [/-l(x+P COsA,y+psin'x)-/-l(x ,y)] J PdP
+

p2 + Z2
o 0

211"

/-l (x , y)J(Jp2 (,x) + Z2 - z) d,X ,
o

to obt ain

211" p(>.)

W(x ,y, z) = 2: Jd,X ! [/-l(x + pcos'x ,y + psin'x) -/-l(x ,y)] x
o 0

(2.9.6)

and

211" p(>.)

oW I! ! p3 - 2pz2
--;::\ = - d,X [/-l (x + PCOSA, Y+ psin'x) - /-l (x , y)] 5/2 dp
oz 21T (p2 + z2)

o 0



(2.9.8)
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Assuming

p,(x + p cos X, y + psin A) - p,(x ,y) =

(
ap, ap,.) 2=p ax COSA+ aySlllA +p g(p,A;x ,y) , (2.9.7)

where 9 (p,A;x ,y) is finite at p = 0 and taking into account that

p(.\)

J p4 - 2p2 z2 p (A)

(p2 + z2)5/2
dp = - Jp2(A) + Z2 

o

p3 (A) 3/2 + In [p(A) + Jp2 (A) Z+ z2J -In z,
[p2 (A) + z2]

we easily obtain

211'

aa
W I = ~J(aap, cos A+ aaP, sin A) In p (A) dA -
z z --->O 271' X Y

o
211' 211' p(.\)

2~P,(x,y)Jp~~) + 2~ JdA Jg(p,A;x ,y)dp.
0 00

This proves that if the density can be represented in the form of eq. (2.9.7)
the normal derivative of the double layer potential is bounded when the
observation point passes to point (x,y) c n remaining within the above
cylinder.

Referring to eqs. (2.9.1) and (2.8.2) we also have

(2.9.9)

and the normal derivative is also bounded. It vanishes at infinity since
Al - Ao ---+ 0 for Jx2 + y2 ---+ 00 .

5.2.10 Th e first boundary value problem for the half-space

The displacements are assumed to be given on the plane z = 0

z = 0: U = Uo (x , y) , v = vo (x , y) , w = Wo (x , y). (2.10.1)

The solution of the equat ions of elasticity is taken in Tedone's form, eq.
(1.3.10) of Chapter 4

x73 y73 z73
u = al - 2 (1 _ 2v) ' v = a2 - 2 (1 _ 2v) ' w = a3 - 2 (1 _ 2v) ' (2.10.2)
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where al ,a2,a3 and fJ are harmonic functions. Referring to eq. (2.9.3) we
obt ain from the third equat ion in (2.10.2)

(2.10.3)

This determines function a3(x,y,z) and its derivatives in the region z > O.
Now we have

ow = fJ _ au _ av = aa3 _ 1 (fJ + zafJ)
az ax ay az 2 (1 - 2v) az'

so that

fJl _ = 2(1-2v) ( aa3
1 + auo + avo) .

z- o 3 - 4v az z=o ax ay

Using eq. (2.9.3) we find

fJ ( ) = s. jrr fJ (~ , 'fl,0)dCd
x, y,z 27l' } R,3 <" 'fl.

Therefore

Z jrr ~fJ (~ , n, 0)1 d~d'fl }
al = 27l' } Uo (~ , 'fl) + 2 (1 _ 2v) R,3 '

z 'flfJ (~ , 'fl,0) ~d'fl
a2 = 27l' JJ Vo (~, 'fl) + 2 (1 - 2v) R,3 '

(2.10.4)

(2.10.5)

(2.10.6)

(2.10.7)

and it remains to substitute th e obt ained expressions for th e harmonic
functions al ,a2,a3,fJ into eq. (2.10.2).

5.2.11 Mixed problems for the half-space

It is assumed that the displacements u,v and th e normal stress a z are
prescribed on the plane z = 0

z = 0: u = Uo(x ,y) , v = Vo(x ,y) , az = a~ (x , y) .

We have

az = _v_ fJ + ow = 1 - v fJ _ au _ av }
2J-l 1 - 2v az 1 - 2v ax ay'
fJ _ 1 - 2v (a z + au + av)

- 1 - v 2J-l ax ay ,

and th e harmonic function given on th e boundary

1- 2v (a~ auo avo)z = 0: fJ (x ,y,0) = -- - + - + -
1 - v 2J-l ax ay

(2.11.1)

(2.11.2)

(2.11.3)
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is determined by the solution (2.9.3) of Dirichlet 's problem

o; )=~JrriJ(~ 'fJ,O)dcdx , y, z 2n } R/3 <" n. (2.11.4)

By virtue of eqs. (2.10.4) and (2.11.3) we have

oa3 \ 3 - 4v a~ 1 - 2v (OUo oVo)
z = O: oz z=O= 2(1-v)2tL + 2(1-v) ox + oy =p(x ,y)

and the harmoni c function a3 is presented by th e simple layer potential

1 Jrrp(~ ,fJ)
a3(x ,y, z ) = - 2n } -md~dfJ, (2.11.5)

whereas al and a2 are given by eq. (2.10.7), where iJ (~ , fJ , 0) needs to be
replaced according to eq. (2.11.3).

Let us proceed to another mixed problem, namely the shear str esses and
displacement w are prescribed on the plane z = 0

z = O: Txz=T~z(X,y) , Tyz =Tgz(X,y), w=wo(x , y) . (2.11.6)

Using eq. (2.10.2) and solving Dirichlet 's problem for the harmonic function
a3 we have

(2.11.7)

Referring to the equat ion in displacements, eq. (1.3.3) of Chapter 4, we
obtain

oiJ 0 ou 0 ov 02W-=--+--+Bz ox Bz oy Bz OZ2

_ 1 ( OTXZ OTyz) 2 (02w 02w) T"72-- --+-- - -+- +v w
u ox oy ox 2 oy2 '

so that

z = 0 :

(2.11.8)

and the harmonic function iJ is determined as the simple layer potential

(2.11.9)
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Equations (2.11.7) and (2.10.2) yield displacement w (x, y, z) . Harmonic
functions al and a2 are determined as the simple layer potentials by means
of the conditions

8a11 = ..!:.ro _ 8wo + xp(x,y) ,
8z z=O f.L x z 8x 2 (1 - v)

8a21 = ..!:.ro _ 8wo + yp(x,y).
8z z=O f.L yz 8y 2 (1 - v)

Finally we obtain

_ 1jrr [1 ° 8wo ~p(~'7/)] ~d7/ }
al - - 27f } 1/xz (~, 7/) - 8~ + 2 (1 - 2v) R!'

[
( )]

(2.11.10)
= _~ jrr ..!:. ° (C ) _ 8wo 7/P ~,7/ d~d7/

a2 27f } f.L r yz ,> ,7/ 87/ + 2 (1 - 2v) R"

The solutions obtained assume that loadings r~z (x,y) and rgz (x,y) are
differentiable whilst displacement wo (x,y) is twice differentiable .

5.2.12 On Saint- Venant's principle. Mises's formulation

Subsections 1.1 and 1.2 of this chapter deal with the loading by forces
distributed in a small volume and the state of stress in the unbounded
elastic medium at large distances from the loading . The action of these
forces was shown to be replaceable by the integral characteristics of these
forces, i.e. the principal force, the principal moment and the force tensor,
provided that the consideration is restricted to values of the first order in
linear dimensions of this volume. At large distances from the loading the
stresses due to the principal moment and the force tensor are of the same
order. Now it will be shown that the same phenomenon is observed in the
elastic half-space z > 0 when the forces are localised on a small area 0 of
the boundary z = O.

Let the origin of the coordinate system be chosen at point 0 of the
surface o. The position radii of the (arbitrarily taken) source point Q and
the observation point M are denoted by p = il~ + i27/ and R = C5li1 ,
respectively, then R' = QM = R - p where p ::; s, e being the radius of
the circle having the centre at point 0 and covering surface o. Similar to
eq. (1.1.4) we obtain up to values of the order of e]R that

III
R' = R + R3P' R. (2.12.1)

Let us view the potentials <Pl,<P2 'w introduced in Subsection 5.2.4 as being
the components of the following vector

<I> = 11 f (~, 7/) ~ = ~ 11 f (~, 7/) do+ ; ·11pf (~, 7/) do, (2.12.2)
o o o
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where the density vector f (~ , TJ) presents the surface force whose compo
nents are denoted by ql , q2 ,P. The integrals in eq. (2.12.2) imply that the
principal vector F and the force tensor of the system of forces

F = 11 f (~ , TJ) do, (2.12.3)

o

11 pf (~ , TJ) do = ~ 11 (pf + fp) do + ~ 11 (pf - fp) do = fi + 0,
o 0 0

where the force tensor is split into the symmetric (fi) and skew-symmetric
(0) parts. In addition to this

R · 0 = ~R . 11 (pf - fp) do = ~ 11 (p x f) do x R = ~rna x R ,
o 0

(2.12.4)

where

rna = 11 p x fdo

o

(2.12.5)

is the principal moment of the system of forces f about point O. Hence ,
within t he approximat ion (2.12.1)

1 1 a 1 _
<I> = 'RF+ 2R3rn x R + R 3R· p. (2.12.6)

For the sake of brevity we restrict our considerat ion to the stress vector on
the surfaces perp endicular to axis z . Due to eqs. (2.4.17) and (2.4.18) we
have

(2.12.7)

The calculation yields

1 1 a - 3 a 3 _ 1 _
\7<I> = --RF - -rn x E - -Rrn x R - -RR· p +-p

R3 2R3 2R5 R5 R3 '

E denoting the unit tensor. Hence,

\7 . <I> = -~R . F _.2-R . fi· R+~h (fi)
R3 R 5 R3

= - ~R . F - .2-R . Dev fi . R
R3 R 5 .

Then we have
1 3 15 _ 6 _

\7\7 . <I> = --F + -RR · F + -RR · Devji- R--R · Devp
R3 R5 R7 R5 '
Z 1 a 3z a 3z _ 1 _

k- \7<I> = --F - -k x rn - -rn x R--R· p + -k · P
R3 2R3 2R5 2R5 R 3 '
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and the latter expression is simplified since

k- fj - ~k x m" = ~k. 11 fpdo - ~k x 11 p x fdo = 0

Q Q

because k · p = O. Insertion into eq. (2.12.7) yields

k .T = 27r~5 ( -3RR · F - ~rno x R - Rh (fj) +

3Devfj·R- ~~RR'DeVfj 'R) . (2.12.8)

Naturally, this expression vanishes at z = 0 as the observation point must
lie outside the loading area. Similar to the case of the unbounded space,
the stress vector is expressed in terms of the principal vector , the princip al
moment , the first invariant and the deviator of the force tensor.

The term det ermined by the principal vector has the order of F / R2 =
(J whereas all remaining terms are of the order of (J / HE, irrespective of
whether the system is statically equivalent or not , that is whether m" = 0
or not for F = O. This forces one to accept a more careful formulation of
Saint-Venant's principle (Subsection 4.2.8) suggested by Mises in 1945: in
solids the values of stresses caused by forces distributed over small parts
of its boundary decrease with increasing distance from these parts if the
loading of each part is statically equipollent to zero.

5.2.13 Superstatic system of forces

A stat ically equivalent system of forces is called superstatic if its force
tensor vanishes:

F = 0, rno = 0, fj = O. (2.13.1)

If the boundary of the half-space is loaded by a superstati c system of forces
on a small surface 0 all terms in eq. (2.12.8) are equal to zero. At a sufficient
dist ance from the loading area the st resses have at least the order (c/ R)2(J

which were not taken into account in approximat ion (2.12.1).
An example of the superst atic system of forces is a system of forces

st atically equivalent to zero and normal to the boundary of the half-space
(similar to th e particular Boussinesq problem) . Then h = h = 0 and

mf = 11P2hdo = 0, m~ = - 11 pd3do = 0, m? = 0,

o 0

whereas the remaining components 110 fkpsdo of the force tensor vanish

as P3 = O.
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A more general example is the system of forces remaining statically equiv
alent to zero under any rotation of the forces comprising the system . Let
the rotated vector of force f be denoted by f, then referring to eqs. (A.8.1)
and (A.8.2) we have f = f · Awhere A denotes the rotation tensor. Let us
take for simplicity that the forces are rotated through 90° about axis is,
then

01 0 • A' 0·1 0 0 0 E' 0

Ik = Is X Ik, = IkIk = -IkIk X Is = - X Is,

f = -f · E x is = is x f

and due to the above condition

m
' O

= JJP x fda = JJP x (is x f) do

° 0

= is JJp- fda - JJfpdo · is = O.

o 0

Byeq. (2.12.3) the force tensor is symmetric for m O = 0 hence

JJf pdo = fJ, ish (fJ) - fJ . is = 0,

o

and it follows from this relationship that

h (fJ) = PH + P22 + P33 = is . fJ· is = Pss (8 = 1,2,3) ,

so that

PII = P22 = P33 = O.

According to eq. (2.13.2) we have for 8 -=I k that

(2.13.2)

(2.13.3)

(2.13.4)

which proves the statement. For instance, the force dipole, Fig. 5.2a is not
a superstatic system of forces whilst the pairs shown in Fig. 5.2b are an
example of a superstatic system of forces.

5.2.14 Sternberg's theorem (1954)

The estimates of the rate of decreasing stresses in the elastic half-space
obtained in Subsection 5.2.12 are valid for the case of an elastic body of
finite dimensions bounded by a surface with the continuous curvature.

It is assumed that the body 's surface is loaded on several regions having
linear dimensions of the order of E: « 1 where the unit implies a character
istic length of the body. The forces distributed over a region are bounded,



284 5. Three-dimensional problems in the theory of elasticity
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FIGURE 5.2.

thus the orders of values of the principal vector , the principal moment and
the force tensor are E

2
, E3 and E3 respectively. Let (J (x,E) denote a stress

component caused by the loading on one of the regions at the observation
point at the distance x 2: 1. The order of this value is Em , i.e.

Sternberg has proved the following statements: (i) m 2: 2 if the principal
vector of the system of forces on the considered region does not vanish; (ii)
m 2: 3 if it vanishes as well as in the case of a system which is statically
equivalent to zero (that is, if the principal moment vanishes, too) and (iii)
m 2: 4 if the system of forces is superstatic.

The proof follows immediately from Lauricella's formulae (1.2.20)-(1.2.23).
Let Ok be one of the loading regions, Mg be a fixed point and M k be any

-----=------+
point in this region, so that MgMk = Pk and Pk :::; E . Presenting vector
u* (Mk ) in the form

we have

u* (Mk) . F(k) = Uko . F(k) + Pk . 'VUko . F(k) + .
= Uko. F(k) + 'VUko . ·F(k) Pk + ,

°since the second term is the first invariant of the product of tensor 'Vuk
and tensor F(k) Pk ' By virtue of eq. (1.2.20)

E(k) . . P= Uko·11F(k)do + 'VUkO ··11F(k) Pkd o + ... ,
Ok O k

and it remains to notice that the first and the second terms have the order of
the loading area (.::2) and .::3 , respectively. This provides one with the above
estimat e of the strains and the values of the stresses at the points lying at
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distances x » E. Let us recall that tensor p and vector 'Vuk
o

(M) are
auxiliary means for deriving Lauricella 's formula and they are not related
to the distribution of forces over Ok and the strain g(k ) determined by this
distribution.

5.3 Equilibrium of the elastic sphere

5.3.1 Statement of the problem

The solution to the first and th e second boundary value problems for the
sphere is sought in the form suggested by E. Trefftz

(3.1.1)

Here Ro is th e radius of th e sphere, R = ik Xk is the position vector, U =
isUs is a harmonic vector and \II is a harmonic scalar

(3.1.2)

Using the Papkovich-Neuber form does not lead rapidly to the result , es
pecially for th e first boundary value problem.

The equalities relating th e harmonic functions Us and \II follow from th e
equations of the th eory of elast icity in displacements . When th e volume
forces are absent th e latter are set in th e form

(1 - 2v ) 'V2u + 'V'V . U = O.

By virtue of eqs. (3.1.1) and (3.1.2) we have

'V2u = 'V2 R2 'V\II = 6'V\II + 4R · 'V'V\II = 'V(2\I1 + 4R . 'V\II) ,

'V'V . U = \7 (\7 . U + 2R · \7\II) ,

and substitution into eq. (3.1.3) leads to the required relationship

1
(1 - 2v) \II + (3 - 4v) R'V\II + 2\7 . U = o.

The strain tensor and the dilatation are as follows

E: = defU + R\7\I1 + ('V\II) R + (R2
- R6) 'V'V\II , }

{) = h (E:) = 'V . U +2R· \7\I1.

(3.1.3)

(3.1.4)

(3.1.5)

(3.1.6)

(3.1.7)

Now it is easy to construct the expression for th e stress vector on the surface
of the sphere R = const

R ' 2p, [ u 1
P R = R . T = Ii 1 _ 2v R'V · U + 1 _ 2v RR · 'V\II +

R· defU + R 2'V\II + (R2
- R5) R · 'V'V\II] (3.1.8)
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or

(3.1.9)

where we introduced the vector

11 2
II = 1 _ 2v RV' . V + 1 _ 2vRR · V''lJ + R· defV + R V''lJ , (3.1.10)

th at is harmonic. Indeed, using eqs. (3.1.4) and (3.1.5) we have

V'2RV' . V = 2V'V' . V ; V'2RR · V''lJ = 2V' (R · V''lJ ) ;
V'2R . def V = V'V' . V ; V'2 R2 V''lJ = 2V''lJ + 4V'R . V''lJ ,

and insertion into eq. (3.1.10) yields

2 2 [1 ]V' II=--V' -V' ·V+(1-2v)'lJ+(3-4v)R ·V''lJ .
1- 2v 2

The value in the brackets is equal to zero, thus

(3.1.11)

5.3.2 The first boundary value problem

According to Section D.4 the displacement vector u prescribed on the
sphere surface 0 is presented by the series in terms of the Laplace spherical
vectors

00

ul R=Ro = LYn (p"A)
n = O

(3.2.1)

By eq. (3.1.1) the harmonic vector V and the displacement vector u on
surface 0 are equal to

(R < Ro) ,

00

VIR=Ro = ulR=Ro = LYn (/t,A) .
n =O

Referring to eq. (F.4 .2) we have

00 (R)n 00

V =~ Ro v, (p"A) =~Vn

00 (Ro) n+l 00

V =~ If v, (p"A) = ~V-(n+l ) (R > Ro) .

(3.2.2)

(3.2.3)

(3.2.4)
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Here Un and U-(n+1) are the homogeneous harmonic vectors of the power
of nand - (n + 1) respectively. The harmonic scalar W is also sought as a
series in terms the homogeneous harmonic polynomials of power n for the
internal problem and - (n + 1) for the external problem

(R <~), (3.2.5)

(3.2.6)

Here and in what follows while considering the boundary value problems
for the sphere we will apply Euler 's theorem on homogeneous functions , eq.
(F.2.2)

R· V'Un = nUn , R· V'Wn = nWn

Using this theorem and eq. (3.1.6) we obtain

1
(1 - 2/.1) Wn - 1 + (3 - 4/.1) (n - 1) Wn - 1 + 2" V' . Un = 0,

so that

W
n

- 1 = _~ V' . Un
2 3n - 2 - 2/.1 (2n - 1)

and furthermore

V'w __ ~ graddivUn
n-1- 23n-2-2/.1(2n-1)'

where V' . V o = V' . aoo = O. Byeq. (3.1.1) we have

00

U = L [Un + (R2
- R6) V'Wn-I] ,

n=O

(3.2.7)

(3.2.8)

(3.2.9)

where W- 1 = O. Hence, the solution of the internal problem is presented
by the series

~ [ 1 (2 2) graddivUn ]
U = f:o U; + 2" RO - R 3n _ 2 _ 2/.1 (2n _ 1) (R < ~). (3.2.10)

The solution of the external problem is obtained when we replace n by
- (n + 1)

_ ~ [ ~ ( 2_ 2) graddivU_(n+l) ]
u-f:o U -(n+1) + 2 R RO 3n+5-2/.1(2n+3) (R>~) .

(3.2.11)
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Here, by eqs. (3.2.3) and (3.2.4)

(
!l{) )n+1

U -(nH) = R Y n (fL ,'x) (3.2.12)

and vectors Y n (fL,'x) are the Laplace spherical vectors given by expansion
(3.2.1).

5.3.3 The elastostatic Robin's problem for the sphere

In accordance with Subsection 4.4.7 the problem is concerned with the st ate
of stress in the elastic medium provided that a rigid sphere placed in the
medium is subj ected to the following small displacement

u* = Uo +w x R , (3.3.1)

where Uo and ware cons tant-valued vectors. The points of cavity 0 which
forms a sphere of radius R = Ro bounding the medium have the displace
ment

(3.3.2)

where Ro denotes the position vector of the point on O. The right hand side
of eq. (3.3.2) is already presented as a sum of Laplace's spherical vectors
of the zeroth and first order

Yo = liO , Y1 = W x Ro.

Hence, referring to eq. (3.2.4) we have

(3.3.3)

The general expression (3.2.11) can be set as follows

u = U-1 + U-2 ,

with

- U ~ (R2 _ R2) grad div U _1
U-1 - - 1+ 2 0 5 - 6v '

_ U ~ (R2 _ R2 ) grad div U _2
U-2 - -2 + 2 0 8 - lOv .

Now we have

div U i.j = - ~R ' Uo ,

grad div Uc.j = 3j;RR . Uo - ~uo ; divU-2 = 0

(3.3.4)
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and the solution of the problem is given by the following formulae

Ro R
2

- ~ Ro ( R )
U-l=/fUO+ 2(5_6v)R3 3R2R . uo- uo ,

m
U-2 = R3W x R. (3.3.6)

The latter formula determines the displacement due to the centre of rota
tion , see eq. (1.2.12). This displacement result s is the stress vector of the
surface of the sphere and the principal moment of the forces needed to be
applied to the sphere for the required rotation w , the principal vector of
these forces being equal to zero.

The calculation of the displacements caused by the translational dis
placement Uo of the sphere is more cumbersome. The result is

" 3Ro {[ R6]£ = def u.i, = 2 (5 _ 6v) R3 - (1- 2v) + R2 (Ruo + uoR) +

[ " ( ~) RR RR~] }E l- R2 -3 R2 +5 R2 R2 R·uo ,

. 1- 2v3Rodiv u..j = ----R· Uo
5 - 6v R3

and the stress tensor on the surface 0 is as follows

1 AI 3 1 [-T = ---2 (I-v) (Rauo + uoRo) +2ft 0 5 - 6v Ro

vERa· Uo - ~RaRa ' uo] .

The traction vector on this surface is given by the formula

1 A I" R o 3(1-v)
-T·n= --T · - = Uo .
2ft 2ft Ro (5 - 6v) Ro

Thus, the principal vector of these forces is equal to

V - 241rft (1 - v) Ro
- 5 - 6v Uo ,

with the principal moment being equal to zero.

(3.3.7)

(3.3.8)

(3.3.9)

5.3.4 Thermal stresses in the sphere

A rigid case is placed around an elastic sphere and a steady-state temper
ature distribution () on the surface of the elastic sphere is assumed to be
prescribed. In other words the solution must satisfy the following condition

00

()IR=Ro = L Zn (ft ,..\) , ulR=Ro = O.
n = O

(3.4.1 )
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Here Zn (J-l ,A) denote Laplace's spherical functions and the temperature 0
which is a harmonic functions for R < ~ is expanded into a series in terms
of these functions

(3.4.2)

(3.4.3)

According to eqs. (1.14.7) and (1.14.8) of Chapter 4, the particular solution
u, of the equilibrium equations in terms of displacements corresponding to
the thermal term is given by

2 l+v I+V L
OO

u* = 'VX, 'V X = a--8 = a-- On-
I-v I-v

n=O

It is sufficient to find any particular solution of this equations which is
sought in the form

00
2 1 + v'V Xn = a--On_I-v

The right hand side is a homogeneous harmonic polynomial. Assuming

we have

1 1 + v ~ 2 On
Xn="2 a l _ v L.., R 2n+3'

n=O

so that

The solution is sought as the following sum

(

00 00 0)1 + v On 1 2 'V n
U= V+U* =v+a----=- R L -23 +"2 R L ~3 '

1 v n=O n + n=O n +
(3.4.4)

where vector v is a solution of the homogeneous equilibrium equations
in terms of displacements and, due to eq. (3.4.1), satisfies the boundary
condition

1 + v [ ~ Zn (J-l, A) 1 2~ 1 ( )I ]vI R=Ro = - a 1 _ v Ro~ 2n+3 +"2.RQ~2n+3 'VOn R=Ro -

(3.4.5)
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Vector 'VOn is the gradient of a harmonic vector and thus is a harmonic
vector. For thi s reason, its value on the surface of the sphere is a Laplace
spherical vector of the order n - 1. Splitting the sought vector v into two
terms

y = -(}1+ v (y(1) + y (2)) ,
I - v

determined by the boundary conditions

y (1 )1 = il{)~ eRZn (J1 , >") , y (2) = ~R6 ~ 'VOn ,
R=Ro Z:: 2n + 3 2 ~ 2n + 3n=O n=O

(3.4.6)

(3.4.7)

(3.4.8)

referring to eq. (3.2.10) and taking into account that div'VOn = 'V20n = 0,
one can set the expression for y (2) in the form

y (2) = ~R2 ~ 'VOn.
2 0 f:o 2n + 3

The problem is thus reduced to determining vector y(1 ) . Restricting our
considerat ion to the case of the symmetric distribution of the temperature
over the surface of the sphere we have Zn = anoPn (J1) . The vector

is now needed to be replaced by the expansion in terms of Laplace's spher
ical funct ions. To this aim, use is made of th e recurrent formulae

(2n + 1) J1Pn (J1) = (n + 1) Pn+1(J1) + nPn- 1(J1 ) ,

(2n + 1) J1Pn (J1) = P:'+l (J1) - P:'- l (J1) .

Th en we have

e RPn (J1) = -21 [(i1 cos >" + i2 sin >.. ) P:,+1(J1) + (n + 1) bPn+l (J1) ] +
n + l

_1_ [_ (i1 cos >" + i2 sin>") P:'- l (J1) + ni3Pn-1(J1) ] .
2n+ 1

The expressions in the brackets are the Laplace spherical vectors , see eq.
(F .2.1O) . Introducing the notion

Y~+l (J1, >.. ) = 2n~ 1 [e'.P'~+ l (J1) + k (n + 1) Pn+1(J1) ], }

Y~~l = 2n~ 1 [-erP~_ l (J1) + knPn- 1(/1)]

we can write the boundary condit ion (3.4.6) for vector y (1 ) in the form

y (1) 1 =Ro(~~Y* + ~~Y** ).R=Ro ~2n + 3 n+1 ~2n + 3 n- 1
n=O n=O

(3.4.9)
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Here e, and k denote the unit vectors of the cylindrical coordinate sys
tem (e,. = i l cos>,+ i2 sin >' ,k = b ). The component Zn = anoPn (JL) in
the boundary condition (3.4.6) is described by two harmonic vectors

Ro
(R)

n+1 Ro (R) n- I* anO * ** anO **
U n +I=2n+3 Ro Y n +l , U n - I=2n+3 Ro Y n - I ,

(3.4.10)

where U~*I = O. By eqs. (3.2.10) and (3.4.4)-(3.4.7), the solut ion of the
problem is given as follows

where

(3.4.12)

For example, let the surface temperature be the following linear funct ion

th en the temperature in the solid obeys the linear law as well

o (}I - (}o R 0 (}I _ (}o
() = () + 2 Ro PI (JL) = () + 2Ro z (R < Ro) .

Calculation using the above formulae yields

= 1+V (}I - (}o (R2 _ R2) k
u a 4 _ 6v 2Ro 0 '

which can be easily proved by means of eq. (1.14.3) of Chapter 4. The
st resses are found with the help of eq. (1.14.1) of Chapter 4.

5.3.5 The second boundary value problem for the sphere

The stress vector on the surface of any sphere which is concent ric with
sphere a of radius Ro is denoted as P R in Subsect ion 5.3.1. Vector P R
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is prescribed on sphere 0 and can be presented in the form of a series in
terms of Laplace's spherical vectors

DO

RP RIR=Ro = LYn (fL,A).
n=O

(3.5.1)

By virt ue of eqs. (3.1.9) and (3.1.11), on surface 0 this series coincides with
the vector

which is harmonic inside the sphere and the vector

1 DO (Ro) n+l DO

II = 2G~ Ii Yn (fL ,A) =~ II- (n+l ),

(3.5.2)

(3.5.3)

which is harmonic outside of it. The shear modulus is denoted here as G.
The solution of the external problem is known to be obtained by replacing

n by - (n + 1) in the solut ion for the internal problem. For this reason ,
the latter is considered first. Due to eq. (3.1.9) determining P R requires
the harmoni c scalar IlJ to be found. It can be obtained by excluding the
harmonic vector U from equalities (3.1.6) and (3.1.10). Taking into account
that V'2U = 0 and V'21lJ = 0 we obtain from eq. (3.1.10) that

V'. II = _1_ [(1 + v) V' . U +
1- 2v

~R. V'V' . U + (5 - 4v) R· V'1lJ + R · V'R · V'1lJ] .

Replacing here V' . U by means of eq. (3.1.6) we have

V' . II = -2 [(1 + v) IlJ + (1+ 2v) R . V'1lJ + R . V'R · V'1lJ] .

Representing the harmoni c scalar IlJ by a sum of the harmonic polynomials

DO

we obtain

DO

R · V'1lJ = L kllJk ,
k= l

DO

DO

R · V'R· V'1lJ = L k2 llJk ,
k=l

DO

V' . II = LV'· IIn = -2L [k2 + (1 + 2v) k + (1+ v)] IlJk .

n =O k=O



294 5. Three-dimensional problems in the th eory of elast icity

The left hand side contains a sum of t he harmonic polynomials of power
n - 1, that is, taking k = n - 1 we have

w __ ~ \7. TIn }
n-l- 2n2-(1-2v)n+(1-v) '

w--~~ \7 . TIn
- 2 f::o n2 - (1 - 2v) n + 1 - V

(3.5.4)

and taking into account that \7Wn - l is a harmonic vector of power n - 2
we obtain by means of eq. (3.1.9) that

Using eqs. (3.1.6) and (3.1.1) we find

\7 . U =~ (3 - 4v) n - 2 (1 - v) \7. TIn ' }
L....J n2 - (1 - 2v) n + 1 - v

t9 = \7 ... (1- 2v)~ (2n - 1) \7 . TIn .f::o n2 - (1 - 2v) n + 1 - V

The latter formula yields the sum of the normal st resses

I:
= (2n - 1) \7 . TIn

0" = 0" R + 0" iI + 0" oX = 2G (1 + v) 2 ( 2) .n - 1- V n+1-v
n=O

(3.5.5)

(3.5.6)

(3.5.7)

The syst em of the external forces acting on the sphere needs to be st atic ally
equivalent to zero , i.e, the principal vector V and the principal moment m"
must vanish

V=II PRIR=Rodo=O, rn
o

= IIRoxPRIR=Rodo=O. (3.5 .8)
o 0

It is known that the integral of the product of two surface Laplace's vectors
of different orders over the surface of the sphere is equal to zero . Thus, when
est imat ing the integrals in eq. (3.5.8) it is necessary to keep only the terms
Yo and Y 1 in the first and the second integrals, respectively. The result is

V=47rRoYo=0, rn= 11~ x Y l do = 11nxYldo
o 0

= 2G 111 \7 x TIldT = 8;GRg\7 x TIl = 0, (3.5.9)

v
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as V' x II I is a const ant-valued vector. Hence, the constant term Yo must
vanish in the expansion of the vector of the external forces whilst the term
ROIY I must be subjected to the condition

(3.5.10)

where H is a homogeneous quadratic form in coordinates x, y, z. The sum
mation in formulae (3.5.5)-(3.5.7) should begin with n = 1 whereas that
in the second group in eq. (3.5.5) from n = 3. Replacing n by - (n + 1)
in expansions (3.5.5) and (3.5.7) we arrive at the solution for the external
problem

2G~ [ 1 ( 2 2) (n + 3) V'V' . II - (n + l ) ]
P R = R ~ II _ (n + J) + 2 R -Ro n2+ (3 -2/1) n +3 (1 -/l) ,

(3.5.11)

l:
oo (2n + 3) V' . II- (n+l )

0"=O"R+0"t1+0"),= -2G (1+/I ) 2 (3 ) 3 ( )"n + - 2/1 n + 1 - /I
n=O

(3.5.12)

5.3.6 Calculation of the displacement vector

Formulae (3.5.5) and (3.5.7) dete rmine the sum of the normal st resses and
the st ress vector on the surface of any sphere R = Ro which is concent ric to
O. It is more difficult to find the displacement vector. Using the formulae

1
V' x a ep = spV' x a + V'sp x a , V' x R . def U = 2 R . V'V' x U

we obtain by means of eqs. (3.1.10) and (3.1.6)

/I 1
rot II = - - R x V'V'. U + - R · V'V' x U -

1 - 2/1 2
1

1- 2/1 R x V'R· V''lJ+ 2R x V''lJ (3.6.1)

1
= 2 (1 + /I) R x V''lJ - (1 - 4/1) R x V' (R · V''lJ) + 2 R . V'V' x U .

Taking into account that

R · V'V' X U ; = (n - 1) V' x U ;

and recalling eq. (3.5.4) we find that for n =/:. 1

V' x U ; = _ 1_ [2V' x II
n

_ n (1 - 4/1 ) - 3 + 2/1 R x V'V' . II
n

] .
n - 1 n2 - (1 - 2/1 ) n + 1 - /I

(3.6.2)
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296 5. Three-dimensional problems in the theory of elasticity

Assuming

defU = V'U +n,
, 1

R . def U = R · V'U - 0 . R = R . V'U + - R x (V' x U)
2

in eq. (3.1.10) and utilising eq. (3.1.6) we obtain

1
II = -2vR'lJ + (1 - 4v) RR· V''lJ + R2V''lJ + R· V'U + 2R x (V' x U),

so that

IIn = [-2v + (n - 1) (1 - 4v)] R'lJn - l + R2V''lJ
n_ l + nUn +

1
2R x (V' x U).

Eliminating V' x U and 'lJn - l by means of eqs. (3.6.2) and (3.5.4), respec
tively, we arrive at the equality

1 1 n(1-4v)-2(1-v)
u, = -IIn - ( 1)Rx(V'IIX n )+ [2 (1 2) 1 ]RV"IInn n n- n n - - V n+ -v

+ ( ) [ ; - ~ + 2nv) ]R2V'V' . IIn (n -J. 1), (3.6.3)
n n - 1 n - 1 - 2v n + 1 - V r:

and byeqs. (3.1.1) and (3.5.4) the displacement vector takes the form

~ [ 1 (2 2) V'V' . IIn ]
U=~ U n + 2 RO-R n2-(1-2v)n+1-v +Ul .

It is clear that the term corresponding to n = 0 describes the rigid body
displacement of the sphere. The term ui represents a vector which depends
linearly on the coordinates and can be set as follows

(3.6.5)

Here Ais a constant tensor of the second rank which can be taken as being

symmetric (A = A*) since the skew-symmetric part would add the term

1(' ' ) ,2 A-A* · R = O · R = w x R

describing a rigid body rotation. The stress tensor r(l) corresponding to
u, is equal to

(3.6.6)
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so that

(3.6.7)

The first invariant of tensor A is determined by eqs. (3.6.6) and (3.5.7)

I (A) = _1 1 - 2v I (1'(1)) = 1 - 2v \7 . II
I 2G 1 + v I 1 + V I ,

so that

(3.6.8)

In the case of the external problem, replacing n by - (n + 1) in eq. (3.6.3)
we have

{
I 1

U-(n+l) = - --II-(n+l) + ( ) ( 2)R x rotII_(n+I)-n+1 n+1 n+
1

(n + 1) [n2 + (3 _ 2v) n + 3 (1 _ v)] [{n (1 - 4v) + 3 (1 - 2v)} R\7 · II-(n+l)

_ (2n +3) v-I R2nn . II ] } ( )
n + 2 v v -(n+l) 3.6.9

for all n = 0, 1,2 , . . . and the displacement vector is as follows

~ [ 1 (2 2) \7\7 . II-(n+l) ]
u = f;o U-(n+l) -"2 R - R1J n 2 + (3 - 2v) n + 3 (1 _ v) . (3.6.10)

5.3.7 The state of stress at the centre of the sphere

The stress vector on an arbitrary oriented surface at the centre of the sphere
(R = 0) is given byeq. (3.5.5)

(
1 R6 \7\7 . II3 )

(P R) R=O = 2G "RIll + 2 (7 +5v) R R->O

= _1 [YI+ --,--1----:- (\7 . \7R
3
y 3) ]

Ro 2 (7 + 5v) R R=O '
(3.7.1)

that is, in order to determine the stresses at the centre of the sphere it is
sufficient to know only the first and third terms of expansion (3.5.1) of the
load in a series in terms of Laplace's spherical vectors .
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5.3.8 Thermal stresses

Here we assume surface 0 of the sphere is free in the steady-state thermal
regime. Similar to Subsection 5.3.4 the displacement vector is presented in
the form

u = v + V'x , (3.8.1)

where X implies a particular solution of Poisson's equation (3.4.4) and v
denotes the vector determined from the homogeneous equilibrium equations
in terms of displacements . By virtue of eq. (1.14.1) of Chapter 4 the stress
tensor is equal to

A A 1+// A A A 1+// A

T = T (u) - 2G1 _ 2//aBE = T (v) +T (V'X) - 2G1 _ 2//aBE,

where the operation t over vector a is defined by the equality

t (a) = 2GC:2//Ediva + def a) ,

so that

t (V'X) = 2G (1:2// EV'2X + V'V'X) .

Referring now to eq. (1.1.4.8) of Chapter 4 and eq. (3.1.8) we have

" ( 2 , ) , ( 1+// , )T = T (v) + 2G V'V'X - V' XE = T (v) + 2G V'V'X - 1 _ //aBE ,

, (1+// )RPR=R ·T=RPR(V)+2G R ·V'V'x---aBR.
1-//

As shown in Subsection 5.3.4

00 1+// 00 1 ( 1 2 )
V'X=~V'Xn=al_//~2n+3 RBn+2"RV'Bn ,

where Bn denotes the homogeneous harmonic polynomials of the n - th
power, in terms of which the harmonic function B is expanded, and Xn are
the homogeneous polynomials of the (n + 2) - th power, so that

1+//n+l ( 1 2 )
R· V'V'Xn = (n + 1)V'Xn = a 1 _ // 2n + 3 RBn + 2"R . V'Bn

and furthermore



(3.8.3)

(3.8.6)

(3.8.7)
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Vector v is determined by the boundary condition

1
2G Ro PR(v)IR=Ro =

1 + v ~ [1 n + 1 2 n + 2 ]
= -0:1- v~ "2 2n +3Ro(\7(1n)R=Ro - 2n +3R o ((1n)R=Ro

and the harmonic vector II (v) is as follows

II (v) = -0: 1 + v {~ ~ n + 1 R2\7(1n-
1 - v LJ 2 2n + 3 0

n=O

Ro~ (n + 2)anO [(!i)n+l Y* u: Y ** ]}
LJ 2n+ 3 Ro n+l + Ro n-l '
n=O

(3.8.4)

where the representation (3.4.8) of vector (eR(1n) R=Ro in terms of Laplace's
spherical vectors was used, see Subsection 5.3.4. By eq. (3.5.5) we have

~RP = ~ 0: 1 + v (R2 _ R2 ) ~ n + 1 \7(1 _
2G R 2 1 - v 0 ~ 2n +3 n

0:~~~Ro~2::23 [~(1n- (II~+1 +II~*-l)] +

1 1 + V 2 2 LOO

n + 2 [ (n - 1) \7\7 . II~+1
-o:--Ro(R -R) -- +
2 1 - v 0 n=O 2n + 3 n2 + n (1 + 2v) + 1 + v

(n - 3) \7\7 . II;I~l ]
2 ( ) ( )' (3.8.5)n - 3 - 2v n +3 1 - v

where the harmon ic vectors are denoted as follows

(
R ) n+l ( R ) n-l

II~+1 = anO Ro Y;l+l ' II;I~ 1 = anO Ro Y;'~ 1 .

It is easy to prove that under the linear dist ribution of temperature
alO

(1 = aOO + R
o

z , akO = 0, k = 2,3, . . . ,

vector P R vanishes , d . Subsection 4.1.14. For this reason, the summation
must begin with n = 2.

The stress at the centre (R = 0) is determined by prescribing only the
second term in expansion (3.4.12) of the temperature in a series in terms
of the harmonic polynomials. The remaining terms, among them the terms
with a40 , vanish at R = O. Calculation using formulae (3.8.5), (3.8.6),
(3.4.8) and (F.2 .17) yields

1 1 + v 14 - 5v
(PR) R=R = -50:G -1 - a2o 5 (2kcos19-er ) .

o -v r + l/
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5.3.9 The state of stress in the vicinity of a spherical cavity

Far away from the cavity the st ate of stress is assumed to be uniform and
is given by a constant tensor T OO. When the cavity is present , the stress
tensor T is given by the following sum

(3.9.1)

where T* denotes a tensor which vanishes at infinity (for R ---. (0) and
describes the perturbation of the st ate of stress due to the cavity. The
cavity surface R = Ro is assumed to be free of load , thus

or

(e r • T) = 0,
R=Ro

(eT • T*) = - (er . Too)
R=Ro R=Ro

RP~IR=Ro = -Roer . T OO = -Roer . isht~ (3.9.2)

= -Roik [sin '13 (tu cos A+ t2% sin A) + t'3k cos '13] = - Y 1 (tt, A) .

The harmonic vector II* is determined by the equality

II* = II~2 = - 2~ (~) 2Y~ (tt, A) = - 2~ (~) 3 R· Too . (3.9 .3)

An expression for the displacement vector is obt ained from eq. (3.6.10) in
which only one term n = 1 is present

* 1 3 [R. Too 1 ( R · Too) 4 - lOv R .Too
u = 4G Ro R3 + 3R x \7 X R3 - 7 _ 5v R \7 . R3

, 2 2 ' ]5v - 1 2 R . TOO R - Ro R . T OO
+3 (7 - 5v) R \7\7 . R3 + 7 _ 5v \7\7 . R3 . (3.9.4)

Let us consider a particular case T OO = i3i3<7;:" corresponding to the case
of a stretched rod with a spherical cavity whose diameter is very small
in comparison with the rod diameter. A rather st ra ight forward, although
cumbersome, calculation by means of eq. (3.9.4) leads to the relat ive simple
formulae

<700

<7{) = 2 (7 ~ 5v ) (27 - 15v - 30cos
2

'13) ,

<700

<7>. = 2 (7 ~ 5v) (15v - 3 - 30vcos
2

'13) .

In particular for '13 = 1f / 2

27 - 15v 00 00

<7{) =<7z = 2(7-5v)<7z :::::;2,07<7 z ,

_ 15v - 3 00 ~ 9 00

<7>. - 2(7_5v)<7z ~0,1 <7z
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and for {) = 0

The maximum tensile st ress is at the equator of the cavity and is 2.07
times greater th an t he nominal st ress a~ , the compressed stresses 0, 75a~
appear at the poles of the cavity. The stress concentration is of the local
character, for example, in the equatorial plane {) = 7r/2

00 [ 4 - 5v (Rn) 3 9 (Rn) 5]
az = a-a = az 1+ 2 (7- 5v ) Ii +2 (7 - 5v ) Ii .

For R = Rn we obtain the above value of 2.07a~ , however the st ress reduces
to 1.03a~ at R = 2Rn.

5.3.10 The state of stress in the vicinity of a small spherical
cavity in a twisted cylindrical rod

The problems with non-uniform states of stress at infinity are considered
by analogy. For instance, in a cylindrical rod subjected to torsion

or

(3.10.1)

where M z denotes the torque and Ip is the polar moment of inertia of the
rod.

Assuming as above

we have

(RP'R )R=Ro= - ROeR .Too = - M;R5 sin {) cos {) (- i1 sin A+i2 cos A)
p

= - ~~R5pd(p)( - i 1 sin A+ i2 cos A) = - Y 2 (p, ,\) .
p

For this reason



(3.10.2)
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or

II* 1 (Ro)5 00 00 M, (. .)= -2 Ii u , u = Gl
p

-IIY + 12X Z,

where U OO denotes the displacement vector at an infinite distance from the
cavity. Only the n 2 term is kept in expansion (3.6.10). Taking into
account that

UOO

div R5 = 0

we obt ain

(3.10.3)

(3.10.6)

In spherical coordinates we have

u ~ u" + U
OO ~ -::;.R2 [1 + ~ (~)'] eA sin~ cos ~ ~ u,e, (3.10.4)

and the non-vanishing st resses are

T~A=G(~~~A - ~cot ~) = %ZR(1+~~nSin2 ~,}

( ) (
5) (3.10.5)8uA UA Mz Ro.

T RA = G - - - = --R 1 - - sm ~ cos~
8R R i, R5 .

On the surface of the cavity

5Mz · 2
T~A = 4TRosm ~, TRA = O.

p

The distortion of the state of st ress has a sharply defined local character.
The maximum shear stress exceeds the nominal stress MzRo /lp by 25%.

The simplicity of the obtained solut ion is explained by the fact that
the problem of torsion of the body of revolution reduces to the only dis
placement UA1 the product uA e iA being a harmonic function , see Subsection
4.1.11.

5.3.11 Action of the mass forces

Given the mass forces with pot ential cI> , the particular solution of the equi
librium equations in terms of displacements is determined by eqs. (1.4.7)
and (1.4.10) of Chapter 4

2 1 - 2v
u = grad X, \7 X = 2G (1 _ v) cI>. (3.11.1)
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In what follows we consider some special cases of <I>.

1. <I> = <I> (r) ,r = Jx2+ y2. In thi s case X is sought as a function of r
only

where e r , e<p , k denote the unit vectors of the cylindrical coordinate system,
see Section C.7.

For example, when a solid rotates about the motionless axis Oz with a
constant angular velocity w, the potential of the cent rifugal force is given
by eq. (1.2.6) of Chapte r 1

1 ')' 22 1 2
<I> = -2gWr = -2')' Iwx RI , (3.11.4)

and the particular solution for the displacement vector , which is bounded
at r = 0, is as follows

1 - 2// ')'w 2 3

U = - 2G (1 _ //) 8g r en (3.11.5)

and the non-trivial components of the stress tensor are

')'w
2 3 - 2// 2 ')'w

2 1 + 2// 2 ')'w
2 // 2

a r = - 8g 1 _ // T , a <p = - 8g 1 _ // T , a z = - 2g 1 _ //T •

(3.11.6)

2. <I> = <I> (R) , r = Jx2+ y2+ z2. Assuming X to be a function of R and
using eq. (3.11.1) we have

1 d 2 dX 1 - 2//
R2dR R dR = 2G (1 _ //) <I> (R) ,

1 - 2// (J
R

dR JR 2 C1 )
X = 2G (1_ //) R2 R <I> (R) dR - Ii +C2 ,
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so that

(3.11.7)

(3.11.8)

3. Potential <I> is a harmonic function which is presented by a series in
terms of the homogeneous harmonic polynomials

n

Similar to Subsection 5.3.8 we find

_ 1 - 2v R2 ,", <I>n (x , y , z)
X - 4G (1 - v) L..J 2n + 3 .

n

(3.11.9)

(3.11.10)

5.3.12 An attracting sphere

As follows from the theory of the Newtonian potential , the attracting force
acting on a unit mass particle of the sphere is direct ed to the centre of the
sphere and is proport ional to the radius of th e particle

"f "fR2
pK = - RoR = - grad <I> , <I> = 2Ro. (3.12.1)

(3.12.3)

(3.12.2)

Here Ro is the radius of the sphere and "f denotes the value of the volume
force on the surface of the sphere, i.e. for the Earth it is the weight of a
unit volume. The particular solution (3.11.7) is as follows

* 1 - 2v "fR2
U = 20G(1 _ v) Ro R ,

and byeqs. (3.11.8) and (3.1.8) we find

. 3-v "f~ }
R · T* = RP R= 10 (1 _ v) Ro R ,

II* 3 - v RoR II* R Y
= 20G(1 - v) "f = 1 = 2GRo 1·

The surface of the sphere is not loaded and, by virtue of eq. (3.6.8), one
needs to superimpose the following solut ion

v 3 - v 1 - 2v
u., = -IIi + - - R V' . IIi = - 20G( )--"fRoRl+v 1- v l+v
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on the solution (3.12.2). The result is

1 - 2v (R
2

3 - V)
U = u, + u** = 20G (1 _ v) ')'RoR R6 - 1 + v . (3.12.4)

The stress vector in th e cent re of the sphere is obtained by means of eq.
(3.7.1)

(3.12.5)

For the Earth ')' = 5.53.103 kgj m3 and Ro = 6.37 .106 m and the stress
calculated with the help of the latter formula turns out to be unrealistically
large. This indicates that the methods of the linear theory of elast icity are
not applicable to th e considered problem.

5.3.13 A rotating sphere

The stress tensor t and the displacement vector u are put in the form

t = to+ i- , u = u'' + u" , (3.13.1)

where to and u" are the particular solutions (3.11.6) and (3.11.5) corre
sponding to the centrifugal forces. Writing to in the form

')'w
2

to = - 8 ( ) [eReR (3 - 2v) + e.xe.x (1 + 2v) + 4kkv) R 2 (1 - p?)
9 1- v

(3.13.2)

and referring to eqs. (F.2.12) and (F.2.16) we have

')'w
2

{Rf'O = - 20 (1 _ v) 9 R
3 [2 (3 - 2v) erP! (f.l) + (3 + 2v) kPI (f.l)] -

[~ (3 - 2v) erPj (f.l) + (3 + 2v) kP3 (f.l)]} , (3.13.3)

where the unit vector er is introduced, cf. Subsection 5.3.4, so that

eR = er sin {) + k cos {).

The surface R = Ro of the sphere is free of loads, i.e.

(R . t ) = (R . to+ R . t*) = 0
R=Ro R=Ro

or

(RP'R)R=Ro = - (R .P~) R=Ro = (Ill + II3 ) R=Ro .
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Here III and II3 are harmonic vectors for R < Ro

R (R)3III = Ro Y I (J-L, >..), II3 = R
o

Y3 (J-L, >..) (3.13.4)

and Y I and Y3 are Laplace 's spherical vectors given by eq. (3.13.3)

Y I = A [2(3 - 2v) erN (J-L) + (3+ 2v) kPI (J-L)] , }

Y 3 = -A [~ (3 - 2v) erPJ (J-L) + (3 + 2v) kP3 (J-L)] , (3.13.5)

with

"(W2~
A - ---::'-:-----"---:

- 40G (1 - v) s'
The displacement vector is determined by means of formulae (3.6 .3),

(3.6.4) , (3.6.8) and (3.13 .1) , (3.11.5) . More general formulae for the case
of the ellipsoid of rotation are derived in Subsection 5.4 .5. At the pole and
the equator of the sphere the displacement vector is equal to

- "(w
2

3f2(1-2V) 2(2+V)j }u]~:,~o - 2gG Ro 15 (1 + v) - 3 (7 + 5v) k ,
"(w

2
3 2 (1 - 2v) 2 + v

u] ::7r~~ = 2gG Ro 15 (1 + v) + 3 (7 + 5v) en

where k and e r are the unit vectors of the cylindrical coordinate system.
Applying these equations to the Earth and taking the contraction at the
poles en = 1/300 and v = 1/3 we obtain G ~ 2.6 . 1010N/m2 which
approximately corresponds to the shear modulus of glass.

The stress vector on the surface of the sphere R < Ro determined by eq.
(3.5.5) is equal to

P R = 20g~~~ v) (R5 - R
2

) [2 (3 - 2v) erPl (J-L) + (3 + 2v) kPI (J-L) +

\7\7 . R
3
y 3 ] "(w

2
{ [ 21 - 2v ] .

(14 + lOv) RA = 20g (1 _ v) 2 (3 - 2v) + 14 + lOver sm 'l9+

( 3 + 2v - 21 - 2V) kCOS'l9} (R5 - R2 ) . (3.13.7)
7+5v

Besides,

P R = e R . t = e r . t sin 'l9 + k . t cos 'l9 ,

and thus at the equator and the pole of the sphere

( A) "(w
2

(2 2) [ ( ) 21 - 2v ] }er . T 1')=71'/2 = 20g (1 _ v) Ro - R 2 3 - 2v + 14 + lOv en

(k.t) = "(w
2

(R5 _ R 2 ) (3 + 2v _ 21 - 2V) k.
1')=020g(1-v) 7+5v

(3.13.8)
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Vectors (e,. . r) and (k . r) have the directions of e,. and k ,
{)=rr/2 {)=o

respectively, th at is, at the equator and the pole the shear stresses are
absent and the above formulae yield normal stresses ar and a z , respectively.

The sum of the normal stresses in the centre of the sphere is found with
the help of eq. (3.5 .7)

'Yw2R2
a = (a R + a {) + a>.)R=O = 2G (V' . IIdR=O =

20
9 (1 _0//) (15 - 6//) .

(3.13.9)

From this equat ion and eq. (3.13.8) we have

(3.13.10)

The coincidence of normal stresses a ; and a>. at the centre of the sphere
also follows from the symmetry of the problem .

5.3.14 Action of concentrated forces

We consider the state of stress in the sphere loaded by a system of concen
trated forces applied at points RoeW of the surface. This system of forces
is assumed to be in equilibrium, i.e.

N N
"'"' "'"' ( i )Z:: Qi = 0, Z:: e R x Qi = O.
1'= 1 1'=1

(3.14.1)

The plane passing through the position radius of the point of application of
force Qi and the line of act ion of this force intersects the sphere along the
meridional plane 1f? The meridional plane 1f i passes through the point of
application of force Qi and the observation point ReR' The angle in plane
tt; between vectors e~) and e R is denoted by Bi

'Yi = cosBi = eW . eR = cos 19 cos 19i + sin 19 sin 19i cos (A - Ai) , (3.14.2)

where (Ri ,19i, Ai) and (R, 19, A) are the spherical coordinates of force Qi
and the observation point, respectively. It is evident that

(i) (i) R (i) E (i) RR 1 ( (i) )
V''Yi = V'eR . en = V'eR . R = en . R - eR . R3 = R en - 'Yie n .

(3.14.3)
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The vector of the concentrated force Qi is expanded in terms of Laplace 's
spherical surface vectors by means of a limiting passage Ei ----> 0 from the
following distributed force

Ei < Bi < n ,

0 < Bi < Ei.

Referring to eq. (F.4.8) we have

Furthermore,

(2n + 1)P; = «; - P~-l '

1

(2n + 1) Jr; b~) d"(~ = P n - 1 (COS Ei) - Pn+l (COS Ei) ,
COS Ci

since Pn (1) = 1. Next

lim 12 [Pn-l (COSEi) - Pn+l (cos Ei )] =
ci - O Ei

= li _1 dCOSEi [pI (1) _ i: (1)] = 2n + 1
Cil~O 2Ei de, n - l n+l 2 '

and thus the concentrated force is represented by the following (divergent)
series in terms of Laplace's polynomials Pn b i)

1 00

Qi = 41rR2 L (2n + 1)r; b i)'
o n=O

Referring to eqs. (3.5.1) and (3.5.2) we obtain

00 1 00 (R) nN
II =~ IIn = 8G1rRo~ (2n + 1) Ro 8QiPn bi) '

Let us notice that the series

converges to yield

(3.14.4)
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so that

R2 R2 N
o - '"' (2 2 ) -3/2II = 8nG LJ Qi Ro+ R - 2RRo1'i .

, = 1

Returning to eq. (3.14.4) we obtain

and then referring to eq. (3.14.3) we obtain

(3.14.5)

V'. Rnpn (I'J Qi = Rn- 1 [nPneR + P~ (e~) -l'ieR)] . Qi

= Rn- 1 (P~eW - P~_1eR) . Qi, (3.14.6)

since

(3.14.7)

In accordance with eq. (3.5.7) the sum of the normal stresses is presented
by the series

1 + u~ 4n
2

- 1 (RoR )n-1 x
a = 4nR6~ n2 - (1- 2v)n+ (1- v)

N

:LQi· (P~eW -P~-1eR) . (3.14.8)
i =1

Now we have

Applying eq. (3.14.7) once again we can set this result in the form

(3.14.9)
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and, by virtue of eq. (3.5.5), the distribution of stresses on the surfaces
R = const is set as follows

1 <Xl ( Rr N
P R = 47rR6~ (2n + 1) Ro 8QiPn b i) +

1 <Xl (2n+1)(n-2) [(R) n- 3 (R) n-1]
47rR6~2[n2-(1-2v)n+1-v] Ro - Ro x

N

'" [E'P' ( ) r: () (i) (i)p" ( )L.J - n- 1 "Yi + eReR n-2 "Yi + e R e R n "Yi -
i=1

P" ( ) ( (i) (i))] Qn-1 "Yi e R eR + eReR . i - (3.14.10)

Using eqs. (F .2.12) and (3.7.1) we find that at the centre of the sphere

(3.14.11)

For example, in the case of a sphere compressed by two concentrated
forces at the poles we have

Q1 = -kQ, e~) = k ,
Q2 = kQ, e~) = -k,

and byeq. (3.14.11)

"Y1 = en: k = cos ti,

"Y2 = -eR' k = - cos t?

so that the normal stresses on the elementary surfaces which are parallel
and perpendicular to the forces are respectively given by (v = 1/3)

5.3.15 The distributed load case

In this case the sums in eqs. (3.14.10) and (3.14.8) should be replaced by
integrals . Provided that the loading is prescribed by vector P~ (fl/,A') we
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have

1 211" 1

P R = 4~ f (2n + 1) (~) n - J d>" J dtiP~ (Ii,',>.' ) r: h') +
n= l 0 - 1

1
00

(2n+ 1)(n -2) [(R) n- 3 (R) n- 1]
4:~ 2 [n2 - (1 - 2v ) n + 1 - v] Ro - Ro x

211" 1Jd>" JdtiP~ (ti ,>.') . [- EP:t - 1 h') + eReRP~_2 h') +
o - 1

e'ne'nP~ h') + (e'neR+ eRe'n)P~-l h')], (3.15.1)

where 'Y = liP,' +~~ cos (>. - >.'). The sum of the normal
st resses is the following sum

1 + v 00 4n2 - 1 ( R ) n- 1
a =~~ n2-(1- 2v)n+(1 - v) Ro x

211" 1Jd>" Jdl/P~ (/1' , >.' ) . [e'nP~ h') - eRP~_ l h')] . (3.15.2)

o -1

Referring to eq. (3.14.5) we notice that the first group of ter ms in eq.
(3.5.1) can be expressed as Poisson's integral

211" 1 0 ( ' )

_l_ RJ (RJ - R2) J d>.'J d/1' P R /1' ,>. .
4n R (R2 + R2 - 2RRo'Y )3/2

o -1 0

5.4 Bodies of revolution

5.4.1 Integral equation of equilibrium

We use the notation of Section C.g and consider a body of revolution with
the unloaded lateral surface q2 = q5. The surfaces q1 = ±q~ which are
ort hogonal to it are termed the end faces. It is assumed that the surface
q2 = q; degenerates to the axis of rotation Oz on which

(4.1.1)

and the surface q1 = 0 on plane z = 0 is a domain bounded by the circle
of radius b

(4.1.2)
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The stress vector on the end faces is equal to

e1 . T = 0'1 e1 +T12e2 +T1rpe1rp (4.1.3)

and the distribution of the stresses on it is statically equivalent to the
principal vector

271" q6

V = Jdip J(0'1e1 + T12 e2 + T1rpe1rp) H2rdq2

o q;

and the principal moment

(4.1.4)

271" q6
rnO = JdipJ(re, +kz) x (0'1e1 +T12 e2 +T1rpe1rp) H2rdq2 . (4.1.5)

o q;

Here H2rdipdq2 denotes the area element of the surface q1 = const .
Let us put

(4.1.6)

where, following the beam theory terminology, Vx , Vy are the transverse
forces and Vz is the force of tension , whereas m x , my are the bending mo
ments and m z is the torque. Using eq. (C.g.S) we have

(4.1.7)

Next
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so th at

The boundary conditions on th e side surface are set in the form

(4.1.8)

q2 - q2 . 7 0" 0- 0' 12 = , v 2 = , 7 2<p = O. (4.1.9)

As the side surface is free, the principal vector V and the principal mo
ment rn? of the stresses on the face surface do not depend on q1. This
follows from the stat ic reasoning: t he forces applied to the body bounded
by two arbit rary surfaces q1 = const and q2 = q5 are in equilibrium, so that
th eir principal vector and principal moment are th e same for any surface
q1 . The only requirement imposed on the stresses on these surfaces is that
of th e static equivalence to the prescribed V and rno .

The posed problem is split into four essentially different problems: (i)
tension by the axial force Vz , (ii) torsion by torque m z , (iii) bending by
moment mx (or my) and (iv) bending by force Vx (or Vy). As formulae
(4.1.7) and (4.1.8) suggest , t he state of st ress in problems (i) and (ii) can
be taken as being axisymmet ric, where in the problem of tension th e non
vanishing st resses are a1 , a 2 , a <p'7 12 and non-vanishing displacements are
U1 , U2 while in th e problem of torsion only stresses 71 <p ,72<p and displace
ment u<p do not vanish. The prob lems of bending are more complicated
because all components of the st ress tensor and the displacement vector do
not vanish. According to eqs. (4.7.1) and (4.8.1) in the problem of bending
by force Vx (Vy) and moment m x (my) , the st resses and the displacements

a 1, a2 , a <p'712, U1 , U2 are proportional to cos cp (sin cp) ,

7 1<p, 72 <p , U <p are proportional to sin sp (cos cp) .

It is convenient to introduce into consideration the "nominal" st resses.
They are determined by means of th e elementary theory for the st resses in
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a circular rod of radius b = r (0, qZ)

After integrating over c.p , formulae (4.1.7) and (4.1.8) can be written down
in the form

(4.1.10)

(4.1.11)

(4.1.12)

(4.1.13)

Here, analogous to Subsections 4.1.11-4.1.13, an ast erisk denotes the factors
in front of cos sp and sin c.p in the expressions for the stresses in asymmet ric
problems of bending .

The integrals in eqs. (4.1.10) and (4.1.12) show that if R = vr2 + Z2 --->

00 then in the problems of tension and force bending , the stresses decrease
not slower th an R-2 , whereas in the problem of torsion and moment bend
ing they decrease not slower than R-3 .

Since qx , . .. ,Pz are const ants which are independent of ql one can take
ql = O, z = 0, d. eq. (4.1.2) , and thus o z /oq2 = O. This results in the
following equalit ies

(4.1.14)

(4.1.15)
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qg

pz = ~J(r
2H271<P )ql=odq2. (4.1.17)

q:

5.4.2 Tension of the hyperboloid of revolution of one nappe

In order to determine the st ress concentration in the neck of th e surface of
the cylindric rod , Neuber considered a number of problems of equilibrium of
bodies, bounded by a surface of a hyperboloid of revolution of one napp e,
Fig. 5.3. The end face surfaces are loaded and the side surfaces of the
hyperboloid are free. The present subsect ion is concerned with the problem
of tension, whilst the problems of torsion and bending are considered later.

We intr oduce the curvilinear ort hogonal coordinates of Section C.lO

q1= S, q2=/-L, q3= cp; r = aJ1+s2J1 - /-L2 , z = as/-L ,

where, due to eq. (C.lO.7), - 00 :::; S :::; 00,°:::; /-L :::; 1 and on hyperboloid 's
axis q2 = q; = /-L = 1 and on the unloaded surface of the hyperboloid
q2 = q5 = /-La. The boundary conditions (4.1.9) are written in the form

/-L = /-La : 0"2 = 0, 71 2 = 0, (4.2.1)

whereas the stresses on the part of the surface of any ellipsoid S = So

bounded by the surface /-L = /-La satisfy condition (4.1.11) or (4.1.15)

(4.2.2)

as b2 = a2 (1 - /-L5)' With growth of S the st resses decrease not slower than
S-2.

Using formulae (1.12.13) of Chapter 4 we have the following expressions
for the st resses in terms of the axially symmetric harmoni c functions bo
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z

-
~

-"J - 26 IP 8=0

,......./ -, fL"P,o

~

r

FIGURE 5.3.

(4.2.3)

It follows from these expressions that with growth of 8 function bo must
increase not faster t han In 8 and b3 must decrease not slower t han 8 - 1 .
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The axially symmetric harmonic function increasing as In 8 is

(4.2.4)

It is not bounded on the hyperboloid 's axis for J-l = 1 but this singularity
can be removed by adding Qo (J-l) to expression (4.2.4). For this reason , one
of the solutions in bo is

r 1 2
if (8, J-l) = In - + Qo (J-l) = -In (1+ 8 ) + In (1 + J-l) .

a 2
(4.2.5)

Due to eqs. (F.3.7) and (F.1.8), the axisymmetric solutions of Laplace's
equation decreasing as 8- 1 and 8-2 are given by

qo (8) Po (J-l) = arctan 8, q1 (8) PI (J-l) = (8arctan 8 - 1)u, (4.2.6)

The first function is taken as b3 and the second one is included into bo oIn
other words, we assume

a
b3 = 2CCarctan8,

bo = 2~ {A [In VI + 82 + In (1 + J-l)] + B (8arctan 8 - 1) J-l} . }
(4.2.7)

Using formulae (4.2.3) we can set the boundary condit ions (4.2.1) (which
must be satisfied for any 8) in the form

_ [_A_- C(I-2V)] + 1 (A-B- CJ-l5) =0, }
1 + J-lo J-l6 + 8

2

[_ A_ -C(I-2V)] + 2 1 2 (A-B-CJ-l5) =0.
1+J-lo J-lO+8

(4.2.8)

It is no surprise that for the correct solut ion the second condition in eq.
(4.2.1), i.e. T12 = 0, is automat ically fulfilled if the first one (a2 = 0) is met
and vice versa. For such a solution , the stresses distributed over the surfaces
of two arbitrary taken ellipsoids bounded by the piece of the surfaces 81 :::;
8 :::; 82 of the hyperboloid J-l = J-lo are balanced. On this piece a2 = °and
thus , the str esses T12 are stat ically equivalent to zero on it. Because of the
arbitra riness of 81 and 82 we have T12 = 0.

Thus we obt ain

A }
C(I-2v) = -. - , B = A-CJ-l5 ,

1+ J-lo

all = =.!. [B - 2(1 - v) C +~ (B - A)]
8 0 J-l J-l2

(4.2.9)
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and from eq. (4.2.2)

C = _!qz 1 + Ito .--~--;O2 (4.2.10)
2 1 + 2vlto + Ito

This completely defines the state of stress. The coefficients of concentra
tion of stresses 0'1 and 0' <p are defined by the ratio of these stresses at the
deepest point of the neck to the nominal stress

1 1 1 + Ito [2 ] }k1 = - ( 0' 1 ) s= 0 =-2 1+2 + 2 2+lto-(1-2v)lto,
qz 1'=1'0 Ito vito Ito
1 1-1t6 (v 1)

k <p = - (0' <p ) 8= 0 = 2 - + - .
qz 1'=1'0 1 + 2vIto + Ito Ito 2

(4.2.11)

For example, for Ito = 0.2 and v = 0.3 we have k 1 = 5.08 and k <p = 1.65. In
the latter formulae und er Ito one und erst ands the curvature of the meridian
at the critical point

a 1 -1t6
--2- '

p Ito

The stresses decrease rapidly with increasing dist ance from t he crit ical
point . This allows one to est imate the concentration coefficient at the point
of maximum curvature of the external neck for any form of the meridi an
with the help of expression (4.2.11) for the hyperboloid.

5.4.3 Torsion of the hyperboloid

This is the simplest problem among th e considered problems for hyper
boloids since according to Subsection 4.1.11 the solut ion reduces to search
ing for a single harmonic function vei<p ensur ing that v / r decreases not
slower than 8 - 3 as 8 increases. The solut ion is given by the funct ion

v = aCq} (8) pI (It) = aC c:82 - arctan 8) ~\/l-1t2

= Cr c:82- arctan8) , (4.3.1)

and byeq. (1.11.3) of Chapter 4

1 2C ~
GT1 <p = 1 + 82V~' T 2<p = O. (4.3.2)

The boundary condition on the side surface, eq. (4.1.9) , is fulfilled and the
constant C, determined by eq. (4.1.7) , is given by

C= ~Pz ~(l+lto).
8 G (2+ ILo)(l - Ito)
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The coefficient of concentration of st ress Tl cp is as follows

(4.3.4)

5.4 .4 Bending of the hyperboloid

The problems of bending of the body of revolution is not axially symmetric
and the harmonic functions Bo and B3 should be taken to be proportional
to cos cpo In t he case of bending by force Vx and moment my the solution
also contains the harmonic function B1 , t hat is

B; = B 1 cos .p, Bcp = - B 1 sin cp,

thus, taking

B,. = b; (q l,q2) cos cp, Bcp = bcp (ql, q2) sin sp

we have in formulae (1.13.5) and (1.13.6) of Chapter 4

(4.4.1)

(4.4.3)

with b; and bcp being axially symmetric harmonic funct ions (see also eq.
(1.13.4) of Chapter 4) as well as boeicp and b3eiCP .

We consider formulae (1.12.13), (1.12.14) and (1.13.5) , (1.13.6) of Chap
ter 4 and take into account that r, z , H2 increase in proportion to 8 and HI
remains bounded with the growth of 8 whilst the st resses in the problem of
bending by a force (a moment ) decreases as 8-2 (8-3). This imposes certain
restri ct ions onto the order of growth of functions bo,b3 and b,. = - bcp.

1. Bending by force. In this case the harmonic funct ion boeiwt is needed
to be completed by a term which remains bounded at 8 -> 00 . By eqs.
(F.3.12) , (F.3. 16) and (F .3.17), the terms

- 1 ( ) P,1 ( ) 8fl -1 ( ) Ql ( ) 8
Po 8 0 fl = )(1 + 82) (1 _ fl 2) ' Po 8 0 fl = )(1 + 82) (1 _ fl2 )

(4.4.2)

possess the property that their difference is bounded on the hyperboloid
axis, i.e. for fl = 1

8 ~
cpd8, fl) = v'f+S2V~.

An additional term of the type (4.3.1) is added to boo Next, function b3

must decrease as 8- 1. Such a solut ion bounded on the hyperboloid axis is
given by

(4.4.4)
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Finally, b; is an axially symmetric harmonic function decreasing as 8- 1.

This function is qo (8) = arctan 8. Thus, the solution to the problem is
constructed by means of the following functions

bo = A VI : 82J~ ~ ~ + B (1 : 82 - arctan 8) r, }

1 ~-f.lb3 = C rtrr:» --, b; = -b<p = Darctan8.
vI + 82 1 + f.l

(4.4.5)

(4.4.6)

Three constants are sufficient to fulfill the three boundary conditions in eq.
(4.1.9), whereas the fourth equation is given by condition (4.1.14).

2. Bending by moment my . The set of functions for the solution of the
problem is given by the functions

bo = A~J~ ~ ~ + Bq~ (8) pi (f.l) ,

b3 = C ( 1 : 82 - arctan 8) r,

b; = -b<p = DPI (f.l) ql (8) = Df.l (8arctan 8 - 1) ,

where due to eqs. (F .3.7), (F.3.11) and (F .2.16)

q~ (8) =3~ [8 arctan 8 - 1- 3 (1 ~ 82)] ' pi (f.l) = 3f.lJl - f.l2.

Further calculations are omitted as they would require a great deal of
space. By analogy one considers the problems of the state of stress of an
elastic half-space having a cavity bounded by a surface of contracted el
lipsoid of revolution when the state of stress is prescribed at infinity. A
method of solving the more general problem in which the surface of the
cavity is a triaxial ellipsoid is demonstrated in Section 5.5.5.

5.4.5 Rotating ellipsoid of revolution

It is assumed that the ellipsoid rotates about the axis of symmetry Oz. A
particular solution corresponding to the mass centrifugal force is assumed to
be taken in accordance with formulae (3.11.5) and (3.11.6). The solution of
this axially symmetric problem is constructed with the help of biharmonic
function of Love X, see Subsection 4.1.10. We use the cylindric coordinates
r , z since applying the degenerated elliptic coordinates would complicate
the solution.

The state of stress TO given by formulae (3.11.6) is superimposed by an
axially symmetric state of stress T* such that

, ' 0 '
n . T = n . T + n . T* = 0
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or in an expanded form

* + * A 2 * + * A 2a i n ; Trznz = r n -, Trznr (Jrnz = 1r n z,

A = w2
"( (3 - 2v) A

1
= w

2
"(v

8g(1-v) , 2g(1-v)

(4.5.1)

(4.5.2)

Here n, and n z denote the projections of the unit vector n in the directions
er and k respectively, i.e.

z
ro:'

where 0: = c2 / a2 is the square of the ratio of the semi-axes of the ellipsoid
which can be both oblong and oblate, see Section C.lO. By eq. (1.10.6) of
Chapter 4 we arrive at the boundary conditions

o ~ 2 02
X

) 0 [ 2 02
X

] 3 }o:r- -v\l X + - + z- - (1- v) \l X + - = Aor ,
OZ or2 or OZ2
o 2 02X 0 2 02X 2

o:r- - (1 - v) \l X +-) + z- [- (2 - v) \l X +-] = A1r z
or or 2 OZ OZ2

(4.5.3)

which need to be satisfied on the surface of the ellipsoid

(4.5.4)

It is easy to understand that the biharmonic function X must be an odd
function of z. Then the right hand sides in eq. (4.5.3) contain (after can
celling out rand z) only terms which are even with respect to z and are
eliminated by means of eq. (4.5.4).

Axisymmetric functions H" Pn (j.t) which are harmonic in the ellipsoid
are represented by the following polynomials of rand z

1 3
RP1(j.t) = Z, R2P

2 (j.t) = z2 - 2r2, R3P3 (j.t) = z3 - 2zr3,

3 15
R4P4 (j.t) = z4 - 3z2r2 + Sr4

, R5P5 (j.t) = Z5 - 5z3r2 + Sr4z,

the inessential numerical factors being dropped. In what follows these poly
nomials are denoted as 'P1, 'P2 , . . . ,'P5' The products of a harmonic function
and z or z2+ r 2 = R2 are biharmonic functions . For this reason, along with
'P3 and 'P5 function X contains also

It turns out to be sufficient to adopt

C 2 C D 2 2 D(32 3 4)
X = 3C 'P3 + 5'P5 + 1C zr + 2 Z r - 4r z , (4.5.5)
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where the third and fourth biharmonic terms are linear combinat ions of
the above functions.

After having det ermined the constants we arrive at the following expres
sions for the components of tensor T*

~ CT; = {(3 -2v) [4a (1 + v) +2+ v] +4v (1: + ~v) } (c2 - Z2) +

{(3-2V) [av+~(3+V)]+4v[~(1-a)v-~a]}r2+

a2{2 (3 - 2v) - 4v [~ + 2a (1+ v)]) ,

~CT~ = {(3 - 2v) [4a (1+ v) + 2+ v]+4v (141 + ~v) } (2 - z2) +

{ (3-2V) [(3a+~)v+~]+4V(a; +2V-~)}r
2+

a2{2 (3 - 2v) - 4v [~ + 2a (1 + v)]} ,

1
Q CT; = {-2 (3 - 2v) +4v [~ + 2a (1 + v)]} (c2 - Z2 ) +

{(3- 2v)4a+4v [(2+v)a+ 11:V]}r2.

~ r;z= {-2 (3 - 2v) + 4v [~+ 2a (1 + v)]} rz,

(4.5.6)

where

w2
"( 11 + v

Q= 8g(1 -v).6. ' .6.=4a
2(1+v)+2a(1+v)+-4-· (4.5.7)

The proj ections of the displacement vector u in the directions er and k are
given by the formulae

2G 1 - v [ (V )](jur=a
2r

1+ v
2(3-2v)-4v "2+2a+2av +

r (c2 -z2) {(3-2V)[2- v+4a(1-v)]+4V(141-2av-3v)}+

3 { [1 ] (3 a 1 ) } 2G 0r (3-2v) 4(1-v)- av -4v 4v+4+"2va + (jur ,

(4.5.8)
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2G 1/
-w = a2z-- [-4 (3 - 21/) + 41/ (1/ + 40' + 40'1/)] +
Q 1 + 1/

Z(C2- ;) {-2 (3 - 21/) [1 + (40' + 1) 1/ + 41/ (20' - 51/)]} +

{ (
11 - 101/ ) }zr2 -(3-21/)[1/-40'(1-1/)]+41/ 4 +20' . (4.5.9)

In par ticular , at the poles and the equator of the ellipsoid of revolut ion

w
2
"(a

2
c { 1/(2Gw) z=c = ( ) A - [-4 (3 - 21/) + 41/ (1/ + 40' + 40'1/)] +

r = O 8g 1 - 1/ u 1 + 1/

~O' [-2 (3 - 21/) (1 + 40'1/ + 1/) + 41/ (20' - 51/)]} , (4.5.10)

(2Gur ) :~~ = 8g ~2=a:) ~ {~ ~ ~ [2 (3 - 21/) - 41/ G+ 20' + 20'1/)] +

[(3 - 21/) (~- ~ - 0'1/) - 41/ (~I/ + ~ + ~I/O')] -
(1 - 21/) [40'2 (1 + 1/) + 20' (1 + 1/) + 11: I/]} . (4.5.11)

When 0' = 1 we return to formulae (3.13.10) for the sphere. The case of
the rot ating thin oblat e ellipsoid considered by C. Chree (1895) can be
obtained from the above equations.

5.5 Ellipsoid

5.5.1 Elastostatic Robin 's problem for the three-axial ellipsoid

The statement of the problem is given in Subsection 4.4.7 while Subsection
5.3.3 suggest s the solut ion in the simplest case of t he displacement of a
rigid sphere in the unbounded elastic medium. This problem is considered
here und er the assumpt ion that the rigid body is the three-axial ellipsoid

(5.1.1)

with the semi-axes apo,aVP6 - e2 ,aVP6 -1. For the solution we use t he
potenti als of the simple layer on the ellipsoid listed in (F .8.3) which, for
brevity, are denoted here as 1/J i (x,y, z). On th e surface of the ellipsoid and
within it these potenti als are as follows

1/Jo = 1; 1/Js = z, (8 = 1,2 ,3) , 1/J4 = X2 X3 , 1/Js = X3 Xl , 1/J6 = X IX2,

(5.1.2)
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whereas outside the ellipsoid they are

Wo (p) Wo (p)
7/Jo= - ( - )' 7/Js = - ( - )Xs (8 = 1,2 ,3 ) ,

Wo Po Wo Po
W4 (p) Ws (p) W6 (p)

7/J4 = - (-)X2X3' 7/Js = - (-)X3XI, 7/J6= - (-)XIX2' (5.1.3)
W4 Po Ws Po W6 Po

Functions W s (p) are given by the ellipt ic integrals, eqs. (F .7.5)-(F.7.9), in

which w~k) are replaced by Ws for 8 = 1,2 ,3 and w~k) are replaced by Ws

for 8 = 4, 5, 6.
In what follows we consider first the case of the tran slat ory displacement

P = Po : u = u'' (5.1.5)

of the ellipsoid and then the case of the displacement due to the rot ation

P = Po: u = (J x Ito, (5.1.6)

(5.2.1)

where R o denotes the position vector of the point on the surface (5.1.1).

5.5.2 Translatory displacement

In order to const ruct the harmonic vector B and the harmonic scalar Bo in
the Papkovich-Neuber solut ion (1.4.10) of Chapter 4 written here as follows

~ OBk oBo
Us = (3 - 4v) B s - ~Xk- - - (8 = 1, 2,3 )

k=1 Bx; Bx;

we use potentials 7/Jo, 7/J I' 7/J2, 7/J3' We take

(5.2.2)

and the six constants Cs , M; are sufficient to satisfy the boundary condi
tions (5.1.5). Indeed, an exte nded form of equalities (5.2.1) is

and it remains only to take

u~ = (3 - 4v ) Cs - M; (8 = 1, 2,3 ) ,

CI MI _ 0 C2 M2

Wo (Po) + WI (Po) P6 - , Wo (Po) + W2 (Po) (P6 - e2) = 0,

C3 M 3 _ 0
Wo (Po) + W3 (Po)(P6 - 1) - .

(5.2.4)
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This allows us to find the constants Cs, Ms. Using relationships (C.1l.26)
we arrive at the following expressions for the displacement

where we denote

0"1 (p) = (3 - 4v) Wo (p) + P5W1 (p) , }
0"2 (p) = (3 - 4v) wo (p) + (P5 - e2) W2 (p) ,

0"3 (p) = (3 - 4v) Wo (p) + (P5 - 1)W3 (p) ,

and

(5.2.5)

(5.2.6)

(5.2.7)

(5.2.8)

5.5.3 Distribution of stresses over the surface of the ellipsoid

Given the displacement vector one can find the stress tensor at any point
of the medium. Its expression is very cumbersome, that is why we restrict
our consideration to determining the st ress vector t-. on the surface of the
ellipsoid (at P = Po). Taking into account that

(5.3.1)

we have for P = Po

(5.3.2)



(5.3.4)
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Noticing that on the surface of the ellipsoid ti; = ~p PoDo where ti; de
UX s

notes the cosine of the angle between the unit vector of the normal to the
surface of the ellipsoid P = Po and axis X s we have

(5.3.3)

Referring once again to formulae (C.11.26) we obtain

tw f)p __ 4(1-v) [_U_1_ X1 +~ X2 +
s = l s Bx; - Pot::. (Po) D5 (] 1 (Po) P5 (] 2 (Po) P5 - e2

ug x3 ] 21>0 (xi x§ x~ )
---2-- +-2 4+ 2+ 2'
(] 3 (Po) Po - 1 Do Po (P5 - e2 ) (P5 - 1)

so that by eqs. (5.2.7) and (5.2.8)

3 f)L wS >l P = - 2 (1 - 2v) 1>0.
s= l u x s

or, due to eqs. (C.11.21) and (C.11.22),

4G(1-v) u~
t-: = - (8 = 1,2 ,3).

aJ(p5 - J-t2) (P5 - v2) (]s (Po)

(5.3.5)

(5.3.6)

This unexpectedly simple result derived by direct calculat ion can be
obtained immediately if we use the Papkovich-Neuber vector , eq. (4.3.15)
of Chapter 4, in which the density a (Mo) is the sought st ress vector -tn

on the surface of the cavity in the elast ic medium which follows from eq.
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(4.7.1) of Chapter 4. In our case, the projections of vector B at P = Po , by
eqs. (5.2.2) and (5.2.5), are given by

uo
B" = _(s )wo(p)

IJ s Po
(5.3.7)

and they have th e same constant values on the ellipsoid surface and in the
ellipsoid. Referring to eq. (4.3.15) of Chapter 4 we obt ain

{

B (e) u~ ( )
1 if t s = -(- ) Wo P , P > Po ,

- ~do = IJ s to
161l'G(1-1/) R B(i) _~ ( )

o s - ()Wo Po , P < Po·
IJ s Po

(5.3.8)

By a theorem on the jump of th e normal derivative of the simple layer we
have

(
aB(i) aB(e)) t
a~ - a~ = -41l'161l'G (~ - 1/)

P= Po

or

( aB~e ) ) u~ (awo(p))
tns = 4G (1 - 1/) ---a:;;- = 4G (1 - 1/) -;;--() H a

s Po P P p=p
P=P o 0

4G (1 - 1/) u~

IJ s (Po) H26. (Po )'

which is required.
Equation

Qs+ JJtnsdO=O
o

determines the proj ections of force Q which should be applied to the ellip
soid to ensure displacement u'' . By virtue of eqs, (C.11.22) and (C.11.23)
we have

so th at by eq. (5.3.6)

1 e

_ au~ J dp I p2 - 1/2
Qs - 32G (1 - 1/) IJ " (Po) 6.1(p) . 6. (1/) du,

e 0
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where the integration is carried out within the octant of the ellipsoid. The
estimation yields

1 e

JJ-l2dJ-l J du ,
~dJ-l) ~(II)=E(e)K(e) ,

e 0

e 1 [evg ]11
2 dJ-l , 1 - 112-J~ (II)duJ~dJ-l) = K (e) J e2 _ 112dll - K (e)

o e 0

= K (e') E (e) - K (e') K (e) (e' = ~) ,

So that due to the Legendre relationship

1 e

J~~~J-l) JJ-l:(~2 du = E (e') K (e) + K (e') E (e) - K (e') K (e) = ~.
e 0

Finally we have

auO

Qs = 167rG (1 - II)-(s ) (8 = 1,2,3).
(T s Po

(5.3.9)

5.5.4 Rotational displacement

Let us prescribe the Papkovich-Neuber harmonic functions by the equalities

B 1 = D102X3W3 (p) - D~03X2W2 (p) , }
B 2 = D203XIWI (p) - D201X3W3 (p) ,
B 3 = D301X2W2 (p) - D303XIWI (p),

so that

(5.4.1)

(5.4.2)

x 1B 1+ X2B2 + X3B3+ Bo = OlX2X3 [D3W2 (p) - D~W3 (p) + N 1W4 (p)] +
02X3Xl [D1W3 (p) - D~Wl (p) + N 2W5 (p)] +

03XIX2 [D2Wl (p) - D~W2 (p) + N 3W6 (p)]. (5.4.3)
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Component UI of the displacement vector is presented by the formula

(5.4.4)

The expressions for U2 and U 3 are written down by analogy.
The boundary condit ions (5.1.6)

lead to a system of nine equat ions for the same number of unknown con
stants D s ,D~ , N s . It is split into three indep endent systems corresponding
to the rotations about each of the ellipsoid axes. For instance, the system
generated by rotation (h about axis X l is as follows

(5.4.5)

Omitting the calculation which utilises relationships (F.7.7)-(F.7.9) we
present th e final expressions for the displacement in the elast ic medium

(5.4.6)

Here

81 (p) = 2 (1 - 2v)W2(p)W3(pO)+ }
W4 (Po) [(P6 - e2) W2(p) + (P6 - 1) W3(p)] ,

82(p)= 2 (1 - 2v)W3(p) WI (Po) + Ws (Po) [(P6 - 1)W3(p) + P6WI (p)] ,

83(p) = 2 (1- 2V) WI (P) W2(Po)+W6(Po) [P6WI (p) + (P6 - e2) W2 (p)] ,
(5.4.7)



(5.4.9)
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and functions 8: (p) differ from 8s (p) in replacing the indices in the first
term, for example

8;' (p) = 2 (1 - 2v) W2 (Po) W3 (p) +

W4 (Po) [(P6 - e
2

) W2 (p) + (P6 - 1) W3 (p)] . (5.4.8)

Clearly, 8: (Po) = 8s (Po) ' In solution (5.4.6) function n is det ermined as
follows

n 1 [£h W2 (Po) - W3 (Po)
~,= ------ X2 X3 +

p!::J. (p) D 2 81 (Po) (P5 - e2 ) (P5 - 1)

()2 W 3 (Po) - WI (Po) ()3 W I (Po) - W2 (Po) ]
-8() (2 1) 2 X3 X l +-8() 2(---2 2) X I X 2 ·

2 Po Po - P 3 Po P fJ - e

5.5.5 Distribution of stress es over the surface of the ellipsoid

The calculation is carried out under the assumption that only ()1 =f 0 and
the symmetry reasoning suggests the form of the formulae in the general
case.

By eqs. (5.4.1) and (5.4.5) we have

(5.5.1)

where

P> Po ,

P< Po,

as well as

_ 1 jrrt n 3 do _ {
167TG(I-v) d R -

(5.5.3)

and the applicat ion of the theorem on the normal derivative of the simple
layer potenti al result s in the following expressions for the components of
the stress vector on the surface of the ellipsoid

2G() I X 3 [ 1 - 2v ]}
tn 2 = 8

1
(Po) H2!::J. (Po) W4 (Po) + P5 _ 1W2 (Po) ,

2G()I X2 [ 1 - 2v ]
tn 3 = 8

1
(Po) H2!::J. (Po) W4 (Po)+ P5 _ e 2 W3 (Po) .
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The moments m? about axes z , which should be applied to the ellipsoid
in order to provide the rotation () are given by the equalit ies

where

J1 = P6D.\PO) 11xi ~g ' J2 = (P5 - e; ) D. (Po) 11x~ ~g ,
o 0

J3 = (P6 -1~D.(po) 11 x~ ~ .
o

Taking into account the equalit ies

X l
n1 = HO '

Po p

we obtain

X2 PO X2PO
n2 = ( 2 _ 2) HO ' n 3 = ( 2 _ 1) HO 'Po e p Po p

(5.5.5)

At the same time

(5.5.6)

so that

4 3
J1 = J2 = J3 = 3'Ta ,

and expressions (5.5.4) are reduced to the form

° 8;ra
3

m; = -3-CBs'Ys(Po) (s = 1,2 ,3) , (5.5.7)
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where
1

II (Po) = 8
1

(Po) {(1 - 2v) [W2 (Po) + W3 (Po )] +
(2P6 - 1 - e2

) W4 (PO) } ,

1 2 (Po) = 8
2
~PO ) {(1 - 2v) [W3 (Po) + WI (Po)] + (2P6 - 1) Ws (Po) } ,

13 (Po) =~(1 ) { (1 - 2v) [WI (Po) + W 2 (Po)] + (2P6 - e
2

) W6 (PO) } ,
«a Po

(5.5.8)

5.5.6 An ellipsoidal cavity in the unbounded elastic medium

The state of stress at an infinite distance from the cavity is given by the
tensor

(5.6.1)

whose principal axes are parallel to the axes of the ellipsoidal surface of the
cavity

x2 y 2 Z2 2
D I = 2" + 2 2 + -2--1 - a = O.

Po Po - e PO-
(5.6.2)

The st ress tensor T is presented by the sum of tensor TOO and the correct ing
tensor T*

(5.6.3)

The latter is determined by the bound ary condit ion

P= Po: n· T* = - n· TOO = - (nI iIql + n 2i2q2 + n 3 i3 q3) (5.6.4)

which expresses that the cavity surface is not loaded. The projections of
the external normal to this surface on the coordinate axes are denoted by
n s ·

Th e displacement vector corresponding to the correct ing tensor T* is
presented in terms of the Papkovich-Neuber harmonic functions Bs , Bo by
formula (1.4.10) of Chapter 4

a
Us = 4 (1 - v) B, - ax" (B1 Xl + B2 X2 + B3 X3 + Bo) .

Referring also to formula (1.4.17) of Chapter 4 one can reduce th e boundary
conditions (5.6.4) to the following form

1 ( (aBs ~ ee, )
- 2C n s qs = ti, divB + 1 - 2v) Bn - ns divB +6 Bx.• nk -

3

L Xk
!...- aBk _ !...- aBo

a (8 = 1,2 ,3 ) , (5.6.5)
an ax s an x;k=l
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where X l = X, X2 = y , X 3 = z . It is natural to prescribe the harmonic func
tions B; by the potentials (F.8.9) which are proportional to the coordinates
on the surface P = Po

(5.6.6)

functions W3s (p) being determined by the ellipti c integrals. Let the har
monic scalar Bo be taken in the form

Bo = CI (P5 - aI)2 F4W4 (p) + C2 (P5 - a2) 2 F 5W 5 (p) + Aw + Aoa2wo (p) .
(5.6.7)

Here F4W4 (p) and F 5W5 (p) are the potentials denoted in Section F .8 as
p,(4 )w (4) and p,(5)w(5) respectively

2 2 2 2 '

and w is the Newtonian potential (F.8.20):

oo_J d>" (2 x
2

y2 Z2 )
w - ~ (>..) a - >..2 - >..2 _ e2 - >..2 _ 1

p

2 2 2 2= a Wo - X WI - Y w 2 - Z w3 · (5.6.9)

Equalities (C.l1.19) , (C.1I.21) and (C.1I .26) and the expressions for the
projections of the normal vector

are essentially used for tr ansforming the boundary conditions (5.6.5). Here
D2 is the form denoted in Section C.lI by D~

(5.6.11)

We also introduce into consideration the following form

(5.6.12)
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which can be easily proved by means of the above equalities. For brevity
we also introduce the following denotations

x2 y2 Z2
cI>1(X,y,Z) =AI2" +A2 2 2+A3-2--+Aoa2, (5.6.13)

p p- e p-1
x2 y2 Z2

cI>2 (x , y, z) = Al 4 + A2 2 + A3 2' (5.6.14)
P (p2 _ e2) (p2 - 1)

x2 y2 z2
c. = -2- + (2 2) ( 2) + (2 ) ( ) (i = 1,2). (5.6.15)P (f i P - e (f i - e p - 1 a, - 1

The expressions for the first derivatives of the functions containing p and
the Cartesian coordinates are rather simple. For instance, using eqs. (F.7.5)
and (C.11.26) we have

a aWl Bp
ax XWI (p) = WI (p) + x ap ax

x ap x2
= wt{p) - p2t1 (p) ax = wt{p) - p5D2t1 (p)"

The derivative with respect to the normal is easy to find

(5.6.16)

(5.6.17)

By means of formulae (5.6.10) one can carry out the transformation of the
type

etc. This enables one to factor out nl (as well as n2 and n3) on the right
hand side of the first (second and third) boundary condition (5.6.5). The
expressions for the second derivatives are more cumbersome. This calcula
tion is alleviated by the fact that the second derivatives in the boundary
condit ions (5.6.5) are the derivatives with respect to the normal of the
first derivatives of the Papkovich-Neuber function taken by means of eq.
(5.6.17). The calculations relating to pot enti al (5.6.9) are especially simple.
Referring to eq. (5.6.2), which is valid due to eq. (C.11.9) for any p, we have

(5.6.18)

It is worth noting that one of the terms in Bo is redundant since these four
functions are related by a linear relationship (F.8.16).
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5.5.7 The boundary conditions

Each of three boundary condit ions (5.6.5) contains two sets of terms. The
first set (Is) has quantities which are const ant on the cavity surface P = Po
whereas the second set contains the terms depending not only on Po but
also on the Cartesian coordinates x, y, z of the point of this surface. As a
result we arr ive at the equality

(5.7.1)

where P = Po , 0'1 = 0 , 0' 2 = e2
, 0' 3 = 1, s = 1,2 ,3 and

p2 D, 2
2X = 3p4 - 2 (1 + e2) p2 + e2 + ,

s p2 - O's

D,2 (p) = (p2 _ 1) (p2 _ e2) ,
3

Xl = 2p4 - 2' (1 + e2) p2+ e2,

X2=2p4- (~+ e2)p2+~e2 ,

X3 = 2p4 - (1 + ~ e2) p2+ ~ e2 .

It is necessary to require that the quadrati c polynomial

(5.7.2)

has a factor D2 . Taking into account eq. (5.6.2) this condit ion is set in the
form

and leads to the four equat ions

As Cl C2 sc A----,--- + + - + -;:;---
p2 - O's a l - O's a2 - O's - (p2 _ O's )2 p2 - O's

(s = 1,2 , 3) ,

(5.7.3)

(5.7.4)

(5.7.5)
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The second set of the terms in eq. (5.7.1) is now expressed in the form

n, = 3
1
A 3 XX s (p) + [-XD3 + 2 ( 2 C

1
F4 + 2 C

2
F5) +

PUp - 0'1 P - 0'2

<P2 - C1G1 - C2G2]~ ' (5.7.6)
D2pu

that is, the term in the square brackets is equated to >.D2 . Indeed, taking

we arrive at the system of four equat ions

the system of equat ions (5.7.8) being identically sat isfied by virtue of eqs.
(5.7.4) and (5.7.7). Indeed , due to eq. (5.7.4) it can be written in the form

i.e. it reduces to eq. (5.7.7).
The boundary conditions (5.7.1) yield now the system of equations whose

right hand side is constant for p = Po

which is required.
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5.5.8 Expressing the constants in terms of three parameters

Determining the constants C1 and C2 by means of eqs. (5.7.5) and (5.7.7)
we have

C1 = 1 [('x+Ao)(p2-al)-f-L(p2-al)(p2-a2)J , }
a2 - al

C2 = 1 [_ (,X + Ao) (p2 - a2) + f-L (p2 - al) (p2 - a2)J '
a2 - al

(5.8.1)

where p = Po here and in what follows. Due to eq. (5.7.4)

As -,X PC

p2 - a s (p2 _ as)2

= ( )\ ) [-('x+Ao)(p2-as)+f-L(p2-al) (p2_ a2)J .
al - as a2 - as

Using definition (F.6.8) of parameters al and a2 we obtain

3

L 1 = 0, ala2 = -3
1

e2, al + a2 = -3
2

(1 + e2) (k = 1,2) . (5.8.2)
s = l a k - as

It follows that the constants As must be related by the equality

~ [;,'~oA, - (P' -"0,)'] ~ 0,

which can only be satisfied if

,X + Ao = O. (5.8.3)

By virtue of eq. (5.8.1)

C1 = -C2 = C = f-L (p2 - al) (p2 - a2) (5.8.4)
al - a2

and parameter f-L can be replaced by C. Using eq. (5.7.4) we have

or more fully

PC 3C 2
Al =,X + 2 + 2"" (al - a2) Po ,

Po e
_ PC 3C ( ) (2 2)A2 - ,X + 2 2 - 2~I 2) al - a2 Po - e , (5.8.6)Po - e e - e

PC 3 (2)A2 =,X + -2--1 + -1-2 (al - a2) Po -1 .
Po - - e
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The constants As are expressed in terms of three parameters. However the
boundary conditions contain the fourth parameter A which is redundant.
Indeed, turning to the original representation of the displacements in terms
of the harmonic functions B s , Bo

and referring to eqs. (5.6.7), (5:8.3), (5.8.6) and (5.6.9) we obt ain the fol
lowing result

(5.8.7)

Due to eq. (5.6.18) the expressions for the displacement contain two con
stants ,\ and A only in the following combination

2 [(1 - 2/.1)'\ + A] X sW s

which indicates the redundancy of A.
The sum of three ellipt ic integrals can be written down in the following

form

Joo d,\ (1 2,\2-(1+ e2))
-1

= ~ (,\) ,\2 + ~2 (,\) = [p~ (p)] ,
p

(5.8.8)

which is easy to prove by direct differentiation.
The boundary conditions (5.7.9) are now presented by three equations

containing the same number of unknowns '\ , »c, C. In the case P = Po we
have
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The displacements are given by the following relationships (where, of
course, a distinction should be made between P and Po)

Here

5.5.9 A spheroidal cavity in the elastic medium

Let the surface of the cavity be an ellipsoid of revolution and the field of the
stress tensor t = be symmetric about the axis of revolution of this ellipsoid.
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If e = 0 then the surface of the cavity is an oblate ellipsoid of revolution
about axis z . Assuming

2 2 d _ 8d8
P = 1 + 8 , P - VI + 8 2

we have

~ (p) = 8~, p~ (p) = 8 (1 + 82)

and referring to eqs. (F.3 .7), (F.3.13) and (F.7 .5) we obtain
00

/
d>'

Wo = --2 = arctan 8 = qo (8) ,
1+>'

s

/

00 d>' 1 ( 8 ) 1 qf(8)
WI = W2 = s (1+>.2)2 =2 arctan 8 - 1 + 82 =2Vl+ 82'

/

00 d>' 1 (1 ) 1
W3 = >.2 (1 + >.2) = 2 -; - arctan 8 = --;qI (8) .

s
(5.9.1)

Under the assumption qi = q2 the problem becomes axially symmet
ric and the second boundary condition (5.8.9) is coincident with the first .
Hence it is sufficient to keep only two constants >. and sc, Then we arrive
at the boundary conditions : at 8 = 80

qi '( )( ) [WI (80) W3( 80) 21/85-485-1]- = /I 1 - 21/ WI+ W3 - X --2 + 1/--2 - + 2 '
4G 1+80 80 286 (1 + 85)

q3 [ (1 - 1/ 1/) 1]-G = 2>' (1 - 21/) WI (80) + 2x WI (80) -2- - ~1 + 2
4 80 80 + 280 (1 + 85)

(5.9.2)

The displacements are determined by formulae (5.8.10)

Ur = 2 (1 - 21/) (>.+~) rWI (8) +
1 + 80

X r [ r
2

+~]
8 (1 + 82)2D2 (86+ 1) (82 + 1) 8682 '

W = 2 (1 - 21/) (>. + ~) ZW3 (8)+

X Z [ r
2

+~]
83 (1 + 82) D2 (86+ 1) (82 + 1) 8582 '

r 2 Z2
D2 = +-.

(82 + 1)2 84
(5.9.3)
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In the case of an oblong ellipsoid of revolution p = s, e = 1, b. (p) = S2 - 1
and byeqs. (F.3.3) and (F .3.11) we have

00

1 d>" 1 S + 1
Wo (s) = -2- = -2 In --1 = Qo(s) ,

>.. -1 s-
s

00

1 d>" 1 1 S + 1 1
WI (s) = = - - -In -- = -QI (s) ,

>..2(>..2_ 1) S 2 s-l S
s

W2 (s) = W3 (s) =100

d>" = ! (_s_ _ ! In S + 1)
s (>..2 - 1)2 2 S2 - 1 2 S- 1

1 QI (s)
-2~'

(5.9.4)

For q2 = q3 we also arrive at two equations for the constants X and sc,

5.5.10 A circular slot in elastic medium

For small So we represent the coefficients of equations in (5.9.2) by the
power series

K 1 K
WI (So) = - - So + ... , W3 (So) = - - -2 + So + ...

4 So

and arrive at the system of equations

qi (K 1 ) [v (1 K) 1 ]4G = (1 - 2v».. -4 + So + . . . - »c s6 So -"2 - 2s3 +.. . ,

q3 (K ) [1 . (K ) 1 ]- = (1 - 2v) >.. - - So + .. . + x - (1- v) - - So + - + .. . ,
8G 4 s6 4 2so

which can be satisfied by expanding the unknowns>" and sc in the series

(5.10.1)

where

(5.10.2)

The case of a circular slot in elastic medium is described by So --+ 0, >.. =
>"0, sc = x2s6. The solution does not depend on qi since the presence of the
slot does not affect the state of stress due to the loading which is parallel
to the plane of the slot (the correcting tensor is zero).

For the obtained values of the constants Xand »c the correcting vector of
displacement (5.9.3) is given by the projections U r and w on the directions
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er and k of the cylindrical coordinate system

(5.10.3)

the cylindrical coordinates being expressed in terms of the spheroidal coor
dinates J-l and S (the coordinates of the compressed spheroid) by formulae
(C.10.1)

r=a~J1-J-l2 , z = asJ-l .

It allows relationships (5.10.3) to be set in another form

Orr ~-J-l2 J-l2 S
}-ur = - (1 - 2v ) rWl (s) + a --2 2 2 '

q3 1 + S S + J-l
G« J-l3
- w = (1- 2v) ZW3 (s) + a 2 2'
q3 S + J-l

(5.10.4)

(5.10.5)

It is known that J-l = 0, S I- 0 describes the part of plane z = 0 outside the
circle r = a, J-l = 0, whilst J-ll- 0, S = 0 describes that inside the circle. On
the circle S = 0, J-l = O. Thus displacement w in the slot plane z = 0 is a
continuous funct ion of r , namely

r< a
r> a

(S = 0) ,
(J-l = 0).

(5.10.6)

To determine the stresses one uses the formulae for differentiation

8s J-l(1+s2) 8J-l
8z a( s2+J-l2) ' 8z
8s sr 8J-l
8r a2(s2+J-l2)' 8r

(5.10.7)

The shear stress T r z is equal to zero in the whole plane of the slot

1 I (8U 8W) {O, s = 0, J-ll- 0,
G T rz z=o = 8z + 8r z=o = 0, s I- 0, J-l = O.

(5.10.8)



5.5 Ellipsoid 343

Further we find

Gn div u = (1 - 2/!) [W3 - ~ - 2Wl + 2 8 2 (1 + 1 - JL:)] + ... ,
q3 8 8 + JL 1 + 8

Gt: ow (1 8)
---;::I = (1-2/!) W3--+ 2 2 + ... ,
q3 uZ 8 8 + JL

Gn in: [ 8(1- JL2) ]
-~ = (1-2/!) Wl- ( 2)( 2 2) + . .. ,
q3 or 1 + 8 8 + JL

Gnu
--=-(1-2/!)Wl+ " "
q3 r

where the terms vanishing in plane Z = 0, i.e. for 8 = °or JL = 0, are not
written down . They remain continuous when the focal circle 8 = 0, JL = °
is approached while the point remains in plane z = 0.

In plane z = °we have

a , = { 2q3 [( ) -q3 , /!] 8 = °0' (5.10.9)
--:;- 1 - u W3 - 2/!Wl + 8 (1 + 82) , JL = ,

and when approaching the focal circle 8 = °from the side of 8 > 0, i.e.
r > a, the normal stress experiences a jump

2q31 2q3 a
(jzIJl=o - (jzIJl=o = -- = - (5.10.10)

8~0 8=0 n 8 n yla 2 - r 2

The state of stress considered here occurs in the elastic half space covered
by a rigid smooth plate with a circular opening r ::::: a. The pressure q3

is distributed within the circle r ::::: a and the plate admits no normal
displacement w. However it does not hinder displacement u; in its plane.

It is also easy to obtain the distribution of stresses a ; and a<p in plane
z = 0.

5.5.11 An elliptic slot in an elastic medium

The problem of the state of stress in an elastic medium with an elliptic slot
is considered by analogy. The slot lies in plane z = °and is bounded by the
focal ellipse Eo, see eq. (C.1.16). The solution of the system of equations
(5.8.9) is sought in the form of series in terms of parameter JP6 - 1 = c

A = AO + . . . , x = X2c2 + . . . , C = Co + ... ,

where it is sufficient to take only the first terms of these series. Taking into
account that , due to eqs. (5.8 .8) and (5.7.2) ,

W3 = I" - (Wi + W2) , Xl (1) = X2 (1) = ~ (1 - e2
) ,

pu 2

X3(1) = 1-e2
, ~ =~c,
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and remaining within the above approximation we can put the first two
equations in (5.8.9) in the form

1 3Co
0= AO (1- 2v) + -X2 (1- 2v) + -2 (1 - v) (0'1 - 0'2),

2 e
1 3Co

0= AO (1 - 2v) + '2X2 (1 - 2v) - 7 (1- v) (0'1 - 0'2)'

It follows that

Co =0,

and the third equation in (5.8.9) yields

q3 q3
X2 = 2G ( ) , AO = G ( ) .

W1 + W2 4 W1 + W2

Here

(5.11.1)

(5.11.2)

where K and E are the complete elliptic integrals of the first and second
kind respectively, so that

E
W1+ W2=-12-e

(5.11.3)

and e = 0 yields formulae (5.10.2) for the case of the circular slot .
The solution of the problem which is the expression for the displacement

vector (5.8.10) is set in a form analogous to eq. (5.10.3)

(5.11.4)
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This solution is also written down as follows

u = -2A [(1- 2V)XWl (p) +Z2~3] ,

V = -2A [(1 - 2v) YW2 (p) + z2 {)~3 ] ,

[
2 {)W3]w = 2A (1-2v) ZW3(P)- Z ()Z '

q3(1- e2
)

A = 4GE(e) ,

(5.11.5)

(5.11.6)

and it can be expressed in terms of the Papkovich-Neuber functions

B 1 = -AXWI (p) , B2 = -AYW2 (p) , B3 = AZW3 (p) , Bo = Aa2wo (p) .
(5.11.7)

Let us prove that this solution satisfies all of the conditions of the prob
lem.

Indeed, referring to formulae (C.11.26) and (5.8.8) and account ing for
the equality

W3 (p) = 1 ~ e2 [-E ('P, e) + :2fl(;~]' 'P = arcsin ~ ,

we have

as well as
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The values of the parameters in these formulae within ellipse Eo (p = 1)
and outside it (/1 = 1) are given by

outside Eo,

inside Eo,

outside Eo,

inside Eo,

outside Eo,

inside Eo,

{

_4A(1-2v) [E('P,e)_p2- e2]
~ = 1 - e2 pb. (p)

_ 4A (1 - 2v) E (e)
1- e2

In the whole plane z = 0

2 (EPW3 8
2
W3 ) = 0

z 8x 2 + 8y2 '

that is, in this plane

outside Eo,

inside Eo.

8u + 8u = 8w = ~~ (at z = 0).
8x 8y 8z 2

For this reason, the normal stress 0' zIz=o calculated by taking into account
the stress at infinity
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is equal to

q3 [ 1 ~]E(e) E(e)-E(rp , e)+pY~

o

outside Eo,

inside Eo.
(5.11.8)

On ellipse Eo this stress experiences a jump.
Let us also prove that the shear stresses 7 x z and 7 yz are absent in the

whole plane z = 0

1 I [ ( aW3 aWl) aW3 2 a2W3] I-7x z = 2A (1 - 2v) z- - x- - 2z- - 2z --
G z=O ax az ax axaz z = O

= -4A:x [(ZW3 + Z2 a':z3) Iz=J = 0,

since, by virtue of the above, the expression in the brackets vanishes.
Let us notice the expression for w

outside Eo,

inside Eo

which is easily obtained from the above equations. The displacement re
mains continuous on Eo.

5.6 Contact problems

5.6.1 The problem of the rigid die. Boundary condition

Contact problems in the theory of elast icity are concerned with the stat e
of stress which appears in elast ic bodies pressed against each other. In
particular, one of the bodies can be rigid (a rigid die) whereas the elastic
body can be presented by an elastic half-space. Under some additional
assumptions the solut ion of this simple problem turns out to be sufficient
for construct ing solutions to a more general Hertz's problem of the contact
of two elastic bodies.

Let plane Oxy bound the half-space and axis 0 z be directed into the
half-space. The die base pressed against the half-space can be either flat or
have the form of a convex surface 5 , see Fig. 5.4. The die is relat ed to the
system of axes O~'f/ whose origin lies on surface 5 and axis O~ is directed
into the die along the normal to this surface. In the initial state, in which
the die is not loaded, the origins of the systems of axes O~'f/( and Oxyz
are coincident. Axes ~ and x as well as 'f/ and y coincide whereas axes (
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----=""'*~~--I.~

z

FIGURE 5.4.

and z have opposite directions. For this reason, the first system of axes is
left-handed and the second one is right-handed.

In the coordinate system O~ry( the equation for surface S of the die base
has the form

(=rp(~,ry),

and for the adopted system of axes

(6.1.1)

rp (0, 0) = 0, (
8rp ) _ 0
8~ ~=7]=O - , (

8rp ) _ 0
8ry ~=7]=O - •

(6.1.2)

In the case of a plane die the equation for the bounded plane is simply

(= o. (6.1.3)

Under the loading the die moves and becomes immersed in the elastic
medium. The quantities characterising the displacement of the die are as
sumed to have the same order of smallness as the displacement of the points
of the medium.

Let region n consist of points in plane Oxy which, after deformation,
lie on the displaced surface S of the die base. As always, the boundary
conditions are related to the undeformed surface of the elastic body, i.e.
to plane z = O. The die base is assumed to be absolutely smooth, thus it
is taken that the shear stresses T zx and T yz are absent in the whole plane
z=O

z = 0 : T zx = 0, T yz = o. (6.1.4)

The normal stresses are absent in plane z = 0 outside the region n of con
tact of the die and the medium . At points of region n, the elastic medium
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is subjected to the compression load p (x,y), so that

{
0, z et. n,

(} z= - p (x , y) , ze n . (6.1.5)

(6.1.7)

Evident ly, function p (x,y) is not given in advance and is the main variable
of the problem. Under condit ions (6.1.4) and (6. 1.5) the equilibrium of th e
die is possible only if the resultant force Q is parallel to axis Oz. Denoting
the coordinates of the point of intersection of the line of act ion of this force
with plane Oxy by Xo and Yo , we can write down the following equilibrium
equations for the die

Q = JJ p (x ,y)do, xoQ= JJ xp(x, y) do, YoQ= JJ yp(x, y) do
!1 n !1

(do = dxdy) . (6.1.6)

These are the integral equations which the unknown pressure p (x,y) must
satisfy.

Let us proceed to the boundary condition for displacement w of the points
of region n.It must be expressed in terms of the quantit ies determining the
displacement of the die. Under force Q the lat ter will move in translation
and rotate. The translation displacement 8 will be parallel to axis z and
the rotation will occur about a certain axis in plane Oxy, the projections of
the vector of small rotation being denoted as {3x and {3y. Th ree parameters
8, {3x , {3y are needed to obtain the expressions for the displacement of the
point of surface S of the die base and the expressions for the coordinate
of points xs, Ys,Zs in the coordinate system Ox yz are required. The table
of the direct ion cosines of the angles between this system and O~1]( is as
follows

=x 1 0 - {31J

Y 0 1 {3x
z - {31J {3x -1

Th e unusual signs in this table is due to the fact that one system is right
handed while the second is left-handed. In the system Oxy z t he coordinates
of the origin of the system O~1]( are 0,0 ,8, the formulae for the transfor
mation of the point with coordinates ~ , 1], ( = <P (~ , 1]) on S are given by

X s = 0 + ~ - {3y( = ~ - {3y<P (~, 1]) , }
Ys = 0 + 1] + {3x ( = 1] + {3,,<p (~ , 1]) ,
Zs = 8 - ( - {3y~ + {3x 1] = 8 - <P (~ , 1]) - {3y~ + {3x 1]·

It follows from equalities (6.1.2) that quanti ty <P (~, 1]) is of the second
order of smallness with respect to the values characterising the exte nt of
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the contact surface and this allows us to neglect the products f3 x <P and f3 y<P

in eq. (6.1.7). Therefore

(6.1.8)

Let (x,y, 0) be the point of region 0 which, after deformation, becomes
point (xs,Ys, zs) of 5, i.e.

Xs = x + u, Ys = Y + v, Zs = w, (6.1.9)

(6.1.10)

where u,v, w denote the project ions of the displacement of point (x, y ,0)
on O. By eqs. (6.1.8) and (6.1.9) we have

u = ~ - x, v = TJ - y, }
w = 8 - f3 y (x + u) + f3 x (y + v) - <P (x + u ,Y + v) .

In the latter equation we neglect the products f3xv, f3yV and also assume
th at

<P (x + u,Y + v) ~ <P (x, y).

Th en we arrive at the sought bound ary condition

z = 0, (x, y) c O : w = 8 - f3 yX+ f3yy - <P (x , y). (6.1.11)

In the case of a plane die this condition simplifies and takes the form

z = 0, (x , y) c O : w = 8 - f3 yX + f3 yy , (6.1.12)

The problem for the die is thus reduced to the mixed boundary value
problem of elast icity theory: firstly, shear st resses T zx and T y z vanish in
the whole plane z = 0, secondly, outs ide region 0 of this plane the normal
st resses vanish, and thirdly, the normal displacement w of the point of
region 0 is given. The values of 8, f3 x ' f3 y are not know a priori and the
equilibrium equations (6.1.6) are used to determine them.

The above-said can also be elucidated in the following way: the points of
region 0 in plane z = °gain the normal displacement w according to the
prescribed law (6.1.11) or (6.1.12) . To this aim, the normal displacement
p( x ,y) is distributed over area 0 , the law of distribution being unknown
in advance. Th e die is placed into the "hollow" and is pressed by a vertical
force Q in order to ensure equilibrium.

If the distortion due to the rotation is neglected then, for the plane die,
region 0 is determined by the form of its cross-sect ion which is normal to
axis ( . Normal stress o ; is discontinuous on the contour of this region. If
the die is not plane and its surface has no sharp corners (i.e. 8<p/8~,8<p/8TJ

are cont inuous), the contour C of region 0 is given by the conditio n

p (xc ,uc) = 0. (6.1.13)
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By virtue of eq. (6.1.5) the normal stress is continuous in the whole plane
z = O. This condition is due to the fact that the medium is fitted smoothly
to the die base when no sharp corners on the die surface are present . Under
conditions (6.1.4)-(6.1.6), (6.1.11) the problem for the die with a non-plane
base admits a family of solutions depending on a single parameter which
is determined by the requirement of a smooth fit of the medium to the die
surface (6.1.13).

Quantity w (xc ,uc) is the displacement of the point of the medium along
contour C of region n in plane z = O. According to eq. (6.1.11) the sinking
of the die into the medium is given by

(6.1.14)

expressing that the displacement 8 of the die is a sum of the sinking into
the medium and the displacement of the medium at the point s of curve C .

The die must be pressed against the whole surface of the contact so that
the sought pressure distribution sat isfies the condit ion

p(x ,y) ;:::: 0, (x ,y) en, (6.1.15)

the equality holding only on contour C of region n.This condition imposes
a restri ction on the location of the line of action of force Q act ing on the
die.

5.6.2 A method of solving the problem for a rigid die

Subsection 5.2.3 deals with the Boussinesq problem of the state of stress
of the elast ic half-space whose boundary z = 0 is free of the tangential
stresses T z x , T zy whereas the normal stress is prescribed on it . The solution
reduced to searching for the harmonic function w which was determined by
the simple layer pot ential distributed over region n with density equal to
the normal pressure p (x ,y)

w = Jrr p (x' ,y') do' (do' = dx'dy') .
~ J(x- X,)2+ (y - y,)2 + z2

(6.2.1)

The shear and normal stresses on the surfaces z = const are given by eq.
(2.3.5)

1 02w
T z x = - 21f ZOXOZ '

1 (ow 02w)
(J z = 21f OZ - ZOZ2 '

(6.2.2)



I-v 1 8w
W = 21rG W- 41rG z 8z '

(6.2.5)

(6.2.9)

352 5. Three-dimensional problems in the theory of elast icity

and the displacements are due to eq. (2.3.4)

1 [8W 8w ] 1 [ 8w 8W ]U= - - z - +(1 - 2v) - , V = - - z-+(1 - 2v) - ,
41rG 8x 8x 41rG 8y 8y

(6.2.3)

(6.2.4)

It is known that the normal derivative of the simple layer potential dis
t ributed over a plane region is given by eq. (2.3.6)

z = o . 8wI ={ -21rp (x ,y) , (x ,y) en,
. 8z z--+o 0, (x, y) ct. n.

Referring to eq. (6.2.2) we can conclude that the solution found by means
of potential w satisfies conditions (6.1.4) and (6.1.5) of the problem of a
rigid die, density p (x,y) being subjected to condition (6.1.11). By means of
eq. (6.2.4) this condition reduces to the integral equat ion of the first kind
for the sought distribution of normal pressure

1 - v Jrr p (x' , y' )do'
W (x , y ,0) = 8 - {3yX + {3xY - sp (x , y) = 21rG } J 2 2

!1 (x - x' ) + (y - yl)

(6.2.6)

or by eq. (6.1.12) in the case of a plane die

1 - v If p (XI, y') dO'
W (x , y,0) = 8 - {3yX + {3xY = 21rG / 2 2 ' (6.2.7)

!1 V (x - x' ) + (y - yl)

The closed form solut ion can be obtained under the assumption that the
contact region n is an elliptic area bounded by ellipse Eo

x2 y 2

Eo : a2 + a2 (1 _ e2 ) - 1 = O. (6.2.8)

For the plane die, the semi-axes a,a~ are given by the form of the
contact surface. In the case of a non-plane die the equat ion for surface S is
presented by the expansion in a power series which starts, by eq. (6.1.2),
from the terms of the second degree in ~ and TJ

By means of an appropriate choice of directions of axes ~ and TJ t he term
with ~TJ can be made equal to zero. Then

e TJ2
( = 2R

1
+ 2R

2
+ ...



(6.2.11)

(6.2.13)

(6.2.14)
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Here R11 and R21 are the curvatures of the principal normal sections of
surface S at the point of its tangency to the plane bounding the half-space.
It is assumed that they are posit ive and R1 denotes the larger of the two
curvature radii .

Considering only the local effects we restrict ourselves by the second order
terms (6.2.9). This means that surface S is approxim ated by an ellipt ic
paraboloid in the neigbourhood where S is tangent to plane z = O. The
boundary condition (6.2.6) is now set in the form

J: _ ~ (x
2 + Jl) _1- v Ii p( x' ,y') do'v - , (6.2.10)

2 R1 R2 27rG . /( ,)2+ ( ,)2n V x -x Y-Y

that is, in the case of a non-plane die the analysis is limited to the case
of the translatory displacement ({3y = (3x = 0) . As mentioned above, the
integration region D is assumed to lie in ellipse Eo whose parameters a and
e are not known in advance. Eventually they are determined in terms of the
pressing force Q and curvatures R11,R21 of the contact surface. Pressure
p( x ,y) is assumed to vanish on Eo, i.e. condition (6.1.13) is satisfied.

It is necessary to distinguish the border of the contact area (ellipse Eo)
from the contour of the cross-sect ion of the die by plane ( = const .

The ellipt ic plat e having a "top" (z > 0) and a "bottom" (z < 0) and
bounded by a focal ellipse Eo is one of the coordinate planes P = 1 of the
family of ellipsoids P = const in the system of elliptic coordinates P, u;v,
see Section C.11 and in particular eq. (C.11.16) . Hence it is reasonable
to introduce into consideration a simple layer potential W (x ,y, z;Po) on
the surface of ellipsoid D* (p = Po = 1) , this potential being a cont inuous
harmoni c funct ion determined by W (x , y ,z; Po) on D*. According to eq.
(6.2.6) for the plane die one can take

27rG
on D* : w (x, y,z;po ) = 1- v (8 - {3yX + (3xY)

and , due to eq. (6.2.6) for the non-plane die,

27rG ( x
2

y 2 )
on D* : w (x , y, z;Po) = 1 _ v 8 - 2R

1
- 2R

2
' (6.2.12)

Having const ructed solut ions for the internal and external Dirichlet's prob
lems (Wi (x , y, z; Po) and We (x , y , z; Po) respectively) we arrive at the fol
lowing function

W(x , y, z;Po) = { Wi (x , y, z; Po), P < Po'
We (X, y, z; Po) , P > PO ,

which is continuous in th e whole space and vanishes at infinity. It is a simple
layer pot ential with density p (x ,y , z) defined as follows

(
awe aWi)an - an = -47rp.

(x ,y, z) cn .
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As plane z = 0 is a plane of symmetry of ellipsoid p = Po and the values of
Wi and We do not depend on z (they are equal to W(x , y , 0; Po)) the density
p is even with respect to z .

In order to determine the simple layer potential W (x,y , z) on the ellipt ic
plate it remains to carry out the limiting process

W(x ,y, z) = lim Wi (x, y, z;Po) = lim We (x, y, z;Po).
po--->l po --->l

(6.2.15)

(6.2.16)

(6.2.17)

Potential W (x,y, z) satisfies conditions (6.1.11) or (6.1.12) on the surface
of plat e n. While calculating the density it is necessary to take into ac
count that two elements of ellipsoid n* contribute to each area element ,
the elements of n* being symmetric about plane z = 0 and having the
same density. Hence, the density of the layer on n obt ained by considering
formula (6.2.14) at its limit must be doubled:

() 1 l' (awe (x , y, z;Po) aWi (x , y, z;po))p x , y = -- Hfl. - .
21T Po--->l an an

This det ermines the pressure on the surface of contact of the die and the
elast ic medium .

The suggested strat egy allows us to avoid direct consideration of integral
equations of the first kind (6.2.6) and (6.2.7). Besides, est imat ing integral
(6.2.1) is not needed because function W is constructed by means of eq.
(6.2.15) which requires only the solution of the external Dirichlet's problem
for the ellipsoid, see Section F.8.

The forces and moments applied to a non-plane die

Assuming the solution of the problem of the plane die to be known one can
obt ain the expressions for the forces and moments which must be applied
to the die withi the base ( = 'P (~ , 1]) in order to ensure the translation
displacement {j and rot ations (3x ' (3y. The cross-sect ion of the plane die
must have the size and the form of the contact surface (region n in plane
z = 0 which is unknown in advance) of the non-plane die.

Let qo (x ,y) denote the distribution of pressure over the base of the plane
die when the latter is subj ected to translatory displacement {j0 = 1 and the
rot ation is absent ((3~ = 0, (3~ = 0) . The principal vector and the principal
moment of thi s distribution are denoted as

Qo = JJqo (x , y) do, JJyqo (x , y) do = yoQo ,
n n
-JJxo« (x, y) do = - xoQo .

n

By analogy we introduce the pressure distributions ql (x,y) and q2 (x,y) en
suring the rotations (3(1) = 1 (3(1) = 0 and (3(2) = 0 (3(2) = 1 respectivelyx ' y x ' y ' ,
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and absence of translation displacement of the die (8( I l = 0, {jC2l = 0). The

principal vectors and the principal moments of these distributions are writ
ten down in the form (8 = 1,2)

Qs = IIqs (x , y) do, IIyqs (x , y) do = ysQs ,
!l !l-IIxq, (x , y) do = -XSQ8'

!l

(6.2.18)

From these definitions and the reciprocity theorem the symmetry of the
matrix

Qo YoQo - xoQo
QI YI QI - XI QI
Q2 Y2Q2 -X2Q2

follows. Referring to eq. (6.2.7) we have

1 = 1- v Jrr qo (x' ,y') do'

27rG ) J( _,)2 + (. _ ,)2'
!l X X Y Y

y= I-VJrr qdx' ,y') do'

27rG ) J( ,)2 + ( ,)2'n x -x Y-Y

1 - v Ji q2 (x' , y') do'-X=-- .
27rG 2 2n J(x- :r') +(y-y')

(6.2.19)

(6.2.20)

Considering the non-plane die and introducing the principal vector P
and the principal moments m 1 , nl2 of the forces applied to the die we have

P = IIp(x ,y)do, ml = ff yp(x ,Y) do, m2 = - ff xp (x, y ) do,
!l n n

(6.2.21)

where p (x,y) designates the distribution of pressure over the surface of
contact of the die and the elast ic half-space. By virtue of eq. (6.2.6)

8 - {3 , {3 , _ (' ') = 1 - v Jer p (x, y) do
yX + -u sp X ,Y 2 G } V '

7r n (X'_ X)2+(Y'_y)2

(6.2.22)

where 8, {3x, {3y denote the translation displacement and the angles of rot a
tion of the die subjected to this force and these moments.
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Turning to eq. (6.2.21) and th e first relationship in (6.2.20) we obtain

p= II p (x ,y)do = ~~; II p (x ,y)doII qo (~'~Y' )dO', 2

n n n V (x- x ) + (y-y )

=~ jrr (' ')d ' jrr p (x, y) do
2 G } ~ x, y 0 }

7f n n V (X'- X)2+ (y'_y )2

or , by eqs. (6.2.22) and (6.2.17 ),

p +IIqo (x' , y' ) ep (x', y' )do' = Qo (8 + f3xyo - f3 y Xo) .
n

By analogy, using the second and the third equaliti es in eq. (6.2.20) as
well as eqs. (6.2.18) , (6.2.21) , (6.2.22) we arrive at th e relationships

m1 +IIqi (x' , y') ep (x' , y') do' = Q1 (8 + f3x Y1- f3 y X1) ,
n

m2 +IIq2 (x' , y') ep (x' , y') do' = Q2 (8 + f3xY2 - f3 y X2 ) .
n

(6.2.24)

Equ ations (6.2.23) and (6.2.24) do not yet solve the posed problem since
we do not know th e integration region n which is th e cross-section of the
introduced plane die. Evidently, t he prescrib ed (8, f3x' f3 y , ip (x, y)) and th e
sought (P, m1 , m2) parameters must be independent of the parameters de
scribing the form and size of n. Thi s reasoning provides one with a means
for determining n.

The suggested approach to searching for forces and moments does not
require th e distribution of pressure p (x,y) over the base of th e non-plane
die. Regretfully, it is efficient ly applicable only to the case of the die of an
ellipt ic (in particular circular) die since the requir ed closed form solut ions
of th e integral equations of th e second kind (6.2.20) are known only for the
plane ellipt ic (circular) die.

5.6.3 A plane die with an elliptic base

Functions W i (x , y , z;po ) and W e (x, y , z; po ) are determined by formulae
(F. 8.9)
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so that by eq. (6.2.15)

W = 27rG [8W O (p) _ (3 X W I (p) + (3 YW2 (P) ] .
1 - v W o (1) y wd 1) x W 2 (1)

(6.3.1)

For determination of the distribution of pressure over the die area we have
eq. (F .8.15) where

27rG
F (x ,y,O) = - (8 - (3 yx +{3xY),

I -v

and value R (1) for each term in this expression is given by formulae (F .6.2)
and (F .6.4). Then we have

G [ 8 x y ]p(xy)- - - - {3 - - + {3 x
, - (1 - v)a~ Wo (1) yWI (1) x (1 - e2 ) W2 (1)

(
2 2 ) -1 /2

1 - : 2 - a2 ( ; _ e2 ) . (6.3.2)

Constants 8, {3x,{3y are obtained from the equilibrium equations (6.1.6)

G 8 Ji ( x
2

y2) -1 /2Q - -- 1 - - - - do
- (1 - v )a~ Wo (1) a2 b2

!1
27raG 8

=
1 - v W o (1) '

G e, Jrr 2( x
2 y2) - 1/2

xoQ = - (1 _ v) aJI=e2 WI (1) J x 1 - a 2 - b2 do
!1

27ra3G e,
=

3 (I -v) WI(I )'

G {3 Jrr ( 2 2)- 1/2
YoQ = (1 _ v) a (1 _ e2)3/2 W 2 (1) J y

2
1 - :2- ~2 do

!1
27ra3G a,

3 (1 - v) W2 (1)'
(6.3.3)

The values of W s (1) are determined in terms of the complete elliptic
integrals K (e) and E (e) with modulus e

n / 2 n /2

K (e) = J d'l/J , E (e) = J.11 -e2sin2'l/Jd'l/J
l - e2sin2'lj) V

o 0
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and are given by

(6.3.4)

where the denotations D (e) and B (e) for the above combinat ions of the
complete ellipt ic integrals K (e) and E (e) are suggested by Janke and
Emde l

.

The result is

Q(l-v) Q(l-v) B(e) }
8= 2naG K(e) , f3x = 3 2na3G Yo 1_ e2,

Q (1 - v)
f3y = -3 2na:lG x oD (e) .

The pressure distribution is now present ed in th e form

(6.3.5)

1 [3XXO 3YYo ]
P (x,y) = "2Pm 1 + 7 + a2 (1 _ e2) (

2 2) - 1/2
1 - :2 - a2 (:_ e2 ) ,

(6.3.6)

where Pm denotes the mean pressure

(6.3.7)Q
Pm = .

na2~

Pressure P is equal to the half of the mean pressure at th e cent re of
the die and increases without bound when approaching the contour of the
loading region with a sharp corner of the die. The die is pressed against
the elastic half-space over the whole contact surface if the line of act ion of
force Q passes through the elliptic cylinder with semi-axes ~a, ~a~.

Expression (6.3.1) for pot ential w is written down in the form

Q [ 3xxo 3YYo]
w = - wo (p) + - 2-W1 (p) + -2W 2 (p)

a a a

00 ( )
_ Q ~ 1 3x xo 3yyo
- a J~ (,\) + a2 ,\2 + a2 (,\2 - e2 ) .

p

(6.3.8)

I J anke E., Emde F. , Losch F . Ta ffeln hoherer Funktionen. Teubner , St ut t gart, 1960.
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5.6.4 Displacements and stresses

In order to find th e components u, v of the displacement vector we need
the derivatives

00

ow= -1ow dz,ox ox
z

Here, due to eqs. (6.3.8) and (C.1.26)

(6.4.1)

We arrive at an estimation of integrals of th e type

00 00 00

1dz1X (A)o; 1! (x, y, p) D~~(p)'
z p z

By eqs. (C.11.9) and (C.11.26)

z (,\) = a&"=1 [l - X
2
2 _ (;2 )]1/2

a2,\ a2 A - e2

= a&"=1l'(x , y, A) (6.4.3)

dz p (p2 - 1) ~dp
D~6. (p) = z6. (p) dp = pv~--; '

the second equality being obt ained by differentiating eq. (C.11.9) with re
spect to p for constant x and y. Thus ,

00 00 00-1dz1X (A)dA = 1[z - z (A)]X (A)o;
z p p

00 00 ~dz ! (x, y, A) A-I1! (x , y ,p ) D26. (p) = 1 Z(A) A2_ e2AdA.
z p
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Applying these equaliti es we obtain by means of eq. (6.4.2)

00

8w _ 3Qxo! z _ z ,\ d,\ +
8x - a3 [ ( )J ,\2 Do (,\)

p

00 [ ]
Qx 1 3xxo 3yyo d,\- +-+
a2 I a2>.' a2(>.'- e') >.2J>.'- e2~(x,y,>.) '

00

8w _ 3Qyo! z _ z ,\ d,\
8y - a3 [ ( )] (,\2 - e2 ) Do (,\)+

p

00 [ ]
Qy 1 3xxo 3yyo o.- +--+
a' I a'>" a' (>.'- e') (>.'- e') ' /' 1(X,y ,>.)'

(6.4.4)

In the case of a centrally loaded die (xo = Yo = 0) the expressions for the
displacement constructed with th e help of eqs. (6.2.3) and (6.2.4) take the
form

[

00 ]
Qx zDo (p) m - 2 d,\

u ~ 4nGa' ap(p' - ~')(p2 - "') - ---,;;-I >.' (>.' - e'h (x, Y, >') ,

Qy [ zpDo(p)
v = 41rGa2 a (p2 _ e2) (p2 _ J.L2) (p2 _ lJ2) -

00 ]
m-2 d,\--:;;;:- I(,\2_ e2)3/2 /,( x,y,,\) ,

00

Qz zpDo(p) Q(m-1)! o.
w = 41rGa3 (p2 _ 1) (p2 - J.L2) (p2 - lJ2) + 41rGma Do ('\)'

p

(6.4.5)

where m = 1/ u, Here we used relationships (C.n .21) and (C.11.12):

H 2 (p2 _ lJ2) (p2 _ J.L2)
D 2 = --.l!..- = a2 --7-.,.---;:------'~.,.---;:---7

P p2 p2(p2_ e2)(p2_1)"

The integrals appearing in the expressions for u and v are estimated easily.
The dilat ation is calculat ed by the following formula

At points of axis z we have

lJ = 0, J.L = e, z = aJp2 - 1, (6.4.7)
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and calculating stresses at points of this axis leads to the formulae

1 jg-e2 [m - 2 ( ) 1 ]CYx = -2Pm 2 2 --2- P - Jp2 - e2 - 3" 'p - e me p

1 JI=e2 m - 2 ( ) 1 - e
2

]
CYy = 2Pm p ~ P - Jp2 - e

2
- (p2 _ e2)3/2 '

1 1 1 - e2 (p2 - 1 p2 - 1 )
CY z = - -2Pm - 2 2 --2 - + 2 2 + 1 .

P P - e P p - e
(6.4.8)

The shear stresses are absent on axis z.

5.6.5 A non-plane die

By eq. (6.2.12) the boundary condition for potential w is presented in the
form

21fG ( x
2

y
2

)z=O, (x ,Y)CO: w (x , y,O) = I-v 8-
2R 1

-2R
2

' (6.5.1)

where , due to eq. (6.1.13) , the density of this potential must vanish on
ellipse Eo bounding the region O. As shown in Section F .8 this condition
is fulfilled by the potenti al

with the density

C x2 y2
p(x ,y) = 21faJI=e2 1- a2 - a2 (1 - e2) '

see eq. (F .8.18). Determining C using equilibrium equat ion (6.1.6) we ob
t ain

so that

Q= JJp(x,Y)do=~aC,
n

C= 3Q ,
a

(6.5.2)

The maximum pressure at the centre of the area is equal to 1.5 times the
mean pressure Pm.
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Potential w is presented in the form

(6.5.3)

the constants a and e must be determined from condition (6.5.1) taking
the following form

where formulae (6.3.4) are used. Finally we arrive at the equalities

8 = 3Q (1 - v) K (e) ~ = 3Q (1 - v) D (e) 1
41TaG ' R1 21Ta3G ' R2

3Q (1 - v) B (e)
21Ta3G 1 - e2 •

(6.5.5)

These determine the translation displacement 8 of the die, the major semi
axis and the eccentricity of the contact area. The latter can be found from
the relationship

R2 (1 - e2) D (e) (1 - e2) [K (e) - E (e)]
R 1 - B (e) = E (e) - (1 - e2 ) K (e) ,

and then a and 8 can be found

[Q(1 - v) ] 1/ 3 [Q (1 _ v)] 2/3
a = G R1 aa, 8 = GjI[; a8,

where

[ 3 ]1/3 [9]1/ 3
aa = 21TD (e) , a8 = 321T2D (e) K (e) .

(6.5.6)

(6.5.7)

(6.5.8)

Table 5.1 collects the values of R2/RI, aa, a8 for some values of e2. Taking
R2 / R1 and using this table one can find e2 and then aa and as .



5.6 Contact problems 363

~ ° 1 0,05 1°,10 1°,15 1 0,20 1°,25 1°,30 ~

R2 /R1 1 0,963 0,925 0,885 0,846 0,806 0,765
Cl:a 0,722 0,726 0,731 0,736 0,741 0,747 0,753
Cl:8 0,520 0,523 0,526 0,530 0,534 0,538 0,543

~ e'2 ~ 0,35 I 0,40 I 0,45 I 0,50 I 0, 55 I 0,60 I 0,65 ~

R2/R1 0,724 0,682 0,637 0,594 0,549 0,502 0,454
Cl:a 0,760 0,767 0,775 0,783 0,793 0,803 0,815
Cl:8 0,547 0,553 0,559 0,565 0,571 0,580 0,589

~ 0,70 I 0, 75 I 0,80 I 0,85 I 0,90 I 0,95 I 1
R2 /R1 0,405 0,353 0,297 0,238 0,174 0,101 °
Cl:a 0,829 0,844 0,863 0,888 0,921 0,975 -

Cl:8 0,597 0,609 0,623 0,642 0,668 0,713 -

Table 5.1

Figure 5.5 displays the dependence of R2/ R1 versus e2. Displacement S
of the die turns out to be proportional to Q1 /3. This result is unusual for
the linear theory of elast icity and is explained by the fact that both the
force and the contact area increase with the growth of the force.

Determination of forces and moment s act ing on non-plane die with an
ellipt ic base

The approach of Subsection 5.6.2 is applied here.
By eqs. (6.3.2) and (6.2.20) we have

G [2 2]-1/2
qo(x'Y)= (l- v)a~wo(l) 1-:2- a2({_ e2) ,

G [2 2]-1/2
qd x ,y) = (1-v)a(1- e2)2/3w2(1)Y 1- :2- a2({- e2) ,

q2 (x Y) - -G x [1 _x
2

_ y
2

] -1/2
, - (1 - v)a~w1 (1) a2 a2 (1- e2)

(6.5.9)

Only the diagonal elements of mat rix (6.2.19) differ from zero and, by virtue
of eqs. (6.3 .3), (6.2.17) and (6.2.18), they are given by

Q
27faG Q 27fa3G Q 27fa3G

o = , Y1 1 = , x2 2 = - .
(l-v) wo(l) 3(1-v) w2(1) 3(1- v) wd1)

(6.5.10)

In accorda nce with eq. (6.2.9)

x2 y2
<p (x , y) = 2R

1
+ 2R

2'
(6.5.11)
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FIGURE 5.5.

Turning now to eqs. (6.3.3) , we obtain by means of eq. (6.2.23)

P 1rG a3
( 1 - e

2
R ) 21raG;:+ 1+-- 1 = u ,

3(I-v)wo(1)RI R2 (l-v)wo(l)

where Wo (1) = K (e) and values P, R I, R2,8 are independent of a and e2.

Taking into account the relationships

2dK - B (e) B (e)+D (e) = K (e)
de2 - 1 - e2 '

and taking derivatives of eq. (6.5.12) with respect to a and e2 we find

~: (1 + 1 ~2e2 RI) = 28, DR~) (1 ~:~j R
I
. (6.5.13)

Here the second equality is coincident with (6.5.6) while the first one yields

!!!.- = 28 D (e) (
R

I
K (e)' 6.5.14)

It is easy to obtain relationships (6.5.5) from this equation and eq. (6.5.12) .
The integrands in formulae (6.2.24) are odd with respect to y and x

respectively. Thus the expressions for the moments take the form

(6.5.15)

which is formally coincident with eq. (6.5.3) . However it is necessary to
bear in mind that a2 is not prescribed now.

5.6.6 Displacements and stresses

Now we have, see also eq. (5.6.18)

ow 3Qx ow 3Qy
- = --wdp), - = --W2 (p),ax a3 oy a3
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Using eq. (6.4.4) we find

00
ow __ 3Qx J o. z - z Iax - a3 >..2~(>..) [ ()],

p00
ow __ 3Qy J d>" z - z I
oy- a3 (>..2_ e2)~(>")[ ()],

p

(6.6.2)

where w (x, y, z) = ~~ and th e expressions for the displacements , due to

eqs. (6.2.3) and (6.2.4) , are set in th e form

[
00 ]3Qx z (>..) o.

U = -G3 2(1 - [I) ZW I (p) - (1 - 2[1) J 2 '
47r a >.. ~ (>..)

[ ~ ]3Qy z (>..) d>"
v ~ 4.Ga3 2 (1 - v) ZW2 (p) - (1 - 2v)I(,I' _ ,2) '" (,I) ,

3Q (1 - [I) 3Qz2
W = 47rGa W + 47rGa3 W3 (p) ,

(6.6.3)

where z (>..) is given byeq. (6.4 .3) and th e integra ls

are expressed in terms of th e elementary functions .
When the displacements are obt ained we find th e stresses. Let us show

only th e results for the cent re of the contact area and th e contour .
At the centre

(6.6.4)

where b = aJI=e2. On the contour

_ _ 1-2[13 ~
CT x - -CTy - -~2PmV1- e- x

[
1 __x_ In _a_+_e_x _ .JL arctan ---,-_e,,-y~]

2ae a - ex ae a (1 - e2) ,

_ 1 - 2[1 3 ~ xy [ x a + ex y ey ]
7 x y - ---2 --2PmV 1- e- - 2 -In-- - - arctan ( 2) '

e a 2ae a - ex ae a 1 - e

CT z = 7 xz = 7 yz = O.
(6.6.5)
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In particular, at the ends of the major and minor axes of the ellipse, we
have respectively

yll- e23 ( 1 l+ e)
CTx = -CTy = - (1 - 2/.1) 2 -2 Pm 1 - -In--

e 2e 1 - e
(x = a, y = 0) ,

Jr=e2 3 (Jr=e2 e )CTx = -CTy = - (1 - 2/.1) 2 -2 Pm 1 - arctan ~
e e V 1- e2

(x=O, y=b) .
(6.6.6)

5.6.7 Contact of two surfaces

Two bodies bounded by convex surfaces 8 1 , 82 and contacting at point 0
are considered. Taking this point as the origin of the coordinate system we
direct axes Zl , Z2 which are perpendicular to the common tangent plane
II to surfaces 81 and 82 at point 0 into each of the bodies. Axes X l , Yl

(X2 ' Y2) of system OX 1Y1Z (OX2Y2 Z) of the first (second) body are directed
in plane II along the principal normal sections of surface 8 1 (82 ) , In the
neigbourhood of point 0 the equat ions for surfaces 8 1,82 in terms of these
axes are presented in the form

X 2 y 2
1 1

Z1 = 2Ri + 2R~ + ... , (6.7.1)

where 1/ Ri , 1/ R~ denot e the principal curvatures of surface 8 1 which are
positive if the corresponding cent re of curvat ure locates within the body, i.e.
on the positive axis z. By analogy, 1/ R~ , 1/ R~ are introduced for surface
82 . In what follows we limit the study to considering local effects in the
contact area which allows us to retain in eq. (6.7.1) only the shown terms.

The distance between two points M 1 and M2 of surfaces 8 1 and 82 lying
on the same perpendicular to plane II is equal to

X 2 y 2 x2 y21 1 2 2
Z = Zl + Z2 = 2R' + 2R' + 2R" + 2R"'

121 2
(6.7.2)

and clearly Z > O. Figure 5.6 shows two possible arrangements of surfaces
8 1 and 82 , namely the cases of their external and internal contacts .

The further considerat ion is aimed at representing Z in the form

(6.7.3)

To this end, a new system of axes O xy is introduced. Denoting the angles
between axes X l and X 2 with axis X by W 1 and W2, respectively, and using
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a

a

FIGURE 5.6.

the coordinate transformation we obtain

b

x ] = XCOSWI + ysinw] , YI = -xsin wI + ycoswI,
X2 = XCOSW2 + ysinw2 , Y2 = -xsinw2 + ycos w2

and the expression for z takes the form

x2 y2 1. .
z = 2R

I
+ 2R

2
+ "2 xy (g] sin 2w] + g2sin 2W2) ,

where

Let a denote the angle between axes x ] and X2, then

(6.7.4)

(6.7.5)

(6.7.6)

and introduce the mean curvat ures of surfaces 5] and 52 at point 0

1 1
2HI = R' + R"

I 2

so that

1 1
2H2 = R" + R'"

I 2
(6.7.7)

Let us take the value

1 a a
W = - (WI + W2) = W] + - = W2 - -

2 2 2

(6.7.8)

(6.7.9)
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in such a way that the term with x y in eq. (6.7.4) vanishes

gl sin 2WI + g2 sin 2W2 = (gl + g2) sin 2wcosa - (gl - g2) cos2w sin a = O.
(6.7.10)

By virtue of eqs. (6.7.5) and (6.7.9) we have

1 1 . . }R
I

= HI + H2+ 2" [(gl + g2) cos2wcosa + (gl - g2) sm2wsma] ,

~2 = HI + H2 - ~ [(gl + g2) cos2wcosa + (gl - g2)sin2wsina] .

(6.7.11)

From eq. (6.7.10) and the first equation in (6.7.11) we obtain

~2W ~ ~2 ql -HI - H,) (91+ 9') cos o, }

sm2w = ~2 (RI - HI - H2) (gl - g2)sma,

where

(6.7.12)

(6.7.13)

We determine now 1/ RI from the condition sin22w+ cos22w = 1 and then
1/ R2 is determined from eq. (6.7.8)

1 1
-=HI+H2 - - b,.
R I 2 '

(6.7.14)

where RI denotes the larger of the two values RI and R2 . Using eq. (6.7.12)
yields

cos2w = - ~ (gl + g2)cos a , sin2w = -~ (gl - g2)sina. (6.7.15)

Thus the system of axes Oxy is determined which enables us to represent
quadratic form (6.7.4) as a sum of two squares (6.7.3). Also the factors of
this form (1 /2RI and 1/2R2 ) are determined, both being positive as z > 0
for any values of variables x and y .

In the par ticular case of the surfaces of revolution with the parallel axes
under the external (Fig. 5.7a) and internal (Fig. 5.7b) contact, we have
a = 0 and by eqs. (6.7.13) and (6.7.5)

1

1 1 1 1 I

~= R~-m+R~-R~ '

For

1 1 1 1
~ = R' - R' + R" - R"

2 I 2 I
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a

b

FIGURE 5.7.

we have

If

w=o, (6.7.16)

then

1 1 1 1
~ = R' - R' + R" - R'"

1 2 1 2

7(
w= 2' (6.7.17)

and in both cases R1 > R2 .

The case of the surfaces of revolution with the perpendicular axes is
shown in Fig. 5.8a and Fig. 5.8b for the external and internal contact,
respectively. Now a = 7(/2 and

and for
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a)

FIGURE 5.8.

we have respectively

37r

w=4'
7r

w=4'

1 1 1
R1 = m+ R~ '
1 1 1

R1 = R~ + R:; '

1 1 1
R2 = R~ + R~'
1 1 1

R2 = R2+ R~·

(6.7.18)

(6.7.19)

Also the case of contact of the surfaces of revolution at a point on the axis
of revolution z is of interest. In this case

1 1 1 1

R~ R2 R" R~

1 1
R~ R" ·

(6.7.20)

Angle 0: is arbitrary and 91 = 92 = 0,~ = O. For the external contact we
have

1 1 1 1
R1 = R2 = R' + R'"

and this formula remains valid for the internal contact, however the larger
of the absolute values R' , R" is negative .

For example, for two spheres of radii R' and R" making contacting out
side we have byeq. (6.7.20)

1 1 1 1-----+R1 - R2 - R' R" '
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.whereas .for .e .sphere of radius R' in a spherical cavity of radius R"

1 1

R' R"

When two cylinders with the perpendicular axes are contacting, then

1 1
a' R2

1

b
(a > b) .

In the case of a sphere 51 of radius R in a cylindrical groove 52 of radius
r > R

1 1 1 1 1
u. R r ' R2 n:

axis x being dir ect ed perpendicular to the generator of the cylinder.

5.6.8 Hertz 's problem in the compression of elastic bodies

Two bodies are pressed against each other by forces Q whose line of act ion
is perpendicular to the joint tangent plane II of bodies' surfaces 51 and 52
and intersects it at point O. Under the action of forces Q the bodies are
deformed in the region adj acent to the place of contact and are brought
closer together. Let - 81 and -82 denote resp ectively the projections of
the translation displacement of the first and second bodies on axes ZI and
Z2, each axis being dir ect ed into the corresponding body. One can also
determine 81 and 82 as the displacements of the points of the first and
second bodies provided that these points ar e well away from the contact
place. The value

(6.8.1)

is referred to as the approach.
Let us consider two points ]'v!} and M 2 of the first and second bodies,

respectively, which lie on the joint perpendicular to plane II in the region
adj acent to the cont act place. In the system of axes O XYZI and OXYZ2

introduced in Subsection 5.6.7 the coordinates of these points before the
deformations are (ZI, x, y) and (Z2, x, y). When the bodies are deformed, the
projections of displacements of points M l and M 2 on axes ZI and Z2 are
WI and W2 , respectively. Simultaneously points M; and 1112 move together
with the bodies and t ake positions M{ and M~, resp ectively. Thus, after
the deformation the coordinates w~ and w~ of points will be as follows

and distance M{M~ we be equal to

z' = z~ + z~ = Z I + Z2 + WI + W 2 - (81 + 82 )

(6.8.2)

(6.8.3)



(6.8.4)
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or by eqs. (6.8.1) and (6.7.3)

, xZ yZ
Z = 2R

l
+ 2R

z
+ WI + Wz - 8.

For those points M l and Mz of the first and second bodies which will be
in contact after the deformation, this distance will be zero whereas this
distance is positive for the points in the neigbourhood of the contact place.
The surface of the contact is can therefore be determined as a locus where

Z' = 0, (6.8.5)

Z' > 0,

whilst for the points outside the contact surface

xZ yZ
WI + Wz > 8 - - - - .u. Rz

(6.8.6)

There is a normal stress p (x,y) on the contact surface while the shear
stresses are assumed to be absent. Furthermore, it is assumed that when
considering the local effects in the vicinity of the contact the contacting
bodies can be replaced by two elastic half-spaces pressed against each other
on the plane surface n lying in plane II which is the tangent plane of
surfaces 8 1 and 8z at point 0 and separates the half-spaces. On this plane
Zl = Zz = O. Similar to Subsection 5.6.5 the contact surface is the area
within the ellipse

Eo: (6.8.7)

whose axes x and yare defined in Subsection 5.6.7 . Pressure p(x,y) is
assumed to be absent on Eo.

The state of stress in each of the half-spaces is determined by means of
function Wi (x,y, Zi) (i = 1,2) which is a simple layer potential distributed
over area n with intensity p(x,y) . Due to eq. (6.2.1) we have

(6.8.8)

(6.8.9)

and the consideration can be limited to the single potential

Jrr p (x' , y') do'
w(x,y,z) = J l iZ'

n [(x - x')z + (y - y')z + zr]
assuming Z to be positive in each of the half-spaces. When calculating the
displacements by formulae (6.2.3) and (6.2.4) it is necessary to take the
corresponding values Gl , VI or Gz,vz.



(6.8.11)
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In accordance with eq. (6.2.4) on the contact area

1 - VI 1 - V2
WI = 2nG

1
w (x , y , 0) , W2 = 2nG

2
w (x , y , 0) , (6.8.10)

and thus by eq. (6.8.5) on n

2n ( x
2

y2 )
W = 'l9

1
+ 'l9

2
8 - 2R

1
- 2R

2
'

where

1 - Vi
'l9 i = -- (i = 1,2).

Gi
(6.8.12)

Potential w is determin ed by condition (6.8.11) and the requirement of
vanishing density p (x ,y) on contour Eo of area n. This problem differs
from the problem of Subsection 5.6.5 on the action of a non-plane die on
the elast ic half-space only in replacing

(6.8.13)

(6.8.14)

For this reason , the results of the problem of die are immediat ely applicable
to the problem of the elast ic bodies pressed against each other by forces Q.
A way of solving the problem is as follows:

1) The values 1/ R1 and 1/ R2 and the directions of axes x, y (i.e. angle
w) are determined by means of eqs. (6.7.14) and (6.7.15) in te rms of the
given curvat ures (1/ R~ , 1/ R~ ) , (1/ Rr , 1/ R~) of surfaces 51, 52 of the bodies
contact ing at the point of tangency 0 and angle a .

2) Th e eccent ricity of the contact area E is determined due to eq. (6.5.6).
3) The major semi-axis of the ellipse a an d the approach 8 are found by

the formulae

[
Q ] 2/ 3

a = [QR1 ('l9 1 + 'l92 ) ]1/ 3 a a, 8 = J"l'[; ('l9 1 + 'l92 ) a 6,

where the functions of the eccent ricity aa , a 6 are given by eq. (6.5.8).
4) The displacement s are det ermined by formulae (6.6.3) by replacin g

V , G with V i , C, (i = 1,2). Clearly, when calculat ing the st resses by means
of the formulae of Subsection 5.6.6 it is necessary to replace V by V i.

5.7 Equilibrium of an elastic circular cylinder

5.7.1 Differential equation of equilibrium of a circular
cylinder

In what follows we restrict ourselves to considering the cases of axially sym
metric and bending deformation of a cylinder. In the first case t he axial 'UJ,
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radial u and circumferential v displacements are functions of th e cylindri
cal coordinates rand z. For the bending deformation, components wand
u are taken to be proportional to cos 'I' whereas v is proportional to sin '1' ,
with 'I' denoting the azimuthal angle. The general case of proportionality
to cos tup and sin tup is not considered here. Instead of r , z we introduce the
following non-dimensional coordin ates

r z
x = - , (= - , (7.1.1)

a a
where a denot es the external radius of the cylinder. For a hollow cylinder
of length 2l and internal radius b we have

b 1
-=xl:S; x <l , -L:S;(:S;L=- . (7.1.2)
a a

As already mentioned in Subsection 4.1.10 the axially symmetric case
is split into the problem of the meridion al deformation and the problem
of torsion. The solut ion of the first can be expressed in terms of three
Papkovich-Neuber 's functions. Keeping th e not ation of Subsections 4.1.12
and 4.1.13 we denote these functions by bo and b3 (they are harmonic),
The third function is denoted by b; and the product brei'" is a harmonic
function

(7.1.3)

where eq. (7.1.1) is used

2 82 1 8 82

V' = - 2 + -- + -2' (7.1.4)
8x x 8x 8(

By eqs. (1.12.16) and (1.13.3) of Chapter 4 th ese displacements are ex
pressed in terms of these functions by th e formulae

u = a [-~~ + (~~ + (3 - 4v) b; - x ~; ] , }

[

>:l >:l >:l ] (7.1.5)ubo ub3 ubr
w = a (3 - 4v) b3 - 8( + (-a( - x 8( ,

(n = 0) and the non-trivial stresses given by eqs. (1.12.13) and (1.13.5) of
Chapter 4 are equal to

1 8b3 (8
2bo 8

2b
3 ) 8br br 8

2br
2C(Jr = 2v-a( - 8x 2 + (8x 2 + 2 (1 - v) 8x + 2v-;- - x 8x 2 '

2-(J = 2 (1- v) 8b3 _ (8
2bo + (8

2b
3 ) + 2v (8br + br) _ x 8

2br
2C z 8( 8(2 8(2 8x x 8(2 ,
1 8b3 1 (8bo 8b3 ) 8br br

2CO"<p = 2v7!f( - x 8x + (8x - (1 - 2v) ox + (3 - 2v) x'
1 8b3 ( 8

2bo 8
2b

3 ) 8br 8
2br

2C Trz=(1-2v) 8x - 8 .T8(+(8x8( +(1-2v) 8( - x 8(8x '

(7.1.6)
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Only displacement v does not vanish ill the problem of tors ion. Using eq.
(1.11.3) of Chapte r 4, the non-trivial st resses T,.<p and Tz<p are given by the
formulae

(7.1.7)

where vei<p is a harmonic function , i.e.

2 V
\7 v - 2" = O.

x
(7.1.8)

In the case of bending deformation one introduces four functions bo,b3 , b;
and b<p ' Functions boei<p and b3ei<P are harmonic. Due to eq. (1.13.4) of
Chapter 4 the differential equat ions for functions b; and b<p are (n = 1)

and their half-sum and half-difference are as follows

These funct ions satisfy the differential equations

(7.1.10)

By virt ue of eqs. (1.12.16) and (1.13.3) of Chapter 4 the expressions for
the displacements reduce to the form

[ (
abo ab3 ) a (p+ q)]

u=acos tp - ax +(ax +(3 - 4v)(p+ q) - x ax '

[ (
abo 8b3 ) a (p + q)]

w = a costp (3-4v) b3 - 7i( +(a( - x ax '

v = a sin tp [~ (bo + (b3 ) + (5 - 4v ) p - (3 - 4v ) q] .

(7.1.11)
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The stresses are given by eqs . (1.12.13), (1.12.14) and (1.13.5) and (1.13.16)
of Chapter 4

a; [Ob3 (o2bo 02b3) 0 (p + q)
2G = cosep 2v7i( - ox2 + (ox2 + 2 (1- v) ox -

0
2

(p + q) 4 p]x 0 2 + l/>: ,x x

az [ ob3 (02bo 02b3)
- = cosep 2v2(1-v) - - - +(- +
2G o( 0(2 oe

2 o(p+q) _ o2(p+q) +4 E]
V o x 2 v ,

X o( x

a <p [Ob3 1 (Obo ob3) 1- = cos ep 2v- - - - +(- + - (bo+ (b3 ) -
W ~ x fu fu ~

(1 - 2v) 0 (p + q) + 4 (2 - v) E] ,
ox X

Tr z [ ob3 ( o2bo o2b3 )
2G = cosep (1 - 2v) ox - oxo( + (oxo( +

(1 _ 2 ) 0 (p + q) _ 0
2

(p + q)]
u o( x o(ox '

Tr<p . [1 (Obo ob3) 1(- = sm ep - - +(- - - bo+ (b3 ) +
2G x ox ox x2

op P Oq](3 - 2v) - - 4 (1 - v) - - (1 - 2v) - ,
ox x ox

TZ<p . [ b3 1 (Obo ob3)-= sm ep -(1-2v)-+- -+(- +
2G x x o( o(

op Oq](3 - 2v) - - (1 - 2v) -
o( o( .

(7.1.12)

In the axisymmet ric case, the equations of stat ics in the cylindrical co
ordinat es are given by eq. (1.10.3) of Chapter 4, namely, for meridional
deform ation

and for torsion

oar ar - a <p OTrz K - 0 }
ox + x + o( + pa r - ,

oa z OTrz Trz K
-+--+-+pa z = O
o( ox x

OTr<p OT Z<p 2Tr<p K - 0
ox + o( + x + pa <p - .

(7.1.13)

(7.1.14)
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Evidently, solut ions (7.1.6) and thus (7.1.7) of Chapter 5 are presented in
the form (n = 1)

Bo; (J r - (J<p a7rz 7~<p K _ 0
ax + x + 7if + -;- + pa ,. - ,

Ba; a7,·z 71'z 7~<p K 0
-+--+ - +-+pa z= ,
a( ax x x

a71'<p 271''1' a7Z<p 1 I K 0-- +-- +-- - -(J + pa = ,
ax x a( x 'I' 'I'

(7.1.15)

where a prime indicat es that sin ip in the expressions for 71''1' and 7 Z<p should
be replaced by cos sp whilst cos sp in th e expression for (J <p should be replaced
by sincp.

In the axially symmetric case, the stresses distributed over the cross
sect ion of the cylinder result in th e axial force and the torque

1

Z = 27fa21 (Jzxdx ,

X l

1:11 2mz = 27fa 7 z<pX dx.

Xl

(7.1.16)

With the help of the equilibrium equations (7.1.13) and (7.1.14) these
values are easily expressed in terms of the stresses on the internal and
exte rnal surfaces of the hollow cylinder

c
Z = z, +27fa21 [Xl (7I"ZL'=XI - (7rz)X=1] « ,

o
c

m, = m~ + 27fa3 1 [x i (71'<p) ;C=XI - (71'<p) ;C=1] d(,
o

(7.1.17)

where Zo and m~ denot e the axial force and the torque in the sect ion ( = O.
Under bending deformation the stresses (J z, 71'z, 7 Z<p in the cross-section

are statically equivalent to the transverse force X and the bending moment
my about axis y in plane z = 0

1

X = 7fa21 (7; z - 7:'1') xdx,

Xl

1

my = a( X - 7fa3 1 x2 (J: dx,

Xl

(7.1.18)

where aste risks denot e th e factors in front of cos cp ,sin cp in the correspond
ing expressions for the st resses. Expressing X , my by means of the equilib
rium equations (7.1.15) in ter ms of the st resses on surfaces x = X1,X = 1
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we arrive at the formulae

<;

X = Xo +na
2J[Xl (0'; - T;<p) X=Xl - (0'; - T;<p) X=l] ac,

o
c

my = m~ + na
3JXl {[( (0'; - T;<p) - XlT;zJ X= Xl 

o

(7.1.19)

These expressions are easily obtained by considering the equilibrium of a
finite part of the cylinder between the cross-sections ( = 0 and ( = (.

5.1.2 Lame's problem for a hollow cylinder

We consider the axially symmetric problem of the state of stress in a hollow
cylinder loaded by a normal pressure uniformly distributed over the lateral
surface

X = 1: a; = -Po , Tr z = 0; X = Xl: o ; = -PI, Tr z = O. (7.2.1)

In the Papkovich-Neuber solution it is sufficient to keep a single function
b; and assume it to be independent of ( . By eq. (7.1.3) we have

so that

For this reason

(7.2.2)

0' <P () C2- = 2C l + 4 1 - t/ -
2G x2 '

O'z
2G = 4vCl .

(7.2.3)

Determining Cl and C2 with the help of the boundary conditions (7.2.1)
we obt ain

(7.2.4)
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Using eq. (7.1.15) we find the displacement s

2Gu =~ [(1 - 2v) (Pl x i - Po) x + (PI - Po ) xi ] , w = O. (7.2.5)
1 - X l X

The state of st ress obtained is realised in an elast ic cylinder subjected to
a uniform pressure from bot h inside and outside and placed between two
motionless rigid and smooth plates. The lat ter do not admit axial displace
ment of the particles on the faces of the cylinder (i.e. w = 0) however they
do not prevent the radial displacement , i.e. T rz = O. Th e reaction forces
of these walls result in the normal stress a z which is uniformly distributed
over the face surfaces.

The case of the cylinder whose ends can freely move in the axial direction
(a z = 0, w -I 0) is obtained by superimposing the uniform axial compres
sion

2o _ _ 2 PI X I - Po
a z - u 2

1- X l

which is opposite in sign to a z on the obtained state of stress. Th e resulting
displacement

oo a z vau =---x
E '

(E = 2G (I + v )) ,

does not cause any additional stresses a r ,a<p , T r z ' The solut ion of Lame's
problem for a cylinder with freely moving ends takes the final form

a [1 - v ( 2) xi] }2Gu = -1--2 -1 - PI XI - Po X + (PI - Po ) - ,
- X l + V X

2G
2av Pi x i - Pow- --- (

- 1 + u 1 - xi
with a z = 0 and the other stresses are given by formulae (7.2.4).

(7.2.6)

5.7.3 Distort ion in the hollow cylinder

The statement of th e problem is given in Subsection 4.5.6. Let us con
sider the simplest cases of the rotational distortion b3 about axis Oz and a
tr anslation al distortion C2 in the direction e <p'

1. Rotational distortion b3 . The problem is to determine the state of
st ress T' which being superimposed OIl the state of stress (5.6.10) of Chapter
4 makes the surfaces X = 1 and X = X l of the hollow cylinder free of st ress
a;

X = 1 :

X = X l :

(7.3.1)



(7.3.2)
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This is Lame 's problem in which

Gb3 1 Gb3 (1 In Xl )
Po = 27f 1 - 2v ' PI = 27f 1 - 2v + 1 - v .

Byeqs. (7.2.4) and (5.6.10) the stresses are as follows

I b3G ( 1 - x2 xi )
~r=lJr+lJr=2 ( ) Inx---22Inxl ,

7f 1 - v 1 - xl X

I b3G ( 1 + x2 xi )
~ep = IJ ep + IJ ep = 2 ( ) 1 + In X + -1--2 2 In Xl ,7f 1 - v - Xl X

I b3Gv ( 2XI)
~z=lJz+lJz=2 ( ) 1+2Inx+--2 In xl .

7f 1- v 1 - Xl

This state of stress occurs in a cylinder which is subjected to distortion
b3 and placed between two rigid and smooth plates. The latter do not
admit the axial displacement wand produce stress ~z at the ends of the
cylinder . Searching the state of stress for free ends requires superimposing
an additional state which elimina tes the existing stress ~z at the ends of
the cylinder and causes no stresses in the cylindrical surfaces X = 1 and
X = Xl. A closed form solut ion is apparently not feasible.

2. Translational distortion C2 . The state of stress (5.6.11) of Chapter 4
needs to be superimposed by the state of stress of bending determined by
the boundary conditions

IJ~ C2 T~ep C2 . }
X = 1 : 2G = 27f cos o, ,2G = - 27f sm o,

I (7.3.3)
IJ r C2 T rep C2

X = Xl : 2G = 27fXI COS .p, 2G = - 27fXI sin ip .

Here we use functions P and q which do not dep end upon ( and sat isfy the
differential equat ions (7.1.10)

1 4
p" + _p' - -P = 0,

X x2

Their particular solutions are as follows

1
q" + _q' = O.

X

1
P2= 2 '

X
ql = ln x ,

and the stresses, du e to eq. (7.1.12) , are equal to

IJ~ = [AIX+ :: +A3 (3 - 2v) ~] cos ip ,

IJ' = [3A I X - A2
- A 3 (1 - 2V).!.] cos o,

ep x 3 X

T~ep = [AIX+ :~ - A3 (1 - 2V);] sinep.
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The integration constants are determined by the boundary condit ions (7.3.3)

2 A2 c2G
Al x + 2"" +A3 (3 - 2v )=-,

X 7r

2 A2 c2G
Alx + - - A3 (1- 2v ) = --.

x 2 7r

They yield

and the st resses in the cylinder subjected to t he distortion are written down
as follows

~,. = a; + a;. = ( A lx + :~ + 27r ~;~ v) ~ ) cos .p,

I ( A2 C2G 1)~<p=a<p+a ,~ = 3A lx - - 3 +
2

( )- cos o,
r- X 7r1-v x

I ( A2 c2G 1) .
Tr<p = T,.<p + Tr<p = Al x + x3 + 27r (1 _ v) ;; sm sp,

The factors in front of cos <p and sin <p in the expressions for ~r and Tr<p are
the same and it remains only to fulfill th e remaining boundary condit ions

27r (1 -v)'

(7.3.4)

The following stresses are obt ained (see also eq. (7.1.4) of Chapter 7)

(
2 Xi )C2 G 1 x + ;;2

~r= 27r (1-v) ;; 1- 1+ XI coe.p,

c2G 1 ( 3x
2

_ x~ )
~<P=27r(1 -v);; 1- 1+ X~ cos o,

(
2 Xi)C2G 1 x +;;2 .

Tr<p = 2 ( ) - 1 - 2 sin <p,
7r 1 - u x 1 + xl

~Z=2 ~2G )'!' (l - 2x
2

2 ) cos <p.
7r 1 - v x 1 + Xl

This state of st ress occurs in an elast ic cylinder which is subj ected to trans
lational distortion in the cross-sect ion <p = 0 and placed between two rigid
and smoot h plat es preventing axial displacement. Here, as in the previous
case, the closed form solution to t he probl em of annihilat ing st resses on the
end faces of the cylinder is very difficult .
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5.7.4 Polynomial solutions to the problem of equilibrium of
the cylinder

Subsection 5.7.1 presents formulae for stresses and displacements in a cylin
der subjected to axisymmetric deformation and bending deformation in
terms of the harmonic functions of two sorts: axially symmetric functions
(depending on x, () and function s of x, ( multipli ed by c:i'P. In the present
subsection we suggest constructing these solutions in the form of homo
geneous polynomials of x, ( for the solid cylinder with terms containing
singularit ies on axis z = 0 (for x = 0) for the case of the hollow cylinder.

1. Axially symmetric harmonic functions. In the case of a solid cylinder
the harmonic polynomials in cylindrical coordin ates take the form

!.pn (x, () = tet; (J1.) , R2 = x2 + ( 2, J1.=cos'l9= ~ ,

where Pn (J1.) are Legendre's polynomials (F.2.11) . In particular, we have

In the case of a hollow cylinder we add the solut ions of the type

'ljJn (x , () = !.pn (x , () ln x + Xn (x , () ,

where Xn is determined from the condition

(7.4.2)

etc .

(7.4.3)

Here we used the rule of taking the Laplace operator of the product and ac
counted for \l2!.pn = 0, \l2ln x = O. Returning to the spherical coordinates
we have

1
\lln x= R(eR+e1?cot'l9).

Using t he known recurrent relationship for Legendre's polynomials we ob
tain

Thus assuming

(7.4.4)

we arrive at the non-homogeneous Legendre's equation
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The right hand side is a polynomials of J.l n - 2 which can be presented in
terms of Legendre's polynomials as follows

P~- l (J.l ) = (2n - 3) Pn - 2(J.l) + (2n - 7) Pn - 4(J.l) + ...
... + 9P4(J.l) + 5P2(J.l) + Po (J.l) (n is even),

P~- l (J.l) = (2n - 3) Pn - 2 (fl·) + (2n - 7) Pn - 4(J.l) + ...
...+ llP5(J.l) + 7P3(J.l) + 3H (J.l) (n is odd) .

Setting Legendre's equat ion for polynomials P; (J.l) in the form

(7.4.5)

[(1 - J.l2)P~ (J.l) ]' + n (n + 1) P; (J.l ) = [n (n + 1) - /I (/I + 1)] P; (J.l)

and looking for Sn (J.l) in the form

n-2

s; (J.l ) = L «»; (J.l )
o

we arrive at the relationship

n -2

L a.P; (J.l ) [n (n + 1) - /I (/I + 1)] = 2P~_ 1 (J.l )
o

which allows one to determine avoUsing eq. (7.4.5) we find

1 2n - 3
"i Sn (J.l) = n (n + 1) _ (n _ 2) (n _ 1) Pn- 2(J.l) +

2n - 7 9
n (n + 1) - (n - 4) (n - 3) PIl

-
4 (J.l) + .. .+ n (n + 1) _ 4.5 P4(J.l) +

5 P. (J.l) + Po (J.l) (n is even) ,
n (n +l ) -2. 3 2 n (n + l)

1 2n - 3
"i Bn (Il) = n (n + 1) _ (n _ 2)(n _ 1) P n-2 (Il) +

2n - 7 11
n (n + 1) - (n - 4) (n - 3) Pn - 4 (J.l) + ... + n (n + 1) - 5 . 6P5 (J.l) +

7 3 .
n (n + 1) - 3 . 4 P3(J.l ) + n (n + 1) _ 1 . 2PI (J.l) (n IS odd) .

(7.4.6)

By virtue of these formulae and eqs. (7.4.3), (7.4.4) we obtain

1 ( 2 2)'l/Jo = lnx, 'l/J l = ( lnx, 'l/J2 ='P2Inx + 3 x + ( , (7.4.7)

'l/J3 = 'P3 lnx + ~ (((2 + x2) , 'l/J4 = 'P4 ln x + ;0 (x2+ (2) (19( 2 - 6x2) etc .

2. Polynomial solutions proportional to cos 'P. In cylindric coordinates,
the expressions for the harmonic polynomials proportional to cos e have
the appearance

R"P~ (J.l) cOS 'P = R" sin {) cos 'P P:, (J.l) = xR n
-

1P:, (J.l) .
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Denoting

(7.4.8)

so that

(7.4.9)

etc. we can set the polynomial solut ions for the solid cylinder in the form

(7.4.10)

In the case of the hollow cylinder the solutions with singularities on axis
z = 0 are added. The solutions are thus sought in the form

by means of the following condition

(V'2 _ ~) ( <p; + p1xln x+'l91) =0
x 2 X n n'

(7.4.12)

1

1P~ = <P4 - 30( x ln x,
x

We find successively

1 1 1
1Pi = - , 1P~ = <P2, 1P~ = <P3 - 6xln x ,

x x x
1 <pg (2 x

2
) 105 31P5 = - -45 2( - - x lnx - -x

x 2 8
etc. }

(7.4.13)

3. An example. Let us consider a cylinder loaded by a normal pressure
which is linearly distributed over the external and internal surfaces

x = l : ITr=-qO(, Trz=O,}
X =Xl: ITr=-ql(, Trz=O.

(7.4.14)

The solution is presented in terms of the axially symmetric harmonic func
tions bo and b3

bo = A<p3 (x , () + B 1Pl (x , () , b3 = C <P2 (x, () + D1Po (x , (). (7.4.15)
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Using eqs. (7.1.6), (7.4.2), (7.4.5) and determining the constants from the
boundary condit ions (7.4.14) we obtain the st resses

(7.4.16)

This solution corresponds to the case of th e unloaded face ends of the
cylinder. Taking the derivative with respect to ( we arrive at solut ion (7.2.4)
of Lame's problem in which qo,ql is replaced by PO,PI.

Prescribing the solution in the form (7.4.15) enables considering the case
of loading the side surfaces by the constant shear stresses

x = 1 : (J" = 0, T" z = TO ,

X =XI : (J,,=O, T r z=-TI·

The st resses are as follows

(7.4.17)

(7.4.18)

a ; = 0, (JIP = 0,
TO + T IX TOXI + T IXI 1

T r s = 2 X - 2'
1 - X l 1 - Xl X

a; = _ 2 ( T O + T~xd (.

1 - Xl

This state of st ress is realised approximately in the cross-sect ions which are
well away from the end faces of the long cylinder whose end ( = °is free
of the normal st ress and the end ( = I is compressed by the loads with the
resultant force

see also eq. (7.1.17).

5.7.5 Torsion of a cylinder subjected to for ces distributed over
the end faces

The problem is to determine displacement v from differential equat ion
(7.1.8) with the bound ary condit ions on the side surfaces of the cylinder

X = 1:

and on the end faces

a v
- -- 0'Bx x - , X = X l : ~!!- = o

aXX
(7.5.1)

(= ±L: (7.5.2)
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The distribution of the shear st resses is assumed to be the same on both
end faces. The solut ion is sought in the form

(7.5.3)

where a and f-l s are the constants which must be determined. Using eq.
(7.1.7)

~Tr = ~ sinh f-ls( x (gS(X) ) ' , }
G 'P ~ f-lscosh f-ls L x

1 ~ cosh f-ls (
GT z 'P = ax + c: I tr-(x) ,

s= l cos 1 f-ls

(7.5.4)

and the boundary condit ions (7.5.1) and (7.5.2) leads to the requirements

(
gs (X) ) ' =0,

x x= l

00

(7.5.5)

(7.5.6)

Functions gs (x) are det ermined by means of eq. (7.1.8) from Bessel's dif
ferential equation

whose general solut ion is the cylinder function

where J1 and N 1 are Bessel and Neumann functions of the first order. Using
eq. (7.5.5) and the well-known rule of differentiation we have

Z 2 (f-lsxd = c1J2 (f-ls xd + cz, N2 (f-lsx d = 0, }
Z 2 (f-ls) = c1h (f-ls) + cz,N2 (f-lJ = 0.

The values of /1s are the roots of the determinant of this syste m

and gs (x) is given by

(7.5.7)

(7.5.8)
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Thus the problem is reduced to determining the constants Cn by means
of condition (7.5.6). The constant 0: is determined by the torque

I

3J 2 1 3 ( 4)m·z = 27ra T z<pX dx = "27ra G 1- X l 0: ,

;t: [

(7.5.10)

since the remaining terms, as eqs. (7.4.4) and (7.5.7) suggest , do not affect
the expression for the torque

I

JZl (J.lsx) x2dx = ~ [x2Z2 (J.lsx)] I :~ l = O.
ILs

:1:1

(7.5.11)

The orthogonality of the system of functions y'XZI (J.lsx) is easily proved.
To this end, it is sufficient to take the well-known formula

(J.l; - J.l~) Jz, (J.lsx) z, (J.lk X)xd» =

= J.lkXZI (ILsX) Zo (J.lk x) - J.lsXZI (J.lk x) Zo (J.lsx) ,

substitute

2
Zo (J.lx) = -Zl (J.lx) - Z2 (J.lx)

IL:£

and take into account eq. (7.5.7). For ILs f=. J.lk we obtain

IJZl (ILsX) Zl (J.lk X)xdx = O.
;1:1

Additionally

I

N; = JZ? (J.lsx) xdx = ~ [Z? (J.ls) - xiZ? (Ilsxd] .
;f J

(7.5.12)

Accounting for eq. (7.5.11) we obtain from boundary condition (7.5.6) that

I

c, = ; } Jf (X) Zl (J.lsx) xdx,

;1:1

and the solution of the problem is presented in the form

(7.5.13)

(7.5.14)



(7.5.15)
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where Zl (/1sx) is determined from eq. (7.5.9) . The table of the roots of the
transcendental equation (7.5.8) for several values of x is in the handbook".

/12
5

15,807 31,466 47,157 62,857 78,560fi
:L

6,474 12,665 18,916 25,182 31,456
~
1

3,407 6,428 9,523 12,640 15,767"1
Table 5.2

In formula (7.5.14) the axial coordinate is taken from the mid-section of
the cylinder. Denoting the axial coordinate from the" upper" end face by
(1 we have (+ (1 = L , thus

sinh /1s( h L h . h I"
h L = tan /1s cos /1s(l - sin /1s"'l '

cos /1s

Even for a cylinder whose length is equal to its diameter (L = 1) and for
the values of /1s listed in Table 5.2 we have tanh ~ 1 and hence

sinh /1s( -It <;
----'--"--'-- :=::::: e s 1

cosh/1sL '

that is, the terms of series (7.5.14) decrease exponent ially from the end
faces. The obtained solution describes the effect of any distribution of stress
T Z<p which is statically equivalent to torque m z and shows that the influ
ence of the law of distribution of the stress decreases exponentially as the
distance from the end faces increases . Saint- Venant 's principle is validated
here with higher accuracy than can be expected from the general est imates
of Subsection 5.2.14.

For a solid cylinder

v ~ sinh/1s(
- = a x( +~ C, h L J1 (/1sx) ,
a s=l /1s cos /1s

where /1s denotes the roots of the equation J2 (/1) = 0 which are as follows

/11 = 5.136, /12 = 8.417, /13 = 11.620, /14 = 14.796 etc.

and the constants Cs are given by the formula

(7.5.16)

2 Jank e E., Emde F ., Losch F. Taffeln hoherer Funktionen. Teubner , Stuttgart , 1960.
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5.7.6 Solutions in terms of Bessel functions

As shown in Subsection 5.7.1 the Papkovich-Neuber funct ions solving th e
problems of equilibrium of the elast ic cylinder under radial symmet ric de
formation are presented in terms of the harmonic functions

(7.6.1)

In the case of the meridional deformation only two of the three functions
bo, b3 , b; are needed. Function b<p which is proportional to displacement v
serves to solve the problem of torsion.

The harmonic functions of the same type

(7.6.2)

are applied to solve th e problems of bending. However using all four func
tions is not necessary.

In this subsect ion th e harmonic functions

are presented with the help of the products

g n (x) e l l ( +i n<p (n = 0,1 ,2 ) (7.6.3)

ensuring separation of th e variab les in Laplace's equat ion. The result is t he
following differential equat ion for gn (x)

/I ) 1 I ) ( 2 n
2

) )gn (x + -. gll (x + J.1 - 2" gn (x = O.
:7. x

(7.6.4)

The necessity of satisfying the bounda ry condit ions on the side faces
(x = 1, x = xI) and on the end face (( = -L, ( = L ) independently of each
other does not admit a closed form solut ion in the form of a series with
the factors obtained after a finite number of operations. Except for th e
case of the axisymmetric torsion, t he problem reduces to infinite systems
of linear equat ions for these factors. Under an appropriate choice of the
basic functions these systems turn out to be quite regular (or regular) and
admit the application of approximate methods.

Neglecting some terms allows one to avoid this complicated way. When
the length of th e cylinder is sufficient ly large (2L » 1) , one can use th e
set of solut ions (7.6.3) for a pure imaginary J.1 , which exact ly satisfy the
bounda ry condit ions and approximately satisfy the condit ions of the end
faces. The syste m of forces dist ributed over the end faces is replaced by a
stat ically equivalent system with a known solut ion for the free side surfaces.
Usually this aim is achieved by super imposing the solut ion of St .-Venant 's
prob lem (Chapter 6). In the lat ter problem the boundary condit ions on
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the end faces are fulfilled integrally, that is, the principal vector and the
princip al moment of the forces distributed over the end faces have the
prescribed values whereas the side surface remains unloaded.

This way of solving the problem for a long cylinder is substantiated by
the St .-Venant principle, Subsection 4.2.8, which states that the obtained
state of stress may differ from the sought one only in local disturbances
decreasing with growth of the dist ance from the end faces. In particular,
this is confirmed by the torsion problem example in Subsection 5.7.5. Term
ax( in the displacement (7.5.14) presents the solution of the St .-Venant
problem and the series determines the local disturbance of the state of
stress in the vicinity of the end faces, see also Subsections 5.7.8 and 5.7.9.
It can be added that the practical value of" St.-Venant 's solutions" is that
the details of the law of the stress distribution can often be ignored.

The second extreme case is concerned with a short cylinder (2L « 1) ,
i.e. a circular (solid or annular) plate. What was said above about the long
cylinder can be repeated in "an inverse order" . By using the set of solutions
(7.6.3) for real values of J.l one constructs the solution which stri ctly satis
fies the conditions of loading the end faces of the cylinder , the boundary
conditions on the side faces being satisfied "on average". The appearing
problems are essent ially relat ed to the theory of bending of plat es which is
beyond of the scope of this book.

The case of a cylinder with length comparable with the diameter (L ~ 1)
is the most difficult . It is apparent ly not possible to suggest a general
approach to the problem different from reduction to the infinite systems of
linear equat ions.

In what follows we consider only the long cylinder loaded on the side
surfaces. The end faces are assumed to be free of loads.

When J.l = i j3, j3 being real, the solution of th e differential equat ion

is set in the form

gn (x) = C~n) In (j3x) + C~n) K; (j3x) (n = 0, 1,2) .

(7.6.5)

(7.6.6)

Here In (j3x) = i - nI n (i j3x) denotes the Bessel function of argument ij3x
and K n (j3x) is the McDonald function. The latter has a singularity on the
cylinder axis (x = 0) and thus is excluded when considering the case of a
solid cylinder.

Considering the case of axisymmetric deformation we take

b,. = gl (x) cosj3(, bo = go (x) cos j3(. (7.6.7)



(7.6.8)
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Removing the second derivatives from the expressions for st resses a nTrz

with the help of eq. (7.6.5) and using eq. (7.1.6) we obtain

2~ar = { ~gb (x ) - rP go(x) + (3 - 2v) g~ (x)-

[,62 + (1 - 2v) :2 ] Xgl (X)} cos,6( ,

1 .
2GT r z = [gb (x ) + xg~ (x) - (1 - 2v) gl (x )] ,6sm,6( .

When the side surfaces are loaded as follows

x = 1 : a; = - p cos ,6( , r-, = q sin ,6( , }
x = Xl : o; = _p' cos,6(, T r z = q' sin,6(

we assume

go(x ) = Dilo(,6X ) + D2Ko(,6x) , }
gl (x) = Gill (,6X) +G2K I ({3X) .

(7.6.9)

(7.6.10)

Using t he formulae for differenti at ion (a pri me den otes the derivative)

Ib (,6X) = ,6h (,6x) ,

Kb(,6X) = - ,6KI (,6x) ,

1
I~ ({3x ) = ,610 (,6x) - -h (,6x ) ,

x 1
~ (~)=-,6~(~)--~ ~x)

x

we obtain four equations for th e four constants Di , Gi . These equations
are not writ t en down here because they are very cumbersome. We only
noti ce t hat the det erminant of t he system in the particular case of the
solid cylinder (X l = 0) is equal to

Do (,6) = ,61/J (,6) , 1/J (,6) = ,62 [15({3) - I f ((3)] - 2 (1 - v ) I f (,6) .
(7.6.11)

When coefficients Di,C, are determ ined one const ructs expressions for t he
rad ial and axial displacements and all components of the st ress te nsor by
means of eqs. (7.1.5) and (7.1.6). This solutio n is generalised to t he case
of an arbit ra ry loading on the lat eral sur face of t he cylinder which is sym
met ric about th e mid-sect ion ( = 0 of t he cylinder. Then a r and T rz are
respectively even and odd functions of ( and t he values on the boundary
are presented by t he trigonometric series

x = 1 : ~ . h (
r -, = ~qk smL '

k=l

~ I . h (
t -, = ~qksmL '

k= l

(7.6.12)



(7.6.13)

(7.6.14)
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The solut ion for the constant terms - Po and - Po are given by the formulae
of Lame's problem of Subsection 5.7.2 and each term of the series describes
the solution for which (3 = b r/t.

Denoting the axial force in the cross-sect ion of the cylinder by Z we have
by eq. (7.1.17)

and, since arand 7 rz are proportional to cos (3( and sin (3( respect ively we
obtain

( )
2 LOO

1 ( I k7r( 2 PoxI - PoZ ( = 2na L -k qk - X1qk ) COS-L +2na v 2'
n I- x

k = l 1

where the constant term is due to the solution of Lame's problem. The
axial forces on the end faces are equal to

Z* 2 2L L
oo

(_ I)k ( ' ) 2 POXI - Po
= tea -k- qk - qk Xl + 2na v 2'

n 1 - x
k= l 1

and the system of forces on the end faces can be stat ically equivalent to
zero when the end faces are loaded by uniformly dist ributed normal st resses
of the following intensity

Z *
aO = _ -.".-----,,,-

Z na 2 (1 - xI)"

Th e const ructed solution determines the state of stress in a cylinder of
length 2aL with accuracy up to the local disturbance near the ends. Stri ctly
speaking, the obtained solut ion is that of the problem of an infinitely long
cylinder whose side surface is subjected to the load given by the periodic
function (7.6.12) . One can also represent the load not by a series but by a
Fourier integral by prescribing the load outs ide the interval - L :S ( :S L
in an arbit rary way. For example by assuming that the load vanishes for
1(1 ) L.

The exact solution requires all forces to be removed from the end sur
faces even though these forces are statically equivalent to zero. The diffi
culty of this problem was mentioned above. In what follows we consider an
approach of a partial fulfillment of this requirement with the help of the
"homogeneous solutions".

The case of loading which is skew-symmet ric about the mid-section of
the cylinder is considered by analogy. It is necessary to replace cos(3(,sin (3(
in formulae (7.6.7) and (7.6.8) by sin (3(, - cos (3( . The general case of the
loading can be studied by means of superposition of the symmet ric and
skew-symmetric loadings.
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5.1.1 Filon's problem

In this problem the solid cylinder is loaded by tangential forces of the
constant intensity q which are uniformly distributed over two parts of the
side surface

(0 < ( < (0 + i : -(0 > ( > - ((0 + b) .

This scheme can describe tension of a cylindric specimen subjected to a
tensile force

The uniform distribution of the shear stress over the loading area is as
sumed .

The boundary conditions (7.6.12) are now set in the following form

x=l: (J,.=O, T,.z=T(() ,

where T (() is an odd function prescribed for °::: gz ::: L as follows

{

0, °< ( < (0'
T(()= q, (o« «o+b,

0, (0 + b < ( < L.

(7.7.1)

(7.7.2)

The coefficients of the series expansion of this function in terms of sine
functions are equal to

L

qk = iJT (() sin sk(d( = ~; [COS Sk( o - cos Sk ((0 + b)] ,
o

Using eqs. (7.6.6) and (7.6.7) we present functions b; and bo by the trigono
metric series

00

b,. = L Ckh (Sk X) cos Sk(,
k =l

00

bo = L Dklo (Sk X) cos Sk(
1.: =1

(7.7.3)

and , with the help of the boundary conditions (7.7.1), we arrive at the
equations

(7.7.4)
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determining the unknown coefficients Ck, Di; When b; and bo are ob
tained we utilise eqs. (7.1.5) and (7.1.6) for const ructing expressions for
the st resses and displacements. By virtue of eq. (7.6.14)

o 00 (_ I)k- l 4qL 00 (_ I)k - l
a z = 2L L b r qk = 7r2 L k2

k=l k=1

qb
= L (2(0 + b) ,

[
k7r(o kn((o+ b)]cos -L- - cos -..:....:..o:.L---'-

(7.7.5)

where the summation is performed by means of the following series

00 k 2 2
~ (_I) k- l cos Q: = ~ _~ .
c: k2 12 4
k=l

Addin g t his stress which is uniformly distributed over t he sect ion of the
cylinder to stress a z calculated by means of the obt ained solut ion in the
form of tri gonometric series, we arrive at the following st ress distribution

(7.7.6)

which is statically equivalent to zero at the end faces ( = ±L of the cylinder.
Here

S, (x , (3) = 1/J ~(3 ) {Io((3x) [3(310 ((3) - 2 (2 - v) It ((3) - (32I I ((3)] +

(3xIt ((3x ) [(310 ((3) - It ((3)]) (7.7.7)

and (3 = Sk = kn/L in eqs. (7.7.6) and (7.7.7).
In the table below, which was calculated by Filon for t he values

L ='!!.-
2 '

L 7r

b = ( 0 ="3 = 6'

t he normal st ress is presented in the different sect ions of t he cylinder . Here
am denotes the mean value for ( = ( 0' i.e. am = P/7ra2 = 2qb. Let us
noti ce that the mean value of thi s st ress is equal to zero for ( > (0 + b.

[lK] x =°I x = 0,2 I x = 0, 4 I x = 0,6 I x = 1 ~

° 0, 689 0,71 9 0, 810 0, 962 1,117
0,1 0, 673 0,700 0, 786 0, 937 1,1 63
0,2 0, 631 0, 652 0, 720 0, 859 1, 334
0,3 0,582 0,594 0, 637 0,737 2, 022
0, 4 0, 539 0, 545 0, 565 0, 617 1, 368

Table 5.3 for ratio a z/am
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The last row shows the distribution of stress (J z in the loaded part of the
cylinder. It can be concluded from the table that the distribution of the
normal st ress (J z becomes more homogeneous with increasing dist ance from
the place of loading. However even in the mid-section (( = 0) this stress
varies from 69% to 122% of the mean value. This is explained by the fact
that in the considered case the cylinder is loaded over a considerable part
(one third) of the lateral surface and the St.-Venant principle is no longer
valid.

5.7.8 Homogeneous solutions

Our consideration is restricted to the case of axially symmetri c deformation
of the solid cylinder without load on the side surface x = 1. Let us take the
homogeneous system of linear equati ons (7.7.4)

C {(3 - 2//) (3 In ((3) - [4 (1 - //) + (32] It ((3)} + }
DjJ [It ((3) - (310 ((3)] = 0,

C [(310 ((3) - 2 (1 - //) It ((3)] + D(3It ((3) = 0,

determining coefficients C and D of the solutions

(7.8.1)

(7.8.2)

This system may have non-trivial solutions for the values of (3 for which
the determinant (7.6.11) of the system vanishes

7/; ((3) = (32 [Ig(13 ) - I~ ((3)] - 2 (1 - //) I~ (13) . (7.8.3)

The power series for "ljJ ((3) can be obt ained by using the following formula
for the product of Bessel functions

(1)",+n00 (m+n +28)! (1 )28
t.; (13) In (13) = 2 (3 ~ s! (m + s)! (n + s)! (m + n + s)! 213

The result is as follows

200 [ 28+ 1 ] (28)! (1 )28
7/; (13 ) =13 ~ 1-(1-//)(8+1)( 8 +2) (8+1)!(8!)3 2 (3 ,

(7.8.4)

implying that for u < 1/2 the value in the brackets is positive for any integer
8 . Hence 7/; ((3) has no roots for real values of 13 except for the evident double
zero root . It has no pure imaginary roots which can be proved by putting
13 = iu and groupin g the terms of the series into pairs, it then turns out
that "ljJ (ill) < o.
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Thus , all roots of function if; (/3) are complex-valued. However this func
tion is even and the coefficients of its expansion (7.8.4) into the series are
real-valued. For this reason, the roots are split into four groups:

(38 = 'Y8 + i88, (3: = - 'Y8 + i88, 138 = 'Y8 - i88, 13: = - 'Y8 - i88,
b 8 > 0, 88 > 0). (7.8.5)

The values of the first three roots lying in the first quadr ant of the plane (3
and some functions of these roots are collected in Table 5.4, the calculat ion
being carri ed out for u = 0, 25.

h((3J
1 1,367 + 2, 698i -0,4695 + 0, 7269i -0,5453 + 0, 7233i
2 1,558 + 6, 060i 0,4853 - 0, 5576i 0,4937 - 0, 5794i
3 1,818 + 9, 320i -0,567 + 0,562i -0, 568 + 0,563i

7/J' ((3J

1 0,9528-0,0692i 1,489 + 2, 476i 2,85 -1,48i
2 0,9712+0,0102i 1,451 + 5,901i 8,22 - 0,84i
3 0,997 + 0, OOOi 1,812 + 9, 29i 12,06 - 1, 56i

Table 5.4

As 1(331 = 9.496 the asymptot ic formulae for the roots provide one with
sufficient accuracy for n > 3 (with the accuracy to the terms of order
n- 1 ln n)

(3 rv nxi + ~ In4mf - i {ln4mf - _1_ [~ - 2 (1 - v)] }
n 2 47rn 27rn 4

and the functions of them

e(3" { 1 [5 1 ] I} }10 ((3n) rv~ 1 - 8(3 + 128 + 2 (1 - v) (32 '

e%.' n { 1n [5 1 ] t}h ((3 ) rv 1 - - + - - - (1 - v) -
n y'27r(3n 8(3n 128 2 (3;, '

I-v , 2 ( 2(I-V))
An rv 1 + (3;' , 7/J ((3n) rv 2(3rJ1 ((3n) 1 - (3n .

Let us also notice that for the adopted denotation

A = 10 ((3)
t, ((3 )

equation (7.8.3) is reset as follows

(32 (A2 - 1) = 2 (1 - v) .

(7.8.6)

(7.8.7)

(7.8.8)

(7.8.9)

(7.8.10)
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Returning to equat ions (7.8.1) we find the dependence between the con
st ants C and D corresponding to the root 138

D (S) = [2(1 - 1/) _,\ ] C(8) = [13 (,\2 _ 1) _,\ ] C(8) .

13 <" S ,'I B
8

The constants C (8) remain undetermined . Further we introduce the no
tation

allowing us to writ e down the expressions for the displacement s for each
root in t he form

(7.8.11)

where

The st resses are writ ten in t he following way

(J 8
_ T _ L S ( 13 ) i{3, (2G - S (JT X , S e ,

8

2 - L 8 ( 13 ) i{3,(2G - s (J z x , 8 e ,

with

(7.8.13)

(7.8.14)

Referring to eqs . (7.8.9) and (7.8.10) it is easy to prove that the complex
valued functi ons (J~ (x ,13J and T~z (x ,13s) are zero on the sur face of the
cylinder x = 1. Superscripts rand i denote respectively t he real and imag
inar y part s.

Thus, we have constructed a system of "homogeneous solut ions" of the
equilibrium equations for an elastic cylinder , t ha t is t he solut ions ensur ing
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that surface x = 1 is free from loading. The st resses corresponding to
these solut ions are statically equivalent to zero in any cross-section of the
cylinder. It follows immediate ly from static reasoning and is confirmed by
the calculat ion

11

a~ (x,13s)xdx =

= It t13s) [(2 - 13sAs)11

10 (13sx) xdx + 13s11

It (13sx) X
2
dX] = 0

along with eq. (7.8.9) and the relationship

JxnIn- 1 (x) dx = xnIn (x),

Separating the real part in eq. (7.8.11) we obt ain

(7.8.15)

Taking the imaginary part of Us and ws , we obtain expressions which differ
from the above only by the sign. Thus, for each root 13s in the first quadrant
of the plane 13 we have two part icular homogeneous solutions corresponding
to the independent constants !VIs and N s . The factor e-6, ( in eq. (7.8.15)
indicates that these solutio ns decrease exponentially from the edge ( = 0 of
the cylinder. The rate of decrease increases with the number of the solution,
for instance 81 = 2.698 and 83 = 9.320. Th e solutions decreasing from t he
edge ( = L are obtained by replacing the factor e- i /3( by e- i /3 1( , ( 1 =
L - ( and changing the signs of wand T r z - Using the roots lying on other
quadrants of the plane 13 does not lead to new solut ions. Thus, for each 13s
we obtain four independent particular solutions, among them two solutions
decrease with increasing distance from the end ( = 0 and the other two
decrease with increasing dist ance from the end (1 = o.

5.7.9 Boundary conditions on the end faces

The homogeneous solut ions introduced in Subsection 5.7.8 can be used for
approximate fulfillment of the boundary conditions on the end faces of the
cylinder since superimposing does not change the loading condition on the
side face of the cylinder.

We can limit our consideration to the case of an half-infinite cylinder
since the perturbat ion of the state of st ress due to the unsatisfied boundary
conditions at one end face is negligibly small near the other end. This
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assumption is admitted even for a cylinder with L ~ 2 and is justified by
the exponent ial decreasing the homogeneous solutions.

The expressions for the s - th pair of the real-valued homogeneous solu
tions for the normal and shear stresses at the end ( = 0 are

M a(s ,r) - N a(B,i) A1 .T( s ,r) - N T( s ,i)
S z S z ' S 1'Z S rz , (7.9.1)

where a~B,r), T~~,r) and a~s ,i) , T}.~,i) denote respectively the real and imagi
nary parts of functions a~ (x , s) ,T:z (x, s) given byeq. (7.8.14).

The boundary conditions at ( = 0 are set in the form

(=0: az=F(x) , Trz=-<I>(x) , (7.9.2)

where functions F (x) and <I> (x) are prescribed by the law of loading on the
end face. Here F (x) > 0 under tension and <I> (x) > 0 if the shear stresses
have the direction of increasing x . The distribution of the normal stresses
over the end face is assumed to be statically equivalent to zero

1

Jx F (x )dx = 0,

o

(7.9.3)

since removing the force of tension Z (the principal vector of the normal
stresses) requires only superimposing the elementary solution a z = Z/ 7fa2 .

Hence, the problem is reduced to expansion of two given functions in the
series

(7.9.4)

Restricting ourselves by the approximate solut ion we keep a finite number
n of terms in the right hand sides of eq. (7.9.4) and introduce a quadratic
deviation over the area

=J{[Fx- t (Msa~s , r) _ Nsa~S 'i))] 2 +
o s - 1

[T (x) +t. (M.T ~:'·) - N,T~~"))nxdx. (7.95)
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The coefficients M s , N; are determin ed by the condit ion of minimum quadra
tic deviation which leads to the system of 2n linear equat ions

8w 8w
8M k = 0, 8Nk = 0, k = 1,2, . .. ,n,

or in expanded form

(7.9.6)

n

L (AskMs + B skNs) = <Pk'

s= l

where

n

L (BskMs + GskNs) = 'l/Jk '

s= l

(7,9.7)

1

A - J( (s ,r ) (k ,r) + (s,r ) (k ,r») d - Ask - (Jz (Jz T r z T r z X X - k s »

o
1

B - J( (s ,i ) (k ,r ) + (s ,i) (k ,r)) dsk - - (Jz (Jz T r z T 'rz X x,

o
1

G J( (s ,i) (k ,i) + (s ,i) (k ,i)) d G
sk = (Jz (Jz T r z T r z X X = k s

o

and

(7,9.8)

(7,9.9)

1

<Pk - i'l/Jk = J[F (x) (J~ (x,13k) - <I> (x) T~z (x,13k )] xdx.
o

Given Poisson's ratio , coefficients A.<k, B s k , G sk are calculated only once.
For t/ = 1/4 th ey are as follows

hence

A sk - i B sk = ~ [1+ (f3s ,f3d + L (f3s , ,6k ) ] ' }

c; + i Bsk = ~ [-J+ (f3s ' 13k ) + L ( ,6s , 13k) ] ,

(7.9.10)

(7,9,11)

(7.9.12)



5.7 Equilibrium of an elastic circular cylinder 401

Using Table 5.4 the calculation for n = 2 yields the following system of
four equations

1,007M1 - 0, 2571M2 + 0, 401N1 - 0,05085N2 = 'PI' }

-0, 2571MI + 3, 051M2 - 0, 525N I + 1, 662N2 = 'P2'

0,401M1 - 0, 525M2 + 0, 2915N I - 0, 2678N2 = tP I'

-0,05085MI + 1, 662M2 - 0, 2678N I + 1, 650N2 = tP2'

whose solution is as follows

M I = 2, 391'PI - 0, 4256'P2 - 4, 222tPI - 0, 1829tP2 ' }

M2 = -0, 4256'PI + 0, 9730'P2 + 1,675tPI - 0,7215tP2 '

N 1 = -4, 222'PI + 1, 675'P2 + 12, 44tPI + 0, 2018tP2 '

N2 = -0, 1829'PI - 0, 7215'P2 + 0, 2018tPI + 1,360tP2 '

(7.9.13)

(7.9.14)

Determining coefficients Ms, N; in terms of 'Ps' tPs we find the real-valued
homogeneous solutions for s = 1,2 by eq. (7.8.14). The numerical values of
functions 10 ( {3sX) , I, ( {3sx) and the corresponding values of stresses O'~s , r) +
iO'~s , i), 7~~, r) + i7~~,i) and displacements are presented in Tables 5.5-5.8.

x 10 ({31X) t, ( {31X) 10 ({32 X) I, ( {32X)

° 1 ° ° °0,2 0,9452+0 ,01780i 0,1230+0,2675i 0,6776+0,1584i 0,0794+0,5193i

0,3 0,8752+0 ,1551i 0,1600+0,3960i 0,331+0 ,280i 0,0040+0,627i
0,6 0,4760+0 ,5078i 0,0785+0,7162i -0,589+0,0727i -0,439+0,0599i
0,8 0,04951+0,7017i -0,1704+0,8090i -0,3618-0,4973i -0 ,2326-0 ,5937i
1 -0,4695+0,7269i -0,5453+0 ,7233i 0,4853-0,5576i 0,4937-0,5794i

Table 5.5

x
p ,r) + . ,(I,i) ,(2,r) + . r(2,i) ,(I,r) + . r(2 ,i) p ,r) + . ,(2,i)

O'r ZO'r a ; ZO'r O'<p zO'<p O'<p zO'<p

° 0,4302-1,669i -2 ,119+2,490i 0,4302-1,669i -2,119+2 ,490i

0,2 0,403-1,517i -1,247+ 1,658i 0,4547-1,638i -1,959+2,784i
0,3 0,368-1,309i -0,34-0 ,02i 0,485-1,562i -1,75+2,024i
0,6 0,172-0,485i 1,58-2,233i 0,6053-1,185i -0 ,602-0,244i

0,8 0,014-0,081i 0,721-0,746i 0,676-0,843i 0,2103-0,6687i
1 ° ° 0,7004-0,4769i 0,5456-0,2271i

Table 5.6
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x ,(l ,r) + . ,(l ,i) ,(2,r) + . ,( 2,r) ,(l ,r) + . ,(l ,i) .(2 ,r) + . .(2,i)
CYz 1CY z CY z 1CYz T r z 1T r z r -, 1T r z

° -2,552+1 ,195i 6,369-4,479i ° °0,2 -2,273+0,952i 4,252-2,41Oi -0,5007+0,6171 i 2,669-2,880i

0,3 -1,966+0,685i 2,092-0,581i -0,7186+0,8357i 3,17-3,04i

0,6 -0,450-0,221i -2,42+1 ,17i -1,030+0,8790i 0,54+0,28i

0,8 0,776-0,351i -0,456-0,551i -0,7628+0,4486i -1,325+0,889i
1 1,681+0,303i 2,15l+0,335i ° °

Table 5.7

X u(l ,r ) + i U ( l ,i ) u(2,r) + i u (2,r) w ( l ,r) + i W (l,i ) w(2 ,r) + iW(2,i )

° ° ° 0,8906-0,1552i -1,118+0,5443i

0,2 0,1478-0,2394i -0,4335+0,4759i 0,7953-0,1139i -0,7377+ 0,2753i

0,3 0,2124-0,3376i -0,524+0,522i 0,6819-0,0707i 0,1756+0,0306i

0,6 0,3240-0,4836i -0,190+0,01Ii -0,358+0,051i 0,388-0,137i

0,8 0,3059-0,4706i 0,0927-0,2208i 0,1568-0,0441i 0,0794+0,0462i
1 0,2241-0,4422i 0,0600-0,2322i -0,3050-0,2799i -0,2448-0,1173i

Table 5.8

5.7.10 Generalised orthogonality

The difficulty of fulfilling the boundary condit ions on the end faces of the
cylinder resides in the necessity of simult aneous representation of two inde
pendent function s by series (7.9.4) in terms of the non-orthogonal system
of "homogeneous solutions" , i.e. the solutions ensuring the free side surface
of the cylinder.

These solutions possess the property of "generalised orthogonality" . It
can be used for exact fulfillment of one of the boundary conditions, that is
the arbit rariness admitting the possibility of approximately satisfying the
second condition is ret ained.

We introduce into considerat ion the following functions

Ps = p( (3sx) = s, (A; -1) 10 ((3sx) , }

e, = C ((3sx) = ;s[(3sxh ((3sx) - (3sAsl0 ((3sx)]

and their derivatives with respect to argument (3sX

p~ = p' ((3sx) = e, (A; - 1) t, ((3sx) , }

c~ = e' ((3sx) = ;s[(3s xl0 ((3sx) - (3s Ash ((3sx)J.

Here, as before, (3s are the roots of the transcendental equat ion

(7.10.1)

(7.10.2)

A - 10 ((3s)
s - L, ((3J ' (7.10.3)
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The homogeneous solutions of the problem of the cylinder are presented
by the series

u (x,() ~ a~ ~: (p; - £; )cos /),(, }

w (x,() = aL ~s (Ps + E,,) sin 13,,(,
8 s

(7.10.4)

where for each root 8 = 1,2 , . . . one obt ains four terms for the root s 13"
from eq. (7.8.5). Under an appropriate choice of constants C." series (7.10.4)
describe the real-valued functions.

Using eq. (7.10.4) we find the stresses

(7.10.5)

The introduced functions E~ and P~ have the property of generalised or
thogonality (P.A. Schiff. 1883)

1J(E~. P~ + E~PU xdx = 0 (8 of- k) .
o

This can be proved directly

(7.10.6)

1 1

JX ( E~p~ + E~PU dx = J{x2 [13" (A; - 1) 10 (13kx ) t, (;3.,x )+
o (J

13k (Ai - 1) 10 (;3sx) I, (13k x)] -

x [Ak13" (A~ - 1) + A.,13k ( A~ - 1) ] I, (13kx) I, (;3.,x) } dx .

The integrals are est imated as follows

1

JI) (13"x ) t, (13kx) xdx =

o

~{
(8 of- k) ,

(8 = k) ,
(7.10.7)
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1

Jx2Io ((3s x) t, ((3k x) dx =
o

(8 =1= k),

(8 = k) ,

(7.10.8)

and are substituted into eq. (7.10.6). At the same time

1

2Jp~c~xdx = Nk = If ((3d (A~ - 1) [1+ (3kAk (A~ - 1) - 2A~] .

o
(7.10.9)

P.A. Schiff and later P.F. Papkovich (1941) indicat ed the possibility of a
simultaneous representation of two independent functions F1 (x) and F2 (x)
in the form of the series in terms of the functions having the property of
generalised orthogonality. Being applied to functions c~, p~ these represen
tations are put in the following form

(7.10.10)
s s

The coinciding coefficients I), of these series are determined with the help
of the property of generalised orthogonality

1 1

J[P~Fl (x) + c~F2 (x)] xdx = L o,J(p~c~ + c~p~) xdx = DkNk·
o s 0

(7.10.11)

For example, by putting F2 (x) = 0 we have

1

s.o, = JP~Fl (x) xdx, F1 (x) = L Dsc~ ,
o s s

The convergence of the series and the study of the class of functions
F1 (x), F2 (x), for which the joint expansions of the type (7.10.10) in terms
of the generalised functions are possible, are given by G.A. Grinberg (1951)
for the example of bending of plat es.

Function 2GF1 (x) can be taken as being equal to the shear stress on the
end face ( = L, i.e,

(7.10.12)
s
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Then, by virtu e of eq. (7.10.11)

(7.10.13)

The arbit rariness in prescribing funct ion F2 (x) can be used for an ap
proximate fulfillment of another boundary condit ion. Adopting the follow
ing represent ation

n

F2 (x) = L ak'Pd x ) ,
k= 1

(7.10.14)

we obtain that coefficients C," are linear function s of parameters ak

(7.10.15)

These parameters can be determined, for example, from the condition of
minimum quadr ati c deviat ion of the normal stress a z from the required
value (7.10.5)

Thus we arrive at the syst em of n linear equations (k = 1, 2, . . . n )

(7.10.17)

Taking, for instance,

'Pk (x) = x2k- 1
,

we have

1 1

Nr sin f3,.L~~: =Jek€;. dt =Jt2k [tIo (f3rt) - Arh (f3,.t)]dt.
o ()
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The integrals in thi s formula are estimated in the following way

x xJek+110 (t) dt = x2k+1It (x) - 2kx2k 10 (x) +4k2Jt2k
-

110 (t) dt,
o 0
x xJt2k It (t) dt = x2k 10 (x) - 2kx2k

-
1It (x ) + 4k (k - 1)Jt2k

-
2It (t) dt,

o 0
x x

JxIo(t) dt = «t, (x) , JIt (t) dt = 10 (x) - l.

o 0
(7.10.18)

Let us recall that th e system of st resses CT z which are statically equivalent
to zero is presented in the form of eq. (7.10.5)

1Jxo ida: = 0,

o

1

Jx (cs+ 1~ v ) dx = O.
o

In th e case of a cylinder extended by an axial concent rated forces Q one
should take

Hence

x < p,

x> p,
p ----+ 0, Trzl<;=L = O.

and th e system of linear equat ions (7.10.17) takes the form (k = 1,2 , . . . ,n)
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where

n 1

c, = N .1 (3 L L akJ XE~ <Pk (x) dx ,
s sin •

• k =1 0

1

oc, 1 J I-a . = N . (3 L XE,. (Pk (x) dx .
ak r Sill r

o

Estimation of the integrals is carried out by formulae (7.10.7)-(7.10.9) and
by differenti ating with respect to (3s' (3,. . The difficulties are caused by cal
culat ing the double series in system (7.10.9) .



6
Saint-Venant's problem

6.1 The state of stress

6.1.1 Statement of Saint- Venant's problem

A prismatic rod is the body obtained by translating a plane figure S along
a straight line which is perpendicular to the plane of the figure. In this case
the plane figure S presents the cross-section of the rod . The axis Oz of the
rod is the straight line which is the locus of the centres of inertia of the
cross-sections whereas axes Ox and Oy lying in the cross-sect ional plane are
directed along the principal axes of inertia of the cross-section. The origin
o of the system of axes Oxy lies in a cross-section (in the cross-section
z = const). The cross-sections z = 0 and z = l are referred to as the end
faces, their centres of inertia being respectively denoted as 0 - and 0 +.
Let Ix and Iy designate the moments of inertia of the cross-section about
the corresponding axis of this cross-section and S denote its cross-sect ional
area. Then

S = IIdo, II x do = 0, II ydo = 0,

s s s

t, = II y
2
do, I y = II x

2
do, II x ydo = 0 (do = dxdy) ,

s s s

for all z C [0, l] .

(1.1.1)
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The Saint- Venant problem deals with the state of stress in a prismat ic
rod loaded by distributed forces on the end faces, the lateral surface being
free of load .

The boundary condit ions are set in the following form: on the end faces

z = ° -Tzx = X; (x ,y) , -Tyz = Yz- (x ,y) , -lJz = Z; (x,y) , }

z = l Tzx=X:(x ,y) , Tyz=Y/(x ,y) , IJz=Zi (x , y) ,
(1.1.2)

where XI ,Yz'f , Zi denote the projections of the surface forces on the co
ordinate axes, whilst on the lateral surface we have

IJxnx + Txyny = 0, Txynx + lJyny = 0,

Txznx + Tyzny = 0.

(1.1.3)

(1.1.4 )

Here n stands for the unit vector of the exte rnal normal to both the lateral
surface and contour I' of the cross-section, so th at

dy dx
nx = ds' ny = - ds ' nz = 0,

where

x = x (s) , y = y (s), z = const

is th e equat ion of contour r and s denotes the arc of the contour .

(1.1.5)

(1.1.6)

6.1.2 Integral equations of equilibrium

Let the proj ections on the coordinate axes of the principal vector and the
principal moment m (0+) about the cross-sectional cent re of inertia 0 +
of the surface forces on the right end (z = I) be denoted by P,Q,R and
mx, my ,mz, respectively. Then

P= 11xi (x , y) do, Q= 11Yz+(x , y)do,
s s

R= 11 Zi(x ,y)do,
s

(1.2 .1)

mx = 11YZi( x , y)do, my = - 11 xZi(x, y)do,
s s

ni; = 11 [xY/ (x , y) - yX i (x , y)]do.
B

(1.2.2)

The forces P and Q are referred to as the transverse forces whereas R is
called the axial force. Further, mx and m y are te rmed bending moments
whilst m z is called the torque.



6.1 Th e state of stress 411

Let us obtain the condit ions of equilibrium of the left par t of the rod
[z,l]. The stresses acting on the left end face present a system of distributed
surface forces with the projections -7n, -7yz, -az on the coordinat e axes.

Since the lateral surface is free and mass forces are absent, six equat ions
of stat ics can be writ ten down as follows: three equations of the proj ections
of the forces

11 7 zxdo = P, 11 7 yzdo = Q, 11azdo = R
s s s

(1.2.3)

and three equat ions for the moments about axes Ox , Oy , 0 z of cross-section
z

11 ya zdo = m x - (l - z )Q,
s-11 xo -do = my + (l- z ) P,

s
11 (X7y Z - y7 z",) do = m z ·

S

(1.2.4)

When z = 0 one can replace 7 n, 7 yz, a z by their expressions from eq.
(1.1.2) and obtain the equilibrium condit ions for the external forces, these
conditions being assumed to be satisfied.

6.1.3 Main assumptions

The integral equat ions of equilibrium (1.2.3) and (1.2.4) can be satisfied
by assuming th at 7 zx and 7 yz do not depend on z whereas a z is a linear
function of (l - z)

Tz;c = T 's« (x ,y) , Tyz = Tyz (x ,y) , az = a~ (x ,y) + (l- z)a; (x ,y) .
(1.3.1)

Of course, these assumptions are not the consequence of the above men
tioned equat ions, but furth er progress in solving the problem of the equi
librium of the rod is possible only under these assumpt ions.

Two of the three equat ions of sta tics in the volume are written down in
the form

OTx y oay
ox + oy = O. (1.3.2)

A consequence of these equations as well as the boundary condit ions (1.1.3)
on the lateral surface of the rod is the acceptance of the second set of
assumpt ions admitted in the statement of Saint- Venant 's problem

a", = 0, T xy = 0, a y = O. (1.3.3)
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Assumptions (1.3.1) and (1.3.3) comprise the essence of the "semi-inverse
method of Saint-Venant " , that is, some stresses (or displacements) are pre
scribed and then the equations defining th e remaining unknown variables
become easier to deal with . Evidently, these assumptions force one to aban
don the exact solution to the boundary-value problem. For instance, in
Saint-Venant 's problem the boundary conditions on the end faces (1.1.2)
are not exact ly fulfilled and they are replaced by the integral relationships
(1.2.3) and (1.2.4). Th e acceptance of thi s replacement is substantiated by
Saint- Venant 's principle, see Subsection 4.2.8.

Due to the efforts of the founders of the theory of elast icity (Lame,
Kelvin, Boussinesq, Cerruti and others) the rigorous solut ions to some
boundary-value problems of elast icity theory for the regions bounded by
the surfaces prescribed by a single parameter (sphere, half-space) have been
obt ained. Investigations aimed at exact solutions have been carried out
more recently and their number increases. However the celebrated mem
oirs by Saint- Venant "On torsion of prisms" and "On bending of prisms" ,
in which "the semi-inverse method" and Saint- Venant 's principle were sug
gested, should be proclaimed as the origin of elast icity theory as an applied
discipline.

6.1.4 Normal stress CTz in Saint- Venant 's problem

This stress can be determined in the general form for a rod of any cross
sect ion. It is not sufficient to have the equations of statics. When solving
the problem in terms of st resses, it is necessary to use the Beltrami-Michell
dependences, eq. (1.5.9) of Chapter 4. In these dependences, the sum of
the normal stresses a is replaced by a z , the latter being a linear function
of (l - z)

a = a z = a~ (x ,y) + (l- z ) a ; (x , y) . (1.4.1)

(1.4.2)

It also follows from eq. (1.3.1) th at all the second derivatives of the sought
functions with respect to z vanish, so th at the Laplace operator contains
only derivatives with respect to x and y

2 EJ2 fJ2
'V = 8x2 + 8y2 '

From three Beltr ami-Michell equat ions for a x,ay,Txy we obtain

82a
--=0
8x8y ,

(1.4.3)

and the equation for a z , due to eq. (1.4.1) , is sat isfied identically. Thus, a
is proved to be a linear function of x and y

(1.4.4 )
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Turning to the geometric and static relationships (1.1.1), (1.2.3) and (1.2.4)
it is easy to obtain

R m Tn."

}
ao = S' aj = - -;-, a2 =I '

y ;1:

bo = 0, b j

P Q
= - - b2 = - - ,

I y ' 1;r

and thus

R 1 1
o, = S - T [m y + P (1 - z)]x + T [m:r - Q (l- z)] y.

y x

(1.4.5)

(1.4.6)

T his is the law governing the distribut ion of the normal st resses in an elastic
rod loaded by the axial tensi le force R and bent by the moments mx, my
and the transverse forces, all applied to the end face. T he quantities

Mx = m", - Q (1 - z) , My = my + P (l - z) (1.4.7)

(1.4.8)

are the bending moments in the cross-section z. In the framework of the
elementary theory of bending of beams it is adopted that

R My M,,:
o, = S - I; x + Y;Y'

and this dist ribution of the normal stress (T z is also valid in the case of the
arbitrary bending moments }'I", and AIy acting on the lateral surface .

6.1.5 Shear stresses T xz and T yz

Th ese stresses are determined from the third equation of statics and the
remaining two Beltrami-Michell equations

OTu + aTyz = _ O(Tz = _ ( P x + Q Y) ,
ax oy oz 4 ~

2 1 P 2 1 Q
\7 T · = - - -- \7 T = ----

.lZ 1 + v I y ' 1I
Z 1 + v t;

(1.5.1)

(1.5.2)

T hey are considered together with the boundary condition (1.1.4) on th e
lateral surface or the equivalent on contour r of region S

(1.5.3)

and the remaining integral conditions (1.2.3) and (1.2.4)

jj TxzdO= P, jjTyzdo=Q, jj(XTYZ -YTz:r)do =mz . (1.5.4)
S S S
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Let us notice that any solution of the static equat ions in the volume,
eq. (1.5.1), and on the surface, eq. (1.5.3), satisfies the first two condit ions
in eq. (1.5.4). Indeed, multiplying by x , integrating over the area S of th e
cross-sect ion and referring to eqs. (1.1.1) and (1.5.1) we have

By virtue of eq. (1.5.3) and the rule of tr ansformin g a surface integral into
an integral over a contour , we obtain

which leads to the first relationship (1.5.4) . The second relationship is de
rived analogously.

We also notice th at eqs. (1.5.1) and (1.5.3) are consistent with each other
which follows from the relationship

1f (aTXZ aTYZ) f ( )ax + ay do = T x znx + T y z n y ds
s r

= - ~ JJ xdo - i JJ ydo = O.
s s

It is proved below that differential equat ions (1.5.1), (1.5.2) and the
boundary conditions determine uniquely the shear stresses T x z and T yz for
the prescribed value of torque m z . As one can see, the fulfillment of t he
condit ions on the end faces, eq. (1.1.2), is not required here. It can be
said that the solution of th e problem in the form stated by Saint- Venant
is the rigorous solution only under the condition that the normal stresses
on the end faces obey exact ly the law (1.4.6) and th e shear stresses are
distributed according to the law obtained from the solution of the prob
lems stated above. However the obtained solutions form a system of sur
face forces which is stati cally equivalent to any prescribed distribution of
the surface forces X;:- ,Y} :,Z;:- on the end faces. Saint-Venant 's principle
answers the question to what extent the replacement of one problem by
anot her is acceptable. Thi s principle was mentioned in Subsection 5.7.6
when stating the problem for the equilibrium of an elastic circular cylin
der. This princip le was formulated and discussed in Subsections 4.2.4 and
5.1.14. Being applied to Saint-Venant 's problem this principle reduces to
the statement that the statically equivalent systems of forces, distributed
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over the end faces comprising a small part of the total surface of a suffi
ciently long rod, produce the states of st ress in the rod 's body which are
essentially different in the regions near the ends and practically coincident
at a sufficient dist ance from the ends. For verification we can refer to the
examples of th e exponent ially decreasing st resses with increasing dist ance
from the end loaded by a system of forces which is stat ically equivalent to
zero in the problems of torsion of the circular cylinder (Subsection 5.7.9)
and the homogeneous solutions (Subsections 5.7.8 and 5.7.9). However one
can find counter-examples, among them the case of torsion of a rod with a
thin-walled open section, for inst ance t rough-like (::::J ) and Z-like (Z) and
similar sections. In these examples, the influence of the system of forces
which is stat ically equivalent to zero propagates along the rod to a consid
erable distance. Saint-Venant 's principle is not universal but it remains an
indispensable means of approaching the overwhelming majority of problems
of elast icity theory.

6.2 Reduction to the Laplace and Poisson
equations

6.2.1 Int roducing the stress function

Let us introdu ce into considerat ion two functions G X (x , y ) and Ga<I> (x , y) ,
where G denotes the shear modulus and a is a constant which will be
determined below. Function X is assumed to sat isfy the Laplace equation

(2.1.1)

The equation of statics (1.5.1) can be sat isfied identically by assuming

T;~ z = c«~~ + G f~~-2G (: + v) (~ x
2

+ 2v ~. xY~ l ' }
_ a <I> ax 1 (P Q 2

TYZ--Ga ax+G ay-2G(I+V) 2v I y x y+ I.~ y .

Then

(2.1.2)

2 a 2 1 P
\7 T = Ga-\7 <I> - ---

.TZ ay 1 + v I y ,

2 a 2 1 Q
\7 T = -Ga-\7 <I> - ---

yz ax 1+ v t , :

and substitution into the Beltrami-Michell equat ion, eq. (1.5.9) of Chapter
4, leads to the equalities
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The latter constant is assumed to be equal to -2 which does not affect
the generality, since the expressions for the st resses in terms of <I> already
contain the constant-valued parameter 0:. Thus, <I> is determined from the
Poisson equat ion

V'2 <I> = -2. (2.1.3)

Taking into account eq. (1.1.5) we can write the boundary condition (1.5.3)
in the form

a<I> [ax p ( 2 ) Q ( 2 )]
0: as + an - Ely x n x + 2IJxyny - El

x
2IJxynx + y n y = 0,

where E = 2 (1 + IJ) G is Young's modulus and, as usual,

a<I> a<J> dx a<I> dy
----+--
as - ax ds ay ds '

Thus, functions <I> and X can be subjected to the boundary condit ions

(2.1.5)

(2.1.4)onf :

onf :

a<I> = °
as '

ax p ( 2 ) Q ( 2 )-a = - x n x + 2IJxyny + El 2IJxynx + y n y .
n E4 x

The harmoni c function X is determined by means of prescribing the nor
mal derivative on the contour of region S . This is a classical Neumann
problem which has a solut ion since

~ 2 (1 + v) ( ; , if xdo+ E~, if ydo) ~ 0

The harmonic function X can be conveniently presented by a sum of two
harmonic functions

p Q 2 2
X = E ly Xl + El

x
X2' V' Xl = 0, V' X2 = 0,

determined by the boundary condit ions

(2.1.6)

(2.1.7)

As Xl and X2 are harmonic functions one can introduce two functions of
the complex argument ( = x + i y

(2.1.8)
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Functions 'Ok relate to Xk by means of the well-known Cauchy-Riemann
relat ionships

8Xk 8'01,; 8Xk 8'Ok
8x 8y

,
8y 8x

or

8Xk 8'Ok 8XI,; 8'131,;
(k = 1, 2) (2.1.9)

8n 8s ' 8s 8n

and are determined by quadratures in ter ms of XI,; up to an additive con
stant .

Instead of the stress function <I> sat isfying Poisson's equation, we intro
duce the following function

(2.1.10)

Due to eq. (2.1.3) this funct ion is harmonic in S

(2.1.11)

and is considered, in what follows, as the imaginary part of the function of
the complex variable F (() whose real part is denoted as sp (x, y). Hence

8ep 81jJ 8ep 81jJ 8ep
--- ---- or
8x - 8y' 8y - 8x ' 8n

so that

(2.1.12)

The boundary condition (2.1.4) is now presented in the form

(2.1.13)

(2.1.14)
81jJ 8ep dx dy
8s = 8n = x ds +Yds = - xny + ynx ·

A slight ly different form of the equations for the shear stresses (2.1.2) is as
follows

1 _ 8<I> (8X1 2) (8X2 )}G7 xz - 0' 8y +a 8x - x + b 8x - 2vxy ,

1 8<I> ( 8X1 ) ( 8X2 2)- 7 z = - 0'- +a - - 2vxy + b - - y .
G y 8x 8y 8y

Here and in what follows we int roduce, for brevity, the notation

(2.1.15)

p
a = EI '

y
(2.1.16)
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6.2.2 Displacements in Saint- Venant 's problem

Using the basic assumpt ions of Saint- Venant 's problem and the generalised
Hooke law we can write down the following equalities

Replacing a z by means of eq. (1.4.6) we obt ain

(
R m y 2 m x )u = - v - x---x +-xy +

ES zm, st,
v(l- z) (~ax2+bXY) +U (y , z) ,

(
R m y m x 2)

v = -v ESY - Elyx y + 2El
x

Y +

v (l - z) (ax y + ~ by2) +V (z , x ) ,

R ( ) ( m y m x )
W = E S z + 1- z Ely x - E l

x
Y +

1 22(l- z ) (ax + by) + W (x , y) ,

E
(2.2.1)

(2.2.2)

where U,V, W are some functions playing the role of "the integration con
stants" . By means of the third relationship (2.2.1) we have

au av {au vy }
ay + ax = ay + E l y [my + P (l - z )] +

{
av vx }---[mx-Q(l- z)] =0.
ax El;

The expressions in the braces depend only on z otherwise the latter equa
tion would relate the independent variables x , y , z . Denoting the expressions
in the braces by -Zo (z) and Zo (z) respect ively we obtain

vy2 }U = - 2El
y

[my + P (I - z )] - yZo (z) + Zl (z) ,

vx 2

V = 2El
x

[m x - Q (l- z )]+ x Zo (z) + Z2 (z).

(2.2.3)

Using the two relationships of the generalised Hooke's law which have not
been utilised

aw 1 au
ax = z>- az '

aw 1 av
- --T --ay - G yz az (2.2.4)
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and referring to eq. (2.1.15) yields

sw a<I> ( aXI ) ( aX2 )- = 0: - + a -,- - x2 + b - - 2vxy + vbxy+
ax ay ax ax

va (2 , 2) , , [ , my P 2]2 x - y + yZo - ZI + El (l - z) + 2El (/ - z) ,
y y

sw a<I> ( aXI ~ ( aX2 2)- = ,-0: - + a - - 2vxy + b -- - y + vax y-,
ayr'" ax ay ay

vb (2 2) , ,m'T ) Q 2]
- X - Y - xZo - Z2 - - " (l - z + -- (l - z) .
2 Err zet,

(2.2.5)

The expressions in the brackets must be constant-valued since W does
not depend on z, They are denoted as -w~ and w~ , respectively. Then

1 my 2 1 P '3 o }ZI (z) = - - (I - z) + - - (I - z)' +uo + w z
2 El y 6 Ely u ,

1 m ;r 2 1 Q :3 0
Z2(z)= ---(/ -z) + - -(/ -z) + vo - w z

2 Ely 6 EI
J

< " ,

(2.2.6)

where Uo and Vo are the integration constants. It follows from eq. (2.2.5)
that Zo (z) is constant , thus the integrab ility condition written in the form

and eq. (2.1.3) yield that

Zo (z) = 0:, Zo = o:z + w~ , w~ = const . (2 .2.7)

Referring to eqs. (2.1.10) and (2.1.12) we can perform the following replace
ment

a<I> , ( a<I> ) a'l/; aif!
o:~ + yZo (z) = 0: ~ + Y = o:~ = o:~ ,

uy uy uy ox

- 0: a<I> _ xZ' (z) = - 0: ( a<I> + x) = - 0: a'l/; = 0: aif!
ax 0 ax ax ay

in eq. (2.2.5). Int egrating relationships (2.2.5) yields

(2.2.8)
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It remains to insert the obt ained expressions (2.2.3), (2.26)-(2.2.8) into the
equalit ies (2.2.2). The result is the following expressions for the displace
ments

vR v [ ] (2 2)u=-ayz--x+-- m +P(l-z) x - y -
ES 2Ely y

v 1 my 2
- [mx - Q (l- z)] x y + - - (l- z) +
e t; 2 Ely

1 P ()3 a a6EI l-z +ua+ Wy Z- wzY,
y

vR v
v = azx - ESY+ EI [my+P(I- z)] xy+

y

_v_ [mx _ Q (1- z)] (x2 _ y2) _ ! mx (l- z )2+
uu; 2 e t,

1 Q (1)3 a a6 El
x

- z + va+wzx-wxz ,

P [1 1]w= a<p(x ,y)+ Ely Xt-6(2-v) x3_2vxy2 +

Q[ 1( )3 12 ] R- X2 - - 2 - v Y - -vx Y + - z+
E4 6 2 ES

x (l - z)1 ! P (I - )]-EI m y + 2 z
y

y (l -z) 1 a a
El

x
[mx- 2

Q(l- z) + wa+ wxY- wyx .

(2.2.9)

The six constants Ua ,Va,Wa,w~ , wg,w~ determine the rigid body displace
ment .

The expressions for the proj ections of the linear vector of rot ation ware
as follows

The latter equation yields the value of the angle of rotation about the rod
axis related to th e length unit

(2.2.12)
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Integrating over the cross-sectional area and taking into account eq. (1.1.1)
we obtain

a = ±:z 11 wzdo. (2.2.13)
s

This equality provides one with a kinematic interpretation of parameter a ,
i.e, it is an average twist angle of the cross-section related to the length
unit.

6.2.3 Elastic line

The displacements of the points of the rod axis, i.e. its elastic line, can be
obtained by setting x = y = °in eq. (2.2.9). Recalling that the harmonic
functions Xl ' X2' 'P are determined by the solution of Neumann's problem
up to an additive constant we can adopt

Xl (0,0) = 0, \:2 (0,0) = 0, 'P(O,O) = 0. (2.3.1)

Then we obtain the following equat ions for the elastic line

u(z)= 2~Iy [my(/_z)2+~P(/_z)3]+uo+wgz,

v (z) = 2~{r [-m,r (1- z)2 + ~Q (I - Z)3] + Va - w~z , (2.3.2)

R
W(z) = ES z + Wo ·

These are the formulae for the elementary theory of bending and tension
of rods. The appearing constants should be determined by means of the
boundary conditions on the left end of the rod . Let us assume that the
cent re of inertia. does not move. then

u (0) = °:

v (0) = °:

W (0) = 0 :
R

W (z) = ESz

(2.3.3)

(2.3.4)
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Let the end z = 0 of the rod be "fixed". The Saint-Venant solut ion with
three constants w~ , w~, w~ to be determined allows us to treat the concept
of "being fixed" in two ways. The first way is adopted in the elementary
theory: it is assumed that fixing admits no rotation of the tangent to the
elastic line of th e rod at the fixing point , that is

(ou) _0
oz z=o - , ( ~v ) = o.

z z=o
(2.3.5)

These equat ions determine w~ and w~ and, by eqs. (2.3.3) and (2.3.4) we
obtain the equat ions for the elast ic line and the displacements of the end
of the rod axis

which are well-known in the elementary theory of bending.
The second treatment of "being fixed" prohibits axial displacement of

the elements dx ,dy which lie in the cross-sect ion z = 0 and are adjacent to
the centre of inertia of this cross-sect ion

for x = 0, y = 0, z = 0 : ow =0
ox '

ow =0.
oy (2.3.7)

Due to eq. (2.2.4) these condit ions can be written down in the form

(ou) = wo _ myl _ Pl
2 = T~x (ov) = _ wo + myl _ Ql2 = T~z

OZ 0 y E ly 2Ely G ' OZ 0 x El; 2Elx G
(2.3.8)

where T~:r and T~z are the shear stresses at the cent re of inertia of the
cross-section . The equat ions for the elast ic line need to be completed by
the terms

(2.3.9)

and the displacements, accounting for the corrections due to the shear , are
now as follows

o
f * f T zx lx = x+ C ' (2.3.10)
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6.2.4 Classification of Saint- Venant 's problems

The solution of Saint- Venant's problem in th e general statement depends
upon six values which are th e three projections P, R, Q and th e three mo
ments m x , m y, m z . Each of th e six particular problems corresponds to th e
action of a single force factor. Three cases, namely th e act ion of the axial
force R and the moments m.r , my , are elementary since no shear stresses
app ear and thus solving th e boundary-value problem is not needed.

The solution to th e problem of tension by th e axial force is given by the
formulae

vR
U = - ES x ,

R
W = ES z , (2.4.1)

contained in the general relationships (1.4.6) and (2.2.9). Along with eq.
(2.3.6) th ese provide us with th e solut ion to th e bending by moment m x

m x
IJ z = TY;

x 2
vm x (2 2) m .e (l - z )v - -- x -Y -

- 2Elx 2Efr '

and by moment m y

vm
x

}U= -E/XY'
x

m ;r
W = --Y (l- z)et,

(2.4.2)

_ vmy ( 2 _ 2) m y (l - z)
2

}
U - 2El x Y + 2El '

y y
my

W = ElX (l -z) .
y

(2.4.3)

In the problem of torsion the torque is the only non-vanishing force
facto r. The normal stress IJ z is absent and according to eq. (2.1.2) th e
shear stresses are expressed in terms of th e stress function 1> determined
by Poisson's equat ion (2.1.3) subjected to th e boundary condit ion (2.1.4)

81>
8s = O.

(2.4.4)

Here parameter 0' implies th e twist angle of a unit length rather than "the
average twist angle" since P and Q vanish in formula (2.2.12). This parame
ter is determined from eq. (1.5.4) in terms of th e torque. The displacements
are obt ained by means of formulae (2.2.9) and are equal to

U = - O'yz, 11 = O' ZX, W = O''P (x,y) . (2.4.5)

It follows from these relations th at th e cross-sect ion of th e rod rotates about
th e rod axis and does not remain plane, i.e. its points moves along the rod
axis. Discovery of this fact is one of the most important achievements of
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Saint-Venant's theory. The harmonic function 'P (x, y) is the solution of
Neumann's problem (2.1.14) and, by virtue of eq. (2.4.5), is single-valued
in S . Let us notice that the search for this function and the stress function
il> has no relation to the problem of bending by forces P or Q.

In the problem of bending by force P the normal and shear stresses are
determined by formulae (1.4.6), (2.1.15) and (2.1.9):

P
(j = -- (I - z) x

Z I 'y

1 ail> P (aXl 2) ail> P (a'l3l 2)
G7 xz = 0: ay + Ely ax - x = 0: ay + Ely ay - x ,

1 ail> P (aXl )
G t yz = -0: ax + Ely ay - 2vxy

= -0: ail> _~ (a'l3l + 2VXY) ,
ax Ely ax

(2.4.6)

In these formulae 0: denotes "the average twist angle" which is also obtained
by means of the torque

m; = 11 (X7yz -Y7zx ) do

s
due to the shear stresses caused by force P. According to eq. (2.4.6), these
shear stresses should be expressed in terms of two stress functions il> and
Xl or il> and '13 1. Function il> is determined by the boundary-value problem
(2.4.4) whereas Xl or '131 are obtained from the following boundary-value
problems

2 2 . aXl _ a'l3 l _ 2 ()V' Xl = 0, V' '13 1 = 0; on r . an - as - x nx + 2vxyny , 2.4.8

see eqs. (2.1.6), (2.1.7) and (2.1.9). Let us notice that the latter equality in
eq. (2.4.7) requires that the following sum

P
O:'P (x,y) + EI Xl (2.4.9)

y
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is single-valued.
Clearly, the result s of the problem of bending by force Q are analogous to

eqs. (2.4.6)-(2.4.9). A closer examinat ion of the separate problems, namely
tension, bending by a moment , torsion and bending by a force, is given
below, see Subsection 6.2.7 as well as Sections 6.3 and 6.4.

6.2.5 Determinat ion of parameter Q

The problem is considered under the assumpt ion of the simultaneous action
ofthe torque and the tr ansverse forces. By eqs. (1.5.4), (2.1.15) and (2.1.9)
we have

~mz= ~11(xTyz-YTz ;r)do=-aII (x~: +Y~;)dO -
s s

a [1/ (xo;: +v:1
) do - (1- 2v)1f X

2ydo] -

b [1f ( x~: + y: ,) do + (1- 2v )1/Xy2do] . (2 51)

Let us restrict the considerat ion to the case of the simply connected
region S . The st ress function which, by eq. (2.4.4) is constant on contour
r can be taken as being equal to zero on it:

Then

on I" : <I> = O. (2.5.2)

-II ( x~: + Y~: ) do = - II (:x x<I> + :Y y<I>) do+ 2II <I>do
s s s

= - f <I> (xn x + yny ) ds + 2II<I>do = 2II <I>do.
r s S

Th e value

(2.5.3)

is referred to as the geometric rigidity at torsion. Its definition for multiple
connected regions is given in Subsection 6.3.4.
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y

(x.y)

r

FIGURE 6.1.

By analogy one can transform the following integral

-II ( x~: + y8~k) do = 2II 79kdo - f 79dxnx + yny ) ds
s s r

= 2II79kdo - 2f 79kdJ..v , (2.5.4)
s r

where dw = ! (xnx + yny ) ds = ! (xdy - ydx) denotes the area of t he
sector formed by the position vectors of two infinitesimally close point s on
r , these vectors originating from point 0 , Fig. 6.1. In the present chapterf designates the integral over the closed contour in a counter clockwise

direction . In traversing the contour, the region S lies on the left . The area
of the closed curve

S = w = f du: = ~ f (xdy - ydx)
r r

does not depend on the position of th e origin. Indeed, having moved the
origin of the coordinate system to point Xo,Yo we have

~ f (x'dy' - y'dx') = ~ f (xdy - ydx) - ~ ( xof dy - Yof dX) = w,
r r r r

since the integrals f r dx and f r dy are equal to zero.

The further transformation of eq. (2.5.4) suggested by V.V. Novozhilov
utilises Green's formula



(2.5.5)
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Using it and eqs. (2.1.3), (2.5.2), (2.1.10) and (2.1.12) yields

211 19kdo = - f 19k~~ ds + 2 f 19 kdw = f 19k-~~ ds + 2 f 19 kdw,
s r r r r

and thus

2 (11 19kdo - f 19kdW) = f 19k~~ ds = - f <P 8:skds ,
s r r r

since the integration by parts produces no non-integral term (<p and 19 k,

being harmonic functions are single-valued in the simply connected region).
Referring now to eqs. (2.4.8) and (2.1.10) we have

and furthermore

11 ( x
2 ~~ + 2vx y~~ ) do = 11 ( x

2 ~: - 2vxy ~~ ) do
s s

= (1 - 2v )11 x
2
ydo +11 ( x

2 ~~ - 2vxy ~: ) do.
s s

It remains only to not ice that due to eq. (2.5.2)

Jrr 2 8<1> f' 2
} X 8y do = <l>x n yds = 0,
s r

-f x y~= do = - 11 y : x x <l>do + 11 y<l>do
r s s

= - f xy<l>n;rds +11 y<l>do = 11 y<l>do.
r s s

Inserting these relationships in eq. (2.5.4) we obtain

jrr( x 819 1 + Y819 1 ) do = f'ip 819 1 ds
} 8x 8y 8s
s r

= 2 (1 + v )11 tupdo + 2v 11 y<l>do + (1 - 2v )11 x2ydo (2.5.6)

s s s



428 6. Saint-Venant's problem

and by analogy

jrr ( x 8th + y 8192 ) do = f cp 8192 ds
} 8x 8y Bs
s r

= 2 (1 + v) JJycpdo - 2vJJx lJ>do - (1 - 2v)JJxy2do.
s s s

Retu rning now to the original relatio nship (2.5.1) we arrive at the equation
determining the average twist angle Q

m , = CGQ - ~ (1:v JJylJ>do +JJXcpdO) +
s s

~ (1: v Ifx",dO-IjWdO) (25 7)

6.2.6 Centre of rigidity

Let x* and y* denote the values

z" ~ L(1:v Ifx",dO-Ij y~do) ,

y' ~ }, (1:v Ij y",do + Ij x ipdo) ,

(2.6.1)

having the dimension of length . Their calculatio n requires only the solution
of the boundary value prob lem of torsion. Formula (2.5.7) is reset as follows

CGQ = m z - (x*Q - y*P) . (2.6.2)

The syste m of shear st resses T z x, T yx in any cross-section is statically
equivalent to the force F = i1P + hQ passing through the origin of the
coordinate system (i.e. the centre of inertia 0 of the cross-sect ion) and the
moment m z , see Fig. 6.2. It is known from the statics that such a syste m
(mz and F at point 0) is statically equivalent to a single force F *= F
having the line of act ion L described by the equation

m z = xQ - yP.

Equation (2.6.2) is now rewritten in the form

CGQ = (x - x*) Q - (y - y*) P.

(2.6.3)

(2.6.4)
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y

FIG URE 6.2.

Hence, Q = 0 if the straight line L passes through th e point with the
coordinates (x*,Y*)

x = :1:* , Y = Y* : 0 = O. (2.6.5)

Hence the average twist angle 0 is equa l to zero, that is, bending is not
accompanied by torsion if the line of act ion of force F * passes through point
C(x*, y*) referred to as t he cent re of rigidity (or t he centre of bending),
Fig. 6.3a.

In the case of m ; = 0 the system of shear st resses T zx, T yx is stat ically
equivalent to the force F with the line of act ion Lo passing through t he
centre of inertia , t hen

CCo = - x*Q + y*P, (2.6.6)

see Fig. 6.3b. Generally speaking, in this case 0 =I 0, i.e. the force applied
in t he centre of inerti a produ ces deformation accompanied by an average

if

6-----+....1:

a

F IG URE s.a.

b
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twist. The exception is th e case when La passes simultaneously through
th e cent re of rigidity.

When the cross-section is symmetric about a line, this line is one of the
principal axes of inertia, say, axis Ox. Then the stress function <I> and the
function of warping <p are respectively even and odd with respect to variable

Y

<I> (x, y) = <I> (x , - y ) , sp (x , y ) = - <p (x, - y ) .

It is easy to see from eq. (2.6.1) that in this case y. = 0, th at is, t he
cent re of rigidity of the cross-sect ion with a symmet ry axis lies on this axis.
When th e cross-sect ion has two axes of symmet ry, th e cent re of rigidity is
coincident with th e point of intersection of these axes, i.e. with the centre
of inertia O. In this particular case, considering the problem of bending
does not require the problem of torsion to be solved.

6.2.7 Elementary solutions

As mentioned in Subsection 6.2.4 the elementary cases are concerned with
the loading by th e axial force R and th e bending moments m x , m y. In th ese
cases th e only nontrivial st ress is the normal st ress (J z and for this reason
there is no need to consider the bound ary value problems relat ed to the
shear st resses T zx, T zy '

The solut ion of the problem of tension is given by formulae (2.4.1), i.e.
t he cross-sect ion translates along the rod axis and is subjected to an affi ne
transformation in its plane. The relation between the init ial (x, y, z) and
act ual coordinates (Xl, Yl,Zl) of the particle of the rod is as follows

(2.7.1)

(2.7.2)

Under bending by moment m y in plane zx these relati ons take, by virtue
of eq. (2.4.3), a more complicated form

u (2 V }Xl =X+ _(x2 _ y2)+_ , Yl=Y+- xy,
2c 2c c

(l =((l- ~) ((= l -z),

where ~ = m1y denot es the curvature of th e elast ic line. Further consid-
c E y

eration implies that only the terms linear in rati os x[c, y/c,z]«: need to
be kept for analysis of the distortion of the cross-sect ion. The unit vectors
of th e external normal and the tangent to contour I' of the cross-section
( = const of the rod are denoted respectively as n and T , th e vectors n , T , i3

coinciding with the unit vectors ii , i2 , h. Putting equations (1.1.6) for this
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contour in the vectorial form r = r (s) we have

dr
T = ds '

dT n
- -=f
ds - p'

dn = ±~
ds p '

(2.7.3)

(2.7.4)

where 1/p denotes the curvature of curve r and the upper (lower) sign is
taken if the curve is presented to the concave (convex) side to the origin of
the coordinate system which is the cent re of inertia of the cross-sect ion.

Equ ation (2.7.2) contains formulae for t he surface of the bent rod , where
s = ql , ( = q2 play the part of the Gaussian coordinates. Denoting the
position vector of the point on this surface by R (ql ,q2) , we const ruct the
expressions for t he base vectors on the surface

R1 = aR = T (1 + ~x) - n~y _ f dx i3 , }
as c c c ds

R aR . ( X) . (
2 = a( = 13 1 - ~ + 11~ ,

so that with the suggested accuracy

2v 2x
gll = R 1 . R 1 = 1+ - x , g22 = R2 . R 2 = 1 - - , g1 2 = R 1 . R2 = O.

C c

The unit vector m of the normal to t he sur face is as follows

1 vy . ( dy
m = R 1 x R 2 = n +T- - 13 - - .

J gll g22 C c ds

Referring to eq. (2.7.3) we have

a2
R 1 ( vx v p dY)R ll = -- = =f-n 1+ - ±-- ±

as2 p c c ds

T~ (dX=f It) _d
2
x f b ,

c ds p ds? c

a2 R . 1 dx
R 12 = -- = -13--

a( as c ds '

(2.7.5)

(2.7.6)

(2.7.7)

and the coefficients of the second quadratic form for the surface are equal
to

bll = Rll . m = =f~ (1 + vx ± vp dY) , }
p c c ds

1 dy
b22 = R 22 . m = - -d ' b12 = R 12 . m = O.

c s

With the adopted accuracy, the coordinate lines turn out to be th e cur
vature lines (b12 = 0,g12 = 0). The vector on th e normal curvat ure of the
surface is determined by th e equality
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thus, the curvatures of the curvature lines (the principal normal sections
( = const and s = const) are equal to

- 1 dy
k2 = --.

e ds
(2.7.8)

The curvature centres lie on the normal m to the surface. The first and the
second formulae determine respectively the curvature of contour I" of the
deformed cross-sect ion and that of the fiber s = const on the rod surface.

For a circular cross-sect ion of radius a we obt ain , by eq. (2.7.8), th at

s . s
x = a cos - , y = a sin - ,

a a
- 1
k1 = -- ,

a

- 1 S
k2 = -- cos -,

e a

and the vectori al form of the equation for contour I" is as follows

va2
( . 2s. . 2S) . ( 2

rl = r + 2e II cos -; + 12 sin -; + II 2e '

Within the accuracy adopted in thi s calculat ion, the curvatures of the con
tours T and I" coincide, however the centre of the curvature moves from
the centre of th e circle ro to point C

* a
2

( . s ( s , )r c = -am = ro - - v sm -T - - cos -13 .
1 e a a a

For the fibers s = 0 and s = at: we have m = ± (it - ~h) .Their centre

of curvature C2 is coincident with the centre of curvature C of the elast ic

line of the rod rC2= ci l - (i3 . The curvature of fibres s = ~a and s = 3; a

is zero.
Let us also consider the case in which the contour possesses a straight

line segment described by the equat ions

x = Xo - s cos a, y = s sin o

The curvatures are as follows

( 0 ::; x ::; ~) .
cos a

- v
kl=--sina,

e
- 1
k2 = - sin o

e

and have the opposite signs. The fiat part is said to become an ant iclast ic
surface. The ratio of the curvatures is equal to Poisson's ratio v and this
fact was used for the experimental determin ation of v by means of the
interference bands observed by the transmission of light through the plat e
parallel to the fiat lat eral surface of the bent rod .

Let us consider the case of a rod with a rectangular cross-sect ion. Sides
x = ±a,( = (0 become (approximately) parabolas, which are convex to
ward the positive direction of axis x . The curvatures are -vi e and l i e, the



(3.1.1)

(3.1.3)
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cent res of the parabolas' curvature lie on th e negative axis i l at point c/v
whilst the curvature centre of th e bent fiber x = a, y = 0 is at point cil
which is th e centre of curvature of the elast ic line.

For the adopted approximation the lat eral faces y = ±b remain flat

Yl=±b(l+~X) , ( I =(o(l- ~) .

6.3 The problem of torsion

6.3.1 Statement of the problem

Th e torsion problem is a special case of th e general Saint- Venant problem of
th e state of stress of a prism atic rod loaded on the end faces. The statement
of th e problem was given in Sections 6.1 and 6.2. However the importance
and detailed development of this case suggests an independent study.

In the problem of torsion, th e integral equat ions on th e end faces z = 0
and z = l reduce to the requirement

JJ(XTyz - YTzx) do = m z,

s

whereas all remaining condit ions (1.2.3), (1.2.4) are homogeneous, i.e. P =
Q = R = 0,m x = my = O. Thi s allows one to keep the basic assumpt ions
(1.3.3) of th e semi-inverse method and addit ionally take

(J z = O. (3.1.2)

Stresses Txz and Tyz do not depend on z and , by virtue of eq. (1.5.11),
are determined with the help of th e remaining equations of stati cs in the
volume and on th e lat eral surface

aTxz + aT yz = 0, Txzn x+Tyzny=O,ax ay
as well as condition (3.1.1) on th e end faces and Beltrami 's equations. As
normal st resses are absent, th e latter reduce to the following two equat ions

2\7 Tyz = 0, (3.1.4)

where here, and throughout the present chapter, \72 denotes th e plane
Laplace operator (1.4.7).

The equat ion of stat ics is identically sat isfied provided that the shear
stresses are presented in terms of function 4> referred to as the stress func
tion

(3.1.5)
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where et is a constant and G denotes the shear modulus. The equation of
statics on the lateral surface reduces to the condition on the contour I' of
the cross-section

onf : (3.1.6)

Beltrami's equations (3.1.4) are now set in the form

(3.1.7)

and imply that V'2 <I> is constant in region S . This constant can be taken
as being arbitrary since the expressions for the stresses contain another
constant-valued parameter o. It is adopted that

(3.1.8)

It remains to express condition (3.1.1) in terms of the stress function

-Get11 (x~: +y~;) do = mz ·

S

Let us introduce the "vector of shear stresses"

Byeq. (3.1.5) we have for an arbitrary contour L

that is, Tn = 0 if contour L is one of the curves of the family

<I> (x, y) = const = B.

(3.1.9)

(3.1.10)

(3.1.11)

At any point of the cross-section , vector T has the direction of the tangent
vector to the curve <I> = const passing through this point. The projection
of vector T on the tangent to L is equal to

(3.1.12)

If L belongs to the family (3.1.11), then Tn = 0 and the absolute values of
this projection and vector T coincide and are as follows

(3.1.13)



(3.1.14)
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Thus, at the places of the cross-sect ion where the curves offamily (3.1.10)
are app roaching each other (i.e. t he distance Sn between the adjacent curves
B = const and B + bB = const decrease), a concent ration of the shear
stresses is observed. It can be said that the density of the curves (the
trajectories of the shear stresses) serves as a measure of the value of these
stresses.

The shear str ess 7 achieves its maximum on the contour of the region.
The proof is based on the positiveness of t he Laplace operator 'V2

7 2 . We
have, d. eqs. (3.1.4) and (B.4.20).

1 2 21 2 ( 2 2 ) 2 2'2 'V 7 = '2 'V T rz+7y z = 1'V7:rz 1 + 1'VTyzl > 0.

It we assume that the maximum of 7 is achieved at point AI of the region,
then in the vicinity a of this point and on the small circle "y with cent re M
we have

072

~ <O,
un /f f

;:) 2
2 2 or

'V 7 do = onds < 0,
a "(

which is in conflict with eq. (3.1.14).
In the majority of cases the maximum of the shear st ress is achieved at

the point of the bound ary L closest to the centre of inerti a of the cross
section. However there exist except ions which Saint- Venant discovered.

6.3.2 Displacements

Among six components of the stress tensor. the following four are equal to
zero

ou ov Ow au ov
Ex = ox = 0, E y = oy = 0, E z = O Z = 0, Tr y = oy+ ox = 0, (3.2.1)

which is the result of the absence of normal st resses and shear stress 7 xy .

The non-vanishing shears "Yz;r and "Yyz' by eq. (3.1.5), can be presented in
the form

au ow 1 0<1>}
"YZJ: = oz + ox = C 7z:r; = Q oy,

av ow 1 0<1>
"Yyz = !) +~ = -C 7 y;r = -Q~ .

uZ uy ox

(3.2.2)

By virtue of eq. (3.1.8) and the fourth condit ion in eq. (3.2.1) we have

a (ov au)oz ox - oy = 2Q ;

oUoy = - QZ - [,

ov Bu
!) - !) = 2 Q Z + 21 (x,y ) ;
ox uy

ov
!) = QZ + f.
ux
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From the first and the second conditions (3.2.1) it is easy to conclude that
f = const = w~. Hence,

U = -o:yz - w~y + uo, v = o:xz + w~x + vo .

The terms describing the rigid-body rotation and translation are omitted
in the following. The formulae

U = -o:yz, V = o:x z (3.2.3)

determine the displacement due to rotation of the cross-sect ion Z = const
about its axis through the angle o:z . The constant-valued parameter 0:

(the twist angle) represents the angle of the relative rotation of two cross
sections which are spaced at unit length along the rod axis. The cross
sections do not remain flat since the axial displacement w is not zero, i.e.
the cross-sect ion warps . The only except ion to this is for a rod with a
circular cross-sect ion.

Let us return to eq. (3.2.2) and insert u, v from eq. (3.2.3) . The result is

~: = 0: (~: + y) = 0: ~~ , ~; = -0: (~: + x)= -0:~~ . (3.2.4)

Here the function

(3.2.5)

is introduced with an accuracy to an additive constant . As follows from
eq. (3.1.8) , 'lj; (x,y) is harmoni c in S and the condit ions (3.2.4) relating
function o:'lj; to ware the Cauchy-Riemann condit ions. For this reason , w is
also a harmoni c function , and w + io:'lj; is a function of the complex variable
x + iy. Recalling denotation (2.1.13) we have

(3.2.6)

on r :

Function F is referred to as the complex-valued function of torsion.
Using eq. (3.1.6) it is easy to obt ain the boundary condit ions for the

harmoni c funct ions 'lj; and <p

o'lj; o<p dy dx 1 2 2
OS = on =ynx- xnY=Yds + x ds =2(x +y) . (3.2.7)

Determination of warping w (x,y) is reduced to Neumann 's problem, which
involves determining the harmonic function in terms of the normal deriva
tive prescribed on the contour. This problem has a solut ion which is de
termined with an accuracy to an addit ive constant , because the necessary
and sufficient conditions of its existence

f ~~ ds = f (ydy + xdx ) = 0
r r

(3.2.8)

hold true. The independence <p of z follows from the third condit ion (3.2.1) .
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6.3.3 Theorem on the circulation of shear stresses

A prismati c rod is assumed to have hollow cavit ies such that the cross
sect ion 5 of the rod is a multiple connected region. Its conto ur I' con
sists of t he exte rnal conto ur f a and t he interna l non-contacting conto urs
f l ,f2, ... , f n bounding th e exte rnal regions 5 1,52, ... ,5n , see Fig. 6.4 .
Let n denote the unit vector of the out ward normal to f a (i.e. directed into
5) and n i, denote t he unit vector of the out ward norm al to f k (i.e. directed
into 5d .

According to eq. (3.1.6) th e stress function cP is constant, i.e. it is equal
to Co , C1, . . . , Cn on each of t hese contours . One of these constants can be
ar bit rar ily prescribed , neith er st resses nor warping being affected . Let us
take Ck = 0, then

cP = 0 on fa , (k=1 ,2 , . . . , n) . (3.3.1)

The constants Ck are not known in advance and their determ ination
present s a difficult part of the problem. The solution is given by th e th eorem
on the circulat ion of shear st resses.

Let cPo (x ,y) denote the solut ion of the Poisson different ial equat ion
(3.1.8)

subjected to the boundary condit ions

cP = 0 on f a, I'1, . . . , f " .

(3.3.2)

(3.3.3)

Let cPk (x, y) denot e a function which is harmonic in 5 , equa l to 1 on f k
and zero on the all ot hers contours f o,fl , ... , r k- l , f k+I, ' " , f"

(3.3.4)

(n
n

6)S Sn

r;

®
{o

FIGU RE G.4 .



438 6. Saint-Venant's problem

These conditions determine all function s <1>0 , <l>k in S and the stress function
<I> (x,y) can be presented in terms of these functions in the following way

n

<I> (x, y) = <1>0 (x , y) + L Ck<l>dx,y) .
k= l

(3.3.5)

We introduce the circulation K of the shear stresses calculated along any
closed contour L in region S

f f (8<1> 8<1» f 8<1>K = (Txzdx + Tyzdy) = Go: 8y dx - 8x dy = -Go: 8m ds,
L L L

where ill denotes the unit vector of the outward normal to area 0 bounded
by L . On the other hand , using eqs. (3.1.5) and (3.2.4) we have

K = Gf (~: dx + ~;dY) + Go:f (xdy - ydx) = 2Go:O,
L L

since the first integral vanishes as the warping w is a single-valued function
in S whereas the second integral is equal to the double area bounded by
contour L . We thus arrive at the theorem on circulation of shear stresses

(3.3.6)

Being applied to contour f t , which is the boundary of cavity St , this formula
leads to th e relationship

f 8<1>
8nt ds = 2St

r t

(t=1,2 , .. . ,n) , (3.3.7)

since vector llt is directed into S, and traversing contour f t has its usual
meaning, that is, the region S, lies on the left . Substituting eq. (3.3.5) for
<I> we arrive at the system of n equations for the unknowns Ci.

Applying eq. (3.3.6) to f o yields

(t=1,2 , .. . ,n) . (3.3.8)
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where the expression in parentheses is the area bounded by contour roo
However this equation is a result of system (3.3.8). Indeed , replacing 51 ,52 ,
. . . ,5n by means of eq. (3.3.8) we obtain

10<I>0 ds +t j'0<I>0.ds + 25 +on ont
r o t=1 r o

~ (1 o<I>k ~1o<I>k )6. C, r ., on ds +~ r, ont ds = O. (3.3.9)

Let r * denote the set of contours r 0 , r 1, . . . ,r n bounding region 5 and n,
denot e the unit vector of the normal to r * outward to 5 . Utilising Green 's
formula yields

and applying this formula to <I>o we obtain

1~~: ds = j/ \72<I>do = -2 11do = -25,
r- , s s

which is requir ed.
Searching constants Gk is thus reduced to the system of linear equations

(3.3.8)

n 0
L BtkGk = e; Ba· = f ~~.~ ds, n, = 25t - 1~~~ ds, (3.3.10)
k =1 r , I',

th e symmetry of matrix IIB;kll being proved in Subsection 6.3.5. The ob
tained system of equations (3.3.10) will be discussed in Subsection 6.3.17.

6.3.4 Torsional rigidity

Rearranging formula (3.1.9) for the torque yields

m z = -c« 11 (x~~ +Y~:) do
s

= -c«11 (:xx<I> + :yY<I>) do+ 2Go11 <I>do
s s

= -c«1(xn *;l' + yn*y) <I>ds + 2Go 11 <I>do.
r. s
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Using eqs. (3.3.3)-(3.3.5) we have

f (xn*x + yn*y) <pds = t c,f (xntx + ynty) ds = -2t c.s;
f. t=1 f

t
t=1

since vector n, is directed into St . Hence

(3.4.1)

where the value

(3.4.2)

(3.4.3)

having the dimension of L4 (dimension of the moment of inertia of the area)
is referred to as the geometric torsional rigidity. For the simply connected
region

G=211 <pdo,
s

cf. eq. (2.5.3). The geometric torsional rigidity is positive which immedi
ately follows from the reasonings of energy, see Clapeyron's formula, eq.
(3.3.3) of Chapter 2. Indeed , let us take a part of the rod ZI - Z2 = l, take
into account that its lateral surface is free whereas the cross-sections SI
and S2 are loaded by the surface forces

and undergo the displacements

see eq. (3.2.3). Then, by virtue of eqs. (3.2.3) and (3.4.1), we have

2a = 11 (TxzUl + T yzVl) do - 11 (TxzU2 + T yzV2) do
SI S2

= la 11 (XTyz - YTxz) do.

S

Thus

(3.4.4)

and G > 0 since a > o.
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6.3.5 The membrane analogy of Prandtl (1904)

It is known that t he problem of equilibrium of t he membrane fixed on the
exte rnal conto ur f a and loaded by the surface load p reduces to t he Poisson
boundary-value problem

( = 0 on f o. (3.5.1)

Here ( (x, y) and T denote respectively t he membrane deflection and t he
tension intensity, the lat ter being constant . Assuming p to be constant and
using eq. (3.5.1) we obtain

Jf 2 f 8( pV ( do = 8m ds = -7,[1-
rl L

(3.5.2)

which is the equilibrium equation of an arbitrary part n of the membrane
bounded by contour L and m denotes the vector of t he external normal to
L.

Let us imagine that the membrane fixed on conto ur f a carries t he rigid
discs 51 , 52 , . . . ,5n bounded by contours T1 , I'2, . . . .Fn and t he discs can
move only in tra nslat ion in t he direction of the membrane deflection, see
Fig. 6.5. Region 5 occupied by t he membrane material is bounded by t he
set of contours f * which consists of the exte rnal contour f a and int ernal
contours f l , f 2 , ... , f ll • The problem of equilibrium reduces to solving, in
n - connect ed region 5, the boundary value problem

V\ (x, y) = -lj; (= 0 on f a, (3.5.3)

where 'Yk are a priori unkn own constants. This problem is seen to be anal
ogous to t he problem of torsion. The solut ion of problem (3.5.3) , similar to
problem (3.3.5) is presented in t he form

II

where

((x ,y) = (0 (x, y) +L 'Yk(1.: (x, y) ,
1.:=1

(3.5.4)

V
2
( a = -lj , ( 0 = 0

v2
( 1.: = 0, (I.: = Db

on r *, }

on r ., ( I.: = 0 on f a.
(3.5.5)

The problem of torsion becomes fully identical to the problem of t he mem
brane equilibrium if one adopts

T
<I> (x, y) = 2-( (x, y) ,

p
(3.5.6)
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FIGURE 6.5.

The results of the problem of torsion obtained in Subsections 6.3.1-6.3.4
become transparent after comparing to the membrane. For instance, the
horizontals of the membrane surface correspond to a family of the trajec
tories of the shear stresses <I> (x, y) = const . The horizontals become more
dense at the locations of rapid change in the surface, that is, these are the
locations of the stress concentration in the problem of torsion .

The volume V is bounded by the curved surface of the membrane and
the "plateaus" due to the discs. For this reason , the geometric torsional
rigidity is proportional to this volume

p
= 4TC.

The theorem of the circulation of shear stresses (3.3.6) now has a simple
explanation, because it takes the form of equation (3.5.2) for equilibrium
of part n of the membrane. Indeed, using eq. (3.5.2) we obtain

f ~ds = L f 8<I> ds = _pn
8m 2T 8m T'

L L
f 8<I>

-ds= -2n
8m '

L

which is required.
Applying the reciprocity theorem it is easy to establish the symmetry

of matrix IIBtkll of the coefficients Btk of the system of equations (3.3.10).
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For the membrane, it is necessary to prove the following equality

(3.5.7)

Let us consider the case of absence of the surface load (p = 0) , disc Sk
is subjected to displacement "Yk = 1 whereas the remaining discs do not
move. Then the deflection (k (x,y) of membrane S is given by the solut ion
of the boundary value problem (3.5.5). This state of the membrane with
the discs will be called "state k" . Then the result ant of the tension forces on

contour r , of disc s, is proportional to § aa(kds . Equality (3.5.7) follows
rt n t

from the reciprocity theorem applied to states k and t. For another proof
of the symmetry of matrix II E tk II see Subsection 6.3.17.

6.3.6 Torsion of a rod with elliptic cross-section

The contour of the cross-sect ion is the ellipse

r : (3.6.1)

and the stress function 1> vanishing on Lo can be taken in the form

It remains to find the constant A such that the Poisson equation (3.1.8) is
sat isfied

Now we obtain

(3.6.2)

2Ga a2

Txz = - a2+b2Y'
2Gab2

T yz = 2 b2X.
a +

(3.6.3)

The maximum shear stress is observed on the contour at the ends of the
minor semi-axis, i.e. at the points of contour r which are nearest to th e
cent re of the cross-sect ion. For a > b it is as follows

2Gaa 2b

Tm ax = a2 + b2 . (3.6.4)

The t rajectories of the shear st resses 1> = const are presented by the
family of ellipses similar to the contour ellipse r which are thickened in the
region near the end of semi-axis b. The vector of the shear stress has the
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if

FIG URE 6.6.

direction of the tangent to the ellipse passing through the considered point
in the direction of rotation from axis x to axis y, see the signs in formulae
(3.6.3).

Further we have

Using eq. (3.2.6) and ignoring the additive constant we obtain the warping

(3.6.6)

The curves w = const determining the surface of the cross-section are the
families of hyperbolas x y = const as shown in Fig. 6.6 reproduced from the
memoir by Saint-Venant .

By eq. (3.4.3) the geometri c torsional rigidity is equal to

4IxIy
- 1-'

p

(3.6.7)

where Ix = i1l"ab3 and Iy = i 1l"a3b are the moments of inertia of the cross
section whilst I p denotes th e polar moment of inertia.

In t he case of a circular cross-section, warping is absent and the torsional
rigidity is equal to the polar moment of inertia. Saint-Venant was the first
who pointed out the fallacy of identifying the geometric torsional rigidity
with the polar moment of inertia (Coulomb) for a rod with any cross
sections but circular.
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6.3.7 Inequalities for the torsional rigidity

In what follows, the torsional rigidity for a rod with an arbit rary simple
connected cross-section is compared with the rigidity of circular and ellipt ic
rods. To this aim, we use eqs. (3.2.5), (2.5.5) and represent the torsional
rigidity in the form

C = 211 <Pdo = 211 ibdo - t , = 2 f sbdu: + f 1/J~~ ds - Ip •

s s r r

Turning now to eq. (2.1.10) and recalling that <P = 0 on the border we have

2 f tbdo: = ~ f (x2+ y2 ) (xnx +yny ) ds

r r

= ~ 11 (3x2+ 3y2 + x2+ y2 ) do = 2Ip ,

s

so that by eq. (2.1.12)

(3.7.1)

On the other hand

f 1/J ~~ ds = ~ f a~2 ds = ~ 11 tV
2

1/J
2
do = 11 [(~~r + (~~r] do

r r s s
(3.7.2)

as tV21/J2 = 2tV1/J . tV1/J . This proves that the rigidity of the rod is less th an
its polar moment of inerti a

(3.7.3)

except for the case of the circular rod (1/J = canst ) for which C = I p • A
more substant ial theorem has also been proved: for a given cross-sectional
area , th e rod of the circular cross-section has the maximum rigidity (Polya,
1948) .

A more accurate est imate follows from comparing with a certain cross
section So for which the solution of the torsion problem is known rather
than with the circular cross-sect ion. Assuming

1/J (x ,y) = 1/Jo(x,y) + f (x ,y) , (3.7.4)

where 1/Jo (x,y) is the solution for So , i.e. a function which is harmonic in
So however not satisfying the bound ary condit ion on T (since th e bound ary
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condition of the torsion problem is fulfilled on r o). The values of 1/;0 and
{No/ 8n are given on T as this funct ion is given in region B. Along with
1/;0 (x , y) the correct ing harmoni c function f (x , y) determines the solution
1/; (x ,y) of the torsion problem in B, with 1/; being equal to ! (x2+ y2) on
r.

Equation (3.7.1) now takes the form

1

81/; 1 (81/;0 8f )8n 1/;ds = 8n + 8n (1/;0 + 1) ds
r r

1 (
81/;0 81/;0 8 f) 18f

= 8n 1/;0 + 8n f + 8n 1/;0 ds + 8n f ds.
r r

As f and 1/;0 are harmonic functions , Green 's formula, Subsection 6.2.5,
yields

1 ~~ 1/;ods = 1 f :0ds = 1 1/;8~0 ds - 1 1/;0:0ds.
r r r r

Referring to formulae (3.7.1) and (3.7.2) and using the expression for 1/; on
the boundary we obt ain

C=Ip+ 11 '\71/;o''\71/;odo-1:0 (x2+ y2)do-1'\7f ·'\7fdo.
s r r

(3.7 .5)

The Nikolai inequality (1916) suggests the following expression for 1/;0

. 1. _ ~ (Ixl y)3/4 Ix - Iy ( 2_ 2)
'1"0 - J1i Ip + Up x y , (3.7.6)

where Ix,Iy and Ip = Ix + Iy are the moments of inertia and the polar
moment of inertia of area B, respectively. The above formula presents the
solut ion to the problem of torsion for a rod with an elliptic cross-sect ion
Bo. It can be easily proved by substituting the parameters of the ellipse
(see Subsection 6.3.6) and leads to solution (3.6.5). Now we have

11 '\71/;0 ' '\71/;odo = (Iy ~/x)2 11 (x2 - y2) do = (Iy ~plx)2 ,
S p s

1

81/; I - I 1 2 (I - I )2
8no (x2+ y2) ds = y I

p
x (xnx - yny) (x2+ y2) ds = YIp x ,

r r

and inserting into eq. (3.7.5) result s in the inequality by E.L. Nikolai (1916)

C d v - (Iy ~vlx) 2 - Jf Vf · V [do ~ 4I;v
1y

- Jf vt Vfdo CO 4I;r
1y.

(3.7 .7)
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an equality sign occurring for a rod with an elliptic cross-section. Evidently,
this estimate is more accurate than that in eq. (3.7.3) because the right
hand side in inequality (3.7.7) is less than I p .

6.3.8 Torsion of a rod having a rectangular cross-section

For the last hundred years or so, since the classical memoir by Saint-Venant ,
the problem of rod torsion has been and still remains the subject of numer
ous investigations. The results accumulated within this period can hardly
be comprehended and a wide variety of exact and approximate methods
of mathematical physics have been used to construct solutions. It is worth
mentioning the backward influence, that is, the problem of torsion served
as an example on which these methods were developed and the feasibility
of the efficient application was tested. In what follows , a few solutions for
particular regions are obtained.

Let us begin with the problem of torsion of an infinite strip -00 ::; x ::;
00, Iyl ::; b. In this simple case the stress function does not depend upon x
and is the solution of the boundary value problem

\721> = d
2

1> = -2'
dy2 '

The solution is

so that

T x z = -2Gay, T y z = 0

(3.8.1)

(3.8.2)

and the torsional rigidity for the part -a ::; x ::; a of the strip is equal to

a b

C = 2Jdx J(b2 - y2) dy = 1
36

ab3
.

- a - b

(3.8.3)

The solution of the boundary value problem for the rectangular region
[z] ::;a, Iyl ::; b

\721> = -2, x = ±a, y = ±b: 1> = 0 (3.8.4)

will be sought as the sum of solution (3.8.1) and the correcting harmonic
function f (x, y)

(3.8.5)

under the assumption a 2': b. Then

\72f = 0; x = ±a : f (±a, y) = y2 _ b2; y=±b:f(x,±b)=O.
(3.8.6)
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A particular solution of Laplace equat ion for the rectangular region which
sati sfies th e second condition in eq. (3.8.6) and is even with respect to x
and y is as follows

A
2k + 11Ty h 2k + 11TX

k COS - - -COS ---
2 b 2 b

For this reason, expanding f (x,y) in the series

~ 2k + 11Ty 2k + 11Ty
f (x,y) = c: Ak cos -2-b cosh -2-b

k=I

it is necessary to impose the following condition

(3.8.7)

~ 2k + 11Ty 2k + 11Ty 2 2f (±a, y) = L...t Ak cos -2-b cosh -2-b = y - b .
k=O

The coefficients Ak can be determined by multiplying both parts of this
. b 2k + 11Ty d i . . h ( b b)equat ion y cos -2-b an mtegratmg WIt respect to y over - , .

The result is

A cosh (28+1)lTa = 32 (_l) s+~ b2
s 2b 11'3 (28 + 1)3

and the series

32 00 (_l)k+l (2k+1)
_b2

'" lTY
11'3 ~ (2k + 1)3 2b

is a Fourier series for the even continuous function in the interval (- 2b, 2b) ,
this function being the parabola y2 - b2 for b ::; y ::; 2b and the parabola
b2 - (2b - y)2 for °::; y ::; b. Thus in segment [-2b ,2b] its sum is equal
to y2 - b2 which is required. Thus we have arrived at the solution for the
stress function

(28 + 1) lTX
32 00 (-lr+l cosh 2b (28+1)lTY

cI> = b2 - y2 + - b2'" cos .
11'3 ~ (28+ 1)3 cosh (28 + 1) lTa 2b

2b
(3.8.8)

The geometric torsional rigidity is equal to

a b [ (2k+1)lTaj

J J 16 192 b 00 tanh 2b
C = 2 dx cI>dy = -lTab3 1 - - - '"----=~-

3 11'5 a c: (2k + 1)5
- a - b k=O

= ca. G) , (3.8.9)
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where Co denotes the rigidity of the infinite strip (3.8.3). The maximum
shear st ress occurs at the points of th e contour nearest to the cent re of the
rectangular and is equal to

Tm ax = ITxzl x=o =
y= ± b

[
8 00 1 ]= 2Gab 1 - - L ----..,.-.-----,,----

n
2

8=0 (28 + 1)2cosh (28 ~:) na

(3.8.10)

Parameters Co and T~ax are calculated for the strip. The following table is
due to Saint-Venant and presents the values of It and h .

a/b 1,00 1,25 1,50 2 3 4 5 10 00

It (a/b) 0,420 0,514 0,584 0,681 0,783 0,838 0,870 0,932 1
h (a/b) 0,675 0,775 0,85 0,93 0,985 0,995 1 1 1

Table 6.1

6.3.9 Closed-form solutions

A wealth of closed-form solut ions were obtained by Saint- Venant. One pre
scribes a harmonic function 'Ij; (x,y) and looks for the contours on which

1
<I> = 'Ij; (x , y) - 2 (x2+ y2) + const = 0. (3.9.1)

Let us consider two examples.
1. Equilateral triangle. We take the third-order harmon ic polynomial

1
<I> = A (x3

- 3xy2) - 2 (x2+ y2) + D.

1 2
For A = - 6a ,D = 3" a2 we have

<I> = -~ (x3 - 3xy2 + 3ax2+ 3ay2 - 4a3 )
6a

= 6
1
a (a - x ) (x + 2a + yJ3) ( x + 2a - yJ3) ,

i.e. <I> vanishes on the following straight lines

x - a = 0, x + 2a ± yJ3 = 0,

(3.9.2)

forming an equilateral tri angle with height 3a. Figure 6.7 shows this triangle
and the family of curves <I> = const.
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FIGURE 6.7.

2. Circular rod with a circular longitudinal groove (Weber) , Fig. 6.8. In
polar coordinates, function <I> is given by

cosO 1 2
<I> = Ar cos 0 + B -

r
- - 2r + D. (3.9.3)

Let us take the origin of the polar coordinate system at the centre of
the groove. The equation for the contour of the circle of rad ius a with a
circular groove of radius b is as follows

Hence the function

1 ( 2 cos0 2)<I> = 2 b - 2ab2
-

r-
+ 2ar cos0 - r (3.9.4)

having the form required by eq. (3.9.3) is t he solut ion of the problem of
torsion for the considered region. The shear stress at the points of axis x
is equal to

8<I> I 8<I> I ( ab
2

)7 I = - Ga - = -Go: - = Go: r - - - a
y z y =O 8 8>" 2 '

x~o J e~ r

i.e. at the middle of the groove (r = b) and at the end of th e diameter
opposite to the origin of the coordinate system (r = 2a - b) the stresses
are respectively given by

7 (1) = Go: (b - 2a) 7 (2) = Go: (a _ b
2

) •
y z , yz 4a
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For a » b we have

IT~~ I = 2Gexa , T~2) = c s« (3.9.5)

The presence of a vanishingly small groove causes a st ress concent ration,
namely, the shear st resses in the middle of the groove t urn out to be twice
as much as the stress Goa for t he circular shaft .

6.3.10 Double connected region

The cross-sect ion of the twisted rod is an annular region S bounded by the
exte rnal conto ur I'0 and int ernal contour I'1, the regions in I'0 and I'1 being
denot ed respectively as So and SI , so that S = So - SI . The conformal
t ransformation of the circular ring a in t he plane ( = peifJ into S is assumed
to be given. The function carry ing out this t ransformat ion is given in a by
a Laurent series

00 00

n = -(X) n = - oo

(3.10 .1)

The radii of the circles 1'0 and 1' 1 transformed into f o and f l are denoted
as Po and PI respectively.

The stress function cI> solving the torsion problem for region S is given
by series (3.3.5)

cI> = cI>0 (x ,y) + C, cI>1 (x,y) ,

where, due to eqs. (3.3.2)-(3 .34)

(3.10.2)

\72cI>0 = -2;

\72<1>1 = 0; <1> 1 = 1

(3.10.3)

on r. . (3.10.4)
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It follows immediately from conditions (3.10.4) that

1 P
If>1 = -p-ln-.

In ---.!. Po
Po

(3.10.5)

Assuming that the stress function If>* (x, y) for the solid rod (Le. for
region S) is known we put If>o (x, y) in the form

00 (k k)If>o(x,y) = If>* (x ,y) - L Pk - P~ (bkCosk1?+b~sink1?) - b~l ln~ .
k=l Po P In - Po

Po
(3.10.6)

Indeed , ~lf>o = -2 and If>o is equal to zero on fo. It remains only to subject
the constants bk,b~,bo to condition (3.10.3) on fl. Let

X(1?) = If>* (x,y)lrl

= e, C~OOpi (an cosnD- ~n sin nD) ,n~oopi (an sin nD + ~n cosnD) )

designate If>* (x,y) on f 1 (on 1'1) ' It is a 27f-periodic function of 1? which
can be presented by the trigonometric series

00

X (1?) = Xo + L (Pk cosk1? + qksin k1?) ,
k=l

(3.10.7)

and the unknowns bk' b~, bo can be expressed in terms of the coefficients of
this series. The solution (3.10.2) now can be set in the form

(3.10.8)

Should the first term be preserved, the expression (3.2.6) for the complex
function of torsion will contain a term proportional to In ( and the warping
w (x, y) will no longer be single-valued. This yields 0 1

271" 271"

0 1 = Xo = 2-JX (1?) d1? = 2
1 JIf>* (x, y)lr d1?27f 7f 1

o 0

(3.10.9)
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Let us now proceed to calculating the geometric rigidity. By virtue of eq.
(3.4.2) for the double-connected region we have

C = 2XOSI + 2!! if? (x ,y) do = 2XOSI + C, - 2!! if?, (x, y) do-

s ~

00 k Po 2k 271"

22: 2k~ 2k! (l- POk ) PdP! (Pk cosk'19 + qksink'l9) Iw' (()1
2 eo.

k=I PI Po P
Pi 0

(3.10.10)

Here C, denotes the geometric rigidity of the solid rod (of area So bounded
by contour r o) and the area element dCT is replaced by the product of the
area element pdpd'19 and Iw' (01 2

, while integrating over the area of the
circular ring CT .

The projection T s of vector T on the tangent to the trajectory of the
shear stress if? = const is given by eq. (3.1.12), i.e.

as Sn = Iw' (OI8p. In particular, on contours r o and r l belonging to the
family if? = const, we have

)
[
Oif? ' 2 ~ k ptp~ . ]

(Ts 0 = <Go. on - Iw' (() ILJ - 2k _ 2k (Pk cos k'I9 + qksm k'l9) ,
k=I Po PI Po ro

[
oif? look p2k + p2k ]

(Tsh = -c« on' - Iw' (() I2: - ~k _ ~k (Pk cos kfJ+ qk sin kfJ)
k=I PI PI Po r

i

(3.10.12)

The magnitude T of the vector of shear stress is equal to the absolute value
of expression (3.10.11).

6.3.11 Elliptic ring

The cross-section S is a ring-shaped region bounded from the inside and
outside by the ellipses T0 and I'1 which have identical focal points. The
conformal transformation (3.10.1) of the ring CT into this region is carried
out by the formula

z = x + iy = w (0 = R ( ( + 7) = R [(p + ; ) cos '19 + i (p - ;) sin '19]

(3 .11.1)
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(3.11.5)

(3.11.4)
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where the constants R and m are determined in terms of the semi-axes
(ao , bo) and (aI , bd of ellipses fo and f l

R = ao + bo = al + b, m = ao - bo = al - bI PI' }
2 2PI ' ao + bo a I + bI '

a I + bI ao - bo
PI = = .

ao + bo aI - bI

Here the internal and external radii 'Yo and 'YI of the circles bounding the
ring o are taken to be equal to Po = 1, PI < 1, thus 0 < m :S PI :S P :S
1.R > 0 and the family of ellipses P = const consists of the cofocal ellipses
with the dist ance 2c = Ja2 - b2 = 4Rjrn between the foci.

The stress function <P* (x ,y) for the solid ellipse (3.6.2) takes the form

R
2

[ 2 2 2 x
2

2 y2]
<P*(x ,y)=2(I+m2) (l-m) -(I-m) R2-(I+m) R2 '

(3.11.3)

and its value on ellipse I'1 is given by

<P* (R (PI + ~) cos 13, R (PI - ~) sin 13) = X (13) =

2 2 (1 )2 2 PI - m m
=R (I-PI) PI 2-1+m2 cos213.

Hence, by virtue of eqs. (3.10.9) and (3.10.8)

1 2 22( 2) PI - mCI = -2 R 1 - PI 2 '
PI

mR
2 PI - m

2( 1 2)<P (x ,y) = <P* (x,y) + 2 2 2. - P cos 213.
1 + m PI + 1 P

The geometric torsional rigidity is due to eq. (3.10.10)

C = C* + R2 (1 - pi) PI ~Im
2

S 1 - 2 / / <P * (x,y) do +
51

mR2 p2 m2/1 (1 ) /21T 2
2--2 \- 2. - p2 dp Iw' (()I cos 213d13.

1 + m PI + 1 P
PI 0

Here, by eq. (3.11.3)

2 I~ ( )2I;]
(1 - m) R2 - 1 + m R2 '
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where I~ and I~ denote the moments of inertia of region 51

2pi - m
2

1 1 2 ( m)2 I 1 2 ( m)2
51 = 1rR pi , Ix = "4 R 51 PI - PI Iy = "4 R 51 PI + PI

Noticing that

Iw' «()1 2 ~ w' (O w' (() ~ R
2 (1- ~) (1 -~)

(
m 2 2m )

= R2 1 + - - - cos 2{)
p4 p2

we obtain the following expression

{
2 [m(1-m2) 1( m) 2]

C = C* - R 51 1+m2 + 2 PI - PI +

m2 p2_m2(1_ p2)2}
21rR4 - -

2
1 2 1

2
, (3.11.6)

1 +m PI 1+PI

The value in the braces describ es the decrease in the rigidity due to cavity
51 .

6.3.12 Eccentric ring

The cross-section of a twist ed rod is an annular region 5 of plane z bounded
by the external circle I'0 of radius ro and the internal circle I'1 of radius
r l. The dist ance between the centres of the circles is denoted as e. The
function performing the conformal transformation of the annular ring (1 in
the plane ( = pei{) into region 5 has the form

z = x + iy = w (() = _(_ = P (cos {) - ap) + ip sin {) (3.12.1)
1 - a( 1 + a2p2 - 2ap cos{) ,

where a denotes a real-valued constant and ap < 1 in region (1 (PI :::; P :::; Po) '
The circles 10 and I I of the radii Po and PI ' i.e. the internal and external

boundaries of ring (1 , respectively, are transformed into the circles f o and
I' 1 ofregion 5. The abscissas of the points where these circles intersect axis
x are equal to

x?= Po xg= _ Po . xi = PI x~ = _ PI
1 - apo ' 1 +apo ' 1 - apI ' 1 +aPl '

see Fig. 6.9. Therefore, the abscissas of the centres of circles f o and f l ,

their radii and the distance between their centres are as follows

_ 1 (0 0) _ aP6 }
Co - -2 Xl + X2 - 1 2 2 '

- a Po ()
2 3.12.2

_ 1 (1 ,I) _ apl
Cl - -2 XI +X2 - 1 2 2 '

- a PI
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FIGURE 6.9.

_ 1 (0 0) _ Po _ Pl .}ro - -2 Xl - X 2 - 1 2 2' rl - 1 2 2'
- a Po - a Pl

e = Co - Cl = a[r5- rA- (C5 - cD].
(3.12.3)

Three equations (3.12.3) allow one to determine the parameters Po ,Pl ' a in
terms of th e geomet ric dimensions of the cross-sect ion 8

The equations for circles f o and f l are written down as follows

(3.12.5)

The st ress function for a solid circular rod of cross-section 80 is set in the
form

<I>* (x,y) = ~ [r5 - (x - CO)2 _ y2] , (3.12.6)

compare eq. (3.6.2) for a = b, and, by virtue of eqs. (3.12.5) and (3.12.3),
its value on I'1 is given by

(3.12.7)
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Here we used an expansion for xl r 1 in a trigonomet ric series obtained with
the help of eq. (3.12.1). Using eqs. (3.10.8) and (3.10.9) we have

(
2k )l - ~k cosk19, (3.12.8)

where a = pi!P5and C1 = e/ 2a.
The geometric rigidity is given by eq. (3.10.10) where C. = [ p, t hen

Noticing that

we obtain

P 2n

ak
= J (l- ~kk) pdp J Iw' (() 1

2
cos k19d'l9

P I 0

Po 2 2

=21TJ[(a )2k _(a )2k] (l+a p +k) pdp .
p Po 1 - a2p2 (1 _ a2 p2)2

P I

By introducing a new variable q = 1 - a2p2 , we can easily estimate the
integral



(3.12.9)
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Thus we obtain

Inserting the expressions for qo , q1 and utilising relationships (3.12.2) and
(3.12.3) for the geometric parameters we arrive at the following expression
for the geometric rigidity

[

11T 4 e2 00 o:k (ap )2k]
C = C* - _1 + 2ne2r2 + 2n- '"' k 1 .2 1 a2 L.J 1 _ o:k

k=l

The series in this equation can be transformed to the form suggested by
N.!. Muskhelishvili

(3.12.10)

(3.13.1)

(3.13.2)

6.3.13 Variational determination of the stress function

Following the assumptions of the semi-inverse method of Saint-Venant it
is necessary to consider all the relationships of the problem of torsion as
being prescribed if they do not depend upon the varied stress function. In
particular, the expressions for the displacements u and v on the end faces
z = 0 and z = l follow from eq. (3.3.2) and are given by

z = 0: U = v = 0; }
z = l : U = -o:ly, v = olx.

According to the principle of minimum complementary work, Subsection
4.2.5, the state of stress in the solid differs from all statically admissible
states of stress (satisfying the static equations in the volume and on the
surface) in that it renders a minimum to functional W, which is the com
plementary work . In the problem of torsion, the only nonvanishing stresses
are shear stresses 7 xz and 7 yz , hence W takes the form

I

W = 2~1dz 11 (7;z + 7;z) do - 11 (U7 xz + V7 yz) do.
o S1 s,
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Here the surface integral is over the part of the border where the displace
ments are prescribed. In the considered case, this part of the surface reduces
to surface 51 of the end face z = I because of the zero displacement on the
end face z = O. The system of stresses T xz and T yz given by formulae (3.1.5)
identically satisfies the static equation in volume, eq. (3.1.3), which allows
us to put expression (3.13.2) in the form

In addition to this , the static equation on the lateral surface must hold,
that is,

(3.13.4)on f:
a<I>

Txznx +Tyzny = Go: as = O.

In other words, on the contours bounding the cross-section 5 function
<I> minimising functional W must satisfy conditions (3.3.1). Repeating the
above calculation we have

and the minimised functional is set in the following form

J ~ ~ 1/[(~=)2 + (:) 2 - 4~] do - 2trc.s; (3.13.5)

where the unnecessary constant multiplier is omitted. The variation of the
integral of the sum of squares of the first derivatives is presented as follows

8!Jrr[(a<I»2 + (a<I»2] do = Jrr(a<I> a8<I> + a<I> a8<I» do
2 } ax ay } ax ax ay ay

s s

= - JJ ~2<I>8<I>do +f ::8<I>ds,
s r.

where f * denotes the set of contours fa, I'1, . . . , I'n bounding 5 and n; is
the vector of the outward normal to 5 (directed outs from 5 on fa and
into regions 5k on contours f k ) .

As mentioned above, function <I> minimising functional J must vanish
on fa and be equal to a priori unknown constant values Ck on f k . This
implies that

(k=1 ,2, . .. ,n),
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where 8Ck are arbit rary. We thus arrive at the relationship

6J ~ - il.<I> (\12<1>+ 2) do ~ ~ 6Gk (t .:ds - 2Sk) ~ 0,

(3.13.6)

where U k is the normal to r k directed into S . Hence, provided that the
comparison functions cP satisfying conditions (3.3.1) are prescribed, the
variat ional problem (3.13.5) is equivalent to the boundary value problem
for Poisson's equat ion (3.1.8) stat ed earlier . On each of the contours r k the
solut ion of the variational problem sat isfies the condit ion of the theorem
on circulat ion ensuring that the warping w (x,y) is single-valued. Equa
tion (3.13.6) is the variational equation for Galerkin 's approach, Subsection
4.2.4.

It is easy to obt ain the minimum value of functional J . To this end, it is
sufficient to reset eq. (3.13.5) in the form

J ~ ~ {il [(~:)' + (~:)' -2+0-2~GkSk}-

(II <I><kJ +~GkSk)

and notice that the expression in the braces is equal to zero. In order to
prove this, it is sufficient to perform the following transformation

JJ [(~:)' + (:)'] do ~ - ii <I>\l
2<1><kJ+f ::. <l>ds

s s r.

~ 2 (II <l>do +~ GkS, )

Hence, due to eq. (3.4.2)

1
=--C

2 '
(3.13.7)

th at is, the minimum is equal to half of th e geometr ic rigidity with a minus
sign. If we satisfy approximate ly the condition of the minimum with the
help of function cp* and calculati ng the corresponding geometric rigidity
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we have

(3.13.8)

i.e. C' yields the lower bound of the geometric rigidity.
The second way of the variational stat ement of the problem of torsion

is based on the principle of minimum potential energy, Subsection 4.2.2.
In Chapter 4 thi s functional was denoted by <P which designates the stress
function in the present chapter. For this reason, the minimised function al is
denoted here as Q and is written down in the form of eq. (2.1.3) of Chapter
4

Q = ~Gl11b~z + /';x)do - 11 (uFx+vFy)do,
S S '+SO

(3.13.9)

where SI + SO denotes the surfaces of the end faces where the external
forces are prescribed. The displacements are determined by means of the
basic assumptions of the solution of Saint-Venant 's problem, thus , they are
not allowed to vary and that is why the second term in expression (3.13.9)
is omitted. On the other hand ,

ow ou (O ip )
/' xz = ox + oz = 0' ox - Y ,

ow Bu (O ip )
/' yz = oy + oz = 0' oy + X ,

hence ignoring the multiplier Gl0'2 we arrive at the problem of minimising
the function al

J, ~ ~ ij [(~~ -y) 2 + (~ + X)']M (31310)

~ Hj [(~~)' + (~) }o+ ij (r.~~ -y~~) do+ ~Ip

Its variation is equal to

jj [(Oip ) Ooip (O ip ) Ooip ]oJ1 = - - y - + - + x - doox ox oy oy
S

= - 11Oip\7
2
ipdo +f Dip (~~ + xny - ynx ) ds,

S r.
(3.13.11)
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and Euler 's equations for this variational problem reduce to Neumann's
boundary value problem for Laplace equation

in S: \J2r.p = 0; On r. . ~~ = ynx - xn y • (3.13.12)

It follows from the expression for 8J1 that function ip (x,y) minimising
functional J1 satisfies the boundary condition (3.13.12). Therefore, this COn
dition can be ignored while choosing r.p (x, y) for the approximate solution
to the problem .

The geometric torsional rigidity can be presented in terms of function
r.p(x ,y) in the form

(3.13.13)

Referring to eqs. (3.7.1), (3.7.2) and (3.2.4) we have

Returning to eq. (3.13.10) we obtain

111
J1 = - (I - C) + C - I + - I =-C2 P P 2 P 2 ' (3.13.14)

that is, the minimum of functional J1 is equal to half of the geometric
rigidity. Hence, calculating rigidity C** by means of function r.p** (x, y) ,
which minimises functional J1 approximately, we arrive at the upper bound
for the geometric rigidity

J** = !C** > J =!C C** > C.
1 2 1 2' (3.13.15)

Clearly, formulae (3.13.7) and (3.13.4) are the results of the general rela
tionships (2.2.4) and (2.5.9) of Chapter 5 applied to the problem of torsion .

6.3.14 Approximate solution to the problem of torsion

In what follows we consider two examples of applying Galerkin's approach
to solving the problems of torsions of the rods with rect angular and trape
zoidal cross-sections .
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In the case of a single-valued region the expression for variation of the
minimised functional J is given by

(3.14.1)8J = JJ (V'2 <I> + 2) 8<I>do.
s

1. Rectangle. Following the modification of Galerkin 's approach sug
gested by L.V. Kantorovich we take

(3.14.2)

which satisfies the boundary conditions on sides x = ±a,y = ±b of the
rectangle. Th e dependence of the sought solution on y is thus prescribed
whereas the dependence on x will be obtained from condit ion (3.14.1).
The solution is expected to be rather accurate for a > b since it contains
the solution for an infinite strip corrected by account ing for the boundary
conditions at x = ±a.

Now

V'2 <I> = -2X (x) + (b2 - y2) X" (x) ,

8<I> = (b2 - y2) 8X (x)

and condit ion (3.14.1) reduces to the form

a b

J8X (x) dx J[(b2 - y2) X" (x) - 2X (x) + 2] (b2 - y2) dy = O.

- a - b

Int egrating with respect to y and ignoring the constant multiplier we arrive
at the relationship

a

J8X(x) (XII - 2~2X + 2~2) dx = O.
- a

(3.14.3)

It must hold for arbitrary 8X (x) , hence

The solution of this differential equat ion subj ected to the boundary condi
tion (3.14.2) is

(3.14.4)If x
cosh -

2b
X(x)=l- If '5 a

cosh -
2b
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The torsional rigidity is equal to

For a square (a = b) we obtain the solution coinciding with the exact
solution C = 0.419 1

3
6 b4 (see Subsection 6.3.8) to three significant figures.

A lower level accuracy is achieved for the maximum shear stress, the error is
about 5% for a square. This is a general feature of all approximate methods,
namely that the obtained values of the integral characteristics are more
accurate than the local values of the derivatives of the sought function. It
is relatively simple to estimate the volume of the surface and it is more
difficult to obtain the details of the surface .

Clearly, the suggested solution can be made more accurate by assum
ing that <P (x,y) depends upon several sought functions, for example , by
assuming the following

<P (x,y) = (b2 - y2) [Xo(x) + y2Xl (x) + y4X2 (x)], Xk (±a) = O.

Functions X k (x) are determined from a system of linear differential equa
tions with the above boundary conditions, the number of equations in the
system being equal to the number of unknown functions. It is evident that
the calculation becomes more difficult.

The Kantorovich method implies that the boundary value problem for
the partial differential equation (Poisson equation) is replaced by a bound
ary value problem for the ordinary differential equation. One can avoid
solving differential equations at all and reduce the problem to a system
of linear differential equations by prescribing the form of the solution. For
instance, we take for a rectangle

<P = (b2 - y2) (a2 - x2) (eo + C1 x2 + c2y2 + C3x2y2 + ... ) .
Then

O<P = (b2 - y2) (a2 - x2) (8co+ X20C1 + y28c2 + x2y2oc3+ ...)
and the arbitrariness of variations 8ck leads to the above system of linear
equations.

In the case of a rectangle, keeping only a single constant Co we have

a aJdx Jdy (V'2 <p + 2) O<P =

-a -a
a a

8 Jdx Jdy (a2 - x2) (a2 - y2) [1 - eo (a2 - x2) - Co (a2 - y2)] oca = 0

o 0
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and after the calculation and omitting the constant multiplier, we arrive at
the relationship

(1- ~a2co) DcO = O.
Because of the arbitrariness of variation bco we obtain

5
Co = 8a2 '

5 ( x
2)

( y2)4> = _a2 1 - - 1 - - .
8 a2 a2

The errors for the geometric rigidity and the maximum shear stress are
-1.2% and -6.2%, respectively. Taking two coefficients (co,c! = C2), a
system of two linear equations for their determination is obtained. The
solution has the form

2( X
2

) ( y2) [1295 525 (2 2)]
4> = a 1 - a2 1 - a2 2216 + 4432 x + Y

and the errors for the geometric rigidity and the maximum shear stress are
-0.2% and -4.3%, respectively.

Kantorovich's method yields nearly the same accuracy as the first ap
proximation. This is to be expected as the solution (minimum of the func
tional) was sought within a more general class of functions since function
X (x) was determined by the solution of the constructed variational prob
lem rather than being prescribed in advance.

2. Trapezoidal cross-section. Evidently, the successful application of Kan
torovich's method is due to the feasibility of integrating the obtained differ
ential equation. Another example is the case of a trapezoidal cross-section
bounded by the lines

x = a, x = a + h = b, y ± x tan 00 = o.

The boundary conditions are satisfied when one takes

4>= (y2- x2tan2oo)X(x), X(a)=O , X(b)=O.

Calculation yields

a+h z tan oJsxa« J (\72 4> + 2) (y2 - x2tan2
00) dy =

a -xtano

a+hJbX(x) [~~x5X/I(x)tan5oo+136x4X'(x)tan5oo+
a
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and leads to the differential equation of Euler's type

x2 X" (x) + 5xX' (x) + ~ (1 - cot2 a) X (x) = ~ cot2 a

which is integrable by quadratures. The solution is as follows

where '1'1 and 1'2 are the roots of the characteristic equation

2 4 5 cos2a
l' + l' - - -- = 0.

2 sirr' a

For a equilateral triangle (a = 0, a = 5n/6) we obtain 1'1 = 1,1'2 = -5
and the second root should be neglected since function 1> (x, y) must be
bounded. At the same time , the first condition (at the vertex of the triangle)
is neglected as well. Then we arrive at the solution

which is the exact solution, ef. eq. (3.9.2), where b denotes the height of
the triangle.

The case of an isosceles right-angled triangle (a = 45°) results in the
differential equation

5
x2 X" (x) + 5xX' (x) = 2'

The corresponding characteristic equation has the root 1'1 = °and the
neglected root 1'2 = -4, whilst the particular solution is sought in the form
of Clnx. Then we obt ain

5 (2 2) X1> = 8 y - x Inb'

The geometric rigidity obtained by means of this solution is equal to

If 5 4 4
C=2 1>do= 4Sb =0,104b,

s

whereas the exact solution obtained by L.S. Leibenzon is given by the series

C = b4 (! _64 f 1 1 +COShk1r)
3 n5 k5 sinh kat

k=1
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and leads to the same numerical result . The maximum shear stress is in
the middle of the hypothenuse and is equal to

I
o<fJ I 5T m ax = Ga ~ = -8 Gab = 0.625Gab,
uX x=b

y=o

whereas the exact solution yields the numerical multiplier of 0.652.
More accurate calculat ions indicate that the values of the geometric rigid

ity obtained by varying J lead to a lower bound, as was stated in Subsection
6.3.13.

6.3.15 Oblong profiles

In the following we use the coordinate system with a supporting curve
I" . The position of point M* on I" is given by the curvilinear abscissa a
measured from the point Mo,see Fig. 6.10. The position vector of point
M * on the support ing curve, the unit vector of the tangent to this curve
at point AI* and the unit vector of the normal (opposite to the principal
normal) are denoted by ro (a) , t and n respectively, so that

dro dt
t = do ' do

t
,

p
(3.15.1)

where 1/ p denotes the curvature.
The posit ion of any point M of the profile of the cross-section is given by

the curvilinear coordinates a and ( , where ( is counted along the normal
to the supporting curve, see Fig. 6.10. The position vector r of this point
is as follows

r = ro (a) + n(, (3.15.2)

such that , due to eq. (3.15.1),

dr=t(I+~)da+nd(, ds2=dr ·dr= (1+~rda2+d(2. (3.15 .3)

FIG URE 6.10.



(3.15.5)

468 6. Saint-Venant's problem

The Lame coefficients and the area element in the coordinate system <T, (
are equal to

u, = 1+~, H( = 1, do = (1 + ~) dade, (3.15.4)

The Laplace operator and the gradient over the scalar are set in the form,
cf. eqs. (C.5.5) and (C.3.8)

yr2ep __1_[!--_1_ oep +!..- (1 + f) oep]
- 1 + ~ Bo1 + ~ O<T o( p a( ,

1 oep aep
yrep = 1 + f t O<T + n 0('

p

The functional (3.13.5) to be minimised is presented in the form

J = Qdo 7[1 ~ f (~:)' + (1+ D(~~)'-4 (1+ D~] de,
a[ o[(a) p

(3.15.6)

where it is assumed that

<T1 ~ <T ~ <T2, 81 (<T) ~ (~82 (<T) .

1. Sector of a thin circular ring. For a thin sector with mid-radius p,
central angle 2a and thickness 28 we have

-ap ~ <T ~ ap, 8 < ( < 8.

Following Kantorovich's method we take

ep = (82 - (2) f (<T), f (±ap) = o.

Then
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where terms of order (8/p)2 and higher are omitted. We arr ive then at the
variational problem , for which Euler's equation is set in the form

d 8L 8L (1/ 5 5 )
da 8f' - 8 f = 2 f - 282 f + 282 = 0,

thus

{Sa
f = 1 - cosh V28 , <P = (82 - e)

Aap
cosh -

2 8
(

1 _ coshA~ ).
Aa p

cosh -
2 8

It is clear that under the adopted approximat ion (the curvature is ne
glected) the obtained solution repeat s solution (3.14.4). According to eq.
(3.14.5) the geometric rigidity is as follows

16 3 ( A8 Aap
)C = - ap8 1 - - - tanh - - .

3 2 a p 2 8

For a = n, i.e. for a cut circular ring, we obt ain

16 3 ( ~ 8 A 57rP) 16 3 ( ~ 8 )C=-7rp8 1- --tanh - - ';:::; - 7rp8 1- -- ,
3 57rp 2 8 3 5 7rp

whereas the rigidity of the uncut circular ring is equal to

therefore

2. Symmetric aerofoil. The region is taken as being symmetric about axis
x and bounded by the curves having the equat ions

(3.15.7)

see Fig. 6.11. These curves are tangent to axis y at the origin of the coor
dinate system and intersect axis x at points 0 and b

'l/J (O) = 0, 'l/J (1) = 0, 'l/J' (0) = 00.

It is also assumed that the derivative 'l/J' (t) is cont inuous and is zero only
at t = t; in the interval (0,1) . The values of b and 2a'l/J (t*) determine
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t=f
t=1

FIGURE 6.11.

respectively the chord and the width of the profile. The profile is assumed
to be thin, that is a « b. The above conditions are met by the curves

where 0 < m, 1,p > 0, q > 0, i ; = (1 +pq/m)-l /P. For example, a semi
cubic parabola is prescribed by p = q = 1,m = 1/2 whereas p = 1, q =
m = 1/2 prescribes an ellipse with the major and minor axes b and a and
the cent re at the point (b/2,0) .

The supp orting curve is axis x and the integral to be minimised can be
presented in the form

where ,X = alb is a small parameter. Let us limit our consideration to the
following form of function 1> vanishing on the contour of the region

(3.15.8)

where A is a constant to be determined. We arrive at the relationship

1 1/J (t )

J (A) = 1a4Jdt J[A2,X2 1/121/1,2+ A21]2 - A (1/12- 1]2) ] d1]

o 0

and the condition of minimum J' (A) = 0 yields

1 2

J1/131/1' dt
10 = .=..0 _ (3.15.9)
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The lower bound for the geometric rigidity leads to the expression

1 ,p(t ) 1

C- = 4ab J dt J <I>d1] = ~a3bA J'lj}dt.
a a a

The upper bound C+ can be obtained by minimising integral (3.13.10)

(3.15.11)

The minimising function is taken in the following form

r.p = B xy + Cby = ab (B1]t + C1] ) ,

where the linear term corresponds to placing the origin of the coordinate
system in the a priori unknown point Xa = -bi on axis x . Parameters B
and C are obt ained from the condition of the minimum . A cumbersome cal
culat ion carried out in the pap er by L.S. Leibenzon! result s in the following
rigidity for the semi-cubic parabola

(3.15.12)

whilst

This calculat ion is sufficiently accurate for a long and narrow profile.

6.3.16 Torsion of a thin-walled tube

This profile is bounded by the external fa and internal I'1 contours. The
contour I" lying in the middle between fa and f 1 is t aken as a supporting
curve, such that in the curvilinear coordinates the equat ions for contours
(J and ( can be set in the form

fa :

I Leibenzon L.S. Variational methods of solving problems of the theory of elasticity
(in Russian ). Collect ion of works, P ublishers of the USSR Academy of Sciences , 1951,
pp. 324-356.
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where 8 (a) denot es the thickness of the wall of the tube, Fig. 6.12. The
st ress function is given in the form

(3.16.1)

that is, it vanishes on f o and is equal to an a priori unknown constant CI

on fl. This form of <I> is acceptable for a small thickness of the wall. From
a perspective of the membrane analogy, contour f l carries a disc subjected
to the vertical displacement CI , contour f o is fixed while the membrane is
locat ed in the thin annul ar slot between these contours. The form (3.16.1)
for <I> is justified by neglectin g the curvature of the surface of the curved
membrane in the transverse direction of the slot .

Due to eqs. (3.13.5) and (3.1.5.6) the minimising functional J is set in
the form

Let s" and s+ denote the areas of the ring-shaped regions between the
contours (f l , f* ) and (T" , f o) respectively. Clearly, s" + s+ = S which is
the area of the contour. Then we have

n

FIGU RE 6.12.
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therefore

6/2

2C151+2f da J (1 +~) <pd~ = 2C15 ; +112C1f 6; da ,

r- - 6/2 r-

where 5i = 51 + s+ denotes the area bounded by the supporting contour
I'". Calculation yields

[
,2 ( 1 +~ )]1 2 f da f 6 3 2p 2J = 2"C1 8 + 64 P In -6 - p 6 do -

r' r- 1 - 2p

2Cl (Sj + ;4 t~ da)
or when neglecting the terms of the order of (6/ p)2

1 2f 1 ( 1 ,2) (* 1 f 6
2

)J = 2"C1 r."8 1 + 126 da - 2C1 51 + 24 r- r;da .

The condition of minimum oJ/oC1 = 0 yields

(3.16.3)

(3.16.4)

1 f 6
2

5i + 24 r;da

C1 = 2 (r.2)tJ 1+ ~~ do

By virtue of eq. (3.13.8) the expression for the geomet ric rigidity (the lower
bound) is present ed in the form

(3.16.5)

Under the assumption of a smoot h change in the wall thickness, that is
6' (a) « 1, and a small curvature, these formulae are written down in a
simplified form

J = ~C2f da - 2C 5*2 1 6 1 l '

r '

45*2
C =_l_,

"Y
(3.16.6)
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which corresponds to prescribing functional J in the following form

(3.16.7)

and neglecting the difference 8 - - 8+ . It is necessary to add that the original
linear dependence of the stress function <I> on (, eq. (3.16.1), calls into ques
tion the applicability of the refinements (3.16.3) and (3.16.5). For example,
prescribing <I> in the form

1 ( 2') ( 4(2)<I> = -01 1 - - + B 1- -
2 8 82 '

such that <I> = 0 on f o and <I> = 0 1 on f 1 , and determining the constants
0 1 and B from the conditions of the minimum of function al J , eq. (3.16.2),
one obtains the expression for the geometric rigidity 0 which differs from
eq. (3.16.5?

6.3.17 Multiple-connected regions

The stress function is assumed to be present ed in the form (3.3.5) where
<I>o , <I> 1 , .. . , <I>n are the solutions of the boundary-value problems (3.3.2)
(3.3.4). The system (3.3.1O) of linear equations serves for searching the
unknown values of O k of the st ress function on the internal contours f k .

The same system is obt ained by searching the minimum of integral J with
respect to const ants Ci, By eqs. (3.13.5) and (3.3.5) we have

J = ! Jr{ [(8<I>0 +t c.8<I>k) 2 + (8<I>0 +t c,8<I>k) 2

2 j 8x k=l 8x 8y k=l 8y

4 ( ~o +t,G,~,) ] do - 2t,G,S" (3.17.1)

2T he solut ion for which q, is determined by the solut ion of Poisson 's differential
equation \72q, +2 = 0 in the form of a series in term s of powers of pa rameter 8/1 (I is th e
length of conto ur r. ) is derived in Chapter 7 of the mon ograph by N.Kh. Arutyunyan
and B.1. Abramyan , see Bib liography to Cha pter 6.
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and the minimum conditions are set in the form

f)J = ~ c, jrr (f)q,k f)q, s + f)q,k f)q, s) do-
ecs ~ 1 f)x Ba: f)y f)y

2 {Ss + jrr[q,s _ ! (f)q,o f)q,s + f)q,o f)q, s)] dO} = 0J 2 B» f)x f)y f)y
s

or

where

n

L CkBks - B, = 0, S = 1,2 , . . . ,n,
k= l

(3.17.2)

B = jj (f)q, k f)q, s f)q, k f)q, s ) d = f iF.. f)q, sd = f f)q, sdks £:l £:l + £:l £:l 0 'l'k £:l S £:l S ,ox ox uy uy oti otu;
s r- r -

(3.17.3)

(3.17.4)

These transformations use t he definitions of functions q,o ,q,l , ' " , q,n
by relationships (3.3.2)-(3.3.4) . We arr ive then to formulae (3.3.10), the
symmetry of matrix IIBksl1 requiring no proof, d . Subsection 6.3.5.

It is easy to prove that t he determinant of thi s matrix is not equal to
zero (it is positive) . Ind eed, writing the expression for the st ress function
q, (x,y) in the form

n

q,(x , y) = L Ckq,k( x ,y)
k=O
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FIGU RE 6.13.

Th is is a positive definite quadratic form of variables Co, C1, . • . , Cn' By
Sylvester's theorem, the determinant of the coefficients and all the diagonal
minor determinant s are positive, among them the determinant

IBksl (k,s= 1,2, . . . ,n).

By way of an example let us consider a triple-connected profile which
is a thin-walled tube with a cross-piece. The supporting curves I'[ , r i2,rz
are the arcs ACB , BA, BDA with the corresponding abscissas 0'1 ,0'12 ,0'2 ,

Fig. 6.13. The external contour ro and the contours of the openings r1,r2
are given by the following funct ions of coordinate (

r o : ( = 81 for 0' = 0' 1 , (= 82 for 0' = 0'2 ,
2 2

I'i : ( = _ 81 for 0'=0' 1, (= 812 for 0' = 0'12 , (3.17.5)
2 2

r 2 : ( = _ 82 for 0' = 0'2 (= _ 812 for 0' = 0'1 2 .
2 2

for 0' = 0'2 .

q> (0', () =

It allows one to suggest the following form for the stress funct ion

~ C1 (1 _2()
2 81

~ C1 (1 + ~) + ~C2 (1 -~)
2 812 2 812

~C2 (1_2()
2 82

(3.17.6)

The integral over the area S of the profile is the sum of three integrals

6d 2 6, 2 / 2 62/ 2

Jda , J(... ) d ( + JdO' I2 J(.. .)d(+Jd0'2 J(.. .) d (,

r i - 6d2 r i 2 -6 ' 2/ 2 q - 62/2
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and functional J , byeq. (3.16.7) , can be set as follows

J = ~ [CfJd171 + (C1 - C2)2 Jd
1712 +ciJd172] - 2C1S; - 2C2S2·2 01 012 02

r: r ~2 r i
(3.17.7)

The constants C1 and C2 are obtained from the following system of two
equations

Introducing the notation

we obtain

C1 = ~ [Sj h12 + 12) + S21121 , }

C2 = ~ [Si112 + S2 h12 + 11)] '

6. = h I + 12)')' 12 + 1 112'

(3.17.9)

The geometric rigidity of the profile is given by

C = 2C1Si + 2C2S2 = ~ [h12 + 12) Sj 2+ 2,12SjS2 + h12 + I I) S;2] .

(3.17.10)

The shear stresses in the tube wall and in the cross-piece are determined
from the relationships

~11=0:I:::.[Sih12+12)+S2r121 on r.,

T =Go: I~~ 1= IC1
- C2

1 - _2- IS*'"V - S*'"V I on ru.., 012 - 0121:::. 1 /2 2 /1 12,

~: = 0:1:::. [Sj'12 + S2 h12 + I I )] on f 2·

(3.17.11)
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If the profile is symmetric, i.e. '"Y1 = 1'2 = 1',5~ = 52 = 5* , the stress in
the cross-piece is absent and removing the cross-piece does not affect the
geometric rigidity. This also follows from formulae (3.17.10) and (3.16.6),
however in the latter formula 5 * and l' need to be replaced by 25* and 21'
respectively.

The explained method for approximate calculat ion can be generalised
easily to the profiles of arbit rary connect ivity and app ears to be more
simple than the approaches based on the theorem of circulation of shear
stresses.

6.4 Bending by force

6.4.1 Stresses

Saint- Venant 's solut ion of the bending problem implies that the only non
vanishing components of the stress tensor are (J z : T zx and T yz. The normal
st ress (J z is given by eq. (1.4.6)

(4.1.1)

(4.1.2)

and the equations of statics in the volume and on the surface (i.e. on the
contour of the cross-sect ion of th e rod) are written in the form

oTzx oTyz __ (P Q)
aX + oy - Iyx + IxY ,

d . eqs. (1.5.1) and (1.5.3).
The stress distribution described by these relationships is equivalent to

the bending moments

Mx=-Q(l- z) , My=P(l- z) (4.1.3)

(4.1.4)

in the cross-section z and the t ransverse forces equal to P and Q in any
cross-section. The latter condit ion is satisfied by any stat ically admissible
(i.e. sat isfying the equat ions of stat ics (4.1.2)) system of stresses T zx, Tv» :

The torque due to these str esses is equal to

m z = JJ(XTyz - YTzx)do = aQ - bP,

s

where (a,b) is the point on the line L of action of force iiP + i2Q. The
torque vanishes if this line passes through the centre of inertia 0 of the
cross-sect ion (the origin of the coordinat e syst em) , however, in general, the
bending is accompanied by torsion (a i= 0). The torsion is absent (a = 0)
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FIGURE 6.14.

when line L passes through the cent re of rigidity x * , y*, see eq. (2.6.11) ,
then m z i- O. The case m z = O,a = 0 takes place under the condition that
L is the line linking the centre of inerti a and the centre of rigidity. For
example, this is the c&<;e for the cross-section which has a symmetry axis
coinciding with the line of action of the force or th e cross-sect ion with two
symmetry axes and the act ion line passing through the centre of inerti a.

Determining the shear stresses requires solving the bound ary-value prob
lems stated in Subsection 6.2.1. However the mean value of the shear
st resses can be obt ained using only the static equations (4.1.2) . Indeed, let
us consider area n which is a part of 5 , see Fig. 6.14. Area n is bounded
by contour abca const ructed from arc bca of the cross-sect ional contour r
and arc 'Y (ab) lying in 5 . By eq. (4.1.2)

J( -Jf (fh z x aTyZ
)T zxnx + Tyzny) ds - ax + BY do

a bca n

On the other hand

J(Tzxn~; + Tyzn y) ds = J(T zxnx + T y zny) ds ,

abca ~

as the integrand is equal to zero on r (bca) . Hence

(4.1.5)
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In particular , cutting area 0 of the straight line 'Y parallel to axis Y, Fig.
6.14, we have

n x = -1,

11 xdo = xeO,
n

ny = 0, ds = -dy

11 ydo = YeO; b = Y2 - Yl ,
n

where Xc and Ye denote the coordinates of the centre of inertia of area 0
and b is the length of 'Y. Using eq. (4.1.5) we arrive at the relationship

obt ained by Tricomi in 1933. Let us notice in passing that Tricomi's proof
does take into account that formula (4.1.6) follows from a pure stat ic rea
soning. The latter equat ion can be found in textbooks on strength of ma
terials for the case Ye = 0, i.e. if axis x is the symmetry axis of the cross
section. It expresses the fact t hat the sum of projections of the forces acting
on volume (l- z)0 (cut by a plane parallel to yz) on axis x is zero.

6.4.2 Bending of a rod with elliptic cross-section

Because of the symmetry it is sufficient to consider the case of the force
parallel to axis x and to make the line of act ion of this force coincident with
axis x , otherwise the problem of bending is superimposed by the problem of
torsion, see Subsection 6.3.6. According to eqs. (2.1.1), (2.1.6) and (2.1.7)
the distribution of the shear stresses is given by

P (ax 2)
T z x = 2 (1 + v) I

y
ax - x ,

P (ax )
T y z = 2(1+v)I

y
ay -2vxy ,

(4.2.1)

(4.2.2)

where the stress function X is determined by the solut ion of Neumann's
problem for Laplace's equat ion

2 aX 2
in S : \7 X = 0; on I" : an = x nx + 2vxyny .

On the contour of the ellipse (3.6.1)

xdx ydy _ ° x y ° (4 2 3)a2 + b2 - , - a2ny + b2nx = . . .

It is easy to underst and that boundary condition (4.2.2) is sat isfied by
prescribing the harmonic function (which must be odd with respect to x)
in the form

(4.2.4)
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Indeed, in this case

~~ = A [(x2 - y2) nx - 2xyny ] +Bti;

= A [x
2

- (1 +2~:) y2] nx + ts«;

and condition (4.2.2) can be set in the form

on r A [x
2

- (1 + 2~:) y2] + B = x
2+ 2v ~: y2 + A (1 - :: - ~:) .

Onto the right hand side we have added the term vanishing on the ellipse.
The three constants A, A, B are obtained from the equations

A = 1- ~, A (1 +2~:) = ~ - 2v ~: ' A= B ,

such that from eq. (4.2.4) we have

_ (1 - 2v) a2 ( 3 _ 2) b2+ 2a2 (1 + v) 2
X - 3 (3a2 + b2) x 3xy + 3a2+ b2 a x

and the shear stresses are given by the formulae

P 2 (1+ v) a
2+ b

2 [2 2 (1 - 2v) a2y2] }
T zx = 2 (1 + v) Iy 3a2 + b2 a - x - 2 (1+ v) a2+ b2 '

a2 (1 + v) + vb2 P
T

yz = - (1 + v) (3a2 + b2 ) Iyxy.

(4.2.6)

The stress T zx on the semi-axis x = °obeys a parabolic law

Pa2
2 (1 + v) a2 + b2

( 1 - 2v 2)
(Tzx)X=O=2(1+v)Iy 3a2+b2 1- 2(1+v)a2+b2Y '

(4.2.7)

The mean value of this stress is as follows
b

1 J Pa
2

4P
r-, = 2b (Tzx)x=ody = :U

y
="3 S

-b

and, as expected, is independent of Poisson's ratio. However the deviation
from the mean value depends both on v and the ratio of the semi-axes
of the ellipse and it can be considerable . For instance, for v = 0,25 this
deviation is

1 1 b2

- (Tm ax - Tm ) = - (Tzx) x=O -1 = 0, 203 2 b2
T m T m y=O a +

and can reach 20% for b » a.



(4.3.1)
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6.4.3 The stress function of S.P. Timoshenko

Introducing this stress function instead of X simplifies solution of the prob
lem of bending of the symmetric simple-connected profile loaded by a force
perpendicular to the symmetry axis. Let f) denote the harmonic function
related to X by the Cauchy-Riemann condit ions

oX of) oX of)
ox oy ' oy - ox .

We introduce function F in the following way

2F (1 +v) = f) +vx2y - 2 (1 +v) G (y) ,

where G (y) is defined in what follows. Then

\72F = 1: v y - Gil (y) , (4.3.2)

and expressions (4.2.1) for st resses and boundary condition (4.1.2) are set
in the form

(4.3.3)

(4.3.4)
T

yz = 2(1:v) t , ( - ~: - 2VXY) = - ~ ~: ' }

of of _ of _ [1 2 , ] dy
8y n x - 8x n y - 8s - 2x - G (y) ds

The equation for the contour, which is symmet ric about axis y, can be
presented in the form x 2 = 21 (y). Hence it is sufficient to take G' (y) =
1 (y) and one arrives at the boundary-value problem for Poisson's equation

in S: \72F = _v_y - f' (y) ; on I" : F = O.
l+v

(4.3.5)

This boundary-value problem is equivalent to the problem of bending the
membrane fixed on the contour provided that the load is given by the
function on the right hand side of equat ion (4.3.5). The boundary condit ion
remains the same if, in addition to the arcs symmetric to axis y, the contour
contains the straight lines y = const parallel to axis x (dy/ ds = 0 on these
lines).

6.4.4 Rectangular cross-section

Let the length of the sides parallel to axes x and y be denoted by 2a and
2b respectively. It is now sufficient to take 1(y) = ~ a2 , then by eq. (4.3.5)

\72F= l:VY; F=O for x = ±a, y = ±b. (4.4 .1)
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The stresses are given by formulae (4.3.3)

Txz= 2~y (a
2_

x
2) + ~~:' Tyz=-~~:. (4.4.2)

The solut ion is sought as a series satisfying the boundary conditions on
the sides y = ±b

00

u ""' . n1ryF = -- L X n (x) sm -
b
- ·

l+v n=l

In order· to determine the unknown functions X n (x) we have the relation
ship

~ ( "_ n
2
1f2X ) . n1fY _ 2b~ (-It+

1
. n1fY

L Xn b2 n sm b - 1f L n si n b '
n=l n=l

where the right hand side presents a trigonometric series for a periodic
function equal to y for -b < y < b. The solut ion of the obt ained boundary
value problem

X" - n
2
1f2X = ~ (_1)n+1 X (±) 0n , n a =

n b2 nat

which is odd with respect to x is set in the form

2ba n ( cosh n~x )
X n (x ) = 33 (- 1) 1- n1fa '

1f n cosh - -
b

Hence

(

n1fx )cosh -b- . n1fY
1 - n1fa sin -b- '

cosh -
b-

(4.4.3)

and taking into account that

2b
a~ (-1t . n1fY _ ~ ( a _ b2 )

1fa L na sin b - 6 Y Y ,
n=l

Iyl « b,

we arrive at the following expressions for the stresses (Iy= ~ aab = ~ a2S)

T zx = 3P [(1- x
2

) _ _ v_ b
2
(~_ y 2 +

2S a2 1 + v a2 ~3 b2

4 00
(_ ltCosh n bx n1fY)]

2 L --2- n1fa cos -
b
-

1f -1 n cosh - (4.4.4)
n- b

n1fX
6P v b2 00 (- It sinh - b- . n1fY

T yz = 2S -1 + 2L--2- n1fa sm - b- '
1f l/ a _ n cosh __

n-1 b
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Th e elementary solution obt ained by formula (4.1.6) yields the parabolic
distribution of the shear stress

(4.4.5)

(4.4.7)

(4.4.8)

The maximum of the stress Tzx is on axis y at the points y = 0, y = ±b
of the maximum change in the surface of the membrane

3P [ // b
2

(1 4 00 (-1t 1 ) ]
(Tzx)x=O = 28 1- -1+ 2" -3 +2: 2: --2- n1fa

y=O l/ a 1f _ n cosh _
n - 1 b

3P (a)
= 28 h b '

3P [ // b
2 (2 4 00 1 1 )]

(Tzx) x=O = 28 1+-1+2" -3 - 2: 2: 2: n1fa
y=±b // a 1f - 1 n cosh -

n - b
3P (a)

= 28 h b .
(4.4.6)

The book by S.P. Timoshenko and J. Goodier contains a small table of
values of these functions for // = 1/4

[I * ~ 2 I 1 I 1/2 I 1/4 ~
II h G) ,eq. (4.4.6) ~ 0,983 10,940 I 0,856 I 0,805 11
II h G) ,eq. (4.4.6) ~ 1,03311,12611,39611,988 ~

~ h G) ,eq. (4.7.4) ~ 1,06511 ,14611,42412,06411

Table 6.2

It follows from this table th at the elementary theory is in good agreement
with the exact theory for alb 2: 2 and deviates considerably even for alb :::;
1/ 2.

In the problem of the bending of a long thin strip (b » a), as a first
approximat ion, one can neglect the bound ary conditions on the short sides
y = ±b. In the framework of the membrane analogy it corresponds to the
assumpt ion that the deflection (as well as the membrane loading) is a linear
function of y . Then by virtue of eqs. (4.4.1) and (4.4.2)

EPF u // ( 2 2)
ox2 = 1 + // y , F = 2 (1 + //)Y X - a ,

1 P ( 2 2) P //
Tzx=1+//2I

y a - x , Tyz=-Iy1+// x y
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that is, the shear stresses in the middle of the strip are 1+ v times smaller
than those from the elementary theory. For v = 1/4 they are 80% of the
latter which is in agreement with the data of the above table already b = 4a.
Of course, this solution is unacceptable for y = ±b however it can be used
for searching for the exact solution of the differential equation (4.4.1) in
the following form

v (2 2)
F = 2 (1 + v) y x - a + F*.

Then F* is determined from the boundary value

(4.4.9)

2 _ ( ) _ ( ) _ vb (2 2)\7 F* -0, F* ±a,y -0, F* x , ±b -±2(1+v) a -x ,

whose solution is sought in the form

. (2k+1)7rY
_ vb 16a3 °° (_1)k smh 2a (2k+1)7rx

F ---- ""' cos (4 4 10)
* - 1+ v 7r3 ~ (2k + 1)3 . 1 (2k + 1) trb 2a ' · .

k =O sm 1 -'-------'-----
2a

see Subsection 6.3.8.
The stresses are as follows

T x z = ~~ 1 ~ v [ ( 1 - :~) +
. (2k + 1)try ]

16 vb 00 (-1{ smh 2a (2k+1)7rx
7r2~ L (2k + 1)2 . I (2k + 1) trb cos 2a '

k= 1 sm 1 -'------'---
2a

3P v [ 2xy
T yz = 231 + v - a2 +

. (2k+1)7rY ]
16b 00 (_l)k smh 2a . (2k+1)7rx

7r2 ;: L (2k+ 1)2 . 1 (2k+ l)7rb sm 2a '
k = 1 sm 1 -'------'---

2a

(4.4 .11)

and for b > 15a the maximum stresses are the horizontal stresses T y z

(ignored by the elementary theory) on sides x = ±a at points y = ±TJ
near the corners of the rect angle. For example,

for b = 15a

forb = 25a

23 23
3P (Txz )x=o = 5,255, 3P (T yz) x =a = 5, 202; TJ = 0, 875b;

y=b y=~

23 23
3

p (Txz)x=O = 8,255, 3P (Tyz) x :,a = 9,233 ; TJ = 0, 917b.
y=b y-~
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6.4·5 Variational statement of the problem of bending

Let us begin with the representation of the shear st resses T zx, T yz in terms
of the st ress function F

(4.5.1)

where f and f x, f y, I , denote the surface force and its proj ections on the
corresponding axes. The static equation (4.1.2) in the volume is then sat
isfied ident ically however the static equat ion on the surface (on contour r
of the cross-section)

does not hold identically. For this reason, aiming at the principle of min
imum complementary work, which uses a comparison with the statically
admissible states of st ress, it is necessary to introduce only the functions
satisfying condit ion (4.5.2) on r , that is

aF a
on I": 8 as = as 8F = 0, 8F = const = 8Fr . (4.5.3)

The principle of minimum potential energy implies that the difference
in variat ions of the st rain energy expressed in ter ms of the st resses and

the work of variations of the surface force JJ0 (u8f x + ost, + w8f z) do is
zero.

By condition (4.5.3) this expression is equal to zero on the lateral surface.
Str ess IJ z is given by expression (4.1.1) and thus is not varied in the volume
and on the end faces, hence 81J z = O. The values of the proj ections u, v of
the displacement vector are given by formulae (2.2.9) and are independent
of the choice of F , thus 8u = 0, 8v = O. We have

vPl ( 2 2) 1 Pl 3 0
u (l) - u (0) = -o:ly - 2EI x - Y -"6 E I + wyl,

y y

uPl 0
v (l) - v (0) = cdx - E1 xy - wxl

y

and account ing for f x = =fT zx , f y = =fT zy at z = 0 and z = l we can present
the work of the variation of the surface forces in the form of variation of
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the integral over th e surface of the end faces

sff {[u(l)-u(O)]rzx+[v (Z)- v(O)]ryz}do=
s

<lo P -!r ( x aF + yaF) do- I/P
2
Z-!r [(x2 _ y2) aF _ 2XyaF ] do

Iy } ax ay 2EI~ } ay ax
s s

1p
2Z

3 J rr aF u: Jrr( oaF oaF)- 6 EI~ b } ay do+ Iyb } wy ay + W x ax do. (4.5.4)
s s

The terms whose variation is zero, i.e, t he products of u (0) - u (Z) and
the terms in r zx which do not depend on F , are not written down here.
The terms in the third line in eq. (4.5.4) are tr ansformed into the contour
integrals vanishing by virtue of eq. (4.5.3).

The variation of the strain energy is set in the form

b [ 2~ jdz JJ a~do+ 2~ JJ (T~, +T;,) do] =
o s s

~ :~;i {olj [(~:)' + (:)'] do- 0Ij [x
2

- 2f(Y)]:dO} '

(4.5.5)

and the principle of minimum complementary work leads to the problem
of minimising the integral

1Ii {(aF) 2 (aF)2 2 aFJ2 = - - + - -[x -2f(y)]-+
2 ax ay ay

s

1/ [( 2 2) aF aF ] Iy (aF aF) }
2 (1 + 1/) x - y ay - 2xy ax + 2aC p x ax + y ay do,

(4.5.6)

the choice of the minimising funct ion F is sub jected to the boundary con
dition (4.5.2).

Varying this integral and transforming the integrals over S into the con
tour integrals we arrive at the expression

8h=- ff8F(\72F-1~1/ +J'(y)+2aC;)do+
s

8Fr [I ~~ ds +1f (y)nyds+ aC ; 1(xnx + yny)dS] ' (4.5.7)
r r r
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since the remaining contour integrals are zero, for instance

f [(x2 - y2) ny - 2xynx ] ds = -411 ydo = O.
r s

We arrive then at the Poisson different ial equation

. 2 V I
m S: \1 F-

1
+

v
Y+J' (y ) +20:C; =0, (4.5.8)

which is coincident with eq. (4.3.5) for 0: = O. It follows from thi s that

11 \12Fdo =f ~~ds = 1 : v 11 ydo - 11 J' (y) do - 20:C; S
s r s s

= - f f (y)nyds - o:C ; f (xnx + yny) ds,
r r

that is, t he expression in the parentheses in eq. (4.5.7) is zero.

6.4.6 The centre of rigidity

In what follows we consider the cross-sect ions which are symmetric about
axis y and loaded by force P parallel to axis x.

To this point , we have used the coordinate system Oxy with origin at the
centre of inertia 0 of the rod. In the problem of bending it is preferable to
use a more general description in order to have a more simple form of the
equation for the contour of the region. The axes of the new system 0'~7]
are parallel to those of the old syste m and the origin lies on the axis of
symmet ry at point 0' (0,Yb) , such that

~ = x , (4.6.1)

The equation y = b for the line of act ion of th e force, the coordinates of
the cent re of rigidity C,7]* and the equation for the contour in this system
of axes are as follows

7] = b - yb = b'; C = x* = 0, 7]* = y* - yb ; }

~ = x = ±O(7]) , [02
(7]) = 2f (y)] .

(4.6.2)

It is assumed in the following that the line of actio n of the force passes
through the cent re of rigidity, i.e, b' = 7]* and 0: = O. The variat ional
equation of Galerkin 's approach is set in the form

(4.6.3)
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By eqs. (4.5.1) and (1.2.4) t he torque m z is given by t he relationship

m z = -bP = - (yb+ b') P = - (yb+ 1]*) P = 11 [XT zy - (1] + vb) T z x Jdo
s

P Jr{( 8F 8F ) , 1 P Je{ (2 2 )= - Iy } x 8x + 1] 81] do - yoP + "2 Iy } 1] x - () (1]) do.
s s

Transforming the int egrals we obtain

as, according to eqs. (4.5.2) and (4.6.2), we can take for the simple con
nected regions th at

Next,

on I" : F = O. (4.6.4)

1/2 -(1(1/ ) 1/2

11 1] [x2
- ()2 (1])] do =11/d1] 1 [x2

- ()2 (1])] dx = - ~ 11]()3(1]) d1].

S 1/1 -(1 (1/) 1/1

Setting t he expression for the moment of inertia I y in the form

we arrive at the following expression for the coordinate of the cent re of
rigidity (W. Dunkan (1933), L.S. Leibenzon (1933)) in terms of the st ress
function F

1]* = [7 ()3 (1]) d1]] - 1 [71]()3(1]) d1] - 311 FdO] .

1/1 1/1 S

(4.6.5)

If the profile is symmet ric, the expression for t he coordinates of the centre
of rigidity (2.6.1) can be transformed to the form containing only function
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q>. Indeed , referring to eqs. (2.1.10), (2.1.12) we have

since q> = 0 on r . We then arrive at the formula (G.Yu. Dzhanelidze, 1963)

y* = [7 (;3 (17) d17] -1 [7 yli' (~) dy + ~ JJ C: v y - ~ ~}~do]
71t Yl S

(4.6.6)

or in the coordinate system 0'~17

17* = [703(17) d17] -1 [71703d17+
ryl ry l

HI C:v~- ~~) ~do+L:vUoc] ,
with C denoting the geometric torsional rigidity.

(4.6.7)

6.4.7 Approximate solutions

We consider the problem of bending of the symmetric profile by a force
with a line of action passing through the centre of rigidity, the profile being
bounded by the curves x = ±o(17) = ±C17m and the straight lines 17 =
b1 ,17 = bz - In accordance with Kantorovich 's method, Subsection 6.3.14,
the solution of the variational equation (4.6 .3) satisfying the boundary
condition (4.6.3) is taken in the form

(4.7.1)
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We arrive at the relationship

b2 C17
m

Jd"1ow("1) J (c2"12rn_ x2) [V'2(c2"12rn_ x2)w("1)+

b, - C17 m

mC2"12rn- l - _v_ ("1 +Y')] dx = 0.
1+v 0

Int egrating over x and using the arbitrariness of variation Ow results in the
ordinary differential equation

where L (w) denotes the differential operator

() " 5m, 5(2m - 1 1)L W = W + - w + - m - -- w.
"1 2 "12 c2"12rn

(4.7.2)

(4.7.3)

The solution is expressed in terms of Bessel functions for any m. We will
consider the simple cases with elementary integration.

1. Rectangle (-a ::; x ::; a, -b ::; Y ::; b, ). In thi s case m = 0, c = a, yb =
0,Y = "1 and the solution is put in t he form

(

. I If "1 )sm 1 --

F=~~(a2-x2) 2b_"1
21 +v Ifa b

sinh --
2b

(4.7.4)

instead of the above exact solution, eqs. (4.4.9) and (4.4.10). The shear
stresses T zx for x = 0,Y = b obt ained by means of eq. (4.7.4) are set in the
form of eq. (4.4.6) and collected in Table 6.2.

2. Trapezoidal cross-section. The case of m = 1 corresponds to the trape
zoidal cross-section considered in Subsection 6.3.14 for the problem of tor
sion and reduces to the differential equation of Euler 's type, eq. (4.7.2),
which is integrated by quadratures. Let us study two cases.

i) Isosceles right-angles tr iangle (b1 = 0, b2 = h,m = 1, C = 1)

5 v (2 2) [1 "1 2 ]F=---- "1 - x -hln-+-("1-h).
81 + v 3 h 5v

ii) Equilat eral tri angle (b1 = 0, b2 = h,m = 1, C = tan 30°)

1 v (1 2 2) [ 5(1 ) "1]F = - -- -"1 - x h - "1 + - - - 2 "1 In - .
21 + v 3 12 v h

(4.7.5)

(4.7.6)



492 6. Saint- Venant 's probl em

In both cases the origin of the coordinate system lies in the vertex of the
triangle . For v = 1/2 formul a (4.7.6) yields the exact solution

1 ("1
2 2)F=6 3 - x (h-ry),

and it is int eresting to not ice that the centres of rigidity and inertia of the
cross-section are coincident. It is easy to prove by eq. (4.6.5) that "1* = ~h .

3. Segment of parabola x 2 = ~~ "I bounded by chord "I = b of length
h . Differential equat ion (4.7.2) in which m = 1/2 , c2 = h2 /4b ,Yb = - ib
is integrated in terms of elementary functions (Bessel functions with the
"half-integer" index) . The result is

(
h

2 2) vb [3 22+ v "I
F = 4bry - x 2 (1 + v) 5" + 5A-v- - b +

. (>:;] (>:;] (>:;]]
(~ _ ~ 2 + v) (~) 3/2 smh Vb - Vb cosh Vb

5 2A v "I sinh V5. - V5. cosh V5. '
(4.7.7)

where A = 40b2 / h2 and the expression for the coordinate of the cent re of
rigidity (4.6.5) is as follows

* _ ~ ~_v_ _ ~_v_f (A) _ 2 + v f (A)
"I - 7 + 351 +v 51 +V 1 7 (1 +v) 2 ,

5 15 35
I, (A) = V5. V5. - " 12 (A) = , [1 - h (A)] .

Xcoth A -1 A A

Calculation by means of these formulae yields (v = 1/4)

A=O 0,4 2,5 4,9 00

"1*
0,350 0,375 0,418 0,760h = 0,343

6.4.8 Aeroioil profile

In accordance with the not ation of Subsection 6.4.6 the equat ions for t he
contour are set in the form

x = ±aB (~) = ±ag (t) , 9 (t) = t'" (1 - tP)q,

d . Subsection 6.3.15. Then by eqs. (3.15.8) and (3.15.9)

(4.8.1)

(4.8.2)
1

Jg3dt
o

1 2Jg3g' dt
E = .::..0-,---__
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where x = a~,'\ = a/b.
As the stress function is chosen we can find the coordinate of the centre

of rigidity with the help of eq. (4.6.7). In order to present the result in a
compact form we introduce the notation

1

J tg3(t )dt
* bOrye = -'-1----

J g3(t)dt
o

1

Jtg(t)dt
1 1 bOryo = -Yo = -1---

J 9 (t) dt
o

(4.8.3)

The parameter ryo was suggested by Griffith and denotes an approximate
expression for the coordinate of the centre of bending. Next ry~ is the coor
dinate of the centre of inert ia of the cross-section in the coordinate system
O/~ry . Clearly, it is opposite in sign to coordinat e Y~ of the origin 0 ' of
thi s coordinate system relat ive to axes Oxy with the origin at the centre
of inerti a.

Taking into account th at

2 1 2 9 1

~ Jf dg (t) (g2 - (2) do = J ?:!LdtJ (l- e) d~ = ~ Jglldt = 0
2 dt dt 3 '

s 000

(4.8.4)

as 9 (0) = 0, 9 (1) = 0 and using expression (3.15.10) for the geometric
rigidity and eq. (4.6.7) we arrive at the following expression for the cent re
of rigidity for the aerofoil profile

(4.8.5)

obt ained first by Leibenzon in 1933. The multiplier (1 + 3,\2c) - 1 must be
omitted when the profile is oblong and thi n.

Let us proceed to the problem of bending the aerofoil. To t his end, the
st ress function vanishing on contour (4.8.1) is determined from the varia
t ional equat ion (4.6.3). Rewrit ing thi s equation in the form

1 g(t)

J J [(
a2 a

2
) u ( ry' ) dg

2
(t)]dt ,\2_ + - F1 - -- t - -.!l + ,\2 _ _ 8F1d~ = 0

at2 ae 1+u b dt '
o 0

(4.8.6)

where F = F1a2b and varying only B we have
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Then B is determined by the equation

B ~ [[d/l (g' - e) (1.2;t: + :;,) (92
_ e)~] - 1 X

[ 1 : vfdt7(t -~)(g' - e) ~] ,

the last term in eq. (4.8.6) vanishes, d. eq. (4.8.4). Using eq. (4.8.3) we
obtain

1 * IF - V_1]e -1]0 ( 2 _ 2)
- 2b 1 + v 1 + 3>.2E 9 ~ ,

(4.8.7)

and formula (4.6.5) yields the above expression (4.8.5) for the coordinate
of the cent re of bending.

6.5 Michell's problem

6.5.1 Statement of the problem

Th is problem was first st udied by Michell in 1900 and is a natural con
tinuation of Saint -Venant 's problem. We consider the state of st ress in a
prismati c rod uniformly loaded on the lateral surface. The boundary con
ditio ns (1.1.3) and (1.1.4) of Saint-Venant 's problem are written down in
the form

(5.1.1)

where r denotes the contour of the cross-section and s is the arc measured
along it .

As Saint-Venant's principle is used and the solution of Saint-Venant 's
problem is assumed to be known one can , without loss of generality, consider
the right end x = l to be free of loads. In terms of the adopted notation ,
eqs. (1.2.3) and (1.2.4), thi s condit ion is set as follows

z = l: P = 0, Q = 0, R = 0; m.; = 0, my = 0, m; = O.
(5.1.2)

We introduce into consideration the following integral values: the pro
jections of the principal vector of the forces distributed along contour r of



(5.1.3)

(5.1.5)
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any cross-section z

qx = f F.'/;ds, qy = f Fyds, qz = f Fzds
r r r

and the principal moments about axes Ozxyz with the origin in thi s cross
section

J.Lx = f yFzds , J.Ly = - f xFzds, J.Lz = f (xFy - yFx) ds. (5.1.4)
r r r

As above, it is taken that O, is the centre of inertia of the rod , x, yare the
principal axes of inertia at this point and z is the longitudinal axis of the
rod.

The three integral equations of equilibrium for the part of the rod [z , I] ,
expressing that the principal vector of the external forces is zero, are as
follows

(l- z)qx- 11Tzxdo=O, (l- z)qy- 11Tyzdo=O,

s s

(l - z) qz - 11 azdo = 0.

s

The moments about the axes of the system Ozxy z distributed over the
lat eral surface of this part of the rod are equal to

If ds1[yFz - (( - z ) Fy] d( = (l- z) J.Lx - ~ (I - Z)2qy,

r z
If ds1[yFz - (( - z ) Fy] d( = (I - z) J.Lx - ~ (l- z )2qy,

r z
If ds1(xFy - yF.'/;) d( = (l- z) J.Lz'

r z

and thus th e remaining three integral equations of equilibrium have the
form

(l- Z)J.Lx-~(l- Z)2qy- 11yazdo=o,

S

(l-Z)J.Ly+~(l- z)2qx+ 11 xazdo = O,

s
(l- z) J.L z - 11 (XTyz - yTzx) do = 0.

s

(5.1.6)
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Following the idea of the semi-inverse Saint-Venant method we satisfy
these equations by assuming that Tzx and Tyz are linear in Z while o z
is a quadratic function of Z

TZX= T~X + (l- Z ) T;X ' Tyz =Tgz +(l- z) Tt z, }

o, =(j~ + (l - z ) (j; +~ (l - z) 2(j~2 ) ,
(5.1.7)

where the seven functions T~x , . . . , (j~2) must satisfy the following integral
condit ions

II T~xdo = 0, II Tgzdo = 0, II (XTgz - YT~x) do = 0, (5.1.8)
s s s

IIT;xdo = qx, IITt zdo = qy, II (XTt z - YT;x) do = Jlz' (5.1.9)
s s s

II (j~do = 0, II Y(j~ do = 0, II x(j~ do = 0, (5.1.10)
s s s

II(j;do = qz, IIY(j;do = Jlx' IIx(j;do = -Jly, (5.1.11)
s s s

II (j~2) do = 0, II Y(j~2)do = -qy, II x(j~2 )do = -qx' (5.1.12)
s s s

Let us proceed now to the equations of statics in the volume. Inserting
expressions (5.1.7) into these equations leads to the syste ms of equations

(5.1.13)

(5.1.14)

(5.1.15)

8(jx 8Txy 1

8x + ---ay- = T z z :

8T~x 8Tgz 1
fu + ---ay- = (jz,

8T;x 8Tt z _ (2)
B» + 8y - (jz .

These need to be subjected to the appropriate bound ary conditions. For
system (5.1.13)

(5.1.16)

a nd for systems (5 .1.14) , (5.1.15)

(5.1.17)

(5.1.18)
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6.5.2 Distribution of normal stresses

Let us consider now Belt rami 's dependences. Keeping the notation \72 for
the plane Laplace operator and representing the first invariant of the stress
tensor in the form

(5.2.1)

we can sati sfy all these dependences by assuming

2 1 82aO
2 1 82aO

2 1 82aO
\7 ax+--~ =0, \7 ay+--~=0, \7 TXY+-1-~=0,

1 + 1/ ox 1 + 1/ uy + 1/ oxou
(5.2.2)

82a1 82a 1 82a1 82a(2) 82a(2) 82a(2 )
8x2z = 8 y2

Z
= 8x8~ = 0, 8x~ = 8Y~ = 8X; y = 0, (5.2.3)

'1"72TO = _ 1_ 8a~ '1"72TO = _1_ 8a~ ()
v zx , v z , 5.2.4

1 + 1/ 8x y 1 + 1/ 8y
~ (2) ~ (2)

\72T1 =_1_~ \72T1 =_1_~ ()
zx 1 + 1/ 8x ' yz 1 + 1/ 8y , 5.2.5

\72a~ + ~:: a~2) = 0, \72a~ = 0, \72aF)= 0. (5.2.6)

The second and third relationships are identic al to eq. (5.2.3) which sug

gests that a~ and a~2) are linear function s of x , y . The particular form of
these functions is given by the integral equat ions (5.1.11) and (5.1.12)

1 ( ) qz J.L y J.Lx
a z x, y = S - I

y
x + Ix y ,

a~2) (x,y) = - (t x + ~: y) .
(5.2.7)

(5.2.8)

Hence, the distribution of the normal stresses over th e cross-sect ion is
given by the relationship

o (l ) (qZ J.L y J.Lx) 1 (l )2 (qX qy)az = az + - z - - - x + -y - - - z - x + -y ,
S t, t, 2 Iy t;

(5.2.9)

and the differential equations (5.2.4) and (5.2.5) take the form

\72 0 1_ J.Ly
T zx - 1 + 1/ I y ,

\72 1 l_qx
T zx - 1 + 1/ I y ,

\72TO = _l_J.Lx
yz 1 + 1/ Ix '

\72 1 1_ qy
T yz - 1 + 1/ Ix .

(5.2.10)

(5.2.11)
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It follows from the above-said and Subsect ion 6.5.1 th at Michell's prob
lem is split into t hree problems. Two of them are "autonomous" in that
const ructing their solut ions does not require solving other problems.

The first problem is to dete rmine the st resses T~~ , TW. It is identical
to Saint-Venant 's problem of bending by force and torsion of the rod. It
follows from the identi ty of the syste m of equations (5.1.9), (5.1.15), (5.1.18)
and (5.2.11) with the system (1.5.4), (1.5.1), (1.5.3), (1.5.2) after replacing
qx ,qy, /-L z by P,Q, mz respectively.

Th e second problem is to determine the stresses T~x , T~z appearing due
to the tensile surface forces F; (8) . These forces result in th e force factors
qz,/-Lx ,/-Ly appearing in the system of equat ions (5.1.8), (5.1.14), (5.1.17),
(5.2.10) for these str esses. Thi s system can be reduced to the boundary
value problem of Saint -Venant and another boundary-value problem for
Laplace equations, see Subsection 6.5.3. Th e third problem is to determine
ax,ay,Txy (aOis obtained in passing) and is more difficult . It is reduced to
the plane prob lem of the theory of elasticity, Chapter 7, whose statement
requires the solution of the above two problems.

6.5.3 Tension of the rod

As mentioned above, the longitudinal surface forces F; results in the normal
st ress

(1- z ) a ; = (1- z ) (qz _ /-Ly x + /-Lx y)
S Iy t;

(5.3.1)

and the shear st resses T~x , T~z described by the following system of equa
tions

11 T~xdo = 0,
s

aT~X + aT~z = qz _ /-Ly x + /-Lx y
ax ay S Iy t ; "

2 0 1 /-Ly 2 0 1 /-Lx
V' Tzx = - 1 + 1J Iy ' V' Tyz = 1 + 1J Ix '

T~xnx + T~Zny = F, (8) ,

11 Tgzdo = 0, 11 (XTgz - YT~x) do = 0.

s s

(5.3.2)

(5.3.3)

(5.3.4)

(5.3.5)

It is easy to prove that any solution of the static equations in the volume
and on the surface, eqs. (5.3.2) and (5.3.4), ident ically satisfies the first two
integral conditions (5.3.5). Indeed, by eq. (5.3.2)



6.5 Michell's problem 499

such that by eqs. (5.3.4) and (5.1.4)

-My = f xFzds - JJT~xdo,
r s

The second relation (5.3.5) is proved by analogy. Besides

which corresponds to eq. (5.1.3).
The stat ic equat ions and Belt rami 's dependences (5.3.3) can be sati sfied

by assuming

Here <1> is the st ress function solving the problem of torsion for region S

on I" :
8<1>
8s = 0, (5.3.7)

and WO is the solut ion of Laplace equat ion subjected to the boundary con
dition

8wO
on r .

8s

where dw denotes (analogous to Subsection 6.2.5) the elementary sectorial
area. Accounting for eq. (5.1.3) it is easy to prove that the int roduced
function WO is uniquely defined on r , since

(5.3.9)

One can present WOas a sum of three terms

(5.3.10)
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which are the solutions of the boundary-value problems

} (5.3.11)

(5.3.12)

Functions 'l9 1 , 'l92 were obtained earlier , see Saint- Venant 's problem of bend
ing by force, eqs. (2.1.7)-(2.1.9) , where P and Q should be replaced by My
and -Mx respectively. The boundary-value problem for 'l93 was not encoun
tered earlier .

The torque M~1 corresponding to the stress function <I> and the compo
nents 'l9 1, 'l92 of function Wwas determined in Subsection 6.2.5 and is equal
to

01 GC * *Mz = 0:0 - MyY - MxX ,

where x*, y* are the coordinates of the centre of rigidity. The component
'l93 determines the torque by means of eq. (2.5.5), that is

M?2 = - JJ (X ~: + Y:3)do = -2f 'l9dw + 2JJ'l93do = - f <p a~3 ds
s r s r

= - f (Fz (s) - ~ ~ ) ipds = - f r, (s) ipds+ ~ JJipdo.
r r S

The choice of constant 0:0 must obey the third condition (5.3.5). It re
duces to the requirement M~1 + M~1 = °and is set in the form

cos, = MxX* + MyY* +f r, (s) ipds - ~ JJipdo.

r s
(5.3.13)

It is easy to determine the displacements in terms of function 'l93

(5.3.14)

where X3 is the harmonic function related to 'l93 by Cauchy-Riemann's
conditions (2.1.9). It is also necessary to add the displacement obtained by
formulae (2.2.9) where one should take R = 0, m x = my = 0, replace P,Q
by My, -Mx and the constant 0: by means of eq. (5.3.13).
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Tension of the rod by forces of constant intensity

This solut ion was obtained by L.M. Zubov . When t he te nsile force acting
on t he contour of the cross-section has a const ant intensity (Fz = const)
and the centres of gravity of area 5 and contour r coincide, then we have

/1.T = 0, /1 y = 0, q, = LFz ,

where L denotes the perimeter of the contour. The boundary condit ion
(5.3.12) is set in t he form

r fJ193= LF (~_ ~dW)
on . as z L 5 ds .

In order to simplify the notion for a simple connected region, inst ead of'l93

we introduce the harmonic funct ion

1
U =-'l93LFz

and arrive at Dirichlet 's probl em

s W
Ur = - - -

L S '
(5.3.15)

(5.3.16)

According to eqs. (5.3.6) and (5.3.1) the corresponding stresses are given
by the formul ae

0' ~ au 1 x)T z x = LFz ay + "2 S '
0' au 1 y)

T y z = LFz - ax + "2 S '
1 LFz(l - z)az = S(l - z) .

If the rod of a rectangular cross-sect ion (Ixl < a, Iyl ,b) is considered and
the arcs are measured from t he point x = a, y = °the boundary condit ion
is reduced to the form

b - a y
U (±a, y) = ±8(a +b) b'

b- a x
U (x, ±b) = ± 8 (a + b)~'

and is sati sfied by the following harmonic function

b- a xy 2 (b - a)
U (x , y) = 8 (a + b) ab = 5 L xy.

In particular , U = °for a square and thi s result is valid for any regular
polygon and for t he circle. Ind eed, boundary condit ion (5.3.15) takes the
form

s hs
Ur = L - hL = 0,
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where h denotes the apot hem.
The problem becomes more difficult for a rod with an ellipt ic cross

section. Introducing t he elliptic coordinates a , /3

x = ccosh a cos /3, Y = csinh o sin ri (c = Ja2 - b2 ) ,

and denoting t he value of a on the contour of the cross-sect ion of the ellipse
wit h t he semi-axes a,b by ao we have

1 1 /3
ccosh o ., = a, csinh o-, = b, dw = 2" (xrdYr - Yrdxr) = 2" abd/3 , w = S 21r '

The classical representation of the arc of the ellipse has the form

j3JJcosh2 ao - cos? /3d/3

~ = 2: = 4E\k) [E(k) -E(~-/3,k)] ,
JJcosh'' ao - cos2/3d/3
o

where E(~ - /3, k) denotes the ellipt ic integral of t he second kind in Leg

endre 's normal form with modulus k = (coshao)- l and E (k) denotes t he
complete ellipt ic integral of the second kind .

Function E(~ - /3,k) can be expanded into a trigonomet ric series -

E (~ - /3, k) = Bo (~ - (3) + B 1 sin 2/3+ B 2 sin 4/3 + B3 sin 6/3+ ... ,

where

B 1 ~ (m + 1) (m + n)
n = :;; ~o (m + n + 1) (m + 2n) x

[
1 . 3 . 5 (2m + 2n - 1) ]2 k2m+2n

2 · 4 · 6 (2m + 2n ) 2m + 2n + 1

Boundary condition (5.3.15) is now presented by the periodic function

1
Uv = 4E (k) (B 1 sin 2/3 + B2 sin 4/3+ B3 sin 6/3+ ... ),

and the solut ion of the problem is the following series

U - __1_~ B sinh 2na . 2 /3
- ~ n smn .

4E (k) n= l sinh 2nao

;1Zhuravsky A.M. Handbook of elliptic functions (in Russ ian ). Publishers of th e USSR
Academy of Sciences, 1941.
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Indeed, each term of this series is proportional to the imaginary part of
function cosh 2n (a + ij3) and thus sat isfies Laplace equat ion. It is cont in
uous together with the derivat ives with respect to a and j3 in the whole
ellipse, including the passage through the cut between the foci.

6.5·4 Shear stresses T~x , T~z

Replacing P,Q,m z in the solution of Subsection 6.2.1 by qx, qy, J.lz we arrive
at the expressions

(5.4.1)

where

(5.4.2)

and 191,192 are the solut ions of the boundary-value problems (5.3.11). The
constant-valued parameter a is determined by the condit ion

(5.4.3)

6.5.5 Stresses (Jx , (J y , T x y

We must consider the stat ic equat ions in the volume (5.1.13), on the surface
(5.1.16), dependences (5.2.2) for a z , relationships (5.2.6) and the integral
condit ions (5.1.10).

Using eq. (5.4.1) and replacing 191, 192 by the harmonic funct ions 'l/J1' 'l/J1
(see eq. (2.1.9)) and introducing function <p by means of relationships
(2.1.10), (2.1.12) we can rewrite the first set of equations in the follow
ing form

(5.5.1)
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These equat ions are satisfied if we take

a y = (5.5.2)

where we introduced Airy's st ress function which is well-known in the plane
problem of the theory of elast icity.

Insertin g these expressions into Beltr ami 's dependences and rearr anging
the result we arrive at the relationships

2 qx II q 4 {j2 2---x + _ _ .-1L y - (1+ II) V' U = - (aO + 2A- IIV' U),
1 + II Iy 1 + v Ix {)x2 z

2 qy II qx ( ) 4 {)2 ( 0 2 )---y+---x- 1+ 11 V' U = - a +2A- vV' U
l +IIIx l+IIIy {)y2 z ,

II (qX qy) _ {)2 (0 2 )
l+v 1/+ I

x
x - {)x{)y az+2A - IIV' U .

(5.5.3)

where V'4 = V'2V'2 denotes the biharmonic operator which is the plane
Laplace operator applied twice. By eqs. (5.2.6) and (5.2.8)

(5.5.4)

Adding the first and second equations in (5.5.3) and taking into account
that A is a harmonic funct ion we arrive at the biharmonic differential equa
t ion for Airy's function

(5.5.5)

Accounting for the relationships

{)2U {)2U d {)U
--n --- n ---{)y2 x {)x{)y y - ds {)y ,

we can set the boundary conditions for this function as follows

on r :

s

{)U J{)y = Xds ,

°

s

{)U = -J Y dS
{)x '

o

(5.5.6)
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where, due to eqs. (5.1.16) and (5.5.2)

It is easy to prove th at for the simple connected region

(5.5.7)

f Xds = 0,

f'

f Yds = 0,
r

(5.5.8)

which ensures that the derivatives of Airy's function are single-valued on
the contour . Indeed , using eq. (5.1.3) and transforming the contour integrals
we have

By virtue of eqs. (2.1.9), (2.1.11), (2.1.12) and (2.1.4)

JrraA do = Ga l JrraeJ> do+ 1 (qXJrrathdo+ qyJrra'l32dO)
} ax } ax 2 (1+//) t , } ay /.7; } ay
s s s s

= Gal f nyeJ>ds+ 2 (1~ //) (t f 'I3 t nyds+ ~: f 'l32nYds)
f' r r

= 1 (qXf xa'l3 ldS- qy fya'l32dS)
2 (1 + //) Iy f' as · I;r r as '

and then referring to eq. (5.3.11) we obtain

JrraA 3 + 2//
} axdo = 2 (1 + //)q,,,
S

(5.5.9)

which is required . The second equality in eq. (5.5.8) is proved by analogy.
It is also evident that this follows from pure static reasoning, d . Subsection
6.1.5.
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6.5.6 Determining O"~

Returning to eq. (5.5.3) and removing 'l2U by means of eq. (5.5.2) we
arrive at the relationship

o-~ = - 2 (1+ v) A+ v (0-x + 0-y) + ~ (2 - v) (~: x3+ ~: y3) +

1 (qX 2 qy 2 )2v Iyxy + Ix x Y + Co + ClX + C2Y,

where the constants Co, Cl , C2 are obt ained from conditions (5.1.10) express
ing that the system of stresses o-~ is st ati cally equivalent to zero. Deter
mining these constants requires obtaining the moments of the stresses of
the first and second order

11 (o-x+O-y)do , 11 x (o-x + O-y )do, 11 y(o-x+O-y)do.
s s s

This is achieved by using the formulae of Subsections 1.4.3 and 1.4.4 for two
stat ic equat ions in (5.1.13) where -T;'z, -T~z play the part of the volume
forces whilst Fx , Fy are the surface forces. Then

11 (o-x + o-y) do = f (xFx + yFy) ds - 11 (XT;z + YT~z) do,
s r s

11 x (o-x + o-y) do = ~ f [(x2 - y2) r ; + 2xyFy] ds-
s r

~ 11 [(x2 - y2) T~x + 2XYT;z] do etc.
s

Using Subsection 1.4.10 one can determine the expressions for the moments
of the second order for stresses T;'z' T~z only partly, i.e. in the combinat ions
of the sort

311x2T~xdo = ~: 11 x
4
do + ~: 11 x

3
ydo,

s s s

11(y2T~x + 2XYT;z) do = ~: 11 x
2
y
2
do + ~: 11 xy

3
do.

s s s

The integr als

can not be determined in terms of the loads when only the equat ions of
statics are used.
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6.5.7 Bending of a heavy rod

Let us consider a heavy horizontal rod whose end z = 1 is free. Axis x is
directed along the downward vertic al. Hence the only nontrivial component
of the volume force is pKz = "'( where "'( denotes the weight of the unit
volume. The particular solution of the equilibrium equat ions can be taken
in the form of (T~ = - "'(x and the corresponding distribution of the surface
forces on the lateral surface is given by

F; = - "'(xnx , F~ = 0, F~ = 0.

The lateral surface is, however, free of load , hence the taken particular
solution should be superimposed by the solut ion of Michell's problem with

(5.7.1)

Among the six integral characterist ics (5.1.3), (5.1.4) the only non-vanishing
one is

qx = "'(f xn;rds = "'(5 . (5.7.2)

For this reason, using eq. (5.2.9) we have

(T = (To + ~ (1 - z) 2(T(2) = (To - ~ (1 - Z)2 "'(5 x (573)
z z 2 z z 2 I ' . .

Y

Tzx = (1- z ) T~x , Tyz = (1- z ) T~z' (5.7.4)

Hence we deal with the problem of bending by force, whose solution is
given by the formulae of Subsection 6.5.4, and the plane problem yielding
stresses (Tx, (T y, Txy and the vanishing component (T~ of stress (T z -

In the particular case of the circular rod of radius a we utilise eqs. (4.2.5),
(5.5.1) and (4.2.6) to obt ain

1 - 2// ( 3 2) 3 + 2// 2
Xl - U- x -3xy + -4-a x ,
A _ "'(5 _ 2"'(

- 2(1+~IyXI - a2(1+//)XI ' (5.7.5)
T;x = 2 ( ) 2 [(3 + 2//) (a2

- x2
) - (1- 2//)y2] ,

1 + // a
I "'( 1 + 2//

T yz = - a2 1 + // xv·
Using eq. (5.5.2) yields

_ "'(x [ (2 1 2) 2] 8
2u(Tx- 2a2(1+//) (3+2//) a -3x -(1-2//)y +8y2 '

_ "'(x [1 ( )(2 2) 2] 8
2U

(Ty- 2a2(1+//) 3 1+2// x -3y +(3+2//)a + 8x2 '

82U
Txy = - 8x8y '

(5.7.6)
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the stress function U being the solution of the biharmoni c boundary-value
problem (5.5.6) with the following values of X and Y on the contour of the
region x2 + y2 - a2 = 0

v yx (4 2 2) 'YX [2 2 2]
X = a2 (1+ v ) "3 x - a n x , Y = - a2 (1+ v ) "3 (1+ 2v ) x + a ny .

It is easy to prove that any harmonic function multiplied by x or y or
x2 + y2 satisfies the biharmonic equation. Th e inverse statement is also
true: any biharmonic function can be represented in one of the following
forms

(5.7.7)

where II and 12 are some harmonic functions . For the circular region, the
cosines n x , n y of the angle between the normal and the coordinate axes are
proportional to x, y respectively. Hence sett ing the boundary conditions in
the form

(5.7.8)

it is sufficient to look for U as a polynomial of order not higher than five. By
virtu e of the above-said thi s polynomial is presented by a sum of a harmonic
polynomial of fifth order and the product of a harmon ic polynomial of
fourth order and x (or y). This sum can be added by any polynomial of
third order which is clearly always biharmonic. It turns out to be sufficient
to take

U = 'Y [A (x5 _ lOx3y2 + 5x y4) + B x (x4 _ 6X2y2 + y4) +
a2 (1 + v)

Ca2x3 + Da2x y2] , (5.7.9)

the above harmonic polynomials being equal to the real parts of (x + iy)5
and (x + iy( Substituting eq. (5.7.9) into the boundary conditions (5.7 .8)
leads to a system of five equations, one of them being the result of the
others. Hence, it is sufficient to intr oduce four constants. We obtain

U = 4 21 )[! (1 - v) (x5 - lOx3y2 + 5x y4) 
2 a l+v 5

~ (x5 - 6x3y2 + x y4) - (5 + 2v ) a2x3 - (1 - 2v ) a2xy2]
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and by eq. (5.7.6) th e expressions for the sought stresses are as follows

(fx= 2[ )[(5 + 2v )xa2 - 3 (1 - 2v ) x y2 - (5 + 2v )x3] ,
12a 1 + v

T yx = - 2 [ ) [- (1 - 2v ) ya2 + (1 - 2v) y3 + 3 (1 + 2v) x2y] ,
12a 1 + v

(fy = 2 [ ) [3 (1 + 2v) xa2 - 3 (1 + 2v) xy2 - (1 - 2v) x3] ,
12a 1 + v

(5.7.10)

where stress (f~ = - "( X was also taken into account .
Due to eq. (5.6.1) th e distribution of stress (f~ over th e cross-section is

set in th e form

o 2 + v [ 3 (2 2)](fz=- 3(I +v) "(x 1- 2a2 X +y ,

where Cl is determined from condit ion (5.1.10) .
At th e point s X = ±a,y = 0 of the cross-sect ion the stress oz , due to eq.

(5.7.3) is equal to

[(
I - Z)2 2 + v ]

(fz = :r=2"(a - a- - 12 (1 + v) . (5.7.12)

The second terms yields the correction which does not appear in the frame
work of the elementary theory.

The problem of bending a heavy rod with an ellipt ic cross-sect ion can be
studied by analogy. The problem of bending of such a rod (without account
ing for the weight) was considered in Subsection 6.4.2. The stress funct ion
U should be prescribed in th e form of eq. (5.7.9) and in the boundary condi
tion (5.7.8) it is necessary to take into account th at n,,;, n y are proportional
to X ja2

, y jb2 respectively.

6.5.8 Mean values of stresses

The mean values of stresses T Z:!' , T yz, a Xl oY on the st raight lines parallel to
th e coordinate axes can be found using stat ic reasoning, i.e. without solving
th e boundary-value problems.

Referring to th e systems of equations (5.1.14) , (5.1.17) , (5.2.7) and (5.1.15) ,
(5.1.18) , (5.2.8) and repeating th e derivation of Subsection 6.4.1 we obtain

n (x) {~: [qx (1- z) + fly] + ~;: [qy (I - z) - fL.T ] } , (5.8.1)
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where f 1 is the arc bca of contour I' , see Fig. 6.14. The expression for the
mean value of T yz on the straight line parallel to axis x is written down by
analogy.

We will also need the value of the mean value T~x on the area 0 (x) . We
have

where jx and j xy denote respectively the moment of inertia about axis
x and the product of inertia of this area. On the other side, taking into
account eq. (5.1.18) we have

and referring to eq. (5.8.1) we obtain

f f T;xdo = t (jy - xXcO(x)) + ;: (jxy - xYcO (x)).
!l(x)

Byeqs. (5.1.13) and (5.1.16) we have

jrr(oax OTXy ) f fY2

Jrr 1} ax + 7iY do = Fxds - axdy = } Tyzdo,
!l(x) r, y, !l(x)

(5.8.2)

hence applying eq. (5.8.2) we arrive at the same expression for the mean
value of stress a x on the line 'Y

Y2

faxdY = b(x) (ax)m =

y,

= f Fxds - t (jy - xXcO(x)) - ;: (jxy - xYcO (x)) . (5.8.3)
r ,

If the cross-section is symmetric about axis x one should put Yc = 0, jxy =°in formulae (5.8.1)-(5.8.3).
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6.5.9 On Almansi 's problem

In 1901 Almansi st udied the problem of the state of st ress in a prismatic
rod whose lateral surface is loaded by forces which are polynomials in the
axial coordinate z

(5.9.1)

This problem is a natural cont inuation of th e problems of Saint- Venant
and Michell and its solut ion can be reduced to a consequent solving these
problems.



7
The plane problem of the theory of
elasticity

7.1 Statement of the plane problems of theory of
elast icity

7.1.1 Plane strain

The name "plane problem" is assigned to the extensive and well developed
area at elast icity theory. The plane prob lem is concerned with the plane
st rain problem and the plane st ress problem. Though these problems are
different , t hey are unified by the mathemat ical method of their solut ion.

In the plane st rain problem, one considers t he particular solut ion of the
equations of elast icity t heory satisfying the following assumptions: displace
ments u , v are independent of coordinate X3 = z whereas w is independent
of x, y and is a linear function of z, i.e.

U = U (x ,y) , v = v (x, y) , w = ez + woo (1.1.1)

An evident consequence of these assumpt ions is that t he stresses T zx , T yz

vanish , i.e.

(
8U 8W)

T z x = f.L 8z + 8x = 0, (
8V 8W)

T yz = f.L 8z + 8y = 0, (1.1.2)

and t hat the remaining components ox, o y, T x y , a z of the st ress tensor are
independent of coordinate z .
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Under these condit ions, the generalised Hooke law is set as follows

(1.1.4)

Here

OU OV 1- 2v
'l91 = -0 + -0 = -2- (O"x + O"y) - 2ve,

x Y f-l

the lat ter equat ion being the result of the first two relationships of Hooke's
law (1.1.3). Inserting 'l91 , eq. (1.1.4), into eq. (1.1.3) we can express a , in
the form

O"z=V(O"x+O"y)+Ee, E=2f-l(1+v). (1.1.5)

Hence, the problem of determining 0"z becomes of secondary importance
and the main issue is to determine the plane field of stresses 0"x, 0"y, T xy'

The plane st rain occurs in a prismat ic bod y of an infinite length loaded
by the surface and volume forces which are perpendicular to axis z and
whose intensity does not depend on z. All of the cross-sect ions are under
the same conditions which just ifies prescribing displacements in the form
(1.1.1). A plane strain is realised approximately in the mid-part of th e body
of finite length. The dependence of the st ate of stress on z is taken into
account in the st atement of the problems of Michell and Almansi (Section
6.5) and is reduced to superposition of Saint- Venant 's problem and the
plane problem.

In the volume, the equat ions of statics in t he plane problem is written
down in the form

0 0"x OTxy K - 0
ox + oY + P x - ,

OTxy 00"Y K - 0
ox + oy + P y - , (1.1.6)

whilst on the surface, or equivalently on contour r of the cross-sect ion, we
have

(1.1.7)

Let us consider any part of the body cut by two cross-sect ions. The exter
nal volume and surface forces applied to thi s part must be in equilibrium.
This leads to the equilibrium equat ions in which the principal vector is zero

ff pKxdo +f Fxds = 0,
s r

ff pKydo+ f Fyds = 0
s r

(1.1.8)
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and the principal moment about axis z is also zero

IIp (xKy - yKx)do+f (xFy - yFx) ds = O. (1.1.9)

S r

Here S denotes the area of the cross-sect ion of the body and the traversing
a contour r is in the counterclockwise direction .

Equations (1.1.8) can be easily obt ained from the stat ic equations (1.1.6),
(1.1.7) with the help of the transformation

II (o;;x + O;;y + PKx) do = f (CTxnx + Txyny) ds + II pKxdo
s r s

= f F.xds +II pKxdo = O.
r s

By analogy one arrives at the equat ions for the moments (1.1.9)

jrr[ (OTxy OCTy ) (OCTx OTxy )]} x & + oy + pKy - y ox + ------a:y + pKx do =
s

=f (xFy - yFx) ds + II p(xKy - yKx) do = O.
r s

The same method allows us to find the first and second moments of stresses
CTx, CT y. We have

j"r (OCT X OTxy ) - f} x ox + oy +pKx do - xFxds+
s r

II pxK'cdo - II CTxdo = 0

j"r 2 (OCTx OTxy ) i s 2 S
} x ox + oy + pKx do = x F.x ds+
S r

II px2 Kxdo - 2 II xCTxdo = 0,

S S

II xy (0;; + O; ; y +PKx) do = f xyF.x ds+
S r

II pxyKxdo - II (YCTx +YTxy) do = 0,

jf 2 (OTXy OCTy S ) f 2
S

x ox + oy + pKy do = x Fyds+
S r

II px2 Kydo - 2II xTxydo = O.
s s
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Th ese equations and the analogous equalit ies yield

II (ax+ay)do= f (XFy+ YFx)dS+ II p(xI<y- yI<x)do,
s r s

I I x (ax + ay)do = ~ f [(x2 - y2) r ; + 2xyFy]ds+
s r

II p [(x2 - y2) tc; + 2xyI<y]do,
s

II y (ax + ay)do = ~ f [2xyFx + (y2 - x2) Fy]ds+
s r

IIp [2xyI<x + (y2 - x2) I<y]do.
s

(1.1.10)

These expressions allow us to determine the principal vector and the mo
ment of stress az in the cross-sect ion of the body in terms of the given
volume and surface forces

R= II azdo=v II (ax + ay)do+ESe,
s s

mx = II yazdo = uII y (ax + ay)do+ ESeyo , (1.1.11)

s s

m y = - ff xazdo= -vff x(ax+ ay)do-ESexo,
S s

where Xo ,Yo denote the coordinate of the cent re of gravity of the cross
sect ion.

If t he end faces are fixed in such a way that no axial force appears, then
R = 0, and this determines the constant e introduced by formula (1.1.1).
If any axial displacement is prohibited, then e = O.

Formulae (1.1.0) and (1.1.11) determine the force factors -R, - mx , -my
of the simple Saint-Venant 's problems (tension and bending by a moment ).
Th ese solutions should be imposed on the solut ion of the plane strain of
th e prismatic body with unloaded end faces.

1.1.2 Airy ' stress junction

It is shown in Subsection 1.1.6 that the homogeneous equations of statics
are satisfied by expressing stresses ax,ay,T xy in terms of a single st ress
fun ction, see eq . (1.6.11) of Chapter 1. This result is easily obtained di rectly.
Indeed, each of two homogeneous static equations

oax + OTxy = 0, OTyx + oay = 0 (1.2.1)
ax ay ax ay
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holds identically with th e help of the functions

a'PI
T yx = - ax ; T x y

a'P2
(J = ---

y ax

and the condit ion T y x = T x y leads to an equat ion analogous to eq. (1.2.1)

Introducing into considerat ion a new function U (x,y) referred to as the
Airy function (Airy, 1862) we have

au
'PI = ay'

and arrive at the basic relationships

au
'P --

2 - ax

(1.2.2)

Of course, they can be proved easily by inserting into eq. (1.2.1). Let
(J~ , T~y , (J~ denote the particular solut ions of the static equat ions (1.1.6)
due to the volume forces, i.e. the solut ions which are independent of z.
Then we have

(1.2.3)

Here and in what follows \72 denote the Laplacian with respect to two
variables x ,y .

7.1.3 Differential equation [or the stress junction

In the following we assume that the particular solution (J~ , T~y , (J~ is not
only statically possible in the volume but it also satisfies Beltrami 's depen
dences in which (J~ is determined by relationship (1.1.15) and T~z = T~x =

O. Omitting here and in what follows the constant e we obtain the following
expression for the sum of the normal stresses

(1.3.1)
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It enables us to set Beltrami's dependences, eq. (1.5.7) of Chapter 4, for
the particular solution in the form

2 0 8
2

(0 0) 8Kx v .V' ax + 8 2 ax + ay + 2p-8 + p-- div K = 0,
x X I-v

2 0 8
2

(0 0) 8Ky v. _V' aY+ 8
2 ax+ay +2p-8 +p--dIVK-O,

Y y I-v

2 0 8
2

(0 0) (8Kx 8Ky)
V' T xy + 8x8y ax + ay + P 8y + 8x = 0,

V'2 (a~ +a~) + -P- div K = °
I-v

(d' K= 8Kx 8Ky)
IV 8x + 8y ,

(1.3.2)

where the last equation is the consequence of the two first equations.
It remains to require that Airy's function satisfies homogeneous Bel

trami's dependences in which

(1.3.3)

This yields the conditions

282U 82
2

V' 8x2 + 8y2 V' U = 0,

vV'2V'2U = 0,

leading to the single equation

(1.3.4)

Thus, Airy's stress function satisfies this differential equation of fourth
order referred to the biharmonic equation. It is homogeneous provided that
the particular solution satisfies the static equations in the volume and Bel
trami 's dependences.

1.1.4 Plane stress

In this case the volume and surface forces are perpendicular to axis z , i.e ,
K; = 0, F; = 0. The particular solution that corresponds to the volume
forces and is feasible in the elastic body is assumed to be given. For this
reason , the volume forces are not considered in what follows .

We consider the state of stress which ensures that the stresses vanish in
the planes perpendicular to axis z

T xz = 0, T yz = 0, a z = 0. (1.4.1)
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This state of st ress is referred to as plane st ress. Clearly, the homogeneous
static equations in the volume are written down in the form (1.2.1) and
can be satisfied by introducing Airy's functions

82U 82U 82U
IJ x = 8y2 ' T x y = - 8x8 y , IJ y = 8x2 ' (1.4.2)

It does not mean that this function and in turn t he st resses are independ ent
of z. Indeed, Beltrami 's dependences should be written down in the form

282U 84 U 1 82 2
\7 -;:)2 + 8 28 2 + -1- >l 2\7 U = 0,uy Z y + v ox

282U 84 U 1 82
2

\7 -;:)2 + 8 28 2 + -1- >l 2\7 U = 0,ox Z x + v uy

_\72 8
2
U _ ~U + _1_L\72U _ °

8x8y 8z28x8y 1 + v 8x8y - ,

1 82
2

-1-~\7 U = O,+ vuyuz

_1_L\72u =0,
1+ v 8z8x

_1_ 8
2

\72U = 0.
1 + v 8z2

(1.4.3)

Add ing the first and second equat ions and account ing for the sixth equa
tion it is easy to see that t he stress function is biharmonic with respect to
vari ables x, y

(1.4.4)

The last three equat ions (1.4.3) yield

8 2 2
8z \7 U = c, \7 U = cz + a (x , y) , (1.4.5)

where c is a constant and a (x ,y) is a biharmonic function. Let us introduce
into considerat ion a biharmonic function U1 (x,y) whose Laplacian is equal
to a (x ,y)

By virtue of eq. (1.4.5) we obtain

1
U (x, y, z ) = 4CZ (x2 + y2) + UI(x , y) + b(x , y , z), (1.4.6)
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where b is a biharmonic function with respect to x, y. Inserting into the
first three equations (1.4.3) yields

82a 1 82a 84b

-+----+ -08y2 1 + t/ 8x2 8z28y2 - ,

82a 1 82a 84b

-+----+ -08x2 1 + v 8y2 8z28x2 - ,

82a v 84b

------ =0.
8x8y 1 + v 8z28x8y

Taking into account that 82aj8x2 = -82aj8y2 we obtain from these equa
tions that

82b v

8
2 = --l-a (x, y) + mil (z) x + nil (z) y + p" (z),

z +v
where mil,nil,p" are arbitrary functions of z. This equation yields

vz 2

2 (1 + v) a (x, y) + zU2 (x, y) + U3 (x, y) +

m (z) x + n (z) y + p (z),

where U2 , U3 are harmonic functions. Substitution into eq. (1.4.6) leads to
the expression

) 1 (2 2) ) vz
2 2U (x, y, z = 4CZ x + y + U1 (x, Y - 2 (1 + v) 'V U1 (x, y) +

zU2 (x, y) + U3 (x, y) + m (z) x + n (z) y + p (z) .

Here U3 (x, y) can be included into the harmonic function U1 (x, y) and the
terms

m(z)x+n(z)y+p(z)

can be omitted and this does not affect the state of stress. Finally we arrive
at the following expression for the stress function

vz
2 2 1 (2 2)U(x,y,z)=Udx,y)-2(1+V)'V Udx,y) +zU2(x,y)+ 4cZ x +y ,

(1.4.7)

where U1 and U2 are respectively biharmonic and harmonic functions

(1.4.8)

Thus we have determined a general class of the states of stress satisfying
conditions (1.4.1), the static equations (1.2.1) and Beltrami's dependences
(1.4.3) .

The stresses are proved to be quadratic functions of z , Therefore, the
plane stress can be realised in a solid only under the condition that the
forces on the lateral surface obey this law.
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7.1.5 The generalised plane stress

Let 2h denote the dimension of the body along axis z. Instead of U1 we
introduce into consideration another biharmonic function <l> (x, y)

(1.5.1)

(1.5.2)

(1.5.3)

Assuming additionally that the state of stress in the body is symmetric
about the body's mid-plane z = °so that U2 = 0, C = °we can rewrite
relationship (1.4.7) in the form

v (h2 2) 2U = <l> + ( ) - - z 'V <l>.
2 1 + v 3

The stresses determined by formulae (1.4.2) are as follows

8
2

<l> v (h2
) 8

2
'V

2
<l>

o x = 82y + 2 (1 + v) -:3 - z2 EiiJ2'
8

2
<l> v (h2

) 82
'V

2
<l>

(fy= 82x+2(1+v) -:3-z
2
~'

8
2

<l> v (h2
) 8

2
'V

2
<l>

Txy = - 8x8y - 2 (1 + v) -:3 - z2 8x8y'

It is assumed in what follows that the body is a plate of thickness 2h
which is small compared with the other dimensions. It allows one to take
that , with a sufficient accuracy, the state of stress can be described by the
stresses averaged over the thickness of the plate

It

ax = 2~ J(fxdz ,
-It

Noticing that

It

Txy = 2
1h JTxydz,

- It

It

ay = 2~ J(fydz.
-h

(1.5.4)

ItJ(~2 -z2) dx = 0,

- It

we arrive at the following expressions for the mean values

82 <l> 82 <l> 82 <l>
ax = 8y2' Txy = - 8x8y ' ay = 8x2 ' (1.5.5)

These formulae determine the so-called generalised plane stress . It is clear
that the surface forces should also be averaged over the thickness of the
plate

It

- 1 JFx (8) = 2h Fx (z, 8)dz ,
- It

It

- 1 JFy (8) = 2h Fy (z, 8)dz.
- It

(1.5.6)
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When the stresses CTx,Txy ,CTy are absent, the generalised Hooke law is
set in th e form

(1.5.7)

and the equat ions

au av 1
ax + ay = -p,Txy (1.5.8)

serve for determining displacement u ,v averaged over the thickness. Using
the third equat ion in (1.5.7) and eq. (1.5.4) we obtain the difference in the
value of w (x,y, ±h) on the upper and lower sides of the plate, that is the
change in the plate's thickness

2vh ( au av) 2vh -w (x , y ,h ) - w(x ,y,-h) = --- - + - = ---~.
1- v ax ay 1- v

(1.5.9)

The remaining equat ions (1.5.7) determine the differences in the values
of u, v on the sides of the plate in terms of the derivatives of the mean
value of w (x, y ) with respect to x and y, the value of w (x, y ) remaining
undetermined.

7.1.6 The plane problem

In th e following while denoting the quantities of the generalised plane stress
averaged over the thickness we omit the bars and designat e th e stress func
tion as U instead of <P. The formulae of Subsection 7.1.5 are written down
in the form

(1.6.1)

(1.6.2)
~~ = L(CTx - 1 : vCT) , ~~ = 2~ (CTy - 1 : vCT) , }
au av 1
ax + ay = -p,TXY •

In the case of the plane strain , formulae (1.6.1) remain valid . However,
by virtue of eqs. (1.1.3) and (1.1.4), the generalised Hooke law for e = a is
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set in the form

av 1
- - - ((J - v (J)ay - 2p, Y ,

au av 1
ax + ay = J/ x y, (1.6.3)

where here, as well as in eq. (1.6.2)

(Jx + (Jy = (J. (1.6.4)

Comparison suggests that having the solut ion of the plane strain problem
at the disposal one can obtain the solut ion of the corresponding plane st ress
problem (i.e. for the same volume forces and the same boundary conditions)
by replacing

v
v by

l+v
(1.6.5)

In both cases one deals with the same biharmonic boundary-value problem
referred to as the plane problem of the theory of elast icity and sometimes
the plane elast icity.

Evident ly, the essence of these problems is different . In the first case one
deals with the state of a sufficient ly long prismatic body whereas in the
second case the main issue is the averaged state of stress in a thin plate. In
the first case, strain Ez is absent however st ress (Jz is present , whereas in
the second case (J z = 0 however the thickness of the plate changes (Ez I- 0).

The forthcoming analysis of plane regions is concerned with the case of
plane strain unless otherwise stated. The word "generalised" is omitted
while considering the generalised plane stress.

In what follows the insignificant dimension along axis z is taken to be
equal to the unit length .

Let us notice that rule (1.6.5) becomes more complicated in the case of
thermal st resses as Hooke's law contains new ter ms depending on u, see
Subsection 7.5.8.

7.1.7 Displacements in the plane problem

Determining displacements u , v reduces to integration of the system of
equat ions (1.6.3) in which the st resses are replaced by their expressions
(1.6.1) in terms of biharmonic stress function U (z , y). This system of three
equat ions for two unknown functions is integrable since Beltr ami's depen
dences (which are equivalent to the continuity condit ions) are satisfied.

Let us denote the harmonic function 'V2U and its complex conjugate by
sand t, respectively

as
ax

at
ay '

as
=ay

at
ax' s + it = f (z), z = x + iy

(1.7.1)
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and consider the function of the complex variable

z

S(x ,y) +iT(x ,y) = F(z) = Jf(z)dz (1.7.2)

introduced as the indefinite integral of f (z). Following the notion of N.1.
Muskhelishvili F (z) will be replaced below by 4<p (z).

Let us notice that t is determined by s up to a real-valued additive
constant denoted by wooThus F (z) is determined up to an additive linear
function

iwoz + Uo + ivo = (-woy + uo) + i (wox + vo) .

Using eq. (1.7.2) we obt ain

nr aF . as .aT
ax = az = f (z) = s + i t = ax + zax '

aF .aF 0f() ' as .ei- = z- = z z = zs - t = - + z-
ay az ay ay

and thus

(1.7.3)

as et
-=-=s
ax ay ,

as or
- = -- =-tay ax . (1.7.4)

This allows us to replace eq. (1.6.3) by the following equat ions

au 1 (a
2
u 2) 1 [ a

2
u 2]- = - - - v'll U = - -- + (1 - v) 'Il U

ax 2j.l ay2 2j.l ax2

1 a [ au ]= -- -- + (1- v) S ,
2ax ax

av 1 (a
2u 2) 1 a [ au ]- = - - - v'll U = -- -- + (1- v)T

ay 2j.l ax 2 2j.l ay ay ,
au av 1 a2 u
-+-=----.
ay ax j.l axay

Hence we have

(1.7.5)

1 [ au] 1 [ au]u=2j.l (l-v)S- ax +!I(y) , v=2j.l (l-v)T- ay +h(x) ,

and insertion into the third equat ion in (1.7.5) and taking into account eq.
(1.7.4) yields

ff (y) + f~ (x) = 0, ff (y) = -Wo, f~ (x) = Wo = const ,
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since the sum of the functions of x and y can vanish only if they are
constant-valued and of opposite sign. Thus we arrive at the sought expres
sions for the displacements

u = ~ [(1 - v) 5 - aU] + Uo - woy, }
2M ox

v = ~ [(1 - v) T - aU] + Vo + wox.
2M ay

(1.7.6)

Here the terms of the type , described by eq. (1.7.3), represent the displace
ments of a rigid plane body in its plane, (uo, vo) denote the proj ections of
a point of this body and Wo is the small angle of turn about axis X3 . In the
plane st ress v is replaced according to the rule (1.6.5), that is

1 [ aU] }u= E 5 -(1 + v ) ox +uo- woY,

1 [ aU ]V = - T-(l+v)-;:l +vo+wox.
2M uy

7.1.8 The principal vector and the principal moment

Let us consider an arc l in the plane field of the stress tensor

(1.7.7)

(1.8.1)

The unit vectors of the normal n and the tangent t (in the direction of
increasing s) to arc l are taken as being axes x,y of the Cartesian coordinate
system. Then the product

(1.8.2)

describes the dist ribution of the surface forces act ing from the side of the
medium "over" the curve (i.e. in the part of the plane where vector n
is directed to) on the medium "under" the curve. Using eqs. (1.8.1) and
(1.8.2) we have

F; = n T· i 1 = 13x n .l: + T:l: y n y

a2U dy a2U dx d oc
=--+---=--

ay2 ds axay ds ds ay ,
Fy = n T · i2 = T xyn:l: + 13yn y

(
a2U dy f)2U dX) d oo-- ---+-- - - - -

- axay ds ax2 ds - ds ox .

(1.8.3)

From these equat ions we obtain the expressions for the projections of the
principal vector of these forces distributed along arc l from the initi al point
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s = 0 to the considered point M (s)
8

JFyds = Q = - ~~ .
o

(1.8.4)

The principal vector of these forces about the origin of the coordinate
system (about axis X3) is equal to

8 8

rnO = i3 .J(il x + izy) x n· Tds = - J(Xd~~ +Yd~~)
o 0

8

= - Jd (xaU + yaU - u) ,ax ay
o

or

rnO = U + xQ - yP. (1.8.5)

The insignificant addit ive integration constants are omitted in these for
mulae. Should one ret ain these terms , there appears a linear function of
the coordinate which does not affect the stress es.

Formula (1.8.5) can be written down in the form

U = rno - xQ + yP = rnM , (1.8.6)

where rnM denotes the principal moment about point M (s) of force F
along arc I (from the initi al point Mo to actual point M) .

1.1.9 Orthogonal curvilinear coordinates

Denoting the unit vectors of the tangents to the coordinate lines [ql] , [qZ]
by el , ez we can set eq. (1.8.1) in the form

(1.9.1)

(1.9.2)

Referring to eq. (1.6.10) of Chapter 1 and eqs. (C.3.9), (B.4.14)

T = inci3i3U = V' x [V' x hi 3U]* (V' - ~~ +~~)
- HI aql Hz aqz '

and carrying out calculations using formulae (C.4.8) we obt ain

1 a eu alnHz aU
(}l - ---- +------

- Hz aqz Hzaqz Hlaql Hlaql '
1 a ou aIn HI oo

(}Z - ---- +------
- HI aql Hlaql HzaqZ Hzaqz '

1 aZU Oln HI ou a In Hz ou
7lZ - ------ +------ +------

- HlHz aqlaq Z Hzaqz Hl aql Hlaql Hzaqz '
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The consequence of these relationships is the expression for the sum of th e
normal stresses determining the Laplacian over U

The equilibrium equations are written down with the help of eq. (1.9.2)
of Chapter 4. It can be proved that they are identically satisfied by st resses
(1.9.2) when the volume forces are absent. The formulae expressing the
relations between the components of st ress tensor and the displacement
vector have the form of eq. (C.5.9)

7.1.10 Polar coordinates in the plane

In these coordinates denoted by r,e the equilibrium equations take the
form , see eq. (1.9.4) of Chapter 4

0 (1,. (1, . - (10 OTrO K - 0 }or + r + roe + p ,'- ,

0(10 OT "O 2T1'0 K - 0roe + or + r + P () - .

One can obtain these equations directly by considering the forces acting
on the element of the medium bounded by the radii e,e+ de and th e
circles r , r + dr . The expressions for the st resses in terms of the st ress
function which identically sat isfy the homogeneous equilibrium equations
are presented in the form

(1.10.2)

The components of the stra in tensor are as follows

OUr

c" = or '
OUO u; OUO Bu; Uo

co = roe+ -;:' 1 ,.0 = or + roe - -;: . (1.10.3)

7.1.11 Representing the biharmonic function

Clearly, any harmoni c function is also biharmonic. It is st raightforward to
verify that the functions



528 7. The plane problem of the theory of elasticity

where Ii (x,y) denotes a harmonic function, satisfy the biharmonic equa
tion . To this end, it is sufficient to recall the expression for the Laplacian
of the product

Then, for example ,

and furthermore

which is required .
It follows from the above-said that the functions

are biharmonic. The inverse statement, namely that any biharmonic func
tion can be presented in the above form, is proved below, see Remark in
Subsection 7.1.14.

For instance, let us show that biharmonic function xh + Yh can be
presented in the first of the above types . To this aim it is sufficient to
introduce the harmonic function 13 related to h by the Cauchy-Riemann
conditions

013 _ oh 013
ox - oy' oy

Denoting 14 = yh - xh and I, + 13 = n where 14 and Ii are harmonic
functions we have

xh + yh = x (h + h) + (yh - xh) = xli + 14,

which is required .
While solving the plane problems in the Cartesian coordinates one of

ten takes the harmonic functions in the form of homogeneous harmonic
polynomials equal to the real (Re) or imaginary (1m) parts of powers of
z = x + iy

(1.11.2)
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For this reason the biharmonic polynomials of power (n + 1) are represented
in the form

CIx Re z n + C2 Re zn +l , C3y Im zn + C4 Im zn+l,

Cs (x2 + y2) Re zn -l + C6 Re zn+1

etc . Evidently, any polynomial of order lower than four is harmonic.
When polar coordinates are used one can replace the complex variable z

by the expression in terms of the modulus and the argument and arrive at
the following representation of the biharmonic functions

C n+2cos () C n cos ()
Ir . n + 2r . n ,

sm sm
C3 cos () C4 cos ()
-- n +- nrn - 2 sin rn sin .

It stands to reason that the above-said does not exhaust the diversity of
solutions to the biharmonic equation.

7.1.12 Introducing a complex variable

Instead of Cartesian coordinates we take the following independent coor
dinates

(1.12.1)

Here and throughout the book a bar over the letter implies the complex
conjugate of the complex value. For example , notion <p (s) means that not
only z is replaced by its complex conjugate z but also all of the complex
values in !f' (z), for instance the coefficients of Taylor series for this function,
are replaced by their complex conjugates . According to this rule , !f' (z)
denot es <p (z) and so on.

Considering U (x ,y) as a function of z ,z we arrive at the rule of differ
entiation

au = au ax+ au ay = ~ (~ _ i~) U
az ax az ay az 2 ax ay ,

and vice versa

(1.12.3)
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The consequence of these formulae are the expressions for the second
derivatives, Laplacian and the biharmonic operator

(1.12.4)

1.1.13 Transforming the formulae of the plane problem

The result of formulae (1.12.4) is the following expressions for the stress
vectors in the planes perp endicular to the axes

(
fP fP )

ax + irxy = 2 8z8z + 8zz U, (
8z 8Z

)
Txy + ia y = 2i 8z8z + 8zz U.

(1.13.1)

Here and in what follows the vectors in the plane are given by the complex
valued quantities. The consequence of the latter formulae yielding the com
pact expressions for the stresses is the formulae of Kolosov

z ~U ~U
ax+ay=\7 U=4 8zaz ' ay-ax+2iTXy=4azz ' (1.13 .2)

The unit vector of the normal to arc I can be presented by the complex
number

. dy .dx .dz
n = nx + zny = ds - zds = -z ds ' (1.13.3)

and the stress vector in the plane with normal n is represented as follows

Fx + iFy = n -T = (axnx +Txyny) +i (Txynx +ayn y)
1

= 2 [(ax + irxv) (n +n) + (ay - ir xy)(n - n)]

= ~ [(ax +ay) n + (ax - ay +2iTxv)n].

Referring to eq. (1.13.2) one can set this result in the form

A (aZu aZu)n·T= 2 --n- --n
az8z 8zz

= -2i (aZU dz + azu dZ) = -2i.!i au .
azaz ds azz ds ds 8z

(1.13.4)
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Therefore we arrive at the following representat ion of the principal vector
of the surface forces on arc l corresponding to formulae (1.8.4)

18 A au au au
P+ iQ= n· Td s =-2i-=--i-.

o ez oy ax
According to eqs. (1.8.5) and (1.13.5) the principal moment of these forces
on arc l about the coordinate origin is written as

o (aU _au)m =U - z - +z- .
oz oz

(1.13.6)

(1.13.7)

In polar coordinates , the st ress vectors on the arc of the circle and along
the radii are presented by the expressions

The vectors e,- and eo are given by the complex numbers

eiO ';eiO, , t· ,

respectively. Returning therefore to eq. (1.13.4) we arrive at th e following
expressions for the st ress vectors

. iO ( 02U iO 02U -;0 )
(a,. + 1T,-0) e = 2 ozo;/ - oz2 e ,

( . ) iO 2 ( 0
2
U iO 0

2
U - iO)ao - 1T,·0 e = ozoz e + Oz2 e

or

. ( 02U 02U - 2iO)
a,. + ZT,·O= 2 ozoz - OZ2 e ,

. ( 02U 02U - 2iO)
ao - 1T,-0 = 2 ozo z + OZ2 e .

This leads to the following representat ions for Kolosov's formulae

0
2
U . iJ2U 2iO ( .) 2iO

a,.+ao =40zoz ,ao-a,-+2zT,-0 =4iJz2 e = ay-ax +21Tx y e .

(1.13.8)

Evidently, they can be obt ained by using the expressions for the compo
nents of the st ress tensor in axes rotated through angle () about the original
Cartesian system.

Let us close these formal transformations by the formula for the displace
ment vector. To this end, we refer to eqs. (1.12.2), (1.7.6) and introduce
the notion

s + it = \72U + it = 4<p' (z) , F (z) = S + iT = 4<p (z) . (1.13.9)
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The result is

2p. (u + iv) = 4 (1 - v) ip (z) - 2~~ + 2p. (uo + ivo + iwoz)

or in polar coordinates

(1.13.10)

2p. (ur + iuo) = «: " [4 (1 - v) ep (z) - 2~~] + 2p.e-iO (uo + ivo) + 2p.iwor.

(1.13.11)

1.1.14 Goursat 's formula

This formula provides one with the representation of a biharmonic function
in terms of two functions of the complex variable . The basic relationships
are eqs. (1.12.4) and (1.13.9)

\J2U = 4::~ ' \J2U + it = 4ep' (z) , \J2U - it = 4q,' (s) .

From these equations we obtain

(1.14.1)

and the integration over z introduces an additive function of z denoted
x' (z)

aU
2 az = ep( z) + zq/ (z) + x' (z) .

One furth er integration leads to the required representation

2U = zep (z) + zep (z) + X(z) + X(z) . (1.14.2)

Integrating over z results in an additive function of z, namely X (z), since
U is a real-valued function.

All of the formulae of the previous subsection are easily expressed in
terms of functions ep (z), X (z). We will use the short-hand notion

ep' (z) = <1> (z), X' (z) = 7j; (z) , 7j;' (z) = \lJ (z) .

We arrive then at the following relationships for the stresses

O'x + O'y = 2 [ep' (z) + ep' (z)] = 2 [<1> (z) + ~ (z)] = 4Re<1> (z) ,

O'y - O'x + 2iTxy = 2 [zep" (z) + 7j;' (z)] = 2 [z<1>' (z) + \lJ (z)]

(1.14.3)

}
(1.14.4)
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and th e displacement vector

2fL (u + iv ) = (3 - 4v) c.p (z) - zq/ (z) - ij;(z) + 2fL (uo + ivo + iwoz).
(1.14.5)

Let us also notice the formulae

(J x + iTx y = <I> (z) + <I> (z) - z<I>' (z) - ~ (z) , }
(J y + i r xy = <I> (z) + <I> (z) + z<I>' (z) + III (z) ,

P + iQ = -i [c.p (z) + zcp' (z) + ij; (z)] , }
rnO = Re [X(z) - z'lj! (z) - zz'c.p' (z)] ,

as well as th e relationship

(1.14.6)

(1.14.7)

2fL (u + iv ) = 4 (1 - v) c.p (z) - i (P + iQ) + 2fL (uo + ivo+ iwoz ).
(1.14.8)

The represent ations in polar coordina tes t ake the form

- - z -
a; + iTr,() = <I> (z) + <I> (s) - z<I>' (z) - -Ill (z) ,

z

(J T - iTT() = <I> (z) + <I> (z) + z<I>' (z) + ~ ~ (z) , ( e -
2i

() = ~ ) ,

(J,. + (J() = 4Re<I> (z) , (J() - (JT + 2iTT() = 2 [z<I>' (z) + ~ 1lI (z)] .

(1.14.9)

Function X (z) appears only in th e expression for moment rno and is often
redundant . Thus determining the st ress funct ion is often unnecessary. The
st ate of st ress and the displacement in t he plane problem are complete ly
determined by two functions of the complex vari able sp (z) ,'lj! (z) and their
derivatives. It was N.!. Muskhelishvili who syst emati cally applied these
funct ions to solving the boundary-value problems of the plane theory of
elasticity and for thi s reason t hey are te rmed Muskhelishvili's functions.

The analyt ic characte r of these functi ons will be given in Section 7.5
whilst Sections 7.2-7.4 are devoted to solving t he problems which do not
require applicat ion of th e theory of funct ions of complex variable.

The projection of the vector of rot ation w on axis X3 is called turn I: and
is given by

h ,w= I:=~ (~~ - ~~) = ~ [(~ + :z) V- i(~ + : z)u]

i [8 ( ' ) a ( ' )]=-- - v + zu --.:: v - zu .
2 8z 8z

By eq. (1.14.5)

ue = - (1 - v ) i [<I> (z) - <I> (z)] + fLWo. (1.14.10)
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Remark. Setting in Goursat's formula

<p (z) = p + iq, Rex(z)=r,

we obtain

U = xp+yq+r,

and this general representation of the biharmonic function is transformed
to one of the forms

U = 2xp + (yq - xp + r) = 2yq + (xp - yq + r) ,

where the quantities in parentheses are harmonic functions . Putting in
Goursat's formula

<p (z) = z<P1 (z) , Re <PI (z) = PI

we have

This confirms that any biharmonic function can be presented in one of the
forms (1.11.1).

7.1.15 Translation of the coordinate origin

Let 11>1 (zd and WI (zd denote the new values of Muskhelishvili's function
under the parallel t ranslat ion of the coordin ate system into to point z = c

z = Zl + C, Zl = Xl + iY1. (1.15.1)

The components of the st ress tensor remain unchanged. Hence, due to eq.
(1.14.4) we have

11> (z) + <I> (z) = 11>1 (zd + <1>1 (Zl) , zl1>' (z) + W(z) = Zl l1>' (Zl) + WI (Zl) .
(1.15.2)

Hence

and this relation can be sati sfied by taking

where a denotes a real-valued constant . It can be set to zero, as adding a
pure imaginary const ant to 11>1 (Zl) does not affect the stre sses and result s
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only in the te rm corresponding to rigid body motion in the expression for
vector u = iv . Thus,

(1.15.3)

Turning now to the second expression in eq. (1.15.2) we have

'h (Z1 ) = W1 (Z1+ c) + (Zl + c) <I>' (Z l + c) - z1 <I>~ (zd ,

hence, by virtue of eq. (1.1.5.3)

WI (zd = W1 (Z1 + c) + c<I>' (ZI + c), 1/;1(zd = 1/J (Z1+ c) + c<I> (ZI + c) .
(1.15.4)

7.2 Beam and bar with a circular axis

7.2.1 Statement of the plane problem for beam and bar

The generalised plane st ress for a rectangular st rip of length l and height
2b (0 :s x :s l , -b :S y :s b) is considered and it is assumed that 2b « l.
According to Saint- Venant 's prin ciple the boundary condit ions exactly hold
only on th e long sides of the rectangular region and the surface forces on
th e short sides (x = 0, x = l) can be replaced by a statically equivalent
distribution. i.e. axial and transverse forces P and Q respectively and a
bending moment u. The cross-sect ion of the beam is a rectangle of thickness
h and height 2b with h « b which allows one to reduce the problem to the
stresses and displ acement s averaged over the t hickness of t he beam. The
adopted sta tement is also applicable to the problem of plane st rain in a
plate (t heoret ically) unbounded in the direction of axis X3 provided t hat
the loads on faces y = ± b, J' = 0, x = I are independent of X 3. Th e size
along axis X3 will not appear in the following and th erefore it can be taken
as being of unit length . The formul ae for the problem for a plate can be
obtained from th e corresponding formulae for the beam by replacing

v
u by V1 = --.

I-v
(2.1.1)

As t he value of the shear modulus retains under this replacement we
have

£ £ 1
2J.l = -- = -- = £1 (1 - v) ,

1 + v 1 + VI

£
£1 = --2'

I-v
(2.1.2)

In what follows, t he longitudinal sides y = b and y = -b of t he beam
are referred to as the upp er and lower sides, respectively, whilst the cross
sections x = °and x = l are respectively called the left and right end
faces.
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The conditions for the sides of the beam are written as follows

(2.1.3)

where functions X± (x), y± (x) are given for 0 < x < l, Following the con
ventional practice of structural mechanics we split the load into symmetric
and skew-symmetric parts and introduce the functions

1
T1 (x) = "2 [X+ (x) + X- (x)] ,

1
0"1 (x) = "2 [Y+ (x) - Y- (x)] ,

T2 (x) ~ i[X+ (x) - X- (x)l , }

0"2 (x) = "2 [Y+ (x) + Y- (x)] .

(2.1.4)

This allows us to split the problem into two problems , denoted in what
follows as problems A and B

A y = ±b : 0"y = 0"1 (x) , Txy = ±T1 (x) , }
B y=±b: O"Y=±0"2(X) , Tx y=T2(X) .

(2.1.5)

It is easy to verify that the superposition of these solutions leads to the
problem with the prescribed boundary conditions.

In problem A, the normal surface forces on the upper and lower sides
have opposite directions (tension along axis y for 0"1 > 0) whereas the
shear stresses have coincident directions (tension along axis x for T1 > 0).
In problem B, the normal surface forces on the upper and lower sides have
coincident directions (upwards, i.e. along axis y for 0"2 > 0) whereas the
shear stresses have opposite directions ( T2 > 0 at y = b). In problem A,
displacements u and v are respectively even and odd with respect to y and
in problem B u and v are respectively odd and even with respect to y.
Problem A will be referred to as the problem of tension while Problem B
will be termed the problem of bending , Fig. 7.1.
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The syste m of surface forces on the part (0, x) of t he beam is statically
equivalent to the longitudinal and transverse forces

x x

p (x) = f [X+ (x) + x: (x)] dx = 2f T1(x) dx,
o 0
x ;1;

Q (x) = f [Y+ (x) + Y - (x)] dx = 2f (Y2(x) dx
o 0

and the bending moment about point (x ,O)

(2.1.6)

x .r

f1 (x ) = - f (x -~) [y+ ( ~) + Y - ( ~)] d~ - bf [X + ( ~) - X - (0] d~
o 0

x x

= -2f (x - 0 (Y2 (0 d~ - 2bf T2 (~) d~ .
o 0

In particular, on the right end

(2.1.7)

(2.1.8)

I

Q (I) = 2f (Y2 (x) dx,
o

I

X = I: P (I) = 2f T1(x) dx,
o

I I

f1 (/) = -IQ +2f ~(Y2 (Od~-2bf T2(X) dX,
o 0

t hat is, in order to make this end free of load in the sense of Saint-Venant
forces -P (I) , -Q (I) and moment - Ji (I) are needed.

7.2.2 Plane Saint- Venant '8 problem

It is assumed that sides y = ±b are free of load whilst the surface forces on
the right end are statically equivalent to the axial force P , transverse force
Q and bending moment u.

In the problem of tension by a longitudinal force (Y y = 0, T xy = 0 and
the non-zero stress (Y x is uniformly distributed over the height of the strip.
Airy's function is simple and given by

(2.2.1)

A positive (i.e. rotatin g from axis x to axis y) bending moment f1 causes
only st resses (Y x , compressive on the upp er part of th e st rip (y > 0) and
linearly distributed over the height . Referring, for example, to eq. (1.4.6)
of Chapter 6 we have

f1 r -_ ~h3
rT x = - I V, T .c !! = 0, lT y = 0, :3 '
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where I denotes the moment of area inertia of the cross-section about axis
X3 (for a unit size of the thickness). Therefore

(2.2.2)

The problem of bending due to the transverse force Q applied at the
right end is more difficult . In this case

Q (l - x)
I Y,

OTxy o(Jx Q
--=-- =--Yoy ox I '

O(J y

oy
_ OTx y

ox
and one can satisfy these equat ions and the boundary conditions of zero
st resses T x y, (J y by taking

These stresses are due to the following st ress function

(2.2.3)

Referring to formulae of Section 7.1 we have

't Q. (l 1 2)s+z =-z z-- z
I 2 '

that is

S 'T Q . (l 2 z3 )+ z = -z z --
21 3 '

Q ( 2 1 3) Q [ (2 2) x
3

2]S = - -2lxy + x y - -y T = - l x - y - - + x y
2I 3' 2I 3

and the displacements are as follows

Elu= ~ [(l+v)y(b2- ~2) -2lxy+ x 2y_}y3] +EI(uo- woY),

Q [ x
3

]Elv ="2 - (l + v) (l- x ) (b2 - y2) + l (x 2 - y2) - 3 + x y2 +

EI (vo +wox ) .
(2.2.4)

Constants uo, Vo are obtained from the condit ions that the displacements
at point (0,0) vanish. Following Subsection 6.2.2, in order to determine Wo
we assume

(au) _0
oy 00 - .



7.2 Beam and bar with a circular axis 539

The first case corresponds to fixing element dx on the beam axis at point
(0, 0) whereas the second case describes fixing element dy in the cross
sect ion of the beam. The equation for the elast ic line obtained by means of
the second equation in (2.2.4) for y = 0 is as follows

Q ( 2 x
3

) [ T~,y ]
V (x, 0) = 2E1 lx - 3 + ----;; x , (2.2.5)

where the term in the brackets is added for the second way of fixing and
accounts for the influence of the shear stres ses on the deflection. The value
of this correct ion can be characterised by the ratio of it to the end deflection
obtained by the first way of fixing

T O QZ3 b2

.-:!:.JL ·- = 3(1+ )-
f.1 . 3E1 v [2 '

(2.2.6)

As mentioned above, the applicability of Saint-Venant 's principle assumes
the smallness of ratio biZ. The correct ion in the deflection due to shear
str esses is propor tional to the square of ratio b]! and presents a standard
order for the correction term in the technical theory of beams.

7. 2.3 Operator representation of solutions

This simple notion for the solution of problem of mathematical physics for
strip Iyl ::; b is explained in what follows for the Laplace equation

The solution is sought as a series in y

(2.3.1)

oo oo

F = Ly2~h., (x) +Ly28+lf~$ (x).
~=o 8= 0

(2.3.2)

Here f~8 (x) does not denote a derivative of 128 (x) with respect to x as the
differentiation with respect to x is denoted by 8. Subst it ut ing eq. (2.3.2)
into eq. (2.3.1) we obta in after a rearrangement

00

Ly2~ [8212$ (x) + (28+ 1) (28 + 2) 128+2 (x) ] +
$=0

00

2::>28+1 [82f~8 (x) + (28 + 2)(28 + 3) f~8+2 (x)J = o.
.,=0
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Equating the coefficients associated with y2s, y2s+1 for 8 = 0, 1,2, . . . we
arr ive at the following chain of equalities

(Pfo (x) + 1 . 2h (x) = 0,
a2h (x) + 3· 4f4 (x) = 0,

a2 fb (x) + 2 · 3f~ (x) = 0,
a2fHx)+4 ·5f~(x) =0,

a2hs (x) + (28 + 1) (28 + 2) h S+2 (x) = 0,
a2f~s (x) + (28 + 2) (28 + 3) f~s+2 (x) = 0,

enabling us to express all of these coefficients of series (2.3.2) in terms of
fo (x) and fb (x) , i.e. in t erms of the sought solut ion F (x,y) and its first
derivative with respect to y on th e st ra ight line y = °(the st rip axis)

Now

) (-1) s 2 () f' () (-1 t a2s fI ( )
h s (x = (28)! a s fo x, 2s X = (28 + I)! JO x . (2.3.3)

00 [(_I)S 2s (-I t (ya)2s+1 I ]

F(X,y)=[; (28)! (ya) fo(x) + (28+1) ! a fo( x) , (2.3.4)

however this result can be set in another form

sin ya
F (x ,y) = cosyafo(x) + -a-f~ (x) . (2.3.5)

This result has a clear meaning: cos ya and sin ya should be replaced by
the power series in a2 and letter a should have the original meaning of
the operator of differentiation with respect to x over functions fo (x) and
fa (x) .

It is however easy to obtain solution (2.3.5) without series. We can write
Lapl ace equ ation (2.3.1) in the form of an ordinary differential equation
with respect to the independent vari able y in which ais considered , for the
time being, as a number

F" + a2 F = 0.

The solution of this equa t ion subjected to the initial condit ions

at y=o F=fo(x) , F'=fb(x) ,

(2.3.6)

(2.3.7)

is set in the form of eq. (2.3.5) and has th e above interpret at ion. The
intermediate calculations are carried out for representation (2.3.5) rather
than directly for the series. For example, the mean value of F (x ,y) averaged
over " the height of the strip" and the normal derivative of F at y = b can
be written down as follows

1 Jb sinba
2b -b F (x ,y) dy =~ fo (x) ,

aaFI = -a sin bafo (x) + cosbaf~ (x) etc.
y y=b
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There is no need to take care of the convergence of series (2.3.4) presented
in the form (2.3.5). The lat ter provides us with a formal way of const ruct ing
the solut ion which can be expressed in any other form.

7.2.4 Stress junction jar the strip problem

Following Subsection 7.2.3 we set the biharmonic equation for Airy's func
tion in the form

(2.4.1)

Four initial conditions are needed, namely the values of U and its derivatives
of the first , second and third order at y = O. For the sake of simplicity of the
forth coming formulae we will seek U as a sum of even and odd functions of
y which corresponds to splitting the problem into problems A and B. The
evaluat ions will be carried out in parallel. The initi al condit ions are put in
the form

A y = O: U=fa(x ) , U' = O, U" = f~(x), UIII = O }
B y = 0: U = 0, U' = f6 (x), U" = 0, U'" = f6" (x) ,

(2.4.2)

B

and the corresponding solutions of the "ordinary" differential
(2.4. 1) are

1 sin ya
A U (x, y) = cosya.fa(x ) + 2Y]j8 [fg (x) + a2fa(x )] ,

smya ,
U (x, y) = - a-fa(x) +

2~2 Cin: a - YCOsya) [J~' (x) + a2f6 (x)] ,

so that

A \J2U = C?sya [fg (x) + a2fa (x)], }

B \J2U = sm
a
y8

[f6" (x) + 82 f6 (x)] .

The boundary condit ions (2.1.5) can be set in the form

equation

(2.4.3)

(2.4.4)

A y= ±b: ay = a2u = al (x),

B y = ±b : ay = a2u = ±a2(x) ,

and under the notion

au
T x y = -aF = ±Tl (x) ,

ao
T x y = -a--;;- = T 2 (x)

uy

x x

mdx) = J(x - 0 ad~) d~ , ik (x) = JTdO~, k = 1, 2, (2.4.5)

a a
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they determine the stress function and its normal derivative at y = ±b

A y = ±b :

B y = ±b :
(2.4.6)

Using these conditions we determine the unknown functions in solution
(2.4.3) and then the solut ions themselves

A U( x ,y) = F
At2b8)

[(~sinY8sinb8+cosY8cosb8+ (2.4.7A)

sin b8) ( y sin y8 sin b8) ]+cosy8----w- ml(x)- "b-8-cosb8-cosy8-8- it (x) ,

B U(x ,y) = F
Bt2b8)

[(~ cosY8cosb8+ sinY8sinb8- (2.4.7B)

sin y8 ) ( sinb8 siny8 ) ]-----wJcosb8 m2(x)+ y cosy8----w---8- cosb8 t2( X) ,

where

sin 2b8
FA (2b8) = 1 + 2b8' F (2b8) = _ sin 2b8

B 1 2b8· (2.4.8)

The power series in 8 in the expressions in brackets in problems A and
B begin respectively with terms of first and second order. Thus, functions
U (x,y) in both problems are presented by the series containing only posi
tive powers of 8 in addit ion to the constant terms.

The displacements obt ained by formulae (1.7.7) are equal to

2J-lU = FA (~b8) [8 ( - cos y8 cos b8 - ~ siny8 sin b8+

1- v Sinb8)
1 + v cosy8----w- mdx) +

(
y 2 cos b ) ]-cosy8sinb8+"bsiny8 cosb8-1+v cosy8----wJ tdx) ,

2J-lv = FA t2b8) [8 (sin y8 cos b8 - ~ cosy8 sinb8+

2 sinb8)
1 + 1/ sin y0 ----,;{j ml (x) +

(
y 1 - v sin y8 ) ]

sin y8 sin b8 + "b cos y8 cos bo - 1 + v ----wJ cos b8 it (x) ,

(2.4.9A)
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2J.tu = FB (~b8) [-8 (tcos y8 cos b8 + sin y8 sin b8+

I- v . COSb8)
1+ v sm y8~ m2 (x) +

(
y . 2 . sin b ) ]-b cosy8sin b8 + smy8 cosb8 - 1 + v smy8~ t2 (x ) ,

2J.tv = FB t2b8) [8 (t sin y8 cos b8 - cos y8 sin b8+

2 COS b8)
1 + v cosy8~ m2 (x) +

(
y . 1 - v sin b ) ]bsin y8sm b8 + cos y8 cosb8+ 1 + v cosy8~ t2 (x) .

(2.4.9B)

These formulae contain the terms whose expansions in series also have
negative powers. This can be predicted since determining the displacements
requires further integrating expressions for the surface forces.

The expressions for the stresses are easily obtained by differentiating the
stress function (2.4.7). Omit ting the cumbersome formulae we notice only
that , in the theory of beams , the representation of the key quant ities turn
out to be rather simple. For example, the normal stresses ax (x, ±b) on the
longitudinal sides of the beam are as follows

FB (2b8) 2 cos
2

b8 1 }
A ax (x, ±b) = - FA (2b8) al (x) - FA (2b8) T/1 (x ) ,

FA (2b8) 2sin2 b81
B ax (x , ±b) = -F FB(2b8) a2 (x) =f FB(2b8) btz (x) .

The shear stress 7 xy (x,0) on the axis of the beam is given by

(2.4.10)

A t xy (x ,O) = 0,
1 [.B t xy (x ,O) = FE(2b8) - smb8a2(x) +

( COSb8 - Si~:8 ) 7 2 (X) ] .

The equation for the elastic line is set in the form

} (2.4.11)

A v (x, 0) = 0,

8 [( . 2 COS b8)
B 2J.tv (x ,0) = FB (2b8) - smb8+ l +v~ m2(x) +

(
1 - u sin b8) ]cosb8 + l+ v~ t2(X) + 2J.t(wox+ vo)·

(2.4.12)

Seemingly, these formulae can be applicable because the funct ions de
scribing the surface forces are infinitely differentiable. However it will be
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shown below that this restriction can be removed. The formal represen
tations derived can gain a certain meaning for the piecewise continuous
surface forces and even for concentrated forces and moments .

Let us also notice the representations for operators FA and FB and the
inverse operators

F (2b8) = ~b282 (1 -!b282+ ~b484 _ _1_b686 + ... ) }
B 3 5 105 945 '

1 _ 3 12211443466
FB (2b8) - 2b282 ( 1+ Sb 8 + 525b 8 + 23625b 8 + ...),

(2.4.13B)

which will be used in what follows.
The multiplier 8-2 in the expression for Fi/ makes the problem of bend

ing more difficult in comparison with the problem of tension.

7.2.5 The elementary theory of beams

Keeping in the power series in 8 only the constant term the expressions for
the stress function (2.4.7) are presented in the form

(2.5.1)

and the stresses are as follows

(2.5.2)

where, as previously, I = ~b3 . Evidently, these expressions satisfy the static
equations in the volume and the boundary conditions on the longitudinal
sides of the beam. However Beltrami's dependences are not satisfied as the
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stress functions (2.5.1) are not biharmonic for arbitrary surface forces. In
the obtained solution, the end x = 0 is free in Saint-Venant's sense, that is,
the longitudinal and transverse forces and the bending moments are equal
to zero.

The distribution of (Jx and the shear stresses due to the normal load
given by eq. (2.5.2) correspond to those in the elementary theory of beams
whereas the normal stress (Jyare not taken into account within this theory.

As stress functions (2.5.1) are not biharmonic, the displacements should
be determined by the first term in the expansion in the series in aobtained
from the general representations (2.4.9). We arrive then at the expressions

x x

Eu = -vm~ (x) - tJtr (~) d~ + !J J{to (0 d~ + uo - WoY ,
o 0

x

Ev = Y(Jl (x) + v~tl (x) - ~ J(x -~) {to (~) d~ + Vo + WoY ,

°
where

{to (x) = -2 [m2 (x) +bt2 (x)]

(2.5.3)

(2.5.4)

(2.5.5)

presents the bending moment about point (x,0) caused by the surface forces
distributed over part [0, xl of the beam .

The equation for the elastic line of the beam takes the form

d2

EI dx2v (x, 0) = -{to (x) .

Thus, the elementary theory is completely contained in the first term of
the expansion of the rigorous solution. Further terms with the derivatives of
the functions describing the load are the corrections added to the elemen
tary theory one after another. The order of these corrections compared to
the principal terms of the elementary theory is proportional to the sequen
tial powers of ratio b2 / [2. They are essential for relatively short beams and
if the load rapidly changes along the beam. It can also be mentioned that
these corrections describe the system of stresses which are statically equiv
alent to zero since the static equations in the volume and on the surface
have already been satisfied in the first approximation (2.5.1).

7.2.6 Polynomial load (Mesnager, 1901)

When the surface forces are prescribed by polynomials of order n the higher
order of the polynomials on the right hand sides of the expressions in eq.
(2.4.7) is equal to n+2. The expansions of these expressions in power series
in aare truncated and the stress function is presented by an automatically
obtained polynomial of x , y .
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For example, under an uniform normal load Y+ (x) = const

and in the expansion of problem A it is necessary to keep only the terms
with 82 whilst in the problem B t he ter ms with 84 should also be retained as
formulae (2.4.7B) contain factor 8-2 . The powers of the terms in the series
increases by two, thus the evaluation is carried out to the above-mentioned
82 and 84 . When t he load obeys a quadr ati c or cubic law it is necessary to
keep the fourth and sixth power in problems A and B, respectively, and so
on.

Calculation for a uniform or a linear normal load leads to the following
expressions for the st ress function

A UA (x ,y) = U~ (x ,y) , }

B UB (x ,y) = U~ (x, y) + 3~I (b2 - y2)2<T2 (x) ,
(2.6.1)

(2.6.2)

as the terms with 82 vanish in problem A. Expressions for U~ (x,y) and
U~ (x,y) are given by formulae (2.5.1). The st resses i mposed on solut ions
(2.5.2) are equal to

<Ti l) = l ~I Y (5y2 - 3b2
) <T2 (x) ,

<T~l ) = 3~I (b2 - y2)2 Y<T~ (x) ,

T (l) = __1_ (b4 _ 6b2 y2 + 5y4 ) <T' (x)
x y 30I 2 ,

where <T~ (x) = 0 and <T~ (x) is constant under a linear load and vanishes
under a uniform load.

The equat ion for the elast ic line const ructed by formulae (2.4.12) con
tains, in addit ion to the term from the elementary theory (proportional to
the double integral over the bending moment /-L0 ( ~)) t he terms proportional
to this moment and the second derivative of <T2 (x)

J
x b2

Elv (x, 0) = - (x -~) /-L0 (~) d~ - 5 (8+ 5v) m2 (x) +

°
1 4 ( 22 3 + 4V)-b - - - - <T2 (x) + vo +wox.
5 105 4

(2.6.3)

However t he term proport ional to <T2 (x) is included into the expression for
the rigid body displacement .

In practice, the present formulae are applicable to any law of the poly
nomial load as the corrections are of the order of b4 /14 and higher. Their
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account assumes applicability of Saint-Venant 's principle and is hardl y ap
propriate.

Having the solut ion for the case of the linear load we can limit our
consideration only to loads which are statically equivalent to zero. Indeed,
given a law of load one can determine the load

- 1 /' 3 ( 2X) /' ( 2~ )f (x ) = f (x) -i f (~ ) d~ -i l - T 1 - T f (~) d~ ,

o 0

(2.6.4)

which sati sfies the requirement for the load to be statically equivalent to
zero

,
/ l (x)dx=o,

o

,
/ x l (x )dx = 0

o

(2.6.5)

and differ from f (x ) in the load which is linear in x

Th e solution for thi s particular load is known. One can limit consideration
to the loads with the vanishing principal vector, to this end, it is sufficient
to keep two terms on the right hand side of eq. (2.6.4).

7.2.7 Sinusoidal load, solutions of Ribiere (1898) and Filon
(1903)

Relationships of Subsection 7.2.4 can be set in the general form

<I> (x,y) = Q(y,8)f (x) , (2.7.1)

where <I> (x,y) is a sought quant ity (for example the st ress function, a st ress,
a displacement ), f (x) is determined by the load whereas Q (y,8) is a pre
scribed function of operator 8 and depends on y . When the load has the
form of a sine or cosine funct ion

relat ion (2.7.1) can be set in the explicit form

<I> (x,y) = Q (y,ai ) f (x) ,

without resorting to expansion in a series. For instance,

(2.7.2)

cosy8f (x) = cosyaif (x) = coslw y f (x ) , sin y8 f (x) = sinhay f (x)
8 a
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etc .
Given a trigonometric series for the load

00

f (x) = ~o + I)ak cos oa,z + bk sin oj. z} ,
k=l

where

hI'
ak = 2- [ , (2.7.3)

I

ak = ~Jf (x) cos auxdx,
o

we have

I

bk = ~ Jf (x) sin akx dx ,

o

(2.7.4)

00

<P (x, y ) = <P* (x, y ) + L Q (y, aki) (ak cos akX + bk sin akx),
k=l

(2.7.5)

where <P* (x,y) denotes the solut ion corresponding to the constant term of
series (2.7.3) which is the mean value of f (x) averaged over the length of
the beam. It is constructed by the rule of Subsection 7.2.6.

For example, for the normal load only the upper side of the beam y = b

00

y + (x) = 2a l (x) = 2a2 (x) = L (akcosakx + bksinakx)
k=l

(2.7.6)

the stress function, byeq. (2.4.7), is presented by the series

U ( ) bL
(X) akcosakx+bksinakx ( y . h . h b

A x , y =- -- sm akysm ak +
ak (2ba k + sinh 2bak) bk=l

sinhakb ) *cosh akY cosh akb + cosh akY b + UA (x, y) ,
ak

00 ak cos akX + bk sin ak X ( Y
UB (x ,y) = -b L (b . h 2b ) -b coshakycoshakb-

ak 2 ak - sm akk=l
. . sinhakY ) *

smh akY smh akb - ak
b

cosh akb + UB (x , y) .

(2.7.7)

Here UA(x, y) and Us (x, y) are the solut ions of a similar form to (2.6.1)
and correspond to the te rms constant and linear in x in the expansion of
moments mk (x) in the trigonomet ric series

(2.7.8)
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The convergence of series (2.7.7) and the stresses obtained in terms of
these series is ensured by term sinh 2bO:k in the denominator. The conver
gence is also ensured on the loaded side y = b of the beam excluding the
points of discontinuity in the load .

Example. A beam of length 2/ is loaded by a "t riangular" load which is
even with respect to x

The trigonometric series for the load has the form

y + ( ) = 4q~ COSO:kX
x [2 L 2 '

k= l O:k

and due to eq. (2.7.8)

7r
Ix l < I, O:k = (2k - 1) l '

where we used the well-known relationship

The normal stresses on the sides of the beam obtained by eq. (2.4.10)
are as follows

where the constant term is given by eq. (2.5.2) .
These formulae are transformed to the form

a x b _ y+ x + 32qb
2
~ cos O:k X _ ~ ql2

x ( , ) - () / 2 L · I 2 2b _ 4b2 2 I 24 '
k= l Sllll O:k O:k

ax (x, - b) = _ 16qbf COSO:kX sinh 2bO:k + ~ q12.
[2 k=l (sinh22bO:k - 4b2o:DO:k I 24

(2.7.9)

Also here one can see the difference in the absolute values of stress a x on
the loaded and unloaded sides of the beam.
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In the case of a very th in beam (b« I) the coefficients of series (2.7.9)
are replaced by the expansions in power series in boa;

(
. 2 2 2 ) - 1 3 ( 8 4 2 )smh 2bQk - 4b Qk = -6b4 4 1 - - Qkb + ... ,

1 Q k 15

sinh2bQ k (. 2 2 2 ) - 1 3 ( 2 4 2)smh 2bQk - 4b Qk = -----:t4 1 + -Qkb ,
Qk 8b Qk 15

and formulae (2.7.9) are set as follows

00 00 12
a ( b) = y+ ( ) _ 16q '" COSQkX 6q '" COSQkX _ ~L

x x, x 5b2 L.-- Q: + [2b2 L.-- Q4 I 24 '
k=1 k k=1 k

a (x -b) = _~~ COSQkX _ 6q ~ COSQkX ~ qz2
x , 5b2 L.-- Q2 [2b2 L.-- Q4 + I 24

k=1 k k=1 k

or in the equivalent form

(2.7.10)

if we remember the representation of y + (x) in the form of a trigonometric
series. Here we have denoted

00 2
o ( ) _ 4q L cos QkX ql - 2 ()J.,l x - - - - - - m2 x .

[2 Q 2 24
k=1 k

According to eq. (2.5.4) this is the bending moment about point (jr] ,0) on
the beam axis. Using eq. (2.4.5) it can be presented, for 0 < x < I , in the
form

° 1JX (2~) 1( 2 2X
3

)J.,l (x) = --q (x -~) 1 - - d~ = --q x ---
2 I 4 3 1 '

o

and it is easy to verify that function J.,l0 (x) , even with respect to x, has the
above trigonometric series for [z] < I.

In the approximate solution (2.7.10) the above-ment ioned difference in
the absolute values of ax (x,±b) disappears. It is easy to underst and that
(2.7.10) corresponds to the solut ion to the problem of a beam of length I
with a free left end (x = 0) and loaded by a linear load

1 ( 2X)y + (x) = 2q 1 - T 0 < x < I .

Let us note that due to the symmetry of the loading, the left (x < 0)
and right (x > 0) parts of the beam of length 21, the tr ansverse force and
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the bending moment are absent in the middle x = 0 of the beam . The
elementary theory of beams allows one to remove the left part of t he beam
(-l < x < 0) and reduce the problem to consider ing only t he right part .
The rigorous (2.7.9) solut ion differs from the approximate (2.7.10) solut ion
is that the act ion of the left part on t he right one transmit ted via cross
section x = 0 is determined by the state of st ress in this cross-sect ion rather
than only st atically equivalent characterist ics.

7.2.8 Concentrated force (Karman and Seewald, 1927)

Function 1 (x) describing the load can be determined not by a series but a
Fourier integral

00

1 (x) = J;r J[Ie(A)cos AX+ Is (A) sin AX] o:
- 00

Here I; (A) .I , (A) denot e the sine and cosine Fourier transforms

00

Ie (A) = J;r J1 (u) cOSUAdu,
- 00

00

Is (A) = J;r J1 (u) sinuAdu.
- 00

The solut ion of eq. (2.7.1) is also presented by the Fourier integral

00

1 J .<P (x ,y) = yin [<Pc(,\,Y) cos AX+ <Ps (,\,y) sin AX] dA,
-00

where <Pc (A, y), <Ps (A,y) are the Fourier transforms

<Pc (A,y) = Q (Ai,y) Ie (A) , <Ps (A,y) = Q (Ai ,y) Is (A) .

In what follows we consider the problem of the beam supported on ends
x = ±l and loaded normally to its longitudinal side y = b by force Q con
cent ra ted at point (0, b) and the reaction forces (-Q j2) on ends (±l ,b) .
For t his load , the bending moment f-l (x) in t he cross-section x has a " t ri
angular" form

{

I ( Ixl)
f-l (x ) = "2 Ql 1 - T ' Ixl:S l,

0 , Ixl > l .
(2.8.1)

The Fouri er integral for this function , even with respect t o x, is set as
follows

00 I 00

Ql J J(U) Q Jcos AXf-l (x) = -; cos AxdA 1 - T cos Audu = -; ~ (1 - cos Al)d):
o 0 0
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Using eq. (2.4.7) , taking into account that only for normal load ml = m2 =

- ~ J1 and replacing aby i)" we can represent the stress function in the form

{

oo
Q 1- coe sl y . .

U (x,y) = - 2~ J 2 ( Sinh2bA) (-j; smhyAsmhbH
0).. 1 + 2b)"

sinhb)..)cosh y).. cosh b)" +coshy)..~ cos)..xd).. +

00 [
1 Y .. sinhy)..J sinh 2b)" (b cosh y).. cosh b)" - smh y).. smh b)" - b)" cosh b)")

o 1 - 2b)"

_ ¥.- (b2 _ Y2)] 1- cos)..l COS)..Xd)..} _ J1(x) y (b2 _ y2). (28.2)
I 3)..2 2I 3 .

The expansion of the integrand in the second integral in the power series
in ).. begins with the term of the second order.

The normal stress (J x is given by the following expression

{

OO

y Q 1 - cos )"l y . .
(Jx = I J1 (x)- 21r J1 sinh2b)" (coshy)..coshb)..- bsmh)..ysmh)..b-

o + 2b)"

00 [
sinhb)" 1 y

coshy)..~ ) ccesxd). +J sinh2b)" (b cosh y).. cosh b)"-

o 1- 2b)"

. sinh y).. ) 2y ] }sinh y).. smh b)" +~ cosh b)" + 1)..2 (1 - cos )"l) cos Xxd). .

(2.8.3)

This results in the normal stress (J x on the beam axis

00

QJb)" cosh b)" - sinh b)"
(Jx (x, 0) = -- b . h b)" (1 - cos )"l) cos Xxd).

1r 2 ).. + sin 2
o

(2.8.4)
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which is not taken into account in the elementary theory of beam and the
st resses of the longitudinal sides

b
ax (x ,±b ) = ±1J.l (x) -

00

2Q J[ ( 2b)" - sinh 2b)" ± 2b)" + sinh 2b)") ± 2b] (1 _ cos ),,/ ) cos Xxd):
7r Zb): + sinh 2b)" 2b)" - sinh 2b)" 1)..2

o

On the side y = -b this st ress is determined by the convergent integral

00

a x -b --2Q J( 2b).. sinh2b)" _ _ b_) x
x (, ) - 7r sinh2 2b)" _ 4b2 )..2 2/)..2

o
b

(1- cos)..l) cos)..xd).. - IJ.l (x) , (2.8.5)

whereas convergence is lost on the side y = b of the beam loaded by the
concentrated forces. The obt ained expression is easily reduced to the form

00

b QJax (x , b) = IJ.l (x) + -; (1 - cos)"l) coe sxd). +
o

Q JOO ( 8b
2

)..
2

3 )- 2 2 - --2 (1 - cos )"l) cos )..xd)".
7r sinh 2bA - 4b2A 2b2)..

o

Not icing that

1
cos AXcos Al = "2 [cosA(l + x) + cos A(l - x )] ,

and recalling the Fourier representation of the delta-function

00

8 (x) = ~ Jcos AxdA,
o

we arrive at the expression

b 1 1
ax (x ,b) = IJ.l (x ) + Q8 (x) - 2Q8(l + x) - 2Q8(l - x) +

Q Joo ( 8b
2

)..
2

3 ) [ 1- - -- cos )..x - - cos X(l + x) -
7r sinlr' 2b)" - 4b2)..2 2b2)..2 2

o

(2.8.6)

(2.8.7)

~ cos X(l - x )] s»: (2.8.8)
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The expression

should be called the influence function of the unit force at point(~, b). The
terms correcting the value (T x (x, b) from the elementary theory determine
the action of forces Q at point (0, b) and -Q/2 at points (-I, b) and (I,b) .

The influence function allows one to obtain the expressions for the terms
correcting the elementary theory in the case of the distributed load. For
instance, for the load

we have

q(x) = { qo,
0,

Ixl < a,
a < [z] < I,

a a

/ / ~~
q (~) 8 (x -~) d~ = q (x), q (0 cos X(x -~) d~ = 2qo-,X- cos Xr,

-a -a

and the normal stress (T x (x ,b) is as follows

(T (x b) - ~ (x) 2qo /00 ( 8b
2,X2

__3_) sin'xa cos'xxd'x
x , - 1f..L + 7r sinh22b'x-4b2,X2 2b2,X2 ,X

o
- qoa [8 (x + I) + 8 (x -I) + 'ljJ (x + I) + 'ljJ (x -I)] .

Here f..L (x) denotes the bending moment in the simply supported beam
under the considered load.

The plots of the normal (T x, (T y and shear T xy stresses sue to a concen
trated force at y = ±b/2, 0, ±b versus x are shown in Seewald's paper!
and reproduced in "Theory of elasticity" by Timoshenko . It is natural that
perturbations of the stresses obtained by means of the elementary the
ory extend distances compared to the beam thickness 2b. The difference
between the stress (T x (x, b) and the corresponding stress due to the ele
mentary theory practically vanish even for x = 3b.

1Seewald, F . Die Spannungen und Forrnanderungen von Balkcn mit rechteckigem
Qucrschnitt. Abhandlungen aus dem acrodynamischen Institut Aachen, Heft 7, 1927.
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The equat ion for the elast ic line is constructed by means of eq. (2.4.12)

00

Q J 1- cos )..l
v (x,0) = - 2nbE )..2 ( _ sinh 2b)") x

o 1 2b)"

[(1+ v) b).. sinhb)" +2coshb)"] cos )..xd)". (2.8.9)

Introducing into consideration the elementary solution (2.6.3)

( 0) = Ql3 (1- 3x
2 IX[3) Ql (1- l:l) 3(8+5v)

v x, 6EI l2 + [3 + 2E l 20b ' (2.8.10)

and subt ract ing its Fourier integral (2.8.9) we obt ain the correction v* (x,0)
to the elementary theory

v* (x ,0) = - 2n~E7{ si~h2b)" [(1 + v ) b)" sinh b)" + 2 cosh b)"] +
o 1 - 2b)"

3 3 } 1 - cos )"l 0
- 2-+-(8 +5v) 2 cos )..xd).. +v*. (2.8.11)
).. b2 10 )..

The constant v~ should be determined by t he condition v* (x, l) = O. The
terms introduced into eq. (2.8.11) are removed together with the first two
terms of the expansion of the following expression

Si~h 2b)" [(1 + v) b)..sinhb)" + 2cosh b)"]

1 - 2b)"

in the series. This ensures the convergence of integral (2.8.11) for small ).. .
Comparing formulae (2.8.2) and (2.8.7) it is easy to conclude that the

terms in integral (2.8.11) with the factor cos )..x cos )..l take into account the
act ion of forces -Q/2 at points x = ±l. Removing this factor and replacing
x by x - l we arrive at the expression

v* (x - ~,O) = - 2n~E7{1 _ Si~h 2b)" [(1 + v) b)" sinh b)" + 2cosh b)"] +

o 2b)"

3 '{ } 1
- 2- + ~O (8 +5v) 2 cos X(x -~) d).., (2.8.12)
).. b2 1 )..

determin ing the correction to the deflection due to the concentrated force
Q at point (~, b) obt ained from the elementary theory.
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7.2.9 Bar with a circular axis loaded on the end faces
(Golovin, 1881)

A circular bar (an arch) bounded by the concentric circles of radii ro,r l
(ro < rl) and the parts of the straight lines () = 0, () = ()o respectively on
the left and right ends is considered, Fig. 7.2. The surface forces on the
lat eral sides are absent , i.e.

r = ro : CTT = 0, T T () = 0;
r = rl : CTT = 0, TT() = o. (2.9.1)

The forces on th e right end are statically equivalent to the longitudinal
P (()o) and transverse Q (()o) forces and the bending moment mO (()o) about
the cent re 0 of the circles

Tl 1'1

()=()o : !CTodr=p(()o) , !TT()dr=Q(()o),
T O T O

T 1! randr = mO (()o) ·

1'0

(2.9.2)

(2.9.3)

If follows from the equilibrium of the bar that th e surface forces distributed
over the left end face are stat ically equivalent to forces P (0) ,Q(0) and the
moment mO (0) given by th e formulae

() = ()o: P (0) = P (()o) cos ()o +Q (()o) sin ()o, }
Q (0) = - P (()o) sin ()o + Q (()o) cos ()o ,
mO (0) = mO (()o) = mO.

The tensile and transverse forces are positive if they are caused by the
positive normal and shear stresses respectively, and the positive bending
moment is due to the positive normal st ress CT () on the upper side of the
bar.

Provided that only the bending moment act s the integral equat ions of
equilibrium can be satisfied by assuming th at the stresses in the bar are

FIGURE 7.2.
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independent of e. The general expression for a biharmonic function which
is independent of () and the product of such a function and 1'2 has the form

u = A + Bin r + 1'2 (AI + Biin 1') , (2.9.4)

(2.9.5)

where constant A can be evident ly dropped out . Referring to (1.10.2) we
can write the boundary conditions (2.9.1) as follows

(~U) = B+2Alrl+Blrd21nrl+1)=0, }

(
aa; ) T=Tl = ~ +2Alro+Blro(21n ro+1) =0.

r 1'=1'0 1'0

Conditions (2.9.2) on t he end face are given by

"I1aodr
T O

1'1

lraodr
1'0

11'1 a2u dr = (au) _ (au) = 0
ar2 ar 1'=1'1 ar 1'=" 0 '

1'0

( au ) (au) °1'1 - - 1'0 ---:;: - (U1 - Uo) = m .
ar 1'=1'1 a 0

The first condition needs no attention inasmuch as condit ions (2.9.2) hold
whereas the second condition yields the third equation

(2.9.6)

Three equations (2.9.5) , (2.9.6) determine const ants B , AI , BI. The result
is

4 ° ( 2 2 )m 1'01'1 1'1 2 r 2 rar: = -- -- In - + 1'1 In - - 1'0 In - ,
N 1'2 1'0 1'1 1'0

4 o[ 22 ]m 1'0 1'1 1'1 2 r 2 r 2 2
ao = -N --2- ln - + 1'1 In- - 1'0 In- + (1'1 - 1'0) ,

r 1'0 7'1 1'0
T"O = 0,

where

The expression for the stress function is set in the form

(2.9.7)

(2.9.8)

2mo [ 2 (2 1'1 2 1'1 )U = - -- 1'1 T In - - 1'0 In - In T -
N l' 1'0

1'5 (1'2In 1'0 - rr In 1'0 In 1') + ~r2 (rr - 1'5)] ' (2.9.9)
7' 1'1 2
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The stress function in the problem of the axial and transverse forces
is sought in the form P (80 ) cos (80 - 8) F (r) and Q (80) sin (80 - 8) F (r) ,
respectively. These products are the biharmonic functions if we take

A
F (r) = - + Br3 + Cr Inr.

r

The stresses are now given by the formulae

18U 182U {P(80) COS(80-8) d F(r)
o; = ~a;: + r2 882 = Q(80)sin(80 - 8) dr-r- '

18U 182U {-P(80)Sin(80-8) d F(r)
7 TO = r2 88 - ~ 8r88 = Q (80) cos (80 - 8) dr -r-'

ao = 8
2U = { P (80 ) cos (80 -8) d

2
F (r )

8r 2 Q (80) sin (80 - 8) dr2'

(2.9.10)

Boundary conditions (2.9.1) are thus sat isfied if the following two relat ions

hold. Then

(
.!!.- F (r ) ) =0,
dr r T=1'0

.!!.-(F(r)) =0
dr r T =1"l

(2.9.11)

/

T 1 d2F (dF ) IT
1r-2dr= r - - F

dr dr 1'0

TO

and if conditions (2.9.11) hold, the bending moment rno is identically equal
to zero.

Turning to t he remaining condit ions (2.9.2) we have

8 = 80 :

8 = 80 :
/

T 1 d F FI
T

1 dFI
T

1

Q (80 ) = Q (80) dr -:;:dr = Q (80) -:;: 1"0 = Q (80) dr TO'

TO

where the latter equality is the result of the bound ary conditions (2.9.11).
Thus , in both problems the missing third equat ion is reduced to the same
form

1 11"1-F (r) = 1.
r TO

(2.9.12)

From three equat ions (2.9.11) and (2.9.12) we can determine the constants
A , B , C. Function U solving both problems (on axial and transverse forces)



7.2 Beam and bar with a circular axis 559

is represented as follows

U = _1_ [P (00 ) cos (00 - 0) + Q (00 ) sin (00 - 0)] X
2N1

(

r2r2 1 r3)

2r Inr + 2 0 1 2 - 2 2 '
ro + "i r ro + "i

(2.9.13)

and the stresses take the form

(2.9.14)

The comparison of stresses in Golovin's problem and those in the elemen
tary theory of a curved bar is performed in detail in the book by Timo
shenko.

In polar coordinates , the displacement vector, given by eq. (1.7.7), is

. 1 [(3 'T ) ie ( ) (au .oo )]
U T + ZUe = E + z e" - 1 + 1/ ar + zraO +

(uo + ivo)e- ie + iwor, (2.9.15)

where 3 + iT is determined as shown in Subsection 7.1.7.
An evident calculat ion using these formulae yields: in the first problem

(2.9.16)
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and in the second problem

E (ur + iuo) = ~l [(p - iQ) ei(Oo- O) (Inr + ie) 

(P +iQ)e-i(Oo-O) 2
r2 2]_l+v [( P _iQ)ei(Oo-O) (2 In r + 1-

r l + ro 2N l

2r
2

) + (P + iQ) e-i(Oo-O) (1 _ rZrr ~ _ r
2

)] , (2 9 17)
r2 - r2 r2+ r2 r2 r2+ r2 . .o 1 0 1 0 1

where P = P (eo), Q = Q(eo ) and the terms describing the rigid body
displacement of the figure in its plane are omitted.

Clearly, the solutions obt ained are rigorous in the framework of Saint
Venant 's principle. In general, t he state of stress differs from the obtained
one in local perturbations in the vicinity of th e end faces.

7.2.10 Loading the circular bar on the surface

The method of solving the problem of the beam with a straight axis, sug
gested in Subsections 7.2.3-7.2.8, can be applied to the case of th e circular
bar. Indeed, writing the Laplace equation in polar coordinates in the form
of an "ordinary" differential equation of Euler 's type

d2F 1 dF 2 1
-d2 + - -d + 802 F = 0,r r r r

we can present its solut ion in the form

8
80 = 8e '

(2.10.1)

sin (Inr80)
F = cos (Inr80)ft{e) + 8

0
h (e) .

By analogy with eq. (2.3.4), this result can be treated as a representation
of the series

ex> [ k k ](-1 ) 2k 2k (- 1) 2k+l2k
F = {; (2k)! (Inr) 80 II (e) + (2k + I)! (Inr) 80 h (e) .

The biharmonic function is presented by a sum of a harmonic function and
the product of a harmonic function and r2 . Introducing, instead of r , a new
independent variable t

e
t = ~ ( 0 ~ t ~ t l = In ~~) ,

we obtain another representation of the stress function

sin t80 2t [ sin t80 ]U = cos t801I (e) + ----a;-h (e) + e cost80h (e) + ----a;-14(e) .

(2.10.2)
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In what follows , for shortage, we consider only the normal loading of the
bar on surface r = rl , that is

t=O: O"r=O, TrO=O; t=h: O"r=I(B) , TrO=O. (2.10.3)

(2.10.4)

(2.10.5)

It determines functions Ii (B) in eq. (2.10.2) . We have

e-
2t

(8 2) e-
2t

(8
2

8 )
a; = r5 8t +80 U, 0"0 = r5 8t2 - 8t U,

e-
2t (8 )

T rO= - r5 8t - 1 80U.

The boundary conditions on surface t = 0 are satisfied if we take

U - ( 2t) ( 8 I sin Wo f ) 2 2t sin WoI (B)- 1- e cos t 0 1 + ----a;- 2 + e ----a;- 1 .

Then

r50"r = [(3 - e- 2t) 80sin Wo + 4Si~:80 - (1- e- 2t) 8~ cosWo] II (B) +

[( 2) . sin Wo]e- t-l (cost80+80smWo)-2----a;- h(B) ,

2 [2 ) . sin t80]roTro= (e- t_l (80smt80+cosWo)-2----a;- 801I(B)+

[
~nt~ ](e-2t + 1) ----a;- - (e-2t -1) cost80 80h (B) ,

[
. (sint80 )r50"0 = (e-2t + 1) 80sm t80 + 4 ----a;- + cosWo +

(1- e2t) 8~cosWo] II (B)-

[( 2) . ( sin Wo ) ]e: t_l (cosWo+80smWo)+2 --a;-+2cosWo h(B) ,

2 2 ( . sin Wo )ro\7 U = 4 80sm t80+ 2----a;- + cosWo II (B)-

(
sin t80 )4 ----a;- + cos t80 h (B) .

(2.10.6)
Requiring satisfying the boundary conditions on surface t = h (r = rl)

we find II (B) ,h (B). Inserting into the expressions for the stress function
leads to the equality

U = [(1 - e2t) (1 - e- 2t 1
) 8~ cos (tl - t) 80+

2 (1 + e- 2
(t 1- t ) ) sin Wo sin h80 - (e2t - e- 2t 1) 80 sin (tl - t) 80+

( 1 - e- 2(t 1 - t ) ) 8 sin (t + t) 8] r5J (B)
o 1 0 (1+ 8~) ~ '

~ = 4e- 2t1sin2 t 180 - (e- 2t 1 - 1) 2 8~
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which can be rewritten as follows

et1+t [u= .2 2 ' 2 COSh(tl-t)sintaosintloo-
sin tlOO - 00 smh tl

1
o~ sinh t sinh i: cos (t I - t) 00 - 200 sinh (iI + t) sin (t I - t) 00 +

~oo sinh (t l - t) sin (tl + t) 00 ] r5F (B). (2.10.7)

Here F (B) is given by

1/

F (B) = / :B~~ = Jf (~) sin (B -~) d~ + CI cosB+ C2 sin B. (2.10.8)
o

One can easily verify the equalit ies

t = 0 : U = ~Ut = 0', t = tl ·. U - oU - 2tl f (B)
u - ot - roe 1 + o~ '

confirming, by eq. (2.10.4) , that all boundary condit ions hold .
When the lat eral surfaces are free, that is f (B) = 0, then by eq. (2.10.8)

o~nF (B ) = i2n (CI cosB + C2 sin B)

and , by virtue of eq. (2.10.7), the solution t akes the form

which is just anot her form of eq. (2.9.13) determining the st ress function
in the case of the bar loaded on the end faces.

When the load is a linear function of B we have

f(O)=fo+!IB , F(B)=fo+!IB ,

because the terms in F (B) proportional to cos B,sin B determine only the
solution of the type (2.10.9) which is omitted in what follows. The solut ion
of the probl em is obtained by keeping only the free term in the expansion
of U in the power series in o~

et +t 1

U = r3 2 . 2 [ttl cosh (t l - t) - sinh t sinh tl-
t l - smh tl

~ (tl - t) sinh (tl - t) + ~ (tl + t) sinh (tl - t)] (fo + !IB). (2.10.10)
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Obtaining the solution for the case of the load

I (8) I 8 . 8 F (8) In cos n8 + gn sin n8= cos n + 9 sin n = "'------=-:,----n n , 1 _ n2 (n i- ±1)

presents no problem. As explained in Subsection 7.2.7, it is sufficient to
replace operator 80 by ±ni. Then

e
l
+ l l

[U = Ul a ~±ni = r5 2 . 2 cosh(t1 - t)sinhntsinhnt1
e n2 cosh LI - sinh tii,

- n2 cosh n (t1 - t) sinh t sinh t 1 - ~n sinh (t1 + t) sinh n (LI - t) +

1 . . ] In cosn8 + gn sin n8
"2nsmh(LI-t)smhn(t1+t) n2 - 1 . (2.10.11)

7.2.11 Cosinusoidal load

The "resonant" case n = 1 excluded above from the consideration requires
special attention. We have

1(8) = 10 cos 8,

Now

1 .
F(8) = "2108sm8.

85F = -~ (8 sin 8 - 2 cos 8) 10,

and, in general,

1 .
8tF = "2 (8sm8 - 4cos8) 10

2 k 1
8oF=(-1) 2 (8sin8-2k cos8)!0 .

Denoting therefore the multiplier-operator associated with F (8) in eq.
(2.10.7) by <P (t,8§) and putting it in the form

(2.11.1)

we have

1 .
U = <P (t ,8~) F (8) = "2 10 [<Po (t) - <Pdt) + <P2 (t) - .. . ] 8sm8 +

1
"2 10 [2<1>1 (t) - 4<1>2 (t) + 6<1>3 (t) - . . . ] cos 8.

Referring to eq. (2.11.1) we can write the latter result in the form

(2.11.2)
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The result of the calculation by means of this formula is present ed by a
sum of three terms

(2.11.3)

e t+t 1

U2 = -r6fo . . [ttl cosh 2tl -
4smhtl (it cosh it - sinh zj )

~ t I sinh 2t + ~ t sinh 2t I - sinh t sinh t I cosh (t I - t) -

2 (t I - t) sinh t sinh t I sinh (t I - t)] cos 0,

U
_ 2 ( tt cosh 2it - sinh2 t l

3 - r OJO 2 x
2 sinh tl (tl cosh zj - sinh rj )

et +tl [zcosh r, -sinht cosh(tl-t)] cosO,
(2.11.4)

where U3 determines the loading on the end faces of the bar and can be
omitted , see eq. (2.10.9).

Term UI satisfi es all boundary conditions which can be easily proved by
means of eq. (2.10.4)

tl - t
CJ;=fo I e . h {[t coshtl-sinht cosh(tl-t)]cosO+

it cos lit - sm tl

~ [cosh t l - cosh (2t - it)] 0 sin O} ,

etl - t 1
T~(1 = - fo h . h [cosh rj - cosh (2t - it)] -2 (sinO + OcosO) .

it cos it - sin tl

This is however not the solution to the problem as UI is not a biharmonic
function . Function U2 is not biharmonic as well, and the stresses CJ~2 ) , T~~)
obtained in terms of this function are as follows

CJF ) } ei l-t . .
(2) = -f0

2
. h ( h . h ) [tlsmh(tl +t)smh(tl-t)

T rO sin t] tl cos it - sin tl

- (t I - t) sinh it sinh (it - 2t) + 2 sinh t I sinh t sinh (it - t)] { C?S 00 ,
sm .

The solut ion is the sum

(2.11.5)

and it can be checked easily by dir ect calculat ion that U is a biharmonic
function.
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7.2.12 Homogeneous solutions

A refinement of the solutions to the problems on a rectangular strip and
a circular bar which are based on Saint -Venant's principle can be achieved
by imposing the "homogeneous" solutions, i.e. the solut ions corresponding
to the free longitudinal sides of the st rip y = ±b (or free lateral surfaces
r = ro,r = rl of the beam). Such solut ions have already been used in the
problem of the circular cylinder, Subsection 5.7.8, for refining the boundary
conditions on the end faces. A similar construct ion is performed here for
the rectangular st rip and it can also be repeated for a circular bar.

Taking the stress funct ion of the sort

B

1 sin ya
A U (x ,y) = cosya fo (x) + 71 Y-a- [f~ (x) + a2fa (x)] ,

sin ya ,
U (x, y) = - a-fa (x )+

2~2 ( sinaya -Y COSya) [f~' (x) + a2fb (X) ]

(2.12.1)

and requiring the st resses (J y , T x y to be zero on the edges y = ±b of the
st rip we arrive at the system of equations

A

B

~ ba sin ba (J~ + a2fa) + cos baa2fa = 0,

~ ( sin ba ba) (1," a2 f) sin ba a2f = 0
2 ba + cos a + J O + ba J O ,

1 (sinba) .2 -a- - bcos ba (J~' + a2fb) + asmbafb = 0,

1 .
71 bsm ba (J~' + a2fb) + a cos bafb = o.

(2.12.2 )

In what follows we consider the exponential prescribing functions 10, fb,I~'
and fb" which implies that the differentiation is equivalent to the mult ipli
cat ion by a constant factor

d k x a k x k k x- e = e = e
dx '

d" kx an k x k" k x- e = e = e .
dxn

In the system of equat ions (2.12 .1) one should replace aby k and take the
functions

f 1," + a2 f. 1,' 1,'" + k2 J,'JO , a J O, 0' a 0 (2.12.3)

to be proportional to ek x . The nontrivial solut ions of these systems exists
for the values of parameter bk = , for which their determinant vanishes.
This leads to the transcendental equations

A
B

.6.A (2,) = 2, + sin 2, = 0; }

.6. B (2,) = 2, - sin 2, = 0
(2.12.4)
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and enables one to represent expression (2.12.3) in the form

fg + k2 fo = 2cos "(e"Yx / b,

fiI' + k2fo = 2~ sin "(e"y x
/
b.

Thus we have arrived at the following stress functions

(2.12.5)

where im = y, b~ = x . These stress functions ensure th at the edges y = ±b
are free of load and now it is easy to obt ain the formulae for the stresses.
The system of stresses in any cross-section ~ = const of the bar are stati cally
equivalent to zero. It is sufficient to check that in problem A t he longitudinal
force vanishes

b b

J 1J fPU 10U1 1
b(Txdy = - -dry = -- = - e"Y~~A (2"() = 0,

b o ry2 b o ry -1 "(
-b -b

and in problem B the transverse force and the bending moment are zero

All root s of equation (2.12.4), except the trivial ones, are complex-valued .
They lie in four quadrants of th e complex plane "(and are symmetric about
the origin of the coordinate system, i.e. if "( is a root then - "(, ±i are also
the roots. The stress function s given by formulae (2.12.5) are complex
valued, however th ey can be utilised for const ructing the real-valued st ress
functions. In thi s way we arrive at the homogeneous solutions which are
stat ically equivalent to zero and ensure that the longitudinal sides of the
st rip are free.

Table 7.1 displays twice the double values of the first five roots of eq.
(2.12.4) lying in the first quadrant of plane "(, X k = D:k + if3k = 2 "( k '

The real part of the roots increase rapidly with root number, hence the
st resses proportional to e~Q~ decrease very rapidly with the distance from
edge of the st rip. Therefore it is necessary to t ake the roots of the second
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and first quadrants for constructing the solutions for edges x = 0 and
x = I respectively. This substantiates t he admiss ibility of Saint-Venant 's
principle for the narrow and long strip.

The roots of equation The roots of equation
~A (x) = X + sin z = 0 ~B (x) = x - sin x = 0

a:1 = 4, 21239 a:1 = 7,45761
{31 = 2,25072 {31 = 13,89995

a:2 = 10,74253 a:2 = 3,35220
{32 = 3, 10314 {32 = 20, 23871

a:3 = 17,07336 a:3 = 3, 35220
{33 = 3,55108 {33 = 3, 71676

a:4 = 23,39835 a:4 = 26,55454
{34 = 3,85880 {34 = 3,98314
a:5 = 29,70811 a:5 = 32, 85974
{35 = 4,09337 {35 = 4, 19325

Table 7.1

Several methods of using the homogeneo us solutions for satisfying the
boundary conditions on the transverse sides of the strip were suggested.
None of these yields a rigorous solution to this problem, that is, the solution
does not exactly satisfy the boundary conditions on each end face. The
simplest way if satisfying t he boundary conditions" on average" is described
in Subsection 5.7.9. Satisfying th e boundary conditions in some, a priori
taken points is made difficult as the homogeneous solutions have alternating
signs , namely, the higher the numb er of the root , the more frequently the
sign alters for the corresponding solution.

7.3 Elastic plane and half-plane

7.3.1 Concentrated force and concentrated moment in elastic
plane

A concentrated force with projections X ,Y on t he coordinate axes is as
sumed to be app lied at the origin of the coordinate system. The state of
stress in the unbounded plane due to this force is sought , therefore the issue
is the construction of an analogue of Kelvin-Somigliana's tensor (Subsec
tion 4.3.5) in the plane problem. Using the complex variable, i.e. formulae
(1.14.7) and (1.14 .5) , is the shortes t way to the goal.

The principal vector of stresses on any closed contour C enclosing point
z = 0 must evidently be in equilibrium with the applied force. This reason-
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ing leads to the first condition of the problem

b.c (P + iQ) + X + iY = 0, (3.1.1)

where here and in what follows the symbol b.c f denotes the change in
function f under the traversing closed contour in such a way that the
region enclosed by the contour lies on the left. It is evident th at b.cf = 0
if function f is single-valued. In the problem considered the displacement
vector is required to be single-valued, i.e.

b.c(u+ iv) =0. (3.1.2)

As will be seen later, these conditions are sufficient . When they hold, it
guarantees that the stresses are single-valued and the principal moment
rno of the stresses on C vanishes.

By virtue of eq. (1.4.7) we have

b.c (P + iQ) = - ib.c [cp (z) + zcp' (2) + 1;; (2)] .

It is easy to comprehend that for functions of the type

cp (z) = (0: + i,B) In z, 'IjJ (z) = (0:' + i,B' ) In z,

(3.1.3)

(3.1.4)

where (0: + i,B) and (0:' + i,B' ) are constant , this value has a constant value
which is independent of the choice of contour C enclosing the coordinate
origin.

Indeed, then

b.c CP (z) = 271'i (0: + i,B) , b.c CP' (2) = 0, b.c 1;; (2) = -271'i (0:' - i,B' )
(3.1.5)

and, by virtue of eqs. (3.1.1), (3.12), (1.14.5), we arrive at the system of
equations

- i [271'i (0: + i,B) - 271'i (0:' - i,B' )] + X + iY = 0, }
271'i (3 - 4v) (0: + i,B) + 271'i (0:' - i,B' ) = O.

If follows from this system th at

(3.1.6)

thus,

0: + i,B =
X +iY

871' (1 - v) ,
(3.1.7)

cp (z) = X + iY I
( )

n z ,
871' 1- v

X-iY
'IjJ (z) = (3 - 4v) 8 ( ) In z.71' 1- v

(3.1.8)
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The stresses expressed in terms of functions «I> (z) , III (z) by formulae
(1.14.9) are single-valued and are given by

X cos B+ Y sin B
ar +ao=- 2n (1- v ) r ao- ar +2iT,·o=

1 . . 1 - 2v .
=- (X cosB +Y sm B) + z2 ( ) (Xsm B - Ycos B). (3.1.9)

1fT n 1 - vr

With accuracy up to an immaterial term, linear in z, we have

1
u = ( )[-(X +iY)i ln z -(X -iY) z ln i +

16n 1 - v

(3 - 4v ) (X - iY) z ln z + (3 - 4v ) (X + iY)Z lni],

and one can easily prove th e single-valuedness of expression (1.13.6)

[ (
aU au)] °6.c U - z az + i ai = 6.cm = O. (3.1.11)

The displacement vector is determined by the equality

2/1 (u + iv) = 4n (11_ v) [- (3 - 4v) (X + iY) In r + ~ (X - iY) e2iO
] .

(3.1.12)

By analogy, one can consider th e act ion of a concentrated moment. Con
dit ion (3.1.2) is retained whilst the static equatio n (3.1.1) is replaced by
the following equation

MO+ mo = M o +

1
6.c2[X (z) + X (i) - zx ' (z) - iX' (i) - zi<p' (z) - zi<p' (i) ] = O. (3.1.13)

Here lvIo denotes the moment concentrated at the origin of the elast ic plane
and m O is the principal moment of the stresses on any closed contour C
enclosing point z = O.

Equ ation (3.1.3) can be satisfied by assuming

" "/3"
X(z)= (o:" +i/3" ) lnz, 1/J (z )= x ' (z ) = 0: + Z , cp (z ) =0.

z

Condition (3.1.2) th en holds as u + iv is a single-valued function of the
coordinates. We obt ain

MO + ~ 2ni (0:" + i/3" - 0:" + i/3") = 0,

that is 0:" remains undetermined and /3" = ~ 1\1° . Finally
2n

iMo "M o iMo
X = -2~ ln z, 1/J (Z) = _1, /_ , III (Z)=--2 2 ' (3.1.14)

" 2nz n z
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7.3.2 Flamant's problem (1892)

The action of a concentrated force normal to the border y = 0 of the elastic
half-plane y > 0 is considered. This problem is analogous to Boussinesq's
problem (Subsection 5.2.2) for the half-plane.

Axis Oy is directed into the half-plane and the force K 2 is applied at
the origin of the coordinate system Oxy and has the direction of axis Oy.
The point x = -00, y = 0 is taken as the starting point for traversing
the border y = 0, so that the region y > 0 lies on the left. According to
formulae (1.8.4), (1.8.6) the boundary conditions can be set in the form

y = 0: 8U = 0, U = mM = { 0, x < 0,
8y -xK2 , X > o.

The biharmonic stress function is naturally sought in the form

U = ft (x , y) + yfz (x, y), (3.2 .2)

(3.2.3)

where ft, [z are functions harmonic in the half-plane y > 0, see also eq.
(1.11.1). By the first condition (3.2.1) we have

8U 8ft 8ft
y = 0 : 8y = a; + fz = 0, 8y = - fz ·

If the boundary values of two biharmonic functions are equal to each other,
these functions are then equal in the whole region. This means that

y2::0 :
8ft ot, (x,y)
a;=-fz, U(x,y)=fdx,y)-y 8y . (3.2.4)

y = 0:

Here we have obtained a general representation for the stress function in
the half-plane y > 0 if there is no load tangent to the border (y = 0 : T xy = 0).

Proceeding to construction of the stress function of the type of (3.2.4),
let us consider the harmonic function

1-.!. arctan 1L = 1- ~ = Re (1- ~ Inz) = Re<I>o (z) .
n x n nz

On the border y = 0 of the region y > 0 it takes the form

1 _ ~ = {O, x < 0,
n 1, x> 0,

and now it is easy to verify that the harmonic function

-K2 Rez<I>o(z) = -K2 [x (1-~) _yl:r] = I, (x,y)

satisfies the boundary condition

(3.2.5)

ft (x, 0) = { -i~x, x < 0,
x> 0,
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which is required due to eq. (3.2.1). By eq. (3.2.4) we find

ail (e) K 2U = f d x ,y) - y- = -K2x 1- - - - yoay 7f 7f

The terms which are linear in coordinates x ,yare immaterial and can be
neglected. Thi s allows us to present the solut ion in the form

(3.2.6)

Th e stresses are easily obtained by formulae (1.10.2). The only non-vanishing
components are

2K2 sin e 2K2 cos 1jJ
(J,. = ----- = -----

7f r 7f r (
7f 7f 7f)01. = - _ e - - < 01. < - (3.2.7)

'f/ 2 ' 2- 'f/ -2 '

where 1jJ denotes the angle measured from axis Oy (the direction of the
force) to axis Ox . Therefore, on the planes perpendicular to the position
vector r there are only compressive normal st resses whereas on the planes
along r there are no st resses at all. The st ress at the point where the
force is applied is infinitely great and it is explained by the fact that the
concent rated force is thought as a limiting case of the force distributed over
a small area.

The lines of the equal normal stresses are the curves

2K2 0
(J,. = --- cos 1jJ = (J,. = const , T = dcos 1jJ

7fT (
d = _ 2K2).

7f(J~
(3.2.8)

They are the circles of diameter d ta ngent to the border at the point where
the force is applied, Fig. 7.3. The maximum shear st ress is known to be
equal to half the difference in the principal normal st resses, so that in the
plane stress case ((Jz = 0)

1
T m ax = 2"(J,..

Therefore, the lines (J,. = const are simult aneously the lines T m ax = const .
The optical method allows one to observe and photograph the lines T m ax =
const in thin transparent st ressed models. Near the points of applying the
concent rated forces these lines are circles, indeed.

The components of the st ress tensor in the Cartesian coordinate system
are given by the equalities

2 2K 2 yx2

(Jx = (Jr cos e= -----4 '
7f r

2K2 xy2
T xy = -----4 .

7f T

. 2 2K2 y 3 }(Jy = a ; SIn e= - - - 4 '
7f T (3.2.9)
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!I

---...::::...-J-=>-----x

FIGURE 7.3.

For the plane stress , the displacement vector obtained in terms of the
stress function (3.2.6) with the help of eqs. (1.7.7), (1.7.2) has the following
projections

K
2

[ 1 .] }U= 7rE (l-v)O+2'(I+v)sm20 +uo-woY,

v = -:~ [2In r+(I+v)cos20] + vo+ wox .

In the problem of plane strain th e displacements are as follows

U= 2:: [(1-2V)o+~sin20]+uo- woY, }

v = - ~: [2 (1 - v) Inr + cos2 0] + Vo + wox .

(3.2.10)

(3.2.11)

In particular , on axis x we have r = Ixl and omitting the constant term
and th e displacement due to rot ation we obt ain

where

in the problem of plane st ress and

I-v
13 = -

7rJ-l

in the case of plane strain.

(3.2.12)
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7.3.3 General case of normal loading

The solution of Subsection 7.3.2 is easily generalised to the case of any
normal loading on the surface of the elastic half-plane

y=O : ay=-q(x), Txy=O. (3.3.1)

Indeed , the state of stress due to a unit force concentrated not at the
coordinate origin but at point x = ~ is determined by the stress function

x-~ y
U = -- arctan --

1r x-(

see eq. (3.2.6). Summing the actions of the elementary loads q (~) ~ over
the [xo, Xl] of the boundary we arrive at the following expression for the
stress function

X l X l11 y 11u = - (x -~) arctan -cq (0 d~ = - (x -~) ()~q (~) d~ .
1r x-<, 1r

(3.3.2)

X" X"

In particular, let q (0 = qo = const , then placing the coordinate origin
in the middle of the load we have

a

qo 1U = -; (x - 0 ()~df

- a

Let r denote the position vector of the point of observation M (x, y) with
the origin at the point (~, 0) and ro, rl denote the position vector of M for
~ = ±a, that is, their origins lie at the ends of the load. Then, see Fig. 7.4

x - ~ = rcos()~ ,

x - a = rl COS()I,

s

-a

y = rsinO~ ,

x + a = ro cos 00

Mfx,g)

FIGURE 7.4.
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and further

x - ~ = ycot(}~ , d~ = -ydcot(}~ ,

01

U = - q~~2 J(}~d coe ()~.
00

Int egrating by parts we find

2

U = - q~~ [(}1 (cot2 (}1 + 1) - (}O (cot2
(}O+ 1) - (COt(}1 - cot (}o)] ,

and afte r a rearr angement we have

U qo ( 2() 2(}) qo= --2 "i 1 - ro 0 + -ay,
7r 7r

(3.3.3)

where the term linear in y can be omitted.
The stat e of stress can be determined by the sum of states calculated by

formulae (1.10 .2) in the system of polar coordinates with the centres at the
ends of the load. Denoting the system of unit vectors for these coordinate
systems as {e~ , e~} , {e; , e~} we have

T' qo [( 1 1 1 1) () (0 0 0 0) () ]= -- ere r + eoeo 1 - erer + eoeo 0 +
7r

qo [( 1 1 1 1) (0 0 0 0)]- CreO+ eOer - ereO + eOer .
27r

The relation between these systems is given by the evident equalities

e; = e~ cosa + e~ sin o, e~ = -e~ sin a + e~ cos a , a = (}1 - (}o .

Then we obt ain

and the expression for the stress tensor in th e system {e~ , e~} as follows

The principal stresses are determined by eq. (2.1.5) of Chapte r 1

- qo (2a + sin 2a) - (J

27r qo . 2--sm a
7r

qo . 2-- sm a
7r

- qo (2a - sin 2a) - (J

2 7r

=0
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and are equal to

qo ( in o)0"1= - - a + SlIl a,
7f

qo ( in o)0"2 = -- a - slIla ,
7f

and the principal axes are directed at angles ~a and ~ (7f + a) to axis Ox .
On axis x (t he boundary of the half-plane) we have: a = 0 outs ide and

a = 7f inside the range of the load. Thi s is confirmed by the absence of shear
st resses TrOo = Txy on the whole bound ary. The normal st resses 0"x, 0"y on
the boundary are equal to each other; they vanish outs ide and are equal to
-qo inside the range of the load .

7.3.4 Loading by a force directed along the boundary

In t his case the bound ary conditions are set by means of eqs. (1.8.4), (1.8.5)
in the form

y = 0 : U = 0,
au
ay

:r XJPo (x) dx = - JTxydx = P (x) . (3.4.1)
- 00 -00

Turning to eq. (3.2.2) we find that harmonic function II is equal to zero on
the boundary, thus, it identically vanishes in the region y > O. Harmonic
function h is determined by the solut ion of Dirichlet 's problem for the
half-plane

y = 0 : h (x,0) = P (x) ,

having the form

00

f ( ) - Y.- J p (0 d~
2 x ,Y - 2 '

7f (x _ ~) + y2
- 00

(3.4.2)

In the case of a force K 1 concent rated at the origin of the coordinate system
we have

P (x) = {

and by virtue of eq. (3.4.2)

x < 0,
x > 0,

00 00

h (x,y) = K 1 J Yd~ = K 1 Ja(h' d~
7f (x - 0 + y2 tt a~

o 0

K 1 K 1 ( Y )= - ( 7f - B) = - 7f - arctan - ,
7f 7f X
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as oe1e->oo = 1f, oe1e->o = O. Using eq. (3.2.2) and omitting the term linear
in y we obtain

K 1 .
U (x, y) = --rOsmO.

1f

As in Flamant 's problem, the only non-vanishing stress is

2K1
aT = --- cosO.

1fr

(3.4.3)

(3.4.4)

Since angle 0 is measured from the direction of the force (axis Oy) both
cases (normal and tangential loading by the concentrated force) are formu
lated in the framework of the same stat ement. In the general case of the
concentrated force direct ed at angle 'Y to axis Oy

we have, referring to formulae (3.4.4), (3.2.7) that

2K .. 2K 2K
a; = - - (cos0cos 'Y + sm 0sm 'Y) = - - cos (0 - 'Y) = - - cos 'l/J ,

1fr 1fr 1fr
(3.4.5)

where 'l/J denotes the angle measured from the direction of the force. This
formula includes the above cases as particular ones.

When the surface forces are uniformly distributed over the part -a ::::;
x ::::; a of the boundary y = 0, then

and by eq. (3.4.2)

{

0,
P(x) = q(x+a)

2qa

-00 < x ::::; -a,
-a::::; x ::::; a,
a::::; x < 00,

A simple calculation leads to the following expressions for the stress
funct ion

qy [ ro]U(x ,y)=- (x-a)Ol-(x+a)Oo-yln- ,
1f rl

(3.4.6)

where the notion of Subsection 7.3.3 is used and the linear term is dropped
out .
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7.3.5 The plane contact problem

We consider the problem of the state of stress in the elastic half-plane
caused by a rigid smooth die pressed against the half-plane boundary on
the part (-a ,a).

It is assumed that the shear stresses are absent over the entire boundary
whereas the normal stresses are absent outside the loaded part. On the
loaded part , the displacement is prescribed

v =v(x, O) = f (x ), -a < x <a, (3.5.1)

where f (x) is determined by the form of the die surface contact ing with
the plane. Evid ently, the law of dist ribution of the normal stress on this
part

(fy = -q (x )

presents the main unknown of the problem . The force pressing the die
against the plane is prescrib ed

a

Q = Jq(x)dx .
- a

(3.5.2)

Referring to eq. (3.2.12) we can represent the displacement by the integral

a

v (x, O) =,6Jq(~)lnlx~~ld~=f(X) ,
- a

(3.5.3)

and the problem reduces to searching the unknown function q (~) sub jected
to condition (3.5.2) from the above integral equat ion of the first kind . The
solution of integral equat ion (3.5.3) can also be obt ained by reducing to
Riemann's boundary-value problem".

We introduce into considerat ion the logar ithmic single layer potential
distributed over t he range (-a ,a) with the unknown density q (x)

a

w (x, y) = Jq(Oln~d~ , r= J(x-~)2+y2.
- a

(3.5.4)

It is known that it is a harmonic function continuous everywhere in plane
Dxy. Its normal derivative experiences a jump under a passage from the
"lower" side of the layer to its "upp er" side. The limiting values of the layer
are given by the equalit ies

ow I = { +7l'q (x) ,
oy y-dO a

Ixl < a,
[z] > a,

(3.5.5)

2 see Gakhov, F. D. Boundar y value problems (in Ru ssian ). F izmatg iz, Moscow, 196:l.
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where q (x) is assumed to be continuous at point x.
The behaviour of the logari thmic simple layer potential as T ---. 00 is

described by the relationship
a

1 J 1woo(x, y) = ln - q (~)d~ =Qln- ,
TO TO

- a

TO = J x2+ y2 ---. 00, (3.5.6)

following directly from definition (3.5.4) and condit ion (3.5.2). Inversely,
any harmonic function possessing the listed prop erties (continuity, the char
acter of the discontinuity of the normal derivative, behaviour at infinity)
is a logarithmic simple layer potenti al and can be presented by integral
(3.5.4).

Referring to eqs. (3.5.4) and (3.5.3) we have

1
w (x,0) = fi f (x) . (3.5.7)

The problem is thus reduced to searching, in plane Oxy , the harmonic func
tion which takes the prescribed value on the range (-a ,a) of axis Ox and
satisfying condition (3.5.6) at infinity. Having the solution to this problem,
we can find the distribution law of the pressure over the contac t by means
of relationship (3.5.5).

It is easy to relate functi on w (x, y) to the harmonic function h (x, y)
introduced in Subsection 7.3.2 and use eq. (3.2.4) for obtaining the st ress
function. Indeed , by eqs. (3.2.4), (3.3.2) and (3.5.4) we have

a a

2 (P h 2 J Y 2 J 8 1 2 8wV' U = -2- = - - q (~ ) -d~ = - q (~ ) - -~ = --,
8y2 7f T2 tt 8y T 7f 8y

so that

- a - a

8h 1- = - - w. (3.5.8)
8y 7f

This allows one to express the st resses in terms of potential w (x, y)

8
2U (82h 83h) 1( 8W 8

2W
)

ax = 8y2 = - 8y2 +Y 8y3 =;: 8y +Y 8y2 '

8
2
U (82h 83h) 1( 8w 8

2W)
a y = 8x2 = - 8y2 - Y 8y3 =;: 8y - Y8y2 ' (3.5.9)

82U 83t, 1 82w
T x =-- -=y- -= --y-- .

y 8x8y 8x8y2 7f 8x8y

This function and the function
a

'13 = - Jq (~) ()~d~ ,
- a

8w

8x
8'13
8y'

8w

8y
8'13
8x (e~ = arctan x ~ ~ )

(3.5.10)



(3.5.11)

(3.6.2)
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related to w (x, y) by the Cauchy-Riemann relations are used for obt aining
the displacements in the generalised plane st ress

U= - 7r~ [(1- /.I ) 19 + (1 + /.I) Y~~] + Uo - 'Yoy, }

v = 7r~ [2W- (I+/.I )y:J + vo+ 'Yox

with the corresponding replacement the elast ic constants in the case of t he
plane st rain.

It follows from formulae (3.5.9) that when only the normal forces are
applied to the boundary, the normal stresses (Jx, (Jyare equal to each other
which has already been point ed out in Subsection 7.3.3 in t he case of uni
form loading the part of the boundary.

7.3.6 Construct ing potential w

The interior of the unit circle ~ = pci<p is t ransformed by means of a confor
mal mapping into plane Dxy cut on the part Ixl < a. This transformation
has the form

a( 1) a( 1) a( 1) .z = x + iy ="2 (+"( , x = "2 P+ p cos ip, y ="2 P - P sm .p,

(3.6.1)

Th e circles P = Po < 1 of plane ~ are transformed into ellipses with the semi-

a( 1) alII ' ...axes - Po + - and - Po - - III the plane Z WIth the fOCI at points
2 Po 2 Po±a.For a circle Po = 1 the ellipse degenerates into a segment (-a,a) of

plane z . Th e lower side (y -+ -0) t raversed in the direction from a to -a
corresponds to the upper semicircle Po = 1 (0 :::; <p :::; 7r) whereas the upper
side (y -+ +0) corresponds to the lower semicircle Po = 1 (7r :::; ip :::; 27r) .
An infinite point (x , y -+ 00) of plane z is mapp ed into the origin of the
coordinates (p = 0) in plane ~ = O.

The sought potential w (x ,y) is tra nsformed into function w. (p,<p) which
is also harmonic as transformation (3.6.1) is conformal. On the "ellipse"
Po = 1

x = a cos <p , y = 0,

and the boundary condit ion (3.5.7) for function w. is set in the form

1
w. (1 , <p) = 731 (u cos o} .

Not icing th at for (x,y) -+ 00

1 2p
In- -+ In- ,

TO a
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we can transform the condit ion at infinity (3.5.6) to the form

2p
w.(O,<p) -Q ln - --+0, p--+ O.

a
(3.6.3)

Introducing then, instead of w. (p, <p) , the following harmonic function

2pn (p,<p) = w. (p,<p) - Qln- ,
a

(3.6.4)

we arrive at the problem of obtaining this function from the condit ions

1 2n (1,<p) = fi f (a cos <p) - QIn ~ , n (0, <p) = O.

Its solut ion is presented by the Poisson integral

271"

n p sp = _1_ J (1 - p2) f (acos1j;) d1j; _ QIn ~
( ,) 21r j3 1+p2-2p cos(1j;- <p) a'

o

(3.6.5)

(3.6.6)

(3.6.7)

a consequence of the second condition in eq. (3.6.5) being the requirements

271" a

1 J 1 J f (~)Q = 2 f (a cos1j;) d1j; = 2 J 2 d~ .
21rj31n ~ 0 1rj31n ~ _a a2 _~

Recalling the representation of Poisson's kernel in the form of a tr igono
metric series

2 00
1- p ~ k

2 (1j;) = 1+ 2 .L...,p cosk(1j; - <p)
1 + P - 2p cos - <p

k= l

and noticing that f (a cos <p) is even with respect to <p (Le. the same on the
uppe r and lower sides of the cut) we have

00 2 00

n (p, <p) = L Q:kpkcos kip, w. (p, <p) = QIn : +L /Q:k cos kip. (3.6.8)
k=l k= l

Here Q:k denotes the Fourier coefficients

271"

Q:k = 1r~ Jf (a cos 1j;) cos k1j;d1j;.

o

(3.6.9)

It remains to const ruct the expression for the distri bution q (x) of the
surface force over the surface of the contact. We have

8w. 8w 8x 8w 8y a [8w ( 1) 8w ( 1). ]
8p = 8x 8p + 8y 8p = 2 8x 1 - p2 cos sp + 8y 1 + p2 sm <p
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and referring to eqs. (3.5.5), (3.6.8) we find

ow* I owI' () .- = aa sm sp = =fall'q acos rp sin rp.
op p-+ l Y y -+ ± O

As sin rp :S 0 at y --+ ±O we arrive at the formal represent ation of q (x) in
t he following form

00

1
(

;:) I ) Q+ L koa; cos kip
q (x) = q (acos rp) = _1_'_1 Q+~ = _-,k,,-'=-=-l---

all' sin rp op p-+ l tta [sin rp l

(3.6.10)

The series on t he right hand side is the limiting value of the real part of
the funct ion

00

~ kCXkpk (cos krp + i sin krp)
k=l

(analytical in the circle I~I < 1) at I~I = 1. The limiting value of t he
imaginary par t is equal to

~k k· k _ 1 df(a cos rp)
Z:: CXkP sm sp - --(3 d '
k=l rp

which follows from definition (3.6.9) of coefficients CXk . Referring to Hilbert 's
inversion formulae" , we have

00 211'

"" k 1 Jdf (acos 'l/J ) 'l/J - rp
L...t kCXkP cos krp = - 21l'(3 d'l/J cot -2-d'l/J ,
k=l 0

so that another representation of q (x) is

q (x) = ~ [Q __1_ J2 11' df (acos 'l/J ) cot 'l/J - rp d'l/J] .
1l'a Ism rp l 21l'(3 d'l/J 2

o

(3.6.11)

Splitting the integrat ion interval into two parts: (0,1l') and (1l' ,21l') and
replacing the integrat ion variable 'l/J in t he second integral by 21l' - 'l/J we

:lsee, for exa mple , Ga khov, F .D. Boundary value probl ems (in Russian ). Fizmatgiz,
Moscow, 1963.
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can tr ansform the integral in eq. (3.6.11) to the form

1r

j
df (a cos 'ljJ ) ( 'ljJ - sp 'ljJ + rp ) dcot - - + cot-- 'ljJ =

d'ljJ 2 2
o

rr

=2jdf(a cos'ljJ) sin 'ljJ d'ljJ.
d'ljJ cosrp - cos'ljJ

o

Returning to the variabl es x = a cos rp,~ = a cos'ljJ we obt ain

q( x)= 1 [Q_~jQ f'(~)Ja2-ed~] .
1rJa2- x2 1r(3 ~- x

- Q

(3.6.12)

(3.7.1)

The integral on the right hand side is understood here in the sense of the
principal value

and a sufficient condition for its existence is Holder's condit ion

If' (x') - J' (x)1 < Mi x' - x l
Q

(0 < a ~ 1) .

At the point s where this condition does not hold, q (x) is unbounded. For ex
ample, at the corner point x = 0 of the die bounded by the curve y = f (Ixl) ,
the derivative is y' = f' (Ixl) sign x , Holder's condition is not sati sfied and
the pressure is infinite.

7.3.7 A plane die

In thi s simple case f (x) = fo = const and according to eq. (3.6.12) the
distribution of the contact pressure is given by the formula (Sadowsky,
1928)

q( x) = Q
1rJa2 - x2

The expression for the potenti al w determined by eq. (5.5.8) is rather
simple

w = Qln 2P .
a

(3.7.2)

Displacement v on axis Ox given by formula (3.5.11) can be set as follows

2Q 2p 2Q (2P 2) 2Qv = - E ln - +vo = - In--In- + const=-Elnp+fo. (3.7.3)
1r a 1rE a a 1r
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Similar to the three-dimensional problem of a plane die (Subsection 5.6.3)
the pressure is unbounded on the edge of the contac t area. In contrast to
th e above problem the displacement of the plane die can be determined
only up to an additive consta nt . Thi s is explained by the fact that in the
three-dimensional problem the displacement vector at infinity is equal to
zero whereas in the plane problem it unboundedly increases without bounds
due to a logarithmic law.

7.3.8 Die with a parabolic profile

Referring to eq. (6.1.11) of Chapter 5

so that

(3.8.2)

The unknown width 2a of the contact area is dete rmined such that the
contact pressure is finite on the edges. The result is

(3.8.3)

and the expression for the contact pressure takes the form

q (x ) = _2Q_ J f""":a2=--_-x--:-2.
7l'a2 (3.8.4)

7.3.9 Concentrated force in the elastic half-plane

The problem of action of the concentrated force X + iY on the elast ic half
plane was considered in Subsect ion 7.3.1. For the plane strain the solution
is expressed in ter ms of the stress function given by eq. (3.1.10) under the
assump tion that the force is applied at the origin of the coordinat e system
z = O. When the force is applied at point 1]0 of axis Oy it is sufficient to
replace z by z - i 1]o'

Let us consider the act ion of two forces: force X + iY at point i 1]o and
force X - i Y at point (- i1]o )' The stress function U* describing the state
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of the elastic half-plane can be obtained by superimposing the functions
of the sort (3.1.10). Up to an additive constant the derivative of U* with
respect to z is as follows

4a~* = 47r (11_ v) [- (X + iY) In (z - i1]o) - (X - iY) In (z + i1]o) 

(X - iY) ~ - ~1]0 - (X + iY) ~ + ~1]0 +
z + 21]0 Z - 21]0

(3 - 4v) (X + iY) In (z + i1]o) + (3 - 4v) (X - iY) In (z - i1]o)] . (3.9.1)

In the problem considered, we seek the state of stress in the elastic half
plane y >°provided that a concentrated force X + iY is applied at point
i1]o and the boundary is free. Denoting the stress function by U we have

The boundary conditions determining U** are set as follows

(3.9.2)

y = 0, z = Z = x :

or in expanded form

(3.9.3)

(3.9.4)

ou.. I - 1 {[( ) J 2 2 x
2

- 1]5 ]
4 8z z=z=x - - 7r (1 _ v) X 1 - 2v In x + 1]0 - 2 (x 2 + 1]5) -

iY [( 1 - v) In x - ~1]0 + i x1]o ]} .
x + 21]0 x 2 + 1]5

Introducing angle ()o

x . () 1]0 () 1]0 ( )cos ()o = J 2 ' sin 0 = ,0 = arctan - 0::; ()o ::; 7r ,
x 2 + 1]0 y'x2 + 1]5 x

we can rewrite this relation in another form

( au** .au**) I 1 {[( )1 1 e ]ax +28iJ y=o =-27r(1+v) X 1-2v nro- 2cos2 0 +

[ COS()o]}Y -2 (1 - v) ()o + 1]0~ ,

where ro = Jx2 + 1]5. The quantity on the right hand side is real-valued
and the derivative with respect to y of the sought stress function is equal to
zero on the boundary. It could be expected as the shear stress T xy on axis
Ox vanishes because of the symmetry of loading the half-plane by forces
X ± iY at points ±i1]o. Function U** corresponds to the state of stress due
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to the loading normal to t he boundary and it can be sought in the form
(3.2.4)

al m: I allU** = I (x ,Y) - Y"""i), ~ ="""i) ,
uy ox y=o ox y=o

(3.9.5)

where 1(x,y) is a function harmonic in the upper half-plane where allay
is the solution of Dirichlet 's problem. A part of the solution can be written
down easily because the following functions

O
cos 00ln ro, 0, --

ro

are the values at y = 0 of the functions

V 2 Y + "70In r = In x2 + (y + "70) , 0 = arctan - x- '
cos O x

r - x 2 + (y + "70)2 '

which are harmonic for y > O. The above functions are in turn the deriva
t ives, with respect to x , of the following functions

a a
In r = ax [x In r - (y + "70) 0 - x], 0 = ax [xO + (y + "70) In r l,

cos O = ~ ln r .
r ax

At the same time

x 2
- "75 2"75 a a

cos 200 = 2 2 = 1 - 2 2 = """i) (x + 2"7000) = """i) (x + 2"700)ly- o .
x + "70 x + "70 u X u X -

We arrive at the following representation of function 1 (x,y) harmonic for
y >O

1(x ,y) = 2Jr(11_ v) {X [(1- 2v){x In r - (y + "70) 0 - x} -

~ (x + 2"700)] + Y [-2 (1 - v){xO + (y + "70) In r} + "70 Inr]} .

Using eq. (3.9.5) and omitting the linear terms we find

U** (x,y) = - 2Jr (11_ v) {X [(1- 2v) (x In r - "700) - "70 (0 - ~n] +

Y [-2 (I-v) (xO + "7olnr) + "70 (lnr - y (y~ "70))]} . (3.9.6)
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The solut ion of the problem is thus presented in the form of a sum of
two stress functions where U; and U2 describe the act ion of the horizontal
and vert ical force, respect ively. Then we have

so, X [1 (2 2) 1 (2 2)2 az = 2n (1 _ v ) 4" (3 - 4v ) In z + 1]0 - 4" In z + 1]0 -

- 2 .
Z Z - 1]0 Z + z1]o
_ - (1 - 2v) Inr - (1 - 2v)(x - i1]o) --

2 ( Z2 + 1]5) r 2

2y + 1]0 . x y ]
- 1]0 2 + 21]0 (z + Z1]o) 4" '

r r
(3.9.7)

2aU2 _ Y [ i (3 4) I z+ i1]o i I Z + i1]o x
- - - - l/ n +- n--- +1] +az 2n(1-v) 4 z -i1]o 4 z -i1]o oz2 + 1]5

x - i1]o
2(1-v)B+2 (1 -v) i 2 (z+ i1]o)-

r

Tloz _ 21] (z+ i1] ) y (y + 1]0) ] , (3 9 8)
r2 0 0 r 4 ..

These functions which are biharmonic in the upper half-plane have the
required singularity at point z = i1]o where force X + iY is applied and
take the constant value on the boundary y = O. The stresses are calculated
by formulae (1.13.2).

7.4 Elastic wedge

1.4.1 Concentrated force in the vertex of the wedge

We consider an infinite region of a wedge form which is bounded by two
half-lines y = ± tan a. The angle of the wedge is 2a , axis Ox is directed
into the region and the origin of the coordinate system (the vertex of the
wedge) is t aken as being the origin of the polar coordinate system (r,B),
i.e. - a ~ B ~ a . The projection of the force applied at the wedge vertex
on axes Ox ,Oy are denoted by X , Y. The faces of th e wedge are assumed
to be free, i.e.

B= ±a : (JO = 0, T rO = O. (4.1.1)

These conditions can be satisfied by assuming that they hold in the whole
region rather than only on the boundary

101::;0:: (YO =0, 7 r O = 0 . (4.1.2)

Under these condit ions, st ress a; is a funct ion harmonic in the region since

(4.1.3)
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The static equations

aJa Tcos OrdO + X = 0,

- a

aJo; sin OrdO + Y = 0
- a

(4.1.4)

(4.1.5)

(4.1.6)

express the condit ions of equilibrium for the par t of t he wedge bounded by
a circle of radius r and are required to hold for any r . These relations can
be satisfied by assuming a; to be inversely proportional to r . As a; is a
harmonic function one should t ake

_ ACOS 0 Bsin 0
a T - -- + --.

r r

No other harmonic function sat isfying condition (4.1.4) exists. Determining
the constants A and B using these condit ions we find

2 ( X cos O Y sinO )
a; = -~ 20:+ sin 20: + 20: - sin 20: .

As the roots of the denominators are complex-valued (except 0: = 0), hence
st ress a; is finite everywhere for r =I 0 and tends to zero as r --+ 00 . The
stress function is presented in the form

u=ro(- X sinO Y cosO )=0(_ yX XY )
20:+ sin 20: + 20: - sin 20: 20:+ sin 20: + 20: - sin 20: .

(4.1.7)

The displacement vector for the plane st ress is obt ained in terms of the
above stress function

X [ y2]
Eu = 20:+ sin 20: 2 In r + (1 + v) r2 +

2 Y. 2 [(l-v)O+(l+V) X;]+ uo- wOY'0: - sm 0: r

X [XY ]EV = 20:+ sin 20: (l +v)~- (l-v)O-

2 Y. 2 [2Inr+(1+v) x:] + vo+ wox.0: - sm 0: r

(4.1.8)

For 0: = 1r / 2 we return to the case of the half-plane loaded by a concentrat ed
force, t he case 0: = 1r yields the solut ion of the problem for the stress in
t he plane cut along the negat ive axis Ox provided that the force is applied
at the vertex of the cut .

Aiming at comparing the solut ion with the elementary t heory of bending
of the beam we take in the expressions for the components of the st ress
tensor (for X = 0)

xr=-cos O'
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where I denotes the moment of inertia of the cross-section, x = const , 2h ·1
is its area. Then we arrive at the formulae

ax = _ 2Y x
2
y = 4Y ta~3 a xy cos48,

2a - sin2a r4 2a - sm2a 31
2Y y3 4Y tan:' a y3

a - - - - . , cos4 8,
y - 2a - sin 2a r4 - 2a - sin 2a 31x

2Y xy2 4Y tan:' a y2 4
T x = - - = - cos 8

y 2a - sin2a r4 2a - sin2a 31

and for a sufficiently small a we can take

(
tan a) 3 4 8 1-- cos ~,

a

which leads to the following result

Yxy
ax ~ ---,

I

Under this approximation the expressions for the normal stresses are coin
cident with those due to the elementary theory, however

is twice the maximum stress from the elementary theory.

7.4.2 Mellin's integral transform in the problem of a wedge

For the sake of simplifying the notion in what follows we consider loading
the wedge only by the surface forces normal to wedge's faces. The cases of
the symmetric and skew-symmetric loads (problem A and B) are studied
separat ely

A 8=±a: ao=ql(r) , Tro=O,}
B 8 = ±a: ao = ±q2 (r) , TrO = 0.

(4.2.1)

The biharmonic stress functions satisfying the condition of absence of
the shear stresses on the wedge's faces are presented in the form

A U1 (p,8) = c.«: [(s + 2) sin (s + 2) ac~s s8 - ssin sa c~s (s + 2) 8], }
B U2 (p,8) = C2 p- s [(s + 2) cos (s + 2) o sin sf - s cos sa sin (s + 2) 8],

(4.2.2)

where P = r fr o and ro is some linear dimension of length. The normal
stress ao is given by the formula

(4.2.3)
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Let us recall that the Mellin transform offunction I (t ) given in the range
(0,00) is defined as the integral

00

1(s) = JI (x) xs- 1dx ,

o

(4.2.4)

where s is a complex number. Under the assumpt ion that I (x) sat isfies
Dirichlet 's condit ion in any finite range from (0, 00) we have the following
formal representation

c -l- zooIJ - 1 J-I (x) = 27ri I (s) x -Sds = 27ri I (s) x-sds,
L c-ioo

(4.2.5)

where L is a straight line parallel to the imaginary axis of the complex
plane s. Without going into detail we note that if the integral

00

JII (x) 1xs. -1dx

o

(4.2.6)

converges, then line L lies in the st rip left on the left side of the line Re s = s
and on the right side of the singular point s** closest to s• . The value of the
integral (4.2.5) does not depend on the choice of c in the range (s•• ,s.) .

Referring now to the representat ions (4.2.2) let us take, according to eq.
(4.2.5), the st ress functions in the form

c-l-roo

1 J -A and B Uk (p,B) = 27ri Ui; (s ,B) p- sds,
c - i(X)

where ii; (s,B) denot es the Mellin transforms

(4.2.7)

A ql(s, B) = C1(s) [(s + 2) sin (s + 2) a cos sB - s sin sa cos (s + 2) BJ, }
B U2 (s, B) = C2 (s) [(s + 2) cos (s + 2) asin sB - s cos sa sin (s + 2) BJ .

(4.2.8)

Using eq. (4.2.3), the Mellin transforms of functions r2cr~k) are equal to
s (s + 1) [h (s, B), that is

<:+ioo

A and B r2cr~k ) = -2
1. J s (s + 1) [h (s, B) p-sds.
7r1.

c- ioo

(4.2.9)
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At the same time, by virtue of eqs. (4.2.1) and (4.2.5)

c-l-soo

A r2a~1)1 = r5p2q1(P)=2r5. J ih(s)p-Sds,
(I=±a 1r2

c-ioo
c-l-roo

B r2a~2) 1 =±r5p2q2(p)=±2r5. J ii2(s)p-Sds,
(I= ±a 1r2

c-ioo

(4.2.10)

where iik (s) are the tr ansforms of functions p2qk (p) which are equal to

00

A and B iids) = JpS+lqdp) dp (k = 1,2) ,

°
see eq. (4.2.4). By eq. (4.2.1) we have

2 iiI (s)
A Cds)=rO s(s+l)Gds,o: )'

G1(s,0:) = (s + 1) sin 20: + sin 2 (s + 1) 0: ,
_ 2 ii2(S)

B C2(s) - rOs(s + 1)G2(s,0:)'
G2 (s,0:) = - (s + 1) sin 20: + sin 2 (s + 1) 0:,

(4.2.11)

(4.2.12)

that is, the st ress functions sat isfying the boundary conditions are written
down in the form

r2

A U1 (p,B) = -2°. x
1r2

c-l-zco

J ii1(S) (s+2)sin(s+2) o: cossB-ssinso: cos(s+2)B - Sd
s(s+l) (s+1)sin20:+sin2(s+1)0: p s,

c -ioo

r2

B U2 (p, B) = -2°.x
1r2

c -l-soc

J ii2(S) (s+2) cos(s+2)o: sin sB-scosso:sin(s+2)B - sds
. s (s + 1) - (s + 1) sin 20: + sin 2 (s + 1) 0: p ,

C- 'l CXJ

(4.2.13)

It is assumed that Ui. (p, B) increases as p ---+ 00 not fast er than p (this
condition holds for example in the problem of the concent rated force at
the vertex of the wedge, see eq. (4.1.7)) , then integral (4.2.6) converges for
s; < -1 and line L lies in the st rip (Re S l , -1) where S l denotes the root
of function Gk (s,0:) lying on the left side of -1 which has th e maximum
real part.

Evaluating integrals (4.2.13) is carried out separately for p < 1 and
p > 1. In the first case, a line L is completed by a semicircle of radius
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lsi = R. Provided that Jordan 's lemma is applicable, the int egral over the
semicircle tends to zero at R --t 00 and the evaluated integrals are equal to
the products of 27fi and the sum of the residues at all poles of t he integrand
lying on the left side of L . The same reasoning for p > 1 suggests that the
int egral is equal to the product of (-27fi) and the sum of t he residues lying
on the right side of L (the traversed region now lies on the right) .

The terms Uk
1 (p,B) ,ug(p,B) in t hese sums correspond to the poles

s = -1 and s = °are of a special interest . Introducing the noti on

A h(s,o:) = G ~ ) [( s+2) sin(s+2) o:cossB-ssin so:cos(s+2)B]
1 S,o:

B 12 (s,o:) = G ( ) [( s+2) cos( s+2) o: sinsB-s cos so:sin(s+2)B]
2 s, o:

(4.2.14)

we obtain by means of l'Hospital 's rule t hat

A

B

f (s )1 = 2 (sin o: + o:coso:)cos B+ Bsin Bsino:
1 ,0: 8->- 1 2 + . 2 '0: sin 0:

f ( )I
- (0: sin 0: - cos 0:) sin B+ Bcos Bcos 0:

2 S,o: 8 -1 - 2 2' 2 .
-> 0: - SIn 0:

} (4.2.15)

Recalling eq. (4.2.11) we obtain the equalit ies

A and B -2rOQI (-1) sin o: = X , 2r OQ2 (-1) cos o: = Y (4.2.16)

where X and Y are the projections of t he principal vector of the surface
forces on the wedge faces on axes Ox and Oy respectively. Omitting the
insignificant terms which are linear in x = r cos B and y = r sin Bwe obt ain

-1 X -1 Y
A and B U1 (p,B) = - yB 20: + sin 20: ' U2 (p,B) = xB20: _ sin 20:

(4.2.17)

which is in full agreement with formulae (4.1.7). It follows from these rela
tions that , if the sums Uk (p, B) have no terms increasing fast er t han p as
p --t 00 , t he st ress in the wedge at p --t 00 is coincident with that in the
case of loading the wedge by force (X ,Y ) at th e vertex.

By analogy we have

A d f () f ( )I _- sin 2B - 2B cos 20:
an B 1 0,0: =1 , 2 so:

, 8-> 0 sin 20: - 20: cos 20: '

and t hus Up (p,B) = const whereas if

(4.2.18)

B Gz(0, 0:) = - sin 20: + 20:cos 20: =I 0, t an 20: =I 20:, }
20: -=I- 20:. = 4, 493 ~ 2570, (4.2.19)
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then we have

B ug (p,fJ ) = - r6q2(0) h (8,a)1
8

---+0
1 ° sin 2fJ - 2fJ cos 2a

=--m (a#a.) .
2 sin 2a - 2a cos 2a

(4.2.20)

Here by eq. (4.2.11)

(4.2.21)

00

mO = 2r6Jq2 (p) pdp

o

is the principal moment of t he surface forces on the faces about t he vertex
of t he wedge. For a = a. one obtains a double root 8 = 0 of function
G2(8, a) and there is no need to demonstrat e the result of thi s tiresome
calculat ion in thi s special case.

As will be shown in Subsection 7.4.3, solution ug (p, fJ ) can not be directly
obtai ned by considering the problem of the wedge loaded by a concentrated
moment mO at the vertex. It follows from the above-said that it presents
the principal term of ug (p, fJ ) at infinity (p -> 00) if function G2 (8, a)
has no roots in the st rip (- 1, 0). It will be proved that it t akes place for
a < a. whereas for a > a. function G2(8,a) gains an addit ional real
valued negative root

1
B -"2 < 8 = x(a) < O. (4.2.22)

The corres ponding term UJA) (p, fJ ) in t he st ress functio n

(4.2.23)

B u.(A) ( fJ ) = q2 (>.) x
2 p, >. (>' + 1)

(2 + >') cos (>' + 2) a sin >.() - >. cos >'a sin (>. + 2) () (!...-) IAI

sin 2a - 2acos 2(>' + 1)a "n

presents the main terms in the expansion of t he st ress funct ion. It s expres
sion depends on the distribution of the surface forces q2 (p) on the sides
of the wedge and can not be determined in terms of the bending moment
mO. In eq. (4.2.23) we denoted

00

q; (>') = r6 JpA+l q2 (p) dp.

o

7.4.3 Concentrated moment at the vertex of the wedge

Boundary condit ion (4.1.1)

() = ±a : C7(J = 0, T r(J = 0 (4.3.1)
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is completed by the equilibrium equations for the part of the wedge cut by
an arc of arbit rary radius

a

X = - J((1r cosB - T rO sin B)rdB= 0,

- a
a

y = - J(err sin B+ T r l! cos B)rdB = 0, (4.3.2)

-a
aJT ror2dB = _mO .

- a

-
Th ese conditions allows one to seek the solution to the problem by assuming
that normal stress (10 is absent in the whole region

(4.3.3)IBI ~ a:
82U

(10 = 8r 2 = O.

The stress function is odd with respect to B and linear in r , The odd
biharmoni c function which is proportional to r is CBrcos B (except for the
trivial function r sin B) yielding the solution of the problem of bending the
wedge by the force concent rated at the vertex. For this reason, the st ress
function in this problem should be taken as depending only on B. Such a
function satisfying boundary condition (4.3.1) is

U = ~C (sin 2B - 2B cos 2a ) . (4.3.4)

Expressing stresses (1 n T rO in terms of these functions it is easy to check
that the first two equations of statics (4.3.2) are sat isfied identically whilst
the third equat ion leads to the relationship

aJT ror2dB= C (sin 2a - 2a cos 2a ) = - m O ,

- a

(4.3.5)

which under the assumption that a =I- a* yields the following solution

U = -~mo sin2B- 2B cos 2a (a =I- a*) ,
2 sin 2a - 2a cos 2a

(Carot hers, 1912; Inglis, 1922) and the corresponding stresses

2mo sin2B
(1r =--

r 2 sin 2a - 2a cos 2a '
m° cos 2a - cos 2B

TrO = -
r 2 sin 2a - 2a cos 2a .

(4.3.6)

The result seems paradoxical, namely the solut ion is absent for a single
value of wedge angle a = a*.
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The explanation of the paradox requires refining the concept of the bend
ing moment. It is natural to accept the following definition : the faces of the
wedge are assumed to be loaded in the vicinity of the wedge by the following
skew-symmetric normal load

such, th at its principal vector vanishes and the principal moment about
the vertex is prescribed

T O

Jq2 (r) dr = 0,

o

T O

2Jq2(r)rdr=mo.

o

(4.3.7)

If these equalities hold at "o --t 0, q2 (r) --t 00 then it is said that the bend
ing moment mO is applied at the wedge vertex. Of course, this definition
can be generalised to other types of loading on the wedge near the vertex.

The stress function U2 (p,8) for the problem of skew-symmetric normal
loading the wedge is given by expression (4.2.13) where the principal term
of representation (4.2.20) at infinity for a < a* is exactly the solution
(4.3.5). For a > a* the principal term of function U2 (p,8) at infinity given
byeq. (4.2.23) and the corresponding stresses depend on the distribution
of the surface forces on the part (0, ro) rather than the moment only. The
term of the type (4.3.5) appears in U2 (p,8) also for a > a * but it is not
the principal term . The corresponding stresses at p --t 00 is of the order of
r- 2 whilst the principal term yields stresses of the order of r - 2+IA1.

The integral equation of statics (4.3.2) was used for the stat ement of the
problem in the present subsection . This excludes from consideration the
stresses presented by those terms in the series for U2 (p, 8) which are differ
ent from (4.3.5). Their presence should be related to the singularities which
are statically equivalent to zero (vanishing principal vector and principal
moment) at the corner point . Neglecting these terms when they are caused
by the load distributed over a small part of the boundary is typical for the
solutions dealing with the classical formulation of Saint-Venant 's principle.
It is allowed if the corresponding stresses decrease faster with the growth
of the distance from the load than the stresses due to the moment of these
forces.

Returning to the problem of the present subsection it is necessary to ac
cept that the Carothers-Inglis solution (4.3.5) is applicable only for a < a*
whereas for a > a* the very statement of the problem of loading the wedge
by the moment concentrated at the vertex is meaningless. The solution for
a > a* depends on the law of distribution of the load on the parts (0, ro)
of the wedge faces and is not reducible to th e action of a single moment .
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7.4.4 Loading the side faces

The calculat ion by formulae (4.2.13) can be continued in two ways: the
residue theorem and the direct evaluation of the integrals .

The first way requires the roots of functions (4.2.12) which are obtained
from the equations

A

B

1\ () sin 20: sin Z }UA Z = -- +-- = 0,
.20:. .z

~B (z) = sm ~o: _ sm Z (z = 2 (s + 1) 0:) .
20: Z

(4.4.1)

Roots Zk lie symmetrically in the four quadrants of plane Z

1 .
Sk + 1 = - (±ak ± zbd·

20:
(4.4.2)

Table 7.2 shows the values of these roots for some values of 0:.

0:
k 7f/8 7f/4 37f/8 57f/8

ak bk ak bk ak bk ak bk
1 4,234 2,137 4,303 1,758 4,442 0,8501 2,645 °2 10,72 2,996 10,75 2,641 10,82 1,863 7,694 0,8702
3 17,08 3,445 17,10 3,095 17,14 2,331 14,02 1,585
4 23,40 3,753 23,42 3,404 23,45 2,646 20,32 1,976
5 29,71 3,951 29,72 3,640 29,75 2,884 26,62 2,2553

sin 20: sin Z
Table 7.2A. Roots Zk = ak + ibk of equation ~A (z) = - 2- + - - = °

0: Z

0:
k 7f/8 7f/4 37f/8 57f/8

ak bk ak bk ak bk ak bk
1 0,7854 ° 1,571 ° 2,356 ° 3,927 °2 7,511 2,660 7,553 2,300 7,641 1,497 5,114 °3 13,91 3,246 13,93 2,894 13,98 2,125 10,86 1,302
4 20,24 3,611 20,26 3,262 20,30 2,501 17,17 1,801
5 26,56 3,878 26,57 3,529 26,60 2,772 23,47 2,124

sin 20: sin Z
Table 7.2B. Roots Zk = ak + ibk of equation ~B (z) = -2- - -- = °

0: Z

The first root 0:1 = 20:, b1 = °of Table 7.2B corresponds to the root S = °
of function G2 (s,0:) . The root s = -1 , Z = °is lost while passing to the
equations in (4.4.1). The asymptotic values of the roots (for large k) are
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given by

(4.4.3)

The general representation of formula (4.2.13) can be set in the form

1 C+JiOO _
f (r, 0) = 27ri f (s, 0) p-sds,

c - i oo

(4.4.4)

where c = -1-[, where e is sufficiently small. Applying the residue theorem
leads to different analytic representations of solutions f (r, 0) for p < 1 and
p> 1. When p < 1, in other words, in the region adjacent to the wedge's
vertex the calculation is performed at the poles lying to the left of the
straight line s = -1

(4.4.5)

whereas the continuation of the solution in the region p > 1 describing the
behaviour of the solution at infinity is constructed by means of the poles
lying on the right of this line

(4.4.6)

The stress functions for p < 1 are then presented by the series of the type

f (r,0) = 2: Pl+ ak / 2a [AdO) pibk /2a + AdO) p-ibk /2a] ,

k

(4.4.7)

(4.4.8)

and the stresses at the vertex of the wedge tend either to zero or infinity
depending upon the sign of the inequality

ak
20: - 1 ~ 0, ak ~ 20:.

The analysis of the roots shows that under symmetric loading (equation
~A (z) = 0) the above inequality has the upper sign for 0 < 20: < 7r whereas
for 7r < 20: < 27r there is a real-valued root smaller than 20:. In the skew
symmetric case (equation ~B (z) = 0) the change in the inequality sign
occurs at 20: = 20:* given byeq. (4.2.19) and the stresses at the wedge's
vertex tends to zero for 20: < 20:* and to infinity for 20: > 20:*, respectively.

For example, in the case of a symmetric load for 0: = 7r/ 4 we have
0:1 = 4,303 > 7r/2 whilst for 0: = 57r/8 we have 0:1 = 2,303 > 1, 257r. That
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is, in the first case the st resses at the vertex vanish whilst in the second case
they are unbounded. In the case of a skew-symmetric load for the above
values of 0' we have respectively 0'2 = 7,5 53 > 1f / 2,0'2 = 5, 114 > 1,251f
and the st resses are absent whereas for 0'* < 0' there is a root 0'2 < 20'.

According to eq. (4.4.6) the stress funct ion for p > 1 is given by the
series

f (r,B) = L pl-ak/2o. [Bk (B) i bk / 2o. + lh (B) p- ibk / 2o.] ,

k

(4.4.9)

where among the roots there is z = a = 0 whereas for a skew-symmet ric
load there is also a root al = 20'. The st resses at infinity are of the order
p(1 +ak / 2o.) . The principa l term of these series under both symmetric and
skew-symmet ric load is du e to the root z = a (8 = -1) and this is the
solut ion (4.2.17) determined by t he principal vector of the surface forces.
For a symmetric load , the st resses du e to the next term of series (4.4.9)
decreases, as p -+ 00, essent ially faster than p-l . For a skew-symmetric
load and vanishing the principal vector of t he load , the st resses due to the
principal moment (root al) are of the order of p - 2 however for 0' > 0'* this
term is not the principal one.

Further considerat ion is carried out for the case of symmetric loading by
the pressure P uniformly distributed over the parts 0 < r < ro,B = ±O'.
Using eq. (4.2.11) we have

ql (p) = -Po80 (1 - p) ,

8 (1 _ ) = {I, 0 < P < 1
o P 0, p > 1,

1

ifl (p) = - Polr -=-~
8 + 2

o

(4.4.10)

Returning to formula (4.2.13A) we obtain t he following express ion for
the normal stress a l'

Poar = - - x
21fi

(4.4.11)

c+ ioo

j d (8+4)sin 80'cos(8+2)B- (8+2)sin (8+2)O' coS8B - 2-8
8 [(s+l) sin20'+sin2(8+1) 0'](8+2) p .

c -ioo

It simplifies considerably for B = ±O', indeed , transforming the num erator
to the form

(8 + 4) sin 80' cos (8 + 2) 0' - (8 + 2) sin (8 + 2) 0' cos 80' =
= (8 + 1) sin 20' - 2 (8 + 2) sin 20' + sin 2 (8 + 1) 0'
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and referring to eq. (4.4.10) we obt ain

- c+i oo

Po sin 20: /O'rlo=±a = -Po80 (1 - p) + :"-=---. -
Z7r

- c - ioo
Z sin 20: + 20: sin Z '

(4.4.12)

. (4.4.15)

where the integration path is a st raight line which is parallel to the imag
inary axis of the plane z = 2 (8+ 1) 0: , lies on the left to this axis and is
infinitesimally close to it (E-+ +0) .

For p > 1 the integral is equal to th e product of 27ri and the sum of the
residues at the poles

Zk = -ak + i bk, Zk = -ak - i bk (a k > 0)

in the left half-plane, hence

O',·lo=±Q= -Po + 2po sin20: x (4.4.13)

00 [ eibk/ 2QXln p e- ih / 2QXlnp ]L - ak/2Q-l +-------
k= l P sin 20: + 20: cos Zk sin 20: + 20: cos Zk .

For p > 1 the poles of the integrand in the right half-plane

includes the pole at zero. The sum of the residues is multipli ed by -27r i .
We obt ain

p > 1 : a; _ = _ 2poro sin : o: (4.4.14)
IO_±Q r 20: + sm 20:

00 [ e - ibk/2 QXlnp eibk / 2QXln p ]
2posin 20: '" p -(ak/2Q+l ) . + . .

~ sm 20: + 20: cos Zk sin 20: + 20: cos Zk

The series converges rapidly as the numbers a k increase rapidly with the
growth of k .

The integral in formula (4.4.12) can be presented in a real-valued form
by splitt ing it into the integrals over the imaginary axis from - 00 to 0, the
semicircle of radius E -+ 0 on the left to the origin of the coordinate system
and the imaginary axis from 0 to 00. Then

O'rlo=±a = -Po80 (1 - p) -

roposin 20: [1 2 /00 sin (u In p) du ]
r 20: + sin 20: +;;: 0 u sin 20: +sinh 20:u

The integral can be evaluated numerically. The difficulties associated with
this are caused by considerable oscillat ions of the function sin (u In p) for
small and large values of p.
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7.5 Boundary-value problems of the plane theory
of elasticity

7.5.1 Classification of regions

Let th e part of th e region occupied by the material and the remaining
part be denoted L and R respectively. The considerat ion will be limited to
the following cases: (i) a simply-connected finite region with an opening ,
(ii) an infinite region with an opening and (iii) a double-connected ring
shaped region. In th e first case the boundary is a smooth closed contour
r which has no corner points and does not cross itself; in th e second case
such a contour bounds L from inside whilst an infinite point z = 00 is
assumed to belongs to the boundary as well; and in the third case t he
boundary r breaks down into two contours : external r 0 and internal r 1 .

By traversing the boundary in th e positive direction th e region L must lie
on the left . In other words, the traversing a finite simply-connected region
is in the counterclockwise direction, whereas for a double-connected region
traversing T0 is counterclockwise and traversing r 1 is clockwise. According
to this rule, th e integral along th e contour of the region is presented as
follows

(i) f' (ii) f' (iii) f = f + f ·
r r r r" r ,

(5.1.1)

In th e following we consider two simple boundary-value problems. They
determine the st resses in L in terms of either the displacement vector on r
(the first one) or the surface forces prescrib ed on r (the second one). The
solut ion is based on an evident assumpt ion that both the stresses and the
displacements (in the case of no distortion) in L and r are single-valued. Ex
cept for the point s where the force singularit ies are applied, th ese solutions
are cont inuous and have derivat ives of any order since th ey are solutions
of the equations of the elliptic type. This imposes certain restrictions onto
Muskhelishvili's functions 'P(z) and ¢ (z), namely th at the st resses and the
displacements must sati sfy the above requirements. In parti cular , functions
'P(z) and ¢ (z) are holomorphic in th e simple-connected region. In two re
maining cases it is possible to split the solut ion into two parts : holomorphic
part s 'P. (z) ,¢. (z) and the logarithmic (mult ivalued) parts.

7.5.2 Boundary-value problems for the simply-connected fin it e
region

Let the conformal transformation

z = w (() (5.2.1)
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map the interior of the unit circle 1(1 < 1 onto region L and let ( = a = eiO

denote the value of ( on the circle 1(1 = 1 designated by 'Y. Without loss
of generality we can assume that w (0) = 0, i.e. the centre of the circle
corresponds to the origin of the coordinate system z = 0 in region L. The
assumption

W' (0 i= 0, 1(1:s 1, (5.2.2)

ensures (for 1(1 < 1) a unique solution of eq. (5.2.1) for ( in L . Holding
condition (5.2.2) on 'Y is guaranteed by the absence of the corner points on
r (the boundary of region L). Hence

00

z = w (() = L cnC (CI = w' (0) i= 0),
n=1

(5.2.3)

where CI can be taken as being a real-valued number. Taking the inverse
of series (5.2.3) we arrive at the representation ( = ((z) in the form of a
power series convergent in L.

Muskhelishvili's functions 'P (z), 'ljJ (z) are holomorphic in L and can be
presented in 'Y be the holomorphic functions

00

'P(W(()) = 'PI (() = LAnC,
n=O

00

'ljJ (w (()) = 'ljJI (() = L A~C· (5.2.4)
n=O

This establishes that functions 'P (z) , 'ljJ (z) can be represented by the power
series in z

00

sp (z) = I>nzn ,
n=O

00

'ljJ(z)=La~zn
n=O

(5.2.5)

convergent in L.
The complex number defining the unit vector of the outward normal to

r is denoted as follows
. dy dx .dz . I do

n = eW = coso: + i sin 0: = - - i- = -z- = -zw (a)-.
ds ds ds ds

We have on r
ds = Idzl = Iw' (a)lldal = Jw l (a) w' (a) Idal

and on 'Y

Hence

do = iadB, Idal = dB,
1a= -.
a

(5.2.6)

.dz
n = -z- = a

ds
dz 1

n=-=
ds a

W' (~)
w' (a) .

(5.2.7)
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Under transformation (5.2.1) the functions 1> (z) ,w(z) take the form

1> () , () 'P~ (()
z = 'P z = w' (() ,

.T,() , () 1/J~ (()
'J.' z = 1/J z = w' (( )' (5.2.8)

The vector of the surface force F on r

F = Fx + iFy = (Fn + iFd n , Fn + iFt = n(Fx + iFy) , (5.2.9)

where Fn , F; denote the projections of F on the normal and the tangent to
I' , can be written, by virtue of eqs. (1.13.4) and (1.14.4), in the form

(5.2.10)

(5.2.11)

In particular , when r is a circle, we return to formulae (1.14.9).
The principal vector of the surface forces on arc 1 of contour r is given

by formula (1.14.7)

-Q+ iP= ['P(z)+z<p'(z)+ ~Cz)]r

~ 1', (a) + w~(~tm+ ~,m
where the left hand side is determined up to an addit ive constant . Another
form of the condit ion on r in the second boundary-value problem is given
by formula (5.2.10)

We introduce the notion

1> (z) = 1> (i) = 'P~ (()
1.., w' (() ,

w(z) = W (i) = 1/J~ (()
1 .., w' (()' (5.2.13)

Byeq. (5.2.2) these functions are holomorph ic in "/. It is evident that

1>' (z) = 1>~ (() = <p~ (() _ 'P~ ( ( ) " (i)
w' (() W,2 ( () W ,3 (() W .."

(5.2.14)
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which allows one to rewrite eq. (5.2.12) as follows

r ; + iFt = 1>da)+ <h (~) -

a2w~(a) [w (a)~~ (~) +w' (~) \ttl (~)]. (5.2.15)

The condit ion on r of the first boundary-value problem is set in the form

[(3 - 4v) ip (z) - zep' (z) - '¢(z)]r =

(5.2.16)

~ [(3 - 4v) \'d") - ,,~(~tG) -iI', G)] ~ 2M (u+ iv)r

Due to eq. (5.2.11)

2M (u+ iV)r + i (P + iQ)r = 4 (1 - v) <P (z)lr , (5.2.17)

that is, if <P (z)lr is obtained from the first or second boundary-value prob
lem, one can immediat ely obt ain (P + iQ)r (or (u + iV)r ) in terms of vector
u + iv (or P + iQ) prescribed on the contour.

By definition , the functions which are holomorphi c in a region are single
valued in it. For this reason, the solut ions of the boundary-value problems,
represented in terms of Muskhelishvili's functions in a simply-connected
finite region, ensures that the stresses and the displacements are single
valued. It can be concluded from formulae (5.2.11) and (5.2.16) that the
single-valuedness of functions sp (z) , 'ljJ (z) ,X(z) leads to a zero principal
vector and a zero principal moment of the surface forces on r (as well as
on any closed contour in L) . Conversely, the condit ion that the surface
forces are stat ically equivalent to zero guarantees the single-valuedness of
the above functions and, thus, the existence of the solution.

1.5.3 Definiteness of Muskhelishvili 's functions

According to eq. (1.14.4) the sum of the normal stresses determines the
real part of function 1> (z) . The imaginary part is determined up to an ad
ditive constant C and thus function 1> (z) is determined up to an imaginary
constant iC and <p (z) is determined up to the term

iCz + 0: + i,8

which is linear in z. The second formula in eq. (1.14.4) completely deter
mines W(z) whereas 'ljJ (z) is determined in terms of W(z) up to the constant
term

'+ .,8'0: Z.



7.5 Boundary-value problems of the plane theory of elasticity 603

Thus, replacing

cp (z ) by cp(z)+iCz +O'+ i,6, 1j; (z ) by 1j; (z) + O"+ i,6' (5.3.1)

the st resses do not change whilst the displacement vector, using eq. (5.2.16),
gains the te rm

~ [4 (1 - v)Ciz + (3 - 4v)(O' + i,6) - (a' - i,6')] ,
2f.1

(5.3.2)

which corresponds to a rigid-body displacement of th e figure in its plane.
Thus, by means of a proper choice of C, 0' , ,6, 0" , ,6' , we can take

cP (0) = 0, 1mcp' (0) = 0, 1j; (0) = 0, (5.3.3)

which uniquely determines funct ions ip (z) ,1j; (z ).
The structure of expression (5.3.2) suggests that when solving the first

boundary-value problem one of functions ip (z ) , 1j; (z) can be subjected to
the condit ion

sp (0) = 0 or 1j; (0) = o. (5.3.4)

7.5.4 Infinite region with an opening

The conformal transformation of the exte rior of the unit circle (region 1(1 >
1) on region L which is an infinite plane bounded from inside by the closed
smoot h contour r is given by the function

(5.4.1)

t he infinite point of plane ( being mapped onto the infinite point in plane
z: We assume that the condit ion

w'(():f °,1(12 1 (5.4.2)

holds, which ensures that eq. (5.4.1) is uniquely resolved for ( . Constant
Co can be taken as being real-valued.

Referring to eq. (3.1.8) we introduce the functions

X + iY
CPo (z) = - 87f (1 _ v ) In z,

X - iY
1j;o(z ) = (3 - 4v ) ( ) Inz,

87f 1 - u
(5.4.3)

which determine th e state of stress in the infinite plane loaded by force
X + iY in t he origin of the coordina te system (i.e. at the point which does
not belong to the considered region L). It is evident that this force is equal
to the pr incipal vector of the external forces on any closed contour enclosing
point z = 0, in par t icular on the contour of the opening r . Let us recall
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th at the displacement vector obt ained in terms of functions <Po(z) , 'l/Jo(z)
is single-valued.

Hence, introducing functions <P* (z) , 'l/J* (z) which are single-valued in L,
assuming

<P (z) = <Po(z) + <P* (z) , 'l/J (z) = v«(z) + 'l/J* (z) (5.4.4)

and referring to eq. (5.2.11) we can put the condit ion on r for the second
boundary-value problem in the form

(5.4.5)

where P* + iQ* denotes the principal vector of the exte rnal surface forces
distributed along arc 1. The change of sign is due to the fact t hat in the
above formula P + iQ denotes the principal vector of the stresses which are
distributed along arc 1and act ing from the side of the elast ic medium.

Another form of condit ion (5.4.5) is

<P* (z) + zip: (z) + ¢* (z) = Q* - i. P; +

8IT (11_ v) {(X + iY ) [lnz - (3 - 4v) ln z] + (X - iY ) ~ } . (5.4.6)

The problem is reduced to determination of function s ip; (z) , 'l/J* (z) which
are single-valued in L and requires the condition at infinity to be pre
scribed. It follows from the structure of Kolosov-Muskhelishvili's formulae,
eq. (1.14.4), that the st resses obtained in terms of <Po(z) , 'l/Jo(z) are equal
to zero at infinity, i.e. we deal with <p* (z) , 'l/J* (z). It is easy to conclude
from these formulae that the positive powers of z, i.e. from z to z" inclusive,
result in the stresses growing as Izln

-
1 at infinity. Hence the representations

1 }
ip; (z) = ao+ i bo+ (al + ih ) z + 2 (a2 + ib2) z2 + <p** (z) ,

1 (5.4.7)
'l/J* (z) = ao+ ibo+ (a~ + i bD z + 2 (a2+ i b2) z2 + 'l/J** (z),

with holomorphi c and vanishing at infinity funct ions

'l/J () = ~ Ctk + i;3~
** z L..- zk '

k= l

(5.4.8)

lead to the stresses

! (a~ + a~) = 2al + (a2+ i b2) z + (a2 - i b2) z, }

~ (a~ - a~ + 2iT~J = (a2 + ib2)z + a~ + ib~ + (a2+ i b2) z,

(5.4.9)
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which are linear in x, y at infinity and the following displacement vector

2J.L (UOO + iv OO
) = 2 (1 - 2v) al Z - (a~ - ib~ ) z - (a2 - i b2) zz +

1 (3 4) ( 'b ) 2 1 (' "b' ) - 22" - v a2+ i 2 Z - 2" a2 - t 2 Z +
[4 (1 - v) ib1 z + (3 - 4v) (ao+ i bo) - (a~ - ib~ ) ] . (5.4.10)

Following Subsection 7.5.3 we put

ao+ ibo = 0, b1 = 0, a~ + ib~ = 0, (5.4.11)

which does not affect the stresses and eliminates a rigid-body displacement
from eq. (5.4.10).

The expressions obt ained result in stresses linear in x, y at infinity. In
the forth coming notion we assume that the stat e of stress is homogeneous
at infinity, then

and the remaining coefficients aI , a~ , b~ can be expressed in terms of the
principal stresses at infinity (J l ' (J'Z and the angle of the princip al axis of
tensor T OO to axis Ox . By eq. (5.4.9)

(J OO + (J oo = 4a (J oo - (J oo = (Joo - (J oo + 2iToo ) e2i Oi = 2 (a' + i b' ) e2i Oi
1 2 1'2 1 Y x xy 1 1

(5.4.12)

and returning to eq.(5.4.7) we obt ain

ip; (z) = ~ (J l + (J2) z +<p** (z) , ¢ * (z) = ~ (J2 - (Jr') e- 2i Oi z +¢ ** (z) .

(5.4.13)

By eq. (1.14.10) the constant b1 can be expressed in terms of the rotation
at infinity

b J.L 00

1 = 2 (1 _ v) E . (5.4.14)

Functions <P (z) , \lJ (z) are single-valued in L and their expressions have the
form

where the series for <P ** (z) , 1l1** (z) begin with the z -2 terms.
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By eq. (3.1.14), the imaginary part of the coefficients associated with
z-2 in the expression for W** (z) is determined by the principal moment of
the exte rnal forces on r . Th e condit ion on r in the form analogous to eq.
(5.2.10) is written down in terms of cI> (z) ,W(z)

(5.4.16)

(5.4.17)

where n* denotes the vector of the normal exte rnal to L (i.e. directed into
the opening) and Px +iFy denotes the surface forces on r . In the particular
case of the free contour of the opening and the homogeneous state of st ress
at infinity the bound ary conditions (5.4.6) or (6.4.16) take the form

<P** (z) + zq;:* (z) + 1iJ: * (z) =

= - [~ (u= +U
OO

) Z + ~ (U
OO

- U
OO

) ze2iO
]2 1 22 2 1 ,

e., (z) + ~** (z) + ~: [z~: * (z) + ~** (z)] =

1 [ dz 2 ' ]= -- (U OO + U OO
) + (U OO

_ U OO
) - e 202 1 2 2 Idz .

The literature on the solution of the stated boundary-value problem related
to determining the st ress cont raction near the opening is extensive, see
Subsections 7.8.1-7.8.3.

The expression for the displacement vector is set in the form

2J.L (u + i v) = [(3 - 4v) <P** (z) - zq;: * (z) - 1iJ** (z)] + 2J.LizEoo +

~ [(1 - 2v) (uf' + uf) z - (uf - uf') ze2iO
] -

3 - 4v X - iY z
8 ( ) (X + iY) ln zz + 8 (1 ) -:: , (5.4.18)7r 1 -v 7r -v z

and this equality is the condition on r of the first boundary-value problem.
It is deficient to prescribe only the displacement vector on r. It is also
necessary to prescribe the principal vector of the surface forces on r . Th e
requirement of vanishing the displacement at infinity which can be stated
in the three-dimensional problem in the case of zero st resses at infinity (see
for example Subsection 4.3.5) holds true only if X + iY = O.

Let us notice that by introducing functions <P I (() , 'l/J l (() , cI>1 (() , WI (()
by the formulae, similar to eqs. (5.2.8), (5.2.13), we arrive at the boundary
value problems on the circle 'Y of the opening. They reduce to searching
functions <P l** (() , 'l/J l ** (() which are holomorph ic at infinity. While using
variable ( one can replace Inz by In( since th e second term in the equality

(
C l C2 )In z = In ( + In Co + (2 + C + ...

can be understood as the part of functions <PI (() , 'l/J 1 (() which are holo
morphic at infinity.
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7.5.5 Double-connected region. Distortion

In the case of a double-connected region bounded by the interior I'1 and
exte rior f a contours each of the functions cP (z) , 'l/J (z) can be represented
as a sum

where CP1(z) , 'l/J1(z) are holomorphic in the finite region bounded by the
exterior f a contour f a and CP2(z) , 'l/J2(z) are given by

where CP2 (z) , 'l/J2(z) are holomorphic outs ide of I'1and X +iY denotes the
principal vector of the surface forces on fl. Thus, ip (z) , 'l/J (z) are repre
sented in the form

(5.5.1)

where the expansions CP. (z), 'l/J. (z) contain both posit ive and negative pow
ers of z

00 00

CP. (z) = 2:: (ak +i!3k ) zk, 'l/J . (z) = 2:: (a~+ i!3U zk .
k=-oo k= - oo

(5.5.2)

The boundary conditions are given on fa , f 1 , see Subsections 7.5.4 and
7.5.2.

When determining the state of stress in the double-connected region
subjected to the distortion without load , functions cP (z), 'l/J (z) should be
determined by the conditions

~r. [cp (z) + q,' (z) + ¢ (z)] = 0, }

2p,~r . (u + iv) = ~r. [(3 - 4v) cP (z) - zq,' (z) - ¢ (z)]
= 2p, [(C1+ iC2) + ib3z] .

(5.5.3)

Th e first condition means that the principal vector of the stresses van
ishes on any closed contour f . which can not be reduced to a point by a
continuous mapping in L. The second condit ion describes a jump in the
displacement vector given by the translat ional and rotational distortions
(constants C l , Cz , b3 , see Subsection 2.2 .4) .
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These conditions can be sat isfied by adopting

'P (z) = Az In z + b + i8) In z + 'P* (z) , 1/J (z) = h' + i8' ) In z + 1/J* (z) ,
(5.5.4)

where 'P* (z) , 1/J* (z) are single-valued in L and thus can be represented in
the form of eq. (5.5.2) . Indeed,

~r. 'P (z) = 211'i [zA + b + i8)], ~r.zcp' (2) = -211'izA,

~r. i/J (z) = -211'i h' - i8')

and conditions (5.5.3) are reduced to the equations

z (A - A) + ("I + i8) - ("I' - i8') = 0;

211'i [(3 - 4v) (zA + "I + i8) + zA + "I' - i8'] = 2J-t (c+ iC2 + ib3z).

These yield

A = A, Im A = 0; "I + i8 = "I' - i8';

411' (1 - v) A = J-tb3 , 411' (1 - v) b + i8) = -J-ti (ci + iC2) ,

such that

(5.5 .5)

Functions 'P* (z) , 1/J* (z) are determined in terms of the boundary condit ions
of free contours fa , fl .

7.5.6 Representing the stress junction in the double-connected
region (Michell)

In the general case of the distortion and loading on contours fa , I'1functions
'P (z) , 1/J (z) in the double-connected region are as follows

J-tb3
'P(z)= ( )zln z-411' 1 - v

( 1 ) [(X + iY) + 2iJL (ci + iC2)]lnz + ifJ* (z) ,811' 1 - v

1/J (z) = (1 ) [(3-4v)(X- iY)+2iJ-t(Cl- ic2)]lnz+ 1/J*(z) ,
811' 1 - v

(5.6.1)
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where 'P. (z), 'I/J. (z) are given by eq. (5.5.2). By virtue of eq. (1.14.3) we
have

X(z)= (1 )[(3-4v)(X-iY)+2iJ-L(c1-ic2)]zlnz+87l' 1- v

(a~1 + i(3'-1) lnz + X. (z), (5.6.2)

where X. (z) is holomorphic in L and is determined up to an additive
constant a+i(3. Using eq. (1.14.2) we arrive at the following representation
for Airy's function

B ') [ J-Lb3 2 J-L(C2 X - C1Y) ,]
U= 27l' (xY-yX-27l'(3_1 + 47l'(1-v)r + 27l'(1-v) +a_1 lnr

1- 2v
+ ( ) (xX + yY) Inr + U. (r, B) , (5.6.3)

47l' 1- v

where U. (r, B) is determined by the single-valued parts of functions 'P (z)
and X (z)

00

U. (r, B) = a +aox+ (3oy+a1r2+r22: rk (ak+l cos kB - (3k+l sin kB)+
k=1

00 12: rk [a_(k+1) cos (k + 2) B+ (3-(k+l) sin (k + 2) B] +
k=O

00 k

L r
k

(a~_1 cos kB - (3~-1 sin kB) -
k=1

f k~k (a~(k+l) cos kB+ (3'-(k+l) sin kB). (5.6.4)
k=1

Byeqs. (5.6.3) and (3.1.14)

Ar.U = xY - yX - 27l'(3'-1 = -Mo + xY - yX,
I MO

(3-1 = 27l" (5.6.5)

where MO is the principal moment, about the coordinate origin, of the
external surface forces on contour r 1 bounding region L from inside.

The terms in the stress function which are linear in x, y, not affecting the
stresses and entering a constant term in the expression for the displacement
vector are as follows

a + (ao + a~) x + ((30 - (3~) y. (5.6.6)
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Omitting them, we obtain Michell's form for Airy's stress function

U = 2
B

(xY -yX - MO) + 4 \- 2v ) (xX +yY)lnr+
7f 7fl-v

27f (:_ v) (~b3r2 + C2 X - C1Y) lnr + alr
2

+ a'--llnr +

00

r 3 (Cl cosB + 51 sinB) + I: r n [(an + Cnr
2) cosnB+

n=2

(bn + 5nr 2) sinnB] + ~ (a~ cosB + b~ sinB) +
r

00 1I: r n [(a~ +C~r2) cosnB+ (b~ +5~r2)sinnB] .
n=2

7.5.7 Thermal stresses. Plane strain

(5.6.7)

(5.7.1)

The temperature B(x, y) is assumed to be independent of coordinate X3 .

Considering the case of the plane strain (c3 = 0) and referring to Hooke's
law in the form of eq. (1.1.4 .2) of Chapter 4 we have

az--v-(ax+ay+az)+2p,aB=0, }
l+v

a z = v (a x + a y) - 2p, (1 + v) B.

Therefore

a = a x + a y + a z = (1 + v) (al - 2p,aB) , al = a x + a y (5.7.2)

and the non-zero components of the strain tensor are presented in the form

2p,cx=ax- val+2p,(I+v)aB, }
2 2 (1 ) B (5.7.3)

P,Cy = a y - val + p, + va , /l/Yxy = T xy·

There is no doubt that the static relationships (1.2.2) expressing the stresses
in terms of Airy's stress function as well as Kolosov's formulae (1.13.2) re
main valid. However the stress function is, in general , no longer biharmonic,
i.e. it can not be represented in Goursat 's form. The Kolosov-Muskhelishvili
relationships, Subsection 7.1.14, need to be supplemented with an addi
tional term.

Turning now to Beltrami's dependences, eq. (1.14.13) of Chapter 4, and
taking into account eq. (5.7.2) we have

'72 82al _ -2 1 + v'72B
vax + !') 2 - ua 1 v ,

uX -v

2 8
2al 1 + v 2 2 82al (5 74)V' a y +~ = -2p,a--V' B, V' T xy +~ = 0, ..

uy 1- v oxou
vV'2 a l - 2/w (1 + v) V'2B = -2p,a 1 + v V'2B .

I-v
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Substituting \72U for 0"1 in the latter equat ion yields

\72\72U = -2J..LD: 1 + v \72B,
I-v

(5.7.5)

and it can be proved easily th at the remaining relat ions (5.7.4) hold true.
By eq. (5.7.5) we have

2 82U 1+ v 2
\7 U = 4 !=:l !=:l - = -2J..LD:--B + s (x,y) , \7 s = 0,

ozo z 1- v

where the right hand side contains an additive harmonic function s. Ac
cording to Subsection 7.1.14 it is denoted as

s = 4 Re ep' (z) = 2 [ep' (z) + q/ (z)] .

Thus,

8
2
U 1 [ '( ) _, ( _)] 1 1 + u ( _)!=:l !=:l - = -2 ep z + ep z - -2J..LD:--B z, z .

uZuZ 1- u

We arrive at the following representation for the stress function

(5.7.6)

z z
1 1 1 + u j j ( -) -U = 2 [zep (z) + z<p (z) + X(z) +X (z)] - 2J..LD:

1
_

v
d( B ( ,( .u;

(5.7.7)

and the Kolosov-Muskhelishvili formulae (1.14.4) take the form

[ - ] 1+1.1 }0"1 = O"x + O"y = 2 <I> (z) + <I> (s) - 2J..LD:--B,
I-vz _

. _ , l+vj8B((,() -
O"y - O"x + 227XII = 2 [z<I> (z) + \It (z)] - 2J..LD:-. - 8 d(.. I-v z

(5.7.8)

The first formula in eq. (5.7.3) can be represented as follows

8u
2J..L 8x = -O"y + (1 - v) 0"1 + 2/.1 (1 + v) D:O

= - ~2~ + 2 (1 _ v) [ep' (z) + <p' (z) - J..LD: 1 + voJ + 2J..LD: (1 + v) D:B
u x I-v

82U
= - 8x2 + 2 (1 - v) [ep' (z) + <p' (z)] .

The second formulae is transformed by analogy, to give

2J..L ~~ = - ~:~ + 2 (1 - v) [ep' (z) + <p' (z)],

UV 8
2
U ( ) [ '( ) _, (_)]2J..L,!) = -~ + 2 1 - u ep z + ep z .

uy u y
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Using the rules of differentiation (1.12.3) we obt ain

a a
'P' (z) + ip' (z) = ax ['P (z) + ip(z)] = - i ay ['P (z) - ip(z)] ,

and we can take

and furth ermore

au }2/Lu = - ax + 2 (1 - v) ['P (z) + ip(z)],

2/Lv = - au - 2i (1 - v) ['P (z) - ip(z)]
ay

(5.7.9)

2/L (u+ iv) = -2~~ +4 (1- v) 'P (z) (5 .7.10)
z

= (3 - 4v) 'P (z) - zip' (s) - 1;; (z) + fL(X 1 + v Je ((,s) de.
I-v

It is not difficult to prove that the third relationship in eq. (5.7.3) holds
true . By eq. (5.7.9) we have

2/L (au+ av) =
ay ax

&u { a a }= -2 axay + 2 (1 - v) By ['P (z) + ip (z)] - i ax ['P (z) - ip(z)] ,

where the expression in the braces vanishes identically, which is required.
Clearly, formula (5.7.10) determines the displacement vector up to a plane
rigid-body displacement .

7.5.8 Plane stress

By definition (1.4.1)

a z = T xz = T yz = 0, (5.8.1)

and the problem is complicated by the dependence of the stresses, dis
placement s and temperature on X3. As before, the Laplacian with respect
to two variables is denoted by \72 thus the Laplacian with respect to three
variables is

The expressions (1.2.2) for stresses in terms of the stress function remain
valid however the latter depends also on X3 . Therefore, Beltrami 's depen
dences, eq. (1.14.13 ) of Chapter 4, with the thermal terms are written now
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in the form

(5.8.2)

Adding the first two equat ions and making use of the third one we arrive
at the relation containing no derivatives with respect to X 3

(5.8.3)

which allows us to present V 2 U is the form

V 2U = - 2JLG: (1 + v) B+ s (x , y) , V 2s = 0, s = 2 [ep' (z) + cp' (z)) .
(5.8.4)

The fifth and sixt h dependences in eq. (5.8.2) are then satisfied and the
third can be reduced to the form

(5.8.5)

that is, the plane stress can be realised under a stationary temperature
field.

The remaining (first , second, fourth) Beltrami 's dependences reduce to
the form

~ (V2U_S(X, y) ) = 0, ~ (V2U_s (x, y) ) = 0, }
oy2 3 1 + V ox2 3 1 + V

~2 ( () ) (5.8.6)
_u_ V2U _ S x , y = 0.
oxoy 3 1 + v

This allows us to view U as the solut ion of the three-dimensional Poisson
equat ion

(5.8.7)
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The displacements are determined from the equat ions of generalised
Hooke's law

au //
211- = (1 - --(1 + 211CtB,... ax x 1+ // ,... ,

(au av)
J.l ay + ax = T x y

Repeating the rearrangement of Subsection 7.5.7 we obtain from these
equations

2J.l (u + iv) = -2~~ + _4_'P (z) .
uZ 1 + //

In order to find displacement w we begin with the equalit ies

(5.8.8)

aw v Bu:
2J.l- = ---(1 + 2J.lCtB ,

aX3 1 + // ax

which are an evident consequence of eq. (5.8.1). With the help of eqs.
(5.8.4), (5.8.7) and (5.8.8) they can be lead to the form

2J.law = a
2
U 2J.law = a

2
U .

aX3 ax~ , az azax3

Hence

aU
2J.lW=~ .

UX3
(5.8.9)

The generalised plane stress which is approximately realised in the thin
plat e deals with the mean values of stresses, st ress function and displace
ments. Keeping the above denot ation for the mean values we obt ain from
eq. (5.8.4)

U ~ ~ [z\p(Z) + zl'(z) + X(z) + X(z) - ~~ (1 + v)Jd( ) 8 ((,() d(]

(5.8.10)

which is analogous to eq. (5.7.7). The modification in eq. (5.7.8) reduces to
replacing

1+// b ( )Ct-- Y Ct 1 + // .
1-//

The displacement vector is now given by th e equality

(5.8.11)

z

3-// - J2J.l (u + iv ) = 1 + // 'P(z) - zip' (z) - 'l/J (z) + uo (1 + //) (} ((,z) d( ,

(5.8.12)
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differing from eq. (5.7.10) in the replacement (1.6.5)

// by

in addit ion to replacement (5.8.11).

//

1+//
(5.8.13)

7.5.9 Stationary temperature distribution

Let us consider the case of a stat ionary thermal regime. The temperature
in the case of the plane strain (or t he mean temperature in the generalised
plane stress) is the harmonic function of the coordinates

(5.9.1)

Under this condit ion, the stress function , by virtue of eqs. (5.7.6) and
(5.8.4), is biharmonic and th e Laplacian over it is a harmonic function .

As a harmon ic single-valued function, the temperature is presented in
the double-connected region L in the following form

() = f r" (()n cos nO+ gn sin n() ) + ()~ Inr + ~ (()~ cos () + g~ sin()) +
n=O

f r~ (()~ cosn()+g~sinn()) . (5.9.2)
n=2

The function of the complex variable whose real par t is () is given by the
equality

00 00 o: .,
8' (z ) = () + ig = L (()n - ign) zn + O~ lnz + (()~ + igD ~ + L n :n

Zgn

n=O n=2
(5.9.3)

so th at

(5.9.4)

where the term -()~z is included into 8* (z) . Here and in what follows an
asterisk denotes the single-valued (holomorphic) part of the function of the
complex variable.

In the following we deal with th e plane st rain. Putting () in the form

()= ~ [8' (z)+ 8' (z)] , (5.9.5)
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we arrive , by means of eqs. (5.7.7), (5.7.8) and (5.7.10), to the formulae

u = ~ {Zip (z) + zep (z) + X(z) + X(z) - ~ JLa ~ ~ ~ [z8 (z) + z8 (z)] ,

{
- I l+v [ -]ax+ay=2 <I>(z)+<I>(z)-"2JLal_v 8'(z)+8'(z)

. [ 1 l+vay - ax + 2ZTxy = 2 z<I>' (z) + 1J1 (z) - -2JLa--z8" (z)
I-v

2JL (u+ iv) = (3 - 4v) ip (z) - zep' (z) - ~ (z) +
1 l+v -
-JLa- [8 (z) - z8' (z)] .
2 1- v

(5.9.6)

The expediency of considering the function

1 l+v
ipo (z) = ip (z) - -2JLa-8 (z)

I-v
(5.9.7)

becomes evident . With the help of this function the above system can be
set in the form

u = ~ [Zipo (z) + zepo (:) + X (z) + X(z)] , }
ax + ay = 2 [<I>o (z) + <I>o (z)] ,
ay - ax + 2iTxy = 2 [z<I>~ (z) + 1J1 (z)] ,

(5.9.8)

2JL (u + iv) = (3 - 4v) ipo (z) - zep~ (s) - ~ (z) + 2JLa (1+ v) 8 (z) .
(5.9.9)

Under these denotations the expression for the principal vector of the
stresses on any arc 1in region L is given, due to eq. (1.14.7), by the formula

-Q + iP = ipo (z) + zep~ (z) + ~ (z) , (5.9.10)

and if contour I' is free, then the boundary condition on r is homogeneous

[ipo (z) + zep~ (z) + ~ (z)]r = 0.

Therefore, if function 8 (z) is single-valued

o~ = 0, O~ = 0, g~ = 0,

(5.9.11)

(5.9.12)

which is guaranteed for a simply connected finite region L without thermal
sources, then the solution of the problem is

ipo (z) = 0, 1/1 (z) = 0. (5.9.13)
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Then, due to eq. (5.9.8), st resses a x , a y , T x y are equal to zero

a x = 0, a y = 0, T xy = 0, (5.9.14)

and by virtue of eq. (5.9.9) t he single-valued vecto r of displacement is as
follows

u + i v = (1+ v)0:8 (z ) . (5.9.15)

Stress a z is obtained from the condition Ez = °by means of t he generalised
Hooke law

a z = - 2tt (1+ v ) o:() = -Eo:(). (5.9.16)

(5.9.17)

(5.9.18)

Let us consider the case of the unloaded double-connected region when
condit ions (5.9.12) do not hold . The trivial solution (5.9.13) is not suit
able as the corresponding displacement vector is not single-valued . T he
requirement for the single-valuedness and the st atic condit ion of zero prin
cipal vector of stresses on any contour r in L which can not be mapped
to a point by any cont inuous t ransformation results exact ly in the rela 
t ions which were used in Subsect ion 7.5.5 for establishing multivaluedness
of functions cP (z) , 'ljJ (z) due to the distortion. The distortion 's const ants
are equal in value and opp osite in sign to th e constants determining the
charac te r of the multivaluedness of the function on th e right hand side of
eq. (5.9.15). Referring to eqs. (5.5.3) and (5.9.4) we have

Cl + iC2 + ib3z = - (1 + v) o:~r.e (z)

= -2n io: (1+ v) (()~ z + ()~ + igD '

so that

Cl + iC2 = 2n o: (1 + v) (g~ - i() ~ ) , b3 = - 2no: (1 + v) ()~.

By eq. (5.5.5) we have

CPo (z) = -~tto:~ ~: [()~ zln z + (()~ + igD ln z ] + CPo. (z) , }
1 1 + V , (5.9.19)

'ljJ (z) = -2 ttO: l _ v (()l - igD ln z + 'ljJ* (z) .

The second boundary-value problem for the unloaded contour reduces to
searching the holomorphic (and thus single-valued) functions in L in terms
of the condit ions on r 0 and r 1

CPo. (z ) + zep~ . (z) + 1P* (z) =

1 1 +v [ ( , « .,) « (()' " )z]= -ttO:-- 2 ()oz + 1 + zgl In r + Oz + 1 - zgl -= ,
2 1- v z

(5.9.20)



618 7. Th e plane problem of th e th eory of elasticity

where r = [z].
Determining thermal stresses a x, a y , 7 x y requires only the logarithmic

term and the term proportional to r- 1 in the expression (5.9.2) for the
temperature. Prescribing the temperature is used for the displacement vec
tor and a z . By virtue of eq. (5.9.9) we have

2JL (u + iv ) = (3 - 4v) VJo. (z) - z'P~. (2) -;P4(2)+ 2JLCi (1+ v) 8* (z) +
II+v[(1 1 " ) 1 (' , /) Z] ( )-2 JLCi-- 2 ()o z + ()l + ~gl Inr + ()o z + ()l - ~gl -= , 5.9.21I- v Z

and the comparison with eq. (5.9.20) yields that on the free contours

fl, f o : 2JL (u + iv ) = 4 (1- v) VJo. (z) + 2JLCi (1 + v) 8* (z). (5.9 .22)

This generalises equality (5.9.15) to the case of a double-connected region.
In region L eq. (5.9.11) can be set in the form

2JL (u + iv ) = 4 (1 - v) VJo. (z) + 2JL (1 + v) 8 * (z) - i (P + iQ) . (5.9.23)

Hence

~r.(P+iQ)=O, (5.9.24)

that is, the principal vector of the stresses on any closed contour in L is
identically equal to zero.

The stat ement of the first boundary-value problem is based on relation
(5.9.21). For example, in the case of the elast ic body placed in a rigid and
non-smooth casing with a heat insulator we have

(u+ iv)r=O. (5.9.25)

Byeq. (5.9.23) the distribution of the surface forces due to the casing is
given by

(P + iQ)r = - i [4(1- v) VJo. (z) + 2JL (1+ v) 8* (z)]r ' (5.9.26)

where VJo. (z) is obtained from the solution of the bound ary-value problem
(5.9.25).

7.5.10 Cauchy's theorem and Cauchy 's integral

Let us consider first the case of L-region inside a simple closed contour ,
the value of z on the contour being denot ed as t .

Let f (t) denote the value of function f (z) which is analytical on I' and
continuous up to the boundary , then Cauchy's theorem

f f (t) dt = 0

r

(5.10.1)
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and Cauchy's integral formula

_11f (z) dt = { f (z) ,
21fi t - z 0,

r

z e L ,
z e R,

(5.10.2)

hold, where R denotes the region external to L.
Let L be an infinite region outside of r and L' denote the double

connected region bound ed by r from the inside and circle C of a sufficient ly
large radius r from the outside. Let f (t) denote function f (z) which is holo
morphic in L (and thus in L') on both r and C. Applying Cauchy's integral
formula in L' yields

~ (I l.Jil dt +1l.Jil dt) = { f (z) ,
21f t t - z t - z 0,

r c

where R is a region external to L' , i.e. it lies in r .
On the other side

z e L' ,
z e R ,

1=_1 I f(t)dt=_l If(reiO)idB lim1=f(00) ,
21fi t - z 21fi 1 _ ~ , r ->oo

C C reiO

that is,

_11f (t) dt = { f (z ) - f (00) , z e L,
21fi t - z - f (00), z e R.

r

(5.10.3)

Now let f (z) be a function which is holomorphic in L inside of r ev
erywhere, but pole z = a, and the principal part of the expansion of this
function at the pole be equal to

n As
g( z)=f;(z-a)S (aeL) . (5.10.4)

As 9 (z) is holomorphic in R-region (outside of I') and 9 (00) = 0 we obt ain
by means of eq. (5.10.3) that

_119 (t) dt = { 0, z e L,
21fi t- z -g(z) , z CR:

r

Taking into account that f (z) - 9 (z) is holomorphic in L and referring to
eq. (5.10.2) we have

_11f (t) dt = { f (z) - 9 (z) , z e L,
21fi t- z -g(z) , z C R .

r

(5.10.5)
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It remains to consider the case in which L is external with respect to r
and f (z) is holomorphic in L everywhere except for an infinite point where
this function has a pole with the principal part

9 (z) = ao + alZ + ...+ anzn,

i.e. 9 (z) is holomorphic in R.
Then

_1 f 9 (t) dt = { 0, z c L,
27fi t-z -g(z), zcR,

r

so that

_1 ff(t)dt={ f(z)-g(z) , zCL,
27fi t-z -g(z) , zcR,

r

(5.10.6)

(5.10.7)

as function f (z) - 9 (z) is holomorphic in L and equal to zero at infinity.
Let us notice that the formulae in eqs. (5.10.5) and (5.10.7) have the same
structure

_1 ff(t)dt={ f(z)-g(z), zCL,
27fi t-z -g(z) , zcR,

r

(5.10.8)

where region L lies on the left hand side while traversing contour r .

7.5.11 Integrals of Cauchy's type. The Sokhotsky-Plemelj
formula

Let cp (t) be prescribed on r, restricting ourselves by the assumption that
the integral

f Icp (t)1 dt
r

is bounded, we can prove that the functions

(5.11.1)

iF.L ( ) = _1 f cp (t) dt ( L)'*" z 2' t zC,7fZ - Z
r

tI>R(z)=~fcp(t)dt (zCR) ,
27fz t - z

r
(5.11.2)

referred to as integrals of Cauchy's type are holomorphic in Land R, re
spectively. These equalities define the function

tI> (z) = ~ f cp (t) dt
2m t - z

r

(5.11.3)
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in the whole plane z except for f. It is necessary to distinguish the limiting
values of <I> (z) on contour I' obtained by approaching from the inside and
outside

(5.11.4)

from the "direct value" defined by the principal value of the integral of
Cauchy's type

<I> (to) = ~ f <p (t) dt.
27f~. t - to

r

(5.11.5)

The relation between these values is provided by the Sokhotsky-Plemelj
formula

1 1 f <p(t)<I>L (to) = -<p (to) + - . --dt,
2 2m t - to

r
R 1 1 f ip (t)

<I> (to) = --<p (to) +- . --dt.
2 27f~ t - to

r

They can also be set in the form

(5.11.6)

Given that function <I> (z) is holomorphic in the whole plane, excluding
contour I' , and is equal to zero at infinity as well as the difference <p (t)
between the values of <I> (z) is prescribed, then by the first formula in eq.
(5.11.7) we have

<I> (z) =~ f <p (t) dt.
27f~ t - z

r

(5.11.8)

The uniqueness of this solution is easily proved by referring to Liouville's
theorem which states that if a function is holomorphic in the whole plane
then this function is a constant. If it is known in advance that <I> (z) at
infinity grows not faster than z" and has a pole at point z = a C L then

1 f <p(t) Lm as
<I> (z) = -2. -dt + r; (z) + ( )S '

7f~ t - z z - a
r s=1

where Pn (z) is a polynomials of degree n and as are constants.

(5.11.9)
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7.6 Regions with a circular boundary

7.6.1 Round disc loaded by concentrated forces

The concent rated forces (the normal and tangential forces denoted respec
tively by Rs and T; ) are applied at points Q s lying on circle r of the disc
of radius ro and having the angular coordinates (}s ' Each of these points is
assumed to be the origin of the local coordinate system Q s x sys , the axes
Q sx s , Q sys being made coincident with the directions of the unit base vec
tors e: ,eoof the polar coordinate system r , () with the origin at the centre
of disc C, Fig. 7.5. It is also assumed that forces Rs , Ts have respectively
the directions e: , eo provided that R; > 0, Ts > O. Let r s i 'ljJ s denote the
polar coordinates of the observation point M (r, ()) with the origin at point
Q s and the polar axis e:. The system of forces Rs , T; is assumed to be
stati cally equipollent to zero, i.e.

n

L iR, cos (}s - Ts sin (}s) = 0,
s= l

n

L (Rs sin(}s + t; cos (}s ) = 0,
s= l

or equivalently

n

L in, + iTs)ei8s = 0,
s=l

Let

n

LroTs = 0,
s=l

(6.1.1)

where as designates the angle between force K; (the result ant of forces
Rs , Ts ) applied at point Q s and direction e: . Referring to formula (3.4.5)

FIGURE 7.5.
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we introduce into consideration the stress function

n I l n
U; = - L -KsTs'lf; s sin ('If; s - a s) = -- L Ts'lf; s (Rs sin 'If;s - T; cos 'If;s ) '

n n
s= 1 s= 1

(6.1.2)

describing the stresses due to the singularities corresponding to the con
centrat ed forces at point Qs' In the problem of the disc, the st ress function
is sought in the form

u = U, + U**,

where the correcting function U•• is determined by the condition

(6.1.3)

(6.1.4)

expressing that the disc boundary is free at points different from Qs -

The state of st ress caused by force K; at the source point Qs reduces to
the single st ress (J r, on the surface perpendicular to r s

2Ks ( 2 ( . )a; = --- cos v, - a s) = -- Rs cos'lf;s + Ts sm 'If;s .
S nTs ' ttr;

On the circle r , Fig. 7.5,

2 . (}-(}s
r, = TO SIn -2- '

on I" :

on r .

so that

1
. (}-(}s

nTo sm-
2
-

In polar coordinat es, the components (J~ , 7:0of the st ress tensor are given
by

S
• 2 (}-(}s

(J = (J SIn --r r , 2
1 ( . 2 (}-(}s (}-(}s . (}-(}s)

=- R sin ---T cos - -sm - -
n TO s 2 s 2 2 '

s _ . () - (}s () - (}s _
7 r O - (J r sm--cos-- -

s 2 2
1 ( . (}-(} s (}-(}s 2 (}-(}s)

= - R sm-- cos-- -T cos --
n TO s 2 2 s 2 '

since the angles of vector r, to the unit vectors en eo at the observation
point M on r are n / 2 - 1(() - ()s) , 1(() - ()s) respectively. After simple
rearrangement s and using the equilibrium equation (6.1.1) we have
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FIGURE 7.6.

Thus we arrive at the unexpectedly simple result, namely, that the cor
recting tensor determines the axially-symmet ric state caused by the normal
pressure distributed uniformly on r

n

** 1 "Ra; = --2- L s»
71TO s=1

By virtue of eq. (6.1.3) we have

2 n

U** = --4
r L n;
71TO s=1

where on the disc

rs = [r2+ r5 - 2rrocos (B - Bs)11
/

2
, }

. T • () rcos(B-Bs)-ro
sm 'l/Js = - sm B- Bs , cos 'l/Js = .

r s r s

(6.1.6)

(6.1.7)

(6.1.8)

As an example we consider the disc acted on by two concentrated forces
applied at the ends of the diameter (Hertz , 1883). Then R1 = R2 = -R,
T; = 0 and byeq. (6.1.6)

U = : (r1 'l/J l sin 'l/Jl + r2'l/J2sin 'l/J2 + ;:0) ,
where angles 'l/J l , 'l/J2 are measured from the vectors e;, e~ = -e; at points
Ql , Q2 directed in opposition to the forces compressing th e disc.

Assuming for simplicity that the disc is compressed at the ends of the
horizontal diameter, we have, see Fig. 7.6

rl sin 'l/Jl = -r2 sin 'l/J2 = r sin B= ;i(z - z) = ;~ (( - () ,
zl = ro(( - l) , z2 = - ro(( + 1) ,
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and thus

where ( denotes a point in the unit circle. Function U can be presented in
the form

( - ) 1 To R [ - 1 ( - ) ( ( + 1 ( - 1)]U(Z,Z) = TOU ( ,( = 2--:;- ((+ 2 ( -( In (+l + In (_ l '

(6.1.9)

so th at

'P (() = ! R (( + In( - 1) , X (() = ! R (In ( + 1, }
27r (+1 27r (-1

7/J (() = X' (() = ! R (In (+ 1_~) .
27r ( - 1 (2 - 1

Applying Kolosov-Muskhelishvili's formulae yields th e stresses

ar+a()=2~ (1 +~+~) , }7rTo ( - 1 ( - 1
. R 1- ( ( (

a()-ar+ 2tTr () =4- 2 '
7rTo ((2 _ 1) (

(6.1.10)

(6.1.11)

that is, th e stresses are equal to zero at all points on the bound ary of t he
disc, except for points Q1 ,Q2 where the concentrated forces are applied.
On the diameter of the disc perpendicular to the line of act ion of the forces
~ = 0, ( = i'f} and formulae (6.1.11) yield

(6.1.12)

7.6.2 The general case of loading round disc

Let us consider the general case of loading the round disc Izi :s: TO by the
normal and tangential surface forces on its boundary

(6.2.1)

under the assumption that this system of forces is in equilibrium with the
concent rated force X + iY applied at t he cent re and the moment MO.
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The equations of the equilibrium of the disc are as follows

271"! Ih (B) cosB - h (B) sinB] rodB + X = 0,

o
271"! Ih (B) sinB + h (B )cosB] rodB + Y = 0,

o
271"

r5! h (B) dB + MO = °
o

or

271"

ro! 1 (B) eiOdB + X + iY = 0,

o
271"

r5! U (B) - ! (B)]dB+ 2iMO= 0, [f (B) = h (B) + ih (B)].
o

(6.2.2)

For the sake of simplicity the problem is considered in the unit circle which
results in the change of notation

z = ro( , (= peiO= pa, a = eiO, do = ieiOdB = iodi), (6.2.3)

The equilibrium equations (6.2.2) reduce to the form

f i. f - do MO1 (B) da + - (X + zY) = 0, [I (B) - 1 (B)] - - 2- 2 = O. (6.2.4)
~ a ~

~ ~

Referring to eqs. (5.6.1) and (5.6.5) we seek Muskhelishvili 's functions
ip ((), 'l/J (() in the form

X +W }<p(() = 8 (1 ) In ( + <p*(() ,
7f - V ro
X - iY iMo 1

'l/J (() = 8 (1 ) (3-4v) ln(+ -22;:; + 'l/J* «i ,
7f - V ro 7fro "

(6.2.6)
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By virtue of eq. (5.2.15) the bound ary condit ion on the unit circle "y is
written down as follows

( = a, ( = ~ : <P* (a) + ~* (~) - ~~~ (~) - :2\I! * (~) = (6.2.7)

= f (B) + ( 1 ) [4 (1 - /I) ~ (X + iY) + 2a (X _ iY)] + iM~.
871" 1 - /I a 2 71"TO

This condit ion for the complex conjugated values takes the form

( = ~, ( = a : ~*(~)+<p* (a)-a<p~ (a) - a2w * (a) = (6.2.8)

= l (B )+ (1 ) [4 (1 -/l)a (X- iY)+~ (X+ iy)] _ iM~ .
871" 1 - /I TO a 271"TO

7.6.3 The method of Cauchy 's integrals

The method of Cauchy's integrals for solving boundary-value problems in
the plane theory of elast icity has been suggested and developed in detail
by N.!. Muskhelishvili. His book contains the rigorous substant iat ion and
numerous applicat ions of this meth od, and for this reason consideration is
limited here to only explaining the basics of calculation.

Mult iplying bot h parts of eq. (6.2.7) by

1 da
---
271"i a - (

and integratin g around contour "y of the unit circle we have
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Referring to Cauchy's integral formulae (5.10.2), (5.1O.3) and taking into

account that <1>. (~ ) is holomorphic for 1(1 > 1 we have

<P. (() + <1>. (O) =~ f f (B) d<J + X - iY (+ iMO.
27r2 <J - ( 47r (I - lI) TO 27rT5

'Y

Applying an analogous calculation to condition (6.2.8) yields

(6.3.1)

<1>. (O) +e. {() - (<P~ {() - (2'lJ. {() =

= _1 f l(B)d<J + X - iY (_ iM~. (6.3.2)
27ri <J - ( 27rTo 27rTO

'Y

It is also necessary to prove the inverse statement: functions <p. {() , 'lJ. (()
determined by equalities (6.3.1), (6.3.2) in the whole region satisfy the
boundary conditions (6.2.7), (6.2.8). The substantiation by means of the
theory of potential is presented in the book by Muskhelishvili. Another
derivation of these relationships is suggested in Subsections 7.6.13 and
7.6.14 of the present book.

Byeq. (6.3.1) we have for ( = 0

and the left part of the latter equality is real if

/

271" MO
12 (B) dB + -2 = 0

TO
o

which is the equation for the moment. Hence, taking Im <p. (O) = 0 we have

271"

- 1 f f (B) iMo 1 /<P. (O) = <P. (O) = -4' -d<J +-42 = -4 it (B) dB,
m <J 7rTO 7r

'Y 0

1 f (1 1 ) iMo X - iY
<P. (() = -2' f{B) -i - -2 d<J+ -42 + 4 (I ) ( .7r2 <J - ." <J 7rTO tt - II TO

'Y

(6.3.3)
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It remains to obtain \II. (( ) with the help of eqs. (6.3.1) and (6.3.2). The
result is

- (2 \11. (() =~ f ! (B) - 1(B) da +
27ft a - (

'Y

X -iY(+ --.L f I (B) 2da- iM~ , (6.3.4)
27fr o 27fi (a - () 7fr0

'Y

and function \II. (() obtained is holomorphic in the circle 1(1< 1 provided
that the expansion of \II. (() in a power series in ( has no free term and no
first order term

1 f - do MO- . [/ (B )-/(B)]- - i- =O,
27ft a 7fr5

I'

_1 f ! (B) do + X - iY = 0.
27fi a 2 27fro

'Y

(6.3.5)

These are the equilibrium equations, one of them being written in the form
complex conjugated to eq. (6.2.2). By virtue of eqs. (6.3.4) and (6.3.5) we
find

\II. = __1 f [ I (B ) + ! (B ) ] do
(() 27fi (a -()2 a a2(a- () .

'Y

7.6.4 Normal stress CJo on the circle

(6.3.6)

In what follows we assume that the system of surface forces on 'Y is statically
self-equilibrated. Then

211"

X + iY = 0, MO = 0; Jh (B) dB = 0,

o

and by eq. (6.3.3)

211" 211"

J1 (B) dB = JII (B) dB
o 0

(6.4.1)

211"

1 f do 1 J<I> (() = 27fi 1(B) a _ ( - 47f II (B) dB .
I' 0

Under the limiting process ( ---. al = ei ,p we obtain with the help of
Sokhotsky-P lemelj's formulae

211"

1 1 f da 1 J<I> (()!<---->(11 = -21 (1jJ) + -2' 1(B)-- - -4 II (B) dB,
7ft a - a l 7f

'Y 0

(6.4.2)
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where the integral which is understood in the principal value sense is trans
formed to the form

211" .0

_1 f f (0)~ = .!...Jf (0) e
t

dO. =
271"i a - al 271" etO - et,p

'Y 0

211" 211" 211"

1 J 1 - ei(O-,p ) 1 J i J 0 - 'Ij;
271" f (0) 2 [1 _ cos (0 _ 'Ij; )]dO = 471" II (0) dO- 471" f (0) cot -2-dO.
000

We arrive at the relationship

271"

1 iJ O- 'Ij;
<I> (01(-><11 = "if ('Ij;) - 471" f (0) cot -2-dO,

o

so th at

(6.4.3)

271"IJ O- 'Ij;(ar +ao)II(I=l = 2[<I> (() + <lJ (()J = 2II ('Ij;) +:; h (0) cot -2-dO,
o

or

(6.4.4)

If the shear st resses are absent, the normal stresses on the boundary of the
disc are equal to each other.

Using th e well-known relations

211"

1 J O- 'Ij;sin n'lj; = - 271" cos nO cot -2- dO ,

o
211"

1 J O- 'Ij;cosn'lj; = 271" sin nO cot -2-dO,

o

(6.4.5)

271"

J O- 'Ij;
cot -2-dO = 0

o

(n = 1,2 , . .. )

and representing t he distributed shear stresses as a seri es

oo

r = ro: T rO = L (an cos nO + bn sin nO) ,
n=l

(6.4.6)
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we can obt ain another represent ation for formula (6.4.4)

00

r = TO: all! r=ro = arlr'=ro+ 2L (bn cosnB- an sin nB) .
n=1

(6.4 .7)

The n = 1 term of series (6.4.6) can not be taken independently of the
corresponding term (n = 1) of the tri gonomet ric series for the normal stress
arlr=ro' The latter must take the form

-al sin B+ bi cos B,

otherwise the condit ions for the equilibrium of the surface forces on "( do
not hold.

7.6.5 Stresses at the centre of the disc

Under conditions (6.4.1) Kolosov-Muskhelishvili 's formulae yield

and by virtue of eqs. (6.3.3) and (6.36) we obt ain

271"

(ar· + all)r=O = ~ Jh (B ) ao,
o

271"

(a ll - a; + 2iTrll) r=0 = -~Je2i (,p- II)I, (B)dB,

o

so that

271" 271"

alll r=o = 2~ Jh (B) dB - ~ Jh (B) cos 2 ('IjJ - B) dB ,
o 0

271" 271"

arlr=o = 2~ Jh(B)dB+~ Jh (B) cos2('IjJ-B )dB,
o 0

271"

1 J .Trlll r=o = -; h (B) sm 2 ('IjJ - B) dB.
o

(6.5.1)

(6.5.2)

It is interesting to note th at the shear stresses cause no st resses at the
centre of the disc. These stresses are only due to the constant term and
the second harmoni c in the expansion of the normal surface st ress in the
trigonometric series.



(6.6.1)

(6.6.3)
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7.6.6 A statically unbalanced rotating disc

The solution to this problem is provided as an example of applying the
general formulae of Subsection 7.6.3. It is assumed that the point 0 of
intersection of the axis of rotation of a homogeneous disc with its middle
plane does not coincide with its geometric centre (which is also the centre
of gravity) . The eccentricity OC = e lies on axis Cx of the system of axes
Cxy fixed in the disc and rotating together with the angular velocity w. The
coordinates of point 0 are x = -e, y = 0 and the volumetric centrifugal
force at point M (x,y) are given by the vector

pK='J..w2 (r + i l e) , r=xil+yi2 .
g

The principal vector and the principal moment of these forces about centre
C are as follows

F = ~w211 (r + ile) do = i leM w
2
,

n

me = i3 · 11 r x pKdo = - )':2e 11 ydo = 0,

n n

where M = :27rT5 is the mass of the disc. The centrifugal forces are in
equilibrium w[th the reaction force of axis 0 denoted by - F and are applied
at point (-e, 0). The state of stress in the disc is a superposition of the
state due to the centrifugal force

pKo = 'J.. w2r (6.6.2)
g

and the state due to the homogeneous field of the force

K )' 2 •
P I = -well

g

of the statically self-equilibrated reaction force at point 0

F 2 = -F = -Mw2eh . (6.6.4)

(6.6.5)

The solution of the first problem is elementary. The particular solution
satisfying the compatibility condition is given by formulae (3.11.6)of Chap
ter 5 in which // is replaced due to the rule (1.6.5)

2 2
/ )'W ( ) 2 / )'W ( ) 2 /a; = -- 3 + // T, a() = --8 1 + 3// T, T r () = O.

8g g

The correcting axially-symmetric stress function Cr2 is determined by
the condition of zero normal stress a~ on the boundary of the disc

)'w2

T = TO: 2C - 8g (3 + //) T5 = 0,
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and the st ate of stress in the disc rotating about its cent re of gravity is
given by the formulae

2 2

a~ = 1'8: (3 +v) (r6 - r2
) , ag = I'~ [(3 + v)r6 - (1 +3v)r2

] , T~II = O.

(6.6.6)

A particular solut ion of t he equat ions of the t heory of elast icity in the
homogeneous field (6.6.3) can be taken in the form

(1) I' 2 M ew2
( 1)

a x = --w ex = ---2-r cosO, a y = 0,
9 nTa

or in polar coordinates

M ew2
a (l) = - - - r cos3 0

r 2 'nra

(1) M ew2 2 '
T = --r cos 0sin O.

rll nr2a

Mew
2

}a (l ) = ---rsin20cosO,
II nr2a (6.6.7)

The st ress function describing the state of st ress due to force F 2 is given
by eq. (3.1.10)

M ew2
U2 (z, z) = 16n (1 _ v ) { (z + e) In (z + e) + (z + e) In (z + e) -

(3 - 4v) [(z + e) In (z + e) + (z + e) In (z + e)]}

or by virtue of eq. (1.13.7)

(2) . (2 ) _ M ew
2

[1 1 (3 4 ) z 1 ]a + IT - -- + - - + - v - --
r rll 8n (1 - v) z + e z+ e z z+ e '

(6.6.8)

(6.6.9)

where the notion of the plane st ra in problem is kept.
Sup erimposing the states (6.6.7) and (6.6.9) determines the st ress on

circle I' of the unit circle

(6.6.10)

(= a, ( = ~: irr + ii rll = M aw2
{_~ (a + ~) 2 +

a 4n a a

1 [_ 1_ +_a_ + (3 _ 4V) 1 ]}
2(1-v) a+ a l + aa a (l +aa} '

where we used the notion of eq. (6.2.3) and introduced the non-dimensional
eccent ricity a = efra.

The problem is thus reduced to determining functions <I> (() , \lJ (() such
that the st ress given by eq. (1.14.9)

(6.6.11)
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takes the value (6.6.10) on with, taking the opposite sign. We arrive at
the boundary conditions

Here

-(1) 1 -(1) 1 -(1) }<I> (a) + <I> ~ - ~<I>' ~ - 0'2 W ~ = f (a),

<I> (~ ) + <I> (a) - O'<I>' (a) - 0'2W(a) = ! (a) .
(6.6.12)

1 ( 1)2 1 [1 a 1 ]f a = - 0'+- - -- +-- + 3 - 4v
() a a 2 (1 - v) a + 0: 1 + 0:0' ( ) a (1 + 0:0')

(6.6.13)

and it can be proved easily that the system of surface forces described by
this expression is in equilibrium. Indeed , by eq. (6.2.4)

_1 ff (a) da = _1 f{O'+ ~ + J.- _ 1 [_1_ + _0'_+
21fi 21fi Q. 0'3 2(1-v) 0'+0: 1+0:0'

'Y 'Y

(3 - 4v) (1 )] } do = 2 - (1 ) (1 + 3 - 4v) = 0,
a 1 + 0:0' 2 1 - v

where the integrals of the underlined terms do not vanish, however their
sum is identically equal to zero.

It remains to calculate functions <I> (() , w((). Byeq. (6.3.1) we have

1 f da 1 f{ 2 1 1- fa --=- 0'+-+-- x
21fi () a - (21fi Q. 0'3 2 (1 - v)

'Y 'Y

[
1 a 1 ]} da--+--+ 3-4v --0'+0: 1 + 0:0' ( ) 0'(1 + 0:0') 0'-(

The integrals of the underlined terms do not identically vanish and are
evaluated by means of Cauchy's integral formula (5.10.2). The remaining
integrals are zero according to the second integral formula (5.10.3).

Then we obtain

_1_f f a ~ = ( _ 1 (+ 3 - 4v _0:_

21fi () 0'-( 2 (1 - v) 1 + 0:( 2 (1 - v) 1 + 0:(
'Y

= <I> (() + <I> (0) ,

that is,

<I> _ _ 1 _(_ 3 - 4v 0: 1 - 0:(
(() - ( 2 (1 - v) 1 + 0:( + 4 (1 - v) 1 + 0:( (6.6.14)
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By eq. (6.3.2) we find

[
-(1) j1 ((J ) -1 -

W (O=~ ~fd(J (J - (IP' (O
(2 2m (J - (

l'

= 0' 2 [( 3 - 4v)0'2 + 2 + O'(] - ( .
2 (1 - v) (1 + O'()

(6.6.15)

Calculat ing the stresses in terms of funct ions IP and W presents no diffi
culty. These st resses should be added with the st resses (6.6.6) due to the
cent rifugal forces.

7.6.7 The first boundary-value problem for circle

By eq. (5.2.16) the boundary condit ion on the unit circle "( has the form

(3 - 4v) sp ((J) - (J ep' (~) - ij; (~ ) = 2{1 (u + iv )1' = 1(B) , (6.7.1)

where 1(B) is a prescribed function and cp ((J ) , 'l/J ((J) denote the values of
functions sp (0 , 'l/J (0 which are holomorphi c in the unit circle 1(1< 1. By
virt ue of eq. (5.3.4) we can take cp (0) = O. The boundary condition, which
is a complex conjugat e to (6.7.1), has the form

(6.7.2)

The power series for ip (0 , 'l/J (0 in the unit circle

sp (0 = ( cp' (0) + ~ (2 cp" (0) + ~ (3 cp'" (0) + ... ,

'l/J (0 = 'l/J (0) + ( 'l/J' (0) + .. . ,

allows one to put

(Jep' (~ ) = (Jep' (0) + ep" (0) + ~ eplll (0) ~ + ... ,

-(1) - 1-,'l/J -;; = 'l/J (0) + -;; 'l/J (0) + ... ,

cp' ((J) = cp' (0) + cp" (0) + -21cplll (0) (J + ... ,
(J (J

'l/J ((J) = 'l/J (0) + (J'l/J' (0) + ...
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Therefore, applying Cauchy's integral, Subsection 7.6.3, and the integral
formulae (5.10.2), (5.10.3) leads to the relationships

(3 - 411) <p (() - (<p' (0) - <p" (0) - iiJ (0) = -2
1

. f f (B~d(J ,
7fZ (J - "

'Y

<p' (() - <p' (0) + 7jJ (() = _~ f 1(B) da,
( 27fZ (J - (

'Y

(6.7.3)

Equating the free terms in these equalities and the first order terms in
the first equality leads to the relations

1 21T
q;" (0)+ iiJ (0) = --2 I f (B) dB ,

7f 0
1 21T

<p" (0)+ 7jJ (0) = --2 I 1(B) dB,
7f 0

1 21T
(3 - 411) <p' (0) - q;' (0) = - I f (B) e-iodB,

27f 0

(6.7.4)

where the second equality is equivalent to the first one. The first equality
in eq. (6.7.3) is presented in the form

and differentiation yields

so that , due to the second equality (6.7.3)

(6.7.5)

Introducing the notation

(6.7.7)
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we can set the displacement vector in the form

2/L (u + iv) = (3 - 4//) ep (() - ( ij/ (() - ;p (()

= (2L (() + 3
1

- (( Q(() + iliI (() + [(3 - 4//)ep' (0) _ ;p' (0)] (
- 4//

or, referring to eq. (6.7.4), we have

- 2 - - 1 - (C ( f -
2/L (u - iv) = M (() + ( L (() + :3_ 4//Q (() + 27fi 1(0)dCJ. (6.7.8)

,
This result can be checked easily by means of Sokhotsky-Plemelj formula
(5.11.6). Indeed , assuming ( --+ CJ1 = ei1j1 we have

M = ~ - ~ 2J1T f (0) dO
(()I(----><7[ 21 (1/J) + 27f 0 1 - ei(1/1 - 0) '

2 1 1 21T e2i(1/1 - 0)
( L (()I( ---->O"[ = 7/ (1/J) + 27f [ 1 _ ei (1jI - O) 1 (0) dO, (6.7.9)

- 2 - - I 1 - 1 21T e-2i(1jJ- 0) -
( L (() - = -21 (1/J) + -2 J 1 - i(1/1-0)1 (0) dO,

(---->0" i 7f 0 - e

so that

21T

[M (() + ( 2L (( ) ] 1 =f(1/J)--21 jf(0) e- i(1/1 - 0)dO.
( ---->0" [ 7f

o

Taking into account the equalities

_ 21T

(1 - (C) , = 0, 2~i f f (0) dCJ = 2~ j e- i
(1/1 - 0)f (0) dO,

, 0

we arrive at the required relationship

2/L (u - iv)I , = f (1/J).

Let us notice that prescribing f (0) in the form of a plane rigid body dis
placement

I, (0) = 2/L ( Uo - ivo - iwo~ )

we obtain by means of eq. (6.7.7)

1 f -L (() = 0, Q (() = 0, M (() = 2/L (un - ivo) , 27fi 1* (0) dCJ = -2/Liworo ,
,
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that is

2J.L (u - iv ) = 2J.L (uo - ivo - iworo() ,

which is required.
It remains to determine ip' (0). Using the formulae

2 [
O(U- iV) O(U+ iV)] 2 ( )

J.L OZ + oz = J.L Ex +Ey

= (1 - 2v) (ax + ay) = 2 (1 - 2v) [<p' (() + ip' (()]
TO

and referring to eqs. (6.7.5) and (6.7.8) we have

ro (ax + ay) = 3 ! 4V [(Q(()+(Q(()] +2[<p' (0)+ ip' (0)],

ro (ax +ay) = _1_ [2(L (() + (2l' (() - (Q (() +2(£ (() +
1- 2v 3 - 4v

( 2u (() _ (Q (() + .'. I1(0) adO +~ If (0) dO]
3 - 4v 21T 0 21T 0 a

(6.7.10)

or due to eq. (6.7.7)

211"

ro (ax +ay) = 3!4v [(Q (() + (Q (()] + 1 ~2V 2~Ju~dO , (6.7.11)
o

where

U~ = U
Ocos () + vOsin 0

is the radial displacement on the circle. Hence,

211"

(1 - 2v) [<p' (0)+ ip' (0)] = ; Ju~dO.
o

Making use of the previously obtained relation (6.7.4)

211"

(3 - 4v) <p' (0) - ip' (0) = ; J(u~ + iug) dO
o

and eqs. (6.7.12), (6.7.13) we find

[

211" 211" ], J.L 1 0 i 0
<p (0)=21T 1_2V! UrdO+ 2(1_V)!UedO

(6.7.12)

(6.7.13)

(6.7.14)
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as well as the complex conjugate value qi (0).
Noweq. (6.7.5) yields

[

21r 21r ]
(2 f.L 1 0 i 0

cp (() = 3 - 4v L (() + 211" ( 1 - 2v!urdB + 2 (1 _ v)!uodB .

(6.7.15)

1.6.8 The state of stress

Function (Q (() can be presented as follows

or

21r

(Q (() = N' (() - ~Jf (B) «:"dB, N (0 =~ f f (B) dCT . (6.8.1)
211" 211"z CT - (

o ~

Along with eq. (6.7.14), this equation allows us to present expression (6.7.10)
as a sum of the normal stresses

or

We proceed now to the second formula of Kolosov-Muskhelishvili. We
have

. 2 () ( . ) 1 - 2iO ( 2 . )Ex-Ey-Z"Yxy= -;:) u-zv =-e CT,.-CTO- ZTrO ,
uZ 2f.L

or

TO (CTr - CTo - 2iTrO) = 2 [fM' (() __1_(Q (() + 1- (( f Q' (()J .
( 3 - 4v 3 - 4v (

(6.8.3)
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At the centre of the round region

2f.£ 1 27r
ro (0"1' + 0"0)11'=0 = -12 - Ju~dB,

- v tt 0

ro (0" 1' - 0"0 - 2iT1'O)I1'=0 = 2e2iO[M' (() + 3 ~ L' (()]
4v (=0

2f.£ . [27r . . 3 27r . . ]
= _e2tO J (u - w)1 _ e-tOdB+-- J (u + w)1 _ e-3tOdB .

7r 0 1'-1'0 3 - 4v 0 1'-1'0

(6.8.4)

In order to obtain the stresses on the circle it is necessary to pass to the
limit ( ~ 0"1 = ei,pin the expressions for N' (() and M' (() , to obtain

N' (() =~ f I (B) dO" =-~I (B) ~_l_dO"
27rt (0" - ()2 27rt 80" 0" - (

'Y

= __1 f~ 1(0) do + _1 f 81 (B)~ = __1 f j'(B)~
27ri 80" 0" - ( 27ri 80" 0" - ( 27ri 0" 0" - ( ,

'Y 'Y 'Y

as the first integral vanishes . Assuming differentiability of the displacements
on 'Y we apply Sokhotsky-Plemelj 's formula

N' (()I --> = -~ij' ('ljJ) e-i,p - ~ f j' (B)~
(O'[ 2 27r 0" 0" - 0"1

'Y

~ -k'· [if' (,p) + 2~ If' (0)rot 0~ ,p dO] . (68.5)

The sufficient condit ion for the existence of the above integrals, as well as
the forthcoming integrals is given by Holder's condition for j' (B) .

Thus,

ro (O"T + 0"0)1 1'=1'0 = - 3 ~ 4v Re {e-i,p [if' ('ljJ) +

2~1J'(0)cot 0 ~,p dO] - 1 ~2v2~ If (0) «:"dO} (6.8.6)

and by analogy

. [ - 1 J27r - B- 'ljJ ]ro (0"1' - 0"0 - 2iT1'o)IT=To = e-t,p if' ('ljJ) + 27r 0 I' (B) cot -2-dB +

e-i,p [ e2i,p J27r B- 'ljJ e2i,p J27r ]
3-4v if'('ljJ)+ 27r 0 e- 2iO

cot - 2- f' (B)dB+ --;- 0 I(B)e-
2iOdB

.

(6.8.7)



7.6 Regions with a circular boundary 641

The distribution of the surface forces ensuring the prescribed displace
ment on the circle r = ro is given by the vector

27f
1 - 2// . - 1 - // eilj; J- B- 1/J

ro (a1' - i71'O ) = ---iet1
/)f' (1/J) - --- r (B) cot --dB +

3 - 4// 3 - 4// 1r 2
o

(
~ ~ )

2 (1 ~ 2//) 2~ ! f (B) e-iodB+ 3 ~4//! ! (B) eiodB .

(6.8.8)

For instance, for the pure radial displacement

ro . 1-2//[0 . dU~ ]
2/1 (a1' - 271'0)1'=1'0 = - 3 _ 4// ur (1/J) + 2 d1/J +

27f

1 - // J[0 (B) . dU~ ] - i(O- Ij; ) B- 1/JdB-- U - 2- e cot - - +
3 - 4// r dB 2

o
27f

1-// IJ 0
(1 - 2//) (3 _ 4//) 1r U1' (B) dB.

o

(6.8.9)

The shear stresses are necessary because the radial displacement is chang
ing along the circle. In the case of U~ = const we obtain, by means of eq.
(6.4.5), that

1 I u~ [ 2 (1 - //)] u~- roa,. =-- -1+2//+2-2//+ =--,
2/1 1'=1'0 3 - 4// 1 - 2// 1 - 2//

71'01 1'=1'0 = 0, (6.8.10)

which can be checked easily by an elementary calculat ion. It can also be
proved that the obtained system of surface forces (6.8.9) is in equilibrium.

7.6.9 Thermal stresses in the disc placed in a rigid casing

Under a stationary temperature dist ribution B(r , 1/J ) in the disc with the
free edge the displacement vector is given by eq. (5.9.15) in which the
constants should be replaced according to the rules (5.8.11) and (5.8.13)

2/1 (u + iv ) = 2/1cxG (z) = 2/1cx J(B + ig) dz, (6.9.1)
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where 9 is a harmoni c function complex conjugat ed to (). In the case of the
disc placed in a rigid round casing with a thermal insulator the displacement
on the edge of the disc is equal to zero. The system of surface forces (the
react ion force of the casing) distributed over the edge is given by formula
(6.9.11), but with an opposite sign. In formula (6.8.8) we now have

f (t/J) = -2f.la J(() + ig )dzl r=ro' (6.9.2)

and Poisson's ration should be replaced according to rule (5.8.13). Limit ing
the consideration to representation of function () (which is harmon ic in the
circle Izi < ro) by the trigonometric series in terms of cosines we have

00 00 00 ()

() = L () krk cos kt/J, () + ig = L ()k zk, e (z) = L k: 1zk+l, (6.9.3)
k=O k=O k=O

where the integration constant can be omitted. An additive real-valued
constant, up to which function 9 (the complex conjugate to ()) is determined
is also immaterial. Indeed, keeping these constants would introduce a rigid
body displacement into the displacement vector and thus does not affect
the st resses in the disc.

By eq. (6.9.2) we have

00 k

f( t/J) = -2f.laroL()kk~l ei (k+l ) ,p ,
k=O

00

l' (t/J) = -2f.lairoei,p L ()k r~ eik,p = - 2f.la iroei,p (()o + igO ) ,
k=O

where ()o , gO denote the values of () ,9 on the edge of the disc.
Calculation by formula (6.8.8) leads to the equality

(O"r - iTro )lr=ro = - 32~av {- (1- v) (()o - igO) +

211"

iei,p~J[eO (ep) - igO (ep)] ei<p cot ep ; t/J dip +

°
1 + v ~ /211"()O (ep) dep + i (1 + v)~ /211"l (ep) dep}
1 - V 7r 27r

° °
(6.9.4)
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or using th e above represent ation in the form of th e tri gonometric series
we obtain

( )1 2fJ.0' [( ) ~ B k ik,p 2(I+V)B]a; - iTrO r=ro = - 3 _ v 1 + v ~ krOe- + 1 _ v 0

2fJ.0' (1 + v) 2:00

B k - ik,p 2 1 + vB= - kroe - fJ.0'-- Il-
3- v I-v

k=O

Here Bo denot es th e constant term in series (6.9.3). Thi s result can also be
set in th e form

so that

(6.9.6)

The expression for a; which does not depend on the polar angle can be
obtained from elementary reasoning.

Stress ao can be obtained for example by means of eq. (6.4.7)

(6.9.7)

Only distribution of the temperature on the surface of t he disc is required
for these st resses.

1.6.10 Round opening in an infinite plane

The edge of the opening is assumed to be loaded by th e surface forces whose
projections on axes er , eo of the polar coordinate system are denoted as
Ir ,10. Their princip al vector and the principal moment about the centre of
the opening are presented by the formulae analogous those in eq. (6.2.4)

271"JI (B) eiorodB= - irof I (B) do = X + iY (f (B) = I ,· + iIo) ,
o ,

271"

J;1 [I (B) - ! (B)J dB = -~ r6 f [I (B) -i (B)J ~ = MO
o ,



644 7. Th e plane probl em of the th eory of elasti city

or

1 f 1-2' f (B )do + -2 - (X + iY) = 0,
7rI 7rro

'Y

f[J(B)-f (B)]~ _ 2~O =0.

'Y (6.10.1)
The boundary condition on the contour of the opening is set in the form

r=ro , (=a= eiO: ar + iTrO=

-(1) 1-(1) 1-(1)= <p (a) + <p -;; - -;;<p' -;; - a2 'It -;; = - f (B) , (6.10.2)
where a minus sign on th e right hand side is due to the fact that the external
normal to L-region (1(1 > 1) is opposite in direct ion to er . The structure
of functions <P (0 ,'It (0 is as follows

<p «: _1 (00 00) . E
OO

X + iY 1 <p (I) }
'> - 4 a 1 +a2 + Ift 2 ( 1 - ~~ ,87r ( 1 - II) ro (+ * '> ,

'It «() = ~ (a~ - ar' ) e-
2io + 87r (1 - I~ ro (3 - 411) Z+ 'It* (0,

(6.10.3)
where th e expansion of functions <p* (0, 'It* (0, which are holomorphic at
infinity, begins with terms C 2

. The boundary condition determining these
functions is now set in the form

- (1) 1- (1) 1- (1)( = a : <I>* (a) + <I> * ; - ; <I>: ; - a2'1t* ; =

1 1 2 '= - f (B) - - (a~ + ar' ) + - (a~ - ar' )e to +
2 2a2

( 1 ) [4 (1- 1I ) (X + iY) ~ + 2 (X- iY) a]. (6.10.4)
87r 1 - II ro a

The complex conjugat ed condition is

<1> * (~ ) + <P* (a) - a<P: (a) - a2'1t* (a) =

- 1 1 2 2 '= - f (B) - - (ar' + a~) + -a (a~ - ar') e- t o +
2 2

+ (1 ) [4 (1 - II ) (X - iY) a + 3. (X + iY) ] . (6.10.5)
87r 1 - II "n a

In what follows, while applying the method of Cauchy's integral it is
necessary to remember that 1(1 > 1. Function F «() is holomorphic in L
(1(1> 1) at any point, but infinite where it is given by the polynomial gn (0

00 '(3
F « ) = L Ok +k

I
k + gn (0, gn (0 = ao+ al( + .. . +anC ,

k= l (
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thus , Cauchy's integral formula takes the form

-2
1

. f F (J~d(J = F (() - gn «: (1(1 > 1) .
7ft (J - .,

T

Then the function

(6.10.6)

is holomorphic for 1(1 < 1 except for the origin of the coordinate system
where it has a pole of order n and by eq. (5.10.5)

1(1 ) 1 : (6.10.7)

Being guided by these rules and taking into account the form of the
expansion of the sought functions in the power series

we multiply both parts of equalit ies (6.10.4) and (6.10.5) by

1 do
---
27fi (J - (

and integrate along --y in the direction that L lies on the left. The result is

_ 1 f f (B) d(J c2ia
00 00 1 . 1

<I>*(()---2' i +-2 (J2 -(Jl )+-2-(X+tY);: ,
7ft (J - ., 2( 7fro.,

T

<I>* (() - (<I>~ (() - (2 [w* (() ~ Q2 ~2i;3~] =

= __1 ff(B)d(J + 1 X+iY ~
27fi (J-( 47f(1-v)ro( )('

T

(6.10.8)
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so that

w* (() = 2- [~f 1(B) - f (B) do +~ (a OO _ a OO) e2iQ+
(2 27Tt a _ ( 2(2 2 1

'Y

3 - 4v (X + iY) ~ +~ f f (B) da] + a; + ij3; . (6.10.9)
47T(1-v) ro (27Tt (a_()2 ( 2

'Y

It remains to determine oo;+ij3; . To this end, we take boundary condition
(6.10.5) and compare the constant te rms in both parts, to get

271"

= 2~ J1(B) de + ~ (ar' +ar) = 10 + ~ (ar' + ar) , (6.10.10)

o

where 10 denotes the free term of the tri gonometric series 1(B) .

7.6.11 A uniform loading on the edge of the opening

In thi s particular case

f (B) = X + iY e- iO, f (B) = X - iY eiO, ar = a 2" = 0, (6.11.1)
27Tro 27Tro

and thus

1(1 > 1 : _1 f f (B) do = X + iY
27Ti a - ( 27Tro( ,

'Y

_1 f 1(B) do = 0 fo = O.
27Ti a - ( ,

'Y

(6.11.2)

By eqs. (6.10.8)-(6.10.10) and (6.10.3) we have for eOO = 0

q>(()=-8:(7~:)~ (z= ro(), }

w(()= 3-4v (X- iY)~- X+ iY rZ.
87T(1-v) z 47T(1-v) z3

At Po ---. 0 we arrive at the previously obt ained solution to the problem of
the concentrat ed force in the plane, Subsection 7.3.1.

7.6.12 Tension of the plane weakened by a round opening

The edge of the opening is assumed to be free, i.e.

f (e) = 0, X + iY = O. (6.12.1)
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From the above relationships we obtain

1 r
2

}<II (() = - ((J oo + (Joo) + _0 ((Joo _ (Joo) e2io
4 1 2 2z2 2 1 ,

1 2 ' 1 r 5 3 r~ 2 '\It (I) = - ((J oo - (Joo) e- 2Q + - ((J oo + (Joo ) - + - ((J oo - (Joo) - e to
" 2 2 1 2 1 2 Z2 2 2 1 Z4

(6.12.2)

and by Kolosov-Muskhelishvili's formulae (1.14.9) we have

00 00 2r o
( 00 (0) 2"1. 2 '(J 1' + (JO= (Jl + (J2 + - (J2 - (Jl cos '1-' , (J(j - (J1' + Z71'(j =

r

= ((J oo + (Joo) r 5 + ((J oo _ (Joo ) (e2i1jJ _ 2r5 e-2i1jJ + 3r~e-2i1jJ ) ,
1 2 r2 2 1 r 2 r 4

(6.12.3)

where 1jJ = () - a is the angle to the first principal axis.
For example in the problem of tension of the plane weakened by a round

opening (Kirsch's problem, 1898) we have

(J2 = 0, (J1' +(J(j = (Jr' (1- 2 ~~ COS21jJ) ,

(J(} - (J1' +2i71' (} = (Jr' ( ~~ - e2i1jJ +2~~ e- 2i1jJ
- 3~~ e-2i1jJ

) . (6.12.4)

For r = ro we obtain (J1' = 71'0 = °and

(J(} = (Jr' (1- 2cos2 1jJ) , ((J(}) max = 3(Jr' (for 1jJ = ±i) , (6.12.5)

that is, the maximum st ress on the contour of the round opening is equal to
three tim es the nominal stress. The st ress concent ration is of a clear local
character, for instance, along the diameter perpendicular to the direction

of tension ( 1jJ = i)
00 ( 1 r 5 3 r6)

(Jo = (J1 1 + "2 r 2 + "2 r 4

i.e. (J(j = 1,074(Jr' for r = 3ro and (J(j = 1,022(Jr' for r = 5r o.
Under uniform tension at infinity ((Jr' = (J ';f = q) we have

(J(} = q (1 + ~~) , (J1' = q (1- ~~ ) , r -o = 0, ((J(})r=1'o = 2q. (6.12 .6)

In the case of a simple shear at infinity ((Jr' = -(J';f = 7) we obt ain with
the help of formulae (6.12.3)

r 2

(J r + (J (} = - 47 ~ cos 21jJ,
r

(J(} - a ; + 2i71'O= -27 (e2i1jJ
- 2~~e-2i1jJ + 3~~e-2i1jJ

) . (6.12.7)
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that is, the maximum stress on the contour of the opening is equal to four
times the nominal stress.

7.6.13 Continuation of <I> (z)

Under the transformation by means of the inverse radii about circle r (r = a)
a point M (r,B) is mapped to point M* (a2[r, B); in other words, point
M (z = reiO) is mapped to point M* (a2/z = a2r-1eiO) lying on the same
straight line with the origin at the centre of r . Let us consider an elastic
body (L-region) bounded by circle r, it is a round disc for Izi < a and a
plane with a round opening for [z] > a. While traversing r in the positive
direction (counterclockwise for Izi < a and clockwise for Izi > a) regions L
and R lie to the left and to the right respectively. Let M (z) and M* (a2/z)

be respectively the points of regions Land R. By eq. (1.14.9)

- - z-
o; + iTrO = <P (z) + <P (z) - z<P' (z) - -w (z) (z c L).

z
(6.13.1)

Functions <P (z), w(z) are not determined in R-region. In this region z is
mapped to a2 / z and (J r + ir rO = O. This allows <P (z) to be determined in
R-region by setting the left hand side of eq. (6.13.1) to zero. Replacing
additionally z by a2 /z and keeping z unchanged we obtain the equality
relating functions of z only

( 2) ~
<P ~ = -~ (z) + z~' (z) + :2 ~ (z) (z c L). (6.13.2)

Replacing here z by a2 /z we arrive at the equivalent relationships between
the functions of z

(z c R) . (6.13.3)

This equality determines the continuation of <I> (z) into R-region.
Let L-region be the plane with a round opening, then R-region is the

disc Izi < a. Functions ~ (z), ~ (z) which are holomorphic in L are ex
panded as series in terms of the negative powers of z and the constant
terms. Thus, ~ (a2 / z) ,~ (a2 / z) are series in terms of the positive powers
of z and the structure of formula (6.13.3) suggests that <P (z) is holomor
phic in R everywhere except for the coordinate origin which is a pole. In
the neighbourhood of this pole the expansion of <P (z) is as follows

B C
A+-+-.

Z Z2
(6.13.4)

If L-region is the disc then the infinite point z = 00 lies in R-region.
Further ~ (z), ~ (z) are series in terms of positive powers of z whereas
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<I> (a2 / z) ,~ (a2 / z) are series in terms of negative powers of z and the
constant terms . According to eq. (6.13.3) the constant term app ears also in
the analytic continuation of Il> (z) to R-region. Hence, in this region <I> (z)
is holomorphi c everywhere including the infinite point z = 00 where the
principal part of Il> (z) is constant .

Formulae (6.13.1) and (6.13.2) allow the following equality to be con
st ructed

z c L : Il> (z) - <I> ( ~~) + ~ (z) :: (1- ::) = (ar + iTr()) . (6.13.5)

Under the limiting process Izi ---+ a both point s M(z) and M* (a2 / z)
reach the same point MO (t = aei7/J) on r from regions Land R respectively.
As zz - a2 = 0 we obtain

(6.13.6)

Referring now to eq. (5.11.9) we define Il> (z) by means of the integral of
Cauchy's typ e

A>() 1 f(ar+ iTr())r d ()'¥ z=- t+ ')' z .
27ri t - z

r

(6.13.7)

The integral in this formula is holomorphic in the plane except r . The
integration is performed in the direction such that L-region lies to the
left . Function ')'(z) is introduced for account ing for possible singularities
of Il> (z) at z = 0 and z = 00. According to the above-said it is taken as
being equal to expressions (6.13.4) if L-region is a plane with a round
opening. In the particular case in which L is a disc, ')'(z) is constant, say
D . Therefore

<I>(z)=~j(ar+ iTr() )rdt+D; zc L,
27rZ t - z

r
A>() 1 j(ar+ iTr()) rd AB C
'¥ z =- t+ +-+-'

27ri t - z Z z2 '
r

Izi < a,

z c L, Izl > a.

(6.13.8)

Returning to formula (6.13.2) and using the complex conjugated expres
sion we have

(6.13.9)

This equality determines function lIt (z) holomorphi c in L , function Il> (z)
being given by one offormulae (6.13.8). Th e term <I> (a2 /z) is calculated as
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follows: the integral in (6.13.8) is evaluated for z C R, the complex conju
gate to cI> (z) is obt ained and in the latter z is replaced by a2 / z in order to
return to L-region. It is evident that the const ructed function is holomor
phic in L and is different from that obt ained by the formal replacement of
z by a2 / z in the expression for cI> (z) for z C L. Let us denote this function
as cI> x (a2 / z), it is evident that this function is not holomorphic in L.

7.6.14 Solving the boundary-value problems of Subsections
7.6.2 and 7.6.10 by way of the continuation

Let us begin by considering the case of disc 1(\ < 1 under the assumpt ion
that the surface forces are in equilibrium. The boundary condit ions and
the equilibrium condit ions are written down in the form

00 00

(= a = ei O
: o; + i TrO = f (B) = Ao+ LAkak + LA_ka-k ,

k=l k=l
(6.14.1)

2~i f f (B) do = A-I = 0,
r

1 f [ -] da --2' f(B)-f(B) -=Ao-Ao=O,
K~ a

r
(6.14.2)

d . eq. (6.2.4). Using eq. (6.13.8) and the formulae of Subsection 7.5.10 we
have

00

cI>(()=~ff(B)da+D=
2K~ a - (

r

Ao+ L Ak(k + D (( c L , 1(1 < 1),
k=1

00

- LA_kCk + D (( c R , \(\ > 1).
k=1

(6.14.3)

In agreement with Subsection 7.6.13 the latter equat ion determines the
function

-(1) ~ - k -
cI> '( = - 6A-k( +D,

which is holomorphic in L. Taking into account that

(6.14.4)

00 00

J(0) = Ao+ L Aka- k + L A_kak

k=1 k=1
(6.14.5)
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we can rewrite eq. (6.14.4) in another form

-(1) 11 1(0) de> - -<I> - =-- +Ao+D.
( 21T'i o - (

1

(6.14.6)

By virtue of eq. (6.13.9) we obtain

IlI(O=~ [~lf(O)-l(O)de>_~1f(O)de> +Ao+D+D].
(22m o - ( 21T'~ (e> _ 02, ,

Function III (0 is holomorphic in the circle 1(1< 1, thus the coefficient of (
and the constant term in the expression in the square brackets must vanish.
This yields the equalities

- 1 If(O)D +D = -Ao = --. --de>.
2m a,

1(1 < 1:

The first one expresses the condition of zero principal vector of the surface
forces. The second one can also be satisfied as it follows from the equat ion
for the moments (Ao is real-valued) . Clearly, D is determined up to an
imaginary term which can be set to zero. We arrive at the results obtained
previously in Subsection 7.6.3

<I> (0 = ~ (I f (0) de> - ~ 1 f (0) de» ,
21T'~ o - (2 a

, 1

IlI(O=~~ (If(O)-l(O)de>_(1 f(O) da) .
21T'~(2 e>-( (e>-02, ,

(6.14.7)

In the case of the plane with an opening we set the boundary condition
in the form

( = o = e'o : a; + iT1'o = - f (0) = - [Ao + f Ake>k + f A_k<T-k] ,
k =l k=l

(6.14.8)

and obtain by eq. (6.13.8) that

<I> (f) = __1 1 f (0) de> A B C
., 2 ' f+ + f+2m e>-., ., (,

(( c L ,

(( c R,

1(1 > 1) ,

1(1 < 1).
(6.14.9)
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For this reason

and by eq. (6.13.9)

cc t., 1(1 )1: \lI (()= 1
2
[~fJ(B) -! (B)da+

( 2m a - (
"I

( f ! (B) - - 2B 3C] B -
-2. 2 do + A + A + Ao + --;;- + 2"" +"7 + C.

tt t (a - () " ( "
"I

(6.14.10)

(6.14.11)

This funct ion is holomorphic at the infinite point and its principal part is
equal to C at infinity. The constants A , B , C can be expressed in terms of
the principal vector of the surface forces and the st resses on the opening
and the rotation at infinity. Referring to eqs. (6.10.1), (6.10.3) we have

A l (00 00) . E
OO

B- 3 - 4v (X 'Y )
= 4 a 1 +a2 + ~1-l 2 (1- v) ' = 87r (1 - v ) - ~ ,

- 1 2 'C = - (a OO
- a OO

) e- to2 2 1 ,

where

1 . 1 f-2- (X + ~Y) = --2' ! (B) do = A_I ,
7rTo 7r~

"I

Ao = -~ f ! (B) da,
27r~ a

"I

Returning to eqs. (6.14.9) and (6.14.11) we arrive at the following expres
sions for the sought functions

L I I A;. () 1 ( 00 00) . E
oo

( e , ( > 1 : '¥ ( = 4 a 1 + a 2 + ~J1 2 (1 _ v ) +

3- 4v (X 'Y ) 1 1 ( 00 00) 2 io 1 f ! (a ) d
+ ~ - +- a -a e -- -- a

87r (1 - v ) ( 2(2 2 1 27ri a - ( ,
"I
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1 2 ·( c L , \(1 > 1 : W(() = 2 (a f - a1'" )e- 10+

3 - 4v 1 1 [ 1 00 00 1 f - do
81f(1 - v) (X-iY) ( + ( 2 2 (a1 + a2 ) - 21fi , f (B) --;;+

3 - 4v (X ·Y ) 1 3 ( 00 00 ) 2ia

( )
+ 1 ;: + - 2 a2 - a1 e +

41f 1 - v ,,2(

--.L f f (B) do + _1 f f (B) - f (B) da]
21fi (a _ ()2 21fi a - ( ,, ,

(6.14.12)

which are in full agreement with the results of Subsection 7.6.10.

7.7 Round ring

7.7.1 The stresses due to distortion

Let us begin by representing the st resses in Michell's form, eq. (5.6.7) .
When th e external (r = ro) and internal (r = rd circles bounding the ring
are free of loads it is sufficient to keep the following terms in the above
expression

u= 21f (:-V) {[~b3r2 + ( C2 r cOsB - C1 r Sin O)] ln r -]- (7.1.1)

[a 1r 2 + a~l In r + r 3 (G1cos 0 + 5 1sin 0) + ~ (a~ cos 0 + b'l sin 0)] } ,

where the pairs of constants (a1' a~l) , (G1,a~) , (51, bU are determined
from the independent syste ms of equations obtained from the boundary
condit ions

1 8U 1 82U

T = ro ,r = r1 : a - + - 0
r - ~a;: r 2 8fP - , T r O = - :r (~ ~~) = o.

(7.1.2)

Obtaining these constants we arrive at t he following states of stresses:
an axially symmetric state due to the rotati onal component of distor tion

b

~
. 222 ) }a; = ts 3 In~ _ r 1 ro - r In r 1

21f (1 - v) ro r 2 r6 - ri ro '
b 2 2 2f.l 3 r "i ro + r r1

a0 = 2 ( ) 1 + In - + 2 2 2 In - ) ,1f 1 - u rn r r0 - r 1 rn

(7.1.3)
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and the state of st ress due to the tr anslational distortions

(7.1.4)

7.7.2 The second boundary-value problem for a ring

We consider the st ate of st ress in a ring bounded by the concentric external
(I'0) and internal (Td circles. For simplifying the notion , the radii of the
external and internal circles are taken as being equal to 1 and a (0 < a < 1)
respectively. By eq. (1.14.9)

CYr - i TrO = <I> (() + <I> (() - (<I>' (() - ~IlJ (() ,

and the boundary condit ions can be set in the form

(7.2.1)

on f o : (= CY , <I> (CY) + <I> (~ ) - cy<I>' (CY) - cy2 1lJ (CY ) = 1(8) , (7.2.2)

on I'j : (= orr, <I> (acy) + <I> (~) - acy <I>' (acy) - cy2 1lJ (oo) = -F (8) .

(7.2.3)

Here
00 00 00 00

f (8) = fo + L f kcyk + L f-kCY -k, F (8) = Fo + L Fkcyk + L F_kcy-k

k= l k=l k= l k= l

(7.2.4)

denote the vectors of the external surface forces distributed over I'0 and I'1
respectively.

The complex conjugated vectors are given by

00 00 00 00

1(8) = 10+ L 1kcy- k + L 1_kcyk, F (8) = Fo + L Fkcy-k + L F_kcyk.

k=l k= l k=l k= l

(7.2.5)

The stat ic equat ions

f f (8) dCY + a f F (8) dCY = 0, f (J - Jl d: + a 2f (F - F) d: = 0,

(7.2.6)
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expressing the vanishing of the principal vector and the principal moment
of the external forces applied to the ring yield the conditions imposed on
the coefficients of the trigonometric series (7.2.5)

2 ( - 2-)f -l+aF_1=0, fo+aFo- fo+aFo =0. (7.2.7)

Equation (7.2.2) can be satisfied by prescribing function III (() in the ring
a ~ 1(1 <1 by the following expression

(7.2.8)

(7.2.9)

where L (() is given by the Laurent series

- ~A ~ - k
L(() = fo +L.. k + L..f-k( ·.

k=l ( k=l

Clearly, the boundary condition on f o conjugated to eq. (7.2.2) is satisfied .
Now we have

0"21l1 (aO") = :2 [<II (aO") + 4> ( a
10"

) - aO"<II' (aO") - L (aO")] ,

and the boundary condition (7.2.3) on f 1 is rewritten as follows

(1 - ( 2) [<II (aO") - aO"<II' (aO")] - a24> (~) + 4> (a
10"

) =

a2F (B) + L (aO") = a2Fo+ fo +

~ ( 2 - fk ) k ~ ( 2 - k - ) k
~ a Fk + a k 0" - +~ a F-k + a f-k 0" .

The conjugated boundary condition is given by

(7.2.10)

(1- ( 2) [4> (~) - ~4>' (~)] - a2
<I1 (aO") + <II (;) =

OO ( f) 002 2 k k 2 k -k= a Fo + fo + {; a Fk + ak 0" + {; (a F-k + a f -k) 0" .

(7.2.11)

7.7.3 Determining functions <I> ((), \lJ (()

Let us present function <II (() analytic in the ring a ~ 1(1 ~ 1 by the Laurent
series

(7.3.1)
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Then by virtue of eq. (7.2.8) \II«: is determined from the relationship

(7.3.2)

It is important to mention that the coefficients of (-1 in the expressions
for <II (() and \II (() are respectively equal to C-1and (C-1 - 1-1)' Hence
the expressions for <p (() and t/J (() contain the multi valued terms

sp (() = C- dn ( + ... , t/J (() = (C-1 - 1-1) In ( + ... ,

and the condition for the single-valuedness of the displacement vector
(1.14.5) allows us to determine C- 1

(7.3.3)(3 - 4v) C- 1 + (C- 1 - I-d = 0, C 1-1
-1 = 4 (1 - v)'

Proceeding now to the boundary conditions (7.2.10), (7.2.11) and sub
stituting expression (7.3.11) for <II (() we arrive at the following system of
equations

(1-0:2) (Co +Co) = 0:2Po +10, (7.3.4)

(1- 0:2) (1- k) o:kCk + (o:k - 0:-k+2) C-k = 0:2P-k + 0:21_k ' }

(o:-k - 0:k+2) Ck + (1 - 0:2) (1+ k) o: -kC_k = 0:2Fk + I~
0:

(7.3.5)

and the complex conjugated system.
According to eq. (7.2.7), both sides of eq. (7.3.4) are real-valued. Coeffi

cient Co is determined up to the imaginary part, thus, setting the imaginary
part to zero, we obtain

2 - - 2
" = 0: Fo + 10 = 0: Fo + 10 (7 3 6)
vo 2 (1 - 0:2) 2 (1 - 0:2)' ..

For k = 1 the first equation in (7.3.5) holds identically whereas the second
one yields

(1 - 0:4
) C1 + 2(1 - 0:2) C- 1 = 0:3 F1 + II.

The case k = -1 leads to the latter equation for the complex conjugated
values.

Equation (7.3.3) yields

C1 = 0:
3

F
1 +/1 - ( ~-t 2)' (7.3.7)

1-0: 2 I-v 1+0:
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For k = ±2, ±3, . . . the system of equat ions (7.3.5) has a single solut ion
since its determinant

where a = «:', does not vanish for real-valued t.
The sufficient condit ion for convergence of the series (the solut ion (7.3.1))

is th at the coefficients of the trigonometric series (7.2.4) decrease as n - (2+1l)

(0 < J.L < 1) for n -. 00 . To this aim, the first derivatives of functions
f (B), F (B) are required to sat isfy Holder's condit ions with exponent J.L.

7.7.4 Tube under uniform internal and external pressure
(Lame's problem)

In this simple case, the only non-vanishing coefficients are fo and Fo

and by eqs. (7.3.6), (7.3.2) and (7.2.8)

Kolosov-Muskhelishvili's formulae yield

T r (} = 0,

7.7.5 Thermal stresses in the ring

The temperature field in the ring is assumed to be stationary, then in the
expression for the temperature it is sufficient to keep only the logarithmic
term and the terms with ( -1. The external and internal radii of the ring is
taken to be equal to 1 and a, respectively. The boundary condit ion (5.9.20)
serves for determining functions <Po. ((), 'l/J* (() holomorphic in the ring

<Po. (() + (<p~ . (() + ij;* (() =

= ~A [2 (B~( + B~ +igDln p +B~( + (B~ - igD~]

(7.5.1)

(A = J.La~) .
I- v

Using the latter equation and eq. (5.9.919) we find funct ions <Po ((), 'l/J (()
which completes the solution of the problem.
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The boundary conditions for functions <P , Wcan be obtained by differen
tiating relation (7.5.1) with respect to the arc on any circle ( = pe'", p =
const . Along this circle

d( = piei9dO = i~ds ,
p

Assuming

d d( d .c d .( d- = -- = z-- = -z--=.
ds ds d( p d( p d(

(7.5.2)

differentiating the functions in eq. (7.5.1) (for p = const) according to
the rules (7.5.2) and calculating the complex conjugates we arrive at the
equality

<P* (() + <1>* (() - (<p~ (() - ~W* (() = A [O~ (ln p + ~) + O~ ~ ig~] .

(7.5.3)

Here, byeqs. (7.2.1) and (7.2.4), the non-vanishing coefficients are

- 1 f

fo = fo = 2AOo ,

- f (1 )Fo = Fo = - AOo 2+ In a ,

h = A (O~ - igD '

F1 = -Aa- 1 (O~ - igD '

and, by virtue of eqs. (7.3.36) and (7.3.37), we have

and functions <P* ((), w* (() are as follows

<P (() = A [!Of (! _a2
ln a) O~ - ig~ (]

* 2 0 2 1 - a 2 + 1 + a 2 '

W ( ) __ A [Of a
2lna
~O~ +ig~]

* (- (2 0 1 _ a 2 + 1 + a 2 ( .

Referring now to relations (5.9.19) we obtain
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and th e stresses obt ained by Kolosov-Muskhelishvili's formul ae are given
by

(
1 0:

2 In 0: )a; + ao = -2A(}~ - + --2 + ln p +
2 1 - 0:

(()' ") (2( 1) (' ")(2( 1)A 1 - zgl 1 + 0:2 -"( + A (}l + zgl 1 + 0:2 -"( ,

. , [ 0:
2

In 0: ( 1 ) ]a r - z7ro = - A(}0 1- 0:2 1- p2 +lnp +

A(e~+ igD (~ +~~-1).
( 1 + 0: 2 0:2 + 1 p2

(7.5.5)

(7.5.6)

These formulae hold for any stationary distribution of the temperature in
the hollow circular cylinder, the temperature field is needed for determining
the displacement and stress a z -

Expression (7.5.1) for coefficient A assumes th e case of plane st ra in. In
the plane st ress A = uo: (1+ v) , where 0: denotes the coefficient of thermal
expansion.

7.7.6 Tension of the ring by concentrated forces

Oppositely directed tensile forces of the same magnitude R are applied at
the ends (p = ±1, r = ±ro) of the horizontal diameter of the exte rnal circle
of the ring (0: :::; P :::; 1) whilst its internal boundary (p = 0:) is free.

The problem of loading the solid disc was considered in Subsect ion
7.6.1. Functions <Po (() , Wo (() determining the solut ion are obtained by
eq. (6.1.10)

1 + (2 4q ( R)
<Po(() = Q1 _ r 2 ' Wo(( )=- 2 Q=- .

" (1 _ (2 ) 27rro
(7.6.1)

The change in th e sign is caused by those forces R th at are assumed as
being tensile. In accordance with eq. (1.14.9) th e displacement vector on
any circle in the disc is equal to

(7.6.2)

and one can easily check that this expression turns to zero on the circle
1(1 = 1 except for the points ( = ± 1 where the concent rated forces are
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applied . On the circle 1(1 = orr we have

(7.6.3)

The solution (7.6.1) for the disc should be corrected by terms <P1 (() and
'1'1 (() , that is,

(7.6.4)

The boundary conditions for the correcting functions must express the
absence of the corresponding surface forces on the external surface of the
ring

(7.6.5)

and the absence of the surface forces corresponding to solution <Po (() , '1'0 (()

(= car : <P1 (aa) + ~1 (~) - aa<p~ (oo ) - a2W1 (aa) =

1 -
= q(ar - -iTrO)<=aa = -F (B) , (7.6.6)

where P (B) is given by eq. (7.6.3) and by virtue of eq. (7.2.5)

- - 2k - [2 - a
2

] 2kFo = 2q, F2k = 2qa , F- 2k = 2q ~k - (k -1) a .

Due to eqs. (7.2.8) and (7.6.5), function '1'1 (() is given by

(7.6.7)

(7.6.8)

and the coefficients of Laurent series (7.3.1) for <P1 (() are obtained from
the system of equations (7.3.4), (7.3.5).

7.7.7 The way of continuation

The plane ( is split into three regions: ring L (a :S 1(1 :S 1) containing the
elastic medium , region R1 (1 :S 1(1 :S (0) which is the plane outside the unit
circle 1'0 and region R2 (O:S 1(1 :S a) in the circle 1'1' The tr ansformation
by means of the inverse radii about 1'0 maps the point ( C L to point 1/(



(7.7.2)
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of region R1 (the ring of the region 1 :s; 1(1 :s; 1/ a) . The transformation
by means of the inverse radii about 1'1 maps the point ( to point a 2/ ( of
region R2 (the ring of the region a 2 :s; 1(1 :s; a).

The continuat ion of <I> (() to regions R1 and R2 defined by (6.13.3) are
given by

- (1) 1 - (1) 1 - (1) }( C R1 : <I> (() = -<I> ( + (<I>' ( + (2 W ( ,

(C R, ~«) ~ _~ (~2)<~ (~2) + ~:~ (~') (771)

According to eq. (6.13.9), function W(z) in L is determined in two ways

W«:= :2[<I> «:+ ~ (z) -(<I>' (()]

= ~: [<I> «: + ~ (~2) _(<I>' (()] «c L)

These relationships lead to the "ident ity relation"

(c L : (1- ( 2
) [<I> (() - ( <I>' (() J+ ~ (z) -a2~ (~2) = O. (7.7.3)

By virtue of eqs. (6.13.6) the bound ary condit ion on 1'0 and 1'1 are set
in the form

(= 0- = ei O C 1'0 : <I>L (0-) - <I>R l (0- ) = (o-r + i TrO)"yo = fo (0-) , }
(= orr = aew C 1'1: <I>L (0- ) - <I> R2 (0-) = (o-r + iTrO)"Y1 =!J (0-) ,

(7.7.4)

and by eq. (6.13.7) function <I> (() is determined by the equality

<I> (() = .L f f o (0- )do- +~ f h (0-) do- +g (() (7.7.5)
21ft 0- - ( 2 1f t 0- - (

"Yo "Y l

in the whole plane. Here function g (( ) is holomorphic in the ring and can
be represented by Laurent 's series. The first integral in formula (7.7.5) is
continuous on 1'1' while the second one is continuous on 1'0' For this reason,
function <I> (() has discont inuit ies caused by the boundary conditions (7.7.4)
on both 1'0 and 1'1'

Let us consider the tr igonomet ric series for fo (0-) and !J (0-) and separate
the terms f + (0-) with the positive powers of 0- (the free term 0-0 included)
from the terms r (0- ) with the negative degrees of 0-

00 00

fet (0- ) = ao + L a ko-k, fa(0- ) = L a _ko-- k ,
k=1 k=l
00 00

f t (0-) = f30 + L f3 ko-
k , f 1- (0-) = L f3 _ko- - k ,

k=l k=l

(7.7.6)
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so that

10 (a) = It (a) + Ia(a) , II (a) = I t (a) + I i (a) . (7.7.7)

Let us notice that It (a) and I t (a) are the values of functions It (()
and It ((fa) (holomorphic in 1'0,1'1) on 1'0 and 1'1 respectively. In just th e
same way, Ia(a) and Ii (a) are the contour values of functions Ia(() and
11- ((fa) holomorphic out side of 1'0 and 1'1'

Bearing this in mind and evaluating Cauchy 's integrals , see Subsection
7.5.10 , we obt ain the following representations for function <I> (()

( C R1 : <I> (() = - Ia(() + I i (~) + 9 (() ,

( c L : <I> (() = It (()+ Ii (~) + 9 (() ,

( C R2 : <I> (() = It (() - I t (~) +9 (() ,

(7.7.8)

which is in agreement with boundary conditions (7.7.4) .
Let us proceed to the identity relation (7.7.3). Functions <I> (l /() , <I> (a2 / ()

are determined in terms of the expressions for <I> (() for ( C R1 , ( C R2

provided that ( is replaced by 1/( and a2 / ( respectively. Then we obtain

{

<I> (Z) = - t: (Z) +11 (Z) +9 (Z) ,
( c L: ( 2) ( 2) () ( 2)- 0: _ -+ 0: -+ 0: _ 0:

<I> ( - 10 ( - II '( + 9 ( ,

and inserting into eq. (7.7 .3) yields the equality

(7.7.9)

(1-0:
2

) [<I>(()-(<I>'(()] + [-10 (z) +11 (z) +9(z)]-
0:
2[It (~2) _It (~) + 9 ( ~2)] = 0 «c L) .

We can remove function 9 by using the expression for <I> (() for ( C L

{
_(I) -x (l) -+(1) -_(1)9 '( = <I> '( - 10 '( - II 0:( ,

( C L 9 ( ~2) ~ s- (~2) _Jt ( ~2) _J,-m' (7.7.10 )

where <I> x (I f() and <I> x (a2 / ( ) are the resul! s of the formal subst it ut ion of
variable ( by respectively 1/( and a2 / ( in <I> (() for ( C L , see Subsection
7.6.13.
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Using denotation (7.7.7) we arrive at the following functional equat ion
for <I> (()

( C L: (1 - 0:
2

) [<I> (() - ( <I>' (OJ +

[~ X (~) -10 (~)] _ 0:
2[~ X (:2) - 11 (~)] =0. (7.7.11)

From this equat ion we can obtain the equat ions determining the coefficients
of Laurent 's series of this function

00

<I> (() = Co+ L (c n(n + C_nCn).
n=l

Inserting it into eq. (7.7.11) we obt ain

(7.7.12)

(1- 0
2

) { Co+~ [(1 - n) C,,(" + (1+ n ) C_"cnj } + (1- 0
2

) Co+

00 00

L (OnC n + C-nC') - 0:
2 L (On0:2nc n + 0_no:- 2nC' ) = (7.7.13)

n=l n=l

Equating the coefficients of (0 , (1 , C 1 in both sides of the lat ter equat ion
yields

(7.7.14)

Comparing the terms with C',( - n for n = 2, 3, . .. leads to the equat ions

(1 - 0: 2) (1 - n) c; + O-n (1 - 0: - 2n+2) = Ci_n - 0: - n+273_7P }

(1 - 0:2n+2 ) Cn + (1 - 0: 2 ) (1 + n) O-n = O: -n - o:n+2/3n'

(7.7.15)

where the equat ions for the coefficients of ( - n are written down for the
complex conjugated values. These equations coincide with those in (7.3.5).
This system of equat ions enables all coeffic ients Cn, C- n to be determined
since its determinant

(7.7.16)

is not equal to zero.



(7.7.18)

664 7. Th e plane problem of the t heory of elast icity

The st atic equations of zero principal moment and zero principal vector
of the surface forces distributed over 1'0,1' 1 have the form

271"J[TrolI'O- a2Trol1'J dB = ~ [(ao - ao) - a2 ((30 - ,60)] = 0,

o
Im (ao - a2(30) = 0,

271"

J[(a r + iTrO)11'0- a (ar + iTrO )11',] eiOdB= 211" (a-1 - a(3_ 1) = O.
o

(7.7.17)

They corresponds to the first and second equat ions (7.7.14) and are condi
tions for existence of the solution. It follows from eq. (7.7.15) that

On = ~1 [(1 - ( 2) (1 + n) (a-n - a-n+2,6_n) 

(1 - a-2n+2) (an - an+2(3n)] ,
1

O-n = ~ [- (1- a2n+2) (a_ n - a-n+2(3_n) +
1 _

(1 - ( 2) (1 - n) (an - an+2(3n)] .

The third equat ion relating the unknowns 0 -1, 0 1 must be completed,
due to eq. (5.4.15), by the relationship

X+iY
0-1 = - 811" (1 _ v) ' (7.7 .19)

obt ained from t he requirement of uniqueness of the displacement . We ob
tain

O
X - iY 1 a 1 - a3(31

1 = ( )--2 + 4' (7.7.20)411" 1 - v 1 + a 1 - a

Function 'lJ (() determined, for example, by the first equality in eq. (7.7.2)
is const ructed by replacing ~ (1/() by

( 2'lJ(() = ~(() - (~I (() -10 (~) + 11 (~() + 9 (~)

(as eq. (7.7.9) suggests ) with the further substitution (7.7.10) for 9 (1/() .
The result is

( c L : (2'lJ (() = ~ (() - (~I (() + (~I (() + ~x (~) -10 (~) .
(7.7.21)

With the help of the second equality (7.7.2) we obt ain

(cL : ( 2'lJ (( ) =a2 [~(()_(~/(()+~P (~2) - 11 (~)] ,
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which coincides with eq. (7.7.21) by virtue of eq. (7.7.11). Under such a
definition of \[I (() the boundary condit ions (1.14.9) are satisfied

00

= 6:0 + L (6:na - n + 6: _nan) = io ; - iTT() )'YO '
n=1

( = oar C 1'1 : <I> (aa) - aa<I>' (a ) + <P (:2) -0'2\[1 (a) = 11(~ ) =

00

= 130 + L (13na -
n + 13_nan) = (0'1' - iTT()) 'Y l '

n=1

which is required.
As expected, the result s of the method of continuation are identical with

those which can be obtained by directly construct ing function s <I> , \[I by
means of the boundary conditions. However , the present method reduced to
the single functional equat ion (7.7.11) is more efficient for some particular
loads.

7.8 Applying the conformal transformation

7.8.1 Infin ite plane with an opening

Assuming th at the st resses at infinity are bounded we can set the boundary
condit ions on the contour r of the opening in the form of eqs. (5.4.15) and
(5.4.17)

<I> (z) + <I> (s) + [z<I>' (z) + ~ (z)] ~: =

. X+ i Y [1 1dzJ= - (Fn + zFt ) + --(3-4v)-=:- +
87f (1 - v) z z dz

X - i Y ( 1 z ) dz 1 [ 00 00 (00 00 ) 2iQ dzJ
87f (1 - v) ; - z2 dz - 2 0'1 + 0'2 + 0'2 - 0'1 e dz '

Here - (Fn + iFd = (Fx + iFy)n denotes t he vector of the surface forces
on the surface with the normal n to r directed into the medium , X + i Y
is the principal vector of the surface forces Fx + iFy, ar and a'if are the
principal stresses at infinity, a is the angle of the first principal stress to
axis Ox , and z and z are related by the equat ion for contour r. Functions
<I> (z) , \[I (z) (denoted as <I> •• , \[I •• in Subsection 7.5.4) are holomorphi c in
L (the plane out side the opening) and their expansions in the power series
in z - 1 begin with the term z -2 .
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The conformal transformation of the region 1(1 > 1 outside the unit
circle of plane ( into the considered region L is assumed to be given by the
relationship (5.4.1)

ci C2
Z = W(() = co( +(+ (2 +...= Co( +m (() (CO # 0) , (8.1.2)

where Wi (() # 0 for 1(1 2:: 1 and Co is real-valued. Function m (() is holo
morphic for 1(1 > 1. In what follows we will show that the problem is
solvable by a finite number of steps if m (() is a polynomial of C 1

. It is
assumed that this condition is satisfied and the degree of the polynomial is
denoted by n.

Making use of denotation (5.2.13) and talking into account th at on r

z = W (a) , z = W (~) , dz = Wi (a) da, dz = -Wi (~ ) ~~ , (8.1.3)

we can transform the boundary condition (8.1.1) to the form

'0 I I - (1) W (a) - I (1)onl':(=a=e ~; W (a)<1>da)+w (a) <1>1 ~ -~<1>1 ~ -

Wi (~ ) ~l (~) = _ f (0) Wi (a) + X + iY [Wi (a)+ (8.1.4)
a2 a 8n(l-v) w(a)

- I (1) ] r ]W ~ X - iY Wi (a) 1 w (a) _ I (1)
(3-4v) a2wG) +8«I-v) w(~) + a 2

w 2 Gf ;;
~ [(a1 + a2') w' (a) - (a2' - al) e""w' 9)] (J (8) ~ Fn+ iF,)

This relation can be slightly simplified by taking into account that

1

w (()

1

eo(

m(()
eo(w (() ,

and introducing into consideration the functions

X +iY m(()
<1>* (() = <1>1 (() + 8n (1 - v) COW (() ('

(3-4v) . m(()
W* (() = WI (() - 8n (1 _ v) (X - tY) COW (() ('

(8.1.5)
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which are also holomorphi c and tending to zero not slower than (-2 at
infinity. The boundary condition (8.1.4) is written down in the form

and th e complex conjugated condition is given by

7.8.2 The method of Cauchy 's integrals

Recalling the character of the expansion of th e sought functions

a2 a3 an
<1>* (0 = 2 +:3 + ...+ n + ... ,

(( (
a' a' a'

IlJ * (() = (~ + (~ + ... + (~ + .. . ,

it is easy to obtain the behaviour of the functions

(8.2.1)

, (I) <I> (~) _ w (0 <I>' (~) = ~ (I) <I> (~) .w .., * ( ( 2 * ( d( w", * ( , 1 _,(1) - (1)- w - IlJ -
(2 ( * (
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appearing in the boundary condition (8.1.6)) in the region 1(1 > 1. We have

where Z (() is holomorphic in the circle 1(1 < 1 and the expansion of this
function in the series contains only non-negative degrees of ( . Hence,

:(W(()4!* (Z) =Pn-l (Z) +Z'((), (8.2.3)

where Pn-l (I/() is a polynomial of (n - 1) -th degree in C 1 with the
unknown coefficients a2, ... , an-l

(8.2.4)

1 - (1)The expansion of the functions (2 w' lIt* '( and w' (() <I>* (() in the power

series contains respectively only non-negative and negative terms.
The function corresponding to the terms of the left hand side of the

conjugated boundary condition is presented in the form

d _ (1) - (1) _,(1) - 2 _ (1) -,
d(~)W '( <I> * '( =W '( <I>*(()-(w '( <I>*(()

_ -,(I)= Pn-d() + Z '( ,

whereas the functions

(8.2.5)

_, (1) - (1)w '( <I>* '( ,

are respectively presented by the series with positive degrees and the series
with negative degrees with the principal part Coa~ at infinity.
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Referring now to the rules of evaluat ing the integrals of Cauchy's type,
Subsect ion 7.5.10, we have

1(1) 1 :

where Zb is the principal part of funct ion Z' (1/() as ( --+ 00 and can be
expressed easily by means of eq. (8.2.2)

z; = cl a2 + C2 a3 + .. .+ enan+l , Zb = cl a2 + c2a3 + .. .+ cnan+l .
(8.2.7)

Collecting these results we arrive at the relationships

(8.2.8)

Their right hand sides are calculated by the rules of Subsection 7.5.10.
The system of equations determining the unknown coefficients a2, a2, . . . ,
an+l, a; can be obtained by comparing the coefficients in the expansion in
terms of degrees of 1/ ( on the right and left hand sides of equalit ies (8.2.8).
This will be explained through the following examples.
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7.8.3 Elliptic opening

The conformal transform ation of the region 1(1> 1 into the plane with an
ellipt ic opening is given by t he function

Z = W(() = R ( ( + 7 ) (R >O , O::;m::;I) ,

where the circle 1(1 = 1 is mapped into the ellipse with semi- axes

a= R( I+m) , b=R (I- m ) ,

(8.3.1)

t he lat ter being a circle when m = O. The value m = 1 corresponds to t he
transformation of region 1(1 > 1 into the plane cut along t he line (- 2R, 2R ) .

The derivative of the t ra nsforming function

(8.3.2)

does not vanish for 1(1 2 1 if m < 1. For m = 1 it is zero at ( = ± 1 which
corres ponds to the ends - 2R , 2R of t he cut, i.e. the" corner point s" on the
contour of the region.

It is assumed in the following that t he constant normal pressure p is
applied to the edge of t he opening and the st resses at infinity are given.
T hen X + iY = 0 and by eq. (8.1.6)

so that

(8.3.4)

Repeating the calculati on given by formula (8.2.2) we have

Pn-l = 0, Zb= Rma 2

and by eq. (8.2.8) we obtain

(1 -~ ) <1> . (() = ~ [p+ ~ (ITl' + IT2)] + 2~2 (IT2 - ITl') e
2ia

,

(1 - m(2) <1>. (() - (( + m(3) <1>: (( ) - ma2 - ((2 - m) Il'. (() + a~ = O.
(8.3.5)



(8.3.6)

(8.3.8)
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The second boundary condit ion (8.1.7) for th e ellipt ic opening has the
form

(1 - ma2) <f?* (~ ) + (1- ma2) <1> * (a) -

a2 (~ + ma) <1>: (a) - (a2 - m) W* (a) =

= - [p+ ~ (af + a f )] (1 - ma2) + ~ (af - a f ) (a2 - m) e- 2ia,

Comparing the terms which are independent of a yields

ma - a' = - [p + ~ (a DO + aDO )] - ~m (a DO - aDO) e-2ia
2 2 21 22 21 .

Functions <1>* (a) ,w* (a) are now det ermined . The formulae below are con
st ruct ed for two special cases:

1. The st resses at infinit y are absent and the constant normal pressure
acts on the edge of the opening

mp p mp [ 4 ( 2 ) 2 ]<I> * (() = - 2- - ' W* (() = - 2-- + 3 m( + 3 + m ( - m .
( - m ( - m (( 2 - m)

(8.3.7)

Then we obtain

ao+ ap = 2 [<I>. (() + <f? (C)] = 2mp (-2-1_ +~)
(-m ( -m

p2cos2B- m
= 4mp----=-----'--- --;:-- ---:-- -:;

p4 _ 2m p2cos 2B + m2'

On the contour of the ellipse p = 1. a p = -p, that is

cos 2B- m
aolp=l = 4mp 1 _ 2m cos 2B + m 2 + p.

The maximum is achieved at the ends of the major semi-axis (B = 0) and
is equa l to

1 I 4m a-ao = -- + 1 = 2- - 1.
P p=l 1 - m b

0=0

2. The edge of the opening is free, af = q,a'2 = O. Then

1 1m - e2ia
- <1>* (() = -2 { 2 . 'q .., -m

1 1m +e- 2ia 1 m _ e2ia (8.3.9)
- w*(() = 2 2 + 2 2 3 [m( 4 + (3 + m )( 2 - m ]
q ( - m (( - m)
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and due to eq. (5.4.15)

(8.3.10)

We obtain

1( ) p4-2p2cos(28-2a:)-m2+2mcos2a:
- ap + a0 = '-------'-----,.......:...-----.,-.......:...---.,....----
q p4 _ 2m p2 cos 28 + m2

and on the contour of the opening

1() 1-m2+2mcos2a:-2cos(28-2a:)
- ao -
q p=l - 1 - 2m cos 28 + m2 .

7.8.4 Hypotrochoidal opening

By means of the conformal transformation

(8.3.11)

(8.3.12)

(8.4.1)

the region 1(1 > 1 outside the unit circle is mapped into region L of the
plane z outside the opening with the hypotrochoidal contour

z=R(a+~) ,nan

x= R (cos 8 + : cos nO) , y = R (cos 8 - : sin nO) .
Let us recall that the hypotrochoid is the locus of a point on the circle
rolling inside a motionless circle. For n = 1 we return to the case of the
ellipse and for integer n > 1 we obtain the regular curvilinear polygons
with the rounded corners (a triangle for n = 2, a square for n = 3 etc.),
Fig. 7.7.

plane z

FIGURE 7.7.

plane .;
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By eqs. (8.2.2) and (8.2.7) we have

(
1) Rm ( _ n - 2 _ n - 3 an- i )

Pn- 1 '( = ----;- a2 C-1 + a3 C-2 + ... +~ ,
I Rm

Zo = -an+1,
n

(8.4.2)

and according to eq. (8.2.8) the expressions for functions <1>* (() , W* (() are
writ ten as follows

( m) m(_n - 2 _ n - 3 an- i )
1 - -+1 <1>* (() - - a2 - -1 + a3 - -2 + .. .+ - 2- =

(n n C- C- (

= - 2n~R f :~B~d(1 ,
"I

(8.4.3)

Let us next consider our consideration to the case of t he free edge of
t he opening and t he prescribed st ress at infinity. Let for simplicity (12 =
0, 0: = 0. Then

1 f P (B) do 1 oo m--- = -(1 --
2niR (1 - ( 2 1 C- 1

"I

and by eq. (8.4.3)

(n > 1)

( 1 - (:1) (~~ + ~~ + ... + ~~ + ... ) -

: (a2~n~; + a3 ~1:; + ... + an-1;2) = ~(1f ((: 1-;2) .
Comparing the coefficients at C 2, ( -n+1 results in the system of equations

m
--a2 (n - 2) + an -1 = 0.

n
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The remaining coefficients a3, a4, . . . , an - 2 are equal to zero. This deter
mines the polynomial

(1) 100 Rmn(n-2) (1 m 1)
Pn-l "( = 2"<Tl n2 _ m2 (n _ 2) C-1 + -;;: (2

and then function <1>. (()

(8.4.4)

(8.4.5)

The const ant a~ appearing in the second equation (8.2.8) can be obtained
by comparing the free terms in one of the boundary conditions, eqs. (8.1.6),
(8.1.7). We have

Z- ' _ 1 00 m
2

0- -<T1 -.
2 n

(8.4.6)

This determines function W. (() in the following way

As always, the stresses are obtained after some cumbersome algebraic
manipulations. It is easy to find the sum of the normal stresses and then
the value of <TO on the contour of the opening

1
<To = {(<Too + <TOO) (1 - m 2

) +
1+m2-2mcos(n+1)B 1 2

2n (<Too _ <T OO) }
n2_(~_2)lm2 [(n-m2n+2m)cos2(a-B)-2mcos(2a+nB-B)]

(n = 2,3 , . . . ).

Here <Tf , <T'if denote the principal stresses at infinity and a is the angle
between the axes <Tf and x.

7.8.5 Simply connected finite region

The conformal transformation of the unit circle 1(1 ::; 1 into the considered
region bounded by the smooth closed contour r is given by the function
w(()
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which is holomorphic in the circle. Here we assume that Cl is real-valued
and w' (() i- 0 for 1(1::; 1. In what follows we can take that w (() is a
polynomial of order n . Then, similar to the case of the infinite region with
an opening, a closed-form solut ion of the problem can be obtained.

By virtue of eq. (5.2.15) the boundary condit ions are written (under
slight ly changes in denotations) in the form

(8.5.1)

Here, by eq. (5.2.9)

where Fx + iFy denotes the vector of th e surface forces, whilst Fn and F;
denote its projections on the external normal and the tangent to r . The
principal vector of the surface forces calculated with the help of formulae
(5.2.6), (5.2.7) is presented as follows

f (F'.T + iFy) ds = f (Fn + iFt ) nds
r r

= f (Fn + iFt ) a

"I

W' (a)

~/ (~ )

= ~ f (F" + iFt ) w' (a) da = - i f F (0) da . (8.5.2)

"I "I

The principal moment of these forces about point z = 0 (into which the
cent re of the circle is mapp ed) is equal to

rnO =f (xFy - yFx ) ds = ~ if [z (PI: - iFy) - Zir; + i F:lJ )]ds

r r

1f[w(a) - (1) ]= 2 ~F(O) - w ; F (O) do,

"I

(8.5.3)
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and the conditions of the self-equilibrated system of surface forces are set
in the form (compare eq. (6.2.4))

f F (0) da = 0,

"i

f [w;~) P(0) - w(~) F (0)] do = O.

"i

(8.5.4)

It is no problem to check that the left hand sides of the boundary
conditions (8.5.1) satisfy the conditions (8.5.4) provided that functions
<I> (() , W(() are holomorphic in the unit circle. Indeed,

f F (0) do = f w' (a) <I> (a) do +f d [w (a) <I> (~ ) ] +
"i "i "i

The first and third integrals vanish as their integrands are the boundary
values of the functions holomorphic for 1(1 < 1 (and correspondingly for

1(1 > 1), whilst the second integral vanishes inasmuch as w (a) <I> (~ ) is a

single-valued function. By analogy, we have for the equations of moments

-f [w(a)P(O) :2-w (~) F(O)] do =
'Y

= f d {W (~ ) w (a) [<I> (a) + <I> (~ ) ] } +
"i

which is required .
Applying the method of Cauchy 's integrals to the first boundary condi

tion (8.5.1) leads to the relationship

-(1)dw(a)<I> -
w' ( ) <I> (() +~ f a = ~ f F (0) da .

( 21ft a - ( 21ft a - (
"i "i

(8.5.5)
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On the other hand

(8.5.6)

Let Pn (() denote the holomorphic part of the function

where

Pn (() = (clal + C2 a2 + ... + cnan) + (ciaO + C2 al + ... + cnan-l) (+
(C2aO + C3al + ... + cnan- 2) (2 + . .. + cnaoC , (8.5 .8)

and Z (() is a function holomorphic in the circle 1(1 < 1.
Equality (8.5.5) is now set in the form

w' (() 1> (() + P~, (() = -2
1

.f F ((}~dO' . (8.5.9)
tt: 0'-.,

'Y

Referring to eq. (8.5.7) we have

(;) (z) 1> (() = Pn (z) + Z (() ,

d _(1) () _,(I) 2 -,
dGf ( ~ (~ v; ( - ( Z «() .

Hence

(8.5.10)

1f d - (1) () do -, () 2 - ,
2.i , dGf ;; ~ a a - ( ~ v; 0 - ( Z «() ~

= P~ (0) - P~ (z) + (;)' (z) 1> (() - (2(;) (z) 1>' (()
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and the second boundary condition leads to the dependence

CI aD +w' (z) ~ (() -(2w(z) ~' (() -p~ (z) +

p~ (0) - ~ f F (B) do = (2W' (() '1J ((), (8.5.11)
27ft a - (,

where by eq. (8.5.8)

(8.5.12)

Using eq. (8.5.9) and talking into account that do = iadB we have

,IfF (B) - - -,If F (B)
Cl a D + Pn (0) = -2' --da, Cl a D +Pn (0) = -2' --da.7ft a 7ft a, ,

Due to eq. (8.5.4)

_1 fF(B)d _
2

. 2 a - O.
tt: a,

These relationships enable eq. (8.5.11) to be represented in the form

w' (z) ~ (() -(2w(z)~' (() -p~ (z) -
1f (1 1 () 2,- . F (B) - - - - - do = ( W (() '1J (()

27ft a - ( a a2,
or

W'(()'1J(() = (12 [w'(Z)~(()_(2w(Z)~'(()-p~(Z)]-

1 f F (B) da
27fi a2 (a _ ()' (8.5.13),

By eq. (8.5.10) the first group of terms is equal to -Z' (() . This confirms
that function '1J (() is holomorphic in the circle 1(1 < 1 which was assumed
earlier.

7.8.6 An example

Let us consider a finite region L bounded by the contour

x = R ( cos B+ ~m cos 3B) , y = R (sin B+ ~m sin 3B) ,
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FIGURE 7.8.

denoting a epitrochoidal oval, Fig. 7.8. By means of the transformation

z= w (() = R ( ( +1m(3) , (8.6.1)

the interior of the unit circle is mapped into region L. The condition
w' (() i- 0 for 1(1 S 1 requires 0 S m S 1. If 0 S m S 1/3 then the points
on r corresponding to () = 0, () = 11' are furthest from the coordinate origin
whilst the points () = 11'/2, ()= 311' /2 are the closest. Curve (8.6.1) looks like
an elongated ellipse with the semi-axes a = R (1 + m /3) , b = R (1 - m /3),
region L lying within this oval.

By eq. (8.5.8) in the case considered we have

(8.6.2)

and by eq. (8.5.9) we arrive at the following system of equations for the
unknown coefficients ao, al,a2

(8.6.3)

and the complex conjugated system. The unknowns ao ,aI, a2 are easily
expressed from these equations, then polynomial p~ (() is constructed and
with the help of eqs. (8.5.9), (8.5.13) we obtain the sought functions <P (()
and 'l1 (().

7.8.7 The first boundary-value problem

We restrict ourselves to considering the case of the external problem and
assume , as before, that mapping the exterior of the unit circle into the
infinite region L bounded inside by the smooth contour r is possible by
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function (8.1.2) where m (() is a polynomial of degree n in C I
. Supposing

zero stresses at infinity we have by eq. (5.4.18)

(3- 4v) 'PI (z) - z<p~ (z) - ¢I (z) =

3 - 4v X - iY z
= 2/1 (u + iv) + 8 ( ) (X + iY)(lnz + ln s) - 8 (1 ) -=, (8.7.1)'Trl-v 1T' -vz

where 'PI (z), 'l/JI (z) are holomorphic in L and X +iY denotes the prescribed
principal vector of the surface forces on r.

Taking

we can write

(3- 4v) 'P* (0 - ; ~g <P: (() - ¢* (() =

3 - 4v - X - iY w (0
= 2/1 (u + iv)+ 8'Tr (1- v) (X + iY) [lnw (0 + lnw (()] - 8'Tr (1- v) w(().

The holomorphic function In w ~O (for 1(1 > 1) can be included into the

sought functions 'P* ((), ¢* (() by setting

X +iY w(() }
'P* (() = 'P(() + 8'Tr (1 _ v) In -(-,

3 4 (i) (8.7.2)
¢ (()=¢(()_ - v (X-iY)ln~.

* 8'Tr (1 - v) (

Then

_I - w(() _I - w(() X-iY (W(() lW(())
'P* (() w' (() = 'P (() w' (() + 8'Tr (1- v) w(() - (w' (()

and the previous equality is written down as follows

(3 - 4v) ({J(() - ; ~~) <p' (i;) - ¢ (i;) =

. 3 - 4v . X - iY w (0
= 2/1 (u + w) + 4'Tr (1- v) (X + zY) In1(1- 8'Tr (1 _ v) (w' ((). (8.7.3)
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This leads to the following representation of the boundary conditions

(3 - 4v)W' (~ ) ~ ((J) - W((J) qi (~) - w' (~ ) ~ (~) =

_,(1) . X- iY
= 2JLw -;: (u + zv)r - 81f (1 _ v) (JW ((J) ,

(3 - 4v)w' ((J) (p ( ~ ) - w(~ ) ~' ((J) - w' ((J) 7/J ((J) =

'( )( .) X+ iY 1_(1)= 2JLW (J U - ZV r - 8 ( ) W - ,1f1-v(J (J

(8.7.4)

as In 1(1 = 0 on 'Y.
Following the approach of Subsection 7.8.2 we assume sp (00) = 0 and

consider the following function

(8.7.5)

Here qn (() denotes a polynomial of degree n in ( and Z (1/() is holomorphic
in 1(/ > 1 and Z (00) = O. Then

1(1) 1 :

The product W (() (p' (1/() is a sum of the polynomial of C 1 and a function
which is holomorphic in the circle 1(1 < 1

where

W(( ) (p' (z) =rn - 2 (z) +Q(() , (8.7.6)

Therefore
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Applying the method of Cauchy's integral leads to the relationship

Analogous actions with respect to the second boundary condition yield

(3 - 4v) [iln (z) -qn (0)] - [w(z) 4?' (() - f n- 2 (()] +

Q(0) - w' (() 'l/J (() + co'l/J (00) =
1 f . w' (a) X + iY Co

=-2' 2tt(u- zv)r--,da- 8 (1 ) 2 'm a-., 1r -v (
'Y

(8.7.9)

The constant 'l/J (00) is determined by comparing the terms which do not
depend on a (i.e. the free terms of the trigonometric series) on both sides

of the second boundary condition (8.7.4). Multiplying them by -2
1

. da and
lrt a

integrating along the contour of the unit circle "I we obt ain

(3 - 4v) 2~i f w' (a) q; (~ ) d: - 2~i f w(~) 4?' (a) d: -
'Y 'Y

~ f w' (a) 'l/J (a) da =
21rt a

'Y

1 f . w' (a) X + iY f w(~ )
=-. 2tt(u- zv)r--da-8 (1) 2 da ,21rt a 1r - V a

'Y 'Y

or

(3 - 4v) qn (0) - Q(0) - co1/J (00) =

1 f . w' (a) X + iY
= h i 2tt (u - zv)r -a-da - 81r (1 _ v) Cl ·

'Y

(8.7.10)
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7.8.8 Elliptic opening

In this case, we have by eqs. (8.3.1), (8.7.8) and (8.7.9)

2 2p, f (1) (u+ iv)(3-4v ) [(I-m( ) <p(()+ m(al(+a2)] = 27fiR w' ;: a-( rda ,

'Y

(8.8.1)

mciI ( 1 ) I ( m)- (3 - 4v )-(- - (+ m( <p (() - 1 - ( 2 vJ (() + ((00) =

=~ i- (a ) (u - iV)rdo _ X + iY ~ . (8.8.2)
27fiR. a-( 87f (I - v ) ( 2

'Y

In the particular case in which a rigid ellipt ic core placed in th e elast ic
solid is subjected to th e displacement

(u + iV)r = Uo + ivo + iEZ = Uo+ ivo + iEZW(()

we have

-1-fW/(!-) (u +iv)r da =
27fiR a a - (

'Y

1 f ( 2) [ . . ( m)] da ieRm= 27fiR I-ma uO+ 1VO + 1ER a+-:; a-( = -(-,
1

_1_ f WI (a) (u - iV)r da =
27fiR a - (

'Y

= ~ f (1 - m) [uo - ivo - iE R (!- + ma)]~ =
2m a 2 a a - (

1

= - m (uo _ ivo) _ iER [(1 _m2) ~ _ m]
a 2 ( ( 3

and furth ermore by eqs. (8.8.1), (8.7.5) and (8.7.6)

2p,iEmR }(3 - 4v)<p(() = ( =(3-4v)al '

a2 = a3 = . . . = 0, qn (0) = 0, Q (0) = O.

'fuming to eq. (8.7.10) we obtain

m(X + iY)
1/! (00) = - 2p, (uo - ivo) + 87f (1-v)

(8.8.3)

(8.8.4)

(8.8 .5)
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and by eq. (8.8.2)

. 2f.lic:R ( 1 + m(2 1 )
1/J (() = - 2f.l (uo - zvo) +-i- 1+ m 2 -- +

." ( -m 3 -4v

X +iY l+me
87r (1 - v) (2 - m .

(8.8.6)

(8.8.7)

All parts of the sought functions holomorphic in region /(1 > 1 are thus
determined. The functions determining the solution of the problem denoted
by 'P ((), 1/J (() are obtained by adding, according to eqs. (8.7.2) and (5.4.3),

X +iY X -iY
the logarithmic terms 87r (1 _ v) In ( and 87r (1 _ v) (3 - 4v) In ( to eqs.

(8.8.5), (8.8.6) . Hence

'P(() = 2f.lic:mR ~ _ X + iY In(
3 - 4v ( 87r (1 - v) ,

. 2f.lic:R ( 1+ m(2 1 )
1/J (() = -2f.l (uo - zvo) + -(- 1 + m (2 _ m 3 _ 4v +

X + iY 1 + m(2 X - iY
87r(1-v) (2_ m +87r(1-v) (3-4v)ln(.

The displacement vector is now given by

2f.l (u + iv) = 2f.l (uo + ivo) + 2f.lic:R (7 + ~) -
3 - 4v -

81f (1 _ v) (In( + In() (X + iY) +

2f.lic:R 1- (( (~_ m) + X - iY 1-(( (m( _ 1). (8.8.8)
3 - 4v (2 _ m ( ( 87r (1 - v) (2 - m (

At a sufficient distance from the opening, the latter expression for the dis
placement vector contains logarithmically growing terms and the remaining
bounded terms

According to eq. (3.1.14) the moment of the external forces providing a
turn c: to the core is determined in terms of the coefficient associated with
Z-l in the expression for 1/J (z). By virtue of eq. (8.8.7) the term of degree
C 1 is equal to

2f.lic:R (1 +~) ~ 2f.lic:R2 (1 +~)
( 3 - 4v z 3 - 4v
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and byeq. (3.1.14) we have

MO = 41rflfR2 ( 1 + 3 ::v) .
7.8.9 Double-connected region

The conformal transformation

z = w (()

(8.8.9)

(8.9.1)

maps the round ring in plane ( bounded by the circles 1'0,1'1 of the cor
responding radii Po , PI (Po ::; 1(1::; PI) into the double-connected region L
in plane z . It is assumed that the exte rnal f o and the intern al f 1 contours
of this region correspond respectively to t he internal 1'0 and external 1'1
circles of the ring.

We consider the case in which the system of surface forces is in equi
librium on each of the contours I'0, fl . There exists the solut ion of the
auxiliary problem of loading the single-connected region bounded by con
tour fo . This solut ion, which determ ines the normal and shear st resses on
contour f 1 , i.e.(a n + iTnd~o ' is assumed to be given. Considering then the
problem for region L with the boundary condit ions

(a n + iTnt )ro = 0, (a n + iTnt)r
1

= (a n + iTnt ) ~l - (a n + iTnd~ l
(8.9.2)

and imposing the solution of the auxiliary problem, we arrive at the solution
of the problem in which the boundary conditions are satisfied on both
contours. For this reason , in what follows we consider the case in which
the external contour f o is not loaded. By eq. (5.2.10) on any contour f of
region L which is transformed into t he circle P = const, t he vector an - iTnt
is given by

(8.9.3)

where, by eq. (5.2.7) the square of the vector of the normal is as follows

w' (() d( w' (() (
- w' (() d( = w' (() "(. (8.9.4)

Transforming to variable ( in eq. (8.9.3) and denoting

<P I (z) = <PI (w (()) = <P (() , WI (z) = WI (w (()) = W(() ,

we arr ive at the relation

<P (() + <I> (() - (w'((() [w(() <p' (() + w' (() W(()] = an - iTnt . (8.9.5)
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On the circle 1'0 we have ( = Po0" , ( = PolO" and the first boundary
condition (8.9.2) is reduced to the form

2

q> (Po 0") + <P (~) - Wi (~) [W (~ ) q>' (POO") + Wi (POO") W(POO")] = O.

(8.9.6)

It is satisfied if W(() is defined in the ring Po ~ 1(1 ~ PI in the following
way

Wi ro W«: = ~~ Wi (p;) [q> (() + <P (~6)] _W (~6) q>' «:

= _~W (~6) q> (() + ~~WI (~6) <P (~6) . (8.9.7)

The boundary condition on r I is set in the form

- (PI) 0"2 [(P ) ]q> (PI 0") + q> -; - Wi ( ~) W : q>' (PI 0") + Wi (PI 0") W(PI 0") =

= (O"n - iTndrl' (8.9.8)

The surface force on r I given by the Fourier series

00

(O"n - irnt)r
1

= 0:0 + L (akO"k + a;kk)
k=1

(8.9.9)

can be viewed as being the value of a function prescribed by the Laurent
series

(8.9.10)

in the ring. This allows us to give another representation of function W(()

Wi «: W.o= ~~ Wi (~I) [q> (() + <P ( 1)]-Wi (~I) q>' (() 

pi Wi (pi) 9 (() = -~w (pi) q> (() + pi Wi (pi) <I> (pi) _
(2 ( d( ( (2 ( c

~~WI (~I) 9 «: (8.9.11)
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similar to that in eq. (8.9.7). Comparing these representations of the same
function III (() leads to the following relation

dd( [w(~6) _w(~i)]<P (() + ~~w' (~i) ~ (~i) -
~~ w' (~6) ~ (~6) = ~~ w' (~i) 9 «i . (8.9.12)

The solution w' (() <I> (() of this functional equation should be sought in the
form of a Laurent series without term (- I

(8.9.13)(C_I = 0) .
00 00

w' «: <P «: = Co + L Ck(k + L C-kk,
k=1 k=2 (

The same term will also be absent in Laurent 's representation of the func
tion

P6 w' (P6)~' (P6) = C P6 +~ ckP6
k
+

2
+~ C- k (k-2.

/"2 ( ( O/"2 LJ /" k+2 LJ 2k-2
., ., k=I " k=2 Po

It is seen from the second representation (8.9.7) th at function w' (() <P (()
does not contain the term ( - I as well. Therefore the representations

sp (() = Jw' (() <P (() d( , 'l/J (() = Jw' (() III (() d(

have no logarithmic terms which guarantees the single-valuedness of the
displacement vector or, in other words, it ensures no distortion.

7.8.10 The non-concentric ring

Let region L be bounded by the external circle f o of radius TO and th e
internal circle I'1 of radius T I . Th e eccentricity, i.e. the distance between
th e centres of these circles is denoted as e. The conformal tr ansformation
of the round ring in this region was considered in Subsection 6.3.12. Here
it is presented in anot her form

(+1
z=c- -

(-1 '

where C is a real-valued constant . By eq. (8.10.1)

( = z +C = 1 +~, (( _ 1 = 4cx
z - C Z - C (z - c) (z - c) '

(8.10.1)

(8.10.2)

which yields

(X _ /~ + 1 ) 2 + y2 = 2cy« 2

(( - 1 ((- 1
(8.10.3)
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(8.10.4)
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The concentric circles (( = p2 = const in the circle correspond to the
circles of rad ius r in L with the centres on the abscissa axis at points d

p2 + 1 2cp c
d = c-

2
- - = c coth a , r = -- = -- (p = eO > 1P - 1 p2 - 1 sinh a '

Thus, the concentric ring formed by the rings 1'0 and 1'1 of the correspond
ing radii Po and 1'1 is mapped into the round ring L, the external r o and
internal r l circles correspond respect ively to the internal 1'0 and external
1'1 circles of the ring. The values c, ao,al are related to each other as follows

"o sinh ao = rl sinh al = c, e = Iro cosh ao - "i cosh a l l ·

Eliminating ao, a l we obt ain the equat ion for c

e = j r5+ c2
- j rr+c2

•

(8.10.5)

(8.10.6)

Let us limit our consideration to the simplest case of the uniform loading
by pressure PIon circle r l . By inserting eq. (8.10.1) for w (() into relation
(8.9.12) in which g (() = -P we have

!£(<P(() + 1 [P5 <I> (P5) _ pi <I> (pi)] -!L (8.10 .7)
d( ZOZI pi - P6 zg ( Z? ( - Zr'

where it is denoted

2 Z _ 2 ( _ pip
Zo = Po - ( , 1 - PI - , q - 2 2 .

PI - Po

This equation can be satisfied by taking

(8.10.8)

(8.10.9)

where Co,Cl , C2 are real-valued. Point ( = 0 is not a simple pole of function
w' (() <P (().

For thi s function <P (() eq. (8.10.7) is lead to the form

ZOZI [<p (() + (<PI (()J + (<p (() (Zo + Zl) + CO (P5PI _ (2) -

Cl 2 2 C2 2 2 _ 2
2'ZOZl + 2'2Z0Zl - qZo. (8.10.10)
( POPI

It is easy to prove that under the condition

(8.10.11)
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the expansion of the left hand side of eq. (8.10.10) has no negative degrees
of ( (i.e. C 2

, C 1) and the coefficients associated with (3 and (4 vanish.
We arrive at the relationship

C1 [(2 (2A + 2fL - 2 - fL2) + 2( (AfL - 4A+ fL) + (2A - 2A2+ 2AfL - fL2)]

+ 2Co (A - (2) = q (P6 - 2P6( + (2) (A = P6pi, fL = P6 + pi)
(8.10.12)

and to the system of three equations for two unknowns C1 , Co

C1 (2A+ 2fL - 2 - 112) - 2Co - q = 0, }

C1 (AfL-4A+fL)+QP6 =0,

C1 (2A - 2A2+ 2AfL - fL2) + 2COA - QP6 = o.
(8.10.13)

These equations have solutions since the determinant of this system is
equal to zero . Using formulae (8.10.9) and (8.9.7) we can determine func
tions iI> (() , 1I' ((). The stresses are obtained by Kolosov-Muskhelishvili's
formulae and the displacement vector is single-valued.
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8
Constitutive laws for nonlinear elastic
bodies

8.1 The strain energy

8.1.1 Ideally elastic body

Two groups of quantities were int roduced for consideration in Chapters 1
and 2. The first group determin es the st ress tensor and serves to descr ibe
the state of st ress due to the external mass and surface forces, whilst t he
quantities of t he second group (t he st rain measures and t he st rain ten
sors) describe the change in t he geomet ry of the objects (line, surface,
volume) under deformation of the medium. No assumption about the re
lationships between the quant ities of these groups, t hat is the const itutive
laws, have been made. For this reason, the previous analysis is applicable
to any medium. However it is not sufficient for describing the behaviour of
a particular medium.

Establishing the constit ut ive laws, which are the dependences of the
st ress tensor on the strain tensors and the st ra in rat e with account of the
thermodynamic parameters and t he influence of deformation history is the
subject of rheology. As already mentioned in Subsections 3.1.1 and 3.1.3,
the present book is concerned only with a single rheological model which is
the idea lly elastic solid. Th e funda mental property of t his solid is that t he
processes in the solid are reversible. One can suggest two ways of defining
this property. The first way is t he ability to recuperate the shape of t he
solid and the second way is the loss-free return of the energy obtained by
th e solid under the deformat ion. It is assumed that the solid was in a cer
tain natural state and it is subjected to such a "slow" loading that the solid
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is in equilibrium at any time instant , i.e. the dynamic effects are ignored.
The accompanied deformation completely disapp ears and the solid returns
to its initial shape under a slow unloading. The second way of construct ing
the model is that in terms of the energy, namely the work of the loads is
accumulated in the solid in the form of the strain energy and (under the
unloading) the solid returns the energy without loss under the unloadin g.

Mathematically, th e first way consists in prescribing the law of the st ress
strain relation . The second way deals with prescribing the potential energy
in terms of the strain components which, in turn, determines the stress
tensor in terms of the stra in components .

The "elast ic body" is characterised by a single-valued dependence of the
stress tensor t on the stra in measur e fj x (or M) . The requirement for the
existence of the strain energy separates the "hyperelast ic" solids (Truesdell)
which are referred as to the ideally elast ic solids in the present book. In
what follows we consider only ideally elastic bod ies and for this reason, the
word "elastic" is often omitted.

The applicability of the model for the ideally elast ic solid to real bod
ies must be confirmed experimentally. However it is feasible to prove only
the results obt ained theoretically from the constit ut ive law. The difficult
problem of establishing the const it utive law for the material "should be
transferred to the experimentalists as late as possible" (Signorini) . It is
also necessary to add th at only stra ins can be directly measured whereas
st resses can only be judged in terms of their integral characteristics, such as
the tension force, th e torque, the pressure of the specimens surface etc . Thi s
is why the tests are predominantly carr ied out on specimen of sufficiently
simple geomet ric forms (a prismatic rod , a thin-walled cylindric tube) in
problems in which the st ress components are st at ically determinant . Ex
perimental knowledge is concerned only with one-, two- and very seldom
and fragment ary three-dimensional manifolds of the six-dimensional space
of components of the stress tensor. More often than not , thi s information
is not sufficient to choose the only const itut ive law. One is sat isfied with a
particular const it utive law if thi s law is confirmed by the test dat a in the
required range of the measured parameters.

8.1.2 The strain potentials

Let us consider the unit volume of the ideally elastic body in its initial
state (v-volume). According to the first law of thermodynamics the specific
elementary work of the external forces 8'A(e) plus the supplied elementary
amount of the heat 8'Q (expressed in terms of the mechanical unit s) is
equal to the increment in the internal energy 8E , see Subsection 3.2.1

8E = 8'A(e)+ 8'Q. (1.2.1)
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Adding t he definition of the entropy und er the reversible equilibrium
process

8S = 8'Q
8 '

(1.2.2)

where 8 denotes t he absolut e temperature and referring to t he expression
for the elementary work , eq. (3.5.8) of Chapter 1, we have

s»~ j<!i"'Ii£" + SIiS. (1.2.3)

Considering now the internal energy as a function of seven independent
variables, which are t he six components of the strain tensor E and the
ent ropy S, we have

(
8E j<!-st) ( 8E)- . - -t 8Est + - - 8 8S = 0ee; 9 8S

and due to t he independence of var iat ions 8Est and 8S

8 = ( 8E)
8S e.. /

(1.2.4)

Let us recall t hat lst denotes the cont ravariant components of t he st ress
tensor T in V- volume and Est denotes t he covariant components of f in
t he metric of v- volume. A,::,> adopted in t hermodynamics t he subscripts
indicat e the variables which are kept constant under differentiation. Thus,
prescribing the internal energy E (£11 , .. . , £23, S) determin es t he const i
tutive law for the medium which is t he dependence of the components of
the stress tensor and t he temperature on t he strains and t he entropy. The
const it ut ive law is given by the expression for t he free energy F in terms
of the temperat ure and t he strain components. By virt ue of eq. (1.2.3) the
variation of this thermodynamic pot ential, eq. (2.2.3) of Chapt er 3, is given
by

j<!
-st 8F 8F

8F = 8E - 88S - S88 = - t 8Est - S88 = 8E 8Est + 88 88 ,
9 s t

(1.2.5)

so t hat

-st {9 ( 8E )
t = VG 8Est e' (1.2.6)
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The heat flux is absent under the adiabatic process of deformation, i.e.
8'Q = 0, thus, by virtue of eq. (1.2.1)

(1.2.7)

Under the isothermal process 88 = °and it is the free energy whose com
plete differential is equal to the specific elementary work

(1.2.8)

Thus, under both processes one can introduce a quantity referred to as
the specific strain energy. This quantity denoted by A depends upon the
components of the strain tensor and its variation is as follows

(1.2.9)

Having introduced the same denotation for the specific strain energy in
two processes we have to remember that we imply two different quantities.
In the adiabatic and isothermal process A is identified with the internal and
free energy respectively. The constitutive laws defined by both processes
are formally coincident , however they contain the different moduli of elas
ticity ("adiabatic" and "isothermal" ones in the first and second process
respectively), see Subsection 3.2.3.

The expression for the contravariant components of the strain tensor in
terms of the specific strain energy is written down as follows

[Bt _ [i 8A _ 2 [i 8A
- VG8Est - VGBGst

or in the equivalent form

(1.2.10)

(1.2.11)

This notion prevents possible mistakes since Est and Ets (Gst and Gts) are
taken to be different.

The strain energy of the body is denoted by a and is equal to the integral
of the specific strain energy over v-volume

a= 111 AdTo·
v

(1.2.12)
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Its variation is as follows

Sa = 8JJJAdTo = JJJ8AdTo, (1.2.13)

v v

and the sign of variation can be placed under the sign of the integral since
v-volume is not varied. This provides one with the possibility of identifying
Sa with the elementary work of the external mass and surface forces. This
explains the necessity of relating the specific strain energy to the unit of
the initial volume rather than V -volume.

8.1. 3 Homogeneous isotropic ideally elastic body

In the initial state the medium is assumed to be homogeneous, isotropic
and have a constant density Po . This ensures that the specific strain energy
is independent of both the orientation of the basis and the coordinates of
the particle.

The specific strain energy is thus a function of only three principal in
variants of the strain tensor or Cauchy 's strain measures (see Subsection
2.3.3)

or

A = A (h (f) ,12 (f) ,h(f) )

A = A (h (ex) ,12 (ex) .t, (ex) ).

(1.3.1)

(1.3.2)

The second form is often more preferable as using the strain measures
simplifies the formulae . Equations (5.2.3)-(5.2.5) of Chapter 2 relating the
invariants of the strain measures of Cauchy and Almansi as well as the
inverse tensors allows us to consider A as a function of the invariants of
Almansi 's measure or Almansi 's strain tensor

A = A (t, (gX) .t, (gX) .t, (g X)), A = A (h (E) ,12 (E) .t, (E)) .
(1.3.3)

The representations for the specificstrain energy in terms of the principal
invariants of tensors if ,mdo not differ from those in eqs. (1.3.2) and (1.3.3)

because t, (ex) = t; (if) and t, (gX) = t, (m) . Clearly, this does not

mean that the const itut ive laws in terms of, say, tensors ex and if are
also coincident since these are different tensors.

In what follows we use th e following notation

h (ex) = t; (A1) = t.;
h(gX)=h(m)=IL

(1.3.4)
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The specific strain energy can also be presented as a function of three
independent invariants (not necessarily the principal invariants) of a strain
measure, for instance, the first principal invariant , the second invariant
of its deviator and a function of the third invariant. Clearly, the principal
values of the strain measure, the princip al extensions etc. are the invariants,
too .

8.2 The constitutive law for the isotropic
ideally-elastic body

8.2.1 General form for the constitutive law

The variation of the specific stra in energy is equal to the specific elementary
work of the external forces and is given by eq. (3.6.4) of Chapter 1

l~ A A8A = - -Q . .8Gx .
2 g

(2.1.1)

By this equation we introduce the "energet ic" stress tensor Q which is
the tensor whose contravariant components in the basis r s of the init ial
v-volume are equal to the contravariant components Est of the stress tensor
T in the basis of V -volume. Then by eq. (3.6.4) of Chapte r 1 we have

T = V'R* . Q.V'R. (2.1.2)

The invariant definition of the gradient of the scalar invariant in terms
ofthe tensor is given by relationship (A.12.7)

thus we obt ain

A {i 8A
Q = 2y C8{;x '

(2.1.3)

(2.1.4)

Considering A as being the prescribed function of the principal invariant s

t , ({;x) and referring to eqs. (A.12.12), (A.12.13) we arrive at the rela

tionships

(2.1.5)



8.2 The const itut ive law for the isotropic ideally-elastic body 699

where 9 denotes the unit tensor in v- volume.
Introducing the notion

1 8A
c= 8h'

-1 8A
c = 13 8h ' (2.1.7)

(2.1.8)
o 8A 8A 8A 1 8A 8A 2 8A
d= 8h + I, 81

2
+ 12 8h ' d= 81

2
+ II 8h ' d= 81

3
'

and noting that

QA -st CAX C mncA x 2 C C nrmqcA x - l c st= t rsrt, = mnr r , = mn "qg r r , = rsrt,

we arrive at the following notion for the constitutive law

lst = 2[{; (g gst_ bCmngsmgtn+ (} c st) , (2.1.9)

(2.1.10)lst = 2[{; (d gst_ dCmngsmin+ dC,.qgnT'gmsgqt) .

Here th e cont ravariant components of the st ress tensor are expressed in
terms of the components of the metric tensors of v- and V -volumes. The

values ~, ~ can be termed as the generalised moduli of elast icity.
Taking the Cartesian coordinates of the particle in the initial state as

the material coordin ates (qS = as) we arrive at the constit ut ive law (2.1.9)
in the form

(2.1.11)

(2.1.12)

(2.1.13)

etc .
In the case of an incompressible medium , that is, a medium preserving

volume under deformation , we have

h(e x
) = ~=1 , A(h,I2,1) = A (h,I2)

and by eqs. (A.12.7), (A.12.8)

st, A ( A ) A -1 A
M3 = 8e

x
. · t5C x = 1:1 C X C X

• · t5C x = O.

We introduce into considerat ion a Lagrange multiplier denoted by -c
1

/ h
and rewrit e the relationships (2.1.1), (2.1.2) in the form

(
8A - 1 A -1) A 1 A A

t5A = - A-+ C C X
• ·t5Cx = -Q . · bC x .

8C x 2
(2.1.14)
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This yields

Q=2( 8~ +~GX-l).
8Gx

Since A is independent of h we arrive by means of eq. (A.12.12) at the
familiar representation of the energetic stress tensor

A (0 1A -1 A_I)Q = 2 c g- c G X + c G X
• (2.1.16)

Now there is no need to understand c1
as a "generalised modulus of elas

ticity". For the incompressible material this quantity (the Lagrange mul
tiplier) is determined from the static equations completed by the incom
pressibility condition (2.1.12).

8.2.2 The initial and the natural states

Let us recall that the displacement of the particle is measured from its
position in v-volume referred to as the initial volume. In this volume

so that

u = 0, R = r, G= g, It = h = 3, h = 1, (2.2.1)

(2.2.2)

(2.2.3)

and the stresses in the initial state are given by the equality

tsc _ 2 (0 1 -1) c- _ 2 (8A 28A 8A) cto - c-c+c - -+ -+- .
et, 812 813 0

The subscript zero indicates that the quantity in the parentheses is calcu
lated for the values h corresponding to the initial state. In this state we
have a spherical stress tensor representing an all-round uniform compres
sion or tension, see eq. (3.5.9) of Chapter 1. Only this state can be taken
as being the initial one under a single assumption of the isotropy result
ing in the constitutive law (2.1.9). Hence, the medium which is isotropic
in the natural state remains isotropic while stressed only in the case of
an all-round uniform compression or tension. For the initial states with
the stresses different from the all-round uniform compression or tension
the constitutive law (2.1.5) does not take place. Such states produce an
anisotropy of the properties of the medium .

8.2.3 Relation between the generalised moduli under the
different initial states

We consider two states of the elastic body. The first one (vo-volume) is
the natural state whereas the second one (v X -volume) is obtained from
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the first one by means of a similarity tr ansformation with the factor K ,
that is

(2.3.1)

(2.3.2)

The corresponding densities are related as follows

x x Po = dr
x

= K 3.podro = p dr ,
pX dTo

The strain measures for the first and second init ial states and their invari
ant s are related by eqs. (5.6.2), (5.6.3) of Chapter 2. For these states the
strain energy in V -volume is denoted by a and a" respectively. Clearly,
a = a x since the numerical value of the strain energy a x is the sum of
the strain energies accumulated under the passages Vo --+ v X

, VX --+ V and
can not differ from that under the passages Vo --+ V . Referring thus to eq.
(1.2.12) we have

J-rr x ( X x X) 3 J-rrA X (h 12 13 ) 3= JJ A / 1 ,12 ,13 K dro = JJ K 2' K4 ' K 6 K dr o
~ ~

(2.3.3)

and inasmuch as volume Vo can be taken arbi trarily we have

8A

8h

3x(h t, h)A u, ,12,13) = K A K 2' K4' K6 .

By virtue of eq. (2.3.4) we have

8A = K8A x 8A
oi, 8n ' 812

so that by eq. (2.1.4)

(2.3.4)

(2.3.5)

(2.3.6)

o 1 -1
where e, e, e denote the generalised moduli of elasticity if the initial state

o 1 - 1

is the natural one and eX , eX , c" denote the generalised moduli of elast icity
if the initial state is V X -volume

- 1 8A X
x_ IXe ---x 3 '

813

(2.3.7)
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For this initial state the constitutive law is written down as follows

(2.3.8)

Replacing here e~q' e x" ,It respectively by K -2ekq , K2est ,K-6h and
using eq. (2.3.6) we obt ain

or

(2.3.9)

For such a relation between the contravariant components, the stress
tensor remains invariant , i.e. it is independent of the choice of the initial
st at e

(2.3.10)

which is required.

8.2.4 Representation of the stress tensor

The transformation from the energetic st ress tensor to th e st ress tensor is
carried out by means of the relationships (2.1.2) . One uses the relationships
(3.3.2), (3.3.7), (4.1.5), (4.1.6) of Chapter 2

V'R* .g.V'R = Rsrs . r trt . rqRq = lqRtRq = if ,

V'R* .ex.V'R = V'R* . V'R· V'R* . V'R = if2,

V'R* .ex-I .V'R = V'R* . (V'R· V'R*)-1 . V'R =

= V'R* . (V'R*)- 1. (V'R) - 1. V'R = c,
, 2 '3 ' 2 ' ,

V'R* . e x . V'R = M = hM - 12M + he.

Utilising eq. (2.1.5) or (2.1.6) we arr ive at the Finger form for the const i
tutive law (1894)

, {9 (0, 1, 2 -1')T=2VC e M -e M + e c . (2.4.1)
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It contains the tensors determined with respect to the vector basis of
V -volume where edenot es the unit tensor in this basis (not to be confused
with e X) .

It is clear that instead of tensor M one can use the inverse tensor
M = gx . Formulae (A.1O.12), (A.1O.13) yield the expressions for th e inte
ger negative degrees of t he tensor and we arrive at the following notion for
the const it ut ive law in the form

(2.4.2)T = 2[K (g e- ~ gX+ ~ gX2

) •

Here the generalised moduli are given by

o 8A 8A 8A 1 8A 8A 2 8A
e= I, 8h + 12 8h +!:l8h ' e= 12 8h + h 8h ' e= Is8h . (2.4.3)

(2.4.4)
2 8A
e= 81"

2

They can also be expressed in terms of the invariants I~ = h (gX) . Turning
to eq. (5.2.5) of Chapter 2 we obt ain

o ,8A 1 8A , 8A
e= -13 81" e= 81' + Ii 81"

3 1 2

Finger's const it ut ive law operates with tensors M and g. Using eqs.
(A.1O.12), (A.1O.14) and (A.1O.15) we have

M2= M .gX -1

= M · ;, (gX 2

- I~g X + I~e) = hgX- 12e + hM.
3

Inserting into eq. (2.4.1) and taking into account eq. (2.1.7) leads to the
following relationship

(2.4.5)- 2 [8A - 8A (8A 8A) -]
T = v73 8h M - Is81

2
gX+ h 81

2
+ h 8h C .

Some authors introduce into consideration the tensor whose principal
values (and thus the principal invariants) are equal to the principal values
of the st ress tensor T, however its axes are coincident with the principal
axes of the strain measure ex. Not icing that the tensor is coaxial with
tensor gX rather th an exand referring to eq. (5.3.3) of Chapter 2 we can
define the "rotated" stress tensor T' by the relationship

(2.4.6)

or due to eq. (2.4.1)

T-' 2 (0C- x 1c-x 2 -1 _)=jl3 c - c + cg,

as A·c. A* = A·A* = g. By eq. (2.4.1) we also have

ex-I.T' = 0, T'x = ex .Q.

(2.4.7)

(2.4.8)
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8.2.5 Expressing the constitutive law in terms of the strain
tensors

Trans formatio n from the st rain measures to the st rain tensors are per
formed by means of relationships (3.6.3), (4.3.3) of Chapter 2

(2.5.1)

and the formulae relatin g the ir principal invariants are listed in Subsection
2.5.4. From these formulae we obtain

8A 1 8A 1 8A 1 8A 8A 1 8A 1 8A 8A
-=-----+-- -=--- --
et, 2 8j1 28j 2 8 8h ' ot, 4 8j2 8 8j 3' 813

Using these relationships and subst it ut ing

ax2 = 4£2 + 4£+ g

1 8A
"B8h '

(2.5.2)

one can represent eq. (2.1.5) for the energy st ress tensor in the form

fG 0 1 2

YgO =d' g- d' £+ d' £2 , (2.5.3)

(2.5.4)

(2.5.5)

k
where the generalised moduli d' expressed in terms of the principal invari-
ants i» of tensor £ have the structure given byeq. (2.1.8)

~ M .M . M \ M . M J _M
d = 8j1 +)18j2 +)2 8h ' d = 8j2 +)18j3' - 8j3'

The representation for the "rotated" st ress tensor T is const ructed by
analogy. Instead of the t hird principal invariant it is convenient to intro
duce into consideration its square root which is the rat io of the volumes in
V - state and v-state

e ~ ~ ~ JI, ((;.) ~ (1+ 2j ,+ 4j , + Sj3)' j' ~ D + L

where, according to eq. (5.5.1) of Chapter 2, D denotes the relative change
in the elementary volume. Instead of eq. (2.5.2) we have

8A 1 ( 8A 8A ) 8A 1 8A 8A 1 8A
8ft = 2 8j1 - 8h ' 8h = "4 8j2 ' 8h = 2888

(2.5.6)

and the expression for the "rotated" st ress tensor (2.4.7) is written down
in the form

TAl 1 (0 A 1C 2C2)= 8 m g+ m ,,+ m c- (2.5.7)
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with the moduli

o 8A . 8A 8A
m= -8- +J1-8- +888 ,

J1 J2 -

rh= 2 (;~ + i ,;~ - ~ ;~) ,
(2.5.8)

By analogy, the stress tensor can be represented in terms of the Almansi
Hamel st ress tensor

Here

A (0 A 1-:: 2-::2)
T=8' mG+m£+m£ . (2.5.9)

8' = rg = JI3 (gX) = (1 - 2j~ + 4j~ - 8j~)1 /2 = (D + 1)-1, (2.5.10)

k
and the moduli mare given by

2 8A -r 8A 8' 8A
m= 8j~ + 11 8j~ - - 88"

! (8A _, 8A 1 8A)
m= -2 8j~ + 11 8j~ + '2 8j~ ,
2 8A
m= 2aj~ '

In the initial stat e
~

t = 0, i = 0, 8 = 8' = 1 jk = jk = ° (k = 1,2 ,3) ,

and the introduced tensors reduce to the following form

(2.5.11)

A (8A) A (aA 8A) A (aA 8A) A

Qo = ajl 0 g, T~ = ajl + 88 0 g, To = aj~ - 88' 0 G.

(2.5.12)

In the first, second and third formula the specific strain energy A is
considered as the functions of j l, j2, j3; j 1, j2, 8 and j~ , j~ ,8' respectively.
This explains the difference in the form of the formulae for Qo and To . If
the initial state is taken as being the natural one, then

or

(2.5.14)
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In the case of the incompressible material, the moduli ih and ~ in eqs.
(2.5.7) and (2.5.11) remain undetermined. They are determined from the
static equations and the condition of incompressibility

8 = 1 (8' = 1).

8.2.6 The principal stresses

The result of Finger's constitutive law is that the stress tensor i' is coaxial
with the tensor of the strain measure if (or gX) . Remembering that the
principal values of this measure are equal to the principal values G, of
tensor ex and denoting the principal stresses by t.; we have

, 11 22 33 , 11 22 33
M = G1 ee +G2ee +G3ee, T = tl ee +t2 ee +t3 ee, (2.6.1)

s
where edenotes the unit vector of the principal directions of these tensors.

, 3 s s
Taking into account eq. (2.4.1) and G = L: ee for the unit tensor of

s=1
V -volume we have

(2.6.2)

(2.6.4)

(2.6.6)

The principal relative extensions 8s are introduced into consideration by
means of eq. (3.4.4) of Chapter 2

O; = (1 + 8s)2, S = 1,2,3. (2.6.3)

The invariants h (ex) are expressed in terms of these extensions in the

following way

t, (ex) = (1 + 81)2+ (1 + 82)2 + (1 + 83)2 ,

12 (ex) = (1 + 8I)2 (1 + 82)2 + (1 + 82)2 (1 + 83)2 +
(1 + 83)2 (1+ 8I)2 ,

h (ex) = (1 + 81)2 (1 + 82)2 (1 + 83)2 .

Therefore

et, a12 et, h
a8

s
= 2 (1 +8s ), a8

s
= 2 (1 + 8s )( h - Gs ), a8

s
= 2 (1 +8s ) (1 + 8

s
)2'

(2.6.5)

Recalling now the definition (2.1.7) of the generalised moduli we can set
eq. (2.6.2) in the form

_ 2 (1 + 8s )2 faA (I _ G ) aA h aA]
i, - IT + 1 s a + 2 a 'vh ei, 12 (1+8 s ) t;
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where by means of eq. (2.6.5)

(2.6.7)

This allows one to put the expressions for the principal stresses in the
simple form

so that

1 + 8.. 8A
t s = !J 88 (8 = 1,2,3),

V 13 s
(2.6.8)

(2.6.9)

In these formulae the specific stra in energy is assumed to be prescribed in
terms of the principal stresses.

The values on the right hand side of formulae (2.6.9) present the principal

stresses ots relat ed to the surfaces d bin v- volume, the surface d ~ being
defined by the principal direction eof tensor ex.Indeed

and eq. (2.6.9) is set in the following simple form

8A
88 = ots -

s
(2.6.10)

Returning to eq. (2.6.8) let us construct the expression for th e variat ion
of the specific st rain energy

3 8A
8A = L 88

s
88s = t 1 (1 + 82 ) (L+ 83 ) 8 (1 + 81) +

..= 1

t 2 (1 + 83 ) (1 + 8d 8 (1 + 82 ) + t3 (1 + 8d (1 + 82 ) 8 (1 + 83 ) , (2.6.11)

The right hand side presents the increment in the strain energy of a unit
cube in v- volume, the edges of the cube being directed in V -volume along

s A

the principal axes eof the str ess tensor T . Th e right hand side of eq. (2.6.11)
is equal to the elementary work of the normal forces
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applied to the cube faces. For the incompressible material

(2.6.12)

and eq. (2.6.11) is completed by the relation between the variations of 1+88

(1 + 82) (1 + 83) 8 (1 + 81) + (1 + 83) (1 + 8d 8 (1 + 82) +
(1 + 81) (1 + 82) 8 (1 + 83 ) = o.

Introducing now a Lagrange multiplier p we arrive at the expressions for
the principal stresses for the incompressible material in the form

(2.6.13)

Let us notice that (;1 in the constitutive law (2.4.1) also plays the role of a
Lagrange multiplier.

8.2.7 The stress tensor

Formulae (2.6.1), (2.6.7) allow the stress tensor to be represented in another
form

A 1 3 8A ~~
T = fT I)l + 88 ) 88 ee.

yI3 8 = 1 8

Replacing here ~ by the unit vectors ~ of the strain measure ex

(2.7.1)

where Adenotes the rotation tensor (see eq. (5.3.3) of Chapter 2) we obtain

3
A 1 A '" 8A 88 A

T = fTA* . L..J (1 + 88 ) 88 ee ·A.
yI3 8=1 8

(2.7.2)

This expression can be set in the invariant form by considering the specific
strain energy as a function of the following three arguments

(2.7.3)

Then
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and by means of the identical transformations

Os (1+ Os) = (1+ OS) 2 - (1+ Os) ,

0;(1+ Os) = (1+ Os)3 - 2(1 + OS)2+ (1+ Os)

we can write the above expression in the form

8A ( 8A 8A 8A)
(1 + Os) 80s = (1 + Os) 8 81 - 28 82 + 3 883 +

2 ( 8A 8A ) 3 8A2(1+0s ) -8 -3-
8

+3(1+os ) -8 .
82 83 83

Returning to eq. (2.7.2) and recalling the expression for the strain mea
sure e x

3 3
' x """ s s """ 2 ssC = 6 c. ee= 6 (1 + Os) ee,

s=l s=l

we arrive at the expression

3
, 1 /2 """ SSC X = 6 (1 + Os) ee ,

s=l

1'=_1_.4.*. [(8A _2 8A + 38A)eXI/2+
VJ3 8 8 1 8 82 883

2 (88A - 3
8
8A)

e x + 3
8
8A

e X3/
2]

. A, (2.7.4)
82 8 3 83

which, by virtue of eq. (5.3.5) of Chapter 2, can be reset as follows

, 1 [( 8A 8A 8A) ,T= -\:JR* · - -2- + 3- A+VJ3 881 8 8 2 8 8 3

2 (88A - 3
8
8A

) V'R + 3
8
8A c-:" .V'R]. (2.7.5)

8 2 8 3 83

Instead of eq. (2.7.2) we have for the incompressible mat erial

3
A ' "",, 8A s S' A

T = A* . 6 (1 + Os) 88 ee ·A +pC,
s=l s

(2.7.6)

A 3 s s
since C = 2: ee denotes the unit tensor in V -volume. Using the incom-

s=l
pressibility condit ion (2.6.12) and relationship (5.4.2) of Chapter 2 we can
express the invariant 8 3 in terms of 8 1 and 82

(2.7.7)
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For thi s reason, S3 is removed from the expression for the specific strain
energy. Denoting the result of this as il (S1 ' S2) we obt ain

A [( ail ail) A ail ] AT= \7R* · - -2- A+2-\7R +pGaS1 aS2 aS2

instead of eq. (2.7.6).

(2.7.8)

8.2.8 The stress tensor of Piola (1836) and Kirchhoff (1850)

By definition , the product of the stress tensor and the vector of the oriented
surface N dO in V -volume is equal to the force FdO acting on this surface,
that is

FdO = N . f dO. (2.8.1)

Using eq. (3.5.3) of Chapter 2 for transforming to the surface ndo in
v- volume we obtain

FdO = yfi;n . (~rr .fdo = n · Ddo.

Thus we introduce the following non-symmetric tensor

(2.8.2)

(2.8.3)

referred to as the Piola-Kirchhoff stress tensor. The stat ic equation in the
volume which expresses the condition of zero principal vector of the forces
act ing on the arbitrary volume

ffFdO+ fff pKdr = ff n · Ddo+ fff PoKdro
o v 0 v

= 111 (\7 . D+PoK) dr o = 0
v

reduces to the form

\7 . D + PoK = O. (2.8.4)

The divergence is calculated in the vector basis of the initial volume v and
this simplifies the solution of a number of problems. The static equation
on the surface

( )

1/ 2
A dO G A - 1

n· D = F do = F i: G X
• n , (2.8.5)
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see eq. (3.5.4) of Chapt er 2, assumes knowledge of the surface of V -volume,
the latter being unknown in advance.

By eqs. (2.7.5), (2.8.3) and (3.2.6) of Chapter 2, the constitutive law for
Piola's tensor is set in the form

- (8A 8A 8A) - ( 8A 8A) 8A - x 1/ 2D = - - 2- + 3- A + 2 - - 3- \7R + 3-G . \7R.
8 8 1 8 8 2 8 8 3 8 82 8 8 3 8 8 3

(2.8.6)

This law was applied in a series of papers (John, 1956) for mat erials of the
"harmonic typ e" . The designation "harmonic typ e" comes about because
the plane st ra in of such a solid reduces to a nonlinear boundary-value prob
lem of the theory of harmoni c functions. Thi s mat erial can also be referred
to as a semi-linear one. It is assumed that the strain energy of this mat e
rial does not depend on the invariant 8 3 whilst the dependence on 81 , 8 2 is
written down as follows

(2.8.7)

where A, f-l are some constants. By means of identifying >., f-l with Lame
constants and th e principal relat ive elongations Os with the diagonal com
ponents Ess of the linear st rain tensor we arrive at the familiar expression
for the specific strain energy in the linear theory of elast icity. For the ma
terial of th e "har monic type" we have

(2.8.8)

8.2.9 Prescribing the specific strain energy

The choice of the dependence of the specific stra in energy on the invariant
characterist ics of deformation presents a difficult problem which can not
be solved uniquely. One can indicate a number of criteria which can be
sat isfied by a reasonable dependence.

The property of the elastic mat erial to accumulate the energy under
deformation leads to the requirement for the specific st rain energy A to
be positive for any non-rigid-body displacement from the natural state in
which A is assumed to be equal to zero (A = 0).

In the natural state

Os = 0, ts = 0,
8A
88 =0

s
(8 = 1,2 ,3 ) ,

see eq. (2.6.8), and thus the representation of A(01 ,02 ,03) by a power
series in the vicinity of the natural state begins with the terms which are
quadrati c in Os

(2.9.1)
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The necessary criteria for this representation is the positiveness of the
quadratic form

(8::~k) 0 ~s~k ,

that is the matrix II (8::~k) 011 must satisfy Sylvester's inequalities. This

guarantees the positiveness of A in a certain vicinity of the natural state,
however not in the whole range of values of 8s (-1 < 8s < 00).

By formulae (2.6.7) and (2.6.5) we have

82A 1 8A 88s--=------+
88s88k 1 + s. 88s 88k

{
82A 82A

4 (1 +8s) (1 + 8k) 8Ir + 8h8h (2h - G, - Gk)+

8
2
A [1 1] 8

2
A

8h81
3
h (1 + 8k)2 + (1+ 8s)2 + 8Ii (h - Gs) (h - Gk) +

8
2
A I [h - Gs h - Gk ] 8

2
A I§ }

8128h 3 (1 + 8k)2 + (1 + 8s)2 + 8I§ (1 +8s)2 (1 + 8k)2 +

8A [ 88s]
4 (1 + 8s) 81

2
1 + 15k - (1 + 8s) 88k +

8A I [1 1 88s ] (292)
4813 3 (1 + 8s) (1 + 15k) - (1 + 8s)2 88k ..

and then

Introducing the notation

s = k,

s i= k.
(2.9.3)

4 [(a~, + 2a~2 + a~3) 2 A]o ~ x+ 2~, 4 [(a~2 + a~3) A]o ~ -2~,
(2.9.4)

we arrive at the following representation for the specific strain energy
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or in terms of denotation (2.7.3)

1 2
A = 2'\81 + fl82 + ... (2.9.6)

These terms provide one with the expression for the specific strain energy
for the "harmonic" (or" semi-linear") mat erial. The necessary (clearly, not
sufficient) criteria of the positiveness of A are presented now in the form
of the necessary and sufficient crit eria of positiveness of these parameters
in the linear theory of elast icity, see eq. (3.3.7) of Chapter 3,

or by virtue of eq. (2.9.4)

fl > 0, 3,\ + 2fl >° (2.9.7)

[(a~2 + a~J AL< 0,

3 [(8~1 + 28~' + a~J{+2 [(a~2 + 8~,) At>0 (298)

One can also suggest some static criteria, namely the behaviour of the
material must not be in conflict with the intuitively expected results. One
of these criteria is formulated in terms of the following inequalities

(2.9.9)

Let 01 > 02, then t 1 > t 2 and by eqs. (2.6.6), (2.6.4) we obtain the inequality

(2.9.10)

As the second coefficient is positive we arrive at the inequalities (Truesdell)

(2.9.11)

We proved only one of these inequalities, namely for 8 = 3, the remaining
ones are proved by analogy. If 01 = 02 > 03 then inequalities (2.9.11) hold
true for 8 = 1 and 8 = 2. In thi s case t 1 = t2 and the sign of the expression

is proved by a limiting passage: for 01 = 02 +E (E> 0) this value is positive
for any small E. As E ---+ °it either retains the sign or vanishes , i.e.

(2.9.12)
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8.3 Representing the constitutive law by a
quadratic trinomial

8.3.1 Quadratic dependence between two coaxial tensors

The constitutive laws presented in Section 8.2 relate the pairs of the coaxial

tensors (Q, ex) ,(T, ex) ,(T, 111) and (T, ijX). The structure of all of

these relations is the same: the determined tensor is a quadratic trinomial
equal to the sum of the second, first and zero degrees (the latter is the
unit tensors 9 or G in v- or V -volume respectively) of another tensor.
The coefficients of this trinomial are functions of the invariants and are
determined in terms of the specific strain energy.

As mentioned in Section A.12 the quadratic dependence between the
coaxial tensors is the result of the Cayley-Hamilton theorem (A.10.11) stat
ing that the degrees of the tensor higher than second are replaced in terms
of the zero, first and second degrees of this tensor. This suggests another
way for deriving the constitutive law. The relation between the stress ten
sor considered and the corresponding strain measure (or strain tensor) is
given by a quadratic trinomial whose coefficients are determined from the
condition of the integrability of variation of the specific strain energy. It is
easy to explain in terms of the energetic stress tensor Qsince this variation
is explicitly expressed in tensor Q, see eq. (2.1.1)

l~A A ~A ~8A = - -Q . · 8GX = -Q. ·8£.
2 9 9

(3.1.1)

8.3.2 Representation of the energetic stress tensor

Cauchy 's strain tensor f is coaxial with the energetic stress tensor and the
quadratic trinomial relating these tensors has the form

A 0 l~ 2(:2
Q =a g+ a £+ a £ , (3.2.1)

since Qand f are determined in the metric of the initial state (v-volume)

(3.2.2)

Furthermore we have
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as 8p2 = P·8P+ (8P) .P:f= 2P·8P.However h (p .8P) = i. ((8P) .p)
and thus h (P .8P) = !8h (p:} By analogy 8p3 :f= 3p2 ·8P, however

t, (p2 . 8P) = i8h (p3 ) . By virtue of eqs. (A.10.1O) and (A.lO.11)

so that

!J . ·8£ = 8jl, £ ··8£ = j 18jl - 812, £2··8£ = (Jr - h) 8jl - j18j2 + 8j3.
(3.2.3)

The expression for variation of the specific strain energy is written in the
form

M ~ ~ {[& +~M ~ (j[ ~ 12)] bj, ~ (~+ ~j,) bj,+ ~bj,}
(3.2.4)

This expression must satisfy the integrability condition, that is the coeffi
cients associated with 8jk should be equated to the derivatives of A with
respect to jk . We arrive at the three equations

(3.2.5)

These equations yield representation (2.5.3) for the energetic stress tensor
and formulae for its coefficients.

8.3.3 Representation of the stress tensor

The Almansi strain measure g" is coaxial with tensor i: Both tensors are
determined in the metric of V -volume, thus

~ 0 ~ 1 2 ' J

T =b G+ b!Y+ b!Jx-. (3.3.1)

The forthcoming calculation is slightly complicated by the fact that the
expression for variation of the specific strain energy does not explicitly
contain the stress tensor. The latter can be introduced by means of the
energetic stress tensor Qwith the help of the equality (2.1.2), i.e. Q =

(Vrr .i: Vr.
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(3.3.3)
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We obt ain

1 {G [( - )* (0 A 1 2 2) - ] AA8 = 2Yg V'r . b G+ bfl + b fJx . V'r . . 8GX
•

Referring to the definition of tensor \7r,eq. (3.2.2) of Chapter 2, and using
formulae (3.3.7) and (4.1.2) of Chapter 2 we have

(\7r) * . a· \7r = (\7r) * . \7r = a x - I ,

(\7rr .fJ x . \7r = (\7rr .\7r · (\7r) * . \7r = a x - 2 ,

(\7rr .r' .\7r = c-::
Thus

OA ~ ~fg (g ax-'+ bc-: + l ax-') ,ax
Further calculat ion is based on the tensor transformations (A.lO.H) ,

(A.lO.H) , (A.lO.14)

o-;:..sc- = 8G1 + 8G2 + 8G3
G1 G2 G3

1
G

1G2G3
(G2G38G1 +G3G18G2 +G1G28G3)

8 (G1G2G3) 813 8J~

G1G2G3 I; - I~ ,

A -2 A ( A -2 A ) ( A -I) hGX
• ·8GX = h GX

• 8Gx = -8h GX = -8 1
3

= -8J~ ,

c-:' .. 8a x = II (a x-
3

• 8a X
) = -~8h (a

C 2
) = _~8Ii -I~hI3

= -I~ 8J~ + 8J~ .

Inserting into eq. (3.3.3) yields

1 IT [(1 2 ,) I 2 I 08J~]8A=-2 y I3 b+b I I 8J1-b8J2+b I~ , (3.3.4)

so that

8A (1 2 )
2~8I~ = - b + b I~ ,

8A 2 8A 1 0

2~8I~ =b, -2~8I~ = I~ b .

(3.3.5)

Now we return to the constitut ive law (2.4.2) and definition (2.4.3) for
k

the generalised moduli e.
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8.3.4 Splitting the stress tensor into the spherical tensor and
the deviator

The general relation between two coaxial t ensors studied in Section A.13
is applied to the energetic stress tensor Qand Cauchy's st rain tensor and
is set in the form, see eq. (A.13.15)

, 2f.t { ~
Q=kjdJ+ cos37jJ cos (w + 37jJ ) Dev £ -

2V3 [( ~)2 1 ]}r sin w Dev£ - 6gr2 . (3.4.1)

Tensor f is determined here by three characte rist ics, which are the first

invariant j1 = h (f) ,angle 7jJ appea ring in the tri gonometric characte rist ic

of the principal values of Dev i, eq. (A.ll .16)

c 1. r. 01, c 1. r . ( 01, 211') }
01 - 3J1 = V3 sm '1-', G2 - 3J1 = V3 sin 'I-' +:3 '

£3 - ~j1 = ~ sin ( 7jJ + 411') ( 17jJ 1< !!:)
3 V3 3 ' 6

and the second invariant

(3.4.2)

(3.4.3)

Let us notice in passing that t his invariant is denoted as r 2 in Section A.13
which explains the difference in the coefficients in equa lit ies (3.4.1) and
(A.13.15).

The const itutive law is given by three functions of these characterist ics:
(i) the ratio of two first invar iants, see eq. (A.13. 5)

t, (Q)
3k =--'

i, ' (3.4.4)

(ii) the ratio of the second invariants of the deviators , see eq. (A.13 .9)

and (iii) the angle of similar ity of the deviators

w = X - 7jJ .

(3.4.5)

(3.4.6)
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The principal values of Dev 0 are expressed in terms of angle X by formulae
analogous to eq. (3.4.2), see eq. (A.13.12)

1 ( A) 27Q . 1 ( A) 27Q . ( 27r)
Ql - "3 t, Q = J3 sm X, Q2 - "3 t, Q = J3 sm X +:3 '

1 ( A) 27Q . ( 47r)Q3 - "3 t, Q = J3 sm X +:3 .

Let us recall that I' denotes the intensity of the shear strain, eq. (3.7.6)
of Chapter 2, and 7Q denotes th e intensity of the shear stress obtained with
the help of tensor 0, eq. (2.2.11) of Chapter 1.

The following three functions

(3.4.7)

are relat ed by three differential relationships det ermining the requirement
for the existence of the specific strain energy. The latter can also be viewed
as a function of three invariant characterist ics is,f , 1jJ of Cauchy's strain
tensor

(3.4.8)

(3.4.9)

Referring to the basic equality (3.1.1) and making use of representation
(3.4.1) of the energetic stress tensor we obtain

~ A ~ ~ ~ 2J.L { .e-; ~8A= -Q .. 8£= -k1I8jl + --- cos (w + 31jJ) Dev £ · · 8£ -
9 9 9 cos 31jJ

2J3 [( ~) 2 ~ 1 2 ]}rsinw Dev£ .. 8£-6f8j1

where

Then

~ ~ ( ~~) 1 [( ~) 2]Dev£· ·8£ = li Dev£ · 8£ = 28h Dev£ ,

(Dev£)2. ·8£ = 18h [(Dev£) 3] + 1h [(Dev£f] 8jl.

Referring to eq. (A.11.17) we have

h [(Dev£f] = ~f2,

t, [(Devf) 3] = - 4~f3Sin 31jJ , 8h [(Devff] = rsr,

8h [ (Dev £) 3] = V; (f2sin 31jJ8f + f 3cos 31jJ81jJ ) ,
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and substitution into eq. (3.4.9) leads to a rather simple expression which
is a generalisation of formula (2.4.1) of Chapter 3 of the linear theory of
elast icity

(3.4.10)

This equation yields the energy definit ions of the "generalised moduli"
k ,JL,w

aA ~ 8A ~- = -JLrCOSW - = -JLr2 sin war 9 , a7jJ 9 (3.4.11)

and the differential relationships between them

. a~ a~J1- -k = r-. -JLCOSW,sr 9 aJ1 9

a ta 2 fG· r a fG .
a7jJ VgJLCOS W = VgJLsmw + arVgJLsmw,

.a fGk r2a(fG .)
J1 a7jJ Vg = aj1 VgJLsmw .

(3.4.12)

In the linear theory of elast icity, k and JL respectively are the bulk modu
lus and the shear modulus. However the linear theory indicates no analogy
for the similarity angle w.

The relation between the invariants I' , 7jJ and the principal invari ants
i. .iz.i«of the strain tensor is obtained with the help of formulae (A.11.6) ,
(A.11.7), (A.11.14), (A.11.15) by replacing r by r /2

so that

r 3
. 3.1, • 1 " 2 '3

12y'3 sm 'f/ = -J3 + 3J112 - 2711, (3.4.13)

4
r8r = -j18j1 - 28j2 ,

1 3 .
f'} (r2 sin 37jJ8r + r 3 cos 37jJ87jJ) =

4y 3
I: . (1 . 2'2) I: • 1. 1: '=-UJ3+ -J2--11 UJ1+-J1 UJ2.

3 9 3

(3.4.14)
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Using these equations and relations (3.4.10) we obtain

8A = _ fG4V3 tlsinw
8j3 Vg rcos31j; '

8A j; 8A (1 . 1 . )- . = -2 -tlcosw - -. -J1 + --rsm31j; ,
8J2 9 8J3 3 2V3

:: = j; (kj1 + ~tlj1 cosw) +

1 8A (1 2 r
2

1 . r . 301,)--. -j1 + - + -J1 sm 'f' .
38J3 3 4 V3

The specific strain energy for mat erials with zero angle of similarity of
the deviators (w = 0) do not depend upon the third principal invariant iJ.
For such materials

A = A (jr,h) , :: = j; (k + ~tl) is, :~ = -2j;tl, (3.4 .16)

and the constitutive equation has a quasi-linear structure

(3.4.17)

(3.4.18)

(3.4.19)

The difference from the generalised Hooke law of the linear theory, see eqs.
(1.3.9), (3.1.1) of Chapter 3, is not only the replacement of the linear strain
tensor E by tensor £ but also the replacement of the constant moduli k, tl
by "generalised" moduli , the latter depending upon all three invariants of
tensor £ (also on j 3 in terms of G). One should take

k~~ ok (id,) , i'~ ~ OJ' Ud,) .

The constitutive law (3.4.17) takes the form

rc A A ~ ( 2) ~Vg Q = oQ= Okj19 + 20tlDev E = ok-'30tl j19+ 20tlE.

According to Subsection 1.3.4 oQ denotes the energetic stress tensor related
to the unit area in the initial state.

According to eq. (A.13.15), Cauchy's stress tensor expressed in terms of
the energetic stress tensor (i.e. the inversion of formula (3.4.1)) has the
form

~ 1 ( A) 1 { A
E= 9kIr Q §+ 2tlcos 3x cos(3x-w)DevQ+

V3 [( ,)2 2 2]}TQ sinw Dev Q - '3§TQ . (3.4.20)
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Evidently, the constitutive law relating the stress tensor i' and the coaxial
Almansi strain tensor can be put in a form analogous to eq. (3.4.1)

, " 2ft { ( -) -:::T = kj~C + --_ cos w+ 3'ljJ Dev E -
cos3'ljJ

2V3 [( -:::)2 1'-J}r sinw Dev£ - "6 cr2 . (3.4.21)

»<

Here the quantities with a tilde sign are constructed in terms oftensors t., i'
with the help of formulae analogous to eqs. (3.4.2)-(3.4.6). The calculation
of the variation of the specific strain energy is more difficult

fG( -)* ,- ~8A = Yg V'r . T . V'r . · 8£

and the energetic definitions of moduli k,r ,ware given by cumbersome
formulae .

8.3.5 Logarithmic strain measure

This tensor is coaxial with tensor M and its principal values are equal to
logarithms of the principal values of tensor M1 /2, that is

3
, ""' s sN= ~vsee,

s=1

and additionally

3 3

v; = In (1 + 8s ) , ;.'11
/

2 = I: (1 + 8s ) ~~= I: «- ~~,
s=1 s=1

(3.5.1)

Making use of relationship (2.6.8) we obtain

Tensors i' and N are split into the spherical parts and the deviators

, 1, ( , ) ,
T = "3Eh T + DevT,

, 1 , (,) ,
N = "3 e), N + Dev N ,
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where E denotes the unit tensor and we introduce into consideration the
second and third invariants of the deviators, see Section A.II

72 = -12 (Devt) = ~ [(t1 - t2)2 + (t2 - t3)2 + (t3 - it)2] ,

h (Devt) = - 3~73sin3X ,

r
2

( ' ) 1 [ 2 2 2]4 = -12 Dev N = 6 (VI - V2) + (V2 - V3) + (V3 - vd ,

h (Dev N) = -I2~r3sin 3W.

The main components of the deviators are given byeq. (A.ll .6)

I r . .1.
V s = y'3SIn 'r s :

where

Xl = X,
27r

X2 =x+ 3 '

(3.5.3)

3

i , = ~h (t) + t~ , I>~ = 0; V s = ~h (N) + V~ ,
s=l

Returning to formulae (3.5.2) we have

3

I>~ =0.
s=l

t,tsbvs = t, Dh (t) +t~] [~bh (N) +bV~]
3

= ~h (t) st, (N) +Lt~bV~
s=l

and moreover

3 3

L t~bV~ = 2; LsinXs (sin Wsbr +r COSWs bWs)
s=l s=l

= 7 (COSwbr + r sin wbW) ,

where w = X - Wis the angle of similarity of the deviators. We arrive then
at the relationship

bA = eI, (N) Dh (t) st, (N) + 7 (COSWbr + r SinwbW)] . (3.5.4)
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Considering A as a function of the invariant values h (iV) ,r, 'ljJ we obtain

8A 1 ( ' ) () 8A ( ' ) 8A ( ' )

(

, ) = "3 eli N t, T , 8r = eli N TCOSW , 8 "1, = eli N Trsinw.
et, N 'f/

(3.5.5)

Denoting

(3.5.6)

we return to formulae (3.4.11) with the difference that the invariants of the
logarithmic strain measure have appeared .

The differential dependences between the invariants II (T) ,T , w of the

stress tensor are now put in the form

8T COS W

= T COSW + ( ') 'ot, N
8TCOS W _ . r8Tsin w

8'ljJ - T sm W + 8r'

~ 8h (1') _ (,. 8T sin w)
3 8'ljJ - I' T sm W + ( ' ) .

oi, N

(3.5.7)

These are simplified for the materials with a zero angle of the deviator sim

ilarity, because A becomes independent of parameter 'ljJ. However h (1') , T

are related to each other as follows

(3.5.8)

This relationship can be satisfied by assuming

(3.5.9)

In this case I, (1') depends only on the first invariant of the logarithmic

strain measure (the ratio of the volumes in the deformed and initial states) .
The second invariant of the stress deviator, and thus modulus u, are de
pendent not only on r but also on the above ratio of the volumes.

According to eqs. (3.5.3), (3.5.6) the const it ut ive law for the materials
with zero angle of similarity is written down in Hencky's form

t s = u, (iV) + 2ftv~ , l' = u, (iV) E+ 2f.LDev iV, (3.5.10)
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and for experimentally determining the "moduli of compression k and shear
J.l" it is necessary to utilise the following relations

(3.5.11)

In the case of the incompressible material

I, (.iV) = /11 + /12 + /13 = 0, .iV = Dev.iV, (3.5.12)

the variation of the specific strain energy (3.5.4) takes the form

8A = T (cosw8f + fsinw8'¢),

where the value h (i') = 3p remains undetermined. For materials with

zero angle of similarity of the deviators (w = 0) , we have

8A T (f2
2 2 )A = A (r) , T = 8f ' J.l = r = J.l (I") , 4 = /11 + /12 + /11/12 (3.5.13)

and the stress tensor is as follows

(3.5.14)

(4.1.2)

8.4 Approximations of the constitutive law

8.4.1 Signorini's quadratic constitutive law

General constitutive laws for the nonlinear elastic media are made specific
either by prescribing the explicit expression for the specific strain energy
in terms of the strain tensors (or strain measures) or by assuming some
explicit expressions for the laws. Considering certain simple states of stress
allows using the experimental results for determining a priori introduced
coefficients in these expressions.

Signorini studied the constitutive law with the quadratic dependence of
compo~ents of the stress tensor on the compo!,1ents of Almansi's strain

tensor i, both tensors being coaxial. Instead of t the strain measure gX is
introduced and the general expression for this dependence is as follows

T' (I' 1,2 I' ) C' (I' ) - x ' X 2= ml 2 + m2 1 + m3 1 + m4 - ms 1 + m6 9 + m7g ,

(4.1.1)

where mk are some constants and 1£ = h (gX) . Comparing the latter equa
tion with eq. (2.4.2) and using formulae (2.4.4) we arrive at the relationships

8A 1 , 8A 1 }
81' = /Ti[(ms-m7)Il+m6], 81'= /Tim7,

1 2yI3 2 2yI3

8A 1 ( , )-3/2 (' ,2 , )
8I~ = -"2 13 ml I2 + m2Il + m3Il + m4 .
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Only two of the integrability condit ions need to be considered as the third
one holds identically

8
2
A 1 ( , )- 3/2 1 ( ,) -3 /2

8I~8I3 = - 4 13 m7 = -2 13 ml ,

8
2
A 1 (/ )- 3/2[( ) 1 ] 1 ( / )- 3/2 ( 1 )

8I38I~ = - 4 13 m5 - m» I I + m6 = - 2 13 2m2Il + m3 .

We thus arrive at the equalities

so th at the constitut ive law is proved to depend on four constants

, (' P I ) 'T = m 1I2 + m2Il + m3Il + m4 G-

[(2ml + 4m 2) I~ + 2m3] fJ x + 2mlfJ x2. (4.1.3)

(4.1.4)

(4.1.5)

The specific strain energy is now given by

A l (' 1
2

1 )= J"l1 m 1I2 + m2Il + m3Il + m4 + const ,

which is easy to prove by eq. (4.1.2).
The constant m 4 can be expressed in terms of the value of the uniform

tension in the initial state when I~ = I~ = 3'/3 = 1, fJ x = G. In this state

To = .c = (-ml - 3m2 + m3 + m4) G,
and ret urning to eqs. (4.1.3) , (4.1.4) we have

T = [q + m l (I~ + 1) + m2 ( I~2 + 3) + m3 (I~ - 1)] G-

[(2ml + 4m2) I~ + 2m3] fJ x + 2m liy 2, (4.1.6)

A = ~ [m1 (I~ + 1) + m2 (I~2 + 3) + m 3 (I~ - 1) + q] + const .

(4.1.7)

If the initi al stat e is the natural one, then q = 0 and the consti tutive
law is determined only by three coefficients. In order to compare this law
with th e generalised Hooke's law of the linear theory w! replace the stra in

measure fJ x and its invariants 1£= h (fJ X) by tensor t and its invariants

j~ = t, (£) respectively. The calculat ion is carr ied out by formulae (4.3.3)
and (5.4.6) of Chapter 2. Intr oducing

1 ( C) C4m l = c, 4m2 = 2 A+ f-l - 2 , 4m l + 12m2 + 2m3 = f-l+ 2 (4.1.8)
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we can write eqs. (4.1.6) and (4.1.7) in the form

t = [Aj~ + cj~ + ~ (A + P, _ ~) j~2] G+

2[P,-(A+p,-~)jnE+2ct , (4.1.9)

A 1 [ ., 1 ( C) .,2 ( C) ( ")] ( C)= ~ cJ2 +"2 A+ p,-"2 JI + p,+ "2 1 - JI - P, +"2 '

(4.1.10)

where the additive constant is chosen such that A = 0 in the natural state.
Remark 1. The quadratic constitutive law for the ideally elastic body

suggested by N.V. Zvolinsky and P.M. Riz (1939) contains five constants
and is written down in the form

t = [A'j~ + (B + ~) l - (C + 3A') j~] G+
~ ~2

[2p,' + (C + A' - 2p,') jn £+ (A + 5P,') £ (4.1.11)

and can be made consistent with Signorini 's constitutive law (4.1.9) if we
take

" 1 ( C)A = A, p, = p" A = 2c - 5p" B ="2 p,-"2 ,C = -c - 3A, (4.1.12)

where A,p" C are the constants appearing in eq. (4.1.9). This means that
the suggestion A = B = C = 0 contradicts the assumption of the existence
of the specific strain energy.

Remark 2. Seth considered a series of nonlinear problems by applying
the following constitutive law

(4.1.13)

This law presents a seemingly natural generalisation of Hooke's law of the
~near theory of elasticity which is obtained from eq. (4.1.13) by setting

£ = f; and j~ = iJ. The law (4.1.3) is energetically unacceptable which
is immediately seen by comparing to eq. (4.1.9). However this law allows
certain peculiarities of the nonlinear theory to be taken into account , for
example, the finiteness of the tension force causing the specimen break,
the necessity of the normal forces for the simple shear etc ., see Subsections
8.4.4 and 8.4.5. Under small relative elongations and shears the quantitative
results due to the quasi-linear law (4.1.3) do not considerably differ from
those due to Signorini 's law. On the other hand, the quasilinear law imposes
no restriction onto displacements and rotations, thus it is applicable to
problems which can not be solved by Hooke's law.
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8.4.2 Dependence of the coefficients of the quadratic law on
the initial state

Similar to Subsection 8.2.3 we consider two initial states, namely the initial
st at e Va and the st ate v* which is obtained from Va by the similarity trans
formation. The invariants 1£ = h (gX) are related by the second group of
formulae (5.6.3) of Chapter 2 and relation (2.3.4) is set in the form

A (I~ , I~ , I~) = K 3A* (I~*, I~* , I~*) = K 3A* (I~K2 , I~K4, I~K6). (4.2 .1)

This equa lity can be satisfied by taking

where

* m2
m2 = K4 ' (4.2 .3)

Indeed, replacing m'k , I~* in terms of mk, 1£ we arrive at relationship (4.2.1).
In the case in which the initial state is v*- volume, the expression for

the stress tensor is constructed with the help of formul ae (2.4.3) and (2.4.4)

(4.2.4)

Proceeding now to st rain tensor Eand introducing

1 ( C*) c*4m* = c* 4m* = - .x* - 1/* - - 4m*+ 12m* + 2m* = 1/* + -
1 , 2 2 r: 2 ' 1 2 3 r: 2'

(4.2.5)

similar to (4.1.8) , we arrive at the expression for the stress tensor which
is analogous to eq. (4.1.9) but contains a nonvanishing term in v*- volume

(when E* = 0,*j~* = 0)

T = qG + [.x*j~* + c*j~* + ~ (.x* + /1* - c; ) ] G+

2 [/1* - (.x* + /1* + c; ) j~*] i. +2c*£~ , (4.2.6)

where
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Using eqs. (4.2.3) , (4.2.5) and (4.1.8) one can relate constants )...*,f.t*,c* to
)... ,u;c in the following way

x= K 4 )...* + ~K2 (1- K 2) (3)",* + f.t* _ c~) ,

f.t = K 4 )...* - ~K2 (1- K 2) (3)",* + f.t* - c
2),

c = K 4c*.

(4.2.8)

The deformation process under increasing temperature can be seen as
consisting of two parts. The temperature of an imaginary cube with the
initial zero temperature increases to B which is accompanied by the defor-

~O

mation £ due to the similarity transformation with the coefficient

KO = 1+ cd), (4.2.9)

(4.2.10)

which causes no stresses. The stress is caused by the reactive interaction
of the surrounding medium and is determined by the corresponding strain
~/ (~/) (~~O)£ such that T = T £ = T £ - £ . Here £ denotes the strain ten-

sor vanishing in the medium with zero temperature and TO = T ( -t)
denotes the spherical stress tensor describing the all-round compression
needed for the cube in order that it has the sizes corresponding to zero
temperature.

This means that the natural state (va-volume) of the cube is the state
at temperature B, i.e. when T = O. The transformed state (v*-volume)
with the similarity coefficient

K=_l =_1_
KO 1 + aB

is the state at temperature B = O. By eq. (4.2.6) the stress tensor in this
state is equal to

TO = qC = ~ 1 ~:5[1::5 (3)",* + 3f.t* - ~) - c* + 2f.t* + 6)",*] C,
(4.2.11)

where X*, f.t* ,c* are the values of the corresponding moduli at B= 0 whereas
their values at temperature B are given byeqs. (4.2.8) and (4.2.10).

Neglecting the degrees in aB which are higher than the first one we obtain
byeq. (4.2.11)

TO = - (3)",* + 2f.t*) aBC. (4.2.12)

Such a temperature term is added into the expression of the stress tensor
of the linear theory of elasticity, see eq. (3.4.8) of Chapter 3.
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8.4.3 The sign of the strain energy

In what follows we consider a "s implified" constitutive law of Signorini.
In this law c = 0 since a non-zero value of c results in a considerable
complicat ion of the results. By eqs. (4.1.9) and (4.1.10)

T = [Aj~+~(A+fl) l ]G+2[fl-(A+fl)j~ ]£,
A= JJI [~(A+ll)l +fl(l- jD- flJ1I] ,

where the addit ive const ant is determined by the condition that A = 0
when the deform ation is absent (i.e. at I~ = 1, I~ = 3).

Similar to Hooke's law of the linear theory, the simplified Signorini's law
contain~ only two constant s however t he essent ial difference is not only in

tensor £ (instead of linear st rain tensor) but also in the addit ional terms
underlined in eq. (4.3.1).

It is required to establish the domain of parameters (A, fl) in which the
specific st rain energy is positive for any state different from the natural
st at e for any positive I~ and I~ . The necessary condit ions (2.9.7) guarantee
t he positiveness of A only under small deformati ons, i.e. when I~ and I~ are
close to 3 and 1 respecti vely. Considerat ion of a more difficult problem of
constructing the crite ria of positiveness of A for any deformations requires
the est imates of I~ for given I~ . Denoting the pr incipal values of the strain
measure gXby 98 we have

It is known that the product of several positive numb ers with a given sum
reaches a maximum when all these numbers are equal to each other , thus

3

I~ = 919293 ::; [~(91 + 92 + 93)]

Since

1,2 (3 - [,)2 = ['2 (3 + 1,)2 _ 121,3 > 01 1 1 1 1-'

we can improve t he previous inequality

Ie (3 + ID2 ~ 27 · 12J~ , J1I ::; 1~ (3 + ID I~ .

In par ticular , if I~ = 3 we obtain I~ ::; 1 and the equality sign holds only
in the natural state , t hat is t he condit ion
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leads to the familiar criterion

/l > O.

The terms in eq. (4.3.2) are now set in the form

hence

8A JII = ~/l [(I~ + 3) I~ - 18JII] + (9'\ + 5/l) (i _1) 2

(4.3.4)

(4.3.5)

Due to eq. (4.3.3) the expression in square brackets is non-negative and
the sufficient condit ion for the positiveness of A is the following inequality

9,\ + 5/l > O. (4.3.6)

Criteria (4.3.6) and (4.3.4) ensuring the positiveness of the specific strain
energy in the whole domain of the principal relative elongati~ns -1 :S 88 <
00 (or the principal values 00 < £8< 1/2 of the strain tensor £) increase the
lower boundary (2.9.7) for parameter ,\ (,\ > -5/9 instead of ,\ > -2/3/l) .
This decrease in the domain of parameters ('\ , /l) is expected since the
necessary crite rion (2.9.7) ensures the positiveness of A only for sufficient ly
small 88 ,

Introducing a new parameter

,\ _ 2/lv
- 1- 2v ' (4.3.7)

which corresponds to Poisson's ratio in the linear theory we can put crite
rion (4.3.6) in the form

such that

5+8v 0
1- 2v > ,

5 1
- - < u < - .8- -2

(4.3.8)

(4.3.9)
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8.4.4 Application to problems of uniaxial tension

In this case T = tllilil . By eqs. (4.3.1) and (4.3.7) we have

tll v ., 1 l ( 1 .,) -
2f.l = 1 - 2v h + 1 - 2v 4 + 1 - 1 _ 2v h Ell ,

tkk v ., 1 j~2 ( 1 .,) _
2f.l = 1 - 2v h + 1 - 2v 4 + 1 - 1 _ 2v h Ekk = 0

tks ( 1 ., ) -
2f.l= 1-1_2vh Eks=O (ki- s) ,

such that

(k = 2,3) ,

(4.4.1)

(4.4.2)

Inserting this value of j~ in th e second equat ion (4.4.1) for k = 2 we
obtain th e biquadratic equation

-2 - - 1 -2
E22 - E22 - vEll - :tEll = O. (4.4 .3)

The discriminant of this equation

~ (Ell + 4vEll + 1) = ~~

is positive for all values of v in th e interval (4.3.9) and for th e values

- 1
- 00 < Ell < -- - 2 '

corresponding the relat ive elongations

-1 < 81 < 00,

(4.4.4)

(4.4.5)

see eqs. (4.2.2) and (4.3.3) of Chapter 2.
The root of eq. (4.4.3) which is smaller than 1/2 is equal to

- 1 [( - -2 ) 1/ 2] _ ( _ _ ) 1/ 2
E22 ="2 1 - 1 + 4vEll + Ell , 1 - 2E22 = 1 + 4vEll + E;1 .

(4.4.6)

Referring to the equality

(1+ od -2=1-2Ekk, Ok = (1_2Ekk) -1 /2 -1 ,

we obtain

(4.4.7)

(4.4.8)
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Under this approximation the ratio i/ of the transverse contraction to the
elongat ion is proved to be a linear function of the elongat ion.

By virtue of eqs. (4.4.6) , (4.4.2) and (4.4.1) we also have

tll - -2 1/2 ( - )-; (1 - 2v) = 1 + 2v + £11 - £11 - ~ 1 + 2v - £11 . (4.4.9)

The cross-sect ional area S of the elongated rod is related to the initial
value by the equality

enabling one to present the tensile force in the form

Q _ S - j.tSa [E _1 _ 2 1 + 2v + Ell - Ef1 ]
- t ll - 1 _ 2v 11 V + _ _ 1/2 .

( 1 + 4V£11 + £f1)
(4.4.10)

Expanding the right hand side in terms of Ell and retaining the terms
up to the second degree we arr ive at the equality

Q = ES E [1 _~ (1 + 2v) 2E ]
a 11 4 l+v 11 , E = 2j.t (1 + v) , (4.4.11)

where E denot es Young's modulus of the linear theory.

Under an infinite elongat ion (81---? 00,Ell ---? 1/2) the tensile force is

finite. In Signorini 's theory, thi s force results in the specimen breaking and
is equal to

It remains finite for all admissible values of v

(4.4.12)

5 1-- < v < 
8 - - 2 ' (4.4.13)

In contrast , the compression force corresponding to the zero length of

the rod (81---? -1 , Ell ---? -00) is infinitely great .

8.4.5 Simple shear

It is defined by the following tensor

(4.5.1)
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see Subsection 2.6.3. In the framework of the simplified Signorini theory
the components of th e stress tensor are as follows, see eq. (4.3.1)

(4.5.2)

Realisation of th e shear requires applying normal loads to all faces of the
tested cube. This is one of the essent ial differences between the nonlinear
and linear theories because only shear str ess t12 = J.lS is needed in the lat ter
theory.

8.4.6 Murnaghan's constitutive law

The specific stra in energy is expanded as a power series in terms of the
invariants of Cauchy's stra in tensor with the constant coefficients

A . 1 (A 2 ) '2 2 ' 1 (l 2 ) ,3 2 .. .= 0:)1+ 2 + J.l 1I - J.lJ2 + '3 + m 1I - mJIJ2 + nJ3 + . ..

= (O-~) j1 +~(A+2J.l)j?- (2J.l+%)j2+

1 ( ) .3 . . n ( 2 )'3 l+2m 1I -2mJIJ2+S e -1 + .. . (4.6.1)

The denotations are coincident with those of Murn aghan . Keeping only the
terms shown in th e above equat ion and using eq. (2.5.7) we arrive at the
following expressions for the moduli

~= O+Aj1+ljf-(2m-n)j2+2nj3 ' }

rh=2 [J.l + 0 + (A + J.l + ~) i, + ljf - 2mj2] ,

2 ( n )m= 2 2J.l+ '2 +2mj1 ,

(4.6.2)

where 0 = 0 if the initial state is the natural one. Provided that only the
"classical" terms of the linear theory are kept , i.e.

(4.6.3)

we obtain th e const it ut ive law

(4.6.4)
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that differs from Hooke's law.
The dat a used to determine the coefficient s 1,m , n in Murnaghan 's for

mulae are few in number and unr eliable. A small table for several mat erials

is shown below! (v = 2 (,\~ f.1))

Mat erial u ,\ 1 m n
polystyrene, [1] 0,338 0,138 -1,89 -1,33 -1,00
armco-iron, [1 ,2] 0,32 8,20 -3,48 -103 110
pyrex glass, [1,2] 0,165 2,75 1,40 92 42
nickel st eel, [1 ,3] 0,28 7,8 -4,6 -59 -73
copper, [4] 0,34 4,9 -16 -62 -159
st eel, [5] 0,3 8,1 -34 -63 -76

Table 8.1 Murnaghan 's coefficients x 10-10 , N/m2

8.4.7 Behaviour of the material under ultrahigh pressures

As in Subsection 8.2.3 we consider the natural st at e (va-volume) and
the state obtained from the natural state by a similarity transformation
with coefficient K (v*-volume). The coefficients of the const itutive law of
V - volume for the first and second choices of the initi al state are denoted
respectively as

a = 0, A.f.1,1,m,n; o" , '\* , f.1* , 1* ,m*, n* .

Using eq. (2.3.4) we can write the equality

A = ~ (,\+ 2f.1 )j; - 2f.1j 2 + ~ (1+ 2m) jr - 2mjd2 + nj3 (4.7.1)

= K 3 [a* H + ~ (,\* + 2f.1*) H
2

- 2f.1*j~ + ~ (1* + 2m*)j~3_

2m*j~j~ +n*j 3] '

1The data for th e table are taken from the following pap ers:
[1] Zarembo, A.K., Krasilnikov, B.A. Intr odu cti on into nonli near acoust ics (in Rus

sian) . Moscow, Nauka, 1966.
[2] Huges, D.S. , Kelly, J .L. Second-order elast ic deformat ion of solids . Physical Review,

vol. 92, p . 1145, 1953.
[3] Creckkraft, D.J. Ultrason ic wave velocit ies on st ressed nickel steel. Nat ure, vol. 92,

No. 4847, p. 1193, 1962.
[4J Seeger , A., Duck, O. Die expe run eutelle Eruu tt lung der elast ischen Konstanten

hohere Ordnung. Z. Natur., vol. 15a, 12, 1960.
[5] Sekoyan , S.S., Eremeev , N.E. Measure ment of t he elast icity constants of the third

orde r for the st eel by mea ns of th e ultrasound (ill Russian ). Izmeri telnaya Tekhnika, vol.
7, 1966.
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Replacing j ie in terms of jk with the help of eq. (5.6.4) of Chapter 2 and
equating the coefficients associated with the same degrees of u, we arrive
at t he following equalit ies (Brillouin)

n' = n ](3, tn" = m](3, / ' = LI{3,

211' = ]( [211 + (1- ](2) (~ - 3m)] ,
,\' + 211' = K [,\ + 211 + (1 - ](2) (2m + 31)] ,

](0:' = (1- ](2) [-~ (3'\ + 211 ) + ~ (1- ](2) (n +91) ] .

(4.7.2)

(4.7.3)

The latter formula describes the state of st ress in v, - volume und er the
all-round comp ression

where the bulk modu lus of the linear theory is denot ed as

2
k -'\ +-11- 3 '

Taking into account that

(4.7.5)

](3 = V, = 1 _ .6. V = 1 _ e
Vo Vo '

where V, and Vo denote t he volume of the specimen in the compressed
and natural states respectively and e is th e dilatat ion, we arr ive at the
relat ionship

(
V, ) 1/3 3 [ ( V, ) 2/3 ] 1 [ ( V, ) 2/3]2

P V
o

="2 k 1 - V
o

- 4 (n + 91 ) 1 - V
o

(4.7.6)

In Bridgman's test s the pressure reached a value of 100000 at m. The
results of t hese test were present ed by Murnaghan by formul a (4.7.6) with
the following numerical values for the parameters

k = 0,62 8 . 104 at m, n + 91= -406,2 . 104 at m.

These values were obtained by fit tin g t he measured and calculated values
of e for p = 2, 5.104 atm and p = 105 at m, the erro r being under 1% for
the values of p between 104 at m and 105 atm. The dilatation e increases
from 0,211 to 0,394 und er t he increase in pressure from p = 2,5 · 104 atm
to p = 105 at m. It is interest ing to notice t hat In +911 » k which means
that t he te rms of t hird order in the expression for t he specific st rain energy
sho uld be kep t.
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Retaining the terms of the second order in 8 in eq. (4.7.6) we obt ain

p = k8 + ~ (k - I - ~n) 8 2

2 9 '
(4.7.7)

For k = 11,85 . 104 atm (that corresponds to the measured value of
8 = 0,211 for p = 2,5 . 104 atm) the linear approximation deviat es con
siderably from the result s of the measur ement for p = 5 . 105 atm (linear
approximation yields 8 = 0,422 compared with the measured value of
8 = 0,292). The second term in eq. (4.7.7) does not essent ially improve
the sit uat ion provided that the coefficients are determined in terms of those
measured at pressures p = 2,5 . 104 at m to p = 105 atm.

It is necessary to mention that we discussed "ult rahigh" pressures and
compliant materials. For pressures less than 104 atm and standard engi
neering mat erials, formula (4.7.7) yields quite reliable results even with the
linear approximat ion.

8.4.8 Uniaxial tension

In the problem of tension in a prismatic rod acted on by the forces having
the direction of the rod 's axis (X 3) , the tensors exand gX are coaxial,
that is T' = T. Representing the strain tensor Ein the form

(4.8.1)

where £k and Edenote respectively the principal values and the unit tensor
we have

£2 = £fE+ (£j - £n i3i3,

j1 = 2£1 + £3, h = £f + 2£1£3, h = £1£2£3,

see eq. (A.lO.lO). Using Murnaghan 's const itut ive law and requiring the
components of the st ress tensor to be zero, except for t33, we arrive at the
relationships

2 (,\ + J-l) £1 + '\£3 + I (4£f + 4£1£3 + £j) +
2m£1 (£1 - £3) + n£1£3 = 0, (4.8.2)

where
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The stress corresponding to the unit of th e cross-sect ional area in the
initial st ate is equal to

t3 = t33 (1+ <5d
2 = 2(£3 - £d VI + 2£3 [IL + m (2£1 + £3) - ~n£l] .

(4.8.4)

Following Murnaghan , we represent the result of the test of the specimen
tension in the form

Xl = (1 - ve + ,Be2) al , x2 = (1 - l/C + ,Be2) a2, x3 = (1 + e + &2)a3,
(4.8.5)

where 13, <5 are the empirically fitt ed coefficients and e is a small parame
t er coinciding with the relative elongat ion of the rod in t he linear theory.
Truncating the expansion with terms of second order in e, we obtain by
means of eq. (3.6.4) of Chap ter 2

£1 = -ve+ (~v2 + 13) e
2
, £3 = e+(~+ 8) e

2.

Inserting into eqs. (4.8.2), (4.8.4) and comparing the terms linear in e, we
find

(4.8.6)

Therefore, u and E are relat ed to >., IL in the same fashion as Poisson 's
ratio and Young' modulus in t he linear theory. Equating the remaining
terms of second order in e to zero, we arrive at the following equations

2 (>' + IL) ,B + >'8 = ->. (~ +v2) - ILV2 -I (1 - 2V)2 - 2mv (1+ v) + tu/ ,

IL (8 - ,B) = -IL (~ + v - ~ v2) - m (1+ v) (1 - 2v) - ~n ,

relating the coefficients I, m , n of t he const it ut ive law to the empirically
determined coefficients 8,13.

8.4.9 Incompressible material

For incompressible materials

/ 3 (e x) = c,G2G3 = 1, (4.9.1)

where Gs denotes the principal values of Cauchy's st rain measure ex.The
expression for the specific strain energy suggested by Mooney (1940) has
the form

(4.9.2)
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where GI and G2 are the non-negative constants

(4.9.3)

It is easy to prove that inequalities (4.9.3) are the necessary and sufficient
conditions for the positiveness of A in all states different from the initial
one when A = O. Indeed, recalling that

one can set eq. (4.9.2.) in the form

(4.9.4)

The sum of three positive numbers, whose product is equal to one, has a
minimum when these numbers are equal to each other, that is each of these
numbers is equal to one. Hence, under condition (4.9.1)

111
-+-+--3>0
GI G2 G3 -

(4.9.5)

and equalities (4.9.3) are the sufficient conditions for the positiveness of A.
They are also the necessary conditions. Indeed, at least one of the constants
GI , G2 , say GI , must be positive. Assuming G2 < 0 one can always find the
positive numbers G I , G2 , G3 , whose product is equal to one, such that the
following inequalities

GI < 12 - 3 _ Gil + G21 + GSI
- 3

IG2 1 !t-3- GI+G2+G3-3 '
A < 0 (4.9.6)

hold.
The stress tensor for the Mooney material can be presented for example

by Finger's formula (2.4.6) which takes the particular form

(4.9.7)

Another representation for the specific strain energy in Mooney's form,
in terms of Almansi's strain measure, is given by

(4.9.8)

see eq. (5.2.4) of Chapter 2. According to eq. (2.4.2) the stress tensor is as
follows

(4.9.9)
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Clearly, the constitutive equa t ions (4.9.7) and (4.9.9) are two forms of the
same constitutive law. We can easily convin ce ourselves of this by replacing
gX by tensor !VI = gX- I.

By virtue of eq. (2.1.5) th e energet ic stress t ensor 0 is given by

(4.9.10)

(4.9.11)

Based upon eq. (2.4.9) , one could assume that 8AI8h = O. However this
is a mistake since the derivative 8A I8h is a function of th e invariants h ,h
which is not known in advance and is obtained from the st atic equa t ion
and the condition h = 1. Formula (4.9.2) provides one with the value of A
in the plane h = 1 in th e space of the paramet ers h ,12 , h in this plane.
Returning to definitions (2.1.7) . (2.4.3) we have

8A I - I 0- = c =e -CI h - C2h
8h /3=1

Representation of the specific strain energy in Moon ey's form (4.9.2) was
preceded by the simplified form

A = Cj (h - 3) . (4.9.12)

This form was suggested by Treloar as a result of representing rubber as a
system of interacting long molecular chains . The sam e form referr ed to as
the neo-Hookean body was ap plied in th e first papers by Rivlin , 1948.

Mooney 's formula redu ces th e void between the th eory and experiment.
The measurements in a large range of deformation discover ed a dependence

. 8A 8A . . . .
of the ratio 8h I 8h on 12 (Rivlin and Saunders, 1951) and this gave rise

to a more general Moon ey's formul a

A = C j (II - 3) + f (h - 3) .

8.4.10 Materials with a zero angle of similarity of the
deviators

(4.9.13)

Following th e definition (3.4.1) of Chapter 1 we introduce into considera t ion
the modified energet ic stress tensor

(4.10.1)

The expression for th e const it ut ive law in the form of cq. (3.4.1) can be
kept for tensor 00 if k, J-l are replaced respectively by

oJ-l=
[

12 (Devo ~)] 1/2 = {Gu.

412 (Dev [) Y9
(4.10.2)
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Formulae (3.4.11) are now reset in the form

aA .-a' = Ok)l '
)1

aAar = oJ.lrCOSW,
aA _ r 2 '
a'lj; - oJ.l smw (4.10.3)

and for materials with a zero similarity angle w = 0 we have

For such materials

(4.10.4)

(4.10.5)

and they are not incompressible. Considering A as being a function of n ,h
we have, due to eq. (3.4.16)

aA ( 4) .
aj1 = ok + "3 0J.l )1,

aA
- . =-20J.l.
a)2

(4.10.6)

The constitutive equations (3.4.1) now take the classical structure of
Hooke's law

(4.10.7)

where ok,oJ.l are functions of ]l ,r (or ]1,]2).
Hencky's body is a particular example of a material with a zero simi

larity angle for a constant ok, then oJ.l = oJ.l (I") which follows from the
requirement of the compatibility of the relationships in eq. (4.10.4)

ok = const , (4.10.8)

(4.10.9)

Another particular example is the constitutive law suggested by Neuber .
Using the classical denotations (4.3.9), (4.7.5)

2 2v
ok - - oJ.l = 0>' = oJ.l--,

3 1- 2v

we assume a constant "Poisson's ratio" v in the constitutive law (4.10.7)

00 = 20J.l (1:2)IfJ +f) .
Then by eqs. (4.10.4) and (4.10.9) we have

(4.10.10)

aA 1 1 1 + v
aH = 2ok = "3 oJ.l 1 - 2v '

aA 1
ar2 = 2°J.l,
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so that

8A 2 1 + 1/ 8A
8jf - :3 1 - 21/ 8r2 = 0, (4.10.11)

and the general solution of thi s first order partial differential equation can
be set in the form

Here 0 ~ is a constant and A+ denotes a classical (Hookean) expression
for the specific strain energy of the elastic body with Poisson's ratio 1/ and
shear modulus equal to 1/2 .

For Neuber's body, the "shear modulus" is a function of A+ given, due
to eqs. (4.10.4) and (4.10.12), by the equation

(4.10.13)

In order to const ruct the constitut ive law in Neuber's form one needs the
experimental dependence of the specific st rain energy on A+ calculated in
terms of the measured st rains.

8.5 Variational theorems of statics of the
nonlinear-elastic body

8.5.1 Principle of virtual displacements

The statement of this principle for the solids was given in Subsection 1.3.5.
This principle was used to derive eq. (3.5.6) of Chapter 1, which defines
the elementary work of the exte rna l forces Ii'a re) with th e help of the stat ic
equat ion (3.3.1) of Chapter 1. Here we prove the inverse stat ement , namely
the stat ic equations in V -volume and on its surface 0 are contained in
the principle of virtual displacements provided that the expression for the
elementary work, eq. (3.5.6) of Chapte r 1, is prescribed.

Indeed, by virtue of eqs. (3,5,3) and (3.5.5) of Chapter 1, we have

8'are) = ~ 111 pt
8GstdT = 111 pK · 8R dT +11F · 8RdO. (5.1.1)

v v 0
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Transforming the integration over v- volume by the integration over its
surface 0 yields

(5.1.2)

Here we used eq. (3.5.4) of Chapter 2 relating the areas dO and do. Noticing
that

! {Gist8Gst =! {Gist (Rs ' 8R t + R t. 8R s ) = {GistRs ' 8R t2Yg 2Yg Yg
1 [0 rr;-st 0 rr; -st ]=,.;g Oqt v Gt R s ·8R-8R· OqtvGt n, (5.1.3)

and using the tr ansformation of a volume integral into a surface one, eq.
(E.S.1), we have

Returning to eq. (5.1.2) we arrive at the relationship

JJJ~ (po,.;gK + o~t vG[stR s ) • 8RdTo+
v

11~ (VGikninkF - i" R,n,) . 6RM ~ O. (5.1.4)
o

The requirement of that the volume integral vanishes due to the arbi
trariness of the field of the virtual displacement 8u = 8R in the volume of
the body result s in the stat ic equations in the volume

o rr;s t _
oqt V Gt R , + Po,.;gK - O. (5.1.5)

In the surface integral we have 8u = 8R = 0 on the part 01 of surface
o where the displacement vector u is prescribed. On the part 0 2 , where
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the surface forces F are prescribed, the vector 8u = 8R is arbitra ry. Hence
the requirement that the surface integral over 02 vanishes yields the static
equation on the surface

(5.1.6)

d. eq. (3.3.6) of Chapte r 1.

8.5.2 Stationarity of the potential energy of the system

In the ideally elastic medium the elementary work of the external forces
8'aiel is equal to the variation of the st rain energy. Recalling its definition
(1.2.13) and retu rning to eq. (5.1.1) we have

8III AdTo - IIIpK · 8RdT - II F · 8RdO = 0,
v V 0

(5.2.1)

where A denotes the specific strain energy.
In what follows the mass and the surface forces are assumed to be po

tential forces. The elementary work of th e potential mass force can be
determined by the relationship

(5.2.2)

where w (Xl , X2, X3) denotes the potential energy of the external force, for
example in the gravity field w= gX3, 9w= kg where k denotes the vector
of the ascending vertical. Therefore

IIIpK . 8RdT = - jfIp8wdT = - IIIPo8wdTo
V V v

= -8IIIPoWdTo ,
v

(5.2.3)

where the variation sign is placed in front of the integral since neither
volume Vo nor density Po is varied.

The case of the pot ential surface force is that in which the force app lied
to the elementary surface retains the value and the direction ("dead load")

(5.2.4)

Here as denotes the coordinates of point 1\1 on 0 which moves to point AI '
on 0 under deformation. As vector FOremains unchanged we have

II F · 8RdO = II FO· 8Rdo = II FO·8udo = 8II FO·udo, (5.2.5)
o 0 2 0 2 02
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where, as above, 02 denotes the part of surface 0 on which the forces are
prescribed.

Another example of the surface forces having a potential is the normal
pressure uniformly distributed over O. Then

JJF . 8RdO = -Po JJN . 8RdO = -Po JJJV.8Rdr.
o 0 v

According to the definition of the nabla-operator in V -volume

V· 8R = Rs .~8R=Rs · 8Rs8qS

and the previous equality is reset in the form

The variation of value VG can be presented in the form

r;=; 1 1 8G 1 r;=; st
8v G = rn 8G = rn 8G 8Gst = -2 v GG 8Gst

2vG 2vG st

= ~VGRS . Rt (R, . 8Rs + R, ·8Rt )

= ~VG (RS. 8Rs +R t · 8R t ) = VGRs · 8Rs,

(5.2.6)

(5.2.7)

since RtRt = G is the unit tensor of V -volume and V9 is not varied.
Equality (5.2.6) is then transformed to the expected form

JJ F·bRdO ~ -Po JJJ b~d70 ~ -Po· JJJ ~d70
o v v

= -Po8 JJJdr = -Po8V, (5.2.8)
v

with V denoting the volume of the deformed body.
Expression (5.2.1) of the principle of virtual displacement takes the form

where n denotes the functional over the displacement vector u

(5.2.10)
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This functional is referred to as the potential energy of the system, i.e. the
elastic body and the force field. Equality (5.2.9) verifies the stationarity
of this functional , that is, among all possible displacement fields in the
elastic body (i.e. those taking the prescribed values on od that particular
displacement field is realised for which the potential energy of the system
takes a stationary value.

Let us recall that under the stationary value of the function al one under
stands such a value th at variation bu results in the increment ~II of order
higher than Ibul. In the linear theory of elast icity it is proved that

~II > 0,

see Subsection 4.2.2, which implies that the stationary value of functional II
is a minimum . In the nonlinear theory of elasticity such a general statement
does not occur .

Remark 1. The differential equations and the natural boundary condi
tions of the variational problem of stationarity of functional II present the
static equations in the volume and on the surface in which the stress tensor
is expressed in terms of the strains by means of the constitutive law.

Indeed, repeating the transformation of Subsection 8.5.1 we have

The elementary work of the external (mass and surface) forces is repre
sented in the form of eq. (5.1.2). We arrive then at the relationship

- JJJ~sa ( 2a~s J9a~tn, + poJ9K) +
v

JJ bR (2/f; :~,n,R, - JG"n,nkF) ~dO ~ 0 (52.11)
o

and due to the arbitrariness of bR in the volume and on the part 02 of
the surface , where the forces are prescribed, we arrive at the differential
equations

(5.2.12)

with the boundary conditions

(5.2.13)

In order to return to the static equations (3.3.3) and (3.3.6) of Chapter 1
it is now sufficient to recall relationship (1.2.10).
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The equilibrium equations for the isotropic elast ic body in terms of the
displacements are reduced to the form

2 8 ;;;R [( 8A 1 8A) st 8A C m t ns
8qsyg t 81I + 18I2 9 - 8I2 mng 9 +

h ~~ c st] +PoygK = 0, (5.2.14)

They can be represented in terms of their contravariant components of
the external forces as follows , see eq. (E.2.2)

2 8 r; [( 8A 1 8A) sq 8A C mq ns 1 8A CSq]
J9 8qSY 9 81I + 1 8h 9 - 8h mng 9 + 3 81

3
+

2 [( 8A 1 8A) st 8A C m t ns I 8A c st] --------{q } Kq _
81I + 1 81

2
9 - 81

2
rnng 9 + 3 8h st +Po - 0,

(5.2.16)

[(
8A 1 8A) sq 8A C mq ns 1 8A c sq] _
81I + 1 81

2
9 - 8I2 mng 9 + 3 81

3
ns -

1 C CikninkFq. (5.2.17)
2 9

Remark 2. In the case of an incompressible body, the function al II is
varied under the side condition

13 -1 = 0, (5.2.18)

and the specific strain energy depends only on the invariant s 1I,12 . By
introducing the Lagrange multiplier p (q1 , q2 ,q3) one can write down the
varied integral in the form

sIllrA + p (I3 - 1)] dTO= III (~~{)II+ ~~{)h+P8I3)dTO'
v v

(5.2.19)

In the equilibrium equat ions in terms of the displacements one should
replace
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For Mooney's body these equations simplify considerably and take the
form

~a~s [(C1 + h C2)gsq - C2Gmngmq gns+~q] J9+

2 [(C1 + h C2 ) gst - C2Gmngmtgns + pGst]{ qt}+ PoJ(q = 0,
s 1 ~.,....-_

[(C1 + h C2 ) s" - C2Gm"gm
qg"s + pGSqjns = "2 J Gtknink p q.

(5.2.20)

Let us recall that according to Ricci's theorem, see Section E.3, the
derivatives of th e components of the metric tensors are expressed in terms
of th ese components and Christoffel's symbols, for instance

oc.; {q} {q}-a,. = Gqn + Gmq,q rm r n

agS~ = _ { S } lq _ { q } gst
aq' r t rt

and so on.

8.5.3 Complementary work of deformation

Let us start with the static equations in th e volume and 0 11 the surface,
eqs. (2.8.4) and (2.8.5), expressed in terms of the Piola-Kirchhoff tensor

V' . b + PoK = 0, n · fJdo = FdO = N . iuo. (5.3.1)

The variation of the st rain energy Sa, which is equal to the work of
the exte rnal forces under th e admissible displacement 8R = 8u from the
equilibrium position, is given by

8a = 111 pK ·8RdT+11 F·8RdO = 111 PoK8R dTo+11 n·fJ·8Rdo
v 0 v 0

= 111 (PoK + V' . fJ) .8R dTo + 111 fJ .. (V'8R)* dTo
v v

= 111 b .. V'8R*dTo. (5.3.2)
v

While deriving this formula we used the equilibrium equation (5.3.1) in the
volume, the transformation of the surface integral into the volume one, the
formula for the divergence of the product of a te nsor and a vector (B.3.1O)
and the permutation of operations V' and 8.
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The integrand in eq. (5.3.2) is the variation of the specific strain energy

8A = ii.. V78R*. (5.3.3)

Referring to the definition of the gradient of the scalar with respect to the
tensor, eq. (A.12.7), we have

, 8A
D = 8V7R' (5.3.4)

Expression (5.3.3) is rewritten as follows

(5.3.5)

and we introduce into consideration the quantities referred to as the specific
complementary work and the complementary work of the strains

B = b .. V7R* - A, b = JJJBdTo.
v

(5.3.6)

It follows from eqs. (5.3.5) and (5.3.6) that

8B = si:. .V7R* = V7R· .sir. (5.3.7)

Assuming now that B is expressed in terms of tensor b and using eq.
(A.12.7) we arrive at the relationship

V7R = 8~
8D

(5.3.8)

which is the inverse relationship for eq. (5.3.4).
In the performed Legendre transformation the specific strain energy plays

the part of the generating function for the mapping V7R -t b, whilst the
generating function for the mapping f> -t V7R is the specific complemen
tary work of strains.

Relation (5.3.4) is the constitutive law for the nonlinear elastic body and
expresses tensor b in terms of V7R. This constitutive law is in fact a system
of nine equations enabling tensor V7R to be determined. The solubility of
the system requires a non-vanishing Hessian

(s,t,r= 1,2,3),1°H=
82A

Bu; Bu,
--
8qt 8qr

where V7u = V7R - E and 8us/8qt denotes the components of V7u. Of
course, this problem is challenging and the solution for the semi-linear
material will be obtained in Subsection 8.5.5.
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8.5.4 Stationarity of the complementary work

Let us consider a nonlinear elast ic body subj ected to the "dead" mass and
surface forces. We also consider a statically admissible equilibrium of the
same body subj ected to the same body forces, this equilibrium being close
to the true equilibrium. For thi s varied state the static equations in the
volume and on the surfaces are given by

( ' , ) { FdO
n · D+ 8D do = (F + 8F) dO

on 0 2 ,

on 0 1 ,

(5.4.1)

(5.4.2)

since Kdm = Kodm in the volume and FdO = Pdo on the part of surface
where the surface forces are prescribed (K o and P denote the forces in
the initial state). Vector R = r + u is given on 0 1. Because vector R is
prescribed on 01 an unknown reaction force 8FdO app ears on 01 in the
varied state . By eqs. (5.3.1) and (5.4.1) we have

\1 ·8D=O, n' 8Ddo={ 8F~1O ~: ~~ :

Taking into account these relations and eqs. (5.3.6) and (5.3.7) we have

8b= fff 8D.. \1R*dTo= fff[\1 ·(8D.R)-(\1 .8D).RJdTO
v v

= ff n·8D·Rdo= 8ff n ·D ·Rdo. (5.4.3)
o 0 1

The variation sign is placed beyond the integral as vector R is prescribed
on 0 1.

We thus arrive at the equality

(5.4.4)

expressing the principle of st ationarity of the complementary work, namely,
the actual equilibrium state differs from any stati cally admissible state in
th at the value

i ; = b- f f n· D. Rdo,
01

(5.4.5)

referred to as the complementary work, has a stationary value.
In the actual state of stress the solid is continuous, that is, tensor c =

\1R obt ained in terms of tensor D by means of eq. (5.3.8) needs to be
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integrable. In other words, it should be the gradient of vector R . By virtue
of eq. (B.6.7) it means that the rotor of this tensor must vanish

\7 x 6 = o. (5.4.6)

This condition is equivalent to the principle of stationarity of the com
plementary work. To put it differently, this condition presents Euler's equa
tions for the variational problem of stationarity of functional b; subjected
to condition (5.4.2). This is verified by the method demonstrated in Sub
section 4.2.5. Entering a Lagrange vector>. we have

8b= fff[8B+(\7 '8b) '>.]dTO
v

=fff[8b .. 6*+\7 .(8b.>.)-8b .. \7>.*] dTO
v

=fff st: .. (6* - \7>.*) dTo + ff n · 8D ·Xdo
v ~

and by virtue of the principle of stationarity of the complementary work
we obtain

8b*= fff8b" (6*-\7>.*) dTo - ff n .8D.(R->.)dO=O. (5.4 .7)
v 0 1

Under an appropriate choice of>. one can consider variation 8D as being
arbitrary in the volume and on 01. Hence tensor 6 is the gradient of some
vector >. in v whereas this vector is equal to R on 01 ' We thus arrive at
relationship (5.4.6) expressing the continuity condition in terms of Piola's
tensor D.

8.5.5 Specific complementary work of strains for the
semi-linear material

The specific strain energy is given by eq. (2.8.7)

(5.5.1)

, 1/2
where 81 and 82 are expressed in terms of the invariants of tensor ex
with the help of eqs. (2.7.3) and (2.6.4)

(
' X

1
/

2
)h G = 81 +3, t, (ex) = 82 + 281 + 3. (5.5.2)
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The constitutive law is given by formula (2.8.8)

This yields the following representations for the symmetric tensors

A A [ A A 1/2 ] 2D ·D*= (ASI-2f-l)E+2f-lGx ,

(
A A ) 1/2 A A 1/ 2

D · D* = (ASI - 2f-l) E + 2f-lG X .

(5.5.3)

(5.5.4)

Taking into account eq. (5.5.2) one finds their first invariants denoted as
/I and 12

[(
A A ) 1/2]/I=h D ·D* = (3A+2f-l) SI'

(
A A ) 2 212 = h D· D* = A(3A + 4f-l) SI + 4f-l S2 . (5.5.5)

The expressions for SI and S2 in terms of the invariants /I and 12 can be
set as follows

SI = 3A+ 2f-l '
1 ( A(3A+4f-l) 2)

S2 = 4f-l2 12 - (3A+ 2f-l)2 11 . (5.5.6)

Inserting into eq. (5.5.1) allows the specific strain energy to be expressed
in terms of the invariants of tensor (5.5.4)

1 ( V 2)A=- 12--1
4f-l 1 + V 1

(5.5.7)

Using eqs. (5.5.2) and (5.5.6) one obtains

b .V'R* = t, (b .V'R*) = t, [(ASI - 2f-l) GX I
/

2

+ 2f-lGX] =

(ASI - 2f-l) (SI + 3)+2f-l (S2 + 2s1 + 3) = ASI+2f-lS2+(3A + 2f-l) SI = 2A+ /I

and according to definition (5.3.6) the specific complementary work ex
pressed in terms of tensor b is equal to

1 ( V 2)B=A+/I = - 12---11 +/I .
4f-l 1 + v

(5.5.8)

In order to determine tensor V'R by means of eq. (5.3.4) it is necessary
to obt ain the derivatives of the invariants /I ,12 with respect to b. We have
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and according to definition (A.12.7)

8~2 = zi:
8D

(5.5.9)

Before we proceed to determining 8h we notice that the derivative of
the first invariant of any symmetric tensor Q with respect to Q2 is equal
to

8h (Q) 1 A _

1
8Q2 ="2 Q

,

(
A) 1A_1 A2 1A_1 A A 1A_1 A A

st, Q ="2 Q .. 8Q ="2 Q .. Q . 8Q + "2 Q .. 8Q . Q ,

as Q-1 .. Q·8Q = (Q-1r.. Q*·8Q* = E; ·8Q* = st, (Q) for the symmetric

tensor Q.
(

A A ) -1/2
Applying this result to the symmetric tensor D· D* we obt ain

1( A A)-1/2 ( A A)8h ="2 D· D* .. 8 D· D*

1[( A A)-1/2 A A ( A A)-1/2 A A]="2 D . D* . D . . 8D* + D · D* . .8D . D*

and in the second term in the brackets one can replace tensor si: .ir by

( A A)* A A ( A A)-1/28D · D* = D· 8D* due to the symmetry of tensor D · D* . The

results are

(
A A)-1/2 A A

8h = D· D* . D .. 8D*,

Turning now to eq. (5.5.8) we obt ain

ot, ( A A*)-1/2 A
- A = D ·D · D.
8D

(5.5.10)

V'R= 8~ = ~ (8~2 _~f 8~1) + 8~1
8D 4J-L 8D 1 + v 18D 8D

and by eqs. (5.5.9) and (5.5.10)

1 [A ( v) (A A)-1/2] AV'R = 2J-L E + 2J-L - 1 + v I, D . D* . D. (5.5.11)

In accordance with eq. (5.4.6) vector R is determined by the integral

1 1M { [ A ( v) ( A A)-1/2] A} 0R = 2J-L dr- E + 2J-L - 1+ v h D . D* . D + R (1\1 )
MO

(5.5.12)
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along any curve between the points MO, M. The base vectors in the de
formed volume are given by

(5.5.13)

Remark 1. When the mass force is absent the state of stress satisfying
the static equat ion (5.3.1) in v-volume can be prescribed by assuming

(5.5.14)

where cI> is any twice-differentiable tensor. It should be taken such that the
boundary condition on 0 2

A dO
n ·D=F- =p

do
(5.5.15)

holds. The principle of complementary work can not be generalised to t he
case of an arbitrary (not "dead" ) loading inasmuch as prescribing K , F
requires knowledge of the geometry of the deformed body.

Remark 2. In the case of "dead" loading, Piola's tensor given in t he vector
basis of the initial state allows us to express the principle of stationarity of
the complementary work in terms of the static quantities only and avoid
the difficulty of removing the gradients of the displacement vector . The
presentation of Subsections 8.5.3-8.5.5 is based on the pap er by Zubov''.

2 Zubov , L.M. The stationarity principl e in the nonlinear t heory of elastici ty (in Ru s
sian) . Prikladnaya Mat em at ika i Mechanika , vol. 34, No 2, 1970.



9
Problems and methods of the
nonlinear theory of elasticity

9.1 The state of stress under affine transformation

9.1.1 The stress tensor under affine transformation

Sections 9.1-9.3 are devoted to those problems of the nonlinear theory of
elast icity whose solut ions can be obtained without prescrib ing a particular
form of the specific strain energy as a function of t he strain invariants.
However the particular form is needed for numerical calculat ions.

The solut ion is constructed by "the inverse method" and includes the
following st eps: i) one chooses a particular form of transformation from
v- volume into V -volume, ii) one const ructs an expression for t he strain
measure (or st rain tensor) , iii) one chooses a const it ut ive law and proves
whether the obtained stress tensor satisfies the static equat ions in V -volu
me, and iv) one determines the surface forces required for this st at e of
stress. The obt ained solut ions are meaningful if the resulting surface forces
can be realised with relat ive ease (the volume forces are assumed to be
absent ) and the obtained st ress distribution can be replaced by another
stat ically equivalent system of surface forces.

The affine transformation was defined in Subsection 2.6.1 where the
strain measure AI = g X-l was given by expression (6.1.3)

(1.1.1)

in which Adenotes the transformat ion tensor.
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The stress tensor given by the constitutive law in Finger 's form, eq.
(2.4.1) of Chapter 8, is as follows

(1.1.2)

Here E = isis denotes the unit tensor (in the Cartesian coordinate system)

and t, (iiI) = t, (ex).
Using the notation of Subsections 2.5.2 and 2.5.3 we have

since gX = iiI-I . We thus arrive at the relationship

t, (ex) iiI - iiI2= 12 (ex) E- h (ex) gX ,

the expressions for the invariants being given by formulae (6.1.8) of Chapter
2. In particular

Inserting this equation into eq. (1.1.2) leads to the following representa
tion for the stress tensor

(1.1.3)

as obtained by Truesdell.
In the case of no mass forces the equations of statics are satisfied since

T is a constant tensor

For the incompressible medium ,\ = 1, that is

, (8A' 8A , -1) ,T=2 -M - -M -pE,
ei, 812

A=A(h,I2), (1.1.4)
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where p denotes the unknown uniform pressure

(1.1.5)

The principal values of tensor if are easily expressed in terms of the
principal elongations 8q = VC; - 1. We have

, 1 1 2 2 2 2 3 3 2
M =ee (1 + (1) + ee (1 + (2) + ee (1 + (3 ) ,

, 1 1 22 33
M-1 =ee (1 + 8d - 2 + ee (1 + (2 ) - 2 + ee (1 + (3 ) -2 .

The expressions for the invariant s are set in the form

I , = (1 +(1) 2 + (1 + 82 ) 2 + (1 + 83 ) 2 ,

12 = (1 + 8d 2 (1 + 82 )2 + (1 + 82 ) 2 (1 + 83) 2 + (1 + 83 ) 2 (1 + 8d 2
,

Is = >.2 = [(1+ 81) (1 + 82 ) (1 + 83 )]2 .

q A

The st ress tensor has the same principal axes eas M . Denotin g the principal
values of the stress tensor by tq we have

A 11 22 33
T = tl ee +t2ee +t3ee,

and

Th e formulae for the remaining principal values are obt ained by a circular
permutation of the subscripts of 8q . These formulae are just another form
of the general relation (2.6.6) of Chapter 8.

Due to eq. (1.1.4) we have for the incompressible medium

8A 2 8A - 2
(1 + 81)(1 + 82 ) (1 + 83 ) = 1, ts = 28h (1 + 8s ) - 28[2 (1 + 8s ) - p.

(1.1.7)

9.1.2 Uniform compression

The affine transformat ion degenerates into the similarity t ransformation
with the similarity coefficient

(1.2.1)
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and due to eq. (1.1.6)

(
1 aA aA 3 aA)

t1 = t2 = t3 = 2 K alI + 2KaI
2

+ K ah = -P,

where P denotes the uniform pressure. At th e same t ime

II = 3K2, 12 = 3K4, h = K 6
,

hence

We arrive at the following relationship

1 dA
P = - 3K2 dK = f (p) ,

(1.2.2)

(1.2.3)

indicatin g that in the case of uniform compression any form of the relation
between P and p is consistent with th e relat ionships of nonlinear elast icity.

9.1.3 Uniaxial tension

Let the axis of th e tensile rod be coincident with axis X 3, t hen t1 = t2 = 0,
81 = 82 and due to eq. (1.1.6) we have

aA 1 aA (1+81 1+83 ) aA
alI (1 + 83 ) (1 + 81) + aI2 1 + 8

3
+ 1 + 81 + a1

3
(1 + 81 ) (1 + 83 ) = 0

(1.3.1)

(1.3.2)

(1.3.3)

We can express 81 in terms of 83 with the help of the first equation, then
by means of the second equat ion we obt ain the dependence t3 = t3 (63) .

However eq. (1.3.1) can have no real-valued roots and this indicates th at
the surface forces are required on the lateral surface (t1, t2 =I- 0) for the
simple uniaxial tension 81 = 82 . Equation (1.3.1) can have a non-unique
solut ion, i.e. the possibility of a non-unique dependence of the tensile force
on the elongation 83 is not excluded.

Such complicat ions do not take place for the incompressible medium .
In thi s case we have three equat ions for determining the th ree unknowns
t3,p,83. These equations are: the two equations (1.1.7)

aA 2 aA - 2 }2alI (1 + 8d - 2ah (1 + 81 ) - P = 0,

aA 2 aA - 2
t3 = 2alI (1 + 83 ) - 28I

2
(1 + 63 ) - P
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and the equat ion for volume conservation

(1.3.4)

Then we obt ain

where t; denotes the force act ing on a unit area of the initial cross-section
of the tensile rod .

For Mooney's mat erial, see Subsection 8.4.9, the first derivative of t;
with respect to 83 is positive for -1 < 83 < 00 since CI 2: 0, C2 2: 0,
i.e. the tensile force increases monotonic ally as 83 increases , the growth
decreasing with an increase in 8 ;1 ' However , in contrast to the material in
the simplified Signorini theory (see Subsection 8.4.4) the tension diagram
has no asymptote, that is, the tensile force breaking the rod (83 -t (0)
increases without bound .

9.1.4 Simple shear

Tensors Aand 1\* are given by formulae (6.3.2) of Chapter 2

if = A·k = (E+ 8ili 2 ) . (E+ 8i2il) = E+ 8 (ilh + hid + 82i
li l ,

' I ' - I ' I ( , ) ( , )u: =A* · A- = E- 8i2il . E -8il i2

= E- 8 (ili 2 + i2id + 82 i2i2 , It = 12 = 3 + 82
, h = ,\2 = 1.

By means of eq. (1.1.4) we obt ain the expression for the stress tensor

1 , [8A ( 2) 8A 8A] ' (8A 8A). . . ."2 T = 81
1

+ 2 + 8 8h + 8h E + 81
1

+ 8h (1112 + 121d 8 +

2 (8A .. 8A .. ) ( )
8 811111 1 + 8121212 . 1.4.1

Its components along the axes of th e Cartesian coordinates OXYZ are
equal to

(1.4.2)
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The unit normal vector N to the surface al = const is determined by eq.
(3.3.5) of Chapter 2 in which

n=h , n·(jx-
1

• n= Gl1=1+s2
,

\7R = E+ hils, (\7R)-l = E- hhs,

therefore

and the normal stress on this surface is

A 2 [8A ( 2) 8A ( 2) 8A]
(JN = N · T · N = 1 + s2 81I + 2 + S 8/

2
+ 1 + s 8h . (1.4.3)

If the initial state is the natural one, then by eq. (2.2.3) of Chapter 8

which means that the normal stress on surface al = const , required for the
simple shear , is proportional to S2.

The shear stress on these surfaces is equal to

A 2s (8A 8A)
T Nt = N .T . t = 1 + S 2 8h + 8h ' (1.4.4)

where t denotes the unit vector of the tangent to surface al = const

In the linear theory of elasticity the simple shear is caused only by shear
stresses on surfaces al = const, a2 = const . In the nonlinear theory the
realisation of the simple shear requires normal stresses on all faces of the
parallelepiped. The normal stress on face a l = const is needed to conserve
the volume (the effect predicted by Kelvin) whereas the normal stress in
the plane of shear is needed to ensure the dimension along the OY axis (the
effect predicted by Poynting). The applied shear stresses are proportional
to s2 however their values on different faces are different. The shear stresses
T Nt and t l 2 on faces al = const and a2 = const respectively differ in the
te rms of order s2.

In the linear approximat ion for Mooney's material (Subsection 8.4.9) we
have by eq. (1.4.2)

(1.4.5)
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and by eq. (1.3.5)

(1.4.6)

This provides us with the right to refer to 2 (C1 + C2) and 6 (C1 + C2)
as the shear modulus and Young modulus respectively

(1.4.7)

"Poisson's ratio" turns out to be equal to 1/ 2

E
-= 2 (1 + v)= 3,
J.L

1
V = 2'

which should be expected as th e mat erial is incompressible.
Rivlin took only th e first term in Mooney 's formula (C2 = 0) and intro

duced th e "neo-Hookean" body. According to eqs. (1.4.7) and (1.1.7) the
constit ut ive equations for this body in terms of the princip al axes are as
follows

Varga considered a simplified variant of these relat ions, i.e.

t.. = ~ E8s - p* ,

(1.4.8)

(1.4.9)

and mentioned an acceptable agreement between the calculat ions and some
test results on rubber specimens.

9.2 Elastic layer

9.2.1 Cylindrical bending of the rectangular plate

The deformation of a plate from incompressible material was studied in
Subsection 2.6.5. Accord ing to eqs. (6.5.5) and (6.5.6) of Chapter 2 th e
components of the strain measures ex,ex-1 and the principal invariants

t; (e) are given by

b2
0:

2

Gll = 22"C- 2 (a), G22 = -b2 C2 (a), G33 = e2; Gsk = 0 ( 8 =f k) ,
0: e
~~ ~ 1

G l1 = - C2 (a) G22 = - C- 2 (a) G33 = - ' Gsk = 0 (8 =f k)
~ , ~ ' ~' ,
b2 0:2 0:2 e2 b2 1

I, = 22"C-2 (a) + -b2 C 2 (a) + e2, 12 = C2- b2 + 2 C- 2+ 2 '
0: e 0: e

(2.1.1)
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the material coordinates being the Cartesian coordinates al = a,a2 , a3 of
v-volume (the initial state) .

Due to eqs. (2.1.5) and (2.1.16) of Chapter 8 the components of the
energetic tensor expressed in terms of the orthogonal coordinate system
are given by

1 11 _8A 28A 2 0:2 (8A 2 -1)
"2 t - 8h + e 812 + e (a) b2 8h + e c ,

1 22 _ 8A 28A b
2

-2 ( ) (8A 2 -1)
"2 t - 8h + e 812 + 0:2e2e a 8h + e c ,

2 2 -1
1 33 _ 8A (b -2 () 0: 2 ) 8A c
"2 t -8h+ 0:2e2

e a+ b2e(a) 812+e2'

t sk = 0 (s i= k) .

The specific strain energy A (h ,12) can be viewed as being a function of
e (a)

8A 8A et, 8A 812
8e = 8h 8e + 812 eo :

where

8h = 2e (0:
2

_ ~e-4) = ~ 8h.ec b2 0:2e2 e2 oc
For this reason

(2.1.3)

8A 28A 8A oc
-+e-=--st, oh ec et,

and excluding the term with the unknown (} from the first two equat ions
in (2.1.2) leads to the following equality

~t11~e-2 _ ~e2e20:2 = 8A 8e (~e-2 _ e20:2) = _~e8A
2 0:2e2 2 b2 ocst, 0:2e2 b2 2 ec:

(2.1.4)

where we also used formula (2.1.3) . Another relation between tIl and t 22

follows from the equations of statics. Keeping in mind that due to eq. (6.5.1)
of Chapter 2

R
OXI . 8X2. 8X3 .

1 = -11 + -12 + -13
8al 8al 8al

C' ( ) (. o:a2. . o:a2) c ( )= a 11 cos -b- + 12 sin -b- = a e-,

R
8Xl . 8X2 . 8X3 .

2 = -11 + -12 + -13
oa2 oa2 oa2

0: ( . . o:a2. o:a2 ) 0:= e (a) b -11 sin b + 12 cos -b- = e (a) beo,

R3 = eb , JG= 1,



(2.1.5)

(2.1.6)
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we can set the vectorial equation of st atics in the form

o 0 22 0: 0 33 .
-t11 C' (a) er + - t C (a) -eo +-t el3 = °
oal oa2 b oa3

or

[

>:I 2] >:It22 '-lt33u11' 0: 22 0: ()u .u
e r oat C (a) - l}2t C (a) + beoC a oa2 + eI3 oa3 = 0.

Only the first equat ion

:a t 11 C' (a) - ~: t22C (a) = 0,

is of interest as the remaining two equations are sat isfied identically because
the stresses depend only on variable al = a, see eq. (2.1.2).

It follows from eqs. (2.1.4) and (2.1.5) that after removing t22 we arrive
at the following differenti al equation

~ 11C' ( ) _ ~C-3 11 = aA
aa t a 0:2e2 t ac '

Recalling now that by eq. (6.5.6) of Chapter 2

a c,o
aa = ac '

C'C =!!.- , C,2 +CC" =0,
o:e

we are led to the differenti al equation

C at 11 _ 2 11 = C3 aA 0:2e2
ac t ac b2 .

(2.1.7)

(2.1.8)

Its general solution has the form

2 2
[11 = ~C2 (A + D) (219)b2 ' ..

where D denotes the integration constant . Using eqs. (2.1.5) and (2.1.2) one
easily finds the remaining contravariant components of the stress tensor T
in the vector basis R 1 , R 2 , R 3

} (2110)

Referring to the above expressions for the base vectors and relation
(2.1.7) we obtain

A 11 22 33T = t R IRI + t R2R2 + t R3R3

= erer (A + D) + eoeod~C (A + D) + e2h i3t33. (2.1.11)
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Here en eo denote the unit base vectors of the normal to the cylindrical
surfaces a = const and the meridional cross-sections a2 = const .

Let 12 and I~ denote respectively the values of the invariants on the
cylindrical surfaces of radii ro and rl bounding the body in the deformable
state. By eq. (6.5.3) of Chapter 2

"o = C (aO) , rl = C (aO+ h) ,
and byeq. (2.1.1) we have

(

2 b2)o 1 2 2 a
II - II = (ro - r1 ) b2 - 2 2 2 2 'a e r Or 1

(

2 b2)o 1 2 2 2 a
12 - 12 = (ro - r1 ) e b2 - 2 2 2 2 '

a e ror1

that is, at rOrl = b2ja2e2

(2.1.12)

(2.1.13)

The conditions of no loading on both surfaces r = ro and r = rl reduce
to the conditions imposed on the only constant D

( e r . T .e r ) = A (Ir, I~) + D = 0, }
r=ro

( e, .T .ert=rl = A (Ii ,Ii) + D = 0.

We arrive at the following expressions for the physical components of the
stress tensor in the system of cylindrical coordinate r , () , Z

ar = A (h,I2) - A (Ir,I~) , }
ao = dd rA u., h) - A (Ir,I~),

r 2 2

( 0 0) (2 rOr1) (aA 0: r aA)az=A(h,I2)-A 11,12 +2 e - er2 ah +781
2

'

(2.1.14)

where C (a) is replaced by r. Due to eq. (6.5.8) of Chapter 2 we obtain

( ) ( 2 2) a - a
O

2 ()r = C a = "i - ro -h- + roo 2.1.15

According to eq. (2.1.3) the resulting vector of the forces in any merid
ional section () = aa2 = const of the cylinder in the axial direction acting
on the unit of length vanishes since

roJ[:rrA (h,I2) - A (I?,Ig)] dr =
rl
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h

z

FIGURE 9.1.

which can be predicted from symmetry. The principal moment of the forces
about the cylinder axis is determined by the equality

TO

M = j [:rrA(h,I2) - A(I?,Ig)] rdr =
1' 1

1' 1

=~(r~-rDA(I?,Ig)- jrA(h ,h)dr. (2.1.16)
roo

Further calculat ions require the specific st rain energy to be prescribed
as an explicit funct ion of the invariants.

9.2.2 Compression and tension of the elastic strip

We consider an elastic layer of the incompressible material which in its ini
tial state occupies the region lall < I , la21 < h of plane XOY and extends
without bound along axis Z . At planes a 2 = ±h t he layer is fixed to rigid
plat es whilst the end surfaces al = ±l are free", The plates are subj ected
to displacements which are parallel to axis OY , equal and opposite in di
rection . The thi ckness 2h of the layer becomes 2H, such that H > h under
tension of the layer and H < h under compression, see Fig 9.1.

The Cartesian coordinates al, a 2 , a 3 of the particle in the initial state are
deemed as the mat erial coordinates. The sought quantities are the Carte
sian coordinates Xl, X2 of th e particle in the deformed state (V-volume).
It is addit ionally assumed th at X2 is independent of aI , i.e. t he planes a2

remain parallel planes in V -volume

(2.2.1)

These functions are subj ected to the geomet ric boundary conditions

(2.2.2)

1Klin gbeil, W.W. , Schield , R.T . Large deform ation ana lysis of bonded elastic mounts.
Zeitschrift fur angewandte Mathematik und Physik , vol. 17, No.2, 1966, pp. 281-305.
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and the requirement for the system of stresses on surfaces al = ±l to be
statically equivalent to zero.

Due to the incompressib ility of the material

8XI 8XI
0

VG=
8al 8a2 = 8xl8x2 = 1

0
8X2

0
(2.2.3)

8a2 8al 8a2 '

0 0 1

that is, Xl is a linear function of al . Hence, instead of eq. (2.2.1) we can
take

where

(2.2.4)

The statement of t he problem indicates the symmetric properties of the
sought functions , namely Xl is an odd function of al and an even function of
a2, while X2 is an odd function of a2. Hence k (a2) = 0 and the deformation
considered is determined by two functions 1 (a2) and 9 (a2)

(2.2.5)

subjected to condition (2.2.4).
The coordinate basis of V - volume is given by the vectors

(2.2.6)

The covariant and contravariant components of the metric tensor G are
equal to

Gll = P Gl2 = «.L!'
G22 = ai 1'2+g,2

Gl3 = 0

G23 = 0
G33 = 1

(2.2.7)

Gll = ai1'2 + l Gl2 = - ad l' Gl3 = 0
G22 = 12 G23 = 0

G33 = 1

and the principal invariants are equal to each other

2 2,2,2 2 - 2 2,2
It = Iz = 1 +1 + ad + 9 = 1 +1 +1 + ad .

(2.2.8)

(2.2.9)
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The specific strain energy is assumed to be given in Mooney's form (4.9.2)
of Chapter 8 and due to eqs. (2.1.5), (2.1.4) of Chapter 8 the contravariant
components ist of the stress tensor are as follows

~ill = C1+ C2+ (C2+ -d) (ar!,2 + 1- 2
) ,

~[22 = C1 + C2 + (C2+ (;1) 12
,

1- -1 (2.2.10)
'2t33 = (C1 +hC2 ) - C2+ C ,

~P2 = ~[21 = _ (C2+ (;1) ad!' , [2:l = pI = o.

The physical components of the stress tensor are given by the equalities

(Tx = i1. i . i1= illP + [22ad,2 + 2P2ad!" }
. i ., i22 ,2

(Ty = 12' " 12 = t2f ' _2 (2.2.11)
T x y = i 1 · T · i2 = t ad'g' + t1 ls',
~ - t-33 T - T - 0v Z - , xz - yz - .

9.2.3 Equations of statics

The vector equation of statics is set in the form

0
0 (F1R1 + P2

R 2 ) + 00 (F2R1 + P2
R 2) = O.

a1 a2

Referring to eq. (2.2.6) we arrive at two equations

~ (ill1 + [12ad') +~ ([211 + [22ad') = 0, }
oa1 oa2o 0 (2.3 .2)
_p2g' + _[22g' = O.
oa1 oa2

Using the incompressibility relation (2.24) we can reduce these equations
to the form

OP1 0[12 !' -12 1'2 + 1J" -22 _ }
Ba; + oa2 + 2 1 t + a1 p t - 0,

_ ..... (2.3.3)
ot 12 ot,,2 I' -22
-+---t =0.
oa1 oa2 1

Substituting the stress components (2.2.10) in the latter equations and
using formulae (2.2.7)-(2.2.9) results in the following system of equations

o (} ( 2,2 1) 0 (/ , 1'2 + J"1 }
oa1 ad + p - oa2 ad1 = - p a1 (C1+ C2) ,

0(;1 , 0 (;1 I'
--0ad +1-0 = 12 (C1 +C2 ) .

a1 a2
(2.3.4)
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From this system we obtain

- 1 -1

8 c (C C ) ,,8 c ( ) ( 2 , ,, r )8a1 = - 1 + 2 atff , 8a2 = - C1 + C2 ad f - j3 ,

(2.3.5)

and the incompressibility condition

a1 (I 'f" + f f''' ) = 2atf'I"

leads to the differential equation for the unknown function f

f ill r f"
f!'" = I'I", r = I ' (In !,,)' = (ln j")" , f = C, (2.3.6)

where c is a const ant .
Function (} is determined from eq. (2.3.5) by means of the incompress

ibility conditio n

(2.3.7)

where c1
- C2 denotes the integrat ion constant.

The stress tensor is now given by formulae (2.2.10) up to an additive con
stant. The latter is obtained from the condition that the principal vector P
of t he forces on surface a1 = I of the deformed body vanishes. The principal
moment of these forces vanishes due to the symmetry of the surface about
plane a2 = 0.

Referring to formulae (3.2.3) of Chapter 1 and taking into account that
normal n has the direction of i1 we have

h h

P =J([URI + P2R 2 ) lal=l da2 = hJ(pIf + P21f') da2 = 0, (2.3.8)

-h - h

the h term disapp ears due to the symmetry of the problem

J
h ;12 da2 Jh [ -1 1 (2 2 1 )] ,t T = 2 - Co +2" (C1+ C2) I cf + j2 If da2 = 0,

- h -h

as function f (a2) is even.
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Inserting the stress components into eq. (2.3.8) and using relations (2.2.4),
(2.2.2) yields

-1 = Cl +C2 [(12 _ 2) Jh fd Jh da2]
c 0 2H c a2 + j3 .

o 0

Force Q providing the displacement of the rigid plates (related to the
unit length of axis Z) is determined by eq. (3.2.3) of Chapter 1

1 1 1

Q = J (fURl + j2
2R2) da, = i2 J j22g' (h) da, = iz J j22dal,

- I -I - I

since the terms associated with h vanish due to their evenness with respect
to al and g' (h) = [j (h)r l

= 1. Substituting j22 into the latter equation
yields

Q=2izl{2ClO (1+112fP (h)) +

(Cl+C2 ) [1-1 12 (c+f'2(h)) -iI4Cl(h)]} . (2.3.10)

Taking into account eq. (2.2.5) and the evenness of function f (az) we
have at point al = I,a2 = 0

Xl (1,0) = If (0), aXla~' a2) I = If' (0) = 0,
Z a2=O

aXl (I; az) I = If" (0) = elf (0)
aaz a2=O

and at a2 = 0 quantity Xl (I,a2) has a minimum for c > 0 and a maximum
for c < O. In the first case the material "becomes drawn" into the layer
in the neigbourhood of this point, whilst in the second case the material
"bulges" outward. For this reason, c> 0 and c < 0 correspond to tension
and compression of the layer respectively.

9.2.4 Compression of the layer

Assuming c = _az in eq. (2.3.6) and taking into account eq. (2.2.2) we
have

f (az)
-_ cos aaz, cos aaz

Xl = al h 'eoscdi cos a

Due to eq. (2.2.4) and the evenness of function 9 (az) we obtain

coecdi
9 (a2) = --A (aa2)'

a

(2.4.1)

(2.4.2)
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Here A (x) denotes t he lambda-function

x

A (x) = ~ In 1+ s~n x = J~.
2 1- SlllX cos X

o

The constant a is determined from the boundary condition (2.2.2)

~ = CO~:hA (ah).

9.2.5 Tension of the layer

(2.4.3)

(2.4.4)

The solut ions obtained in the previous subsection are now expressed in
terms of the hyperbolic functions. Assuming c = a2 we have

f ( ) - cosh a a2
a2 - ,

cosh a h

coshaa2
Xl = a l I h 'cos i o

(2.5.1)

Function 9 (a2) is represented in the form

( ) _ cosh a a2 A* ( )
9 a2 - a a2 ,

a
A* (x) = arctan sinh x, (2.5.2)

where a is obtained from the following equat ion

(2.5.3)

The formulae for st resses are obt ained from the relat ions of Subsection
9.2.3 and are not shown here as they are very cumbersome, see the above
cited paper by Klingbeil and Schield.

Figures 9.2a and 9.2b display the schemat ics of the deformed lines for the
cases of tension and compression, respect ively, for the ratio of the loaded
and unloaded areas

l
s =2h

and the elongat ions

H-h
e = -h- = 0,25 (-0,2 5) .

One of the loading curves calculated by means of the above formulae for
the same value of S is shown in Fig. 9.2c. One can see that for the elongat ion
e > 40%, the value of the force decreases with the growth of e. Th is can be
explained by decreasing the cross-sect ional area caused by ret raction of the
mat erial into the layer. Figure 9.2 is taken from the above cited paper by
Klingbeil and Schield which contains a large number of comparisons with
the experimental result s of other aut hors.
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I

/ / /'
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a - tension 25%
b - compression 25 %

FIGURE 9.2.
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9.3 Elastic cylinder and elastic sphere

9.3.1 Cylindrical tube under pressure (Lame's problem for the
nonlinear elastic incompressible material)

The cylindr ic coordinates q l = r , q 2 = 0, q 3 = z of the initi al volume
(v-volume) are considered as being the material coordinates. It is assumed
that t he deformation preserves axial symmet ry, that is, the position of point
M (r , (), z) in V-volume in the same meridional plane can be prescribed in
the same cylindric coordinate syste m by means of the values

R = R (r ) , () =(), z'=az , (3.1.1)

where a = const .
The position radii of the initial and final states of point M and the base

vectors in v- and V - volumes are as follows

r = re; + zi3, rl = e,., r 2 = reo, r 3 = h, (3.1.2)

R = R (r) eT +azi3 , R 1 = R' (r) e,., R 2 = Re o, R 3 = ah . (3.1.3)

Only t he diagonal components of t he metri c tensors g and (; differ from
zero, namely in v- volume

g22 = r 2
,

1
g 22 = _

2 'r

(9 ~ r
2

) , }
(3.1.4)
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and in V -volume

Gll = R,2, G22 = R2, G33 = ex2

11 1 22 1 G33 = ~
G = R,2' G = R2' ex2.

Due to the condition of the material incompressibility

G
13 = - = 1, R'Rex = r.

9

(3.1.5)

(3.1.6)

(3.2.1)

Let ro and rl denote respectively the internal and external radii of the
cylinder in the initial state, and Ro and R1 denote respectively the values
of ro and rl in the deformed cylinder, that is

ex (R2 - R5) = r2 - r5, ex (Ri - R2) = ri - r2. (3.1.7)

Since ro ~ r < rl then Ro ~ R < R1 for ex > 0 where Ro and R1

denote the internal and external radii of the deformed cylinder. For ex < 0
we have R1 ~ R ~ Ro, i.e. in the deformed cylinder R1 and Ro become
respectively the internal and external radii. In other words, the cylinder is
"t urned inside out".

The expressions for the covariant and the contravariant components of
the metric tensor {; are presented in the form

r

2

}
Gll = ex2R2' G22 = R2, G33 = ex

2,

2 2 (3.1.8)
Gll = ex R Gn = ~ G33 = ~

r 2 ' R2' ex2'

and the principal invariants of Cauchy's strain measure are

r2 R2 ex2R2 r2 1
II = 2R2 + 2 +ex2, h = -2- + R2 + 2' 13 = 1. (3.1.9)ex r r ex

It follows from these equalities and eq. (3.1.6) that

~: = ex-2~: = ~ (1- :~2) (ex~~2 - ~:) . (3.1.10)

9.3.2 Stresses

Using eq. (2.1.5) of Chapter 8 we arrive at the following expressions for the
nontrivial contravariant components of the stress tensor

1 -11 0 1 r 2
- 1 ex2R2

2t =c - c ex2R2+ C ---;:2'
o 21 i22 C 1 R -1 1

-t = -- C -+ C -,
2 r 2 r 4 R2

-1
1- 0 1 C
_t33 =C - C ex2 +-.
2 ex2
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Eliminating the unknown (for the incompressible material) value (l from
the first two equations we obtain the equation relating ill and [22

1
(

2 ) (2 R
2

)ru r <22 2 r
"2 t 0:2 R2 - t R = 0:2 R2 - -;z [

0 1 (r2
R

2
) ]

C - C 0:2 R2 + -;z .
(3.2.2)

By means of eqs. (2.1.7) of Chapter 8 and eq. (3.1.9) the right hand side is
transformed to the form

On the other hand, byeq. (3.1.10)

dA = 8Adh + 8Ad12 = dh (8A +0:28A)
dr 8h dr 812 dr dr 8h 812

= ~ (1 - :~2)(a~~2 - ~:) (~~ +a
2~~) ,

and relationship (3.2.2) takes the form

Lll~ _ <22R2 _ arR2 dA
t A.2R2 t - R2 2 d .

u a 0 - ro r

- 1
Removing c from the first and third equations (3.2.1) we obtain

(3.2.3)

(3.2.4)

(3.2.5)

Let us turn to the equations of statics. Taking into account eqs. (3.1.6)
and (3.1.3) and the absence of the mass forces we can write these equations
in the vectorial form

(3.2.6)

In this equation only eo depends on 0, namely

8ee
80 = -e,.,

whereas the other quantities depend only on r. We arrive at two equations

d r 2
__pI _ rRp2 = 0,
draR

the second one being satisfied identically.

8[33
8z = 0, (3.2.7)
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In order to obtain the expressions for the physical components of the
stress tensor we write down the stress tensor in terms of both contravariant
and physical components

T = p1R 1R 1+ f!2R 2R 2 + j33R3R3 = £11 R,zerer + f!2R2eoee + j33(ihi3,

thus

(3.2.8)

(3.2.9)

(3.2.10)

(3.2.11)

This allows one to set eqs. (3.2.4), (3.2.5) and (3.2.7) in the following form

arR2 dA
ae = a r - R2 2 d 'a 0 - ro r

a z = a; +2 (a
2

- a~~2) (~~ + ~: ~~) ,
d r
dr o.Ra; - Rae = O.

Removing ae from eqs. (3.2.9) and (3.2.11) we arrive at the differential
equation

d r ar2 R dA

dr
a Rar - -Rar = R2 2 d .a 0 - ro r

Introducing a new independent variable R

aRdR = rdr

we transform eq. (3.2.12) to the differential equation

dar r 2 dA
dR aR6 - r'6 dR'

whose solution is as follows

(3.2.12)

1

aR2 r 2
0- 0

9.3.3 Determination of the constants

Along with the integration constant C, the values determining the geomet
ric sizes of the deformed cylinder are unknown . These values are a ,Ha, R 1

and are related to each other by cq. (3.1.7)

(3.3.1)
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The constants C, a , Ro are determined with the help of the prescrib ed
pressure qo and qi on the corresponding surfaces r = ro and r = rl in
V -volume and the axial force on the end surfaces. The first two condit ions
are written as follows

(3.3.2)

such th at by eq. (3.2.13)

(3.3.3)

(3.3.4)

TO

By eqs. (3.2.13), (3.2.3), (3.2.9) and (3.2.10) the physical stress compo
nents are set in t he form

r

qo - ql J2 dA
0-T = - qo + Tl r -d dr,

J dA r
r2 - dr TO

dr
T O

(3.3.5)

(3.3.6)

(3.3.7)

3
The force actin g on surface d 0 of t he cross-section of t he cylinder is

given by formula (3.2.3) of Chapter 1 for n = i3

N 3 1
t d 0= [J3 R 3rdrdB = - 0-zr drdBh,

a

and the axial force Z is as follows

(3.3.8)

Together with eqs. (3.3.4) and (3.3.1) this equation determines the con
stants a, Ro ,R1 . If the end faces are free, then Z = O. If th e cylinder is
placed between two rigid plat es then its length does not change and a = 1.
In thi s case eq. (3.3.8) serves to determine t he axial force and the unknowns
Ro ,R1 are obtained from eqs. (3.3.4) and (3.3.1).

The above formulae contain t he derivative of the specific pot enti al energy
with respect to r which should be replaced by the expression in te rms of
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the derivatives with respect to the invariants, i.e. "the generalised moduli
of elasticity". To this end , formula (3.2.3) is transformed as follows

Here and in what follows we introduce the denotation

R2 2 R2 2 R2 2C = a 0 - ro = a 1 - r 1 = a - r ,

where by eq. (3.3.4)

(3.3.9)

(3.3.10)

qo -ql

JT l r2dA dr
dr

T O

1

c
(3.3.11)

9.3.4 Mooney's material

In the above calculation the specific strain energy is assumed to be pre
scribed in Mooney's form, see eq. (4.9.2) of Chapter 8. Equation (3.3.4) is
written in the form

T l

qo - ql _ (C + 20)J 2r
2+ c da-I a 2 2 r,

2c r (r2 + c)
T O

and the integral in the latter equation is equal to

(3.4.1)

Introducing the denotation

(3.4.2)

one can represent eq. (3.3.4) in the form

(3.4.3)

The similar representation of expression (3.3.8) for the axial force re
quires estimation of the double integral
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By means of eq. (3.3.5) we obtain

= ~ (qor5 -q1 r i) - 2: (C1 +Q
2C

2) (21n~ + :15- :lr) ,
and the expression for the axial force reduces to the following form

QZ 1 (2 2) C ( 2) ( Rr r5 rr )-=- qor -q1r -- C1+QC2 21n-+----- +
27r 2 0 1 2Q R5 QR5 QRr

( 2 2) [ (2 1) ( 1 )] C ( Rr 2 rr )"i - ro C1 Q - ~ + C2 Q - Q2 + ~ C11n R5 + C2Q In r5 .

(3.4.4)

9.3.5 Cylinder "turned inside out"

The internal and external radii of the cylinder in the initial state are de
noted respectively as r o and r1 ' In the final state, i.e. for the cylinder
"turned inside out " , Ro and R1 are respectively the external and internal
radii. The external forces in the final state are absent

qo = qi = 0, Z = O.

Further Q < 0 and c < O. Introducing the denot ation

(3.5.1)

-Q = 13, - c = Kr5 , (3.5.2)

(3.5.3)

one can set relationship (3.3.10) in the following form

K = 13fL6+ 1 = n (13fLI + 1) .

It follows from the latter that

13 (fL5 - nfLi) = n - 1 > 0, fL5 > nfLr , fL5 > fLr ·
Stress a; determined in terms of (3.3 .3) , (3.3.4) and (3.3.8) is equal to

(3.5.4)

It is zero at r = ro and r = r1

fLr 1 1 (1 1) (1 1)In 2" + 13 2 - 13 2 = 13 2 - In 13 2 - 13 2 - In 13 2 = O. (3.5.5)
flo fLl flo fLl fLl flo flo
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fIx)

FIGURE 9.3.

The latter relationship can be written down in the form

f (13~6) = f (13~i)' f (x) = x -lnx (3.5.6)

and presents another form of condition (3.4.3) if one utilises denotation
(3.5.2).

One can see from Fig. 9.3 that function f (x) has a minimum at x = 1. It
is also clear that eq. (3.5.6) determines a unique value 13fJI for any 13fJ6 > O.

The meridional stress a() on the external (R = Ro, r = ro) and internal
(R = R1 , r = ri) sides of the cylinder turned inside out is determined by
eq. (3.3.6)

a()lr=ro= ~ (C1 + 132
C2 ) (13fJ6 - 13~6) ,

a()lr=rl = ~ (C1 + 132
C2 ) (13fJi - 13~i) . (3.5.7)

As one would expect this stress is tensile and compressive on the external
and internal sides respectively.

Using eq. (3.4.4) the condition whereby the axial force vanishes is set in
the form
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Referring to eq. (3.5.5) this condition can be transformed to the form

3C1{3 - C2 1+ {3 ( 2) (1 1)2 (n - 1) 2 - (.1- = 1 + {3 f..Lo (.I 2 - (.I 2 .
C1 - {3 C2 fJ fJ f..L l fJ f..Lo

(3.5.9)

For a given n, the unknowns {3 f..L6, {3f..LI are determined by equations (3.5.3)
and (3.5.6), then for the measured value of {3 one can find the ratio C2 /C1

for the considered Mooney material. The limits of possible values of (3 are
determined by the positiveness of this ratio, see Subsection 8.4.9.

9.3.6 Torsion of a circular cylinder

Similar to Subsection 9.3.1 the mat erial coordinates are identified as the
cylindric coordinates of the point in the initial position. The torsional de
formation is described by the rotation of the cross-sect ions of the cylinder
accompanied by the axial displacement . The latter is introduced by means
of the constant parameter a

The position radius R of the deformed cylinder is given by formula (6.4.2)
of Chapter 2

R= r .A,

where expression (6.4.2) of Chapter 2 for tensor A needs to be corrected in
order to take into account the axial displacement and conservat ion of the
volume

A = ]a [(erer + eoeo)cos X - (eoer - ereo)sin xl + ahh,

X = Xo + 'l/Ja3'

The constant 'l/J denot es the angle of torsion per unit length in the axial
direction.

Presenting R in the form

and recalling the formula for differentiation
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we obtain the following representations for the base vectors in the deformed
cylinder

R 1 = Ja (er cos X + eo sin X) ,

R 2 = :a (eo cos X - e, sin X) ,

R 3 = 'Ij; :a(- e r sin X +eo cos X) +o:h

or

(3.6.1)

where

e; = er cos X + eo sin X, eo = -er sin X + eo cos X·

This determines the covariant components of the metric tensor

(3.6.2)

such that

1
Gu =-,

0:
G12 = 0,

r 2

G22 =-,
0:

(3.6.3)

(3.6.4)

The cont ravariant components and the principal invariants of tensor ex
are

G
U = 0: , G

12 = 0, G13 = 0,

}G22 = .:: + 'lj;2 G23 =_.:L (3.6.5)r 2 0: 2 ' 0: 2 '

G33 = ~
2 '0:

(3.6.6)
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The expressions for t he contravariant components of the st ress te nsor are
set in t he form

1
1 -11 0 C - 1
- t = C - - + c a
2 a '

o 1 2

~ l22 = ~ - ~+ (/ (~ + '!L ),
2 r 2 ar2 r 2 a2

1 0 1 ( r2'l/J2) (}- (33 = c - c a 2 +-- + - ,
2 a a 2

1<23 1 'l/J - 1 'l/J- t - - c - - c -
2 - a a 2 '

[12 = [13 = O.

(3.6.7)

From the representation of t he st ress tensor in the vector basis of the
deformed volume

we obtain t he expressio ns for th e physical stress components

(3.6.8)

The const itut ive law (3.6.7) for t hese components is written down in t he
form

(3.6.9)

Here we used formul a (2.1.4) of Chapter 8 in order to replace "moduli" g
and bin terms of the derivatives of t he st ra in energy with respect to t he
invariants .
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Having removed the unknown (;1 we arrive at the relationships

(3.6.10)

where

(3.6.11)

9.3.7 Stresses, torque and axial force

The equation of stat ics has the form

a (;::;C -stR a 711 1 * a [L22 r * L23 ( 'l/Jr * • )]aqS= v Gt t = arrt ,;aer +aar t ,;ae() + t ,;ae() + al3

a [L23 r * "'33 ( 'l/Jr * • )] ()+ az r t ,;ae() + t ,;ae() + al3 = O. 3.7.1

Applying the differentiation formulae, see eq. (3.6.2),

aeo *aa = -er ,
aeo= - 'l/Je*az r

and taking into account that the remaining quant it ies depend only on r we
ar rive at the single equation

(3.7.2)

Transforming it to physical components we obt ain the well-know equat ion

d(Tr (T r - (T() _ 0
d

+ - .
r r

Using the first relat ionship in eq. (3.6.10) we obt ain

(3.7.3)

(3.7.4)

r

The integration constant is determined from the condition of vanishing
exte rnal forces on the oute r surface r = ro of the cylinder . The adopted
deformation does not provide us with the solut ion to the problem of torsion
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of the hollow cylinder since only one constant is at our disposal and we can
not satisfy the requirement of vanishing stress a l' on the inner surface. It is
a serious error to think that the problem of torsion of the hollow cylinder
can be solved by superposition of the solution of "Lame's problem" of
Subsections 9.3.1-9.3.4 on the obtained solut ion. Solving the problem of
torsion of the hollow cylinder requires the rejection of the assumption that
the radial displacement is absent and the axial displacement is independent
of r ,

3
The force acting on surface dO in the cross-section of the cylinder is

given by eq. (3.2.3) of Chapter 1

N 3 _
tdO = t S3R srdrdB= (P3R2+ f33R 3) rdrdB

= [:;.a (p3+ 'lj;f33 ) efj + af33h]rdrdB = l (Tozefj + azi3)rdrdB.

The principal force and the principal moment of the system of forces are
as follows

211" 1'0

V = l1dB1rdr (TOzefj + (}zi3 ) ,

o 0

211" TO

rnO = l1dB1R x (Tozefj + {}zh)rdr
o 0

211" 1'0

= l1dB1(:;.ae; + ai3z) x (Tozefj + (}zh) rdr.
o 0

It follows from the relationships

211"JefjdB = e;I~11" = 0,
o

211"
Je;dB = -efj 1~11" = 0
o

that these vectors are parallel to axis i3 , as expected. We arrive at the
expressions for the axial force and the torque

Noticing that

27f 1"0z = ~ (} zrdr,
o

(3.7.5)

1'0 TO 1'0

1 J8A 11 8A 3
rdr 8h pdp = "2 8h r dr,

0 1'0
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and referring to eqs. (3.6.10) and (3.6.11) we arrive at the formulae

ro

27r J8A 2 2 [ 2 ]m z = --;j; 8r r dr =":;j; 7rroA (ro) - a .
o

(3.7.7)

Here A (ro) and A (0) denote the values of the specific strain energy on the
surface and on the axis of the rod. Further

ro

a = 27rJArdr
o

denotes the strain energy per unit length of the rod under torsion .
Here one clearly sees the Poynting effect, namely the necessity for a

compressive axial force in order to preserve the unchanged length of the
twisted rod (Q: = 1)

2 Jr
o

(8A 8A) 3Zlo:=l = -2mp 8ft + 281
2

r dr.
o

(3.7.8)

In the case of no axial force, the change in the rod length (parameter Q:)
is determined byeq. (3.7.6) for Z = o.

In the nonlinear theory, the torsion is accompanied not only by shear
stress 7()z but also by all normal stresses.

For Mooney's material the compressive force needed for preserving the
length of the rod is equal to

(3.7.9)

where I p denotes the polar moment of inertia of the cross-section. In this
case

Using eq. (3.7.7) and introducing denotation (1.4.7) for the shear modulus ,
we arrive at the expression for the torque

(3.7.10)

which coincides with that of the linear theory.
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In th e case of vanishing axial force the expression for the torque is set in
the form

(3.7.11)

where 0: is a funct ion of 'ljJ determined by means of eq. (3.7.6) from the
following equat ion

For example, for the neo-Hookean material (C2 = 0)

(3.7.12)

2. ,,2
3 1 r o'l-'0:= + -4- '

'ljJ
m , = J.J1p ,

1
3 1 + _r 2. ,.2

4 0 '1-'

(3.7.13)

that is, the rod extends and the growt h of the torque decreases as the twist
angle 'ljJ increases.

9.3.8 Symmetric deformation of the hollow sphere (Lam e's
problem for a sphere)

The material coordinates of a point are t he spherical coordinates (see Sec
t ion C.8) of t he point in t he initial state of t he sphere (v-volume)

ql = P, q 2 = B, q 3 = A.

Only t he diagonal components of the metric tensor g of this state differ
from zero and are equa l to

gll = 1,

gll = 1,

g 22 = p
2

,
1

g22 =_
2 'P

2 . 2.0
g3 3 = P Slllu

1
g33 = .

p2 sin2 fJ
(3.8.1)

The deformation is assumed to be radially symmetric, that is, the dis
placements of the sphere from the initial state into the final st ate are di
rect ed radially and depend only on coordinate p. The hollow sphere remains
a hollow sphere. Its external and intern al radii in the initial and final stat es
are denoted respectively as Po ,PI and Ro ,R1·

The position vecto r of th e point and the base vectors R , (determined in
term s of t he positi on vector ) in the deformed sphere are given by expres
sions (C.8.4)

R = R (p)ep , R 1 = R' (p)ep , R 2 = R (p) e 19 , R 3 = R (p) e>. sin fJ .
(3.8.2)
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It is assumed that the sphere is subj ected to a constant pressure on both
the inside and outside surfaces

(3.8.3)

Only normal st resses CTp,CT{), CT x appear under this loading, i.e.

A CT p CT{) CT>.,
T=CTpepep+CT{)e{)e{)+CT>.,e>.,e>"=R 2R1Rl+R2R2R2+ 2. 2 R3R3, R sm iJ

and the formulae relating the contravariant and physical components of the
stress tensor have the form

(3.8.4)

The components of the metric tensor Gin the deformed sphere and t he
invariant s of the Cauchy st rain measure are equal to

G11 = R,2,

11 1
G = R,2'

I = R,2R
4

3 4·
P

(3.8.5)

The constitutive law is given by the following system of formulae

(3.8.6)

is rewritten by means of formulae (C.8.4)

sin iJ [:p RPR2[l1 - R'R3
([22 + £33 sin2 iJ )] ep+

R'R3cos iJ ([22 - £33 sin2 iJ ) e{) = O.



9.3 Elastic cylinder and elast ic sphere 787

It yields the above mentioned relationship

and the differential equat ion

~ R,2R21Y - 2R'R3 [22 = O.
dp

(3.8.7)

(3.8.8)

The latter can be reset in a simpler form in terms of the physical compo
nents of tensor T

d 2 ,
dpR CJ p - 2R RCJo = 0,

dCJ R'
-P+2-(CJ -0'19)=0 .
dp R P

(3.8.9)

Noticing that R'dp = dR we can reduce eqs. (3.8.6) and (3.8.7) to t he
form

dCJ p 2CJP- CJ19=0
dR + R ' CJ 19 = CJ A' (3.8.10)

This form can be obtained directl y from the equat ions of st atics in spherical
coordinates of the deformed volume.

It remains to substitute the expressions for the difference

(3.8.11)

and stress CJ p

(3.8.12)

into the equat ion of st atics.
We arrive at the nonl inear different ial equat ion of second order for func

tion R (p). The boundary conditions given by relationships (3.8.3) and
(3.8.12) are also nonlinear. The problem is cumbersome even for the simple
constit ut ive laws for compressible elastic material.

9.3.9 Incompressible material

The above mentioned complications do not exist for incompressible mate
rial. The incompressibility condit ion determines the derivative R' of the
sought function R

I, = 1, (3.9.1)
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and byeq. (3.8.11) we have

R
2 (p6

) (8A R
28A)

CJ p - CJ{) = 2 p2 R6 -1 8h + p2 8h .

The equation of statics (3.8.10) reduces to the form

dCJp 4 (p6 ) (8A R
2

8A)
dp + R R6 - 1 8h + p2 8I2 = 0,

(3.9.2)

(3.9.3)

and the problem reduces to considering the system of equations (3.9.1)
and (3.9.3). Its solution is simplified by introducing the new independent
variable

p dp pR' dp 3
X = R ' dX = Ii - R2 dp = R (1 - X ) .

The expression for the invariants, eq. (3.8.5), takes the form

4 2 1 2
I, = X + 2' h = 4" + 2X .

X X
For this reason

(3.9.4)

(3.9.5)

and the equation of statics is tr ansformed to the form

dCJ p X3 dA
dx - X3 - 1 dX' (3.9.6)

Taking into account the boundary conditions (3.8.3) we arrive at the
expression for the normal stress

(3.9.7)

and the formula relating the unknowns Xl and Xo

(3.9.8)

The second relationship between them is given by the incompressibility
condition

R2R' = p2, R3 - p3 =m- p~ = Rt - pt,

which is written in the following form

1 - 3xr = (po) 31 - 3X3 .
Xl PI Xo

(3.9.9)

(3.9.10)
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9.3.10 Applying the principle of stationarity of strain energy

In the above problems for the cylinder and sphere, the invariants are ex
pressed in te rms of the functions and const ant parameters of deformations
in a rather simple way. Thi s fact allows us to suggest a simple derivation
of the equilibrium equations with th e help of the principle of st ationarity
of the specific strain energy.

For instance, let us consider the sphere. The invariant s depend on the
sought function R (p) and its derivative, hence

3 3

8A = ""' 8A 8I = ""' 8A (8h 8R 8h 8R' )
L...J 8h k L...J 8h 8R + 8R' .
k= l k=l

(3.10.1)

The element of the volume is dTo = 47rp2dp and the varied quantity is
transformed to the form

(3.10.2)

o 1
The elementary work of the surface forces of pressure -qo N and ql N

on the concentric spheres 0 0 and 0 1 respect ively is equal to

-qoII N·8F4JdO-ql II N ·8R1dO=
0 0 0 ,

= qoII 8Rod 0-q1II8R1d 0= 47r (qOR68Ro - q1Ri8R 1) ,

00 0 1

where we took into account the evident relationships

o F4J
N ·8Ro = - Ro · 8Ro = - 8Ro,

On any sphere
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We arrive at the equality

~ {JP1

(d 28A et, 2 8A 8h)
- L.J d P M8R' - P M 8R oRdp+

k=l P k k
Po

[pi (8A 8h) ] 2 [P6 (8A 8h) ] 2 }Ri 8h 8R' 1 + q1 R10Rl - R6 8h 8R' 0 + qo RDoRo = O.

From the latter we obtain the differential equation

3
~ (.!i 2 8A 8h _ 2 8A 8h) = 0
L.J dpP 8h 8R' P 8h 8Rk=l

and the boundary conditions

pi (~8A 8h)
P = PI: R2 L.J 8h 8R' = -q1;

1 (k3'l) (3.10.4)
P= Po: P6 ~ 8A 8h

R2 L.J 8h 8R' = -qo·
o k=l

According to eq. (3.8.5) the extended form of the boundary conditions
repeats eqs. (3.8.12) and (3.8 .3)

p
2

(8A 8A R
2

8A R
4

)
2R;R~ 81

1
+ 281

2
fl2 + 8h p4 s = -qs (8 = 0, 1), (3.10.5)

while differential equation (3.10.3) is equivalent to the equation of statics
(3.8.8) (or (3.8.9))

d 2R' (8A 28A R
2

8A R
4

)
dpP 8ft + 812 p2 + 8h {7 -

[
8A 8A (R

2 2) 8A R
2
R

P
]

2R 8ft + 8h fl2 + R' + 8h~ = O. (3.10.6)

This derivation requires only the expressions for the invariants and per
forming the standard operations for constructing equations of the varia
tional problem. There is no need to take account of the distinction between
the contravariant and physical components, to write down the expressions
of the constitutive equations etc.

The extended form of equations is cumbersome since it contains deriva
tives of the type

.!i 8A _ t 8
2
A 8h _ t 8

2
A (8h + 8h R' + 8h RII )

dp ols - k=] ohols op - k=l ohols op oR oR' .

Utilising Ritz's method, admitted by the variational statement of the
problem, results in a nonlinear system of finite equations, the number of
equations coinciding with the number of introduced parameters.
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9.4 Small deformation in the case of the initial
loading

9.4.1 Small deformation of the deformed volume

In what follows three states of the elastic body are considered : the initial
state in v- volume bounded by surface 0 , t he first state of deformation
(V - volume and surface 0 ) and the second state obtained from t he first
one by means of a small displacement 1]W. The volume and the surface of
the body in this state are denoted respect ively as V * and 0 *. Further, 1] is
a small parameter and only terms first order in this parameter are retained
in what follows.

A Cartesian coordinate system OXYZ is introduced and the fixed di
rections of their axes are given by the unit vectors is. The coordinates of a
point in the medium in v- ,V - , V*-volumes are denoted respectively as
as, x s, x: and the corresponding position vectors are as follows

(4.1.1)

For the mat erial coordinates of the point , we preserve the denotation
ql ,q2,q3. The vector basis and cobasis in v- and V -volumes are given
by the vectorial triples r s, R, and r", R s respectively. As usual, the metric
tensors are denoted as 9 and c.

The coordinate basis in V* - volume is determined by the vectorial t riple

* 8R * 8w
R s = -8 = R , +1]-8 .qS qS

(4.1.2)

Up to now we have denoted the operations in V - volume (in cont rast to
operations in v- volume) by a tilde (,,",) . There is no need for such a com
plication of notation here, as all operations will be carried out in V-and
V * -volumes, the operations in V * - volume being marked by an asterisk.

By definition of the nabla-operator \7 and the gradient of the vector we
have

\7w = R
s 8w

8qS'
8w = RS . \7w
8qS '

see eqs. (E.4.2) and (E.4.5). Int roducing into consideration the unit (metric)
tensor c we have

where superscript T denotes the transposit ion of tensor, i.e.

(4.1.4)
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The covariant components of the metric tensor {]* in V* -volume are
given by

G;k = R;' R k= (R, + 1]Rs' Vw) · (Rk + 1]VwT
. R k)

= Gsk + 1]Rs . (Vw + VwT ) . R k.

Recalling the definition of the linear strain tensor for vector w

we obtain

G;k = Gsk + 21]Rs . €. Rk = Gsk + 21]csk.

(4.1.5)

(4.1.6)

Determining the cobasis R *s relies on the identity of the metric tensors
Gand G*

G=G*.

Representing them in the form of dyadic products

(4.1.7)

substituting eq. (4.1.3) for R; and replacing 1]R*s by 1]Rs we have

or

R*k = R k -1]Rk . VwT = R k . (G -1]VwT ) = (G -1]Vw) . n-.
(4.1.8)

Expressions for the contravariant components G*sk of the metric tensor
are now set in the form

G*sk = R*s . R*k = (RS -1]Rs . VwT ) . (Rk -1]Vw , R k)

= Gsk _ 21]Rs. €. R k. (4.1.9)

The easiest way to find determinant G* = IG;tl is to use the equality

G* G (aG*) G (aG* ) ea; G cc«= +1] a = +1] aG* T = +21] Cst·
1] 1/=0 st 1/=0 1]

Introducing the first invariant of tensor € in V -metric

(4.1.10)
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we obtain

C* = C (1 + 21]19) 1 VC;; = JG (1 + 1]19) . (4.1.11)

The strain measure of V*-volume is det ermined by tensor ex' which
has the covariant components in the metric of the initial v- volume, these
components being equal to the covariant components C;t of the metric
tensor of V* -volume

(4.1.12)

The principal invariants of this tensor are given by formulae (5.2.6)
(5.2.8) of Chapter 2

II (ex') = gskC;k = II (ex) + 21]gstEsh

h (ex') = ~* gskC*sk

= 12 (ex) + 21] [12 (ex) 19 - h (ex) gSkCSqCktEqt] ,

( A') C* ( A)13 C X = g = h C X (1+ 21]19) .

In the following 1]ls denotes the difference in the principal invariant s

(4.1.13)

such that

h = 2gstE
stl12 = 2 [h (ex) 19 - 13 (ex) gSkCSqCktEqt] ,13 = 21913 (ex) .

(4.1.14)

The vector of the oriented surface is det ermined by eq. (3.5.3) of Chapter
2

N*dO* = aR*sNsdO = (1+ 1]19)(RS -1]\lw · R S
) NsdO

= [N + 1] (19N - \lw · N)] dO. (4.1.15)

Therefore

(
dO*) 2
dO = 1+ 21] (19 - N . \lw· N ) 1

and

dO*
- = 1+ 1] (19 - N . \lw . N)
dO

N* = N + 1] (NN . Vw . N - \lw . N) = N +1]N x [N x (\lw . N)] .
(4.1.16)
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The difference in vectors N* and N is a vector orthogonal to N.
Using eq. (1.2.13) of Chapter 2 for decomposing tensors Vw and 'VwT

into symmetric and skew-symmetric parts

'Vw = E- n, 'VwT = E+n
and referring to formulae (A.5.8) and (A.5.lI) we can present the base
vectors and the normal vector in the form

R; - a, = 1] rn, .E+ W x R s ), }

R*s - R" = -1] (Rs . E- W x RS),
N* - N = 1] {N x [N x (N . E)] + W x N} .

9.4.2 Stress tensor

Let 1]pst denote the difference in the contravariant components t*st and tst

of tensors T* and l' respectively

or

T* = t*stR;R; = (tst + 1]pst) R;R~.

Referring to eq. (4.1.3) we have

T* = tst (n, + 1]'VwT . Rs ) (R, + 1]Rt . 'Vw) + 1]pstRsRt
, ( , t t T )= T + 1] P + tS RsRt . 'Vw + t S 'Vw . RsRt ,

(4.2.1)

1'* = l' + TIS, S = P+ T · Vw + 'VwT . T, P = pstRsRt. (4.2.2)

The constitutive law is now presented in Finger's form, eq. (2.4.1) of
Chapter 8

, [i (0 , 1, 2 -1 ,)
T = 2yG c M- c M + c G .

Taking into account eq. (4.1.7) we have in V*-volume

, rgg (0 , 1, -1 ,)
T* = 2y(F c" M*- c* M*2+ c* G .

By introducing the denotation

s s s
c* -c=1]b (8=0,1,-1)

we can rewrite eq. (4.2.2) as follows

(4.2.3)

(4.2.4)

(4.2.5)

T* = T -1]rJT+21]~ (b M- bM2+ b
1 G) +

2~ [g (M* - M) - b(M*2 - M2)]. (4.2.6)
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Here by definition of tensor if

M* - M = gsk (R;Rk- R sRk) = 77 (M .Vw +V'WT . M) ,
M*2 - M2 = (M* - M) .KI* + M. (M* - M)

= (M* - 1\1) . 1\~f + M. (~f* - 1\1)
= 77 (Nf .Vw . M+ V'wT . 1\12 + 1\12 . Vw + Nf .V'wT . M)

(4.2.7)

or

(4.2.8)

This allows us to set the last term in eq. (4.2.6) in the following form

21! [g(M* - 1\1) - b(N[*2- M2)] =

{i (0 A 1 A2 -1 A)=277 yC e M -e M + e C · V'w +

{i T (0 A 1A2 -1A) {i (1 A A -1)277yCV'w . e M-e M + e C -477yC e M ·g · M + e g

(
A T A) {i (1 A A -1)= 77 T · Vw + V'w . T - 477 yC c M :g. M+ e g .

Returning to eq. (4.2.6) we obtain

(4.2.9)

and tensor P can be represented as follows

A {i [(0 0) A (1 1) A2 (-1 -1) AP = 2Yc b - fJ e M - b -fJ e M + b -fJ e C-

(1 A A -1)]2 c M :g . M+ e g . (4.2.10)

Its components in the metr ic of V -volume are determined by the formulae

pst = 21! [gst (~ - fJ g)- (t - fJ b)gsrl qC,.q+

(l/ - fJ -e
1

) c- - 2 (bg srgtq+ -e
1

c srctq) Erq]. (4.2.11)
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9.4.3 Necessary conditions of equilibrium

The vectors of mass and volume force in V* -volume are denoted respec
tively as K* and p*K*

K* = K + 1]k, p*K* = aPK + 1]Pk. (4.3.1)

The equilibrium equations in V* - and V -volume are written down in
the form of eq. (3.3.2) of Chapter 1

_l_!!"-vrcFt*stR* + p*K* = 0.JG* 8qS t ,

It follows from these equations that

~ 88 VGtstRt + pK = O. (4.3.2)
vG qS

(4.3.3)

The value in the parentheses is as follows

-IG [(1 + rJ13) (t st + 1]pst) (R, + 1]Rt • Vw) - etRt] =

= 1]-IG ('lget R t +pstRt + tstRt . \7w) .

On the other hand, estimating the divergence of tensor T .Vw we have
(see eq . (D.4.7))

• 1 8 r;::; st
\7 ·T·\7w=--vGt R t · \7w

VG8qS

and eq. (4.3.3) takes the form

\7 . ('l9T + P+T . \7w) + pk = O. (4.3.4)

Let us proceed to the equation of equilibrium on the surface. Force F* dO*
acting on the surface element dO* is equal to

F*dO* = FdO + 1]fdO, (4.3.5)

and according to eqs. (4.1.15) and (4.2.2) the equilibrium equation on dO*
is presented in the form

F* dO* = N . T* dO* = [N + 1] ('l9N - Vw . N)] . (T + 1]5) dO

= FdO+1]fdO.

Substituting

\7w · N = N . \7wT
, N· T = F
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we obtai n

or referring to eq. (4.2.2) we have

(4.3.6)

The equilibrium equations in th e volume and on th e surface are proved
to be expressed in term s of th e same non-symmetri c tensor of second rank

e = 19T + f> + T . \7w = 79T + f> + T . E+ (w x T) T . (4.3.7)

This could be foreseen as th e equilibrium equation in the volume ex
presses th e condition of zero principal vector of exte rnal forces acting on
any volume V*' contained in V*-volume

11 N * · T *dO + 111p*K*dr* = 0.

0 -' v- '

Replacing th e integrands in th e latter equation by the following expressions

N * · T* dO = N · TdO + ryN · edO , p*K*dr * = pKdr + rypkdr,

we obtain

Ut ilising denot ation (4.3.7) we again arr ive at the equilibrium equa t ion
(4.3.4) . The obtained equilibrium equat ion

\7 . e+ pk = 0, N . e= f

looks like the equilibrium equa t ion

\7 . T+ pK = 0, N ·T = F ,

(4.3.8)

however one should rememb er that te nsor e is not equal to the difference
T* - T which is det ermined by te nsor S

e= S+19T - \7wT
. T = S+ 19T - E. T - w x T . (4.3.9)

Tensor e is not symmetric due to the term w x T and this is explained by
rotation of the volume element under deformation of V - volume.
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Tensor 0 is a linear different ial operator over vector w . When the mass
and surface forces are absent (k = 0, f = 0) or forces k and f are linear dif
ferential operators over w then the problem of determining w reduces to a
homogeneous system of linear (in w) differenti al equat ions of second order
with homogeneous boundary conditions. These are the so-called equations
of neutral equilibrium. Clearly, they admit the trivial solution w = O. How
ever there can be non-trivial solutions with the equilibrium states which
are close to the considered equilibrium of V -volume loaded by forces K
and F. The values of the loading parameters for which the equations of
th e neutral equilibrium have a nontrivial solution are referred to as the
bifurcation parameters. The formulated bound ary value allows one to find
the bifurcation parameters. However, it does not determine the equilibrium
forms of V -volume which differ from the original form. Obt aining these
forms requires consideration of the complete equat ions of equilibrium of
V*-volume.

9.4.4 Representation of tensor e
According to eqs. (4.3.7), (4.2.3) and (4.2.10) tensor 0 is the sum of two
tensors

0=R+T·\lw, (4.4 .1)

R= )r; [(gM- bA12+ i/ e) -2(~M . E .M+ c1 E)]

where, by eqs. (4.1.13) and (4.2.5),

s o~
b=-lk (8=0,1 ,-1) .

et;
(4.4.2)

The values of h are given by formulae (4.1.14) reduced to the form

(4.4.3)

where t, = t , (ex) = i , (M) .This transformat ion is used in what follows

and is based upon the relationships

_0 G"!" M' - sk R R M' - 1 - R SRk - g c sqC ktR Ru = cmn, - g s k , - gsk - sk q t ·
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Th e symmetric tensor Ii is set in t he form

It s cont ravariant components are determined by the formul ae

(4.4.5)

where cstm n are the components of the tensor of fourth rank (4)6. This
tensor is defined in te rms of the components in t he square brackets in eq.
(4.4.4).

l' A .... A ...

In te rms of the principal axes eof tensor M t he tensors M, M-1 , C and
E take the form

3
, ~ r r

M=~Cree,

1'=1

3 !:!: 3

~~1-1 - L ee C' L !:!:
l V, = ee,- Cr '

1'=1 r = 1

( C(10S) =~ 'E' ~) .

3 3 rs

E= LLC(r s ) ee
r = ls= 1

recalling the expressions for the invariants

and the relations which can be easily proved

ah
oc, (4.4.6)

we can writ e expressions for h in anot her form

where here and in what follows the summat ion over the repeated indices is
adopted.
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It allows one to simplify the expression for R

(4.4.7)

Replacing if by its expression in terms of the principal axes and using the
following formulae

o 8A 8A 1 8A -1 8A
c= 8ft + ft 81

2
1 c= 81

2
' C = h 81

3

we obtain

The value in the square brackets denoted by C (Gr 1Gs ) is symmetric
about its arguments and is given by

At the same time
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and the expression for R takes the form

(4.4.10)

(4.4.12)

An extended form is as follows

~JI;R=GrGsa~::Gs E(rr)~~- [(G1G2;~ +;~) E(12) (~~+~~)

+ (G2G3;~ + t, ;~) E(23) (~~ + ~~) +

(G3G1;~ + 13;~) E(31) (~~ + ~~) ] . (4.4.11)

The values of a~::Gs can be expressed in terms of the principal stresses

t; and the derivatives of i , with respect to G,.. Indeed, referring to eq.
(2.6.8) of Chapte r 8 we have

2Gs aA 2Gs a2A ats (1 81's)
JJ3 aGs = ts, JJ3 aGraG., = aGr + t; 2Gr - Gs .

Let us also notice that T . "Vw can be represented in the following form

, s s ( , ) Sr [ (S 1' ) ]T · "Vw = t s ee · E- n = i s ee E(s,') + e x e .w .

9·4.5 Triaxial state of stress

(4.4.13)

Under the uniform tension along the directions of the axes of Cartesian
s

system OXYZ the principal directions e are coincident with the direction
is of the above axes. The coordinates of point X s are taken as the material
coordinates in V -volume. Then

r 1 (awr aws )
e= in E(rs) = Ers = 2 axs + aXr '

where W r denotes the projections of vector w on the coordinate axes. Let
us denot e

(4.5.1)
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where 88 denotes the principal elongat ions. Tensors R and T . \7w are
presented by linear differential operators over vector w with const ant co
efficients.

The mass force is assumed to be absent. Let us also assume that the sur
face load does not change under displacement w of the points of V -volume
("dead load") and presents a pressure p which is uniformly distributed over
the whole surface normal to the deformed surface 0* (" follower pressure" ).
By eqs. (4.1.15) and (4.3.5) we have

f = -p (19N - N· \7wT
) . (4.5.2)

The equilibrium equat ions in the volume and on the surface, eq. (4.3.8)
are written in the form

\7 . e= \7 . R+ \7 .T . \7w = 0,

N· e= N . R+ N . T . \7w = -p (19N - N . \7wT ) .

Repeating the proof of Kirchhoff's theorem on uniqueness of solution
of the equations of the linear theory of elast icity, Subsection 4.4.1, let us
consider th e integral

111 w · \7 . edr =1J1[\7 . (e .w) - e.. \7w
T

] dr
v v

= 11 N . e.wdO - 111e..\7w
T

dr = 0
o v

or

p11 (N . 19w - N . \7wT
. w) dO +111 (R + T . \7W) .. \7wT dr = O.

o v

The surface integral is transformed into a volume one

11 (N · 19w - N . \7wT
. w) dO = 111 [\7 . 19w - \7 . (\7wT

. w) ] dr

o v

= 111 (192 + w . \719 - w . \7 . \7wT
- \7wT

. . \7wT
) dr

v

= 111 (192
- \7w

T
. . \7w

T
) dr ,

v

since \7 . \7wT = \719. We arrive at the relation

111 {[R+ (T.\7w- p\7wT
) ] .. \7w

T
+P19

2}dr= 111 2~dr=0 .
v v

(4.5.3)
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The quadratic form of the components of tensor "Vw in the integrand is
as follows

The sign of this form depends on the prescribed strain energy and the
load. Of course, there may exist nontrivial values of 8wq /8xk for which
integral (4.5.3) differs from zero.

9.4.6 Hydrostatic state of stress

This is the simplest case in which

, , 2 4 6
XI = X 2 = X3 = X , T = -pE , h = 3x , h = 3x , h = x:. (4.6.1)

Since the specific stra in energy is a function of the invariants it can be
viewed as a function of x 2

(4.6.2)

Hence

dA (8A 28A 4 8A ) ( 8A )
dx 2 = 3 {jJ + 2x oJ + X 81 = 3 ox 2

I 2 3 r X,.=X

and due to eqs. (4.4.8) and (4.4.9)

Expression (4.4.11) for tensor Rand the differential equat ion of equilib
rium are set in the form

{ [
2 - ()] }

, 1 d A 1 8A 28A ' 8A 28A ,
R=4x ---+- - + x - iJE - -+x - E

9 (dx 2 )2 3 ot, 8J:l (812 8J3 ) ,

(4.6.4)



(4.6.6)
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" {[I d
2
A 1(8A 8A ) ]\7 ·0 =\7 ·R-p\7 ·\7w= 4x ---+- -+X2- \7{}-

9 (dx 2)2 3 812 et,

1 ( 8A 2 8A ) ( 2 ) } 22 8h + x: 81
3

\7 w + \7{} - p\7 w = 0. (4.6.5)

This form of the equilibrium equat ion suggests the following denotations
for Lame's coefficients

A+ fi ~ ~x [ (::~2 -~ (;:, +x' ;:')] ,}
_ [ ( 8A 28A ) ]J.L = - p + 2x - + x - .

812 et,

The equilibrium equat ion takes th e st andard form of the equation for a
linear elast ic isotropic body in terms of displacement

(>. + jj,) \7{}+ jj,\72w = 0,

and tensor 8 is as follows

8 = >.{}E+ 2ft£ - p ({}E - \7wT
) .

In follows from formulae (4.6.6) that

- 2 4( d
2A 3)

). + "3jj, = 9 X (dx2)2 + :tP .

(4.6.7)

(4.6.8)

(4.6.9)

Introducing a new variab le x3 = T which is equal to the ratio of the body
volume under hydrostat ic compression to the initial volume (T= Jl3) we
have

dA
dT

2 dA
3xdx 2'

Referring to eq. (1.2.3) we arrive at the relation

- 2 d2A
). + "3 jj, = T dT2 ' (4.6.10)

which is an expression for the "reduced" bulk modulus in terms of the
second derivative of the specific st rain energy with respect to the parameter
determining the volume ratio.

Taking into account relationships (4.6.3) and (4.6.6) we can transform
the quadratic form (4.5.4) in the following way

2<p = (>. - p) '19
2 + 2 (jj,+ p) h (.?2) + p{)2 - 2p.? · . \7wT

- 2 ( 2 -=).{) + 2jj,h .? ) = 2A.
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Here

(4.6.11)

denotes the specific strain energy of the linear elast ic isotropic solid with
the "reduced" Lame's coefficients .

It follows from eq. (4.5.3) t hat in the case of the "follower pressure" and
positive definite function ii, displacement w is nothing else than the rigid
body displacement. In agreement with eqs. (4.6.6), (4.6.10) and (3.3.5) of
Chapter 4 these conditions lead to the inequalities

- - 2 d2A (8A 8A)
k =..\+ "3it = T (dT2)2 > 0, j1 = -p - 2x 8h +~ 8h > O. (4.6.12)

The first one is the intuitively clear requirement for the behaviour of the
elastic material which is that the rate of growth of the strain energy in
creases as the strain increases.

It was shown in Subsection 8.2.9 that inequality (2.9.8) of Chapter 8
is one of the conditions of positiveness of A under sufficiently small de
formations (x :::::: 1). It can be assumed that it is satisfied under not small
deformations

(8A 8A)- 2x - + ~- > o.
8h 813

The second inequality in (4.6.12) means that in the case of hydrostatic
compression thi s value is a funct ion of pressure and exceeds the applied
pressure p.

The hydrostatically compressed body remains stable even under super
high pressures. Prescribing the expression for the specific st ra in energy
must satisfy these requirements.

For example, according to eqs. (4.1.7) and (4.1.8) of Chapter 8 the specific
strain energy in the simplified const itut ive law of Signorini (c = 0) is given
by

A= V; [("\+/i ) (~~ +3) -2(3"\+/i) (~~ -1)]
=~ [9(..\:t

l
) -6(3"\+/i)x+(9..\+ 5/i)x3

] ,

and using formulae (4.6.12) leads to the following relations between the "re
duced Lame's moduli" and the "Lame moduli" of the Signorini constitutive
law

- 1 [ ..\+/i] _ 1 [3 ("\+/i) ]..\ = 2x 2 (3..\ + /i ) - ~ , /i = 2x2 x 2 - (3..\ + /i ) . (4.6.13)

Of course, >. = ..\ and it = /i for fi = 1. Here Jl > 0 and >. + ~ it > 0 since
x < 1.
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9.4.7 Uniaxial tension

Under tension of the rod along axis X 3 we have

Xl = X2 = X, X3 = X; h = 2X2 +~, h = X2 (X2 + 2~), 13 = X4
~.

(4.7.1)

The condition of vanishing the principal stresses t l and t2

8A (2 ~) 8A 2~ 8A
8h + X + 81

2
+ X 8h = 0

allows the principal stress t3 to be represented in one of two form

(4.7.2)

(4.7.3)

2 (~ 2) (8A 28A) 2x (2 ~) (8A 28A)
t3 = X2X - X 8h + X 8h = X2 X - 8h + X 8h .

(4.7.4)

By eq. (4.4.10) tensor R is set as follows
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In outward appearance tensor Rlooks like the st ress tensor of the trans
versely isotropic solid. However it is necessary to bear in mind that t he
quadrat ic form

1 A A 2 {4 ( 2 2) 2 4 (8A 28A)2R " f = XX2 XC X, X (fll +f22) + 2X 8h+X- 8h x

(f11f 22 - d 2) + 2X2 x 2C (x 2
, X2

) (fll + (22) f33 + x 4C (~,~) d3 +

2~ ( 8A 28A)[ 2 2]}2X 81
2

+ X 8h (fll + (22) f33 - f 23 - f31 (4.7.7)

in the transversely isotropic solid present s t he specific st ra in energy and
thus is positive definite whereas in the problem of tension (or compres
sion at t3 < 0) of a nonlinear elastic solid, the sign of thi s form relies on
th e propert ies of the material (prescrib ed A (h, h 13 ) ) and th e loadin g
intensity (the value of t3)'

Tensor e is given by the formula

e = R+ t .'\lw = R+ t3i3 [i1 (f 31 + W2 ) + h (E23 - W I ) + i3E33] ' (4.7.8)

9.4.8 Torsional deformation of the compressed rod

Under the deformation of torsion we have

(4.8.1)

such that

f s s = f 12 = 0 (8 = 1,2,3) , f31 = !a (8ip - X2 ) ,
2 8 Xl

E23 = ~a (:~ + XI) , E3 1 + W2 = - a x 2 , f23 - WI = a Xl'



(4.8.4)
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Turning to eqs. (4.7.5), (4.7.8) and (4.7.4) we obtain

e= at3 -x-::-/-'-~-X--=-2 [(hh + hh) ( : : + Xl) + (h il + ilh) ( :~ - X2 ) ]

+ at3h (- i I X2 + h xd , (4.8.2)

and the equilibrium equation in the volume reduces to the single equation

82cp 82 cp
\7 .e= °: ~ 2 + ~ 2 = 0. (4.8.3)

u X I u X 2

On the lateral surface of the rod (N = Nlil + N2i2)

N· e= at 3x 2~ X2 [NI ( :~ - X2 ) + N2 (:: + Xl) ] ,

and when the surface force is absent, then

8cp
8N = N I X 2 - N2 X I .

Th e st ress vector in the cross-section is determined by the relationship

f = i3 . e= at3 {-x-=-'2X"::"'~-X--=-2 [il (:~ - X2 ) + i2 ( : : + Xl) ] +

(i2XI - iIX2)}. (4.8.5)

Axes OX and OY are directed along the principal central axes of inertia of
the cross-section of the rod in the initial state. However the cross-section
of the compressed rod is subjected to the similarity transformation

(4.8.6)

For this reason axes OX and OY remain the principal central axes of the
rod

11 x ldO = O, 11 X2 dO = O, 11XIX2 dO = O,
s s s

(4.8.7)

(4.8.8)

whilst the cross-sectional area, the polar moment of inerti a and the torsion al
rigidity are expressed in terms of these values in the initial state with the
help of the following equalit ies

S - X2S I - X4 Io C - X4
£'f- 0, P - p' - vo·

Proceeding now to calculat ion of the principal vector of forces in the
cross-sect ion of the compressed rod, we have by eqs. (4.8.7) and (4.8.5)

J/ fdO ~ at, x'~X' [II J/ (%~ -x,)dO +I,J/ (%:, +XI)dO] .
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It is easy to prove that this value is equal to zero. Indeed, by eqs. (4.8.3)
and (4.8.4) we have for instance

Let us proceed to calculation of the principal moment of stresses in the
cross-sect ion. We have

JJ(i1Xl + i2 X 2 + i3X 3) x fdO = hm3 + x3h x JJfdO = i 3m3,

S S

since the princip al vector of th ese stresses vanishes . According to eq. (4.8.5)

and by eqs. (4.8.8) and (3.13.13) of Chapter 6

(4.8.9)

The torque is equal to zero if

(4.8.10)

It is known that 12 ;::: co , the equality sign being possible only for cir
cular cross-sections and concent ric rings . For the majority of materials the
rod length reduces under compression whereas its cross-sect ional dimen
sions increase (X > 1). Therefore, both left and right hand sides of equality
(4.8.10) lie in interval (0,1)

x 2 Co
0 <2"=1- 10 < 1.

X p

If the cross-sect ion of th e rod differs from a circle or ring then for given
geometric characterist ics of th e cross-sect ion one can find such a (bifurca
tion) value of parameter x2 / x.2 th at the compression is accompanied by
torsion with zero torque on the rod ends.
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The value of the compressive force Q for which this phenomenon can
occur referred to as the "critical value" is determined by formula (4.7.4)

Three unknowns Q,x,»c are determined from three equat ions:
(4.8.11) and (4.7.2)

8A (2 2) 8A 2 2 8A
8h + X + sc: 8h + X »c:8h = o.

(4.8.11)

(4.8.10),

(4.8.12)

For the incompressible material this equation makes no sense because it
serves for determining the unknown 8A j8h and must be replaced by the
incompressibility condit ion X2 »c = 1. We obt ain

[( )

1/ 3 ]Q _ 2SoCo 1 _ Co 8A + 8A
- 10 - Co 10 8h 8h '

where A is a function of invariants h ,h

1 _ x3 + 2 1 _ 1 + 2x3 _ ( _ Co) 1/ 3
1- , 2 - 2' x- 1 T

X X 10

(4.8.13)

(4.8.14)

For instance, for a rod which is made of "neo-Hookean" mat erial and has
the ellipt ic cross-sect ion, see Subsection 9.1.4, we have

9.5 Second order effects

9.5.1 Extracting linear terms in the constitutive law

In the solution of further nonlinear problems the smallness of the derivatives
of the displacement with respect to the coordinates of the initial state is
assumed

[
8U

s I8ak « 1. (5.1.1)

Additionally, neglecting terms of third and higher powers of these values is
admitted, however their products and squares are retained.



(5.1.2)
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We start from the const it ut ive law in Finger's form, eq. (2.4.1) of Chapter
8. Taking the coordinates of a point in the initi al state (qS = as) we obt ain

o 2 (0 0 1 02 -1 0)
T = .jTj c M- e M + c E ,

where E IsIs denotes the unit tensor. The base vectors of v - and
V -volumes are respectively

s • R a ( ). au
r s = r = Is, s = -a r + u = Is + -a .

as as
(5.1.3)

Recalling definition (5.1.1) of tensor fA we have

fA = V'RT . V'R = R srs . r kRk

(. au) (, au) EO , au au, au au
= Is + -a Is + -a = + Is -a + -a Is + -a -aas as as as as as

Eo (" " ) aUk , . a Uk Bu;= + Islk + lk1s - + l k l,.--
Ba, aas Ba,

and then

where e is the linear strain tensor, V'u is the gradient of vector u and
T denotes the transposition. Recalling eq. (1.2.13) of Chapter 2 and eq.
(A.6.12) we have

V'U T . V'U = (e+ n) .(e- n) = e2 + E w . w - ww + w x e+ (w x ef .
Therefore

fA = E+2e+ V'uT
. V'u

= E + 2e+ e2+ E w · w - ww + w x e+ (w x e)T

and under the above assumptions

fA 2 = E +4e+6e2 + 2 [Ew . w - ww + w x e+ (w x ef].
Referring to the formulae

12 (fA) = ~ [If (fA) - II (fA2) ] ,

h (fA) = ~ {It (fA3
) «t, (fA) [It (fA2

) -12 (fA)]) ,

(5.1.4)

(5.1.5)
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taking into account that the first invariant of tensor w x E is equal to zero

(as Eis the symmetric tensor, see eq. (A.5.9)) and recalling that h (M) =

t, (ex) = t. , we obt ain

h = 3 +u, (E) + t, (E
2

) +2w · w = 3 + 2'19 +h (E
2

) +2w · w, }
h =3+4'19+2'192+4w.w,

13 = 1+ 2'19 + 2'192 +2w · w - h (E2
) .

(5.1.6)

Substitution into eq. (5.1.2) allows the st ress tensor to be represented in
the form

The invariants h (t) = j k of the strain tensor t are determined by

formulae (5.4.3) of Chapter 2

. '19 11 (A2) . 1 '192 11 (A2) . 0J1= + w . w + 2 1 € , J2= 2 - 2 1 e , J3= . (5.1.8)

As one expects, invariants j1 ,j2 ,13 contain respectively terms of th e first ,
second and third power in quantities (5.1.1).

Referr ing to eq. (2.5.2) of Chapter 8 we have

8A 8A 8A
ao = 8h + (h - 1) 812 + 138h

1 8A 1 8A [ 1 (A2)] 1 8A [ 2 (A2)]=--. +--. 'I9 + w' w + - h e +--. '19 -h e
2 8J1 2 8J2 2 4 8J3
1 8A 1. 8A 1 . 8A

= 28j1 + 2J1812 + 2J28j3'

8A 8A 1 8A 1 8A 1 8A
a1 = - + (h - 2) - = -- - -- (1- 2'19) - --'19

8It 812 28j1 4 812 48j3 '
8A 8A 1 8A 5 8A 1 8A

a2 = 8h + (h - 6) 812 = 28j1 -"4 8j2 + 28j3 '

where in the second and third formulae it is sufficient to keep the linear
terms and those terms containing no displacement derivatives.
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The specific strain energy is approximated by Murnaghan 's formula, eq.
(4.6.1) of Chapter 8, under the assumpt ion that the initial state is the
natural one

(5.1.9)

Then

(5.1.10)

and the expression for the stress tensor calculated up to terms of second
order reduces to the form

t = ~ t o+ [.\w .w+ (l - m + ~) c&2 + ~ (.\ + 2m - n) t, (E2
) ] E+

2 (HE+ 2/LE2
) + 2 (m - ~) caE+ nE2 +

/L [E2 + Ew · w - ww + w x E+ (w X E)T] , (5.1.11)

where t o denotes the stress tensor of the linear theory of elasticity

t o = .\c&E + 2/LE.

Noticing that

1v'h = 1 - c& + ... , .\c&E+ 2/LE2 = t o . E= E. t o,

one can present eq. (5.1.11) in another form

t = to - oi» + 2E. t o + t f

in terms of tensor i:

(5.1.12)

(5.1.13)

t f = [.\w. w+ (l - m + ~) c&2 + ~ (.\ + 2m - n) t, (E2
) ] E+ (5.1.14)

(2m - n )caE + nE2 + /L [E2 + Ew · w - ww + w x E+ (w X E)T] ,

where the lat ter term can be also set in the following form

(5.1.15)
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9.5.2 Equilibrium equations

The equations of statics in the volume are written in the metric of the
deformed body. In this metric the vector basis is prescribed by the triple
of vectors R , given by eq. (5.1.3)

R
. au . . aUt

s = Is +~ = Is + It~.
vas v a s

With the required accuracy the vectors of the cobasis (i.e. up to the first
power in the derivatives of displacement) are as follows

(5.2.1)

Indeed, under this definition

which is required.
Let F denote the surface force acting on the unit area of surface 0 of the

deformed volume V , then referring to eq. (3.5.3) of Chapter 2 we have

FdO = N . T dO = JI;nsRs . Tdo.

Byeqs. (5.1.13) and (5.2.1)

JI;T = f'O + 2E' TO+ T' = TO+ (\7u + \7uT
) . TO + T' ,

nsR
s=n-n ·\7uT ,

and thus

FdO = (n . TO + n . \7u . T O+ n . T') do = n · Gdo,

where we introduced th e tensor

(5.2.2)

(5.2.3)

It is evident that relationship (5.2.2) is applicable to surface 0* of any
V* -volume in the deformed body. For thi s reason the equilibrium equation
of this volume can be put in the form

JJJ pKdT +JJFdO = JJJPoKdTo + JJn · Gdo
v · o· v · o ·

= JJJ (poK + \7 . G) dTo = o.
v·
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The equilibrium equations in th e volume and on the surface are now
expressed in terms of tensor e in the metric of the initial v- volume

III v : \7 . e+ PoK = 0, (5.2.4)

dO a A

(5.2.5)on 0 : F do = F = n ·8.

Here F a denotes the surface force act ing on the unit area of surface o.
Tensor e is a differential operator over vector u . Its explicit expression

is as follows

(5.2.6)

the last term representing the non-symmetric part of thi s tensor.

9.5.3 Effects of second order

The approximate solut ion of the bound ary-value problem (5.2.4), (5.2.5) is
presented by th e displacement vector which is the geomet ric sum

u = v+w. (5.3.1)

Here v is the vector describing the solution of the equat ions of linear theory
under the prescribed surface forces

\7 .t O (v ) + PoK = O, n. t O(v)=Fo,

to (v) = ).. f) (v ) E+ 2f1,E (v) .

(5.3.2)

(5.3.3)

This solut ion is assumed to be known. Vector w is the correcting term and
is added to satisfy the equat ions taking into accounts th e terms of second
power in the derivat ives of th e displacement yector u (5.1.1). Since w has
the same order the differential operato rs in 8 (except for TO ) over u can
be replaced by the operators over v

"!U .t o('-!) = \7 (v + w) . t o(v + w) ~ vv to (v ) , }
T' (u ) = T' (v + w) ~ T' (v) ,

(5.3.4)

(5.3.5)

the suggested accuracy being retained. The terms of third and higher order
are omitted. As t ois a linear operator we have

t o(u) = to (v + w ) = to (v) + to (w )

and by eq. (5.2.3)

e(u) = e(v + w) = t o(v) + to (w) + \7v . to (v ) + t ,(v ). (5.3.6)
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The equilibrium equations (5.2.4), (5.2.5) in the volume and the surface
are now presented in the form

V'.TO~V)+POK+V' .~O(w)+V'. [V'V.~O(V)+~'(V)J =0, }

n · TO (v) - FO + n· TO(w) + n· [V'v, TO (v) + T' (v) = 0.

(5.3.7)

Recalling now that vector v is determined by eq. (5.3.2) we also arrive
at the equat ions of the linear theory

V' .~O(w)+V' . [V'v.~O(V)+~'(V)J =0, }

n·TO(w)+n · [V'v, TO(v) +T'(v) =0,
(5.3.8)

determining vector w in terms of the given "volume" and "surface" forces

k=V' · [V'v.TO(v)+T'(v)] , f= -n o[V'v .TO (v)+T'(v)].
(5.3.9)

Taking account of the terms of second order in the expressions for the
mass and surface forces K and F presents no difficulty.

The problem has a solution if the "external" forces k and f sat isfy the
equat ions of statics

III kdTo + II fdo = 0, III r x kdTo + II r x fdo = 0. (5.3.10)
v 0 v 0

The first equation is sati sfied which can be easily proved by transforming
the surface integral into a volume integral

Ilfdo=- II n· [V'v .TO(v)+ T'(v)] do
o 0

=- IIIV', [V'v.TO(v)+T'(v)]dTo=- IllkdTO'
v v

which is required. The second equation presents a challenge because tensor
V'v · TO (v) in e(v) is not symmetric. Referring to eq. (B.5.6) we have

II r x f do = - I I r x n - [V'v, TO (v) + T' (v)] do
o 0

= - III r x V' . [V'v, TO (v) + T' (v)] dTo+ 2 I I I adTo
v v

= - III r x kdTo +2 III adTo·
v v
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Here a denotes th e vector accompanying the nonsymmetric part

-0 (v) . TO (v) = -w x ro (v)

of tensor \7v . TO (v) . This vector can de defined by the equality

2a = is x {i s . [w x TO (v)]} ,

and th e second equat ion of statics is satisfied under the condit ion

2111 adTo = 111 is x {is ' [w x TO (v)] }dTo = O.
v v

An extended form of vector 2a is as follows

(5.3.11)

(5.3.12)

2a = is x {is ' [w x TO (v)]} = is x [is ' (I, x iqit ) wr t~t ]

= esrqestmimwr t~t = (brtbqm - brmbqt) imwrt~t = wt t~t iq - wrt~qir

or

(5.3.13)

Hence, the necessary condition for existence of a solution of the boundary
value problem (5.3.8) is the equality

111W . (TO- ECJ) dTo = O.
v

(5.3.14)

In the second boundary-value problem (surface forces FO are prescribed
on 0) vector w is determined up to an additive constant term W0 0 Therefore
assuming w = w' + Wo where for example w' (0,0 ,0) = 0, the choice of
vector Wo should be subjected to the condit ion

Wo .111 (TO - ECJ) dTo = - 111 w' . (TO - ECJ) dTo = vb,
v v

where b is given. We thus arr ive at the system of equations for the un
knowns WOr

The coefficients

WOr (crq - cbrq) = bq q = (1,2 ,3).

Crq = ~ 111 t?qdTo , C = en + C22 + C33

v

(5.3.15)

(5.3.16)
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are the stresses averaged over the volume and can be expressed in terms of
the external forces PoK and FO by means of formulae (4.3.2) of Chapter 1.
The det ermin ant of this syst em must not be zero

~ = ICTq - c8Tq l =1= 0, (5.3.17)

and if this condit ion is not sat isfied (Le. ~ = 0) then boundary-value
problem (5.3.8) may have no solution, that is, the account of the effect
of nonline arity is not achieved by introducing a corr ecting term into the
solution of the linear problem. The proof of criterion (5.3.17) is carried out
only by prescribing external forces PoK and FO and does not require solu
tion of the linear boundary-value problem (5.3.2) and (5.3.3). The additive
const ant vector Wo appearing in the solut ion is determined in th e process
of accounting for the second order nonlinear effect (i.e, introducing vector
w) .

Solving boundary-value problem (5.3.8) is made difficult by the complex
ity of the expressions for the "volume and surface" forces k and f. Applying
the reciprocity theorem allows th e mean values of the st rains and stresses
to be det ermined in terms of these forces. This turns out to be sufficient in
many problems when the details of the strain distribution are not needed.

The calculat ions required by th e reciprocity t heorem are slightly simpli
fied because of the special st ructure of vectors k and f . According to eq.
(3.3.5) of Chapter 4 we have

~2 19'19m(w) + E' .. Em (w) =
1- V

~ 2~V (III k· C' . rdro+II r c' . rdo). (5318)

Here E' is an auxiliary constant symmet ric tensor of second rank and 19'
is its first invariant, Em (w) and 19m (w) denote respectively the values
of th e st ra in tensor Em (w) and the dilat ation 19m (w) averaged over the
volume, r = isas is the position vector, E' . . Em(w) = h (E' .Em ) is the
first invariant of the product of tensors E' and Em. Assuming for brevity

Q= V'v · to (v) +t ,(v) ,

we have

II n oQ 0 E' 0 rdo = II nsqstE; mamdo
o 0

= 111(V' oQ).t ordTo+ IIIQdTo " E' (5.3.19)
v v



Relationship (5.3.18) is written in the form

u , (
1 _ 2v iJ iJrn w) +
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and recalling formula (5.3.9) we have

111k· [' . rdTo +11 r [' .rdo = - 111 QdTo ' . e.
v () 1J

(5.3.20)

E' ..{Em(w) + 21~V l/f [Vv i'" (v) +i" (v)] dro } ~ 0

Assuming for instance [ ' = E, iJ' = 3 we obt ain the mean value iJrn (w)

iJrn (w ) = 2f-L~1-:: ) v 111 t, (V'V .TO (v) +1" (v)) dTo . (5.3.21)
'p

Taking e' = i1il and [ ' = i1il + i2i2 we obt ain respectively the mean values

v ['] 1 Jrrr [8Vk 0 ,]1 _ 2v iJrn (w) + Ell (w) rn = - 2f-LV } } 8al tkl (v) + t ll (v) dTo ,
v

(5.3.22)

[ ( )] 1 Jrrr [8Vk 0 8Vk 0 , ]
2 El 2 W m = - 2f-LV } } 8a2t~'l (v ) + 8al tk2 (v) + 2t l 2 (v) dTo ,

v

(5.3.23)

such that

[EU (w)lm ~ v~ {vIfI [::'2, (v) +I, (r (v»)]dro-

(1 + v)IfI [~:: '21 (v) + ';1 (V)] dro}. (5324)

Change in volume of the body subj ected to distortion

To begin with , we write down the expression for the mean value of st ress
tensor in the body volume, see eq. (4.3.2) of Chapt er 1. Introducing the
dyadics pKR and FR we can write

111 pKRdT +11 FRdO = 111 pKRdT +11N . TRdO
v 0 v 0

= 111 (pKR + ~ .T R ) dr . (5.3.25)
v
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It is easy to prove that the divergence of tensor TR of third rank is trans
formed to the form

~ . TR = is a~s .TR = (~ . T) R + is . Titbts= (~ .T) R + TT. isis

= (~.T)R+T.E= (~ .T)R+ T,

as TT = T. Returning now to eq. (5.3.25) we have

/// pKRdT+ // FRdO =
v 0

= /// (pK+~.T)RdT+///TdT= /// TdT. (5 .3.26)
v v v

Though the forth coming analysis is valid for the dislocation of a more
general nature, we consider Volterra' s distortion. In the body subjected to
this distortion the st ress tensor T is not zero even when the volume and
surface forces vanish. However its mean value in the volume is zero

///TdT=O.
v

(5.3.27)

It follows th at in the linear elast ic body the mean value of the linear strain
tensor E: is zero and th e change in th e volume of the body subj ected to
distortion can be explained only in the framework of the nonlinear th eory
of elast icity.

Replacing tensor T in eq. (5.3.27) by its approximate expression (5.1.13)
we have with the adopted accuracy

///TdT= /// Jj;TdTo= ///(TO+2E: .TO+T')dTo=O.
v v v

(5.3.28)

At th e same time by eq. (5.1.6)

dr IT 1 2 1 (A2)-=VIs=l+ t9+-t9 +w ,w--h e ,
d~ 2 2

and the relat ive change in th e volume of the body is as follows

v - V Jr{j [ 1 2 1 (A2)]- v- = Dav = 1. '19 + 2'19 + w · w - 2h E dTo·
v

(5.3.29)

(5.3.30)
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Returning to eq. (5.3.28) we construct the expression for the first invari
ant of the int egrand . Referring to eqs. (5.1.12) and (5.1.14) we obtain

I, (to + 2g · to + t f
) = (3'\ + 211}19 + (3'\ + 2/i) w , W +

{)2 (2'\ + 31- m + ~n) + t, (g2) (5/1 + ~,\ + 3m - ~n) =

= (3'\ + 2/i) (~ - 1) + {)2 (~,\ - /i + 31- m + ~n) +
dTo 2 2

t, (g2) ( 3'\ + 6/i + 3m - ~n)

and referring to eqs. (5.3.28) and (5.3.30) we arr ive at the following rela
tionship (Toupin and Rivlin , 1960)

Dav =
1

3,\ + 2/i

For the adopted accurac y, the invariants {) and h (g2) are determined
by solution of the problem on the state of stress of the linear elast ic body
in v- volume.

9.5.4 Choice of the first approximation

It is not necessary to take, as the first approximat ion, the solution of the
linear boundary-value problem (5.3.2), (5.3.3) which exact ly corresponds
to forces K and Fa . As often happens, it is preferable to includ e the terms
of second order of assumed small parameters in vector v. We take

v = va + VI , U = v + w = va + VI + W , (5.4.1)

where va denotes the solut ion of the linear problem satisfying the men
tioned syst em. Instead of eq. (5.3.6) we have

<3 (u) = to (u) + V'u · to (u) + t f (u)

= to (vo) +to (vi) + t o(w) + Vvo . to (vo) + t f (vo) . (5.4.2)

where the terms of third order have been neglected. Insertion into t he
equilibrium equat ions (5.2.7) and (5.2.8) und er the condition

(5.4.3)
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requires only adding the correcting "forces"

k = V' . [V'vo' to (vo) + 1" (vo) + to (VI)] ' }

f = -n· [V'vo . to (Vo) + 1" (vo) + to (vd]
(5.4.4)

in expression (5.3.9). Vector w should be obtained, as above, from the
system of equat ions

(5.4.5)

vectors k and f being determined by eq. (5.4.4). The addit ional terms
V' . to (w) and n· to (w) present a statically self-equilibrat ed system

JJJV' . to (vi) d70 - JJn· to (vi ) do = 0, }

III";.1"(vIl dTo - I(x n 1"(Vl)fkJ ~ 0
(5.4.6)

The first relation is an immediate consequence of tr ansformation of the
surface integral into a volume integral whereas the second follows from
the first and the symmet ry of tensor t o(VI)' Hence the necessary crite ria
(5.3.14) and (5.3.17) for the correcting vector w exist ing are kept . In these
criteria it is necessary to replace V by Vo .

An addit ional term needs to be added in eq. (5.3.20) which now takes
the form

1.:'2v ~'Dm (w) H' · { em (w) + 2~V I[J [Vvo.1" (vo) +

1" (vo) + to (VI)] d70 } , (5.4.7)

and formulae (5.3.21), (5.3.23) and (5.3.24) are as follows
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[en (w)lm ~ v~ {vIfI [~:: tt (vo) +I, (r (vo)) + 1, (to (VI))] dro

- (1+ v) l[f [~~; tZ, (vo) + t~, (vo) + tl, (VI)] dro} .
(5.4.10)

9.5.5 Effects of second order in the problem of rod tors ion

In the classical solution , assuming the smallness of the angle of torsion per
unit length, vector Vo is given by the formulae

(5.5.1)

The nonvanishing st resses are

By eq. (2.2.10) of Chapter 6 the components of the linear vector of rot ation
are given by

(5.5.2)

For this reason

" 0 2 (orp orp ) .
W (vo) . T (vo) - (JW(vo) = -f.-LCX a l oal + a2 oa 2 13 +

cxa3 (tgl i l + tg3 iz) .

In the problem of torsion

11 tg l (vo)do = P = 0,

S

11 tg3 (vo) do = Q = 0,

S

and referring to eq. (2.5.5) of Chapter 6 we have

11 (a1:: +az::) do = -211 ipdo+.f <p (nl al + nzaz) ds
s s r

= -2 11 ipdo + 2.f ipdu: = .f <p ~~ ds = ~ .f °tsZ

ds = 0,
s r r r
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since function i.p2 is single-valued. This proves the necessary condition for
existence of the correcting vector w

JJJ l- :TO (vo) - wa (vo)] dTo = O.
v

(5.5.3)

In the expression for vector v we take into account the terms of second
power in parameter a. Representing the Cartesian coordinates Xl, X2, X3 of
point (aI, a2,a3) after deformation in the form

Xl = Jar + a~ cos (() + aa3) = al cos aa3 - a2 sin aa3

1 2 2
= al - aa2a3 - 2"a a3al,

X2 = Jar + a~ sin (() + aa3) = al sin aa3 - a2cos aa3

1 2 2
= a2+ aala3 - 2"a a3a2,

X3 = ai.p(al,a2) +a3 (al = Jar +a~cos(), a2 = Jar +a~Sin()),

we have

1 2 2
VI = Xl - al = -aa2a3 - 2"a a3al,

1 2 2
V2 = X2 - a2 = aa3al - 2"a a3a2 ,

V3 = cap (aI, a2)

and byeq. (5.5.1)

Vl3 = o.

The linear stress tensor obtained in terms of these displacements is equal
to

to (vr) = _a2 {.\a5E+ fJ [a5 (ilh + i2i2 ) + a3i3 (aliI + a2h) +

cs (aliI + a2i2) h]}. (5.5.4)

The tensors which are parts of the expressions for vectors k and f are as
follows
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jf (vo) = {A [ 2~2 (t~~ + t~~ ) - ~ (a1 t~3 - a2tg1) +ci (ai + a~ + a~) ]

+4~2 (2m - n) (t~~ + t~n } E+ 4: 2 [ (tg~ + t~~) hh + tg~ i1 i1+
02

• • 0 0 ( . . .. )] •• avos aVoq ( 6)+t3212 12 + t31t23 1112 + 1211 + J-l1Slq-a -a . 5.5.
ak ak

As one can see, the system of "volume and surface" forces k and f are
rather complex. Let us rest rict our consideration to the effect of change
in the rod length which is equal to l [C33 (w)]. It requires only the first
invariants of the considered tensors and their [3, 3] components

It remains only to refer to Subsect ion 6.3.13 and write down the expressions
for the following integrals

II [(::)'+ ( : :,)'] do ~ I, - C

After calculat ion by formula (5.4.10) we arrive at the following expression
for the mean value of the elongat ion of the rod which accompanies torsion

the latter differing from the result of Rivlin , 1953 only in notation.
It is evident that Ip (1 + //) > 2//C as Ip > C, // < 1/2, however one can

not conclude that tors ion of the rod is accompanied by a decrease in its
length since for the majority of mate rials n < 0 and m < o.
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9.5.6 Incompressible media

The specific st rain energy is given by Murn aghan 's formula

and expression (5.1.7) for the st ress tensor takes the form

1 A [ (8A)] A A"2 T (u) = C1 + 2C2 + ill E+2 (C1 + C2 ) g (U)+C2 (h - 3) E
3 h=l

- 4C2E
2 (u) + (C1 + C2 ) \7uT . \7u + C2 (h - 3) (3g + \7uT . \7u) ,

(5.6.1)

where replacement (5.1.15) was used. We denote

and introduce the scalar (pressure)

defined by the condition

/ 3 = 1: 2{) (u) + 2{)2 (u) - h (g2 (u)) + 2w (u) . w (u) = O. (5.6.2)

As in Subsect ion 9.5.3 we take

u=v +w, (5.6.3)

where v denotes the displacement vector in the linear approximation and
w is the correct ing vector describing the second order effects. Then by eq.
(5.6.2)

2{) (v ) + 2{) (w) + 2{)2 (v) - h (E2 (v )) + 2w (v) . w (v) = 0,

where the terms of thi rd and higher order are omitted. The incompressibil
ity condit ion must be satisfied both in the linear approximation and with
account of the second order terms, thus

{)(v) =\7·v =O,

{) (w) = ~h (E2 (v) ) - w (v) . w (v) .

(5.6.4)

(5.6.5)

Due to eq. (5.1.6) we have

t, - 3 = 2{) (w) + t, (E2(v)) + 2w (v) . w (v) = u, (g2 (v)) , }
2 (5.6.6)

/ 2 - 3 = 4{) (w) + 4w (v) . w (v) = 2h (E (v)) .
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Scalar q is also presented by the sum of the value in the linear ap proxima
tion qOand the correcting term ql

(5.6.7)

With the adopted accuracy, expression (5.6.1) for the stress tensor can be
taken in the following form

(5.6.8)

where 'fa (v) is th e stress tensor in the linear approximat ion

(5.6.9)

'fa (w) is the stress tensor calculated in terms of the correcting vector

and 'ff (v) is the term corresponding to th e linear approximat ion

(5.6.10)

9.5.7 Equilibrium equations

Similar to Subsect ion 9.5.2 we determine force FdO by the equality

dO A dO h s A h T A

F- = N .T- = V 13nsR . T = V h (n - n · \7u ) . T .
do do

(5.7.1)

Taking into account representation (5.6.8) of the stress tensor and the in
compressibility condit ion (5.6.2) we arrive at the equilibrium equation on
the surface

F a = F~~ = n - 'fa (v) + n · ['fo (w) - \7vT
. 'f0 (v) + 'ff (v) ] . (5.7.2)

Making use of this equat ion and repeating the derivation of Subsection
9.5.2 we obtain the equilibrium equat ion in the volume

\7 . 'fa (v ) +PoK + \7. ['fa (w) - \7vT
. 'f0 (v) + 'ff (v) ] = O. (5.7.3)

In the linear approximat ion

Taking into account relat ionships (5.6.9) and (5.6.4)

\7 . qOE = \7qO, \7 . 2E(v) = \72v + \7\7 . v = \72v

(5.7.4)

(5.7.5)
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the obtained relations take the form of equations of motion of viscous in
compressible fluids (the Navier-Stokes equations)

(5.7.6)

where v denotes the velocity vector.
Returning to eqs. (5.7.2), (5.7.3) and (5.6.5) we arrive at the following

system of equations determining the correcting vector w

V' .TO(w)+V' . [-V'vT .TO(v)+T'(v)] =o,}
V' . w = ~It (g2 (v)) - w (v) .w (v) ,

n .TO(w)+n . [-V'vT . TO (v) +T'(v)] =0.

The notion in the form of Navier-Stokes equations has the form

f.tV'2 W+ f.tV' [~It (g2 (vj] - W(v) . w (v)] + k = 0,

V' . w = ~It (g2 (v)) - w (v) . w (v) ,

2f.tn·g (w) = nql + f .

(5.7.7)

(5.7.8)

Here vectors k and f play respectively the role of volume and surface forces
and are defined by the equalit ies

k = V' . {qOV'vT - 2f.tV'vT . g (v) +T' (v)} , }

f = -n · {qoV'vT - 2f.tV'vT . g (v) +T' (v)} .

The nonsymmetric part of the tensor in the braces is equal to

(5.7.9)

and according to eq. (5.3.14) the necessary condition for the existence of
the solut ion of boundary-value problem (5.7.8) is set in the form

JJJ [w (v) . TO (v) +3w(v) qO] dTo = 0
v

which, after eliminat ing TO (v) takes another form

JJJ [f.tW (v) . g (v) + w (v) qO] dTo = O.
v

(5.7.10)
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9.6 Plane problem

9.6.1 Geometric relationships

In plane stra in, th e coordinates X s of the medium particles are related to
the coordinates as in the initial stat e as follows

Introducing the material coordinates qI , q2, q3 = X3 we have

3

aa = aa (qI , q2) , a3 = ~ ; z., = Xa (qI , q2) , X3 = q3, (6.1.2)

where here and in Subsections 9.6.1-9.6.9 the Greek indices take values 1,2
whereas the Latin indices, as above, take values 1,2,3. The position vectors
in the init ial (v-volume) and the deformed (V -volume) states are equal
to

(6.1.3)

and th e base vector s in these states are respectively equal to

ob
r a = oqa = ba , (6.1.4)

The covariant components of the metri c tensors 9 and Gare determined
by the formulae

gaj3 = b a . b j3 = ba!'] ,

Gaj3 = B a . B j3 = Baj3,
(6.1.5)

such th at

b
g = Igskl = >.2 ' b = bllb22 - bI2; G = IGskl = B = B llBn - B r2 '

(6.1.6)

The nonvanishing contravariant components are as follows

(6.1.7)

G33 = 1.

g22 = b22 = ~
b '

Gll = e» = G22 = B22
G B '

II _b ll _ g22 _ b22
g - - g>.2 - b '

12 bI2 bI2 '33 \ 2g - - -- g - /\- - b ' - ,

G22 = B 22 = B ll GI2 = BI2 = _ B I2
B ' B'
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This introduces the plane metric tensors b and B in v- and V -volumes
respectively

b= bQj3
h Qh j3 = bQj3h

Q
h j3, B = B

Q
j3BQBj3 = B Qj3B

QB
j3, (6.1.8)

the cobasis vectors being determined by the standard formulae

b" = b
Qj3h

j3, BQ = B
Q

j3B j3.

The th ird index 3 is omitted in the notion of the Levi-Civit a tensors E,E

(6.1.10)

(6.1.11)

where

{

0, 0: = (3,
e

Qj3 = eQj3 = 1, 0: :: 1, (3 :: 2,
1, 0: - 2, (3 - 1.

Using these tensors one can rewrite formulae (6.1.7) and the inverse ones
in the following form

bQj3 = EQ'YEj3l5 b'Y 15 , B Qj3 = E Q'YE j3l5 B 'Y 15 ' }
(6.1.12)

bQj3 = EQ'YEj3l5b'Y 15 , B Qj3 = E Q'YE j3I5B 'Y I5 .

The invariant s of strain measure exdetermined by formulae (5.2.6)-
(5.2.8) of Chapter 2 are equal to

t, (ex) = gskGsk = bQ {3B Q {3 + ).,2 ,

12 (ex) = ~ gskGs k = ~ ().,2bQj3BQj3 + 1) , (6.1.13)

h (eX ) = ~ = >.2 ~ .

Referring to eq. (6.1.12) we have

b
Qj3B - Q'Y j315 b - - BAit - B Q'Y ,1315 b BAit

Qj3 - E E 'YI5 EQA Ej3lt - b e eQ Ae ej3lt "115 •

By using definition (6.1.11) one can easily prove the relationships

Hence

bQj3B = B P 615 BAit = B b B 'Y 15
Qj3 b A It b "1 15 ,

which results in the formula relating the invariant s

h->.2= 12 _ 13 or 13-12).,2+ h >.4_ >.6= o.
>.2 >.4

(6.1.14)

(6.1.15)

(6.1.16)
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9.6.2 Constitutive equation

Th e specific st rain energy is now considered as being a function of invariants
II and h

such that

(6.2.1)

8A1 8A 1 8A
-=-+--ot; 813 >..2 ei; (6.2.2)

The consti tutive equat ion (2.1.9) of Chapter 8 can be writ ten in the form

- 2 [8A 8A 8A ]t st = _ _ g st + _ (I g st _ g smgtnc ) + I _cst
~ 8II 812 1 rnn 3 8h

and by eqs. (6.1.5) and (6.1.7)

t-Q3 = 0, ti"33 2 [8A \ 2 + 8A \ 2 (1 \ 2 ) + I 8A ]
= ~ 8h /\ 8h /\ 1 - /\ 3 8h . (6.2.3)

Replacing invariant II according to eq. (6.1.13) and using eq. (6.2.2) we
have

For fixed values of Q , {3 t here are four possible combinations of values of
"1, 8

"I = Q , 8 = Q ; "I = Q , 8 = {3; "I = /3, 8 = Q; "I = {3, 8 = {3.

For this reason (do not sum over Q, (3!)

bQf3b'YOB 'Yo = bQf3 (bQ Q BQ Q + bQf3 BQf3 + bf3QB f3Q+ bf3f3 B f3f3) ,

b
Q

'Ybf3os., = bQ Qbf3 Q BQ Q + bQQb!1f3 BQf3 + bQf3bf3QBf3Q+ bQf3bf3f3 B f3f3,

such that byeqs. (6.1.6) and (6.1.7)

(bQf3 b'YO _ bQ'Y bf30) B = [(bQfI)2_ bQQbf3f3] B = B B Qf3 = h B Qf3
'YO Q f3 b >..2 '

and returning to eqs. (6.2.4) and (6.2.2) we have

(6.2.5)
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For the incompressible medium

such that

te,{3 = 2aAl bo:{3 + pBO:{3
aIr '

t-0:3 = 0, <33 2 [aA \2 \2 (1 \2) aA]t = aIr /\ + /\ 1 - /\ ah +p,

(6.2.6)

(6.2.7)

(6.2.8)

where p denotes a function of the coordinates which is not known in ad
vance.

9.6.3 Equations of statics

When the mass forces are absent the equilibrium equations in the volume
are written in the form

However [0:3 = 0 and [33,G do not depend on q3, hence the latter equation
is identically satisfied and the first set of equations is set as follows

(6.3.1)

or

(6.3.2)

where Christoffel's symbols are calculated in terms of the metric tensor B.
The equilibrium equations on the surface can be written down in one of

the forms (3.3.7) and (3.3.8) of Chapter 1

(6.3.3)

where no: and No: denote the covariant components of the unit vectors of
the outward normals nand N to contours "f and r of the cross-sections of
the body in the initial and deformed states respectively

(6.3.4)

Here F {3 denotes the contravariant components of the surface force

(6.3.5)
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9.6.4 Stress funct ion

The tensor of stress function s, Subsection 1.1.6, is given in the form

;,. U (1 2) . .'±' = q , q 1313 ,

whilst the st ress tensor is determined in terms of the tensor of stress func
t ions byeq. (1.6.6) of Chapter 1

't = i"'13B",B13 = inc <I> = 9 x [9 x U (ql ,q2) i3i3r' (6.4.1)

The component {33 is not considered here since it is determined indepen
dently by eq. (6.2.3).

The calculation is carried out in the following way

According to the condit ion whereby the covariant derivative of the Levi
Civit a tensor vanishes

- >"13 "---""--- ..---....---
oM - >"13 _~ {A} -p13 { (J} - >"P- 0v ",E - + E + E-aq'" op o p

we obt ain by renaming the dummy indices

R>.. aU aE>"13 = -R {P}E>"P aU _ R>..E>..13{7} aU
aq13 aq'" P Aa aq13 a(J aqP ,

and substitution into eq. (6.4.2) leads to the following representation of the
st ress tensor

(6.4.3)

The value in the parentheses represents the covariant derivative of the
covariant components of the gradient of U
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Hence

T = EPQEA,BRpR\ '{7Q'{7,BU; [ItA = Elwe,B'{7Q'{7 ,BU = ~ tPQtA,B'{7Q'{7 ,BU.

(6.4.4)

The inverse relationships have the form

- -F7 _ - - -ItA _ B -pA
\7Qv ,BU - E1wEA,Bt - b tlw tA,Bt ,

and by eqs. (6.2.5), (6.1.12) and (6.1.13)

- - IT (8A 1 1 8A 1 )
\7Q \7,BU = 2y h 8ft ,\2 bQ,B + 81

3
BQ,B .

(6.4.5)

(6.4.6)

The expression for the first invariant of the str ess tensor is set in the
form

(6.4.7)

(6.4.8)

As expected it turns out to be equal to the Laplace operator over U (in the
metric of the deformed body)

'{72U = '{7 . vo = R Q~ . R ,B 8U = BQ,B'{7Q'{7 U.
8qQ 8q,B ,B

The unit vectors of the tangent t and normal N to plane curve r in the
deformed body

R = B (B) + h X 3 ( X 3 = const )

are determined under the assumpt ion that t , N , i3 are oriented along axes
of system 0 XYZ in the following way

(6.4.9)

(6.4.10)

The stress vector describing act ion of the part of medium" over G" on the
medium "under G" is

_ A _ _ p _ It Q _ A,B - - dq-Y
F - N · T - Ep-yB . E E BpBA\7Q\7,BU dB

- A,B - - dq" - - dqQ ,B •
= E B A\7Q \7,BU dB = \7Q \7,BU dB B x 13·

As indicated above

d'9U = d Q~B,B'9 U = d QB,B ( 8
2U

_ {7} 8U)
q 8qQ ,B q 8qQ8q,B 0:{3 8qP

= dq
QB

,B'9Q '9 ,BU,
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and hence

AI

FdS = dfl u x h, JFdS = P = fl u x h.
A

(6.4.11)

This formula det ermines the principal vector P of st resses on curve AM of
curve r . This vector can be present ed in th e form

such th at

P
- x _ ->'{3 au

- E aq{3' (6.4.12)

(6.4.13)

The latter is a genera lisat ion of formulae (1.8.4) of Chapter 7. In these
formulae FO: denot es contravariant components of the principal vector of
st resses in the metri c of the deformed body.

The principal moment of st resses on curve r about the coordinate origin
in plane X3 = const is given by the following integral

AI AI AI

rno = JB x FdS = JB x (dfl u x b) = -hJB· dfl u.

A A A

Returning to the relati onship

B· dfl u = d (B .fl u) - dlB{3 ' fl u

= d (B . fl U) - ;~ dq{3 = d (B .fl U) - dU,

we arri ve at the following expression for the prin cipal moment abo ut axis
Oz

- {1 au
m ; = U - B . \lU = U - B . B aq{3'

This is a generalisat ion of formula (1.8.5) of Chapter 7.

9.6.5 Plane stress

(6.4.14 )

We consider a body having, in the initial state (v-volume) , the form of a
plate of constant thickness ho which is small relative to the plate sizes, i.e.
a3 :::; ho· The faces of t he plat e are not loaded and the surface forces on the
lat eral surface are parallel to the plate midpl ane a3 = 0 and distributed
symmetrically about this plane. These properties are assumed to be kept in
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the deformed plate (V -volume) , such that the state of stress is symmetric
about the midplane X 3 = O.

The materi al coordinates ql , q2,q3 are introduced by the relations

(6.5.1)

(6.5.3)

Hence the vectors of the initi al basis and cobasis in V -volume are equal
to each other

R a = B a = ~::i')' , R 3 = h ; R" = B a/3B/3 = B" , R 3 = h (6.5.2)

and the covariant and contravariant components of metric tensor c of
V -volume are determined by formulae (6.1.5) and (6.1.7).

a
The unit vector of the normal N to surface qa = const has the direction

of vector R " of the cobasis and is given by

a R a 1
N= IRal = JBaa

R a
.

a
The stress vector t on this surface is thus equal to

a a , 1 - k 1 Lcxk:
t=N ·T = ~Ra. t'" RmRk = ~ta Rk ,

yBaa yBaa
(6.5.4)

and the principal vector integrat ed over the thickness of the plate is denoted
a

by T and is as follows

Introducing the denotation

hJia/3dq3 = fp /3 = p!3a

-h

(6.5.5)

(6.5.6)

and not icing th at due to the symmetry of the state of stress ia 3 is even
with respect to q3

(6.5.7)

we arrive at the formula

(6.5.8)



(6.5.9)

(6.5.10)

(6.5.11)
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Functions fp (3 can be deemed as the contravariant components of the sur
face symmet ric tensor

P= p° (3BoB(3 .

On surface q3 = h (q1.q2) bounding the deformed plat e

R = B (q1 , q2) + i3h (ql, q2) ,

and vectors R~ (which differ from the base vectors R o = Bo )

R ' B . 8h R' B . 8h
1 = 1 +138q1 ' 2 = 2 +138q2

lie in the tangent plane to this surface, while the vector

, , . 8h . 8h
R 1 x R 2 = B 1 X B 2 + B 1 X 138

q
2 + 13 X B 28

q
1

- 2 8h 1 - 8 h r;:; a 8h
= B 1 x B 2 + E21 B 8q2 - B E128q1 = B 1 X B 2 - V BB 8qa

3
has the direction of the unit vector of the normal N to the plane. Not icing
th at

we obtain

3 = (1 B 0 (3 8h 8h) - 1/2 (. _ BO 8h )
N + 8 8 (3 13 8 .qO q qO

The condition of absence of loading in this plane takes the form

N.f' = 0, (is - B A:q~) .[[o(3B oB (3 + [03 (B o i3 + isBa) + [33is is] = 0

or

(
[03 _ [0(3 8h ) B + i ( [33 _ [03 8h ) = 0

8q(3 a 3 8qo '

From the obtained three relations

t-03 _ t-o (3 8h = 0
' 8q(3 ,

(6.5.12)

one can eliminate components [03 of the stress tensor. We thus arr ive at
the equat ion

(6.5.13)
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9.6.6 Equilibrium equations

In the case of absent volume forces, the equations of statics in the volume

o (;:;C-skR 0 (;:;C -akR 0 (;:;C<3kR-0 v lit k = -0 v lit k + -03 v lit k
~ ~ q

= ~VG (ia,8B + ia3i ) +~VG (2aB + 23 i ) = 0oqa ,8 3 Oq3 a 3

are integrated over the thickness of the plate. We arrive at the equality

h

JO
Oa VB (ia,8B,8 + ia3h) dq3+ VB (paB a + 23 i3 ) I

h
= O. (6.6.1)

q -h
-h

The integration limits depend on ql and q2, hence

h

o~a JVB (ia,8B,8 + ia3h)dq3 =
-h

h h

=JoOa VB (ia,8B,8 + ia3i3) dq3+ VB [:: (ia,8B,8 + ia3i3)] I
q q -h

-h

and equality (6.6.1) is set in the form

h

o~a JVB (ia,8B,8 + ia3i3) dq3+
-h

The value in the square brackets vanishes by means of eq. (6.5.12). Pro
ceeding to formulae (6.5.6) and (6.5.7) we arrive at the equilibrium equat ion
which contains only the values determined on the mid-surface

(6.6.2)

This equat ion is complete ly coincident with the equat ion of stati cs (6.3.1)
of the problem of plane st rain. Thus it can be sat isfied by introducing the
stress function U, such that by eq. (6.4.4)

(6.6.3)
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On the lateral surface of the plate

(6.6.4)

where S is the arc of curve r bounding th e cross-section in the mid-plane
q3 = O. The vectors

DR .
Dq3 = 13

(6.6.5)

lie in the tangent plane to this surface while the vector

B aqCX • - BAaqcx N
o as x l ;l = EAcx as =

has the direction of the normal to this surface. This vector is the unit vector
of the normal because

Here formula (6.1.12) was used and it was taken into account that

Bcx!,dqCXdqfJ = dS2
•

The surface force F on surface (6.6.4) is determined by the equality

F N T' - dqr B A [t-nfJ B B t-0:3B ' . (B t-0:3 • tL33)J= . = EA r dS ' 0: fJ + 0: 13 + 13 0: + 13

or

(6.6.6)

By eqs. (6.5.6) and (6.5.7) the principal vector of these forces integrated
over the plate thickness is

(6.6.7)

We arrive at equality (6.4.10) from which, by repeating derivation of Sub
section 9.6.4, one can obtain th e boundary conditions (6.4.13) and (6.4.14)
for the stress function U.

9.6.1 Constitutive equation

As a result of the assumed symmetry of the deformation about plane q3 =
X3 = 0 the Cartesian coordinates of point ao: (q1, q2, q3) and a3 (ql , q2, q3)
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in the initial state are respectively even and odd in q3. Hence

( 1 2) (8ao ) ( 8a3)a3 q ,q ,0 = 0, 8 3 = 0, 8 0 = 0,
q q3=O q q3=O

(6.7.2)

where A is an unknown function of ql , q2.

These relations admit the following expressions for the components of
the metric tensor g and the determinant 9 in the form (6.1.5) and (6.1.7)

{

I
90/3 = bo /3 , 933 = A2 ' 903 = 0,

q3 = ° : 9: = bO~ b933 = ~
2

, 903
=2°,

9 - 19skl - 2 ' b - bub22 - b12 ·
A

Repeating the calculation of Subsection 9.6.1 we arrive at expressions (6.1.13)
and (6.1.15) for the invariants of the strain measure ex

q3 = 0: t, = bo/3 Bo/3 + A2, /2 = ~ (A2bo/3 Bo/3 + 1), h = ~ A2

(6.7.3)

and relationship (6.1.16) between them. This allows us to write the expres
sions for the components of the stress tensor in the mid-plane in the form
of eqs. (6.2.3) and (6.2.5)

3 -03 L33 2 [8A 2 8A 2 ( 2) 8A]}q = 0 : t = 0, t = JYi, 8ft A + 8I
2

A h - >. + h 8h '

to/3 = _2_ (8A1 bo /3 + / 3 8A 1 BO/3) .
JYi, et, et,

(6.7.4)

In the case of incompressible medium we arrive at formulae (6.2.7) and
(6.2.8) . For a very thin plate we have , due to eq. (6.7.1)

( 1 2 3) (1 2 ) (8a3) 3 1 3a3 q ,q ,q = a3 q ,q , 0 + 8 3 q = >. q
q q3=O

and for q3 = X3 = h,a3 = ho

h = hOA. (6.7.5)

With the same degree of accuracy, the components to /3 of the stress tensor
in the mid-plane are related to the components of the averaged internal
forces in the following way

h

jp/3 _ 1 J-0/3 ~ (-0/3) 2h _ (-0/3)
2ho - 2ho t dX3~ t X3 =O2ho ~ A t X3=O '

-h
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such that

(6.7.6)

By eqs. (6.5.13) and (6.7.5) we also have

[.33 = io:{3 ah oh ~ h2io:{3 a>.. a>..
aqO: aq{3 0 aqO: aq{3 ,

and for ho ---., 0 one can take

(-:33)t q3=O = O. (6.7.7)

9.6.8 System of equations in the problem of plane stress

Under the assumption of small thi ckness of the plat e and symmetric loading
on its lateral surface, the problem reduces to considering values in the mid
plane. We seek the averaged values p o:{3 of the main stresses io:{3 rather
th an the stress tensor. Th e remaining components i0:3 , [33 of tensor io:{3 are
excluded from consideration because of their smallness compared to the
main ones.

Two sets of the relationships determin ing the symmetric tensor of the
averaged stresses reduce to th e equation of stat ics

(6.8.1)

and the const it utive equation

(6.8.2)

Here Al is th e function of invariants h and 13

(6.8.3)

and presents the specific st rain energy A (h , Iz ,13 ) in which invariant 12 is
eliminated by means of th e equation

(6.8.4)

The additional condit ion serving to determine unknown function>" (ql ,q2)
expresses the requirement of vanishing stress [33 in the mid-plane

(6.8.5)
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(6.8.6)on r .

The boundary condition on contour r (the section of the plate by the
mid-plane) is given by the relationship

- - o.{3 B dq"! - f
Eo."!P {3 dB - ,

where f denotes the principal vector of the surface forces on the lateral
surface

(6.8.7)

h

f = JFdq3 , h = hOA.

-h

The equation of statics can be satisfied by expressing the st resses in terms
of Airy 's stress function

pJ1.>' = EJ1.o.E>'{3~o:~{3U.

The inverse relationships have the form

(6.8.8)

(6.8.9)

(6.8.10)

The boundary condit ions for the st ress function are given by formulae
(6.4.11)-(6.4.14).

In the case of the incompressible body

B 2
h = bA = 1

and the unknown scalar function P introduced instead of 8Aj8h is deter
mined from the equations of statics augmented by this condit ion.

9.6.9 Using the logarithmic measure in the problem of plane
strain

In th e plane field of displacements (6.2.1) of Chapter 2 the principal values
, 1/2 A 1 / 2 ()of tensor M or ex are equal to 1+ 80: = e"" a = 1,2 ,83 = 0,e"3 =

1, see Subsection 8.3.5. Let X denote the angle of rot ation between axes
• • S A 1 /2

OXYZ and the principal axes e of tensor ex
1. • . 2 • . •
e= 11 cos X + 12sm x , e= -II smx + 12 COS X·

1 2 A

These axes become coincident with axes e,e of tensor M I / 2 by rotation
through angle a such that

~ I 2 .
e= e cosa+ e sm a ,
1
e= i l cos (X + a) + h sin (X + a ) ,

~ 1 . 2
e= - e sin o-l- e cos a ,
1
e= -il sin (X + a ) + i2cos (X + a) .



(6.9.2)

(6.9.1)

(6.9.3)
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At the same time, byeq. (3.4.5) of Chapter 2 we have

/.I ~ k k • • ( 8Xt )e k e= e .\7R = e ' Is itAts Ats = 8a
s

or

/.11 !. 1. \ /.12 ~ • _ 2 • \
e e 'It = e ' Is l\ t s, e e 'It - e · Is l\t s .

We arrive at the relationships

e/.l 1 cos (X + 0:) = AU cos X + A12 sinx,

e''?sin (X +0:) = AU sin X - A12cos X,

e''? sin (X + 0:) = A21 cos X + A22 sin X,

e"? cos (X + 0:) = - A21sin X + A22 cos X,

enab ling expressions for At s to be written in terms of four invariant param
eters e/.l 1 , e/.l 2 , X, 0:

1
AU = 2 [(e/.l 1 + e/.l 2 ) coso: + (e/.l 1

- e/.l2 ) cos (2X+ 0:)],

1
A22 = - [(e/.l 1 +e/.l 2 ) coso: - (e/.l 1 - e/.l2 ) cos (2X+0:)] ,

2

A21 = ~ [(e/.l 1 + e/.l 2
) sin 0: + (e/.l 1

- e/.l 2 ) sin (2X+ 0:)],

A12 = ~ [- (e/.l 1 + e/.l 2 ) sino: + (e/.l 1 - e/.l 2 ) sin (2X+ 0:)] .
2

These parameters are related by t he integrability conditions

8AU 8A12 8A21 8A22

8a2 8a l ' 8a2 8al .

Let us also notice that the representations of the components of tensor
1VJl /2 in axes OXYZ are given by t he formulae , see for example (A.3.14)

1/2 1Mu = 2[(e/.l 1 + e/.l 2
) + (e/.l 1

- e/.l 2
) cos 2 (X + 0:)] ,

1/ 2 1M22 = 2 [(e/.l 1 + e/.l2
) - (e'" - e/.l 2

) cos 2 (X + 0:)] ,

1/2 1 . 1/2M - -(e/.l 1 -e/.l2 ) sm 2 (x + 0: ) M - 112 - 2 ' 33 - .

T he logarithmic strain measure N having t he same principal axes is deter
mined by the components

1
Nu = 2 [(VI + V2) + (VI - V2) cos 2 (X+ 0:)] ,

1
N22 = 2 [(VI + V2) - (VI - V2) cos 2 (X + 0:)],

N12 = ~ (VI - V2) sin2 (X + 0:) , N33 = O.
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In the case of plane strain of the incompressible material VI + V2 = 0,
VI = -V2 = V > 0 and the above expressions reduce to the form

Nll = v cos2 (X + a) , N22 = -v cos2 (X + a ) , }
N12 = V sin 2 (X + a) ,

whereas values Aa f3 are set in the following way

All = cosh V cos a + sinh V cos (2X + a ) , }
A22 = cosh v cos a - sinh v cos (2X + a ) ,
A21 = cosh v sin a + sinh v sin (2X + a ) ,
A12 = -coshvsin a+sinhv sin(2x+a) .

(6.9.4)

(6.9.5)

The components of the stress tensor T for the incompressible material
with zero angle of similarity ware, in accordance with eq. (3.5.14) of Chap
ter 8, given by

t ll =p+2/.l(r)v cos2(x+a) , }
t22 = P - 2/.l (r) v cos 2 (X + a ) ,
t12 = 2/.l (I') v sin2 (X + a ),
t33 = P (T = 2v) .

(6.9.6)

In order to determine four unknown parameters we have the same num
ber of equations, which are two equations of stat ics and two integrability
condit ions (6.9.2).

9.6.10 Plan e strain of incompressible material with zero angle
of simi larity of deviators

This problem is the subject of the pap er by L.A. Tolokonnikov".
In the case of no mass forces, the equations of stat ics can be expressed

in the form

:z(t ll - t22 + 2it12) + :z(t ll + t22) = 0 (z= Xl + iX2) ,

where the coordinates of the point are taken as th e independent variables.
Turning to formulae (6.9.6) we obt ain

~ f (v) e2i (x+a ) + a~ = 0 (J (v) = 2v/.l (r) ) .az az
This equat ion can be satisfied by assuming

(6.10.1)

f (v) = -2~~ e- 2i(x+a
) , (6.10.2)

2Tolokonnikov, L.A. " Finite plane strains of incompressibl e material" (in Russian ),
P rikladnaya Matemat ika i Mekhani ka, vol. 23, No. 1, 1959, pp.146 -158.
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and introducing a real-valued function <I>

<I> = 8U 8<I>
8z ' 8z

82U

8z8 z'

since p is real-valued. We arrive at the relations which could be foreseen

(6.10.3)

and function <I> is proved to be Airy's function of the plane problem

82U
ill =p+1 (II) cos2(x+a)=~,

uy
82U

t22 = P - 1 (II) cos 2 (X + a) = 8x2 '

82U
tI2 = 1 (II) sin 2 (X + a ) = - 8x8y'

(6.10.4)

A consequence of the first relationship in eq. (6.10.3) is the formula
relating II to the stress function

It allows us to find the derivatives of II with respect to z and z

(6.10.5)

From the same relationship in eq. (6.10.3) we have

2i(X + a ) _ 2 82 Ue - -----
1(11) 8z2

and taking into account eqs. (6.10.5) and (6 .10.6)

82U
8e2i( x+a) 1 8 8 -2
---=--In-z-

8z 2i 8z 82U

8z2

and a similar equat ion for th e derivative with respect to z ,

(6.10.7)

(6.10.8)
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Returning to relationships (6.9.5) we present them as follows

(6.10 .9)

where ( = al +ia2. From these equations we obtain the inverse relationships

8( .
- = cosh ve-ux

oz '
o( = _ sinh vei(2x+a)
oz '

o( . }- = cosh z-e' "
oz '
~: = - sinh ve-i(2x+a).

(6.10.10)

Writing down the integrability conditions

we arrive at the following two equations

. h Bu . h onsm v- -2COS v- =
oz oz

[
ov .. (02 (X+ n) on)] . )= - cosh v- + zsinh r/ - - e2t (x+a ,
oz oz oz

. ov . on
smhv oz +2coshv oz =

[
ov .. (02(x+n) on)] .(= - cosh v---:: - 2smh l/ - -= e- 2t x+a ) .
oz oz oz

(6.10.11)

The values in these equat ions

e±2i(X+a) ov Bu
, oz ' oz '

02(x+ n)
oz

82(x+n)
OZ

(6.10 .12)

should be replaced according to eq. (6.10.6)-(6.10.8) . They allow the deriva
tives of n with respect to z and z to be expressed in terms of the derivatives
of the stress function and t/ , The integrability condition

(6.10.13)

leads to the differential equation of fourth order for the stress function U.
This equat ion also contains quantity v however the latter relates to U by
relationship (6.10.5).
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Transformation to the original independent variables ( and ( is carr ied
out with the help of the relationships

au [au au 2()] .- = - cosh l/ + - sinh ve- t x+n et n etc .a( az az
by further replacing the derivatives (6.10.12) by means of eqs. (6.10.6)
(6.10.8).

Transformation of the boundary conditions presents no difficulty and, for
thi s reason, is not presented here.

9.6.11 Example of radially symmetric deformation

Under this deformation

(6.11.1)

where R (p2 ) is a real-valued function . By eq. (6.10.9) we have

~~ = R' (p2) p2+ R (p2) = cosh vein ,

~~ = R' (p2) ( 2 = R' (p2) p2~ = sinh vei(2x+n),

such that

0: = 0, R' (p2) l + R (p2) = cosh u, R' (l) p2 = sinh t/ , e2ix = £= e2iO.
(

(6.11.2)

Then we obt ain

(6.11.3)

and further

(6.11.4)

such th at 0 < C < P5, where Po denotes th e radius of the opening in the
deformed cylindrical body.

Referring, for example, to formula (1.13.8) of Chapter 8 we have by eqs.
(6.10.3) and (6.11.2)

. (a2U
t; - to + 2ztro = 21 (v) = -4, az2 ' t,. - to = 21 (v ) =, tro = 0 (6.11.5)



(6.11.8)
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and furth er

au au a( au a( , ( - 2ill . ) v r r t
az = a( az + a( az = U - ( e smh v + (cosh v = ( e U . (6.11.6)

Here, as above, a prime denotes the derivative with respect to p2 = ((.
Now we find

a
2u

= ,2 2l1U" U' [a( II , lI ( av a( a~ a( ) ]
az2 ." e + aze + ." e a(az + a(az

~ ('e'"U" - e"U' [e2i8 sinhv + 2
p

4 (lC~"f,)],
and the differential equat ion of equilibrium (6.11.5) takes the form

p2e2l1U" - ell [Sinh v + (C C)]U' = -~f (v) .
2p2 1-p2

After replacing p2according to eq. (6.11.4)

1 1
U" - C (1- e- 2l1 ) sinh 2vU' = - 2Cf (v) e-2l1 (1- e-2l1 ) (6.11.7)

and int roducing the new independent variable

_ C
q = e 211 = 1-p2

instead of q, we arrive at the differential equation for U'

dU' _ l+ q
U' = - ! f (v) - q- ,

dq q 2 1 - q

which can be easily integrated. The result is

[

q ]dU , 1 «»
- = U = --qeq C1 + jf(v) --dq ,
d~ 2 1-q

which allows one to dete rmine ~~ by eq. (6.11.6) and then t: By

eq. (6.10.4) the latter is a sum of the normal st resses, i.e, one determines
st resses L; and til. We omit this calculat ion as well as the calculat ion of the
constants in ter ms of the boundary condit ions''.

3 see the pap er by V.G. Gromov in th e book by Savin , G.N. " Distr ibution of stresses
near openings" (in Russian ), Chapte r 9, pp . 676-691, Naukova Dumka, Kiev, 1968 for
detail.
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9.7 Semi-linear material

9.7.1 Equilibrium equations for the semi-linear material

The specific strain energy of the "semi-linear" or "harmonic" material in
troduced in Subsection 8.2.8 is given by eq. (2.8.7) of Chapter 8. The con
stitutive law, eq. (2.8.8) of Chapter 8, relates the Piola-Kirchhoff stress
tensor b to the quantities characterising deformation, namely the tensor
of rotation Aof the principal axes of the strain measure exand the tensor
gradient 'VR

(7.1.1)

The equilibrium equat ion (2.8.4) of Chapter 8 for Piola's tensor written in
the vector basis of the initial volume is set in the form

(7.1.2)

where an asterisk denot es transposition of the tensor. This equation is an
analogue of the equilibrium equat ion in terms of displacements of the linear
theory of elast icity. When the surface forces F are prescribed, the boundary
condit ion takes the form

A dO (G A - 1 ) 1/ 2
(AS 1 - 2p,) n . A + 2p,n . 'VR =F- = F -n · GX

• n
do 9

(7.1.3)

Hence, the equations of statics in the volume and on the surface are
presented in the basis of the initial state and thi s explains the simplifica
tion due to applying the Piola-Kirchhoff stress tensor in problems of the
nonlinear theory of elasticity. However the complicat ion is that this ten
sor contains the rot ation tensor A and invariant S l . Their representation

A 1 ' 2 " I " ,
requires tensors GX

I and GX- 1 -

(7.1.4)

and obt aining these tensors assumes the princip al values Gs and the prin
cipal directions eof the strain measure ex

AX 11 22 33
G = G1 ee +G2 ee +G3 ee. (7.1.5)

9.7.2 Conserving the principal directions

The mentioned complications are no longer relevant if the princip al di-
,A A "A S S

rections of tensors GX and T (or GX and M) are coincident . Then e= e
and

(7.2.1)
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where 9 denotes the unit tensor in v- volume. The equilibrium equat ion
(7.1.2) which is linear in vector R takes the form

(7.2.2)

and nonlinearity of the problem is only because of the right hand side of
the boundary condition

dO
['\V' . R - (3'\ + 2tt)] n + 2ttn · V'R = F do' (7.2.3)

Replacing in these equat ions vector R by the displacement vector u = R-r
and taking into account V'u = Vu" , we arr ive at the equat ions

(7.2.4)

(7.3.2)

The left hand sides of these equations present a part icular case of the
equilibrium equat ions in terms of displacements of the linear theory of
elasticity (here V'V' . u = V'2U ) .

9.7.3 Examples: cylinder and sphere

Two cases of conserving the principal directions take place for the case of
axially symmetric deformation of a round cylinder and radially symmetric
deformation of a sphere.

1. Cylinder. Introducing the cylindric coordinates 1',0, Z and assuming
that the axial displacement does not depend on r we have

R = 1(1') e r + ko z, R 1 = I' (1') er , R 2 = I (1') eo, R 3 = ok, }

r' = en r 2 = ~ eo , r3 = k.
r

(7.3.1)

Hence

1(1') A 1/2 }V'R = e.e-]' (1') + eoeo-- + kko = V'R' = G X
,

, 2 r 12 (1') -1ex= e.e.]' (1') +eoeo--
2

- +kko = gX ,
r

such that the princip al axes of tensors exand gXcoincide with the direc
tions of vectors er , eo,k. Then

V' . R = l' + f+a, V'V'. R = er (1' +f)' = V'. V'R = V'
2R

and when the mass forces are absent the equilibrium equat ion (7.2.2) re
duces to the relationship

(7.3.3)
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The const ants C1, C2 , 0: are determined in terms of the pressures prescribed
on the external r = ro and internal r = r 1 surfaces of t he hollow cylinder
and the axial force Q on t he end face S . We arrive at t hree equat ions which
can be written down in t he form

For example in the case of t he cylinder placed between two motionless
smooth plat es (0: = 1) and loaded by the uniform pressure on the external
surface (Po = P,PI = 0) we have

and the internal radius of t he deformed cylinder f (rt} ----t 0 when P ----t 2f.l .
2. Sphere. In t he case of the centrally symmetric deformation of a sphere

we introduce the spherical coordinates R, fJ , A, to get

R = f (R) eR , R 1 = I' (R) eR, R 2 = f (R) e 19 , R 3 = f (R) e.\ sin fJ, }
1 _ 2 _ e 19 3 _ e.\

r - en , r - -R ' r - -R. .0 'sin tz
(7.3.5)

such that

where 9 denotes the unit tensor . The principal axes of the tensor

also have t he directions eR, e 19 , e.\ conserved under the deformation. We
obtain

\1 . R = I' (R) +2f hR) , \1\1 . R = (I' +2~)' en , }

\1 . \1R = \12R = en (I' +2~)' = \1\1 . R

(7.3.7)
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and by eq. (7.2.2)

f' (R) + 21~) = 3C1,

Next , we have by eq. (7.2.3)

C2
1(R)= C1 R + R2' (7.3.8)

(7.3.9)
dO

do
[(3,\+ 2J-t) (C1 - 1) - 4~~2 ] 1 2 = (JR ,

(C1 + ; 3)
and the constants C1 and C2 are obtained in terms of the prescribed pres
sure of the external (R = Flo) and internal (R = R1) surfaces of the hollow
sphere. For inst ance, in t he case of only exte rnal pressure (Po = P,P1 = 0)
we arrive at the equat ion

(3'\ + 2J-t) (1 - cd (1 - k)

P = [ C1 -1 ] 2
C1 + 4;- (3'\ + 2J-t) k

( m)k= R5 . (7.3.10)

The internal rad ius of the deformed sphere is given by the equality

R1
1 (Rd = - [4W1 + (3'\ + 2J-t) (C1 - 1)] ,

4J-t

and since P > 0,1 (R1) ~ 0 we have

The obtained solution is realised for t he following values of exte rnal pressure

O
12J-t (,\ + 2J-t)

< p < ).- - (1 - k) (3'\ + 2J-t

9.7.4 Plane strain

We consider the field of displacements in which the Cartesian coordina tes
x; of the point in t he deformed prismatic body are related to its Cartesian
coordinates as in the initial state by t he following relationships

(7.4.1)

The unit vectors is of the coordinate axes present the vector basis rsand
cob asis r " of t he ini ti al state. In the final state the vector basi s and the
tensor-gradient V'R are given by the equalit ies

R
. 8x /3

a = 1/3-8 'aa
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Tensors GX1/2 and A are calculated as shown in Subsect ion 2.6.2

c-:" (i ", . ) 8x
o: " }= 10:1,6 cos X - 13 X 10:1,6 sin X ~ + C13 13 ,

ua,6

A = (i li 1 + hb) cos X + (i1i2 - i2h)sin X + i3i3 .

Here

and

(7.4 .2)

(7.4 .3)

(
' 1/ 2)I, e x = q+ c, 8 1 = q + c - 3. (7.4.4)

Next we introduce complex notation for the coordinates of the point in
the cross-sect ion of the body

This allows us to write formula (7.4. 3) in t he form

!::l !::l ( !::l -) -1 l!::l I ( !::l !::l -) 1/2ix _ ~ 2ix _ ~ ~ _ ~ _ ~~
qe - 2 8(' e - 8( 8( , q - 2 8( - 2 8( 8(

(7.4.5)

Tensor b , by eq. (7.1.1), is led to the form

b = [Aq - 2 (A+ JL) + A(c + 1)] A+ 2JL\7R,

and its components are

11 8X2 22 8X18 = 'Ij;(q) cos X-2JL- ,8 = 'Ij;(q) cosX-2JL- ,
8a2 8a1

812 = 'Ij; (q) sinx + 2JL ~X 1 , 821 = - 'Ij; (q) sinX + 2JL~X2 ,
Ua2 Ua1

833 = A(q+ c - 3) + 2ft (c - 1), 80:3 = 0,

(7.4 .6)
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where

7j; (q) = (,\+2Jl)(q - 2) +2Jl- ,\ (c - 1)

[
1-lJ(C-1)] ( ,\)

= (,\+ 2Jl) q - 1 _ lJ lJ = 2 (,\ + Jl) .

It is convenient to enter the complex expressions

(7.4.7)

811 + i812 = 7j; (q) eix + 2Jli 8z , 822 _ i821 = 7j; (q) eix _ 2Jl 8z . (7.4.8)
8a2 8a1

Then in the case of no mass forces, the equations of statics

8811 8821

-+--0
8a1 8a2 - ,

are written in the form

.!!...... (811 + i812) + i.!!...... (822 _ i821) = 0, 88
33

= 0
8a1 8a2 8a3

and, with the help of eq. (7.4.8), they reduce to the relationships

8 . 1, ( ) i X _28( <p q e - 0,

The quantity 7j; (q) eix is the function of the complex variable (

. 1, (q) eix = <]>' ( /") , ix _ !I>' (()
<p " e - I!I>' (() I. (7.4.9)

(7.4.10)

Apparently, this explains the notion " harmonic" for the mat erial with the
specific strain energy given by expression (2.8.7) of Chapter 8.

Equaliti es (7.4.5) and (7.4.7) allow the following equalit ies to be estab
lished

8z !I>' (() 1 - lJ (c - 1) !I>' (()
28( = ,\ + 2Jl + 1 - lJ I!I>' (() l

These relate t he sought functions z «.() and !I>' (() .
Let us consider an arc L in the cross-sect ion of the deformed body (which

is arc l in the initial state). Denoting an element on arc L by dB (ds on
l) and using the equilibrium equat ions on the surface (7.1.3) we have

(
dO = dB)
do cds'

where F1 and F2 denote the projections of the surface force on L on axes
OX and OY respectively. Denoting

. da2 .da1 .d(
n = n1+ zn2 = - - z- = - z-

ds ds ds '
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and using equalit ies (7.4.8) and (7.4.9) we obt ain

on l: icF dB = 'l/J (q) eiXa( _ 2f.L dz = <P' (() d( _ 2f.L dz .
ds ds ds ds ds

(7.4.11)

This yields the value of th e principal vector of the surface forces on the arc
MoM

s

on l: icY = icJFdB = <P (() - <P (( 0) - 2{l [z ((, () - z ((0 ' (0)] .
So

(7.4.12)

For example, under the uniformly distributed normal load we have

dz - )on l : F = - pN = pi dB ' <P (() = (2f.L - cp) z ((, ( + const . (7.4.13)

On the st raight lines which are parall el to the coordinate axes OX and
OY we have

1 1
dB = dX2 , F =F1 +i F2= (}l + iT12 ,

a( .
d( = -adX2 , dz = ZdX2 (d.T1 = 0) ,

X2
2 2

d.S = dX1 , F =F1 +i F2= - (T21 + i(}2) ,

a(
d( = -adX1 , dz = dX1 (dX2 = 0) ,

Xl

so that , proceeding to eq. (7.4.11), we obtain

. ec }i (C(}l + 2f.L) - CT12 = 'l/J (q) etA -a '
X2

. a(
- iCT21 + (C(}2 + 2p) = 'l/J (q)etX a

Xl
.

Utilising the relationships

(7.4.14)

o; oc az o; az
a( = 1 = az a( + az a(

and taking into account eq. (7.4.5) and the identity (which is straightfor
ward to prove)

az az az az _ aXl aX2 aXl aX2 _ 1 J(;
a( a( - a( a( - aa1 aa2 - aa2 aa1 - ~ ,

we obtain
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and by eq. (7.4.14) we arrive at the formulae

T12 = T21, C (a1 + a2) + 4J.t = Jcq'ljJ (q) , }

. 4c 'ljJ(q)8z8z
c(a2 - ad - 2ZCT12 = -----~.va q 8( 8(

(7.4.15)

The normal stresses in the cross-section of the body are determined from
the relationship

and the axial force which is the principal vector of these normal stresses is
equal to

Q = JJa3dO = AJJ(q - 2)do + (A + 2J.t) Do (c -1).
!l no

Here Do denotes the cross-sectional area in the initial state.

(7.4.17)

9.7.5 State of stress under a plane affine transformation

The transformation is given by the linear relationships

Xl = Alla1 + A12a2, X2 = A21a1 + A22a2 , X3 = ca3

or in another form

2z = [All + A22 + i (A21 - A12)] (+ [All - A22 + i (A21 + Ad] ( , X3 = ca3·
(7.5.1)

The st resses calculated by means of formulae (7.4.15) and the axial force
are equal to

(7.5.2)

(7.5.3)

1. Uniaxial tension. In this st ate a1 = 0, az = 0, T12 = 0, the latter

condition yielding A12 = -A21 ~ll . From the first and second condit ions we
/\22

have

2
/1 __ 'ljJ (q) All + A22 __ 'ljJ (q) All + A22
r: All = A22 , A12 = -A21 .

q A22 q All '
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Assuming

we have

p, = 'l/J (q) , q= >'+2p,I - vc
3 =2 (I- v) c3' c3= Vc1

q >.+p, I - v

and byeqs. (7.5.3) and (7.5.4)

Qno= [>' (1 - 2v) + 2p,]C3 = E C3 [E = 2p, (1+ v)]. (7.5.4)

In the considered case of no stresses 0"1, 0"2 ,712 , t he obtained solut ion of
eq. (7.5.2.) leads to the equat ions of linear theory

X l = a1 (1 - VC3) - WOa2 , X2 = a2 (1 - VC3) + WO(L1, X 3 = (1+ c3) a 3 ,

(7.5.5)

determining the displacements up to an arbit rary small rotation.
2. Simple shear. This deformation is given by

The st resses are calculated by the formulae

where

Only terms of order S2 are kept here. With this degree of accuracy we have

712 = us,
Q vs 2

- =p,no 4 (1 - 2v)'
(7.5.6)

9.1.6 Bending a strip into a cylindrical panel

Th is problem was considered in Subsect ion 9.2.1 for the case of incompress
ible material.

Deforming the rectangular parallelepiped
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into the cylindrical panel

ro :::; r :::; rl , -0::::; () :::; 0:, - L :::; X 3 :::; L

is performed by means of the transformation, see the example in Subsection
2.6.5,

where

C(-h)=ro , C(h)=rl, cl=L.

Here

dz oz . oz [' ( ) o:c ()] ( .",) i2d( = oal - i oa3 = C al + Z; al exp ~ba2 = qe x

and one can take

(7.6.1)

(7.6.2)

(7.6.3)

q = C' (al) + ~C (al) ,

Now by eqs. (7.4.7) and (7.4.9) we have

[

0: I-V(C-l)]
'ljJ (q) = (>.+j.l) C'(al)+Z;C(ad - I-v ' <I> (() = 'ljJ (q) eix,

(7.6.4)

and the differential equat ion determining the unknown function C (al) is
as follows

(7.6.5)

Its solution subjected to boundary condit ions (7.6.2) is present ed in the
form

[

o:al . o:al ]1 cosh b smh -b-
C (ad = -2 (rl + ro) 1 + (rl - ro) . h +

cos 11' sin l'

(

o:a
1

)!!.. 1 - v (c - 1) 1 _ cosh -b-

0: 1 - v cosh l'
(7.6.6)

The conditions for no loads on the panel surfaces al = ±h serve for
det ermining constants r i and ro. Along these surfaces ds = da2 and by eq.



( A+ 2f.l = E -:-(1-+-V--:-\ --:-(I-V--2v--'-) )

(7.6.10)
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(7.4.11) for F = 0 and eqs. (7.6.1) and (7.6.4) we obtain

2 dz = cp' (I) d(
f.l ds '> ds '

2f.l~C (±h) = (A + 2f.l) [C' (±h) + ~C (±h) - 1-;~cv- 1)]
or

C'(±h)+~ -v-C(±h) = I - v (c -l ) [C(h)=rl, C(-h) =ro] .
bl- v I - v

From this equation we obtain

b b
rl + ro = 2- [1 - v (c -l )] , rl - ro = 2- [1 - v(c - l )] tanh")', (7.6.7)

a a

which enables th e following representati ons

b [ sinh aal 1 ( cosh aal ) ]
C(ad= - [I -v(c- l)] h b + - I - v h b ,

a cos ")' I- v cos ")'

(

cosh a~1 v sinh a~1 )
C' (ad - [1 - v(c - l) ] - ----~

- cosh ")' 1 - v cosh ")' .

(7.6.8)

Th e distribution of surface forces on planes az = ±b is obt ained from eq.
(7.4.11) at ds = =fdal ' Th e result is

. dS [ , a 1- v (c - 1)] ,
=fi ce'f lO-d = (A+2f.l ) C (ad+ -bC(ad - - 2f.lC (al) ,

al 1 - v
(7.6.9)

which yields the dist ribu tion of normal st resses on these bound aries

CO" N ddS = c (- FI sin a ± Fzcos a )
al

= (A+ 2f.l) [1 ~ VC' (ad + ~C (ad - 1 - ; ~cv- 1)]

. aal
E smh -

b
-

= -- [1 - u (c - 1)] ----"-
1- vZ cosh ")'

and demonstrat es t he absence of shear st resses on them (as the right hand
side of eq. (7.6.9) is real-valued) .
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The principal vector of th e normal stresses is evidently equal to zero
whereas the principal moment of these stresses, i.e. in any cross-sect ion
() = const th e bending moment per unit length of axis OX3 is given by

(7.6.11)

The axial force in th e direction OX3 per unit length of axis OX3 is
determined by eq. (7.4.17)

Q=o,

h

~ = ,X J(q - 2)da., + (,X + 2M) 2h (c - 1)

-h

= 12~:2 [(c - 1) (1 - v2 ta~h1)_v (1 _ ta~h1)].
For the st rip with free end surfaces we have

c - 1 = v 1 - tanh 1 .
1 - v2 tanh 1

(7.6.12)

(7.6.13)

Formulae (7.6.11) and (7.6.13) serve for determining the unknowns c and
1 (or 0:) in terms of the prescribed bending moment.

9.7.7 Superimposing a small deformation

As is the case of Subsection 9.4.1 it is assumed that the points of the
elastic body are subjected to a small displacement 1]W (ql ,q2,q3) from the
equilibrium state, the latter being suggested to be given. In other words,
we consider three states of the body: the initial one (v-volume), the given

o
state of stress (V -volume) and the second state of stress (V - volume)
which is close to the given one. The position vector of a point in these

o
stat es is denoted respectively as r , R , R where

o
R=R+1]w.

For the values in V -volume we keep th e earlier taken denotations (for
A A 0

example R ,D,A etc .) whereas their values in V -volume have a "zero" at
o q ~

the top (R, D , A etc. ). The differences, i.e. "perturbat ions" , are calculated
by keeping only the first degree of th e small par ameter 1] and are written
as the products of thi s parameter and the quanti ties with a dot at the top

O . A ~ ~ A ~ ~
R=R+1]R, D=D+1]D, A=A+1]A etc.
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It is evident th at It = wand all quantities with a dot at the top are linear
operators over vector w. They can be treated as being the derivatives of
th e corres ponding quanti ties with respect to 'fJ at 'fJ = 0

~ (8 ') e, (8 ,)D= aD , A= aA etc .
I] 7/=0 'fJ 7/= 0

According to the definition of the st ra in measure GX, eq. (3.3.2) of Chapter
2, we can set the tensor in the form

,e • 0 o. 0 0
GX = V'R · V' R * +V'R ·V'R * = V'w· V' R * +V' R ·V'w*, (7.7.1)

where an aste risk denotes, as always, t he operation of transposing a tensor
of second rank .

() 0
Further , the principal values Gs,M, =G s and the principal directions

o 0 q (}
es , es of the st rain measures G,1I1, eq. (5.3.1) of Chapte r 2, are assumed
to be given" : For const ruct ing the tensor

e, o 0

A= es es + es es (7.7.2)

e
it is necessary to determine vectors es , es which also allows us to obtain

e

the values of c, . It is easy to note that these vectors are orthogonal to

o Q . d de." e s , In ee

(7.7.3)

Referring to definitions (A.9.1) and (A.9.4) of th e principal values and
th e principal dir ections of the tensor , we have

(7.7.4)

where in V -volume

(7.7.5)

Premultiplying both sides of eq. (7.7.4) by gk we have

o 0
s s

-I In orde r to avo id the den ota ti on e , e th e index s is placed be low.
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or by means of eq. (7.7.5)

For k = 8 we obtain

(7.7.6)

while for k # 8 we have

•o " 0
• 0 ek . G X

• es
es · ek= 0 0

G, - G»

Together with eq. (7.7.3) this equat ion determines the proj ections of vector

es on the axes of trihedron gk ,hence

(7.7.7)(8 = 1,2 ,3 )

•o " 0
. _ """,,ek' G X . es 0
es - L..J 0 0 ek

k G; - G k

where a prime implies that the term k = 8 is omitted. Similarly for tensor
•
M we have

o ~ 0 .
ek. M . es= Gs , (7.7.8)

where, by analogy to eq. (7.7.1)

~ 0 0
M= \7 R * ·\7w + \7w*· \7 R .

•
Expression (7.7.2) for tensor Ii is now writ ten in the following form (the

summat ion sign is omitted)

[0 ( 0 0 ) 0ek ' \7w ·\7R*+\7R ·\7w* · es -

o ( 0 0) 0]es ' \7 R * .\7w + \7w* . \7 R . ek . (7.7.9)

Use is made of the relationships
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which yield

This admits the following represent ation of eq. (7.7.9)

where the following relationships were used

We arrive at the expression

For calculation of the tensor

• • 0

D= (.\£1-2p) A +.\s A +2/1V'R

we need the following expressions

. ( A1/2) [a ( A1/2)] a ('" rn)81 = II ex = 8 II ex = 8 6 Vek
TJ '7=0 TJ k 1/= 0

Referring to eqs. (7.7.6) and (7.7.1) we have

(7.7.10)

(7.7.11)

or, omitting the summat ion sign,

(7.7.12)
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Thus we are led to the following representation of formula (7.7.11)

The mass force is assumed to be unchanged under transformation of
o

V -volume into V -volume. The equilibrium equat ion in V -volume takes
the form

-V'. D+pK = 0,

where according to the mass conservat ion law

(7.7.14)

10 10 -
p~=poVG, pVG+pO~=O,

1/ 2 ... 0(0)- (a 17.) l oG 1 0'" c,
P = -p G a v G = -2P "0 = - 2P r: 0-

T} 1)=0 G k c,
or by eq. (7.7.1)

o 0

jJ ~ -poL Ok Ji ek

k Gt;

The equilibrium equat ion on th e surface

FdO = n·Ddo

reduces to the form

o . ( . ) 0, . d 0 0 dO . 0 dO d 0
n ·D=F-+F-= F+F- - .

do do dO do

Here

(7.7.15)

{G ( ' - I ) 1/ 2
dO = Yg n - G

X
• n do,

._!(c n.(eX-'f·n) 0
dO - 2 0 + 0 d O ,

G n- eX ·n
and the equilibrium equat ion on surface 0 of volume V takes the form

-n·D= J% ( .)( 0 ) 1/2G . loG ' X -I 1 0g F + 2 F G n- G -n + 2 F
(, I)-n · GX- · n

(

0 ) 1/2
n- ex - 1 -n

(7.7.16)
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Representation of value (ex-1). in terms of vector w is based upon the

relationships

It follows from these th at

. o . o . o . o . ( 0 0 0 0) .
R t = - R t -R, R S

, Gqt =Rq ·R t + R t -R? = - GsqRt + GstRq . R, ,

(7.7.17)

so th at

In the particular case of a constant pressure p remaining normal to sur
face 0 bounding V - volume we have by eq. (3.5.7) of Chapter 2

(~ . )• 0
A • G. G O

n - D do ~ ~p(NdO) ~ -p gR'+ VCfR' n,do

and since

we obtain

(7.7.18)

9.7.8 The case of conserved principal directions

Similar to Subsection 9.7.2 it is assumed that the principal directions t ,t
o 0

of tensors exand !VI are coincident . Thi s occurs in the case of the diagonal
matri ces of tensors 9 and c, then the unit vectors t , of the tangents to
th e coordinate lines qS = const forming the orthogonal trihedron have th e

d
. . 0 2
irections e s , e s .
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(7.8.3)
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Referring to eq. (7.2.1) and replacing tensor "\7w by representation (1.2.13)
•

of Chapter 2 one can transform expression (7.7.10) for tensor A with the
help of the symmetry of stra in tensor E

~ 1 (0 A 0 0 A 0) (0 0 00)A = ro ro ek '10' es - ek ·n· es ekes - esek (7.8.1)

YGs + YGk
o 0

2 0 A 000 2 ekes (0 0)
= - ro ro ek ·n· esekes= - ro row , es x ek .

YGs+YGk YGs+YGk
Here w denotes the linear vector of rotation determined in terms of vector
w .

Next , by eq. (7.7.12) we have

. 0 A 0 0 A0 I ( A) n
8 1 =ek ' 10 ' ek - ek ' H ' ek= 1 10 = v . w ,

and substi tution into eq. (7.7.13) leads to the equality

~ A8~ - 2J-l (0 0) 00 A

D= -2 ro row' e, x ek ekes -2J-ln + Ag"\7 ·w + 2J-lE

YGs + YGk

or, if eq. (A.4.6) is used, we obt ain

~ A ( A8~ - 2J-l ) (0 0) 00D=T(w)+2 ro ro+J-l w · ek xes ekes,

YGs+YGk

where T (w) denotes the stress tensor determined by means of the Hooke
generalised law in terms of vector w

T (w) = 2J-l [-//-g"\7 .w + -2
1

("\7w + "\7w*)] .
1 - 2//

(7.8.4)

9.7.9 Southwell 's equations of neutral equilibrium (1913)
o

We consider the deformation of v- volume into V -volume described by
th e transformation

Then

o
xs = (1 +cs )a S 1 R=Lisas(1+ cs) '

s

(7.9.1)

s
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o
and tensor D, eq. (7.1.1), is set in the form coinciding with the generalised
Hooke law of the linear theory of elast icity

~ 0, ( 0 ,) 0, 0
D= .A. f) E + 2fJ \7 R - E =.A. f) E + 2fJ E,

For th is reason

o
E= L csisis· (7.9.2)

s

so that

o 0oSs+ Okk

2 + e, + ck '

(7.9.5)

•
and tensor D takes the form

•
D=f (w) + 2fJ [A1 Wl (i2i3 - h i2 ) + A2W2 (h h - i1h ) +

A3W3 (i1i2 - h id] , (7.9.3)

where for brevity

The values o~s relate to the principal st resses Jls in V -volume in the
following way

o
Oll =J j (1+ c2) (1 + c3) ,
o

033 =J3 (1 + cd (1 + c2) .

In the case of no mass forces th e equilibrium equat ions III V -volume
(7.7.14) are written in th e form

1 o f) 2 OW2 OW3--- +\7 u+2A2- -2A3- =0
1 - 2v oa 1 oa3 oa2 '

1 o f) 2 OW3 OWj- -- + \7 v + 2A3- - 2A j- = 0
1 - 2v oa2 Ba, oa3 '

1 of) 2 OW j OW2- -- +\7 w+2A j- -2A2- = 0.
1 - 2v oa3 oa2 oa j



868 9. Problems and methods of th e nonlinear th eory of elasticity

Here we introduced the denotation

au avow
w = i l U + i2v + hw, iJ = \7 . w = - + - + -

oal oa2 oa3'
ow ov

2 Wl = - - - etc.
oa2 oa3

Taking into account the well-known relationship

\72w = \7\7 . w - \7 x (\7 x w) = \7iJ - 2\7 x W ,

one can present these equations in another form

oo OW2 OW3
-+2B2--2B3 - = 0,
oal oa3 oa2

oiJ + 2B3OW3 _ 2Bl aWl = 0,
oa2 oal oa3

oiJ + 2Bl aWl _ 2B2OW2 = 0,
oa3 oa2 oal

where

(7.9.6)

(7.9.7)

The equat ions of the "neut ral equilibrium" in the form of eq. (7.9.5) were
obt ained by Southwell from different considerations.

9.7.10 Solution of Southwell 's equations

Equations (7.9.6) are rewritten in the form

(or + B2o¥, + B30n u + (1 - B3)Ol02V+ (1 - B2)Ol03W = 0, }
(1 - B3) Ol02U + (oi + B30r + Blo¥,) v + (1- Bl) 0203W = 0,
(1 - B2)Ol03U + (1 - B l ) 0203V+ (a¥, + BIoi + B20D w = 0,

(7.10.1)

(as = %as) or in a compact form

e j l U+ ej2V +ej3W = ° (j = 1,2 ,3) , (7.10.2)

where ejs = esj denote the above operators.
Presenting one of the particular solutions of this system in the form

(7.10.3)

we determine the operators of differentiation .6. l s as solutions of the ho
mogeneous system of two equat ions (7.10.2) for j = 2,3. Insertion in these
equat ions yields

e2l .6.11 + e22.6. l 2 + e 23 .6. l 3 = 0,

e3 l .6. 11 + e32 .6. l 2 + e33 .6. l 3 = 0,
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where up to a common multiplier we obtain

As expected, b.sk is the algebraic adjunct of element esk of the determi
nant

ell e12 e13

b. = Ieskl = e2l e22 e23
eai e32 e33

(7.10.4)

Substituting expressions (7.10.3) for the sought functions into the first
equation of system (7.10.2) we arrive at the differential equation for Xl

(7.10.5)

The solutions of systems of equations (7.10.2) for j = 3,1 and j = 1,2
are written down by analogy

U2 = b. 2lX2 ' V2 = b.22X2' W2 = b.23X2'
U3 = b.3lX3 ' V3 = b.32X3' W3 = b.33X3 '

and substituting in the remaining equation (j = 2 and j = 3 respectively)
leads to differential equations of the type of eq. (7.10.5). Hence

b.Xs=O (8=1,2,3).

It remains to write the general solution

u = b.llXl + b. 2lX2 + b.3lX3 = IXs ' es2,es31 , }
v = b. 12Xl + b.22X2 + b.32X3 = lesl , Xs, e.d ,
W = b. 13Xl + b.23X2 + b.33X3 = lesl , es2,Xsl ,

(7.10.6)

(7.10.7)

where the expression on the right hand side of any equation is the determi
nant (7.10.4) in which the corresponding column is replaced by the column
Xl' X2, X3 ' for instance

Xl e12 e13
u = X2 en e23

X3 e32 e33

Being applied to system (7.10.1) this calculation leads to the following
solution

u = 81 (Dr + D~ - B l \72) (8l Xl + 82X2 + 83X3)-
\72 [82 (8lB2X2 - 82BlXd - 83 (83B lXl - 8lB3X3)],

v = 82 (Dr + D~ - B2\72) (8l Xl + 82X2 + 83X3) -
\72 [83 (82B3X3 - 83B2X2) - 81 (8lB2X2 - 82BlXl)] ,

W = 81 (Dr + D~ - B3\72) (8l Xl + 82X2 + 83X3)-
\72 [8[ (83B lXl - 8l B ;lX;j) - 82 (82B;lX3 - 83B2X2)] ,

(7.10.8)
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where the denot ation for the differential operators is as follows

Dr= B18r + B28~ + B385, D~ = B2B38r +B3B18~ + B1B285,
(7.10.9)

and the differential equat ions (7.10.6) for functions Xs take the form

~Xs = 'V4Dh s= 0 (8 = 1,2 ,3). (7.10.10)

The obt ained represent ation of the solut ion can be simplified by taking

x, = X~ + X~ (8 = 1,2 ,3)

and defining X~ and X~ in the following way

B I 8 ( 1 2 3) 8 I 8 I 8 I D§'P ;F"sXs = s'P 8 = " ; 1X1 + 2X2 + 3X3 = B
1B2B3

= '±' ,

(7.10.11)

(7.10.12)

Then by eq. (7.10.10)

(7.10.13)

Solution (7.10.8) is now presented by a sum of the vector (B1X~ , B2X~ ,

B3X~) with zero rotor and a solenoidal vector (X~ , X~ , X~) . The first and sec
ond ones are expressed in terms of the biharmonic scalar <p and solenoidal
vector (W1 , W2, W3) respectively. The particular solut ions corresponding to
these components are set in the form

n' = (Dr + D§ - B1 'V2
) 81 <P ,

u" = B1'V2w1 - 81 (B181W1 + B282W2 + B383 W3) ,
V ' = (Dr + D§- B2 'V2

) 82 <P ,
u" = B2'V2W2 - 82 (B181W1 + B282W2 + B383W3) ,
W ' = (Dr + D§ - B3 'V2

) 83 <P ,
W " = B3'V2w3 - 83 (B181W1 + B282W2+ B383W3) .

(7.10.14)

The corresponding dilat ations and the linear vectors of rotation are given
by

o' = D~'V2<p , o" = 0, (7.10.15)

w~ = (B2 - B3)8283'V2<P, w~ = 'V2 (B382W3 - B283W2) , }
w~ = (B3 - Bd 8381'V2<p, w~ = 'V2 (B183W1 - B381W3) ,
w~ = (B1 - B2)8182'V2<P , w~ = 'V2 (B281W2 - B182Wd .

(7.10.16)

Referring to eqs. (7.10.11)-(7.10.13) it is easy to prove that the start ing
equations (7.9.6) are satisfied.
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o
Let us also notice that for ass= 0, i.e. in the case of the natural state

o
of V - volume (coinciding with v-volume) , we have by eqs. (7.9.4) and
(7.9.7)

A s = 0,
1 - 21/

B; = = a
2 (1- 1/)

(8 = 1,2 ,3 ) .

Introducing into consideration vector G

one can write solution (7.10.8) in the form

w = - a \7\7 . G + \7 x (\7 x G ) = (1 - a ) \7\7 . G - \72G

1 2
2 (1 _ 1/) \7\7 . G - \7 G , (7.10.17)

where, according to eq. (7.10.10) G is the biharmonic vector. We arrive at
the solution of the equation of the theory of elasticity, eq. (1.7.4) of Chapter
4, in the Boussinesq-Galerkin form .

9.7.11 Bifurcation of equilibrium of a compressed rod

It is assumed that the rod is placed between two horizontal, rigid and
smooth plat es and its lateral surface is not loaded. The uniaxial state of

o
stress in V -volume is caused by the vert ical displacement of the upper
plate downward on value L€3, i.e. a3 = L whilst the lower plate is motion

o 0
less. In this state a11=a22=0 and by eqs. (7.4.16), (7.4.17), (7.5.4) and
(7.9.4) we have

~3 Q (1+ 1/) 103a = n = E € 3 ' 10 1 = 102 = -1/ 103 , Al = A2 = A = 2 ( ) ' A3 = 0
Ho + 1 - 1/ 103

and by eq. (7.9.7)

1 - 21/
B3 = a = 2 (1 _ 1/) ' B1 = B2 = aO" ,

2(1-a )
103 = 2 - (1-I/ )a '

0" =2 (1+ 103)
2 + (1 - 1/) 103'

(7.11.1)

where - 1 < 103 < 0, such that 0 < a < 1.
According to eq. (7.9.3) we have on the unloaded lateral surface of

V-volume

•
n- D= n · T (w) + 2pA (Wln2 - w2nd i3 = 0,
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and three boundary conditions are written in the form

nl C:2v 'l9 + 8lU) + ~n2 (82u + 8lv) = 0,

~nd82U+8lV)+n2 C:2V'l9 + 82V) =0,

8w
(2 - (T) (n183u + n283v) + (T 8n = 0.

On the end faces of the rod

•
h · D= is T (w) - 2pA (wlh - w2id ,

(7.11.2)

and the requirement of no horizontal surface forces and vertical displace
ment on the end surfaces yields

• •
for a3 = L, a3 = 0 : i3· D·il = 0, i3· D·i2 = 0, W = 0,

They reduce to the condit ions

W = 0, 83u = 0, 83v = 0, (7.11.3)

which are automat ically satisfied if the particular solutions (7.10.14) are
. mra3

chosen such that u, v and w are respectively proportional to cosLand
. mra3

sm ----r:- (n = 1,2 , ... ). Then we assume

n7ra3
<I> = e; (aI ,a2)cos ----r:- ' (7.11.4)

2 n27r2 n7ra3
WI = 82w, W2 = -81W, 'V W = -V'l/Jn (aI ,a2)cos L ' W3 = 0,

(7.11 .5)

with vector (Wl, W2 ,W3) being solenoidal. Omitting the nonessential con
stant multiplier we obtain by means of eq. (7.10.4)

(7.11.6)

and further

2 2 2 2
/I _ n 7r !::l . 1. n7ra3 /I __ n 7r !::l . 1. n7ra3 /I - ° (7 11 7)u - L2 U2 'f/ n cos L , V - L2 UI 'f/ n cos L , w -. . .
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Functions <Pn and 'l/Jn are determined from the differential equat ions

where 'Vi = a?+ a~. On the lateral surface these functions are subjected
to boundary conditions (7.11.2) taking th e following form

9.7.12 Rod of circular cross-section

Let us limit our consideration to solut ions of the form

<Pn = R" (r) cos0, 'l/Jn = Qn (r) sin O.

Functions Rn (r ) ,Qn (r) are determined by the differential equat ions

whose solutions, in the case of a solid cylinder, are expressed in terms of
the modified Bessel functions

ttnr
x = L ' (7.12.1)
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The boundary condit ions are reduced to the form: at r = "o

Here

and the following properti es of Bessel functions

etc.

are useful while substitut ing expressions (7.12.1) for R" (r) ,Qn (r) into
eq. (7.12.2). By cancelling out the common multiplier nat/ L we arrive at
the system of three homogeneous equations which are linear in the con
stants GI , G2 , G3 . The bifurcation values a , and in turn 103, are roots of the
determinant of this system (0 < a < 1). They are functions of parameter
Xo = mfro/L and depend on Poisson's ratio .

9.7.13 Bifurcation of equilibrium of the hollow sphere
compressed by uniformly distributed pressure

The radially symmet rical stat e of equilibrium was considered in Subsection
9.7.3. The close axially symmetric al states of equilibrium can be obt ained
by superimposing the displacement which does not depend on coordinate
,\ (longitude)

1]W (R, '19) = 1] [WR (R, '19) er + Wo (R, '19) e1?] '

The only nonvanishing component of vector w is W A

(7.13.1)

(7.13.2)
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Referring to eqs. (7.2.1), (7.3.7) and (7.8.3) we obtain

•
D= T (w) + 2'ljJ (R)w>. (eRe\? - e\?eR) .

Here

(7.13.3)

where const ant C2 is determined from formula (7.3.9) by t he condit ion of
free intern al surface R = R1 of the hollow sphere. Further we have

where a prime indicat es a differentiation with respect to R. In t he case of
no mass forces the equilibrium equat ions (7.7.14) take t he form

where

I 2g(R) B . }(.-\ + 2fl) (\7 . w ) - R sin rJ BrJ w >. sin i) = 0,

B\7 · w 2 I

(.-\ + 2fl ) RBi) + Ii [g (R) Rw>.] = 0,

g (R) = 'ljJ (R) + fl .

(7.13.6)

(7.13.7)

Assuming t hat the pressure remains normal to the deform ed sur face of
the sphere, we turn to t he boundary condit ion (7.7.18). By eq. (7.7.17) we
have
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and further

because

For this reason

(7.13.8)

On the surface of the sphere (eR = n)

The boundary conditions are now led to the form: on the external surface
of the sphere

R=Ro :

and on the internal surface

Differential equations (7.13.6) together with the boundary conditions
(7.13.9), (7.13.10) provide us with the statement of the homogeneous bound
ary-value problem. The conditions for the existence of nontrivial solutions
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determine the bifurcation values of parameter p, the minimum value be
ing the crit ical pressure. Similar calculat ions lead to the statement of the
boundary-value problem yielding the critical external pressure in the case
of a hollow circular cylinder.

The solution of the system of differential equat ions of equilibrium (7.13.6)
is sought in the form

W R = an (R) Pn (cos '13) , W1J = - bn (R) Pr~ (cos '13) = bn (R) P~ (cos '13) sin '13 .
(7.13.11)

This solution remains bounded at both poles of the sphere ('13 = 0, '13 = 1r)
only for integer n . Using eqs. (7.13.8), (7.13.2) and th e recurrent relations
for Legendre's polynomials we obtain

\7·w= (a~+2~)Pn+ ~ (-P:: sin2'13+2cos'l3P:.) =
= tpn (R) Pn (cos '13) ,

2w,X = Xn (R) P~ (cos '13) sin '13,

Si~ '13 :'I3 2W,X sin '13 = Xn (R) n (n + 1) r; (cos '13) ,

where the following denotations are introduced

(7.13.12)

(7.13.13)

The variables are separated in eq. (7.13.6) and we arrive at the system
of ordinary differential equations written in the form

(,\ + 2J-l) R2 tp~ (R) - Rg (R ) n (n + 1) Xn (R) = 0, }

(,\ + 2J-l) e; (R) - [Rg (R) Xn (R)]' = 0.

The solution is as follows

(7.13.14)

() () «n; ( ) ,\ + 2J-l ( n Bn)
tpn R = n + 1 AnR

n
- Rn+l ' Xn R = g (R) AnR + Rn+l '

(7.13.15)

where An, Bn are arbitrary constants . Inserting now tpn (R) and Xn (R) in
system (7.13.13) we arrive at t he following system of linear inhomogeneous
equations for the unknown functions an (R) and bn (R)

C- Rn-l ( ) ti;
an = -n n + n + 1 Rn+2 ' b C- Rn-l b;

n = n + Rn+2' (7.13.16)
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Here

(7.13.17)

where Cn and D'; are constants.
Variables R and {) are separated also in the linear boundary condit ions

(7.13.9), (7.13.10). Inserting the obtained functions a n (R) and bn (R) in
these equat ions yields a system of four homogeneous linear equat ions for
constants An , Bn, Cn, Dn. The vanishing determinant of the system results
in the equation for the bifurcation values of parameter p. The lat ter appears
also in this equat ion in terms of function g (R) from eqs. (7.13.7), (7.13.4),
the constant Cl being related nonlinearly to p by means of eq. (7.3.10). The
crit ical pressure Pcr is the minimum bifurcation value of P determined by a
prop er choice of the number n of nodes of the sought form of equilibrium
for the taken ratio Rd Ro.
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Appendix A
Basics tensor algebra

A.I Scalars and vectors

In natural philosophy one considers the quanti ties determining the prop
ert ies of physical objects and the processes in them. Prescribing numerical
values in a chosen coordinate system contains an arbitra riness due to the
choice of the coordinate system. However the relationships between the
quantities are independent of the introduced methods of description. Ten
sor calculus presents a mathematical means for formulatin g the invariant
(i.e. independent of coordinate systems) relationships between the studied
objects.

The simplest physical quantity is a scalar which is given by a numerical
value, this value being unchanged in all coordinate systems. Examples of
scalars are density, temperature, work, kinetic energy etc. A scalar is an
invariant by definit ion.

The vector is a more complex physical quant ity which has a prescribed
direction in addition to a numerical value. Examples of vectors are velocity,
acceleration, force etc. For denotation of vectors the bold font and low
case Latin alphabet is used. Th e operations of linear algebra are assumed
to be known, namely the scalar and vector prod ucts of vectors a and b
are denoted as a . b and a x b respectively. For the forth coming analysis
it is necessary to recall the rules of tr ansforming the vector proj ections
under the rotation of the ort hogonal Cartesian coordinate system since
only these systems are used in what follows, unless stated otherwise. Let
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us noti ce in passing that the quantities are considered in the Euclidean
three-dimensional space (E3)'

Let O XI X2X3 be t he initial system of axes ("old axes") and Ox~x~x~

("new axes") be obtained from the initial system by a rotation . Let also i~

and ik denote the unit vectors prescribing the directions of new axis Ox~

and old axis O Xk , t he cosine functio n of t he angle between t hese axes being
designat ed as CYks = i~ . ik. Vector a can be prescribed by the projections
a~ ak onto axes of the new and old systems respectively and t hus can be
present ed by the expansions in terms of the above unit vectors

3
t st t sr t st ~,., t st

a = alII + a 212 + a 313 = L....,; asls = a sls ,

s = l
3

a = aliI + a2 i2 + a 3 i3 = L akik = a kik .

k=l

(A.I.1 )

Here and throughout the book the sign of summation over the repeating
index (dummy index) is omit ted. The case in which the summat ion is not
required, i.e. a single component of the sum is considered , is specified by
t he symbol Yl- s ' i.e. do not sum over 81. Clearly, t he dummy index can be
changed arbit rarily, for instance as bs = ak bk , CYstbs bt = CYrq br bq are t he
sums having respectively t hree and nine terms. The non-r epeating indices
are called free and they are ascribed values of 1,2,3. Free indices on both
sides of the equality must coincide, for example, denotation qr = br kak

presents three equalit ies, whilst qrt = Cmnrtbmn means nine equalit ies and
nine terms on t he right hand side of each equality.

Being applied to the unit vectors i~ and ik formul ae (A.I. 2) are written
in the form

(A.I. 2)

since CYsk denotes t he proj ection of i~ onto ik (or ik onto i~ ) . Introducing
Kronecker 's symbol

8 =F t ,
8 = t,

(A.I.3)

and writing the conditions of the orthonormality of these vectors

(A.I.4)

we arr ive at the formulae relating the cosine functions of t he angles between
the axes of the new and old systems

i~ . i~ = 8 st = CYskik . CYtm im = CYskCYtm8km = CY skCYtk , }

ik. i~ = 8km = CYsk i~ . CYtm i~ = CYsk CYtm8st = CYskCYsm ·
(A.I. 5)
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Insert ing eq. (A.1.2 ) into formulae (A.1.1) leads to the law of tr ansforma
tion of projections of a vector

(A.1.6)

Clearly, the numerical value of the vector projection depends on the di
rection of the axis t hat the vector is projected onto. For this reason the
wording "project ion of a vector onto an axis is a scalar" is confusing as
scalar is an invariant physical quantity. The invariant of vector a is its ab
solute value denot ed by a. Of course, it follows from the transformat ion
law (A.1.6 ) that

(A.1.7)

A scalar invariant of two vectors is its scalar prod uct

(A.t .s)

If it is known th at a~b~ = asb., where b, and b~ denote respectively the
project ions of vector b onto old and new axes, then as and a~ are also the
projections of vector a onto these axes. Indeed,

since directions i~ can be taken arbitrarily. Values a~ obey the law of trans
formation of vector proj ections, which is required.

Provided that both the old and new systems are right-handed or left
handed under the t ransformatio n of rotat ion, then the determinant of the
cosine matrix is equal to unity

O:ll 0: 12 0: 13

0:21 0:22 0:23 = 100skI = 1.
0:3 1 0:32 0:33

(A.1.9)

If however the rot ation is associated with a mirror tr ansformation (for
example i~ = iI, i~ = i2, i~ = - i3) then 100sk l = - 1. In what follows
we consider only transformations of rotation. This allows us to avoid some
complicat ions, for example the distinction between true vectors and pseudo
vectors.

A.2 The Levi-Civita symbols

These are as follows

. (' . ) / ./ (,/ ,/ )
erst = 11. • I s X I t , e r s t = l r · I s X I t . (A.2.1)
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They are equal to zero if any of indices r, S , t are coincident . If indices r,S, t
are different and follow in the order 123 or 231 or 312 then the symbols are
equal to +1. Finally if this order is violated then the symbols are equal to
-1. This definition is valid in any orthogonal Cartesian system obtained
from the initial one by the tr ansformation of rotation (erst = e~st ) . Using
the Levi-Civita symbols we can write the vector products of the unit vectors
in the form

(A.2.2)

hence

(A.2.3)

For example

Using eq. (A.2.2) and expanding the double vector product , we have

Multiplying both sides of this equation by ik we arrive at the relationship

(A.2.4)

For r = t , i.e. afte r summation over t and q we obt ain

(A.2.5)

Finally after summat ion over all three indices we find

(A.2.6)

Using eq. (A.2.5) we have also

(A.2.7)

For instance

° 1 (0 0 0 0)
11 ="2 12 X 13 - 13 X 12 .

Introducing t he Levi-Civita symbols and utilising the above rules consid
erably reduces the number of calculat ions in tensor algebra .
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A.3 Tensor of second rank

The definition of this physical object which is more complicated than the
vector can be expressed in different ways. The first one is as follows.

A square matrix

qn qv z ql3
q21 q22 q23 = Ilqst II ,
q31 q32 q33

(A.3.1)

(A.3.2)

is considered in the system of axes O XIX2 X3 ' With the help of th e elements
of this matrix the projections ak of vector a are associat ed with numbers
bs by means of the following rule

bl = qnal + ql2a2 + q13a 3 , }

bz = q2l al + q22a2 + q23a 3 ,

b3 = q3l al + q32a2 + q33a 3

or in a shorthand notation

(A.3.3)

The same rule defines multiplication of square matrix IIqst II by a column
a resulting in a column b.

Definit ion. Matrix IIqst II defines a tensor of second rank Q if for any
vector a , b, are the proj ections of vector b . The elements qst of the matrix
are referred to as the components of tensor Q in the assumed system of
axes. The operation of associat ion of vector b to vector a by means of the
tensor is called post multiplication of thi s tensor by vector a , i.e.

b=Q ·a. (A.3.4)

One physical quantity (vector a) is transformed into another quantity
(vector b) with the help of matrix (A.3.1). This means that this matrix in
the system of axes O XI X 2X3 describes a quantity having an independent
physical meaning. It remains to require that thi s ability of associat ing vec
tor b to vector a holds in any coordinate system. This implies that, under
tr ansition to new axes Ox~x~x; , elements qsk of matrix IIqst II must obey
the transformation law ensuring tr ansformation of bs as being the vector
projections (due to rule (A.1.6)) when ak is transformed using this rule.
Hence

which yields

(A.3.5)
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where

(A.3.6)

Comparison of eqs. (A.3.5) and (A.3.3) shows that the rule of postrnultipli
cation of tensor Qby vector a is valid in the new system of axes provided
that the components of thi s tensor obey the transformation law (A.3.6).
The inverse transformation has the form

(A.3.7)

The matrix should not be confused with the tensor . The latter is an in
dependent physical quantity whose description requires a matrix. Based on
the transformation laws (A.3.6) and (A.3.7) we can give the second defini
tion of the tensor of second rank as a physical quantity whose components
obey these laws under rotation of the coordinate system.

The determinant of matrix IIqstll is denoted as Iqstl and is one of the
invariants of tensor Q. Indeed

(A.3.8)

(A.3.9)

Here we have used the rule of multiplication of the determinants as well as
eq. (A.1.9).

Exampl e 1. The vector of the angular momentum kO of a rigid body
rotating about a fixed point 0 is determined in terms of the vector of
angular velocity as follows

k? = 811WI + 812W2 + 813W 3, }

kg = 82lWI + 822W2 + 823W 3 ,

kR = 8 3 l WI + 8 32W 2 + 8 33W3 ,

where 8 i k = -8ki (i #- k) denote the products of inertia and 8 ii denote
the moments of inerti a about the axes fixed in the body. The table of these
values determines the tensor of inerti a e of the body about point 0 and
formulae (A.3.9) can be set in the form

(A.3.10)

The tensor of inertia describes the behaviour of the rotating rigid body in
terms of the matrix with elements 8 i k transformed due to the rule (A.3.6)
under rot ation of the system of axes.

Example 2. Let us consider a rod with a straight axis (axis X3 ) whose
left end is fixed. Let the origin of the system of axes C XI X 2X 3 be placed
at the cent re of inerti a of the right cross-sect ion of the rod , axes C X2 and
C X 3 being directed along the principal central axes of inertia of this cross
sect ion. Applying a transverse force F I (F2) of direction C X I (CX2) at point
C result s in the displacement of this point II = (TIFI (12 = (T2F2) in the
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direction of the force. Let h = 0"3F3 denote the displacement along axis
C X3 due to the axial force F 3 . The formulae

(A.3.11)

show the particular case of eq. (A.3.2) when matrix (A.3.1) has a diagonal
form

(A.3.12)

Th is determines the compliance tensor at point C denoted as I: and for
mulae (A.3.11) can be written in the form

f =I: · F.

The absence of the non-diagonal components in matrix (A.3.12) is caused
by a special choice of the coordinate system and of course is not an invariant
property of tensor t . For example, under rotation of the system of axes
through angle sp about axis CX3 the table of cosine functions takes th e form

X l X 2 X3

X' cos o sin cp 01

X~ - sin o cos cp 0
X' 0 0 13

(A.3.13)

and by eq. (A.3.6) the matrix of components of tensor t is as follows

o
o

0"3

(A.3.14)

(A.3.15)

so th at formulae (A.3.2) yield

f{ = ~ [(0"1+ 0"2) F{ + (0"2 - 0"1) ( -F{ cos2cp + F~sin2cp) 1 ,

f~ = ~ [(0"1 + 0"2 ) F~ + (0"2 - O"l)(F{ sin 2cp + F~ cos 2cp )],

f~ = 0"3F~ .

Example 3. The affine transformation is described by the formulae

X l = A11 a l + A1 2a2 + A 13a 3 , }

X 2 = A21Gl + A2 2a 2 + A 23G3 ,

X 3 = A31Gl + A 32G2 + A 33G3 ,
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where as and X s denote respectively the coordinates of points M and M'
with the position vectors r and R in the system of axes OXYZ . Under
this transformation a st raight line remains a st raight line, a straight-line
segment rot ates and changes length, a rectangular transforms into a paral
lelogram and a circle is transformed into an ellipse. Matrix IIAstl1 determines
a tensor of second rank Aand formulae (A.3.15) are written in the form

R= A..r.

A.4 Basic tensor operations

The sum of tensors P and Qis termed tensor T which being postmultiplied
by a vector a defines the vector which is equal to the geometric sum of p.
a and Q. a , i.e.

It follows from the definition th at the components t« of tensor T are equal
to the sums of the corresponding components of tensors P and Q, i.e.
tst = Pst + qst· By analogy the product AQ of tensor Q and scalar A is
defined. The components of this tensor are equal to Aqst .

Let us const ruct the scalar product of vectors c and b = Q.a

c · b = c . Q . a = qstCsat = qtsCt as.

Dummy indices sand t are interchanged which does not change the sum.
Denot ing qtsCt = es we have

Since on the left hand side we have an invariant and a is a vector, we can
refer to the remark at the end of Section A.1 and conclude that es are the
vector projections. They are obt ained by means of the matrix

qll q21 q31
Ilqt sll = q12 q22 q32

q13 q23 q33

t ransposing matrix (A.3.1). The above-said suggests that thi s matrix de
fines the components of the tensor of second rank Q* referred to as the
transpose of Q, such that

e = Q*.a .

Premultiplication of tensor Qby vector a is defined as post multiplying Q*
by the same vector a

(AA.2)



A.4 Basic tensor operations 889

In contrast to eq. (A.3.3) the proj ections of thi s vector are equal to qt sat .

Based on this observation we can writ e the identi ties

c.(Q.a) = (c .Q) .a= a·(Q* .c) = qstatCs

and omit the parentheses when writing the bilinear form of values at and
Cs

c . Q.a = a . Q* .c. (AA.3)

The tensor of second rank is referred to as being symmetric if it is equal
to its transpose

S' -- S' * , S k t = Stk·

This tensor is given by six components. The tensor

(AAA)

D= -D*, (AA.5)

having zero diagonal components is called skew-symmetric. It is given by
three components denoted by w,.

1
Wst = - e" stWn w q = -'2 eq stwst ,

so that the matrix of components n is written as follows

(AA.6)

The identity

o
W2I = W3

W3I = - W2

WI3 = W2

W23 = - WI

o
(1.4.7)

, 1( , , ) 1( , , ) , ,
Q = '2 Q+ Q* + '2 Q - Q* = S +n (AA.8)

describes splitting the tensor into symmetric and skew-symmet ric parts .
Their components are given by

(AA.9)

For example

1 1 1
WI = '2 elstqts = '2 (e 123q32 + e 132q23 ) = '2 (q 32 - q23).

The property of the tensor to be symmetric is invariant with respect to
rot ation of the system of axes. Indeed, by eq. (A.3.6)
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The components of the skew-symmetri c tensor are transformed under ro
tation of the coordinate system as the proj ections of vector w , indeed

so that

which is in agreement with law (A.1.6) of transformation of projections
of the vector. This vector , defined by eq. (A.4.9), is called the vector ac
companying tensor Q. If it vanishes, then the tensor is symmetric . Vector
b = 0. .a , by eq. (A.3.3), has the projections

Thus referring to eq. (A.2.3) we arrive at the frequently used relationships

0. .a = w x a , a · 0. = 0.* .a = -0. .a = a x w.

Turning to eq. (A.4.8) we have

Q . a = S . a + w X a , a . Q = S . a - w x a .

A consequence of this formula is the following relationship

a . Q.a = a . S .a ,

(A.4.10)

(A.4.11)

(A.4.12)

expressing the easily foreseen result t hat only the symmet ric part of tensor
Q cont ributes to t he quadr ati c form produced by thi s tensor.

Let us consider a bilinear form qskasbk where as and bk denote the pro
jections of vectors a and b respectively. The assumpt ion th at it is invariant ,
that is, its numerical value is independent of the choice of the coordinate
system is expressed by the equality

It holds if the coefficients of the form and the variables are tr ansformed
according to laws (A.3.6) and (A.1.6) respectively. This allows us to give
the third definition of the tensor of second rank as the quantity prescribed
by matrix Ilqst II of the coefficients of the invariant bilinear form. The co
efficients of the invariant quadrati c form prescribe a symmetric tensor of
second rank.
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Example 1. It is known th at twice the kinetic energy of a rigid body
rot ating about a fixed point 0 with the angular velocity given by vector w
is as follows

2T = 8 ikWiWk

= 8 11wI+ 822W~ + 833W~ + 2812WIW2 + 2823W2W3 + 2831W3Wl.

This form is invariant because the numerical value of the kinetic energy
does not depends upon the choice of the coordinate system. Hence 8 ik are
the components of the symmetric tensor of second rank eO which is the
tensor of inerti a about point 0 and th e expression for 2T can be set in
another form

A 0 02T = w . 8 . w = w . k ,

see eq. (A.3.1O).
Example 2. In the second example in Section A.3 the quadratic form

represents twice the potential energy of an elast ic rod . This confirms that
E is a symmetric tensor of second rank.

A.5 Vector dyadic and dyadic representation of
tensors of second rank

Given two vectors a and b , we introduce the following matrix

al b, asb: al be
a2bl a2b2 a2b3 = Ilasbk II .
asbi a3b2 a3b3

It determines a tensor of second rank referred to as the dyadic products
of vectors a and b (or simply a dyadic) and is denoted as abo This is in
agreement with the definition of a tensor, Section A.3, since for any vector
c the values due to rule (A.3.2)

differ from the projections of vector a only in the scalar multiplier b . C.

These formulae define the postmultiplication of the dyadic by a vector

(ab) . c = ab . c.

Transposing matrix (A.5.1) leads to interchanging a and b

(ab)" = ba,

(A.5.2)

(A.5.3)



892 Appendix A. Basics tensor algebra

such that by eq. (AA.2)

ab . c = c . ba = c . (ab) * . (A.5A)

In the matrix defining dyadic isik only the element of the s - th row and
k - th column differs from zero and equal to 1. The sum of three dyadics

(A.5.5)

defines the unit tensor in the orthogonal Cartesian system of coordinates .
This is the tensor whose nontrivi al components lie on the diagonal and are
equal to unity. Thi s prop erty of the unit tensor is invariant with respect to
rot ation since

It is also evident that

£ · a = a ·£ = a, (A.5.6)

and this equality can be taken as a definition of the unit tensor : post- or
premultiplying it by any vector a yields the same vector a.

Tensor Qcan be presented by a sum of nine dyadics

(A.5.7)

This follows from the fact that the tensor on the right hand side is pre
scribed by the same matrix of components as Q. Such a dyadic represen
t ation of the tensor essent ially simplifies the operat ions of tensor algebra .
The above operations of postmultiplication and premultiplication

Q . ~ : q st.isit . a.k~k : qstakisDt.k : qstat~s , }

a· Q - ak1k . qstls1t - qstak Dkslt - qstas1t ,

can serve as an example.
The vector product of the tensor of second rank and a vector leads to

new tensors of the same rank

Q x ~ = qstak~sit ~ ~k = ertk qstak ~s~n }

a x Q = qstak1k X l slt = e r ks qs t ak1r1t .
(A.5.8)

For example, the matrix of components of the latter tensor is as follows

q3l a 2 - q21 a 3 q32a2 - q22a 3 q33a 2 - q23a 3

qlla 3 - q31a l q12a 3 - q32al q13a 3 - q33a l

q21 a l - qn a 2 q22a l - q12 a2 q23a l - q13a2

(A.5.9)

In particular , dyadic ab and vector c produce the following dyadics

(ab)x c = a (bx c), c x(ab)=(c xa)b. (A.5.10)



A.6 Tensors of higher ranks, cont raction of indi ces 893

It it st ra ightforward to prove the identities

(a x Q) * = -Q* x a, a x (P. b) = (a x p) .b.
Let us introduce into consideration the following values

(A.5.Il )

(A.5.l 2)

These are not vectors since 'let are not transformed in the way that the
vector proj ection are transformed. Nonetheless introducing these "quasi
vectors" in a fixed coordinate syste m is admitted since this simplifies the
formulae. Using these, tensor Qis writ ten as a sum of three dyadics

(A.5.l 3)

The accompanying vector w is presented in the form

(A.5.l4)

In particular , the vector accompanying the dyadic ab is equal to

(A.5.l5 )

Let us also notice that the st-component of tensor Qcan be presented
as follows

. Q'qst = Is · . It· (A.5.l 6)

A.6 Tensors of higher ranks, contraction of indices

Let us agree to refer to the scalar and the vector as the tensor of zero rank
and first rank respectively. From three operations on two vectors a and
b , which are dyadic , scalar and vector multipli cation, the most general is
the first one. From two tensors of first rank it produces the tensor ab of
second rank prescribed by the matrix of components llasbtll. The rank of
this tensor decreases by one when the accompanying vector ~ erstatbsir ,

which is the tensor of first rank , is calculated. The rank decreases by two
(i.e. tensor produces a scalar) when the value Dstasbt = asbs = a · b is
intr oduced. In other words, a contraction with respect to a pair of indices
s , t takes place.

The value

(A.6.l)
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determines a tensor of n - th rank provided that its components (altogether
3n ) obey the tr ansformation law

(A.6.2)

under rotation of the coordinate system. Equality (A.6.2) is a direct gen
eralisat ion of rule (A.3.6). The rank of the tensor decreases by two under
any contraction. For example, under cont raction with respect to the last
indices we arrive at the tensor

(to sum over index Sn - l) . The rank of the tensor can be decreased by
one by introducing an "accompanying" tensor. One of these tensors is the
following one

Contraction of th e tensor leads to the scalar referred to as the trace of
the tensor or its first invariant

trQ = h (Q) = qsti s ' i t = qst8st = qss '

In par ticular , for the unit tensor

t, (E) = 3,

and for the dyadic

I I (ab) = trab = a- b .

(A.6.3)

(A.6.4)

(A.6.5)

By means of two tensors Q and P of second rank one can obtai n tensors
of fourth rank , for example

Tensors of second rank can be obtained from the above tensors by means of
a single cont ract ion. In particular , postmultiplying tensor Qby P results
in the following tensor

(A.6.6)

Th e second contraction yields the invariant which is the tr ace of tensor
(A.6.6)

Q..p = tr (Q.P)= qstptqis ' i q = qstPt s ' (A.6.7)
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It is easy to prove the identity

(Q. p) * = P*·Q* = qstptqiqis , (A.6.8)

which suggests that tensor Q.Q* is symmet ric, however Q* .Q=I Q.Q*,
see eq. (A.6.14).

For Q= P we arr ive at th e tensor of second rank , termed the square of
tensor ,

By analogy one constructs higher powers of tensor , for exampl e

'3 ' 2 ' • •
Q = Q . Q = q stqt1'q1'q1slq .

The traces of t hese tensors are

' 2 '3
trQ =qstq/s , t r Q =qStqt1'q1'S.

(A.6.9)

(A.6.1O)

The higher powers than second are expressed in terms of Q2 ,Qand QO = E.
This is the Cayley-Hamilton theorem proved in Sections A.lO and A.12.

Post- or premultiplication of a tensor of second rank by the unit tensor
E results in the same tensor

(A.6.11)

Further analysis requires an expression for tensor Q*.Qin terms of the
symmetric part 8 of tensor Qand t he accompanying vector w. We have

Q*.Q= (8 - 0) . (8+ 0) = 82
- 0 .8+ 8.0 - 02

and referring to eqs. (A.4.6) and (A.5.8) we find
, , ,

n .S = WtTS1'q i t iq = ernTtwrn s1'(/ it i q = w x S .

Taking into account that 0* = -0,8* = 8 we find by eq. (1.6.8)

(0 .8f = 8*·0* = - 8·0 = e1n1·tWrnSTqiq i t = (w x 8f

and

0 ·0 = WstWt1'is i1' = e ts rne1'tqwmwqis i1· = (8sq8m 1' - 8s1'8m q ) w mwqi s i1.

= w 1·ws i s i1' - w mwrn is i s = ww - Ew . w.

Hence

Q*.Q= 82 + Ew· w- ww - wx 8- (w x 8)*

= [St SS1'q - 8tqw rnw m - WtWq - Wm (em1' t S1'q + e m 1·qs 1't )] iti q (A.6.12)
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and by analogy

Q.Q* = f;2 + Ew .w- ww +wx S+ (w x S)* ,

so that

Q.Q* - Q* .Q= 2 [w x S+ (wx S)*] .

(A.6.13)

(A.6.14)

An example of a tensor of third rank is the Levi-Civit a tensor. From
27 Levi-Civita 's symbols only six are nontrivial. Their tensorial character
can be detected easily by using definition (A.2.1), formulae (A.1.2) and eq.
(A.6.2)

The values estreklm determine a tensor of sixth rank. The contract ion of it
with respect to three pairs of indices leads to the invariant (A.2.6) whereas
the contract ion with respect to two pairs of indices result s in the double
unit vector and a cont ract ion with respect to a single pair of indices yields
a tensor of fourth rank (A.2.4).

A tensor is said to be isotropic if its components are unchanged in all
coordinat e systems obt ained from each other by rot ation. An example of
the isotropic tensor of second rank is the product of a scalar and the unit

tensor (AE) and the product of a scalar and the Levi-Civit a tensor is the
isotr opic tensor of third rank. It can be proved that there exist no other
isotropic tensor of second and third rank. A more general form for the
components of isotropic tensor of fourth rank is presented by the formula

containing three scalar multipliers A,u, u. Under the symmetry requirement

(A.6.16)

the third term in eq. (A.6.5) vanishes, i.e. v = O.

A.7 Inverse tensor

Relationships (A.3.2) can be considered as a system of linear equat ions for
unknowns a-, It has a solution if matrix IIqstll is nonsingular, that is, its
determinant is not zero

(A.7.1)
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The components ar are given by the standard equalities

(A.7.2)

in which A rt denot es the algebraic adjunct of element qtr of determinant
q. The tensor with the following matrix of components

,·t _ lAq - - rt
q

is called the tensor inverse of Q and is denoted as follows

Q' -1 •• r t .• Art
= 1,.ltq = l r1t- .

q

Relations (A.7.2) are now written in the form

Q' - 1 ba = . ,

and substitution into eq. (A.3.4) leads to the equality

It follows from this equation that

and we arrive at the well-known property of the determinants

Let us notice that

(A.7.3)

(A.7.4)

(A.7.5)

(A.7.6)

(A.7.7)

(A.7.8)

8q
Atr = -8 'q,·t

tr 1 8qq =--.
q 8qrt

(A.7.9)

It is known that the determinant q is a sum of the products of the type
qstqqrqmn taken with the corresponding signs. These products must have
no repeating indices in the triples sqm and trn otherwise the sum vanishes.
It is st raightforward to prove that

1
q = "6 eSqmet>'nqstqqrqmn-

Let us introduce the denotation

(A.7.10)

(A.7.11)
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Then

t s 1 {O, s #- l 8
qltq = 6qesqrnetrnqltqqrqmn = 1, s = l = s l »

since for s #- l the indices in the triples sqm and trn are repeating. Thus
we arrive at equality (A.7.8) which implies that formula (A.7.1l) yields
anot her representation of the tensor component s

Q' - 1 i s ' •= q It 1s ·

Other relationships are

(A.7.12)

t ha t is, t he inverse of the inverse of the tensor is the tensor itself. The
inverse of the transpose is equal to the transpose of the inverse. We not ice
also the permu tation property

Cd ·Cd- I= Cd-I. Cd = E (A.7.13)

and the relat ion defining the tensor inverse of the product of t ensors

(p .Cd) -1 = Cd-I .P- l,

which is proved by multiplying both sides by P .Q

(A.7 .14)

which is required.

A.8 Rotation tensor

Let is denot e the unit vectors of the axes of trihedron O XI X 2X 3 and i~

denote those of t rihedron Oxi x~x~, t he latter being obtained from the first
by a rotat ion. We introduce tensor Ii which is a sum of three dyadics isi~
and the transpose Ii*

(A.8.1)

Premultiplying Ii by vector a or postmultiplying Ii * by a leads to the vector
a

(A.8.2)
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The projections of this vector on new axes i~ are equal to the projections
as of vector a in the old axes is . This means that vector a is obtained
from a by a rotation together with trihedron O X I X 2X 3 ' Tensors A and A*
performing this operation are referr ed to as the rotation tensors.

The pro jections of vectors h and i; on th e old axes are equa l (1,0,0) and
(all , 0'12 , 0'1 3) respectively and th e matrix of the component s of dyadic ii~

is as follows

a ll 0'1 2 0'1 3

000
000

Clearly, the components of te nsor IIAII are presented by the matrix of

cosines Il00stll, hence

(A.S.3)

which is required .
Let us notice the relationship

A·A* = isi~ · i~ik = isikosk = E, A* = A-I , (A.SA)

(A.S.5)

indicating that transposing the rotation tensor leads to the inverse tensor .
This is a characterist ic proper ty of the rotation tensor and any tensor
possessing this property is a rotation tensor. Indeed , let

As the det erminant s q and q* are equa l to each other and determinant
IOstl = 1 we have q2 = 1. Let us t ake q = L in eq. (A.7.S) we have qrt = qtT
and we arr ive at six equalit ies

describing t he matrix of cosines along with the condit ion q = 1, see eq.
(A.1.5).

It is known that a rigid body rotation (the rot ation of the fixed axes
from the old position O XI X 2X 3 into a new one O x; X~X3 ) can be described
by a vector of finit e rotation O. This vector has the dir ection of t he axis of

Xrotation and the value 2 tan '2

0 = 2k tan~ ,

where X denotes the angle of rotation. Vector a given in axes O XI X2.'1:3

becomes vector a determined by Rodrigues's formul a

a= a+ 01 x(a + ~O xa) ,
1 + -rP 2

4
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see Subsection A.lO.1. Another form of the latter equat ion is

a= a + sin X [k x a + (kk . a - a ) tan i].
Let us introduce a skew-symmetric tensor

(A.8.6)

so that

k x a = n· a .

Then eq. (A.8.6) can be tr ansformed to the form

a= [(E- kk) cos X+ kk +nsin X] . a = A* . a ,

admit ting an invariant (i.e. independent of the choice of axes) representa
tion for the rotation tensor

A= (E- kk) cos X + kk - nsin X, A* = (E - kk) cos X + kk + nsin X.

(A.8.8)

A.9 Principal axes and principal values of
symmetric tensors

One seeks such a direct ion described by the unit vector e that vector Q. e
is parallel to this direct ion, i.e,

Q . e = Ae, (Q - AE) .e = 0, (A.9.1)

where Qis a prescribed symmetric tensor of second rank and A is an un
known scalar. Assuming e = etit one can rewrite this equality in the form

We arrive at the three equat ions

(eu - A) e i + q12e2 + q13e3 = 0, }
q21e l + ( q22 - A) e2 + q23e3 = 0,
q31e l + q32C2 + (q33 - A) C3 = 0,

augmented by the equat ion expressing that e is a unit vector

ei + e~ + e~ = 1.

(A.9.2)

(A.9.3)

(A.9.4)
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The latter condition excludes the trivial solution (es = 0) of the system of
linear equat ions (A.9.3). The determinant of the system must vanish

qll - A
q21
q31

q12
q22 - A

q32

q13
q23

q33 - A
=0, (A.9.5)

so that A are the roots of this cubic equat ion which is called the charac
teristic equat ion of tensor Q. These values are invariant with rotation of
the coordinate system which immediately follows from relationship (A.3.8)
applied to tensor Q- AE.

Let Al and A2 be two different (not equal to each other) roots of equation

(A.9.5) and let the corresponding vectors e be denoted as k=Jt i t and
2 2 . Th
e=e t It . en

(A.9.6)

and therefore

For the symmetric tensor

and thus

1 2 1 2
()'l - "\'2) e . e= 0, e· e= O. (A.9.7)

If the roots Al and ..\.2 were complex conjugate numbers, then the cor

responding solutions is and l. of the system of equations (A.9.3) would

also be complex conjugate. However the sum isis= lisl2 can not vanish

since it is equal to th e sum of the squares of the absolute values of is. This
proves that the roots of polynomial P3 (A) are real-valued and the vectors
corresponding to two different root s are mutu ally orthogonal.

1. Simple roots. Let the roots of polynomial P3 (A) be simple, i.e. Al =/:.
A2 =/:. A3. then we have

(A.9.8)

where b.sk (As) denotes the algebraic adjunct of the element of the i - th
row and k - th column of determinant (A.9.5) for A = As. At least one
term of this sum (for instance the third one) is not equal to zero otherwise
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P' (As) = 0 and the root As is no longer simple. Then we obtain from the
first and second equat ions in (A.9.3)

see also eq. (A.I0 .32) and by eq. (A.9.4) we find

eSk = ± ~6.sk (As) , D2 = 6.~1 (As ) + 6.~2 (As) + 6.~3 (As) ,

the third equation (A.9.3) being satisfied since

(A.9.9)

Thus, for any root As of equat ion;(A.9.5) there exists a direction ~ given
by the directional cosines that

These three directions are mutually orthogonal and are referred to as the
principal directions of tensor Qwhereas As are called the principal values.
It follows from the relationships

(A.9.1O)

that in the orthogonal system of directions ~,~ , ~ the matrix of the com
ponents of tensor Q becomes diagonal

(A.9.11)

and the dyadic represent ation of the tensor has the trinomial form1

3
, 11 22 33 ~ ss
Q = Al ee +A2 ee +A3 ee= ~>'s ee .

s=l
(A.9.12)

2. Double root. The above-said remains valid for direction ~ which is
orthogonal to the other directions

(A.9.13)

1It is preferable to keep the summation sign in those cases when t he dummy index
repeats t hree times (rather t han two tim es)
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For the double root

pi (>'s) = 0, ~P" (>'s) = (qll - >'s) + (q22 - >'s) + (q33 - >'s) ,

and at least one term in this sum, say the first , does not vanish. For deter

mining three unknowns elk we have two equations: first equat ion in (A.9.3)
and eq. (A.9.4). The second and third equations in (A.9.3) are satisfied iden
tically which is the result from p i (>'d = 0, p (>'d = O. The determination

of direction ~ is completed by the requirement k. ~ = 0 of ort hogonality
1

to direction e. Hence in the case of double root only one of three princip al
1

directions is determined uniquely while the remainin g two directions e and
2 3
e are oriented arbitrarily in the plane orthogonal to e . Thus, the system

f di . 1 2 3 . d . d . b 3 Th d dio irections e , e, e IS etermme up to a rot ation a out e . e ya 1C

representation of tensor Q is written in the form

(A.9.14)

It follows from this representation that only direction ~ is the characterist ic
for tensor Q.

3. Equal roots. In this case >'1= >'2= >'3 and

(A.9.15)

that is, the principal directions are arbitra ry. Tensor Q is isotr opic and is
also referred to as spherical.

To conclude, we notice that the dete rminant of the produ ct of two tensors
is equal to the product of their determinants

det A· B = det AdetB = detB · A, (A.9.16)

and it follows from eq. (A.9 .5) that the principal values of tensors A . B
and B .A are coincident.

Let us also consider the tensor

(A.9 .17)

This is a "turned tensor Q" since the principal values of tensors Q and
QI coincide, whilst the trihedrons of their principal axes are relat ed by the
tr ansformation of rotation.

A.I0 Tensor invariants, the Cayley-Hamilton
theorem

Let us make the old axes coincident with the principal directions ~ and
denote, for simplicity, the unit vectors of the new axes as i e - Then by eq.



904 Appendix A. Basics tensor algebra

(A.3.6)

(A.lO.I )

(A.1O.2)

where O:s m denotes the cosine function of the angle between axis i s and the
principal direction ~ . These formulae express the tensor components in the
arbitrary directed axes in terms of its principal values.

The principal values of th e symmetric tensor of second rank are its in
variants. It follows from the remark of Section A.9 stating that the root s of
polynomial P3 (A) are independent of the choice of the coordinate system
in which the matrix of components is prescribed. It is evident th at any
function of the principal values of the tensor q> (AI , A2'A3) is an invariant .
The invariant s which are the symmetric functions of the principal values,
i.e. the roots of polynomial P3 (A) , are the most convenient because they
are expressed in terms of the coefficients of thi s polynomial. They are re
ferred to as the princip al invariants. Of course, the invariant s of the tensor
do not depend on the orient ation of the t rihedron of its principal axes, that
is, tensors Qand P have the same invariants.

An extended form of polynomial P3 (A) has the form

P3 (A) = _A3+ A2(ql1 + q22 + q33) -

A (ql1 q22 + q22q33+ q33ql1 - qi2 - q~3 - q~l) + IqstI·
On the other hand ,

P3 (A) = (AI - A) (A2 - A) (A3 - A) (A.1O.3)

= _A3+ A2 (AI + A2+ A3) - A(AIA2+ A2A3 + A3AI) + AIA2A3,

and comparison of these forms allows the following expressions for the
princip al invariants to be written

It (Q) = Al + A2 + A3 = ql1 + q22 + q33, (A.lOA)

12 (Q) = AIA2 + A2A3+ A3AI (A.IO.S)

= ql1q22 - qi2 + q22q33 - q~3 + q33ql1 - q~1 = q (ql1 + q22+ q33) ,

h (Q) = AIA2A3 = Iqstl = q. (A.1O.6)

Using the dyadic represent ation of tensor (A.9.12) we can write the fol
lowing dyadic representation for Q2

3 3 3 3
A2 '""' ss '""' kk '""' '""' sk 2 II 2 2 2 2 3 3Q = ~As ee·~Ak ee=~~AsAk ee 8sk = Al ee +A2 ee +A3 ee

s=1 k=1 s = lk= 1

and in general

An n I l n22 n 33
Q = Al ee +A2 ee +A3 ee. (A.IO.7)
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This formula remains valid for both integer negative and for non-integer n.
For inst ance

' - 1 1 11 1 2 2 1 33
Q = - ee +- ee +- ee

Al A2 A3

and for As > 0

since for this definition

(A.IO.8)

(A.1O.9)

, 1 ' 1 1 2 2 33 A , 1/2 ' 1/ 2 1 1 22 33 ,
Q- .Q = ee + ee + ee = E , Q .Q = Al ee +A2ee +A3ee= Q,

which is required .

By eq. (A.6.1O) we have II ((2) = Ai+ A~ + A~ which allows h (Q) to

be represented in the form

12(Q) = ~ [I? (Q) - II ((2)] .

Using eq. (A.IO.3) and (A.1O.7) we have

(A. 10.10)

3 3

Q3= L ~~ [-P3(As) + II (Q) A; - 12(Q) As+ 13(Q)] = L A; ~~
s=I s= I

and since P3 (As ) = 0 we obtain

_Q3+ II (Q) Q2 - h (Q) Q+ h (Q) E = 0, (A.IO.ll)

that is, the tensor sat isfies the same characterist ic equation as its principal
invariants. This is the Cayley-Hamilton theorem which allows any integer
power of tensor Q to be expressed in te rms of Q2,Q,E and its invariants
of any power in terms of three principal invariants. The "negat ive powers"
are also expressed in terms of Q2 ,Q, E. Indeed, by eq. (A.1O.1l )

A_I 1 ( , 2 A A)
Q = h Q - IIQ + h E ,

where for brevity h = h (Q) .

(A.Io.12)

(A.1O.13)
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Based on these equalit ies we construct expressions for the invariant s

I, (0-1) . Referring to eq. (A.1O.1O) we have

('-1) 1 [( '2) 2(' ) (')] 1
2 (0)t, Q =-(') t, Q -II Q +312 Q =-(').

~ Q ~ Q
(A.1O.14)

Further

12 (0-1
) = ~ [h (0-1

) -h (0- 2
) ]

= 2~2 [11- 3 (I1- h I 3) - (~ - hh) I, - h (I? - 2h)] ,
3

so that

(A.1O.15)

Recalling now the well-known property of the det erminant of the inverse
matrix, we have

~ (0-1
) = 131 (0) . (A.1O.16)

The Cayley-Hamilton theorem proved here for the symmet ric tensor of
second rank is valid for any (symmetric or nonsymmetric) matrix. Thus,
the matrix satisfied its characteristic equat ion.

The symmetric tensor of second ranks 0 is called positive if the quadratic
form of the components of any vector a produced by means of this tensor
is positive definite

an equality sign holding only for al = a2 = a3 = 0. All principal invariants
As of the positive tensor are positive since

As > 0,

where ak = a - ~ denot es projections a onto the principal axes. Definition
of tensor Ql/2 makes sense only for a positive tensor Q. An exam ple of a
positive tensor is p. p* if P is a non-singular tensor, i.e. (IPstl =f. 0). Indeed

a · p. P* .a = a · Pstpqti siq . a = PstasPqtaq = 2: (Pstas)2 2: 0,
t
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and the equality sign is possible only if

Pstas =O (t=I ,2 ,3).

However thi s system of three equat ions only has the trivi al solution (as = 0)
as IPstl -10 .

Now we can prove that the non-singular tensor P can be represented as
the following products

Here Aand B are rotation tensors, while iI and k are symmetric positive
tensors. Indeed

P* = iI .A* or P* = B* . k,

and thus

P* . P = iI .A* . A. iI = iI2 or p .P* = tc .B . B* . k = k 2 .

According to the above-said P* . P and P . P* are positive tensors. Hence

We obt ained

, ( , , ) 1/2
H = P" :P ,

, ( , , ) 1/2
K= P ·P*

, ' ( ' * ' ) 1/2P=A · p.p ,

which yields that

, , (, , ) - 1/2
A = p . P" : P ,

, ( ' ' ) 1/2 ,P= P ·P* · B

, ( , , ) -1 /2 ,
B = p . P* . P

(A.IO.17)

(A.IO.18)

(
' , )-1/2

are the rotation tensors. Indeed, tensors P" : P and

are symmetric and thus
(

, , ) - 1/2
p ·P*

, ( , ' ) -1 / 2 , , ' ( " ) -1 / 2A* = P": P . P*, B* = P*· p . P* ,

, , ( , , ) - 1/2, , ( , ' ) -1 /2 , , ,
A* . A = P" :P . P* . p . P" >P = E , A* = A-1,

" ( , ,) -1/2 , , ( , , ) - 1/2 , , ,
B . B* = p . P* . P . P" : p. P* = E , B- 1 = B*,

which is required.
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A.10.l Principal axes and principal directions of
non-symmetric tensors

Similar to Section A.9 we restrict our consideration to the case of a tensor
of second rank. We can introduce two systems ("right" e and "left" e) of
the principal directions

Q.e = Ae or e·Q= ).e. (A.1O.19)

The scalar multipliers A and ). are equal to each other since they are de
termined from the same cubic equation

An extended form of this equation is as follows

where coefficients t; (Q) are the principal invariants of Qand are expressed

in terms of the components qst by formulae similar to eqs. (A.I0.4)-(A.I0.6)

h (Q) = A1 + A2 + A3 = qll + q22 + q33, (A.1O.20)

/2 (Q) = A1 A2 + A2 A3 + A3 A1 = (qllq22 - q12q21) + (q22q33 - q23q32) +

(q33qll - q31q13) = q (qll + q22 + q33) = qli (Q-1) , (A.I0.21)

l z (Q) = A1 A2 A3 = Iqtsl = q. (A.I0.22)

Let us denote the real-valued root of this equation and the corresponding
right principal value as A3 and e3 respectively. The remaining roots A1
and A2 can be either real-valued or complex-conjugate, i.e. A1 = f..l1 +
if..l2 ' A2 = f..l1 - if..l2· Let us study first the latter assumption and introduce
the corresponding complex-conjugate (right) vectors e2 + ie1, e2 - ie1' By
definition

so that

Now we introduce the (non-orthogonal vectorial) cobasis
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such that

(A.10.24)

This allows one to write the dyadic (right) represent ation of Q

(A.1O.25)

Indeed, due to eq. (A.10.24) the relationships (A.10.25) hold.
If all root s As are real-valued and the corresponding vectors of the prin

cipal directions are denoted as es then defining the cobasis by the above
relat ionships we obt ain

(A.10.26)

When Q is a symmetric tensor then es is the orthonormalised vector basis
coinciding with the cobasis ~ and we arr ive at representation (A.9.12).

k
The left basis es and the corresponding cobasis e of the principal direc-

tions are introduced by analogy.
Example 1. The skew-symmetric tensor n is presented in terms of the

accompanying vector w

(A.10.27)

Hence

n.e = (Ex w) .e = wx e = Ae,

and thi s relationship can be sat isfied by assuming

The characte rist ic equat ion for tensor n
-A - W 3 W2

W3 -A - WI = _A
3

- AW
2 = 0

- W 2 WI -A

has two imaginary roots ±iw except for a zero one. Let e2± ie l denote the
vectors e corresponding to these two root s, such that

w x (e2 ± ied = we3 x (e2 ± ied = ±iw (e2 ± ied ,

el = e2 x e3, e2 = e3 x e l .
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Vectors el , e2,e3 form an orthogonal basis and the unit vectors el , e2 are
determined up to a rot ation about axis e3. In such an orthonormalised
basis tensor nis given by the dyadic representation

(A.10.28)

Indeed,

n· (e2 ± ie t} = w (e2el - ele2) . (e2 ± ie t} = ±iw (e2 ± ie t} ,

which is required.
Example 2. The rotation tensor is A= ast isit . Taking into account the

well-known relationships

we can set the characteristic equat ion in the form

One of the roots A3 = 1 whilst the two remaining root s can be represented
as Al = e- iw , A2 = eiw where

2 cos w = 1 + a ll + a 22 + a 33 = 1 + h (A) . (A.1O.29)

Two left principal directions of tensor A (the right directions of tensor
k) are sought . Root A3 = 1 describes the direction of the unit vector e3
remaining unchanged under rot ation (since it describes the rot ation axis)

e3 . A= e3 = A3e3 = e3.

Vectors el ± ie2 corresponding to roots AI , A2 are given by

(el ± ie2) . A= e'f
iw (el ± ie2), k · (el ± ie2) = e'f

iw (el ± ie2) ,

so that

(el ± ie2) . (e, ± ie2) (1 - e'f
2iw

) = 0

because A· k = E. By analogy

e3 . A·A* . (ei ± ie2) = e3 . (ci ± ie2) = e3 . e'f
iw (el ± ie2)

such th at , excluding the case of e'f iw = 1 we obtain

where el .el = e2' e2. Let the square of the absolute value of vectors el ± ie2
be equal to 2

(ei + ie2) . (el - ie2) = el . el + e2 ' e2 = 2el . el = 2e2 ' e2 = 2.
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Then vectors e1, e2 are the unit vectors and vector e1 + ie2 is defined
up to the multipli er ei>. . Thus , vectors e1, e2, e3 form an orthonormalised
trihedron in which vectors e1, e2 are determined up to a rot ation about e3.

The rot ation tensor is now presented in the form

A= e3e3 + ~ [(e1 - ie2) (e1 + ie2) e- iw + (e1 + ie2) (e1 - ie2) eiW
] .

(A.1O.30)

Indeed, the required relationships

hold. Another form of formula (A.1O.26) repeat ing eq. (A.8.8) has the form

A= e3e3 + (e1e1 + e2e2) cosw + (e1e2 - e2e1) sinw

= E cos w + e3e3 (1 - cosw) - e3 x Esinw . (A.1O.31)

This invariant form for th e rotation tensor A shows that the axis of
rotat ion is given by vector e3 and w denotes the angle of rotation about
this axis. One can easily convince oneself of thi s by noticing th at

\ AA •e1=e1' =e1 cosw+e2sm w, \ AA •e2 = e2 ' = -e1 smw + e2cosw,

i.e. the rot ated vectors e\ , e2 are obtained by rot ating vectors e1, e2 about

~ through angle w in the positive direction .
The represent ations for the dyadics of the princip al directions of the

symmetric tensor follows from the relations

11 22 33 A

ee + ee + ee= E ,
11 22 33 A

q1 ee +q2 ee +q3 ee= Q,

2 11 2 22 2 33 A

q1 ee +q2 ee +q3 ee= Q2,

where q, denotes the principal values of Q. We obtain

(Q- Eq2) . (Q- E q3 )

(ql - q2) (q1 - q3)

(Q- E q3 ) . (Q- Eq1)

(q2 - q3) (q2 - q1)

(Q- Eq1) . (Q- Eq2)

(q3 -q1) (q3 - q2)

(A.1O.32)
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Now it is easy to obt ain expressions for the square and the products

of cosines of the angles ek=~ ·ik between the princip al directions and the
coordinat e axes. For example,

A.II Splitting the symmetric tensor of second rank
in deviatoric and spherical tensors

The isotropic tensor 1It (Q) E is referred to as the spherical part of tensor

Q. The remainder of tensor Q is called the deviator and denoted as Dev Q

Q=1II (Q) E+Dev Q, Dev Q= Q-1 II (Q) E. (A.l1.l)

By eq. (A.9.5) the characteristic equat ion of deviato r is set in the form

(A.l1.2)

that is, the princip al values of the deviator are equal to

or

1 1 1
Xl = "3 (2)'1 - ..\2 - ..\3) , X 2 = "3 (2..\2 - ..\3 - "\1) ' X 3 = "3 (2..\3 - ..\1 - "\2) .

(A.l1.3)

Its principal directions coincide with the principal directions of the tensor.
Indeed, from the equality

Q. e = ..\e=1II (Q) e + (Dev Q) . e

we obtain

(Dev Q) .e = [..\ - ~ It (Q)] e = x e, (A.ll .4)

that is, vector e determined by eq. (A.9.l) also satisfies eq. (A.l1.4) .
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A.ll.l Invariants of deviator

It follows from formulae (A.I1.3) , (A.lOA) and (A.IO.5) that

It (Dev Q) = Xl + X2 + X 3 = 0, (A.11.5)

12 (Dev Q) = xlx2 + x 2x 3 + X 3XI = t, (Q) - ~lf (Q) , (A.I1.6)

h (Dev Q) = xI X2 X 3 = h (Q) - ~It (Q) t, (Q) + 2~lr (Q).
(A.I1.7)

It is easy to prove by means of eqs. (A.11.5) and (A.I1.6) that th e second
invariant of the deviator is set in th e form

(A.I1.8)

Another expression for the second invariant of the deviator is obtained by
replacing Qby Dev Qin eq. (A.lO.lO) and taking into account eq. (A.I1.5)

(A.I1.9)

Clearly,12 (Dev Q) < O. We also need the expressions for the first invariant

of the powers of the deviator in terms of the second and third invariants.
To obt ain them, we use the Cayley-Hamilton th eorem (A.lO.11) for the
deviator. We obt ain

( Dev Q) 3 = -12 (Dev Q) DevQ+ h (Dev Q) E, }
4 2 (A.11.10)

(Dev Q) = -i: (Dev Q) (Dev Q) + 13 (Dev Q) DevQ

etc . Referring to eqs. (A.I1. 5) and (A.I1.9) we find

It [(DevQf] = st, (Dev Q) , It [(Dev Q)4]= 2Ii (Dev Q) .

(A.ILlI)

Using eqs. (A.I1.5) and (A.lO.3) we can write the characteristic equat ion
of the deviator in the following form

(A.I1.12)

This cubic equations has no term with x 2 , thus it has only real-valued
roots. Its solut ion can be presented in trigonometric form by assuming

X= ~J-h(DevQ) sin 7/J= ~sin7/J , (A.ILl3)
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where for brevity

r 2
= -h (Dev Q) .

Insertion into eq. (A.l1.l2) yields

( A) ~ ~
;(3 + / 2 DevQ x = 3J3 (4sin3 1/1 - 3 sin 1/1) = - 3J3 sin 31/1,

so that

(A.l1.l5)

This determines three values of sc and the corresponding principal values
of the deviator

(A.l1.l6)

Values r and 1/1 are expressed in terms of the princip al invariants of the
deviator and thus they are also its invariant s. When dealing with some

problems, the invariants h (Dev Q) , r and 1/1 are preferable to the principal

invariant s of tensor Q.
Formulae (A.ll .9)-(A.l1.11) are now rewritten in the form

t. [ (Dev Q) 2] = 2r2,

t, [(Dev Q)4] = 2r4.
[

A 3] 2r3
t, (D ev Q) = - J3 sin 31/1,

(A.l1.l7)

A.12 Functions of tensors

A.12.1 Scalar

Function f (Q) satisfying the conditi on

(A.l2.l)

is referred to as the invariant scalar. However this not ion contains a taut ol
ogy since the scalar is invariant by definition . Relation (A.l2.l) indicates

that both the numerical value and the form of dependence f (Q) on t he
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components of tensor Qare the same in all coordinate systems related by
the tr ansformation of rot ation. Any function of the invariant s of tensor , in
particular , its principal invariant s

I (Q) = I (h (Q) , 12 (Q) ,h (Q)) . (A.12.2)

is the invariant scalar. In what follows th e notion "invariant scalar" is used
in thi s (limited) sense.

A.12.2 Tensor junction oj tensor Q
It is assumed that n 2 functions Psk = I sk (qrnn) are prescribed where qrnn
denotes the components of tensor Q. The elements of mat rix Illskll are
assumed to obey the tr ansformation law of the tensor components. It de-

termines a tensor function P (Q) on tensor Q.
A tensor power series

00

(A.12.3)

in which D:k are the invariant scalars, is a tensor function . The Cayley
Hamilton theorem allows all powers of Q higher than two to be expressed
in terms of QO ,Q,Q2. Hence any tensor function which is represented by a
power series can be described by the quadr ati c t rinomial

P= AE+ BQ+ CQ2 , (A.12.4)

where A , B , C are invariant scalars.
An example of the tensor function which can not be presented by a power

series is P = Q*.
Tensor P is an isotropic funct ion of tensor Q if t he following equality

(A.12.5)

holds. This means that in the system of axes related by the rotat ion tr ans
formation the form of dependence of P on Q is conserved, the numerical
values of tensor P (in axes is) and tensor PI (in axes i~) are equal to each
other . Do not confuse the terms "isotropic tensor function" and "isot ropic
tensor" . The components of the latter are the same in all system of axes,
see Section A.6.

One can prove the theorem: a symmet ric tensor function (p = p*) on

the symmet ric tensor Q is isot ropic if and only if it is presented in the form
(A.12.4) where A, B , C are scalar invariants of type (A.12.2).
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A.12.3 Gradient of scalar with respect to a tensor

Let f (ql1 , . .. ,q33) = f (qst) be a function of the components of tensor 0
prescribed in axes is. When the components of 0 are given in new axes,

the elements of matrix : f are transformed by rule (A.3.7). Indeed
uqst

of of aqst of
aq!mn = aqst aq!mn = amsant aqst '

which is required. Hence the quantity

of _ pA(QA) _ ~.. (A 12 6)00 - - aqst lslt . .

presents a tensor of second rank and is called the gradient of function f
with respect to O.

This definition yields the relationship

of I:QA* of.. .. I: of I: I:f
- A ··u = -;:;--lslt . 'lm1nuqnm = -;:;--uqst = u .
aQ uqst uqst

Let f be an invariant scalar, then according to definition (A.12.1) f (0) =

f (0') , qst = q~t and by eq. (A.12.3)

A(A ) A( A A A) of I I A of A A A( A) AP QI =p A* ·Q ·A =a'isit=A* .isait ·A=A* .P Q ·A,
qst qst

so that F (0) is an isotropic function of tensor O.

A.12.4 Derivatives of the principal invariants of a tensor
with respect to the tensor

Referring to eqs. (A.7.9) and (A.12.6) we have

(A.12.8)

On the other hand

13 (0 - Ai) = 10 - Ail = _A
3+ A

2t, (0) - AI2 (0) + 13 (0)
(A.12.9)
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Hence

A ( A A) ( A A)* [ 28It (Q)Eh Q - >..E = Q - >..E . >.. 8Q -

812 (Q) ( A)( A*)-I]>.. A + h QQ.
8Q

Replacing the left hand side according to eq. (A.12.9) and equating the
coefficients in front of the same power of >.. we obt ain the expression for the
tensor functions

8It (Q) A

-----'A::--'-- = E,
8Q

and the relationship

(A.12.10)

By eq. (A.12.10) the latter is transformed to the form

_Q*2+Q*It (Q)_Eh (Q)+ 13 ( Q) (Q*) -1 = 0, (A.12.1l)

(Q = Q*).
(A.12.12)

which is one of the forms of the Cayley-Hamilton theorem (A. lO.ll) . In

deed, bearing in mind that It (Q*) = It (Q) and multiplying eq. (A.12.1l)

by Q* we can represent this equation in form (A.lO.ll) .

A .12.5 Gradient of an invariant scalar

The expression for this quant ity follows directly from formulae (A.12.8)
and (A.12.20)

B] (8f ( A) 8f ) A 8f A 8f ( A) A- I
8Q = 8It + It Q 81

2
E - 8h Q + 81/3 Q Q

Replacing here Q-l byeq. (A.lO.12) we arrive at another form

8f [ 8f ( A) 8f ( A) 8f ] A8Q = 8It + It Q 81
2

+ 12 Q 81
3

E -

(
8f ( A) 8f ) A B] A2
8h + It Q 8h Q + 8h Q . (A.12.13)
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The isotropi c tensor function obt ained with the help of invariant scalar

f (Q) is presented in the form of a quadrat ic trinomial (or in the equivalent

form (A.12.12)) on tensor Q= Q*with the coefficients which are equivalent
scalars. This is a particular case of representat ion (A.12.4) for the isotropic

tensor function P= f (Q) .
Remark. Relationship (A.12.4) does not exhaust the diversity of rela

tionships between two symmet ric tensors. The expression for the invariant
relation between them

P = F (Q,Is (Q) .t, (p) ,R, S, ... )

may contain some additional tensors R,S. An example is the following
relation

(A.12.14)

(A.13.2)

(A.13.1)

in which tensor P is obt ained by double contract ion of the tensor of sixt h
rank (4)RQ. The components of tensor (4) Rmust be symmetric about in
dices in each pair st, mn which reduces their number from 81 to 36. In
particular , eq. (A.12.14) describes the relation between the stress tensor
and stra in tensor in an elastic anisot ropic solid (the number of indepen
dent components of (4) R reduces to 21).

A.13 Extracting spherical and deviatoric parts

Returning to the general representation of isotropic tensor function (A.12.4)
we ext ract the spherical and deviatoric parts of tensor P

t, (p) = 3A + st, (Q) + Ct, ((2) ,
Dev P = P- ~Eh (p) = BDevQ+ CDev Q2 .

By eqs. (A.1O.10) and (A.11.6)

t, ( ( 2) = Ii (Q) - 212 ( Q) = ~ Ii (Q) - 212 (D ev Q) ,

Q2= [Dev Q+ ~et, (Q)] 2 = (Dev Q)2 + ~ II ( Q) Dev Q+ ~El i (Q) ,

so th at
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and substitution into eq. (A.13.1) leads to the relat ionships

i. (p) = 3A + et, (Q) + C [~I? (Q) + 2r2
] , (A.13.3)

Dev P= [B + ~Ch (Q)] DevQ + C [(Dev Q)2- ~Er2] . (A.13.4)

Introducing the new denotation

(A.13.5)

we can present the general form of the dependence between two coaxial
tensors in the following form

where

P = u, (Q) E+ a Dev Q+ {3 [ (D ev Q) 2 - ~Er2],

, , [( ,)2 2 , 2]Dev P = a Dev Q + {3 Dev Q -:3Er .

(A.13.6)

(A.13.7)

Const ants a and {3 can be obt ained in terms of the invariants of Dev P.
For obt aining the second invariant we use the first formula (A.1l .7) in the
form

where

(A.13.8)

Then we have

(Dev p)2= a2(Dev Q)2= 2a {3 [(Dev Q)3_ ~r2 Dev Q] +

{32 [(Dev Q) 4_ ~ r2(D ev Q) 2+ ~Er4]

and referring again to eq. (A.l1.17) we find after a simple calculation that

T
2 = ~h [(Dev p) 2] = r2(a2_~a{3r sin 37/' + r2~2)

~ r' [(Q - ~~Sin 31O)' + (~~COS31O)'] .
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Denoting

12 (Dev p)
h (Dev Q)'

(A.13.9)

we obtain

J12 = (a _~j3Sin3~) 2 + (~j3 COS3~) 2

One can sat isfy this relationship by assuming

J1 cosw = a - ~j3Sin3~ , J1 sin w = - ~j3 COS3~ ,

or

cos (w + 3~)
a=J1 ,

cos 3~
(A.13.1O)

Formula (A.13.7) now takes the form

A J1 { A J3 [( A) 2 2 A 2]}Dev P = cos 3~ cos (w+ 3~) Dev Q - r sin w Dev Q - 3Ef ,

(A.13.1l)

where the auxiliary angle w can be expressed in terms of the principal value
of Dev P. Following eq. (A.11.16) we present them in the form

27 .
1/1 = J3 smx,

27 . ( 41T)
1/3 = J3 sin X + 3

27 . ( 21T)}1/2 = J3 sm X + 3 '

(Ixl < i)
(A.13.12)

Using eq. (A.3.1l) we can write the equality relating the principal values
of tensor Dev P and Dev Q as follows

v = c'::31J [cos (w+31J)" - ~ sinw('" - ~r2)] .
Replacing 1/ and x by means of eqs. (A.13.12), (A.11.16) and taking into
account eq. (A.13.9) we obt ain

sin X =~ [cos (w + 3~) sin ~ - sin w (2sin2 ~ - 1)]
cos3'f/

= cos w sin ~+ sin ~/. (cos 2~ - sin 3~ sin ~) = cosw sin ~+sinw cos~.
cos3 'f/
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Hence the value of w is given by the equality

sinx=sin(w + '¢), w =X- '¢· (A.13.I3)

For w = 0, X = '¢ the ratio of t he principal values of deviators of tensors
P and Q are equal to each ot her

V i V2 V 3 T
- =- = - =- = /1
X l X2 X 3 r

(A.13.I4)

and such tensors are called similar. This gives grounds to refer to w as the
angle of similar ity of t he deviators. The coaxial tensors are similar at w = °
and the degree of their "dissimilarity" is determined by the value of w.

Hence formu la (A.13.6) relating two coaxial t ensors is reduc ed to the
form

P= u, (Q) E+ co:3,¢ { cos (w + 3'¢) Dev Q-

-;: 'inw[(DeVQ) ' - ~Er']} (A 13 15)

Three values are seen when prescribing tensor P, namely moduli k and
/1 given by formulae (A.13.5) and (A.13.9) and the angle of similarity of
deviators w. They should be considered as being functions of three invariant

characteristics of tensor Q, which are t he first invari ant t, (Q) as well as

r and '¢ obt ained in te rms of the second and third invariants of Dev Qby
means of eqs. (A. ll. 14) and (A.I Ll5) .

It is evident that und er permutation of P and Qit is necessary to replace
r and '¢ by T and X respectively and k and /1 by

/2 (DevQ)

h (Dev p)
1

/1
(A.13.I 6)

respectively. This solves t he problem of inversion of relation (A.13.I 5)

V.V. Novozhilov suggested to reduce the initial relationship (A.12.4) be
tween two coaxial tensors to the form (A.13.I5) which allows expressing
t he init ial coefficients A, B , C via the values which can be interpreted in
te rms of t he mechanics of solids. The solution of the inverse problem t hen
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becomes transparently simple. Of course, one can suggest a direct solution ,
to this end it is sufficient to express tensor Q in terms of tensor P

(A.13.17)

subst itute expression (A.12.4) for Pand replace Q3,Q4 in terms of E,Q,Q2
with the help of the Cayley-Hamilton theor em. We arrive at three linear
equations enabling expression of the unknowns AI ,B1 , C1 via A, B , C and

the principal invariants t, (Q) . The relationships turn out to be cumber-

some and they can be simplified if one ext racts the spherical part from P,
presents Dev P in the form of eq. (A.13.7) and seeks the solution of the
inverse problem in the following form

Dev Q = 0:1Dev P+ ,61 [(Dev P) 2 + ~EI2 (Dev P)]. (A.13.18)

Here by eqs. (A.13.1) and (A.13.5)

i, (Q) = 3A 1 + B1h (p) + C1 DIf (P) - 212 (Dev P)], }
0:1 = B1+ ~C1h (P) , ,61 = C1.

(A.13.19)

In order to obt ain 0: and ,6 we subst itute expression (A.13.7) into the right
hand side of eq. (A.13.18). Using the Cayley-Hamilton theorem yields the
following result

Dev Q = 0:1 { 0: Dev Q+ ,6 [ (Dev Qf + ~EI2(Dev Q)] } +

,61 { 0:2 [(DevQf + ~Eh (Dev Q)] - ~0:,6DevQI2 (DevQ) +

,62 [Dev Qh (Dev Q) + ~12(Dev Q) (Dev Q)2 + ~Eli (Dev Q)] } +

,61E [~I2 (Dev P) - ~0:2 t, (Dev Q) + 20:,613 (Dev Q) + ~ ,62Ii (Dev Q) ]

Noticing that

and using the condition of vanishing h (Dev Q) we arrive at the relation

ship

12 (Dev P) = 0:212 (Dev Q) - 30:,6h (Dev Q) - ~,62Ii (Dev Q) ,

(A.13.20)
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presenting another form of the relationship between T and r . For deter
mining 0 1 and (31 we obt ain two equat ions

0 10 + (31 [- ~0(312 (Dev Q) + (32 !J (Dev Q)] = 1,

01(3+(31 [02+~(32h(DevQ)] =0,

from which we have

0 1 = ~ [0
2

+ ~ (32h (Dev Q)] , (31 = - ~ , }

H = 0 3 + h (D ev Q) 0(32 - !J (Dev Q) (32 .

A.14 Linear relationship between tensors

In t his case the relations become very simple. We have

so that

It (p) = 3A + BIt (Q) , Dev P = B Dev Q

and

We obtain

(A.13.21)

(A.14 .1)

(A.14.2)

(A.14.3)

or under denotation (A.13.5) and (A.13.9)

(A.14.4)

Referr ing to eq. (A.11.6) it is st ra ightforward to obt ain the relationship

(A.14.5)



Appendix B
Main operations of tensor analysis

B.l Nabla-operator

Given a scalar field tp ( Xl , X 2, X3 ) , one can define a vector grad ip, referred to
as the gradient, whose proj ections on th e axes of an orthogonal Car tesian
coordin at e system are equal to the partial derivatives of scalar ip with
respect to x;

d
otp.

gra tp = ~lso
UX s

(BoLl)

The scalar product of grad sp and dr describing th e mutual position of two
infinitely close points M and M' with the corresponding position radii is
determined by the following scalar

d d otp.. d otp d dgra sp 0 r = ~ls o l k Xk =~ X s = sp,
ox; ox;

(BoL2)

which proves that grad ip is a vector , see Section A.L
The operation of calculat ing gradient can be written with th e help of th e

symbolic vector which is th e Hamilton nabla-operator

so th at

n • 0
v = ls~ ,ox;

grad o = \7'Po

(B.L3)
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The projections of the nabla-operator which are the differentiation opera
tors a / axs are subj ected to the law of transformation of vector projections.
Indeed, according to formulae (A.1.6) in the case of rot ation of the coordi
nate system we have

aep aep ax~ aep
-=--= CXk-
axs ax~ axs s ax~ ,

a a-a = cxk s -a ,.
X s xk

The well-known rule of differentiation of the product also holds for the
nabla-operator

\lep'IjJ = 'IjJ\lep+ ep\l'IjJ.

B.2 Differential operations on a vector field

(B.I.4)

It is known (see Section A.6) th at the operations on two vectors reduce to
the scalar invariant a . b , vector a x b and dyadic aboHence the simplest
differential operation in the vector field is the scalar product of the nabla
operator and a vector

" . a . Ba, div . a = Is-a . aklk = -a = Iva.
Xs Xs

This scalar is termed the divergence of the vector.
The next step is forming the vector

" . 0 . oak.
v X a = Is-a X aklk = ersk~lr = rota,

Xs u Xs

referred to as the rotor (or curl) of the vector.
Finally, forming a dyadic leads to the tensor of second rank

" . a . . . oak dva = ls-lkak = l slk- = gra a
Bx; oX s

which is the gradient of the vector . The transposed tensor

has the following matrix of components

aal oal oa l

aXI OX2 aX3
oa2 oa2 oa2

OXI aX2 OX3
oa3 oa3 oa 3

OXI OX2 OX3

(B.2 .1)

(B .2.2)

(B.2 .3)

(B.2.4 )

(B.2.5)
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Postmultiplying this tensor by vector dr leads to vector da

(
'1"7 ) * d .. oak . d . oak d . d dv a . r=lk1s~ 'lq Xq = lk~ Xs=lk ak= a.

ox; ox;

Based upon this equality it is natural to refer to tensor (\7a)* as the deriva
tive of vector a with respect to the position vector dr and to adopt the
notation

(\7a)* = da.
dr

(B.2.6)

Extracting the symmetric part of tensor (\7a)* we obt ain the tensor

1 [ r ] 1. . (oak oas)- (\7a +\7a =defa=-21k1s ~+~ ,
2 ox; UXk

(B.2.7)

called the deformation of vector a . By eq. (A.4.9) vector w accompanying
tensor (\7a)* is given by the equality

1 oat . 1. . oat 1 . 0 . 1 '1"7 1
w = - erst~lr = -21s x 1t~ = -ls~ X 1tat = -2 v x a = -2 rota.

2 ox; ox; 2 ox;
(B.2.8)

Denoting the skew-symmetric part of (\7a)* byO we have

(\7a)* = def a + 0 , \7a = def a - 0 , (\7a)* = \7a + 20,

where

Then we obtain

(B.2.9)

(B.2.1O)

da = (\7a)* . dr = dr· \7a = def a · dr + 0 · dr = def a · dr + w x dr.
(B.2.11)

Application of the nabla-operator to the composit ion of two vectors is
demonstrated in the following examples:

1. Gradient of the scalar product

'1"7 b . 0 b . oak b . Obk b" oak . . Obk
v a =ls~ak k = ls~ k+ak1s~ = ' lk 1s~ + a ' lk 1s~

ox; U X s ox ; U X S ox;
= b · (\7a)* + a · (\7b)* = (\7a) . b + (\7b) . a . (B.2.12)

This rule of differentiation is quite analogous to th at in eq. (B.1.4). It can
be written in another form by introducing the vector called the derivative
of b with respect to direction a

a . \7b = a · [(\7b )* - 20] = a . (\7b)* + 2w x a = a . (\7b )* - a x rot b ,
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so that

a . (V'b)* = a . V'b + a x rot b,

grad a . b = a . V'b + b . V'a + a x rot b + x b rot a .

2. Divergence of the vector product

diva x b = V' . (a x b) = is . (iq ~~: x b) + is . (a x iq ~~: )

(
. . 8aq) b (.. 8bq) b b= Is Xl q 8x s . - a . Is Xl q 8xs = .rot a - a rot .

3. Roto r of the vector product

rota x b = V'x (a x b) = [is x (iq x ir)] 88 aqbr
Xs

(i s: • s: ) (8aqb Bb; )= l qu r s - l r u sq 8x
s

r + aq 8x
s

'

which yields

rot a x b = b . V'a + a div b - a . V'b + b diva.

B.3 Differential operations on tensors

(B.2.13)

(B.2.14)

(B.2.15)

The content of Section B.2 is generalised to the tensor fields of any rank.
The rank of tensor decreases by one und er premultiplying it by the nabla
operator, i.e. und er const ruct ing divergence of the tensor

(B.3.1)

The vecto r product results in a tensor of the same rank called the rotor of
the tensor

(B.3.2)

Finally the gradient of a tensor is as follows

'("'7 (n)QA _ .. ....!!..- _ d (n ) QA
v - I s 11s 2 . . . ISn 8 QS1S2... s., - gra .

Xs

In particular , the divergence of a tensor of second rank is a vector

(B.3.3)
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and for the skew-symmetric tensor we have

Hence ext ract ing the skew-symmetric part we obtain

divQ = divS + rotw.

(B.3A)

(B.3.5)

The divergence of a dyadic is expressed in terms of the differential opera
tions on its vectors

divab = b diva + a . Vb, (B.3.6)

The rotor of a tensor of second rank is again a tensor of second rank

Q' n Q' • . . aqrt . . aqrt
rot = v x = Is X I r·lt~ = esrq l q lt~.

UX s UX s
(B.3.7)

The extended matrix of its components is given in table (A.5.9) in which
as needs to be replaced by a/ax s Referring to eq. (AA .9) we obt ain the
tr ace of this tensor

(B.3.8)

where w denotes the vector accompanying tensor Q.
In the case of a skew-symmet ric tensor we have

A .• aWrt awm • • ( J: J: J: J: ) aw m ••
rotH = esrq lq lt~ = esrqetrm~Iq lt = UstUqrn - Usm Uq t ~Iqlt

UX s U X s U X s

.. aWq • • aws (n)* ' di ( )= Iqlt-;:;-- - Iqlq-;:;-- = vW - E IVW . B.3.9
U X s U X s

The formula for the divergence of vector Q . a is repeatedly used in the
mechanics of solids

di Q' . a . aqst aat di Q' Q' ( )*
IV . a = Is~' qrtl rat = ~at + qst~ = a · IV + .. \la ,

U X s U X s U X s

(B.3.1O)

since, by eqs. (A.6.7) and (B.2A),

(B.3.11)
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B.4 Double differentiation

Given vector \7'P, one can introduce the symmet ric tensor of second rank

(BA.l)

It s trace \7 . \7'P = \72 'P is the Laplace operator of scalar 'P

(BA.2)

(BA.3)

The vector accompanying the symmetric tensor is equal to zero. Applyin g
this prop erty to tensor \7\7'P results in the well-known prop erty of the
grad ient of a scalar

\7 x \7'P = rot grad 'P = O.

A tensor of third rank \7\7a admits th e following contract ions reducing the
rank by two:

i) vectorial Laplace operator

T; T; T;2 di d . ()2akv . v a = v a = IV gra a = Ik .
ax sax s '

ii) vectori al gradient of the divergence of a

T;T; d di • a2
ak

v v . a = gra IV a = Isa a ;
X s X k

iii) vectori al rotor of the rotor of a

(BAA)

T; (T; ) • a (. a . ) (. 8 .. 8 ) a
2aq

v X v x a = Is-a
X It-

a
x Iqaq = It sq - Iq st a a '

X s Xt X s x ;

so that

rot rot a = grad diva - \72a. (B A .5)

(B A.6)

The tensors of second rank are obtained by means of the rotor of the
gradient of vector a

d
T; T; a. . . aaq .. a2aq

rot gra a = v x v a =-a Is X Itlq-
a

= estr lrlqa a
X s X t X s X t

.. a2 aq • • a2 aq 0
= etsrlr lqa a = - est1'I1'lqa a =

Xt X s X s Xt

and th e gradient of the rotor of a

ad T; (T; ) •• • a
2
at . . a

2
at

gr rota = v v x a = Isl1' X Ita a = e1'tqlSlqa a .
X s X r X s X r

(BA.7)
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The trace of this tensor is equal to zero

Let us proceed to the tensor of fourth rank '1'1Q

Among all possible contractions with respect to two indices we mention the
following one

(B.4.9)

The contractions with respect to one index yields tensors of second rank

'1 . '1Q = div grad Q = '12Q, '1'1 .Q= grad div Q, '1'1trQ. (B.4.10)

One can also const ruct tensors of third rank

'1 x ('1Q) = rot grad Q,

and the tensor of second rank

'1 ('1 x Q) = grad rot Q (B.4.11 )

'1 x ('1 x Q) = rotrotQ = '1'1 .Q- '12Q. (B.4.12)

Of fundamental importance in the mechanics of solids is the tensor of
second rank which is the rotor of the tr ansposed rotor of the tensor of
second rank

(B.4.13)

This tensor is symmetric if Q is a symmetric tensor. Indeed,

This tensor is denoted as incQ (denoting incompatibility, see Subsection
2.2.1)

inc Q= rot (rot Q) * = '1 x ('1 x Q)* (B.4.14)



932 Appendix B. Main operations of tensor analysis

82q33
8x 18x2'
82

q ll

8X28X3'
82q22

8X38xl '

(B.4.15)

(B.4.16)

Under contract ion of the pair of indices tensors of third rank (B.4.11) pro
duce the following vectors

rot grad tr Q= 0,
.' ( , ) . 82

qrq
rot dlV Q = \7 x \7. Q = esqt1t 8x~8xr '

. ' ( , ) . 8 qrt
div rot Q = \7. \7 x Q = esrq1t 8x

s
8x

q
= O.

Some oth er differential operations on th e products of vector and scalar
are as follows

\7'l/Ja = (\7'l/J) a + 'l/J \7a, (B.4.17)

div e a = 'l/J diva + a . div 'l/J , rot 'l/Ja = 'l/J rot a + grad'l/J x a , (B.4.18)

(B.4.19)

The Laplace operator of the product of two scalars is given by the relation
ship

(B.4.20)

B.5 Transformation of a volume integral into a
surface integral

The Gauss-Ostrogradsky formula

111 ;~ dr = 11 ns~do
v 0

(B.5.1)
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is assumed to be known. Here dr and do denote respectively the element of
volume V and surface 0 bounding this volume and n.; is the proj ection of
the unit vector of the outward normal n to thi s surface on axis x s . Function
'P is continuous together with its partial derivatives of the first order in the
closed volume V + O. The simplest generalisat ion of formula (B.5.1) is the
following equality

(B.5.2)

relating th e integral of the divergence over t he closed volume with the
vector flux through the surface bounding this volume.

The rule of replacing the nabla-operator in the volume integral by vector
n in the surface integral can be generalised to more complex relationships
since the Gauss-Ostrogradsky formula (B.5.1) is eventually used. For ex
ample

111v x edr = 111 rotadT = 11 n x ado,
v v 0

since

(B.5.3)

Other examples which are straight forward to prove are

111 ~adT= 11 nado, 111 (~a)*dT= 11 (na)*do= 11ando.
v 0 v 0 0

(B.5.4)

Applying this to the tensor of second rank yields

111~ 'OdT= ll:> jjj~ XOdT=ll:»: (B.5.5)
v 0 v 0

Another example is the transformat ion

jj rx(n .0) do = - jj (n. 0) xrdo
o 0

= - 111 (~ .0) x xdr - 111 (is' 0) x ::sdr
v v

=lllr x~ 'OdT+ 111 is x (is·O)dT.
v v
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However

where w denotes the vector accompanying tensor Q. Hence

11rx (n. Q) do = 111 (r x divQ - 2W) dr.

o v

B.6 Stokes's transformation

(B.5.6)

It is known that the linear integral (circulation) of the vector along arc C

M1a ·dr

M o

(B.6.1)

does not depend upon the choice of C and is determined only by the coor
dinates of the initial Mo and final M points provided that

rot a = 0, a = grad <p = 'V<p.

Then

M M M1a · dr = 1'Vsp . dr =1dsp = <P M - <pMo '

M o M o M o

The analogous equality for the linear integral of the tensor

M1Q.dr = aM - eu,

Mo

holds if

Q= ~; = ('Vat , Q* = 'Va, rot Q* = o.

Indeed , in this case

M M M

JQ.dr = J~; .dr = Jda = aM - a M o·

M o M o M o

(B.6.2)

(B.6.3)

(B.6.4)

(B.6.5)
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By analogy one can prove th at the condition for the integral

M MJdr · Q= JQ* .dr

M o M o

to be independent of the integration path is given by the equality

rotQ = 0, Q= Va.

(B.6.6)

(B.6.7)

According to Stokes's theorem

fa . dr = JJn · rot ado,
s

i.e. the circulation of the vector along the closed contour is equal to the
flux of the rotor of this vector through any arbit rary surface supported on
this contour. The surface within this volume can be supported by a closed
contour which is reduced to a point by means of a continuous transforma
tion , the surface bound ary not being inter sected. Any closed contour in a
simply-connected volume satisfies thi s condit ion. However in the double
connected volume, for instance in the torus or in the space between two
coaxial cylinders there exist contours (let us denote them K - contours)
which are reduced to each other by a cont inuous tr ansformation and not
reduced to a point. These are the axial line in t he torus, a circle lying in the
plane perpendicular to the cylinder axis and embracing the inner cylinder.
A double-connected domain can be transformed into a simply-connected
domain by means of a barri er.

Let the integrability condition (B.6.2) be satisfied. Since Stokes's theorem
can not be applied to K - contour the circulation along this contour can
differ from zero and in this case scalar sp is a multiple-valued function of
the coordinates

fa . dr = f dip = X, (B.6.8)

the cyclic const ant X being the same for all K -contours. The proof consists
of considering the integral over the closed contour N 1M 1M 2N 2M2 M 1N3 Nl ,
Fig. B.I , which is reduced to a point by a continuous transformation.
Stokes's theorem is applicable and gives

u , M 2 M l s.Ja·dr+ Ja ·dr+ f a ·dr+ Ja ·dr+ f a ·dr+ Ja·dr=O,
N j u , K 2 M 2 K 1 u,

and since
M2 MlJa· dr +Ja · dr = 0,
Al l M 2

N j u,

Ja·dr+ Ja ·dr=O,
u, n,
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FIGURE B.!.

we have

fa .dr+ fa .dr= 0,

tc, K 2

fa .dr= fa .dr,
tc, K 2

which is required.
The result is valid for integrals of the type (B.6.4). If the integrability

condit ion (B.6.5) holds we obtain

fQ ·dr=fda=c
K K

(B.6.9)

where c is a constant cyclic vector which is the same for all K -contours.



Appendix C
Orthogonal curvilinear coordinates

C.l Definitions

Three numb ers prescribing the position of a point in t he space and denoted
by ql , q2, q3 are referred to as its curvilinear coordinates. The Cartes ian
coordinates are related to the curvilinear ones by three equalit ies

or in the vector form

( 1 2 3)Xs = Xs q , q , q (C.1.I)

(C.1.2)

where R denotes the position vector. In the domain of definition , the func
t ions in eq. (C.1.I) are assumed to be conti nuous, single-valued and having
continuous partial derivatives up to and including t he t hird order. They
should be uniquely resolved for q1, q2, q3 which is equivalent to the require
ment of nonvanishing Jacobian

J = I~:~I. (C.1.3)

The coordinate numb ering is assumed to be chosen such th at the Jacobian
is positi ve.

Transformation (C. 1.I ) determin es three families of surface qr = q(j and
the coordina te lines are the curves of intersection of th e coordinate surfaces.
Along the coordinate line denoted as [qS] the coordinate q" varies. The
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coordinate lines of the same family do not intersect if condition (C.l.3)
holds.

Well-known examples are the cylindrical and spherical coordinates. For
cylindrical coordinates, ql = r,q2 = ip, q3 = Z are the radius, azimuthal
angle and height respectively. Formulae (C.l.I) take the form

Xl = r cosep, x2 = r sinep, X3 = Z.

The domain of definition is given by the inequalities

0 < r < 00, O:S ep :S 27r , - 00 < Z < 00.

(C.l.4)

The coordinate surfaces are the circular cylinders r = "o with axis OX3,
half-planes ep = epo passing through thi s axis and planes z = Zo perpen
dicular to this axis. The coordinat e lines are st raight lines [z] parallel to
axis OX3, radially directed half-lines [r] and circles rep]. The Jacobian J = r
vanishes on axis OX3 where the planes sp = epo are intersecting. This axis
is not included in the domain of definition of this coordinate system.

For spherical coordinates , ql = R,q2 = 13, q3 = A are respectively the
radius, the angle measured along the meridian from the north pole and the
longitude. We have

Xl = R sin 13 cos A, X2 = Rsin 13sinA, X3 = R cos 13.

The domain of the definition is given by the inequalities

0 < R < 00, 0 < 13 < 7r, O:S A :::; 27r .

(C.l.5)

The coordinat e surfaces are spheres R = Ro with centre at the coordinate
origin 0 , circular cones 13 = 130 passing through axis OX3 and having the
vertex at the origin 0 and half-planes A = Ao. The coordinat e lines are the
parallel circles [AJ, the half-lines [R] from cent re 0 and meridians [13] . The
Jacobian J = R2 sin 13 vanishes at centre 0 and at the poles of the spheres.

C.2 Square of a linear element

We introduce into considerat ion the triple of vectors

(C.2.I)

having the directions of the tangents to the coordinate lines [qkJ . In the
vicinity of point M (ql ,q2,q3) they define an infinitesimally small vector

(C.2.2)
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The square of its length is the square of the linear element expressed in
terms of the curvilinear coordinates and is given by the equality

(C.2.3)

The following six values

(C.2.4)

(C.2.6)

(C.2.7)

determine the metric of the coordinate system under consideration. They
are referred to as the covariant components of the metric tensor, see Section
E.1.

The second derivatives of the position vector R are denoted by

82R

R s l = 8q S8ql = R i s ' (C.2.5)

In what follows we need the scalar products R si' Rk . They are expressed in
terms of the derivatives of the covariant components of the metric tensor.
We have

8g s1 8
8

qk
= 8

qk
R , . R I = R sk . R I + R.• . Rtk

and two similar equations obtained from the latter by the circular permu
tation of indices. We arrive at the relationship

8gst
8

qk
= Rsk . R, + R, . Rtk'

8gtk
~ = R is . Rk + R, . R ks,
uqS
8gks
8

q
t = R k l . R, + R k . R st .

The sought expression for R st . R k is obtained by subtracting the first
equation from the sum of the second and third

1 (89Sk 8gkt 8gst) [ ] [R st . Rk ="2 8ql + 8q S - 8qk = st, k = ts, k] .

They are referred to as Christoffel's symbols of the first kind or Christoffel's
square brackets .

C.3 Orthogonal curvilinear coordinate system,
base vectors

For the orthogonal system of curvilinear coordinates the followingequalities

s i= k,
s=k

(C.3.1)
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hold. Here H; is referred to as Lame's coefficients. They are equal to the
magnitudes of vectors R,

(
8Xl)2+ ( 8X2)2+ ( 8X3)2
8qS 8qS 8qS

(C.3.2)

(C.3.3)

The orthogonal trihedron of the unit vectors of the tangents to the co
ordinate lines [qS] in the direction of increasing qS

e S = R s
, e s ' ek = 8sk (~J

Hs

forms the vector basis in the considered system of orthogonal curvilinear
coordinates, symbol ~s implying no summation over s. Vectors e, also have
the directions of the normals to the coordinate surfaces qo.

Vectors and tensors are given by their representations in vector basis es

(C.3.4)

However, in contrast to base vectors ik of the Cartesian orthogonal system
vectors es do not conserve fixed directions. For instance, components as of
a constant vector a are changing from point to point and , on the contrary,
as = const does not means that a is a constant vector.

A consequence of eq. (C.3.3) is the following formulae

(C.3.5)

where the last formula is proved in the following way

Byeqs. (C.2.3) and (C.3.I) the square of the linear element in the or
thogonal curvilinear coordinates is given by the expression

(C.3.6)

Carrying out the operations of vector and tensor analysis in curvilinear
coordinates is completely related to the values of gsk and in the case of the
orthogonal curvilinear coordinates they rely on Lame's coefficients Hi , In
order to calculate the latter one can avoid using formulae (C.l.I). One can
consider the element dkS of the arc of the coordinate line [qk]

(C.3.7)

In the following, symbol ~k is omitted when the index appears on both the
left and right hand sides of the formula.
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Similar to Section B.l the nabla-operator V' is introduced with the help
of the definition of the gradient of a scalar field

dsp = 88cp dq" = dR . V'cp = R sdqs . V'cp = Hie; . grad ipdq",
qS

so that by eq. (C.3.4)

1 8cp
e s ' grad e = -H -8'

qs
s

(C.3.8)

and the nabla-operator is defined by the equality

(C.3.9)

The element of the volume in the orthogonal curvilinear coordinates is
given by the evident relation

dr = R1dql . (R2dq2 X R 3dq3) = H1H2H3el . (e2 x e3) dq1dldq3

= H1H2H3dqldq2dq3

or

where J is the Jacobian (C.1.3).

C.4 Differentiation of base vectors

Performing the operations of vector and tensor analysis in curvilinear co
ordinates is made difficult by the fact that the vector basis es has changing
direction . Therefore, it is necessary to derive the equat ions for the deriva
t ives of these vectors with respect to qk.

Presenting formulae (C.3.1) in t he form

we have by eq. (C.2.7)

8Hk 8Hk 8Hs
R st . R k = H; 8qt 8sk + H, 8qS 8kt - H, 8qk 8st.

Taking into account th at the left hand side of this relationship can be set
in the form
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we arrive at the equality

The right hand side is equal to zero for s = k and changes sign under
permutat ion of s and k. It is not surprising since

(C.4.2)

Hence, the matrix of scalar products

(C.4.3)

(for fixed t) is skew-symmetric and the following three numbers

t 1 Be, 1 ( on, OHt) oHt
° r= 2 erskek' oqt = 2 Hs oqSerst + H koqk erkt = Hmoqm ermt

(C.4.4)

(summation over m) are sufficient to prescribe matrix (C.4.3). Introducing
the vectors

we obtain the expression for vector 6accompanying matrix (C.4.3)

(C.4.5)

Using eqs. (C.4.4) and (A.4.6) we can write the matrix components in t he
following form

oes t
oqt . e k = ersk On

Be, t t t
oqt = ersk Or e k = er X es 0r=O x es ·

(C.4.6)

(C.4.7)

(C.4.S)

These are the sought formulae for differentiating base vectors. By means
of eq. (C.4.5) they can be written in another form

Be; eu,
oqt = es x (e, x grad Hd = et H soqS - Ost gradHt .

Formulae (C.4.7) admits a kinematic interpretation known as "the method
of moving trihedron" . Let vertex M of the trihedron of base vectors es
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move with unit speed v = 1 along the coordinat e line [qm] so that dms =
Hmdqm = dt (here t denotes time). In any instantaneous position of the
trihedron , vectors es must have the direction of the tangents to the co
ordinate lines at point M. Hence the motion of the point is accompanied
by rotation of the trihedron about the coordinate line. Let us denote the
angular velocity vector of this rotation by ~. The velocity of the ends of
the unit vectors es about the trihedron vertex are equal to

des 8es m
-;It = H

m8q
m = w x es,

and comparison with eq. (C.4 .7) yields

m
m 0
W=- .

Hm
(C.4 .9)

(C.5.2)

Vector ~ can often be found withou t calculat ion by using this kinematic
interpretation .

C.5 Differential operations in orthogonal
curvilinear coordinates

The calculations are based on the definition of the nabla-operator (C.3.9)
and formula (C.4.8).

1. Gradient of a vector. We have

et 8 Ba, as t
V'a = H

t
8qt ases = etes H

t
8qt + et H

t
0 xes

8as as t (8as ak t )= e.e, H
t8 qt + H

t
Or Crsket ek = ete s H

t8qt + H
t

Or Crks .

By eq. (C.4.4)

t 8M 8M
Or Crks = H 8 CrmtCrks = H 8 (OmkOts - OmsOtk)

m qm m qm
8Ht 8Ht

= H 8 kOts - H 8 s Otk (~kst) '
k q s q

and th e expression for V'a reduces to the form

(
Ba; at 8Ht ak 8Ht)

V'a = etes Ht8qt - HtHs 8qs + Ots HtHk 8qk ' (C.5.1)

2. Divergence of a vector. Using eq. (C.3.10) we write down the expression

8ln JQ 1 8;g 8lnH1 8lnH2 8lnH3--=---=--+--+--
8qS ;g 8qS 8qS 8qS 8qs'
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The trace of \7a is as follows

and finally

3. Laplace operator of a scalar. If in particular

(C.5.3)

a = grad e,

then

(C.5.4)

4. Rotor of a vector. In eq. (C.5.I) the dyadics etes should be replaced
by the vector products

Then we arrive at the expression

or

(C.5.6)

The projections of this vector are equal to

(C.5.7)
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5. Tensor def a . This is defined by formul a (B.2.7). Referring to eq.
(C.5.I) we obtain

6. Divergence of a tensor of second rank.

• A A er a
div T = V' . T = H

r
. oqrtsteset

1 otst tst [ (1') oet ]
= H

s
8qS et + H

r
er · 0 x es et + 81's 8qr .

By eq. (C.4.5)

er · (0 x es) = er · [(gradHr x er) x es]

_ oHr 8 oHr _ oHr oHs
- HsoqS - rs H1'oqr - HsoqS - HsoqS'

so that
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This allows the following formula for the Laplace operator to be obt ained

\J. \J'I/J = \J2'I/J = ~ ( cj2'I/J _ 20lnHs 0'I/J) _l_oHs 0'I/J
H'; oqS2 oqS oqS + H';H, oqr oqr '

(C.5.12)

which can be easily transformed into th at in eq. (C.5.5).

C.6 Lame's dependences

Using formulae (C.4.7) we can present the relationship

02es 02es
--- ---
oqroqt oqtoqr

(C.6.1)

in the following form

t r
a (t ) 00 t ( r ) 00 r (t )oqr 0 xes = oqr X es+ 0 x 0 xes = oqt X es+ 0 x 0 xes

or

(

t r )00 00 t r
oqr - oqt + 0 X 0 x es = 0 (8 = 1,2 ,3) .

The obt ained differential relationship between vectors ~ and :;

t r
00 00 t r- - -+ 0 x 0= 0 (C.6.2)
oqr oqt

are transformed into equalit ies relating Lame's coefficients. To this aim, we
calculate the proj ections of the vectors in eq. (C.6.2) onto the axes es of
the t rihedron. By eq. (C.4.7) we have

Further,
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and substitution into eq. (C.6.3) yields the equality

8 1 8Ht 8 1 8H,. 8Ht 8Hr
etsm-8r H 8 m - ersm-8t H 8 m + H 8 m H 8 s ertm +q m q q m q mq sq

(grad H,. x grad Ht} . etOrs = O. (C.6.4)

Clearly, this equality is satisfied for t = r , Hence it is necessary to consider
the cases i) s -I t -I r and ii) s = t -I r ,

i) etsm = etsn e"sm = erst, ertm = erts, O,.s = O. We obt ain

~_1 8Ht +~~ 8H,. + _1_ 8Hr 8Ht = 0
2 ' (C.6.5)8qr H,. 8q" 8qt HI 8qt Hs 8qS 8qS

and since it is symmetric in r and t, and s -I t -I r we have only three
different relationships

~_1 8H2 +~~ 8H1 + _1_8H18H2 _ 0
8q1 H1 8q1 8q2 H2 8q2 H1 8q3 8q3 - ,

~_1 8H3 +~_1 8H2 + _1_8H2 8l/3 = 0
8q2 H

2
8q2 8q3 H

3
8q3 Hr 8q1 8q1 ' (C.6.6)

~_1 8H1 +~~ 8H3 + _1 8H38H1 = 0
8q3 H3 8q3 8q1 H, 8q1 Hi 8q2 8q2 .

ii) In the case s = t -I r

88
2
H,. = _1_ 8Hm 8H,. +~ 8Htr 88Ht, (C.6.7)

qt8qm H11I 8qt 8qm tt, 8q «:
where m, t ,r are each different . We obtain another three relationships

82 H1 1 8H38H1 1 8H18H2

8q28q3 = H3 8q2 8q3 + H2 8q2 8q3 '

fPH 2 1 8H1 8H 2 18Hz 8H3--=-----+-----, (C.6.8)
8q38q1 H1 8q3 8q1 H3 8q3 8q1
82 H3 1 8H28H3 1 8H;38H1-- = ----- + -----

8q18q2 H2 8q1 8q2 H1 8q1 8q2 '

Six Lame's dependences (C.6.6), (C.6.8) hold identically if Lame's co
efficients are obt ained by means of the point transformation (C.l.l) and
formulae (C.3.2). Inversely, when these dependences are satisfied then three
prescribed functions H (q1 , qZ ,q3) are Lame's coefficients for some trans
formation det ermined by the system of differential equat ions (C.3.2) and
Lame's dependences form the integrability condit ion for this system.

C.7 Cylindrical coordinates

The base vectors e1 = e,., e2 = ecp, e3 = k have the directions of the radius
of circles, the tangents to circles and the axis of the concent ric cylinders
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respectively. Lame's coefficients are equal to

(C.S.I)

Vectors &,b are equal to zero because of the translatory motion of the
vertex of the basis trihedron along the coordinate lines [z] , [r] . The angular
velocity of the trihedron under the motion of its vertex along circle [ep] is
given by the vector

!f,= ~k.
r

Hence

(C.7.2)

and the nonvanishing derivatives are as follows

(C.7.3)

By definition (C.3.9) for the nabla-operator we have

(C.7.4)

and

Byeq. (C.5.5) the Laplace operator in cylindrical coordinates is written
in the form

(C.7.6)

C.8 Spherical coordinates

The base vectors el = en, e2 = ejJ,e3 = e,\ = en x ejJ have the directions
of the radius, the tangent to the meridian (southern direction) and per
pendicular to the meridional plane (eastern direction) respectively. Lame's
coefficients are determined byeq. (C.3.7)

(C.8.I)

FUrther ~= 0 and the angular velocities of the trihedron under the motion
of its vertex along the meridian ['19] and the parallel circle [Aj are given
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,'} 1 A 1
respectively by vectors W= ReA and W= R sin 19 k where k denotes the

unit vector directed along axis O X 3 to the north pole.
Hence

(C.8.2)

and by derivation formulae (CA.7) we have

oes = 0
oR '

so that

oen
019 = e,'} ,

oen .
0>" = ex sin 19,

oe
A

}019 = 0,

~~ = - (en sin 19 + e,') cos 19) .

(C.8A)

Th e Laplace operator in spherical coordinates is written in the form

(C.8.5)

where the new variabl e

J-L = cos 19

has been introduced.

c.g Bodies of revolution

Formulae (C.l.I) expressing Cartesian coordinates in terms of the curvi
linear coordinates qI , q2, q3 = sp are given in the form

where sp is the azimuthal angle of the cylindrical coordinate system. The
coordinate surface q6 and q5 are the surfaces of revolution about axis O X3

whose meridional cross-sect ions (by planes cpO) are the orthogonal families
of the curves

(C.9.2)
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The position vector R = r (qI,qZ , rp) of the point is as follows

R = r (ql, qZ) e, + Z(ql, qZ) k. (C.9.3)

Then we have

or oz
R s = s-:: oqsk (s=1 ,2) , R3 = r (qI,qZ) e'P '

so that

(C.9.4)

(C.9.5)H3 = r,Z (or)Z ( OZ)Z
Hs = oqS + oqS '

and the condition of orthogonality of the family of curves (C.9 ~2)iis written
in the form

(C:9.6)

The unit vectors of the orthogonal trihedron of the t angent s to the co
ordinate lines [q S] are given by

1
es = -HR, (s = 1,2 ) , e3 = e 'P. (C.9.7)

S

(C.9.9)

(C.9.8)

They are relat ed to the unit vectors k , e r of the cylindrical syste m of axes
by the following equa lit ies

1 OZ 1 or 1 or 1 oz }
el = HI oqI k + HI oqI e , = Hz oq2 k - Hz oq2en

1 oz 1 or 1 or 1 oz
ez = Hz oqZk + Hz oqZer = - HI oqIk + HI oqIer ·

The third group of formulae in eq. (C.5.5) t ake the form

oqS 1 Bz Bq" 1 or
7h HZ oqS' a;: HZ oqS.s S

According to eq. (C.4. 5) the vectors b are written as follows

(C.9.1O)

(s t ~ 1,2) , }

(C.9 .11)
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Lame's dependences are simplified since two of them are ident ically sat
isfied whereas the remaining four are written as follows

(C.9.I2)

C.lO Degenerated elliptic coordinates

One of the families of coordinate surfaces are the ellipsoids of revolution
about axis O X 3. We will separately consider two cases: the first when the
axis of revolution is its smaller axis (oblate ellipsoid, spheroid) and the
second when this axis is the larger.

The cylindrical are related to the curvilinear coordinates as follows

ql = S, q2 = IJ, q3 = 'P .

In the first case

r =a~~, z =aslJ. (C.lO.I )

The coordinate surfaces S = const are the oblate ellipsoids of revolut ion
and IJ = const describe one-sheet hyperboloids of revolution about axis z.
Two mutu ally orthogonal families of curves in the meridional cross-sect ion
'P = const are the ellipses

(C.1O.2)

(C.I0.3)

and confocal hyperbolas

r 2 z2
----- a2=O

1 - 1J2 1J2 .

The "ellipsoid" S = 0 is degenerated into a circular plate of radius a

r=a~, z =O, (C.lO.4)

on the "upper" and "lower" sides of which IJ > 0 and IJ < 0 respect ively.
The "hyperboloid" IJ = 0 presents a part of plane z = 0 outs ide of the

circle of the radius

r=a~, z = O. (C.1O.5)



952 App endix C. Orthogonal curvilinear coordinates

The circle r = a in the plane z = 0 is a locus of the foci of surfaces (C.1O.2)
and (C.10.3r (the so-called focal circle) in which f.J. = 0, 8 = O.

The domain of definition of parameters 8, f.J. for the ellipsoids is given by
the inequalities

o:s: 8 < 00, 1f.J.1 :s: 1,

and for the hyperboloids it is as follows

- 00 < 8 < 00, O:s: f.J. :s: 1.

Lame's coefficients are calculat ed by means of formulae (C .9.5)

such that the Jacobian of the transformation is equal to

(C.1O.6)

(C.1O.7)

(C.1O.8)

and the focal circle is a singular line of the transformation.
The unit vectors of the trihedron of the tangents to the coordinate lines

[q S] or (which is the same in the case of the orthogonal system) the normals
to surfaces qS = const are expressed in terms of the unit vectors of the
cylindric al systems in the following way

Byeq. (C.5.5) the Laplace operator of the scalar is given by

2 1 [a ( 2) a'lj;
\7 'lj; = 2 ( 2 2) -a 1 + 8 -a+a 8 +f.J. 8 8

a 2 a'lj; (82
f.J.2) a

2
'lj;]- 1-f.J. -+ --+-- -aP. ( ) aP. 1 + 82 1 - f.J.2 acp2 .

(C.10 .9)

(C.10 .10)

In th e second case, i.e. in th e case of an oblong ellipsoid we have

r = aJ (1 - f.J.2 ) (82 - 1), z=a8f.J. (C.lO .11)
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and the orthogonal families of curves in the meridional plane sp = const are
the ellipses

r 2 z2__ +_=a2

82 - 1 82

and the confocal two-sheeted hyperboloids

z 2 r 2
- --- _ a2 =0
J.l2 1 - J.l2

(C.1O.I2)

(C.IO.I3)

with the common foci at point s ±a on axis z. The domain of definition for
variables 8 , J.l is

1 < 8 < 00, -1 < J.l < 1. (C.1O.I4)

The "ellipsoid" s = 1 is degenerated into a cut Izl ~ a of axis z whereas
the "hyperboloids" J.l = ±I is degenerated into half-lines a ~ z ~ 00 and
- 00 ~ z ~ -a of thi s axis. Lame's coefficients are equal to

The Laplace operator has the form

2 1 [0 ( 2 ) 01jJ
\7 1jJ = 2 (2 2) -0 8 - 1 -0 +a 8 -J.l 8 S

o 2 01jJ ( 82 J.l2) 021jJ]- I-J.l -+ --+-- -0J.l ( ) 0J.l 82 - 1 1 - J.l2 0<p2 .

C.II Elliptic coordinates (general case)

We consider th e ellipsoid

x2 x2 x2
-1. + 2 + __3 - _ a2 = 0 (Po > 1 > e)
P5 P5 - e2 P5 - 1

and the family of confocal surfaces

2 2 2
Xl +~+~ _a2 = 0
a a - e2 a-I '

(C.1O.I6)

(C.lI .I)

(C.1I.2)

where a is a variable parameter. Considering X l, X 2 , X3 as being prescribed,
let us consider (C.I1.2) as a cubic equation for a

P (a)
Q (a) = f ((J) = 0, (C.I1.3)
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in which

P (a) = xi (a - e2
) (a - 1)+ x~ (a - 1)a + x~ (a - e2

) a - a2f (a) ,
(C.11.4)

f (a) = a (a - e2
) (a - 1). (C.11.5)

For some positive values of a we have the following value of P (a)

P(o) > 0, P(e2 ) < 0, P(l) > 0, P(oo) < 0,

hence the roots of polynomial P (a) lie in the intervals (0,e2 ) , (e2 , 1) and
(1,00) . Let us denote these roots as v2 , J.l2 and p2 respectively

(C.11.6)

This det ermines three families of confocal surfaces of second order , namely
the two-sheeted hyperboloids v = const

x 2 x~ 2
---,,--=-2""7 - -- - a = 0,
e2 - v2 1- v2

the one-sheet hyperboloids

and the ellipsoids

X 21 x 2 x 2
_ + 2 + __3 __ a2 = O.
p2 p2 _ e2 p 2 - 1

The polynomial P (a) can now be set in the form

(C.11.7)

(C.11.8)

(C.11.9)

(C.11.10)

and by means of eqs. (C.11.2) and (C.11.3) we arrive at the basic identity

xI +~ + x~ _ a2 = _ a2 (a - v
2

) (a - J.l2) (a - p2). (C.11.11)
a a - e2 a - 1 f (a)

From this identity one can express xI ,x~, x~ in terms of v,u;p. For example,
multiplying both sides of this identity by a and setting a = °we obtain xI
whereas multiplying by a - e2 and a - 1 and inserting respectively a = e2

and a = 1 we obt ain x~ and x~ . The result is as follows

(C.11.12)
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Thus, for given values of coordinates x l, X2 , X3 of point M one uniquely
determines three coordinate surfaces (C.11.7)-(C.11.9) passing through this
point. Inversely, prescribing u, f-L, p we can determine (up to a sign) the
Cartesian coordinates of points of intersection of these surfaces in each of
eight octants of the coordinate system OXI , X2, X3.

The numbers

ql = p, q2 = u , q3 = v (C.11.l3)

determine the curvilinear system of the elliptic coordinates. The position
of a point of the surface of ellipsoid p = 1 is given by parameters u ;u and
any function on this surface can be expressed in terms of these parameters.
In particular for p = 1

(C.11.l4)

The curves f-L = 1 describe ellipses E with the semi-axes af-L and aJf-L2 - e2

2 2
Xl X2 2

(E) 2 + 2 2 - a = 0, (C.II.15)
f-L f-L- e

lying between (-ae,ae) of axis Xl and ellipse Eo with th e semi-axes a and
aVl- e2

(C.11.l9)

(C.11.l8)

(C.11.l6)

X3P
p2 -1 '

X3 f-L
-1- f-L2'

X3 V
---

1-1/2

vdv

X
2

(Eo) X2 + _2_ - a2 = O.
I 1 - e 2

Hence, the "ellipsoid" p = 1 is an elliptic plate in the plane X3 = 0 bounded
by ellipse Eo.

At f-L = 1 the one-sheet hyperboloid degenerates into a part of plane
X3 = 0 outside of ellipse Eo where

e2xr = a2lv2, e2x~ = a2 (p2 - e2) (e2 - v2) . (C.11.l7)

Ellipse Eo is a line of intersect ion of surfaces p = 1 and f-L = 1. It is the
locus of the foci of the system of coordinate surfaces .

Let us now proceed to calculat ing Lame's coefficients . By eq. (C.11.l2)

dXI dp df-L dv-=-+-+-,
Xl P f-L V

dX2 pdp f-Ldf-L--::,----'---;:- + --::--'---;:-
X2 p2 - e2 I./,2 - e2 e2 - v2 '

dX3 pdp f-Ldf-L vdv
--------

X3 p2 - 1 1 - f-L2 1 - v2 .

This yields the table of derivatives

aXI Xl aX2 X2 P
- -
ap p ap p2 - e2'
aXI Xl aX2 X2f-L
- -
af-L f-L af-L f-L2 - e2 '
aXI Xl aX2 X2V
- -
av v av ('2 - v2 '
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and byeq. (C.2.4) we find

(
8X1) 2 (8X2)2 ( 8X3)2

911 = 9pp = 8p + 8p + 8p

2 [xi x~ x~]
=p p4 + (p2_ e2)2 + (p2_1)2 '

8X1 8X1 8X2 8X2 8X3 8X3
912 = 9pJ.1 = 8p 8f.J, + 8p 8f.J, + 8p 8f.J,

= PI/. [xi + x~ + x~ ] etc.
r: p2f.J,2 (p2 - e2) (f.J,2 - e2) (p2 -1) (f.J,2 - 1)

For s i=- k we replace the Cartesian coordinates in the expressions for 9sk

according to eq. (C.11.12), to obtain

912 = 923 = 931 = 0, (C.11.20)

which establishes the orthogonality of the system of elliptic coordinates.
Further we have

9 -H2_p2pp - p-

9 -H2_1/.2
J.1J.1- J.1-'-

9 - H 2 - v2
vv - v-

(C.11.21)

The Cartesian coordinates are excluded from these expressions by differen
tiating the basic identity (C.11.11) with respect to a

x2 x2 x2 a2 [I' (a)---.!.+ 2 + 3 (a _ v2 ) (a _ 2) (a _ 2) +
a2 (a2 _ e2)2 (a2 _ 1)2 - I (a) I (a) f.J, p

(a - f.J,2) (a - p2) + (a _ p2) (a - v2) + (a - v2) (a - f.J,2)]

and consequently setting a = p2 ,a = f.J,2, a = v2. The result is as follows

2 2 a2 (2 2) (2 2) 2 (p2 - v
2)

(p2 - f.J,2)
Hp = p I (p2) P - V P - f.J, = a (p2 _ e2) (p2 _ 1) etc.

We arrive at the equalities

H; =a

(p2 _ v2) (p2 _ f.J,2)
(p2 _ e2) (p2 - 1) ,

(p2 _ f.J,2) (f.J,2 - v2)

(f.J,2 - e2) (1 - f.J,2) ,

(p2 _ 1I2) (f.J,2 _ 1I2)

(e2 - 1I2) (1 - v2) .

(C.l1.22)
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Under t he denotation

(C.I1.23)

we writ e the Jacobian in the form

(C.I1.24)

and using eq. (C.5.5) we lead the expression for the Laplace operator to
the form

Referring to eqs. (C.3.5) and (C.I1.19) we obtain the following formulae

Op 1 Xl Xl
OXI H~p p3Dr
op 1 X2 P X2

(C.I1.26)
OX2 H~ p2 - e2 p (p2 - e2)D~ '

op 1 X3P X2
- - -

p(p2 -1) DrOX3 H~ p2-1

The passage to the limiting case of the oblate ellipsoid (spheroid) having
the coordinates s , q, i.p is carr ied out by assuming e = 0, l/ -+ 0 (however
v/ e remains finite) and putting

(C.I1.27)

Then by eq. (C.I1.12) we obt ain

xI = JI +S2~COSi.p , x2 = JI + s2~sini.p , X3 = asq,

(C.I1.28)

which is required (see eq. (C.lO.I)) . Here q denotes the coordinate denoted
as f.L is Section C.IO.

For transforming to th e coordinates of an oblong spheroid we assume

p = s , e -+ 1,
l/
- -+ q,
e

g- f.L2 Vf.L2- e2
--2 -+ sin i.p , 2 -+ cos ip ,
l- e l- e
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Then by eq. (C.l1.12)

X l = asq, X2 = aJs2-l~cos <p, X3 = aJs2 -l~sin <p

(C.l1.29)

and the coordinate surfaces s = const are the ellipsoids of revolution about
axis X l

(C.1I.3D)



Appendix D
Tensor algebra in curvilinear basis

D.1 Main basis and cobasis

Three noncomplanar vectors denoted by ej , e2, e3 are introduced into con
sideration. They are not unit vectors and not mutually orthogonal ones.
The volume of the parallelepiped spanned by these vectors is equal to

(D.1.I)

Arranging the numbering of the vectors we can obtain v > O. Vectors
e l , e2, e3 form the main basis. The cobasis is intr oduced by the vectors

1 I I 3 I
e = - e2 x e3, e2 = - e3 x e l , e = - e l x e2, (D.1.2)

v v v
so that

e
S

• ek = 9Z = { ~ : : ~ ~ : (D.1.3)

The scalar products of the vectors of the main basis and cobasis are also
introduced into consideration

(D.1.4)

It is straightforward to prove that the basis which is the reciprocal to the
cobasis is the main basis. Indeed

* 1 (2 3) I 1 [( ) ] I IIv = e . e x e = 2e . e3 x e l x (e l x e2) = -e . el = -,
v v v

(D.1.5)
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and thus

which is required.

D.2 Vectors in an oblique basis

Vector a can be presented by the expansion in both the main basis and the
cobasis

(D.2.l)

where s is a dummy index. In the earlier denotation when the orthogonal
Cartesian coordinates were used, there was no need to distinguish between
the upper and lower indices. In the general tensor analysis the dummy
indices always have a superscript and a subscript whereas the free indices
have the same position in both sides of the formula. No summation is
carried out over two superscripts or two subscripts. For example, g~ = 3
has three terms while gss means a single term (the value of gst at s = t) .

Using eqs. (D.2.l) and (D.1.3) we obtain

(D.2.2)

The quantities as and as are referred to as the contravariant and covariant
components of vector a respectively. They are equal to the projections of
vector a onto the vectors of the main basis and the cobasis multiplied by
the absolute value of the corresponding vectors

(D.2.3)

Another interpretation relies on representation (D.2.1). Each term in
sums aSes and ases is an edge of the skew-angled parallelepiped built on
the vectors of the main basis and cobasis , a being the diagonal of this
parallelepiped. This is shown in Fig. D.l in which vector e3 is perpendicular
to the plane of vectors el , e2 and vector a lies in this plane. An explanation
of the terms "covariant" and "contravariant" is given later, see Section D.6.

The formulae relating the covariant and contravariant components follow
from eqs. (D.1.3) and (D.1.4)

(D.2.4)

The quantities

(D.2.5)
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FIGURE D.l.

are called the physical components of a and they are equal to the projection
of this vector onto e, and e" . The square of the magnitude of the vector
can be presented in the following form

a2 = a · a = aSes . akek = gskasak , }
a2 = a · a = ases . akek = gskasak,
a2 = a · a = ases . akek = g~asak = a.a" .

D.3 Metric tensor

(D.2.6)

It follows from formulae (D.2.6) th at the values gsk (or gSk) are the coeffi
cients of the invariant quadrati c form of variables as (or as) . Hence accord
ing to Section A.4 one concludes that these values determine a symmetric
tensor of second rank denoted as g. Its co- and contravariant components
are gsk and gsk respectively and the mixed components g'k are coefficients
of the bilinear form of variables as and ak . In th e taken basis tensor 9 de
termines the square of the length which explains why it is called a metric
tensor. The dyadic representation of tensor 9 is set in three following forms

(D.3.1)

They yield

or

grnkg _ gm
k q - q ' (D.3.2)
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The latter formula determines the rule of contraction over the dummy index
using the metric tensor whilst formulae (D.2.4) explain the tr ansformation
from the covariant to contravariant components (and back) by multiplying
by gsk (or gsk) with a further contraction with respect to the dummy index.

The metri c tensor in the oblique basis plays the role of the unit tensor. It
follows from the fact that post multiplying and premultiplying it by vector
a yields the same vector

g.a = gske se k . a = eSgskak = e Sas = a , }
a . g= a· gske se k = asgskek = akek = a.

It is much easier to prove it by utilising the bilinear representation

(D.3.3)

Let us denote, for the time being, tensor g in the contravariant representa
tion by g* . Then

so that

(D.3.4)

(D.3.5)

This should be expected since the unit tensor is equal to its inverse. This
property holds in any coordinate basis and g* is just another denot ation
for tensor fj.

It follows from eq. (D.3.4) that matrices Il gskll and llgSk II are inverse
matrices. Hence denoting the algebraic adjunct of element gsk of the first
matrix by As k = A ks we have

A sksk9 =-,
9

where 9 = Igsk I denotes the determinant of the matrix of the covariant
components of the metri c tensor. It is easy to obtain this result by consid
ering the product of the determinants 9 and g* of matrices Ilgst II and IlgSt II
respectively.

1
The area 0 of the parallelogram spanned by t he vectors ez and e3 can

be presented in the following two ways

8= lez x e31 = v lell = vjgil,

8= J ez · eZe3 ' e3 - (ez · e3)z = J 9ZZ933 - g~3 = JA11 = )g11 g.

Hence

(D.3.6)
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D.4 The Levi-Civita tensor

The components of thi s tensor in the oblique main basis and cobasis are
given, by analogy to eq. (A.2.1) by the formulae

(D.4.1)

They are equal to zero if there are coincident indices among skt . They
are equal to ,,;g and 1/,,;g in the first and second definition (D.4.1) if the
indices have the order of 123, 231, 312. When this order is violat ed they
are equal to-,,;g and -1/,,;g respectively. The above-said can be written
down as follows

sk t 1 skt
t = ,,;gC , (D.4.2)

where symbols Cskt, c skt are equal to zero or ±1 according to the above
rules.

Using these definitions we can construct expressions for the covariant
and cont ravariant components of th e vector product

c = a x b = a kbtek x et , Cs = c· es = akbttkts,

c = a x b = ak bt ek x et , C
S = c - eS = a kbtt kt s ,

so that

(D.4.3)

In particular

(DAA)

and th e inverse formulae take the form

(D.4.5)

D.5 Tensors in an oblique basis

With the help of th e vectors of the main basis and the cobasis, one con
st ructs four types of dyadics

(D.5.1)

The corresponding expressions are as follows

(D.5.2)
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If postmultiplication of th ese four expressions by vector a leads to th e same
vector b then they are nothing more than the different expressions for th e
same invariant quantity termed the tensor of second rank P

(D.5.3)

Here

sk s ·k
P , Psk , P .k ' v,

determines the contravariant, covariant, contracovariant and cocontravari
ant components of thi s tensor. The relations between them are easy to
establish. Indeed, by eqs. (D.5.3) and (D.2.4)

bs - pska - g srb _ g sr p a m _ P g srgkm a- k - r - r m - rm k,

so that

and further byeq. (D.3.2)

sk sr km r m
P g sqgkt = 9 g sqg g ktPrm = gqgt Prm = Pqt·

We arrive at the relationships

sk _ sr km _ r m
P - 9 9 Prm , Psk - g srgkmP , P

s _ g sr p p .k _ gkr p-k - r k » s - st
(D.5.4)

etc . confirming the above-obtained rules of operations on the indices.
For the symmetric tensor p sk = p k s , Psk = Pk s there is no need to indicate

th e position of the index of the mixed components (P~k = p~k = p~) . The
property of the tensor to be symmetric is invariant with respect to the
choice of the basis. Th e tensor which is symmetric in the orthogonal basis of
the unit vectors i s remains symmetric in the oblique basis. Indeed, denoting
the components of P in basis i s by p (st ) we have

- ik • • • •
ei . p . e k = P = p (st)ei . Islt . ek = p (t s)ei . I tls . ek

• • ki
= p (st)ei . Itls . e k = P .

One can prove that Pik = Pk i by analogy.

D.6 Transformation of basis

(D.5.5)

The vectors of the new basis are denoted as e~. They are related by the
linear relationships to the vectors of the original basis

c,r = e' . e r
s s (D.6.1)
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with the nonvanishing determinant Ic~· I. The inverse relations are as follows

so that

(D.6.2)

, " k _ s:k _ { 0,cs c,. < », - 1,
s =I- k,
s = k.

(D.6.3)

The formulae determining vectors e"/ of the cobasis are obtained by refer
ring to eqs. (D.3.3) and (D.6.2)

(D.6.4)

Now we can present vector a in terms of the covariant components, such
that

(D.6.5)

and comparison with eq. (D.6.1) shows that these components are trans
formed as the base vectors which explains the origin of "covariant" . The
contravariant components are transformed as vectors of the cobasis

S •~ 1" I I " I t " S , .a a e a C e a e a = a cs '= s = S , . = ,., (D.6.6)

By analogy we obtain the formulae for transformat ion of the tensor com
ponents

/ _ ...If' ,q r" _ s t rq t" _ s u " r
Pst - Cs ct Prq, P - c,.cqP , p.t - CrCt P.q·

D.7 Principal axes and principal invariants of
symmetric tensor

(D.6.7)

Based upon the invariant definition of Section A.9 of the principal direct ions
of the tensor

p .n = An,

where n denotes the unit vector we have

(D.7.1)

We arrive at the system of three equations

(D.7.2)
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in which the unknowns nt are related by the additional equality

(D.7.3)

The characteristic equation for the tensor

(D.7A)

differs from eq. (A.9.5) only in that the role of the components in the or
thogonal system is now played by the mixed components. For this reason it
is sufficient to modify the expressions for the principal components (A.IOA),
(A.1O.6) and use the formulae of transformation (D.5A). The result is as
follows

I (pA) s sk ks
1 = Ps = g Pks = gskP , (D.7.5)

t, (p) = Ip~1 = Igrkpktl = Igrkllpktl = ~ Ipktl = Igtkpkrl = g IpkTI ·

(D.7.6)

The second invariant is obtained by using eq. (A.IO.14)

(D.7.7)

Here tensor i-i . by eq. (A.7.8), is given by the expression

(D.7.8)

where

-et J;:S

P Ptq = "« (D.7.9)

Then

PA-1 pA _ xsr t q _ -ST q _ J;:S q _ s _ A
. - P eSeT · ptqe e - P Prqese - uqese - ese - g,

which is required since g is the unit tensor. It is a erroneous to identify pts
with the contravariant components of P.The lat ter are obtained in terms of
its covariant components with the help of eq. (D.5A) whereas determining
pts requires const ruction of the matrix inverse to IIPstII.

By eqs. (D.7.5) and (D.7.7) we obt ain

(D.7.10)p=IPstl ·I (pA) P -t.s
2 = ggstP ,

Another form for the second invariant is obt ained by means of eq. (A.1O.1O).
We have

I (pA2) ST tq
1 = g g PstPqr
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and thus

The value in the parentheses can also be written as follows

eS
• (eteq . er - eret . eq

) = eS
• [eq x (et x er ) )

= (eS x e") . (e t x e") = EsqmE trnem . e n ,

so that by eq. (DA.2)

I (FA) _ 1 sqm trn
2 - ?:gm n e e P stPqr ·

g
(D.7.12)

It is evident th at this formula can be obtained directly from eq. (D.7.10)
by utilising definition (A.7.11) for the components of the inverse tensor .



Appendix E
Operations of tensor analysis in
curvilinear coordinates

E.1 Introducing the basis

In contrast to the previous denotation, in t his Appendix we denote the
Cartesian coordinat es and the position vector of a point as a I , a2, a3 and r

(E.1.I)

respectively. The curvilinear coordinat es are denoted as ql , q2,q3 such that

( 1 2 3 )as = as q ,q ,q , (E.1.2)

where in the domain of the definition , the Jacobian

J = loas Ioqk

differs from zero and is positive.
The main vector basis is described by the tr iple of vectors

or
r - 

s - oqS'

and relationships (D.1.2) and (D.4.5) introduce the cobasis

(E.1.3)

(E.I.4)

(E.1.5)
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The metric tensor is introduced as follows

(E.1.6)

where the values

(E.1.7)

represent its covariant , cont ravariant and mixed components respectively.
The infinitesimally small vector dr is determined by the evident equation

(E.1.8)

whereas the square of its length, i.e. the square of th e linear element, is
expressed in terms of the covariant components of the metric tensor

(E.1.9)

All results of Appendix D remain valid provided that e, is replaced by rs .

We show only the expressions for the element of volume

(E.LlO)

and the elements of surfaces

where

1vg= 6' e
stqr

s . (r, x r q) = J.

Formulae (E.1.lI) can be presented in the unified form

s r::;;; drd 0= ygss_ .
dq"

E.2 Derivatives of base vectors

The vectors

8r s 82r

r st = 8qt = 8qt8qS = rts

can be represented by expansions in terms of the base vectors

r st = r t s = {~} r k ·

(E.1.12)

(E.1.13)

(E.2.1)

(E.2.2)
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The expressions in the braces are named Christoffel's symbols of second
kind and are denoted as follows

r k = {k} .
st st (E.2.3)

One can see that in formula (E.2.2) the subscript is the free index. The
symmetry with respect to the subscripts follows from definition (E.2.2)

(E.2.4)

so that the total number of symbols is equal to 18. By eq. (E.2.2) we have

(E.2.5)

The scalar products on the left hand side are introduced in Section C.3 and
termed Christoffel's symbols of first kind. They are given by eq. (C.2.7)

Returning to eq. (E.2.5) we have

[st,q] = g kq { :t } , { :t} = g Tq [st,q] ,

(E.2.6)

(E.2.7)

where the second set of formulae is obtained from the first one with the
help of eq. (D.3.2).

The derivatives of the vectors of the main basis are now obt ained. In
order to derive the derivatives of the vectors of the cobasis we begin with
the relationship

It yields

(E.2.8)

and referring to eqs. (D.2.2) and (D.2.1) we find

(E.2.9)



972 Appendix E. Operations of tensor analysis in curvilinear coordinates

E.3 Covariant differentiation

Carrying out operations on the vector and tensor quantities requires the
coordinate basis to be introduced and the covariant, contravariant and
mixed components to be considered . Changes in the invariant quantity
(scalar, vector, tensor) due to changes in the position of the point are
caused only by properties of the invariant. A different situation arises with
the components of this invariant since their change depends also on the
values and directions of the base vectors. For example, let the contravariant
components ak of vector a be independent of coordinates qk. Then the
derivatives with respect to these variables are equal to zero. However it is
erroneous to think that vector a does not change. The inverse statement is
also true: the components as and as of a constant vector a do not remain
constant. The goal of further analysis is to introduce such characteristics of
vectors and tensors which take into account change in both the quantities
and the coordinate basis. This is achieved by means of the operation of
covariant (or absolute) differentiation.

Let us consider the derivative of a with respect to qS and begin with the
case in which a is given by the contravariant components. Then we have

or after replacing the dummy indices

oa (oak {k} t)-- -+ a rkoqS - oqS st ..

Referring to eq. (E.2.9) we obtain by analogy

oa (oak {t} ) k
oqS = oqS - sk at r .

The expressions

(E.3.1)

(E.3.2)

(E.3.3)

are referred to as the covariant (absolute) derivatives of the contravariant
and covariant components of vector a. Under the above denotation we have

(E.3 .4)

The quantities V'sak and V'sak present respectively the contravariant and
covariant components of vector oa/Bq" .
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This is gener alised to the tensors of any rank. For example, if we describe
the tensor of second rank by the contravariant components then we have

or

By analogy we obtain

8ft _ s k'7
8qT' - r r v rPsk,

8ft s '7 ·k
-8 = r rkV rPs 'qr

'7 sk _ 8p
sk

{ s} qk {k} sqv vp - -8T' + P + P .q rq rq

8Psk {q} { q }\7rPsk = 8qT' - rs Pqk - rk Psq ,

8 ·k { k }-k: _ Ps q ·k -a
\7rPs - 8qr - {rs}pq + rq Ps ·

(E .3.5)

(E .3.6)

(E.3.7)

Tensor 8ft/ Bq" is presented here by t he contravari ant , covariant and mixed
components.

Of frequent use is Ricci 's theorem: the covariant derivative of components
of the metric tensor is equal to zero . This follows from the relationship

8 , 8 s {S} r {r} s
8qt g = 8qt e es = - tr e es + t s e eT•

{S} r {S} r= - tr e es + tr e es = 0

or

Hence,

(E .3.8)

which is required. It should be expected as the metric tensor plays the role
of the unit tensor .

In covariant differentiation th e components of the metric tensor play the
role of the constants, i.e. they can be placed behind the symbol \7s (however
not 8/8qt). For instance,
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which is to be expected since the derivative of the invariant quantity (tensor
p) is an invariant which is independent of t he way it is describ ed (in terms
of t he covariant 'VtPsk or cont ravariant 'Vtpmq components).

In covariant differentiation, the rule of differenti ation of the product
holds, i.e.

(E.3.9)

(E.3.10)

The covariant derivative of the Levi-Civita tensor vanishes. For example,
considering t he covariant components we have

'V r·Estq = O.

In the extended form this equality has t he form

a~r Estq - ( { : } Emtq + {: } Esm q + { ; } Estm ) = O.

As stq denotes a t riple of different indices, then only one of three triples

mtq, smq, stm

has no repeating indices, namely at m = s , m = t and m = q in the first ,
second and third triples respectively. Let t he first triple be such a triple.
Noticing that

we have

'V r Estq = (a~~~ - {:r}) Estq,

and the above-said follows from the relationship

{S} Oln yIg 1 ag
sr = aqr = 2g aqr' (E.3.11)

The derivation is based on the definitions (E.2.7) and (E.2.6). We have

{
s } _ st [ t] _ 1 st (agst + agrt agsr)- 9 sr, - -g -- -- - -- .
sr 2 aqr aqs aqt

The terms

st agsr
- g 

aqt

cancel, hence using formula (A.7.9) for differenti ation of a determinant we
find

{
s } = ~gstagst = ~gstagst = ~ ag agst =~~
sr 2 aqr 2 aqr 2g agst aqr 2g aqr '

which is required .
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E.4 Differential operations in curvilinear
coordinates

The total differential of scalar rp (ql ,q2 ,q3) is presented in two forms

orp
dip = -0dq" = \7rp . dr = \7rp . rsdqs,qS

which means that the derivatives of rp with respect to qS are the covariant
components of vector \7rp in the vector basis r S and byeq. (D.2.1)

orp
\7rp = grad rp = r S

_ .
oqS

The total differential of the vector is obtained by analogy. By eq. (B.2.11)
we have

da = ooa dq" = °oa . dr = ds - Va = dqSrs . Va,
qS r

and tensor \7a is the sum of the following dyadics

n S oa
va = r oqs' (EA.2)

Equations (EA.1) and (EA.2) suggest the following representation of the
nabla-op erator

1. Divergence of a vector

\7 = r S

o
o .qS (EA.3)

di n So , n k n k oak {k} r
Iva = v . a = r . oqSa = r' . r k v sa = v ka = oqk + kr a ,

and referring to eq. (E.3.11) we obtain

(EAA)

2. Rotor of a vector

n S kn s k t (oak { m } )rot a = v x a = r x r v sak = f rt oqS - sk am .

However

{ :.} = {;::} , f
sk t

{ :. } = f b t { ;::} = _ f
skt { :. } = 0,
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so that

3. Gradient of a vector

" S oa S k" S k ( oak { r} )va = r oqS = r r v sak = r r oqS - sk ar

S ( oak { k} r)= r r k oqS + sr a .

4. Tensor of deformation

(EA.5)

The quant it ies in t he brackets are t he covariant components of this tensor .
5. Divergence of a tensor of second rank

= r t (Op st + { S } v: + { t } psr) .
oqS sr sr

Referring to eq. (E .3.11) and (E.2.2) we have

d. p' _ ( Opst ~ o.j9 rt) sr ors
IV - r t 0 + In 0 P +rs:qS vs qr qr

T herefore

A 1 0 ( st)
V' . P = .j9 oqS V9P r t .

6. Laplace operator of a scalar

(EA.7)

or

(E.4.8)

The expressions for the differential operations of second order on vectors
and tensors are very cumbersome. As an example we show the Laplace
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operator of a vector

2 t 8 s k t 8 S k (8ak {r} )'V a = 'V . 'Va = r 8qt . r r 'Vsak = r . 8qt r r 8qS - sk ar

ts k [82ak { r } Be; { r } 8ak {r} Ba;
= 9 r 8qt8qS - kt 8qs - st 8qr - sk 8qt-

ar (8~t {:k} - { ;k } {t~ } - { ;s}{ti})], (E.4 .9)

see also Section E.7.

E.5 Transition to orthogonal curvilinear
coordinates

In the case of an orthogonal trihedron of base vectors, the metric tensor is
diagonal and its covariant components are equal to

{
0,

gsk = H2
s :

where H, is Lame's coefficient. Further

s =1= k,
s = k,

(E.5.1)

(E.5.2)

(E.5.3)

and using eq. (D.1.2) for determining the vectors of the cobasis we obtain

r ' = ~r2 x r3 = ~ Ir 2 x r 31 ~l = ~? ' }
2 _ r2 3 _ r3
r- H2, r- H2·

2 3

The directions of these vectors coincide with those of the original basis. The
corresponding unit vectors are the tangents to the coordinate lines [qS] and
are denoted as T s

r s H S
T s = H

s
= sr .

The representation of vector

(E.5.4)

yields the following expressions for the contravariant and covariant compo
nents in terms of the "physical" components a(s)

(E.5.5)
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The analogous expressions for the tensor of second rank are set in the form

st p(st) H H s H, -t H,
P = n.n, Pst s tP( st), P·t = HsP(st), Ps = HtP(st).

Christoffel's symbols of first and second kind are obtained by means of
eqs. (E.2.6) and (E.2.7) respectively. Taking into account that the con
travariant components of the metric tensor are equal to

{

0, s =1= k,
g sk = r S

• r k = _1_ _
H2' s - k

s

we find

(E.5.7)

s =1= k =1= t: [sk, t] = 0,

[]
8Hs

s =1= t : ss , t = - H, 8
q

t '

[]
8Hs

st, s = H, 8qt '

(E.5.8)

The expressions for the derivatives of the base vectors are constructed
by means of formulae (E.2.2). These expressions can be used for deriving
formulae for differentiation of the unit vectors, see Section CA.

The brevity and symmetry of the formulae of general tensor analysis is
lost when the orthogonal curvilinear coordinates and the physical compo
nents of tensors are used. The formulae become cumbersome and for this
reason it is preferable to perform the operations in curvilinear coordinates
by using the approaches of Appendix C.

E.6 The Riemann-Christoffel tensor

The square of the linear element in the Euclidean space E3 is given by the
sum of squares of differentials of the Cartesian coordinates

ds2 = dai + da~ + da~. (E.6.1)

When the curvilinear coordinates are introduced by means of transfor
mation (E.1.2) this expression takes a quadratic form of the differentials

(E.6.2)

whose coefficients are the covariant components of the metric tensor and
are calculated by the formula

(E.6.3)
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provided that transformation (E.1.2) is given. Let us state the problem in
another way. It is assumed that the quadratic form (E.6.2) is prescribed by
the coefficients g st and that it is positive definite. Then this form is said to
define the metric in the Riemannian space R3 . Now the very transformat ion
(E.1.2) is unknown and seeking it reduces to integrating the system of six
equations (E.6.3) with three unknown functions aI , a2, a3. This transforma
tion exists only if the conditions for the system integrability are sat isfied. If
these conditions hold th en the Riemannian space degenerates to Euclidean
space and the position of a point can be determined in the Cartesian coor
dinate system and the square of the linear element can be presented in the
Euclidean form (E.6.1).

By means of a linear transformation of the variables the positive definite
form (E.6.2) can be lead to the sum of three squares

2 (k) 1
2 (k) 2

2 (k) 3
2

ds = bll Z dz + b22 Z dz + b33 Z dz , (E.6.4)

where Zl , z2, z3 are the new variables. Strictly speaking Jbss (zk )dzS (do
not sum! is not a differential of some quantity and one can put da, =

bss (zk)dzS only by fixing zk which defines a local Cartesian system of
axes as in the vicinity of the considered point in R3 . This proves the possi
bility of a local metric E3 in R 3 while the sought conditions of integrability
must guarantee the existence of the metric in the whole domain .

Provided that these condit ions are satisfied, then there exist three func
tions as (ql , q2, q3) . Equivalent ly there is a possibility of describing the
position of any point by the position vector

(E.6 .5)

and a possibility of constructing the coordinate basis with the vectors rk

being equal to the derivatives of r with respect to coordinates qk. Then

(E.6.6)

and the condit ions for th e integrability of these relationships are written
as follows

(E.6.7)

When these conditions are satisfied the following expression

is integrable since the conditions for its integrability

ars ark
oqk {)q~
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hold for the adopted definitions (E.2.6), (E.2.7) of Christoffel's symbols and
the symmetry of these quantities due to the symmetry of the components
of the metric tensor (the coefficients of quadratic form (E.6.2)) .

An extended form of the integrability conditions (E.6.7) is as follows

rt [~ { t } _ ~ { t } + {m} { t } _ {m} { t }] = Rt. rt.8qr sk 8qk sr sk rm sr km krs-

(E.6.8)

An expression of the same structure is obtained if we consider the difference

\lr\lsat - \ls\lrat.

Indeed, \lsat is a mixed component of tensor \lao Hence

and further

or by eq. (E.6.8)

(E.6.9)

The structure of this expression shows that quantities R;rq. represent the
components of a tensor of fourth rank which are three times covariant with
respect to indices srq and contravariant with respect to index t . This ten
sor is the Riemann-Christoffel tensor of curvature and its components are
calculated in terms of the components of the metric tensor. If the latter are
given such that the Riemann-Christoffel tensor is equal to zero then equa
tions (E.6.6) are integrable and the space with the linear element (E.6.2)
is the Euclidean one (£3) .

Referring to Ricci's theorem of Section E.3 we can rewrite condition
(E.6.9) in the form

(E.6.10)

Here the four times covariant components of the Riemann-Christoffel tensor
are introduced. They are expressed in terms of Christoffel's symbols of first
kind and can be obtained with relative ease. Indeed ,

Rsrqt = gmt8~r gml [sq, l] - gmt8~s gml [rq, l] +

glp([sq, p] [rl, t] - [rq, p] [sl ,t]) .
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Taking into account that

8gm l 8gml mi
gmt 8qr = -g 8qr '

and making the replacements

[)i!mt = [mr, t] + [rt ,m] ,
uqr

[)gmt [ ] [ ]-8 = ms.t. + st ,m ,
q S

we arrive at the following expressions for the covariant components of the
Riemann-Christoffel tensor

R
sr

t = ~ (82gst _ [)2gsq + [)2grq _ [)2g rt ) +
q 2 [)qr[)qq [)qr[)qt [)qs[)qt [)qs[)qq

l nl ([rq,m] [st , I] - [sq,m] [rt, I]) . (E.6 .11)

It follows from the latter equation that there is:
i) a symmetry with respect to pairs of indices sr and qt

Rsrqt = R qtST;

ii) a skew-symmetry with respect to pairs of indices sand r,q and t

R srqt = -RTSqt = -Rsrtq ;

iii) Ricci's identities

R srqt + RTqSt + R qSTt = O.

Taking into account these properties it can be proved that among 81
components there are only six independent ones

R 2323 , R 2331, R 2312 , R 3131, R 3112 , R 1212.

Th ey can be presented in terms of the symmet ric tensor of second rank
named Ricci's tensor

Am n _ ~ cmsT cnqtR- 4 L L srqt- (E.6 .12)

Indeed,

11 1A = -R2323 ,
9

12 1A = -R2331,

22 1A = -R3131,
9

13 1A = -R2312,

23 1A = -R3112 ,

33 1A = -R1212 ,
9

(E.6 .13)

and in the Euclidean space

Am n = O. (E.6.14)

In the orthogonal curvilinear coordinates, Lame 's dependences, see Section
C.6, correspond to these equat ions.
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A

E.7 Tensor inc P

The definit ion of this tensor is given in Section B.4 by formula (B.4 .13)

inc P= rot (rot P)*

Tensor P is assumed to be symmet ric, then

t PA r7 pA I S t r7 l sq tr7ro = v x =r x r r V IPst= E rqr VIPst ,

so that

( A)* t IrotP =rrqE sqV'IPst

and further

• pA _ k 8 ( t Isqr7 )
mc - r x 8

q
k r rqE v IPst .

The quantity in the parentheses is the tensor of second rank present ed by
the contravariant components. Taking into account eq. (E.3.1O) we have

• pA k t r7 Isqr7 ktp Isqr7 r7
mc =r xrrqV kE VIPst=rprq E E VkV IP st , (E .7.1)

and it remains to prove the permutation of the operations of the covariant
differenti ation which is analogous to that in eq. (E.6.1O)

V'k V'IPst - V'l V'kPst = RklmtP~m + Rlkm sp7 = O.

This enables one to prove the symmet ry of the considered tensor

~AI . pA ktp Isqr7 r7
1 ~ =lnc =rprq E E V kVIPst

l sp k tqr7 r7 ls q k tpr7 r7
= rprqE E v I v kPts = rqrpE E v k v IPs t,

which is required. We arr ive at the relationships

M Il = ! (V'~P33 + V'~P22 - 2V'2V'3P23 ) , }

M12 = ~ [-V' l V' 2P33 + V'3 (V'lP23 + V'2P31 - V'3P12)]

(E .7.2)

(E.7.3)

and others obtained from them by a circular permutation of the indices.
This is a natural generalisat ion of formulae (B.4.15) in which differenti a
tion is replaced by covariant differenti ation. The extended expressions for
operations V'k V'IPst are very cumb ersome.
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E.8 Transformation of the surface integral into a
volume one

Let us consider the integral

in which ti; denot es the covariant components of the vector of the external
normal n = nsrs to the closed surface O. Then by eqs. (B.5.2), (D.4.2),
(E.2.2) and (E.3.11)

Hence

(E.8.1)

Applying it to vector a we have

JJ n · ado = JJ n sasdo = JJJ a~s (;gaS)~ = JJJ div cdr,
o 0 v v

(E.8.2)

and we arrive at expression (E.4.4) .



(F.1.1)

Appendix F
Some information on spherical and
ellipsoidal functions

F.l Separating variables in Laplace's equation

In the case of spherical coordinates, the solution of Laplace's equations
(C.8.5)

\72 0 " = .!!-R2 01jJ ~ (1 _ 2) 01jJ _1_ 021jJ = 0
<P oR oR + 0/1 /1 0/1 + 1 - /12 8>.? '

in which, instead of {} , a new independent variable

/1=cos{} (-1 :::::/1 :::::1)

is introduced, is sought in the form of the following product
cos

1jJ = f(R)M(/1) . m):
sm

(F.1.2)

(F.1.3)

Let us denot e the separ ation constant as n (n + 1). This constant does not
change its value when replacing n by - (n + 1) . We arrive at two differential
equat ions for the sought functions f (R) and M (/1)

[R2I' (R)]' - n(n +1) f (R) = 0,

[(I-/12)M'(/1)]'+[n(n+l)- m
2

2] M(/1) =0.
1-/1

(F.1.4)

(F.1.5)

In the following it is sufficient to assume th at n is an integer. Equation
(F.1.4) has two particular solutions

II (R) = R" ; h (R) = R-(n+l) . (F.1.6)
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The first is used for solving the internal boundary-value problem for the
sphere (0 :S R :S Ro) , whilst the second is needed for solving the external
boundary-value problem (Ro :S R < 00). Solving boundary-value problems
for the hollow sphere requires both solutions.

Using eq. (C.I0.1O) we have in the spheroidal coordinates (coordinates
of the oblate ellipsoid)

2 0 2 o1/J 0 2 o1/J (s2 J-l2) o21/J
\7 1/J= OS (l+s) OS + OJ-l (1-J-l) OJ-l + l+s2 + I-J-l2 Orp2 =0

(F.1.7)

and assuming

cos
1/J = S (s) M (J-l) . trup,

sm
(F.1.8)

we arrive , after separation of variables s, J-l to the differential equations

Introducing the new denotation n (n + 1) = A+ J-l2 for the separation con
stant we have

[(1 + s2) S' (s)]' - [n (n + 1) - ~] S (s) = 0,
l+s

(F.1.9)

(F.1.10)

Equation (F.1.10) reduces to eq. (F.1.9) by replacing J-l by is. It is also
worth mentioning that equations (F.1.10) and (F.1.5) are identical.

Let us proceed to the case of the elliptic coordinates p, u, v defined in
Section C.ll. Looking for the solution of Laplace's equation (C.l1.25) in
the form of "Lame's product"

we arrive at the form

1/J=R(p)M(J-l)N(v) (F.1.11)
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On the other hand we have the evident identity

in which Hand h are arbitrary constants. Taking this into account we
obtain

(J-l2 - v2) {~ i;~ [~(p) R' (p)]' - (H p2 + h) } +

(v2 - p2) {- ~; t; [~l (J-l) M' (J-l)]' - (HJ-l2 + h)} +

(p2 _ J-l2) {~ ~~~ [~(v) N' (v)]' - (Hv2+ h) } = o.

Making use of the arbitrariness of Hand h we can equate the expressions
in the braces to zero

~ (p) [~ (p)R' (p)]' = [n (n + 1)p2 +h] R (p) ,

-~l (J-l) [~l (J-l) M' (J-l)]' = [n (n + 1) J-l2 + h] M (J-l) ,

~ (v) [~(v) N' (v)]' = [n (n + 1)v2+ hJ N (v).

Here H is denoted as n (n + 1).

F.2 Laplace's spherical functions

(F.1.12)

(F.1.l3)

(F.1.l4)

Let <Pn (x , y, z) denote a homogeneous polynomial of degree n. Altogether

there are ~ (n + 1) (n + 2) linearly independent polynomials . According to

the definition of homogeneity

<Pn (kx ,ky,kz) = kn<pn (x ,y,z) ,

and the result of this function al relationship is Euler 's theor em

(F.2.1)

(F.2.2)

These homogeneous harmonic polynomials satisfy Laplace's equation and
are denoted as Pn (x,y , z) in what follows . The expression for the polyno

1
mial \72Pn of degree (n - 2) has '2n (n - 1) arbit rary coefficients. Thus, the

requirement that this polynomial is equal to zero yields ~n (n - 1) equali

1
ties relating 2" (n + 1) (n + 2) coeffic ients of Pn . It can be proved th at these
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~n (n - 1) equalities are linearly independent. Hence there exist

1 12 (n + 1)(n + 2) - 2n (n - 1) = 2n + 1

linearly independent harmonic polynomials of n - th degree. For example
for n = 0, 1,2 they are as follows

(F .2.3)

Byeq. (F .2.1) the harmonic polynomial can be presented in terms of the
spherical coordinates in the following form

Pn (x, y, z) = Pn (Rsin 'l9 cos A, Rsin 'l9sinA, Rcos'l9)

= R" Pn (sin'l9cos A,sin 'l9 sin A,cos'l9) .

The coefficient associated with R" denoted as Yn ('l9, A)

Yn ('l9 ,A) = Pn (sin i? COSA, sin 'l9 sin A, cos'l9) ,

(F .2.4)

(F .2.5)

is referred to as Laplace's spherical function . It describes the value of the
polynomial of n - th degree on the sphere of unit radius. It is evident that
Laplace's spherical function can be presented in the form of a trigonometric
polynomial with respect to argument A

n

Yr, ('l9 ,A) = Co ('l9) + L [c~ ('l9)cosmA +c~m ('l9)sinmA] .
m=l

(F .2.6)

The sum of degrees qi + q2 + q3 of each term xq l yq2 zq3 of the harmonic
polynomial Pn (x , y , z) is equal to n . Hence the terms in the expression for
Laplace's spherical function are as follows

sin?' Acosq2 Asin?' +Q2 'l9 cos'" 'l9 = sin?' AcosQ2Asin'" 'l9 cos?"?' 'l9 ,

sin Q2 Acos?' Asin?' +Q2 'l9 cos'" 'l9 = sinQ2 Acos?' Asin'" 'l9 cosn - m 'l9,

where m = ql + q2. Replacing now the trigonometric functions of A by the
following representations

sin A = ~ (ei>. - e- i>' )
2i '

one can prove that the exponent of power of sin 'l9 in the coefficients c~ ('l9) ,

c~m ('l9) at c~sm). in eq . (F .2.6) has the same evenness as m. On the other
sm

hand, sinm'l9 appears as a multiplier in the coefficients c~ ('l9) and c~m ('l9) .
Hence, the latter can be set in the form

(F .2.7)
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where, as above, /1 = cos '19 , anrn , bnrn are constants and p~n (/1) denotes the

product of (1 - /12)m / 2 and the polynomial of /1 of degree n - m.
Thus we arr ive at the following represent ation for the independent har

monic polynomials Pn (x,y , z)

(F.2 .8)

where Pg (/1) = Pn (/1).
Referring to eq. (F.1.3) we can conclude that the different ial equations

(F.1.5) and in turn (F.1.IO) have the following particular solutions

(F.2.9)

which are the products of (1 - /12)m /2 and the polynomial of degree (n - m)
in /1. On the other hand the general representation of Laplace's spherical
function is written in the form

n

Yn (/1, '19 ) = aOPn (/1) + L (anrn cos m A+ bnrn sin mA ) P;:' ('19) . (F.2.1O)
m = l

The polynomial solution of equat ion (F.1.5) for m = 0 is well known. It is
Legendre's polynomial

1 d
n (2 )n

Pn (/1) = 2n 'd n /1 - 1n . /1
_ 1 ·3 ... (2n - 3) (2n - 1) [ n _ n (n - 1) n -2

- n! /1 2 .(2n-I)/1 +
n (n - I ) (n - 2) (n - 3) n - 4 ]

2 . 4 . (2n - 1)(2n - 3) /1 - .. . , (F .2.11)

where the series ends with a term dependent on /1 for odd n and a ter m
independent of /1 for even n . In particular

etc. }

(F.2.I2)

The real-valued polynomial solutions of eq. (F.1.9) can be set in the form

1 d" ( 2 )n
Pn (8 ) = -2,-d 8 + 1

n n . 8 n

and in particular

1
Po (8) = 1, pd8) = 8, P2 (8) = "2 (382+ 1) ,

1 1
P3 (8) = "2 (583 + 38) , P4 (8) = 8 (3584 + 3082+ 3)

(F.2.I3)

}
(F.2.I4)

etc .
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Returning to eq. (F .1.5) for m =I- 0 we can convince ourselves by a di
rect substitution that function P::: (p,) is related to the n - th Legendre
polynomial by the equation

r: ( )= (1 _ 2)m/2 d
m

Pn (p,)
n P, P, dp,n'

that is, the above mentioned polynomial of (n - m) - th degree is the m - th
derivative of Pn (p,) with respect to u. The solutions P::: (p,) are referred to
as the adjoint to Pn (p,) . They are defined for m :S n.

In particular, we have

(F.2.16)

The corresponding harmonic polynomials are presented in the form

RPo (p,) = 1, RP1 (p,) = z, RPI (p,) cos X= x, }

RPI (p,) sin X = y, R2P2 (p,) = ~ (2z2 - x2 _ y2) ,

R2 Pi (p,) cos X= 3zx, R2pi (p,) sin X= 3yz ,
R2pi (p,) cos 2.\ = 3 (x2 - y2), R2pi (p,) sin 2.\ = 6xy etc.

(F.2.17)

The solutions of differential equation (F.1.9) for m =I- 0 are obtained by
analogy

In particular

p~ (s) = i1 + s2, p~ (s) = 3Vl + s2s,p§ (s) = 3 (1 + S2), }

pHs) = 2V1 + S2 ~:2-1) , pHs) = 15 (1 + s2) S,

p~ (s) = 15 (1 + s2) / etc.

(F .2.18)

(F .2.19)

It is known that if a particular solution of the differential equation of second
order is obtained, then the second particular solution is obtained by quadra
ture. Designating the linear independent solutions of Legendre 's equation
with non-zero Wronskian W by M] and M 2 we have

W' = (M1M~ - M2M{)' = 1 2p, 2 (M1M~ - M2M{) = 1 2p, 2 W
-p, -p,
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and furth er

(F.3.1)

Choosing the constants C1 and C2 in a proper way and taking M 1 =
Pn (J.1') we obt ain the second solut ion of Legendre's equation which is the
Legendre function of second kind (m = 0)

I t

a;(/-l) = r ; (/-l) J(1 _ er2~~Pn (er)f
00

(F.3.2)

This solution is equal to zero as /-l --+ 00. The points /-l = ±1 are the
logarithmic singularities, so th at P; (/-l ) has the single regular solution at
/-l = ±1 (i.e. at the sphere poles {) = 0,{) = 7f). The integration path in
expression (F.3.2) is assumed to coincide with the real axis and function
Qn (/-l) is real-valued for l/-l l > 1.

For n = 0, 1, 2 we obtain

(F .3.3)

and, as shown in the theory of spherical functions, the general representa
t ion is given by

(F.3.4)

where the polynomial Rn-1 (/-l) of (n - 1) - th degree is as follows

(F.3.5)

The second solution of Legendre's equat ion (F.1.9) at m = °is obtained
by analogy, to give

00

J der
qn (8) = Pn (8) (er2+ 1) [Pn (er)]2'

s

(F.3.6)
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It is real-valued on the entire real axis and vanishes when s -7 00. At
n = 0, 1,2 the second solution is as follows

3
qo (s) = arctans, ql (s) = PI (s) arctans -1, q2 (s) = Ps (s) arctans - "2s ,

(F.3.7)

and the general representation is given by

qn (s) = Pn (s) arctan s - rn-l (s) ,

[
2n -1 2n - 5

r n- l (s) = 2 ~Pn-l (s) - 3 (2n _ 2)Pn-3 (s) +

2n - 9 ]
5 (2n _ 4)Pn-5 (s) - ... .

Starting from the representation

(F.3.8)

1 J.L+l 1 1 1
-2 In -- = - + -33 + - 5 + ... ,

J.L -1 J.L J.L 5J.L

one can prove that at J.L -7 00, S -7 00

111
arctan s = - - -3 + - 5 - .. . ,

s 3s 5s

(F .3.10)

Q ( ) ~ n! -(n+l) ( ) ~ n! -(n+l)
n J.L ,....., 1 . 3 . 5 .. . (2n + 1) J.L , qn S ,....., 1 . 3 . 5 . . . (2n + 1) s .

(F.3.9)

The Wronskians are obtained directly from eqs. (F.3.2) and (F.3.6)

P~ (J.L) a; (J.L) - r; (J.L) Q~ (J.L) = J.L2 ~ l' }

P~ (s) qn(s) - Pn (s) q~ (s) = s2~ 1 .

For m =1= 0 the solutions of equations (F .1.5) and (F.1.9), that is, the
functions adjoint to Qn (J.L) and qn(s) are given by

q~ (s) = (1 + S2) m/2 dm:;~J.L) ,

(F.3 .11)

where m can take any integer value. In particular

1 ( ) 1 2 () 2J.L 2 ( ) 2
Qo J.L = /1 _ J.L2 ' Qo J.L = 1 _ J.L2 ' Q1 J.L = 1 _ J.L2 etc.

(F.3.12)

1) 1 2 2s 2 ( 2
qo (s = - Jf+S2 ' qo (s) = 1 + s2 ' ql s) = - 1 + s2 etc.

(F.3.13)
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and one can prove that in the general case for m > n

(F.3 .14)

where L n+rn-l (/-l) and In+rn-l (8) are the polynomials of degree not higher
th an n + m - 1. Thus we have constructed one system of solutions of
Legendre's equations for m > n . The second one can be determined by
relationship (F.3.1). Let us denote these by P;:' (/-l) and p~ (8)

(F.3.15)

with the appropriate choice of constants. In such a way we obt ain the
solut ions

etc . (F.3.16)

etc . (F .3.17)

F.4 Solution of the external and internal problems
for a sphere

It is assumed that the function prescribed on the sphere surface R = Ro
can be presented in series in terms of Laplace's spherical functions

00

The following function

f (/-l , >.. ) = L Yn (/-l , >..) .
n=O

(FA.1)

(FA.2)

is harmonic in the sphere (R < Ro) and outside of it (R > Ro). In addi
tion to thi s, it t akes the value (F A .1) on this sphere and, in the exte rnal
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problem, tends to zero not slower than R-1 as R ---+ 00. This function is
continuous over the entire space and describes the potential of the simple
layer distributed over the sphere surface R = !l{) with density p (J..l, A)

(FA.3)

where n denot es the unit vector of the external normal to the surface. In
the considered case we have

1 00

P (Ji , A) = 41TR
o
~ (2n + 1)Yn (Ji , A). (FAA)

The terms of the series (F.4.1) are Laplace's spherical functions which
are determined through function f (Ji , A) prescribed on the sphere

where

27r 1

Yn (Ji , A) = 2n
4
; 1JdA'JdJi'f (Ji' , A') r ; (cos"() ,

o -1

(FA .5)

cos"( = cos {) cos{)'+ sin {) sin {)'cos (A - A')

= JiJi' + J(l- Ji2) (1- Ji,2) cos (A - A') (F .4.6)

and

( ) () ( ' ) ~ (n - k)! k () k ( ') ( ')Pn cos"(=PnJiPnJi +2L.J(n+k),PnJiPnJi cos k A - A .
k= 1

(FA .7)

Formula (FA .5) simplifies in axially symmet ric problems, i.e. when f
does not depend on A. By eqs. (FA .5) and (F.4.1) we obt ain

1

Yn (Ji) = 2n: 1r; (Ji) Jf (Ji') r; (Ji') dJi' ,
-1 (F.4.8)

This is the well-known expansion of function f (Ji) in series in terms of
Legendre polynomials.
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F.5 External and internal Dirichlet 's problems for
an oblate ellipsoid

Comparison of the form of the particular solut ions of Laplace's equation
(F.1.3) and (F.1.8) for the sphere and spheroid shows that the sought har
monic function on the surface of ellipsoid 8 = 8 0 can be thought in the
form of series (FA.I) . However in this case it is necessary to present each
terms of the series in the form

n

Yn (ft) = ano?n (ft) + L (anm ccenup + bnm sin m ip) ? ;:l (ft) . (F.5.1)
m = l

On the other hand

Pm( ) cosft . m ip
n sm

presents the value of the following functions

P~~ (8) p m ( ) COS
( )

n ft . trup ,
p~l 80 sm

q~l (8) e: ( )COS
( )

n ft . m ip,
q~l 80 . sm

(F.5.2)

at 8 = 80, the first and second ones being harmonic in (8 < 80) and outside
(8) 80) the spheroid respectively. The second representation in the latter
equat ion satisfies the condit ion of vanishing at infinity, i.e. for 8 --+ 00.

We arrive at the solut ion

8 < 80 :

8> 80:

~ [ Pn (8 )
ip (8, u, ip) = L.J ano?n (ft)-(-)+

n=() Pn So

~ ( b ') p m ( ) P~ (8
) ]L.J anm cosnup + nm sin m ip n ft m (8) ,

m= l Pn a
(F.5.3)

(F.5A)

By eq. (C.3.8) the length of the normal bn to the ellipsoid surface 8 = 80

is determined by the equality
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Hence,

[
a (p~ (s) q~ (s) )]

an p~ (so) q~ (so) 8=80
(F.5.5)

1

2

so that referring to formula (F.3.1O) for the Wronskian of solutions p~ (s) ,
q~ (s) we have by eq. (F.4.3)

( ) 1 ~ [ anOPn (/1)
P /1 ,<P = L.J +

47faJ(s5 + /12) (s5 + 1) n=O Pn (so)qn (so)

2:
n

P~ (/1) ( b')]
() ()

anmcos m<p + nmsm m<p .
pm So qm So

m = l n n

(F.5.6)

This is the expression for the density of the simple layer potential of the
spheroid surface s = So describing the harmonic function given by eq.
(F .5.3) in the spheroid and by eq. (F.5.4) outside it .

F.6 Representation of harmonic polynomials by
means of Lame's products

It is proved in the theory of Lame's functions that for integer n and an
appropriate choice of h in the differential equat ions (F.1.12)-(F.1.14) the
Lame products (F.1.11) are presented by the harmonic polynomials of n - th
degree

Fn (x,y ,z) = R (p)M (/1) N (v) . (F.6.1)

For the present book it is sufficient to consider the cases n = 0, 1, 2.
1. n = O. Then

Ro (p) = 1, Mo (/1) = 1, No (v) = 1 (F.6.2)

and the mentioned equat ions are satisfied at h = O.
2. n = 1. We have three harmonic polynomials of the first degree which

are the Cartesian coordinates presented by means of eq. (C.11.12) in the
form

(F.6.3)



(F .6.4)
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and one should take

R~I) (p) = p, R~2) = J (p2 - e2), R~3) = JP2=!,
and the constant h should take the following values respectively

h ~l) = _ (1+e2) , h~2 ) = -1 , h~3) = - e2.

3. n = 2. Three of five harmonic polynomials are easy to guess. They are

FJl) = yz , FJ2) = zx , F?) = xy, (F .6.5)

for which

ml) (p) = J(p2 - e2) (p2 - 1), m2) (p) = JP2=!p,

R~3) (p) = pJp2 - e2, (F .6.6)

which' follows immediate ly from eq. (F .6.3) . In this case

h~l ) = _ (1 + e2) , h~2 ) = - (1 +4e2) , h~:l ) = - (4+ e2) . (F .6.7)

In order to const ruct the remaining two harmonic polynomials of second
degree we require that th e left hand side of the main identity (C.l1.11)

x2 y2 z2 2 2(0' - V2) (0'-f.12) (0'_p2)- +-- +-- - a = -a -'-------'----'----:-:--c-'----'-----'-
a a - e2 a - 1 f (a)

sat isfies Laplace's equation

2( x
2

y2 z2 2) (1 1 1)\7 -+--+---a =2 -+--+--
a a - e2 a - 1 a a - e2 a - 1

= f ~O') [30'2 - 2 (1 + e
2) a + e2] . (F.6 .8)

(F .6.10)

For th em

(F .6.11)

and the values of the constant in eqs. (F .1.12)-(F .1.14) are respectively
equal to

h (4 ) - 6
2 - - 0'2,

(5)h2 = -60'1 . (F .6.12)
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F.7 Functions st )(p)

To each of the solutions of differential equation (F.1.12)

R~k) (p) (i = 0, 1, 2; k = 1, 2, . .. , 2i + 1)

constructed in the previous subsection we can find the second solut ion
vanishing at infinity (as p~ 00). Similar to eq. (F.3.2) it can be represented
in the form

oo

J d)"
S(p) =R(p) [R ( ).. )] 2 ~ ( ).. ) = R (p)w (p) .

p

This means that the Wronskian of solutions Rand S is equal to

R' (p) S (p) - R (p) S' (p) = ~ ~p) .

We arrive at the solutions

(F.7 .1)

(F.7.2)

ooJ d)"1. n =O So (p) = ~ ()..) = Wo (p) ; (F.7.3)
p

2. n = l sik
) (p) = Ri k

) (p)wik
) (p) (k = 1, 2, 3) , (F.7.4)

where W~k) (p) is presented, similar to W~k) (p), by the elliptic integrals

(F.7.5)

(F.7.6)

Here
oo

(1) _ J d)" - _1_ [w(3) _ w(2) ]
w2 (p) - ()..2 _e2)()..2 _ 1) ~()..) - 1 -e2 1 (p) 1 (p),

p

(F.7 .7)
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00

(2) J d)" [ (1) (3) )]
W2 (p) = ()..2 -1) )..2~ ()..) = - wI (p) - WI (p ,

p

00

(3 ) J d)" 1 [ (2) (1)]
W2 (p) = )..2 ()..2 _ e2) ~ ()..) = e2 WI (p) - WI (p)

P

and further

999

(F.7 .8)

(F .7.9)

All these elliptic integrals reduce to Legendre's normal forms of first and
second kind . The absence of an integral of third kind is the result of some
properties of Lame's functions .

F .8 Simple layer potentials on an ellipsoid

Let us compare two solutions of Laplace's equat ion. The first one is pre
sented by the harmonic polynomial

Fn (x,y, z) = R (p) M (/1) N (v) ,

whereas the second is given by the formula

(F.8.I)

_(1)S (p) M (/1) N (v) = w((p)) R (p) M (/1) N (v) =
w po W Po

W (p)
= -(-)r; (x,y ,z) , (F.8.2)

W Po

see eq. (F.7.I) . We arrive at the function

{

Fn(x ,y, Z) ,
G( x , y,z)= w (p) F, ( )

( )
n x, y , Z ,

W Po
(F.8.3)

which is harmonic inside (p < Po) and outside (p > Po) the ellipsoid

(F.8.4)
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This function vanishes at P ---. 00, is continuous in the whole space and is
equal to

(F .8.5)

(F.8.6)

(F.8.7)

on the surface 0 of the ellipsoid P = Po. Function G (x, y, z) possesses all
of the characteristic properties of a simple layer potential distributed over
this surface and is presented in the form

G( )_Jrr q(~ ,7},()do
x,y,z - } 1/2'

o [(x - ~)2 + (y - 7})2 + (z _ ()2]

The density of this potential q is obtained by means of the well-known
relationship

[
OG (x,y, z)] _ [OG(x,y,z)] =4 ( )on on itq x,y,z ,

P-+Po-o p-+po+o

where n denotes the external normal to the ellipsoid P= Po and 8n = Hp8p.
Here Lame's coefficient is determined by eqs. (C.11.21) or (C.11.22). On
the other hand

OG(x,y,z)1 1 , R'(po) Ion = HO R (Po)M(jL)N(v) = HOR( )Fn(x,y,z)
P-+Po-O p P Po P=Po

oG (x, y, z) I = 0 1 S' (Po) M (jL) N (v)
on P-+Po+O Hpw (Po)

s' (Po) I
= HOS( )Fn(x,y,z) ,

p Po P=Po

so that

41fq (x, y, z) = H{;(~')Y~~~o) [R' (Po) S (Po) - R (Po) s' (Po)]

and byeqs. (F.7,2) and (F.7.1)

1 [Fn(x,y ,z)]p=po
q (x, y, z) = - -----:-----:-~-----:-----;:;::::;<=~:::=::=:::;<===;;:;:

41fa W(Po) R2 (Po) V(P5 - v2) (P5 - jL2)

1 [Fn (x, y, z)]p=po
= 41f W(Po) R2 (Po) PoD2!::. (Po) .

The solutions listed in Sections F .6 and F.7 have the corresponding po
tentials

P< Po,

{

I ,
1. n = 0 Go (x, y, z) = Wo (p)

Wo (Po)' P> Po'
(F.8.8)
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This is th e field of electrostat ic pot ential caused by the conducting surface
of ellipsoid P = Po with constant pot ential. The distribution of charge on
this surface is due to formula (F.8.7) in which F = 1, R = 1 and Wo (Po) is
given by the ellipt ic integral (F.7.3).

2. n = 1. The three solutions (F.7.4) have the corresponding potentials

P< Po ,
(8 = 1,2 ,3 ) . (F .8.9)

3. For n = 2 we have three pot entials equal to xy, yz , zx on the surface
P= Po · For instance

P < Po,

P > Po·
(F.8.10)

Other two potent ials, given by eq. (F.6.1O) on the surface P = Po, are
constructed with the help of functions W~4) (p) , w~5) (p) obt ained from eq.
(F.7.10)

{

(4,5) (F2 X, y , z) ,
(4,5 ) (4 ,5)

G2 (x ,y, z)= w2 (p)F. (4 ,5)( )
(4 ,5) ( 2 X, y, Z ,

w2 Po)

P < Po '

P > Po'
(F.8 .11)

At Po = 1 expression (F.8 .3) for functions Fn (x ,y , z ) which are even
with respect to z determines the pot ential of the plate bounded by the
focal ellipse Eo , see eq. (C.11. l 6). This potent ial on the plate surface has
the value

G (x,y , 0) = [Fn (x,y , O)]P=l = R (1) M (f-l) N (v) ,

while out side of it

w (p)
G(x ,y, z) = w (l )Fn (x, y,z).

(F.8.12)

(F .8.13)

The expression for the density is obt ained by proceeding to the limit
in eq. (F.8.7) with multiplication of the result by 2, which corresponds to
layers on the "upper" and "lower" sides of the ellipsoid degenerated into
the plate

1 [Fn (x,y,O)]p=l
q (x ,y) = 27fa w (1) R2 (1) J(l - v2) (1 - f-l2) (F.8.14)
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Referring to eq. (C.I1.I4) we can easily transform this expression to the
form

(F.8.IS)

(F.8.I8)

On the border of the plate, i.e. on the focal ellipse Eo, the density becomes
unbounded. However it is zero on Eo if [Fn (x, y, 0)] has the multiplier

x2 y2
1- - - -,....:---:-,-

a2 - a2 (1 - e2)'

This potential of the plate with the continuous density can be constructed
as a linear combination of potentials Go, G~4), G~5)

G* (x, y, z) = CoGo (x, y, z) + C1G~4) (x, y, z) + C2G~5) (x, y, z), (F.8 .I6)

provided that , according to eq. (F.8.IS), the constants Co, C1, C2 are de
termined by the condition

see eqs. (F.6 .1O) and (F.6.11). The expression for the density corresponding
to potential G* is as follows

1 [2 2]1/2
q(x,y) = 21l'a~ 1- :2 - a2(;_ e2)

Equation (F.8.I7) yields three equations determining constants Co, CI, C2

and in turn potential G*. Omitting the intermediate manipulations, we
show the final result

(F.8.I9)

It is the volume (Newtonian) potential for the ellipsoid

x2 y2 z2
--+ + -1=0
a2p6 a2(p6-e2) a2 (A2 - I )

of the constant density at the external point (p> Po) . It also presents the
potential of the layer on the elliptic plate bounded by ellipse Eo with the
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density obeying law (F.8.18). The Newtonian potential at the internal point
(p < Po) is given by the quadratic function of coordinates x, y, z

(F .8.20)
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dell, see also Chapte r 9 of the book:

[39] Prager W. Introduction to Mechanics of Continua. Dower, 1963

The logari thmic st rain measures suggested by Hencky in

[40] Hencky H. Uber die Form des Elastizitatsgesetzes bei ideal-elastischen
Stoffen. Zeitschrift fur Technische Physik, 9, pp . 214-227, 1928,
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for the first and second boundary-value problems and the proofs of existence
of the solutions) the following book was used:

[65] Kupradze V.D. Methods of the potenti al in the theory of elast icity
(in Russian).Fizmatgiz, Moscow 1963.
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The work by Kupradze V.D., Gegeliya T .G., Basheleishvili M.O., Burchu
ladze T.V. Three-dimensional problems of the mathematical theory of elas
ticity (in Russian), Publishers ofthe Tbilisi University, Tbilisi, 1968, is de
voted to investigations on the existence and uniqueness of solutions of the
boundary-value problems of statics and stationary oscillations of the elastic
body.

A very brief statement and solution of these problems are presented in
the book:

[66] Mikhlin S.G. Multidimensional singular integrals and integral equa
tions (in Russian). Fizmatgiz, Moscow 1962.

See also the review lecture:

[67] Kupradze V.D. Method of singular integral equations in the three
dimensional problem of elasticity (in Russian) . Proceedings of the All
Union Congress on Theoretical and Applied Mechanics, Publishers of
the Academy of Sciences of USSR, Moscow, 1962.

The question of numerical realization of the solution of integral equations
is considered in the papers:

[68] Kupradze V.D. On one method of approximate solving of the limiting
problems of mathematical physics (in Russian). Zhurnal Vychislitel
noy Matematiki i Matematicheskoi Fiziki vol. 4, No.6, pp. 1118,
1964.

[69] Kupradze V.D. Methods of potential in elasticity theory. Applications
of the theory of functions to mechanics of solids (in Russian) . In:
Proceedings of the International Symposium in Tbilisi , pp. 211-216,
Nauka, Moscow, 1965.

The proofs by Lichtenstein and Korn of the existence of the solution of
the boundary-value problems in the elasticity theory are presented in [6] .

Treatment of Subsections 4.5.1-4.5.5 is entirely based on memoir [38].

Chapter 5
The content of this chapter differs essentially in the method of solution

and considered material from the book of the present author:

[70] Lurie A.I. Three-dimensional problems of the theory of elasticity (in
Russian). Gostekhizdat, Moscow, 1955.

Subsection 5.1.4
The papers by Boussinesq are collected in his classical treatise:

[71] Boussinesq J . Application des potentieles a l'etude de L'equilibre et
du mouvements de solides elastiques, Paris , 1885.
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Subsection 5.1.5
The same results are shown by Nowacki [48] .
Subsection 5.1.6
The content of this subsection is a revised presentation of the Section

"Determinat ion of the field of elastic stresses caused by the ellipsoidal in
clusion and the related problems" in:

[72] Eshelby J .D. The cont inuum theory of lat tice defects. In Solid State
Physics, eds. Seith, F., Turnball, D., vol.3, Academic Press, New York,
pp . 79-156, 1956.

Subsections 5.2.1-5.2.4
The solution of the problem of a concentrated force act ing on the elast ic

half-space normal to its plane boundary was first given by Boussinesq [71] .
A more general problem on loading the half-space by a system of normal
and tangent ial surface forces was considered by Cerrut i by means of Betti 's
integration method at the same t ime as Boussincsq in the memoir:

[73] Cerrut i V. Ricerche intorno all'equilibrio de corpi elast ici isotropi.
Atti della R. Accademia dei Lincei, Memoriae della classe di scienze
fisiche, matemati che e naturali, 13, pp. 81, 1881-1882.

See also [1 , 70] .
Subsection 5.2.5
The efficiency of the method of image in the problems of elasticity theory

was first point ed out by Somigliana

[74] Somigliana C. Sui principo delle imagini di Lord Kelvin e le equazioni
dell' Elasticita. Rendiconti d. Lincei, Ser. 5, 11, pp. 145, 1902.

The solution of the problem on the state of st ress in the elast ic half-space
caused by a concentrated force was given by Mindlin in the paper:

[75] Mindlin R. D. Force at a point in the interior of a semi-infinite solid.
Proc. First Midwestern Conf. Solid Mech., Univ. of Illinois, pp. 111,
Urbana, 1953.

Subsection 5.2.6
The problem of thermal stresses in the elast ic half-space is st udied in

detail in th e paper:

[76] Sternberg E., McDowell E. L. On t he Steady-Stat e Thermoelastic
Problem for the Half-Space. Quart . of Applied Mathemati cs, 1957,
vol. 14, No. 4, pp. 381-398.

The absence of the st resses in the planes parallel to the boundary of the
half-space is proved earlier in book [70] . See also the paper:
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[77] Sneddon LN., Tait RL On Lurie 's Solution of the Equations of Ther
moelastic Equilibrium. Problems of Continuum Mechanics. Contri
butions in Honor of N. 1. Muskhelishvili, pp. 497-513, Philadelphia,
1961.

Subsections 5.2.10 and 5.2.11
Solutions of the boundary-value problems for the elastic-half-space are

presented also in the paper:

[78] Michell LH. The Transmission of Stress across a Plane of Disconti
nuity in an Isotropic Elastic Solid, and the Potential Solutions for a
Plane Boundary. The Collected Mathematical Works of LH.M. and
A.G. Michell, pp . 189-195, Noordhoff, 1964 (first published in 1899).

Subsections 5.2.12-5.2.14
See [10, 61] as well as

[79] Mises RV. On Saint-Venant's Principle. Bull. Amer. Math. Soc., vol.
51, pp. 555, 1945.

[80] Sternberg E. On Saint-Venant's Principle. Quart . of Appl. Math. vol.
11, No.4, pp. 393-402, 1954 (January).

Section 5.3
The solution of the problem of equilibrium of an elastic sphere in spher

ical coordinates was first given in the classical treatise:

[81] Lame G. Lecons sur les cordonnees curvilignes et leurs applications,
Paris 1859.

An essential step forward was the paper:

[82] Thomson W. Dynamical Problems Regarding Elastic Spheroidal Shells
and Spheroids of Incompressible Liquid. Mathematical and Physical
Papers, 3, pp. 351, 1892 (first published in 1863)

in which the solution was presented in the Cartesian coordinates in terms
of three harmonic functions sought in the form of series in terms of the
homogeneous harmonic polynomials . This solution is reproduced in the
classical treatise:

[83] Thomson W. , Tait P. G. Treatise on Natural Philosophy, vol. 1, part
2, 1883.

Thomson's solution of the first boundary-value problem for the solid
sphere (Subsection 5.3.2) is reproduced in [1, 12, 6] . The way of solving
the second boundary-value problem (Subsection 5.3.5) is also shown in



Bibliographic References 1017

papers [1 , 6]. For the more difficult case of a hollow sphere Thomson gave
the solution of the first boundary-value problem and suggested a way of
solving the second problem.

The problem of equilibrium of t he sphere is considered in the papers:

[84] Tedone O. Saggio di una teoria generate delle equazioni dell ' equi
librio elast ico per un corpo isotropo. Annali di Mat ematica pura et
applicata, Ser. IlIa , 10, pp . 13, 1904.

[85] Somigliana C. Sopra l'equil ibrio di un corpo elast ico isotropo limitat o
da una 0 due superfici sferiche. Annali della Scuola Normale Superiore
di Pisa, Scienze Fisiche e Matern., Ser. I, pp . 100, 1887.

[86] Cerruti V. Sulla deformazione di un involucre sferico isotropo per
dat e forze agent i sulle due superfici limit i. Atti della Reale Acad . dei
Lincei, Mem. della Classe di Sc. Fisiche, Mate matice e Nat urali, 1891.

[87] Lurie A.I. Equilibrium of elastic hollow sphere (in Russian) . Priklad
naya Mat emat ika i Mekhanika 1953, vol. 17, No.3, p. 311.

Solutions of the boundary-value problems for solid and hollow spheres
are given in Chapter 8 of book [70] . The case of t he symmet rically loaded
sphere is considered in Chapter 6 of the present book and in the following
papers:

[88] Galerkin B.G. Equilibrium of an elastic spherical shell (in Russian) .
Prikladnaya Matemat ika i Mekhanika, 1942, vol. 6, p. 487.

[89] Lurie A.I. Equilibrium of an clast ic symmet rically-loaded spherica l
shell (in Russian) . Prikladnaya Matemat ika i Mekhanika, 1943, vol.
7, p. 393.

[90] Weber C. Kugel mit normalgerichteten Einzelkraften . Zeitschrift fur
angewandte Mathemat ik und Mechanik, 32, No. 6, pp . 186, 1952.

[91] Sternb erg E., Rosent al F . The Elast ic Sphere und er Concent rated
Loads . Journal of Applied Mechan ics, vol. 19, No. 4, pp . 413, 1952.

[92] Fichera G. Sur colcolo delle deformazioni , dot at e di simmetria assiale,
di uno strato sferico elast ica. At ti dell' Accad. Nazionale dei Lincei,
Classe di Sc. Fisiche, Ser. 8, 6, pp . 583. 1949.

Subsections 5.3.4 and 5.3.8.
The problem of the st at e of stress in the sphere und er a t ransient t hermal

regime is considered in book [3] and is based on the result of the paper:

[93] Grunberg G. Uber die in einer isotropen Kugel durch ungleichforrnige
Erwarrnung erregten Spannungszustande. Zeitschrift fur Physik, 35,
pp . 548, 1925.
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Subsections 5.3.9 and 5.3.10
The problems on the state of stress in the vicinity of the spherical cavity

were considered by

[94] Southwell R. V. On the Concentration of Stress in the Neighborhood
of a Small Spherical Flow. Phil. Mag. , Ser. 7, 1, pp 71, 1926.

[95] Larmor J. The Influence of Flaws and Air-Cavities on the Strength
of Materials. Phil. Mag, Ser. 5, 33, pp. 70, 1892.

In the context of the geophysical applications (theory of Earth's shape
etc .) an extensive literature review appears in book [1] and in the paper:

[96] Jeffreys H. The Earth: Its Origin, History, and Physical Constitution,
6th ed. Cambridge, England: Cambridge University Press , 1976

which is devoted to the problems of Subsections 5.3.12 and 5.3.13.
Section 5.4
A detailed review of the diverse directions of investigations of three

dimensional problems of elasticity theory is given in the paper:

[97] Abramyan B.L., Alexandrov A.Ya. Axially symmetric problems of
theory of elasticity (in Russian) . Proceedings of the Second All-Union
Congress on Theoretical and Applied Mechanics, Mechanics of Solids.
Nauka , Moscow, 1966.

The paper has 241 references and considerable attention is paid to the
method of solving the axially symmetric problems with the help of functions
of complex variable (which is not considered in the present book).

See also the following review with many references:

[98] Sternberg E. Three-dimensional stress concentration in theory of elas
ticity (in Russian) . In Collection of translations "Mekhanika", 1958,
No.6 (52), pp. 73-80.

The solutions of the problems on torsion, tension and bending of one
sheet hyperboloid of revolution considered in Subsections 5.4.1-5.4.4 were
first given by H. Neuber. In his book [52] one finds numerous representa
tions of the stress distribution, formulae and numerical tables.

The basic equations for the problem of torsion of the bodies of revolu
tion (which is studied in the present book only for the case of cylinder,
hyperboloid and the domain with a spherical cavity) were apparently first
suggested by Michell in 1899 in the following paper:

[99] Michell LH. The Uniform Torsion and Flexure of Incomplete Tores,
with Application to Helical Springs. The Collected Mathematical
Works, see [78] .
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This problem is the subject of the monograph :

[100] Solyanik-Krassa K.V. Torsion of shafts of variable cross-sect ion (in
Russian). Gostekhizdat , Moscow, 1949.

Considerable at tent ion is paid to this problem in the book [131] .
For the problems of equilibrium of the circular cone see [70] and the

paper:

[101] Nuller B.M. To the solut ion of the problem of elast icity theory on
truncat ed cone (in Russian) . Mekhanika Tderdogo Tela, 1968, No. 5,
pp .102.

Section 5.5
The problem in Subsection 5.5.1-5.5.4 is considered in the paper:

[102] Lurie A.I. Elastostat ic Robin 's problem for a tri axial ellipsoid (in
Russian) . Mekhanika Tderdogo Tela, 1967, No. 1, pp. 80-83.

Subsections 5.5.6-5.5.8
The problem of the state of stress around an ellipsoidal cavity is consid

ered in the paper:

[103] Sternberg E., Sadowsky M.A. Stress Concentration around a Triaxial
Ellipsoidal Cavity. Journal of Applied Mechanics, 1949, vol. 16, No.
2. p. 149.

The solution is presented in terms of Jacobi's elliptic funct ions of the
curvilinear elliptic oordinat es. The solut ion obtained in the present book is
expressed in terms of the Cartesian coordinate system and ellipt ic integrals.
The error contained which appeared in book [70] is corrected in the book :

[104] Podilchuk Yu.N. State of st ress in the vicinity of an ellipsoidal cavity
under arbitrary constant forces at infinity (in Russian). Transactions
of the Academy of Sciences of Ukrainian SSR, 1964, No. 9, pp. 1150
1154.

Th e problems of Subsection 5.5.9 were considered by H. Neuber in paper
[52]. The problems of Subsections 5.5.10 and 5.5.11 are presented in the
books:

[105] Sneddon LN. Fourier Transforms. Dower, New York 1951

[106] Uflyand Ya.S. Int egral tr ansformations in theory of elast icity (in Rus
sian).

and in the paper:
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[107] Podilchuk Yu.N. Plane elliptic crack in arbitrary homogeneous field
of stress (in Russian). Prikladnaya Mekhanika, 1968, volA, No.8, pp.
93-100.

The solution of the problem on elliptic cracks is also presented in the
book:

[107A] Panasyuk V.V. The limiting equilibrium of fragile bodies with cracks
(in Russian). Naukova Dumka, Kiev, 1968, pp . 194-204.

Section 5.6
The first contact problem dates back to the classical memoir by H. Hertz:

[108] Hertz H. Uber die Beruhrung fester elastischer Korper . Gesammelte
Werke, vol. 1, p. 155, Leipzig 1895 (first published in Journal fur reine
und angewandte Mathematik (Crelle) , vol. 92, p. 156, 1882).

The next sixty years were directed toward the experimental proof of the
theory and development of engineering applications. Among the papers of
this direction it is worth mentioning:

[109J Dinnik A.N. Impact and compression of elastic bodies (in Russian).
Collection of papers, vol. 1, Publishers of the Academy of Sciences of
Ukrainian SSR, 1952 (first published in 1909).

[110] Belyaev N.M. Local stresses under compression of elastic bodies (in
Russian) . In: Collection of papers "Inghenernye Sooruzheniya i Stroitel
naya Mekhanika, Put, Leningrad; 1924.

An incentive for the mathematical consideration of new contact problems
of elasticity theory was a series of works by I.Ya. Shtaerman (the first one
is dated 1939) unified in his monograph:

[111J Shtaerman I.Ya. Contact problem of the theory of elasticity (in Rus
sian). Gostekhizdat, Moscow; 1949.

Solutions of the contact problems were further developed in studies by
L.A. Galin , presented in the book:

[112J Galin L.A. Contact problems of theory of elasticity (in Russian) .
Gostekhizdat, Moscow; 1953.

More attention than in the present book is paid to contact problems
in book [70]. The solutions of numerous problems are given in mono
graph [106J. A rather complete review of investigations of contact, three
dimensional and plane problems (134 references) is given in the paper:
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[113] Popov G.Ya., Rostovtsev N.A. Contact (mixed) problems of the the
ory of elast icity (in Russian) . Proceedings of the Second All-Union
Congress on Theoretical and Applied Mechanics. Mechanics of Solids,
Nauka, Moscow, 1966.

Subsections 5.6.2 and 5.6 .5
See the paper:

[114] Mossakovsky V.I. Th e question of est imat ing displacement in three
dimensional contact problems (in Russian). Prikladnaya Mat ematika
i Mekhanika, 1951, vol. 15, No. 5.

Section 5.7
The classical works related to the problem of the state of st ress in circular

cylinders (solid and hollow) are

[1 15] Filon L. On the Elasti c Equilibrium of Circular Cylinders under Cer
tain Practical Systems of Loads. Phi l. Tran s. of the Royal Soc. Lon
don, Ser. A, 198, 1902.

[116] Schiff P.A. Sur l'equilibre d 'ue cylindre elastique. Journ. de math.
pures et appliquees, Ser. 3, vol. .9, pp. 407, 1883.

Subsection 5.7.5
The problem of torsion by forces distributed on the end face was first

considered in [116], see also [1] .
Subsection 5.7.6
In the paper:

[117] Valov G.M. On axially symmet ric deformation of a solid circular
cylinder of finite length (in Russian) . Prikl adn aya Matematika i Me
khanika , 1962, vol. 26, No.4, p. 650,

the solut ion is presented in terms of series whose coefficients are given
by a finite (quite regular) system of equations.

Subsection 5.7.7
The problem of the state of st ress in the cylinder loaded by the normal

pressure on a part of lateral surface is considered in book [70]. The same
problem for other types of loading is the subject of the papers:

[118] Livshits P.Z. State of stress in an elastic cylinder loaded by tangen
ti al forces on the lateral surface (in Russian ). Inzhenernyi Sbornik ,
1960, vol. 30, p. 47; Transaction of the Academy of Sciences of USSR,
Mekhanika i Mashinostr oenie, 1964, No.4, p. 105.

Livshits P.Z. On the problem of bending the rod of circular cross
section (in Russian). Transactions of th e Academy of Sciences of
USS R , Me khan ika i Mashinostroanie. No. I , pp. 7fl, 19f13.
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[119] Nikishin V.S. State of stress of a symmetrically loaded elastic cylinder
(in Russian) . Proceedings of Computational Centre of the Academy
of Sciences of USSR, 1965.

Nikishin V.S. Thermal stresses in a composed cylinder under arbi
trary temperature distribution over its height (in Russian) . Ibid, 1964.

The tables of the influence functions simplifying calculations of stresses
are presented in [119].

The solution in terms of trigonometric series is considered in the paper:

[120] Berton M. W. The Circular Cylinder with a Band of Uniform Pressure
on a Finite Length of the Surface. Journ. of. Appl. Mech., 8, No.3 .
pp. 97, 1941.

Using a Fourier integral this problem for a hollow cylinder is solved in
the paper:

[121] Shapiro G.S. On compression of infinite hollow cylinder loaded on
a part of its lateral surface (in Russian). Prikladnaya Matematika i
Mekhanika, 1943, vol. 7, No.5, p. 379.

The solution in the form of a series is given in the paper:

[122] Galerkin B.G. Elastic equilibrium of a hollow circular cylinder and a
part of a cylinder (in Russian) . Collection of Works, Publishers of the
Academy of Sciences of USSR, vol. 1, 1953, p. 342 (first published in
1933).

The case of axially symmetric loading is studied in the papers:

[123] Prokopov V.K. Equilibrium of an elastic thick-walled axially-symmet
ric cylinder (in Russian) . Prikladnaya Matematika i Mekhanika, 1949,
vol. 12, No.2, p. 135.

Prokopov V.K. Axially symmetric problem for isotropic cylinder (in
Russian) . Transactions of the Leningrad Polytechnic Institute, 1950,
No.2, p. 286.

Subsection 5.7.10
The property of generalized orthogonality of homogeneous solutions was

first introduced by P.A. Schiff in [116] . This paper was undeservedly for
gotten and the present author is obliged to B.M. Nuller for the indication.
While presenting Subsection 5.7.10 the manuscript by B.M. Nuller was used
and the main result by P.A. Schiff is presented in terms of the denotation
of Section 5.7. See also [123].

Independently of P.A. Schiff, the property of orthogonality in the problem
of bending of a rectangular plat e was established by P.F . Papkovich in his
book:
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[124] Papkovich P.F. Structural mechanics of a ship (in Russian). Sudprom
giz, Leningrad, 1941, vol. 2, p. 634.

The feasibility of the simultaneous representation of two functions by se
ries in terms of the homogeneous solut ions (as being applied to Papkovich's
problem) is the subject of the paper:

[125] Grinberg G.A. On the method suggested by P.F . Papkovich for solv
ing the plane problem for a rectangular domain and bending of rect
angular plate and some generalisat ions (in Russian) . Prikladnaya
Matematika i Mekhanika, 1953, vol. 17, No. 2, p. 211.

Studies of analogous questions for the cylinder are not known by the
present author.

Approximate methods of satisfying the boundary conditions on the end
faces of a cylinder are suggested by V.L. Biderman in the book:

[126] Biderman V.L., Likhachev KK , Makushin V.M., Malinin N.N., Feo
dosiev V.1. Strength analysis in mechanical engineering (in Russian) .
Mashgiz, Moscow 1958, vol. 2, Chapter 5

and in the paper:

[127] Horvay G., Mirabal I. A. The End Problem of Cylinders. Journ of
Appl. Mech. Trans. ASME, Paper N 58-A-24, pp. 1-10, 1958.

An est imate of the rate of decrease of stresses in the cylinder loaded on
the end face by a statically equilibrated system of forces is given in the
paper:

[127A] Knowles J . K. , Morgan C.O. On the Exponential Decay of Stresses in
Circular Elastic Cylinders Subjected to Axisymmetric Self-Equilibra
ted End Loads. Int ernational Journal of Solid and Structures, 1969,
vol. 5, pp. 33-50.

Chapter 6

The term Saint-Venant's problem was int roduced by Clebsch [17]. The
celebrated works by Saint-Venant are

[128] Saint- Venant B. Memoir on the torsion of prisms.

Considerable at tent ion is paid to Saint-Venant 's problem in the courses
[1, 3, 12, 16] . The method of funct ions of a complex variable is developed
in det ail in [2] for rods with cavit ies filled by the material with different
elast ic constants (composed rods).

Subsections 6.2.5 and 6.2 .6
The problem of determining the coordinates of the cent re of rigidity is

cons ide red in great det ail in the paper :
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[129] Dzhanelidze G.Yu. Determining the coordinates of the cent re of rigid
ity in the torsion problem by means of various st ress functions (in
Russian) . Transactions of the Leningrad Polytechnic Inst itute, Di
namika i Pro chnost Mashin , 1963, No. 226, pp. 93-102,

containing a detailed references, see also [7] . The formulae for the multiply
connected domain are given in the paper:

[130] Prokopov V.K. On the centre of rigidity for a multiply-connected pro
file (in Russian) . Scientific and Informational Bulletin of Leningrad
Polytechnic Institute, 1960, No. 7, p. 91.

Section 6.3
Extensive literature references and the original solutions of numerous

problems of rod torsion are given in the monograph :

[131] Arutyunyan N.Kh., Abramyan B.L. Torsion of elastic bodies (in Rus
sian). Fizmat giz, Moscow, 1963.

Applicat ion of functions of complex variable to the problem of torsion is
developed in detail in the book:

[132] Weber C., Gunter W. Torsionstheorie. Akadernie-Verlag, Berlin, 1958.

Subsections 6.3.5-6.3.7
The membrane analogy was suggested in the paper:

[133] Prand tl L. Eine neue Darstellung der Torsionsspannungen bei prisma
t ischen Staben von beliebigem Querschnitt , Jahresbericht Deutscher
Math.-Vereins, 1904, vol. 13, p. 31.

For applicat ion of the analogy to experimentally solving the problem of
torsion (the soap film method) see t he references in [131].

A great number of isoperimetric problems related to the problem of tor
sion is considered in the monograph :

[134] P6lya G., Szego G. Isoperimet ric Inequaliti es in Mathemat ical Physics.
Princeton University Press, 1951.

Inequality (3.7.7) is obt ained in the paper:

[135] Nikolai E.L. On the problem of the elastic line of double curva
ture (in Russian) . Works on Mechanics (Library of Russian science),
Gostekhizdat , 1955 (first published in 1916).

Subsections 6.3.13-6.3.17
For the variat ional methods of solving the problem of torsion see [57].

The first publication on t he variational method of Kantorov ich is
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[136] Kantorovich L.V. One direct method of approximately solving the
problem of the minimum of a double integral (in Russian) . Publish
ers of the Academy of Sciences of USSR, Division of Physical and
Mathematical Sciences, No.5, pp . 647-652, 1933.

Considerable attention is paid in Chapter 8 of monograph [131] to torsion
of extended and thin-walled profiles. The problem of torsion of multiple
connected thin-walled profiles is considered in detail in [16] .

Section 6.4
The problem of bending by a force is considered in courses [1 , 2, 3,

12] and monograph [57] at great length. The relevant literature is not as
extensive as for the problem of torsion . The graphi c-analytical method of
determining the true shear stress (rather than the mean one) is suggested
in the paper mentioned in Subsection 6.4.1:

[137] Tricomi F. Sulla problema della trave soggetto a una sforza di traglio.
Atti della Accad. Naz. del Lincei, Ser. VI, 1934, vol. 18, pp. 484-488.

The material of papers [57, 129] is used for presenting Subsections 6.4.5,
6.4.6 and 6.4.8. The results by Dunkan and Griffith mentioned in the text
are contained in the papers:

[138] Griffith A, Taylor G. The Problem of Flexure and its Solution. Re
ports and Memoranda, N 399, 1917.

[139] Dunkan W. Torsion and Flexure of Cylinders and TUbes, Reports ani
Memoranda, No. 1444, 1932.

Calculations of Subsection 6.4.7 are taken from the paper:

[140] Lurie A.I. Approximate solution of some problems of torsion and
bending of a rod (in Russian) . Trans actions of the Leningrad Indus
tri al Institute, 1939, No.3, pp. 121-125.

Section 6.5
The theory was first suggested by Michell in the paper:

[141] Michell I.H. The Theory of Uniformly Loaded Beams. Quart. Journ.
of Math., vol. 32, pp. 28-42, 1900 and published again in book [78] .

Michell's problem is tre ated in [1] with unsubstantiated complexity. Pre
sentation of Subsections 6.5.1-6.5.6 relies on the paper:

[142] Lurie A.I. Michell's problem (in Russian) . In Stroitelnaya Mekhanika.
Collection of papers celebrat ing 80th year of I.M. Rabinovich. Stroi
izdat, Moscow, 1966.

For the centre of bending in Michell's problem see the paper:
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[143] Khasis A.L. Michell's problem and the line of centre of bending (in
Russian) . Publishers of the Academy of Sciences of USSR, OTN ,
Mekhanika i Mashinostroenie, 1960, No. 5, pp . 58-65.

The calculation of Subsection 6.5.7 (bending of a heavy rod) is also car
ried out in [1] . In Subsection 6.5.8 there is a generalizat ion of the problem
considered in Subsection 6.4.1 to the case of a uniformly loaded beam. See
also [19] .

Subsection 6.5.9
The statement and way of solving the problem of a beam loaded on the

lat eral surface due to a polynomial law are given in the papers:

[144] Almansi E. Sopra la deformazione dei cylindri sollecitat i lat eralmente.
Rendiconti delta Reale Accad . dei Lincei. Ser. 6, 10, pp . 333-338, 400
408, 1901.

A transparent form of solut ion of Almansi's problem is given in the paper:

[145] Dzhanelidze G.Yu. Almansi's problem (in Russian) . Transactions of
the Leningrad Polytechnic Institute, Dinamika i P rochnost Mashin ,
1960, No. 210, pp. 25-38.

Chapter 7

The efficiency of applying the complex variable to the plane problem of
elast icity was first point ed out by G.V. Kolosov in the monograph :

[146] Kolosov G.V. About one applicat ion of the theory of functions of com
plex variable to plane problem of mathematical problem of elasti city
(in Russian). Yuriev, 1909.

The statement , proof of existence and the practical way of solving the
boundary-value problems was given by N.r. Muskhelishvili in paper [2] (the
first edit ion appeared in 1933) and the preceeding publications, among
which the fundamental ones are:

[147] Muskhelishvili N.r. Sur l'int egration de l 'equation biharmonique, Tra
nsaction of Russian Academy of Sciences, 1919, pp. 663-686.

Muskhelishvili N.r. Applicat ions des integrales analogues a celles de
Cauchy a quelques problemes de la physique mathematiques, Tiflis,
edition de l'Universite, 1922.

Utilising complex variables in the plane problem of elast icity is the sub
ject of the monographs:

[148] Babuska L, Rektorys K., Vycichlo F. Mathematis che Elastizitat sthe
orie der ebenen Probleme, Akademie-Verlag, Berlin , 1960.
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[149] Milne-Thomson 1. M. Plane Elasti c Systems. Ergebnisse der ange
wandten Mathematik, No.6, Springer-Verlag, Berlin - Gottingen,
1960.

[1 50] Belonosov S.M. Main plane static problems of the th eory of elastic
ity (in Russian) . Publishers of the Academy of Sciences of USSR,
Siberian Division, Novosibirsk, 1962.

Many particular problems are considered in the two-volume monograph :

[151] Teodorescu P. P. Probleme plane in teoria elast icitatii, vol. 1, 995 p.,
1960; vol. 2, 669 p., 1965.

In the present book the application of complex variable to the plane
problem is reduced to examples of solving the simple (first and second)
boundary-value problems. The mixed boundary-value problems requiring
applicat ion of methods of linear adjunct ion and singular integral equations
are presented in detail in the last edit ions of book [2] as well as in [149, 150] .
In book [148] much space is given to applicat ion of the integral equat ions.

Th ere is no possibility and need to mention an enormous number of
papers devoted to the application of the methods of complex variables and
integral equations to the plane problem. An exte nsive bibliography in given
in [2] and the reviews:

[152] Vekua LN., Muskhelishvili N.J. Methods of theory of analytical func
tions in the t heory of elast icity (in Russian) . Pro ceedings of the All
Union Congress on Theoretical and Applied Mechanics, Publishers of
the Academy of Sciences of USSR, 1962.

Sherman D.1. Method of integral equations in plane and three-dimensi
onal problems of the static theory of elast icity (in Russian). Pro ceed
ings of the All-Union Congress on Theoretical and Applied Mechan
ics, Publi shers of the Academy of Sciences of USSR, 1962.

The solut ions to a number of plane problems which are not based on the
methods of the theory of functions are presented in the books [3, 16] and
in the paper :

[153] Timp e A. Probleme der Spannungsverteilung in ebenen Systemen,
einfach gelost mit Hilfe der Airyschen Funktion . Zeitsch. fur Math.
u. Physik, 52, pp. 348-383, 1905.

Section 7.2
See book [3] for the bibliography related to the papers by A. Mesnager

(1901), C. Ribiere, (1898), L. Filon , (1903) and Kh. Golovin. The solut ions
for the st rip and a bar with a circular axis suggested in Subsections 7.2.3
7.2.10 are obt ained by the methods developed in Chapters 3 and 4 of book
[70] for the elastic layer and thick plate. Integral Fourier transforms were
utilised in the problem of elast ic st rip (Subsect ion 7.2.8) in the papers:
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[154] v. Karman Th . Uber die Grundlagen der Balkentheorie. Abhandlun
gen aus dem Aerodynamischen Insti tu t Aachen, pp . 3-10, 1927.

Seewald F. Die Spannungen und Forrnanderungen von Balken mit
rechteckigem Querschnit t. Ibid. , pp . 11-33.

The results by Seewald in the form of curves of corrections to the elemen
tary theory of beam are reproduced in detail in book [3]. The homogeneous
solutions of the problem on equilibrium of the elast ic layer were first sug
gested in the paper:

[1 55] Fadle 1. Die Selbstspannungs-Eigenwertfunktionen der quadratischen
Scheibe. Ingenieur-Archiv, vol. 11, No.4, pp . 125-149, 1940.

The Table of root s in Subsection 7.2.12 is taken from this pap er. In
addit ion to investigations [124, 125] using homogeneous solutions for taking
into account the distortion of st resses due to the influence of the end faces
it is worth mentioning

[1 56] Grinb erg G.A., Lebedev N.N., Uflyand Ya.S. Meth od for solving the
general biharmoni c problem prescribed on t he contour by the value
and the normal derivative (in Russian). Prikl adnaya Matematika i
Mekhanika, 1953, vol. 17, No. 1, pp. 73-86.

A review of st udies on homogeneous solutions is contained in the paper:

[157] Dzhanelidze G.Yu., P rokopov V.K. Method of homogeneous solutions
in mathematical theory of elast icity (in Russian). Proceedings of the
All-Union Mat hematical Congress, Nauka, Moscow, 1964.

It was S. P. Timoshenko who initiated utilizing approximate solutions in
the plane problem in the paper:

[158] Timoshenko S. P. The Approximate Solution of Two-Dimensional
Problems in Elasticity, Phil. Mag., 47, pp. 1095-1104, 1924 (repro
duced in Collected Papers of S.P. Timoshenko, McGraw-Hill, 1953).

These approaches together with the method of homogeneous solutions
were next developed in the papers:

[159] Horvay G. The End Problem of Rectangular Strip. Journ. of Appl.
Mech. Trans. ASME, No. 52-A-2, pp . 87-94, 1953.

[1 60] Horvay G., Born J. S. Th e Use of Self-Equilibrating Functions in
Soluti on of Beam-Problems. Pro c. of the 2nd V. S. Nat . Congr. Appl.
Mech., Ann-Arbor, Mich., 1954.

Section 7.3
The solution to the problem of a concent rated force in the elastic plane

(Subsect ion 7.3.1) is given by Michell in the paper:
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[161] Michell I.H. Elementary Distributions of Plane Stress. Pro c. London
Math. Soc., 32, pp. 35-61, 1900 (reproduced in [78]) .

This paper is also devoted to other plane problems on action of concen
trated singularit ies.

Subsections 7.3 .5-7.3.8
The theory of the plane contact problem is considered in books [2, 111],

see also review [113] . Apparently, the simplest base of the plane die (Sub
sect ion 7.3.7) was first considered by M.A. Sadowsky in the paper:

[162] Sadowsky M.A. Zweidimensionale Probleme der Elastizitat stheorie.
Zeitschrift fur angewandte Mathematik und Mechanik , 8, pp. 515
518, 1928.

Section 7.4
The problem of Subsection 7.4.1 for a concent rated force at the wedge

vertex was first solved in [161] . The Mellin integral t ransform in the problem
on a wedge under arbit rary loading of its sides was first applied by V.M.
Abramov in the paper:

[163] Abramov V.M. Distribution of stresses in a plane unbounded wedge
under arbit rary load (in Russian). Pro ceedings of the Conference on
Optical Method of Str ess Studying, a NTI , 1937.

The case of loading the edge with a concentrated force is considered in
the paper:

[164] Lurie A.I., Brachkovsky B.Z. Solution of the plane problem of elas
ticity for a wedge (in Russian) . Transactions of the Leningrad Poly
technic Institute, 1941, No.3, pp. 158-165.

An explanation of the Carot hers paradox (Subsect ion 7.4.3) is given in
book [150]. Th is question is also the subj ect of the thorough paper:

[165] Sternberg E., Koiter W. The Wedge under Concentrated Couple: A
Paradox in the Two-Dimensional Theory of Elasticity. Journ. of Appl.
Mech., 25, N 4, pp. 581-585, 1958.

Another tr eatment is given in the paper:

[166] Neuber H. Losung des Carothers-Problems mittels Prinzipien der
Kraftubertragung (Keil mit Moment an der Spitze) . Zeitschrift fur
angewandte Mathemat ik und Mechanik , 43, No. 4-5, pp. 211-228,
1963.

The significance of the principle of "t ransmission of stresses through the
surface of force tr ansfer" is not limited by the explanation of the Carothers
paradox.
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The problem of the wedge is considered in book [106] at greater length ,
the Table of Subsection 7.4.4 being taken from this book. The case of
loading the wedge is studied in greater detail in [105] than in Subsection
7.4.4.

Section 7.5
Clearly, the basic source for writing this section was book [2] . The ma

terial of book [149] was used as well.
A general representation for the stress function in the double-connected

domain (Subsections 7.5.5-7.5.6) was given by Michell in the paper:

[167] Michell LH. On the Direct Determination of Stress in an Elastic Solid
with Application to the Theory of Plates. Proc. Lond. Math. Soc.,
vol. 31, pp. 100-124, 1899 (reproduced in [78]).

Section 7.6
The problem of Subsections 7.6.1 and 7.6.2 for a disc loaded by concen

trated forces is considered in [2] in detail. Some specific examples of loading
by forces on the circle which are in equilibrium with a concentrated force
and a moment applied at the disc centre are considered in [167]. Graphical
illustrations of the stress distribution in the disc are provided.

The classical Kirsch problem (1898) on tension of the plane weakened by
a circular opening (Subsection 7.6.12) caused numerous investigations of
local stresses in the vicinity of cavities in the plane field of stresses. They
are presented in greater detail in the book:

[168] Savin G.N. Distribution of stresses near openings (in Russian) . Nauko
va Dumka , Kiev, 1968 (first edition appeared in 1951). The book
contains an extensive bibliography.

A great number of specific problems are considered in the paper:

[169] Naiman M.L Stresses in a beam with a curvilinear opening (in Rus
sian). Transactions of TsAGI, 1937, No. 313.

The method for solving the plane boundary-value problem presented in
Subsections 7.6.13 and 7.6.14 is given in book [149].

Section 7.7
The problem of Subsections 7.7.2 and 7.7.3 on the annular ring is solved

in a simpler way than that appears in [2]. The closed-form solution in terms
of the elliptic functions is suggested in the book:

[170] Kolosov G.V. Application of complex variables to the theory of elas
ticity (in Russian) . aNTI, 1935.

The solution by means of the analytic continuation suggested in paper
[149] is not correct . The error is corrected here.
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Section 7.8
While considering the plane problems for the domains which are trans

formed into a circle by a polynomial we limit ourselves to indicating the
method of solut ion. The problem is considered in [2] in detail. Numerous
examples with resulting formulae are presented in papers [168, 169] . Th e
examples of Subsections 7.8.4 and 7.8.6 are treated in [149]. The results
of solving the problem of the non-concentr ic ring are shown in [168] . This
problem was considered in the paper:

[171] Chaplygin S.A., Arzhannikov N.S. On the question of deformation
of a tube bounded by two eccent ric cylinders and compressed by
constant pressure (in Russian) . Transactions of TsAGI, No. 123, 1933
(reprodu ced in Collect ion of Works by Chaplygin S.A., 1935, vol. 3,
pp. 323-338).

Bipolar coordinates are applied to solving the plane problem for th e
domain between two non-concentri c circles in the paper:

[172] Jeffery G. B. Plane Str ess and Plane Strain in Bipolar Coordinates.
Phil. Trans. Roy. Soc. London , Ser. A, pp. 265-293, 1921.

Chapter 8

Along with the above-mentioned books [4, 7, 19-22] the following books
are general t reat ises:

[173] Green A.E. , Adkins J . E. Large Elastic Deformations, 2nd ed. Oxford ,
England : Clarendon Press, 1970.

[1 74] Murn aghan F. D. Finite Deformat ion of an Elastic Solid, 1951.

[175] Varga O.H. Stress-Strain Behavior of Elast ic Materials. Selected Prob
lems of Large Deformations, Int erscience Publi chers, 1966.

[176] Truesdell C., Noll W. Nonlinear Field Theory of Mechanics, Hand
buch der Physik, vol. 3, 1965.

The aim of this fundamental work is to const ruct a unified theory of
the behaviour of solids based on a minimum numbers of basic assumpt ions
(the principles of invariance, determinism, local act ion). A class of "simple
materials" is proposed. The stress tensor of these materials depends on the
tim e-history of change in the displacement gradient (and not on the gradi
ents of higher order) . Elastic and hyperelast ic bodies belong to this class.
An extensive review of solutions of particular problems is given and much
at tent ion is paid to establishing the acceptable forms of dependence of t he
specific st rain energy of the hyperelast ic body on the st rain invariant s. The
book is provided with an extensive bibliography on the nonlinear theory of
elast icity up to 1965.
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[177] Brillouin L. Les Tenseurs en Mecanique et en Elasticite, Paris 1938.

Subsection 8.2.4
The const it ut ive law in the form equivalent to (2.4.6) is suggested in the

paper:

[178] Finger J. Uber die allgemeinsten Beziehungen zwischen Deformatio
nen und den zugehorigen Spannungen in aelot ropen und isotrop en
Subst anzen. Sitzungsberichte der Akademie der Wissenschaften Wien,
Ser. lla, 103, pp. 1073-1100, 1894.

Subsection 8 .2.9

[179] Grioli G. On the Thermodynamic Potential for Continuums with Re
versible Transformations - Some Possible Types, Meccanica, Journ.
of the It alian Ass. of Theoretical and Applied Mechanics, 1, N 1-2,
pp. 15-20, 1966.

The rot ated stress tensor and its representation in terms of the Cauchy
stress tensor are considered in book [174] .

Subsection 8.3.4
Representation of the energy tensor with the help of moduli k, u and the

similarity phase is given in the paper:

[180] Novozhilov V.V. On the relationship between the stresses and st rains
in a nonlinear medium (in Russian). Prikl adnaya Matematika i Mekha
nika 1952, vol. 15, No.2, pp. 183-194.

Subsections 8.4.1-8.4.2
The quadratic constitutive equation is formulated in Signorini 's memoirs:

[181] Signorini A. Transformazioni termoelastiche finite. Ann. Mat. pur.
appi, Ser. IV, 22, pp . 33-143. 1943; Ser. IV, 30, pp. 1-72, 1948.

Subsection 8.4.1
Remarks 1 and 2

[182] Zvolinsky N.V., Riz P.M. On some problems of the nonlinear theory
of elasticity (in Russian). Pr ikladnaya Matematika i Mekhanika, 1939,
vol. 2, No.4, pp. 417-426.

[183] Seth B.R. Finite Strain in Elastic Problems, Phil. Trans. Roy. Soc.
London. Ser. A, 234, pp . 231-264, 1935.

Subsections 8.4.6-8.4.9
See [173, 174, 175] , as well as

[184] Mooney M. A Theory of Large Elastic Deformation . Journ. Appl.
Phys. 11, pp. 582-592, 1940.
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[185] Rivlin R. S., Saund ers D. W. Large Elasti c Deformations of Isotropic
Materials. VII . Experiments on the Deformation of Rubber. Phil.
Trans. Roy. Soc. London, Ser. A, 243, pp. 251-288, 1951.

[186] Bridgmann P.W. The Compession of39 Substances to 100,000 kg/crrr' .
Pro c. Acd. Sci. Amsterdam, vol. 76, pp . 55-70, 1948.

The Table in Subsection 8.4.6 is taken from the book:

[187] Zarembo A.K., Krasilnikov B.A. Introduction into nonlinear acoust ics
(in Russian) . Nauka, Moscow, 1966,

and the papers listed in the Subsection.
Subsection 8.4.10
Neuber suggested the constit ut ive law (4.10.10), (4.10.13) in the paper:

[188] Neuber H. Stati sche Stabilitat nichtlin ear elast ischer Kont inua mit
Anwendun g auf Schalen. Zeitschrift fur angewandte Mathematik und
Mechanik , vol. 46, No. 3-4, pp. 211-220, 1966.

Section 8.5 and Subsections 8.5 .3 and 8.5.4
The principle of stat ionarity of complementary work is considered in the

paper:

[189] Levinson, A theorem on complementary energy in the nonlinear the
ory of elasticity, Journal of Applied Mechanics, Transactions ASME,
1965, No. 4.

Chapter 8 see also

[190] Tolokonnikov L.A. Equations of the nonlinear th eory of elast icity
in terms of displacements (in Russian) . Prikladnaya Mat ematika i
Mekhanika 1957, vol. 21, No.6.

Tolokonnikov L.A. On the relations between st resses and st rains in
nonlinear theory of elasticity (in Russian ). Prikladnaya Matematika
i Mekhanika, 1956 , vol. 20, No.3.

Chapter 9

Sections 9.1-9.3
see [20, 4, 176] and the works by Rivlin which are fundamental in the

nonlinear theory of elast icity :

[191] Rivlin R. S. Large Elastic Deformation ofIsotropic Mat erials, Further
Developments of the General Theory. Part IV, Phil. Trans. Roy. Soc.
London , Ser. A., 241, pp. 379-397, 1948;
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Rivlin R S. Large Elastic Deformation ofIsotropic Materials. Part V.
Problem of Flexure. Pro c. Roy. Soc. London , Ser. A, 195, pp. 463-473,
1949;

Rivlin R S. A Note on the Torsion of an Incompressible Highly
Elastic Cylinder. Pro c. Cambridge Phil. Soc., 45, pp . 485-487, 1949;

Rivlin R S. Large Elasti c Deformation of Isot ropic Materials, Part
VI, Further Result s in the Theory of Torsion, Shear and Flexure .
Phil. Trans. Roy. Soc. London . Ser . A, 242, pp. 173-195. 1949.

The contents of Subsection 9.2.2-9.2.4 is based upon the paper:

[192] Klingbeil W. W., Schield RT. Large-Deformation Analyses of Bonded
Elast ic Mount s. Zeitsch. fur angew. Math. u. Phys., vol. 17, No.2,
pp . 281-305, 1966.

Section 9.4 and Subsections 9.4.1-9.4.5
The suggested derivat ion of the equilibrium equations of initi ally loaded

elasti c bodies differs from th at in [4] . See also [32, 33] and the papers:

[193] Biezeno C.B., Hencky H. On the General Theory of Elastic Stability,
K. Akad. Wet . Amsterdam Pro c., 31, pp. 569-592, 1929; 32, pp . 444
456, 1930.

[194] Pearson C.E. General Theory of Elast ic Stability. Quart. of Appl.
Math., 14, pp. 133-144, 1956.

[195] Lurie A.I. Bifurcation of equilibrium of ideally elastic body (in Rus
sian). Prikl adnaya Mat ematika i Mekhanika , 1966, vol. 30, No.4, pp .
718-731.

Subsection 9.4.6
The problem of torsion of a tensioned rod was considered in [182] and in

the paper:

[196] Green A.E., Shield RT, Finite Extension and Torsion of Cylinders,
Phil. Trans . Roy. Soc. London , Ser. A, 244, pp. 47-84, 1951.

The problem of equilibrium of an initi ally compressed rod is considered
in [195] .

Section 9.5
For the second order effects see [191] as well as

[197] Green A.E, Rivlin RS. , Shield RT. General Theory of Small Elastic
Deformations, Proc. Roy. Soc. London , Ser. A, 211, pp . 128-154, 1952.

[198] Rivlin RS. The Solution of Problems in Second Order Elasticity The
ory. Journ. of Rat . Mech. and Analysis, 2, pp. 53-81, 1953.
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Subsection 9.5.3

[199] Toupin RA., Rivlin R S. Dimensional Changes in Crystals Caused by
Dislocation. Journ. of Mat hematical Physics, vol. 1, No. 1, pp . 8-15,
1960.

Section 9.6.
The theory of finite plane st rain is developed in the pape rs:

[200] Adkins J .E., Green A.E., Shield RT. Finite Plane Strain. Phil Trans,
Ser. A, 246, pp. 181-213, 1953.

[201] Adkins J .E., Green A.E., Nicholas G.C. Two-dimensional Theory of
Elasticity for Fini te Deformations. Phil. Transactions of the Royal
Society London, Ser. A, 247, pp. 279-306, 1954.

[202] Tolokonnikov L.A. Plane st rain of the incompressible material (in
Russian) . Transaction of the Academy of Sciences of USSR, 1957,
vol. 119, No. 6.

The plane problem for a wedge is considered in the paper:

[203] Klingbeil W.W ., Shield RT. On a Class of Solut ions in Physical
Fin ite Elasticity. Zeitschrift fur Mathemati k und Physik, vol. 17, No.
4, pp. 489-511, 1966.

A great number of papers are devoted to solut ions by the metho d of
successive approximation (Muskhelishvili's met hod). Let us ment ion the
following ones:

[204] Carlson D.E., Shield R T. Second and Higher Order Effects in a Class
of Problems in Plane Finite Elast icity, Archive for Rational Mechanics
and Analysis, 1965, vol. 19, No.3, pp. 189-214.

[205] Koifman Yu.I. Solut ion to the plane problem of the nonlinear the
ory of elast icity with a curvilinear opening (in Russian). Izvestiya
Vysshikh Uchebnykh Zavedenyi, St roitelstvo I Arkhitektura, 1961,
No. 1, pp. 44-51, Novosibirsk 1961.

Koifman Yu.I. Solutions of problems of nonlinear plane th eory of elas
ticity (in Ukrainian). Transactions of Lvov State University, Division
of Mechanics and Mathematics, 1962, No. 9.

Koifman Yu.I. Stress-strain state of tubes and annular discs of highly
elast ic nonlinear elast ic material (in Russian). Dinamika i Prochnost
Mashin , Publi shers of Kharkov University, 1966, No.3, pp. 75-81.

Savin C.N., Koifman Yu.I. Nonlinear effects in problems of stress
concentration near openings with a st iffened edge (in Russian). Prik
ladnaya Mekhanika, 1965, vol. 1, No.9 , pp . 1-13.
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Koifman Yu.l., Langleiben A.Sh. Large elastic deformations of a two
layered cylinder (in Russian). Prikladnaya Mekhanika, 2, No.9, pp.
71-72, 1966.

[206] Gromov V.G. On the influence of physical nonlinearity on stress con
centration around a circular opening under large strains (in Russian) .
Prikladnaya Mekhanika, 1965, vol. 1, No. 10.

Gromov V.G. Stress concentration around a circular cylindrical cavity
in an infinite nonlinear elastic body (in Russian) . Scientific Reports
of Rostov University, Series of Exact and Natural Sciences, 1964, 67.

Gromov V.G., Tolokonnikov L.A. On calculation of approximations
in the problem of finite deformations of incompressible material (in
Russian) . Transactions of the Academy of Sciences of USSR, Division
of Technical Sciences, 1953, vol. 2.

The plane problem of the nonlinear theory of elasticity is considered in
Chapter IX of book [168]. A comprehensive bibliography is provided .

Section 9.7
The constitutive law equivalent to eq. (7.1.1) is presented in the paper:

[207] Sensenig C.B. Instability of Thick Elastic Solid. Commun. Pure and
Appl. Math., vol. 17, No.4, pp. 451-491, 1964.

The statement of the boundary-value problems relevant to the case of
plane strain is given in the paper:

[208] John P. Plane Strain Problems for a Perfectly Elastic Material of
Harmonic Type. Commun . Pure and Appl. Math. , vol. 13, No.2, pp.
239-296, 1960.

Subsections 9.7.9 and 9.7.10

[209] Southwell R.V . On the General Theory of Elastic Stability. Phil.
Trans . Roy. Soc. London , Ser. A, vol. 213, pp. 187-244, 1913.

[210] Biezeno C.B. , Grammel R. Technische Dynamik. Springer, Berlin,
1953, vol. 1.

The problems of Subsections 9.7.11-9.7.13 and some analogous ones (hol
low cylinder under external pressure, circular plane loaded on its edge) are
considered in [207]. Another statement of the problem for the spherical
shell is considered in the paper:

[211] Feodosiev V.1. On the forms of equilibrium of a rubber spherical
shell under internal pressure (in Russian). Prikladnaya Matematika i
Mekhanika, 1968, vol. 32, No.2 pp. 339-344.
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Section 9.7 , see also

[212] Lurie A.I. Theory of elast icity for a semi-linear material (in Russian) .
Prikladnaya Matematika i Mekhanika, 1968, vol. 32, No.6.

Appendices A-E

More details about tensor calculus can be found in the books:

[213] Kilchevsky N.A. Elements of tensor calculus and the applicat ions to
mechanics (in Russian). Gostekhizdat , Moscow 1954.

[214] MacConnell A.J. Application of Tensor Analysis. New York, Dower,
1957.

[215] Schoute n J .A. Tensor analysis for physicists, New York, Dower, 1954.

While writing Appendix F book [63] and the following books were used:

[216] Hobson E.W. The Theory of Spherical and Ellipsoidal Harmonics.
New York: Chelsea, 1955.

[217] Appell P. Trait e de Mechanique Rationnelle. Figures d'equilibre d 'une
mase liquide homogene en rotation. Gauthi er-Villars , Paris , 1932.
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aerofoil, 469, 492
affine transformation, 113
Airy's function , 516
Almansi's problem, 511
Almansi's strain measure , 697
angle

shear, 96
similarity of deviators, 717,

723, 921
twist , 436

attracting sphere, 304
axes

principal
tensor , 965

bar
with circular axis, 535

loaded on end faces, 556
loaded on surface, 560

beam
elementary theory, 544
load

concentrated force, 551
cosinusoidal, 563
polynomial , 545

sinusoidal, 547
Beltrami's dependences, 159, 161
bending

aerofoil, 493
beam , 536
heavy rod, 507
hyperboloid, 319
rectangular plate, 119, 761
strip into cylindrical panel,

857
bending moment, 67, 312, 410
bending of rod, 478

aerofoil profile, 492
elliptic cross-section , 480
rectangular cross-section , 482

bifurcation of equilibrium
compressed rod , 871, 873
hollow sphere , 874

bifurcation parameters, 798
body

elastic, 694
Hencky's , 740
ideally-elastic, 693
Neuber 's , 740

boundary-value problem
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distortion, 238
double-connected region, 607
first

external, 228, 679
for circle, 635
for half-space, 277
for sphere, 286
internal, 222

infinite region with opening ,
603

linear elasticity, 152
plane, 599
Riemann's, 577
second

for ring, 654
for sphere , 292
internal, 224

simply-connected finite region,
599

Boussinesq's potential, 252
Boussinesq's problem, 261
Boussinesq-Cerruti's problem , 264
Boussinesq-Galerkin's solution , 163
Bridgman's tests, 132, 735
bulk modulus, 132

adiabatic, 136
isothermal, 136

Carothers's paradox, 594
Carothers-Inglis's solution, 593
Cauchy's dependences , 37, 46, 55
Cauchy's integral , 618

principal value, 621
Cauchy's strain measure , 697
cavity

ellipsoidal, 332
spheroidal , 339

Cayley-Hamilton's theorem, 895,
905, 913

centre
expansion , 246
rotation, 247

centre of bending , 429
centre of rigidity, 429, 488
Cesaro 's formula, 83

Christoffel's symbols
first kind, 939
second kind, 111, 971

circular slot , 341
cobasis, 908, 959
coefficient

linear expansion , 75
thermal conductivity, 149
thermal diffusivity, 150
thermal expansion , 659

coefficients
Lame's, 940

compatibility conditions , 81
complimentary work, 187
components

metric tensor
covariant , 939

tensor, 885
vector

contravariant, 960
covariant, 960
physical, 961

compression
elastic strip, 765
layer, 769
uniform, 757

concent rated moment , 244
conditions

compatibility, 81
continuity, 81

conformal transformation, 665
constitutive law, 129, 693

Finger's, 703
Finger's form, 702, 756, 811
isotropic ideally-elastic body,

698
linear theory, 129, 151
Murnaghan's, 733
Neuber 's, 740
Piola's tensor, 711
quadratic, 726
quasilinear, 726
Signorini's, 724

simplified, 729
contact of surfaces, 366



contact problem, 347
plane, 577

continuity conditions, 81
contraction of indices, 893
convergence with respect to en-

ergy, 184
coordinate lines, 938
coordinate surfaces, 937
coordinates

curvilinear , 164, 937
orthogonal, 526

cylindrical , 938, 947
ellipt ic, 953
Eulerian, 31
Lagrangian , 31
material , 31, 54
orthogonal, 166
polar , 527
spherical, 938, 948

degenerated, 951
covariant differentiation, 972
crystal twinning, 256
cylinder turned inside out , 772,

777

dead load, 743, 802
deformation

axially-symmetric
round cylinder, 850

body of revolution , 171
radial-symmetric, 847

cylinder, 123
hollow sphere, 122, 785
sphere, 851

vector, 927
dependences

Beltr ami, 161
Beltrami 's, 159
Beltrami-Michell's, 412
Cauchy's, 37, 46, 55
Lame's , 947
Saint-Venant 's, 81

derivative
principal invariants of tensor

with respect to tensor , 916

Index 1041

deviator, 50, 717, 912
stress tensor, 50

die
non-plane, 354, 361

ellipt ic base, 363
plane, 582

parabolic profile, 583
rigid,347

plane, 350, 577
rigid plane

elliptic base, 356
dielectric const ant , 53
differential

scalar, 975
vector, 975

differential equation
cylindrical functions, 389

dilatation, 109
dipole

moment , 246
Dirichlet 's problem

external, 218
for half-space, 275
spheroid, 995

disc
compressed by concentrated

forces, 624
general loading , 625
in rigid casing, 641
loaded by concentrated forces,

622
rot ating, 632

dislocation , 88, 820
displacement , 30

virtual, 60
displacement vector , 30, 81
displacements

thermoelastic, 254
distortion, 230

double-connected region, 607,
653

in hollow cylinder
rotational, 379
tr anslational, 380

Volterra, 88
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Volterra's, 820
divergence

dyadic , 929
tensor , 928, 945, 976
vector , 926, 943, 975
vector product , 928

dyadic, 891

elastic half-plane, 567
elastic layer , 761
elastic plane, 567
elast icity moduli

generalised, 699, 719
relationship , 141

elementary parallelepip ed, 40
ellipsoid

rot ating, 320
ellipt ic slot , 343
energy

free, 135, 695
intern al, 694
potential , 745

distortion, 234
system, 178

strain , 133
specific, 137, 141

ent ropy, 134, 695
epitrochopidal oval, 679
equat ion

differential
cylindrical functions, 389
dilatation, 154

thermal conduct ivity, 149
equat ions

integral
first boundary value prob

lem,217
second boundary value prob

lem, 219
linear theory of elast icity, 151

curv ilinear coordinates, 164
ort hogonal coordinates, 166

Navier-Stokes's , 828
te rms of displacements, 153

Arzh anykh-Sl obodyansk y's
solut ion, 158

Papkovich-Neuber's solution,
155

Tedone's form , 153
equat ions of equilibr ium

integral
rod , 410

equations of neutral equilibrium
Southwell's, 866

equat ions of stat ics
plane problem, 514

equilibrium
elast ic cylinder, 373
elast ic sphere, 285

equilibrium equat ion
elast ic cylinder, 373

equilibrium equations
in volume, 38
on surface, 38

Euclidean space , 882
extension, 80, 95
extensions

principal, 706

field
plane displacement , 114
stress, 34

Filon 's problem, 393
Finger 's constitutive law, 703
finite rotati on of medium, 100
first law of therm odynamics, 133,

694
Flamant's probl em, 570

generalisati on , 573
follower pressure, 802
force

axial, 410
cent rifugal, 32
concent rated, 551, 567, 583,

586
external, 32
external sur face, 33
inerti a of t ranslational mot ion,

32



internal, 32
mass, 32

potential, 32
short-range interaction, 35
tensile, 67
transverse, 67, 312, 410
volume, 32

force dipole, 246
force tensor, 244
formula

Cesaro's, 83
Clapeyron's, 144
Gauss-Ostrogradsky's, 64, 932
Goursat 's, 532
Green's, 426
Lauricella's , 245
Mooney's , 739
Rodrigues's, 899

formulae
Kolosov's , 530
Kolosov-Muskhelishvili 's, 532,

604
Weingart en's, 88

free energy, 135, 695
free-body principle, 33
funct ion

Love's, 169, 216
Papkovich-Neuber 's, 264
warping, 430, 436

function of torsion
complex-valued, 436

functions
Muskhelishvili's, 533, 602

Gauss 's theorem, 207
generalised Hooke's law, 139
generalised orthogonality, 402
geometric rigidity

torsional, 425, 440
Gibbs's potential, 145, 193, 695

variation , 695
Golovin's problem, 556
Goursat 's formula, 532
gradient , 925

scalar product , 927

Index 1043

scalar with respect to tensor,
916

vector , 926, 943, 976
gradient of divergence, 930
Green's formula, 426

half-plane
force directed along bound

ary, 575
normal load , 573

half-space
elastic, 260

hardening, 137
heat capacity at constant pressur e,

75
heat flux, 149
Hencky's body, 740
Hencky's medium , 130, 137
Hertz 's problem, 347, 371
Hooke's law

generalised, 129, 139
plane problem, 514

Hookean medium , 131
hyperboloid of revolution

bending by force, 319
bending by moment , 320

inclusion, 256
incompatibili ty, 83
index

dummy, 882
free, 882

inequali ties
Nikolai's, 446
Truesdell's , 713

influence function, 554
influence tensor, 204, 206

elast ic half-space, 267
integral

Cauchy's, 618
intensity

centre of expansion, 244
dipole, 246
shear st rains, 100, 718
shear stresses, 51, 718
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internal energy
specific, 133

invariants
deviator, 913
st ra in measure

principal, 697
tensor, 903

principal, 697
tensors of finite strain, 108

Kantorovich's method, 463
Kirchhoff's theorem, 214
Kirsch's problem, 647
Kolosov's formulae, 530
Kolosov-Muskhelishvili 's formulae,

532, 604
Kronecker 's symbol, 882

Lame's coefficients , 940
Lame's dependences, 947
Lame's moduli , 139
Lame's problem, 657, 771

hollow cylinder, 378
sphere, 785

Lame's product , 986
Laplace operator

scalar , 930, 944, 976
vector, 930

layer, 761
Levi-Civita 's symbols, 38, 883, 896
Levi-Civita 's tensor, 963
linear st ra in tensor, 79, 128
load

distributed normal
half-space, 263

Love's function , 169, 216
Love's solut ion, 168

main basis, 959
mass density, 29
material

harmonic type, 711
incompressible, 737
Mooney's, 759, 776
under ultrahigh pressure, 734

matrix, 885
Maxwell's theorem, 198
measure of finite st rain

first , 89
second, 101

medium
hardening, 137
Hencky's, 130, 137
Hookean, 131
incompressible, 699

Mellin's transform, 588
membrane analogy, 441
method

Galerkin 's, 185
Kantorovich's, 463
moving trihedron, 942
optical, 571
Ritz 's, 183, 790
Saint-Venant 's, semi-inverse,

412
methods of variat ional calculus

direct , 183
Michell's problem, 494
Mises's yield condit ion, 138
Mises's yield criterion, 71
modul us

bulk, 132
shear , 132
Young's, 70, 140

Mohr 's circles of st ress, 47
moment

bending, 67, 312, 410
concentr at ed, 244

at vert ex of wedge, 592
dipole , 246
principal

surface forces, 525
moments

components of stress tensor,
64

first order , 65
second and higher order, 71

function, 63
Mooney's formula, 739
Mooney's material, 759, 776



multiple-connected regions, 474
Muskhelishvili 's functions, 533, 602

nabla-operator, 925
Navier-Stokes's equations, 828
Neuber's body, 740
Neumann's problem, 416, 436
Nikolai's inequalities, 446
non-plane die, 354, 361

ellipt ic base, 363
normal stress, 37

oblong profile, 467
octahedron plane , 49
opening in infinit e plane, 643
orthogonality

generalised, 402

Papkovich-Neuber 's functions, 264
Papkovich-Neuber 's solut ion, 155,

205
body of revolution, 174

Piela-Kir chhoff's stress tensor , 710
plain st rain

semi-linear material , 852 ·
plane field of displacement , 114
plane problem, 513, 522

nonlinear elasticity, 829
plane st rain , 513
plane st ress, 518, 835

generalised , 521
point

central, 237
observat ion, 199
source, 199

Poisson's ratio , 70, 140
potential

Boussinesq's, 252
Gibbs's, 145, 193, 695

potentials
elast icity theory, 208
simple layer

ellipsoid, 999
Poyntin g's effect, 760, 784
principal axes of strain , 99

Index 1045

principal axes of tensor , 900
principal direct ions of tensor, 45
pr incipal invariants, 44

st ress tensor , 44
principal shear strains, 100
principal shear st resses, 49
principal st ra in, 99
principal stresses, 45
principal value of integral, 209
principal values

deviator, 912
tensor, 902, 908

principle
elast ic equivalence, 193
Hamilton 's, 183
minimum complementary work,

178, 186
minimum potenti al energy of

system, 178, 180
Saint-Venant 's, 193

Mises's formul ati on , 280
stationarity

mixed, 178, 190
virtual work, 58

principles
energetic, 178
variational

accounting for thermal terms,
192

statics, 178
prismatic rod, 409
problem

Almansi's, 511
axisymmet ric, 168
beam , 535
beam bending, 536
beam tension, 536
bending

aerofoil, 493
bending of hyperbol oid, 319
bending of rod by force, 478
Boussinesq's, 261
Boussinesq-Cerru ti 's, 264
contact , 347

plane, 577
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Dirichlet 's
exte rnal, 218
for half-space, 275
spheroid, 995

elastostatic Robin's
ellipsoid, 323
sphere, 288

Filon's, 393
Flamant 's, 570

generalisation, 573
Golovin's, 556
Hertz's, 347, 371
Kirsch's, 647
Lame's, 657, 771

hollow cylinder, 378
Michell's, 494
mixed

half-space, 278
Neumann's, 416, 436
plane, 513, 522
plane st rain in plate, 535
rigid die, 347
Robin 's, 226
Saint-Venant 's, 409

plane, 537
tens ion of hyperboloid, 315
tors ion, 433
torsion of hyperboloid, 318

problem of bending
variational statement , 486

problem of torsion, 433
problems

nonlinear elast icity, 755
process of deformation

adiabatic, 135, 696
isothermal , 135, 696

product
double vector, 884
Lame's, 986
scalar, 881
vector , 881

quasi-static consideration, 150
quasi-vector, 893

reciprocity theorem, 197, 232
account of thermal terms, 203

region
double-connected, 685

ring-shaped, 599
infinite with opening, 599
simply-connected finite , 599,

674
relationships

between principal invariants,
105

relative volume change, 60
rheology, 693
Ribiere-Filon's solution, 547
Ricci's identities, 981
Ricci's tensor, 981
rigid die, 347

plane, 350, 577
ellipt ic base, 356

rigidity
geometr ic, 425, 440

ring
non-concentric, 687
round,653

Ritz's method , 790
Robin 's problem, 226

elastostatic, 218, 226
ellipsoid, 323
sphere, 288

rod
prismatic, 409
tension, 498

rod bending, 478
rot atin g ellipsoid, 320
rotating sphere, 305
rotor

tensor, 929
vector, 926, 944, 975
vector product , 928

rotor of rotor, 930

Saint-Venant 's principle
Mises's formulation, 280

Saint-Venant 's problem, 409
plane, 537



scalar, 881
invariant, 915

second law of thermodynamics, 134
second order effects , 810, 815
shear , 80

pure, 50
simple, 116, 732, 759, 857

shear modulus, 132
shear stress, 37
shears

principal, 100
similarity transformation, 110
simple shear, 116, 732, 759, 857
slot

circular , 341
elliptic , 343

solution
Boussinesq-Galerkin 's, 163
Carothers-Inglis's, 593
homogeneous

cylinder, 395
strip, bar , 565

Love's, 168
Papkovich-Neuber's, 155, 205

body of revolution , 174
problem of torsion

approximate, 462
Ribiere-Filon 's, 547
Trefftz's, 285

solution to problem
equilibrium of cylinder

in terms of Bessel functions ,
389

polynomial, 382
specific internal energy, 133
sphere

attract ing, 304
rotating, 305

square of linear element, 938
square of tensor, 895
stat e

final, 29
initial, 29, 700
natural, 29, 700

Index 1047

stati cally equivalent systems of forces,
193

st ationarity
complementary work, 749
potential energy of system, 743

Sternberg's theorem, 283
Stokes's theorem, 935
Stokes's t ransformation, 934
strain

principal, 99
st rain energy, 133

specific, 137, 141, 696, 712
linear-elastic body, 141
Mooney's form, 737, 739

stra in measure
first , 78, 93
logarithmic, 842
second, 78

strain measures, 104
Ahnansi' s, 697
Cauchy's, 697

strain tensor
linear , 79, 128

st ress
normal, 37
shear, 37

stress field, 34
st ress function

Airy', 516
Michell's form, 610

Airy's, 44, 504
problem of torsion, 433
Saint-Venant 's problem, 415
Timoshenko's, 482

stress functions
Maxwell's, 43
Morera's, 43

st ress tensor, 34, 57, 128, 257, 702,
708, 756, 794

dyadic representation, 55
energet ic, 61, 698

modified, 739
equal shear st resses, 52
Piola-Kirchhoff ''s. 710
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separation into spherical ten
sor and deviator, 50, 717

stress vector, 37
stresses

ellipsoidal cavity, 332
nominal, 313
principal, 706

shear, 49
thermal

elastic half-space , 270
sphere, 289, 298

symbol
Kronecker 's, 882
Levi-Civita's , 38

symbols
Christoffel 's

first kind , 939
second kind , 111, 971

Levi-Civita's , 883, 896
system of forces

in small volume, 245
superstatic, 282

system of stresses
Maxwell's electrostatic, 53

temperature
absolute, 134
mean , 615

temperature distribution
stationary, 615

tension
beam, 536
elastic strip, 765
layer, 770
plane with round opening, 646
plate with round opening, 647
ring by concentrated forces,

659
uniaxi al, 731, 736, 758, 806,

856
tension force, 312
tension of rod , 498
tensor

Almansi-Hamel's, 103
Cauchy-Green's, 98

compliance, 887
curvature, 980
deformation of vector , 927, 945,

976
finite strain

first (Cauchy-Green's) , 98
second (Almansi-Hamel's),

103
first strain measure, 78, 93
force, 244
inc, 931, 982
inertia, 891
influence, 204, 206

elastic half-space, 267
inverse, 896
isotropic, 896
Kelvin-Somigliana's, 206

analogue, 567
Levi-Civita's, 963
metric, 961, 970
positive , 906
Ricci's, 981
Riemann-Christoffel 's, 980
rotation, 107, 708, 898
second rank, 885
second strain measure, 101
skew-symmetric , 889
spherical, 50, 903
stress, 34, 57, 128, 257, 702,

708, 756, 794
dyadic representation, 55
energet ic, 61, 698
equal shear stresses, 52
separation into spherical ten-

sor and deviator, 50, 717
stress functions , 43, 833
symmetric, 889
trace, 894
transpose, 888
unit, 892

tensor function of tensor, 915
tensor of rotation, 107, 708
tensor operations, 888
tensors

higher ranks , 893



Levi-Civit a's , 830
similar , 921

theorem
Cayley-Hamilton's, 895, 905,

913
circulation of shear stresses ,

437
existence of solut ion, 223
Gauss's

generalised, 207
Kirchhoff's, 214
Maxwell's, 198
reciprocity, 197, 232

account of thermal terms,
203

Ricci's , 973
Sternberg's, 283
Stokes's, 935

theory of elast icity
linear , 127
moment , 35
non-symmetrical, 35

thermal conductivity coefficient ,
149

thermal conduct ivity equation, 149
Fourier , 150

thermal stresses , 610
elast ic half-space, 270
sphere, 289, 298

thermodynamics
first law, 133, 694
second law, 134

torque, 67, 312, 410
torsion

body of revolution , 171
circular cylinder , 118, 779
compressed rod , 807
hollow cylinder, 385
hyperboloid of revolution, 318

torsion function
complex-valued, 436

torsion of rod
approximate solut ion, 462
circular cross-sect ion

circular groove, 450

Index 1049

eccent ric ring, 455
ellipt ic cross-sect ion, 443
ellipt ic ring, 453
oblong profile, 467
rectangular cross-section, 447,

463
thin-walled tube, 471

with cross-piece, 476
t rapezoidal cross-section, 465
tri angular cross-sect ion, 449

transformation
affine, 113, 887
basis, 964
conformal, 665
Krutkov's, 161
similarity, 110
Stokes's, 934

transverse force, 312
Trefftz's solut ion, 285
tube under pressure, 657, 771
twist angle, 436

unit vector , 882

vector, 881
absolute value, 883
accompanying tensor, 890
circulat ion, 935
displacement , 30, 81
distortion

rotational, 230
t ranslat ional, 230

electric field st rength, 53
heat flux, 149
Papkovich-Neuber , 326
principal

surface forces, 525
rotation, 80
st ress, 37

vectors
Laplace spherical, 286

velocit ies of shear and compres
sion waves, 145

Volterra 's distortion, 820
volume
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double-connected, 230

warp ing, 423
warp ing function , 430, 436
wedge, 586
Weingarten's formulae, 88
work

complimentary, 187
elementary

change in form, 62
change in volume, 62

elementary of external forces,
58, 129

specific, 59
work of deformation

complementary, 747
specific, 748

yield condition
Mises's, 138

yield st ress, 138
Young's modulus, 70, 140
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