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Preface

Structural design sensitivity analysis concerns the relationship between design variables 

available to the design engineer and structural responses determined by the laws of 

mechanics. The dependence of response measures such as displacement, stress, strain, 

natural frequency, buckling load, acoustic response, frequency response, noise-vibration-

harshness (NVH), thermoelastic response, and fatigue life on the material property, sizing, 

component shape, and configuration design variables is implicitly defined through the 

governing equations of structural mechanics. In this text, first- and second-order design 

sensitivity analyses are presented for static and dynamics responses of both linear and 

nonlinear structural systems, including elastoplastic and frictional contact problems. 

 Prospective readers or users of the text are seniors and graduate students in 

mechanical, civil, biomedical, industrial, and engineering mechanics, aerospace, and 

mechatronics; graduate students in mathematics; researchers in these same fields; and 

structural design engineers in industry. 

 A substantial literature exists on the technical aspects of structural design sensitivity 

analysis. While some studies directly address the topic of design sensitivity, the vast 

majority of research is imbedded within texts and papers devoted to structural 

optimization. The premise of this text is that a comprehensive theory of structural design 

sensitivity analysis for linear and nonlinear structures can be treated in a unified way. The 

objective is therefore to provide a complete treatment of the theory and practical 

numerical methods of structural design sensitivity analysis. Design sensitivity supports 

optimality criteria methods of structural optimization and serves as the foundation for 

iterative methods of structural optimization. One of the most common structural design 

methods involves decisions made by the design engineer based on experience and 

intuition. This conventional mode of structural design can be substantially enhanced if 

the design engineer is provided with design sensitivity information that explains design 

change influences, without requiring a trial and error process. 

 Such advanced, state-of-the-art analysis methods as finite element analysis, boundary 

element analysis, and meshfree analysis provide reliable tools for the evaluation of the 

structural design. However, they give the design engineer little help in identifying ways 

to modify the design to either avoid problems or improve desired qualities. Using design 

sensitivity information generated by methods that exploit finite element, boundary 

element, or meshfree formulations, the design engineer can carry out systematic trade-off 

analysis and improve the design. This text presents design sensitivity analysis (DSA) 

theory and numerical implementation to create advanced design methodologies for 

mechanical systems and structural components, which will permit economical designs 

that are strong, stable, reliable, and have long service life. The design methodologies can 

be used by design engineers in the academia, industry, and government to obtain optimal 

structural designs for ground vehicles, aircraft, space systems, ships, heavy equipment, 

machinery, biomedical devices, etc. Extensive numerical methods for computing design 

sensitivity are included in this text for practical application and software development. 

More importantly, the numerical method allows seamless integration of CAD-FEA-DSA 

software tools, so that design optimization can be carried out using CAD geometric 

models instead of FEA models. This capability allows integration of CAD-CAE-CAM so 

that optimized designs can be manufactured effectively. 
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 The book is organized into two volumes, four parts, and fourteen chapters. Parts I and 

II are in Volume 1: Linear Systems, and Parts III and IV are in Volume 2: Nonlinear 

Systems and Applications. 

 Part I introduces structural design concepts that include the CAD-based design model, 

design parameterization, performance measures, costs, and constraints. Based on the 

design model, an analysis model is introduced using finite element analysis. A broad 

overview of design sensitivity analysis methods is provided. By relying on energy 

principles to develop design sensitivity analysis theory, the design sensitivity method is 

developed without requiring highly sophisticated mathematics. The energy method is 

introduced in order to develop the variational equation and its relationship to the finite 

element method. Chapters 2 and 3 are essentially a review for students who have already 

learned energy methods in structural mechanics. The finite element method is explained 

as a technique based on a piecewise polynomial approximation of the displacement field 

and as an application of the variational method for approximating a solution to the 

governing boundary-value problem. In Part II, this relationship is successfully used in the 

development of discrete and continuum design sensitivity analysis methods and their 

relationships.

 Part II treats design sensitivity analysis of linear structural systems. Both discrete and 

continuum design sensitivity analysis methods are explained. Chapter 4 describes finite-

dimensional problems in which the structural response is a finite-dimensional vector of 

structural displacements, and the design variable is a finite-dimensional vector of design 

parameters. Governing structural equations are matrix equations. Direct design 

differentiation and adjoint variable methods of design sensitivity analysis are presented, 

along with the design derivatives of eigenvalues and eigenvectors. The computational 

aspects of implementing these methods are treated in some detail in conjunction with 

finite-element analysis codes. Chapters 5 through 7 treat continuum problems in which 

response and design variables are functions (displacement field and material distribution) 

and governing structural equations are the variational equations introduced in Chapters 2 

and 3. Sizing, shape, and configuration design variables are treated separately in Chapters 

5 through 7, respectively. Both the direct differentiation and adjoint variable method of 

design sensitivity analysis are developed, and design derivatives of eigenvalues are 

derived. Analytical solutions to simple examples and numerical solutions to more 

complex examples are presented. For both shape and configuration design variables, the 

material derivative concept is taken from continuum mechanics to predict the effect of 

design changes on the structural response. For a structural component with curvature, a 

more general configuration design theory is presented in Section 7.5 of Chapter 7. For 

shape design sensitivity, the adjoint variable method is used to derive expressions for 

differentials of the structural response, either as boundary integrals (the boundary method) 

or domain integrals (the domain method). A similar method is used for the shape design 

sensitivity of eigenvalues. 

 Part III treats design sensitivity analysis of nonlinear structural systems using 

continuum design sensitivity analysis methods. As with Chapters 2 and 3, the equilibrium 

equations for nonlinear structural systems are derived using the principles of virtual work 

from Chapter 8. Both geometric and material nonlinearities are treated. Nonlinear 

elasticity, buckling, hyperelasticity, elastoplasticity, nonlinear transient dynamics, and 

frictional contact problems are included. In nonlinear structural analysis, total and 

updated Lagrangian approaches have been introduced. The equilibrium equations are 

then linearized at the previously known configuration to yield incremental formulations 

for nonlinear analysis. The linearized equilibrium equation plays a key role in design 

sensitivity analysis in subsequent chapters, since the first-order variation with respect to 

the design parameter includes linearization of the energy form. The linearized form that 

appears during design sensitivity analysis is the same as the linearized form for nonlinear 
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analysis. Sizing, shape, and configuration design variables are treated separately in 

Chapters 9 through 11, respectively. Both adjoint variable and direct differentiation 

methods are given for the nonlinear elastic problem. However, for nonlinear elastoplastic 

problems, only the direct differentiation method is used, since the design sensitivity is 

path-dependent. Analytical derivations of design sensitivity expressions for structural 

components are presented, along with numerical examples of sensitivity computations. 

  Part IV is devoted to practical design tools and applications: sizing and shape design 

parameterization, design velocity field computation, numerical implementation of the 

sensitivity for general-purpose code development, and various other practical design 

applications. In Chapter 12, sizing design parameterization for line and surface design 

components is introduced. For shape design parameterization, a three-step process is 

developed. One important aspect of shape design parameterization is the connection 

between the design parameterization and the computation of the design velocity field, as 

explained in Chapter 13. In Chapter 13, the computational aspects of design sensitivity 

analysis are considered, using the finite element method to solve the original governing 

and adjoint equations. The numerical method allows seamless integration of CAD-FEA-

DSA, so that design optimization can be carried out using CAD models instead of FEA 

ones. Chapter 14 includes a number of practical design applications of linear and 

nonlinear structural systems with additional applications in thermoelastic analysis and 

fatigue design optimization to aid application-oriented readers.  

 A final comment on the notation used in this text. The structural design engineer may 

find that the notation conventionally used in structural mechanics has not always been 

adhered to. The field of design sensitivity analysis presents a dilemma regarding notation 

since it draws from fields as diverse as structural mechanics, differential calculus, 

calculus of variations, control theory, differential operator theory, and functional analysis. 

Unfortunately, the literature in each of these fields assigns a different meaning to the 

same symbol. Consequently, it is at times necessary to use symbols that look identical in 

an equation, but that come from very different notational systems. As a result, some 

notational compromise is required. The authors have adhered to standard notation except 

where ambiguity would arise, in which case the notation being used is indicated. 

 This book has been made possible due to contributions from the authors’ former 

students, namely, Drs. R.-J. Yang, H.G. Lee, H.G. Seong, B. Dopker, T.-M. Yao, J.L.T. 

Santos, J.-S. Park, J. Lee, S.-L. Twu, K.-H. Chang, M. Godse, S.M. Wang, I. Shim, C.-J. 

Chen, Y.-H. Park, H.-Y. Hwang, X. Yu, W. Duan, S.-H. Cho, B.S. Choi, I. Grindeanu, J. 

Tu, B.-D. Youn, and Y. Yuan. Special appreciation is given to Professor K.-H. Chang at 

University of Oklahoma for his contributions to numerical methods and his examples in 

shape design sensitivity analysis and optimization. In addition, the authors value the 

contributions of colleagues Drs. J. Cea, B. Roussellet, J.P. Zolesio, R. Haftka, B.M. 

Kwak, G.W. Hou, H.L. Lam, and Y.M. Yoo. Finally, special thanks to Mr. R. Watkins 

for his outstanding work editing the manuscript. 

Kyung K. Choi 

Nam H. Kim 

December 2004 
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Structural Design and  
Analysis



1
Introduction to 
Structural Design

1.1 Elements of Structural Design 

The design of a structural system has two categories: designing a new structure and 

improving the existing structure to perform better. The design engineer’s experience and 

creative ideas are required in the development of a new structure, since it is very difficult 

to quantify a new design using mathematical measures. Recently, limited inroads have 

been made in the creative work of the structural design using mathematical tools [1]. 

However, the latter evolutionary process is encountered much more frequently in 

engineering designs. For example, how many times does an automotive company design 

a new car using a completely different concept? The majority of a design engineer’s work 

concentrates on improving the existing vehicle so that the new car can be more 

comfortable, more durable, and safer. In this text, we will focus on a design’s 

evolutionary process by using mathematical models and computational tools. 

 Structural design is a procedure to improve or enhance the performance of a structure 

by changing its parameters. A performance measure can be quite general in engineering 

fields, and can include: the weight, stiffness, and compliance of a structure; the fatigue 

life of a mechanical component; the noise in the passenger compartment; the vibration 

level; the safety of a vehicle in a crash, etc. However, this text does not address such 

aesthetic measures as whether a car or a structural design is attractive to customers. All 

performance measures are presumed to be measurable quantities. System parameters are 

variables that a design engineer can change during the design process. For example, the 

thickness of a vehicle body panel can be changed to improve vehicle performance. The 

cross section of a beam can be changed in designing bridge structures. System parameters 

that can be changed during the design process are called design variables, even including 

the geometry of the structure. 

 Recently, the simulation-based design process has emerged as the future tool of the 

product development and manufacturing process, since it allows one to achieve a higher 

quality product, through a reduction in development time in introducing new products to 

the market, a reduction in testing cycles, and a reduction in total development costs. As 

noted in the scholarly treatment of product performance by Clark and Fujimoto [2], 

essentially all development activities prior to the operation of a vehicle are simulations. 

In this sense, simulation can involve either mathematical models, or physical experiments 

that are created to emulate environments and conditions experienced by the product in its 

actual use. 

 Great strides have been made during the past decade in computer-aided design (CAD) 

and computer-aided engineering (CAE) tools for mechanical system development. 

Discipline-oriented simulation capabilities in structures, mechanical system dynamics, 

aerodynamics, control systems, and numerous related fields are being used to support a 

broad range of mechanical system design applications. Integration of these tools to create 

a robust simulation-based design capability, however, remains a challenge. Based on their 

extensive survey of the automotive industry in the mid-1980s, Clark and Fujimoto [2] 

concluded that simulation tools in support of vehicle development were on the horizon, 
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but not yet ready for pervasive application. The explosion in computer, software, and 

modeling and simulation technology that has occurred since the mid-1980s suggests that 

high-fidelity tools for simulation-based design are now at hand. Properly integrated, they 

can resolve uncertainties and significantly impact mechanical system design. 

 An example of an integrated concurrent engineering environment for development of 

large-scale wheeled and tracked vehicle systems is illustrated in Fig. 1.1 [3]. It comprises 

simulation and modeling tools and an integration infrastructure to: (1) support design 

analysis, supportability analysis, operation analysis, and development process control; (2) 

establish connectivity between all application tools, with tool interactions transparent to 

the user; (3) refine product requirements; and (4) conduct trade-off analyses and make 

informed decisions to yield a robust optimal design. The integrated test bed shown 

supports concurrent design, operator-in-the-loop driving simulation, dynamic 

performance analysis, durability prediction, structural design sensitivity analysis and 

optimization, maintainability analysis, and design process management. The test bed 

permits all members of the development team to simulate the performance and 

effectiveness of product and process designs, at a level of fidelity comparable to that 

which would be achieved in physical prototyping. 

 Using the test bed, an integrated simulation-based design process for the fatigue life 

of vehicle components can be developed [3], as shown in Fig. 1.2. The process includes 

CAD modeling, dynamic analysis, fatigue analysis, design sensitivity analysis, and 

design optimization. The CAD-based design model is critically important for 

multidisciplinary analysis and design optimization. The process allows engineers to 

create a CAD model of a vehicle system and automatically translate the CAD model into 

a dynamics model. Dynamic simulations of the vehicle model are then carried out over 

typical road profiles to obtain load histories at selected components. In the meantime, 

CAD models of the selected vehicle components are created for design parameterization 

and translated into finite element analysis (FEA) models. The computation of the fatigue 

life of a component consists of two parts: dynamic stress computation and fatigue life 

prediction. The dynamic stress can be obtained either from experiments (mounting 

sensors or transducers on a physical component) or from simulation. Fatigue analysis is 

performed using the low cycle fatigue approach. Once the fatigue life of the vehicle 

components is obtained, design sensitivity analysis with respect to shape design variables 

defined in the CAD model is performed. With the design sensitivity information, design 

optimization can be carried out to obtain an optimum design. 

 As shown in Figs. 1.1 and 1.2, modern developments of structural design are closely 

related to concurrent engineering environments by which multidisciplinary simulation, 

design, and manufacturing are possible. Even though concurrent engineering is not the 

focus of this text, we want to emphasize structural design as a component of concurrent 

engineering. Figure 1.1 shows an example of concurrent engineering environments used 

in structural design. An important feature of Fig. 1.1 is database management using the 

CAD tool. Structural modeling and most interfaces are achieved using the CAD tool. 

Thus, design parameterization and structural model updates have to be carried out in the 

CAD model. Through the design parameterization, CAD, CAE, and CAM procedures are 

interrelated to form a concurrent engineering environment. 

 The engineering design of the structural system in the simulation-based design 

process consists of structural modeling, design parameterization, structural analysis, 

design problem definition, design sensitivity analysis, and design optimization. Figure 1.3 

is a flow chart of the structural design process in which computational analysis and 

mathematical programming play essential roles in the design. The success of the system-

level, simulation-based design process shown in Fig. 1.2 strongly depends on a consistent 

design parameterization, an accurate structural and design sensitivity analysis, and an 

efficient mathematical programming algorithm.  
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Figure 1.1. Integrated concurrent engineering environment. 

Figure 1.2. Simulation-based design optimization process for fatigue life. 
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Figure 1.3. Structural design process. 

 A design engineer simplifies the physical engineering problem into a mathematical 

model that can represent the physical problem up to the desired level of accuracy. A 

mathematical model has parameters that are related to the system parameters of the 

physical problem. A design engineer identifies those design variables to be used during 

the design process. Design parameterization, which allows the design engineer to define 

the geometric properties for each design component of the structural system being 

designed, is one of the most important steps in the structural design process. The 

principal role of design parameterization is to define the geometric parameters that 

characterize the structural model and to collect a subset of the geometric parameters as 

design variables. Design parameterization forces engineering teams in design, analysis, 

and manufacturing to interact at an early design stage, and supports a unified design 

variable set to be used as the common ground to carry out all analysis, design, and 

manufacturing processes. Only proper design parameterization will yield a good optimum 

design, since the optimization algorithm will search within a design space that is defined 

for the design problem. The design space is defined by the type, number, and range of 

design variables. Depending on whether it is a concept or detailed design, selected design 

variables could be non-CAD based parameters. An example of such a design variable is a 

tire stiffness characteristic in vehicle dynamics during an early vehicle design stage. 

 Structural analysis can be carried out using experiments in actual or reduced scale, 

which is a straightforward and still prevalent method for industrial applications. 

However, the expense and the inefficiency involved in fabricating prototypes make this 

approach difficult to apply. The analytical method may resolve these difficulties, since it 

approximates the structural problem as a mathematical model and solves it in a simplified 

form. In this text, a mathematical model is used to evaluate the performance measures of 

a structural problem. However, the analytical method has limitations even for very simple 

structural problems. 

 With the emergence of various computational capabilities, most analytical approaches 

to mathematical problems have been converted to numerical approaches, which are able 
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to solve very complicated, real engineering applications. Finite element analysis, 

boundary element analysis (BEA), and meshfree analysis are a short list of mathematical 

tools used in structural analysis. The development of FEA is one of the most remarkable 

successes in structural analysis. The governing differential equation of the structural 

problem is converted to its integral form and then solved using FEA. Vast amounts of 

literature are published regarding FEA; for example, refer to [4] and references therein. 

The complex structural domain is discretized by a set of non-overlapping, simple-shaped 

finite elements, and an equilibrium condition is imposed on each element. By solving a 

linear system of matrix equations, the performance measures of a structure are computed 

in the approximated domain. The accuracy of the approximated solution can be improved 

by reducing the size of finite elements and/or increasing the order of approximation 

within an element. 

 Selection of a design space and an analysis method must be carefully determined 

since the analysis, both in terms of accuracy and efficiency, must be able to handle all 

possible designs in the chosen design space. That is, the larger the design space, the more 

sophisticated the analysis capability must be. For example, if larger shape design changes 

are expected during design optimization, mesh distortion in FEA could be a serious 

problem and a finite element model that can handle large shape design changes must be 

used.

 A performance measure in a simulation-based design is the result of structural 

analysis. Based on the evaluation of analysis results, such engineering concerns as high 

stress, clearance, natural frequency, or mass can be identified as performance measures 

for design improvement. Typical examples of performance measures are mass, volume, 

displacement, stress, compliance, buckling, natural frequency, noise, fatigue life, and 

crashworthiness. A definition of performance measures permits the design engineer to 

specify the structural performance from which the sensitivity information can be 

computed. 

 Cost and constraints can be defined by combining certain performance measures with 

appropriate constraint bounds for interactive design optimization. Cost function,

sometimes called the objective function, is minimized (or maximized) during 

optimization. Selection of a proper cost function is an important decision in the design 

process. A valid cost function has to be influenced by the design variables of the 

problem; otherwise, it is not possible to reduce the cost by changing the design. In many 

situations, an obvious cost function can be identified. In other situations, the cost function 

is a combination of different structural performance measures. This is called a 

multiobjective cost function.

 Constraint functions are the criteria that the system has to satisfy for each feasible 

design. Among all design ranges, those that satisfy the constraint functions are candidates 

for the optimum design. For example, a design engineer may want to design a bridge 

whose weight is minimized and whose maximum stress is less than the yield stress. In 

this case, the cost function, or weight, is the most important criterion to be minimized. 

However, as long as stress, or constraint, is less than the yield stress, the stress level is 

not important. 

 Design sensitivity analysis, which is a main focus of this text, is used to compute the 

sensitivity of performance measures with respect to design variables. This is one of the 

most expensive and complicated procedures in the structural optimization process. 

Structural design sensitivity analysis is concerned with the relationship between design 

variables available to the engineer and the structural response determined by the laws of 

mechanics. Design sensitivity information provides a quantitative estimate of desirable 

design change, even if a systematic design optimization method is not used. Based on the 

design sensitivity results, an engineer can decide on the direction and amount of design 

change needed to improve the performance measures. In addition, design sensitivity 



8  1. Introduction to Structural Design  

information can provide answers to “what if” questions by predicting performance

measure perturbations when the perturbations of design variables are provided. 

 Substantial literature has emerged in the field of structural design sensitivity analysis 

[5]. Design sensitivity analysis of structural systems and machine components has 

emerged as a much needed design tool, not only because of its role in optimization 

algorithms, but also because design sensitivity information can be used in a CAE 

environment for early product trade-off in a concurrent design process. 

 Recently, the advent of powerful graphics-based engineering workstations with 

increasing computational power has created an ideal environment for making interactive 

design optimization a viable alternative to more monolithic batch-based design 

optimization. This environment integrates design processes by letting the design engineer 

create a geometric model, build a finite element model, parameterize the geometric 

model, perform FEA, visualize FEA results, characterize performance measures, and 

carry out design sensitivity analysis and optimization. 

 Design sensitivity information can be used during a postprocessing of the interactive 

design process. The principal objective of the postprocessing design stage is to utilize the 

design sensitivity information to improve the design. Figure 1.4 shows the four-step 

interactive design process: (1) to visually display design sensitivity information, (2) to 

carry out what-if studies, (3) to make trade-off determinations, and (4) to execute 

interactive design optimization. The first three design steps, which are interactive modes 

of the design process, help the design engineer improve the design by providing structural 

behavior information at the current design stage. The last design step, which could be 

either interactive or a batch mode of the design process, launches a mathematical 

programming algorithm to perform design optimization. Depending on the design 

problem, the design engineer could use some or all of the four design steps to improve 

the design at each iterative step. As a result, new designs could be obtained from what-if, 

trade-off, or interactive optimization design steps. 

 For the purposes of design optimization, a mathematical programming technique is 

often used to find an optimum design that can best improve the cost function within a 

feasible region. Mathematical programming generates a set of design variables that  

Figure 1.4. Postprocessing design stage. 
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require performance values from structural analysis and sensitivity information from 

design sensitivity analysis to find an optimum design. Thus, the structural model has to 

be updated for a different set of design variables supplied by mathematical programming. 

If the cost function reaches a minimum with all constraint requirements satisfied, then an 

optimum design is obtained. 

 In the following sections, each element of the design process is discussed in detail. 

1.2 Structural Modeling and Design Parameterization 

The first step in the design process is structural modeling and design parameterization. 

The physical engineering problem is converted to a mathematical model and the 

parameters that define the mathematical model have to be identified. Then, the goal of the 

design process is to find the proper set of design variables to produce the desired 

performance. 

1.2.1 Structural Modeling 

When engineers analyze a structural problem, they need to convert the physical problem 

into a mathematical representation. Many analysis tools can be used to solve this ideal 

mathematical problem. After arriving at a solution of the mathematical problem, the 

meaning of the solution has to be correctly interpreted in its physical sense. Thus, if there 

is an error in the mathematical representation of the physical problem, then it is 

impossible to properly analyze the physical problem no matter what analysis tools are 

used. This mathematical representation of the structural problem is called structural 

modeling.

 The reliability of the analysis results strongly depends on the assumptions and 

idealization used in structural modeling. However, a too-complex representation of the 

physical problem may make it difficult to solve the mathematical problem. For example, 

when an engineer wants to determine the height and width of a bridge, it may not be 

important to model every bolt, because the desired results will consist of global flexibility 

and the bridge’s maximum degree of deflection. If each bolt is modeled for the entire 

bridge structure, then the analysis cost dramatically increases. It may be presumed that 

sections are constructed continuously without any breaks. However, after determining the 

size of the bridge, the engineer may want to design the number and size of each section of 

the bridge. The maximum magnitude of load carried by each bolt would then be of major 

concern. In this case, the size and distance between bolts would be important and 

structural modeling would need to include bolt strength. Consequently, different concerns 

require different structural models. It is the engineer’s responsibility to find an 

appropriate trade-off between accuracy and computational costs of analysis. 

1.2.2 Design Parameterization 

In structural modeling, the physical problem is represented by mathematical expressions, 

which contain parameters for defining that problem. For example, the cantilever beam in 

Fig. 1.5 has parameters including the length, l; the radius of cross section, r; and Young’s 

modulus, E. These parameters define the system and are called design variables. If design 

variables are determined, then the structural problem can be analyzed. Obviously, 

different design variable values usually yield different analysis results. The aim of the 

structural design process is to find the values of design variables that satisfy all 

requirements. 
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 All design variables must satisfy the physical requirements of the problem. For 

example, length l of the cantilever beam in Fig. 1.5 cannot have a negative value. 

Physical requirements define the design variable bounds. Valid design variables may 

have to take into account various manufacturing requirements. For example, the radius of 

a cantilever beam satisfies its physical requirement if r is a positive number. However, in 

real applications, the circular cross-sectional beam may not be manufactured if its radius 

is bigger than r
0
. Thus, the range of feasible design can be stated as 0 < r r

0
. (Note: In 

general, the bounds of design variables are denoted as r
L

r r
U
, where r

L
 is called the 

lower bound and r
U
 is called the upper bound, respectively.) In addition, the design 

engineer may want to impose certain design constraints on the problem. For example, the 

maximum stress of the beam may not exceed 
0
 and the maximum tip displacement of 

the beam must not be greater than z
0
. A set of design variables that satisfies the 

constraints is called a feasible design, while a set that does not satisfy constraints is called 

an infeasible design. It is difficult to determine whether a current design is feasible, 

unless the structural problem is analyzed. For complicated structural problems, it may not 

be simple to choose the appropriate design constraints so that the feasible region is not 

empty. 

 There are two types of design variables: continuous and discrete. Many design 

optimization algorithms consider design variables to be continuous. In this text, we 

presume that all design variables are continuous within their lower and upper bound 

limits. However, discrete design problems often appear in real engineering problems. For 

example, due to manufacturing limitations, the structural components of many 

engineering systems are only available in fixed shapes and sizes. Discrete design 

variables can be thought of as continuous design variables with constraints. As a result, it 

is more expensive to obtain an optimum design for a problem with discrete design 

variables. It is possible, however, to solve the problem assuming continuous design 

variables. After obtaining an optimum solution for the design problem, the nearest 

discrete values of the optimum design variables can be tested for feasibility. If the nearest 

discrete design variables are not feasible, then several iterations can be carried out to find 

the nearest feasible design. 

 It is convenient to classify design variables according to their characteristics. In the 

design of structural systems made of truss, beam, membrane, shell, and elastic solid 

members, there are five kinds of design variables: material property design variables, 

such as Young's modulus; sizing design variables, such as thickness and cross-sectional 

area; shape design variables, such as length and geometric shape; configuration design 

variables, such as orientation and location of structural components; and topological 

design variables. 

Figure 1.5. Parameters defining circular cross-sectional cantilever beam. 
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Material Property Design Variable 

In structural modeling, the material property is used as a parameter of the structural 

problem. Young’s modulus and Poisson’s ratio, for example, are required in the linear 

elastic problem. If these material properties are subject to change, then they are called 

material property design variables. These kinds of design variables do not appear in 

regular design problems, since in most cases material properties are presumed to be 

constant. Analysis using such a constant material property is called the deterministic 

approach. Another approach uses probability and assumes that material properties are not 

constant but distributed within certain ranges. This is called the probabilistic approach 

and is more practical, since a number of experiments will usually yield a number of 

different test results. In this case, material properties are no longer considered to be 

constant and can therefore be used as design variables. 

Sizing Design Variable 

Sizing design variables are related to the geometric parameter of the structure. For 

example, most automotive and airplane parts are made from plate/shell components. It is 

natural that a design engineer wants to change the thickness (or gauge) of the plate/shell 

structure in order to reduce the weight of the vehicle. For a structural model, plate 

thickness is considered a parameter. However, the global geometry of the structure does 

not change. Plate thickness can be considered a sizing design variable. The sizing design 

variable is similar to the material property design variable in the sense that both variables 

change the parameters of the structural problem. 

 Another important type of sizing design variable is the cross-sectional geometry of 

the beam and truss. Figure 1.6 provides some examples of the shapes and parameters that 

define these cross sections. In the structural analysis of truss, for example, the cross-

sectional area is required as a parameter of the problem. If a rectangular cross section is 

used, then the area would be defined as A = b × h. Thus, without any loss of generality, b

and h can be considered design variables of the design problem. Detailed discussions of 

sizing design problems are discussed in Chapter 5 using the distributed parameter 

approach.

Shape Design Variable 

While material property and the sizing design variables are related to the parameters of 

the structural problem, the shape design variable is related to the structure’s geometry. 

The shape of the structure does not explicitly appear as a parameter in the structural 

formulation. Although the design variables in Fig. 1.6 determine the cross-sectional 

shape, they are not shape design variables, since these cross-sectional shapes are 

considered parameters in the structural problem. However, the length of the truss or beam  

Figure 1.6. Sizing design variables for cross-sectional areas of truss and beam.  

(a) Solid circular, (b) rectangular, (c) circular tube, (d) rectangular tube, (e) I-section. 
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Figure 1.7. Shape design variables. 

should be treated as a shape design variable. Usually, the shape design variable defines 

the domain of integration in structural analysis. Thus, it is not possible to extract shape 

design variables from a structural model and to use them as sizing design variables.

 Consider a rectangular block with a slot, as presented in Fig. 1.7. The location and 

size of the slot is determined by the geometric values of Cx, Cy, Dy, r1, and r2, which are 

shape design variables. Different values of shape design variables yield different 

structural shapes. However, these shape design variables do not explicitly appear in the 

structural problem. If the finite element method is used to perform structural analysis, 

then integration is carried out over the structural domain (the gray area), which is the 

shape design variable. Since shape design variables do not explicitly appear in the 

structural problem, the shape design problem is more difficult to solve than the sizing 

design problem. Detailed discussions of the shape design problem are presented in 

Chapter 6 using the material derivative concept of continuum mechanics. 

Configuration Design Variable 

For those built-up structures made of truss, beam, and shell components, there is another 

type of design variable in addition to shape design called the configuration design 

variable, which is related to the structural component’s orientation. These components 

have local coordinate systems fixed on the body of the structure, and state variables of the 

problem are described in local coordinate systems. If several different components are 

connected together for the built-up structure, the state variables described in the local 

coordinate system are transformed to the global coordinate system. If the structural 

components change their orientation in space, the transformation between the local and 

global coordinates also changes. Thus, this transformation can be considered the 

configuration design variable. Since configuration design variables are defined for built-

up structures, they are inherently coupled with shape design variables. That is, in order to 

allow one member of the built-up structure to rotate, another member’s shape needs to be 

changed. The configuration design variable is not applicable to solid components in 

which all rotations can be expressed in terms of shape changes. A simple configuration 

design variable will be explained using the example of a three-bar truss in Section 1.2.3. 

More detailed discussions of the configuration design problem are presented in Chapter 7 

using the material derivative concept in continuum mechanics. 

Topology Design Variable 

If shape and configuration design variables represent changes in structural geometry and 

orientation, then topology design determines the structure's layout. For example, in Fig. 
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1.7, shape design can change the size and location of the slot within the block. However, 

shape design cannot completely remove the slot from the block, or introduce a new slot. 

Topology design determines whether the slot can be removed or an additional slot is 

required.

 The choice of the topology design variable is nontrivial compared with other design 

variables. Which parameter is capable of representing the birth or death of the structural 

layout? Early developments in topology design focused on truss structures. For a given 

set of points in space, design engineers tried to connect these points using truss structures, 

in order to find the best layout to support the largest load. Thus, the on-off types of 

topology design variables are used. These kinds of designs, however, could turn out to be 

discontinuous and unstable. 

 Recent developments in topology design are strongly related to finite element 

analysis. The candidate design domain is modeled using finite elements, and then the 

material property of each element is controlled. If it is necessary to remove a certain 

region, then the material property value (e.g., Young’s modulus) will approach zero, such 

that there will be no structural contribution from the removed region. Thus, material 

property design variables could be used for the purpose of topology design variables. The 

on-off type of design variable can be approximated by using continuous polynomials in 

order to remove the difficulties associated with discrete design variables. 

 In many applications, topology design is used at the concept design stage such that 

the layout of the structure is determined. After the layout is determined, sizing and shape 

designs are used to determine the detailed geometry of the structure. 

 A final comment on design parameterization: it is desirable to have a linearly 

independent set of design variables. If one does not, then relations between design 

variables must be imposed as constraints, which may make the design optimization 

process expensive, as the number of design variables and constraints increase. 

Furthermore, if design variable constraints are not properly established, meaningless 

design results will be obtained after an extensive amount of computational effort. As 

mentioned before, this problem is strongly related to structural modeling, since a well-

defined structural model should have an independent set of parameters to define the 

entire system. Even if defining a good model is not an easy task for a complicated design 

problem, the design engineer nevertheless has to define a proper and independent set of 

parameters as much as possible in the structural modeling stage. 

1.2.3 Three-Bar Truss Example 

In this section, a simple example is introduced to discuss design parameterization, which 

includes material property, sizing, shape, and configuration design variables. This 

example will be used repeatedly in subsequent sections to explain the structural analysis 

and design process. The three-bar truss consists of three truss components, as shown in 

Fig. 1.8. 

 For truss components, only one material parameter is involved, which is Young’s 

modulus, E. Thus, the material design parameter is u = [E]. On the other hand, the cross-

sectional area of each component can be chosen to represent the sizing design variables, 

stated as u = [b1, b2, b3]
T
. As explained in Fig. 1.6, the dimensions that determine the 

cross-sectional shape can be represented as a sizing design. However, for general truss 

structures, it is purely a matter of convenience whether the cross-sectional dimensions or 

the cross-sectional area is chosen as the sizing design. As far as analysis is concerned, 

only cross-sectional area information is required. For example, if the cross section of 

component 1 is a solid circular shape with radius r, then the relation between the cross-

sectional area and the radius would be b1 = r
2
.

 In Fig. 1.8, for example, if the length of member 1 is changed from l to l + l, then the 



14  1. Introduction to Structural Design  

integration domain, which is the shape design, would change. However, since all the 

members are interconnected, the third member's length and orientation must be modified 

to satisfy geometric requirements (Fig. 1.9). The change of length involves the shape 

design, while the rotation of a member affects the configuration design.

 As previously pointed out, shape and configuration design variables are closely 

coupled in the three-bar truss structure. The shape and configuration design variable is 

1 2 3 4 5 6[ , , , , , ] .Tx x x x x xx  (1.1) 

Figure 1.8. Three-bar truss structure. 

Figure 1.9. Shape and configuration design variable of truss structure. 
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1.3 Structural Analysis 

Structural analysis is solving the mathematical model of the physical problem. In this 

section, a variational method or energy method is introduced by using a simple truss 

structure. The structural equilibrium is viewed as a stationary condition of the total 

potential energy. For the positive definite quadratic energy, this condition becomes the 

global minimum condition. Combined with finite element discretization, this method is 

one of the most popular approaches in structural analysis. 

 Consider a one-dimensional truss structure under a distributed load f(x) and with point 

loads F1 at x = 0 and F2 at x = l, as shown in Fig. 1.10. In this text, z(x) denotes a 

displacement function; the more common notation u used for displacement is reserved as 

the design variable. For the moment, let the cross-sectional area u = A(x) vary along the 

truss structural component.  

 For given x, we assume that stress  is constant over the cross section A(x). Thus, 

stress is a function of x alone. The same assumption is given to strain  such that (x) = 

dz/dx. The stress-strain relation is linear elastic, stated as 

( ) ( ),x E x  (1.2) 

where E is Young’s modulus. 

 As loads are applied to the structure, the structure deforms to resist them. If all loads 

are removed, then the structure recovers its original shape. Thus, energy is stored in the 

deformed structure and is called the strain energy, defined as 

2

0 0

1 1
.

2 2

l l dz
U A dx EA dx

dx
 (1.3) 

 If the applied load accompanies the deformation, then work is done to the structure, 

and we can define it as 

1 2
0

(0) ( ).
l

W fz dx F z F z l  (1.4) 

 We can define the total potential energy of the structure as the difference between U
and W, given as 

2

1 2
0 0

1
(0) ( ).

2

l ldz
U W EA dx fz dx F z F z l

dx
 (1.5) 

Figure 1.10. Truss structural component. 

x, z
E, A(x)

f(x)

F1 F2

l
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 When the structure is in equilibrium, the forces generated by the structural 

deformation are the same as the externally applied loads. It is equally true that the total 

potential energy in (1.5) becomes stationary, which means that the first variation 

vanishes, so that 

1 2
0 0

(0) ( ) 0,
l ldz dz
EA dx f z dx F z F z l

dx dx
 (1.6) 

where z  is the first-order variation of displacement z. A detailed explanation of the 

variation is provided in Chapter 2. For the moment, z can be thought of as a small, 

arbitrary perturbation of z. If z is fixed at a point x, then z  vanishes at the same point. 

The structural problem is to solve for z in a way that satisfies (1.6) for all arbitrary .z

 If the kinematic boundary conditions are given at some point for displacement z, then 

the possible candidates for the solution are limited to those that satisfy the displacement 

boundary conditions. For example, if the truss structure in Fig. 1.10 is fixed at x = 0, then 

the candidates for the solution belong to the following solution space: 

1(0, ) | (0) 0 ,Z z H l z  (1.7) 

where H
1
 is a Sobolev space [6] of order one whose elements are continuous functions, 

and the first derivative of the function is square integrable in the domain. For a more 

detailed discussion of basic function spaces, refer to Appendix A.2. For the moment, 

readers can think of H
1
 as a space of smooth functions. In addition, the displacement 

variation z  should satisfy (1.7). Thus, the term 1 (0)F z  in (1.6) would vanish. Physically, 

if the displacement is fixed, then there would be no work done to the structure by the 

applied load. 

1.4 Finite Element Analysis 

The analytical solution to (1.6) is nontrivial, even for a simple built-up structure. For a 

general-shaped structure, an approximation of (1.6) is required by using finite elements. 

The finite element method approximates the domain of the structure as a simple geometry 

set, and then establishes the equilibrium conditions for each finite element. By combining 

all finite elements, a global system of matrix equations is obtained. 

 Consider a truss finite element with a constant cross-sectional area as shown in Fig. 

1.11. For simplicity, the distributed load is removed. Displacement of the truss element is 

represented by two end-displacements, namely, z1 and z2.

Figure 1.11. Truss finite element. 

x, z1 E, A

F1 F2

l

z2
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 The displacement at a point x in the domain (0, l) is interpolated by using z1 and z2 as 

1 1 2 2

1 2

( ) ( ) ( ) ,

( ) , ( ) ,

z x N x z N x z

l x x
N x N x

l l

 (1.8) 

where N1(x) and N2(x) are called the shape functions corresponding to nodes 1 and 2, 

respectively. Note that z(0) = z1 and z(l) = z2. The derivative of displacement, or strain, 

can be directly obtained from (1.8) as 

2 1

2 1

1
( ),

1
( ),

dz
z z

dx l

dz
z z

dx l

 (1.9) 

in which the second equation is the derivative of the displacement variation. By using 

(1.8) and (1.9), the variation of the total potential energy in (1.6) can be written as 

2 1 2 1 1 1 2 2( )( ) 0,
EA

z z z z F z F z
l

 (1.10) 

for all 1 2andz z  in Z = R
2
. To express (1.10) systematically, it is necessary to define the 

following vectors 

1 1 1

2 2 2

1 1
, , , ,

1 1

z z F EA

lz z F
z z f k  (1.11) 

where z is the nodal displacement vector and z  its variation; f is the nodal force vector; 

and k is the element stiffness matrix. The variational equation (1.10) for the truss element 

can be written as 

,T Tz kz z f  (1.12) 

for all z  in Z = R
2
. Since (1.12) is satisfied for all z  in Z, it is equivalent to solving the 

following matrix equation: 

,kz f  (1.13) 

which is called the local finite element equation. Equation (1.13) is applicable to one 

finite element. However, for a built-up structure, many truss elements are connected 

together to make a complete structure. In this case, the local finite element equation in 

(1.13) has to be combined to construct the global finite element equation, and this process 

is called assembly.

 To see the assembly and solution processes of the truss element, consider the three-

bar truss example with a multipoint boundary condition, as shown previously in Fig. 1.8. 

The displacement and load vectors can be written in the global coordinate system as 

1 2 3 4 5 6[ ] ,T
g z z z z z zz  (1.14) 

1 2[ 0 0 0 0] .T
g f fF  (1.15) 

 The element stiffness matrix in the body-fixed local coordinate system must 

transformed to the global coordinate system. For this purpose, let d
i
 denote the element 

local coordinate, and q
i
 represent the globally oriented element coordinate, as illustrated 
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in Fig. 1.12. In each element, the transformation between the body-fixed and the globally 

oriented coordinate is 

1 1

2 2

3 3

,

,

0 0

0 0
,

0 0

0 0

c s

s c

c s

s c

d q

d q

d q

where c = cos  and s = sin . In addition, the globally oriented coordinates are 

transformed into the global coordinate zg by using Boolean matrices as 

1

0 1 0 0 0 0

1 0 0 0 0 0
,

0 0 0 1 0 0

0 0 1 0 0 0

gq z

2

0 0 1 0 0 0

0 0 0 1 0 0
,

0 0 0 0 1 0

0 0 0 0 0 1

gq z

3

1 0 0 0 0 0

0 1 0 0 0 0
.

0 0 0 0 1 0

0 0 0 0 0 1

gq z

Figure 1.12. Body-fixed and globally oriented element coordinate system. 
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 After the assembly process, the generalized global stiffness matrix is expressed in 

terms of the global displacement coordinate zg as 

2 2 2 2
3 3 3 3

2 3 2 3
3 1 3 1 3 3

2 2

1 1

2 2 2 2
3 3 2 2 3 3

2 3 2 3
3 3 3 3

0 0

0

0 0 / 0 / 0
( ) .

0 0 0 0

/ 0 /

0 0

g

b c s b cs b c s b cs

b cs b b s b b cs b s

b s c b s cE

l b b

b c s b cs b s c b s c b c s b cs

b cs b s b cs b s

K u  (1.16) 

In (1.16), u = [b1, b2, b3]
T
 denotes the design variable vector, which is the cross-sectional 

area of each truss element. Note that the global stiffness matrix Kg is singular, since it has 

a rigid body motion that can be removed by applying boundary conditions. As shown in 

Fig. 1.8, the displacement variables z3 and z4 are fixed. In addition, z5 and z6 are 

dependent on each other. Solution candidates must satisfy these conditions. In this 

problem, space Z of kinematically admissible displacements is 

6
3 4 5 6: 0, cos sin 0 ,h gZ R z z z zz  (1.17) 

and Kg(u) is the positive definite in Zh, although it is not positive definite in all of R
6
.

Thus, the global variational equation of three-bar truss example is obtained as 

, ,T T
g g g g g g hZz K z z F z  (1.18) 

where g hZz  denotes for “all gz  in Zh.”

 In actual computation, the global variational equation is modified to explicitly 

eliminate the boundary condition. However, this is not the general case. In many FEA 

codes, the size of Kg is retained. Instead of explicitly removing rows and columns 

corresponding to the boundary conditions, equivalent relations are substituted to make Kg

positive definite. Since z3 and z4 are prescribed, they can be eliminated from the 

variational equation. In addition, since z5 and z6 has a relation, z6 can be expressed in 

terms of z5, as in (1.17). 

 Consider the case in which  = 45
o
 and  = 30

o
, and define the reduced global 

displacement vector as z = [z1, z2, z5]
T
. Accordingly, the reduced global load vector is 

defined as F = [f1, f2, 0]
T
. By removing the third and the fourth rows and columns of Kg,

and by substituting the relation 6 53z z , the reduced stiffness matrix in this example 

would be 

3 3 3

3 1 3 3

3 3 2 3

( 3 1)

( ) 2 2 ( 3 1) .
2 2

( 3 1) ( 3 1) 2 2 (4 2 3)

b b b
E

b b b b
l

b b b b

K u  (1.19) 

Thus, the reduced global matrix equation is written as 

.Kz F  (1.20) 

 If f1 = f2 = 1 and l = 1, then the solution of the reduced global matrix equation (1.20) 

is obtained as 

2 3 2

4 2 3 2 2 1 3
0 .

T

Eb Eb Eb
z  (1.21) 
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 The solution method in (1.20) is easier than that of (1.18). However, for general, 

complex kinematic constraints, it may not be easy to explicitly construct the reduced 

matrix K. In addition, many FEA codes do not generate a reduced matrix K during the 

solution procedure. Thus, the use of (1.18) is clear. In the next section, we will discuss 

how solution z in (1.21) can be changed as a function of design vector b.

1.5 Structural Design Sensitivity Analysis 

Design sensitivity analysis is used to compute the rate of performance measure change 

with respect to design variable changes. Obviously, the performance measure is 

presumed to be a differentiable function of the design, at least in the neighborhood of the 

current design point. For complex engineering applications, it is not simple to prove a 

performance measure’s differentiability with respect to the design. Consequently, the 

question of differentiability will be postponed until Chapters 5 and 6. For most problems 

in this text, one can assume that the performance measure is differentiable with respect to 

the design. 

 In general, a structural performance measure depends on the design. For example, a 

change in the cross-sectional area of a beam would affect the structural weight. This type 

of dependence is simple if the expression of weight in terms of the design variables is 

known. For example, the weight of a straight beam with a circular cross section can be 

expressed as

2( ) ,W r r l

where u = r is the radius and l is the length of the beam. If the radius is a design variable, 

then the design sensitivity of W with respect to r would be 

2 .
dW

rl
dr

 This type of function is explicitly dependent on the design, since the function can be 

explicitly written in terms of that design. Consequently, only algebraic manipulation is 

involved and no finite element analysis is required to obtain the design sensitivity of an 

explicitly dependent performance measure. 

 However, in most cases, a structural performance measure does not explicitly depend 

on the design. For example, when the stress of a beam is considered as a performance 

measure, there is no simple way to express the design sensitivity of stress explicitly in 

terms of the design variable r. In the linear elastic problem, the stress of the structure is 

determined from the displacement, which is a solution to the finite element analysis. 

Thus, the sensitivity of stress (z) can be written as 

,

T
d d d

dr d dr

z

z
 (1.22) 

where z is the displacement of the beam. Since the expression of stress as a function of 

displacement is known, d /dz can be easily obtained. The only difficulty is the 

computation of dz/dr, which is the state variable (displacement) sensitivity with respect to 

the design variable r.

 When a design engineer wants to compute the design sensitivity of performance 

measures such as stress (z) in (1.22), structural analysis (finite element analysis, for 

example) has presumably already been carried out. Assume that the structural problem is 
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governed by the following linear algebraic equation 

( ) ( ).u uK z f  (1.23) 

 Equation (1.23) is a matrix equation of finite elements if K and f are understood to be 

the stiffness matrix and load vector, respectively. Suppose the explicit expressions of 

K(u) and f(u) are known and differentiable with respect to u. Since the stiffness matrix 

K(u) and load vector f(u) depend on the design u, solution z also depends on the design u.

However, it is important to note that this dependency is implicit, which is why we need to 

develop a design sensitivity analysis methodology. As shown in (1.22), dz/du must be 

computed using the governing equation of (1.23). This can be achieved by differentiating 

(1.23) with respect to u, as 

( ) .
d d d

u
du du du

z f K
K z  (1.24) 

 Assuming that the explicit expressions of K(u) and f(u) are known, dK/du and df/du

can be evaluated. Thus, if solution z in (1.23) is known, then dz/du can be computed from 

(1.24), which can then be substituted into (1.22) to compute d /du. Note that the stress 

performance measure is implicitly dependent on the design through state variable z.

 In this text, it is assumed that the general performance measure  depends on the 

design explicitly and implicitly. That is, the performance measure  is presumed to be a 

function of design u, and state variable z(u), as 

( ), .u uz  (1.25) 

 The sensitivity of  can thus be expressed as 

const const

( ( ), )
.

T

u

d u u d

du u du
z

z z

z
 (1.26) 

The only unknown term in (1.26) is dz/du. Various computational methods to obtain 

dz/du are introduced in the following sections. 

1.5.1 Methods of Structural Design Sensitivity Analysis 

Various methods employed in design sensitivity analysis are listed in Fig. 1.13. Three 

approaches are used to obtain the design sensitivity: the approximation, discrete, and 

continuum approaches. In the approximation approach, design sensitivity is obtained by 

either the forward finite difference or the central finite difference method. In the discrete 

method, design sensitivity is obtained by taking design derivatives of the discrete 

governing equation. For this process, it is necessary to take the design derivative of the 

stiffness matrix. If this derivative is obtained analytically using the explicit expression of 

the stiffness matrix with respect to the design variable, it is an analytical method, since 

the analytical expressions of K(u) and f(u) are used. However, if the derivative is 

obtained using a finite difference method, the method is called a semianalytical method.

In the continuum approach, the design derivative of the variational equation is taken 

before it is discretized. If the structural problem and sensitivity equations are solved as a 

continuum problem, then it is called the continuum-continuum method. However, only 

very simple, classical problems can be solved analytically. Thus, the continuum 

sensitivity equation is solved by discretization in the same way that structural problems 

are solved. Since differentiation is taken at the continuum domain and is then followed by 

discretization, this method is called the continuum-discrete method. These methods will 

be explained in detail in the following sections. 
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Figure 1.13. Approaches to design sensitivity analysis. 

1.5.2 Finite Difference Method 

The easiest way to compute sensitivity information of the performance measure is by 

using the finite difference method. Different designs yield different analysis results and, 

thus, different performance values. The finite difference method actually computes 

design sensitivity of performance by evaluating performance measures at different stages 

in the design process. If u is the current design, then the analysis results provide the value 

of performance measure (u). In addition, if the design is perturbed to u + u, where u

represents a small change in the design, then the sensitivity of (u) can be approximated 

as

( ) ( )
.

d u u u

du u
 (1.27). 

 Equation (1.27) is called the forward difference method since the design is perturbed 

in the direction of + u. If – u is substituted in (1.27) for u, then the equation is defined 

as the backward difference method. Additionally, if the design is perturbed in both 

directions, such that the design sensitivity is approximated by 

( ) ( )
,

2

d u u u u

du u
 (1.28) 

then the equation is defined as the central difference method.

 The advantage of the finite difference method is obvious. If structural analysis can be 

performed and the performance measure can be obtained as a result of structural analysis, 

then the expressions in (1.27) and (1.28) are virtually independent of the problem types 

considered. Consequently, this method is still popular in engineering design.  

 However, sensitivity computation costs become the dominant concern in the design 

process. If n represents the number of designs, then n + 1 analyses have to be carried out 

for either the forward or backward difference method, and 2n + 1 analyses are required 

for the central difference method. For modern, practical engineering applications, the cost 

of structural analysis is rather expensive. Thus, this method is infeasible for large-scale 

problems containing many design variables. 

Forward Finite Difference 

Approximation Approach 

Central Finite Difference 

Semianalytical Method 

Discrete Approach 

Analytical Method 

Continuum-Discrete Method 

Continuum Approach 

Continuum-Continuum Method 
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Figure 1.14. Influence of step size in forward finite difference method. 

 Another major disadvantage of the finite difference method is the accuracy of its 

sensitivity results. In (1.27), accurate results can be expected when u approaches zero. 

Figure 1.14 shows some sensitivity results using the finite difference method. The 

tangential slope of the curve at u0 is the exact sensitivity value. Depending on 

perturbation size, we can see that sensitivity results are quite different. For a mildly 

nonlinear performance measure, relatively large perturbation provides a reasonable 

estimation of sensitivity results. However, for highly nonlinear performances, a large 

perturbation yields completely inaccurate results. Thus, the determination of perturbation 

size greatly affects the sensitivity result. And even though it may be necessary to choose 

a very small perturbation, numerical noise becomes dominant for a too-small perturbation 

size. That is, with a too-small perturbation, no reliable difference can be found in the 

analysis results. For example, if up to five digits of significant numbers are valid in a 

structural analysis, then any design perturbation in the finite difference that is smaller 

than the first five significant digits cannot provide meaningful results. As a result, it is 

very difficult to determine design perturbation sizes that work for all problems. 

Example 1.1. Three-Bar Truss (Finite Difference Method). Consider the three-bar 

truss example shown previously in Fig. 1.8. In this example, the finite element matrix 

equation, (1.20), can be solved analytically with the solution given in (1.21) as a function 

of the design variable vector u = [b1, b2, b3]
T
, which is the cross-sectional area of the truss 

elements. For simplicity, if the current value of the design is u = [1, 1, 1]
T
, and E = 1, 

then the solution becomes 

4 2 3 2 2, 0, 1 3 .
T

z  (1.29) 

Let us compute the design sensitivity of z1 by using the finite difference method. Since 

the dependence of z1 on the design is explicitly given, z1 can be straightforwardly 

computed at different design stages. Table 1.1 shows the sensitivities of z1 with different 

perturbation sizes. As the perturbation size decreases, the sensitivity value using finite 

difference method approaches an exact sensitivity value. In many cases, the central finite 

difference method is more accurate than the forward/backward finite difference method, 

as shown in Table 1.1, although for the central finite difference method, two performance 

measure evaluations are involved. Note that, in the latter case, since (1.21) is the exact  

u0 u1 u2 u3 u4 u

(d /du)4

(d /du)3

(d /du)2

(d /du)1
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solution of the matrix equation in (1.20), there is no concern with numerical noise. That 

is, as the design perturbation size decreases, the finite difference results will converge to 

the exact design sensitivities. 

1.5.3 Discrete Method 

A structural problem is often discretized in finite dimensional space in order to solve 

complex problems, as shown with the finite element method in Section 1.4. The discrete 

method computes the performance design sensitivity of the discretized problem, where 

the governing equation is a system of linear equations, as in (1.23). If the explicit form of 

the stiffness matrix K(u) and the load vector f(u) are known, and if solution z of matrix 

equation Kz = f is obtained, then the design sensitivity of the displacement vector can 

also be obtained, as 

( ) .
d d d

u
du du du

z f K
K z  (1.30) 

This is a discrete approach to the analytical method, since the explicit expressions of K(u)

and f(u) are used to obtain design derivatives of the stiffness matrix and load vector. Even 

if the expression of (1.30) is in the global system matrix, actual computation of these 

derivatives can still be carried out on the element level in order to avoid a massive 

amount of calculation related to global stiffness matrix K. An in-depth discussion of this 

method is presented in Chapter 4. 

 It is not difficult to compute df/du, since the applied force is usually either 

independent of the design, or it has a simple expression. However, the computation of 

dK/du in (1.30) depends on the type of problem. In addition, modern advances in the 

finite element method use numerical integration in the computation of K. In this case, the 

explicit expression of K in terms of u may not be available. Moreover, in the case of the 

shape design variable, computation of the analytical derivative of the stiffness matrix is 

quite costly. Because of this, the semianalytical method is a popular choice for discrete 

shape design sensitivity analysis approaches. However, Barthelemy and Haftka [7] show 

that the semianalytical method can have serious accuracy problems for shape design 

variables in structures modeled by beam, plate, truss, frame, and solid elements. They 

found that accuracy problems occur even for a simple cantilever beam. Moreover, errors 

in the early stage of approximation multiply during the matrix equation solution phase. 

As a remedy, Olhoff et al. [8] proposed an exact numerical differentiation method when 

the analytical form of the element stiffness matrix is available. 

Table 1.1. Sensitivity results of finite difference method. 

Forward FDM Central FDM 
Design 

b = 0.5 b = 0.1 b = 0.01 b = 0.5 b = 0.1 b = 0.01 
Exact

b1 0 0 0 0 0 0 0 

b2 –0.35727 –0.48718 –0.53059 –0.71453 –0.54131 –0.53595 –0.53590 

b3 –1.88561 –2.57130 –2.8004 –3.77124 –2.85700 –2.82871 –2.82843 
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Example 1.2. Three-Bar Truss (Discrete Method). To obtain discrete design 

sensitivity with respect to sizing design variables, consider the three-bar truss problem. 

More complicated design variables, namely, shape and configuration, will be considered 

in Chapters 6 and 7. Let us begin with the reduced global stiffness matrix given in (1.19). 

Since the explicit form of K(u) is given as a function of design variable u, its derivative 

can be obtained as 

1 2 3

0 0 0 0 0 0 1 1 3 1
1

0 1 0 , 0 0 0 , 1 1 3 1 ,
2 2

0 0 0 0 0 1 3 1 3 1 4 2 3

d d d

db db db

K K K
 (1.31) 

and load vector f is independent of the design, that is, df/du = 0. The right side of (1.30) 

can be obtained by multiplying (1.31) with (1.29) for each design variable. If F
u
 denotes 

the right side of (1.30), then its explicit expression would be 

1 2 3

0 0 1

0 , 0 , 1 .

0 3 1 1 3

b b bF F F  (1.32) 

Since the right side, corresponding to the first design variable, vanishes, the sensitivity of 

displacement with respect to b1 also vanishes. By solving (1.30) with respect to dz/du, we 

obtain

1 2 3

0 2 3 4 2 2

0 , 0 , 0 ,

0 3 1 0

d d d

db db db

z z z
 (1.33) 

which is the same result as the direct computation of sensitivity in (1.21). 

Example 1.3. Cantilever Beam (Discrete Method). Consider the cantilever beam in 

Fig. 1.15 with point load p at x = l. If one finite element is used to discretize the structure, 

as shown in Fig. 1.15(b), then displacement z(x) can be approximated as 

1

1

1 2 3 4

2

2

( ) [ ] ,T
g

z

z x N N N N
z

N z  (1.34) 

where z1 and z2 are nodal displacement, 1 and 2 are nodal rotations, and Ni’s are 

corresponding shape functions of the approximation, defined as 

2 3 2 3

1 22 3 2

2 3 2 3

3 42 3 2

3 2 2
1 , ,

3 2
, .

x x x x
N N x

ll l l

x x x x
N N

ll l l

 (1.35) 

 The variational equation of the beam bending problem in a continuum model can be 

written as 

, ,
0 0

( ) , ,
l l

xx xxEIz z dx p x l z dx z Z  (1.36) 
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(a) Continuum Model 

(b) Finite Element Model 

Figure 1.15. Cantilever beam. 

where E is Young’s modulus, I = bu
3
/12 is the second moment of inertia, (x – l) is the 

Dirac delta measure, which has a value of infinity at x = l and zero otherwise, and Z is the 

space of kinematically admissible displacements. For the moment, Z can be thought of as 

the space of smooth functions that satisfy the boundary condition z(0) = (0) = 0. 

 To obtain a finite element equation, the approximation in (1.34) is substituted into 

variational (1.36) to obtain 

, ,T T
g g g g g g hZz K z z F z  (1.37) 

where Zh = {z R
4
 | z1(0) = 1(0) = 0} is the discretized version of Z. Kg and Fg are given 

as
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 (1.38) 

For the cantilever beam shown in Fig. 1.15, the boundary condition is given such that 

z1(0) = 1(0) = 0. Thus, matrix Kg and vector Fg can be reduced only for z2 and 2, as 

2

3 2
2

12 6
.

6 4 0

z pEI
Kz F  (1.39) 

The solution z, and thus zg, can be obtained by solving (1.39) as 

3 2

0 0 ,
3 2

T

g

p p

EI EI
z  (1.40) 

and by using approximation in (1.34), displacement function z(x) can be obtained as 
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3 2( ) ( 3 ).
6

T
g

p
z x x x

EI
N z  (1.41) 

Note that z(x) in (1.41) is the exact solution in this special example. 

 The discrete method of design sensitivity can be obtained by differentiating the finite 

element matrix (1.39) with respect to the design. Consider height u of the cross-sectional 

dimension as a design variable. The design sensitivity equation can be obtained from 

(1.39) using a procedure similar to that in (1.30), as 

( ) ,ud d d
u

du du du

z F K
K z F  (1.42) 

where dF/du = 0, since F is independent of the design, and dK/du is calculated from 

(1.39) as 

3 2

12 63
.

6 4

d EI

du u

K
 (1.43) 

Thus, the right side of (1.42) can be computed as 
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and the design sensitivity of the displacement vector can be solved from (1.42) as 

3
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.
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d EIu
u

du EI p

EIu
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 (1.45) 

Since the shape function of the finite element approximation is independent of the design, 

the interpolation in (1.34) is valid for displacement sensitivity. Thus, the displacement 

function sensitivity can be obtained as 

2( )
( 3 ).

2
Tdz x d p

x x
du du EIu

z
N  (1.46) 

Equation (1.46) can be verified by directly differentiating the exact solution in (1.41). 

1.5.4 Continuum Method 

In the continuum method, the design derivative of the variational equation (the 

continuum model of the structure) is taken before discretization. Since differentiation is 

taken before any discretization takes place, this method provides more accurate results 

than the discrete approach. In addition, profound mathematical proofs are available 

regarding the existence and uniqueness of the design sensitivity. Most discussions in this 

text focus on the continuum method, in which analytical expressions of design sensitivity 

are obtained in the continuum setting. 

 Sizing design variables are distributed parameters of the continuum equation. For 

shape design variables, the material derivative concept of continuum mechanics is used to 

relate variations in structural shape to the structural performance measures [5]. Using the 

continuum design sensitivity analysis approach, design sensitivity expressions are 
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obtained in the form of integrals, with integrands written in terms of such physical 

quantities as displacement, stress, strain, and domain shape change. If exact solutions to 

the continuum equations are used to evaluate these design sensitivity expressions, then 

this procedure is referred to as the continuum-continuum method. On the other hand, if 

approximation methods such as the finite element, boundary element, or meshfree 

method are used to evaluate these terms, then this procedure is called the continuum-

discrete method. The continuum-continuum method provides the exact design sensitivity 

of the exact model, whereas the continuum-discrete method provides an approximate 

design sensitivity of the exact model. When FEA is used to evaluate the structural 

response, then the same discretization method as structural analysis has to be used to 

compute the design sensitivity of performance measures in the continuum-discrete 

method. 

Example 1.4. Cantilever Beam (Continuum Method). Continuum-based design 

sensitivity analysis is used to differentiate the variational (1.36) for the cantilever beam 

discussed in Example 1.3. As with the discrete method, the right side of (1.36) is 

independent of the design. Let us define differentiation or variation as 

,
dz

z u
du

 (1.47) 

where u is the amount of perturbation. The left side of (1.36) can be differentiated with 

respect to design u as 

, , , , , ,
0 0 0

3
.

l l l

xx xx xx xx xx xx

d EI
EIz z dx u EIz z dx z z u dx

du u
 (1.48) 

Thus, the continuum-based design sensitivity equation is obtained as, with u = 1, 

, , , ,
0 0

3
, ,

l l

xx xx xx xx

EI
EIz z dx z z dx z Z

u
 (1.49) 

which yields the solution z = dz/du. The continuum-continuum method solves (1.49) to 

obtain z  directly, whereas the continuum-discrete method first discretizes (1.49), 

following the same procedure as the finite element method. If the same approximation is 

used for z  as displacement function z in (1.34), then the left side of (1.49) becomes 

equivalent to (1.36) by considering zg as z g. The discretized design sensitivity equation 

therefore becomes 

, ,f
g g g g g g hZz K z z F z  (1.50) 

which can be solved using the same procedure as in Example 1.3. 

 Note that in the continuum method it is neither necessary to differentiate the stiffness 

matrix dK/du, nor to use any matrix multiplication procedure to calculate dK/du z, which 

involves a large amount of additional computational cost. 

 One frequently asked question is: “Are the discrete and continuum-discrete methods 

equivalent?” To answer this question, four conditions have to be given. First, the same 

discretization (shape function) used in the FEA method must be used for continuum 

design sensitivity analysis. Second, an exact integration (instead of a numerical 

integration) must be used in the generation of the stiffness matrix and in the evaluation of 

continuum-based design sensitivity expressions. Third, the exact solution (and not a 

numerical solution) of the finite element matrix equation and the adjoint equation should 

be used to compare these two methods. Fourth, the movement of discrete grid points must 

be consistent with the design parameterization method used in the continuum method. 
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For the sizing design variable, it is shown in [5] that the discrete and continuum-discrete 

methods are equivalent under the conditions given above, using a beam as the structural 

component. It has also been argued that the discrete and continuum-discrete methods are 

equivalent in shape design problems under the conditions given above [9]. One point to 

note is that these four conditions are not easy to satisfy; in many cases, numerical 

integration is used and exact solutions of the FE matrix equation cannot be obtained. 

1.5.5 Summary of Design Sensitivity Analysis Approaches 

As explained in previous sections, the design sensitivity analysis method has been 

developed along two fundamentally different paths, as shown in Fig. 1.13. In the discrete 

method, design derivatives of a discretized structural FEA equation are taken to obtain 

design sensitivity information. In the continuum method, design derivatives of the 

variational governing equation are taken to obtain explicit design sensitivity expressions 

in integral form with integrands written in terms of the following variations: material 

property, sizing, shape, and configuration design variables, and such natural physical 

quantities as displacement, stress, and strain [5]. The explicit design sensitivity 

expressions are then numerically evaluated using the analysis results of FEA codes. 

Unlike the finite difference method, the continuum method provides accurate design 

sensitivity information without recourse to the uncertainties of perturbation size. In 

addition, the continuum method does not require the derivatives of stiffness, mass, and 

damping matrices, as with the discrete method shown in Fig. 1.16. Another advantage of 

the continuum method is that it provides unified, structural design sensitivity analysis 

capability, so that it is possible to develop one design sensitivity analysis software system 

that works with a number of well-established analysis methods, such as FEA, the 

boundary element method, the p-method of FEA, and the meshfree method.  

Figure 1.16. Design sensitivity analysis methods.
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 One important advantage of the continuum-based design sensitivity analysis method 

is that it is possible to compute the results of design sensitivity analysis of the established 

FEA/BEA/meshfree codes with respect to the geometric design variables employed by 

CAD tools. For example, connections to CAD tools can be made by providing the design 

sensitivity of performance measures with respect to those design variables defined on the 

CAD tool. Using the same CAD-based design parameters in manufacturing tools lays the 

foundation for concurrent engineering. And once models are based on the same CAD 

tool, an integrated CAD-FEA-DSA system can be used to develop a design tool for a 

concurrent engineering method, such that design and manufacturing engineers can 

perform trade-off analysis in the early stages of the design process. A connection can also 

be made to multibody dynamic simulation, computational fluid dynamics, and other CAE 

tools, if these tools use the same CAD modeler as explained in Figs. 1.1 and 1.2. 

1.6 Second-Order Design Sensitivity Analysis 

First-order design sensitivity analysis, which was introduced in the previous section, is a 

linear approximation of the performance measure in terms of the design. However, if a 

higher-order approximation is used, then the accuracy of the approximation obviously 

increases. Second-order design sensitivity analysis uses a quadratic formula in order to 

approximate the performance change. Let us consider a Taylor series expansion of (u)

up to the quadratic terms, as 

2

2

1
( ) ( ) .

2

T

Td d
u u u u u u

du du
 (1.51) 

 This approximation is exact if  is a quadratic function of u. For general nonlinear 

performance, the quadratic approximation in (1.51) is much more accurate than linear 

approximation. In (1.51) the term d
2

/du
2
 is called the second-order design sensitivity of

. For a general n dimensional design vector u, the second-order design sensitivity 

becomes a n × n symmetric Hessian matrix, which involves n(n + 1)/2 calculations. 

Example 1.5. Three-bar Truss. Consider the three-bar truss example given in the 

previous section. For second-order design sensitivity, the design derivative is taken from 

the first-order sensitivity equation in (1.24), to obtain 

2 2 2

2 2 2
2 .

d d d d d

du dudu du du

z f K K z
K z  (1.52) 

The derivatives of stiffness matrix with respect to design in (1.31) are constants. Thus, 

the second-order derivative of stiffness matrix d
2
K/du

2
 vanishes, along with d

2
f/du

2
, and 

(1.52) is simplified to 
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By using (1.31) and (1.33), (1.53) can be solved for d
2
z/du

2
, yielding 
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which can be verified by differentiating the explicit expression of displacement in (1.21) 

twice with respect to the design. All other terms are zero. 

 Second-order sensitivity information is very useful for an optimization algorithm, 

since quadratic convergence can be achieved near the solution points if the Hessian 

information is available. However, computing second-order sensitivity results in quite 

large computational costs. Thus, the design engineer has to decide between 

computational cost and the optimization algorithm’s efficiency. 

1.7 Design Optimization 

The purpose of many structural design problems is to find the best design among many 

possible candidates. For this reason, the design engineer has to specify the best possible 

design as well as the best possible candidates. As discussed in Section 1.2, a possible 

candidate must exist within a feasible design region to satisfy problem constraints. Every 

design in the feasible region is an acceptable design, even if it is not the best one. The 

best design is usually the one that minimizes (or maximizes) the cost function of the 

design problem. Thus, the goal of the design optimization problem is to find a design that 

minimizes the cost function among all feasible designs. Although design sensitivity 

analysis is the main focus of this text, because many optimized designs will be presented, 

design optimization algorithms are briefly introduced in this section. However, this brief 

discussion is by no means a complete treatment of optimization methods. For a more 

detailed treatment, refer to [10] through [12]. 

 Most gradient-based optimization algorithms are based on the mathematical 

programming method, which requires the function values and sensitivity information at 

given design variables. For a given design variable that defines the structural model, 

structural analysis provides the values of the cost and constraint functions for the 

algorithm. Design sensitivities of the cost and constraint functions must also be supplied 

to the optimization algorithm. Then, the optimization algorithms, discussed in this 

section, calculate the best possible design of the problem. Each algorithm has its own 

advantages and disadvantages. The performance of an optimization algorithm critically 

depends on the characteristics of the design problem and the types of cost and constraint 

functions.

1.7.1 Linear Programming Method 

The linear programming method can be used when cost and constraints are linear 

functions of the design variables [13]. Most structural design problems, however, are 

nonlinear with respect to their design variables. Thus, the linear programming method is 

not of much use for structural problems. However, a nonlinear problem can be solved by 

approximating a sequence of linear problems, which will be discussed in Section 1.7.3. 

The standard form of a linear programming problem is 

minimize

subject to

Tf

0

c u

Au b

u ,

 (1.55) 

where c = [c1, c2, …, cn]
T
 is the coefficient of the cost function, A is the m × n matrix, and 

b is the m × 1 vector. Inequality constraints can be treated as equality constraints by 

introducing slack variables. Since all functions are linear, the feasible regions defined by 

linear equalities are convex, along with the cost function. Thus, if any optimum solution 
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of (1.55) exists, then it is a global minimum solution of the problem. The reason for 

introducing the linear problem here is that a very efficient method exists for solving 

linear programming problems, namely the simplex method. A positive feature of a linear 

programming problem is that the solution always lies on the boundary of the feasible 

region. Thus, the simplex method finds a solution by moving each corner point of the 

convex boundary. 

1.7.2 Unconstrained Optimization Problems 

When cost and/or constraints are nonlinear functions of the design, the design problem is 

called a nonlinear programming method, as contrasted to the linear programming method 

discussed in the previous section. Most engineering problems fall into the former 

category. Because the properties of nonlinear programming are nonlinear, this method is 

frequently solved using the numerical, rather than the analytical, method. 

 When there are no constraints on the design problem, it is referred to as an 

unconstrained optimization problem. Even if most engineering problems have 

constraints, these problems can be transformed into unconstrained ones by using the 

penalty method, or the Lagrange multiplier method. The unconstrained optimization 

problem sometimes contains the lower and upper limits of a design variable, since this 

type of constraint can be treated in simple way. The standard form of an unconstrained 

optimization problem can be written as 

minimize ( ),

subject to , 1, , .L U
k k k

f

u u u k n

u
 (1.56) 

 In the following subsections, numerical methods for solving (1.56) are discussed. 

Steepest Descent Method 

The numerical procedure for solving (1.56) is an iterative update of design u. If u
k
 is the 

value of the design at the kth iteration, then the new design at the (k + 1)th iteration can be 

obtained by 

1 1,k k ku u d  (1.57) 

where d
k+1

 is called the descent direction and  is a step size, used to determine the 

amount of movement in the direction of d
k+1

. If the descent direction is given, then 

parameter  is determined by using the line search procedure to find the minimum value 

of a cost function in the descent direction. The steepest descent method uses the gradient 

of the cost function as the descent direction, such that 

1 ( )
( ),

k
k k

k

f
f

u
d u

u
 (1.58) 

which is the design sensitivity of the cost function. This method suffers from a slow 

convergence near the optimum design, since it does not use any information from the 

previous design, and only first-order information of the function is used. Note that d
k
 and 

d
k+1

 are always orthogonal, such that a zigzagging pattern appears in the optimization 

process.

Conjugate Gradient Method 

The conjugate gradient method developed by Fletcher and Reeves [14] improves the rate 

of slow convergence in the steepest descent method by using gradient information from 
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the previous iteration. The difference in this method is the computation of d
k+1

 in (1.57). 

The new descent direction is computed by 

1 2 1( ) ,k k k
kfd u d  (1.59) 

where

1

( )
,

( )

k

k k

f

f

u

u
 (1.60) 

and where the first iteration is the same as (1.57). This method tends to select the descent 

direction as a diagonal of two orthogonal steepest descent directions, such that a 

zigzagging pattern can be eliminated. This method always has better convergence than 

the steepest descent method. 

Newton Method 

The previous methods we have examined use first-order information (first-order design 

sensitivity) of the cost function to find the optimum design, which is called linear 

approximation. The Newton method uses second-order information (second-order design 

sensitivity) to approximate the cost function as a quadratic function of the design. The 

major concern is how to compute the second-order design sensitivity (or Hessian) matrix. 

Let us define the Hessian matrix as second-order design sensitivity, defined in (1.51) as 

( )
( ) , , 1, , .

k
k

k k
i j

f
i j n

u u

u
H u  (1.61) 

The new design can then be determined, as 

1 1,k k ku u u  (1.62) 

where

1 1( ) ( ).k k kfu H u u  (1.63) 

If the current estimated design u
k
 is sufficiently close to the optimum design, then 

Newton’s method will show a quadratic convergence. However, the greater the number 

of design variables, the greater the cost of computing H(u
k
) in (1.61). In addition, 

Newton’s method does not guarantee a convergence. Thus, several modifications are 

available. For example, the design update algorithm in (1.62) can be modified to include 

a step size by using a line search, as in (1.57).

Quasi-Newton Method 

Although Newton’s method has a quadratic convergence, the cost of computing the 

Hessian matrix and the lack of a guaranteed convergence, are drawbacks to this method. 

The quasi-Newton method has an advantage over the steepest descent method and 

Newton’s method: it only requires first-order sensitivity information, and it approximates 

the Hessian matrix to speed up the convergence. 

 The DFP (Davidon-Fletcher-Powell [14]) method approximates the inverse of the 

Hessian matrix using first-order sensitivity information. By initially assuming that the 

inverse of the Hessian is the identity matrix, this method updates the inverse of the 

Hessian matrix during design iteration. A nice feature of this method is that the positive 

definiteness of the Hessian matrix is preserved. 
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 The BFGS (Broydon-Fletcher-Goldfarb-Shanno [15]) method updates the Hessian 

matrix directly, rather than updating its inverse as with the DFP method. Starting from 

the identity matrix, the Hessian matrix remains positive definite if an exact line search is 

used.

1.7.3 Constrained Optimization Problems 

Most engineering problems have constraints that must be satisfied during the design 

optimization process. These two types of constraints are handled separately: equality and 

inequality constraints. The standard form of the design optimization problem in 

constrained optimization can be written as 

minimize ( )

subject to ( ) 0, 1, ,

( ) 0, 1, ,

, 1, , .
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L U
l l l

f

h i p
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u u u l n

u

u

u
 (1.64) 

The computational method to find a solution to (1.64) has two phases: first, to find a 

direction d that can reduce the cost f(u), while correcting for any constraint violations that 

are violated; and second, to determine the step size of movement in the direction of d.

Sequential Linear Programming (SLP) 

The SLP method approximates the nonlinear problem as a sequence of linear 

programming problems such that the simplex method in Section 1.7.1 may be used to 

find the solution to each iteration. By using function values and sensitivity information, 

the nonlinear problem in (1.64) is linearized in a similar way as Taylor’s expansion 

method in the first order, as 

minimize ( )
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 (1.65) 

 Since all functions and their sensitivities at u
k
 are known, the linear programming 

problem in (1.65) can be solved using the simplex method for u
k
. Even if the sensitivity 

information is not used to solve a linear programming problem, design sensitivity 

information is required in order to approximate the nonlinear problem as a linear one with 

SLP. In solving (1.65) for u
k
, the move limit k k k

L Uu u u  is critically important for 

convergence.

Sequential Quadratic Programming (SQP) 

Compared with previous methods, which use first-order sensitivity information to 

determine the search direction d, SQP solves a quadratic subproblem to find that search 

direction, which has both quadratic cost and linear constraints: 

1
minimize ( )

2

subject to ( ) 0, 1, ,

( ) 0, 1, , .
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k T
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k T
j j

f f

h h i p
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u d d Hd

u d

u d

 (1.66) 
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 This special form of the quadratic problem can be effectively solved, for example, by 

using the Kuhn-Tucker condition and the simplex method. Starting from the identity 

matrix, the Hessian matrix H is updated at each iteration by using the aforementioned 

methods in unconstrained optimization algorithms. The advantage of solving (1.66) in 

this way is that for positive definite H the problem is convex and the solution is unique. 

Moreover, this method does not require the move limit as in SLP. 

Constrained Steepest Descent Method 

In the unconstrained optimization process detailed in Section 1.7.2, the descent direction 

d is obtained from the cost function sensitivity. When constraints exist, this descent 

direction has to be modified in order to include their effect. If constraints are violated, 

then these constraints are added to the cost function using a penalty method. Design 

sensitivity of the penalized cost function combines the effects of the original cost 

function and the violated constraint functions. 

Constrained Quasi-Newton Method 

If the linear approximation of constraints in SQP is substituted for a quadratic 

approximation, then the convergence rate of (1.66) will be improved. However, solving 

the optimization problem for quadratic cost and constraints is not an easy process. The 

constrained quasi-Newton method combines the Hessian information of constraints with 

the cost function by using the Lagrange multiplier method. Nevertheless, it is still 

necessary to compute the constraint function Hessian. The main purpose of the 

constrained quasi-Newton method is to approximate the Hessian matrix by using first-

order sensitivity information. The extended cost function is 

1 1

( , , ) ( ) ( ) ( ),
p m

i i i i

i j

L f v h w gu v w u u u  (1.67) 

where both v = [v1, v2, …, vp]
T
 and w = [w1, w2, …, wm]

T
 are the Lagrange multipliers for 

equality and inequality constraints, respectively. Note that w > 0. Let the second-order 

design sensitivity of L be 
2
L. The extended quadratic programming problem of (1.66) 

thus becomes 

21
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Feasible Direction Method 

The feasible direction method is designed to allow design movement within the feasible 

region in each iteration. Based on the previous design, the updated design reduces the 

cost function and remains in the feasible region. Since all designs are feasible, a design at 

any iteration can be used, even if it is not an optimum design. Since this method uses the 

linearization of functions as in SLP, it is difficult to maintain nonlinear equality 

constraints. Thus, this approach is used exclusively for inequality constraints. Search 

direction d can be found by solving the following linear subproblem:  
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minimize

subject to
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d

d
 (1.69) 

where mactive is the number of active inequality constraints. After finding a direction d

that can reduce cost function and maintain feasibility, a line search is used to determine 

step size .

Gradient Projection Method 

The feasible direction method solves the linear programming problem to find the 

direction of the design change. The gradient projection method, however, uses a simpler 

method for computing this direction. The direction obtained by the steepest descent 

method is projected on the constraint boundary, such that the new design can move along 

the constraint boundary. Thus, the direction of the design change reduces the cost 

function while maintaining the constraint along its boundary. For a general nonlinear 

constraint, however, a small movement along the tangent line of the boundary will violate 

this constraint. Thus, in actual implementation, a correction algorithm has to be followed. 

The gradient projection method behaves well when the constraint boundary is moderately 

nonlinear.



2
Variational Methods of 
Structural Systems 

In design sensitivity analysis, design derivatives of the governing equation are taken to 

obtain sensitivities of structural responses with respect to the design variables. Thus, it is 

very important to understand the characteristics of governing equations. In this and 

subsequent chapters, an introduction to linear structural problems is presented by using 

the variational formulation. The purpose of this chapter is not a rigorous development of 

the structural analysis method, but rather a brief introduction to structural analysis from a 

design sensitivity analysis viewpoint. Static, eigenvalue, thermal, and dynamic analyses 

equations are derived from the energy principle. Energy bilinear and load linear forms are 

introduced in the continuum model. Specific expressions of those forms that correspond 

to each structural component will be introduced in Chapter 3. 

 In order to take advantage of the variational method in design sensitivity analysis, it is 

essential to work with the space of kinematically admissible displacement fields. Readers 

who are primarily interested in applications can restrict their attention to smooth function 

spaces without being concerned with more general function spaces. Nevertheless, 

rigorous derivations are introduced in this chapter in order to extend smooth function 

space to a more general function space. Examples that are treated later in the text are first 

presented and analyzed in this chapter. 

2.1 Introduction 

Classically, a structural problem is formulated using a differential equation that is 

satisfied at every point in the domain. Force equilibrium is imposed on an arbitrary 

infinitesimal element of the structure in order to obtain the boundary-value problem. The 

smoothness of the solution in the boundary-value problem depends on the order of the 

differential equation. For example, truss and continuum problems require continuous 

second-order derivatives of the solution, while beam and plate bending problems require 

continuous fourth-order derivatives. However, this chapter will show that these orders of 

differentiability are not necessary in order to represent many types of mechanical 

behaviors. In contrast, the variational approach reduces the solution’s smoothness 

requirements, and provides a general interpretation of the solution. Even though the 

classical differential equation may fail to yield a solution, the variational problem will 

provide a generalized solution, which is in fact the natural solution to the structural 

problem. In addition, for the purpose of design sensitivity analysis, a variational 

formulation is more natural than a differential equation in representing structural 

deformation. Furthermore, a variational formulation that has been mathematically 

obtained can be rigorously related to a virtual work or energy principle in mechanics. 

 A complete mathematical theory related to the existence and uniqueness of the 

solution, see [16] through [18], was developed using the Sobolev space and the properties 

of a bounded, elliptic, linear operator. However, mathematical comprehension of this 

functional analysis requires a good deal of effort, with some physical insights. In contrast, 
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a relatively simple theory is available that can formulate the structural problem using the 

energy principle. If the structural system is conservative, then it has a potential energy. 

Structural equilibrium is considered to be a stationary configuration of the total potential 

energy (principle of minimum total potential energy). Since the potential energy of many 

structural problems is the positive definite quadratic function of a state variable (that is, 

displacement), the stationary condition yields a unique global minimum solution. In 

Section 2.2, a variational method is developed from the differential operator equation for 

a conservative structural system. An important result is then shown, namely, that if the 

solution for a structural differential equation exists, then that solution is the minimizing 

solution of the total potential energy. In addition, even if the structural differential 

problem does not have a solution, the solution that minimizes the total potential energy 

may exist and would provide a natural solution to the structural problem. The energy 

principles presented here will be restricted to small strains and displacements so that 

strain-displacement relationships can be expressed in linear equations; such 

displacements and corresponding strains obviously have additive properties. A nonlinear 

elastic stress-strain relationship will be discussed in Part III of this text. 

 The energy-based formulation of the structural problem in Section 2.2 is generalized 

to the principle of virtual work in Section 2.3, which can handle arbitrary constitutive 

relations. The principle of virtual work is the equilibrium of the work done by both 

internal and external forces with the small, arbitrary virtual displacements that satisfy 

kinematic constraints. For a conservative system, the same results are obtained as with 

the principle of minimum total potential energy in Section 2.2. The unified approach to 

various structural problems is made possible by introducing energy bilinear and load 

linear forms. As long as they share the same properties, all structural problems in this text 

can be treated in the same manner, even those with different differential operators. The 

existence and uniqueness of a solution can be shown through rigorous mathematical 

proofs. The concept of Sobolev space and the bounded property of an energy bilinear 

form are required in the proof. In this text, however, such rigorous mathematical proofs 

are avoided and corresponding references are instead cited. 

 The variational formulation can be generalized for problems in which the time-

dependent force is applied to the structure. The inertia effect is considered as a kinetic 

energy. Structural equilibrium is the stationary condition of the difference between the 

total potential energy and the kinetic energy. The time-integrated form of the variational 

equation is obtained as Hamilton’s principle in Section 2.4. However, if the inertia 

property is considered as a body force acting in the negative direction of acceleration, and 

the principle of virtual work is used in the structural domain, then a second-order 

ordinary differential equation with respect to time is obtained, which corresponds to the 

instantaneous expression of Hamilton’s principle. This formulation is used frequently for 

computational purposes by integrating the time domain as an initial-boundary-value 

problem. 

 The eigenvalue problem represents the natural vibration and column buckling of the 

structure. Although the characteristics of these two types of problems are quite different, 

the mathematical representations of them are similar. The variational formulation of the 

eigenvalue problem is derived in Section 2.5 from the homogeneous dynamic equation. 

The solution space of the eigenvalue problem is the same as the static problem, since the 

same differential operator is involved. Since the set of eigenfunctions is complete in the 

solution space, it is possible to represent the solution of the static problem as a linear 

combination of eigenfunctions. 

 The dynamic frequency response of a mechanical or structural system is of interest in 

design problems that are subjected to harmonically varying external loads caused by a 

reciprocating power train or other rotating machinery, such as a motor, fan, compressor, 

or forging hammer [19]. For example, airplane body and wing structures are subjected to 
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a harmonic load transmitted from the propulsion system. Similarly, ship vibration 

resulting from propeller and engine excitation can cause noise problems, cracks, fatigue 

failure of the tailshaft, and discomfort for the crew. When a machine, or any structure, 

oscillates in some form of periodic or random motion, alternating pressure waves are 

generated that propagate from the moving surface at the speed of sound. For example, the 

interior sound pressure oscillation in an automobile compartment can occur when the 

input forces transmitted from the road and the power train excite the boundary panels of 

the vehicle compartment. Such motion with frequencies between 20 Hz and 20 kHz 

stimulates the hearing mechanism of a human [20]. In Section 2.6.1, a variational 

formulation of the frequency response problem using complex variables is developed in 

continuum elasticity. The frequency response formulation is coupled with the acoustic 

problem in Section 2.6.2 to solve the structure-induced noise problem where the 

boundary structure vibration stimulates the interior air of the vehicle and causes interior 

noise.

 The thermoelastic problem is particularly important in analysis of the automotive 

engine part and the turbine blade where temperature-induced deformation is significant. 

When the structural problem undergoes a temperature change, the thermal effect changes 

the state response. The material property and the constitutive relation also depend on 

temperature change. In addition to the displacement, temperature is added to the state 

response variable. Variational formulations of the steady-state heat conduction equation 

and the elasticity equilibrium equation with thermal load are developed in Section 2.7. 

Although the effects of temperature and displacement are coupled, by treating thermal 

effect as an external load to the structure, decoupled variational equations can be 

relatively easy to obtain, which can then be solved sequentially. 

2.2 Energy Method 

Mathematical models of many structural problems are formulated as differential 

equations that are satisfied at every point in the domain. These differential equations are 

usually obtained from the three fundamental laws of mechanics: conservation of mass, 

conservation of linear momentum, and conservation of angular momentum. Conservation 

of mass can be easily satisfied for a Lagrangian description of the problem, and the 

conservation of an angular momentum concludes the symmetry of the stress tensor. Thus, 

the conservation of linear momentum, which is a differential equation used to satisfy the 

force equilibrium, is the major consideration in the structural problem. 

Minimum Principles for Operator Equations 

The differential equation of the structural problem can be represented as a differential 

operator equation. If the linear problem is considered, then the differential operator is 

also linear. Let A be a positive definite linear operator that represents the structural 

problem under consideration. For a continuum problem, A is a second-order differential 

operator, while for beam and plate problems, A is a fourth-order operator. The structural 

problem is to find the solution z DA that also satisfies 

,Az f  (2.1) 

where f is the applied force and DA is the solution space, which has a component that 

satisfies the required smoothness of the solution and one that satisfies the boundary 

conditions of the problem. We want to emphasize here that the operator A is closely tied 

to the domain DA. That is, even if another operator B has exactly the same differential 
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formula in its definition as the operator A, if the domain DB is different from DA, then B is 

a different operator. The smoothness of the solution is determined by the order of 

operator A. For example, C
2
 functions are required for the second-order differential 

operator and C
4
 functions for the fourth-order operator. (Note: C

m
( ) is the set of 

functions whose values and first m derivatives are continuous on . For an introductory 

treatment of such function spaces, refer to Appendix A.2.) DA can be considered a 

collection of solution candidates. 

 The positive definite property of operator A means that A is symmetric and, for all z

0 in DA, the following condition holds: 

( , ) 0,TA A dz z z z  (2.2) 

where (•,•) is the L2( )-scalar product of functions, and  is the structural domain under 

consideration. (Note: L2( ) is the space of square integrable functions such that 
2

( ) { }: ( ) .
2

L f f x d ) In fact, (2.2) satisfies the requirement of the scalar product 

and the norm. Thus, (Az,z)
1/2

 ||z||A is called the energy norm, and (Az,w)  [z,w]A is 

called the energy scalar product. Also, A is said to be a positive bounded below linear 

operator if a constant c > 0 exists, such that 

2
( , ) ( , ) ,A c cz z z z z  (2.3) 

for all z  0 in DA. In many mechanics problems, z is the deflection and Az is the force, so 

(Az,z) is proportional to the energy that is required to produce the deflection z. The 

property (Az,z) > 0, for all admissible z  0, states that a positive amount of energy is 

required to produce a nonzero deflection. The property (Az,z) c||z||
2
, for c > 0, states that 

a lower bound exists for the amount of energy that must be expended in order to achieve 

a nonzero displacement, which implies system stability. In other words, large deflections 

can be produced only by large expenditures of energy. If A is positive definite, but not 

positive bounded below, then a large deflection can be produced with a very small 

expenditure of energy. Such behavior appears in unstable structures. 

Example 2.1. String Problem. To further illustrate the aforementioned discussion, 

consider a string of length l with a distributed load of f(x), as in Fig. 2.1. In this case, 

displacement and distributed load are scalar functions. The governing differential 

equation is 

2

2
( ), (0, ),

(0) 0,

( ) 0,

z
Az f x x l

x

z

z l

Figure 2.1. String under distributed load. 

z

x

l

f(x)
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where A is the second-order differential operator. The state variable z is scalar for this 

problem. The solution space of this problem is 

2 (0, ) | (0) ( ) 0 .AD z C l z z l

It is easy to show that A is linear, since A( z + w) = Az + Aw for any z and w in DA

and for any scalar  and . Also, from an integration by parts it can be shown that the 

linear operator A is symmetric, for any z and w in DA, as 

2

20

0
0

2

020

( , ) ( )

[ ]

( ) [ ]

( , ),

l

l
l

l
l

d z
Az w wdx

dx

dz dw dz
dx w

dx dx dx

d w dw
z dx z

dxdx

z Aw

where the boundary terms vanish from the homogeneous boundary conditions. Note that 

the symmetric property of operator A is strongly dependent on the boundary conditions, 

since the operator A is closely tied to the domain DA. Thus, if different boundary 

conditions are given, A may not be symmetric. In fact, it should be a different operator. 

The positive definiteness of operator A can be shown easily from 

2

0
( , ) 0.

l dz
Az z dx

dx
 (2.4) 

Also, (Az,z) = 0 implies that dz/dx = 0, or that z = constant. Then, due to the 

homogeneous boundary conditions, z(x) = 0. Thus, A is positive definite for the given 

solution space. A more detailed discussion shows that A is positive bounded below [21]. 

 The differential equation in (2.1) requires that the solution be in DA, where the 

second-order derivatives are continuous and boundary conditions are satisfied. These 

requirements are too restrictive to represent solutions for many types of applied loads. For 

example, when the applied load is a point load in the string problem, then there is no 

solution that satisfies (2.1). However, physically a solution exists for the point load and 

the solution is a C
0
-continuous function. Thus, the notion of a solution space has to be 

extended to represent a variety of loading conditions. The energy approach presented 

below provides a more general method than that of operator theory to represent a solution. 

 Let A be a positive definite linear operator with domain DA. Then, consider the 

following energy functional, defined as 

( ) ( , ) 2( , ) ( 2 ) .T TA A dz z z z f z z z f  (2.5) 

It will be shown that the solution to (2.1) is unique and minimizes (z) for all z in DA, so 

that the operator equation is converted into an optimization problem. Let us presume that 

(2.1) has a solution z. In order to show that this solution is unique, assume that there are 

two solutions in DA, z and w. Then, z – w satisfies A(z – w) = 0. Thus, 

( ),( ) 0.A z w z w

Since A is positive definite, z – w = 0. Thus, if a solution to (2.1) exists, it is unique. Note 

that the uniqueness of the operator equation comes from the positive definiteness of the 

operator A. This property is similar to the matrix theory in so far as for the positive 

definite matrix A[n×n], the linear system of equations Az = f  has a unique solution z.
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 Next, let z0 in DA be the solution to (2.1), so that Az0 = f. Then, z0 minimizes the 

energy functional in (2.5). To show this, making this substitution for f into (2.5) yields 

0

0

0 0 0 0

2 2

0 0

( ) ( , ) 2( , )

[ , ] 2[ , ]

[ , ] [ , ]

.

A A

A A

A A

A Az z z z z

z z z z

z z z z z z

z z z

It is clear that (z) has its minimum value if and only if z = z0. Thus, the solution to (2.1) 

minimizes the energy functional (z).

 Now, let us show that the inverse of the previous statement is also true. Suppose that 

there exists a function z0 in DA that minimizes the functional (z) of (2.5). Let v(x) be an 

arbitrary function from DA and let  be a real number. Then, (z0 + v) – (z0)  0. 

Using the symmetry of the operator A, the function 

2
0 0 0( ) ( ) 2 ( , ) ( , ) 0A Az v z z f v v v

of  takes on its minimum value of zero at  = 0. Thus, its derivative, with respect to  at 

= 0, must be zero from the stationary condition of the optimization theory, that is,

02( , ) 0,Az f v

for all v in DA. Since v is an arbitrary function in DA, it follows that Az0 – f = 0. Thus, z0 is 

the solution of the operator (2.1). Thus, the solution that minimizes (z), if it is in DA, is 

a unique solution of the operator (2.1). The method to minimize the energy functional in 

(2.5) is called the energy approach.

 However, we have to be careful of the situation in which a z0 that minimizes (z)

may not belong to DA. For the string problem in Example 2.1 with unit point load f = 1 at 

x = , the solution to the problem is 

0

( 1) , 0
( )

, 1,

x x
z x

x x

which minimizes the functional (z) in (2.5), and clearly z0 C
0
 does not belong to DA.

More specifically, the solution space DA of the string problem needs to be extended to 

include all continuous functions with square integrable first derivatives, so that the 

energy norm in (2.4) is well defined. On this extended solution space, the operator A

cannot be properly defined, and only the solution that minimizes the energy functional in 

(2.5) exists. Consequently, the energy approach provides a broader range of solutions 

than the operator approach. For that reason, the solution to (2.1) is called the classical 

solution (or strong solution) and the solution that minimizes (2.5) is called the 

generalized solution (or weak solution). However, we want to emphasize that if a solution 

exists to (2.1), then it is always the minimizing solution to (2.5). 

 As will become evident in later examples, the functional (z) is proportional to the 

total potential energy of the system under consideration. The previous discussion in this 

chapter provides rigorous proof of the principle of minimum total potential energy. Under 

specific boundary conditions, this principle allows the problem of integrating a 

differential equation to be replaced with the problem of seeking a function that minimizes 

the functional of (2.5). Methods of solving continuum mechanics problems that involve 

the minimization of the functional of (2.5) are referred to as energy methods, or 

variational methods. This allows numerical approaches such as the finite element method 

to be developed. 
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Principle of Minimum Total Potential Energy 

Consider the linear elastic structure in Fig. 2.2 under the applied surface-traction load f
 s

on the boundary 
s
, and under the body force f

 b
 in the domain. The whole boundary  is 

decomposed into =
h s

 and 
h s

= . The motion of the structure is fixed (or 

prescribed) on the essential boundary 
h
. Due to the applied load, the elastic structure 

experiences deformation (or displacement) z(x) = [z1, z2, z3]
T
 for x , although the 

nominal configuration of the structure resists any deformation by generating internal 

forces. It is assumed that this internal force is proportional to the amount of deformation. 

For a given applied load, if the internal force is smaller than the applied force, then the 

structure continues to deform in order to equilibrate the two forces. Many structural 

problems consist of computing the displacement due to force equilibrium conditions 

between the applied load and internal forces. 

 If the concept of structural force equilibrium is extended to energy formulation, then a 

good deal of physical insight can be obtained. Let the displacements be used as state 

variables of the problem considered. The internal force, generated during deformation, 

can be thought of as energy that is stored in the structure. As the structure deforms, not 

only does the internal force increase, but the energy of the structure also increases. This 

stored energy is called the strain energy of the structure, defined as 

1
( ) ( ) ( ) ,

2
ij ijU dz z z  (2.6) 

where i, j=1, …, N; N is the dimension of space (1, 2, or 3), and summation is used for 

the repeated indices i and j. In (2.6), 

, ,

1
( ) ( )

2

1
( )

2

ji
ij

j i

i j j i

zz

x x

z z

z

 (2.7) 

Figure 2.2. Structure under equilibrium. 
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and

( ) ( )ij ijkl klCz z  (2.8) 

are the strain and stress tensors, respectively. In (2.7), the subscribed comma represents 

the derivative with respect to the spatial coordinate; i.e., zi,j = zi/ xj. In (2.8), Cijkl is a 

fourth-order constitutive tensor that defines the relation between strain and stress tensors. 

For linear problems, Cijkl is constant. The strain energy U(z) is the energy required to 

produce the displacement z. For elastic problems, since U(z) does not depend on the path 

chosen for deformation, it is a function of the configuration z.

 If force is applied to the structure and the structure deforms in the direction of the 

applied force, then work is done by the applied force. The work done by the applied load 

can be defined as 

( ) .
s

T b T sW d dz z f z f  (2.9) 

The first integral in (2.9) represents the work done by the body force f
b
, while the second 

integral is the work done by the surface traction load f
s
. The integrals are evaluated over 

the whole domain  and over the traction boundary 
s
. If any concentrated force f is 

applied externally, then (2.9) may include Dirac delta measure as in Example 1.3 in 

Chapter 1. Note that U(z) is a quadratic function of z, while W(z) is a linear function of z.

 Since the strain energy U(z) is independent of the deformation path, it is potential 

energy that is stored in the structure. If the applied force in (2.9) is conservative, then 

(2.9) defines the negative value of potential energy generated by the applied loads. The 

applied load is considered conservative if it is independent of deformation, so that the 

work done by a system of applied forces in traversing any closed path in displacement 

space has to be zero. The total potential energy of the structure is the difference between 

the strain energy and the work done by the applied loads, written as 

( ) ( ) ( )

1
( ) ( )

2

.
s

ij ij

T b T s

U W

d

d d

z z z

z z

z f z f

 (2.10) 

Note that the definition of (z) in (2.10) is actually half of the energy functional defined 

in (2.5). However, the absolute value of the total potential energy does not have any 

meaning here; only the relative quantity is important. 

 The principle of minimum total potential energy is as follows: for all displacements 

that satisfy the boundary conditions, known as kinematically admissible displacements, 

those which satisfy the operator equation of linear elasticity, if they exist, 

( ) ,

0,

, ,

b

h

s s

A divz z f x

z x

n f x

 (2.11) 

make the total potential energy in (2.10) stationary on 

2 3[ ( )] | 0 on , on .h s s
AD Cz z x n f x  (2.12) 

In (2.11), div = ij,j is the divergence of the stress tensor and n is an outward unit normal 

vector to the surface 
s
. Due to the conservation of angular momentum, the stress tensor 

 is symmetric ( ij = ji). 
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 For the generalized solution that minimizes the total potential energy in (2.10), the 

solution space DA of (2.12) has to be extended so that the potential energy in (2.10) can 

be well defined. This space is called the space of the finite energy or the space of
kinematically admissible displacements, defined as 

1 3[ ( )] | 0 on ,hZ Hz z x  (2.13) 

where H
m
( ) is the Sobolev space of order m. (Note: H

m
( ) is the Sobolev space of the 

order m, whose functions are continuously differentiable up to m 1, and mth partial 

derivatives belong to L2( ). For an introductory treatment of such function spaces, refer 

to Appendix A.2.) It is important to point out that the traction boundary condition n = f
 s

is not required to define the space of kinematically admissible displacements. The 

condition z = 0 is called the essential boundary condition, while n = f
 s
 is referred to as 

the natural boundary condition. The natural boundary condition is included in the work 

done by the applied load in (2.10). Thus, it is easier to construct the space of 

kinematically admissible displacements than it is to construct DA. Generally, if we let the 

order of differential operator A equal 2m, then the boundary conditions that contain (m –

1)th order derivatives are called the essential boundary conditions and derivatives of a 

higher order than (m – 1) are called the natural boundary conditions. 

 The principle of minimum total potential energy provides a generalized solution to 

the differential equation. This generalized solution is in Z. In addition, the uniqueness of 

the solution is proved by using the positive definite property of operator A in (2.2) on DA

and the fact that DA( ) Z L2( ) and DA( ) is dense in L2( ) [Appendix A.2]. (Note: 

A subset W of V is said to be dense in V, if for a given arbitrary small  and any f V,

there exists a g W such that f g  < .) For stable structures, the differential operator 

is positive bounded below and thus, a unique solution can be expected. 

2.3 Variational Formulation and the Principle of
Virtual Work 

The principle of minimum total potential energy discussed in the previous section 

requires obtaining a stationary condition for the total potential energy. This principle is 

closely related to the variational formulation presented in this section. 

 Let the state variable z Z be the solution to the structural problem that uniquely 

minimizes (z). The virtual displacement, or the variation of z, is a small, arbitrary 

perturbation of z in Z. Let the virtual displacement be (x) with a small scalar  so that 

the perturbed state is z + . Since the perturbed state has to be in Z, the perturbation (x)

has to vanish at its essential boundary; i.e., (x) satisfies all homogeneous essential 

boundary conditions. Consider a functional  that is defined on Z. For a sufficiently 

small , if the limit 

0

0

1
( ; ) lim [ ( ) ( )]

( )
d

d

z z z

z

 (2.14) 

exists, then it is called the first variation of  at z in the direction of . If this limit exists 

for every  in Z,  is said to be differentiable (i.e., Fréchet differentiable) at z. The 

variation of a functional is also very important in design sensitivity analysis in which the 
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first variation with respect to design is considered. This procedure will be discussed in 

depth in Part II of this text. 

 If a functional has a first variation, then quantitative criteria can be defined for its 

minimization. The focus here is on the necessary conditions for extrema. Presume that z

in Z is such that 

( ) ( ),z w  (2.15) 

for all w in Z. Then, z is said to minimize  over Z. If (2.15) holds for all w in Z that 

satisfy ||w – z|| d, for some d > 0,   is said to have a relative minimum value at z.

 From (2.15), for any (x) in Z and for any sufficiently small , if  has a relative 

minimum at z, then 

0
( ) min ( ) ( ) ,z z z

that is, for fixed z and  the real value function (z + ) of the real parameter  is a 

minimum at = 0. If the functional has a first variation, then (z + ) is a differentiable 

function of , and a necessary condition for a minimum of  at z is 

0

( ; ) ( ) 0,
d

d
z z  (2.16) 

for all  in Z. The notation (z; ) represents a variation of  at z in the direction of .

Thus, the principle of minimum total potential energy is equivalent to the condition of 

(2.16) for all kinematically admissible .

 The function (x) can be thought of as a variation of the displacement z placed in the 

same context as in (2.14) since 

0

( ) .
d

d
z z z  (2.17) 

Since the variation  is related to the displacement z, the notation z  is used instead of z

to denote the variation of displacement z in this text. This notational system is preferred 

in order to avoid an excessive usage of , which typically denotes the Dirac delta 

measure. 

 The total potential energy in (2.10) is composed of the strain energy and the work 

done by the applied load. Thus, a variational formulation of the structural problem can be 

written, using the first variation of (z), as 

( ; ) ( ; ) ( ; ) 0,U Wz z z z z z  (2.18) 

for all z  in Z. Equation (2.18) is called the variational equation of the structural problem 

under consideration. The first term in (2.18) is obtained from the definition of U(z) in 

(2.6) and the stress-strain relation in (2.8) as 

( ; ) ( ) ( )

( , ),

ij ijkl klU C d

a

z z z z

z z
 (2.19) 

where ( , )a z z  is called the energy bilinear form since it is bilinear with respect to its two 

arguments z and z . ( )ij z  is the same as ij(z) in (2.7) by substituting z  into z. Thus, the 

energy bilinear form is symmetric with respect to its arguments. The variation of the 

work done by the applied load can be written as 
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( ; )

( ),

s

T b T sW d dz z z f z f

z
 (2.20) 

where ( )z  is called the load linear form. Initially, only conservative loads are 

considered such that ( )z  is independent of displacement. Thus, the variational 

formulation of the structural problem in (2.18) can be written as 

( , ) ( ), ,a Zz z z z  (2.21) 

where Zz  represents “for all z  in Z.” Since the variational formulation in (2.21) is 

equivalent to the principle of minimum potential energy, the existence and uniqueness of 

the solution remains, as discussed in the previous section. Thus, if the load linear form on 

the right side of (2.21) is continuous in the space Z and if the energy bilinear form on the 

left side of (2.21) is positive definite on Z, then (2.21) has a unique solution z Z.

 The advantage of using notation in (2.21) is that even for different structural 

problems, the same symbolic notation can be used as long as the problems share the same 

properties. As shown in Chapter 3, the expressions of ( , )a z z  and ( )z  are different, 

depending on the structural component (such as truss, beam, plate, etc). However, the 

variational (2.21) can represent all structural problems in this text. Thus, by using (2.21), 

a unified consideration of the structural problem is possible. 

 The existence and uniqueness of the solution to (2.21) is well established using the 

Sobolev space. Of particular importance in the mathematical analysis of linear elastic 

problems using the variational method is the Sobolev imbedding theorem. The existence 

theory for variational equations in the form of (2.21) guarantees that there will be a 

solution z [H
1
( )]

3
, where H

1
( ) is the Sobolev space of order one. The Sobolev 

imbedding theorem asserts that z C
0
( ). This fact explains why kinematic boundary 

conditions in (2.13), which are given in terms of the function value, are preserved in 

convergence of sequences of functions in H
1
( ). For a concise introduction to Sobolev 

space and its application to structural mechanics, the reader is referred to the outstanding 

article of Fichera [17]. For a comprehensive treatment of the subject, see Adams [22]. 

The engineer who is primarily interested in applications need not be concerned with these 

functional analysis generalizations. However, the following results need to be 

emphasized. If a solution exists to differential equation (2.1), then it is also the solution to 

variational equation (2.21). But, a solution to (2.1) does not exist if the distributed 

function f is a Dirac delta measure, which means that f is the applied point load. 

Nevertheless, the variational equation (2.21) still has a solution in this case, which is 

called a generalized solution. 

Principle of Virtual Work 

The variational formulation provided by (2.21), obtained from the principle of minimum 

total potential energy, is limited in solving linear elastic problems. In the principle of 

virtual work, the constitutive relations, including the elastoplasticity, can be quite general 

since we are not assuming that potential energy exists. Let the differential problem in 

(2.11) be satisfied and let the integration by parts be justified. Consider a virtual 

displacement z  that satisfies the essential boundary condition, i.e., z  = 0 on 
h
. Note 

that the displacement variation z  in (2.17) is related to displacement z. Even if the same 

notation z  is used here, virtual displacement is considered a small, arbitrary continuous 

field that satisfies the problem’s kinematic constraints, while the applied load is kept 

constant. Since the differential equation (2.11) is satisfied in the domain , by 

multiplying z  on both sides of the differential equation and integrating it, we have 



48  2. Variational Methods of Structural Systems  

,( ) 0,b
i ij j iz f d  (2.22) 

for any z  in Z. (Note: In strict mathematical terms, this statement is true when the space 

Z is dense in L2( ), which is the case.) In (2.22), equilibrium of the structural problem is 

sought in the sense of integration. The pointwise requirement of differential equation has 

no meaning in the variational approach. Since the differential equation (2.11) is obtained 

from the force equilibrium relation, the term ,
b

ij j if  represents unbalanced force, while 

(2.22) represents the virtual work done by the system during virtual displacement. Thus, 

structural equilibrium is considered a vanishing condition of the virtual work. After 

integrating by parts, the principle of virtual work is obtained by using the symmetric 

property of the stress tensor , the boundary conditions of (2.11), and the constitutive 

relation in (2.8) as 

,

,

,

( ) ( )

0.

h s

s

s

b
i ij j i

b
i j ij i i i ij j

b s
i j ij i i i i

b s
ij ijkl kl i i i i

z f d

z d z f d z n d

z d z f d z f d

C d z f d z f dz z

We use the fact that s
ij j in f  on 

s
. By using definitions of the energy bilinear form and 

the load linear form, the principle of virtual work can be stated as 

( , ) ( ), .a Zz z z z  (2.23) 

Equation (2.23) is the same as the variational formulation in (2.21). In the principle of 

virtual work, the left side of (2.23) is interpreted as virtual work done by internal force, 

while the right side is seen as virtual work done by external applied force. Thus, (2.23) 

states that the structure is in equilibrium when internal and external virtual works are 

equal during all virtual displacements. 

 In the derivation of the principle of virtual work in (2.22) it is assumed that the 

differential equation is satisfied at every point within the structure, which is an 

unnecessary requirement. Further, consider a virtual work 

.b s
i i i iW z f d z f d  (2.24) 

Since z 0  on 
h
, the whole boundary  = 

h s
 is used instead of 

s
. Using the 

relation of s
i ij jf n  and Gauss’ theorem, the virtual work in (2.24) can be extended to 

,( ) ( ) .b s b
i i i i i i ij j ij ijz f d z f d z f d dz  (2.25) 

Again, the symmetric property of the stress tensor is used in the above derivation. The 

first integral on the right side of the above equation is the same as in (2.22), which 

vanishes. Thus, the same principle of virtual work as in (2.23) is obtained. A subtle 

difference in this approach is that it is unnecessary to assume pointwise satisfaction of the 

differential equation. As long as the first integral on the right side vanishes, the principle 

of virtual work is well defined. 

 The difference between the variational formulation and the principle of virtual work 

cannot be clearly seen from the conservative system or from the linear elastic structural 

problem. However, in developing the variational formulation, we assumed that potential 

energy exists in the structure. Thus, the variational formulation is limited to linear 
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problems. For most of the problems discussed in Part III, the potential energy of the 

structural problem does not exist. For those problems, the principle of virtual work has to 

be used. However, proving the existence and uniqueness of a solution in (2.23) is a 

difficult procedure that goes beyond the scope of this text. For a proof of existence and 

uniqueness, the reader is referred to the articles of Aubin [16] and Fichera [17]. 

2.4 Hamilton's Principle 

A large number of problems in mechanics can be described using the variational principle 

known as Hamilton’s principle. By removing the time-dependent variables, the 

variational formulation discussed in the previous section is a special case of Hamilton’s 

principle. In this section, Hamilton’s principle is developed for linear problems by 

introducing inertia properties that will enable us to describe the dynamic characteristics 

of the structure.

 If a time-dependent load is applied to the structure, then the structure’s response 

depends on time. As each particle moves, the velocity of the structure generates a kinetic 

energy that is different from the potential energy, defined as 

, , ,

1
( ) ,

2
T

t t tT dz z z  (2.26) 

where (x) is the mass density of the structure and the subscribed comma denotes the 

derivative, such that z,t is the derivative of the displacement with respect to time; i.e., the 

velocity. It is presumed that the kinetic energy in (2.26) is well defined for all 

kinematically admissible displacements. To connect this equation to the variational 

formulation discussed in Section 2.2, the first variation of T(z) can be obtained for a 

small, arbitrary virtual displacement z  as 

, , , ,( ; ) .T
t t t tT dz z z z  (2.27) 

In evaluating (2.27), it is presumed that the time derivative is independent of the variation 

so that they can be exchanged. Equation (2.27) contains the velocity of ( , )tz x , i.e., the 

virtual velocity. However, this variation is inappropriate since the variational formulation 

is given in terms of the virtual displacement. To convert (2.27) into its virtual 

displacement form, let us consider a virtual displacement that satisfies the kinematically 

admissible conditions in Z, and the following additional conditions: 

( ,0) ( , ) 0,Ttz x z x  (2.28) 

where tT is the terminal time of the problem. By integrating (2.27) over the time interval 

and using integration by parts in time, we can obtain a suitable form for the variational 

purpose as 
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 (2.29) 
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where z,tt is the second-order derivative of the displacement; i.e., acceleration. In (2.29), 

the integrand ,( , )ttd z z  is called the kinetic energy bilinear form.

 With the notations defined above, a general form of Hamilton’s principle is obtained, 

which is suitable for design sensitivity analysis. Only a conservative system is considered 

between time 0 and tT. For an elastic system subject to conservative dynamic loading, the 

Hamilton’s principle states that the integral 0 ,[ ( ) ( )]
Tt

tT dtz z  becomes stationary. 

Following classical approaches [23] through [25], the variational form of Hamilton’s 

principle requires that 

,
0

[ ( ) ( )] 0,
Tt

tT dtz z  (2.30) 

for all times between 0 and tT and for all kinematically admissible virtual displacements 

z  that satisfy the additional conditions in (2.28). 

 In terms of the load linear form in (2.20) and the strain energy and kinetic energy 

bilinear forms of (2.19) and (2.29), respectively, (2.30) can be written as 

,
0 0

( , ) ( , ) ( ) ,
T Tt t

ttd a dt dtz z z z z  (2.31) 

for all kinematically admissible virtual displacements z  that satisfy (2.21) and (2.28). 

Note that the variational formulation in Section 2.3 is a special case of (2.31), in which 

,( , )ttd z z = 0 and time dependencies are removed. 

 This general formulation of Hamilton’s principle provides the variational equations of 

structural dynamics, which can be used to extend the theory presented in Section 5.4 for 

the transient dynamic design sensitivity analysis of structures. 

 Hamilton’s principle can also be obtained from the principle of virtual work. In this 

approach, the inertia force is considered as a body force that acts in the negative direction 

of acceleration (d’Alembert’s principle). Thus, the structural differential (2.11) can be 

written, considering the inertia force, as 

,( ) , ,b
ttdiv z f z x  (2.32) 

with the boundary conditions from (2.11) and the initial conditions 

0

0
, ,

( ,0) ( ),

( ,0) ( ), .t t

z x z x x

z x z x x
 (2.33) 

Equation (2.32) with boundary conditions from (2.11) and initial conditions from (2.33) 

defines the initial-boundary-value problem (IBVP) in structural dynamics. 

 As in the case of the principle of virtual work, the differential equation (2.32) is 

multiplied by a virtual displacement z  and then integrated over the domain. After 

integrating by parts and applying boundary conditions, we have 

,( , ) ( , ) ( ), .ttd a Zz z z z z z  (2.34) 

If ,( , )ttd z z  is moved to the right side of (2.34), then it can be considered the virtual work 

of the inertia force. When the time effect vanishes, then the principle of virtual work of 

the static problem is easily recovered as in (2.23). 

 Previous development of IBVP in structural dynamics can be generalized to include a 

damping effect, such as viscous damping. The differential equation of structural 

dynamics can be written in the form 
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, , ( , ),tt tC A tz z z f x  (2.35) 

where  and C represent mass and damping effects in the structure, respectively, and 

f(x,t) is the applied load. The operator A is the differential operator encountered in the 

static and eigenvalue problems of elastic systems. The state variable z(x,t) is a function of 

both space and time. Boundary conditions for the problem are left unspecified at the 

present time, since they depend on the characteristics of a specific structural system. 

Initial conditions are given in (2.33). 

 The variational equation can be derived from (2.35) by multiplying an arbitrary 

virtual displacement z  and integrating over both space and time, to obtain 

, ,
0

0 0

[ ]

.

T

T T

t
T T

tt t

t t
T T

C d dt

A d dt d dt

z z z z

z z z f

 (2.36) 

Since the integral involving the operator A on the left side of (2.36) is defined as the 

bilinear form of the structure, (2.36) may be written in the form 

, ,
0 0

[ ] ( , ) ,
T Tt t

T T T
tt tC d a dt d dtz z z z z z z f  (2.37) 

which must hold for all Zz , the space of kinematically admissible displacements for 

the structure. A rigorous mathematical theory regarding such variational equations may 

be found in the pioneering text of Lions and Magenes [26]. Roughly speaking, the 

variational form of (2.37), with the initial conditions from (2.33), is equivalent to the 

initial-boundary-value problem. 

2.5 Eigenvalue Problem 

The eigenvalue problem frequently appears in structural analysis when the vibration and 

buckling of structural components are taken into consideration. Natural frequencies and 

mode shapes of free vibration are determined by the eigenvalue problem. The buckling 

load and buckling shape are also determined by this problem. The conventional 

differential operator version of the eigenvalue problem is presented in this section and is 

then extended to a more flexible and rigorous variational formulation. Technical 

justification of the variational formulation then follows in the same format used to treat 

static problems in Section 2.3. 

Vibration of a Structure 

Natural vibration is a way to describe the behavior of the structure when no external force 

is applied. Usually, after applying an impact force or an initial velocity, the structure 

vibrates based on the characteristics of its material property and geometric shape. Using 

(2.35) without any body force and damping, the governing equation of motion can be 

written as 

, ( , ) ( , ) 0,tt t A tz x z x  (2.38) 

where A is the differential operator encountered in the static response problem, which is 

independent of time, and the structural response is a function of the spatial coordinates 

and time. Equation (2.38) is a second-order, homogeneous differential equation with 

respect to time. By using the separation of variables method, let us assume that the 

solution z(x,t) is composed of 
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( , ) ( ) ,j tt ez x y x  (2.39) 

where 1j  is the complex variable and 
2
 is a natural frequency that depends on the 

problem considered. By substituting (2.39) into (2.38) and factoring out all e
j t

 terms, we 

can obtain a time-independent equation of natural vibration as 

2 .Ay y  (2.40) 

Equation (2.40) is a homogeneous equation of y(x) that yields a trivial solution y = 0. 

However, we are interested in the nontrivial solution y  0. 

 In a general vibrating structure, the formal operator equation of the eigenvalue 

problem is 

, 0,A By y y  (2.41) 

where the operator B is a simpler continuous operator than structural part A, except for 

buckling problems (often B is a scalar function as in (2.40)). The vector function y(x) is 

used to distinguish the eigenfunction from the static response z, and =
2
 is the 

associated eigenvalue. Since (2.41) is homogeneous with respect to y, for any scalar 

0, y is also a solution to (2.41). Thus, the following normalization condition can be used 

to remove this arbitrariness: 

( , ) 1.By y  (2.42) 

 Equation (2.41) is called the generalized eigenvalue problem, whereas it is called the 

standard eigenvalue problem if B is the identity operator. In structural vibration problems, 

operator B does not contain any differentiation. Thus, the smoothness of the solution to 

(2.41) depends on the order of differentiation involved in A, which has the same property 

as the static problems in Section 2.3. The eigenfunction y in (2.42) has to satisfy the 

boundary conditions. Thus, the solution space of (2.41) is the same as that of the static 

problem. Like the static problem, the unnatural requirement of smoothness of the 

eigenfunction y can be reduced by introducing the variational formulation of the 

eigenvalue problem. 

 Even if the phenomenon of vibration involves time, the formulation in (2.41) is 

independent of time. Only the static characteristics of the structure are used. Thus, the 

same assumptions and procedures used in the principle of virtual work can be used to 

obtain the variational formulation of the eigenvalue problem. The L2-scalar product on 

both sides of (2.41) with a smooth function y  that satisfies the same boundary conditions 

as y may be formed to obtain the variational equation of the eigenvalue problem as 

( , ) ( , ) ( , ) ( , ).a A B dy y y y y y y y  (2.43) 

Conversely, if (2.43) holds for all y  in a smooth class of functions, and if y is sufficiently 

regular, then y and  constitute the solution of the eigenvalue problem in (2.41), see [16], 

[17], and [27]. 

 As in Section 2.2, for the generalized solution, the space Z of kinematically 

admissible displacements requires the smoothness of the solution so that the strain energy 

U and kinetic energy T are well defined or finite. Usually the requirements of finite 

kinetic energy T are not significant compared with that of strain energy U, since the 

operator B is simpler than A. The generalized solution y Z (y  0) is then characterized 

by the variational equation 

( , ) ( , ), .a d Zy y y y y  (2.44) 
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 The boundary-value problem presented here is known as a Sturm-Liouville problem 

[21]. Such problems are important because the sets of orthogonal eigenfunctions 

generated by them are complete in L2( ) [23]. Further, a positive statement can be made 

about pointwise convergence for the series representation of a sufficiently well-behaved 

function f(x) in terms of the eigenfunctions. 

Buckling of a Horizontal Rod 

The buckling of a structure is a representative example of structural instability. Small 

perturbation from equilibrium configuration can result in global collapse. The governing 

solution of a buckling problem has similar behavior to a vibration problem, although the 

physical interpretation is completely different. 

 Consider that the horizontal rod in Fig. 2.3 is subject to an axial compressive load F.

From a static analysis viewpoint, the rod can reach an equilibrium state by generating an 

internal force that corresponds to F. Thus, axial normal stress is the only component of 

internal force (stress). However, if a small perturbation  exists, then the bending moment 

F  is generated. If axial force F is small enough that the bending moment F  is smaller 

than the restoring moment of the rod, then the perturbation returns to its equilibrium state. 

On the other hand, if F is larger than the critical value (buckling load) such that the 

perturbation  grows and, as a result, the bending moment increases, then there will be a 

total collapse of the structure. The main purpose of buckling analysis is to predict the 

critical value of the axial force F and the buckling shape. 

 Let the length of the rod be l, the moment of inertia be I, and Young’s modulus of the 

structure be E. Based on the linear properties of the problem, compressive and bending 

parts can be superposed. Since the compressive part does not contribute to buckling, only 

the bending part is considered. At a point x  (0, l), the bending moment is M = F( –

y(x)) and the deflection equation is 

, ,xxEIy Fy F

which is a second-order nonhomogeneous linear differential equation. From the classical 

literature on differential equations, the particular solution yP to above equation can be 

obtained from the characteristics of the applied moment F . The homogeneous solution 

yH is the solution to the fourth-order differential equation by removing the right side of 

above equation and taking derivative twice, 

, , ,( ) ,xx xx xxEIy Fy  (2.45) 

which has a similar structure to (2.41) by identifying F and B is a second-order 

differential operator By = y,xx.

Figure 2.3. Buckling of a load by axial compressive load. 

E, I 

l

F
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 Thus, in the case of general buckling problems, the differential operator equation can 

be written as 

, 0,A By y y  (2.46) 

where A is the same as the structural differential operator in (2.1). As seen in the problem 

above, operator B in the buckling problem is more complex than operator B in vibration. 

In most cases, however, B is simpler than A, because a lower order of differentiation 

appears in B. The vector function y denotes an eigenfunction, which represents the shape 

of the buckling mode, and  is the associated eigenvalue, which is the critical load. Since 

(2.46) is homogeneous with respect to y, the following normalization condition is used to 

remove any arbitrariness in the solution: 

( , ) 1.By y  (2.47) 

 The variational formulation of the buckling problem follows the same procedure as in 

the vibration problem. Consequently, (2.44) will yield the variational formulation of the 

buckling problem provided the meaning of the eigenvalue and eigenfunction are 

appropriately interpreted. 

2.6 Frequency Response Problem 

In this and subsequent sections, variational formulations for specific engineering 

applications are developed. These applications, combined with design sensitivity analysis 

developed in later chapters, will provide examples of practical design applications. 

 A structural dynamic problem differs from the corresponding static problem due to 

the time-varying nature of the excitation. Over a time interval, a dynamic load varies in 

magnitude, direction, and/or applied location, and the resulting time-varying 

displacement and stress yield dynamic responses. In most structural dynamic problems, 

damping is present and the primary effect of the damping is the removal of energy from 

the structural system. There are many different mechanisms that can cause damping, such 

as internal friction, sliding friction, or viscous flow. Structural damping effects due to 

internal friction are often taken into account in solving structural problems. 

2.6.1 Structural Response 

Consider the transient dynamics formulation presented in Section 2.4 with a damping 

effect that is proportional to the velocity of the structure. The equation of motion for 

structural dynamics with viscous damping has the form 

, ,( , ) ( , ) ( , ) ( , ), , 0,tt tt C t A t t tz x z x z x F x x  (2.48) 

where  is the domain of the structure, z(x,t) is the displacement, A is a linear partial 

differential operator presented in Section 2.3, (x) and C(x) are the structural mass 

density and viscous damping effects, respectively, and F(x,t) is the applied harmonic 

load. The initial conditions of the dynamic problem are the same as in (2.33). The viscous 

damping force can be considered proportional to the velocity of the particle point.

 The solution to (2.48) consists of the sum of two parts: a forced motion, which is 

directly related to F(x,t), and a natural motion, which is necessary to satisfy the initial 

conditions. Mathematically, the forced motion is a particular solution, whereas the natural 

motion is a homogeneous solution. In the case of harmonic excitation, the forced motion 
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is referred to as the steady-state response. Since many single- and multi-degree of 

freedom structures are subjected to harmonic excitation, the steady-state response is very 

important. The displacement and phase angle that result from a steady-state response is 

called the dynamic frequency response of the system [28] and [29]. 

 For the steady-state response, it is necessary to remove the time-dependent terms 

from (2.48). Since the harmonic load is considered, F(x,t) can be expressed as 

( , ) ( ) ,j tt eF x f x  (2.49) 

where f(x) is the vector function of magnitude of the harmonic load and  is the load 

frequency, which is considered a constant. The steady-state response has the same 

frequency as the applied load but may have a different phase angle. Using the complex 

variable method, the displacement z(x,t) is expressed as 

( )

1 2

( , ) ( )

[ ( ) ( )]

( ) ,

j j t

j t

j t

t e e

j e

e

xz x y x

y x y x

z x

 (2.50) 

where y(x) is the dynamic frequency response displacement magnitude, z(x) is the 

complex displacement, and (x) is the phase angle. Thus, the structure oscillates with 

shape z(x) and frequency . Although we use the same symbol z(x) as in the static 

problem, the unknown z(x) of the frequency response problem is a complex variable. 

 Time dependency can be eliminated by substituting (2.49) and (2.50) into (2.48) to 

obtain the spatial state operator equation

2 ( ) ( ) ( ) ( ), ,j C Az x z x z x f x x  (2.51) 

with its appropriate boundary conditions. Note that, in (2.51), even though f(x) is real, the 

state variable z(x) is complex. 

 Since complex variables appear in the frequency response problem, a new definition 

of the linear and bilinear forms must be defined. In the case of a complex variable, 

semilinear and sesquilinear forms are used instead of linear and bilinear forms, 

respectively [30]. Let  be a field of complex numbers, and let  be a vector space over 

the field . A map f from  to  is called a semilinear form if 

* *( ) ( ) ( ),f f fx y x y  (2.52) 

for all ,  and ,x y . In (2.52), *  and *  represent the complex conjugates of 

and , respectively. If  is the field of real numbers, then the semilinear form is 

equivalent to a linear form. Let  and be two vector spaces over the same field . A 

map (x, y) a(x, y) from ×  into  is called a sesquilinear form if for every y

the map x a(x, y) is a linear form on , and for every x  the map y a(x, y) is a 

semilinear form on . If y a(x, y) is a linear form, then the sesquilinear and bilinear 

forms are the same. Note that the sesquilinear form is not symmetric in its arguments. 

 As has been mentioned, the variational formulation of (2.51) is similar to the static 

problem presented in Section 2.3. However, since the complex variable z(x) is used for 

the state variable, the complex conjugate *z  is used for the displacement variation. By 

multiplying both sides of (2.51) with *z  and integrating it over the domain , after 

integration by parts for differential operator A, the corresponding variational equation 

with viscous damping can be derived as 
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2 *

* * *

[ ] ( , )

( ), ,
s

T T

bT sT

j C d a

d d

z z z z z

f z f z z z
 (2.53) 

where *z  is the complex conjugate of the kinematically admissible virtual 

displacement z ,  is the complex space of kinematically admissible virtual 

displacements, ( , )a z z is the energy sesquilinear form, and ( )z  is the load semilinear 

form. Equation (2.53) provides the variational equation of the dynamic frequency 

response under an oscillating excitation with frequency . The first integrand on the left 

side of (2.53) has a similar structure to the kinetic energy bilinear form in (2.34) if 

acceleration z,tt is substituted into displacement z to yield 2 ( , )d z z . The first integrand 

on the left side of (2.53) yields the mass sesquilinear form as 

*( , ) ( ; ) .Td dz z x u z z  (2.54) 

The second integrand on the left side of (2.53) can be denoted by using the structural 

damping sesquilinear form, as 

*( , ) ( ) .Tc C dz z x z z  (2.55) 

Note that the complex conjugate *z of the second argument z  of these sesquilinear forms 

( , ), ( , ),d cz z z z and ( , )a z z  are used in integrations that define them. Likewise, the 

complex conjugate of the argument of the semilinear form ( )z is used in integration that 

defines it, as shown in (2.53). This rule will be consistently used for frequency response 

analysis, including design sensitivity analysis, as will be shown in Sections 5.4 and 7.4 of 

Chapters 5 and 7, respectively. By using (2.53) and (2.55), the variational equation of the 

dynamics response problem can then be obtained as 

2 *( , ) ( , ) ( , ) ( ), .d j c az z z z z z z z  (2.56) 

 Structural damping, a variant of viscous damping, is caused by internal material 

friction or by the connections between structural components. It has been experimentally 

observed that, per cycle of vibration, the dissipated energy of the material is proportional 

to displacement [31]. When the damping coefficient is small, as in the case of structures, 

damping is primarily effective at those frequencies that are close to the resonance. The 

variational equation with structural damping effect is  

2 *( , ) (1 ) ( , ) ( ), ,d j az z z z z z  (2.57) 

where  is the structural damping coefficient, such that ( , ) ( , )c az z z z . That is, the 

structural damping is proportional to the displacement but in phase with the velocity [32]. 

2.6.2 Acoustic Response 

Interior noise and the structural vibration of such motorized vehicles as automobiles, 

aircraft, and marine vehicles, are of increasing concern due to their lightweight design. 

Vibration of a structural component is undesirable either because excessive vibration 

causes fatigue problems, or because the vibration produces sound waves in adjacent fluid 

regions. For example, noise in an automobile interior occurs because forces transmitted 

from the suspension and power train excite the boundary panels of the vehicle 

compartment. In this section, a variational formulation of the structural-acoustic system is 

developed.
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acoustic medium a
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f(x,t)

Figure 2.4. Structural-acoustic system. 

 A structural-acoustic system with fully enclosed volume is shown in Fig. 2.4. All 

members of the structure are assumed to be plates and/or beams in three-dimensional 

space. The structure encloses a three-dimensional acoustic medium whose dynamic 

response is coupled to that of the structure. 

 Let 
a
 and 

s
 be the domain of the acoustic medium and the structure, respectively. 

The acoustic domain has a boundary =
ar as

, where 
ar

 is the rigid boundary, and 
as

 is the structural boundary as the acoustic medium interfaces the structure. Thus, 
as

=
s
. The coupled dynamic motion of the structure and the acoustic medium can be 

described using the following system of differential equations [33]: 

Structure:

, ,( , ) ( , ) ( , )

( , ) ( , ), , 0,

tt t

p s

t C t A t

t t t

z x z x z x

f x f x x
 (2.58) 

with boundary condition 

0, ,sGz x  (2.59) 

and initial condition 

,

( ,0) 0,

( ,0) 0, .

s

s
t

z x x

z x x
 (2.60) 

Acoustic Medium:

2
,

0

1 1
( , ) ( , ) 0, , 0,a

ttp t p t tx x x  (2.61) 

with boundary condition 

0, ,arp xn  (2.62) 
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and initial condition 

,

( ,0) 0,

( ,0) 0, .

a

a
t

p

p

x x

x x
 (2.63) 

Interface Conditions:

( , ) ( , ) ,p as st p tf x x n x  (2.64) 

0 , , .T as s
ttpn z n x  (2.65) 

 Equation (2.58) describes a structural vibration where 
s
 is the domain of the 

structure, (x) is the mass density of the structure, C(x) is the linear differential operator 

that corresponds to the damping of the structure, A is the fourth-order symmetric partial 

differential operator of the structure, f(x,t) is the time-dependent applied load, f
p
 is the 

acoustic pressure applied to the structure at the structure-acoustic medium interface, and 

n is the outward unit normal vector at the boundary of the acoustic medium. The dynamic 

response z(x,t) = [z1, z2, z3]
T
 is the displacement field of the structure. The boundary 

condition in (2.59) is imposed on the structural boundary 
s
 using the trace operator G

[5]. The structural component is governed by the transient dynamic response developed 

in (2.48) with the acoustic pressure considered as an applied load. 

 Equation (2.61) describes the propagation of linear acoustic waves in the acoustic 

medium 
a
, where 0c0

2
 is the adiabatic bulk modulus, 0 is the equilibrium density 

of the medium, and c0 is the acoustic velocity. The acoustic wave (2.61) will be modified 

in order to make it similar to structural equations [34]. The dynamic response p(x,t) is the 

acoustic pressure. The normal gradient of the pressure vanishes at the rigid wall 
ar

, as 

shown in (2.62). 

 Structure-acoustic medium interaction can be seen in (2.64) and (2.65). In (2.64), the 

structural load f
p
 is imposed by acoustic pressure. Equation (2.65) is the interface 

condition in which the normal components of the pressure gradient and the structural 

acceleration vector are proportional to each other. As can be seen in Fig. 2.4, the 

structure-acoustic medium interface 
as

 is the same as the domain 
s
 of the structure. 

 When the harmonic force f(x,t) with frequency  is applied to the structure of the 

coupled system, the corresponding dynamic responses z(x,t) and p(x,t) are also harmonic 

functions with the same frequency . These can be represented using complex harmonic 

functions, as 

( , ) ( ) ,

( , ) ( ) ,

( , ) ( ) ,

j t

j t

j t

t e

t e

p t p e

f x f x

z x z x

x x

 (2.66) 

where f(x) is the magnitude vector of the harmonic load, and z(x) and p(x) are complex 

variables and independent of time. To obtain the differential equation without time 

variable, substitute (2.66) into (2.58) through (2.65) and then evaluate the time 

differentiation. After factoring out e
j t

 terms, the following time-independent, steady-

state system of equations will be obtained: 

Structure:

2 ( ) ( ), ,p sj C Az z z f x f x x  (2.67) 
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with boundary condition 

0, .sGz x  (2.68) 

Acoustic Medium:

2
2

0

1
0, ,aBp p p x  (2.69) 

with boundary condition 

0, .arp xn  (2.70) 

Interface Conditions:

,p as spf n x  (2.71) 

2
0 , .T as spn z n x  (2.72) 

 Equations (2.67) through (2.72) constitute differential equations for the structural-

acoustic system. The differential equation (2.67) of the structural part and the differential 

equation (2.69) of the acoustic part are coupled through the interface conditions given in 

(2.71) and (2.72). 

 To develop a variational formulation of the structural-acoustic system, it is necessary 

to define z  and p  as the kinematically admissible virtual states of the displacement z and 

pressure p, respectively. The variational formulations of (2.67) and (2.69) can be obtained 

by multiplying both sides of (2.67) and (2.69) with the complex conjugates *z  and *p  of 

z  and p P , respectively, integrating by parts over each physical domain, adding 

them, and using the boundary and interface conditions [28] and [29], 

( , ) ( , ) ( , ) ( , ) ( ),q b p p p pz z z z z  (2.73) 

which must hold for all kinematically admissible virtual states { , }p Qz  where Q is a 

complex vector space that satisfies the boundary and interface conditions as 

2
0( , ) | and ,p T T as sQ p P p pz f n n z n x  (2.74) 

and

2 3 2 3

1 1

| Re( ) [ ( )] , Im( ) [ ( )] , 0,

| Re( ) ( ), Im( ) ( ), 0, .

s s s

a a ar

H H G

P p p H p H p

z z z z x

n x
 (2.75) 

In (2.75), Re(z), Re(p), Im(z), and Im(p) are the real and imaginary parts of the complex 

variables z and p, respectively. 

 In (2.73), the sesquilinear forms q(•,•), b(•,•), (•,•), and (•,•) are defined as 

2( , ) ( , ) ( , ) ( , )q d j c az z z z z z z z  (2.76) 

2
* *

0

1
( , ) ( )

a

T ab p p pp p p d  (2.77) 
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2 *( , )
s

T sp p dz n z  (2.78) 

*( , ) .
s

T sp p dz n z  (2.79) 

As explained in Section 2.6.1, the complex conjugates *z  and *p of the second arguments 

z and p  of these sesquilinear forms are used in integrations that define them. If there is 

no acoustic medium, then the variational equation (2.73) can be simplified by dropping 

all terms corresponding to the acoustic medium, including the interface conditions, and 

the result will be the same as (2.56). 

2.7 Thermoelastic Problem 

In this section, variational formulations of the steady- state heat conduction equation and 

the elasticity equilibrium equation with thermal load are developed. This type of problem 

is particularly important in the analysis of automotive engine parts and turbine blades 

where temperature-induced deformations are significant. Although the effects of 

temperature and structural deformation are coupled, by treating thermal effect as an 

external load to the structure, a relatively simple decoupled variational equation can be 

obtained, which can then be solved sequentially. 

2.7.1 Thermal Analysis 

Consider a three-dimensional thermoelastic, isotropic and homogeneous solid, as shown 

in Fig. 2.5. 

 The steady-state heat conduction equation and the boundary conditions are given as 

,

0 0

1
,

2
, ( ) 0 ,

ii

i i

i i

k g in 

on 

k n q on 

k n h on

 (2.80) 

Figure 2.5. Thermal analysis model. 
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where = T – T
0
 and the following conditions are given: T is the absolute temperature, 

T
0
 is the reference temperature of the stress-free state of the solid body, 

0
 is the 

prescribed temperature,  is the ambient temperature, ni is ith component of the unit 

normal vector on the boundary, k is the heat conductivity of the body, h is the convective 

heat transfer coefficient, q is the heat flux vector, g is the internal heat source, 0  is the 

boundary where the temperature is prescribed, 1  is the boundary where the heat flux is 

prescribed, and, finally, 2  is the boundary where the heat convection is prescribed. 

 By multiplying both sides of the heat conduction equation with a virtual temperature 

field , integrating over the physical domain , using integration by parts, and using 

boundary conditions, the following equation 

 `
2

1 2

, ,

,

i ik d h d

g d q d h d
  (2.81) 

is obtained, where  is the space of kinematically admissible temperatures 

1 0( ) 0, ,H x  (2.82) 

and H
1
( ) is the Sobolev space of the first order (see Appendix A.2). The bilinear and the 

linear forms of the heat problem are defined as 

1 2

, ,( , )

( ) .

2i ia k d + h d

g d q d h d
 (2.83) 

The variational form of the heat equation is then obtained as 

( , ) ( ), .a     (2.84) 

2.7.2 Elastic Analysis 

The structural part of the problem is the same as the linear elasticity described in Section 

2.3, except that the material property and response state are dependent on the temperature 

field. The equilibrium equation and the boundary conditions for a general three-

dimensional elasticity can be written as 

( ) 0,

0,

, ,

b

h

s s

div z f x

z x

n f x

 (2.85) 

where div = ij,j , = [ ij] is the stress tensor, f
b
 is the body force, f

s
 is the surface 

traction, and n is the outward unit normal vector to surface 
s
. Due to the conservation of 

angular momentum, the stress tensor  is symmetric ( ij = ji).

 As the temperature of the structure increases, the stress induced from structural strain 

is reduced. Thus, the change of temperature can be considered to be a reduction of strain. 

Since no directional effect exists for a temperature field, the strain induced by thermal 

effect is always volumetric. Besides the two constants of linear elasticity, only one 

additional constant , the coefficient of linear expansion, is required. In general, 

however, the linear elasticity coefficients are considered functions of temperature, which 

is typical for a problem with a large temperature change. In (2.85), the stress tensor is 

defined as 
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( , ) ( ) : ( )

( ) : ( ) ( ) ,

T

T T

z C z 1

C z 1
 (2.86) 

where = T – T0, = [ ij] = ½(zi,j + zj,i) is the strain tensor, and (T) = E(T)/(1 2 (T))

is the thermal modulus. The elasticity tensor in (2.86) is given in (2.8). Note that Young’s 

modulus E(T) and Poisson’s ratio (T) depend on absolute temperature T.

 The weak form of the elasticity equation is 

( , ) : ( ) , ,
S

T B T Sd d d Zz z z f z f z  (2.87) 

where Z is the space of kinematically admissible virtual displacements: 

1 3[ ( )] : 0, .gZ Hz z x  (2.88) 

From the constitutive relation in (2.86) and the fact that material properties are functions 

of temperature, (2.87) is a coupled problem of displacement and temperature. For the 

sake of simplicity, small displacement and small temperature change can be assumed for 

the coupled theromoelastic problem in (2.84) and (2.87). Using the stress-strain 

relationship from (2.86), the variational form of (2.87) becomes 

( ) : ( ) : ( )

( ( )) , .
S

T B T S

T d

(T) div d d Z

z C z

z f z z f z
 (2.89) 

The temperature field computed from (2.84) is considered an external load for the 

purpose of structural analysis. The thermal problem and the elasticity problem are 

decoupled so that the elasticity problem is still linear, even though Young’s modulus and 

Poisson’s ratio are assumed to be dependent on temperature. By defining an energy 

bilinear form as 

( , ) ( ) : ( ) : ( ) ,a T dz z z C z  (2.90) 

and a load linear form as 

( ) ( ( ) ( )) ,
S

T B T ST div d dz z f z z f  (2.91) 

Equation (2.89) becomes 

( , ) ( ), .a      Zz z z z  (2.92) 

Thus, the analysis procedure is made rather simple by decoupling the displacement and 

the temperature fields. The thermal problem in (2.84) is first solved for = T – T
0
.

Absolute temperature T is then obtained from given T
0
 and . The material properties of 

elasticity are obtained for given absolute temperature T, and linear elasticity is then 

solved using (2.92). 



3
Variational Equations and Finite 
Element Methods 

The mathematical theory of the boundary-value problem that describes deformation, 

buckling, and harmonic vibration of elastic structures has been turned into a powerful 

variational approach [16] and [35]. As shown in Chapter 2, this theory begins with the 

classical boundary-value problem and reduces to a variational, or energy-related 

formulation. The result is a rigorous existence and uniqueness theory, providing a 

foundation for the finite element method [36] and [37]. In retrospect, the variational 

formulation obtained may be viewed as the principle of virtual work, or the Galerkin 

method for solving boundary-value problems [38] and [39]. This chapter introduces the 

variational equation for various structural components, such as truss, beam, plate, and 

solid. Since the purpose of introducing structural components is to use them for design 

sensitivity analysis, special emphasis is given to design parameters that can be chosen 

from structural components. Energy bilinear forms of specific structural components are 

derived in Section 3.1. 

 Development of finite element methods using structural analysis was preceded by a 

more physically based matrix approach to structural analysis pioneered in the 1960s by 

Pipes [40], Langhaar [41], and a group of engineers concerned with applications. A 

formal distinction that can be drawn between finite element theory [4], [36], [37], and 

[42] and the matrix theory of structural analysis is the perspective taken in modeling the 

structure. In the case of a matrix structural analysis, the structure is dissected into bite-

size pieces, each of which is characterized by a set of nodal displacements and an 

associated force-displacement relationship. In contrast, if a continuum viewpoint is 

adopted, then the displacement field associated with the structure is characterized by a set 

of differential equations of equilibrium and applied load. The finite element technique is 

then based on a piecewise polynomial approximation of the displacement field and on an 

application of variational methods for approximating a solution to the governing 

boundary-value problem. The finite element approach is employed throughout this text. 

 This chapter concentrates on a class of structures that can be readily described by 

finite-element matrix equations. The fundamental concepts of the finite-element 

structural analysis method are presented in Section 3.3, which includes a discussion of 

the variational principles upon which the derivation of structural equations is based. 

These concepts are used in the subsequent chapters to carry out design sensitivity 

analysis of static response, eigenvalues, and the dynamic response of a structure. 

Element-based matrix equations are assembled in Section 3.4 to construct a global system 

of matrix equations. The variational principles of continuum setting in Chapter 2 will be 

revisited in the discrete system of matrix equations. 
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3.1 Energy Bilinear and Load Linear Forms of Static Problems 

3.1.1 Truss Component 

A truss structural component supports the axial load. Consider the truss component in 

Fig. 3.1 with distributed axial load f(x) per unit length. The coordinate system is 

established such that the x-axis is parallel to the axial direction of the truss. Let E be 

Young’s modulus of the elastic material and let A(x) be the cross-sectional area, which is 

a function of coordinate x. From a design point of view, E and A(x) can be design 

variables for material property and sizing problems, respectively. If the length l is 

changed, the domain of integration is also changed, which is a shape design variable. If 

the local coordinate x is rotated with respect to the fixed global coordinate system, the 

rotation can be considered a configuration design variable. As discussed in Section 1.2 of 

Chapter 1, a sizing design variable can be the cross-sectional A(x) itself and/or section 

dimensions that construct a cross section of the truss component. Although details of each 

design parameter are discussed in the subsequent chapters, consider a sizing design 

vector, denoted as 

0[ , ( )] (0, ).TE A x U R C lu  (3.1) 

This notation simply means that E is real (in R) and A(x) is in C
0
(0,l).

 For the truss component, the deformation over the cross section is presumed constant. 

Deformation is a function of x alone and all other components are zero. Let z be the 

deformation along the x-axis. From the force equilibrium of an infinitesimal element, the 

governing differential equation of the truss component can be written as 

,1 ,1

,1

( ( ) ) ( ), (0, )

(0) 0

( ) 0,

EA x z f x x l

z

z l

 (3.2) 

where the subscribed comma denotes differentiation with respect to the spatial 

coordinate, i.e., z,1 = z/ x. The second-order differential equation, (3.2), is well defined 

when the cross-sectional area A(x) is a C
1
 function, distributed load f(x) is a C

0
 function, 

and the displacement function z(x) is a C
2
 function. In addition, the solution z(x) has to 

satisfy two boundary conditions: one for the essential boundary condition (z(0) = 0) and 

the other for the natural boundary condition (z,1(l) = 0). 

 For many engineering applications, there are limitations in solving differential 

equation (3.2) directly. For example, this equation does not have any meaning if the point 

load is applied to the structure, which frequently happens during an approximation of the  

Figure 3.1. Truss structural component. 

x, z
E, A(x)

f(x)

l
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structural modeling. In addition, a discontinuous A(x) may occur when different cross 

sections are welded together in a large structure. Thus, both the problem and the solution 

have to be extended to represent a variety of engineering applications by using the 

principle of virtual work. 

 The principle of virtual work, as presented in Section 2.3 of Chapter 2, is obtained by 

multiplying (3.2) with an arbitrary function z  (called virtual displacement) and then 

integrating over the domain as 

,1 ,1 ,1 00 0
[ ] ,

l l l
z z dx f z dx EAz z  (3.3) 

where integration by parts is used once. Equation (3.3) is called the variational identity,

which will be used for shape design sensitivity analysis in Chapter 6. Among arbitrary z ,

let us choose those that satisfy the homogeneous essential boundary condition, that is, 

(0) 0z . Thus, the space of kinematically admissible displacements is defined as 

1(0, ) | (0) 0 ,Z z H l z  (3.4) 

where H
1
 is the Sobolev space of the first order. Note that Z contains the homogeneous 

essential boundary condition but not the natural boundary condition. Since the derivative 

of the solution vanishes at x = l, the following variational equation is obtained from (3.3) 

,1 ,1
0 0

,
l l

EAz z dx f z dx  (3.5) 

for all z  in Z. Note that the above variational problem is well defined for the integrable 

cross-sectional area A(x) as well as for the continuous displacement function z(x) whose 

first derivative is in L2( ). Therefore, smoothness requirements for this variational 

problem are much less than for the classical differential equation. 

 For the homogeneous boundary condition, the solution space is the same as Z. From 

(3.5), the structural energy bilinear and load linear forms are defined as 

,1 ,1
0

( , )
l

a z z EAz z dxu  (3.6) 

and

0
( ) ,

l

z fz dxu  (3.7) 

where subscript u denotes the dependence of these two forms on the design. The 

variational equation (3.5) of the truss component can be represented using the energy 

bilinear and load linear forms as 

( , ) ( ), .a z z z z Zu u  (3.8) 

Note that au(•,•) is symmetrical with respect to its arguments. Important properties of 

au(•,•) for proving the existence and uniqueness of the solution will be discussed in 

Section 3.1.7. The expressions of ( , )a z zu  and ( )zu  are different for different structural 

problems. However, using the variational equation (3.8), a unified approach to static 

analysis is possible. 

 Solutions to (3.2) and (3.8) need to be explained. If a solution to the differential 

equation (3.2) exists, then that is also the solution to the variational equation (3.8). 

However, the solution to (3.2) does not exist if the distributed function f is a Dirac delta 

measure, which is the applied point load. In this case, the variational equation (3.8) has a 

solution called a generalized solution. As a result, the variational formulation is more 
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appropriate from the point of view of mechanics than the second-order differential 

equation (3.2). 

3.1.2 Beam Component 

A beam component supports transverse loads through its bending deflection. Two beam 

formulations are introduced in this section: the Bernoulli-Euler and the Timoshenko 

beam theories. The former assumes that bending stress alone is the dominant contribution 

to the structure, whereas the latter also takes into account the transverse shear effect. The 

advantages and disadvantages of each formulation with respect to design sensitivity 

analysis are discussed. 

Bernoulli-Euler Beam Theory (C
1
 Approach) 

The Bernoulli-Euler beam theory (frequently called the technical beam theory) was 

developed for a beam structure in which the cross-sectional dimension is small compared 

with the span so that transverse shear deformation is ignored. Consider the beam 

component in Fig. 3.2 with an axial coordinate x, clamped supports on both sides, and a 

variable moment of inertia I(x). Distribution of the moment of inertia, I(x) > 0, may be 

taken as a smooth function belonging to C
0
(0,l). When different cross-sectional sizes are 

connected through welding, piecewise continuous I(x) can also be used and still be 

mathematically meaningful. In terms of design variables, E and I(x) are the material 

property and the sizing design variables, respectively. If length l is changed, then the 

domain of integration, which is a shape design variable, is changed. If the local 

coordinate x is rotated with respect to the fixed global coordinate system, then the 

rotation can be considered a configuration design variable. As discussed in Section 1.2 of 

Chapter 1, the sizing design variable can be the moment of inertia I(x) itself or cross-

sectional dimensions that construct the moment of inertia of the beam component. 

 Denoting z(x) as a vertical displacement function, the governing differential equation 

of the beam bending problem of Fig. 3.2 can be formally written as 

,11 ,11

,1 ,1

( ( ) ) ( ), (0, )

(0) ( ) 0

(0) ( ) 0,

EI x z f x x l

z z l

z z l

 (3.9) 

where f(x) is the distributed load per unit length and the subscribed comma indicates 

derivatives with respect to x, i.e., z,11 =
2
z/ x

2
. The fourth-order differential equation, 

(3.9), is well defined when I(x) C
2
(0,l), f(x) C

0
(0,l), and z(x) C

4
(0,l). As mentioned   

Figure 3.2. Clamped beam of variable cross-sectional area. 
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in the previous section, these requirements are unnecessary and inappropriate for general 

engineering applications. 

 The material constant E and the second moment of inertia I(x) may be viewed as 

sizing design variables, since they specify the structure and may be selected by the design 

engineer. To simplify the notation, they are denoted as a design vector: 

0[ , ( )] (0, ).TE I x U R C lu  (3.10) 

It is clear that the solution to (3.9) depends on the design u. This dependence may be 

denoted by z(x;u), that is, a displacement function defined in 0 x l that depends on u.

 Considered in its classical form, in which all functions are assumed to be sufficiently 

smooth, both sides of (3.9) can be multiplied by an arbitrary function z  and integrated 

over the structural domain to obtain 

,11 ,11
0
[( ( ) ) ] 0,

l

EI x z f z dx  (3.11) 

which must hold for any integrable function z . Conversely, if (3.11) holds for all twice 

continuously differentiable functions z  that satisfy the boundary conditions of (3.9), and 

if z C
4
(0,l), then the differential equation (3.9) is satisfied. This is true since the space of 

kinematically admissible displacements, 

2
,1 ,1(0, ) (0) ( ) (0) ( ) 0 ,Z z H l z z l z z l  (3.12) 

is dense in L2(0,l). Two integrations by parts can now be carried out in the first term in 

(3.11) to obtain 

,11 ,11 ,11 ,1 ,11 ,1 00 0
( ) ,

l l l
EIz z dx fz dx EIz z EIz z  (3.13) 

which is called the variational identity, and is derived without imposing boundary 

conditions and will be used for shape design sensitivity analysis in Chapter 6. Note that 

any assumptions regarding kinematically admissible displacements are not yet used in the 

variational identity. The right side of (3.13) vanishes because z Z  is required to satisfy 

the boundary conditions in (3.9). Energy bilinear and load linear forms are now defined 

as

,11 ,11
0

( , )
l

a z z EIz z dxu  (3.14) 

and

0
( ) .

l

z fz dxu  (3.15) 

After employing the boundary condition in (3.9), (3.13) therefore becomes 

( , ) ( ), .a z z z z Zu u  (3.16) 

As discussed in Chapter 2, it is important to note that the restriction of I(x) to C
2
(0,l) and 

z to C
4
(0,l) is unnecessary. The energy bilinear form is well defined for I(x) C

0
(0,l) or 

L (0,l) and for z and z  that are in H
2
(0,l). Thus, the variational equation in (3.16) may be 

satisfied by a function z that has only one continuous derivative, with a possible second 

derivative that is only required in L
2
(0,l) and that satisfies the boundary conditions of 

(3.9). Such a function is called the variational or generalized solution to the boundary-

value problem. 
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 An alternative to the variational formulation of the beam equation may be obtained 

from the minimum total potential energy principle of beam bending, that is, the 

displacement z Z minimizes the total potential energy of the beam structure: 

2
,11

0

1
( ) .

2

l

EI z fz dx  (3.17) 

It is clear that the potential energy is well defined as long as z,11 L
2
(0,l) and it does not 

require z to be C
4
(0,l), as in (3.9). Equating the first variation of  to zero, in which the 

variation ( )z x  has the second-order derivative, 2
,11 (0, )z L l , and assuming that z

satisfies the boundary conditions of (3.9), we obtain  

2
,11 ,11

0
0

,11 ,11
0

1
( ) ( )

2

0.

l

l

d
EI z z f z z dx

d

EIz z fz dx

 (3.18) 

But, this is the same as (3.16). Virtually no knowledge of the complicated Sobolev space 

theory is required if the problem is looked at as a stationary condition in optimization 

theory. As was proved in Section 2.2 of Chapter 2, the positive definite and positive 

bounded below properties of the energy bilinear form can be used to prove the existence 

and uniqueness of the solution to (3.18). 

 Recovery of the differential equation (3.9) is only possible if integration by parts can 

be justified, requiring either restrictive and physically unjustifiable assumptions on 

differentiability of z and I, or the introduction of distributional derivatives [16], [17], and 

[35], which in reality make the boundary-value problem of (3.9) equivalent to the 

variational equation of (3.16). Thus, the variational formulation is more natural from the 

point of view of mechanics than the fourth-order differential equation of (3.9). 

 While the foregoing analysis has been carried out with the clamped-clamped beam of 

Fig. 3.2 and with the boundary conditions of (3.9), the same results are valid for many 

other boundary conditions, including the following support conditions and associated 

boundary conditions: 

  1. Simply supported 

,11 ,11(0) (0) ( ) ( ) 0,z z z l z l  (3.19) 

  2. Cantilevered 

,1 ,11 ,11 ,1(0) (0) ( ) [ ( ) ( )] 0,z z z l EI l z l  (3.20) 

  3. Clamped–simply supported 

,1 ,11(0) (0) ( ) ( ) 0.z z z l z l  (3.21) 

 Note that since the boundary terms in (3.13) vanish if z and z  satisfy these boundary 

conditions, the bilinear form au(z, z ) of (3.14) is applicable to all boundary conditions in 

(3.19) through (3.21). It can be shown that the variational characterization of the solution 

in (3.16) is valid only if z and z satisfy the kinematic boundary conditions of (3.19), 

(3.20), or (3.21), which involve the first-order derivative. In other words, boundary 

conditions involving second-order or third-order derivatives are natural boundary 
conditions and need not be satisfied by z and z  in (3.16). 
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Timoshenko Beam Theory (C
0
 Approach) 

The C
0
 beam component has many attractive features in comparison with the technical 

beam theory. The major advantage is that it permits constant shear deformation across the 

cross section. Thus, this theory is well matched to a relatively thick beam where shear 

deformation is not negligible compared with its bending deformation. Although the 

principle of virtual work was used in the previous section to derive the variational 

equation for the technical beam theory, the principle of minimum total potential energy 

will instead be used in this section. Figure 3.3 shows the deformation kinematics of a 

Timoshenko beam in R
2
 with a clamped boundary and distributed load. Only two strain 

components are nonzero, which are caused by bending and shear deformation, and are 

written as 

11 3 ,1

13 13 ,12 ( ),

x

z
 (3.22) 

where z is a vertical displacement of the neutral axis,   is a fiber rotation, and x3 is the 

thickness direction coordinate. Note that the additional variable   is added to represent 

the strain in (3.22), while the order of differentiation is reduced to one, which is 

comparable to the technical beam. From the small deformation and linear elastic 

assumption, the stress-strain relation can be obtained as 

11 11

13 13 ,

E

k
 (3.23) 

where E is Young’s modulus,  is the shear modulus, and k is the shear correction factor, 

needed to compensate for the constant shear strain assumption across the cross section. 

 From the general definition of stress and strain, the total potential energy of the beam 

structure can be obtained by applying the relation in (3.22) and (3.23) to (2.10) in Chapter 

2 as 

Figure 3.3. Deformation kinematics of timoshenko beam. 
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2 2 2
3 ,1 ,1

0 0

2 2
,1 ,1

0 0

1

2

1
[ ( ) ( ) ]

2

1
[ ( ) ( ) ] ,

2

T T

l l
T

A

l l
T

d d

Ex k z dAdx dx

EI k A z dx dx

z f

z f

z f

 (3.24) 

where z = [z, ]
T
, I(x) = A x3

2
dA is the second moment of inertia, and f = [f, m]

T
 is the 

distributed load and moment in the x direction per unit length. If (3.24) is compared with 

the technical beam theory in (3.17), then EI( ,1)
2
 corresponds to the bending effect in 

(3.14), and k A(z,1 – )
2
 represents the contribution of shear strain energy. Note that if z,1 

= , then (3.24) is equivalent to (3.17). The contribution of shear strain energy should 

vanish as h 0 in order to match physical observation. Thus k A(z,1 – )
2
 plays the role 

of a penalty function for the thin cross section of the beam. Note that I(x) is proportional 

to h
3
, whereas A(x) is proportional to h. Thus, the bending strain energy term decreases 

faster than the shear strain energy term as h 0, unless (z,1 – ) approaches zero faster 

than O(h
2
). However, if the same interpolation function is used for z and , then, in 

general, (z,1 – ) cannot be zero. This situation is called shear locking, since z,1 contains 

the derivative of a function and  has a function value. Many numerical studies have been 

done in an attempt to remove the shear locking phenomena [4] and [43]. Since  and z are 

independent variables in (3.24), the first variation of  includes that of  and z, written as 

,1 ,1 ,1 ,1
0 0
[ ( ) ( )] 0.

l l
TEI z k A z dx dxz f  (3.25) 

Let us define state variable z = [z, ]
T
 to include all unknowns of the problem, and let us 

define the energy bilinear and load linear forms as  

,1 ,1 ,1 ,1
0

( , ) [ ( ) ( )]
l

a EI z k A z dxz z  (3.26) 

0
( ) .

l
T dxz z f  (3.27) 

Note that only the first derivative is involved in the energy bilinear form in (3.26), which 

makes the problem simpler than the C
1
 approach. The variational equation of the beam 

problem then becomes 

( , ) ( ), ,a Zz z z z  (3.28) 

where Z  [H
1
(0,l)]

2
 is the space of kinematically admissible displacements that satisfy 

all homogeneous boundary conditions: 

  1. Simply supported 

1 2[ , ] [ (0, )] , (0) ( ) 0 ,TZ z H l z z lz z  (3.29) 

  2. Cantilevered 

1 2[ , ] [ (0, )] , (0) (0) 0 ,TZ z H l zz z  (3.30) 

  3. Clamped-simply supported 

1 2[ , ] [ (0, )] , (0) ( ) 0 .TZ z H l lz z z z  (3.31) 
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3.1.3 Plate Component 

In this section, a brief review of plate formulation is presented for design sensitivity 

analysis in subsequent chapters. The plate component is an extension of the beam 

component into R
2
. Two formulations are introduced: the thin plate theory, where 

transverse bending effect is ignored, and the thick plate theory based on the 

Mindlin/Reissner formulation, where constant shear deformation along the thickness is 

considered.

Thin Plate Component (C
1
 Approach) 

In the thin plate theory, a plane stress condition is assumed such that stress components in 

the thickness direction are ignored, since the thickness is very small compared with the 

span of the plate. Therefore, bending stress is the only contribution to the structure. 

Consider a plate component of thickness h C
0
( ) or L ( ) (h(x) h0 > 0), as shown in 

Fig. 3.4, where the x1-x2 coordinate plane corresponds to the midsurface. On the top face 

of the plate, a distributed load f(x1, x2) is applied. The formal boundary-value problem for 

vertical displacement z C
4
( ) of the midsurface is written as 

,11 ,22 ,11 ,22 ,11 ,22 ,12 ,12[ ( )( )] [ ( )( )] 2(1 )[ ( ) ] ,D z z D z z D z fu u u  (3.32) 

in domain , where D(u) is the flexural rigidity defined as 

3

2
( ) ,

12(1 )

Eh
D u  (3.33) 

where E E0 > 0 is Young’s modulus,   is Poisson’s ratio, and u = [E, h(x)]
T
 is the 

design vector. At the boundary , one can define a new coordinate system whose axis is 

normal and tangential to the boundary. Let n and s denote the components of those 

directions. The clamped boundary condition can be described as 

0

on .
0

z

z

n

 (3.34) 

Note that since z = 0 along boundary , z/ s = 0. 

Figure 3.4. Thin plate component. 
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 The variational formulation is obtained by multiplying both sides of differential 

equation (3.32) by an arbitrary function z and integrating over , as 

,11 ,22 ,11 ,22 ,11 ,22 ,12 ,12[ ( )( )] [ ( )( )] 2(1 )[ ( ) ] 0.z D z z D z z D z f du u u  (3.35) 

 For convenience, let us define the following differential operators [16] through [18] 

as:

2 2

2 2

1z z z
Mz D D

r nn s
 (3.36) 

and

,11 ,22 ,1 1 ,22 ,11 ,2 2

,12 ,2 1 ,12 ,1 2

2

[ ( )] [ ( )]

(1 )[( ) ( ) ]

(1 ) ,

Nz D z z n D z z n

Dz n Dz n

z
D

s n s

 (3.37) 

where Mz represents the bending moment over the cross section, and Nz represents the 

transverse shear force.  In (3.36), r is the radius of curvature of the boundary.  In (3.37),  

n = [n1, n2]
T
 is the outward unit normal vector of boundary . After integration by parts 

in (3.35), we have 

( ) ( ) ,T b z
z z d zf d Mz d zNz d

n
C  (3.38) 

which is a variational identity for the plate bending problem. In (3.38), the curvature 

vector  and bending stiffness matrix C
b
 are defined as 

,11

,22

,12

( )

2

z

z z

z

 (3.39) 

and

3 3

2

1
2

1 0

1 0 ,
12 12(1 )

0 0 (1 )

b h Eh
C C  (3.40) 

where C is the stiffness matrix of the plane stress problem in linear elasticity. If the 

virtual displacement z  satisfies the boundary conditions in (3.34), then the boundary 

integrals on the right side of (3.38) vanish. If we define the energy bilinear and load 

linear forms as 

( , ) ( ) ( )T ba z z z z du C  (3.41) 

and

( ) ,z zf du  (3.42) 

then the variational equation of the plate bending problem becomes 

( , ) ( ), ,a z z z z Zu u  (3.43) 



 3.1 Energy Bilinear and Load Linear Forms of Static Problems 73

where Z is the space of kinematically admissible displacements that satisfies the essential 

boundary conditions in (3.34), written as 

2 ( ) 0 on .Z z H z z n  (3.44) 

The variational equation (3.43) is valid for a plate with h L ( ). As in the case of the 

beam, it is unnatural and unnecessary to restrict variational equation solutions to C
4
( ).

 The variational equation (3.43) is still valid for other types of boundary conditions so 

that the right side of the variational identity in (3.38) vanishes. The following boundary 

conditions can be considered: 

  1. Clamped 

0, on ,
z

z
n

 (3.45) 

  2. Simply supported 

0, on ,z Mz  (3.46) 

  3. Free edge 

0, on .Mz Nz  (3.47) 

 Note that the variational equation (3.43) contains the second-order derivative of 

displacement in curvature vector . If the finite element method is used to approximate 

(3.43), continuity across the element boundary has to be preserved for the displacement 

and its derivative (called the C
1
 approach). Major difficulties can be expected in 

constructing a C
1
-continuous design velocity field for shape and configuration design 

sensitivity analyses (Chapter 7), whereas only C
0
-continuity of the design velocity field is 

required for the following thick plate formulation. 

Thick Plate Component (C
0
 Approach) 

The thick plate theory (the Mindlin/Reissner plate) allows for transverse shear 

deformation effects, and thus offers an attractive alternative to the classical Kirchhoff 

thin plate theory (see Fig. 3.5). The main assumptions of the plate component are 

essentially the same as those of the thick beam: 

Figure 3.5. Thick plate component. 
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 1. The normal stress on the midsurface of the plates is negligible (plane stress), 

 2. Fiber cross sections remain on the plane after deformation (constant shear    

  deformation), and  finally, 

 3. The fiber cross section is not necessarily normal to the midsurface after    

  deformation. 

 Let the coordinate system be given such that the x3-axis is normal to the midsurface. 

The first assumption provides that 33 = 0, i.e., the plane stress condition. Only five 

components of the stress tensor are considered in the following derivation, with a vector 

notation for convenience.

 Note that the rotations represented by 1 and 2 are independent, although they are 

expressed using displacement derivatives from the thin plate theory. Strain is divided into 

bending and transverse shear parts, and is written 

11 1,1

22 3 2,2 3

12 1,2 2,12

x x  (3.48) 

,2 223

,1 113

2
.

2

z

z
 (3.49) 

 Note that the strain resultants given in (3.48), namely, 1,1, 2,2, and ( 1,2 + 2,1), are 

direct curvatures in the x1 and x2 directions and the twisting curvature, respectively. In 

(3.49), z,2 – 2 and z,1 – 1 are the shear rotations in the 2-3 and the 1-3 planes, 

respectively. In (3.48), the same notation  is used as in (3.39), since they both represent 

the plate curvature. However, different definitions should be used in this formulation. 

The stress-strain relation can be written for the linear elastic material as 

11

22 3

12

xC C  (3.50) 

23

13

,kD  (3.51) 

where C has the same form as in the plane stress problem in (3.40);  k  (= 5/6) is the shear 

correction factor, compensating for the assumed constant shear strain along the cross 

section; and D is the elastic modulus, which corresponds to the transverse shear, defined 

as

0
, ,

0

s hkD C D  (3.52) 

where  is the shear modulus. 

 The total potential energy for a typical Mindlin/Reissner plate is then given as 

2

2

3

1
( )

2

1 1
,

2 2

h

h

T T T

T b T s T

dx d d

d d d

z f

C C z f

 (3.53) 
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where z = [z, 1, 2]
T
 and f = [f, m1, m2]

T
. The first integral on the right side of (3.53) 

denotes bending strain energy, while the second indicates the transverse shear strain 

energy. Shear strain energy can be rewritten as 

2 2
,2 2 ,1 1

1
[( ) ( ) ] .

2
hk z z d  (3.54) 

This formulation can be regarded as a penalty term for the thin plate theory in order to 

reduce shear strain as the plate thickness–to–span ratio is reduced. The structural 

variational equation is obtained from the principle of minimum total potential energy as 

( , ) ( ) ( )

( ) ( )

( ),

T b

T s

T

a d

d

d

u

u

z z C

z C z

z f z

 (3.55) 

for all T 1 3
1 2[ ] [ ( )]z, , Hz  in kinematically admissible displacements that satisfy the 

homogeneous boundary conditions. 

 Variational equation (3.55) contains the first-order derivative of displacement and 

rotation. Thus, continuity of all state variables is required across the finite element 

boundary, which is called the C
0
 approach. From a design sensitivity point of view, there 

are several benefits obtained from the C
0
 approach as compared with the C

1
 approach. 

However, there are some computational difficulties in solving (3.55) numerically that are 

related to shear locking and membrane locking. For a more detailed discussion, refer to 

Hughes’ text on this topic [43]. 

3.1.4 Elastic Solid 

Consider the three-dimensional linear elasticity problem of an arbitrarily shaped body, as 

shown in Fig. 3.6. Except for the material property, the solid component has no sizing 

design parameters. Since the material point coincides with the configuration, the solid 

component is frequently used in the shape design problem. Note that no configuration 

design need be defined since the rotational effect of a solid can be represented by its 

material point movement, which is the shape design problem. Three components of 

displacement z = [z1, z2, z3]
T
 characterize the displacement at each point x = [x1, x2, x3]

T
 in 

the elastic body. Let the domain of the body be denoted as , and let boundary  consist 

of traction boundary 
s
 and displacement boundary 

h
, such that 

s h
=  and 

s h

= . The displacement is prescribed on 
h
 and the traction force is prescribed on 

s
. The 

governing differential equations of equilibrium for the elastic body are 

( ) , ,

0, ,

, ,

b

h

s s

div z f x

z x

n f x

 (3.56) 

where div  = ij,j ,  = [ ij] is the stress tensor, f
b
 is a body force, f

s
 is a surface traction, 

and n is an outward unit normal vector to the traction surface 
s
. Due to the conservation 

of angular momentum, the stress tensor  is symmetrical ( ij = ji).

 Let the strain tensor be = [ ij] = ½(zi,j + zj,i). As with previous beam and plate 

components, the formal differential equation (3.56) can be reduced to a variational 

problem by multiplying both sides by an arbitrary virtual displacement vector 
1 3

1 2 3[ , , ] [ ( )]Tz z z Hz  and integrating by parts, to obtain 
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Figure 3.6. Three-dimensional elastic solid. 

1 3( ) : ( ) ( ) , [ ( )] ,T b Td d d Hz z z f z z n z  (3.57) 

where “:” is the standard contraction operator of tensors, i.e., a : b = aijbij, and H
1
( ) is 

Sobolev space of order one as defined in Section 2.2 of Chapter 2. Note that the boundary 

condition in (3.56) has not yet been applied. Equation (3.57) is a variational identity and 

will be used in the shape design sensitivity analysis in Chapter 6. The variational 

equation can be obtained by choosing z  such that the homogeneous kinematic boundary 

condition of (3.56) is satisfied. On 
h
, the right side of (3.57) vanishes from the second 

relation of (3.56) and the traction force n is given as f
s
 on 

s
. Let us define the energy 

bilinear and load linear forms as 

( , ) ( ) : ( )a du z z z z  (3.58) 

and

( ) .
s

T b T sd du z z f z f  (3.59) 

The variational equation corresponding to the differential equaqtion (3.56) then becomes 

( , ) ( ), ,a Zu uz z z z  (3.60) 

where Z is the space of kinematically admissible displacements that satisfy the kinematic 

boundary condition,, that is, 

1 3[ ( )] ( ) , .hZ Hz z x x0  (3.61) 

Equation (3.60) is a generalization of the boundary-value problem in (3.56), in the sense 

that if a solution to the boundary-value problem exists, then it satisfies (3.60) for all 

displacement fields z Z. Conversely, solution z in (3.60), which exists for all 

displacement fields z  satisfying (3.61), also solves the boundary-value problem, if a 

solution to that problem exists. However, in certain situations a solution to the boundary-

value problem in (3.56) does not exist. For example, when f
b
 is a concentrated force, 

x1

x2

x3

s

h

z1 z2

z3

f
s

f
b
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such that the Dirac delta measure is used in (3.56), then no solution exists in the classical 

sense. In that case, a solution to variational equation (3.60) still exists as a generalized

solution within the Sobolev space [H
1
( )]

3
.

 The energy bilinear form au(•,•) is symmetrical and linear with respect to its 

arguments for a linear elastic constitutive relation where the stress-strain relation is given 

as

2

( ),

ij kk ij ij

ijkl kl

ijkl ij kl ik jl il jk

C

C

 (3.62) 

where  and  are Lame’s constants of the isotropic material and ij is the Kronecker 

delta symbol, i.e., having a value of one when i = j and otherwise remaining at zero. Only 

two independent constants are used to describe the constitutive relation of linear 

homogeneous materials. Lame’s constants can be replaced by other engineering-oriented 

constants for convenience, as illustrated in the following example. 

 The tensor notation used in the previous derivations could be somewhat complicated 

to follow since a fourth-order constitutive relation is used in (3.59). For readers who are 

familiar with vector notation, the strain vector can be defined in the following form: 

1,111

2,222

3,333

1,2 2,112

2,3 3,223

1,3 3,113

,
2

2

2

z

z

z

z z

z z

z z

 (3.63) 

where the subscribed comma denotes the derivative with respect to xi. The stress-strain 

relation in (3.62) (generalized Hooke’s law) is given with a vector notation of the stress 

tensor as 

11

22

33

12

23

13

,C  (3.64) 

where C is the 6 6 symmetric elastic modulus matrix,  

1 0 0 0

1 0 0 0

1 0 0 0

1 2
0 0 0 0 0 ,2(1 )(1 2 )

1 2
0 0 0 0 0

2

1 2
0 0 0 0 0

2

E
C  (3.65) 
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and E and  are Young’s modulus and Poisson’s ratio in linear elasticity, respectively. 

The relations between E, , and ,  are: 

(3 2 )
,

2( )

, ,
(1 )(1 2 ) 2(1 )

E

E E
 (3.66) 

and in order for > 0, it is clear that the condition 0 < < ½ is required. Using (3.63), 

(3.64), and (3.65), the energy bilinear form in vector notation therefore becomes 

( , ) ( ) ( ) ,Ta du z z z C z  (3.67) 

where the linear property of au(•,•) can be clearly identified. In this text, vector notation 

is preferred unless it is necessary to use tensor notation. 

 An alternative view of variational equation (3.60) can be obtained from the total 

potential energy of the three-dimensional solid structure, defined as 

1
( ) ( ) .

2 s

T T b T sd d dz C z z f z f  (3.68) 

The first term corresponds to the strain energy stored in the system due to deformation 

and the other two terms correspond to the work done by external force. The principle of 

minimum total potential energy in Chapter 2 says that the equilibrium of the structural 

problem corresponds to the stationary condition in (3.68), which is the vanishing 

condition of the first variation. By taking the first variation of (3.68), we have 

( , ) ( ) ( )

( ),
s

T

T b T s

a d

d d

u

u

z z z C z

z f z f z
 (3.69) 

for all z Z, which is same as (3.60), obtained from the principle of virtual work. 

Plane Stress Elastic Solid 

In certain situations, the three-dimensional elasticity problem specializes in lower-

dimensional problems. For example, the plane strain problem can be inferred when the 

thickness of the x3-coordinate is dominant or when deformations in the x3-coordinate are 

fixed. In plane strain problems, the variational formulation in (3.60) is still valid by 

restricting the index of the coordinate to the first and second dimensions. Even if the 33

component is nonzero, its effect vanishes, since 33 is zero. In contrast, with thin elastic 

solids, stress components normal to the plane where solids lie are often essentially zero 

(plane stress). The plane stress problem has a different coefficient from the three-

dimensional elasticity or plane strain problem even if only two spatial coordinates are 

used.

 Consider a plane stress problem, in which all of the components of stress in the x3-

direction are zero. From (3.62), this yields 

13 13

23 23

33 11 22 33 33

2 0

2 0

( ) 2 0.

 (3.70) 

It is straightforward to say that 23 = 32 = 13 = 31 = 0. From the last relation in (3.70), 33

can be expressed in terms of 11 and 22, as 
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33 11 22( ).
2

 (3.71) 

By substituting these relations into the general stress-strain relation of (3.64), plane 

stress-strain relations are produced as 

11

22

12

,C  (3.72) 

where

11 1,1

22 2,2

12 1,2 2,12

z

z

z z

 (3.73) 

is the strain vector and C is the 3  3 symmetrical elastic modulus matrix for the plane-

stress problem, as given in (3.40). As a result of this notation, (3.60) remains valid as a 

variational equation of elasticity, with the only indices limit being from 1 to 2. Note that 

even though no dependence on x3 appears in this problem, the stress-strain relation in 

(3.72) is not obtained by simply suppressing the third index in (3.62). 

 Consider the variable thickness h(x), a thin elastic slab with in-plane loading and 

fixed edges, as shown in Fig. 3.7, where  is a subset of R
2
 and  is its boundary. The 

thickness of the slab is bounded such that h(x) h0 > 0. Defining f = [f1, f2]
T
 as the body 

force per unit area, one can integrate over the x3-coordinate in (3.60), using (3.72), to 

obtain the following variational equation: 

( , ) ( ), ,a Zu uz z z z  (3.74) 

where the energy bilinear form is defined as 

( , ) ( ) ( ) ( ) ,Ta h du z z x z C z  (3.75) 

and Z is the space of kinematically admissible displacements, which satisfy the essential 

boundary condition, that is, 

1 2[ ( )] ( ) 0, ,Z Hz z x x  (3.76) 

and the design variable u = [h(x)] is the variable thickness of the slab. 

Figure 3.7. Clamped elastic solid of variable thickness h(x) in R
2
.

x2, z2

x1, z1

f(x)
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 The examples in this section have been selected to illustrate the way in which design 

dependence arises in a consistent way with a certain class of distributed-parameter

structural components. In each case, Dirichlet boundary conditions are treated in detail. 

The selection of these boundary conditions is a convenience rather than a requirement. If 

the trace boundary operator theory were used in its full generality [16] and [22], the 

Neumann and mixed boundary conditions that naturally arise in applications could also 

be treated, with the only penalty being the analytic and algebraic complexity of the 

problem. 

3.1.5 Deflection of a Membrane 

Consider the membrane shown in Fig. 3.8, with uniform tension T, mass density (x)

C
1
( ) per unit area, and lateral load f C

1
( ), where  is the closure of . The formal 

differential equation for membrane deflection is 

2 ( ), ,T z f x x  (3.77) 

where
2
 is the Laplace operator, such that 2 2 2 2 2

1 2g g x g x . The boundary 

condition is z = 0 on . By multiplying arbitrary function z  and integrating by parts, the 

following variational identity is obtained for the membrane deflection problem: 

1, ( ),T z
T z z d f z d T z d z H

n
 (3.78) 

where z/ n is the normal component of z on the boundary. If z  satisfies the kinematic 

boundary condition in the above equation, such that 1
0( )z Z H  (Note: 

0 ( )mH  is a 

subspace of functions from H
m
( ) that vanish along with their derivatives up to order m

1 on the boundary of . See Appendix A.2.6.), and if the energy bilinear and load linear 

forms are defined as

( , ) Ta z z T z z d  (3.79) 

and

( ) ,z fz d  (3.80) 

then the structural variational equation for the membrane deflection problem can be 

obtained as 

( , ) ( ), .a Zu uz z z z  (3.81) 

Figure 3.8. Deflection of membrane. 
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Figure 3.9. Torsion of elastic shaft. 

3.1.6 Torsion of an Elastic Shaft 

Consider the shaft torsion problem, as illustrated in Fig. 3.9. Torque M is applied to the 

shaft at its free end, resulting in a unit twist angle . According to the St. Vernant theory 

of torsion [44], the shaft’s elastic deformation is governed by the following formal 

boundary-value problem: 

2 2,

0, ,

Az z

z

x

x
 (3.82) 

where z is the Prandtl stress function. The torque-angular deflection relation is given by 

M  = J , where  is the shear modulus of the shaft material, and J is the torsional 

rigidity, given by

2 .J z d  (3.83) 

By comparing (3.77) and (3.82), it is easy to note that they are exactly the same if f/T = 2, 

which is the basis for the membrane analogy approach [44]. Hence, the variational 

identity for the shaft is 

12 , ( ).T z
z z d z d z d z H

n
 (3.84) 

If the kinematic boundary condition is imposed in (3.84), the variational equation then 

becomes 

1
0( , ) 2 ( ), ( ).Ta z z z z d z d z z Z H  (3.85) 

3.1.7 General Form of Static Variational Equations 

In all previous examples, the boundary-value problem for deformation due to applied 

load was written as it appears in the literature on mechanics. For classical solutions to 

make sense, a high degree of smoothness of design and state (displacement) functions 

must be assumed. In each example, however, both sides of the differential equation could 

be multiplied by an arbitrary virtual displacement z  that satisfies the kinematic boundary 

conditions, integrated over the domain of the component, and integrated by parts to 

reduce the order of the derivatives of z that appear, so that z and z  are differentiated to 

the same order. The result is a variational equation of the form 

M

l

l
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( , ) ( ),a z z z  (3.86) 

which must hold for all kinematically admissible smooth virtual displacements Zz . As 

noted in each example, (3.86) can be viewed as the principle of virtual work and can be 

derived directly from the variational principle of mechanics. 

 Specific forms of (3.86) are given for a truss in (3.8), for a beam in (3.16) and (3.28), 

for a plate in (3.43) and (3.55), and for a linear elastic solid in (3.60). While the details of 

specific formulas differ, they are all in the form of (3.86). This form is adequate for an 

engineering design sensitivity analysis using the adjoint variable method, which will be 

presented in Section 5.2 of Chapter 5. From a mathematical point of view, however, it 

should be noted that for each specific case, the state z does not need to be restricted to a 

classical smooth space of displacement, but can extend to a subspace Z of an appropriate 

Sobolev space of functions that satisfy kinematic boundary conditions. Likewise, the 

design space can be extended to a nonsmooth design space U. The ability to extend 

design space is important and theoretically valuable if one wishes to admit nonsmooth 

designs.

 In each of the examples studied, it can be observed that positive constants K and 

exist, such that 

( , ) , ,
Z Z

a K Zu z z z z z z  (3.87) 

and

2
( , ) , ,

Z
a Zu z z z z  (3.88) 

where K < , > 0, and u U is restricted to be uniformly nonzero. Here, ||•||Z denotes 

the appropriate Sobolev norm [Appendix A.2]. Equation (3.87) is an upper bound on the 

bilinear form, while (3.88) is a lower bound on the strain energy, which is called the 

strong ellipticity or Z-ellipticity property (i.e., positive bounded below). To observe the 

physical significance of these inequalities, place z = z into (3.87), and use (3.88) to 

obtain

2 2
( , ) , .

Z Z
a K Zuz z z z z  (3.89) 

Since the value of au(z,z) is twice the strain energy in each example, (3.89) shows that 

strain energy defines an energy norm that is equivalent to the Sobolev norm. This 

important fact has been used to advantage by Mikhlin [38] and [39] and others to develop 

powerful variational methods. Any stronger or weaker norm would destroy the bounds of 

either (3.87) or (3.88), therefore spoiling the equivalence between energy and function 

space norms. 

 Furthermore, the inequalities in (3.87) and (3.88) as well as the Lax-Milgram theorem 

[16] of functional analysis guarantee the existence of a unique solution z(x;u) to (3.86). 

Again, a stronger or weaker norm in Z would spoil either the existence or the uniqueness 

of the solution. Thus, the Sobolev space setting is “just right,” from both a physical and 

mathematical point of view. 

 For the purpose of design sensitivity analysis, the variational formulation in (3.86) 

and the inequalities in (3.87) and (3.88) are the foundation for a proof with the following 

results: solution z(x;u) is differentiable with respect to the design; (3.86) can be 

differentiated with respect to the design; and the result can be used to write variations of 

cost and constraint functions explicitly. An adjoint variable method for implementing this 

technique is presented and illustrated in Section 5.2 of Chapter 5. While its theoretical 

foundations require the use of the Sobolev space setting, this method is implemented and 

its calculations are carried out without a rigorous use of functional analysis. 
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3.2 Vibration and Buckling of Elastic Systems 

The eigenvalue problem discussed in Section 2.5 of Chapter 2 is extended in this section 

for various structural components. The variational equation of the eigenvalue problem is 

( , ) ( , ), ,a d Zu uy y y y y  (3.90) 

where  is the eigenvalue, y is the eigenfunction, and Z is the space of kinematically 

admissible displacements. In this section, the expressions of ( , )au y y  and ( , )du y y  are 

developed for each structural component. 

Vibration of a String 

A perfectly flexible string of variable mass density per unit length, C
0
(0,l) or L (0,l)

( (x) 0 > 0) and tension T T0 > 0, is shown in Fig. 3.10. The design vector is u =

[ (x), T]
T
. The differential equation of the eigenvalue problem is 

,11 ,Ty y  (3.91) 

where =
2
, with  as the natural frequency of the vibration and the eigenfunction y(x)

determining the vibrating shape of the string. The boundary conditions are 

(0) ( ) 0.y y l  (3.92) 

 As with the static problem, multiply the differential equation (3.91) with an arbitrary 

function y  and integrate over the domain (0,l). After integrating by parts, the following 

variational identity can be obtained: 

,1 ,1 ,1 00
.

l b l

a
T y y dx y y dx Ty y  (3.93) 

An identical form of variational equation (3.90) can be obtained by defining the bilinear 

forms, as 

,1 ,1
0

( , )
l

a y y T y y dxu  (3.94) 

0
( , ) ,

l

d y y y y dxu  (3.95) 

and by applying the boundary condition in (3.92). Unlike the static problems discussed in 

Section 3.1, the notation y(x;u) will be used for the eigenfunction. Since only first-order  

y

x

l

(x)

x = 0 x = l

Figure 3.10. Vibrating string with linear mass density (x).
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derivatives appear in the formula for ( , )a y yu , it is logical to select Z H
1
(0,l). The 

boundary conditions of (3.92) are satisfied in a generalized sense [16] and [22] if space Z

of kinematically admissible displacements is restricted to Z = 1
0 (0, )H l . It is readily 

verifiable [16] and [17] that the form au(y,y) is Z-elliptic, so the theory discussed in 

Section 3.1 also holds true for this problem. 

Vibration of a Beam 

For a technical beam with variable cross-sectional area A(x), let A C
0
(0,l) or L (0,l)

(A(x) A0 > 0), such that the moment of inertia is I(x) = A(x)
2
. Young’s modulus E E0

> 0 and the mass density 0 > 0 also serve as design variables. Here, the design vector 

is u = [A(x), E, ]
T
. A beam with clamped-clamped supports is shown in Fig. 3.11. The 

formal differential equation of the eigenvalue problem is 

2
,11 ,11( ) ,E A y Ay  (3.96) 

where =
2
, with as the natural frequency. Boundary conditions for the clamped-

clamped beam are 

,1 ,1(0) (0) ( ) ( ) 0.y y y l y l  (3.97) 

 As with the string problem, the variational identity is obtained by multiplying an 

arbitrary function y  with (3.96) and integrating by parts, as 

2 2 2
,11 ,11 ,11 ,1 ,11 ,1 00 0

( ) .
l l l
E A y y dx Ay y dx E A y y E A y y  (3.98) 

After applying the boundary condition in (3.97) and defining the following bilinear forms 

2
,11 ,11

0
( , )

l

a y y E A y y dxu  (3.99) 

0
( , ) ,

l

d y y Ay y dxu  (3.100) 

the variational eigenvalue equation, (3.90), is obtained for the beam vibration problem. 

Since only second derivatives arise in ( , )a y yu , it is logical to select Z = 2
0 (0, )H l . The 

boundary conditions in (3.96) are satisfied in a generalized sense [16] and [17] if space Z

of kinematically admissible displacements is defined as Z = 2
0 (0, )H l . All the properties of 

( , )a y yu  of interest are shown in Section 3.1. Note that the smoothness requirement of 

( , )d y yu  is less than that of ( , )a y yu . As noted in Section 3.1, the bilinear forms of (3.99) 

and (3.100) are equally valid for other boundary conditions given in (3.19) through (3.21).

Figure 3.11. Clamped-clamped vibrating beam with variable moment of inertia I(x). 

y

x

l

E, , A(x)

x = 0 x = l
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Buckling of a Column 

If a column is subjected to an axial load P, as shown in Fig. 3.12, then buckling can occur 

if P is larger than the critical load . Using the same design variables as the beam 

vibration, the formal differential equation of the eigenvalue problem is obtained in 

Section 2.5 of Chapter 2 as 

2
,11 ,11 ,11( ) ,E A y y  (3.101) 

with the same boundary conditions as (3.97). Since mass density does not arise in column 

buckling, the design vector is u = [A(x), E]
T
. By multiplying y Z and performing an 

integration by parts for differential equation (3.101), the variational identity and the 

bilinear forms in (3.90) can be obtained for the column buckling problem as 

2 2 2
,11 ,11 ,1 ,1 ,11 ,1 ,11 ,1 ,1

0 0
( )

l l

E A y y dx y y dx E A y y E A y y y y  (3.102) 

2
,11 ,11

0
( , )

l

a y y E A y y dxu  (3.103) 

,1 ,1
0

( , ) ,
l

d y y y y dxu  (3.104) 

where y and y  satisfy the boundary conditions in (3.97). Since ( , )a y yu  and ( , )d y yu

involve derivatives of y and y  that are no higher than the second order, and since the 

boundary conditions are the same as the vibrating beam, space Z of kinematically 

admissible displacements may again be defined as Z = 2
0 (0, ).H l

Vibration of a Membrane 

Consider a vibrating membrane with variable mass density (x) per unit area, C
0
( )

or L ( ) ( (x) 0 > 0) and with membrane tension T, as shown in Fig. 3.13. The formal 

differential equation of the eigenvalue problem would be 

2 ,T y y  (3.105) 

Figure 3.12. Clamped-clamped column with variable moment of inertia I(x).

E, A(x)

y

x

P

x = 0

x = l
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Figure 3.13. Membrane of variable mass density (x).

where
2
 is the Laplace operator, such that 2 2 2 2 2

1 2g g x g x , and  = 
2
, with 

being the natural frequency, and with the following boundary condition: 

0, on .y  (3.106) 

Here u = [ (x), T]
T
 is the design variable, and the variational identity and the bilinear 

forms of (3.90) are 

T y
T y y d y y d T y d

n
 (3.107) 

( , ) Ta y y T y y du  (3.108) 

( , ) ,d y y y y du  (3.109) 

where y and y  satisfy the boundary condition of (3.106). As with a vibrating string, Z

= 1
0( )H , and the bilinear form ( , )a y yu  is Z-elliptic [16] and [17]. 

Vibration of a Plate 

Consider a clamped vibrating plate of variable thickness, h C
0
( ) or L ( ) (h(x) h0 >

0), with Young’s modulus E E0 > 0, and a mass density 0 > 0, as shown in Fig. 

3.14. The formal differential equation of the eigenvalue problem is 

,11 ,22 ,11 ,22 ,11 ,22 ,12 ,12[ ( )( )] [ ( )( )] 2(1 )[ ( ) ] ,D y y D y y D y hyu u u  (3.110) 

where D(u) is the flexural rigidity given in (3.33),  = 
2
 with  being the natural 

frequency, 0 < < 0.5 is Poisson’s ratio, and the boundary condition for a clamped plate 

is

0, on ,
y

y
n

 (3.111) 

where y/ n is the normal derivative of y on . Here the design vector is u = [h(x), E, ]
T
.

 By multiplying (3.110) by y , integrating over , and integrating by parts, the 

following variational identity and bilinear forms of (3.90) are obtained: 

x1

x2

y

(x)
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Figure 3.14. Clamped plate of variable thickness h(x).

( ) ( )T bz z d hyy d

y
yMy d Ny d

n

C

 (3.112) 

( , ) ( ) ( )T ba y y y y du C  (3.113) 

( , ) ,d y y hyy du  (3.114) 

where y and y  satisfy the boundary conditions of (3.111). As with a vibrating beam, the 

natural domain of the energy bilinear form ( , )a y yu  is Z = 2
0 ( ).H

 Given these bilinear forms, the variational formula presented at the beginning of this 

section characterizes the eigenvalue behavior of each of the five problems discussed. 

They all have the same basic variational structure, and all bilinear forms share the same 

degree of regularity in terms of their design dependence. In each problem studied in this 

section, eigenvalue  depends on design u, since the differential equations and variational 

equations depend on u (i.e.,  = (u)). The objective is to determine how  depends on u.

An analysis of the sensitivity of  with respect to changes in u is somewhat more 

complicated than the static displacement problem in Section 3.1, since eigenfunction y

also depends on u (i.e., y = y(x;u)) and its sensitivity must also be taken into 

consideration.

General Form of Eigenvalue Variational Equations 

A unified variational form for each eigenvalue problem is obtained in the form of (3.90), 

much as the variational form for static response was obtained in Section 3.1. While 

detailed expressions of the bilinear forms are different for each example, the same 

general properties hold true. The most general function space setting is given in each 

example, but an engineer primarily interested in applications may assume that design and 

state variables are as smooth as desired. For readers who want rigorous derivations, 

detailed Sobolev space settings are used in Haug et al. [5] to prove the differentiability of 

eigenvalues and to derive formulas to calculate eigenvalue derivatives with respect to 

design.

x1

x2

y

h(x)
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3.3 Finite Element Structural Equations 

A structural analysis based on the finite element approach is introduced in this section, 

using beam, truss, plate, and solid elements as models. Apart from more intricate algebra 

that is required for more complex elements, the basic approach for deriving element 

equations is identical to the process illustrated in this section. Finite element methods of 

structural analysis require knowledge of the behavior of each element in the structure. 

Once each element is described, the governing equations of the entire structure may then 

be derived. 

3.3.1 Truss Element 

Consider a finite element discretization of the truss component using a linear polynomial 

function. Figure 3.15 shows a truss finite element with the linear cross-sectional area 

A(x). For manufacturing purposes it is useful in the structural design of a truss component 

if A(x) remains constant within an element. Even if several elements are connected, each 

of which has a different cross-sectional area, the structural energy form in (3.6) will be 

well defined, since it is represented by the integration of discontinuous functions. 

 An important component of the finite element method is transforming the general-

shaped element into a reference element from which a unified formulation can be 

obtained. The relation between finite and reference elements can be obtained from the 

mapping relation. Let a position of x in the finite element be mapped onto  [–1,1] in 

the reference element. The mapping relation between x and  would be 

1 1 2 2

1 2

( ) ( )

1 1
( ) , ( ) ,

2 2

x N x N x

N N
 (3.115) 

where x1 and x2 are the locations of nodes 1 and 2, and N1 and N2 are corresponding shape 

functions. If the finite element is isoparametric, the displacement is approximated in the 

same way as in (3.115). For convenience, let us define the following vector notations: 

1 1 1

2 2 2

, , ( ) .
x z N

x z N
x d N  (3.116) 

Displacement z, which corresponds to the reference coordinate  in the element, can be 

approximated as 

Figure 3.15. Linear truss finite element. 

x, z1
E, A(x)

f(x)

l

z2

1 2

(a) Finite Element (b) Reference 
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( ) ( ) .Tz x N d  (3.117) 

In the Galerkin approximation of a structural problem, the same discretization is used for 

the displacement variation, such that 

( ) ( ) ,Tz x N d  (3.118) 

where 1 2[ , ]Tz zd  is the nodal displacement variation. 

 To approximate the variational equation (3.8), we have to obtain the derivative of the 

displacement in (3.117), with respect to the spatial coordinate x. Since the reference 

coordinate is a function of , the following is obtained using the chain rule of 

differentiation:

,Tdz d d

dx d dx

N
d  (3.119) 

where d /dx can be obtained from the inverse of the mapping relation in (3.115), as 

2 1

1
( )

2 2

2
.

Tdx d l
x x

d d

d

dx l

N
x

 (3.120) 

Thus,

1
[ 1 1]

,

dz

dx l
d

B d

 (3.121) 

where B is the discrete displacement-strain matrix, even though in this special example, 

it is a row vector. By using (3.121), the structural energy bilinear form of (3.6) can be 

approximated by 

0
( , ) ( )

,

l
T T

T

a z z EA x dxu d B B d

d k d

 (3.122) 

where k is the 2 × 2 element stiffness matrix. In the simplest case in which the constant 

cross-sectional area A is used, the integrand of (3.122) is constant. Thus, explicit 

computation of the k matrix can be obtained as 

1 1
.

1 1

EA

l
k  (3.123) 

 The load linear form in (3.7) can easily be approximated for the linear and constant 

distribution of load f(x). In the case of constant load distribution, (3.7) is approximated as 

0

0

( )

( ) ,

l

l
T

z zf dx

f dx

u

d N

 (3.124) 

where a transformation between x and  is required. Since a one-to-one mapping relation 

exists between x and , we have the relation dx = Jd , where J is the determinant of the 

Jacobian of the mapping relation in (3.120), and is defined as 
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.
2

dx l
J

d
 (3.125) 

Integration of the load linear form is therefore transformed to the reference coordinate as 

1 1

1
2

( )

1

21

,

T

T

T

N
z J d f

N

fl

u d

d

d f

 (3.126) 

where f is the element force vector. In contrast, if the concentrated nodal force is applied 

to the element, then f would simply be f = [f1, f2]
T
. From (3.122) and (3.126), the discrete 

variational equation of the truss component would therefore be 

,T Td k d d f  (3.127) 

for all d  in Zh where Zh R
2
 is the discrete space of kinematically admissible 

displacements. 

3.3.2 Beam Element 

Bernoulli-Euler Beam (C
1
 Approach) 

Consider the linear beam element shown in Fig. 3.16, with Young’s modulus E, shear 

modulus , second moment of inertia I, cross-sectional area A, element length l = x2 – x1,

and linearly distributed force f(x) per unit length. In the Bernoulli-Euler beam theory, the 

transverse displacement and rotation are nodal degrees-of-freedom, which are related by 

1 = z1,1 and 2 = z2,1. In the reference domain, a different mapping scheme used for the 

truss element in (3.115) is employed for computational convenience, such that reference 

coordinate  [0,1]. Thus, the Jacobian of (3.125) can be obtained from

1

1
( ) .

dx
x x J l

l d
 (3.128) 

 Since each element has four independent variables, the transverse displacement z and 

the slope can be approximated using a cubic polynomial, as 

Figure 3.16. Technical beam finite element. 

z1

E, , I, A

f(x)

l

z2
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21

x1 x2

(a) Finite Element (b) Reference 
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2 3
0 1 2 3

2
,1 1 2 3

( )

1
( ) ( ) ( 2 3 ),

z a a a a

dz d
z a a a

d dx l

 (3.129) 

and, by imposing the following conditions, 

1

1

2

2

(0)

(0)

(1)

(1) ,

z z

z z
 (3.130) 

the unknown coefficient ai can be found. After algebraic manipulation, the following 

interpolation relation can be obtained: 

1

1

1 2 3 4

2

2

( ) [ ] ,T

z

z N N N N
z

N d  (3.131) 

where d contains all unknowns of the element and Ni are Hermite shape functions, 

defined as 

2 3
1

2 3
2

2 3
3

2 3
4

( ) 1 3 2

( ) ( 2 )

( ) 3 2

( ) ( ).

N

N l

N

N l

 (3.132) 

Figure 3.17 plots the Hermite shape functions along the neutral axis in the reference 

element. 

 To construct the stiffness matrix of a beam element, the second derivative of 

transverse displacement z has to be computed from the approximation in (3.131), as 

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.17. Hermite shape functions of Bernoulli-Euler beam element. 
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,11 2

1
[ 6 12 , ( 4 6 ),6 12 , ( 2 6 )] ,z l l

l
d B d  (3.133) 

where B is the discrete displacement-strain matrix, although in this special example, it is 

a row vector. By using (3.133), the structural energy bilinear form in (3.14) can be 

approximated by 

1

0
( , )

,

T T

T

a z z EI J du d B B d

d k d

 (3.134) 

where k is the element stiffness matrix of the technical beam element. For the simplest 

case in which the constant, second moment of inertia I is used, the element stiffness 

matrix in (3.134) can be explicitly obtained as 

2 2

3

2

12 6 12 6

4 6 2
.

12 6

. 4

l l

l l lEI

l l

sym l

k  (3.135) 

 For the load linear form in (3.15), let us consider a uniformly distributed load f per 

unit length. The load linear form in (3.15) is approximated by 

2

1

1

0

2

2

( )

/ 2

/12

/ 2

/12

,

x

x

T

T

T

z zf dx

J d f

fl

fl

fl

fl

u

d N

d

d f

 (3.136) 

where f is the element force vector. If the concentrated nodal force and moment are 

applied to the nodes in (3.136), then f = [f1, m1, f2, m2]
T
. From (3.134) and (3.136), the 

discrete variational equation of the technical beam element can be obtained as 

,T Td k d d f  (3.137) 

for all d  in Zh R
4
, and Zh satisfies all essential boundary conditions. 

 For transient dynamics or eigenvalue problems, the kinetic energy form in (3.100) is 

required, whose discretization becomes 

1

0

2 2

2 2

( , )

156 22 54 13

22 4 13 3

420 54 13 156 22

13 3 22 4

,

T T

T

T

d z z A J d

l l

l l l lAl

l l

l l l l

u d NN d

d d

d m d

 (3.138) 
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where m is the consistent element mass matrix. Since the kinetic energy of the beam 

element is positive for any nonzero deformation, it is expected that m will be positive 

definite; hence, nonsingular. These properties can be analytically verified. 

 For the column buckling problem, the bilinear form ( , )d z zu  differs from (3.138). In 

(3.104), first-order derivatives are involved whose discretization yields a geometric 

stiffness matrix, as 

1

,1 ,1
0

2 2

2 2

( , )

36 3 36 3

3 4 31

60 36 3 36 3

3 3 4

.

T T

T

T

d z z J d

l l

l l l l

l l l

l l l l

u d N N d

d d

d bd

 (3.139) 

 It is important to note that the beam-element stiffness matrix in (3.135) depends on 

length l of the beam element, cross-sectional area A, and moment of inertia I of the cross-

sectional area. If the cross-sectional dimensions of the beam element are taken as design 

variables, as is the case when the structural element sizes are regarded as design 

variables, then the element stiffness matrix also depends on design variables. If the 

geometry of the structure is changed, then element length l depends on the design 

variables and is also involved in a nonlinear way with the element stiffness matrix. 

 Somewhat more complex computations will show that the element stiffness matrix in 

(3.135) is positive semidefinite and of rank two. Matrix rank is associated with the 

physical observable fact that the element shown in Fig. 3.16 has two rigid-body degrees 

of freedom. That is, it is possible to move the element in the plane with two kinematic 

degrees of freedom without any deformation or strain energy. Such an element is said to 

have a free energy motion. However, if the left end of the beam element shown in Fig. 

3.16 were fixed (i.e., z1 = 1 = 0), then the energy bilinear form calculated by (3.14) 

would be positive definite in variables z2 and 2. As illustrated throughout this text, 

positive definiteness of the system strain energy plays a crucial role in the mathematical 

theory of design sensitivity analysis. 

Timoshenko Beam (C
0
 Approach) 

Consider the linear beam element in Fig. 3.18 with Young’s modulus E, shear modulus 

second moment of inertia I, cross-sectional area A, element length l = x2 – x1, and linearly 

distributed force f(x). The C
0
 beam element as shown in Fig. 3.18 has transverse 

displacement and rotation as independent nodal degrees-of-freedom. Furthermore, since 

only first-order derivatives are involved, linear trial solutions can be used. Similar to the 

linear truss element in the previous section, the Lagrange interpolation formula can be 

used for writing shape functions. Thus, the mapping relation between x and  is the same 

as in (3.115). 

 If the finite element is isoparametric, then the transverse displacement and rotation 

are approximated in the same way as in (3.117). For convenience, the following vector 

notations are defined: 

1 1

1 1

2 2

2 2

0

0
, ( ) , ( ) ,

0

0

z

z N

N

z N

N

d N N  (3.140) 
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Figure 3.18. Linear beam finite element. 

where d contains all unknowns of the element, Nz( ) is the shape function of transverse 

displacement, and N ( ) is the shape function of the rotation. Displacement z and rotation 

 correspond to reference coordinate  in the element, and can be approximated as 

( ) ( )T
zz x N d  (3.141) 

and

( ) ( ) .Tx N d  (3.142) 

 To approximate the variational equation (3.28), the derivatives of displacement and 

rotation in (3.141) and (3.142) must be computed with respect to spatial coordinate x.

Since the reference coordinate is a function of , the chain rule of differentiation can be 

used to obtain 

zTdz d d

dx d dx

N
d  (3.143) 

and

,Td d d

dx d dx

N
d  (3.144) 

where d /dx can be obtained from (3.120). Thus, the curvature and shear deformation 

term in (3.26) can be interpolated as 

1
0, 1,0,1 d

d

dx l
d B d  (3.145) 

and

1 1 1 1
, , , ,

2 2
s

dz

dx l l
d B d  (3.146) 

where Bd and Bs are the discrete displacement-strain matrices of bending and shear 

deformation, respectively. By using (3.145) and (3.146), the structural energy bilinear 

form in (3.26) can be approximated as 

(a) Finite Element (b) Reference 
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f(x)

l
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0

0

( , ) ( )

( )

,

l
T T

b b

l
T T

s s

T T
b b

T

a EI x dx

k A x dx

z z d B B d

d B B d

d k d d k d

d k d

 (3.147) 

where z = [z, ]
T
 and k = kb + ks is the stiffness matrix of the Timoshenko beam element. 

For the simplest case in which a constant cross-sectional area A is used, the explicit 

computation of the k matrix can be obtained as 

2 2

2 3 2 6
,

2 2

2 6 2 3

b s

k A k A k A k A

l l

k A EI k Al k A EI k Al

l l

k A k A k A k A

l l

k A EI k Al k A EI k Al

l l

k k k  (3.148) 

where kb and ks are the bending and transverse shear stiffness matrices, respectively, 

defined by 

0 0 0 0

0 1 0 1

0 0 0 0

0 1 0 1

b

EI

l
k  (3.149) 

and

2 2

2 2

1 1
2 2

2 3 2 6
.

1 1
2 2

2 6 2 3

s

l l

l l l l

k A

l l l

l l l l

k  (3.150) 

 The load linear form in (3.27) can easily be approximated for linear and constant load 

distribution f(x). In the case of a constant distribution, (3.27) is approximated as 

0

1

1

( )

1

0
,

21

0

l

T
z

T T

zf dx

J d f

fl

z

d N

d d f

 (3.151) 

where f is the element force vector. However, if the concentrated nodal force and moment 

are applied to the element, then we can simply say f = [f1, m1, f2, m2]
T
. From (3.147) and 
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(3.151), the discrete variational equation of the truss component is 

,T Td k d d f  (3.152) 

for all d  in Zh R
4
, where Zh is the discrete space of kinematically admissible 

displacements. 

3.3.3 Plate Element 

A finite element based on thin plate theory requires C
1
-continuity across the element 

boundary, which is extremely difficult for a general-shaped element. Only the rectangular 

geometry of a finite element that is still nonconforming is considered. In contrast, a C
0
-

continuous plate element can be easily developed using various interpolation schemes. 

Thin Plate Element 

Consider a rectangular flat plate element, as shown in Fig. 3.19. The midsurface of the 

plate is taken to be on the x1-x2 plane. For each corner of the element, vertical 

displacement z and two rotations ( x and y) are considered as unknown nodal variables. 

Since z, x, and y are related in the thin plate theory, only an approximation of the 

vertical displacement is considered. Since the plate element contains 12 unknowns, the 

following bases are chosen for interpolation: 

2 2 3 2 2 3 3 3[1, , , , , , , , , , , ],  (3.153) 

where  = [ , ]
T
 is the vector of the reference coordinate. Note that for computational 

convenience, the reference coordinates are defined as  = x/a and  = y/b. After imposing 

an interpolation condition at each node similar to the beam element in (3.130), the 

following approximation can be obtained: 

( ) ( ) ,Tz N d  (3.154) 

where d = [z1, x1, y1, …, z4, x4, y4]
T
 represents the element’s unknown variables and 
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N

(1 )a

 (3.155) 

is the shape function of approximation. Equation (3.155) consists of Hermite shape 

functions. Figure 3.20 plots the Hermite shape function in the element domain, which is 

conceptually the same as the Hermite function of the beam element (see Fig. 3.17). 

 The displacement function represented by (3.154) ensures that boundary 

displacements and tangential slope along the boundary between adjacent plate elements 
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are compatible. However, the normal slope along the boundary is not compatible. 

Consequently, discontinuities in the first-order derivatives of displacement exist across 

element boundaries. 

 Integration of the structural energy form over the plate element in (3.41) results in the 

following plate element stiffness matrix [45]: 

3
11

2
21 22 12 12

,
12(1 )

symEh

ab

k
k

k k
 (3.156) 

where E is Young’s modulus;  is Poisson’s ratio; and 6 × 6 submatrices k11, k21, and k22

are defined in (3.157), (3.158), and (3.159), respectively. In  (3.157) through (3.159),  = 

b/a, the ratio between horizontal and vertical plate dimensions. Note that the stiffness 

matrix depends on material properties and plate thickness, both of which may be taken as 

design parameters. 

Figure 3.19. Rectangular plate element.  

Figure 3.20. Three-dimensional surface plots of shape functions.  

x

y

a

b

1

2 3

4

d1

d2

d3

d4

d5

d6

d7

d8

d9

d10

d11

d12

N1 N2



2
2

1 5

2
2

2
1

4
4

5
3

1
5

2
2

2
1

4
4

5
3

1
5

1
1

2
2

2
2

2
2

1
1

1
1

5
5

5
5

2
2

1
2

1
5

3
1
5

4
(

)
(1

4
4

)

[2
(1

4
)]

[
(1

)]

[2
(1

4
)]

[
(1

)]

2
(

2
)

(1
4

4
)

[2
(1

)]
[

(1
4

)]
4
(

)
(1

4
4

)

[2
(1

)]
[

(1

b
b

sy
m

m
et

ri
c

a
a
b

a

b
a

b

k

2
2

2
2

1
4

4
5

3
1

5

2
2

2
2

2
2

1
2

4
1

4
4

5
3

1
5

5
3

1
5

)]
0

[2
(1

4
)]

[
(1

)]

[
(1

4
)]

0
[

(1
)]

[2
(1

4
)]

[
(1

)]

b
b

b

a
a

a
a
b

a

 
(3

.1
5

7
) 

2
2

2
2

2
2

2
2

1
1

1
1

1
1

5
5

5
5

5
5

2
2

2
2

2
2

1
1

1
1

2
4

5
3

1
5

5
3

1
5

2
2

1
1

1
5

3
1
5

2
1

2
(

)
(1

4
4

)
[

(1
)]

[
(1

)]
2

(2
)

(1
4

4
)

[
(1

4
)]

[2
(1

)]

[
(1

)]
[

(1
)]

0
[

(1
4

)]
[

(1
)]

0

[
(1

)]
0

[
(1

)

b
a

b
a

b
b

b
b

b
k

2
2

2
2

1
2

1
5

3
1
5

2
2

2
2

2
2

2
2

1
1

1
1

1
1

5
5

5
5

5
5

2
2

2
2

2
1

2
4

1
1

1
5

3
1
5

5
3

1
5

]
[2

(1
)]

0
[

(1
)]

2
(2

)
(1

4
4

)
[

(1
4

)]
[2

(1
)]

2
(

)
(1

4
4

)
[

(1
)]

[
(1

)]

[
(1

4
)]

[
(1

)]
0

[
(1

)]
[

(1
)]

a
a

a

b
a

b
a

b
b

b
b

2

2
2

2
2

2
2

1
2

1
1

1
1

5
3

1
5

5
3

1
5

0

[2
(1

)]
0

[
(1

)]
[

(1
)]

0
[

(1
)]

a
a

a
a

 
(3

.1
5

8
) 

2
2

1 5

2
2

2
1

4
4

5
3

1
5

2
2

2
1

4
4

5
3

1
5

2
2

2
2

2
2

2
2

1
1

1
1

5
5

5
5

2
2

1
2

1
5

3
1

5

4
(

)
(1

4
4

)

[2
(1

4
)]

[
(1

)]

[2
(1

4
)]

[
(1

)]

2
(

2
)

(1
4

4
)

[2
(1

)]
[

(1
4

)]
4

(
)

(1
4

4
)

[2
(1

)]
[

(1

b
b

sy
m

m
et

ri
c

a
a

b
a

b
a

b

k

2
2

2
2

1
4

4
5

3
1
5

2
2

2
2

2
2

1
2

4
1

4
4

5
3

1
5

5
3

1
5

)]
0

[2
(1

4
)]

[
(1

)]

[
(1

4
)]

0
[

(1
)]

[2
(1

4
)]

[
(1

)]

b
b

b

a
a

a
a

b
a

 
(3

.1
5

9
) 



 3.3 Finite Element Structural Equations 99

Mindlin/Reissner Plate Element 

Discretization of the Mindlin/Reissner plate is discussed in this section. Since cross-

sectional rotation and transverse displacement are independent of each other, three 

separate interpolations for z, 1, and 2 must be assumed. Furthermore, since only first-

order derivatives are involved in the structural energy form in (3.55), a linear polynomial 

can be used in interpolation. As a result, it is easier to choose shape functions using this 

theory than the C
1
 approach employed in the previous section. Lagrangian interpolation 

formulas and isoparametric mapping can now be used, whereas Hermite shape functions 

are used for a C
1
 plate element. A four-node Mindlin/Reissner plate element, together 

with its reference element for writing shape functions, is shown in Fig. 3.21. 

 Let ( I, I) be the value of the reference coordinate corresponding to node I whose 

value is ±1, as shown in Fig. 3.21. The Lagrangian shape functions of the reference 

element can be written as 

1
( ) (1 )(1 ),

4
I I IN  (3.160) 

where  = [ , ]
T
 is the reference coordinate vector and I = 1, …, 4 is the number of nodes 

in the element. If z = [z, 1, 2]
T
 is the vector of vertical displacement and cross-section 

rotation, then z is interpolated using nodal values d = [z1, 11, 12, z2, 21, 22, …, 44]
T
, as 

1 2 3

1 1 2 3

2 1 2

0 0 0 0 0

0 0 0 0 0 .

0 0 0 0 0 0

z N N N

N N N

N N

z d  (3.161) 

For the isoparametric mapping element, the displacement and the spatial coordinate are 

interpolated in the same method, such that 

4

1

4

1

( ) ( ) ,

( ) ( ) ,

I I

I

I I

I

x N x

y N y

 (3.162) 

where xI and yI are the nodal coordinates of node I. From (3.162), the Jacobian matrix of 

the transformation can be obtained as 

(a) Finite Element (b) Reference Element 

x

y

1 2

3
4

(–1,–1) (1,–1)

(1,1)(–1,1)

Figure 3.21. Quadrilateral Mindlin/Reissner element. 
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.

x y

x y
J  (3.163) 

Using the inverse relation of (3.163), spatial derivatives can be expressed in terms of the 

derivatives in the reference coordinates, as 

1
,

y y

x

x x

y

J
 (3.164) 

where /  and /  can be easily obtained by taking the derivative of the shape function 

in (3.160).

 Since the energy bilinear form in (3.55) depends on curvature and shear strain 

vectors, the calculations for vectors and  in (3.48) and (3.49) can be organized as 

( ) ( )bB d  (3.165) 

and

( ) ( ) ,sB d  (3.166) 

where Bb and Bs are displacement-strain matrices of bending and shear deformation, 

respectively, and whose expressions are calculated as 

1,1 2,1

1,2 2,2

1,2 1,1 2,2 2,1

0 0 0 0

0 0 0 0

0 0

b

N N

N N

N N N N

B  (3.167) 

and

1,2 1 2,2 2

1,1 1 2,1 2

0 0
.

0 0
s

N N N N

N N N N
B  (3.168) 

Thus, from the definition of the structural energy form in (3.55), we obtain 

( , )

,

T T b
b b

T T s
s s

T T
b s

T

a d

d

u z z d B C B d

d B C B d

d k d d k d

d k d

 (3.169) 

where kb is the 12 × 12 element bending matrix, and ks is the 12 × 12 transverse shear 

stiffness matrix. 

 If only constant vertical force f is considered for the load linear form in (3.55) without 

any moments, then the load linear form in (3.55) can be approximated as 

( )

.

T
I I

T

N d fu z d

d f
 (3.170) 

From (3.169) and (3.170), the discrete variational equation of the plate element is 
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, ,T T
hZd k d d f d  (3.171) 

where Zh R
12

 is the discrete space of kinematically admissible displacements. 

3.3.4 Three-Dimensional Elastic Solid 

There are many ways to interpolate a solid component using a finite element. Here, only 

an eight-node isoparametric quadrilateral element is taken as an example. For a more 

detailed discussion of solid elements, refer to the additional literature on this topic [4], 

[43], and [46]. Figure 3.22 depicts an eight-node, three-dimensional, isoparametric solid 

element. 

 Let zI = [zI1, zI2, zI3]
T
 be the displacement vector at node I = 1, …, 8 and let I = [ I, I,

I]
T
 be the corresponding reference coordinate. For the isoparametric element, the 

coordinate and the displacement of the element can be expressed by 

8

1

( )I I

I

Nx x  (3.172) 

and

8

1

( ) ,I I

I

Nz z  (3.173) 

where xI is the nodal coordinate and NI( ) is the isoparametric shape function, defined as 

1
( ) (1 )(1 )(1 ),

8
I I I IN  (3.174) 

where ( I, I, I) are the values of the reference coordinate corresponding to node I, and 

where their values are ±1, as shown in Fig. 3.22. 

 The transformation from physical to reference elements can be defined using a 

mapping relation. The Jacobian matrix of the transformation can be obtained by taking 

the derivative of (3.172) as 

8

3 3

1

( )
.I

I

I

d dN

d d

x
J x  (3.175) 

Figure 3.22. Eight-node three-dimensional isoparametric solid element. 

(a) Finite Element (b) Reference Element 
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Note that dNI/d  is a (1 × 3) row vector. The initial geometry of the element has to be 

well shaped, such that |J| > 0. To compute the strain vector, differentiation of the 

approximation in (3.173) has to be taken. By using the inverse relation of (3.175), the 

spatial derivative of the shape function can be obtained as 

.I I TdN dN

d d
J

x
 (3.176) 

The strain vector can thus be obtained in the form 

8

1

( ) ,I I

I

z B z  (3.177) 

where
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,2 ,1

,3 ,2

,3 ,1

0 0

0 0

0 0

0

0

0

I

I

I

I

I I

I I

I I

N

N

N

N N

N N

N N

B  (3.178) 

is the discrete displacement-strain matrix of a solid element. The approximation of ( )z

can be obtained in a similar way. 

 Note that all variables in the physical element are transformed into the reference 

element. Thus, it will be helpful if the integration over element domain  can be 

transformed into an integration over the reference element, which can be achieved using 

the following relation: 

1 1 1

1 1 1
.d d d dJ  (3.179) 

Thus, the energy bilinear form of the element in (3.67) can be approximated as 

8 8
1 1 1

1 1 1
1 1

( , )

,

T T
I I J J

I J

T

a d d du z z z B CB J z

d k d

 (3.180) 

where d = [z11, z12, z13, z21, z22, z23, …, z81, z82, z83]
T
 is the unknown nodal displacement 

vector, and k is the 24 × 24 element stiffness matrix. 

 For simplicity, the load linear form will be discretized with no traction force by 

8
1 1 1

1 1 1
1

( ) ( )

.

T b
I I

I

T

N d d dz z f J

d f

 (3.181) 

Thus, the discrete variational equation of a solid component becomes 

, ,T T
hZd k d d f d  (3.182) 

where Zh R
24

 is the discrete space of kinematically admissible displacements. 

 For the eigenvalue problem, the kinetic energy bilinear form can be approximated by 
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8 8
1 1 1

1 1 1
1 1

( , )

,

T
I I J J

I J

T

d N N d d dz z z J z

d m d

 (3.183) 

where m is the consistent mass matrix. The discrete eigenvalue problem of solid 

components can be obtained as 

, ,T T
hZd k d d m d d  (3.184) 

where  is the eigenvalue. 

3.4 Global Matrix Equations for the Finite Element Method 

3.4.1 Construction of Global Matrices 

In the previous section, a matrix equation was developed using the finite element method 

at each element level. General, complex geometry of engineering applications is 

approximated using a set of finite elements. Finite elements are connected to each other 

with adjacent elements through common nodes. To construct a global system of matrix 

equations in which all elements are connected, an assembly procedure has to be followed. 

The global stiffness matrix that is generated by such a procedure is usually positive 

semidefinite, since a rigid body motion exists in the structure, which can be removed by 

imposing boundary conditions. The direct removal of fixed degrees-of-freedom, or the 

substitution of an equivalent relation, can impose essential boundary conditions. 

Global Stiffness and Mass Matrices 

The total strain and kinetic energy of a structure may be obtained by adding together the 

strain and kinetic energy of all elements that make up the structure. Before a meaningful 

expression can be written for the total system strain and kinetic energy, it is first 

necessary to define a system of global displacements for all nodes in the structure, 

relative to the global coordinate system. Let zg R
n
 denote this global displacement 

vector.

Transformation from Local to Global Coordinates 

Since the individual elements of the structure have their own inherent displacement 

vectors in the body-fixed coordinate system, as illustrated in Figs. 3.15 and 3.16, 

displacement must first be transformed from the element’s body-fixed coordinate to a 

coordinate that parallels the global coordinates. Let d
i
 denote the nodal displacement 

coordinate vector of the ith element in its body-fixed system. A rotation matrix S
i
 may be 

used to define these local displacement coordinates in terms of global coordinates, which 

are denoted as q
i
, that is, 

.i i id S q  (3.185) 

The transformed element displacement now coincides with components of the global 

displacement vector zg. Therefore, it is possible to define a Boolean transformation 

matrix
i
 that consists of only zeros and ones, and gives the relation 

.i i
gq z  (3.186) 
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Note that if q
i
 is an r-vector and zg is an n-vector (n > r), then 

i
 is an r n matrix that 

only consists of r unit components, with zeros as the remaining entries. 

Example 3.1. Coordinate Transformation of Three-bar Truss Structure. In order 

to explain coordinate transformation between local and global coordinates, consider 

element 3 of the three-bar truss example given in Section 1.2.3 of Chapter 1. Since the 

direction of elements 1 and 2 are already aligned with the global coordinate system, no 

rotation is required; only Boolean transformation is required for these elements. 

However, for element 3 the body-fixed coordinate is rotated at angle  from the global 

coordinates. In this case, the rotational matrix and the Boolean transformation matrix are 

defined as 

3
cos sin 0 0

0 0 cos sin
S

and

3

1 0 0 0 0 0

0 1 0 0 0 0
.

0 0 0 0 1 0

0 0 0 0 0 1

Generalized Global Stiffness Matrix 

By denoting the ith element stiffness matrix as k
i
, the strain energy in the ith element may 

be written as 

1
.

2
i iT i iU d k d  (3.187) 

Substituting from (3.185) and (3.186), this formula becomes 

1 1
.

2 2
i iT iT i i i T iT iT i i i

g gU q S k S q z S k S z  (3.188) 

 The strain energy of the entire structure is now obtained by adding the strain energy 

from all NE elements in the structure, to obtain 

1

1

1

2

1
,

2

NE

i

i

NE

T iT iT i i i
g g

i

T
g g g

U U

z S k S z

z K z

 (3.189) 

where Kg is the generalized global stiffness matrix,

1

.
NE

iT iT i i i
g

i

K S k S  (3.190) 
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Reduced Global Stiffness Matrix 

If all boundary conditions associated with the structure have been imposed so that no 

rigid-body degree-of-freedom exists, then generalized global stiffness matrix Kg is 

positive definite, denoted simply by K, and is called the reduced global stiffness matrix.

However, if the generalized global stiffness matrix is assembled without any 

consideration of boundary conditions, it will generally not be positive definite. As will be 

seen later, it is important to note this distinction since many formulations and computer 

codes use matrix methods that employ the generalized global stiffness matrix and impose 

constraints during the solution process. Such processes do not explicitly eliminate 

dependent displacement coordinates, so the positive definite reduced global stiffness 

matrix K is not constructed, and thus, not available for design sensitivity calculations. 

Generalized Global Mass Matrix 

As in the case of strain energy, the kinetic energy of the ith element may be written in 

terms of generalized velocities. Since matrices S
i
 and

i
 do not depend on generalized 

coordinates, the following holds true: 

, ,

, , ,

i i i
t t

i i
t g t

d S q

q z
 (3.191) 

where the subscribed comma denotes a time differentiation, i.e., d,t = d/ t. Using these 

relations, the kinetic energy of the ith element may be written as 

, , , , , ,

1 1 1
.

2 2 2
i i T i i i T iT i i i T iT iT i i i

t t t t g t g tT d m d q S m S q z S m S z  (3.192) 

Summing up the kinetic energy for all elements, the total kinetic energy for the system 

can be written as 

1

, ,

1

, ,

1

2

1
,

2

NE

i

i

NE

T iT iT i i i
g t g t

i

T
g t g g t

T T

z S m S z

z M z

 (3.193) 

where Mg is the generalized global mass matrix,

1

.
NE

iT iT i i i
g

i

M S m S  (3.194) 

Presuming that all structural elements have mass, it is impossible to obtain a nonzero 

velocity without investing a finite amount of kinetic energy. Therefore, a global mass 

matrix will always be positive definite. 

Reduced Global Mass Matrix 

If boundary conditions have been taken into account before the global displacement 

vector is defined, then the reduced global mass matrix will be denoted as M, as in the 

case of the corresponding reduced global stiffness matrix K. It is important to note that 

the global stiffness matrix and mass matrix both depend on design variables that appear 

in element stiffness mass matrices, as in the case of member-size design variables, and on 

geometric design variables that appear in the rotation matrices S
i
. It is clear that the 
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dependence on geometric variables for global stiffness and mass matrices is much more 

complex than the dependence on member-size design variables. 

Example 3.2. Two-bar Truss. As a simple illustration of the previously described 

transformations, consider the two-bar truss, shown in Fig. 3.23. Since rotation at the ends 

of the truss elements does not occur either in strain or in kinetic energy expressions, they 

are simply suppressed. The transformation from body-fixed to globally oriented element 

displacement coordinates can be described as d
1
 and d

2
:

1 1 1 1

sin cos 0 0

cos sin 0 0

0 0 sin cos

0 0 cos sin

d q S q

2 2 2 2

cos sin 0 0

sin cos 0 0
.

0 0 cos sin

0 0 sin cos

d q S q

The mappings from globally oriented element coordinates to global coordinates are 

1 1

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

g gq z z

2 2

1 0 0 0 0 0

0 1 0 0 0 0
.

0 0 0 0 1 0

0 0 0 0 0 1

g gq z z

Figure 3.23. Two-bar truss. 
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Using these transformations and the expressions of (3.190) and (3.194) for the 

generalized global stiffness and mass matrices, the global matrices can be obtained as 

2 2 2
1 1 2 2 1 1 2 2 1 1 1 1 2 2 2 2

2 2 2
1 1 2 2 1 1 1 1 2 2 2 2

2
1 1 1 1

2
1 1

2
2 2 2 2

2
2 2

( ) ( )

( )

0 01

0 0
g

E h E h c E h E h sc E h c E h sc E h c E h sc

E h E h s E h sc E h s E h sc E h s

E h c E h sc

l E h s

symmetric E h c E h sc

E h s

K  (3.195) 

and

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1

2 2

2 2

2 2

2( ) 0 0 0

2( ) 0 0

2 0 0 0
,

6 2 0 0

2 0

2

g

h h h h

h h h h

hl

h

symmetric h

h

M  (3.196) 

where c = cos  and s = sin . If the pin joints at the top of the truss are fixed, then the 

boundary conditions for this structure are z3 = z4 = z5 = z6 = 0. After imposing these 

boundary conditions, the strain energy and the kinetic energy are obtained only in terms 

of two displacement coordinates z1 and z2. Thus, rows and columns that correspond to 

fixed displacement coordinates are deleted in the generalized global stiffness and mass 

matrices in (3.195) and (3.196). As a result, the reduced stiffness and mass matrices are 

obtained as 

2
1 1 2 2 1 1 2 2

2
1 1 2 2 1 1 2 2

( ) ( )1

( ) ( )

E h E h c E h E h sc

l E h E h sc E h E h s
K  (3.197) 

and

1 1 2 2

1 1 2 2

0
.

3 0

h hl

h h
M  (3.198) 

Note that while the generalized global stiffness matrix Kg in (3.195) is singular and, in 

fact, has a rank deficiency of 4, reduced stiffness matrix K in (3.197) is positive definite. 

 While the two-bar truss example is simple, it describes a systematic procedure for 

assembling global stiffness and mass matrices. Since this assembly procedure is 

systematic, numerous computer codes have been developed to automate the process of 

constructing Kg and Mg. Depending on the nature of the boundary conditions, it is 

possible to systematically collapse the generalized global stiffness and mass matrices to 

the reduced stiffness and mass matrices K and M, as was done in this example. In many 

applications, however, more complex constraints among generalized coordinates arise, 

such as multipoint constraints, making the reduction process more complicated. 

Numerical techniques, including systematic reduction and the application of Lagrange 

multipliers, are used to solve such problems [36], [42], and [45]. 

 In the previous section, the design dependence of the element stiffness matrix is 

obvious. However, due to boundary conditions and/or constraints, the design dependence 

of the global stiffness matrix may not be easy to obtain. For design sensitivity purposes it 

is recommended that a matrix equation be used before boundary conditions are imposed, 

as shown in Chapter 4. 
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3.4.2 Variational Principles for Discrete Structural Systems 

In the previous chapter, the variational principle of continuum systems was considered. In 

this section, the same variational principle is discussed for discrete systems. 

Potential Energy 

Structural systems considered in this chapter are conservative in nature, that is, the work 

done by a system of applied force in traveling through any closed path in displacement 

space must be equal to zero. Denoting Fg as a vector of force components that are 

consistent with the global displacement vector zg, the conservative condition can be 

written as 

0,T
g g

C
dF z  (3.199) 

where C is any closed path in the space of displacement-generalized coordinates. As is 

well known [41], for a force field Fg(zg) = [Fg1, Fg2, , Fgn]
T
 to be conservative, an 

analytical condition exists as 

, , 1, , .
gi gj

gj gi

F F
i j n

z z
 (3.200) 

Assuming that the force field Fg(zg) is conservative, a potential energy function W(zg)

exists, such that 

( )
( ) , 1, , .

g

g g

g

W
i n

z
F z

z
 (3.201) 

For constant applied force Fg, the condition of (3.200) is easily satisfied, and the potential 

energy can be written as 

( ) .T
g g gW z F z  (3.202) 

In this case, (3.201) can be easily verified as true. 

 In the case of a structural buckling problem, displacement at the point of an applied 

load P is given as a quadratic form in displacement zg. Based on the similar procedure for 

a beam element in (3.139), the geometric stiffness term can be written as 

1
.

2
T
g g gz D z  (3.203) 

It is presumed that the global geometric stiffness matrix Dg has been transformed into its 

symmetric form, which is always possible for a quadratic form. The potential energy of 

the load P is thus 

,
2

T
g g g

P
Q P z D z  (3.204) 

where P and  are given in the same positive direction. 

 For a conservative mechanical system, it is possible to obtain a potential energy 

function for all applied loads. The total potential energy of a structural system is defined 

as the sum of the strain energy of the structure and the potential energy of all applied 

loads, that is, 

.U W Q  (3.205) 



 3.4 Global Matrix Equations for the Finite Element Method 109

For a linear structural system, the strain energy is given by the quadratic form in (3.189), 

and the potential energy of applied loads is the sum of terms arising from (3.202) and 

(3.204). The total potential energy can thus be written as 

1
.

2 2
T T T
g g g g g g g g

P
z K z F z z D z  (3.206) 

Theorem of Minimum Total Potential Energy 

By denoting Z as the vector space of all kinematically admissible displacements for the 

structural system, and presuming homogeneous boundary and interface conditions, the 

following theorem of minimum total potential energy is true [41] and [45]. 

Theorem 3.1. Minimum Total Potential Energy. The displacement zg Z that 

occurs due to an externally applied conservative load acting on an elastic structure 

minimizes the total potential energy of the structural system over all kinematically 

admissible displacements. 

 It is important to note that this statement of minimum total potential energy does not 

require that the displacement coordinates zgi (i=1, …, n) be independent, although it is 

presumed that they are related by homogeneous linear equations. While this limitation is 

not essential in the theory of structural mechanics, it is adequate for the purposes of this 

text.

Lagrange’s Equation of Motion 

The second major variational principle of structural mechanics employed here provides a 

variational form for the dynamic equations of motion. Presuming that the applied forces 

Fg depend only on time, that is, that Fg = Fg(t), the Lagrangian of a dynamic system can 

be defined as 

, ,( , ) ( ),g t g t gL T z z z  (3.207) 

where T(zg,t, zg,t) is the kinetic energy of the system, which is a quadratic form of zg,t.

Neglecting the effect of the last term in (3.206), the Lagrangian for a linear structural 

system can be written as 

, ,

1 1
.

2 2
T T T
g t g g t g g g g gL z M z z K z F z  (3.208) 

In terms of the Lagrangian, the motion of a conservative structural system with a 

subspace Z of kinematically admissible displacements may be characterized by the 

following theorem [47]. 

Theorem 3.2. Variational Form of Lagrange’s Equation. The equation of motion 

in a conservative system, for zg(t) in the space Z of kinematically admissible 

displacements, may be written in the form 

,

( ) 0,T
g

g t g

d L L
t

dt
z

z z
 (3.209) 

which is valid for all virtual displacement ( )g tz  that is consistent with its constraint, i.e., 

( )g t Zz .



110 3. Variational Equations and Finite Element Methods  

 The variational form of Lagrange’s equation of motion is valid even for dependent 

state variables. For the case in which kinematic admissible conditions are employed in 

order to algebraically reduce the global displacement vector zg to an independent form (of 

dimension m), (3.209) may be written in the following reduced form: 

,t

d L L

dt z z
0.  (3.210) 

Before (3.210) is used, it is critical to verify that displacement coordinate z is 

independent, since this form of Lagrange’s equation of motion is invalid if the 

displacement coordinates are dependent. 

3.4.3 Reduced Matrix Equation of Structural Mechanics 

Displacement Due to Static Load 

Consider a linear structural system described by the reduced stiffness matrix K, the mass 

matrix M, and the applied load F. For such a system, kinematic constraints have been 

used to eliminate dependent displacement coordinates, thus yielding an independent 

reduced displacement vector z. In this case, the theorem of minimum total potential 

energy requires that the gradient of the total potential energy must be equal to zero at 

equilibrium. Using (3.206) with P = 0, 

.K z F  (3.211) 

Further, with boundary conditions and interface conditions explicitly eliminated, the 

reduced stiffness matrix K is positive definite, and (3.211) is both necessary and a 

sufficient condition for stable equilibrium. 

Buckling

In structural buckling, a potential energy term in the form of (3.204) arises, and no other 

externally applied force is considered. In such a situation, the theorem of minimum total 

potential energy for stable equilibrium yields the condition 

PK z D z 0.  (3.212) 

If P = 0 for a positive definite reduced stiffness matrix K, then the only possible solution 

to (3.212) is z = 0, that is, the only stable equilibrium state of the system with no 

externally applied load is zero displacement. As P increases, particularly since D is 

generally positive semidefinite, a point will be reached at which the matrix K – PD ceases 

to be positive definite; hence, it becomes singular. The smallest load P for which this 

occurs is called the fundamental buckling load of the structure. 

 Since the coefficient matrix of z in (3.212) becomes singular, a nontrivial solution 

exists, but not one that is unique. Therefore, the solution is an eigenvector that 

corresponds to the eigenvalue P. In order to distinguish the eigenvector associated with 

buckling from the static displacement state, the eigenvector is denoted as y (called a 

buckling mode), rather than z, and yields the following generalized eigenvalue problem:

.PK y D y  (3.213) 

The matrix K is taken to be positive definite, and D is positive semidefinite. Thus, all 

eigenvalues in (3.213) are strictly positive. 
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Dynamic Response 

Consider a dynamic response with no boundary or interface conditions, that is, a structure 

with independent generalized coordinates. Lagrange’s equation in (3.210) applies here 

and may be written in matrix form, using (3.208) with F = Fg, M = Mg, and K = Kg, as 

, .ttM z K z F 0  (3.214) 

The initial conditions of motion for such a system consist of specifying the position and 

velocity of the system at some initial time, say t = 0, that is, 

0

0
, ,

(0)

(0) .t t

z z

z z
 (3.215) 

Natural Vibration 

The natural vibration of a structure is defined as the harmonic motion of the structural 

system with no applied load. A natural frequency  is sought such that the solution z(t) to 

(3.214) with F = 0 is harmonic, that is, 

( ) sin( ),t tz y  (3.216) 

where y is a constant vector defining a mode shape of vibration. Substituting z(t) from 

(3.216) into (3.214) with F = 0, we obtain 

2[ ]sin( ) ,tM y K y 0  (3.217) 

which must hold for all time t. Therefore, the generalized eigenvalue problem is 

,K y M y  (3.218) 

where  = 
2
. Equation (3.218) is an eigenvalue problem for natural frequency  and 

associated mode shape y, just as (3.213) was an eigenvalue problem for buckling load P
and mode shape y. In both cases, the reduced stiffness matrix K is positive definite, and 

both D and M are at least positive semidefinite. These mathematical properties of 

matrices that arise in structural equations play an essential role for both the theoretical 

properties of solutions and the computational methods for constructing solutions. 

3.4.4 Variational Equations for Discrete Structural Systems 

Variational Equilibrium Equation 

It is not necessary to eliminate the dependent displacement coordinates in order to obtain 

the governing equations of a structural system. For example, let Z be the vector space of 

kinematically admissible displacements. First, consider a structure with externally 

applied load Fg and potential energy provided by (3.205). The theorem of minimum total 

potential energy is still valid for displacement in vector space Z. Let zg be the equilibrium 

position that minimizes  in (3.205) over vector space Z. Next, consider an arbitrary 

virtual displacement g Zz , and evaluate the total potential energy at an arbitrary point 

neighboring zg, that is, for small  and fixed gz ,

( ) ( ).g g Hz z  (3.219) 

Since the total potential energy has a minimum at zg, the function H( ) defined by (3.219) 
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has a minimum at  = 0 for any g Zz . It is therefore necessary that the derivative of H

with respect to  be zero at  = 0. Using the total potential energy formula from (3.206), 

but with the last term deleted, the following is obtained: 

0, ,T T
g g g g g g Zz K z z F z  (3.220) 

which is the variational equation of equilibrium.

 In order to take advantage of the mathematical form of this problem, it is necessary to 

define the energy bilinear form:

( , ) T
g g g g ga z z z K z  (3.221) 

and the load linear form, which is defined by the externally applied load Fg as 

( ) .T
g g gz z F  (3.222) 

Using this notation, the variational equation (3.220) can be written as 

( , ) ( ), .g g g ga Zz z z z  (3.223) 

 Under the hypothesis that the strain energy quadratic form is positive definite on 

vector space Z of kinematically admissible displacements, the following theorem is true: 

Theorem 3.3. Theorem of Virtual Work. Assume that 

( , ) 0, , 0.g g g ga Zz z z z  (3.224) 

Then, (3.223) has the unique solution zg Z.

Proof. The proof directly follows the Lax-Milgram theorem of functional analysis [16] 

and the positive definite property of a(zg, zg). An alternative version of the proof uses the 

fact that a(zg,zg) is convex on Z, and the fact that (3.223) is the necessary and sufficient 

condition for zg to be the minimum point. These results can be found in the optimization 

theory [48].                       

 The unique solution to (3.223) guaranteed by Theorem 3.3 is the same obtained by 

first eliminating the dependent displacement coordinates, constructing the reduced global 

stiffness matrix, and finally solving (3.211). The final step is executed numerically in 

finite element computer code. The variational form of the structural equations in (3.223) 

has a substantial theoretical advantage in design sensitivity analysis. 

Reduction of Variational Equilibrium Equation to Matrix Form 

Equation (3.223) can be used to generate a matrix equation in order to construct a 

numerical solution. Let 
i

Z R
n
 (i=1, , m; m < n) be a basis of vector space Z, that 

is, a linearly independent set of vectors that span Z. The solution to (3.223) may then be 

written

1

,
m

i
g i

i

cz c  (3.225) 

where  = [
1
, …, 

m
] and the coefficients of ci are uniquely determined. Substituting 

this representation for zg into (3.223) and evaluating (3.223) as ( 1, , )j
g j mz , the 

following relation is produced: 
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1

( , ) ( ), 1, , ,
m

i j j
i

i

a c j m , (3.226) 

with the definitions 

1 1

1

ˆ [ ( , )] [ ]

ˆ [ ( )] [ ]

[ ] .

i j iT j T
m m g m m g

i iT T
m g m g

i m

a

c

K K K

F F F

c

 (3.227) 

Equation (3.226) may be written in matrix form as 

ˆ ˆ .Kc F  (3.228) 

This equation has a unique solution c, since K̂  is positive definite (due to the assumption 

of positive definiteness of the energy bilinear form on Z). It is also clear that matrices K̂

and F̂  depend on the basis of space Z that is chosen. Different basis choices yield 

different matrices, although the resulting solution is nevertheless unique. The foregoing 

argument can be reversed to construct a proof of Theorem 3.3. 

Variational Equation of Buckling 

Consider a structural buckling problem, in which the potential energy of the load is given 

by (3.204). As with the preceding discussion, the total potential energy must be 

minimized over space Z. By using the total potential energy expression in (3.206) with Fg

= 0, and by using (3.219), the derivative with respect to  must equal zero, yielding the 

variation equation of buckling:

, ,T T
g g g g g g gP Zy K y y D y y  (3.229) 

where the solution is denoted by the vector yg. Defining the bilinear form d(•,•) as 

( , ) ,T
g g g g gd y y y D y  (3.230) 

(3.229) may be written in the more compact form as 

( , ) ( , ), .g g g g ga Pd Zy y y y y  (3.231) 

This is the variational form of the eigenvalue problem for structural buckling. 

Reduction of the Variational Equation of Buckling to Matrix Form 

As in the case of structural equilibrium, the variational equation (3.231) can be reduced to 

a matrix equation, using a basis for space Z. This yields the generalized eigenvalue 

problem 

ˆ ˆ ,PKc Dc  (3.232) 

where components of vector c are coefficients of (3.225). Expanding the eigenvector yg in 

terms of the basis 
i
 and the matrix Dg, we have 

ˆ [ ( , )] [ ] .i j iT j T
m m g m m gdD D D  (3.233) 

As will normally be the case, the matrix Dg is positive definite on vector space Z, so the 

matrices D̂  and K̂  are positive definite, resulting in important theoretical and 

computational properties. 
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Variational Equation of Vibration 

Consider the variational form of Lagrange’s equation of motion in (3.209), with the 

Lagrangian defined by (3.208). In vector form, (3.209) becomes 

,( ) [ ( ) ( ) ( )] 0, ( ) ,T
g g g tt g g g gt t t t t Zz M z K z F z  (3.234) 

and must hold true for all values of time t.

 In the case of harmonic motion with Fg = 0, a solution to (3.234) in the form of 

(3.216) is sought. Substituting (3.216) into (3.234) (with yg replacing zg) gives 

2[ ]sin( ) 0, ,T T
g g g g g g gt Zy M y y K y y  (3.235) 

which must hold for all time t. Thus, it is necessary that 

( , ) ( , ), ,g g g g ga d Zy y y y y  (3.236) 

where  = 
2
. The bilinear form a(•,•) is as given in (3.221), and the bilinear form d(•,•) 

is defined as 

( , ) .T
g g g g gd y y y M y  (3.237) 

Since the generalized mass matrix Mg is positive definite and the strain energy bilinear 

form a(•,•) is normally positive definite on Z, desirable mathematical properties are 

associated with the variational equation given in (3.236). 

Reduction of the Variational Equation of Vibration to Matrix Form 

As with the foregoing analysis of the buckling eigenvalue problem, a matrix equation in 

the form of (3.232) may be obtained for the vibration problem. Thus, vibration and 

buckling problems have a similar form and share many mathematical properties. 

 While it is clear that the finite-dimensional structural analysis problem can be reduced 

to its matrix equation form, it will be shown in Section 4.1.4 of Chapter 4 that the 

variational form as developed in this chapter is better suited to the needs of structural 

design sensitivity analysis. 

3.4.5 Numerical Integration 

The finite element formulation requires integration over the domain or over the boundary 

during the construction of the stiffness matrix and force vector. Analytical integration, as 

used for the examples of Chapter 1, is limited to simple one-dimensional problems. Most 

integrals cannot be evaluated explicitly, and it is often faster to integrate them 

numerically rather than evaluating them exactly. Among many numerical integration 

methods that have been proposed, a Gauss integration rule is commonly used in the finite 

element formulation, due to its simplicity and accuracy. In this section, a brief 

introduction to the Gauss integration rule is provided. A rigorous study of numerical 

integration, including error estimates, can be found in Chapter 5 of Atkinson [49]. 

 Consider one-dimensional integration of a function f( ) over the interval [–1, 1]. 

Although the integration interval can be arbitrary, the interval [–1, 1] is used without loss 

of generality because it is convenient to apply the reference element in the finite element 

formulation. A general form of Gauss integration can be written as 

1

1
1

( ) ( ),
NG

i i

i

f d f  (3.238) 
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where NG is the number of integration points, i is the integration point, and i is the 

nonnegative integration weight. The integration points and weights are chosen such that 

the right side of (3.238) equals the left side for polynomials f( ) as much as possible. In 

general, an NG-point Gauss integration method integrates (2NG – 1)-order polynomials 

exactly. Such method is extremely accurate in most cases, and is the one most frequently 

used in modern finite element formulations. Table 3.1 summarizes the integration points 

and weights for Gauss integration. 

 A multidimensional integration can be constructed by employing the one-dimensional 

integration rule on each coordinate separately. In two- and three-dimensional domains, 

the Gauss integration rule can be written as, respectively, 

1 1

1 1
1 1

( , ) ( , )
NG NG

i j i j

i j

f d d f  (3.239) 

and

1 1 1

1 1 1
1 1 1

( , , ) ( , , ).
NG NG NG

i j k i j k

i j k

f d d d f  (3.240) 

Figure 3.24 illustrates the integration points in two-dimensional reference elements. The 

computational cost of Gauss integration is proportional to (NG)
2
 for two-dimensional 

problems and (NG)
3
 for three-dimensional problems. 

Figure 3.24. Gauss integration points in two-dimensional reference elements. 

Table 3.1. Gauss integration points and weights. 

NG
Integration Points 

( i)
Weights ( i)

1 0.0 2.0 

2 .5773502692 1.0

3
.7745966692

0.0

.5555555556

.8888888889

4
.8611363116

.3399810436

.3478546451

.6521451549

5

.9061798459

.5384693101

0.0

.2369268851

.4786286705

.5688888889

(a) 1 1 (b) 2 2 (c) 3 3
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 In conjunction with design sensitivity analysis, the numerical integration method can 

result in difficulties in the analytical differentiation of the stiffness matrix with respect to 

the design variable, because the explicit expression of the design variable does not appear 

in the numerically integrated stiffness matrix. In such a case, the continuum expression 

corresponding to the matrix is first differentiated, and then the resulting expression is 

numerically integrated using the same method as the initial matrix. Thus, the discrete 

formulation of design sensitivity analysis in Chapter 4 encounters a possible difficulty in 

which differentiation of the global stiffness matrix is required. As a remedy, the discrete 

expression of the element stiffness matrix may need to be differentiated before numerical 

integration. Afterwards, the formula is assembled to construct the differentiated global 

stiffness matrix. This method, however, can be considered a hybrid, since the domain 

concept from the continuum approach is used during differentiation. 



PART II 
Design Sensitivity Analysis of  
Linear Structural Systems 



4
Discrete Design 
Sensitivity Analysis 

In this chapter, design sensitivity analysis of a discrete matrix equation is introduced for 

structural problems. The design represents a structural parameter that can affect the 

results of the analysis. For example, when the cross-sectional area of a truss component 

changes, the displacement results change for the fixed applied force because the stiffness 

matrix changes. In such cases, the cross-sectional area of the truss component can be a 

design. There are many types of designs, including the thickness of a plate, the length of 

a beam, and the area of a two-dimensional solid. As a given design value, structural 

analysis provides a unique performance value, in such forms as displacement, stress, and 

frequency. However, different designs usually produce different performance measures. 

If two plates have different thickness values, namely h1 and h2, then the stress values at a 

point on each plate will be different. We can therefore say that the performance measure 

(i.e., stress) depends on the design (i.e., plate thickness). Design sensitivity analysis 

computes the performance’s dependence on the design. In other words, design sensitivity 

is the differentiation of the performance measure with respect to the design. 

 There are two types of design dependence: explicit and implicit. When the expression 

of the performance measure contains the design, one can easily compute the performance 

sensitivity with respect to the design by applying a differentiation rule. For example, 

when the structural volume is the performance measure and the plate thickness is the 

design, then the performance value will be the plate area multiplied by its thickness. In 

this case, design sensitivity can be obtained simply by differentiating the volume with 

respect to the thickness in order to obtain the plate area as a sensitivity value. This is 

called explicit dependence. However, when beam stress is a performance measure, the 

derivative of stress with respect to the design is not easily obtained. If we let the 

displacement vector be a state variable and let stress be computed from the displacement, 

then we can say that stress is a function of displacement. The derivative of stress with 

respect to the design thus includes the derivative of displacement with respect to the 

design, which has to be computed another way. Thus, the dependence of stress on the 

design is implicit. The essential procedure of structural design sensitivity analysis is to 

obtain this implicit dependence on the design by differentiating the structural equation. 

 As shown in Chapter 3, in the static response analysis the linear system of matrix 

equations is solved in order to compute state variable z. Since the stiffness matrix and the 

force vector depend on the design, the state variable implicitly depends on the design. 

Many structural performance measures, such as stress, displacement, and frequency, 

depend on the state variable. Thus, the design sensitivity of performance functions clearly 

depends implicitly on the design through the state variable. This chapter presents a design 

sensitivity analysis in order to obtain this implicit dependence on the design. 

 The design sensitivity information of a general performance measure can be 

computed either with the direct differentiation method or with the adjoint variable 

method. The former directly solves for the design dependency of a state variable, and 

then computes performance sensitivity using the chain rule of differentiation. This 

method clearly shows the implicit dependence on the design, and a very simple 



120 4. Discrete Design Sensitivity Analysis  

sensitivity expression can be obtained. The latter method, however, constructs an adjoint 

problem that solves for the adjoint variable, which contains all implicitly dependent 

terms. 

 Through the assembly procedure in finite element analysis, the generalized global 

stiffness matrix is obtained with dimensions (n n). Although this generalized stiffness 

matrix contains information of all elements, it does not contain any information of the 

boundary and interface conditions. Thus, a rigid body motion exists in the structure. 

Mathematically, the generalized stiffness matrix is singular. However, the dependence of 

the generalized stiffness matrix on the design can be easily computed by following the 

element stiffness formulation and the assembly procedure in the global stiffness matrix. 

For structural analysis, after applying such kinematic constraints as displacement 

boundary and interface conditions, the rigid body motion of the structure is removed. 

Technically, the dimensions of the global stiffness matrix are reduced to (m m), where 

m < n and n – m is the number of independent boundary and interface conditions. The 

reduced stiffness matrix is now positive definite. Positive definiteness is a very attractive 

property of a linear system because it yields a unique solution. However, the reduced 

stiffness matrix’s dependence on the design is not easily obtained if the boundary and 

interface conditions are not simple, or if the analysis code does not explicitly generate a 

reduced stiffness matrix. Different analysis software may use different methods for 

imposing the boundary conditions; consequently, the design sensitivity analysis code 

depends on the specific analysis code. Thus, a generalized stiffness matrix is preferable 

for design sensitivity analysis, although additional theories must be considered. 

 In order to enhance the convergence rate during design iteration, second-order design 

sensitivity analysis provides important information to the optimization algorithm in 

conjunction with first-order sensitivity results. However, the cost of evaluating second-

order sensitivity information needs to be considered, since a significant amount of 

computational costs is involved in repeatedly solving a linear system of equations. A very 

efficient sensitivity expression can be obtained using a hybrid method, which combines 

the direct differentiation and the adjoint variable methods. 

 The design sensitivity analysis of an eigenvalue problem for a simple, unrepeated 

eigenvalue can be simply expressed without solving an adjoint equation. Only the 

stiffness matrix, mass matrix, and eigenvector are required to calculate the eigenvalue 

derivative with respect to the design. However, eigenvector design sensitivity requires a 

significant amount of knowledge in mathematical theory. The direct solution of a linear 

system, as well as the eigenvector expansion method using a Ritz vector will be discussed 

later in this chapter. For the repeated eigenvalue problem, it is shown that the repeated 

eigenvalue is only directionally differentiable, and the repeated eigenvector is not 

differentiable with respect to the design. 

 Transient dynamic analysis can be formulated using either direct time integration or 

eigenvector expansion. For a linear problem, the eigenvector expansion method is 

predominantly used, since it is more efficient and provides a physical interpretation of the 

problem. Design sensitivity analysis of transient dynamics is presented in Section 4.3 

using a system of matrix equations. The adjoint variable method yields a terminal-value 

problem, compared with the initial-value problem of response analysis. For 

computational efficiency, the direct differentiation method using a linear combination of 

eigenvectors and/or Ritz vectors can be used to approximate the design sensitivity of a 

transient response. 
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4.1 Static Response Design Sensitivity 

4.1.1 Statement of the Problem 

Design sensitivity analysis begins by defining the design parameters. Let b = [b1, …, bk]
T

denote the (k  1) vector of member-size design variables and material properties. Even 

though material properties are not sizing design variables, in this text they will be 

categorized as sizing design variables, since the sensitivity analysis procedure is the same 

as sizing design variables. The design includes the cross-sectional area of a truss, the 

plate thickness, the moment of inertia of a beam, and Young’s modulus, etc. As explained 

in Section 3.4 of Chapter 3, when the member size and the geometric variables are taken 

as design variables, the generalized stiffness matrix and the load vector are functions of 

the design variables, that is, 

( )

( ),

g g

g g

K K b

F F b
 (4.1) 

where Kg(b) is the (n n) matrix, and Fg(b) is the (n  1) vector. For example, a change 

in plate thickness produces a change in the stiffness matrix Kg. In the gravity field, the 

cross-sectional area of a truss changes the structure’s body force. Equation (4.1) 

expresses all dependence of the structure on design b. For the moment, the stiffness 

matrix and the force vector are assumed to be continuously differentiable with respect to 

design b. It is presumed that kinematic admissibility conditions (boundary conditions and 

interface conditions) are not explicit functions of the design. Such is the case when 

member size variables are chosen as design variables. Fixed displacement conditions at 

each end of the beam will not change as the cross-sectional area changes. This type of 

design is called the sizing design. However, when the location of the nodes at the end of 

the beam is changed, then the boundary conditions change. The case in which kinematic 

admissibility conditions are functions of the design is included in the shape design 

sensitivity formulation of Chapter 6. 

 Since the generalized stiffness matrix and the load vector are dependent on the 

design, the energy bilinear form in (3.221) and the load linear form in (3.222) also 

depend on the design. They are denoted here in the following variational equation: 

( , ) ( )

( ) ( )

( , ) ( ), ,

T
g g g g g

T
g g g

g g g g

a

a Z

b

b

b b

z z z K b z

z z F b

z z z z

 (4.2) 

where Z is the space of kinematically admissible displacements that satisfy homogeneous 

boundary conditions. In (4.2), Kg(b) is an (n n) matrix while all other vectors have (n

1) dimensions. Recall that a unique solution zg exists in (4.2). For a given design b, zg is 

uniquely determined. However, a different design will yield a different solution to the 

variational equation. Since these equations explicitly depend on the design, it is clear that 

the solution zg is dependent on the design, that is, 

( ).g gz z b  (4.3) 

Note that the dependence of zg on the design is implicit through the variational equation 

(4.2).

 In most structural design problems, a cost function is minimized or maximized, 

subject to constraints on stresses, displacements, and eigenvalues. Most gradient-based 

optimization algorithms, which find the optimum value of the cost function while 
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satisfying all constraints, require the sensitivity information of the cost and constraints at 

each design iteration. In this text, we refer to the cost and constraints as performance

measures. Performance measures can include the weight of a structure, the displacement 

at a point, and stress in a certain region. These measures depend on the design in their 

expressions and/or through the state variable zg, which also depends on the design, as 

denoted in (4.3). The main purpose of design sensitivity analysis is to find the gradient 

information of the performance measures with respect to design variables. Consider a 

general function that may represent any of these performance measures, written in the 

form 

( , ( )).gb z b  (4.4) 

This function depends on the design in two ways: first, through explicit design 

dependence, and, second, through implicit dependence, which comes from solution zg to 

the state equation. The objective of design sensitivity analysis is to determine the total – 

explicit and implicit – dependence of such functions on the design, i.e., to compute 

d /db. To this end, two fundamental questions need to be answered: Given that the 

function  is differentiable in its arguments, is the total dependence of  on the design 

differentiable? In addition, if the solution zg is differentiable with respect to the design, 

then how can the derivative of  be calculated with respect to the design? 

4.1.2 Design Sensitivity Analysis with Reduced Stiffness Matrix 

For sensitivity analysis purposes, it is simpler to use a reduced stiffness matrix. However, 

since K(b) is constructed from Kg(b) by imposing boundary and interface conditions, it is 

occasionally difficult to find the dependence of K(b) on the design. In this section, we 

assume that the expression of K(b) and F(b) are known with respect to design b. Consider 

a structural formulation in which dependent variables have been directly eliminated using 

boundary conditions, and a set of structural equations can be obtained that resemble 

(3.211), in the form 

( ) ( ),K b z F b  (4.5) 

where K(b) is the reduced stiffness matrix(m  m), F(b) is the reduced load vector(m  1), 

and m is the number of independent degrees-of-freedom. In this section, (4.5) will be 

referred to as a structural problem or response problem. Recall that the reduced stiffness 

matrix K(b) is positive definite, hence nonsingular. It is assumed that all entries in K(b)

and F(b) are “s” times continuously differentiable with respect to the design. The implicit 

function theorem [50] thus guarantees that solution z = z(b) to (4.5) is also s times 

continuously differentiable. Most design sensitivity analyses in this text are developed 

under the premise that s = 1, except for second-order design sensitivity, in which s = 2. 

Thus, the preceding question concerning differentiability of z with respect to the design 

has been answered. But, the problem of computing the total derivative of  in (4.4) with 

respect to the design remains to be solved. 

Direct Differentiation Method 

The direct differentiation method evaluates the implicit dependence of z on design b by 

using the derivative of structural equation (4.5). Let k be the dimension of design vector 

b. Using the chain rule of differentiation and matrix calculus notations, the total 

derivative of (b,z(b)) with respect to b can be calculated as 
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,
d d

d d

z

b b z b
 (4.6) 

where / b (1 k row vector) represents explicit dependence on design b, and the 

second term shows the implicit dependence through displacement z. The derivative of a 

scalar function with respect to the vector gives a row vector with the same dimension as 

the vector. For a more detailed explanation of vector and matrix algebra, refer to 

Appendix A.1. For a given expression of , only the dz/db term (m k) is unknown, 

which can be computed from the differentiation of the state equation (4.5). By 

differentiating both sides of (4.5) with respect to design b, the following is obtained: 

( )
( ) [ ( ) ],

d

d

z F b
K b K b z

b b b
 (4.7) 

where the superposed tilde (~) indicates a variable held constant during the partial 

differentiation process. In the last term of (4.7), the dependence of z on b is suppressed in 

order to evaluate partial derivatives; thus, only the dependence of K(b) needs to be 

considered. Since the reduced stiffness matrix K(b) is nonsingular, (4.7) may be solved 

for dz/db as 

1 ( )
( ) [ ( ) ] .

d

d

z F b
K b K b z

b b b
 (4.8) 

The result may now be substituted into (4.6) to obtain the total derivative of (b,z(b)) as 

1( ) ( ) ( ) .
d

d
K b F b K b z

b b z b
 (4.9) 

 Since the expression of  with respect to b and z is known from its definition, / b

and / z can be readily obtained. Also, assuming the expressions of K(b) and F(b) are 

known, the partial derivative in the last part of (4.9) can be calculated. From the fact that 

K(b) is a positive definite matrix, the inverse of K(b) can be calculated such that the total 

derivative of  can be obtained with respect to design b. However, it is questionable how 

useful (4.9) is, since the direct computation of K
1
(b) is impractical for real applications. 

Alternatively, (4.7) can be numerically solved for dz/db and substituted into (4.6) to 

obtain the desired result. For each component bi of b, the right side of (4.7) is a column 

vector that serves as a fictitious force corresponding to dz/dbi. This procedure is known as 

the direct differentiation method, which has been extensively used in structural 

optimization due to its straightforward derivations. Computational aspects of this 

approach will be discussed in Section 4.1.4. 

Adjoint Variable Method 

In order to avoid the calculation of dz/db in (4.7), the adjoint variable method will be 

developed. In (4.9), all terms can be easily calculated from their definition, except for 

( / z)K
1
(b), which is a (1 m) row vector. Also, ( / z)K

1
(b) is not related to the 

design derivative, that is, ( / z)K
1
(b) is constant and only needs to be computed once 

for all / bi, i = 1, …, k. The main idea is to directly compute this term by defining it as 

the adjoint variable :

1 1( ) ( ) ,

T T

K b K b
z z

 (4.10) 

where the symmetric property of matrix K(b) has been used. Symmetry of K(b) is an 
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important property in the adjoint variable method, associated with the response problem 

in (4.5). Rather than directly evaluating from (4.10), which involves computing K
1
(b),

both sides of (4.10) can be multiplied by matrix K(b) to obtain the following adjoint 

equation in :

( ) .

T

K b
z

 (4.11) 

Note that the same stiffness matrix is used in the adjoint and response problem, because 

of the symmetric property of K(b). The adjoint problem is the same as the response 

problem, except that the former has an explicit dependence of  on z with ( / z) as a 

load vector. The right side of (4.11) is sometimes called an adjoint load. Equation (4.11) 

may be solved for and the result substituted into (4.9) using (4.10), to obtain 

( ) ( ) .Td

d
F b K b z

b b b
 (4.12) 

Note that the computation of  in (4.11) is independent of the design parameter bi. Since 

K(b) and ( / z) are known, (4.11) can be solved for , and this solution can be used for 

all design parameters bi. A somewhat more convenient form for derivative calculation 

purposes can be written as 

( ) ( ) .T Td

d
F b K b z

b b b
 (4.13) 

This approach is called the adjoint variable method for design sensitivity analysis. The 

direct differentiation method in (4.9) is more closely related to the design vector, whereas 

the adjoint variable method in (4.13) is more closely related to the performance measure. 

Different performance measures have different adjoint load expressions. The 

computational aspects of this approach will be discussed in Section 4.1.4. 

4.1.3 Design Sensitivity Analysis with Generalized Stiffness Matrix 

If the reduced stiffness matrix K(b), and the reduced force vector F(b), are readily 

available, either of the two methods yields a complete solution to the design sensitivity 

problem. However, for complicated kinematic admissibility conditions (or boundary 

conditions), and in particular for those multipoint constraints that involve linear 

combinations of several state variables, K(b) and F(b) are not explicitly generated. Since 

direct reduction of the stiffness matrix requires a significant amount of computer 

memory, many structural analysis codes do not reduce the dimension of matrix Kg(b) in 

order to impose boundary conditions. Instead, they usually substitute boundary conditions 

directly into Kg(b) to make it positive definite. Thus, the computation of partial 

derivatives on the right-hand side of (4.9), or in (4.13), is difficult. It is therefore 

preferable to develop a design sensitivity formulation that works directly with a singular, 

generalized stiffness matrix. As will be shown in Chapter 5, this approach of design 

sensitivity analysis is closely related to the continuum design sensitivity analysis method. 

Differentiability of Global Displacement 

Let (n m) be the number of independent homogeneous boundary conditions, and let an 

explicit form of vector space Z be given for all kinematically admissible displacements, 

as

{ },n
g gZ Rz Gz 0  (4.14) 
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where G is an (n m) n matrix that defines the boundary conditions and does not 

depend on the design. With a basis vector 
i
 (i=1, , m) of Z that is independent of the 

design, a solution zg to variational equation (3.220) may be represented in the form of 

(3.225), where coefficient vector c is determined by (3.228), and is written in the form of 

ˆ ˆ( ) ( ).K b c F b  (4.15) 

Note that the dependence of K̂  and F̂  on design b is explicitly defined in terms of Kg(b)

and Fg(b) in (3.227). Therefore, ˆ ( )K b and ˆ ( )F b  are differentiable with respect to the 

design, and ˆ ( )K b  is nonsingular in nominal design b and its neighboring designs. The 

derivative of c with respect to the design can then be obtained by either of the previously 

described methods. Once dc/db is determined, (3.225) may be used to obtain 

,
gd d

d d

z c

b b
 (4.16) 

since  does not depend on b. Thus, the question of the differentiability of zg is resolved. 

Computation of the required derivative dzg/db may be carried out by using the variational 

formulation in (3.220), written using the notation of (4.2) as 

( , ) ( ), .g g g ga Zb bz z z z  (4.17) 

Directional Derivatives 

In order to take advantage of variational equation (4.17), it is helpful to introduce a 

directional derivative notation that will be used throughout the remainder of this text. 

Consider a nominal design b, and those neighboring designs that are described by 

arbitrary design variation b and small parameter  > 0, as 

.b b b  (4.18) 

Thus, for given design variation b, the design perturbation is controlled by one 

parameter . Similar to the first variation in the calculus of variations, the following 

directional derivative notations are employed: 

0

( , ) ( )
g

g g g

dd

d d

z
z z b b z b b b

b

0

( , ) ( ( ), )

( ( ) )

g g g g

T
g g g

d
a a

d
b b bz z z b z

z K b z b
b

 (4.19) 

0

( ) ( )

( ( )) ,

g g

T
g g

d

d
b b bz z

z F b b
b

where the prime ( ) denotes the differential (or variation) of a function with respect to b

in the direction of b. If the result is linear in b, then the function whose differential has 

been taken is differentiable. Otherwise, it is only directionally differentiable, in the sense 

of the Gateaux differential. With this notation, the prime may be explicitly employed, 
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including argument b, in order to emphasize dependence on the design variation. Note 

that the design dependence of displacement zg caused by design perturbation  is 

eliminated in ( , )g ga b z z . Thus, the total derivative of ( , )g gab z z  will contain the 

generalized displacement variation, in addition to ( , )g ga b z z , as shown below. 

 Since matrix G in (4.14), which defines vector space Z of kinematically admissible 

displacements, does not depend on the design, arbitrary vector g Zz  in (4.17) also need 

not depend on the design. By taking the total variation of both sides of (4.17), and by 

using the chain rule of differentiation, the following design sensitivity equation can be 

obtained:

( , ) ( ) ( , ), .g g g g g ga a Zb b bz z z z z z  (4.20) 

In (4.20), the bilinear property of energy form ab(•,•) is used such that 

0

( ( ), )

( ( ) ) ( )

( , ) ( , ).

g g

gT T
g g g g g

g g g g

d
a

d

d

d

a a

b b

b b

z b b z

z
z K b z b z K b b

b b

z z z z

The right side of (4.20) can be computed if solution zg has been obtained from (4.17), and 

if the explicitly dependent terms are obtained from the definition in (4.19). The only 

remaining question is whether the solution to (4.20) belongs to the space of kinematically 

admissible displacements. Note that for zg(b) Z, Gzg(b) = 0. Taking the variation of 

both sides of this equation, we obtain 

( , )gG z b b 0 . (4.21) 

Thus, gz  belongs to the space Z for any design variation b. Equation (4.20) thus has a 

unique solution, gz , just as the response problem in (4.17) has a unique solution. It is 

interesting to note that zg and its variation gz  are in the same kinematically admissible 

displacement space. Readers should not confuse the derivative in the structural domain 

with the derivative in the design domain. In general, the regularity of a function is 

reduced after differentiation. However, since the design space is independent of the 

structural space, gz  can have the same regularity as zg, even if the definition of gz

contains a derivative as in (4.19). Actually, gz  should be understood as a variation rather 

than a partial derivative. 

Direct Differentiation Method 

By taking b as a unit vector in the ith design coordinate direction, (4.20) may be solved 

for dzg/dbi. Repeating this process with i = 1, 2, , k will yield all partial derivatives of zg

with respect to b. Specifically, (4.20) may be written in terms of the ith component of b,

as

( ) ( ) ( ) , 1, , .
gT T T

g g g g g g g

i i i

i k
b b b

z
z K b z F b z K b z  (4.22) 

This may be interpreted as solving the original structural equation with an artificially 

applied load that is the coefficient of T
gz  on the right side of (4.22), which is the fictitious 

load.
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Adjoint Variable Method 

Consider the last term in (4.6) with zg, namely, ( / zg)(dzg/db), which is to be obtained 

without evaluating matrix dzg/db. The process of the adjoint variable method is to regard 

the coefficient / zg of dzg/db as a load vector, which is the adjoint load ( / zg)
T
. The 

adjoint variable g Z associated with this adjoint load needs to be determined, that is, 

( , ) , .g g g g

g

a Zb
z

 (4.23) 

Note that this equation is nothing more than the structural equation of displacement g

due to the applied load vector ( / zg)
T
. Therefore, it may be readily solved. 

 By evaluating (4.23) at g gz (recall that gz Z), and by using the notation 

introduced in the first line of (4.19), we obtain 

( , ).
g

g g g

g g

d
a

d
b

z
z b z

z z b
 (4.24) 

Similarly, evaluating (4.20) at g gz , we also obtain 

( , ) ( ) ( , ).g g g g ga ab b bz z  (4.25) 

Noting that the energy bilinear form ab(•,•) is symmetric, (4.24) and (4.25) yield the 

following important relation: 

( ) ( , ).
g

g g g

g

d
a

d
b b

z
b z

z b
 (4.26) 

The left side of (4.26) represents the differential of  through the implicit dependence. 

Thus, this implicitly dependent component is expressed in terms of adjoint variable g in 

(4.26). From (4.4), the total differential of function  can be denoted as

.
g

g

d

d

z
b b

b b z b
 (4.27) 

Substituting (4.26) into the second term on the right of (4.27), and employing the second 

and third lines of (4.19), the total differential of  can be written as an explicit function 

of design variation b:

( ) ( , )

( ) ( ) .

g g g

T T
g g g g g

d
a

d
b bb b z

b b

F b K b z b
b b b

 (4.28) 

Since (4.28) holds for all design variations b, we can use the following equivalent relation: 

( ) ( ) .T T
g g g g g

d

d
K b z F b

b b b
 (4.29) 

 It is interesting to note that even though the generalized stiffness matrix Kg is 

singular, the load vector used in the direct differentiation approach in (4.22) is in the 

same form as the one that appears in computing the reduced stiffness matrix in (4.7). 

Similarly, in the adjoint variable method, the single load vector that is employed for 

adjoint computation in (4.23) is in exactly the same form as the load vector in the matrix 
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adjoint equation in (4.11), which is used in the reduced stiffness matrix. Computational 

considerations associated with these observations will now be discussed. 

4.1.4 Computational Considerations 

In most structural design problems, numerous load conditions must be accounted for in 

the design process. For example, the design of a bridge may need to take into account 

such load conditions as the self-weight load, the distributed load due to vehicles traveling 

on the bridge, and the wind load. Therefore, instead of a single load discussed in 

preceding sections, many kinds of loads appear, denoted as Fg
j
 (j = 1, …, NL), where NL

is the number of applied loads. The same stiffness matrix is applicable for all load 

conditions, but structural equations yield different displacement vectors zg
j
 (j = 1, …, NL)

associated with different applied force vectors. 

 Further, in realistic design problems numerous performance constraints must be taken 

into account in the design process. For example, the design of a bridge may require the 

maximum value of allowed stress and displacement. Even though there may be a 

multitude of constraints under consideration, the design engineer normally evaluates 

constraints in a trial design and wants to obtain design sensitivity information only for 

those constraints that are active or violated. For comparative purposes, designate the 

active design constraints under consideration as i (i = 1, …, NC), where NC is the 

number of active design constraints. In addition, let some constraints be active for each 

load condition. Load conditions that have no influence on any active constraint may be 

eliminated for design sensitivity analysis purposes. Design sensitivity analysis 

computations that are required for the direct differentiation and adjoint variable approach 

may now be summarized for both the matrix and the variational analysis methods 

discussed in Sections 4.1.2 and 4.1.3. 

Direct Differentiation Method 

To calculate the total derivative of each constraint i using the direct differentiation 

approach, (4.7) must be solved for each load condition, yielding the following set of 

equations:

( )
( ) [ ( ) ], 1, , .

j j
jd

j NL
d

z F b
K b K b z

b b b
 (4.30) 

Since each of the equations in (4.30) represents k number of equations for dz
j
/dbi (i = 1, 

, k), there are k NL equations to be solved. These solutions are quite efficiently 

obtained, since the reduced stiffness matrix K has been previously factored into the 

structural analysis process. With all dz
j
/dbi from (4.30), design sensitivity may now be 

directly calculated from (4.6). 

Adjoint Variable Method 

Consider the adjoint variable method in which (4.11) must be solved for each constraint 

under consideration, that is, 

( ) , 1, , ,
T
ii

i
i NCK b

z
 (4.31) 

where it is presumed that each constraint i(z
i
) involves only displacement z

i

corresponding to the ith load. Thus, there are exactly NC number of equations to be 

solved for vectors 
i
 (i = 1, …, NC). Once this computation is complete, the design 

sensitivities of each constraint are calculated directly from (4.13), requiring only a 
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moderate amount of computation. Note that the coefficient matrix in (4.31) is the reduced 

stiffness matrix, which was factored during structural analysis. Therefore, the amount of 

computational effort required to solve (4.31) is also moderate. 

Comparison of the Direct Differentiation and Adjoint Variable Methods 

In determining which approach will be employed, only the number of equations to be 

solved and the number of vectors to be stored and operated on during design sensitivity 

analysis need be compared. If k NL < NC, then the direct differentiation method in 

(4.30) is preferable. On the other hand, if k NL > NC, then it is preferable to use the 

adjoint variable method in (4.31). In structural optimization, since the number of active 

NC constraints must be no greater than the number of k design variables, the adjoint 

variable approach will be the most efficient method, even for a single loading condition. 

With a multiple loading condition, NC is normally much smaller than k NL; therefore, 

in most structural applications the adjoint variable method is more efficient. However, 

there may be applications in a preliminary design stage in which the design engineer 

considers a small number of design variables with a large number of constraints. In that 

case, the direct differentiation approach is preferable. 

 Precisely the same counting process is applicable to the variational analysis approach 

in (4.17). In this approach, a k NL number of equations are solved in (4.22) for the 

derivatives of the state variables with respect to the design. Similarly, using the adjoint 

variable technique, an NC number of adjoint equations in (4.23) are solved for adjoint 

variables associated with each active constraint. Thus, precisely the same criteria are 

involved in determining which approach is best suited to the design problem under 

consideration.

Computation of Design Derivatives 

A comparison between the reduced matrix approach (Section 4.1.2) and the variational 

approach (Section 4.1.3) is also possible. Since most structural analysis computer codes 

either numerically construct or completely avoid the reduced stiffness matrix K(b), an 

explicit form of K(b) is not generally available. Therefore, computation of the derivatives 

of K(b) with respect to the design, required in (4.9) for the direct differentiation approach, 

and in (4.13) for the adjoint variable approach, encounters some difficulty. While 

transformations may be written that reduce the generalized stiffness matrix Kg to reduced 

stiffness matrix K, the transformations differ from one computer code to another. 

Therefore, implementation of design sensitivity analysis using the reduced stiffness 

matrix becomes code dependent, and may be numerically inefficient. 

 If the variational approach is employed, then the derivatives of Kg(b) with respect to 

the design can be calculated without difficulty. Such derivatives are required for the 

direct differentiation approach in (4.22), and for the adjoint variable approach in (4.29). 

In fact, using (3.190), the derivative required in (4.29) may be written as the sum of all 

element matrix derivatives, as 

1

1

( ) ( )

( ) ,

NE

T T iT iT i i i
g g g g g

i

NE

iT iT i i i

i

K b z S k b S z
b b

S k b S z
b

 (4.32) 

where
i
 and z

i
 are components of the adjoint and displacement vectors associated with 

the ith element. The practicality of this computation is clear from the following two 

observations. First, for each element, the element stiffness matrix k
i
(b) and the geometric 



130 4. Discrete Design Sensitivity Analysis  

matrix S
i
(b) will only depend on a small number of design variables associated with the 

given element and its nodes. Thus, in the sum of (4.32), only a few terms will be nonzero. 

Second, an evaluation of the design derivatives of the element bilinear forms in (4.32) 

only requires a moderate amount of calculation for those nonzero terms. 

 A similar argument may be made when computing the design derivatives in (4.22) 

using the direct differentiation approach, but with the following caveat: all components of 

the dzg/db matrix (n k) are now required in order to perform a complete design 

sensitivity analysis. However, the summation form in (4.32), in which  is replaced by 

z , can be employed in order to reduce the computational burden when evaluating the 

right side of (4.22). This is an important practical consideration when implementing a 

large-scale analysis code for derivative computations. The directness with which 

computations can be performed using the variational approach makes it a favorable 

choice in terms of generality and numerical effectiveness. 

 Another practical consideration involves calculating the design derivatives of element 

matrices that are implicitly generated [4] and [42]. Rather than using closed form 

expressions with respect to design variables, such as those presented in Section 3.4.5, 

many modern finite element formulations perform a numerical integration in order to 

evaluate the element stiffness and mass matrices. For implicitly generated element 

matrices, design differentiation can be performed throughout the sequence of calculations 

used to generate element matrices, thus leading to implicit design derivative routines. 

 A simple alternative is to perturb one design variable at a time, and to use finite 

differences in order to approximate the element matrix derivatives, for example, 

( ) ( )
,

i i j i

jb

k k b e k b

where e
j
 has a one in the jth position and zeros elsewhere, and  is a small perturbation in 

bj. This is the semianalytical method described in Section 1.5.3 of Chapter 1, which is 

very convenient from a numerical implementation point of view, since the element 

stiffness matrix has already been constructed in response analysis. Simple computation of 

one more element stiffness matrix is required to obtain the derivative of the element 

stiffness matrix. However, as explained in Section 1.5.2 of Chapter 1, there is no 

universal criterion by which the size of perturbation  can be determined. If a too-small 

perturbation is used, such that the difference in the numerator is the same magnitude as 

the computer’s numerical accuracy, then a numerical error becomes the dominant factor 

in determining the element matrix derivatives. In contrast, if a too-large perturbation is 

used, then an approximation error becomes the dominant factor. Thus, the derivative’s 

accuracy strongly depends on the problem type and previous experience. 

4.1.5 Second-Order Design Sensitivity Analysis 

As shown in Sections 4.1.2 and 4.1.3, if the applied load vector and system stiffness 

matrix has s continuous derivatives with respect to the design, then state variable z also 

has s continuous derivatives with respect to the design. Assuming that function  also has 

s continuous derivatives, it is possible to calculate up to s-order of partial derivatives of 

, with respect to the design variables. Consider the specific case s = 2, which is a 

second-order design sensitivity. Such an analysis is especially important in modern 

design optimization algorithms where many nonlinear performance measures are 

approximated with second-order algebraic functions. The second-order sensitivity 

information is sometimes called a Hessian, or a curvature of the performance measure. If 

a performance measure is a second-order function of the design, then an exact minimum 

value of the performance measure can be found in the first iteration by supplying the 
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Hessian information. Thus, the second-order sensitivity information can enhance the 

speed of convergence in a nonlinear optimization algorithm. 

Direct Differentiation Method with Reduced Stiffness Matrix 

Consider the case of a structural formulation with a reduced stiffness matrix, that is, the 

kinematic constraints have been explicitly eliminated, and all components of the 

displacement vector are independent. The chain rule of differentiation may then be used 

to obtain the second-order derivative of  with respect to the components of design 

variables bi and bj, as 

2

2 2 2

2 2

.

i j j i i

i j i j j i

T

j i i j

d d d

db db db b db

d d

b b b db b db

d d d

db db db db

z

z

z z

z z

z z z

z z z

 (4.33) 

This notation needs some explanation. The derivative of  with respect to bi in the 

bracket is in reality a partial derivative of  with respect to bi, accounting for the direct 

dependence of  on b and of  on z(b). The terms on the right side include the partial 

derivatives of  with respect to its explicit dependence on bi. Note that 
2

/ z z in (4.33) 

is a (m m) matrix. From the expression of  with respect to its arguments, the unknown 

terms in (4.33) are dz/db and d
2
z/dbidbj, which can be computed from the derivative of 

the response problem. 

 Since both first- and second-order derivatives of z with respect to the design appear in 

(4.33), consider calculating them by using the structural equation, as it is presented in 

Section 4.1.2: 

( ) ( ).K b z F b  (4.34) 

As in Section 4.1.2, the same property is presumed for K(b) and F(b). Using the direct 

design differentiation approach, differentiate (4.34) with respect to bi to obtain 

( )
( ) [ ( ) ].

i i i

d

db b b

z F b
K b K b z  (4.35) 

Since matrix K(b) is nonsingular, or positive definite, (4.35) may be numerically solved 

to obtain the first derivative of z with respect to the design. This is the same direct 

differentiation method used in first-order design sensitivity analysis. To obtain the 

second-order sensitivity expression of the state variable, differentiate (4.35) with respect 

to bj, as 

2 2 2( )
( ) [ ( ) ]

( ) ( ) .

i j i j i j

i j j i

d

db db b b b b

d d

b db b db

z F b
K b K b z

z z
K b K b

 (4.36) 

Again, note that the coefficient matrix of the second derivatives of the state variable with 

respect to the design is nonsingular, so that the second derivatives may be computed 

numerically if the response result z and the first-order sensitivity result dz/db are 

available, along with the explicit expression of K(b) and F(b) in terms of design b. Next, 
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solve (4.35) and (4.36) for both the first- and second-order derivatives of z, and substitute 

the results into (4.33) to obtain the second-order derivatives of .

 While the above approach is conceptually simple, it requires a large amount of 

computation. If k is the dimension of the design variable, then one original finite element 

analysis and (3k + k
2
)/2 finite element reanalyses, which include a k number of finite 

element reanalyses for the first-order design sensitivity, and k(k + 1)/2 finite element 

reanalyses [see (4.36)] for the second-order design and mixed design sensitivities. For 

example, when k = 10, which is very common for an optimization problem, evaluating 

(4.35) and (4.36) will require a solution procedure that is repeated 66 times. Even if the 

stiffness matrix is factorized in the response analysis, a large amount of computation is 

still necessary. As will be seen in the following paragraph, considerably better results are 

achieved using the adjoint variable approach for second-order design sensitivity analysis. 

Adjoint Variable Method with Reduced Stiffness Matrix 

From (4.13), the derivative of  with respect to bi may be written as 

( ) ( )
.T T

i i i i

d

db b b b

K b F b
z  (4.37) 

It is important to note that in order for (4.37) to be valid z must be the solution to (4.34), 

and  must be the solution to 

( ) ,

T

K b
z

 (4.38) 

which follows from (4.11). Thus, both z and  in (4.37) are dependent on the design and 

in the calculation of the second-order derivatives of , design dependence must be 

accounted for in z and . By using the chain rule of calculation, the second-order 

derivative of  with respect to the design is 

2 2

2

.

T T

i j i j j i j i

T

T T

i i j i i j

d

db db b b b b b b

d d

b b db b b db

K F
z

K z F K
z

z

 (4.39) 

 In order to evaluate the second-order derivatives in (4.39), dz/db and d /db must be 

accounted for. Differentiating both sides of (4.38) with respect to the design and pre-

multiplying by K
1
(b), the following result is obtained: 

2 2
1( ) ( ) .

T

j j j j

d d

db b b db

z
K b K b

z z z
 (4.40) 

This result may be inserted into (4.39), followed by the definition of the adjoint variable 
i
 for terms containing K

1
(b), to remove any computational costs involved in the matrix 

inverse:

2 2 2

2 2
1( ) ( ) .

T T T

i j i j j i j i i i j

T

T

i i j j j

iT

d d

db db b b b b b b b b db

d

b b b b db

K F K z
z

z

F K z
z K b K b

z z z
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Thus, the adjoint equation related to d /db can be defined with the solution 
i
, as 

( )
( ) .i

i ib b

F K b
K b z  (4.41) 

Substituting the result of (4.41) into (4.39), and using (4.40), which is the same procedure 

used in obtaining (4.12), we obtain 

2 2

2 2 2

( ( ) ) .

T T

i j i j j i j i

T T
iT T iT

j j i i j

d

db db b b b b b b

d

b b b b db

K F
z

K z
K b

z z z z

 (4.42) 

 The only unknown term in (4.42) is dz/db, which can be computed by defining 

another adjoint equation. Using the direct differentiation method in (4.8), the expression 

of dz/db is substituted into the last term of (4.42), to yield 

2 2
1 ( )
( ) [ ( ) ] .T iT

i i j j

iT

b b b b

K F b
K b K b z

z z z

The preceding sequence of computations may now be repeated, defining a new adjoint 

variable
i
 as the solution to 

2 2( )
( ) .

T
i i

i ib b

K b
K b

z z z
 (4.43) 

The last term in (4.42) can be replaced by a directly computable expression from (4.35) 

and (4.43). After substitution, the desired result is obtained as 

2 2 2 2

2

[ ( ) ] ( )

[ ( ) ] ( ) ,

T T

i j i j i j i j

T
iT iT iT j

j j

d

db db b b b b b b

b b

K b z F

K b K b
z

 (4.44) 

where only the jth component of the second derivative of  is included. 

 Assuming that the cost of evaluating a partial derivative of explicitly dependent terms 

is negligible compared with solving a linear system of equations, the computational cost 

of (4.44) results from computing z, ,
i
, and 

i
 (i = 1, , k). Equation (4.44) provides an 

explicit formula for all second derivatives of  with respect to the design, requiring a 

solution from a total 1 + NC + k + (NC k) number of equations, which under normal 

circumstances is considerably less than the 1 + 3k/2 + k
2
/2 number of solutions required 

using the direct differentiation approach from (4.33). 

A Hybrid Direct Differentiation  Adjoint Variable Method 

By combining the direct differentiation and adjoint method, Haftka [51] introduced a 

refinement that has a computational advantage by a factor of two. From (4.36), the 

second-order derivative of z can be represented by 

2 2 2
1 ( ( ) ) ( ) ( ) .

i j i j i j i j j i

d d d

db db b b b b b db b db

z F z z
K K b z K b K b  (4.45) 
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From (4.38), recall that 

1.T K
z

 (4.46) 

Now, substitute the second derivatives of z from (4.45) and (4.46) into (4.33) to obtain 

2 2 2 2 2

2 2

( ( ) ) ( ) ( ) .

T

i j i j i j j i j i

T

i j i j i j j i

d d d d d

db db b b b db b db db db

d d

b b b b b db b db

z z z z

z z z z

F z z
K b z K b K b

 (4.47) 

If the direct differentiation method is employed to solve (4.35) for dz/dbi (i = 1, , k), all 

terms on the right side of (4.47) can be evaluated. Note that z, k vectors of dz/dbi, and 

are needed, for a total 1 + NC + k number of solutions, much less than the 1 + NC + k +

(NC k) solutions in the pure adjoint variable method. 

Computational Considerations 

The practicality involved in using (4.44) and (4.47) should be evaluated based on the 

number of computations. Therefore, let us only consider member-size design variables 

(fixed geometry). Of course, the first term on the right side of (4.44) must be calculated 

directly. The second term may be calculated using the summation form of the reduced 

stiffness matrix of (4.5), as 

2

1

( )
[ ( ) ] .

NE i
T T iT iT i i

i j i jib b b b

k b
K b z S S z  (4.48) 

 Note that most terms in the summation of element stiffness matrix derivatives are 

equal to zero. The third term on the right side of (4.44) involves second derivatives of the 

load vector with respect to the design. If the load vector is constant, these derivatives are 

all zero. If the load vector depends on the design, then the expressions of second 

derivatives of the load vector must be calculated. Similar observations follow for the 

evaluation of the terms in (4.47). 

Analysis with Generalized Stiffness Matrix 

The foregoing analysis requires the explicit computation of the reduced stiffness matrix 

and its first and second derivatives with respect to the design. However, in applications 

involving complicated kinematic admissibility conditions, difficulties arise with such 

computations. 

 The second derivatives of  with respect to the design may be written in the same 

way as (4.33) 

22 2

2 2 2

,

g g

i j g i j g j i

T

g g g

j g g i i g j i j

d dd

db db db db b db

d d d

db db b db b b

z z

z z

z z z

z z z

 (4.49) 

where the total derivative notation on the left emphasizes the inclusion of the design 

dependence of zg, which appears in the performance measure. In order to treat the first 

term on the right side of (4.49), consider the ith component of (4.22) and differentiate 

both sides with respect to bj in order to obtain the identity 
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2 2

2

( ) ( ( ) ) ( )

( ) , .

g gT T T
g g g g g g g

i j i j i j

g gT T
g g g g

j i i j

d d

db db b b b db

d
Z

b db b b

z z
z K b z K b z z K b

z F
z K b z z

 (4.50) 

 Observe that (4.23) may be evaluated at 2
g g i jd db dbz , and (4.50) may be evaluated 

at g gz  to obtain an expression for the first term on the right side of (4.49). 

Substituting into (4.49) gives 

2 2

2 2

2 2 2

( ( ) ) ( )

( )

.

gT T
g g g g g

i j i j i j

g g gT T
g g g

j i i j g j i

T

g g g

j g g i i g j i j

dd

db db b b b db

d d

b db b b b db

d d d

db db b db b b

z
K b z K b

z F z
K b

z

z z z

z z z

 (4.51) 

Note that the second derivative forms calculated in (4.51) and (4.47) are identical. It is 

important to note, however, that (4.51) is valid even for the singular stiffness matrix 

Kg(b), whereas the derivation in (4.47) relies heavily on the inverse of the reduced 

stiffness matrix K(b). These computations, needed to construct the terms in (4.51), are 

identical to those in (4.47). However, (4.51) has a desirable property: it is only necessary 

to compute the design derivatives of the generalized stiffness matrix, and not those of the 

reduced stiffness matrix. 

4.1.6 Examples 

Beam

Consider a clamped-clamped beam of unit length that is subject to an applied load f(x)

and a self-weight h(x), where  is the weight density of the beam. For simplicity, let us 

presume that the cross-sectional dimensions are similar in all directions, such that the 

moment of inertia can be expressed as I(x) = h
2
(x) around the beam’s neutral axis, and 

is a positive constant. For example, when the solid, circular cross section in Table 12.1 of 

Chapter 12 is considered, h = r
2
 and I = r

4
/4, yielding = 1/(4 ) [52]. If a stepped 

beam is considered, as shown in Fig. 4.1, then 

1
( ) , ,i

i i
h x b x

n n
 (4.52) 

where the beam has been subdivided into n sections, each with a constant cross-sectional 

area bi. The bi (i = 1, …, n) areas, and Young’s modulus E = bn+1 may be viewed as 

design variables. 

Figure 4.1. Stepped beam. 

b1 b2 b3 bn 1 bn
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 Consider compliance as a performance measure, with constant f, given as 

1

0

/

( 1) /
1

( ) ( )

( ) ( ) .
n

i n

i
i n

i

f h w x dx

f b w x dx

 (4.53) 

Using the shape function in (3.131) for the ith element and using the coordinate 

transformation in (3.191), the following can be written: 

( ) ,i i i
gw x Nd NS z  (4.54) 

where N is the shape function, S
i
 is the rotation matrix, and 

i
 is the Boolean matrix. For 

the one-dimensional beam problem, S
i
 can be the identity matrix, and (4.53) becomes 

/

( 1) /
1

( )

( ) .

n
i n

i
i g

i n
i

T
g g

f b N dx z

F b z

 (4.55) 

For the structural equation, 

, ,T T
g g g g g g Zz K z z F z  (4.56) 

where elements of Z satisfy the clamped boundary conditions. Using the adjoint variable 

method from (4.23) in Section 4.1.3, the following adjoint equation is obtained: 

, .T T
g g g g g g ZK F  (4.57) 

Since the adjoint load on the right side of (4.57) is the same as the load for the beam 

problem in (4.56), adjoint solution  is identical to the initial solution z, and thus, g = zg.

 From (4.29), the sensitivity formula is given as 

/

( 1) /
1

/ /

( 1) / 1/

/
2

( 1) /

[ ( ) ( ) ]

2

2 2

[2 2 ( ) ] ,

T

T T
g g g g g

i i i

n
i n

T i i i
g g

i n
i i

i n i n
T T

i i xx xx i
i n i n

i n

i xx
i n

d

db b b

wdx
b

wdx E b dx

w E b w dx

z F b z K b z

z k z

q N N q

 (4.58) 

for i = 1, 2, , n, where, from (3.135) 

/
2

( 1) /
.

i n
i T

xx i xx
i n

E b dxk N N  (4.59) 

Also,

1 1

/
2

( 1) /
1

/
2 2

( 1) /
1

[ ( ) ]

( ) .

T
g g g

n n

n
i n

T T
i i xx xx i

i n
i

n
i n

i xx
i n

i

d

db b

b dx

b w dx

z K b z

q N N q  (4.60) 
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Hence,

/
2

( 1) /
1

/
2 2

( 1) /
1

[2 2 ( ) ]

( ) .

n
i n

i xx i
i n

i

n
i n

i xx
i n

i

w E b w dx b

b w dx E

 (4.61) 

Three-Bar Truss 

Consider a simple three-bar truss with multipoint boundary conditions, as shown in Fig. 

4.2. The design variables for this structure are cross-sectional areas bi of the truss 

members. The generalized stiffness matrix is obtained in Section 1.4 of Chapter 1, as 

2 2 2 2
3 3 3 3

2 2 2 3
3 1 3 1 3 3

2 2

1 1

2 2 2 2
3 3 2 2 3 3

2 3 2 3
3 3 3 3

0 0

0

0 0 / 0 / 0
( ) ,

0 0 0 0

/ 0 /

0 0

g

b c s b cs b c s b cs

b cs b b s b b cs b s

b s c b s cE

l b b

b c s b cs b s c b s c b c s b cs

b cs b s b cs b s

K b  (4.62) 

where c = cos  and s = sin . In this problem, space Z of kinematically admissible 

displacements is given as  

6
3 4 5 6: 0, cos sin 0 ,gZ R z z z zz  (4.63) 

and Kg(b) is positive definite on Z, even though it is not positive definite on R
6
.

Figure 4.2. Three-bar truss. 
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 If  = 45
o
 and  = 30

o
, then with z = [z1, z2, z5]

T
 the reduced stiffness matrix in this 

elementary example becomes 

3 3 3

3 1 3 3

3 3 2 3

( 3 1)

( ) 2 2 ( 3 1) .
2 2

( 3 1) ( 3 1) 2 2 (4 2 3)

b b b
E

b b b b
l

b b b b

K b  (4.64) 

 If f1 = f2 = 1 and l = 1, then the solution to the reduced matrix formulation in (4.5) is 

2 3 2

4 2 3 2 2 1 3
0 .

T

Eb Eb Eb
z  (4.65) 

 If  = z1, then the adjoint equation of (4.11) is 

( ) [1 0 0] ,T TK b z  (4.66) 

with a solution of 

1 2 3 1 2

1 4 2 3 2 2 1 1 3
.

T

Eb Eb Eb Eb Eb
 (4.67) 

Using z and  from (4.65) and (4.67), the reduced matrix design sensitivity formula in 

(4.13) produces

2 2
2 3

2 3 4 2 2
( ( ) ) 0 .Td

d Eb Eb
K b z

b b
 (4.68) 

This can be verified by taking a derivative of z1 in (4.65) with respect to the design 

parameter b.

 If a generalized matrix formulation is employed, then the solution zg to (4.17) must be 

found, which is 

2 3 2 2

4 2 3 2 2 1 3 3 3
0 0 0 .

T

g
Eb Eb Eb Eb

z  (4.69) 

For  = z1, the adjoint equation of (4.23) is 

( ) [1 0 0 0 0 0] , ,T
g g g g g ZK b  (4.70) 

with the solution 

1 2 3 1 2 2

1 4 2 3 2 2 1 1 3 3 3
0 0 .

T

g
Eb Eb Eb Eb Eb Eb

 (4.71) 

Then, the design sensitivity formula in (4.29) produces 

2 2
2 3

2 3 4 2 2
( ( ) ) 0 ,T

g g g

d

d Eb Eb
K b z

b b
 (4.72) 

which is identical to the result obtained in (4.68). 

 For second-order design sensitivity, solving (4.22) for dzg/dbi (i = 1, 2, 3) gives 
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1

2 2 2
2 2 2 2

2
3 3

0 0 0 0 0 0

2 3 4 3 1 3 3
0 0 0

2 2
0 0 0 0 0 .

Tg

T

g

T

g

d

db

d

db Eb Eb Eb

d

db Eb

z

z

z

 (4.73) 

For  = z1, from (4.51), 

2

2 3
2 22 2

8 4 3
2 ( ( ) )

gT
g g

d

b dbb Eb

z
K b  (4.74) 

and

2

2 3
3 33 3

4 2
2 ( ( ) ) .

gT
g g

d

b dbb Eb

z
K b  (4.75) 

The remaining second derivatives are zero. Hence, the Hessian of  is a diagonal matrix. 

These results can be verified by taking the derivative of d /db in (4.72) with respect to 

the design b.

Ten-Member Cantilever Truss 

To illustrate the foregoing method, a 10-member cantilever truss, as shown in Fig. 4.3, 

will be used. Young’s modulus of elasticity for the truss is E = 1.0  10
7
 psi, and the 

weight density is  = 0.1 lb/in
3
.

 This problem has been examined in the literature [48] in order to compare various 

optimal design techniques. The problem is to choose a cross-sectional area for each truss 

member that minimizes its weight, subject to stress, displacement, and member-size 

constraints. The cost function is a linear function of the design variables, written as 

0

1

,
m

i i i

i

l b  (4.76) 

Figure 4.3. Ten-member cantilever truss. 
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where i is the weight density, li is the length, and bi is the cross-sectional area of the ith

member. Stress and displacement constraints for the problem are expressed as 

1.0 0, 1, 2, ,i
i a

i

i m  (4.77) 

1.0 0, 1, 2, , ,
j

j m a
j

z
j n

z
 (4.78) 

where i and i
a
 are the calculated and allowable stresses for the ith member, and zj and 

zj
a
 are the calculated and allowable jth nodal displacements. Allowable stresses are given 

as i
a
 = 2.5  10

4
 psi, while displacements are given as zj

a
 = 2.0 in. 

 For the cost function, direct calculation of the design derivatives yields 

0 ,i i

i

d
l

db
 (4.79) 

and no adjoint problem needs to be defined. For stress constraints, 

, 1, 2, , ,i
i

i

E l
i m

l
 (4.80) 

where li is the change in li, which must be expressed in terms of nodal displacement z.

The adjoint equation of (4.11) is then 

, 1, 2, , ,

TT
ii

a
i i

lE
i m

l
K

z z
 (4.81) 

which is nothing more than the structural equation for the displacement  due to load 

vector i
T
/ z. Therefore, solution 

(i)
 can be found, where superscript (i) denotes the 

association of  with constraint i. The reduced stiffness matrix design sensitivity 

formula of (4.13) gives 

( )( ( ) ).i i Td

d
K b z

b b
 (4.82) 

 For displacement constraints j+m, the adjoint equation is 

1
sgn( )[0 0 0 0] ,

T
j m T

j a
j

z
z

K
z

 (4.83) 

where

1, if 0
sgn( )

1, if 0.

j

j

j

z
z

z

Note that the adjoint load in (4.83) is a point load of magnitude 1/zj
a
 in the jth nodal 

displacement direction. As before, the solution 
(j+m)

 to (4.83) may be found. Then, the 

sensitivity formula in (4.13) gives 

( ) ( ) .
j m j m T K b z
b b

 (4.84) 
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Using these sensitivity formulas, the design derivatives of some constraints are calculated 

at the initial design, as given in the second column of Table 4.1. The vectors d 1
T
/db and 

d 2
T
/db are design derivatives of normalized stresses in members 5 and 7, respectively, 

and d 3
T
/db is the derivative of the normalized displacement in the y direction at node 2. 

 Define i
1
 and i

2
 as the constraint function values for initial design b and modified 

design b + b, respectively. Let i be the difference between i
1
 and i

2
, and let i  = 

(d i/db) bi be the difference predicted by design sensitivity calculations. The ratio of i

and i multiplied by 100 is used as a measure of sensitivity accuracy. For example, 

100% means that the predicted change is exactly the same as the actual change. Note that 

this accuracy measure will not give correct information when i is much smaller than 

i
1
 and i

2
, because i may be beyond the significant digits of i

1
 and i

2
. Numerical 

results with a 5% design change, b = 0.05b, are given in Table 4.2. 

 As a second numerical example, consider the same 10-member cantilever truss, but 

with multipoint boundary conditions, as shown in Fig. 4.4. In this problem, the space Z of 

kinematically admissible displacements is 

12
9 10 11 12: 0, cos sin 0 ,gZ R z z z zz  (4.85) 

where  = 30
o
. The same constraints given in (4.77) and (4.78) are considered in this 

problem. For the stress constraints of (4.77), the adjoint equation of (4.23) is 

, ,iiT
g g g g ga

g i i

lE
Z

l
K

z z
 (4.86) 

with solution g
(i)

 (i = 1, 2, …, m). The design sensitivity formula of (4.29) becomes 

Table 4.2. Comparison of sensitivity calculation. 

Constraint i
1

i
2

i = i
1

i
2

i’ i’/ i  100% 

1 1.6038 1.4798 0.1240 0.1302 105.0

2 0.5325 0.0769 0.0807 105.0

3 0.0472 0.0027 0.0499 0.0524 105.0

Table 4.1. Design derivatives of constraints for 10-member cantilever truss. 

Number Design d 1
T/db d 2

T/db d 3
T/db

  1 28.6 0.0082 0.0009 0.0093

  2 0.2 0.0696 0.0284 0.0109

  3 23.6 0.0104 0.0012 0.0062

  4 15.4 0.0006 0.0003 0.0076

  5 0.2 2.3520 0.9601 0.1402

  6 0.2 0.0696 0.0284 0.0109

  7 3.0 0.8369 0.4398 0.0177

  8 21.0 0.0231 0.0026 0.0128

  9 21.8 0.0009 0.0004 0.0108

10 0.2 0.1968 0.0803 0.0308
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Figure 4.4. Ten-Member cantilever truss with multipoint boundary condition. 

( ) ( ) .i i T
g g

d

d
K b z

b b
 (4.87) 

For displacement constraints j+m, the adjoint equation is 

sgn( )[0 0 1/ 0 0] , ,

j mT
g g g

g

a
j j g gz z Z

K
z  (4.88) 

with the solution g
(j+m)

 (j = 1, 2, , n). The design sensitivity formula of (4.29) becomes 

( ) ( ) .
j m j m T

g g

d

d
K b z

b b
 (4.89) 

 A comparison of the difference between actual and predicted design sensitivity 

changes derived from the sensitivity formulas of constraint values, and with a 5% overall 

change in design variables, is presented in Table 4.3. 

4.2 Design Sensitivity of the Eigenvalue Problem 

As shown in Section 3.2 of Chapter 3, the natural frequency of vibration and buckling 

load are eigenvalues of a generalized eigenvalue problem; hence, they depend on the 

design. The purpose of this section is to obtain design derivatives of such eigenvalues, 

and to explore the important exceptional case in which repeated eigenvalues appear as a 

360 in 360 in 

360 in 
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56
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6

Table 4.3. Comparison of sensitivity calculation (multipoint boundary condition). 

Constraint i
1

i
2

i = i
1

i
2

i’ i’/ i  100% 

1 11.1476 10.6963 0.5848 0.6140 105.0

2 0.4176 0.4488 0.0312 0.0330 105.6

3 1.1134 2.0127 0.1006 0.1057 105.0
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solution to an optimal design problem. It will be shown that eigenvalue sensitivity with 

respect to design may be calculated without solving an adjoint equation. It will also be 

shown that the simple eigenvector is differentiable and can be obtained by solving a 

linear system of equations in the orthogonal subspace of the eigenvector. The efficiency 

and accuracy of eigenvector sensitivity results can be improved by using the Ritz vector 

approach. Due to the singularity of the characteristic matrix associated with an 

eigenvalue, some technical complexities arise in eigenvalue and eigenvector design 

sensitivity analysis that do not appear with a static problem. 

4.2.1 Eigenvalue Design Sensitivity Analysis

In this section, it is assumed that all eigenvalues and eigenvectors are simple; they are not 

repeated. A separate section will be devoted to repeated eigenvalues.  

Reduced Stiffness and Mass Matrices 

Consider the formulation for natural frequency or buckling (for buckling problems, M(b)

is the geometric stiffness matrix) described by the following eigenvalue problem: 

( ) ( ) ,K b y M b y  (4.90) 

where eigenvector y is normalized by the condition 

( ) 1.Ty M b y  (4.91) 

As with the static problem, the reduced stiffness matrix K(b) is a function of design b. In 

addition, the mass matrix M(b) is a function of the design. With plate thickness design, 

the structural mass depends on the plate thickness. It is presumed here that the reduced 

stiffness and mass (or geometric stiffness) matrices are positive definite and 

differentiable with respect to the design. Under these conditions, the following theorem 

holds true. 

Theorem 4.1. If symmetric, positive definite matrices K(b) and M(b) in (4.90) are 

continuously differentiable with respect to the design, and if eigenvalue  is simple (not 

repeated), then the eigenvalue and its associated eigenvector in (4.90) and (4.91) are 

continuously differentiable with respect to the design. 

Proof. For a direct proof, see section II.6 of Kato [53]. A more general theorem, which 

specifically addresses the results stated here, is proven in Section 4.2.5 of this text.

 By premultiplying (4.90) with the transpose of an arbitrary vector y , the following 

identity can be obtained: 

( ) ( ) , .T T mRy K b y y M b y y  (4.92) 

To develop a design sensitivity analysis, perturb design b in the direction of b, to define 

the perturbed design b  as a function of a scalar parameter 

.b b b  (4.93) 

After substituting b  into (4.92) and differentiating both sides with respect to , we obtain 

the following relation: 
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[ ( ) ] ( )

( ) [ ( ) ] ( ) , ,

T T

T T T mR

y K b y b y K b y
b

y M b y y M b y b y M b y y
b

 (4.94) 

where y  is independent of member-size design b and, as in (4.19), 

0

0

( , ) ( )

( , ) ( )

d d

d d

d d

d d

y
y y b b y b b b

b

b b b b b
b

 (4.95) 

are differentials (or variations) of the eigenvector and eigenvalue at given design b in the 

direction of b. Since (4.94) must hold for arbitrary vector y , substitute y y  into (4.94), 

using (4.91), to obtain 

[ ( ) ] [ ( ) ] [ ( ) ( ) ].T T Ty K b y y M b y b y K b y M b y
b b

 (4.96) 

Note that the last term in (4.96) is zero since y is an eigenvector of (4.90). Thus, (4.96) is 

reduced to the desired result—the differentiation of the eigenvalue with respect to the 

design—as

[ ( ) ] [ ( ) ].T Ty K b y y M b y
b b b

 (4.97) 

 It is interesting to note that this eigenvalue derivative with respect to the design may 

be calculated without solving an adjoint equation or obtaining an eigenvector derivative. 

In addition to the result from the eigenvalue problem, the explicit dependence of K(b) and 

M(b) is required to evaluate (4.97). Thus, once the eigenvalue problem has been solved 

for a simple (nonrepeated) eigenvalue, the eigenvalue derivative can be directly 

calculated using (4.97). In this sense, the differentiation of eigenvalues is simpler than the 

differentiation of those structural performance functions that involve the static response, 

unless multiple (repeated) eigenvalues are encountered. 

Generalized Stiffness and Mass Matrices 

Consider the variational formulation of the eigenvalue problem as presented in (3.231) 

and (3.236), written in the form 

( , ) ( ) ( ) ( , ), .T T
g g g g g g g g g g ga d Zb by y y K b y y M b y y y y  (4.98) 

Recall that bilinear forms, ab(•,•) and db(•,•), are positive definite in space Z R
n
 of 

kinematically admissible displacements, that is, 

( , ) 0,

( , ) 0,

g g

g g

a

d

b

b

y y

y y
, 0.g gZy y  (4.99) 

In order to obtain the simplest possible derivation of eigenvalue design sensitivity in this 

setting, basis vector 
i
 (i = 1, …, m) of Z may be introduced. It is presumed here that 

kinematic constraints do not explicitly depend on the design, so that vector 
i
 is 

independent of the design. Also, recall that the dimension of space Z R
n
 is m < n. Any 

vector yg Z may be approximated as a linear combination of 
i
, that is, 
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1

,
m

i
g i

i

cy c  (4.100) 

where  = [
1
,

2
, ,

m
] is the characteristic matrix, and the coefficients ci are still to be 

determined. Substituting the expression of yg into (4.98), and evaluating (4.98) with 
j

gy  (j = 1, …, m), the following system of equations is produced for the coefficients 

of ci:

1 1

( , ) ( , ) , 1, ,
m m

i j i j
i i

i i

a c d c j mb b  (4.101) 

In matrix form, these equations may be written as 

ˆ ˆ( ) ( )

ˆ ( ) 1,T

K b c M b c

c M b c
 (4.102) 

which is another eigenvalue problem with eigenvalue  and eigenvector c in reduced 

space R
m
. In (4.102), the following definitions are used: 

ˆ ( ) ( )

ˆ ( ) ( ) .

T
g

T
g

K b K b

M b M b
 (4.103) 

Note that since matrix  is independent of the design, if Kg(b) and Mg(b) are 

differentiable with respect to the design, then the matrices ˆ ( )K b  and ˆ ( )M b are also 

differentiable.

 Using the conditions given by (4.99), the matrices ˆ ( )K b  and ˆ ( )M b  may be shown to 

be positive definite. Thus, the result from (4.97) can be applied in order to obtain the 

eigenvalue derivative with respect to the design. Since  is the solution to the eigenvalue 

problem in (4.102) with eigenvector c, the derivative of eigenvalue  with respect to the 

design is 

ˆ ˆ[ ( ) ] [ ( ) ].T Tc K b c c M b c
b b b

 (4.104) 

 The use of (4.104) is questionable since the matrices ˆ ( )K b  and ˆ ( )M b  are not 

generated during the structural analysis process. Only the explicit dependence of Kg(b)

and Mg(b) on the design is known. In order to use the result from (4.104), it is necessary 

to note that (4.100) and the second equation in (4.102) yield 

ˆ1 ( ) ( ) ( ) ( , ).T T T T
g g g g g gdbc M b c c M b c y M b y y y  (4.105) 

Furthermore, substituting the matrices ˆ ( )K b  and ˆ ( )M b  from (4.103) into (4.104) gives 

[ ( ) ] [ ( ) ].T T T T
g gc K b c c M b c

b b b

With (4.100), the desired result can be obtained as 

[ ( ) ] [ ( ) ].T T
g g g g g gy K b y y M b y

b b b
 (4.106) 

Given the expression of Kg(b) and Mg(b) on the design and given the solution to the 

eigenvalue problem in (4.98), the derivative of  with respect to design b can readily be 
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obtained from (4.106). Note that the form of (4.106) is identical to that obtained with the 

reduced stiffness matrix in (4.97). However, the computational advantages associated 

with (4.106) are considerable. Generalized stiffness and mass matrices can be used to 

calculate the design sensitivity of a simple eigenvalue without resorting to matrix 

manipulations that transform generalized matrices into reduced matrices. 

4.2.2 Design Sensitivity Analysis of Eigenvectors

Design sensitivity analysis of eigenvectors has been an active research area since the 

earlier work by Fox and Kapoor [54] because of the increasing importance of the 

eigenvector sensitivity in the development of structural design optimization, dynamic 

system identification, and dynamic control. There are several methods to compute the 

derivatives of eigenvectors: the overall finite difference method, the continuum method 

[5], [55], and [56], the modal method [54], the modified modal method [57], Nelson’s 

direct method [58], Ritz vector method [59], and the iterative method [60]. In this text, a 

design sensitivity formulation of eigenvectors is derived in the orthogonal subspace, and 

Ritz vector method is introduced to approximate eigenvector sensitivity. 

Generalized Stiffness and Mass Matrices 

As with the static response problem, since  in (4.100) does not depend on b, gy  = 

(dyg/db) b = (dc/db) b. Thus, an eigenvector yg that corresponds to a simple eigenvalue 

is differentiable with respect to the design. In order to obtain directional derivative gy  of 

eigenvector yg, which corresponds to the smallest simple eigenvalue of (4.98), take the 

total variation of both sides of (4.98) and use the chain rule of differentiation to obtain 

( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , )

[ ( , ) ( , )] ( , ), ,

g g g g

g g g g g g

g g g g

g g g g g g g

a d

d a d

d a

a d d Z

b b

b b b

b b

b b b

y y y y

y y y y y y

y y y y

y y y y y y y

 (4.107) 

where (4.106) is used in the last equality. 

 The bilinear form of the left side of (4.107) no longer needs to be positive definite on 

Z, since it is the difference of two positive definite forms. It is therefore not clear that a 

unique solution exists for (4.107). However, note that (4.107) is easily satisfied 

for .g gy y  A subspace W of Z that is db-orthogonal to yg may be defined, and Z may be 

written as the direct sum of W and yg, that is, 

{ },gZ W y

where {yg} is the one-dimensional subspace of Z spanned by yg and 

{ ( , ) 0}.gW Z dbv v y  (4.108) 

The notation  means that since db(•,•) is positive definite on Z, every vector w Z can 

be uniquely written in the form 

1, , .g W Rw v y v

Thus, W is the subspace of Z that is db-orthogonal to {yg}.

 Since (4.107) is valid for all g Zy , every element of Z can be uniquely written as the 

sum of elements from W and {yg}, and since (4.107) is easily satisfied for g gy y , (4.107) 

is reduced to 
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( , ) ( , ) ( , ) ( , ), .g g g g g g g g ga d d a Wb b b by y y y y y y y y  (4.109) 

It now remains to show that the bilinear form on the left side of (4.109) is positive 

definite in the subspace W.

 Using the Rayleigh quotient representation of eigenvalues in (4.98), it is well known 

that the second eigenvalue minimizes the Rayleigh quotient over all vectors of v W

[38]. Since the second eigenvalue is larger than the smallest simple eigenvalue ,

( , )
, , 0

( , )

a
W

d
b

b

v v
v v

v v

or,

( , ) ( , ) 0, , 0.a d Wb bv v v v v v  (4.110) 

This shows that the bilinear form on the left side of (4.109) is positive definite on W.

Thus, (4.109) has the unique solution g Wy  for the directional derivative of eigenvector 

yg, which corresponds to the smallest simple eigenvalue. This argument can be extended 

to any simple eigenvalue, replacing W by the subspace of Z that is db-orthogonal to all 

eigenvectors corresponding to eigenvalues smaller than .

 By letting b be a vector that contains a one in the jth position and zeros elsewhere, 

gy  becomes dyg/dbj, and (4.109) becomes 

[ ( ) ] [ ( ) ] [ ( ) ], .
gT T T

g g g g g g g g g g

j j j

d
W

db b b

y
y K b M y M b y y K b y y  (4.111) 

 Note that the design sensitivity of the eigenvector does not require the eigenvalue 

design sensitivity . Several numerical techniques exist for solving either (4.109) for gy ,

or (4.111) for dyg/dbj. Nelson [58] presents a direct computational technique that uses the 

reduced stiffness matrix, and is effective for computations in which reduced system 

matrices are known. The potential exists for directly applying such numerical techniques 

as subspace iteration [46] in order to construct a solution to (4.109) related to the basic 

eigenvalue problem. Wang and Choi proposed the following Ritz vector method [59]. 

Ritz Vector Method for Reduced Stiffness and Mass Matrices 

It is difficult to construct an orthogonal subspace W for a general eigenvalue problem by 

using the solution method in (4.111), even for reduced stiffness and mass matrices. In this 

section, the design sensitivity of a simple (not repeated) eigenvector is discussed in the 

reduced matrix equations. Two methods are usually used: first, solve a linear system of 

equations, and second, expand using eigenvectors. In the first method, matrix 

multiplication is a lengthy operation and destroys any banded structure associated with 

the original eigensystem. The second method is undesirable for large eigensystems, since 

eigenvector calculation for large structures is very expensive. In this section, the Ritz 

vector expansion method [59] is introduced to improve the accuracy of sensitivity results 

with a small number of eigenvectors. 

 Assume that y
i
 is the ith eigenvector (i = 1, …, q) and 

j
 is the jth Ritz vector (j = 1, 

, r) [59]. We can construct the Ritz vectors that are M(b)-orthonormal to the 

eigenvectors.
k
 can then be defined as 
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, 1, ,

, 1, , .

i i

q k k

i q

k r

y
 (4.112) 

The eigenvalue problem in (4.90) is rewritten as 

( ) ( ) , 1, , ,i i
i i qK b y M b y  (4.113) 

and the normalizing condition that is employed is written as 

( ) ( ) ( ) ,
T T Ti j i j i j

ijy M b y M b M b  (4.114) 

for all i and j. From (4.111), the sensitivity equation is obtained as  

( ) ( ( ) ) ( ( ) ) .i i i
i i fK M y M b y b K b y b F

b b
 (4.115) 

Assuming that the eigenvalue problem is solved for i and y
i
, Ff on the right side of 

(4.115) can be evaluated. As discussed before, the matrix (K iM) on the left side of 

(4.115) is positive definite on W and the solution i Wy  is M(b)-orthogonal to y
i
.

 The Ritz vector method represents the design sensitivity of the eigenvector y
i
 as a 

linear combination of eigenvectors and Ritz vectors, that is, if  = [
k
] = [y

1
, , y

q
,

1
,

,
r
], then the design sensitivity of the eigenvector is expressed with coefficient c as 

.iy c  (4.116) 

The advantage of using Ritz vectors in (4.116) is that only a small number of 

eigenvectors can be used in (4.116), such that for a large eigensystem, q + r m.

Substituting (4.116) into (4.115), and premultiplying 
T
, the following is obtained: 

( ( ) ( )) .T T
i fK b M b c F  (4.117) 

Equation (4.117) can be written in partitioned form as 

11 1 1

22 2 2
,

q q q r

r q r r

A 0 c F

0 A c F
 (4.118) 

where, using the property in (4.114) and the formula ,
T

k j

j jky Ky  the following terms 

are obtained: 

  A
11

 = a q q diagonal matrix with diagonal terms j – i, j = 1, , q

  A
22

 = a r r nonsingular full matrix ( )
Tk j

i kjK b

1 1 1 2 2 2
1 1[ , , ] , [ , , ]T T

q rc c c cc c

1 1 2 1[ , , ] , [ , , ] .
T T T Tq T r T

f f f fF y F y F F F F

Thus, the coefficients of the expansion in (4.116) are obtained as 

1

1

2 22 1 2

, , 1, ,

1
( ( ) )

2

( ) .

Tj
f

j

j i

iT i
i

c j i j q

c

y F

y M b y
b

c A F

 (4.119) 
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Note that if r = 0, then 22A  does not exist and c
2
 = 0, which becomes an eigenvector 

expansion method. When j = i, ( ) 1iT iy M b y  is differentiated with respect to design b,

and (4.116) is then substituted in to compute ci. Wang and Choi [59] show that two Ritz 

vectors (r = 2) are enough for most applications that go through numerical tests. 

Consequently, only a 2  2 matrix inversion is involved in order to solve c
2
.

4.2.3 Second-Order Design Sensitivity of a Simple Eigenvalue 

From (4.106), the smallest eigenvalue sensitivity with respect to design bi may be written 

as

[ ( ) ] [ ( ) ].T T
g g g g g g

i i ib b b
y K b y y M b y  (4.120) 

Differentiating with respect to bj gives 

2 2 2

[ ( ) ] [ ( ) ]

[ ( ) ] [ ( ) ] [ ( ) ]

2 [ ( )] 2 [ ( )] .

T T
g g g g g g

i j i j i j

T T T
g g g g g g g g g

j j i

g gT T
g g g g

i j i j

b b b b b b

b b b

d d

b db b db

y K b y y M b y

y K b y y M b y y M b y

y y
y K b y M b

 (4.121) 

In order to evaluate the second derivative of  in (4.121), dyg/dbi and dyg/dbj must be 

calculated, which can be done by solving (4.111). Once (4.111) is solved, the result may 

then be substituted into (4.121) to obtain the second design derivative of  with respect to 

design components bi and bj.

 Note that the computation of all second design derivatives of  requires a solution to 

(4.120) for i = 1, , k. These results may be substituted into (4.121) and the partial 

derivatives with respect to bj (j = 1, , k) may be calculated. Thus, all k
2
/2 + k/2 distinct 

derivatives of  are obtained with respect to the design. In obtaining the derivatives, k

sets of equations in (4.111) must be dealt with, and numerical computation is performed 

in order to evaluate the right side of (4.121). While this presents a substantial amount of 

computation, the fact that the second design derivative of the eigenvalue is available with 

respect to the design can be of value in iterative design optimization. 

4.2.4 Systematic Occurrence of Repeated Eigenvalues in  
Structural Optimization 

In carrying out vibration and buckling analysis, it is well known that computational 

difficulties can arise if repeated eigenvalues (natural frequencies or buckling loads) arise. 

However, the possibility that a precisely repeated eigenvalue will occur has often been 

dismissed on practical grounds. 

 While repeated eigenvalues may be unlikely to occur in randomly specified 

structures, they are far more likely to happen in optimized structures. Thompson and 

Hunt [61] have devoted considerable attention to designs that are constructed with 

simultaneous buckling failure modes, i.e., repeated eigenvalues. More recently, Olhoff 

and Rasmussen [62] have shown that a repeated buckling load may occur in an optimized 

clamped-clamped column. Their results corrected an erroneous solution published much 

earlier [63]. Subsequent to the Olhoff-Rasmussen finding, Masur and Mroz [64] provided 

an elegant treatment of optimality criteria for structures in which repeated eigenvalues 
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occur. They showed that a singular (nondifferentiable) optimization problem could arise. 

In addition, Prager and Prager [65] demonstrated that singular behavior associated with 

repeated eigenvalues may arise even for a very simple finite-dimensional column model, 

as with the distributed parameter column of Olhoff and Rasmussen [62]. Simple vibration 

and buckling problems are introduced in this section in order to show how repeated 

eigenvalues can arise in structural optimization. 

Vibration Example 

Consider a spring-mass system, as shown in Fig. 4.5. The eigenvalue equation for small-

amplitude vibration of the rigid body is simply derived as 

1 2 2 1 1

2 1 2 2 2

4 2 1
( ) ,

4 1 2

b b b y y

b b b y y
K b y My  (4.122) 

where  = 2
2
m/3, m is the mass of the bar, and I = ml

2
/12 is the moment of inertia. In 

this example, horizontal bar motion is ignored, and spring constants are regarded as 

design variables. 

 The optimal design objective is to find design parameters b1 and b2 in order to 

minimize the spring weight, which is presumed to be in the form 

0 1 1 2 2 ,c b c b  (4.123) 

where c1 and c2 are known constants. Minimization is carried out subject to the constraint 

that eigenvalues are not lower than 0 > 0, and that spring constants are nonnegative. 

These constraints are given in the inequality constraint form as 

1 0 1

2 0 2

3 1

4 2

0

0

0

0.

b

b

Since the eigenvalues of (4.122) are 1 = (4b1+2b2)/3 and 2 = 4b1, these constraints 

become 

Figure 4.5. Spring-mass system with two degrees-of-freedom. 

b1

m

b2 b1

l

y1 y2
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1 0 1 2

2 0 1

3 1

4 2

(4 2 ) / 3 0

4 0

0

0.

b b

b

b

b

 (4.124) 

 Equations (4.123) and (4.124) define a linear programming problem. The feasible set 

is shown graphically in Fig. 4.6. Note that the slope of the line connecting points A and B 

is 2. The level lines of the cost function are straight, with a slope equal to c1/c2. The 

cost function decreases as the level lines of cost move to the lower left. Thus, it is clear 

that point A (the repeated eigenvalue) is optimum if c1/c2 > 2, and point B (the simple 

eigenvalue) is optimum if c1/c2 < 2.

Column Buckling Example 

Consider a column with elastically clamped ends, as shown in Fig. 4.7. The column has 

five rigid segments of length l and six elastic hinges at the ends of the segments with a 

bending stiffness of 2

0b . Rotation of the column’s end sections by the angle 0 is opposed 

by the clamping moment 2

0 0 0M b , where b0 is given as a constant. When b0 = 0 the 

ends are pin-supported, and when b0 =  they are rigidly clamped. Because the boundary 

conditions at both ends are identical, bending stiffness at the optimum design will be 

symmetric with respect to the center of the column, and the buckling modes will be either 

symmetric or antisymmetric with respect to the center. A column design is specified by 

the bending stiffness of 2

1b  for hinges 1 and 4, and the bending stiffness of 2

2b  for hinges 

2 and 3, as shown in Fig. 4.7. A buckling mode that is known to be symmetric or 

antisymmetric is specified by deflection y1 of nodes 1 and 4, and deflection y2 of nodes 2 

and 3. Upward deflections are regarded as positive. 

Figure 4.6. Feasible region in design space  

for systems with two degrees-of-freedom. 
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Figure 4.7. Elastically supported column. 

 At the left end, the column is subject to axial load P, reaction force R, and clamping 

moment M0. The bending moment at the ith hinge is 

0 , 0, , 4,i iM M ilR Py i  (4.125) 

where y0 = 0. If i denotes the relative rotation of the segments, which meet at the ith 

hinge, then they will be considered positive if a counterclockwise rotation of the segment 

to the right of the ith hinge exceeds the rotation of the segment to the left, as follows: 

2 2
1 1( 2 ) / , 0, , 4,i i i i i i iM b b y y y l i  (4.126) 

where y 1 = y0 = 0. At this point, it is convenient to introduce reference stiffness b
*2

 and 

to define the dimensionless variables as  

2 2 2 ** * *

ˆˆ ˆ ˆ ˆ, , , , .i i i
i i i

Pl Rl M y b
P R M y b

l bb b b
 (4.127) 

Using these dimensionless variables, and after deleting ^ for the sake of notational 

simplicity, (4.125) and (4.126) will yield 

2
0 1 1( 2 ), 0, 1, 2.i i i i iM iR Py b y y y i  (4.128) 

For a symmetric buckling mode, y3 = y2 and R = 0. For i = 0, 1, 2, (4.128) yields 

2
0 0 1

2
0 1 1 2 1

2
0 2 2 2 1

( 2 )

( ),

s

s

M b y

M P y b y y

M P y b y y

 (4.129) 

where Ps is the buckling load of the symmetric mode. When the value of M0 is taken from 

the first of these equations and is substituted into the other two, linear homogeneous 

equations are obtained for y1 and y2 that will only admit a nontrivial solution if 

2 2 2 2 2 2 2 2 2
0 1 2 0 1 2 1 2( 2 ) ( ) 0.s sP b b b P b b b b b  (4.130) 

The smaller root of this equation is the symmetric buckling load. 

 In order to find a design with the highest buckling load, let the cost of the design [b1,

b2]
T

be fixed by the relation 

1 2 1b b  (4.131) 

Taking (4.131) into account, (4.130) can be reduced to 

2 2 2 2 2 2 2
0 1 1 0 1 1 1 1 1(1 3 2 ) (2 2 1) ( 2 1) 0.s sP b b b P b b b b b b  (4.132) 

l l l l l

R

P

M0

1 2 3 4 50
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 For an antisymmetric buckling mode, y3 = y2, and R = 2M0/(5l), because both the 

bending moment and the deflection vanish at the center of the column. Proceeding in the 

same manner as above, a quadratic equation can be obtained for the antisymmetric 

buckling load Pa, in the form 

2 2 2
0 1 1

2 2 2 2
0 1 1 1 1 1

(3 0.6 5 6 )

(2 3.6 1.8) 5 ( 2 1) 0.

a aP b b b P

b b b b b b
 (4.133) 

The smaller root of this equation is the antisymmetric buckling load. 

 As shown in Fig. 4.8, for fixed values of b0 the smaller of the buckling loads Ps and 

Pa is a function of b. To illustrate the important features of this relation, the case in which 

b0 = 0.3 is presented, for which buckling load variation is shown by the line ABCD. The 

arcs AB and CD correspond to antisymmetric buckling, while the arc BC corresponds to 

symmetric buckling. At point B both symmetric and antisymmetric buckling are possible, 

and the buckling load is given in the form of a repeated eigenvalue. A similar observation 

is warranted for point C. The arc BC, however, has its highest coordinate at point H, so 

the optimum design for b0 = 0.3 corresponds to the value of b1 as 0.39, which causes 

buckling in a symmetric mode, with the buckling load being a simple eigenvalue. 

However, the buckling load is a repeated eigenvalue if b0 is larger than the value b0 = 

0.57, which corresponds to point E, and the optimum design may buckle in a symmetric 

mode, an antisymmetric mode, or in any linear combination of the two. 

 Note that a second local maximum value occurs as a repeated eigenvalue for b0

1.31, which corresponds to point F. Another local maximum occurs as a simple 

eigenvalue for b0  0.94, corresponding to point G. Also, note that the curve in Fig. 4.8 is 

not concave, but that several relative maximum values occur, and when a repeated 

eigenvalue occurs at an optimum design, the eigenvalue is not differentiable with respect 

to the design. Thus, if dP/db1 = 0 was used as an optimality criteria, serious errors would 

result.

Figure 4.8. Buckling loads for optimum columns. 
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4.2.5 Directional Derivatives of Repeated Eigenvalues 

Analysis with Reduced Global Stiffness and Mass Matrices 

First, consider the eigenvalue problems that arise with structural vibration or buckling. 

Using the reduced stiffness and mass (or geometric stiffness) matrices, the eigenvalue 

problem can be written as 

( ) ( ) ,K b y M b y  (4.134) 

where y R
m
. In this problem, K(b) and M(b) are symmetric, positive definite matrices. 

 The derivation of design sensitivity in Section 4.2.1 is valid only under the 

assumption that the eigenvalues and eigenvectors are differentiable with respect to the 

design, which is true if the eigenvalue is simple. However, even a repeated eigenvalue is 

directionally differentiable (see Appendix A.3), which will be proven in the following 

theorem. 

 Let eigenvalue (b) in (4.134) have a multiplicity of s  1 at b and let the s s matrix 

 be defined by the following elements: 

[ ( ) ] ( ) [ ( ) ] , , 1, , ,
T Ti j i j

 ij i j sy K b y b b y M b y b
b b

 (4.135) 

where {y
i
} (i = 1, 2, , s) is any M(b)-orthonormal basis of the eigenspace associated 

with (b). Note that  depends on the design change direction b, i.e.,  = (b, b).

The following theorem characterizes the directional derivatives of repeated eigenvalues. 

Theorem 4.2. If the matrices K(b) and M(b) are symmetric, positive definite, and 

differentiable, then the directional derivatives ( , )i b b (i = 1, , s) of a repeated 

eigenvalue (b) in the direction b exist, and are equal to the eigenvalues of matrix .

Proof. Since matrices K(b) and M(b) are positive definite, hence nonsingular, (4.134) 

may be rewritten as 

1 1
( ) [ ( ) ( )] , 1, , ,i i i i sC b y K b M b y y  (4.136) 

where (y
i
, My

i
) = ij, and ij is the Kronecker delta, which has a value of one if i = j, and a 

value of zero otherwise. Since K(b) and M(b) are differentiable with respect to b, C(b) is 

also differentiable with respect to b. In particular, 

( ) ( ) ( ),l

ll

b o
b

C
C b b C b  (4.137) 

where o( ) denotes a quantity such that 

0
lim ( ) / 0.o

 By drawing on Theorem 5.11 in Chapter 2 of Kato [53], the following can be written:

( ) ( , ) ( ), 1, , ,i i i o i sb b b b  (4.138) 

where 2( , ) [ ( )] ( , )i ib b b b b  and ( , )i b b  are eigenvalues of the operator, where 

argument b has been suppressed for the sake of notational simplification. Now, define 
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,l

ll

b
b

C
N P P  (4.139) 

where P is the M-orthogonal projection matrix that maps R
m

onto the eigenspace 

1

: , real .
s

m i
i i

i

Y R a ay y y

That is, for any y R
m

1

( , ) ,
s

i i

i

Py My y y  (4.140) 

and the scalar product (•,•) is defined as (v,y) v
T
y = viyi.

 The eigenvalues of the operator N must now be found. Each eigenvector of N can be 

expressed as 

1

,
s

j
j

j

ay y  (4.141) 

where not all the values of aj are zero. Hence, 

( , ) ,l

ll

b
b

C
P Py b b y

or,

1 1

.
s s

j j
j l j

lj l j

a b a
b

C
P Py y  (4.142) 

Taking the scalar product of (4.142) with My
i
 gives 

1 1

[ ] , ,

, 1, , .

s s

j i j i
j l j

l
lj j

i

a b a
b

a i s

C
P Py My y My

 (4.143) 

To have a nontrivial solution aj,  must be an eigenvalue of the matrix 

ˆ [( , )] .j i
ij s sN Ny My  (4.144) 

According to the definition of C = K
1
M in (4.136), 

1 1 1 .
l l lb b b

C M K
K K K M  (4.145) 

Thus,

1ˆ , .i j
l

l ll s s

b
b b

M K
N My PK C Py  (4.146) 

Since Py
j
 = y

j
 and Cy

j
 = (1/ )y

j
,

1 1ˆ , .i j j
l

l ll s s

b
b b

M K
N My PK y y  (4.147) 
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Note that for any vector v R
m
,

1

( , ) ,( , )

1
( , ) ( , ) ( , ).

s

i i j j

j

i i i

My Pv My Mv y y

Mv y v My v Ky

 (4.148) 

Applying this result to (4.147) gives 

1

2

1 1ˆ ,

1 1
( , ( ) ) ( , ( ) ) .

i j j
l

l ll s s

i j i j

s s

b
b b

M K
N Ky K y y

y M b y b y K b y b
b b

 (4.149) 

Noting that ( , )i b b  are the eigenvalues of N̂  and that 2( , ) ( ) ( , )i ib b b b b , it can 

be concluded that ( , )i b b  are the eigenvalues of 2 ˆ( )b N , which gives 

( , ( ) ) ( , ( ) ) .i j i j

s s

y K b y b y M b y b
b b

 (4.150) 

Since this is the same matrix defined in (4.135), the proof of the theorem is complete.  

 The notation ( , )i b b  is selected from Theorem 4.2 to emphasize the directional 

derivative’s dependence on b. It is not surprising that in the vicinity of a design in which 

the eigenvalue is repeated s times there may be s distinct eigenvalues. A remarkable fact 

implied by the preceding result is that the eigenvalues of matrix  do not depend on the 

M(b)-orthonormal basis selected for the eigenspace. Moreover, if eigenvalues i(b+ b)

are ordered by increasing magnitude, then their directional derivatives are the eigenvalues 

of  in that same order. 

 In order to illustrate that the eigenvalue’s directional derivatives are not generally 

linear in b, consider a double eigenvalue. For the case in which s = 2, the characteristic 

equation for determining the eigenvalues of  may be written as 

11 12 2 2
11 22 12 11 22

21 22

( ) ( ) 0,  (4.151) 

where the fact that 12 = 21 has been used. Solving this characteristic equation for 

provides a pair of roots that give the directional derivatives of the eigenvalue as 

2 2 1/ 2
11 22 11 22 11 22 12

1
( ) ( ) [( ) 4( )] , 1, 2,

2
i ib b  (4.152) 

where i = 1 corresponds to the “–” sign, and i = 2 corresponds to the “+” sign. 

 This equation orders the directional derivatives of the repeated eigenvalue according 

to magnitude. Even though ij are linear in b, it is clear with this ordering that the 

resulting formula for ( , )i b b  is not linear in b; consequently, it is not a Fréchet 

derivative (see Appendix A.3). The fact that ( , )i b b  is not a Fréchet derivative may be 

because the eigenvalues have been ordered according to their magnitude. As indicated by 

the schematic diagram in Fig. 4.9, even if a smooth ordering of the eigenvalue exists with 

respect to the design, ordering the eigenvalue by magnitude leads to derivative 

discontinuity at the point of a repeated eigenvalue. 
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Figure 4.9. Schematic of eigenvalue crossing. 

Computation of Directional Derivatives of a Repeated Eigenvalue 

An ordering of i(b + b) exists such that the mapping i(b + b) is differentiable 

at  = 0. In general, however, this ordering depends on b. In order to see the dependence, 

let s = 2. A method for determining directional derivatives was introduced by Masur and 

Mroz [66]. They used an orthogonal transformation of eigenvectors, beginning with a 

given (b)-orthonormal set y
1
 and y

2
and defined a “rotated” set as follows: 

1 1 2

2 1 2

cos sin

sin cos

y y y

y y y
 (4.153) 

where  is a rotation parameter. A simple calculation shows that if y
1
 and y

2
 are M(b)-

orthonormal, then so are 1y  and 2.y  The transformed eigenvectors may thus be used to 

evaluate matrix  in (4.135), denoted as .  Since the eigenvalues of  are the same 

as those for , a rotation parameter  may be chosen to make matrix  diagonal. If 

can be found, then the diagonal elements of  will be the eigenvalues of the original 

matrix, and therefore, the directional derivatives of the repeated eigenvalue. Thus, it is a 

requirement that 

1 2 1 2
12

2 2
11 12 22

1
22 11 122

ˆ0 [ ( ) ] ( ) [ ( ) ]

cos sin (cos sin ) sin cos

sin 2 ( ) cos2 .

T T

y K b y b b y M b y b
b b

 (4.154) 

Equation (4.154) may be solved for 

1 2
12

1 1 2 2
11 22

2 ( , , )1
( ) Arctan ,

2 ( , , ) ( , , )

y y b
b

y y b y y b
 (4.155) 

where the notation emphasizes that  depends on the direction of design change b. Even 

though ij linearly depend on b, their ratio on the right side of (4.155) is not linear in 

b. Furthermore, the arctangent function is nonlinear. 

 Angle  may be used to evaluate 11  and 22  in order to obtain the directional 

derivatives of the repeated eigenvalue, that is, 

b

2

1

b
0
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2
1 11 11

2
12 22

( , ) cos ( ) ( )

sin 2 ( ) ( ) sin ( ) ( )

b b b b

b b b b
 (4.156) 

2
2 22 11

2
12 22

( , ) sin ( ) ( )

sin 2 ( ) ( ) cos ( ) ( ),

b b b b

b b b b
 (4.157) 

where the notation ij( b) is used to emphasize dependence on the design change. Note 

that even though ij( b) is linear in b, since the trigonometric multipliers depend on 

b, the directional derivatives appearing in (4.156) and (4.157) are in general nonlinear in 

b. Thus, the directional derivatives of a repeated eigenvalue are not linear in b. Hence, 

 is nondifferentiable. Only if 12( b) is equal to zero for all b with some pair of M(b)-

orthonormal eigenvectors can the repeated eigenvalues be ordered in such a way that they 

are Fréchet differentiable. 

 It may be noted in (4.155) that for  0, (b, b) = (b, b), that is, (b, b) is 

homogeneous of degree zero in b. Thus, since ij( b) are linear in b,

( , ) ( , ),i ib b b b  (4.158) 

that is, the directional derivatives of a repeated eigenvalue are homogeneous of degree 

one in b. This implies that once b is fixed, the eigenvalues can be ordered in such a 

way that the repeated eigenvalue is differentiable with respect to .

 While the foregoing approach could also be used to treat a triple eigenvalue, such an 

analysis would be much more complex. For example, the matrix would be 3  3, and a 

cubic characteristic equation would have to be solved. An alternative is to use a three-

parameter family of M(b)-orthonormal eigenfunctions and to choose three rotation 

parameters that would cause the off-diagonal terms of  to be zero. This is a 

complicated task, since three trigonometric equations in three unknowns must be solved. 

While an analytical solution to the directional derivatives of eigenvalues with a 

multiplicity greater than two may be difficult, the same basic idea may be employed for 

numerical calculation. 

Analysis Using a Generalized Global Stiffness and Mass Matrix 

Consider the reduced formulation of the generalized eigenvalue problem in (4.98), given 

by (4.102), for a repeated eigenvalue problem with the nonsingular reduced stiffness and 

mass matrices ˆ ( )K b  and ˆ ( ),M b  given in (4.103). Let c
i
 (i = 1, , s) represent ˆ ( )M b -

orthonormal eigenvectors, with 

ˆ ˆ( ) ( ) , 1, , .i i i sK b c M b c  (4.159) 

Thus, the vectors i i
gy c  satisfy the relation 

ˆ ( ) ( ) ( ) ,
T T Ti j i T j i j

ij g g g gc M b c c M b c y M b y  (4.160) 

where ij is the Kronecker delta, so that i
gy  are Mg(b)-orthonormal. 

 For the reduced eigenvalue equation of (4.159), use (4.135) to define 

ˆ ˆ ˆ[ ( ) ] ( ) [ ( ) ] .
T Ti j i j

ij g gc K b c b b c M b c b
b b

 (4.161) 
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Based on Theorem 4.2.2, the directional derivatives ( , )i b b  (i = 1 , , s) of the 

repeated eigenvalue  from either (4.98), or (4.159), are the eigenvalues of ˆ .  Using 
i i
gy c  and (4.103), 

ˆ [ ( ) ] ( ) [ ( ) ]

[ ( ) ] ( ) [ ( ) ] , , 1, , .

T T

T T

i T j i T j
ij g g

i j i j
g g g g g g i j s

c K b c b b c M b c b
b b

y K b y b b y M b y b
b b

 (4.162) 

Thus, (4.155) through (4.157) are valid for the directional derivatives of a repeated 

eigenvalue, with ij being replaced by ˆ ;  that is, ij is written in terms of the 

generalized global stiffness and mass matrices in (4.162). 

4.2.6 Examples 

Three-Bar Truss 

To illustrate the results from previous sections, consider the three-bar truss in Section 

4.1.6. In order to simplify the calculation, first consider the generalized global lumped 

mass matrix, given as 

1 3 1 3 1 2 1 2 2 3 2 3( ) diag[ 2 , 2 , , , 2 , 2 ],
2

g

l
b b b b b b b b b b b bM b  (4.163) 

where  is mass density. The space of kinematically admissible displacements is 

6
3 4 5 6{ : 0, cos sin 0},gZ R y y y yz  (4.164) 

and Kg(b) from (4.62) is positive definite on Z. If  = 45
o
 and  = 30

o
, then with y = [y1,

y2, y5]
T
 the reduced mass matrix is 

1 3 1 3 2 3( ) diag[ 2 , 2 ,4( 2 )].
2

l
b b b b b bM b  (4.165) 

 For the eigenvalue problem, assume that E = 1, = 1, b1 = b2 = 1, and b3 = 2 2 .

Consequently, the fundamental eigenvalue is  = 0.08038 and the M(b)-normalized 

eigenvector is 

1 2 5[ , , ] [ 0.3496, 0.08451, 0.2601] .T Ty y yy  (4.166) 

The reduced eigenvalue design sensitivity may now be evaluated from (4.97) as 

[ ( ) ] [ ( ) ]

[0.001944, 0.05678, 0.02076].

T Ty K b y y M b y
b b b  (4.167) 

 Even if a generalized global formulation is employed, the same eigenvalue is 

computed as in the reduced formulation. The Mg(b)-normalized eigenvector is 

[ 0.3496, 0.08451, 0, 0, 0.2601, 0.45051] .Ty  (4.168) 

The eigenvalue design sensitivity formula of (4.106), along with the variational 

formulation, gives 
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[ ( ) ] [ ( ) ]

[0.001944, 0.05678, 0.02076],

T T
g g g g g gy K b y y M b y

b b b  (4.169) 

which is the same as (4.167). 

 Since this example offers no evidence of a design that leads to a repeated eigenvalue, 

repeated eigenvalue sensitivity formulas have not been written. 

Portal Frame 

The portal frame shown in Fig. 4.10 is an example of a repeated eigenvalue that occurs at 

a given design. The structure is modeled using beam elements of length li and a uniform 

cross-sectional area bi. No axial deformation is considered. The design problem is to find 

b R
n
 that minimizes the weight 

0

1

( ) ,
n

i i

i

l bb  (4.170) 

subject to natural frequency constraints 

0 0, 1, 2,i i i  (4.171) 

and constraints on the cross-sectional area 

2 0, 1, 2, , ,j j jc b j n

where  is the weight density of the material, and i = i
2
.

 Numerical results are based on the following data: 

  1. The length of each member of the portal frame is 10 inches, 

  2. The moment of inertia of the cross-sectional area is Ii = bi
2
,

  3. The geometry of a cross section is circular (  = 0.08), 

  4. Young’s modulus of elasticity is E = 10.3  10
6
 psi, 

  5. The mass density of the material is  = 0.26163  10
3
 lb-sec

2
/in

4
.

 The 18-element finite-element model presented in Fig. 4.10 is used in the 

computation, and the current design, which yields repeated eigenvalues of 1 = 3.360591 

 10
7
 and 2 = 3.364971  10

7
, is given in column (a) of Table 4.4. 

 Perturbation direction b, which is used in the calculation of directional derivatives 

( , )i b b  in (4.156) and (4.157), is given in column (b) in the same table. A comparison 

of the design sensitivity between actual and predicted changes using the sensitivity 

formulas from (4.156) and (4.157) is presented in Table 4.5. Since ( , )i b b  (i = 1, 2) are 

nonlinear in b for the current design, d i/db cannot be found to calculate 

( / ) .i id db b
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Figure 4.10. Eighteen-element model of portal frame. 
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Table 4.4. Current design and perturbation. 

(a) Current Design (b) Perturbation 

i bi i b(i)

  1 0.6614E+01   1 0.6906E 01

  2 0.4626E+01   2 0.4933E 01

  3 0.2747E+01   3 0.2921E 01

  4 0.1602E+01   4 0.7251E 02

  5 0.9134E+00   5 0.4467E 02

  6 0.3709E+00   6 0.1841E 02

  7 0.3500E+00   7 0.0000E 00

  8 0.3500E+00   8 0.0000E 00

  9 0.3500E+00   9 0.0000E 00

10 0.3500E+00 10 0.0000E 00

11 0.3500E+00 11 0.0000E 00

12 0.3500E+00 12 0.0000E 00

13 0.3709E+00 13 0.2025E 02

14 0.9134E+00 14 0.5360E 02

15 0.1602E+01 15 0.9426E 01

16 0.2747E+01 16 0.4090E 01

17 0.4626E+01 17 0.7400E 01

18 0.6614E+01 18 0.1114E 00
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4.3 Transient Dynamic Response Design Sensitivity 

Thus far, in this chapter, static response and eigenvalues that represent steady-state 

motion and structural buckling have been treated. Under time-varying loads or nonzero 

initial conditions, transient dynamic response must also be considered. Design sensitivity 

analysis for transient dynamic response is presented in this section, first discussing the 

damping effect, and then concentrating on the results of an undamped structure, yielding 

substantial computational simplification. In terms of practical computation, the transient 

response can be approximated by using a linear combination of eigenvectors and/or Ritz 

vectors. Design sensitivity for this approximation provides an efficient and uncoupled 

matrix equation. 

4.3.1 Design Sensitivity Analysis of Damped Elastic Structures 

Consider a structure in which the generalized stiffness and mass matrices have been 

reduced by accounting for boundary conditions. Let the damping force be represented in 

the form of C(b)z,t, where z,t = dz/dt denotes the velocity vector. Under these conditions, 

Lagrange’s equation of motion becomes the second-order differential equation, as 

, ,( ) ( ) ( ) ( , ),tt t tM b z C b z K b z F b  (4.172) 

with the initial conditions 

0

0
, ,

(0)

(0) .t t

z z

z z
 (4.173) 

 For the dynamic structure, the following form of a general performance measure will 

be considered: 

0
( ( ), ) ( , ) ,

T

g T G dtz b z b  (4.174) 

where the final time T is determined by a condition in the form 

,( ( ), ( ), ) 0.tT Tz z b  (4.175) 

That is, given a specific design b, the equation of motion in (4.172) and (4.173) can be 

integrated in order to monitor the value of (z(t), z,t(t),b). The time it takes for this 

quantity to reach zero is defined as final time T. The performance measure in (4.174) can 

then be evaluated. It is presumed that (4.175) uniquely determines T, at least locally. This 

requires that the time derivative of  is nonzero at T, as 

, , ,

,

( ) ( ) 0.t t tt

t

T Tz z
z z

 (4.176) 

Table 4.5. Comparison of sensitivity. 

Constraint ’ ’/  100% 

1 0.1875E+06 0.2016E+06 107.5

2 0.8397E+05 0.9968E+05 118.7 
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When final time T is prescribed before the response analysis, the relation in (4.175) need 

not be considered. 

 It is clear from (4.172) that solution z = z(t;b) of the initial-value problem in (4.172) 

and (4.173) depends on design variable b. The nature of this dependence is characterized 

by the following well-known theorem from ordinary differential equation theory [67]. 

Theorem 4.3. If matrices M(b), C(b), and K(b) and vector F(t,b) are s times 

continuously differentiable with respect to design b, and if matrix M(b) is nonsingular, 

then solution z = z(t,b) is s times continuously differentiable with respect to b.

 Theorem 4.3 guarantees that the dynamic response of a structural system is 

essentially as smooth as the dependence on b in the equation of motion. 

 To obtain the design sensitivity of , define a design variation in the form 

.b b b  (4.177) 

Design b is perturbed in the direction of b with the parameter . Substituting b  into 

(4.174), the derivative of (4.174) can be evaluated with respect to  at  = 0. Leibnitz’s 

rule of differentiation of an integral [68] may be used to obtain the following expression: 

,

0

[ ( ) ( ) ]

( ( ), ) ,

t

T

g g
T T T

G G
G T T dt

b z z
b z

z b z b
z b

 (4.178) 

where

0

( , ) ( , ) [ ( , )]
d d

t t
d d

z z b b z b b z b b
b

0

( , ) ( ) .
d dT

T T T
d d

b b b b b
b

 Note that since the expression in (4.175) that determines T depends on the design, T

will also depend on the design. Thus, terms arise in (4.178) that involve the derivative of 

T with respect to the design. In order to eliminate these terms, differentiate (4.175) with 

respect to  and evaluate it at  = 0 in order to obtain 

, , ,

,

[ ( ) ( ) ] [ ( ) ( ) ] 0.t t tt

t

T T T T T Tz z z z b
z z b

 (4.179) 

This equation may also be written as 

, , , ,

, ,

( ) ( ) ( ) ( ) .t t tt t

t t

T T T T T Tz z z z b
z z z z b

 (4.180) 

Since it is presumed by (4.176) that ,t  0, then 

,

, ,

1
( ) ( ) .t

t t

T T Tz z b
z z b

 (4.181) 

Substituting the result of (4.181) into (4.178), the following is obtained: 
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,

,

, ,

, ,

0

,

,

1
( ) ( ( ), ) ( )

1
( ) ( ( ), ) ( )

1
( ) ( ( ), ) .

t

t

t t

t t

T

t

t

g g
T G T T

g
T G T T

G G
dt

g g
T G T

z z b z
z z z

z z b z
z z

z b
z b

b z z b b
b z b

 (4.182) 

Note that  depends on z  and z ,t at T, as well as on z  within the integration. 

 In order to write  in (4.182) explicitly in terms of a design variation, the adjoint 

variable technique employed in Sections 4.1.2 and 4.1.3 can be used. In the case of a 

dynamic system, all terms in (4.172) can be multiplied by 
T
(t) and integrated over the 

interval [0,T], to obtain the following identity in :

, ,
0

[ ( ) ( ) ( ) ( , )] 0.
T

T
tt t t dtM b z C b z K b z F b  (4.183) 

Since this equation must hold for arbitrary , which is now taken to be independent of the 

design, substitute b  into (4.183) and differentiate it with respect to  in order to obtain 

the following relationship: 

, ,
0

[ ( ) ( ) ( ) ] 0,
T

T T T
tt t

R
dtM b z C b z K b z b

b
 (4.184) 

where

, ,( , ) ( ) ( ) ( ) ,T T T T
tt tR tF b M b z C b z K b z  (4.185) 

with the superposed tilde (~) denoting variables that are held constant during the 

differentiation with respect to the design in (4.184). 

 Since (4.184) contains the time derivatives of z , integrate the first two integrands by 

parts in order to move the time derivatives to , as 

, ,

, ,
0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

[ ( ) ( ) ( )] 0.

T T T
t t

T
T T T
tt t

T T T T T

R
dt

M b z M b z C b z

M b C b K b z b
b

 (4.186) 

 The adjoint variable method expresses the unknown terms in (4.182) in terms of the 

adjoint variable. Since (4.186) must hold for arbitrary functions (t),  may be chosen so 

that the coefficients of terms involving z (T),
, ( ),t Tz  and z  in (4.182) and (4.186) are 

equal. If such a function (t) can be found, then the unwanted terms in (4.182) involving 

z (T), , ( ),t Tz  and z  can be replaced by terms that explicitly depend on b in (4.186). To 

be more specific, choose a (t) that satisfies the following: 

,

, ,

1
( ) ( ) ( ) ( ( ), )

T

t

t t

g
T T G TM b z z b

z z
 (4.187) 

, ,

,

1
( ) ( ) ( ) ( ) ( ) ( ( ), )

T T
T

t t

t

g g
T T T G TM b C b z z b

z z z
 (4.188) 
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, ,( ) ( ) ( ) , 0 .
T

T
tt t

G
t TM b C b K b

z
 (4.189) 

 Note that once the dynamic equation of (4.172) and (4.173) is solved and (4.175) is 

used to determine T, then z(T), z,t(T), / z, / z,t, and ,t may be evaluated. Equation 

(4.187) can then be solved for (T) since the mass matrix M(b) is nonsingular. Having 

determined (T), all terms on the right of (4.188) can be evaluated, and the equation can 

be solved for ,t(T). Thus, a set of terminal conditions on  has been determined. Since 

M(b) is nonsingular, (4.189) may then be integrated from T to 0, yielding the unique 

solution (t). Taken as a whole, (4.187) through (4.189) may be thought of as a terminal-

value problem.

 Since the terms involving a variation in the state variable in (4.182) and (4.186) are 

identical, substitute (4.186) into (4.182) to obtain 

0

,

,

1
( ) ( ( ), )

.

T

t

t

g G R
dt

g
T G T

b b
b b b

z z b b
z b

b
b

 (4.190) 

Every term in this equation can now be calculated. The terms g/ b, G/ b, and / b

represent explicit partial derivatives with respect to the design. The term R/ b, however, 

must be evaluated from (4.185), thus requiring (t). Note also that since design variation 

b does not depend on time, it is taken outside the integral in (4.190). 

 Since (4.190) must hold for all b, the design derivative vector of  is 

, ,
0

,

,

( ( ), ) ( , ) ( ( ), ( ), ( ), ( ), )

1
( ) ( ( ), ) .

T

t tt

t

t

d g G R
T t t t t dt

d

g
T G T

z b z b z z z b
b b b b

z z b
z b

 (4.191) 

 The computational algorithm that leads to the determination of d /db requires that 

the initial-value problem in (4.172) and (4.173) be integrated forward in time from 0 to T.

Then, the adjoint terminal-value problem presented by (4.187), (4.188), and (4.189) must 

be integrated backward in time from T to 0. Both sets of calculations can be done with a 

well-known numerical integration algorithm [49]. Once these initial- and terminal-value 

problems have been solved, the design derivative of  in (4.191) can then be evaluated 

using a numerical integration formula [49]. Although substantial numerical computation 

is required, it is clear that the design derivatives of the dynamic response can be 

computed. 

4.3.2 Design Sensitivity Analysis of Undamped Structures 

Consider the special case in which structural damping can be neglected, and the initial 

conditions are homogeneous. In such a case, the initial-value problem is reduced to 

,

,

( ) ( ) ( , )

(0)

(0)

tt

t

tM b z K b z F b

z

z

0

0.

 (4.192) 
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While the theoretical considerations are identical to those in Section 4.3.1, an essential 

computational advantage exists in this formulation. 

 Consider the generalized eigenvalue problem associated with the initial-value 

problem in (4.192), written as 

( ) ( ) , 1, , .i i
i i q mK b M b  (4.193) 

In general, a q number of calculated eigenvectors is substantially less than an m number 

of independent degrees-of-freedom in this equation. Furthermore, it is presumed that 

eigenvectors
i
 are normalized by the condition 

( ) , , 1, , .jT i
ij i j qM b  (4.194) 

 Using these eigenvectors, it is possible to approximate the solution z(t) to (4.192) by 

using the eigenvector expansion method, as 

1

( ) ( ) ( ),
q

i
i

i

t c t tz c  (4.195) 

where  = [
1
, …, 

q
] and c = [c1, …, cq]

T
. Note that if q = m, then the solution z(t) can 

be precisely represented by (4.195). In contrast, it is conventional practice in structural 

dynamics to select q (< m) eigenvectors to efficiently approximate the solution. For a 

discussion of how to determine the number of eigenvectors to retain in a given problem, 

the reader is referred to Bathe [46]. 

 Substituting (4.195) into differential equation (4.192), and premultiplying by 
T
, the 

following system of differential equations for c(t) is obtained: 

,
ˆ( ) ( ) ( , ) ( , ),T T T

tt t tM b c K b c F b F b  (4.196) 

where, since the eigenvectors are independent, the initial conditions in (4.192) become 

,

(0) 0

(0) 0.t

c

c
 (4.197) 

Using the normalizing condition in (4.194), and the eigenvalue relation in (4.193), 

(4.196) can be reduced to 

,
ˆ ( , ),tt tc c F b  (4.198) 

where

1diag[ , , ].q  (4.199) 

Since  is a diagonal matrix, (4.198) is uncoupled, and may be written in scalar form 

with the initial conditions provided by (4.197). This uncoupled system is given by 

,

,

ˆ ( , )

(0) 0 1, , .

(0) 0

i tt i i i

i

i t

c c F t

c i q

c

b

 (4.200) 

An explicit solution to each of these uncoupled initial-value problems may be written as 

1 ˆ( ) sin[ ( )] ( , ) , 1, , .
T

i i i
t

i

c t t F d i qb  (4.201) 
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This solution can be verified by differentiation and substitution into (4.200). Thus, in the 

case of an undamped structure with homogeneous initial conditions, an explicit solution 

to the dynamic problem may be obtained by evaluating ci(t) from (4.201) and substituting 

their values into (4.195). 

 The homogeneous initial conditions in (4.192) are not restrictive, since 

nonhomogeneous initial conditions z(0) = z
0
 and 0

, ,(0)t tz z  can be treated by defining the 

particular solution 0 0

, .p ttz z z  If this particular solution is substituted into the initial-

value problem in (4.172), then the same equation as (4.192) will be obtained, with the 

one additional term K(b)zp appearing on the right side of the differential equation. 

 For design sensitivity analysis, consider a special form of the performance measure in 

(4.174), with g = 0 and an explicitly given terminal time T. In this special case, the right 

sides of (4.187) and (4.188) vanish, and the adjoint terminal-value problem becomes 

,

,

( ) ( ) ( , ( ), ),

( ) 0,

( ) 0.

T

tt

t

G
t t

T

T

M b K b z b
z

 (4.202) 

Such assumptions are not restrictive, since in general nonhomogeneous terminal 

conditions (T) =
0
 and 0

, ,( )t tT  can be obtained from (4.187) and (4.188). In 

addition, the variables can be changed using the particular solution 0 0

,( )p tt T  in 

order to obtain homogeneous terminal conditions in (4.202), with an additional term –

K(b) p on the right side of the differential equation. This special case avoids the algebra 

associated with this transformation. 

 Note that the left side of differential equation (4.202) is identical to the left side of 

differential equation (4.192). Thus, the eigenvector expansion technique may be 

employed, which uses precisely the same set of eigenvectors determined from (4.193) 

and (4.194). The adjoint variable is then approximated as 

1

( ) ( ) ( ),
q

i
i

i

t e t te  (4.203) 

where e = [e1, …, eq]
T
. Substituting this formula into (4.202), and premultiplying by 

T
,

the uncoupled terminal-valued problems are obtained as 

,

,

( , ( ), )

( ) 0 1, , .

( ) 0

i
i tt i i

i

i t

G
e e t t

e T i q

e T

z b
z

 (4.204) 

By following the same procedure in (4.201), these equations may be solved in closed 

form to obtain 

1
( ) sin[ ( )] ( , ( ), ) , 1, , .

T
i

i i
t

i

G
e t t d i qz b

z
 (4.205) 

The adjoint variable (t) may now be constructed from (4.203), and the design derivatives 

may be evaluated from (4.191). These results are of substantial practical importance, 

since structural damping may be neglected in many elastic structures, yielding a 

computationally efficient design sensitivity algorithm. Since structural damping effects 

are often approximated, such that the damping matrix C(b) is proportional to either the 
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stiffness or the mass matrix [4] and [42], results are further generalized. Using such an 

approximation method, the foregoing sensitivity computation can be extended to treat 

structures with this special form of damping. 

4.3.3 Modal Reduction Method Using Ritz Vectors 

Even if the adjoint variable method developed in the previous two sections has 

computational advantages for a design problem with a large number of design variables, 

it suffers from several drawbacks when used for a dynamic problem. First, during the 

forward integration of dynamic equations, information has to be saved that can be later 

retrieved at an appropriate time step during the backward integration of adjoint equations, 

which may use different time steps for integration. Another drawback of this method is 

the difficulty of positive error control during the numerical integration of state and 

adjoint equations. Since backward integration can be started after forward integration is 

completed, it is hard to estimate how an error in forward integration will influence the 

solution during the backward integration process. Thus, from a computational point of 

view, the direct differentiation method, which will be developed in this section, is much 

more appropriate for a dynamic problem. 

 The accuracy and efficiency of dynamic analysis and design sensitivity analysis can 

be significantly improved by introducing the Ritz vector into the approximation of 

(4.195) and (4.203). In addition, the computational difficulties associated with the 

terminal-value problem of the adjoint equation can be lessened by using the direct 

differentiation method, since the same solution procedure used for a dynamic analysis 

can be used for design sensitivity purposes. 

 The eigenvector expansion method used in Section 4.3.2 is extended here, although in 

this example, structural damping exists. It is assumed that the terminal condition in 

(4.175) is prescribed, that is, terminal time T is fixed in advance. Solution z(t) of the 

Lagrange equation of motion from (4.172) is approximated using a q number of 

eigenvectors and an r number of Ritz vectors, as 

1

( ) ,
m

i
i

i

t cz c  (4.206) 

where  = [
k
] = [y

1
, , y

q
,

1
, ,

r
] is the basis matrix consisting of eigenvectors y

i

and Ritz vectors 
j
. y

i
 and 

j
 satisfy the orthonormal condition in (4.120). Substituting 

(4.206) into (4.172), and premultiplying by 
T
, we obtain the following coupled 

differential equation: 

, ,( ) ( ) ( ) ( ),T T T
tt tt t t tc C c K c F  (4.207) 

with initial conditions 

, ,

(0) (0)

(0) (0).

T

T
t t

c Mz

c Mz
 (4.208) 

Note that (4.207) is an ordinary differential equation. For the solution procedure to 

(4.207), the reader is referred to the literature [67]. Once solution c(t) to (4.207) is 

obtained, transient response z(t) can be approximated from (4.206). 

 Unlike the adjoint variable method, the direct differentiation method differentiates the 

dynamic (4.172) with respect to design b, as 

, ,( ) ( ) ( ) ( ),tt t f tM b z C b z K b z F  (4.209) 
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where

, ,

( )
( ) ( ( ) ) ( ( ) ) ( ( ) )f tt t

t
t

F
F b M b z b C b z b K b z b

b b b b
 (4.210) 

is the term explicitly dependent on the design. Equation (4.209) is the initial-value 

problem for z (t), whose initial condition is given as 

,

(0)

(0) .t

z 0

z 0
 (4.211) 

Since sizing design variables are considered, the boundary condition is independent of 

the design. 

 To ensure efficient computation of z (t), the same superposition method used in 

(4.206) can be employed, that is, let z (t) be approximated by 

1

( ) ( ) ( ), ,
k

i
i

i

t v t t k nz v  (4.212) 

where k is the number of basis vectors used for the sensitivity analysis. Note that m basis 

vectors are used for the response analysis. 

 Substituting (4.212) into (4.209), and premultiplying the resulting matrix equation by 
T
, the following is obtained: 

, ,( ) ( ) ( ) ( ),T T T
tt t ft t t tv C v K v F  (4.213) 

with initial conditions 

,

(0)

(0) .t

v 0

v 0
 (4.214) 

Note that dimension k in sensitivity (4.213) is not necessarily the same as dimension m in 

response (4.207). The coupled (4.213) can be solved using the direct integration method 

to obtain v(t). Once v(t) is obtained, approximated design sensitivity z (t) can be obtained 

from (4.212). In addition, the design sensitivity of performance measures can be obtained 

using the chain rule of differentiation. 

 In the case of proportional damping, v(t) can be obtained from the uncoupled equation 

as

2
, ,2 ( )

Ti
i tt i i i t i i fv v v tF  (4.215) 

instead of the coupled (4.213). For Rayleigh damping, the term 2 i i in (4.215) is 

replaced by + i
2
, where and  are damping coefficients which define the damping 

matrix C = M + K.

4.3.4 Functionals in a Structural Dynamic Design 

The general form of the cost or constraint functional in (4.174) can be used to 

approximate most quantities that measure structural response. Consider a response and 

design constraint that must hold for all times, that is, 

( ( ), ) 0, 0 .t t Tz b  (4.216) 

Such constraints may be approximated in several ways. For example, 
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1
0

[ ( , ) ( , ) ] 0.
T

dtz b z b  (4.217) 

Equivalence between (4.216) and (4.217) for continuous functions is easily demonstrated. 

Use of the functional in (4.217) enables the constraint error in (4.216) to be reduced to 

near zero [63]. However, as the error approaches zero, the domain over which the 

integrand in (4.217) is defined is reduced to zero length, and a singular functional occurs. 

Such behavior limits the precision with which convergence can be obtained in structural 

optimization calculations. 

 An alternative treatment of the constraint in (4.216) is to define time t1 when the left 

side of (4.216) reaches maximum value. It must satisfy the following condition: 

1 , 1 1 , 1( ( ), ( ), ) ( ( ), ) ( ) 0.t tt t t tz z b z b z
z

 (4.218) 

The constraint of (4.216) may now be replaced by the equivalent constraint 

2 1( ( ), ) 0.tz b  (4.219) 

This function is in the same form as (4.174), with terminal time t1 determined by (4.218). 

Thus, the algorithm from the preceding section can be directly applied. 

 Finally, an averaging multiplier technique may be used in which a characteristic 

function m(t,t1) is defined as symmetric around point t1 < T, and is shown to have a unit 

integral. Function m is defined on a small subdomain of the interval from 0 to T such that 

as the length of the subdomain approaches 0, m approaches the Dirac delta measure. The 

value of (z(t1),b) may thus be approximated as 

3 1
0

( , ) ( ( ), ) 0,
T

m t t t dtz b  (4.220) 

where

1
0

( , ) 1.
T

m t t dt  (4.221) 

While some error is involved in the approximation of (4.220), good numerical results can 

be obtained by using a function m defined on a finite subdomain around time t1, at which 

point the maximum displacement occurs for the nominal design. This formulation has the 

advantage that sensitivity of time t1 with respect to the design need not be considered in 

approximate computations. Thus, only an integral constraint is involved in actual iterative 

calculations. 



5
Continuum Sizing Design 
Sensitivity Analysis 

In contrast to the matrix equation development of design sensitivity presented in Chapter 

4, a distributed-parameter (continuum) approach is presented in this chapter. In the 

continuum method, the member-size parameters (thickness, cross-sectional shape, and 

moment of inertia) are distributed throughout the domain as functions. A design 

sensitivity theory for performance measures with respect to these continuous parameters 

will be developed. The principal distinction between the two approaches lies in the fact 

that the continuum method uses a displacement field that satisfies the boundary-value 

problem to characterize the structural deformation, while the matrix equation method 

relies on nodal displacement for such information. 

 While the finite-dimension and distributed-parameter approaches are related (the 

former is an approximation of the latter), both approaches have advantages and 

disadvantages. From an engineering viewpoint, the principal disadvantage of the 

distributed-parameter approach is that it requires a higher level of mathematical 

sophistication, which is associated with the infinite-dimensional function space of 

displacement and design. However, as will be seen in this and the subsequent two 

chapters, symmetry and positive definiteness of energy forms associated with elastic 

structures yield a complete theory that parallels the matrix theory in Chapter 4. The only 

real penalty associated with the distributed-parameter formulation is that a high level of 

complexity is required for the technical proofs. 

 There are several primary advantages of the distributed-parameter approach to 

structural design sensitivity analysis: 

1. A rigorous mathematical theory is obtained, without the uncertainty that is 

associated  with finite-dimensional approximation error, and 

2. Explicit relations for design sensitivity are obtained in terms of physical 

quantities,  rather than in terms of sums of derivatives of element matrices. 

The former feature is of importance in the development of structural optimization theory, 

which has provided the principal motivation for theory development. The latter feature is 

yet to be fully explored in this chapter. The use of the results of this chapter for numerical 

calculation is discussed in Sections 5.1.4 and 5.2.3. 

 A final note is in order on the variational (virtual work) viewpoint that will be 

adopted in this and subsequent chapters. In Chapter 4, both matrix and variational 

approaches were seen as viable in treating finite-dimensional systems. The matrix 

approach was used for a reduced system of equations, while the variational approach was 

used for a generalized system of equations. However, in the distributed-parameter setting, 

only a variational approach is possible. The use of linear operator theory may be 

considered to parallel matrix theory, but the operator theory required is based on reducing 

each problem to its variational form, see [16], [17], [23], [37], [38], [44], and [53]. In 

fact, as design sensitivity theory develops, the elegance and practicality of the variational 

approach become increasingly apparent. 
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 In Section 5.1, sizing design sensitivity analysis is developed for static problems. 

Various design components are considered in the continuum setting. Eigenvalue design 

sensitivity formulation is presented in Section 5.2, without solving the adjoint system. 

The lack of differentiability in the case of repeated eigenvalues is also discussed. In 

Section 5.3, design sensitivity analysis for transient dynamic response is developed 

without rigorous theoretical discussion. Transient response can be formulated in the 

frequency domain, as in Section 5.4, when harmonic excitation is applied to the structure. 

The idea behind Section 5.4 is further extended to structural-acoustic problems in Section 

5.5. Since design sensitivity theory critically depends on the design choice, design 

parameterization for both line and surface design components is introduced in Section 

12.1 of Chapter 12. The way design parameters are limited and linked is also discussed.  

5.1 Design Sensitivity Analysis of Static Response 

The design sensitivities of such structural performance measures as weight, displacement, 

compliance, and stress are developed with respect to the design variables defined in 

Section 5.1 using the continuum approach. As noted in Section 3.1 of Chapter 3, the 

solution to the static problem depends on the design. The differentiability of the solution 

with respect to the design, which is proved in [5], is employed in this section to derive a 

direct differentiation method and an adjoint variable method for the design sensitivity 

analysis of general functionals. An adjoint problem closely related to the original 

structural problem is obtained, and explicit formulas for structural response design 

sensitivity are likewise obtained. Using the finite element method, numerical methods for 

efficiently calculating design sensitivity coefficients are explained. The applications-

oriented reader will note that virtually no knowledge of Sobolev space theory is required 

to implement this method. 

5.1.1 Differentiability of Energy Bilinear Forms
and Static Response 

Design differentiability results for energy bilinear forms and the solution to the static 

problems are proved in [5]. These differentiability results are cited here to assist in the 

development of useful design sensitivity formulas. The rationale for not providing the 

proofs here is that those technical aspects that prove the existence of design derivatives 

do not provide any additional insight into the applicability of the adjoint variable 

technique. It is important to realize, however, that the sensitive question of the existence 

of design derivatives should not be ignored. Formal calculations with directional 

derivatives that may not exist are sure to lead to erroneous results. The occurrence of 

repeated eigenvalues and their lack of differentiability, discussed in the context of finite-

dimensions in Chapter 4, as well as in Section 5.2, provide a graphic illustration of a very 

real structural problem in which the structural response is indeed not differentiable. Thus, 

the reader is cautioned to verify the regularity properties of solutions before using the 

results of formal calculations. 

 Let us begin with the definition of a variation that will be frequently used in the 

following derivations. As discussed in Section 12.1, u denotes a design vector function. 

Let  be a function that depends on current design u and assume that (u) is continuous 

with respect to design u. If the current design is perturbed in the direction of u

(arbitrary), and  is a parameter that controls the perturbation size, then the variation of 

(u) in the direction of u is defined as 
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0

( ) .
d

d
u u u u

u
 (5.1) 

Throughout this text, the prime symbol “  ” plays precisely the same role as in Chapter 4 

and is, in fact, the first variation in the calculus of variations [69]. For convenience, 

subscribed u will often be ignored. The term “derivative” or “differentiation” will often 

be used to denote the variation in (5.1). If the variation of a function is continuous and 

linear with respect to u, then the function is differentiable (even more precisely, it is 

Fréchet differentiable). For complex structural problems, it is difficult to prove the 

differentiability of a general function with respect to the design. Readers are referred to 

[5]. However, for those readers who are application oriented, only the results of 

differentiability are described in this and subsequent sections. 

 As proved by Theorem 2.4.1 in [5], each of the energy bilinear forms encountered in 

Section 3.1 is differentiable with respect to the design, that is, 

0

( , ) ( , )
d

a a
d

u u uz z z z  (5.2) 

exists, where z  denotes the state variable z, with the dependence on  being suppressed, 

and z  is independent of . ( , )a u z z  is the first variation of the energy bilinear form au in 

the direction of u. This first variation is continuous and linear in u; hence, it is the 

Fréchet derivative (Appendix A.3) of au with respect to the design, and is evaluated in the 

direction of u. For proof of this result, readers are referred to [5]. 

 The load linear form of the problems presented in Section 3.1 is also differentiable 

with respect to the design. More specifically, 

0

( ) ( )
d

d
u u uz z  (5.3) 

exists. As in the case of the energy bilinear form, the variation of the load linear form is 

linear in u. As in Chapter 4, the prime will be employed to denote the variation of the 

energy bilinear and load linear forms in (5.2) and (5.3), with explicit inclusion of 

argument u to emphasize dependence on design variation. 

 A substantially more powerful result, derived from Theorem 2.4.3 in [5], is that the 

solution z to the state equations in Section 3.1, given here in the form 

( , ) ( ),a Z,u uz z z z  (5.4) 

is differentiable with respect to the design in which Z is the space of kinematically 

admissible displacements, that is, the variation 

0

( ; , ) ( ; )
d

d
z z x u u z x u u  (5.5) 

exists, and is the first variation of the solution to (5.4) at design u and in direction u of 

the design change. Note that z  is a function of independent variable x, and that it depends 

on design u and direction u. As shown in Theorem 2.4.3 in [5], z  is linear in u and is 

in fact the Fréchet derivative of state variable z with respect to the design, evaluated in 

the direction of u. Proof of the validity of this result is not easily obtained, although it 

might seem intuitive that the state variable of a system should be smoothly dependent on 

the design. 
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 An important property of the variation of the state variable, as defined in (5.5), is that 

the sequence in which variation and partial differentiation are taken is not important since 

they are interchangeable. In the case that the state variable belongs either to H
1
( ) and 

H
2
( ), or to the space of smoother functions, this statement implies that 

1

2

, ( )

( ( )) ( ), ( ).

H

H

z z z

z z z

 (5.6) 

This property is a direct extension of the well-known calculus of variations property, 

which states that variation and partial differentiation can be interchanged. 

 It is presumed throughout this chapter that boundary conditions are homogeneous and 

independent of the design, that is, they are in the form Gz = 0, where G is a differential 

operator that is independent of the design. Using (5.6), we can easily obtain (Gz)  = Gz  = 

0. Thus, for the solution z(x;u) Z in (5.4), its variation z Z belongs to the same 

function space. This important fact will be frequently referred to in the following 

derivations.

 Note that the energy bilinear form ( , )au z z  is linear in z and contains either a first- or 

a second-order derivative of z, depending on whether the Sobolev space is H
1
( ) or 

H
2
( ). Using these properties, one can use the chain rule of differentiation as well as the 

definition in (5.2) and (5.5), to obtain the following important formula: 

0

( ; ), ( , ) ( , ).
d

a a a
d

u u u uz x u u z z z z z  (5.7) 

The first term on the right side represents the explicit dependence of au on the design, 

whereas the second term represents the implicit dependence through the variation of the 

state variable. 

 For the first application of these forgoing definitions, one could apply the variation on 

both sides of (5.4) and use (5.7) for any fixed virtual displacement Zz  to obtain 

( , ) ( ) ( , ),a a Z.u u uz z z z z z  (5.8) 

Presuming that state variable z is the solution to (5.4), (5.8) is a variational equation with 

the same energy bilinear form for its first variation z . Since (5.8) solves directly for z , it 

is called the direct differentiation method, as contrasted to the adjoint variable method to 

be presented in the next section. Noting that the right side of (5.8) is linear in z , and that 

the energy bilinear form on the left is Z-elliptic, (5.8) has the unique solution z . The fact 

that there is a unique solution to (5.8) agrees with the aforementioned statement that the 

design derivative of the state variable exists. Furthermore, if one selects the design 

change direction u, then (5.8) can be solved using the finite element method in order to 

numerically construct z , just as the basic state equation in (5.4) could be solved using the 

finite element method. However, numerical construction of the solution depends on the 

design change direction u, since u appears on the right side of (5.8). Such calculations 

are unnecessary if one seeks the explicit forms of the design derivatives as a function of 

u.

5.1.2 Adjoint Variable Design Sensitivity Analysis 

Next, consider a structural performance measure that can be written in integral form, as 

( , , ) ,g dz z u  (5.9) 
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where for the present z H
1
( ), z = [zi,j], and function g is continuously differentiable 

with respect to its arguments. Function g can be extended to function z H
2
( ), in which 

case the second derivative of z will appear in the integrand. Such a situation will be 

treated as it appears in specific applications. Functionals in the form of (5.9) represent a 

wide variety of structural performance measures. For example, the volume of a structural 

component can be written with a g that depends explicitly on u; averaged stress over a 

subset on a plane elastic solid can be written in terms of u and z; and displacement at a 

point in a beam or plate can be written formally by using the Dirac delta measure 

multiplied by displacement. These and other examples will be treated in more detail in 

Section 5.1.3. 

 To develop the design sensitivity formula, let us take the variation of the functional in 

(5.9), as 

0

, , ,

( ( ; ), ( ; ), )

( : ) ,

d
g d

d

g g g dz z u

z x u u z x u u u u

z z u

 (5.10) 

where the matrix calculus notation from Appendix A.1 is used, specifically 

,

1 2 3

,

,

,

,
i j

g g g
g

z z z

g
g

z

z

z

and “:” is a contraction operator such that a : b = aijbij. Leibnitz’s rule allows the 

derivative with respect to  to be taken inside the integral, and the chain rule of 

differentiation, along with (5.6) has been used to calculate the integrand of (5.10). From 

the definition of function g, the expressions of g,z, g, z, and g,u are assumed to be 

available. Thus, z  and z  need to be calculated in order to evaluate . Recall that z  and 

z  depend on the design change direction u. The objective here is to obtain an explicit 

expression of  in terms of u, which requires rewriting the first two terms on the right 

of (5.10) explicitly in terms of u.

 Paralleling the method used for finite-dimensional structures in Section 4.1.3 of 

Chapter 4, an adjoint equation is introduced by replacing z  in (5.10) with a virtual 

displacement  and by equating the terms involving  in (5.10) to the energy bilinear 

form ( , )au , thus yielding the adjoint equation for the adjoint variable :

, ,( , ) ( : ) , ,a g g d Zu z z  (5.11) 

where the solution  is desired. A simple application of the Schwartz inequality to the 

right side of (5.11) shows that it is a bounded linear functional of  in the H
1
( ) norm. 

Thus, according to the Lax-Milgram theorem [16], a unique solution to (5.11) exists, 

defined as the adjoint variable associated with the performance measure in (5.9). 

 The objective is to express the first two terms on the right of (5.10) in terms of the 

adjoint variable  that was obtained from (5.11). Since (5.11) satisfies for all Z ,

(5.11) may be evaluated at a specific z , since z Z. After substitution, we obtain 

, ,( , ) ( : ) ,a g g du z zz z z  (5.12) 
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which is nothing other than the terms in (5.10), which it is now desirable to write 

explicitly in terms of u. Similarly, the identity in (5.8) may be evaluated at a 

specific z , since both variables belong to Z, to obtain 

( , ) ( ) ( , ).a au u uz z  (5.13) 

Recalling that au(•,•) is symmetric in its arguments, the left sides of (5.12) and (5.13) are 

equal, thus yielding the following desired relation: 

, ,( : ) ( ) ( , ),g g d az z u uz z z  (5.14) 

where the right side is linear in u and can be evaluated once the state variable z and the 

adjoint variable  are determined to be the solutions to (5.4) and (5.11), respectively. 

Substituting the result of (5.14) into (5.10), the explicit design sensitivity of  is obtained 

as

,( ) ( , ) ,a g du u uz u  (5.15) 

where the first two terms on the right depend on the specific problem under investigation. 

This formula is applicable to any of the examples in Section 3.1. 

 Equation (5.15) will serve as the principal tool throughout the remainder of this 

section as well as in future applications for the design sensitivity analysis of functionals 

that represent structural response under a static load. This formula forms the basis for 

both analytical expressions of functional derivatives and numerical methods for 

calculating design sensitivity coefficients using the finite element method. 

 In design sensitivity analysis, a number of one-to-one correspondences can be found 

between the continuum formulation presented in this section and the discrete formulation 

presented in Section 4.1.3 of Chapter 4, as is illustrated in Table 5.1. In the continuum 

formulation, design is represented by vector function u, whereas the discrete formulation 

Table 5.1. Comparison of continuum and discrete formulations. 

 Continuum Formulation Discrete Formulation 

Response

analysis
( , ) ( )au uz z z

T T

g g g g gz K z z F

Structural 

fictitious load 0

( , ) ( , )
d

a a
d

u u uz z z z ( )T

g g gz K z b
b

External

fictitious load 0

( ) ( )
d

d
u u uz z ( )T

g gz F b
b

Design

sensitivity

equation

( , ) ( ) ( , )a au u uz z z z z ( ) ( )
gT T T

g g g g g g g

d

d

z
z K z F z K z

b b b

*

Adjoint

equation
, ,( , ) ( : )a g g du z z

T

g g g g

g

K
z

Sensitivity of 

performance 
,( ) ( , )a g du u uz u

[ ]T T

g g g g g

d

d
K z F

b b b

*

*
 In these equations, b is taken as a unit vector in the ith design coordinate direction as in 

(4.22) and (4.29). 
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uses discrete design vector b. State variable z and adjoint variable  are continuous 

functions in the domain; zg and g are vectors in the discretized domain. Even if two 

formulations appear similar, fundamental differences still exist on the level of theoretical 

completeness, accuracy, and efficiency in the sensitivity results.  

5.1.3 Analytical Examples of Static Design Sensitivity 

The beam, plate, and plane elasticity problems in Section 3.1 are used here as examples 

with which to derive design sensitivity formulas using the adjoint variable method. 

Computational considerations will be taken into account in subsequent sections. 

Bending of a Beam 

Consider the clamped beam in Fig. 3.2 with the cross-sectional area A(x) and length l. For 

simplicity, let us presume that the cross-sectional dimensions are similar in all directions, 

such that the moment of inertia can be expressed as I(x) = A
2
(x) around the beam’s 

neutral axis, and  is a positive constant. For example, when the solid, circular cross 

section in Table 12.1 of Chapter 12 is considered, A = r
2
 and I = r

4
/4, yielding =

1/(4 ). This simplification is necessary since the cross-sectional area and moment of 

inertia are dependent on each other. Thus, the independent design vector is obtained as u

= [E, A(x)]
T
. In this formulation, the applied load on the beam in (3.9) is taken to reflect 

both the externally applied load F(x) and the self-weight A(x) per unit length, where  is 

the weight density of the beam material. For these load components, the applied load can 

be written as 

( ) ( ) ( ).f x F x A x  (5.16) 

From (3.14) and (3.15), the energy bilinear form and load linear form are defined as 

2

,11 ,11
0

( , )
l

a z z E A z z dxu  (5.17) 

and

0
( ) [ ] .

l

z F A z dxu  (5.18) 

Let the design be perturbed in the direction u = [ E, A]
T
 with parameter . Variations 

of the energy bilinear and load linear forms from (5.2) and (5.3) can be calculated as 

2

,11 ,11
0

0

2

,11 ,11
0

( , ) ( ) ( )

[ 2 ]

l

l

d
a z z E E A A z z dx

d

E A E A A z z dx

u

 (5.19) 

and

0
0

0

( ) [ ( )]

.

l

l

d
z F A A z dx

d

Az dx

u

 (5.20) 

 Several alternative forms may now be considered as structural response functionals. 

First, consider the beam’s weight, given as 
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1
0

.
l

Adx  (5.21) 

A direct calculation of this variation yields 

1
0

.
l

Adx  (5.22) 

Note that the direct variational calculation gives the explicit form of the structural weight 

variation in terms of the design variation. Consequently, no adjoint problem needs to be 

defined for this functional. 

 Now, let us consider a second functional that represents structural compliance, and 

can be defined as 

2
0 0

[ ] .
l l

fz dx F A z dx  (5.23) 

Using the definition from (5.10), we can then take the variation of 2 as 

2
0
[( ) ] .

l

F A z z A dx  (5.24) 

Note that the first term in the integrand implicitly depends on the design, while the 

second term is explicit. The adjoint equation may be defined from (5.11) with an 

implicitly dependent term, which in this case is 

0
( , ) ( ) , .

l

a F A dx Zu  (5.25) 

Note that by interpreting and z  as arbitrary, the load functional on the right side of 

(5.25) is in precisely the same form as the load functional for the original beam problem 

in (5.18). Since the original bilinear form au(•,•) is Z-elliptic, (5.25) and the basic beam 

(3.16) have identical solutions. In this special case of a compliance functional,  is the 

displacement of an adjoint beam that is not only identical to the original beam, but is in 

fact subjected to an identical load, such that = z. Thus, this problem is self-adjoint; there 

is no need to solve an additional adjoint problem. The explicit design sensitivity result of 

(5.15), using (5.19) and (5.20) with z = , thus becomes 

2 2 2

2 ,11 ,11
0 0
[2 2 ( ) ] ( ) .

l l

z E A z Adx E A z dx  (5.26) 

The effect of variations can therefore be accounted for in the cross-sectional area and in 

Young’s modulus of the system. It is interesting to note that the variation in Young’s 

modulus may be taken outside the integral in (5.26). 

 As an example that can be calculated analytically, consider a uniform clamped-

clamped beam with l = 1 m, A = A0 = 0.005 m
2
, E = E0 = 2 × 10

5
 MPa, = 1/6, F = 49.61 

kN/m, and = 77,126 N/m
3
. Displacement under the given load is z(x) = 2.5 × 10

–3
[x

2
(l – 

x)
2
]. Compliance sensitivity in (5.26) may thus be evaluated as 

1
2 2 2 2 1125000

2 30
[385.6 (1 ) (6 6 1) ] 2.08 10 .x x x x Adx E

A graph of the coefficient of A in the integral (Fig. 5.1) illustrates how the addition or 

deletion of material affects compliance. To decrease compliance most effectively, 

material should be removed in the vicinity of points x = 0.2 and 0.8 where sensitivity is 

small, and added instead to each end of the beam where sensitivity is large negative. 



 5.1 Design Sensitivity Analysis of Static Response  179 

-9000

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

0.0 0.2 0.4 0.6 0.8 1.0x

Figure 5.1. Compliance sensitivity 
2
 = 2 z – 2E A(z,11)

2
.

 The generalized result in (5.26) is applicable to arbitrary variation A(x) of the cross-

sectional area along the beam. If, however, a parameterized distribution of material is 

considered along the beam, such as the stepped beam shown in Fig. 4.1, then the cross-

sectional area function may be written in the same form as in Section 4.1.6, namely as 

( ) , ( 1) / / ,iA x b i n x i n  (5.27) 

where the beam, with l = 1, is subdivided into n sections, each with a constant cross-

sectional area. The variation of the design function may thus be written directly as the 

variation of the design variable bi, as 

( ) , ( 1) / / .iA x b i n x i n  (5.28) 

This result may now be substituted directly into (5.26) to obtain the explicit design 

sensitivities that are associated with individual design variables, as 

/ /
2 2 2

2 ,11 ,11
( 1) / ( 1) /

1 1

[2 2 ( ) ] ( ) .
n ni n i n

i i i
i n i n

i i

z E b z dx b b z dx E  (5.29) 

The design sensitivity coefficients are then evaluated by numerically calculating those 

integrals that depend exclusively on the solution to the state equation. 

 Note that the sensitivity result in (5.29) is the same as the result in (4.61), obtained 

from the finite-dimension design sensitivity method. That is, the sensitivity result in 

(4.61) is an approximation of the sensitivity result in (5.26). 

 Another important functional in the beam design is associated with the strength 

constraint, usually stated in terms of the allowable stress. Since there may be no 

continuous second-order derivatives of displacement with an arbitrary load distribution, a 

pointwise stress constraint may not be meaningful. Therefore, constraints on average 

stress over small subintervals of the beam are often imposed. Borrowing from elementary 

beam theory [70], the formula for bending stress is given as 
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,11

( )
( ) ( ).

2

h x
x Ez x  (5.30) 

Since the maximum stress appears either at the top or bottom surface of the beam, the 

half-depth h/2 is used. However, h clearly depends on cross-sectional area A. Thus, for 

convenience, presume h/2 = A
1/2

, with a constant value for . For example, if a circular 

cross section is considered with diameter h, then =
1/2

. However, such an assumption 

is restrictive, since for different cross sections, a different relation between cross-

sectional area A and half-depth h/2 must be used. The averaged stress value over a small, 

open subinterval (xa, xb)  (0, l) becomes 

1/ 2

3 ,11
0

( ) ( ) ( ) ,
l

pA x Ez x m x dx  (5.31) 

where mp is a characteristic function that is independent of the design, and is only 

nonzero on the small subinterval (xa, xb), defined as 

1
( , )

0 ( , ).

b

a

a bx

p x

a b

x x x
dxm

x x x

 Note that if stress is smooth and if the interval (xa, xb) approaches zero length, then mp

becomes the Dirac delta measure, and 3 is the stress value evaluated at a given point. 

Note also that in the stress constraint formulation, the integrand includes a second-order 

derivative of the state variable that was not covered in the general derivation method 

proposed in Section 5.1.2. To illustrate the ease with which the adjoint method can be 

extended to second-order derivatives, it is first necessary to repeat the calculations that 

lead to (5.10), as 

1/ 2 1/ 2 1/ 21
3 ,11 ,11 ,1120

[ ] ( ) .
l

pA Ez A z E A Ez A m x dx  (5.32) 

Using the same argument that led to a definition of the adjoint equation in (5.11), replace 

the state variation term z  on the right of (5.32) by virtual displacement  to obtain the 

following adjoint problem: 

1/ 2

,11
0

( , ) , .
l

pa A E m dx Zu  (5.33) 

In Sobolev space H
2
(0,l), the functional on the right side of (5.33) is a bounded linear 

functional. According to the Lax-Milgram theorem [16], (5.33) has a unique solution, 

denoted here as 
(3)

 where superscript (3) represents the association of  with functional 

3. A direct repetition of the argument associated with (5.12) through (5.15) yields 

1/ 2 (3) (3)1
3 ,11 ,11 ,1120

1/ 2 2 (3)

,11 ,11 ,11
0

[ 2 ]

[ ] .

l

p

l

A Ez m E Az Adx

E A z A z dx

 (5.34) 

To physically explain the adjoint problem, it may be helpful to rewrite the adjoint 

equation (5.33) more explicitly, using (5.17) for au(•,•), as 

2 3/ 2

,11 ,11
0

[ / ] 0, .
l

pE A A m dx Z

This is exactly the same as the equation of virtual work for deflection  of an adjoint 
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beam with an initial curvature [ / A
3/2

]mp and with no externally applied load. Such an 

interpretation of the adjoint equation (5.33) as an adjoint structure may be helpful in 

understanding the significance of  from a physical point of view. As will be seen in 

Section 5.1.4, the solution to (5.33) can be efficiently carried out using the finite element 

method, but without using the idea of an adjoint structure. The concept of an adjoint 

structure has been introduced by Dems and Mroz [71] for a variety of structural 

optimization problems. 

 Note that (5.34) provides a linear first variation of the locally averaged stress 

functional as a variation of the cross-sectional distribution function A and of Young’s 

modulus E. A parameterization of the cross-sectional area variation A(x), such as the one 

shown in Fig. 4.1, could now be introduced in the sensitivity formula in (5.34), which 

would then be reduced exclusively to parameter variations. 

 Next, consider a special functional that defines the displacement value at an isolated 

point x̂ , that is, 

4
0

ˆ ˆ( ) ( ) ( ) ,
l

z x x x z x dx  (5.35) 

where (x) is the Dirac delta measure at zero. According to the Sobolev imbedding 

theorem [22], it is apparent that this functional is continuous, and that the preceding 

analysis may be directly applied to interpret (x) as a function. The variation of this 

functional is thus written as 

4
0

ˆ( ) ( ) .
l

x x z x dx  (5.36) 

In this case, the adjoint equation can be obtained from (5.11) as 

0
ˆ( , ) ( ) , .

l

a x x dx Zu  (5.37) 

Since the right side of this equation defines a bounded linear functional in H
2
(0,l), a 

unique solution exists for the equation, denoted here as 
(4)

. Interpreting the Dirac delta 

measure as a unit load applied at point x̂ , a physical interpretation of 
(4)

 can be 

immediately obtained as the beam displacement due to a positive unit load at x̂ . Thus, in 

this case the adjoint beam is the same original beam with a different load. 

 The direct evaluation of the design sensitivity of 4, using (5.15), (5.19), and (5.20), 

yields

(4) (4) 2 (4)

4 ,11 ,11 ,11 ,11
0 0
[ 2 ] [ ] .

l l

E Az Adx E A z dx  (5.38) 

 To illustrate how this result could be employed, consider the clamped-clamped beam 

examined earlier in this section. The solution to the state equation is z = 2.5 × 10
–3

[x
2
(1 – 

x)
2
]. If the design sensitivity of displacement at the center of the beam is desired, then x̂

= ½. Thus, the adjoint load in (5.37) is nothing but a unit point load at the center of the 

beam. The adjoint variable is thus obtained by solving the beam equation with this load, 

to obtain 

(4) 8 3 3 21
2

2.5 10 [8 4 3 ],x x x

where

1
21

2 1 1
2 2

0 for 0

for 1.

x
x

x x
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Figure 5.2. Displacement sensitivity 
4
 = 

 (4)
 – 2E Az,11

 (4)
,11.

These expressions may be substituted into (5.38) to obtain the displacement sensitivity as 

1
3 3 3 21

4 20

1 2 1
2

16

[1.93 10 (8 4 3 )

2.5 10 (6 6 1)(8 4 1)]

7.81 10 .

x x x

x x x x Adx

E

 To determine how the material that is added to or deleted from the beam influences 

displacement at the center, the coefficient of A can be graphed (Fig. 5.2). In order to 

decrease z(½) most effectively, material should be removed near x = 0.22 and 0.78 where 

the sensitivity is small, and added near x = 0 and 1 where the sensitivity is large negative. 

 As a final example of the beam problem, consider the slope of the beam at an isolated 

point x̂  defined by the functional 

5 ,1 ,1
0

,1
0

ˆ ˆ( ) ( ) ( )

ˆ( ) ( ) .

l

l

z x x x z x dx

x x z x dx

 (5.39) 

According to the Sobolev imbedding theorem [22], since 5 is a continuous linear 

functional in H
2
(0,l), the preceding analysis may be applied. The last equality in (5.39) 

represents an integration by parts that defines the derivative of the Dirac delta measure. 

In beam theory, it is well known that the derivative of the Dirac delta measure is a point 

moment applied at point x̂ . The preceding analysis may now be directly repeated, 

replacing  with – ,1 to define the following adjoint equation: 

,1
0

ˆ( , ) ( ) , ,
l

a x x dx Zu  (5.40) 

where the unique solution is denoted as 
(5)

. Physically, 
(5)

 is the displacement in an 

adjoint beam that is the original beam with a negative unit moment applied at point x̂ . As 

with the preceding process, the next step is evaluating (5.15), as 
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(5) (5) 2 (5)

5 ,11 ,11 ,11 ,11
0 0
[ 2 ] [ ] .

l l

E Az Adx E A z dx  (5.41) 

It is interesting to note that for other boundary conditions in (3.19) through (3.21), the 

sensitivity formulas for 1 through 5 are still valid because, as mentioned in Section 

3.1.2, the variational (5.4) is valid for all other boundary conditions. 

 To illustrate the use of (5.41), consider the same clamped-clamped beam previously 

discussed. If the design sensitivity of the slope at the beam center is desired, then the 

adjoint load in (5.40) is nothing but a negative unit moment at the beam center. Thus, the 

adjoint variable is obtained as 

(5) 7 2 3 21
2

1.5 10 [ 4 2 ].x x x

Equation (5.41) may now be evaluated to obtain 

1
2 2 3 21

5 20

2 01
2

[1.16 10 ( 4 2 )

0.5(6 6 1)( 4 6 1)] ,

x x x

x x x x Adx

where <x – ½>
0
 = 0 if x < ½, and <x – ½>

0
 = 1 if x > ½.

 One interesting aspect of the sensitivity result is that the slope at the beam center, 

which has a present uniform design A = 0.005 m
2
, is independent of variation E. To see 

how material added to or deleted from the beam influences the slope at the center, the 

coefficient of A may be graphed (Fig. 5.3). Figure 5.3 indicates that if material is added 

or removed symmetrically with respect to x̂  = ½, then the slope remains at zero, which is 

obvious. Adding more material to the left of x̂  = ½ increases the slope (note downward 

direction is the positive z direction as shown in Fig. 3.2), while adding more material to 

the right decreases it. 
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Figure 5.3. Slope sensitivity 
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Bending of a Plate 

Consider the clamped plate in R
2
 with variable thickness h(x) and variable Young’s 

modulus E, as was shown in Fig. 3.4. This plate has a distributed load, which consists of 

externally applied pressure F(x) and self-weight, given by 

( ) ( ) ( ),f F hx x x  (5.42) 

where  is the weight density of the plate. For this design-dependent load, the energy 

bilinear and the load linear forms, given in (3.41) and (3.42) respectively, are 

( , ) ( ) ( ) ( )T

Sa z z D z z du u C  (5.43) 

and

( ) [ ] ,z F h z du  (5.44) 

where u = [E, h(x)]
T
, and where 

,11 3

,22 2

1
,12 2

1 0

( ) , ( ) , 1 0 .
12(1 )

2 0 0 (1 )

S

z
Eh

z z D

z

u C  (5.45) 

Thus, design dependence is determined through the flexural rigidity D(u). Note that the 

bending stiffness matrix C
b
 in (3.40) is represented by C

b
= D(u)CS to separate design-

dependent D(u) from the stiffness matrix. 

 First, consider the functional defining weight of the plate, as 

1 .hd  (5.46) 

Taking a direct variation of this weight yields 

1 .hd  (5.47) 

Since no variation of the state variable appears in this expression, no adjoint problem 

needs to be defined, and the explicit design derivative of the weight is obtained. 

 Next, consider the compliance functional of the plate, as 

2 [ ] .F h z d  (5.48) 

If the first variation is taken, then the equation yields 

2 [( ) ] .F h z z h d  (5.49) 

Note that the first term in the integrand implicitly depends on the design, while the 

second term is explicit. Following the procedure in (5.11), one can then define the adjoint 

equation as 

( , ) ( ) , .a F h d Zu  (5.50) 

Note that (5.50) is identical to plate equation (3.43) for displacement. Therefore, the 

adjoint plate and load are identical to the original problem = z, and (5.50) does not need 

to be solved separately. 
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Figure 5.4. Piecewise uniform plate. 

 As a step in preparing for the evaluation of design sensitivity, the definitions in (5.2) 

and (5.3) for the plate problem are used to obtain the variations of the energy bilinear 

form and the load linear form, as 

2

2

3

2

( , ) ( ) ( )
4(1 )

( ) ( )
12(1 )

T

S

T

S

Eh h
a z z z z d

h
E z z d

u C

C

 (5.51) 

and

( ) .z z h du  (5.52) 

Direct application of (5.15) to compute the sensitivity of 2 with = z yields 

2

2 2

3

2

2 ( ) ( )
4(1 )

( ) ( ) .
12(1 )

T

S

T

S

Eh
z z z hd

h
z z d E

C

C

 (5.53) 

As in the case of beam compliance, it should be observed that this sensitivity result 

consists of both a first term, which accounts for the effect of variation h(x) on the plate 

shape function h(x), and a second term, which is a scalar multiplied by the variation E.

 Consider an application of (5.53) to a plate of piecewise constant thickness (Fig. 5.4), 

where bi is the constant thickness of the ith rectangular element. The thickness function is 

thus parameterized as 

( ) , ,i ih bx x  (5.54) 

where i is the ith rectangular element in Fig. 5.4. The thickness variation h is thus 

written as h(x) = bi, (x i). Consequently, (5.53) becomes 
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2

2 2
1

3

2
1

2 ( ) ( )
4(1 )

( ) ( ) .
12(1 )

n
Ti

S i

i

n
Ti

S

i

Eb
z z z d b

b
z z d E

C

C

 (5.55) 

 Now, consider a plate response functional defined as the displacement at a point x̂ ,

3
ˆ ˆ( ) ( ) ( ) ,z z dx x x x  (5.56) 

where (x) is the Dirac delta measure in the plane, acting at the origin. According to the 

Sobolev imbedding theorem [22], we see that this functional is continuous, and the 

foregoing analysis applies. By taking the first variation of (5.56), the following result is 

produced:

3
ˆ( ) ( ) .z dx x x  (5.57) 

Following the general adjoint formulation from (5.11), the adjoint equation is defined as 

ˆ( , ) ( ) , .a d Zu x x  (5.58) 

This equation has a unique solution, denoted as 
(3)

. Since the load functional on the right 

side of (5.58) is physically interpreted as a unit point load that acts at point x̂ , the 

solution
(3)

 to the adjoint plate problem is simply the original plate displacement due to 

this load. 

 Since 
(3)

 has been determined, the general result of (5.15) may now be applied, using 

the variations in bilinear and linear forms defined in (5.51) and (5.52), to obtain 

2
(3) (3)

3 2

3
(3)

2

( ) ( )
4(1 )

( ) ( ) .
12(1 )

T

S

T

S

Eh
z h d

h
z d E

C

C

 (5.59) 

 The stress performance measure is frequently used as a design optimization criterion. 

The maximum stress for a plate occurs on the plate surface and is given in the following 

form [23]: 

11 ,11 ,222

22 ,22 ,112

12 ,12

( )
2(1 )

( )
2(1 )

.
2(1 )

Eh
z z

Eh
z z

Eh
z

 (5.60) 

The von Mises stress [23] is written as 

2 2 2 1/ 2

11 22 11 22 12

1
( ) [( ) 3( ) 12( ) ] .

2
g  (5.61) 

For simplicity, assume that stress 11 in (5.60) is taken as a strength constraint instead of 

the von Mises stress. Once the design sensitivity expression has been obtained in this 

simplified form, the idea can be extended to the von Mises stress without any theoretical 
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difficulty. As with the beam problem, it is necessary to define a characteristic function 

mp(x) as an averaging multiplier, which is nonzero only on the open, small region p of 

, and which has an integral of one. Then, the average value of 11 over this small region 

is

4 11

,11 ,222

1
( ) .

2(1 )

p

p

m d

Eh z z m d
 (5.62) 

 As in the case of a beam stress functional, take the variation of functional 4 to obtain 

4 ,11 ,22 ,11 ,22 ,11 ,222

1
[ ( ) ( ) ( ) ] .

2(1 )
pEh z z h z z E E z z h m d  (5.63) 

Replace the state variation term z  on the right side of (5.63) by virtual displacement to 

obtain the following adjoint equation: 

,11 ,222

1
( , ) ( ) , .

2(1 )
pa Eh m d Zu  (5.64) 

It can be shown that the right side of (5.64) is a bounded linear functional. Hence, 

according to the Lax-Milgram theorem [16], (5.64) has the unique solution 
(4)

. By using 

the same procedure that was outlined in (5.12) through (5.15), the following formula can 

be derived: 

(4)

2 ,11 ,222

2
(4)

2

,11 ,222

3
(4)

2

( )
2(1 )

( ) ( )]
4(1 )

( )
2(1 )

( ) ( ) .
12(1 )

p

T

S
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T

S
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z z m

Eh
z h d

h
z z m

h
z d E

C

C

 (5.65) 

Plane Elasticity 

At this point, let us turn to the plane elastic slab, which was first treated in Section 3.1.4. 

From (3.75) and (3.59), the energy bilinear form and a load linear form without surface 

traction are given as follows: 

( , ) ( ) ( ) ( )Ta h du z z x z C z  (5.66) 

and

( ) ( ) ,Th du z x z f  (5.67) 

where h(x) is the thickness of the plane elastic slab, z = [z1, z2]
T
 is the displacement 

vector, f = [f1, f2]
T
 is the in-plane body force, C is the plane stress stiffness matrix given 

in (3.40), and (z) is the strain vector, defined as 
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1,1

2,2

1,2 2,1

( ) .

z

z

z z

z  (5.68) 

The stress vector can be easily obtained from the linear elastic relation as 

11

22

12

( ) ( ).z C z  (5.69) 

The design variable is taken here only as the variable thickness h(x) of the elastic slab. 

 To develop design sensitivity of the performance measures, begin with the functional 

defining weight of the slab 

1 .hd  (5.70) 

Since this functional does not involve z, its variation can be simply calculated as 

1 hd  (5.71) 

and requires no adjoint solution. 

 Now, let us discuss a locally averaged stress functional, which might involve 

principal stresses, von Mises stress, or some other material failure criteria. By defining a 

characteristic averaging function mp(x) that is nonzero and constant over a small, open 

subset p , is zero outside of p, and has an integral of one, the averaged stress 

functional can be written in the general form as 

2 ( ( )) .pg m dz  (5.72) 

While this expression could be written explicitly in terms of the gradients of z, it will be 

evident in the following discussion that it is more effective to continue with the present 

notation. Since the components of the stress vector given by (5.69) are linear in z, and 

since the order in which variation and partial derivatives are taken can be reversed, as 

was shown in (5.6), the variation of the functional in (5.72) can be written in the 

following form: 

2 , ( ) ( ) .pg m dz z  (5.73) 

As with the general derivation of the adjoint (5.11), the variation z  can be replaced by a 

virtual displacement  on the right side of (5.73). As a result, a load functional can be 

defined for the adjoint equation much as in (5.11) to obtain 

(2)

,( , ) ( ) ( ) , .pa g m d Zu z  (5.74) 

It may be directly shown that the linear form of  on the right side of (5.74) is bounded 

in H
1
( ), so that (5.74) has a unique solution 

(2)
 for a displacement field, with the right 

side of (5.74) defining the load functional. By integrating the right side of (5.74) by parts, 

one can obtain a formula that could be interpreted as a distributed load acting on the 

elastic solid. Such a calculation, however, would cause considerable practical and 

theoretical difficulty, since g, (z) depends on stress, and since the derivatives of stress do 

not generally exist in L
2
( ). Thus, the linear form on the right side of (5.74) is left as defined.
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 To provide a physical interpretation of the adjoint problem, (5.74) may be written in 

the following form, using the symmetry of au(•,•): 

(2)

,[ ( ) ( )] ( ) 0, ,
pT

m
h g d Z

h
z

which is nothing other than the elasticity equation for the displacement 
(2)

 of a slab with 

an initial strain field (g, (z)mp)/h, and no externally applied load. Thus, this is a physical 

interpretation of the adjoint plate problem, which may assist in interpreting the 

significance and properties of adjoint displacement 
(2)

.

 In order to eliminate z  from (5.73), it is necessary to define the variation of the 

energy bilinear form in (5.66) and the load linear form in (5.67) as 

(2)( , ) ( ) ( )Ta hdu z z  (5.75) 

and

(2)( ) ,T h du f  (5.76) 

respectively. By using these two forms along with the symmetric property of the energy 

bilinear form, and by repeating the sequence of calculations in (5.12) through (5.15), 

(5.73) can be rewritten as 

(2) (2)

2 ( ) ( ) .T T hdf z  (5.77) 

This expression yields the desired explicit sensitivity of the stress functional in (5.72) in 

terms of the structural solution z, and in terms of the adjoint solution 
(2)

.

 The analytical examples considered in this section show that for each static problem 

studied in Section 3.1, direct calculation leads to explicit formulas for the design 

sensitivity of the functionals under consideration. In most cases, this calculation requires 

the solution of an adjoint problem that can be interpreted as the original elasticity 

problem, which contains an artificially defined applied load or an initial strain field. This 

interpretation can be valuable in taking advantage of existing finite element structural 

analysis codes, as will be discussed in the next section, as well as for visualizing the 

properties of adjoint displacement. 

5.1.4 Numerical Considerations 

Before proceeding from analytical derivations to numerical examples, it is helpful to 

consider the numerical aspects of computing design sensitivity expressions. Since for 

digital computation functions must be approximated in the finite-dimensional subspaces 

of an associated function space, it is important to define the parameterization that will be 

used in design sensitivity analysis, as explained in Section 12.1. Second, in carrying out 

actual computations, the finite element method of structural analysis is the most 

commonly employed computational tool. Therefore, the relationships between the design 

sensitivity procedure and the finite element method for solving boundary-value problems 

should be established. 

Parameterization of the Design 

The piecewise uniform beam and plate, shown in Figs. 4.1 and 5.4 respectively, represent 

the simplest examples of design parameterization. For a more complicated example, 

consider a beam with appropriate boundary conditions, in which the family of designs 
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being considered is characterized by the finite-dimensional variable vector b = [b1, ,

bm]
T
. As functions of these variables, the moment of inertia and the cross-sectional area 

may be written in the form 

( ; )

( ; ).

I I x

A A x

b

b
 (5.78) 

The energy bilinear form and load linear form for the beam are then expressed as 

,11 ,11
0

0

( , ) ( ; )

( ) [ ( ) ( ; )] .

l

l

a z z EI x z z dx

z F x A x z dx

b

b

b

b

 (5.79) 

The notation used here illustrates the fact that the energy forms are functions of design 

variable b rather than design function u. Using the definition of variation of these forms 

from (5.2) and (5.3), we can obtain their variations with respect to b as 

, ,11 ,11
0

0

,
0

0

( , ) ( , )

( ) ( ) [ ,

l

l

d
a z z a z z EI z z dx

d

d
z z A z dx

d

b b b b

b b b b

b

b

 (5.80) 

where design variation b can be taken outside the integrals since it is constant. 

 Now, consider a general response functional in the form 

,1 ,11
0

( , , , ) .
l

g z z z dxb  (5.81) 

A variation of this functional may be taken to obtain 

,1 ,11, , ,1 , ,11 ,
0 0
[ ] .

l l

z z zg z g z g z dx g dxb b  (5.82) 

 Let us define an adjoint variable as the solution to the following adjoint variational 

equation:

,1 ,11, , ,1 , ,11
0

( , ) [ ] , .
l

z z za g g g dx Zb  (5.83) 

Since the right side of (5.83) is continuous in H
2
(0,l), there is a unique solution for .

Repeating the sequence of calculations carried out in (5.12) through (5.15), the result 

obtained is 

, , , ,11 ,11
0
[ ] .

l

g A EI z dxb b b b  (5.84) 

This expression gives the sensitivity coefficients of  associated with any variations in 

the design. It is interesting to note that once state and adjoint variables have been 

determined, the evaluation of this design sensitivity result only requires numerical 

calculation of the integral. Furthermore, the form of dependence that the beam cross-

sectional area and the moment of inertia have on the design can be selected by the design 

engineer, and only partial derivatives A,b (from the cross-sectional area) and I,b (from the 

moment of inertia) need to be calculated. 

 For example, consider the stepped beam in Fig. 4.1, where each uniform segment of 

the beam makes up an I-beam with the section properties shown in Fig. 5.5. Here, the  
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Figure 5.5. I-section beam element. 

superscript i (i = 1, , n) denotes the numbering of uniform segments of the beam, and 

the subscript denotes the four design variables of each segment, for a total of 4n design 

variables. For the ith segment, the following conditions are given: 

3 2 2 31
3 4 1 4 1 4 1 212

3 4 1 2

( ) [ (8 6 12 ) ]

( ) 2 .

i i i i i i i i i i

i i i i i i

I b b b b b b b b

A b b b b

b

b
 (5.85) 

 The integral in (5.84) may also be written as a sum of integrals across each segment, 

yielding

2
( )

2 2
( ) ( ) ,

4(1 )

i TEh
z hdC  (5.86) 

where 1 2 3 4[ , , , ]i i i i i Tb b b bb . This simple formula, evaluated with the aid of numerical 

integration, produces the design sensitivity of a general functional with respect to all 

section properties associated with the beam. 

 Equations (5.84) and (5.86) illustrate a method for automating design sensitivity 

computations in terms of a design shape function. Equation (5.27) shows the simplest 

possible form of a design shape function, namely, a piecewise constant design shape. A 

piecewise linear or a piecewise polynomial function could be considered as a design 

shape function to describe the material distribution in terms of the design variables as 

described in Section 5.1. Using the general design sensitivity results from Section 5.1.3 

and parameterization of the type introduced in this section, results in the form of (5.86) 

are expected. Given the expression of (5.86), an algorithm can be written to evaluate the 

integrals across a typical segment, yielding a form for total design sensitivity. The same 

process is applicable for different design parameterizations described in Section 5.1. This 

systematic approach to design sensitivity analysis, which uses distributed parameter 

sensitivity results and design shape functions, appears as a very promising avenue of 

inquiry, particularly in the way it can be integrated with the finite element method. If 

design sensitivity is calculated using this approach, then the need for calculating and 

storing the design derivative of the system stiffness matrix (described in Chapter 4) is 

eliminated. 

Coupling Design Sensitivity with Finite Element Structural Analysis 

From a mathematical point of view, the structural finite element method may be viewed 

as an application of the Galerkin method [36] and [37] for a solution to boundary-value 

problems, with the coordinate functions defined as piecewise polynomials within 

segments (elements). For finite element analysis, the structural domain is partitioned into 

subdomains called elements. Coordinate functions, defined as polynomials within 

elements, associated with the nodal values of the state variable, and vanished from 

b3

b2

b1
b4
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elements not adjacent to a given node, are defined based on element shapes, polynomial 

orders, and smoothness characteristics. For thorough expositions of this approach to the 

finite element method, readers are referred to texts by Strang and Fix [36], and Ciarlet 

[37]. For a more engineer-oriented introduction, see the text by Mitchell and Wait [72]. 

 To explain the finite element method using a coordinate function, consider a 

structural problem whose solution z is a scalar function. If we let 
i
(x) Z (i = 1, …, n)

be linearly independent coordinate functions, a solution to the structural problem can be 

approximated as 

1

( ) ( ).
n

j

j

j

z x c x  (5.87) 

Recall that solution z must satisfy a variational equation of the form 

( , ) ( ), .b ba z z z z Z  (5.88) 

We can then substitute the approximation from (5.87) into this variational equation to 

obtain

,11( , ) , .ia E m d Zu  (5.89) 

Since the actual solution to (5.88) cannot be exactly written using the finite number of 

coordinate functions provided by (5.87), (5.89) cannot be satisfied for all .z Z

Therefore, it is necessary to find coefficient ci in the approximate solution, such that 

(5.89) holds true for every z  equal to each coordinate function. To put this idea into 

mathematical form, it is required that 

1

( , ) ( ), 1, ..., .
n

i j i

b j b

j

a c i n  (5.90) 

If a matrix associated with the left side of (5.90) is defined as 

[ ( , )] ,i j

b n naA  (5.91) 

and a column vector associated with the right side of (5.90) is defined as 

1[ ( )] ,i

b nB  (5.92) 

then, with coefficient vector c = [c1, …, cn]
T
, (5.90) may be written in matrix form as 

.Ac B  (5.93) 

Matrix A is precisely the stiffness matrix from Chapter 3, and column vector B represents 

a load vector applied to the structural system. Without going into great detail, it should be 

remembered that the entries in the stiffness matrix only require integration over elements 

adjacent to those nodes in which both 
i
 and 

j
 are nonzero. This fact eliminates 

integration over all but a small subset of the structural domain in order to evaluate the 

terms that contribute to the stiffness matrix. Furthermore, because the energy bilinear 

form is Z-elliptic, if the coordinate functions are linearly independent, matrix A is 

positive definite, and hence, nonsingular. 

 The idea of using design shape functions to evaluate (5.87) now becomes a 

possibility. Let each uniform segment of the beam be understood as a finite element. 

Coordinate functions 
i
 are used to represent both the state variable z, as in (5.87), and 

the adjoint variable , as 
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1

( ) ( ).
n

j

j

j

x d x  (5.94) 

Substituting (5.87) for the state variable and (5.94) for the adjoint variable into (5.86), we 

can represent the performance sensitivity in terms of coordinate functions as 
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 (5.95) 

Although many integrals appear in evaluating the coefficients of (5.95), the reader 

familiar with finite element methods will note that these calculations are routinely 

performed in finite element analysis. Incorporating a standard design shape function, 

represented by the functions A
i
 and I

i
, and a set of piecewise polynomial shape functions 

i
, the integration required in (5.95) may be efficiently carried out. In many cases, 

piecewise linear polynomials will be adequate, and the order of the polynomials 

appearing in the integration will be very low, allowing for a closed-form evaluation of the 

integrals and a tabulation of terms in (5.95) as design sensitivity finite elements. As 

discussed in Section 3.3.2, in the case of a beam, Hermite cubic polynomials are 

commonly used as displacement shape functions. In this situation, if the linear variation 

of cross-sectional area and quadratic variation of moment of inertia are incorporated in 

the design shape function, then the degree of polynomials arising in (5.95) cannot be 

higher than four. A closed-form integration designed to obtain and tabulate design 

sensitivity finite elements appears to be a practical objective. In more complex structures, 

such as plates and plane elastic solids, higher-order polynomials in more than one 

variable may be required, leading to the need for numerical generation of design 

sensitivity finite elements. However, these calculations are not intrinsically more tedious 

than calculations currently carried out for any finite element code. The potential thus 

seems to exist for a systematic finite element design sensitivity analysis formulation, 

employing both design and displacement shape functions. 

 One essential advantage of an integrated design finite element formulation is the 

ability to identify the effect of numerical error associated with finite element mesh. It has 

been observed in calculations that the use of distributed-parameter design sensitivity 

formulas and the finite element method leads to numerical errors in sensitivity 

coefficients, which may be identified during the process of iterative redesign and 

reanalysis. The effect of a design change can be predicted using design sensitivity 

analysis. When reanalysis is carried out, the predicted performance measure change can 

be compared with the actual change. If there is disagreement, then error has crept into the 

finite element approximation. While error might appear to be a problem, in fact it can be 

a blessing in disguise. If the approach outlined in Chapter 4 is followed, in which the 

structure is discretized and the design variables are imbedded in the global stiffness 

matrix, then any error inherent in the finite element model will be consistently 

parameterized without being reported to the user. Precise design sensitivity coefficients 

of the matrix model are obtained without any realization that substantial inherent error 

may exist in the original model. In fact, as optimization proceeds, the optimization 

algorithm may systematically exploit this error, leading to erroneous designs. However, 

in their current formulation, design sensitivity formulas derived from the distributed-

parameter theory and the finite element model can be used to warn the user that an 

approximation error may be creeping into the calculation. 
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5.1.5 Numerical Examples 

Beam

Consider a simply supported beam with a rectangular cross section and a point load of 

f(x) = 100 ˆ( )x x lb (Fig. 5.6). The material properties are given as E = 30 × 10
6
 psi and 

= 0.25. The weight density of the material is ignored. The rectangular beam has unit 

width, and the depth bi of element i is taken as a design variable. 

 Consider a stress performance measure on the top surface of the element i, defined as 

,11
0

( ) ,
2

l
i

i i

b
Ez x m dx  (5.96) 

where bi/2 is the half-depth of element i and mi is the characteristic function applied to 

element i. Referring back to (5.83), the adjoint equation can be defined as 

,11
0

( , ) ( ) , ,
2

l
i

b i

b
a E x m dx Z  (5.97) 

and can denote a solution as 
(i)

. Consequently, from (5.84) the first variation of the 

functional i can be written as 

2
/

( )

,11 ,11 ,11
0 ( 1) /

1

.
2 4

nl kl n
ik

i i i k
k l n

k

bE
z m dx b Ez dx b  (5.98) 

Note that in the above three equations a constant thickness over a single element is 

assumed. 

Figure 5.6. Simply supported beam. 

   100 lb    2.2 in 

    1 in 
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    1 in 

12 in 
x x

Table 5.2. Comparison of sensitivity for beam. 

Element 

Number i
1

i
2

i i i / i 100 

  1 6.3000E+01 5.7143E+01 –5.7571E+00 –6.3000E+00 107.6 

  2 1.8900E+02 1.7143E+02 –1.7571E+01 –1.8900E+01 107.6 

  3 3.1500E+02 2.8571E+02 –2.9286E+01 –3.1500E+01 107.6 

  4 2.9008E+02 2.6311E+02 –2.6969E+01 –2.9008E+01 107.6 

  5 2.4545E+02 2.2263E+02 –2.2820E+01 –2.4545E+01 107.6 

  6 2.0083E+02 1.8216E+02 –1.8671E+01 –2.0083E+01 107.6 

  7 1.5620E+02 1.4168E+02 –l.4522E+01 –1.5620E+01 107.6 

  8 1.3500E+02 1.2245E+02 –l.2551E+01 –1.3500E+01 107.6 

  9 8.1000E±01 7.3469E+01 –7.5306E+01 –8.1000E+00 107.6 

10 2.7000E+01 2.4490E+01 –2.5102E+00 –2.7000E+00 107.6 
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 As shown in Fig. 5.6, a 10-member finite element model of the beam with a cubic 

shape function is employed to arrive at design sensitivity calculations. Uniform and 

accurate design sensitivity estimates are obtained, as shown in Table 5.2, for the averaged 

stress on each element with a 5% overall change in design variable magnitudes. In Table 

5.2, the second and third columns represent averaged stress values at the initial design bi,

and at the perturbed design 1.05 × bi, respectively. The fourth column is the finite 

difference of these two values. The fifth column is the estimated averaged stress value by 

using the formula in (5.98). The finite difference value and the estimated value are 

compared in the last column. 

Plate

To account for the effect of variation in plate thickness on compliance and displacement 

functions, consider an application of (5.53) and (5.59) at the discrete point x̂ . As an 

example, consider a clamped square plate with a dimension of 1m and a uniform 

thickness of h = 0.05 m, with E = 200 GPa, = 0.3, F = 2.22 MPa, and = 7.7 × 10
4

N/m
3
. If a piecewise constant thickness is assumed with bi, the constant thickness of the 

ith element, instead of with (5.53), then (5.55) can be used for the compliance functional. 

 For numerical calculations, a nonconforming rectangular plate element with 12 

degrees-of-freedom is used [45]. A graph of the coefficient of bi (Fig. 5.7) shows how 

the addition or deletion of material affects compliance. The maximum value of the 

coefficient of bi is
2

max = 1.305 at the corner elements. The minimum value occurs at 

the middle point between the edge elements, with a value of 
2

min = 5.625 × 10
2
. Thus, 

to decrease compliance most effectively, material should be moved from the vicinity of 

the four corners and added close to the middle of the four edges. 

 If the design sensitivity of displacement is desired at the plate center point x̂  = [½, 

½]
T
, then the adjoint load from (5.58) is just a unit load at the plate center point. To see 

how material added to or deleted from the plate influences displacement at the center, the 

coefficient of bi may be graphed using (5.59) to obtain the result shown in Fig. 5.8. The 

maximum value of the coefficient of bi is
2

max = 3.678 × 10
8
 at the corner elements, 

while the minimum value occurs at the center elements with a value of 
2

min = 1.167 × 

10 . To decrease z( x̂ ) most effectively, material should be removed near the four corners 

and added to the center of the plate. 

Figure 5.7. Compliance sensitivity for plate. 
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Figure 5.8. Displacement sensitivity for plate. 

Figure 5.9. Finite element of simply supported plate. 

 To calculate the plate’s stress sensitivity, consider the simply supported square plate 

shown in Fig. 5.9, with E = 30 × 10
6
 psi and = 0.25. Let plate thickness h(x) be a design 

variable and assume that  can be ignored so that the load linear form is independent of 

the design. 

 Consider a stress functional in the form 

,11 ,i iEz m d  (5.99) 

where mi is the characteristic function applied on finite element i. Referring to (5.64), the 

adjoint equation can be defined as 
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,11( , ) , ,ia E m d Zu  (5.100) 

with a solution of 
(i)

. From (5.65), the first variation of (5.99) is obtained as 

2
( )

2 2
( ) ( ) .

4(1 )

i TEh
z hdC  (5.101) 

If piecewise constant thickness is assumed for each finite element, (5.101) can be 

rewritten as 

2
( )

2 2
1

( ) ( ) .
4(1 ) k

n
i Tk

k

k

Eb
z d bC  (5.102) 

 As before, a nonconforming rectangular plate element with 12 degrees of freedom 

[45] is employed for numerical calculation. The geometrical configuration and finite 

element grid are shown in Fig. 5.9. The length of each side of the square plate is 12 in, 

and the thickness is a uniform 0.1 in. The model has 36 elements, 49 nodal points, and 95 

degrees of freedom. Applied loads consist of a point load of 100 lb at the center, and a 

uniformly distributed load of 100 psi. Results given in Table 5.3 demonstrate that the 

design sensitivity for each element is excellent, with a 0.1% overall change in design 

variables. Note that because of symmetry, only those sensitivity results for one quarter of 

the plate are given in Table 5.3. 

Torque Arm 

For an example involving a plane elastic component, consider the automotive rear 

suspension torque arm, as shown in Fig. 5.10. For simplicity, a single, nonsymmetric, 

static traction load has been proposed. Fixed displacement constraints are applied around 

the larger hole on the right in order to simulate attachment to a solid rear axle. Torque 

arm thickness has been chosen as a design variable. The variational equation of the 

torque arm is 

2

( , ) ( ) ( ) ( )

( ), ,

T

T s

a h x d

d Z

u

u

z z z C z

z f z z
 (5.103) 

Table 5.3. Comparison of stress sensitivity for plate. 

Element 

Number i
1

i
2

i i i / i 100 

  1 7.7010E+05 7.6779E+05 2.3057E+03 2.3030E+03 99.9 

  2 1.7690E+06 1.7637E+06 5.2965E+03 5.3094E+03 100.2 

  3 2.2571E+06  2.2503E+06 6.7576E+03 6.7702E+03 100.2 

  7 1.3671E+06  1.3630E+06 4.0930E+03 4.0869E+03 99.9 

  8 3.6338E+06 3.6229E+06 1.0880E+04 1.0906E+04 100.2 

  9 4.8362E+06 4.8217E+06 1.4480E+04 1.4508E+04 100.2 

13 1.5622E+06 1.5575E+06 4.6772E+03 4.6859E+03 100.2 

14 4.2347E+06 4.2220E+04 1.2679E+04 1.2706E+04 100.2 

15 5.7639E+06 5.7466E+06 1.7257E+04 1.7293E+04 100.2 
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Figure 5.10. Geometry and finite element of torque arm. 

where

1 2

1 2[ , ] [ ( )] : 0 on .T hZ z z Hz z  (5.104) 

 Consider a von Mises stress functional of the form 

( )
,Y A

k k k

A

m d gm d  (5.105) 

where g = ( Y – A)/ A, A is the allowable stress, mk is the characteristic function 

defined on finite element k, and Y is the von Mises yield stress, defined as 

2 2 2 1/ 2

11 22 12 11 22[( ) ( ) 3( ) ] .Y  (5.106) 

For this stress functional, the adjoint equation from (5.74) is 

( )

,( , ) ( ) , ,k

ka g m d Zu  (5.107) 

with solution 
(k)

. The first variation of the functional k from (5.77) becomes 

Table 5.4. Comparison of von Mises stress sensitivity for torque arm. 

Element 

Number i
1

i
2

i i i / i 100 

  54 –9.7690E–01 –9.7693E–01 –2.3075E–05 –2.3098E–05 100.1 

  66 –9.6734E–01 –9.6737E–01 –3.2632E–05 –3.2665E–05 100.1 

  75 –9.5025E–01 –9.5030E–01 –4.9699E–05 –4.9748E–05 100.1 

  87 –9.3080E–01 –9.3087E–01 –6.9130E–05 –6.9199E–05 100.1 

  96 –9.1860E–01 –9.1868E–01 –8.1317E–05 –8.1398E–05 100.1 

105 –9.0812E–01 –9.0821E–01 –9.1786E–05 –9.1878E–05 100.1 

115 –9.7021E–01 –9.7024E–01 –2.9756E–05 –2.9786E–05 100.1 

127 –9.5415E–01 –9.5420E–01 –4.5805E–05 –4.5850E–05 100.1 

145 –9.2374E–01 –9.2382E–01 –7.6183E–05 –7.6259E–05 100.1 

160 –9.0483E–01 –9.0493E–01 –9.5073E–05 –9.5169E–05 100.1 

171 –9.0491E–01 –9.0500E–01 –9.4997E–05 –9.4997E–05 100.1 

180 –9.2579E–01 –9.2587E–01 –7.4134E–05 –7.4208E–05 100.1 

187 –8.9958E– l –8.9968E–01 –1.0032E–04 –1.0042E–04 100.1 

193 –9.1117E–01 –9.1126E–01 –8.8743E–05 –8.8831E–05 100.1 
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( )( ) ( ) .k T

k h dC z  (5.108) 

If piecewise constant thickness bl is assumed for finite element l, then (5.108) can be 

rewritten as 

( )

1

( ) ( ) .
l

n
k T

k l

l

d bC z  (5.109) 

 The finite element model shown in Fig 5.10, which includes 204 elements, 707 nodal 

points, 1332 degrees of freedom, and an eight-node isoparametric element, is used for 

numerical calculation. Applied loads and dimensions are also shown. Young’s modulus is 

207.4 GPa, Poisson’s ratio is 0.25, and allowable stress is 81 MPa. A uniform thickness 

of 1 cm is used for the initial design. Numerical results for stresses in selected boundary 

elements are shown in Table 5.4. With a 0.l% uniform change of design variables, 

excellent sensitivity results are obtained. 

5.2 Eigenvalue Design Sensitivity 

The examples presented in Section 3.2 clearly show that eigenvalues, which represent the 

natural frequencies and buckling loads of structures, depend on the design. The objective 

in this section is to obtain the design sensitivity of eigenvalues. For conservative systems, 

it happens that no adjoint equation is necessary, and eigenvalue sensitivities are 

expressed in terms of the eigenvalues, the eigenvectors, and variations in the bilinear 

forms. Theorems that establish the differentiability of simple eigenvalues and the 

directional differentiability of repeated eigenvalues are first stated, and their significance 

is then discussed. Using the differentiability results, explicit formulas for the design 

variations of eigenvalues, both simple and repeated, are obtained. Using examples from 

Section 3.2, analytical calculations are carried out to illustrate how the method is used. 

Numerical considerations associated with the computation of eigenvalue design 

sensitivity are discussed, and numerical examples are provided. 

5.2.1 Differentiability of Energy Bilinear
Forms and Eigenvalues 

Basic results concerning the differentiability of eigenvalues are developed in detail in 

Section 2.5 in [5]. The purpose of this section is to summarize those key results needed 

for eigenvalue design sensitivity. In particular, treatment of the repeated eigenvalue 

illustrates the need for care in establishing and utilizing the properties of these 

functionals, since it is shown that repeated eigenvalues are not differentiable. 

 As shown in Section 3.2, eigenvalue problems for vibration and buckling of elastic 

systems are best described by variational equations, in the form 

( , ) ( , ), ,a d Zu uy y y y y  (5.110) 

where Z is the space of kinematically admissible displacements, and  is the eigenvalue 

associated with eigenfunction y. Since (5.110) is homogeneous in eigenfunction y, a 

normalizing condition must be added to uniquely define the eigenfunction. The 

normalizing condition employed is 

( , ) 1.du y y  (5.111) 
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 The energy bilinear form on the left side of (5.110) is in the same form as the static 

problem treated in Section 5.1. It therefore shares the same properties discussed in that 

section. The kinetic bilinear form du(•,•) on the right side of (5.110) represents the mass 

effect that occurs in vibration problems and the geometric effect that appears in buckling 

problems. In most cases du(•,•) is even more regular in its dependence on design u and 

eigenfunction y than the energy bilinear form au(•,•). In the exceptional case of column 

buckling, the kinetic bilinear form involves derivatives of the eigenfunction and must be 

treated somewhat more carefully. As proved in Section 2.5.1 in [5], the variation of 

du(•,•) with respect to the design is given by 

0

( , ) ( , ) ,
d

d d
d

u u uy y y y  (5.112) 

where y  denotes holding y constant for differentiation with respect to . Thus, (5.112) 

represents the dependence of the kinetic bilinear form on the design, and is applicable to 

all problems. 

Simple Eigenvalues 

In the case of a simple eigenvalue (that is, an eigenvalue with only one independent 

eigenfunction), Section 2.5 in [5] demonstrates that eigenvalue  is differentiable. Kato 

[53] showed that the corresponding eigenfunction y is also differentiable. Thus, the 

following variations are well defined: 

0

0

( , ) [ ( )]

( ; , ) [ ( ; )] .

d

d

d

d

u u u u u
u

y
y y x u u y x u u u

u

 (5.113) 

In fact, both eigenvalue and eigenfunction variations are linear in u; hence, they are 

Fréchet derivatives (Appendix A.3) of the eigenvalue and eigenfunction. Proof of these 

results is far from obvious; details are provided in Section 2.5 in [5]. 

 Given this differentiability result, the variation of both sides of (5.110) can be taken 

to obtain 

( , ) ( , ) ( , ) ( , ) ( , ), ,a a d d d Zu u u u uy y y y y y y y y y y  (5.114) 

where y  is independent of the design. Since (5.114) holds for all ,Zy  this equation 

may be evaluated with specific y  = y, using the symmetry of bilinear forms au(•,•) and 

du(•,•), to obtain 

( , ) ( , ) ( , ) [ ( , ) ( , )]d a d a du u u u uy y y y y y y y y y  (5.115) 

Noting that y Z, it can be observed that the term in brackets on the right side of (5.115) 

vanishes from the relation in (5.110). Furthermore, due to the normalizing condition in 

(5.111), a simplified equation for the eigenvalue variation can be obtained as 

( , ) ( , ).a du uy y y y  (5.116) 

For a precise proof of this result, see Corollary 2.5.1, in Section 2.5 in [5]. 

 This result, obtained with little effort, is the foundation for a large body of work on 

structural optimization that has eigenvalue constraints. It is a remarkably simple result, 

clearly showing that the eigenvalue’s directional derivative is indeed linear in u, since 
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the variation of bilinear forms on the right side of (5.116) is linear in u. It should be 

emphasized, however, that the validity of this result depends on the existence of 

eigenvalue variations and eigenfunctions, as defined in (5.113). As will be seen in the 

following section, formal expression of this analysis for repeated eigenvalues would lead 

to erroneous results. 

Repeated Eigenvalues 

Now, consider a situation in which eigenvalue  associates with its s linearly independent 

eigenfunctions, that is, 

( , ) ( , ),

( , ) 1, 1, ..., .

i i

i i

a d Z

d i s

u u

u

y y y y y

y y
 (5.117) 

It is easy to show that any linear combination of y
i
 eigenfunctions in (5.117) is also an 

eigenfunction. Therefore, an infinite variety of choices exists as the basis of the 

eigenspace associated with repeated eigenvalue . One practical requirement on the 

family of eigenfunctions is that they be orthonormal with respect to bilinear form du(•,•), 

that is, 

( , ) , , 1, ..., .i j

ijd i j su y y  (5.118) 

It is assumed throughout this text that such an orthonormalization of eigenfunctions 

corresponding to a repeated eigenvalue has been carried out. Nevertheless, an infinite 

choice of eigenfunctions still exists. 

 Theorem 2.5.1 (in Section 2.5) in [5] proves that while repeated eigenvalue  is a 

continuous function of the design, eigenfunctions are not. Although the eigenvalue is 

continuous, it is not Fréchet differentiable, but only directionally differentiable 

(Appendix A.3). In addition, Theorem 2.5.2 and Corollary 2.5.2 in [5] demonstrate that 

when eigenvalue  is repeated s times at design u for a perturbation in the design of u +

u, the eigenvalue may branch into s number of eigenvalues, given by 

( ) ( ) ( , ) ( ), 1, , ,i i o i su u u u u  (5.119) 

where the directional derivatives i(u, u) are the eigenvalues of the matrix 

[ ( , ) ( , )] .i j i j

s sa du uy y y y  (5.120) 

The notation i(u, u) has been selected in order to emphasize the dependence of the 

directional derivative on u. The term o( ) in (5.119) is defined as a quantity that 

approaches zero more rapidly than  [that is, lim 0 o( )/  = 0]. All characteristics of 

repeated eigenvalues discussed in Section 4.2.5 hold true in the distributed-parameter 

model. Moreover, the directional derivatives of twice-repeated eigenvalues are given in 

(4.156) and (4.157), and are rewritten here as 

2

1 11 11

2

12 22

ˆ( , ) cos ( ) ( )

sin 2 ( ) ( ) sin ( ) ( )

u u u u

u u u u
 (5.121) 

and

2

2 22 11

2

12 22

ˆ( , ) sin ( ) ( )

sin 2 ( ) ( ) cos ( ) ( ),

u u u u

u u u u
 (5.122) 

where  is the rotation parameter, given as 
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1 2

12

1 1 2 2

11 22

2 ( , , )1
( ) arctan ,

2 ( , , ) ( , , )

y y u
u

y y u y y u
 (5.123) 

and ij( u) is a component of matrix  given in (5.120). 

5.2.2 Analytical Examples of Eigenvalue Design Sensitivity 

To illustrate the preceding results, a design sensitivity analysis of the eigenvalue 

problems presented in Section 3.2 will now be studied. Numerical considerations that are 

made possible by the resulting formulas will be taken into account in Section 5.2.3. 

Vibration of a String 

Consider the string in Fig. 5.11, with variable mass density (x) and tension T. The 

energy and kinetic bilinear forms of (3.94) and (3.95) are 

,1 ,1
0

0

( , )

( , ) .

l

l

a y y T y y dx

d y y yy dx

u

u

 (5.124) 

Variations of these bilinear forms yield 

,1 ,1
0

0

( , )

( , ) .

l

l

a y y T y y dx

d y y yy dx

u

u

 (5.125) 

Given the fact that only simple eigenvalues can occur in Sturm-Liouville problems [67], 

only the variation of a simple eigenvalue is of interest. The variations of the bilinear 

forms in (5.125) can be substituted into the eigenvalue sensitivity formula in (5.121) to 

obtain

2 2

,1
0 0
( ) .

l l

y dx T y dx  (5.126) 

It is interesting to note that since the coefficient of variation T is positive, it is clear that 

the natural frequency increases with an increase in tension. Similarly, since the 

coefficient of variation  is positive, any increase in density decreases the natural 

frequency. While both results are obvious on an intuitive level, the plotting of y(x)
2
 for a 

uniform string if l = 1, 0 = 2.0, and T = 1.0 (Fig. 5.12) shows that a unit increase of (x)

near the string center has a substantially larger effect on the smallest eigenvalue than unit 

increases elsewhere on the string. Thus, an indication is obtained of the most profitable 

design change areas. 

Figure 5.11. Vibrating string with linear mass density (x).

y

x

h(x)
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Figure 5.12. First two eigenfunctions of vibrating string. 

Vibration of a Beam 

For a beam with a variable cross section, Young’s modulus, and mass density (as shown 

in Fig. 3.11), the strain and kinetic energy bilinear forms in (3.99) and (3.100) are 

rewritten as 

2

,11 ,11
0

0

( , )

( , ) .

l

l

a y y E A y y dx

d y y Ayy dx

u

u

 (5.127) 

If we let the design function be u = [E, A, ]
T
, the design variations of these bilinear 

forms are 

2

,11 ,11 ,11 ,11
0 0

0 0

( , ) 2

( , ) .

l l

x

l l

a y y E A y y dx E A y y Adx

d y y A yy dx A yy dx

u

u

 (5.128) 

Combining the simple eigenvalue in (5.116) with the expressions in (5.128) yields 

2 2 2

,11
0 0

2 2

,11
0

( )

[2 ( ) ] .

l l

l

A y dx E A y dx

E A y y Adx

 (5.129) 

As in the static response case, the sensitivity formula in (5.129) is valid for other 

boundary conditions in (3.19) through (3.21). This result clearly shows that increasing 

Young’s modulus increases the natural frequency, and increasing the material density 

decreases the natural frequency. However, since the coefficient of A in the integral may 

have either a positive or negative sign, it is not clear how a change in the cross-sectional 

area will influence the natural frequency. Consider, for example, a uniform cantilever 

beam (Fig. 5.13) with the nominal properties of l = 1 m, E = 2  10
5
 MPa, = 1/6, =

7.87 Mg/m
3
, and h = 0.005 m

2
. In this example, the smallest eigenvalue is  = 0.00157 

and the corresponding eigenfunction can be obtained analytically as 

cos cosh
( ) 0.159 cosh cos (sinh sin ) ,
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Figure 5.13. Uniform cantilever beam. 

Figure 5.14. Design sensitivity coefficient of A for cantilever beam. 

where k1 = 1.875, k2 = 4.694, …. Evaluating the coefficient of A in the integral form of 

(5.129), a curve is obtained in the form shown in Fig. 5.14. The design sensitivity 

coefficient of Fig. 5.14 shows that a change in the cross-sectional area at the clamped end 

of the beam has a substantially greater effect on the smallest eigenvalue than a change at 

the free end. 

Buckling of a Column 

Let us now consider the problem of column buckling, with the design variables as the 

distribution of the cross-sectional area along the column, and Young’s modulus of the 

material, that is, u = [A, E]
T
. The energy and geometric bilinear forms in (3.103) and 

(3.104) are rewritten as 

2

,11 ,11
0

,1 ,1
0

( , )

( , ) .

l

l

a y y E A y y dx

d y y y y dx

u

u

 (5.130) 

The variations of these bilinear forms become 

2

,11 ,11 ,11 ,11
0 0

( , ) 2

( , ) 0.

l l

a y y E A y y dx E A y y Adx

d y y

u

u

 (5.131) 

 The variation of the buckling load for a simple eigenvalue is given by (5.116) and 

combined with the expressions in (5.131) as 

h
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2 2 2

,11 ,11
0 0

( ) [2 ( ) ] .
l l

A y dx E E A y Adx  (5.132) 

Clearly, increasing Young’s modulus increases the buckling load, and any increase in the 

cross-sectional area similarly increases the buckling load. Both results are expected. 

 Consider the clamped-clamped column in Fig. 3.12, with a uniform cross section and 

with the following values: l = 1 m, A0 = 0.005 m
2
, = 1/6, and E = 2  10

5
 MPa. A plot 

of the first and second mode shapes and their second derivatives is shown in Fig. 5.15(a). 

Using these functions, the coefficient of A may be evaluated in the integral form of 

(5.132), obtaining the curve shown in Fig. 5.15(b). In order to increase the buckling load 

in the first mode, material in the vicinity of points A and C, where the sensitivity 

coefficient of h for 1 is zero, may be removed and added either at point B or at the 

ends, where the sensitivity coefficient is at maximum value. This process, however, may 

decrease the buckling load in the second mode, since its sensitivity coefficient is positive 

at points A and C and zero at point B. In fact, it has been shown by Olhoff and 

Rasmussen [62] that when attempting to maximize the fundamental buckling load for a 

clamped-clamped column, the systematic occurrence of a repeated eigenvalue may be 

forced, much as shown in the examples in Section 4.3.5. It is therefore in our interest to 

obtain expressions for directional derivatives of this column for a repeated eigenvalue. 

(a)

(b)

Figure 5.15. Mode and sensitivities for uniform clamped-clamped column. 
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 If y
1

and y
2

are eigenfunctions corresponding to a repeated eigenvalue with 

multiplicity s = 2, then from (5.120) 

1

,11 ,11
0
2 ,i j

ij E A y y Adx  (5.133) 

where the effect of variation in Young’s modulus has been suppressed. Note that if we 

limit attention to those designs A(x) that are symmetric near the center of the column, and 

if A(x) is symmetric near the center, then, as is indicated by Fig. 5.15(a), the second 

derivatives of the first and second eigenfunctions will be symmetric and antisymmetric, 

respectively, near the center of the column. Thus, the product 1

,11A A y  is an even function 

near the center, while 2

,11y  is an odd function near the center. Therefore, 12 = 0. Since 

this is true for all design variations in the class of designs that are symmetric near the 

center, the directional derivatives of the repeated eigenvalue for symmetric columns are 

given by (5.132), with the symmetric and antisymmetric modes being y
1
 and y

2
,

respectively. Since the resulting expression is linear in the design variation, the repeated 

eigenvalues, which are ordered by symmetric and antisymmetric modes, will be 

differentiable for symmetric columns. In addition, the derivatives of these repeated 

eigenvalues may be obtained using (5.132) with symmetric and antisymmetric modes. 

 However, if asymmetric designs are allowed, then in general 12 will not be zero, 

and moreover the eigenvalue will only be directionally differentiable, not Fréchet 

differentiable. In this case, the angle of rotation that is required can be obtained from 

(5.123) as 

1
1 2

,11 ,11
0

1
1 2 2 2

,11 ,11
0

21
( ) arctan

2 [( ) ( ) ]

Ay y Adx
A

A y y Adx
 (5.134) 

The directional derivatives of the repeated eigenvalue are then given by (5.121) and 

(5.122) as 

1
2 1 2 1 2 2 2 2

1 ,11 ,11 ,11 ,11
0

1
2 1 2 1 2 2 2 2

2 ,11 ,11 ,11 ,11
0

( , ) 2 [cos ( )( ) sin 2 ( ) sin ( )( ) ]

( , ) 2 [sin ( )( ) sin 2 ( ) cos ( )( ) ] .

A A E A A y A y y A y Adx

A A E A A y A y y A y Adx

 (5.135) 

It is clear from the above equation that in general the directional derivatives of repeated 

eigenvalues are not linear in A; hence, they are not differentiable. 

Vibration of a Membrane 

Consider a vibrating membrane with variable mass density (x) and tension T as the 

design variables. Without repeating the definition of the energy and kinetic bilinear forms 

from (3.108) and (3.109), we can write the first variation of these bilinear forms, which 

are evaluated at y  = y, as 

2 2

,1 ,2

2

( , ) ( )

( , ) .

a y y T y y d

d y y y d

u

u

 (5.136) 

For a simple eigenvalue problem, (5.116) and (5.136) will yield 

2 2 2

,1 ,2( ) .T y y d y d  (5.137) 
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As with the vibrating string problem, it is clear that the natural frequency increases with 

an increasing amount of tension, and decreases with increasing density. 

 In the case of a repeated eigenvalue problem [73] with a multiplicity of s = 2, if y
1

and y
2
 are eigenfunctions corresponding to a repeated eigenvalue , then from (5.120) we 

obtain

, , 1, 2.
Ti j i j

ij T y y d y y d i j  (5.138) 

The required rotational angle is obtained from (5.123) and (5.138) as 

1 2 1 2

1 2 2 2 1 2 2 2

2[ ]1
( ) arctan .

2 [( ) ( ) ] [( ) ( ) ]

T

T y y d y y d

T y y d y y d
 (5.139) 

The directional derivatives of the repeated eigenvalue are then given by (5.121) and 

(5.122) as 

1 2 2 1 2 2 2 2

1

1 2 2 1 2 2 2 2

1 2 2 1 2 2 2 2

2

1 2 2 1 2 2 2 2

( , ) [( ) cos ( )sin 2 ( ) sin ]

[( ) cos ( )sin 2 ( ) sin ]

( , ) [( ) sin ( )sin 2 ( ) cos ]

[( ) sin ( )sin 2 ( ) cos ]

T

T

T y y y y d

y y y y d

T y y y y d

y y y y d

u u

u u

.

 (5.140) 

Vibration of a Plate 

As a final example, consider the variable thickness vibrating plate in Fig. 3.14. Plate 

thickness h(x), Young’s modulus E, and mass density  are taken as design variables. 

Without repeating the definition for energy and kinetic bilinear forms given by (3.113) 

and (3.114), the first variation of these bilinear forms, evaluated at y  = y, may be written 

as

3

2

2

2

2 2

( , ) ( ) ( )
12(1 )

( ) ( )
4(1 )

( , ) .

T

T

E
a y y h y y d

E
h y y h d

d y y hy d y h d

u

u

C

C  (5.141) 

The derivative of a simple eigenvalue is therefore given by (5.116) as 

3 2

2

2 2

2

( ) ( )
12(1 )

( ) ( ) .
4(1 )

T

T

E
h y y d hy d

E
h y y h d y h d

C

C

 (5.142) 

 It is clear that increasing Young’s modulus also increases the natural frequency, and 

that increasing the density decreases the natural frequency, as one would intuitively 

expect. The effect of a thickness variation, however, is not obvious, since the coefficient 

of h in the integral may be either positive or negative. Numerical examples of the effect 

of thickness variations will be considered in Section 5.2.4. 



208  5. Continuum Sizing Design Sensitivity Analysis  

 In the case of a repeated eigenvalue [74], if y
1
 and y

2
 are eigenfunctions 

corresponding to a repeated eigenvalue , then as with the membrane problem, (5.121) 

and (5.122) provide the directional derivatives of the repeated eigenvalues, where the 

rotation parameter  is given by (5.123) and where 

3

2

2

2

( ) ( )
12(1 )

( ) ( )
4(1 )

, , 1, 2.

i T j

ij

i T j

i j i j

E
h y y d

E
h y y h d

hy y d y y h d i j

C

C  (5.143) 

5.2.3 Numerical Considerations 

The numerical aspects involved in evaluating design sensitivity formulas for a simple 

eigenvalue in (5.116), or for a repeated eigenvalue in (5.121) and (5.122), follow the 

same pattern as those considerations presented in Section 5.1.4 on the computational 

aspects of static design sensitivity. However, with conservative eigenvalue problems, it is 

an additional advantage that an adjoint variable does not need to be calculated as the 

solution to a separate problem. This feature allows the design sensitivity to be directly 

computed once the analysis problem has been solved. It should be added that direct 

computation is not possible for nonconservative problems [74] and [75]. 

 As in the case of static response presented in Section 5.1.4, the design can be 

parameterized as shown in Section 12.1 and explicit design derivatives of eigenvalues 

can be obtained with respect to design parameters. Since the functionals arising in the 

present formulation are identical to those appearing in Section 5.1.4, the reader is referred 

to that section for further details on numerical considerations involved in evaluating 

parameterized design sensitivity. 

5.2.4 Numerical Examples of Eigenvalue 
Design Sensitivity 

Plate

To account for the effect of plate thickness on variations in the natural frequency, 

consider the application in (5.142): a clamped, square plate with a dimension of 1 m and 

a uniform thickness of h = 0.05 m, with E = 200 GPa , = 0.3, and = 7870 kg/m
3
. For 

this design, the eigenvalue is = 0.3687 × 10
6
 (rad/sec

2
). If plate thickness is considered 

as a design variable and if piecewise-constant thickness is assumed, as with the plate 

example in Section 5.1.5, then (5.142) can be rewritten as 

2
2

2
1

( ) ( ) .
4(1 )i

n
Ti

i

i

Eb
y y y d bC  (5.144) 

As with the plate example in Section 5.1.5, a nonconforming rectangular plate element 

with 12 degrees of freedom is used. The graph of the coefficient of bi presented in Fig. 

5.16 explains how the addition or deletion of material affects the eigenvalue. The 

maximum value of the coefficient of bi is max = 7.949×10
6
 in the middle of the edge 

elements, while its minimum value occurs at the corner elements, with max = 3.365×10
3
.

Thus, in order to increase the eigenvalue most effectively, material should be removed 

from the vicinity of the four corners and added to the middle of the four edges. 
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Figure 5.16. Eigenvalue sensitivity  for plate. 

5.3 Transient Dynamic Response Design Sensitivity 

Design sensitivity of a transient dynamic response in a distributed parameter system has 

received a minimum amount of attention in the literature [76], in contrast to the large 

amount of attention devoted to design sensitivity analysis and optimization of a dynamic 

control system. A development by Rousselet [73] provided the beginning of a foundation 

for design sensitivity analysis of the transient dynamic problem, but work remains to be 

done. Since the theory of dynamic, distributed-parameter design sensitivity analysis is not 

as well developed as that of static response and eigenvalues, a more formal treatment of 

the subject is presented in this section. A variational formulation of the structural 

dynamics problem, as outlined in Section 2.4, is used here. Under the assumption of 

design differentiability of the state variable, the adjoint variable method presented in 

Section 5.1 is extended to the transient dynamic response problem and analytical 

examples are provided. 

5.3.1 Design Sensitivity of Structural Dynamics Performance 

For derivational simplicity, it is presumed that the design vector is a scalar function. Let 

 be the structural domain and let t  [0, tT] be the time interval. Consider a general 

integral functional in transient dynamics, in the form 

0
( , , ) .

Tt

g u d dtz z  (5.145) 

Since solution z of the structural equation is design dependent, dependence in such a 

functional appears both explicitly and, through argument z, implicitly. As in static 

response and eigenvalue problems, something must be known about the nature of the 

dependence of the state variable on the design, that is, z = z(x,t;u). Using a slightly more 

restrictive set of hypotheses than those employed in Section 2.4 in [5] for the static 

response problem, it has been shown by Rousselet [73] that z is Fréchet differentiable 

with respect to design u. This fact allows us to develop explicit expressions for the 

sensitivity of functional  in (5.145) with respect to design u, much in the fashion that 

sensitivity results were developed for static problems in Section 5.1. 
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 As with the static problem, design u is perturbed in the direction of u, and is 

controlled by parameter . Take the variation of (5.145) with respect to  to obtain 

0
0

, , ,
0

( ( , ; ), ( , ; ), )

( : ) .

T

T

t

t

u

d
g t u u t u u u u d dt

d

g g g u d dtz z

z x z x

z z

 (5.146) 

The objective here is to rewrite the first two terms on the right side of (5.146) explicitly 

in terms of the design variation u.

 The governing variational equation for the structural dynamic problem in (2.37) is 

rewritten here as 

, ,
0

0

[ ( ) ( ) ] ( , )

, ,

T

T

t
T T

tt t u

t
T

u C u d a dt

d dt Z

z z z z z z

z f z

 (5.147) 

with initial conditions 

0

0

, ,

( ,0; ) ( ),
.

( ,0; ) ( ),t t

u

u

z x z x
x

z x z x
 (5.148) 

 Presuming that (u), C(u), f(u), and au(•,•) are differentiable with respect to the 

design, along with solution z of the dynamic problem, take the variation of both sides of 

(5.147) to obtain 

, , , , ,
0

, ,
0

[ ] ( , )

[ ] ( , ) 0, .

T

T

t
T T T

u tt u t u u

t
T T

tt t u

C u d a dt

C d a dt Z

z z z z z f z z

z z z z z z z

 (5.149) 

 To take advantage of this equation, terms in the second integral may be integrated by 

parts to move the time derivatives from z  to z . To carry out this calculation it is 

necessary to reverse the order of integration, to carry out the integration by parts with 

respect to time, and to again change the order of integration, to obtain 

, ,
0

, , 0

, , , , ,
0

[ ] ( , )

[ ]

[ ] ( , ) , .

T

T

T

t
T T

tt t u

t
T T T

t t
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T T T

u u tt u t u

C d a dt

C d

C u d a dt Z

z z z z z z

z z z z z z

z f z z z z z z z

 (5.150) 

Note that as a result of the initial conditions given by (5.148), for which the right side 

does not depend on u, the variation yields 

,

( ,0; ) 0,
.

( ,0; ) 0,t

u

u

z x
x

z x
 (5.151) 

which eliminates the initial terms in (5.150) that arose due to integration by parts. 

 To take advantage of the identity in (5.150), which must hold for all ,Zz  let us 

define an adjoint equation by replacing z  with an arbitrary virtual displacement Z  in 

(5.150) and (5.146), defining the variational adjoint equation for Z as 
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, ,
0

, ,
0

[ ] ( , )

[ : ] , ,

T

T

t
T T

tt t u

t

C d a dt

g g d dt Zz z

 (5.152) 

where the additional terminal condition on  is defined as 

,

( , ; ) ,
.

( , ; ) ,

T

t T

t u

t u

x 0
x

x 0
 (5.153) 

The terminal conditions of (5.153) are introduced to eliminate those terms that have 

arisen at t = tT in (5.150) due to the integration by parts. 

 Since (5.150) must hold for all z Z, this equation may be evaluated at a specific z

=  using (5.153), to obtain 

, ,
0

, , , , ,
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t
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 (5.154) 

Similarly, (5.152) must hold for all Z, so by evaluating this equation at  = z  we 

obtain
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[ ] ( , )

[ : ] .
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Note that the right side of (5.155) consists of exactly the same terms in (5.146) that are 

written in terms of u. Furthermore, the left side of (5.154) and (5.155) are identical, such 

that

, ,
0

, , , , , ,
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0

, ,

[ : ]

[ ] ( , )
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 (5.156) 

where an integration by parts has been carried out and the initial conditions in (5.148) 

have been used to reduce the order of differentiation of z with respect to t. Substituting 

this result into (5.146) yields the explicit expression of  in terms of u, as 

, , , , , , ,
0

0

, ,

[ ] ( , )

[ ( ,0; ) ( )] .

Tt T T T

u u t u t u t u

T

u t
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u u d

f z z z

x z x

 (5.157) 

 Note that the variational adjoint equation in (5.152) and (5.153) is not the same as the 

variational state equation in (5.147) and (5.148). There are two fundamental differences 

between these two sets of equations. First, while the state equation includes the initial 

conditions in (5.148), the adjoint equation contains those terminal conditions in (5.153). 

Second, the sign of the damping term in (5.147) is different from (5.152). These facts 

somewhat complicate calculations associated with dynamic design sensitivity analysis, 

since the adjoint dynamic problem will be different from the original dynamic problem. 

As will be seen in the examples presented in the following section, however, more 

similarities exist than at first appear.  
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5.3.2 Analytical Examples 

String

The equation of motion for a vibrating string in a viscous medium is given in the form 

, , ,11

0

0

, ,

( ) ( ) ( , , ), 0 , [0, ]

(0, ; ) 0, 0

( , ; ) 0, 0

( ,0; ) ( ), 0
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tt t T

T

T

t t

u z C u z Tz f x t u t t x l

z t u t t

z l t u t t

z x u z x t

z x u z x t

 (5.158) 

where (u) is the mass per unit length along the string, C(u) is the damping coefficient 

per unit length, and T is the string tension. Space Z of all kinematically admissible 

displacements is 1

0 (0, )H l , that is, space Z is the set of all functions in Sobolev space 

H
1
(0,l) that vanish at the boundary (interval’s end points). The energy bilinear form is 

given in (3.94) as 

,1 ,1
0

( , ) .
l

ua z z T z z dx  (5.159) 

 Consider the mean square displacement as a performance measure, that is, 

2

1
0 0

1
.

Tt l

T

z dx dt
t

 (5.160) 

The adjoint equations for this problem, derived from (5.152) and (5.153), are 
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 (5.161) 

and

,( , ) ( , ) 0, 0

(0, ) ( , ) 0, 0 .

T t T

T

x t x t x l

t l t t t
 (5.162) 

The energy bilinear form for the string in (5.159) has been employed. Integration by parts 

in (5.161), using the boundary conditions in (5.162) and the fact that  satisfies the same 

boundary conditions, yields 

, , ,11
0 0

2
0, .

Tt l

tt t

T

C T z dx dt Z
t

 (5.163) 

Since  is arbitrary except for its boundary conditions, its coefficient in (5.163) must be 

zero, yielding the following differential equation: 

, , ,11

2
.tt t

T

C T z
t

 (5.164) 

Note that this differential equation differs in form from (5.158) only by the algebraic sign 

of the damping term and by the applied load on the right side. 
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 To verify that the adjoint problem in (5.162) and (5.164) can be rewritten in a form 

closer to that of the physical structure [(5.158)], a backward time, tT – t, may be 

defined. With this time variable, d/dt = d/d , and the terminal conditions in (5.162) for 

the t variable become initial condition for the  variable. Thus, the backward time initial-

boundary-value problem for the new variable ( , ) ( , )Tx x t t  becomes 

, , ,11

,

2
( , ), 0 , 0

(0, ) ( , ) 0, 0

( ,0) ( ,0) 0, 0

T T

T

T

C T z x t t x l
t

l t

x x x l.

 (5.165) 

Consequently, the adjoint structure is physically the same as the original structure, but 

with the addition of a backward clock and an applied load, 2z(x, tT – )/tT.

 If the applied load f(x,t,u) in (5.158) is the string self-weight added to an excitation 

F(x,t), then f = g + F(x,t), where g is the acceleration of gravity. Equation (5.157) then 

yields the sensitivity of functional 1 in (5.160) as 
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Since  and C depend on x and not on t, the integration order for the first term in 

(5.166) may be reversed, yielding the explicit relation 

0
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0 0 0 0
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l t
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Note that the sensitivity coefficients of  and C are explicitly a function of x since the 

time variable has been integrated in calculating the coefficients of  and C. This 

fortunate circumstance allows the time variable to be eliminated from the design 

sensitivity formula, which is natural since the design vector u = [ (x), C(x), T]
T
 is only 

dependent on x.

Beam

The equation for beam motion in a viscous fluid is 

, , ,11 ,11
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 (5.168) 

where m(u) is the mass per unit length of the beam and C(u) is the damping coefficient 

per unit length. Boundary conditions may be the same as any reasonable set of boundary 

conditions, as in (3.19) through (3.21). For the clamped-clamped beam, Z = 2

0 (0, )H l . The 

energy bilinear form for the beam is given in (3.14) as 

,11 ,11
0

( , ) ( ) .
l

ua z z EI u z z dx  (5.169) 
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 Consider the dynamics of a clamped-clamped beam, with functional 2 representing 

the mean value over time of the square of displacement at a given point x̂ .

2
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 (5.170) 

with cross-sectional area A as the design variable, m = A, I = A
2
, and f = gh + F(x,t). In 

this case, the adjoint equation of (5.152) is 
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with the terminal and boundary conditions for a clamped-clamped beam, 
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To reduce the variational equation in (5.171) to a differential equation, carry out 

integration by parts using the boundary conditions in (5.172) to obtain 
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Since this equation must hold for all  satisfying boundary conditions, its coefficient 

must be zero, leading to the following differential equation: 

, , ,11 ,11
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which, except for the sign for damping terms, is nothing other than a beam equation with 

point load 2z( x̂ ,t)/tT applied at point x̂ . As with a string in (5.165), a backward time 

could be defined and the equations rewritten to obtain the adjoint equations with a 

backward time variable, in exactly the same form as the basic structural equation. 

 The design sensitivity result from (5.157) may thus be directly written as 
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Reversing the integration order in the first integral of (5.175) yields 
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which again provides a design sensitivity coefficient of A only as a function of x.
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Membrane

The equation of motion for a membrane in a viscous fluid is 

2
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 (5.177) 

where (u) is the mass per unit area of the membrane and C(u) is the damping coefficient 

per unit area. Space Z of kinematically admissible displacements is 1

0 ( )H . The energy 

bilinear form for this problem is given in (3.108) as 

,1 ,1 ,2 ,2( , ) ( ) .ua z z T z z z z d  (5.178) 

 Consider a vibrating membrane with the mean square displacement as the functional 
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In this case, the adjoint problem in (5.152) would be 
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with the following terminal condition and boundary conditions: 
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 To reduce the adjoint variational (5.180) to a differential equation, carry out 

integration by parts using the boundary conditions provided by (5.181) to obtain 
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Since  is arbitrary except for its boundary conditions, its coefficient must be zero, 

yielding

2
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t

 (5.183) 

Except for the sign of the damping term and a different applied load on the right side, 

(5.183) is the membrane equation. As in the case of a string, a backward time  could be 

defined to obtain a backward time initial-boundary-value problem, which is the same 

membrane equation, but with a different load. 

 For a given load f(x,t), one may obtain a design sensitivity for 3 from (5.157) as 
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Since  is independent of t, reversing the integration order in the first term of (5.184) 

yields

0

3 , , , ,
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t t t tz dt z d z C d dtx  (5.185) 

Plate

The equation of motion for a plate in a viscous fluid is 
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where m(u) is the mass per unit area of the plate and C(u) is the damping coefficient per 

unit area. For a clamped plate in (5.186), Z = 2

0 ( )H . The energy bilinear form for the 

plate is given in (3.41) as 
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 Consider the dynamics of a clamped plate with a damping coefficient of zero, given 

load f(x,t), variable thickness h, and m = h. The functional 4 is the work done by the 

applied load during the plate’s motion, that is 

4 ,
0

.
Tt

tfz d dt  (5.188) 

Presuming that load function f is differentiable with respect to time, and that f(x,0) = 

f(x,tT) = 0, integrate the term on the right side of (5.188) by parts with respect to time, to 

obtain

4 ,
0

.
Tt

tf z d dt  (5.189) 

In this case, the adjoint variational problem in (5.152) becomes 

3

, 20

,
0

( ) ( )
12(1 )

, ,

T

T

t
T

tt

t

t

Eh
h d d dt

f d dt Z

C

 (5.190) 

with the following boundary conditions for the clamped plate and terminal condition: 

,( , ) ( , ) 0,

( , ) ( , ) 0, , 0 .

T t T

T

t t

t t t t
n

x x x

x x x
 (5.191) 
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By using the definition of the plate differential operator A, and the spatial integration by 

parts on the left of (5.190), the following equation is obtained 

, ,
0

0,
Tt

tt th A f d dt  (5.192) 

which must hold for all arbitrary virtual displacements  that satisfy the boundary 

conditions. Therefore, the differential equation for  is 

, , ,tt th A f  (5.193) 

which is of the same fundamental form as the basic plate equation without a damping 

term. 

 Using the solution  from the adjoint equations, we can bring the design sensitivity 

for 4 directly from (5.157) as 

2
0

3 , , ,20
[ ( ) ( )] ( ,0) ( ) .

4(1 )

Tt T

t t t

Eh
z z dt z hdC x x  (5.194) 

5.4 Frequency Response Design Sensitivity 

The dynamic frequency response of mechanical and structural systems is of interest in 

design problems that are subjected to harmonically varying external loads caused by a 

reciprocating power train or by such other rotating machine parts as motors, fans, 

compressors, and forging hammers [19]. Airplane body and wing structures are also 

subjected to a harmonic load, transmitted from the propulsion system. In addition, ship 

vibration resulting from the propeller and from engine excitation can cause noise 

problems, cracks, fatigue failure of the tail-shaft, and discomfort to the crew. When a 

machine or structure oscillates in some form of periodic or random motion, that motion 

generates alternating pressure waves that propagate from the moving surface at the 

velocity of sound. For example, interior sound pressure in an automobile compartment 

can occur when the input force transmitted from the road and power train excites the 

vehicle compartment boundary panels. Motion with frequencies between 20 Hz and 20 

kHz stimulates the human hearing mechanism [20]. 

 In order to find the relationship between a variation in the frequency response and a 

variation in the design parameters, the design derivative of the variational governing 

equation is taken. Since no mathematical proof is available regarding the existence and 

uniqueness of sensitivity, presuming that all variables are smooth, a formal approach is 

taken. Explicit design sensitivity formulas for dynamic frequency response performance 

measures are then obtained using the adjoint variable and direct differentiation methods 

[28] and [29]. One major difference compared with previous sections is that the complex 

conjugate of the adjoint variable is used in the design sensitivity expression. The bilinear 

and linear forms in the previous sections must be understood as the sesquilinear and 

semilinear forms in frequency response analysis. 

5.4.1 Design Sensitivity Analysis of Frequency Response 

A general performance measure representing a variety of structural responses can be 

defined as 
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( , , ) ,g dz z u  (5.195) 

where the function g(z, z,u) is assumed to be continuously differentiable with respect to 

its arguments, and z = [ zi/ xj]. In frequency response analysis, displacement z is a 

complex variable, while design u is a vector of real functions. Let design u be perturbed 

in the direction of u and be controlled by parameter . The variation of the performance 

measure with respect to the design variable becomes 

0

, , ,

( ( ; ), ( ; ), )

( : ) .

d
g d

d

g g g dz z u

z x u u z x u u u u

z z u

 (5.196) 

Recall that z  and z  depend on direction u of the design change. The objective is to 

obtain an explicit expression of  in terms of u, which requires rewriting the first two 

terms under the integral on the right of (5.196) explicitly in terms of u.

 Consider a frequency response analysis of the dynamic structure under harmonic 

excitation, as introduced in Section 2.6.1 of Chapter 2. Let  be the excitation frequency. 

The variational equation of the dynamic response problem can be rewritten from (2.55) as 

2 *( , ) ( , ) ( , ) ( ), .d j c au u u uz z z z z z z z  (5.197) 

where  is the complex space of kinematically admissible virtual displacements. In 

(5.197), the following sesquilinear forms are used: 

*( , ) ( , ) Td du z z x u z z  (5.198) 

and

*( , ) ( , ) ,Tc C du z z x u z z  (5.199) 

and the sesquilinear form ( , )au z z  and semilinear form ( )u z  are similar to the energy 

bilinear and load linear forms presented for the static problem in Section 3.2 of Chapter 

3. The difference is that the response variable z is now a complex variable and, *
z  is the 

complex conjugate of admissible virtual displacement z . Variational (5.197) determines 

the steady-state response of the structure under harmonic excitation. 

 The design variations of sesquilinear forms au(•,•) and du(•,•) and semilinear form 

u(•) are given in (5.2), (5.112), and (5.3), respectively. Those design variations can be 

used for the design variations of the sesquilinear forms ( , )au z z  and ( , )du z z , and the 

semilinear form ( )u z . Similarly, the design variation of the damping sesquilinear form 

can be obtained as

0

( , ) ( , ) ,
d

c c
d

u u uz z z z  (5.200) 

where the dependence of z on the design is fixed in z . Thus, by taking a variation of both 

sides of (5.197) with respect to the design, and by moving the terms explicitly dependent 

on the design to the right side, we obtain 

2

2 *

( , ) ( , ) ( , )

( ) ( , ) ( , ) ( , ), ,

d j c a

d j c a

u u u

u u u u

z z z z z z

z z z z z z z z
 (5.201) 
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where *
z  is independent of the design. Presuming that displacement z is known as the 

solution to (5.197), (5.201) is a variational equation with the same sesquilinear forms for 

the displacement variation z . It can be noted that the stiffness matrices in (5.197) and 

(5.201) are the same and that the right side of (5.201) can be considered a fictitious load 

term. If design perturbation u is defined, and if the right side of (5.201) is evaluated 

with state solution z from (5.197), then (5.201) can be numerically solved to obtain z

using the finite element method. Design sensitivity  in (5.196) can then be evaluated 

using z  in the direct differentiation method. 

Adjoint Variable Method 

To obtain an explicit expression for  in terms of u, it is necessary to rewrite the first 

two terms in (5.196) explicitly in terms of u. Much in the same way as the static 

problem, an adjoint equation can be introduced by replacing z  in (5.196) with the 

complex virtual displacement  and by equating it to the variational equation (5.197) 

with respect to adjoint variable  as 

2

, ,

( , ) ( , ) ( , )

( : ) , ,

d j c a

g g d

u u u

z z

 (5.202) 

where the adjoint response 
*

 is desired. Since (5.202) satisfies for all ,  and 

since ,z  (5.202) may be evaluated at  = z  to obtain 

2

, ,

( , ) ( , ) ( , )

( : ) .

d j c a

g g d

u u u

z z

z z z

z z
 (5.203) 

In addition, since sensitivity equation (5.201) satisfies for all * ,z  and since * , ,

(5.201) may be evaluated at *z  = 
*
 to obtain 

2

2

( , ) ( , ) ( , )

( ) ( , ) ( , ) ( , ).

d j c a

d j c a

u u u

u u u u

z z z

z z z
 (5.204) 

When (5.203) and (5.204) are compared, their left sides are found to be exactly the same. 

Thus, from (5.203) and (5.204) we have 

, ,

2

( : )

( ) ( , ) ( , ) ( , ).

g g d

d j c a

z z

u u u u

z z

z z z
 (5.205) 

Therefore, the terms that are implicitly dependent on the design in (5.196) are explicitly 

expressed in terms of u. By substituting the relation in (5.205) into (5.196),  is 

explicitly represented in terms of u, as 

, , ,

2

,

( : )

( ) ( , ) ( , ) ( , ).

g g g d

g d d j c a

z z u

u u u u u

z z u

u z z z
 (5.206) 

Note that the design sensitivity in (5.206) is in terms of the adjoint response 
*
. Thus, the 

adjoint variable design sensitivity analysis is extended to a problem where the energy 

forms are not symmetric. Specific expressions of  for different performance measures 

and different structural components will be developed in detail in the following analytical 

examples. 
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Figure 5.17. Truss component under harmonic load. 

5.4.2 Analytical Examples 

In order to demonstrate the basic principles in implementing design sensitivity analysis 

results, the sesquilinear and semilinear forms of various structural design components are 

derived. The design sensitivity expressions for such dynamic frequency responses as 

displacement and stress are obtained using the adjoint variable and direct differentiation 

method. 

Truss

Consider a unit-length truss component under an oscillating excitation F(x,t) = f(x)e
j t

, as 

shown in Fig. 5.17. When the structural damping in (2.55) is used with  as the structural 

damping coefficient, then the variational equation for frequency response can be written 

as

2 * * *

,1 ,1
0 0 0

(1 ) , ,
l l l

mzz dx j EAz z dx fz dx z  (5.207) 

where m(x;u) = A is the mass,  is the density, A is the cross-sectional area, E is 

Young’s modulus, and  is the structural damping coefficient. Let the design vector be u

= [E, A]
T
.

 Variations in sesquilinear forms on the left of (5.207) can be obtained as 

*

0
( , )

l

d z z zz Adxu  (5.208) 

and

* *

,1 ,1 ,1 ,1
0 0

( , ) .
l l

a z z E Az z dx EAz z dxu  (5.209) 

In many applications, harmonic excitation f(x) is usually the prescribed magnitude and 

frequency; thus, it is independent of the design. 

 Consider a special functional that defines the complex displacement value at an 

isolated point x̂ , that is, 

1
0

ˆ ˆ( ) ( ) ( ) ,
l

z x x x z x dx  (5.210) 

where (x) is the Dirac delta measure at zero. The variation of this functional is thus 

written as 

1
0

ˆ( ) ( ) .
l

x x z x dx  (5.211) 

x, z
m, E, A(x)

f(x)e
j t

l
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By using (5.202), the adjoint equation of the functional in (5.211) can be written as 

2

0
ˆ( , ) (1 ) ( , ) ( ) , ,

l

d j a x x dxu u  (5.212) 

and the adjoint response 
*
 is desired. Interpreting the Dirac delta measure as a unit load 

applied at point x̂ , a physical interpretation of 
*
 is immediately obtained as the complex 

displacement, due to a positive unit excitation at x̂ . From the design sensitivity 

expression in (5.206), the following sensitivity of complex displacement can be obtained: 

2

1

2 * *

,1 ,1
0

*

,1 ,1
0

( , ) (1 ) ( , )

(1 )

(1 ) .

l

l

d z j a z

z j Ez Adx

j Az dx E

u u

 (5.213) 

The finite element method can be used to compute state variable z in (5.207) and the 

design sensitivity in (5.213). In the adjoint variable method, the design sensitivity of a 

complex displacement at a discrete point can be obtained from (5.213) by using (5.208) 

and (5.209), where the adjoint equation is given in (5.212). Using the direct 

differentiation method, design sensitivity z  of the complex displacement can be obtained 

by solving (5.201). 

 Next, let us consider a complex performance measure that represents an averaged 

amount of axial stress over a small subinterval of the beam, as 

2 ,1
0

,
l

pEz m dx  (5.214) 

where mp is a characteristic function that is independent of the design, and is only 

nonzero on the small subinterval (xa, xb), defined in (5.31). The first variation of averaged 

stress 2 is 

2 ,1 ,1
0 0

.
l l

p pEz m dx E z m dx  (5.215) 

In this case, the adjoint equation is 

2

,1
0

( , ) (1 ) ( , ) , .
l

pd j a E m dxu u  (5.216) 

Using the adjoint variable method, the design sensitivity of complex stress appears in the 

form 

2

2 ,1
0

( , ) (1 ) ( , ).
l

pE z m dx d z j a zu u  (5.217) 

Beam

Consider a unit-length beam component under harmonic excitation F(x,t) = f(x)e
j t

, as 

shown in Fig. 5.18. The beam’s steady-state response with structural damping is 

determined by the variational equation of frequency response, as  

2 * * * *

,11 ,11
0 0 0

(1 ) , ,
l l l

mzz dx j EIz z dx fz dx z  (5.218) 

where m = A is the mass per unit length, I is the moment of inertia, and  is the 

structural damping coefficient. Since the moment of inertia is dependent of cross- 
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Figure 5.18. Beam component under harmonic excitation. 

sectional area A, presume that I = A
2
 without any loss of generality, as with the static 

problem. Similar to the formula for a truss component, here the design vector is u = [E,

A]
T
.

 The first variation of the sesquilinear forms on the left side of (5.218) can be taken as 

*

0
( , )

l

d z z zz Adxu  (5.219) 

and

* 2 *

,11 ,11 ,11 ,11
0 0

( , ) 2 ,
l l

a z z E A Az z dx E A z z dxu  (5.220) 

and once again, the semilinear form is presumed to be independent of the design. 

 Displacement performance can be defined in exactly the same way as the truss 

component in (5.210): by interpreting z(x;u) as a vertical deflection. The first sensitivity 

expression in (5.213) is still applicable if variations of the sesquilinear forms from 

(5.219) and (5.220) are used in place of (5.208) and (5.209), respectively. 

 Consider a complex performance measure representing an averaged amount of 

bending stress over a small subinterval of the beam as 

1/ 2

3 ,11
0

,
l

pE A z m dx  (5.221) 

where mp is given in (5.31) and A
1/2

 is the half-depth of the beam. The first variation of 

the averaged stress performance measure 3 becomes 

1/ 2

3 ,11
0

1/ 2 1/ 2

,11 ,11
0 0

.

l

p

l l

p p

E A z m dx

E A z m Adx E A z m dx

 (5.222) 

The first integral on the right side of (5.222) is used to define the adjoint equation as 

2 1/ 2

,11
0

( , ) (1 ) ( , ) , .
l

pd j a E A m dxu u  (5.223) 

Using the adjoint variable method, the design sensitivity of the complex stress takes the 

form 

f(x)e
j t

x

z

E, I(x), A(x), m
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1/ 2 1/ 2

3 ,11 ,11
0 0

2 ( , ) (1 ) ( , ).

l l

p pE A z m Adx E A z m dx

d z j a zu u

 (5.224) 

The design sensitivity of (5.224) can be obtained using z from the response analysis in 

(5.218), as well as by using 
*
 from the adjoint equation (5.223). If the finite element 

method is used, numerical integration is involved in the evaluation of (5.224). 

Plate

Consider the plate component in Fig. 5.19, under the oscillating excitation F(x,t) = 

f(x)e
j t

. Structural domain  is parallel to the x1-x2 plane such that the material point is 

denoted by x = [x1, x2]
T
. A clamped boundary condition is assumed along boundary .

The sizing design variable u = [h(x)] represents the thickness of the structural 

component. Because of harmonic excitation, the steady-state response of the plate 

structure is determined using a variational equation, with structural damping, as 

2 * * * *(1 ) ( ) ( ) ( ) , ,Tmzz d j D z z d fz d zu C  (5.225) 

where m = h is the mass, and curvature vector (z), flexural rigidity D(u),  is the 

structural damping coefficient, and stiffness matrix C are defined in (5.45). The space of 

kinematically admissible displacements for a clamped boundary is Z = 2

0 ( ).H

 The first variation of sesquilinear forms in (5.225) can be obtained as 

*( , )d z z zz hdu  (5.226) 

and

2
*

2
( , ) ( ) ( ) .

4(1 )

TEh h
a z z z z du C  (5.227) 

Again, the applied load is presumed to be independent of the design. 

 As with the truss components, the adjoint variable method allows the design 

sensitivity of a complex displacement at a discrete point to be obtained from the first 

sensitivity expression in (5.213) by using (5.226) and (5.227) with the adjoint equation 

given in equation (5.212). The only difference is that a two-dimensional domain is now 

being considered. 

Figure 5.19. Plate structural component under harmonic load. 

x1

x2

z

h(x)

f(x)e
j t
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 Consider a general form of the locally averaged stress measure on the structural 

component, written as 

4 ( ( )) ,pg z m d  (5.228) 

where mp(x) is similar to the mp(x) of (5.31), but is extended to a two-dimensional 

domain such that it is nonzero only in the small fixed subdomain a. g( ) is assumed to 

be a continuously differentiable function of the stress components. Stress vector is a 

function of displacement z, with the following set of relations 

11 ,11

22 ,22

12 ,12 ,21

( ) ( ).
2 2

z
h h

z z z

z z

C C  (5.229) 

Since the magnitude of stress is at a maximum level either at the top or bottom surface of 

the plate, the half-thickness h/2 is used in (5.229). As a result, the stress vector has an 

explicitly dependent term on the design. 

 The first variation of the stress performance measure in (5.228) is 

4 , ,

1
( ) ( ) .

2
p pg z m d g z m hdC  (5.230) 

The adjoint equation can then be defined by using the first integral in (5.230) as 

2

,( , ) (1 ) ( , ) ( ) , ,pd j a g m du u  (5.231) 

where adjoint response 
*
 is desired. Using the adjoint variable method, the design 

sensitivity of the complex stress can be obtained as 

3 ,

2

1
( )

2

( , ) (1 ) ( , ).

pg z m hd

d z j a zu u

C
 (5.232) 

Numerical Implementation with an Established Finite Element Analysis Code 

For a design sensitivity analysis using the adjoint variable method, the adjoint load for 

each performance measure needs to be computed. To calculate the displacement 

sensitivity at the specified node, a unit harmonic load is applied to the adjoint structure at 

the same node in the same direction as the displacement. To compute the adjoint load 

associated with a stress performance measure, finite element shape functions can be used. 

The adjoint structural response, that is, the solutions to (5.216), (5.223) and (5.231), can 

be efficiently obtained by using the restart capability of the established FEA code. Using 

an original and adjoint response, the design sensitivity information in (5.217), (5.224), 

and (5.232) can be obtained by carrying out numerical integration. 

 When design sensitivity analysis is performed using the direct differentiation method, 

the fictitious load on the right of (5.201) is computed using finite element shape functions 

and numerical integration methods. The difficulties involved in numerical 

implementation for either of these two methods are the same. An efficient solution to 

(5.201) can also be obtained using the restart capability, as with the adjoint variable 

method. Note that structural response z  itself contains design sensitivity information. To 

calculate the stress design sensitivity, integration in (5.215), (5.222), and (5.230) can be 

evaluated numerically using z  and shape functions. 
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5.4.3 Numerical Examples 

Plate Supported by Shock Absorbers 

Consider a plate with shock absorbers, as shown in Fig. 5.20 [28]. The plate dimension is 

1.02 m  1.02 m (40 in  40 in), and it contains a concentrated vertical dynamic harmonic 

load at the plate center. The first three natural frequencies of this plate are 10.94 Hz, 

37.76 Hz, and 47.24 Hz. The load magnitude is 44.5 N (10 lb) and the two cyclic 

frequencies are = 10.8 Hz and = 10.9 Hz. Note that these cyclic frequencies are very 

close to the fundamental frequency c = 10.94 Hz. Due to symmetry, only one quarter of 

the plate is analyzed. Young's modulus is E = 206.8 GPa (3.0  10
7
 psi), mass density is 

= 20.3 kg/m
3
 (7.34  10

–4
 lb/in

3
), and Poisson's ratio is = 0.3. The spring and 

damping coefficients are 656.5 kN/m and 17.5 kN·s/m, respectively. The nominal design 

has a uniform thickness of 2.54 mm (0.1 in) and the structural damping is = 0.04. 

 The finite element model consists of 25 square bending elements from 

COSMIC/NASTRAN QUAD2 [77], 36 nodal points, and 108 degrees of freedom. The 

bending element QUAD2 uses two sets of overlapping triangular elements, and stresses 

in the subtriangle are computed at the intersection point of the two diagonals and 

averaged [78]. Although the element has both bending and membrane capabilities, only 

bending part is considered. To numerically compute design sensitivity, the original 

displacements and stresses and the adjoint displacements and strains are required.  

 To demonstrate the accuracy of the design sensitivity results in the vicinity of 

resonance, a design sensitivity analysis is performed with excitation frequencies of 10.8 

Hz and 10.9 Hz. Thus, the frequency ratios are r = / c = 0.987 and r = 0.996. A nine-

point Gauss integration is used for the numerical integration of design sensitivity 

expressions. The design sensitivity results of real, imaginary, and maximum 

displacements, and the phase angle for the selected nodal points are shown in Table 5.5, 

where ND and Hz denote the node number and load frequency, respectively. Real 

displacement z
1
, imaginary displacement z

2
, maximum displacement z, and phase angle 

are denoted by the letters R, I, D, and P, respectively. In addition, (u u) and (u

u) represent performance measure values at the perturbed designs u u and u u,

respectively, where u is seen as the amount of design perturbation. 
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Figure 5.20. Plate supported by shock absorbers. 
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Table 5.5. Design sensitivity of plate supported by shock absorbers  

(displacement, 0.1% perturbation). 

Hz ND (u u) (u u)
(%)

| /

(%)

10.8 1 R 0.270E+1 0.275E+1 0.267E–1 0.259E–1 97.0 1.0 

  I –.361E+1 –.330E+1 0.151E+0 0.149E+0 98.3 4.4 

  D 0.450E+1 0.430E+1 –.102E+0 –.100E+0 98.4 2.3 

  P 0.306E+3 0.309E+3 0.149E+1 0.146E+1 98.1 0.5 

10.8 15 R 0.183E+1 0.187E+1 0.187E–1 0.182E–1 97.1 1.0 

  I –.250E+1 –.229E+1 0.105E+0 0.103E+0 98.3 4.4 

  D 0.310E+1 0.296E+1 –.716E–1 –.705E–1 98.4 2.4 

  P 0.306E+3 0.309E+3 0.149E+1 0.146E+1 98.1 0.5 

10.8 29 R 0.495E+0 0.505E+0 0.535E–2 0.523E–2 97.9 1.1 

  I –.695E+0 –.637E+0 0.290E–1 0.285E–1 98.1 4.4 

  D 0.853E+0 0.813E+0 –.200E–1 –.196E–1 98.1 2.4 

  P 0.305E+3 0.308E+3 0.149E+1 0.146E+1 98.1 0.5

10.9 1 R 0.174E+1 0.204E+1 0.147E+0 0.144E+0 98.1 7.7 

  I –.498E+1 –.467E+1 0.154E+0 0.152E+0 98.6 3.2 

  D 0.528E+1 0.510E+1 –.897E–1 –.885E–1 98.7 1.7 

  P 0.289E+3 0.293E+3 0.213E+1 0.217E+1 101.8 0.7 

10.9 15 R 0.117E+1 0.138E+1 0.102E+0 0.100E+0 98.1 8.0 

  I –.345E+1 –.324E+1 0.106E+0 0.105E+0 98.5 3.2 

  D 0.365E+1 0.352E+1 –.632E–1 –.623E–1 98.6 1.8 

  P 0.288E+3 0.293E+3 0.213E+1 0.217E+1 101.8 0.7 

10.9 29 R 0.310E+0 0.367E+0 0.284E–1 0.279E–1 98.2 8.4 

  I –.957E+0 –.898E+0 0.294E–1 0.289E–1 98.3 3.2 

  D 0.100E+1 0.971E+0 –.178E–1 –.175E–1 98.1 1.8 

  P 0.288E+3 0.292E+3 0.213E+1 0.217E+1 101.9 0.7

Table 5.6. Design sensitivity of plate Supported by shock absorbers 

(stress, psi, 0.1% perturbation). 

Hz EL (u u) (u u)
(%)

| /

(%)

10.8 1 R 0.327E+5 0.334E+5 0.326E+3 0.316E+3 97.1 1.0 

  I –.410E+5 –.376E+5 0.168E+4 0.166E+4 98.3 4.3 

  S 0.525E+5 0.503E+5 –.108E+4 –.106E+4 98.4 2.1 

10.8 13 R 0.177E+5 0.181E+5 0.201E+3 0.195E+3 97.1 1.1 

  I –.245E+5 –.225E+5 0.101E+4 0.996E+3 98.3 4.3 

  S 0.303E+5 0.289E+5 –.685E+3 –.674E+3 98.4 2.3 

10.8 25 R 0.386E+4 0.395E+4 0.450E+2 0.446E+2 99.0 1.2 

  I –.546E+4 –.501E+4 0.225E+3 0.220E+3 97.8 4.3 

  S 0.669E+4 0.638E+4 –.153E+3 –.149E+3 97.5 2.3 

10.9 1 R 0.219E+5 0.253E+5 0.168E+4 0.165E+4 98.1 7.1 

  I –.566E+5 –.532E+5 0.170E+4 0.168E+4 98.5 3.1 

  S 0.608E+5 0.589E+5 –.900E+3 –.888E+3 98.7 1.5 

10.9 13 R 0.112E+5 0.132E+5 0.101E+4 0.998E+3 98.1 8.3 

  I –.339E+5 –.319E+5 0.102E+4 0.100E+4 98.6 3.1 

  S 0.357E+5 0.345E+5 –.603E+3 –.595E+3 98.7 1.7 

10.9 25 R 0.242E+4 0.287E+4 0.226E+3 0.222E+3 98.3 8.5 

  I –.754E+4 –.709E+4 0.227E+3 0.222E+3 97.9 3.1 

  S 0.792E+4 0.765E+4 –.136E+3 –.132E+3 97.4 1.8
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 The central finite difference between these performance measure values is denoted by 

[ (u u) (u u)] 2, and  is the design sensitivity prediction. The ratio 

between  and  times 100% is used as a measure of accuracy for design sensitivity 

computations. In other words, a 100% agreement means that the predicted change is 

exactly the same as the finite difference. When  is too small, this accuracy measure 

may fail to give the correct information because  may lose significant digits during 

numerical computation. On the other hand, if  is too large, the finite difference may 

contain nonlinear terms. To monitor the magnitude of , the ratio | /  100 (%) is 

given in the table. In order to avoid nonlinear behavior, a 0.1% perturbation of the design 

is the size used for computational purposes. As shown in Table 5.5, agreement is 

excellent between the finite difference results and the results predicted by sensitivity 

analysis.

 Now, consider a design sensitivity computation for bending stress. Since NASTRAN 

provides element stress at the centroid, the pointwise stress performance is measured at 

the element centroid. To evaluate the design sensitivity equation, an adjoint solution to 

(5.231) is required. A nine-point Gauss integration is used for numerical integration. For 

pointwise stress 11, design sensitivity analysis is carried out with a 0.1% design 

perturbation; sensitivity results are listed in Table 5.6. Real, imaginary, and maximum 

stresses are denoted as R, I, and S, respectively, and EL denotes the element number. As 

shown in Table 5.6, excellent agreement is obtained where | /  is in the range of 1.0 to 

8.5 %. 

Vehicle Chassis Frame Structure 

For a second example, a vehicle chassis frame model [76] is presented in Fig. 5.21, and a 

finite element model used for design sensitivity purposes is shown in Fig. 5.22 [28]. The 

structure is 7.35 m (289.37 in) long and 0.8 m (31.5 in) wide, with two hollow 

longitudinal frames and five hollow cross members. The model in Fig. 5.21 has 

suspension coil springs, shock absorbers, linear springs and dampers representing the 

vehicle tire stiffness and damping effects, and lumped masses of suspension sprung. The 

engine and body masses are attached to the frame using linear springs [79], since such 

masses are not welded to the chassis. The chassis is subjected to harmonic loads, Fe1, 

Fe2, and Fe3, excited by the engine. In addition, harmonic loads Fs1 and Fs2 are applied 

to the frame to simulate a sinusoidal-shaped road surface. Table 5.7 lists the design 

specifications for mechanical properties, chassis natural frequencies, and loading 

conditions. 

 As illustrated in Fig. 5.22, the finite element model contains two longitudinal and five 

transverse design components with 68 hollow rectangular beam elements (individually 

numbered 1 to 68 in bold face), 13 spring elements, 8 damping elements, 65 nodal points 

(numbers 1 to 65 not in bold face), and 15 scalar points (numbers 66 to 80 not in bold 

face) including body and engine mount spring attachments with 397 degrees of freedom. 

The nominal design has a uniform thickness t = w of 5.08 mm (0.2 in), a width b of 10.16 

cm (4.0 in), and a height h of 15.24 cm (6.0 in). Young's modulus is E = 206.8 GPa (3.0 

10
7
 psi), Poisson's ratio is = 0.3, mass density is = 20.3 kg/m

3
 (7.34  10

–4
 lb/in

3
), and 

the structural damping coefficient is = 0.04. 

 To prevent vehicle rigid body motion, x1- and x2-displacements at nodes 24 and 49 

are constrained and the ends of the spring and damping elements, which represent tires, 

are fixed on the ground. A COSMIC/NASTRAN Direct Frequency Response Analysis is 

used for the original and adjoint finite element analysis [77]. 

 Using the design sensitivity analysis method, displacement sensitivity is calculated 

with a 1% design perturbation on width, height, and thickness. The results for randomly 

selected nodal points are provided in Table 5.8. The design sensitivity results for the 



228  5. Continuum Sizing Design Sensitivity Analysis  

averaged maximum bending stress for each element are given in Table 5.9 for randomly 

selected finite elements with a 1% design perturbation. As Tables 5.8 and 5.9 show, there 

is excellent agreement between the results of the proposed method and the finite 

difference method. 

Figure 5.21. Vehicle chassis frame structure. 

Table 5.7. Design specification for vehicle chassis frame. 

 FRONT SHOCK ABSORBER: Cd1=1.7 kN-s/m

 REAR   SHOCK ABSORBER: Cd2=1.7 kN-s/m

FRONT TIRE STIFFNESS: Kt1=306.0 kN/m

REAR   TIRE STIFFNESS: Kt2=306.0 kN/m

SPRING COEFFICIENT 

DAMPING COEFFICIENT

FRONT COIL SPRING: Ks1=32.3 kN/m

REAR   COIL SPRING: Ks2=65.7 kN/m

ATTACHMENT SPRING: Ka=4991.1 kN/m

 FRONT TIRE DAMPING:  Ct1=0.3 kN-s/m

REAR   TIRE DAMPING:  Ct2=0.3 kN-s/m

BODY MASS

Mb1=Mb2=250 kg,  

Mb3=Mb4=340 kg,

Mb5=Mb6=227 kg

ENGINE MASS: Me=254 kg

SUSPENSION SPRUNG MASS

Ms1=52 kg, Ms2=75 kg

NATURAL FREQUENCIES

 = 2.0 Hz

2.89 Hz,  3.61 Hz,  3.97Hz

 LOADING CONDITION:

Fs1 , Fs2: 

Fe1 , Fe3:

445

Fe2: 3558

1779 ej t
N

ej t
N

ej t
N
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Figure 5.22. Finite element model of vehicle chassis frame structure. 

Table 5.9. Design sensitivity of vehicle chassis frame (stress, psi). 

EL (u u) (u u) (%)

4 S 0.334E+4 0.318E+4 –.842E+2 –.841E+2 99.9 

8 S 0.304E+4 0.286E+4 –.876E+2 –.874E+2 99.7 

12 S 0.183E+4 0.172E+4 –.561E+2 –.560E+2 99.8 

16 S 0.893E+3 0.843E+3 –.246E+2 –.246E+2 99.7 

20 S 0.240E+3 0.243E+3 0.142E+1 0.136E+1 96.2 

50 S 0.714E+3 0.677E+3 –.183E+2 –.201E+2 109.5 

Table 5.8.  Design sensitivity of vehicle chassis frame (displacement). 

ND (u u) (u u) (%)

5 D 0.599E+1 0.609E+1 0.472E–1 0.472E–1 99.8 

 P 0.310E+3 0.313E+3 –.478E+0 –.478E+0 99.9 

10 D 0.410E+1 0.417E+1 0.369E–1 0.368E–1 99.6 

 P 0.311E+3 0.310E+3 –.467E+0 –.466E+0 99.7 

15 D 0.202E+1 0.207E+1 0.228E–1 0.227E–1 99.5 

 P 0.304E+3 0.303E+3 –.480E+0 –.479E+0 99.7 

20 D 0.501E+0 0.510E+0 0.445E–2 0.443E–2 99.6 

 P 0.193E+3 0.194E+3 0.485E+0 0.487E+0 100.3 

25 D 0.288E+1 0.291E+1 0.172E–1 0.170E–1 99.1 

 P 0.144E+3 0.144E+3 –.273E+0 –.271E+0 99.4 

52 D 0.712E+1 0.723E+1 0.519E–1 0.519E–1 100.0 

 P 0.315E+3 0.314E+3 –.489E+0 –.489E+0 100.0 

55 D 0.528E+1 0.537E+1 0.438E–1 0.436E–1 99.7 

 P 0.313E+3 0.312E+3 –.473E+0 –.472E+0 99.8 

58 D 0.289E+1 0.295E+1 0.289E–1 0.288E–1 99.6 

 P 0.308E+3 0.307E+3 –.471E+0 –.469E+0 99.7 

61 D 0.118E+1 0.121E+1 0.167E–1 0.166E–1 99.6 

 P 0.295E+3 0.295E+3 –.483E+0 –.482E+0 99.7 

64 D 0.184E+1 0.186E+1 0.956E–2 0.947E–2 99.0 

 P 0.149E+3 0.149E+3 –.200E+0 –.198E+0 99.1 
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5.5 Structural-Acoustic Design Sensitivity Analysis 

The objective of structural-acoustic design sensitivity analysis is to predict the variation 

of acoustic and structural performance measures resulting from the change in design 

variables of structural components [80]. Such sizing design variables as material 

properties, panel thickness, and beam cross-sectional area are taken into account in the 

development of design sensitivity analysis. 

 A performance measure variation is expressed in terms of the state variable variation, 

which can be obtained by solving an equation that is derived from the state equation. 

Alternatively, the sensitivity expression can be reduced using adjoint variables and 

adjoint equations to a form that does not include the variations of state variables. 

5.5.1 Design Sensitivity Analysis of Structural-Acoustic Response 

A state variable variation with respect to the design was introduced in Section 5.1. This 

concept can be extended to those state variables of structural-acoustic problems in which 

the acoustic pressure and the structural displacement are considered as state variables. If 

we let current design u be perturbed in the direction of u and controlled by parameter ,

then the variations of displacement pressure in the direction of u can be defined as 

0

( , )
d

d
z z x u u  (5.233) 

and

0

( , ) .
d

p p
d

x u u  (5.234) 

 To develop a design sensitivity analysis for structural-acoustic problems, the 

variational formulation of Section 2.6 is rewritten 

* *( , ) ( , ) ( , ) ( , ) ( ), { , } ,q b p p p p p Qu uz z z z z z  (5.235) 

where Q is a complex vector space defined in (2.74). Note that the sesquilinear forms 

b(•,•), (•,•), and (•,•) do not explicitly depend on the sizing design variables. However, 

their arguments z and p do depend on the design through the response analysis in (5.235), 

as shown in (5.233) and (5.234). 

 Since the kinematically admissible space Q is independent of the design, a variation 

of (5.235) can be taken to obtain the following design sensitivity equation: 

* *

( , ) ( , ) ( , ) ( , )

( ) ( , ), { , } ,

q b p p p p

q p Q

u

u u

z z z z

z z z z
 (5.236) 

where ( )u z  is the same as in (5.3), if a complex variable is used instead of a real 

function, and where 

0

( , ) ( , )
d

q q
d

u u uz z z z  (5.237) 

can be calculated using the terms in (5.201). In fact, the right side of (5.236) is the same 

as the right side of (5.201). This is true because the acoustic medium does not explicitly 

depend on the sizing design. 
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Adjoint Variable Method 

The harmonic performance measures of interest when designing a coupled system are 

expressed as a function of complex variables, which correspond to acoustic pressure and 

structural displacement. Consider a pressure-related performance in the acoustic cavity 

( , , ) ,
a

a

p h p p du  (5.238) 

where it is assumed that function h is continuously differentiable with respect to its 

arguments and that the domain of the integral 
a
 is independent of design variation. 

Taking the variation of p, we obtain 

, , ,( ) .
a

a

p p ph p h p h du u  (5.239) 

The variation of p includes the variation of the state variable p. If sensitivity equation 

(5.236) is solved for z  and p , then (5.239) can also be evaluated by substituting p  to 

express the variation of p explicitly in terms of u, which is the direct differentiation 

method. 

 In the adjoint variable method, an adjoint equation is adapted by using the first two 

integrands in (5.239). Let the adjoint equation and the adjoint response {
*
,

*
} that 

correspond to the state variable {z, p} be defined such that {
*
,

*
} Q satisfy the adjoint 

equation. We can then define the adjoint equation of a structural-acoustic problem as 

, ,

( , ) ( , ) ( , ) ( , )

( ) , { , } ,
a p p

q b

h h d Q

u

 (5.240) 

where adjoint solutions {
*
,

*
} are desired. To utilize the adjoint equation, every 

{ , } Q  in (5.240) is replaced by {z , p } Q. We obtain 

, ,

( , ) ( , ) ( , ) ( , )

( ) .
a p p

q b p p

h p h p d

u z z
 (5.241) 

On the other hand, since design sensitivity equation (5.236) satisfies for all * *{ , }pz Q,

we can replace * *{ , }pz  with {
*
, }, since the solution {

*
, } to adjoint equation 

(5.240) belongs to Q. Thus, we have 

( , ) ( , ) ( , ) ( , )

( ) ( , ).

q b p p

q

u

u u

z z

z
 (5.242) 

Notice that the left sides of (5.241) and (5.242) are identical, yielding the following 

relation: 

, ,( ) ( ) ( , ).
a

a

p ph p h p d qu u z  (5.243) 

Thus, the first two terms on the right side of (5.239) are expressed as adjoint variables. 

Finally, the design sensitivity of p becomes 

,( ) ( , ) .
a

a

p q h du u uz u  (5.244) 

 Now, consider a displacement-related performance on the structure 

( , , ) ,
s

s

z g dz z u  (5.245) 
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where function g is presumed to be differentiable with respect to its arguments and the 

domain of the integral 
s
 is independent of design variation. Taking the variation of z,

we obtain 

, , ,( : ) .
s

s

z g g g dz z uz z u  (5.246) 

A similar procedure used to obtain p in (5.239) can now be used to obtain z. Define 

the adjoint equation of the performance in (5.245) as 

, ,

( , ) ( , ) ( , ) ( , )

( : ) , { , } .
s

s

q b

g g d Q

u

z z

 (5.247) 

Following the same procedure as with (5.241) and (5.242), the first two terms of (5.246) 

can be expressed in terms of the response result z and the adjoint result 
*
, as 

, ,( : ) ( ) ( , ),
s

sg g d qz z u uz z z  (5.248) 

and, accordingly, the sensitivity of performance z is obtained, 

,( ) ( , ) .
s

s

z q g du u uz u  (5.249) 

Note that even if p and z are completely different performance measures, the 

expressions of (5.244) and (5.249) are quite similar. Only the adjoint solutions of (5.240) 

and (5.247) will be different based on the type of performance measure. Thus, the same 

adjoint equation can be used for different kinds of design variables. This similarity in the 

adjoint variable method makes it convenient from the viewpoint of computational 

implementation. For different performance measures, only the right sides of (5.240) and 

(5.247) are different, which are known as the adjoint loads. After obtaining the adjoint 

variables, the remaining numerical integration process is basically the same for all 

performance measures. 

5.5.2 Analytical Example 

Design components that appear in the structural-acoustic problem are exactly the same as 

those that appear in the frequency response problem. For example, the expression of 

( , )q u z z  for each design component can be found in Section 5.4.2 as 

2( , ) ( , ) ( , ) ( , ).q d j c au u u uz z z z z z z z  (5.250) 

The other sesquilinear forms, b(•,•), (•,•), and (•,•), are independent of the sizing design 

variables.

 The design sensitivity formulation developed in previous sections can be illustrated 

with a simple example in which design sensitivity is derived using the adjoint variable 

method. Consider an acoustic cavity with a flexible panel, as illustrated in Fig. 5.23. The 

cavity is surrounded on all sides by rigid walls except for one side, which is closed by a 

clamped panel of linear elastic material with the structural damping coefficient . The 

panel’s uniform thickness h is selected as the design variable, that is, u(x) = [h]. Let us 

consider such performance measures as the acoustic pressure p(x
a
) at point x

a
 in the 

acoustic cavity, and the x
3
-directional displacement z(x

s
) at point x

s
 on the structural 

panel. A harmonic force f(x,t) with frequency  is applied to the plate. Here, f(x,t) is not 

assumed to be dependent on the design variable u(x).
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Figure 5.23. Cavity with flexible wall. 

 The variational equation of harmonic motion of this coupled system is given as 

(5.235). The pressure performance measure is 

1 ( ) ( ) ,
a

a a ap p dx x x  (5.251) 

where (x) is the Dirac delta measure. Equation (5.251) is a simple form of (5.238), a 

general form of acoustic performance measure. The variation of the performance 

measure, corresponding to (5.251), is 

1 ( ) ( ) .
a

a a ap p dx x x  (5.252) 

The adjoint equation for 1  is formed from (5.240) as 

( , ) ( , ) ( , ) ( , )

( ) , { , } .
a

a a

q b

d Q

u

x x
 (5.253) 

The term on the right side of this equation is referred to as the acoustic adjoint load. The 

physical meaning of the acoustic adjoint load, which corresponds to the acoustic pressure 

at a point, is the unit pressure source at the point. From (5.244), the design sensitivity of 

the acoustic pressure is 

1 ( , ).q u z  (5.254) 

If the panel in this example is modeled as a flat plate, the variation of sesquilinear form 

qu(•,•) is given in (5.226) and (5.227). Substituting the variations of these sesquilinear 

forms into (5.254), the design sensitivity of (5.251) is 

2
2 * *

1 2
(1 ) ( ) ( ) ,

4(1 )
s s

s T sEh h
z hd j z dC  (5.255) 

Rigid Walls 

x3

a

Flexible Panel

x
a

x
S

x1

x2

f(x,t)

S
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where  is the structural damping coefficient. 

 The other performance measure in this example is the displacement at point x
s
. Its 

mathematical expression is 

2 ( ) ( ) .
s

s s sz z dx x x  (5.256) 

Equation (5.256) is a simple form of (5.245), which is the general form for a structural 

performance measure. The variation of 2 is 

2 ( ) ( ) .
s

s s sz z dx x x  (5.257) 

Working from (5.247), the corresponding adjoint equation is 

( , ) ( , ) ( , ) ( , )

( ) , { , } .
s

s s

q b

d Q

u

x x
 (5.258) 

In (5.258), the term on the right side is the adjoint load for the structural displacement. 

The physical meaning of the adjoint load, which corresponds to the harmonic 

displacement at a point, is a unit harmonic force applied at point x
s
. From (5.249), the 

design sensitivity is

2 ( , ).q u z  (5.259) 

The fact that the primary state equation (5.235) and the adjoint equations (5.253) and 

(5.258) represent the same structure with different loads provides an efficient method for 

numerical implementation, since only one finite element model is required to solve the 

primary and adjoint equations. As was indicated in Section 5.1.3, the design sensitivity 

expressions in (5.254) and (5.259) also have identical forms, which is convenient in the 

design sensitivity computation of a coupled system. 

5.5.3 Numerical Examples 

Numerical Considerations 

Structural-acoustic systems can be solved with either the finite element or the boundary 

element method. In this section, the finite element method is utilized for analysis [77] and 

[81]. The variational equation of the harmonic motion of a continuum model, (5.235), can 

be reduced to a set of linear algebraic equations by discretizing the model into finite 

elements and by introducing shape functions and nodal variables for each element. The 

acoustic pressure p(x) and the structural displacement z(x) are approximated using shape 

functions and nodal variables for each element in the discretized model, as 

( ) ( )
,

( ) ( )

e

s

e

ap

z x N x z

x N x p
 (5.260) 

where Ns(x) and Na(x) are matrices of shape functions for displacement and pressure, 

respectively, and z
e
 and p

e
 are the element nodal variable vectors. Substituting (5.260) 

into (5.235) and carrying out integration yields the following matrix equation: 

2

2 2
,s s s as

as a a

j z FM C K K

p 0M M K
 (5.261) 
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where Ms, Cs, and Ks are the mass, damping, and stiffness matrices of the structure, 

respectively, and F is the loading vector, obtained from the right side of (5.235). 

Similarly, Ma and Ka are, respectively, the equivalent mass and stiffness matrices of the 

acoustic medium. The coupling terms between the structure and the acoustic medium are 

off-diagonal submatrices Mas and Kas, and correspond to the coupling terms in (5.235). 

As a result, the global matrix in (5.261) is not symmetric due to the off-diagonal coupling 

submatrices. 

 In solving (5.261), efficiency cannot be overlooked when considering practical 

application. Either direct or modal frequency FEA methods can be used to solve the 

coupled equation. In the direct frequency FEA method, (5.261) is directly solved as a 

linear algebraic equation with complex variables [81]. Although the method is 

straightforward in application and provides a very accurate solution, it requires a large 

amount of computational costs for the repeated analyses required of a large system at 

several frequencies and with several different loading conditions. Modal frequency FEA 

is an efficient and a practical method for solving a large size coupled system [34]. In this 

method, a finite number of modes of the structure and acoustic medium are obtained 

independently, and a set of selected modes are used to diagonalize the mass and stiffness 

submatrices, even though the off-diagonal submatrices in (5.261) cannot be diagonalized 

in this process, since the modes are not orthogonal with respect to the off-diagonal 

submatrices. 

Finite Element Modeling 

Response Analysis 

2

2 2

s s s as

as a a

j z FM C K K

p 0M M K

Adjoint Analysis 

*
2 *

2 2 *

s

s s s as

a

as a a

jM C K K f

M M K f

Adjoint Load 

Computation 

Sensitivity Computation

(Numerical Integration) 

*( , )z

Figure 5.24. Computational procedure of design sensitivity analysis. 
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 Figure 5.24 shows the computational procedure for the adjoint variable method with 

an established FEA code. A finite element model is constructed by discretizing both the 

structural components and the acoustic medium. Structural members consist of one- and 

two-dimensional elements. Triangular and quadrilateral flat elements are used for surface 

design components, and line segments are used for line design components. The acoustic 

medium, which is a three-dimensional volume, is modeled using tetrahedrons and 

hexagons. Identifying the boundary conditions, the interface conditions, and the external 

load at the nodal points completes the finite element modeling process. 

Panel     Acoustic cavity 

Figure 5.25. Acoustic cavity with flexible wall and finite element models. 

Rigid Walls 
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 An initial finite element analysis of the coupled system gives the primary response z

and p at the nodal points. However, as indicated in Section 5.5.2, only a structural 

response is required in order to perform a design sensitivity analysis. 

 The adjoint equations are numerically solved using the FEA code with the same finite 

element model used in the initial analysis. However, in general computation of such 

adjoint loads as those in (5.253) and (5.258) requires the solutions z and p from the 

primary analysis, as well as numerical integration. As mentioned before, the solution to 

the adjoint analysis is the complex conjugate 
*
 and 

*
. Moreover, this complex 

conjugate is directly used to evaluate design sensitivity expressions. 

 The numerical solutions are used to compute design sensitivity, and the integration of 

the design sensitivity expressions in (5.244) can be evaluated using such numerical 

integration methods as Gaussian quadrature [46]. The integrands are functions of the state 

variable, the complex conjugate of the adjoint variable, and the gradients of both 

variables, as illustrated in (5.255). The function values at Gauss points in each element 

are required. 

Cavity with Flexible Wall 

Figure 5.25 depicts the acoustic cavity and panel, previously discussed in Section 5.5.2 

[80]. The acoustic medium in the cavity is air, with an equilibrium mass density 0 of 

0.1205 Kg/m
3
 and an adiabatic bulk modulus  of 139298 N/m

2
. The panel is an 

aluminum plate with a thickness of 0.01 m, a mass density s of 2700 Kg/m
3
, a Young's 

modulus E of 7.1 × 10
10

 Pa, a Poisson's ratio  of 0.334, and a structural damping 

coefficient  of 0.06. Harmonic forces of 1.0 N in the x3-direction are applied at the four 

points on the plate. The finite element model shown in Fig. 5.25 includes 1728 linear 

hexagonal elements and 288 triangular shell elements for the panel. 

 Panel thickness is chosen as the design variable. The design sensitivities of the 

following performance measures are considered: the acoustic pressure at points A1 (0.5, 

0.6, 0.) and A2 (0.5, 0.6, 1.5), and the x3-direction displacement at points S1 (0.5, 0.6, 0.) 

and S2 (1/12, 0.2, 0). The ABAQUS code [81] is used for the direct frequency analysis of 

primary and adjoint problems. Fig. 5.26 provides the primary analysis results. 

 Design sensitivities are computed at 55 Hz and 60 Hz, which are close to the resonant 

and the antiresonant frequencies, respectively, as shown in Fig. 5.26. The three-point 

Gaussian quadrature formula is used for numerical integration over triangular elements. 

Design sensitivity results are shown in Tables 5.10 and 5.11. 

 In Tables 5.10 and 5.11, u – u  and u + u  are the frequency responses of 

perturbed designs u – u and u + u, respectively, where u is the amount of variation in 

the design. The central finite difference in the design sensitivity is denoted by ( u

+ u – u – u ) 2, and  is the predicted design sensitivity. Design perturbation of 

±1.0 × 10
–4

 m is used, and predicted design sensitivity values are compared with the 

central finite difference results. Table 5.10 presents design sensitivity results for acoustic 

pressure in pascals (Pa), while Table 5.11 shows design sensitivity results for structural 

displacement in the x3-direction in meters (m). In Tables 5.10 and 5.11, the real and 

imaginary parts of complex phasors are denoted by R and I, respectively, and the 

magnitude is denoted by D, which is the harmonic response amplitude. Table 5.11 shows 

the design sensitivities of the velocity and acceleration amplitudes V and A, as well as the 

structural displacement. Excellent agreement is obtained between the design sensitivity 

predictions  and the finite differences .
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Figure 5.26. Analysis results of acoustic cavity with flexible wall. 
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Simple Box with Elastic Supports 

Figure 5.27 is the model of a simple box vehicle, an example of a built-up structure [29]. 

The body structure is made of thin aluminum plates of uniform thickness that enclose the 

acoustic medium (air), and the structure is mounted on a simplified suspension system 

with springs and dampers. The air has an equilibrium density 0 of 0.1205 Kg/m
3
 and an 

adiabatic bulk modulus  of 139,298 N/m
2
. The material properties of the structure are a 

Poisson's ratio  of 0.334, a structural damping coefficient  of 0.06, a mass density s of 

2700 Kg/m
3
, and a Young's modulus E of 7.1 × 10

10
 N/m

2
. Body panel thickness is 

chosen as a design variable, and the current design value is 0.01 m. 

Table 5.11. Design sensitivity of cavity with flexible wall 

(structural frequency response in x3-direction, unit m). 

Frequency Location u– u u u / (%)

  R 0.5801E–5 0.5064E–5 –.3688E–6 –.3690E–6 100.1 

  I –.1146E–5 –.9239E–6 0.1108E–6 0.1109E–6 100.1 

55 Hz S1 D 0.5913E–5 0.5147E–5 –.3831E–6 –.3832E–6 100.0 

  V 0.2044E–2 0.1779E–2 –.1324E–3 –.1324E–3 100.0 

  A 0.7062E+0 0.6147E+0 –.4574E–1 –.4577E–1 100.0 

  R 0.4695E–5 0.4215E–5 –.2403E–6 –.2410E–6 100.3 

  I –.8130E–6 –.6949E–6 0.5904E–7 0.5923E–7 100.3 

60 Hz S1 D 0.4765E–5 0.4272E–5 –.2468E–6 –.2474E–6 100.3 

  V 0.1796E–2 0.1610E–2 –.9302E–4 –.9329E–4 100.3 

  A 0.6773E+0 0.6071E+0 –.3517E–1 –.3517E–1 100.3 

  R 0.5963E–6 0.5211E–6 –.3755E–7 –.3755E–7 100.0 

  I –.1158E–6 –.9339E–7 0.1120E–7 0.1117E–7   99.7 

55 Hz S2 D 0.6074E–6 0.5295E–6 –.3897E–7 –.3896E–7 100.0 

  V 0.2099E–3 0.1830E–3 –.1347E–4 –.1346E–4 100.0 

  A 0.7254E–1 0.6323E–1 –.4653E–2 –.4653E–2 100.0 

  R 0.4565E–6 0.4117E–6 –.2243E–7 –.2249E–7 100.2 

  I –.7536E–7 –.6471E–7 0.5323E–8 0.5335E–8 100.2 

60 Hz S2 D 0.4627E–6 0.4167E–6 –.2300E–7 –.2305E–7 100.2 

  V 0.1744E–3 0.1571E–3 –.8673E–5 –.8689E–5 100.2 

  A 0.6576E–1 0.5922E–1 –.3270E–2 –.3276E–2 100.2 

Table 5.10. Design sensitivity of cavity with flexible wall 

(acoustic frequency response, unit Pa). 

Frequency Location u– u u u / (%)

  R –.2513E+1 –.2197E+1 0.1581E+0 0.1582E+0 100.0 

55 Hz A1 I 0.4885E+0 0.3953E+0 –.4661E–1 –.4715E–1 101.2 

  D 0.2560E+1 0.2232E+1 –.1640E+4 –.1641E+0 100.1 

  R 0.1126E+1 0.1013E+1 –.5652E–1 –.5668E–1 100.3 

60 Hz A1 I –.1903E+0 –.1630E+0 0.1365E–1 0.1369E–1 100.3 

  D 0.1142E+1 0.1026E+1 –.5800E–1 –.5816E–1 100.3 

  R 0.1223E+0 0.1070E+0 –.7661E–2 –.7698E–2 100.5 

55Hz A2 I –.2380E–1 –.1923E–1 0.2283E–2 0.2295E–2 100.5 

  D 0.1246E+0 0.1087E+0 –.7950E–2 –.7989E–2 100.5 

  R 0.1073E+0 0.9645E–1 –.5413E–2 –.5402E–2   99.8 

60 Hz A2 I –.1815E–1 –.1554E–1 0.1306E–2 0.1306E–2 100.0 

  D 0.1088E+0 0.9769E–1 –.5553E–2 –.5543E–2   99.8 
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Structure    Acoustic Medium 

Figure 5.27. Simple box with elastic supports and finite element method. 

 The finite element model includes 688 hexagonal and 32 tetrahedral acoustic 

elements, and 928 triangular structural shell elements for the panels. Twelve spring 

elements and twelve viscous dampers support the structure in three directions at each 

attachment point. The rear suspension supports P1 and P2 are excited with harmonic 

displacements in the x3-direction with amplitudes of 1.0 × 10
–4

 m, and the front supports 

are fixed on the ground. The direct frequency response analysis of ABAQUS [81] is used 

for the analysis of both primary and adjoint problems. 

 As in the previous example, the predicted design sensitivity results of the harmonic 

responses at 54 and 62 Hz are compared with the central finite difference results. For this 

test, the ±1.0 × 10
–5

 m thickness perturbations of the body panels are taken as the design 

variations. Table 5.12 shows the results for the acoustic pressures in pascals (Pa) at points 

x1
a
 (4.0, 0.25, 1.0), and x2

a
 (3.0, –0.25, 1.0). Table 5.13 shows the results for structural 

displacements, velocities, and accelerations in the x3-direction at points x1
s
 (4.0, 0.25, 

0.5) and x2
s
 (3.0, –0.25, 0.5), both located on the floor panel. The unit of displacement is 

meters (m). The same notation used in the previous example is used here. Both tables 

have good agreement between predicted and finite difference results. 
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Table 5.12. Design sensitivity of simple box 

(acoustic frequency response, unit Pa). 

Frequency Location u– u u u / (%)

  R 0.1002E–1 0.9630E–2 –.1961E–3 –.1978E–3 100.8 

54 Hz x1
a I 0.1294E–1 0.1334E–1 0.1992E–3 0.2010E–3 100.9 

  D 0.1637E–1 0.1645E–1 0.4200E–4 0.4254E–4 101.3 

  R –.1729E–1 –.1651E–1 0.3874E–3 0.3914E–3 101.0 

62 Hz x1
a I –.1131E–1 –.1235E–1 –.5202E–3 –.5294E–3 101.8 

  D 0.2066E–1 0.2062E–1 –.1900E–4 –.1700E–4 89.4 

  R –.1724E–2 –.1642E–2 0.4139E–4 0.3985E–4 96.3 

54Hz x2
a I –.9126E–2 –.9387E–2 –.1303E–3 –.1310E–3 100.6 

  D 0.9288E–2 0.9529E–2 0.1208E–3 0.1218E–3 100.8 

  R 0.6635E–2 0.5604E–2 –.5154E–3 –.5204E–3 101.0 

62 Hz x2
a I 0.1315E–1 0.1387E–1 0.3621E–3 0.3677E–3 101.6 

  D 0.1473E–1 0.1496E–1 0.1170E–3 0.1200E–3 102.6 

Table 5.13. Design sensitivity of simple box 

(structural frequency response in x3-direction, unit m).

Frequency Location u– u u u / (%)

  R 0.1070E–8 0.3797E–9 –.3454E–9 –.3465E–9 100.3 

  I –.3445E–7 –.3509E–7 –.3203E–9 –.3231E–9 100.9 

54 Hz x1
s D 0.3446E–7 0.3509E–7 0.3130E–9 0.3159E–9 100.9 

  V 0.1169E–4 0.1191E–4 0.1062E–6 0.1072E–6 100.9 

  A 0.3967E–2 0.4039E–2 0.3603E–4 0.3637E–4 100.9 

  R –.4879E–7 –.4777E–7 0.5085E–9 0.5083E–9 100.0 

  I –.3730E–7 –.3924E–7 –.9691E–9 –.9823E–9 101.4 

62 Hz x1
s D 0.6141E–7 0.6182E–7 0.2035E–9 0.2118E–9 104.1 

  V 0.2392E–4 0.2408E–4 0.7927E–7 0.8251E–7 104.1 

  A 0.9320E–2 0.9381E–7 0.3088E–4 0.3214E–4 104.1 

  R 0.5631E–7 0.5635E–7 0.2412E–10 0.2134E–10 88.5 

  I 0.1242E–6 0.1266E–6 0.1195E–8 0.1210E–8 101.3 

54 Hz x2
s D 0.1364E–6 0.1386E–6 0.1100E–8 0.1113E–8 101.2 

  V 0.4626E–4 0.4701E–4 0.3732E–6 0.3776E–6 101.2 

  A 0.1570E–1 0.1595E–1 0.1266E–3 0.1281E–3 101.2 

  R 0.2030E–7 0.1734E–7 –.1481E–8 –.1499E–8 101.2 

  I 0.9691E–7 0.9793E–7 0.5076E–9 0.5203E–9 102.5 

62 Hz x2
s D 0.9902E–7 0.9945E–7 0.2175E–9 0.2264E–9 104.1 

  V 0.3857E–4 0.3874E–4 0.8473E–7 0.8818E–7 104.1 

  A 0.1503E–1 0.1509E–1 0.3301E–4 0.3435E–4 104.1 



6
Continuum Shape Design 
Sensitivity Analysis 

Chapter 5 treats the design sensitivity analysis of structural components whose shapes are 

defined by cross-sectional area and thickness variables. In such systems, a function that 

specifies the structural shape is defined on a fixed physical domain. The design function, 

known as design variable u, explicitly appears in the variational equation and may 

explicitly appear in a performance measure in which integration is taken over a fixed 

domain .

 There is an important class of structural design problems needed to determine the 

shape of a two- or three-dimensional structure (that is, the domain it occupies), subject to 

such constraints as natural frequency, displacement, and stress. Such problems cannot 

always be reduced to a formulation that can express the structural shape as a design 

function, and which appears explicitly in the formulation. Rather, the shape of physical 

domain  must be treated as the design variable. The notion of a material derivative 

taken from continuum mechanics, and the adjoint variable method in design sensitivity 

analysis (presented in a similar fashion in Chapter 5) will be used in this chapter to obtain 

a computable expression for the effect of the shape design on the performance measure. 

In order to simplify technical complexities as well as to give a clear concept of shape 

design sensitivity, the variation of the conventional design variable u treated in Chapter 5 

will be eliminated. 

6.1 Material Derivatives for Shape Design 
Sensitivity Analysis 

To carry out shape design optimization, the design space needs to be defined. For this 

purpose, a shape design parameterization method, which describes the boundary shape of 

a structure as a function of design variables, needs to be developed. The design 

parameterization methods developed in Section 12.2 of Chapter 12 represent changes in 

the structural shape as a function of the design variable. In this and subsequent sections, 

the effect of this shape variation on structural performance is developed in a similar way 

to the size design sensitivity analysis conducted in Section 5.1. The first step in a shape 

design sensitivity analysis is to develop the relationship between a variation in shape and 

the resulting variations in functionals, which arise in the shape design problems of 

Chapter 3. Since the domain shape a structural component occupies is treated as a design 

variable, it is convenient to think of domain  as a continuous medium, and to utilize the 

material derivative concept from continuum mechanics. In this section, a basic material 

derivative definition is introduced, and several material derivative formulas that will be 

used in later sections are derived. 
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6.1.1 Material Derivative 

Domain Change and Design Velocity 

Consider a domain  in one-, two-, or three-dimensions, as shown schematically in Fig. 

6.1. The initial structural geometry is changed to the new geometry  by using the 

design parameterization method in Section 6.1. Here, a scalar parameter  denotes the 

amount of shape change in the design variable direction, such that  = 0 represents the 

initial geometry . This shape perturbation can be considered a mapping or 

transformation from  to , which is denoted as T, as shown in Fig. 6.1. The mapping 

T: x x (x), x  is given by 

( , )

( , ).

x T x

T
 (6.1) 

 The process of deforming  to  by mapping (6.1) may be viewed as a dynamic 

process of deforming a continuum, with  playing the role of (design) time. At the initial 

time  = 0, the domain is . The trajectory of a point x , beginning at  = 0, can now 

be followed. The initial point moves to x  = T(x, ). By thinking of  as time, a design

velocity can be defined as 

( , ) ( , )
( , ) ,

d d

d d

x T x T x
V x  (6.2) 

where the last equality is due to the fact that the initial point x does not depend on . This 

velocity can also be expressed in terms of the particle position at time . If it is assumed 

that T
1
 exists, that is, x = T

1
(x , ), then the design velocity at x  = T(x, ) is 

1( , ) ( , ), .
d

d

x T
V x T x  (6.3) 

The design trajectory of the particle that was at x when  = 0 is now defined by the 

initial-value problem 

0

( , )

,

x V x

x x
 (6.4) 

Figure 6.1. Domain perturbation induced by mapping T.

x
x

Initial Domain
Perturbed Domain
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where d dx x . Thus, if T is given, then design velocity V can be constructed. 

Conversely, if design velocity field V(x , ) is given, then mapping T can be defined as 

( , ) ( ),T x x x

where x  is the solution to the initial-value problem in (6.4). 

 If the transformation T(x, ) is assumed to be regular enough in the neighborhood of 

= 0, then it can be expanded using the Taylor series around the initial mapping point 

T(x,0) as 

( , ) ( ,0) ( ,0) ( ,0) .
T

T x T x x x V x

To develop first-order shape design sensitivity, the first two terms in the Taylor series 

expansion of T(x, ) are used. Thus, by ignoring higher-order terms, the following linear 

mapping relation is obtained: 

( , ) ( ),T x x V x  (6.5) 

where V(x) V(x,0). In this text, transformation T from (6.5) will be used, the geometry 

of which is shown in Fig. 6.2. Equation (6.5) provides the approximation of the 

transformation by using the linear design velocity field. Variations of domain  due to 

the velocity field V(x) are denoted as  = T( , ), and the boundary of  is denoted as 

. (Note: Henceforth, the term “design velocity” will be referred to simply as “velocity” 

unless clarity necessitates the longer title.) Even if the linear approximation of mapping 

defined in (6.5) is enough for design sensitivity analysis, the domain may still be updated 

during design changes, according to the mapping of (6.1). Note that if design 

parameterization is defined such that the mapping relation in (6.1) is linear, then (6.5) is 

exact.

Example 6.1. Consider a beam design component with initial length l, as shown in Fig. 

6.3. The initial domain is  = [0,l]. In this example, l is the shape design variable. Then a 

mapping T(x, ) can be defined such that the length of the beam is changed to l + l. The 

design sensitivity that will be developed in Sections 6.2.3 and 6.2.5 is based on velocity 

information at the boundary and domain, respectively. It is clear in this example that the 

design velocities at the boundaries are V(0) = 0 and V(l) = l. However, if design velocity

Figure 6.2. Variation of domain using linear mapping. 

x

x

V(x)
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Figure 6.3. Domain perturbation of beam. 

information is required for the domain, as with the domain method that will be developed 

in Section 6.2.5, then there is no unique way to define the design velocity field in the 

domain. For example, if linear and quadratic velocity fields are assumed, then 

corresponding mapping relations can be defined, respectively, as 

1( , )
x

T x x l
l

 (a) 

2

2 2
( , ) .

x
T x x l

l
 (b) 

Note that since two mappings yield the same velocity field at the boundaries, the 

boundary velocity method provides the same sensitivity results for both (a) and (b) 

mappings. The domain velocity method also yields the same sensitivity results if a certain 

regularity requirement is satisfied for the velocity field. However, if the finite element 

method is used and the initial domain  = [0,l] is subdivided into elements with equal 

length, then the mapping of (a) provides a perturbed domain  with equal-length 

elements, whereas the mapping of (b) yields an irregular mesh distribution. Thus, it is 

better to select a mapping that yields a more regular mesh distribution after perturbation, 

which will be addressed in Section 13.3 of Chapter 13. 

Regularity of Perturbed Domain 

Let  be a C
 k
-regular open set, that is, its boundary  is a compact manifold of C

 k
 in R

n

(n = 1, 2, or 3), so that boundary  is closed and bounded in R
n
, and can be locally (or 

piecewisely) represented by a C
 k
 function [82]. Let velocity V(x) R

n
 from (6.5) be a 

vector defined in the neighborhood U of the closure , and let V(x) and its derivatives 

up to the order of k  1 be continuous. Using these hypotheses, it has been shown [83] 

that for small , T(x, ) is a homeomorphism (that is, a one-to-one, continuous map with a 

continuous inverse) from U to U  = T(U, ), and that T(x, ) and its inverse mapping 

T
1
(x , ) are C

 k
-regular. In conclusion,  is also C

 k
-regular. 

Material Derivative of State Variable 

Suppose z (x ) is a smooth, classical solution to the following formal operator equation in 

deformed domain :

l+ l

l

x
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,

0, ,

Az f x

z x
 (6.6) 

where A is a differential operator that appears in structural problems. Then the mapping 

z (x ) z (x+ V(x)) is defined in , and z (x ) in  depends on  in two ways. First, it is 

the solution to the boundary-value problem in . Second, it is evaluated at point x ,

which moves with . If the pointwise material derivative exists at x , then it is 

defined as 

0
0

( ( )) ( )
( : , ) ( ( )) lim .

d

d

z x V x z x
z z x V z x V x  (6.7) 

If z  has a regular extension into the neighborhood U  of , denoted again as z , then the 

material derivative of (6.7) can be separated into two contributions as 

0

0 0

( ( )) ( )
( ) lim

( ) ( ) ( ( )) ( )
lim lim

( ) ( ),

z x V x z x
z x

z x z x z x V x z x

z x zV x

 (6.8) 

where

0

( ) ( )
( ; , ) lim

z x z x
z z x V  (6.9) 

is the partial derivative of z and zV = [zi,j]Vj = [ zi/ xj]Vj is the convective term. The 

pointwise material derivative  in (6.7) can be defined only for the solution to the 

classical differential equation (6.6). For the solution to the variational problem,  can be 

defined in the Sobolev norm sense as follows. 

 If z (x ) is the solution to the variational equation on the deformed domain , written 

as

( , ) ( ), ,a Zz z z z  (6.10) 

then z Z H
m
( ), where Z H

m
( ) is the space of kinematically admissible 

displacements. When z  belongs to the space H
m
( ), the material derivative  at  is 

defined as 

0
( )

( ( )) ( )
lim ( ) 0.

mH

z x V x z x
z x  (6.11) 

Note that for the solution z H
m
( ), the pointwise derivative of (6.7) is meaningless. It 

was shown by Zolesio [83] that since T(x, ) is a C
 k
 homeomorphism, the Sobolev space 

H
m
( ) for m k is preserved by T(x, ), that is, 

( ) ( ( ) ( ) .m mH Hz x V x z  (6.12) 

This observation is used in Section 3.5 in [5] to prove the existence of material derivative 

 for those structural problems presented in Chapter 3. 

 If m > k/2, then according to the Sobolev imbedding theorem (see Appendix A.2), 

vector space H
m
( ) is a topological subspace of C

0
( ), and the pointwise material 
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derivative can be defined. However if m k/2, then z  is exclusively defined in the sense 

of “almost everywhere” in , and the pointwise derivative makes no sense. 

 For the situation in which z H
m
( ), Adams [22] showed that for a C

 k
-regular 

open set  and for a large enough k, an extension of z  exists within the neighborhood U

of ; hence, the partial derivative z  is defined in the same way as in (6.9). In such a 

case, the equality in (6.9) must be interpreted in the H
m
( ) norm, as in (6.11). The reader 

who is interested in the exact conditions that are placed on k to produce an extension of z

is referred to Adams [22]. 

 One attractive feature of the partial derivative is that, with an assumption of 

smoothness, the differentiation order between it and the spatial derivative are 

interchangeable, because both are independent, that is, 

( )

( ) .

z
z

x x

z z

 (6.13) 

6.1.2 Basic Material Derivative Formulas 

A number of material derivative formulas used throughout the remainder of this text are 

derived in this section. The reader who is primarily interested in applications may wish to 

concentrate on results rather than derivations. The most important results obtained have 

been stated as lemmas. 

Material Derivative of Jacobian 

Let J be the Jacobian matrix of the mapping T(x, ), that is, 

( ),

T V
J I

x x

I V x

 (6.14) 

where I = [ ij] is the identity matrix and V(x) is the Jacobian matrix of V(x). Then, from 

its definition it is trivial to find that J| =0 = J
1
| =0 = I. Using the definition in Eq.(6.14), 

the material derivative of J becomes the Jacobian matrix of the velocity as 

0

( ).
d

d

J
V x  (6.15) 

In addition, the material derivative of J
1
 can be calculated from the relation of JJ

1
 = I

as

1
1 1

0 0 0

0 ( ) .
d d d

d d d

J J
JJ J J

Since J| =0 = J
1
| =0 = I, (6.15) combined with the above equation gives 

1

0

( ).
d

d

J
V x  (6.16) 

Similarly, 
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0

( ) ,
T

Td

d

J
V x  (6.17) 

where J
T
 = (J

1
)

T
 = (J

T
)

1
.

 By denoting |J| as the determinant of J, it can be verified by direct calculation that the 

material derivative of |J| can be obtained as 

0

( ) .i

i

d V
div

d x
J V x  (6.18) 

The material derivative of |J
1
| can be calculated by using the relation of |JJ

1
| = 1 and 

the product rule of differentiation as 

1 1 1

0 0 0

0 .
d d d

d d d
JJ J J J J

Since |J|| =0 = |J
1
|| =0 = 1 at the initial design, (6.18) combined with the above equation 

gives

1

0

( ).
d

div
d

J V x  (6.19) 

These formulas are useful to compute the material derivative of the domain at the 

perturbed design point. Let d  and d  be the infinitesimal volume of domains  and 

, respectively. Using the fact that d  = |J|d , the variation of d  can be obtained as 

0 0

.
d d

d d div d
d d

J V  (6.20) 

Material Derivative of Surface Area 

Let n be the unit normal vector on infinitesimal area d  of the parallelogram shown in 

Fig. 6.4, with two edges (dx and x) on undeformed surface . Let n  be the unit normal 

vector on infinitesimal area d  of deformed surface , with edges dx  and x . Since 

and  are C
 k
-regular, n and n  are C

 k 1
-regular. The objective is to create a relation 

between d  and d  so that the material derivative of d  may be obtained, like the 

material derivative of d  in (6.20). 

Figure 6.4. Transformation of area. 

d
dx

x
n

xd

dx

x
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x
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 The edges dx  and x  can be represented by using the Jacobian matrix and the edges 

on the initial boundary as 

.

d dx J x

x J x
 (6.21) 

Since J
1
 exists, the inverse relations can also be obtained as 

1

1 .

d dx J x

x J x
 (6.22) 

Then, the infinitesimal areas of two boundaries can be denoted by using the vector 

product as 

.

d d

d d

n x x

n x x
 (6.23) 

The above vector notation can be represented in Cartesian rectangular components as 

,
r s t

i ijk j k

rst

n d e dx x

n d e dx x
 (6.24) 

where eijk is a permutation symbol, defined as 

0 when any two indices are equal

1 when , , are1, 2, 3 or an even

permulation of 1, 2, 3

1 when , , are an odd permutation of 1, 2, 3.

ijk

i j k
e

i j k

 (6.25) 

From the first equation of (6.24), and by using (6.22), 

.
s t

s t

j k
i ijk

x x
n d e dx x

x x
 (6.26) 

Multiplying both sides of (6.26) by 
rix x  and summing on i,

.
s t

r r s t

ji i k
i ijk

xx x x
n d e dx x

x x x x
 (6.27) 

For any 3  3 matrix with elements amn, the following identity can be proved by direct 

calculation: 

det[ ] .rst mn ijk ir js kte a e a a a  (6.28) 

Since the Jacobian matrix J has x x  as elements, the following relations hold: 

1 .

s tr

r s t

ijk rst

i j k

ji k
rst ijk

x xx
e e

x x x

xx x
e e

x x x

J

J

 (6.29) 
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By substituting the second part of (6.29) into (6.27), and by recalling that |J
1
| = |J|

1
, we 

can obtain a simplified form as 

1
,

s t

r

i
i rst

x
n d e dx x

x
J

which can be rewritten using (6.24) as 

.Td dn J J n  (6.30) 

Thus, n  is parallel to J
–T

n. The explicit form of n  can be obtained by normalizing the 

right side of (6.30) as 

( ) ( )
,

( ) ( )

T

T

J x n x
n

J x n x
 (6.31) 

where ||a|| = (a
T
a)

1/2
 is the Euclidean norm. By applying (6.31) to (6.30), we finally obtain 

the desired relation between d  and d  as 

( ) ( ) .Td dJ J x n x  (6.32) 

 To calculate the material derivative of d , it is necessary to differentiate the right 

side of (6.32) as 

1/ 2

0 0

( ) ( ) ( , ) ,T T T Td d

d d
J x n x J n J n n V n  (6.33) 

where (a,b) a
T
b. The material derivative of the normal vector can also be calculated 

from the relation in (6.31) as 

2

0 0

1
( )

( ) .

T
T T T

T

T T

d d d

d d d

n J
n J n n J n J n

J n

n V n n V n

 (6.34) 

Also, using (6.18) and (6.33), we obtain the following formula: 

0

( ) .T Td
div

d
J J n V n V n  (6.35) 

Material Derivative of Domain Functional 

Lemma 6.1. Let 1 be a domain functional, defined as an integral over , namely, 

1 ( )f dx  (6.36) 

where f  is a regular function defined in . If  is C
 k
-regular, then the material 

derivative of 1 at  is 

1 [ ( ) ( ) ( ) ]

[ ( ) ( )]

Tf f f div d

f div f d

x x V x V

x V
 (6.37) 
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or,

1 ( ) ( ) ,nf d f V dx x  (6.38) 

where Vn = V
T
n is the normal component of V(x) on boundary .

Proof. Function f can be a scalar, vector, or tensor. By transforming the variables of 

integration from (6.36) to the initial design domain , we achieve 

1 ( ) ( ( )) .f d f dx x V x J

Using (6.8) and (6.18), the material derivative of 1 at  is obtained as 

1

0

( ( ))

[ ( ) ( ) ]

[ ( ) ( ) ( ) ( ) ]

[ ( ) ( ( ) ( ))] .

T

d
f d

d

f f div d

f f f div d

f div f d

x V x J

x x V

x x V x x V

x x V x

 (6.39) 

If  is C
 k
-regular, then the divergence theorem [84] yields (6.38).  

 Note that (6.37) requires design velocity information within domain , whereas 

(6.38) only needs this information on boundary . The boundary velocity approach 

provides a simple and convenient way for computing sensitivity information. It also 

supplies a physical understanding of design sensitivity information. For engineering 

applications that use the numerical method, however, an accurate evaluation of the 

function value on the boundary is critical. If a domain method, such as the finite element 

method, is used to solve a variational equation, it is well known [85] that the results of a 

finite element analysis may not be satisfactory at the boundaries for a system with a 

nonsmooth load or with interface problems. The domain velocity approach in (6.37) can 

be used effectively with a high enough accuracy rate when the finite element method is 

used. In this text, the boundary velocity approach is relied on to conveniently explain 

analytical examples, while the domain velocity approach is used to accurately solve 

numerical examples. 

 It is interesting and important to note that only the normal component Vn of the 

boundary velocity appears in (6.38), which is of importance in accounting for the domain 

variation effect. In fact, Theorem 3.5.3 (Section 3.5.7) in [5] proves that if a general 

domain functional  has a gradient at , and if  is C
 k+1

-regular, then only the normal 

velocity component Vn on the boundary needs to be considered for derivative 

calculations. The fundamental concept behind this result is that (Vs) =  for all , where 

Vs is the component of velocity field V in (6.3), which is tangential to boundary . In 

other words, tangential component Vs of the velocity field does not deform domain .

Material Derivative of Boundary Functional 

Consider a boundary functional, defined as an integral over ,

2 ( ) ,g dx  (6.40) 

where g  is a regular function defined on . Using (6.32), d  is transformed into d  as 
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2 ( ) ( ( )) ,Tg d g dx x V x J J n  (6.41) 

and using the formula from (6.35), the material derivative of 2 would be

2

0

( ( ))

[ ( ) ( )( ( ) )] .

T

T

d
g d

d

g g div d

x V x J J n

x x V x n V n

 (6.42) 

Suppose that the mapping V  is linear and continuous. Then, (6.42) implies that 2

has a gradient at .  Further, according to Theorem 3.5.3 (Section 3.5.7)  in  [5],  if  is 

C
 k+1

-regular, then only V = Vnn need be considered, where Vn is a scalar C
 k
-regular 

function. If  is C
 k+1

-regular, then both n and V = Vnn are C
 k
-regular. When V = Vnn on 

, the Jacobian matrix of V can be written as 

.T

n nV VV n n  (6.43) 

Since n is the unit normal, the following relation holds: 

1
2

0 ( ) .T T
n n n n  (6.44) 

Hence, from (6.43), 

.T T T

n n nV V VV n n n n n  (6.45) 

From (6.34) and (6.45), with normal velocity V = Vnn,

0

( ) ( )T T T

n n

d
V V

d

n
n n V n n V n n n  (6.46) 

and

( , ) .T T

n n n ndiv V V div V V divV Vn n n n n n  (6.47) 

It is now to be shown that 

,divn  (6.48) 

where  is the curvature of  in R
2
 and twice the mean curvature of  in R

3
.

 In order to prove (6.48), first consider a two-dimensional domain where  can be 

represented by the local graph of a regular function f, say x2 = f(x1). Suppose  lies below 

the graph of f. The normal vector is given by 

2 1/ 2

1 1( , ( )) (1 ) .
1

f
x f x fn

A direct calculation produces 

2 3/ 2

1 1( , ( )) (1 ) ,div x f x f fn  (6.49) 

which is the curvature of . This verifies (6.48) for R
2
.

 In the case of a three-dimensional domain,  is a regular surface. For any point x ,

consider the R
3
-orthonormal basis {e1,e2,n}, as shown in Fig. 6.5, where e1 and e2 are 

vectors that are tangential to  at x, such that [86] 
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Figure 6.5. Local representation of the boundary 

, 1,2 (no sum on ).i i i i ine e  (6.50) 

The parameters 1 and 2 are principal normal curvatures of  at x, and the vectors e1 and 

e2 are unit vectors in principal directions. In the neighborhood of x, with x taken as the 

origin,  may be represented by the graph of w = f(y1, y2) in the (y1, y2, w) coordinate 

system, as shown in Fig. 6.5. 

 Since the divergence operator is invariant during translation and rotational motion 

[87], divn can be written in the (y1, y2, w) coordinate system, that is, 

.T T

i idivn e ne n nn

Thus, using (6.44) and (6.50), 

1 2( ),divn  (6.51) 

which is twice the mean curvature of  [86]. This completes the proof of (6.48).  

 If the velocity is normal on , then V = Vnn. Consequently, from (6.47), 

.T

ndiv VV n V n  (6.52) 

The choice of n, as directed outward from the domain , defines the orientation of 

boundary . If the orientation of  changes, then n is changed to –n, and  must be 

changed to – .

 From (6.42), and using (6.52), 

2 [ ( ) ( ) ]

[ ( ) ( ) ]

[ ( ) ( ( )) ] .

n

T

n

T

n

g g V d

g g g V d

g g g V d

x x

x V x

x n x

This proves the following lemma: 

n

x

w = f(y1,y2)
w

y1
y2

e2e1
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Lemma 6.2. Suppose that in (6.40) g  is a regular function defined on , and that the 

mapping V  is linear and continuous. If  is C
 k+1

-regular, then the material 

derivative of 2 at  is 

2 [ ( ) ( ( )) ] .T

ng g g V dx n x  (6.53) 

 By putting the right sides of (6.42) and (6.53) together, and by using the fact that (x)

= g (x) + g
T
V, the following useful relationship for any regular vector field V and 

regular function g on R
n
 is obtained: 

( )[ ( ) ( )]

[ ( )] .

T T

T

n

g d g div d

g g V d

V x V x n V n

n x
 (6.54) 

 Finally, consider a special functional that is defined as the integration of a vector 

function over  as 

3 ( ) ,T dh x n  (6.55) 

where h  is a regular vector field defined on ; hence, h
T
n  is a regular function on .

From (6.42), and by using h
T
n  instead of g , we obtain: 

3 ( ) ( ) ( ) ( ) ( ) ( )( ( ) ) ,T T T Tdiv dh x n x h x n x h x n x V x n V n  (6.56) 

where n  is given by (6.34). If the mapping V h  is linear and continuous, then (6.56) 

implies that 3 has a gradient at . Further, according to Theorem 3.5.3 (Section 3.5.7) in 

[5], if  is C
 k+1

-regular, then only V = Vnn need be considered, with a C
 k
-regular scalar 

function Vn. Then, by using (6.46) and (6.52), (6.56) becomes 

3 [ (( ) ) ] .T T T T

n n nV V V dh n h n n h n  (6.57) 

Using (6.54) and substituting h for V and Vn for g, we obtain 

[ ( )] [ ]( ) .T T T T

n n n nV d V div d V V dh h n hn n h n

Hence, (6.57) becomes 

3 [ ( ( )) ]

[ ( ( )) ]

[ ( ) ( ( )) ]

[ ] .

T T

n

T T T

n

T T T

n n

T

n

div V d

div V d

V div V d

div V d

h n h n hn

h n n hV h n hn

h n n hn h n hn

h n h

Thus, the following lemma has been proved. 

Lemma 6.3. Suppose that h  in (6.55) is a regular field defined on  and that the 

mapping V h  is linear and continuous. If  is C
 k+1

-regular, then the material 

derivative of 3 at  is 

3 [ ( ) ] .T

ndiv V dh x n h  (6.58) 
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6.2 Static Response Design Sensitivity Analysis 

As was seen in Section 6.1, a static response depends on its domain shape. The existence 

of material derivative , proved in Section 3.5 in [5], and the material derivative formulas 

derived in Section 6.1 will be used in this section to derive a direct differentiation and 

adjoint variable method for design sensitivity analysis. As in Chapter 5, an adjoint 

problem that is closely related to the original structural problem is obtained, and explicit 

formulas for shape design sensitivity analyses are equally obtained. Finally, numerical 

methods for parameterizing boundary shape and calculating shape design sensitivity 

coefficients will also be obtained. 

6.2.1 Differentiability of Bilinear Forms and Static Response 

Design differentiability of energy bilinear forms and static response are proved in Section 

3.5 in [5] for the problems treated in Chapter 3. These differentiability results are used 

here to develop shape design sensitivity formulas. The reason for this order of 

presentation is the same as with Chapter 5: because the technical proof of design 

derivatives does not contribute to a greater understanding of the adjoint variable method. 

Nevertheless, as noted in Chapter 5, the delicate question concerning the existence of 

design derivatives should not be ignored. 

 Within the perturbed domain  the variational equations for the problems in Chapter 

3 are in the following form: 

( , ) ( , ) ( ), ,Ta c d d Zz z z z z f z z  (6.59) 

where Z H
m
( ) is the space of all kinematically admissible displacements, and c(•,•) 

is a bilinear mapping defined by the integrand of the energy bilinear form. The 

subscribed  denotes that energy bilinear and load linear forms depend on the perturbed 

domain that is the design variable. Section 3.5 in [5] demonstrates that the energy bilinear 

and load linear forms are differentiable with respect to the design for the problems in 

Chapter 3. In general, vector function z is used as the response variable. However, as 

described in Section 3.1, z has to be interpreted as a scalar function for truss, beam, and 

plate problems. 

 A powerful consequence of the proofs in Section 3.5 in [5] is that the solution to 

(6.59) is differentiable with respect to the design, that is, the material derivative  defined 

in (6.11) exists. Note that material derivative  depends on the direction of V (the velocity 

field). As shown in Section 3.5 in [5],  is linear in V and, in fact, is a Fréchet derivative 

with respect to the design, evaluated in the direction of V. According to Theorem 3.5.3 

(Section 3.5.7) in [5], the linearity and continuity of the mapping relation V  justify 

the use of normal velocity Vn in the derivation of the material derivative, as (6.38), (6.53) 

and (6.58) illustrate. 

 By using the material derivative formula in (6.38) and the fact that the differentiation 

order can be interchanged between the partial derivative and the spatial derivative, the 

state variational equation (6.59) can be differentiated with respect to  as  

[ ( , )] ( , ) ( , ) ( ), ,V Va a a Zz z z z z z z z  (6.60) 

where
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[ ( , )] [ ( , ) ( , ) ( , ) ]

[ ( , ) ( , )] ( , )

[ ( , ) ( , )] ( , )

n

n

a c c div c d

c c d c V d

c c d c V d

z z z z z z z z V

z z z z z z

z z zV z zV z z z

 (6.61) 

and

( ) { [( ) ]}

( ) .

T T

V

T T

n

T T

n

div d

d V d

d V d

z z f z f V

z f z f

z zV f z f

 (6.62) 

The fact that the partial derivatives of the coefficients (such as cross-sectional area, 

thickness, etc.) in bilinear mapping c(•,•) are zero is used in derivation of (6.61), while 

the fact that f  = 0 is used in derivation of (6.62). In (6.60), ( , )Va z z  is defined by 

suppressing the ( , )a z z  term from the expression [ ( , )]a z z . In other words, ( , )Va z z

includes explicitly dependent terms on the design, whereas ( , )a z z  contains implicitly 

dependent terms through material derivative .

 For z , let ( ( )) ( )z x V x z x , that is, select z  as the constant on the line x  = x +

V(x). Then, since H
m
( ) is preserved by T(x, ), as shown in (6.12), if z  is an arbitrary 

element of H
m
( ) that satisfies the kinematic boundary conditions on , then z  is 

equally an arbitrary element of H
m
( ) that satisfies kinematic boundary conditions on 

. Consequently, and by using (6.8), we can assume 

0.z z zV  (6.63) 

Thus, all terms containing z  in (6.61) and (6.62) can be ignored. However, even if we do 

not assume 0z , since z  belongs to space Z, the following relation is valid: 

( , ) ( ),a z z z  (6.64) 

Thus, all terms containing z  in (6.61) and (6.62) will be canceled out. In the following 

derivations, we will not consider the terms that contain z . However, this property of z

does not mean that its partial derivative vanishes, i.e., 0.z

 After ignoring the terms containing z , variations in the energy bilinear and the load 

linear forms can be obtained as 

( , ) { ( , ) ( , ) [ ( , ) ]}

[ ( , ) ( , )] ( , )

V

n

a c c div c d

c c d c V d

z z z zV zV z z z V

z zV zV z z z
 (6.65) 

and

( ) {( ) [( ) ]}

( ) .

T T

V

T T

n

div d

d V d

z zV f z f V

zV f z f
 (6.66) 

Then, (6.60) can be rewritten to provide the desired sensitivity equation as 
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( , ) ( ) ( , )

[ ( , ) ( , ) ( ) ]

[ ( , ) ( ) ]

[ ( , ) ( , ) ( ) ]

[ ( , )] , .

V V

T

T

T

T

n

a a

c c d

div c d

c c d

c V d Z

z z z z z

z zV zV z zV f

z z V z f V

z zV zV z zV f

z f z z z

 (6.67) 

Notice the similarity between (6.67) and (5.8). As mentioned in Chapter 5, if state 

variable z [the solution to (6.59)] and velocity field V are known, then (6.67) is a 

variational equation that solves for H
m
( ) with the same energy bilinear form 

a (•,•). Indeed, for such second-order problems as membrane, shaft, and elasticity, 

kinematic boundary conditions are only imposed on z, so if z  = 0 on , then  = 0 on ,

and thus,  satisfies the kinematic boundary conditions.  can also be shown to satisfy 

kinematic boundary conditions for such higher-order problems as clamped plates. Indeed, 

for a clamped plate the boundary condition z = 0 on  also implies  = 0 on . In addition, 

the fact that z/ n = 0 on  implies that z = ( z/ n)n + ( z/ s)s = 0 on , which in turn 

implies that ( z)˙ = 0 on . To show that  = 0 on , the relations in (6.8) and (6.13) 

can be used to obtain the following useful identity: 

( ) ( ) ( )

( ) ( )

.

z z z V

z zV z V

z z V

 (6.68) 

Since the left side and the second term on the right side both vanish on , we can 

conclude that  = 0 on . Thus, / n = 0 on , and  satisfies all kinematic boundary 

conditions. 

 Note that the right side of (6.67) is linear in z , while the energy bilinear form on the 

left side is Z-elliptic. Thus, (6.67) has the unique solution Z [16], confirming the 

previously stated observation that a design derivative exists as the solution to the state 

equation. As in Chapter 5, (6.67) can be used for the adjoint variable method of design 

sensitivity analysis. 

6.2.2 Adjoint Variable Design Sensitivity Analysis 

Consider a general performance measure that may be written in integral form as 

( , ) ,g dz z  (6.69) 

where z H
1
( ), z = [zi,j], and function g is continuously differentiable with respect to 

its arguments. For the case in which z H
2
( ), the second-order derivatives of z may 

appear in the integrand of (6.69). This case will be treated separately as specific examples 

arise. Note that  depends on  in two ways. First, there is an obvious dependence of 

on its integral domain. Second, state variable z  depends on domain  through the 

variationa1 (6.59). 

 By using the material derivative formulas from (6.13) and (6.38), the variation of the 

functional in (6.69) can be obtained as 

, ,

, ,

[ : ( )]

[ : ] ,n

g g div g d

g g d gV d

z z

z z

z z V

z z
 (6.70) 
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where Vn = V
T
n is the normal component of the design velocity vector to boundary .

Using the relation in (6.8), the partial derivatives in (6.70) can be rewritten in terms of  as 

, , , ,

, , , ,

[ : ( ) : ( ) ( )]

[ : ( ) : ( )] ,n

g g g g div g d

g g g g d gV d

z z z z

z z z z

z z zV zV V

z z zV zV
 (6.71) 

where “:” is the contraction operator between matrices, such that a : b = aijbij. Note that 

and  depend on velocity field V. The objective is to obtain an explicit expression for 

in terms of V, which requires rewriting the first two terms of the first integral on the right 

side of (6.71) explicitly in terms of V, that is, by eliminating .

 Much in the manner of Chapter 5, an adjoint equation is introduced by replacing 

Z in (6.71) by the virtual displacement Z and by equating the sum of terms involving 

 with the energy bilinear form, yielding the adjoint equation for the adjoint variable  as 

, ,( ) [ : ] , .a g g d Zz z  (6.72) 

Note that the adjoint variational equation (6.72) is the same as (5.11). This fact is 

advantageous when sizing design and shape design variation are considered 

simultaneously. As noted in Section 5.2, the Lax-Milgram theorem [16] guarantees that 

(6.72) has a unique solution , which is called the adjoint variable and is associated with 

the constraint in (6.69). 

 To take advantage of the adjoint equation, evaluate (6.72) at = Z to obtain the 

following expression: 

, ,( ) [ : ] .a g g dz zz z z  (6.73) 

Similarly, the design sensitivity equation (6.67) may be evaluated at z  = , since both 

belong to space Z, to obtain 

( , ) ( ) ( , )V Va az z  (6.74) 

Recalling that energy bilinear form a (•,•) is symmetric in its arguments, we can 

conclude that the left sides of (6.73) and (6.74) are equal; thus, the right sides of both 

equations yield the following useful relation: 

, ,[ : ] ( ) ( , ).V Vg g d az zz z z  (6.75) 

By substituting (6.75) into (6.71), the expression of  in terms of z, , and V is obtained as 

, ,

, ,

, ,

( ) ( , )

[ ( ) : ( )]

[ ( , ) ( , ) ( )]

[ ( ) : ( )]

{[ ( , )] }

[ ( , ) ( , ) ( )]

[ ( ) : ( )]

V V

n

T

T

T

a

g g d gV d

c c d

g g d

div g c d

c c d

g g d

z z

z z

z z

z

zV zV

z V zV f V

zV zV

f z V

z V zV f V

zV zV

[ ( , )] .T

ng c V df z

 (6.76) 
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In the following sections, two alternative shape design sensitivity expressions will be 

developed: the boundary method and the domain method. In the boundary method, the 

design sensitivity is expressed in terms of boundary integrals by using the variational 

identities given in Section 3.1 for each structural component and boundary condition. 

This will be done for each structural component type encountered in the subsequent 

section. The fact that design sensitivity  can be expressed as a boundary integral 

provides an advantage in numerical calculation, assuming that accurate boundary 

information can be obtained. In addition, the boundary method gives excellent physical 

insight of design sensitivity. On the other hand, in the domain method, the design 

sensitivity is expressed in terms of domain integrals. The domain method is very much 

suitable for development of general-purpose computational design sensitivity analysis 

code, especially for using finite element analysis. 

 Note that the evaluation of the design sensitivity formula in (6.76) requires solving 

the variational equation (6.59) for z. Similarly, the variational adjoint equation (6.72) 

must be solved for adjoint variable . Using finite element analysis, solving for  is 

efficient if the boundary-value problem for z has already been solved, since all that is 

required is adapting the solution to the same set of finite element equations with a 

different right side (the adjoint load) . 

6.2.3 Boundary Method for Static Design Sensitivity 

The adjoint variable method for beam, membrane, torsion, and plate problems as 

presented in Section 3.1 is now developed to calculate the shape design sensitivity of 

performance measures using the boundary method. For these problems, scalar 

displacement function z is used as a state variable. The linear elasticity problem will also 

be considered in this section, while computational considerations will be taken up in sub-

sequent sections. In the boundary method, the shape design sensitivity is obtained in 

terms of boundary integrals. The variation with respect to conventional design variable u

(the cross-sectional area or thickness considered in Chapter 5) is not discussed in this 

chapter, and even though there is self-weight in addition to the externally applied load, 

the total applied load will be expressed as f(x).

Bending of a Beam 

Consider the beam bending problem in Section 3.1.2, with a domain  = (0, l) R
1
 and a 

moment of inertia I(x). Several structural performance measures are of concern. First, 

consider the beam weight performance, given as 

1
0

,
l

Adx  (6.77) 

where  is the weight density per unit volume, and A is the cross-sectional area. The 

sensitivity of performance 1 can be obtained by taking the variation of (6.77) and by 

using the fact that ( A)  = 0 as 

1 0
( ) ( ) (0) (0),

l
AV A l V l A V  (6.78) 

where V(0) and V(l) are the endpoint perturbations of the beam. These perturbations are 

determined to be positive if they cause the endpoints to move in a positive x direction. 

Note that this direct method of calculation provides an explicit form of structural weight 

variation in terms of shape variation. Consequently, no adjoint problem needs to be 

defined. For the given boundary velocities V(0) and V(l), 1  can be readily evaluated. 
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 As a second performance measure, consider structural compliance, defined as 

2
0

.
l

fz dx  (6.79) 

Note that the integrand in (6.79) depends on applied load f. However, since f  = 0, (6.79) 

can be treated as the functional form of (6.69). Hence, the adjoint (6.72) can be written as 

0
( , ) , .

l

a f dx Z  (6.80) 

Since the load functional on the right side is precisely the same as the load functional for 

the original beam problem in (3.16), adjoint solution  becomes identical to state solution 

z, and, in this special case, the sensitivity expression in (6.76) can be used by substituting 

fz for g, to obtain 

2

2 ,1 ,11 ,11 ,1 ,11 00
[2 ( ) 2 ( )] [2 ( ) ] .

l l

EI z V z f z V dx fz EI z V  (6.81) 

To further simplify it, the variational identity in (3.13) may be used by substituting (z,1V)

for z  to obtain 

2

2 ,11 ,1 ,1 ,11 ,1 ,1 ,110 0 0
2 ( ) 2( ) ( ) [2 ( ) ] .

ll l

EIz z V EIz z V fz EI z V  (6.82) 

After applying the boundary conditions z(0) = z(l) = z,1(0) = z,1(l) = 0 for a clamped-

clamped beam, (6.82) yields 

2

2 ,11 0
( ) .

l

EI z V  (6.83) 

As noted in Section 6.2.2, the design sensitivity result in (6.83) is expressed as boundary 

values and is explicitly given in terms of the design velocity (perturbation) on the 

boundary.

Example 6.2. For an example that can be calculated analytically, consider a uniform 

clamped-clamped beam in which A = A0, with a uniformly distributed load f0. The 

displacement under this load is 

2 20( ) [ ( ) ].
24

f
z x x l x

EI

Beam compliance may be calculated from (6.79) as 

2 5

0
2 .

720

f l

EI

In this special example, beam length l is a design variable. Since the beam has a uniform 

cross-sectional area A0, and a uniform load f0, varying either endpoint x = 0 or x = l will 

have the same effect on compliance. Hence, the variation of compliance with respect to l
is

2 4

0
2 ,

144

f l
l

EI

which is an analytical design sensitivity for the compliance performance measure. 

Alternatively, the design sensitivity of 2 can be calculated by using the formula 

provided by (6.83), with perturbations V(l) = l/2 and V(0) = – l/2, as 
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2
2

2 20
2

0

2 4

0

( 6 6 )
12

,
144

l

f
EI l lx x V

EI

f l
l

EI

which is the correct result when compared with the analytical solution. 

 For those other boundary conditions given by (3.19) through (3.21), the shape design 

sensitivity formula in (6.82) is valid for compliance performance, since variational 

equation (3.16) holds for every z  that satisfies corresponding kinematic boundary 

conditions. By applying these boundary conditions to the sensitivity expression in (6.82), 

the following design sensitivity results for the compliance performance measure can be 

obtained:

  1. Simply supported 

2 ,111 ,1 0
2 ( ) ,

l

EIz z V  (6.84) 

  2. Cantilevered 

2

2 ,11 0
( ) 2 .

x lx
EI z V fzV  (6.85) 

  3. Clamped–simply supported 

2

2 ,11 ,111 ,10
( ) 2 ( ) .

x lx
EI z V EIz z V  (6.86) 

 Next, consider a functional that defines the displacement value at an isolated, fixed 

point x
*

 (0, l), that is, 

* *

3
0

( ) ( ) .
l

z x x x z dx  (6.87) 

When evaluating functional 3, it is important to remember that point x
*
 does not move 

with the design change, and that 3 on deformed domain  is the displacement value at 

the same point x
*
. Since m = 2 and n = 1, m > n/2 and, according to the Sobolev 

imbedding theorem [22], z C
1
( ). The functional in (6.87) is thus continuous, and the 

previously discussed material derivative formulas apply. 

 Since (x – x
*
) is defined in the neighborhood of [0, l] by zero extension, and since x

*

is a fixed point, then (x – x
*
) = 0. Thus, (6.87) can be treated as the functional form of 

(6.69), and the adjoint equation from (6.72) would be 

*

0
( , ) ( ) , .

l

a x x dx Z  (6.88) 

As noted in Section 5.2.3, since the right side of this equation defines a bounded linear 

functional on H
2
(0, l), (6.88) has the unique solution 

(3)
, where superscript (i) associates 

 with constraint i. Note that 
(3)

 is the displacement caused by a unit load at x
*
, that is, 

with smoothness assumptions, variational equation (6.88) is equivalent to the following 

formal differential equation: 

*

,11 ,11( ) ( ),EI x x  (6.89) 
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with  satisfying the same boundary conditions as the original state variable z. From 

(6.76), and with g = (x – x
*
)z, displacement sensitivity can be obtained as 

(3) (3) (3) *

3 ,11 ,1 ,11 ,1 ,11 ,11 ,1 ,1
0

(3) (3)

,11 ,11 0

[ ( ) ( ) ( ) ( )( )]

[ ] .

l

l

EIz V EI z V f V x x z V dx

f EIz V

 (6.90) 

The variational identity in (3.13) may be repeated twice to transform the domain integral 

to a boundary integral (or to a boundary evaluation in the case of a one-dimensional 

problem). To do so, first substitute ( ,1
(3)

V) for z  in (3.13). Next, substitute 
(3)

 for z,

(z,1V) for z , and (x – x
*
) for f in (3.13). The displacement sensitivity can now be 

expressed in terms of boundary values as 

(3) (3)

3 ,11 ,1 ,1 ,11 ,1 ,1 0

(3) (3)

,11 ,1 ,1 ,11 ,1 ,1 0

(3) (3)

,11 ,11 0

[ ( ) ( ) ( )]

[ ( ) ( ) ( )]

[ ] .

l

l

l

EIz V EIz V

EI z V EI z V

f EIz V

 (6.91) 

Using the boundary conditions in (3.9) for a clamped beam, (6.91) can be further 

simplified as 

(3)

3 ,11 ,11 0
[ .

l

EIz V  (6.92) 

Other boundary conditions can also be applied to simplify (6.91). 

Example 6.3. To illustrate, consider the clamped-clamped beam studied earlier in this 

section. From Example 6.2, the displacement function at arbitrary point x can be written 

as

2 20( ) [ ( ) ].
24

f
z x x l x

EI

Since displacement sensitivity information at the center of the beam is desired, let us 

substitute x = l/2 to obtain the value of functional 3 in (6.87): 

4

0
3 .

384

f l

EI

Since 3 is expressed as a function of design l, analytical shape design sensitivity can be 

obtained through direct differentiation as 

3

0
3 .

96

f l
l

EI

The objective is to compare the sensitivity result in the above equation with the 

sensitivity result from (6.91). For the displacement function, the adjoint load from (6.88) 

is simply a unit point load at the beam’s center. The adjoint variable can thus be 

calculated as 

3

(3) 3 21
8 4 3 ,

48 2

l
x x lx

EI

where
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0 0
2

2
.

2 2

l
for x

l
x

l l
x for x l

In the analytical result, design perturbation is assumed to be l. To be consistent with this 

result, let us define the design velocity as V(0) = – l/2, and V(l) = l/2. Using this adjoint 

variable, the shape design sensitivity of 3 is obtained from (6.92) as 

2 20
3 0

2 2

3

0

( 6 6 )(24 6 )
576

( 6 6 )(24 18 )

.
96

x

x l

f
l lx x x l V

EI

l lx x x l V

f l
l

EI

Note that this is the same as the analytical result. 

 For simply supported, cantilevered, or clamped–simply supported beams, the 

sensitivity formula in (6.91) is applicable, in which z and 
(3)

 are solutions to (3.16) and 

(6.88), respectively, and Z is the appropriate space for all kinematically admissible 

displacements. Appropriate boundary conditions for z and 
(3)

 can then be applied to 

(6.91) to obtain useful sensitivity formulas. By applying the boundary conditions from 

(3.19) through (3.21) to the sensitivity expression in (6.91), the following sensitivity 

formulas for displacement performance measures can be obtained: 

  1. Simply supported 

(3) (3)

3 ,111 ,1 ,111 ,1 0
[ ( )] ,

l

EI z z V  (6.93) 

  2. Cantilevered 

(3) (3)

3 ,11 ,11 0
,

x x l
EIz V f V  (6.94) 

  3. Clamped–simply supported 

(3) (3) (3)

3 ,11 ,11 ,111 ,1 ,111 ,10
[ ( )] .

x x l
EIz V EI z z V  (6.95) 

 Shape design sensitivity results from (6.91), or from (6.92) through (6.95) for each 

boundary condition, are valid for a functional 3 that defines the displacement value at 

fixed point x
*
. It is also possible that a 3 on deformed domain  is the displacement at 

point x  = x + V(x), a situation that will be considered in Section 6.2.5. 

 Consider another performance measure that is associated with strength constraints, 

written as 

4 ,11
0

,
l

phEz m dx  (6.96) 

where h is the half-depth of the beam and mp is a characteristic function defined on a 

small, open subinterval (xa, xb), such that [xa, xb]  (0, l). The characteristic function mp is 

positive and constant on (xa, xb), zero outside of (xa, xb), and has an integral of one. For 

the moment, consider the averaged stress on the fixed interval (xa, xb); in other words, 

assume that mp in (6.96) does not change with . It is possible to extend mp on R
1
 by 
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extending it to zero outside (0, l). In this case, pm  would be equal to zero. In addition, 

since only the shape design variable is being considered, half-depth h remains constant 

during the design change process, that is, h  = 0. 

 By using the material derivative formula from (6.38), along with the relation between 

the partial derivative and the material derivative in (6.13), the design variation of the 

strength performance measure in (6.96) can be obtained as 

4 ,11 ,11 00

,11 ,1 ,11
0

[ ( ) ] ,

l l

p p

l

p

hEz m dx hEz m V

hE z z V m dx

 (6.97) 

where the boundary terms vanish, since mp(0) = mp(l) = 0. As with the general derivation 

of adjoint equation (6.72), the adjoint equation may be defined by replacing  with  in 

the first term on the right side of the equation, and then equating this adjoint load with the 

energy bilinear form as  

,11
0

( , ) , .
l

pa hE m dx Z  (6.98) 

As with adjoint equation (6.72), adjoint equation (6.98) is the same as (5.91), when h is 

interpreted to be A
1/2

. That is, the adjoint equation is identical for both size and shape 

design problems. As noted in Section 5.2.3, since the right side of (6.98) is a bounded 

linear functional on H
2
(0,l), it has the unique solution 

(4)
. Taking its smoothness 

assumptions into account, this variational equation is thus equivalent to the following 

formal operator equation: 

,11 ,11 ,11( ) ( ) , (0, ),pEI hEm x l  (6.99) 

with  satisfying the same boundary conditions as the original structural response z. The 

differential on the right side of (6.99) is a derivative, in the sense of the distribution 

theory [17], [22], and [88]. By expanding this derivative, we obtain 

,11 ,11 ,1

,1 ,1

,1

( ) [2 ( ) ( )

2 ( ) ( ) ( ) ( )

( ) ( )] .

p p p a a

b b a a

b b

hEm E h m m h x x x

h x x x h x x x

h x x x

Thus, the adjoint load consists of a distributed load on the interval (xa, xb), point loads at 

xa and xb, and point moments at xa and xb. Using the same method employed in Section 

3.1.2, the following variational identity can be obtained from (6.99) for the adjoint 

system: 

,11 ,11 ,11
0 0

,11 ,1 ,11 ,1 ,1 ,10 0

2

[ ( ) ] [( ) ]

(0, ).

l l

p

ll

p p

EI dx hE m dx

EI EI hEm hEm

H l

 (6.100) 

Since Z, (6.98) may be evaluated at =  to obtain 

(4)

,11
0

( , ) .
l

pa z hEz m dx  (6.101) 
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Similarly, design sensitivity equation (6.67) may be evaluated at z =
(4)

, since both 

functions are in Z, in order to obtain 

(4) (4) (4)( , ) ( ) ( , ).V Va z a z  (6.102) 

Since energy bilinear form a (•,•) is symmetric, (6.97), (6.101), and (6.102) can be used 

to yield 

(4) (4)

4 ,1 ,11
0

( ) ( , ) ( ) ,
l

V V pa z hE z V m dx

which can be rewritten, using (6.67), as 

(4) (4) (4)

4 ,11 ,1 ,11 ,1 ,11 ,11 ,1
0

,1 ,11
0

(4) (4)

,11 ,11 0

[ ( ) ( ) ( )]

( )

[ ] .

l

l

p

l

EIz V EI z V f V dx

hE z V m dx

f EIz V

 (6.103) 

The variational identities in (3.13) and (6.100) may be used to transform the domain 

integral into boundary evaluations. After substituting (4)

,1( )V  for z  in (3.13) and 

substituting 
(4)

 for  and (z,1V) for  in (6.100), the 4 is expressed in terms of 

boundary evaluations as 

(4) (4)

4 ,11 ,1 ,1 ,11 ,1 ,1 0

(4) (4)

,11 ,1 ,1 ,11 ,1 ,1 0

,1 ,1 ,1 ,1 0

(4) (4)

,11 ,11 0

[ ( ) ( ) ( )]

[ ( ) ( ) ( )]

[( ) ( ) ( ) ]

[ ] .

l

l

l

p p

l

EIz V EIz V

EI z V EI z V

hEm z V hEm z V

f EIz V

 (6.104) 

Since [xa, xb]  (0, l), and mp = 0 in the neighborhood of x = 0 and x = l, (6.104) becomes 

a desired design sensitivity expression, simplified to 

(4) (4)

4 ,11 ,1 ,1 ,11 ,1 ,1 0

(4) (4)

,11 ,1 ,1 ,11 ,1 ,1 0

(4) (4)

,11 ,11 0

[ ( ) ( ) ( )]

[ ( ) ( ) ( )]

[ ] .

l

l

l

EIz V EIz V

EI z V EI z V

f EIz V

 (6.105) 

Using the boundary conditions in (3.9) and the fact that 
(4)

 satisfies the same boundary 

conditions, (6.105) can be further simplified for a clamped beam to 

(4)

4 ,11 ,11 0
.

l

EIz V  (6.106) 

As before, for simply supported, cantilevered, or clamped–simply supported beams, the 

shape design sensitivity formula in (6.105) is valid, where z and 
(4)

 are solutions to 

(3.16) and (6.98), respectively, and Z is the corresponding space for all kinematically 

admissible displacements. Appropriate boundary conditions can be applied to (6.105) to 

obtain the following useful shape design sensitivity formulas: 
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  1. Simply supported 

(4) (4)

4 ,111 ,1 ,111 ,1 0
[ ( )] ,

l

EI z z V  (6.107) 

  2. Cantilevered  

(4) (4)

4 ,11 ,11 0
,

x x l
EIz V f V  (6.108) 

  3. Clamped–simply supported  

(4) (4) (4)

4 ,11 ,11 ,111 ,1 ,111 ,10
[ ( )] .

x x l
EIz V EI z z V  (6.109) 

 As with displacement functional 3, the design sensitivity formulas found in either 

(6.105), or (6.106) through (6.109) for each boundary condition, are valid for the 

functional 4, which defines the averaged stress on a fixed interval (xa, xb). The case in 

which 4 represents the averaged stress on a moving interval (xa, xb) within deformed 

domain  will be discussed in Section 6.2.4. A further assumption used to determine the 

averaged stress functional is that the interval (xa, xb) on which stress is averaged is taken 

such that [xa, xb]  (0, l). Hence, xa  0 and xb l. Discussion of the situation in which 

either xa = 0 or xb = l will take place in Section 6.2.4. 

Deflection of a Membrane 

The simplest performance measure is the membrane area, defined as 

1 .d  (6.110) 

By using the material derivative formula from (6.38), the variation of 1 can be obtained 

as

1 .nV d  (6.111) 

Note that this direct variational calculation provides the explicit form of area variation in 

terms of normal velocity Vn on the boundary. Consequently, no adjoint problem needs to 

be defined for this performance measure. 

 A second functional, which represents the membrane’s strain energy, can be defined 

in the following form 

2 .
2

TT
z z d  (6.112) 

Since according to the definition proposed by (3.79) strain energy 2 is equal to half of 

the compliance, we can obtain the following definition 

2

1
.

2
fz d  (6.113) 

Note that the integrand in (6.113) depends on load f. However, since f  = 0, (6.113) can 

be treated as the functional form of (6.69). Hence, the adjoint equation can be defined, 

using its definition in (6.72), as 

1
( , ) , .

2
a f d Z  (6.114) 
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Because the load functional on the right side of (6.114) is precisely half the load 

functional of the original membrane problem in (3.80), for this special case  = z/2. Using 

that result, and using the formula in (6.76) such that z = 0 on , the sensitivity of 2 can 

be obtained as 

2 [ ( ( )) ( )]

( ) .
2

T T T

T

n

T z z f z d

T
z z V d

V V

 (6.115) 

To transform the domain integral in (6.115) into a boundary integral, the variational 

identity in (3.78) can be used by substituting ( z
T
V) for z  in (3.78), to obtain the 

following sensitivity expression: 

2 ( ) ( ) .
2

T T

n

z T
T z V d z z V d

n
 (6.116) 

Since z = 0 on , the tangential component of z vanishes along the boundary; thus, z = 

( z/ n)n on , which yields the following simplified result: 

2

2 .
2

n

T z
V d

n
 (6.117) 

As noted in Section 6.2.2, the design sensitivity expression in (6.117) is given as a 

boundary integral, and only normal boundary movements Vn appear. 

Torsion of an Elastic Shaft 

The torsional rigidity provided by (3.83) can be considered a response functional, that is, 

2 .z d  (6.118) 

As we can determine from (6.72), the adjoint equation is 

( , ) 2 , .a d Z  (6.119) 

Thus, in this special case  = z. Comparing this equation to the membrane problem, the 

sensitivity of  can be obtained in the following form: 

2

.n

z
V d

n
 (6.120) 

Example 6.4. To take an example that can be calculated analytically, consider an 

elastic shaft with a circular cross section and radius a as its design variable (Fig. 6.6). The 

Prandtl stress function [89] z for a circular cross section is  

2 2 2 2 2

1 2

1 1
( ) ( ).

2 2
z a x x a r

Using the polar coordinates, the torsional rigidity in (6.118) can be calculated analytically 

as

4
2

2 2

0 0
( ) .

2

a a
a r r dr d
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Figure 6.6. Circular cross section of an elastic shaft. 

By taking radius a as a design variable, the variation of torsional rigidity with respect to a
is obtained by directly differentiating the above analytical solution as 

32 ,a a

which is the analytical sensitivity of torsional rigidity. Now, let us calculate the 

sensitivity of torsional rigidity by using the formula provided by (6.120). In the polar 

coordinate, the unit normal vector to the boundary can be represented by 

[cos , sin ] .T
n

In addition, since the radius is a design variable, the design velocity field can be 

expressed in the polar coordinate as 

1 2[ , ] [ cos , sin ] .T TV V r rV

Since the radial direction is normal to the boundary, the integrand z/ n in (6.120) can be 

equivalently represented as 

.T z
z r

r
n

Hence, from (6.120) the sensitivity of  becomes 

2
2 3

0
( ) 2 ,

r a

r r rd a a

which is the same as the analytical solution. 

Bending of a Plate 

Consider the plate bending problem as it was presented in Section 3.1.3, with thickness 

h(x) h0 > 0 and a constant Young’s modulus E. A functional definition of the plate 

weight is 

1 ,h d  (6.121) 

where  is the weight density. In the case of the shape design problem, partial derivative 

( h)  = 0, and thus, the material derivative of 1 can be calculated by using (6.38) as 

a

x1

x2

n
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1 .nhV d  (6.122) 

Thus, no adjoint variable is necessary, and the explicit design derivative of the weight is 

obtained. As a result, for a given normal design velocity field, (6.122) can be readily 

evaluated without recourse to any response analysis or adjoint problem. 

 Next, consider the compliance functional for the plate, defined as 

2 .fz d  (6.123) 

As with (6.113), since f  = 0, (6.123) can be treated as the functional form of (6.69). 

Consequently, by returning to (6.72), the adjoint equation would be 

( , ) , .a f d Z  (6.124) 

For this special case,  = z and the sensitivity expression of 2 can be obtained by 

substituting fz for g in (6.76) as 

2 [2 ( ) ( ) 2 ( )]

[2 ( ) ( )] .

T b T T

T b

n

z z f z d

fz z z V d

C V V

C
 (6.125) 

Equation (6.125) contains the terms of the domain integral, which can be transformed 

into a boundary integral by employing the variational identity in (3.38). If we substitute 

( z
T
V) for z  in (3.38), then the following sensitivity expression can be obtained in terms 

of the boundary integral: 

2 2 ( ) 2 ( )

[2 ( ) ( )] .

T T

T b

n

z Nz d z Mz d
n

fz z z V d

V V

C

 (6.126) 

To further simplify this sensitivity expression, consider the coefficients of the differential 

operators Mz and Nz in the above equation. If we restrict our attention to the clamped 

boundary C , then the first integral on the right side of (6.126) vanishes, since z = 0 

on C. For the second integral,

2

, , ,

, 1

( ) ( ).T

i ij j i j i j

i j

z V z n V z n
n

V

Since z = 0 on C, the second term on the right side vanishes, and the first term can be 

expanded to 

2 22

, 2
, 1

( ) ( ) ( ).T T T

i ij j

i j

z z
z V z n

n n n s
V V n V s  (6.127) 

This equation can be verified by expanding the last term in (6.127). Since z/ n = 0 on 

C, ( / s)( z/ n) = 0 on C, and (6.127) becomes 

2

2
( ) ( ).T Tz

z
n n

V V n  (6.128) 

Also, since z/ s = 0, and 
2
z/ s

2
 = 0 on C, the differential operator Mz in (3.36) 

becomes 



 6.2 Static Response Design Sensitivity Analysis  271 

2 2 2

2 2 2

1
, .C

z z z z
Mz D D

n r n s n
x  (6.129) 

As a result, the sensitivity formula in (6.126) is simplified for the clamped boundary C

as

2
2

2 2
2 ( ) ( ) .

C

T b

n

z
D z z V d

n
C  (6.130) 

As before, the design sensitivity expression in (6.130) is given as a boundary integral, 

and only the normal movement Vn appears on the boundary C.

 It was shown by Mikhlin [39] that if the clamped boundary conditions in (3.34) are 

satisfied, then the following relation could be obtained: 

2

,12 ,11 ,22( ) 0.z z z d

Hence, if plate thickness h(x) is constant, then the plate variational equation (3.43) is 

simplified to 

2 2( , ) ( )( ) ( ), .a z z D z z d fz d z z Z

Proceeding in exactly the same way as before, instead of (6.130), a more simplified 

expression can be obtained 

2
2

2 2

2 2

2
2

2

2 ( )

.

C

C

n

n

z
D z V d

n

z
D V d

n

 (6.131) 

Example 6.5. To take an analytical example, consider a clamped circular plate with 

constant thickness h, radius a, and concentrated load f = p (x) at the center of the plate, as 

illustrated in Fig 6.7 The analytical displacement of the plate [52] is given as  

2 2 1 2ln ,
16

p a
z a r

D r

Figure 6.7. Circular plate with concentrated load. 

a

x1

x2
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P
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where 2 2 2

1 2 .r x x  Drawing on (6.123), the compliance functional of the plate is 

2 2 2
2 2

2

( )
1 2ln .

16 16

p a p a
a r d

D r D

x

Taking plate radius a to be a design variable, the variation of compliance with respect to 

a becomes 

2

2 ,
8

p a
a

D

which is an analytical sensitivity of the compliance functional. In order to compare this 

analytical result to the result in (6.131), let us express (6.131) in the polar coordinate, 

with Vn = r and 
2
z/ n

2
 = 

2
z/ r

2
 on the boundary. Then, the compliance sensitivity can 

be expressed as 

2
2

2

2 20

2

2

4ln 4 2
16

,
8

r a

r a

z
D r r d

r

p a
D r r

D r

p a
a

D

which is the same as the analytical sensitivity. 

 The compliance sensitivity formula in (6.126) is still valid for other boundary 

conditions in (3.46) and (3.47), because the variational equation (3.43) is valid for every 

z  that satisfies corresponding kinematic boundary conditions. For example, consider the 

simply supported part of the boundary S . From the boundary conditions given in 

(3.46), the fact that z = 0 on S implies that z/ s = 0 on S; thus, only the normal 

component of z exists on the boundary. Hence, z = ( z/ n)n. By using this condition, 

the sensitivity formula in (6.126) can be simplified to 

2 2 ( ) ( ) .
S

T b

n

z
D Nz z z V d

n
C  (6.132) 

From the boundary conditions given by (3.47), i.e., Mz = Nz = 0, the sensitivity formula 

in (6.126) can be simplified for the free edge of the boundary F  to 

2 2 ( ) ( ) .
F

T b

nfz z z V dC  (6.133) 

If  = C S F, then the complete shape design sensitivity formula is obtained by 

adding the terms from (6.130), (6.132), and (6.133). 

 Next, consider the displacement functional at a discrete point x
*
, written as 

*

3 ( ) ,z dx x  (6.134) 

where x
*

 is a fixed point, and (x) is the Dirac delta measure on the plane, acting at 

the origin. Since m = 2 and n = 2, m > n/2. According to the Sobolev imbedding theorem 

[22], z C
0
( ). The functional in (6.134) is thus continuous, and the previously 

presented approach also works. 
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 Since (x – x
*
) is defined in the neighborhood of  by zero extension, and since x

*
 is 

fixed, the partial derivative of (x – x
*
) becomes zero. Thus, (6.134) can be treated as the 

functional form of (6.69). By following the same procedure used to determine (6.72), the 

adjoint equation is obtained as 

*( , ) ( ) , .a d Zx x  (6.135) 

Equation (6.135) has a unique solution , which is the displacement due to the unit load 

at x
*
. With the addition of smoothness assumptions, variational equation (6.135) is 

equivalent to the following operator equation: 

,11 ,22 ,11 ,22 ,11 ,22

*

,12 ,12

[ ( )] [ ( )]

2(1 )[ ] ( ), ,

D D

D x x x
 (6.136) 

with  satisfying the same boundary conditions as the original structural response z.

Using (6.76) with g = (x – x
*
)z, the sensitivity of 3 can be expressed as 

(3) (3)

3

(3) *

(3) (3)

( ) ( ) ( )

( ) ( ) ( )( )

[ ( ) ( )] .

T b T T

T b T T

T b

n

z f

z z d

f z V d

C V V

C V x x V

C

 (6.137) 

As with (6.125), the variational identity in (3.38) may be repeated in order to transform 

the domain integral in (6.137) to a boundary integral, obtaining 

(3) (3)

3

(3) (3)

(3) (3)

( ) ( )

( ) ( )

[ ( ) ( )] .

T T

T T

T b

n

Nz Mz d
n

z N z M d
n

f z V d

V V

V V

C

 (6.138) 

Note that the clamped boundary conditions in (3.34) hold for 
(3) 

as well as for z; thus, the 

same is true for (6.128) and (6.129). By drawing on these relations, the displacement 

sensitivity for clamped boundary C can be expressed as 

2 2 (3)
(3)

3 2 2
2 ( ) ( ) ,

C

b

n

z
D z V d

n n
C  (6.139) 

which is valid for variable thickness h(x). As with the example of a compliance 

functional, if plate thickness h(x) is constant, then a more simplified expression can be 

obtained as 

2 2 (3)

3 2 2
.

C
n

z
D V d

n n
 (6.140) 

Example 6.6. In order to provide an analytical example, consider a clamped circular 

plate with constant thickness h, radius a, and linearly increasing axisymmetric load f = 

(q/a0)r, as illustrated in Fig. 6.8, where a0 represents the present design. 
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Figure 6.8. Circular plate with axisymmetric load. 

The analytical solution to a plate displacement which has a radius of a is given by [52] 

5
4 2 2

0

3 5 2 .
450

a

qa r
z a a r

Da a

Taking x
*
 to be the plate center, i.e., r = 0, the 3 from (6.134) becomes 

5

3

0

.
150

qa

Da

If plate radius a is a design variable, then the sensitivity of 3 can be obtained by directly 

differentiating this analytical expression with respect to design a, evaluated at present 

design a0 as 

0

3

3 0
3 0.

30a a

qa
a a

a D

The objective is to compare the sensitivity result obtained from (6.140) to the above 

analytical sensitivity result. The sensitivity formula in (6.140) requires an adjoint solution 

to (6.135), where the adjoint load is a unit point load applied at the plate center. 

According to classical plate theory [52], the adjoint solution with radius a is 

(3) 2 21
1 2ln .

16

r
a r

D a

For a circular plate, it is convenient to express (6.140) in the polar coordinate as 

0 0

0 0

2 2 (3)
2

3 2 20

,

2 3

0 ,

3

0
0

1
10 40 4ln 4

450 16

,
30

r a a a

r a a a

z
D r r d

r r

qa
D a r a a r

Da D

qa
a

D

which is the correct result. 
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 For other boundary conditions in (3.46) and (3.47), the same procedure as with the 

compliance functional can be used. In the case of a simply supported boundary S, the 

sensitivity expression becomes 

(3)
(3) (3)

3 ( ) ( )
S

T b

n

z
Nz N z V d

n n
C  (6.141) 

and, in the case of a free edge F, the sensitivity of 3 can be written as 

(3) (3)

3 [ ( ) ( )] .
F

T b

nf z V dC  (6.142) 

If  = C S F, then the complete shape design sensitivity formula can be obtained 

by adding the terms from (6.139), (6.141), and (6.142). 

 As in the case of a beam displacement functional, the sensitivity results in (6.138), or 

(6.139) through (6.142) for each boundary condition, are valid for displacement at a fixed 

point x
*
. For the situation in which 3 is the displacement at a moving point within 

deformed domain , such that x
*

 = x
*
+ V(x

*
), consult Section 6.2.4. 

 The maximum stress on a thin plate occurs on the plate’s surface [23], and is given in 

the form  

11

22

12

( ).
2

h
zC  (6.143) 

By using these stress components, The von Mises failure criterion [23] is defined by

2 2 2

11 22 11 22 12( ) ( ) 3( ) 12( ) 4 0,pg  (6.144) 

where p is a given, uniaxial yield stress. This failure criterion is most often used in 

engineering applications. But, in order to simplify, let us assume that stress 11 in (6.143) 

is taken as a strength constraint rather than employing the von Mises failure criterion. 

Once this step is taken, the concept can then be extended to the von Mises failure 

criterion.

 As with a beam, since a pointwise stress constraint is meaningless, the characteristic 

function approach from (6.96) may be used. That is, a function mp(x) can be defined that 

is positive and constant on a small, open subset p, zero outside of p, and with an 

integral of one. Then, the averaged value of 11 over this small region can be defined as 

the following constraint: 

4 11

,11 ,222
( ) .

2(1 )

p

p

m d

Eh
z z m d

 (6.145) 

If the averaged stress on fixed region p is of concern, then mp in (6.145) does not 

change with . Thus, 0.pm

 Now, let us differentiate (6.145) by using the material derivative formula from (6.38), 

and the property of h  = 0 to obtain 
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4 ,11 ,222

,11 ,222

,11 ,22 ,11 ,222

( )
2(1 )

( )
2(1 )

[ ( ) ( ) ] .
2(1 )

p

n p

T T

p

Eh
z z m d

Eh
z z V m d

Eh
z z z z m dV V

 (6.146) 

The boundary integral vanishes, since mp = 0 on . As in the general derivation of adjoint 

equation (6.72), the adjoint load may be defined by replacing  with  in the first two 

terms on the right side of (6.146). By equating this adjoint load with the structural 

bilinear form, the desired adjoint equation can be obtained as 

,11 ,222
( , ) ( ) , .

2(1 )
p

Eh
a m d Z  (6.147) 

Note that adjoint equation (6.147) is the same as adjoint equation (5.64) for the sizing 

design problem. It can be shown that the linear form of  on the right side of (6.147) is 

bounded in H
2
( ). Hence, according to the Lax-Milgram theorem [16], (6.147) has the 

unique solution 
(4)

.

 If smoothness assumptions are added, then variational equation (6.147) is equivalent 

to the following operator equation: 

,11 ,22 ,11 ,22 ,11 ,22 ,12 ,12

2 2

,11 ,22

[ ( )] [ ( )] 2(1 )[ ]

, ,
2(1 ) 2(1 )

p p

D D D

Eh Eh
m m x

 (6.148) 

with  satisfying the same boundary conditions as the original structural response z. As 

with adjoint equation (6.99) for the beam problem, the derivatives on the right side of 

(6.148) are interpreted as distributions. Moreover, the distributional derivatives mp,i and 

mp,ij (i, j = 1, 2) depend on the equation that represents the boundary of p (The reader is 

referred to Kecs and Teodorescu [88] for a detailed treatment of the distributional 

derivative). Following the same procedure set out in Section 3.1.3, a variational identity 

can be obtained from (6.148) for the adjoint system as 

,11 ,222

,1 1 12 2

,1

2

,2 2 22 2

,2

( ) ( ) ( )
2(1 )

2(1 ) 2(1 )

, ( ).
2(1 ) 2(1 )

T b

p

p p

p p

Eh
d m d

N d M d
n

Eh Eh
m n m n

Eh Eh
m n m n d H

C

 (6.149) 

The sensitivity expression of 4 can now be derived. Since Z, (6.147) may be 

evaluated at =  to obtain 

(4)

,11 ,222
( , ) ( ) .

2(1 )
p

Eh
a z z z m d  (6.150) 
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Note that the right side of the equation is exactly the same as the first two terms on the 

right side of (6.146). Similarly, since both z  and 
(4) 

belong to Z, design sensitivity 

(6.67) can be evaluated at z =
(4)

, to yield 

(4) (4) (4)( , ) ( ) ( , ).V Va z a z  (6.151) 

Since the energy bilinear form a (•,•) is symmetric, the right sides of both (6.150) and 

(6.151) are identical. Thus, by drawing on (6.146), the sensitivity expression of 4 is 

obtained as 

(4) (4)

4 ,11 ,222
( ) ( , ) [( ) ( ) ] ,

2(1 )

T T

V V p

Eh
a z z z m dV V

which can be rewritten using (6.67) as 

(4) (4)

4

,11 ,222

(4) (4)

[ ( ) ( ) ( ) ( )]

[( ) ( ) ]
2(1 )

[ ( ) ( )] .

T b T T T T b

T T

p

T b

n

z f z z d

Eh
z z m d

f z V d

C V V V C

V V

C

 (6.152) 

As with (6.125), the variational identities in (3.38) and (6.149) can be used to transform 

the domain integral in (6.152) into the following boundary integral: 

(4) (4)

4

(4) (4)

,1 1 12 2

,1

,2 2 22 2

,2

(4)

[( ) ( ) ]

[( ) ( ) ]
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T T

p p
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n

z N z M d
n

Eh Eh
m z n m z n

Eh Eh
m z n m z n d

f z

V V

V V

V V

V V

C
(4)( )] .nV d

 (6.153) 

Since p , the characteristic function mp and its derivatives vanish on . Thus, (6.153) 

can be simplified to express the sensitivity of 4 in terms of the boundary velocity as 

(4) (4)

4

(4) (4)

(4) (4)

[( ) ( ) ]

[( ) ( ) ]

[ ( ) ( )] .

T T

T T

T b

n

Nz Mz d
n

z N z M d
n

f z V d

V V

V V

C

 (6.154) 

As was the case for the displacement functional, sensitivity formulas can be obtained for 

different boundary conditions, as follows. 

  1. Clamped boundary:  

2 2 (4)
(4)

4 2 2
2 ( ) ( ) ,

C

T b

n

z
z V d

n n
C  (6.155) 
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  2. Simply supported boundary:  

(4)
(4) (4)

4 ( ) ( ) ,
S

T b

n

z
Nz N z V d

n n
C  (6.156) 

  3. Free edge boundary:  

(4) (4)

4 [ ( ) ( )] .
F

T b

nf z V dC  (6.157) 

For the case in which  = C S F, a complete shape design sensitivity formula can 

be obtained by adding the terms from (6.155) through (6.157). 

 As with a beam, the shape design sensitivity results for averaged stress in (6.154) 

through (6.157) are valid for the fixed region p. For the case in which 4 is the averaged 

stress in the moving region p  = T( p, ), consult Section 6.2.5. It has been assumed that 

p , so boundary p of p does not meet boundary  of . The situation in which p

intersects with  will also be considered in Section 6.2.5. 

Linear Elasticity Problem 

Shape design sensitivity analysis for the linear elasticity problem in Section 3.1.4 is 

carried out by using the adjoint variable method in this section. For plane stress, or plane 

strain problems, the formulas derived in Section 3.1.4 remain valid, with the limits of 

summation running from 1 to 2, and an appropriate modification of the generalized 

Hooke’s law. 

 Consider the three-dimensional elasticity problem as presented in Section 3.1.4, with 

a mean stress constraint over fixed volume p ( p ) as 

( ( )) ,pg m dz  (6.158) 

where  denotes the stress vector, p is an open set, and mp is a characteristic function 

that is constant on p, zero outside of p, and with an integral of one. It is assumed that 

function g is continuously differentiable with respect to its arguments. Note that g( (z)) 

might involve principal stresses, the von Mises failure criterion, or some other material 

failure criteria. While the integrand in (6.158) could be explicitly written in terms of z

as with the plate problem in Section 6.2.3, it is more effective to continue with the 

present notation. 

 In perturbing the boundary, it is assumed that structural boundary =
h f s

 is 

varied along with the design, except the boundary 
s
 of the traction surface boundary 

s

is fixed, so the velocity V at 
s
 is zero. For the case in which 

s
 is not fixed, variation 

of the traction term in (3.59) (given as an integral over 
s
) yields an additional term that 

was not discussed in Section 6.1.2. For this case, the interested reader is referred to 

Zolesio [90] for more information. Two kinds of boundary loads may be considered. One 

is a conservative load that depends on the position but not the boundary shape, while the 

other is a more general, nonconservative load that depends not only on position but also 

on boundary shape. 

 First, consider a conservative load in which traction f
 s
 in (3.59) only depends on the 

position. By using the material derivative formulas from (6.38) and (6.53) and by using 

the fact that f
 b

 = f
 s

 = 0, state equation (3.60) is differentiated with respect to the design 

as
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[ ( ) ( ) ( ) ( )] [ ( ) ( )]

[ ]

[ ( ) ( )] , .

f s

s s
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n

bT bT

n

sT sT T sT

n

d V d

d V d

d V d Z

z z z z z z

f z f z

f z f z n f z z

 (6.159) 

After converting z  into  using (6.8), and using the property of 0z  in (6.63), the 

following sensitivity equation is obtained from (6.159): 

( , ) ( ) ( )

[ ( ) ( ) ( ) ( )]

( ) [ ( ) ( )]
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( ) [ ( ) ( )] , .
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s

T

T T T T

bT T T

n

bT

n

sT T sT T sT

n

a d

d

d V d

V d

V d Z

z z z z

z z V z V z

f z V z z

f z

f z V f z n f z z

 (6.160) 

As in sensitivity equation (6.67), (6.160) is a variational equation for Z. That is, 

[H
1
( )]

3
 and satisfies all kinematic boundary conditions. 

 For the fixed region p, the characteristic function mp that appears in the performance 

measure of (6.158) is independent of the shape design; thus, 0,pm  and mp = 0 on the 

boundary. By using the material derivative formula from (6.38), the sensitivity of  can 

be obtained as 

, ( )

, ( )

( ) ( ( ))

[ ( ) ( )] .

p p n

T

p

g m d g m V d

g m d

z

z

z z

z z V
 (6.161) 

 As with adjoint equation (6.72), in order to define a load functional for the adjoint 

equation, the material derivative of state variable Z may be replaced by virtual 

displacement  in the first term on the right side of (6.161). By equating this load 

functional with the energy bilinear form, the following adjoint equation can be defined: 

, ( )( , ) ( ) , .pa g m d Zz  (6.162) 

The linear form of  on the right side of (6.162) is bounded in [H
1
( )]

3
. According to 

the Lax-Milgram theorem [16], (6.162) has a unique solution for displacement field .

 With its smoothness assumptions, (6.162) is equivalent to the formal operator 

equation

, , ,( ) ( ) , 1,2,3, ,
klij j klij p jg C m i x  (6.163) 

with boundary conditions 

0, h
x  (6.164) 

0, .f s
n x  (6.165) 

As in adjoint (6.148) for the plate problem, the derivative on the right side of (6.163) is 

interpreted as a distribution. The distributional derivatives mp,j (j = 1, 2, 3) depend on the 

equation representing the boundary of p [88]. By relying on the same method used in 

Section 3.1.4, a variational identity can be obtained from (6.163) for the adjoint system, 
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that is, by multiplying (6.163) by  [H
1
( )]

3
and integrating by parts, we can obtain 

,

, ,

,

( ) ( )

.

kl

kl

ij i j ij j i

klij p i j

klij p j i

d n d

g C m d

g C m n d

Since ij( ) = ji( ), and Cijkl = Cklji, the above equation can be rewritten in the following 

more convenient variational identity form:  

,

1 3

,

( ) ( ) ( )

( )

, [ ( )] .

ij

kl

ij ij ij p

ij j i

klij p j i

d g m d

n d

g C m n d H

 (6.166) 

Note that by imposing boundary conditions in (6.164) and (6.165), and by using the fact 

that mp = 0 on , the variational equation in (6.162) is obtained. 

 Since Z, (6.162) may be evaluated at z , to obtain 

, ( )( , ) ( ) .pa g m dzz z  (6.167) 

Similarly, since z Z, and Z, (6.160) may be evaluated at z  = , to obtain 

( , ) [ ( ) ( ) ( ) ( )]

( ) [ ( ) ( )]
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f V z

f

f V f n f

 (6.168) 

According to the Betti’s reciprocal theorem [44], the energy bilinear form is symmetric, 

and can be written as 

1 3

( , ) ( ) ( )

( ) ( ) ( , ), [ ( )] .

T

T

a d

d a H

z z z z

z z z z z
 (6.169) 

Thus, ( , ) ( , )a az z , and (6.160), (6.167), and (6.168) yield the sensitivity expression 

of  as 

, ( )

[ ( ) ( ) ( ) ( )]
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z

z V z V

f V z V

z f

f V f n f

 (6.170) 

As before, the variational identities in (3.57) and (6.166) may be used to transform the 

domain integrals in (6.170) into boundary integrals by substituting z  in (3.57) and  in 

(6.166) with (
T
V) and ( z

T
V) in (6.170), respectively, obtaining 
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 (6.171) 

since p , mp = 0 on . Using the boundary conditions offered by (3.56) and (6.165), 

(6.171) becomes 
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 (6.172) 

The fact that z =  = 0 on 
h
 implies that zi = ( zi

T
n)n and that i = ( i

T
n)n. Hence, 

(6.172) becomes 
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 (6.173) 

which is the desired result. 

 As with the plate problem, the stress sensitivity result for averaged stress in (6.173) is 

valid for a fixed region p that satisfies the relation p . For the case in which  is 

averaged stress on the moving region p  = T( p, ), or when a part of p intersects 

consult Section 6.2.6.

 Next, consider a more general, nonconservative load. A typical example is a pressure 

load applied in the normal direction to the boundary, defined as 

( ) ( ), .s spf x n x x  (6.174) 

In the following derivations, we will consider the case in which p  = 0 and f
 b

 = 0. After 

substituting f
 s
 into the load linear form in (3.59), the state equation (3.60) is 

differentiated using the material derivative formulas from (6.38) and (6.58), to obtain 
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 (6.175) 

Since the same performance measure is of interest, the adjoint equation is the same as 

(6.159) for a nonconservative load. The only difference is the boundary integral terms in 

(6.175), compared with those in (6.159). Thus, by following a similar procedure as with a 

conservative load, the sensitivity of  can be obtained by 
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0
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div p V d
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which is the desired result. And as with the conservative loading case, the stress 

sensitivity result in (6.176) is valid for a fixed region p that satisfies the relation p .

6.2.4 Shape Design Sensitivity Analysis of Local Performance Measures 

In Section 6.2.3, analytical shape design sensitivity formulas for beams and plates were 

derived for the functional that defines displacement at an isolated fixed point, x
*

. For 

the purpose of shape design sensitivity analysis, it was assumed that this point does not 

move so that (x – x
*
) = 0, that is, that the displacement functional on perturbed domain 

 is evaluated at the same point x
*
.

 In order to numerically determine shape design sensitivity, the finite element method 

can be employed as a computational tool. A nodal point is the natural choice for 

evaluating displacement. If the shape (geometry) of domain  is perturbed, then the 

domain finite element grid will also be perturbed, and nodal points will move. Thus, 

evaluation point x
*
 moves according to the domain design velocity field, and the 

additional convective term due to movement of point x
*
 must be obtained. 

 The shape design sensitivity of a mean stress functional over fixed, small region p

was considered in Section 6.2.3 for beam, plate, and linear elasticity problems by 

assuming mp  = 0. Moreover, in order to define the mean stress functional, it was assumed 

that the functional value on deformed domain  is the mean stress value on the same 

region p, and that boundary p of p does not intersect boundary  of . As in the case 

of displacement, when the finite element method is used, a finite element is a natural 

choice for p. Consequently, due to domain perturbation, p will move as the finite 

element grid moves, and p may touch . In this case, the additional convective term due 

to movement of region p must be obtained. 

Displacement Functional 

Consider a scalar displacement functional in either a beam or plate problem, defined by 

* *( ) ( ) ,z z dx x x  (6.177) 

where point x
*
 moves to x

*
 = x

*
+ V(x

*
). By taking the material derivative of (6.177), 

the following sensitivity expression is obtained: 

* * * * * *( ) ( ) ( ) ( ) ( ) ( ).T Tz z z d zx x V x x x x V x  (6.178) 

Note that the first term on the right side of (6.178) is the same used in Section 6.2.3 to 

derive (6.91) for a beam, and (6.138) for a plate. Thus, if point x
*
 is taken as moving, 

then the second convective term on the right side of (6.178) needs to be added to (6.91) 

and (6.138). Consequently, even though the physical domain shape does not change, if 

point x
*
 moves, then the contribution from the additional convective term appears. 

Example 6.7. To illustrate the use of (6.178), consider a clamped beam with a 

displacement functional, as studied in Section 6.2.3. Taking beam length l as a design 

variable, the design velocity on the boundary can be written as V(0) = 0 and V(l) = l. In 
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the domain it is possible to select V(x) = x l/l (0 x l) as in Example 6.2, which means 

that the points on the beam proportionally move to the right. If displacement sensitivity is 

desired at point x
*
 = l/4, then the above design velocity information can be used to obtain 

perturbed point *x  = (l + l)/4. In addition, the analytical displacement expression was 

given in Example 6.2 as z(x) = (f0/24EI)[x
2
(l – x)

2
]. After substituting *x  into this 

displacement expression, we obtain a displacement functional at *x  as 

* *2 * 20( ) ( ) [ ( ) ].
24

f
z x x l l x

EI
 (6.179) 

Taking the variation of the displacement functional with respect to , and evaluating the 

result at  = 0, the displacement sensitivity is obtained as 

3

03
.

512

f l
l

EI

This sensitivity will now be compared with the sensitivity obtained by using the adjoint 

variable method. The adjoint load from (6.88) is a unit point load at x
*
 = l/4. The adjoint 

variable is thus obtained as 

3 3 21
( ) [64 4 54 27 ].

384
x x l x lx

EI

Using these results, combined with the formula in (6.92) for a clamped beam, and the 

additional term in (6.178), we obtain 

3
* * 0

,11 ,11 ,10

3
( ) ( ) ,

512

l f l
EIz V z x V x l

EI

which is the same previously obtained result. 

 From this example it is clear that if different velocity fields are used in the domain, 

even with the same V(0) = 0 and V(l) = l, then different sensitivity results will be 

obtained, since the convective term on the right side of (6.178) depends on velocity V(x
*
). 

However, since the sensitivity of the global functionals such as compliance and 

eigenvalue only depends on V(0) and V(l), they would yield the same sensitivity results 

for different domain velocity fields. 

Stress Functional 

The mean stress functional over a small region p can be written as 

( ( )) ,pg z m d  (6.180) 

where mp is a characteristic function that has the constant value pm  = ( pd )
–1

 on p,

and is zero outside p.

 First, consider the case in which p moves. Since mp is constant, (6.180)) can be 

rewritten as 

( ( ))

.p

p

g z d

d
 (6.181) 

By using the material derivative formula from (6.38), the functional in (6.181) is 
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differentiated with respect to the design as 

2

( ( )) ( ( ))

( ( ))

( ( )) [ ( ( )) ] .

p p p

p p p

p

n

n

p p n

g z d g z V d d

g z d V d d

g z m d m g z V d

 (6.182) 

Note that the first term on the right side of the above equation is the same one used in 

(6.97), (6.146), and (6.161) for beam, plate, and linear elasticity problems, respectively. 

If p is moving, the second term on the right side of the above equation needs to be 

added to the results in (6.104), (6.153), and (6.171). This convective term is the 

additional contribution due to the movement of p. Thus, even without a change in 

domain shape, the movement of p will provide a nonzero sensitivity term. 

 For the case in which a part of p intersects  as shown in Fig. 6.9, mp = 0 cannot be 

permitted on p; specifically, it cannot be permitted on p p  in (6.104), (6.153), 

and (6.171). Instead, mp = pm  must be used on p , and the distributional derivatives mp,i

(i = 1, 2) arise on 
p

. Moreover, even though the kinematic boundary conditions for 

adjoint response are the same as when p , the traction boundary conditions will be 

different on p , since mp = pm  and distributional derivatives mp,i (i = 1, 2) must be used 

for the variational identities of the adjoint system given in (6.100), (6.149), and (6.166). 

Interpretation of Results 

From the shape design sensitivity results derived in this section, it is clear that unlike 

functionals that define such global measures as compliance and eigenvalues, the shape 

design sensitivity of local functionals may involve convective design perturbations due to 

a velocity field in the domain, that is, once the perturbed shape of a domain is given, 

there is only one way to evaluate global functionals by integrating over the entire 

perturbed domain. However, perturbations of local functionals may or may not involve 

design perturbations, depending on the movement of location of the local functional. 

Figure 6.9. Intersection of p and 

p

p

s

f

h

p p
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 To predict perturbations of local functionals on fixed interior points or regions, the 

results from Section 6.2.3 can be used. Consequently, the second term on the right side of 

(6.178) and (6.182) can be ignored. If a perturbation of local functionals on moving 

interior points or regions is desired, then the domain velocity field must be considered, as 

in (6.178) and (6.182). In this case, the prediction accounts for the movement of a point 

or region on which the functional is defined. 

6.2.5 Domain Shape Design Sensitivity Method 

To numerically calculate the design sensitivity expressions of the boundary method 

presented in Section 6.2.4, which are given in terms of boundary integrals, stresses, 

strains, and/or normal derivatives of state and adjoint variables on the boundary must be 

used. Hence, the accurate evaluation of this boundary information is critical. Thus, when 

a numerical method such as finite element analysis is used, the accuracy of its results 

must be verified for those state and adjoint variables that lie on the boundary. It is well 

known [85] that finite element analysis results may not be satisfactory on the boundary 

for a system with a nonsmooth load and with interface problems. 

 Several methods might be devised to overcome this difficulty. The first is using a 

finite element method that provides accurate results on the boundary. A second choice 

would be another numerical method, such as the boundary element method [91] and [92]. 

In the finite element method, the unknown function, e.g, displacement, is approximated 

by trial functions that do not satisfy the governing equations, but that usually satisfy 

kinematic boundary conditions. Nodal parameters are then determined by approximate 

satisfaction of both the differential equations and the nonkinematic boundary conditions, 

in the sense of a domain integral mean. However, with the boundary element method, 

approximating functions satisfy the governing equations in the domain, but they do not 

satisfy the boundary conditions. Nodal parameters are determined by approximate 

satisfaction of the boundary conditions in the sense of a weighted integral. An important 

advantage of the boundary element method in shape design sensitivity analysis is that it 

represents boundary conditions better than the finite element method, and it is usually 

more accurate in determining stress on the boundary. 

 A third method uses the domain information in conjunction with finite element 

analysis, and is the main focus of this section. To develop a domain method, consider the 

basic material derivative formula in Lemma 6.1. Instead of using (6.38), the result given 

by (6.37) can be used, which requires velocity information on the domain rather than on 

the boundary. In this section, the adjoint variable method for beam, plate, and linear 

elasticity problems as presented in Section 3.1 is now developed to calculate the shape 

design sensitivity of performance measures using the domain method. 

Beam Problem 

Consider the beam bending problem in Section 3.1.2, with a domain  = (0, l) R
1
 and a 

moment of inertia I(x). The adjoint equation for the domain method is the same as the 

adjoint equation for the boundary method. Thus, the adjoint equations in Section 6.2.3 

can be used for calculating the adjoint response of the beam problem. The difference 

between the boundary and domain methods is whether those variations ( , )a z zV  and 

( )zV  are calculated on the boundary or in the domain. For the domain method, these 

variations are defined as 

,11 ,11 ,1 ,11 ,1 ,1 ,11 ,11
0

( , ) [3 ( ) ]
l

a z z EI z z V z z z z V dxV  (6.183) 

and
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,1 ,1
0

( ) ( ) .
l

z f zV fzV dxV  (6.184) 

The sensitivity of a general functional can be calculated by substituting these two 

definitions into (6.76). Note that the second-order derivative of the design velocity exists 

in (6.183). Thus, the domain design velocity V(x) must be defined such that V,11 is 

integrable. However, different from the boundary method, the highest derivative of the 

state variable z is two. Thus, the third-order derivative is not required in the domain 

method. 

 When the boundary and domain formulations are compared, an interesting difference 

appears in the continuity requirement of design velocity between the two formulations. 

The boundary formulation of the beam component in Section 6.2.3 only requires the first-

order derivative of the design velocity, while the domain formulation in (6.183) needs the 

second-order derivative of the design velocity. In the practical point of view, it is 

inconvenient to define a design velocity field whose second-order derivative is integrable. 

If the Timoshenko beam theory in Section 3.1.2 is used, however, it is enough that the 

first-order derivative of the design velocity is integrable, which is desirable. Thus, it is 

necessary to develop the shape sensitivity formulation for the Timoshenko beam. 

 The structural bilinear form for the Timoshenko beam component at the perturbed 

design can be written from (3.27), as 

,1 ,1 ,1 ,1
0

( , ) [ ( )( )] ,
l

a EI k A z z dxz z  (6.185) 

where the state variable z = [z, ]
T
 and  is the rotational degree-of-freedom with respect 

to x3-coordinate. By differentiating (6.185) and collecting the explicitly dependent terms, 

the structural fictitious load for the beam component can be defined as 

,1 ,1 ,1 ,1 ,1
0

( , ) [ ( )] .
l

a EI k A z z V dxV z z  (6.186) 

Note that the first-order derivative of the design velocity appears in (6.186). Thus, C
0
-

continuous design velocity is enough to define the structural fictitious load. 

 The load linear form in (3.28) can be rewritten at the perturbed design as 

0
( ) ,

l
Tz dxz f  (6.187) 

where f = [f, m]
T
 includes the distributed body force and moment. By assuming that the 

applied load is independent of design, the variation of the load linear form can be 

obtained as 

,1 ,1
0

( ) [ ] .
l

T TV V dxV z z f z f  (6.188) 

Plate Problem 

Consider the plate bending problem as it was presented in Section 3.1.3. In the 

component-fixed local coordinate system, the design velocity field V(x) is given in two-

dimensional domain . The variations ( , )a z zV  and ( )zV  in the domain method can be 

defined as 

( , ) [ ( ) ( ) ( ) ( )]

( ) ( )

T b T T T b

T b

a z z z z z z d

div z z d

V C V V C

C V
 (6.189) 
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and

( ) ( ) ,Tz z f fzdiv dV V V  (6.190) 

where (z) is the curvature vector in (3.39), and C
b
 is the bending stiffness matrix in 

(3.40). Although the third-order derivatives of state variable z exist in (6.189), they are 

eventually canceled out each other. Thus, only the second-order derivatives of the state 

variable are required. 

 As with beam component, the requirement of the second-order derivative of the 

design velocity is impractical in engineering applications. Thus, the Mindlin/Reissner 

plate theory in Section 3.1.3 is used to derive the shape sensitivity formulation. This 

theory requires the design velocity whose first-order derivative is integrable. The energy 

bilinear form for the thick plate in (3.55) can be rewritten at the perturbed design, as 

( , ) [ ( ) ( ) ( ) ( )] ,b sa dz z z C z z C z  (6.191) 

where z = [z, 1, 2]
T
 is the state response. Using the material derivative formulas in 

Section 6.1, the bilinear form in (6.191) can be differentiated with respect to the design. 

After collecting explicitly dependent terms, the structural fictitious load can be defined 

( , ) [ ( ) ( ) ( ) ( ) ( ) ( ) ]

[ ( ) ( ) ( ) ( ) ( ) ( ) ] ,

V b b V b

V s s V s

a div d

div d

V z z z C z z C z z C z V

z C z z C z z C z V
 (6.192) 

where

1
( )

2

jV i k k

k j k i

V V

x x x x
z  (6.193) 

and

1

2

( ) .

k

kV

k

k

z V

x x

z V

x x

z  (6.194) 

 The load linear form in (3.55) can be rewritten at the perturbed design as 

( ) ,T dz z f  (6.195) 

where f = [f, m1, m2]
T
 includes the distributed body force and moments. By assuming that 

the applied load is independent of design, the variation of the load linear form can be 

obtained as 

( ) [ ] .T T div dV z z fV z f V  (6.196) 

Linear Elasticity 

Consider the linear elasticity problem in Section 6.2.4. Suppose that the traction loading 

surface
s
 is fixed in the design and f

s
 is a conservative loading. By using the fact that f

b

= f
s
 = 0, and by using the material derivative formulas in (6.37) and (6.53), the state 

equation (3.60) is differentiated with respect to the design as 
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[ ( ) ( ) ( ) ( )]

[ ( ) ( )] ( ) ( )

( )

( ) .
s s s

T T

T T T

bT bT T bT

sT sT T sT

n

d

d div d

d d div d

d d V d

z z z z

z z V z z V

f z f z V f z V

f z f z V f z

 (6.197) 

After converting the partial derivative z  into  by using the formula in (6.8), and after 

using the property of 0z , the sensitivity equation (6.197) can be rewritten as 

[ ( ) ( ) ( ) ( ) ( ) ( )]

[ ( ) ( )] ( ) ( )

( )

( ) [ ( ) ( ) ] .
s s

T T T T T

T T T

T bT bT

sT T sT T sT

n

d

d div d

d div d

d V d

z z z z V z V z

z z V z z V

z f V f z V

f z V f z n f z

 (6.198) 

Direct calculation allows the following to be verified: 

( ) ( ) ( ) ( ) [ ( ) ( )]

( ) ( ) ( ) ( ),

T T T T T T

T V T V

z z V z V z z z V

z z z z
 (6.199) 

where, by using the index notation, the term 
V
(z) can be defined by 

1
( ) ,

2

jV i k k
ij

k j k i

zz V V

x x x x
z  (6.200) 

Note that the second-order derivatives of z in (6.199) cancel each other out. Thus, only 

the first-order derivatives of z and V appear in the expression of (6.200). This property is 

important because design sensitivity analysis does not require any higher-order regularity 

than response analysis. Using these results, design sensitivity (6.198) can be further 

simplified to 

( , ) ( ) ( )

[ ( ) ( ) ( ) ( )]

( ) ( )

( )

( ) [ ( ) ( )] , .
s s

T

T V T V

T

T T bT

sT T sT T sT

n

a d

d

div d

d div d

d V d Z

z z z z

z z z z

z z V

z f V f z V

f z V f z n f z z

 (6.201) 

As in (6.160), (6.201) is a variational equation for Z.

 Consider the mean stress functional presented in (6.181) as 

( ( ))

( ( )) .p

p

p

g d

g m d
d

z

z  (6.202) 

Using the domain material derivative formula in (6.37) the material derivative of (6.202) 

is obtained as 
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2

, ( )

, ( )

[ ]

[ ( ) ( )]

[ ( ) ]

.

p

p p p

p

p p

T

T

p

p p

p p

g g gdiv d d

g d div d d

g m d

g m d gdiv m d

gm d m div d

z

z

V V

V

z z V

z V V

V

 (6.203) 

It can be shown for linear, elastic material that 

( ) ( ).T V
z V V C z  (6.204) 

Using the above results, (6.203) can be simplified as 

, ( )

, ( )

( )

[ ( )]

.
p p p

p

V

p

p p p

g m d

g m d

gdiv m d gm d m div d

z

z

z

C z

V V

 (6.205) 

As with the linear elasticity problem in Section 6.2.3, adjoint equation (6.162) can be 

defined. By using the same method employed in Section 6.2.4, the sensitivity formula is 

obtained as 

,

[ ( ) ( ) ( ) ( ) ( ) ( ) ]

[ ]

{ ( ) [ ( ) ( )] }

[ ( )]

.

s

p p

T V T V T

T bT T b

sT T sT T sT

n

V

p

p p

div d

d div d

V d

gdiv g m d

gm d m div d

z z z V

f V f V

f V f n f

V C z

V

 (6.206) 

 There are several advantages and disadvantages to the above discussed domain 

method. A disadvantage is that a velocity field that satisfies regularity properties, which 

will be discussed in Section 6.2.7, must be defined in the domain. There is no unique way 

of defining domain velocity fields for a given normal velocity field Vn on the boundary. 

In addition, because numerical evaluation of the sensitivity result in the above equation 

requires domain integration over the entire domain, it is more complicated than the 

evaluation of (6.182), which only requires integration over the variable boundary. 

 In addition to numerical accuracy when using finite element method for structural 

analysis, the domain method has several other advantages. Unlike the boundary method, 

variational identities are not required to transform domain integrals into boundary 

integrals. Thus, for a mean stress functional, the special case in which p intersects ,

discussed in Section 6.2.4, need not to be separately treated for the domain method. The 

results presented in this section are valid for both cases. Also, as will be seen shortly, one 

design sensitivity expression works for all boundary conditions, unlike different design 

sensitivity expressions that are required for different boundary conditions, as presented in 

Section 6.1.3. The biggest advantage of the domain method is obtained in built-up 

structures, which consist of structural components combined in a variety of ways. In 

applying the domain method, the fact that interface conditions are not required to obtain 
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shape design sensitivity formulas greatly simplifies the derivation process, since 

contributions from each component are simply added together. As for numerical 

accuracy, the results of a finite element analysis on interface boundaries are often 

unsatisfactory for built-up structures, due to abrupt changes in the boundary conditions. 

Using the domain method and a carefully controlled finite element analysis, stress 

evaluation at the interface boundaries may be avoided, and thus, accurate sensitivity 

results can be obtained. 

6.2.6 Parameterization of Design Boundary 

As with Chapter 5, before proceeding from analytical design sensitivity to numerical 

implementation, it is helpful to consider the numerical aspects of a computation. It is 

important to develop an effective boundary parameterization method that can be used in 

shape design sensitivity analysis. Detailed shape design parameterization methods are 

presented in Section 12.2 and the associated design velocity computation methods for 

both boundary and domain are presented in Section 13.3. In this section, a simple idea of 

using the parameterized boundary for evaluation of shape design sensitivity expressions 

of the boundary method is presented. To begin, assume that the points on boundary  are 

specified by a position vector, x( ;b) R
n
 (n = 2, 3), which runs from the origin of the 

coordinate system to point x on the boundary, as illustrated in Fig 6.10. Here, R
k
 is a 

parameter vector that defines the boundary curve (k = 1) or boundary surface (k = 2) .

 Once the design vector b = [b1, b2, ..., bm]
T
 has been defined, shape design sensitivity 

formulas can be expressed in terms of the variation of b, as b. To this end, first denote 

the perturbed design by 

,b b b  (6.207) 

where b defines the boundary  of , and b  defines the boundary  of the perturbed 

domain . The velocity field in (6.2) can be defined at the boundary as 

0

( ) [ ( ; )] ( ; ) .
d

d

x
V x x b b b

b
 (6.208) 

The shape design sensitivity formula can then be expressed as 

Figure 6.10. Parametric definition of 
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( , )

( , ) ( ; ) ,

n

T

G V d

G d

z

x
z n b b

b

 (6.209) 

where variation b can be taken outside the integral, since it is constant. This expression 

provides the design sensitivity coefficients of  associated with variations in the design 

variables. Hence, once the state and adjoint variables have been determined, all that is 

required is a numerical calculation of the integral in (6.209). 

6.2.7 Regularity of Design Velocity Field 

In shape design optimization, a suitable finite element mesh must be constructed in the 

design iteration for accurate finite element analysis and design sensitivity analysis. In 

design iteration, the design velocity field used for design sensitivity analysis must be 

employed to update the finite element mesh. Hou and Cheen [93] pointed out that 

improper choice of the design velocity field for mesh update may result in a nonoptimal 

solution. Moreover, an inappropriate design velocity field may even lead to erroneous 

design sensitivity analysis and inaccurate finite element analysis results. 

 The design velocity field must meet numerous, stringent theoretical and practical 

criteria. Theoretically, the design velocity field must have the same regularity (i.e., 

smoothness), as the weak solution of the governing variational equation [5] and [94] 

through [97]. Roughly speaking, for truss and two- and three-dimensional elastic solid 

design components, C
0
-continuous design velocity fields with integrable first derivatives 

are required (i.e., H
1
( )), whereas for beam and shell design components, C

1
-continuous

design velocity fields with integrable second derivatives are required (i.e., H
2
( )) [6], 

[18], and [36]. In addition, the design velocity field must depend linearly on the variation 

of shape design variables. This requirement stems from the fact that the sensitivity 

information predicts linear variation of the performance measure with respect to the 

variation of the shape design variables. In practical terms, the design velocity field must 

produce a finite element mesh that can support accurate finite element analysis and thus 

design sensitivity analysis. Moreover, the method for computing the design velocity field 

should accommodate the use of CAD modelers to define shape design variables, reuse the 

mathematical rule that determines interior material point movements (domain velocity), 

and be computationally efficient and applicable to a large class of problems. 

 In this section, the theoretical and practical requirements of the design velocity field 

are discussed. Theoretically, the design velocity field must 

  • Have the same regularity as the displacement field, 

  • Depend linearly on the variation of shape design variables. 

For practical applications, the design velocity computation method must 

  • Retain the topology of the original finite element mesh, 

  • Provide finite element boundary nodes that stay on the geometric boundary  

   for all shape changes, 

  • Use a mathematical rule that guarantees linear dependency of finite element  

   node movements on the variations of shape design variables 

  • Produce a finite element mesh that is not distorted, 

  • Be naturally linked to design variables defined on a CAD model, 

  • Allow the mathematical rule to be reusable, 

  • Be efficient and general for a large class of applications. 
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Theoretical Requirements 

Regularity Requirement 

Design sensitivity requires that the design velocity field be as regular as the weak 

solution of the governing variational equation, that is, displacement field of the structure. 

The requirement comes from the mathematical regularity of design velocity field in the 

design sensitivity expression [5] and [94] through [97]. For truss and two- and three-

dimensional elastic solid design components, C
0
-continuous design velocity fields with 

integrable first derivatives are required [5] and [94] through [97]. On the other hand, for 

beam and shell design components, C
1
-continuous design velocity fields with integrable 

second derivatives are required [6], [18], and [36]. These regularity requirements can be 

clearly seen from the domain method of design sensitivity expression in (6.183) and 

(6.189), where the first and second derivatives of the design velocity field appears in the 

integrands. Naturally, these requirements can be met by using the displacement shape 

functions to represent design velocity fields. 

Linear Dependency Requirement 

First-order linear design sensitivity requires that material point movements, that os, 

design velocity fields, in the structure depend linearly on the variation of shape design 

variables. This requirement arises from the design sensitivity theory [5] and [95], in 

which the material derivative of displacement field z  depends linearly on the design 

velocity field. Since design sensitivity coefficients provide first-order derivatives of the 

structural performance measure with respect to design variables and depend linearly on 

the design velocity field, the design velocity field must depend linearly on variations of 

shape design variables. 

 The two-dimensional elastic cantilever beam shown Fig. 6.11 is utilized to explain 

how the design velocity field depends linearly on the variation of shape design variable. 

As shown in Fig. 6.11(a), the beam has point load F applied at the tip of the top surface 

and is modeled as a plane stress problem using a 4  3 finite element mesh. The design 

boundary, that is, the tip edge, is parameterized using a Bezier curve. For a detailed 

discussion of design parameterization methods, the reader is referred to Section 12.2. 

Shape design variables are movements of control points p1 and p2, as shown in Fig. 

6.11(b).
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Figure 6.11. Two-dimensional cantilever beam example. 
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Figure 6.12. Linearity requirement. 

 Linear dependency requires that if control point p1 moves a distance b1 = 1 in the x1-

direction, producing interior design velocity V
1
(x

1
) at node 1, as shown in Fig. 6.12(a), 

then node 1 must move kV
1
(x

1
) along the same direction when p1 moves k b1 = k (k  0) 

in the x1-direction. This linear dependency must be true for all boundary and interior 

nodes of the structure. 

 For the discretized finite element model, design sensitivity coefficients predict 

structural performance measures of the perturbed design with finite element mesh 

updated by moving nodal points along the direction of the design velocity field using 

1

( ) ,

k k k

n
k i k

i

i

b

b b b

b

x x x

x V x
 (6.210) 

where k

b bx  and k

bx  are the locations of the kth node of the perturbed and the current 

designs, respectively; x
k
 is the nodal point movement due to design variations; V

i
 and 

bi are the design velocity fields associated with the ith design variable and the variation 

of the ith design variable, respectively; and n is the number of design variables. 

 It is important to note that design sensitivity information does not predict 

performance measures of a new design if the finite element mesh is not updated 

according to the design velocity field, which depends linearly on the variation of shape 

design variables. For example, consider the design sensitivity coefficient / b1 of the 

x2-displacement  at node 1, assuming that the design velocity is V
1
(x

1
), as illustrated in 

Fig. 6.13. This coefficient predicts x2-displacement at node 1 moving along V
1
(x

1
)

direction with certain small step size. In case node 1 moves to a new point k, which does 

not lie on the V
1
(x

1
) direction of the new design, the design sensitivity / b1 cannot 

predict x2-displacement at point k of the new design. 
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Figure 6.13. Mesh update for the new design. 

Practical Requirements 

As described in the previous section, the design velocity field is subject to only two 

theoretical requirements: regularity and linear dependency on the variation of shape 

design variables. That is, if the analytical solution is used to evaluate the design 

sensitivity expression, any design velocity field that satisfies the theoretical requirements 

will yield exact design sensitivity results. However, for many structural problems, the 

analytical solution cannot be obtained, and the approximated solution is obtained using 

the finite element method. In this case, different design velocity fields lead to different 

design sensitivity results. However, the more the finite element model is refined, the less 

sensitivity results lend to the design velocity fields. 

 Practically, the design velocity field must produce a quality finite element mesh that 

is consistent with the structural geometric model to support accurate finite element 

analysis and design sensitivity analysis in the design optimization process. 

Mesh Topology 

As discussed earlier, mesh updates must follow the direction of design velocity field and 

the perturbed design must have the same mesh topology as the current design because 

materials cannot cross over their relative positions. Of course, the perturbed design can 

have a different number of finite elements than the original design as long as the material 

points, and thus the new nodal points, follow the design velocity field. However, 

changing the number of finite elements during the design process is not practical in 

defining performance measures, such as nodal displacements and element stresses. Thus, 

using a mesh generator to define a design velocity field is not desirable if it generates a 

different mesh topology for the perturbed design. 

Nodes on the Geometric Boundary 

When the design velocity field is used to update the finite element mesh at the new 

design, the updated boundary nodes must lie on the geometric boundary so that the finite 

element and geometric models are consistent. To make sure that the updated boundary 

nodes lie on the geometric boundary, in addition to the linear dependency requirement, 

boundary node movements must be restricted. A simple way of restricting boundary 

nodes stay on the geometric boundary is to ensure that the nodes stay on the same 

parametric locations of the boundary curve or surface at the original and perturbed 

designs. For example, suppose that node 8 is located at the parametric location u =  of 

the Bezier curve of the original design shown in Fig. 6.14. At the perturbed design, node 

8 is located at the same parametric location u =  of the perturbed design boundary. By 

restricting boundary node movements in this way and by using the linear boundary 

design velocity field, it can be guaranteed that every node always stays on the geometric 

boundary [98]. 
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Figure 6.14. Geometric boundary match. 

Linearity of the Velocity Field and Quality of the Updated Finite Element Mesh 

Once the boundary design velocity field is used to perturb the geometric boundary (hence 

moving the boundary nodes), the domain design velocity field (hence movements of the 

interior nodes) must be determined in a way that satisfies the linear dependency 

requirement and permits a finite element mesh to be generated. Because of the linear 

dependency requirement, the interior finite element nodes cannot be moved arbitrarily, 

but must be determined following a specific mathematical rule, which is selected 

according to the method used for computing the domain velocity field. For the 

isoparametric mapping method, the rule is an algebraic equation, while for the boundary 

displacement or fictitious load method, the rule is a finite element matrix equation [95] 

through [97] and [99] through [101]. 

 It is highly desirable that the design velocity field produces a regular finite element 

mesh since distorted mesh gives inaccurate finite element analysis results, or fails to 

provide a solution. In practical applications, however, it is not always convenient to 

check finite element mesh every design iteration and so finite element error analysis and 

mesh adaptation must be employed to ensure analysis accuracy [102]. When the finite 

element mesh is not acceptable, as indicated by an error estimator, the optimization 

iteration should be stopped. In such cases, a new finite element mesh must be generated, 

whose topology may differ from that of the previous model, and from then on, new 

design optimization iteration should be carried out. Computational methods for obtaining 

domain velocity fields generate more regular (i.e., undistorted) finite element mesh are 

discussed in Section 13.3. 

Link to CAD Modeler 

It is widely recognized that a CAD-based shape design optimization method that 

optimizes a CAD geometric model allows the product developer to take advantage of 

product modeling, design parameterization, and product data communication among 

engineering disciplines in supporting a concurrent product design and manufacturing. On 

the other hand, a finite element–based shape design parameterization method that defines 

design variables on the finite element model for optimization is problematic. Using the 

finite element–based design parameterization method, convergence is difficult to achieve 

due to a large number of design variables being employed, that is, finite element node 

movements. Moreover, optimizing a finite element model may lead to an optimum design 
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with a nonsmooth design boundary [103]. To promote the connection of shape design 

optimization to a CAD modeler, the design velocity field computation should naturally be 

linked to variations of the CAD design variables. This linkage is discussed in Section 

13.3.

Reusable Mathematical Rule 

Mathematically, the design velocity field is a function of location of the material point x,

as shown in (6.5). Physically, location of the material point also depends on the shape 

design variables, which determine the physical domain of the structure. However, in 

practical applications, the mathematical rule applied to compute the design velocity field 

may not need physical locations of the material points, but its parametric locations in a 

decomposed domain, for example, the isoparametric mapping method. In this case, the 

design velocity field is independent of design variables b, which implies that the design 

velocity field needs to be computed only once and kept constant during the design 
optimization iterations.

General Applicability and Computational Efficiency 

In general, there are three types of structural shape design applications in terms of the 

characteristics of the design boundary [98]. In the first type, shape of a sculptured 

boundary, such as a fillet or arch dam surface, is to be determined. In the second type of 

applications, dimensions of predefined shapes, such as the radius of a circular hole, the 

major and minor axes of an elliptic hole, length of a rectangular membrane, or radius of a 

rounded corner, are to be found. In the third type, locations or orientations of predefined 

shapes must be determined relative to the global reference frame, for example, the 

location of the center of a circular hole, elliptic hole, or slot. The design velocity field 

computation method must be general enough to support these design applications. 

 In addition to being generally applicable, the method for computing the design 

velocity field should also be computationally efficient; although this is of less concern as 

faster computer hardware and architecture are developed. Furthermore, computational 

efficiency can be improved by reusing the mathematical rules of design velocity field 

computation. 

6.2.8 Numerical Examples 

To illustrate numerical implementation of the shape design sensitivity formulas that have 

been derived in previous sections, several example problems are now presented. The 

boundary method is used in the first example, whereas the domain method is used for 

other examples. The first example clearly demonstrates that accurate evaluation of the 

original and adjoint responses at the boundary is critical to obtain accurate design 

sensitivity. On the other hand, the domain method does not suffer from this difficulty. 

Fillet 

The selection of an optimum fillet shape in a tension bar such that no yielding occurs has 

long attracted the attention of engineers. The dimensions and variables of the bar and 

fillet are shown in Fig. 6.15. Since the bar is symmetric, only its upper half has been 

modeled. Boundary segment 1 is to be varied, with fixed points at A and B. Segment 3

is the central line of the bar and 4 and 2 are uniformly loaded edges. 
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Figure 6.15. Geometric configuration of fillet. 

 The variational equation of this two-dimensional solid component is 

2

( , ) ( ) ( )

( ), ,

T

T s

a d

d Z

z z z z

z f z z
 (6.211) 

where the admissible displacement space is defined by 

1 2

1 4 2 3[ ( )] : 0, and 0, ,Z H z zz x x  (6.212) 

with no body force acting on the fillet. 

 Now, consider the von Mises yield stress functional, averaged over a small region k

as

,k kgm d  (6.213) 

where g = ( y – a)/ a, y is the von Mises yield stress, defined as 

2 2 2

11 22 12 11 223 ,y  (6.214) 

and a is the given allowable stress. In (6.213), mk is a characteristic function on small 

region k. The adjoint equation corresponding to the performance k is obtained from 

(6.162) as 

, ( )( , ) ( ) , .ka g m d Zz  (6.215) 

Since the design velocity is only defined on 1, the variation of k is taken from (6.213) 

as

1

( )( ) ( ) [ ( ) ] ,
k

T k

k n k k nV d m g V dz z  (6.216) 

where
(k)

 is the solution to adjoint equation (6.215), km  is the value of the characteristic 

function on k, and k is the boundary of finite element k.
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Figure 6.16. Geometry of boundary curve. 

 Consider the variable boundary 1 of the fillet, as shown in Fig. 6.15, which can be 

characterized as curve x2 = f(x1), with a small, vertical variation f(x1), as shown in Fig. 

6.16. Given the curve’s geometry, if only a small vertical change f(x1) is allowed, the 

normal movement of the boundary can be written as 

1
2 ,n

dx
V f n f

ds
 (6.217) 

where s is the arc length on 1. Thus, the sensitivity formula in (6.216) can be rewritten 

as

1

( )

( )

1

( ) ( ) [ ( ) ]

( ) ( ) [ ( ) ] .

k

k

T k

k n k k n

B
T k

k k n
A

V ds m g V d

f dx m g V d

z z

z z
 (6.218) 

 In (6.218), f can easily be related to b once curve 1, defined by x2 = f(x1,b), is 

parameterized by design variable vector b. If the heights of selected boundary points are 

chosen as design variables, and if the boundary is piecewise linear, then the boundary can 

be expressed as 

1
11 1 1 1

1 1 1 1 1( ) , , 1, ..., ,
i i

i i

i i

i i

x x x x
f x b b x x x i N

h h
 (6.219) 

where 1

1 1

i i

ih x x , 1( )i

if x b , and N denotes the number of partitions. Then, f can be 

obtained by taking variation as 

1
11 1 1 1

1 1 1 1 1( ) , , 1, ..., .
i i

i i

i i

i i

x x x x
f x b b x x x i N

h h
 (6.220) 

If a cubic spline function is employed to parameterize 1, with 1( )i

if x b , the boundary 

can be expressed as [49] 

A

Bvn

f

f+ f

f

n

dx1

–dx2 ds
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ds ds
n
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where 1( )i

iM f x  is obtained by solving a system of equations for Mi (i = 1, 2, …, N+1)

[49]. As a result, the variation of f is 

31
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 (6.222) 

where ij equals one if i = j, and is otherwise set at zero. The cubic spline function has 

two continuous derivatives and a minimum mean curvature property [49]. It also 

possesses globally controlled properties. Unlike (6.220) for a piecewise-linear function, 

with a cubic spline function as in (6.222) the perturbation of any design variable b will 

globally perturb f(x1).

 By using the result from either (6.220) or (6.222), and by expressing the boundary of 

finite element k in terms of b, (6.218) can be expressed as 

,k
k b

b
 (6.223) 

where k/ b is the desired design sensitivity coefficient for the constraint k.

 For comparative purposes, several different finite elements are used in the numerical 

calculation of shape design sensitivity: a constant stress triangular (CST), a linear stress 

triangular (LST), and an eight-node isoparametric (ISP) element. For the ISP element, 

stresses and strains are evaluated at Gauss points, and boundary stresses and strains are 

calculated by linearly extrapolating from those Gauss points [104] and [105]. 

 The tension bar is modeled by using triangular and quadrilateral finite elements, as 

shown in Fig 6.17. Height of the varied boundary 1 is chosen as the design variable, and 

a piecewise linear boundary parameterization is used in all cases. A cubic spline function 

is used for the ISP model. For the CST model, 190 elements, 117 nodal points, and 214 

degrees of freedom are used. The LST model contains 190 elements, 423 nodal points, 

and 808 degrees of freedom, while the ISP model contains 111 elements, 384 nodal 

points, and 716 degrees of freedom. Young’s modulus is E = 30.0 × 10
6
 psi, Poisson’s 

ratio is  = 0.293, and the allowable stress is a = 120 psi. The initial design is chosen as 

follows: 

[5.55 5.1 4.65 4.2 3.75 3.3 2.85 2.4 1.95] ,T
b

which produces a straight boundary for 1, as shown in Fig. 6.17. 

 In order to compare the accuracy of results obtained with different finite elements, the 

same small region is used in evaluating the stress functional. As shown in Fig 6.17(b), the 

small regions selected are located next to variable boundary 1, where high stress occurs. 

In the ISP model, the characteristic function is applied to each quadrilateral element, 
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while it is applied to the four triangular elements in all other models. 

 Those numerical results with a 0.l% design change, i.e., b = b × 10
–3

, are presented 

in Table 6.1. The abbreviation “ISPS” stands for those isoparametric elements that have a 

cubic spline function representation for variable boundary 1. As can be seen, the LST 

model provides good sensitivity results for every region except number 10, whereas the 

ISP and ISPS models provide good results in every region except number 1. Region 1 has 

the lowest stress, while region 10 has the highest. When using these results for 

optimization purposes, those from ISP or ISPS models are preferable to those from the 

LST model. As expected, results from the CST model are the least accurate, since this 

model cannot provide accurate stress information on boundary 1.

(a)

(b)

Figure 6.17. Finite element model of fillet: (a) triangular element model, numbers 

denote node height as a design variable; (b) isoparametric element model, numbers 

denote the region where the sensitivity is verified. 

Table 6.1. Comparison of design sensitivity ( k/ k × 100)%. 

Region CST LST ISP ISPS 

  1 1402.9 108.9   43.3   65.9 

  2    45.3    99.6 104.6 105.9 

  3    57.9    99.2 103.2 101.9 

  4    64.2    99.2 103.4 103.6 

  5    67.5    99.2 102.8 102.6 

  6    68.6    99.2 101.8 101.7 

  7    68.3    99.1 100.0 100.4 

  8    70.1    99.1  98.4   97.4 

  9    79.3    98.3 l05.2 104.9 

10  183.6    87.0 102.8 104.1 
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6.3 Eigenvalue Shape Design Sensitivity Analysis 

The examples presented in Section 3.2 demonstrate that such eigenvalues as natural 

frequencies of a vibrating structure depend on the structural shape. As in Section 5.3, the 

objective of this section is to obtain eigenvalue sensitivity with respect to the shape 

design. As in Chapter 5, no adjoint equations are necessary for conservative systems, and 

eigenvalue design sensitivity can be expressed directly in terms of eigenvalues, 

eigenvectors, and variations in bilinear forms. The differentiability of simple eigenvalues 

and the directional differentiability of repeated eigenvalues are used to obtain explicit 

formulas for both simple and repeated eigenvalue design sensitivity analysis. Numerical 

examples of eigenvalue sensitivity computation are also presented. 

6.3.1 Differentiability of Bilinear Forms and Eigenvalues 

The differentiability of the eigenvalue problems treated in Section 3.2 is proved in 

Section 3.5 in [5]. The purpose of this section is to summarize important results that are 

needed for eigenvalue design sensitivity, and to illustrate that repeated eigenvalues are 

only directionally differentiable. 

 As was shown in Section 3.2, a vibrating structure’s eigenvalue  on a deformed 

domain  is determined by a variational equation of the form 

( , ) ( , )

( , ) ( , ), ,

a c d

e d d Z

y y y y

y y y y y
 (6.224) 

where Z H
m
( ) is the space of kinematically admissible displacements, and c(•,•) and 

e(•,•) are symmetric bilinear mappings. Since (6.224) is homogeneous in eigenfunction 

y , a normalizing condition must be used to define a unique eigenfunction. The 

normalizing condition is 

( , ) 1.d y y  (6.225) 

The energy bilinear form on the left side of (6.224) is the same as the bilinear form in 

those static problems treated in Section 6.2. Therefore, it has the same differentiability 

properties discussed in that section. The bilinear form d (•,•) on the right side of (6.224) 

represents mass effects in a vibration problem and geometric effects in a buckling 

problem. Except for the column buckling problem, d (•,•) is even more regular than the 

energy bilinear form in its dependence on the design and on the eigenfunction. 

Simple Eigenvalues 

It is shown in Section 3.5.5 in [5] that the simple eigenvalue  is differentiable with 

respect to the design. It was shown by Kato [53] that the corresponding eigenfunction y is 

also differentiable. In fact, material derivatives of both the eigenvalue and the 

eigenfunction are linear in design velocity V; hence, they are Fréchet derivatives. As in 

the static response problem, linearity and continuity of the mapping V y  only allows 

(according to Theorem 3.5.3 in Section 3.5.7 in [5]) the use of normal component Vn of 

velocity field V in order to derive the material derivative, as in (6.38). 

 By using the material derivative formula from (6.38), and by noting that partial 

derivatives with respect to  and x commute with each other, both sides of (6.224) are 

differentiated with respect to the design, to obtain 
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 (6.226) 

where the variations of each bilinear form can be obtained by using the relation in (6.8) 

as

[ ( , )] [ ( , ) ( , )] ( , )

[ ( , ) ( , )] ( , )

n

n

a c c d c V d

c c d c V d

y y y y y y y y

y yV y y y yV y y
 (6.227) 

and

[ ( , )] [ ( , ) ( , )] ( , )

[ ( , ) ( , )] ( , ) .

n

n

d e e d e V d

e e d e V d

y y y y y y y y

y yV y y y yV y y
 (6.228) 

As in (6.61), the fact that the partial derivatives of the coefficients (such as cross-

sectional area, thickness, etc.) in bilinear mappings c(•,•) and e(•,•) are zero is used in 

derivation of (6.227) and (6.228). As in the static response problem, perturbation y  is 

selected such that ( ( )) ( )y x V x y x . As explained in the paragraph preceding (6.12), 

since H
m
( ) is preserved by T(x, ) if Zy  is arbitrary, then y  is an arbitrary element of 

Z . Also, from (6.8), the following relation can be obtained: 

0.y y yV  (6.229) 

Thus, material derivative y  will be ignored in the following derivations.  

 Those explicitly dependent terms on the design in (6.226), namely, ( , )Va y y  and 

( , )Vd y y  can be obtained by suppressing the implicit terms from the formulas in (6.227) 

and (6.228). The following formulas can therefore be obtained: 

( , ) [ ( , ) ( , )] ( , )

[ ( , ) ( , ) ( , ) ]

V na c c d c V d

c c div c d

y y yV y y yV y y

yV y y yV y y V
 (6.230) 

and

( , ) [ ( , ) ( , )] ( , )

[ ( , ) ( , ) ( , ) ] .

V nd e e d e V d

e e div e d

y y yV y y yV y y

yV y y yV y y V
 (6.231) 

 Note that the eigenvalue sensitivity equation from (6.226) contains the material 

derivative of the eigenvalue, as well as that of the eigenfunction. However, the effect of 

y  will be eliminated in the following way. Because Zy , (6.226) may be evaluated with 

y y  to obtain 

( , ) ( , ) ( , ) [ ( , ) ( , )].V Vd a d a dy y y y y y y y y y  (6.232) 

Since Zy , as explained in the paragraph following (6.67), the terms within the brackets 

are zero. Furthermore, due to the normalizing condition, a simplified expression for 

eigenvalue sensitivity is obtained as 
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As with the static response problem, domain integrals in the second term on the right can 

be transformed into boundary integrals by using the variational identities given in Section 

3.2 for each structural component and boundary condition. This will be done below for 

each class of problem encountered. However, the result of the domain method given in 

the third term is applicable for all boundary conditions. 

 Note that the directional derivative of the eigenvalue is linear in V, since the 

variations of the bilinear forms on the right side of (6.233) are linear in V. As noted in 

Section 5.3, the validity of this result rests on the existence of eigenvalue and 

eigenfunction derivatives. 

Repeated Eigenvalues 

Now consider the situation in which eigenvalue  has a multiplicity of s > 1 at , that is, 

( , ) ( , ),
, 1, 2, , .

( , )

i i

i j

ij

a d Z
i j s

d

y y y y y

y y
 (6.234) 

It has been shown in Section 3.5 in [5] that repeated eigenvalue  is a continuous function 

of the design, but that corresponding eigenfunctions y
i
 are not. It will also be shown that 

when eigenvalue  is repeated s times, it is only directionally differentiable, and that the 

directional derivatives ( )i V  in the V direction are the eigenvalues of the s × s matrix 

, with the following elements: 

( , ) ( , )

[ ( , ) ( , ) ( , ) ( , )]

[ ( , ) ( , )] , , 1, 2, , .

i j

ij V V

i j i j i j i j

i j i j

n

a d

c c e e d

c e V d i j s

y y y y

y V y y y V y y V y V y

y y y y

 (6.235) 

The notation ( )i V  is used to emphasize the dependence of the directional derivative on 

V. As with the simple eigenvalue, the domain integral in (6.235) can be transformed into 

boundary integrals by using the variational identities given in Section 3.2 for each 

structural component and boundary condition. 

 If the d -orthonormal basis {y
i
}i=1,…, s of the eigenspace is changed, then matrix 

also changes, but its eigenvalues remain the same. As mentioned in Section 5.3.1, the 

directional derivatives ( )i V  are not generally linear in V, although each ij  is linear in 

V. Other results on the directional derivatives of repeated eigenvalues from Section 5.3.1 

remain valid in this section. When s = 2, the directional derivatives of a double 

eigenvalue are given by 

2 2 1/ 2

11 22 11 22 11 22 12

1
( ) ( ) [( ) 4( )] ,

2
i V  (6.236) 
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where i = 1 corresponds to the minus sign, and i = 2 corresponds to the plus sign. Another 

expression for directional derivatives is 

2 2

1 11 12 22( ) cos ( ) sin 2 ( ) sin ( )V V V V  (6.237) 

2 2

2 11 12 22( ) sin ( ) sin 2 ( ) cos ( ) ,V V V V  (6.238) 

where the eigenvector rotation angle  is given as 

12

11 22

21
( ) arctan .

2
V  (6.239) 

6.3.2 Boundary and Domain Methods of Eigenvalue Design Sensitivity 

The beam, column, membrane, and plate problems in Section 3.2 are used here as 

examples for eigenvalue design sensitivity analysis. Both the boundary and domain 

methods are presented in this section. 

Vibration of a Beam 

Consider the vibrating beam in Section 3.2, with cross-sectional area A(x) A0  0, 

moment of inertia I(x), and Young’s modulus E. The eigenvalue sensitivity can be 

expressed by using the formula in (6.233) as 

,11 ,1 ,11 ,1
0

2 2

,11 0

2 [ ( ) ( )]

[ ( ) ] .

l

l

EIy y V Ay y V dx

EI y Ay V

 (6.240) 

To arrive at the boundary representation, the variational identity in (3.67) may be used, 

identifying (y,1V) in the domain integral term with y  in (3.67) to obtain 

,11 ,1 ,1 ,11 ,1 ,1 0

2 2

,11 0

2[ ( ) ( ) ( )]

[ ( ) ] .

l

l

EIy y V EIy y V

EI y Ay V
 (6.241) 

By applying the boundary conditions from (3.66) for the clamped-clamped beam, but 

noting that beam length l is not normalized in this chapter, (6.241) has the following 

simplified form: 

2

,11 0
( ) .

l

EI y V  (6.242) 

It is interesting to note that since the coefficient of velocity V is negative, the natural 

frequency decreases as the boundary moves outward, which is physically apparent. 

 For other boundary conditions in (3.19) through (3.21), the design sensitivity formula 

in (6.241) is still valid. The following eigenvalue sensitivity expressions can be obtained 

by applying corresponding boundary conditions: 

1. Simply supported: 

,111 ,1 0
2 ,

l

EIy y V  (6.243) 
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2. Cantilevered: 

2 2

,11 0
( ) ,

x x l
EI y V Ay V  (6.244) 

3. Clamped–simply supported: 

2

,11 ,111 ,10
( ) 2 .

x lx
EI y V EIy y V  (6.245) 

 Using the domain method results given in (6.230) through (6.232), the design 

sensitivity expression is obtained as

2 2

,11 ,1 ,1 ,11 ,11 ,1
0
[3 2 ] .

l

EIy V EIy y V Ay V dx  (6.246) 

Note that, as in the static response case, using the domain method, only one design 

sensitivity equation is enough for all boundary conditions, which is very much attractive 

for numerical implementation. In addition, note that the domain method requires 

integrable second-order design velocity in the domain because the sensitivity expression 

in (6.246) includes V,11.

Buckling of a Column 

Consider the column buckling problem from Section 3.2, with cross-sectional area A,

moment of inertia I(x), and Young’s modulus E. By substituting variations of the bilinear 

forms into (6.233), the simple eigenvalue sensitivity (i.e., the buckling load) is obtained 

as

,11 ,1 ,11 ,1 ,1 ,1
0

2 2

,11 ,1 0

2 [ ( ) ( ) ]

[ ( ) ( ) ] .

l

l

EIy y V y y V dx

EI y y V

 (6.247) 

Paralleling the beam vibration problem, the domain integral is transformed into boundary 

values as 

,11 ,1 ,1 ,11 ,1 ,1 ,1 ,1 0

2 2

,11 ,1 0

2[ ( ) ( ) ( ) ( )]

[ ( ) ( ) ] .

l

l

EIy y V EIy y V y y V

EI y y V
 (6.248) 

 Using the boundary conditions for a clamped-clamped column in (3.65), (6.248) 

becomes 

2

,11 0
( ) .

l

EI y V  (6.249) 

As with beam vibration, the coefficient of velocity V is negative. Hence, the buckling 

load decreases as the boundary moves outward. 

 As in the case of a vibrating beam problem, if other boundary conditions exist, then 

the following buckling load sensitivities can be obtained: 

1. Simply supported: 

2

,111 ,1 ,1 0
[2 ( ) ] ,

l

EIy y y V  (6.250) 
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2. Cantilevered: 

2 2

,11 ,10
( ) ( ) ,

x x l
EI y V y V  (6.251) 

3. Clamped–simply supported: 

2 2

,11 ,111 ,1 ,10
( ) [2 ( ) ] .

x x l
EI y V EIy y y V  (6.252) 

 For eigenvalue repeated s number of times, and using (6.235), we obtain 

,11 ,1 ,11 ,11 ,1 ,11 ,1 ,1 ,1 ,1 ,1 ,1
0

,11 ,11 ,1 ,1 0

[ ( ) ( ) ( ) ( ) ]

[ ] , , 1, 2, , .

l
j i i j j i i j

ij

l
i j i j

EIy y V EIy y V y y V y y V dx

EIy y y y V i j s

 (6.253) 

Using the variational identity from (3.71) repeated twice in (6.253), 

,11 ,1 ,1 ,11 ,1 ,1 ,1 ,1 0

,11 ,1 ,1 ,11 ,1 ,1 ,1 ,1 0

,11 ,11 ,1 ,1 0

[ ( ) ( ) ( ) ( )]

[ ( ) ( ) ( ) ( )]

[ ] , , 1, 2, , .

l
j i j i j i

ij

l
i j i j i j

l
i j i j

EIy y V EIy y V y y V

EIy y V EIy y V y y V

EIy y y y V i j s

 (6.254) 

As with a simple eigenvalue, the result in (6.254) is valid for the boundary conditions 

given in (3.65) and (3.19) through (3.21). To obtain ij  for each case, these boundary 

conditions may apply to (6.254). In the case of a double eigenvalue (s = 2), the 

directional derivatives of the repeated eigenvalue can be obtained from (6.237) and 

(6.238), where rotation angle  is given in (6.239). 

 Using the domain method results given in (6.230) through (6.232), the design 

sensitivity expression is obtained as

2 2

,11 ,1 ,1 ,11 ,11 ,1 ,1
0
[3 2 ] .

l

EIy V EIy y V y V dx  (6.255) 

For repeated eigenvalues, similar results can be obtained using (6.236). 

Vibration of a Membrane 

Consider the vibrating membrane problem in Fig. 3.1, with mass density . By using 

(6.233) and the fact that y = 0 on  for a simple eigenvalue, the following eigenvalue 

sensitivity expression is obtained: 

2 [ ( ) ( )]

( ) .

T T T

T

n

T y y hy y d

T y y V d

V V
 (6.256) 

Applying the variational identity in (3.76) to (6.256) and identifying ( y
T
V) in the 

domain integral of (6.256) with y  in (3.76),  is expressed in boundary integrals as 

2 ( ) ( ) .T T

n

y
T y d T y y V d

n
V  (6.257) 

Since y = 0 on , the gradient of y only has the normal component, as y = ( y/ n)n on 

; thus, the above relation can be further simplified as 
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2

.n

y
T V d

n
 (6.258) 

As noted in Section 6.3.1, the eigenvalue design sensitivity in (6.258) is expressed as a 

boundary integral, and only the normal movement (Vn) of the boundary appears. 

 It is interesting to note that since the coefficient of (Vn) is negative, the frequency 

decreases as the boundary moves outward, which is physically apparent. Moreover, 

moving the boundary outward near a high normal derivative is the most effective way to 

decrease the fundamental frequency. 

 For an eigenvalue repeated s number of times, using (6.235) and the fact that y
i
 = 0 on 

(i = 1, 2, …, s) we obtain 

[ ( ) ( )]

[ ( ) ( )]

( ) , , 1, 2, , .

jT iT iT jT

ij

j iT i jT

iT j

n

T y y y y d

h y y y y d

T y y V d i j s

V V

V V  (6.259) 

Applying the variational identity from (3.13) twice to (6.259) we obtain 

( ) ( )

( ) , , 1, 2, , .

j i
iT jT

ij

iT j

n

y y
T y y d

n n

T y y V d i j s

V V
 (6.260) 

Since y
i
 = 0 on , y

i
 = ( y

i
/ n)n on . Thus, the above equation can be simplified to 

, , 1, 2, , .
i j

ij n

y y
T V d i j s

n n
 (6.261) 

Now, consider a double eigenvalue at  (i.e., s = 2). The directional derivatives of the 

repeated eigenvalue are given by (6.237) and (6.238) as 

2
1 1 2

2

1

2
2

2

2
1 1 2

2

2

2
2

2

( ) cos ( ) sin 2 ( )

sin ( )

( ) sin ( ) sin 2 ( )

cos ( ) ,

n

n

y y y
T

n n n

y
V d

n

y y y
T

n n n

y
V d

n

V V V

V

V V V

V

 (6.262) 

where rotation angle  is obtained from (6.239) as 

1 2

1 2
1 2

1
( ) arctan .

2

n

n n

y y
V d

n n

y y
V d V d

n n

V  (6.263) 
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It is clear from (6.262) that the directional derivatives of the repeated eigenvalues are not 

linear in V; hence, they are not Fréchet differentiable. 

 Using the domain method results given in (6.230) through (6.232), the design 

sensitivity expression is obtained as

2

[2 ( ) ( )]

[2 ( ) ( )] .

T T T

T

T y y div y y d

h y y div y d

V V

V V
 (6.264) 

For repeated eigenvalues, similar results can be obtained using (6.236). 

Vibration of a Plate 

Consider the vibrating plate from Section 3.2, with thickness h, Young’s modulus E, and 

mass density . Using (6.233), the sensitivity expression of the natural frequency is 

written as 

2

2 ( ) ( ) ( )

( ) ( ) .

T b T T

T b

n

y y hy y d

y y hy V d

C V V

C
 (6.265) 

Using the variational identity in (3.81), and identifying ( y
T
V) in the domain integral of 

(6.265) with y  in (3.81), eigenvalue sensitivity can be expressed by boundary integrals as

2

2 ( ) 2 ( )

( ) ( ) .

T T

T b

n

y Ny d y My d
n

y y hy V d

V V

C

 (6.266) 

As with the static response problem, sensitivity formulas resulting from different kinds of 

boundary conditions can be obtained as follows: 

1. Clamped: 

2
2

2
2 ( ) ( ) ,

C

T b

n

y
y y V d

n
C  (6.267) 

2. Simply supported: 

2 ( ) ( ) ,
S

T b

n

y
Ny y y V d

n
C  (6.268) 

3. Free edge: 

2( ) ( ) .T b

n
F

y y hy V dC  (6.269) 

For multiple boundary  = C S F, the complete design sensitivity formula can be 

obtained by adding the terms from (6.267) through (6.269). 

 For an s-times repeated eigenvalue  on  [74], directional derivatives ( )i V  in 

direction V are the eigenvalues of the s × s matrix  with elements 
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( ) ( ) ( ) ( )

( ) ( )

( ) ( ) .

i T b jT j T b iT

ij

i jT j iT

i T b j i j

n

y y y y d

hy y hy y d

y y hy y V d

C V C V

V V

C

 (6.270) 

By using the variational identity in (3.30) twice, the domain integral in (6.270) is 

converted into boundary integrals as 

( ) ( )

( ) ( )

( ) ( ) .

iT j jT i

ij

iT j jT i

i T b j i j

n

y Ny y Ny d

y My y My d
n n

y y hy y V d

V V

V V

C

 (6.271) 

As with a simple eigenvalue, the result from (6.271) is valid for the boundary conditions 

given in (3.26) through (3.28). To obtain ij  for each condition, these boundary 

conditions can be applied to (6.271). 

 Using the domain method results given in (6.230) through (6.232)the design 

sensitivity expression is obtained as

2

2 ( ) ( ) ( )

[ ( ) ( ) ] .

T b T T

T b

y y hy y d

div y y hy d

C V V

C V
 (6.272) 

For repeated eigenvalues, similar results can be obtained using (6.236). 

6.4 Frequency Response Problem 

In this section, the domain method of shape design sensitivity of a frequency response 

problem in Section 2.6 is developed. It is presumed that the excitation frequency is 

independent of the design variables. The same adjoint equation as (5.240) is obtained for 

a size design problem using the complex conjugate of the adjoint variable. The regularity 

requirement of the design velocity field presented in Section 6.2.7 is discussed through 

numerical examples. 

6.4.1 Design Sensitivity of Frequency Response 

Consider a general performance measure that defines a variety of dynamic responses, as 

( , ) .g dz z  (6.273) 

In the shape design problem, the structural domain is a design variable. Let that structure 

be perturbed in the direction of design velocity V(x), as explained in Section 6.1.1, and 

with control parameter . The performance measure at this perturbed domain  is 

defined as . The shape variation of the performance measure in (6.273) is the same as 

differentiating  with respect to parameter . The first variation of  with respect to the 

shape design variable is obtained as 

, , ,[ : ] [ : ( ) ] .g g d g gdiv dz z zz z z V V  (6.274) 
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From the design velocity field V(x) and the result of response analysis z(x), the second 

integral in (6.274) can be calculated through domain integration. The objective is to 

calculate the first integral in (6.274). As before, two methods can be introduced: the 

direct differentiation method and the adjoint variable method. 

Direct Differentiation Method 

The direct differentiation method calculates  and  from the shape variation of the state 

equation. The variational state equation for a frequency response problem (2.56) is 

rewritten as 

2 *( , ) (1 ) ( , ) ( ), ,d j az z z z z z  (6.275) 

where subscript  denotes the dependency on the domain shape. To simplify the 

explanation, structural damping in (2.57) is used with damping coefficient . For the 

shape design problem, damping coefficient  is presumed to be fixed throughout the 

design change. The shape variation of (6.275) will provide the design sensitivity equation 

for , and the performance sensitivity  in (6.274) can be calculated using , which is the 

direct differentiation method. 

 In Section 6.2, the material derivatives of ( , )a z z  and ( )z  were rigorously 

developed for various structural components. The main difference in our present problem 

is the use of a complex variable, and thus ( , )a z z  and ( )z  are sesquilinear and 

semilinear forms, respectively. The material derivative of the kinetic energy sesquilinear 

form is derived as 

* *[ ( , )]

( , ) ( , ),

T T

V

d d div d

d d

z z z z z z V

z z z z
 (6.276) 

where ( , )Vd z z  can be calculated from known V(x) and z(x).

 Using (6.276) and the results from Section 6.2, the state equation (6.275) is 

differentiated with respect to the shape design variable to obtain the following design 

sensitivity equation: 

2

2 *

( , ) (1 ) ( , )

( ) ( , ) (1 ) ( , ), .V V V

d j a

d j a

z z z z

z z z z z z
 (6.277) 

Note that the left side of (6.277) is the same as that of (6.275), while the right side is 

different. Thus, the design sensitivity equation is the same as the original state equation 

with a different harmonic excitation, which is called a fictitious load. Using the same 

computational method as with response analysis, the design sensitivity equation from 

(6.277) can be solved for , from which  in (6.274) can be obtained. 

Adjoint Variable Method 

In order to calculate the first integral in (6.274) explicitly in terms of the design change, it 

is first necessary to define an adjoint equation, as 

2

, ,

( , ) (1 ) ( , )

( : ) ( ), ,a

d j a

g g d Zz z

 (6.278) 

where Z is the space of kinematically admissible virtual displacements, and a unique 

solution
*
 is desired. To take advantage of the adjoint equation, let us evaluate (6.278) at 
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 = Z, to obtain the following relation: 

2

, ,

( , ) (1 ) ( , )

( : ) .

d j a

g g dz z

z z

z z
 (6.279) 

Similarly, evaluate the sensitivity equation (6.277) at *z  = 
*
, to arrive at 

2

2

( , ) (1 ) ( , )

( ) ( , ) (1 ) ( , ).V V V

d j a

d j a

z z

z z
 (6.280) 

Since the left sides of (6.279) and (6.280) are the same, the desired result can be obtained 

by creating a formula that only uses the right side of each equation as 

, ,

2

( : )

( ) ( , ) (1 ) ( , ).V V V

g g d

d j a

z zz z

z z
 (6.281) 

Note that the left side is now the same as the first integral in (6.274). Therefore, the shape 

design sensitivity formula for performance  is explicitly obtained as 

, ,

,

2

,

( : )

[ : ( ) ]

( ) ( , ) (1 ) ( , )

[ : ( ) ] .

V V V

g g d

g gdiv d

d j a

g gdiv d

z z

z

z

z z

z V V

z z

z V V

 (6.282) 

By using solution z from the state equation and solution 
*
 from the adjoint equation, and 

with given design velocity field V(x), (6.282) can be calculated through domain 

integration, which is the adjoint variable method. 

 Since the expression of ( , )dV z z  is simple compared with that of the sesquilinear 

form ( , )aV z z , and since other expressions have previously been derived, separate 

expressions for each structural component are not developed here. 

6.4.2 Numerical Examples 

In this section, numerical examples are presented to demonstrate the accuracy of shape 

design sensitivity. A cantilevered beam and a vehicle chassis frame are used to compute 

shape design sensitivity information using the adjoint variable method. Design velocity 

fields that satisfy the regularity conditions and domain integration are used to evaluate 

shape design sensitivity. 

Cantilever Beam 

Consider a cantilever beam that is 40 in long and subjected to a concentrated harmonic 

load of f(x1) = 10e
j t

 at the tip (Fig. 6.18). The cross section has constant width b of 0.4 in 

and height h of 0.8 in. For numerical tests, finite element models with 2 and 20 elements 

are considered as coarse and refined models, respectively. Young's modulus is E = 3.0 × 

10
7
 psi, mass density is  = 7.34 × 10

–4
, Poisson's ratio is  = 0.3, and the structural 

damping coefficient is  = 0.04. 
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(a) Coarse model 

(b) Refined model 

Figure 6.18. Cantilever beam. 

(a) Linear 

(b) Quadratic: 1 = 1.0 

(c) Quadratic: 1 = 6.0 

Figure 6.19. Parameterizations of design velocity fields. 
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 Direct frequency response analysis is carried out using a beam element, or BAR, from 

the COSMIC/NASTRAN finite element code to obtain original and adjoint solutions for 

the cantilever beam. The first three natural frequencies of the refined model are 16.31, 

101.93, and 284.67 Hz. It has been shown that C
1
-regular velocity fields are sufficient for 

shape design sensitivity analysis of truss and plane elastic solid design components, and 

that C
2
-regular velocity fields are sufficient for beam and plate design components [106]. 

However, as discussed in Section 6.2.7, these regularity conditions can be relaxed. That 

is, a C
1
-regular velocity field with an integrable second derivative can be used for beam 

and plate design components. Two design velocity fields, the linear and the quadratic, 

shown in Fig 6.19, are used for this example. 

Table 6.2. Shape design sensitivity of beam displacement with  

excitation frequency of 10 Hz (coarse model, 1% perturbation). 

(a) Linear Velocity Field 

Hz ND  1 2 (%) (%)

  R 0.2312E+0 0.2634E+0 0.1609E–1 0.1565E–1 97.2   6.5 

  I –.1688E–1 –.2063E–1 –.1871E–2 –.1800E–2 96.5 10.0 

10.0 2 D 0.2318E+0 0.2642E+0 0.1619E–1 0.1574E–1 97.2   6.5 

  P 0.3558E+3 0.3555E+3 –.1505E+0 –.1428E+0 94.9   0.0 

  R 0.7248E+0 0.8243E+0 0.4976E–1 0.4828E–1 97.0   6.4 

  I –.5233E–1 –.6381E–1 –.5740E–2 –.5510E–2 96.0   9.9 

10.0 3 D 0.7267E+0 0.8268E+0 0.5005E–1 0.4856E–1 97.0   6.4 

  P 0.3559E+3 0.3556E+3 –.1485E+0 –.1406E+0 94.7   0.0 

(b) Quadratic Velocity Field (  = 1.0) 

Hz ND  1 2 (%) (%)

  R 0.2162E+0 0.2805E+0 0.3214E–1 0.3007E–1 93.6 13.0 

  I –.1592E–1 –.2182E–1 –.2954E–2 –.2642E–2 89.4 15.8 

10.0 2 D 0.2168E+0 0.2814E+0 0.3227E–1 0.3018E–1 93.5 13.0 

  P 0.3558E+3 0.3556E+3 –.1196E+0 –.8559E–1 71.6   0.0 

  R 0.7310E+0 0.8183E+0 0.4368E–1 0.3790E–1 86.8   5.6 

  I –.5321E–1 –.6290E–1 –.4844E–2 –.3961E–2 81.8   8.4 

10.0 3 D 0.7329E+0 0.8208E+0 0.4392E–1 0.3809E–1 86.7   5.6 

  P 0.3558E+3 0.3556E+3 –.1159E+0 –.8347E–1 72.0   0.0 

(c) Quadratic Velocity Field ( 1 = 6.0) 

Hz ND  1 2
(%) (%)

  R 0.1347E+0 0.4118E+0 0.1386E+0 0.1202E+0     86.7 56.2 

  I –.1085E–1 –.3237E–1 –.1076E–1 –.7903E–2     73.5 57.7 

10.0 2 D 0.1351E+0 0.4131E+0 0.1390E+0 0.1205E+0     86.7 56.2 

  P 0.3554E+3 0.3555E+3 0.5688E–1 0.2719E+0   478.0   0.0 

  R 0.8041E+0 0.8247E+0 0.1029E–1 –.2697E–1 –262.1   1.3 

  I –.6440E–1 –.6404E–1 0.1777E–3 0.5718E–2 3218.1   0.3 

10.0 3 D 0.8067E+0 0.8272E+0 0.1024E–1 –.2732E–1 –266.7   1.3 

  P 0.3554E+3 0.3556E+3 0.6918E–1 0.2733E+0   395.1   0.0 
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 Numerical results of displacement and stress design sensitivity analysis for the 

frequency of 10 Hz are given in Tables 6.2 through 6.5. Note that the shape design 

variable is the beam length l. In the following shape design sensitivity tables, 
1

2
, where 

1
 and 

2
 are the values of displacement or stress of perturbed designs 1 and 

2. In this example, 1 = [0, l – l] and 2 = [0, l + l], where l is the amount of beam 

length perturbation. For a displacement performance, real displacement z
1
, imaginary 

displacement z
2
, maximum displacement z, and phase angle  are denoted by the letters 

R, I, D, and P, respectively. For a stress performance, real stress 
1
, imaginary stress 

2
,

and maximum stress 
max

 are denoted by letters R, I, S, respectively. For the quadratic 

velocity field, two examples are used, as shown in Fig. 6.19. For the first example, design 

velocity value 1 is set at 1.0 at the center of the beam, while for the second, 1 is set at 

6.0 at the center. 

Table 6.3. Shape design sensitivity of beam stress with  

excitation frequency of 10 Hz (coarse model, 1% perturbation). 

(a) Linear Velocity Field 

Hz EL  1 2 (%) (%)

  R –.1254E+5 –.1371E+5 –.5841E+3 –.5606E+3 96.0 4.4 

  I 0.9080E+3 0.1064E+4 0.7813E+2 0.7444E+2 95.3 7.9 

10.0 1 S 0.1257E+5 0.1375E+5 0.5883E+3 0.5646E+3 96.0 4.2 

  R –.3854E+4 –.4182E+4 –.1644E+3 –.1535E+3 93.4 4.0 

  I 0.2656E+3 0.3088E+3 0.2158E+2 0.2005E+2 92.9 7.5 

10.0 2 S 0.3863E+4 0.4194E+4 0.1655E+3 0.1545E+3 93.4 3.9 

(b) Quadratic Velocity Field ( 1 = 1.0) 

Hz EL  1 2 (%) (%)

  R –.1283E+5 –.1342E+5 –.2956E+3 –.1938E+3     65.5 2.2 

  I 0.9367E+3 0.1034E+4 0.4856E+2 0.3319E+2     68.4 4.9 

10.0 1 S 0.1286E+5 0.1346E+5 0.2984E+3 0.1957E+3     65.6 2.2 

  R –.4088E+4 –.3935E+4 0.7630E+2 0.8638E+2   113.2 1.9 

  I 0.2862E+3 0.2860E+3 –.8656E–1 –.2208E+1 2550.9 0.0 

10.0 2 S 0.4098E+4 0.3946E+4 –.7611E+2 –.8632E+2   113.4 1.9 

(c) Quadratic Velocity Field ( 1 = 6.0) 

Hz EL  1 2 (%) (%)

  R –.1529E+5 –.1227E+5 0.1510E+4 0.2099E+4 139.0 11.5 

  I 0.1228E+4 0.9501E+3 –.1391E+3 –.2246E+3 161.5 14.1 

10.0 1 S 0.1534E+5 0.1231E+5 –.1516E+4 –.2110E+4 139.2 12.3 

  R –.5845E+4 –.2610E+4 0.1618E+4 0.1586E+4   98.0 40.3 

  I 0.4631E+3 0.1765E+3 –.1433E+3 –.1413E+3   98.6 50.1 

10.0 2 S 0.5863E+4 0.2615E+4 –.1624E+4 –.1592E+4   98.0 62.0 
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 In the coarse model (2 elements), design sensitivity results for displacement and 

stress with a 1% design perturbation of beam length are shown in Tables 6.2 and 6.3, 

respectively. In both tables, the use of linear velocity yields better agreement between 

design sensitivity predictions and finite difference results than the use of quadratic 

velocity fields. However, agreement substantially improves for the refined model (20 

elements) with all velocity fields, as can be seen in Tables 6.4 and 6.5 for displacement 

and stress, respectively. These results confirm that accurate design sensitivity information 

can be obtained as long as accurate finite element analysis results are used. 

Table 6.4. Shape design sensitivity of beam displacement with 

 excitation frequency of 10 Hz (refined model, 1% perturbation). 

(a) Linear Velocity Field 

Hz ND  1 2 (%) (%)

  R 0.2008E+0 0.2240E+0 0.1161E–1 0.1159E–1 99.8 5.5 

  I –.1272E–1 –.1490E–1 –.1089E–2 –.1086E–2 99.7 7.9 

10.0 11 D 0.2012E+0 0.2245E+0 0.1165E–1 0.1163E–1 99.7 5.5 

  P 0.3564E+3 0.3562E+3 –.9006E–1 –.8988E–1 99.8 0.0 

  R 0.6238E+0 0.6943E+0 0.3521E–1 0.3516E–1 99.8 5.4 

  I –.3879E–1 –.4529E–1 –.3250E–2 –.3241E–2 99.7 7.8 

10.0 21 D 0.6250E+0 0.6957E+0 0.3535E–1 0.3529E–1 99.8 5.4 

  P 0.3564E+3 0.3563E+3 –.8719E–1 –.8702E–1 99.8 0.0 

(b) Quadratic Velocity Field ( 1 = 1.0) 

Hz ND  1 2 (%) (%)

  R 0.1866E+0 0.2398E+0 0.2660E–1 0.2655E–1 99.8 12.6 

  I –.1184E–1 –.1594E–1 –.2052E–2 –.2044E–2 99.6 14.9 

10.0 11 D 0.1870E+0 0.2403E+0 0.2668E–1 0.2662E–1 99.8 12.6 

  P 0.3564E+3 0.3562E+3 –.8684E–1 –.8649E–1 99.6   0.0 

  R 0.6239E+0 0.6942E+0 0.3516E–1 0.3508E–1 99.8   5.3 

  I –.3880E–1 –.4529E–1 –.3244E–2 –.3231E–2 99.6   7.7 

10.0 21 D 0.6251E+0 0.6957E+0 0.3530E–1 0.3521E–1 99.8   5.4 

  P 0.3564E+3 0.3563E+3 –.8696E–1 –.8661E–1 99.6   0.0 

(c) Quadratic Velocity Field ( 1 = 6.0) 

Hz ND  1 2 (%) (%)

  R 0.1073E+0 0.3463E+0 0.1195E+0 0.1200E+0 100.4 56.4 

  I –.6845E–2 –.2290E–1 –.8029E–2 –.8031E–2 100.0 58.4 

10.0 11 D 0.1075E+0 0.3471E+0 0.1198E+0 0.1203E+0 100.4 56.4 

  P 0.3564E+3 0.3562E+3 –.6696E–1 –.6526E–1   97.5   0.0 

  R 0.6244E+0 0.6942E+0 0.3489E–1 0.3457E–1   99.1   5.3 

  I –.3887E–1 –.4529E–1 –.3211E–2 –.3170E–2   98.7   7.7 

10.0 21 D 0.6257E+0 0.6957E+0 0.3502E–1 0.3471E–1   99.1   5.3 

  P 0.3564E+3 0.3563E+3 –.8548E–1 –.8404E–1   98.3   0.0 



316  6. Continuum Shape Design Sensitivity Analysis  

Table 6.5. Shape design sensitivity of beam stress with  

excitation frequency of 10 Hz (refined model, 1% perturbation). 

(a) Linear Velocity Field 
Hz EL  1 2 (%) (%)

  R –.7064E+4 –.7511E+4 –.2237E+3 –.2234E+3 99.9 3.1 

  I 0.4205E+3 0.4682E+3 0.2385E+2 0.2380E+2 99.8 5.4 

10.0 10 S 0.7076E+4 0.7526E+4 0.2248E+3 0.2245E+3 99.9 3.0 

  R –.2442E+3 –.2517E+3 –.3739E+1 –.3336E+1 89.2 1.5 

  I 0.1064E+2 0.1111E+2 0.2348E+0 0.2190E+0 93.3 2.2 

10.0 20 S 0.2444E+3 0.2519E+3 0.3746E+1 0.3342E+1 89.2 1.5 

(b) Quadratic Velocity Field ( 1 = 1.0) 
Hz EL  1 2 (%) (%)

  R –.7392E+4 –.7165E+4 0.1136E+3 0.1143E+3 100.6 1.6 

  I 0.4427E+3 0.4439E+3 0.5874E+0 0.5215E+0   88.8 0.1 

10.0 10 S 0.7406E+4 0.7179E+4 –.1133E+3 –.1140E+3 100.6 1.6 

  R –.2649E+3 –.2303E+3 0.1728E+2 0.1626E+2   94.1 7.0 

  I 0.1151E+2 0.1014E+2 –.6817E+0 –.6812E+0   99.9 6.3 

10.0 20 S 0.2651E+3 0.2305E+3 –.1729E+2 –.1628E+2   94.1 7.5 

(c) Quadratic Velocity Field ( 1 = 6.0) 
Hz EL  1 2 (%) (%)

  R –.9502E+4 –.5082E+4 0.2210E+4 0.2225E+4 100.7   30.4 

  I 0.5867E+3 0.3000E+3 –.1434E+3 –.1450E+3 101.1   32.3 

10.0 10 S 0.9520E+4 0.5091E+4 –.2214E+4 –.2229E+4 100.7   43.5 

  R –.3927E+3 –.1097E+3 0.1415E+3 0.1388E+3   98.1   57.0 

  I 0.1772E+2 0.4785E+1 –.6467E+1 –.6308E+1   97.5   59.6 

10.0 20 S 0.3931E+3 0.1098E+3 –.1416E+3 –.1389E+3   98.1 129.0 

Table 6.6. Shape design sensitivity of beam displacement with  

excitation frequency near resonance (refined model, 0.1% perturbation). 

(a) Linear Velocity Field 
Hz ND  1 2 (%) (%)

  R 0.1246E+1 0.7699E+0 –.2382E+0 –.2387E+0 100.2 23.1 

  I –.2876E+1 –.3257E+1 –.1908E+0 –.1933E+0 101.3   6.2 

16.2 11 D 0.3134E+1 0.3347E+1 0.1064E+0 0.1075E+0 101.0   3.3 

  P 0.2934E+3 0.2833E+3 –.5067E+1 –.5072E+1 100.1   1.8 

  R 0.3706E+1 0.2302E+1 –.7019E+0 –.7031E+0 100.2 22.8 

  I –.8475E+1 –.9599E+1 –.5622E+0 –.5696E+0 101.3   6.2 

16.2 21 D 0.9250E+1 0.9872E+1 0.3109E+0 0.3140E+0 101.0   3.2 

  P 0.2936E+3 0.2835E+3 –.5066E+1 –.5071E+1 100.1   1.8 

(b) Quadratic Velocity Field ( 1 = 1.0) 
Hz ND  1 2 (%) (%)

  R 0.1240E+1 0.7744E+0 –.2326E+0 –.2325E+0 100.0 22.5 

  I –.2861E+1 –.3274E+1 –.2062E+0 –.2085E+0 101.1   6.7 

16.2 11 D 0.3118E+1 0.3364E+1 0.1229E+0 0.1239E+0 100.8   3.8 

  P 0.2934E+3 0.2833E+3 –.5057E+1 –.5054E+1   99.9   1.8 

  R 0.3705E+1 0.2304E+1 –.7005E+0 –.7007E+0 100.0 22.8 

  I –.8476E+1 –.9599E+1 –.5612E+0 –.5678E+0 101.2   6.2 

16.2 21 D 0.9251E+1 0.9871E+1 0.3103E+0 0.3130E+0 100.8   3.2 

  P 0.2936E+3 0.2835E+3 –.5057E+1 –.5054E+1   99.9   1.8 
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 To test the accuracy of the design sensitivity information near the resonant frequency, 

a design sensitivity analysis is performed with a 1% design perturbation for the refined 

model, as shown in Fig. 6.18(b), with a frequency domain of 16.2 Hz where the 

frequency ratio is r = 16.2/16.3 = 0.993. In order to compare design sensitivity analysis 

results, only linear and quadratic velocity fields ( 1 = 1.0 in) are employed. As with the 

size design problem in Section 5.5, it is found that agreement between displacement and 

stress design sensitivity predictions and the finite difference results for 1% design 

perturbation are not good, due to the highly nonlinear behavior of finite difference 

results. In order to avoid such nonlinear behavior, a 0.1% design perturbation is taken. As 

shown in Tables 6.6 and 6.7, the agreement becomes excellent for displacement and 

stress design sensitivity results. Displacement agreements at arbitrarily selected nodes 11 

and 21 are also excellent. However, in Table 6.7 agreement for stress at element 20 is not 

good either for linear or quadratic velocity fields, since /  is quite small. 

Table 6.7. Shape design sensitivity of beam stress with  

excitation frequencies near resonance (refined model, 0.1% perturbation). 

(a) Linear velocity field 

Hz EL  1 2 (%) (%)

  R –.6737E+5 –.4156E+5 0.1291E+5 0.1293E+5 100.2 23.2 

  I 0.1548E+6 0.1746E+6 0.9921E+4 0.1005E+5 101.3   6.0 

16.2 5 S 0.1688E+6 0.1795E+6 0.5348E+4 0.5402E+4 101.0   3.0 

  R –.3707E+5 –.2327E+5 0.6896E+4 0.6909E+4 100.2 22.3 

  I 0.8277E+5 0.9337E+5 0.5300E+4 0.5373E+4 101.4   6.0 

16.2 10 S 0.9069E+5 0.9622E+5 0.2768E+4 0.2799E+4 101.1   2.9 

  R –.1278E+5 –.8410E+4 0.2187E+4 0.2190E+4 100.1 20.2 

  I 0.2629E+5 0.2964E+5 0.1677E+4 0.1704E+4 101.6   6.0 

16.2 15 S 0.2923E+5 0.3081E+5 0.7901E+3 0.8037E+3 101.7   2.6 

  R –.4223E+3 –.3395E+3 0.4140E+2 0.4085E+2   98.7 10.7 

  I 0.5044E+3 0.5737E+3 0.3462E+2 0.3172E+2   91.6   6.4 

16.2 20 S 0.6579E+3 0.6666E+3 0.4366E+1 0.1962E+1   44.9   0.7 

(b) Quadratic Velocity Field ( 1 = 1.0) 

Hz EL  1 2 (%) (%)

  R –.6748E+5 –.4151E+5 0.1299E+5 0.1300E+5 100.1 23.3 

  I 0.1551E+6 0.1743E+6 0.9567E+4 0.9683E+4 101.2   5.8 

16.2 5 S 0.1692E+6 0.1792E+6 0.4984E+4 0.5030E+4 100.9   2.8 

  R –.3722E+5 –.2319E+5 0.7017E+4 0.7024E+4 100.1 22.7 

  I 0.8318E+5 0.9291E+5 0.4867E+4 0.4929E+4 101.3   5.5 

16.2 10 S 0.9113E+5 0.9576E+5 0.2318E+4 0.2342E+4 100.1   2.4 

  R –.1288E+5 –.8357E+4 0.2259E+4 0.2260E+4 100.0 20.9 

  I 0.2651E+5 0.2941E+5 0.1452E+4 0.1473E+4 101.4   5.2 

16.2 15 S 0.2947E+5 0.3058E+5 0.5536E+3 0.5633E+3 101.7   1.8 

  R –.4316E+3 –.3415E+3 0.4506E+2 0.4350E+2   96.5 11.7 

  I 0.5016E+3 0.5534E+3 0.2589E+2 0.2654E+2 102.5   0.9 

16.2 20 S 0.6617E+3 0.6502E+3 –.5736E+1 –.3796E+1   66.2   0.9 
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Vehicle Chassis Frame 

The vehicle chassis frame model presented in Chapter 5 will now be used to numerically 

test shape design sensitivity using Hermite cubic velocity fields. Refer to Figs. 5.21 and 

5.22 for structural and finite element models, respectively. The design specification given 

in Table 6.8 is used for finite element analysis. Two types of shape design variables are 

considered. The first type includes the location of five cross members and front 

suspension springs on the longitudinal chassis frames. Six shape design variables ( 1~ 6)

of the original chassis frame design are shown in Fig. 6.20(a). The perturbed shape 

design variables in positive x1 direction are shown in Fig. 6.20(b). 

 To define a design velocity field that satisfies the regularity condition described in 

Section 6.2.7, the Hermite cubic function shown in Fig. 6.21(a) is selected as 

3 2

1 3 1 2 1 1 1 0( ) .x x x x  (6.283) 

With the appropriate boundary and connectivity conditions, the following general 

expression can be obtained for repeated Hermite cubic functions: 
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 (6.284) 

A design velocity field over the longitudinal chassis frame can then be obtained by 

summing up the Hermit cubic functions, such as 

6

1 1

1

( ) ( ).i

i

V x x  (6.285) 

 A different percentage of perturbation is applied to each shape design variable to 

obtain the same amount of movement for cross members, as shown in Fig. 6.21(b) and 

Table 6.8. Therefore, perturbation amounts 1 through 6 have the same value. As 

shown in Fig. 6.20(b), the  marks show the location of the original cross members and 

front suspension, while the  marks denote their new, perturbed location. 

Table 6.8. Perturbation of shape design variables. 

Shape 

variable 
Initial design 

Perturbation of shape 

design variable 

1     27.56 1 = 0.03628 1 = 1.0 

2   55.9 2 = 0.01789 2 = 1.0 

3   74.0 3 = 0.01351 3 = 1.0 

4 137.0 4 = 0.00730 4 = 1.0 

5   183.84 5 = 0.00544 5 = 1.0 

6   261.34 6 = 0.00383 6 = 1.0 

1 ~ 6, 1 ~ 6: in. 
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(a) Original Shape 

(b) Perturbed Shape 

Figure 6.20. Shape design variables for locations of cross members. 

 For the second type of shape design variable, consider the lengths of five cross 

members measuring 31.5 inches in the initial design. Since the longitudinal chassis 

frames are parallel at all times, the lengths of the five cross members are the same. One 

half of the cross member length is denoted as . The original shape, a Hermite cubic 

design velocity field, and the perturbed shape of a cross member, are shown in Figs. 

6.22(a), (b), and (c), respectively. Center point C does not move, while endpoints A and 

B are perturbed to A' and B', respectively, and 5% of the cross member length is taken as 

design perturbation to be used in a numerical test. 

 Figure 6.23 shows a perturbed design model where the first set of design variables 

( 1~ 6) is perturbed 1.0 in, and the second set of design variables ( ) is perturbed 1.58 

in. Displacement and stress design sensitivity results are listed in Tables 6.9 and 6.10, 

respectively. In these tables, 
 1
 denotes the displacement and stress values of the original 

design and 
 2

 denotes for the perturbed design shown in Fig. 6.23. Excellent sensitivity 

results are obtained in both displacement and stress performance measures. 

x1

x2

V(x1)

1 2 3 4 5 6

1 1 2 2 3 3 4 4 5 5 6 6

1 2 3 4 5 6

1 2 3 4 5 6

x1

x2

V(x1)

x1

x3
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Figure 6.21. Hermite cubic design velocity fields. 
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Figure 6.22. Shape design variable for length of cross member. 
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x1

x
2

0 ”

Figure 6.23. Shape of perturbed design. 

Table 6.9. Shape design sensitivity of displacement of vehicle chassis frame. 

Hz ND  1 2 (%) (%)

  R 0.3896E+1 0.3881E+1 –.7539E–2 –.7453E–2 98.9 0.2 

  I –.4295E+1 –.4429E+1 –.6691E–1 –.6676E–1 99.8 1.5 

2.0 5 D 0.5799E+1 0.5888E+1 0.4493E–1 0.4487E–1 99.9 0.8 

  P 0.3122E+3 0.3112E+3 –.4918E+0 –.4902E+0 99.7 0.2 

  R 0.2531E+1 0.2518E+1 –.6083E–2 –.6020E–2 99.0 0.2 

  I –.3048E+1 –.3145E+1 –.4873E–1 –.4858E–1 99.7 1.6 

2.0 10 D 0.3961E+1 0.4029E+1 0.3392E–1 0.3384E–1 99.8 0.8 

  P 0.3097E+3 0.3087E+3 –.5092E+0 –.5072E+0 99.6 0.2 

  R 0.1060E+1 0.1053E+1 –.3884E–2 –.3808E–2 98.0 0.4 

  I –.1630E+1 –.1688E+1 –.2855E–1 –.2838E–1 99.4 1.7 

2.0 15 D 0.1945E+1 0.1989E+1 0.2199E–1 0.2189E–1 99.5 1.1 

  P 0.3030E+3 0.3020E+3 –.5422E+0 –.5378E+0 99.2 0.2 

Table 6.10. Shape design sensitivity of stress of vehicle chassis frame. 

Hz EL  1 2 (%) (%)

  R –.3127E+4 –.3170E+4 –.2125E+2 –.2193E+2 103.2 0.7 

  I 0.6653E+3 0.7355E+3 0.3511E+2 0.3530E+2 100.5 5.0 

2.0 4 S 0.3197E+4 0.3254E+4 0.2837E+2 0.2906E+2 102.4 0.9 

  R –.2923E+4 –.2964E+4 –.2068E+2 –.1937E+2   93.7 0.7 

  I 0.1239E+3 0.1666E+3 0.2139E+2 0.2078E+2   97.2 14.9 

2.0 8 S 0.2925E+4 0.2969E+4 0.2171E+2 0.2036E+2   93.8 0.7 

  R –.1759E+4 –.1787E+4 –.1407E+2 –.1389E+2   98.7 0.8 

  I –.3308E+3 –.3188E+3 0.5987E+1 0.5294E+1   88.4 1.8 

2.0 12 S 0.1789E+4 0.1815E+4 0.1276E+2 0.1270E+2   99.5 0.7 

  R –.7851E+3 –.8057E+3 –.1034E+2 –.1023E+2   99.0 1.3 

  I –.3929E+3 –.3915E+3 0.7046E+0 0.5720E+0   81.2 0.2 

2.0 16 S 0.8779E+3 0.8958E+3 0.8962E+1 0.8928E+1   99.6 1.0 

  R 0.1275E+3 0.1138E+3 –.6856E+1 –.6980E+1 101.8 5.7 

  I –.2091E+3 –.2022E+3 0.3474E+1 0.3375E+1   97.2 1.7 

2.0 20 S 0.2449E+3 0.2320E+3 –.6464E+1 –.6439E+1  99.6 2.8 

  R 0.6697E+3 0.7239E+3 0.2709E+2 0.2699E+2   99.6 3.9 

  I –.6337E+2 –.7023E+2 –.3429E+1 –.5246E+1 153.0 5.3 

2.0 50 S 0.6727E+3 0.7273E+3 0.2730E+2 0.2736E+2 100.3 3.8 
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6.5 Thermoelastic Problem 

A design sensitivity formulation of the thermoelastic problem in Section 2.7 is presented 

in this section using the domain method. The initially coupled thermoelastic problem is 

simplified such that the thermal problem is solved first and the temperature field is then 

considered as an external load for structural analysis purposes. The shape design 

sensitivity of a stress performance measure is obtained by differentiating the variational 

forms of thermal and elasticity equations. The adjoint variable method for such a 

sequential problem cannot be solved in the same way as the coupled problem. A reverse 

solution procedure is implemented to solve the adjoint problem, in which the structural 

adjoint problem is first solved to calculate the adjoint load, and the thermal adjoint 

problem is then solved to calculate the adjoint response. Finally, the sensitivity 

expression of the stress performance measure is calculated through domain integration. 

6.5.1 Design Sensitivity Analysis of Thermal Systems 

The variational equation of a thermal problem is presented in Section 2.7.1. Consider a 

three-dimensional, thermoelastic, isotropic and homogeneous solid, as shown in Fig. 

6.24. The variational equation for the temperature field is presented in (2.84), rewritten 

here as 

( , ) ( ), ,a  (6.286) 

where  is the space of kinematically admissible temperature fields, given in (2.82), and 

where

( , )
2

Ta k d + h d  (6.287) 

and

1 2
( ) g d q d h d  (6.288) 

Figure 6.24. Thermoelastic analysis model. 
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are the energy bilinear and load linear forms, respectively. A subscribed  is used for 

a (•,•) and (•) to distinguish them from the structural counterparts a (•,•) and (•). In 

(6.286) through (6.288), the following notation system is used:  = T – T
0
 is the 

temperature function, T is the absolute temperature, T
0
 is the reference temperature, k is 

the heat conductivity of the body, h is the convective heat transfer coefficient, g is the 

internal heat source, q is the heat flux vector,  is the ambient temperature, 0 is the 

boundary where the temperature is prescribed, 1 is the boundary where the heat flux is 

prescribed, and, finally, 2 is the boundary where the heat convection is prescribed. 

 For shape design sensitivity analysis, let the domain  be perturbed in the direction 

of design velocity V(x) and let  be a scalar parameter to control perturbation size, such 

that point x  is perturbed to the new point x  = x + V. The same material derivative 

formulas in Section 6.1 are preserved for the temperature field. Similar to the material 

derivative formula in (6.8), if a material derivative exists in the temperature field, then it 

is defined as 

0
0

( ) ( )
( ; , ) ( ) lim .

d

d

x V x
x V x V x  (6.289) 

 As with the material derivative formulas in Section 6.1, the energy bilinear form 

(6.287) and the load linear form (6.288) are assumed to be differentiable with respect to 

the shape design. In the following derivations, it is assumed that the material properties 

and the boundary conditions remain constant during shape perturbation, that is, (h )  = 0 

and g  = q  = 0. From the formulas in (6.37) and (6.53), the material derivative of the 

energy bilinear form is first obtained by differentiating (6.287) at the perturbed design as 

0

[ ( , )]

[ ( ) ( ) ]

( )

( , ) ( , ).

2
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T

T T T

n

d
a k d h d

d

k div d

h V d

a aV

V V V  (6.290) 

In the derivation of (6.290), the relation ( ) Td
d

V , which is similar to (6.68), 

is used. As with the structural design sensitivity formulation in Section 6.2, the 

contribution of  vanishes due to the relation ( , ) ( )a . Equation (6.290) actually 

defines the term ( , )aV , which is the explicitly dependent term on the shape design. 

( , )a represents the implicitly dependent term ( )  on the shape design, which must be 

calculated.

 Second, the load linear form in (6.288) is differentiated with respect to the shape 

design as 

1

2

0

[ ( )] [ ]

[ ]

[ ( ) ]
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T
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T
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d
g g div d

d

q q V d

h h V d

V

V V
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V

 (6.291) 
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Note that the formula in (6.291) does not depend on the thermal analysis results ; only 

the velocity field information is required. In addition, ( )V only contains the explicitly 

dependent terms; no implicitly dependent term exists in (6.291). 

 By differentiating (6.286) and by using the formulas in (6.290) and (6.291), the 

design sensitivity equation of the thermal problem can be obtained as 

( , ) ( ) ( , ), .a aV V  (6.292) 

Using the temperature field from the thermal analysis in (6.286) and using design 

velocity field V, the material derivative of temperature field can be obtained from design 

sensitivity (6.292). 

 By comparing (6.286) with (6.292), it is evident that the bilinear forms on the left side 

are identical with different arguments [  and  in (6.286) and (6.292), respectively] 

while the right sides are different. In finite element analysis, they can be considered as 

two different loads with the same stiffness matrix. Equation (6.286) is first solved to 

obtain  and the decomposed stiffness matrix is reused to obtain  with (6.292). In this 

case, the second process is much more efficient than the first. 

6.5.2 Design Sensitivity Analysis of Structural Systems 

After solving the thermal design sensitivity equation (6.292) for , the structural design 

sensitivity equation needs to be solved for z , which is the material derivative of 

displacement. The structural part is similar to the forms presented in Section 6.2.7, except 

for the fact that the material properties are functions of temperature and an additional 

thermal load exists. The variational equation for the structural part is 

( ; , ) ( ; ), ,a      Zz z z z  (6.293) 

where Z is the space of kinematically admissible displacements, given in (2.88), and 

( ; , ) ( ) : ( ) : ( )a dz z z C z  (6.294) 

and

( ; ) [ ( ) ( )]
S

T B T Sdiv d dz z f z z f  (6.295) 

are energy bilinear and load linear forms, respectively. In (6.295), ( ) is the thermal 

modulus. The notational system that is being employed needs some explanation. The 

form a ( ;•,•) depends on the temperature  and is bilinear with respect to its arguments. 

The form (  ; •) also depends on  and it is linear with respect to its argument. 

 By assuming that the forms in (6.294) and (6.295) are differentiable with respect to 

shape design, the material derivatives of these two forms are derived. Differentiation of 

(6.294) yields 
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z C z

z C z

z C z V

z C z

z z z z

 (6.296) 

where the expression of 
V
(z) is given in (6.200), and where C,  = C/ . Note that the 

explicitly dependent term ( , ; , )aV z z  is bilinear with respect to z and z , and depends on 

 and , which have already been obtained from thermal analysis and its design 

sensitivity analysis in Section 6.5.1. Actually, (6.296) defines the fictitious 

load ( , ; , )aV z z . ( ; , )a z z  represents the implicitly dependent term ( )z  on the shape 

design, which must be solved. 

 The material derivative of the load linear form in (6.295) can be derived using a 

similar procedure, as 

,

0

[ ( ; )] [ ( ) ]

[ ]

[ ( ) ]

( , ; ).

S

T B

T

T B

T S T S

n

d
div d

d

div div div d

V d

V

z z f V z

z f V z V

z f V z f

z

 (6.297) 

It is assumed that the body force and surface traction force remain constant during shape 

perturbation, that is, B S
f f 0 . Note that the formula in (6.297) does not depend on the 

structural analysis result z. The velocity field information, thermal analysis results, and 

thermal design sensitivity analysis results are required. 

 By using the formulas in (6.296) and (6.297), the design sensitivity equation for the 

structural problem can be obtained after differentiating the structural variational equation 

(6.293), as 

( ; , ) ( , ; ) ( , ; , ), .a a      ZV Vz z z z z z  (6.298) 

 Similar to its thermal counterpart, the elasticity equation (6.293) is first solved for 

displacement z and subsequently the sensitivity equation (6.298) is solved for z , using the 

same stiffness matrix. It is important to note that the sensitivity of the displacement field 

z  depends on the displacement field z, the temperature field , and the sensitivity of the 

temperature field .

 Consider a stress tensor within a subdomain p  as a performance measure. Let 

mp be a characteristic function whose value is one within p and zero otherwise. From 

the expression of stress in (2.86), the performance measure can defined as 

( , ) [ ( ) : ( ) ( ) ] .p pm d m dz C z I  (6.299) 

By taking the material derivative of (6.299), the following formula can be obtained for 

the stress sensitivity: 
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0

, ,
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[ : ( ) ( ) ]

[ : ( )] .

p p

p

p

d
m d m d

d

m d

m dV

z C z

C z I

C z

 (6.300) 

The first integral on the right side depends on structural design sensitivity results, while 

the second integral depends on thermal design sensitivity results. The last integral is the 

explicitly dependent term. Using the direct differentiation method, the design sensitivity 

of stress in the above equation can be evaluated using the thermal analysis result , the 

sensitivity of the temperature field , the structural analysis result z, and the sensitivity of 

the displacement field z .

6.5.3 Adjoint Variable Method in the Thermoelastic Problem 

The design sensitivity formulation in Sections 6.5.1 and 6.5.2 is a sequential process in 

which the design sensitivity equation of the thermal problem is solved first, and the 

design sensitivity equation of the structural problem is then solved. The adjoint variable 

method is complicated in such a sequential process because the adjoint solution requires a 

process that moves in reverse order. For example, the adjoint problem of the initial-value 

problem in Section 5.4 becomes the terminal-value problem. In this section, an adjoint 

variable formulation is presented for the sequential thermoelastic solution process. 

 The adjoint variable procedure involves removing the implicitly dependent terms 

from the sensitivity expression of the performance measure. Since the stress sensitivity 

expression in (6.300) contains two different implicitly dependent terms ( andz ), let us 

first take into account the contribution from the displacement sensitivity, which is the 

first integral on the right side of (6.300). By substituting z  into the virtual adjoint 

displacement  and by equating the first integral on the right side of (6.300) with the 

bilinear form in (6.294), the adjoint equation of the structural problem is defined as 

( ; , ) [ : ( )] , ,pa m d ZC  (6.301) 

where the structural adjoint response  is required. The solution procedure in (6.301) is 

similar to the solution procedure of structural response analysis in (6.293). The only 

difference is the load on the right side. Thus, (6.301) is equivalent to a structural analysis 

but with a different loading condition. 

 The objective is to replace the implicitly dependent term z  in (6.300) by the 

structural adjoint response . In order to do that, let us substitute z  into  in design 

sensitivity (6.298), to obtain 

( ; , ) ( , ; ) ( , ; , ).a aV Vz z  (6.302) 

This substitution is valid because both z  and  belong to the space Z of kinematically 

admissible displacements. In addition, from the fact that both  and z  belong to Z, in the 

adjoint equation (6.301)  can be replaced by z  to yield 

( ; , ) [ : ( )] .pa m dz C z  (6.303) 

As is clear from the expression in (6.294), a ( ; •,•) is symmetric with respect to its 

arguments. Thus, the left sides of (6.302) and (6.303) are the same, which produces the 

following relation: 
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[ : ( )] ( , ; ) ( , ; , ).pm d aV VC z z  (6.304) 

 Equation (6.304) removes the implicitly dependent term z  from the stress sensitivity 

expression by replacing it with the structural adjoint response . By substituting the 

relation in (6.304) into (6.300), the stress sensitivity can be rewritten as 

0

, ,

[ ( , ) ] ( , ; ) ( , ; , )

[ : ( ) ( ) ]

[ : ( )] .

p

p

p

d
m d a

d

m d

m d

V V

V

z z

C z I

C z

 (6.305) 

 The stress sensitivity expression of (6.305) still contains the implicitly dependent 

term , which will be removed by defining the thermal adjoint problem. Let us take those 

terms that contain  from (6.305) and substitute  into the virtual adjoint temperature .

By equating these terms with the energy bilinear form in (6.287), the thermal adjoint 

problem is obtained as 

, ,

( , ) ( , ; ) ( , ; , )

[ : ( ) ( ) ] , ,p

a a

m d

V V z

C z I
 (6.306) 

where adjoint response  is required. Note that the thermal adjoint problem utilizes the 

result from the structural adjoint problem to define its adjoint load. The solution 

procedure of (6.306) is similar to the solution procedure of thermal analysis in (6.286). 

The only difference is the load on the right side. Thus, (6.306) is equivalent to a thermal 

analysis with a different thermal load. 

 By following the same procedure as the structural adjoint problem, the virtual 

temperature  is replaced by the adjoint temperature  in the thermal design sensitivity 

equation (6.292), to obtain 

( , ) ( ) ( , ).a aV V  (6.307) 

This substitution is valid because both  and  belong to the space  of kinematically 

admissible temperatures. In addition, because both  and  belong to ,  can be 

replaced by  in adjoint equation (6.306), to yield 

, ,( , ) [ : ( ) ( ) ]

( , ; ) ( , ; , ).

pa m d

aV V

C z I

z
 (6.308) 

As is clear from the expression in (6.287), a (•,•) is symmetric with respect to its 

arguments. Thus, the left sides of both (6.307) and (6.308) are the same, which produces 

the following relation: 

, ,[ : ( ) ( ) ] ( , ; ) ( , ; , )

( ) ( , ).

pm d a

a

V V

V V

C z I z
 (6.309) 

Thus, all terms that contain  in (6.305) are replaced by the known adjoint temperature 

. By using the relation in (6.309), the stress sensitivity of (6.305) is derived as an 

explicit function of the shape design by 
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 (6.310) 

Even if the structural adjoint response  does not appear in (6.310), its calculation is 

required in order to evaluate the structural adjoint load in (6.306). 

 Different types of performance measures can be treated using a procedure similar to 

the one described in this section. Table 6.11 summarizes the adjoint variable method 

procedure for displacement and temperature performance measures. Note that the 

structural adjoint equation is not required for temperature sensitivity calculations. 

6.6 Second-Order Shape Design Sensitivity Analysis 

Second-order design sensitivity analysis computes the Hessian information of a 

performance measure and is useful in many applications, such as a robust (i.e., 

insensitive) design for improving product quality and a reliability analysis for improving 

prediction accuracy. To improve product quality through the robust design, product 

sensitivity needs to be reduced with respect to environmental variations. To minimize this 

sensitivity, it is necessary to have accurate second-order shape design sensitivity. 

 A continuum design sensitivity approach with a material derivative is used to derive 

explicit formulas of the second-order shape design sensitivity for stress and displacement 

performance measures. Both the direct differentiation and hybrid methods are presented. 

Efficiency of these methods depends on the number of shape design variables and 

performance measures. It is interesting to note that the computation of an acceleration 

field needs little additional effort if the design velocity field is available. Furthermore, by 

assuming a linear mapping relation in a shape perturbation, the effects of design 

acceleration are completely eliminated, which is very helpful when developing a practical 

numerical method for second-order shape design sensitivity analysis. However, further 

investigation of the regularity conditions of displacement and velocity fields is needed.  

Table 6.11. Design sensitivity procedure for displacement and temperature 

performance measures. 

 Displacement Temperature 

Performance 
2

ˆ( ) dz x x 3
ˆ( ) dx x

Sensitivity 
2

ˆ( ) dz x x 3
ˆ( ) dx x

Structural 

adjoint

equation

ˆ( ; , ) ( ) ,a d

Z

x x
Not required 

Thermal 

adjoint

equation

( , ) ( , ; ) ( , ; , ),a aV V z

ˆ( , ) ( ) ,a dx x

Sensitivity 

expression
2 ( ) ( , )aV V 3 ( ) ( , )aV V



 6.6 Second-Order Shape Design Sensitivity Analysis  329 

6.6.1 Second-Order Material Derivative Formulas 

In this section, some preliminary definitions, assumptions, and basic formulations are 

introduced. Thereafter, all necessary functions, functionals, and shapes are assumed to be 

smooth enough for their second derivatives to exist. 

 In the development of shape variation in Section 6.1, the linear mapping relation in 

(6.5) is used to represent perturbation of the structural domain. This choice of a linear 

mapping relation is valid since higher-order terms have vanished. In general, however, a 

quadratic mapping relation can be used in the second-order variation as 

2

( , ) ( ) ( ),
2

T x x V x V x  (6.311) 

where

0

( ) ( , )
d

d
V x V x  (6.312) 

is the material derivative of the design velocity field. With the design velocity field as a 

function of x , the design acceleration field can be derived by taking the material 

derivative of V. From the relation in (6.8) we obtain 

( ) ( ) ( ),V x V x VV x  (6.313) 

where the partial derivative V (x) is defined as the design acceleration field [107]. In 

(6.313), V = [Vi,j] = [ Vi/ xj] is the Jacobian matrix of V. Here, velocity V is assumed to 

be smooth enough that the partial derivative V (x) and the material derivative ( )V x  exist. 

 Using the definition of a design acceleration field, the second-order material 

derivative of state variable z (x ) at x  can be defined as [108] and [109] 

2
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 (6.314) 

where z  is the second-order partial derivative of z with respect to , and ( zi) = 

[
2
zi/ xj xk] is the Hessian matrix of zi. Due to the smoothness assumption, the partial 

derivative with respect to  is commutative with the partial derivative with respect to x,

because they are both derivatives with respect to independent variables. 

 In order to derive the second-order variation of a functional, we first need to derive 

the second-order material derivative of the Jacobian matrix of the transformation T, and 

then the second-order material derivative of n , which is the outward unit-normal vector 

on the boundary  of the deformed domain .

 From (6.311), the Jacobian matrix of the transformation T can be defined as 

2

2

2

( ) ( ),
2

i i i

j j j

T V V

x x x
J I

I V x V x

 (6.315) 
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where I is the identity matrix, and V(x) and ( )V x  are Jacobian matrices of V(x)

and ( )V x , respectively. Let |J| be the determinant of J. The first-order material derivatives 

of J and |J| were obtained in (6.15) and (6.18). The second-order material derivatives of J

can be calculated as 

2

2

0

( )
d

d

J
V x  (6.316) 

and

2 1

2

0

2 ( ) ( ) ( ).
d

d

J
V x V x V x  (6.317) 

In (6.317), the relation 2 2( ) /T Td dJ J 0  is used. 

 The second-order material derivatives of |J| can be obtained by computing the 

determinant of (6.315) and by taking the material derivative twice as 

2

2

0

2 ,ii

d
M div

d

J
V  (6.318) 

where Mii is the principal minors of the matrix V(x), and summation rule is used 

between repeated indices. 

 Let n be the outward unit-normal vector on boundary  of domain , and let n  be the 

outward unit-normal vector on the boundary  of deformed domain . The relation 

between n and n  is given in (6.31) and the first-order derivative is given in (6.34). To 

find the second-order derivative of n , consider the second-order derivative of 

( ) ( )T
J x n x , which can be obtained as 

2 2
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 (6.319) 

and the second-order material derivative of n  is 
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 (6.320) 

where (a,b) a
T
b. Shape design sensitivity analysis can be carried out using these 

formulas. However, in the following derivation, we will use special types of the design 

velocity field with the property of ( )V x = 0 (as explained in Example 6.8). From a 

practical point of view, these kinds of design velocity fields are very attractive, since the 

transformation mapping in (6.311) can be simplified to T(x, ) = x + V(x). Thus, we can 

drop those terms that involve ( )V x  in (6.311) and (6.315), as well as from subsequent 
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equations that are derived from these two. 

Example 6.8. Linear Mapping. The quadratic mapping in (6.311) is mathematically 

rigorous but impractical in real applications. Many geometric modelers use parametric 

representations of the geometry, and those representations are often chosen as design 

variables, as described in Section 12.2 of Chapter 12. Consider the shape design 

parameterization of the geometric surface in Fig. 12.27. A three-dimensional geometric 

surface can be mathematically represented by the 4 × 4 × 3 geometric coefficient matrix 

B, as in (12.20). The geometric coefficients are the positions, tangent vectors, and twist 

vectors at the four corner points of the geometric surface. Matrix B is rewritten as 

00 01 00 01

10 11 10 11

00 01 00 01

10 11 10 11 4 4 3

,

w w

w w

u u uw uw

u u uw uw

p p p p

p p p p
G B

p p p p

p p p p

 (6.321) 

where u  [0,1] and w  [0,1] are the local coordinates on the patch. Each point on the 

surface has the unique values of u and w. The 48 geometric coefficients of matrix B can 

be defined as the shape design variable b.

 By using geometric coefficients as the shape design variables, the isoparametric 

mapping method can be used to compute the boundary and domain velocity fields. The 

domain acceleration field can be computed from the domain velocity field with little 

additional computational costs. 

 To compute the boundary velocity field, geometric coefficient matrix B should be 

transformed into the algebraic coefficient matrix A by premultiplying a constant matrix 

M (see Fig. 12.26). From the algebraic coefficient matrix A, the velocity field can be 

computed as 

,T
V U AW  (6.322) 

where vectors U = [1, u, u
2
, u

3
]
T
 and W = [1, w, w

2
, w

3
]
T
 are the locations of the nodes in 

the parametric direction of the geometric surface. Since an algebraic surface can be used 

to directly compute the boundary velocity field, the geometric surface must be 

transformed. For the geometric surface, A = MBM
T
 and, as a result, 

.T T
V UM BM W  (6.323) 

Since the coefficient of B is defined as design b, the perturbation of design b is the 

coefficient of matrix B. One final note: from (6.323), it is clear that the design velocity 

field depends on the position of x, and on the perturbations of the shape design variables 

b, rather than on design variable b. Thus, ( )V x = 0, and the design acceleration field can 

be computed from 

( ) ( ) 0

( ) ,

V x V V V

V V V
 (6.324) 

where V  is the design acceleration field. Once the domain velocity field is obtained, only 

a small amount of computational effort is required to obtain the domain acceleration 

field. The relation in (6.324) is used in the development of a second-order design 

sensitivity analysis. 

 Using (6.311), (6.313), (6.314), and (6.318), the second-order material derivative of 

the general domain functional 1, defined as an integral over the domain , can be 
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derived. Let 

1 ( ) ,f dx  (6.325) 

where f  is a regular function defined on domain . If the domain  is smooth enough, 

then the second-order variation of 1 at  is obtained as 
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 (6.326) 

Note that the term containing design acceleration is canceled by assuming linear mapping 

T(x, ) and by using the relation in (6.324). Thus, virtually no design acceleration 

information is required in evaluation of the integral in (6.326). 

 Next, consider a functional defined as an integral over , the boundary of domain ,

as

2 ( ) ( ) ,Tg d g dx x V J J n  (6.327) 

where the transformation ( ) ( ) ( )Td dJ x J x n x  is used. Thus, by using (6.314), 

(6.315), (6.318), and (6.319), the second-order variation of 2 at  is 
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 (6.328) 

 Another functional, also defined as an integral over , is 

3 ( )

( ) .

T

T T

d

d

h x n

h x V n J J n
 (6.329) 

Its second-order variation is derived by using (6.314), (6.315), (6.318), (6.319), and 

(6.320) as 
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 (6.330) 

In the following sections, (6.325) through (6.330) will be used to derive the second-order 

variation of the energy bilinear and load linear forms of a three-dimensional elastic solid 

with respect to shape design variables, and to derive the second-order shape design 

sensitivity of stress and displacement performance measures. 

6.6.2 Direct Differentiation Method 

The direct difference method uses the second-order variation of the energy bilinear and 

load linear forms to obtain second-order sensitivity information. 

 The variational identity for the three-dimensional linear elastic solid can be written as 

1 3

( ) ( )

( ) , [ ( )] ,

b

ij ij i i

ij j i

d z f d

n z d H

z z

z z
 (6.331) 

where z = [z1, z2, z3]
T
 is the displacement function, n = [n1, n2, n3]

T
 is the outward unit 

normal at the boundary, and H
1
( ) is the Sobolev space of order one. If boundary 

conditions are imposed on boundary , in which 
h
 has a prescribed displacement and 

s

has a traction load, then 

0,

, .
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s s

ij j i

z

n f

x

x
 (6.332) 

By using these boundary conditions, (6.331) can be rewritten as the variational equation 

( , ) ( ) ( )

( ), ,
s

ij ij

b s

i i i i

a d

z f d z f d Z

z z z z

z z
 (6.333) 

where Z is the space of kinematically admissible virtual displacements, written as 

1 3[ ( )] : 0, .hZ Hz z x  (6.334) 

To obtain the design sensitivity, the first- and second-order material derivatives of the 

variational equation (6.333) must be taken. To this end, the first- and second-order 

material derivatives of general functionals defined by domain and boundary integrals are 

taken. The first-order derivative of variational equation (6.333) is developed in Section 

6.2.6.

 For second-order sensitivity information, taking the second-order material derivative 

of ( , )a z z  from (6.333) yields 

2

2

0

( , ) ( , ) 2 ( , ) ( , ),V V

d
a a a a

d
z z z z z z z z  (6.335) 
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where

( , ) { ( ) ( ) ( ) ( ) ( ) ( ) }V V

V ij ij ij ij ij ija div dz z z z z z z z V  (6.336) 
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In (6.336) and (6.337), ( )V

ij  and ( )V

ij  are the terms that are explicitly dependent on 

design velocity. The expression of ( )V

ij  has already been introduced in (6.200) when 

first-order sensitivity was developed. The expression of ( )V

ij  is defined as 

1
( ) [ ( ) ].

2

V T

ij z z V V z V V  (6.338) 

Note that only the first-order derivative of the design velocity field is required in the 

fictitious load forms in (6.336) and (6.337). This is a very important feature in the 

application stage, since a C
0
-continuous design velocity field that has an integrable first-

order derivative is enough to develop a second-order design sensitivity analysis, 

producing the same regularity requirement as the first-order design sensitivity analysis 

presented in Section 6.2.7. Such a convenience is made possible from the assumption of a 

linear mapping relation and from the property ( )V x = 0. 

 The traction-loaded boundary can be treated by taking a second-order variation of the 

right side of (6.333), assuming partial derivatives of f
 b
 and f

 s
 are zero (i.e., f
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 = 0), producing 
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The terms containing z  and z  in (6.335) and (6.339) have been neglected, since they 

cancel each other out after the variational identity and the first-order variation of the 

variational elasticity equation for three-dimensional elastic solids have been used. 

 From (6.335) and (6.339), the second-order material derivative of the variational 

equation (6.333) can be written as 

( , ) ( ) 2 ( , ) ( , ), ,V V Va a a Zz z z z z z z z  (6.340) 

where  is the material derivative of the displacement and can be obtained from (6.67). 

Solving finite element reanalysis with the fictitious load on the right of (6.340), the 

second-order shape design sensitivity of displacement z  can be obtained, yielding the 

direct differentiation method. 
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 To obtain the second-order variation of a domain stress performance measure, let the 

general mean stress performance measure be defined over a fixed test volume p as 

( ( ))

( ( )) ,
p

p

p

g d

g m d
d

z

z  (6.341) 

where mp is a characteristic function with a constant value of mp = ( p d )
–1

 on volume 

p, a value of zero outside the volume, and with an integral of one. If the volume p

becomes a point, then mp becomes the Dirac delta measure and the performance measure 

 in (6.341) is the stress at that point. Note that g( (z)) might be the principal stresses, 

the von Mises stress, or some other material failure criteria. 

 The second-order shape design sensitivity of the stress performance measure can be 

derived by taking the second-order variation of (6.341) as 

,

,

[ ( ) ( ) 2 ( ) ( ) ( ) ( )]

[ ( ) 2 ( ) ( ) 2 ( ) 2 ( ) ]

2 2
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g C C C div m d
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z z z z z z

z z z z z V

V V
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2 [ ( ) ( )] .
ij

p p p p

V

ij ijkl kl p p

gm d Mm d gm d div m d

g C m d div m d

V

z z V

 (6.342) 

The second-order shape design sensitivity of the stress performance measure can then be 

obtained by substituting z  and  into (6.342). 

 The direct differentiation method is expensive if the design problem has a large 

number of shape design variables, due to computational costs. For a shape design 

problem with n shape design variables, this method requires one original finite element 

analysis and (3k + k
2
)/2 finite element reanalyses, which include an n number of finite 

element reanalyses for the first-order shape design sensitivity, and k(k + 1)/2 finite 

element reanalyses (6.340) for the second-order shape design and mixed design 

sensitivities. 

6.6.3 Hybrid Method 

As in the discrete method of second-order sensitivity analysis in Section 4.1.5, the hybrid 

method uses the direct differentiation method to obtain first-order sensitivities and the 

adjoint variable method to obtain second-order sensitivities. 

 The displacement performance measure can be defined as 

*( ) ,     = 1, 2, or3,iT

d d ie z x x  (6.343) 

where e
1
 = [1, 0, 0]

T
, e

2
 = [0, 1, 0]

T
, and e

3
 = [0, 0, 1]

T
 are unit vectors. The second-order 

variation of d is 

*( ) .iT

d de z x x  (6.344) 

The adjoint equation for the displacement performance measure can be defined by 

replacing z  in (6.344) by virtual displacement  and by equating the result to the energy 

bilinear form 
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*( , ) ( ) , .iTa d Ze x x  (6.345) 

The adjoint structural system can be interpreted as the original structure with a positive 

unit load applied at the point x
*
.

 Let Zz  in (6.345), and let Zz  in (6.340). Therefore, (6.345) becomes 

*( , ) ( )iTa dz e z x x  (6.346) 

and (6.340) becomes 

( , ) 2 ( , ) ( , ) ( ).V V Va a az z z  (6.347) 

Since the energy bilinear form a (•,•) is symmetric in its arguments, the left sides of 

(6.346) and (6.347) can be equated, and the second-order sensitivity of the displacement 

performance measure can be written as 

*( )

2 ( , ) ( , ) ( ),

iT

d

V V V

d

a a

e z x x

z z
 (6.348) 

where  is the adjoint response in (6.345). To evaluate (6.348),  needs to be obtained 

from (6.67) using the direct differentiation method. 

 Next, let  be the stress performance measure defined by (6.341). The adjoint 

equation for the stress performance measure can be defined by replacing the term that 

contains z  in (6.342) with the virtual displacement , and by equating the result to the 

energy bilinear form 

,( , ) ( ) , .
ij ij pa g m d Z  (6.349) 

By setting Zz  in (6.345), Zz  in (6.340), and by using the symmetric 

property of the energy bilinear form a (•,•), the following equation can be obtained 

, ( ) 2 ( , ) ( , ) ( ),
ij ij p V V Vg m d a az z z  (6.350) 

where  is the adjoint response in (6.349). 

 Substituting (6.350) for its corresponding term in (6.342), the second-order shape 

design sensitivity of the stress performance measure can be written as 

,

,
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 (6.351) 

where  can be obtained from (6.67). 

 To obtain the second-order shape design sensitivity and mixed second-order design 

sensitivity using the hybrid method, one original finite element analysis and an k + NC

number of finite element reanalyses are required for a design problem that has k number 

of shape design variables and NC number of performance measures. This includes k
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number of finite element reanalyses for the first-order shape design sensitivity, and NC

number of finite element reanalyses [(6.345) and/or (6.349)] for adjoint structures. 

Numerical computation using this method is more efficient than direct differentiation if 

the total number of NC performance measures is less than (k + k
2
)/2. 

6.6.4 Numerical Examples 

In this section, a numerical method is presented for computing the second-order shape 

design sensitivity. PATRAN is used to create a geometric model and the ANSYS FEA 

code is used to analyze structural responses. Numerical results from the examples of a 

two-dimensional connecting rod and three-dimensional arch dam demonstrate the 

accuracy and feasibility of the second-order shape design sensitivity analysis method. 

 The shape design parameterization method explained in Example 6.8 is used to 

parameterize the three-dimensional geometric model. With the parametric representation 

of a boundary, an isoparametric mapping method is used to compute the boundary 

velocity field. The domain velocity field can then be computed using the boundary 

displacement method (see Section 13.3 of Chapter 13). 

Connecting Rod

In order to demonstrate accuracy and feasibility of second-order shape design sensitivity, 

the two-dimensional connecting rod shown in Fig. 6.25 is chosen as a numerical example. 

With an in-plane firing load during the engine combustion cycle, this example is treated 

as a two-dimensional plane stress problem. 

 A geometric model of the connecting rod is created using PATRAN. There are 24 

patches and 62 geometric lines in this geometric model. High stress appears in the shank 

and neck regions, so the boundary 1 along the neck and shank region is chosen as the 

shape design boundary. 

 Six geometric lines are used to represent the design boundary 1: lines 33, 34, 35, 38, 

39, and 40. The rest of the boundaries are assumed to be fixed. The x2-coordinates of 

grids 22, 23, 24, and 25 are chosen as the independent design variables, so that there are 

four design variables in this model. The values of each design variable are b1 = b2 = 10.0 

and b3 = b4 = 10.0. 

Figure 6.25. Geometric model of connecting rod. 
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Figure 6.26. Boundary and load conditions. 

359 362

406

205

360
361

x1

x 2

Figure 6.27. Finite element mesh of connecting rod. 
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xB

1

2

x1

x2

Table 6.12. Firing (compressive) load on the boundaries 2.

1 (deg.) Force(N) 1 (deg.) Force(N) 1 (deg.) Force(N)

–40        0 –10 19587 20 15741 

–35    978   –5 20374 25 10335 

–30   6868     0 21237 30   6103 

–25 11210     5 22243 35   1402 

–20 14689   10 20395 40         0 

–15 17816   15 17426   

2 (deg.) Force(N) 2 (deg.) Force(N) 2 (deg.) Force(N)

–40   2234 –10 17499 20 15056 

–35   6727   –5 17245 25 12622 

–30   9808     0 16488 30   9803 

–25 12536     5 17365 35   6409 

–20 14917   10 17711 40   1055 

–15 16308   15 16502   
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 In the finite element model, the firing load shown in Table 6.12 is considered. In 

order to eliminate rigid-body motion, point xA is fixed in the x1 and x2 directions, and 

point xB is fixed in the x2 direction, as shown in Fig. 6.26. Such boundary conditions are 

reasonable because the firing load is self-equilibrated. The eight-node quadrilateral 

element STIF82 of ANSYS is used for static analysis. The finite element model of the 

connecting rod includes 1403 nodes, 406 quadrilateral elements, and 2803 degrees of 

freedom. Figure 6.27 shows the finite element mesh of the connecting rod. 

 Four shape design velocity fields are generated corresponding to the four independent 

design variables. Sixteen shape design acceleration fields are generated from the four 

shape design velocity fields. The direct differentiation and hybrid methods are used to 

compute the second-order shape design sensitivity. 

 As one can see from Fig. 6.27, four finite elements with high von Mises stress and 

four nodes with large displacement are chosen to verify the second-order shape design 

sensitivity. Elements 359 and 362 are in the neck region adjacent to the upper boundary 

1. Elements 205 and 406 are adjacent to the boundary 2 of the small hole that is 

connected to a piston pin. The results are shown in Tables 6.13 through 6.15. In each 

table, design variables are perturbed by 1% for verification, using the finite difference 

method. The results of second-order shape design sensitivities of the displacement and 

von Mises stress performance measures with respect to design variables b1 and b2 are 

given in Tables 6.13 and 6.14, respectively. The results of the mixed second-order shape 

design sensitivity of the displacement and von Mises stress performance measures with 

respect to b1 and b2 are shown in Table 6.15. 

 Data have been classified as follows in the four tables: the first column is either the 

element ID or the node ID; the second column is either the stress or the displacement 

performance measure; the third column is the Gauss point ID; the fourth column are the 

second-order finite difference results; and the fifth and sixth columns are the second-

order design sensitivity results obtained from the direct differentiation and hybrid 

methods, respectively. The last two columns are the verification results of the second-

order shape design sensitivity obtained using two methods. In Tables 6.13 and 6.14, 

2
2

22
( )

i

b
b

 (6.352) 

and

2 ( ) 2 ( ) ( )i i i i ib b b b b  (6.353) 

for the second-order derivative with respect to design variable bi where bi is the 

perturbation of the design variable bi, i = 1, 2. In Table 6.15, 
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4 i j

i j

b b
b b

 (6.354) 

and

2 ( , ) ( , )

( , ) ( , )

i i j j i i j j

i i j j i i j j

b b b b b b b b

b b b b b b b b
 (6.355) 

for the mixed second-order derivative with respect to design variables bi and bj.

 Results in Tables 6.13 through 6.15 indicate that the accuracy of the second-order 

shape design sensitivity is very good, although stress performance measures are defined 

for the elements with high stress. These numerical results demonstrate the accuracy and 

feasibility of the theoretical derivations and their numerical implementation in second- 
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Table 6.16. Second-order shape design sensitivity of stress performance measures.

Element Criteria IG 2 / b1
2 2 / b1 b2

2 / b1 b3
2 / b1 b4

359 von Mises 1   0.4296987E+03 –0.2258380E+02 –0.3578100E+01 –0.7854668E+01 
360 von Mises 2   0.1741188E+03   0.6666557E+02 –0.3756059E+02 –0.6802056E+00 

361 von Mises 3 –0.6541516E+02   0.1028044E+03 –0.4469860E+02 –0.2233664E+01 

362 von Mises 3 –0.2585918E+02 –0.2224727E+02 –0.7089901E+01 –0.3412922E+02 

Table 6.15. Verification of second-order shape design sensitivity of performance 

measures with respect to design variable b1
a
 and b2

b
.

Element 

or Node 

Performance 

Measure 

Gauss 

Point 

2 (b)

Finite Diff. 

(b)

Direct Method 

(b)

Hybrid Method 

/ 2

(Direct) 

/ 2

(Hybrid)

205 von Mises 4   0.1775493E–01   0.1779886E–01   0.1779885E–01 100.25 100.25 

359 von Mises 1 –0.9035997E+00 –0.9033521E+00 –0.9033521E+00   99.97   99.97 

362 von Mises 3 –0.8901512E+00 –0.8898907E+00 –0.8898907E+00   99.97   99.97 

406 von Mises 3   0.3251864E–02   0.3249104E–02   0.3249142E–02   99.92   99.92 

270 zx — –0.1344251E–05 –0.1343677E–05 –0.1343672E–05   99.96   99.96 

279 zx — –0.1343977E–05 –0.1343404E–05 –0.1343399E–05   99.96   99.96 

12 zy —   0.2657888E–05   0.2656586E–05   0.2656553E–05   99.95   99.95 

13 zy —   0.2660071E–05   0.2658769E–05   0.2658736E–05   99.95   99.95 
a b1 = 10.0 and b1 = 0.1  b b2 = 10.0 and b2 = 0.1 

Table 6.14. Verification of second-order shape design sensitivity of

performance measures with respect to design variable b2
a
.

Element 

or Node 

Performance 

Measure 

Gauss 

Point 

2 (b)

Finite Diff. 

(b)

Direct Method 

(b)

Hybrid Method 

/ 2

(Direct) 

/ 2

(Hybrid) 

205 von Mises 4   0.2563881E+00   0.2563777E+00   0.2563776E+00 100.00 100.00 

359 von Mises 1 –0.2543052E+00 –0.2542091E+00 –0.2542091E+00   99.96   99.96 

362 von Mises 3   0.4395137E+01   0.4394869E+01   0.4394869E+01   99.99   99.99 

406 von Mises 3   0.2035245E+00   0.2035262E+00   0.2035265E+00 100.00 100.00 

270 zx — –0.1324177E–04 –0.1324094E–04 –0.1324094E–04 100.01 100.01 

279 zx — –0.1323826E–04 –0.1323743E–04 –0.1323743E–04 100.01 100.01 

12 zy —   0.2755482E–04   0.2755317E–04   0.2755317E–04 100.01 100.01 

13 zy —   0.2757911E–04   0.2757746E–04   0.2757746E–04 100.01 100.01 
a b2 = 10.0 and b2 = 0.1 

Table 6.13. Verification of second-order shape design sensitivity of

performance measures with respect to design variable b1
a
.

Element 

or Node 

Performance 

Measure 

Gauss 

Point 

2 (b)

Finite Diff. 

(b)

Direct Method 

(b)

Hybrid Method 

/ 2

(Direct) 

/ 2

(Hybrid) 

205 von Mises 4 –0.1911953E–02 –0.1912507E–02 –0.1912828E–02 100.03 100.04 

359 von Mises 1   0.4297248E+01   0.4296987E+01   0.4296987E+01   99.99   99.99 

362 von Mises 3 –0.2586931E+00 –0.2585918E+00 –0.2585918E+00   99.96   99.96 

406 von Mises 3 –0.2009241E–02 –0.2008747E–02 –0.2008350E–02   99.98   99.96 

270 zx — –0.1514805E–04 –0.1514710E–04 –0.1514710E–04 100.01 100.01 

279 zx — –0.1514048E–04 –0.1513953E–04 –0.1513953E–04 100.01 100.01 

12 zy —   0.4075609E–04   0.4075365E–04   0.4075366E–04 100.01 100.01 

13 zy —   0.4078688E–04   0.4078444E–04   0.4078445E–04 100.01 100.01 
a b1 = 10.0 and b1 = 0.1 
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order shape design sensitivity. Table 6.16 shows the results of second-order sensitivity 

analysis for elements 359 through 362. These results illustrate that stress performance 

measures on elements located near shape design variables (e.g., element 359 is closer to 

b1) have higher second-order shape design sensitivity than those stress performance 

measures defined on other elements. 

Arch Dam 

A three-dimensional doubly curved arch dam based on the optimum design of 

Wassermann [110] as shown in Fig. 6.28, can be used to demonstrate the accuracy of 

derived second-order shape design sensitivities, with the shape changes occurring on 

loaded boundaries. 

 The arch dam is subject to water pressure and gravitational force. It is assumed that 

the dam’s foundation is rigid, that its material is homogeneous, and that it behaves 

elastically. The effects of temperature are ignored. The physical properties include water 

weight density (10.0 kN/m
3
), gravity acceleration (10.0 m/s

2
), concrete weight density 

(25.0 kN/m
3
), Young’s modulus of concrete (21.0 GPa), and Poisson’s ratio of concrete 

(0.2).

 It is assumed that the arch dam is constructed on an idealized valley, and the normal 

cross section of this valley is shown in Fig. 6.29. Assuming that the structure and loads 

are symmetric with respect to the crown cross section, only half of the dam’s span is 

analyzed. Two parameterized surfaces, as shown in Fig. 6.30, are used to simulate the 

water face and air face of the arch dam and are chosen as design boundaries. 

 The water and air face patches are parameterized as geometric surfaces. The x
2
-

coordinates of grid points 21, 24, 33, 36, 41, 44, 53, and 56 are chosen as independent 

design variables, so there are eight design variables in this model. Four of them are 

defined on the loaded boundary (the water face). The definitions and values of each 

design variable are given in Table 6.17. 

x 3
x 2

x 1

Figure 6.28. Finite element mesh of arch dam. 
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153.5

120

32.2

Figure 6.29. Normal cross section of idealized valley. 

x 3
x 2

x 1

Figure 6.30. Design boundary patches for arch dam. 

 The finite element model takes into account the water pressure and the gravity force, 

which will contribute to second-order shape DSA through (6.339). The water pressure is 

assumed to be linearly varied, from zero at the top of the dam to 1200 kN/m
2
 at the 

bottom. However, because the ANSYS FEA code is used to analyze the structural 

response, and because it only allows step pressure to be applied on the loading surface, a 

step pressure profile is used in the sensitivity analyses. All nodes that connect the dam 

and foundation are fixed. To maintain symmetry, the nodes on the center crown section 

are fixed in the x1-direction. The finite element model of the arch dam includes 315 

nodes, 36 20-node isoparametric elements, and 726 active degrees of freedom. 

Table 6.17. Definition of design variables. 

Design par number 1 2 3 4 5 6 7 8 

Grid number 21 33 36 24 41 53 56 44 

Design par value 115 119 10 103 141 129 20 130 
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 Eight velocity fields are generated that correspond to the eight independent design 

variables. Sixty-four acceleration fields are then generated from the eight velocity fields. 

The direct differentiation and hybrid methods are used to compute the second-order shape 

and mixed second-order design sensitivity.  

 In the arch dam example, the first principal stresses at Gauss points of finite elements 

are chosen as stress performance measures. To conduct a numerical test, the first eight 

elements that have a high tensile and compressible first principal stress are selected. In 

order to verify the mixed second-order design sensitivity with respect to the shape design 

variable and material properties, eight nodes with large displacements in the x2-direction 

are selected. Second-order sensitivity results are verified using the finite difference 

method. 

 Table 6.18 shows the values of selected stress performance measures and the first-

order sensitivity of these performance measures with respect to variations in water 

pressure. The stress performance measures are not sensitive to variations in the water 

pressure. Tables 6.19 through 6.23 show the verification results of second-order 

sensitivity. Tables 6.19, 6.20 and 6.22 are for second-order shape design sensitivity, and 

Table 6.21 is mixed second-order sensitivity with respect to both shape design variable b1

and distribution of water pressure. Table 6.23 is mixed second-order sensitivity with 

respect to both shape design variable-b1 and to Young's modulus. 

 The first column is the element number in Tables 6.19 through 6.22 and the node 

number in Table 6.23, and the second column is the Gauss point number in Tables 6.19 

through 6.22 and the coordinate direction in Table 6.23. In all five tables, the third 

column represents the second-order finite difference result, and the fourth and fifth 

columns are the second-order design sensitivity results from the direct differentiation and 

hybrid methods, respectively. The last two columns are verification results of the second-

order design sensitivity from these two methods. 

 Results in Tables 6.19 through 6.23 indicate that the accuracy of second-order shape 

design sensitivity is very good, even though the stress performance measures are defined 

on elements with high tensile and compressible stresses, and displacement performance 

measures are defined on nodes with a large deformation. For the design variables defined 

on the loaded boundary, Tables 6.20 and 6.22 show good results. These numerical results 

demonstrate the accuracy and feasibility of both the theoretical derivations and the 

numerical implementations of the second-order shape DSA, while considering shape 

changes on the loaded boundaries. 

Table 6.18. Stress performance measures and sensitivity 

with respect to distribution of pressure loading (p).

Element 

Number 

Gauss Point First Principal Stress 1st-Order DSA wrt p 

  1   1  .21767E+04  .69141D+01 

  2   1  .21316E+04  .67309D+01 

  3   1  .20055E+04  .62587D+01 

  4   1  .17827E+04  .55138D+01 

  7 14 –.10171E+04 –.92131D+00 

  8 14 –.97375E+03 –.48038D+00 

  9 14 –.88323E+03  .85737D+00 

10   3 –.75339E+03 –.26008D+00 
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Table 6.21. Verification of design sensitivity of first principal stress 

with respect to design variable b1
a
 and pressure loading p

b
.

Element 

Number 

Gauss

Point 

2 (b)

Finite Diff. 

(b)

Direct Method 

(b)

Hybrid Method 

/ 2

(Direct) 

/ 2

(Hybrid) 

  1   1  .23395D+01  .23392D+01  .23392D+01   99.99   99.99 

  2   1  .20319D+01  .20316D+01  .20316D+01   99.98   99.98 

  3   1  .14299D+01  .14295D+01  .14295D+01   99.97   99.97 

  4   1  .81186D+00  .81152D+00  .81152D+00   99.96   99.96 

  7 14 –.19913D+01 –.19813D+01 –.19813D+01   99.50   99.50 

  8 14 –.28154D+01 –.28134D+01 –.28134D+01   99.93   99.93 

  9 14 –.20867D+01 –.21035D+01 –.21035D+01 100.80 100.80 

10   3 –.79824D+00 –.79417D+00 –.79417D+00   99.49   99.49 
a b1 = 115 and b1 = 0.575; b p = 10 

Table 6.20. Verification of design sensitivity of first principal stress w.r.t b8
a
.

Element 

No

Gauss

Point 

2 (b)

Finite Diff. 

(b)

Direct Method 

(b)

Hybrid Method 

/ 2

(Direct) 

/ 2

(Hybrid) 

  1   1  .59819D+01  .59872D+01  .59872D+01   99.91   99.91 

  2   1  .50765D+01  .50754D+01  .50754D+01 100.02 100.02 

  3   1  .46340D+01  .45902D+01  .45902D+01 100.96 100.96 

  4   1  .56897D+01  .56447D+01  .56447D+01 100.80 100.80 

  7 14 –.16881D+00 –.16548D+00 –.16548D+00 102.02 102.02 

  8 14  .48064D+01  .47834D+01  .47834D+01 100.48 100.48 

  9 14  .87771D+01  .87872D+01  .87872D+01   99.89   99.89 

10   3  .74884D+01  .75214D+01  .75214D+01   99.56   99.56 
a b8 = 130 and b1 = 2.6. 

Table 6.19. Verification of design sensitivity of first principal stress w.r.t. b1
a
.

Element 

Number 

Gauss

Point 

2 (b)

Finite Diff. 

(b)

Direct Method 

(b)

Hybrid Method 

/ 2

(Direct) 

/ 2

(Hybrid) 

  1   1  0.13090D+02  0.13076D+02  0.13076D+02 100.10 100.10 

  2   1  0.12198D+02  0.12167D+02  0.12167D+02 100.25 100.25 

  3   1  0.10751D+02  0.10685D+02  0.10685D+02 100.62 100.62 

  4   1  0.89328D+01  0.89087D+01  0.89087D+01 100.27 100.27 

  7 14  0.42968D+01  0.43454D+01  0.43454D+01  98.88   98.88 

  8 14  0.25103D+01  0.25379D+01  0.25378D+01  98.92   98.92 

  9 14 –0.10416D+01 –0.10601D+01 –0.10601D+01  98.25   98.25 

10   3  0.83281D+00  0.83027D+00  0.83027D+00 100.31 100.31 
a b1 = 115 and b1 = 2.3. 
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Table 6.23. Verification of design sensitivity of first principal stress 

with respect to design variable b1
a
 and Young's modulus E

b
.

Node 

Number 

Coord. 

Direction 

2 (b)

Finite Diff. 

(b)

Direct Method

(b)

Hybrid Method

/ 2

(Direct) 

/ 2

(Hybrid) 

  87 2 .82990D–05 .82801D–05 .82801D–05  99.77  99.77 

  88 2 .83416D–05 .83226D–05 .83226D–05  99.77  99.77 

  89 2 .84393D–05 .84197D–05 .84196D–05  99.77  99.77 

  90 2 .85935D–05 .85736D–05 .85736D–05  99.77  99.77 

300 2 .83275D–05 .83085D–05 .83085D–05  99.77  99.77 

301 2 .87985D–05 .87782D–05 .87782D–05  99.77  99.77 

302 2 .88751D–05 .88547D–05 .88547D–05  99.77  99.77 

303 2 .85244D–05 .85046D–05 .85046D–05  99.77  99.77 
a b1 = 115 and b1 = 0 575; b E =

Table 6.22. Verification of design sensitivity of first principal stress 

with respect to design variable b4
a
 and pressure loading b8

b
.

Element 

Number 

Gauss

Point 

2 (b)

Finite Diff. 

(b)

Direct Method 

(b)

Hybrid Method

/ 2

(Direct) 

/ 2

(Hybrid) 

  1   1 –.87234D–01 –.87230D–01 –.87230D–01   99.99   99.99 

  2   1 –.86512D–01 –.86507D–01 –.86507D–01   99.99   99.99 

  3   1 –.82128D–01 –.82127D–01 –.82127D–01 100.00 100.00 

  4   1 –.68998D–01 –.69006D–01 –.69006D–01 100.01 100.01 

  7 14  .25730D–02  .25716D–02  .25716D–02   99.95   99.95 

  8 14  .78610D–02  .78586D–02  .78586D–02   99.97   99.97 

  9 14  .16764D–01  .16764D–01  .16764D–01 100.00 100.00 

10   3 –.61876D–02 –.61912D–02 –.61912D–02 100.06 100.06 
a b4 = 103 and b4 = 0.103;  b b8 = 130 and b8 = 0.13. 



7
Configuration Design 
Sensitivity Analysis 

A configuration design is applicable to built-up structures with such structural design 

components as truss, beam, plate, and shell. With these components, the rotation of a 

component in the global coordinate does not change the integral domain, which in 

Chapter 6 is considered a shape design. However, the rotation does change the 

configuration of the built-up structure, thus yields a different structural response. In the 

built-up structure, the shape change of a component may cause a configuration change in 

other components. Thus, shape and configuration designs are closely related. In this 

chapter, the design sensitivity of a structural performance measure with respect to the 

configuration design is presented. Two configuration design situations might occur. In 

the first case, straight-line and flat-surface design components simply rotate without 

changing the component’s shape. In this case, the design perturbation is represented first 

by rotational angles, and then is approximated using the out-of-plane design velocity field 

from an assumption of small perturbation. In the second case, the design component 

might change its own configuration, such as in the curvature of a component, in addition 

to component’s rotation. In this case, the transformation between a local and a global 

coordinate system is identified as a configuration design. In contrast to the first case, the 

contribution from shape and the configuration designs are strongly coupled. 

 For the configuration design of built-up structures, changes in structural configuration 

result in shape and orientation changes to the design components. The first approach to 

utilize a mathematical programming technique for configuration design optimization was 

developed by Dorn et al. [111]. Dobbs and Felton [112] dealt with a more general case 

that included indeterminate structures and multiple loading conditions. Vanderplaats and 

Moses [113] developed a technique to obtain the minimum weight of a structure 

subjected to a prescribed set of constraints. They minimized the objective function with 

respect to geometry variables (coordinate design space) where the member design is 

updated to maintain optimality with respect to area variables (area design space). Imai 

and Schmit [114] developed a multiplier method to avoid severe nonlinearities that may 

occur during configuration design optimization. Recently, Saka and Attili [115] presented 

configuration optimization of space trusses. In the design problem, they considered 

displacement, stress, buckling, and minimum size constraints. 

 The configuration design of a structural component can be characterized by changes 

in the domain shape and in the component’s orientation. A variational approach is then 

used to incorporate both shape and orientation effects in the same energy equation. A 

similar approach to the shape design sensitivity analysis method in Chapter 6 is 

developed in this chapter to account for the effect of directional variation. Variations of 

energy bilinear and load linear forms, with respect to both shape and orientation design 

variables, are derived for each structural component. Using the adjoint variable and direct 

differentiation methods, configuration design sensitivity results are obtained in terms of 

design velocity fields. Configuration design sensitivity analyses of static and eigenvalue 

responses, as well as the structural-acoustic responses, are developed. 

 Configuration and shape design parameterizations are closely related. From the 

assumption of linear mapping and a small perturbation, shape and configuration 
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parameterizations are uncoupled in Section 7.1. Only straight-line and flat-surface 

components are considered. The material derivative approach, similar to that employed in 

Section 6.1, is developed for the configuration problem in Section 7.1. The direct 

differentiation and adjoint variable methods are developed in Section 7.2 for static and 

eigenvalue problems. In Section 7.3, the linear transformation relation and the regularity 

requirement of the configuration design velocity field are discussed. The developed 

configuration design capability is further applied to the design of the structural-acoustic 

coupled problem in Section 7.4. A new development of the configuration design 

sensitivity formulation for the curved beam and surface components is presented in 

Section 7.5. 

7.1 Material Derivatives for Configuration Design
Sensitivity Analysis 

A configuration design parameterization is represented by the rotation of a component. In 

the local coordinate system fixed in the components, however, every material point has 

the same relative position during the design change. It is convenient to introduce a 

rotational angle to represent the design change. For a line design component, three 

rotational angles are independent, whereas only two rotational angles are used for a 

surface design component because the in-plane rotation can be treated as a shape design. 

 Similar to the shape design sensitivity analysis in Chapter 6, the first step in 

configuration design sensitivity analysis is to develop a relationship between the variation 

in the component orientation and the resulting variation in the structural response. The 

displacement derivative with respect to the orientation will be obtained for the line and 

surface design components, followed by the performance derivative. For a solid design 

component, it is unnecessary to carry out the configuration design sensitivity analysis, 

since any rotational effect can be represented by the shape perturbation in the solid 

component. 

 In configuration design sensitivity analysis, the component orientation is treated as a 

design variable, and two assumptions are used throughout: (1) the design component 

rotates without any shape change, and (2) only a small design perturbation is considered. 

Under these assumptions, the design velocity field V(x) can be additively decomposed for 

shape and configuration parts, as 

( ) ( ) ( ).V x V x V x  (7.1) 

In the definition of the above equation, the subscribed V  is used to distinguish it from 

the shape design velocity V .

 If a straight-line or a flat-surface component is considered, V (x) is the projection of 

V(x) onto the component and V (x) is orthogonal to the component. Development of the 

configuration design sensitivity analysis in Sections 7.1 through 7.4 is limited to straight-

line and flat-surface components where the decomposition in (7.1) is valid. Figure 7.1 

illustrates the decomposition of V(x) for a flat-surface component. If a body-fixed, local 

coordinate system is established, as shown in Fig. 7.1, V (x) is normal to the surface and 

parallel to the x3-direction. 

 All formulations in Chapter 6 are preserved by interpreting V (x) as the shape design 

velocity. As with the shape design problem in Chapter 6, it can be supposed that only one 

parameter  defines the magnitude of transformation T . In the local coordinate system, 

the mapping T : x x (x), x  is then given by 
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Figure 7.1. Perturbation of shape and orientation in surface design component. 

( , )

( , ),

x T x x V

T
 (7.2) 

where V (x) = [V1(x), V2(x), V3(x)]
T
 is called the configuration design velocity field. By 

interpreting  as time, a configuration design velocity can be defined as a derivative of 

T (x, ), that is, 

( , )
( , ) .

d d

d d

x T x
V x  (7.3) 

From the additive decomposition of a design velocity field and mapping relation in (7.2), 

the material derivatives of shape and configuration designs can also be additively 

decomposed, making it is possible to treat them separately. Line and surface components 

are explained separately in the following subsections. 

7.1.1 Line Design Component 

Figure 7.2 demonstrates a line design component that represents a truss or a beam. In this 

case the shape design variable is the change of length l, such that the integration domain 

changes. The configuration design variable is the component rotation in the three axes, as 

shown in Fig. 7.2. The original body-fixed coordinate system x1-x2-x3 is first rotated to 

the  angle with respect to the x3-axis, resulting in a 1x - 2x - 3x  coordinate system. Then, 

the 1x - 2x - 3x  coordinate is rotated to the  angle with respect to the 2x -axis, yielding the 

1x - 2x - 3x  coordinate. Finally, rotation  with respect to the 1x -axis arrives at the 

perturbed geometry. In the case of small perturbation, the mapping T : x x (x), x ,

is given by 7.1.2 and the orientation design velocity is V (x) = [0, V2(x), V3(x)]
T
, where 

V1(x) in the axial direction is zero for a rotational transformation. 

x

V

x
1

Orientation change 

V
x x

1

Shape change 

V
x

x

V
V

x1

x2x3

C
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Figure 7.2. Orientation change of a line design component. 

 Suppose state response z (x ) = [z1 (x ), z2 (x ), z3 (x ), 1 (x ), 2 (x ), 3 (x )]
T
 is a 

solution to the boundary-value problem where zi  and i  are the displacements and 

rotations, respectively, in the perturbed domain . Then, mapping z (x ) is defined on 

, and depends on  in two ways. First, it is the solution to the boundary-value problem 

in . Second, it is evaluated at point x  that moves with . If the pointwise derivative of 

the displacement with respect to the orientation exists at x , then it is defined as 

0
0

( ( )) ( )
( ) ( ( )) lim .

d

d
V

z x V x z x
z x z x V x  (7.4) 

Note Vz  is the material derivative with respect to the configuration design, while Vz  is 

the material derivative with respect to the shape design. 

 To express the material derivative of z (x ) in terms of rotational angles, define a 

regular extension of z  to the initial local coordinate system x1-x2-x3 as 

( ) ( ).z x z x  (7.5) 

This regular extension can be viewed as defining z (x) by extending the value of z (x )

constantly along the direction of rotation. Then, for the line design component, we have 

the following relationship: 

1( ( )) ( , , ) ( ),z x x A z x  (7.6) 

where z (x (x)) denotes the evaluation of the perturbed solution z  at x  in the original 

local coordinate system x1-x2-x3, and z (x) is the regular extension of the perturbed 

solution z  at location x. Note that both z (x (x)) and z (x) are evaluated in the same 

coordinate system x1-x2-x3. In (7.6), A1( , , ) is the rotational transformation matrix, 

defined by 

x

V2(x)

V3(x)
V (x)

l x1

x2

0

x

3 3,x x

1x

2 2,x x

1 1,x x

x2

x3

3x
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1

cos sin 0 0 0 0

sin cos 0 0 0 0

0 0 1 sin 0 0
( , , )

0 0 0 cos sin 0

0 0 0 sin cos 0

0 0 0 0 0 1

cos 0 sin 0 0 0

0 1 0 sin 0 0

sin 0 cos 0 0 0

0 0 0 cos 0 sin

0 0 0 0 1 0

0 0 0 sin 0 cos

A

1 0 0 0 0 0

0 cos sin 0 0 0

0 sin cos 0 0 0
,

0 0 0 1 0 0

0 0 0 0 cos sin

0 0 0 0 sin cos

 (7.7) 

where , , and , as shown in Fig. 7.2, are the rotational angles with respect to the x3,

2x , and 1x  axes, respectively. For a small design perturbation (i.e., as  0), V2 and V3

become arc lengths, and the rotational angles can be approximated by 

2,1

3,1

2,3 3,2

,

V

V

V V

 (7.8) 

where Vi,j denotes the derivative of Vi with respect to xj. Thus, the rotational change is 

represented using V . A rigorous derivation of (7.8) will be presented in Section 7.3. 

 If z  has a regular extension [see (7.5)] to the neighborhood U  of the trajectory 

x , then the partial derivative ( )Vz x can be defined as 

0

( ) ( )
( ) lim .V

z x z x
z x  (7.9) 

Similar to the shape design sensitivity analysis, the differentiation order between the 

partial derivative and the spatial derivative is interchangeable because they are 

independent, that is, 

'

.V

V

z
z

x x
 (7.10) 

 The material derivative in (7.4) is expanded into a more convenient form by using 

(7.6) through (7.9), as 
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0

0 0

1 2,1 3,1 2,3 1 3,1 2,3

0

1 3,1 2,3 1 2,3

0

( ) ( )
( ) = lim

( ) ( ) ( ) ( )
lim + lim

[ ( , , ) (0, , )] ( ) 
= ( ) lim 

[ (0, , ) (0,0, )]
lim 

V

V

V V V V V

V V V

z x V z x
z x

z x z x z x V z x

A A z x
z x

A A z

1 2,3

0

1 2,1 1 3,1 1 2,3

0 0 0

( ) 

[ (0,0, ) ] ( ) 
lim 

( ) ( ,0,0) (0, ,0) (0,0, ) ( )

( ) ( ),

V

V

V

d d d
V V V

d d d

x

A I z x

z x A A A z x

z x V z x

 (7.11) 

where I is a 6 × 6 identity matrix, and  

2,1 3,1

2,1 2,3 3,1

3,1 2,3 2,1

2,1 3,1

2,1 2,3

3,1 2,3

0 0 0 0

0 0 0

0 0 0
.

0 0 0 0

0 0 0 0

0 0 0 0

V V

V V V

V V V

V V

V V

V V

V  (7.12) 

Equation (7.12) is derived using the assumption that the bending curvature and the 

rotation angle are related, which occurs in the finite element formulation of bending 

where the interpolation functions for lateral displacements include rotations as nodal 

parameters [116]. Note that V2,1, V3,1, and V2,3 in (7.12) are constants under the 

assumption that the line design component remains straight during the design variation. 

 In the definition of ( )Vz x  in (7.9) and of ( )Vz x  in (7.11), subscribed V  is used to 

denote the configuration design variation, in contrast to the partial and material 

derivatives of shape design variation in Chapter 6 that were denoted as ( )Vz x  and ( )Vz x .

If the shape and configuration designs are considered together, then the following linear 

superposition can be used: 

V Vz z z  (7.13) 

V Vz z z  (7.14) 

 Although both (6.8) and (7.11) contain partial derivatives, the convective terms are in 

different form. The former involves the gradient of the displacement, whereas the latter 

involves the derivative of the design velocity. Under the assumption that a line design 

component remains straight after the design change, V  becomes a constant matrix 

and ,1 ,1( ) ( )V Vz z . However, this was not true for the shape design sensitivity analysis, 

i.e., ,1 ,1( ) ( )V Vz z .
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Figure 7.3. Orientation change of a surface design component. 

7.1.2 Surface Design Component 

Figure 7.3 illustrates a flat-surface design component that rotates in a three-dimensional 

space. The local coordinate system is fixed on the component with the x3-axis normal to 

the surface. The original body-fixed coordinate system x1-x2-x3 is first rotated to the 

angle with respect to the x1-axis, resulting in a 1x - 2x - 3x  coordinate system. Then, the 1x -

2x - 3x  coordinate is rotated to the  angle with respect to the 2x -axis, yielding the 

perturbed geometry. In the case of a small perturbation, the mapping T : x x (x), x

is given by (7.2), and the orientation design velocity field is V (x) = [0, 0, V3]
T
 in the 

body-fixed coordinate system. The tangential components V1(x) and V2(x) of the design 

velocity are zero, because only the normal movement V3(x) changes the orientation of 

the surface component. 

 Suppose that state variable z (x ) = [z1 (x ), z2 (x ), z3 (x ), 1 (x ), 2 (x ), 3 (x )]
T
 is 

a solution to the boundary-value problem in the perturbed domain . The pointwise 

material derivative of the state variable with respect to the orientation design at x  is 

defined by (7.4). As with the line design component, a regular extension of z  to the 

initial, local coordinate system x1-x2-x3 is defined by (7.5). According to the definition of 

a regular extension, the perturbed solution z  at two different locations x and x  can be 

related by 

2( ) ( , ) ( ),z x A z x  (7.15) 

where both z (x (x)) and z (x) are evaluated in the same x1-x2-x3 local coordinate system, 

and A2( , ) is the rotational transformation matrix, defined by 

2

1 0 0 0 0 0 cos 0 sin 0 0 0

0 cos sin 0 0 0 0 1 0 0 0 0

0 sin cos 0 0 sin sin 0 cos 0 0 sin
( , ) ,

0 0 0 1 0 0 0 0 0 cos 0 sin

0 0 0 0 cos sin 0 0 0 0 1 0

0 0 0 0 sin cos 0 0 0 sin 0 cos

A
 (7.16) 

x

V (x)

x1
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x

x2

x3

1 1,x x

x33x 2 2,x x
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where  and , as shown in Fig. 7.3, are the rotational angles with respect to the x1-

and 2x -axes. Again, for a small design perturbation (i.e., as  0) of the surface design 

component, those rotational angles can be represented using a design velocity, as 

3,2

3,1.

V

V
 (7.17) 

 If z  has a regular extension to the neighborhood U  of the trajectory x , then the 

partial derivative ( )Vz x  can be defined, as in (7.9). Using (7.9), and (7.15) through (7.17), 

(7.4) becomes 

0

0 0

2 3,2 3,1 2 3,1 2 3,1

0

3,2 3,1

0

( ) ( )
( ) = lim

( ) ( ) ( ) ( )
lim + lim

[ ( , ) (0, ) + (0, ) ] ( ) 
= ( ) + lim 

( ) + ( ,0) (0, )

V

V

V

V V V V

d d
V V

d d

z x V z x
z x

z x z x z x V z x

A A A I z x
z x

z x A A
0

( )

( ) ( ),V

z x

z x V z x

 (7.18) 

where, for the surface design component, V  is given as 

3,1

3,2

3,1 3,2 3,1 3,2

3,1

3,2

3,1 3,2

0 0 0 0 0

0 0 0 0 0

0 0 0
.

0 0 0 0 0

0 0 0 0 0

0 0 0 0

V

V

V V V V

V

V

V V

V  (7.19) 

 Note that both (7.11) and (7.18) have the same form, with different V  given by (7.12) 

and (7.19), respectively. For both line and surface design components, V  involves 

derivatives of the configuration design velocity with respect to the local coordinates on 

the physical domain. 

7.1.3 Material Derivative of a General Functional 

In Chapter 6, both boundary and domain methods are used to derive the design sensitivity 

expression. Although the former has an advantage in providing physical insight of the 

design sensitivity, the latter is the preferred method for numerical calculations. Since 

analytical insight of configuration design sensitivity cannot be done readily, only the 

domain method is used in the following derivations.  

 If J  is the Jacobian matrix of the mapping T (x, ), then it is defined as 

( ),
T V

J I I V x
x x

 (7.20) 

where I is the identify matrix and V (x) is the Jacobian matrix of V (x). By using the 

orientation design velocity defined in (7.3), it can be shown that the determinant of the 
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Jacobian matrix is independent of the orientation change, i.e.,
0

0d
d

J . Physically, 

this is obvious, since the structural domain remains fixed during the change in 

orientation.

 To derive a material derivative formula, consider a functional defined in domain ,

as

( ) .f dx  (7.21) 

The material derivative of  with respect to the direction change is then defined as 

0

( ) .
d

f d
d

V x  (7.22) 

Using the relation in (7.20), the integration domain  can be transformed into . With 

the regular extension defined for the function f  as f (x ) = f (x), the above equation can be 

rewritten as 

0 0

( ) ( ) ( ) .
d d

f d f d f d
d d

V Vx J x x  (7.23) 

It is interesting to note that only the partial derivative of the integrand appears in the 

above equation, which is different from the material derivative of the same functional in 

(6.38).

7.2 Configuration Design Sensitivity Analysis 

In this section, the configuration design sensitivity of both the static and eigenvalue 

responses is formulated using their variational equations. Both the direct differentiation 

and adjoint variable methods are presented for configuration design sensitivity analysis of 

static response. No adjoint response is required in eigenvalue design sensitivity analysis. 

7.2.1 Variation of the Static Response 

The structural variational equation of the boundary-value problem can be written as 

( , ) ( ), ,a Zz z z z  (7.24) 

where a (•,•) is the energy bilinear form, (•) is the load linear form, and Z is the space 

of kinematically admissible displacements. Before carrying out configuration design 

sensitivity analysis, the objective is to obtain a relationship between the variation in the 

configuration design and the resulting variation in the state equation. Since domain ,

state response z, and virtual displacement z  are all dependent on the structural 

configuration, the variational equation at the perturbed design may be written as 

( , ) ( , ) ( ), ,Ta c d d Zz z z z z f z z  (7.25) 

where c(•,•) is the bilinear function defined by the integrand of a (•,•), and f is the vector 

of externally applied loads. Without mathematical proof, let us assume that the energy 

bilinear and load linear forms are differentiable with respect to the configuration design. 

Using (6.38) and (7.23) and noting that the order of partial derivatives with respect to 
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and x can be interchanged, the first variation of both sides of the above equation can be 

written as 

[ ( , )] [ ( , )] [ ( , )]

( , ) ( , ) ( , ) ( , )

a a a

a a a a

V V

V V

z z z z z z

z z z z z z z z
 (7.26) 

and

[ ( )] [ ( )] [ ( )]

( ) ( ) ( ).

V V

V V

z z z

z z z
 (7.27) 

Note that both the shape variation and the configuration change contribute to the first 

variation of the energy bilinear and load linear forms. In (7.26) and (7.27), a prime 

denotes the first variation of the functional and  is the sum of the first variations due to 

shape variation and configuration change, as in (7.14). Similarly, 

.V Vz z z  (7.28) 

The contribution of z  will not be considered in the following derivations due to the same 

reason as discussed in (6.63). 

 Using (6.8), (6.38), (7.11), and (7.23), (7.26) and (7.27) become 

[ ( , )] ( , ) ( , ) [ ( , ) ]

[ ( , ) ( , )]

[ ( , ) ( , )] [ ( , ) ( , )]

( , ) ( , ) [ ( , ) ]

a c c div c d

c c d

c c d c c d

c c div c d

V V

V V

z z z z z z z z V

z z z z

z z z z z V z V z z

z zV zV z z z V

 (7.29) 

and

[ ( )] [( ) ]

[ ]

( ) [( ) ]

[ ( ) ] .

T T T

T T

T T T T

T T

div d

d

d div d

d

V V

V V

V

V

z z f z f z f V

z f z f

z f z f zV f z f V

z f V z f

 (7.30) 

The differentials ( , ), ( , ), ( ), and ( )a aV V V Vz z z z z z  in (7.26) and (7.27) represent the 

explicit dependence of the energy bilinear and load linear forms on the shape variation 

and the orientation change, respectively. From (7.26), (7.27), (7.29), and (7.30), these 

variations can be obtained as 

( , ) ( , ) ( , ) [ ( , ) ]a c c div c dV z z z zV zV z z z V  (7.31) 

( , ) [ ( , ) ( , )]a c c dV z z z V z V z z  (7.32) 

( ) ( ) [( ) ]T T Tdiv dV Vz z f zV f z f V  (7.33) 



 7.2 Configuration Design Sensitivity Analysis 357

( ) [ ( ) ] .T T dV Vz z f V z f  (7.34) 

 Using the fact that Zz  and ( , ) ( )a z z z , from (7.26) and (7.27) the first variation 

of (7.25) becomes 

( , ) ( ) ( ) ( , ) ( , ), .a a a ZV V V Vz z z z z z z z z  (7.35) 

This is the design sensitivity equation for shape and configuration designs. The right side 

of (7.35) can be readily calculated using the state response z and the design velocity fields 

V  and V . Thus, (7.35) is similar to variational (7.24) but with a different right side (the 

fictitious load). As is clear from (7.35), the contributions from shape and configuration 

designs appear separately, and they are linear with respect to the velocity fields V  and 

V .

 Consider a general performance measure in an integral form as 

( , ) ,g dz z  (7.36) 

where function g is continuously differentiable with respect to its arguments. The 

functional  includes the first-order derivative of the state response. The situation in 

which this functional includes a second-order derivative will be addressed in the section 

on the beam design component. Taking the first variation of  and using (6.38) and 

(7.23),

, ,[ ( ) : ( ) ( )] .g g div g dV V z V V z V Vz z z z V  (7.37) 

Using (6.8) and (7.11) and the fact that V Vz z z , (7.37) becomes 

, ,

, ,

,

[ : ]

[ ( ) : ( )]

[ : ( ) ] .

g g d

g g d

g gdiv d

z z

z z

z

z z

V z V z

z V V

 (7.38) 

To obtain  explicitly in terms of the design velocity field, the first integral that includes 

 and  must be written explicitly in terms of the design velocity field. 

Adjoint Variable Method 

For the adjoint variable method, an adjoint equation is introduced by replacing  in (7.38) 

with a virtual displacement  and equating the result to the energy bilinear form, as 

, ,( , ) [ : ] , .a g g d Zz z  (7.39) 

Since the right side of (7.39) is a bounded linear functional of , the adjoint equation has 

a unique solution . Also, since Z, (7.39) can be evaluated at = to obtain 

, ,( , ) [ : ] .a g g dz zz z z  (7.40) 

Since Z, (7.35) can be evaluated at z = , to obtain 

( , ) ( ) ( ) ( , ) ( , ).a a aV V V Vz z z  (7.41) 

From (7.38), (7.40), and (7.41), and by using the symmetry of the bilinear form a (•,•), 
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, ,

,

( ) ( ) ( , ) ( , )

[ ( ) : ( )]

[ : ( ) ] .

a a

g g d

g gdiv d

V V V V

z z

z

z z

V z V z

z V V

 (7.42) 

Once the design velocity fields V  and V  are defined, with the state response z and 

adjoint response  obtained from (7.24) and (7.39), the above configuration design 

sensitivity expression can be evaluated. 

Direct Differentiation Method 

With the direct differentiation method, (7.35) is the variational equation for the first 

variation . Once the state response z is obtained from (7.24), the right side of (7.35) can 

be evaluated and (7.35) can be solved for . Using the result  and the shape and 

orientation design velocity fields, the configuration design sensitivity expression in (7.38) 

can be evaluated. 

 Note that computation of the right side of (7.35) depends on the design velocity 

fields. Therefore, different types of design parameterization will yield different sets of 

fictitious loads that are quite different from the adjoint loads, which are associated with 

performance measures. Further comparisons between the adjoint variable method and the 

direct differentiation method can be found in References [117] and [118]. 

7.2.2 Eigenvalue Problems 

The variational equation of the eigenvalue problem for vibration and buckling of a 

structural component can be written as 

( , ) ( , ), ,a d Zy y y y y  (7.43) 

where  is the buckling load for the buckling problem or =
2
, with  being the natural 

frequency of the vibration problem. In (7.43), Z is the space of kinematically admissible 

displacements in . Since (7.43) is homogeneous in y, a normalizing condition must be 

used to uniquely define the eigenfunction. The normalizing condition is 

( , ) 1.d y y  (7.44) 

Similar to the development of the static problem, the variational equation of the 

eigenvalue problem on a perturbed domain is 

( , ) ( , )

( , ) ( , ), ,

a c d

e d d Z

y y y y

y y y y y
 (7.45) 

with the normalizing condition 

( , ) 1,d y y  (7.46) 

where e(•,•) is a bilinear function defined by the integrand of d (•,•). 

 The energy bilinear form on the left side of (7.45) is the same as the bilinear form 

shown in (7.25) for the static problem. The bilinear form d (•,•) on the right side of 

(7.45) represents the mass effect for the vibration problem and the geometric effect for 

the buckling problem. This form is usually more regular in its dependence on design 

variables than the energy bilinear form a (•,•). 
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 Presuming differentiability of the eigenvalue  and the eigenfunction y with respect to 

the configuration design variable, the first variation of (7.45) is 

[ ( , )] ( , ) ( , ) ( , ) ( , )

[ ] ( , ) [ ( , ) ( , ) ( , ) ( , )]

( , ) [ ( , )] , ,

a a a a a

d d d d d

d d Z

V V

V V V V

y y y y y y y y y y

y y y y y y y y y y

y y y y y

 (7.47) 

where, using (6.8), (6.38), (7.11), and (7.23), the variations of the bilinear forms in (7.47) 

can be written as 

[ ( , )] ( , ) ( , ) [ ( , ) ]

[ ( , ) ( , )]

( , ) ( , ) [ ( , ) ]

[ ( , ) ( , )]

a c c div c d

c c d

c c div c d

c c d

V V

V V

y y y y y y y y V

y y y y

y yV y y y yV y y V

V y y y V y

 (7.48) 

and

[ ( , )] ( , ) ( , ) [ ( , ) ]

[ ( , ) ( , )]

( , ) ( , ) [ ( , ) ]

[ ( , ) ( , )] .

d e e div e d

e e d

e e div e d

e e d

V V

V V

y y y y y y y y V

y y y y

y yV y y y yV y y V

V y y y V y

 (7.49) 

By comparing (7.47) with (7.48) and (7.49) and after using the relation of 

( , ) ( , )a dy y y y , the explicitly dependent terms in (7.47) can be derived as 

( , ) ( , ) ( , ) [ ( , ) ]a c c div c dV y y yV y y yV y y V  (7.50) 

( , ) [ ( , ) ( , )]a c c dV y y V y y y V y  (7.51) 

( , ) ( , ) ( , ) [ ( , ) ]d e e div e dV y y yV y y yV y y V  (7.52) 

( , ) [ ( , ) ( , )] .d e e dV y y V y y y V y  (7.53) 

Both ( , )aV y y  and ( , )dV y y  are due to the shape variation, and ( , )aV y y  and ( , )dV y y  are 

due to the orientation change in the structural system. Note that V Vy y y  and 

V Vy y y  have been used to obtain (7.47) through (7.49). 

 In order to obtain a more valuable result for the eigenvalue sensitivity, evaluate (7.47) 

at y = y, and use the fact that a (•,•) and d (•,•) are symmetric, to obtain 

( , ) [ ( , ) ( , )] [ ( , ) ( , )]

[ ( , ) ( , )].

d a a d d

a d

V V V Vy y y y y y y y y y

y y y y
 (7.54) 

Since y Z [see the paragraph following (6.232)], the term in the last brackets on the 
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right side of (7.54) is zero. Furthermore, due to the normalizing condition in (7.44), a 

simplified equation may be used, namely, 

[ ( , ) ( , )] [ ( , ) ( , )]

2 ( , ) 2 ( , ) [ ( , ) ] [ ( , ) ]

2 [ ( , ) ( , )] .

a a d d

c e div c div e d

c e d

V V V Vy y y y y y y y

y yV y yV y y V y y V

y V y y V y

 (7.55) 

 Note that the eigenvalue sensitivity formulation in this section is valid for a simple 

eigenvalue. For repeated eigenvalues, the configuration design sensitivity analysis can be 

derived in a similar way to the shape design sensitivity analysis discussed in Sections 5.2 

and 6.3 in Chapters 5 and 6. respectively. 

7.2.3 Analytical Examples 

In this section, the general sensitivity expressions presented in Sections 7.2.1 and 7.2.2 

are applied to truss, beam, plane elastic solid, and plate design components. For built-up 

structures, the configuration design sensitivity results are obtained by summing the 

design sensitivities contributed from each individual design component. 

Truss Design Component 

A truss design component is the simplest example among structural components. Figure 

7.4 shows a simple, two-dimensional truss component whose configuration changes due 

to the design velocity field V(x) = [V1(x), V2(x)]
T
. Since the design velocity is expressed 

in the component-fixed local coordinate system, V1(x) represents the shape design 

velocity and V2(x) denotes the configuration design velocity. In this simplified example, 

the rotational angles in Fig. 7.2. are such that  =  = 0. The design velocity V(x) is 

constrained such that the line component remains straight during design perturbation. 

This constraint provides a design velocity field whose first-order derivative is constant 

while the second-order derivative vanishes. 

 The structural bilinear and load linear forms in (3.6) and (3.7) that are used for the 

truss component are rewritten here as 

1,1 1,1
0

( , )
l

a EAz z dxz z  (7.56) 

1 1
0

( ) ,
l

z f dxz  (7.57) 

Figure 7.4. Configuration change in the truss component. 

V(x)
x1

x2

E, A(x)

l

x1
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where E is Young’s modulus, A(x) is the cross-sectional area, and f1 is the distributed 

axial force along the x1-axis. 

 In this special case, the convective term of the configuration change in (7.11) 

becomes V z = –V2,1z2. From the assumption that the line component remains straight, 

the second-order derivative of the design velocity field vanishes; i.e., V2,11 = 0. By 

applying the formulas in (7.31) through (7.34) to the truss component, the explicitly 

dependent terms are derived as 

1,1 1,1 1,1
0

( , )
l

a EAz z V dxV z z  (7.58) 

2,1 1,1 1,1 2,1 2,1
0

( , ) ( )
l

a EA z z z z V dxV z z  (7.59) 

1,1 1 1 1 1 1,1
0

( ) ( )
l

f z V f z V dxV z  (7.60) 

1 2 2,1
0

( ) .
l

f z V dxV z  (7.61) 

In the derivation of (7.60) and (7.61), it is assumed that 1 0f , which means that the axial 

force does not vary during the configuration change. 

 It is interesting to note that the truss component only has the axial displacement z1,

and that the transverse displacement z2 = 0. Thus, the explicitly dependent terms, (7.59) 

and (7.61), on the configuration design vanish. This is expected because the truss 

component does not have any rotational degrees-of-freedom. If a built-up structure is 

composed of beam and truss components, however, then the transverse displacement due 

to the beam component causes nonzero values to the explicitly dependent terms in (7.59) 

and (7.61). 

 Let us calculate the sensitivity of the displacement functional at isolated point x̂ ,

which can be represented using the Dirac delta measure as 

1 1
0

ˆ( ) .
l

x x z dx  (7.62) 

The variation of the functional 1 can be simply obtained by 

1 1
0

ˆ( ) .
l

x x z dx  (7.63) 

With the adjoint variable method, the integral in (7.63) is used to define the adjoint load 

when 1 is substituted into 1 , to obtain the adjoint equation as 

1
0

ˆ( , ) ( ) , .
l

a x x dx Z  (7.64) 

This equation is equivalent to the truss component when a unit force is applied to point x̂ .

 After solving the state response and the adjoint response, the sensitivity of the 

displacement functional in (7.62) can be calculated using the formula in (7.42), as 

1

1,1 1 1 1 1 1,1 1 2 2,1
0

1,1 1,1 1,1 2,1 1,1 1,1 2,1 2,1
0

( ) ( ) ( , ) ( , )

( )

[( ) ( ) ] .

l

l

a a

f V f V f V dx

EA z V z z V dx

V V V Vz z

 (7.65) 
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Note that no explicitly dependent term exists in above design sensitivity expression for 

the displacement functional. 

 Next, consider a stress functional defined in a small subdomain (xa,xb)  (0,l). The 

stress functional within a subdomain can be defined using a characteristic function mp in 

(5.31) whose integral is one in the interval of (xa,xb) and zero outside (xa,xb), as 

2 1,1
0

.
l

pEAz m dx  (7.66) 

The variation of (7.66) with respect to shape and configuration designs becomes 

2 1,1 2,1 2,1 1,1 1,1
0 0

( ) ,
l l

EAz dx EA z V z V dx  (7.67) 

where the first integral is used to defined the adjoint equation as 

1,1
0

( , ) , .
l

a EA dx Z  (7.68) 

After calculating the state response z and the adjoint response , the sensitivity of the 

stress functional can be obtained as 

2

2,1 2,1 1,1 1,1
0

1,1 1 1 1 1 1,1 1 2 2,1
0

1,1 1,1 1,1 1,1 2,1 1,1 1,1 2,1 2,1 2,1
0

( ) ( ) ( , ) ( , )

( )

( )

[( ) ( ) ] .

l

l

l

a a

EA z V z V dx

f V f V f V dx

EA z z V z z z V dx

V V V Vz z

 (7.69) 

The sensitivity expressions of (7.65) and (7.69) can be calculated from the state response 

z, the adjoint response , and the design velocity V.

 The eigenvalue problem of the truss component uses the same energy bilinear form 

a (•,•) in (7.56) with the argument as eigenfunction y. For the mass effect, the bilinear 

form d (•,•) and its variation are defined as 

1 1
0

( , )
l

d Ay y dxy y  (7.70) 

1 1 1,1
0

( , )
l

d Ay y V dxV y y  (7.71) 

1 2 2 1 2,1
0

( , ) ( ) ,
l

d y y y y V dxV y y  (7.72) 

where  is the density and A is the cross-sectional area. Again, the effect of the 

configuration design appears when a built-up structure is taken into account. 

 The sensitivity of the eigenvalue in (7.55) can now be evaluated by substituting (7.58), 

(7.59), (7.71), and (7.72) into (7.55), as 

2 2

1,1 1,1 1,1 2,1 2,1 1 1,1 1 2 2,1
0 0

[ ( , ) ( , )] [ ( , ) ( , )]

[ 2 ] [ 2 ] .
l l

a a d d

EA y V y y V dx A y V y y V dx

V V V Vy y y y y y y y

 (7.73) 

The sensitivity expressions of (7.73) can be calculated from the eigenfunction y and the 

design velocity V. The adjoint response is not required in the calculation of the 
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eigenvalue sensitivity. 

Beam Design Component 

Compared with the truss, the beam component requires more complicated mathematical 

calculations because the second-order derivatives are involved in the variational equation. 

Consider the two-dimensional beam design component shown in Fig. 7.5. For the static 

problem, the energy bilinear and load linear forms of the beam design component are 

2,11 2,11
0

( , )
l

a EIz z dxz z  (7.74) 

2 2
0

( ) ,
l

z f dxz  (7.75) 

where E is Young’s modulus, I(x) is the moment of inertia, f2(x) is the distributed 

transverse load, and z2 is the transverse displacement. 

 Unlike the truss component, the unknown for the beam problem is the transverse 

displacement z2. Thus, the convective term of the configuration change in (7.11) becomes 

V z = V2,1z1 for a two-dimensional beam design component. From the assumption that 

the line component remains straight, the second-order derivative of the design velocity 

field vanishes; i.e., V2,11 = 0. However, the shape design velocity does not have to change 

linearly, i.e., V1,11  0. By applying the formulas in (7.31) through (7.34) to the beam 

design component, the explicitly dependent terms are derived as 

2,11 2,11 1,1 2,1 2,11 2,11 2,1 1,11
0

( , ) [3 ( ) ]
l

a EI z z V z z z z V dxV z z  (7.76) 

1,11 2,11 2,11 1,11 2,1
0

( , ) ( )
l

a EI z z z z V dxV z z  (7.77) 

2,1 2 1 2 2 1,1
0

( ) ( )
l

f z V f z V dxV z  (7.78) 

2 1 2,1
0

( ) .
l

f z V dxV z  (7.79) 

Figure 7.5. Beam design component. 
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In (7.78) and (7.79), it is assumed that 2 0f , which means that the transverse force does 

not vary during the configuration change. Note that the variations in (7.76) through (7.79) 

linearly depend on the design velocity fields, and are written explicitly in terms of shape 

and configuration design velocity fields. The axial and transverse displacements are 

coupled in the explicit term ( , )aV z z .

 The configuration design sensitivity of displacement, stress, and eigenvalue 

performance measures is now considered for the beam design component. First, a 

transverse displacement functional can be given in an integral form as 

1 2 2
0

ˆ ˆ( ) ( ) ,
l

z x x x z dx  (7.80) 

where ˆ( )x x  is the Dirac delta measure and x̂  is the location at which displacement z2

is measured. Taking the first variation of (7.80), 

1 2 2
0

ˆ ˆ( ) ( ) .
l

z x x x z dx  (7.81) 

For the displacement performance measure, the adjoint equation from (7.39) is 

2
0

ˆ( , ) ( ) , .
l

a x x dx Z  (7.82) 

The adjoint load on the right side of (7.82) can be interpreted simply as a unit load 

applied at point x̂  in the x2-direction. After calculating the adjoint response, the 

sensitivity expression of the displacement functional becomes 

1

2,1 2 1 2 2 1,1 2 1 2,1
0

2,11 2,11 1,1 2,1 2,11 2,11 2,1 1,11 1,11 2,11 2,11 1,11 2,1
0

( ) ( ) ( , ) ( , )

[ ]

[3 ( ) ( ) ] ,

l

l

a a

f V f V f V dx

EI z V z z V z z V dx

V V V Vz z

 (7.83) 

where all terms on the right side are given explicitly in (7.76) through (7.79), with  as 

the solution to (7.82). 

 Next, consider a stress performance measure defined over a small interval (xa,xb),

namely, 

2 2,11
0

,
l

pEhz m dx  (7.84) 

where h is the half-depth of the beam design component in the x2-direction, and mp is the 

characteristic function that is positive on (xa,xb) with a value of 1/(xb – xa) and zero 

outside (xa,xb). Taking the first variation of (7.84), 

2 2,11 2,11 1,1 2,1 1,11 1,11 2,1
0 0

[2 ] .
l l

p pEhz m dx Eh z V z V z V m dx  (7.85) 

The adjoint equation of the stress performance measure is defined from (7.39), as 

2,11
0

( , ) , .
l

pa Eh m dx Z  (7.86) 

After calculating the adjoint response , the sensitivity of the stress functional can be 

evaluated from (7.42), as 
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2

2,11 1,1 2,1 1,11 1,11 2,1
0

( ) ( ) ( , ) ( , )

[2 ] .
l

p

a a

Eh z V z V z V m dx

V V V Vz z

 (7.87) 

Again, ( , ), ( , ), ( ), and ( )a aV V V Vz z are given explicitly in (7.76) through (7.79) 

and  is the solution to (7.86). For other kinds of static performance measures, such as 

compliance or displacement performance at a fixed point, the general design sensitivity 

expression formulated in Section 7.2.1 can be used. 

 For the eigenvalue performance measure, the energy bilinear form and the bilinear 

form due to the mass effect are 

2,11 2,11
0

( , )
l

a EIy y dxy y  (7.88) 

2 2
0

( , ) ,
l

d Ay y dxy y  (7.89) 

where  is the material density and I is the moment of inertia. If the eigenvalue problem 

for buckling of the beam is considered, the bilinear form d (•,•) should be used to 

represent the geometric stiffness. 

 The energy bilinear form in (7.88) is the same as (7.74), except that eigenfunction y is 

used in place of the displacement z. Therefore, the first variation of the energy bilinear 

form in (7.88) can be obtained by replacing z with y in (7.76) and (7.77). Using (7.89), 

the first variation of the bilinear form d (•,•) in (7.52) and (7.53) becomes 

2 2 1,1
0

( , )
l

d Ay y V dxV y y  (7.90) 

1 2 1 2 2,1
0

( , ) ( ) .
l

d A y y y y V dxV y y  (7.91) 

The eigenvalue design sensitivity expression given in (7.55) is 

3 ( , ) ( , ) [ ( , ) ( , )],a a d dV V V Vy y y y y y y y  (7.92) 

where all terms on the right side of the above equation are given explicitly in (7.76), 

(7.77), (7.90), and (7.91). 

Plane Elastic Solid 

Since the deformation of the two-dimensional solid component is limited to the plane, the 

configuration design does not affect the state response of the solid component. However, 

when the two-dimensional solid is used for the membrane effect in the shell structure, the 

coupled effect of the configuration design appears in the solid component. Consider a 

two-dimensional, elastic solid component shown in Fig. 7.6. 

 The energy bilinear and load linear forms for the plane elastic solid component have 

been developed in (3.75) and (3.59), and are rewritten here, 

( , ) ( ) ( )Ta h dz z z z  (7.93) 

( ) ,T dz z f  (7.94) 
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Figure 7.6. Two-dimensional elastic solid component. 

where h is the thickness of the solid, f = [f1, f2]
T
 is the body force, z = [z1, z2] is the state 

response, and the stress and strain vectors are defined by 

1,1 2,2 1,2 2,1( ) [ , , ]Tz z z zz  (7.95) 

11 22 12( ) [ , , ] .T
z  (7.96) 

In the two-dimensional elastic solid, the constitutive relation between stress and strain is 

provided by (3.72). Only a body force is considered in (7.94). 

 In the surface component in Section 7.1.2, the design velocity field V = [V1, V2, V3]
T

is split into the shape design velocity field V  = [V1, V2, 0]
T
 and the configuration design 

velocity field V  = [0, 0, V3]
T
. The configuration design velocity V  is constrained such 

that the component remains flat during design perturbation. This constraint means that 

the first-order derivative of V  is constant and its second-order derivative vanishes, i.e., 

V3,11 = V3,12 = V3,22 = 0. Using V , the shape variations of a (•,•) and (•) have been 

developed in Section 6.2. The configuration variations of these forms can be derived 

from their general expressions in (7.32) and (7.34). In the case of a solid component, the 

convective part of the configuration design in (7.42) becomes 

3,1 3

3,2 3

.
V z

V z
V z  (7.97) 

As mentioned before, the convective term of the configuration design in (7.97) includes 

the transverse displacement z3, which does not appear in the state response z = [z1, z2]
T
.

Thus, the configuration design does not affect the state response unless the solid 

component is coupled with the plate component. 

 The energy bilinear and load linear forms in (7.93) and (7.94) are differentiated with 

respect to shape and configuration designs, to obtain the following explicitly dependent 

terms: 

( , ) ( ) ( ) ( ) ( ) [ ( ) ( ) ]T T Ta h div dV z z z zV zV z z z V  (7.98) 

( , ) ( ) ( ) ( ) ( )T Ta h dV z z z V z V z z  (7.99) 

x1

x2

x3
V

V
f1

f2
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( ) [ ]T T div dV z z fV z f V  (7.100) 

( ) ( ) ,T dV z V z f  (7.101) 

where the applied body force is assumed to be independent of the design, such that f  = 0. 

The explicitly dependent terms in (7.98) through (7.101) are linearly dependent on the 

design velocity field V(x).

Plate Design Component 

The configuration design of the plate component is the same as the two-dimensional solid 

component. However, since the unknown in the plate-bending problem is the transverse 

displacement z3, the convective term of the configuration design is different from that of 

the two-dimensional solid component. Consider the plate design component in Fig. 7.7. 

The energy bilinear and load linear forms of the plate-bending problem have been 

provided in (3.41) and (3.42) as 

( , ) ( ) ( )T ba dz z z C z  (7.102) 

3 3( ) ,z f dz  (7.103) 

where C
b
 is the bending stiffness matrix provide in (3.40), f3 is the distributed load on the 

surface, and (z) is the curvature vector, defined by 

3,11 3,22 3,12( ) [ , , 2 ] .Tz z zz  (7.104) 

As shown in the above equations, the unknown in the plate bending problem is the 

transverse displacement z3. However, the effect of the configuration design is coupled 

with the membrane displacement z1 and z2.

 Let the plate component in Fig. 7.7 be perturbed in the direction of design velocity 

V(x) = [V1, V2, V3]
T
 in the body-fixed local coordinate system. The in-plane design 

velocity V (x) = [V1, V2, 0]
T
 is the shape design velocity, and the out-of-plane design 

velocity V (x) = [0, 0, V3]
T
 is the configuration design velocity. Using (7.18) and (7.19), 

the convective term of the configuration design becomes a scalar quantity, defined as 

Figure 7.7. Plate design component. 

x2
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x3
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3,1 1 3,2 2[ ].V z V zV z  (7.105) 

 Using the energy bilinear and load linear forms in (7.102) and (7.103), and the 

formulas in (7.31) through (7.34), the variations of these forms due to shape and 

configuration designs can be calculated by

( , ) ( ) ( ) ( ) ( ) [ ( ) ( ) ]T b T b T ba div dV z z zV C z z C zV z C z V (7.106)

( , ) ( ) ( ) ( ) ( )T b T ba dV z z V z C z z C V z  (7.107) 

3 3 3 3( ) ( )Tz f z f div dV z V V  (7.108) 

3( ) ( ) .f dV z V z  (7.109) 

Again, variations in (7.106) through (7.109) depend linearly on the shape and the 

orientation design velocity fields. 

 Consider the displacement performance measure of the plate component at a point x̂ ,

1 3 3
ˆ ˆ( ) ( ) .z z dx x x  (7.110) 

As with the beam design component, the adjoint equation for the displacement 

performance measure is 

3
ˆ( , ) ( ) , ,a d Zx x  (7.111) 

and the same form of the displacement sensitivity can be obtained as 

1 ( ) ( ) ( , ) ( , ),a aV V V Vz z  (7.112) 

where all terms on the right side are given explicitly in (7.106) through (7.109) and  is 

the solution to (7.111). 

 Next, consider a locally averaged stress performance measure, such as the principal 

stresses or von Mises stress, over a small test region on p,

2 ( ( )) ,
p

pg m dz  (7.113) 

where g is assumed to be continuously differentiable with respect to its argument, 

denotes the stress vector, and the characteristic function mp is defined as 

1
,

0 , .

p

p

p

p

dm

x

x

 (7.114) 

Using (6.38) and (7.23) and the fact that mp is independent of the orientation change, the 

first variation of (7.113) is 

2 ,

,

( )

[ ( ) ( )] .

p

p p

p

T

p p

g m d

g m d g m d

z

zV V z V
 (7.115) 
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The adjoint equation of the performance measure in (7.113) becomes 

,( , ) ( ) , .pa g m d Z  (7.116) 

The configuration design sensitivity of the stress performance measure is 

2

,

( ) ( ) ( , ) ( , )

[ ( ) ( )] ,
p p

T

p p

a a

g m d g m d

V V V Vz z

zV V z V
 (7.117) 

where ( , ), ( , ), ( ), and ( )a aV V V Vz z  are given explicitly in (7.106) through (7.109) 

and  is the solution to (7.116). 

 For the eigenvalue performance measure, the energy bilinear form and the bilinear 

form due to the mass effect are 

( , ) ( ) ( )T ba dy y y C y  (7.118) 

3 3( , ) .d hy y dy y  (7.119) 

Again, the first variation of the energy bilinear form in (7.118) can be obtained by 

replacing z with y in (7.106) and (7.107). Using (7.119), the first variation of bilinear 

form ( , )d y y  in (7.52) and (7.53) becomes 

3 3( , )d hy y div dV y y V  (7.120) 

3,1 1 3 1 3 3,2 2 3 2 3( , ) [ ( ) ( )] .d h V y y y y V y y y y dV y y  (7.121) 

The eigenvalue design sensitivity expression is given in (7.55) as 

3 ( , ) ( , ) [ ( , ) ( , )],a a d dV V V Vy y y y y y y y  (7.122) 

where all terms on the right side are given explicitly in (7.106), (7.107), (7.120), and 

(7.121).

7.3 Numerical Methods in Configuration Design Sensitivity Analysis 

Two questions may arise for configuration design sensitivity analysis in the previous 

section. First, how can a linear approximation be found between perturbations of the 

design variables and design velocity fields, in order to obtain first-order sensitivity 

information? As shown in the previous section, configuration design sensitivity 

expressions linearly depend on the derivatives of shape and orientation design velocity 

fields. A linear relationship between perturbations of design variables and design velocity 

fields is derived in Section 7.3.1 by treating grid point locations of line and surface 

design components as design variables. The second question is commonly asked in shape 

design sensitivity analysis: what kind of design velocity fields should be used in the 

numerical method of design sensitivity analysis for build-up structures? A simple three-

bar structure is presented in Section 7.3.2 to provide guidelines for selecting regular 

velocity fields for configuration design sensitivity analysis. 
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7.3.1 Linear Approximation between Design Parameterization
and Design Velocity Field 

Line Design Component 

Consider a line design component cd in the three-dimensional space, as shown in Fig. 

7.8, where Xi, i = 1, 2, 3 is the global coordinate system and xi, i = 1, 2, 3 is the local 

coordinate system. Both Xi and xi are fixed during design perturbation. Initially, point c

coincides with the origin of the local reference frame o, and the line design component is 

located on the local x1-axis. Global coordinates of the grid points c(b1, b2, b3), d(b4, b5, b6)

and the line orientation angle  (or b7) are treated as independent design variables b = [b1,

…, b7]
T
. The domain of a line component is the interval [0, l]. Therefore, given a change 

in length l, the domain shape design velocity can be defined using a shape function or 

other smooth functions. As shown in (7.8), the variations in orientation ,  and are

defined by the derivative of two orthogonal velocity fields. Linear approximations 

between the variations l, , , and  and the design perturbations bi, i = 1–7 are 

derived in this section. 

 The length of the design component, written in terms of the design variables, is 

2 2 2

4 1 5 2 6 3( ) ( ) ( ) .l b b b b b b  (7.123) 

 The Taylor series expansion of length l of the design variables bi, i = 1–6 is 

2

4 1 4 1 5 2 5 2 6 3 6 3

1
[( )( ) ( )( ) ( )( )] ( ),l b b b b b b b b b b b b O

L
b  (7.124) 

where O(
2
b) denotes higher order terms in the Taylor series expansion. Assuming a 

small design perturbation, all terms involving products of the small design perturbation 

can be neglected and the linear approximation can be obtained. 

 To find the relationship between derivatives of the orientation design velocity field 

and the design perturbation, the three planes shown in Fig. 7.8 are defined to identify the 

change in orientation. Plane A is the x2-x3 plane in the local coordinate system and is 

fixed during design perturbation. Plane B contains grid points c, d and is parallel to 

direction (0, 0, 1) in the initial local coordinate system. Plane C contains grid points c, d

and is parallel to direction (0, 1, 0) in the local coordinate system. Mathematically, these 

planes can be described as 

Figure 7.8. A line design component. 
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1Plane A : 0x   (7.125) 

1 2 2 2 1 1 2 1 1 2Plane B: ( ) ( ) ( ) 0c d d c c d c dx x x x x x x x x x  (7.126) 

1 3 3 3 1 1 3 1 1 3Plane C : ( ) ( ) ( ) 0,c d d c c d c dx x x x x x x x x x  (7.127) 

where,

1 1 1

2 2 2

3 3 3

c o

c o

c o

x b X

x b X

x b X

T  (7.128) 

and

1 4 1

2 5 2

3 6 3

.

d o

d o

d o

x b X

x b X

x b X

T  (7.129) 

In (7.128) and (7.129), T = [Tij] is the direction cosine matrix of the local coordinate 

system with respect to the global coordinate system, and (X1o, X2o, X3o) is the origin of the 

local coordinate system in the global coordinate. For the initial design, points c and o

coincide and point d is placed on the x1-axis, so x1c = x2o = x3o = x2d = x3d = 0 and x1d = l.

As the orientation and length of the line design component change, grid points c and d
move away from the local coordinate. Thus, planes B and C rotate with respect to the 

local x3 and x2 axes, respectively. 

 Let  be the angle between two planes A and B, and let  be the angle between planes 

A and C. Initially, the three planes A, B, and C coincide with planes x2-x3, x1-x3, and x1-

x2, respectively, so  =  = 90˚ in the initial design. As the orientation of the line design 

component changes, planes B and C will depart from the initial local coordinate planes, 

and angles  and  will be changed. Using (7.125) and (7.126), angle  can be obtained 

as

1 2 2

2 2

1 1 2 2

cos .
( ) ( )

c d

d c d c

x x

x x x x
 (7.130) 

By taking a Taylor expansion of function  with respect to the design variables bi, i = 1–

6, the perturbation of angle  is 

6
1 22 2

2 2
1

1 1 2 2
/ 2

cos ( ),
( ) ( )

c d
i

i i d c d c

x x
b O

b x x x x
b  (7.131) 

where O(
2
b) denotes higher order terms in the Taylor expansion. Assuming a small 

design perturbation, all higher-order terms in (7.131) can be neglected. Taking the linear 

approximation and from (7.8), (7.131) can be simplified to  

3
2

3 2,1

1

( ) .i
i i

i

T
b b V

L
 (7.132) 

Similarly, the linear relationship between the angle change  and the design perturbation 

b is 
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3
3

3 3,1

1

( ) ,i
i i

i

T
b b V

L
 (7.133) 

and the first variation of the axial rotational angle is 

7 2,3.b V  (7.134) 

 The results of (7.132) through (7.134) show a linear relationship between the 

derivatives of design velocity V2,1, V3,1, V2,3, and the perturbations of design variables. 

However, for shape variation, (7.124) shows a linear relationship between the shape 

boundary design velocity field and variations of the design variables. Using a shape 

function for the design velocity field V1(x1) on the domain of the line design component, 

the design velocity is linear for variations of the design variables. Given these facts and 

the sensitivity expressions formulated in Section 7.2, the first-order design sensitivity 

with respect to design variable b is obtained for a line design component. 

Surface Design Component 

A surface design component in the three-dimensional space is shown in Fig. 7.9. The 

same notations of the coordinate frames used for the line design component are employed 

in this section. To simplify the derivation, a planar triangular surface design component is 

considered. The surface design component cde is assumed to stay in plane C during 

design perturbation, and the domain  and the boundary  are always coplanar. The 

locations of grid points c, d, and e in the global coordinate are (b1, b2, b3), (b4, b5, b6), and 

(b7, b8, b9), respectively, where bi, i=1–9 are treated as independent design variables. 

Similar to the line design component, the objective is to find linear relationships between 

the variations , , and  and the design perturbations bi, i = 1–9. Again,  and 

are defined as the derivatives of design velocity in (7.17). 

 The locations of the grid points c, d, and e in the local coordinate can be written as 

1 1 1

2 2 2

3 3 3

c o

c o

c o

x b X

x b X

x b X

T  (7.135) 

1 4 1

2 5 2

3 6 3

d o

d o

d o

x b X

x b X

x b X

T  (7.136) 

and

1 7 1

2 8 2

3 9 3

,

e o

e o

e o

x b X

x b X

x b X

T  (7.137) 

where T = [Tij] is the direction cosine matrix and (X1o, X2o, X3o) is the origin of the local 

coordinate system in the global coordinate. For the initial design, points c and o coincide, 

and x1c = x2c = x3c = 0. 
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Figure 7.9. A surface design component. 

 Taking the first variation of (7.135) through (7.137), linear relationships between the 

variation of the boundary grid points and the design perturbations are obtained as 

3
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 (7.138) 

3
1 1

3

12 2

d n

n
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 (7.139) 

3
1 1

6

12 2

.
e n

n

ne n

x T
b

x T
 (7.140) 

In (7.138) through (7.140), only variations in the x1- and x2-directions are written, 

because the shape boundary velocity describes perturbations of the domain boundary in 

x1-x2 directions for the surface design component. 

 To identify the orientation change of the surface, planes A, B, and C shown in Fig. 

7.9 are defined as 

1Plane A : 0x   (7.141) 

2Plane B: 0x   (7.142) 

1 1 1 2 3 4 2 2 4 5 2 6 3 3 6 3 5 1Plane C : ( )( ) ( )( ) ( )( ) 0.c c cx x a a a a x x a a a a x x a a a a  (7.143) 

In (7.143), a1 = x2d – x2c, a2 = x3e – x3c, a3 = x2e – x2c, a4 = x3d – x3c, a5 = x1e – x1c, and a6 = 

x1d – x1c. Planes A and B are fixed during the design perturbation. Plane C initially 

coincides with the plane x1-x2 and rotates with respect to the initial local coordinate 

system as the orientation of the surface design component changes. 

 The angles  and  shown in Fig. 7.9 are defined between the planes B-C and A-C, 

respectively. For the initial design,  =  = 90º. Using (7.142) and (7.143), the angle  is 
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1 2 6 4 5

2 2 2

1 2 3 4 4 5 2 6 6 3 5 1

cos .
( ) ( ) ( )

a a a a

a a a a a a a a a a a a
 (7.144) 

The Taylor expansion of function  with respect to the design variables bi, i = 1–9 is 

9
1 22 6 4 5

2 2 2
1

1 2 3 4 4 5 2 6 6 3 5 1
/ 2

cos ( ),
( ) ( ) ( )

i

i i

a a a a
b O

b a a a a a a a a a a a a
b  (7.145) 

where O(
2
b) denotes the higher-order terms and can be neglected by assuming a small 

design perturbation. With several steps of arithmetic simplification and from (7.17), 

(7.145) becomes 

3
3 1 1

1 1 1 2 2 1 1 2 2

3
3 1 1

3

1 1 1 2 2 1 1 2 2

3
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 (7.146) 

Equation (7.146) shows a linear relationship between the variation of the angle  and 

the design perturbation b. Similarly, the linear relationship between the angle change 

and the design perturbation b is 

3
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1 1 1 2 2 1 1 2 2

3
3 2 2

3

1 1 1 2 2 1 1 2 2

3
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 (7.147) 

If a quadrilateral surface design component is used, the method discussed in this section 

can be extended to obtain the linear relationship between the shape boundary velocity 

field and the design perturbation, except that the design variables bi, i = 1–12 are not 

independent in this case. A constraint equation should be used in order to ensure that the 

four corner points remain on a plane during design perturbation. 

 As with the line design component, the results in (7.146) and (7.147) show a linear 

relationship between the derivatives of orientation design velocity V3,1 and V3,2 and 

perturbations of the design variables. The results in (7.138) through (7.140) show a linear 

relationship between the shape boundary design velocity field and variations in the design 

variables. Once the shape boundary velocity is found, the design velocity fields V1(x1, x2)

and V2(x1, x2) on the domain of the surface design component can be obtained using the 

design velocity computation method presented in Section 13.3 of Chapter 13. [96] and 

[97]. Given these facts and the sensitivity expressions in Section 7.2, the first-order 

design sensitivity is ensured for the surface design component. 
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7.3.2 Regularity of Design Velocity Fields  

When a built-up structure undergoes configuration design change, the boundary 

movement of one design component results in the movement of attached design 

components at their interfaces. During the design change, compatibility must continue at 

the interfaces so that the built-up structure remains intact. Once the boundary movement 

is decided, the mesh movement inside the component domain still needs to be decided 

(i.e., the shape design velocity) using the design velocity computation methods in Section 

13.3. As explained in Section 6.2.7, the design sensitivity results of (7.83), (7.87), (7.92), 

(7.112), (7.117), and (7.122) require that the shape velocity field V1(x1) for the line design 

component and V1(x1,x2) and V2(x1,x2) for the surface design component must be in 

H
2
( ), the second-order Sobolev space, that is, these velocity fields must be C

1
-regular 

with L2-integrable second derivatives because V1,11, V1,12, V1,22, V2,11, V2,12, and V2,22

appear in these design sensitivity expressions. Therefore, special attention has to be paid 

to meeting the regularity requirement of domain shape design velocity in order to have an 

accurate and unified configuration design sensitivity result, as shown in the following 

example. 

Example 7.1. Three-Bar Frame. Consider the three bar frame in Fig. 7.10 with a 

vertical point load p = 300 lb at node 2. Young's modulus E, moment of inertia I, shear 

modulus G, and polar moment of inertia J are assumed to be the same for all elements, 

and are given as 30 × 10
6
 psi, 0.26042 × 10

–2
 in

4
, 0.11539 × 10

8
 psi, and 0.32552 × 10

–2

in
4
, respectively. The local displacement is z = [z

1
, z

2
, z

3
]
T
, with 3 1[ , ]i i i Tzz , where the 

superscript i denotes the ith design component and the subscript represents the direction 

in the local coordinate system. The local displacement z belongs to the space Z of 

kinematically admissible displacement fields that satisfy homogeneous boundary 

conditions and kinematic interface conditions between components. Mathematically, Z

can be written as 

2 1 1 1 3 3 3

3 3,1 1̀ 3 3,1 1̀

1 1 2 2 2 2 3 3

(0, ) (0) (0) (0) (0) (0) (0) 0,

at node 2, and at node 3 ,

i

iZ H l z z z zz

z z z z
 (7.148) 

where
i
 is interface operator such that 

i
z

i
=

j
z

j
 projects displacement fields from 

design components i and j onto their common boundary nodal points. 

Figure 7.10. Three-bar frame. 
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As a performance measure, the displacement at a point x̂  (node 2) in the x3-direction is 

considered as 

11 1

3 3
0

ˆ ˆ( ) ( ) ,
l

z z dxx x x  (7.149) 

where  is the Dirac delta measure, and 1

3z  is the local displacement of design component 

1. With beam bending and torsion effects only, the energy bilinear and load linear forms 

of the variational equation can be written as 

3

3,11 3,11 1,1 1,1
0 0

1

( , )
i il l

i i i i

i

a EIz z dx GJ dxz z  (7.150) 

1 1

3
0

ˆ( ) ( ) ,
l

pz dxz x x  (7.151) 

where 1 2 3[ , , ]T
z z z z  and 3 1[ , ]i i i Tzz  are virtual displacements in the space Z of 

kinematically admissible displacement fields. Using the length of design component 3 as 

the design variable b, the configuration design variation is shown in Fig. 7.11. The design 

perturbation of the first element is zero and 3

iV  = 0 for all elements (i = 1, 2, 3). In 

addition, the load is assumed to be independent of the design variation, and the first 

variation of (7.151) vanishes. 

 In this bending and torsion problem, the unknowns of the structural problem are [z3,

1]
T
. Accordingly, the convective term of the configuration design in (7.11) and (7.12) 

can be written as 

2,1 1( ) ,
0

i i

i V
V z  (7.152) 

where, in this problem, 

2,10
.

0 0

V
V

Figure 7.11. Design perturbation of three-bar frame. 
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Using the above equation and the shape design velocity V  = {V1}, the explicitly 

dependent terms of the energy bilinear form in (7.150) can be obtained from (7.31) and 

(7.32) as 

3

3,11 3,11 1,1 3,11 3,1 3,11 3,1 1,11 1,1 1,1 1,1
0

2

( , ) [3 ( ) ]
il i i i i i i i i i i i

i

a EIz z V EI z z z z V GJ V dxV z z  (7.153) 

3

3,11 1,11 1,11 3,11 2,1
0

2

( , ) ( ) .
il i i i i i

i

a EI z z V dxV z z  (7.154) 

Since we are interested in the displacement sensitivity at node 2, the adjoint problem is 

the same as the state problem with a unit load applied at node 2. Thus, the state response 

and the adjoint response has the relation of z = 300  (Note that the state problem has a 

point load of p = 300 lb). Using this relation, the design sensitivity expression can be 

obtained using (7.83) as 

3
2 2 2 2 2

3,11 1,1 3,1 3,11 1,11 1,11 3,11 2,1 1,1 1,1
0

2

1
[3 ( ) 2 2 ( ) ] .

300

il i i i i i i i

i

EI z V EIz z V EI z V GJ V dx  (7.155) 

Note that for the shape variation not only the first derivative 1,1

iV , but also the second 

derivative 1,11

iV  of velocity appears in the design sensitivity expression. Thus, a Dirac delta 

type of singularity (called the corner term) will occur in the sensitivity computation if the 

slope of the shape velocity field is discontinuous. The two kinds of shape design velocity 

fields shown in Fig. 7.12 are used to evaluate the sensitivity expression in (7.155). In Fig. 

7.12, design velocity field (a) is represented by a linear function in the domain, whereas 

(a) Linear Design Velocity Field 

(b) Cubic Design Velocity with Zero End Slopes 

Figure 7.12. Two shape design velocity fields. 
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design velocity (b) is represented by a cubic function with zero end slopes. Note that the 

second derivative 1,11

iV  of design velocity (a) is a Dirac delta measure at x1 = 0 and x1 = li.

Using the Dirac delta measure, the corner terms for the linear design velocity (a) in 

(7.155) are 

2 2 3
1 1 2 1 3

2 2 2 2 3 3

3,1 3,11 3,1 3,11 3,1 3,112 2

2 2 30

10 10
(2 ) (2 ) (2 ) .

x x l x l

b b b
EI z z b EI z z b EI z z

l l l
 (7.156) 

 Three-point Gauss integration is used to evaluate (7.155). The resulting design 

sensitivity predictions are compared with the results obtained from the central finite 

difference, as shown in Table 7.1. In Table 7.1, (b – b) and (b + b) are the values of 

the performance measure at the backward and forward perturbed designs, respectively; 

(b) is the central finite difference; and (b) is the predicted change of the 

performance measure. Because the finite element solution is exact for this problem, the 

central finite difference should give a reasonable sensitivity, if an appropriate step size is 

used. The results in Table 7.1 show incorrect design sensitivity for linear design velocity 

(a) without the corner terms of (7.156). However, if the corner terms are added to the 

design sensitivity expression of (7.155), accurate design sensitivity is obtained, as shown 

in Table 7.1. For cubic design velocity (c), the sensitivity expression in (7.155) can be 

evaluated without the calculation of any corner terms. Again, Table 7.1 shows a good 

sensitivity prediction for design velocity (b). 

 To evaluate the corner terms for equations such as (7.156), FEA results at the 

boundary and/or interfaces must be used. It is well known that the results of finite 

element analysis at the boundary and/or interfaces may not be accurate for built-up 

structures. This means that the computation of corner terms for built-up structures may 

also not be accurate. Moreover, development of a general algorithm that can handle the 

computation of corner terms is difficult. The result of cubic design velocity (b) shows 

that the corner terms can be avoided by imposing a design velocity that has zero slopes at 

the interfaces. 

 As shown in previous sections, note that configuration design sensitivity expressions

for the truss and plane elastic solid (membrane) design components only contain the first-

order derivatives of the design velocity fields. Thus, the shape design velocity must be 

C
0
-regular with L2-integrable first derivatives. This requirement can be easily satisfied by 

using a linear velocity in the domain. However, for a plate design component, design 

sensitivity expressions contain second derivatives of the design velocity fields, as does 

the beam design component. Therefore, the regularity requirement on the shape design 

velocity for a beam design component discussed in this example should be applied to 

plate design components. 

Table 7.1. Configuration design sensitivity of displacement at  

node 2 in z3 direction of three bar frame. 

Design velocity (b+ b) (b– b) (b) (b) ( / )×100% 

(a) without (7.156) 0.90357E+0 0.90341E+0 –0.15809E–3 0.92803E–3 –587.02 

(a) with (7.156) 0.90357E+0 0.90341E+0 –0.15809E–3 –0.15761E–3    99.70 

(b) 0.90357E+0 0.90341E+0 –0.15809E–3 –0.15796E–3    99.92 
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 On the other hand, if the Timoshenko beam or Mindlin/Reissner plate is used, C
0
-

regular velocity field with L2-intgrable first derivatives is sufficient without requiring 

corner terms in configuration design sensitivity analysis. This will be presented in 

Section 7.5. 

7.3.3 Numerical Examples 

Helicopter Tail-Boom 

Consider the structural configuration design of a helicopter tail-boom shown in Fig. 7.13, 

where the geometry of the helicopter tail-boom and the maximum in-flight loads are 

given [48]. 

 The tail-boom structure is modeled as a simple open frame structure without a skin 

panel. A finite element model of the simplified open tail-boom shown in Fig. 7.14 is 

created using an ANSYS [119] three-dimensional truss element. There are 28 joints and 

108 members, with 72 degrees of freedom. For a wrought aluminum frame, Young's 

modulus is 10.6  10
6
 psi and weight density is 0.1 lb/in

3
. The objective of the structural 

configuration design is to study the effects of a narrower bottom at the tail end of the 

boom on the performance measures. 

  To describe the configuration design change, all longeron members are grouped into 

four design components ae, bf, cg, and hd, whereas each diagonal and batten member is 

treated as a design component. The configuration design variables are the coordinates of 

the points e and f. In the perturbed design shown in Fig. 7.15, the coordinates of e and f

are assumed to move by [0, 0.5, 0.6]
 T

 and [0, –0.5, 0.6]
T
, respectively, and all diagonal 

and batten members have the same x1-coordinate as at the initial design. Based on this 

design perturbation, a linear shape design velocity field is used for each design 

component, and the derivatives of the orientation design velocity are computed. 

Figure 7.13. Geometry of helicopter tail-boom. 
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Figure 7.14. Finite element model of the simplified open tail-boom. 

Figure 7.15. Design perturbation at the end of the tail-boom (not drawn to scale). 
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 In Table 7.2, configuration design sensitivity results for the displacements, axial 

stresses, and eigenvalues are presented. The ratio between the central finite difference 

and the predicted change is given in the last column, with 100% indicating a complete 

agreement. Excellent agreement between the predicted design sensitivity results  and 

the central finite differences  is obtained, as shown in Table 7.2. The configuration 

design sensitivity expressions shown in previous sections are composed of two parts: 

shape variation and orientation change. The contribution from shape and orientation 

effects to configuration design sensitivity results is shown in Table 7.3. In Table 7.3, 

(b) is the predicted change of the performance measure and is the same as the sixth 

column in Table 7.2, V is the amount contributed from the shape effect, and V  is the 

contribution from the orientation effect. The percentage of each contribution is computed 

by [| V |/(| V |+ | V |) × 100]% for the shape effect, and [| V |/(| V |+ | V |) × 100]% for 

the orientation effect. In Table 7.3, it can be seen that the contribution from the 

orientation effect is more significant than that from the shape effect for the selected 

displacement and stress performance measures. For eigenvalues, contributions from both 

shape and orientation effects are significant. The reason for this difference is that the 

orientation change of design components has the greatest impact on the stiffness of the 

structure, whereas shape variation influences both stiffness and mass of the system. 

Swept Wing 

Configuration design sensitivity analysis of the swept wing is considered in this section. 

The design optimization of the swept wing model shown in Fig. 7.16 has previously been 

investigated [120]. The wing is made of aluminum with Young's modulus E = 10.6  10
6

psi and Poisson's ratio = 0.3, and is subjected to a uniform pressure of 0.556 psi acting 

on the top of the skin panel. The cross-sectional areas are 0.02 in
2
 for longitudinal spar 

caps, and 0.2 in
2
 for vertical spar caps. The thickness of the skin panels on the first half of 

the wing and all shear panels (ribs and spars) is 0.2 in. The thickness of the skin panels on 

the second half (wing tip) of the wing is 0.1 in. Because of the symmetry of the structure 

and loading, only half of the wing box is analyzed. The model consists of 60 three-

dimensional truss elements and 130 membrane elements. This model has 88 nodal points 

and 160 degrees-of-freedom. 

 For a configuration design change, the tip of the swept wing is moved forward as 

shown in Fig. 7.16. The design velocity fields are defined so that all ribs (across the 

wing) parallel to the y-axis remain parallel while moving. The orientation of the spars 

along the wing and the skin panels will then be rotated accordingly, so that each shear 

panel will remain a plane. Based on the perturbation of nodal points, the movement of the 

nodal points in the domain direction of each design component is computed. Linear and 

bilinear shape functions are used to interpolate shape design velocity fields for line and 

surface design components, respectively. 

 The displacement at the tip of the wing, averaged axial stress on the spar caps, and 

averaged von Mises stress on the skin and shear panels are selected as performance 

measures. For averaged stress performance measures, the general performance measure 

given in (7.113) can be written explicitly as 

( ( )) ,pg m dz  (7.157) 

where, for the averaged axial stress performance measure, 

11 1,1( ( ))g Ezz  (7.158) 
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Table 7.2. Configuration design sensitivity results of helicopter tail-boom. 

Node/ 

Elem. 

Dir./

Stress/

Eigval*
(b– b) (b+ b) (b) '(b) Ratio% 

26 x2 0.43846E+00 0.44749E+00 0.90279E–02 0.90368E–02 100.1 

27 x2 0.56307E+00 0.56733E+00 0.42646E–02 0.42694E–02 100.1 

26 x3 –.88509E–01 –.91167E–01 –.26585E–02 –.26508E–02   99.7 

27 x3 –.19582E+00 –.19565E+00 0.17352E–03 0.18672E–03 107.6 

1 axial 0.50920E+04 0.50266E+04 –.65373E+02 –.65372E+02 100.0 

3 axial –.57162E+04 –.56160E+04 0.10024E+03 0.10025E+03 100.0 

6 axial 0.30517E+04 0.29443E+04 –.10743E+03 –.10743E+03 100.0 

9 axial –.41796E+04 –.40428E+04 0.13681E+03 0.13680E+03 100.0 

12 axial 0.23750E+04 0.21898E+04 –.18518E+03 –.18518E+03 100.0 

13 axial –.21629E+04 –.21596E+04 0.32264E+01 0.32188E+01 99.8 

21 axial –.51130E+04 –.49854E+04 0.12755E+03 0.12756E+03 100.0 

27 axial –.42783E+04 –.41862E+04 0.92155E+02 0.92120E+02 100.0 

1st 0.19527E+05 0.19764E+05 0.23740E+03 0.23766E+03 100.1 

2nd 0.21974E+05 0.22173E+05 0.19893E+03 0.19934E+03 100.2 

3rd 0.42872E+06 0.42281E+06 –.59063E+04 –.59076E+04 100.0 

 *
Note:  denotes the eigenvalue. 

Table 7.3. Contributions from shape and orientation effects to configuration 

design sensitivity results of a helicopter tail-boom. 

Dir./           Shape Effect        Orientation Effect 
Node/ 

Elem. 
Stress/

Eigval (b) V (%) V (%)

26 x2 0.90368E–02 –.86564E–04 0.9 0.91234E–02 99.1 

27 x2 0.42694E–02 –.16247E–02 21.6 0.58942E–02 78.4 

26 x3 –.26508E–02 –.82414E–04 3.1 –.25684E–02 96.9 

27 x3 0.18672E–03 0.84080E–03 56.2 –.65408E–03 43.8 

1 axial –.65372E+02 –.14458E+01 2.2 –.63926E+02 97.8 

3 axial 0.10025E+03 0.64828E+01 6.5 0.93764E+02 93.5 

6 axial –.10743E+03 0.25778E+01 2.3 –.11001E+03 97.7 

9 axial 0.13680E+03 –.16295E+01 1.2 0.13843E+03 98.8 

12 axial –.18518E+03 0.84242E+00 0.5 –.18602E+03 99.5 

13 axial 0.32188E+01 –.59196E+01 39.3 0.91384E+01 60.7 

21 axial 0.12756E+03 0.13129E+02 10.3 0.11443E+03 89.7 

27 axial 0.92120E+02 –.84856E+01 7.8 0.10061E+03 92.2 

1st 0.23766E+03 0.58814E+03 62.7 –.35048E+03 37.3 

2nd 0.19934E+03 0.65374E+03 59.0 –.45440E+03 41.0 

3rd –.59076E+04 0.10303E+05 38.9 –.16211E+05 61.1 
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and, for the averaged von Mises stress performance measure, 

2 2 2

11 11 22 22 12( ( )) 3 .g z  (7.159) 

 The adjoint equation and the configuration design sensitivity expression are given in 

(7.116) and (7.117). The configuration design sensitivity results of displacement, 

averaged axial stress, and averaged von Mises stress are presented in Table 7.4. The 

results in Table 7.4 show accurate predictions for . Although the contribution of shape 

and orientation effects is not shown, both effects are significant to the design sensitivity 

results.
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Vehicle Chassis Frame 

Consider the vehicle chassis frame in Fig. 7.17. The chassis frame is 289.37 in long and 

31.496 in. wide, with two rectangular longitudinal frames and five cross members. The 

rectangular cross section is 5 in high and 2 in wide. Young's modulus and the weight 

density are E = 30  10
6
 psi and = 0.283 lb/in

3
, respectively. For static analysis, the 

loads acting on top of the frame are used to simulate the engine and body weight. The 

side forces at points a, b, c, and d are used to describe the tire side forces. The wheel 

attachment points a, b, c, and d in the chassis frame are assumed to be simply supported 

boundary conditions. Due to the symmetry of the structure and loading, point O is 

restricted and can only move in the x3-direction. For the modal (eigenvalue) analysis, no 

boundary condition is imposed, and there are six rigid body modes. An ANSYS three-

dimensional beam element is used to model the chassis frame. There are 48 beam 

elements and 260 degrees-of-freedom. 

 The configuration design change of the chassis frame is shown in Fig. 7.18. Four 

corner points at each end are moved inward by 0.2 and 0.4 in, respectively. Each finite 

element is treated as a single design component in this example. Based on the design 

perturbation of nodal points, a cubic shape design velocity with zero slope at both ends is 

used for each design component. Configuration design sensitivity results for 

displacement, maximum bending stress, and eigenvalue performance measures are shown 

in Table 7.5, and excellent agreement can be observed between the predicted sensitivity 

results and the finite differences. Note that the results in Table 7.6 show that for 

displacement and stress performance measures the orientation effect contributes more to 

the sensitivity results for the described configuration design change. For eigenvalue 

performance measures, both shape and orientation effects are critical, depending on the 

vibration mode. 

Table 7.4. Configuration design sensitivity results of swept wing model. 

Node/ 

Elem. 

Dir./

Stress
(b – b) (b + b) (b) (b) Ratio% 

81 x3 0.20586E+02 0.20269E+02 –.31699E+00 –.31700E+00 100.0 

82 x3 0.20998E+02 0.20664E+02 –.33409E+00 –.33409E+00 100.0 

83 x3 0.21469E+02 0.21115E+02 –.35364E+00 –.35364E+00 100.0 

84 x3 0.21971E+02 0.21597E+02 –.37451E+00 –.37452E+00 100.0 

1 axial –.74291E+04 –.75105E+04 –.81426E+02 –.81426E+02 100.0 

2 axial –.14745E+05 –.14643E+05 0.10288E+03 0.10288E+03 100.0 

3 vM
* 0.85701E+04 0.85801E+04 0.99366E+01 0.99431E+01 100.1 

4 vM 0.14260E+05 0.14266E+05 0.52348E+01 0.52420E+01 100.1 

5 vM 0.13482E+05 0.13486E+05 0.37437E+01 0.37431E+01 100.0 

6 vM 0.14530E+05 0.14424E+05 –.10514E+03 –.10514E+03 100.0 

7 vM 0.14479E+05 0.14395E+05 –.84104E+02 –.84108E+02 100.0 

8 vM 0.75624E+04 0.74249E+04 –.13746E+03 –.13747E+03 100.0 

9 vM 0.38504E+04 0.37776E+04 –.72837E+02 –.72864E+02 100.0 

10 vM 0.43730E+04 0.42345E+04 –.13849E+03 –.13854E+03 100.0 

11 vM 0.31716E+04 0.30755E+04 –.96121E+02 –.96311E+02 100.2 

63 vM 0.67083E+04 0.66969E+04 –.11379E+02 –.11381E+02 100.0 

64 vM 0.10459E+05 0.10413E+05 –.46390E+02 –.46393E+02 100.0 

65 vM 0.10149E+05 0.10114E+05 –.35354E+02 –.35360E+02 100.0 

66 vM 0.88308E+04 0.88073E+04 –.23486E+02 –.23491E+02 100.0 

67 vM 0.92998E+04 0.92785E+04 –.21310E+02 –.21315E+02 100.0 

 *
Note: vM denotes the element averaged von Mises stress. 
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Figure 7.17. Vehicle chassis frame. 

Figure 7.18. Finite element model and perturbed design of vehicle chassis frame. 

Platform 

The platform given in Fig. 7.19 is assembled by two steel plates and is 100 in long, 60 in 

wide, and 50 in high. Plate thickness is 0.4 in. The platform is loaded with concentrated 

forces acting at the middle span and at the end of the horizontal plate. Young's modulus 

and Poisson's ratio are E = 30  10
6
 psi and = 0.3, respectively. The finite element 

model shown in Fig. 7.20 contains 240 ANSYS triangular shell elements, 147 nodal 

points, and 798 degrees of freedom. 

 The length of the horizontal plate is taken as the design variable. As the design is 

perturbed, the horizontal plate will only experience shape change. For the inclined plate, 

both the shape and the orientation of the plate will be changed. A perturbed design of the 

platform is shown in Fig. 7.21 with b1 = 1 in. Each plate in the platform is treated as a 

single design component. For the shape effect in configuration design sensitivity 

computation, a cubic velocity with zero slope at both edges in the x2 direction is assumed 

for each design component. The profiles of the shape design velocity fields are shown in 

Fig. 7.21. 
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Table 7.5. Configuration design sensitivity results of vehicle chassis frame. 

Node/ 

Elem. 

Dir./

Stress

/

Eigva

l

(b– b) (b+ b) (b) (b) Ratio% 

1 x3 –.17543E–01 –.17550E–01 –.68741E–05 –.68737E–05 100.0 

19 x3 0.20181E–01 0.20179E–01 –.21079E–05 –.21074E–05 100.0 

39 x3 –.64963E–02 –.64906E–02 0.57804E–05 0.57805E–05 100.0 

42 x3 –.42161E–01 –.42146E–01 0.15003E–04 0.15003E–04 100.0 

44 x3 –.49643E–01 –.49622E–01 0.20873E–04 0.20873E–04 100.0 

5 z
* 0.15461E+04 0.15461E+04 0.13372E–01 0.13373E–01 100.0 

6 z 0.19264E+04 0.19264E+04 0.13423E–01 0.13424E–01 100.0 

7 z 0.16415E+04 0.16414E+04 –.20966E–01 –.20967E–01 100.0 

10 z –.12674E+04 –.12674E+04 –.96058E–02 –.96097E–02 100.0 

11 z –.92733E+03 –.92736E+03 –.26644E–01 –.26639E–01 100.0 

12 z –.12452E+04 –.12452E+04 –.21106E–01 –.21102E–01 100.0 

42 z –.20257E+03 –.19710E+03 0.54719E+01 0.54718E+01 100.0 

45 z –.99604E+02 –.91400E+02 0.82038E+01 0.82037E+01 100.0 

1st 0.48341E+04 0.48494E+04 0.15305E+02 0.15304E+02 100.0 

2nd 0.76702E+04 0.80034E+04 0.33326E+03 0.33337E+03 100.0 

3rd 0.19359E+05 0.20353E+05 0.99375E+03 0.99946E+03 100.6 

 *
Note: z denotes the element maximum bending stress. 

Table 7.6. Contributions from shape and orientation effects to configuration 

design sensitivity results of vehicle chassis frame. 

Shape Effect Orientation Effect 
Node/

Elem. 

Dir./

Stress/

Eigval 
(b)

V (%) V (%)

1 x3 –.68737E–05 0.54287E–18 0.00 –.68737E–05 100.00 

19 x3 –.21074E–05 –.22973E–18 0.00 –.21074E–05 100.00 

39 x3 0.57805E–05 0.11868E–04 66.10 –.60875E–05 33.90 

42 x3 0.15003E–04 0.25902E–06 1.73 0.14744E–04 98.27 

44 x3 0.20873E–04 0.44112E–06 2.11 0.20432E–04 97.89 

5 z 0.13373E–01 –.12330E–14 0.00 0.13373E–01 100.00 

6 z 0.13424E–01 –.77594E–14 0.00 0.13424E–01 100.00 

7 z –.20967E–01 –.23680E–13 0.00 –.20967E–01 100.00 

10 z –.96096E–02 0.92461E–15 0.00 –.96096E–02 100.00 

11 z –.26639E–01 –.21042E–14 0.00 –.26639E–01 100.00 

12 z –.21102E–01 0.70777E–15 0.00 –.21102E–01 100.00 

42 z 0.54719E+01 0.15667E+00 2.86 0.53152E+01 97.14 

45 z 0.82038E+01 0.26680E+00 3.25 0.79370E+01 96.75 

1st 0.15304E+02 0.15244E+02 99.61 0.59422E–01 0.39 

2nd 0.33335E+03 0.76070E+02 22.82 0.25728E+03 77.18 

3rd 0.99946E+03 0.86354E+03 86.40 0.13592E+03 13.60 
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Figure 7.20. Finite element model of platform. 

 Configuration design sensitivity expressions of the plane elastic solid/plate design 

component are given in (7.112), (7.117), and (7.122). To evaluate these design 

expressions, both membrane and bending stresses at Gauss points are required. A stress 

computation routine is built to calculate stresses at Gauss points using the shape functions 

presented in [121]. A nine-point Gauss integration is used for the numerical integration of 

the design sensitivity expressions. 

 Configuration design sensitivity results of displacement performance measures are 

evaluated at several points. Table 7.7 shows good sensitivity results using the continuum 

formulation. The contributions from both shape and orientation effects are shown in 

Table 7.8. In this example, Table 7.8 shows that the shape effect is significant for those 

nodal points at the middle span, whereas the orientation effect is dominant for the nodal 

points at the interface boundary. 
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Figure 7.21. Design perturbation of platform and the shape design velocity fields. 
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Table 7.7. Configuration design sensitivity results of platform. 

Node ID Direct. (b – b) (b + b) (b) (b) Ratio%

106 x1 0.37356E–2 0.38775E–2 0.14195E–3 0.14959E–3 105.4 

107 x1 0.35896E–2 0.37297E–2 0.14011E–3 0.14736E–3 105.2 

108 x1 0.35047E–2 0.36436E–2 0.13893E–3 0.14584E–3 105.0 

109 x1 0.34766E–2 0.36152E–2 0.13854E–3 0.14528E–3 104.9 

36 x3 0.26800E–1 0.28360E–1 0.15598E–2 0.15515E–2  99.5 

37 x3 0.24759E–1 0.26265E–1 0.15058E–2 0.14984E–2  99.5 

38 x3 0.23680E–1 0.25154E–1 0.14747E–2 0.14675E–2  99.5 

39 x3 0.23338E–1 0.24803E–1 0.14647E–2 0.14573E–2  99.5 

71 x3 0.10927E–3 0.11512E–3 0.58478E–5 0.58706E–5 100.4 

72 x3 0.10267E–3 0.10829E–3 0.56115E–5 0.56317E–5 100.4 

73 x3 0.10092E–3 0.10646E–3 0.55436E–5 0.55628E–5 100.3 

74 x3 0.10045E–3 0.10598E–3 0.55222E–5 0.55300E–5 100.1 

106 x3 0.74268E–2 0.78645E–2 0.43765E–3 0.45293E–3 103.5 

107 x3 0.71377E–2 0.75658E–2 0.42810E–3 0.44259E–3 103.4 

108 x3 0.69696E–2 0.73919E–2 0.42233E–3 0.43613E–3 103.3 

109 x3 0.69140E–2 0.73344E–2 0.42041E–3 0.43388E–3 103.2 

Table 7.8. Contributions from shape and orientation effects to

configuration design sensitivity results of platform. 

Shape Effect Orientation Effect 

Node ID Direct. (b) V (%) V (%)

106 x1 0.14959E–3 0.21039E–3 77.58 –.60795E–4 22.42 

107 x1 0.14736E–3 0.20581E–3 77.88 –.58447E–4 22.12 

108 x1 0.14584E–3 0.20292E–3 78.05 –.57082E–4 21.95 

109 x1 0.14528E–3 0.20191E–3 78.10 –.56631E–4 21.90 

36 x3 0.15515E–2 0.15503E–2 99.93 0.11147E–5 0.07 

37 x3 0.14984E–2 0.14973E–2 99.92 0.11474E–5 0.08 

38 x3 0.14675E–2 0.14663E–2 99.92 0.11650E–5 0.08 

39 x3 0.14573E–2 0.14562E–2 99.92 0.11706E–5 0.08 

71 x3 0.58706E–5 0.19102E–5 32.54 0.39604E–5 67.46 

72 x3 0.56317E–5 0.19085E–5 33.89 0.37233E–5 66.11 

73 x3 0.55628E–5 0.19033E–5 34.21 0.36595E–5 65.79 

74 x3 0.55300E–5 0.18872E–5 34.13 0.36428E–5 65.87 

106 x3 0.45293E–3 0.42128E–3 93.01 0.31649E–4 6.99 

107 x3 0.44259E–3 0.41212E–3 93.12 0.30469E–4 6.88 

108 x3 0.43613E–3 0.40635E–3 93.17 0.29777E–4 6.83 

109 x3 0.43388E–3 0.40433E–3 93.19 0.29547E–4 6.81 
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7.4 Structural-Acoustic Problem 

In this section, a configuration design sensitivity analysis is developed to predict 

variations in acoustic and structural performance measures resulting from a variation in 

the configuration of a coupled system. By definition, the configuration design of a 

coupled system consists of the geometry of the design components, that is, (1) the shape 

of the cavity that contains the acoustic medium, and (2) the shape and orientation of the 

structural components. In general, a variation in the configuration design of a coupled 

system includes simultaneous variations of the cavity containing the acoustic medium 

and the design components of a built-up structure. 

 Although the responses of a coupled system are solutions to a single coupled state 

equation, the functions representing the responses are defined mathematically in different 

ways. Acoustic responses, such as the acoustic pressure, are defined on a three-

dimensional acoustic domain 
a
, while structural responses, such as displacement fields, 

are defined on 
s
, which is a surface or line depending on the types of design 

components. Mathematically different ways of describing the variations of the design and 

responses are required for the acoustic domain and each design component of the 

structure.

 In this section, the variations of harmonic responses of the coupled system resulting 

from a variation in the configuration are mathematically defined, and the variations of 

acoustic and structural performance measures are derived. The variations of performance 

measures are expressed in terms of the variations of the state variables. The variation of 

the state equation is obtained either to construct an equation for the variation of the state 

responses, or to derive design sensitivity formulas that are explicit in design variations. 

The direct differentiation method is briefly discussed, and the adjoint variable method of 

design sensitivity analysis [5] s derived. The equations used are solved using the finite 

element analysis (FEA), and a computational method using FEA results is illustrated with 

example problems. Since the structural-acoustic problem is formulated using the 

frequency response technique, the state variable becomes a complex variable. In addition, 

the energy bilinear and load linear forms in the static problem become the sesquilinear 

and semilinear forms as presented in Section 2.6. 

7.4.1 Variations for the Configuration Design 

The domains defined in the coupled system are the three-dimensional volume 
a
 of the 

acoustic medium and its boundary surface 
a
 (= 

s
), which is also defined as the domain 

of the surface design components of the built-up structure. The line design components, 

such as the beam and truss members, also lie on 
s
, although they do not directly interact 

with the acoustic medium. 

 In addition to the two structural components (line and surface) presented in Section 

7.1, the variation in the configuration of the acoustic response is required in the 

structural-acoustic system. In this section, the variation of acoustic response is defined, 

and the basic formulas for variations of the integral form of functionals are derived, 

which are required for the variations of performance measures and the state equation. 

Variations of Acoustic Response 

Consider the structural-acoustic system in Fig. 2.4 with acoustic medium 
a
 surrounded 

by structural components in 
s
 (= 

a
). The configuration design variation of the 

structural components produces shape design variation in the acoustic medium. Thus, 

only shape design variation is considered for the acoustic medium. Let p(x) and p (x ),
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which are the complex functions of acoustic pressure, be smooth solutions to the 

boundary value problem from Section 2.6.2, on 
a
 and a , respectively. Assuming a 

regular extension of p  in the neighborhood of a , the variation of p(x) is defined as the 

pointwise material derivative along  at x
a
, that is, 

0

0

0 0

( ( ))

( ( )) ( )
lim

( ( )) ( ) ( ) ( )
lim lim

( ) ( ),

a

a

a

a

T

d
p p

d

p p

p p p p

p p

x V x

x V x x

x V x x x x

x V x

 (7.160) 

where the partial derivative p (x) is defined as 

0

( ) ( )
( ) lim .

p p
p

x x
x  (7.161) 

Assuming that p(x) is a smooth function, the partial derivative in (7.161) can be 

interchanged with the partial derivative with respect to coordinate variable xi, i= 1, 2, 3, 

that is, 

( ).
i i

p
p

x x
 (7.162) 

The material derivative p  defined in (7.160) is the variation of p(x) with respect to the 

variations in the shape of the acoustic domain 
a
 and the configuration of the structural 

domain 
s
 of the coupled system. 

Variations of Performance Measure 

A harmonic acoustic performance measure can be expressed as an integral over the 

acoustic domain 
a
, as 

( , ) ,
a

a

p h p p d  (7.163) 

where the function h  is continuously differentiable with respect to its arguments. The 

gradient operator in the acoustic domain of the above equation is p = [p,1, p,2, p,3]
T
.

 Since the acoustic domain is affected by shape variation, the material derivative of p

in (7.163) can be taken using the formula for the variation of an integral in (6.37), as 

, ,[ ( )] .aa

a

p p ph p h p div h dV  (7.164) 

Using (7.160) and (7.162), (7.164) becomes 

, ,

, ,

, ,

[ ( ) ( ) ( )]

[ ]

[ ( ) ( )] .

a a aa

a

a a aa

T T a

p p p

a

p p

T T a

p p

h p p h p p div h d

h p h p d

h p h p div h d

V V V

V V V

 (7.165) 
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The first integral in (7.165) is implicit in terms of the variation of the acoustic pressure 

and its gradients, while the other terms are explicit in terms of the design velocity 

field aV , which is the shape design variation. 

 The acoustic performance measure in (7.163) is defined in the three-dimensional 

acoustic domain, while the structural performance measure is defined on the two-

dimensional structural surface. A harmonic structural performance measure may be given 

in an integral form as 

( , ) ,
s

s

z g dz z  (7.166) 

where g is a function continuously differentiable with respect to its arguments. Unlike the 

acoustic performance measure, the gradient operator in the structural domain of the above 

equation is z = [z,1, z,2] in the local coordinate system. 

 The shape design velocity for the structural component is defined in the local 

coordinate system by 1 2[ , , 0]s

TV VV , and the configuration design velocity is given by 

V  = [0, 0, V3]
T
. Taking the variation of z in (7.166) by using (6.37), 

, ,[ : ( )] .ss

s

z g g div g dz zz z V  (7.167) 

Using (6.8) and (7.42), (7.167) becomes 

, ,

, ,

, ,

[ : ]

[ ( ) : ( )]

[ ( ) : ( ) ( )] ,

s

s

s s ss

s

z

s

s

g g d

g g d

g g div g d

z z

z z

z z

z z

V z V z

zV zV V

 (7.168) 

where V z is the convective term of the configuration design in (7.18). The first integral 

in (7.168) is implicit in terms of the variation of the structural displacement and 

gradients, while the other terms are explicit in terms of the design velocity field and the 

state response z.

 The expressions in (7.165) and (7.168) include the variations of the acoustic and 

structural responses that are the solutions to the state (2.73). In order to evaluate the 

variations p  and z , the variations of the acoustic pressure, structural responses, and 

their gradients may be obtained by solving an equation derived from the state equation. 

Alternatively, the terms can be converted to a form that is explicit in responses and 

design velocity fields. The variation of the state equation is required in both cases. 

Variation of State Equation 

The variational (2.73) of the coupled system can be rewritten with subscripts that identify 

dependence of each term on the corresponding domain, as 

( , ) ( , ) ( , ) ( , ) ( ),q b p p p pz z z z z  (7.169) 

which must hold true for all kinematically admissible virtual states * *{ , }pz Q where Q

is the complex vector space that satisfies the boundary and interface conditions. Sesqui-

linear and semi-linear forms in (7.169) are integrals over the acoustic or structural 

domain, as defined in (2.73) through (2.79). Note that, as explained in Section 2.6, the 

complex conjugates of the second arguments (i.e., z and p in the above state equation) 

are used in the integration that define the sesquilinear form, whereas the complex 

conjugate of the argument is used in the integration that defines the semilinear form. This 
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rule is also applicable to the variations of the sesquilinear and semilinear forms in the 

following derivations. Taking the variation of both sides of (7.169), 

* *

[ ( , )] [ ( , )] [ ( , )] [ ( , )] [ ( )] ,

{ , } .

q b p p p p

p Q

z z z z z

z
 (7.170) 

The variation of each term in (7.170) can be derived using the definitions of the material 

derivatives in Section 7.1. 

 First, the variations of the sesquilinear and semilinear forms defined over 
s
, which is 

both the structural domain and the interface, can be derived. Because the sesquilinear 

form ( , )q z z  has a bilinear function in the integrands, it can be redefined using a bilinear 

function e(•,•), as 

*( , ) ( , ) .
s

sq e dz z z z  (7.171) 

The variation of ( , )q z z  in (7.171) can be obtained using (6.37), the formula for the 

variation of the integral over 
s
, as 

* * *[ ( , )] ( , ) ( , ) [ ( , ) ] .ss

sq e e div e dz z z z z z z z V  (7.172) 

Using (7.29), the variation of the sesquilinear form in (7.172) can be written as 

* *

* * *

* *
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[ ( , ) ( , )]
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e e div e d
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z z V zV z z z V

z V z V z z
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 (7.173) 

After collecting those terms that are explicitly dependent on shape and configuration 

designs, the last term on the right side of the above equation can be defined as 

* * *

* *

( , ) ( , ) ( , ) [ ( , ) ]

[ ( , ) ( , )] .

s s ss

s

s

s

q e e div e d

e e d

V z z z z V zV z z z V

z V z V z z
 (7.174) 

Using a similar procedure, the variations of the interface sesquilinear and the load semi-

linear forms, which are integrals of bilinear and linear functions over 
s
, can be derived 

using (7.160) and (7.172). Results similar to those in (7.173) are obtained, that is, 

[ ( , )] ( , ) ( , ) ( , )p p p pVz z z z  (7.175) 

[ ( , )] ( , ) ( , ) ( , )p p p pVz z z z  (7.176) 

[ ( )] ( ) ( ).Vz z z  (7.177) 

 Second, the acoustic energy sesquilinear form ( , )b p p , which is an integral over the 

acoustic domain 
a
, can be written using a bilinear function c(•,•), as 

*( , ) ( , ) .
a

ab p p c p p d  (7.178) 
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Using (6.37), which is the formula for the variation of the integral over 
a
, the variation 

of ( , )b p p  in (7.178) can be obtained, as 

* * *[ ( , )] ( , ) ( , ) [ ( , ) ] .aa

ab p p c p p c p p div c p p dV  (7.179) 

Using (7.160), which is the variation of the acoustic response, (7.179) is rewritten as 

* *

* * *

[ ( , )] ( , ) ( , )

( , ) ( , ) [ ( , ) ]

( , ) ( , ) ( , ).

a a

T

a a aa

a a

T a

b p p c p p d c p p d

c p p c p p div c p p d

b p p b p p b p pV

V V V  (7.180) 

The variation of ( , )b p p  with respect to the explicit dependence on the shape design 

variation is defined, from the third term of (7.180), as 

* * *( , ) ( , ) ( , ) [ ( , ) ] .
T

a a aa

T ab p p c p p c p p div c p p dV V V V  (7.181) 

Note that the explicitly dependent term ( , )b p pV  only contains the shape design velocity 

field because the acoustic domain 
a
 does not have the configuration design. 

 Using (7.173), (7.175) through (7.177), and (7.180), the variation of the state equation 

(7.168) is written as 

* *

[ ( , ) ( , ) ( , ) ( , )]

[ ( , ) ( , ) ( , ) ( , )]

[ ( , ) ( , ) ( , ) ( , )]
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q b p p p p
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 (7.182) 

Since the space Q of admissible virtual states is preserved during variation [5], i.e., 
* *{ , }pz Q, * *{ , }pz in (7.169) can be replaced with * *{ , }pz  to obtain 

( , ) ( , ) ( , ) ( , ) ( ).q b p p p pz z z z z  (7.183) 

Then, by using the relation in (7.183), (7.182) can be reduced to 

* *

( , ) ( , ) ( , ) ( , )

( ) [ ( , ) ( , ) ( , ) ( , )],

{ , } ,

q b p p p p

q b p p p p

p Q

V V V V V

z z z z

z z z z z

z

 (7.184) 

which is the variation of (7.169), the state equation of the coupled motion. Equation 

(7.184) is an equation for{ , }pz , which are the variations of the state variables. 

7.4.2 Design Sensitivity Analysis 

The variations of the performance measures, or the design sensitivities, derived in Section 

7.4.1 include integrals that are explicit in terms of the variations of the state variables and 

their gradients. The direct differentiation and adjoint variable methods are two ways to 

treat the variations of state variables in the variations of performance measures. 

Direct Differentiation Method 

With the direct differentiation method, variations of the performance measures in (7.165) 

and (7.168) are directly used to compute design sensitivities. Computation of design 
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sensitivity requires the state variables, the variations of the state variables and their 

gradients, and the design velocity field. The state variables {z, p} are obtained from the 

state equation in (7.169). The variations of the state variables { , }pz  can be obtained by 

solving (7.184), which is the variation of the state equation once the terms on the right 

side, called the fictitious load, are evaluated using {z, p}. The variation of the 

performance measures, or the design sensitivities of (7.165) and (7.168) can then be 

computed if the design velocity field corresponding to a design variation is given. 

Adjoint Variable Method 

A set of adjoint variables and an adjoint equation are defined and used to treat the 

variations of the state variables in design sensitivity expressions. The sesqui-linear form 

used in the adjoint equation of the structural-acoustic problem is not self-adjoint, as 

discussed in Section 5.5. 

 For the acoustic performance measure, the variation of the performance measure in 

(7.165) is considered. Let the adjoint equation and the adjoint response {
*
,

*
} that 

correspond to the state variable {z, p} be defined such that {
*
,

*
} Q satisfy the 

adjoint equation. First, the left side of the relation in (7.169) is taken, and {z, p} is 

replaced by{ , } , and * *{ , }pz  is replaced by adjoint variable {
*
,

*
}. Next, the first 

integral on the right of (7.165) is taken, which includes the variation of the state variable 

p  and its gradient p  are replaced with the acoustic adjoint virtual field  and its 

gradient , respectively. Equating the results produces the adjoint equation, as follows: 

, ,

( , ) ( , ) ( , ) ( , )

[ ] , { , } .
a

a

p p

q b

h h d Q
 (7.185) 

 For the structural performance measure, the variation of the performance measure in 

(7.168) is considered. The definition of the adjoint equation is similar to (7.185), except 

for the right side. From the variation of the structural performance measure in (7.168), the 

first integral on the right of (7.168) is taken that includes the variations of the state 

response, and  and its gradient  are replaced by the adjoint virtual field  and its 

gradient . Equating the results with the left side of (7.185) provides the adjoint 

equation, as 

, ,

( , ) ( , ) ( , ) ( , )

[ : ] , { , } .
s

s

q b

g g d Qz z

 (7.186) 

Equations (7.185) and (7.186) are defined as adjoint equations for the acoustic and 

structural performance measures, respectively. Note that they are the same as (5.240) and 

(5.247), respectively, the adjoint equations for sizing design sensitivity analysis. The 

solutions to the adjoint equations are the adjoint responses {
*
,

*
}. As previously 

mentioned, these equations are identical except for the adjoint loads, which are different 

depending on the type of performance measures. 

 Equations (7.165) and (7.168) can be reduced to expressions that are explicit in terms 

of the variation of the state variables by using the variation of the state (7.184), and the 

adjoint (7.185) and (7.186). First, by replacing { , } Q in (7.185) and (7.186) with 

{ , }pz Q, we have 

, ,

( , ) ( , ) ( , ) ( , )

( )
a

a

p p

q b p p

h p h p d

z z
 (7.187) 
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and

, ,

( , ) ( , ) ( , ) ( , )

( : ) .
s

s

q b p p

g g dz z

z z

z z
 (7.188) 

Next, replacing * *{ , }pz Q in (7.184) with the adjoint responses {
*
,

*
} Q gives 

( , ) ( , ) ( , ) ( , )

( ) [ ( , ) ( , ) ( , ) ( , )].

q b p p

q b p pV V V V V

z z

z z
 (7.189) 

Since the left sides of (7.187), (7.188), and (7.189) are identical, the right sides of (7.187) 

and (7.188) can be equated with the right side of (7.189). From (7.187) and (7.189), 

, ,( )

( ) [ ( , ) ( , ) ( , ) ( , )]

a

a

p ph p h p d

q b p pV V V V Vz z
 (7.190) 

and, from (7.188) and (7.189), 

, ,( : )

( ) [ ( , ) ( , ) ( , ) ( , )].

s

sg g d

q b p p

z z

V V V V V

z z

z z
 (7.191) 

The implicit design sensitivity terms in (7.165) and (7.168), which include z  , p  and their 

gradients, can now be replaced using (7.190) and (7.191). Substituting (7.190) and 

(7.191) into (7.165) and (7.168), respectively, design sensitivity formulas that are explicit 

in terms of the design velocity field are obtained, as 

, ,
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and

, ,

, ,

( ) [ ( , ) ( , ) ( , ) ( , )]
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s

s s ss

z

s

s
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g g d

g g div g d

V V V V V
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 (7.193) 

 The configuration design sensitivity formulas for the harmonic performance measures 

of the coupled structural-acoustic system have been derived. Expressions are explicit in 

terms of the design velocity. Computation of the design sensitivity using (7.192) and 

(7.193) requires structural and acoustic responses z and p, which are the solutions to the 

state equation, and the adjoint responses 
*
 and 

*
, which are the solutions to the adjoint 

equations in (7.185) and (7.186). The expressions in the first lines of (7.192) and (7.193) 

are identical. The same expression can provide an efficient computational procedure. 

However, depending on the performance measures, different adjoint analysis results are 

used to evaluate these expressions. 

7.4.3 Design Components 

The configuration design sensitivity formulas in (7.192) and (7.193) include the explicit 

variations of the energy sesquilinear, load semilinear and interface sesquilinear forms. In 

this section, the explicit variations of the sesquilinear and semilinear forms are presented. 
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The results are then used to compute design sensitivities. 

Acoustic Medium 

The sesquilinear form of acoustic energy is given in (2.77) as an integral over the 

acoustic volume. The explicit variation of acoustic energy resulting from the shape 

change is obtained using (7.181), the definition of the shape variation of a functional, as  

2
*

* * *

0

( , )

1
( ) ( ) [ ] ,

aa

a a aa

a

T T T T T a

b p p pp div d

p p p p div p p d

V V

V V V

 (7.194) 

where the shape design velocity is given as a three-dimensional vector 1 2 3[ , , ] .a

TV V VV

As previously mentioned, no variation resulting from the configuration design exists for 

the functional defined in the acoustic domain. 

 The built-up structure of a coupled system consists of line and surface design 

components. The line design components are modeled with truss/beam components, and 

the flat surface design components are modeled with plane elastic solid/plate design 

components. The explicit variations of energy sesquilinear and load semilinear forms for 

these design components are presented below. 

Truss/Beam Design Component 

The configuration design variations of energy bilinear forms for the static and eigenvalue 

problems in Section 7.2 are extended to the complex energy sesquilinear and semilinear 

forms of harmonic vibration. The energy sesquilinear form of (2.76) is written for the 

truss/beam design components shown in Figs. 7.4 and 7.5 as 

2 * *

1 1 2 2
0

* *

1,1 1,1 2,11 2,11
0

( , ) ( )

(1 ) ( ) ,

l

s

l

q A z z z z dx

j EAz z EIz z dx

z z
 (7.195) 

where  is the excitation frequency, A is the cross-sectional area, and I is the second 

moments of inertia. Mass density s, Young's modulus E, and structural damping 

coefficient  are the material properties. 

 The explicit variation of the energy sesquilinear form in (7.195), with respect to the 

configuration design variation defined in Section 7.1, can be derived using (7.174), as

2 * *

1 1 2 2 1,1
0

* * *

1,1 1,1 1,1 2,1 1,1 1,1 2,1 2,1
0

* * * * *

2,11 2,11 1,1 2,1 2,11 2,11 2,1 1,11 1,11 2,11 2,11 1,11 2,1
0

( , ) ( )

(1 ) [ ( ) ]

(1 ) [3 ( ) ( ) ] ,

l

s

l

l

q A z z z z V dx

j EA z z V z z z z V dx

j EI z z V z z z z V z z z z V dx

V z z

 (7.196) 

where the shape design velocity V  = [V1, 0]
T
 and the configuration design velocity V  = 

[0, V2]
T
, from which the convective part of the configuration design in (7.11) is 

calculated, by 

2,1 2

2,1 1

,
V z

V z
V z  (7.197) 

where 1 2[ , ]T= z zz  and 
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2,1

2,1

0
.

0

V

V
V

From the condition that the line component remains straight during the configuration 

change, the second-order derivative of the configuration design velocity V2 disappears in 

the derivative of (7.196). However, the second-order derivative of the shape design 

velocity (i.e., V1,11) remains, and the regularity problem appears, as discussed in Section 

7.3.2.

 The external harmonic loads for the truss/beam design component are axial force 

f1(x1) and lateral forces f2(x1). The load semilinear form in (2.73) is written as 

*

0
( ) ,

l
T dxz f z  (7.198) 

where f(x1) = [f1, f2]
T
 is the complex phasor of the harmonic force. 

 The explicit variation of (7.198) can be derived using (7.177), as 

* * * * * *

1,1 1 2,1 2 1 1 1 2 2 1,1 1 2 2,1 2 1 2,1
0

( ) [( ) ( ) ] .
l

f z f z V f z f z V f z V f z V dxV z  (7.199) 

Plane Elastic Solid/Plate 

The energy sesquilinear form for the plane elastic solid/plate (shell) design component 

shown in Figs. 7.6 and 7.7 is given as 

2 *

*

*
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T s
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 (7.200) 

where h is the thickness of the plate. The flexural rigidity of bending is denoted by D =

Eh
3
/12(1 – 

2
), where  is Poisson's ratio and E is Young's modulus. The plane stress and 

strain resulting from the in-plane loading are denoted as  = [ 11, 22, 12]
T
 and  = [ 11,

22, 2 12]
T
. The curvature vector  = [z3,11, z3,22, 2z3,12]

T
 and the bending stiffness matrix C

b
 is defined in (3.40). 

 The explicit variation of the energy sesquilinear form in (7.200) with respect to 

configuration design variation is obtained using (7.174), as 
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(7.201)

where the convective term of the configuration design can be obtained from (7.18) and 

(7.19), as 

3,1 3

3,2 3

3,1 1 3,2 2

,

V z

V z

V z V z

V z  (7.202) 
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where 1 2 3[ , , ] ,T= z z zz  and 

3,1

3,2

3,1 3,2

0 0

0 0 ,

0

V

V

V V

V

and the in-plane, shape design velocity is given by 1 2[ , ]s

TV VV . Since the surface 

remains flat during the configuration change, the second-order derivatives of the 

transverse design velocity V3 vanish. However, the higher-order derivatives of the shape 

design velocity do not vanish. Thus, the regularity problem on the boundary appears, as 

discussed in Section 7.3.2. 

 The semilinear form of loads shown in Figs. 7.6 and 7.7 is 

*( ) ,
T

s

sdz z f  (7.203) 

where f (x) = [f1, f2, f3]
T
 are the complex phasors of the harmonic body force or external 

load on the structural component. For simplicity, the traction force along the structural 

boundary is not considered. 

 With respect to shape and configuration design variation, the explicit variation of the 

load semilinear form in (7.203) is obtained using (7.177), as 

* *

* * * *

3 1 1 3 3,1 3 2 2 3 3,2

( ) [ ]
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T T

s ss
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s

s

div d
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V z z fV z f V
 (7.204) 

In (7.204), it is assumed that 0f . Since the first integral in (7.204) is the contribution 

from shape design, the vectors in the first integral are two-dimensional. 

Interface

The coupling effect between the acoustic medium and the structural surface in harmonic 

motion is given by the sesquilinear forms in (2.78) and (2.79), which are the functionals 

in integral form over the interface 
s
. Since it is assumed that the surface design 

component is flat in configuration design sensitivity analysis, the configuration design 

variation for the interface may be defined as an in-plane shape variation and a rotation of 

the surface. The explicit variations of interface sesquilinear forms with respect to the 

configuration design variation are obtained using (7.175) and (7.176), as 

*( , ) [ ( )]
T

ss

sp p div dV z z V n n V  (7.205) 

and

2 *( , ) [ ( )] ,ss

T sp p div dV z z V n n V  (7.206) 

where 1,1 2,2( )sdiv V VV  for the structural component. If the flat surface structural 

component is in contact with the acoustic medium, and the local coordinate system fixed 

in the structure is used, then the normal vector n can be given as 

[0, 0, 1] .Tn  (7.207) 

Using (7.207) and V z in (7.202), (7.205) and (7.206) can be rewritten as
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* * *

1 3,1 2 3,2 3 1,1 2,2( , ) [ ( )]
s

sp p z V z V z V V dV z  (7.208) 

and

2 *

1 3,1 2 3,2 3 1,1 2,2( , ) [ ( )] .
s

sp p z V z V z V V dV z  (7.209) 

As an alternative, the interface can be treated as the boundary of a volume, 
a
. In this 

case, the variations of interface terms can be derived using the shape variation defined in 

Section 6.2, and, if (7.207) is used, the same results as (7.208) and (7.209) are obtained. 

7.4.4 Analytical Example 

The formulation of configuration design sensitivity in previous sections of this chapter 

can be illustrated with an example problem. The design sensitivity formula is derived 

using the adjoint variable method. The process and basic equations in this example are 

also applicable to general structural-acoustic systems. 

 Consider an acoustic cavity with a flexible wall, as shown in Fig. 5.23. As a design 

variation, the configuration of the system is changed, that is, the shape of the cavity and 

the shape and orientation of the panel are changed as shown in Fig. 7.22. The variational 

state equation of harmonic motion of this coupled system is given in (7.169). The panel is 

modeled using the plane elastic solid/plate design component, and the energy sesquilinear 

form q (•,•) is given in (7.200). 

 In this example, the acoustic performance measure is the acoustic pressure at x = x̂ ,

and can be written as 

ˆ ˆ ˆ( ) ( ) , ,
a

a a

p p p dx x x x  (7.210) 

where (•) is the Dirac delta measure, and 
a
 is the three-dimensional domain containing 

the acoustic medium. Equation (7.210) is a simple form of (7.163), the general form of an 

acoustic performance measure. Taking the variation of p,

ˆ ˆ( ) ( ) .
a

a

p p p dx x x  (7.211) 

The adjoint equation is formulated using (7.185), the adjoint equation for the general 

form of the acoustic performance measure, as 

( , ) ( , ) ( , ) ( , )

ˆ( ) , { , } ,

q b

d Qx x
 (7.212) 

where the adjoint response {
*
,

*
} is calculated. Using the state response {z, p} and the 

adjoint response {
*
,

*
}, (7.192) provides the design sensitivity expression as 

( ) [ ( , ) ( , ) ( , ) ( , )],p q b p p pV V V V Vz  (7.213) 

where the variation of the load semi-linear form is given in (7.204), and the variations of 

the sesquilinear forms are given in (7.201), (7.194), (7.208), and (7.209). In (7.213), {z,

p} is the solution to the variational state equation, (7.169), and {
*
,

*
} is the solution to 

the adjoint equation, (7.212). 

 The other performance measure in this example is the displacement of the structure at 

point x̂ . Its mathematical expression is 

3 3
ˆ ˆ( ) ( ) ,

s

s

z z z dx x x  (7.214) 
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where
s
 is the two-dimensional domain of the panel. Equation (7.214) is a simple form 

of (7.166), which is the general form of a structural performance measure. Taking the 

variation of z obtains 

3 3
ˆ ˆ( ) ( ) .

s

s

z z z dx x x  (7.215) 

From the general form of adjoint (7.186), the corresponding adjoint equation is 

3

( , ) ( , ) ( , ) ( , )

ˆ( ) , { , } ,
s

s

q b

d Qx x
 (7.216) 

and from (7.193), the design sensitivity expression is 

( ) [ ( , ) ( , ) ( , ) ( , )],z q b p p pV V V V Vz  (7.217) 

where the variations of the semilinear and sesquilinear forms are given by (7.204), 

(7.201), (7.194), (7.208), and (7.209). In (7.217), {z, p} is the solution to the variational 

state equation, (7.169), and {
*
,

*
} is the solution to the adjoint equation, (7.216). 

 As previously indicated, essentially the state and adjoint equations, (7.169), (7.212), 

and (7.216), have the same form, except for their load terms on the right side. This 

provides efficiency in numerical implementation with FEA, that is, when a single finite 

element model is required to solve state and adjoint equations. Also, the design 

sensitivity formulas in (7.213) and (7.217) are identical, while the adjoint variables are 

obtained from the different adjoint equations, (7.212) and (7.216). 

7.4.5 Numerical Example 

For an example of numerical computation of configuration design sensitivity, consider 

again an acoustic cavity with a flexible wall, shown in Fig. 7.22. As indicated, the shape 

of the cavity will be changed. The edge MN translates to M N  without rotation and 

deformation, that is, it remains parallel to the x2-axis without any change in length. As a 

result, the shape and orientation of the panel will be changed, along with the boundary of 

the acoustic volume in contact with the panel. A linear design velocity field V is assumed 

on the panel 
s
, and the domain velocity field of the acoustic volume 

a
 is obtained 

using the boundary displacement method discussed in Section 13.3 of Chapter 13 [122], 

with V as the boundary velocity field. The distance b of movement of the edge MN of the 

plate is used as a design variable. 

 ABAQUS 4.9 [81] is used for direct frequency analyses of state and adjoint 

equations. Tables 7.9 and 7.10 show the results at load frequencies of 55 and 60 Hz. The 

central finite difference results with ±0.005 m perturbations of the design variable are 

used to check the accuracy of the predicted design sensitivity. Table 7.9 shows the results 

for harmonic acoustic performance measures in pascals (Pa) at the points A1 = (0.5, 0.6, 

0.) and A2 = (0.5, 0.6, 1.5) from Fig. 7.22. Table 7.10 provides data for harmonic 

displacement performance measures in meters (m) at the points S1 = (0.5, 0.6, 0.) and S2 = 

(1/12, 0.2, 0.). In Tables 7.9 and 7.10, the real and imaginary parts of the complex 

phasors are denoted by R and I, respectively, and the magnitude is denoted by D, which 

is the harmonic response amplitude. Table 7.10 shows the design sensitivities of the 

velocity and acceleration amplitudes V and A, as well as the structural displacement. A 

good agreement is obtained between the design sensitivity predictions  and the finite 

differences .
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Figure 7.22. Design perturbation and points of measure. 
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Table 7.9. Configuration design sensitivity of cavity with flexible wall 

acoustic responses
*
.

Frequency Location  (b– b) (b+ b) / (%)

  R –.2354E+1 –.2342E+1 0.6060E–2 0.6723E–2 110.9 

55 Hz A1 I 0.4320E+0 0.4424E+0 –.5231E–2 –.5300E–2 101.3 

  D 0.2393E+1 0.2383E+1 –.5000E–2 –.5634E–2 112.7 

  R 0.1029E+1 0.1109E+1 0.4006E–1 0.4027E–1 100.5 

60 Hz A1 I –.1671E+0 –.1853E+1 –.9064E–2 –.9074E–2 100.1 

  D 0.1042E+1 0.1124E+1 0.4100E–1 0.4121E–1 100.5 

  R 0.1105E+0 0.1180E+0 –.3727E–2 –.3672E–2 98.5 

55Hz A2 I –.2035E–1 –.2238E–1 0.1016E–2 0.1004E–2 98.8 

  D 0.1124E+0 0.1201E+0 –.3850E–2 –.3794E–2 98.5 

  R 0.9989E–1 0.1034E+0 0.1738E–2 0.1769E–2 101.7 

60 Hz A2 I –.1625E–1 –.1730E–1 –.5210E–3 –.5238E–3 100.5 

  D 0.1012E+0 0.1048E+0 –.1800E–2 –.1830E–2 101.7 

 * Unit : Pascal (Pa). 
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7.5 Configuration Design Theory for Curved Structure 

In previous sections, variation in the configuration of the coupled system is decomposed 

into variations in the shape of the acoustic volume, and the shape and orientation of the 

structural components. The material derivative approach is employed to identify the 

effects of design variation. The configuration design sensitivity formulations in previous 

sections are limited to linear geometric perturbation, such that a line component remains 

straight and a surface component remains flat during the design change.  

 However, a structural component with curvature could be a more effective design. 

Thus, a more general theory of the configuration design is required for engineering 

applications. The purpose of this section is to develop a general configuration design 

sensitivity formulation that is not limited to linear geometric perturbation. Development 

of a new design sensitivity analysis method for the configuration design is required to 

avoid the difficulties caused by a C
0
 linear design velocity field. Mathematical models 

with low-order derivatives can be used in the formulation of a design sensitivity analysis 

for beam and plate bending. This will require less regularity in design velocity field. 

Timoshenko beam and Mindlin/Reissener plate theories [123], for example, give second-

order differential equations, and the corresponding variational equations only include 

first-order derivatives of rotation in the integrands. 

7.5.1 Geometric Mapping 

Although the sensitivity formulation in this section is more general than in previous 

sections, it is limited to the structures whose geometry can be mapped into a regular 

parametric domain. Consider a three-dimensional solid structure in domain R
3
 that is 

mapped into the reference domain 
r
. A material point in domain  is denoted by x,

Table 7.10. Configuration design sensitivity of cavity with flexible wall 

structural responses in x3-direction
*
.

Frequency Location  (b– b) (b+ b) / (%)

  R 0.5293E–5 0.5536E–5 –.1215E–6 –.1204E–7 99.1 

  I –.0989E–5 –.0997E–5 –.3820E–7 0.3807E–7 99.7 

55 Hz S1 D 0.5385E–5 0.5638E–5 –.1265E–6 –.1254E–7 99.1 

  V 0.1861E–2 0.1948E–2 –.4370E–4 –.4332E–4 99.1 

  A 0.6431E+0 0.6733E+0 –.1510E–1 –.1497E–1 99.1 

  R 0.4350E–5 0.4542E–5 0.9600E–7 0.9519E–7 99.2 

  I –.7244E–6 –.7778E–6 –.2667E–7 –.2638E–7 98.9 

60 Hz S1 D 0.4410E–5 0.4609E–5 0.9910E–7 0.9825E–7 99.1 

  V 0.1663E–2 0.1737E–2 0.3736E–4 0.3704E–4 99.1 

  A 0.6268E+0 0.6550E+0 0.1408E–1 0.1396E–1 99.1 

  R 0.5454E–6 0.5684E–6 –.1152E–7 –.1146E–7 99.5 

  I –.1001E–6 –.1075E–6 0.3705E–8 0.3656E–8 98.7 

55 Hz S2 D 0.5545E–6 0.5785E–6 –.1200E–7 –.1194E–7 99.5 

  V 0.1916E–3 0.1999E–3 –.4147E–5 –.4125E–5 99.5 

  A 0.6622E+1 0.6909E+1 –.1433E–2 –.1426E–2 99.5 

  R 0.4248E–6 0.4418E–6 –.8503E–8 –.8461E–8 99.5 

  I –.6745E–7 –.7211E–7 0.2331E–8 0.2314E–8 99.3 

60 Hz S2 D 0.4301E–6 0.4477E–6 –.8765E–8 –.8721E–8 99.5 

  V 0.1622E–3 0.1688E–3 –.3304E–5 –.3288E–5 99.5 

  A 0.6113E–1 0.6362E–1 –.1246E–2 –.1240E–2 99.5 

 * Unit : Meter (m). 
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while its mapped point in the reference domain 
r
 is represented by . It is assumed that 

a one-to-one mapping relation exists between x and , such that the following notation is 

valid:

( ; ),x x b  (7.218) 

where x = [x1, x2, x3]
T
 and  = [ 1, 2, 3]

T
. In (7.218), b denotes the design variable that 

determines the structural shape. Examples of mapping relations for line and surface 

components are presented in Section 12.2. Using this notation, the Jacobian matrix of the 

mapping can be represented by 

.i

j

x
J  (7.219) 

If a one-to-one mapping relation is preserved in (7.218), the Jacobian matrix in (7.219) is 

nonsingular, and thus, its inverse J
–1

 exists. All thin structural components can be seen as 

degenerated forms from the solid component. Thus, the relations in (7.218) and (7.219) 

are valid for beam and shell components. 

 Design parameterization of the structural component is related to the perturbation of 

the material point in (7.218). Let the material point x(b; ) be perturbed to the new 

position x (b+ b; ). In such a design change, the design velocity field V( ) is defined 

by

0

( ; )
( ) .

d

d

x b b
V  (7.220) 

Note that the reference coordinate  is independent of design perturbation. Since the 

material point x( ) is parameterized using the reference coordinate, the design velocity 

field V( ) is parameterized in the same way in (7.220).  

 The design velocity field in the three-dimensional space will be applied to structural 

components using the concept of degeneration. As will be shown with the following 

structural components, the design velocity field V( ) does not have to satisfy the 

geometric constraint that is required in the previous configuration design velocity field. 

The original geometry of the beam component, for example, can be perturbed into an 

arbitrary geometry with curvatures. 

Shell Components 

A surface geometry is often used to represent the shell component. More specifically, the 

neutral surface of the shell component is represented by a surface geometry, which uses 

two parametric coordinates ( 1, 2). Thus, a complete three-dimensional coordinate is 

recovered by taking thickness as the third parametric coordinate. Material point 

x( 1, 2, 3) of the shell component in Fig. 7.23 can be represented by 

1 2
1 2 3 1 2 3 1 2

( , )
( , , ) ( , ) ( , ),

2

n t
x x n  (7.221) 

where x
n
( 1, 2) is the coordinate of the neutral surface, t( 1, 2) is the shell thickness, and 

n( 1, 2) is the unit normal vector, which can be calculated from 

1 2

1 2

, ,

1 2

, ,

( , ) .

n n

n n

x x
n

x x
 (7.222) 
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Figure 7.23. A parametric shell component. 

The parameterization of x
n
( 1, 2) is closely related to shape and configuration design 

parameterization. Examples of the parametric representation of the neutral surface are 

presented in Section 12.2. 

 From the parametric representation of shell component in (7.221), the design velocity 

field of the beam component can be obtained as

1 2 3 1 2 3 1 2( , , ) ( , ) ( , ),
2

n t
V V n  (7.223) 

where V
n
( 1, 2) is the design velocity field at the neutral curve, and t is the perturbation 

of the thickness. The first term on the right side of (7.223) represents the shape and 

configuration design variable, while the second term denotes the sizing design variable. 

The configuration design velocity field V
n
( 1, 2) does not contain the limitation it had in 

Section 7.1. The curvature of the structure can change during the configuration design 

change.

Example 7.2. Design Velocity Using Geometric Surface. In order to represent the 

neutral surface x
n
( 1, 2), consider the geometric surface given in Fig. 12.27 of Chapter 

12. Using the variables ( 1, 2), the material point on the neutral surface can be 

represented by 

1 2 1 2( , ) ( ) ( ) ( ),n T Tbx U MG M W  (7.224) 

where 3 2 1

1 1 1 1( ) [ , , , 1]T
U  and 3 2 1

2 2 2 2( ) [ , , , 1]T
W . The 4 × 4 matrix G(b) has a 

three-dimensional vector as its component. The expression of matrix G(b) is presented in 

12.20). The parameters ( 1, 2) are independent of the design, and matrix M is constant. 

Thus, from (7.220), design velocity at the neutral curve can be obtained as 

1 2

0

1 2

( )
( , )

( ) ( ) ( ).

n
n

T T

d b b

d

b
b

x
V

G
U M M W

 (7.225) 

n

x
n

S
2

S
1
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For example, when the x-component of p00 is chosen as the design variable b, then matrix 

G/ b has all zero components except for the component at (1,1), which has a value of 

[1, 0, 0]. In that case, the design velocity field V( 1, 2, 3) obtained in (7.223) 

corresponds to one design variable b.

 The advantage of the design velocity computation method in (7.225) is that the design 

variables can be defined on the geometric model. Design engineers often use a computer-

aided design (CAD) tool, which models the structural geometry using a parametric 

representation. In such a case, the design engineer can choose the structural design 

variables from the geometric parameter. 

7.5.2 Degenerated Shell Formulation 

A variational formulation for the shell structure is obtained by degenerating the three-

dimensional solid component in the continuum domain. Given the assumption of a 

constant transverse shear deformation, analytical integration can be performed through 

the thickness coordinate. 

 The strain tensor in linear elasticity can be expressed as 

,

1
( ) ( ),

2

ji
ij i j

j i

zz
sym z

x x
z  (7.226) 

where sym( ) denotes the symmetric part of the tensor, and the subscript after the comma 

represents the derivative with respect to the spatial coordinate. If the parametric 

coordinate introduced in the previous section is used to represent the strain tensor in 

(7.226), then we have 

11
( ) ,

2

ji m m i
ij mj

m j m i m

zz z
sym J

x x
z  (7.227) 

where the summation rule is used for the repeated indices. 

 The variational formulation for the structure can be obtained either from the principle 

of virtual work, or from the principle of minimum potential energy [124]. If we let the 

structural domain be R
3
, and the corresponding parametric domain be 

r
R,

r

R
2
, then the energy bilinear form for linear elasticity can be obtained as 

1 1

1 2 3

( , ) ( ) ( )

,
r

ij ijkl kl

ji
mj ijkl ni

R
m n

a C d

zz
sym J C sym J d d d

z z z z

J
 (7.228) 

where z  denotes the displacement variation or the virtual displacement, Cijkl the fourth-

order constitutive tensor, 
r
 the ( , ) plane, and J  the determinant of the Jacobian in 

(7.219).

 To further simplify the structural energy form, assume that displacement varies 

linearly in the thickness direction. This assumption yields a similar result as a 

Mindlin/Reissner shell formulation described in Section 3.1.3 [125] and [126], in which 

the flat cross section remains flat during deformation. Accordingly, the displacement is a 

linear function of 3 and can be represented by the addition of two terms, as 

1 2

1 2 3 1 2( , ) ( , ),z z z  (7.229) 
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where z
1
( 1, 2) represents the displacement of the neutral surface (the membrane 

deformation) and z
2
( 1, 2) denotes the rotation of the cross section (the bending and 

shear deformation). In the shear deformable curved shell structure in Fig. 7.23, the 

second term in (7.229) can be represented by two rotational deformations as 

2 1 2

1 2( , ) ( ),
2

t
z S S  (7.230) 

where

1

1

,1

,

n

n

x
S

x
 (7.231) 

2 1,S n S  (7.232) 

and  and  are two rotational deformations in the S
2
 and S

1
 direction, respectively (see 

Fig. 7.23). 

 In addition, since the dimension of the thickness direction is much smaller than the 

dimensions of two tangential directions, Jacobian J can be presumed to be a function of 

only 1 and 2 coordinates. Accordingly, given the linear property of the engineering 

strain, the strain tensor in (7.227) can also be represented by the addition of two terms: 

1 2

3( ) ( ) ( ),ij ij ijz z z  (7.233) 

where

1
1 1 2 1

3( ) i
ij mj i j

m

z
sym J z Jz  (7.234) 

2
2 1( ) i
ij mj

m

z
sym Jz  (7.235) 

are the membrane-shear strain and bending strain, respectively. Unlike the 

Mindlin/Reissner plate formulation, the membrane and transverse shear strains are 

coupled in (7.234). 

 It is clear from the aforementioned assumptions that the energy bilinear form in 

(7.228) is a quadratic function of the parametric coordinate 3. After analytically 

integrating (7.228) over the interval 3  [–1, 1], the energy bilinear form is simplified to 

1 1

2 22
3

( , ) 2 ( ) ( )

( ) ( ) .

r

r

r

ij ijkl kl

r

ij ijkl kl

a C d

C d

z z z z J

z z J
 (7.236) 

Note that the coupled terms of 1 ( )ij z  and 2 ( )ij z  vanish since they are odd functions of 3.

The degenerated energy bilinear form in (7.236) is still based on the continuum domain, 

and domain discretization has not yet been introduced. Since the analytical integration is 

already carried out over parametric coordinate 3, only domain discretization of the 

neutral surface is necessary. 

 If a conservative system were considered, then the applied load would be independent 

of deformation. If f
 B

 is the body force per unit volume, then the load linear form can be 

written as 
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( ) .T B dz z f  (7.237) 

After introducing the parametric coordinate and integrating (7.237) along the 3-axis, we 

obtain

( ) 2 .
r

T B rdz z f J  (7.238) 

For simplicity, the traction force is not considered in (7.238). 

 The structural equilibrium equation can be obtained from (7.236) and (7.238). For a 

given f
 B

 and h, the structural variational equation is 

( , ) ( ), .a Zz z z z  (7.239) 

The continuum form of variational equation (7.239) will be discretized in the following 

section using the meshfree method. 

7.5.3 Material Derivative Formulas 

Since the parametric coordinate is independent of design perturbation, the order of 

differentiation between the material derivative and parametric derivative can be 

interchanged. However, since the Jacobian matrix in (7.219) relates the physical 

coordinate to the parametric coordinate, it depends on the design. The material derivative 

of the Jacobian matrix can be obtained as 

0 0

( ) ,
d d

d d

x V
J  (7.240) 

and the material derivative of its inverse can also be obtained, by using the fact of JJ
–1

 = 

I, as 

1 1

0 0

( ) .
d d

d d

V
J J

x x
 (7.241) 

Finally, the determinant of the Jacobian matrix depends on the design, whose material 

derivative can be obtained from direct calculation [127] as 

0

.i

i

Vd
div

d
J J V J  (7.242) 

 A performance measure for the shell structure is usually defined on the neutral 

surface, which can be transformed into the parametric domain. After this transformation, 

a structural performance measure may be written in integral form as 

( , )

( , ) .
r

r

g u d

g u d

z

z J
 (7.243) 

The function g is assumed to be continuously differentiable with respect to its arguments. 

The functional form of (7.243) represents a variety of structural performance measures. 

For example, the structural volume can be written with g depending only on u; the 

averaged stress over a subset of a shell can be written in terms of u and z; and the 

displacement at a point can be formally written using the Dirac delta measure and z in the 

integrand.



408 7. Configuration Design Sensitivity Analysis  

 Since the parametric domain 
r
 is independent of the design perturbation, the integral 

in (7.243) is interchangeable with the design differentiation. Thus, differentiating the 

functional with respect to design u yields 

0

, ,

, ,

( ( ), )

( )

( ) ,

r

r

r

r

d
g d

d

g gdiv g d

g gdiv g d

z b

z b

z x V b b J

z V b J

z V b

 (7.244) 

where the design velocity V corresponds to the design b. The chain rule of differentiation, 

along with the definition in (7.242), has been used to calculate the integrand in (7.244). 

The objective here is to obtain an explicit expression of  in terms of b, which requires 

rewriting the first term under the integral on the right side of (7.244) explicitly in terms of 

b. Two methods are developed for this purpose, the direct differentiation and the adjoint 

variable method.  

7.5.4 Direct Differentiation Method 

The direct differentiation method computes the first integrand on the right side of (7.244) 

by directly computing z  from the structural (7.239). Since this equation satisfies for all 

design ranges, we can differentiate it with respect to the design variable. To that end, the 

structural bilinear form is differentiated as 

0

( , ) ( , ) ( , ),
d

a a a
d

Vz z z z z z  (7.245) 

where ( , )a z z  is the same as in (7.236) by substituting z into z , and provides the 

implicitly dependent terms on the design through z . ( , )aV z z  represents the explicitly 

dependent terms on the design. 

 The explicit expression of ( , )aV z z  depends on the shell formulation used in the 

structural problem, which will be derived as follows. The material derivative for the 

membrane-shear strain tensor can be obtained from its definition in (7.234) and from the 

formula in (7.241) as 

1
1 1 2 1

3

0 0

1 1
2 1 2 1

3 3

1 1

( ( ))

( ) ( ).

i
ij mi i j

m

i i m m
i j i m

j m j j

V

ij ij

zd d
sym J z J

d d

z z V V
sym z J sym z J

x x x x

z

z z

 (7.246) 

In (7.246), 1 ( )ij z  implicitly depends on the design through z , while 1( )V

ij z  represents the 

explicitly dependent part that can be computable from both the given analysis result z and 

the design velocity V. Similarly, the material derivative for the bending strain becomes 

2 1
2

0

2 2

( ( ))

( ) ( ).

i i m
ij

j m j

V

ij ij

z z Vd
sym sym

d x x x
z

z z

 (7.247) 
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 By using (7.242), (7.246), and (7.247), the explicitly dependent term of the structural 

energy form ( , )aV z z  can be calculated as 

1 1

1 1

1 1

2 22
3

2 22
3

2 22
3

( , ) 2 ( ) ( )

2 ( ) ( )

2 ( ) ( )

( ) ( )

( ) ( )
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r

r

r

r

r

r

V r

ij ijkl kl

V r

ij ijkl kl

r

ij ijkl kl

V r

ij ijkl kl

V r

ij ijkl kl

r

ij ijkl kl

a C d

C d

C div d

C d

C d

C div d

V z z z z J

z z J

z z V J

z z J

z z J

z z V J

 (7.248) 

Even though (7.248) looks complicated, every term appears systematically. Note that 

( , )aV z z  is linear in b.

 The load linear form in (7.238) is also differentiable with respect to the design. More 

specifically, for design independent f
B
, the explicitly dependent term of the load linear 

form is 

0

( ) 2

( ).

r

T B rd
div d

d

V

z z f V J

z

 (7.249) 

Since a conservative load is assumed, the variation of the load linear form does not have 

any implicitly dependent term. As in the case of the energy bilinear form, the variation of 

the load linear form is linear in b. If the concentrated, constant load is applied to the 

structure, then the variation of the load linear form in (7.249) vanishes. 

 For the direct differentiation method of design sensitivity analysis, one may take the 

variation of both sides of (7.239), and use (7.248) and (7.249) to obtain the design 

sensitivity equation, as 

( , ) ( ) ( , ),a a Z.V Vz z z z z z  (7.250) 

Presuming that state variable z is known as the solution to (7.239), (7.250) is a variational 

equation for the first variation z  and has the same energy bilinear form. Since (7.250) 

can be solved directly for z , it is called the direct differentiation method compared with 

the adjoint variable method, which will be discussed in the next section. Noting that the 

right side of (7.250) is a linear form in Zz , and that the energy bilinear form on the left 

side is Z-elliptic, (7.250) has the unique solution z  [128]. The fact that there is a unique 

solution agrees with the previously stated observation that a design derivative exists for 

the solution to the state equation. After solving (7.250) for z , the sensitivity of  can be 

calculated from (7.244). 

7.5.5 Adjoint Variable Method 

An adjoint variable method computes the implicitly dependent term, that is, the first 

integral on the right side of (7.244), by defining an adjoint equation. The adjoint equation 

is introduced by replacing z  in (7.244) with a virtual displacement , and by equating the 

terms involving  in (7.244) to energy bilinear form ( , )a , yielding the adjoint 

equation for the adjoint variable
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,( , ) , ,
r

ra g d Zz J  (7.251) 

where a solution Z is desired. To take advantage of the adjoint equation, (7.251) may 

be evaluated at z  since z Z, to obtain 

,( , ) ,
r

ra g dzz z J  (7.252) 

which is the term in (7.244) that is now needed in order to explicitly write it in terms of 

u. Similarly, the identity of (7.250) may be evaluated at z , since both are in Z, to 

obtain

( , ) ( ) ( , ).a aV Vz z  (7.253) 

Recalling that energy bilinear form a (•,•) is symmetrical in its arguments, the left side of 

(7.252) and (7.253) are equal, thus yielding the desired result 

, ( ) ( , ),
r

rg d az V Vz z  (7.254) 

where the right side is linear in b, and can be evaluated once state variable z and adjoint 

variable  are determined as solutions to (7.239) and (7.252), respectively. Substituting 

this result into (7.244), the explicit design sensitivity of  is 

,( ) ( , ) ( ) ,
r

r

ua gdiv g u dV V z V J  (7.255) 

where the form of the first two terms on the right depends on the specific problem under 

investigation. 

 These direct differentiation and adjoint variable methods provide unified design 

sensitivity analysis for the shell structure with respect to the sizing, shape, and 

configuration design variables, and using the concept of degeneration from the solid 

structure. The design velocity field is defined on the solid component level, and is then 

degenerated by following the same degeneration process for the shell structure. 

7.5.6 Numerical Example 

During the process of configuration and shape design change, the conventional finite 

element method often has a mesh distortion problem, that is, the regular mesh shape at 

the original design becomes distorted through the optimum design process, and the 

reliability of the analysis results is reduced for the new design. The meshfree methods 

that were developed recently can be used to relieve the mesh dependence of the analysis 

result. In the meshfree method, the structural domain is discretized, not by the finite 

element, but by a set of particles. The state variable is interpolated using the consistency 

condition between particles, and the domain integration is performed at each particle. In 

this section, a numerical example using the meshfree method is presented. Even though 

the meshfree method uses different interpolation and domain integration, the continuum-

based design sensitivity theory in the previous sections can still be applied. For a detailed 

theory and application of the meshfree method, refer to Liu et al. [129] and references 

therein. For the meshfree discretization of the design sensitivity equation, refer to Kim et 

al. [130] and [131]. 

 Consider a vehicle roof structure, as shown in Fig. 7.24. Only half of the roof 

structure is modeled using a single spline surface with a PATRAN geometric modeler 

[132]. A total of 347 meshfree particles are distributed on the surface, which corresponds 
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to 1735 degrees-of-freedom. A linear elastic material property is assumed with a Young’s 

modulus E = 26,000 MPa, and a Poisson’s ratio = 0.3. A constant thickness t = 2 mm is 

used. To evaluate the bending rigidity, three point loads are applied at each pillar 

location, as described in Fig. 7.24 with f1 = 100 kN, f2 = 200 kN, and f3 = 100 kN. 

Figure 7.24. Meshfree discretization of a vehicle roof model. 

Figure 7.25. Meshfree analysis results (stress plot). 

f1

f2

f3
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 The first step in a meshfree analysis is to compute the nodal area. For a given set of 

particle distributions, a Voronoi diagram [133] can be used to compute the nodal area, 

which will act as the integration weight. The meshfree shape function is computed in the 

parametric domain by imposing the reproducing condition. The domain integration is 

carried out at each particle point in order to construct the stiffness matrix. After imposing 

the essential boundary condition, the linear matrix equation is solved by using the 

LAPACK package [134]. For design sensitivity analysis purposes, the factorized stiffness 

matrix is retained. Figure 7.25 plots the von Mises stress contour at the shell surface. 

 All components of the geometric matrix in (7.224) can be treated as 

shape/configuration design variables. In this specific example, the vertical movement of 

the tangent vectors is considered as a design variable, such that the curvature of the roof 

can be changed. Figure 7.26 illustrates the definitions of geometric matrix G, while Table 

7.11 shows the design variables of the roof structure. A total of eight design variables are 

chosen for design sensitivity analysis purposes, which include eight shape/configuration 

designs.

Figure 7.26. Design parameterization of the roof structure. 
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00p
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Table 7.11. Design parameterization. 

ID Design Description 

1 Vertical movement of 00p

2 Vertical movement of 10p

3 Vertical movement of 01p

4 Vertical movement of 11p

5 Vertical movement of 00p

6 Vertical movement of 10p

7 Vertical movement of 01p

8 Vertical movement of 11p
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Table 7.12. Accuracy of sensitivity results 

Type ( ⁄ ) 100 

Volume 1.51033E+06 1.95212E–01 1.95180E–01 100.02 

169 1.34898E+02 9.43339E–03 9.43429E–03 99.99 

182 2.17291E+02 8.96848E–03 8.96976E–03 99.99 

195 1.35578E+02 7.27985E–03 7.28063E–03 99.99 

17 1.21676E+02 1.32524E–03 1.32552E–03 99.98 

31 1.09005E+02 2.88250E–03 2.88289E–03 99.99 

301 8.66971E+01 2.66191E–03 2.66156E–03 100.01 

302 7.34885E+01 1.72660E–03 1.72636E–03 100.01 

(a) u1,   = 1.602E–02 

Type ( ⁄ ) 100 

Volume 1.51033E+06 2.08691E–01 2.08665E–01 100.01 

169 1.34898E+02 6.58233E–03 6.58289E–03 99.99 

182 2.17291E+02 7.80610E–03 7.80689E–03 99.99 

195 1.35578E+02 7.50906E–03 7.50947E–03 99.99 

17 1.21676E+02 2.64271E–04 2.64279E–04 100.00 

31 1.09005E+02 7.37644E–04 7.37657E–04 100.00 

301 8.66971E+01 4.77743E–03 4.77783E–03 99.99 

302 7.34885E+01 1.06057E–03 1.06138E–03 99.92 

(b) u3,   = 1.354E–02 

Type ( ⁄ ) 100 

Volume 1.51033E+06   0.00000E+00   0.00000E+00 0.00 

169 1.34898E+02 –2.12311E–03 –2.12310E–03 100.00 

182 2.17291E+02 –3.52794E–03 –3.52793E–03 100.00 

195 1.35578E+02 –2.11374E–03 –2.11373E–03 100.00 

17 1.21676E+02 –1.37942E–04 –1.37941E–04 100.00 

31 1.09005E+02   1.94032E–05   1.94029E–05 100.00 

301 8.66971E+01 –1.72318E–04 –1.72319E–04 100.00 

302 7.34885E+01 –9.10049E–05 –9.10035E–05 100.00 

(c) u10,   = 3.793E–03 

Type ( ⁄ ) 100 

Volume 1.51033E+06   0.00000E+00   0.00000E+00 0.00 

169 1.34898E+02   3.98915E–04   3.98709E–04 100.05 

182 2.17291E+02   6.15776E–04   6.15426E–04 100.06 

195 1.35578E+02   3.67303E–04   3.66965E–04 100.09 

17 1.21676E+02 –4.93757E–05 –4.93850E–05 99.98 

31 1.09005E+02 –2.60711E–05 –2.60801E–05 99.97 

301 8.66971E+01   3.88180E–04   3.87581E–04 100.15 

302 7.34885E+01   1.02153E–03   1.02096E–03 100.06 

(d) u13,  = 1.853E–05 
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 Since the adjoint variable method is more efficient than the direct differentiation 

method for many design problems, the former method is used for this example. Eight 

performance measures are chosen that include the structural volume and the seven von 

Mises stresses. Since the volume performance measure does not require any adjoint 

solution, seven adjoint equations are solved by using a factorized stiffness matrix from 

structural analysis. Again, it is important to stress that the number of adjoint equations is 

related to the number of performance measures, rather than the number of design 

variables. The computational costs of design sensitivity analysis include the computation 

of adjoint load, the solution procedure of adjoint equation (7.251), and the evaluation of 

the sensitivity in (7.255). A very efficient design sensitivity computation is achieved, 

which is about 2.5% of the total structural analysis cost. This kind of efficiency can be 

obtained since the proposed method does not require any stiffness matrix derivative, so 

that the adjoint equation is solved simply, using a substitution of the factorized matrix. 

 The accuracy of the design sensitivity results is compared with the finite difference 

results in Table 7.12. The first column in Table 7.12 denotes the type of performance 

measure (volume and stresses), while the second column represents their values in the 

original design. It is well known that the selection of the perturbation size  is a major 

difficulty in the finite difference method. Given the fact that the solution has an accuracy 

of at least six numerical digits, perturbation size is chosen such that the performance 

change  is 10
–6

 times the performance value, as shown in the third column. The fourth 

column represents the predicted design change using the method proposed by (7.255). 

This predicted design change is compared with the finite difference  in the last 

column. Very accurate sensitivity results are obtained, as shown throughout Table 7.12. 



Appendix

A.1 Matrix Calculus Notation 

In dealing with systems that are described by many variables, it is essential that a precise 

matrix calculus notation be employed. To explain the notation used in this text, let x be a 

k vector of real variables (i.e., k × 1 column vector), y be an m vector of real variables, 

a(x,y) be a scalar differentiable function of x and y, and g(x,y) = [g1(x,y), g2(x,y), …, 

gn(x,y)]
T
 be an n vector of differentiable functions of x and y. Using i as the row index 

and j as the column index, define 

,

1j k

a a
a

x
x

x
 (A.1) 

,
i

j n k

g

x
x

g
g

x
 (A.2) 

2

, , , ,[ ] [ ] .
T

T T

i j k m

a a
a a a

x y
xy x x y

y x y
 (A.3) 

 Note that the derivative of a scalar function with respect to a vector variable in (A.1) 

produces a row vector. This is one of the few vector symbols in the text that is a row 

vector, rather than the more common column vector. In order to take advantage of this 

notation, it is important that the correct vector definition of matrix derivatives be used. 

Note also that the derivative of a vector function with respect to a vector variable in (A.2) 

produces a matrix. No attempt is made here to define the derivative of a matrix function 

with respect to a vector variable. Similarly, the second derivative of a scalar function with 

respect to a vector variable can be defined as in (A.3), but the second derivative of a 

vector function with respect to a vector variable is not defined. 

 As an example of the use of this matrix calculus notation, let x and y be small 

perturbations in x and y. The total differential formula of calculus [50] gives 

1 1

, ,

( , ) ( , )

.

k k

j j

j jj j

a a a

a a
x y

x y

a a

a ax y

x x y y x y

x y
x y

x y

 (A.4) 

This is just one example of an application of matrix calculus which avoids cumbersome 

summation notation. Note that both the terms in (A.4) are scalars, since a,x is a row vector 

and x is a column vector. It is clear that 

, ,a a ax yx y



416  Appendix  

since the left side is a scalar and the two terms on the right side are k × k and m × m

matrices, respectively. 

 Similarly, matrix calculus extensions of ordinary calculus rules can be derived, such 

as the product rule of differentiation. For example, if A is an n × n constant matrix, then 

1

1

,

( ( , ))
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n

il l
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A g
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Ag x y
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A Ag
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 (A.5) 

 A second example, which provides a result that might not be expected, involves two 

n-vector functions h(x,y) and g(x,y). By careful manipulation, 
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 (A.6) 

To see that (A.6) is reasonable, note that g
T
h = h

T
g, and that, in fact, interchanging g and

h does not change either side of (A.6). Note also that what might have intuitively 

appeared to be the appropriate product rule of differentiation is not even defined, much 

less valid, that is, 

( ) .

T

T Tg h
g h h g

x x x

 In boundary-value problems, derivatives with respect to the independent variable x

R
3
 (or R

2
) often arise. In these instances, it is convenient to use the gradient notation 

1 2 3

( ) ,

T

a a a
a

x x x
x  (A.7) 

that is, 

, .Ta a x  (A.8) 

Very often in structural mechanics, quadratic forms x
T
Ax (x R

n
) arise, where A is an n

× n constant matrix, presumed initially not to be symmetric. Using the foregoing 

definitions,
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,
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( ).
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 (A.9) 

In particular, if A is symmetric, 

( ) 2 .T T
x Ax x A

x
 (A.10) 

 If a scalar valued function a(x) (x R
n
) is twice continuously differentiable, the first-

order approximation of (A.4) can be extended to the second-order. Using Taylor’s 

formula [50], we have 
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 (A.11)

A.2 Basic Function Spaces 

The purpose of this section is to summarize the definitions and properties of function 

spaces used throughout the text. The mathematical validity of developments presented in 

the text rest upon fundamental results associated with these spaces, which in many cases 

are easy to prove. Basic ideas are discussed in this section to assist the engineer in 

understanding the nature of the spaces and their properties, with references to the 

literature given for proofs. 

A.2.1 R
k; k-Dimensional Euclidean Space 

The simplest space encountered in multidimensional analysis is k-dimensional Euclidean 

space, denoted here as R
k
. This is actually a space of column matrices, rather than a 

function space. The space R
k
 is quite important in its own right and serves to introduce 

basic ideas of vector spaces and their properties, prior to the introduction of function 

spaces. The k-dimensional Euclidean space is defined as 

1[ ... ] | real, 1, ..., .k T

k iR x x x i kx  (A.12) 

Note that R
k

is simply the collection of all k × 1 matrices (column vectors) whose 

components are real numbers. 

 In order to be useful for analyses of finite dimensional structural systems, algebra 

must be defined on this space to allow for systematic manipulation. As with matrix 

notation, the addition of two vectors is defined as 

1 1[ ... ] ,T

k kx y x yx y  (A.13) 



418  Appendix  

and multiplication of a vector x by a scalar  is defined as 

1[ ... ] .T

kx xx  (A.14) 

These operations have the properties 

x y y x  (A.15) 

( ) ( ).x y z x y z  (A.16) 

There is a unique zero vector 0 = [0, 0, …, 0]
T
 such that 

,0 x x  (A.17) 

and there is also a unique negative vector x such that 

( ) .x x 0  (A.18) 

Additional properties of the operations are 

( )x y x y  (A.19) 

( )x x x  (A.20) 

( ) ( )x x  (A.21) 

1 ,x x  (A.22) 

where x and y are arbitrary vectors in R
k
 and  and are arbitrary real constants. 

 The set of vectors R
k

defined in (A.12), with the operations of addition and 

multiplication by a scalar defined by (A.13) and (A.14) that satisfy (A.15) through (A.22) 

constitute a vector space. As will be seen in Sections A.2.2 through A.2.6, sets of 

functions that have properties of addition and multiplication by a scalar also obey the 

properties of (A.15) through (A.22) and define a function space, which is a vector space. 

The value in such a definition is that functions may be dealt with using an algebra that 

parallels the arithmetic normally used in the manipulation of column vectors. 

 Having defined the algebra on the vector space R
k
, it is now helpful to define the 

geometric properties that extend the usual ideas of scalar product and length of a physical 

vector. The scalar product of two vectors in R
k

is defined as 

( , ) Tx y x y  (A.23) 

Much in the same way as the properties of (A.15) through (A.22) for vector addition and 

multiplication by a scalar, it may be verified that the scalar product defined by (A.23) 

satisfies the following set of relations: 

( , ) ( , )x y y x  (A.24) 

( , ) ( , ) ( , )x y z x y x z  (A.25) 

( , ) ( , )x y x y  (A.26) 
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( , ) 0x x  (A.27) 

( , ) 0 implies 0,x x x  (A.28) 

where x, y, and z are arbitrary vectors in R
k

and  is an arbitrary scalar. 

 Having defined a scalar product of two vectors, the norm of a vector in R
k

may be 

defined as 

1/ 2( , ) .x x x  (A.29) 

It is not difficult to verify that the norm defined by (A.29) has the following properties: 

x x  (A.30) 

( , )x y x y  (A.31) 

,x y x y  (A.32) 

where x and y are arbitrary vectors and  is an arbitrary scalar. The norm of a vector is 

the concept of length of a physical vector and allows for an extension of the idea of two 

vectors x and y being close to one another if the norm of their difference ||x – y|| is small. 

 It is interesting to note that if the norm is defined by (A.29) in terms of a scalar 

product, it automatically has the properties of (A.30) through (A.32). There are situations 

in which a norm can be defined on a vector space without any scalar product. In such a 

case, an abstract norm is defined as a functional operating on a vector, having the 

properties of (A.30) through (A.32) and ||x|| > 0 for all x  0. This last property follows 

automatically from the definition of (A.29), using the scalar product properties of (A.27) 

and (A.28). For the case in which no scalar product exists, this latter property must be 

verified in order to assure properties of the norm. 

 In addition to allowing for a definition in which two vectors are close, the norm can 

be used to define convergence of a sequence of vectors {x
i
} (i=1, 2, …) in R

k
as follows: 

lim if and only if lim 0.i i

i i
x x x x  (A.33) 

The concept of convergence in R
k

can be shown to be equivalent to convergence of 

individual components of the vector. This simple property, however, does not carry over 

to infinite-dimensional vector spaces, such as function spaces that are encountered in the 

study of boundary-value problems. 

 A sequence of vectors that cluster near one another as their index i increases is called 

a Cauchy sequence. More precisely, a sequence {x
i
} is a Cauchy sequence if 

,
lim 0.m n

m n
x x  (A.34) 

A vector space for which every Cauchy sequence is convergent to a limit in the space is 

called a complete vector space. It is not difficult to show that R
k
 is a complete vector 

space under this definition. In fact, any vector space that is complete in the norm defined 

by a scalar product is called a Hilbert space. With this definition, R
k

is a Hilbert space. 

 A functional is a mapping from a vector space to a real number. Examples of 

functionals on R
k

include ||x||, and (x, y) for a given y in R
k
. A functional  is said to be a 

linear functional if 
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( ) ( ) ( )x y x y  (A.35) 

( ) ( )x x  (A.36) 

for all x and y in R
k

and all scalars  . A linear functional is said to be bounded, or 

continuous if a positive constant  exists, such that 

( )x x  (A.37) 

for all x in R
k
.

 It is interesting to note that the functional ||x|| is not linear, as is easily verified using 

the properties of (A.30) through (A.32). It can be verified that the functional (x) = (x, y)

for a fixed y in R
k

is linear, using the properties of a scalar product given in (A.25) and 

(A.26). Using (A.31), it can also be seen as bounded. 

 One of the principal reasons that Hilbert spaces are valuable in structural analysis is 

that any bounded linear functional on a Hilbert space has a very special representation, 

defined by the Reisz representation theorem, that is, any bounded linear functional (x)

on R
k

can be represented as 

( ) ( , )x y x  (A.38) 

for some vector y in R
k
. The Reisz representation theorem guarantees the existence of the 

vector y associated with the bounded linear functional . While this theorem may not 

sound like a commonly used idea in mechanics, in fact it is. The concept of generalized 

force in mechanics follows from the Reisz representation theorem, in which the bounded 

linear functional  is the virtual work associated with a virtual displacement x, and the 

vector  is defined as the generalized force of the system. 

 The rather obvious algebra, norm, and convergence properties of the finite-

dimensional vector space R
k

have been formalized in this section in some detail in order 

to prepare for the definition of similar properties in function spaces needed in the study of 

boundary-value problems. The reader unfamiliar with function spaces should recognize 

the similarity between operations and properties of function spaces, and the more 

intuitively clear properties of the finite-dimensional vector space R
k
.

A.2.2 C
m( ); m-Times Continuously Differentiable Functions on 

Consider an open set  in R
k
, with the closure  in the norm of R

k
. Considerations are 

limited in this section and in the text to bounded sets, since most structural applications 

occur on the bounded sets in R
1
 through R

3
. Bounded sets are sets of points whose 

distances from the origin are bounded by some finite constant. Restriction to bounded 

sets has the attractive property that every continuous function on a closed and bounded 

set in R
k
 is bounded. 

 The set of all m-times continuously differentiable functions on a set  is defined as 

the function space

1

| |

1

( )
( ) ( ), is continuous for | | 1, 2, ..., ,

k

m k

jj

k

u
C u x R m

x x

j x
x j  (A.39) 

where j is a vector of indices j = (j1, …, jk) and 1| | k

i ijj . For simplification in the 
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following, the derivative 1| |

1( ) / kjj

ku x xj x  will be denoted simply as | | ( ) /uj jx x . The 

space of m-times continuously differentiable functions on the closed set  is simply 

defined by replacing  in (A.39) by . The space C
m
( ) is viewed at this point simply as 

the collection of all possible m-times continuously differentiable functions defined on the 

set , with no concept of algebra or geometry defined. 

 To make use of the space of m-times continuously differentiable functions, it is 

essential to define the algebra on this space. Consider two m-times continuously 

differentiable functions u and v defined on . The sum of these two functions is defined 

as

( )( ) ( ) ( ),u v u vx x x  (A.40) 

which must hold for all x , that is, the addition of functions is carried out in the 

natural way of adding their values at points in physical space. Similarly, a scalar  times 

a function u is defined as 

( )( ) ( )u ux x  (A.41) 

for all x .

 By defining the zero function as 

0( ) 0x  (A.42) 

and the negative of a function as 

( )( ) ( )u ux x  (A.43) 

it is easy to show that properties of (A.15) through (A.22) follow for addition and 

multiplication of functions defined in (A.40) and (A.41). Before concluding that C
m
( ) is 

a vector space, however, it must be demonstrated that given two functions u and v in the 

space and a scalar , u + v and u are again in the space, that is, they are m-times 

continuously differentiable functions. This conclusion follows directly from the following 

elementary properties of differentiation: 

| | | | | | | |( ) ( )
[( )( )] [ ( ) ( )]

u v
u v u v

j j j j

j j j j

x x
x x x

x x x x
 (A.44) 

| | | | | |( )( ) ( ) ( )
.

u u uj j j

j j j

x x x

x x x
 (A.45) 

Since the sum of two continuous functions and the product of a scalar times a continuous 

function are continuous, the space C
m
( ) is closed under the operations of addition and 

multiplication by a scalar. It is therefore a vector space. The elements of this space may 

now be viewed as vectors in the same sense that column matrices are viewed as vectors in 

R
k
. It should not be too surprising that this concept of a vector does not correlate 

completely with the physical idea of a vector in three-dimensional space as something 

with magnitude and direction, since for a k larger than 3, these concepts break down even 

for R
k
.

 It is possible to directly define a norm on the space C
m
( ) as 

| |

0 | |

( )
max .mC

m

u
u

j

jx
j

x

x
 (A.46) 
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It can be verified that this is a norm with the properties given in (A.30) through (A.32), 

and that || || 0mC
u  if u  0. In fact, it can be shown that the space C

m
( ) is complete in 

this norm, but that this norm is not generated by any scalar product. Therefore, the space 

C
m
( ) is a complete vector space with a norm, but it is not a Hilbert space. Such spaces 

are called Banach spaces and have a rather rich mathematical theory. The distinction 

between Banach and Hilbert spaces, however, will not be required in the analysis 

presented in this text, since an adequate theory can be developed using Hilbert space 

properties almost exclusively. 

 A final space of continuously differentiable functions that is often encountered in 

applications is the space of functions having all derivatives continuously differentiable, 

that is, 

( ) ( ), ( ) for all .mC u u C mx x  (A.47) 

It is somewhat remarkable and nontrivial to prove that C ( ) is dense in most of the 

function spaces dealt with in this text, many of which are composed of functions that 

have no continuous derivatives. To say that one space is dense in another means that the 

first space is a subset of the second and that every function in the second can be 

approximated arbitrarily closely in its own norm by a function in the first space. 

A.2.3 L
2( ); The Space of Lebesgue Square Integrable Functions 

The concept of the Lebesgue integral is a technical extension of the well-known Riemann 

integral introduced in basic calculus and used throughout the theory of structural 

mechanics. The distinction between the definitions of the two integrals is illustrated in 

Fig. A.l. In defining the Riemann integral of a function, the horizontal axis is partitioned 

by a grid of points and the sum of the areas of the rectangles shown in Fig. A.1(a) 

approximates the area beneath the curve defined by the function. It is shown 

mathematically that for certain classes of regular functions, as the spacing of the grid 

points approaches zero and hence approaches an infinite number of grid points on the 

horizontal axis, the sum of the areas converges and is defined as the value of the Riemann

integral.

 In contrast, the Lebesgue integral is defined by placing a grid of points on the vertical 

axis and drawing a set of horizontal lines that cut the graph of the function being 

integrated, as shown in Fig. A.1(b). The collection of subintervals on the horizontal axis 

is associated with a range of values of the function between yi and yi+1, and a lower bound

(a) Riemann Integral    (b) Lebesgue Integral 

Figure A.1. Integral of a function. 

a xi xi+1 b
x

y

a

yi

yi+1

b
x

y
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on the contribution of the area beneath the curve over these subintervals is calculated as yi

times the sum of the lengths of these intervals. Summing over all grid segments along the 

vertical axis yields a lower bound on the area beneath the curve defined by the function. 

A limit is then taken as the spacing of grid points on the vertical axis approaches zero. 

This limit, if it converges, is called the Lebesgue integral of the function and the function 

is declared to be Lebesgue integrable [35] and [135]. 

 The value of the Lebesgue integral is equal to the value of the Riemann integral if the 

latter exists for the function under consideration. However, there are pathological 

functions that do not have Riemann integrals but which do have Lebesgue integrals. 

Therefore, the Lebesgue integral is an extension of the Riemann integral, with values 

coinciding for any function that has a Riemann integral. The mathematician exerts 

considerable effort in defining functions that have a Lebesgue but not a Riemann integral. 

For the purposes of this text, such studies in pathology are not necessary. The structural 

engineer should feel quite comfortable that virtually any function he encounters will have 

a Riemann integral, which must agree with the value of the Lebesgue integral. 

 Nevertheless, the power of the Lebesgue integral should not be dismissed, since it 

provides a powerful tool for establishing the mathematical properties of function spaces 

in which engineers regularly work. Of particular value are properties of the Lebesgue 

integral in which sequences of functions that are Lebesgue integrable and satisfy certain 

basic properties have limits that are also Lebesgue integrable. It is shown in the 

mathematical literature that many sequences of functions that have Riemann integrals 

either fail to converge or converge to functions for which the Riemann integral is not 

defined. Thus, if the completeness of function spaces is of concern, then the Lebesgue 

integral is an essential tool. In particular, using the principle of minimum total potential 

energy of structural mechanics, Lebesgue integration theory can predict exactly what 

properties the minimizing function should be expected to have, thereby defining the 

mathematical properties of solutions to mechanics problems. This is particularly 

important in structural mechanics, where minimizing sequences are often defined for total 

potential energy, that is, functions that yield successively lower values of the total 

potential energy. It is desirable that such minimizing sequences converge and give 

solutions to the structural problem. Using the theory of Lebesgue integration and 

associated function spaces, the mathematician has proved that such sequences do 

converge, and in fact has provided a clear definition of mathematical properties for the 

solutions. 

 Lest the engineer dismiss all this as mathematical formality, it is wise to reflect on the 

fact that limits of minimizing sequences exist in structural analysis and have well-defined 

mathematical properties. However, if the engineer is seeking to optimize the design of a 

structure, a minimizing sequence of designs may be obtained, each of which is regular 

and physically meaningful, and it may be discovered that the limiting function falls 

outside the class of designs of interest. This dilemma is of very real practical concern if 

the engineer seeks to use an optimality criterion for discovering the optimum designs. It 

is well known in the structural optimization literature that certain problems, such as 

finding the optimum thickness variation for a plate, may lead to a solution that involves 

an infinite number of infinitesimal ribs, which perhaps approximate a fiber composite 

structure. Thus, the solution to the plate optimization problem does not exist in the class 

of smooth thickness distributions. If the engineer writes down the necessary conditions of 

optimality that would have to hold if there were a smooth solution and attempts to find an 

optimum design based on these necessary conditions, a surprise is forthcoming since no 

solution exists. 

 Without going into a detailed treatment of Lebesgue integration theory, it is still 

possible to provide an intuitive introduction to technical results that are obtainable with 

Lebesgue integration theory. For example, the space of Lebesgue square integrable 
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functions may be defined as 

2 2( ) ( ), ( ) ,L u u dx x x  (A.48) 

where the integral over  is the Lebesgue integral, which, as noted above, coincides with 

the Riemann integral when it exists. 

 It is possible in this space to define a scalar product as the integral of the product of 

two functions, that is, 

2 ( )
( , ) ( ) ( ) ,

L
u v u v dx x  (A.49) 

where the integral is in the Lebesgue sense. Using Lebesgue integration theory, it is 

possible to show that properties given by (A.24) through (A.28) are valid [135]. 

Therefore, a natural norm is defined on this space as 

2 2

1/ 2
2 2

( ) ( )
( , ) ( ) ,

L L
u u u u dx  (A.50) 

which automatically satisfies the properties of (A.30) through (A.32), in particular the 

important inequality known as the Schwartz inequality, given as 

2 22 ( ) ( )( )
( , ) .

L LL
u v u v  (A.51) 

The reader who has studied the Fourier series will recognize these ideas as providing the 

foundation for the theory of construction of series approximations of functions and their 

convergence properties. 

 Using properties of the Lebesgue integral, it is shown that the space L
2
( ) is complete

[135], that is, Cauchy sequences in the L
2

norm converge to square integrable functions. 

Since the space L
2
( ) has a scalar product, it is a Hilbert space and has all the desirable 

properties of Hilbert spaces. 

 Consider the functional 

( ) ( ) ( )u f u dx x  (A.52) 

defined by a given function f in L
2
( ). For any function u in L

2
( ), the product of f and u

is Lebesgue integrable, and the right side of (A.52) creates a real number. Therefore, (u)

is a functional. To see that this is a linear functional, standard properties of integration 

yield

( ) ( )u fu d fu d u  (A.53) 

( ) ( ) ( ) ( ).u v f u v d fu d fv d u v  (A.54) 

To see that the functional is bounded, the Schwartz inequality of (A.51) may be applied 

to obtain 

2 22 ( ) ( )( )
( ) ( , ) .

L LL
u f u f u  (A.55) 

Thus, the scalar product of an arbitrary function u with a fixed function f in L
2
( ) [that is, 

the right side of (A.52)] defines a bounded linear functional on L
2
( ).

 Since L
2
( ) is a Hilbert space, the Reisz representation theorem guarantees that every 
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bounded linear functional in the space can be represented as the scalar product of u with

some function in the space, that is, every linear functional (u) can be written in the form 

2 ( )
( ) ( , )

L
u g u  (A.56) 

for some function g in L
2
( ).

A.2.4 L ( ); Space of Essentially Bounded,
Lebesgue-Measurable Functions 

In Lebesgue integration theory, the measure of a set (its length in R
1
, area in R

2
, or 

volume in R
3
) is defined for very general sets of points. Sets whose measure is zero (for 

example, sets of discrete points, line segments in R
2
 or R

3
, and plane segments in R

3
), 

play key rolls in analysis. A function that has a property that holds everywhere in the 

space except on a set of measure zero is said to have that property almost everywhere 

(abbreviated a.e.). Functions in spaces such as L
2
( ) are defined based on properties that 

are expressed in terms of integral relations. Their values at discrete points do not 

influence the integrals. Hence, such functions may have irregular properties at discrete 

points or on sets of measure zero. 

 As an extension of a collection of integrable functions that are bounded by some 

finite constant, essentially bounded functions are defined as 

( ) ( ), ( ) , a .e. in .L u u kx x x  (A.57) 

A norm on L ( ) may be defined as 

( )
inf ( ) a .e. in ,

L
u K u Kx  (A.58) 

where the term inf indicates the least upper bound. It is shown in Lebesgue integration 

theory [135] that this defines a norm on L ( ) and the space is complete in this norm, 

that is, Cauchy sequences in this norm converge to functions in the space. It is also shown 

that it is impossible to define a scalar product on this space; hence, the space is not a 

Hilbert space, even though it is a Banach space. 

 Note that for a bounded set , C
m
( ) is a subset of L ( ). However, piecewise-

continuous functions are also in L ( ). What makes L ( ) so valuable in considering 

design problems is that minimizing sequences of functions that define mechanical 

properties, such as the cross-sectional area of a beam or the thickness of a plate, have the 

property that if they converge in the space L ( ), they remain essentially bounded, which 

is a physical property that must be preserved. Once such a limiting function is defined, it 

can be modified only on a set of measure zero to cause it to be finite everywhere. 

A.2.5 H
m( ); Sobolev Space of Order m

Because strain energies in structural components are written as integrals of quadratic 

expressions in the first or second derivatives of displacement fields, and because strain 

energy must be finite for any physically meaningful displacement field, it is natural to 

define spaces of functions that can be displacement fields in such a way that strain energy 

is guaranteed to be finite. Since the derivatives of displacement fields define strain, and 

strain must be integrable, the regularity of such functions must at least allow for the 

evaluation of strain energy. These considerations then make it natural to define a Sobolev

space of order m as
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| |
2 2( ) ( ) ( ), | | .m u

H u L L m
k

k
k

x
 (A.59) 

Such a space may be considered as a space of candidate displacement fields in elasticity 

for m = 1 and for displacement of a beam or plate with m = 2. 

 A scalar product may be defined on this Sobolev space as 

| | | |

( )
| |

( , ) .mH
m

u v
u v d

k k

k k
k x x

 (A.60) 

It is reasonably direct to show that this bilinear functional has the properties of (A.24) 

through (A.28) and is therefore a scalar product [22]. A norm on the Sobolev space can 

therefore be naturally defined as 

1/ 2
2

| |

( )
| |

.mH
m

u
u d

k

k
k x

 (A.61) 

It is proved in the literature on Sobolev space [22] that an equivalent definition of the 

Sobolev space can be given in terms of Cauchy sequences of functions in 

( )
( ) m

m

H
u C u  as follows: 

( )

( )

( ) for some Cauchy sequences{ } in { ( ) | },

lim 0 .

m

m

m i m

H

i

Hi

H u u C u

u
 (A.62) 

Thus,

( )
( ) m

m

H
u C u

is dense in H
m
( ). It is also shown in the literature [22] that H

m
( ) is complete, hence it 

is a Hilbert space. 

 Since convergence of a sequence of functions in the H
m
( ) norm involves L

2
( )

convergence of derivatives up through order m, it appears reasonable that such 

convergence should preserve m derivatives of the limit function. As will be seen later, 

this is indeed the case and provides a natural setting for the study of boundary-value 

problems using modern variational techniques. 

A.2.6 0 ( )mH ; Sobolev m-Space with Compact Support 

A function u(x) is said to have compact support on  if there is a compact set S  such 

that u(x) = 0 for x S. Much as in the alternative definition of Sobolev space in (A.62), a 

new space may be defined as a similar limit of Cauchy sequences of functions that have 

compact support, that is, 

0

( )

( ) ( ) for some Cauchy sequences { } of ( )

functions with compact support lim 0 .
m

m m i

i

Hi

H u H C

u
 (A.63) 

 Since it might be expected that limits of functions in Sobolev space preserve 

properties of derivatives, as noted above, functions and some of their derivatives that 
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appear in 0 ( )mH  should be zero on the boundary of . It will be shown later that this is 

true.

A.2.7 The Sobolev Imbedding Theorem 

Although the proof is not easy, it is shown in the literature [22] that if  is a bounded 

domain in R
n
 with a smooth boundary and if 2m > n, then 

( ) ( ).j m jH C  (A.64) 

Furthermore, identity mapping from ( ) to ( )j m jH C  is continuous, that is, constants Kj

<  exist, such that for all u in H
 j+m

( ),

( ) ( )
.j j mjC H

u K u  (A.65) 

 This theorem gives valuable information concerning properties of functions in 

Sobolev spaces. In particular, it was noted earlier that functions defined as limits of 

sequences in the L
2

norm need not have finite values at isolated points. The Sobolev 

imbedding theorem, however, guarantees that in Sobolev spaces these functions are 

continuous and in many cases continuously differentiable due to the introduction of L
2
-

norm convergence of the derivatives of such functions in the Sobolev norm. 

 As an example, consider the displacement of a string on the interval [0,1] in R
1
. To 

assure finite strain energy, it must be in H
1
(0,1). According to the Sobolev imbedding 

theorem, (A.64) guarantees that 

1 0(0,1) [0,1]H C  (A.66) 

and boundary conditions such as u(0) = u
0
 and u(1) = u

1
 will be preserved in the 

convergence of sequences of functions in H
1
(0,1). 

 Similarly, in the case of a beam on the interval [0,1], finiteness of strain energy 

demands that displacement functions be in H
2
(0,1). Thus, following the Sobolev 

imbedding theorem, 

2 1(0,1) [0,1].H C  (A.67) 

Thus, admissible beam displacements must be continuously differentiable, and boundary 

conditions of the form u(0) = u
0
 and (du/dx)(0) = u

0
 will be preserved if the limits of 

sequences of such functions are taken in the H
2
norm. 

 If 2m > n and if 0 ( )j mu H , a ( )jC  limit of smooth functions are zero on the 

boundary  of . Thus, 

| |

0 on .
u

k j
k

kx
 (A.68) 

For example, if 2

0 (0,1)u H , then since 

2 2 1

0 (0,1) (0,1) [0,1],H H C  (A.69) 

u must be a C
1
[0,1] limit of functions that are zero on the boundary. Hence, 

(0) (1)
(0) (1) 0.

du du
u u

dx dx
 (A.70) 
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A.2.8 Trace Operator 

Projecting a function defined on the interior of a set  to its boundary  is the process of 

evaluating the function on the boundary, if the function has a regular extension to that 

boundary. In general, such a projection is called the trace of the function. In particular, 

for u H
m
( ), the trace is defined as 

0 1[ ( ) ( )] on ,mu u u  (A.71) 

that is, it contains the projection of the function and its first m–1 derivatives to the 

boundary  of , where j(u) = 
j
u/ n

 j
 and n is the outward normal to .

 The nature of functions projected onto the boundary is somewhat more complicated 

than has been encountered in spaces of functions on the domain . In particular, it is 

shown in the literature [22] that  is a mapping from H
m
( ) to a product space (see 

Section A.2.9) of boundary values of the function, which are fractional-order Sobolev 

spaces on the boundary, that is, 

1
1 1/ 2

1

: ( ) ( ).
m

m m

j

H H  (A.72) 

Due to the technical complexity associated with even defining the fractional-ordered 

spaces on the boundary, no attempt is made here to describe these spaces (see Adams 

[22]). This theory, however, makes precise the regularity properties required of functions 

appearing in boundary conditions of boundary-value problems [16]. 

 Of specific interest is the anticipated result that boundary evaluations of functions 

appearing in 0 ( )mH  are zero. In fact, it is shown that every function in 0 ( )mH  is of this 

kind, that is, 

0 ( ) ( ) 0 .m mH u H u  (A.73) 

Thus, the space 0 ( )mH  is exactly the space of candidate solutions of Dirichlet boundary-

value problems in which homogeneous boundary conditions are specified for a 

differential operator equation of order 2m, to include zero values of the function and its 

first m–1 derivatives on the boundary. This precisely defines the space of candidate 

solutions of such a boundary-value problem and provides substantial information on the 

nature of solutions. 

A.2.9 Product Spaces 

As a final topic in considering function spaces, it is helpful to define a function space 

whose elements are groupings of functions of a very different character. For example, 

consider two function spaces denoted by X and Y. Their product space is defined as the 

collection of all pairs of functions, one from X and one from Y, as 

[ , ] , .X Y u v u X v Y  (A.74) 

A norm on this product space can be defined as 

[ , ] .
X Y X Y

u v u v  (A.75) 

 As an example of a product space, consider the design of a plate with variable 

thickness, in which the function h, which defines the thickness in L ( ), and Young’s 

modulus E R
1
 are the design variables. The design space can be defined as the product 
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space of these two spaces consisting of two different types of design variables, as 

1 1( ) [ , ] ( ), ,U L R h E h L E R  (A.76) 

and will have the norm 

( )
[ , ] .

U L
h E h E  (A.77) 

The use of this product space is essential in establishing the regularity of dependence of 

solutions of boundary-variable problems on design variables. 

A.3 Differentials and Derivatives in Normed Space 

The purpose of this section is to summarize the definitions of properties of differentials 

and derivatives of nonlinear mappings or functions, which extend the classical idea of 

differential and derivative to the calculus of variations and its generalizations. The value 

of these abstract differentials and derivatives is both practical and theoretical. Practically, 

the theory allows for first-order approximation or “linearization” of nonlinear functionals 

that arise in structural design. From a theoretical point of view, differentials and 

derivatives are used heavily throughout the text to prove existence results and properties 

of dependence of structural response measures on design variables 

A.3.1 Mappings in Normed Spaces 

Consider vector spaces X and Y, with norms || • ||X and || • ||Y, respectively. These spaces 

may be any of the normed spaces discussed in Section A.2. A function (x) that defines a 

vector in Y, once a vector x in X is specified, may be viewed as a mapping from X into Y,

denoted as 

: .X Y  (A.78) 

X = R
1
 and Y = R

1
 is a special case in which  is a real-valued function of a single real 

variable. If, however, X = L
2
( ) is a space of the designs and Y = [H

1
( )]

3
 is the Sobolev 

space of the displacements of an elastic solid, then  may be defined as a mapping from 

the space X of the designs to the space Y of the solutions to boundary-value problems of 

elasticity, where (x) is the solution to the boundary value problem for design x.

 The concept of continuity of a mapping between normed spaces is a direct extension 

of the concept of continuity of scalar functions of scalar variables. More specifically, the 

mapping  is continuous at x if, for every  > 0, a   > 0 exists, such that 

( ) ( )
Y

x x  (A.79) 

for all X, such that 

.
X

 (A.80) 

If  is continuous at every x X, then it is said to be continuous on X. An algebraic 

property of the mappings that is of some importance in design sensitivity analysis 

concerns linearity. A mapping  is said to be homogeneous of degree n if

( ) ( ),n
x x  (A.81) 



430  Appendix  

where  is any real number. If (A.81) holds only for  0, then  is said to be positively 

homogeneous of degree n. A more important concept is the linearity of a mapping. More 

specifically,  is said to be a linear mapping if 

( ) ( ) ( )x y x y  (A.82) 

for all x and y in X, and for all real  and . Note that a linear mapping is homogeneous 

of degree one. 

A.3.2 Variations and Directional Derivatives 

The idea of a derivative or differential of a scalar function of a scalar variable can be 

profitably extended to general mappings. First, one may define one-sided Gateaux 

differentials as 

0
0

1
( , ) lim [ ( ) ( )],x x x  (A.83) 

providing that a limit exists on the right side. The term ( , )x  is called the “one-sided 

Gateaux differential of  at point x in the direction .” This differential exists for large 

classes of mappings, but it may not possess some of the positive properties usually 

attributed to derivatives in ordinary calculus. A direct calculation shows that for all  > 0, 

0
0

0
0

1
( , ) lim [ ( ) ( )]

1
lim [ ( ) ( )]

( , ),

x x x

x x

x

 (A.84) 

which verifies that the one-sided Gateaux differential is positively homogeneous of 

degree one. 

 To relate the differential idea to a simple function, consider the real-valued function 

of a single real variable x,

( ) .x x  (A.85) 

A simple check will show that while this function is continuous, it does not have an 

ordinary derivative at x = 0. The one-sided Gateaux differential, however, is defined 

using (A.83) as 

0
0

1
(0, ) lim [ 0] .  (A.86) 

Note that 

(0, ) (0, ),  (A.87) 

so that the one-sided Gateaux differential is not linear in  and in fact is not 

homogeneous of degree one. Nevertheless, it predicts the change of the function  due to 

a perturbation  in the independent variable x.

 If the limit in (A.83) exists for both > 0 and < 0, then  is said to have a Gateaux

differential (often called the differential or variation) at x in the direction , given by 
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0

1
( , ) lim [ ( ) ( )],x x x  (A.88) 

where the limit may be taken with  either positive or negative. In this case, the 

calculations of (A.84) are valid for both positive and negative , hence the Gateaux 

differential is homogeneous of degree one. 

 An example of the Gateaux differential that often arises in structural design 

sensitivity analysis and in the calculus of variations involves mapping  from the space 

L
2
( ) into the real numbers (a functional), defined as 

( ) ( ) ,F dx x  (A.89) 

where the scalar-valued function F is presumed to be continuously differentiable. The 

Gateaux differential of this functional may be calculated as 

0

0

1
( , ) lim [ ( ) ( )]

1
lim [ ( ) ( )]

,

F F d

F F d

dF
d

d

x x x

x x

x

 (A.90) 

which may be recognized as the first variation of the functional  in the calculus of 

variations. Note that in this special case, (x,•) is a linear mapping from L
2
( ) to real 

numbers. 

 As will often be the case, the mapping (x,•) from X to Y may be continuous and 

linear, in which case it is called the Gateaux derivative of  at x.

A.3.3 Fréchet Differential and Derivative 

Let the mapping  be given as in (A.78). Then  is said to be Fréchet differentiable at x

if a continuous linear operator (x,•) :  X Y exists, such that 

0

( ) ( ) ( , )
lim 0

X

Y

X

x x x
 (A.91) 

holds for any X. The operator (x,y) in (A.91) is called the Fréchet differential of 

at x. The mapping (x,•) from X to Y is called the Fréchet derivative of  at x and is a 

continuous linear mapping from X to Y.

 It is obvious that if  is Fréchet differentiable at x, then  is Gateaux differentiable at 

x. It is interesting to note that Gateaux and Fréchet derivatives are equivalent for 

functions defined on R
1
, but are not equivalent on higher-dimensional spaces. As an 

example, consider X = R
2
 and Y = R

1
. Define  : R

2
R

1
 as (x1,0) = 0 and 

2 2

1 2 1 2 1 2( , ) ( / )( )x x x x x x , if x2  0. It is easy to verify that the Gateaux derivative exists 

at (0,0) and is the zero operator. However, a Fréchet derivative does not exist at (0,0). In 

fact,  is not even continuous at (0,0). 

 Dieudonne [136] showed that if the Gateaux derivative (w,•) exists for all w in a 

neighborhood of x and 

lim ( , ) ( , ) 0,
w x

w z  (A.92) 
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then the Fréchet derivative exists. Note that the norm in (A.92) is for the space of 

continuous linear mappings [137]. 

 Consider once again the mapping of (A.89) from L
2
( ) to real numbers, with the 

Gateaux differential defined by (A.90). In order to check whether  is Fréchet 

differentiable for the evaluation of (A.91), 

( ) ( ) ( , ) ( ) ( ) .
dF

F F d
d

x x x x x
x

 (A.93) 

By the remainder form of Taylor’s formula, 

2
2

2

1
( ) ( ) ( ) ,

2

dF d F
F F

d d
x x x

x x
 (A.94) 

where x x  and 0 <  < 1. If the second derivative of F is bounded by some finite 

constant K, that is, if 

2

2
,

d F
K

dx
 (A.95) 

then from (A.93) through (A.95), 

2

22( ) ( ) ( , ) .
2 2 L

K K
dx x x  (A.96) 

Dividing both sides by 2L
 and taking the limit as 2L

 goes to zero, it is seen that 

(A.91) is satisfied and that  is Fréchet differentiable. 

A.3.4 Partial Derivatives and  
the Chain Rule of Differentiation 

Very often in structural design sensitivity analysis, several variables appear in the same 

expression. Consider a mapping of  that depends on a variable from normed space X

and a variable from normed space Z, denoted as  : X  ×  Z Y. As in ordinary calculus, 

z Z may be held fixed and the Gateaux differential of  calculated as a function of x

X. Similarly, x X can be held fixed to calculate the Gateaux differential of  as a 

function of z Z, to obtain 

0

0

( , ; ) lim[ ( ; ) ( ; )]

( ; , ) lim[ ( ; ) ( ; )],

x

z

x z x z x z

x z v x z v x z
 (A.97) 

which are called partial Gateaux differentials of .

 An important result (proved by Dieudonne [136] and Nashed [137]) relates the 

Gateaux differential of  to its partial Gateaux differentials. More specifically, if 

andx z  in (A.97) exist and are continuous and linear in  and v, then  is Fréchet 

differentiable on X  × Z, and 

( , ; , ) ( , ; ) ( ; , ).x zx z v x z x z v  (A.98) 

This powerful result permits calculations with individual variables and, providing the 

hypotheses are checked, yields the Gateaux differential of a mapping as the sum of its 

partial Gateaux differentials. 
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 A related concept extends the classical chain rule of differentiation. Consider a 

mapping  : X Z and a mapping  : X Z, both of which are Fréchet differentiable. 

Then, the composite mapping (x) = ( (x)) is Fréchet differentiable and 

( , ) ( ( )) ( , ).x x x  (A.99) 

This result was proved by Dieudonne [136] and its properties were developed and 

analyzed by Nashed [137]. The chain rule, however, is not valid for Gateaux derivatives 

[137]. The concept of chain rule differentiation is used extensively in structural design 

sensitivity analysis, since structural performance measures are often stated as functionals 

involving the displacement field, which is itself a function of the design. 
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geometric coefficient .......................... 627 
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straight line ......................................... 638 
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deformation gradient............... 450, 472, 505 

plastic.................................................. 561 

relative ................................................ 474 

density..................................................... 488 

design

die shape ............................................. 572 

feasible.................................................. 10 

infeasible....................................... 10, 699 
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design dependence 
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conjugate gradient method.................... 32 
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gradient projection method....................36 
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linear programming method ..................31 
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nonlinear

shape................................................738 

nonlinear programming method ............32 
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sequential linear programming ..............34 

sequential quadratic programming ........34 

shape....................................................727 
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steepest descent method ........................32 

unconstrained.........................................32 

design parameterization.......................6, 619 

beam ....................................................622 
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membrane ............................................624 
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surface .................................................639 

truss .....................................................620 
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continuum method .................................27 
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direct differentiation method ......119, 122, 

126, 127, 536, 593, 655, 657 

configuration ...................................358 

shape................................................257 

sizing .......................................174, 499 

discrete method......................................24 

dynamic problem.........................523, 583 

elastoplastic problem...........517, 551, 611 

finite deformation ................................556 

hyperelasticity..............................508, 543 

nonlinear elastic problem ............534, 592 
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semianalytical method .....................21, 24 

total Lagrangian formulation...............537 

updated Lagrangian formulation .........539 

design sensitivity plot ..............................698 

design variable.........................................3, 9 

configuration......................................... 12 

discrete.................................................. 10 

material property................................... 11 

shape ..................................................... 11 

sizing......................................11, 121, 189 

topology ................................................ 12 

design variation............................... 125, 163 

design velocity................ 244, 534, 566, 667 

boundary ............................................. 677 

boundary displacement method .......... 682 

configuration....................................... 348 

die shape ............................................. 573 

discrete................................................ 668 

domain ................................................ 680 

fictitious load method ......................... 684 

finite difference................................... 682 

isoparametric mapping method........... 685 

orientation........................................... 592 

regularity..................................... 291, 375 

deviator ................................................... 464 

differentiability ....................................... 124 

dilation.................................................... 461 

Dirac delta measure .......................... 46, 502 

direct differentiation method ....... See design 

sensitivity analysis 

directional derivative .............. 125, 154, 482 

directionally differentiable ............. 120, 125 

dissipation function......................... 473, 492 

dissipation inequality ...................... 473, 492 

distortion................................................. 461 

dynamic frequency response..................... 55 

effective plastic strain ............................. 465 

eigenfunction ...................... 52, 83, 301, 458 

eigenvalue................... 52, 83, 143, 301, 459 

repeated................................120, 149, 303 

directional derivative .......................303 

shape sensitivity.................................. 302 

eigenvalue problem................... 51, 142, 358 

eigenvector.............................................. 143 

eigenvector expansion method ............... 166 

elastic domain ......................... 465, 472, 518 

elastic predictor....................................... 466 

elastoplasticity ........................................ 463 

finite deformation ............................... 464 

finite rotation ...................................... 469 

infinitesimal ........................................ 464 

multiplicative plasticity ...................... 472 

ellipticity................................................... 82 

energy method .............................. 15, 39, 42 

energy norm.............................................. 40 

Euclidean norm....................................... 251 

example 

configuration 

acoustic cavity .................................400 

crane.........................................608, 730 

helicopter tail-boom.........................379 
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platform ...........................................385 

roof ..................................................609 

seven-member truss .........................606 

swept wing.......................................381 

three-bar frame ................................375 

three-bar truss ..................................614 

two-member beam...........................604 

vehicle chassis .................................384 

vehicle roof......................................410 

discrete

beam ................................................135 

cantilever beam..................................25 

column buckling ..............................151 

potal frame.......................................160 

spring-mass......................................150 

ten-member cantilever truss ............139 

three-bar truss ....................25, 137, 159 

nonlinear configuration 

vehicle A-pillar................................739 

vehicle frame ...................................744 

nonlinear shape 

bumper.............................................586 

bushing ............................................549 

cantilever beam................................545 

deepdrawing ....................................577 

engine mount ...................................547 

hollow cylinder................................561 

membrane with hole ........................563 

seal...................................................575 

windshield wiper .............................736 

nonlinear sizing 

cap ...................................................515 

dome ................................................512 

one-bar truss ....................................526 

three-bar truss ..................................526 

two-bar truss ....................................509 

vehicle frame ...................................529 

shape

arch dam ..........................................341 

cantilever beam................................311 

clamped beam..................................261 

clamped fillet ...................................296 

clamped plate...................................271 

clevis................................................711 

connecting rod .................................337 

control arm ......................................693 

elastic shaft ......................................268 

engine exhaust manifold..................751 

turbine blade ....................................720 

vehicle chassis .................................318 

sizing

beam ................................................194 

cavity ...............................................237 

plate .........................................195, 208 

plate–shock absorbers......................225 

simple box .......................................239 

torque arm........................................197 

vehicle chasis ...................................227 

wheel................................................695 

wing .................................................703 

fictitious force......................................... 123 

fictitious load .................................. 126, 594 

configuration 

beam.................................................363 

plane stress solid ..............................366 

thin plate ..........................................368 

truss..................................................361 

global .................................................. 655 

structural ..............................536, 538, 540 

final time................................................. 162 

finite difference method.......................... 130 

backward............................................... 22 

central ................................................... 21 

forward.................................................. 21 

finite element 

Bernoulli-Euler beam............................ 90 

shape function........88, 91, 94, 96, 99, 101 

solid .................................................... 101 

thick plate ............................................. 99 

thin plate ............................................... 96 

Timoshenko beam................................. 93 

truss....................................................... 88 

finite element analysis ................................ 7 

finite element approximation.................. 654 

finite element method ....................... 16, 653 

first-order variation................................. 499 

flexural rigidity ................................. 71, 665 

flow potential .......................................... 465 

form 

damping sesquilinear ............................ 56 

energy bilinear .........................46, 67, 121 

kinetic energy bilinear .......................... 50 

load linear ................................46, 67, 121 

semilinear.............................................. 55 

sesquilinear ........................................... 55 

Fréchet derivative ........................... 156, 499 

Fréchet differentiable................................ 45 

free energy ...................................... 473, 475 

functional ................................................ 419 

bounded .............................................. 420 

continuous........................................... 420 

Galerkin approximation .......................... 654 

Gateaux differential ........................ 125, 430 

Gauss integration ............................ 114, 655 

Gauss’ theorem......................................... 48 

geometric feature .................................... 625 

Green deformation tensor ....................... 461 

Green-Lagrange strain ...................See strain 

Hamilton’s principle ................................. 49 

harmonic load ........................................... 54 

heat conduction equation .......................... 60 

heat conductivity............................... 61, 323 
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heat flux.............................................61, 323 

Hessian matrix...........................................33 

homogeneous equation ..............................52 

Hooke’s law...............................................77 

hydrostatic pressure .................................461 

hyperelastic material................................460 

impenetrability condition ................479, 480 

implicit function theorem ........................122 

initial boundary value problem..........50, 488 

initial condition................162, 169, 488, 583 

initial stiffness .................................453, 468 

initial value problem................................165 

interface condition.....................................58 

internal variable.......................................555 

invariant

reduced ................................................461 

isoparametric element..............................654 

isotropic hardening ..................................465 

Jacobian .......................................89, 99, 654 

configuration........................................354 

shape....................................................248 

kinematic hardening ................................465 

kinematically admissible displacement ....37, 

45, 52, 76, 79, 109, 654 

kinetic energy ............................................49 

Kronecker delta ...............................154, 453 

Kuhn-Tucker condition ...................465, 474 

Lagrange multiplier .................................465 

Lagrange’s equation of motion........109, 162 

Lame’s constant.........................77, 453, 464 

Lax-Milgram theorem .......................82, 259 

Lebesque integral ....................................422 

Leibnitz’s rule..........................................163 

Lie derivative...........................................473 

lumped mass ............................................491 

mass matrix 

element ..................................................93 

generalized...........................................105 

reduced ................................................105 

material derivative...........................247, 534 

Cauchy stress .......................................554 

configuration........................................350 

displacement increment .......................552 

material description .................................451 

mathematical programming.........................8 

meshfree analysis ........................................7 

minimum principle 

operator equation ...................................39 

total potential energy .....................43, 109 

minimum total potential energy.................68 

moment of inertia ..............................70, 455 

Mooney-Rivlin material ..........................461 

natural coordinate 

contact problem ...................................480 

natural frequency.................52, 83, 111, 143 

natural vibration ........................................51 

Newmark method ................................... 489 

Newton-Raphson method ....................... 452 

nodal displacement ................................. 654 

nonlinear dynamic problem .................... 487 

nonlinear elastic problem........................ 450 

nonlinearity 

boundary ............................................. 479 

geometric ............................................ 450 

material ............................................... 463 

norm................................................ 419, 426 

normal gap ...................................... 480, 567 

objective function ....................................... 7 

objective rate........................................... 463 

optimization history................................ 701 

partial derivative ............. 247, 351, 499, 535 

penalty method ....................................... 482 

penalty parameter ................................... 483 

performance measure......    3, 7, 21, 30, 122, 

357, 500, 657 

dynamic .............................................. 162 

permutation..................................... 250, 462 

phase angle ............................................... 55 

plastic consistency parameter ......... 465, 612 

plastic corrector ...................................... 466 

plastic modulus ............... 465, 469, 477, 612 

plastic spin .............................................. 561 

positive bounded below ...................... 41, 82 

positive definite .................. 40, 41, 120, 656 

positive semidefinite................................. 93 

post-optimum study ................................ 702 

potential energy ...................... 108, 451, 482 

pressure projection method..................... 461 

principal stretch .............................. 475, 560 

principle of virtual work ............... 47, 52, 65 

projection ........................................ 466, 480 

quadratic programming........................... 700 

rank

matrix.................................................... 93 

Rayleigh damping................................... 169 

Rayleigh quotient.................................... 147 

reference coordinate ............................... 654 

reference element.................................... 114 

Reisz representation theorem.................. 420 

residual load............................................ 453 

return mapping........................ 464, 466, 476 

Riemann integral..................................... 422 

rigid body rotation .......................... 469, 560 

Ritz vector............................... 120, 147, 168 

rotation matrix ........................................ 103 

scalar product.......................... 155, 418, 424 

Schwartz inequality ................................ 424 

selective reduced integration .................. 462 

self-adjoint .............................................. 178 

shape function................................... 17, 654 

shear correction factor ................ 69, 74, 456 

shear locking............................................. 70 
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shear modulus....................................74, 456 

simplex method .........................................32 

slip condition ...........................................486 

Sobolev imbedding theorem..............47, 427 

Sobolev norm ............................................82 

solution

classical .................................................42 

generalized.....................42, 47, 65, 67, 77 

natural ....................................................37 

nontrivial ...............................................52 

strong .....................................................42 

trivial .....................................................52 

unique ....................................................42 

weak solution.........................................42 

solution space ............................................39 

space

Banach .................................................422 

compact support...................................426 

complete ..............................................426 

dense....................................................426 

Euclidean .............................................417 

Hilbert..........................................419, 424 

product.................................................428 

Sobolev..........................................47, 425 

span..........................................................112 

spatial derivative......................................654 

spatial description....................................453 

spatial velocity gradient...................473, 492 

spin tensor................................................469 

springback ...............................................572 

St. Vernant-Kirchhoff material................452 

steady-state response .................................55 

stick condition .........................................485 

stiffness matrix 

bending ..........72, 100, 184, 457, 542, 672 

consistent .............................................467 

element ................................17, 89, 92, 95 

generalized.............19, 104, 120, 121, 655 

geometric .......................................93, 108 

plane stress...........................................666 

plate .......................................................97 

reduced ..................19, 105, 120, 122, 656 

shear.....................................................100 

solid .....................................................102 

strain

deviatoric .............................................464 

effective plastic....................................476 

elastic principal stretch ........................475 

elastic trial Lagrange ...........................557 

engineering ..........................................453 

Green-Lagrange...................451, 453, 537 

plastic...................................................465 

volumetric............................................463 

strain energy ..........................15, 43, 44, 451 

density .........................................461, 462 

elastic...................................................464 

shear...................................................... 70 

stress

Cauchy ........................................ 453, 469 

deviatoric .................................... 464, 457 

first Piola-Kirchhoff............................ 471 

Kirchhoff ............................................ 472 

principal Kirchhoff ............................. 475 

second Piola-Kirchhoff ............... 451, 462 

trial...................................................... 466 

volumetric ........................................... 464 

von Mises............................................ 667 

stress rate 

Jaumann .............................................. 469 

structural analysis ....................................... 6 

structural component 

acoustic medium ................................. 396 

Bernoulli-Euler beam....66, 363, 455, 501, 

540, 659 

domain .............................................285 

shape ................................................260 

column .................................................. 85 

interface .............................................. 398 

line ...................................................... 349 

membrane ............................................. 85 

shape ................................................267 

plane stress solid ...78, 365, 457, 542, 600, 

665

shaft

shape ................................................268 

shell..................................................... 403 

solid .............................................. 75, 674 

domain .............................................287 

string ..................................................... 83 

surface................................................. 353 

thick plate ......................73, 457, 602, 671 

domain .............................................287 

thin plate ................71, 367, 457, 542, 662 

domain .............................................286 

shape ................................................269 

Timoshenko beam..........69, 456, 598, 670 

domain .............................................286 

truss................................64, 455, 540, 597 

configuration....................................360 

structural damping .................................... 56 

structural damping coefficient .................. 56 

structural energy form 

elastic .................................................. 451 

elastoplasticity .................................... 468 

finite deformation ............................... 478 

finite rotation ...................................... 470 

nonlinear ............................................. 453 

structural modeling ..................................... 9 

structural-acoustic problem ...................... 56 

Sturm–Liouville problem ......................... 53 

superposition........................................... 169 

surface
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algebraic ..............................................640 

Bezier...................................................643 

cylindrical ............................................645 

geometric .....................................331, 641 

planar ...................................................644 

revolution.............................................646 

ruled.....................................................645 

sixteen-point ........................................642 

tangent operator 

consistent .............................468, 478, 558 

material ................................................477 

spatial...................................................477 

tangential slip ..........................479, 480, 569 

tangential traction force...........................483 

tensor product ..........................................464 

terminal time..............................................49 

terminal value problem....................120, 165 

thermal modulus ........................................62 

thermoelastic problem ...............................60 

time integration 

explicit .........................................491, 585 

implicit.........................................488, 583 

total Lagrangian formulation...................451 

total potential energy .........................15, 108 

trace .................................................462, 464 

trace boundary operator.............................80 

trace operator ...........................................428 

trade off 

shape ................................................... 716 

sizing........................................... 699, 709 

transient dynamic analysis...................... 120 

transient dynamic response............. 162, 487 

transverse shear................................. 74, 458 

updated Lagrangian formulation............. 453 

variational equation ............ 46, 65, 113, 451 

discrete.......................................... 90, 655 

variational identity.................. 65, 67, 72, 76 

variational inequality .............................. 481 

variational method .............................. 15, 42 

vector space ............................................ 418 

virtual displacement.......................... 45, 109 

virtual velocity.......................................... 49 

volumetric locking.................................. 460 

von Mises failure criterion...................... 275 

what-if study 

shape ................................................... 716 

sizing........................................... 700, 710 

workpiece................................................ 572 

yield criterion.......................................... 465 

von Mises............................................ 465 

yield function.................................. 465, 473 

yield stress .............................................. 469 

yield surface............................................ 465 

Young’s modulus.................................... 455 
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