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Preface

Traditional entry-level mechanics courses serve two fundamentally dif-
ferent objectives. On the one hand, they present a self-contained pro-
gression of problem-solving paradigms addressing particular categories
of engineering situations without any specific reference to higher-level
thinking or the challenges of actual systems (for which the traditional
methods typically fall short). They provide a necessary backdrop for the
further professional development of an engineering-science or mechani-
cal engineering student but, typically, do not generate much interest in
other populations of engineering students, as evidenced, for example, by
the lack of required fundamental mechanics courses for computer and
electrical engineers in many colleges of engineering.

On the other hand, undergraduate instruction in the subject of clas-
sical mechanics constitutes a first attempt at incorporating the mathe-
matics taught in the undergraduate linear-algebra and calculus sequences
with real-world applications, developing ideas of physical and mathemat-
ical modeling, assessing the relevance of physical phenomena, the appre-
ciation of modeling assumptions, and the formulation of scientific inquiry.
These are skills that we expect of all engineering students but that typ-
ically are not strongly developed in existing curricula. There is a strong
need for courses designed with the goal of bridging the gap between the
stated objectives; courses that also attract non-traditional engineering
students while ensuring a solid scientific and mathematical training.

To address these shortcomings, in collaboration with colleagues in the
Department of Mechanics at the Royal Institute of Technology in Stock-
holm, Sweden, I recently developed a course that relies on the concept
of problem-based learning to allow the student to accumulate theoretical
knowledge, develop intuitive insight into, and perfect a practical know-
how in the modeling and visualization of complex mechanical systems
and their motions. Particular emphasis is placed on a framework that
appeals to the educational background, interests, and perspectives of a
modern engineering student. The problem-based approach encompasses
an understanding of the theoretical concepts, the ability to implement
this understanding in concrete applications, and the skill to disseminate
the results of one’s efforts in oral and written presentations.
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The course is unique in its combination of content and form. It is de-
signed to appeal to the interests of computer-savvy students who, in the
process of producing attractive computer simulations and animations, ac-
quire significant skills in mathematical and physical modeling of mechan-
ical systems. In particular, the emphasis here is on general skills rather
than the ability to solve cooked-up problems. Active-learning strategies
and truly cooperative learning constitute an overwhelming part of the
course design, the culmination of which is a team project incorporating
material from throughout the course and accounting for a majority of the
course grade.

This Text

The instructional objectives for the course discussed above are to prepare
the students to:

e Model the kinematics and dynamics of an arbitrary multibody mech-
anism;

e Formulate a mathematical description of a general motion of the
mechanism in terms of sets of descriptive variables and systems of
differential equations governing their evolution;

e Implement this description in a computer-graphics application for
animating and visualizing a desired or observed motion of the mech-
anism.

In stark contrast to traditional mechanics courses, the act of analyzing a
given set of differential equations to determine and predict the subsequent
dynamics is entirely de-emphasized. Indeed, I strongly believe that such
analysis should be the subject of a separate, subsequent course coupled
with issues of design of mechanical systems for achieving desired behavior
and so on. Eliminating such discussions from the present course enables a
clarity of presentation, thought, and message, and increases the likelihood
that the students firmly establish the mathematical background necessary
to proceed with such analysis as compared to traditional courses, where
the material is closely interwoven.

The text you have in your hands is the result of several iterations of
development of the educational material for this course. Four main ped-
agogical principles form the foundation for the current edition, namely:

e An inductive approach to learning, whereby general patterns are
discerned from observations made in particular instances;

e A need for repetition and review of important concepts and their
reinforcement through numerous examples;



e Visual guidance to allow the reader to differentiate between different
levels of knowledge;

e Deep incorporation of computer tools, visual representations, and
elements of active learning to appeal to a broad spectrum of learning
strategies and preferences.

The primary goal in composing this text has been to provide an extensive
resource that presents a self-contained and careful exposition of all rele-
vant topics for the sequential reader while containing enough repetition
and examples to allow numerous points of entry.

The MAMBO Toolbox

Parallel to the theoretical presentation, the book contains a track imple-
menting a series of computer-algebra procedures for enabling advanced
computations on complex multibody mechanisms. This package — the
MAMBO toolbox — bears a general resemblance to a collection of proce-
dures developed by Professor Martin Lesser and Dr Anders Lennartsson
in the Department of Mechanics at the Royal Institute of Technology
in Stockholm, Sweden, between 1991 and 1999, and named SOPHIA af-
ter the Polish-Swedish mathematician Sofja Kowalewskaja (1850-1891).
Sufficient changes have been made, however, in all parts of the implemen-
tation, to warrant a new name for the software. Nevertheless, I gratefully
acknowledge the intellectual heritage from the original package and the
efforts of its originators.

This text presents version 1.0 of the MAMBO toolbox. To use the
MAaMBO toolbox on your computer, download the necessary files from
the web site:

www.esm.vt.edu/~danko/Mambo

MAMBO

The computer-graphics application MAMBO described in this text has
been developed with the purpose of allowing the student to visualize the
results of their efforts while retaining the need for careful mathematical
analysis. In contrast with existing commercially available educational
software tools, MAMBO requires detailed input from the user both in
order to define the specific geometry of the mechanism as well as the
differential equations governing its behavior. With this tool, the student
is able to see the implications of decisions made throughout the modeling
stage and to check the mathematical analysis.

The following individuals have been involved with the development
and coding of MAMBO: Jesper Adolfsson, Kalle Andersson, Arne Nord-

Preface
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mark, Gabriel Ortiz, Anders Lennartsson, Petri Piiroinen, Justin Hutchi-
son, and myself. Since the program is continually developing, I have
omitted any detailed description of its implementation in this text and
instead refer to the MAMBO reference manual.

To use MAMBO on your computer, download the necessary files from
the web site:

www.esm.vt.edu/ danko/Mambo

How This Text is Organized

e Visual cues have been included in the margin to distinguish be-
tween different levels of importance of material as illustrated by
the following table:

Symbol Meaning

ﬁ Important terminology

n Material which can be skipped upon first reading
E Optional material for further study

e The eleven chapters can be separated into three categories, based
on their emphasis on theory, applications, or general introduction
and review as illustrated in the following table:

Applications Overview Theory
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 9 Chapter 8
Chapter 10
Chapter 11
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e The following tables provide relevant page references for different

categories of material:

COMPUTER TOOLS
The MAMBO toolbox

Observers ................ pp. 74-76
Translations............ pp. 121-130
Positions............... pp. 183-188
Rotations.............. pp. 229-232
Orientations ........... pp- 274-280
Velocities .............. pp- 348-351
Constraints ............ pp- 389-395
Dynamics.............. pp. 451-454
Reference .............. pp. 485-494
MAMBO
Observers ................ pp. 71-73
Positions............... pp. 172-183
Orientations ........... pp. 267-274
Constraints ............ pp- 389-395
Dynamics.............. pp. 451-454
METHODOLOGY
Hierarchies............... pp. 56-58
Modeling ... .. pp- 299-300, 415417
Constraints ............ pp. 378-381
MAMBO ...... pp. 188-195, 280-285

pp. 307-311, 318-321
pp. 424-425, 434-435

APPLICATIONS
Observers ................ pp. 5871
Translations............ pp. 118-119
Positions............... pp. 155-172
Rotations.............. pp. 221-229
Orientations ........... pp- 253-266
Velocities .............. pp. 342-348

Constraints . .. pp. 365-377, 395-402
Dynamics. .. .. pp. 456-459, 461-470

NOTATION
Translations................... p- 43
Rotations..................... p. 44
Observers..........coovvuen.. p- 50
Points ...l p- 83
Separations............... pp- 84-85
Vectors..........oooouen.. pp. 96-97
Bases................ ... pp 114-116
Triads ...t p- 203
Rotation matrices...... pp- 206-207
Velocities .............. pp. 331-333
Momenta .............. pp. 444-445

e Each chapter is concluded with a summary of notation and termi-

nology;

e A collection of animation and modeling projects suitable for semester-
long team assignments is included in Appendix C.

ix
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Chapter 1

A First Look

wherein the reader learns of:

e Fundamental ways of representing the motion of rigid bodies;

e Describing the configuration of a rigid body in terms of a position
and an orientation;

e Pure translations and pure rotations and their properties;

e Using coordinates to uniquely determine the configuration of a rigid
body;

e Constraints on the coordinates;

e Introducing collections of observers.




Practicum

You may read this chapter any
number of times and feel quite com-
fortable with its propositions and ar-
guments. But true understanding is
a combination of intuition and expe-
rience. This experience comes from
engaging in practical, hands-on ex-
perimentation with concrete, physi-
cal objects.

Just about anything in your im-
mediate environment will probably
qualify as a block or a rigid body.
Hold the object with both hands and
follow along with the discussion in
this chapter by moving and rotating
the object as suggested. Most cer-
tainly, this will enhance your three-
dimensional experience of the graph-
ics in this chapter. It will strengthen
your geometric intuition. It will be
excellent practice for the things to
come.




1.1 A First Look at Motion

1.1 A First Look at Motion (Bx. 1.1 -

. Ex. 1.14)
1.1.1 Reference Configurations

A rectangular block moves across your visual field. At each moment in
time, you describe the block’s configuration — the spatial arrangement of
all its points — by its position and orientation relative to some reference
position and reference orientation, constituting a reference configuration. 4@:

position

Configuration ———e

orientation

Perhaps you envision the reference configuration as a stationary vir-
tual block whose dimensions agree with those of the actual block.

-
Actual I EC =,
. . N h - )

configuration . .

. - - Reference
T configuration

The reference configuration enables you to make meaningful state-
ments about the geometry of space. The locations of points in space are
made clear by referring to the reference configuration.

The orientations of straight lines in space are made clear by referring to
the reference configuration.
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Having established a reference configuration, the notion of the block’s
configuration makes intuitive sense for arbitrary positions and orienta-
tions.

The reference configuration also enables you to make meaningful state-
ments about the time-dependence of the geometry of space. For example,

ﬁ a point is said to be fixzed or stationary relative to the reference configu-
ration if its relation to the faces and edges of the virtual block does not
change with time.

Having established a reference configuration, it makes intuitive sense
to describe the block’s motion in terms of the time-dependence of its
configuration relative to the reference configuration.

1.1.2 Pure Translations and Rotations

As the position and orientation of the block change with time, the block
ﬁ exhibits a motion through space that involves pure translation, pure ro-
tation, or a combination thereof.

Pure translation

A motion of the block that results in a change in the
block’s position, but involves no change in the block’s ori-
entation, is called a pure translation. In a pure translation,
all points in the block are shifted by equal amounts along
parallel paths relative to the reference configuration.
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e >
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Two configurations of the block are said to be related @

through a pure translation if there exists a pure translation
that brings the block from the first to the second configura-
tion. It should follow that two configurations of the block
that are related through a pure translation have the same

orientation.
Two pure translations that result in the same final configuration when

applied to the block in an initial configuration are said to be equivalent.
Equivalent pure translations result in the same net change of position

while involving no change in orientation.
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Illustration 1.1
Suppose that the initial and final configurations of a block are related

through a pure translation. Let A and B be two arbitrary points on the
block and denote by Ainitial, Binitial and Agnal, Bfnal the corresponding
points in space in the initial and final configurations, respectively.
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Then, the straight-line segment between Aj,itia and Agpa is parallel to
and of equal length as the straight-line segment between Biyjtia) and Bgpa).
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As this observation holds for arbitrary pairs of points, it follows that
the initial and final configurations of the block are related through a pure
translation that shifts all points in the block by an equal amount along
a common fixed direction relative to the reference configuration.

The result of the illustration shows that for every pure translation
there is an equivalent pure translation that shifts all points in the block by
an equal amount along a common fixed direction relative to the reference
configuration.
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The final configuration that results from the application of any one
member of a family of equivalent pure translations to a block in an initial
configuration is identical to that which results from the application of
any other member of this family. We, therefore, often choose to refer
to the whole family collectively by the equivalent pure translation that
shifts all points in the block along a common fixed direction from their
initial to their final locations in space. Here, we are more concerned with
the relative configuration of the initial and final configurations than with
the path by which one was brought to the other.

As pure translations preserve the orientation of the block while only
affecting its position, it is reasonable to expect that successive composi-
tions of pure translations result in no net change in orientation.

Illustration 1.2

Consider the final configuration that results from a shift of the block by
one unit of length along a given direction and, subsequently, by two units
of length along a different direction as shown in the figure below.
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All the points on the block in the final configuration are shifted from
their original positions by the same amount and along a common direc-
tion. The final configuration is thus related to the initial configuration
by a single pure translation.

In general, a pure translation of the block from an initial configuration
to some intermediate configuration, followed by a second pure translation
to a final configuration, is equivalent to a single pure translation of the
block from the initial configuration to the final configuration. This is con-
sistent with the notion that configurations related by pure translations
have the same orientation. Indeed, as is suggested by the above obser-
vation, the composition of pure translations, each of which preserves the
block’s orientation, results in no net change in orientation. This supports
describing the position of the block relative to the reference configuration
in terms of the pure translation that relates the block’s configuration to
the reference configuration, and vice versa.

Illustration 1.3

As shown in the figure below, the final configuration that results from a
shift of the block by one unit of length along a given direction and, sub-
sequently, by two units of length along a different direction could also
have been achieved by switching the order of the shifts.

In general, the order in which two pure translations are effected is
immaterial to the final configuration of the block. We say that pure
translations commute under composition.
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Pure rotation

A motion of the block that results in a change in the
block’s orientation, but involves no change in the block’s
position, is called a pure rotation. In a pure rotation, one
point in the block remains fixed relative to the reference con-

figuration.
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Two configurations of the block are said to be related @:

through a pure rotation if there exists a pure rotation that
brings the block from the first to the second configuration.
It should follow that two configurations of the block that are
related through a pure rotation have the same position.

Two pure rotations that result in the same final configuration when
applied to the block in an initial configuration are said to be equivalent. @
Equivalent pure rotations result in the same net change of orientation
while involving no change in position. The result of Exercises 1.8 and 1.9
shows that for every pure rotation there is an equivalent pure rotation
that rotates the block by a given amount about a fixed axis relative to

the reference configuration.

The final configuration that results from the application of any one
member of a family of equivalent pure rotations to a block in an initial
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configuration is identical to that which results from the application of any
other member of this family. We, therefore, often choose to refer to the
whole family collectively by the equivalent pure rotation that rotates the
block about a fixed axis. Here, we are more concerned with the relative
configuration of the initial and final configurations than with the path by
which one was brought to the other.

As pure rotations preserve the position of the block while only affect-
ing its orientation, it is reasonable to expect that successive compositions
of pure rotations result in no net change in position.

Illustration 1.4

Consider the final configuration that results from a rotation of the block
by a quarter turn about a given direction (keeping one of the corners
fixed) and, subsequently, by a quarter turn about the same direction
(keeping a different corner fixed) as shown in the figure.

Then, no point of the block in the final configuration coincides with the
corresponding point in the initial configuration. The final configuration
is thus not related to the initial configuration by a single pure rotation.
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In contrast to the case of pure translations, a pure rotation of the
block from an initial configuration to some intermediate configuration,
followed by a second pure rotation to a final configuration, is, in general,
not equivalent to a single pure rotation of the block from the initial
configuration to the final configuration. Although there is no change in
the block’s position during the two pure rotations, the initial and final
configurations do not have the same position. It appears that the act of
switching the point to be kept fixed by subsequent pure rotations puts the
association between pure rotations and unchanging position in jeopardy.

The final configuration is related to the initial configura-
tion through a pure rotation if and only if at least one point
in the block in the final configuration coincides with the cor-
responding point in the initial configuration. This outcome is
guaranteed if we require that all pure rotations keep the same
point fixed relative to the reference configuration.

With this added condition, a pure rotation of the block from an ini-
tial configuration to some intermediate configuration, followed by a sec-
ond pure rotation to a final configuration, is equivalent to a single pure
rotation of the block from the initial configuration to the final configu-
ration. This is consistent with the notion that configurations related by
pure rotations have the same position. Indeed, under these conditions,
the composition of pure rotations, each of which preserves the block’s
position, involves no net change in position.

As was the case with pure translations, this supports describing the
orientation of the block relative to the reference configuration in terms

11
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of the pure rotation that relates the block’s configuration to the refer-
ence configuration, and vice versa, provided that the pure rotation
always keeps the same point on the block fixed relative to the
reference configuration.

Illustration 1.5

As shown in the figure, the final configuration that results from a quar-
ter turn of the block about a given direction (keeping one of the corners
fixed) and, subsequently, by a quarter turn about a different direction
(keeping the same corner fixed) differs substantially from that achieved
by switching the order of the turns.

Contrary to the case of pure translations, the order in which two pure
rotations are effected is, in general, crucial to the final configuration of
the block. We say that pure rotations do not commute under composi-
tion.

A non-trivial pure translation, i.e., one for which the net shift is non-
zero, cannot, be a pure rotation, since the latter requires one point to be
fixed in space. Similarly, a non-trivial pure rotation, i.e., one for which
the net turning angle is non-zero, cannot be a pure translation, since the
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latter requires that all points shift by an equal amount along parallel
paths. The collections of all pure translations and all pure rotations
have only one equivalent element in common, namely the special case of
zero net shift and zero net turning angle corresponding to the absence of
motion.

absence of motion

Pure
rotations

Pure
translations

1.1.3 Instantaneous Motion
Pure translations

In a pure translation, all points are shifted by an equal amount along
parallel paths relative to the reference configuration. The previous dis-
cussion showed that a pure translation is equivalent to a shift by a spe-
cific amount along a fixed direction relative to the reference configuration.
The amount and direction of the shift associated with a pure translation
from the reference configuration to the final configuration depend on the
choice of reference configuration.

Assume that the reference configuration coincides with the configura-
tion of the block at some instant in time ¢ and that the configuration of
the block at time ¢ + At is related to the reference configuration through
a pure translation for all sufficiently small At. For each At, the cor-
responding pure translation is equivalently described by a direction of
translation and a shifting distance. Clearly, the shifting distance goes to
zero as At becomes arbitrarily small.

If the direction of translation limits on some specific direction as At
goes to zero, the limiting direction is called the instantaneous direction
of translation of the block relative to the reference configuration. If the
shifting distance divided by At limits on some specific value as At goes
to zero, the limiting value is called the linear speed of the block relative
to the reference configuration.

Pure rotations

In a pure rotation, one point remains fixed relative to the reference config-
uration. The previous discussion showed that a pure rotation corresponds
to a rotation by a specific amount about a fixed axis relative to the ref-
erence configuration. The axis of rotation and the amount of rotation
associated with a pure rotation from the reference configuration to the
final configuration depend on the choice of reference configuration.

N

13
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=X
=\

Assume that the reference configuration coincides with the configura-
tion of the block at some instant in time ¢ and that the configuration of
the block at time t + At is related to the reference configuration through
a pure rotation keeping the same point fixed for all sufficiently small At.
For each At, the corresponding pure rotation is equivalently described by
an axis of rotation and a turning angle. Clearly, the turning angle goes
to zero as At becomes arbitrarily small.

If the axis of rotation limits on some specific axis as At goes to zero,
the limiting axis is called the instantaneous axis of rotation of the block
relative to the reference configuration. If the turning angle divided by At
limits on some specific value as At goes to zero, the limiting value is called
the angular speed! of the block relative to the reference configuration.

1.1.4 Curved Space

The assertion that a sequence of pure translations is equivalent to a single
pure translation is actually not quite as obvious as might appear from
the discussion following Illustration 1.2. It certainly agrees with our
general impression of the geometry of the space we live in, but it is quite
possible to conceive of spaces with different inherent geometries in which
the assertion is false.

As an example, consider motions constrained to the surface of a
sphere.

north
( pole

south
pole

For reference, identify two diametrically opposite points on the sphere’s
surface as the north and south poles of the sphere and let the circle
located halfway between the north and south poles be called the sphere’s

1A more common terminology for this quantity is angular velocity. The term
velocity, however, is typically intended to refer to a quantity that has magnitude as
well as direction. The magnitude of a velocity is called the speed. The terminology
used here is consistent with this usage and agrees with that used for the case of pure
translations.
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equator. A great circle through a point on this surface is characterized by
its tangent direction at the point and a positive direction of travel along
the circle. We can represent the great circle by an arrow based at the
point, tangential to the circle and pointing in the positive direction of
travel along the circle. The angle between two great circles intersecting
at a point is then defined as the angle between the two corresponding
arrows.

Think of the configuration of a “block” in this two-dimensional world
as a point on the sphere’s surface and a great circle through this point.
Consider two configurations of the block in the two-dimensional world
and let

(Areference7 \Ijreference) and (Aﬁnala \Ijﬁnal)

represent the corresponding pairs of a point and a great circle, respec-
tively. Denote by Wieterence—final the great circle through the two points
Apeterence and Agpay, such that the positive direction of travel agrees with
the shortest path from A eference 10 Afnai. The two configurations are
related by a pure translation if the angle

£ (\Ilreference—)ﬁnaly \I/reference)
between queference%ﬁnal and \I/reference equals the angle
£ (\Ijreferenceﬂﬁnala \I]ﬁnal)

between \Ilreferenceﬂﬁnal and \Ijﬁna1~

Areference

\Ijreference

‘I]referenceaﬁnal
\Ijﬁnal

Illustration 1.6
Let the initial configuration of the block

(Ainitial, Yinitial)

be given by a point Ajpitia on the sphere’s equator and the great circle
Winitial through Ajpigia and the north pole, such that the corresponding
arrow at Ajnitial points toward the north pole.

15
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north

Winitial pole

equator

Ainitial

Let the intermediate configuration of the block

(Aintermediatea lIIintermedia‘ce)

be given by a point Ajgermediate ON the equator a quarter of the circum-
ference from the initial point; and the great circle ¥iptermediate through
Ajntermediate and the north pole, such that the corresponding arrow at
Ajntermediate Points toward the north pole. Then, Wipitial-intermediate COIN-
cides with the equator with direction of travel from Ajpitial t0 Aintermediate-
Since

£ (\Ilinitialﬁintcrmcdiatm \Ijinitial) =
o
4 (\Ilinitial—dntermediate7 \Ilintermediate) =90 )

the intermediate configuration is related to the initial configuration by a
pure translation.

north

pole

\Ijintermediate

\I]initial—»interrnediate

k

Aintermediate

Ainitial

Now, let the final configuration of the block
(Aﬁnal; \I!ﬁnal)
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be given by the point Ag,,; at the north pole and the great circle gy, =
Wintermediate, 1-€., such that the corresponding arrow at Agy,) points away
from Aintermediate~ Let \Ijintermediateﬂﬁnal equal \Ijintermediat& Then7 since

£ (\Ijintermediateﬂﬁnal ) \Ijintermediate)

o
=4 (\Ilintermediateﬁﬁnalv \Ijﬁnal) =0 )

the final configuration is related to the intermediate configuration by a
pure translation.

Aﬁnal

Yhnal = Yintermediate

= Wintermediate—final

Ainitial

The two pure translations result in the block positioned at the north
pole with an orientation given by a great circle Wgna # Winitial. But,
since the great circle \Ijinitialﬂﬁnal = \Ilinitial-,

0° = £ (Vinitial—final; Yinitial) 7 £ (Yinitial—final; Yainal) = 90°.

The final configuration is therefore not related to the initial configuration
through a pure translation. Instead, the operation equivalent to the com-
bined effect of the two pure translations is a pure translation followed by
a pure rotation, in stark contrast to the claims made in a previous section.

The geometry of the spherical surface is that of a curved space. In
contrast, in a flat space, arbitrary combinations of pure translations are ‘@
equivalent to a single pure translation. Our everyday experience certainly
suggests that our space is flat. But it is possible to show that arbitrary
combinations of sufficiently small pure translations in a curved space
may be closely approximated by a single pure translation. Indeed, this
approximation becomes increasingly accurate as the amount of shift of
the pure translations decreases. This observation expresses the fact that
a curved space is locally flat. In the case of the sphere, a small patch of ,@
the sphere’s surface centered on some point is closely approximated by
the plane tangent to the sphere’s surface at that point. It is, thus, quite
conceivable that our experience of the flatness of our space is born from

17
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observations only on very small motions relative to the length scales over
which curvature plays a role?.

1.1.5 Combinations of Translations and Rotations

Two motions that result in the same final configuration when applied to
a block in an initial configuration are said to be equivalent. Equivalent
motions result in the same net change of position and orientation. For
example, the final configuration of the block that results from a pure
translation to an intermediate configuration followed by a pure rotation
is identical to that obtained by switching the order of the operations,
provided that the same point on the block is kept fixed by the pure
rotations as shown in the figure.

In the first case, all points of the block are shifted by an equal amount
along a common direction; and the block is subsequently rotated while
keeping one point in the block fixed relative to the reference configuration.
In the second case, the block is first rotated while keeping the same point
in the block fixed relative to the reference configuration; and all points of

21t is more than just conceivable; it is a fact, as suggested by Einstein’s General
Theory of Relativity.
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the block are subsequently shifted by an equal amount along a common
direction.

Illustration 1.7

Consider a sequence of pure translations and pure rotations, where all the
pure rotations keep the same point on the block fixed relative to the ref-
erence configuration as suggested in the figure.

- 3 /7 X |

By the above observation, the order of pure translations and pure ro-
tations may be switched, so as to collect all translations at the beginning
of the sequence and all rotations at the end of the sequence.

- 7 | 3 x ¥

From the discussion of pure translations, we conclude that the pure
translations may be combined into a single pure translation. Similarly,
since the pure rotations all keep the same point fixed, they, too, may be
combined into a single pure rotation.

N

1.1.6 Decompositions of Configurations

An arbitrary configuration of the block can be thought of as the result
of a pure translation from the reference configuration to an intermedi-
ate configuration followed by a pure rotation. In particular, let the pure
translation be such that one point on the block in the intermediate config-
uration coincides with the corresponding point in the final configuration.
This will be the point kept fixed relative to the reference configuration
by the subsequent pure rotation.

19
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Illustration 1.8

To bring the block from the reference configuration to the final configu-
ration, apply a pure translation so that one corner of the block coincides
with the corresponding corner in the final configuration, as shown in the
left path of the figure. Then, apply a pure rotation to line up the block
with the final configuration while keeping this corner fixed.

Alternatively, apply a different pure translation to the block in the
reference configuration so that a different corner of the block coincides
with the corresponding corner in the final configuration as shown in the
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right path of the figure. Then, apply a different pure rotation to line up
the block with the final configuration while keeping this corner fixed.

There is no unique way to decompose an arbitrary configuration of
the block relative to the reference configuration into a combination of a
pure translation and a pure rotation. That there are multiple (actually,
infinitely many) ways of doing this follows from the freedom to choose the
point in the intermediate configuration that will coincide with the cor-
responding point in the final configuration. Once the point about which
the pure rotation will take place has been selected, however, both the
pure translation and the pure rotation are uniquely determined
(at least within equivalence).

The unique pure translation and pure rotation that relate
the actual configuration to the reference configuration — given
the selection of the point kept fixed by the rotation — provide
the clearest description so far of the position and orientation,
respectively, of the block relative to the reference configura-
tion. That the order in which the pure translation and the
pure rotation are applied is immaterial to reaching the actual
configuration implies that the position of the block may be
described independently from its orientation, and vice versa.

Position <« Translation

Orientation <« Rotation

1.2 A First Look at Degrees of Freedom

1.2.1 Position

Illustration 1.9

Assume that one corner of the block in the final configuration is located
one unit of length from the corresponding point in the initial configura-
tion along a direction parallel to one of the edges of the block, as shown
in the figure on the next page.

The final configuration of the block is then related to the initial con-
figuration by a pure translation shifting all the points of the block by one
unit of length along the same direction; and a subsequent pure rotation
keeping the corner point fixed.

(Ex. 1.15 —
Ex. 1.17)
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Consider a block in some arbitrary configuration and denote by A the
point in the block that has been selected to be kept fixed by the pure
rotation in the decomposition discussed in the previous section. Then
Areference and Agpa are the points in space that coincide with A when

the block is in the reference configuration and final configuration, respec-
tively.

Aﬁnal

The pure translation that brings the block from the reference config-
uration to the intermediate configuration is uniquely determined by the
location of the point Ag,a relative to the reference configuration.

1.2.2 Orientation

Illustration 1.10

Apply a pure rotation to a block, keeping one of the corners fixed as shown
in the figure on the next page. Once the location of two of the other cor-
ners has been determined, the locations of all other points on the block
are known. In contrast, knowing the location of two other points along an
axis through the corner kept fixed by the pure rotation does not imply
that the locations of all other points on the block are known.
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There are infinitely many configurations of the block for which A
coincides with Agna. These are related to each other through arbitrary
pure rotations keeping A fixed.

Aﬁnal

With the introduction of a second point B in the block that is not
coincident with A, there are still infinitely many configurations of the
block for which A and B coincide with Agna and Bgpnal, respectively.
These are related to each other through arbitrary pure rotations about
the straight line through Agpa. and Bgpa.

With the introduction of a third point C' in the block that does not
lie on the line through A and B, there is one and only one configuration
of the block for which A, B, and C coincide with Agpnal, Bgnal, and Chnal,
respectively.

23
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Bﬁnal

'.'_ Aﬁnal : . Cﬁnal

3

The pure rotation that brings the block from the intermediate con-
figuration to the final configuration is thus entirely determined by the
location of the points Agnal, Bfnal, and Cgna relative to the reference
configuration.

1.2.3 Coordinates

Consider a coordinate system with origin at Areference and axes parallel
to the edges of the block in the reference configuration. The coordinates
TA, Yya, and z4 of the point Agp, with respect to this coordinate system
quantitatively describe the pure translation that shifts the block from the
reference configuration to an intermediate configuration, with the point
A coinciding with Agpa.

Areference

Areference

TA

Afinal

YA
ZA

In particular, the pure translation is equivalent to a combination of
three pure translations along each of the three coordinate axes by x4,
ya, and z4 units of length, respectively.
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Illustration 1.11

Let the coordinates of one of the corners of the block, with respect to a
coordinate system with origin at the corresponding corner in the refer-
ence configuration, be 1, —1, and 0 units of length, respectively. The final
configuration of the block is related to the reference configuration by a
combination of a pure translation shifting all points by one unit of length
in the positive direction of the first coordinate axis, a pure translation
shifting all points by one unit of length in the negative direction of the
second coordinate axis, and a pure rotation keeping the corner point fixed.

Since the distance between A and B must remain unchanged under
arbitrary motions, the point Bgpa; is restricted to the surface of a sphere
centered on Agp,. It follows that the location of Bgya on this sphere
is determined by the values of two independent angles 6, and 0,5, e.g.,
the latitude and longitude of the point Bgp,) relative to some arbitrarily
chosen equator and zero meridian.

4

Finally, since the distances between A and C' and between B and
C must remain unchanged under arbitrary motions, the point Chpa is
restricted to a circle centered on and perpendicular to the straight line
through Agna and Bgpa. It follows that the location of Cgpha on this
circle is determined by the value of a single angle 63 relative to some
reference position.

Bﬁnal

25
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Aﬁnal
A“
b C(ﬁnal

The three angles 01, 62, and 035 quantitatively describe the pure rota-
tion that turns the block from the intermediate configuration to the final
configuration while keeping the point A fixed.

Illustration 1.12
Apply a pure rotation to the block, keeping one corner (denoted by A)
fixed as shown in the figure.

The final configuration of the block is related to the reference configu-
ration by a combination of a pure rotation by an angle of 115° about the
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axis through A labeled 1, followed by a pure rotation by an angle of 115°
about the axis through A labeled 2, followed by a pure rotation by an
angle of 75° about the axis labeled 3 through A and the corner denoted
by B.

Indeed, any arbitrary orientation of the block may be obtained by
varying the three angles introduced here.

1.2.4 Independence

Every configuration of the block corresponds to some choice of values
for the quantities x4, ya, 24, 01, 02, and 63. Similarly, every choice of
values for these quantities corresponds to some configuration. By the
mutual independence of pure translations and pure rotations, it follows
that the values of the angle coordinates are independent of the values of
the distance coordinates, and vice versa.

Since our physical space is three-dimensional, it is clear that all three
distance coordinates are generally required to describe the block’s po-
sition relative to the reference configuration. Similarly, all three angle
coordinates are generally required to describe the block’s orientation rel-
ative to the reference configuration. We express these observations by
stating that the block has six geometric degrees of freedom. We conclude
that an arbitrary motion of the block can be translated into specific time
histories x4 (t), ya (¢), za (t), 01 (t), 02 (t), and 03 (¢) , and vice versa.

Illustration 1.13

The configuration of the block is uniquely determined by the location of
the three points Agnal, Bfinal, and Chpnal relative to the reference config-
uration. Thus, every configuration corresponds to some unique choice of

27
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values for the coordinates of these three points in the previously intro-
duced coordinate system with origin at A eference- Denote these coordi-
nates by TA, YA, 2A, TB, YB, 2B, LC5 Yo, and zC-

In contrast to the set of coordinates x4, ya, za, 01, 02, and 63, not
every choice of values for the collection of nine coordinates corresponds
to an actual configuration of the block. The coordinates x 4, ya, z4, T3,
YB, 2B, Tc, Yo, and zo are constrained to take on values that ensure
that the distances between Agna and Bgna, between Agna and Chpal,
and between Bgpa and Chpay equal those in the reference configuration.
Each such constraint is equivalent to an equation that the coordinates
must satisfy. For example, if the distance between A and B in the block
equals dap, then invoking Pythagoras’ theorem yields

(x5 —2a)? + (yp —ya)* + (25 — 24)> = (dap)®.

The coordinates x 4, ya, 24, TB, YB, 2B, TC, Yc, and z¢c are clearly not
independent.

1.3 A First Look at Rigid Bodies

In the previous sections, the configuration of the block was defined as
the position and orientation of the block relative to a reference position
and a reference orientation. It was tacitly assumed that no changes could
occur to the block other than a change in position and a change in ori-
entation. The three arbitrary points A, B, and C were useful only under
the assumption that the distances between any two of these points re-
mained unchanged under arbitrary motions. From this, we found that
six independent quantities describe the configuration of the block at any
arbitrary moment during its motion.

Deeper reflection shows the level of idealization employed in this dis-
cussion. Clearly, actual physical blocks, even when manufactured to per-
fection, have shapes that change with time. We say that actual physical
bodies are deformable, whereas the idealized body whose shape is un-
changed during its motion is said to be rigid.

When the shape deformations are large, the concepts of position and
orientation of the body as a whole are no longer adequate for describing
the body’s configuration. Instead, it becomes necessary to describe the
position of each point of the body relative to its position in the reference
configuration. Such bodies require infinitely many quantities to describe
their configuration and will not be the subject of this text.

When the shape deformations are small, the rigid-body approxima-
tion may prove sufficient for an initial study of the body motion. It is
an attractive simplification, given the dramatic reduction in the num-
ber of independent quantities necessary for describing the configuration
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of a rigid body, and given our intuitive understanding of the notions of
translation and rotation. All bodies in this text will be assumed to be
rigid.

Illustration 1.14

Every rigid body can be inscribed within a rectangular block that moves
rigidly with the body. It follows that the discussion presented in the pre-
vious section applies to an arbitrary rigid body, where reference to the
faces and edges of the block refers to the rectangular block within which
the body is inscribed.

Areference

In other words, the configuration of a rigid body can be uniquely
determined by the values of six independent quantities. Moreover, ar-
bitrary rigid-body motions relative to a reference configuration can be
decomposed into pure translations followed by pure rotations.

1.4 A First Look at Observers

In the previous sections, we repeatedly emphasized the need for a ref-
erence configuration relative to which the current configuration was de-
scribed. No information was offered, however, about how this reference
configuration should be selected. Naturally, the configuration of a rigid
body relative to one reference configuration would be quite different from
that relative to a different reference configuration.

(Ex. 1.18)
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Even if the same three points A, B, and C on the body were selected, the
quantities x4, ya, za, 01, 02, and 03 would take on different values for
the same configuration. In fact, while the body might appear stationary
relative to one reference configuration, it might exhibit a complicated
tumbling motion relative to another.

The selection of a reference configuration is intimately related to the
notion of an observer. After all, the initial discussion of rigid-body motion
was introduced in the context of a block moving through the reader’s
visual field.

As suggested there, your intuitive reaction to the concepts of a reference
position and a reference orientation may have been to imagine a collection
of points fixed in your visual field that collectively represent a virtual
block of the same dimensions as the actual block. It was not necessary to
describe this virtual block any further, since its properties and geometry
were self-evident to you. With the help of the reference configuration,
you were able to describe the configuration of an arbitrary rigid body.
With the help of the reference configuration, you were able to describe
the motion of an arbitrary rigid body.

With this image in mind, consider the possibility of an observer ob-
serving another observer. This is suggested by the idea that a reference
configuration could be used to describe the configuration of the virtual
block corresponding to another reference configuration. In this fashion,
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the configuration of a rigid body relative to one observer could be de-
scribed as a combination of the configuration of the rigid body relative to
some auxiliary observer, and the configuration of the auxiliary observer
relative to the original observer.

If the rigid body were stationary relative to the auxiliary observer, any
motion relative to the original observer would be described by the motion
of the auxiliary observer relative to the original observer.

Illustration 1.15

As an example, consider the following breakdown of the configuration of a
rectangular block relative to some observer denoted by W. As suggested
in previous sections, the configuration of the block relative to W is given
by a pure translation and a subsequent pure rotation about some fixed
point A in the block.

)4%
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We may introduce an auxiliary observer A, such that the configuration
of A relative to W is given by the pure translation and such that the con-
figuration of the block relative to A is given by the pure rotation. Here,
the point A on the virtual block representing the A observer coincides
with Aﬁnal.
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A second auxiliary observer B may subsequently be introduced, such that
the configuration of B relative to A is given by some pure rotation keeping
A fixed and ensuring that the point B on the virtual block representing
the B observer coincides with Bgpn,. The block’s configuration relative
to B is then given by the pure rotation about the straight line through
Agnal and Bgpa that ensures that the point C' coincides with Cpa.
w
A
B
Block

Cﬁn al

Although the configuration of the block relative to the W observer
may be directly described using a single pure translation and a single
pure rotation, the introduction of one or several auxiliary observers serves
to simplify the description of each translation and rotation. There is no
right answer here, only a question of convenience.
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Exercise 1.1 The configuration of a
block relative to a reference configuration is
given by a pure translation corresponding to
a shift of the block by two units of length
along a given direction, followed by a pure
translation corresponding to a shift of the
block by one unit of length along a direc-
tion that makes an angle of 42° with the
first direction. Then, the configuration of the
block relative to the reference configuration
is given by a single pure translation corre-
sponding to a shift of d units of length along
a direction that makes an angle ¢ with the
direction of the first pure translation. Com-
pute d and .

Solution. Let A be some arbitrary point
on the block and denote by Agp, Ay, and A,
the corresponding points on the block in the
reference, intermediate, and final configura-
tions, respectively. Then, the geometry is
described by the figure below.

The direction and amount of shift corre-
sponding to the single pure translation re-
lating the block’s configuration to the refer-
ence configuration is given by the straight-

line segment from Ay to As. By the cosine
theorem, the length of this straight-line seg-
ment equals

d= /12422 — 2% 1 %2 * cos (180° — 42°)

~ 2.82.

Similarly, the angle ¢ between this straight-
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line segment and the direction of the first
pure translation is given by the sine theorem

jin (180° — 42°
@ = sin~! <1 x %) ~ 13.7°.

Exercise 1.2 The configuration of a
block relative to a reference configuration is
given by a pure translation corresponding to
a shift of the block by d; units of length along
a given direction followed by a pure trans-
lation corresponding to a shift of the block
by ds units of length along a direction that
makes an angle # with the first direction.
Then, the configuration of the block rela-
tive to the reference configuration is given by
a single pure translation corresponding to a
shift of d units of length along a direction
that makes an angle ¢ with the direction of
the first pure translation. Compute d and ¢
when

a)d1 2d2_19_300
b) dy = 0.5, d2 = 1.5, 6 = 130°
C)dl 1d2—15 0 = 14°

dy =24,dy, =04, 0 =098
e) d; =2.04, do = 4.10, § = 12.5°
dy =043, dy =0.43, § = 135°

[Answer: a) d = 2.91, ¢ = 9.9°, b) d = 1.24,

p ~ 112.0° ¢) d = 248, ¢ ~ 8.4°, d)
d=~2.38, p=96°¢e)d~6.11, p = 8.4° 1)
d~0.33, ¢ = 67.5°]

Exercise 1.3 Consider applying a pure
rotation to a block in its reference configu-
ration by a given amount while keeping all
points on one edge of the block fixed, fol-
lowed by a pure rotation by the same amount
but in the opposite direction keeping a dif-
ferent, but parallel, edge fixed relative to the
reference configuration, as shown in the fig-
ure on the next page.

Show that the final configuration is re-
lated to the reference configuration through
a pure translation.
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Solution. As the paths of all points on
the block during the subsequent rotations lie
in planes perpendicular to the axes of rota-
tion, it suffices to consider the points on the
upper surface of the block.

Specifically, denote by A and B the two
points on the upper surface of the block that
lie on the two axes of rotation. Let Aicference,
Brcforcncm Aﬁna17 and Bﬁnal denote the cor-
responding points in the reference and final
configurations, respectively, as shown in the
figure.

Arcfcrcncc
®-=-=-=-=--= '
Aﬁnal . :
01 05" :
Breference
Bﬁnal

Since the opposing angles 6, and 6, are
equal, it follows that the straight-line seg-
ments between Aieference aNd Breference and
between Agna and Bgna are parallel and
have the same orientation, and thus that the

final configuration is related to the initial
configuration through a single pure transla-
tion.

Exercise 1.4 The configuration that re-
sults from a pure rotation of a block about
a fixed axis through a point A; by a given
amount differs from the configuration that
results from a pure rotation of the block
about a parallel axis through a point Ay by
the same amount.

a) Show that the two configurations are
related through a pure translation;

b) Show that the pure translation is along
a direction perpendicular to the axes of
rotation;

¢) Show that the shifting distance is pro-
portional to the perpendicular dis-
tance between the two axes of rotation
and that the proportionality constant
equals 2Sin%, where 6 is the turning
angle.

[Hint: Consider the figure in Exercise 1.3.]

Exercise 1.5 Consider applying a pure
rotation to a block in its reference configu-
ration corresponding to a half turn about an
edge through a given corner on the block, fol-
lowed by a pure rotation corresponding to a
quarter turn about a different edge through
the same corner as shown in the figure on the
next page.

Show that the final configuration is re-
lated to the reference configuration by a sin-
gle pure rotation about an axis through the
corner making an angle of 45° with the first
edge and 90° with the second edge.

Solution. Since the corner point is kept
fixed by both pure rotations, the final con-
figuration is related to the reference configu-
ration by a single pure rotation.

Let A be some arbitrary point on the
straight line through the corner making an



angle of 45° with the first edge and perpen-
dicular to the second edge as shown in the
figure. Denote by Ay, A1, and As the corre-
sponding points in the reference, intermedi-
ate, and final configurations, respectively.

0.: T

-
-y -
[

It is clear from the figure that As = Ao,
i.e., all points on the straight line are kept
fixed by the pure rotation from the reference
configuration to the final configuration.

Exercise 1.6 Consider applying a pure
rotation to a block in its reference config-
uration corresponding to a half turn about
an edge through a given corner on a block
followed by a pure rotation by an angle 6
about a different edge through the same cor-
ner. The final configuration is related to the
reference configuration by a single pure rota-
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tion about an axis through the corner making
an angle ¢ with the first edge and perpendic-
ular to the second edge. Show that

191

0=

Exercise 1.7 Consider applying a pure
rotation to a block in its reference config-
uration corresponding to a half turn about
some axis through a given corner on a block
followed by a pure rotation corresponding to
a quarter turn about a different axis through
the same corner making an angle 45° with
the first axis. The final configuration is re-
lated to the reference configuration by a sin-
gle pure rotation about an axis through the
corner making an angle ¢, with the first axis
and ¢, with the second axis. Show that

¢ ~ 35.3° and ¢, ~ 54.7°.

Exercise 1.8 Show that if two configu-
rations of a block are related through a pure
rotation keeping a point A on the block fixed
relative to the reference configuration, then
the two configurations are related through a
pure rotation keeping an entire straight line
of points through A fixed relative to the ref-
erence configuration.

[Hint: If a block rotates about a straight line
through A, then all points on the straight line
remain fixed relative to the reference configu-
ration. The claim follows if we can show that
every pure rotation that keeps the point A
fixed is equivalent to a pure rotation of the
block about some straight line through A.
Consider an additional point B on the block
that is not coincident with A. Let Bipitial
and Bgna be the points in space that coin-
cide with B when the block is in the initial
and final configurations, respectively. Then,
the claim follows if you show that, for any
pure rotation:
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1. The points Bijpyigial and Bgpar lie on the
surface of a sphere centered on A;

2. There are infinitely many circular arcs
on the surface of the sphere that con-
nect Binitial and Binal;

3. Each circular arc lies on the intersec-
tion of the sphere with a plane that
contains the points Bipitial and Bfnal;

4. The shortest such circular arc is part
of a circle centered on A, i.e., the great
circle through Bipitia1 and Bgpa;

5. The longest such circular arc is part of
a circle centered on the point in space
halfway between Bipitia1 and Bgpal;

6. Every such circular arc corresponds to
the motion of the point B from Bijpitial
to Bganal when the block is rotated
about a straight line through A and the
center of the corresponding circle;

7. The collection of such straight lines
forms a plane that contains A and the
point in space halfway between Bipitial
and Bgna and is perpendicular to the
line between Bipitial and Bgnal;

8. Let C be an additional point on the
block that is not colinear with A and
B. Then, the plane constructed in the
previous step intersects the plane con-
structed by replacing B with C in steps

1. through 7. in a straight line through

A;

9. The initial and final configurations of
the block are related through a pure
rotation about the straight line found
in the previous step.]

Exercise 1.9 Use the result of the pre-
vious exercise to show that any pure rotation
can be equivalently described by specifying
an axis about which to turn the block and a
turning angle (cf. the equivalent description

of a pure translation in terms of a direction
along which to shift the block and a shifting
distance).

Exercise 1.10 Show that the order in
which two pure rotations are applied to a
block is immaterial to the final configuration
of the block if and only if i) the pure rota-
tions rotate the block about the same axis or
ii) the pure rotations rotate the block about
perpendicular axes by a half turn each.

Exercise 1.11 Suppose that the actual
configuration of a block is related to its refer-
ence configuration by a pure translation and
a pure rotation, where the axis of rotation
is perpendicular to the axis of translation.
Show that it is always possible to rigidly em-
bed the block in a larger block, such that
the actual configuration of the larger block
is related to its reference configuration by a
single pure rotation.

[Hint: Consider the solution to Exercise 1.8.]

Exercise 1.12 Suppose that the actual
configuration of a block is related to its refer-
ence configuration by a pure translation and
a pure rotation, where the axis of rotation
is in some arbitrary orientation relative to
the axis of translation. Show that it is al-
ways possible to rigidly embed the block in
a larger block, such that the actual config-
uration of the larger block is related to its
reference configuration by a pure translation
and a pure rotation, where the axis of ro-
tation is parallel to the axis of translation.
This combination is known as a screw.

[Hint: Decompose the pure translation into a
component whose axis of translation is par-
allel to the axis of the pure rotation and a
component whose axis of translation is per-
pendicular to the axis of the pure rotation.
Then appeal to the solution to the previous
exercise.]



Exercise 1.13 Consider motions con-
strained to a plane. A straight line through
a point on this plane is characterized by its
tangent direction at the point and a positive
direction of travel along the line. We can rep-
resent the straight line by an arrow based at
the point, tangential to the line and pointing
in the positive direction of travel along the
line. The angle between two straight lines
intersecting at a point is then defined as the
angle between the two corresponding arrows.
Use a construction analogous to that for the
spherical surface to define pure translations
in this plane and assess whether the plane is
a flat space.

Exercise 1.14 Cut a rectangular strip
out of a flat surface and attach the short
edges to each other after applying half a
turn to one of the edges. Discuss the defini-
tion of pure translations for motions on the
resulting surface. Consider, in particular,
the motion of a two-dimensional block on
this surface along the centerline of the strip.

Exercise 1.15 From a previous exer-
cise, we recall that every pure rotation of the
block corresponds to a rotation of the block
about some fixed axis. Use this observation
to propose an alternative to the angles 61,
0>, and 03 for specifying the pure rotation
that turns the block from the intermediate
configuration to the final configuration while
keeping the point A fixed.

[Hint: The pure rotation is uniquely de-
scribed by specifying an axis through A
about which to turn the block and a turning
angle. The axis through A is uniquely de-
scribed by specifying its intersection with a
sphere centered on A.]

1.5 Exercises 37

Exercise 1.16 From a previous exer-
cise, we recall that every configuration of the
block is related to its reference configuration
by a screw corresponding to a pure rotation
and a pure translation by given amounts
along a common axis. Use this observation
to propose an alternative to the coordinates
TA, YA, 24, 01, 02, and O3 for specifying the
configuration of the block. Can you propose
a set of independent coordinates based on
the screw representation?

Exercise 1.17 Use an actual block to
represent the configurations corresponding
to the following values for the coordinates:

a) :EA:anA:17ZA:17

B, = 30°, 05 = 0°, 05 — 0°
xA:fl,yAzl,zA:O,
0, = 30°,05 — 40°, 05 — 0°
C) $A=07yA21,2A217

0, = 0°,05 = 90°, 05 — 90°
d) :CA:anAZOaZA:Oa

0, = 0°, 05 = —45°, 05 = 0°
e) xA:]-ayA:O»ZA:L

0, = 30°, 05 = 30°, 05 — —90°
ra=—-1y4=0,24 = —1,
B, = 180°, 6y = 90°, 65 — 45°

Exercise 1.18 The configuration of a
block relative to an observer W corresponds
to a pure rotation by a given amount about
an axis through a point O; on the block.
Similarly, the configuration of the block rela-
tive to an auxiliary observer B corresponds to
a pure rotation about a parallel axis through
the block’s center Oy by an equal amount.
Describe the relative configurations of the
observers W and B and indicate the relation-
ship graphically.

[Hint: Consider the figure in Exercise 1.3.]
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SUMMARY OF NOTATION

The symbols A, B, C, and O were used in this chapter to denote some
arbitrary points on a rigid body. The same notation, but with
SU.bSCI'iptS, €.g., Ainitiah Aintermediate; Areferen067 or Aﬁnah was used
to represent points in space that coincided with the corresponding
points on the rigid body in the initial, intermediate, reference, or
final configurations, respectively.

The symbols ¢ and At were used in this chapter to represent the time
of an event and the difference in time between two events.

The symbol ¥ (psi) was used in this chapter to denote a great circle
on a sphere. The same notation, but with subscripts, e.g., Winitial,
Wintermediates Wreference; OF Wenal, was used to represent the great
circles corresponding to the initial, intermediate, reference, or fi-
nal configurations, respectively, of a two-dimensional block on the
surface of the Sphere' Simﬂarl}’7 \Ijreferenceﬂﬁnaly \Ijinitialﬂintermediatea
and Wintermediate—final denoted the great circles through pairs of
points on the sphere corresponding to the initial, intermediate, ref-
erence, and final configurations, respectively, of the block.

The symbols z, y, and z were used in this chapter to represent the
coordinates of a point on a rigid body with respect to a coordinate
system with origin at some point in the reference configuration and
axes parallel to the edges of the virtual block corresponding to the
reference configuration. The same notation, but with subscripts,
such as x4, ya, 24, ¥B, YB, 2B, TC, Yo, O Z¢, was used to represent
the coordinates of the points Agnal, Bfinal, OF Chnal, respectively.

The symbol d was used in this chapter to represent distances between
points in space. The same notation, but with subscripts, e.g., dap,
was used to represent the distance between points A and B on a
rigid body.

The symbols 6 and ¢ (theta and phi) were used in this chapter to denote
an angle. The same notation, but with subscripts, was used to
differentiate between the angles that fix the location of the point
Bfinal relative to Agna (01 and 02) and the angle that fixes the
location of the point Chpa relative to Bena and Agpal (03).

The symbols A, B, and W were used in this chapter to denote observers.



SUMMARY OF TERMINOLOGY

The configuration of a rigid body is a spatial arrangement of all its
points.

At each moment in time, a rigid body’s configuration is described by
its position and orientation relative to some reference position and
reference orientation, constituting a reference configuration.

A motion of a rigid body that results in a change of its position, but in-
volves no change in its orientation, is called a pure translation. In a
pure translation, all points in the rigid body are shifted by an equal
amount along parallel paths relative to the reference configuration.
Every pure translation is equivalent to some pure translation that
shifts all points in the rigid body by an equal amount along a com-
mon fixed direction relative to the reference configuration.

A motion of a rigid body that results in a change of its orientation,
but involves no change in its position, is called a pure rotation. In
a pure rotation, one point in the rigid body remains fixed relative
to the reference configuration. Every pure rotation is equivalent to
some pure rotation that rotates the rigid body by a given amount
about an axis fixed relative to the reference configuration.

The configuration of a rigid body relative to a reference configuration
can be uniquely decomposed into a combination of a single pure
translation and a single pure rotation provided that the pure rota-
tion keeps a preselected point in the rigid body fixed relative to the
reference configuration.

The configuration of a rigid body is uniquely determined by the
location of three arbitrary points in the rigid body that do not lie
on a single straight line.

In the unique decomposition of the configuration of the rigid body, the
pure translation is uniquely determined by the three coordinates of
the first point in the rigid body with respect to a coordinate system
with origin at the corresponding point of the reference configura-
tion.

Similarly, the pure rotation that keeps the first point fixed is uniquely
determined by the two angles that describe the location of the sec-
ond point on the surface of a sphere centered on the first point; and
by the single angle that describes the location of the third point
along a circle centered on and perpendicular to the line through
the first two points.

The rigid body has six geometric degrees of freedom.

(Page 3)

(Page 3)

(Page 4)

(Page 9)

(Page 19)

(Page 22)

(Page 24)

(Page 25)

(Page 27)
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(Page 30)

An observer uses a stationary reference configuration to describe the
configuration of arbitrary rigid bodies.
(Page 31)

The relative configuration of two observers is given by the configuration

of the reference configuration of one of the observers relative to the
reference configuration of the other.



Chapter 2

Observers

wherein the reader learns of:

e A notation to represent pure translations, pure rotations, and com-
binations thereof;

e A general methodology for describing complicated arrangements of
rigid bodies;

e Software tools for multibody analysis and visualization.
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Practicum

As you read through this chapter,
take the opportunity to analyze the
geometry of every single object or
machine in your immediate environ-
ment. Identify its constituent rigid
bodies. Introduce a main observer
and as many auxiliary observers
as you deem necessary, and draw
the corresponding tree structures.
In particular, consider household
machines and tools, such as scissors,
tweezers, food processors, can open-
ers, faucets, the flushing mechanism
in toilets, window shades, door
locks, lawn mowers, weed whackers,
electric tooth brushes, eye glasses,
tricycles, and so on.

The software package MAMBO
and the associated computer-
algebra toolbox are excellent tools
to illustrate the general notions.
But they are much more than that.
They offer you the means to create
your own reality — one over which
you have full control and where
any motion is allowed. Code and
algorithms become alive with use.
So use!




2.1 Algebra of Translations and Rotations

2.1 Algebra of Translations and Rotations

We describe the configuration of a rigid body relative to an observer by
relating its position and orientation to the reference position and reference
orientation of a virtual rigid body that is fixed relative to the observer.
Changes in the configuration of the rigid body relative to the observer
occur as a result of changes in position and orientation that involve pure
translations, pure rotations, or a combination thereof.

It is always possible to describe the position and orientation of a
rigid body relative to some reference configuration through a combination
of a single pure translation and a single pure rotation. Equivalently, it is
always possible to describe the configuration of a rigid body relative to
some observer through a combination of a single pure translation and a
single pure rotation.

The pure translation and the pure rotation are unique, provided that
a single point has been selected on the rigid body to act as the point that
is kept fixed relative to the reference configuration by any pure rotation.
The pure translation and the pure rotation are independent, suggesting
that we may describe the position of the rigid body independently of
describing its orientation, and vice versa.

In the following, we associate with each rigid body and each observer a
unique, pre-selected point to be kept fixed by the application of any pure
rotation. This enables us to represent the position and orientation of a
rigid body relative to an observer or the relative position and orientation
of two observers through a unique pure translation and a unique pure
rotation.

2.1.1 Notation

In a pure translation, all points in a rigid body are shifted by equal
amounts along parallel paths. Every pure translation applied to a rigid
body is equivalent to a shift of all points in the rigid body by an equal
amount along a common fixed direction relative to the reference configu-
ration. We will use the symbol T to denote the operation corresponding
to such a pure translation.

= —I ()

To apply or perform the operation T is to shift all the
points on the body by an equal amount along a common di-
rection specified by T.

When considering multiple translations, we add subscripts to differ-
entiate between them, e.g., Ty and T5.

In a pure rotation, a pre-selected point on a rigid body remains fixed
relative to the reference configuration. Every pure rotation applied to a

(Ex. 2.1 -
Ex. 2.7)
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rigid body is equivalent to a pure rotation by some angle about a fixed
axis through the pre-selected point relative to the reference configuration.
We will use the symbol R to denote the operation corresponding to such
a pure rotation.

® —1> R($)

To apply or perform the operation R is to turn the rigid
body about the pre-selected point by an amount and about a
direction specified by R.

When considering multiple rotations, we add subscripts to differenti-
ate between them, e.g., R; and Res.

2.1.2 The Identity

The trivial pure translation that corresponds to zero net shift is called
the identity translation. The trivial pure rotation that corresponds to a
zero net turn is called the identity rotation. The final configuration that
results after applying the identity rotation is identical to that obtained
after applying the identity translation. This observation justifies the use
of the symbol I to denote both the identity translation and the identity
rotation.

D1 1P)=%

2.1.3 Scaling

If a pure translation T corresponds to shifting all the points on a rigid
body by a distance d along some fixed direction, let the pure translation

aT, a>0

correspond to shifting all the points on the rigid body by a distance
ad along the same fixed direction. If, instead, o < 0, then the pure
translation aT corresponds to shifting all the points on the rigid body
by a distance |a|d in the opposite direction to that of T.

If a pure rotation R corresponds to a rotation by a given angle ¢
about some fixed direction, let the pure rotation

aR, for all a

correspond to a rotation by an angle ap about the same fixed direction®.

1Here, a negative angle corresponds to rotating in the opposite direction to a pos-
itive angle.
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2.1.4 Composition

If a pure translation T; is applied to a rigid body followed by a pure
translation Ty, then the combined operation is represented by the ex-
pression

B — b Tu(%) — 2> T2 o To(H)

The composition symbol o separates the operations and emphasizes
the order in which the operations are applied. If a pure rotation R, is
applied to a rigid body followed by a pure rotation Ro, then the combined
operation is represented by the expression

RQ e] Rl.

& SR () —225 R, 0 Ry(S)

If a pure rotation R, is applied to a rigid body followed by a pure
translation T that is, in turn, followed by a pure rotation Ry, the com-
bined operation is represented by the expression

RQOTl ORl.

B Ry (F) —15 Ty 0 Ry (§)—225 Ry 0 Ty o Ry (W)

It should be clear how to use the composition symbol to represent
the combined operation that results from an arbitrary sequence of pure
translations and pure rotations.

Illustration 2.1

The configuration obtained by first applying a pure translation T fol-
lowed by a pure translation Ts is identical to that obtained by first ap-
plying T followed by T;. This observation is represented by the equality

T10T2:T20T1.

NOTE THE
ORDER!

Ve
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%LTK%)

Tzl lTQ
T,

Ty () — T2 0 T ()
=T, o To(&)

The configuration obtained by first applying a pure translation T fol-
lowed by a pure rotation R is identical to that obtained by first applying
R followed by T. This observation is represented by the equality

ToR=RoT.

T —> T(F)

|

R(%)——> RoT (%)
=To R(%)

The configuration obtained by first applying a pure rotation R; fol-
lowed by a pure rotation Ry is not generally identical to that obtained
by first applying Ry followed by R;. This observation is represented by
the inequality

RloRg#RQORl.

R, (%) « 22— S —5 Ry ()

N e

R; o Ry(&) # Rz o Ry(&g)

Now, consider the combined operation that results from applying a
sequence of pairs of pure translations and pure rotations:

R,oT,o0---oR;0oTj.
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Using the observations made above, the same operation can be repre-
sented by the composition
R,oR,_10---0oRj0oT,0oT,_10---0Ty,

in which the pure translations are applied before the pure rotations. The
sequence of translations may be replaced by a single pure translation T,
where

T=T,0T,_10---0T5.

Similarly, since the pure rotations are assumed to keep the same point
fixed, the sequence of rotations may be replaced by a single pure rotation
R, where

R=R,oR,_10---0R;.
We conclude that

R,oT,0---oR;joT;=RoT.

2.1.5 Inverses

If a pure translation T; is followed by a pure translation T and the
combined operation equals the trivial pure translation I, i.e.,

TyoT; =1,
then T is said to be the inverse of T and we write @
T, = (Ty) .
It follows that
(T1) 'oTy, =1L

@ — T s (1) o T(@) - 1)=&

The inverse of a pure translation T corresponds to a shift of all points
on the rigid body by an equal amount as specified by T but in the opposite
direction, i.e.,

(T)"' = (-1)T.

If a pure rotation R; is followed by a pure rotation Ry and the com-
bined operation equals the trivial pure rotation I, i.e.,

RooR; =1,
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then Ry is said to be the inverse of Ry, and we write
Ry = (Ry) .
It follows that
(R1) 'oRy; =1

S —2s Ry () B () o R = L (H)- %

The inverse of a pure rotation R corresponds to a rotation of the rigid
body about the same axis and by the same amount as specified by R but
in the opposite direction, i.e.,

Illustration 2.2
Since R and R™! correspond to rotations about the same axis, it follows
that

RoR'"=R'oR=1
Using the definition of the inverse, we conclude that

R =R

2.1.6 The Group of Rigid-body Transformations

The collection of all possible pure translations together with the compo-
sition operation constitute a group.

Definition 2.1 A group is a set X and a binary operation ® into X,
such that for all A, B, C € X:
e Associativity: A® (B C)= (A6 B) e,
e [dentity: There exists an element [ € X, such that @ A=AGI =
A;

o Invertibility: Every element A has an inverse in X denoted by A~!,
suchthat At A=A0 A =1.




2.1 Algebra of Translations and Rotations

Certainly,
T3 e} (TQ s} Tl) = (T3 o Tg) o T1>

where T, T, and T3 are arbitrary pure translations. Moreover, the
identity translation I satisfies

IoT=TolI=T,

since I corresponds to the absence of motion. Finally, since the inverse
T~ of a pure translation T corresponds to a shift of all points on a rigid
body by an equal amount as specified by T but in the opposite direction,
we have

T !loT=ToT !=1

Indeed, the group of pure translations together with the composition
operator also satisfy a commutativity property

TlOTQZTQOTl.

This shows that the group of pure translations together with the compo-
sition operator is an Abelian group.

Illustration 2.3

The collection of all pure rotations that keep a pre-selected point on a
rigid body fixed relative to the reference configuration together with the
composition operator also constitute a group. In fact,

R;o(Rz20R3) = (R1oRy)oRs,

IcR=RoI=R,
and
R 'oR=RoR '=1

In contrast to the group of all pure translations with the composition
operator, it is not generally true that

R10R2:R20R17

i.e., the group of all pure rotations that keep a pre-selected point on a
rigid body fixed relative to the reference configuration together with the
composition operator is not Abelian.

49



50

2 Observers

(Ex. 2.8 —
Ex. 2.11)

2.2 Hierarchies

2.2.1 Notation

In this text, I consistently denote an observer corresponding to some
reference configuration with an upper-case, calligraphic letter, such as

A, R, or W.

The choice of letter is not important, unless you are trying to give the per-
son you are communicating with additional information by a clever choice
of letter. If the same letter is to be used to denote separate observers, 1
use appropriate subscripts to differentiate between the observers, such as

Alv Claboratorya Wﬁnal .

2.2.2 Single-body, Single-observer Hierarchy

In spite of the possibility of using a single observer to describe the con-
figuration of a rigid body, it is often convenient to introduce a sequence
of intermediate, auxiliary observers. Typically, this reduces the complex-
ity of the pure translations or pure rotations that describe the relative
configurations of neighboring observers or that relate the rigid body’s
configuration to the last auxiliary observer.

We graphically illustrate the collection of observers and the suggested
geometric description by using a tree structure, in which the original
observer forms the parent node, the auxiliary observers form the internal
nodes, the rigid body is found at the leaf node, and each branch represents
a combination of a pure translation and a pure rotation.

Main observer

Auxiliary observer

Auxiliary observer

Auxiliary observer

Rigid body

Illustration 2.4

The proposed hierarchy is reminiscent of a vertical organizational struc-
ture for a company, in which any contact between the employees and the
upper echelons of the company takes place through a set of intermediate
levels of management. A member at each level of the organization need
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only be concerned with how to contact his or her superior, ensuring that
the executive officer has full knowledge of the status of all employees.

In an actual managerial structure, it is also possible for the upper
levels of management to pass information down through the tree to en-
sure a certain set of actions from the employees. In the case of the tree
structure representing the organization of observers, this possibility is ex-
cluded, since an observer is limited to observing its environment without
controlling it.

2.2.3 Single-body, Multiple-observer Hierarchy

Auxiliary observers need not be associated with
actual physical objects. Instead, they represent virtual
objects, relative to which the configuration of other observers
or actual physical objects may be described. Any number of
auxiliary observers may be introduced into a description, lim-
ited only by their usefulness in simplifying the representation
of the observed geometry.

Multiple observers may be introduced for reasons other than a re-
duction of complexity. Imagine, for example, multiple human observers
observing the motion of the same rigid body. Given a choice of point kept
fixed by any pure rotation, the rigid body’s configuration relative to each
observer is uniquely described through a combination of a pure trans-
lation and a pure rotation. But that description clearly varies between
different observers. The different observers appear to lack a means for
communicating their observations to each other, since a statement by one
observer that the rigid body is stationary may clash with the observations
of other observers.

Let A and B be two observers observing the motion of a single block.
Let the point kept fixed by pure rotations of the block correspond to the
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geometric center of the block. Then, the configuration of the block rela-
tive to observer A may be described through a combination of a unique
pure translation T 4 and a unique pure rotation R 4. Similarly, the con-
figuration of the block relative to observer B may be described through a
combination of a unique pure translation T and a unique pure rotation
Rj. The following tree structure captures this state of affairs:

A B

TA?MBaRB

Block

Now, suppose we want to treat observer B as an auxiliary observer,
such that the configuration of the block relative to observer A is described
as a combination of the configuration of the block relative to B and the
configuration of B relative to A. How could we use the given informa-
tion to find the unique pure translation T 4_,5 and unique pure rotation
R 4_.5 relating B to A?

A
Ta-p, Ras
B

Ts,Rs

Block

The position and orientation of the block relative to observer A are
uniquely determined by the pure translation T 4 and the pure rotation
R 4. This implies that a shift given by T 4, followed by a turn given by
R 4, brings the block from its reference configuration to the actual config-
uration. The intermediate configuration is characterized by its geometric
center coinciding with that of the block in the actual configuration. Sim-
ilarly, the position and orientation of the block relative to observer B are
uniquely determined by the pure translation Ty and the pure rotation
Rj. This implies that a shift given by Tp, followed by a turn given by
R, brings the block from its reference configuration to the actual con-
figuration. Again, the intermediate configuration is characterized by its
geometric center coinciding with that of the block in the actual configu-
ration.

A—TAs T, ()-BASR L0 T4 (A)

:RBOTB(B)& TB(B)&B
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From this discussion, we conclude that the pure translation T 4 fol-
lowed by the pure rotation R 4 followed by the pure rotation (ng)_1
followed by the pure translation (T3)~' bring the block from the refer-
ence configuration of A to the reference configuration of B.

Ai TA(A)% R0 T4(A) M
B5) Ry o Ry T () 18)5

(TB)_l -1 -1 _
—> (Tg) o(Rp) oRy4o0TA(A)= B

In other words,
Ru_soTuz = (Ts) 'o(Rp) ' oRu0T4
= (Rp) 'oR40(Tp) 0Ty,
which implies that
Ta .= (Tp) ' 0Ty,
and
Ra_p = (Rs) ' oRu.
The configuration of the block relative to the A observer is now given by
RpoTsoRs.50Ts.s = RsoTpo(Rp) ' oRuo(Ts) 0Ty
= Rpgo (RB)_1 oR40Tpo(T) 'oTy
= RyoTy
as expected.

Illustration 2.5
Now, consider three observers A, BB, and C observing the same rigid body

as represented by the following tree structure:
A B C
T4, Ra_Ts|Rs Te,Re

Block
By the same argument as above, we find that
Tup=(Tp)  oTa,
Ry_5 = (Rp) " oRy,
Ts_c = (T¢) ' o Ts,
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and
Rps_c = (Re) ' oRp.
It follows that the configuration of C relative to A is given by

RacoTac = Rp.coTp.coRa-oTy.5
= (R¢) 'oRpo(Te) 'oTs
o (RB)_1 oR4 o0 (TB)_I oT4y
= (R¢) 'oRpo(Rp) 'oRy
o(Te) ' oTgo(T) ' oTy
= (Rc)_loRAo(TC)_loTA,

ie.,

Tac=(Tc) 0Ty
and

Ru_c = (Re) ' oR4

as expected.

2.2.4 Multiple-body, Multiple-observer Hierarchy

The notion of auxiliary observers is particularly useful when dealing with
multiple rigid bodies. Of course, the configuration of the i-th rigid body
relative to an observer W could be described by a single pure translation
T, and a single pure rotation R;. It may, however, be convenient to
introduce multiple auxiliary observers between the main observer YW and
each rigid body.

Consider the tree representation below:

w
Tw—a,, RWQA/&WHAQ’ Rw—4,
Ay Ay
T, Ry ‘ T2, Ry
Body 1 Body 2

The configuration of each rigid body relative to the main observer W is
decomposed into the configuration of the body relative to an intermediate
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auxiliary observer and the configuration of the auxiliary observer relative
to W. Here,

RioT,
describes the configuration of the first rigid body relative to A,
Ry 0Ty
describes the configuration of the second rigid body relative to As,
Rw—a, 0o Twoa,
describes the configuration of the A; observer relative to W, and
Rw—a, o Tw—a,

describes the configuration of the Ay observer relative to W. It follows
that the configuration of the first rigid body relative to W is given by

Rl © Tl o RW—)Al © TW—>A1 = Rl © RW—)Al © Tl o TW—)Al
and similarly for the second rigid body.
Illustration 2.6

We may reorganize the tree structure discussed above to promote the 4,
observer to the main observer according to the tree representation below:

Ay
T17 R/Wl—)w, R.A1—>W
Body 1 w

‘ TW—>A2 b RW—>.A2
A
‘ T23 R2

Body 2

Then, the configuration of the second rigid body relative to A; is
given by

RooT2o0Rw_a, 0 Twoa, oR4 w0 Ty
=RooRw_4, 0Ry w0 Tr0Tyw ., 0Ty —w

and so on.
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Y

Y

2.3 Recommended Methodology

Consider a system with multiple rigid bodies and a multiplicity of pos-
sible main observers, relative to which the configuration of each of the
rigid bodies can be described. In determining the appropriate course of
action to adequately describe the system, two modeling decisions need
to be made. First, we must select a single observer to act as the main
observer relative to which the configurations of all rigid bodies will ulti-
mately be described. Second, we may introduce any number of auxiliary
observers so as to simplify the descriptions of any pure translations and
pure rotations corresponding to specific branches in the resulting tree rep-
resentation. In this section, I shall propose some simple rules of thumb
that I recommend you consider and possibly adopt.

2.3.1 The Main Observer

The selection of the main observer depends
on the purpose of the modeling.

With emphasis on computer animations of multibody systems, the
natural main observer corresponds to the internal representation of space
within the appropriate computer-graphics application. By relating the
configuration of all rigid bodies (and of any auxiliary observers) to this
observer, we provide all the information necessary to reproduce the vi-
sual appearance of the system within the computer-graphics application.
Whichever observer we choose to promote to main observer, the visual
representation within the computer-graphics application reflects the po-
sitions and orientations of all the rigid bodies relative to this observer.

When considering computer animations, I typically use the letter W
to denote the main observer and refer to it as the world observer (hence
the choice of “W”).

With emphasis on mechanical analysis of a multibody system, the
natural main observer corresponds to one in which the physics is partic-
ularly straightforward. Such observers are called inertial observers and
play a crucial role in the area of physics called Newtonian mechanics.
As we shall have opportunity to investigate in greater detail in a later
chapter, the usefulness of inertial observers is challenged by the difficulty
to locate one. Instead, we are typically forced to consider observers that
are inertial only to a certain approximation.

When considering mechanical analysis, 1 typically use the letter N
(as in Newton) to denote the main observer.

2.3.2 The Auxiliary Observers

The introduction of auxiliary observers is
entirely at the discretion of the modeler.
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Whatever the application, the fundamental role of auxiliary observers
in the analysis is to reduce the complexity of the mathematics necessary to
describe the configuration of any rigid body relative to the main observer.

Although certainly not a necessity, I recommend that the motion of
the rigid bodies relative to the main observer be completely described
by the motion of the auxiliary observers relative to the main observer.
In this fashion, the pure translation and the pure rotation that relate
a rigid body to its parent observer are always time-independent. This
also implies that at each node in a corresponding tree representation, the
branch nodes may be rigid bodies or additional auxiliary observers.

2.3.3 Loops

In a tree representation corresponding to a multibody mechanism, auxil-
iary observers are introduced as intermediate nodes along different bran-
ches to reduce the complexity of any given pure translation or pure rota-
tion relating two successive observers along that branch.

A branch segment between two observers A and B corresponds to
a pair of pure translations T 45 and Tg_ 4 = (TA_)BY1 and a pair
of pure rotations R4 .5 and Rg_, 4 = (RAHB)A. We say that the two
observers A and B are neighbors and that their configurations are directly
related.

A
Ts 5, Rap

B

If the path between two observers C and £ passes through at least one
intermediate node, corresponding to an observer D, then the configura-
tions of the observers C and & are indirectly related.

C
Teop,Rep
D

T'D—>5» RD—>£

&

As shown above, T¢_.¢ and Re_.¢ can be computed from the composi-
tions

Te e =Tp.goTecop

Vo
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(Ex. 2.12 —
Ex. 2.13)

and
Re.e =Rp_ecoRecop.

Similar computations could be employed to relate every observer in the
tree structure to every other observer.

It is tempting to suggest the result of these computations by including
connections between all nodes in the original tree structure, resulting in
a network with multiple closed loops. As long as all the pure translations
and pure rotations between originally indirectly related observers are
computed using the above expressions, there is no need for concern.

C

TC—)D7RC*>D TC—>£7 RC—>5

D &

Tp_e,Rp_¢
Problems may arise, however, with the network representation if it is
employed during the modeling stage. This could occur, for example, as a
result of an inconsistent specification of the pure translation and/or pure
rotation relating two already indirectly related observers. The possibility
of overdetermining the relative configurations of two observers should be
excluded in practice. The tree representation, excluding all possible node
loops, cannot suffer from internal inconsistencies, yet is capable of com-
pletely describing all possible configurations of the mechanical system.

2.4 Examples

2.4.1 A Still Life

Suppose you want to describe the geometry of an assortment of rigid
bodies that are stationary relative to you. The tree structure below
exemplifies the recommended geometric hierarchy:

W

T,R

Body Body Body Body

Each rigid body is directly related to the main observer VW through
a unique pure translation T and a pure rotation R. Since these are in-
dependent of time, there is no pressing reason to introduce any auxiliary
observers. As suggested in the previous chapter, we are certainly free to
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introduce intermediate observers, with the help of which we can decom-
pose the configuration of any single rigid body relative to W into more
manageable steps.

For example, we may introduce an auxiliary observer A, such that
the configuration of the rigid body relative to A is given by the pure
rotation R4 = R and the configuration of A relative to W is given by the
pure translation Tyy_, 4 = T. Similarly, we may introduce an auxiliary
observer B, such that the configuration of the rigid body relative to B
is given by a pure rotation Rg about a predetermined axis through the
rigid body and the configuration of B relative to A is given by a pure
rotation R 4.5 that aligns this axis through the rigid body with the
corresponding axis in the actual configuration of the body.

w w

A Body Body Body A Body Body Body

R Ru-n
Body B
R
Body

The process of introducing auxiliary observers naturally reaches a
conclusion when all pure translations and pure rotations are described in
as straightforward a manner as possible. It is never necessary to introduce
such observers in the case where all the bodies are stationary relative to
the main observer, but it may turn out to be convenient at times. We
will have ample opportunity to return to this in greater detail when we
develop the quantitative theory of translations and rotations.

2.4.2 The Single Moving Rigid Body

We now apply the methodology suggested thus far to the motion of a
single rigid body, say a block, relative to a background that is station-
ary relative to the main observer WW. Under the assumption that the
block’s configuration relative to W changes with time, the recommended
methodology requires the introduction of at least one auxiliary observer
A, relative to which the block remains stationary. The motion of the
block relative to W is contained within the time-dependent configuration
of A relative to W.

The configuration of A relative to WW can be uniquely described as a
combination of a (possibly time-dependent) pure translation Tyy_, 4 and

4%

A
|

Block
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a (possibly time-dependent) pure rotation Ryy_, 4. If the orientation of
the block relative to W does not depend on time, then it is appropriate
to introduce A in such a way that Ryy .4 = I, the identity rotation.
Alternatively, if the position of the block relative to YW does not depend on
time, then it is appropriate to introduce A in such a way that Tyy_, 4 = I,
the identity translation.

Illustration 2.7
Suppose you want to describe the sliding motion of a puck on the surface
of an ice hockey rink.

Consider a main observer W, relative to which the ice hockey rink re-
mains stationary. Let its reference configuration coincide with the puck’s
configuration when it sits at the center of the rink. Introduce an auxiliary
observer A corresponding to a reference configuration that is coincident
with the puck at all times. Then, the configuration of A relative to W
is entirely determined by the pure translation Ty_ 4 corresponding to
shifting the block in some direction parallel to the surface of the rink and
by some amount that depend on time.

A . Puck w
oo = Tw_4
TWHA
w ‘ A
. Puck

If, in addition to sliding, we also want to consider the spinning of the
puck about an axis perpendicular to the ice, then the puck’s configura-
tion is no longer stationary relative to A. Instead, introduce an auxiliary
observer B corresponding to a reference configuration that is coincident
with the puck at all times. The configuration of B relative to A is entirely
determined by a pure rotation R 4_.5 corresponding to a rotation about



an axis perpendicular to the surface of the rink. As before, the config-
uration of A relative to W is entirely determined by a pure translation
Tyy_ 4 parallel to the surface of the rink.

Puck w

i 2 B e TW—)A

Ra_5

Puck

Suppose you want to describe the motion of a small bead sliding on
the surface of a sphere.

Consider a main observer W, relative to which the sphere remains
stationary. Let its reference configuration be represented by a virtual
block whose reference position is at the center of the sphere. Since the
bead is so small, we shall disregard changes in its orientation and focus,
instead, on describing its position relative to WW. Introduce an auxiliary
observer A, such that the reference position of its virtual block is at the
center of the sphere and such that the actual position of the bead relative
to A is given by a time-independent pure translation T corresponding
to a shift by a constant amount (actually, the radius of the sphere) along
a fixed direction relative to A.

2.4 Examples

61



62

2 Observers

Bead

Since the bead can be positioned anywhere on the surface of the
sphere, we must be able to accommodate changes in the orientation of
A relative to W that ensure that the fixed direction corresponding to T
points from the center of the sphere to the actual location of the bead.
Since the reference positions of YW and A are both at the center of the
sphere, it follows that the configuration of A relative to W is entirely
determined by a time-dependent pure rotation Ryy_, 4.

Consider two separate axes through the center of the sphere. Then,
we may introduce an auxiliary observer B, such that the configuration of
B relative to W is given by a pure rotation Ryy_,p about the first axis
and the configuration of A relative to B is given by a pure rotation Rg_, 4
about the second axis, as suggested in the figure below.




The pure rotation that relates the orientation of A to that of W is
then given by

Rw—a=Rp_aoRpw_p.
Thus, the configuration of the bead is given by the composition
ToRw.a=ToRp,a0Rw_pz,

where any changes with time are contained within the pure rotations
RBHA and RWHB~

W

RW—»B

Rg_4

Bead

2.4.3 Mechanical Joints

Illustration 2.8

Suppose you want to describe the motion of two rigid rods that are joined
at a hinge joint, allowing each rod to rotate relative to the other rod about
a direction fixed relative to the two rods.

Let W denote the main observer, relative to which the motion of the pair
of rods will be described. Since both rods are free to move relative to W,

2.4 Examples
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introduce two auxiliary observers .A; and Ay, such that the configurations
of rods 1 and 2 are stationary relative to A; and As, respectively. A first
attempt to describe this geometry is contained within the tree structure
below, wherein each of the auxiliary observers is directly related to the
main observer through a unique pure translation Tyy_ 4, and a pure
rotation Ryy_ 4,.

w
TW_"Al ’ RW_"ANW—NAQ ) RW—>A2
./41 AZ
Rod 1 Rod 2

In contrast, you may reorganize the tree structure to suggest the pres-
ence of the hinge joint and the severe restriction on the relative configu-
ration of the two rods as shown below.

w

TW*>.A1 ) RWHAl

Ay
/&AIHAQ,RAIHAQ
Rod 1 As

Rod 2

Here, the configuration of the second auxiliary observer Ay relative
to the first auxiliary observer A; is given by the pure translation

T.A1—>A2 = TW—>A2 © (TW—’A1)71

and the pure rotation

~1
RAl —Ay — RW—>A2 © (RW—>A1)

We note that in the present arrangement, the auxiliary observer A; fills
two purposes. On the one hand, it acts to contain all the time-dependent
changes in the configuration of the first rod relative to Y. On the other
hand, it acts to decompose the configuration of Ay relative to W. In its
latter role, it is particularly useful if the pure translation T 4, 4, and
the pure rotation R 4,_, 4, are simple to describe.

Consider choosing A; and As, such that the corresponding reference
positions coincide with the location of the hinge joint.
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This choice respects the requirement that the rods be stationary rel-
ative to the corresponding auxiliary observer. We may now choose the
reference orientations of A; and Asg, such that T4, 4, =T and R4, 4,
corresponds to a rotation about the hinge axis, a dramatic reduction in
the complexity of the geometry description.

If the configuration of a rigid body relative to another rigid body is
easier to describe than the configuration of the rigid body relative to
some observer O, consider a hierarchy that reflects this observation. For
example, if A; and As are the auxiliary observers relative to which the
two rigid bodies are stationary, then introduce A; (or Ajy) as the parent
observer of Az (or Aj;) rather than directly relating both of these to O
as shown below.

o o

N\ |

Ai Az i Ay

o AN

Suppose, for example, that you want to describe the motion of the
trolley that rolls along the jib of a tower crane and from which the lifting
cable and hook are suspended, and the motion of the jib and counter-
weight assembly that may rotate relative to the tower.

65



66

2 Observers

Let W denote the main observer, relative to which the tower remains
stationary, such that the reference position of W coincides with the joint
between the main jib and the tower. Introduce two auxiliary observers 7°
and J, relative to which the trolley and the main jib remain stationary,
such that the reference position of J coincides with that of WW. The
tree structure below reflects the hierarchy inherent in the mechanical
construction.

w
RW_>j

J

A

Jib T

Trolley

We may now choose the reference orientations of W, J, and 7, such
that the configuration of J relative to W is determined by a pure rotation
Ryy_.7 about an axis parallel to the tower, while the configuration of
T relative to J is determined by a pure translation T ;_,7 along the
direction of the main jib.



Jib T be

2.4.4 A Bicycle

Suppose you want to describe the motion of a simple bicycle consisting
of a rear wheel, a front wheel, a steering shaft, and a frame.

In particular, the rear wheel may rotate only about a fixed direction
relative to the frame; the front wheel may rotate only about a fixed
direction relative to the steering shaft; and the steering shaft may rotate
only about a fixed direction relative to the frame.

Let W denote the main observer, relative to which the motion of the
bicycle will be described. Introduce four auxiliary observers Arear wheels
Afront wheel; Asteering, and Agrame, relative to which the rear wheel, front
wheel, steering shaft, and frame, respectively, are stationary. In particu-
lar, let the reference positions of Aear wheel and Agrame coincide with the
center of the rear wheel and let the reference positions of Agont wheel and
Asteering coincide with the center of the front wheel.

With a suitable choice of reference orientations, the configuration of
Avear wheel Telative to Agfame is described in terms of a pure rotation
R A oo —Avenr wnea @bOUL an axis perpendicular to the rear wheel. Simi-
larly, the configuration of Apont wheel Telative to Aggeering is described in
terms of a pure rotation R4, —Atont wheer @POUL an axis perpendic-
ular to the front wheel. Finally, the configuration of Agame relative to

2.4 Examples

Trolley
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Asteering 18 described in terms of a pure translation T 4., —Agame 2lONE
the axis through the centers of the rear and front wheels, followed by a
rotation Roa,,..in,—Aname abOut an axis parallel to the axis of rotation of
the shaft relative to the frame.

Any of the four observer hierarchies below reflects the inherent me-
chanical design.

)4% w
A heel
rear whee -Aframe
R-Arear wheel =~ Aframe A
A
frame Arcar wheel Asteering

Aframe—Asteering RAframe*’Astccring

Asteering Afront wheel
RAsteering*)Afront wheel
w
-Afront wheel
w Afront wheel
Asteering -Asteering
A A
frame front wheel Aframe

Arcar wheel A heel
rear whee

In each case, the configuration of the uppermost auxiliary observer rel-
ative to the main observer W is given by a unique pure translation and
pure rotation. Each of the four hierarchies appears superior from a mod-
eling perspective to the “flat” hierarchy, in which all the parts of the
bicycle are directly related to the main observer.

4%

T

-Arear wheel -Aframe Asteering -Afront wheel



2.4.5 A Desk Lamp

Suppose you want to describe the motion of a desk lamp consisting of
a base, an upper beam, a middle beam, a lower beam, a bracket, and a
lamp shade.

In particular, the upper, middle, and lower beams may rotate only about
a fixed direction relative to the base; the bracket may rotate only about
a fixed direction relative to the upper and lower beams; and the lamp
shade may rotate only about a fixed direction relative to the bracket.

In contrast to the previous examples, however, these rotations are not
all independent. Instead, the hinge joints connecting the bracket to the
upper and lower beams constrain the rotations of the lower and upper
beams relative to the base and of the bracket relative to the beams, in
such a way as to sustain the connection for all time. Similarly, the spur
gears attached to the horizontal bars supporting the upper and middle
beams constrain changes in the rotations of the upper and middle beams
relative to the base, in such a way as to respect the impenetrability of
the gear teeth as shown in the figure on the next page.

Let W denote the main observer, relative to which the motion of
the lamp will be described. Introduce six auxiliary observers Apase,
Aupper beam -Amiddle beam -Alower beam -Abracket7 and -Ashadey relative to
which the base, upper beam, middle beam, lower beam, bracket, and
lamp shade, respectively, are stationary. In particular, let the reference
position of Apase coincide with the point on the top of the base centered
between the vertical posts; let the reference positions of Aupper beams

2.4 Examples
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Amiddie beam, and Ajgwer beam coincide with the centers of the horizon-
tal bars supporting the corresponding beam; let the reference position of
Apracket coincide with the far end point of the lower beam, and let the
reference position of Agpaqe coincide with the hinge joint about which the
lamp shade rotates.

With a suitable choice of reference orientations of the auxiliary ob-
SETvers, the Conﬁgurations of Aupper beam -Amiddle beam and Alower beam
relative to Apase are described in terms of time-independent pure trans-
lations T 4y, —Aupper beam? T Apase—Amiddie beam? L Abase—Alower beam AONE
directions parallel to the vertical posts, and time-dependent pure ro-
tations R-Abase_’«Aupper beam ? R‘Abase—>»Amiddle beam ? R«Abase_’Alower beam about
axes parallel to the horizontal bars. Similarly, the configuration of Ap acket
relative to Ajower beam 18 described in terms of a time-independent pure
translation T 4, ... 1oun—Avacce: alONg a direction parallel to the lower
beam and a time-dependent pure rotation R4 ... beum—Auraccer POUE
an axis parallel to the horizontal bars. Finally, the configuration of
Aghade relative to Apracker 18 described in terms of a time-independent
pure translation T 4, ... —Au.q. ad a time-dependent pure rotation
Ry, oo —Aunaq. about an axis parallel to the horizontal bars.



The observer hierarchy below reflects the inherent mechanical design.

w
Abpase
/\
.Alower beam Amiddle beam :::iét}pper N
Abracket ___”,,,,,,
A

As noted above, the pure rotations contained within this hierarchy are
not all independent. Instead, the closed loops formed by the base, upper
and lower beams, and the bracket, on the one hand, and by the base
and the upper and middle beams (through the spur gears), on the other
hand, constrain the relative orientations and changes in these relative
orientations, respectively, between different observers. Although it might
appear natural to introduce a direct connection between the upper beam
and the bracket and/or the upper and middle beams in the tree hierarchy
above, the accepted methodology explicitly prohibits the creation of such
loops in the observer hierarchy. Instead, we may choose to suggest the
existence of constraints on the relative configurations by the use of dashed
lines in the tree hierarchy as was done in the figure above.

2.5 MAMBO

The computer-graphics application MAMBO interfaces with graphical sub-
routines within the computer operating system to represent an arbitrarily
complex array of rigid bodies in a three-dimensional environment. Detail
about the geometric description of the multibody mechanism is provided
to the application through a MAMBO geometry description (a MAMBO
.geo file). The MAMBO online reference manual contains a complete de-
scription of the .geo-file grammar.

Illustration 2.9
The simplest, grammatically correct MAMBO geometry description is
given by the single statement:

2.5 MAMBO

(Ex. 2.14 —
Ex. 2.15)

Vo
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MODULE World {
}

corresponding to the tree structure

World

Here, the reserved keyword MODULE establishes the identity of the
main observer, the world observer. The open and closed braces enclose
the specification of the tree structure emanating from the world observer,
the module block. In this case, the absence of any additional information
within the module block signifies the solitary existence of the world ob-
server and the absence of other observers or rigid bodies.

The reserved keyword BODY represents auxiliary observers. Any
number of auxiliary observers may be contained within a module or body
block, e.g.,

MODULE World {
BODY Vehicle {
BODY Rightfrontwheel {

}
BODY Leftfrontwheel {

}
BODY Rightrearwheel {

BODY Leftrearwheel {

}
}
BODY Driver {
}
}

In this example, the configuration of the driver observer is directly re-
lated to the world observer. The configurations of each of the four wheel
observers, however, are only indirectly related to the world observer via
the vehicle observer.

World

/\

Driver Vehicle

Rightrearwheel 7? Rightfrontwheel
Leftfrontwheel

Leftrearwheel
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Illustration 2.10

Rigid bodies may be introduced at any level in the tree structure, i.e.,
within any observer block. MAMBO is shipped with an object library con-
taining geometric primitives such as spheres, cylinders, and rectangular
blocks. Each such primitive is represented within the MAMBO .geo file as
an object block, as shown in the following geometry description:

MODULE World {
BODY Vehicle {
BLOCK {

BODY Rightfrontwheel {
CYLINDER {
}

}

BODY Leftfrontwheel {
CYLINDER {

}

BODY Rightrearwheel {
CYLINDER {
}

}

BODY Leftrearwheel {
CYLINDER {

}
}
}
BODY Driver {
SPHERE {

}
}

Loading? this geometry description into MAMBO will display the block,
cylinders, and sphere, but will hardly represent the multibody mechanism
you had in mind. (Try it!) A more appealing representation requires a
specification of the pure translations and pure rotations that relate the
configurations of rigid bodies to their parent observers and so on.

2You must first load a MAMBO motion description (a MAMBO .dyn file). An empty
text file with the .dyn extension will do at this point (see the MAMBO reference man-
ual).
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The notion of observers and the corresponding tree representations
is represented within the MAMBO computer-algebra toolbox through the
definition of a global variable GlobalObserverDeclarations. Changes
to this variable initiated by the user are made possible through the pro-
cedures DeclareObservers and DefineNeighbors.

The declaration of an observer using the DeclareObservers proce-
dure appends the global variable GlobalObserverDeclarations to in-
clude the name associated with the observer.

Illustration 2.11

In the following extract from a MAMBO toolbox session, the content of
the global variable GlobalObserverDeclarations is displayed immedi-
ately after invoking the Restart procedure and following the declaration
of the three observers A, B, and C.

> Restart():
> print(GlobalObserverDeclarations);
table(]
)
> DeclareObservers(A,B,C):
> print(GlobalObserverDeclarations);

Here, prior to the declaration of any observers, the global variable is an
empty table (see Appendix A for more detail on MAPLE data structures).
After the observers have been declared, GlobalObserverDeclarations
contains three entries with labels given by the names of the observers and
associated empty sets. The empty sets signify the independence of the
three observers with no information about the relative configuration of
the different observers.

That the configuration of an observer is modeled as directly related
to the configuration of a different observer is established by invoking the
DefineNeighbors procedure.
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Illustration 2.12

In the continuation below of the previous MAMBO toolbox session, Def ine-
Neighbors establishes the BB observer as a neighbor of the A and C ob-
servers. The resulting modification to GlobalObserverDeclarations is
also shown.

> DefineNeighbors([A,B], [B,C]):
> print(GlobalObserverDeclarations) ;

table(]
B={A, C}
C ={B}
A={B}

)

Although no new observer labels have been added to the global vari-
able GlobalObserverDeclarations, the associated, previously empty
sets now contain the names of all observers that neighbor the observer
specified by the label.

The MAMBO toolbox utility GeometryOutput can be used to generate
tree representations of the information stored in GlobalObserverDecla-
rations in a format suitable for export into a MAMBO geometry descrip-
tion (i.e., a MAMBO .geo file). Given the name of an already declared
observer to serve as the main observer, GeometryOutput generates a tree
structure incorporating all observers in GlobalObserverDeclarations
whose configuration can be directly or indirectly related to that of the
main observer.

Illustration 2.13

We continue with the same MAMBO toolbox session as in the previous il-
lustration. Here, we illustrate the output that results from different calls
to the GeometryOutput utility.

> GeometryOutput(main=A) ;

MODULE A {
BODY B {
BODY C {
}
}
}



76 2 Observers

> GeometryOutput(main=B);

MODULE B {
BODY A {
}
BODY C {
}
}
> GeometryOutput (main=C) ;
MODULE C {
BODY B {
BODY A {
}
}
}

With the command

> GeometryOutput(main=A,filename="hierarchy.geo");

the output is directed to the file by the name hierarchy.geo within the
current working directory®. More detail on the optional arguments to
GeometryOutput may be found in Appendix B.

3The current working directory may be accessed and set using the currentdir

command in Maple.

2.6 Exercises

Exercise 2.1 As shown in the text,
the successive composition of a sequence of
pure translations is equivalent to a single
pure translation. Similarly, sequences of
pure translations that differ only in the or-
der in which individual pure translations are
applied are equivalent. What other math-
ematical objects and associated operations
are you familiar with that exhibit the same
set of properties?

Exercise 2.2 As shown in the text,
the successive composition of a sequence of
pure rotations that keep the same point on
the block fixed is equivalent to a single pure

rotation. In contrast with pure translations,
however, sequences of pure rotations that
differ only in the order in which individ-
ual pure rotations are applied are generally
not equivalent. What other mathematical
objects and associated operations are you
familiar with that exhibit the same set of
properties?

Exercise 2.3 Consider two pure rota-
tions R; and Rsy. Under what conditions on
R; and R; does the equality

R1 9 R2 = R2 o R1

hold?



Exercise 2.4 Show that

(T =T

[Hint: ToT ' =T 'oT =1]

Exercise 2.5 Reduce the following se-
quences of pure translations and pure rota-
tions to a single combination of a pure trans-
lation and a pure rotation:

a) (Tl)il o Rl o T1

b) RooTi0Tyo (R,g)_1

C) T1 OR10R10T1
d)RioTio(-1)R,4

¢) Toao(T1) ' oRy02Ry0 (Ty) ™"
f) (<1)T1 02l 0 3Ry 0 (Ry) ™"

Exercise 2.6 Show that the collection
of all combinations of pure translations and
pure rotations, together with the composi-
tion operator, constitutes a group.

Exercise 2.7 Show that the group of all
combinations of pure translations and pure
rotations, together with the composition op-
erator, is not Abelian.

Exercise 2.8 Let A and B be two
observers. Draw the tree structures that
correspond to treating A or B, respectively,
as the main observer. Denote each branch
with the pure translation and pure rotation
that relate the observers.

Exercise 2.9 Let A, B, and C be three
observers. Draw the possible tree structures
that correspond to treating A, B, or C, re-
spectively, as the main observer. Denote
each branch with the pure translation and
pure rotation that relate the observers.

Exercise 2.10 Consider the tree struc-
ture below. Draw the equivalent tree struc-
ture corresponding to letting the A, observer
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be the main observer and find the pure trans-
lation and the pure rotation that describe the
configuration of the first rigid body relative
to As.

w
Twoas RweANW—»AQ s Rw— 4,
Ay Ay
T, Ry ‘ T2, Ro
Body 1 Body 2

Exercise 2.11 Consider the tree struc-
ture in the previous exercise. Draw the
equivalent tree structure corresponding to
eliminating the A5 observer and relating the
configuration of the second rigid body di-
rectly to W.

Exercise 2.12 For each of the mech-
anisms below, introduce a main observer
and auxiliary observers, and draw the corre-
sponding tree structures including symbols
for the pure translation and pure rotation
that correspond to each branch.

a) A trombone

b) A unicycle

c¢) A pair of plyers

d) A backhoe

) A wooden labyrinth game
f) A padlock

g) An electric fan

h) A Ferris wheel

)

Exercise 2.13 For each of the mech-
anisms below, introduce a main observer
and auxiliary observers, and draw the corre-
sponding tree structures including symbols
for the pure translation and pure rotation
that correspond to each branch. Identify
constraints on the relative configurations of
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observers in the tree and highlight these in
your diagram.

a) A marionette

b) The action in a piano

) A gymnast on the Roman rings
d) A reel lawn mower

e) A car wheel assembly

f) A cuckoo clock

@]

Exercise 2.14 Use the MAMBO toolbox
to generate the MAMBO geometry descrip-
tion corresponding to the observer hierachy
below.

4%

Abase

N

Alower beam Amiddle beam -Aupper beam

»Abrackot

-Ashade

Solution.

Vv

Restart():
DeclareObservers(W,Base,
LowerBeam,Bracket,Shade,
MiddleBeam, UpperBeam) :
DefineNeighbors([W,Base],
[Base,LowerBeam] ,
[LowerBeam,Bracket],
[Bracket,Shade],
[Base,MiddleBeam],
[Base,UpperBeam]) :
GeometryOQutput (main=W) ;

VVVVVVYVVYVYV

Exercise 2.15 Use the MAMBO toolbox
to generate the MAMBO geometry descrip-
tions corresponding to each of the observer
hierarchies below.

a b c
) A ) w ) C
B Ay As D
£
d) 4%
-Arear wheel Aframe AStCCTng Afront wheel

f)
W 4%

Arear wheel

»Aframc
A A
frame Arear wheel Astccring
Asteering Afront wheel

Afront wheel




SUMMARY OF NOTATION

The symbols T and R were used in this chapter to denote arbitrary
pure translations and pure rotations. The same notation, but with
subscripts (e.g., T1 or Ry) was used to distinguish between multiple
pure translations or pure rotations. For example, T 4 denoted a
pure translation relating the configuration of a rigid body relative
to the observer A. Similarly, T 4,5 denoted the pure translation
that relates the configuration of the observer B relative to A.

The symbol I was used in this chapter to denote the identity transla-
tion as well as the identity rotation, since these both correspond to
absence of motion.

The symbol « (alpha) was used in this chapter to denote a scalar multiple
of a pure translation or pure rotation, as in T or aR.

The symbol o was used in this chapter to denote a composition of pure
translations and pure rotations, as in T o R.

The superscript ! was used in this chapter to denote an inverse of a
pure translation or a pure rotation, as in T~1.

Upper-case, calligraphic letters, such as A, B, and W were used in this
chapter to denote observers.

SUMMARY OF TERMINOLOGY

An observer hierarchy is a tree structure with a main observer as the
parent node, auxiliary observers as internal nodes, and rigid bodies
as leaf nodes.

With emphasis on computer animations of multibody systems, the main
observer is called the world observer.

With emphasis on mechanical analysis of multibody systems, the main
observer is an inertial observer.

Each branch in an observer hierarchy corresponds to a pair of unique
translations T and T~! and a pair of unique rotations R and R™".

Observers at nodes that are connected by a path that passes through
no other nodes are said to be directly related.

Observers at nodes that are connected by a path that passes through at
least one other node are said to be indirectly related.

In MAMBO, the reserved keyword MODULE represents the main ob-
server.

(Page 50)

(Page 56)

(Page 56)

(Page 57)

(Page 57)

(Page 57)

(Page 72)
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(Page 72)

(Page 72)

(Page 72)

(Page 73)

(Page 74)

(Page 74)

(Page 75)

(Page 75)

In MAMBO, the reserved keyword BODY represents an auxiliary ob-
server.

In MAMBO, the module block contains information about all auxiliary
observers and rigid bodies.

In MAMBO, a body block contains information about all descendant aux-
iliary observers and rigid bodies.

In MAMBO, the reserved keywords BLOCK, SPHERE, and CYLIN-
DER represent rigid bodies with the shape of a rectangular block,
a sphere, and a cylinder, respectively.

In the MAMBO toolbox, the global variable GlobalObserverDeclara-
tions contains the names of all declared observers and information
about their neighbors.

In the MAMBO toolbox, the procedure DeclareObservers appends Glo-
balObserverDeclarations with any number of observer names.

In the MAMBO toolbox, the procedure DefineNeighbors appends Glo-
balObserverDeclarations with information about directly related
observers.

In the MAMBO toolbox, the procedure GeometryOutput generates a
MAMBO geometry description with the main observer correspond-
ing to some declared observer.



Chapter 3

Translations

wherein the reader learns of:

e The association between points, separations, position vectors, and
translations;

e The mathematics of vectors and translations;

o The use of computer-algebra software to expediate computations.




Practicum

The previous chapters were in-
tended to develop your intuition for
three-dimensional geometries and
the structure of multibody mech-
anisms.  The present chapter is
intended to provide you with a
language to communicate a three-
dimensional geometry and the struc-
ture of a multibody mechanism. In
order to master this language, you
must learn to recognize and cor-
rectly interpret its individual words
and sentences. You must learn to
shun grammatical aberrations. You
must become fluent.

Follow along with the text in this
chapter with a pen and a piece of
paper. Write, draw, and speak the
objects and the operations discussed
here. Use the numerical examples in
the exercise section to solidify your
transition from the concrete to the
abstract. Become proficient with
the relevant MAMBO toolbox proce-
dures. You will be amply rewarded
for your efforts.
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3.1 Points

3.1.1 Notation

To denote points in space, I consistently use upper-case, italicized letters,
e.g.,

AR, X,

and so on. The point in space that coincides with the tip of your nose may
be denoted by N. The point in space that coincides with the center of the
Earth may be denoted by E. The choice of letter is not important, unless
you are trying to give the person you are communicating with additional
information by a clever choice of letter. For example, if a point is to
be used to represent the reference position of a specific observer, you
may prefer to denote it by the same letter that was used to denote the
observer. To distinguish between multiple points that use the same letter,
I include appropriate subscripts, e.g., A1, Rieference, and Cyorld-

To graphically represent a point in space, this text consistently uses
a tiny circular dot. For later reference, it is a good idea to place the
corresponding letter adjacent to the dot.

1

[ ]
Byan

3.1.2 Common Misconceptions

Points are not numerical constructs. They represent ge-
ometrical features of space, but are not directly associated
with numbers.

A point is a point is a point!

It does not make sense to refer to a point as a combination of three
numbers. The assertion that the point A is given by the triplet (1, —0.5,0)
is nonsensical without additional information. The notion of a point’s co-
ordinates presupposes the existence of a coordinate system. Equivalently,
the position of a point may be reduced to a triplet of numbers only with
respect to a specific observer.

For example, denote by B some arbitrary point on the virtual block
corresponding to the observer B and consider a coordinate system with
origin at B and axes parallel to the edges of the virtual block. The
position of a point A relative to B is uniquely specified by its coordinates
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(Ex. 3.1 -
Ex. 3.5)

with respect to this coordinate system. Clearly, these coordinates depend
on the choice of observer.

AN - B

- Y

ZA B
TA
Yya

My personal preference is to consistently refer to a point with the
corresponding letter and avoid all mention of its coordinates relative to
some observer. The notion of coordinate systems and coordinates of a
point, however, is quite common and standard and should be understood.
I will describe this in detail in Chapter 4.

3.2 Separations

3.2.1 Notation

The separation from point A to point B is the straight-line segment
from A to B and is denoted by AB. Note that the arrow signifies the
direction of the separation from A to B and that the letters corresponding
to the points are both represented in the notation. Other examples of
separations are

m, W, and AG.

In all cases, the notation for a separation involves the two points (using
upper-case, italicized letters) connected by the separation and a super-
scripted arrow indicating the direction of the separation.

The separation AB uniquely describes the location of the point B
relative to the point A. The separation documents the shortest path to
traverse from point A to point B.

To graphically represent a separation in space, this text consistently
uses an actual arrow from one point to another. For later reference,
it is a good idea to place the corresponding combination of letters and
superscripted arrow adjacent to the actual arrow.



3.2 Separations

There is no unique measure of the length of a separation. Equivalently, @
there is no unique measure of the distance between two points. Instead,

all statements regarding measures of length and distance are relative to

some accepted standard, say a platinum bar in a sealed vault in Paris'.

3.2.2 Common Misconceptions

Separations are not numerical constructs. They represent
geometrical features of space, but are not directly associated
with numbers.

A separation is a separation is a separation!

It does not make sense to refer to a separation as a combination of
three or more numbers. The separation is uniquely determined by the
two points it connects. Since we are unable to ascribe unique numbers
to points, the same follows for separations. Given an observer, we could
certainly describe a separation by the coordinates of each of the points
relative to the coordinate system with origin at some stationary point
relative to the observer and axes parallel to the edges of the virtual block
corresponding to the observer. As before, these numbers would depend
on the choice of observer.

My personal preference is to consistently refer to a separation by the
corresponding combination of letters and superscripted arrow and avoid
all mention of the coordinates of its constituent points relative to some
observer.

3.2.3 Algebra of Separations
The separation AB documents the shortest path to traverse from point

A to point B. B
.A/_B"
A

Motion along the path given by AB is denoted by the symbol
4B
~ .

IThe SI system unit of length, the meter, was originally introduced as a ten-
millionth of the distance between the north pole and the equator along the Paris
meridian and represented by the distance between notches on a platinum-iridium bar.
The current definition is in terms of the distance traveled by light in vacuum in 1/299
792 458 seconds.
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It makes sense to write
A% B
suggesting that motion from A along AB brings one to B.

INlustration 3.1

That the shortest path from B to C is given by the separation BC implies
that

BE

AB

C
Since from before
a® B,
we conclude that
A o

i.e., that motion from A along AB and subsequently along BC brings
one to C.
But since

A%

. . ... AB BC
the motion described by the composition ~ ~ produces the same out-

come as that described by 1?. While the latter motion is along the
shortest path between A and C, the former is, in general, not. Although
the end results are the same for the two motions, we refrain from sug-
gesting that they are equal, in light of this marked difference in actual
path.

B -0

BC
AC
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. AB . .
Any number of expressions of the form '~ may be combined, provided
that the endpoint of one such motion coincides with the starting point of
the next motion. Thus, the expression

AD DO OX
N NN

makes sense and results in the same final displacement as the motion

AX
m .
I
OX
A 0

On the other hand, the expression

AD AV DV
la e’
does not make sense.

av Vv

D DV

3.2.4 Affine Space

We may parametrize the points on the separation m from P to @ by
the real numbers in the interval [0,1], such that 0 corresponds to P, 1
corresponds to @, and 0 < v < 1 corresponds to the point on m whose
distance from P is a fraction ~ of the distance between P and Q.

It is convenient to think of the notation ]@ as a function of the real
numbers in [0, 1], such that PQ (0) = P and PQ (1) = Q. It follows that
m (%) is the midpoint on the separation, halfway between P and Q.
From the definition of a separation, it follows that

PG (1) =QP(1-7)

for any v € [0, 1].
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PQ(y)=QP(1—7) 0

P
1
Illustration 3.2

Given any four points P, @), R, and S, the condition that
1 1
ﬁ@) :Qﬁ(i) - M

implies that the separations ]@ and RS have equal length, are parallel,
and have the same heading.

\”

ASRM 72 S

P APQM

Indeed, the lengths of the separations SM and PM are equal. Simi-
larly, the lengths of the separations QW and RM are equal. Finally, the
angle APMQ@ equals the angle ASM R. Since the triangles PQM and
SRM have two sides and one angle in common, they are congruent. It
follows that the lengths of the separations m and RS are equal and that
the angles APQM and ASRM are equal. From Euclidean geometry, the
latter observation implies that m and RS are parallel.

The converse to the statement in the illustration is also true: if two
separations ]@ and RS have equal length, are parallel, and have the

same heading, then
73 (%) _gr (%) .

If, in addition, RS and TU have equal length, are parallel, and have the
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same heading, then
1 1
57 <§) = <§) .

But this implies that m and TU have equal length, are parallel, and
have the same heading, i.e.,

o ()-(3)

PG

P

These properties show that the set of points together with the function @
7 is an affine space.

Definition 3.1 A set of elements A together with a ternary function?
—:AxAXI[0,1] — A
is called an affine space if for any elements P, Q) € A :
e Uniqueness: I@ (0) = P and ]@ (1) =0@;
o Symmetry: Cﬁ’ (%) = m (%) ;
o Transitivity: PS ) = Cﬁ (%) and ST (%) = RU (%) implies that
FU (3) = QT (3).

2To truly qualify as an affine space, the function — must satisfy a number of ad-

ditional conditions. The conditions listed here guarantee that an equivalence relation
can be introduced on A. The additional conditions guarantee that the equivalence
relation supports the construction of a vector space (see Section 3.3.2 for further dis-
cussion).
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As v € [0, 1] varies from 0 to 1, the function m () maps out a path
from P to ). While this path is a straight-line segment in the flat space
that we appear to experience, this need not generally be the case.

Consider, as an example, a sphere of radius 1 centered at the origin of
a Cartesian coordinate system and restrict attention to the set of points
on the sphere for which their z-coordinate is greater than zero. There is
a unique straight line through the origin intersecting each point in this
set. We can identify each such point with the unique point of intersection
of the corresponding straight line with the z = 1 plane.

z

To each point P on the hemisphere, there thus corresponds a unique
triplet of coordinates (up,vp,1), and vice versa. We represent this ob-
servation by the statement

P < (up,vp,1).
Let P and @ be two points on the hemisphere, such that
P« (up,vp,1) and Q < (ug,vg,1).
Then, define the function —, such that
PQ (7) « (up +7 (ug — up) ,vp +7(vg —vp), 1).
Clearly,
PQ(0)=P,
since
PQ (0) < (up +0x (ug —up),vp + 0% (vg —vp),1) = (up,vp,1).
Moreover,

PG (1) < (up + 1% (ug —up),vp + 1 (vg —vp), 1) = (ug,ve, 1),
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PG(1) =Q.

The path through the points P and @ described by the function
@ (7) is an arc segment of the great circle® through P and Q.

As in the case of separations in flat space, m describes the shortest
path from P to @Q. It is no longer the case, however, that v denotes the
ratio between the distance from P to w (7) and the distance* from P
to Q. For example, if P lies at the top of the hemisphere and () near the
z = 0 plane, then

2727

o(3) (53

which can be made arbitrarily close to the z = 0 plane by picking ug
and/or vg arbitrarily large.

Illustration 3.3
The function ~ on the hemisphere satisfies the symmetry property, since

(up +7v(ug —up),vp +7(vg —vp),1)
= (ug + (1 =) (up —ug@),vg + (1 —7) (vp —vg),1).

Furthermore,
1 1
UP+§(US_UP);UP+§(US_UP)vl

1 1
= (UQ+§(URUQ),UQ+§(URUQ),l),

1 1
(us+§(UT—US),Us+§(UT—US),1>

1 1
= (UR+§(UU_UR)7UR+§(UU_'UR);1>

imply that
up = —ugs +uQ + UR,
vp = —Ug + VQ + VR,
Uy = ug +Ur — UR,
3The corresponding path on the z = 1 plane is a straight-line segment from

(up,vp,1) to (ug,vg,1).
4Unless we define the distance between two points on the hemisphere to equal the
distance between the corresponding points on the z = 1 plane.
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(Ex. 3.6 —
Ex. 3.27)

and
vy = Vs + U — UR.

Substitution shows that
1 1
UP+§(UU7Up),vp+§('UU7vp),1

1 1
= <UQ+§(UTHQ),”Q+§(UTUQ),1>,

i.e., that — satisfies the transitivity property.

3.3 Vectors

3.3.1 Equivalent Separations

Illustration 3.4

In a pure translation, all points on a rigid body are shifted by an equal
amount along a common direction. Let A and B be any two points on
the rigid body and denote by A, and B, the corresponding locations in
space that coincide with A and B, respectively, when the rigid body is in
the reference configuration. Similarly, let Ay and By denote the points
in space that coincide with A and B, respectively, when the rigid body
is in the final configuration.




By the definition of a pure translation, the separations A,A; and
—_
BTBfZ

e Have equal length;

e Are parallel;

e Have the same heading.
In fact, all separations from points in the reference configuration to the
corresponding points in the final configuration satisfy these three con-

ditions. An equivalent observation is to suggest that all motions of the
form

A, A7
m

are identical in distance and in direction, and differ only in the choice of
points that are involved.

When two separations ]@ and RS have equal length, are parallel,
and have the same heading, they are said to be equivalent and we write

PO ~ RS.

Clearly, ]@ 2 Cﬁ, since the separations m and Cﬁ differ in heading.

PQ
/_’f;,/—)oQ
P‘%

Given a separation RS , there exists a separation ]@ for every point
P in space, such that m ~ RS. We can use this observation to make
sense of statements like

rEo,

which are a priori nonsensical, since the separation RS connects R and

. . . RS
S, not P and Q. If; instead, we choose to interpret the expression ~ to
suggest a motion along any separation that is equivalent to RS , then

rEo

is true if and only if m ~ RS.

3.3 Vectors
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R® xS

To emphasize this interpretation, consider the notation

(73]

)

where {ﬁ} represents the infinite collection of separations that are

equivalent to RS. In particular, the notation m € [m} means that

the separation ]@ is in that collection, i.e., that ]@ ~ RS. The state-
ment

23]
P~ Q
is true if and only if PZ? € {RS}

3.3.2 Equivalence Classes

ﬁ The result from Exercise 3.6 shows that the relation between two equiv-
alent separations is an example of an equivalence relation:

Definition 3.2 An equivalence relation ~ on a set F is a property
of pairs of elements for which the following holds true:

e Reflerivity: © ~ x;
o Symmetry: T~y =1y~ x;
o Transitivity: t ~yandy~z=x ~ 2.

The subset of elements equivalent to 2 is commonly denoted by [x] and
is called an equivalence class. The equivalence relation generates a set of
equivalence classes on IF. This set is denoted by F/ ~ and is called the quo-
tient set.

The equivalence class in flat space of all separations equivalent to the
separation 1@ is the collection [Z@} . Each such equivalence class in flat
space corresponds to a unique pure translation, and vice versa. It follows
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that the quotient set corresponding to the equivalence relation ~ on the
set of separations in flat space is the set of pure translations.

Two separations Z@ and RS in flat space are equivalent if and only
if they have the same length, are parallel, and have the same heading.
But in the previous section, this was shown to be true if and only if®

1 1
ps (1) —ar (L.
2 2
In a general affine space, we can use this as the definition of equivalence.
The implications in a general affine space may no longer be interpretable

in terms of the separations having equal length, being parallel, and having
the same heading as was the case in flat space.

Illustration 3.5

We must show that the definition of equivalence in a general affine space
satisfies the conditions for an equivalence relation. From the conditions
on the ~ function in an affine space, we recall that

) (3)

But this implies that the separation Z@ is equivalent to itself, confirm-
ing that the property of equivalence satisfies the reflexivity condition.

Moreover, if
a(3)-wi()

1 1
SP(=)=RQ|(=).
2 2
But this implies that, if the separation ZTQ) is equivalent to the separation
RS , then the separation RSis equivalent to the separation m as required

by the symmetry condition.
Finally, transitivity follows if

(3)-on() w3 -5}

o()-o(3)

5See the previous section for a definition of this notation.

then it follows that

imply that
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But this is the transitivity condition on the function — in a general

affine space. We conclude that the definition of equivalence introduced
here truly satisfies the conditions for an equivalence relation.

3.3.3 Position Vectors

A collection of separations [m} that are equivalent to the separation

]@ is called a position vector from P to @), and is generally denoted by
rf@ or 7FQ,

° P
./ P.&‘Q

o—"° —
o—7° —"°

In this text, I consistently use the first version of the notation, whereas
I recommend that you use the second form when writing on paper or
blackboard. The notation for a position vector is a lower-case “r” (bold-
faced or with a bar above as described) followed by a superscript involving
two points. Examples of position vectors are

BD or TBD, I_QJ Py P> or FPlPQ.

r or 7?7, and r

The position vector rBZ does not equal the separation BE, but contains
it. BE is said to be a representation of the position vector rB¥ or to
represent the position vector r2%.

To graphically depict a position vector, this text consistently uses
an arbitrary separation that represents the position vector. For later
reference, it is a good idea to place the corresponding symbol adjacent to
the separation.

I'BE

\

Illustration 3.6

A separation is uniquely associated with two points in space. Thus, AG is
entirely determined by the location of the points A and G, respectively. A
position vector, however, can be defined without referring to any points.
In fact, a position vector is entirely determined by the length, direction,
and heading of any of its representations. Thus, unless we are partic-
ularly interested in using a position vector to describe the collection of
separations equivalent to the separation between two specific points, we



can omit the superscript in the notation for the position vector. When
this is the case, we just refer to the position vector as a vector.

Reserving the letter “r” for position vectors, vectors in general are
denoted by a lower-case letter (bold-faced or with a bar above it as de-
scribed previously), e.g.,

v or U, w or w, and x or T.

Since all the representations of a vector have the same length, direc-
tion, and heading, it is customary to ascribe these characteristics to the
vector. For example, the length of a vector is the length of any of its
representations. The length of the vector v is denoted by ||v]|.

Every pure translation corresponds to a unique vector.
Every vector corresponds to a unique translation.

In particular, the vector v corresponds to the pure translation T that
shifts all the points on a rigid body by an amount and in a direction
given by the length, direction, and heading of v. Similarly, given a pure
translation T, we can construct the corresponding vector by collecting
all the separations m between points in the reference and final con-
figurations.

3.3.4 Common Misconceptions

A vector does not have a location in space. In fact, a vector does not
even exist in space as a single object. A vector is a collection of infinitely
many equivalent separations, each of which does have a location in space.
It does not make sense to suggest that a vector can be moved freely in
space, since it cannot have a location in space in the first place. It is the
selection of different separations to represent the vector that suggests
the idea of moving the vector. A vector is not an arrow between two
points.

A vector is not a column matrix of numbers. Certainly, the terminol-
ogy “vector” is common in linear-algebra texts to refer to such matrices.
Although a possible source of confusion, the dual usage of this terminol-
ogy is justified by the similarity between the properties of the vectors
introduced here and those of column matrices.

The vectors introduced here represent geometrical features
of space, and are not directly associated with numbers.

A vector is a vector is a vector!

3.3 Vectors
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3.3.5 Algebra of Vectors
The identity translation

Illustration 3.7

Every pure translation corresponds to a unique vector. As a special case,
the identity translation I corresponds to the absence of motion. We de-
note the corresponding vector by 0 and refer to it as the zero vector.

The zero vector 0 contains all separations equivalent to the separation
PP. In fact, AB € 0 if and only if the points A and B coincide. Every
separation representing the zero vector has zero length. In other words,
o]l = 0.

We graphically represent the zero vector by a point and the symbol
0 adjacent to the point.

The statement

is true for all P.

Scaling of translations

Illustration 3.8

Let PO and RS be two separations that have the same direction and
heading, but such that the length of RS is twice that of ]@ It follows
that PQ ~ RS.

P
pe— %0 5

R./-?-/)‘

R

Since the two separations connect different points, there is no straight-
forward way to relate these separations. This is not true, however, for

the corresponding vectors. Indeed, the vector [}ﬁ} consists of all sep-
arations that have the same direction and heading as the separations in
the vector [@] but twice the length. It makes sense to express this

observation by the statement

2[rd] - 5]



Define the multiplication of the vector v with a scalar (i.e., real num-
ber) a > 0 as the vector av, such that any representation of av has the
same heading and direction as any representation of v, but is longer by
a factor of a (or shorter if & < 1). For a negative scalar a, any rep-
resentation of the vector av has the same direction and length as any
representation of |a| v, but opposite heading.

Illustration 3.9
In Chapter 2, we considered scaling a pure translation T by a real number
« to yield the pure translation o'T. In fact, if o > 0, then all separations
A, Ay between points in the reference and final configurations under the
pure translation o'T are a factor of a longer than the corresponding sepa-
rations for the pure translation T. Similarly, if & < 0, the corresponding
separations are a factor of |«| longer but have opposite heading,.

It follows that if v is the vector corresponding to a pure translation
T, then av is the vector corresponding to the pure translation oT, and
vice versa.

There is no difference between expressions like (54 1) v and v (5 + 1).
Both of these represent the vector 6v.
Compositions of translations

If the pure translation T corresponds to the position vector r4? and the
translation Ty corresponds to the position vector r3¢, then what is the
position vector corresponding to the combined translation

TQ o Tl?

The motion

yields the same end result as the motion

rAC
o,

where the separations AB , BC , and AC form the three sides of a triangle.
o

BC

/.
A'EB

3.3 Vectors
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AC

The translation Ty o T corresponds to the position vector r“ and

we write

pAB 4 BC _ LAC

ﬁ; and call r4€ the sum of the two position vectors r4? and rB¢.

Illustration 3.10

We can illustrate the concept of adding vectors by drawing triangles
whose sides are given by representations of the vectors involved. For
example, the figure below shows that the sum

7] + 73]
equals the position vector

o],

[ ]
By

S

\ﬁ

Q_R) o7l
;24

Similarly, the following diagram shows that
y—‘
[ﬁ} n {cﬁz’} - {PT] .

S

°
o Ps \ 57

P—
PT’

.T/

But,
OT ~ PT',



i.e.,

(7] + [PS] = [PS] + (@]

You are used to seeing the + symbol used in contexts where the order
of summation is immaterial to the result of the operation. The illustration
shows that the order in which vectors are added is immaterial to the result
of the summation. This is a restatement of an observation made in the
first two chapters about the order of successive pure translations.

Inverses of translations

If the vector v corresponds to the translation T, then the vector (—1)v
corresponds to the translation T, since T~' corresponds to a shift of
all points by the same amount as described by T but in the opposite
direction.

Since

T loT=1,
we conclude that
v+ (-1)v=0.
It makes sense to define subtraction of vectors by the formula
v—w=v+(-1)w
Moreover, it is standard notation to write
-V

instead of (—1)v.

Vector products

Vectors (and the corresponding pure translations) may be compared using
their lengths and heading. Given two non-zero vectors a and b, the angle
0 (a, b) between the vectors is a measure of the difference in heading. The
extreme cases

0 (a,b) = 0°, 90°, and 180°

are particularly useful in applications. Here, 0 (a,b) = 0° implies that
the vectors a and b are parallel and have the same heading. They must
therefore differ only in length, say

b=aa

for some real number o > 0.

3.3 Vectors
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/a/
If, instead, 6 (a,b) = 180°, the two vectors a and b are parallel but

have the opposite heading. In analogy with the 6 (a,b) = 0° case, it
follows that

b =aa

for some real number o < 0.
f(a,b) a

b

Finally, if 6 (a,b) = 90°, the two vectors a and b are perpendicular.
b

0 (a,b)

From the properties of the trigonometric functions sine and cosine, it
follows that

sinf (a,b) =0
corresponds to the case when the vectors are parallel, while
cosf (a,b) =0

corresponds to the case when the vectors are perpendicular. To de-
tect whether two given vectors are parallel or perpendicular, it would
be convenient to be able to easily compute the quantities sin @ (a, b) and
cosf (a,b). This is made possible through the definition of two vector
products.

Illustration 3.11

Consider the triangle with sides corresponding to separations represent-
ing the vectors a, b, and a4+ b. From the figure on the following page,
we see that

la+ bl = [|a]| cos ¢; + |[b][ cos @5,
la+ bl cos ¢ = [a]| + [|b]|cos & (a,b) ,
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and
|a+bllcos ¢, = |b]| + [|al| cos 0 (a, b) .

Multiply the second equation by ||al| and the third equation by ||b|| and
use the first equation to obtain

lal* + [Ib]|* + 2 [Jal [Ib]| cos 6 (a, b) = a+ b]*.

This statement is known as the cosine theorem.

la+b|

The innocuous quantity
la [b] cosf (a,b) < aeb

that appears in the illustration is called the dot product of the two vectors ‘@
a and b.

The dot product finds widespread use in the remainder of this text
and should be well understood.

Since [|0|| = 0, it follows that

Oea=2ae0=0
for any vector a. In fact, since ||v|| > 0 for v # 0,
aeb=0

if and only if a=0, b =0, or 6 (a,b) = 90°.

To compute the dot product as defined here requires knowledge of the
lengths of the vectors and the angle between them. As we shall see in
the next section, it is possible to compute the dot product without direct
knowledge of this angle. As such, the dot product is a tool for detecting
whether two vectors are perpendicular!

Since

aeb = |al|b| cosf (a,b) = ||a]| [||b] cos b (a,b)],

we see that the dot product between a and b amounts to multiplying the
length of a with the length of the projection of b onto a, ||b|| cos 6 (a, b).
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[bf|cos 6 (a,b)

Illustration 3.12

Let a, b, and ¢ be three arbitrary vectors as in the figure below. If you
consider a and ¢ to be parallel to some plane, the vector b is not neces-
sarily parallel to this plane. The image is one in three dimensions.

Now, imagine two planes 2 and ‘B, perpendicular to the separation
representing ¢ and intersecting the end points of the separations repre-
senting a and b, respectively. It follows that

lal| cos @ (a, c)

is the distance from the starting point of the separation representing a
to 2. Similarly,

[[b]| cos 6 (b, c)

is the distance between I and B. Their sum equals the distance from
the starting point of the separation representing a to the plane 9. From
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the figure, it is now clear that
la+ bl cosf(a+b,c) =|al cosb (a,c)+ ||bl cosé (b,c).
Multiplication with ||c|| gives

[la+bll{lc[| cos 0 (a + b, ¢) = [|a]| [[c]| cos 6 (a, ¢) + [[b] [[c]| cos § (b, c) .

The result of the illustration implies that
ce(at+b)=cea+ceb.
Combined with the observation that (show this!)
a(aeb) = (aa)eb,

it follows that the dot product is linear. It is this property that enables ,@
its computation without resorting to the definition above.

In analogy with the definition of the dot product, consider the scalar
quantity

[l [b]|siné (a,b).

As with the dot product, this quantity is zero if and only if a =0, b = 0,
or 6 (a,b) = 0° or 180°. Since the angle 6 (a, b) lies between 0° and 180°,
this quantity is > 0. As we shall see in the next section, it is possible to
compute this quantity without direct knowledge of the angle 6 (a,b). As
such, it is a tool for detecting whether two vectors are parallel!
In fact, the formula presented in the next section does not merely
compute the product above. Instead, it generates a vector, called the
cross product of the two vectors. In particular, the cross product a x b 4@
between the vectors a and b is defined as the vector whose length equals

[all[[bl[sin (a,b)

and whose direction is perpendicular to both a and b, pointing in the
direction of the right-hand thumb when the fingers curl from a to b.

axb

The cross product finds widespread use in the remainder of this text
and should be well understood.
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Illustration 3.13
Consider the parallelogram whose sides correspond to representations of

the two vectors a and b. Then, if we use the side corresponding to a as
base, we find the height to be

|bl| sind (a, b)
and the area of the parallelogram is

[l bl sin6 (a, b).

0 (a,b) a

3.3.6 Vector Space

The definitions of multiplication of a vector with a scalar and the addition
of two vectors makes the set of all (position) vectors a vector space.

Definition 3.3 A vector space V is a set of elements with well-
defined addition and scaling operations, such that given two elements
vi,vo €V

vi+ve €V, and kvy € V for any k € R.
Moreover, the operations satisfy the following conditions:
o Commutativity: vy + vy = va + vy, Vv, vy €V,

o Associativity: vi + (va +v3) = (v1 4+ va) + v, and ki (kavy) =
(klkg) vy, VV1,V2,V3 S V, and Vkq, ko € R;

Distributivity: (k1 + ko) vy = kivy + kovy, and ki (vi +vg) =
k1vi + k1ve, Vvi,ve €V, and Vkq, ks € R;

e There exists a zero element 0, such that v+0 =v and v+ (—1)v =
0;

Multiplication by 1 leaves a vector unchanged: 1v = v.




INlustration 3.14

The elements of a vector space together with the addition operation con-
stitute an Abelian group. Here, the identity element on V is the zero
element 0, since

v+0=0+v=v.
Moreover, the inverse of an element v is the element —v, since
v+ (—v)=(-v)+v=0.

Associativity and commutativity follow from the same properties on the
vector space.

It is possible to generate a vector space from a general affine space.
In a general affine space, two separations m and RS are said to be
equivalent, i.e., PQ ~ RS, if

7(3)-a(3)
2 2
The relation ~ is an equivalence relation and we may, consequently, con-
sider the corresponding quotient set on the space of separations. Multi-
plication of an equivalence class with a scalar and addition of equivalence
classes may now be introduced, provided that the ~ function satisfies a
number of additional properties that respect the properties of a vector

space. To identify these additional conditions on ™ is a nice exercise for
the particularly inquisitive.

The length of a vector ||v|| was defined as the length of any separation
representing the vector. It can be shown that the property of length
satisfies the properties of a norm on a vector space.

Definition 3.4 A norm ||-|| is a real-valued function on a vector
space V, such that for all vi,vs € V, and all o € R:

e Positive definiteness: ||v1| > 0 unless v; = 0, for which ||0|| = 0;
e Homogeneity: |avi| = |af - ||v1][;

o Triangle inequality: ||vi + va| < [|vi|| + [|v2]|.

3.3 Vectors
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Certainly ||0|| = 0, since every separation A4 representing the zero
vector has zero length. Indeed, if ||v|| = 0, then all separations repre-
senting v must have zero length. But this implies that AA € v for some
point A, i.e., v =0. For all other vectors, the length must be a posi-
tive quantity, confirming that the length of a position vector satisfies the
positive definiteness property.

The homogeneity property is an immediate consequence of the defi-
nition of the multiplication of a position vector by a scalar. Finally, the
triangle inequality states that the length of one side in a triangle is always
less than or equal to the sum of the lengths of the other sides.

The dot product introduced on the collection of all position vectors is
an example of an inner product.

Definition 3.5 An inner product e is an operation on pairs of
elements of a vector space V into the reals, such that for all v, vy, vy € V
and all o, 0 € R:

e Positive definiteness: vievy > 0 unless vi = 0, for which 0 ¢ 0 = 0;
o Symmetry: vi e Vo =V e Vy;

o Linearity: (avi+ fva) e vy =a(vievs)+ [ (vyevs).

Given an inner product, we may define a function f (v) on the vector
space by

fv)=+vvev.
It follows that
fv)>0
unless v = 0 and
f(0)=+v0e0=+0=0,

i.e., that f is a positive definite function.
Moreover,

f(av) = {av)s(av) = Vavev = a| - f (v),

showing that f is a homogeneous function.

Illustration 3.15
The result in Exercise 3.26 shows that for an arbitrary inner product,

[vew| < vevywew.



It follows that
FPPv+w) = (viw)e(v+w)
Vev+2vew +wew
)+ (w)+2vew
FV) + 2 (w) +2[v e wl
(w)
2

IAIA

PP+ P (w) +2f (v) - f(w)
= f+rw)l.

Since the quantities being squared on both sides of the equality are > 0,
we can take the square root to obtain

fv+w) < f(v)+f(w).

The function f is said to be subadditive.

The properties of the function f show that it qualifies as a norm
on the vector space. The subadditivity of f is just a restatement of the
triangle inequality. We have found that every inner product automatically
generates a norm.

3.4 Bases

Illustration 3.16
Let a; # 0 be a vector and P some point in space. Then, if

P'R'Q
for some scalar vy, the point @ lies on a straight line through P that is
parallel to a;. In fact, every point on this straight line corresponds to

some value for the coefficient v;. We say that the vector a; spans the
straight line.

~~.P
\@ c v1aq
o,
Q .

Let as be a second vector that is not parallel to the line spanned by
ajy, i.e., such that

ay # fay

3.4 Bases

(Ex. 3.28 —
Ex. 3.72)
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for all values of 3. Then,
P viai+vaas Q

for some scalars v; and v, implies that @ lies in a plane through P that
is parallel to a; and as. In fact, every point in this plane corresponds to
some value for the coefficients v; and vo. We say that the vectors a; and
as span the plane.

P m S '."1;131 + voa2

Finally, let a3 be a third vector that is not parallel to the plane
spanned by a; and as, i.e., such that

az # 1a; + fBraz

for all values of 3, and (3,. Then, for every point in space, it is possible
to find some scalars vy, ve, and v3, such that

via;tvzaztwvzas
p paatveaatvsay o

We say that the vectors aj, as, and az span all of space.

Qe
PQ € via; + v22s + v3a3

P.

A set of three vectors {aj,as, a3} that span all of space is called a
basis of space and the vectors are known as basis vectors.

Let {aj,a2,a3} be a basis of space. For every pair of points P and
Q, it is possible to find scalars vy, vo, and vz, such that

viaitvzaztwvsas
e )

Equivalently, for every pair of points P and @, it is possible to find scalars
v1, V2, and vs, such that

{@} = wvia] + veay + v3as.
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In particular, for every vector v, it is possible to find scalars vy, v, and
v3, such that

VvV = vi1a] + v2a2 + vsas.

The result of Exercise 3.29 shows that the coefficients vy, vo, and vg are

unique. These coefficients are known as the coordinates of the vector

relative to the basis {aj,az,az}. We say that the vector is expressed ,@
relative to the basis {aj,agz,az}.

3.4.1 Orthonormal Bases

Let {a;,a2,a3} be a basis of space. For every vector v, there exists a
unique set of coordinates vy, v9, and vs of the vector relative to the basis,
such that

VvV = vi1a] + v2a2 + v3as.

Let v and w be two arbitrary vectors with coordinates vy, vo, and v3
and w1, wa, and w3, respectively, relative to the basis {a;, a2, as}. Now,
consider the dot product

vew = (via; + vaas + v3ag) e (wia; + woay + wiasz)
= vw (a; eay) +viws (a; e as) +viws (a; e az)
+vow (az @ ay) + vows (ag @ as) + vows (ag @ az)
+vgw (az @ ay) + v3ws (az @ as) + vsws (az e az),

where the second equality follows from the linearity of the dot product.
Rewrite this sum as a matrix product:

ajea; ajeay Qajeas w1
V.W:(Ul Vg ’U3) Az ®a); Az ®eas aseas wao
Az ®a; a3 eas aseag w3

It follows that the value of the dot product v e w is determined once the
matrix

ajea; ajeaz; ajeas
Az ®0a] Az eaz azeas
A3 ®a; Aazeaz aszeas

is known.
From Exercise 3.16, we recall that

aj ®eas — az e aj,

a; eaz3 = az eay,
and

As ® a3 — a3 @ as.
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It follows that the matrix

ajea; ajeay ajeas
A2 0] Az eaz azeas
Az ea; Aazeaz aszeas

ﬁ is symmetric.

Illustration 3.17
The result of Exercise 3.36 shows that for every basis {a;, as, a3} there
exist independent angles 61, 05, and 63, such that the matrix

ajea; ajeay ajeas
Az 0] Aazeas ajg eaj
A3 ®a] A3 ®as a3 eas

takes the form

2
[[au | [la | ||322|| 1 llaw ]| las] c2
sl laz] c1 |az| az]| [las]| (8182203 +ecica) |,
law |l lasl[ ca [|azl| las]| (s1s2¢3 + cic2) [las]|
where
¢; = cosb;,s; =sinb;
and

sin 01, sin @5, sin 63 £ 0.

It follows that

cosf (a,a2) = _Aied cos B,
l[a| [|az||
cosf (aj,a3) = _Aieds cos 0,
l[a| [|as]|
and
cosf (ag,a3) = _S2883 sin 01 sin 0 cos 03 + cos 01 cos 05.
[az|| [|as]|
Moreover,

vev=(|ai]| vy + ||az v2 cos b1 + ||as|| vs cos 62)*
+ (J|lag]| vo sin 1 + ||ag|| vs sin 65 cos O3)?
+ (||las|| vs sin 0 sin 03)>

which is positive for all v # 0.
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A basis of space is said to be orthonormal if @

ajea; Aajeaz ajeas
A2 0a] azeaz az eas
Az ®a; Az eas Aazeas

equals the identity matrix. It follows that

ajea; ajeay ajeas w1
Vew = ( V1 Vg U3 ) axea; agseay azeas Wo
Az ea; azeay azeas w3
1 0 0 w1
= ( V1 V2 Vs ) 01 0 wWa
0 0 1 ws
w1
= ( U1 U2 U3 ) W2
w3

= Vw1 + Vw2 + V3wWs,

where the v’s and w’s are the coordinates of v and w relative to an
orthonormal basis {a;,az,as}.

Illustration 3.18
Let {a;,as,a3} be an orthonormal basis of space. Then

ajea; ajea; aj;eas 1 0 0
arxea; axeay; aseas = 0 1 0
azea; ageas aseas 0 0 1

shows that

lai|| = vaiea; =1,i=1,2,3,
i.e., the basis vectors have unit length. Moreover,
A] a2 — Aa] €A3 — Ay ® A3 :0,

i.e., the basis vectors are mutually perpendicular.

as
ag

aj

The length of a vector v is given by

IVl = Vvev=y/vi+uv]+03,
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where the v;’s are the coordinates of v relative to the orthonormal basis.
This statement is equivalent to the Pythagorean theorem in three dimen-
sions.

The formula
Vew =W + Vw2 + V3Ws

offers a straightforward method for computing the dot product between
arbitrary vectors without appealing to the original geometric definition
of vew in terms of the lengths of v and w and the intermediate angle
0 (v,w). Instead, we find that
vVew
R T
V1W1 + VaWa + V3W3

Vot 403+ vgy/wf 4wl + wd

In particular, we conclude that two non-zero vectors v and w are per-
pendicular if and only if

VW1 + VW2 + VW3 = 0,

where the v;’s and w;’s are the coordinates of v and w relative to some
orthonormal basis.

The result of Exercise 3.47 shows that if {a;, as, a3} is an orthonormal
basis and

v =v1a; + v2az + vsag,

then the dot product a; e v equals the i-th coordinate of the vector v
relative to the basis {aj,as, as}, i.e.

a;ev =u;.

3.4.2 Notation

From this point on, all coordinate descriptions will be stated relative to
orthonormal bases. We will find it algebraically convenient to organize
the basis vectors of a basis {a;,as,a3} into a row matrix denoted by a
lower-case, unsubscripted letter:

Cld;f( a;] az asg )

When referring to this matrix, we simply speak of the orthonormal ba-
sis a. To distinguish between different orthonormal bases that use the
same letter, I include appropriate superscripts within parentheses to the
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right of the symbol of the basis, e.g., ), b(*1°%) and so on. The same
superscripts are then added to the basis vectors, e.g.,

b(r) — ( b b b )

With a slight stretch of normal matrix multiplication, any vector v
can be expanded as

v = aj(ajev)taz(agev)taz(agev)
ajev
= (al as a3) aev | =a,
azev
where the column matrix
ajev Y1
a,, def def [ a
v = as o v = (%)
azev %3

contains the coordinates of the vector v relative to the orthonormal ba-

sis a. The matrices a and %v are multiplied with each other following

the standard rules of matrix multiplication, in spite of the non-standard

nature of their components.

%y is called the matriz representation of the vector v relative to the @

orthonormal basis a. The letter (lower-case, italicized) used in the no-

tation ®v for the matrix representation agrees with the letter used to

denote the corresponding vector. The left superscript, in turn, specifies

the orthonormal basis, relative to which the vector is expressed. Other

examples are

bw and “ (ubase) )
where the latter expression refers to the matrix representation of the
vector Up,ee relative to the orthonormal basis e.

A further generalization of notation allows one to consider dot prod-
ucts of vectors with matrices of vectors, such as

a ayev
T _ dif _a,,.
a eV = as oV = ag eV = U,
as asevVv

dot products of matrices of vectors, such as

ai
aT ob = ao [ ( bl b2 b3 )
az
def ay e b1 ay e b2 ay e b3
= a20b1 320b2 a20b3 ;
ag.bl a30b2 ag.bg
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and similarly for cross products®. In the formulae above, the T superscript
denotes the matrix transpose.

3.4.3 Common Misconceptions

It is important to recognize that a is a 1 x 3 matrix of vectors and “v is
a 3 x 1 matrix of numbers. “v is not a vector. “v is not the vector v
expressed in the a basis. “v is simply a matrix. It cannot be used alone
to represent the vector v. Any description of v using “v must include
mention of the corresponding orthonormal basis a.

The expression

vVv=a v

is true, as is shown by matrix multiplication. The expression

v="%%
is false, however, since the left-hand side is a vector (i.e., a collection
of infinitely many equivalent separations) and the right-hand side is a
matrix of numbers.
There is nothing wrong with an expression like

b “v.

This is not the vector v, since the expression mixes the matrix repre-
sentation of v relative to a with the row matrix b. The expression does
evaluate to a vector, however, whose matrix representation relative to the
orthonormal basis b is given by “v.

3.4.4 Handedness

Let {a;,a2,a3} be an orthonormal basis. Then, the basis vectors aj, ag,
and ag are mutually perpendicular and of unit length. Since

[—aill = JJail = 1, i = 1,2,3,

it follows that {+a;, +as, +a3} is an orthonormal basis for any combi-
nation of plus and minus signs. There are eight such combinations, each
corresponding to a different orthonormal basis.

6Note that care must be taken to account for the antisymmetry of the cross product
when applying the transpose operator to expressions involving cross products, e.g.,

(aT x a)" = —aT x (a7)" = —a7 x a.
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az ag

as

aj

ay

Illustration 3.19

Consider changing the signs on two of the basis vectors and compare the
orthonormal bases {a;,as, a3} and {—a;, —as,az}. Imagine the basis
vectors aj, as, and ag fixed to a rigid body. Then, a rotation of the rigid
body half a turn about an axis parallel to az will make these vectors co-
incide with the basis vectors —a;, —as, and a3. Here, the cross products
between the first and second basis vectors, respectively, in each of the
bases yield identical results:

a] X ag = (—al) X (—ag).

In contrast, there is no rotation of the rigid body that will make the
basis vectors ay, as, and as coincide with the basis vectors —ay, as, and
a3. Here, the cross products between the first and second basis vectors,
respectively, in each of the bases yield different results:

a; X ag = — (—al) X ag ;é (—al) X as.

An orthonormal basis is said to be right-handed if ‘@
a; X ag = ag.

By the definition of the cross product, this implies that as points in the
direction of the right-hand thumb when the fingers curl from a; to as. It
is straightforward to see that for a right-handed, orthonormal basis

as X ag = aj
and
az X a; = ag,

each of which can be taken to define a right-handed, orthonormal basis.

117



118 3 Translations

If, instead,
a; X ag = —as,

ﬁ then the orthonormal basis is left-handed.

Illustration 3.20
Let the orthonormal basis {aj,ag, a3} be right-handed. Then, since

(—a1) x (—az) = a; x ap = a3,

the orthonormal basis {—a;, —ag, a3} is also right-handed.
On the other hand, the orthonormal basis {—aj, as, a3} is left-handed,
since

(731) X ag = — (a1 X 32) = —as.

The result from Exercise 3.58 shows that the cross product between
two arbitrary vectors v and w may be computed from the expression

U2 U3
w2  ws

v V2
w; w2

(%1 V3
wy w3

VW = aj — + as

a; az asg
= v v2 V2 |,
w; W2 wWs

where the v;’s and w;’s are the coordinates of the two vectors relative to
the right-handed, orthonormal basis {a;,as,as}. The last determinant
is computed using the standard rules from matrix algebra, in spite of the
mixed nature of the entries of the matrix.

3.4.5 Generating New Bases

Let a be a right-handed orthonormal basis and let v # 0 be some vector
that is not parallel to a;. Since

1
vl

v

T vl =1
vl ’

it follows that
by~ Y

vl

is a vector of unit length that is parallel to v.
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Since the cross product between two non-zero, non-parallel vectors
results in a vector perpendicular to the two vectors, it follows that

by = b; x a;
by X ay|
is a vector of unit length that is perpendicular to by. Finally, the vector
b3z = b; X by
is perpendicular to by and bs and has length
[bs| = [by ][ [Ibz]|sin 6 (by, by) =1,

since 6 (by,bs) = 90°. We conclude that the set {by,ba, bz} forms a
right-handed, orthonormal basis.

Illustration 3.21
Let a be a right-handed, orthonormal basis and consider the vector

such that v is not parallel to a;. Then,

a2 a2 a2
1;1+ 1)2+ v3

A% a'UQ
bl:M:“ “wi + vy + vy |
__ Yws

[a,,2 a2 a2
vy + %vy + *vg

0
b X a v
1 1
by=———— =0 “Z 1 @02 ,
||b1 X alH @y
“wi + 03
and, finally,
_ “v3 + v
“wf + 03 + “v3
b; =b; xby=a
o Vool + @0Z + a3 \[aeE + eu3
a a
V1 Vs

VeuR + eof + 3\ /oud + o3

The cross product by x a; used to generate by was arbitrary. Any
vector (except one parallel to by) could take the place of a;. Each such
choice would lead to a different right-handed, orthonormal basis.
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3.4.6 Linear Combinations and Bases

In a general vector space, the associative property of addition of vectors
allows you to consider adding several vectors without worrying about the
order in which the operation is performed. Given a collection of vectors
v, w, and x, we can multiply them by the real numbers 2, —3.4, and 1,
respectively, and add up the resulting vectors to obtain

2v — 3.4w + x.

This is an example of a linear combination of the vectors v, w, and x.

Definition 3.6 Let {vi,va,...,v,} be a set of arbitrary vectors
and let {aq,@9,...,a,} be a set of arbitrary real numbers. Then, the
vector sum

a1V] + aave + ...+ o,V

is called a linear combination of the vectors {vy,va,... ,v,}. The set of
all possible linear combinations of these vectors is denoted by

Spall {VlaVQa s avn}

and is said to be spanned by the v;’s.

Illustration 3.22
Let vi and vy be two vectors and assume that

2vy — Vo = Vq + 3va.
Then, it follows that
Vi — 4V2 =0.

More generally, if two linear combinations of the vectors vi and vo give
the same result

a1vy + vy = B vy + B5va,
then the linear combination
(By—a1)vi+(By —az2)va =0

even though at least one of the coefficients 8, — a1 and 85— o is different
from zero.
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If it is not possible to find coeflicients v; and 75, such that the linear
combination

Y1V1 + vave =0

other than vy, = v, = 0, then every linear combination of the two vectors
must give a different result.

If the only linear combination of a set of vectors {vi,va,... , v}
Q1V] + Qovy + -+ Vi

that results in the zero vector 0 is the one with ay = as =--- = «,, = 0,
then the vectors are said to be linearly independent.

If every vector can be written as a linear combination of a set of
linearly independent vectors {vi,va,...,v,}, then the vectors are said
to form a basis of the vector space. It follows that span{vy,vs,... ,v,}is
the entire space. In analogy to the result of Exercise 3.29, the coefficients
in such a linear combination are unique. These coefficients are called the
coordinates of the vector relative to the basis. The number of vectors in
a basis of a vector space is the dimension of the vector space.

Let {vi,Vva,...,Vv,} be a basis of an n-dimensional vector space. By
linearity, it follows that the inner product between two arbitrary vectors
a and b becomes

aeb = <Zaivi>0 ijVj :Zzaib] (Vi.vj)a

where the a;’s and b;’s are the coordinates of a and b relative to the basis
{v1,...,vn}. Clearly, the value of the inner product is determined once
the n? products v; e v; have been chosen for all 4,7 € {1,2,... ,n}. An
orthonormal basis is obtained when

VeV = 8 = 1 wheni=j
T 1 0 whenid#£§

where 6;; is the so-called Kronecker delta. With respect to an orthonor-

mal basis,
aeb = ZZaibjéij = Zazbz
i J %

3.5 The MAMBO Toolbox

The MAMBO toolbox contains a complete set of procedures and func-
tions to define and operate on vectors. Vectors in the MAMBO toolbox

N B

N

(Ex. 3.73 -
Ex. 3.75)
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are specified by the names of right-handed, orthonormal bases and the
corresponding matrix representations.

Illustration 3.23
In the following MAMBO toolbox session, the right-handed, orthonormal

basis a is used to define the vector

> Restart():
> DeclareTriads(a):
> v:=MakeTranslations(a,1,2,0);

v := table([
1 = table(]
“Triad” = a
“Coordinates” = [1, 2, 0]

)
“Size” =1
“Type” = “Vector”

)

The MakeTranslations procedure will only return a valid MAMBO
vector if the first argument corresponds to the name of a right-handed,
orthonormal basis that has been previously declared with the Declare-
Triads procedure. Invoking the DeclareTriads procedure appends the
global variable GlobalTriadDeclarations’.

A MAMBO vector is a MAPLE table with at least three entries, namely
a Type, a Size, and a nested table containing the name of a right-handed,
orthonormal basis and the corresponding matrix representation.

We recall the use of the eval command to access and display the
content of a MAPLE table as illustrated by the following statements:

> v;

> eval(v);

"More detail on the GlobalTriadDeclarations variable in Chapter 5.
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table(]
1 = table(|
“Coordinates” = [1, 2, 0]
“Iriad” = a
)
“Type” = “Vector”
“Size” =1

)

The simplest vector is the zero vector 0, whose matrix representation
relative to any arbitrary basis b is

0
"0)=1{ 0
0
In the MAMBO toolbox, we can generate the zero vector using the Make- ‘@

Translations procedure or more directly using the NullVector proce-
dure:

> MakeTranslations(a,0,0,0);

table(]
“Size” =0
“Type” = “Vector”

D

> NullVector();

table(]
“Size” =0
“Type” = “Vector”

D

Since the zero vector has the same matrix representation relative to all
bases, there is no need to include the name of a right-handed, orthonor-
mal basis and the corresponding matrix representation within the table
structure. This is also reflected in the Size entry.
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The MAMBO toolbox contains functions to compute:

e The multiplication of a vector with a scalar: &*x;
e The sum of two vectors: &++;

ﬁ e The difference between two vectors: &——;

The dot product between two vectors: &oo;

e The cross product between two vectors: &xx;

The length of a vector: VectorLength.

The &x* function is demonstrated in the following MAMBO toolbox
statement:

> 2 &xk vy

table(]
1 = table(|
“Coordinates” = [2, 4, 0]
“Triad” = a
y
“Type” = “Vector”
“Size” =1

D

To multiply a MAMBO vector with a negative scalar, it is important to
place the scalar within parentheses:

> (-1) &xx v;

table(]
1 = table(|
“Coordinates” = [—1, —2, 0]
“Triad” = a
)
“Type” = “Vector”
“Size” =1

)
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Parentheses should also be used if the scalar is expressed as a product of
several scalars, as in

> (1/VectorLength(v)) &** v;

table(]
“Type” = “Vector”
1 = table(|
. 1 2
“Coordinates” = {5 V5, = \/5, O}
“Triad” = a
I
“Size” =1

D

where the vector v is multiplied by the inverse of its length (obtained
with the VectorLength function) to yield a vector parallel to v but of
unit length.

We may add two vectors with the &++ function. If the two vectors
are expressed relative to the same right-handed, orthonormal basis, the
&++ function returns a MAMBO vector with Size equal to 1 and matrix
representation given by the sum of the matrix representations of the two
vectors.

> w:=MakeTranslations(a,-1,q,0):
> w &t+ vy

table(]
1 = table(|
“Triad” = a
“Coordinates” = [0, ¢ + 2, 0]
)
“Size” =1
“Type” = “Vector”

D

If the two vectors are expressed relative to different right-handed, or-
thonormal bases, the &++ function returns a MAMBO vector with Size
equal to 2 and containing two nested tables, each of which contains the
name of the basis, relative to which the corresponding vector is expressed
and the associated matrix representation.
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> DeclareTriads(b):
> u:=MakeTranslations(b,r,r-s,s):
> u &++ vy

table(]
1 = table(|
“Triad” = b
“Coordinates” = [r, r — s, ]
)
2 = table(]
“Triad” = a
“Coordinates” = [1, 2, 0]
)
“Size” =2

“Type” = “Vector”

D

Illustration 3.24
A MAMBO vector with multiple nested tables can be generated by the

MakeTranslations procedure.

> MakeTranslations([a,1,2,0],[b,r,r-s,s]);

table(]
1 = table(|
“Coordinates” = [1, 2, 0]
“Triad” = a
D
2 = table(]
“Coordinates” = [r, r — s, s]
“Triad” = b
D
“Type” = “Vector”
“Size” =2

D

Note the use of the square brackets to separate the distinct components.
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The &—— function is defined using the &** and &++ functions as sug-
gested in the definition of vector subtraction. Some additional examples
of the use of these functions are given in the MAMBO toolbox statements

below.

> (v &++ u) &++ v,

table(]

> v &+t u &t+ v

1 = table(|
“Coordinates” = [2, 4, 0]
“Triad” = a

)

2 = table(]
“Coordinates” = [r, r —
“Triad” = b

)

“Type” = “Vector”
“Size” = 2

)

S, §

table(]

1 = table(|
“Coordinates” = [2, 4, 0]
“Triad” = a

I

2 = table(]
“Coordinates” = [r, r —
“Triad” = b

I

“Type” = “Vector”
“Size” =2

D

S, S

> v &++ NullVector();
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table(]
1 = table(]
“Coordinates” = [1, 2, 0]
“Triad” = a
)
“Type” = “Vector”
“Size” =1

)

> v &- vy

table(]
“Type” = “Vector”
“Size” =0

)

> v &++ u & vy

table(]
1 = table(|
“Coordinates” = [r, r — s, s
“Triad” = b
I
“Type” = “Vector”
“Size” =1

)

Note how the Size of the MAMBO vector adapts to accommodate changes
in the number of nested tables.

The &oo and &xx functions implement the formulae derived in the
previous section for the dot product and cross product as confirmed by
the results of the following MAMBO toolbox session:

> Restart():

> DeclareTriads(a):

> v:=MakeTranslations(a,vl,v2,v3):
> w:=MakeTranslations(a,wl,w2,w3):
> v &oo w;



>

table(]

vl wl + v2 w2 + v3 wsd

“Type” = “Vector”

1 = table(|

3.5 The MAMBO Toolbox

“Coordinates” = [—w2 v3 + w3 v2, —w3 vl + v3 wi, w2 vl — v2 wl]

“Triad” = a
)
“Size” =1

)

Here, a is declared as a right-handed, orthonormal basis prior to the
definition of the vectors v and w.

Illustration 3.25

Let a be a right-handed, orthonormal basis. Then, the following sequence
of MAMBO toolbox statements generates an alternative right-handed, or-
thonormal basis b, such that by is parallel to the vector

vV VV VYV

>

Restart():

DeclareTriads(a):
al:=MakeTranslations(a,1):
v:=MakeTranslations(a,1,0,-2):
bl:=(1/VectorLength(v)) &** v;

b1 := table(]
1 = table(]
“Triad” = a

“Coordinates” = E V5, 0, _g \/5}

)
“Size” =1
“Type” = “Vector”

)

b2:=(1/VectorLength(bl &xx al)) &*x (bl &xx al);
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b2 := table(]

1 = table(|

“Triad” = a
“Coordinates” = [0, —1, 0]
)

“Size” =1

“Type” = “Vector”

)

> b3:=bl &xx b2;

b3 := table(]

1 = table(|

“’I‘I‘ia’d” — a

“Coordinates” = —% V5, 0, _% NG
)

“Size77 — 1

“Type” = “Vector”
)

Here, the shorthand form of the MakeTranslations procedure is used
to generate the basis vector a;. That the basis b is orthonormal follows
from

> matrix(3,3,(i,j)->cat(b,i) &oo cat(b,j));

OO =
o = O
_ o O

corresponding to the matrix

bieb; bjyebs; b;eb;
bg.bl bg.bg bQObg
b30b1 b3.b2 bg.bg

Finally, that the basis is right-handed is confirmed by

> bl &oo (b2 &xx b3);
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Show that the motion
AB BA
laaY

Exercise 3.1

produces the same outcome as the motion

A4 .
A, but whereas the latter involves no mo-

tion whatsoever, the former may involve
arbitrarily large displacements.

Exercise 3.2 When is
4AB BC AC
AN =7

Exercise 3.3 For each of the sequences
of motions below, i) determine whether the
expression makes sense and ii) find the sep-
aration between the starting and ending
points when it exists.

PPy P3Py PPy PP P3Py
% m Y% Y% Y%

a)
c)

b)
d)

N NN Ny NN N Ny

Exercise 3.4 Consider the affine space
of points on the upper hemisphere of a sphere
of unit radius introduced following Defini-
tion 3.1. Each point on the hemisphere cor-
responds to a unique straight line through
the center of the sphere. Equivalently, every
straight line through the center of the sphere
that is not perpendicular to the straight line
through the poles of the sphere corresponds
to a unique point on the upper hemisphere.

Consider all the straight lines that inter-
sect at some point in space. Denote one of
these lines by L. Now, eliminate from this
collection all the straight lines that are per-
pendicular to L. Use the above observation
to construct an affine space of the remaining
set of straight lines.
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Exercise 3.5 Consider the collection
of all straight lines from the previous exer-
cise that intersect at some point in space
and are not perpendicular to the line la-
beled by L. Each such straight line corre-
sponds to a unique plane perpendicular to
the straight line. Use this observation to
construct an affine space of the correspond-
ing set of planes.

Exercise 3.6 Show that

1. PQ ~ PQ;
2. ]@ ~ RS implies that RS ~ @;

3. m ~ RS and RS ~ TU imply that
PQ ~TU.

Exercise 3.7 Consider the points on the
surface of a sphere. Define the relation ~ so
that two points P and @ on the sphere sat-
isfy P ~ @ if and only if they lie on the same
line through the center of the sphere. Show
that ~ is an equivalence relation. Charac-
terize the corresponding equivalence classes
and the quotient set.
P

Q

Solution. Let P, (0, and R be points on
the sphere’s surface. Clearly, P ~ P, i.e.,
~ is reflexive. Moreover, P ~ ( implies
that Q ~ P, i.e., ~ is symmetric. Finally,
if P~Q@and Q@ ~ R, then P ~ R, ie., ~
is transitive. Thus, ~ is an equivalence rela-
tion.
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The equivalence classes corresponding to
~ consist of diametrically opposite points on
the sphere’s surface.

The quotient set is conveniently repre-
sented by the set of straight lines through
the center of the sphere.

Exercise 3.8 Consider the affine space
of points on the upper hemisphere as intro-
duced following Definition 3.1. Consider the
equivalence relation ~, such that

PG ~ RS

if and only if
1 1
ps (L) —an (L),
2 2
Characterize the resulting equivalence
classes. Can you define addition and scalar

multiplication on the quotient set to make it
a vector space?

Exercise 3.9 Show that v4+0 = 04v =
v for all position vectors v.

Solution. That v +0 = 0 + v follows
from the result in Illustration 3.10. Let the
separations m and Cﬁ represent the vec-
tors v and 0, respectively. Then,

v+0=|PQ|+[Q0] = PO =v.

Exercise 3.10 Show that v —v = 0 for
all position vectors v.

Solution. Let the separation }@ repre-
sent the vector v. Then,

v—v=v+(-1)v

- [7a] - 7] 7] -o.

Exercise 3.11 Show that (u+ v)+w =
u+ (v + w) for all position vectors u, v, and
w.

Exercise 3.12 Show that (o + ag) v =
a1V + aov for all scalars o and s and all
position vectors v.

Exercise 3.13 Show that a (v +w) =
av + aw for all position vectors v and w
and any scalar a.

Exercise 3.14 Show that the cosine

theorem implies that
v+ wl < v+ [[wl

for all position vectors v and w.

Solution. The cosine theorem states
that
2 2 2
[v+w[™ = [v]"+ [lw]

+2 | [Iwl[ cos 0 (v, w)
2 2
I+ W™ + 2 vI [ wli
2
(vl =+ fwl)™

since cos@ (v,w) < 1. Since the quantities
being squared on both sides of the inequality
are positive, it follows that

v +wl <[l +wl-

Exercise 3.15 Show that — [|[v — w]| <
[Iv]]|—|lw] < |[v —w]| for all position vectors
v and w.

Solution. From the previous exercise,
we have

Vi = v =wt+w] <|v—w|+][w]
= vl =lwll < llv = wl.
Similarly,
[wil = Jlw—=v+v[<|w—v[+]v]
= vl =lwll = = [lw =]
But,
lw=vl = (-1 (v -w)

= =Dl = wll = v —wl],



ie.,
—lv=wl < vl =lwll <lv—-w].

Exercise 3.16 Show that vew = wev
for all position vectors v and w.

Exercise 3.17 Show that ||v|| =V eV
for all position vectors v.

Exercise 3.18 Show that vev > 0
unless v = 0, for which 0 e 0 = 0.

Exercise 3.19
show that

Use the dot product to

v+ Wl + v = wl® =2 [vI|* + 2w

Interpret the result geometrically.
Solution. Using the dot product, we
find ||v+w|*+ v —w|’

= (viw)e(v+w)+(v-w)e(v—w)

= VeV+VeW-I+tWeV+Wew
+VeV—-—VewW—-—WeV{+Wew

= 2Vvev+2wew

= 2|v|*+2(w]?,

where the second equality follows from lin-
earity.

Now, consider the parallelogram spanned
by the two vectors v and w.

The vectors v + w and v — w then corre-
spond to the diagonals in the parallelogram.
The statement above implies that the sum
of the squares of the lengths of the diagonals
in a parallelogram equals twice the sum of
the squares of the lengths of the sides of the
parallelogram.
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Exercise 3.20
—V X W.

[Hint: 6 (v,w) =60 (w,Vv).]

Show that w x v =

Exercise 3.21 Show that v x v = 0.
Exercise 3.22 Recall that ||v x w||
equals the area of the parallelogram spanned
by the vectors v and w. What quantity does
|ue (v x w)| equal for some arbitrary vector
u?

[Hint: Consider the volume of the prism
whose edges are separations representing the
three vectors u, v, and w.]

Exercise 3.23
0.

Show that ve (v x w) =

Solution. The vector v X w is perpen-
dicular to both v and w.

Thus, the angle between the vectors v
and v X w is 90° and cos90° = 0, which
proves the claim.

Exercise 3.24 Show that

v=(ven)n+nx (vxn)

for any vector v and any vector n of unit
length.

Solution. Consider the right triangle,
for which v represents the hypotenuse and
the adjacent side lies along the vector n.

Then the length of the adjacent side is
|v|| cos 8 (v, n)
— vl []n] cos (v,n) = v en,

since ||n|| = 1. Indeed, the vector corre-
sponding to the adjacent side is given by this
length multiplied by the unit vector n.
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Furthermore, the length of the opposite
side equals

[v]lsind (v, n) [v[[ ]l [n]fsiné (v,n)

LT
Iv > nf} |In]|sin 3

= [nx (v xmnjf,

since n is perpendicular to v x n. Also, the
vector n X (v X n) is parallel to the opposite
side of the triangle pointing from the right-
angled corner toward the hypotenuse. The
statement of the problem now follows by con-
sidering the vector sum of the two vectors
corresponding to the adjacent and opposite
sides of the triangle.

Exercise 3.25 Find the general solu-
tion to the equation u e (v x w) = 0, where
v and w are two given, linearly independent
vectors.

Solution. The vector v xw is perpendic-
ular to both v and w. In other words, v x w
is normal to any plane spanned by v and w.

The equation

ue (vxw)=0

implies that u is perpendicular to v x w, i.e.,
that u is parallel to any plane spanned by v
and w. It follows that u € span{v,w}, or

u=av+ 0w
for some pair of scalars v and 3.

Exercise 3.26 Let v and w be two
arbitrary vectors in a vector space with an
inner product e. Prove the Cauchy-Schwarz
inequality:

[vew| < vevywew.

Solution. Suppose that

wew = 0.

It follows that
vew =0
and thus
O=|vew|<Vvevywew =10

confirming the validity of the inequality for
this special case.
Suppose, instead, that

wew #£ 0.
Positive definiteness implies that

0 <

= vev—2avew+alwew

(v—aw)e(v—aw)

for all . If; in particular

Vew

o = 5
W ew

it follows that

0 < vev—2avew+a’wew

Vew
= vev—2

Vew
W ew

(rex

2
) Wew
wWew
2
(vew)
= vev———
Wew

ie.,
(vew)’ < (vev)(wew)

and the claim follows by taking square roots
on both sides.

Exercise 3.27 Show that the Cauchy-
Schwarz inequality is true by construction
in the case of the dot product on the vector
space of translations.

Exercise 3.28 Let {a;,az,a3} be a ba-
sis of space. Show that

via; + veas + vzag =0



is true if and only if

121:1}2:1]3:0.

Solution. Since
la=0and 04+0=0
for any vector v, the assertion that
v1 = vy =v3 =0 = via; +10ay +v3az =0

is trivial.

Assume, instead, that at least one of the
scalars vy, vy, or ws is non-zero, e.g., vs.
Then,

via; + veag +vzag = 0

only if

as = —— (v1a1 + ’Ugag) .
U3
But this implies that ag is parallel to the
plane spanned by a; and as, in contradiction
with the assumption that the vectors form a
basis.

If v3 = 0, but vy # 0, then

via; +veas + vzag =0
only if

a = ——aj.
V2

But this implies that as is parallel to the line

spanned by aj, in contradiction with the as-

sumption that the vectors form a basis.
Finally, if v3 = vo = 0, but v; # 0, then

via; + voag +vzag = 0
only if
a; = 0.

Again, this contradicts the assumptions that
the vectors form a basis and the claim fol-
lows.
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Exercise 3.29 Let {a;,az2,a3} be a ba-
sis of space. Show that

vi1a1 + v2a2 + vzaz = wia; + woag + ws3as
is possibly only if

v1 = wy, V2 = ws, and vz = ws.
Exercise 3.30 Let {aj,as,a3} be a ba-

sis of space. Show that an alternative basis
is given by the vectors

b1 = 231 — as
b, = —as+ 3aj
bs = a;+ag

Solution. The vectors by, by, and bg
constitute a basis if

by — by #0
for all values of 8 and
bz — B1b1 — B3b2 # 0

for all values of 3, and f3,.
Here,

by — by = —2pa; —az + (3 + ) a3.
But, by a previous exercise, this cannot equal
the zero vector for any choice of 5. Similarly,
bs — 31b1 — Bsbs = (1 -281)a; + Braz
+(1+ By — 35,) as.

But, by a previous exercise, this equals the
zero vector only if

1-28,=08,=1+03; =36, =0,

which is not possible for any choice of 3, and
B5. We conclude that {by,ba, b3} is a basis
of space.
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Exercise 3.31 Let {a;,as,a3} be a ba-
sis of space. For each of the sets of vectors
below, determine whether they constitute an
alternative basis of space.

b1 = 232 + as bl = 3&1
a) bQ = —2&2 + as b) b2 = aj
b3:3a3 b3:3.1+8.2
blz—ag—a3 b1232+233
C) bgzag—a3 d) b2:a1
b; = a3 bs = a3

b1:a1+a2+a3
e) b, =a; —as + a3
b3:281—233
by =a; + a3
f) by = 2a5 + a3
bs = —2a; — as + 2a3

Exercise 3.32 Let ®vq, ®vq, and “v3 be
the coordinates of a vector v relative to the
basis {a1,as,a3}. Find the coordinates *vq,
byy, and Pvs of the vector v relative to the
basis {by, by, b3} where

b1 = 231 — as,
b, = —as+ 3ags,
bs; = a; + as.
Solution. Since ®v{,* v, and ®wvz are

the coordinates of v relative to the basis
{a1,a2,a3}, we can write

v = %wia; + %wvgas + “wszas.

But, from the definition of the vectors by,
b, and bz we find

1 1
= —b —b:
ap 301 + 303
as = —b; —by+2bs,
1 2
az = 7—b1 + —b3.

3 3

Substitution into the expression for v then
yields

1 1
v = Y (gbl + gbg)
+ “v3 (=b1 — by + 2bg)

1 2
+ %vg (——b1 + —b3>

3 3
R v
= <T1 — al}g — 33> b1 — a’l)QbQ

%1 2a'l)3
24 bs.
+<3+ Ve + > 3

The coordinates bv1, Pvs, and Pvs of v rela-

tive to the basis {by, by, b} are therefore

a a
b _ U1 a U3
v = U2_T’
b
V2 = _a’027
a a
U1 3
by = = +2"wm+

Exercise 3.33 Let ®vq, ®vg, and “v3 be
the coordinates of a vector v relative to the
basis {a;,as,a3}. Find the coordinates v,
byy, and Pvs of the vector v relative to each
of the bases below.

b1 = —ay
bQ = 282 + as

by =a; + a3
a) b2 = 2&2 + as b)

bg = 7231 — as b3 = —2a1 + 2&3
by =a; + a3 by = a; + 2a3
c) by =2a; —a3 d) by =2a;+ a3
b3 = 72&1 — as b3 = —2a1 + 2&3
b1 = as
e) by=a
b3 = 72&1

b1 = 281 — asg
f) b2 = 2&2 + as
b3 = —231 —as + 2a3

Exercise 3.34 Let {a;,az,a3} be a ba-
sis of space. Find the coordinates relative to



{a1,az,a3} of the vector 5v, where

b) v =—3aj
d) v =—a; + 2a3
f)v=a; —aj

_1 1
a) v=za; +za; — ag
c) v=2a;+ay
1
e) v=aj +za; — a3

Exercise 3.35 Let {a1,az,a3} be a ba-
sis of space. Find the coordinates relative to
{aj,az,a3} of the vector v + w, where

) vV =a; —as ) v = 2a; + as
W = aj; + as W = —aj + as
2
C) v =— 3as ) V:—a1+§a3
W = —2a1+%a3 W = —2a1+§ag

1 1
vV =3a; +3a2 —a3

e)

w = —2a; + %a;;
4 1 1
f) VvV = gal + gag — gag
W = 7%&1 — 53_3

Exercise 3.36 Let {a1,a2,a3} be a ba-
sis of space. Show that there exist indepen-
dent angles 61, 05, and 03, such that

a; e ay = [|a1 || [|az|| cos b1,

a; e a3z = ||ay|| |as]| cos 02,

and

sin @4 sin 05 cos 03
+ cos 01 cos 04 ’

a0 a5 = sl las] (

where

sin 61, sin 05, sin 3 # 0.

[Hint: Let 63 be the angle between the plane
spanned by the vectors a; and a; and the
plane spanned by the vectors a; and az.]

Exercise 3.37 Let {a;,as,a3} be a ba-
sis of space. Use the result of the previous
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exercise to show that
{(a1 eaj)(azeay) —(a; e 32)2}
: [(a1 ea))(azeas) — (ay e agﬂ
—[(a; ®a;) (ay ® a3) — (a1 ® ay) (a; e a3)]’

> 0.

Exercise 3.38 Let {a;,az,a3} be a ba-
sis of space, such that

ajea; ajeaz ajeas
ap ea]; Az ®as Az ®ajs
azea; azeap azeas
1 0 1
_ 1 4
=0 i 4
1 i 1
4 3

Evaluate the dot product between the two
vectors

v =3a; — a3z and w = —ay + 2a3.

Solution. From the linearity of the dot
product, we have

(381 — ag) (] (—ag + 2&3)

= —3a;ea,+6a;eas

Vvew =

+az ea, —2az eas
1 1
= —3%x04+6*x—4+-—2x1
* 0+ *4—|—3 *
1

5

Exercise 3.39 Let {a;,as,a3} be a ba-
sis of space. Evaluate the dot product be-
tween the vectors

v =3a; —az and w = —ay + 2ag,
when
aj;ea; Aajeax ajeas
aea; axeay aseas =
Az ®a; Aazeas azeas
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1 o0 3
a0 2 B
1 V3
4 2
5 L 5
L P
b) A
Vi s !
1 90 0
0 o 1 1
o 4T
2v/2 2
1
2 & 0
d) % 1 0
0o 0 3
1
1 V2 5
e) | —v2 4 -1
% -1 1
1 1 1
1 12 i/i
Dl 2 2 27
7z s L

Exercise 3.40 Let {a1,az,a3} be a ba-
sis of space. Show that the columns of the
matrix

ajea; ajeax ajeas
A €] Az ®as Az ®ajg
azea; azeay azeas

are linearly independent.

[Hint: Use the result from Exercise 3.36 and
show that the determinant of the matrix
must be non-zero.]

Exercise 3.41 Let {a;,az,a3} be a ba-
sis of space, such that

ajea; ajeay ajeas
A ea; Az ®eas Az ®as
azea; Aazeay; azeas
10 1
_ 1 i
=10 % 3
1 i 1
4 3

Show that this guarantees that vev > 0 for
any non-zero vector v.

Solution. Let v, v, and v3 be the co-
ordinates of the vector v relative to the ba-
sis {a1,a2,a3}. Since v # 0, the result of a
previous exercise shows that not all the co-
ordinates can equal zero.

From

VvV = via; + vgaz + v3as

it follows that

vev = vfal ®a; —|—v§agoag+v§ag ®as

+2v1v0a1 @ as + 2v1v3a; @ ag

+2vgvzas @ ag

2 Lo 2 1 2
= v + V3 + V3 + S0U1v3 + U203

2 2 3
1 \* 1 2 \?
= (Ul + sz) + 5 (02 + §U‘3)
103
+mv3,

where the last equality follows from complet-
ing the squares. Since not all the coordinates
can equal zero, the last expression must be
greater than zero.

Exercise 3.42 Let {a;,az2,a3} be a ba-
sis of space. Each of the matrices below is a
possible candidate for

ajea; aijeaz aieas
aea; axeay; aseas
Az ®a; Az eas Aaszeas

In each case, show that this guarantees that
v ev > 0 for any arbitrary vector v.

0
a) 2
V3

2

[ V)
~

=
S e
|>—A cnl»—t&ll»—\
~ gheks

3



i 0 0
C) 0 % _1_
0 L 2?
2v2 2
1
2 o5 0
5 1 0
0o 0 3
1 =2 %
e) | —v2 4 -1
1
5% 1 1
1 1 1
2 T2
_1 1 1
f)( 2 g
7 a2 !

Exercise 3.43 Let {aj,as,a3} be an
orthonormal basis of space. For each pair
of vectors v and w below, evaluate the dot
product v e w.

v=—3a3

) V=a; —as )
w:—2a1+§ag

w = aj + as
v =2a; +as
w = —aj +as

2
vV =—a;+ 3a3
w:—2a1—|—§a2

c) d)

1 1
) v :§a1 —+ gag — as
w = —2a; + l33
3
4 1 1
f) VvV =3za; + zaz — 3as3
2 4
W= —3a; — 383

Exercise 3.44 Let {a;,a3,a3} be an
orthonormal basis of space. Find the angle
0 (v, w) between the vectors v = a; —ag and
w = 2a; — as + 3as.
Solution. From the definition of the dot
product, it follows that
vew

080 (v, W) = [ w]

1%x240x(—=1)+(—1) %3
\/12 +02 + (4)2\/22 +(-1)*+32
1

V28
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and thus

1
0 (v,w) = arccos [ ——— | ~ 100.9°.
(v.w) (=)

Exercise 3.45 Let {a;,as,a3} be an
orthonormal basis of space. For each pair
of vectors v and w below, find the angle
0(v,w).

) VvV =a; —ag ) v:—3a3
W =aj] +ag w:—2a1—|—%a3
v:—al—i—%ag v =2a; + ay

c) 2 d)
w:—2a1+§a2 w = —aj + a3

1 1
vV =3a; +zaz —a3

e
) w = —2a; —|—%a3
1

4 1
f) v:§a1—|—§ag a3
W:—%al—gag

Exercise 3.46 Let {ai,as,a3} be an
orthonormal basis of space. For each of the
vectors v and w below, determine whether
they are perpendicular.

v = — 3aj

VvV =a; —ag )
w:72a1+%a3

W = aj +as

2)
)

v =2a; + as

2
vV =—aj+ za
1 393 d)
wW = —aj +as

w = —2a; + %ag

1 1
vV =3a; + za2 —as

)

w = —2a; + %33
4 1 1
VvV = za; + zaz — 3a3
f) 5. 2
W = —35a; — a3

3 3

Exercise 3.47 Let {aj,as,a3} be an
orthonormal basis of space. Show that

aev=uy,1=1273
and thus that

v=aj(ajev)+as(azev)tas(agev),
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where v; is the i-th coordinate of v relative
to the given basis.

Solution. By definition,
Vv =via1 + v2az + v3ag,

where v1, vo, and v3 are the coordinates of
the vector v relative to the basis {a;, as,as}.
Then,

ajev a; e (via; + veas + vzaz)
= vy (ajea;)+vs(a;eay)
+uz (a; @ a3)

= U,

a,ev as e (viag + voay + vzasg)
vy (ag e ay) + v (az @ ag)
+U3 (32 ° ag)

= U2,
and

azev = vse(via; + voas + vzas)
vy (ageaj) + vy (az e as)
+’l)3 (33 ° ag)

as claimed.

Exercise 3.48 Show that

where T denotes the matrix transpose.

Exercise 3.49 Let a be an orthonormal
basis. Compute a” o a.

Solution. Since a is orthonormal, we

find
ay
aToa = as .(al am 33)
as
ajea; Aajeap ajeas
= azea; azeaz azeas
Az ®a; Az e®as Aaszeas
1 0 0
= 0 1 0
0 0 1

Exercise 3.50 Let a be an orthonormal
T

basis. Compute a ® a" .

Exercise 3.51 Let a be an orthonormal
basis. Find an expression for the dot prod-
uct between two vectors v and w in terms of
their matrix representations, “v and “w.

Solution. Using the result of the previ-
ous exercises, we find

vew = (“v"a”)e(a "w)
aUT (aToa) )
1 0 0
= %701 0| “w
0 0 1
_ avTa,w’

where the second equality follows from the
linearity of the dot product. Thus, the dot
product between two vectors reduces to a
matrix multiplication of the matrix represen-
tations of the vectors (with a transpose suit-
ably inserted).

Exercise 3.52 Let {aj,as,a3} be an
orthonormal basis. Show that four of the
eight orthonormal bases {ta;,tas, tas}
are right-handed and four are left-handed.

Exercise 3.53 Let a be a right-handed,
orthonormal basis. Show that
0 as —ag
al’'xa=| —a3 0 a
ao —aip 0



Exercise 3.54 Let a be a right-handed,
orthonormal basis. Show that ae (aT X a) =
( 0 0O )

Solution. We have

0 as —a9
aO(aTxa):ao —az3 O a
ag —aj 0

aje0—ajseaz+ageas
= ajeast+ase0—azea;
—ajeastazea; +azel

= (O 0 0 ),
thus proving the claim.

Exercise 3.55
orthonormal basis.
“Lax (a” x a).

Let a be a right-handed,
Compute the product

Let a be a left-handed
Compute the product

Exercise 3.56
orthonormal basis.

—zax (a¥ x a).

Exercise 3.57 Show that a triad a is
right-handed if and only if

a; e (a; xay) =1,

where 1,7,k is any subsequence of three
consecutive numbers from the sequence
1,2,3,1,2;

a; e (a; x ag) = —1,

where 1,7,k is any subsequence of three
consecutive numbers from the sequence
3,2,1,3,2; and

a; e (a; x ay) =0
for all other choices of i, j, and k.

Exercise 3.58
orthonormal basis.

Let a be a right-handed,
Show that the cross
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product between two arbitrary vectors v and
w can be computed from the formula

V v v v,
VXW = a 2 3 | 1 3
w2 W3 w; w3
v V2
+a3
wy w2
a a a.
def 1 2 3

= | b1 V2 U3 |,
w1 W2 W3

where the v;’s and w;’s are the coordinates
of the vectors v and w, respectively, relative
to the basis a.

[Hint: Let r denote the cross product of the
vectors v and w, i.e.,

r=v Xw.

Use the fact that r is perpendicular to both
v and w to conclude that

rivr +rove + 133 = 0,
w1 + rows + r3wz = 0.
Use the fact that
2 2 2 .
[Ixll V]I [[w]|* sin® 6 (v, w)

= VP Iwl* (1 = cos® 0 (v, w))

2 2 2
= [v[IFw[" = (vew)
to show that

rf—i—r%—i—r% = (vf—&-vg—&—vg)
- (wi +wi +wi)
— (nwy + vaws + 113103)2 .

Now solve the first two equations for r; and
ro in terms of r3 and substitute the result
into the last equation. Solve the resulting
equation for r3 in terms of the v;’s and w;’s
and substitute the result into the expressions
for 1 and r9. You should get two possible
solutions. Select the one that agrees with the
assumption that a is right-handed.]
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Exercise 3.59 Let a be a right-handed,
orthonormal basis. Show that

0 — U3 (%)
VXW= a s 0 — % Yw
U’UQ a’Ul 0

Exercise 3.60 Let a be a right-handed,
orthonormal basis. For each pair of vectors
v and w below, compute the cross product
vV X W.

v =a; —aj ) v = — 3a3

2)

wW =aj + ag W:—2a1+§a3
o) V:731+%ag ) v =2a; +ay
W:—2a1—|—%a2 w = —aj + ag

1 1
vV =3a + 342 —as

e)

w = —2a; + %ag
f) V= %al + %az — %ag
2 4
W = —§a1 — §a3

Exercise 3.61 Consider applying a pure
rotation to a block in its reference configura-
tion corresponding to a half turn about an
edge through a given corner on the block,
followed by a pure rotation corresponding to
a quarter turn about a different edge through
the same corner as shown in the figure below.

Show that the final configuration is re-
lated to the reference configuration by a sin-
gle pure rotation about an axis through the
corner making an angle of §; = 45° with
the first edge and 05 = 90° with the second
edge.

Solution. Denote the corner kept fixed
by the pure rotations A and introduce a
right-handed, orthonormal basis a, such that
the first edge is parallel to ag and the second
edge is parallel to a; as shown in the figure.
Let B and C correspond to two other points
in the block, such that

FAB ACrcference

reference — g4 and r = —a,

where the ,eference Subscript refers to points
in the reference configuration.

Breference - Bintermediate

a3
¢
Oreference
A
( a1 as
Cintermediate
Breference = Bintermediate
az_/
Bﬁnal
o
C'reference
A
( a ag

Cﬁnal = Cintermediate

From the figure it follows that

A Bintermediate — a3 and A Cintermediate — ai,

where the jntermediate Subscript refers to
points in the intermediate configuration. Fi-
nally,

rABinal — _a, and rACme =
where the gna subscript refers to points in
the final configuration. Since the point A is
kept fixed by the pure rotations, it follows
that the final configuration is related to the
reference configuration by a single pure rota-
tion keeping A fixed. From Exercise 1.8, we
recall that every pure rotation is equivalent
to a rotation about a unique axis through the
point kept fixed. It follows that the vectors
rBreference Brinal g pCreferenceCrinal must be per-
pendicular to the axis of rotation, i.e., that
the axis of rotation is parallel to the vector

Breference Bfinal Creference Ctinal
r X T ,



provided that this vector is non-zero. Here,
pBreference Brinal v 1Creference Cinal
— (I-ABﬁnal _ I.ABreference)

X (rACfinal _ rACreference)

= (—a2 — ag) X 2&1 = 2a3 — 232,

i.e., the axis of rotation is parallel to the vec-
tor 2ag — 2a5. Indeed,

(2a3 — 2ay) @ a;
—0
[2a3 — 2as| |lau|

cosf, =

and

9 (2a3 — 2ay) @ a3 1
cosy = = —,
U 2as —2aof] s V2

from which the claim follows.

Exercise 3.62 Consider applying a pure
rotation to a block in its reference config-
uration corresponding to a half turn about
an edge through a given corner on a block
followed by a pure rotation by an angle 0
about a different edge through the same cor-
ner. The final configuration is related to the
reference configuration by a single pure rota-
tion about an axis through the corner making
an angle ¢ with the first edge and perpendic-
ular to the second edge. Show that

o=
2

Exercise 3.63 Consider applying a pure
rotation to a block in its reference configura-
tion corresponding to a half turn about some
axis through a given corner on a block fol-
lowed by a pure rotation corresponding to a
quarter turn about a different axis through
the same corner making an angle 6 with the
first axis. The final configuration is related
to the reference configuration by a single
pure rotation about an axis through the cor-
ner making an angle ¢; with the first axis
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and ¢, with the second axis. Show that

1
COSp; = ————
! V1 +sin?6

and

cos

COS Py = —F——.
? V1 +sin?6

[Hint: Let the first axis be parallel to the ba-
sis vector ag of a right-handed, orthonormal
basis and let the second axis be parallel to
the vector sin fa; + cos faz.]

Exercise 3.64 Let a be a right-handed,
orthonormal basis. For each of the vectors v
below, find an alternative right-handed, or-
thonormal basis b, such that by is parallel to
V.

a) v=a; —aj
b)v:—3a3
C)Vz—al+%ag—ag
d)v—2a1+a2

e) V:%al—l—%a@—ag
f)VZ%al—‘r%aQ—%ag

Exercise 3.65 Let a be a right-handed,
orthonormal basis. For each of the vectors v
below, find an alternative right-handed, or-
thonormal basis b, such that b is parallel to
V.

a)v—al—ag
b)v:—3a3
C)Vz—al-f—gaz—ag
d)v_2a1+ag

e) v:%a1+%a27a3
f)v:gal—&—%ag—?)ag

Exercise 3.66 Let a be a right-handed,
orthonormal basis. For each of the vectors v
below, find an alternative right-handed, or-
thonormal basis b, such that bgs is parallel to
V.
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a) v=aj; —as

b) v=—3a3
C)v:—al—i—%ag—ag
d)v:2a1+ag

@

~—

v :%al + %32 — as
4 1 1
V = 3za; + zap — 3a3

f

Exercise 3.67 Let {vy,va,...,v,} be
a set of arbitrary vectors in a vector space
V. Show that span{vy, va,... ,v,} is a sub-
set of V and that span{vy,va,...,v,} is a
vector space in its own right.

Solution. Any linear combination in
span{vy,va,...,v,} may be expressed as

(((1v1 + agvae) +aszvs) + -+ )+ + @, V.

Each sum of two vectors yields a vector
in V and therefore the linear combination
must be a vector in V, confirming that
span{vy,vsy,...,v,} is a subset of V.

The set span{vi,va,...,v,} contains
the zero vector 0, since

Ovy +0vy+---4+0v, =0.

,Vn}, then
. ,Qp, such

Moreover, if v € span{vy,va,...
there exists real numbers ag, ..
that

V=Q1V] + QaVy + -+ Qa,Vy,.

But this implies that

—v = —(vitaava+ -+ a,vy)
= —0qVi — QVy — - — QpVp,
ie, —v € span{vy,va,... , Vv, }.

It is straightforward to show that if v and
w are two vectors in span{vy,va,...,v,},
then

v+w € span{vy,va,... ,V,}

and
av € span{vy,va,... , vy}
for any real number a.

Exercise 3.68 Show that the vectors

v=2vy —3vy, W= —Vv] + 1.5vo

are linearly dependent.

Solution. The vectors v and w are
linearly dependent if there exists a pair of
scalars (3; and 5 (not both zero), such that

B1v + Baw = 0.

In this case, a solution to this equation is
given by 3, = 1 and 3, = 2, since

v+ 2w = (2vy — 3vy) + (—2vy + 3va) = 0.

Exercise 3.69 Show that the set of
vectors {0,vy,...,v,} is linearly dependent
for any vectors vy through v,,.

Exercise 3.70 Show that if a vector
space has a basis with n vectors, then any
set of n + 1 vectors is linearly dependent.

Exercise 3.71 Show that if a vector
space has a basis with n vectors, then no set
of n — 1 vectors will span the whole vector
space.

Exercise 3.72 Show that if a vector
space has a basis with n vectors, then every
basis of the vector space has n basis vectors.

Exercise 3.73 Let a be a right-handed,
orthonormal basis. Consider the vector



and a vector n of unit length parallel to the
vector w = a; +az — 2a3. Let v=v+ vy
be a decomposition of the vector into a com-
ponent parallel to n and one perpendicular
to n. Use the MAMBO toolbox to find these
components.

Solution. From a previous problem, we
have

v=(ven)n+nx (vxn),

where v and n are some arbitrary vectors,
such that |n| = 1. Using the following
MAMBO toolbox statements:

> Restart():

> a:=’a’:
> DeclareTriads(a):
> v:=MakeTranslations(a,2,1,4):
> w:=MakeTranslations(a,1,1,-2):
> mn:=(1/VectorLength(w)) &** w:
> vpar:=(v &oo n) &** n;
> vperp:=n &xx (v &xx n);
we find
_5 17
6 6

v|=a —% and v, =a 1—61

5 7

3 3

Finally, we confirm the truth of the formula:

> v &-- vpar &-- vperp;

table(]
“Type” = “Vector”
“Size” =0

)
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Exercise 3.74 Use the MAMBO toolbox

to show that

ax(bxc)=b(aec)—c(aeb).

Solution. The following MAMBO tool-
box statements confirm the claim by per-
forming explicit coordinate calculations:

Restart():

n:=’n’:

DeclareTriads(n):
a:=MakeTranslations(n,al,a2,a3):
b:=MakeTranslations(n,bl,b2,b3):
c:=MakeTranslations(n,cl,c2,c3):
a &xx (b &xx c)

&—- ((a &oo c) &** b)

&++ ((a &oo b) &** c);

VVV VVVVVYV

table(]
“Type” = “Vector”
“Size” =0

)

Note the placement of parentheses to ensure
that the multiplication with a scalar is com-
puted prior to any addition or subtraction of
vectors.

Exercise 3.75 Repeat Exercises 3.43,
3.45, 3.46, 3.60, 3.64, 3.65, and 3.66 using
the MAMBO toolbox.
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SUMMARY OF NOTATION

Upper-case, italicized letters, such as A, R, and X, were used in this
chapter to denote arbitrary points in space. The same notation,
but with subscripts, e.g., A1 or Rieference, Was used to distinguish
between multiple points.

Pairs of upper-case, italicized letters with a superscripted arrow, such
as ABb and m, were used in this chapter to denote arbitrary sep-
arations between points.

The symbol ~ was used in this chapter to express the equivalence be-
tween two separations.

Bracketed separations, such as [A—B)} and [1@] , were used in this chap-

ter to denote collections of equivalent separations.

Lower-case, bold-faced r’s with superscripted pairs of upper-case, itali-
cized letters, such as r4% and r’?, were used in this chapter to de-
note the position vectors corresponding to the collections of equiv-

alent separations [E] and [1@] . The equivalent notation for use

on a blackboard or paper was 748 and #7%. The superscripted,

upper-case letters were omitted when referring to a general vector,
such as v or w.

Curved arrows with superscripted separations or position vectors, such
AB r4B . . .
as ~ and M, were used in this chapter to denote a motion along

a separation or in a direction and by a distance corresponding to
the direction and length of a position vector.

The symbol ||-|| was used in this chapter to denote the length of a vector.
The symbol 0 was used in this chapter to denote the zero vector.
The symbol 4+ was used in this chapter to denote vector addition.

The symbol — was used in this chapter to denote vector subtraction and
the unary multiplication of a vector with the number —1.

The symbol 6 (a, b) was used in this chapter to denote the angle between
the vectors a and b.

The symbol e was used in this chapter to denote the vector dot product.

The symbol x was used in this chapter to denote the vector cross prod-
uct.

Lower-case, unsubscripted letters, such as a and b, were used in this
chapter to denote 1 x 3 matrices with entries given by the basis
vectors of an orthonormal basis.



Lower-case letters with a left superscript, such as v and "w, were used
in this chapter to denote 3 x 1 matrices with entries given by the
coordinates of a vector relative to an orthonormal basis.

The symbol ¢;; was used in this chapter to denote the Kronecker delta,
such that 0;; equals 1 if ¢ = j and 0 otherwise.

SUMMARY OF TERMINOLOGY

The separation from point A to point B is the straight-line segment
from A to B.

Two separations are said to be equivalent if they have equal length, are
parallel, and have the same heading.

The position vector 2P is the collection of all separations that are

equivalent to the separation AB.

The separation AB is a representation of the position vector r45.
The length, direction, and heading of a vector equals the length, direc-
tion, and heading of any one of its separations.

Every pure translation corresponds to a unique vector. Every vector
corresponds to a unique pure translation.

The zero vector 0 corresponds to the identity translation.

The multiplication of a vector v with a scalar « is a vector av with length
equal to |«| times the length of v and that is parallel (o > 0) or
antiparallel (o < 0) to v.

The sum of two vectors corresponds to the composition of the corre-
sponding translations.

The dot product of two vectors is a real number equal to the product
of the lengths of the two vectors and cosine of the angle between
the vectors.

The cross product of two vectors is a vector with length equal to the
product of the lengths of the two vectors and sine of the angle
between the vectors and direction given by the right-hand rule.

A vector is said to span a line if the separation between any two points
on the line represents some scalar multiple of the vector.

A pair of non-parallel vectors is said to span a plane if the separation
between any two points on the plane represents some linear combi-
nation of the vectors.
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Three vectors that are not parallel to the same plane are said to be a
basis of space.

The vectors in a basis of space are called basis vectors.

To express a vector relative to a basis is to write it as a sum of multiples
of the basis vectors.

The coefficients in front of the basis vectors in an expression of a vector
relative to a basis are called the coordinates of the vector relative
to the basis.

A basis is orthonormal if the basis vectors are of unit length and mutu-
ally perpendicular.

The 3 x 1 matrix with entries equal to the coordinates of a vector relative
to an orthonormal basis is called the matriz representation of the
vector relative to the basis.

An orthonormal basis is said to be right-handed if the cross product of
the first two vectors equals the last vector and left-handed other-
wise.

In the MAMBO toolbox, the global variable GlobalTriadDeclarations
contains the names of all declared right-handed, orthonormal bases.

In the MAMBO toolbox, the procedure DeclareTriads appends Global-
TriadDeclarations with any number of basis labels.

In the MAMBO toolbox, the procedure MakeTranslations is used to
define an arbitrary vector.

In the MAMBO toolbox, the procedure NullVector is used to define the
zero vector.

In the MAMBO toolbox, the procedure &** is used to compute a multi-
plication of a vector with a scalar.

In the MAMBO toolbox, the procedure VectorLength is used to compute
the length of a vector.

In the MAMBO toolbox, the procedure &++ is used to compute the sum
of two vectors.

In the MAMBO toolbox, the procedure &—— is used to compute the
difference between two vectors.

In the MAMBO toolbox, the procedure &oo is used to compute the vector
dot product.

In the MAMBO toolbox, the procedure &xx is used to compute the vector
cross product.



Chapter 4

Positions

wherein the reader learns of:

e Using position vectors to describe the position of a rigid body or
observer relative to another observer;

e Using configuration coordinates to describe time-dependent posi-
tions;

e Configuration constraints and their implications on the allowable
configurations of a mechanism;

o Animation of a multibody mechanism.

2,3] W2



Practicum

As you complete this chapter, you
will be able to generate a compli-
cated multibody mechanism within
the MAMBO application and to view
the effects of changes in geometric
parameters or configuration coordi-
nates. Take advantage of the op-
portunities offered through MAMBO
to visualize the significance of con-
straints and singularities.

Try examining the number of de-
grees of freedom of everyday mech-
anisms in your surroundings. At-
tempt to introduce configuration co-
ordinates and formulate constraints
that correspond to limitations on
the allowable configurations of your
mechanisms.
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4.1 Review

4.1.1 Reference Points

Recall the following observations from Chapter 1:

e The configuration of a rigid body relative to a reference configura-
tion is uniquely described through a combination of a pure transla-
tion and a pure rotation, given the selection of a specific point on
the body that is kept fixed by the pure rotation;

e The pure translation is given by a shift of all points on the body
from the reference configuration to an intermediate configuration, in
such a way that the selected point coincides with the corresponding
point in the final configuration;

e The magnitude of the translation is the distance between the cor-
responding points in the reference and final configurations, respec-
tively. The direction of the translation is given by the straight line
through the two points.

Illustration 4.1

The relative configuration of two observers A and B may be represented
by the configuration of the virtual block corresponding to A relative to
the reference configuration corresponding to B.

The position and orientation of the virtual block relative to the ref-
erence configuration can be uniquely described through a combination of
a pure translation and a pure rotation given the selection of a specific
point on the virtual block that is kept fixed by the pure rotation.
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‘e = ="

The pure translation is given by a shift of all points on the virtual
block from the reference configuration of B to an intermediate configura-
tion, in such a way that the selected point coincides with the correspond-
ing point in the reference configuration of A.

The magnitude of the translation is the distance between the corre-
sponding points in the two reference configurations. The direction of the
translation is given by the straight line through the two points.

The point about which the pure rotation takes place is called the ref-
erence point of the rigid body or of the observer. The reference point is
a point fixed on the rigid body or fixed relative to the reference configu-
ration of the observer.

There is no preferred choice of point to qualify as the
reference point of a given rigid body or observer.

When describing the configuration of rigid bodies, it is common to
choose points that correspond to some geometrical feature. For example,
a natural choice of reference point of a sphere is at the sphere’s center.
In the case of a rectangular block, we may select the geometric center or
any of the eight corners. In the absence of geometrical features, such as
corners or symmetries, to base the selection of reference point on, any
point will do.

If two observers A and B share the same reference point, then the
configuration of B relative to A is described through a pure rotation
R 4_.5 but no translation. In other words,

Ty_p=L
Conversely, if
Ta-s=1

then the reference points of the two observers A and B coincide.
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AemA—am

Similarly, if the reference point of a rigid body, say a sphere, coincides
with the reference point of an observer A, then the rigid body’s config-
uration relative to A is described through a pure rotation R 4, but no
translation. In other words,

Ty=1

Illustration 4.2
Suppose the configuration of an observer B relative to an observer A is
given by a non-trivial pure translation, but no rotation, i.e.,

Tas#LRy_5=1

Then, the reference points of A and B do not coincide. The pure transla-
tion T 4_. 5 contains the information necessary to shift the position of all
points of the reference configuration of A so that they coincide with the
corresponding points of the reference configuration of B. The translation
T 4_.5 is uniquely determined by the location of the reference points of

A and B.

4.1.2 Translations

If the reference points of two observers A and B are denoted by A and
B, respectively, then the pure translation T 4.5 is uniquely determined
by the separation AB. In fact, the translation corresponds to a shift of
all points by a distance given by the length of AB and in a direction
parallel to and with the same heading as AB. The separation ]TP; from
the initial location P, of some arbitrary point to its final location P; after
the application of the pure translation:

e Has the same length as E;

4.1 Review
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e [s parallel to A_B);

e Has the same heading as AB.

It follows that P, Py is equivalent to A—B)7 ie., P.Pr ~ AB. Clearly, the
pure translation T 4_,5 generates infinitely many separations P, Py, each
of which is equivalent to AB. In the previous chapter, we concluded
that the pure translation corresponds to the collection of all separations

equivalent to @, i.e., the position vector r48 = [@}

In the previous chapter, we developed algebraic operations on po-
sition vectors that corresponded to the operations on pure translations
introduced in Chapter 2. For example, the correspondences

vie T, vy < To
imply that
avy + Bvy < Ty 0aTy,

where o and (3 are any real numbers. We also introduced two vector
products, namely the dot product e and the cross product x, with which
we can detect when two pure translations are perpendicular or parallel,
respectively.

The vector formalism reduces to straightforward matrix algebra when
all vectors are expressed relative to right-handed, orthonormal bases. If
a= ( a; a; ag ) is a right-handed, orthonormal basis, and if “v and
%w are the matrix representations of two vectors v and w relative to a,
then

av = afa )
a(a v),
viw = a%taw
a(“v+w),
vew = ()" %
= ("w)" v,

and

VXW= v
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4.2 Examples (Ex. 4.1 -

Ex. 4.14)
In all the examples below, all vectors will be expressed relative to a

common, right-handed, orthonormal basis
w = ( W1 W2 W3 )

In Chapter 6, we will allow for multiple right-handed, orthonormal bases,
but will have to forego that pleasure until we have developed the mathe-

matics needed to convert between matrix representations relative to dif-
ferent bases.

4.2.1 A Still Life

Suppose you want to describe the geometry of a wireframe representation
of a rectangular block, as depicted below.

The wireframe structure can be decomposed into 12 rigid edges, four
of which are parallel to the w; basis vector, four of which are parallel to
the wo basis vector, and four of which are parallel to the w3 basis vector.
The edges will be labeled by pairs of integers [i, j], corresponding to the
j-th edge parallel to the i-th basis vector of w as indicated in the figure.

[1,1] 2,1]
\- L 2 2]'/
[1,2] ’
o> o [372]
3.4 —% “se(2,4]
Wi [1,4] ,
[2 3}/ W2 W1 [,3]
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Introduce a main observer W with reference point W at the center of
the block and let the reference point Ej; j of the [i, 7]-th edge correspond
to the geometric center of the edge.

The configuration of the [i, j]-th edge relative to W is then given by
a pure translation TY; ;; corresponding to the position vector

rWE.q
Specifically, we find
0 0
rWELy = g l2/2 , rWEnL2 = g 12/2 )
13/2 _13/2
0 0
tVELs =w [ /2 |, tWEia =w | —1y/2 |,
—l3/2 l3/2
11/2 ll/2
rWEeR = 0 , rWEe2 = g 0 ,
l3/2 —l3/2
—11/2 —11/2
rWERz3 = 0 , rWERza = 0 ,
—l3/2 l3/2
l1/2 ll/2
W = | 12 |, Wl =w [ —1y/2 |,
0 0
—1y/2 —11/2
tWEss =w [ —ly/2 |, andr"EBa =w | Iy/2
0 0

Illustration 4.3
Suppose you want to describe the geometry of the arrangement of spheres
shown below.

The spheres in the bottom layer are resting on a plane parallel to the
wi and wo basis vectors and ws points away from this plane toward the
upper sphere.



Introduce a main observer W with reference point W at the center
of the upper sphere and let the reference point S; of the i-th sphere
correspond to its geometric center. Then, the configuration of the i-th

sphere relative to W is given by a pure translation T; corresponding to
the position vector

WS
Specifically,
R R
Vo= R eV —w | —R |,
—h —h
-R —-R
B —w| —R |, W =w R ,and 'V = 0,
—h —h

where R is the radius of the spheres and h is the height of the center of
the upper sphere above the centers of the spheres in the bottom layer.
The height A can be related to the radius R by requiring that

[l = o = e = ] = 2R,
This is equivalent to the equation

V2R? + 12 = 2R,

which implies that

h = V2R.

In the case of a time-independent configuration of a rigid body, there
is no immediate need to introduce auxiliary observers, although it may
at times be convenient.

4.2 Examples

157



158

4 Positions

4.2.2 The Single Moving Rigid Body

When time-dependent changes take place in the configuration of a rigid
body relative to the main observer, the recommended methodology re-
quires the introduction of at least one auxiliary observer between the rigid
body and the main observer. Specifically, the auxiliary observer is intro-
duced in such a way that the rigid body remains stationary relative to
the auxiliary observer, while the motion of the auxiliary observer relative
to the main observer contains the entire time-dependence.

Suppose, for example, that you want to describe the geometry of a
single, freely moving rigid body. Introduce a main observer W with
reference point W somewhere in space. Introduce an auxiliary observer
A, relative to which the rigid body is stationary and with reference point
A coinciding with some arbitrary point on the rigid body.

»

Lomm o
S

Assume for simplicity that the orientation of the rigid body relative
to W is described by the identity rotation. Then the configuration of
the observer A relative to W is given by the pure translation Tyy_, 4
corresponding to the position vector

I‘WA.

Since the rigid body’s position is unrestricted, we can write

where ¢1, g2, and q3 are time-dependent quantities that uniquely specify
the matrix representation of the position vector relative to the w basis.
These quantities are called configuration coordinates, since they provide
information about the configuration of the rigid body relative to the main
observer as a function of time.

The configuration coordinates q1, g2, and g3 are the coordinates of the
vector r4 relative to the w basis. In fact, given a coordinate system
with origin at W and axes parallel to the basis vectors wi, wo, and ws,
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the configuration coordinates are the Cartesian coordinates of the point ‘@
A with respect to this coordinate system.

We may express this observation by the notation

q
WA= q2

g3

where the left-hand side denotes the coordinate representation of the point @
A relative to the observer WW.

Illustration 4.4
Consider the quantities §;, o, and ¢z introduced in the figure below.

4 ®
::q?) q1
) WA= q2
q3

It follows that

q1 = 1 COS G2,

G2 = q15in¢qa,

and
g3 = q3-
Consequently, the position vector r'V'4 can be written as
q1 €08 G2
! q1 Sin g

q3
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Similarly,
1 COS G2
WA= qising
3
The new configuration coordinates §;, ¢z, and §3 that have replaced ¢,
q2, and g3 are known as the polar coordinates of the point A with respect

to the coordinate system with origin at W and axes parallel to the basis
vectors wy, wa, and ws.

The example in the illustration represented the configuration of the
rigid body relative to W using an alternative set of three configuration
coordinates. But what is the significance of the number three? Is it
possible to use more than three configuration coordinates to describe
the configuration of the rigid body relative to W? Is it possible to use
fewer than three?

Consider the vector

q1 COS G2
VA = w q1Sin g3
4

Here, four configuration coordinates ¢i, ¢2, 3, and ¢4 are used to rep-
resent the vector relative to the w basis. How are these related to the
Cartesian coordinates introduced above? By identifying the coordinates
of the vector r'4, we find

G1cosqa = qu,
q18in g3 = qa,
and

q4 = g3,
which implies that

ql =S,

~ q1

(o = arccos —,
s

- )

Q3 = arcsin —,
s

and

q4 = @3,

where s is an arbitrary number, such that s > |q1|, |g2|. It follows that
every choice of values for the coordinates ¢qi, g2, and g3 corresponds to
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infinitely many choices of values for the coordinates ¢i, G2, 3, and §,. We
say that the configuration coordinates ¢i, ¢o, ¢3, and gy are a redundant ‘@:
set.

Illustration 4.5
If we were to assert that

0
r=w| a+d@ |,

43— Ga

we would effectively be constraining the rigid body’s position, such that
the reference point A would lie in the plane spanned by ws and wgs
through W. If our aim was to describe an entirely free rigid body, this
formulation would be erroneous. The variables ¢y, ¢2, ¢3, and ¢4 are an
insufficient set of configuration coordinates.

Now, consider using only two variables ¢; and ¢, to describe the po-
sition vector r"'4, such that

aiqi + azqz
WA =w | a3 +asde |,
asqi + asq2

for some constants aq, as, as, a4, as, and ag. This implies that

q1 = a1q1 + a2,
G2 = a3q1 + a4qa,

g3 = asq1 + agqo,

where q1, g2, and ¢3 are the Cartesian coordinates from above. This is a
system of three equations in two unknowns (¢; and ¢2) and can only be
solved if the third equation is linearly dependent on the first two. Since
this is not generally the case, the two variables ¢; and ¢ cannot be used
to describe a general configuration of the rigid body relative to W.
The smallest number of configuration coordinates required to com-
pletely describe all possible positions of the rigid body relative to W is
three! We say that the rigid body, in the absence of rotation, has ‘@
three geometric degrees of freedom.

4.2.3 Constraints

When the position of a rigid body can be described by fewer than three
configuration coordinates, the rigid body’s configuration is said to be
constrained. In the absence of rotation, a constrained rigid body has @
fewer than three geometric degrees of freedom.

161



162

4 Positions

Suppose you want to describe the motion of a puck sliding on an ice
hockey rink.

Here, the plane of the ice is parallel to the vectors wy; and ws. The
vector wg points away from the ice in the direction of the center of the
puck. Following the corresponding example in Chapter 2, we introduce
a main observer W, relative to which the ice hockey rink is stationary
and with reference point W at the center of the rink. Since the puck’s
position relative to VW will change with time, we introduce an auxiliary
observer A, relative to which the puck is stationary and with reference
point A at the center of the puck.

The configuration of the puck relative to the observer A is described
by the identity translation and the identity rotation. The configuration
of A relative to W, on the other hand, is described by a pure translation
Tyy_, 4 corresponding to the position vector

VA,
Since the puck is restricted to positions on the ice, we conclude that

q q1
WAh=w| @ | WA= ¢ |,

h h

2

=

2
where h is the height of the puck. It follows that the puck has only two
geometric degrees of freedom. The restriction on the puck’s position is a
constraint on the puck’s configuration.
In the absence of the constraint on the puck’s configuration, the pure

translation Ty _ 4 could be described by the position vector

T

r =w (52 3

g3
where ¢1, g2, and s are the Cartesian coordinates introduced above. A
quick comparison between the two expressions for r4 shows that the



constrained mechanism is obtained from the unconstrained mechanism
by requiring that
. h
q3 = 5
This equation in the configuration coordinate is called a configuration
constraint.

Illustration 4.6
Suppose you want to describe the motion of a bead sliding on the surface
of a sphere.

W3
TN

Introduce a main observer W with reference point W at the center
of the sphere. Since the bead’s position relative to W will change with
time, we introduce an auxiliary observer A, relative to which the bead
is stationary and with reference point A at the center of the bead. (The
observer A is different from the observer A introduced in Chapter 2.)

The configuration of the observer A relative to W is then given by a
pure translation Ty _, 4 corresponding to the position vector

I‘WA .

Using spherical coordinates, the position vector may be written as

Rsin g1 cos qo Rsin g cos ¢
A =w /| Rsingsing or YA=| Rsingsing |,
Rcosqq Rcosqq

where R is the radius of the sphere. It follows that the bead has only two
geometric degrees of freedom. The restriction on the bead’s position is a
constraint on the bead’s configuration.

Alternatively, we may use Cartesian coordinates to describe the posi-
tion vector r'V4:

Q@

q3

4.2 Examples

£

V=e
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The constraint on the bead’s configuration, however, implies that the
length of this vector must equal the radius of the sphere, i.e.,

[e4) = 3+ B+ @ = R

The only allowable values for the configuration coordinates ¢, ¢z, and g3
are those that satisfy this configuration constraint.

4.2.4 The Implicit Function Theorem

The configuration constraint on the configuration coordinates i, g2, and
q3 in the previous illustration

VE+G =R

can be solved for ¢3 in terms of ¢; and §o:

s = +£\/R? — G% — G3,

where the plus or minus sign reflects whether the bead is on the upper
or lower hemisphere, respectively.

The constraint equation is satisfied for ¢ = ¢ = 0 and G3 = R.
Now, consider arbitrary values of §; and ¢z near 0. Then, there exists a
unique value for ¢3 near R that satisfies the constraint equation. We may
comfortably argue that §s near R is a function' of §; and g, near 0.

The constraint equation is also satisfied for ¢ = R and ¢ = g3 = 0.
Now, consider arbitrary values of ¢; near R and g near 0. In contrast to
the previous case, it is not always possible to find a value for §s near 0
that satisfies the constraint equation. Clearly, if

@+ > R,

then the quantity under the radical is negative and no real solution of
the constraint equation exists for ¢z. If, instead,

@i+ =R
Gs = 0 is a unique solution to the constraint equation. Finally, if
@i+ &% <R,

there are two possible values for gs near 0 that satisfy the constraint
equation.

TRecall that a function must be single-valued. The = in front of the square root is
of concern in this respect. That the value of g3 near R is unique guarantees that the
function is single-valued.
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While it is theoretically possible to eliminate ¢3 from the expression
for the position vector r'V4 when ¢;,§; ~ 0 and §3 ~ R, this is not
possible for §; &~ R and ¢2,¢3 =~ 0. This observation is consistent with
the predictions of the implicit function theorem. ‘@

Theorem: Let f be a function of n real configuration coor-
dinates and let

@1 =G1,0,92 = G2,05--- » and gn = ¢n 0
be a solution to the constraint equation
f(QMQQa N aqn) =0.

Consider q; = 1,05+ s Gi—1 = Gi—1,0, Git1 = ¢iy1,05--+ sqn =
@n,0- Then, if

of
aql (‘J1,07Q2,07 oo 7Qn,0) 7& 07

there exists a unique value for ¢; ~ g¢;o that satisfies the
constraint equation.

If

of
, yeueyQno) =0,
dg; (Q1,0 42,0, q ,0)

the choice of values

q1 = 41,0,92 = 42,05 - - and g, = qn,0
is said to be singular relative to q;. Otherwise the choice of values is said ‘@

to be regular relative to g;.

Illustration 4.7
In the case of the bead,

f(@1,02,G3) =+\/@G + 3 + @ — R.

o &

04 /T + @+ @

It follows that

and thus

of
—. (0,0,R) =1,
aqg( )
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whereas

0

—f (R,0,0) =0.

9gs
In the former case, the implicit function theorem guarantees that ¢s can
be eliminated in terms of ¢; and ¢2, whereas no such guarantee is offered
in the second case. This agrees with the observations made above.

Even though it is not possible to express g3 near 0 as a function of
¢1 near R and ¢ near 0, the implicit function theorem shows that it is
possible to express ¢; near R as a function of ¢» and ¢z near 0. In fact,

of

— (R,0,0)=1#0.

90 ( )=1#
Thus, while g1 = R, ¢2 = ¢3 = 0 is singular relative to ¢s, it is regular
relative to ¢;. The result of Exercise 4.10 shows that all choices of values

for the configuration coordinates ¢i, 2, and ¢z are regular relative to at
least one of the configuration coordinates.

The terminology and methodology introduced here carries over to the
case of multiple constraints.
Theorem: Let f1, fa,..., fm be m functions of n > m real
configuration coordinates and let
q1 = 4q1,0,92 = 42,05 -+ and ¢, = gn0

be a solution to the constraint equations

fl (Q1>Q27-~- 7qn) :O7
f2 (q17q27'~- 7qn> =0

fm (91;(1%--- Qn) =0.

Consider m+1 =~ Gm+1,05- -+ y4n = qn0- Thenv if
9fH ... BN
Oq1 Oqm
. (Q1,07 42,0y - - 7Qn,0) 7& 07
Ofm ... Ofm
9q1 Oqm
there exists a unique choice of values for ¢ ~ g1,0,... ,qm =

@m0 that satisfies the constraint equations.



4.2 Examples

Illustration 4.8

Suppose you want to describe the motion of a bead that is restricted to
move on the intersection between the surfaces of two spheres, such that
the separation m from the center of the first sphere to the center of
the second sphere is contained in the position vector

%2 = g

o ol

where R is the spheres’ radius.

Introduce a main observer W with reference point W at the center of
the first sphere, i.e., such that

3R

2
VS =0 and £ = w 0
0

Let A be an auxiliary observer, relative to which the bead is stationary,
and with reference point A at the center of the bead. In the absence of
the constraint on the bead’s motion, the configuration of A relative to W
is described by the pure translation Ty _. 4 corresponding to the position
vector

The requirement that the bead lies on the intersection between the spher-
ical surfaces implies that

e A = [ = R

But, since

S1A WA and pSeA = pS2W | WA _ WSy | WA

r =T

we find

1 (Q17Q2,Q3)=\/q%—kq%—i-q%—R:O
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and
2 9 2 2 2
f2(q1,q2,93) = /47 — 3Rq +ZR +¢@+¢—R=0.

Since

oh  Of

0qz 0q3 =0

8fr 8fr | 7

Oq2  Ogs

every choice of values for ¢1, ¢, and g3 that satisfies the constraint equa-
tions is singular relative to ¢» and ¢3. In contrast, the choice

3R VTR

= — = - =0
q1 4 » 42 4 » 43

is regular relative to ¢; and g2, since

o o (33 VIR 0)_3ﬁ
on on [\T 71 0= 5 70
dq1  Oqgo
Exercise 4.11 shows that every solution to the constraint equations is reg-
ular relative to ¢; and g2 or ¢; and ¢3. The constrained bead thus only
has a single geometric degree of freedom.

4.2.5 Notation and Terminology

A variable that is used to describe the configuration of a rigid body
is called a configuration coordinate. 1 consistently use the symbol ¢ to
denote configuration coordinates. To distinguish between different con-
figuration coordinates, I use various subscripts and embellishments, such
as ¢ Or gpa- When modeling your mechanism of choice, you may prefer
to pick symbols that better reflect the physical or geometric meaning of
a configuration coordinate. Instead of g3, elbowangle may be a preferred
name for a variable that controls the angle between the upper and lower
arm of a human. It is never an easy task to name variables. The ¢
notation offers simplicity and lucidity.

The smallest number of configuration coordinates needed to describe
the configuration of a rigid body is the number of geometric degrees of
freedom of the rigid body. When the number of configuration coordinates
equals the number of geometric degrees of freedom, the configuration co-
ordinates are commonly called generalized coordinates. The latter termi-
nology fails to convey information about what the coordinates are used
to describe. Moreover, it is often advantageous to retain more configu-
ration coordinates than the number of degrees of freedom, making the
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term “generalized coordinates” describe the exception rather than the
rule. For these reasons, I consistently refer to variables used to describe
the configuration of a rigid body as configuration coordinates.
Any condition on the configuration coordinates that can be formulated
as an equation is an example of a configuration constraint. Thus, ,@

q1singz —q3 =0
is a configuration constraint, while

q1g2 > 0

is not. Values of the configuration coordinates that satisfy all configura-

tion constraints are said to correspond to allowable configurations. @
For most naturally occurring configuration constraints, it is theoreti-

cally possible to solve the configuration constraints for some of the con-

figuration coordinates in terms of the others. It follows that, typically,

the imposition of configuration constraints reduces the number of re-

quired configuration coordinates, i.e., the number of geometric degrees of

freedom. That it is theoretically possible to solve the configuration con-

straints does not imply that it is always practical, desirable, or necessary.
The notation

WA

was introduced in the previous section for the coordinate representation
of the point A relative to the observer W. Specifically,

WA d;f w (I'WA) ,
where W and w are the reference point and right-handed, orthonormal
basis associated with W.

Now, let A and B be two points on a rigid body whose position is
free to change but whose orientation is constant relative to WW. It follows
that the position vector r48 is constant while r'V'4 and 'V 2 both change
with time. In fact,

PWB — WA | AB

ie.,
WB: WA+ w(rAB).

It follows that if three configuration coordinates suffice to describe the
position of a point A on the rigid body relative to W, then they also
suffice to describe the position of any arbitrary point B on the rigid body
relative to W.
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4.2.6 Multiple Moving Rigid Bodies

In the absence of any rotations, a mechanism consisting of two freely
moving rigid bodies has six geometric degrees of freedom, since each of
the rigid bodies has three geometric degrees of freedom. If fewer than
six configuration coordinates suffice to describe the positions of the two
rigid bodies, then the mechanism’s configuration is constrained.

Suppose you want to describe the motion of a double pendulum — two
small beads connected through an inextensible string and with one of the
beads suspended from a stationary supporting plane through another
inextensible string.

/I~ W2
wl |

w3

\

A

Here, the supporting plane is parallel to the w; and wo vectors, with
w3 pointing away from the plane in the direction of the beads. Introduce
a main observer W, relative to which the support is stationary and with
reference point W at the point where the pendulum is attached. Since the
positions of the beads relative to W change with time, introduce two aux-
iliary observers A; and As, relative to which the upper and lower beads,
respectively, are stationary, and such that the reference points A; and As
coincide with the centers of the upper and lower beads, respectively.

We shall disregard any changes in orientation of the beads relative to
W during the motion. The configuration of the observer A; relative to
W is then described by a pure translation Tyy_, 4, corresponding to the
position vector

VAL

Since the strings are inextensible, the upper bead’s position is constrained
to the surface of a sphere centered on W with radius equal to the length
[y of the upper string. Using spherical coordinates, it follows that

l1 sin g1 cos g2
l1 sin ¢ sin g2
l1 cosqq
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The configuration of the observer As relative to A; is described by a
pure translation T 4, 4, corresponding to the position vector

rAlAZ .

Since the strings are inextensible, the lower bead’s position is constrained
to the surface of a sphere centered on A;, with radius equal to the length
Iy of the lower string. Using spherical coordinates, we may write

I sin g3 cos g4
r142 — g | Iysingssing
l5 cos g3

It follows that the configuration of the observer As relative to W is
described by a pure translation Tyy_, 4, corresponding to the position
vector

WAz WAL A,

l1 sin g1 cos g2 + lo sin g3 cos qq4
w | [ysingq sings + I sin g3 sin gy
ly cos q1 + Iy cos g3

We conclude that, in the absence of rotation, the double pendulum has
four geometric degrees of freedom.

Illustration 4.9

In terms of Cartesian coordinates, the position vectors r'V41 and r'VA42

are
Q1 da
VY —w ! G | ande" M =w | G
q3 ds

The constraint on the upper bead implies that
[l ] =,

ie.,

fl ((11762743364765,66) = \/ Cj% +Q% +97§ - ll =0.

Similarly, the constraint on the lower bead implies that

e =

ie.,

~ o~~~ o~ ~ ~ ~ \2 ~ ~ \2 ~ ~ \2
fQ(QIaQ2aQSaQ4vq57Q6):\/(CI4*Q1) + (G5 — @2)" + (6 — 43)” — 12 =0,
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since
pArde _ AW L WA WAL WAy
Since
9h  Of
664 666 — 0
Ofs  0f
04s  Ods
for all choices of values of ¢,...,{s, every solution to the constraint

equations is singular relative to ¢, and gg. On the other hand,

of1 of1 o o
‘ on 0 i_w

dfs Of2 | [

9q1 G2 hiz

which differs from 0 as long as ¢G4 — 1G5 # 0. When this is the case,
the configuration coordinates ¢; and ¢> may be eliminated from the de-
scription of the configuration of the double pendulum and replaced by a
function of the remaining configuration coordinates. Again, we conclude
that, in the absence of rotation, the double pendulum has four geometric
degrees of freedom.

4.3 MAMBO

The relative position of two observers can be uniquely described through
a pure translation, given the selection of a reference point for each of
the observers. If the observer A has the reference point A and the ob-
server BB has the reference point B, then the position vector r4” uniquely
describes the pure translation T 4,5 between A and B. Given a right-
handed, orthonormal basis w, the position vector r*® may be uniquely
represented by its matrix representation relative to w,

w (I‘AB) )

4.3.1 A Still Life

In a MAMBO geometry description, the specification of a position vector
between the reference points of successive observers is given through a
POINT statement containing the matrix representation of the vector
relative to some right-handed, orthonormal basis. In the absence of ad-
ditional information, MAMBO assumes that all references to the matrix
representation of a vector are made relative to a common right-handed,
orthonormal basis, say w.
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Illustration 4.10

The following extract from a MAMBO .geo file shows the use of the
POINT statement to describe the relative position of successive ob-
Servers:

MODULE W {
BODY A {
POINT {1,2,3}
BODY B {
POINT {0,0,1}
}

}
}

Here, the position of the observer A relative to the observer W is
given by a pure translation Tyy_, 4 corresponding to the position vector

where A and W are the reference points of A and W, respectively.
Similarly, the position of the observer B relative to the observer A is
given by a pure translation T 4.5 corresponding to the position vector

where B is the reference point of B.

By default, MAMBO interprets the absence of a POINT statement
to be equivalent to the specification

POINT {0,0,0}

i.e., that the reference point of the current observer coincides with that
of the parent observer.

The position of a rigid body relative to some observer can be uniquely
described through a pure translation, given the selection of a reference
point for the rigid body and a reference point for the observer. If the
observer A has the reference point A and the point B is the reference
point of the rigid body, then the position vector r4® uniquely describes
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the pure translation T 4 between A and the rigid body. Given a right-
handed, orthonormal basis w, the position vector r4# may be uniquely
represented by its matrix representation relative to w,

w (I’AB) .

Ilustration 4.11

We may use the POINT statement to describe the position vector be-
tween the reference point of an observer and the reference point of a rigid
body.

MODULE W {
BODY A {
POINT {1,2,3}
BODY B {
POINT {0,0,1}
CYLINDER {
POINT {0,1,0}

}

SPHERE {
POINT {-1,0,2}

}

Here, the position of the sphere relative to the observer A is given by
a pure translation T 4 corresponding to the position vector

where S is the reference point of the sphere (assumed by MAMBO to be
at the center of the sphere).

Similarly, the position of the cylinder relative to the observer B is
given by a pure translation T corresponding to the position vector

BC _

where C'is the reference point of the cylinder (assumed by MAMBO to be
at the center of the cylinder).
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The tree structure corresponding to the geometry description in the
last illustration has the following form:

Sphere

AN

Cylinder

We could represent the same arrangement of rigid bodies relative to
the W observer by relating the configuration of the sphere to the B ob-
server.

s —3

Sphere Cylinder

The corresponding MAMBO geometry description becomes

MODULE W {
BODY A {

POINT {1,2,3}

BODY B {
POINT {0,0,1}
CYLINDER {

POINT {0,1,0}

}

SPHERE {
POINT {-1,0,1}
t

}
}
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Here, the POINT statement relating the pure translation between the
B observer and the sphere is obtained from the following computation:

pBS _ pBA L AS _ | AB | AS
0 -1 -1
= —w| O +w 0 =w 0
1 2 1
The B observer may be entirely eliminated from the observer tree
structure.
w
A
Sphere Cylinder

The corresponding MAMBO geometry description becomes

MODULE W {
BODY A {
POINT {1,2,3}
CYLINDER {
POINT {0,1,1}
}

SPHERE {
POINT {-1,0,2}
}

}
}

Here, the POINT statement relating the pure translation between the
A observer and the cylinder is obtained from the following computation:

pAC  _ pAB | BC
0 0 0
= w| 0 |4+w]| 1 =w| 1
1 0 1

Any real number in the MAMBO geometry description may be replaced
by a string of characters. For example, the POINT statement

POINT {pl,p2,p3}
uses the three labels p1, p2, and p3 in place of numbers. The statement

parameters pl,p2,p3;



in a MAMBO motion description (a MAMBO .dyn file) establishes p1, p2,
and p3 as MAMBO parameters, quantities that can be changed interac-
tively within the MAMBO application, but that do not change during an
animation.

4.3.2 Dabbling with Motion

The POINT statements in the examples above all contained real num-
bers. Every such real number could be replaced by a mathematical ex-
pression that would evaluate to a real number. Thus, for example,

POINT {cos(.5)*cos(.5),sin(.5)*sin(.5),0}

is a syntactically correct statement. In addition to using real numbers or
parameters inside such mathematical expressions, it is possible to include
a variable corresponding to time in a MAMBO animation. The label
selected to represent time is specified in a MAMBO .dyn file through the
statement

time NAME;
where NAME represents the label. Thus, including the statement
time t;

at the top of the MAMBO .dyn file allows you to include the variable name
t anywhere in the geometry description.

Illustration 4.12
In the MAMBO geometry description below, the variable t is used to rep-
resent the internal time variable of a MAMBO animation.

MODULE W {
BODY A {
POINT {cos(t),2-t,3}
BODY B {
POINT {0,t+3,1}
CYLINDER {
POINT {0,1,0}

}
SPHERE {

POINT {exp(-t),0,2}
}

}
t

4.3 MAMBO
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From this geometry description, it follows that the position vector cor-
responding to the pure translation from the ¥V observer to the sphere is

given by
WS WA AS
cost et cost 4 et
= w| 2—-1t +w 0 =w 2—1
3 2 5

Similarly, the position vector corresponding to the pure translation from
the W observer to the cylinder is given by

WO pWA L AB | (BC
cost 0 0
= w| 2—t 4w | t+3 4w | 1
3 1 0
cost
= w 6
4

Importing the corresponding .dyn and .geo files into the MAMBO appli-
cation, running a simulation, and subsequently animating the computed
dataset shows the motions of the sphere and the cylinder relative to the
W observer as functions of time.

MAMBO’s internal time variable may also be used to generate the im-
pression of a panning motion of a camera viewing a static (or changing)
scene. This is achieved by the introduction of an auxiliary observer repre-
senting the camera immediately under the world observer and containing
the rest of the scene within its corresponding BODY block.

In the following geometry description, the camera observer has been
inserted between the W observer and the rest of the tree structure.

MODULE W {
BODY Camera {
POINT {cos(t),sin(t),0}
BODY A {
POINT {1,2,3}
BODY B {
POINT {0,0,1}
CYLINDER {
POINT {0,1,0}
}



}

SPHERE {
POINT {-1,0,1}

}

¥
¥
}

The explicit time-dependent position vector corresponding to the pure
translation from the W observer to the camera observer results in a mo-
tion of the entire scene relative to the VW observer. To the viewer, the
motion of the scene relative to the screen gives the appearance of a camera
motion about an unchanging scene.

MAMBO parameters were introduced to replace real numbers in a
MAMBO geometry description. These parameters could be changed in-
teractively, but remained unchanged during an animation. To replace
functional expressions involving MAMBO parameters, real numbers, and
the MAMBO time variable, we can introduce MAMBO animated variables.
For example, we may replace the statement

POINT {cos(t)*pl,p2*t,0}

in a MAMBO geometry description by the statement

POINT {al,a2,0}

where a1l and a2 have been introduced to replace the expressions cos (t) *

pl and p2*t, respectively. The explicit nature of the animated variables
al and a2 is specified in the corresponding MAMBO motion description

time t;
parameters pl,p2;
anims {
al = cos(t)*pl;
a2 = p2xt;

Animated variables cannot be changed interactively and are only
meant to simplify the textual complexity of the MAMBO .geo file.

4.3.3 Multibody Mechanisms

MAMBO parameters represent quantities that can be changed interac-
tively in the application but that do not change with time. It is also
possible to introduce quantities that can be changed interactively in the
application and that may change with time. These are called MAMBO
state variables and are introduced in a MAMBO .dyn file through a state-
ment

4.3 MAMBO

Vo
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states namel,name?2;

where namel and name?2 are labels for the state variables.

Illustration 4.13
The MAMBO geometry description

MODULE W {
BODY A {

POINT {ql,q2,q93}

BODY B {
POINT {0,0,1}
CYLINDER {

POINT {0,1,0}

}

}

SPHERE {
POINT {-1,0,1}
}

}
}

together with the statement
states ql1,92,93;

in the corresponding MAMBO .dyn file specifies that the pure translation
relating the configuration of the A observer to the W observer corre-
sponds to the position vector

q1
r =w q2 ,

q3

where the three state variables can be changed interactively within the
MAMBO application and can change with time during an animation.

MAMBO state variables can be used at any level in a MAMBO geome-
try description. We recommend that the reader avoid MAMBO state vari-
ables in the POINT statements within object blocks. This agrees with
the suggestion that all motion of objects relative to the world observer
be contained in the motion of auxiliary observers relative to the world
observer. The POINT statement of a rigid body relative to its parent
observer will therefore only contain real numbers, MAMBO parameters,
or MAMBO animated variables that are constant.

The time history of a MAMBO state variable can be specified in two
ways. On the one hand, a MAMBO dataset (a MAMBO .sds file) may



be generated containing the values of any MAMBO state variables at dis-
crete moments in time. For example, the MAMBO .geo and .dyn files
corresponding to the above illustration, together with a MAMBO .sds file
with the content shown in the table below, can be used to generate a
motion of the sphere and cylinder objects.

t ql q2 q3

0.0 1.00 0.00 1.00
0.10 0.90 0.05 1.10
0.20 0.80 0.15 1.00
0.30 0.70 0.40 0.90
0.40 0.60 0.70 1.00

More useful for purposes that will become clear in later chapters is
to let the MAMBO state variables change with time according to a set of
differential equations. In particular, we require that there be as many
differential equations as the number of MAMBO state variables. When
this condition is satisfied, the differential equations constitute a set of
kinematic differential equations.

Suppose, for example, that the MAMBO state variables ¢1, q2, and g3
satisfy the following set of kinematic differential equations:

G+ g2 =us (¢),
Qg1 + 43 = uz (1),
qZQ% = us (t) ’

where u; (t), uz (t), and ug (t) are some yet-to-be-specified functions of
time. We can rewrite these equations in matrix form:

110 [ u (1)
@ 0 1 G2 =1 wu2(t)
0 ¢ O 43 u3 (1)

The corresponding MAMBO motion description would then include the
statements

states q1,92,93;

time t;

insignals {
ul = 1;
u2 = cos(t);
u3 = 0;

}

ode {
rhs[ql] = ul;
rhs[q2] = u2;
rhs[q3] = u3;

4.3 MAMBO
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mass[q1] [q1] =
mass [q1] [q2] =
mass[ql] [q3] =
mass [q2] [q1] =
mass [q2] [q2] =
mass[q2] [q3] =
mass[q3] [q1] =
mass [q3] [q2] =
mass [gq3] [q3] =

O O, OO0 O~
2 we we we N) e e e
) .o
N

-e

}

Here, uy (t) = 1, uz (t) = cost, and uz(t) = 0 as specified in the
insignals block. The ode block contains information about the co-
efficient matrix (mass) and the right-hand side (rhs) of the kinematic
differential equations. The MAMBO state variables are used to label the
rows and columns of these matrices. Since the order of the equations
is irrelevant, the row indices can be permuted arbitrarily. Moreover, by
default, there is no need to include matrix entries that equal zero. Thus,
an equivalent ode block could read

ode {
rhs[q2] = ul;
rhs[ql] = u2;

rhs([q3] = u3;
mass[q2] [q1] = 1;
mass [g2] [q2] =
mass [q1] [q1] = g2;
mass [q1] [q3] =
mass [q3] [q2]

|
-
..

|
-
..

ql~2;
}

The kinematic differential equations above may be solved for the rates
of change of the MAMBO state variables

¢ 1 1 0\ Ul (t)
G2 | =1 ¢ 0 1 ug (t) |,
ds 0 ¢ 0 ug (t)

provided that the inverse

1 1 0
@ 0 1
0 ¢ 0

exists, i.e., provided that the matrix

1 1 0
1

2 0
0 ¢ 0
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is non-singular. Indeed, the matrix is non-singular as long as its deter- ‘@
minant is non-zero. Here,

1 1 0

@ 0 1|=—q,

0 ¢ 0

which is non-zero as long as ¢1 # 0. We formalize this observation by
stating that the kinematic differential equations are non-singular as long
as ¢1 # 0. Indeed, as long as ¢ (t9) # 0, for some moment in time ¢,
the kinematic differential equations may be solved for ¢; (¢), g2 (t), and
gs (t) on some interval in time containing ¢y. This is achieved by the
MAMBO application through the use of advanced numerical methods for
the approximate solution of the kinematic differential equations.

4.4 The MAMBO Toolbox (Bx. 4.15 -

Ex. 4.16)
4.4.1 Points

Points are represented within the MAMBO toolbox by entries in the global

variables GlobalPointDeclarations and GlobalPointDefinitions. ‘@
Changes to these variables initiated by the user are made possible through

the procedures DeclarePoints and DefinePoints.

Illustration 4.14
In the following MAMBO toolbox session, the points A, B, and C and the
right-handed, orthonormal basis a are declared to the program.

> Restart():
> DeclarePoints(A,B,C):
> DeclareTriads(a):

The statement

> DefinePoints([A,B,a,1,2,0],[B,C,a,0,2,1]1):

establishes the position vectors

1 0
B =gl 2 and ¢ =qa | 2
0 1

The effect of these statements on the global variables GlobalPoint-
Declarations and GlobalPointDefinitions is made clear by the fol-
lowing statements:

> print(GlobalPointDeclarations);
> print(GlobalPointDefinitions);
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table(]
A={B}
B={A, C}
C={B}

I

table(]

(B, A) = table(]

1 = table(|
“Coordinates” = [-1, —2, 0]
“Triad” = a

)

“Size” =1

“Type” = “Vector”

)

(A, B) = table(|

1 = table(|
“Coordinates” = [1, 2, 0]
“Triad” = a

)

“Size” =1

“Type” = “Vector”

)

(C, B) = table([

1 = table(|
“Coordinates” = [0, —2, —1]
“Triad” = a

)

“Size” =1

“Type” = “Vector”

)

(B, C) = table(]

1 = table(|
“Coordinates” = [0, 2, 1]
“Triad” = a

D

“Size” =1

“Type” = “Vector”

)

)
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The contents of the global variables GlobalPointDeclarations and
GlobalPointDefinitions reflect the fact that the relative positions of
the points A and B and the points B and C, respectively, are now known.
While GlobalPointDeclarations tracks all direct relations between
points, GlobalPointDefinitions stores any position vectors between
points in GlobalPointDeclarations that have been computed during a
MAMBO toolbox session.

The MAMBO toolbox procedure FindTranslation can be invoked to ‘@
compute the position vector between any two points that are declared and
are (at worst, indirectly) related. Continuing with the MAMBO toolbox
session in the illustration, we find

> FindTranslation(A,C);

table(]
“Size” =1
“Type” = “Vector”
1 = table(|
“Triad” = a

“Coordinates” = [1, 4, 1]

D

as follows from

pAC  _  pAB | [ BC
1 0 1
= al|l 2 | +al| 2 =al| 4
0 1 1

The global variable GlobalPointDefinitions is automatically appended
with the position vectors rA¢ and r¢4 = —r4¢.

4.4.2 Observers

To associate a point and a right-handed, orthonormal basis with an ob-

server, the MAMBO toolbox employs the DefineObservers procedure. ,@
For example, if A, B, and W are the reference points of three observers

A, B, and W, such that

1 0

Ah=qa| 2 andr*P=a| 0 |,

3 1
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where a is a right-handed, orthonormal basis associated with all three ob-
servers, then the following statements provide the necessary information
to the MAMBO toolbox.

>

V V.V VYVV

Restart():

DeclareObservers(W,A,B):
DeclarePoints(W,A,B):

DeclareTriads(a):
DefinePoints([W,A,a,1,2,3],[A,B,a,0,0,1]):
DefineObservers([W,W,al,[A,A,a],[B,B,al):
print (GlobalObserverDefinitions) ;

table(]
B = table([
“Point” = B
“Triad” = a
I
W = table(|
“Point” = W
“Triad” = a
)
A = table(|
“Point” = A
“Triad” = a

y
y

The MAMBO toolbox procedure FindPosition can be invoked to com-
ﬁ pute the position vector between the reference points of two observers.
Similarly, the FindCoordinates procedure computes the coordinates of
a point relative to an observer. These commands are illustrated in the
following statements:

> FindPosition(W,B);

table(]
“Size” =1
1 = table(|
“Coordinates” = [1, 2, 4]
“Triad” = a
D

“Type” = “Vector”

D
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> FindCoordinates(W,B);
1,2, 4]

We may again use the DefineNeighbors and GeometryOutput com-
mands to generate a MAMBO geometry description using the observers

introduced above. For example, the geometry description obtained from
the commands

> DefineNeighbors([W,A], [A,B]):
> GeometryOutput (main=W) ;

MODULE W {
BODY A {
POINT {1,2,3}
ORIENT {1,0,0,0,1,0,0,0,1}
BODY B {
POINT {0,0,1}
ORIENT {1,0,0,0,1,0,0,0,1}
}
}
}

is identical to that discussed in Hlustration 4.102.

Illustration 4.15

As in the previous chapter, we may reorganize the observers so as to pro-
mote A to be the main observer:

> GeometryOutput (main=A);

MODULE A {
BODY B {
POINT {0,0,1}
ORIENT {1,0,0,0,1,0,0,0,1}
}
BODY W {
POINT {-1,-2,-3}
ORIENT {1,0,0,0,1,0,0,0,1}
}

or

> Undo():
DefineNeighbors([W,B], [A,B]):
> GeometryOutput (main=A) ;

\%

MODULE A {
BODY B {
POINT {0,0,1}
ORIENT {1,0,0,0,1,0,0,0,1}

2We will discuss the ORIENT statement in detail in Chapter 6.
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BODY W {
POINT {-1,-2,-4}
ORIENT {1,0,0,0,1,0,0,0,1}
}
}
}

where we used the Undo utility to undo the latest change in any of the
global variables.

4.4.3 A Sample Project

Suppose you want to visualize the motion of a small spherical bead along
the edges of a wireframe representation of a stationary rectangular block,
as depicted below.

g

As in an earlier section, we decompose the wireframe structure into
12 rigid edges, four of which are parallel to the w; basis vector, four of
which are parallel to the wo basis vector, and four of which are parallel
to the ws basis vector. The edges are labeled by pairs of integers [i, j],
corresponding to the j-th edge parallel to the i-th basis vector of w as
indicated in the figure.
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We introduce a main observer VW with reference point W at the center
of the block and let the reference point E; ;) of the [4, j]-th edge corre-
spond to the geometric center of the edge. The following MAMBO toolbox
statements declare the corresponding labels and define the observer W:

Restart():

DeclareObservers (W) :
DeclarePoints(W,seq(seq(cat(E,i,j),i=1..3),j=1..4)):
DeclareTriads (w):

DefineObservers ([W,W,w]):

vV V.V VYV

The configuration of the [z, j]-th edge relative to W is then given by
a pure translation TY; j; corresponding to the position vector

rWEL,

Specifically, we find

rWEL = 12/2 , T WEp2) — g

I3/2

tWEnRs = 712/2 , rWELa = g

—l3/2

=
51
|
A A A
,T
O~
)
—
I
&
N
S
| Il
g
 ~ — — J— —
o
)

l3/2 —l3/2
—11/2 —11/2
WE23 — ;o tVERa =y 0 ,
—l3/2 l3/2
l1/2 l1/2
WEp. — z2/2 ;oW = | —lp/2 |,
0
—l1/2 _l1/2
rWEss =w | —1/2 |, andr"Fsa =w l2/2
0 0

Continuing with the same MAMBO toolbox session, the MAMBO toolbox
procedure DefinePoints establishes the corresponding position vectors.
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DefinePoints(
[W,E11,w,0,12/2,13/2],[W,E12,w,0,12/2,-13/2],
[W,E13,w,0,-12/2,-13/2], [W,E14,w,0,-12/2,13/2],
[W,E21,w,11/2,0,13/2], [W,E22,w,11/2,0,-13/2],
[W,E23,w,-11/2,0,-13/2], [W,E24,w,-11/2,0,13/2],
[W,E31,w,11/2,12/2,0],[W,E32,w,11/2,-12/2,0],
[W,E33,w,-11/2,-12/2,0], [W,E34,w,-11/2,12/2,0]
)

To visualize the wireframe representation of the rectangular block, we
need to add MAMBO objects to the geometry description. The MAMBO
toolbox procedure DefineObjects associates the desired objects with the
appropriate observer. Here, 12 MAMBO blocks are directly related to the
W observer with reference points given by the EJ; ;’s.

VVVYVVVVYV

DefineObjects(

seq([W, ’Block’,,point=cat(E,1,j) ,xlength=11,
ylength=(11+12+13)/30,zlength=(11+12+13)/30], j=1. .4),
seq([W, ’Block’,point=cat(E,2,j) ,xlength=(11+12+13) /30,
ylength=12,zlength=(11+12+13)/30],j=1..4),

seq([W, ’Block’,point=cat(E,3,j) ,xlength=(11+12+13) /30,
ylength=(11+12+13)/30,zlength=13],j=1..4)):

VVVYVVYVYV

Since the configuration of the spherical bead is taken to be time-
dependent relative to W, we introduce an auxiliary observer A, relative
to which the bead is stationary. In particular, we assume that the ref-
erence point A of A coincides with the center of the bead, and that the
orientation of the bead relative to W is described by the identity rotation.
Then, the configuration of the observer A relative to W is given by the
pure translation Ty _, 4 corresponding to the position vector

where ¢, g2, and g3 are the configuration coordinates describing the
bead’s position relative to VW as a function of time. The MAMBO toolbox
statements

> DeclareObservers(A):

DeclarePoints(A):

DefineObservers([A,A,w]):
DefineNeighbors([W,A]):
DefinePoints([W,A,w,q1,92,93]):
DefineObjects([A, ’Sphere’ ,radius=(11+12+13)/20,
color=red]):

vV VVVYVYV

append these definitions to the current geometry hierarchy. Finally, the
statement

> GeometryOutput(main=W,filename="beadonblock.geo"):

exports the MAMBO geometry description to the file beadonblock.geo.
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Every motion of the bead along the edges of the stationary rectan-
gular block relative to WV is equivalent to some time-dependence of the
configuration coordinates. As suggested in the previous section, there
are three distinct ways to implement this correspondence in the MAMBO
application.

Using MAMBO animated variables

MAMBO animated variables cannot be changed interactively by the user
during a MAMBO session, but may change with time during a simulation.
Thus, to achieve a desired motion, the configuration coordinates could
be declared as animated variables with appropriate definitions for their
time-dependence given within the anims block of the MAMBO motion
description (the MAMBO .dyn file).

Suppose we want to visualize the time-dependence of the configuration
coordinates shown in the figure below.

l_1/\q1
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gL

6
ly A2
2 / \

1/ 2 3 6
b
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t
2
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Specifically, the configuration coordinates are defined piecewise by

4 \5
\4 5

l_3 /\q3
4 5

~L+nt 0<t<l
b 1<t<4
= 2 -
a (t) Lo (t—4) 4<t<5’
_h 5<t



192 4 Positions

—L 0<t<1
Lyl (t-1) 1<t<2
g2 (t) = L 2<t<3 ,
L _l,(t-3) 3<t<4
—L 4<t
and
—L 0<t<2
~Lply(t-2) 2<t<3
g (t) = b 3<t<5
L —l5(t-5) 5<t<6
_ls 6<t

A corresponding MAMBO motion description would be obtained from the
MAMBO toolbox statement

MotionOutput (anims=[ql=(-11/2+11*t)* (t&>=0)* (t&<1)
+(11/2) % (£&>=1) * (£&<4) +(11/2-11* (t-4) ) * (t&>=4) * (£&<5)
+(-11/2) * (£&>=5) ,q2=(-12/2) * ((£&>=0) * (t&<1) + (£&>=4))
+(=12/2+412% (£-1) ) * (£&>=1) * (t&<2) +(12/2) * (t&>=2) * (t&<3)
+(12/2-12% (£-3) ) * (£&>=3) * (t&<4) ,q3=(-13/2) * ((£&<2)
+(£&>=6) ) +(-13/2+13* (£t-2) ) * (t&>=2) * (t&<3) +

(13/2) % (£t&>=3) * (t&<5)+(13/2-13* (t-5) ) * (t&>=5) * (t&<6) ],
parameters=[11=1,12=.5,13=.25],
filename="beadonblock.dyn"):

VVVVVVVYVYV

ﬁ where the output from the MotionOutput procedure has been spooled
directly to the file named beadonblock.dyn. Note the use of the &< and
&>= operators (corresponding to < and >) to generate Boolean expres-
sions whose value is either 1 or 0 depending on whether the condition
within the enclosing parentheses is satisfied or not. A visualization of the
desired motion would now result from loading the geometry and motion
descriptions into MAMBO and running a simulation.

Using MAMBO state variables and a MAMBO dataset

To enable interactive changes to the configuration coordinates within a
MAMBO session, these must be declared as MAMBO state variables. A
corresponding MAMBO motion description would be obtained from the
MAMBO toolbox statement

> MotionOutput (states=[ql=-.5,92=-.25,q3=-.125],
> parameters=[11=1,12=.5,13=.25],
> filename="beadonblock.dyn"):

where the initial values for the configuration coordinates have been spec-
ified to ensure that the bead is initially found on one corner of the block.
A visualization of the desired motion could now be obtained by loading
a MAMBO dataset (a MAMBO .sds file) with the following content:
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11 12 13

1.00 0.50 0.25

t ql q2 q3
0.00 -0.50 -0.25 -0.125
0.06 -0.45 -0.25 -0.125
0.10 -0.40 -0.25 -0.125
0.95 0.45 -0.25 -0.125
1.00 0.50 -0.25 -0.125
1.05 0.50 -0.225 -0.125
1.10 0.50 -0.20 -0.125
1.95 0.50 0.225 -0.125
2.00 0.50 0.25 -0.125
2.05 0.50 0.25 -0.1125
2.10 0.50 0.25 -0.10

Using MAMBO state variables and kinematic differential equa-
tions

We may retain the formulation of the configuration coordinates as MAMBO
state variables while avoiding the need to generate a separate MAMBO
dataset by noting that the derivatives of the configuration coordinates
can be written as ¢; = u;, where

l1 0<t<1
0 1<t<4
w) =93 _j, 4<i<s5
0 5<t
0 0<t<1
Iy 1<t<?2
ug (t) = 0 2<Z<t<3 ,
—ly 3<t<4
0 4 <t
and
0 0<t<?2
I3 2<t<3
us (t) = 0 3<t<5b
—l3 5<t<6

0 6<t
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In this formulation, the w; (t)’s uniquely specify the rate of change of
the configuration coordinates through the nowhere singular kinematic
differential equations

G =u (t),
G2 = uz (t),
43 = us3 (t).

Taken together with specific values for the configuration coordinates at
some initial time, say ¢; (0) = —%, ¢ (0) = —%2, and g3 (0) = —%3, the
three functions wuy (t), us (t), and ug (t) uniquely specify the values of
the configuration coordinates at subsequent times. The functions u; (t),
us (t), and ug (t) serve as input signals to the visualized motion, while
the kinematic differential equations provide the connection between the
inputs and the actual time evolution of the configuration coordinates.

The formulation in terms of a set of kinematic differential equations in
the configuration coordinates and a set of input signals is accommodated
within MAMBO through the inclusion of an insignals and an ode block
in the corresponding motion description, as shown in a previous section.
In particular, the MAMBO toolbox statements

MotionOutput (

ode={qlt=ul,q2t=u2,q3t=u3},
states=[ql=-.5,92=-.25,q3=-.125],
parameters=[11=1,12=.5,13=.25],
insignals=[ul=11*((t&>=0) * (t&<1) - (t&>=4)* (t&<5)),
u2=12% ((t&>=1) * (£&<2) - (t&>=3) * (t&<4)),

u3=13* ((£t&>=2) * (t&<3) - (t&>=5) * (t&<6))],
filename="beadonblock.dyn") :

VVVVVVYVYV

create a file beadonblock.dyn with the following content:

states q1 = -.5,92 = -.25,q3 = -.125;
parameters 11 = 1,12 = .5,13 = .25;
time t;

insignals {
ul = 11x((£>=0)*(£<1)-(t>=4) *(t<5));
u2 = 12x((£>=1)*(£<2) - (t>=3) *(t<4));
u3 = 13*((£>=2)*(£<3) - (t>=5) *(t<6));

ode {
rhs[ql] = ul;
rhs[q2] u2;
rhs[q3] = u3;
mass [q1] [q1]
mass [q2] [g2]
mass [q3] [g3]

nn
= e
O O O

.o
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We may visualize the resultant motion by loading the MAMBO geometry
and motion descriptions and running a simulation.

4.5 Exercises

Exercise 4.1 The position of a bead
is constrained to the surface of a cylinder of
radius R with symmetry axis through the ref-
erence point W of an observer VW and paral-
lel to the w3 basis vector of a right-handed,
orthonormal basis w. Suppose that the coor-
dinate representation of the reference point
of the bead relative to W is expressed using
spherical coordinates. Find the correspond-
ing configuration constraint.

Solution. Let A denote the reference
point of the bead. Then,

q1 Sin gz €os g3
qi18ingzsings |,
g1 COS g2

WA =w WA =w

where q1, g2, and g3 are the spherical coordi-
nates of the point A in the coordinate system
with origin at W and axes parallel to the ba-
sis vectors of w.

Recall from Exercise 3.24 that

WA (I'WA

WA WA

oW3)W3+W3><(r ><W3),

where the first term is parallel to w3 and
the second term is perpendicular to ws. The
constraint on the position of the bead then
implies that

||W3 X (I‘WA X W3)|| = R.

The MAMBO toolbox statements

Restart():

DeclareTriads (w):
w3:=MakeTranslations(w,3):
rWA:=MakeTranslations (w,
ql*sin(q2)*cos(qg3),
ql*sin(qg2) *sin(q3) ,ql*cos(qg2)):
simplify(VectorLength(w3 &xx
(rWA &xx w3))=R);

VVVVVYVVYV

show that the corresponding condition on the
coordinates is

q1sings = R.

Exercise 4.2 The position of a bead
is constrained to the surface of a cone with
opening angle 0, apex at the reference point
W of an observer W, and with symmetry
axis parallel to the basis vector ws of a
right-handed, orthonormal basis w. Sup-
pose that the coordinate representation of
the reference point of the bead relative to
W is expressed using Cartesian coordinates.
Find the corresponding configuration con-
straint.

Solution. Let A denote the reference
point of the bead. Then,

where ¢1, g2, and ¢35 are the Cartesian co-
ordinates of the point A in the coordinate
system with origin at W and axes parallel to
the basis vectors of wi, ws, and ws.

The angle between r'V4 and ws is half
the opening angle. It follows that

0 I‘WA o W3
COS — =

2 WA wsll

The MAMBO toolbox statements

Restart():

DeclareTriads(w):
w3:=MakeTranslations(w,3):
rWA:=MakeTranslations(w,ql,q2,93):
simplify(cos(theta/2)=

(rWA &oo w3)/VectorLength(rWA)
/VectorLength(w3));

VVVVYVYVYV
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show that the corresponding condition on the
coordinates is

g3
cos —

2 JE+d+a

Exercise 4.3 The position of a bead is
constrained to the surface of a sphere of ra-
dius R. Let W be the reference point of an
observer W, such that

R

Ve = 0
0

where S denotes the center of the sphere.
Find the corresponding configuration con-
straint if the coordinate representation of
the reference point of the bead relative to W
is formulated using a) Cartesian, b) polar,
or ¢) spherical coordinates.

Exercise 4.4 A small bead is attached
to the end of a thin rod of length [, which is
suspended from a spherical joint. Show that,
in the absence of rotation, the bead has two
geometric degrees of freedom.

Solution. Let W be an observer with
reference point W at the spherical joint. De-
note by A the reference point of the bead.
Since the rod has constant length, it follows
that

e =2

The position of the bead is constrained to the
surface of a sphere of radius [. From the text,
we recall that the coordinate representation
of A relative to W can be written as

[ sin g1 cos ¢
lsin ¢ sin go
lcosqq

WA:

It follows that no more than two configura-
tion coordinates are necessary to describe the

position of the bead, i.e., the number of ge-
ometric degrees of freedom is < 2. It is not
possible to describe the position using fewer
than two coordinates, i.e., the number of ge-
ometric degrees of freedom is > 2 and the
claim follows.

Exercise 4.5 Suppose that the second
bead on a double pendulum is constrained to
the surface of a sphere of radius R < l; + lo,
where [; and [y are the lengths of the two
pendulum segments. Find the correspond-
ing configuration constraint and the number
of geometric degrees of freedom of the con-
strained mechanism.

Exercise 4.6 Suppose that the second
bead on a double pendulum is constrained to
a specific point on the surface of the sphere
introduced in the previous exercise. Find the
corresponding configuration constraint and
the number of geometric degrees of freedom
of the constrained mechanism.

Exercise 4.7 Suppose that the first
bead on the double pendulum from the previ-
ous exercise is constrained to a plane through
the supporting point and the second bead.
Find the corresponding configuration con-
straint and the number of geometric degrees
of freedom of the constrained mechanism.

Exercise 4.8 Suppose that the beads of
a triple pendulum are constrained to a plane
through the supporting point. Find the cor-
responding configuration constraint and the
number of geometric degrees of freedom of
the constrained mechanism.

Exercise 4.9 Suppose that the third
bead on the triple pendulum from the pre-
vious exercise is constrained to a specific
point on the plane. Find the corresponding
configuration constraint and the number of
geometric degrees of freedom.



Exercise 4.10
tion constraint

Consider the configura-

i + ¢ + a3 = R

Show that any choice of values that satisfies
this constraint is regular relative to at least
one of the three configuration coordinates g1,

q2, and g3.
Solution. From

fa,a2,03) = + 43+ a5 — R?

we find
of of of
— =2q1, =— = 2¢2, and — = 2¢3.
oq n 0q2 2, 4 0qs “
Since
f (07 0’ 0) # 07

it follows that at least one of the partial
derivatives must be non-zero for a choice of
values that satisfies the configuration con-
straint, thus confirming the claim.

Exercise 4.11
tion constraints

Consider the configura-

a+a+a =R
3 2
G1—§R)'+ﬁ+ﬂ§=R?

Show that any choice of values that satis-
fies these constraints is regular relative to the
pairs of configuration coordinates ¢; and go
or ¢; and gs.

Solution. The following Maple state-
ments prove the statement (show this!):

f1:=q172+q272+q3"2-R"2:
£2:=(q1-3*R/2) "2+q2"2+q3"2-R"2:
det (matrix (2,2, [[diff(f1,ql),
diff(f1,q92)]1, [diff(£f2,q1),
diff(£2,92)11));

vV VYV VYV
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6¢2 R

> det(matrix (2,2, [[diff(f1,ql),
> diff(£f1,93)], [diff(£f2,q1),
> diff(£2,93)11));

6¢3 R

Exercise 4.12
tion constraints

Consider the configura-

lycosqp + lacosqe + l3cosqs = L,
l1sing + losingy + I3 singz = 0.

Are all choices of values for ¢1, ¢o, and g3
that satisfy these constraints regular relative

to i) q1, ii) g, iii) ¢3?

Exercise 4.13 Consider the configura-
tion constraints derived in Exercises 4.1-4.9.
For what choices of values of the configura-
tion coordinates does the implicit function
theorem apply?

Exercise 4.14 That a configuration
constraint is regular relative to one of the
configuration coordinates for some choice of
values ¢1 = ¢1,0,-.- ,qn = Qn,0 implies that
this coordinate may be thought of as a func-
tion of the remaining n — 1 configuration co-
ordinates for ¢1 ~ q1,0,... ,qn = gn,0, thus
reducing the number of geometric degrees of
freedom by one. Use this observation to con-
trast the constraint equation

¢+ =0
to the equivalent pair of constraint equations

Q1:O7
QQZO.
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Solution. The pair of constraint equa-
tions corresponds to the functions

fl(Q1>-~-
f2 (q17~-~

Here, any choice of values of the configura-
tion coordinates that satisfies f; = 0 is reg-
ular relative to g;. This implies that ¢; may
be thought of as a function of the n — 1 re-
maining configuration coordinates near any
such choice of values. Similarly, after substi-
tution of ¢; in terms of the other n — 1 co-
ordinates into f5, we find that any choice of
values of the remaining configuration coordi-
nates that satisfies fo = 0 is regular relative
to g2. This implies that go may be thought
of as a function of the n—2 remaining config-
uration coordinates. In conclusion, the pair
of constraint equations reduces the number
of geometric degrees of freedom by two.

In contrast, let the single constraint equa-
tion correspond to the function

7qn) =,
7Q7z) = Q2.

flas- o an) =4 + 6.

Here,

of

— =2

31 q1
and

of

— =2

94s q2

In this case, the configuration constraint is
only satisfied at g = g2 = 0. But this choice
of values is singular relative to ¢; and rel-
ative to ¢o. In contrast to the regular sit-
uation above, although f corresponds to a

single constraint equation, the number of ge-
ometric degrees of freedom is reduced by two.

Exercise 4.15 For each of the collec-
tions of rigid bodies below, use the MAMBO
toolbox to formulate a MAMBO geometry de-
scription and visualize it using MAMBO. You
may find the information in the MAMBO ref-
erence manual regarding the geometric prop-
erties of MAMBO spheres, blocks, and cylin-
ders helpful.

a) Tetrahedral arrangement of spheres
b) Icosahedral arrangement of spheres
¢) Brick wall

d) Pile of parallel logs

e) Books in book shelf

t) Tiled bathroom floor

g) Hardwood floor

h) Rectangular bird cage

i) Multiple rows of rectangular chairs

j) Parallel rows of marble columns

Exercise 4.16 For each of the scenes
below, use the MAMBO toolbox to formu-
late a MAMBO geometry description and
implement different animation sequences in
MAMBO.

a) A game of checkers

b) Fitting a table with an extension

c¢) Dialing on a digital dialing pad

) Typing on a computer keyboard

e) Packets traveling through a network
f) Road work with a pneumatic drill

(oW



SUMMARY OF NOTATION

Upper-case, italicized letters with calligraphy-style left superscripts, such
as A and 4R, were used in this chapter to denote the coordinate
representation of a point relative to an observer.

Lower-case ¢’s with various subscripts and decorations, such as ¢; and
q3, were used in this chapter to denote configuration coordinates.

SUMMARY OF TERMINOLOGY

The coordinate representation of a point relative to an observer is the
matrix representation of the position vector from the reference point
of the observer to the point relative to the right-handed, orthonor-
mal basis associated with the observer.

A mechanism is constrained if its configuration is limited.

A variable that is used to describe the configuration of a mechanism is
called a configuration coordinate.

The number of geometric degrees of freedom of a mechanism is the small-
est number of configuration coordinates necessary to describe the
configuration of the mechanism.

An equation in the configuration coordinates that corresponds to a con-
straint on the configuration of a mechanism is called a configuration
constraint.

A complete set of differential equations in the configuration coordinates
is called a set of kinematic differential equations.

In MAMBO, the position of an observer or a rigid body relative to an
observer is given through a POINT statement in the .geo file.

In MAMBO, parameters are declared through a parameters statement
in the .dyn file.

In MAMBO, the time variable is labeled through a time statement in
the .dyn file.

In MAMBO, animated variables are declared through an anims block in
the .dyn file.

In MAMBO, states are declared through a states statement in the .dyn
file.

In MAMBO, the kinematic differential equations are declared in the ode
block in the .dyn file.
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In MAMBO, input signals to the kinematic differential equations are
declared in the insignals block in the .dyn file.

In the MAMBO toolbox, the global variable GlobalPointDeclarations
contains the names of all declared points.

In the MAMBO toolbox, the global variable GlobalPointDefinitions
contains position vectors relating declared points.

In the MAMBO toolbox, the procedure DeclarePoints appends Global-
PointDeclarations with any number of point labels.

In the MAMBO toolbox, the procedure DefinePoints appends Global-
PointDefinitions with any number of position vectors relating
declared points.

In the MAMBO toolbox, the procedure FindTranslation is used to find
the position vector between two defined points.

In the MAMBO toolbox, the procedure DefineObservers appends Glo-
balObserverDefinitions with any number of associations between
observers and pairs of declared reference points and declared right-
handed, orthonormal bases.

In the MAMBO toolbox, the procedure FindPosition is used to find the
position vector between the reference points of two observers.

In the MAMBO toolbox, the procedure FindCoordinates is used to com-
pute the coordinate representation of a point relative to an observer.

In the MAMBO toolbox, the procedure Undo is used to undo the latest
change to any of the global variables.

In the MAMBO toolbox, the procedure DefineObjects is used to asso-
ciate objects with defined observers.

In the MAMBO toolbox, the procedure MotionOutput generates a MAM-
BO motion description.



Chapter 5

Rotations

wherein the reader learns of:

e Using rotation matrices to describe the relation between right-handed,
orthonormal bases;

o Computing rotation matrices for a variety of common situations.




Practicum

Make it a habit to represent
a right-handed, orthonormal basis
with the first three fingers of your
right hand. Let your index finger
represent the first basis vector, the
middle finger the second basis vec-
tor, and the thumb the third basis
vector. This gesture will be very
handy (!) when attempting to visu-
alize the relations between multiple
right-handed, orthonormal bases. It
will help you concretize the idea of
rotation matrices as relations be-
tween such bases.

Almost every computation in this
chapter can be completed using the
MAMBO toolbox routines presented
at the end of the chapter. This is
good practice and will make the pur-
pose of the computer-algebra proce-
dures more evident.
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5.1 Triads

Right-handed, orthonormal bases of space play a central role in the anal-

ysis and visualization of multibody mechanisms. From this point on,
right-handed, orthonormal bases will be referred to as triads, reflecting @
the triplet of basis vectors.

5.1.1 Notation

To denote triads, I consistently use lower-case, italicized letters, e.g.,
a, r, or .

The triad a consists of the three basis vectors aj, as, and as. Similarly,
the triad r consists of the three basis vectors ry, ra, and r, and so on. The
choice of letter is not important, unless you are trying to give the person
you are communicating with additional information by a clever choice of
letter. For example, if a triad is to be used as the reference triad of a
specific observer, it may be advantageous to denote it by the same letter
that was used to denote the observer. To distinguish between multiple
triads that use the same letter, I introduce appropriate superscripts, for
example, a1 plreference) “apq c(world) " The parentheses are included to
eliminate the risk for confusing the superscript with an exponent.

To graphically represent a triad, this text consistently uses three,
mutually perpendicular separations representing the basis vectors often
(but not necessarily) emanating from a common starting point. For later
reference, it is a good idea to place the corresponding vector symbols
adjacent to each of the basis vectors.

W3

L2
5.1.2 Common Misconceptions

Triads do not have a specific location. After all, triads consist of three,
mutually perpendicular basis vectors, each of which corresponds to an
infinite collection of equivalent separations. It is important not to con-
fuse the location of the three separations representing the triad with an
actual location of the triad. Any three separations representing the basis
vectors can be chosen in the graphical depiction of the triad. There is,
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(Ex. 5.1 -
Ex. 5.24)

for example, no need to pick separations that are based at some specific
reference point.

A common notation for the basis vectors of a right-handed, orthonor-
mal basis is i, j, and k. Since it is not clear how to distinguish between
different bases, we do not use this notation here.

Instead of labeling the three basis vectors by numerical subscripts, it
is common to use the letters x, y, and z as subscripts. With this choice,
the triad a would be represented by the basis vectors a;, a,, and a,. This
is clearly motivated by the use of x, y, and z to denote the coordinates of
a right-handed coordinate system. There is certainly nothing wrong with
this notation, but it is inconsistent with my expressed desire to represent
triads with matrices

a=(a ay az).

Here, the numerical subscripts act not only to distinguish the basis vectors
from another, but also to denote placement in the matrix. The z, y, and
z subscripts achieve the former, but do not reflect the latter.

5.2 Rotation Matrices

5.2.1 Fundamental Relations

Illustration 5.1
Let a be a triad. Consider the vector

1
v=a;t+2a3=a 0
2

We may construct a second triad b, such that bs is parallel to v by the
method of Chapter 3. In particular, let

1
v
by=—~ =af 0 |,
v 2
V5
since
1
||V||2:VOV=(1 0 2)( 0 |=5
2
Moreover,
a; Xv 0
! 1

1:7:04 —
T x v] .
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and

[ V)

S

b2:b3><b1:a

S

In particular, we may write

(bl b2 bg):(al ag a3) -1 01 (2)
ERVERA

The [i, j]-th entry in the scalar matrix can be found from the dot product
a; e b;. For example,

aobao(la—|—2a>1
1 3 — al \/51 \/53_\/5

and so on.

In a pure rotation, one point on the rigid body is kept fixed relative
to the reference configuration. Denote this point by A and let B and C
be two other points on the rigid body, such that the separations AB and
AC have unit length and are mutually perpendicular. Let a ,. subscript
denote the corresponding points in the reference configuration and let a ¢
subscript denote the corresponding points in the final configuration. The
final orientation of the rigid body is uniquely determined by the locations
of the points By and C relative to B, and C,., respectively.

It follows that

and

alf) = [47B7) o) = [4;07], af) = alf) )
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are the components of two triads that uniquely describe the reference
orientation and the final orientation of the rigid body.

As in the illustration above, we may express the triad a(f) in terms
of the triad a(") :

) =a" Ry,

where R, .0 is a 3 x 3 matrix of real numbers.

Every pure rotation keeping the point A fixed
corresponds to a unique choice of entries of R, qs) -

Below, we will consider the conditions that the entries of a 3 x 3 matrix
must satisfy to ensure that the matrix corresponds to some pure rotation.

Illustration 5.2
Let a and b be arbitrary triads. We recall that for an arbitrary vector

vV =wvi1a; + veas + vsas,
where
Vi =a; eV,
ie.
v=aj(ajev)+taz(asev)+az(agev).
In particular, this is true for each of the basis vectors in the triad b:
by =a;(ajeb;)+as(azeby)+az(azeb;),

by =a; (a; eby) +as(az eby) +az(az e bs),
b; =a; (a; eb3) +as(az eby) +az (az ebs).
In terms of the matrices introduced in the previous chapter, this is equiv-
alent to
ajeb; aj;eby ajebs

(b1 b2 bg):(a1 ao 33) a20b1 agobg a20b3 s
a30b1 830b2 agtbg



where the matrix

ay e b1 ay e b2
Rab = as @ b1 az e b2
asz e b1 asz e b2

is called the rotation matriz from a to b.
This definition allows us to write

b= CLRaba
where

Rab = aT e ).

5.2 Rotation Matrices

ap .bg
a20b3
a30b3

Let v and w be two arbitrary vectors. The dot product

Vew

was defined in the previous chapter as the product of the lengths of the
two vectors and cosine of the angle between the vectors:

[V {[wl|cos 6 (v,w).

This definition did not rely on the introduction of any particular ba-
sis relative to which either vector was expressed. The dot product was

independent of the choice of basis.

While the geometric definition of the dot product is useful to show its
independence of basis, it is not a very convenient method for computing
the value of the dot product. Instead, the use of a basis greatly simplifies
the computation. Here, given a triad a, the dot product between the two

vectors equals

Vvew = (“vlal + “vpay + ai}gag,) ° (“wlal + “woag + “wgag)
ajea; ajeaz ajeas “wl
= ( Y1 %vy Ywug ) azea; ajea, aeas “wo
azea; azeas; aseas Yws
T
- (av) “w,
since
ajea; ajeay ajeas
CLT.CL— A2 €a] Az ®as Az ®ajg
aj;ea; azea, azeas
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equals the identity matrix for an orthonormal basis. A similar expression
would result from replacing the triad a with a different triad b:

vew = (") bw,

If, instead, we express v relative to the a triad and w relative to the
b triad, we find

vew = (aU1a1 + “voas + “vgag) ° (bw1b1 + bwgbg + bwgbg)
a; e b1 ay e bg ai e b3 bwl
= ( Y1 vy %ug ) aseb; aseby, ajeb; s
as e b1 asz e b2 ag e bg bw3

= ()" Rylw.

But the dot product is independent of the triad(s) used to express the
vectors. It follows that

vew = (“v)T
= (“v)T Rapbw.
Since the vectors v and w were arbitrary, we conclude that
w = Ry w.
‘We have shown that the rotation matrix R,; between the triads a and
b satisfies the following relations:

Rab = aTob,
b

alRgyp,
and
% = Rapv
for an arbitrary vector v.
From the symmetry of the dot product, it follows that

b1 ® A b1 ® as bl.ag
Ry, = byea; byea, byeas
b30a1 b3 ® Ao b303.3
ap .bl a20b1 ag.bl
= ai Obz a20b2 3.30b2
ap Obg a20b3 a30b3

ap Cbl ap Obg ap Ob3
= a20b1 aQObQ aQObg
330b1 ag.bg a30b3

(Rap)" .
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In other words, the rotation matrix from b to a is the transpose of the
rotation matrix from a to b.

Ry =a eb= (bT ° a)T = (Rba)T-

Any two triads a and b are related through a 3 x 3 matrix R, of
real numbers. But under what conditions does a 3 x 3 matrix qualify as
a rotation matrix? Put differently, under what conditions on the 3 x 3
matrix R of real numbers is the result of the matrix product

aR

a triad if a is a triad?
Recall that a basis b is orthonormal if and only if the matrix product

bl.bl bl.bz bl.b3
b"eb=| byeb; byeby byebs
b3.b1 bg.bg b3.b3

equals the identity matrix. Thus, aR is an orthonormal basis if and only
if the matrix product

(aR)" o (aR) = RT (a” @a) R=R'R

equals the identity matrix.
To find the condition that ensures that aR is right-handed, we proceed
as follows. Let the [i, j]-th entry of R be denoted by r;j, i.e.,

i1 T2 T3
R=1 roa1 792 To3
31 T32 T33
Then, from
( Vi Vg V3 ) = QR,

we find

Vi =Ti1a1 + 72122 + 73143,
Vo = T12a1 + T22a2 + 73283,

V3 = ri3a; + 23z + r3zas.
The orthonormal basis {vy,va,v3} is right-handed if and only if

Vi .(V2 X V3) =1.
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But

vie(vaxvsy) = (rpja;+raag +raaz)e
[(ri2ai + rogag + r32a3) X (r13a1 + razag + razaz)]
= (riia; +roas +r3a3) e
T12713@1 X @1 + 127231 X az + ri2r3za; X ag
“+7roori3ag X &1 + Tog”ro3as X Az + eor3zaz X as
+7r3arizaz X ap + r3are3ag X az + r32r3zaz X as
= 711 (roar33 — ro3r3a) — ro1 (r12733 — r32713)
+r31 (ri2723 — ro2r13)
i1 Ti2 T3
= To1 To2 T3
31 T32 733
det R,

where we used the fact that the basis a is right-handed, i.e., that
a; X ag = ag, az Xaz = ay, anda3 X ay = as.
It follows that the basis aR is right-handed if and only if

det R =1.

5.2.2 Mnemonics

Rotation matrices are denoted by the letter R and the names of a pair of
triads as subscripts, e.g.,

Rab, RC(1>C<2), or Rb(lab)b(ball).

Rotation matrices are 3 x 3 matrices of real numbers. Recall that a triad
a is represented by the 1 x 3 matrix of vectors

a = ( a; az as ) .
By the standard rules of matrix multiplication, the matrix product
aRqc

is defined and evaluates to a 1 x 3 matrix of vectors, namely the triad c.
On the other hand, the matrix product

R,.a

is not defined, since the number of columns of R,. does not agree with
the number of rows of a.
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The rotation matrix R.q; can be computed from the formula
Reg=c"e d,

where ¢ and d are two triads. The right-hand side is the dot product of
a 3 X 1 matrix of vectors with a 1 x 3 matrix of vectors. By the rules of
matrix multiplication, the result is therefore a 3 x 3 matrix of numbers.
In contrast, the expression

ced’

is the dot product of a 1 x 3 matrix of vectors with a 3 x 1 matrix of
vectors. By the rules of matrix multiplication, the result is therefore a
1 x 1 matrix of numbers, or simply a single real number.

For an arbitrary vector v, the matrix representations relative to two
triads a and b are related through

@ = Raplv.

The right-hand side is a product of a 3 x 3 matrix of real numbers with
a 3 x 1 matrix of real numbers. By the rules of matrix multiplication,
the result is therefore a 3 x 1 matrix of real numbers. In contrast, the
expression

vaab

is undefined, since the number of columns of ®v does not equal the number
of rows of Rgp.

5.2.3 Rotating Vectors

Let P and @ be two arbitrary points on a rigid body. Then the vector
Vyr = |:PTQ7":|

is the collection of all separations that are equivalent to P,.(Q),, where the
~ subscript refers to points in the reference configuration. Similarly, the
vector

v = [Pay]
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is the collection of all separations that are equivalent to PyQ) ¢, where the
+ subscript refers to points in the final configuration.

PQ; @

Since the positions of the points P and ) are unchanged relative to
the triplet A, B, and C introduced above, it follows that

) &)
g =" 0,

or
o) %)
vy = Ryman® vy

o)
= Ryman® vr.

Illustration 5.3
The pure rotation rotates the straight line spanned by v,. until it coincides

with the straight line spanned by v;. The equality

shows that ||v¢|| = ||v.]|.
From the definition of the dot product, we recall that the angle
0 (v, vy) between the vectors satisfies the relation

vV, eVy
Vel vl

1 ™ \T
— ||v ||2 (a vr) @ Uf
T

1 o \T o)
= e (a ’ vr) Ryratn® vy
Vi

cosf (vp,vy) =
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5.2.4 Orthogonal Matrices
From Exercise 5.11, we conclude that
(Rab)T Rab

equals the identity matrix, i.e., the rotation matrix R, from the triad a
to the triad b is an example of an orthogonal matriz. @

Definition 5.1 An n by n matrix A such that ATA = I, where I is
the n by n unit matrix, is called an orthogonal matrix. The following is
true for general orthogonal matrices:

e Orientation preserving or reversing: det (A) = %1, since det (AT) =
det (A), and det (AB) = det (A) det (B) ;

e Preserves the inner product: (Av)" (Aw) = vT AT Aw = vTw;

e Degrees of freedom: A is determined by @ independent quan-
tities, since the orthogonality condition imposes % conditions

on the n? matrix components.

It follows that rotation matrices are orientation-preserving.

Illustration 5.4
That the rotation matrix R, preserves the vector dot product follows

from the following argument. Let v and w be two arbitrary vectors.
Then

% = Rap?v
and
Y = RapPw
imply that
()" w = (Ra'v)" Ra'w
= (") (Rap)” Rup'w
= ()" .

But this is just a restatement of the observation that the dot product
v e w is independent of the triad relative to which the vectors are ex-
pressed.
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The result in Exercise 5.15 shows that for every rotation matrix R,
there exists an orthogonal matrix V', such that

1 0 0 1 0 0
VTRabV = 0 t11 tio S Ry=V 0 t11 tio VT,
0 t21 t22 0 t21 t22

where t11, t12, t21, and toy are some constants. But since

(VTRwWV) (VTRwV) = VTR VVT R,V
= VTRbaRabV
= vTv

equals the identity matrix, it follows that

1 0 0
0 ti1 ti2
0 ta1 ta2
must be orthogonal, i.e.,
100 1 0 o\ /1 0 o0
01 0 = 0 t11 tio 0 t11 tio
0 0 1 0 f21 t22 0 t21 f22
1 0 0
= 0 th + 13, t11t12 + to1ton
0 tiitio + taitan t1y + 13,
Moreover,
det (VI RyV) = det V' det RypdetV
= det Ry (det V)?
=1
implies that
1 0 0
1 =det 0 t11 t12 = t11t22 - t12t21~
0 tor too

Solving these equations for t11, t12, to1, and too yields
t11 = cosp, t19 = —siny, ty; = sinp, and tey = cos

for some real number .
Using the explicit expression for V from Exercise 5.15, the [i, j]-th
entry of R, is then found to equal

[Rab]ij = 6;; cos p + (1 — cos ) vv; — sin@Zsijkvk,
k
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where
011 = 022 = 033 = €123 = €231 = €312 = —€321 = —€213 = —€132 = 1

and zero otherwise,

is the eigenvector of R, corresponding to the eigenvalue 1, and
v 43 vl = 1.

By restricting attention to vs > 0, it follows that the rotation matrix
is uniquely determined by the three independent quantities ¢, vy, and
v9. This agrees with the contention in the definition above regarding the
number of degrees of freedom of an orthogonal matrix.

5.2.5 Algebra of Rotation Matrices
The identity rotation

In the absence of any rotation, the two triads a(™ and a«(f) must be equal,
ie.,

o) = g ).

Ryman =a
This implies that the rotation matrix
Ry an

must equal the identity matrix.

Scaling of rotations

Recall from the above discussion that the rotation matrix R, 1S
given by the expression R (p,v1,v9,v3) =

v + (1 —vi)cosep (1 —cos)vive —vzsing (1 —cos ) vivs + vy sinp
(1 — cos) v1vg + v sing v3 + (1 —v3) cosp (1= cosg)vavg —vysing |,
(1 —cosp)vivg —vesing (1 — cosy)vavs + v18in v3 + (1 —v3) cosp
where

2,2 .2
vy +v5 +v3 =1.
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In particular,

U1 U1
Ryman | v2 = U2
V3 V3
=
U1 U1 U1
v = RynemRoman | v2 | = Rergm | v2 |,
U3 U3 U3
ie.,
V1
V2
(%]

is the eigenvector of R, 4 and R, (s, corresponding to the eigenvalue
that equals 1.

If
U1
vT:a(T) Vg
U3
it follows that
) 5
a
vy = Ryman® vy
)
= Ryman® vr
U1
= Ryman | v2
V3
(%1
= ’1}2 s
U3
ie.,
Vi =V

If we let A denote the point kept fixed by the pure rotation, then any
point B for which

AN B
is also kept fixed by the pure rotation. It follows that v, spans the axis

held fixed by the pure rotation.
Now, let

w1
w, =a) [ ws
w3
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be some arbitrary vector that is perpendicular to v,.. It follows that the
angle between vy and wy, 0 (v, wy), satisfies the equality

Vf ° Wf
[Vl - lwel
1 (am T o
T T vf) wy
[vell - [l

1
= ——— (Ruman®
||vr||-||wr||( aalh

. )" T o
= Tl wal R R a
vl - [[w ] ( U’r) (Romah) Raman® wy

V. oW,

cosf (vy,wy) =

€2

T u
V) Rymen® wy

[Vl - [[we ]
cosf (v, w,)
0,

where the last equality follows, since v,. is perpendicular to w,.. It follows
that w is also perpendicular to v, = v;.

Moreover, the angle between w, and wy, 6 (w,,wy), satisfies the
equality
W, e Wy
cosf (w,, wy) _—

" [[w | - [[wgll

1 » \T &)

= m (a wr) Rymyan® wr,
which, using the expression for R, ,s) shown above, is found to equal
cos p. It follows that the quantity ¢ corresponds to the angle of rotation
about the axis spanned by v,.

e Every pure rotation corresponds to a rotation about some
fixed axis by some angle;

e The axis is spanned by the vector whose matrix represen-
tation relative to both a(") and a(/) is the eigenvector of
the corresponding rotation matrix corresponding to the
eigenvalue 1;

e The angle of rotation is the quantity ¢ that appeared in
the expression for the rotation matrix.

It follows that to scale the pure rotation by the real number « corre-
sponds to multiplying ¢ by a:

R (v, v1,v2,03) .
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Composition

If a, b, and c¢ are three arbitrary triads and v is an arbitrary vector, then

“ = Rapv,

bv = Rbccv7
and

Y0 = Ry v.

Substitution of the second expression into the first yields
Yo = RabRbcc'U.
Since v was arbitrary, comparison with the third expression implies that

Rac = RabRbc .

Illustration 5.5

Let A be the reference point of a rigid body and introduce a body-fixed
triad a. Let the (") superscript refer to the corresponding triad in the
reference configuration. Suppose that R; is a pure rotation of the rigid
body by a quarter of a turn about a direction parallel to the aY) basis
vector and that Re is a pure rotation of the rigid body by a quarter of a
turn about a direction parallel to the vector agr).

Consider the composition Ry oR; and denote by a'™) the correspond-
ing triad after applying the rotation R; and by a{/!) the corresponding
triad after applying R5. Then, the pure rotation R; corresponds to the
rotation matrix

Ryqi) = R (E, 1, 0,0) .
2
Moreover, since

a:({) = a1l o0
1

i
= a"R iy | 0

0
a) 1
0

the subsequent application of Ry corresponds to the rotation matrix

™
Ry = R (5:0,1,0).
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The rotation matrix corresponding to the composite rotation Ry o R; is
then given by

Ry = BuwmgnReGngin
0 0 1
= 1 0 0
01 0

Consider instead the composition R; o Ry and denote by a(®?) the
corresponding triad after applying the rotation Ry and by a(f2) the cor-
responding triad after applying R;. Then, the pure rotation Ry corre-
sponds to the rotation matrix

Ryqi = R (g,0,0, 1) .

Moreover, since

1
aY) = a7 (o0
0
' 1
= a"IR um | O
0
0
= o) | -1 ],
0

the subsequent application of Ry corresponds to the rotation matrix

™
Ryr)qu) = R (5,0, —1,0) .
The rotation matrix corresponding to the composite rotation Ry o Ry is

then given by

Rt = BRymgtin Ryt g
0 -1 0
= 0 0 -1
1 0 0

Clearly,
R1 o R2 7é R2 o R1

as first argued in Chapter 1. Note also that the rotation matrices cor-
responding to the pure rotation R; depend on the triad that is used to
compute the rotation matrix.
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If the pure rotations correspond to rotations about the same direction,
then the corresponding rotation matrices are

Ry = Rytin) g0 = R (91,01, v2,03)
and
Rynat = Ry ating = R(pg,v1,02,v3) .
Moreover, since (show this!)
R (p1,01,02,v3) R(pg,01,v2,03) = R (91 + 3,01, 02,03)
it follows that
RiocRy;=Ry0 R4

in this case.

Inverses

The result of Exercise 5.11 can be expressed as

(]%ab)_1 = Rba-

But R, is the rotation matrix corresponding to the pure rotation R that
brings the triad a to coincide with b. This observation thus implies that
the inverse R™! corresponds to the rotation matrix Rpq.

If

R (90) U1, U2, ’U3)
is the rotation matrix corresponding to the pure rotation R, then the
inverse R™! corresponds to a rotation about the same axis and by the

same amount as R but in the opposite direction. The corresponding
rotation matrix is then given by

R (=, v1,02,03).
From the illustration in the previous section, we recall that
R (90» VU1, V2, ’Ug) R (_90’ U1, V2, ’03) =R (07 U1, V2, ’1}3) )

i.e., the identity matrix.
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5.3 Special Cases

Let A be the point on a rigid body kept fixed by the pure rotation R. Let
B and C be two other points on the rigid body, such that the separations
AB and AC have unit length and are mutually perpendicular. Then

a1:{A—g},az:[m],andag,:alxag

are the components of a triad that is fixed relative to the rigid body. Let
a (") superscript denote the corresponding triad in the reference config-
uration and let a () superscript denote the corresponding triad in the
final configuration. The rotation matrix

T
Royman = (a(r)> oa/)

describes the relationship between the two triads. In this section, we
consider some special cases of rotation matrices and the corresponding
pure rotations.

5.3.1 Rotations about a;

Suppose that the pure rotation R corresponds to a rotation of the rigid
body about the axis through A that is parallel to the vector agr) by an
angle .

From the figure, it follows that

() (r)

a;’) =a"”,
al") = cos pal” + sin pal”,
a) = —singal” + cospal’.

(Ex. 5.25 -
Ex. 5.31)
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The corresponding rotation matrix then becomes

T
Rymas) = Oﬁm) oall)
agr) . agf) agr) . aéf) agr) . agf)
— | aleal? alleal” al)eal’
az(,)r) . a(lf) aér) . aéf) az(,f) . agf)
1 0 0

0 cosep —sing
0 singp cosy

Illustration 5.6
Let D be a fourth point on the rigid body, such that

0
I‘ADT' _ a(r) y
z
It follows that
0
I'ADf — a(f) Y
z
0
= a"Rymun | ¥
z
0

= a" | ycosp—zsing
ysing + zcos

and consequently,
r4Pr o1
[ AP || [P |

AD
COSQ(rADT, ADf) _ f

= cos.

It is straightforward to see that
Ra(’f')a(f) =R (807 17 07 O) .

5.3.2 Rotations about a,

Suppose that the pure rotation R corresponds to a rotation of the rigid

body about the axis through A that is parallel to the vector aér) by an
angle .



5.3 Special Cases

(")
a
1 all

()

From the figure, it follows that

alf) (r) (")

=cosya; ~ —sinpag ’,
agf) — aér),
agf ) = sin apaY) + cos (pag,f).

The corresponding rotation matrix then becomes

T
Rymen = (am> oo
a(lr) ° agf ) agr) ° agf ) a(lr) ° agf )
— | aleal? aleal? al)eal?

a” eal” al)eal) al eal)

cose 0 sing
= 0 1 0
—singp 0 cosyp

Illustration 5.7
Let D be a fourth point on the rigid body, such that

x
AP =q [ 0

z
It follows that
x
T N
z
x
= "Ry | 0
z

rcosy + zsinp
= o 0
—xsinp + zcos ¢
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and consequently,

rAPr o p

[ AP e AP |

AD
cosf (rAPr vAPr) = '

= Ccos¢.

It is straightforward to see that

R, o = R(9,0,1,0).

5.3.3 Rotations about a;

Suppose that the pure rotation R corresponds to a rotation of the rigid

body about the axis through A that is parallel to the vector a:(f) by an

angle ¢.

From the figure, it follows that

()

a;’’ = cos gpagr) + sin goag),

—sin @agr) + cos @agr),

alf) = al".

al) —

The corresponding rotation matrix then becomes

T
Rymatn = (a(r)> ool
2 eal) aleald) aldealf
= aér) . agf) agr) . aéf) aér) . aéf)
2 eal? aleal) 2l eal)

cose —sing 0
= singp cosp 0
0 0 1
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Illustration 5.8
Let D be a fourth point on the rigid body, such that

T
I,ADT _ a(r) y
0
It follows that
T
rADf — a(f) Y
0
T
= " Ryman | ¥
0

T Ccosp —ysinp
= a" | zsinp+ycosy
0

and consequently,
I'ADT eor
[ AL| [[r AP

AD
cos@(rADT,rADf) = '

Cos .

It is straightforward to see that
Rymqn = R(9,0,0,1).

5.3.4 Euler Angles

Illustration 5.9
Let the pure rotation R; correspond to a rotation about an axis through
the point A parallel to the vector agf) by an angle ¢;. The corresponding

rotation matrix is

C1 —381 0
Rymg =1 s1 a 0 [,
0 0 1

where ¢; = cos; and s; = sing,. Here, a(¥) corresponds to the right-
handed, orthonormal basis

and the () superscript refers to an intermediate configuration.
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Let the pure rotation Ry correspond to a rotation about an axis
through the point A parallel to the vector ag) by an angle ¢,. The
corresponding rotation matrix is

C2 0 S92
Ryygn = 0 1 0
—S89 0 C2

From the previous section, we conclude that the rotation matrix corre-
sponding to the composition Ry o R; equals

Ry = Romaom Rewamn
ct —s1 O Co 0 s2
= S1 C1 0 0 1 0
0 0 1 —S89 0 Co
C1C2 —S1 C1S82
= §1C2 C1 $182
—S89 0 Co

Suppose R is an arbitrary pure rotation or, equivalently, that a{/) has
some arbitrary orientation relative to a("). Recall that

= [47]

and that the point By lies on a sphere of radius ||a;|| = 1 centered at A.

We can align the point B on the rigid body with the point By in
the final configuration by a sequence of two pure rotations Ry and Rs.
In particular, let R; correspond to a rotation about the axis through A
parallel to the vector a:(;') by an angle ¢;, such that the body-fixed triad
a = a, and let Ry correspond to a rotation about the axis through A
parallel to the vector ag) by an angle @5, such that a; = agf ), Naturally,

the angles ¢, and ¢, depend on the location of By relative to A.
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The composition Ry o R aligns the vector a; with the corresponding
vector in the final configuration agf ). From the illustration, it follows

that the corresponding rotation matrix is

CiC2  —S81 (182
S1C2  C1 5182 >
—S82 0 C2

where ¢; = cos ¢; and s; = sin ;. The remaining basis vectors can now be
aligned with the corresponding vectors in the final configuration through
a pure rotation Rg about an axis through A parallel to agf ) by an angle
3. It follows that the pure rotation R is given by the composition

R=R30R20R1.
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The corresponding rotation matrix becomes

CiCy —S81 (€182 1 0 0
Rymen = S§1c2 €1 5182 0 c3 —s3
—82 0 C2 0 S3 C3

C1C2 —S81C3 + C18283 8183 + €182C3
= §1C2  €1€3 + 818283  —C1S3 + s182¢3 |,
—S82 C283 C2C3

where c3 = cos 5 and s3 = sin ;.

It is always possible to find values of ¢;, ¢y, and 3 such that the
rotation matrix R, ), is given by the expression above. Equivalently,
every pure rotation can be decomposed into a sequence of three pure
rotations, each of which is about an axis parallel to a basis vector. Con-
versely, every choice of values for ¢, ¢,, and ¢4 corresponds to some
pure rotation R of the rigid body.

The angles ¢, ¢,, and ¢4 are called Euler angles. In this case, they
correspond to the rotation sequence 3 —2 — 1, i.e., a pure rotation about
the axis parallel to the third basis vector, followed by a pure rotation
about the axis parallel to the second basis vector, followed by a pure
rotation about the axis parallel to the first basis vector. While the first
pure rotation is about a basis vector in the original triad, the second and
third rotations are about basis vectors in the two intermediate triads.

There are many other possible choices for Euler angles. For example,
the rotation sequence 1—3—1 could also be used to represent an arbitrary
pure rotation, as could the sequence 2 — 3 — 1. Naturally, the form of the
rotation matrix would differ between these cases.

5.3.5 Alignment

Suppose we seek a pure rotation that will align the a; vector with an axis
through A and an additional point B, such that

2

i.e., such that agf ) is parallel to r*Z. Following the methodology pre-
sented in Chapter 3, we let

2

(f) 4 ) ?}4

a = = —_—
LT e Gk

V14

0
(£ (r)
(f) _ & X ) L
a;) =————=a V10 ;

Hagf) ” agr) o 310
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and
__5_
V35
af) =all xall) =a |
75
It follows that
2 0 5
V14 V35
M= Fm Tm T | = Ranao

There is a unique pure rotation corresponding to the rotation matrix
R, qp» found above. This pure rotation is not the only solution to the
problem of aligning a; with r4Z, however. That there are infinitely many

solutions follows from the possibility of using a different vector than agr)

in the computation for agf ). Which of these is most appropriate depends

on the application.

5.4 The MAMBO Toolbox

Rotation matrices are computed in the MAMBO toolbox using the Make-
Rotations procedure.

Illustration 5.10

In the following MAMBO toolbox session, the rotation matrices R,
corresponding to pure rotations about axes parallel to the basis vectors
al” al” and agr)
procedure.

, respectively, are computed using the MakeRotations

> MakeRotations(theta,1);
1 0 0
0 cos(f) —sin(9)
0 sin(d) cos(h)

> MakeRotations(phi,2);

cos(¢p) 0 sin(g)
0 1 0

—sin(¢) 0 cos(9)

> MakeRotations(psi,3);

(Ex. 5.32)
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cos(vp) —sin(¢h) 0
sin(y))  cos(¢) 0
0 0 1

By combining these into a single call to MakeRotations, we obtain the
rotation matrix corresponding to the 1 — 2 — 3 sequence of pure rotations
introduced in the context of Euler angles.

> MakeRotations([theta,1], [phi,2], [psi,3]);

[cos(¢) cos(v) , —cos() sin(y) , sin(¢)]
[sin(#) sin(¢) cos(v)) + cos(8) sin() ,
—sin(#) sin(¢) sin(1)) + cos(#) cos(v)) , —sin(0) cos(¢)]
[—cos(0) sin(¢) cos()) + sin(@) sin(v)) ,
cos(0) sin(¢) sin() 4 sin(f) cos(v)), cos(f) cos(¢)]

Note the use of brackets to separate the individual rotations.

Since the output from the MakeRotations procedure is a MAPLE ma-
ﬁ trix, normal MAPLE matrix operations apply. For example, the com-
mands transpose, inverse, and eigenvals, respectively, will compute

the transpose, inverse, and eigenvalues of a rotation matrix.

> rotmat:=MakeRotations(theta,1);
1 0 0

rotmat :== | 0 cos(f) —sin(0)
0 sin(d) cos(8)

> transpose(rotmat) ;

1 0 0
0 cos(9) sin(9)
0 —sin(d) cos(h)

> inverse(rotmat);
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1 0 0
cos(f)  sin(6)
P01 %1
0 _sin(@)  cos(0)
%01 %1

%1 := cos(0)? + sin(0)?

> eigenvals(rotmat);

1, cos(0) + y/cos(0)? — 1, cos(f) — y/cos(0)? — 1

The MakeRotations procedure may also be invoked to compute the
rotation matrix R (6, v1, v, v3) corresponding to a rotation by an angle ¢
about some arbitrary axis parallel to the vector

The command

> MakeRotations(theta,vl,v2,v3);

(1 —cos())vi?* (1—cos())viv2 sin(f)vd
{cos(ﬂ) + %1 , ) s
(1 —cos(8)) vl v3 n sin(0) UQ]
! V%1
(I —cos(f))viv2 sin(f) v3
[ %1 + N cos(0) +
(1 —cos(#)) v2v3  sin(0) v]]
2

(1 — cos(f)) v2?
%1 ’

%1 V%1
{(1 —cos(f)) vl v3  sin(@)v2 (1 —cos(#))v2v3  sin(0) vl

%1 V%1 %1 V%1

(1 — cos(0)) v3?
cos(0) + T}

%1 := v1? + v22 + v3?

returns the matrix derived in Section 5.2. Note that MakeRotations re-
laxes the requirement that v?+v3+v3 = 1 and introduces the appropriate

normalization where necessary.
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Illustration 5.11
We may also appeal to the definition of the rotation matrix from a triad

a to a triad b:
Rab = aT ob.

Suppose that we seek to introduce a triad b, such that by is parallel to
the vector

2
al 3
1

Then, the following sequence of MAMBO toolbox statements generates
the triad b and computes the associated rotation matrix Rgp.

DeclareTriads(a):

al:=MakeTranslations(a,1):
a2:=MakeTranslations(a,2):
a3:=MakeTranslations(a,3):
v:=MakeTranslations(a,2,3,1):
bl:=(1/VectorLength(v)) &** v:
b2:=(1/VectorLength(bl &xx al)) &** (bl &xx al):
b3:=bl &xx b2:

matrix(3,3,(i,j)->cat(a,i) &oo cat(b,j));

VVVVYVVYVVYV

1 1
7@ 0 —7\/%

3 1 3
7 V14 0 V3514 35 V35
1 3 1
ﬁ\/lll -5 V35414 %V35

5.5 Exercises

Exercise 5.1
such that

Rab =

S
N _,;l% |
= e

Find the matrix representation of the vector
by relative to the triad a.

Let a and b be two triads, Solution. Expanding the general for-

mula
b= CLRab

we find

-
MI& N kaél



(b1 by bs)
L _3 3
2 2 "2
2(31 ag 33) 3934@—% ,
0 3 ¥
which implies that
b2 = 7%81 —+ gag —+ 5&3
—3/4
= al| V3/4 | =a®(by).
1/2

Exercise 5.2
such that

1 _3

2 4

—| BB B
Rab 5 1
1

0 3

Find the matrix representation of the vector
ag relative to the triad b.
Solution. Since Ry, = (Rab)T7 we have

a=0bRp, =b(Rap)"

or
(a; ay a3 )
5 20
“(bobe be)| 21|
¥3 1 B
1 1 72
ie.,
3
ag = —b2+§b3
0
= b| 1/2 | =0"@ay)
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Exercise 5.3 Let a and b be two arbi-
trary triads. Find the matrix representations
of the basis vectors ap, as, and a3 relative to
the b triad and of the basis vectors by, b,
and bz relative to the a triad if Ry, =

3 _V6 1
4 4 4
ol & 4 4
1L A6 3
4 4 4
0 -1 1
Vi V2
Dl % 3 3
11 1
/2 2 2
4 2 L
5 5 5
2 1 2
c) 5 5 ~
S 0
V5 Vs
L _1 9
Vi V2
1 1
0o 0 1
- o0 i
vz vz
e) 0 -1 0
1 0o L
V2 V2
1.1 1,1 1
37 3 3T B 3
1 1 1 1 2
Dl s =3~ 3 3
1 1 1 1 2
3tas 675 T3

Exercise 5.4 Let a and b be two arbi-
trary triads. Find R, and Ry, when

a; = by b, = —%81 + \%33
a) ag — b3 b) b2 = —ag
az = by bs = %al + %ag
— 1b, -~ Lb
by = a a = 51— 5b2
C) b2 = —a1 d) ag = %b1 + %bg
b3 =ag az = b3
a; = —b2
6) ag — 7b3

az =b;
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b, = %al — %ag =+ %33
f) b2 = @a + %3_2 — Zag
bs = La, + Yla;

Exercise 5.5
such that

Let a and b be two triads,

and consider a vector v whose matrix repre-
sentation relative to a is given by

Find the matrix representation of the vector
v relative to the triad b.

Solution. We have

Exercise 5.6 Let a and b be two arbi-
trary triads and consider a vector v whose
matrix representation relative to b is given

by

Find the matrix representation of the vector

v relative to the triad a when R, =

3 _V6 1
4 4 4
| &y
1 6 3
4 4 4
0 -1 1
V2 V2
n| & &3
_1 11
V2 2 2
4 2z 1
5 5 /5
2 1 2
c) 5 5
S S 0
V5 VB
11
V2 V2
1 1
V= =
0 0 1
1 1
vz 0 7
e) 0 -1 0
1 0o L
V2 V2
1.1 1,1 1
37 3 37T /3 3
| H+t Fp-t 3
1 1 1 1 2
3t3s 6T T3

Exercise 5.7 Recall the geometric def-
inition of the dot product between the two
vectors v and w:

vew =|v[|[[wl]cosf (v,w),

where 0 (v, w) is the angle between the vec-
tors. Let a and b be two arbitrary triads and
show that

avT Ay = b'UT bw.

Use this fact to prove that
vew =T by

for an arbitrary triad b.
Solution. We have

(Rap "0)" (Rap ")

= b’UTRba Rab bw
bUT bw

aUT YT a—



proving the first half of the claim. Now, con-
sider, without any additional assumptions on
v and w, the triad a, such that

vl
v=a 0
0

and

|lw]| cos 0 (v, w)

w=a| |w]sind(v,w)

It follows that
T — v il cos 6 (v, w) = v e w

and the second claim follows.

Exercise 5.8 Recall the geometric def-
inition of the cross product between the two
vectors v and w as the vector whose di-
rection is given by the right-hand rule and
whose length is

v x wi[=[lv[[[wl]siné (v,w),

where 0 (v, w) is the angle between the vec-
tors. Let a and b be two arbitrary triads and
show that

a; ay ag b; by bs
“op y wg | =1 Pur vy Pug
awl awz a,w3 bwl bu]2 b’LUg

Use this fact to prove that

bi by by

VXW= bv1 bUQ b'l)3

b, Pwy  bws

for an arbitrary triad b.

[Hint: Let R, be the matrix whose [i, j]-th
component is r;;. Replace all components in
the leftmost determinant using the formulae

a=1b (Rab)T 3

“v = Rap bv,
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and

= Ry Pw

and use the fact that det R, = 1 to establish
the first claim. Next, consider, without any
further assumptions on v and w, the triad
a for which v and w take the form in the
solution to the previous exercise and proceed
from there to show the equivalence between
the geometric and the algebraic formulae for
the cross product.]

Exercise 5.9 For each of the following
matrices, determine if it qualifies as a rota-
tion matrix.

010
a)y[ 0 0 1
100
0 -1 0
o o 1
1 0 0
0 -1 0
¢l 0 0 -1
1 0 0
L 1
V2 V2
1 1
0 0 1
1 1
VR
1 1
0 0 1
A _ 1
V2 V2
1 1
nl % % o
0 0 -1

Exercise 5.10 Let a denote a triad that
is fixed relative to a rigid body and denote by
a™ and a/) the corresponding triads when
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the body is in the reference and final config-
urations, respectively, such that

0 S S
V2 V2

1 1 1

Rynan = | & 7 3
L 1 1

V2 2 2

Let v, and v; denote two vectors that con-
tain a separation between two fixed points
on the rigid body in the reference and fi-
nal configurations, respectively. Compute
“(f)fuf, amvf and the angle between v, and
vy, when v, =

1 0
a)a™ | 0 b)a | 1
1 2
0 1
c)a [ 1 d)a | 0
1 0
0 1
e)a | 2 f)am [ 1
2 1

Exercise 5.11 Let a and b be two arbi-
trary triads. Show that Ry, = (Rab)_l7 ie.,
that RpaRaep = (Rab)T R,y equals the iden-
tity matrix.

Solution. Let v be an arbitrary vector.
Then,

by = Rpe™v
and
% = Raplv.

Substitution of the latter expression into the
former then yields

b’U = Rba Rabbv.

Since this is true for an arbitrary vector, it
follows that

RbaRab =

OO =
o = O
— o O

and the claim follows.

Exercise 5.12 Let a and b be two
arbitrary triads. Find the eigenvalues and
eigenvectors of the rotation matrix R, when
Rab =

3 _¥6 1
4 4 4
o| &y
1 /6 3
4 4 4
0 1 1
V2 V2
DN R R
_ 1 1
V2 2 2
42 L
5 5 V5
2 1 2
gf 5 5 %
1 2 0
V5 VB
1L
Vi T Va
1 1
Dl &5 FH O
0 0 1
1 1
vz 0 7
e) 0 -1 0
A 0
V2 V3
11 141 1
37 3 3 T3 3
1 1 1 1 2
Dl s+ =33 3
1 1 1 1 2
3T 6T T3

Exercise 5.13 Show that the eigenval-
ues of Ry lie on the unit circle in the complex
plane.

Solution. Let A denote a (possibly com-
plex) eigenvalue of R, corresponding to the
(possibly complex) eigenvector v. Then

Ropv = M.

Taking complex conjugates on both sides, we
obtain

Rapv® = X"0%,



since R,p is a matrix of real numbers!. Then
W) v ()" (Rap)" Rapv

= (Rabv*)T Rabv

= MA@,

where the first equality follows from the fact
that

(Rab)T Rab = RbaRab
equals the identity. But,
(v) v

is positive for all v # (0 0 0 )", Tt fol-
lows that

A= [\
must equal 1 and the claim follows.

Exercise 5.14 Let a and b be two arbi-
trary triads. Show that one of the eigenval-
ues of Ry, equals 1.

Solution. Since R, is a matrix of real
numbers, every complex eigenvalue is a mem-
ber of a complex conjugate pair of eigenval-
ues. Since Rgp is a 3 X 3 matrix, it has at
most three separate eigenvalues. Thus, ei-
ther all eigenvalues of R, are real, or one
is real and the other two are complex conju-
gates. Since all eigenvalues must lie on the
unit circle, there are only six possibilities:

where 6 € (0,7). Finally, recall that the
determinant of a matrix is the product of

1Here, * is used to denote complex conjugation.
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its eigenvalues. Since R, is orientation-
preserving, it follows that

1 =det Rab = )\1)\2)\3.

Of the six cases, only a), ¢), and e) satisfy
this condition, confirming the claim.

Exercise 5.15 Let a and b be two ar-

bitrary triads. Let

be the eigenvector of R, that corresponds
to the eigenvalue 1, such that

(e) €1 =02 + 0402 =1

Show that there exists an orthogonal 3 x 3
matrix V, such that

1 0 0
Ruy=V | 0 tn tiz |V7,
0 to1 too

for some constants t11, t12, ta1, and tos.
Solution. By assumption,

Raper = ey
and thus
€1 = RbaRabel - Rbael-

If w is an arbitrary 3 x 1 column matrix, such
that

U)T€1 =0,
then it follows that
(Rabw)T e1 = wl Ryger = wley = 0.

Now, define

—va//v? + v3
e = v1//v? + v3
0



238 5 Rotations

and

—v1v3/\/V? + v2
e3 = —Ugvg/\/m
VU2 + 3

if v? +v3 > 0 and

1 0
ea=1 0 andeg= 1| 1
0 0

if v; = vo = 0. In both cases, the column
matrices e, es, and e3 satisfy the conditions

is orthogonal, since VIV =

et N

— (eg - er e e3

— (e3)" — ]
(€1>§€1 (61);62 (61);63

— (62)T€1 (62)T€2 (62)T63
(e3)" e1 (e3) e2 (e3) e3
1 0 0

= 0 1 0
0 0 1

Moreover, VTR,V =

T
- (el)T - I
— (e2)” — |Raw| €1 e2 e3
— (es)" — o
(e1)" Raper (e1)” Rapea (e1)” Rapes

) (en)" R
= (62)T Raper (62)T Rapes (62)T Rapes
) (es)" R

T T
Raver (e3)” Rapea (e3 ab€3

(RbaTenT e3
(e2)" Rapves

€1 (Rbael)T €2
T
er (e2)” Raper

)
)
(e3)"er (e3)" Rapez (e3)” Raves
(el)T €1 (el)T €2 (61)T €3
=| (e2)"er (e2)” Rapes (e2)" Rupes
(e3)"er (e3)" Rapes (e3)” Rupes

0 0
(62)T Rapes (62)T Rapes
(63)T Rapes (63)T Rapes

The claim follows from the observation that
Rapy =V (VI R,V) VT,
since V' is orthogonal.

Exercise 5.16 Show that the columns
of an orthogonal matrix are linearly indepen-
dent.

Solution. If the columns (or rows) were
linearly dependent, then the determinant
would vanish. For a rotation matrix, how-
ever, the determinant equals 41, confirming
the claim.

Exercise 5.17 Show that the set of
orthogonal matrices with the normal rule for
matrix multiplication is a group.

Exercise 5.18 Show by an example
that the group of orthogonal matrices is not
Abelian.

Exercise 5.19 Show that the set of
orientation-preserving orthogonal matrices



with the normal rule for matrix multiplica-
tion is a group.

Exercise 5.20 We say that two or-
thonormal bases a and b are equivalent, i.e.,
that a ~ b, if det R, = 1. Show that the
corresponding quotient set has only two ele-
ments, namely the collection of right-handed,
orthonormal bases and the collection of left-
handed, orthonormal bases.

Exercise 5.21 For each of the rotation
matrices below, find ¢, v1, ve, and v3, such
that the matrix is given by R (p, v1,v2,v3).

3 _¥6 1
4 4 4
ol E s
1 V6 3
4 4 4
0 S S
Vi V2
wl & b4
L1 1
V2 2 2
42 4
5 5 /5
2 1 2
o 3 35 %
S S 0
V5 V5
11
Vi V3
1 1
0 0 1
1 1
vz Y 7
e) 0 -1 0
L 0 L
V3 V3
11 1,1 1
37 3 3T 3 3
1 1 1 1 2
Dl #5ts 5~ 3 3
1 1 1 1 2
stes 5T s T3

Exercise 5.22 Consider applying a pure
rotation to a block in its reference configura-
tion corresponding to a half turn about an
edge through a given corner on the block,
followed by a pure rotation corresponding to
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a quarter turn about a different edge through
the same corner as shown in the figure below.

Breference = Bintermediate
as
¢
Crcfcrcncc
A
( a a9
Cintermediate
Breference = Bintermediate

33/

Bﬁnal

L

Creference

A

an
az
Ctinal= Clintermediate

Show that the final configuration is re-
lated to the reference configuration by a sin-
gle pure rotation about an axis through the

corner making an angle of #; = 45° with
the first edge and 65 = 90° with the second
edge.

Solution. Introduce a triad a, such that
the first edge is parallel to az and the second
edge is parallel to a;. Denote by b a body-
fixed triad, such that p(reference) — 4 Then,
the first rotation corresponds to the rotation
matrix

Ry (reference) p(intermediate) = R (71', 0,0,1)

-1 0 0
= 0 -1 0
0 01
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Furthermore,

plintermediate)
al)

p(reference)

(a1)

== Rb(intennediate)b(reference)

-1 0 0 1
= 0 -1 0 0
0 01 0
-1
= 0 ,
0

i.e., the second rotation corresponds to the
rotation matrix

Ry Gintermedinee) pinat) = Rgﬁmqﬂ
1 00
— o o1
0 -1 0

Since the same corner is kept fixed by the
pure rotations, it follows that the final config-
uration is related to the reference configura-
tion by a single pure rotation keeping the cor-
ner fixed. From Exercise 1.8, we recall that
every pure rotation is equivalent to a rotation
about a unique axis through the point kept
fixed. Moreover, the axis of rotation is paral-
lel to the vector whose coordinate representa-
tion relative to breference) (i q) is given by
the eigenvector corresponding to the 1 eigen-
value of the rotation matrix Rpreference) p(final) -
But,

Rb(rcfcrcncc) p(final)

== Rb(reference) p(intermediate) Rb(intermediate) p(final)

-1 0 0
= 0o 0 -1 |,
0 -1 0

from which we find the corresponding eigen-
vector

i.e., the axis of rotation is parallel to the vec-
tor —as + ag. Indeed,

(—ap +az)ea; 0

cosf, = =
N EET

and

o0 (—ag +az)eas 1
1= = =
[—az + a3 llasl] 2

from which the claim follows.

Exercise 5.23 Consider applying a pure
rotation to a block in its reference config-
uration corresponding to a half turn about
an edge through a given corner on a block
followed by a pure rotation by an angle 6
about a different edge through the same cor-
ner. The final configuration is related to the
reference configuration by a single pure rota-
tion about an axis through the corner making
an angle ¢ with the first edge and perpendic-
ular to the second edge. Show that
10|

6=

Exercise 5.24 Consider applying a pure
rotation to a block in its reference configura-
tion corresponding to a half turn about some
axis through a given corner on a block fol-
lowed by a pure rotation corresponding to a
quarter turn about a different axis through
the same corner making an angle 6 with the
first axis. The final configuration is related
to the reference configuration by a single
pure rotation about an axis through the cor-
ner making an angle ¢, with the first axis
and ¢, with the second axis. Show that

1
cos py = ——
! V1 +sin?6
and

cos 6

CoS pg = ——.
? V1 +sin?6



[Hint: Let the first axis be parallel to the ba-
sis vector ag of a right-handed, orthonormal
basis and let the second axis be parallel to
the vector sin fa; + cos fas.]

Exercise 5.25 Consider three refer-
ence triads a, b, and ¢, such that b is rotated
relative to a by 60° about the common 2-
direction, and c is rotated relative to b by
45° about the common 3-direction. Find the
rotation matrix R,..

Solution. We have

Rw = R (3,0,1,0)

and

Rbc

Il
=
/N
N
3 L
o
—
N——

It follows that
V22 3

4 4 2

Rth = RabRbc = % 2 0
s 3

Exercise 5.26 Consider the rotation
matrix R corresponding to a 3 — 1 — 3 se-
quence of pure rotations. Find the eigenval-
ues of R.
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Solution. We have

R = R(‘)Olaovo,l)R(sD% 17070)R(9037070a 1)
C1C3 — §1C283 —C183 — S1C2C3 S1S82
= | s1c3 + 1283 —S183 +c1c2c3 —cC182 ],
5283 S9C3 Co

where ¢; = cosp; and s; = sing,. An eigen-
vector of R is a non-zero column matrix so-
lution to the equation

Rv = Mo,
for some . It follows that

0
(R-M)v=| 0 |,
0

which has a non-trivial solution if and only
if

0 = det(R—\)

_ 3y [ et sicesy te2 )2
+cic3 — 5153

+( —CQ+8183—0103 >>\+1
+81C283 — C1C2C3

= (L=X)[N+pr+1],

where —cycaoc3+810983—co—cic3+8183+1 =
€ [—2,2]. The eigenvalues are thus given
by

+i1
M =1, A3 =er",

where

/ 2
7 = arctan (—ﬂ> .
I
Exercise 5.27 Consider the combined
action on a rigid body of a pure translation
T corresponding to a vector u and a pure ro-
tation R corresponding to a rotation along a
unit vector n by an amount ¢. Recall from
Exercise 1.12 that every combination of a
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pure translation and a pure rotation can be
expressed in terms of a pure translation and a
pure rotation along a common axis whose di-
rection is fixed relative to the reference con-
figuration. This is known as a screw motion.
Find the axis of the screw in terms of u, n,
and .

[Hint: We can identify an axis in space rel-
ative to any observer A by a unit vector 1
that is parallel to the axis and by the posi-
tion vector rA¥ from the reference point A
of A to a (non-unique) point P on the line.
From Exercise 3.24, we recall that

P = (1P e 1) 1+1x (r*” x 1),

where the first term on the right-hand side is
a vector parallel to the axis and the second
term is a vector perpendicular to the axis.
Indeed,

1x (£ x 1) =7 — (r*7 o 1)1

is a vector that points from A to the point
on the axis that is closest to A. It follows
that the axis is uniquely specified by the two
vectors 1 and r*% x 1, where the latter vector
is independent of the point P (as long as P
lies on the line).

Let A and B be two observers that coin-
cide with the rigid body in its initial and

=
and thus
U = Rap L.

b (rBPf X lf) = ¢ (rAPi X l,;)
and thus
a (rAPf x1y)
= “(rAB X lf—l—rBPf X lf)

= “(u X lf) + Ryp @ (I’APi X 11> .

. If L is the screw axis, then

and
“ (rAP'i xl)= ¢ (rAPf x1y),
which imply that
“li = Rap “li
and
a (rAPi % lz)

= “(uxlp)+Rep * (r* x 1).

. It then follows that

1,; :lf =4n

and

a (AP; __a
final configurations, respectively. Let (A, a) (Rap —Id) * (r*" xn) = “(nxu).

and (B, b) denote the pair of reference point 5
and reference triad for.A and B, respectively.
Let L be an arbitrary line that is stationary

. Assuming, without loss of generality
that ag = n, the latter equation im-

relative to the rigid body. Let the initial plics that

configuration of L relative to A be specified rP xn

by the unit vector 1; and the vector r4% x1;, . <lu + ot P x u) < n
where P; is an arbitrary point on L in the 2 2

configuration of L relative to A be specified =
by the unit vector 1; and the vector A7 x1¢,
where P is the point corresponding to P; in 1 ©

. =(znx(uxn)+cot=nxu|xn
the final configuration of L. Show that 2 2 ’

initial configuration. Similarly, let the final < 1 (wen)n+in x (uxn) )
2 2
X n

+cot Zn x u




i.e., the point on the screw axis closest
to A is given by the position vector

1
rzﬁnx(uxn)—l—cotgnxu.

]

Exercise 5.28 Use the fact that
R(SO171)171)27’U3) R(@Q,Ul,UQ,U:),)
=R (901 + @27’017@2703)

to derive the trigonometric addition formu-
lae for the cosine and sine functions.

Solution. Consider as a special case,
v1 =1, v = v3 = 0. Then,

1 0 0
R((plalaoao) = 0 c1 —s1 y

0 S1 C1

1 0 0
R(p9,1,0,0)=| 0 ¢2 —s2 |,

0 S92 C2

where ¢; = cos¢; and s; = sin ;. Moreover,
R (901 + $2, 1a 07 O)

1 0 0
=1 0 cos(p;+wy) —sin(p; + ps)
0 sin(p; +¢,)  cos(py + ¥s)

But R (¢4,1,0,0) R (¢,,1,0,0)

1 0 0 1 0 0
= 0 C1 —81 0 Cy —S89
0 S1 C1 0 S9 C2
1 0 0
=1 0 ciea—38182 —c152— 8162 |,
0 sjc2+ci182  cica — 8182

ie.,

cos (1 + g) = €OS p; COS Py — sin ¢y Sin Py

sin (¢ + ) = sin @, cos @y + €os @ sin @,
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corresponding to the trigonometric addition
formulae.

Exercise 5.29 Use rotation matrices to
find the relation between Cartesian and po-
lar coordinates relative to a coordinate sys-
tem with axes parallel to the basis vectors of
a triad a.

Solution. Let A denote the origin of the
coordinate system and let P denote an arbi-
trary point. The position vector

T
I‘APZ(I y ,

z

where z, y, and z are the Cartesian coordi-
nates of the point P. In contrast, the polar
coordinates p, 0, and z of the point P are
defined by:

e The distance from P to the axis paral-
lel with the a3 vector;

e The angle between the position vector
rA7" to the projection of P onto the
plane through A spanned by a; and as
and the axis parallel to ay;

e The distance from P to the plane
through A spanned by a; and as,

respectively.

p
°

(z,y,2)

.

Now introduce a new triad b, such that
b is rotated relative to a about the common
3-direction by an angle 0, i.e.,

cosf) —sinf 0
Ry =1 sinf cosf@ 0
0 0 1
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It follows that

p p
v’ = b 0 | =aRw | O
z z
pcosf
= a| psinf |,
z
ie.,
x = pcosb,
y = psinf,
z=2z.
and
z/p —y/p 0
Raw=1\{ vy/p x/p O
0 0 1
Alternatively,
x x
P = al y | =0Rw | v
z z
(@ +v2) /p
= b 0 ,
z

which implies that

p=Va2+y?
0= arc‘sang7
x

zZ=Z.

Exercise 5.30 Use rotation matrices
to find the relation between Cartesian and
spherical coordinates relative to a coordinate
system with axes parallel to the basis vectors
of a triad a.

Solution. Let A denote the origin of the
coordinate system and let P denote an arbi-
trary point. The position vector

T
I‘AP:(Z Y ,

z

where x, y, and z are the Cartesian coordi-
nates of the point P. In contrast, the spher-
ical coordinates o, 6, and ¢ of the point P
are defined by:

e The distance from P to A;

e The angle between the position vector
A" to the projection of P onto the
plane through A spanned by a; and as
and the axis parallel to ay;

e The angle between the r4” and the
axis parallel to ag,

respectively. Now introduce new triads b and
¢, such that b is rotated relative to a about
the common 3-direction by an angle 0, i.e.,

cosf) —sinfd O
Ry = sinf cosf O
0 0 1

and c is rotated relative to b about the com-
mon 2-direction by an angle ¢, i.e.,

cos¢p 0 sing
Ry = 0 1 0
—sing 0 cos¢

It follows that

0 0
I‘AP = C 0 :aRa(,RbC 0
o o
ocosfsin ¢
= a| psinfsing |,
0Cos ¢
ie.,

x = pcosfsin @,
y = osinfsin ¢,

Z = 0CoS @,



and
r/y/22 492 —y/ /a2 +y? 0
Ray = | y/V/a* +y* /2 +y*> 0],
0 0 1
z/o 0 vz2+y?/o
Ry = 0 1 0
V> +y*/o 0 z/o
Alternatively,
T T
rAP = a Y = cRchba Yy
z z
0
= c 0 ,

(«* +y*+2%) /o
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which implies that

o= Vat+yr+ 22

0 = arctan £7
x

¢ = arccos S —
VaZ+y?+ 22

Exercise 5.31 Use rotation matrices to
find the relation between polar and spherical
coordinates relative to a coordinate system
with axes parallel to the basis vectors of a
triad a.

Exercise 5.32 Repeat Exercises 5.4,
5.12, and 5.24 using the MAMBO toolbox.
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SUMMARY OF NOTATION

An upper-case R with a pair of triad labels as subscript, such as R.q
and R, 45, was used in this chapter to denote the rotation matrix
between the two triads.

An upper-case R followed by four arguments within parentheses, such
as

R (@7 U1, V2, U3)
was used in this chapter to denote the rotation matrix with eigen-

vector corresponding to the eigenvalue 1 given by the column matrix

T . :
( v Uz U3 ) and whose other eigenvalues are eFie,

SUMMARY OF TERMINOLOGY

(Page 203) Right-handed, orthonormal bases are referred to as triads.

(Page 207) The rotation matriz R, is the matrix whose columns are the matrix
representations of the basis vectors of the triad b relative to the
triad a.

(Page 228) An arbitrary rotation matrix can be decomposed into a product of rota-

tion matrices corresponding to rotations about basis vectors. The
corresponding angles are called Fuler angles.

(Page 229) In the MAMBO toolbox, the procedure MakeRotations generates a ro-
tation matrix.



Chapter 6

Orientations

wherein the reader learns of:

e Using rotation matrices to describe the orientation of a rigid body
or observer relative to another observer;

e Using configuration coordinates to describe time-dependent orienta-
tions;

o Configuration constraints and their implications on the allowable
configurations of a mechanism.

Cy




Practicum

A fascinating array of real-life
mechanisms rely on rotational mo-
tion for their function. Particu-
larly intriguing are mechanisms that
use intricate arrangements of gears
to transmit rotational action about
one axis into rotational or transla-
tional motion about some other axis,
e.g., egg beaters, vehicle transmis-
sions, car differentials, lawn sprin-
klers, and so on. Similarly, interest-
ing uses of translational motion to
generate changes in orientation are
found, for example, in flight simula-
tors.

Pick up a book with schematic
outlines of some of these mecha-
nisms and translate their action and
design into MAMBO projects. Try
to resolve complex arrangements of
detailed parts through combinations
of translations and rotations. This
will hone your modeling skills, pique
your curiosity, and bring the envy of
your peers!
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6.1 Review
6.1.1 Reference Triads

We recall the following observations from Chapter 1:

e The configuration of a rigid body relative to a reference configura-
tion is uniquely described through a combination of a pure transla-
tion and a pure rotation, given the selection of a specific point on
the body that is kept fixed by the pure rotation;

e The pure translation shifts all points on the body from the refer-
ence configuration to an intermediate configuration, such that the
selected point on the rigid body coincides with its location in the
final configuration;

e The subsequent pure rotation is determined by the location in the
final configuration of two other points on the rigid body relative to
the corresponding points in the intermediate configuration.

.
o
'l
)
Y )
.
.

Illustration 6.1
The relative configuration of two observers A and B may be represented

by the configuration of the virtual block corresponding to A relative to
the reference configuration corresponding to 5.

The position and orientation of the virtual block relative to the ref-
erence configuration can be uniquely described through a combination of
a pure translation and a pure rotation, given the selection of a specific
point on the virtual block that is kept fixed by the pure rotation.
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The pure translation shifts all points on the virtual block from the
reference configuration of B to an intermediate configuration, such that
the selected point coincides with the corresponding point in the reference
configuration of A.

The subsequent pure rotation is determined by the location in the
final configuration of two other points on the virtual block relative to the
intermediate configuration.

Let A denote the selected point on the rigid body held fixed by the
pure rotation and denote by B and C' two other points on the rigid body.
In Chapter 1, we found that the configuration of the rigid body relative to
the reference configuration was uniquely determined by the location of the
corresponding points in the final configuration relative to the reference
configuration, provided that the points A, B, and C did not lie on
a common straight line. Choose B and C, such that the separations
AB and AC' have unit length and are perpendicular. Then, the vectors

alz[ﬁ},agz[m},andagzm X ag

are the components of a triad whose orientation uniquely determines the
orientation of the rigid body.

The triad introduced here is called the reference triad of the rigid
body or of the corresponding observer. The reference triad is a triad
whose orientation is fixed relative to the rigid body or fixed relative to
the reference configuration of the observer.

There is no preferred choice of triad to qualify as the
reference triad of a given rigid body or observer.

When describing the configuration of rigid bodies, it is common to
choose triads that correspond to some geometrical feature. For example,
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a natural choice of reference triad of a rectangular block is three mutu-
ally perpendicular vectors of unit length that are parallel to the edges
of the block. In the absence of geometrical features, such as edges or
symmetries, to base the selection of reference triad on, any triad will do.

If two observers A and B share the same reference triad, then the
configuration of B relative to A is described through a pure translation
T 4_5, but no rotation. In other words,

Ry—p=1
Conversely, if
Ru—5=1,

then the reference triads of the two observers A and B coincide.

[ -
- -

Similarly, if the reference triad of a rigid body, say a block, coincides
with the reference triad of an observer A, then the rigid body’s configu-
ration relative to A is described through a pure translation T 4, but no
rotation. In other words,

Ry =1

Illustration 6.2
Suppose the configuration of an observer B relative to an observer A is
given by a non-trivial pure rotation, but no translation, i.e.,

R.A*’B#I7TA*>B:I

Then, the reference triads of A and B do not coincide. The pure ro-
tation R 45 contains the information necessary to rotate the reference
configuration of 4 about the common reference point so that it coincides
with the reference configuration of 5. The rotation R 4.5 is uniquely
determined by the relative orientation of the reference triads of A and B.

251



252

6 Orientations

6.1.2 Rotations

If the reference triads of two observers A and B are denoted by a and b,
respectively, then the pure rotation R 4,5 is uniquely determined by the
rotation matrix R,p, where

Ry = a” eb.

In particular, if R 4.5 corresponds to a rotation about an axis parallel
to the unit vector

by an angle ¢, then

Rab = R(907U17U2;U3)
v+ (1—vi) e (I—c)viva—v3s (1 —c)vivs + vas
def 2 2
= (I—c)viva+uvss  v3+(1—0v3)c (1—c)vavg—v1s |,
(1—c)vivg —vas (1 —c)vgug+v1s  v3+ (1 —v3)c
where ¢ = cos ¢ and s = sin .

In the previous chapter, we developed algebraic operations on ro-
tation matrices that corresponded to the operations on pure rotations
introduced in Chapter 2. For example, the correspondences

Rop— Ra—p, Rpe < Rp—c
imply that
Roe = Ry Ry — RBHC o RAHB = RA*)C'

Using the rotation matrix R, we are also able to express the triad b in
terms of the triad a:

b=aRy

as well as the matrix representation of a vector v relative to the triad b,
bp, in terms of the matrix representation of v relative to the triad a, %v:

by = Ry, “v,
where

Rba = (Rab)il = (Rab)T .



6.2 Examples
6.2.1 A Still Life

Suppose we want to describe the geometry of a wireframe representation
of a tetrahedron, as depicted below.

Cy

Cl 02

Introduce a main observer W with reference point W at the geometric
center of the tetrahedron and with reference triad w. Let the i-th edge
correspond to a rigid body with reference point E; at the midpoint of the
edge and reference triad e(?), such that the egi) basis vector is parallel to

the edge.

Es
Ey / Es
* %, J

[ ] oV

Suppose that the orientation of the tetrahedron is chosen such that
the locations of each of the four corners relative to the W observer are
given by the four position vectors

) oy
2 2
VO =y —ﬁﬁﬁl VO =y —3§Z ,
_ 5 — G
12 12
0
'V = @l cand t'VCr = w 0 ,
_ 6 ¥G)
12 4

where [ is the length of the tetrahedron’s edges.

6.2 Examples

(Ex. 6.1 -
Ex. 6.8)
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The configuration of the i-th edge relative to W is given by a pure
translation T; corresponding to the position vector

I,WE,;

and a pure rotation R; corresponding to the rotation matrix

R

we (),

Specifically, we find that

0
SWEL _ %rwc1 I %rwc2 —w —%l :
_ G
12
1
WEs _ %][,Wc2 n %][,Wc3 —w @l :
_ G
12
,%l
rVEs = %rwcg + %rwcl =w gl ,
_ VG
12
,%l
PWEL _ %rwc1 + %rwcu —w —%l 7
5
12
1
Vs — %rWCQ + %rwc“ =w —@l ,
5
12
and
0
WEe _ %rwc3 + %rW@ —w @l
i
12

We illustrate the computation of the rotation matrices R, ) by con-
sidering the ¢ = 3 edge. Specifically, to compute the rotation matrix
R,,.s, we construct the triad e(®) by requiring that the basis vector e§3)

be parallel to the vector

wCy _ WCs
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Following the method presented in the previous chapters, we find

1

wey WCs 2
(3) _ r —r \/_
€ [TWCr — WG| -w 2 )
(3)
egg) e’ X W3 l
CREE
and
o) — o® x o9 )
The rotation matrix is now given by
3
4 o
Ryey =wlee® = _v3 1
we 5 5 0
0 0 -1
Similarly,
10 0 -3 % 0
Ry = 0 -1 0 s Rye) = @ % 0 ,
00 -~ 0 0 -1
1 1 2 11 2
2 2 2 2 2 2
Rwe(‘l) = % —@ % ,Rwe(s) = % @ % ,
oo g B8 6o g B
3 3 3 3
and
0 -1 0
3 6
Rwe(6> - _335 0 _335
6 g 3
3 3

Illustration 6.3
Suppose we want to model the geometry of a conical pile of rods as shown
in the figure.
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Introduce a main observer VW with reference point W at the top of
the cone and reference triad w, such that the symmetry axis of the cone
is parallel to the vector

V3

vV=w 1
0
and one of the rods is parallel to the vector
1
u=w| V3
0

It follows that the opening angle € of the cone satisfies

% uev V3

COS— = ——— = —
2l 27

ie., 8 =60°.

Let the i-th rod be represented by a rigid rod with reference position
R; at the center of the rod and reference triad (¥ such that ri()f) is parallel
to the rod.

The configuration of the i-th rod relative to the observer W is given
by a pure translation T; corresponding to the position vector

W R
and a pure rotation R; corresponding to the rotation matrix
R'UJT(i) .

Specifically,

o o

PR — ()

o=
—

where [ is the length of the rod.
Let i = 1 correspond to the rod for which rgl) is parallel to u. In
particular,

[[ul]
1 I‘(l) X W1 0
rg ) = —:()’1) =w 0 ,
r; ° X WlH -1

(1)

rél) = rgl) Xry =w
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and thus
0o —F 4
Rwr(l) =w' e 7’(1) = 0 % @
-1 0 0

The i-th rod is rotated relative to the first rod about the axis through W
that is parallel to v by an amount

2
Nﬂ-(i_l)v

where N is the number of rods. The matrix representation of v relative
to the () triad is given by

ED)

’UZRru)wa
T
0 - 3 V3
=loos o] [
1 0 0 0
0
— ~1

It follows that

21 1 \/g
i =R Z(i—1),0,—=, L2
R,y R(N(Z )0, 5 2>7

where the notation R (p, v1,v2,v3) was introduced in the previous chap-

ter. The rotation matrix R, . is now obtained from the product

R’wT(l) Rr(l)’r‘('i) .

6.2.2 The Single Moving Body

When time-dependent changes take place in the configuration of a rigid
body relative to the main observer, the recommended methodology re-
quires the introduction of at least one auxiliary observer between the rigid
body and the main observer. Specifically, the auxiliary observer is intro-
duced in such a way that the rigid body remains stationary relative to
the auxiliary observer, while the motion of the auxiliary observer relative
to the main observer contains the entire time-dependence.
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g
w
)
)
W

Suppose, for example, that we want to describe the configuration of
a single, freely moving rigid body. Introduce a main observer W with
reference point W somewhere in space and reference triad w. Introduce
an auxiliary observer A, relative to which the rigid body is stationary,
with reference point A coinciding with some arbitrary point on the rigid
body and reference triad a.

Assume for simplicity that the position of the rigid body relative
to W is described by the identity translation. Then, the configuration
of the observer A relative to W is given by the pure rotation Ryy_, 4
corresponding to the rotation matrix

Ruya-

Since the rigid body’s orientation is unrestricted, we can usea 1 —3 —1
sequence of rotations to decompose Ryy_, 4, such that

1 0 0 Co —S8o 0 1 0 0
Rwa = 0 c1 —S81 S92 Co 0 0 Cc3 —S83 y
0 S1 (&1 0 0 1 0 S3 C3

where ¢; = cosq; and s = singq;, and ¢1, g2, and q3 are time-dependent
quantities that uniquely specify the rotation matrix. Following the termi-
nology introduced in Chapter 4, these quantities are called configuration
coordinates, since they provide information about the configuration of the
rigid body relative to the main observer as a function of time.

There are numerous other choices of decompositions of Ryy_. 4 that
can be specified by three configuration coordinates. The discussion in
the previous chapter showed that fewer than three coordinates would not
suffice to specify an arbitrary orientation. It follows that, in the absence
of translations, the rigid body has three geometric degrees of freedom.
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Illustration 6.4
In the previous chapter, we found that the [7, j]-th entry in a rotation ma-
trix Rgp could be expressed as

3
[Rapl;; = 0ijcosqa + (1 — cosqa) gig; — singy E €ijk ks
=1
where
011 = 022 = 033 = €123 = €231 = €312 = —€321 = —€213 = —€132 = 1

and zero otherwise,

q1
q2
q3

is the eigenvector of Ry, corresponding to the eigenvalue 1, and
¢ +a;+a3 =1

This last condition is a configuration constraint on the configuration co-
ordinates q1, g2, q3, and q4.

An alternative formulation is obtained by introducing the new config-
uration coordinates

¢ = qisinq—‘i7 1=1,2,3, and ¢4 = cos 4
2 2
Since

au
2 )

cosqq = 20052% —1=1 —2sin2%4 and singqy = 2sian—4(:os

it follows that

3
8ij cos g + (1 — cosqa) giq; — sinqa Y _ €ijkt
k=1
3
=85 (243 — 1) +2Gid; — 241 Y _ €ijndn-
k=1

The rotation matrix thus becomes
203 +231 — 1 241Go — 24aqs 24143 + 2GaGo
20201 +2GaGs 2G5 +2G5 — 1 24243 — 2GuGa
20301 — 2G1G>  2G3G2 + 2qaq1 243 + 2G5 — 1
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The configuration coordinates q1, g2, q3, and ¢4 are called Euler param-
eters. Only values that satisfy the configuration constraint

N . N N . g4 q4
q?+q§+q§+qi=(qf+qg+q§)sm25+co§5:1

correspond to actual configurations of the rigid body.

Suppose we want to describe the configuration of a rod attached at
one end to a spherical joint.

W3

Introduce a main observer W with reference point W at the spherical
joint and reference triad w. Let A be an auxiliary observer with reference
point A coinciding with W and reference triad a, such that the rod is
parallel to the a; vector.

The configuration of the rod relative to the observer A is given by a
pure translation T corresponding to the position vector

I'AC,

where C' is the point at the center of the rod. By assumption,

—

1
2

¢ =q 0 ,
0

where [ is the length of the rod.
The configuration of the observer A relative to W is given by a pure
rotation Ryy_, 4 corresponding to the rotation matrix

Rya.

The pure rotation Ryy_, 4 may be decomposed into two pure rotations by
the introduction of an intermediate auxiliary observer B with reference
point B coinciding with A and W and reference triad b, such that the
axes held fixed by the pure rotations Ryy_.5 and Rp_. 4, respectively, are
parallel to the vectors w3 and w1, respectively. In particular,

cosqy —sing; O
Ruwp = R(q1,0,0,1) = [ sing; cosqy 0O
0 0 1
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Moreover, the matrix representation of the vector wy in the b triad is
given by

"(W1) = Rew" (wW1)
cosqy —sing; O T 1
= sinqu cosq; O 0
0 0 1 0
coS q1
= —sinq
0
and thus
Ry = R(g2,co8q1, —sing,0)
cosqasin® q; +cos?q  cosqqsing (cosge — 1) —sing; singy
= cosq sing; (cosqa — 1) cosgocos? q + sin? ¢y — cosqy sings
sin ¢ sin g cOS @1 sin g COS @2

The configuration coordinates ¢; and g2 suffice to describe an arbitrary
orientation of the rod. In particular, the position vector

Ve pAC
11
= a 0
0
11
= wRy, 0
0
1
5l
= wRuwRya 0
0
%lcosql

_ 17
= w/| szlsing;cosge

17 .- .
51 sin q; sin go

6.2.3 Degrees of Freedom

In Chapter 4, we found that a free rigid body, in the absence of rotations,
has three geometric degrees of freedom. This was tantamount to the claim
that:

e No fewer than three configuration coordinates would suffice to cap-
ture all possible positions of the rigid body;

e No more than three configuration coordinates would be necessary
to capture all possible positions of the rigid body.



262

6 Orientations

In this chapter, we found that a free rigid body, in the absence of trans-
lations, has three geometric degrees of freedom. This was tantamount to
the claim that:

e No fewer than three configuration coordinates would suffice to cap-
ture all possible orientations of the rigid body;

e No more than three configuration coordinates would be necessary
to capture all possible orientations of the rigid body.

From Chapter 1, we recall that the specification of the position of a rigid
body is entirely independent and separate from the specification of the
orientation of the rigid body. We conclude, as already demonstrated in
Chapter 1, that a rigid body whose position and orientation can change
arbitrarily has six geometric degrees of freedom.

When a rigid body has fewer than six geometric degrees of freedom,
it is constrained. As discussed in Chapter 4, this implies that there are
configuration constraints, i.e., equalities in the configuration coordinates,
that restrict the choice of values for the configuration coordinates that
correspond to allowable configurations of the rigid body. For example,
the rigid bodies in Chapter 4 were constrained in orientation, since three
configuration coordinates sufficed to describe their configuration. Simi-
larly, the rigid bodies considered thus far in this chapter were constrained
in position, since three configuration coordinates sufficed to describe their
configuration.

6.2.4 Multiple Moving Rigid Bodies

In the absence of constraints, each rigid body in a multibody mechanism
has six geometric degrees of freedom. If N rigid bodies have fewer than
6N degrees of freedom, the mechanism is constrained.

Suppose you want to describe the geometry of a bench-based radial
arm saw as shown in the figure.



There are four parts that move relative to the stationary workbench,
namely, the tool arm, the tool trolley, the blade support, and the blade.
A vertical cylinder attached to the workbench provides the support for
the mechanism. Specifically:

e The tool arm is free to slide up and down along this cylinder as well
as rotate about the cylinder;

e The tool trolley is free to slide along the arm:;

e The blade support is free to rotate relative to the tool trolley about
an axis parallel to the arm;

e The blade is free to rotate about an arm perpendicular to the axis
of rotation of the blade support.

It follows that the radial arm saw has five geometric degrees of freedom,
two that correspond to translations and three corresponding to rotations.

Introduce a main observer W, relative to which the workbench re-
mains stationary. Let its reference point W be located at the center of
the vertical cylinder and level with the table top. Let its reference triad
w be oriented such that the table top is parallel to the w; and wy basis
vectors and w3 points away from the table top in the direction of the tool
arm.

W

W3

W2

Since each of the four parts of the radial arm saw move relative to W,
the recommended methodology requires the introduction of an auxiliary
observer for each part, such that the part’s configuration is stationary
relative to the corresponding auxiliary observer.

Introduce an auxiliary observer A, relative to which the tool arm
remains stationary. Let its reference point A be located at the center of
the vertical cylinder and level with the tool arm. Let its reference triad
a be oriented such that az equals w3 and as is parallel to the tool arm.

6.2 Examples
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H/

D

The configuration of the observer A relative to W is then given by a
pure translation T,y _, 4 corresponding to the position vector

I.WA

and a pure rotation Ryy_, 4 corresponding to the rotation matrix

Rya.
Specifically,
0
tA=wl| 0 ,
q1

since the tool arm may only slide in the wj direction. Moreover,

cosqy —sings 0
Ryo = R(q2,0,0,1) = | singa cosg2 0 |,
0 0 1

since the tool arm may only rotate about the ws direction.

Introduce an auxiliary observer B, relative to which the tool trolley
remains stationary. Let its reference point B be located on the center
line of the tool arm and symmetric relative to the ends of the trolley. Let
its reference triad b equal a.



bs

The configuration of the observer B relative to A is given by a pure
translation T 4,5 corresponding to the position vector

I‘AB

and the identity rotation R 4.5 = I. Specifically,

0
rAB =a qs )
0

since the trolley may only slide along the a, direction.

Introduce an auxiliary observer C, relative to which the blade support
remains stationary. Let its reference point C be located at the center of
the axis about which the blade support rotates. Let its reference triad ¢
be oriented such that co equals as and c3 points toward the center of the

blade.

C2

C3

The configuration of the observer C relative to B is given by a pure
translation Tg_,¢ corresponding to the position vector

I,BC’

6.2 Examples
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and the pure rotation Rp_.¢ corresponding to the rotation matrix

Rype.
Specifically,
0
¢ =q 0 ,
—D1

where p; is some time-independent parameter. Moreover,

cosqe 0 singy
Ry = R(q4,0,1,0) = 0 1 0 ,
—singg 0 cosqy

since the blade support rotates about the as direction.

Finally, introduce an auxiliary observer D, relative to which the blade
remains stationary. Let its reference point D be at the center of the blade.
Let its reference triad d be such that ds equals cs.

The configuration of the observer D relative to C is given by the pure
translation T¢_,p corresponding to the position vector

I‘CD

and a pure rotation R¢_,p corresponding to the rotation matrix

Reg.
Specifically,
0
r¢P =¢ 0 ,
b2

where ps is some time-independent parameter. Moreover,

cosqs —sings O
R.i = R(g5,0,0,1) = | sings cosgs 0 |,
0 0 1

since the blade rotates about the c3 direction.
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6.3 MAMBO

The relative orientation of two observers can be uniquely described through
a pure rotation, given the selection of a reference triad for each of the
observers. If the observer A has the reference triad a and the observer B
has the reference triad b, then the rotation matrix R, uniquely describes
the pure rotation R 4_.5 between A and B.

In a MAMBO geometry description, the specification of a rotation
matrix relating the reference triads of different observers is given through ﬁ:
an ORIENT statement.

Illustration 6.5

The following extract from a MAMBO .geo file shows the use of the
ORIENT statement to describe the relative orientation of successive
observers.

MODULE W {
BODY E {
ORIENT {1/sqrt(2),-1/sqrt(2),0,0,0,-1,1/sqrt(2),1/sqrt(2),0}
BODY F {
ORIENT {cos(theta),0,sin(theta),0,1,0,
-sin(theta),0,cos(theta)}

Here, the orientation of the observer &£ relative to the observer W is
given by a pure rotation Ryy_.¢ corresponding to the rotation matrix

B )
V2 V2
Ry = 0 0 —1 ,
4 L 0
V2 V2

where e and w are the reference triads of £ and W, respectively.
Similarly, the orientation of the observer F relative to the observer £
is given by a pure rotation Rg¢_, £ corresponding to the rotation matrix

cosf) 0 sinf
R = 0 1 0 ,

—sinf 0 cosf

where f is the reference triad of F.

By default, MAMBO interprets the absence of an ORIENT statement
to be equivalent to the specification
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ORIENT {1,0,0,0,1,0,0,0,1}

i.e., that the reference triad of the current observer coincides with that
of the parent observer.

The orientation of a rigid body relative to some observer can be
uniquely described through a pure rotation. If the observer A has the
reference triad a and the triad b is the reference triad of the rigid body,
then the rotation matrix R,, uniquely describes the pure rotation R 4
between A and the rigid body.

In MAMBO, the reference triad associated with a cylinder is oriented
in such a way that the 3-direction is parallel to the symmetry axis of the
cylinder. Similarly, the reference triad associated with a MAMBO block
is oriented in such a way that the basis vectors are parallel to the edges
of the block. Since a MAMBO sphere lacks any distinguishing surface
features, the associated reference triad has some predefined orientation
relative to the sphere.

INlustration 6.6

We may use the ORIENT statement to describe the rotation matrix re-
lating the reference triad of an observer and the reference triad of a rigid
body.

MODULE W {
BODY E {
ORIENT {1/sqrt(2),-1/sqrt(2),0,0,0,-1,1/sqrt(2),1/sqrt(2),0}
BODY F {
ORIENT {cos(theta),0,sin(theta),0,1,0,
-sin(theta),0,cos(theta) }
CYLINDER {
ORIENT {1/2,-1/sqrt(2),1/2,
1/sqrt(2),0,-1/sqrt(2),
1/2, 1/sqrt(2), 1/2}
}
}
BLOCK {
ORIENT {-1,0,0,0,0,1,0,1,0}
}

}
}

Here, the orientation of the block relative to the observer £ is given
by a pure rotation R¢ corresponding to the rotation matrix

-1

00
Ro=| 0 01|,
0 10
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where b is the reference triad of the block and e is the reference triad of
the &£ observer.

Similarly, the orientation of the cylinder relative to the observer F is
given by a pure rotation Rz corresponding to the rotation matrix

1

1
2 V2
Re—| L 0o —L
fe=| Vil
O |
2 22

where c¢ is the reference triad of the cylinder and f is the reference triad
of the F observer.

The tree structure corresponding to the geometry description in the
last illustration has the following form:

Cylinder

We could represent the same arrangement of rigid bodies relative to
the W observer by relating the configuration of the block to the F ob-
server.

4%

&
f
Block Cylinder

The corresponding MAMBO geometry description becomes

MODULE W {
BODY E {
ORIENT {1/sqrt(2),-1/sqrt(2),0,0,0,-1,1/sqrt(2),1/sqrt(2),0}
BODY F {
ORIENT {cos(theta),0,sin(theta),0,1,0,
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-sin(theta),0,cos(theta)}
CYLINDER {
ORIENT {1/2,-1/sqrt(2),1/2,1/sqrt(2),0,-1/sqrt(2),
1/2, 1/sqrt(2), 1/2}

BLOCK {
ORIENT {-cos(theta),-sin(theta),0,0,0,1,
-sin(theta),cos(theta),0}
}
}
}
}

Here, the ORIENT statement relating the pure rotation between the F
observer and the block is obtained from the following computation:

Ry = RfeReb:(Ref)TReb

cos@ 0 sin@ T -1 0 O
= 0 1 0 0 0 1
—sinf 0 cosf 0 1 0

—cosf) —sinf 0

= 0 0 1

—sinf  cosf O

The F observer may be entirely eliminated from the observer tree
structure.

W

Block Cylinder

The corresponding MAMBO geometry description becomes

MODULE W {
BODY E {
ORIENT {1/sqrt(2),-1/sqrt(2),0,0,0,-1,1/sqrt(2),1/sqrt(2),0}
CYLINDER {

ORIENT {(cos(theta)+sin(theta))/2,
(-cos(theta)+sin(theta))/sqrt(2),
(cos(theta)+sin(theta))/2,
1/sqrt(2),0,-1/sqrt(2),
(cos(theta)-sin(theta))/2,
(cos(theta)+sin(theta))/sqrt(2),

(cos(theta)-sin(theta))/2}



}

}

}
BLOCK {

ORIENT {-1,0,0,0,0,1,0,1,0}
}

Here, the ORIENT statement relating the pure rotation between the &
observer and the cylinder is obtained from the following computation:

REC

= Reyliye
1 1 1
cosf 0 sinf 2 V2 2
1 1
= 0 1 0 = 0 -%
—sinf 0 cos@ 1 1 1
2 /3 2

1 cosf + $sinf —%cos&—i—%sirﬂ 2 cosf + §sind
1 1
4 0 L
! V2

1 _ 1 1 1 1 _ 1l
cos ) — 5 sinf ﬁCOSG+\/§SIHO 5 cost) — 5sin6

2

From Chapter 4, we recall the possibility of using labels and place-

holders to replace actual numbers in a MAMBO geometry description. In
particular,

e The MAMBO time variable can be changed interactively by the user

during a MAMBO session and changes linearly during a simulation.
The MAMBO time variable must be declared as such in the MAMBO
.dyn file with a time statement;

MAMBO parameters can be changed interactively by the user dur-
ing a MAMBO session, but remain constant during a simulation.
MAMBO parameters must be declared as such in the MAMBO .dyn
file with a parameter statement;

MAMBO animated variables cannot be changed interactively by the
user during a MIAMBO session, but change with time during a simu-
lation. The dependence of a MAMBO animated variable on MAMBO
parameters, MAMBO states, and the MAMBO time variable is de-
clared within an anims block in the MAMBO .dyn file;

MAMBO state variables can be changed interactively by the user
during a MAMBO session and may change with time during a sim-
ulation. Any change is governed by a set of kinematic differential
equations or by a MAMBO dataset. MAMBO state variables must be
declared as such in the MAMBO .dyn file with a states statement.

All of these types of placeholders may be used in ORIENT statements.
The only restriction is that the matrix contained within the ORIENT

6.3 MAMBO

oA B A
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statement should be orthogonal!l. A mnon-orthogonal matrix within a
MaMBO ORIENT matrix may lead to unexpected visual effects, de-
sirable or undesirable.

As noted in the previous chapter, the POINT statement only conveys
information about a matrix representation of a position vector. The cor-
responding reference triad is understood to be associated with the parent
observer in the observer hierarchy. In the MAMBO geometry description,

MODULE W {
BODY A {
POINT {1/sqrt(2),-1,1/sqrt(2)}
ORIENT {1/sqrt(2),-1/sqrt(2),0,0,0,-1,1/sqrt(2),1/sqrt(2),0}
BODY B {
POINT {-1+sin(theta),0,-1+cos(theta)}
ORIENT {cos(theta),0,sin(theta),0,1,0,
-sin(theta),0,cos(theta)}
}

}
}

the configuration of the A observer relative to W is given by a pure
translation Ty _, 4 corresponding to the position vector

1

V2
A =w | -1
1
v
and a pure rotation Ryy_. 4 corresponding to the rotation matrix
1 1
7z vV
Rya = 0 0 -1
B 0
V22

where W and A are the reference points of W and A, respectively, and
w and a are the reference triads of YW and A, respectively.
Similarly, the configuration of the BB observer relative to A is given by
a pure translation T 4.5 corresponding to the position vector
—1+sinf
AB 0

r°” =a
—1+ cosf
and a pure rotation R 4,5 corresponding to the rotation matrix

cos 0 sinf
Ry = 0 1 0 ,
—sinf 0 cosf

ISee Definition 5.1 on page 213.
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where B and b are the reference point and reference triad, respectively,
of the observer B.

As before, we may reorganize the geometry description, such that the
B observer is promoted to main observer.

MODULE B {
BODY A {
POINT {cos(theta)-sin(theta),0,sin(theta)+cos(theta)-1}
ORIENT {cos(theta),0,-sin(theta),0,1,0,sin(theta),0,cos(theta)}
BODY W {
POINT {-1,0,-1}
ORIENT {1/sqrt(2),0,1/sqrt(2),-1/sqrt(2),0,1/sqrt(2),0,-1,0}
}
}
}

Here, the configuration of the A observer relative to B is given by a pure
translation Tp_, 4 corresponding to the position vector

—1+sin0

B4 = PA= 0
—1 4 cosf

—1+siné

= —bRy, 0

—1 4+ cosf
—1-+sin6

= —b(Ra)" 0
—1 4+ cosf

cos ) —sin 6
= b 0
sinf + cosf — 1

and a pure rotation Rg_, 4 corresponding to the rotation matrix

cos# 0 —sinf
Rpa = (Rap)" = 0 1 0
sinf 0 cos@

Similarly, the configuration of W relative to A is given by a pure
translation T 4_,yy corresponding to the position vector

AW WA

S LS

= —aRuw

S LSk

273



274

6 Orientations

(Ex. 6.9 —
Ex. 6.10)

1
vz
= —a(Rupa)" | -1
1
V2
~1
= a 0
-1

and a pure rotation R 4_,)y corresponding to the rotation matrix

1 0 L
V2 V2
T
Raw - (Rwa) - _% 0 %
0 -1 0

6.4 The MAMBO Toolbox
6.4.1 Triads

Triads are represented within the MAMBO toolbox by entries in the global
variables GlobalTriadDeclarations and GlobalTriadDefinitions.
User-initiated changes to these variables are made possible through the
procedures DeclareTriads and DefineTriads.

Illustration 6.7
In the following MAMBO toolbox session, the triads a, b, and ¢ are de-
clared to the program.

> Restart():
> DeclareTriads(a,b,c):

The statement
> DefineTriads([a,b,theta,1],[b,c,Pi/2,1,0,1]):
establishes the rotation matrices

1 0 0
Ry =R(0,1,0,0) =1 0 cosf —sinf
0 sinf cosf

and
11 1
2 V2 2
™ 1 1
RbczR(§,170,1)= » 0 -5
1 1 1
2 2

The effect of these statements on the global variables GlobalTriad-
Declarations and GlobalTriadDefinitions is made clear by the fol-
lowing statements:
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> print(GlobalTriadDeclarations) ;

table(]
b=/a, c}
¢ = {0}
a = {b}

)

> print(GlobalTriadDefinitions) ;

table(]

1

5 V2

1 0 0

0 cos(f) —sin(h)
0 sin(f) cos(9)

0 cos(0)
0 —sin(0)

sin(

0
cos(0)

The contents of the global variables GlobalTriadDeclarations and
GlobalTriadDefinitions reflect the fact that the relative orientations
of the triads @ and b and the triads b and ¢, respectively, are now known.
Where GlobalTriadDeclarations tracks all direct relations between tri-
ads, GlobalTriadDefinitions stores any rotation matrices between tri-
ads in GlobalTriadDeclarations that have been computed during a

MAMBO toolbox session.
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ﬁ The MAMBO toolbox procedure FindRotation can be invoked to com-
pute the rotation matrix between any two triads that are declared and

are related. Continuing with the MAMBO session in the illustration, we
find

> FindRotation(a,c);

1 _% 5
%cos(@) Vo %sin(@) —% sin(0) v/ —% cos(0) v/ — %sin(@)

[N}
DN =

1 . 1 1 1 . 1
5 sin(0) V2 + 5 cos(0) 3 cos(6) V2 ~3 sin(0) V2 + 5 cos(0)

as follows from

Rac = RabRbc
1 1 1
1 0 0 2 V2
= 0 cosf —sin0 % 0 —%
0 sinf cosd 1 1 1
2 2 2
1 _ 1 1
2 V2 2
= %cosﬁf%siHH f%sinG f%cosﬂf%SmQ

%sin0+ %COS@ %cos@ —%sin9+ %cos@

The global variable GlobalTriadDefinitions is automatically appended
i . : T
with the rotation matrices R, and R., = (Rac)

The MAMBO toolbox employs the rotation matrices between two tri-
ﬁ ads to apply the &oo, &xx, VectorLength, and Express functions to
MAMBO vectors with matrix representations relative to multiple triads.

Their function is illustrated with the following sequence of statements:

> v:=MakeTranslations([a,1,0,1],[b,0,1,1]):
> w:=MakeTranslations(c,1,1,0):

> v &oo w;

1 1 1 1
1+ B V2 + 3 sin(0) V2 + B cos(0) + B cos(0) V2

> Express(v,a);
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table(]
1 = table(|
“Coordinates” = [1, cos(f) — sin(6), 1 + sin(#) + cos(0)]
“Triad” = a
)
“Type” = “Vector”
“Size” =1

)

> v &XX W,

table(]
1 = table(|
. 1 1 . 1 .
“Coordinates” = | — 3 cos(0) V2 + 3 sin(6) + 5 sin(0) V2,
1 1 1. 1 1
573 2— B sin(0) V2 — 5 cos(f) — 5 cos(0) V2,
% cos(0) V2 — % sin(f) — % sin(6) \/5}
“Triad” = a
)
“Type” = “Vector”
2 = table(]
VU s U IS SIS B |
Coordinates” = 53 3 V2, 5 + 5 \/5]
“Triad” = b
)
“Size” =2
)

> VectorLength(v);

V4 + 2sin() + 2 cos(6)
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6.4.2 Observers

As discussed in Chapter 4, the DefineObservers procedure is used to
associate a point and a triad with an observer. For example, let A, B,
and W and a, b, and w, be the reference points and reference triads,
respectively, of three observers A, B, and W, such that

aRwa = R(qh 17 170) R(Q27 1705()) )

,and Ry, = R(g3,0,1,0) R(q4,0,0,1).

_ OO Wi

The following statements provide the necessary information to the MAM-
BO toolbox.

> Restart():

DeclareObservers(A,B,W):
DeclareTriads(a,b,w):
DeclarePoints(A,B,W):
DefinePoints([W,A,a,1,2,3],[A,B,a,3]):
DefineTriads([w,a, [ql,1,1,0], [g92,1]],
[a,b, [g3,2],[q4,3]1]):
DefineObservers([W,W,w],[A,A,a], [B,B,b]):

VVVVYVVYV

The MAMBO toolbox procedure FindOrientation can be invoked to
compute the rotation matrix corresponding to the pure rotation relating
the orientations of two observers.

> FindOrientation(A,B);

cos(g8)cos(q4) —cos(q3)sin(q4) sin(g3)
sin(q4) cos(q4) 0
—sin(q3)cos(q4) sin(¢3)sin(qs)  cos(g3)

We may again use the DefineNeighbors and GeometryQutput com-
mands to generate a MAMBO geometry description using the observers
introduced above.

> DefineNeighbors([W,A],[A,B]):
> GeometryOutput (main=W);

MODULE W {
BODY A {

POINT
{1/2*cos(ql)+1/2+2x(1/2-1/2*cos(ql) ) *cos(q2) +sin(ql) *2~(1/2)
*sin(q2)-3*(1/2-1/2%cos(ql))*sin(q2)+3/2*sin(ql)*2~ (1/2) *cos
(q2) ,1/2-1/2%cos(ql)+2*(1/2*cos(ql) +1/2) *cos(q2) -sin(ql) *2~ (
1/2)*sin(q2)-3*(1/2*cos(q1)+1/2) *sin(q2)-3/2*sin(ql) *2~ (1/2)
*cos(q2) ,-1/2*sin(ql1)*2~(1/2)+sin(q1)*2~ (1/2) *cos (q2) +2*cos (
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ql) *sin(q2)-3/2*sin(ql) *2~ (1/2) *sin(q2) +3*cos(ql) *cos(q2) }
ORIENT
{1/2%cos(q1)+1/2, (1/2-1/2*cos(ql) ) *cos(g2) +1/2*sin(q1) *2~ (1/
2)*sin(q2) ,-(1/2-1/2%cos(ql))*sin(q2)+1/2*sin(ql) *2~ (1/2)*co
s(g2),1/2-1/2x*cos(ql), (1/2*cos(ql)+1/2)*cos(q2)-1/2*sin(ql) *
27(1/2)*sin(q2) ,-(1/2xcos(ql)+1/2)*sin(q2)-1/2*sin(ql)*2~(1/
2)*cos(q2) ,-1/2*sin(ql)*2"(1/2) ,1/2*sin(ql) *2~ (1/2) *cos(q2) +
cos(ql)*sin(q2),-1/2*sin(q1)*2~(1/2)*sin(q2)+cos(ql)*cos(q2) }
BODY B {
POINT {0,0,1}
ORIENT
{cos(g3) *cos(g4) ,-cos(q3)*sin(q4) ,sin(q3) ,sin(q4) ,cos(q4),0,-
sin(q3) *cos(q4) ,sin(g3)*sin(q4),cos(q3)}
}

}
}

Illustration 6.8
As in the previous chapter, we may reorganize the observers so as to pro-
mote A to be the main observer:

or

> GeometryOutput (main=A);

MODULE A {
BODY W {
POINT {-1,-2,-3}
ORIENT
{1/2*cos(ql)+1/2,1/2-1/2*cos(ql) ,-1/2*sin(ql)*2"(1/2),(1/2-1
/2*cos(ql))*cos(q2)+1/2*sin(ql)*2~ (1/2)*sin(q2) , (1/2*cos(ql)
+1/2)*cos(q2)-1/2*sin(ql)*27(1/2) *sin(q2) ,1/2*sin(ql) *2" (1/2
)*cos(q2)+cos(ql) *sin(q2) ,-(1/2-1/2*cos(ql) ) *sin(q2)+1/2*sin
(q1)*27(1/2)*cos(q2) ,~(1/2*cos(ql)+1/2) *sin(q2)-1/2*sin(ql) *
27 (1/2)*cos(q2) ,-1/2*sin(q1)*2~(1/2) *sin(q2) +cos(ql) *cos(q2) }
}

BODY B {
POINT {0,0,1}
ORIENT
{cos(g3) *cos(g4) ,-cos(g3) *sin(q4) ,sin(q3) ,sin(qg4) ,cos(q4),0,-
sin(qg3)*cos(q4) ,sin(q3) *sin(q4),cos(g3)}
}

}

Undo () :
DefineNeighbors([W,B], [A,B]):
GeometryOutput (main=A) ;

vV V V

MODULE A {
BODY B {
POINT {0,0,1}
ORIENT
{cos(g3) *cos(g4) ,-cos(q3) *sin(q4) ,sin(q3) ,sin(qg4) ,cos(q4),0,
-sin(q3)*cos(g4) ,sin(g3)*sin(q4),cos(q3)}
BODY W {
POINT
{-cos(g3)*cos(q4)-2*sin(q4)+4*sin(q3) *cos(q4) ,cos(q3) *sin(qd
)-2*cos(q4)-4*sin(q3) *sin(q4) ,-sin(q3)-4*cos(q3)}
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ORIENT
{cos(g3)*cos(q4)*(1/2xcos(ql)+1/2)+sin(q4) *((1/2-1/2*cos(ql)
)*cos(q2)+1/2xsin(q1)*2” (1/2)*sin(q2))-sin(qg3) *cos(q4) *(-(1/
2-1/2%*cos(ql))*sin(q2)+1/2*sin(ql) *2~ (1/2) *cos(q2)) ,cos(q3) *
cos(q4)*(1/2-1/2*cos(ql))+sin(qd) *((1/2*cos(ql)+1/2)*cos(q2)
-1/2*sin(q1)*2~(1/2) *sin(q2))-sin(q3) *cos(q4) * (- (1/2*cos(ql)
+1/2)*sin(q2)-1/2*sin(ql) *2~(1/2) *cos(q2)) ,-1/2*cos(g3) *cos(
q4) *sin(q1)*2"(1/2)+sin(q4)*(1/2*sin(ql) *2~ (1/2) *cos(q2) +cos
(q1)*sin(q2))-sin(g3) *cos(q4) *(-1/2%sin(q1) *2~ (1/2) *sin(q2) +
cos(ql)*cos(q2)),-cos(g3)*sin(q4) *(1/2*cos(ql)+1/2)+cos(q4) *
((1/2-1/2*cos(ql))*cos(q2)+1/2*sin(ql)*2~(1/2)*sin(q2) ) +sin(
q3) *sin(q4) *(-(1/2-1/2*cos (ql) ) *sin(q2) +1/2*sin(ql) *2~ (1/2) *
cos(q2)),-cos(g3)*sin(q4) *(1/2-1/2xcos(ql) ) +cos(qd) * ((1/2*co
s(q1)+1/2)*cos(q2)-1/2*sin(ql) *2~ (1/2) *sin(q2) ) +sin(g3) *sin(
q4) *(-(1/2xcos(q1)+1/2) *sin(q2)-1/2*sin(ql) *2~ (1/2) *cos (q2))
,1/2%cos(q3)*sin(q4) *sin(ql)*2~ (1/2)+cos(q4) *(1/2xsin(ql) *2"~
(1/2)*cos(g2)+cos(ql)*sin(q2) ) +sin(q3) *sin(q4) *(-1/2*sin(ql)
*27(1/2)*sin(q2)+cos(ql)*cos(qg2)),sin(q3) *(1/2*cos(ql)+1/2)+
cos(g3)*(-(1/2-1/2*cos(ql)) *sin(q2)+1/2*sin(ql) *2~ (1/2) *cos(
92)),sin(q3)*(1/2-1/2*cos(ql) ) +cos (q3) * (- (1/2*cos(ql)+1/2) *s
in(q2)-1/2*sin(q1)*2"~(1/2)*cos(q2)),-1/2*sin(q3) *sin(ql)*2"(
1/2)+cos(g3)*(-1/2*sin(ql) *2~ (1/2) *sin(q2) +cos(ql) *cos(q2) ) }
}

}
}

where we used the Undo utility to undo the latest change in any of the
global variables.

6.4.3 A Sample Project

Suppose you want to visualize the motion of a wireframe representation
of a tetrahedron that is turning over on a stationary plane while keeping
one corner fixed, as depicted below.




6.4 The MAMBO Toolbox

Introduce a main observer W with reference point W at the stationary
corner of the tetrahedron and reference triad w, such that the stationary
plane through W is spanned by the basis vectors w; and wy. Further-
more, let A be an auxiliary observer, relative to which the tetrahedron is
stationary, with reference point A at the corner kept fixed relative to W
and reference triad a, such that

17 17
l 2 2
A% =q| 0 |, =4q @l ,and r19 = ¢ %l ,
’ 0 o

where C7, Cy, and C3 are the remaining corners of the tetrahedron and
[ is the length of the tetrahedron’s edges.

Cs
as

Cq
Let the i-th edge correspond to a rigid body with reference point E; at

the midpoint of the edge and reference triad e(*), such that the egi) basis
vector is parallel to the edge. The configuration of the i-th edge relative
to A is given by a pure translation T'; corresponding to the position vector

PAB:

and a pure rotation R; corresponding to the rotation matrix
Roew.

Specifically, we find that

1
pABL — ZpACH

2
AE L ac
ro? = 51' 2,
AE L ac
re = 51’ 3,
1 1
pABs — ZpACH | Z AC

2
ABs _ ercl 4 Lpac
2
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and

ags _ L oac, + 1 ac,
2 2

r

To compute the rotation matrices
Rae(’i) = a'T i e(i)7

we proceed by constructing the triads e, such that

S rAC
LT
() _ 1A
e’ = ————
b e
RONIE
T
@ pACs _ RAC
N
5) rACs _ pAC
R
and
e(G) _ pACs _ 1 ACs
b e e

The remaining basis vectors egi) and e:(f) are then obtained from the

formula
(i) o egi) X as
e =——0
et x 2]

and

o) — eff x of.

The MAMBO toolbox statements

Restart():

DeclareObservers(W,A) :
DeclarePoints(W,A,seq(cat(E,i),i=1..6),
seq(cat(C,1i),i=1..3)):
DeclareTriads(w,a,seq(cat(e,i),i=1..6)):
DefineObservers([W,W,w], [A,A,a]):
DefineNeighbors ([W,A]):
DefinePoints([A,C1,a,1,0,0],
[A,C2,a,1/2%1,sqrt(3)/2%1,0],
[A,C3,a,1/2*1,sqrt(3)/6%1,sqrt(6)/3x1]):

VVVVVVVVVYV
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DefinePoints([A,E1,(1/2) &+** FindTranslation(A,C1)],
[A,E2,(1/2) &**x FindTranslation(A,C2)],
[A,E3,(1/2) &** FindTranslation(A,C3)],
[A,E4,(1/2) &** (FindTranslation(A,C1)

&++ FindTranslation(A,C2))],

[A,E5,(1/2) &**x (FindTranslation(A,C1)

&++ FindTranslation(A,C3))],

[A,E6,(1/2) &** (FindTranslation(A,C2)

&++ FindTranslation(A,C3))]):

b1:=(1/1) &** FindTranslation(A,C1):
b2:=(1/VectorLength(bl &xx MakeTranslations(a,3)))
&*x* (bl &xx MakeTranslations(a,3)):

b3:=bl &xx b2:
DefineTriads(a,el,matrix(3,3,(i,j)->
MakeTranslations(a,i) &oo cat(b,j))):

b1:=(1/1) &** FindTranslation(A,C2):
b2:=(1/VectorLength(bl &xx MakeTranslations(a,3)))
&*x*x (bl &xx MakeTranslations(a,3)):

b3:=bl &xx b2:
DefineTriads(a,e2,matrix(3,3,(i,j)->
MakeTranslations(a,i) &oo cat(b,j))):

b1l:=(1/1) &** FindTranslation(A,C3):
b2:=(1/VectorLength(bl &xx MakeTranslations(a,3)))
&x*x (bl &xx MakeTranslations(a,3)):

b3:=bl &xx b2:
DefineTriads(a,e3,matrix(3,3,(i,j)->
MakeTranslations(a,i) &oo cat(b,j))):

b1:=(1/1) &** FindTranslation(C1,C2):
b2:=(1/VectorLength(bl &xx MakeTranslations(a,3)))
&*xx (bl &xx MakeTranslations(a,3)):

b3:=bl &xx b2:
DefineTriads(a,e4,matrix(3,3,(i,j)->
MakeTranslations(a,i) &oo cat(b,j))):

b1:=(1/1) &** FindTranslation(C1,C3):
b2:=(1/VectorLength(bl &xx MakeTranslations(a,3)))
&*x*x (bl &xx MakeTranslations(a,3)):

b3:=b1 &xx b2:
DefineTriads(a,eb,matrix(3,3,(i,j)->
MakeTranslations(a,i) &oo cat(b,j))):

b1l:=(1/1) &** FindTranslation(C2,C3):
b2:=(1/VectorLength(bl &xx MakeTranslations(a,3)))
&x*x (bl &xx MakeTranslations(a,3)):

b3:=bl &xx b2:
DefineTriads(a,e6,matrix(3,3,(i,j)->
MakeTranslations(a,i) &oo cat(b,j))):

VVVVVYV VVVVVYV VVVVVYV VVVVVYV VVVVVYV VVVVVYVVVVVVYVVYVYV

establish the corresponding geometry. To visualize the wireframe rep-
resentation of the tetrahedron, we need to add MAMBO objects to the
geometry description. The MAMBO toolbox procedure DefineObjects
associates the desired objects with the appropriate observer. In the fol-
lowing MAMBO toolbox statement, six MAMBO blocks are directly related
to the A observer with reference points given by the E;’s and reference
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triads given by the e(?’s, and one MAMBO block representing the sta-
tionary plane is directly related to the W observer with reference point
and reference triad coinciding with those of W.

DefineObjects(seq([A, ’Block’,point=cat(E,i),
orient=cat(e,i),xlength=1,ylength=1/10,zlength=1/10,
color=green] ,i=1..6), [W, ’Block’ ,xlength=5%1,
ylength=5%1,zlength=1/100,color=white]):

vV V VYV

The coincidence of the reference points A and W of the auxiliary
observer A and the main observer W implies that the position of A
relative to W is given by the identity translation or, alternatively, that

WA:O.

Finally, we shall assume that the orientation of A relative to W is given by
the pure rotation Ryy_, 4 corresponding to a rotation about a direction
parallel to w3 by an angle ¢; followed by a rotation about a direction
parallel to r4¢2 by an angle ¢o. It follows that

1
Rwa, = R(ql,0,0, 1)R <QQ, 5, ?,0) .

Continuing with the same MAMBO toolbox session, these definitions are
achieved by the statements

> DefinePoints(W,A,NullVector()):
> DefineTriads(w,a, [q1,3],[q92,1/2,sqrt(3)/2,0]):

The statement

> GeometryOutput (main=W,
> filename="flippingtetrahedron.geo");

exports the resulting geometry hierarchy to the file flippingtetrahed-
ron.geo.

Note that the angle between any two edges meeting at a corner of the
tetrahedron is given by

PACH ¢ pAC: -

MO pAcrAc: | T 3

Similarly, the angle between any two faces of the tetrahedron is given by

a, e rf1Cs _ 1
arccos ool JEECo]] = arccos 5 )

It follows that a visually satisfactory animation is obtained by increasing
q1 discretely by % every second while go decreases continuously from 0 to
arccos (1) — m during every whole second as shown in the figure.
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q1

Lo AN

In other words,

a(0)=7lt]

2 (1) = (arecos (3) =) (6= 1),

where |¢| equals the integer part of ¢. Since both ¢; (¢) and g2 (t) are
discontinuous, we cannot formulate a set of kinematic differential equa-
tions to govern their evolution. Instead, we treat ¢; and ¢» as MAMBO
animated variables as suggested in the following MAMBO toolbox state-
ment:

and

> MotionOutput(anims=[q1=Pi/3*floor(t),
> qg2=(acos(1/3)-Pi)*(t-floor(t))],parameters=[1=1],
> filename="floppingtetrahedron.dyn");

where we note the use of C syntax acos for the arccos function and floor
for the [-] function.

Although the motion that results from the definitions of ¢; () and
@2 (t) has the visual appearance that we desire, this is only an illusion.
In fact, the tetrahedron repeatedly rotates about the same edge instead
of switching to a new edge whenever a new face becomes parallel with
the stationary plane. It is by the symmetry of the tetrahedron that the
discrete changes in ¢; are able to generate the appearance of a switch.
A more satisfying approach would be one that constrained alternating
edges to be stationary relative to WW. We will develop the methodology
for achieving this in Chapter 9.
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6.5 Exercises

Exercise 6.1 The configuration of a
thin disk of radius p is constrained in such a
way that the disk makes tangential contact
with a planar surface through the reference
point W of an observer YW and spanned by
the wy; and wy basis vectors in the corre-
sponding reference triad w. Formulate the
corresponding configuration constraints.

Solution. Let A be an auxiliary ob-
server, relative to which the disk remains sta-
tionary, with reference point A at the center
of the disk and reference triad a, such that
ag is perpendicular to the plane of the disk.
Then

and Ry
= R(Q4707 07 ]-) R(Qs» ]-7 070) R (q67 0707 ]-)

describe an arbitrary configuration of the
disk relative to the observer W.

That the disk makes tangential contact
with the planar surface spanned by w; and
wo implies that there is a point P on the rim
of the disk that is in contact with the plane
and that the tangent direction to the rim of
the disk at P is parallel to the planar surface.
Thus, if

p €OS q7
psinqr
0

I‘AP:CI,

for some ¢7, then P is in contact with the
plane if

0 = rWPoW3:(rWA+rAP)oW3

3 + psin gs sin (g6 + q7) -

Moreover, since the vector wg x ag is parallel

to both the planar surface and the plane of
the disk, it follows that

0 fr—

= psingscos (g6 + q7)

rP o (w3 x a3)

guarantees that the contact at P is tangen-
tial.

Exercise 6.2 Show that any values of ¢;
through q7, such that sin g5 # 0, that satisfy
the configuration constraints in the previous
exercise are regular relative to the pair q¢s

and g¢g.
Solution. Here,
fi(q, .. ,q7) = g3+ psingssin (g6 + q7) ,
f2(q1,- .. ,q7) = psings cos (g6 + q7) ,
and thus
gﬁ %
‘ 55 o ‘ = —psings sin (g6 + q7) ,
dq3  0Oqe

which equals zero if sings = 0 or
sin (g6 + q7) = 0. But, if sin g5 # 0, then fo =
0 only if cos (g + g7) = 0, i.e., sin (gs + g7) =
+1 and the claim follows.

Exercise 6.3 Use the MAMBO toolbox
to repeat the discussion in the previous two
exercises.

Solution. The following MAMBO tool-
box statements
Restart():
DeclareObservers(W,A) :
DeclarePoints(W,A,P):
DeclareTriads(w,a):
DefineObservers([W,W,w],
[A,A,a]):
DefinePoints([W,A,w,ql,92,93],
[A,P,a,rhoxcos(q7),
rho*sin(q7),0]):
DefineTriads([w,a, [q4,3],
[g95,11,[g6,311):

VVVVVVVVVYVYV



define the basic geometry. The constraints
are obtained through the statements

> f1:=FindTranslation(W,P) &oo
MakeTranslations(w,3):
f2:=FindTranslation(A,P) &oo
(MakeTranslations(w,3) &xx
MakeTranslations(a,3)):

Finally, the determinant is computed
through the statement

> factor(det(matrix (2,2,

> [[diff(f1,q3),diff(f1,96)],

> [diff(£f2,q93),diff(£2,96)11)));

—psin(qd) (cos(q7) sin(g6)+sin(q7) cos(gb))

VvV V V V

Exercise 6.4 Show that a thin disk that
makes tangential contact with a planar sur-
face has five geometric degrees of freedom, as
long as it is not parallel to the surface.

Solution. In the previous exercises,
seven configuration coordinates were intro-
duced to describe the configuration of the
thin disk. We found that, as long as
sings # 0, the corresponding configuration
constraints could be solved for two of the
configuration coordinates in terms of the re-
maining configuration coordinates. It follows
that, as long as sings; # 0, the configura-
tion of the thin disk can be described using
only five configuration coordinates. When
sings = 0, ag X w3 = 0, i.e., the disk is par-
allel to the planar surface. It follows that
the thin disk has five geometric degrees of
freedom, as long as it is not parallel to the
planar surface.

Exercise 6.5 The configuration of a
thin disk of radius p is constrained in such
a way that the disk makes tangential con-
tact with a spherical surface of radius R cen-
tered on the reference point W of an ob-
server WW. Find the corresponding configu-
ration constraints.

Solution. Let A be an auxiliary ob-
server, relative to which the disk remains sta-
tionary, with reference point A at the center
of the disk and reference triad a, such that

6.5 Exercises 287

ag is perpendicular to the plane of the disk.
Then

and Ry,
= R(q470a 07 1) R<q5a 17070) R (%7 0707 1)

describe an arbitrary configuration of the
disk relative to the observer W.

That the disk makes tangential contact
with the spherical surface implies that there
is a point P on the rim of the disk that is
in contact with a point P’ on the surface of
the sphere and that the tangent direction to
the rim of the disk at P is tangential to the
spherical surface at P’. Thus, if

p Cos qr
P = | psing and
0
R sin gg cos qg
/ . .
r'VP = w | Rsinggsingy

Rcosgs

for some q7, ¢s, and qg, then P is in contact
with P’ if

0= (I,WP . I,WP’) oWy,

0= (rWP - rWP') e Wo,

0= (rWP — rWP/) o Ws.
Moreover, since the vector r'V? " x ag is tan-

gential to the spherical surface and parallel
to the plane of the disk, it follows that

/
0=r"e (I'WP X 33)

guarantees that the contact at P is tangen-
tial.

The following MAMBO toolbox state-
ments compute the corresponding configura-
tion constraints in terms of the nine config-
uration coordinates:
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Restart():
DeclareObservers(W,A):
DeclarePoints(W,A,P,Pp):
DeclareTriads(w,a):
DefineObservers ([W,W,w],
[A,A,a]):
DefinePoints([W,A,w,ql,92,93],
[A,P,a,rho*cos(q7),
rho*sin(q7),0],
[W,Pp,w,R*sin(g8) *cos(q9),
R*sin(q8)*sin(q9) ,R*cos(q8)]1):
DefineTriads([w,a, [q4,3],
[q551] ’ [q6:3]])

f1:=(FindTranslation(W,P) &--
FindTranslation(W,Pp)) &oo
MakeTranslations(w,1)=0:
f2:=(FindTranslation(W,P) &--
FindTranslation(W,Pp)) &oo
MakeTranslations(w,2)=0:
£3:=(FindTranslation(W,P) &--
FindTranslation(W,Pp)) &oo
MakeTranslations(w,3)=0:
f4:=(FindTranslation(W,Pp) &xx
MakeTranslations(a,3)) &oo
FindTranslation(A,P)=0:

VVVVVVVVVVVYV VVVVVVVVVYVVYVYV

Exercise 6.6 Find the number of geo-
metric degrees of freedom of the disk in the
previous exercise.

Exercise 6.7 The configuration of a
thin disk of radius p is constrained in such a
way that the disk makes tangential contact
with a cylindrical surface of radius R cen-
tered on the reference point W of an observer
W and parallel to the basis vector ws of the
corresponding reference triad w. Find the
corresponding configuration constraints and
determine the number of geometric degrees
of freedom of the disk.

Exercise 6.8 Analyze the following
mechanisms to determine the number of ge-

ometric degrees of freedom:

a) A unicycle

b) A bicycle

¢) An office chair
d) A can opener

e) A pair of scissors
f) An umbrella

Exercise 6.9 Use the MAMBO toolbox
to formulate a MAMBO geometry descrip-
tion of the following objects and visualize us-
ing MAMBO. You may find the information
in the MAMBO reference manual regarding
the geometric properties of MAMBO spheres,
blocks, and cylinders helpful.

a) Icosahedron

b) Spider web

¢) Hexagonal honeycomb

d) Bridge truss

e) Circle of rectangular chairs
f) Brick tower

g) Bird feather

Exercise 6.10 For each of the scenes
below, use the MAMBO toolbox to formu-
late a MAMBO geometry description and
implement different animation sequences in
MAMBO.

a) Operating window shades

b) A grandfather’s clock

¢) A handheld fan

d) A turntable with play arm
) Dialing on an analog dialing pad
)

e
f) Sanding with an orbital sander



SUMMARY OF NOTATION

Lower-case ¢’s with various subscripts and decorations, such as ¢; and
Gs, were used in this chapter to denote configuration coordinates.

SUMMARY OF TERMINOLOGY

A selected triad that is stationary relative to a rigid body or an observer
is called a reference triad.

A variable that is used to describe the configuration of a mechanism is
called a configuration coordinate.

The number of geometric degrees of freedom of a mechanism is the small-
est number of configuration coordinates necessary to describe the
configuration of the mechanism.

A mechanism is constrained if its configuration is limited.

An equation in the configuration coordinates that corresponds to a con-
straint on the configuration of a mechanism is called a configuration
constraint.

In MAMBO, the orientation of an observer or a rigid body relative to an
observer is given through an ORIENT statement in the .geo file.

In MAMBO, parameters are declared through a parameters statement
in the .dyn file.

In MAMBO, the time variable is labeled through a time statement in
the .dyn file.

In MAMBO, animated variables are declared through an anims block in
the .dyn file.

In MAMBO, states are declared through a states statement in the .dyn
file.

In the MAMBO toolbox, the global variable GlobalTriadDeclarations
contains the names of all declared triads.

In the MAMBO toolbox, the global variable GlobalTriadDefinitions
contains rotation matrices relating declared triads.

In the MAMBO toolbox, the procedure DeclareTriads appends Global-
TriadDeclarations with any number of triad labels.

In the MAMBO toolbox, the procedure DefineTriads appends Global-
TriadDefinitions with any number of rotation matrices relating
declared triads.
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In the MAMBO toolbox, the procedure FindRotation is used to find the
rotation matrix between two declared triads.

In the MAMBO toolbox, the procedures &oo, &xx, VectorLength, and
Express return the vector dot product, the vector cross product,
the length of a vector, and the vector expressed relative to a given
triad, respectively.

In the MAMBO toolbox, the procedure DefineObservers appends Glo-
balObserverDefinitions with any number of associations between
observers and pairs of declared reference points and declared refer-
ence triads.

In the MAMBO toolbox, the procedure FindOrientation is used to find
the rotation matrix between the reference triads of two observers.

In the MAMBO toolbox, the procedure Undo is used to undo the latest
change to any of the global variables.



Chapter 7

Review

wherein the reader learns of:

e Combining the elements developed in previous chapters into a gen-
eral methodology for describing the geometry of a multibody mech-
anism.




Practicum

This chapter is intended to give
you a breather; to let you col-
lect your thoughts and assess the
global strategy for analyzing multi-
body mechanisms that has been de-
veloped in previous chapters. The
examples in this chapter represent
the highest level of complexity you
are likely to ever encounter.

After completing this chapter, you
are encouraged to refer to the list
of sample projects in the Appendix
and to attempt to implement these
in MAMBO. There is no expectation
that you will be able to successfully
formulate the correct geometry de-
scription on your first try. MAMBO
allows you to experiment and to try
different ideas. A final description
along the lines of this chapter grows
out of such experimentation.




7.1 Terminology and Notation

7.1 Terminology and Notation

7.1.1 Configurations

At the outset of Chapter 1, I introduced the configuration of a rigid body
as its position and orientation relative to some reference configuration.
Neither the position, the orientation, nor the reference configuration were
well-defined notions. Instead, I appealed to your intuitive understanding
of these concepts based on everyday experiences and abstractions.

The idea of position was meant to suggest a general location in space,
whereas the idea of orientation was meant to suggest a general attitude in
space. FEven without very specific definitions of these ideas, some thought
established the need for referring to some basis of comparison, without
which no well-defined meaning could be attached to the terms position
and orientation. This basis of comparison was the reference configuration.

Subsequent material in Chapter 1 was intended to narrow down the
ideas of position and orientation. This allowed for quantitative state-
ments that would be necessary for communicating experimental observa-
tions or for implementing a multibody mechanism in a computer-visuali-
zation software. In particular, the ideas of positions and orientations
were clarified by considering changes in configuration. These changes
were categorized as pure translations, pure rotations, and combinations
thereof.

7.1.2 Rigid-body Operations

On page 4, a pure translation was defined as an operation on a rigid body
that shifts all the points on the body by an equal amount along parallel
paths. I stated that there is no change in the orientation of a rigid
body undergoing a pure translation. This was the first hint on as to how
to interpret the notion of orientation.

On page 9, a pure rotation was defined as an operation on a rigid
body that holds at least one point on the rigid body fixed. I stated that
there is no change in the position of a rigid body undergoing a pure
rotation. This was the first hint as to how to interpret the notion of
position.

The implications of these definitions are that two identical rigid bodies
have the same position if they have at least one point in common. Simi-
larly, two identical rigid bodies have the same orientation if all points on
one rigid body are shifted by an equal amount along a common direction
from the corresponding points on the other rigid body.

I believe these definitions make intuitive sense. For example, if By,
By, and Bs are three identical rigid bodies, such that B; and B have
the same orientation and By and Bz have the same orientation, then the
rigid bodies By and Bj also have the same orientation. The discussion on
pages 7 and 8 expressed this observation in terms of pure translations,
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namely that the composition of two consecutive pure translations
is equivalent to a single pure translation.

But these definitions also challenge some obvious assumptions. For
example, if By, By, and B3 are three identical rigid bodies, such that B;
and B have the same position and By and Bz have the same position,
then the rigid bodies B; and Bs do not necessarily have the same po-
sition. The discussion on pages 10 and 11 expressed this observation in
terms of pure rotations, namely that the composition of two con-
secutive pure rotations is not necessarily equivalent to a single
pure rotation.

A resolution to this paradox was offered on page 11, where we chose
to require that all pure rotations keep the same point fixed. With this
added condition, the statement that B; and By have the same position
and that By and Bs have the same position would imply that B; and Bs
also have the same position.

Several important properties of pure translations and pure rotations
were described in detail on pages 4 through 21.

Specifically, any sequence of pure translations and pure rotations is
equivalent to a single pure translation and a single pure rotation. Con-
versely, any arbitrary configuration can be decomposed into a sequence
of pure translations and pure rotations. This result established the sig-
nificance of pure translations and pure rotations to describe arbitrary
configurations. Put differently, the collection of pure translations
and the collection of pure rotations are the elementary parti-
cles of multibody mechanics. There are no changes in configuration
that cannot be described in terms of a combination of a single pure trans-
lation and a single pure rotation. Having chosen a particular point on the
rigid body to be kept fixed by any pure rotation, the decomposition
into a single pure translation and a single pure rotation was
found to be unique.

Of equal significance was the observation that the order in which a
pure rotation and a pure translation are applied to a rigid body makes
no difference to the final configuration. The meaning of the pure rotation
does not depend on the pure translation, and vice versa. Put differently,
given the selection of a particular point on the rigid body to be
kept fixed by any pure rotation, the position and the orientation
of a rigid body can be specified independently of one another. If
I say that a rigid body has a certain orientation, this has no implications
whatsoever on its position. If you say that a rigid body has a certain
position, this has no implications whatsoever on its orientation.

7.1.3 Observers

You could use the notions of position, orientation, pure translation, and
pure rotation to describe the configurations of all rigid bodies in your
environment relative to some reference configuration. Certainly, if all
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rigid bodies in your environment were disjoint, independent objects, this
would be a reasonable and prudent course of action. But, if there were
connections between different bodies that rendered their configurations
dependent, this would not necessarily be the most attractive approach.

Suppose you wanted to describe the configurations of the various parts
of your hand relative to some reference configuration. This would require
specifying the position and orientation of each of the parts — the palm,
the digital segments, and so on — relative to the reference position and
reference orientation. But, the configurations of the digits are not inde-
pendent from the configuration of the palm. As the palm moves through
space, the digits are constrained to follow along, reducing their mobility
relative to the palm to a pure rotation. Similarly, the digits are naturally
split into segments, each of which can move relative to the preceding one
through a pure rotation.

It appears more natural to describe the configurations of the digits
relative to the palm and the configuration of the palm relative to you. The
configurations of the digits relative to you would then follow by combining
the pure translations and pure rotations corresponding to each of the two
separate steps.

The idea of breaking down the description of the configuration into
more manageable steps requires the introduction of intermediate reference
configurations. Toward the end of Chapter 1 and throughout Chapter 2,
I employed the notion of observers to represent such reference configu-
rations. Every mechanism was described using a main observer and any
number of auziliary observers.

On page 50, I introduced tree structures to represent a conceptual
arrangement of the observers and the physical objects they were used to
describe. I stressed the possibility of using any number of different ob-
server arrangements to represent the same geometry. Some general rules
were also proposed for you to follow in describing your own mechanisms
of choice.

7.1.4 Vectors

A computationally oriented formalism for pure translations was intro-
duced in Chapter 3. I showed how every pure translation corresponds to
a collection of straight-line segments between points in the initial config-
uration and the corresponding points in the final configuration. These
straight-line segments:

e Have the same length;
e Are parallel;

e Have the same heading.
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Every one of these segments could be taken to represent the pure transla-
tion. The length, direction, and heading of the segment would correspond
to the same properties of the pure translation.

On page 96, these collections of straight-line segments were named
vectors. 1 presented mathematical operations on these vectors that cor-
responded to the algebraic operations on pure translations that were in-
troduced in Chapter 2. Specifically:

o Vectors could be multiplied by real numbers to generate scaled ver-
sions of the corresponding pure translations (page 98);

o Vectors could be summed to generate compositions of the corre-
sponding pure translations (page 99).

I also introduced two vector products, namely the dot product (page
103) and the cross product (page 105), with which vectors and the cor-
responding pure translations could be compared with respect to heading
and direction. The length of a vector was defined as the magnitude of
the shift of the corresponding pure translation (page 97).

Particularly useful are triplets of mutually perpendicular vectors of
unit length. These are called orthonormal bases (page 111). Specifically,
if v is an arbitrary vector and the triplet {a;,as,a3} is an orthonormal
basis, then there exists a unique triplet of real numbers vy, vo, and vs,
such that

V = vi1a; + v2a2 + v3as
and
v, =a;ev,i=1,23.

The real numbers vy, v, and v3 are called the coordinates of the vector v
relative to the basis {a1,az,asz}. On page 114, I introduced the notation

a = ( a; az as )
and

ayev
Yp=| azev
asev

to represent an orthonormal basis a and the matrix representation of the
vector v relative to the basis a, and extended the rules of normal matrix
multiplication to allow for statements like

v =a .
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All operations on vectors could be reduced to matrix operations on the
matrix representations of the vectors relative to some orthonormal basis.
In particular, by restricting attention to right-handed, orthonormal bases,
so-called triads, I showed that

av+pw =a(a v+ [ ‘w),
Ta

vew = (“v)" “w,
VIl = /oot + 20f + i,
and

aj az as
U1 V2 v3 |,
w1 w2 w3

VXW=
a

where a is a triad.

The expressions above assumed that both vectors were expressed rel-
ative to the same triad. When this was not the case, I showed you how
to translate between matrix representations relative to different triads.
In particular, with the definition on page 207 of the rotation matriz R
between the triads a and b

310b1 ap .bQ ap Obg
Rab:aTob: ag.bl aQObQ a20b3 s
ag.bl 33.b2 330b3

I derived the following relations:
Ria = (Rap)" = (Rap) ™",
b= CLRab, a = bRba7
Yy = Rubbva
and
b0 = Rpa™v.
Moreover, if ¢ was a third triad, then
Rac = RabRbc

represented a natural decomposition.

While vectors correspond in a direct way to pure translations, rota-
tion matrices correspond in a direct way to pure rotations. Since the
orientation of a rigid body is uniquely determined by the orientation of
a triad rigidly attached to the body, changes in orientation due to pure
rotations are quantifiable in terms of the rotation matrix between the
initial and final orientations of the triad.
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In an exercise in Chapter 1, it was observed that every pure rotation
was equivalent to a rotation about some fixed axis by a given angle. The
analogous statement for rotation matrices was made in Chapter 5, where
we found that every rotation matrix can be generated by the expression

R(<)07U17U2a U3) y

where vy, v9, v3 were the coordinates relative to the initial triad of a
vector of unit length parallel to the axis of the pure rotation and ¢ was
the angle of rotation.

On pages 221 through 229, I described some special (and very useful)
examples of rotation matrices arising from rotations about basis vectors
and leading to the concept of Fuler angles. T also showed how to construct
rotation matrices to align a triad vector with a given direction.

7.1.5 Configuration Coordinates and Constraints

The configuration of a rigid body relative to an observer is uniquely
determined by a pure translation and a pure rotation, given the selection
of a point on the rigid body that is held fixed by any pure rotation.
This point is called the reference point of the rigid body. Similarly, the
relative configuration of two observers is uniquely determined by a pure
translation and a pure rotation, given the selection of reference points for
each of the observers.

If A and B are the reference points of two observers A and B, then
the pure translation T 4,5 corresponds to the position vector

4B,
The pure translation is uniquely determined by the relative location of
the points A and B.

The pure rotation R 4.5 is uniquely determined by the relative orien-
tation of two reference triads a and b, whose orientations are fixed relative
to A and B, respectively. In particular, the pure rotation corresponds to
the rotation matrix

Rap.

Any quantities that appear in the position vector r4Z or the ro-

tation matrix R,p, and that change when the relative configuration of
the observers changes, are called configuration coordinates. The smallest
number of configuration coordinates that are necessary to describe the
configuration of a mechanism equals its number of geometric degrees of
freedom.

In Chapters 4 and 6, I showed you how three configuration coordi-
nates suffice to describe any arbitrary position of a rigid body, while
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three separate configuration coordinates suffice to describe any arbitrary
orientation of a rigid body. I also showed you that three configuration
coordinates are necessary to describe the position of a freely moving rigid
body and that three configuration coordinates are necessary to describe
the orientation of a freely moving rigid body. A freely moving rigid body
thus has six geometric degrees of freedom.

When a mechanism consisting of N rigid bodies has fewer than 6N
geometric degrees of freedom, it is constrained. To constrain a mechanism
is equivalent to imposing equalities — configuration constraints — that the
configuration coordinates used to describe the unconstrained mechanism
must satisfy. In Chapter 4, I showed how configuration constraints usually
imply that it is theoretically possible to express one or several of the
configuration coordinates in terms of the others. As we shall see later in
this chapter and in more detail in Chapter 9, it may nevertheless be more
practical to retain more configuration coordinates than the number of
geometric degrees of freedom.

7.2 Modeling Algorithm

Throughout the previous chapters, I have advocated the following algo-
rithm for arriving at a complete description of the geometry of a multi-
body mechanism:

Step 1. Identify all constituent rigid bodies. In doing this,
I recognize that a rigid body may consist of multiple
parts, each of which is a separate rigid body. However,
the multiple parts of a rigid body are assumed to be
stationary relative to each other. They move as a union
relative to all other constituent rigid bodies.

Step 2. Introduce a reference point and a reference triad for
each constituent rigid body. I usually pick some point
that has particular significance for the geometry, say a
symmetry point of the rigid body. Similarly, I will pick
a triad for which at least one basis vector is parallel to
some symmetry line of the rigid body.

Step 3. Introduce a main observer, relative to which all con-
figurations are ultimately described. As suggested in
Chapter 2, the choice of main observer is motivated by
the purpose of the modeling, whether primarily graphics-
or physics-oriented. I often pick a reference point and a
reference triad of the main observer, such that it is re-
lated to the geometry of some object that is stationary
relative to the main observer.
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Step 4. Introduce a separate auxiliary observer for each rigid
body whose configuration may change relative to the
main observer. I pick the reference point and the refer-
ence triad of the auxiliary observer, such that the rigid
body remains stationary relative to the auxiliary ob-
server. It is not necessary that the reference point of
the auxiliary observer coincides with any point on the
corresponding rigid body.

Step 5. Arrange the observers and rigid bodies in a tree
structure with the main observer as the top node, the
auxiliary observers as internal nodes, and the rigid bod-
ies as leaf nodes. I often organize the auxiliary ob-
servers to reflect the presence of mechanical joints that
restrict the relative motions between different auxiliary
observers. This is analogous to the discussion of describ-
ing the configurations of the digits on the hand relative
to you by describing the digits’ configurations relative to
the palm and the configuration of the palm relative to
you.

Step 6. Introduce configuration coordinates to quantify the
position vectors and rotation matrices that relate the
positions and orientations of successive nodes in the tree
structure. I recommend simplicity over cleverness. Often
the simplest solution is quite sufficient and will enhance
the understanding over a particularly clever solution that
may be detrimental to the understanding. I expect that
you will have experienced both possibilities when looking
at the various examples throughout the text.

Step 7. Identify any configuration constraints that restrict
the allowable values for the configuration coordinates to
actually correspond to geometrically correct configura-
tions of the mechanism.

In the next several chapters, we will add to this algorithm to enable the
simulation and animation of geometrically correct and physically realistic
motions of the multibody mechanism.

7.3 A Bicycle

The algorithm in the previous section establishes the complete description
of the instantaneous geometry of a multibody mechanism and can be used
in a very crude way to generate motions. In this section, we return to the
bicycle introduced in Chapter 2 and implement the modeling algorithm
as suggested.



7.3.1 Constituent Rigid Bodies

The bicycle shown below consists of four distinct rigid bodies, namely
the rear wheel, the front wheel, the steering column, and the frame.

Clearly, each of these bodies consists of multiple parts, but these parts
are rigidly attached to each other. Missing from this geometry are the
pedals. Their inclusion would result in at least one additional rigid body.
If each of the pedals were allowed to spin relative to the pedal assembly,
at least two more rigid bodies would need to be included. For the present
discussion, we restrict attention to the four rigid bodies identified at the
top of the section.

7.3.2 Reference Points and Reference Triads

Let the reference point Ayear wheel Of the rear wheel be located at the
center of the rear wheel. Choose the reference triad a(rear wheel) of the

rear wheel, such that the wheel axis is parallel to the vector agrear wheel)

Arear wheel

(rear wheel)
a3

Let the reference point Agont wheel Of the front wheel be located at the

center of the front wheel. Choose the reference triad q(front wheel) of the

front wheel, such that the wheel axis is parallel to the vector a:gfmnt wheel)

7.3 A Bicycle
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Let the reference point Agame of the frame coincide with Ayear wheel-
Choose the reference triad a@me) of the frame, such that agﬁame) equals

agrear wheel) and agframe) is parallel to the forward direction of the bicycle
saddle.

Let the reference point Agiecering Of the steering column coincide with

Afront wheel. Choose the reference triad a(steering) of the steering column
b

teeri front wheel teeri
such that al* ™) equals al"o" Wheel) apq alstecrine)

axis of rotation of the steering column.

is parallel to the

(steering)
a5

Asteering

7.3.3 Main Observer

As we are primarily interested in arriving at a geometry description that
we may implement in the MAMBO application, we introduce a main ob-



server VW with reference point W and reference triad w corresponding
to the graphics application’s internal reference configuration. Below, we
will introduce a plane that will be stationary relative to W to serve as a
basic background for the motion of the bicycle.

7.3.4 Auxiliary Observers

Since each of the four rigid bodies introduced above may change config-
uration relative to the main observer, introduce four auxiliary observers
Arear wheel) -Afront wheel) »Aframea and Asteering; relative to which the rear
wheel, front wheel, frame, and steering column, respectively, are station-
ary. For simplicity, let the corresponding reference points and reference
triads agree with those selected for the corresponding rigid bodies.

7.3.5 Tree Structures

Consider the following tree structure representing the conceptual arrange-
ment of observers and rigid bodies.

4%

-Aframe

N

Arcar wheel Asteering

Afront wheel

This description will be complete by specifying the pure translations
and pure rotations corresponding to each of the direct connections be-
tween successive observers or between observers and rigid bodies. In
particular, since the reference points and reference triads of the auxiliary
observers coincide with those of the corresponding rigid bodies, the pure
translations and pure rotations between the observers and the rigid bod-
ies are the identity translation and identity rotation. Naturally, each rigid
body consists of multiple parts whose configurations relative to the aux-
iliary observers are described by non-trivial pure translations and pure
rotations. These are time-independent, however, and their description is
implemented as in the discussion on still lives in Chapters 2, 4, and 6.

7.3 A Bicycle
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7.3.6 Configuration Coordinates

The configuration of the observer Agame relative to the main observer
W is described by a pure translation Ty 4,,.,. corresponding to the
pos