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Preface

Traditional entry-level mechanics courses serve two fundamentally dif-
ferent objectives. On the one hand, they present a self-contained pro-
gression of problem-solving paradigms addressing particular categories
of engineering situations without any speci¯c reference to higher-level
thinking or the challenges of actual systems (for which the traditional
methods typically fall short). They provide a necessary backdrop for the
further professional development of an engineering-science or mechani-
cal engineering student but, typically, do not generate much interest in
other populations of engineering students, as evidenced, for example, by
the lack of required fundamental mechanics courses for computer and
electrical engineers in many colleges of engineering.

On the other hand, undergraduate instruction in the subject of clas-
sical mechanics constitutes a ¯rst attempt at incorporating the mathe-
matics taught in the undergraduate linear-algebra and calculus sequences
with real-world applications, developing ideas of physical and mathemat-
ical modeling, assessing the relevance of physical phenomena, the appre-
ciation of modeling assumptions, and the formulation of scienti¯c inquiry.
These are skills that we expect of all engineering students but that typ-
ically are not strongly developed in existing curricula. There is a strong
need for courses designed with the goal of bridging the gap between the
stated objectives; courses that also attract non-traditional engineering
students while ensuring a solid scienti¯c and mathematical training.

To address these shortcomings, in collaboration with colleagues in the
Department of Mechanics at the Royal Institute of Technology in Stock-
holm, Sweden, I recently developed a course that relies on the concept
of problem-based learning to allow the student to accumulate theoretical
knowledge, develop intuitive insight into, and perfect a practical know-
how in the modeling and visualization of complex mechanical systems
and their motions. Particular emphasis is placed on a framework that
appeals to the educational background, interests, and perspectives of a
modern engineering student. The problem-based approach encompasses
an understanding of the theoretical concepts, the ability to implement
this understanding in concrete applications, and the skill to disseminate
the results of one's e®orts in oral and written presentations.
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The course is unique in its combination of content and form. It is de-
signed to appeal to the interests of computer-savvy students who, in the
process of producing attractive computer simulations and animations, ac-
quire signi¯cant skills in mathematical and physical modeling of mechan-
ical systems. In particular, the emphasis here is on general skills rather
than the ability to solve cooked-up problems. Active-learning strategies
and truly cooperative learning constitute an overwhelming part of the
course design, the culmination of which is a team project incorporating
material from throughout the course and accounting for a majority of the
course grade.

This Text

The instructional objectives for the course discussed above are to prepare
the students to:

² Model the kinematics and dynamics of an arbitrary multibody mech-
anism;

² Formulate a mathematical description of a general motion of the
mechanism in terms of sets of descriptive variables and systems of
di®erential equations governing their evolution;

² Implement this description in a computer-graphics application for
animating and visualizing a desired or observed motion of the mech-
anism.

In stark contrast to traditional mechanics courses, the act of analyzing a
given set of di®erential equations to determine and predict the subsequent
dynamics is entirely de-emphasized. Indeed, I strongly believe that such
analysis should be the subject of a separate, subsequent course coupled
with issues of design of mechanical systems for achieving desired behavior
and so on. Eliminating such discussions from the present course enables a
clarity of presentation, thought, and message, and increases the likelihood
that the students ¯rmly establish the mathematical background necessary
to proceed with such analysis as compared to traditional courses, where
the material is closely interwoven.

The text you have in your hands is the result of several iterations of
development of the educational material for this course. Four main ped-
agogical principles form the foundation for the current edition, namely:

² An inductive approach to learning, whereby general patterns are
discerned from observations made in particular instances;

² A need for repetition and review of important concepts and their
reinforcement through numerous examples;
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² Visual guidance to allow the reader to di®erentiate between di®erent
levels of knowledge;

² Deep incorporation of computer tools, visual representations, and
elements of active learning to appeal to a broad spectrum of learning
strategies and preferences.

The primary goal in composing this text has been to provide an extensive
resource that presents a self-contained and careful exposition of all rele-
vant topics for the sequential reader while containing enough repetition
and examples to allow numerous points of entry.

Parallel to the theoretical presentation, the book contains a track imple-
menting a series of computer-algebra procedures for enabling advanced
computations on complex multibody mechanisms. This package { the
Mambo toolbox { bears a general resemblance to a collection of proce-
dures developed by Professor Martin Lesser and Dr Anders Lennartsson
in the Department of Mechanics at the Royal Institute of Technology
in Stockholm, Sweden, between 1991 and 1999, and named Sophia af-
ter the Polish-Swedish mathematician Sofja Kowalewskaja (1850{1891).
Su±cient changes have been made, however, in all parts of the implemen-
tation, to warrant a new name for the software. Nevertheless, I gratefully
acknowledge the intellectual heritage from the original package and the
e®orts of its originators.

This text presents version 1.0 of the Mambo toolbox. To use the
Mambo toolbox on your computer, download the necessary ¯les from
the web site:

www.esm.vt.edu/~danko/Mambo

The computer-graphics application Mambo described in this text has
been developed with the purpose of allowing the student to visualize the
results of their e®orts while retaining the need for careful mathematical
analysis. In contrast with existing commercially available educational
software tools, Mambo requires detailed input from the user both in
order to de¯ne the speci¯c geometry of the mechanism as well as the
di®erential equations governing its behavior. With this tool, the student
is able to see the implications of decisions made throughout the modeling
stage and to check the mathematical analysis.

The following individuals have been involved with the development
and coding of Mambo: Jesper Adolfsson, Kalle Andersson, Arne Nord-
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mark, Gabriel Ortiz, Anders Lennartsson, Petri Piiroinen, Justin Hutchi-
son, and myself. Since the program is continually developing, I have
omitted any detailed description of its implementation in this text and
instead refer to the Mambo reference manual.

To use Mambo on your computer, download the necessary ¯les from
the web site:

www.esm.vt.edu/~danko/Mambo

How This Text is Organized

² Visual cues have been included in the margin to distinguish be-
tween di®erent levels of importance of material as illustrated by
the following table:

² The eleven chapters can be separated into three categories, based
on their emphasis on theory, applications, or general introduction
and review as illustrated in the following table:

Optional material for further study
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² The following tables provide relevant page references for di®erent
categories of material:

² Each chapter is concluded with a summary of notation and termi-
nology;

² A collection of animation and modeling projects suitable for semester-
long team assignments is included in Appendix C.

METHODOLOGY

Hierarchies . . . . . . . . . . . . . . . pp. 56{58
Modeling . . . . . pp. 299{300, 415{417
Constraints . . . . . . . . . . . . pp. 378{381
Mambo . . . . . . pp. 188{195, 280{285

pp. 307{311, 318{321
pp. 424{425, 434{435

COMPUTER TOOLS

The Mambo toolbox

Observers . . . . . . . . . . . . . . . . pp. 74{76
Translations. . . . . . . . . . . .pp. 121{130
Positions . . . . . . . . . . . . . . . pp. 183{188
Rotations . . . . . . . . . . . . . . pp. 229{232
Orientations . . . . . . . . . . . pp. 274{280
Velocities . . . . . . . . . . . . . . pp. 348{351
Constraints . . . . . . . . . . . . pp. 389{395
Dynamics . . . . . . . . . . . . . . pp. 451{454
Reference . . . . . . . . . . . . . . pp. 485{494

Mambo

Observers . . . . . . . . . . . . . . . . pp. 71{73
Positions . . . . . . . . . . . . . . . pp. 172{183
Orientations . . . . . . . . . . . pp. 267{274
Constraints . . . . . . . . . . . . pp. 389{395
Dynamics . . . . . . . . . . . . . . pp. 451{454

NOTATION

Translations. . . . . . . . . . . . . . . . . . .p. 43
Rotations . . . . . . . . . . . . . . . . . . . . . p. 44
Observers . . . . . . . . . . . . . . . . . . . . . p. 50
Points . . . . . . . . . . . . . . . . . . . . . . . . p. 83
Separations. . . . . . . . . . . . . . .pp. 84{85
Vectors . . . . . . . . . . . . . . . . . . .pp. 96{97
Bases . . . . . . . . . . . . . . . . . . . pp 114{116
Triads . . . . . . . . . . . . . . . . . . . . . . . p. 203
Rotation matrices . . . . . . pp. 206{207
Velocities . . . . . . . . . . . . . . pp. 331{333
Momenta . . . . . . . . . . . . . . pp. 444{445

APPLICATIONS

Observers . . . . . . . . . . . . . . . . pp. 58{71
Translations. . . . . . . . . . . .pp. 118{119
Positions . . . . . . . . . . . . . . . pp. 155{172
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Chapter 1

A First Look

wherein the reader learns of:

² Fundamental ways of representing the motion of rigid bodies;

² Describing the con¯guration of a rigid body in terms of a position

and an orientation;

² Pure translations and pure rotations and their properties;

² Using coordinates to uniquely determine the con¯guration of a rigid

body;

² Constraints on the coordinates;

² Introducing collections of observers.



Practicum

You may read this chapter any

number of times and feel quite com-

fortable with its propositions and ar-

guments. But true understanding is

a combination of intuition and expe-

rience. This experience comes from

engaging in practical, hands-on ex-

perimentation with concrete, physi-

cal objects.

Just about anything in your im-

mediate environment will probably

qualify as a block or a rigid body.

Hold the object with both hands and

follow along with the discussion in

this chapter by moving and rotating

the object as suggested. Most cer-

tainly, this will enhance your three-

dimensional experience of the graph-

ics in this chapter. It will strengthen

your geometric intuition. It will be

excellent practice for the things to

come.



Configuration

position

orientation

Reference

configuration

Actual

configuration

1.1 A First Look at Motion 3

1.1 A First Look at Motion

1.1.1 Reference Con¯gurations

A rectangular block moves across your visual ¯eld. At each moment in
time, you describe the block's con¯guration { the spatial arrangement of
all its points { by its position and orientation relative to some reference

position and reference orientation, constituting a reference con¯guration.

Perhaps you envision the reference con¯guration as a stationary vir-
tual block whose dimensions agree with those of the actual block.

The reference con¯guration enables you to make meaningful state-
ments about the geometry of space. The locations of points in space are
made clear by referring to the reference con¯guration.

The orientations of straight lines in space are made clear by referring to
the reference con¯guration.

(Ex. 1.1 {

Ex. 1.14)
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Having established a reference con¯guration, the notion of the block's

con¯guration makes intuitive sense for arbitrary positions and orienta-
tions.

The reference con¯guration also enables you to make meaningful state-
ments about the time-dependence of the geometry of space. For example,
a point is said to be ¯xed or stationary relative to the reference con¯gu-
ration if its relation to the faces and edges of the virtual block does not
change with time.

Having established a reference con¯guration, it makes intuitive sense
to describe the block's motion in terms of the time-dependence of its
con¯guration relative to the reference con¯guration.

1.1.2 Pure Translations and Rotations

As the position and orientation of the block change with time, the block
exhibits a motion through space that involves pure translation, pure ro-

tation, or a combination thereof.

Pure translation

A motion of the block that results in a change in the
block's position, but involves no change in the block's ori-
entation, is called a pure translation. In a pure translation,
all points in the block are shifted by equal amounts along
parallel paths relative to the reference con¯guration.
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Two con¯gurations of the block are said to be related

through a pure translation if there exists a pure translation
that brings the block from the ¯rst to the second con¯gura-
tion. It should follow that two con¯gurations of the block
that are related through a pure translation have the same
orientation.

Two pure translations that result in the same ¯nal con¯guration when
applied to the block in an initial con¯guration are said to be equivalent .
Equivalent pure translations result in the same net change of position
while involving no change in orientation.

,
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B¯nal

Ainitial

Binitial
A¯nal

B¯nal

6 1 A First Look

Illustration 1.1

Suppose that the initial and ¯nal con¯gurations of a block are related
through a pure translation. Let A and B be two arbitrary points on the
block and denote by Ainitial, Binitial and A¯nal, B¯nal the corresponding
points in space in the initial and ¯nal con¯gurations, respectively.

Then, the straight-line segment between Ainitial and A¯nal is parallel to
and of equal length as the straight-line segment between Binitial and B¯nal.

As this observation holds for arbitrary pairs of points, it follows that
the initial and ¯nal con¯gurations of the block are related through a pure
translation that shifts all points in the block by an equal amount along
a common ¯xed direction relative to the reference con¯guration.

The result of the illustration shows that for every pure translation
there is an equivalent pure translation that shifts all points in the block by
an equal amount along a common ¯xed direction relative to the reference
con¯guration.
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The ¯nal con¯guration that results from the application of any one
member of a family of equivalent pure translations to a block in an initial
con¯guration is identical to that which results from the application of
any other member of this family. We, therefore, often choose to refer
to the whole family collectively by the equivalent pure translation that
shifts all points in the block along a common ¯xed direction from their
initial to their ¯nal locations in space. Here, we are more concerned with
the relative con¯guration of the initial and ¯nal con¯gurations than with
the path by which one was brought to the other.

As pure translations preserve the orientation of the block while only
a®ecting its position, it is reasonable to expect that successive composi-
tions of pure translations result in no net change in orientation.

Illustration 1.2

Consider the ¯nal con¯guration that results from a shift of the block by
one unit of length along a given direction and, subsequently, by two units
of length along a di®erent direction as shown in the ¯gure below.
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All the points on the block in the ¯nal con¯guration are shifted from
their original positions by the same amount and along a common direc-
tion. The ¯nal con¯guration is thus related to the initial con¯guration
by a single pure translation.

In general, a pure translation of the block from an initial con¯guration
to some intermediate con¯guration, followed by a second pure translation
to a ¯nal con¯guration, is equivalent to a single pure translation of the
block from the initial con¯guration to the ¯nal con¯guration. This is con-
sistent with the notion that con¯gurations related by pure translations
have the same orientation. Indeed, as is suggested by the above obser-
vation, the composition of pure translations, each of which preserves the
block's orientation, results in no net change in orientation. This supports
describing the position of the block relative to the reference con¯guration
in terms of the pure translation that relates the block's con¯guration to
the reference con¯guration, and vice versa.

Illustration 1.3

As shown in the ¯gure below, the ¯nal con¯guration that results from a
shift of the block by one unit of length along a given direction and, sub-
sequently, by two units of length along a di®erent direction could also
have been achieved by switching the order of the shifts.

In general, the order in which two pure translations are e®ected is
immaterial to the ¯nal con¯guration of the block. We say that pure
translations commute under composition.



,

1.1 A First Look at Motion 9

Pure rotation

A motion of the block that results in a change in the
block's orientation, but involves no change in the block's
position, is called a pure rotation. In a pure rotation, one
point in the block remains ¯xed relative to the reference con-
¯guration.

Two con¯gurations of the block are said to be related

through a pure rotation if there exists a pure rotation that
brings the block from the ¯rst to the second con¯guration.
It should follow that two con¯gurations of the block that are
related through a pure rotation have the same position.

Two pure rotations that result in the same ¯nal con¯guration when
applied to the block in an initial con¯guration are said to be equivalent .
Equivalent pure rotations result in the same net change of orientation
while involving no change in position. The result of Exercises 1.8 and 1.9
shows that for every pure rotation there is an equivalent pure rotation
that rotates the block by a given amount about a ¯xed axis relative to
the reference con¯guration.

The ¯nal con¯guration that results from the application of any one
member of a family of equivalent pure rotations to a block in an initial
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con¯guration is identical to that which results from the application of any
other member of this family. We, therefore, often choose to refer to the
whole family collectively by the equivalent pure rotation that rotates the
block about a ¯xed axis. Here, we are more concerned with the relative
con¯guration of the initial and ¯nal con¯gurations than with the path by
which one was brought to the other.

As pure rotations preserve the position of the block while only a®ect-
ing its orientation, it is reasonable to expect that successive compositions
of pure rotations result in no net change in position.

Illustration 1.4

Consider the ¯nal con¯guration that results from a rotation of the block
by a quarter turn about a given direction (keeping one of the corners
¯xed) and, subsequently, by a quarter turn about the same direction
(keeping a di®erent corner ¯xed) as shown in the ¯gure.

Then, no point of the block in the ¯nal con¯guration coincides with the
corresponding point in the initial con¯guration. The ¯nal con¯guration
is thus not related to the initial con¯guration by a single pure rotation.
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In contrast to the case of pure translations, a pure rotation of the
block from an initial con¯guration to some intermediate con¯guration,
followed by a second pure rotation to a ¯nal con¯guration, is, in general,
not equivalent to a single pure rotation of the block from the initial
con¯guration to the ¯nal con¯guration. Although there is no change in
the block's position during the two pure rotations, the initial and ¯nal
con¯gurations do not have the same position. It appears that the act of
switching the point to be kept ¯xed by subsequent pure rotations puts the
association between pure rotations and unchanging position in jeopardy.

The ¯nal con¯guration is related to the initial con¯gura-
tion through a pure rotation if and only if at least one point
in the block in the ¯nal con¯guration coincides with the cor-
responding point in the initial con¯guration. This outcome is
guaranteed if we require that all pure rotations keep the same
point ¯xed relative to the reference con¯guration.

With this added condition, a pure rotation of the block from an ini-
tial con¯guration to some intermediate con¯guration, followed by a sec-
ond pure rotation to a ¯nal con¯guration, is equivalent to a single pure
rotation of the block from the initial con¯guration to the ¯nal con¯gu-
ration. This is consistent with the notion that con¯gurations related by
pure rotations have the same position. Indeed, under these conditions,
the composition of pure rotations, each of which preserves the block's
position, involves no net change in position.

As was the case with pure translations, this supports describing the
orientation of the block relative to the reference con¯guration in terms
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of the pure rotation that relates the block's con¯guration to the refer-
ence con¯guration, and vice versa, provided that the pure rotation

always keeps the same point on the block ¯xed relative to the

reference con¯guration.

Illustration 1.5

As shown in the ¯gure, the ¯nal con¯guration that results from a quar-
ter turn of the block about a given direction (keeping one of the corners
¯xed) and, subsequently, by a quarter turn about a di®erent direction
(keeping the same corner ¯xed) di®ers substantially from that achieved
by switching the order of the turns.

Contrary to the case of pure translations, the order in which two pure
rotations are e®ected is, in general, crucial to the ¯nal con¯guration of
the block. We say that pure rotations do not commute under composi-
tion.

A non-trivial pure translation, i.e., one for which the net shift is non-
zero, cannot be a pure rotation, since the latter requires one point to be
¯xed in space. Similarly, a non-trivial pure rotation, i.e., one for which
the net turning angle is non-zero, cannot be a pure translation, since the
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latter requires that all points shift by an equal amount along parallel
paths. The collections of all pure translations and all pure rotations
have only one equivalent element in common, namely the special case of
zero net shift and zero net turning angle corresponding to the absence of
motion.

1.1.3 Instantaneous Motion

Pure translations

In a pure translation, all points are shifted by an equal amount along
parallel paths relative to the reference con¯guration. The previous dis-
cussion showed that a pure translation is equivalent to a shift by a spe-
ci¯c amount along a ¯xed direction relative to the reference con¯guration.
The amount and direction of the shift associated with a pure translation
from the reference con¯guration to the ¯nal con¯guration depend on the
choice of reference con¯guration.

Assume that the reference con¯guration coincides with the con¯gura-
tion of the block at some instant in time t and that the con¯guration of
the block at time t +¢t is related to the reference con¯guration through
a pure translation for all su±ciently small ¢t. For each ¢t, the cor-
responding pure translation is equivalently described by a direction of
translation and a shifting distance. Clearly, the shifting distance goes to
zero as ¢t becomes arbitrarily small.

If the direction of translation limits on some speci¯c direction as ¢t

goes to zero, the limiting direction is called the instantaneous direction

of translation of the block relative to the reference con¯guration. If the
shifting distance divided by ¢t limits on some speci¯c value as ¢t goes
to zero, the limiting value is called the linear speed of the block relative
to the reference con¯guration.

Pure rotations

In a pure rotation, one point remains ¯xed relative to the reference con¯g-
uration. The previous discussion showed that a pure rotation corresponds
to a rotation by a speci¯c amount about a ¯xed axis relative to the ref-
erence con¯guration. The axis of rotation and the amount of rotation
associated with a pure rotation from the reference con¯guration to the
¯nal con¯guration depend on the choice of reference con¯guration.



2

1

equator

north
pole

south
pole

14 1 A First Look

Assume that the reference con¯guration coincides with the con¯gura-
tion of the block at some instant in time t and that the con¯guration of
the block at time t +¢t is related to the reference con¯guration through
a pure rotation keeping the same point ¯xed for all su±ciently small ¢t.
For each ¢t, the corresponding pure rotation is equivalently described by
an axis of rotation and a turning angle. Clearly, the turning angle goes
to zero as ¢t becomes arbitrarily small.

If the axis of rotation limits on some speci¯c axis as ¢t goes to zero,
the limiting axis is called the instantaneous axis of rotation of the block
relative to the reference con¯guration. If the turning angle divided by ¢t

limits on some speci¯c value as ¢t goes to zero, the limiting value is called
the angular speed1 of the block relative to the reference con¯guration.

1.1.4 Curved Space

The assertion that a sequence of pure translations is equivalent to a single
pure translation is actually not quite as obvious as might appear from
the discussion following Illustration 1.2. It certainly agrees with our
general impression of the geometry of the space we live in, but it is quite
possible to conceive of spaces with di®erent inherent geometries in which
the assertion is false.

As an example, consider motions constrained to the surface of a
sphere.

For reference, identify two diametrically opposite points on the sphere's
surface as the north and south poles of the sphere and let the circle
located halfway between the north and south poles be called the sphere's

1A more common terminology for this quantity is angular velocity. The term

velocity, however, is typically intended to refer to a quantity that has magnitude as

well as direction. The magnitude of a velocity is called the speed. The terminology

used here is consistent with this usage and agrees with that used for the case of pure

translations.
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equator. A great circle through a point on this surface is characterized by
its tangent direction at the point and a positive direction of travel along
the circle. We can represent the great circle by an arrow based at the
point, tangential to the circle and pointing in the positive direction of
travel along the circle. The angle between two great circles intersecting
at a point is then de¯ned as the angle between the two corresponding
arrows.

Think of the con¯guration of a \block" in this two-dimensional world
as a point on the sphere's surface and a great circle through this point.
Consider two con¯gurations of the block in the two-dimensional world
and let

(Areference;ªreference) and (A¯nal;ª¯nal)

represent the corresponding pairs of a point and a great circle, respec-
tively. Denote by ªreference!¯nal the great circle through the two points
Areference and A¯nal, such that the positive direction of travel agrees with
the shortest path from Areference to A¯nal. The two con¯gurations are
related by a pure translation if the angle

] (ªreference!¯nal;ªreference)

between ªreference!¯nal and ªreference equals the angle

] (ªreference!¯nal;ª¯nal)

between ªreference!¯nal and ª¯nal.

Illustration 1.6

Let the initial con¯guration of the block

(Ainitial;ªinitial)

be given by a point Ainitial on the sphere's equator and the great circle
ªinitial through Ainitial and the north pole, such that the corresponding
arrow at Ainitial points toward the north pole.
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Let the intermediate con¯guration of the block

(Aintermediate;ªintermediate)

be given by a point Aintermediate on the equator a quarter of the circum-
ference from the initial point; and the great circle ªintermediate through
Aintermediate and the north pole, such that the corresponding arrow at
Aintermediate points toward the north pole. Then, ªinitial!intermediate coin-
cides with the equator with direction of travel from Ainitial to Aintermediate.
Since

] (ªinitial!intermediate;ªinitial) =

] (ªinitial!intermediate;ªintermediate) = 90±

;

the intermediate con¯guration is related to the initial con¯guration by a
pure translation.

Now, let the ¯nal con¯guration of the block

(A¯nal;ª¯nal)
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be given by the point A¯nal at the north pole and the great circle ª¯nal =
ªintermediate, i.e., such that the corresponding arrow at A¯nal points away
from Aintermediate. Let ªintermediate!¯nal equal ªintermediate. Then, since

] (ªintermediate!¯nal;ªintermediate)

= ] (ªintermediate!¯nal;ª¯nal) = 0±

;

the ¯nal con¯guration is related to the intermediate con¯guration by a
pure translation.

The two pure translations result in the block positioned at the north
pole with an orientation given by a great circle ª¯nal 6= ªinitial. But,
since the great circle ªinitial!¯nal = ªinitial,

0± = ] (ªinitial!¯nal;ªinitial) 6= ] (ªinitial!¯nal;ª¯nal) = 90±

:

The ¯nal con¯guration is therefore not related to the initial con¯guration
through a pure translation. Instead, the operation equivalent to the com-
bined e®ect of the two pure translations is a pure translation followed by
a pure rotation, in stark contrast to the claims made in a previous section.

The geometry of the spherical surface is that of a curved space. In
contrast, in a °at space, arbitrary combinations of pure translations are
equivalent to a single pure translation. Our everyday experience certainly
suggests that our space is °at. But it is possible to show that arbitrary
combinations of su±ciently small pure translations in a curved space
may be closely approximated by a single pure translation. Indeed, this
approximation becomes increasingly accurate as the amount of shift of
the pure translations decreases. This observation expresses the fact that
a curved space is locally °at . In the case of the sphere, a small patch of
the sphere's surface centered on some point is closely approximated by
the plane tangent to the sphere's surface at that point. It is, thus, quite
conceivable that our experience of the °atness of our space is born from
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observations only on very small motions relative to the length scales over
which curvature plays a role2.

1.1.5 Combinations of Translations and Rotations

Two motions that result in the same ¯nal con¯guration when applied to
a block in an initial con¯guration are said to be equivalent . Equivalent
motions result in the same net change of position and orientation. For
example, the ¯nal con¯guration of the block that results from a pure
translation to an intermediate con¯guration followed by a pure rotation
is identical to that obtained by switching the order of the operations,
provided that the same point on the block is kept ¯xed by the pure
rotations as shown in the ¯gure.

In the ¯rst case, all points of the block are shifted by an equal amount
along a common direction; and the block is subsequently rotated while
keeping one point in the block ¯xed relative to the reference con¯guration.
In the second case, the block is ¯rst rotated while keeping the same point
in the block ¯xed relative to the reference con¯guration; and all points of

2It is more than just conceivable; it is a fact, as suggested by Einstein's General

Theory of Relativity.
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the block are subsequently shifted by an equal amount along a common
direction.

Illustration 1.7

Consider a sequence of pure translations and pure rotations, where all the
pure rotations keep the same point on the block ¯xed relative to the ref-
erence con¯guration as suggested in the ¯gure.

By the above observation, the order of pure translations and pure ro-
tations may be switched, so as to collect all translations at the beginning
of the sequence and all rotations at the end of the sequence.

From the discussion of pure translations, we conclude that the pure
translations may be combined into a single pure translation. Similarly,
since the pure rotations all keep the same point ¯xed, they, too, may be
combined into a single pure rotation.

1.1.6 Decompositions of Con¯gurations

An arbitrary con¯guration of the block can be thought of as the result
of a pure translation from the reference con¯guration to an intermedi-
ate con¯guration followed by a pure rotation. In particular, let the pure
translation be such that one point on the block in the intermediate con¯g-
uration coincides with the corresponding point in the ¯nal con¯guration.
This will be the point kept ¯xed relative to the reference con¯guration
by the subsequent pure rotation.
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Illustration 1.8

To bring the block from the reference con¯guration to the ¯nal con¯gu-
ration, apply a pure translation so that one corner of the block coincides
with the corresponding corner in the ¯nal con¯guration, as shown in the
left path of the ¯gure. Then, apply a pure rotation to line up the block
with the ¯nal con¯guration while keeping this corner ¯xed.

Alternatively, apply a di®erent pure translation to the block in the
reference con¯guration so that a di®erent corner of the block coincides
with the corresponding corner in the ¯nal con¯guration as shown in the
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right path of the ¯gure. Then, apply a di®erent pure rotation to line up
the block with the ¯nal con¯guration while keeping this corner ¯xed.

There is no unique way to decompose an arbitrary con¯guration of
the block relative to the reference con¯guration into a combination of a
pure translation and a pure rotation. That there are multiple (actually,
in¯nitely many) ways of doing this follows from the freedom to choose the
point in the intermediate con¯guration that will coincide with the cor-
responding point in the ¯nal con¯guration. Once the point about which
the pure rotation will take place has been selected, however, both the

pure translation and the pure rotation are uniquely determined

(at least within equivalence).

The unique pure translation and pure rotation that relate
the actual con¯guration to the reference con¯guration { given
the selection of the point kept ¯xed by the rotation { provide
the clearest description so far of the position and orientation,
respectively, of the block relative to the reference con¯gura-
tion. That the order in which the pure translation and the
pure rotation are applied is immaterial to reaching the actual
con¯guration implies that the position of the block may be
described independently from its orientation, and vice versa.

1.2 A First Look at Degrees of Freedom

1.2.1 Position

Illustration 1.9

Assume that one corner of the block in the ¯nal con¯guration is located
one unit of length from the corresponding point in the initial con¯gura-
tion along a direction parallel to one of the edges of the block, as shown
in the ¯gure on the next page.

The ¯nal con¯guration of the block is then related to the initial con-
¯guration by a pure translation shifting all the points of the block by one
unit of length along the same direction; and a subsequent pure rotation
keeping the corner point ¯xed.
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Consider a block in some arbitrary con¯guration and denote by A the
point in the block that has been selected to be kept ¯xed by the pure
rotation in the decomposition discussed in the previous section. Then
Areference and A¯nal are the points in space that coincide with A when
the block is in the reference con¯guration and ¯nal con¯guration, respec-
tively.

The pure translation that brings the block from the reference con¯g-
uration to the intermediate con¯guration is uniquely determined by the
location of the point A¯nal relative to the reference con¯guration.

1.2.2 Orientation

Illustration 1.10

Apply a pure rotation to a block, keeping one of the corners ¯xed as shown
in the ¯gure on the next page. Once the location of two of the other cor-
ners has been determined, the locations of all other points on the block
are known. In contrast, knowing the location of two other points along an
axis through the corner kept ¯xed by the pure rotation does not imply
that the locations of all other points on the block are known.
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There are in¯nitely many con¯gurations of the block for which A

coincides with A¯nal: These are related to each other through arbitrary
pure rotations keeping A ¯xed.

With the introduction of a second point B in the block that is not
coincident with A, there are still in¯nitely many con¯gurations of the
block for which A and B coincide with A¯nal and B¯nal, respectively.
These are related to each other through arbitrary pure rotations about
the straight line through A¯nal and B¯nal.

With the introduction of a third point C in the block that does not
lie on the line through A and B, there is one and only one con¯guration
of the block for which A, B, and C coincide with A¯nal, B¯nal, and C¯nal,
respectively.

A¯nal

B¯nal

A¯nal

B¯nal
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The pure rotation that brings the block from the intermediate con-
¯guration to the ¯nal con¯guration is thus entirely determined by the
location of the points A¯nal, B¯nal, and C¯nal relative to the reference
con¯guration.

1.2.3 Coordinates

Consider a coordinate system with origin at Areference and axes parallel
to the edges of the block in the reference con¯guration. The coordinates
xA, yA, and zA of the point A¯nal with respect to this coordinate system
quantitatively describe the pure translation that shifts the block from the
reference con¯guration to an intermediate con¯guration, with the point
A coinciding with A¯nal.

In particular, the pure translation is equivalent to a combination of
three pure translations along each of the three coordinate axes by xA,
yA, and zA units of length, respectively.
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Illustration 1.11

Let the coordinates of one of the corners of the block, with respect to a
coordinate system with origin at the corresponding corner in the refer-
ence con¯guration, be 1, ¡1, and 0 units of length, respectively. The ¯nal
con¯guration of the block is related to the reference con¯guration by a
combination of a pure translation shifting all points by one unit of length
in the positive direction of the ¯rst coordinate axis, a pure translation
shifting all points by one unit of length in the negative direction of the
second coordinate axis, and a pure rotation keeping the corner point ¯xed.

Since the distance between A and B must remain unchanged under
arbitrary motions, the point B¯nal is restricted to the surface of a sphere
centered on A¯nal. It follows that the location of B¯nal on this sphere
is determined by the values of two independent angles µ1 and µ2, e.g.,
the latitude and longitude of the point B¯nal relative to some arbitrarily
chosen equator and zero meridian.

Finally, since the distances between A and C and between B and
C must remain unchanged under arbitrary motions, the point C¯nal is
restricted to a circle centered on and perpendicular to the straight line
through A¯nal and B¯nal. It follows that the location of C¯nal on this
circle is determined by the value of a single angle µ3 relative to some
reference position.
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The three angles µ1, µ2, and µ3 quantitatively describe the pure rota-
tion that turns the block from the intermediate con¯guration to the ¯nal
con¯guration while keeping the point A ¯xed.

Illustration 1.12

Apply a pure rotation to the block, keeping one corner (denoted by A)
¯xed as shown in the ¯gure.

The ¯nal con¯guration of the block is related to the reference con¯gu-
ration by a combination of a pure rotation by an angle of 115± about the
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axis through A labeled 1, followed by a pure rotation by an angle of 115±

about the axis through A labeled 2, followed by a pure rotation by an
angle of 75± about the axis labeled 3 through A and the corner denoted
by B.

Indeed, any arbitrary orientation of the block may be obtained by
varying the three angles introduced here.

1.2.4 Independence

Every con¯guration of the block corresponds to some choice of values
for the quantities xA, yA, zA, µ1, µ2, and µ3: Similarly, every choice of
values for these quantities corresponds to some con¯guration. By the
mutual independence of pure translations and pure rotations, it follows
that the values of the angle coordinates are independent of the values of
the distance coordinates, and vice versa.

Since our physical space is three-dimensional, it is clear that all three
distance coordinates are generally required to describe the block's po-
sition relative to the reference con¯guration. Similarly, all three angle
coordinates are generally required to describe the block's orientation rel-
ative to the reference con¯guration. We express these observations by
stating that the block has six geometric degrees of freedom. We conclude
that an arbitrary motion of the block can be translated into speci¯c time
histories xA (t), yA (t), zA (t) ; µ1 (t), µ2 (t), and µ3 (t) ; and vice versa.

Illustration 1.13

The con¯guration of the block is uniquely determined by the location of
the three points A¯nal, B¯nal, and C¯nal relative to the reference con¯g-
uration. Thus, every con¯guration corresponds to some unique choice of
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values for the coordinates of these three points in the previously intro-
duced coordinate system with origin at Areference. Denote these coordi-
nates by xA, yA, zA, xB, yB, zB, xC , yC , and zC .

In contrast to the set of coordinates xA, yA, zA, µ1, µ2, and µ3, not
every choice of values for the collection of nine coordinates corresponds
to an actual con¯guration of the block. The coordinates xA, yA, zA, xB,
yB, zB, xC , yC , and zC are constrained to take on values that ensure
that the distances between A¯nal and B¯nal, between A¯nal and C¯nal,
and between B¯nal and C¯nal equal those in the reference con¯guration.
Each such constraint is equivalent to an equation that the coordinates
must satisfy. For example, if the distance between A and B in the block
equals dAB, then invoking Pythagoras' theorem yields

(xB ¡ xA)2 + (yB ¡ yA)2 + (zB ¡ zA)2 = (dAB)2 :

The coordinates xA, yA, zA, xB, yB, zB, xC , yC , and zC are clearly not

independent.

1.3 A First Look at Rigid Bodies

In the previous sections, the con¯guration of the block was de¯ned as
the position and orientation of the block relative to a reference position
and a reference orientation. It was tacitly assumed that no changes could
occur to the block other than a change in position and a change in ori-
entation. The three arbitrary points A, B, and C were useful only under
the assumption that the distances between any two of these points re-
mained unchanged under arbitrary motions. From this, we found that
six independent quantities describe the con¯guration of the block at any
arbitrary moment during its motion.

Deeper re°ection shows the level of idealization employed in this dis-
cussion. Clearly, actual physical blocks, even when manufactured to per-
fection, have shapes that change with time. We say that actual physical
bodies are deformable, whereas the idealized body whose shape is un-
changed during its motion is said to be rigid .

When the shape deformations are large, the concepts of position and
orientation of the body as a whole are no longer adequate for describing
the body's con¯guration. Instead, it becomes necessary to describe the
position of each point of the body relative to its position in the reference
con¯guration. Such bodies require in¯nitely many quantities to describe
their con¯guration and will not be the subject of this text.

When the shape deformations are small, the rigid-body approxima-
tion may prove su±cient for an initial study of the body motion. It is
an attractive simpli¯cation, given the dramatic reduction in the num-
ber of independent quantities necessary for describing the con¯guration
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of a rigid body, and given our intuitive understanding of the notions of
translation and rotation. All bodies in this text will be assumed to be
rigid.

Illustration 1.14

Every rigid body can be inscribed within a rectangular block that moves
rigidly with the body. It follows that the discussion presented in the pre-
vious section applies to an arbitrary rigid body, where reference to the
faces and edges of the block refers to the rectangular block within which
the body is inscribed.

In other words, the con¯guration of a rigid body can be uniquely
determined by the values of six independent quantities. Moreover, ar-
bitrary rigid-body motions relative to a reference con¯guration can be
decomposed into pure translations followed by pure rotations.

1.4 A First Look at Observers

In the previous sections, we repeatedly emphasized the need for a ref-
erence con¯guration relative to which the current con¯guration was de-
scribed. No information was o®ered, however, about how this reference
con¯guration should be selected. Naturally, the con¯guration of a rigid
body relative to one reference con¯guration would be quite di®erent from
that relative to a di®erent reference con¯guration.
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Even if the same three points A, B, and C on the body were selected, the
quantities xA, yA, zA, µ1, µ2, and µ3 would take on di®erent values for
the same con¯guration. In fact, while the body might appear stationary
relative to one reference con¯guration, it might exhibit a complicated
tumbling motion relative to another.

The selection of a reference con¯guration is intimately related to the
notion of an observer . After all, the initial discussion of rigid-body motion
was introduced in the context of a block moving through the reader's
visual ¯eld.

As suggested there, your intuitive reaction to the concepts of a reference
position and a reference orientation may have been to imagine a collection
of points ¯xed in your visual ¯eld that collectively represent a virtual
block of the same dimensions as the actual block. It was not necessary to
describe this virtual block any further, since its properties and geometry
were self-evident to you. With the help of the reference con¯guration,
you were able to describe the con¯guration of an arbitrary rigid body.
With the help of the reference con¯guration, you were able to describe
the motion of an arbitrary rigid body.

With this image in mind, consider the possibility of an observer ob-
serving another observer. This is suggested by the idea that a reference
con¯guration could be used to describe the con¯guration of the virtual
block corresponding to another reference con¯guration. In this fashion,



W

Block

W

Block

A¯nal

C¯nal

Areference

Breference

Creference

B¯nal

1.4 A First Look at Observers 31

the con¯guration of a rigid body relative to one observer could be de-
scribed as a combination of the con¯guration of the rigid body relative to
some auxiliary observer, and the con¯guration of the auxiliary observer
relative to the original observer.

If the rigid body were stationary relative to the auxiliary observer, any
motion relative to the original observer would be described by the motion
of the auxiliary observer relative to the original observer.

Illustration 1.15

As an example, consider the following breakdown of the con¯guration of a
rectangular block relative to some observer denoted by W. As suggested
in previous sections, the con¯guration of the block relative to W is given
by a pure translation and a subsequent pure rotation about some ¯xed
point A in the block.

We may introduce an auxiliary observer A, such that the con¯guration
of A relative to W is given by the pure translation and such that the con-
¯guration of the block relative to A is given by the pure rotation. Here,
the point A on the virtual block representing the A observer coincides
with A¯nal.
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A second auxiliary observer B may subsequently be introduced, such that
the con¯guration of B relative to A is given by some pure rotation keeping
A ¯xed and ensuring that the point B on the virtual block representing
the B observer coincides with B¯nal. The block's con¯guration relative
to B is then given by the pure rotation about the straight line through
A¯nal and B¯nal that ensures that the point C coincides with C¯nal.

Although the con¯guration of the block relative to the W observer
may be directly described using a single pure translation and a single
pure rotation, the introduction of one or several auxiliary observers serves
to simplify the description of each translation and rotation. There is no
right answer here, only a question of convenience.
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1.5 Exercises

Exercise 1.1 The con¯guration of a
block relative to a reference con¯guration is
given by a pure translation corresponding to
a shift of the block by two units of length
along a given direction, followed by a pure
translation corresponding to a shift of the
block by one unit of length along a direc-
tion that makes an angle of 42± with the
¯rst direction. Then, the con¯guration of the
block relative to the reference con¯guration
is given by a single pure translation corre-
sponding to a shift of d units of length along
a direction that makes an angle ' with the
direction of the ¯rst pure translation. Com-
pute d and '.

Solution. Let A be some arbitrary point
on the block and denote by A0, A1, and A2

the corresponding points on the block in the
reference, intermediate, and ¯nal con¯gura-
tions, respectively. Then, the geometry is
described by the ¯gure below.

The direction and amount of shift corre-
sponding to the single pure translation re-
lating the block's con¯guration to the refer-
ence con¯guration is given by the straight-
line segment from A0 to A2. By the cosine
theorem, the length of this straight-line seg-
ment equals

d =
p

12 + 22
¡ 2 ¤ 1 ¤ 2 ¤ cos (180±

¡ 42±)

¼ 2:82:

Similarly, the angle ' between this straight-

line segment and the direction of the ¯rst
pure translation is given by the sine theorem

' = sin¡1

µ
1 ¤

sin (180±
¡ 42±)

d

¶
¼ 13:7±

:

Exercise 1.2 The con¯guration of a
block relative to a reference con¯guration is
given by a pure translation corresponding to
a shift of the block by d1 units of length along
a given direction followed by a pure trans-
lation corresponding to a shift of the block
by d2 units of length along a direction that
makes an angle µ with the ¯rst direction.
Then, the con¯guration of the block rela-
tive to the reference con¯guration is given by
a single pure translation corresponding to a
shift of d units of length along a direction
that makes an angle ' with the direction of
the ¯rst pure translation. Compute d and '

when

a) d1 = 2, d2 = 1, µ = 30±

b) d1 = 0:5, d2 = 1:5, µ = 130±

c) d1 = 1, d2 = 1:5, µ = 14±

d) d1 = 2:4, d2 = 0:4, µ = 98±

e) d1 = 2:04, d2 = 4:10, µ = 12:5±

f) d1 = 0:43, d2 = 0:43, µ = 135±

[Answer: a) d ¼ 2:91, ' ¼ 9:9±
, b) d ¼ 1:24,

' ¼ 112:0±
, c) d ¼ 2:48, ' ¼ 8:4±

, d)

d ¼ 2:38, ' ¼ 9:6±
, e) d ¼ 6:11, ' ¼ 8:4±

, f)

d ¼ 0:33, ' ¼ 67:5±
]

Exercise 1.3 Consider applying a pure
rotation to a block in its reference con¯gu-
ration by a given amount while keeping all
points on one edge of the block ¯xed, fol-
lowed by a pure rotation by the same amount
but in the opposite direction keeping a dif-
ferent, but parallel, edge ¯xed relative to the
reference con¯guration, as shown in the ¯g-
ure on the next page.

Show that the ¯nal con¯guration is re-
lated to the reference con¯guration through
a pure translation.
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Solution. As the paths of all points on
the block during the subsequent rotations lie
in planes perpendicular to the axes of rota-
tion, it su±ces to consider the points on the
upper surface of the block.

Speci¯cally, denote by A and B the two
points on the upper surface of the block that
lie on the two axes of rotation. Let Areference,
Breference, A¯nal, and B¯nal denote the cor-
responding points in the reference and ¯nal
con¯gurations, respectively, as shown in the
¯gure.

Since the opposing angles µ1 and µ2 are
equal, it follows that the straight-line seg-
ments between Areference and Breference and
between A¯nal and B¯nal are parallel and
have the same orientation, and thus that the

¯nal con¯guration is related to the initial
con¯guration through a single pure transla-
tion.

Exercise 1.4 The con¯guration that re-
sults from a pure rotation of a block about
a ¯xed axis through a point A1 by a given
amount di®ers from the con¯guration that
results from a pure rotation of the block
about a parallel axis through a point A2 by
the same amount.

a) Show that the two con¯gurations are
related through a pure translation;

b) Show that the pure translation is along
a direction perpendicular to the axes of
rotation;

c) Show that the shifting distance is pro-
portional to the perpendicular dis-
tance between the two axes of rotation
and that the proportionality constant
equals 2 sin µ

2
, where µ is the turning

angle.

[Hint: Consider the ¯gure in Exercise 1.3.]

Exercise 1.5 Consider applying a pure
rotation to a block in its reference con¯gu-
ration corresponding to a half turn about an
edge through a given corner on the block, fol-
lowed by a pure rotation corresponding to a
quarter turn about a di®erent edge through
the same corner as shown in the ¯gure on the
next page.

Show that the ¯nal con¯guration is re-
lated to the reference con¯guration by a sin-
gle pure rotation about an axis through the
corner making an angle of 45± with the ¯rst
edge and 90± with the second edge.

Solution. Since the corner point is kept
¯xed by both pure rotations, the ¯nal con-
¯guration is related to the reference con¯gu-
ration by a single pure rotation.

Let A be some arbitrary point on the
straight line through the corner making an
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angle of 45± with the ¯rst edge and perpen-
dicular to the second edge as shown in the
¯gure. Denote by A0, A1, and A2 the corre-
sponding points in the reference, intermedi-
ate, and ¯nal con¯gurations, respectively.

It is clear from the ¯gure that A2 = A0,
i.e., all points on the straight line are kept
¯xed by the pure rotation from the reference
con¯guration to the ¯nal con¯guration.

Exercise 1.6 Consider applying a pure
rotation to a block in its reference con¯g-
uration corresponding to a half turn about
an edge through a given corner on a block
followed by a pure rotation by an angle µ

about a di®erent edge through the same cor-
ner. The ¯nal con¯guration is related to the
reference con¯guration by a single pure rota-

tion about an axis through the corner making
an angle Á with the ¯rst edge and perpendic-
ular to the second edge. Show that

Á =
jµj

2
:

Exercise 1.7 Consider applying a pure
rotation to a block in its reference con¯g-
uration corresponding to a half turn about
some axis through a given corner on a block
followed by a pure rotation corresponding to
a quarter turn about a di®erent axis through
the same corner making an angle 45± with
the ¯rst axis. The ¯nal con¯guration is re-
lated to the reference con¯guration by a sin-
gle pure rotation about an axis through the
corner making an angle Á

1
with the ¯rst axis

and Á
2

with the second axis. Show that

Á
1

¼ 35:3± and Á
2

¼ 54:7±

:

Exercise 1.8 Show that if two con¯gu-
rations of a block are related through a pure
rotation keeping a point A on the block ¯xed
relative to the reference con¯guration, then
the two con¯gurations are related through a
pure rotation keeping an entire straight line
of points through A ¯xed relative to the ref-
erence con¯guration.

[Hint: If a block rotates about a straight line
through A, then all points on the straight line
remain ¯xed relative to the reference con¯gu-
ration. The claim follows if we can show that
every pure rotation that keeps the point A

¯xed is equivalent to a pure rotation of the
block about some straight line through A.
Consider an additional point B on the block
that is not coincident with A. Let Binitial

and B¯nal be the points in space that coin-
cide with B when the block is in the initial
and ¯nal con¯gurations, respectively. Then,
the claim follows if you show that, for any
pure rotation:
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1. The points Binitial and B¯nal lie on the
surface of a sphere centered on A;

2. There are in¯nitely many circular arcs
on the surface of the sphere that con-
nect Binitial and B¯nal;

3. Each circular arc lies on the intersec-
tion of the sphere with a plane that
contains the points Binitial and B¯nal;

4. The shortest such circular arc is part
of a circle centered on A, i.e., the great
circle through Binitial and B¯nal;

5. The longest such circular arc is part of
a circle centered on the point in space
halfway between Binitial and B¯nal;

6. Every such circular arc corresponds to
the motion of the point B from Binitial

to B¯nal when the block is rotated
about a straight line through A and the
center of the corresponding circle;

7. The collection of such straight lines
forms a plane that contains A and the
point in space halfway between Binitial

and B¯nal and is perpendicular to the
line between Binitial and B¯nal;

8. Let C be an additional point on the
block that is not colinear with A and
B. Then, the plane constructed in the
previous step intersects the plane con-
structed by replacing B with C in steps
1. through 7. in a straight line through
A;

9. The initial and ¯nal con¯gurations of
the block are related through a pure
rotation about the straight line found
in the previous step.]

Exercise 1.9 Use the result of the pre-
vious exercise to show that any pure rotation
can be equivalently described by specifying
an axis about which to turn the block and a
turning angle (cf. the equivalent description

of a pure translation in terms of a direction
along which to shift the block and a shifting
distance).

Exercise 1.10 Show that the order in
which two pure rotations are applied to a
block is immaterial to the ¯nal con¯guration
of the block if and only if i) the pure rota-
tions rotate the block about the same axis or

ii) the pure rotations rotate the block about
perpendicular axes by a half turn each.

Exercise 1.11 Suppose that the actual
con¯guration of a block is related to its refer-
ence con¯guration by a pure translation and
a pure rotation, where the axis of rotation
is perpendicular to the axis of translation.
Show that it is always possible to rigidly em-
bed the block in a larger block, such that
the actual con¯guration of the larger block
is related to its reference con¯guration by a
single pure rotation.

[Hint: Consider the solution to Exercise 1.8.]

Exercise 1.12 Suppose that the actual
con¯guration of a block is related to its refer-
ence con¯guration by a pure translation and
a pure rotation, where the axis of rotation
is in some arbitrary orientation relative to
the axis of translation. Show that it is al-
ways possible to rigidly embed the block in
a larger block, such that the actual con¯g-
uration of the larger block is related to its
reference con¯guration by a pure translation
and a pure rotation, where the axis of ro-
tation is parallel to the axis of translation.
This combination is known as a screw.

[Hint: Decompose the pure translation into a
component whose axis of translation is par-
allel to the axis of the pure rotation and a
component whose axis of translation is per-
pendicular to the axis of the pure rotation.
Then appeal to the solution to the previous
exercise.]
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Exercise 1.13 Consider motions con-
strained to a plane. A straight line through
a point on this plane is characterized by its
tangent direction at the point and a positive
direction of travel along the line. We can rep-
resent the straight line by an arrow based at
the point, tangential to the line and pointing
in the positive direction of travel along the
line. The angle between two straight lines
intersecting at a point is then de¯ned as the
angle between the two corresponding arrows.
Use a construction analogous to that for the
spherical surface to de¯ne pure translations
in this plane and assess whether the plane is
a °at space.

Exercise 1.14 Cut a rectangular strip
out of a °at surface and attach the short
edges to each other after applying half a
turn to one of the edges. Discuss the de¯ni-
tion of pure translations for motions on the
resulting surface. Consider, in particular,
the motion of a two-dimensional block on
this surface along the centerline of the strip.

Exercise 1.15 From a previous exer-
cise, we recall that every pure rotation of the
block corresponds to a rotation of the block
about some ¯xed axis. Use this observation
to propose an alternative to the angles µ1,
µ2, and µ3 for specifying the pure rotation
that turns the block from the intermediate
con¯guration to the ¯nal con¯guration while
keeping the point A ¯xed.

[Hint: The pure rotation is uniquely de-
scribed by specifying an axis through A

about which to turn the block and a turning
angle. The axis through A is uniquely de-
scribed by specifying its intersection with a
sphere centered on A.]

Exercise 1.16 From a previous exer-
cise, we recall that every con¯guration of the
block is related to its reference con¯guration
by a screw corresponding to a pure rotation
and a pure translation by given amounts
along a common axis. Use this observation
to propose an alternative to the coordinates
xA, yA, zA, µ1, µ2, and µ3 for specifying the
con¯guration of the block. Can you propose
a set of independent coordinates based on
the screw representation?

Exercise 1.17 Use an actual block to
represent the con¯gurations corresponding
to the following values for the coordinates:

a)
xA = 0; yA = 1; zA = 1;
µ1 = 30±

; µ2 = 0±
; µ3 = 0±

b)
xA = ¡1; yA = 1; zA = 0;
µ1 = 30±

; µ2 = 40±
; µ3 = 0±

c)
xA = 0; yA = 1; zA = 1;
µ1 = 0±

; µ2 = 90±
; µ3 = 90±

d)
xA = 0; yA = 0; zA = 0;
µ1 = 0±

; µ2 = ¡45±
; µ3 = 0±

e)
xA = 1; yA = 0; zA = 1;
µ1 = 30±

; µ2 = 30±
; µ3 = ¡90±

f)
xA = ¡1; yA = 0; zA = ¡1;
µ1 = 180±; µ2 = 90±; µ3 = 45±

Exercise 1.18 The con¯guration of a
block relative to an observer W corresponds
to a pure rotation by a given amount about
an axis through a point O1 on the block.
Similarly, the con¯guration of the block rela-
tive to an auxiliary observer B corresponds to
a pure rotation about a parallel axis through
the block's center O2 by an equal amount.
Describe the relative con¯gurations of the
observers W and B and indicate the relation-
ship graphically.

[Hint: Consider the ¯gure in Exercise 1.3.]
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Summary of notation

The symbols A, B, C, and O were used in this chapter to denote some
arbitrary points on a rigid body. The same notation, but with
subscripts, e.g., Ainitial, Aintermediate, Areference, or A¯nal, was used
to represent points in space that coincided with the corresponding
points on the rigid body in the initial, intermediate, reference, or
¯nal con¯gurations, respectively.

The symbols t and ¢t were used in this chapter to represent the time
of an event and the di®erence in time between two events.

The symbol ª (psi) was used in this chapter to denote a great circle
on a sphere. The same notation, but with subscripts, e.g., ªinitial,
ªintermediate, ªreference, or ª¯nal; was used to represent the great
circles corresponding to the initial, intermediate, reference, or ¯-
nal con¯gurations, respectively, of a two-dimensional block on the
surface of the sphere. Similarly, ªreference!¯nal, ªinitial!intermediate,
and ªintermediate!¯nal denoted the great circles through pairs of
points on the sphere corresponding to the initial, intermediate, ref-
erence, and ¯nal con¯gurations, respectively, of the block.

The symbols x, y, and z were used in this chapter to represent the
coordinates of a point on a rigid body with respect to a coordinate
system with origin at some point in the reference con¯guration and
axes parallel to the edges of the virtual block corresponding to the
reference con¯guration. The same notation, but with subscripts,
such as xA, yA, zA, xB, yB, zB, xC , yC , or zC ; was used to represent
the coordinates of the points A¯nal, B¯nal, or C¯nal, respectively.

The symbol d was used in this chapter to represent distances between
points in space. The same notation, but with subscripts, e.g., dAB,
was used to represent the distance between points A and B on a
rigid body.

The symbols µ and ' (theta and phi) were used in this chapter to denote
an angle. The same notation, but with subscripts, was used to
di®erentiate between the angles that ¯x the location of the point
B¯nal relative to A¯nal (µ1 and µ2) and the angle that ¯xes the
location of the point C¯nal relative to B¯nal and A¯nal (µ3).

The symbols A, B, and W were used in this chapter to denote observers.



(Page 3)

(Page 3)

(Page 4)

(Page 9)

(Page 19)

(Page 22)

(Page 24)

(Page 25)

(Page 27)

39

Summary of terminology

The con¯guration of a rigid body is a spatial arrangement of all its
points.

At each moment in time, a rigid body's con¯guration is described by
its position and orientation relative to some reference position and
reference orientation, constituting a reference con¯guration.

A motion of a rigid body that results in a change of its position, but in-
volves no change in its orientation, is called a pure translation. In a
pure translation, all points in the rigid body are shifted by an equal
amount along parallel paths relative to the reference con¯guration.
Every pure translation is equivalent to some pure translation that
shifts all points in the rigid body by an equal amount along a com-
mon ¯xed direction relative to the reference con¯guration.

A motion of a rigid body that results in a change of its orientation,
but involves no change in its position, is called a pure rotation. In
a pure rotation, one point in the rigid body remains ¯xed relative
to the reference con¯guration. Every pure rotation is equivalent to
some pure rotation that rotates the rigid body by a given amount
about an axis ¯xed relative to the reference con¯guration.

The con¯guration of a rigid body relative to a reference con¯guration
can be uniquely decomposed into a combination of a single pure
translation and a single pure rotation provided that the pure rota-
tion keeps a preselected point in the rigid body ¯xed relative to the
reference con¯guration.

The con¯guration of a rigid body is uniquely determined by the
location of three arbitrary points in the rigid body that do not lie
on a single straight line.

In the unique decomposition of the con¯guration of the rigid body, the
pure translation is uniquely determined by the three coordinates of
the ¯rst point in the rigid body with respect to a coordinate system
with origin at the corresponding point of the reference con¯gura-
tion.

Similarly, the pure rotation that keeps the ¯rst point ¯xed is uniquely
determined by the two angles that describe the location of the sec-
ond point on the surface of a sphere centered on the ¯rst point; and
by the single angle that describes the location of the third point
along a circle centered on and perpendicular to the line through
the ¯rst two points.

The rigid body has six geometric degrees of freedom.
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An observer uses a stationary reference con¯guration to describe the
con¯guration of arbitrary rigid bodies.

(Page 30)

(Page 31) The relative con¯guration of two observers is given by the con¯guration
of the reference con¯guration of one of the observers relative to the
reference con¯guration of the other.
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Observers

wherein the reader learns of:

² A notation to represent pure translations, pure rotations, and com-

binations thereof;

² A general methodology for describing complicated arrangements of

rigid bodies;

² Software tools for multibody analysis and visualization.



Practicum

As you read through this chapter,

take the opportunity to analyze the

geometry of every single object or

machine in your immediate environ-

ment. Identify its constituent rigid

bodies. Introduce a main observer

and as many auxiliary observers

as you deem necessary, and draw

the corresponding tree structures.

In particular, consider household

machines and tools, such as scissors,

tweezers, food processors, can open-

ers, faucets, the °ushing mechanism

in toilets, window shades, door

locks, lawn mowers, weed whackers,

electric tooth brushes, eye glasses,

tricycles, and so on.

The software package Mambo

and the associated computer-

algebra toolbox are excellent tools

to illustrate the general notions.

But they are much more than that.

They o®er you the means to create

your own reality { one over which

you have full control and where

any motion is allowed. Code and

algorithms become alive with use.

So use!



T( )T

1

(Ex. 2.1 {

Ex. 2.7)

2.1 Algebra of Translations and Rotations 43

2.1 Algebra of Translations and Rotations

We describe the con¯guration of a rigid body relative to an observer by
relating its position and orientation to the reference position and reference
orientation of a virtual rigid body that is ¯xed relative to the observer.
Changes in the con¯guration of the rigid body relative to the observer
occur as a result of changes in position and orientation that involve pure

translations, pure rotations, or a combination thereof.
It is always possible to describe the position and orientation of a

rigid body relative to some reference con¯guration through a combination
of a single pure translation and a single pure rotation. Equivalently, it is
always possible to describe the con¯guration of a rigid body relative to
some observer through a combination of a single pure translation and a
single pure rotation.

The pure translation and the pure rotation are unique, provided that
a single point has been selected on the rigid body to act as the point that
is kept ¯xed relative to the reference con¯guration by any pure rotation.
The pure translation and the pure rotation are independent, suggesting
that we may describe the position of the rigid body independently of
describing its orientation, and vice versa.

In the following, we associate with each rigid body and each observer a
unique, pre-selected point to be kept ¯xed by the application of any pure
rotation. This enables us to represent the position and orientation of a
rigid body relative to an observer or the relative position and orientation
of two observers through a unique pure translation and a unique pure
rotation.

2.1.1 Notation

In a pure translation, all points in a rigid body are shifted by equal
amounts along parallel paths. Every pure translation applied to a rigid
body is equivalent to a shift of all points in the rigid body by an equal
amount along a common ¯xed direction relative to the reference con¯gu-
ration. We will use the symbol T to denote the operation corresponding
to such a pure translation.

To apply or perform the operation T is to shift all the
points on the body by an equal amount along a common di-
rection speci¯ed by T.

When considering multiple translations, we add subscripts to di®er-
entiate between them, e.g., T1 and T2.

In a pure rotation, a pre-selected point on a rigid body remains ¯xed
relative to the reference con¯guration. Every pure rotation applied to a
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rigid body is equivalent to a pure rotation by some angle about a ¯xed
axis through the pre-selected point relative to the reference con¯guration.
We will use the symbol R to denote the operation corresponding to such
a pure rotation.

To apply or perform the operation R is to turn the rigid
body about the pre-selected point by an amount and about a
direction speci¯ed by R.

When considering multiple rotations, we add subscripts to di®erenti-
ate between them, e.g., R1 and R2.

2.1.2 The Identity

The trivial pure translation that corresponds to zero net shift is called
the identity translation. The trivial pure rotation that corresponds to a
zero net turn is called the identity rotation. The ¯nal con¯guration that
results after applying the identity rotation is identical to that obtained
after applying the identity translation. This observation justi¯es the use
of the symbol I to denote both the identity translation and the identity
rotation.

2.1.3 Scaling

If a pure translation T corresponds to shifting all the points on a rigid
body by a distance d along some ¯xed direction, let the pure translation

®T, ® ¸ 0

correspond to shifting all the points on the rigid body by a distance
®d along the same ¯xed direction. If, instead, ® < 0, then the pure
translation ®T corresponds to shifting all the points on the rigid body
by a distance j®j d in the opposite direction to that of T.

If a pure rotation R corresponds to a rotation by a given angle '

about some ¯xed direction, let the pure rotation

®R, for all ®

correspond to a rotation by an angle ®' about the same ¯xed direction1.

1Here, a negative angle corresponds to rotating in the opposite direction to a pos-

itive angle.
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2.1.4 Composition

If a pure translation T1 is applied to a rigid body followed by a pure
translation T2, then the combined operation is represented by the ex-
pression

T2 ± T1.

The composition symbol ± separates the operations and emphasizes
the order in which the operations are applied. If a pure rotation R1 is
applied to a rigid body followed by a pure rotation R2, then the combined
operation is represented by the expression

R2 ± R1:

If a pure rotation R1 is applied to a rigid body followed by a pure
translation T1 that is, in turn, followed by a pure rotation R2, the com-
bined operation is represented by the expression

R2 ± T1 ± R1.

It should be clear how to use the composition symbol to represent
the combined operation that results from an arbitrary sequence of pure
translations and pure rotations.

Illustration 2.1

The con¯guration obtained by ¯rst applying a pure translation T1 fol-
lowed by a pure translation T2 is identical to that obtained by ¯rst ap-
plying T2 followed by T1. This observation is represented by the equality

T1 ± T2 = T2 ± T1:
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The con¯guration obtained by ¯rst applying a pure translation T fol-
lowed by a pure rotation R is identical to that obtained by ¯rst applying
R followed by T. This observation is represented by the equality

T ± R = R ± T:

The con¯guration obtained by ¯rst applying a pure rotation R1 fol-
lowed by a pure rotation R2 is not generally identical to that obtained
by ¯rst applying R2 followed by R1. This observation is represented by
the inequality

R1 ± R2 6= R2 ± R1:

Now, consider the combined operation that results from applying a
sequence of pairs of pure translations and pure rotations:

Rn ± Tn ± ¢ ¢ ¢ ± R1 ± T1:
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Using the observations made above, the same operation can be repre-
sented by the composition

Rn ± Rn¡1 ± ¢ ¢ ¢ ± R1 ± Tn ± Tn¡1 ± ¢ ¢ ¢ ± T1;

in which the pure translations are applied before the pure rotations. The
sequence of translations may be replaced by a single pure translation T,
where

T = Tn ± Tn¡1 ± ¢ ¢ ¢ ± T1:

Similarly, since the pure rotations are assumed to keep the same point
¯xed, the sequence of rotations may be replaced by a single pure rotation
R, where

R = Rn ± Rn¡1 ± ¢ ¢ ¢ ± R1:

We conclude that

Rn ± Tn ± ¢ ¢ ¢ ± R1 ± T1 = R ± T.

2.1.5 Inverses

If a pure translation T1 is followed by a pure translation T2 and the
combined operation equals the trivial pure translation I, i.e.,

T2 ± T1 = I;

then T2 is said to be the inverse of T1 and we write

T2 = (T1)
¡1

:

It follows that

(T1)
¡1

± T1 = I:

The inverse of a pure translation T corresponds to a shift of all points
on the rigid body by an equal amount as speci¯ed by T but in the opposite
direction, i.e.,

(T)¡1 = (¡1)T:

If a pure rotation R1 is followed by a pure rotation R2 and the com-
bined operation equals the trivial pure rotation I, i.e.,

R2 ± R1 = I;

1

( )
T1

T1 ( )
(T1)

¡1

(T1)
¡1

± T1 = I =( )
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then R2 is said to be the inverse of R1, and we write

R2 = (R1)
¡1 .

It follows that

(R1)
¡1

± R1 = I:

The inverse of a pure rotation R corresponds to a rotation of the rigid
body about the same axis and by the same amount as speci¯ed by R but
in the opposite direction, i.e.,

(R)¡1 = (¡1)R:

Illustration 2.2

Since R and R
¡1 correspond to rotations about the same axis, it follows

that

R ± R
¡1 = R

¡1
± R = I:

Using the de¯nition of the inverse, we conclude that¡
R

¡1
¢
¡1

= R:

2.1.6 The Group of Rigid-body Transformations

The collection of all possible pure translations together with the compo-
sition operation constitute a group.

De¯nition 2.1 A group is a set X and a binary operation ¯ into X,
such that for all A, B, C 2 X :

² Associativity: A ¯ (B ¯ C) = (A ¯ B) ¯ C;

² Identity: There exists an element I 2 X, such that I ¯A = A¯I =
A;

² Invertibility: Every element A has an inverse in X denoted by A
¡1,

such that A
¡1

¯ A = A ¯ A
¡1 = I:
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Certainly,

T3 ± (T2 ± T1) = (T3 ± T2) ± T1;

where T1, T2, and T3 are arbitrary pure translations. Moreover, the
identity translation I satis¯es

I ± T = T ± I = T;

since I corresponds to the absence of motion. Finally, since the inverse
T

¡1 of a pure translation T corresponds to a shift of all points on a rigid
body by an equal amount as speci¯ed by T but in the opposite direction,
we have

T
¡1

± T = T ± T
¡1 = I:

Indeed, the group of pure translations together with the composition
operator also satisfy a commutativity property

T1 ± T2 = T2 ± T1.

This shows that the group of pure translations together with the compo-
sition operator is an Abelian group.

Illustration 2.3

The collection of all pure rotations that keep a pre-selected point on a
rigid body ¯xed relative to the reference con¯guration together with the
composition operator also constitute a group. In fact,

R1 ± (R2 ± R3) = (R1 ± R2) ± R3;

I ± R = R ± I = R;

and

R
¡1

± R = R ± R
¡1 = I:

In contrast to the group of all pure translations with the composition
operator, it is not generally true that

R1 ± R2 = R2 ± R1;

i.e., the group of all pure rotations that keep a pre-selected point on a
rigid body ¯xed relative to the reference con¯guration together with the
composition operator is not Abelian.

2.1 Algebra of Translations and Rotations
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2.2 Hierarchies

2.2.1 Notation

In this text, I consistently denote an observer corresponding to some
reference con¯guration with an upper-case, calligraphic letter, such as

A, R, or W.

The choice of letter is not important, unless you are trying to give the per-
son you are communicating with additional information by a clever choice
of letter. If the same letter is to be used to denote separate observers, I
use appropriate subscripts to di®erentiate between the observers, such as
A1, Claboratory, W¯nal.

2.2.2 Single-body, Single-observer Hierarchy

In spite of the possibility of using a single observer to describe the con-
¯guration of a rigid body, it is often convenient to introduce a sequence
of intermediate, auxiliary observers. Typically, this reduces the complex-
ity of the pure translations or pure rotations that describe the relative
con¯gurations of neighboring observers or that relate the rigid body's
con¯guration to the last auxiliary observer.

We graphically illustrate the collection of observers and the suggested
geometric description by using a tree structure, in which the original
observer forms the parent node, the auxiliary observers form the internal
nodes, the rigid body is found at the leaf node, and each branch represents
a combination of a pure translation and a pure rotation.

Illustration 2.4

The proposed hierarchy is reminiscent of a vertical organizational struc-
ture for a company, in which any contact between the employees and the
upper echelons of the company takes place through a set of intermediate
levels of management. A member at each level of the organization need
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only be concerned with how to contact his or her superior, ensuring that
the executive o±cer has full knowledge of the status of all employees.

In an actual managerial structure, it is also possible for the upper
levels of management to pass information down through the tree to en-
sure a certain set of actions from the employees. In the case of the tree
structure representing the organization of observers, this possibility is ex-
cluded, since an observer is limited to observing its environment without
controlling it.

2.2.3 Single-body, Multiple-observer Hierarchy

Auxiliary observers need not be associated with

actual physical objects. Instead, they represent virtual
objects, relative to which the con¯guration of other observers
or actual physical objects may be described. Any number of
auxiliary observers may be introduced into a description, lim-
ited only by their usefulness in simplifying the representation
of the observed geometry.

Multiple observers may be introduced for reasons other than a re-
duction of complexity. Imagine, for example, multiple human observers
observing the motion of the same rigid body. Given a choice of point kept
¯xed by any pure rotation, the rigid body's con¯guration relative to each
observer is uniquely described through a combination of a pure trans-
lation and a pure rotation. But that description clearly varies between
di®erent observers. The di®erent observers appear to lack a means for
communicating their observations to each other, since a statement by one
observer that the rigid body is stationary may clash with the observations
of other observers.

Let A and B be two observers observing the motion of a single block.
Let the point kept ¯xed by pure rotations of the block correspond to the
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geometric center of the block. Then, the con¯guration of the block rela-
tive to observer A may be described through a combination of a unique
pure translation T

A
and a unique pure rotation R

A
. Similarly, the con-

¯guration of the block relative to observer B may be described through a
combination of a unique pure translation TB and a unique pure rotation
RB. The following tree structure captures this state of a®airs:

Now, suppose we want to treat observer B as an auxiliary observer,
such that the con¯guration of the block relative to observer A is described
as a combination of the con¯guration of the block relative to B and the
con¯guration of B relative to A. How could we use the given informa-
tion to ¯nd the unique pure translation TA!B and unique pure rotation
RA!B relating B to A?

The position and orientation of the block relative to observer A are
uniquely determined by the pure translation TA and the pure rotation
RA. This implies that a shift given by TA, followed by a turn given by
RA, brings the block from its reference con¯guration to the actual con¯g-
uration. The intermediate con¯guration is characterized by its geometric
center coinciding with that of the block in the actual con¯guration. Sim-
ilarly, the position and orientation of the block relative to observer B are
uniquely determined by the pure translation TB and the pure rotation
RB. This implies that a shift given by TB, followed by a turn given by
R

B
, brings the block from its reference con¯guration to the actual con-

¯guration. Again, the intermediate con¯guration is characterized by its
geometric center coinciding with that of the block in the actual con¯gu-
ration.
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From this discussion, we conclude that the pure translation T
A

fol-
lowed by the pure rotation R

A
followed by the pure rotation (R

B
)¡1

followed by the pure translation (TB)¡1 bring the block from the refer-
ence con¯guration of A to the reference con¯guration of B.

In other words,

RA!B ± TA!B = (TB)
¡1

± (RB)
¡1

± RA ± TA

= (RB)¡1
± RA ± (TB)¡1

± TA;

which implies that

TA!B = (TB)¡1
± TA

and

RA!B = (RB)
¡1

± RA:

The con¯guration of the block relative to the A observer is now given by

RB ± TB ± RA!B ± TA!B = RB ± TB ± (RB)
¡1

± RA ± (TB)
¡1

± TA

= RB ± (RB)¡1
± RA ± TB ± (TB)¡1

± TA

= R
A

± T
A

as expected.

Illustration 2.5

Now, consider three observers A, B, and C observing the same rigid body
as represented by the following tree structure:

By the same argument as above, we ¯nd that

TA!B = (TB)¡1
± TA;

RA!B = (RB)
¡1

± RA;

TB!C = (TC)
¡1

± TB;
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and

R
B!C

= (R
C
)¡1

± R
B
:

It follows that the con¯guration of C relative to A is given by

R
A!C

± T
A!C

= R
B!C

± T
B!C

± R
A!B

± T
A!B

= (RC)¡1
± RB ± (TC)¡1

± TB

± (RB)¡1
± RA ± (TB)¡1

± TA

= (R
C
)¡1

± R
B

± (R
B
)¡1

± R
A

± (TC)
¡1

± TB ± (TB)
¡1

± TA

= (RC)¡1
± RA ± (TC)¡1

± TA;

i.e.,

TA!C = (TC)¡1
± TA

and

RA!C = (RC)¡1
± RA

as expected.

2.2.4 Multiple-body, Multiple-observer Hierarchy

The notion of auxiliary observers is particularly useful when dealing with
multiple rigid bodies. Of course, the con¯guration of the i-th rigid body
relative to an observer W could be described by a single pure translation
Ti and a single pure rotation Ri. It may, however, be convenient to
introduce multiple auxiliary observers between the main observer W and
each rigid body.

Consider the tree representation below:

The con¯guration of each rigid body relative to the main observer W is
decomposed into the con¯guration of the body relative to an intermediate
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auxiliary observer and the con¯guration of the auxiliary observer relative
to W. Here,

R1 ± T1

describes the con¯guration of the ¯rst rigid body relative to A1,

R2 ± T2

describes the con¯guration of the second rigid body relative to A2,

RW!A1
± TW!A1

describes the con¯guration of the A1 observer relative to W, and

RW!A2
± TW!A2

describes the con¯guration of the A2 observer relative to W. It follows
that the con¯guration of the ¯rst rigid body relative to W is given by

R1 ± T1 ± RW!A1
± TW!A1

= R1 ± RW!A1
± T1 ± TW!A1

and similarly for the second rigid body.

Illustration 2.6

We may reorganize the tree structure discussed above to promote the A1

observer to the main observer according to the tree representation below:

Then, the con¯guration of the second rigid body relative to A1 is
given by

R2 ± T2 ± RW!A2
± TW!A2

± RA1!W ± TA1!W

= R2 ± RW!A2
± RA1!W ± T2 ± TW!A2

± TA1!W

and so on.
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2.3 Recommended Methodology

Consider a system with multiple rigid bodies and a multiplicity of pos-
sible main observers, relative to which the con¯guration of each of the
rigid bodies can be described. In determining the appropriate course of
action to adequately describe the system, two modeling decisions need
to be made. First, we must select a single observer to act as the main
observer relative to which the con¯gurations of all rigid bodies will ulti-
mately be described. Second, we may introduce any number of auxiliary
observers so as to simplify the descriptions of any pure translations and
pure rotations corresponding to speci¯c branches in the resulting tree rep-
resentation. In this section, I shall propose some simple rules of thumb
that I recommend you consider and possibly adopt.

2.3.1 The Main Observer

The selection of the main observer depends
on the purpose of the modeling.

With emphasis on computer animations of multibody systems, the
natural main observer corresponds to the internal representation of space
within the appropriate computer-graphics application. By relating the
con¯guration of all rigid bodies (and of any auxiliary observers) to this
observer, we provide all the information necessary to reproduce the vi-
sual appearance of the system within the computer-graphics application.
Whichever observer we choose to promote to main observer, the visual
representation within the computer-graphics application re°ects the po-
sitions and orientations of all the rigid bodies relative to this observer.

When considering computer animations, I typically use the letter W

to denote the main observer and refer to it as the world observer (hence
the choice of \W").

With emphasis on mechanical analysis of a multibody system, the
natural main observer corresponds to one in which the physics is partic-
ularly straightforward. Such observers are called inertial observers and
play a crucial role in the area of physics called Newtonian mechanics.
As we shall have opportunity to investigate in greater detail in a later
chapter, the usefulness of inertial observers is challenged by the di±culty
to locate one. Instead, we are typically forced to consider observers that
are inertial only to a certain approximation.

When considering mechanical analysis, I typically use the letter N

(as in Newton) to denote the main observer.

2.3.2 The Auxiliary Observers

The introduction of auxiliary observers is
entirely at the discretion of the modeler.
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Whatever the application, the fundamental role of auxiliary observers
in the analysis is to reduce the complexity of the mathematics necessary to
describe the con¯guration of any rigid body relative to the main observer.

Although certainly not a necessity, I recommend that the motion of
the rigid bodies relative to the main observer be completely described
by the motion of the auxiliary observers relative to the main observer.
In this fashion, the pure translation and the pure rotation that relate
a rigid body to its parent observer are always time-independent. This
also implies that at each node in a corresponding tree representation, the
branch nodes may be rigid bodies or additional auxiliary observers.

2.3.3 Loops

In a tree representation corresponding to a multibody mechanism, auxil-
iary observers are introduced as intermediate nodes along di®erent bran-
ches to reduce the complexity of any given pure translation or pure rota-
tion relating two successive observers along that branch.

A branch segment between two observers A and B corresponds to
a pair of pure translations TA!B and TB!A = (TA!B)¡1 and a pair

of pure rotations RA!B and RB!A = (RA!B)¡1. We say that the two
observers A and B are neighbors and that their con¯gurations are directly

related.

If the path between two observers C and E passes through at least one
intermediate node, corresponding to an observer D, then the con¯gura-
tions of the observers C and E are indirectly related .

As shown above, TC!E and RC!E can be computed from the composi-
tions

TC!E = TD!E ± TC!D
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and

RC!E = RD!E ± RC!D:

Similar computations could be employed to relate every observer in the
tree structure to every other observer.

It is tempting to suggest the result of these computations by including
connections between all nodes in the original tree structure, resulting in
a network with multiple closed loops. As long as all the pure translations
and pure rotations between originally indirectly related observers are
computed using the above expressions, there is no need for concern.

Problems may arise, however, with the network representation if it is
employed during the modeling stage. This could occur, for example, as a
result of an inconsistent speci¯cation of the pure translation and/or pure
rotation relating two already indirectly related observers. The possibility
of overdetermining the relative con¯gurations of two observers should be
excluded in practice. The tree representation, excluding all possible node
loops, cannot su®er from internal inconsistencies, yet is capable of com-
pletely describing all possible con¯gurations of the mechanical system.

2.4 Examples

2.4.1 A Still Life

Suppose you want to describe the geometry of an assortment of rigid
bodies that are stationary relative to you. The tree structure below
exempli¯es the recommended geometric hierarchy:

Each rigid body is directly related to the main observer W through
a unique pure translation T and a pure rotation R. Since these are in-
dependent of time, there is no pressing reason to introduce any auxiliary
observers. As suggested in the previous chapter, we are certainly free to



W

A

Body

Body BodyBody

T

R

RB

W

A

Body

Body BodyBody

B

R
A!B

T

A

W

Block

2.4 Examples 59

introduce intermediate observers, with the help of which we can decom-
pose the con¯guration of any single rigid body relative to W into more
manageable steps.

For example, we may introduce an auxiliary observer A, such that
the con¯guration of the rigid body relative to A is given by the pure
rotation RA = R and the con¯guration of A relative to W is given by the
pure translation TW!A = T. Similarly, we may introduce an auxiliary
observer B, such that the con¯guration of the rigid body relative to B

is given by a pure rotation RB about a predetermined axis through the
rigid body and the con¯guration of B relative to A is given by a pure
rotation RA!B that aligns this axis through the rigid body with the
corresponding axis in the actual con¯guration of the body.

The process of introducing auxiliary observers naturally reaches a
conclusion when all pure translations and pure rotations are described in
as straightforward a manner as possible. It is never necessary to introduce
such observers in the case where all the bodies are stationary relative to
the main observer, but it may turn out to be convenient at times. We
will have ample opportunity to return to this in greater detail when we
develop the quantitative theory of translations and rotations.

2.4.2 The Single Moving Rigid Body

We now apply the methodology suggested thus far to the motion of a
single rigid body, say a block, relative to a background that is station-
ary relative to the main observer W. Under the assumption that the
block's con¯guration relative to W changes with time, the recommended
methodology requires the introduction of at least one auxiliary observer
A, relative to which the block remains stationary. The motion of the
block relative to W is contained within the time-dependent con¯guration
of A relative to W.

The con¯guration of A relative to W can be uniquely described as a
combination of a (possibly time-dependent) pure translation TW!A and
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a (possibly time-dependent) pure rotation R
W!A

. If the orientation of
the block relative to W does not depend on time, then it is appropriate
to introduce A in such a way that R

W!A
= I, the identity rotation.

Alternatively, if the position of the block relative to W does not depend on
time, then it is appropriate to introduce A in such a way that TW!A = I,
the identity translation.

Illustration 2.7

Suppose you want to describe the sliding motion of a puck on the surface
of an ice hockey rink.

Consider a main observer W, relative to which the ice hockey rink re-
mains stationary. Let its reference con¯guration coincide with the puck's
con¯guration when it sits at the center of the rink. Introduce an auxiliary
observer A corresponding to a reference con¯guration that is coincident
with the puck at all times. Then, the con¯guration of A relative to W

is entirely determined by the pure translation TW!A corresponding to
shifting the block in some direction parallel to the surface of the rink and
by some amount that depend on time.

If, in addition to sliding, we also want to consider the spinning of the
puck about an axis perpendicular to the ice, then the puck's con¯gura-
tion is no longer stationary relative to A. Instead, introduce an auxiliary
observer B corresponding to a reference con¯guration that is coincident
with the puck at all times. The con¯guration of B relative to A is entirely
determined by a pure rotation RA!B corresponding to a rotation about
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an axis perpendicular to the surface of the rink. As before, the con¯g-
uration of A relative to W is entirely determined by a pure translation
T

W!A
parallel to the surface of the rink.

Suppose you want to describe the motion of a small bead sliding on
the surface of a sphere.

Consider a main observer W, relative to which the sphere remains
stationary. Let its reference con¯guration be represented by a virtual
block whose reference position is at the center of the sphere. Since the
bead is so small, we shall disregard changes in its orientation and focus,
instead, on describing its position relative to W. Introduce an auxiliary
observer A, such that the reference position of its virtual block is at the
center of the sphere and such that the actual position of the bead relative
to A is given by a time-independent pure translation T corresponding
to a shift by a constant amount (actually, the radius of the sphere) along
a ¯xed direction relative to A.
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Since the bead can be positioned anywhere on the surface of the
sphere, we must be able to accommodate changes in the orientation of
A relative to W that ensure that the ¯xed direction corresponding to T

points from the center of the sphere to the actual location of the bead.
Since the reference positions of W and A are both at the center of the
sphere, it follows that the con¯guration of A relative to W is entirely
determined by a time-dependent pure rotation RW!A.

Consider two separate axes through the center of the sphere. Then,
we may introduce an auxiliary observer B, such that the con¯guration of
B relative to W is given by a pure rotation RW!B about the ¯rst axis
and the con¯guration of A relative to B is given by a pure rotation RB!A

about the second axis, as suggested in the ¯gure below.
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The pure rotation that relates the orientation of A to that of W is
then given by

RW!A = RB!A ± RW!B:

Thus, the con¯guration of the bead is given by the composition

T ± RW!A = T ± RB!A ± RW!B,

where any changes with time are contained within the pure rotations
RB!A and RW!B.

2.4.3 Mechanical Joints

Illustration 2.8

Suppose you want to describe the motion of two rigid rods that are joined
at a hinge joint, allowing each rod to rotate relative to the other rod about
a direction ¯xed relative to the two rods.

Let W denote the main observer, relative to which the motion of the pair
of rods will be described. Since both rods are free to move relative to W,
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introduce two auxiliary observers A1 and A2, such that the con¯gurations
of rods 1 and 2 are stationary relative to A1 and A2, respectively. A ¯rst
attempt to describe this geometry is contained within the tree structure
below, wherein each of the auxiliary observers is directly related to the
main observer through a unique pure translation TW!Ai

and a pure
rotation RW!Ai

.

In contrast, you may reorganize the tree structure to suggest the pres-
ence of the hinge joint and the severe restriction on the relative con¯gu-
ration of the two rods as shown below.

Here, the con¯guration of the second auxiliary observer A2 relative
to the ¯rst auxiliary observer A1 is given by the pure translation

TA1!A2
= TW!A2

± (TW!A1
)¡1

and the pure rotation

RA1!A2
= RW!A2

± (RW!A1
)
¡1

:

We note that in the present arrangement, the auxiliary observer A1 ¯lls
two purposes. On the one hand, it acts to contain all the time-dependent
changes in the con¯guration of the ¯rst rod relative to W. On the other
hand, it acts to decompose the con¯guration of A2 relative to W. In its
latter role, it is particularly useful if the pure translation TA1!A2

and
the pure rotation RA1!A2

are simple to describe.
Consider choosing A1 and A2, such that the corresponding reference

positions coincide with the location of the hinge joint.
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This choice respects the requirement that the rods be stationary rel-
ative to the corresponding auxiliary observer. We may now choose the
reference orientations of A1 and A2, such that TA1!A2

= I and RA1!A2

corresponds to a rotation about the hinge axis, a dramatic reduction in
the complexity of the geometry description.

If the con¯guration of a rigid body relative to another rigid body is
easier to describe than the con¯guration of the rigid body relative to
some observer O, consider a hierarchy that re°ects this observation. For
example, if A1 and A2 are the auxiliary observers relative to which the
two rigid bodies are stationary, then introduce A1 (or A2) as the parent
observer of A2 (or A1) rather than directly relating both of these to O

as shown below.

Suppose, for example, that you want to describe the motion of the
trolley that rolls along the jib of a tower crane and from which the lifting
cable and hook are suspended, and the motion of the jib and counter-
weight assembly that may rotate relative to the tower.
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Let W denote the main observer, relative to which the tower remains
stationary, such that the reference position of W coincides with the joint
between the main jib and the tower. Introduce two auxiliary observers T

and J , relative to which the trolley and the main jib remain stationary,
such that the reference position of J coincides with that of W. The
tree structure below re°ects the hierarchy inherent in the mechanical
construction.

We may now choose the reference orientations of W, J , and T , such
that the con¯guration of J relative to W is determined by a pure rotation
RW!J about an axis parallel to the tower, while the con¯guration of
T relative to J is determined by a pure translation TJ !T along the
direction of the main jib.
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2.4.4 A Bicycle

Suppose you want to describe the motion of a simple bicycle consisting
of a rear wheel, a front wheel, a steering shaft, and a frame.

In particular, the rear wheel may rotate only about a ¯xed direction
relative to the frame; the front wheel may rotate only about a ¯xed
direction relative to the steering shaft; and the steering shaft may rotate
only about a ¯xed direction relative to the frame.

Let W denote the main observer, relative to which the motion of the
bicycle will be described. Introduce four auxiliary observers Arear wheel,
Afront wheel, Asteering, and Aframe, relative to which the rear wheel, front
wheel, steering shaft, and frame, respectively, are stationary. In particu-
lar, let the reference positions of Arear wheel and Aframe coincide with the
center of the rear wheel and let the reference positions of Afront wheel and
Asteering coincide with the center of the front wheel.

With a suitable choice of reference orientations, the con¯guration of
Arear wheel relative to Aframe is described in terms of a pure rotation
R

Aframe!Arear wheel
about an axis perpendicular to the rear wheel. Simi-

larly, the con¯guration of Afront wheel relative to Asteering is described in
terms of a pure rotation RAsteering!Afront wheel

about an axis perpendic-
ular to the front wheel. Finally, the con¯guration of Aframe relative to
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Asteering is described in terms of a pure translation T
Asteering!Aframe

along
the axis through the centers of the rear and front wheels, followed by a
rotation R

Asteering!Aframe
about an axis parallel to the axis of rotation of

the shaft relative to the frame.
Any of the four observer hierarchies below re°ects the inherent me-

chanical design.

In each case, the con¯guration of the uppermost auxiliary observer rel-
ative to the main observer W is given by a unique pure translation and
pure rotation. Each of the four hierarchies appears superior from a mod-
eling perspective to the \°at" hierarchy, in which all the parts of the
bicycle are directly related to the main observer.
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2.4.5 A Desk Lamp

Suppose you want to describe the motion of a desk lamp consisting of
a base, an upper beam, a middle beam, a lower beam, a bracket, and a
lamp shade.

In particular, the upper, middle, and lower beams may rotate only about
a ¯xed direction relative to the base; the bracket may rotate only about
a ¯xed direction relative to the upper and lower beams; and the lamp
shade may rotate only about a ¯xed direction relative to the bracket.

In contrast to the previous examples, however, these rotations are not
all independent. Instead, the hinge joints connecting the bracket to the
upper and lower beams constrain the rotations of the lower and upper
beams relative to the base and of the bracket relative to the beams, in
such a way as to sustain the connection for all time. Similarly, the spur
gears attached to the horizontal bars supporting the upper and middle
beams constrain changes in the rotations of the upper and middle beams
relative to the base, in such a way as to respect the impenetrability of
the gear teeth as shown in the ¯gure on the next page.

Let W denote the main observer, relative to which the motion of
the lamp will be described. Introduce six auxiliary observers Abase,
Aupper beam, Amiddle beam, Alower beam, Abracket, and Ashade, relative to
which the base, upper beam, middle beam, lower beam, bracket, and
lamp shade, respectively, are stationary. In particular, let the reference
position of Abase coincide with the point on the top of the base centered
between the vertical posts; let the reference positions of Aupper beam,
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Amiddle beam, and Alower beam coincide with the centers of the horizon-
tal bars supporting the corresponding beam; let the reference position of
Abracket coincide with the far end point of the lower beam, and let the
reference position of Ashade coincide with the hinge joint about which the
lamp shade rotates.

With a suitable choice of reference orientations of the auxiliary ob-
servers, the con¯gurations of Aupper beam, Amiddle beam, and Alower beam

relative to Abase are described in terms of time-independent pure trans-
lations TAbase!Aupper beam

, TAbase!Amiddle beam
, TAbase!Alower beam

along
directions parallel to the vertical posts, and time-dependent pure ro-
tations R

Abase!Aupper beam
, R

Abase!Amiddle beam
, R

Abase!Alower beam
about

axes parallel to the horizontal bars. Similarly, the con¯guration of Abracket

relative to Alower beam is described in terms of a time-independent pure
translation T

Alower beam!Abracket
along a direction parallel to the lower

beam and a time-dependent pure rotation R
Alower beam!Abracket

about
an axis parallel to the horizontal bars. Finally, the con¯guration of
Ashade relative to Abracket is described in terms of a time-independent
pure translation TAbracket!Ashade

and a time-dependent pure rotation
RAbracket!Ashade

about an axis parallel to the horizontal bars.
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The observer hierarchy below re°ects the inherent mechanical design.

As noted above, the pure rotations contained within this hierarchy are
not all independent. Instead, the closed loops formed by the base, upper
and lower beams, and the bracket, on the one hand, and by the base
and the upper and middle beams (through the spur gears), on the other
hand, constrain the relative orientations and changes in these relative
orientations, respectively, between di®erent observers. Although it might
appear natural to introduce a direct connection between the upper beam
and the bracket and/or the upper and middle beams in the tree hierarchy
above, the accepted methodology explicitly prohibits the creation of such
loops in the observer hierarchy. Instead, we may choose to suggest the
existence of constraints on the relative con¯gurations by the use of dashed
lines in the tree hierarchy as was done in the ¯gure above.

2.5

The computer-graphics applicationMambo interfaces with graphical sub-
routines within the computer operating system to represent an arbitrarily
complex array of rigid bodies in a three-dimensional environment. Detail
about the geometric description of the multibody mechanism is provided
to the application through a Mambo geometry description (a Mambo
.geo ¯le). The Mambo online reference manual contains a complete de-
scription of the .geo-¯le grammar.

Illustration 2.9

The simplest, grammatically correct Mambo geometry description is
given by the single statement:
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MODULE World f

g

corresponding to the tree structure

Here, the reserved keyword MODULE establishes the identity of the
main observer, the world observer . The open and closed braces enclose
the speci¯cation of the tree structure emanating from the world observer,
the module block . In this case, the absence of any additional information
within the module block signi¯es the solitary existence of the world ob-
server and the absence of other observers or rigid bodies.

The reserved keyword BODY represents auxiliary observers. Any
number of auxiliary observers may be contained within a module or body
block, e.g.,

MODULE World f

BODY Vehicle f

BODY Rightfrontwheel f

g

BODY Leftfrontwheel f

g

BODY Rightrearwheel f

g

BODY Leftrearwheel f

g

g

BODY Driver f

g

g

In this example, the con¯guration of the driver observer is directly re-
lated to the world observer. The con¯gurations of each of the four wheel
observers, however, are only indirectly related to the world observer via
the vehicle observer.
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Illustration 2.10

Rigid bodies may be introduced at any level in the tree structure, i.e.,
within any observer block. Mambo is shipped with an object library con-
taining geometric primitives such as spheres, cylinders, and rectangular
blocks. Each such primitive is represented within the Mambo .geo ¯le as
an object block, as shown in the following geometry description:

MODULE World f

BODY Vehicle f

BLOCK f

g

BODY Rightfrontwheel f

CYLINDER f

g

g

BODY Leftfrontwheel f

CYLINDER f

g

g

BODY Rightrearwheel f

CYLINDER f

g

g

BODY Leftrearwheel f

CYLINDER f

g

g

g

BODY Driver f

SPHERE f

g

g

g

Loading2 this geometry description intoMambowill display the block,
cylinders, and sphere, but will hardly represent the multibody mechanism
you had in mind. (Try it!) A more appealing representation requires a
speci¯cation of the pure translations and pure rotations that relate the
con¯gurations of rigid bodies to their parent observers and so on.

2You must ¯rst load a Mambo motion description (a Mambo .dyn ¯le). An empty

text ¯le with the .dyn extension will do at this point (see the Mambo reference man-

ual).
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The notion of observers and the corresponding tree representations
is represented within the Mambo computer-algebra toolbox through the
de¯nition of a global variable GlobalObserverDeclarations. Changes
to this variable initiated by the user are made possible through the pro-
cedures DeclareObservers and DefineNeighbors.

The declaration of an observer using the DeclareObservers proce-
dure appends the global variable GlobalObserverDeclarations to in-
clude the name associated with the observer.

Illustration 2.11

In the following extract from a Mambo toolbox session, the content of
the global variable GlobalObserverDeclarations is displayed immedi-
ately after invoking the Restart procedure and following the declaration
of the three observers A, B, and C.

> Restart():
> print(GlobalObserverDeclarations);

table([

])

> DeclareObservers(A,B,C):
> print(GlobalObserverDeclarations);

table([

B = fg

C = fg

A = fg

])

Here, prior to the declaration of any observers, the global variable is an
empty table (see Appendix A for more detail onMaple data structures).
After the observers have been declared, GlobalObserverDeclarations
contains three entries with labels given by the names of the observers and
associated empty sets. The empty sets signify the independence of the
three observers with no information about the relative con¯guration of
the di®erent observers.

That the con¯guration of an observer is modeled as directly related

to the con¯guration of a di®erent observer is established by invoking the
DefineNeighbors procedure.
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Illustration 2.12

In the continuation below of the previousMambo toolbox session, Define-
Neighbors establishes the B observer as a neighbor of the A and C ob-
servers. The resulting modi¯cation to GlobalObserverDeclarations is
also shown.

> DefineNeighbors([A,B],[B,C]):
> print(GlobalObserverDeclarations);

table([

B = fA; Cg

C = fBg

A = fBg

])

Although no new observer labels have been added to the global vari-
able GlobalObserverDeclarations, the associated, previously empty
sets now contain the names of all observers that neighbor the observer
speci¯ed by the label.

TheMambo toolbox utility GeometryOutput can be used to generate
tree representations of the information stored in GlobalObserverDecla-
rations in a format suitable for export into a Mambo geometry descrip-
tion (i.e., a Mambo .geo ¯le). Given the name of an already declared
observer to serve as the main observer, GeometryOutput generates a tree
structure incorporating all observers in GlobalObserverDeclarations

whose con¯guration can be directly or indirectly related to that of the
main observer.

Illustration 2.13

We continue with the same Mambo toolbox session as in the previous il-
lustration. Here, we illustrate the output that results from di®erent calls
to the GeometryOutput utility.

> GeometryOutput(main=A);

MODULE A {

BODY B {

BODY C {

}

}

}
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> GeometryOutput(main=B);

MODULE B {

BODY A {

}

BODY C {

}

}

> GeometryOutput(main=C);

MODULE C {

BODY B {

BODY A {

}

}

}

With the command

> GeometryOutput(main=A,filename="hierarchy.geo");

the output is directed to the ¯le by the name hierarchy.geo within the
current working directory3. More detail on the optional arguments to
GeometryOutput may be found in Appendix B.

2.6 Exercises

Exercise 2.1 As shown in the text,
the successive composition of a sequence of
pure translations is equivalent to a single
pure translation. Similarly, sequences of
pure translations that di®er only in the or-
der in which individual pure translations are
applied are equivalent. What other math-
ematical objects and associated operations
are you familiar with that exhibit the same
set of properties?

Exercise 2.2 As shown in the text,
the successive composition of a sequence of
pure rotations that keep the same point on
the block ¯xed is equivalent to a single pure

rotation. In contrast with pure translations,
however, sequences of pure rotations that
di®er only in the order in which individ-
ual pure rotations are applied are generally
not equivalent. What other mathematical
objects and associated operations are you
familiar with that exhibit the same set of
properties?

Exercise 2.3 Consider two pure rota-
tions R1 and R2. Under what conditions on
R1 and R2 does the equality

R1 ± R2 = R2 ± R1

hold?

3The current working directory may be accessed and set using the currentdir

command in Maple.
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Exercise 2.4 Show that¡
T

¡1
¢
¡1

= T:

[Hint: T ± T
¡1 = T

¡1
± T = I.]

Exercise 2.5 Reduce the following se-
quences of pure translations and pure rota-
tions to a single combination of a pure trans-
lation and a pure rotation:

a) (T1)
¡1

± R1 ± T1

b) R2 ± T1 ± T1 ± (R2)
¡1

c) T1 ± R1 ± R1 ± T1

d) R1 ± T1 ± (¡1)R1

e) T2 ± (T1)
¡1

± R2 ± 2R2 ± (T2)
¡1

f) (¡1)T1 ± 2I ± 3R1 ± (R1)
¡1

Exercise 2.6 Show that the collection
of all combinations of pure translations and
pure rotations, together with the composi-
tion operator, constitutes a group.

Exercise 2.7 Show that the group of all
combinations of pure translations and pure
rotations, together with the composition op-
erator, is not Abelian.

Exercise 2.8 Let A and B be two
observers. Draw the tree structures that
correspond to treating A or B, respectively,
as the main observer. Denote each branch
with the pure translation and pure rotation
that relate the observers.

Exercise 2.9 Let A, B, and C be three
observers. Draw the possible tree structures
that correspond to treating A, B, or C, re-
spectively, as the main observer. Denote
each branch with the pure translation and
pure rotation that relate the observers.

Exercise 2.10 Consider the tree struc-
ture below. Draw the equivalent tree struc-
ture corresponding to letting the A2 observer

be the main observer and ¯nd the pure trans-
lation and the pure rotation that describe the
con¯guration of the ¯rst rigid body relative
to A2.

Exercise 2.11 Consider the tree struc-
ture in the previous exercise. Draw the
equivalent tree structure corresponding to
eliminating the A2 observer and relating the
con¯guration of the second rigid body di-
rectly to W.

Exercise 2.12 For each of the mech-
anisms below, introduce a main observer
and auxiliary observers, and draw the corre-
sponding tree structures including symbols
for the pure translation and pure rotation
that correspond to each branch.

a) A trombone
b) A unicycle
c) A pair of plyers
d) A backhoe
e) A wooden labyrinth game
f) A padlock
g) An electric fan
h) A Ferris wheel

Exercise 2.13 For each of the mech-
anisms below, introduce a main observer
and auxiliary observers, and draw the corre-
sponding tree structures including symbols
for the pure translation and pure rotation
that correspond to each branch. Identify
constraints on the relative con¯gurations of
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observers in the tree and highlight these in
your diagram.

a) A marionette
b) The action in a piano
c) A gymnast on the Roman rings
d) A reel lawn mower
e) A car wheel assembly
f) A cuckoo clock

Exercise 2.14 Use theMambo toolbox
to generate the Mambo geometry descrip-
tion corresponding to the observer hierachy
below.

Solution.

> Restart():
> DeclareObservers(W,Base,
> LowerBeam,Bracket,Shade,
> MiddleBeam,UpperBeam):
> DefineNeighbors([W,Base],
> [Base,LowerBeam],
> [LowerBeam,Bracket],
> [Bracket,Shade],
> [Base,MiddleBeam],
> [Base,UpperBeam]):
> GeometryOutput(main=W);

Exercise 2.15 Use theMambo toolbox
to generate the Mambo geometry descrip-
tions corresponding to each of the observer
hierarchies below.
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Summary of notation

The symbols T and R were used in this chapter to denote arbitrary
pure translations and pure rotations. The same notation, but with
subscripts (e.g., T1 or R2) was used to distinguish between multiple
pure translations or pure rotations. For example, TA denoted a
pure translation relating the con¯guration of a rigid body relative
to the observer A. Similarly, TA!B denoted the pure translation
that relates the con¯guration of the observer B relative to A.

The symbol I was used in this chapter to denote the identity transla-
tion as well as the identity rotation, since these both correspond to
absence of motion.

The symbol ® (alpha) was used in this chapter to denote a scalar multiple
of a pure translation or pure rotation, as in ®T or ®R.

The symbol ± was used in this chapter to denote a composition of pure
translations and pure rotations, as in T ± R.

The superscript ¡1 was used in this chapter to denote an inverse of a
pure translation or a pure rotation, as in T

¡1.

Upper-case, calligraphic letters, such as A, B, and W were used in this
chapter to denote observers.

Summary of terminology

An observer hierarchy is a tree structure with a main observer as the
parent node, auxiliary observers as internal nodes, and rigid bodies
as leaf nodes.

With emphasis on computer animations of multibody systems, the main
observer is called the world observer.

With emphasis on mechanical analysis of multibody systems, the main
observer is an inertial observer.

Each branch in an observer hierarchy corresponds to a pair of unique
translations T and T

¡1 and a pair of unique rotations R and R
¡1.

Observers at nodes that are connected by a path that passes through
no other nodes are said to be directly related.

Observers at nodes that are connected by a path that passes through at
least one other node are said to be indirectly related.

In Mambo, the reserved keyword MODULE represents the main ob-
server.
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In Mambo, the reserved keyword BODY represents an auxiliary ob-
server.

In Mambo, the module block contains information about all auxiliary
observers and rigid bodies.

InMambo, a body block contains information about all descendant aux-
iliary observers and rigid bodies.

In Mambo, the reserved keywords BLOCK, SPHERE, and CYLIN-

DER represent rigid bodies with the shape of a rectangular block,
a sphere, and a cylinder, respectively.

In the Mambo toolbox, the global variable GlobalObserverDeclara-
tions contains the names of all declared observers and information
about their neighbors.

In theMambo toolbox, the procedure DeclareObservers appends Glo-
balObserverDeclarations with any number of observer names.

In the Mambo toolbox, the procedure DefineNeighbors appends Glo-
balObserverDeclarations with information about directly related
observers.

In the Mambo toolbox, the procedure GeometryOutput generates a
Mambo geometry description with the main observer correspond-
ing to some declared observer.
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Chapter 3

Translations

wherein the reader learns of:

² The association between points, separations, position vectors, and

translations;

² The mathematics of vectors and translations;

² The use of computer-algebra software to expediate computations.



Practicum

The previous chapters were in-

tended to develop your intuition for

three-dimensional geometries and

the structure of multibody mech-

anisms. The present chapter is

intended to provide you with a

language to communicate a three-

dimensional geometry and the struc-

ture of a multibody mechanism. In

order to master this language, you

must learn to recognize and cor-

rectly interpret its individual words

and sentences. You must learn to

shun grammatical aberrations. You

must become °uent.

Follow along with the text in this

chapter with a pen and a piece of

paper. Write, draw, and speak the

objects and the operations discussed

here. Use the numerical examples in

the exercise section to solidify your

transition from the concrete to the

abstract. Become pro¯cient with

the relevant Mambo toolbox proce-

dures. You will be amply rewarded

for your e®orts.
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3.1 Points

3.1.1 Notation

To denote points in space, I consistently use upper-case, italicized letters,
e.g.,

A, R, X,

and so on. The point in space that coincides with the tip of your nose may
be denoted by N . The point in space that coincides with the center of the
Earth may be denoted by E. The choice of letter is not important, unless
you are trying to give the person you are communicating with additional
information by a clever choice of letter. For example, if a point is to
be used to represent the reference position of a speci¯c observer, you
may prefer to denote it by the same letter that was used to denote the
observer. To distinguish between multiple points that use the same letter,
I include appropriate subscripts, e.g., A1, Rreference, and Cworld.

To graphically represent a point in space, this text consistently uses
a tiny circular dot. For later reference, it is a good idea to place the
corresponding letter adjacent to the dot.

3.1.2 Common Misconceptions

Points are not numerical constructs. They represent ge-
ometrical features of space, but are not directly associated
with numbers.

A point is a point is a point!

It does not make sense to refer to a point as a combination of three
numbers. The assertion that the point A is given by the triplet (1;¡0:5; 0)
is nonsensical without additional information. The notion of a point's co-
ordinates presupposes the existence of a coordinate system. Equivalently,
the position of a point may be reduced to a triplet of numbers only with
respect to a speci¯c observer.

For example, denote by B some arbitrary point on the virtual block
corresponding to the observer B and consider a coordinate system with
origin at B and axes parallel to the edges of the virtual block. The
position of a point A relative to B is uniquely speci¯ed by its coordinates
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with respect to this coordinate system. Clearly, these coordinates depend
on the choice of observer.

My personal preference is to consistently refer to a point with the
corresponding letter and avoid all mention of its coordinates relative to
some observer. The notion of coordinate systems and coordinates of a
point, however, is quite common and standard and should be understood.
I will describe this in detail in Chapter 4.

3.2 Separations

3.2.1 Notation

The separation from point A to point B is the straight-line segment
from A to B and is denoted by

¡!

AB: Note that the arrow signi¯es the
direction of the separation from A to B and that the letters corresponding
to the points are both represented in the notation. Other examples of
separations are

¡!

RS,
¡!

BF , and
¡!

AG.

In all cases, the notation for a separation involves the two points (using
upper-case, italicized letters) connected by the separation and a super-
scripted arrow indicating the direction of the separation.

The separation
¡!

AB uniquely describes the location of the point B

relative to the point A. The separation documents the shortest path to
traverse from point A to point B:

To graphically represent a separation in space, this text consistently
uses an actual arrow from one point to another. For later reference,
it is a good idea to place the corresponding combination of letters and
superscripted arrow adjacent to the actual arrow.
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There is no unique measure of the length of a separation. Equivalently,
there is no unique measure of the distance between two points. Instead,
all statements regarding measures of length and distance are relative to
some accepted standard, say a platinum bar in a sealed vault in Paris1.

3.2.2 Common Misconceptions

Separations are not numerical constructs. They represent
geometrical features of space, but are not directly associated
with numbers.

A separation is a separation is a separation!

It does not make sense to refer to a separation as a combination of
three or more numbers. The separation is uniquely determined by the
two points it connects. Since we are unable to ascribe unique numbers
to points, the same follows for separations. Given an observer, we could
certainly describe a separation by the coordinates of each of the points
relative to the coordinate system with origin at some stationary point
relative to the observer and axes parallel to the edges of the virtual block
corresponding to the observer. As before, these numbers would depend
on the choice of observer.

My personal preference is to consistently refer to a separation by the
corresponding combination of letters and superscripted arrow and avoid
all mention of the coordinates of its constituent points relative to some
observer.

3.2.3 Algebra of Separations

The separation
¡!

AB documents the shortest path to traverse from point
A to point B.

Motion along the path given by
¡!

AB is denoted by the symbol

¡!
AB

y :

1The SI system unit of length, the meter, was originally introduced as a ten-

millionth of the distance between the north pole and the equator along the Paris

meridian and represented by the distance between notches on a platinum-iridium bar.

The current de¯nition is in terms of the distance traveled by light in vacuum in 1=299
792 458 seconds.
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It makes sense to write

A

¡!

AB

y B;

suggesting that motion from A along
¡!

AB brings one to B.

Illustration 3.1

That the shortest path from B to C is given by the separation
¡!

BC implies
that

B

¡!
BC

y C:

Since from before

A

¡!

AB

y B;

we conclude that

A

¡!
AB

y

¡!
BC

y C;

i.e., that motion from A along
¡!

AB and subsequently along
¡!

BC brings
one to C.

But since

A

¡!

AC

y C;

the motion described by the composition
¡!
AB

y

¡!
BC

y produces the same out-

come as that described by
¡!
AC

y . While the latter motion is along the
shortest path between A and C, the former is, in general, not. Although
the end results are the same for the two motions, we refrain from sug-
gesting that they are equal, in light of this marked di®erence in actual
path.
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Any number of expressions of the form
¡!

AB

y may be combined, provided
that the endpoint of one such motion coincides with the starting point of
the next motion. Thus, the expression

¡!
AD

y

¡!
DO

y

¡¡!
OX

y

makes sense and results in the same ¯nal displacement as the motion

¡!

AX

y :

On the other hand, the expression

¡!

AD

y

¡!

AV

y

¡¡!

DV

y

does not make sense.

3.2.4 A±ne Space

We may parametrize the points on the separation
¡!

PQ from P to Q by
the real numbers in the interval [0; 1], such that 0 corresponds to P , 1

corresponds to Q; and 0 · ° · 1 corresponds to the point on
¡!

PQ whose
distance from P is a fraction ° of the distance between P and Q.

It is convenient to think of the notation
¡!

PQ as a function of the real
numbers in [0; 1], such that

¡!

PQ (0) = P and
¡!

PQ (1) = Q: It follows that
¡!

PQ
¡

1

2

¢
is the midpoint on the separation, halfway between P and Q.

From the de¯nition of a separation, it follows that

¡!

PQ (°) =
¡!

QP (1 ¡ °)

for any ° 2 [0; 1].
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=
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Illustration 3.2

Given any four points P , Q, R, and S, the condition that

¡!

PS

µ
1

2

¶
=

¡!

QR

µ
1

2

¶
= M

implies that the separations
¡!

PQ and
¡!

RS have equal length, are parallel,
and have the same heading.

Indeed, the lengths of the separations
¡¡!

SM and
¡¡!

PM are equal. Simi-
larly, the lengths of the separations

¡¡!

QM and
¡¡!

RM are equal. Finally, the
angle ^PMQ equals the angle ^SMR. Since the triangles PQM and
SRM have two sides and one angle in common, they are congruent. It
follows that the lengths of the separations

¡!

PQ and
¡!

RS are equal and that
the angles ^PQM and ^SRM are equal. From Euclidean geometry, the
latter observation implies that

¡!

PQ and
¡!

RS are parallel.

The converse to the statement in the illustration is also true: if two
separations

¡!

PQ and
¡!

RS have equal length, are parallel, and have the
same heading, then

¡!

PS

µ
1

2

¶
=

¡!

QR

µ
1

2

¶
:

If, in addition,
¡!

RS and
¡!

TU have equal length, are parallel, and have the
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same heading, then

¡!

ST

µ
1

2

¶
=

¡!

RU

µ
1

2

¶
:

But this implies that
¡!

PQ and
¡!

TU have equal length, are parallel, and
have the same heading, i.e.,

¡!

PU

µ
1

2

¶
=

¡!

QT

µ
1

2

¶
:

These properties show that the set of points together with the function
¡! is an a±ne space.

De¯nition 3.1 A set of elements A together with a ternary function2

¡! : A £ A £ [0; 1] ! A

is called an a±ne space if for any elements P;Q 2 A :

² Uniqueness:
¡!

PQ (0) = P and
¡!

PQ (1) = Q;

² Symmetry:
¡!

QP
¡

1

2

¢
=

¡!

PQ
¡

1

2

¢
;

² Transitivity:
¡!

PS
¡

1

2

¢
=

¡!

QR
¡

1

2

¢
and

¡!

ST
¡

1

2

¢
=

¡!

RU
¡

1

2

¢
implies that

¡!

PU
¡

1

2

¢
=

¡!

QT
¡

1

2

¢
:

2To truly qualify as an a±ne space, the function ¡! must satisfy a number of ad-

ditional conditions. The conditions listed here guarantee that an equivalence relation

can be introduced on A. The additional conditions guarantee that the equivalence

relation supports the construction of a vector space (see Section 3.3.2 for further dis-

cussion).
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As ° 2 [0; 1] varies from 0 to 1, the function
¡!

PQ (°) maps out a path
from P to Q. While this path is a straight-line segment in the °at space
that we appear to experience, this need not generally be the case.

Consider, as an example, a sphere of radius 1 centered at the origin of
a Cartesian coordinate system and restrict attention to the set of points
on the sphere for which their z-coordinate is greater than zero. There is
a unique straight line through the origin intersecting each point in this
set. We can identify each such point with the unique point of intersection
of the corresponding straight line with the z = 1 plane.

To each point P on the hemisphere, there thus corresponds a unique
triplet of coordinates (uP ; vP ; 1), and vice versa. We represent this ob-
servation by the statement

P $ (uP ; vP ; 1) :

Let P and Q be two points on the hemisphere, such that

P $ (uP ; vP ; 1) and Q $ (uQ; vQ; 1) :

Then, de¯ne the function ¡!, such that

¡!

PQ (°) $ (uP + ° (uQ ¡ uP ) ; vP + ° (vQ ¡ vP ) ; 1) :

Clearly,

¡!

PQ (0) = P;

since

¡!

PQ (0) $ (uP + 0 ¤ (uQ ¡ uP ) ; vP + 0 ¤ (vQ ¡ vP ) ; 1) = (uP ; vP ; 1) :

Moreover,

¡!

PQ (1) $ (uP + 1 ¤ (uQ ¡ uP ) ; vP + 1 ¤ (vQ ¡ vP ) ; 1) = (uQ; vQ; 1) ;



2
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i.e.,

¡!

PQ (1) = Q:

The path through the points P and Q described by the function
¡!

PQ (°) is an arc segment of the great circle3 through P and Q.

As in the case of separations in °at space,
¡!

PQ describes the shortest
path from P to Q. It is no longer the case, however, that ° denotes the
ratio between the distance from P to

¡!

PQ (°) and the distance4 from P

to Q. For example, if P lies at the top of the hemisphere and Q near the
z = 0 plane, then

¡!

PQ

µ
1

2

¶
$

³
uQ

2
;
vQ

2
; 1

´
;

which can be made arbitrarily close to the z = 0 plane by picking uQ

and/or vQ arbitrarily large.

Illustration 3.3

The function ¡! on the hemisphere satis¯es the symmetry property, since

(uP + ° (uQ ¡ uP ) ; vP + ° (vQ ¡ vP ) ; 1)

= (uQ + (1 ¡ °) (uP ¡ uQ) ; vQ + (1 ¡ °) (vP ¡ vQ) ; 1) :

Furthermore,

µ
uP +

1

2
(uS ¡ uP ) ; vP +

1

2
(vS ¡ vP ) ; 1

¶

=

µ
uQ +

1

2
(uR ¡ uQ) ; vQ +

1

2
(vR ¡ vQ) ; 1

¶
;

µ
uS +

1

2
(uT ¡ uS) ; vS +

1

2
(vT ¡ vS) ; 1

¶

=

µ
uR +

1

2
(uU ¡ uR) ; vR +

1

2
(vU ¡ vR) ; 1

¶

imply that

uP = ¡uS + uQ + uR;

vP = ¡vS + vQ + vR;

uU = uS + uT ¡ uR;

3The corresponding path on the z = 1 plane is a straight-line segment from

(uP ; vP ; 1) to
¡
uQ; vQ; 1

¢
.

4Unless we de¯ne the distance between two points on the hemisphere to equal the

distance between the corresponding points on the z = 1 plane.
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and

vU = vS + vT ¡ vR:

Substitution shows thatµ
uP +

1

2
(uU ¡ uP ) ; vP +

1

2
(vU ¡ vP ) ; 1

¶

=

µ
uQ +

1

2
(uT ¡ uQ) ; vQ +

1

2
(vT ¡ vQ) ; 1

¶
;

i.e., that ¡! satis¯es the transitivity property.

3.3 Vectors

3.3.1 Equivalent Separations

Illustration 3.4

In a pure translation, all points on a rigid body are shifted by an equal
amount along a common direction. Let A and B be any two points on
the rigid body and denote by Ar and Br the corresponding locations in
space that coincide with A and B, respectively, when the rigid body is in
the reference con¯guration. Similarly, let Af and Bf denote the points
in space that coincide with A and B, respectively, when the rigid body
is in the ¯nal con¯guration.
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By the de¯nition of a pure translation, the separations
¡¡¡!

ArAf and
¡¡¡!

BrBf :

² Have equal length;

² Are parallel;

² Have the same heading.

In fact, all separations from points in the reference con¯guration to the
corresponding points in the ¯nal con¯guration satisfy these three con-
ditions. An equivalent observation is to suggest that all motions of the
form

¡¡¡!
ArAf

y

are identical in distance and in direction, and di®er only in the choice of
points that are involved.

When two separations
¡!

PQ and
¡!

RS have equal length, are parallel,
and have the same heading, they are said to be equivalent and we write

¡!

PQ s
¡!

RS:

Clearly,
¡!

PQ ¿
¡!

QP; since the separations
¡!

PQ and
¡!

QP di®er in heading.

Given a separation
¡!

RS, there exists a separation
¡!

PQ for every point
P in space, such that

¡!

PQ »

¡!

RS. We can use this observation to make
sense of statements like

P

¡!

RS

y Q;

which are a priori nonsensical, since the separation
¡!

RS connects R and

S, not P and Q. If, instead, we choose to interpret the expression
¡!
RS

y to
suggest a motion along any separation that is equivalent to

¡!

RS, then

P

¡!

RS

y Q

is true if and only if
¡!

PQ »

¡!

RS.
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To emphasize this interpretation, consider the notation

[¡!RS]
y ;

where
h
¡!

RS

i
represents the in¯nite collection of separations that are

equivalent to
¡!

RS. In particular, the notation
¡!

PQ 2

h
¡!

RS

i
means that

the separation
¡!

PQ is in that collection, i.e., that
¡!

PQ »

¡!

RS. The state-
ment

P
[¡!RS]
y Q

is true if and only if
¡!

PQ 2

h
¡!

RS

i
.

3.3.2 Equivalence Classes

The result from Exercise 3.6 shows that the relation between two equiv-
alent separations is an example of an equivalence relation:

De¯nition 3.2 An equivalence relation s on a set F is a property
of pairs of elements for which the following holds true:

² Re°exivity: x s x;

² Symmetry: x s y ) y s x;

² Transitivity: x s y and y s z ) x s z:

The subset of elements equivalent to x is commonly denoted by [x] and
is called an equivalence class. The equivalence relation generates a set of
equivalence classes on F. This set is denoted by F= s and is called the quo-

tient set.

The equivalence class in °at space of all separations equivalent to the

separation
¡!

PQ is the collection
h
¡!

PQ

i
. Each such equivalence class in °at

space corresponds to a unique pure translation, and vice versa. It follows



2
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that the quotient set corresponding to the equivalence relation s on the
set of separations in °at space is the set of pure translations.

Two separations
¡!

PQ and
¡!

RS in °at space are equivalent if and only
if they have the same length, are parallel, and have the same heading.
But in the previous section, this was shown to be true if and only if5

¡!

PS

µ
1

2

¶
=

¡!

QR

µ
1

2

¶
:

In a general a±ne space, we can use this as the de¯nition of equivalence.
The implications in a general a±ne space may no longer be interpretable
in terms of the separations having equal length, being parallel, and having
the same heading as was the case in °at space.

Illustration 3.5

We must show that the de¯nition of equivalence in a general a±ne space
satis¯es the conditions for an equivalence relation. From the conditions
on the ¡! function in an a±ne space, we recall that

¡!

PQ

µ
1

2

¶
=

¡!

QP

µ
1

2

¶
:

But this implies that the separation
¡!

PQ is equivalent to itself, con¯rm-
ing that the property of equivalence satis¯es the re°exivity condition.
Moreover, if

¡!

PS

µ
1

2

¶
=

¡!

QR

µ
1

2

¶
;

then it follows that

¡!

SP

µ
1

2

¶
=

¡!

RQ

µ
1

2

¶
:

But this implies that, if the separation
¡!

PQ is equivalent to the separation
¡!

RS, then the separation
¡!

RS is equivalent to the separation
¡!

PQ as required
by the symmetry condition.

Finally, transitivity follows if

¡!

PS

µ
1

2

¶
=

¡!

QR

µ
1

2

¶
and

¡!

RU

µ
1

2

¶
=

¡!

ST

µ
1

2

¶

imply that

¡!

PU

µ
1

2

¶
=

¡!

QT

µ
1

2

¶
:

5See the previous section for a de¯nition of this notation.
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But this is the transitivity condition on the function ¡! in a general
a±ne space. We conclude that the de¯nition of equivalence introduced
here truly satis¯es the conditions for an equivalence relation.

3.3.3 Position Vectors

A collection of separations
h
¡!

PQ

i
that are equivalent to the separation

¡!

PQ is called a position vector from P to Q, and is generally denoted by
r

PQ or r
PQ.

In this text, I consistently use the ¯rst version of the notation, whereas
I recommend that you use the second form when writing on paper or
blackboard. The notation for a position vector is a lower-case \r" (bold-
faced or with a bar above as described) followed by a superscript involving
two points. Examples of position vectors are

r
BD or r

BD, r
QJ or r

QJ , and r
P1P2 or r

P1P2 .

The position vector r
BE

does not equal the separation
¡!

BE; but contains
it.

¡!

BE is said to be a representation of the position vector r
BE or to

represent the position vector r
BE .

To graphically depict a position vector, this text consistently uses
an arbitrary separation that represents the position vector. For later
reference, it is a good idea to place the corresponding symbol adjacent to
the separation.

Illustration 3.6

A separation is uniquely associated with two points in space. Thus,
¡!

AG is
entirely determined by the location of the points A and G, respectively. A
position vector, however, can be de¯ned without referring to any points.
In fact, a position vector is entirely determined by the length, direction,
and heading of any of its representations. Thus, unless we are partic-
ularly interested in using a position vector to describe the collection of
separations equivalent to the separation between two speci¯c points, we
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can omit the superscript in the notation for the position vector. When
this is the case, we just refer to the position vector as a vector .

Reserving the letter \r" for position vectors, vectors in general are
denoted by a lower-case letter (bold-faced or with a bar above it as de-
scribed previously), e.g.,

v or v, w or w, and x or x.

Since all the representations of a vector have the same length, direc-

tion, and heading, it is customary to ascribe these characteristics to the
vector. For example, the length of a vector is the length of any of its
representations. The length of the vector v is denoted by kvk.

Every pure translation corresponds to a unique vector.
Every vector corresponds to a unique translation.

In particular, the vector v corresponds to the pure translation T that
shifts all the points on a rigid body by an amount and in a direction
given by the length, direction, and heading of v. Similarly, given a pure
translation T, we can construct the corresponding vector by collecting
all the separations

¡¡¡!

ArAf between points in the reference and ¯nal con-
¯gurations.

3.3.4 Common Misconceptions

A vector does not have a location in space. In fact, a vector does not
even exist in space as a single object. A vector is a collection of in¯nitely
many equivalent separations, each of which does have a location in space.
It does not make sense to suggest that a vector can be moved freely in
space, since it cannot have a location in space in the ¯rst place. It is the
selection of di®erent separations to represent the vector that suggests
the idea of moving the vector. A vector is not an arrow between two
points.

A vector is not a column matrix of numbers. Certainly, the terminol-
ogy \vector" is common in linear-algebra texts to refer to such matrices.
Although a possible source of confusion, the dual usage of this terminol-
ogy is justi¯ed by the similarity between the properties of the vectors
introduced here and those of column matrices.

The vectors introduced here represent geometrical features
of space, and are not directly associated with numbers.

A vector is a vector is a vector!
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3.3.5 Algebra of Vectors

The identity translation

Illustration 3.7

Every pure translation corresponds to a unique vector. As a special case,
the identity translation I corresponds to the absence of motion. We de-
note the corresponding vector by 0 and refer to it as the zero vector .

The zero vector 0 contains all separations equivalent to the separation
¡!

PP . In fact,
¡!

AB 2 0 if and only if the points A and B coincide. Every
separation representing the zero vector has zero length. In other words,
k0k = 0.

We graphically represent the zero vector by a point and the symbol
0 adjacent to the point.

The statement

P
0

y P

is true for all P .

Scaling of translations

Illustration 3.8

Let
¡!

PQ and
¡!

RS be two separations that have the same direction and
heading, but such that the length of

¡!

RS is twice that of
¡!

PQ. It follows
that

¡!

PQ ¿
¡!

RS.

Since the two separations connect di®erent points, there is no straight-
forward way to relate these separations. This is not true, however, for

the corresponding vectors. Indeed, the vector
h
¡!

RS

i
consists of all sep-

arations that have the same direction and heading as the separations in

the vector
h
¡!

PQ

i
but twice the length. It makes sense to express this

observation by the statement

2
h
¡!

PQ

i
=

h
¡!

RS

i
:
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De¯ne the multiplication of the vector v with a scalar (i.e., real num-
ber) ® ¸ 0 as the vector ®v, such that any representation of ®v has the
same heading and direction as any representation of v, but is longer by
a factor of ® (or shorter if ® < 1). For a negative scalar ®, any rep-
resentation of the vector ®v has the same direction and length as any
representation of j®jv, but opposite heading.

Illustration 3.9

In Chapter 2, we considered scaling a pure translation T by a real number
® to yield the pure translation ®T. In fact, if ® ¸ 0, then all separations
¡¡¡!

ArAf between points in the reference and ¯nal con¯gurations under the
pure translation ®T are a factor of ® longer than the corresponding sepa-
rations for the pure translation T. Similarly, if ® < 0, the corresponding
separations are a factor of j®j longer but have opposite heading.

It follows that if v is the vector corresponding to a pure translation
T, then ®v is the vector corresponding to the pure translation ®T, and
vice versa.

There is no di®erence between expressions like (5 + 1)v and v (5 + 1).
Both of these represent the vector 6v.

Compositions of translations

If the pure translation T1 corresponds to the position vector r
AB and the

translation T2 corresponds to the position vector r
BC , then what is the

position vector corresponding to the combined translation

T2 ± T1?

The motion

r
AB

y
r

BC

y

yields the same end result as the motion

r
AC

y ;

where the separations
¡!

AB,
¡!

BC, and
¡!

AC form the three sides of a triangle.



P

Q

R

S

T

¡!

PS

¡!

QR

¡!

QT

¡!

RT

P

Q

R

S

T
0

¡!

PS

¡!

QR

¡¡!

ST
0

¡¡!

PT
0

100 3 Translations

The translation T2 ± T1 corresponds to the position vector r
AC and

we write

r
AB + r

BC = r
AC

and call r
AC the sum of the two position vectors r

AB and r
BC .

Illustration 3.10

We can illustrate the concept of adding vectors by drawing triangles
whose sides are given by representations of the vectors involved. For
example, the ¯gure below shows that the sumh

¡!

QR

i
+

h
¡!

PS

i
equals the position vector h

¡!

QT

i
:

Similarly, the following diagram shows thath
¡!

PS

i
+

h
¡!

QR

i
=

·
¡¡!

PT
0

¸
:

But,

¡!

QT s
¡¡!

PT
0

;
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i.e., h
¡!

QR

i
+

h
¡!

PS

i
=

h
¡!

PS

i
+

h
¡!

QR

i
:

You are used to seeing the + symbol used in contexts where the order
of summation is immaterial to the result of the operation. The illustration
shows that the order in which vectors are added is immaterial to the result
of the summation. This is a restatement of an observation made in the
¯rst two chapters about the order of successive pure translations.

Inverses of translations

If the vector v corresponds to the translation T, then the vector (¡1)v
corresponds to the translation T

¡1, since T
¡1 corresponds to a shift of

all points by the same amount as described by T but in the opposite
direction.

Since

T
¡1

± T = I ;

we conclude that

v + (¡1)v = 0 :

It makes sense to de¯ne subtraction of vectors by the formula

v ¡ w = v + (¡1)w:

Moreover, it is standard notation to write

¡v

instead of (¡1)v.

Vector products

Vectors (and the corresponding pure translations) may be compared using
their lengths and heading. Given two non-zero vectors a and b, the angle
µ (a;b) between the vectors is a measure of the di®erence in heading. The
extreme cases

µ (a;b) = 0±, 90±, and 180±

are particularly useful in applications. Here, µ (a;b) = 0± implies that
the vectors a and b are parallel and have the same heading. They must
therefore di®er only in length, say

b = ®a

for some real number ® > 0.



a

b

µ (a;b)

a

b

µ (a;b)

a

b

1
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If, instead, µ (a;b) = 180±, the two vectors a and b are parallel but
have the opposite heading. In analogy with the µ (a;b) = 0± case, it
follows that

b = ®a

for some real number ® < 0.

Finally, if µ (a;b) = 90±, the two vectors a and b are perpendicular.

From the properties of the trigonometric functions sine and cosine, it
follows that

sin µ (a;b) = 0

corresponds to the case when the vectors are parallel, while

cos µ (a;b) = 0

corresponds to the case when the vectors are perpendicular. To de-
tect whether two given vectors are parallel or perpendicular, it would
be convenient to be able to easily compute the quantities sin µ (a;b) and
cos µ (a;b). This is made possible through the de¯nition of two vector
products.

Illustration 3.11

Consider the triangle with sides corresponding to separations represent-
ing the vectors a, b, and a + b. From the ¯gure on the following page,
we see that

ka + bk = kak cosÁ
1
+ kbk cosÁ

2
;

ka + bk cosÁ1 = kak + kbk cos µ (a;b) ;



µ (a;b)

kak

kbk

ka + bk

Á
1

Á
2

1

1
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and

ka + bk cosÁ2 = kbk + kak cos µ (a;b) :

Multiply the second equation by kak and the third equation by kbk and
use the ¯rst equation to obtain

kak
2 + kbk

2 + 2 kak kbk cos µ (a;b) = ka + bk
2 .

This statement is known as the cosine theorem.

The innocuous quantity

kak kbk cos µ (a;b)
def

= a ² b

that appears in the illustration is called the dot product of the two vectors
a and b.

The dot product ¯nds widespread use in the remainder of this text
and should be well understood.

Since k0k = 0; it follows that

0 ² a = a ² 0 = 0

for any vector a. In fact, since kvk > 0 for v 6= 0;

a ² b = 0

if and only if a = 0, b = 0, or µ (a;b) = 90±.
To compute the dot product as de¯ned here requires knowledge of the

lengths of the vectors and the angle between them. As we shall see in
the next section, it is possible to compute the dot product without direct
knowledge of this angle. As such, the dot product is a tool for detecting
whether two vectors are perpendicular!

Since

a ² b = kak kbk cos µ (a;b) = kak [kbk cos µ (a;b)] ;

we see that the dot product between a and b amounts to multiplying the
length of a with the length of the projection of b onto a, kbk cos µ (a;b).
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a

b

kbkcos µ (a;b)

a
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b

c

a + b

A

B

1
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Illustration 3.12

Let a, b, and c be three arbitrary vectors as in the ¯gure below. If you
consider a and c to be parallel to some plane, the vector b is not neces-
sarily parallel to this plane. The image is one in three dimensions.

Now, imagine two planes A and B, perpendicular to the separation
representing c and intersecting the end points of the separations repre-
senting a and b; respectively. It follows that

kak cos µ (a; c)

is the distance from the starting point of the separation representing a

to A. Similarly,

kbk cos µ (b; c)

is the distance between A and B. Their sum equals the distance from
the starting point of the separation representing a to the plane B. From



1

a

b
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the ¯gure, it is now clear that

ka + bk cos µ (a + b; c) = kak cos µ (a; c) + kbk cos µ (b; c) :

Multiplication with kck gives

ka + bk kck cos µ (a + b; c) = kak kck cos µ (a; c) + kbk kck cos µ (b; c) :

The result of the illustration implies that

c ² (a + b) = c ² a + c ² b:

Combined with the observation that (show this!)

® (a ² b) = (®a) ² b;

it follows that the dot product is linear . It is this property that enables
its computation without resorting to the de¯nition above.

In analogy with the de¯nition of the dot product, consider the scalar
quantity

kak kbk sin µ (a;b) :

As with the dot product, this quantity is zero if and only if a = 0, b = 0,
or µ (a;b) = 0± or 180±. Since the angle µ (a;b) lies between 0± and 180±,
this quantity is ¸ 0. As we shall see in the next section, it is possible to
compute this quantity without direct knowledge of the angle µ (a;b). As
such, it is a tool for detecting whether two vectors are parallel!

In fact, the formula presented in the next section does not merely
compute the product above. Instead, it generates a vector, called the
cross product of the two vectors. In particular, the cross product a £ b

between the vectors a and b is de¯ned as the vector whose length equals

kak kbk sin µ (a;b)

and whose direction is perpendicular to both a and b, pointing in the
direction of the right-hand thumb when the ¯ngers curl from a to b.

The cross product ¯nds widespread use in the remainder of this text
and should be well understood.



a

b

µ (a;b)

2

106 3 Translations

Illustration 3.13

Consider the parallelogram whose sides correspond to representations of
the two vectors a and b. Then, if we use the side corresponding to a as
base, we ¯nd the height to be

kbk sin µ (a;b)

and the area of the parallelogram is

kak kbk sin µ (a;b) :

3.3.6 Vector Space

The de¯nitions of multiplication of a vector with a scalar and the addition
of two vectors makes the set of all (position) vectors a vector space.

De¯nition 3.3 A vector space V is a set of elements with well-
de¯ned addition and scaling operations, such that given two elements
v1;v2 2 V

v1 + v2 2 V, and kv1 2 V for any k 2 R.

Moreover, the operations satisfy the following conditions:

² Commutativity: v1 + v2 = v2 + v1, 8v1;v2 2 V;

² Associativity: v1 + (v2 + v3) = (v1 + v2) + v3, and k1 (k2v1) =
(k1k2)v1, 8v1;v2;v3 2 V, and 8k1; k2 2 R;

² Distributivity: (k1 + k2)v1 = k1v1 + k2v1, and k1 (v1 + v2) =
k1v1 + k1v2, 8v1;v2 2 V, and 8k1; k2 2 R;

² There exists a zero element 0, such that v+0 = v and v+(¡1)v =
0;

² Multiplication by 1 leaves a vector unchanged: 1v = v.
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Illustration 3.14

The elements of a vector space together with the addition operation con-
stitute an Abelian group. Here, the identity element on V is the zero
element 0, since

v + 0 = 0 + v = v:

Moreover, the inverse of an element v is the element ¡v, since

v + (¡v) = (¡v) + v = 0:

Associativity and commutativity follow from the same properties on the
vector space.

It is possible to generate a vector space from a general a±ne space.
In a general a±ne space, two separations

¡!

PQ and
¡!

RS are said to be
equivalent, i.e.,

¡!

PQ s
¡!

RS, if

¡!

PS

µ
1

2

¶
=

¡!

QR

µ
1

2

¶
.

The relation s is an equivalence relation and we may, consequently, con-
sider the corresponding quotient set on the space of separations. Multi-
plication of an equivalence class with a scalar and addition of equivalence
classes may now be introduced, provided that the ¡! function satis¯es a
number of additional properties that respect the properties of a vector
space. To identify these additional conditions on ¡! is a nice exercise for
the particularly inquisitive.

The length of a vector kvk was de¯ned as the length of any separation
representing the vector. It can be shown that the property of length
satis¯es the properties of a norm on a vector space.

De¯nition 3.4 A norm k¢k is a real-valued function on a vector
space V, such that for all v1;v2 2 V, and all ® 2 R:

² Positive de¯niteness: kv1k > 0 unless v1 = 0, for which k0k = 0;

² Homogeneity: k®v1k = j®j ¢ kv1k;

² Triangle inequality: kv1 + v2k · kv1k + kv2k.
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Certainly k0k = 0; since every separation
¡!

AA representing the zero
vector has zero length. Indeed, if kvk = 0, then all separations repre-

senting v must have zero length. But this implies that
¡!

AA 2 v for some
point A, i.e., v = 0. For all other vectors, the length must be a posi-
tive quantity, con¯rming that the length of a position vector satis¯es the
positive de¯niteness property.

The homogeneity property is an immediate consequence of the de¯-
nition of the multiplication of a position vector by a scalar. Finally, the
triangle inequality states that the length of one side in a triangle is always
less than or equal to the sum of the lengths of the other sides.

The dot product introduced on the collection of all position vectors is
an example of an inner product .

De¯nition 3.5 An inner product ² is an operation on pairs of
elements of a vector space V into the reals, such that for all v1;v2;v3 2 V

and all ®; ¯ 2 R:

² Positive de¯niteness: v1²v1 > 0 unless v1 = 0; for which 0 ² 0 = 0;

² Symmetry: v1 ² v2 = v2 ² v1;

² Linearity: (®v1 + ¯v2) ² v3 = ® (v1 ² v3) + ¯ (v2 ² v3) :

Given an inner product, we may de¯ne a function f (v) on the vector
space by

f (v) =
p

v ² v:

It follows that

f (v) > 0

unless v = 0 and

f (0) =
p

0 ² 0 =
p

0 = 0;

i.e., that f is a positive de¯nite function.
Moreover,

f (®v) =
p

(®v) ² (®v) =
p

®2v ² v = j®j ¢ f (v) ;

showing that f is a homogeneous function.

Illustration 3.15

The result in Exercise 3.26 shows that for an arbitrary inner product,

jv ² wj ·

p

v ² v
p

w ² w:
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It follows that

f
2 (v + w) = (v + w) ² (v + w)

= v ² v + 2v ² w + w ² w

= f
2 (v) + f

2 (w) + 2v ² w

· f
2 (v) + f

2 (w) + 2 jv ² wj

· f
2 (v) + f

2 (w) + 2f (v) ¢ f (w)

= [f (v) + f (w)]2 :

Since the quantities being squared on both sides of the equality are ¸ 0,
we can take the square root to obtain

f (v + w) · f (v) + f (w) :

The function f is said to be subadditive.

The properties of the function f show that it quali¯es as a norm
on the vector space. The subadditivity of f is just a restatement of the
triangle inequality. We have found that every inner product automatically
generates a norm.

3.4 Bases

Illustration 3.16

Let a1 6= 0 be a vector and P some point in space. Then, if

P
v1a1

y Q

for some scalar v1, the point Q lies on a straight line through P that is
parallel to a1. In fact, every point on this straight line corresponds to
some value for the coe±cient v1. We say that the vector a1 spans the

straight line.

Let a2 be a second vector that is not parallel to the line spanned by
a1, i.e., such that

a2 6= ¯a1
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for all values of ¯. Then,

for some scalars v1 and v2 implies that Q lies in a plane through P that
is parallel to a1 and a2. In fact, every point in this plane corresponds to
some value for the coe±cients v1 and v2. We say that the vectors a1 and
a2 span the plane.

Finally, let a3 be a third vector that is not parallel to the plane
spanned by a1 and a2, i.e., such that

a3 6= ¯
1
a1 + ¯

2
a2

for all values of ¯
1

and ¯
2
. Then, for every point in space, it is possible

to ¯nd some scalars v1, v2, and v3, such that

We say that the vectors a1, a2; and a3 span all of space.

A set of three vectors fa1;a2;a3g that span all of space is called a
basis of space and the vectors are known as basis vectors.

Let fa1;a2;a3g be a basis of space. For every pair of points P and
Q, it is possible to ¯nd scalars v1, v2, and v3, such that

Equivalently, for every pair of points P and Q, it is possible to ¯nd scalars
v1, v2, and v3, such thath

¡!

PQ

i
= v1a1 + v2a2 + v3a3:

P

Q

¡!

PQ 2 v1a1 + v2a2 + v3a3

P

Q

¡!

PQ 2 v1a1 + v2a2

P
v1a1+v2a2+v3a3

Q.y y

P
v1a1+v2a2+v3a3

Q.y y

P
v1a1+v2a2

y Qy
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In particular, for every vector v, it is possible to ¯nd scalars v1, v2, and
v3, such that

v = v1a1 + v2a2 + v3a3:

The result of Exercise 3.29 shows that the coe±cients v1, v2, and v3 are
unique. These coe±cients are known as the coordinates of the vector

relative to the basis fa1;a2;a3g. We say that the vector is expressed

relative to the basis fa1;a2;a3g.

3.4.1 Orthonormal Bases

Let fa1;a2;a3g be a basis of space. For every vector v, there exists a
unique set of coordinates v1, v2, and v3 of the vector relative to the basis,
such that

v = v1a1 + v2a2 + v3a3.

Let v and w be two arbitrary vectors with coordinates v1, v2, and v3

and w1, w2, and w3, respectively, relative to the basis fa1;a2;a3g. Now,
consider the dot product

v ² w = (v1a1 + v2a2 + v3a3) ² (w1a1 + w2a2 + w3a3)

= v1w1 (a1 ² a1) + v1w2 (a1 ² a2) + v1w3 (a1 ² a3)

+v2w1 (a2 ² a1) + v2w2 (a2 ² a2) + v2w3 (a2 ² a3)

+v3w1 (a3 ² a1) + v3w2 (a3 ² a2) + v3w3 (a3 ² a3) ;

where the second equality follows from the linearity of the dot product.
Rewrite this sum as a matrix product:

v ² w =
¡

v1 v2 v3

¢0
@ a1 ² a1 a1 ² a2 a1 ² a3

a2 ² a1 a2 ² a2 a2 ² a3

a3 ² a1 a3 ² a2 a3 ² a3

1
A

0
@ w1

w2

w3

1
A :

It follows that the value of the dot product v ² w is determined once the
matrix 0

@ a1 ² a1 a1 ² a2 a1 ² a3

a2 ² a1 a2 ² a2 a2 ² a3

a3 ² a1 a3 ² a2 a3 ² a3

1
A

is known.
From Exercise 3.16, we recall that

a1 ² a2 = a2 ² a1;

a1 ² a3 = a3 ² a1;

and

a2 ² a3 = a3 ² a2:
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It follows that the matrix0
@ a1 ² a1 a1 ² a2 a1 ² a3

a2 ² a1 a2 ² a2 a2 ² a3

a3 ² a1 a3 ² a2 a3 ² a3

1
A

is symmetric.

Illustration 3.17

The result of Exercise 3.36 shows that for every basis fa1;a2;a3g there
exist independent angles µ1, µ2, and µ3, such that the matrix0

@ a1 ² a1 a1 ² a2 a1 ² a3

a2 ² a1 a2 ² a2 a2 ² a3

a3 ² a1 a3 ² a2 a3 ² a3

1
A

takes the form0
@ ka1k

2

ka1k ka2k c1

ka1k ka3k c2

ka1k ka2k c1

ka2k
2

ka2k ka3k (s1s2c3 + c1c2)

ka1k ka3k c2

ka2k ka3k (s1s2c3 + c1c2)

ka3k
2

1
A ;

where

ci = cos µi; si = sin µi

and

sin µ1; sin µ2; sin µ3 6= 0:

It follows that

cos µ (a1;a2) =
a1 ² a2

ka1k ka2k

= cos µ1;

cos µ (a1;a3) =
a1 ² a3

ka1k ka3k

= cos µ2;

and

cos µ (a2;a3) =
a2 ² a3

ka2k ka3k

= sin µ1 sin µ2 cos µ3 + cos µ1 cos µ2:

Moreover,

v ² v = (ka1k v1 + ka2k v2 cos µ1 + ka3k v3 cos µ2)
2

+ (ka2k v2 sin µ1 + ka3k v3 sin µ2 cos µ3)
2

+ (ka3k v3 sin µ2 sin µ3)
2
;

which is positive for all v 6= 0.
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A basis of space is said to be orthonormal if0
@ a1 ² a1 a1 ² a2 a1 ² a3

a2 ² a1 a2 ² a2 a2 ² a3

a3 ² a1 a3 ² a2 a3 ² a3

1
A

equals the identity matrix. It follows that

v ² w =
¡

v1 v2 v3

¢0
@ a1 ² a1 a1 ² a2 a1 ² a3

a2 ² a1 a2 ² a2 a2 ² a3

a3 ² a1 a3 ² a2 a3 ² a3

1
A

0
@ w1

w2

w3

1
A

=
¡

v1 v2 v3

¢0
@ 1 0 0

0 1 0
0 0 1

1
A

0
@ w1

w2

w3

1
A

=
¡

v1 v2 v3

¢0
@ w1

w2

w3

1
A

= v1w1 + v2w2 + v3w3;

where the v's and w's are the coordinates of v and w relative to an
orthonormal basis fa1;a2;a3g.

Illustration 3.18

Let fa1;a2;a3g be an orthonormal basis of space. Then0
@ a1 ² a1 a1 ² a2 a1 ² a3

a2 ² a1 a2 ² a2 a2 ² a3

a3 ² a1 a3 ² a2 a3 ² a3

1
A =

0
@ 1 0 0

0 1 0
0 0 1

1
A

shows that

kaik =
p

ai ² ai = 1, i = 1; 2; 3;

i.e., the basis vectors have unit length. Moreover,

a1 ² a2 = a1 ² a3 = a2 ² a3 = 0;

i.e., the basis vectors are mutually perpendicular.

The length of a vector v is given by

kvk =
p

v ² v =
q

v2

1
+ v2

2
+ v2

3
;
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where the vi's are the coordinates of v relative to the orthonormal basis.
This statement is equivalent to the Pythagorean theorem in three dimen-
sions.

The formula

v ² w = v1w1 + v2w2 + v3w3

o®ers a straightforward method for computing the dot product between
arbitrary vectors without appealing to the original geometric de¯nition
of v ² w in terms of the lengths of v and w and the intermediate angle
µ (v;w). Instead, we ¯nd that

cos µ (v;w) =
v ² w

kvk kwk

=
v1w1 + v2w2 + v3w3p

v2

1
+ v2

2
+ v2

3

p
w2

1
+ w2

2
+ w2

3

:

In particular, we conclude that two non-zero vectors v and w are per-
pendicular if and only if

v1w1 + v2w2 + v3w3 = 0;

where the vi's and wi's are the coordinates of v and w relative to some
orthonormal basis.

The result of Exercise 3.47 shows that if fa1;a2;a3g is an orthonormal
basis and

v = v1a1 + v2a2 + v3a3;

then the dot product ai ² v equals the i-th coordinate of the vector v

relative to the basis fa1;a2;a3g, i.e.

ai ² v = vi:

3.4.2 Notation

From this point on, all coordinate descriptions will be stated relative to
orthonormal bases. We will ¯nd it algebraically convenient to organize
the basis vectors of a basis fa1;a2;a3g into a row matrix denoted by a
lower-case, unsubscripted letter:

a
def

=
¡

a1 a2 a3

¢
:

When referring to this matrix, we simply speak of the orthonormal ba-
sis a. To distinguish between di®erent orthonormal bases that use the
same letter, I include appropriate superscripts within parentheses to the
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right of the symbol of the basis, e.g., a(1), b(block), and so on. The same
superscripts are then added to the basis vectors, e.g.,

b
(r) =

³
b

(r)

1
b

(r)

2
b

(r)

3

´
.

With a slight stretch of normal matrix multiplication, any vector v

can be expanded as

v = a1 (a1 ² v) + a2 (a2 ² v) + a3 (a3 ² v)

=
¡

a1 a2 a3

¢0
@ a1 ² v

a2 ² v

a3 ² v

1
A = a

a
v;

where the column matrix

a
v

def

=

0
@ a1 ² v

a2 ² v

a3 ² v

1
A def

=

0
@ a

v1

a
v2

a
v3

1
A

contains the coordinates of the vector v relative to the orthonormal ba-
sis a. The matrices a and av are multiplied with each other following
the standard rules of matrix multiplication, in spite of the non-standard
nature of their components.

av is called the matrix representation of the vector v relative to the

orthonormal basis a. The letter (lower-case, italicized) used in the no-
tation av for the matrix representation agrees with the letter used to
denote the corresponding vector. The left superscript, in turn, speci¯es
the orthonormal basis, relative to which the vector is expressed. Other
examples are

b
w and e (ubase) ;

where the latter expression refers to the matrix representation of the
vector ubase relative to the orthonormal basis e.

A further generalization of notation allows one to consider dot prod-
ucts of vectors with matrices of vectors, such as

a
T

² v =

0
@ a1

a2

a3

1
A ² v

def

=

0
@ a1 ² v

a2 ² v

a3 ² v

1
A = a

v;

dot products of matrices of vectors, such as

a
T

² b =

0
@ a1

a2

a3

1
A ²

¡
b1 b2 b3

¢

def

=

0
@ a1 ² b1 a1 ² b2 a1 ² b3

a2 ² b1 a2 ² b2 a2 ² b3

a3 ² b1 a3 ² b2 a3 ² b3

1
A ;



116 3 Translations

and similarly for cross products6. In the formulae above, the T superscript
denotes the matrix transpose.

3.4.3 Common Misconceptions

It is important to recognize that a is a 1£ 3 matrix of vectors and av is
a 3 £ 1 matrix of numbers. av is not a vector. av is not the vector v

expressed in the a basis. av is simply a matrix. It cannot be used alone
to represent the vector v. Any description of v using av must include
mention of the corresponding orthonormal basis a.

The expression

v = a
a
v

is true, as is shown by matrix multiplication. The expression

v = a
v

is false, however, since the left-hand side is a vector (i.e., a collection
of in¯nitely many equivalent separations) and the right-hand side is a
matrix of numbers.

There is nothing wrong with an expression like

b
a
v:

This is not the vector v, since the expression mixes the matrix repre-
sentation of v relative to a with the row matrix b. The expression does
evaluate to a vector, however, whose matrix representation relative to the
orthonormal basis b is given by a

v.

3.4.4 Handedness

Let fa1;a2;a3g be an orthonormal basis. Then, the basis vectors a1, a2,
and a3 are mutually perpendicular and of unit length. Since

k¡aik = kaik = 1, i = 1; 2; 3;

it follows that f§a1;§a2;§a3g is an orthonormal basis for any combi-
nation of plus and minus signs. There are eight such combinations, each
corresponding to a di®erent orthonormal basis.

6Note that care must be taken to account for the antisymmetry of the cross product

when applying the transpose operator to expressions involving cross products, e.g.,¡
aT £ a

¢T
= ¡aT £

¡
aT

¢T
= ¡aT £ a:



¡

a

a

1

1

a

a

2

2

a

a

3

3
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Illustration 3.19

Consider changing the signs on two of the basis vectors and compare the
orthonormal bases fa1;a2;a3g and f¡a1;¡a2;a3g. Imagine the basis
vectors a1, a2; and a3 ¯xed to a rigid body. Then, a rotation of the rigid
body half a turn about an axis parallel to a3 will make these vectors co-
incide with the basis vectors ¡a1, ¡a2, and a3. Here, the cross products
between the ¯rst and second basis vectors, respectively, in each of the
bases yield identical results:

a1 £ a2 = (¡a1) £ (¡a2) :

In contrast, there is no rotation of the rigid body that will make the
basis vectors a1, a2, and a3 coincide with the basis vectors ¡a1, a2, and
a3. Here, the cross products between the ¯rst and second basis vectors,
respectively, in each of the bases yield di®erent results:

a1 £ a2 = ¡ (¡a1) £ a2 6= (¡a1) £ a2:

An orthonormal basis is said to be right-handed if

a1 £ a2 = a3.

By the de¯nition of the cross product, this implies that a3 points in the
direction of the right-hand thumb when the ¯ngers curl from a1 to a2. It
is straightforward to see that for a right-handed, orthonormal basis

a2 £ a3 = a1

and

a3 £ a1 = a2;

each of which can be taken to de¯ne a right-handed, orthonormal basis.
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If, instead,

a1 £ a2 = ¡a3;

then the orthonormal basis is left-handed .

Illustration 3.20

Let the orthonormal basis fa1;a2;a3g be right-handed. Then, since

(¡a1) £ (¡a2) = a1 £ a2 = a3;

the orthonormal basis f¡a1;¡a2;a3g is also right-handed.
On the other hand, the orthonormal basis f¡a1;a2;a3g is left-handed,

since

(¡a1) £ a2 = ¡ (a1 £ a2) = ¡a3.

The result from Exercise 3.58 shows that the cross product between
two arbitrary vectors v and w may be computed from the expression

v £ w = a1

¯̄̄
¯ v2 v3

w2 w3

¯̄̄
¯ ¡ a2

¯̄̄
¯ v1 v3

w1 w3

¯̄̄
¯ + a3

¯̄̄
¯ v1 v2

w1 w2

¯̄̄
¯

=

¯̄̄
¯̄̄ a1 a2 a3

v1 v2 v2

w1 w2 w3

¯̄̄
¯̄̄ ;

where the vi's and wi's are the coordinates of the two vectors relative to
the right-handed, orthonormal basis fa1;a2;a3g. The last determinant
is computed using the standard rules from matrix algebra, in spite of the
mixed nature of the entries of the matrix.

3.4.5 Generating New Bases

Let a be a right-handed orthonormal basis and let v 6= 0 be some vector
that is not parallel to a1. Since°°°° v

kvk

°°°° =
1

kvk

kvk = 1;

it follows that

b1 =
v

kvk

is a vector of unit length that is parallel to v.
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Since the cross product between two non-zero, non-parallel vectors
results in a vector perpendicular to the two vectors, it follows that

b2 =
b1 £ a1

kb1 £ a1k

is a vector of unit length that is perpendicular to b1. Finally, the vector

b3 = b1 £ b2

is perpendicular to b1 and b2 and has length

kb3k = kb1k kb2k sin µ (b1;b2) = 1;

since µ (b1;b2) = 90±. We conclude that the set fb1;b2;b3g forms a
right-handed, orthonormal basis.

Illustration 3.21

Let a be a right-handed, orthonormal basis and consider the vector

v = a

0
@ av1

av2

av3

1
A ;

such that v is not parallel to a1. Then,

b1 =
v

kvk

= a

0
BBBB@

a
v1p

av
2

1
+ av

2

2
+ av

2

3

a
v2p

av
2

1
+ av

2

2
+ av

2

3

a
v3p

av
2

1
+ av

2

2
+ av

2

3

1
CCCCA ;

b2 =
b1 £ a1

kb1 £ a1k

= a

0
BB@

0
a
v3p

av
2

2
+ av

2

3

¡

a
v2p

av
2

2
+ av

2

3

1
CCA ;

and, ¯nally,

b3 = b1 £ b2 = a

0
BBBB@

¡

p
av

2

2
+ av

2

3
p

av
2

1
+ av

2

2
+ av

2

3

a
v1

a
v2p

av
2

1
+ av

2

2
+ av

2

3

p
av

2

2
+ av

2

3

a
v1

a
v3p

av
2

1
+ av

2

2
+ av

2

3

p
av

2

2
+ av

2

3

1
CCCCA :

The cross product b1 £ a1 used to generate b2 was arbitrary. Any
vector (except one parallel to b1) could take the place of a1: Each such
choice would lead to a di®erent right-handed, orthonormal basis.
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3.4.6 Linear Combinations and Bases

In a general vector space, the associative property of addition of vectors
allows you to consider adding several vectors without worrying about the
order in which the operation is performed. Given a collection of vectors
v, w, and x, we can multiply them by the real numbers 2, ¡3:4, and 1;
respectively, and add up the resulting vectors to obtain

2v ¡ 3:4w + x.

This is an example of a linear combination of the vectors v, w, and x.

De¯nition 3.6 Let fv1;v2; : : : ;vng be a set of arbitrary vectors
and let f®1; ®2; : : : ; ®ng be a set of arbitrary real numbers. Then, the
vector sum

®1v1 + ®2v2 + : : : + ®nvn

is called a linear combination of the vectors fv1;v2; : : : ;vng. The set of
all possible linear combinations of these vectors is denoted by

span fv1;v2; : : : ;vng

and is said to be spanned by the vi's.

Illustration 3.22

Let v1 and v2 be two vectors and assume that

2v1 ¡ v2 = v1 + 3v2:

Then, it follows that

v1 ¡ 4v2 = 0:

More generally, if two linear combinations of the vectors v1 and v2 give
the same result

®1v1 + ®2v2 = ¯
1
v1 + ¯

2
v2;

then the linear combination

(¯
1
¡ ®1)v1 + (¯

2
¡ ®2)v2 = 0

even though at least one of the coe±cients ¯1¡®1 and ¯2¡®2 is di®erent
from zero.
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If it is not possible to ¯nd coe±cients °
1

and °
2
, such that the linear

combination

°
1
v1 + °

2
v2 = 0

other than °1 = °2 = 0, then every linear combination of the two vectors
must give a di®erent result.

If the only linear combination of a set of vectors fv1;v2; : : : ;vng

®1v1 + ®2v2 + ¢ ¢ ¢ + ®nvn

that results in the zero vector 0 is the one with ®1 = ®2 = ¢ ¢ ¢ = ®n = 0,
then the vectors are said to be linearly independent.

If every vector can be written as a linear combination of a set of
linearly independent vectors fv1;v2; : : : ;vng, then the vectors are said
to form a basis of the vector space. It follows that spanfv1;v2; : : : ;vng is
the entire space. In analogy to the result of Exercise 3.29, the coe±cients
in such a linear combination are unique. These coe±cients are called the
coordinates of the vector relative to the basis. The number of vectors in
a basis of a vector space is the dimension of the vector space.

Let fv1;v2; : : : ;vng be a basis of an n-dimensional vector space. By
linearity, it follows that the inner product between two arbitrary vectors
a and b becomes

a ² b =

ÃX
i

aivi

!
²

0
@X

j

bjvj

1
A =

X
i

X
j

aibj (vi ² vj) ;

where the ai's and bj 's are the coordinates of a and b relative to the basis
fv1; : : : ;vng. Clearly, the value of the inner product is determined once
the n2 products vi ² vj have been chosen for all i; j 2 f1; 2; : : : ; ng. An
orthonormal basis is obtained when

vi ² vj = ±ij =

½
1 when i = j

0 when i 6= j
;

where ±ij is the so-called Kronecker delta. With respect to an orthonor-
mal basis,

a ² b =
X

i

X
j

aibj±ij =
X

i

aibi:

3.5 The

The Mambo toolbox contains a complete set of procedures and func-
tions to de¯ne and operate on vectors. Vectors in the Mambo toolbox
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are speci¯ed by the names of right-handed, orthonormal bases and the
corresponding matrix representations.

Illustration 3.23

In the following Mambo toolbox session, the right-handed, orthonormal
basis a is used to de¯ne the vector

v = a

0
@ 1

2
0

1
A :

> Restart():
> DeclareTriads(a):
> v:=MakeTranslations(a,1,2,0);

v := table([

1 = table([

\Triad" = a

\Coordinates" = [1; 2; 0]

])

\Size" = 1

\Type" = \Vector"

])

The MakeTranslations procedure will only return a valid Mambo
vector if the ¯rst argument corresponds to the name of a right-handed,
orthonormal basis that has been previously declared with the Declare-
Triads procedure. Invoking the DeclareTriads procedure appends the
global variable GlobalTriadDeclarations7.

AMambo vector is aMaple table with at least three entries, namely
a Type, a Size, and a nested table containing the name of a right-handed,
orthonormal basis and the corresponding matrix representation.

We recall the use of the eval command to access and display the
content of a Maple table as illustrated by the following statements:

> v;

v

> eval(v);

7More detail on the GlobalTriadDeclarations variable in Chapter 5.
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table([

1 = table([

\Coordinates" = [1; 2; 0]

\Triad" = a

])

\Type" = \Vector"

\Size" = 1

])

The simplest vector is the zero vector 0, whose matrix representation
relative to any arbitrary basis b is

b (0) =

0
@ 0

0
0

1
A :

In the Mambo toolbox, we can generate the zero vector using the Make-
Translations procedure or more directly using the NullVector proce-
dure:

> MakeTranslations(a,0,0,0);

table([

\Size" = 0

\Type" = \Vector"

])

> NullVector();

table([

\Size" = 0

\Type" = \Vector"

])

Since the zero vector has the same matrix representation relative to all
bases, there is no need to include the name of a right-handed, orthonor-
mal basis and the corresponding matrix representation within the table
structure. This is also re°ected in the Size entry.
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The Mambo toolbox contains functions to compute:

² The multiplication of a vector with a scalar: &**;

² The sum of two vectors: &++;

² The di®erence between two vectors: &¡¡;

² The dot product between two vectors: &oo;

² The cross product between two vectors: &xx;

² The length of a vector: VectorLength.

The &** function is demonstrated in the following Mambo toolbox
statement:

> 2 &** v;

table([

1 = table([

\Coordinates" = [2; 4; 0]

\Triad" = a

])

\Type" = \Vector"

\Size" = 1

])

To multiply a Mambo vector with a negative scalar, it is important to
place the scalar within parentheses:

> (-1) &** v;

table([

1 = table([

\Coordinates" = [¡1; ¡2; 0]

\Triad" = a

])

\Type" = \Vector"

\Size" = 1

])
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Parentheses should also be used if the scalar is expressed as a product of
several scalars, as in

> (1/VectorLength(v)) &** v;

table([

\Type" = \Vector"

1 = table([

\Coordinates" =

·
1

5

p

5;
2

5

p

5; 0̧

\Triad" = a

])

\Size" = 1

])

where the vector v is multiplied by the inverse of its length (obtained
with the VectorLength function) to yield a vector parallel to v but of
unit length.

We may add two vectors with the &++ function. If the two vectors
are expressed relative to the same right-handed, orthonormal basis, the
&++ function returns a Mambo vector with Size equal to 1 and matrix
representation given by the sum of the matrix representations of the two
vectors.

> w:=MakeTranslations(a,-1,q,0):
> w &++ v;

table([

1 = table([

\Triad" = a

\Coordinates" = [0; q + 2; 0]

])

\Size" = 1

\Type" = \Vector"

])

If the two vectors are expressed relative to di®erent right-handed, or-
thonormal bases, the &++ function returns a Mambo vector with Size

equal to 2 and containing two nested tables, each of which contains the
name of the basis, relative to which the corresponding vector is expressed
and the associated matrix representation.
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> DeclareTriads(b):
> u:=MakeTranslations(b,r,r-s,s):
> u &++ v;

table([

1 = table([

\Triad" = b

\Coordinates" = [r; r ¡ s; s]

])

2 = table([

\Triad" = a

\Coordinates" = [1; 2; 0]

])

\Size" = 2

\Type" = \Vector"

])

Illustration 3.24

A Mambo vector with multiple nested tables can be generated by the
MakeTranslations procedure.

> MakeTranslations([a,1,2,0],[b,r,r-s,s]);

table([

1 = table([

\Coordinates" = [1; 2; 0]

\Triad" = a

])

2 = table([

\Coordinates" = [r; r ¡ s; s]

\Triad" = b

])

\Type" = \Vector"

\Size" = 2

])

Note the use of the square brackets to separate the distinct components.



3.5 The Mambo Toolbox 127

The &¡¡ function is de¯ned using the &** and &++ functions as sug-
gested in the de¯nition of vector subtraction. Some additional examples
of the use of these functions are given in the Mambo toolbox statements
below.

> (v &++ u) &++ v;

table([

1 = table([

\Coordinates" = [2; 4; 0]

\Triad" = a

])

2 = table([

\Coordinates" = [r; r ¡ s; s]

\Triad" = b

])

\Type" = \Vector"

\Size" = 2

])

> v &++ u &++ v;

table([

1 = table([

\Coordinates" = [2; 4; 0]

\Triad" = a

])

2 = table([

\Coordinates" = [r; r ¡ s; s]

\Triad" = b

])

\Type" = \Vector"

\Size" = 2

])

> v &++ NullVector();
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table([

1 = table([

\Coordinates" = [1; 2; 0]

\Triad" = a

])

\Type" = \Vector"

\Size" = 1

])

> v &-- v;

table([

\Type" = \Vector"

\Size" = 0

])

> v &++ u &-- v;

table([

1 = table([

\Coordinates" = [r; r ¡ s; s]

\Triad" = b

])

\Type" = \Vector"

\Size" = 1

])

Note how the Size of theMambo vector adapts to accommodate changes
in the number of nested tables.

The &oo and &xx functions implement the formulae derived in the
previous section for the dot product and cross product as con¯rmed by
the results of the following Mambo toolbox session:

> Restart():
> DeclareTriads(a):
> v:=MakeTranslations(a,v1,v2,v3):
> w:=MakeTranslations(a,w1,w2,w3):

> v &oo w;
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v1 w1 + v2 w2 + v3 w3

> v &xx w;

table([

\Type" = \Vector"

1 = table([

\Coordinates" = [¡w2 v3 + w3 v2 ; ¡w3 v1 + v3 w1 ; w2 v1 ¡ v2 w1 ]

\Triad" = a

])

\Size" = 1

])

Here, a is declared as a right-handed, orthonormal basis prior to the
de¯nition of the vectors v and w.

Illustration 3.25

Let a be a right-handed, orthonormal basis. Then, the following sequence
of Mambo toolbox statements generates an alternative right-handed, or-
thonormal basis b, such that b1 is parallel to the vector

a

0
@ 1

0
¡2

1
A :

> Restart():
> DeclareTriads(a):
> a1:=MakeTranslations(a,1):
> v:=MakeTranslations(a,1,0,-2):
> b1:=(1/VectorLength(v)) &** v;

b1 := table([

1 = table([

\Triad" = a

\Coordinates" =

·
1

5

p

5; 0; ¡

2

5

p

5̧

])

\Size" = 1
\Type" = \Vector"

])
> b2:=(1/VectorLength(b1 &xx a1)) &** (b1 &xx a1);
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b2 := table([

1 = table([

\Triad" = a

\Coordinates" = [0; ¡1; 0]

])

\Size" = 1
\Type" = \Vector"

])
> b3:=b1 &xx b2;

b3 := table([

1 = table([

\Triad" = a

\Coordinates" =

·
¡

2

5

p

5; 0; ¡

1

5

p

5̧

])

\Size" = 1
\Type" = \Vector"

])

Here, the shorthand form of the MakeTranslations procedure is used
to generate the basis vector a1. That the basis b is orthonormal follows
from

> matrix(3,3,(i,j)->cat(b,i) &oo cat(b,j));

2
4 1 0 0

0 1 0
0 0 1

3
5

corresponding to the matrix0
@ b1 ² b1 b1 ² b2 b1 ² b3

b2 ² b1 b2 ² b2 b2 ² b3

b3 ² b1 b3 ² b2 b3 ² b3

1
A :

Finally, that the basis is right-handed is con¯rmed by

> b1 &oo (b2 &xx b3);

1
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3.6 Exercises

Exercise 3.1 Show that the motion

¡!

AB

y

¡!

BA

y

produces the same outcome as the motion
¡!
AA

y , but whereas the latter involves no mo-
tion whatsoever, the former may involve
arbitrarily large displacements.

Exercise 3.2 When is

¡!
AB

y

¡!
BC

y =
¡!
AC

y?

Exercise 3.3 For each of the sequences
of motions below, i) determine whether the
expression makes sense and ii) ¯nd the sep-
aration between the starting and ending
points when it exists.

a)
¡¡¡!

P1P2

y

¡¡¡!

P3P4

y b)
¡¡¡!

P1P2

y

¡¡¡!

P2P3

y

¡¡¡!

P3P1

y

c)
¡¡¡!

P2P1

y

¡¡¡!

P2P3

y

¡¡¡!

P3P4

y d)
¡¡¡!

P2P1

y

¡¡¡!

P1P3

y

¡¡¡!

P3P1

y

Exercise 3.4 Consider the a±ne space
of points on the upper hemisphere of a sphere
of unit radius introduced following De¯ni-
tion 3.1. Each point on the hemisphere cor-
responds to a unique straight line through
the center of the sphere. Equivalently, every
straight line through the center of the sphere
that is not perpendicular to the straight line
through the poles of the sphere corresponds
to a unique point on the upper hemisphere.

Consider all the straight lines that inter-
sect at some point in space. Denote one of
these lines by L. Now, eliminate from this
collection all the straight lines that are per-
pendicular to L. Use the above observation
to construct an a±ne space of the remaining
set of straight lines.

Exercise 3.5 Consider the collection
of all straight lines from the previous exer-
cise that intersect at some point in space
and are not perpendicular to the line la-
beled by L. Each such straight line corre-
sponds to a unique plane perpendicular to
the straight line. Use this observation to
construct an a±ne space of the correspond-
ing set of planes.

Exercise 3.6 Show that
1.

¡!

PQ s
¡!

PQ;

2.
¡!

PQ »

¡!

RS implies that
¡!

RS »

¡!

PQ;

3.
¡!

PQ »

¡!

RS and
¡!

RS »

¡!

TU imply that
¡!

PQ »

¡!

TU .

Exercise 3.7 Consider the points on the
surface of a sphere. De¯ne the relation s so
that two points P and Q on the sphere sat-
isfy P » Q if and only if they lie on the same
line through the center of the sphere. Show
that » is an equivalence relation. Charac-
terize the corresponding equivalence classes
and the quotient set.

Solution. Let P , Q, and R be points on
the sphere's surface. Clearly, P » P , i.e.,
» is re°exive. Moreover, P » Q implies
that Q » P; i.e., » is symmetric. Finally,
if P » Q and Q » R; then P » R; i.e., »

is transitive. Thus, » is an equivalence rela-
tion.
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The equivalence classes corresponding to
» consist of diametrically opposite points on
the sphere's surface.

The quotient set is conveniently repre-
sented by the set of straight lines through
the center of the sphere.

Exercise 3.8 Consider the a±ne space
of points on the upper hemisphere as intro-
duced following De¯nition 3.1. Consider the
equivalence relation », such that

¡!

PQ »

¡!

RS

if and only if

¡!

PS

µ
1

2

¶
=

¡!

QR

µ
1

2

¶
:

Characterize the resulting equivalence
classes. Can you de¯ne addition and scalar
multiplication on the quotient set to make it
a vector space?

Exercise 3.9 Show that v+0 = 0+v =
v for all position vectors v.

Solution. That v + 0 = 0 + v follows
from the result in Illustration 3.10. Let the
separations

¡!

PQ and
¡!

QQ represent the vec-
tors v and 0, respectively. Then,

v + 0 =
h
¡!

PQ

i
+

h
¡!

QQ

i
=

h
¡!

PQ

i
= v:

Exercise 3.10 Show that v¡v = 0 for
all position vectors v.

Solution. Let the separation
¡!

PQ repre-
sent the vector v. Then,

v ¡ v = v + (¡1)v

=
h
¡!

PQ

i
+

h
¡!

QP

i
=

h
¡!

PP

i
= 0:

Exercise 3.11 Show that (u + v)+w =
u+(v + w) for all position vectors u, v, and
w.

Exercise 3.12 Show that (®1 + ®2)v =
®1v + ®2v for all scalars ®1 and ®2 and all
position vectors v.

Exercise 3.13 Show that a (v + w) =
®v + ®w for all position vectors v and w

and any scalar ®.

Exercise 3.14 Show that the cosine
theorem implies that

kv + wk · kvk + kwk

for all position vectors v and w.
Solution. The cosine theorem states

that

kv + wk
2

= kvk
2
+ kwk

2

+2 kvk kwk cos µ (v;w)

· kvk
2 + kwk

2 + 2 kvk kwk

= (kvk + kwk)
2
;

since cos µ (v;w) · 1. Since the quantities
being squared on both sides of the inequality
are positive, it follows that

kv + wk · kvk + kwk :

Exercise 3.15 Show that ¡kv ¡ wk ·

kvk¡kwk · kv ¡ wk for all position vectors
v and w.

Solution. From the previous exercise,
we have

kvk = kv ¡ w + wk · kv ¡ wk + kwk

=) kvk ¡ kwk · kv ¡ wk :

Similarly,

kwk = kw ¡ v + vk · kw ¡ vk + kvk

) kvk ¡ kwk ¸ ¡kw ¡ vk :

But,

kw ¡ vk = k(¡1) (v ¡ w)k

= j(¡1)j kv ¡ wk = kv ¡ wk ;



v

w

v + w

v ¡ w

v

n

µ (v;n)
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i.e.,

¡kv ¡ wk · kvk ¡ kwk · kv ¡ wk :

Exercise 3.16 Show that v²w = w²v

for all position vectors v and w.

Exercise 3.17 Show that kvk =
p

v ² v

for all position vectors v.

Exercise 3.18 Show that v ² v > 0
unless v = 0, for which 0 ² 0 = 0.

Exercise 3.19 Use the dot product to
show that

kv + wk
2
+ kv ¡ wk

2
= 2 kvk

2
+ 2 kwk

2
:

Interpret the result geometrically.
Solution. Using the dot product, we

¯nd kv + wk
2
+ kv ¡ wk

2

= (v + w) ² (v + w) + (v ¡ w) ² (v ¡ w)

= v ² v + v ² w + w ² v + w ² w

+v ² v ¡ v ² w ¡ w ² v + w ² w

= 2v ² v + 2w ² w

= 2 kvk
2 + 2 kwk

2
;

where the second equality follows from lin-
earity.

Now, consider the parallelogram spanned
by the two vectors v and w:

The vectors v + w and v ¡ w then corre-
spond to the diagonals in the parallelogram.
The statement above implies that the sum
of the squares of the lengths of the diagonals
in a parallelogram equals twice the sum of
the squares of the lengths of the sides of the
parallelogram.

Exercise 3.20 Show that w £ v =
¡v £ w:

[Hint: µ (v;w) = µ (w;v).]

Exercise 3.21 Show that v £ v = 0.

Exercise 3.22 Recall that kv £ wk

equals the area of the parallelogram spanned
by the vectors v and w. What quantity does
ju ² (v £ w)j equal for some arbitrary vector
u?

[Hint: Consider the volume of the prism
whose edges are separations representing the
three vectors u, v, and w.]

Exercise 3.23 Show that v²(v £ w) =
0.

Solution. The vector v £ w is perpen-
dicular to both v and w.

Thus, the angle between the vectors v

and v £ w is 90± and cos 90± = 0; which
proves the claim.

Exercise 3.24 Show that

v = (v ² n)n + n £ (v £ n)

for any vector v and any vector n of unit
length.

Solution. Consider the right triangle,
for which v represents the hypotenuse and
the adjacent side lies along the vector n.

Then the length of the adjacent side is

kvk cos µ (v;n)

= kvk knk cos µ (v;n) = v ² n;

since knk = 1. Indeed, the vector corre-
sponding to the adjacent side is given by this
length multiplied by the unit vector n.
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Furthermore, the length of the opposite
side equals

kvk sin µ (v;n) = kvk knk knk sin µ (v;n)

= kv £ nk knk sin
¼

2
= kn £ (v £ n)k ;

since n is perpendicular to v £ n. Also, the
vector n£ (v £ n) is parallel to the opposite
side of the triangle pointing from the right-
angled corner toward the hypotenuse. The
statement of the problem now follows by con-
sidering the vector sum of the two vectors
corresponding to the adjacent and opposite
sides of the triangle.

Exercise 3.25 Find the general solu-
tion to the equation u ² (v £ w) = 0; where
v and w are two given, linearly independent
vectors.

Solution. The vector v£w is perpendic-
ular to both v and w: In other words, v£w

is normal to any plane spanned by v and w.
The equation

u ² (v £ w) = 0

implies that u is perpendicular to v£w; i.e.,
that u is parallel to any plane spanned by v

and w. It follows that u 2 span fv;wg, or

u = ®v + ¯w

for some pair of scalars ® and ¯.

Exercise 3.26 Let v and w be two
arbitrary vectors in a vector space with an
inner product ². Prove the Cauchy-Schwarz
inequality:

jv ² wj ·

p

v ² v
p

w ² w:

Solution. Suppose that

w ² w = 0:

It follows that

v ² w = 0

and thus

0 = jv ² wj ·

p

v ² v
p

w ² w = 0

con¯rming the validity of the inequality for
this special case.

Suppose, instead, that

w ² w 6= 0:

Positive de¯niteness implies that

0 · (v ¡ ®w) ² (v ¡ ®w)

= v ² v ¡ 2®v ² w + ®
2
w ² w

for all ®. If, in particular

® =
v ² w

w ² w
;

it follows that

0 · v ² v ¡ 2®v ² w + ®
2
w ² w

= v ² v ¡ 2
v ² w

w ² w
v ² w

+
³

v ² w

w ² w

´2

w ² w

= v ² v¡

(v ² w)
2

w ² w
;

i.e.,

(v ² w)2 · (v ² v) (w ² w)

and the claim follows by taking square roots
on both sides.

Exercise 3.27 Show that the Cauchy-
Schwarz inequality is true by construction
in the case of the dot product on the vector
space of translations.

Exercise 3.28 Let fa1;a2;a3g be a ba-
sis of space. Show that

v1a1 + v2a2 + v3a3 = 0
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is true if and only if

v1 = v2 = v3 = 0.

Solution. Since

0a = 0 and 0 + 0 = 0

for any vector v, the assertion that

v1 = v2 = v3 = 0 ) v1a1 + v2a2 + v3a3 = 0

is trivial.
Assume, instead, that at least one of the

scalars v1, v2, or v3 is non-zero, e.g., v3.
Then,

v1a1 + v2a2 + v3a3 = 0

only if

a3 = ¡

1

v3

(v1a1 + v2a2) :

But this implies that a3 is parallel to the
plane spanned by a1 and a2; in contradiction
with the assumption that the vectors form a
basis.

If v3 = 0, but v2 6= 0, then

v1a1 + v2a2 + v3a3 = 0

only if

a2 = ¡

v1

v2

a1:

But this implies that a2 is parallel to the line
spanned by a1, in contradiction with the as-
sumption that the vectors form a basis.

Finally, if v3 = v2 = 0; but v1 6= 0, then

v1a1 + v2a2 + v3a3 = 0

only if

a1 = 0:

Again, this contradicts the assumptions that
the vectors form a basis and the claim fol-
lows.

Exercise 3.29 Let fa1;a2;a3g be a ba-
sis of space. Show that

v1a1 + v2a2 + v3a3 = w1a1 + w2a2 + w3a3

is possibly only if

v1 = w1, v2 = w2, and v3 = w3.

Exercise 3.30 Let fa1;a2;a3g be a ba-
sis of space. Show that an alternative basis
is given by the vectors

b1 = 2a1 ¡ a3

b2 = ¡a2 + 3a3

b3 = a1 + a3

Solution. The vectors b1; b2; and b3

constitute a basis if

b2 ¡ ¯b1 6= 0

for all values of ¯ and

b3 ¡ ¯1b1 ¡ ¯2b2 6= 0

for all values of ¯
1

and ¯
2
.

Here,

b2 ¡ ¯b1 = ¡2¯a1 ¡ a2 + (3 + ¯)a3:

But, by a previous exercise, this cannot equal
the zero vector for any choice of ¯. Similarly,

b3 ¡ ¯1b1 ¡ ¯2b2 = (1 ¡ 2¯1)a1 + ¯2a2

+(1 + ¯
1
¡ 3¯

2
)a3:

But, by a previous exercise, this equals the
zero vector only if

1 ¡ 2¯
1

= ¯
2

= 1 + ¯
1
¡ 3¯

2
= 0;

which is not possible for any choice of ¯
1

and
¯

2
. We conclude that fb1;b2;b3g is a basis

of space.
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Exercise 3.31 Let fa1;a2;a3g be a ba-
sis of space. For each of the sets of vectors
below, determine whether they constitute an
alternative basis of space.

a)
b1 = 2a2 + a3

b2 = ¡2a2 + a3

b3 = 3a3

b)
b1 = 3a1

b2 = a1

b3 = a1 + a2

c)
b1 = ¡a2 ¡ a3

b2 = a2 ¡ a3

b3 = a3

d)
b1 = a2 + 2a3

b2 = a1

b3 = a3

e)
b1 = a1 + a2 + a3

b2 = a1 ¡ a2 + a3

b3 = 2a1 ¡ 2a3

f)
b1 = a1 + a3

b2 = 2a2 + a3

b3 = ¡2a1 ¡ a2 + 2a3

Exercise 3.32 Let a
v1,

a
v2, and a

v3 be
the coordinates of a vector v relative to the
basis fa1;a2;a3g : Find the coordinates b

v1,
b
v2, and b

v3 of the vector v relative to the
basis fb1;b2;b3g where

b1 = 2a1 ¡ a3;

b2 = ¡a2 + 3a3;

b3 = a1 + a3:

Solution. Since av1;
a v2; and av3 are

the coordinates of v relative to the basis
fa1;a2;a3g, we can write

v = a
v1a1 + a

v2a2 + a
v3a3:

But, from the de¯nition of the vectors b1,
b2, and b3 we ¯nd

a1 =
1

3
b1 +

1

3
b3;

a2 = ¡b1 ¡ b2 + 2b3;

a3 = ¡

1

3
b1 +

2

3
b3:

Substitution into the expression for v then
yields

v = a
v1

µ
1

3
b1 +

1

3
b3

¶
+ a

v2 (¡b1 ¡ b2 + 2b3)

+ a
v3

µ
¡

1

3
b1 +

2

3
b3

¶

=

µ
a
v1

3
¡

a
v2 ¡

a
v3

3

¶
b1 ¡

a
v2b2

+

µ
av1

3
+ 2 a

v2 +
2 av3

3

¶
b3:

The coordinates bv1,
bv2, and bv3 of v rela-

tive to the basis fb1;b2;b3g are therefore

b
v1 =

a
v1

3
¡

a
v2 ¡

a
v3

3
;

b
v2 = ¡

a
v2;

b
v3 =

av1

3
+ 2 a

v2 +
2 av3

3
:

Exercise 3.33 Let av1,
av2, and av3 be

the coordinates of a vector v relative to the
basis fa1;a2;a3g : Find the coordinates bv1,
bv2, and bv3 of the vector v relative to each
of the bases below.

a)
b1 = a1 + a3

b2 = 2a2 + a3

b3 = ¡2a1 ¡ a2

b)
b1 = ¡a1

b2 = 2a2 + a3

b3 = ¡2a1 + 2a3

c)
b1 = a1 + a3

b2 = 2a2 ¡ a3

b3 = ¡2a1 ¡ a3

d)
b1 = a1 + 2a3

b2 = 2a2 + a3

b3 = ¡2a1 + 2a3

e)
b1 = a3

b2 = a2

b3 = ¡2a1

f)
b1 = 2a1 ¡ a3

b2 = 2a2 + a3

b3 = ¡2a1 ¡ a2 + 2a3

Exercise 3.34 Let fa1;a2;a3g be a ba-
sis of space. Find the coordinates relative to
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fa1;a2;a3g of the vector 5v, where

a) v =1

3
a1 + 1

3
a2 ¡ a3 b) v = ¡ 3a3

c) v = 2a1 + a2 d) v = ¡a1 + 2a3

e) v = a1 + 1

5
a2 ¡ a3 f) v = a1 ¡ a3

Exercise 3.35 Let fa1;a2;a3g be a ba-
sis of space. Find the coordinates relative to
fa1;a2;a3g of the vector v + w, where

a)
v = a1 ¡ a3

w = a1 + a3

b)
v = 2a1 + a2

w = ¡a1 + a3

c)
v = ¡ 3a3

w = ¡2a1 + 1

3
a3

d)
v = ¡ a1 + 2

3
a3

w = ¡2a1 + 2

3
a2

e)
v =1

3
a1 + 1

3
a2 ¡ a3

w = ¡2a1 + 1

3
a3

f)
v = 4

3
a1 + 1

3
a2 ¡

1

3
a3

w = ¡
2

3
a1 ¡

4

3
a3

Exercise 3.36 Let fa1;a2;a3g be a ba-
sis of space. Show that there exist indepen-
dent angles µ1, µ2, and µ3, such that

a1 ² a2 = ka1k ka2k cos µ1;

a1 ² a3 = ka1k ka3k cos µ2;

and

a2 ² a3 = ka2k ka3k

µ
sin µ1 sin µ2 cos µ3

+cos µ1 cos µ2

¶
;

where

sin µ1; sin µ2; sin µ3 6= 0:

[Hint: Let µ3 be the angle between the plane
spanned by the vectors a1 and a2 and the
plane spanned by the vectors a1 and a3.]

Exercise 3.37 Let fa1;a2;a3g be a ba-
sis of space. Use the result of the previous

exercise to show thath
(a1 ² a1) (a2 ² a2) ¡ (a1 ² a2)

2

i
¢

h
(a1 ² a1) (a3 ² a3) ¡ (a1 ² a3)

2

i
¡ [(a1 ² a1) (a2 ² a3) ¡ (a1 ² a2) (a1 ² a3)]

2

> 0:

Exercise 3.38 Let fa1;a2;a3g be a ba-
sis of space, such that0

@ a1 ² a1 a1 ² a2 a1 ² a3

a2 ² a1 a2 ² a2 a2 ² a3

a3 ² a1 a3 ² a2 a3 ² a3

1
A

=

0
@ 1 0 1

4

0 1

2

1

3
1

4

1

3
1

1
A :

Evaluate the dot product between the two
vectors

v = 3a1 ¡ a3 and w = ¡a2 + 2a3:

Solution. From the linearity of the dot
product, we have

v ² w = (3a1 ¡ a3) ² (¡a2 + 2a3)

= ¡3a1 ² a2 + 6a1 ² a3

+a3 ² a2 ¡ 2a3 ² a3

= ¡3 ¤ 0 + 6 ¤

1

4
+

1

3
¡ 2 ¤ 1

= ¡

1

6
:

Exercise 3.39 Let fa1;a2;a3g be a ba-
sis of space. Evaluate the dot product be-
tween the vectors

v = 3a1 ¡ a3 and w = ¡a2 + 2a3;

when0
@ a1 ² a1 a1 ² a2 a1 ² a3

a2 ² a1 a2 ² a2 a2 ² a3

a3 ² a1 a3 ² a2 a3 ² a3

1
A =
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a)

0
B@ 1 0 1

4

0 2
p

3

2

1

4

p

3

2
1

1
CA

b)

0
B@

5 1
p

2

p

5
p

2
1

p

2

1

5

1

2
p

5
p

5
p

2

1

2
p

5
1

1
CA

c)

0
@

1

2
0 0

0 1

2

1

2
p

2

0 1

2
p

2

1

2

1
A

d)

0
@ 2 1

p

2
0

1
p

2
1 0

0 0 1

2

1
A

e)

0
B@ 1 ¡

p

2 1
p

2

¡

p

2 4 ¡1
1

p

2
¡1 1

1
CA

f)

0
B@

1 ¡
1

2
¡

1
p

2

¡
1

2

1

2

1

2
p

2

¡
1

p

2

1

2
p

2
1

1
CA

Exercise 3.40 Let fa1;a2;a3g be a ba-
sis of space. Show that the columns of the
matrix0

@ a1 ² a1 a1 ² a2 a1 ² a3

a2 ² a1 a2 ² a2 a2 ² a3

a3 ² a1 a3 ² a2 a3 ² a3

1
A

are linearly independent.

[Hint: Use the result from Exercise 3.36 and
show that the determinant of the matrix
must be non-zero.]

Exercise 3.41 Let fa1;a2;a3g be a ba-
sis of space, such that

0
@ a1 ² a1 a1 ² a2 a1 ² a3

a2 ² a1 a2 ² a2 a2 ² a3

a3 ² a1 a3 ² a2 a3 ² a3

1
A

=

0
@ 1 0 1

4

0 1

2

1

3
1

4

1

3
1

1
A :

Show that this guarantees that v ² v > 0 for
any non-zero vector v:

Solution. Let v1, v2, and v3 be the co-
ordinates of the vector v relative to the ba-
sis fa1;a2;a3g. Since v 6= 0, the result of a
previous exercise shows that not all the co-
ordinates can equal zero.

From

v = v1a1 + v2a2 + v3a3

it follows that

v ² v = v
2

1
a1 ² a1 + v

2

2
a2 ² a2 + v

2

3
a3 ² a3

+2v1v2a1 ² a2 + 2v1v3a1 ² a3

+2v2v3a2 ² a3

= v
2

1
+

1

2
v
2

2
+ v

2

3
+

1

2
v1v3 +

2

3
v2v3

=

µ
v1 +

1

4
v3

¶2

+
1

2

µ
v2 +

2

3
v3

¶2

+
103

144
v
2

3
;

where the last equality follows from complet-
ing the squares. Since not all the coordinates
can equal zero, the last expression must be
greater than zero.

Exercise 3.42 Let fa1;a2;a3g be a ba-
sis of space. Each of the matrices below is a
possible candidate for0

@ a1 ² a1 a1 ² a2 a1 ² a3

a2 ² a1 a2 ² a2 a2 ² a3

a3 ² a1 a3 ² a2 a3 ² a3

1
A :

In each case, show that this guarantees that
v ² v > 0 for any arbitrary vector v.

a)

0
B@ 1 0 1

4

0 2
p

3

2

1

4

p

3

2
1

1
CA

b)

0
B@

5 1
p

2

p

5
p

2
1

p

2

1

5

1

2
p

5
p

5
p

2

1

2
p

5
1

1
CA
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c)

0
@

1

2
0 0

0 1

2

1

2
p

2

0 1

2
p

2

1

2

1
A

d)

0
@ 2 1

p

2
0

1
p

2
1 0

0 0 1

2

1
A

e)

0
B@ 1 ¡

p

2 1
p

2

¡

p

2 4 ¡1
1

p

2
¡1 1

1
CA

f)

0
B@

1 ¡
1

2
¡

1
p

2

¡
1

2

1

2

1

2
p

2

¡
1

p

2

1

2
p

2
1

1
CA

Exercise 3.43 Let fa1;a2;a3g be an
orthonormal basis of space. For each pair
of vectors v and w below, evaluate the dot
product v ² w.

a)
v = a1 ¡ a3

w = a1 + a3

b)
v = ¡ 3a3

w = ¡2a1 + 1

3
a3

c)
v = ¡ a1 + 2

3
a3

w = ¡2a1 + 2

3
a2

d)
v = 2a1 + a2

w = ¡a1 + a3

e)
v =1

3
a1 + 1

3
a2 ¡ a3

w = ¡2a1 + 1

3
a3

f)
v = 4

3
a1 + 1

3
a2 ¡

1

3
a3

w = ¡
2

3
a1 ¡

4

3
a3

Exercise 3.44 Let fa1;a2;a3g be an
orthonormal basis of space. Find the angle
µ (v;w) between the vectors v = a1 ¡a3 and
w = 2a1 ¡ a2 + 3a3.

Solution. From the de¯nition of the dot
product, it follows that

cos µ (v;w) =
v ² w

kvk kwk

=
1 ¤ 2 + 0 ¤ (¡1) + (¡1) ¤ 3q

12 + 02 + (¡1)2
q

22 + (¡1)2 + 32

= ¡

1
p

28

and thus

µ (v;w) = arccos

µ
¡

1
p

28

¶
¼ 100:9±

:

Exercise 3.45 Let fa1;a2;a3g be an
orthonormal basis of space. For each pair
of vectors v and w below, ¯nd the angle
µ (v;w).

a)
v = a1 ¡ a3

w = a1 + a3

b)
v = ¡ 3a3

w = ¡2a1 + 1

3
a3

c)
v = ¡ a1 + 2

3
a3

w = ¡2a1 + 2

3
a2

d)
v = 2a1 + a2

w = ¡a1 + a3

e)
v =1

3
a1 + 1

3
a2 ¡ a3

w = ¡2a1 + 1

3
a3

f)
v = 4

3
a1 + 1

3
a2 ¡

1

3
a3

w = ¡
2

3
a1 ¡

4

3
a3

Exercise 3.46 Let fa1;a2;a3g be an
orthonormal basis of space. For each of the
vectors v and w below, determine whether
they are perpendicular.

a)
v = a1 ¡ a3

w = a1 + a3

b)
v = ¡ 3a3

w = ¡2a1 + 1

3
a3

c)
v = ¡ a1 + 2

3
a3

w = ¡2a1 + 2

3
a2

d)
v = 2a1 + a2

w = ¡a1 + a3

e)
v =1

3
a1 + 1

3
a2 ¡ a3

w = ¡2a1 + 1

3
a3

f)
v = 4

3
a1 + 1

3
a2 ¡

1

3
a3

w = ¡
2

3
a1 ¡

4

3
a3

Exercise 3.47 Let fa1;a2;a3g be an
orthonormal basis of space. Show that

ai ² v = vi, i = 1; 2; 3;

and thus that

v = a1 (a1 ² v) + a2 (a2 ² v) + a3 (a3 ² v) ;
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where vi is the i-th coordinate of v relative
to the given basis.

Solution. By de¯nition,

v = v1a1 + v2a2 + v3a3;

where v1, v2, and v3 are the coordinates of
the vector v relative to the basis fa1;a2;a3g.
Then,

a1 ² v = a1 ² (v1a1 + v2a2 + v3a3)

= v1 (a1 ² a1) + v2 (a1 ² a2)

+v3 (a1 ² a3)

= v1;

a2 ² v = a2 ² (v1a1 + v2a2 + v3a3)

= v1 (a2 ² a1) + v2 (a2 ² a2)

+v3 (a2 ² a3)

= v2;

and

a3 ² v = v3 ² (v1a1 + v2a2 + v3a3)

= v1 (a3 ² a1) + v2 (a3 ² a2)

+v3 (a3 ² a3)

= v3

as claimed.

Exercise 3.48 Show that

v = a
a
v = (a

v)T
a

T
;

where T denotes the matrix transpose.

Exercise 3.49 Let a be an orthonormal
basis. Compute aT

² a.

Solution. Since a is orthonormal, we

¯nd

a
T

² a =

0
@ a1

a2

a3

1
A ²

¡
a1 a2 a3

¢

=

0
@ a1 ² a1 a1 ² a2 a1 ² a3

a2 ² a1 a2 ² a2 a2 ² a3

a3 ² a1 a3 ² a2 a3 ² a3

1
A

=

0
@ 1 0 0

0 1 0
0 0 1

1
A .

Exercise 3.50 Let a be an orthonormal
basis. Compute a ² aT :

Exercise 3.51 Let a be an orthonormal
basis. Find an expression for the dot prod-
uct between two vectors v and w in terms of
their matrix representations, av and aw.

Solution. Using the result of the previ-
ous exercises, we ¯nd

v ² w =
¡
a
v

T
a

T
¢

² (a a
w)

= a
v

T
¡
a

T
² a

¢
a
w

= a
v

T

0
@ 1 0 0

0 1 0
0 0 1

1
A a

w

= a
v

T a
w;

where the second equality follows from the
linearity of the dot product. Thus, the dot
product between two vectors reduces to a
matrix multiplication of the matrix represen-
tations of the vectors (with a transpose suit-
ably inserted).

Exercise 3.52 Let fa1;a2;a3g be an
orthonormal basis. Show that four of the
eight orthonormal bases f§a1;§a2;§a3g

are right-handed and four are left-handed.

Exercise 3.53 Let a be a right-handed,
orthonormal basis. Show that

a
T

£ a =

0
@ 0 a3 ¡a2

¡a3 0 a1

a2 ¡a1 0

1
A :
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Exercise 3.54 Let a be a right-handed,
orthonormal basis. Show that a²

¡
aT

£ a
¢

=¡
0 0 0

¢
.

Solution. We have

a ²

¡
a

T
£ a

¢
= a ²

0
@ 0 a3 ¡a2

¡a3 0 a1

a2 ¡a1 0

1
A

=

0
@ a1 ² 0 ¡ a2 ² a3 + a3 ² a2

a1 ² a3 + a2 ² 0 ¡ a3 ² a1

¡a1 ² a2 + a2 ² a1 + a3 ² 0

1
A

T

=
¡

0 0 0
¢
;

thus proving the claim.

Exercise 3.55 Let a be a right-handed,
orthonormal basis. Compute the product
¡

1

2
a £

¡
aT

£ a
¢
.

Exercise 3.56 Let a be a left-handed
orthonormal basis. Compute the product
¡

1

2
a £

¡
aT

£ a
¢
.

Exercise 3.57 Show that a triad a is
right-handed if and only if

ai ² (aj £ ak) = 1;

where i; j; k is any subsequence of three
consecutive numbers from the sequence
1; 2; 3; 1; 2;

ai ² (aj £ ak) = ¡1;

where i; j; k is any subsequence of three
consecutive numbers from the sequence
3; 2; 1; 3; 2; and

ai ² (aj £ ak) = 0

for all other choices of i, j, and k.

Exercise 3.58 Let a be a right-handed,
orthonormal basis. Show that the cross

product between two arbitrary vectors v and
w can be computed from the formula

v £ w = a1

¯̄̄
¯ v2 v3

w2 w3

¯̄̄
¯ ¡ a2

¯̄̄
¯ v1 v3

w1 w3

¯̄̄
¯

+a3

¯̄̄
¯ v1 v2

w1 w2

¯̄̄
¯

def

=

¯̄̄
¯̄̄ a1 a2 a3

v1 v2 v3

w1 w2 w3

¯̄̄
¯̄̄ ;

where the vi's and wi's are the coordinates
of the vectors v and w, respectively, relative
to the basis a.

[Hint: Let r denote the cross product of the
vectors v and w, i.e.,

r = v £ w.

Use the fact that r is perpendicular to both
v and w to conclude that

r1v1 + r2v2 + r3v3 = 0;

r1w1 + r2w2 + r3w3 = 0:

Use the fact that

krk
2 = kvk

2
kwk

2 sin2
µ (v;w)

= kvk
2
kwk

2
¡
1 ¡ cos2 µ (v;w)

¢
= kvk

2
kwk

2
¡ (v ² w)2

to show that

r
2

1
+ r

2

2
+ r

2

3
=

¡
v
2

1
+ v

2

2
+ v

2

3

¢
¢

¡
w

2

1
+ w

2

2
+ w

2

3

¢
¡ (v1w1 + v2w2 + v3w3)

2
:

Now solve the ¯rst two equations for r1 and
r2 in terms of r3 and substitute the result
into the last equation. Solve the resulting
equation for r3 in terms of the vi's and wi's
and substitute the result into the expressions
for r1 and r2. You should get two possible
solutions. Select the one that agrees with the
assumption that a is right-handed.]
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Exercise 3.59 Let a be a right-handed,
orthonormal basis. Show that

v £ w = a

0
@ 0 ¡

a
v3

a
v2

a
v3 0 ¡

a
v1

¡
a
v2

a
v1 0

1
A a

w:

Exercise 3.60 Let a be a right-handed,
orthonormal basis. For each pair of vectors
v and w below, compute the cross product
v £ w.

a)
v = a1 ¡ a3

w = a1 + a3

b)
v = ¡ 3a3

w = ¡2a1 + 1

3
a3

c)
v = ¡ a1 + 2

3
a3

w = ¡2a1 + 2

3
a2

d)
v = 2a1 + a2

w = ¡a1 + a3

e)
v =1

3
a1 + 1

3
a2 ¡ a3

w = ¡2a1 + 1

3
a3

f)
v = 4

3
a1 + 1

3
a2 ¡

1

3
a3

w = ¡
2

3
a1 ¡

4

3
a3

Exercise 3.61 Consider applying a pure
rotation to a block in its reference con¯gura-
tion corresponding to a half turn about an
edge through a given corner on the block,
followed by a pure rotation corresponding to
a quarter turn about a di®erent edge through
the same corner as shown in the ¯gure below.

Show that the ¯nal con¯guration is re-
lated to the reference con¯guration by a sin-
gle pure rotation about an axis through the
corner making an angle of µ1 = 45± with
the ¯rst edge and µ2 = 90± with the second
edge.

Solution. Denote the corner kept ¯xed
by the pure rotations A and introduce a
right-handed, orthonormal basis a, such that
the ¯rst edge is parallel to a3 and the second
edge is parallel to a1 as shown in the ¯gure.
Let B and C correspond to two other points
in the block, such that

r
ABreference = a3 and r

ACreference = ¡a1;

where the reference subscript refers to points
in the reference con¯guration.

From the ¯gure it follows that

r
ABintermediate = a3 and r

ACintermediate = a1;

where the intermediate subscript refers to
points in the intermediate con¯guration. Fi-
nally,

r
ABfinal = ¡a2 and r

ACfinal = a1;

where the ¯nal subscript refers to points in
the ¯nal con¯guration. Since the point A is
kept ¯xed by the pure rotations, it follows
that the ¯nal con¯guration is related to the
reference con¯guration by a single pure rota-
tion keeping A ¯xed. From Exercise 1.8, we
recall that every pure rotation is equivalent
to a rotation about a unique axis through the
point kept ¯xed. It follows that the vectors
r

BreferenceBfinal and r
CreferenceCfinal must be per-

pendicular to the axis of rotation, i.e., that
the axis of rotation is parallel to the vector

r
BreferenceBfinal

£ r
CreferenceCfinal ;
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provided that this vector is non-zero. Here,

r
BreferenceBfinal

£ r
CreferenceCfinal

=
¡
r

ABfinal
¡ r

ABreference

¢
£

¡
r

ACfinal
¡ r

ACreference

¢
= (¡a2 ¡ a3) £ 2a1 = 2a3 ¡ 2a2;

i.e., the axis of rotation is parallel to the vec-
tor 2a3 ¡ 2a2: Indeed,

cos µ1 =
(2a3 ¡ 2a2) ² a1

k2a3 ¡ 2a2k ka1k

= 0

and

cos µ1 =
(2a3 ¡ 2a2) ² a3

k2a3 ¡ 2a2k ka3k

=
1

p

2
;

from which the claim follows.

Exercise 3.62 Consider applying a pure
rotation to a block in its reference con¯g-
uration corresponding to a half turn about
an edge through a given corner on a block
followed by a pure rotation by an angle µ

about a di®erent edge through the same cor-
ner. The ¯nal con¯guration is related to the
reference con¯guration by a single pure rota-
tion about an axis through the corner making
an angle Á with the ¯rst edge and perpendic-
ular to the second edge. Show that

Á =
jµj

2
:

Exercise 3.63 Consider applying a pure
rotation to a block in its reference con¯gura-
tion corresponding to a half turn about some
axis through a given corner on a block fol-
lowed by a pure rotation corresponding to a
quarter turn about a di®erent axis through
the same corner making an angle µ with the
¯rst axis. The ¯nal con¯guration is related
to the reference con¯guration by a single
pure rotation about an axis through the cor-
ner making an angle Á1 with the ¯rst axis

and Á
2

with the second axis. Show that

cosÁ
1

=
1p

1 + sin2
µ

and

cosÁ2 =
cos µp

1 + sin2
µ

:

[Hint: Let the ¯rst axis be parallel to the ba-
sis vector a3 of a right-handed, orthonormal
basis and let the second axis be parallel to
the vector sin µa1 + cos µa3.]

Exercise 3.64 Let a be a right-handed,
orthonormal basis. For each of the vectors v

below, ¯nd an alternative right-handed, or-
thonormal basis b, such that b1 is parallel to
v.

a) v = a1 ¡ a3

b) v = ¡ 3a3

c) v = ¡ a1 + 2

3
a2 ¡ a3

d) v = 2a1 + a2

e) v =1

3
a1 + 1

3
a2 ¡ a3

f) v = 4

3
a1 + 1

3
a2 ¡

1

3
a3

Exercise 3.65 Let a be a right-handed,
orthonormal basis. For each of the vectors v

below, ¯nd an alternative right-handed, or-
thonormal basis b, such that b2 is parallel to
v.

a) v = a1 ¡ a3

b) v = ¡ 3a3

c) v = ¡ a1 + 2

3
a2 ¡ a3

d) v = 2a1 + a2

e) v =1

3
a1 + 1

3
a2 ¡ a3

f) v = 4

3
a1 + 1

3
a2 ¡

1

3
a3

Exercise 3.66 Let a be a right-handed,
orthonormal basis. For each of the vectors v

below, ¯nd an alternative right-handed, or-
thonormal basis b, such that b3 is parallel to
v.
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a) v = a1 ¡ a3

b) v = ¡ 3a3

c) v = ¡ a1 + 2

3
a2 ¡ a3

d) v = 2a1 + a2

e) v =1

3
a1 + 1

3
a2 ¡ a3

f) v = 4

3
a1 + 1

3
a2 ¡

1

3
a3

Exercise 3.67 Let fv1;v2; : : : ;vng be
a set of arbitrary vectors in a vector space
V. Show that spanfv1;v2; : : : ;vng is a sub-
set of V and that spanfv1;v2; : : : ;vng is a
vector space in its own right.

Solution. Any linear combination in
spanfv1;v2; : : : ;vng may be expressed as

(((®1v1 + ®2v2) + ®3v3) + ¢ ¢ ¢ ) ¢ ¢ ¢ + ®nvn:

Each sum of two vectors yields a vector
in V and therefore the linear combination
must be a vector in V, con¯rming that
spanfv1;v2; : : : ;vng is a subset of V.

The set spanfv1;v2; : : : ;vng contains
the zero vector 0, since

0v1 + 0v2 + ¢ ¢ ¢ + 0vn = 0.

Moreover, if v 2 spanfv1;v2; : : : ;vng, then
there exists real numbers ®1; : : : ; ®n, such
that

v = ®1v1 + ®2v2 + ¢ ¢ ¢ + ®nvn:

But this implies that

¡v = ¡ (®1v1 + ®2v2 + ¢ ¢ ¢ + ®nvn)

= ¡®1v1 ¡ ®2v2 ¡ ¢ ¢ ¢ ¡ ®nvn;

i.e., ¡v 2 spanfv1;v2; : : : ;vng.

It is straightforward to show that if v and
w are two vectors in spanfv1;v2; : : : ;vng,
then

v + w 2 span fv1;v2; : : : ;vng

and

®v 2 span fv1;v2; : : : ;vng

for any real number ®.

Exercise 3.68 Show that the vectors

v = 2v1 ¡ 3v2, w = ¡v1 + 1:5v2

are linearly dependent.
Solution. The vectors v and w are

linearly dependent if there exists a pair of
scalars ¯

1
and ¯

2
(not both zero), such that

¯1v + ¯2w = 0:

In this case, a solution to this equation is
given by ¯1 = 1 and ¯2 = 2; since

1v + 2w = (2v1 ¡ 3v2) + (¡2v1 + 3v2) = 0:

Exercise 3.69 Show that the set of
vectors f0;v

1
; : : : ;vng is linearly dependent

for any vectors v1 through vn.

Exercise 3.70 Show that if a vector
space has a basis with n vectors, then any
set of n + 1 vectors is linearly dependent.

Exercise 3.71 Show that if a vector
space has a basis with n vectors, then no set
of n ¡ 1 vectors will span the whole vector
space.

Exercise 3.72 Show that if a vector
space has a basis with n vectors, then every
basis of the vector space has n basis vectors.

Exercise 3.73 Let a be a right-handed,
orthonormal basis. Consider the vector

v = a

0
@ 2

1
4

1
A
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and a vector n of unit length parallel to the
vector w = a1 + a2 ¡ 2a3: Let v = v

k
+ v

?

be a decomposition of the vector into a com-
ponent parallel to n and one perpendicular
to n. Use the Mambo toolbox to ¯nd these
components.

Solution. From a previous problem, we
have

v = (v ² n)n + n £ (v £ n) ;

where v and n are some arbitrary vectors,
such that knk = 1. Using the following
Mambo toolbox statements:

> Restart():
> a:='a':
> DeclareTriads(a):
> v:=MakeTranslations(a,2,1,4):
> w:=MakeTranslations(a,1,1,-2):
> n:=(1/VectorLength(w)) &** w:
> vpar:=(v &oo n) &** n;
> vperp:=n &xx (v &xx n);

we ¯nd

v
k

= a

0
B@

¡
5

6

¡
5

6

5

3

1
CA and v? = a

0
B@

17

6

11

6

7

3

1
CA :

Finally, we con¯rm the truth of the formula:

> v &-- vpar &-- vperp;

table([

\Type" = \Vector"

\Size" = 0

])

> Restart():
> n:='n':
> DeclareTriads(n):
> a:=MakeTranslations(n,a1,a2,a3):
> b:=MakeTranslations(n,b1,b2,b3):
> c:=MakeTranslations(n,c1,c2,c3):

> a &xx (b &xx c)
> &-- ((a &oo c) &** b)
> &++ ((a &oo b) &** c);

table([

\Type" = \Vector"

\Size" = 0

])

Exercise 3.74 Use theMambo toolbox
to show that

a £ (b £ c) = b (a ² c) ¡ c (a ² b) :

Solution. The following Mambo tool-
box statements con¯rm the claim by per-
forming explicit coordinate calculations:

Note the placement of parentheses to ensure
that the multiplication with a scalar is com-
puted prior to any addition or subtraction of
vectors.

Exercise 3.75 Repeat Exercises 3.43,
3.45, 3.46, 3.60, 3.64, 3.65, and 3.66 using
the Mambo toolbox.
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Summary of notation

Upper-case, italicized letters, such as A, R, and X, were used in this
chapter to denote arbitrary points in space. The same notation,
but with subscripts, e.g., A1 or Rreference, was used to distinguish
between multiple points.

Pairs of upper-case, italicized letters with a superscripted arrow, such
as

¡!

AB and
¡!

PQ; were used in this chapter to denote arbitrary sep-
arations between points.

The symbol » was used in this chapter to express the equivalence be-
tween two separations.

Bracketed separations, such as
h
¡!

AB

i
and

h
¡!

PQ

i
, were used in this chap-

ter to denote collections of equivalent separations.

Lower-case, bold-faced r's with superscripted pairs of upper-case, itali-
cized letters, such as r

AB and r
PQ, were used in this chapter to de-

note the position vectors corresponding to the collections of equiv-

alent separations
h
¡!

AB

i
and

h
¡!

PQ

i
. The equivalent notation for use

on a blackboard or paper was ¹rAB and ¹rPQ. The superscripted,
upper-case letters were omitted when referring to a general vector,
such as v or w.

Curved arrows with superscripted separations or position vectors, such

as
¡!
AB

y and
r

AB

y , were used in this chapter to denote a motion along
a separation or in a direction and by a distance corresponding to
the direction and length of a position vector.

The symbol k¢k was used in this chapter to denote the length of a vector.

The symbol 0 was used in this chapter to denote the zero vector.

The symbol + was used in this chapter to denote vector addition.

The symbol ¡ was used in this chapter to denote vector subtraction and
the unary multiplication of a vector with the number ¡1.

The symbol µ (a;b) was used in this chapter to denote the angle between
the vectors a and b.

The symbol ² was used in this chapter to denote the vector dot product.

The symbol £ was used in this chapter to denote the vector cross prod-
uct.

Lower-case, unsubscripted letters, such as a and b, were used in this
chapter to denote 1 £ 3 matrices with entries given by the basis
vectors of an orthonormal basis.
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Lower-case letters with a left superscript, such as av and bw, were used
in this chapter to denote 3 £ 1 matrices with entries given by the
coordinates of a vector relative to an orthonormal basis.

The symbol ±ij was used in this chapter to denote the Kronecker delta,
such that ±ij equals 1 if i = j and 0 otherwise.

Summary of terminology

The separation from point A to point B is the straight-line segment
from A to B.

Two separations are said to be equivalent if they have equal length, are
parallel, and have the same heading.

The position vector r
AB is the collection of all separations that are

equivalent to the separation
¡!

AB.

The separation
¡!

AB is a representation of the position vector r
AB.

The length; direction, and heading of a vector equals the length, direc-
tion, and heading of any one of its separations.

Every pure translation corresponds to a unique vector. Every vector
corresponds to a unique pure translation.

The zero vector 0 corresponds to the identity translation.

The multiplication of a vector v with a scalar ® is a vector ®v with length
equal to j®j times the length of v and that is parallel (® > 0) or
antiparallel (® < 0) to v.

The sum of two vectors corresponds to the composition of the corre-
sponding translations.

The dot product of two vectors is a real number equal to the product
of the lengths of the two vectors and cosine of the angle between
the vectors.

The cross product of two vectors is a vector with length equal to the
product of the lengths of the two vectors and sine of the angle
between the vectors and direction given by the right-hand rule.

A vector is said to span a line if the separation between any two points
on the line represents some scalar multiple of the vector.

A pair of non-parallel vectors is said to span a plane if the separation
between any two points on the plane represents some linear combi-
nation of the vectors.
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Three vectors that are not parallel to the same plane are said to be a
basis of space.

The vectors in a basis of space are called basis vectors.

To express a vector relative to a basis is to write it as a sum of multiples
of the basis vectors.

The coe±cients in front of the basis vectors in an expression of a vector
relative to a basis are called the coordinates of the vector relative
to the basis.

A basis is orthonormal if the basis vectors are of unit length and mutu-
ally perpendicular.

The 3£1 matrix with entries equal to the coordinates of a vector relative
to an orthonormal basis is called the matrix representation of the
vector relative to the basis.

An orthonormal basis is said to be right-handed if the cross product of
the ¯rst two vectors equals the last vector and left-handed other-
wise.

In the Mambo toolbox, the global variable GlobalTriadDeclarations

contains the names of all declared right-handed, orthonormal bases.

In theMambo toolbox, the procedure DeclareTriads appends Global-
TriadDeclarations with any number of basis labels.

In the Mambo toolbox, the procedure MakeTranslations is used to
de¯ne an arbitrary vector.

In the Mambo toolbox, the procedure NullVector is used to de¯ne the
zero vector.

In the Mambo toolbox, the procedure &** is used to compute a multi-
plication of a vector with a scalar.

In theMambo toolbox, the procedure VectorLength is used to compute
the length of a vector.

In the Mambo toolbox, the procedure &++ is used to compute the sum
of two vectors.

In the Mambo toolbox, the procedure &¡¡ is used to compute the
di®erence between two vectors.

In theMambo toolbox, the procedure &oo is used to compute the vector
dot product.
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(Page 129) In theMambo toolbox, the procedure &xx is used to compute the vector
cross product.
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Chapter 4

Positions

wherein the reader learns of:

² Using position vectors to describe the position of a rigid body or

observer relative to another observer;

² Using con¯guration coordinates to describe time-dependent posi-

tions;

² Con¯guration constraints and their implications on the allowable

con¯gurations of a mechanism;

² Animation of a multibody mechanism.



Practicum

As you complete this chapter, you

will be able to generate a compli-

cated multibody mechanism within

theMambo application and to view

the e®ects of changes in geometric

parameters or con¯guration coordi-

nates. Take advantage of the op-

portunities o®ered through Mambo

to visualize the signi¯cance of con-

straints and singularities.

Try examining the number of de-

grees of freedom of everyday mech-

anisms in your surroundings. At-

tempt to introduce con¯guration co-

ordinates and formulate constraints

that correspond to limitations on

the allowable con¯gurations of your

mechanisms.
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4.1 Review

4.1.1 Reference Points

Recall the following observations from Chapter 1:

² The con¯guration of a rigid body relative to a reference con¯gura-
tion is uniquely described through a combination of a pure transla-
tion and a pure rotation, given the selection of a speci¯c point on
the body that is kept ¯xed by the pure rotation;

² The pure translation is given by a shift of all points on the body
from the reference con¯guration to an intermediate con¯guration, in
such a way that the selected point coincides with the corresponding
point in the ¯nal con¯guration;

² The magnitude of the translation is the distance between the cor-
responding points in the reference and ¯nal con¯gurations, respec-
tively. The direction of the translation is given by the straight line
through the two points.

Illustration 4.1

The relative con¯guration of two observers A and B may be represented
by the con¯guration of the virtual block corresponding to A relative to
the reference con¯guration corresponding to B.

The position and orientation of the virtual block relative to the ref-
erence con¯guration can be uniquely described through a combination of
a pure translation and a pure rotation given the selection of a speci¯c
point on the virtual block that is kept ¯xed by the pure rotation.
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The pure translation is given by a shift of all points on the virtual
block from the reference con¯guration of B to an intermediate con¯gura-
tion, in such a way that the selected point coincides with the correspond-
ing point in the reference con¯guration of A.

The magnitude of the translation is the distance between the corre-
sponding points in the two reference con¯gurations. The direction of the
translation is given by the straight line through the two points.

The point about which the pure rotation takes place is called the ref-

erence point of the rigid body or of the observer. The reference point is
a point ¯xed on the rigid body or ¯xed relative to the reference con¯gu-
ration of the observer.

There is no preferred choice of point to qualify as the
reference point of a given rigid body or observer.

When describing the con¯guration of rigid bodies, it is common to
choose points that correspond to some geometrical feature. For example,
a natural choice of reference point of a sphere is at the sphere's center.
In the case of a rectangular block, we may select the geometric center or
any of the eight corners. In the absence of geometrical features, such as
corners or symmetries, to base the selection of reference point on, any
point will do.

If two observers A and B share the same reference point, then the
con¯guration of B relative to A is described through a pure rotation
RA!B but no translation. In other words,

TA!B = I:

Conversely, if

TA!B = I;

then the reference points of the two observers A and B coincide.
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Similarly, if the reference point of a rigid body, say a sphere, coincides
with the reference point of an observer A, then the rigid body's con¯g-
uration relative to A is described through a pure rotation RA, but no
translation. In other words,

TA = I:

Illustration 4.2

Suppose the con¯guration of an observer B relative to an observer A is
given by a non-trivial pure translation, but no rotation, i.e.,

TA!B 6= I;R
A!B

= I:

Then, the reference points of A and B do not coincide. The pure transla-
tion TA!B contains the information necessary to shift the position of all
points of the reference con¯guration of A so that they coincide with the
corresponding points of the reference con¯guration of B. The translation
T

A!B
is uniquely determined by the location of the reference points of

A and B.

4.1.2 Translations

If the reference points of two observers A and B are denoted by A and
B, respectively, then the pure translation TA!B is uniquely determined
by the separation

¡!

AB. In fact, the translation corresponds to a shift of
all points by a distance given by the length of

¡!

AB and in a direction
parallel to and with the same heading as

¡!

AB: The separation
¡¡¡!

PrPf from
the initial location Pr of some arbitrary point to its ¯nal location Pf after
the application of the pure translation:

² Has the same length as
¡!

AB;
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² Is parallel to
¡!

AB;

² Has the same heading as
¡!

AB.

It follows that
¡¡¡!

PrPf is equivalent to
¡!

AB, i.e.,
¡¡¡!

PrPf »

¡!

AB. Clearly, the

pure translation TA!B generates in¯nitely many separations
¡¡¡!

PrPf ; each

of which is equivalent to
¡!

AB. In the previous chapter, we concluded
that the pure translation corresponds to the collection of all separations

equivalent to
¡!

AB, i.e., the position vector r
AB =

h
¡!

AB

i
.

In the previous chapter, we developed algebraic operations on po-
sition vectors that corresponded to the operations on pure translations
introduced in Chapter 2. For example, the correspondences

v1$ T1;v2 $ T2

imply that

®v1 + ¯v2 $ ¯T2 ± ®T1;

where ® and ¯ are any real numbers. We also introduced two vector
products, namely the dot product ² and the cross product £, with which
we can detect when two pure translations are perpendicular or parallel,
respectively.

The vector formalism reduces to straightforward matrix algebra when
all vectors are expressed relative to right-handed, orthonormal bases. If
a =

¡
a1 a2 a3

¢
is a right-handed, orthonormal basis, and if av and

aw are the matrix representations of two vectors v and w relative to a,
then

®v = ® (a a
v)

= a (® a
v) ;

v § w = a
a
v § a

a
w

= a (a
v §

a
w) ;

v ² w = (a
v)T a

w

= (a
w)T a

v;

and

v £ w =

¯̄̄
¯̄̄ a1 a2 a3

av1
av2

av3

a
w1

a
w2

a
w3

¯̄̄
¯̄̄ :



w1w2

w3

[1; 1]

[1; 2]

[1; 3]

[1; 4]

[2; 1]

[2; 2]

[2; 3]

[2; 4]

[3; 1]

[3; 2]

[3; 3]

[3; 4]

(Ex. 4.1 {

Ex. 4.14)
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4.2 Examples

In all the examples below, all vectors will be expressed relative to a
common, right-handed, orthonormal basis

w =
¡

w1 w2 w3

¢
:

In Chapter 6, we will allow for multiple right-handed, orthonormal bases,
but will have to forego that pleasure until we have developed the mathe-
matics needed to convert between matrix representations relative to dif-
ferent bases.

4.2.1 A Still Life

Suppose you want to describe the geometry of a wireframe representation
of a rectangular block, as depicted below.

The wireframe structure can be decomposed into 12 rigid edges, four
of which are parallel to the w1 basis vector, four of which are parallel to
the w2 basis vector, and four of which are parallel to the w3 basis vector.
The edges will be labeled by pairs of integers [i; j] ; corresponding to the
j-th edge parallel to the i-th basis vector of w as indicated in the ¯gure.
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Introduce a main observer W with reference point W at the center of
the block and let the reference point E[i;j] of the [i; j]-th edge correspond
to the geometric center of the edge.

The con¯guration of the [i; j]-th edge relative to W is then given by
a pure translation T[i;j] corresponding to the position vector

r
WE[i;j] :

Speci¯cally, we ¯nd

r
WE[1;1] = w

0
@ 0

l2=2
l3=2

1
A ; r

WE[1;2] = w

0
@ 0

l2=2
¡l3=2

1
A ;

r
WE[1;3] = w

0
@ 0

¡l2=2
¡l3=2

1
A ; r

WE[1;4] = w

0
@ 0

¡l2=2
l3=2

1
A ;

r
WE[2;1] = w

0
@ l1=2

0
l3=2

1
A ; r

WE[2;2] = w

0
@ l1=2

0
¡l3=2

1
A ;

r
WE[2;3] = w

0
@ ¡l1=2

0
¡l3=2

1
A ; r

WE[2;4] = w

0
@ ¡l1=2

0
l3=2

1
A ;

r
WE[3;1] = w

0
@ l1=2

l2=2
0

1
A ; r

WE[3;2] = w

0
@ l1=2

¡l2=2
0

1
A ;

r
WE[3;3] = w

0
@ ¡l1=2

¡l2=2
0

1
A , and r

WE[3;4] = w

0
@ ¡l1=2

l2=2
0

1
A :

Illustration 4.3

Suppose you want to describe the geometry of the arrangement of spheres
shown below.

The spheres in the bottom layer are resting on a plane parallel to the
w1 and w2 basis vectors and w3 points away from this plane toward the
upper sphere.
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Introduce a main observer W with reference point W at the center
of the upper sphere and let the reference point Si of the i-th sphere
correspond to its geometric center. Then, the con¯guration of the i-th
sphere relative to W is given by a pure translation Ti corresponding to
the position vector

r
WSi :

Speci¯cally,

r
WS1 = w

0
@ R

R

¡h

1
A , r

WS2 = w

0
@ R

¡R

¡h

1
A ,

r
WS3 = w

0
@ ¡R

¡R

¡h

1
A , r

WS4 = w

0
@ ¡R

R

¡h

1
A , and r

WS5 = 0;

where R is the radius of the spheres and h is the height of the center of
the upper sphere above the centers of the spheres in the bottom layer.

The height h can be related to the radius R by requiring that°°rWS1

°° =
°°rWS2

°° =
°°rWS3

°° =
°°rWS4

°° = 2R:

This is equivalent to the equationp
2R2 + h2 = 2R;

which implies that

h =
p

2R:

In the case of a time-independent con¯guration of a rigid body, there
is no immediate need to introduce auxiliary observers, although it may
at times be convenient.
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4.2.2 The Single Moving Rigid Body

When time-dependent changes take place in the con¯guration of a rigid
body relative to the main observer, the recommended methodology re-
quires the introduction of at least one auxiliary observer between the rigid
body and the main observer. Speci¯cally, the auxiliary observer is intro-
duced in such a way that the rigid body remains stationary relative to
the auxiliary observer, while the motion of the auxiliary observer relative
to the main observer contains the entire time-dependence.

Suppose, for example, that you want to describe the geometry of a
single, freely moving rigid body. Introduce a main observer W with
reference point W somewhere in space. Introduce an auxiliary observer
A, relative to which the rigid body is stationary and with reference point
A coinciding with some arbitrary point on the rigid body.

Assume for simplicity that the orientation of the rigid body relative
to W is described by the identity rotation. Then the con¯guration of
the observer A relative to W is given by the pure translation TW!A

corresponding to the position vector

r
WA.

Since the rigid body's position is unrestricted, we can write

r
WA = w

0
@ q1

q2

q3

1
A ;

where q1, q2, and q3 are time-dependent quantities that uniquely specify
the matrix representation of the position vector relative to the w basis.
These quantities are called con¯guration coordinates, since they provide
information about the con¯guration of the rigid body relative to the main
observer as a function of time.

The con¯guration coordinates q1, q2, and q3 are the coordinates of the
vector r

WA relative to the w basis. In fact, given a coordinate system
with origin at W and axes parallel to the basis vectors w1, w2, and w3,



A

A

r
WA

W

W

w1 w2

w3

w1

w2

w3

~q1

~q2

~q3

A

W

W

A =

0
@ q1

q2

q3

1
A
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the con¯guration coordinates are the Cartesian coordinates of the point
A with respect to this coordinate system.

We may express this observation by the notation

W

A =

0
@ q1

q2

q3

1
A ;

where the left-hand side denotes the coordinate representation of the point

A relative to the observer W:

Illustration 4.4

Consider the quantities ~q1, ~q2, and ~q3 introduced in the ¯gure below.

It follows that

q1 = ~q1 cos ~q2;

q2 = ~q1 sin ~q2;

and

q3 = ~q3:

Consequently, the position vector r
WA can be written as

r
WA = w

0
@ ~q1 cos ~q2

~q1 sin ~q2

~q3

1
A :
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Similarly,

W

A =

0
@ ~q1 cos ~q2

~q1 sin ~q2

~q3

1
A :

The new con¯guration coordinates ~q1, ~q2, and ~q3 that have replaced q1,
q2, and q3 are known as the polar coordinates of the point A with respect
to the coordinate system with origin at W and axes parallel to the basis
vectors w1, w2, and w3.

The example in the illustration represented the con¯guration of the
rigid body relative to W using an alternative set of three con¯guration
coordinates. But what is the signi¯cance of the number three? Is it
possible to use more than three con¯guration coordinates to describe
the con¯guration of the rigid body relative to W? Is it possible to use
fewer than three?

Consider the vector

r
WA = w

0
@ ~q1 cos ~q2

~q1 sin ~q3

~q4

1
A :

Here, four con¯guration coordinates ~q1, ~q2, ~q3, and ~q4 are used to rep-
resent the vector relative to the w basis. How are these related to the
Cartesian coordinates introduced above? By identifying the coordinates
of the vector r

WA, we ¯nd

~q1 cos ~q2 = q1;

~q1 sin ~q3 = q2;

and

~q4 = q3;

which implies that

~q1 = s;

~q2 = arccos
q1

s
;

~q3 = arcsin
q2

s
;

and

~q4 = q3,

where s is an arbitrary number, such that s ¸ jq1j ; jq2j. It follows that
every choice of values for the coordinates q1, q2, and q3 corresponds to
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in¯nitely many choices of values for the coordinates ~q1, ~q2, ~q3, and ~q4. We
say that the con¯guration coordinates ~q1, ~q2, ~q3, and ~q4 are a redundant

set .

Illustration 4.5

If we were to assert that

r
WA = w

0
@ 0

~q1 + ~q2

~q3 ¡ ~q4

1
A ;

we would e®ectively be constraining the rigid body's position, such that
the reference point A would lie in the plane spanned by w2 and w3

through W . If our aim was to describe an entirely free rigid body, this
formulation would be erroneous. The variables ~q1, ~q2, ~q3, and ~q4 are an
insu±cient set of con¯guration coordinates.

Now, consider using only two variables ~q1 and ~q2 to describe the po-
sition vector r

WA, such that

r
WA = w

0
@ a1~q1 + a2~q2

a3~q1 + a4~q2

a5~q1 + a6~q2

1
A ;

for some constants a1, a2, a3, a4, a5, and a6. This implies that

q1 = a1~q1 + a2~q2;

q2 = a3~q1 + a4~q2;

q3 = a5~q1 + a6~q2;

where q1, q2, and q3 are the Cartesian coordinates from above. This is a
system of three equations in two unknowns (~q1 and ~q2) and can only be
solved if the third equation is linearly dependent on the ¯rst two. Since
this is not generally the case, the two variables ~q1 and ~q2 cannot be used
to describe a general con¯guration of the rigid body relative to W.

The smallest number of con¯guration coordinates required to com-
pletely describe all possible positions of the rigid body relative to W is
three! We say that the rigid body, in the absence of rotation, has
three geometric degrees of freedom.

4.2.3 Constraints

When the position of a rigid body can be described by fewer than three
con¯guration coordinates, the rigid body's con¯guration is said to be
constrained . In the absence of rotation, a constrained rigid body has
fewer than three geometric degrees of freedom.
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Suppose you want to describe the motion of a puck sliding on an ice
hockey rink.

Here, the plane of the ice is parallel to the vectors w1 and w2: The
vector w3 points away from the ice in the direction of the center of the
puck. Following the corresponding example in Chapter 2, we introduce
a main observer W, relative to which the ice hockey rink is stationary
and with reference point W at the center of the rink. Since the puck's
position relative to W will change with time, we introduce an auxiliary
observer A, relative to which the puck is stationary and with reference
point A at the center of the puck.

The con¯guration of the puck relative to the observer A is described
by the identity translation and the identity rotation. The con¯guration
of A relative to W, on the other hand, is described by a pure translation
TW!A corresponding to the position vector

r
WA.

Since the puck is restricted to positions on the ice, we conclude that

r
WA = w

0
@ q1

q2

h

2

1
A or W

A =

0
@ q1

q2

h

2

1
A ;

where h is the height of the puck. It follows that the puck has only two
geometric degrees of freedom. The restriction on the puck's position is a
constraint on the puck's con¯guration.

In the absence of the constraint on the puck's con¯guration, the pure
translation TW!A could be described by the position vector

r
WA = w

0
@ ~q1

~q2

~q3

1
A ;

where ~q1, ~q2, and ~q3 are the Cartesian coordinates introduced above. A
quick comparison between the two expressions for r

WA shows that the
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constrained mechanism is obtained from the unconstrained mechanism
by requiring that

~q3 =
h

2
:

This equation in the con¯guration coordinate is called a con¯guration

constraint.

Illustration 4.6

Suppose you want to describe the motion of a bead sliding on the surface
of a sphere.

Introduce a main observer W with reference point W at the center
of the sphere. Since the bead's position relative to W will change with
time, we introduce an auxiliary observer A, relative to which the bead
is stationary and with reference point A at the center of the bead. (The
observer A is di®erent from the observer A introduced in Chapter 2.)

The con¯guration of the observer A relative to W is then given by a
pure translation TW!A corresponding to the position vector

r
WA.

Using spherical coordinates, the position vector may be written as

r
WA = w

0
@ R sin q1 cos q2

R sin q1 sin q2

R cos q1

1
A or W

A =

0
@ R sin q1 cos q2

R sin q1 sin q2

R cos q1

1
A ;

where R is the radius of the sphere. It follows that the bead has only two
geometric degrees of freedom. The restriction on the bead's position is a
constraint on the bead's con¯guration.

Alternatively, we may use Cartesian coordinates to describe the posi-
tion vector r

WA:

r
WA = w

0
@ ~q1

~q2

~q3

1
A :
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The constraint on the bead's con¯guration, however, implies that the
length of this vector must equal the radius of the sphere, i.e.,

°°rWA
°° =

q
~q2

1
+ ~q2

2
+ ~q2

3
= R:

The only allowable values for the con¯guration coordinates ~q1, ~q2, and ~q3

are those that satisfy this con¯guration constraint.

4.2.4 The Implicit Function Theorem

The con¯guration constraint on the con¯guration coordinates ~q1, ~q2, and
~q3 in the previous illustrationq

~q2

1
+ ~q2

2
+ ~q2

3
= R

can be solved for ~q3 in terms of ~q1 and ~q2:

~q3 = §

q
R2

¡ ~q2

1
¡ ~q2

2
;

where the plus or minus sign re°ects whether the bead is on the upper
or lower hemisphere, respectively.

The constraint equation is satis¯ed for ~q1 = ~q2 = 0 and ~q3 = R.
Now, consider arbitrary values of ~q1 and ~q2 near 0. Then, there exists a
unique value for ~q3 near R that satis¯es the constraint equation. We may
comfortably argue that ~q3 near R is a function

1 of ~q1 and ~q2 near 0.
The constraint equation is also satis¯ed for ~q1 = R and ~q2 = ~q3 = 0.

Now, consider arbitrary values of ~q1 near R and ~q2 near 0: In contrast to
the previous case, it is not always possible to ¯nd a value for ~q3 near 0
that satis¯es the constraint equation. Clearly, if

~q2

1
+ ~q2

2
> R;

then the quantity under the radical is negative and no real solution of
the constraint equation exists for ~q3. If, instead,

~q2

1
+ ~q2

2
= R;

~q3 = 0 is a unique solution to the constraint equation. Finally, if

~q2

1
+ ~q2

2
< R;

there are two possible values for ~q3 near 0 that satisfy the constraint
equation.

1Recall that a function must be single-valued. The § in front of the square root is

of concern in this respect. That the value of ~q3 near R is unique guarantees that the

function is single-valued.
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While it is theoretically possible to eliminate ~q3 from the expression
for the position vector r

WA when ~q1; ~q2 ¼ 0 and ~q3 ¼ R, this is not
possible for ~q1 ¼ R and ~q2; ~q3 ¼ 0. This observation is consistent with
the predictions of the implicit function theorem.

Theorem: Let f be a function of n real con¯guration coor-
dinates and let

q1 = q1;0; q2 = q2;0; : : : ; and qn = qn;0

be a solution to the constraint equation

f (q1; q2; : : : ; qn) = 0:

Consider q1 ¼ q1;0; : : : ; qi¡1 ¼ qi¡1;0; qi+1 ¼ qi+1;0; : : : ; qn ¼

qn;0: Then, if

@f

@qi

(q1;0; q2;0; : : : ; qn;0) 6= 0;

there exists a unique value for qi ¼ qi;0 that satis¯es the
constraint equation.

If

@f

@qi

(q1;0; q2;0; : : : ; qn;0) = 0;

the choice of values

q1 = q1;0; q2 = q2;0; : : : ; and qn = qn;0

is said to be singular relative to qi. Otherwise the choice of values is said
to be regular relative to qi.

Illustration 4.7

In the case of the bead,

f (~q1; ~q2; ~q3) =
q

~q2

1
+ ~q2

2
+ ~q2

3
¡ R:

It follows that

@f

@~q3

=
~q3p

~q2

1
+ ~q2

2
+ ~q2

3

and thus

@f

@~q3

(0; 0; R) = 1;
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whereas

@f

@~q3

(R; 0; 0) = 0:

In the former case, the implicit function theorem guarantees that ~q3 can
be eliminated in terms of ~q1 and ~q2, whereas no such guarantee is o®ered
in the second case. This agrees with the observations made above.

Even though it is not possible to express ~q3 near 0 as a function of
~q1 near R and ~q2 near 0, the implicit function theorem shows that it is
possible to express ~q1 near R as a function of ~q2 and ~q3 near 0. In fact,

@f

@~q1

(R; 0; 0) = 1 6= 0.

Thus, while ~q1 = R, ~q2 = ~q3 = 0 is singular relative to ~q3; it is regular
relative to ~q1. The result of Exercise 4.10 shows that all choices of values
for the con¯guration coordinates ~q1, ~q2, and ~q3 are regular relative to at
least one of the con¯guration coordinates.

The terminology and methodology introduced here carries over to the
case of multiple constraints.

Theorem: Let f1; f2; : : : ; fm be m functions of n ¸ m real
con¯guration coordinates and let

q1 = q1;0; q2 = q2;0; : : : ; and qn = qn;0

be a solution to the constraint equations

f1 (q1; q2; : : : ; qn) = 0;

f2 (q1; q2; : : : ; qn) = 0;

...

fm (q1; q2; : : : ; qn) = 0:

Consider qm+1 ¼ qm+1;0; : : : ; qn ¼ qn;0: Then, if¯̄̄
¯̄̄
¯̄

@f1

@q1

¢ ¢ ¢
@f1

@qm

...
. . .

...
@fm

@q1

¢ ¢ ¢
@fm

@qm

¯̄̄
¯̄̄
¯̄ (q1;0; q2;0; : : : ; qn;0) 6= 0;

there exists a unique choice of values for q1 ¼ q1;0; : : : ; qm ¼

qm;0 that satis¯es the constraint equations.
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Illustration 4.8

Suppose you want to describe the motion of a bead that is restricted to
move on the intersection between the surfaces of two spheres, such that
the separation

¡¡!

S1S2 from the center of the ¯rst sphere to the center of
the second sphere is contained in the position vector

r
S1S2 = w

0
@ 3R

2

0
0

1
A ;

where R is the spheres' radius.

Introduce a main observer W with reference point W at the center of
the ¯rst sphere, i.e., such that

r
WS1 = 0 and r

WS2 = w

0
@ 3R

2

0
0

1
A :

Let A be an auxiliary observer, relative to which the bead is stationary,
and with reference point A at the center of the bead. In the absence of
the constraint on the bead's motion, the con¯guration of A relative to W

is described by the pure translation TW!A corresponding to the position
vector

r
WA = w

0
@ q1

q2

q3

1
A :

The requirement that the bead lies on the intersection between the spher-
ical surfaces implies that°°rS1A

°° =
°°rS2A

°° = R:

But, since

r
S1A = r

WA and r
S2A = r

S2W + r
WA = ¡r

WS2 + r
WA

;

we ¯nd

f1 (q1; q2; q3) =
q

q2

1
+ q2

2
+ q2

3
¡ R = 0
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and

f2 (q1; q2; q3) =

r
q2

1
¡ 3Rq1 +

9

4
R2 + q2

2
+ q2

3
¡ R = 0:

Since ¯̄̄
¯̄ @f1

@q2

@f1

@q3

@f2

@q2

@f2

@q3

¯̄̄
¯̄ = 0;

every choice of values for q1, q2, and q3 that satis¯es the constraint equa-
tions is singular relative to q2 and q3. In contrast, the choice

q1 =
3R

4
; q2 =

p

7R

4
; q3 = 0

is regular relative to q1 and q2, since¯̄̄
¯̄̄ @f1

@q1

@f1

@q2

@f2

@q1

@f2

@q2

¯̄̄
¯̄̄ Ã3R

4
;

p

7R

4
; 0

!
=

3
p

7

8
6= 0.

Exercise 4.11 shows that every solution to the constraint equations is reg-
ular relative to q1 and q2 or q1 and q3: The constrained bead thus only
has a single geometric degree of freedom.

4.2.5 Notation and Terminology

A variable that is used to describe the con¯guration of a rigid body
is called a con¯guration coordinate. I consistently use the symbol q to
denote con¯guration coordinates. To distinguish between di®erent con-
¯guration coordinates, I use various subscripts and embellishments, such
as ~q1 or qball: When modeling your mechanism of choice, you may prefer
to pick symbols that better re°ect the physical or geometric meaning of
a con¯guration coordinate. Instead of q3, elbowangle may be a preferred
name for a variable that controls the angle between the upper and lower
arm of a human. It is never an easy task to name variables. The q

notation o®ers simplicity and lucidity.
The smallest number of con¯guration coordinates needed to describe

the con¯guration of a rigid body is the number of geometric degrees of

freedom of the rigid body. When the number of con¯guration coordinates
equals the number of geometric degrees of freedom, the con¯guration co-
ordinates are commonly called generalized coordinates. The latter termi-
nology fails to convey information about what the coordinates are used
to describe. Moreover, it is often advantageous to retain more con¯gu-
ration coordinates than the number of degrees of freedom, making the
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term \generalized coordinates" describe the exception rather than the
rule. For these reasons, I consistently refer to variables used to describe
the con¯guration of a rigid body as con¯guration coordinates.

Any condition on the con¯guration coordinates that can be formulated
as an equation is an example of a con¯guration constraint . Thus,

q1 sin q2 ¡ q3 = 0

is a con¯guration constraint, while

q1q2 ¸ 0

is not. Values of the con¯guration coordinates that satisfy all con¯gura-
tion constraints are said to correspond to allowable con¯gurations.

For most naturally occurring con¯guration constraints, it is theoreti-
cally possible to solve the con¯guration constraints for some of the con-
¯guration coordinates in terms of the others. It follows that, typically,
the imposition of con¯guration constraints reduces the number of re-
quired con¯guration coordinates, i.e., the number of geometric degrees of
freedom. That it is theoretically possible to solve the con¯guration con-
straints does not imply that it is always practical, desirable, or necessary.

The notation

W

A

was introduced in the previous section for the coordinate representation
of the point A relative to the observer W. Speci¯cally,

W

A
def

= w
¡
r

WA
¢
;

where W and w are the reference point and right-handed, orthonormal
basis associated with W.

Now, let A and B be two points on a rigid body whose position is
free to change but whose orientation is constant relative to W. It follows
that the position vector r

AB is constant while r
WA and r

WB both change
with time. In fact,

r
WB = r

WA + r
AB

;

i.e.,

W

B = W

A + w
¡
r

AB
¢
:

It follows that if three con¯guration coordinates su±ce to describe the
position of a point A on the rigid body relative to W, then they also
su±ce to describe the position of any arbitrary point B on the rigid body
relative to W.
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4.2.6 Multiple Moving Rigid Bodies

In the absence of any rotations, a mechanism consisting of two freely
moving rigid bodies has six geometric degrees of freedom, since each of
the rigid bodies has three geometric degrees of freedom. If fewer than
six con¯guration coordinates su±ce to describe the positions of the two
rigid bodies, then the mechanism's con¯guration is constrained.

Suppose you want to describe the motion of a double pendulum { two
small beads connected through an inextensible string and with one of the
beads suspended from a stationary supporting plane through another
inextensible string.

Here, the supporting plane is parallel to the w1 and w2 vectors, with
w3 pointing away from the plane in the direction of the beads. Introduce
a main observer W, relative to which the support is stationary and with
reference point W at the point where the pendulum is attached. Since the
positions of the beads relative to W change with time, introduce two aux-
iliary observers A1 and A2, relative to which the upper and lower beads,
respectively, are stationary, and such that the reference points A1 and A2

coincide with the centers of the upper and lower beads, respectively.
We shall disregard any changes in orientation of the beads relative to

W during the motion. The con¯guration of the observer A1 relative to
W is then described by a pure translation TW!A1

corresponding to the
position vector

r
WA1 :

Since the strings are inextensible, the upper bead's position is constrained
to the surface of a sphere centered on W with radius equal to the length
l1 of the upper string. Using spherical coordinates, it follows that

r
WA1 = w

0
@ l1 sin q1 cos q2

l1 sin q1 sin q2

l1 cos q1

1
A :
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The con¯guration of the observer A2 relative to A1 is described by a
pure translation T

A1!A2
corresponding to the position vector

r
A1A2 :

Since the strings are inextensible, the lower bead's position is constrained
to the surface of a sphere centered on A1, with radius equal to the length
l2 of the lower string. Using spherical coordinates, we may write

r
A1A2 = w

0
@ l2 sin q3 cos q4

l2 sin q3 sin q4

l2 cos q3

1
A :

It follows that the con¯guration of the observer A2 relative to W is
described by a pure translation TW!A2

corresponding to the position
vector

r
WA2 = r

WA1 + r
A1A2

= w

0
@ l1 sin q1 cos q2 + l2 sin q3 cos q4

l1 sin q1 sin q2 + l2 sin q3 sin q4

l1 cos q1 + l2 cos q3

1
A :

We conclude that, in the absence of rotation, the double pendulum has
four geometric degrees of freedom.

Illustration 4.9

In terms of Cartesian coordinates, the position vectors r
WA1 and r

WA2

are

r
WA1 = w

0
@ ~q1

~q2

~q3

1
A and r

WA2 = w

0
@ ~q4

~q5

~q6

1
A :

The constraint on the upper bead implies that°°rWA1

°° = l1;

i.e.,

f1 (~q1; ~q2; ~q3; ~q4; ~q5; ~q6) =
q

~q2

1
+ ~q2

2
+ ~q2

3
¡ l1 = 0:

Similarly, the constraint on the lower bead implies that°°rA1A2

°° = l2;

i.e.,

f2 (~q1; ~q2; ~q3; ~q4; ~q5; ~q6) =

q
(~q4 ¡ ~q1)

2
+ (~q5 ¡ ~q2)

2
+ (~q6 ¡ ~q3)

2
¡ l2 = 0;
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since

r
A1A2 = r

A1W + r
WA2 = ¡r

WA1 + r
WA2 :

Since ¯̄̄
¯̄ @f1

@~q4

@f1

@~q6

@f2

@~q4

@f2

@~q6

¯̄̄
¯̄ = 0

for all choices of values of ~q1; : : : ; ~q6; every solution to the constraint
equations is singular relative to ~q4 and ~q6. On the other hand,¯̄̄

¯̄ @f1

@~q1

@f1

@~q2

@f2

@~q1

@f2

@~q2

¯̄̄
¯̄ =

~q2~q4 ¡ ~q1~q5

l1l2
;

which di®ers from 0 as long as ~q2~q4 ¡ ~q1~q5 6= 0. When this is the case,
the con¯guration coordinates ~q1 and ~q2 may be eliminated from the de-
scription of the con¯guration of the double pendulum and replaced by a
function of the remaining con¯guration coordinates. Again, we conclude
that, in the absence of rotation, the double pendulum has four geometric
degrees of freedom.

4.3

The relative position of two observers can be uniquely described through
a pure translation, given the selection of a reference point for each of
the observers. If the observer A has the reference point A and the ob-
server B has the reference point B, then the position vector r

AB uniquely
describes the pure translation TA!B between A and B. Given a right-
handed, orthonormal basis w, the position vector r

AB may be uniquely
represented by its matrix representation relative to w,

w
¡
r

AB
¢
.

4.3.1 A Still Life

In a Mambo geometry description, the speci¯cation of a position vector
between the reference points of successive observers is given through a
POINT statement containing the matrix representation of the vector
relative to some right-handed, orthonormal basis. In the absence of ad-
ditional information, Mambo assumes that all references to the matrix
representation of a vector are made relative to a common right-handed,
orthonormal basis, say w.
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Illustration 4.10

The following extract from a Mambo .geo ¯le shows the use of the
POINT statement to describe the relative position of successive ob-
servers:

MODULE W f

BODY A f

POINT f1,2,3g
BODY B f

POINT f0,0,1g
g

g

g

Here, the position of the observer A relative to the observer W is
given by a pure translation TW!A corresponding to the position vector

r
WA = w

0
@ 1

2
3

1
A ;

where A and W are the reference points of A and W, respectively.
Similarly, the position of the observer B relative to the observer A is

given by a pure translation TA!B corresponding to the position vector

r
AB = w

0
@ 0

0
1

1
A ;

where B is the reference point of B.

By default, Mambo interprets the absence of a POINT statement
to be equivalent to the speci¯cation

POINT f0,0,0g

i.e., that the reference point of the current observer coincides with that
of the parent observer.

The position of a rigid body relative to some observer can be uniquely
described through a pure translation, given the selection of a reference
point for the rigid body and a reference point for the observer. If the
observer A has the reference point A and the point B is the reference
point of the rigid body, then the position vector r

AB uniquely describes
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the pure translation T
A

between A and the rigid body. Given a right-
handed, orthonormal basis w, the position vector r

AB may be uniquely
represented by its matrix representation relative to w,

w
¡
r

AB
¢
.

Illustration 4.11

We may use the POINT statement to describe the position vector be-
tween the reference point of an observer and the reference point of a rigid
body.

MODULE W f

BODY A f

POINT f1,2,3g
BODY B f

POINT f0,0,1g
CYLINDER f

POINT f0,1,0g
g

g

SPHERE f

POINT f-1,0,2g
g

g

g

Here, the position of the sphere relative to the observer A is given by
a pure translation TA corresponding to the position vector

r
AS = w

0
@ ¡1

0
2

1
A ;

where S is the reference point of the sphere (assumed by Mambo to be
at the center of the sphere).

Similarly, the position of the cylinder relative to the observer B is
given by a pure translation TB corresponding to the position vector

r
BC = w

0
@ 0

1
0

1
A ;

where C is the reference point of the cylinder (assumed by Mambo to be
at the center of the cylinder).
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The tree structure corresponding to the geometry description in the
last illustration has the following form:

We could represent the same arrangement of rigid bodies relative to
the W observer by relating the con¯guration of the sphere to the B ob-
server.

The corresponding Mambo geometry description becomes

MODULE W f

BODY A f

POINT f1,2,3g
BODY B f

POINT f0,0,1g
CYLINDER f

POINT f0,1,0g
g

SPHERE f

POINT f-1,0,1g
g

g

g

g
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Here, the POINT statement relating the pure translation between the
B observer and the sphere is obtained from the following computation:

r
BS = r

BA + r
AS = ¡r

AB + r
AS

= ¡w

0
@ 0

0
1

1
A + w

0
@ ¡1

0
2

1
A = w

0
@ ¡1

0
1

1
A :

The B observer may be entirely eliminated from the observer tree
structure.

The corresponding Mambo geometry description becomes

MODULE W f

BODY A f

POINT f1,2,3g
CYLINDER f

POINT f0,1,1g
g

SPHERE f

POINT f-1,0,2g
g

g

g

Here, the POINT statement relating the pure translation between the
A observer and the cylinder is obtained from the following computation:

r
AC = r

AB + r
BC

= w

0
@ 0

0
1

1
A + w

0
@ 0

1
0

1
A = w

0
@ 0

1
1

1
A :

Any real number in theMambo geometry description may be replaced
by a string of characters. For example, the POINT statement

POINT fp1,p2,p3g

uses the three labels p1, p2, and p3 in place of numbers. The statement

parameters p1,p2,p3;
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in a Mambo motion description (a Mambo .dyn ¯le) establishes p1, p2,
and p3 as Mambo parameters, quantities that can be changed interac-
tively within the Mambo application, but that do not change during an
animation.

4.3.2 Dabbling with Motion

The POINT statements in the examples above all contained real num-
bers. Every such real number could be replaced by a mathematical ex-
pression that would evaluate to a real number. Thus, for example,

POINT fcos(.5)*cos(.5),sin(.5)*sin(.5),0g

is a syntactically correct statement. In addition to using real numbers or
parameters inside such mathematical expressions, it is possible to include
a variable corresponding to time in a Mambo animation. The label
selected to represent time is speci¯ed in a Mambo .dyn ¯le through the
statement

time NAME;

where NAME represents the label. Thus, including the statement

time t;

at the top of theMambo .dyn ¯le allows you to include the variable name
t anywhere in the geometry description.

Illustration 4.12

In the Mambo geometry description below, the variable t is used to rep-
resent the internal time variable of a Mambo animation.

MODULE W f

BODY A f

POINT fcos(t),2-t,3g
BODY B f

POINT f0,t+3,1g
CYLINDER f

POINT f0,1,0g
g

g

SPHERE f

POINT fexp(-t),0,2g
g

g

g
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From this geometry description, it follows that the position vector cor-
responding to the pure translation from the W observer to the sphere is
given by

r
WS = r

WA + r
AS

= w

0
@ cos t

2 ¡ t

3

1
A + w

0
@ e¡t

0
2

1
A = w

0
@ cos t + e¡t

2 ¡ t

5

1
A :

Similarly, the position vector corresponding to the pure translation from
the W observer to the cylinder is given by

r
WC = r

WA + r
AB + r

BC

= w

0
@ cos t

2 ¡ t

3

1
A + w

0
@ 0

t + 3
1

1
A + w

0
@ 0

1
0

1
A

= w

0
@ cos t

6
4

1
A :

Importing the corresponding .dyn and .geo ¯les into the Mambo appli-
cation, running a simulation, and subsequently animating the computed
dataset shows the motions of the sphere and the cylinder relative to the
W observer as functions of time.

Mambo's internal time variable may also be used to generate the im-
pression of a panning motion of a camera viewing a static (or changing)
scene. This is achieved by the introduction of an auxiliary observer repre-
senting the camera immediately under the world observer and containing
the rest of the scene within its corresponding BODY block.

In the following geometry description, the camera observer has been
inserted between the W observer and the rest of the tree structure.

MODULE W f

BODY Camera f

POINT fcos(t),sin(t),0g
BODY A f

POINT f1,2,3g
BODY B f

POINT f0,0,1g
CYLINDER f

POINT f0,1,0g
g
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g

SPHERE f

POINT f-1,0,1g
g

g

g

g

The explicit time-dependent position vector corresponding to the pure
translation from the W observer to the camera observer results in a mo-
tion of the entire scene relative to the W observer. To the viewer, the
motion of the scene relative to the screen gives the appearance of a camera
motion about an unchanging scene.
Mambo parameters were introduced to replace real numbers in a

Mambo geometry description. These parameters could be changed in-
teractively, but remained unchanged during an animation. To replace
functional expressions involving Mambo parameters, real numbers, and
the Mambo time variable, we can introduce Mambo animated variables.
For example, we may replace the statement

POINT fcos(t)*p1,p2*t,0g

in a Mambo geometry description by the statement

POINT fa1,a2,0g

where a1 and a2 have been introduced to replace the expressions cos(t)*
p1 and p2*t, respectively. The explicit nature of the animated variables
a1 and a2 is speci¯ed in the corresponding Mambo motion description

time t;

parameters p1,p2;

anims f

a1 = cos(t)*p1;

a2 = p2*t;

g

Animated variables cannot be changed interactively and are only
meant to simplify the textual complexity of the Mambo .geo ¯le.

4.3.3 Multibody Mechanisms

Mambo parameters represent quantities that can be changed interac-
tively in the application but that do not change with time. It is also
possible to introduce quantities that can be changed interactively in the
application and that may change with time. These are called Mambo
state variables and are introduced in a Mambo .dyn ¯le through a state-
ment
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states name1,name2;

where name1 and name2 are labels for the state variables.

Illustration 4.13

The Mambo geometry description

MODULE W f

BODY A f

POINT fq1,q2,q3g
BODY B f

POINT f0,0,1g
CYLINDER f

POINT f0,1,0g
g

g

SPHERE f

POINT f-1,0,1g
g

g

g

together with the statement

states q1,q2,q3;

in the corresponding Mambo .dyn ¯le speci¯es that the pure translation
relating the con¯guration of the A observer to the W observer corre-
sponds to the position vector

r
WA = w

0
@ q1

q2

q3

1
A ;

where the three state variables can be changed interactively within the
Mambo application and can change with time during an animation.

Mambo state variables can be used at any level in a Mambo geome-
try description. We recommend that the reader avoid Mambo state vari-
ables in the POINT statements within object blocks. This agrees with
the suggestion that all motion of objects relative to the world observer
be contained in the motion of auxiliary observers relative to the world
observer. The POINT statement of a rigid body relative to its parent
observer will therefore only contain real numbers, Mambo parameters,
or Mambo animated variables that are constant.

The time history of a Mambo state variable can be speci¯ed in two
ways. On the one hand, a Mambo dataset (a Mambo .sds ¯le) may
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be generated containing the values of any Mambo state variables at dis-
crete moments in time. For example, the Mambo .geo and .dyn ¯les
corresponding to the above illustration, together with a Mambo .sds ¯le
with the content shown in the table below, can be used to generate a
motion of the sphere and cylinder objects.

t q1 q2 q3

0.0 1.00 0.00 1.00

0.10 0.90 0.05 1.10

0.20 0.80 0.15 1.00

0.30 0.70 0.40 0.90

0.40 0.60 0.70 1.00

More useful for purposes that will become clear in later chapters is
to let the Mambo state variables change with time according to a set of
di®erential equations. In particular, we require that there be as many
di®erential equations as the number of Mambo state variables. When
this condition is satis¯ed, the di®erential equations constitute a set of
kinematic di®erential equations.

Suppose, for example, that the Mambo state variables q1, q2, and q3

satisfy the following set of kinematic di®erential equations:

_q1 + _q2 = u1 (t) ;

q2 _q1 + _q3 = u2 (t) ;

_q2q
2

1
= u3 (t) ;

where u1 (t), u2 (t), and u3 (t) are some yet-to-be-speci¯ed functions of
time. We can rewrite these equations in matrix form:0

@ 1 1 0
q2 0 1
0 q2

1
0

1
A

0
@ _q1

_q2

_q3

1
A =

0
@ u1 (t)

u2 (t)
u3 (t)

1
A :

The corresponding Mambo motion description would then include the
statements

states q1,q2,q3;

time t;

insignals f

u1 = 1;

u2 = cos(t);

u3 = 0;

g

ode f

rhs[q1] = u1;

rhs[q2] = u2;

rhs[q3] = u3;
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mass[q1][q1] = 1;

mass[q1][q2] = 1;

mass[q1][q3] = 0;

mass[q2][q1] = q2;

mass[q2][q2] = 0;

mass[q2][q3] = 1;

mass[q3][q1] = 0;

mass[q3][q2] = q1^2;

mass[q3][q3] = 0;

g

Here, u1 (t) = 1, u2 (t) = cos t, and u3 (t) = 0 as speci¯ed in the
insignals block. The ode block contains information about the co-
e±cient matrix (mass) and the right-hand side (rhs) of the kinematic
di®erential equations. The Mambo state variables are used to label the
rows and columns of these matrices. Since the order of the equations
is irrelevant, the row indices can be permuted arbitrarily. Moreover, by
default, there is no need to include matrix entries that equal zero. Thus,
an equivalent ode block could read

ode f

rhs[q2] = u1;

rhs[q1] = u2;

rhs[q3] = u3;

mass[q2][q1] = 1;

mass[q2][q2] = 1;

mass[q1][q1] = q2;

mass[q1][q3] = 1;

mass[q3][q2] = q1^2;

g

The kinematic di®erential equations above may be solved for the rates
of change of the Mambo state variables0

@ _q1

_q2

_q3

1
A =

0
@ 1 1 0

q2 0 1
0 q2

1
0

1
A

¡1 0
@ u1 (t)

u2 (t)
u3 (t)

1
A ;

provided that the inverse 0
@ 1 1 0

q2 0 1
0 q2

1
0

1
A

¡1

exists, i.e., provided that the matrix0
@ 1 1 0

q2 0 1
0 q2

1
0

1
A
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is non-singular. Indeed, the matrix is non-singular as long as its deter-
minant is non-zero. Here,¯̄̄

¯̄̄ 1 1 0
q2 0 1
0 q

2

1
0

¯̄̄
¯̄̄ = ¡q

2

1
;

which is non-zero as long as q1 6= 0. We formalize this observation by
stating that the kinematic di®erential equations are non-singular as long
as q1 6= 0. Indeed, as long as q1 (t0) 6= 0; for some moment in time t0,
the kinematic di®erential equations may be solved for q1 (t), q2 (t), and
q3 (t) on some interval in time containing t0. This is achieved by the
Mambo application through the use of advanced numerical methods for
the approximate solution of the kinematic di®erential equations.

4.4 The

4.4.1 Points

Points are represented within theMambo toolbox by entries in the global
variables GlobalPointDeclarations and GlobalPointDefinitions.
Changes to these variables initiated by the user are made possible through
the procedures DeclarePoints and DefinePoints.

Illustration 4.14

In the following Mambo toolbox session, the points A, B, and C and the
right-handed, orthonormal basis a are declared to the program.

> Restart():
> DeclarePoints(A,B,C):
> DeclareTriads(a):

The statement

> DefinePoints([A,B,a,1,2,0],[B,C,a,0,2,1]):

establishes the position vectors

r
AB = a

0
@ 1

2
0

1
A and r

BC = a

0
@ 0

2
1

1
A :

The e®ect of these statements on the global variables GlobalPoint-
Declarations and GlobalPointDefinitions is made clear by the fol-
lowing statements:

> print(GlobalPointDeclarations);
> print(GlobalPointDefinitions);
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table([

A = fBg

B = fA; Cg

C = fBg

])

table([

(B; A) = table([

1 = table([

\Coordinates" = [¡1; ¡2; 0]

\Triad" = a

])

\Size" = 1
\Type" = \Vector"

])

(A; B) = table([

1 = table([

\Coordinates" = [1; 2; 0]

\Triad" = a

])

\Size" = 1
\Type" = \Vector"

])

(C; B) = table([

1 = table([

\Coordinates" = [0; ¡2; ¡1]

\Triad" = a

])

\Size" = 1
\Type" = \Vector"

])

(B; C) = table([

1 = table([

\Coordinates" = [0; 2; 1]

\Triad" = a

])

\Size" = 1
\Type" = \Vector"

])

])
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The contents of the global variables GlobalPointDeclarations and
GlobalPointDefinitions re°ect the fact that the relative positions of
the points A and B and the points B and C, respectively, are now known.
While GlobalPointDeclarations tracks all direct relations between
points, GlobalPointDefinitions stores any position vectors between
points in GlobalPointDeclarations that have been computed during a
Mambo toolbox session.

The Mambo toolbox procedure FindTranslation can be invoked to
compute the position vector between any two points that are declared and
are (at worst, indirectly) related. Continuing with the Mambo toolbox
session in the illustration, we ¯nd

> FindTranslation(A,C);

table([

\Size" = 1

\Type" = \Vector"

1 = table([

\Triad" = a

\Coordinates" = [1; 4; 1]

])

])

as follows from

r
AC = r

AB + r
BC

= a

0
@ 1

2
0

1
A + a

0
@ 0

2
1

1
A = a

0
@ 1

4
1

1
A :

The global variable GlobalPointDefinitions is automatically appended
with the position vectors r

AC and r
CA = ¡r

AC .

4.4.2 Observers

To associate a point and a right-handed, orthonormal basis with an ob-
server, the Mambo toolbox employs the DefineObservers procedure.
For example, if A, B, and W are the reference points of three observers
A, B, and W, such that

r
WA = a

0
@ 1

2
3

1
A and r

AB = a

0
@ 0

0
1

1
A ;
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where a is a right-handed, orthonormal basis associated with all three ob-
servers, then the following statements provide the necessary information
to the Mambo toolbox.

> Restart():
> DeclareObservers(W,A,B):
> DeclarePoints(W,A,B):
> DeclareTriads(a):
> DefinePoints([W,A,a,1,2,3],[A,B,a,0,0,1]):
> DefineObservers([W,W,a],[A,A,a],[B,B,a]):
> print(GlobalObserverDefinitions);

table([

B = table([

\Point" = B

\Triad" = a

])

W = table([

\Point" = W

\Triad" = a

])

A = table([

\Point" = A

\Triad" = a

])

])

TheMambo toolbox procedure FindPosition can be invoked to com-
pute the position vector between the reference points of two observers.
Similarly, the FindCoordinates procedure computes the coordinates of
a point relative to an observer. These commands are illustrated in the
following statements:

> FindPosition(W,B);

table([

\Size" = 1

1 = table([

\Coordinates" = [1; 2; 4]

\Triad" = a

])

\Type" = \Vector"

])
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> FindCoordinates(W,B);

[1; 2; 4]

We may again use the DefineNeighbors and GeometryOutput com-
mands to generate a Mambo geometry description using the observers
introduced above. For example, the geometry description obtained from
the commands

> DefineNeighbors([W,A],[A,B]):
> GeometryOutput(main=W);

MODULE W {

BODY A {

POINT {1,2,3}

ORIENT {1,0,0,0,1,0,0,0,1}

BODY B {

POINT {0,0,1}

ORIENT {1,0,0,0,1,0,0,0,1}

}

}

}

is identical to that discussed in Illustration 4.102.

Illustration 4.15

As in the previous chapter, we may reorganize the observers so as to pro-
mote A to be the main observer:

> GeometryOutput(main=A);

MODULE A {

BODY B {

POINT {0,0,1}

ORIENT {1,0,0,0,1,0,0,0,1}

}

BODY W {

POINT {-1,-2,-3}

ORIENT {1,0,0,0,1,0,0,0,1}

}

}

or

> Undo():
> DefineNeighbors([W,B],[A,B]):
> GeometryOutput(main=A);

MODULE A {

BODY B {

POINT {0,0,1}

ORIENT {1,0,0,0,1,0,0,0,1}

2We will discuss the ORIENT statement in detail in Chapter 6.
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BODY W {

POINT {-1,-2,-4}

ORIENT {1,0,0,0,1,0,0,0,1}

}

}

}

where we used the Undo utility to undo the latest change in any of the
global variables.

4.4.3 A Sample Project

Suppose you want to visualize the motion of a small spherical bead along
the edges of a wireframe representation of a stationary rectangular block,
as depicted below.

As in an earlier section, we decompose the wireframe structure into
12 rigid edges, four of which are parallel to the w1 basis vector, four of
which are parallel to the w2 basis vector, and four of which are parallel
to the w3 basis vector. The edges are labeled by pairs of integers [i; j] ;
corresponding to the j-th edge parallel to the i-th basis vector of w as
indicated in the ¯gure.
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We introduce a main observer W with reference point W at the center
of the block and let the reference point E[i;j] of the [i; j]-th edge corre-
spond to the geometric center of the edge. The following Mambo toolbox
statements declare the corresponding labels and de¯ne the observer W:

> Restart():
> DeclareObservers(W):
> DeclarePoints(W,seq(seq(cat(E,i,j),i=1..3),j=1..4)):
> DeclareTriads(w):
> DefineObservers([W,W,w]):

The con¯guration of the [i; j]-th edge relative to W is then given by
a pure translation T[i;j] corresponding to the position vector

r
WE[i;j] :

Speci¯cally, we ¯nd

r
WE[1;1] = w

0
@ 0

l2=2
l3=2

1
A ; r

WE[1;2] = w

0
@ 0

l2=2
¡l3=2

1
A ;

r
WE[1;3] = w

0
@ 0

¡l2=2
¡l3=2

1
A ; r

WE[1;4] = w

0
@ 0

¡l2=2
l3=2

1
A ;

r
WE[2;1] = w

0
@ l1=2

0
l3=2

1
A ; r

WE[2;2] = w

0
@ l1=2

0
¡l3=2

1
A ;

r
WE[2;3] = w

0
@ ¡l1=2

0
¡l3=2

1
A ; r

WE[2;4] = w

0
@ ¡l1=2

0
l3=2

1
A ;

r
WE[3;1] = w

0
@ l1=2

l2=2
0

1
A ; r

WE[3;2] = w

0
@ l1=2

¡l2=2
0

1
A ;

r
WE[3;3] = w

0
@ ¡l1=2

¡l2=2
0

1
A , and r

WE[3;4] = w

0
@ ¡l1=2

l2=2
0

1
A :

Continuing with the same Mambo toolbox session, the Mambo toolbox
procedure DefinePoints establishes the corresponding position vectors.
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> DefinePoints(
> [W,E11,w,0,l2/2,l3/2],[W,E12,w,0,l2/2,-l3/2],
> [W,E13,w,0,-l2/2,-l3/2],[W,E14,w,0,-l2/2,l3/2],
> [W,E21,w,l1/2,0,l3/2],[W,E22,w,l1/2,0,-l3/2],
> [W,E23,w,-l1/2,0,-l3/2],[W,E24,w,-l1/2,0,l3/2],
> [W,E31,w,l1/2,l2/2,0],[W,E32,w,l1/2,-l2/2,0],
> [W,E33,w,-l1/2,-l2/2,0],[W,E34,w,-l1/2,l2/2,0]
> ):

To visualize the wireframe representation of the rectangular block, we
need to add Mambo objects to the geometry description. The Mambo
toolbox procedure DefineObjects associates the desired objects with the
appropriate observer. Here, 12 Mambo blocks are directly related to the
W observer with reference points given by the E[i;j]'s.

> DefineObjects(
> seq([W,'Block',point=cat(E,1,j),xlength=l1,
> ylength=(l1+l2+l3)/30,zlength=(l1+l2+l3)/30],j=1..4),
> seq([W,'Block',point=cat(E,2,j),xlength=(l1+l2+l3)/30,
> ylength=l2,zlength=(l1+l2+l3)/30],j=1..4),
> seq([W,'Block',point=cat(E,3,j),xlength=(l1+l2+l3)/30,
> ylength=(l1+l2+l3)/30,zlength=l3],j=1..4)):

Since the con¯guration of the spherical bead is taken to be time-
dependent relative to W, we introduce an auxiliary observer A, relative
to which the bead is stationary. In particular, we assume that the ref-
erence point A of A coincides with the center of the bead, and that the
orientation of the bead relative to W is described by the identity rotation.
Then, the con¯guration of the observer A relative to W is given by the
pure translation TW!A corresponding to the position vector

r
WA = w

0
@ q1

q2

q3

1
A ,

where q1, q2, and q3 are the con¯guration coordinates describing the
bead's position relative to W as a function of time. The Mambo toolbox
statements

> DeclareObservers(A):
> DeclarePoints(A):
> DefineObservers([A,A,w]):
> DefineNeighbors([W,A]):
> DefinePoints([W,A,w,q1,q2,q3]):
> DefineObjects([A,'Sphere',radius=(l1+l2+l3)/20,
> color=red]):

append these de¯nitions to the current geometry hierarchy. Finally, the
statement

> GeometryOutput(main=W,filename="beadonblock.geo"):

exports the Mambo geometry description to the ¯le beadonblock.geo.
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Every motion of the bead along the edges of the stationary rectan-
gular block relative to W is equivalent to some time-dependence of the
con¯guration coordinates. As suggested in the previous section, there
are three distinct ways to implement this correspondence in the Mambo
application.

Using Mambo animated variables

Mambo animated variables cannot be changed interactively by the user
during a Mambo session, but may change with time during a simulation.
Thus, to achieve a desired motion, the con¯guration coordinates could
be declared as animated variables with appropriate de¯nitions for their
time-dependence given within the anims block of the Mambo motion
description (the Mambo .dyn ¯le).

Suppose we want to visualize the time-dependence of the con¯guration
coordinates shown in the ¯gure below.

Speci¯cally, the con¯guration coordinates are de¯ned piecewise by

q1 (t) =

8>><
>>:

¡
l1

2
+ l1t 0 · t < 1
l1

2
1 · t < 4

l1

2
¡ l1 (t ¡ 4) 4 · t < 5

¡
l1

2
5 · t

;
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q2 (t) =

8>>>><
>>>>:

¡
l2

2
0 · t < 1

¡
l2

2
+ l2 (t ¡ 1) 1 · t < 2

l2

2
2 · t < 3

l2

2
¡ l2 (t ¡ 3) 3 · t < 4

¡
l2

2
4 · t

;

and

q3 (t) =

8>>>><
>>>>:

¡
l3

2
0 · t < 2

¡
l3

2
+ l3 (t ¡ 2) 2 · t < 3

l3

2
3 · t < 5

l3

2
¡ l3 (t ¡ 5) 5 · t < 6

¡
l3

2
6 · t

:

A corresponding Mambo motion description would be obtained from the
Mambo toolbox statement

> MotionOutput(anims=[q1=(-l1/2+l1*t)*(t&>=0)*(t&<1)
> +(l1/2)*(t&>=1)*(t&<4)+(l1/2-l1*(t-4))*(t&>=4)*(t&<5)
> +(-l1/2)*(t&>=5),q2=(-l2/2)*((t&>=0)*(t&<1)+(t&>=4))
> +(-l2/2+l2*(t-1))*(t&>=1)*(t&<2)+(l2/2)*(t&>=2)*(t&<3)
> +(l2/2-l2*(t-3))*(t&>=3)*(t&<4),q3=(-l3/2)*((t&<2)
> +(t&>=6))+(-l3/2+l3*(t-2))*(t&>=2)*(t&<3)+
> (l3/2)*(t&>=3)*(t&<5)+(l3/2-l3*(t-5))*(t&>=5)*(t&<6)],
> parameters=[l1=1,l2=.5,l3=.25],
> filename="beadonblock.dyn"):

where the output from the MotionOutput procedure has been spooled
directly to the ¯le named beadonblock.dyn. Note the use of the &< and
&>= operators (corresponding to < and ¸) to generate Boolean expres-
sions whose value is either 1 or 0 depending on whether the condition
within the enclosing parentheses is satis¯ed or not. A visualization of the
desired motion would now result from loading the geometry and motion
descriptions into Mambo and running a simulation.

Using Mambo state variables and a Mambo dataset

To enable interactive changes to the con¯guration coordinates within a
Mambo session, these must be declared as Mambo state variables. A
corresponding Mambo motion description would be obtained from the
Mambo toolbox statement

> MotionOutput(states=[q1=-.5,q2=-.25,q3=-.125],
> parameters=[l1=1,l2=.5,l3=.25],
> filename="beadonblock.dyn"):

where the initial values for the con¯guration coordinates have been spec-
i¯ed to ensure that the bead is initially found on one corner of the block.
A visualization of the desired motion could now be obtained by loading
a Mambo dataset (a Mambo .sds ¯le) with the following content:



Using Mambo state variables and kinematic di®erential equa-

tions
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l1 l2 l3

1.00 0.50 0.25

t q1 q2 q3

0.00 -0.50 -0.25 -0.125

0.05 -0.45 -0.25 -0.125

0.10 -0.40 -0.25 -0.125
...

...
...

...
0.95 0.45 -0.25 -0.125

1.00 0.50 -0.25 -0.125

1.05 0.50 -0.225 -0.125

1.10 0.50 -0.20 -0.125
...

...
...

...
1.95 0.50 0.225 -0.125

2.00 0.50 0.25 -0.125

2.05 0.50 0.25 -0.1125

2.10 0.50 0.25 -0.10
...

...
...

...

We may retain the formulation of the con¯guration coordinates asMambo
state variables while avoiding the need to generate a separate Mambo
dataset by noting that the derivatives of the con¯guration coordinates
can be written as _qi = ui, where

u1 (t) =

8>><
>>:

l1 0 · t < 1
0 1 · t < 4

¡l1 4 · t < 5
0 5 · t

;

u2 (t) =

8>>>><
>>>>:

0 0 · t < 1
l2 1 · t < 2
0 2 · t < 3

¡l2 3 · t < 4
0 4 · t

;

and

u3 (t) =

8>>>><
>>>>:

0 0 · t < 2
l3 2 · t < 3
0 3 · t < 5

¡l3 5 · t < 6
0 6 · t

:
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In this formulation, the ui (t)'s uniquely specify the rate of change of
the con¯guration coordinates through the nowhere singular kinematic
di®erential equations

_q1 = u1 (t) ;

_q2 = u2 (t) ;

_q3 = u3 (t) :

Taken together with speci¯c values for the con¯guration coordinates at
some initial time, say q1 (0) = ¡

l1

2
, q2 (0) = ¡

l2

2
, and q3 (0) = ¡

l3

2
; the

three functions u1 (t), u2 (t), and u3 (t) uniquely specify the values of
the con¯guration coordinates at subsequent times. The functions u1 (t),
u2 (t), and u3 (t) serve as input signals to the visualized motion, while
the kinematic di®erential equations provide the connection between the
inputs and the actual time evolution of the con¯guration coordinates.

The formulation in terms of a set of kinematic di®erential equations in
the con¯guration coordinates and a set of input signals is accommodated
within Mambo through the inclusion of an insignals and an ode block
in the corresponding motion description, as shown in a previous section.
In particular, the Mambo toolbox statements

> MotionOutput(
> ode=fq1t=u1,q2t=u2,q3t=u3g,
> states=[q1=-.5,q2=-.25,q3=-.125],
> parameters=[l1=1,l2=.5,l3=.25],
> insignals=[u1=l1*((t&>=0)*(t&<1)-(t&>=4)*(t&<5)),
> u2=l2*((t&>=1)*(t&<2)-(t&>=3)*(t&<4)),
> u3=l3*((t&>=2)*(t&<3)-(t&>=5)*(t&<6))],
> filename="beadonblock.dyn"):

create a ¯le beadonblock.dyn with the following content:

states q1 = -.5,q2 = -.25,q3 = -.125;

parameters l1 = 1,l2 = .5,l3 = .25;

time t;

insignals f

u1 = l1*((t>=0)*(t<1)-(t>=4)*(t<5));

u2 = l2*((t>=1)*(t<2)-(t>=3)*(t<4));

u3 = l3*((t>=2)*(t<3)-(t>=5)*(t<6));

g

ode f

rhs[q1] = u1;

rhs[q2] = u2;

rhs[q3] = u3;

mass[q1][q1] = 1.0;

mass[q2][q2] = 1.0;

mass[q3][q3] = 1.0;

g



We may visualize the resultant motion by loading the Mambo geometry
and motion descriptions and running a simulation.
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4.5 Exercises

Exercise 4.1 The position of a bead
is constrained to the surface of a cylinder of
radius R with symmetry axis through the ref-
erence point W of an observer W and paral-
lel to the w3 basis vector of a right-handed,
orthonormal basis w. Suppose that the coor-
dinate representation of the reference point
of the bead relative to W is expressed using
spherical coordinates. Find the correspond-
ing con¯guration constraint.

Solution. Let A denote the reference
point of the bead. Then,

r
WA = w

W

A = w

0
@ q1 sin q2 cos q3

q1 sin q2 sin q3

q1 cos q2

1
A ;

where q1, q2, and q3 are the spherical coordi-
nates of the point A in the coordinate system
with origin at W and axes parallel to the ba-
sis vectors of w.

Recall from Exercise 3.24 that

r
WA =

¡
r

WA
² w3

¢
w3 + w3 £

¡
r

WA
£ w3

¢
;

where the ¯rst term is parallel to w3 and
the second term is perpendicular to w3. The
constraint on the position of the bead then
implies that°°w3 £

¡
r

WA
£ w3

¢°° = R:

The Mambo toolbox statements

> Restart():
> DeclareTriads(w):
> w3:=MakeTranslations(w,3):
> rWA:=MakeTranslations(w,
> q1*sin(q2)*cos(q3),
> q1*sin(q2)*sin(q3),q1*cos(q2)):
> simplify(VectorLength(w3 &xx
> (rWA &xx w3))=R);

show that the corresponding condition on the
coordinates is

q1 sin q2 = R.

Exercise 4.2 The position of a bead
is constrained to the surface of a cone with
opening angle µ, apex at the reference point
W of an observer W, and with symmetry
axis parallel to the basis vector w3 of a
right-handed, orthonormal basis w. Sup-
pose that the coordinate representation of
the reference point of the bead relative to
W is expressed using Cartesian coordinates.
Find the corresponding con¯guration con-
straint.

Solution. Let A denote the reference
point of the bead. Then,

r
WA = w

W

A = w

0
@ q1

q2

q3

1
A ;

where q1, q2, and q3 are the Cartesian co-
ordinates of the point A in the coordinate
system with origin at W and axes parallel to
the basis vectors of w1, w2, and w3.

The angle between r
WA and w3 is half

the opening angle. It follows that

cos
µ

2
=

r
WA

² w3

krWA
k kw3k

:

The Mambo toolbox statements

> Restart():
> DeclareTriads(w):
> w3:=MakeTranslations(w,3):
> rWA:=MakeTranslations(w,q1,q2,q3):
> simplify(cos(theta/2)=
> (rWA &oo w3)/VectorLength(rWA)
> /VectorLength(w3));
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show that the corresponding condition on the
coordinates is

cos
µ

2
=

q3p
q2

1
+ q2

2
+ q2

3

:

Exercise 4.3 The position of a bead is
constrained to the surface of a sphere of ra-
dius R. Let W be the reference point of an
observer W, such that

r
WS = w

0
@ R

0
0

1
A ;

where S denotes the center of the sphere.
Find the corresponding con¯guration con-
straint if the coordinate representation of
the reference point of the bead relative to W

is formulated using a) Cartesian, b) polar,
or c) spherical coordinates.

Exercise 4.4 A small bead is attached
to the end of a thin rod of length l, which is
suspended from a spherical joint. Show that,
in the absence of rotation, the bead has two
geometric degrees of freedom.

Solution. Let W be an observer with
reference point W at the spherical joint. De-
note by A the reference point of the bead.
Since the rod has constant length, it follows
that °°rWA

°° = l:

The position of the bead is constrained to the
surface of a sphere of radius l. From the text,
we recall that the coordinate representation
of A relative to W can be written as

W

A =

0
@ l sin q1 cos q2

l sin q1 sin q2

l cos q1

1
A :

It follows that no more than two con¯gura-
tion coordinates are necessary to describe the

position of the bead, i.e., the number of ge-
ometric degrees of freedom is · 2. It is not
possible to describe the position using fewer
than two coordinates, i.e., the number of ge-
ometric degrees of freedom is ¸ 2 and the
claim follows.

Exercise 4.5 Suppose that the second
bead on a double pendulum is constrained to
the surface of a sphere of radius R < l1 + l2,
where l1 and l2 are the lengths of the two
pendulum segments. Find the correspond-
ing con¯guration constraint and the number
of geometric degrees of freedom of the con-
strained mechanism.

Exercise 4.6 Suppose that the second
bead on a double pendulum is constrained to
a speci¯c point on the surface of the sphere
introduced in the previous exercise. Find the
corresponding con¯guration constraint and
the number of geometric degrees of freedom
of the constrained mechanism.

Exercise 4.7 Suppose that the ¯rst
bead on the double pendulum from the previ-
ous exercise is constrained to a plane through
the supporting point and the second bead.
Find the corresponding con¯guration con-
straint and the number of geometric degrees
of freedom of the constrained mechanism.

Exercise 4.8 Suppose that the beads of
a triple pendulum are constrained to a plane
through the supporting point. Find the cor-
responding con¯guration constraint and the
number of geometric degrees of freedom of
the constrained mechanism.

Exercise 4.9 Suppose that the third
bead on the triple pendulum from the pre-
vious exercise is constrained to a speci¯c
point on the plane. Find the corresponding
con¯guration constraint and the number of
geometric degrees of freedom.
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Exercise 4.10 Consider the con¯gura-
tion constraint

q
2

1
+ q

2

2
+ q

2

3
= R

2
:

Show that any choice of values that satis¯es
this constraint is regular relative to at least
one of the three con¯guration coordinates q1,
q2, and q3.

Solution. From

f (q1; q2; q3) = q
2

1
+ q

2

2
+ q

2

3
¡ R

2

we ¯nd

@f

@q1

= 2q1,
@f

@q2

= 2q2, and
@f

@q3

= 2q3:

Since

f (0; 0; 0) 6= 0;

it follows that at least one of the partial
derivatives must be non-zero for a choice of
values that satis¯es the con¯guration con-
straint, thus con¯rming the claim.

Exercise 4.11 Consider the con¯gura-
tion constraints

q
2

1
+ q

2

2
+ q

2

3
= R

2
;µ

q1 ¡

3

2
R

¶2

+ q
2

2
+ q

2

3
= R

2
:

Show that any choice of values that satis-
¯es these constraints is regular relative to the
pairs of con¯guration coordinates q1 and q2

or q1 and q3.
Solution. The following Maple state-

ments prove the statement (show this!):

> f1:=q1^2+q2^2+q3^2-R^2:
> f2:=(q1-3*R/2)^2+q2^2+q3^2-R^2:

> det(matrix(2,2,[[diff(f1,q1),
> diff(f1,q2)],[diff(f2,q1),
> diff(f2,q2)]]));

6 q2 R

> det(matrix(2,2,[[diff(f1,q1),
> diff(f1,q3)],[diff(f2,q1),
> diff(f2,q3)]]));

6 q3 R

Exercise 4.12 Consider the con¯gura-
tion constraints

l1 cos q1 + l2 cos q2 + l3 cos q3 = L;

l1 sin q1 + l2 sin q2 + l3 sin q3 = 0:

Are all choices of values for q1, q2, and q3

that satisfy these constraints regular relative
to i) q1, ii) q2, iii) q3?

Exercise 4.13 Consider the con¯gura-
tion constraints derived in Exercises 4.1{4.9.
For what choices of values of the con¯gura-
tion coordinates does the implicit function
theorem apply?

Exercise 4.14 That a con¯guration
constraint is regular relative to one of the
con¯guration coordinates for some choice of
values q1 = q1;0; : : : ; qn = qn;0 implies that
this coordinate may be thought of as a func-
tion of the remaining n¡ 1 con¯guration co-
ordinates for q1 ¼ q1;0; : : : ; qn ¼ qn;0, thus
reducing the number of geometric degrees of
freedom by one. Use this observation to con-
trast the constraint equation

q
2

1
+ q

2

2
= 0

to the equivalent pair of constraint equations

q1 = 0;

q2 = 0:
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Solution. The pair of constraint equa-
tions corresponds to the functions

f1 (q1; : : : ; qn) = q1;

f2 (q1; : : : ; qn) = q2:

Here, any choice of values of the con¯gura-
tion coordinates that satis¯es f1 = 0 is reg-
ular relative to q1. This implies that q1 may
be thought of as a function of the n ¡ 1 re-
maining con¯guration coordinates near any
such choice of values. Similarly, after substi-
tution of q1 in terms of the other n ¡ 1 co-
ordinates into f2, we ¯nd that any choice of
values of the remaining con¯guration coordi-
nates that satis¯es f2 = 0 is regular relative
to q2. This implies that q2 may be thought
of as a function of the n¡2 remaining con¯g-
uration coordinates. In conclusion, the pair
of constraint equations reduces the number
of geometric degrees of freedom by two.

In contrast, let the single constraint equa-
tion correspond to the function

f (q1; : : : ; qn) = q
2

1
+ q

2

2
:

Here,

@f

@q1

= 2q1

and

@f

@q2

= 2q2:

In this case, the con¯guration constraint is
only satis¯ed at q1 = q2 = 0. But this choice
of values is singular relative to q1 and rel-
ative to q2. In contrast to the regular sit-
uation above, although f corresponds to a

single constraint equation, the number of ge-
ometric degrees of freedom is reduced by two.

Exercise 4.15 For each of the collec-
tions of rigid bodies below, use the Mambo
toolbox to formulate aMambo geometry de-
scription and visualize it usingMambo. You
may ¯nd the information in the Mambo ref-
erence manual regarding the geometric prop-
erties of Mambo spheres, blocks, and cylin-
ders helpful.

a) Tetrahedral arrangement of spheres
b) Icosahedral arrangement of spheres
c) Brick wall
d) Pile of parallel logs
e) Books in book shelf
f) Tiled bathroom °oor
g) Hardwood °oor
h) Rectangular bird cage
i) Multiple rows of rectangular chairs
j) Parallel rows of marble columns

Exercise 4.16 For each of the scenes
below, use the Mambo toolbox to formu-
late a Mambo geometry description and
implement di®erent animation sequences in
Mambo.

a) A game of checkers
b) Fitting a table with an extension
c) Dialing on a digital dialing pad
d) Typing on a computer keyboard
e) Packets traveling through a network
f) Road work with a pneumatic drill
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Summary of notation

Upper-case, italicized letters with calligraphy-style left superscripts, such
as W

A and A
R, were used in this chapter to denote the coordinate

representation of a point relative to an observer.

Lower-case q's with various subscripts and decorations, such as q1 and
~q3, were used in this chapter to denote con¯guration coordinates.

Summary of terminology

The coordinate representation of a point relative to an observer is the
matrix representation of the position vector from the reference point
of the observer to the point relative to the right-handed, orthonor-
mal basis associated with the observer.

A mechanism is constrained if its con¯guration is limited.

A variable that is used to describe the con¯guration of a mechanism is
called a con¯guration coordinate.

The number of geometric degrees of freedom of a mechanism is the small-
est number of con¯guration coordinates necessary to describe the
con¯guration of the mechanism.

An equation in the con¯guration coordinates that corresponds to a con-
straint on the con¯guration of a mechanism is called a con¯guration

constraint.

A complete set of di®erential equations in the con¯guration coordinates
is called a set of kinematic di®erential equations.

In Mambo, the position of an observer or a rigid body relative to an
observer is given through a POINT statement in the .geo ¯le.

In Mambo, parameters are declared through a parameters statement
in the .dyn ¯le.

In Mambo, the time variable is labeled through a time statement in
the .dyn ¯le.

In Mambo, animated variables are declared through an anims block in
the .dyn ¯le.

In Mambo, states are declared through a states statement in the .dyn
¯le.

In Mambo, the kinematic di®erential equations are declared in the ode

block in the .dyn ¯le.
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In Mambo, input signals to the kinematic di®erential equations are
declared in the insignals block in the .dyn ¯le.

In the Mambo toolbox, the global variable GlobalPointDeclarations

contains the names of all declared points.

In the Mambo toolbox, the global variable GlobalPointDefinitions

contains position vectors relating declared points.

In theMambo toolbox, the procedure DeclarePoints appends Global-
PointDeclarations with any number of point labels.

In the Mambo toolbox, the procedure DefinePoints appends Global-
PointDefinitions with any number of position vectors relating
declared points.

In the Mambo toolbox, the procedure FindTranslation is used to ¯nd
the position vector between two de¯ned points.

In the Mambo toolbox, the procedure DefineObservers appends Glo-
balObserverDefinitions with any number of associations between
observers and pairs of declared reference points and declared right-
handed, orthonormal bases.

In the Mambo toolbox, the procedure FindPosition is used to ¯nd the
position vector between the reference points of two observers.

In theMambo toolbox, the procedure FindCoordinates is used to com-
pute the coordinate representation of a point relative to an observer.

In the Mambo toolbox, the procedure Undo is used to undo the latest
change to any of the global variables.

In the Mambo toolbox, the procedure DefineObjects is used to asso-
ciate objects with de¯ned observers.

In theMambo toolbox, the procedure MotionOutput generates aMam-
bo motion description.
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Chapter 5

Rotations

wherein the reader learns of:

² Using rotation matrices to describe the relation between right-handed,

orthonormal bases;

² Computing rotation matrices for a variety of common situations.



Practicum

Make it a habit to represent

a right-handed, orthonormal basis

with the ¯rst three ¯ngers of your

right hand. Let your index ¯nger

represent the ¯rst basis vector, the

middle ¯nger the second basis vec-

tor, and the thumb the third basis

vector. This gesture will be very

handy (!) when attempting to visu-

alize the relations between multiple

right-handed, orthonormal bases. It

will help you concretize the idea of

rotation matrices as relations be-

tween such bases.

Almost every computation in this

chapter can be completed using the

Mambo toolbox routines presented

at the end of the chapter. This is

good practice and will make the pur-

pose of the computer-algebra proce-

dures more evident.
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5.1 Triads

Right-handed, orthonormal bases of space play a central role in the anal-
ysis and visualization of multibody mechanisms. From this point on,
right-handed, orthonormal bases will be referred to as triads, re°ecting
the triplet of basis vectors.

5.1.1 Notation

To denote triads, I consistently use lower-case, italicized letters, e.g.,

a, r, or x:

The triad a consists of the three basis vectors a1, a2, and a3. Similarly,
the triad r consists of the three basis vectors r1, r2, and r3; and so on. The
choice of letter is not important, unless you are trying to give the person
you are communicating with additional information by a clever choice of
letter. For example, if a triad is to be used as the reference triad of a
speci¯c observer, it may be advantageous to denote it by the same letter
that was used to denote the observer. To distinguish between multiple
triads that use the same letter, I introduce appropriate superscripts, for
example, a(1), r(reference), and c(world). The parentheses are included to
eliminate the risk for confusing the superscript with an exponent.

To graphically represent a triad, this text consistently uses three,
mutually perpendicular separations representing the basis vectors often
(but not necessarily) emanating from a common starting point. For later
reference, it is a good idea to place the corresponding vector symbols
adjacent to each of the basis vectors.

5.1.2 Common Misconceptions

Triads do not have a speci¯c location. After all, triads consist of three,
mutually perpendicular basis vectors, each of which corresponds to an
in¯nite collection of equivalent separations. It is important not to con-
fuse the location of the three separations representing the triad with an
actual location of the triad. Any three separations representing the basis
vectors can be chosen in the graphical depiction of the triad. There is,
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for example, no need to pick separations that are based at some speci¯c
reference point.

A common notation for the basis vectors of a right-handed, orthonor-
mal basis is i, j, and k. Since it is not clear how to distinguish between
di®erent bases, we do not use this notation here.

Instead of labeling the three basis vectors by numerical subscripts, it
is common to use the letters x, y, and z as subscripts. With this choice,
the triad a would be represented by the basis vectors ax, ay, and az. This
is clearly motivated by the use of x, y, and z to denote the coordinates of
a right-handed coordinate system. There is certainly nothing wrong with
this notation, but it is inconsistent with my expressed desire to represent
triads with matrices

a =
¡

a1 a2 a3

¢
:

Here, the numerical subscripts act not only to distinguish the basis vectors
from another, but also to denote placement in the matrix. The x; y, and
z subscripts achieve the former, but do not re°ect the latter.

5.2 Rotation Matrices

5.2.1 Fundamental Relations

Illustration 5.1

Let a be a triad. Consider the vector

v = a1 + 2a3 = a

0
@ 1

0
2

1
A :

We may construct a second triad b, such that b3 is parallel to v by the
method of Chapter 3. In particular, let

b3 =
v

kvk

= a

0
@

1
p

5

0
2

p

5

1
A ;

since

kvk
2 = v ² v =

¡
1 0 2

¢0
@ 1

0
2

1
A = 5:

Moreover,

b1 =
a1 £ v

ka1 £ vk

= a

0
@ 0

¡1
0

1
A
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and

b2 = b3 £ b1 = a

0
@

2
p

5

0
¡

1
p

5

1
A :

In particular, we may write

¡
b1 b2 b3

¢
=

¡
a1 a2 a3

¢0
@ 0 2

p

5

1
p

5

¡1 0 0
0 ¡

1
p

5

2
p

5

1
A :

The [i; j]-th entry in the scalar matrix can be found from the dot product
ai ² bj. For example,

a1 ² b3 = a1 ²

µ
1

p

5
a1 +

2
p

5
a3

¶
=

1
p

5

and so on.

In a pure rotation, one point on the rigid body is kept ¯xed relative
to the reference con¯guration. Denote this point by A and let B and C

be two other points on the rigid body, such that the separations
¡!

AB and
¡!

AC have unit length and are mutually perpendicular. Let a r subscript
denote the corresponding points in the reference con¯guration and let a f

subscript denote the corresponding points in the ¯nal con¯guration. The
¯nal orientation of the rigid body is uniquely determined by the locations
of the points Bf and Cf relative to Br and Cr, respectively.

It follows that

a
(r)

1
=

h
¡¡¡!

ArBr

i
, a

(r)

2
=

h
¡¡¡!

ArCr

i
, a

(r)

3
= a

(r)

1
£ a

(r)

2

and

a
(f)

1
=

h
¡¡¡!

AfBf

i
, a

(f)

2
=

h
¡¡¡!

AfCf

i
, a

(f)

3
= a

(f)

1
£ a

(f)

2
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AfCf

Ar = Af
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Cf

¡¡¡!

ArBr

¡¡¡!
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are the components of two triads that uniquely describe the reference
orientation and the ¯nal orientation of the rigid body.

As in the illustration above, we may express the triad a
(f) in terms

of the triad a
(r) :

a
(f) = a

(r)
Ra(r)a(f) ;

where Ra(r)a(f) is a 3 £ 3 matrix of real numbers.

Every pure rotation keeping the point A ¯xed
corresponds to a unique choice of entries of Ra(r)a(f) .

Below, we will consider the conditions that the entries of a 3 £ 3 matrix
must satisfy to ensure that the matrix corresponds to some pure rotation.

Illustration 5.2

Let a and b be arbitrary triads. We recall that for an arbitrary vector

v = v1a1 + v2a2 + v3a3,

where

vi = ai ² v,

i.e.,

v = a1 (a1 ² v) + a2 (a2 ² v) + a3 (a3 ² v) :

In particular, this is true for each of the basis vectors in the triad b:

b1

b2

b3

=

=

=

a1 (a1 ² b1) + a2 (a2 ² b1) + a3 (a3 ² b1) ;

a1 (a1 ² b2) + a2 (a2 ² b2) + a3 (a3 ² b2) ;

a1 (a1 ² b3) + a2 (a2 ² b2) + a3 (a3 ² b3) :

In terms of the matrices introduced in the previous chapter, this is equiv-
alent to

¡
b1 b2 b3

¢
=

¡
a1 a2 a3

¢0
@ a1 ² b1 a1 ² b2 a1 ² b3

a2 ² b1 a2 ² b2 a2 ² b3

a3 ² b1 a3 ² b2 a3 ² b3

1
A ;
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where the matrix

Rab =

0
@ a1 ² b1 a1 ² b2 a1 ² b3

a2 ² b1 a2 ² b2 a2 ² b3

a3 ² b1 a3 ² b2 a3 ² b3

1
A

is called the rotation matrix from a to b.
This de¯nition allows us to write

b = aRab;

where

Rab = a
T

² b.

Let v and w be two arbitrary vectors. The dot product

v ² w

was de¯ned in the previous chapter as the product of the lengths of the
two vectors and cosine of the angle between the vectors:

kvk kwk cos µ (v;w) :

This de¯nition did not rely on the introduction of any particular ba-
sis relative to which either vector was expressed. The dot product was
independent of the choice of basis.

While the geometric de¯nition of the dot product is useful to show its
independence of basis, it is not a very convenient method for computing
the value of the dot product. Instead, the use of a basis greatly simpli¯es
the computation. Here, given a triad a, the dot product between the two
vectors equals

v ² w = (a
v1a1 + a

v2a2 + a
v3a3) ² (a

w1a1 + a
w2a2 + a

w3a3)

=
¡

av1
av2

av3

¢0
@ a1 ² a1 a1 ² a2 a1 ² a3

a2 ² a1 a2 ² a2 a2 ² a3

a3 ² a1 a3 ² a2 a3 ² a3

1
A

0
@ aw1

aw2

aw3

1
A

= (a
v)T a

w;

since

a
T

² a =

0
@ a1 ² a1 a1 ² a2 a1 ² a3

a2 ² a1 a2 ² a2 a2 ² a3

a3 ² a1 a3 ² a2 a3 ² a3

1
A
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equals the identity matrix for an orthonormal basis. A similar expression
would result from replacing the triad a with a di®erent triad b:

v ² w =
¡
b
v
¢T

b
w:

If, instead, we express v relative to the a triad and w relative to the
b triad, we ¯nd

v ² w = (a
v1a1 + a

v2a2 + a
v3a3) ²

¡
b
w1b1 + b

w2b2 + b
w3b3

¢
=

¡
a
v1

a
v2

a
v3

¢0
@ a1 ² b1 a1 ² b2 a1 ² b3

a2 ² b1 a2 ² b2 a2 ² b3

a3 ² b1 a3 ² b2 a3 ² b3

1
A

0
@ bw1

bw2

b
w3

1
A

= (a
v)T

Rab
b
w:

But the dot product is independent of the triad(s) used to express the
vectors. It follows that

v ² w = (a
v)T a

w

= (a
v)T

Rab
b
w:

Since the vectors v and w were arbitrary, we conclude that

a
w = Rab

b
w:

We have shown that the rotation matrix Rab between the triads a and
b satis¯es the following relations:

Rab = a
T

² b;

b = aRab;

and

a
v = Rab

b
v

for an arbitrary vector v.
From the symmetry of the dot product, it follows that

Rba =

0
@ b1 ² a1 b1 ² a2 b1 ² a3

b2 ² a1 b2 ² a2 b2 ² a3

b3 ² a1 b3 ² a2 b3 ² a3

1
A

=

0
@ a1 ² b1 a2 ² b1 a3 ² b1

a1 ² b2 a2 ² b2 a3 ² b2

a1 ² b3 a2 ² b3 a3 ² b3

1
A

=

0
@ a1 ² b1 a1 ² b2 a1 ² b3

a2 ² b1 a2 ² b2 a2 ² b3

a3 ² b1 a3 ² b2 a3 ² b3

1
A

T

= (Rab)
T

:
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In other words, the rotation matrix from b to a is the transpose of the
rotation matrix from a to b.

Rab = a
T

² b =
¡
b
T

² a
¢T

= (Rba)T .

Any two triads a and b are related through a 3 £ 3 matrix Rab of
real numbers. But under what conditions does a 3 £ 3 matrix qualify as
a rotation matrix? Put di®erently, under what conditions on the 3 £ 3
matrix R of real numbers is the result of the matrix product

aR

a triad if a is a triad?

Recall that a basis b is orthonormal if and only if the matrix product

b
T

² b =

0
@ b1 ² b1 b1 ² b2 b1 ² b3

b2 ² b1 b2 ² b2 b2 ² b3

b3 ² b1 b3 ² b2 b3 ² b3

1
A

equals the identity matrix. Thus, aR is an orthonormal basis if and only
if the matrix product

(aR)T
² (aR) = R

T
¡
a

T
² a

¢
R = R

T
R

equals the identity matrix.

To ¯nd the condition that ensures that aR is right-handed, we proceed
as follows. Let the [i; j]-th entry of R be denoted by rij , i.e.,

R =

0
@ r11 r12 r13

r21 r22 r23

r31 r32 r33

1
A :

Then, from

¡
v1 v2 v3

¢
= aR;

we ¯nd

v1 = r11a1 + r21a2 + r31a3;

v2 = r12a1 + r22a2 + r32a3;

v3 = r13a1 + r23a2 + r33a3:

The orthonormal basis fv1;v2;v3g is right-handed if and only if

v1 ² (v2 £ v3) = 1:
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But

v1 ² (v2 £ v3) = (r11a1 + r21a2 + r31a3) ²

[(r12a1 + r22a2 + r32a3) £ (r13a1 + r23a2 + r33a3)]

= (r11a1 + r21a2 + r31a3) ²0
@ r12r13a1 £ a1 + r12r23a1 £ a2 + r12r33a1 £ a3

+r22r13a2 £ a1 + r22r23a2 £ a2 + r22r33a2 £ a3

+r32r13a3 £ a1 + r32r23a3 £ a2 + r32r33a3 £ a3

1
A

= r11 (r22r33 ¡ r23r32) ¡ r21 (r12r33 ¡ r32r13)

+r31 (r12r23 ¡ r22r13)

=

¯̄̄
¯̄̄ r11 r12 r13

r21 r22 r23

r31 r32 r33

¯̄̄
¯̄̄

= detR,

where we used the fact that the basis a is right-handed, i.e., that

a1 £ a2 = a3, a2 £ a3 = a1, and a3 £ a1 = a2:

It follows that the basis aR is right-handed if and only if

detR = 1.

5.2.2 Mnemonics

Rotation matrices are denoted by the letter R and the names of a pair of
triads as subscripts, e.g.,

Rab, Rc(1)c(2) , or Rb(lab)b(ball) :

Rotation matrices are 3£ 3 matrices of real numbers. Recall that a triad
a is represented by the 1 £ 3 matrix of vectors

a =
¡

a1 a2 a3

¢
:

By the standard rules of matrix multiplication, the matrix product

aRac

is de¯ned and evaluates to a 1 £ 3 matrix of vectors, namely the triad c.
On the other hand, the matrix product

Raca

is not de¯ned, since the number of columns of Rac does not agree with
the number of rows of a.
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The rotation matrix Rcd can be computed from the formula

Rcd = c
T

² d;

where c and d are two triads. The right-hand side is the dot product of
a 3 £ 1 matrix of vectors with a 1 £ 3 matrix of vectors. By the rules of
matrix multiplication, the result is therefore a 3 £ 3 matrix of numbers.
In contrast, the expression

c ² d
T

is the dot product of a 1 £ 3 matrix of vectors with a 3 £ 1 matrix of
vectors. By the rules of matrix multiplication, the result is therefore a
1 £ 1 matrix of numbers, or simply a single real number.

For an arbitrary vector v, the matrix representations relative to two
triads a and b are related through

a
v = Rab

b
v:

The right-hand side is a product of a 3 £ 3 matrix of real numbers with
a 3 £ 1 matrix of real numbers. By the rules of matrix multiplication,
the result is therefore a 3 £ 1 matrix of real numbers. In contrast, the
expression

b
vRab

is unde¯ned, since the number of columns of bv does not equal the number
of rows of Rab.

5.2.3 Rotating Vectors

Let P and Q be two arbitrary points on a rigid body. Then the vector

vr =
h
¡¡¡!

PrQr

i

is the collection of all separations that are equivalent to
¡¡¡!

PrQr, where the

r subscript refers to points in the reference con¯guration. Similarly, the
vector

vf =
h
¡¡¡!

PfQf

i



Pr

Pf
Qr

Qf

¡¡¡!

AfBf

¡¡¡!

AfCf

Ar = Af

Br

Bf
Cr

Cf

¡¡¡!

ArBr

¡¡¡!

ArCr

¡¡¡!

PrQr

¡¡¡!

PfQf

1
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is the collection of all separations that are equivalent to
¡¡¡!

PfQf , where the

f subscript refers to points in the ¯nal con¯guration.

Since the positions of the points P and Q are unchanged relative to
the triplet A, B, and C introduced above, it follows that

a
(f)

vf = a
(r)

vr

or

a
(r)

vf = Ra(r)a(f)

a
(f)

vf

= Ra(r)a(f)

a
(r)

vr:

Illustration 5.3

The pure rotation rotates the straight line spanned by vr until it coincides
with the straight line spanned by vf . The equality

a
(f)

vf = a
(r)

vr

shows that kvfk = kvrk.

From the de¯nition of the dot product, we recall that the angle
µ (vr;vf ) between the vectors satis¯es the relation

cos µ (vr;vf ) =
vr ² vf

kvrk ¢ kvfk

=
1

kvrk
2

³
a
(r)

vr

´T
a
(r)

vf

=
1

kvrk
2

³
a
(r)

vr

´T

Ra(r)a(f)

a
(r)

vr:
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5.2.4 Orthogonal Matrices

From Exercise 5.11, we conclude that

(Rab)
T

Rab

equals the identity matrix, i.e., the rotation matrix Rab from the triad a

to the triad b is an example of an orthogonal matrix .

De¯nition 5.1 An n by n matrix A such that A
T
A = I, where I is

the n by n unit matrix, is called an orthogonal matrix. The following is
true for general orthogonal matrices:

² Orientation preserving or reversing: det (A) = §1, since det
¡
AT

¢
=

det (A), and det (AB) = det (A) det (B) ;

² Preserves the inner product: (Av)T (Aw) = vT AT Aw = vT w;

² Degrees of freedom: A is determined by n(n¡1)

2
independent quan-

tities, since the orthogonality condition imposes n(n+1)

2
conditions

on the n2 matrix components.

It follows that rotation matrices are orientation-preserving.

Illustration 5.4

That the rotation matrix Rab preserves the vector dot product follows
from the following argument. Let v and w be two arbitrary vectors.
Then

a
v = Rab

b
v

and

a
w = Rab

b
w

imply that

(a
v)T a

w =
¡
Rab

b
v
¢T

Rab
b
w

=
¡
b
v
¢T

(Rab)
T

Rab
b
w

=
¡
b
v
¢T b

w:

But this is just a restatement of the observation that the dot product
v ² w is independent of the triad relative to which the vectors are ex-
pressed.
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The result in Exercise 5.15 shows that for every rotation matrix Rab

there exists an orthogonal matrix V , such that

V
T
RabV =

0
@ 1 0 0

0 t11 t12

0 t21 t22

1
A , Rab = V

0
@ 1 0 0

0 t11 t12

0 t21 t22

1
AV

T
;

where t11, t12, t21, and t22 are some constants. But since¡
V

T
RabV

¢T ¡
V

T
RabV

¢
= V

T
RbaV V

T
RabV

= V
T
RbaRabV

= V
T
V

equals the identity matrix, it follows that0
@ 1 0 0

0 t11 t12

0 t21 t22

1
A

must be orthogonal, i.e.,0
@ 1 0 0

0 1 0
0 0 1

1
A =

0
@ 1 0 0

0 t11 t12

0 t21 t22

1
A

T 0
@ 1 0 0

0 t11 t12

0 t21 t22

1
A

=

0
@ 1 0 0

0 t2
11

+ t2
21

t11t12 + t21t22

0 t11t12 + t21t22 t2
12

+ t2
22

1
A :

Moreover,

det
¡
V

T
RabV

¢
= detV

T detRab detV

= detRab (detV )2

= 1

implies that

1 = det

0
@ 1 0 0

0 t11 t12

0 t21 t22

1
A = t11t22 ¡ t12t21:

Solving these equations for t11, t12, t21, and t22 yields

t11 = cos', t12 = ¡ sin', t21 = sin', and t22 = cos'

for some real number '.
Using the explicit expression for V from Exercise 5.15, the [i; j]-th

entry of Rab is then found to equal

[Rab]ij = ±ij cos' + (1 ¡ cos') vivj ¡ sin'

X
k

"ijkvk;
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where

±11 = ±22 = ±33 = "123 = "231 = "312 = ¡"321 = ¡"213 = ¡"132 = 1

and zero otherwise, 0
@ v1

v2

v3

1
A

is the eigenvector of Rab corresponding to the eigenvalue 1, and

v
2

1
+ v

2

2
+ v

2

3
= 1:

By restricting attention to v3 ¸ 0, it follows that the rotation matrix
is uniquely determined by the three independent quantities ', v1, and
v2. This agrees with the contention in the de¯nition above regarding the
number of degrees of freedom of an orthogonal matrix.

5.2.5 Algebra of Rotation Matrices

The identity rotation

In the absence of any rotation, the two triads a(r) and a(f) must be equal,
i.e.,

a
(f) = a

(r)
Ra(r)a(f) = a

(r)
:

This implies that the rotation matrix

Ra(r)a(f)

must equal the identity matrix.

Scaling of rotations

Recall from the above discussion that the rotation matrix Ra(r)a(f) is
given by the expression R ('; v1; v2; v3) =

0
@ v

2

1
+

¡
1 ¡ v

2

1

¢
cos' (1 ¡ cos') v1v2 ¡ v3 sin' (1 ¡ cos') v1v3 + v2 sin'

(1 ¡ cos') v1v2 + v3 sin' v2

2
+

¡
1 ¡ v2

2

¢
cos' (1 ¡ cos') v2v3 ¡ v1 sin'

(1 ¡ cos') v1v3 ¡ v2 sin' (1 ¡ cos') v2v3 + v1 sin' v
2

3
+

¡
1 ¡ v

2

3

¢
cos'

1
A ;

where

v
2

1
+ v

2

2
+ v

2

3
= 1.
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In particular,

Ra(r)a(f)

0
@ v1

v2

v3

1
A =

0
@ v1

v2

v3

1
A

,0
@ v1

v2

v3

1
A = Ra(f)a(r)Ra(r)a(f)

0
@ v1

v2

v3

1
A = Ra(f)a(r)

0
@ v1

v2

v3

1
A ;

i.e., 0
@ v1

v2

v3

1
A

is the eigenvector of Ra(r)a(f) and Ra(f)a(r) corresponding to the eigenvalue
that equals 1.

If

vr = a
(r)

0
@ v1

v2

v3

1
A

it follows that

a
(r)

vf = Ra(r)a(f)

a
(f)

vf

= Ra(r)a(f)

a
(r)

vr

= Ra(r)a(f)

0
@ v1

v2

v3

1
A

=

0
@ v1

v2

v3

1
A ;

i.e.,

vf = vr.

If we let A denote the point kept ¯xed by the pure rotation, then any
point B for which

A
®vr

y B

is also kept ¯xed by the pure rotation. It follows that vr spans the axis
held ¯xed by the pure rotation.

Now, let

wr = a
(r)

0
@ w1

w2

w3

1
A
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be some arbitrary vector that is perpendicular to vr. It follows that the
angle between vf and wf , µ (vf ;wf ) ; satis¯es the equality

cos µ (vf ;wf ) =
vf ² wf

kvfk ¢ kwfk

=
1

kvrk ¢ kwrk

³
a
(r)

vf

´T
a
(r)

wf

=
1

kvrk ¢ kwrk

³
Ra(r)a(f)

a
(f)

vf

´T

Ra(r)a(f)

a
(f)

wf

=
1

kvrk ¢ kwrk

³
a
(r)

vr

´T

(Ra(r)a(f))
T

Ra(r)a(f)

a
(r)

wr

=
vr ² wr

kvrk ¢ kwrk

= cos µ (vr;wr)

= 0;

where the last equality follows, since vr is perpendicular to wr. It follows
that wf is also perpendicular to vr = vf .

Moreover, the angle between wr and wf , µ (wr;wf ), satis¯es the
equality

cos µ (wr;wf ) =
wr ² wf

kwrk ¢ kwfk

=
1

w2

1
+ w2

2
+ w2

3

³
a
(r)

wr

´T

Ra(r)a(f)

a
(r)

wr;

which, using the expression for Ra(r)a(f) shown above, is found to equal
cos': It follows that the quantity ' corresponds to the angle of rotation
about the axis spanned by vr.

² Every pure rotation corresponds to a rotation about some
¯xed axis by some angle;

² The axis is spanned by the vector whose matrix represen-
tation relative to both a(r) and a(f) is the eigenvector of
the corresponding rotation matrix corresponding to the
eigenvalue 1;

² The angle of rotation is the quantity ' that appeared in
the expression for the rotation matrix.

It follows that to scale the pure rotation by the real number ® corre-
sponds to multiplying ' by ®:

R (®'; v1; v2; v3) :
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Composition

If a; b, and c are three arbitrary triads and v is an arbitrary vector, then

a
v = Rab

b
v;

b
v = Rbc

c
v;

and

a
v = Rac

c
v:

Substitution of the second expression into the ¯rst yields

a
v = RabRbc

c
v:

Since v was arbitrary, comparison with the third expression implies that

Rac = RabRbc.

Illustration 5.5

Let A be the reference point of a rigid body and introduce a body-¯xed
triad a. Let the (r) superscript refer to the corresponding triad in the
reference con¯guration. Suppose that R1 is a pure rotation of the rigid

body by a quarter of a turn about a direction parallel to the a
(r)

1
basis

vector and that R2 is a pure rotation of the rigid body by a quarter of a

turn about a direction parallel to the vector a
(r)

3
.

Consider the composition R2±R1 and denote by a
(i1) the correspond-

ing triad after applying the rotation R1 and by a
(f1) the corresponding

triad after applying R2: Then, the pure rotation R1 corresponds to the
rotation matrix

R
a(r)a(i1) = R

³
¼

2
; 1; 0; 0

´
:

Moreover, since

a
(r)

3
= a

(r)

0
@ 0

0
1

1
A

= a
(i1)R

a(i1)a(r)

0
@ 0

0
1

1
A

= a
(i1)

0
@ 0

1
0

1
A ;

the subsequent application of R2 corresponds to the rotation matrix

R
a(i1)a(f1) = R

³
¼

2
; 0; 1; 0

´
:
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The rotation matrix corresponding to the composite rotation R2 ± R1 is
then given by

R
a(r)a(f1) = R

a(r)a(i1)Ra(i1)a(f1)

=

0
@ 0 0 1

1 0 0
0 1 0

1
A :

Consider instead the composition R1 ± R2 and denote by a(i2) the
corresponding triad after applying the rotation R2 and by a(f2) the cor-
responding triad after applying R1: Then, the pure rotation R2 corre-
sponds to the rotation matrix

R
a(r)a(i2) = R

³
¼

2
; 0; 0; 1

´
:

Moreover, since

a
(r)

1
= a

(r)

0
@ 1

0
0

1
A

= a
(i2)R

a(i2)a(r)

0
@ 1

0
0

1
A

= a
(i2)

0
@ 0

¡1
0

1
A ;

the subsequent application of R1 corresponds to the rotation matrix

R
a(i2)a(f2) = R

³
¼

2
; 0;¡1; 0

´
:

The rotation matrix corresponding to the composite rotation R1 ± R2 is
then given by

R
a(r)a(f2) = R

a(r)a(i2)Ra(i2)a(f2)

=

0
@ 0 ¡1 0

0 0 ¡1
1 0 0

1
A :

Clearly,

R1 ± R2 6= R2 ± R1

as ¯rst argued in Chapter 1. Note also that the rotation matrices cor-
responding to the pure rotation R1 depend on the triad that is used to
compute the rotation matrix.
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If the pure rotations correspond to rotations about the same direction,
then the corresponding rotation matrices are

R
a(r)a(i1) = R

a(i2)a(f2) = R ('1; v1; v2; v3)

and

R
a(i1)a(f1) = R

a(r)a(i2) = R ('
2
; v1; v2; v3) :

Moreover, since (show this!)

R ('
1
; v1; v2; v3)R ('

2
; v1; v2; v3) = R ('

1
+ '

2
; v1; v2; v3) ;

it follows that

R1 ± R2 = R2 ± R1

in this case.

Inverses

The result of Exercise 5.11 can be expressed as

(Rab)
¡1 = Rba.

But Rab is the rotation matrix corresponding to the pure rotation R that
brings the triad a to coincide with b. This observation thus implies that
the inverse R

¡1 corresponds to the rotation matrix Rba.
If

R ('; v1; v2; v3)

is the rotation matrix corresponding to the pure rotation R, then the
inverse R

¡1 corresponds to a rotation about the same axis and by the
same amount as R but in the opposite direction. The corresponding
rotation matrix is then given by

R (¡'; v1; v2; v3) :

From the illustration in the previous section, we recall that

R ('; v1; v2; v3)R (¡'; v1; v2; v3) = R (0; v1; v2; v3) ;

i.e., the identity matrix.
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1
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(f)

1

a
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2

a
(r)

3 a
(f)

2

a
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3
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(Ex. 5.25 {
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5.3 Special Cases

Let A be the point on a rigid body kept ¯xed by the pure rotation R. Let
B and C be two other points on the rigid body, such that the separations
¡!

AB and
¡!

AC have unit length and are mutually perpendicular. Then

a1 =
h
¡!

AB

i
, a2 =

h
¡!

AC

i
, and a3 = a1 £ a2

are the components of a triad that is ¯xed relative to the rigid body. Let
a (r) superscript denote the corresponding triad in the reference con¯g-
uration and let a (f) superscript denote the corresponding triad in the
¯nal con¯guration. The rotation matrix

Ra(r)a(f) =
³
a
(r)

´T

² a
(f)

describes the relationship between the two triads. In this section, we
consider some special cases of rotation matrices and the corresponding
pure rotations.

5.3.1 Rotations about a1

Suppose that the pure rotation R corresponds to a rotation of the rigid

body about the axis through A that is parallel to the vector a
(r)

1
by an

angle '.

From the ¯gure, it follows that

a
(f)

1
= a

(r)

1
;

a
(f)

2
= cos'a

(r)

2
+ sin'a

(r)

3
;

a
(f)

3
= ¡ sin'a

(r)

2
+ cos'a

(r)

3
:
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The corresponding rotation matrix then becomes

Ra(r)a(f) =
³
a
(r)

´T

² a
(f)

=

0
B@ a

(r)

1
² a

(f)

1
a

(r)

1
² a

(f)

2
a

(r)

1
² a

(f)

3

a
(r)

2
² a

(f)

1
a

(r)

2
² a

(f)

2
a

(r)

2
² a

(f)

3

a
(r)

3
² a

(f)

1
a

(r)

3
² a

(f)

2
a

(r)

3
² a

(f)

3

1
CA

=

0
@ 1 0 0

0 cos' ¡ sin'

0 sin' cos'

1
A :

Illustration 5.6

Let D be a fourth point on the rigid body, such that

r
ADr = a

(r)

0
@ 0

y

z

1
A :

It follows that

r
ADf = a

(f)

0
@ 0

y

z

1
A

= a
(r)

Ra(r)a(f)

0
@ 0

y

z

1
A

= a
(r)

0
@ 0

y cos' ¡ z sin'

y sin' + z cos'

1
A

and consequently,

cos µ
¡
r

ADr ; r
ADf

¢
=

r
ADr

² r
ADf

krADrk krADf k

= cos':

It is straightforward to see that

Ra(r)a(f) = R ('; 1; 0; 0) :

5.3.2 Rotations about a2

Suppose that the pure rotation R corresponds to a rotation of the rigid

body about the axis through A that is parallel to the vector a
(r)

2
by an

angle '.
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a
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1

a
(f)

1

a
(r)

3

=a
(r)

2
a
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2

a
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From the ¯gure, it follows that

a
(f)

1
= cos'a

(r)

1
¡ sin'a

(r)

3
;

a
(f)

2
= a

(r)

2
;

a
(f)

3
= sin'a

(r)

1
+ cos'a

(r)

3
:

The corresponding rotation matrix then becomes

Ra(r)a(f) =
³
a
(r)

´T

² a
(f)

=

0
B@ a

(r)

1
² a

(f)

1
a

(r)

1
² a

(f)

2
a

(r)

1
² a

(f)

3

a
(r)

2
² a

(f)

1
a

(r)

2
² a

(f)

2
a

(r)

2
² a

(f)

3

a
(r)

3
² a

(f)

1
a

(r)

3
² a

(f)

2
a

(r)

3
² a

(f)

3

1
CA

=

0
@ cos' 0 sin'

0 1 0
¡ sin' 0 cos'

1
A :

Illustration 5.7

Let D be a fourth point on the rigid body, such that

r
ADr = a

(r)

0
@ x

0
z

1
A :

It follows that

r
ADf = a

(f)

0
@ x

0
z

1
A

= a
(r)

Ra(r)a(f)

0
@ x

0
z

1
A

= a
(r)

0
@ x cos' + z sin'

0
¡x sin' + z cos'

1
A
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and consequently,

cos µ
¡
r

ADr ; r
ADf

¢
=

r
ADr

² r
ADf

krADrk krADf k

= cos':

It is straightforward to see that

Ra(r)a(f) = R ('; 0; 1; 0) :

5.3.3 Rotations about a3

Suppose that the pure rotation R corresponds to a rotation of the rigid

body about the axis through A that is parallel to the vector a
(r)

3
by an

angle '.

From the ¯gure, it follows that

a
(f)

1
= cos'a

(r)

1
+ sin'a

(r)

2
;

a
(f)

2
= ¡ sin'a

(r)

1
+ cos'a

(r)

2
;

a
(f)

3
= a

(r)

3
:

The corresponding rotation matrix then becomes

Ra(r)a(f) =
³
a
(r)

´T

² a
(f)

=

0
B@ a

(r)

1
² a

(f)

1
a

(r)

1
² a

(f)

2
a

(r)

1
² a

(f)

3

a
(r)

2
² a

(f)

1
a

(r)

2
² a

(f)

2
a

(r)

2
² a

(f)

3

a
(r)

3
² a

(f)

1
a

(r)

3
² a

(f)

2
a

(r)

3
² a

(f)

3

1
CA

=

0
@ cos' ¡ sin' 0

sin' cos' 0
0 0 1

1
A :
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Illustration 5.8

Let D be a fourth point on the rigid body, such that

r
ADr = a

(r)

0
@ x

y

0

1
A :

It follows that

r
ADf = a

(f)

0
@ x

y

0

1
A

= a
(r)

Ra(r)a(f)

0
@ x

y

0

1
A

= a
(r)

0
@ x cos' ¡ y sin'

x sin' + y cos'

0

1
A

and consequently,

cos µ
¡
r

ADr ; r
ADf

¢
=

r
ADr

² r
ADf

krADrk krADf k

= cos':

It is straightforward to see that

Ra(r)a(f) = R ('; 0; 0; 1) :

5.3.4 Euler Angles

Illustration 5.9

Let the pure rotation R1 correspond to a rotation about an axis through

the point A parallel to the vector a
(r)

3
by an angle '1. The corresponding

rotation matrix is

Ra(r)a(i) =

0
@ c1 ¡s1 0

s1 c1 0
0 0 1

1
A ;

where c1 = cos'
1

and s1 = sin'
1
. Here, a(i) corresponds to the right-

handed, orthonormal basis

a
(i)

1
=

h
¡¡!

ABi

i
, a

(i)

2
=

h
¡¡!

ACi

i
, and a

(i)

3
= a

(i)

1
£ a

(i)

2

and the (i) superscript refers to an intermediate con¯guration.



A

Br

Bf
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Let the pure rotation R2 correspond to a rotation about an axis

through the point A parallel to the vector a
(i)

2
by an angle '

2
. The

corresponding rotation matrix is

Ra(i)a(f) =

0
@ c2 0 s2

0 1 0
¡s2 0 c2

1
A :

From the previous section, we conclude that the rotation matrix corre-
sponding to the composition R2 ± R1 equals

Ra(r)a(f) = Ra(r)a(i)Ra(i)a(f)

=

0
@ c1 ¡s1 0

s1 c1 0
0 0 1

1
A

0
@ c2 0 s2

0 1 0
¡s2 0 c2

1
A

=

0
@ c1c2 ¡s1 c1s2

s1c2 c1 s1s2

¡s2 0 c2

1
A :

Suppose R is an arbitrary pure rotation or, equivalently, that a
(f) has

some arbitrary orientation relative to a
(r). Recall that

a1 =
h
¡!

AB

i
and that the point Bf lies on a sphere of radius ka1k = 1 centered at A.

We can align the point B on the rigid body with the point Bf in
the ¯nal con¯guration by a sequence of two pure rotations R1 and R2.
In particular, let R1 correspond to a rotation about the axis through A

parallel to the vector a
(r)

3
by an angle '

1
, such that the body-¯xed triad

a = a(i), and let R2 correspond to a rotation about the axis through A

parallel to the vector a
(i)

2
by an angle '

2
, such that a1 = a

(f)

1
. Naturally,

the angles '
1

and '
2

depend on the location of Bf relative to A.



a
(r)

1

a
(r)

3

A

Br

Bi

a
(f)

1

a
(i)

2

A

Bi Bf

a
(f)

1

A

Bf
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The composition R2 ±R1 aligns the vector a1 with the corresponding

vector in the ¯nal con¯guration a
(f)

1
. From the illustration, it follows

that the corresponding rotation matrix is0
@ c1c2 ¡s1 c1s2

s1c2 c1 s1s2

¡s2 0 c2

1
A ;

where ci = cos'
i
and si = sin'

i
. The remaining basis vectors can now be

aligned with the corresponding vectors in the ¯nal con¯guration through

a pure rotation R3 about an axis through A parallel to a
(f)

1
by an angle

'3. It follows that the pure rotation R is given by the composition

R = R3 ± R2 ± R1:
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The corresponding rotation matrix becomes

Ra(r)a(f) =

0
@ c1c2 ¡s1 c1s2

s1c2 c1 s1s2

¡s2 0 c2

1
A

0
@ 1 0 0

0 c3 ¡s3

0 s3 c3

1
A

=

0
@ c1c2 ¡s1c3 + c1s2s3 s1s3 + c1s2c3

s1c2 c1c3 + s1s2s3 ¡c1s3 + s1s2c3

¡s2 c2s3 c2c3

1
A ;

where c3 = cos'
3

and s3 = sin'
3
.

It is always possible to ¯nd values of '
1
, '

2
, and '

3
such that the

rotation matrix Ra(r)a(f) is given by the expression above. Equivalently,
every pure rotation can be decomposed into a sequence of three pure
rotations, each of which is about an axis parallel to a basis vector. Con-
versely, every choice of values for '

1
, '

2
, and '

3
corresponds to some

pure rotation R of the rigid body.
The angles '

1
, '

2
, and '

3
are called Euler angles. In this case, they

correspond to the rotation sequence 3 ¡ 2 ¡ 1, i.e., a pure rotation about
the axis parallel to the third basis vector, followed by a pure rotation
about the axis parallel to the second basis vector, followed by a pure
rotation about the axis parallel to the ¯rst basis vector. While the ¯rst
pure rotation is about a basis vector in the original triad, the second and
third rotations are about basis vectors in the two intermediate triads.

There are many other possible choices for Euler angles. For example,
the rotation sequence 1¡3¡1 could also be used to represent an arbitrary
pure rotation, as could the sequence 2¡ 3¡ 1. Naturally, the form of the
rotation matrix would di®er between these cases.

5.3.5 Alignment

Suppose we seek a pure rotation that will align the a1 vector with an axis
through A and an additional point B, such that

r
AB = a

(r)

0
@ 2

3
1

1
A ;

i.e., such that a
(f)

1
is parallel to r

AB. Following the methodology pre-
sented in Chapter 3, we let

a
(f)

1
=

r
AB

krAB
k

= a
(r)

0
BB@

2
p

14

3
p

14

1
p

14

1
CCA ;

a
(f)

2
=

a
(f)

1
£ a

(r)

1°°°a(f)

1
£ a

(r)

1

°°° = a
(r)

0
B@

0
1

p

10

¡
3

p

10

1
CA ;
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and

a
(f)

3
= a

(f)

1
£ a

(f)

2
= a

(r)

0
BB@

¡
5

p

35

3
p

35

1
p

35

1
CCA :

It follows that

a
(f) = a

(r)

0
BB@

2
p

14
0 ¡

5
p

35

3
p

14

1
p

10

3
p

35

1
p

14
¡

3
p

10

1
p

35

1
CCA = a

(r)
Ra(r)a(f) .

There is a unique pure rotation corresponding to the rotation matrix
Ra(r)a(f) found above. This pure rotation is not the only solution to the
problem of aligning a1 with r

AB, however. That there are in¯nitely many

solutions follows from the possibility of using a di®erent vector than a
(r)

1

in the computation for a
(f)

2
. Which of these is most appropriate depends

on the application.

5.4 The

Rotation matrices are computed in the Mambo toolbox using the Make-
Rotations procedure.

Illustration 5.10

In the following Mambo toolbox session, the rotation matrices Ra(r)a(f)

corresponding to pure rotations about axes parallel to the basis vectors

a
(r)

1
, a

(r)

2
, and a

(r)

3
, respectively, are computed using the MakeRotations

procedure.

> MakeRotations(theta,1);

2
4 1 0 0

0 cos(µ) ¡sin(µ)
0 sin(µ) cos(µ)

3
5

> MakeRotations(phi,2);

2
4 cos(Á) 0 sin(Á)

0 1 0
¡sin(Á) 0 cos(Á)

3
5

> MakeRotations(psi,3);
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2
4 cos(Ã) ¡sin(Ã) 0

sin(Ã) cos(Ã) 0
0 0 1

3
5

By combining these into a single call to MakeRotations, we obtain the
rotation matrix corresponding to the 1¡2¡3 sequence of pure rotations
introduced in the context of Euler angles.

> MakeRotations([theta,1],[phi,2],[psi,3]);

[cos(Á) cos(Ã) ; ¡cos(Á) sin(Ã) ; sin(Á)]

[sin(µ) sin(Á) cos(Ã) + cos(µ) sin(Ã) ;

¡sin(µ) sin(Á) sin(Ã) + cos(µ) cos(Ã) ; ¡sin(µ) cos(Á)]

[¡cos(µ) sin(Á) cos(Ã) + sin(µ) sin(Ã) ;

cos(µ) sin(Á) sin(Ã) + sin(µ) cos(Ã) ; cos(µ) cos(Á)]

Note the use of brackets to separate the individual rotations.

Since the output from the MakeRotations procedure is a Maple ma-
trix, normal Maple matrix operations apply. For example, the com-
mands transpose, inverse, and eigenvals, respectively, will compute
the transpose, inverse, and eigenvalues of a rotation matrix.

> rotmat:=MakeRotations(theta,1);

rotmat :=

2
4 1 0 0

0 cos(µ) ¡sin(µ)
0 sin(µ) cos(µ)

3
5

> transpose(rotmat);

2
4 1 0 0

0 cos(µ) sin(µ)
0 ¡sin(µ) cos(µ)

3
5

> inverse(rotmat);



5.4 The Mambo Toolbox 231

2
66664

1 0 0

0
cos(µ)

%1

sin(µ)

%1

0 ¡

sin(µ)

%1

cos(µ)

%1

3
77775

%1 := cos(µ)2 + sin(µ)2

> eigenvals(rotmat);

1; cos(µ) +
p

cos(µ)2 ¡ 1; cos(µ) ¡

p
cos(µ)2 ¡ 1

The MakeRotations procedure may also be invoked to compute the
rotation matrix R (µ; v1; v2; v3) corresponding to a rotation by an angle µ

about some arbitrary axis parallel to the vector

v = a
(r)

0
@ v1

v2

v3

1
A :

The command

> MakeRotations(theta,v1,v2,v3);

·
cos(µ) +

(1 ¡ cos(µ)) v1 2

%1
;

(1 ¡ cos(µ)) v1 v2

%1
¡

sin(µ) v3
p

%1
;

(1 ¡ cos(µ)) v1 v3

%1
+

sin(µ) v2
p

%1

¸
·
(1 ¡ cos(µ)) v1 v2

%1
+

sin(µ) v3
p

%1
; cos(µ) +

(1 ¡ cos(µ)) v2 2

%1
;

(1 ¡ cos(µ)) v2 v3

%1
¡

sin(µ) v1
p

%1

¸
·
(1 ¡ cos(µ)) v1 v3

%1
¡

sin(µ) v2
p

%1
;

(1 ¡ cos(µ)) v2 v3

%1
+

sin(µ) v1
p

%1
;

cos(µ) +
(1 ¡ cos(µ)) v3 2

%1

¸
%1 := v1 2 + v2 2 + v3 2

returns the matrix derived in Section 5.2. Note that MakeRotations re-
laxes the requirement that v2

1
+v2

2
+v2

3
= 1 and introduces the appropriate

normalization where necessary.
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5.5 Exercises

Exercise 5.1 Let a and b be two triads,
such that

Rab =

0
BB@

1

2
¡

3

4

p

3

4
p

3

2

p

3

4
¡

1

4

0 1

2

p

3

2

1
CCA :

Find the matrix representation of the vector
b2 relative to the triad a.

Solution. Expanding the general for-
mula

b = aRab

we ¯nd

Illustration 5.11

We may also appeal to the de¯nition of the rotation matrix from a triad
a to a triad b:

Rab = a
T

² b:

Suppose that we seek to introduce a triad b, such that b1 is parallel to
the vector

a

0
@ 2

3
1

1
A :

Then, the following sequence of Mambo toolbox statements generates
the triad b and computes the associated rotation matrix Rab.

> DeclareTriads(a):
> a1:=MakeTranslations(a,1):
> a2:=MakeTranslations(a,2):
> a3:=MakeTranslations(a,3):
> v:=MakeTranslations(a,2,3,1):
> b1:=(1/VectorLength(v)) &** v:
> b2:=(1/VectorLength(b1 &xx a1)) &** (b1 &xx a1):
> b3:=b1 &xx b2:
> matrix(3,3,(i,j)->cat(a,i) &oo cat(b,j));

2
666664

1

7

p

14 0 ¡

1

7

p

35

3

14

p

14
1

70

p

35
p

14
3

35

p

35

1

14

p

14 ¡

3

70

p

35
p

14
1

35

p

35

3
777775
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¡
b1 b2 b3

¢

=
¡

a1 a2 a3

¢
0
BB@

1

2
¡

3

4

p

3

4
p

3

2

p

3

4
¡

1

4

0 1

2

p

3

2

1
CCA ;

which implies that

b2 = ¡

3

4
a1 +

p

3

4
a2 +

1

2
a3

= a

0
@ ¡3=4

p

3=4
1=2

1
A = a

a (b2) :

Exercise 5.2 Let a and b be two triads,
such that

Rab =

0
BB@

1

2
¡

3

4

p

3

4
p

3

2

p

3

4
¡

1

4

0 1

2

p

3

2

1
CCA :

Find the matrix representation of the vector
a3 relative to the triad b.

Solution. Since Rba = (Rab)
T , we have

a = bRba = b (Rab)
T

or

¡
a1 a2 a3

¢

=
¡

b1 b2 b3

¢
0
BB@

1

2

p

3

2
0

¡
3

4

p

3

4

1

2
p

3

4
¡

1

4

p

3

2

1
CCA ;

i.e.,

a3 =
1

2
b2 +

p

3

2
b3

= b

0
@ 0

1=2
p

3=2

1
A = b

b (a3) :

Exercise 5.3 Let a and b be two arbi-
trary triads. Find the matrix representations
of the basis vectors a1, a2, and a3 relative to
the b triad and of the basis vectors b1, b2,
and b3 relative to the a triad if Rab =

a)

0
BB@

3

4
¡

p

6

4

1

4
p

6

4

1

2
¡

p

6

4

1

4

p

6

4

3

4

1
CCA

b)

0
BB@

0 ¡
1

p

2

1
p

2

1
p

2

1

2

1

2

¡
1

p

2

1

2

1

2

1
CCA

c)

0
BB@

4

5

2

5

1
p

5

2

5

1

5
¡

2
p

5

¡
1

p

5

2
p

5
0

1
CCA

d)

0
B@

1
p

2
¡

1
p

2
0

1
p

2

1
p

2
0

0 0 1

1
CA

e)

0
B@

¡
1

p

2
0 1

p

2

0 ¡1 0
1

p

2
0 1

p

2

1
CA

f)

0
BB@

1

3
¡

1
p

3

1

3
+ 1

p

3

1

3

1
p

3
+ 1

6

1

2
p

3
¡

1

3

2

3

1

3
+ 1

2
p

3
¡

1

6
+ 1

p

3
¡

2

3

1
CCA

Exercise 5.4 Let a and b be two arbi-
trary triads. Find Rab and Rba when

a)
a1 = b2

a2 = b3

a3 = b1

b)

b1 = ¡
1

p

2
a1 + 1

p

2
a3

b2 = ¡a2

b3 = 1
p

2
a1 + 1

p

2
a3

c)
b1 = a2

b2 = ¡a1

b3 = a3

d)

a1 = 1
p

2
b1 ¡

1
p

2
b2

a2 = 1
p

2
b1 + 1

p

2
b2

a3 = b3

e)
a1 = ¡b2

a2 = ¡b3

a3 = b1
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f)

b1 = 1

2
a1 ¡

3

4
a2 +

p

3

4
a3

b2 =
p

3

2
a1 +

p

3

4
a2 ¡

1

4
a3

b3 = 1

2
a2 +

p

3

2
a3

Exercise 5.5 Let a and b be two triads,
such that

Rab =

0
BB@

1

2
¡

3

4

p

3

4
p

3

2

p

3

4
¡

1

4

0 1

2

p

3

2

1
CCA

and consider a vector v whose matrix repre-
sentation relative to a is given by

a
v =

0
@ 1

0
¡1

1
A :

Find the matrix representation of the vector
v relative to the triad b.

Solution. We have

b
v = Rba

a
v

= (Rab)
T a

v

=

0
BB@

1

2

p

3

2
0

¡
3

4

p

3

4

1

2
p

3

4
¡

1

4

p

3

2

1
CCA

0
@ 1

0
¡1

1
A

=

0
B@

1

2

¡
5

4

¡

p

3

4

1
CA :

Exercise 5.6 Let a and b be two arbi-
trary triads and consider a vector v whose
matrix representation relative to b is given
by

b
v =

0
@ 1

0
¡1

1
A :

Find the matrix representation of the vector

v relative to the triad a when Rab =

a)

0
BB@

3

4
¡

p

6

4

1

4
p

6

4

1

2
¡

p

6

4

1

4

p

6

4

3

4

1
CCA

b)

0
BB@

0 ¡
1

p

2

1
p

2

1
p

2

1

2

1

2

¡
1

p

2

1

2

1

2

1
CCA

c)

0
BB@

4

5

2

5

1
p

5

2

5

1

5
¡

2
p

5

¡
1

p

5

2
p

5
0

1
CCA

d)

0
B@

1
p

2
¡

1
p

2
0

1
p

2

1
p

2
0

0 0 1

1
CA

e)

0
B@

¡
1

p

2
0 1

p

2

0 ¡1 0
1

p

2
0 1

p

2

1
CA

f)

0
BB@

1

3
¡

1
p

3

1

3
+ 1

p

3

1

3

1
p

3
+ 1

6

1

2
p

3
¡

1

3

2

3

1

3
+ 1

2
p

3
¡

1

6
+ 1

p

3
¡

2

3

1
CCA

Exercise 5.7 Recall the geometric def-
inition of the dot product between the two
vectors v and w:

v ² w = kvk kwk cos µ (v;w) ;

where µ (v;w) is the angle between the vec-
tors. Let a and b be two arbitrary triads and
show that

a
v

T a
w = b

v
T b

w:

Use this fact to prove that

v ² w = b
v

T b
w

for an arbitrary triad b.
Solution. We have

a
v

T a
w =

¡
Rab

b
v
¢T ¡

Rab
b
w

¢
= b

v
T
RbaRab

b
w

= b
v

T b
w
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proving the ¯rst half of the claim. Now, con-
sider, without any additional assumptions on
v and w, the triad a, such that

v = a

0
@ kvk

0
0

1
A

and

w = a

0
@ kwk cos µ (v;w)

kwk sin µ (v;w)
0

1
A :

It follows that

a
v

T a
w = kvk kwk cos µ (v;w) = v ² w

and the second claim follows.

Exercise 5.8 Recall the geometric def-
inition of the cross product between the two
vectors v and w as the vector whose di-
rection is given by the right-hand rule and
whose length is

kv £ wk= kvk kwk sin µ (v;w) ;

where µ (v;w) is the angle between the vec-
tors. Let a and b be two arbitrary triads and
show that¯̄̄
¯̄̄ a1 a2 a3

av1
av2

av3

aw1
aw2

aw3

¯̄̄
¯̄̄ =

¯̄̄
¯̄̄ b1 b2 b3

bv1
bv2

bv3

b
w1

b
w2

b
w3

¯̄̄
¯̄̄ :

Use this fact to prove that

v £ w =

¯̄̄
¯̄̄ b1 b2 b3

bv1
bv2

bv3

bw1
bw2

bw3

¯̄̄
¯̄̄

for an arbitrary triad b.

[Hint: Let Rab be the matrix whose [i; j]-th
component is rij: Replace all components in
the leftmost determinant using the formulae

a = b (Rab)
T ,

a
v = Rab

b
v,

and

a
w = Rab

b
w

and use the fact that detRab = 1 to establish
the ¯rst claim. Next, consider, without any
further assumptions on v and w, the triad
a for which v and w take the form in the
solution to the previous exercise and proceed
from there to show the equivalence between
the geometric and the algebraic formulae for
the cross product.]

Exercise 5.9 For each of the following
matrices, determine if it quali¯es as a rota-
tion matrix.

a)

0
@ 0 1 0

0 0 1
1 0 0

1
A

b)

0
@ 0 ¡1 0

0 0 1
1 0 0

1
A

c)

0
@ 0 ¡1 0

0 0 ¡1
1 0 0

1
A

d)

0
B@

1
p

2
¡

1
p

2
0

1
p

2

1
p

2
0

0 0 1

1
CA

e)

0
B@

1
p

2
¡

1
p

2
0

1
p

2
¡

1
p

2
0

0 0 1

1
CA

f)

0
B@

1
p

2
¡

1
p

2
0

1
p

2

1
p

2
0

0 0 ¡1

1
CA

Exercise 5.10 Let a denote a triad that
is ¯xed relative to a rigid body and denote by
a
(r) and a

(f) the corresponding triads when
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the body is in the reference and ¯nal con¯g-
urations, respectively, such that

Ra(r)a(f) =

0
BB@

0 ¡
1

p

2

1
p

2

1
p

2

1

2

1

2

¡
1

p

2

1

2

1

2

1
CCA :

Let vr and vf denote two vectors that con-
tain a separation between two ¯xed points
on the rigid body in the reference and ¯-
nal con¯gurations, respectively. Compute
a
(f)

vf , a
(r)

vf and the angle between vr and
vf , when vr =

a) a(r)

0
@ 1

0
1

1
A b) a(r)

0
@ 0

1
2

1
A

c) a(r)

0
@ 0

1
1

1
A d) a(r)

0
@ 1

0
0

1
A

e) a
(r)

0
@ 0

2
2

1
A f) a

(r)

0
@ 1

1
1

1
A

Exercise 5.11 Let a and b be two arbi-
trary triads. Show that Rba = (Rab)

¡1, i.e.,

that RbaRab = (Rab)
T

Rab equals the iden-
tity matrix.

Solution. Let v be an arbitrary vector.
Then,

b
v = Rba

a
v

and

a
v = Rab

b
v:

Substitution of the latter expression into the
former then yields

b
v = RbaRab

b
v:

Since this is true for an arbitrary vector, it
follows that

RbaRab =

0
@ 1 0 0

0 1 0
0 0 1

1
A

and the claim follows.

Exercise 5.12 Let a and b be two
arbitrary triads. Find the eigenvalues and
eigenvectors of the rotation matrix Rab when
Rab =

a)

0
BB@

3

4
¡

p

6

4

1

4
p

6

4

1

2
¡

p

6

4

1

4

p

6

4

3

4

1
CCA

b)

0
BB@

0 ¡
1

p

2

1
p

2

1
p

2

1

2

1

2

¡
1

p

2

1

2

1

2

1
CCA

c)

0
BB@

4

5

2

5

1
p

5

2

5

1

5
¡

2
p

5

¡
1

p

5

2
p

5
0

1
CCA

d)

0
B@

1
p

2
¡

1
p

2
0

1
p

2

1
p

2
0

0 0 1

1
CA

e)

0
B@

¡
1

p

2
0 1

p

2

0 ¡1 0
1

p

2
0 1

p

2

1
CA

f)

0
BB@

1

3
¡

1
p

3

1

3
+ 1

p

3

1

3

1
p

3
+ 1

6

1

2
p

3
¡

1

3

2

3

1

3
+ 1

2
p

3
¡

1

6
+ 1

p

3
¡

2

3

1
CCA

Exercise 5.13 Show that the eigenval-
ues of Rab lie on the unit circle in the complex
plane.

Solution. Let ¸ denote a (possibly com-
plex) eigenvalue of Rab corresponding to the
(possibly complex) eigenvector v. Then

Rabv = ¸v:

Taking complex conjugates on both sides, we
obtain

Rabv
¤ = ¸

¤

v
¤

;
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since Rab is a matrix of real numbers1. Then

(v¤)T
v = (v¤)T (Rab)

T
Rabv

= (Rabv
¤)T

Rabv

= ¸
¤

¸ (v¤)T
v;

where the ¯rst equality follows from the fact
that

(Rab)
T

Rab = RbaRab

equals the identity. But,

(v¤)T
v

is positive for all v 6=
¡

0 0 0
¢T

. It fol-
lows that

¸
¤

¸ = j¸j
2

must equal 1 and the claim follows.

Exercise 5.14 Let a and b be two arbi-
trary triads. Show that one of the eigenval-
ues of Rab equals 1.

Solution. Since Rab is a matrix of real
numbers, every complex eigenvalue is a mem-
ber of a complex conjugate pair of eigenval-
ues. Since Rab is a 3 £ 3 matrix, it has at
most three separate eigenvalues. Thus, ei-
ther all eigenvalues of Rab are real, or one
is real and the other two are complex conju-
gates. Since all eigenvalues must lie on the
unit circle, there are only six possibilities:

a) ¸1 = ¸2 = ¸3 = 1;

b) ¸1 = ¸2 = 1, ¸3 = ¡1;

c) ¸1 = 1, ¸2 = ¸3 = ¡1;

d) ¸1 = ¸2 = ¸3 = ¡1;

e) ¸1 = 1, ¸2;3 = e
§iµ

; or

f) ¸1 = ¡1; ¸2;3 = e
§iµ

;

where µ 2 (0; ¼). Finally, recall that the
determinant of a matrix is the product of

its eigenvalues. Since Rab is orientation-
preserving, it follows that

1 = detRab = ¸1¸2¸3:

Of the six cases, only a), c), and e) satisfy
this condition, con¯rming the claim.

Exercise 5.15 Let a and b be two ar-
bitrary triads. Let

e1 =

0
@ v1

v2

v3

1
A

be the eigenvector of Rab that corresponds
to the eigenvalue 1, such that

(e1)
T

e1 = v
2

1
+ v

2

2
+ v

2

3
= 1:

Show that there exists an orthogonal 3 £ 3
matrix V , such that

Rab = V

0
@ 1 0 0

0 t11 t12

0 t21 t22

1
AV

T
;

for some constants t11, t12, t21, and t22.
Solution. By assumption,

Rabe1 = e1

and thus

e1 = RbaRabe1 = Rbae1:

If w is an arbitrary 3£1 column matrix, such
that

w
T
e1 = 0;

then it follows that

(Rabw)T
e1 = w

T
Rbae1 = w

T
e1 = 0:

Now, de¯ne

e2 =

0
@ ¡v2=

p
v2

1
+ v2

2

v1=
p

v2

1
+ v2

2

0

1
A

1Here, ¤ is used to denote complex conjugation.
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and

e3 =

0
@ ¡v1v3=

p
v2

1
+ v2

2

¡v2v3=
p

v2

1
+ v2

2p
v2

1
+ v2

2

1
A

if v
2

1
+ v

2

2
> 0 and

e2 =

0
@ 1

0
0

1
A and e3 =

0
@ 0

1
0

1
A

if v1 = v2 = 0. In both cases, the column
matrices e1, e2, and e3 satisfy the conditions

(e1)
T

e1 = (e2)
T

e2 = (e3)
T

e3 = 1;

(e1)
T

e2 = (e1)
T

e3 = (e2)
T

e3

= (e2)
T

e1 = (e3)
T

e1

= (e3)
T

e2 = 0:

It follows that the matrix

V =

0
@ j j j

e1 e2 e3

j j j

1
A :

is orthogonal, since V T V =

0
B@ ¡ (e1)

T
¡

¡ (e2)
T

¡

¡ (e3)
T

¡

1
CA

0
@ j j j

e1 e2 e3

j j j

1
A

=

0
B@ (e1)

T
e1 (e1)

T
e2 (e1)

T
e3

(e2)
T

e1 (e2)
T

e2 (e2)
T

e3

(e3)
T

e1 (e3)
T

e2 (e3)
T

e3

1
CA

=

0
@ 1 0 0

0 1 0
0 0 1

1
A :

Moreover, V T RabV =0
B@ ¡ (e1)

T
¡

¡ (e2)
T

¡

¡ (e3)
T

¡

1
CARab

0
@ j j j

e1 e2 e3

j j j

1
A

=

0
B@(e1)

T
Rabe1

(e2)
T

Rabe1

(e3)
T

Rabe1

(e1)
T

Rabe2

(e2)
T

Rabe2

(e3)
T

Rabe2

(e1)
T

Rabe3

(e2)
T

Rabe3

(e3)
T

Rabe3

1
CA

=

0
B@ (e1)

T
e1 (Rbae1)

T
e2 (Rbae1)

T
e3

(e2)
T

e1 (e2)
T

Rabe2 (e2)
T

Rabe3

(e3)
T

e1 (e3)
T

Rabe2 (e3)
T

Rabe3

1
CA

=

0
B@ (e1)

T
e1 (e1)

T
e2 (e1)

T
e3

(e2)
T

e1 (e2)
T

Rabe2 (e2)
T

Rabe3

(e3)
T

e1 (e3)
T

Rabe2 (e3)
T

Rabe3

1
CA

=

0
@ 1 0 0

0 (e2)
T

Rabe2 (e2)
T

Rabe3

0 (e3)
T

Rabe2 (e3)
T

Rabe3

1
A :

The claim follows from the observation that

Rab = V
¡
V

T
RabV

¢
V

T
;

since V is orthogonal.

Exercise 5.16 Show that the columns
of an orthogonal matrix are linearly indepen-
dent.

Solution. If the columns (or rows) were
linearly dependent, then the determinant
would vanish. For a rotation matrix, how-
ever, the determinant equals §1; con¯rming
the claim.

Exercise 5.17 Show that the set of
orthogonal matrices with the normal rule for
matrix multiplication is a group.

Exercise 5.18 Show by an example
that the group of orthogonal matrices is not
Abelian.

Exercise 5.19 Show that the set of
orientation-preserving orthogonal matrices



=

a1 a2

a3

A

B¯nal

C¯nal

= BintermediateBreference

Creference

Cintermediate

= Bintermediate

a1 a2

a3

A

Breference

Creference

Cintermediate
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with the normal rule for matrix multiplica-
tion is a group.

Exercise 5.20 We say that two or-
thonormal bases a and b are equivalent, i.e.,
that a » b, if detRab = 1. Show that the
corresponding quotient set has only two ele-
ments, namely the collection of right-handed,
orthonormal bases and the collection of left-
handed, orthonormal bases.

Exercise 5.21 For each of the rotation
matrices below, ¯nd ', v1, v2, and v3, such
that the matrix is given by R ('; v1; v2; v3).

a)

0
BB@

3

4
¡

p

6

4

1

4
p

6

4

1

2
¡

p

6

4

1

4

p

6

4

3

4

1
CCA

b)

0
BB@

0 ¡
1

p

2

1
p

2

1
p

2

1

2

1

2

¡
1

p

2

1

2

1

2

1
CCA

c)

0
BB@

4

5

2

5

1
p

5

2

5

1

5
¡

2
p

5

¡
1

p

5

2
p

5
0

1
CCA

d)

0
B@

1
p

2
¡

1
p

2
0

1
p

2

1
p

2
0

0 0 1

1
CA

e)

0
B@

¡
1

p

2
0 1

p

2

0 ¡1 0
1

p

2
0 1

p

2

1
CA

f)

0
BB@

1

3
¡

1
p

3

1

3
+ 1

p

3

1

3

1
p

3
+ 1

6

1

2
p

3
¡

1

3

2

3

1

3
+ 1

2
p

3
¡

1

6
+ 1

p

3
¡

2

3

1
CCA

Exercise 5.22 Consider applying a pure
rotation to a block in its reference con¯gura-
tion corresponding to a half turn about an
edge through a given corner on the block,
followed by a pure rotation corresponding to

a quarter turn about a di®erent edge through
the same corner as shown in the ¯gure below.

Show that the ¯nal con¯guration is re-
lated to the reference con¯guration by a sin-
gle pure rotation about an axis through the
corner making an angle of µ1 = 45± with
the ¯rst edge and µ2 = 90± with the second
edge.

Solution. Introduce a triad a, such that
the ¯rst edge is parallel to a3 and the second
edge is parallel to a1. Denote by b a body-
¯xed triad, such that b(reference) = a. Then,
the ¯rst rotation corresponds to the rotation
matrix

Rb(reference)b(intermediate) = R (¼; 0; 0; 1)

=

0
@ ¡1 0 0

0 ¡1 0
0 0 1

1
A :
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Furthermore,

b
(intermediate)

(a1)

= Rb(intermediate)b(reference)

b
(reference)

(a1)

=

0
@ ¡1 0 0

0 ¡1 0
0 0 1

1
A

0
@ 1

0
0

1
A

=

0
@ ¡1

0
0

1
A ;

i.e., the second rotation corresponds to the
rotation matrix

Rb(intermediate)b(final) = R

³
¼

2
;¡1; 0; 0

´

=

0
@ 1 0 0

0 0 1
0 ¡1 0

1
A :

Since the same corner is kept ¯xed by the
pure rotations, it follows that the ¯nal con¯g-
uration is related to the reference con¯gura-
tion by a single pure rotation keeping the cor-
ner ¯xed. From Exercise 1.8, we recall that
every pure rotation is equivalent to a rotation
about a unique axis through the point kept
¯xed. Moreover, the axis of rotation is paral-
lel to the vector whose coordinate representa-
tion relative to b

(reference) (i.e., a) is given by
the eigenvector corresponding to the 1 eigen-
value of the rotation matrix Rb(reference)b(final) :

But,

Rb(reference)b(final)

= Rb(reference)b(intermediate)Rb(intermediate)b(final)

=

0
@ ¡1 0 0

0 0 ¡1
0 ¡1 0

1
A ;

from which we ¯nd the corresponding eigen-
vector

v =

0
@ 0

¡1
1

1
A ;

i.e., the axis of rotation is parallel to the vec-
tor ¡a2 + a3. Indeed,

cos µ1 =
(¡a2 + a3) ² a1

k¡a2 + a3k ka1k

= 0

and

cos µ1 =
(¡a2 + a3) ² a3

k¡a2 + a3k ka3k

=
1

p

2
;

from which the claim follows.

Exercise 5.23 Consider applying a pure
rotation to a block in its reference con¯g-
uration corresponding to a half turn about
an edge through a given corner on a block
followed by a pure rotation by an angle µ

about a di®erent edge through the same cor-
ner. The ¯nal con¯guration is related to the
reference con¯guration by a single pure rota-
tion about an axis through the corner making
an angle Á with the ¯rst edge and perpendic-
ular to the second edge. Show that

Á =
jµj

2
:

Exercise 5.24 Consider applying a pure
rotation to a block in its reference con¯gura-
tion corresponding to a half turn about some
axis through a given corner on a block fol-
lowed by a pure rotation corresponding to a
quarter turn about a di®erent axis through
the same corner making an angle µ with the
¯rst axis. The ¯nal con¯guration is related
to the reference con¯guration by a single
pure rotation about an axis through the cor-
ner making an angle Á

1
with the ¯rst axis

and Á
2

with the second axis. Show that

cosÁ
1

=
1p

1 + sin2
µ

and

cosÁ
2

=
cos µp

1 + sin2
µ

:
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[Hint: Let the ¯rst axis be parallel to the ba-
sis vector a3 of a right-handed, orthonormal
basis and let the second axis be parallel to
the vector sin µa1 + cos µa3.]

Exercise 5.25 Consider three refer-
ence triads a; b; and c; such that b is rotated
relative to a by 60± about the common 2-
direction, and c is rotated relative to b by
45± about the common 3-direction. Find the
rotation matrix Rac:

Solution. We have

Rab = R

³
¼

3
; 0; 1; 0

´

=

0
B@

cos ¼

3
0 sin ¼

3

0 1 0

¡ sin ¼

3
0 cos ¼

3

1
CA

=

0
B@

1

2
0

p

3

2

0 1 0

¡

p

3

2
0 1

2

1
CA

and

Rbc = R

³
¼

4
; 0; 0; 1

´

=

0
B@

cos ¼

4
¡ sin ¼

4
0

sin ¼

4
cos ¼

4
0

0 0 1

1
CA

=

0
B@

p

2

2
¡

p

2

2
0

p

2

2

p

2

2
0

0 0 1

1
CA :

It follows that

Rac = RabRbc =

0
BB@

p

2

4
¡

p

2

4

p

3

2
p

2

2

p

2

2
0

¡

p

6

4

p

6

4

1

2

1
CCA :

Exercise 5.26 Consider the rotation
matrix R corresponding to a 3 ¡ 1 ¡ 3 se-
quence of pure rotations. Find the eigenval-
ues of R.

Solution. We have

R = R ('1; 0; 0; 1)R ('2; 1; 0; 0)R ('3; 0; 0; 1)

=

0
@c1c3 ¡ s1c2s3

s1c3 + c1c2s3

s2s3

¡c1s3 ¡ s1c2c3

¡s1s3 + c1c2c3

s2c3

s1s2

¡c1s2

c2

1
A ;

where ci = cos'
i
and si = sin'

i
. An eigen-

vector of R is a non-zero column matrix so-
lution to the equation

Rv = ¸v;

for some ¸. It follows that

(R ¡ ¸I) v =

0
@ 0

0
0

1
A ;

which has a non-trivial solution if and only
if

0 = det (R ¡ ¸I)

= ¡¸
3 +

µ
c1c2c3 ¡ s1c2s3 + c2

+c1c3 ¡ s1s3

¶
¸

2

+

µ
¡c2 + s1s3 ¡ c1c3

+s1c2s3 ¡ c1c2c3

¶
¸ + 1

= (1 ¡ ¸)
£
¸

2 + ¹¸ + 1
¤
;

where ¡c1c2c3+s1c2s3¡c2¡c1c3+s1s3+1 =
¹ 2 [¡2; 2] : The eigenvalues are thus given
by

¸1 = 1; ¸2;3 = e
§i´

;

where

´ = arctan

Ã
¡

p
4 ¡ ¹2

¹

!
:

Exercise 5.27 Consider the combined
action on a rigid body of a pure translation
T corresponding to a vector u and a pure ro-
tation R corresponding to a rotation along a
unit vector n by an amount '. Recall from
Exercise 1.12 that every combination of a
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pure translation and a pure rotation can be
expressed in terms of a pure translation and a
pure rotation along a common axis whose di-
rection is ¯xed relative to the reference con-
¯guration. This is known as a screw motion.
Find the axis of the screw in terms of u, n,
and '.

[Hint: We can identify an axis in space rel-
ative to any observer A by a unit vector l

that is parallel to the axis and by the posi-
tion vector r

AP from the reference point A

of A to a (non-unique) point P on the line.
From Exercise 3.24, we recall that

r
AP =

¡
r

AP
² l

¢
l + l £

¡
r

AP
£ l

¢
;

where the ¯rst term on the right-hand side is
a vector parallel to the axis and the second
term is a vector perpendicular to the axis.
Indeed,

l £

¡
r

AP
£ l

¢
= r

AP
¡

¡
r

AP
² l

¢
l

is a vector that points from A to the point
on the axis that is closest to A. It follows
that the axis is uniquely speci¯ed by the two
vectors l and r

AP
£ l; where the latter vector

is independent of the point P (as long as P

lies on the line).

Let A and B be two observers that coin-
cide with the rigid body in its initial and
¯nal con¯gurations, respectively. Let (A; a)
and (B; b) denote the pair of reference point
and reference triad forA and B, respectively.
Let L be an arbitrary line that is stationary
relative to the rigid body. Let the initial
con¯guration of L relative to A be speci¯ed
by the unit vector li and the vector r

APi
£ li;

where Pi is an arbitrary point on L in the
initial con¯guration. Similarly, let the ¯nal
con¯guration of L relative to A be speci¯ed
by the unit vector lf and the vector r

APf
£lf ;

where Pf is the point corresponding to Pi in
the ¯nal con¯guration of L. Show that

1.

b
lf = a

li

and thus

a
lf = Rab

a
li:

2.

b
¡
r

BPf
£ lf

¢
= a

¡
r

APi
£ li

¢
and thus

a
¡
r

APf
£ lf

¢
= a

¡
r

AB
£ lf + r

BPf
£ lf

¢
= a (u £ lf ) + Rab

a
¡
r

APi
£ li

¢
:

3. If L is the screw axis, then

a
li = a

lf

and

a
¡
r

APi
£ li

¢
= a

¡
r

APf
£ lf

¢
;

which imply that

a
li = Rab

a
li

and

a
¡
r

APi
£ li

¢
= a (u £ lf ) + Rab

a
¡
r

APi
£ li

¢
:

4. It then follows that

li = lf = §n

and

(Rab ¡ Id) a
¡
r

APi
£ n

¢
= a (n £ u) :

5. Assuming, without loss of generality
that a3 = n; the latter equation im-
plies that

r
APi

£ n

=

µ
1

2
u + cot

'

2
n £ u

¶
£ n

=

Ã
1

2
(u ² n)n+1

2
n £ (u £ n)

+ cot '

2
n £ u

!
£ n

=

µ
1

2
n £ (u £ n) + cot

'

2
n £ u

¶
£ n;



(x; y; z)

½

µ

z

a1

a2

a3

P

P
0

A
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i.e., the point on the screw axis closest
to A is given by the position vector

r =
1

2
n £ (u £ n) + cot

'

2
n £ u:

]

Exercise 5.28 Use the fact that

R ('
1
; v1; v2; v3)R ('

2
; v1; v2; v3)

= R ('1 + '2; v1; v2; v3)

to derive the trigonometric addition formu-
lae for the cosine and sine functions.

Solution. Consider as a special case,
v1 = 1, v2 = v3 = 0. Then,

R ('
1
; 1; 0; 0) =

0
@ 1 0 0

0 c1 ¡s1

0 s1 c1

1
A ;

R ('
2
; 1; 0; 0) =

0
@ 1 0 0

0 c2 ¡s2

0 s2 c2

1
A ;

where ci = cos'
1

and si = sin'
i
: Moreover,

R ('
1
+ '

2
; 1; 0; 0)

=

0
@ 1 0 0

0 cos ('
1
+ '

2
) ¡ sin ('

1
+ '

2
)

0 sin ('
1
+ '

2
) cos ('

1
+ '

2
)

1
A :

But R ('
1
; 1; 0; 0)R ('

2
; 1; 0; 0)

=

0
@ 1 0 0

0 c1 ¡s1

0 s1 c1

1
A

0
@ 1 0 0

0 c2 ¡s2

0 s2 c2

1
A

=

0
@ 1 0 0

0 c1c2 ¡ s1s2 ¡c1s2 ¡ s1c2

0 s1c2 + c1s2 c1c2 ¡ s1s2

1
A ;

i.e.,

cos ('
1
+ '

2
) = cos'

1
cos'

2
¡ sin'

1
sin'

2

sin ('1 + '2) = sin'1 cos'2 + cos'1 sin'2

corresponding to the trigonometric addition
formulae.

Exercise 5.29 Use rotation matrices to
¯nd the relation between Cartesian and po-
lar coordinates relative to a coordinate sys-
tem with axes parallel to the basis vectors of
a triad a.

Solution. Let A denote the origin of the
coordinate system and let P denote an arbi-
trary point. The position vector

r
AP = a

0
@ x

y

z

1
A ;

where x, y, and z are the Cartesian coordi-
nates of the point P . In contrast, the polar
coordinates ½, µ, and z of the point P are
de¯ned by:

² The distance from P to the axis paral-
lel with the a3 vector;

² The angle between the position vector
r

AP
0

to the projection of P onto the
plane through A spanned by a1 and a2

and the axis parallel to a1;

² The distance from P to the plane
through A spanned by a1 and a2,

respectively.

Now introduce a new triad b; such that
b is rotated relative to a about the common
3-direction by an angle µ, i.e.,

Rab =

0
@ cos µ ¡ sin µ 0

sin µ cos µ 0
0 0 1

1
A :
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It follows that

r
AP = b

0
@ ½

0
z

1
A = aRab

0
@ ½

0
z

1
A

= a

0
@ ½ cos µ

½ sin µ

z

1
A ;

i.e.,

x = ½ cos µ;

y = ½ sin µ;

z = z:

and

Rab =

0
@ x=½ ¡y=½ 0

y=½ x=½ 0
0 0 1

1
A :

Alternatively,

r
AP = a

0
@ x

y

z

1
A = bRba

0
@ x

y

z

1
A

= b

0
@

¡
x2 + y2

¢
=½

0
z

1
A ;

which implies that

½ =
p

x2 + y2;

µ = arctan
y

x
;

z = z:

Exercise 5.30 Use rotation matrices
to ¯nd the relation between Cartesian and
spherical coordinates relative to a coordinate
system with axes parallel to the basis vectors
of a triad a.

Solution. Let A denote the origin of the
coordinate system and let P denote an arbi-
trary point. The position vector

r
AP = a

0
@ x

y

z

1
A ;

where x, y, and z are the Cartesian coordi-
nates of the point P . In contrast, the spher-
ical coordinates %, µ, and Á of the point P

are de¯ned by:

² The distance from P to A;

² The angle between the position vector
r

AP
0

to the projection of P onto the
plane through A spanned by a1 and a2

and the axis parallel to a1;

² The angle between the r
AP and the

axis parallel to a3,

respectively. Now introduce new triads b and
c, such that b is rotated relative to a about
the common 3-direction by an angle µ, i.e.,

Rab =

0
@ cos µ ¡ sin µ 0

sin µ cos µ 0
0 0 1

1
A

and c is rotated relative to b about the com-
mon 2-direction by an angle Á, i.e.,

Rbc =

0
@ cosÁ 0 sinÁ

0 1 0
¡ sinÁ 0 cosÁ

1
A :

It follows that

r
AP = c

0
@ 0

0
%

1
A = aRabRbc

0
@ 0

0
%

1
A

= a

0
@ % cos µ sinÁ

% sin µ sinÁ

% cosÁ

1
A ;

i.e.,

x = % cos µ sinÁ;

y = % sin µ sinÁ;

z = % cosÁ;
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and

Rab =

0
@x=

p
x2 + y2

y=
p

x2 + y2

0

¡y=
p

x2 + y2

x=
p

x2 + y2

0

0

0
1

1
A ;

Rbc =

0
@ z=%

0

¡

p
x2 + y2=%

0
1

0

p
x2 + y2=%

0

z=%

1
A :

Alternatively,

r
AP = a

0
@ x

y

z

1
A = cRcbRba

0
@ x

y

z

1
A

= c

0
@ 0

0¡
x

2 + y
2 + z

2
¢
=%

1
A ;

which implies that

% =
p

x2 + y2 + z2;

µ = arctan
y

x
;

Á = arccos

Ã
zp

x2 + y2 + z2

!
:

Exercise 5.31 Use rotation matrices to
¯nd the relation between polar and spherical
coordinates relative to a coordinate system
with axes parallel to the basis vectors of a
triad a.

Exercise 5.32 Repeat Exercises 5.4,
5.12, and 5.24 using the Mambo toolbox.



(Page 203)

(Page 207)

(Page 228)

(Page 229)

246 5 Rotations

Summary of notation

An upper-case R with a pair of triad labels as subscript, such as Rcd

and Ra(r)a(f) , was used in this chapter to denote the rotation matrix
between the two triads.

An upper-case R followed by four arguments within parentheses, such
as

R ('; v1; v2; v3)

was used in this chapter to denote the rotation matrix with eigen-
vector corresponding to the eigenvalue 1 given by the column matrix¡

v1 v2 v3

¢T

and whose other eigenvalues are e§i':

Summary of terminology

Right-handed, orthonormal bases are referred to as triads.

The rotation matrix Rab is the matrix whose columns are the matrix
representations of the basis vectors of the triad b relative to the
triad a.

An arbitrary rotation matrix can be decomposed into a product of rota-
tion matrices corresponding to rotations about basis vectors. The
corresponding angles are called Euler angles.

In the Mambo toolbox, the procedure MakeRotations generates a ro-
tation matrix.
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Chapter 6

Orientations

wherein the reader learns of:

² Using rotation matrices to describe the orientation of a rigid body

or observer relative to another observer;

² Using con¯guration coordinates to describe time-dependent orienta-

tions;

² Con¯guration constraints and their implications on the allowable

con¯gurations of a mechanism.



Practicum

A fascinating array of real-life

mechanisms rely on rotational mo-

tion for their function. Particu-

larly intriguing are mechanisms that

use intricate arrangements of gears

to transmit rotational action about

one axis into rotational or transla-

tional motion about some other axis,

e.g., egg beaters, vehicle transmis-

sions, car di®erentials, lawn sprin-

klers, and so on. Similarly, interest-

ing uses of translational motion to

generate changes in orientation are

found, for example, in °ight simula-

tors.

Pick up a book with schematic

outlines of some of these mecha-

nisms and translate their action and

design into Mambo projects. Try

to resolve complex arrangements of

detailed parts through combinations

of translations and rotations. This

will hone your modeling skills, pique

your curiosity, and bring the envy of

your peers!
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6.1 Review

6.1.1 Reference Triads

We recall the following observations from Chapter 1:

² The con¯guration of a rigid body relative to a reference con¯gura-
tion is uniquely described through a combination of a pure transla-
tion and a pure rotation, given the selection of a speci¯c point on
the body that is kept ¯xed by the pure rotation;

² The pure translation shifts all points on the body from the refer-
ence con¯guration to an intermediate con¯guration, such that the
selected point on the rigid body coincides with its location in the
¯nal con¯guration;

² The subsequent pure rotation is determined by the location in the
¯nal con¯guration of two other points on the rigid body relative to
the corresponding points in the intermediate con¯guration.

Illustration 6.1

The relative con¯guration of two observers A and B may be represented
by the con¯guration of the virtual block corresponding to A relative to
the reference con¯guration corresponding to B.

The position and orientation of the virtual block relative to the ref-
erence con¯guration can be uniquely described through a combination of
a pure translation and a pure rotation, given the selection of a speci¯c
point on the virtual block that is kept ¯xed by the pure rotation.
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The pure translation shifts all points on the virtual block from the
reference con¯guration of B to an intermediate con¯guration, such that
the selected point coincides with the corresponding point in the reference
con¯guration of A.

The subsequent pure rotation is determined by the location in the
¯nal con¯guration of two other points on the virtual block relative to the
intermediate con¯guration.

Let A denote the selected point on the rigid body held ¯xed by the
pure rotation and denote by B and C two other points on the rigid body.
In Chapter 1, we found that the con¯guration of the rigid body relative to
the reference con¯guration was uniquely determined by the location of the
corresponding points in the ¯nal con¯guration relative to the reference
con¯guration, provided that the points A, B, and C did not lie on

a common straight line. Choose B and C, such that the separations
¡!

AB and
¡!

AC have unit length and are perpendicular. Then, the vectors

a1 =
h
¡!

AB

i
, a2 =

h
¡!

AC

i
, and a3 = a1 £ a2

are the components of a triad whose orientation uniquely determines the
orientation of the rigid body.

The triad introduced here is called the reference triad of the rigid
body or of the corresponding observer. The reference triad is a triad
whose orientation is ¯xed relative to the rigid body or ¯xed relative to
the reference con¯guration of the observer.

There is no preferred choice of triad to qualify as the
reference triad of a given rigid body or observer.

When describing the con¯guration of rigid bodies, it is common to
choose triads that correspond to some geometrical feature. For example,



A
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a natural choice of reference triad of a rectangular block is three mutu-
ally perpendicular vectors of unit length that are parallel to the edges
of the block. In the absence of geometrical features, such as edges or
symmetries, to base the selection of reference triad on, any triad will do.

If two observers A and B share the same reference triad, then the
con¯guration of B relative to A is described through a pure translation
TA!B, but no rotation. In other words,

RA!B = I:

Conversely, if

RA!B = I;

then the reference triads of the two observers A and B coincide.

Similarly, if the reference triad of a rigid body, say a block, coincides
with the reference triad of an observer A, then the rigid body's con¯gu-
ration relative to A is described through a pure translation TA, but no
rotation. In other words,

RA = I:

Illustration 6.2

Suppose the con¯guration of an observer B relative to an observer A is
given by a non-trivial pure rotation, but no translation, i.e.,

R
A!B

6= I;T
A!B

= I:

Then, the reference triads of A and B do not coincide. The pure ro-
tation R

A!B
contains the information necessary to rotate the reference

con¯guration of A about the common reference point so that it coincides
with the reference con¯guration of B. The rotation R

A!B
is uniquely

determined by the relative orientation of the reference triads of A and B.
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6.1.2 Rotations

If the reference triads of two observers A and B are denoted by a and b,
respectively, then the pure rotation RA!B is uniquely determined by the
rotation matrix Rab, where

Rab = a
T

² b:

In particular, if RA!B corresponds to a rotation about an axis parallel
to the unit vector

a

0
@ v1

v2

v3

1
A

by an angle ', then

Rab = R ('; v1; v2; v3)

def

=

0
@ v2

1
+

¡
1 ¡ v2

1

¢
c (1 ¡ c) v1v2 ¡ v3s (1 ¡ c) v1v3 + v2s

(1 ¡ c) v1v2 + v3s v
2

2
+

¡
1 ¡ v

2

2

¢
c (1 ¡ c) v2v3 ¡ v1s

(1 ¡ c) v1v3 ¡ v2s (1 ¡ c) v2v3 + v1s v2

3
+

¡
1 ¡ v2

3

¢
c

1
A;

where c = cos' and s = sin'.

In the previous chapter, we developed algebraic operations on ro-
tation matrices that corresponded to the operations on pure rotations
introduced in Chapter 2. For example, the correspondences

Rab$ RA!B; Rbc $ RB!C

imply that

Rac = RabRbc $ RB!C ± RA!B = RA!C:

Using the rotation matrix Rab, we are also able to express the triad b in
terms of the triad a:

b = aRab

as well as the matrix representation of a vector v relative to the triad b,
b
v, in terms of the matrix representation of v relative to the triad a, a

v:

b
v = Rba

a
v;

where

Rba = (Rab)
¡1 = (Rab)

T .
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6.2 Examples

6.2.1 A Still Life

Suppose we want to describe the geometry of a wireframe representation
of a tetrahedron, as depicted below.

Introduce a main observer W with reference point W at the geometric
center of the tetrahedron and with reference triad w: Let the i-th edge
correspond to a rigid body with reference point Ei at the midpoint of the

edge and reference triad e
(i), such that the e

(i)

1
basis vector is parallel to

the edge.

Suppose that the orientation of the tetrahedron is chosen such that
the locations of each of the four corners relative to the W observer are
given by the four position vectors

r
WC1 = w

0
B@

¡
1

2
l

¡

p

3

6
l

¡

p

6

12
l

1
CA , r

WC2 = w

0
B@

1

2
l

¡

p

3

6
l

¡

p

6

12
l

1
CA ;

r
WC3 = w

0
B@ 0

p

3

3
l

¡

p

6

12
l

1
CA , and r

WC4 = w

0
@ 0

0
p

6

4
l

1
A ;

where l is the length of the tetrahedron's edges.
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The con¯guration of the i-th edge relative to W is given by a pure
translation Ti corresponding to the position vector

r
WEi

and a pure rotation Ri corresponding to the rotation matrix

Rwe(i).

Speci¯cally, we ¯nd that

r
WE1 =

1

2
r

WC1 +
1

2
r

WC2 = w

0
B@

0

¡

p

3

6
l

¡

p

6

12
l

1
CA ;

r
WE2 =

1

2
r

WC2 +
1

2
r

WC3 = w

0
B@

1

4
l

p

3

12
l

¡

p

6

12
l

1
CA ;

r
WE3 =

1

2
r

WC3 +
1

2
r

WC1 = w

0
B@

¡
1

4
l

p

3

12
l

¡

p

6

12
l

1
CA ;

r
WE4 =

1

2
r

WC1 +
1

2
r

WC4 = w

0
B@

¡
1

4
l

¡

p

3

12
l

p

6

12
l

1
CA ;

r
WE5 =

1

2
r

WC2 +
1

2
r

WC4 = w

0
B@

1

4
l

¡

p

3

12
l

p

6

12
l

1
CA ;

and

r
WE6 =

1

2
r

WC3 +
1

2
r

WC4 = w

0
B@

0
p

3

6
l

p

6

12
l

1
CA :

We illustrate the computation of the rotation matrices Rwe(i) by con-
sidering the i = 3 edge. Speci¯cally, to compute the rotation matrix

Rwe(3) , we construct the triad e(3) by requiring that the basis vector e
(3)

1

be parallel to the vector

r
WC1

¡ r
WC3 :



6.2 Examples 255

Following the method presented in the previous chapters, we ¯nd

e
(3)

1
=

r
WC1

¡ r
WC3

krWC1 ¡ rWC3k

= w

0
B@

¡
1

2

¡

p

3

2

0

1
CA ;

e
(3)

2
=

e
(3)

1
£ w3°°°e(3)

1
£ w3

°°° = w

0
B@ ¡

p

3

2

1

2

0

1
CA ;

and

e
(3)

3
= e

(3)

1
£ e

(3)

2
= w

0
@ 0

0
¡1

1
A :

The rotation matrix is now given by

Rwe(3) = w
T

² e
(3) =

0
BB@

¡
1

2
¡

p

3

2
0

¡

p

3

2

1

2
0

0 0 ¡1

1
CCA :

Similarly,

Rwe(1) =

0
@ 1 0 0

0 ¡1 0
0 0 ¡1

1
A ; Rwe(2) =

0
B@

¡
1

2

p

3

2
0

p

3

2

1

2
0

0 0 ¡1

1
CA ;

Rwe(4) =

0
BB@

1

2

1

2

p

2

2
p

3

6
¡

p

3

2

p

6

6
p

6

3
0 ¡

p

3

3

1
CCA ; Rwe(5) =

0
BB@

¡
1

2

1

2
¡

p

2

2
p

3

6

p

3

2

p

6

6
p

6

3
0 ¡

p

3

3

1
CCA ;

and

Rwe(6) =

0
B@

0 ¡1 0

¡

p

3

3
0 ¡

p

6

3
p

6

3
0 ¡

p

3

3

1
CA :

Illustration 6.3

Suppose we want to model the geometry of a conical pile of rods as shown
in the ¯gure.
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Introduce a main observer W with reference point W at the top of
the cone and reference triad w, such that the symmetry axis of the cone
is parallel to the vector

v = w

0
@

p

3
1
0

1
A

and one of the rods is parallel to the vector

u = w

0
@ 1

p

3
0

1
A :

It follows that the opening angle µ of the cone satis¯es

cos
µ

2
=

u ² v

kuk kvk

=

p

3

2
;

i.e., µ = 60±.
Let the i-th rod be represented by a rigid rod with reference position

Ri at the center of the rod and reference triad r(i), such that r
(i)

3
is parallel

to the rod.
The con¯guration of the i-th rod relative to the observer W is given

by a pure translation Ti corresponding to the position vector

r
WRi

and a pure rotation Ri corresponding to the rotation matrix

Rwr(i) :

Speci¯cally,

r
WRi = r

(i)

0
@ 0

0
1

2
l

1
A ;

where l is the length of the rod.

Let i = 1 correspond to the rod for which r
(1)

3
is parallel to u. In

particular,

r
(1)

3
=

u

kuk

= w

0
B@

1

2
p

3

2

0

1
CA ;

r
(1)

1
=

r
(1)

3
£ w1°°°r(1)

3
£ w1

°°° = w

0
@ 0

0
¡1

1
A ;

r
(1)

2
= r

(1)

3
£ r

(1)

1
= w

0
B@ ¡

p

3

2

1

2

0

1
CA ;
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and thus

Rwr(1) = w
T

² r
(1) =

0
B@

0 ¡

p

3

2

1

2

0 1

2

p

3

2

¡1 0 0

1
CA :

The i-th rod is rotated relative to the ¯rst rod about the axis through W
that is parallel to v by an amount

2¼

N
(i ¡ 1) ;

where N is the number of rods. The matrix representation of v relative
to the r

(1) triad is given by

r
(1)

v = Rr(1)w

w
v

=

0
B@

0 ¡

p

3

2

1

2

0 1

2

p

3

2

¡1 0 0

1
CA

T 0
@

p

3
1
0

1
A

=

0
@ 0

¡1
p

3

1
A :

It follows that

Rr(1)r(i) = R

Ã
2¼

N
(i ¡ 1) ; 0;¡

1

2
;

p

3

2

!
;

where the notation R ('; v1; v2; v3) was introduced in the previous chap-
ter. The rotation matrix Rwr(i) is now obtained from the product

Rwr(1)Rr(1)r(i) .

6.2.2 The Single Moving Body

When time-dependent changes take place in the con¯guration of a rigid
body relative to the main observer, the recommended methodology re-
quires the introduction of at least one auxiliary observer between the rigid
body and the main observer. Speci¯cally, the auxiliary observer is intro-
duced in such a way that the rigid body remains stationary relative to
the auxiliary observer, while the motion of the auxiliary observer relative
to the main observer contains the entire time-dependence.
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Suppose, for example, that we want to describe the con¯guration of
a single, freely moving rigid body. Introduce a main observer W with
reference point W somewhere in space and reference triad w. Introduce
an auxiliary observer A, relative to which the rigid body is stationary,
with reference point A coinciding with some arbitrary point on the rigid
body and reference triad a.

Assume for simplicity that the position of the rigid body relative
to W is described by the identity translation. Then, the con¯guration
of the observer A relative to W is given by the pure rotation R

W!A

corresponding to the rotation matrix

Rwa.

Since the rigid body's orientation is unrestricted, we can use a 1 ¡ 3 ¡ 1
sequence of rotations to decompose RW!A, such that

Rwa =

0
@ 1 0 0

0 c1 ¡s1

0 s1 c1

1
A

0
@ c2 ¡s2 0

s2 c2 0
0 0 1

1
A

0
@ 1 0 0

0 c3 ¡s3

0 s3 c3

1
A ;

where ci = cos qi and s = sin qi, and q1, q2, and q3 are time-dependent
quantities that uniquely specify the rotation matrix. Following the termi-
nology introduced in Chapter 4, these quantities are called con¯guration

coordinates, since they provide information about the con¯guration of the
rigid body relative to the main observer as a function of time.

There are numerous other choices of decompositions of RW!A that
can be speci¯ed by three con¯guration coordinates. The discussion in
the previous chapter showed that fewer than three coordinates would not
su±ce to specify an arbitrary orientation. It follows that, in the absence
of translations, the rigid body has three geometric degrees of freedom.
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Illustration 6.4

In the previous chapter, we found that the [i; j]-th entry in a rotation ma-
trix Rab could be expressed as

[Rab]ij = ±ij cos q4 + (1 ¡ cos q4) qiqj ¡ sin q4

3X
k=1

"ijkqk;

where

±11 = ±22 = ±33 = "123 = "231 = "312 = ¡"321 = ¡"213 = ¡"132 = 1

and zero otherwise, 0
@ q1

q2

q3

1
A

is the eigenvector of Rab corresponding to the eigenvalue 1, and

q
2

1
+ q

2

2
+ q

2

3
= 1:

This last condition is a con¯guration constraint on the con¯guration co-
ordinates q1, q2, q3, and q4.

An alternative formulation is obtained by introducing the new con¯g-
uration coordinates

~qi = qi sin
q4

2
, i = 1; 2; 3; and ~q4 = cos

q4

2
.

Since

cos q4 = 2cos2
q4

2
¡ 1 = 1 ¡ 2 sin2

q4

2
and sin q4 = 2 sin

q4

2
cos

q4

2
;

it follows that

±ij cos q4 + (1 ¡ cos q4) qiqj ¡ sin q4

3X
k=1

"ijkqk

= ±ij

¡
2~q2

4
¡ 1

¢
+ 2~qi~qj ¡ 2~q4

3X
k=1

"ijk~qk:

The rotation matrix thus becomes0
@ 2~q2

4
+ 2~q2

1
¡ 1 2~q1~q2 ¡ 2~q4~q3 2~q1~q3 + 2~q4~q2

2~q2~q1 + 2~q4~q3 2~q2

4
+ 2~q2

2
¡ 1 2~q2~q3 ¡ 2~q4~q1

2~q3~q1 ¡ 2~q4~q2 2~q3~q2 + 2~q4~q1 2~q2

4
+ 2~q2

3
¡ 1

1
A :
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The con¯guration coordinates ~q1, ~q2, ~q3, and ~q4 are called Euler param-

eters. Only values that satisfy the con¯guration constraint

~q2

1
+ ~q2

2
+ ~q2

3
+ ~q2

4
=

¡
q
2

1
+ q

2

2
+ q

2

3

¢
sin2

q4

2
+ cos2

q4

2
= 1

correspond to actual con¯gurations of the rigid body.

Suppose we want to describe the con¯guration of a rod attached at
one end to a spherical joint.

Introduce a main observer W with reference point W at the spherical
joint and reference triad w. Let A be an auxiliary observer with reference
point A coinciding with W and reference triad a, such that the rod is
parallel to the a1 vector:

The con¯guration of the rod relative to the observer A is given by a
pure translation T corresponding to the position vector

r
AC

;

where C is the point at the center of the rod. By assumption,

r
AC = a

0
@ 1

2
l

0
0

1
A ;

where l is the length of the rod.
The con¯guration of the observer A relative to W is given by a pure

rotation RW!A corresponding to the rotation matrix

Rwa.

The pure rotation RW!A may be decomposed into two pure rotations by
the introduction of an intermediate auxiliary observer B with reference
point B coinciding with A and W and reference triad b, such that the
axes held ¯xed by the pure rotations RW!B and RB!A, respectively, are
parallel to the vectors w3 and w1, respectively. In particular,

Rwb = R (q1; 0; 0; 1) =

0
@ cos q1 ¡ sin q1 0

sin q1 cos q1 0
0 0 1

1
A :



6.2 Examples 261

Moreover, the matrix representation of the vector w1 in the b triad is
given by

b (w1) = Rbw
w (w1)

=

0
@ cos q1 ¡ sin q1 0

sin q1 cos q1 0
0 0 1

1
A

T 0
@ 1

0
0

1
A

=

0
@ cos q1

¡ sin q1

0

1
A

and thus

Rba = R (q2; cos q1;¡ sin q1; 0)

=

0
@ cos q2 sin2

q1 + cos2 q1 cos q1 sin q1 (cos q2 ¡ 1) ¡ sin q1 sin q2

cos q1 sin q1 (cos q2 ¡ 1) cos q2 cos2 q1 + sin2
q1 ¡ cos q1 sin q2

sin q1 sin q2 cos q1 sin q2 cos q2

1
A :

The con¯guration coordinates q1 and q2 su±ce to describe an arbitrary
orientation of the rod. In particular, the position vector

r
WC = r

AC

= a

0
@ 1

2
l

0
0

1
A

= wRwa

0
@ 1

2
l

0
0

1
A

= wRwbRba

0
@ 1

2
l

0
0

1
A

= w

0
B@

1

2
l cos q1

1

2
l sin q1 cos q2

1

2
l sin q1 sin q2

1
CA :

6.2.3 Degrees of Freedom

In Chapter 4, we found that a free rigid body, in the absence of rotations,
has three geometric degrees of freedom. This was tantamount to the claim
that:

² No fewer than three con¯guration coordinates would su±ce to cap-
ture all possible positions of the rigid body;

² No more than three con¯guration coordinates would be necessary
to capture all possible positions of the rigid body.
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In this chapter, we found that a free rigid body, in the absence of trans-
lations, has three geometric degrees of freedom. This was tantamount to
the claim that:

² No fewer than three con¯guration coordinates would su±ce to cap-
ture all possible orientations of the rigid body;

² No more than three con¯guration coordinates would be necessary
to capture all possible orientations of the rigid body.

From Chapter 1, we recall that the speci¯cation of the position of a rigid
body is entirely independent and separate from the speci¯cation of the
orientation of the rigid body. We conclude, as already demonstrated in
Chapter 1, that a rigid body whose position and orientation can change
arbitrarily has six geometric degrees of freedom.

When a rigid body has fewer than six geometric degrees of freedom,
it is constrained. As discussed in Chapter 4, this implies that there are
con¯guration constraints, i.e., equalities in the con¯guration coordinates,
that restrict the choice of values for the con¯guration coordinates that
correspond to allowable con¯gurations of the rigid body. For example,
the rigid bodies in Chapter 4 were constrained in orientation, since three
con¯guration coordinates su±ced to describe their con¯guration. Simi-
larly, the rigid bodies considered thus far in this chapter were constrained
in position, since three con¯guration coordinates su±ced to describe their
con¯guration.

6.2.4 Multiple Moving Rigid Bodies

In the absence of constraints, each rigid body in a multibody mechanism
has six geometric degrees of freedom. If N rigid bodies have fewer than
6N degrees of freedom, the mechanism is constrained.

Suppose you want to describe the geometry of a bench-based radial
arm saw as shown in the ¯gure.
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There are four parts that move relative to the stationary workbench,
namely, the tool arm, the tool trolley, the blade support, and the blade.
A vertical cylinder attached to the workbench provides the support for
the mechanism. Speci¯cally:

² The tool arm is free to slide up and down along this cylinder as well
as rotate about the cylinder;

² The tool trolley is free to slide along the arm;

² The blade support is free to rotate relative to the tool trolley about
an axis parallel to the arm;

² The blade is free to rotate about an arm perpendicular to the axis
of rotation of the blade support.

It follows that the radial arm saw has ¯ve geometric degrees of freedom,
two that correspond to translations and three corresponding to rotations.

Introduce a main observer W, relative to which the workbench re-
mains stationary. Let its reference point W be located at the center of
the vertical cylinder and level with the table top. Let its reference triad
w be oriented such that the table top is parallel to the w1 and w2 basis
vectors and w3 points away from the table top in the direction of the tool
arm.

Since each of the four parts of the radial arm saw move relative to W,
the recommended methodology requires the introduction of an auxiliary
observer for each part, such that the part's con¯guration is stationary
relative to the corresponding auxiliary observer.

Introduce an auxiliary observer A, relative to which the tool arm
remains stationary. Let its reference point A be located at the center of
the vertical cylinder and level with the tool arm. Let its reference triad
a be oriented such that a3 equals w3 and a2 is parallel to the tool arm.
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The con¯guration of the observer A relative to W is then given by a
pure translation T

W!A
corresponding to the position vector

r
WA

and a pure rotation RW!A corresponding to the rotation matrix

Rwa:

Speci¯cally,

r
WA = w

0
@ 0

0
q1

1
A ;

since the tool arm may only slide in the w3 direction. Moreover,

Rwa = R (q2; 0; 0; 1) =

0
@ cos q2 ¡ sin q2 0

sin q2 cos q2 0
0 0 1

1
A ;

since the tool arm may only rotate about the w3 direction.

Introduce an auxiliary observer B, relative to which the tool trolley
remains stationary. Let its reference point B be located on the center
line of the tool arm and symmetric relative to the ends of the trolley. Let
its reference triad b equal a.
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The con¯guration of the observer B relative to A is given by a pure
translation TA!B corresponding to the position vector

r
AB

and the identity rotation R
A!B

= I. Speci¯cally,

r
AB = a

0
@ 0

q3

0

1
A ;

since the trolley may only slide along the a2 direction.
Introduce an auxiliary observer C, relative to which the blade support

remains stationary. Let its reference point C be located at the center of
the axis about which the blade support rotates. Let its reference triad c

be oriented such that c2 equals a2 and c3 points toward the center of the
blade.

The con¯guration of the observer C relative to B is given by a pure
translation T

B!C
corresponding to the position vector

r
BC
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and the pure rotation R
B!C

corresponding to the rotation matrix

Rbc:

Speci¯cally,

r
BC = a

0
@ 0

0
¡p1

1
A ;

where p1 is some time-independent parameter. Moreover,

Rbc = R (q4; 0; 1; 0) =

0
@ cos q4 0 sin q4

0 1 0
¡ sin q4 0 cos q4

1
A ;

since the blade support rotates about the a2 direction.
Finally, introduce an auxiliary observer D, relative to which the blade

remains stationary. Let its reference point D be at the center of the blade.
Let its reference triad d be such that d3 equals c3.

The con¯guration of the observer D relative to C is given by the pure
translation TC!D corresponding to the position vector

r
CD

and a pure rotation R
C!D

corresponding to the rotation matrix

Rcd.

Speci¯cally,

r
CD = c

0
@ 0

0
p2

1
A ;

where p2 is some time-independent parameter. Moreover,

Rcd = R (q5; 0; 0; 1) =

0
@ cos q5 ¡ sin q5 0

sin q5 cos q5 0
0 0 1

1
A ;

since the blade rotates about the c3 direction.
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6.3

The relative orientation of two observers can be uniquely described through
a pure rotation, given the selection of a reference triad for each of the
observers. If the observer A has the reference triad a and the observer B

has the reference triad b, then the rotation matrix Rab uniquely describes
the pure rotation RA!B between A and B.

In a Mambo geometry description, the speci¯cation of a rotation
matrix relating the reference triads of di®erent observers is given through
an ORIENT statement.

Illustration 6.5

The following extract from a Mambo .geo ¯le shows the use of the
ORIENT statement to describe the relative orientation of successive
observers.

MODULE W f

BODY E f

ORIENT f1/sqrt(2),-1/sqrt(2),0,0,0,-1,1/sqrt(2),1/sqrt(2),0g
BODY F f

ORIENT fcos(theta),0,sin(theta),0,1,0,
-sin(theta),0,cos(theta)g

g

g

g

Here, the orientation of the observer E relative to the observer W is
given by a pure rotation RW!E corresponding to the rotation matrix

Rwe =

0
@

1
p

2
¡

1
p

2
0

0 0 ¡1
1

p

2

1
p

2
0

1
A ;

where e and w are the reference triads of E and W, respectively.
Similarly, the orientation of the observer F relative to the observer E

is given by a pure rotation R
E!F

corresponding to the rotation matrix

Ref =

0
@ cos µ 0 sin µ

0 1 0
¡ sin µ 0 cos µ

1
A ;

where f is the reference triad of F .

By default,Mambo interprets the absence of an ORIENT statement
to be equivalent to the speci¯cation
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ORIENT f1,0,0,0,1,0,0,0,1g

i.e., that the reference triad of the current observer coincides with that
of the parent observer.

The orientation of a rigid body relative to some observer can be
uniquely described through a pure rotation. If the observer A has the
reference triad a and the triad b is the reference triad of the rigid body,
then the rotation matrix Rab uniquely describes the pure rotation RA

between A and the rigid body.
In Mambo, the reference triad associated with a cylinder is oriented

in such a way that the 3-direction is parallel to the symmetry axis of the
cylinder. Similarly, the reference triad associated with a Mambo block
is oriented in such a way that the basis vectors are parallel to the edges
of the block. Since a Mambo sphere lacks any distinguishing surface
features, the associated reference triad has some prede¯ned orientation
relative to the sphere.

Illustration 6.6

We may use the ORIENT statement to describe the rotation matrix re-
lating the reference triad of an observer and the reference triad of a rigid
body.

MODULE W f

BODY E f

ORIENT f1/sqrt(2),-1/sqrt(2),0,0,0,-1,1/sqrt(2),1/sqrt(2),0g

BODY F f

ORIENT fcos(theta),0,sin(theta),0,1,0,
-sin(theta),0,cos(theta)g

CYLINDER f

ORIENT f1/2,-1/sqrt(2),1/2,
1/sqrt(2),0,-1/sqrt(2),
1/2, 1/sqrt(2), 1/2g

g

g

BLOCK f

ORIENT f-1,0,0,0,0,1,0,1,0g
g

g

g

Here, the orientation of the block relative to the observer E is given
by a pure rotation RE corresponding to the rotation matrix

Reb =

0
@ ¡1 0 0

0 0 1
0 1 0

1
A ;
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where b is the reference triad of the block and e is the reference triad of
the E observer.

Similarly, the orientation of the cylinder relative to the observer F is
given by a pure rotation RF corresponding to the rotation matrix

Rfc =

0
BB@

1

2
¡

1
p

2

1

2

1
p

2
0 ¡

1
p

2

1

2

1
p

2

1

2

1
CCA ;

where c is the reference triad of the cylinder and f is the reference triad
of the F observer.

The tree structure corresponding to the geometry description in the
last illustration has the following form:

We could represent the same arrangement of rigid bodies relative to
the W observer by relating the con¯guration of the block to the F ob-
server.

The corresponding Mambo geometry description becomes

MODULE W f

BODY E f

ORIENT f1/sqrt(2),-1/sqrt(2),0,0,0,-1,1/sqrt(2),1/sqrt(2),0g
BODY F f

ORIENT fcos(theta),0,sin(theta),0,1,0,
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-sin(theta),0,cos(theta)g
CYLINDER f

ORIENT f1/2,-1/sqrt(2),1/2,1/sqrt(2),0,-1/sqrt(2),
1/2, 1/sqrt(2), 1/2g

g

BLOCK f

ORIENT f-cos(theta),-sin(theta),0,0,0,1,
-sin(theta),cos(theta),0g

g

g

g

g

Here, the ORIENT statement relating the pure rotation between the F

observer and the block is obtained from the following computation:

Rfb = RfeReb = (Ref )T
Reb

=

0
@ cos µ 0 sin µ

0 1 0
¡ sin µ 0 cos µ

1
A

T 0
@ ¡1 0 0

0 0 1
0 1 0

1
A

=

0
@ ¡ cos µ ¡ sin µ 0

0 0 1
¡ sin µ cos µ 0

1
A :

The F observer may be entirely eliminated from the observer tree
structure.

The corresponding Mambo geometry description becomes

MODULE W f

BODY E f

ORIENT f1/sqrt(2),-1/sqrt(2),0,0,0,-1,1/sqrt(2),1/sqrt(2),0g

CYLINDER f

ORIENT f(cos(theta)+sin(theta))/2,
(-cos(theta)+sin(theta))/sqrt(2),
(cos(theta)+sin(theta))/2,
1/sqrt(2),0,-1/sqrt(2),
(cos(theta)-sin(theta))/2,
(cos(theta)+sin(theta))/sqrt(2),
(cos(theta)-sin(theta))/2g
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g

BLOCK f

ORIENT f-1,0,0,0,0,1,0,1,0g
g

g

g

Here, the ORIENT statement relating the pure rotation between the E

observer and the cylinder is obtained from the following computation:

Rec = RefRfc

=

0
@ cos µ 0 sin µ

0 1 0
¡ sin µ 0 cos µ

1
A

0
BB@

1

2
¡

1
p

2

1

2

1
p

2
0 ¡

1
p

2

1

2

1
p

2

1

2

1
CCA

=

0
B@

1

2
cos µ + 1

2
sin µ ¡

1
p

2
cos µ + 1

p

2
sin µ

1

2
cos µ + 1

2
sin µ

1
p

2
0 ¡

1
p

2
1

2
cos µ ¡

1

2
sin µ

1
p

2
cos µ + 1

p

2
sin µ

1

2
cos µ ¡

1

2
sin µ

1
CA :

From Chapter 4, we recall the possibility of using labels and place-
holders to replace actual numbers in a Mambo geometry description. In
particular,

² TheMambo time variable can be changed interactively by the user
during a Mambo session and changes linearly during a simulation.
The Mambo time variable must be declared as such in the Mambo
.dyn ¯le with a time statement;

² Mambo parameters can be changed interactively by the user dur-
ing a Mambo session, but remain constant during a simulation.
Mambo parameters must be declared as such in the Mambo .dyn
¯le with a parameter statement;

² Mambo animated variables cannot be changed interactively by the
user during a Mambo session, but change with time during a simu-
lation. The dependence of a Mambo animated variable onMambo
parameters, Mambo states, and the Mambo time variable is de-
clared within an anims block in the Mambo .dyn ¯le;

² Mambo state variables can be changed interactively by the user
during a Mambo session and may change with time during a sim-
ulation. Any change is governed by a set of kinematic di®erential
equations or by aMambo dataset. Mambo state variables must be
declared as such in the Mambo .dyn ¯le with a states statement.

All of these types of placeholders may be used in ORIENT statements.
The only restriction is that the matrix contained within the ORIENT
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statement should be orthogonal1. A non-orthogonal matrix within a
Mambo ORIENT matrix may lead to unexpected visual e®ects, de-
sirable or undesirable.

As noted in the previous chapter, the POINT statement only conveys
information about a matrix representation of a position vector. The cor-
responding reference triad is understood to be associated with the parent
observer in the observer hierarchy. In the Mambo geometry description,

MODULE W f

BODY A f

POINT f1/sqrt(2),-1,1/sqrt(2)g
ORIENT f1/sqrt(2),-1/sqrt(2),0,0,0,-1,1/sqrt(2),1/sqrt(2),0g

BODY B f

POINT f-1+sin(theta),0,-1+cos(theta)g
ORIENT fcos(theta),0,sin(theta),0,1,0,

-sin(theta),0,cos(theta)g
g

g

g

the con¯guration of the A observer relative to W is given by a pure
translation T

W!A
corresponding to the position vector

r
WA = w

0
@

1
p

2

¡1
1

p

2

1
A

and a pure rotation RW!A corresponding to the rotation matrix

Rwa =

0
@

1
p

2
¡

1
p

2
0

0 0 ¡1
1

p

2

1
p

2
0

1
A

where W and A are the reference points of W and A, respectively, and
w and a are the reference triads of W and A, respectively.

Similarly, the con¯guration of the B observer relative to A is given by
a pure translation TA!B corresponding to the position vector

r
AB = a

0
@ ¡1 + sin µ

0
¡1 + cos µ

1
A

and a pure rotation RA!B corresponding to the rotation matrix

Rab =

0
@ cos µ 0 sin µ

0 1 0
¡ sin µ 0 cos µ

1
A ;

1See De¯nition 5.1 on page 213.
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where B and b are the reference point and reference triad, respectively,
of the observer B.

As before, we may reorganize the geometry description, such that the
B observer is promoted to main observer.

MODULE B f

BODY A f

POINT fcos(theta)-sin(theta),0,sin(theta)+cos(theta)-1g
ORIENT fcos(theta),0,-sin(theta),0,1,0,sin(theta),0,cos(theta)g
BODY W f

POINT f-1,0,-1g
ORIENT f1/sqrt(2),0,1/sqrt(2),-1/sqrt(2),0,1/sqrt(2),0,-1,0g

g

g

g

Here, the con¯guration of the A observer relative to B is given by a pure
translation T

B!A
corresponding to the position vector

r
BA = ¡r

BA = ¡a

0
@ ¡1 + sin µ

0
¡1 + cos µ

1
A

= ¡bRba

0
@ ¡1 + sin µ

0
¡1 + cos µ

1
A

= ¡b (Rab)
T

0
@ ¡1 + sin µ

0
¡1 + cos µ

1
A

= b

0
@ cos µ ¡ sin µ

0
sin µ + cos µ ¡ 1

1
A

and a pure rotation RB!A corresponding to the rotation matrix

Rba = (Rab)
T =

0
@ cos µ 0 ¡ sin µ

0 1 0
sin µ 0 cos µ

1
A :

Similarly, the con¯guration of W relative to A is given by a pure
translation T

A!W
corresponding to the position vector

r
AW = ¡r

WA = ¡w

0
@

1
p

2

¡1
1

p

2

1
A

= ¡aRaw

0
@

1
p

2

¡1
1

p

2

1
A
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= ¡a (Rwa)T

0
@

1
p

2

¡1
1

p

2

1
A

= a

0
@ ¡1

0
¡1

1
A

and a pure rotation RA!W corresponding to the rotation matrix

Raw = (Rwa)T =

0
B@

1
p

2
0 1

p

2

¡
1

p

2
0 1

p

2

0 ¡1 0

1
CA :

6.4 The

6.4.1 Triads

Triads are represented within theMambo toolbox by entries in the global
variables GlobalTriadDeclarations and GlobalTriadDefinitions.
User-initiated changes to these variables are made possible through the
procedures DeclareTriads and DefineTriads.

Illustration 6.7

In the following Mambo toolbox session, the triads a, b, and c are de-
clared to the program.

> Restart():
> DeclareTriads(a,b,c):

The statement

> DefineTriads([a,b,theta,1],[b,c,Pi/2,1,0,1]):

establishes the rotation matrices

Rab = R (µ; 1; 0; 0) =

0
@ 1 0 0

0 cos µ ¡ sin µ

0 sin µ cos µ

1
A

and

Rbc = R

³
¼

2
; 1; 0; 1

´
=

0
BB@

1

2
¡

1
p

2

1

2

1
p

2
0 ¡

1
p

2

1

2

1
p

2

1

2

1
CCA :

The e®ect of these statements on the global variables GlobalTriad-
Declarations and GlobalTriadDefinitions is made clear by the fol-
lowing statements:
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> print(GlobalTriadDeclarations);

table([

b = fa; cg

c = fbg

a = fbg

])

> print(GlobalTriadDefinitions);

table([

(b; c) =

2
666664

1

2
¡

1

2

p

2
1

2
1

2

p

2 0 ¡

1

2

p

2

1

2

1

2

p

2
1

2

3
777775

(a; b) =

2
4 1 0 0

0 cos(µ) ¡sin(µ)
0 sin(µ) cos(µ)

3
5

(c; b) =

2
666664

1

2

1

2

p

2
1

2

¡

1

2

p

2 0
1

2

p

2

1

2
¡

1

2

p

2
1

2

3
777775

(b; a) =

2
4 1 0 0

0 cos(µ) sin(µ)
0 ¡sin(µ) cos(µ)

3
5

])

The contents of the global variables GlobalTriadDeclarations and
GlobalTriadDefinitions re°ect the fact that the relative orientations
of the triads a and b and the triads b and c, respectively, are now known.
Where GlobalTriadDeclarations tracks all direct relations between tri-
ads, GlobalTriadDefinitions stores any rotation matrices between tri-
ads in GlobalTriadDeclarations that have been computed during a
Mambo toolbox session.
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TheMambo toolbox procedure FindRotation can be invoked to com-
pute the rotation matrix between any two triads that are declared and
are related. Continuing with the Mambo session in the illustration, we
¯nd

> FindRotation(a,c);

2
666664

1

2
¡

1

2

p

2
1

2
1

2
cos(µ)

p

2 ¡

1

2
sin(µ) ¡

1

2
sin(µ)

p

2 ¡

1

2
cos(µ)

p

2 ¡

1

2
sin(µ)

1

2
sin(µ)

p

2 +
1

2
cos(µ)

1

2
cos(µ)

p

2 ¡

1

2
sin(µ)

p

2 +
1

2
cos(µ)

3
777775

as follows from

Rac = RabRbc

=

0
@ 1 0 0

0 cos µ ¡ sin µ

0 sin µ cos µ

1
A

0
BB@

1

2
¡

1
p

2

1

2

1
p

2
0 ¡

1
p

2

1

2

1
p

2

1

2

1
CCA

=

0
BB@

1

2
¡

1
p

2

1

2

1
p

2
cos µ ¡

1

2
sin µ ¡

1
p

2
sin µ ¡

1
p

2
cos µ ¡

1

2
sin µ

1
p

2
sin µ + 1

2
cos µ

1
p

2
cos µ ¡

1
p

2
sin µ + 1

2
cos µ

1
CCA :

The global variable GlobalTriadDefinitions is automatically appended
with the rotation matrices Rac and Rca = (Rac)

T .

The Mambo toolbox employs the rotation matrices between two tri-
ads to apply the &oo, &xx, VectorLength, and Express functions to
Mambo vectors with matrix representations relative to multiple triads.
Their function is illustrated with the following sequence of statements:

> v:=MakeTranslations([a,1,0,1],[b,0,1,1]):
> w:=MakeTranslations(c,1,1,0):

> v &oo w;

1 +
1

2

p

2 +
1

2
sin(µ)

p

2 +
1

2
cos(µ) +

1

2
cos(µ)

p

2

> Express(v,a);
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table([

1 = table([

\Coordinates" = [1; cos(µ) ¡ sin(µ); 1 + sin(µ) + cos(µ)]

\Triad" = a

])

\Type" = \Vector"

\Size" = 1

])

> v &xx w;

table([

1 = table([

\Coordinates" =

·
¡

1

2
cos(µ)

p

2 +
1

2
sin(µ) +

1

2
sin(µ)

p

2;

1

2
¡

1

2

p

2 ¡

1

2
sin(µ)

p

2 ¡

1

2
cos(µ) ¡

1

2
cos(µ)

p

2;

1

2
cos(µ)

p

2 ¡

1

2
sin(µ) ¡

1

2
sin(µ)

p

2

¸
\Triad" = a

])

\Type" = \Vector"

2 = table([

\Coordinates" =

·
1

2
;

1

2
¡

1

2

p

2; ¡

1

2
+

1

2

p

2̧

\Triad" = b

])

\Size" = 2

])

> VectorLength(v);

p
4 + 2 sin(µ) + 2 cos(µ)
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6.4.2 Observers

As discussed in Chapter 4, the DefineObservers procedure is used to
associate a point and a triad with an observer. For example, let A, B,
and W and a, b, and w, be the reference points and reference triads,
respectively, of three observers A, B, and W, such that

r
WA = a

0
@ 1

2
3

1
A ; Rwa = R (q1; 1; 1; 0)R (q2; 1; 0; 0) ;

r
AB = a

0
@ 0

0
1

1
A , and Rab = R (q3; 0; 1; 0)R (q4; 0; 0; 1) :

The following statements provide the necessary information to the Mam-
bo toolbox.

> Restart():
> DeclareObservers(A,B,W):
> DeclareTriads(a,b,w):
> DeclarePoints(A,B,W):
> DefinePoints([W,A,a,1,2,3],[A,B,a,3]):
> DefineTriads([w,a,[q1,1,1,0],[q2,1]],
> [a,b,[q3,2],[q4,3]]):
> DefineObservers([W,W,w],[A,A,a],[B,B,b]):

The Mambo toolbox procedure FindOrientation can be invoked to
compute the rotation matrix corresponding to the pure rotation relating
the orientations of two observers.

> FindOrientation(A,B);

2
4 cos(q3 ) cos(q4 ) ¡cos(q3 ) sin(q4 ) sin(q3 )

sin(q4 ) cos(q4 ) 0
¡sin(q3 ) cos(q4 ) sin(q3 ) sin(q4 ) cos(q3 )

3
5

We may again use the DefineNeighbors and GeometryOutput com-
mands to generate a Mambo geometry description using the observers
introduced above.

> DefineNeighbors([W,A],[A,B]):
> GeometryOutput(main=W);

MODULE W {

BODY A {

POINT

{1/2*cos(q1)+1/2+2*(1/2-1/2*cos(q1))*cos(q2)+sin(q1)*2^(1/2)

*sin(q2)-3*(1/2-1/2*cos(q1))*sin(q2)+3/2*sin(q1)*2^(1/2)*cos

(q2),1/2-1/2*cos(q1)+2*(1/2*cos(q1)+1/2)*cos(q2)-sin(q1)*2^(

1/2)*sin(q2)-3*(1/2*cos(q1)+1/2)*sin(q2)-3/2*sin(q1)*2^(1/2)

*cos(q2),-1/2*sin(q1)*2^(1/2)+sin(q1)*2^(1/2)*cos(q2)+2*cos(
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q1)*sin(q2)-3/2*sin(q1)*2^(1/2)*sin(q2)+3*cos(q1)*cos(q2)}

ORIENT

{1/2*cos(q1)+1/2,(1/2-1/2*cos(q1))*cos(q2)+1/2*sin(q1)*2^(1/

2)*sin(q2),-(1/2-1/2*cos(q1))*sin(q2)+1/2*sin(q1)*2^(1/2)*co

s(q2),1/2-1/2*cos(q1),(1/2*cos(q1)+1/2)*cos(q2)-1/2*sin(q1)*

2^(1/2)*sin(q2),-(1/2*cos(q1)+1/2)*sin(q2)-1/2*sin(q1)*2^(1/

2)*cos(q2),-1/2*sin(q1)*2^(1/2),1/2*sin(q1)*2^(1/2)*cos(q2)+

cos(q1)*sin(q2),-1/2*sin(q1)*2^(1/2)*sin(q2)+cos(q1)*cos(q2)}

BODY B {

POINT {0,0,1}

ORIENT

{cos(q3)*cos(q4),-cos(q3)*sin(q4),sin(q3),sin(q4),cos(q4),0,-

sin(q3)*cos(q4),sin(q3)*sin(q4),cos(q3)}

}

}

}

Illustration 6.8

As in the previous chapter, we may reorganize the observers so as to pro-
mote A to be the main observer:

> GeometryOutput(main=A);

MODULE A {

BODY W {

POINT {-1,-2,-3}

ORIENT

{1/2*cos(q1)+1/2,1/2-1/2*cos(q1),-1/2*sin(q1)*2^(1/2),(1/2-1

/2*cos(q1))*cos(q2)+1/2*sin(q1)*2^(1/2)*sin(q2),(1/2*cos(q1)

+1/2)*cos(q2)-1/2*sin(q1)*2^(1/2)*sin(q2),1/2*sin(q1)*2^(1/2

)*cos(q2)+cos(q1)*sin(q2),-(1/2-1/2*cos(q1))*sin(q2)+1/2*sin

(q1)*2^(1/2)*cos(q2),-(1/2*cos(q1)+1/2)*sin(q2)-1/2*sin(q1)*

2^(1/2)*cos(q2),-1/2*sin(q1)*2^(1/2)*sin(q2)+cos(q1)*cos(q2)}

}

BODY B {

POINT {0,0,1}

ORIENT

{cos(q3)*cos(q4),-cos(q3)*sin(q4),sin(q3),sin(q4),cos(q4),0,-

sin(q3)*cos(q4),sin(q3)*sin(q4),cos(q3)}

}

}

or
> Undo():
> DefineNeighbors([W,B],[A,B]):
> GeometryOutput(main=A);

MODULE A {

BODY B {

POINT {0,0,1}

ORIENT

{cos(q3)*cos(q4),-cos(q3)*sin(q4),sin(q3),sin(q4),cos(q4),0,

-sin(q3)*cos(q4),sin(q3)*sin(q4),cos(q3)}

BODY W {

POINT

{-cos(q3)*cos(q4)-2*sin(q4)+4*sin(q3)*cos(q4),cos(q3)*sin(q4

)-2*cos(q4)-4*sin(q3)*sin(q4),-sin(q3)-4*cos(q3)}
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ORIENT

{cos(q3)*cos(q4)*(1/2*cos(q1)+1/2)+sin(q4)*((1/2-1/2*cos(q1)

)*cos(q2)+1/2*sin(q1)*2^(1/2)*sin(q2))-sin(q3)*cos(q4)*(-(1/

2-1/2*cos(q1))*sin(q2)+1/2*sin(q1)*2^(1/2)*cos(q2)),cos(q3)*

cos(q4)*(1/2-1/2*cos(q1))+sin(q4)*((1/2*cos(q1)+1/2)*cos(q2)

-1/2*sin(q1)*2^(1/2)*sin(q2))-sin(q3)*cos(q4)*(-(1/2*cos(q1)

+1/2)*sin(q2)-1/2*sin(q1)*2^(1/2)*cos(q2)),-1/2*cos(q3)*cos(

q4)*sin(q1)*2^(1/2)+sin(q4)*(1/2*sin(q1)*2^(1/2)*cos(q2)+cos

(q1)*sin(q2))-sin(q3)*cos(q4)*(-1/2*sin(q1)*2^(1/2)*sin(q2)+

cos(q1)*cos(q2)),-cos(q3)*sin(q4)*(1/2*cos(q1)+1/2)+cos(q4)*

((1/2-1/2*cos(q1))*cos(q2)+1/2*sin(q1)*2^(1/2)*sin(q2))+sin(

q3)*sin(q4)*(-(1/2-1/2*cos(q1))*sin(q2)+1/2*sin(q1)*2^(1/2)*

cos(q2)),-cos(q3)*sin(q4)*(1/2-1/2*cos(q1))+cos(q4)*((1/2*co

s(q1)+1/2)*cos(q2)-1/2*sin(q1)*2^(1/2)*sin(q2))+sin(q3)*sin(

q4)*(-(1/2*cos(q1)+1/2)*sin(q2)-1/2*sin(q1)*2^(1/2)*cos(q2))

,1/2*cos(q3)*sin(q4)*sin(q1)*2^(1/2)+cos(q4)*(1/2*sin(q1)*2^

(1/2)*cos(q2)+cos(q1)*sin(q2))+sin(q3)*sin(q4)*(-1/2*sin(q1)

*2^(1/2)*sin(q2)+cos(q1)*cos(q2)),sin(q3)*(1/2*cos(q1)+1/2)+

cos(q3)*(-(1/2-1/2*cos(q1))*sin(q2)+1/2*sin(q1)*2^(1/2)*cos(

q2)),sin(q3)*(1/2-1/2*cos(q1))+cos(q3)*(-(1/2*cos(q1)+1/2)*s

in(q2)-1/2*sin(q1)*2^(1/2)*cos(q2)),-1/2*sin(q3)*sin(q1)*2^(

1/2)+cos(q3)*(-1/2*sin(q1)*2^(1/2)*sin(q2)+cos(q1)*cos(q2))}

}

}

}

where we used the Undo utility to undo the latest change in any of the
global variables.

6.4.3 A Sample Project

Suppose you want to visualize the motion of a wireframe representation
of a tetrahedron that is turning over on a stationary plane while keeping
one corner ¯xed, as depicted below.
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Introduce a main observer W with reference point W at the stationary
corner of the tetrahedron and reference triad w, such that the stationary
plane through W is spanned by the basis vectors w1 and w2. Further-
more, let A be an auxiliary observer, relative to which the tetrahedron is
stationary, with reference point A at the corner kept ¯xed relative to W

and reference triad a, such that

r
AC1 = a

0
@ l

0
0

1
A , r

AC2 = a

0
B@

1

2
l

p

3

2
l

0

1
CA , and r

AC3 = a

0
B@

1

2
l

p

3

6
l

p

6

3
l

1
CA ;

where C1, C2, and C3 are the remaining corners of the tetrahedron and
l is the length of the tetrahedron's edges.

Let the i-th edge correspond to a rigid body with reference point Ei at

the midpoint of the edge and reference triad e(i), such that the e
(i)

1
basis

vector is parallel to the edge. The con¯guration of the i-th edge relative
to A is given by a pure translation Ti corresponding to the position vector

r
AEi

and a pure rotation Ri corresponding to the rotation matrix

Rae(i).

Speci¯cally, we ¯nd that

r
AE1 =

1

2
r

AC1 ;

r
AE2 =

1

2
r

AC2 ;

r
AE3 =

1

2
r

AC3 ;

r
AE4 =

1

2
r

AC1 +
1

2
r

AC2 ;

r
AE5 =

1

2
r

AC1 +
1

2
r

AC3 ;
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and

r
AE6 =

1

2
r

AC2 +
1

2
r

AC3 :

To compute the rotation matrices

Rae(i) = a
T

² e
(i)

;

we proceed by constructing the triads e
(i)

; such that

e
(1)

1
=

r
AC1

krAC1k

;

e
(2)

1
=

r
AC2

krAC2k

;

e
(3)

1
=

r
AC3

krAC3k

;

e
(4)

1
=

r
AC2

¡ r
AC1

krAC2 ¡ rAC1k

;

e
(5)

1
=

r
AC3

¡ r
AC1

krAC3 ¡ rAC1k

;

and

e
(6)

1
=

r
AC3

¡ r
AC2

krAC2 ¡ rAC2k

:

The remaining basis vectors e
(i)

2
and e

(i)

3
are then obtained from the

formula

e
(i)

2
=

e
(i)

1
£ a3°°°e(i)

1
£ a3

°°°
and

e
(i)

3
= e

(i)

1
£ e

(i)

2
:

The Mambo toolbox statements

> Restart():
> DeclareObservers(W,A):
> DeclarePoints(W,A,seq(cat(E,i),i=1..6),
> seq(cat(C,i),i=1..3)):
> DeclareTriads(w,a,seq(cat(e,i),i=1..6)):
> DefineObservers([W,W,w],[A,A,a]):
> DefineNeighbors([W,A]):
> DefinePoints([A,C1,a,l,0,0],
> [A,C2,a,1/2*l,sqrt(3)/2*l,0],
> [A,C3,a,1/2*l,sqrt(3)/6*l,sqrt(6)/3*l]):
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> DefinePoints([A,E1,(1/2) &** FindTranslation(A,C1)],
> [A,E2,(1/2) &** FindTranslation(A,C2)],
> [A,E3,(1/2) &** FindTranslation(A,C3)],
> [A,E4,(1/2) &** (FindTranslation(A,C1)
> &++ FindTranslation(A,C2))],
> [A,E5,(1/2) &** (FindTranslation(A,C1)
> &++ FindTranslation(A,C3))],
> [A,E6,(1/2) &** (FindTranslation(A,C2)
> &++ FindTranslation(A,C3))]):
> b1:=(1/l) &** FindTranslation(A,C1):
> b2:=(1/VectorLength(b1 &xx MakeTranslations(a,3)))
> &** (b1 &xx MakeTranslations(a,3)):
> b3:=b1 &xx b2:
> DefineTriads(a,e1,matrix(3,3,(i,j)->
> MakeTranslations(a,i) &oo cat(b,j))):
> b1:=(1/l) &** FindTranslation(A,C2):
> b2:=(1/VectorLength(b1 &xx MakeTranslations(a,3)))
> &** (b1 &xx MakeTranslations(a,3)):
> b3:=b1 &xx b2:
> DefineTriads(a,e2,matrix(3,3,(i,j)->
> MakeTranslations(a,i) &oo cat(b,j))):
> b1:=(1/l) &** FindTranslation(A,C3):
> b2:=(1/VectorLength(b1 &xx MakeTranslations(a,3)))
> &** (b1 &xx MakeTranslations(a,3)):
> b3:=b1 &xx b2:
> DefineTriads(a,e3,matrix(3,3,(i,j)->
> MakeTranslations(a,i) &oo cat(b,j))):
> b1:=(1/l) &** FindTranslation(C1,C2):
> b2:=(1/VectorLength(b1 &xx MakeTranslations(a,3)))
> &** (b1 &xx MakeTranslations(a,3)):
> b3:=b1 &xx b2:
> DefineTriads(a,e4,matrix(3,3,(i,j)->
> MakeTranslations(a,i) &oo cat(b,j))):
> b1:=(1/l) &** FindTranslation(C1,C3):
> b2:=(1/VectorLength(b1 &xx MakeTranslations(a,3)))
> &** (b1 &xx MakeTranslations(a,3)):
> b3:=b1 &xx b2:
> DefineTriads(a,e5,matrix(3,3,(i,j)->
> MakeTranslations(a,i) &oo cat(b,j))):
> b1:=(1/l) &** FindTranslation(C2,C3):
> b2:=(1/VectorLength(b1 &xx MakeTranslations(a,3)))
> &** (b1 &xx MakeTranslations(a,3)):
> b3:=b1 &xx b2:
> DefineTriads(a,e6,matrix(3,3,(i,j)->
> MakeTranslations(a,i) &oo cat(b,j))):

establish the corresponding geometry. To visualize the wireframe rep-
resentation of the tetrahedron, we need to add Mambo objects to the
geometry description. The Mambo toolbox procedure DefineObjects

associates the desired objects with the appropriate observer. In the fol-
lowingMambo toolbox statement, sixMambo blocks are directly related
to the A observer with reference points given by the Ei's and reference
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triads given by the e(i)'s, and one Mambo block representing the sta-
tionary plane is directly related to the W observer with reference point
and reference triad coinciding with those of W.

> DefineObjects(seq([A,'Block',point=cat(E,i),
> orient=cat(e,i),xlength=l,ylength=l/10,zlength=l/10,
> color=green],i=1..6),[W,'Block',xlength=5*l,
> ylength=5*l,zlength=l/100,color=white]):

The coincidence of the reference points A and W of the auxiliary
observer A and the main observer W implies that the position of A

relative to W is given by the identity translation or, alternatively, that

r
WA = 0.

Finally, we shall assume that the orientation of A relative to W is given by
the pure rotation RW!A corresponding to a rotation about a direction
parallel to w3 by an angle q1 followed by a rotation about a direction
parallel to r

AC2 by an angle q2. It follows that

Rwa = R (q1; 0; 0; 1)R

Ã
q2;

1

2
;

p

3

2
; 0

!
:

Continuing with the same Mambo toolbox session, these de¯nitions are
achieved by the statements

> DefinePoints(W,A,NullVector()):
> DefineTriads(w,a,[q1,3],[q2,1/2,sqrt(3)/2,0]):

The statement

> GeometryOutput(main=W,
> filename="flippingtetrahedron.geo");

exports the resulting geometry hierarchy to the ¯le flippingtetrahed-
ron.geo.

Note that the angle between any two edges meeting at a corner of the
tetrahedron is given by

arccos
r

AC1
² r

AC2

krAC1k krAC2k

=
¼

3
:

Similarly, the angle between any two faces of the tetrahedron is given by

arccos
a2 ² r

E1C3

ka2k krE1C3k

= arccos

µ
1

3

¶
:

It follows that a visually satisfactory animation is obtained by increasing
q1 discretely by ¼

3
every second while q2 decreases continuously from 0 to

arccos
¡

1

3

¢
¡ ¼ during every whole second as shown in the ¯gure.
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t

¼
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t
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µ
1

3

¶
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In other words,

q1 (t) =
¼

3
btc

and

q2 (t) =

µ
arccos

µ
1

3

¶
¡ ¼

¶
(t ¡ btc) ;

where btc equals the integer part of t. Since both q1 (t) and q2 (t) are
discontinuous, we cannot formulate a set of kinematic di®erential equa-
tions to govern their evolution. Instead, we treat q1 and q2 as Mambo
animated variables as suggested in the following Mambo toolbox state-
ment:

> MotionOutput(anims=[q1=Pi/3*floor(t),
> q2=(acos(1/3)-Pi)*(t-floor(t))],parameters=[l=1],
> filename="floppingtetrahedron.dyn");

where we note the use of C syntax acos for the arccos function and floor

for the b¢c function.
Although the motion that results from the de¯nitions of q1 (t) and

q2 (t) has the visual appearance that we desire, this is only an illusion.
In fact, the tetrahedron repeatedly rotates about the same edge instead
of switching to a new edge whenever a new face becomes parallel with
the stationary plane. It is by the symmetry of the tetrahedron that the
discrete changes in q1 are able to generate the appearance of a switch.
A more satisfying approach would be one that constrained alternating
edges to be stationary relative to W: We will develop the methodology
for achieving this in Chapter 9.
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6.5 Exercises

Exercise 6.1 The con¯guration of a
thin disk of radius ½ is constrained in such a
way that the disk makes tangential contact
with a planar surface through the reference
point W of an observer W and spanned by
the w1 and w2 basis vectors in the corre-
sponding reference triad w. Formulate the
corresponding con¯guration constraints.

Solution. Let A be an auxiliary ob-
server, relative to which the disk remains sta-
tionary, with reference point A at the center
of the disk and reference triad a, such that
a3 is perpendicular to the plane of the disk.
Then

r
WA = w

0
@ q1

q2

q3

1
A

and Rwa

= R (q4; 0; 0; 1)R (q5; 1; 0; 0)R (q6; 0; 0; 1)

describe an arbitrary con¯guration of the
disk relative to the observer W.

That the disk makes tangential contact
with the planar surface spanned by w1 and
w2 implies that there is a point P on the rim
of the disk that is in contact with the plane
and that the tangent direction to the rim of
the disk at P is parallel to the planar surface.
Thus, if

r
AP = a

0
@ ½ cos q7

½ sin q7

0

1
A

for some q7, then P is in contact with the
plane if

0 = r
WP

² w3 =
¡
r

WA + r
AP

¢
² w3

= q3 + ½ sin q5 sin (q6 + q7) :

Moreover, since the vector w3£a3 is parallel
to both the planar surface and the plane of
the disk, it follows that

0 = r
AP

² (w3 £ a3)

= ½ sin q5 cos (q6 + q7)

guarantees that the contact at P is tangen-
tial.

Exercise 6.2 Show that any values of q1

through q7; such that sin q5 6= 0; that satisfy
the con¯guration constraints in the previous
exercise are regular relative to the pair q3

and q6.
Solution. Here,

f1 (q1; : : : ; q7) = q3 + ½ sin q5 sin (q6 + q7) ;

f2 (q1; : : : ; q7) = ½ sin q5 cos (q6 + q7) ;

and thus¯̄̄
¯̄ @f1

@q3

@f1

@q6

@f2

@q3

@f2

@q6

¯̄̄
¯̄ = ¡½ sin q5 sin (q6 + q7) ;

which equals zero if sin q5 = 0 or
sin (q6 + q7) = 0: But, if sin q5 6= 0, then f2 =
0 only if cos (q6 + q7) = 0; i.e., sin (q6 + q7) =
§1 and the claim follows.

Exercise 6.3 Use the Mambo toolbox
to repeat the discussion in the previous two
exercises.

Solution. The following Mambo tool-
box statements

> Restart():
> DeclareObservers(W,A):
> DeclarePoints(W,A,P):
> DeclareTriads(w,a):
> DefineObservers([W,W,w],
> [A,A,a]):
> DefinePoints([W,A,w,q1,q2,q3],
> [A,P,a,rho*cos(q7),
> rho*sin(q7),0]):
> DefineTriads([w,a,[q4,3],
> [q5,1],[q6,3]]):
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de¯ne the basic geometry. The constraints
are obtained through the statements

> f1:=FindTranslation(W,P) &oo
> MakeTranslations(w,3):
> f2:=FindTranslation(A,P) &oo
> (MakeTranslations(w,3) &xx
> MakeTranslations(a,3)):

Finally, the determinant is computed
through the statement

> factor(det(matrix(2,2,
> [[diff(f1,q3),diff(f1,q6)],
> [diff(f2,q3),diff(f2,q6)]])));

¡½ sin(q5 ) (cos(q7 ) sin(q6 )+sin(q7 ) cos(q6 ))

Exercise 6.4 Show that a thin disk that
makes tangential contact with a planar sur-
face has ¯ve geometric degrees of freedom, as
long as it is not parallel to the surface.

Solution. In the previous exercises,
seven con¯guration coordinates were intro-
duced to describe the con¯guration of the
thin disk. We found that, as long as
sin q5 6= 0, the corresponding con¯guration
constraints could be solved for two of the
con¯guration coordinates in terms of the re-
maining con¯guration coordinates. It follows
that, as long as sin q5 6= 0, the con¯gura-
tion of the thin disk can be described using
only ¯ve con¯guration coordinates. When
sin q5 = 0, a3 £ w3 = 0, i.e., the disk is par-
allel to the planar surface. It follows that
the thin disk has ¯ve geometric degrees of
freedom, as long as it is not parallel to the
planar surface.

Exercise 6.5 The con¯guration of a
thin disk of radius ½ is constrained in such
a way that the disk makes tangential con-
tact with a spherical surface of radius R cen-
tered on the reference point W of an ob-
server W. Find the corresponding con¯gu-
ration constraints.

Solution. Let A be an auxiliary ob-
server, relative to which the disk remains sta-
tionary, with reference point A at the center
of the disk and reference triad a, such that

a3 is perpendicular to the plane of the disk.
Then

r
WA = w

0
@ q1

q2

q3

1
A

and Rwa

= R (q4; 0; 0; 1)R (q5; 1; 0; 0)R (q6; 0; 0; 1)

describe an arbitrary con¯guration of the
disk relative to the observer W.

That the disk makes tangential contact
with the spherical surface implies that there
is a point P on the rim of the disk that is
in contact with a point P

0 on the surface of
the sphere and that the tangent direction to
the rim of the disk at P is tangential to the
spherical surface at P

0. Thus, if

r
AP = a

0
@ ½ cos q7

½ sin q7

0

1
A and

r
WP

0

= w

0
@ R sin q8 cos q9

R sin q8 sin q9

R cos q8

1
A

for some q7, q8, and q9, then P is in contact
with P

0 if

0 =
³
r

WP
¡ r

WP
0

´
² w1;

0 =
³
r

WP
¡ r

WP
0

´
² w2;

0 =
³
r

WP
¡ r

WP
0

´
² w3:

Moreover, since the vector r
WP

0

£ a3 is tan-
gential to the spherical surface and parallel
to the plane of the disk, it follows that

0 = r
AP

²

³
r

WP
0

£ a3

´
guarantees that the contact at P is tangen-
tial.

The following Mambo toolbox state-
ments compute the corresponding con¯gura-
tion constraints in terms of the nine con¯g-
uration coordinates:
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> Restart():
> DeclareObservers(W,A):
> DeclarePoints(W,A,P,Pp):
> DeclareTriads(w,a):
> DefineObservers([W,W,w],
> [A,A,a]):
> DefinePoints([W,A,w,q1,q2,q3],
> [A,P,a,rho*cos(q7),
> rho*sin(q7),0],
> [W,Pp,w,R*sin(q8)*cos(q9),
> R*sin(q8)*sin(q9),R*cos(q8)]):
> DefineTriads([w,a,[q4,3],
> [q5,1],[q6,3]]):

> f1:=(FindTranslation(W,P) &--
> FindTranslation(W,Pp)) &oo
> MakeTranslations(w,1)=0:
> f2:=(FindTranslation(W,P) &--
> FindTranslation(W,Pp)) &oo
> MakeTranslations(w,2)=0:
> f3:=(FindTranslation(W,P) &--
> FindTranslation(W,Pp)) &oo
> MakeTranslations(w,3)=0:
> f4:=(FindTranslation(W,Pp) &xx
> MakeTranslations(a,3)) &oo
> FindTranslation(A,P)=0:

Exercise 6.6 Find the number of geo-
metric degrees of freedom of the disk in the
previous exercise.

Exercise 6.7 The con¯guration of a
thin disk of radius ½ is constrained in such a
way that the disk makes tangential contact
with a cylindrical surface of radius R cen-
tered on the reference point W of an observer
W and parallel to the basis vector w3 of the
corresponding reference triad w. Find the
corresponding con¯guration constraints and
determine the number of geometric degrees
of freedom of the disk.

Exercise 6.8 Analyze the following
mechanisms to determine the number of ge-

ometric degrees of freedom:

a) A unicycle
b) A bicycle
c) An o±ce chair
d) A can opener
e) A pair of scissors
f) An umbrella

Exercise 6.9 Use the Mambo toolbox
to formulate a Mambo geometry descrip-
tion of the following objects and visualize us-
ing Mambo. You may ¯nd the information
in the Mambo reference manual regarding
the geometric properties of Mambo spheres,
blocks, and cylinders helpful.

a) Icosahedron
b) Spider web
c) Hexagonal honeycomb
d) Bridge truss
e) Circle of rectangular chairs
f) Brick tower
g) Bird feather

Exercise 6.10 For each of the scenes
below, use the Mambo toolbox to formu-
late a Mambo geometry description and
implement di®erent animation sequences in
Mambo.

a) Operating window shades
b) A grandfather's clock
c) A handheld fan
d) A turntable with play arm
e) Dialing on an analog dialing pad
f) Sanding with an orbital sander
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Summary of notation

Lower-case q's with various subscripts and decorations, such as q1 and
~q3, were used in this chapter to denote con¯guration coordinates.

Summary of terminology

A selected triad that is stationary relative to a rigid body or an observer
is called a reference triad.

A variable that is used to describe the con¯guration of a mechanism is
called a con¯guration coordinate.

The number of geometric degrees of freedom of a mechanism is the small-
est number of con¯guration coordinates necessary to describe the
con¯guration of the mechanism.

A mechanism is constrained if its con¯guration is limited.

An equation in the con¯guration coordinates that corresponds to a con-
straint on the con¯guration of a mechanism is called a con¯guration

constraint.

In Mambo, the orientation of an observer or a rigid body relative to an
observer is given through an ORIENT statement in the .geo ¯le.

In Mambo, parameters are declared through a parameters statement
in the .dyn ¯le.

In Mambo, the time variable is labeled through a time statement in
the .dyn ¯le.

In Mambo, animated variables are declared through an anims block in
the .dyn ¯le.

In Mambo, states are declared through a states statement in the .dyn
¯le.

In the Mambo toolbox, the global variable GlobalTriadDeclarations

contains the names of all declared triads.

In the Mambo toolbox, the global variable GlobalTriadDefinitions

contains rotation matrices relating declared triads.

In theMambo toolbox, the procedure DeclareTriads appends Global-
TriadDeclarations with any number of triad labels.

In the Mambo toolbox, the procedure DefineTriads appends Global-
TriadDefinitions with any number of rotation matrices relating
declared triads.
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In the Mambo toolbox, the procedure FindRotation is used to ¯nd the
rotation matrix between two declared triads.

(Page 276)

(Page 276) In the Mambo toolbox, the procedures &oo, &xx, VectorLength, and
Express return the vector dot product, the vector cross product,
the length of a vector, and the vector expressed relative to a given
triad, respectively.

In the Mambo toolbox, the procedure DefineObservers appends Glo-
balObserverDefinitions with any number of associations between
observers and pairs of declared reference points and declared refer-
ence triads.

In the Mambo toolbox, the procedure FindOrientation is used to ¯nd
the rotation matrix between the reference triads of two observers.

(Page 278)

(Page 278)

(Page 279) In the Mambo toolbox, the procedure Undo is used to undo the latest
change to any of the global variables.



Chapter 7

Review

wherein the reader learns of:

² Combining the elements developed in previous chapters into a gen-

eral methodology for describing the geometry of a multibody mech-

anism.



Practicum

This chapter is intended to give

you a breather; to let you col-

lect your thoughts and assess the

global strategy for analyzing multi-

body mechanisms that has been de-

veloped in previous chapters. The

examples in this chapter represent

the highest level of complexity you

are likely to ever encounter.

After completing this chapter, you

are encouraged to refer to the list

of sample projects in the Appendix

and to attempt to implement these

inMambo. There is no expectation

that you will be able to successfully

formulate the correct geometry de-

scription on your ¯rst try. Mambo

allows you to experiment and to try

di®erent ideas. A ¯nal description

along the lines of this chapter grows

out of such experimentation.
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7.1 Terminology and Notation

7.1.1 Con¯gurations

At the outset of Chapter 1, I introduced the con¯guration of a rigid body
as its position and orientation relative to some reference con¯guration.
Neither the position, the orientation, nor the reference con¯guration were
well-de¯ned notions. Instead, I appealed to your intuitive understanding
of these concepts based on everyday experiences and abstractions.

The idea of position was meant to suggest a general location in space,
whereas the idea of orientation was meant to suggest a general attitude in
space. Even without very speci¯c de¯nitions of these ideas, some thought
established the need for referring to some basis of comparison, without
which no well-de¯ned meaning could be attached to the terms position
and orientation. This basis of comparison was the reference con¯guration.

Subsequent material in Chapter 1 was intended to narrow down the
ideas of position and orientation. This allowed for quantitative state-
ments that would be necessary for communicating experimental observa-
tions or for implementing a multibody mechanism in a computer-visuali-
zation software. In particular, the ideas of positions and orientations
were clari¯ed by considering changes in con¯guration. These changes
were categorized as pure translations, pure rotations, and combinations
thereof.

7.1.2 Rigid-body Operations

On page 4, a pure translation was de¯ned as an operation on a rigid body
that shifts all the points on the body by an equal amount along parallel
paths. I stated that there is no change in the orientation of a rigid
body undergoing a pure translation. This was the ¯rst hint on as to how
to interpret the notion of orientation.

On page 9, a pure rotation was de¯ned as an operation on a rigid
body that holds at least one point on the rigid body ¯xed. I stated that
there is no change in the position of a rigid body undergoing a pure
rotation. This was the ¯rst hint as to how to interpret the notion of
position.

The implications of these de¯nitions are that two identical rigid bodies
have the same position if they have at least one point in common. Simi-
larly, two identical rigid bodies have the same orientation if all points on
one rigid body are shifted by an equal amount along a common direction
from the corresponding points on the other rigid body.

I believe these de¯nitions make intuitive sense. For example, if B1,
B2, and B3 are three identical rigid bodies, such that B1 and B2 have
the same orientation and B2 and B3 have the same orientation, then the
rigid bodies B1 and B3 also have the same orientation. The discussion on
pages 7 and 8 expressed this observation in terms of pure translations,
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namely that the composition of two consecutive pure translations

is equivalent to a single pure translation.
But these de¯nitions also challenge some obvious assumptions. For

example, if B1, B2, and B3 are three identical rigid bodies, such that B1

and B2 have the same position and B2 and B3 have the same position,
then the rigid bodies B1 and B3 do not necessarily have the same po-
sition. The discussion on pages 10 and 11 expressed this observation in
terms of pure rotations, namely that the composition of two con-

secutive pure rotations is not necessarily equivalent to a single

pure rotation.
A resolution to this paradox was o®ered on page 11, where we chose

to require that all pure rotations keep the same point ¯xed. With this
added condition, the statement that B1 and B2 have the same position
and that B2 and B3 have the same position would imply that B1 and B3

also have the same position.
Several important properties of pure translations and pure rotations

were described in detail on pages 4 through 21.
Speci¯cally, any sequence of pure translations and pure rotations is

equivalent to a single pure translation and a single pure rotation. Con-
versely, any arbitrary con¯guration can be decomposed into a sequence
of pure translations and pure rotations. This result established the sig-
ni¯cance of pure translations and pure rotations to describe arbitrary
con¯gurations. Put di®erently, the collection of pure translations

and the collection of pure rotations are the elementary parti-

cles of multibody mechanics. There are no changes in con¯guration
that cannot be described in terms of a combination of a single pure trans-
lation and a single pure rotation. Having chosen a particular point on the
rigid body to be kept ¯xed by any pure rotation, the decomposition

into a single pure translation and a single pure rotation was

found to be unique.
Of equal signi¯cance was the observation that the order in which a

pure rotation and a pure translation are applied to a rigid body makes
no di®erence to the ¯nal con¯guration. The meaning of the pure rotation
does not depend on the pure translation, and vice versa. Put di®erently,
given the selection of a particular point on the rigid body to be

kept ¯xed by any pure rotation, the position and the orientation

of a rigid body can be speci¯ed independently of one another. If
I say that a rigid body has a certain orientation, this has no implications
whatsoever on its position. If you say that a rigid body has a certain
position, this has no implications whatsoever on its orientation.

7.1.3 Observers

You could use the notions of position, orientation, pure translation, and
pure rotation to describe the con¯gurations of all rigid bodies in your
environment relative to some reference con¯guration. Certainly, if all
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rigid bodies in your environment were disjoint, independent objects, this
would be a reasonable and prudent course of action. But, if there were
connections between di®erent bodies that rendered their con¯gurations
dependent, this would not necessarily be the most attractive approach.

Suppose you wanted to describe the con¯gurations of the various parts
of your hand relative to some reference con¯guration. This would require
specifying the position and orientation of each of the parts { the palm,
the digital segments, and so on { relative to the reference position and
reference orientation. But, the con¯gurations of the digits are not inde-
pendent from the con¯guration of the palm. As the palm moves through
space, the digits are constrained to follow along, reducing their mobility
relative to the palm to a pure rotation. Similarly, the digits are naturally
split into segments, each of which can move relative to the preceding one
through a pure rotation.

It appears more natural to describe the con¯gurations of the digits
relative to the palm and the con¯guration of the palm relative to you. The
con¯gurations of the digits relative to you would then follow by combining
the pure translations and pure rotations corresponding to each of the two
separate steps.

The idea of breaking down the description of the con¯guration into
more manageable steps requires the introduction of intermediate reference
con¯gurations. Toward the end of Chapter 1 and throughout Chapter 2,
I employed the notion of observers to represent such reference con¯gu-
rations. Every mechanism was described using a main observer and any
number of auxiliary observers.

On page 50, I introduced tree structures to represent a conceptual
arrangement of the observers and the physical objects they were used to
describe. I stressed the possibility of using any number of di®erent ob-
server arrangements to represent the same geometry. Some general rules
were also proposed for you to follow in describing your own mechanisms
of choice.

7.1.4 Vectors

A computationally oriented formalism for pure translations was intro-
duced in Chapter 3. I showed how every pure translation corresponds to
a collection of straight-line segments between points in the initial con¯g-
uration and the corresponding points in the ¯nal con¯guration. These
straight-line segments:

² Have the same length;

² Are parallel;

² Have the same heading.
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Every one of these segments could be taken to represent the pure transla-
tion. The length, direction, and heading of the segment would correspond
to the same properties of the pure translation.

On page 96, these collections of straight-line segments were named
vectors. I presented mathematical operations on these vectors that cor-
responded to the algebraic operations on pure translations that were in-
troduced in Chapter 2. Speci¯cally:

² Vectors could be multiplied by real numbers to generate scaled ver-
sions of the corresponding pure translations (page 98);

² Vectors could be summed to generate compositions of the corre-
sponding pure translations (page 99).

I also introduced two vector products, namely the dot product (page
103) and the cross product (page 105), with which vectors and the cor-
responding pure translations could be compared with respect to heading
and direction. The length of a vector was de¯ned as the magnitude of
the shift of the corresponding pure translation (page 97).

Particularly useful are triplets of mutually perpendicular vectors of
unit length. These are called orthonormal bases (page 111). Speci¯cally,
if v is an arbitrary vector and the triplet fa1;a2;a3g is an orthonormal
basis, then there exists a unique triplet of real numbers v1, v2, and v3,
such that

v = v1a1 + v2a2 + v3a3

and

vi = ai ² v, i = 1; 2; 3:

The real numbers v1, v2, and v3 are called the coordinates of the vector v

relative to the basis fa1;a2;a3g. On page 114, I introduced the notation

a =
¡

a1 a2 a3

¢
and

a
v =

0
@ a1 ² v

a2 ² v

a3 ² v

1
A

to represent an orthonormal basis a and the matrix representation of the

vector v relative to the basis a, and extended the rules of normal matrix
multiplication to allow for statements like

v = a
a
v:
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All operations on vectors could be reduced to matrix operations on the
matrix representations of the vectors relative to some orthonormal basis.
In particular, by restricting attention to right-handed, orthonormal bases,
so-called triads, I showed that

®v+¯w = a (® a
v + ¯

a
w) ;

v ² w = (a
v)T a

w;

kvk =
q

av2

1
+ av2

2
+ av2

3
;

and

v £ w =

¯̄̄
¯̄̄ a1 a2 a3

av1
av2

av3

aw1
aw2

aw3

¯̄̄
¯̄̄ ;

where a is a triad.
The expressions above assumed that both vectors were expressed rel-

ative to the same triad. When this was not the case, I showed you how
to translate between matrix representations relative to di®erent triads.
In particular, with the de¯nition on page 207 of the rotation matrix Rab

between the triads a and b

Rab = a
T

² b =

0
@ a1 ² b1 a1 ² b2 a1 ² b3

a2 ² b1 a2 ² b2 a2 ² b3

a3 ² b1 a3 ² b2 a3 ² b3

1
A ;

I derived the following relations:

Rba = (Rab)
T = (Rab)

¡1
;

b = aRab, a = bRba;

a
v = Rab

b
v;

and

b
v = Rba

a
v:

Moreover, if c was a third triad, then

Rac = RabRbc

represented a natural decomposition.
While vectors correspond in a direct way to pure translations, rota-

tion matrices correspond in a direct way to pure rotations. Since the
orientation of a rigid body is uniquely determined by the orientation of
a triad rigidly attached to the body, changes in orientation due to pure
rotations are quanti¯able in terms of the rotation matrix between the
initial and ¯nal orientations of the triad.
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In an exercise in Chapter 1, it was observed that every pure rotation
was equivalent to a rotation about some ¯xed axis by a given angle. The
analogous statement for rotation matrices was made in Chapter 5, where
we found that every rotation matrix can be generated by the expression

R ('; v1; v2; v3) ;

where v1, v2; v3 were the coordinates relative to the initial triad of a
vector of unit length parallel to the axis of the pure rotation and ' was
the angle of rotation.

On pages 221 through 229, I described some special (and very useful)
examples of rotation matrices arising from rotations about basis vectors

and leading to the concept of Euler angles. I also showed how to construct
rotation matrices to align a triad vector with a given direction.

7.1.5 Con¯guration Coordinates and Constraints

The con¯guration of a rigid body relative to an observer is uniquely
determined by a pure translation and a pure rotation, given the selection
of a point on the rigid body that is held ¯xed by any pure rotation.
This point is called the reference point of the rigid body. Similarly, the
relative con¯guration of two observers is uniquely determined by a pure
translation and a pure rotation, given the selection of reference points for
each of the observers.

If A and B are the reference points of two observers A and B, then
the pure translation TA!B corresponds to the position vector

r
AB.

The pure translation is uniquely determined by the relative location of
the points A and B.

The pure rotation R
A!B

is uniquely determined by the relative orien-
tation of two reference triads a and b, whose orientations are ¯xed relative
to A and B, respectively. In particular, the pure rotation corresponds to
the rotation matrix

Rab:

Any quantities that appear in the position vector r
AB or the ro-

tation matrix Rab, and that change when the relative con¯guration of
the observers changes, are called con¯guration coordinates. The smallest
number of con¯guration coordinates that are necessary to describe the
con¯guration of a mechanism equals its number of geometric degrees of

freedom.
In Chapters 4 and 6, I showed you how three con¯guration coordi-

nates su±ce to describe any arbitrary position of a rigid body, while
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three separate con¯guration coordinates su±ce to describe any arbitrary
orientation of a rigid body. I also showed you that three con¯guration
coordinates are necessary to describe the position of a freely moving rigid
body and that three con¯guration coordinates are necessary to describe
the orientation of a freely moving rigid body. A freely moving rigid body
thus has six geometric degrees of freedom.

When a mechanism consisting of N rigid bodies has fewer than 6N
geometric degrees of freedom, it is constrained. To constrain a mechanism
is equivalent to imposing equalities { con¯guration constraints { that the
con¯guration coordinates used to describe the unconstrained mechanism
must satisfy. In Chapter 4, I showed how con¯guration constraints usually
imply that it is theoretically possible to express one or several of the
con¯guration coordinates in terms of the others. As we shall see later in
this chapter and in more detail in Chapter 9, it may nevertheless be more
practical to retain more con¯guration coordinates than the number of
geometric degrees of freedom.

7.2 Modeling Algorithm

Throughout the previous chapters, I have advocated the following algo-
rithm for arriving at a complete description of the geometry of a multi-
body mechanism:

Step 1. Identify all constituent rigid bodies. In doing this,
I recognize that a rigid body may consist of multiple
parts, each of which is a separate rigid body. However,
the multiple parts of a rigid body are assumed to be
stationary relative to each other. They move as a union
relative to all other constituent rigid bodies.

Step 2. Introduce a reference point and a reference triad for
each constituent rigid body. I usually pick some point
that has particular signi¯cance for the geometry, say a
symmetry point of the rigid body. Similarly, I will pick
a triad for which at least one basis vector is parallel to
some symmetry line of the rigid body.

Step 3. Introduce a main observer, relative to which all con-
¯gurations are ultimately described. As suggested in
Chapter 2, the choice of main observer is motivated by
the purpose of the modeling, whether primarily graphics-
or physics-oriented. I often pick a reference point and a
reference triad of the main observer, such that it is re-
lated to the geometry of some object that is stationary
relative to the main observer.
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Step 4. Introduce a separate auxiliary observer for each rigid
body whose con¯guration may change relative to the
main observer. I pick the reference point and the refer-
ence triad of the auxiliary observer, such that the rigid
body remains stationary relative to the auxiliary ob-
server. It is not necessary that the reference point of
the auxiliary observer coincides with any point on the
corresponding rigid body.

Step 5. Arrange the observers and rigid bodies in a tree
structure with the main observer as the top node, the
auxiliary observers as internal nodes, and the rigid bod-
ies as leaf nodes. I often organize the auxiliary ob-
servers to re°ect the presence of mechanical joints that
restrict the relative motions between di®erent auxiliary
observers. This is analogous to the discussion of describ-
ing the con¯gurations of the digits on the hand relative
to you by describing the digits' con¯gurations relative to
the palm and the con¯guration of the palm relative to
you.

Step 6. Introduce con¯guration coordinates to quantify the
position vectors and rotation matrices that relate the
positions and orientations of successive nodes in the tree
structure. I recommend simplicity over cleverness. Often
the simplest solution is quite su±cient and will enhance
the understanding over a particularly clever solution that
may be detrimental to the understanding. I expect that
you will have experienced both possibilities when looking
at the various examples throughout the text.

Step 7. Identify any con¯guration constraints that restrict
the allowable values for the con¯guration coordinates to
actually correspond to geometrically correct con¯gura-
tions of the mechanism.

In the next several chapters, we will add to this algorithm to enable the
simulation and animation of geometrically correct and physically realistic
motions of the multibody mechanism.

7.3 A Bicycle

The algorithm in the previous section establishes the complete description
of the instantaneous geometry of a multibody mechanism and can be used
in a very crude way to generate motions. In this section, we return to the
bicycle introduced in Chapter 2 and implement the modeling algorithm
as suggested.
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7.3.1 Constituent Rigid Bodies

The bicycle shown below consists of four distinct rigid bodies, namely
the rear wheel, the front wheel, the steering column, and the frame.

Clearly, each of these bodies consists of multiple parts, but these parts
are rigidly attached to each other. Missing from this geometry are the
pedals. Their inclusion would result in at least one additional rigid body.
If each of the pedals were allowed to spin relative to the pedal assembly,
at least two more rigid bodies would need to be included. For the present
discussion, we restrict attention to the four rigid bodies identi¯ed at the
top of the section.

7.3.2 Reference Points and Reference Triads

Let the reference point Arear wheel of the rear wheel be located at the
center of the rear wheel. Choose the reference triad a

(rear wheel) of the
rear wheel, such that the wheel axis is parallel to the vector a

(rear wheel)

3
.

Let the reference point Afront wheel of the front wheel be located at the
center of the front wheel. Choose the reference triad a

(front wheel) of the
front wheel, such that the wheel axis is parallel to the vector a

(front wheel)

3
.
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Let the reference point Aframe of the frame coincide with Arear wheel.

Choose the reference triad a(frame) of the frame, such that a
(frame)

3
equals

a
(rear wheel)

3
and a

(frame)

1
is parallel to the forward direction of the bicycle

saddle.

Let the reference point Asteering of the steering column coincide with
Afront wheel. Choose the reference triad a

(steering) of the steering column,

such that a
(steering)

3
equals a

(front wheel)

3
and a

(steering)

1
is parallel to the

axis of rotation of the steering column.

7.3.3 Main Observer

As we are primarily interested in arriving at a geometry description that
we may implement in the Mambo application, we introduce a main ob-



W

Asteering

Aframe

Afront wheel

Arear wheel
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server W with reference point W and reference triad w corresponding
to the graphics application's internal reference con¯guration. Below, we
will introduce a plane that will be stationary relative to W to serve as a
basic background for the motion of the bicycle.

7.3.4 Auxiliary Observers

Since each of the four rigid bodies introduced above may change con¯g-
uration relative to the main observer, introduce four auxiliary observers
Arear wheel, Afront wheel, Aframe, and Asteering, relative to which the rear
wheel, front wheel, frame, and steering column, respectively, are station-
ary. For simplicity, let the corresponding reference points and reference
triads agree with those selected for the corresponding rigid bodies.

7.3.5 Tree Structures

Consider the following tree structure representing the conceptual arrange-
ment of observers and rigid bodies.

This description will be complete by specifying the pure translations
and pure rotations corresponding to each of the direct connections be-
tween successive observers or between observers and rigid bodies. In
particular, since the reference points and reference triads of the auxiliary
observers coincide with those of the corresponding rigid bodies, the pure
translations and pure rotations between the observers and the rigid bod-
ies are the identity translation and identity rotation. Naturally, each rigid
body consists of multiple parts whose con¯gurations relative to the aux-
iliary observers are described by non-trivial pure translations and pure
rotations. These are time-independent, however, and their description is
implemented as in the discussion on still lives in Chapters 2, 4, and 6.
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7.3.6 Con¯guration Coordinates

The con¯guration of the observer Aframe relative to the main observer
W is described by a pure translation TW!Aframe

corresponding to the
position vector

r
WAframe = w

0
@ q1

q2

q3

1
A

and a pure rotation RW!Aframe
corresponding to the rotation matrix

Rwa(frame) = R (q4; 0; 0; 1)R (q5; 1; 0; 0)R (q6; 0; 0; 1)

=

0
@ c4c6 ¡ s4c5s6 ¡c4s6 ¡ s4c5c6 s4s5

s4c6 + c4c5s6 ¡s4s6 + c4c5c6 ¡c4s5

s5s6 s5c6 c5

1
A ;

where ci = cos qi and s = sin qi; i = 1; 2; 3. The con¯guration coordinates
q4, q5, and q6 are Euler angles corresponding to a 3¡1¡3 decomposition
of the pure rotation RW!Aframe

.
The con¯guration of the observer Arear wheel relative to the observer

Aframe is described by a pure translation TAframe!Arear wheel
corresponding

to the position vector

r
AframeArear wheel = a

(frame)

0
@ 0

0
0

1
A = 0

and a pure rotation RAframe!Arear wheel
corresponding to the rotation ma-

trix

Ra(frame)a(rear wheel) = R (q7; 0; 0; 1)

=

0
@ cos q7 ¡ sin q7 0

sin q7 cos q7 0
0 0 1

1
A :

The con¯guration of the observer Asteering relative to the observer
Aframe is described by a pure translation TAframe!Asteering

corresponding
to the position vector

r
AframeAsteering

and a pure rotation R
Aframe!Asteering

corresponding to the rotation matrix

Ra(frame)a(steering) :

To compute Ra(frame)a(steering) , let the vector

v = a
(frame)

0
@ p1

p2

0

1
A
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be parallel to the axis of rotation of the steering column, where p1; p2 6= 0
are some constants. We may construct a triad b, such that b1 is paral-
lel to v by implementing the methodology described in Chapter 3. In
particular,

b1 =
v

kvk

= a
(frame)

0
B@

p1
p

p
2

1
+p

2

2

p2
p

p
2

1
+p

2

2

0

1
CA ;

b2 =
a

(frame)

3
£ b1°°°a(frame)

3
£ b1

°°° = a
(frame)

0
B@

¡
p2

p

p
2

1
+p

2

2

p1
p

p
2

1
+p

2

2

0

1
CA ;

and

b3 = b1 £ b2 = a
(frame)

0
@ 0

0
1

1
A :

The corresponding rotation matrix is given by

Ra(frame)b =

0
B@

p1
p

p
2

1
+p

2

2

¡
p2

p

p
2

1
+p

2

2

0
p2

p

p
2

1
+p

2

2

p1
p

p
2

1
+p

2

2

0

0 0 1

1
CA :

The rotation matrix Ra(frame)a(steering) is now obtained from the product

Ra(frame)a(steering) = Ra(frame)bR (q8; 1; 0; 0)

=

0
B@

p1
p

p
2

1
+p

2

2

¡
p2

p

p
2

1
+p

2

2

cos q8
p2

p

p
2

1
+p

2

2

sin q8

p2
p

p
2

1
+p

2

2

p1
p

p
2

1
+p

2

2

cos q8 ¡
p1

p

p
2

1
+p

2

2

sin q8

0 sin q8 cos q8

1
CA :

The position vector r
AframeAsteering is given by the expression

r
AframeAsteering = a

(frame)

0
@ p3

p4

0

1
A + a

(steering)

0
@ p5

p6

0

1
A

= a
(frame)

2
4
0
@ p3

p4

0

1
A + Ra(frame)a(steering)

0
@ p5

p6

0

1
A

3
5

= a
(frame)

0
B@

p3 + p1p5
p

p
2

1
+p

2

2

¡
p2p6

p

p
2

1
+p

2

2

cos q8

p4 + p2p5
p

p
2

1
+p

2

2

+ p1p6
p

p
2

1
+p

2

2

cos q8

p6 sin q8

1
CA



306 7 Review

corresponding to a combination of the vectors from the centers of the
wheels to a point on the steering column.

Finally, the con¯guration of the observer Afront wheel relative to the
observer Asteering is described by a pure translation TAsteering!Afront wheel

corresponding to the position vector

r
AsteeringAfront wheel = a

(steering)

0
@ 0

0
0

1
A = 0

and a pure rotation RAsteering!Afront wheel
corresponding to the rotation

matrix

Ra(steering)a(front wheel) = R (q9; 0; 0; 1)

=

0
@ cos q9 ¡ sin q9 0

sin q9 cos q9 0
0 0 1

1
A :

7.3.7 Con¯guration Constraints

It remains to consider any constraints on the con¯guration of the bicy-
cle that would reduce the number of geometric degrees of freedom from
the nine found in the previous section. In particular, we shall consider
constraining the rear and front wheels to remain in contact with a plane
representing the ground through the reference point W of the main ob-
server W and parallel to the basis vectors w1 and w2.

Denote by Prear contact the point on the rear wheel that makes contact
with the plane and at which point the tangent direction to the rear wheel
is parallel to the plane. Denote by Pfront contact the point on the front
wheel that makes contact with the plane and at which point the tangent
direction to the front wheel is parallel to the plane. It is convenient to
introduce two additional con¯guration coordinates, such that

Arear wheelPrear contact =

0
@ R cos q10

R sin q10

0

1
A

a(frame)

0
@ p3

p4

0

1
A

a
(steering)

0
@ p5

p6

0

1
A
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and

Afront wheelPfront contact =

0
@ R cos q11

R sin q11

0

1
A

where R is the wheel radius. Then, contact with the plane is ensured if

r
WPrear contact

² w3 = 0

and

r
WPfront contact

² w3 = 0:

Since the cross products

w3 £ a
(rear wheel)

3

and

w3 £ a
(front wheel)

3

are parallel to the line of intersection between the stationary plane and the
planes of the rear and front wheels, respectively, the tangent directions
to the rear and front wheels at the point of contact are parallel to the
plane if

r
Arear wheelPrear contact

²

³
w3 £ a

(rear wheel)

3

´
= 0

and

r
Afront wheelPfront contact

²

³
w3 £ a

(front wheel)

3

´
= 0:

The corresponding con¯guration constraints in terms of the con¯guration
coordinates are quite lengthy and algebraically complicated. Below, we
show the sequence of Mambo toolbox commands that can be used to
compute them explicitly.

7.3.8

The followingMambo toolbox statements invoke the DeclareObservers,
DeclarePoints, DeclareTriads, DefineObservers, DefinePoints, De-
fineTriads, and DefineNeighbors procedures to introduce all the rel-
evant information to generate a Mambo geometry description for the
auxiliary observers representing the bicycle.
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> Restart():
> DeclareObservers(W,Arear,Afront,Aframe,Asteer):
> DeclarePoints(W,Arear,Afront,Aframe,Asteer):
> DeclareTriads(w,arear,afront,aframe,asteer):
> DefineObservers([W,W,w],[Arear,Arear,arear],
> [Afront,Afront,afront],[Aframe,Aframe,aframe],
> [Asteer,Asteer,asteer]):
> DefinePoints([W,Aframe,w,q1,q2,q3]):
> DefineTriads([w,aframe,[q4,3],[q5,1],[q6,3]]):
> DefinePoints([Aframe,Arear,NullVector()]):
> DefineTriads([aframe,arear,[q7,3]]):
> v:=MakeTranslations(aframe,p1,p2,0):
> aframe1:=MakeTranslations(aframe,1):
> aframe2:=MakeTranslations(aframe,2):
> aframe3:=MakeTranslations(aframe,3):
> b1:=(1/VectorLength(v)) &** v:
> b2:=(1/VectorLength(aframe3 &xx b1))
> &** (aframe3 &xx b1):
> b3:=b1 &xx b2:
> DefineTriads([aframe,asteer,
> [matrix(3,3,(i,j)->cat(aframe,i) &oo cat(b,j))],
> [q8,1]]):
> DefinePoints([Aframe,Asteer,[aframe,p3,p4,0],
> [asteer,p5,p6,0]]):
> DefinePoints([Asteer,Afront,NullVector()]):
> DefineTriads([asteer,afront,q9,3]):
> DefineNeighbors([W,Aframe],[Aframe,Arear],
> [Aframe,Asteer],[Asteer,Afront]):
> GeometryOutput(main=W);

MODULE W {

BODY Aframe {

POINT {q1,q2,q3}

ORIENT

{cos(q4)*cos(q6)-sin(q4)*cos(q5)*sin(q6),-cos(q4)*sin(q6)-si

n(q4)*cos(q5)*cos(q6),sin(q4)*sin(q5),sin(q4)*cos(q6)+cos(q4

)*cos(q5)*sin(q6),-sin(q4)*sin(q6)+cos(q4)*cos(q5)*cos(q6),-

cos(q4)*sin(q5),sin(q5)*sin(q6),sin(q5)*cos(q6),cos(q5)}

BODY Asteer {

POINT

{p3+p5/(p1^2+p2^2)^(1/2)*p1-p6/(1/(p1^2+p2^2)*p2^2+1/(p1^2+p

2^2)*p1^2)^(1/2)/(p1^2+p2^2)^(1/2)*p2*cos(q8),p4+p5/(p1^2+p2

^2)^(1/2)*p2+p6/(1/(p1^2+p2^2)*p2^2+1/(p1^2+p2^2)*p1^2)^(1/2

)/(p1^2+p2^2)^(1/2)*p1*cos(q8),p6*(1/(p1^2+p2^2)*p1^2/(1/(p1

^2+p2^2)*p2^2+1/(p1^2+p2^2)*p1^2)^(1/2)+1/(p1^2+p2^2)*p2^2/(

1/(p1^2+p2^2)*p2^2+1/(p1^2+p2^2)*p1^2)^(1/2))*sin(q8)}

ORIENT

{1/(p1^2+p2^2)^(1/2)*p1,-1/(1/(p1^2+p2^2)*p2^2+1/(p1^2+p2^2)

*p1^2)^(1/2)/(p1^2+p2^2)^(1/2)*p2*cos(q8),1/(1/(p1^2+p2^2)*p

2^2+1/(p1^2+p2^2)*p1^2)^(1/2)/(p1^2+p2^2)^(1/2)*p2*sin(q8),1

/(p1^2+p2^2)^(1/2)*p2,1/(1/(p1^2+p2^2)*p2^2+1/(p1^2+p2^2)*p1

^2)^(1/2)/(p1^2+p2^2)^(1/2)*p1*cos(q8),-1/(1/(p1^2+p2^2)*p2^

2+1/(p1^2+p2^2)*p1^2)^(1/2)/(p1^2+p2^2)^(1/2)*p1*sin(q8),0,(

1/(p1^2+p2^2)*p1^2/(1/(p1^2+p2^2)*p2^2+1/(p1^2+p2^2)*p1^2)^(

1/2)+1/(p1^2+p2^2)*p2^2/(1/(p1^2+p2^2)*p2^2+1/(p1^2+p2^2)*p1

^2)^(1/2))*sin(q8),(1/(p1^2+p2^2)*p1^2/(1/(p1^2+p2^2)*p2^2+1
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/(p1^2+p2^2)*p1^2)^(1/2)+1/(p1^2+p2^2)*p2^2/(1/(p1^2+p2^2)*p

2^2+1/(p1^2+p2^2)*p1^2)^(1/2))*cos(q8)}

BODY Afront {

POINT {0,0,0}

ORIENT {cos(q9),-sin(q9),0,

sin(q9),cos(q9),0,0,0,1}

}

}

BODY Arear {

POINT {0,0,0}

ORIENT {cos(q7),-sin(q7),0,

sin(q7),cos(q7),0,0,0,1}

}

}

}

This geometry description may now be exported into a Mambo .geo
¯le. Mambo objects can be added at any level through the use of
BLOCK, CYLINDER, and SPHERE statements. Alternatively, the
DefineObjects procedure can be invoked to associate the objects with
their parent observers within theMambo toolbox session prior to export-
ing the geometry hierarchy with GeometryOutput.

The con¯guration constraints formulated above are implemented in
the Mambo toolbox using the following statements:

> DeclarePoints(Prear,Pfront):
> DefinePoints(
> [Arear,Prear,arear,R*cos(q10),R*sin(q10),0],
> [Afront,Pfront,afront,R*cos(q11),R*sin(q11),0]):
> f1:=simplify(FindTranslation(Arear,Prear) &oo
> (MakeTranslations(w,3) &xx
> MakeTranslations(arear,3)))=0:
> f2:=FindTranslation(W,Prear) &oo
> MakeTranslations(w,3)=0:
> f3:=simplify(FindTranslation(Afront,Pfront) &oo
> (MakeTranslations(w,3) &xx
> MakeTranslations(afront,3)))=0:
> f4:=FindTranslation(W,Pfront) &oo
> MakeTranslations(w,3)=0:

By substituting values for the geometric parameters p1, p2, p3, p4, p5,
p6, and R, it is possible to use these constraints to ¯nd allowable values
for the con¯guration coordinates qi, i = 1, : : : , 11 that correspond to a
con¯guration of the bicycle in which the wheels are in tangential contact
with the ground. A simple method is to use trial and error withinMambo
to ¯nd approximate allowable values for the con¯guration coordinates and
to subsequently invoke a numerical equation-solving algorithm with the
approximate values as initial guesses.
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Suppose, for example, that we have chosen

p1 = ¡0:348968837; p2 = 0:937134317;

p3 = 2:593718433R; p4 = 1:354840027R;

p5 = ¡1:520201636R; p6 = ¡0:2R;

where the wheel radius R = 0:5. As q1 and q2 correspond to the absolute
position of the bicycle along the stationary plane, these con¯guration co-
ordinates are entirely unconstrained. Similarly, as q4 corresponds to the
rotation of the frame about an axis perpendicular to the stationary plane,
this con¯guration coordinate is entirely unconstrained. Finally, as q7 and
q9 correspond to the amounts of rotation of the rear and front wheels rel-
ative to the frame and steering column, respectively, these con¯guration
coordinates are entirely unconstrained. For simplicity, we let

q1 = q2 = q4 = q7 = q9 = 0:

Since there are four constraint equations, the actual number of geo-
metric degrees of freedom of the bicycle is only seven. It follows that we
may assign values to two of the remaining con¯guration coordinates and
then use the con¯guration constraints to solve for the remaining con¯gu-
ration coordinates. Here, we choose to assign values to q5 corresponding
to the lateral tilt of the frame and q8 corresponding to the amount of
rotation of the steering column:

q5 = 1; q8 = 0:7:

Using Mambo, we may now manually adjust the remaining con¯guration
coordinates q3, q6, q10, and q11 until the con¯guration constraints appear
to be approximately satis¯ed. Indeed, the following choice of values yields
a visually satisfactory approximation:

q3 ¼ 0:4; q6 ¼ 0; q10 ¼ ¡1:5; q11 ¼ 3:14

as is con¯rmed by back substitution into the constraint equations:

> evalf(subs(p1=-.348968837,p2=.937134317,
> p3=2.593718433*R,p4=1.354840027*R,p5=-1.520201636*R,
> p6=-.2*R,R=.5,q1=0,q2=0,q4=0,q5=1,q7=0,q8=.7,q9=0,
> q6=0,q10=-1.5,q11=3.14,q3=.4,ff1,f2,f3,f4g));

f:02976165138 = 0; ¡:0196815444 = 0;
¡:0623671670 = 0; ¡:03589913905 = 0g

Numerical values for q3, q6, q10, and q11 that more accurately sat-
isfy the constraint equations may be obtained using the Maple function
fsolve. In particular, in the statements below, the fsolve function is
invoked with the previously found approximate values as initial guesses.
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> eq:=subs(p1=-.348968837,p2=.937134317,
> p3=2.593718433*R,p4=1.354840027*R,
> p5=-1.520201636*R,p6=-.2*R,R=.5,q1=0,
> q2=0,q4=0,q5=1,q7=0,q8=.7,q9=0,ff1,f2,f3,f4g):
> fsolve(eq,fq3=.4,q6=0,q10=-1.5,q11=3.14g);

fq3 = :4207354924; q6 = :01280053711;
q10 = ¡1:583596864; q11 = 3:288069682g

The procedure outlined above may now be repeated for other choices
of values for the con¯guration coordinates q5 and q8 (with arbitrary
choices of values for q1, q2, q4, q7, and q9) to obtain multiple con¯gura-
tions that satisfy the con¯guration constraints. A sequence of values for
the full set of con¯guration coordinates that would give the appearance
of a smooth motion could be generated by making only small changes
in these seven con¯guration coordinates between each frame. For each
new frame, the values found in the previous frame for q3, q6, q10, and
q11 could then be used as initial guesses in the call to fsolve. Maple
for-loops could be used to advantage in iterating this procedure.

The procedure described in the previous paragraph is clearly a cum-
bersome approach to generating an extensiveMambo dataset (aMambo
.sds ¯le) for purposes of animation. Moreover, it actually fails to account
for the constraints on the change of the con¯guration coordinates that
follow from the requirement that the wheels roll on the stationary sur-
face without slipping. Beginning in the next chapter and culminating in
Chapter 9, we will develop a more e±cient and comprehensive approach
that e®ectively addresses both of these concerns.

7.4 A Desk Lamp

As a ¯nal example, we return to the desk lamp introduced in Chapter 2
and implement the modeling algorithm as suggested above.
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7.4.1 Constituent Rigid Bodies

The desk lamp shown on the previous page consists of six distinct rigid
bodies, namely, the base, the lower, middle, and upper beams, the bracket,
and the lamp shade. Clearly, each of these bodies consists of multiple
parts, but these parts are rigidly attached to each other and can thus be
considered as single bodies for the purposes of developing a speci¯cation
of the mechanism's con¯guration and any inherent constraints.

7.4.2 Reference Points and Reference Triads

Let the reference point Abase of the base be located at the top of the base
centered between the vertical posts. Choose the reference triad a(base)

of the base, such that the vertical posts are parallel to the vector a
(base)

3

and are separated in a direction parallel to the vector a
(base)

2
.

Let the reference point Alower beam of the lower beam be located at
the center of the horizontal bar connecting the beam to the base. Choose
the reference triad a(lower beam) of the lower beam, such that the beam

is parallel to the vector a
(lower beam)

3
and the horizontal bar is parallel to

a
( lower beam)

2
.

Let the reference point Amiddle beam of the middle beam be located at
the center of the horizontal bar connecting the beam to the base. Choose
the reference triad a(middle beam) of the middle beam, such that the beam

is parallel to the vector a
(middle beam)

3
and the horizontal bar is parallel

to a
(middle beam)

2
.

Alower beam

a
(lower beam)

2

a
(lower beam)

3
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a
(middle beam)

2

a
(middle beam)

3

Aupper beam

a
(upper beam)

2

a
(upper beam)

3
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Let the reference point Aupper beam of the upper beam be located at
the center of the horizontal bar connecting the beam to the base. Choose
the reference triad a(upper beam) of the upper beam, such that the beam

is parallel to the vector a
(upper beam)

3
and the horizontal bar is parallel to

a
(upper beam)

2
.

Let the reference point Abracket of the bracket coincide with the hinge
joint connecting the bracket to the lower beam. Choose the reference
triad a

(bracket) of the bracket, such that the line between the hinge joints
connecting the bracket to the lower beam and the lamp shade, respec-

tively, is parallel to a
(bracket)

3
and the hinge axes are parallel to a

(bracket)

2
.

Abracket

a
(bracket)

1

a
(bracket)

3
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a
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a
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Let the reference point Alamp shade of the lamp shade coincide with
the hinge joint connecting the lamp shade to the bracket. Choose the
reference triad a(lamp shade) of the lamp shade, such that the symmetry

axis of the lamp shade is parallel to a
(lamp shade)

3
and the hinge axis is

parallel to a
(lamp shade)

2
.

7.4.3 Main Observer

As we are primarily interested in arriving at a geometry description that
we may implement in the Mambo application, we introduce a main ob-
server W with reference point W and reference triad w corresponding to
the graphics application's internal reference con¯guration.

7.4.4 Auxiliary Observers

Since each of the six rigid bodies introduced above may change con¯gura-
tion relative to the main observer, introduce six auxiliary observers Abase,
Alower beam, Amiddle beam, Aupper beam, Abracket, and Alamp shade, relative
to which the base, the lower, middle, and upper beams, the bracket, and
the lamp shade, respectively, are stationary. For simplicity, let the corre-
sponding reference points and reference triads agree with those selected
for the corresponding rigid bodies.

7.4.5 Tree Structures

Consider the tree structure on the next page, representing the conceptual
arrangement of observers and rigid bodies.

This description will be complete by specifying the pure translations
and pure rotations corresponding to each of the direct connections be-
tween successive observers or between observers and rigid bodies. In
particular, since the reference points and reference triads of the auxiliary
observers coincide with those of the corresponding rigid bodies, the pure
translations and pure rotations between the observers and the rigid bod-
ies are the identity translation and identity rotation. Naturally, each rigid
body consists of multiple parts whose con¯gurations relative to the aux-
iliary observers are described by non-trivial pure translations and pure
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rotations. These are time-independent, however, and their description is
implemented as in the discussion on still lives in Chapters 2, 4, and 6.

7.4.6 Con¯guration Coordinates

The con¯guration of the observer Abase relative to the main observer W is
described by a pure translation TW!Abase

corresponding to the position
vector

r
WAbase = w

0
@ q1

q2

q3

1
A

and a pure rotation RW!Abase
corresponding to the rotation matrix

Rwa(base) = R (q4; 0; 0; 1)R (q5; 1; 0; 0)R (q6; 0; 0; 1)

=

0
@ c4c6 ¡ s4c5s6 ¡c4s6 ¡ s4c5c6 s4s5

s4c6 + c4c5s6 ¡s4s6 + c4c5c6 ¡c4s5

s5s6 s5c6 c5

1
A ;

where ci = cos qi and s = sin qi; i = 1; 2; 3. The con¯guration coordinates
q4, q5, and q6 are Euler angles corresponding to a 3¡1¡3 decomposition
of the pure rotation R

W!Abase
.

The con¯guration of the observer Alower beam relative to the observer
Abase is described by a pure translation T

Abase!Alower beam
corresponding

to the position vector

r
AbaseAlower beam = a

(base)

0
@ 0

0
p1

1
A
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and a pure rotation R
Abase!Alower beam

corresponding to the rotation ma-
trix

Ra(base)a(lower beam) = R (q7; 0; 1; 0)

=

0
@ cos q7 0 sin q7

0 1 0
¡ sin q7 0 cos q7

1
A :

The con¯guration of the observer Amiddle beam relative to the observer
Abase is described by a pure translation TAbase!Amiddle beam

corresponding
to the position vector

r
AbaseAmiddle beam = a

(base)

0
@ 0

0
p2

1
A

and a pure rotation R
Abase!Amiddle beam

corresponding to the rotation
matrix

Ra(base)a(middle beam) = R (q8; 0; 1; 0)

=

0
@ cos q8 0 sin q8

0 1 0
¡ sin q8 0 cos q8

1
A :

The con¯guration of the observer Aupper beam relative to the observer
Abase is described by a pure translation TAbase!Aupper beam

corresponding
to the position vector

r
AbaseAupper beam = a

(base)

0
@ 0

0
p3

1
A

and a pure rotation RAbase!Aupper beam
corresponding to the rotation ma-

trix

Ra(base)a(upper beam) = R (q9; 0; 1; 0)

=

0
@ cos q9 0 sin q9

0 1 0
¡ sin q9 0 cos q9

1
A :

The con¯guration of the observer Abracket relative to the observer
Alower beam is described by a pure translation TAlower beam!Abracket

corre-
sponding to the position vector

r
Alower beamAbracket = a

(lower beam)

0
@ 0

0
p4

1
A
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and a pure rotation R
Alower beam!Abracket

corresponding to the rotation
matrix

Ra(lower beam)a(bracket) = R (q10; 0; 1; 0)

=

0
@ cos q10 0 sin q10

0 1 0
¡ sin q10 0 cos q10

1
A :

Finally, the con¯guration of the observer Alamp shade relative to the ob-
server Abracket is described by a pure translation T

Abracket!Alamp shade
cor-

responding to the position vector

r
AbracketAlamp shade = a

(bracket)

0
@ 0

0
p5

1
A

and a pure rotation RAbracket!Alamp shade
corresponding to the rotation

matrix

Ra(bracket)a(lamp shade) = R (q11; 0; 1; 0)

=

0
@ cos q11 0 sin q11

0 1 0
¡ sin q11 0 cos q11

1
A :

7.4.7 Con¯guration Constraints

It remains for us to consider any constraints on the con¯guration of the
desk lamp that would reduce the number of geometric degrees of freedom
from the eleven found in the previous section. In particular, we shall
consider constraining the rotations of the bracket and upper beam to
respect the constraint imposed by the corresponding hinge joint.

Denote by Hbracket and Hupper beam the points on the bracket and
upper beam, respectively, that coincide with the corresponding hinge
joint. It follows that

r
Aupper beamHupper beam = a

(upper beam)

0
@ 0

0
p6

1
A

and

r
AbracketHbracket = a

(bracket)

0
@ ¡p7

0
p8

1
A :

That the points Hbracket and Hupper beam coincide with the corresponding
hinge joint implies that the position vector representing their separation
must be zero, i.e.,

r
HbracketHupper beam = 0:
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Since, by construction, the points Hbracket and Hupper beam automatically

lie in a plane spanned by a
(base)

1
and a

(base)

3
, this condition is equivalent

to the following con¯guration constraints:

r
HbracketHupper beam

² a
(base)

1
= 0;

r
HbracketHupper beam

² a
(base)

3
= 0:

The corresponding con¯guration constraints in terms of the con¯gura-
tion coordinates are quite lengthy and algebraically complicated. Below,
we show the sequence of Mambo toolbox commands that can be used to
compute them explicitly.

7.4.8

The followingMambo toolbox statements invoke the DeclareObservers,
DeclarePoints, DeclareTriads, DefineObservers, DefinePoints, De-
fineTriads, and DefineNeighbors procedures to introduce all the rel-
evant information to generate a Mambo geometry description for the
auxiliary observers representing the desk lamp.

> Restart():

> DeclareObservers(W,Base,Lamp,Bracket,UpperBeam,
> LowerBeam,MiddleBeam):
> DeclarePoints(W,Base,Lamp,Bracket,UpperBeam,
> LowerBeam,MiddleBeam):
> DeclareTriads(w,base,lamp,bracket,upperbeam,
> lowerbeam,middlebeam):
> DefineNeighbors([W,Base],[Base,LowerBeam],
> [LowerBeam,Bracket],[Bracket,Lamp],
> [Base,MiddleBeam],[Base,UpperBeam]):

> DefineObservers([W,W,w],[Base,Base,base],
> [LowerBeam,LowerBeam,lowerbeam],
> [MiddleBeam,MiddleBeam,middlebeam],
> [UpperBeam,UpperBeam,upperbeam],
> [Bracket,Bracket,bracket],[Lamp,Lamp,lamp]):

> DefinePoints([W,Base,w,q1,q2,q3],
> [Base,LowerBeam,base,0,0,p1],
> [Base,MiddleBeam,base,0,0,p2],
> [Base,UpperBeam,base,0,0,p3],
> [LowerBeam,Bracket,lowerbeam,0,0,p4],
> [Bracket,Lamp,bracket,0,0,p5]):

> DefineTriads([w,base,[q4,3],[q5,1],[q6,3]],
> [base,lowerbeam,q7,2],[lowerbeam,bracket,q10,2],
> [bracket,lamp,q11,2],[base,middlebeam,q8,2],
> [base,upperbeam,q9,2]):

> GeometryOutput(main=W);
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MODULE W {

BODY Base {

Point {q1,q2,q3}

Orient

{cos(q4)*cos(q6)-sin(q4)*cos(q5)*sin(q6),-cos(q4)*sin(q6)-si

n(q4)*cos(q5)*cos(q6),sin(q4)*sin(q5),sin(q4)*cos(q6)+cos(q4

)*cos(q5)*sin(q6),-sin(q4)*sin(q6)+cos(q4)*cos(q5)*cos(q6),-

cos(q4)*sin(q5),sin(q5)*sin(q6),sin(q5)*cos(q6),cos(q5)}

BODY MiddleBeam {

Point {0,0,p2}

Orient {cos(q8),0,sin(q8),0,1,0,-sin(q8),0,cos(q8)}

}

BODY UpperBeam {

Point {0,0,p3}

Orient {cos(q9),0,sin(q9),0,1,0,-sin(q9),0,cos(q9)}

}

BODY LowerBeam {

Point {0,0,p1}

Orient {cos(q7),0,sin(q7),0,1,0,-sin(q7),0,cos(q7)}

BODY Bracket {

Point {0,0,p4}

Orient {cos(q10),0,sin(q10),0,1,0,

-sin(q10),0,cos(q10)}

BODY Lamp {

Point {0,0,p5}

Orient {cos(q11),0,sin(q11),0,1,0,

-sin(q11),0,cos(q11)}

}

}

}

}

}

This geometry description may now be exported into a Mambo .geo
¯le. Mambo objects can be added at any level through the use of
BLOCK, CYLINDER, and SPHERE statements. Alternatively, the
DefineObjects procedure can be invoked to associate the objects with
their parent observers within theMambo toolbox session prior to export-
ing the geometry hierarchy with GeometryOutput.

The con¯guration constraints formulated above are implemented in
the Mambo toolbox using the following statements:

> DeclarePoints(HUpperBeam,HBracket):
> DefinePoints(
> [UpperBeam,HUpperBeam,upperbeam,0,0,p6],
> [Bracket,HBracket,bracket,-p7,0,p8]):
> f1:=FindTranslation(HBracket,HUpperBeam) &oo
> MakeTranslations(base,1)=0:
> f2:=FindTranslation(HBracket,HUpperBeam) &oo
> MakeTranslations(base,3)=0:

By substituting values for the geometric parameters p1, p2, p3, p4, p5, p6,
p7, and p8, it is possible to use these constraints to ¯nd allowable values
for the con¯guration coordinates qi, i = 1, : : : , 11 that correspond to
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a con¯guration of the desk lamp in which the upper beam connects to
the bracket at the appropriate hinge joint. As in the case of the bicycle,
we may use trial and error within Mambo to ¯nd approximate allowable
values for the con¯guration coordinates and subsequently invoke a nu-
merical equation-solving algorithm with the approximate values as initial
guesses.

Suppose, for example, that we have chosen

p1 = 11; p2 = 12:5; p3 = 14; p4 = 45;
p5 = 3:5; p6 = 45; p7 = 1:5; p8 = 2:6:

As q1, q2, q3, q4, q5, and q6 correspond to the position and orientation of
the base relative to the main observer W, these con¯guration coordinates
are entirely unconstrained. For simplicity, we let

q1 = q2 = q3 = q4 = q5 = q6 = 0:

Similarly, as q8 corresponds to the rotation of the middle beam relative
to the base, this con¯guration coordinate is entirely unconstrained. How-
ever, as the middle beam provides a counterbalance to the upper beam,
we give it an initial orientation given by

q8 = 1:8:

Finally, as q11 corresponds to the rotation of the lamp shade relative to
the bracket, this con¯guration coordinate is entirely unconstrained. Here,
we let

q11 = 2:

Since there are two constraint equations, the actual number of geo-
metric degrees of freedom of the bicycle is only nine. It follows that we
may assign values to one of the remaining con¯guration coordinates and
then use the con¯guration constraints to solve for the remaining con¯gu-
ration coordinates. Here, we choose to assign values to q9 corresponding
to the orientation of the upper beam relative to the base:

q9 = 1:2:

Using Mambo, we may now manually adjust the remaining con¯guration
coordinates q7 and q10 until the con¯guration constraints appear to be
approximately satis¯ed. Indeed, the following choice of values yields a
visually satisfactory approximation:

q7 ¼ 1:2; q10 ¼ ¡0:67

as is con¯rmed by back substitution into the constraint equations:

> evalf(subs(q1=0,q2=0,q3=0,q4=0,q5=0,q6=0,q7=1.2,
> q8=1.8,q9=1.2,q10=-.67,q11=2,p1=11,p2=12.5,p3=14,
> p4=45,p5=3.5,p6=45,p7=1.5,p8=2.6,ff1,f2g));
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f¡:020176081 = 0; ¡:001598395 = 0g

Numerical values for q7 and q10 that more accurately satisfy the con-
straint equations may be obtained using the Maple function fsolve. In
particular, in the statement below, the fsolve function is invoked with
the previously found approximate values as initial guesses.

> fsolve(subs(q1=0,q2=0,q3=0,q4=0,q5=0,q6=0,q8=1.8,
> q9=1.2,q11=2,p1=11,p2=12.5,p3=14,p4=45,p5=3.5,p6=45,
> p7=1.5,p8=2.6,ff1,f2g),fq7=1.2,q10=-.67g);

fq7 = 1:200039725; q10 = ¡:6769771893g

The procedure outlined above may now be repeated for other choices
of values for the con¯guration coordinate q9 (with arbitrary choices of val-
ues for q1, q2, q3, q4, q5, q6, q8, and q11) to obtain multiple con¯gurations
that satisfy the con¯guration constraints. As in the case of the bicycle, a
sequence of values for the full set of con¯guration coordinates that would
give the appearance of a smooth motion could be generated by making
only small changes in these nine con¯guration coordinates between each
frame. For each new frame, the values found in the previous frame for q7

and q10 could then be used as initial guesses in the call to fsolve. Maple
for-loops could be used to advantage in iterating this procedure.

The procedure described in the previous paragraph is clearly a cum-
bersome approach to generating an extensiveMambo dataset (aMambo
.sds ¯le) for purposes of animation. As was the case with the bicycle, it
actually fails to account for the constraints on the change of the con¯g-
uration coordinates that follow from the requirement that the teeth of
the spur gears on the middle and upper beams not be allowed to pass
through one another. Beginning in the next chapter and culminating in
Chapter 9, we will develop a more e±cient and comprehensive approach
that e®ectively addresses both of these concerns.



Chapter 8

Velocities

wherein the reader learns of:

² Describing the instantaneous state of motion of a rigid body or ob-

server relative to an observer;

² Di®erentiating vectors with respect to time relative to di®erent ob-

servers;

² Reconstructing the con¯guration as a function of time from knowl-

edge of the linear and angular velocities.



Practicum

Visualize the notions of linear and

angular velocity as introduced in

this chapter by including cylinders

representing the corresponding vec-

tors in a Mambo geometry descrip-

tion. Note, in particular, the associ-

ation between the linear and angu-

lar velocity vectors and the instan-

taneous directions of translation and

rotation of any rigid object relative

to some observer.

Consider using several cylinders to

represent the linear and angular ve-

locities of a rigid body relative to dif-

ferent observers. Use these to build

your intuition and to con¯rm your

ability to accurately compute time

derivatives.
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8.1 Motion

The con¯guration of a rigid body relative to an observer is given by a
pure translation T and a pure rotation R. If the pure translation and/or
the pure rotation change with time relative to the observer, i.e., if the
con¯guration of the rigid body relative to the observer is time-dependent,
then the rigid body is moving relative to the observer. If the rigid body
is not moving relative to the observer, we say that it is stationary relative
to the observer.

Illustration 8.1

In previous chapters, we found that the pure translation and pure rota-
tion that describe the con¯guration of a rigid body may be di®erent for
di®erent observers. Since the only perception an observer has of a rigid
body is in terms of its con¯guration, we were hard put to suggest an
absolute notion of con¯guration. All statements about the con¯guration
of a rigid body were made relative to some observer.

Now, consider two observers A and B whose reference con¯gurations
happen to coincide at some moment in time. At that very moment, the
two observers agree with each other about the position and orientation of
any arbitrary rigid body in their environment. However, unless the refer-
ence con¯gurations continue to coincide, the two observers may disagree
with each other about the time-dependence of the position and orien-
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tation of any arbitrary rigid body. For a rigid body that is stationary
relative to B, any motion of B relative to A implies that the rigid body
is moving relative A and so on.

You perceive motion by looking for changes with time in the position
and orientation of a rigid body or of an observer relative to some other
observer. By considering changes over smaller and smaller intervals of
time [t0; t0 + h] based at some speci¯c moment t = t0, you can quan-
tify the instantaneous \tendency" of motion. This idea was mentioned
already in Chapter 1, with the introduction of the notions of instanta-
neous directions of translation and rotation and the associated linear and
angular speeds.

Speci¯cally, let Tt and Rt describe the position and orientation of a
rigid body relative to some observer O at time t. Then, the change in
position relative to O over the time interval [t0; t0 + h] is given by the
pure translation

Tt0!t0+h = Tt0+h ± (Tt0
)
¡1

:

Similarly, the change in orientation relative to O over the time interval
[t0; t0 + h] is given by the pure rotation

Rt0!t0+h = Rt0+h ± (Rt0
)¡1

:

As h ! 0, we expect that Tt0!t0+h and Rt0!t0+h will both approach
the identity operation I. After all, there is no change in position or
orientation for h = 0.

For each h > 0, the pure translation Tt0!t0+h corresponds to a shift
of all points on the rigid body an equal distance in a common direction
relative to O. How do the shifting distance and shifting direction relative
to O vary as h ! 0?
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For each h > 0, the pure rotation Rt0!t0+h corresponds to a rotation
of the rigid body by some angle about a ¯xed axis relative to O. How do
the turning angle and turning direction relative to O vary as h ! 0?

Both the shifting distance d and the turning angle ' relative to O

can be thought of as functions of h. Since these functions approach the
unique limit 0 as h ! 0, we expect that

d ¼ hv (t0) and ' ¼ h! (t0)

for su±ciently small h, where the quantities v (t0) and ! (t0) are called
the linear and angular speeds, respectively, at t = t0 of the rigid body
relative to the observer O.

The directions of translation and rotation relative to O can also be
thought of as functions of h. These directions are not de¯ned for h = 0,
since a shift by a zero distance or a rotation by a zero angle yields the
same result for any direction. Nevertheless, the directions typically have
well-de¯ned limits as h ! 0. Speci¯cally, the limiting direction relative to
O of the pure translation Tt0!t0+h as h ! 0 is called the instantaneous

direction of translation at t = t0 of the rigid body relative to the observer
O. Similarly, the limiting direction of the pure rotation Rt0!t0+h as
h ! 0 is called the instantaneous direction of rotation at t = t0 of the
rigid body relative to the observer O.

In the next two sections, we will derive quantitative expressions for
computing the linear and angular speeds and the corresponding instan-
taneous directions of motion.

8.1.1 Linear Velocity

Let A and B be two observers with reference points A and B and reference
triads a and b, respectively. The position of B relative to A is given by
the pure translation TA!B corresponding to the position vector r

AB. If
the position of B relative to A is changing with time, it follows that the
matrix representation

a
¡
r

AB
¢

is time-dependent. If the vector

a
a
¡
r

AB
¢
(t0)

describes the position of the observer B relative to A at time t = t0 and
the vector

a
a
¡
r

AB
¢
(t0 + h)

describes the position of the observer B relative to A at time t = t0 + h,
then the vector

a
a
¡
r

AB
¢
(t0 + h) ¡ a

a
¡
r

AB
¢
(t0)
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B
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a3

r
AB

r
AB
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describes the change in position of the observer B relative to A over the
interval [t0; t0 + h].

For su±ciently small h, we can use Taylor's theorem and expand the
matrix representation a

¡
r

AB
¢
(t0 + h) in powers of h:

a
¡
r

AB
¢
(t0 + h) ¼

a
¡
r

AB
¢
(t0) + h

d
a
¡
r

AB
¢

dt
(t)

¯̄̄
¯̄
t=t0

:

It follows that

a
a
¡
r

AB
¢
(t0 + h) ¡ a

a
¡
r

AB
¢
(t0) ¼ ha

"
d

a
¡
r

AB
¢

dt
(t)

¯̄̄
¯̄
t=t0

#
:

For su±ciently small h, the change in position is given by the product of
h and the h-independent vector

a

"
d

a
¡
r

AB
¢

dt
(t)

¯̄̄
¯̄
t=t0

#

called the linear velocity at time t = t0 of the observer B relative to A

and denoted by A
v

B (t0).

Illustration 8.2

By de¯nition, the linear velocity of the observer B relative to A is a vec-
tor. It does not correspond to a pure translation, however. In fact, the
quantity °°A

v
B

°° def

=
p

AvB
²

AvB

equals the linear speed of the observer B relative to A.
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The direction of the linear velocity vector is the limiting direction
relative to A of the pure translation Tt!t+h from the con¯guration at
time t to the con¯guration at time t + h as h ! 0.

The linear velocity vector thus contains information about the instan-
taneous direction and instantaneous speed of the translational motion of
observer B relative to A.

8.1.2 Angular Velocity

Let A and B be two observers with reference points A and B and reference
triads a and b, respectively. The orientation of B relative to A is given
by the pure rotation RA!B corresponding to the rotation matrix Rab. If
the orientation of B relative to A is changing with time, it follows that
the rotation matrix Rab is time-dependent. If

Rab (t0)

describes the orientation of the observer B relative to A at time t = t0

and

Rab (t0 + h)

describes the orientation of the observer B relative to A at time t = t0+h,
then the matrix product

(Rab (t0))
¡1

Rab (t0 + h) = Rba (t0)Rab (t0 + h)

describes the change in orientation of the observer B relative to A over
the interval [t0; t0 + h].
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For su±ciently small h, we can use Taylor's theorem and expand the
rotation matrix Rab (t0 + h) in powers of h:

Rab (t0 + h) ¼ Rab (t0) + h
dRab

dt
(t)

¯̄̄
¯
t=t0

:

It follows that

Rba (t0)Rab (t0 + h) ¼ Id + hRba (t0)
dRab

dt
(t)

¯̄̄
¯
t=t0

;

where Id is the identity matrix. The result of Exercise 8.1 shows that

Rba (t0)
dRab

dt
(t)

¯̄̄
¯
t=t0

=

0
@ 0 ¡!3 (t0) !2 (t0)

!3 (t0) 0 ¡!1 (t0)
¡!2 (t0) !1 (t0) 0

1
A

for some functions !1 (t), !2 (t), and !3 (t). The vector

b

0
@ !1 (t0)

!2 (t0)
!3 (t0)

1
A

is called the angular velocity at time t = t0 of the observer B relative to

A and is denoted by A
!

B (t0).

Illustration 8.3

By de¯nition, the angular velocity of the observer B relative to A is a vec-
tor. It does not correspond to a pure translation, however. In particular,
de¯ne the quantity °°A

!
B

°° def

=
p

A
!

B
²

A
!

B

and consider the rotation matrix

R

µ
h

°°A

!
B

°° ;
!1

k
A

!
B
k

;
!2

k
A

!
B
k

;
!3

k
A

!
B
k

¶
in terms of the notation introduced in Chapter 5. Then, since

cos
¡
h

°°A

!
B

°°¢
¼ 1 and sin

¡
h

°°A

!
B

°°¢
¼ h

°°A

!
B

°°
for small h,·

R

µ
h

°°A

!
B

°° ;
!1

k
A

!
B
k

;
!2

k
A

!
B
k

;
!3

k
A

!
B
k

¶¸
ij

= ±ij cos
¡
h

°°A

!
B

°°¢
+

¡
1 ¡ cos

¡
h

°°A

!
B

°°¢¢ !i!j

k
A

!
B
k
2

¡ sin
¡
h

°°A

!
B

°°¢ 3X
k=1

"ijk

!k

k
A

!
B
k

¼ ±ij ¡ h

3X
k=1

"ijk!k.



1

8.1 Motion 331

But this equals ·
Id + hRba

dRab

dt

¸
ij

and we conclude that

[Rba (t)Rab (t + h)]

¼ R

µ
h

°°A

!
B (t)

°° ;
!1 (t)

k
A

!
B (t)k

;
!2 (t)

k
A

!
B (t)k

;
!3 (t)

k
A

!
B (t)k

¶
:

It follows that the quantity °°A

!
B

°°
equals the angular speed of the observer B relative to A and that A

!
B is

parallel to the instantaneous direction of rotation of B relative to A.

8.1.3 Notation and Review

The derivative of an arbitrary vector r relative to a triad a is de¯ned as
the vector

a
dr

dt

def

= a
d ar (t)

dt
:

The superscript to the left of the di®erentiation symbol re°ects the choice
of triad on the right-hand side. The derivative of the same vector r

relative to the triad b is then given by the vector

b
dr

dt
= b

d br (t)

dt
:

The di®erentiation symbol on the right-hand side does not use a left
superscript, since it corresponds to a standard derivative of a numerical
function of t. The above expressions de¯ne the di®erentiation operator

a
d

dt
:

As we shall see below, in general,

b
dr

dt
6=

a
dr

dt
:

If a is the reference triad of an observer A, then we can de¯ne

A

dr

dt

def

=
a
dr

dt



332 8 Velocities

for an arbitrary vector r. Since the reference point of A is irrelevant to
the computation of this derivative, no new information is suggested by
this notation. I will not use this further.

If A and B are two observers with reference points A and B and
reference triads a and b, then the derivative

a
drAB

dt

of the position vector r
AB relative to the a triad is de¯ned as the linear

velocity of B relative to A. Similarly,

b
dr

BA

dt

is the linear velocity of A relative to B. The derivatives

a
drBA

dt
and

b
drAB

dt

have no immediate physical meaning.
The linear velocity of B relative to A is denoted by A

v
B. This text

consistently uses a lower-case v to denote a linear velocity. The left and
right superscripts correspond to the two observers and appear in an order
that suggests a direction from left to right.

By de¯nition, the linear velocity of B relative to A is given by the
derivative

a
dr

AB

dt
= a

d
a
¡
r

AB
¢

dt
= a

d
A

B

dt
;

where

A

B

is the coordinate representation of the point B relative to the A observer.
More generally, we introduce the notation

A

dP

dt

def

= a
d AP

dt
= a

d a
¡
r

AP
¢

dt
=

a
drAP

dt

to denote the velocity of the point P relative to the observer A. It follows
that

A

dB

dt
= A

v
B

;

where B is the reference point of the B observer.
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The angular velocity of B relative to A is the vector A
!

B, such that

b
¡
A

!
B

¢
=

0
@ !1

!2

!3

1
A ;

where

Rba

dRab

dt
=

0
@ 0 ¡!3 !2

!3 0 ¡!1

¡!2 !1 0

1
A :

This text consistently uses the lower-case Greek letter ! to denote an
angular velocity. The left and right superscripts play the same role as in
the case of the linear velocity. Contrary to the case of the linear velocity,
only the reference triads of A and B are involved in the computation of
A

!
B
: To re°ect this fact, I will use the notation

a
!

b

for the angular velocity vector between the triad a and the triad b.

8.2 Di®erent Viewpoints

Let A and B be two observers with reference points A and B and reference
triads a and b and consider the di®erence

a
dr

dt
¡

b
dr

dt
= a

d ar

dt
¡ b

d br

dt

= a
d

dt

£
Rab

b
r
¤
¡ b

d br

dt

= (aRab ¡ b)
d br

dt
+ a

dRab

dt

b
r

= bRba

dRab

dt

b
r

for some arbitrary vector r. The result of Exercise 8.5 shows that this
equals the cross product between a

!
b and r, i.e.,

a
dr

dt
=

b
dr

dt
+ a

!
b
£ r.

Illustration 8.4

Suppose that r
AP and r

BP are the position vectors from the reference
points of the observers A and B to some point P on a rigid body.
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Then, the velocity of the point P relative to the observer A is given by

A

dP

dt
=

a
drAP

dt
:

Similarly, the velocity of the point P relative to the observer B is given
by

B

dP

dt
=

b
drBP

dt
:

But,

r
AP = r

AB + r
BP

and thus

A

dP

dt
¡

B

dP

dt
=

a
dr

AP

dt
¡

b
dr

BP

dt

=
a

d

dt

¡
r

AB + r
BP

¢
¡

b
dr

BP

dt

=
a
dr

AB

dt
+ a

!
b
£ r

BP

= A

v
B + a

!
b
£ r

BP
:

The velocity of the point P relative to the observer B equals the velocity
of the point P relative to the observer A if and only if

A

v
B + a

!
b
£ r

BP = 0:

1
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Recall the relation between the derivatives of a vector relative to two
di®erent triads:

a
dr

dt
¡

b
dr

dt
= a

!
b
£ r.

Switch the role of the two triads a and b to yield

b
dr

dt
¡

a
dr

dt
= b

!
a

£ r:

Adding these two equations shows that

0 =
¡
a
!

b + b
!

a
¢

£ r

for an arbitrary vector r. But this is possible only if

a
!

b + b
!

a = 0;

i.e.,

b
!

a = ¡
a
!

b
:

Illustration 8.5

In the previous illustration, we found that

A

dP

dt
¡

B

dP

dt
= A

v
B + a

!
b
£ r

BP
;

where
A

dP

dt
and

B
dP

dt
were the velocities of a point P on a rigid body

relative to two observers A and B, with reference points A and B and
reference triads a and b, respectively. By switching the roles of the ob-
servers, we ¯nd

B

dP

dt
¡

A

dP

dt
= B

v
A + b

!
a

£ r
AP

= B

v
A

¡
a
!

b
£

¡
r

AB + r
BP

¢
:

Adding these two equations shows that

0 = A

v
B + B

v
A

¡
a
!

b
£ r

AB
;

i.e.,

B

v
A = ¡

A

v
B + a

!
b
£ r

AB.
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Now, let A, B, and C be three di®erent observers with reference points
A, B, and C, respectively, and reference triads a, b, and c, respectively.
From the previous discussion, we recall that

a
dr

dt
¡

b
dr

dt
= a

!
b
£ r;

b
dr

dt
¡

c
dr

dt
= b

!
c
£ r;

and

a
dr

dt
¡

c
dr

dt
= a

!
c
£ r:

Adding the ¯rst two relations and subtracting the last relation shows that

0 =
¡
a
!

b + b
!

c
¡

a
!

c
¢

£ r

for an arbitrary vector r. But this is only possible if

a
!

b + b
!

c
¡

a
!

c = 0;

i.e.,

a
!

c = a
!

b + b
!

c
:

Illustration 8.6

The result of a previous illustration shows that

A

dP

dt
¡

B

dP

dt
= A

v
B + a

!
b
£ r

BP
;

B

dP

dt
¡

C

dP

dt
= B

v
C + b

!
c
£ r

CP
;

and

A

dP

dt
¡

C

dP

dt
= A

v
C + a

!
c
£ r

CP
:

Adding the ¯rst two relations and subtracting the last relation shows that

0 = A

v
B + B

v
C

¡
A

v
C

+ a
!

b
£ r

BP + b
!

c
£ r

CP
¡

a
!

c
£ r

CP

= A

v
B + B

v
C

¡
A

v
C

+ a
!

b
£

¡
r

BC + r
CP

¢
+ b

!
c
£ r

CP

¡
a
!

b
£ r

CP
¡

b
!

c
£ r

CP

= A

v
B + B

v
C

¡
A

v
C + a

!
b
£ r

BC
;
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i.e.,

A

v
C = A

v
B + B

v
C + a

!
b
£ r

BC
:

8.3 Integration

The position of a rigid body relative to some observer A is given by a pure
translation T

A
corresponding to the position vector r

AB, where A and B

are the reference points of the observer A and the rigid body, respectively.
If the rigid body is unconstrained, three con¯guration coordinates are
necessary and su±cient to describe its position. For example,

r
AB = a

0
@ q1

q2

q3

1
A ;

where q1, q2, and q3 are the Cartesian coordinates of the point B in a
coordinate system with origin at A and axes parallel to the basis vectors
of the reference triad a of the observer A, i.e.,

A

B =

0
@ q1

q2

q3

1
A :

From the de¯nition of the linear velocity of the rigid body relative to
the observer A, we have

A

dB

dt
=

a
drAB

dt

= a
d a

¡
r

AB
¢

dt

= a

0
@ _q1

_q2

_q3

1
A ;

where the dot superscript denotes di®erentiation with respect to t. If we
know the con¯guration coordinates q1 (t), q2 (t), and q3 (t) as functions
of time, then we can compute their derivatives as functions of time, and
therefore the linear velocity of the rigid body relative to A as a function
of time.

Conversely, suppose that

A

dB

dt
= a

0
@ u1 (t)

u2 (t)
u3 (t)

1
A ;

1

(Ex. 8.13)
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where u1 (t), u2 (t), and u3 (t) are known functions of time. It follows
that

_q1 = u1 (t) ;

_q2 = u2 (t) ;

and

_q3 = u3 (t) :

or, equivalently, 0
@ 1 0 0

0 1 0
0 0 1

1
A

0
@ _q1

_q2

_q3

1
A =

0
@ u1 (t)

u2 (t)
u3 (t)

1
A :

The coe±cient matrix on the left-hand side is always invertible, since¯̄̄
¯̄̄ 1 0 0

0 1 0
0 0 1

¯̄̄
¯̄̄ = 1 6= 0.

The di®erential equations in the unknown functions q1 (t), q2 (t), and
q3 (t) are therefore non-singular for all q1, q2, and q3. Given initial condi-
tions q1 (t0), q2 (t0), and q3 (t0) ; the di®erential equations can be solved
for q1 (t), q2 (t), and q3 (t). The result may be substituted into the ex-
pression for the position vector

r
AB = a

0
@ q1 (t)

q2 (t)
q3 (t)

1
A

or the coordinate representation of B relative to A:

A

B =

0
@ q1 (t)

q2 (t)
q3 (t)

1
A :

Illustration 8.7

In terms of spherical coordinates,

r
AB = a

0
@ ~q1 sin ~q2 cos ~q3

~q1 sin ~q2 sin ~q3

~q1 cos ~q2

1
A ;

i.e.,

A

B =

0
@ ~q1 sin ~q2 cos ~q3

~q1 sin ~q2 sin ~q3

~q1 cos ~q2

1
A :
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The velocity of the point B relative to A now becomes

A

dB

dt
=

a
drAB

dt

= a
d a

¡
r

AB
¢

dt

= a

0
@ _~q

1
sin ~q2 cos ~q3 + ~q1

_~q
2
cos ~q2 cos ~q3 ¡ ~q1

_~q
3
sin ~q2 sin ~q3

_~q1 sin ~q2 sin ~q3 + ~q1
_~q2 cos ~q2 sin ~q3 + ~q1

_~q3 sin ~q2 cos ~q3

_~q1 cos ~q2 ¡ ~q1
_~q2 sin ~q2

1
A :

If we are given ~q1 (t), ~q2 (t), and ~q3 (t), we can compute the linear velocity
of the rigid body relative to the observer A as a function of time.

Conversely, suppose that

A

dB

dt
= a

0
@ u1 (t)

u2 (t)
u3 (t)

1
A ;

where u1 (t), u2 (t), and u3 (t) are known functions of time. It follows
that

_~q1 sin ~q2 cos ~q3 + ~q1
_~q2 cos ~q2 cos ~q3 ¡ ~q1

_~q3 sin ~q2 sin ~q3 = u1 (t) ;

_~q1 sin ~q2 sin ~q3 + ~q1
_~q2 cos ~q2 sin ~q3 + ~q1

_~q3 sin ~q2 cos ~q3 = u2 (t) ;

and

_~q1 cos ~q2 ¡ ~q1
_~q2 sin ~q2 = u3 (t) ;

or, equivalently,0
@ sin ~q2 cos ~q3 ~q1 cos ~q2 cos ~q3 ¡~q1 sin ~q2 sin ~q3

sin ~q2 sin ~q3 ~q1 cos ~q2 sin ~q3 ~q1 sin ~q2 cos ~q3

cos ~q2 ¡~q1 sin ~q2 0

1
A

0
@ _~q

1

_~q2

_~q
3

1
A =

0
@ u1 (t)

u2 (t)
u3 (t)

1
A :

The coe±cient matrix on the left-hand side is invertible as long as¯̄̄
¯̄̄ sin ~q2 cos ~q3 ~q1 cos ~q2 cos ~q3 ¡~q1 sin ~q2 sin ~q3

sin ~q2 sin ~q3 ~q1 cos ~q2 sin ~q3 ~q1 sin ~q2 cos ~q3

cos ~q2 ¡~q1 sin ~q2 0

¯̄̄
¯̄̄ = ~q2

1
sin ~q2 6= 0:

At the singular points ~q1 = 0 or ~q2 = 0; ¼; the matrix inverse

0
@ sin ~q2 cos ~q3 ~q1 cos ~q2 cos ~q3 ¡~q1 sin ~q2 sin ~q3

sin ~q2 sin ~q3 ~q1 cos ~q2 sin ~q3 ~q1 sin ~q2 cos ~q3

cos ~q2 ¡~q1 sin ~q2 0

1
A

¡1

does not exist and we cannot compute _~q1, _~q2, or _~q3.
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The di®erential equations in the unknown functions ~q1 (t), ~q2 (t), and
~q3 (t) are non-singular for ~q1 6= 0 and ~q2 6= n¼ for any integer n. Given
initial conditions ~q1 (t0) 6= 0, ~q2 (t0) 6= n¼, and ~q3 (t0) ; the di®erential
equations can be solved for ~q1 (t), ~q2 (t), and ~q3 (t) until a time t

¤ when
~q1 (t¤) = 0 or ~q2 (t¤) = n¼ for some integer n.

The result may be substituted into the expression for the position
vector

r
AB = a

0
@ ~q1 (t) sin ~q2 (t) cos ~q3 (t)

~q1 (t) sin ~q2 (t) sin ~q3 (t)
~q1 (t) cos ~q2 (t)

1
A

or the coordinate representation of B relative to A:

A

B =

0
@ ~q1 (t) sin ~q2 (t) cos ~q3 (t)

~q1 (t) sin ~q2 (t) sin ~q3 (t)
~q1 (t) cos ~q2 (t)

1
A :

The orientation of a rigid body relative to some observer A is given
by a pure rotation R

A
corresponding to the rotation matrix Rab, where a

and b are the reference triads of the observer A and the rigid body, respec-
tively. If the rigid body is unconstrained, three con¯guration coordinates
are necessary and su±cient to describe its orientation. For example, let
q1, q2, and q3 be the Euler angles corresponding to a 3 ¡ 1 ¡ 3 sequence
of rotations:

Rab = R (q1; 0; 0; 1)R (q2; 1; 0; 0)R (q3; 0; 0; 1)

=

0
@ c1c3 ¡ s1c2s3 ¡c1s3 ¡ s1c2c3 s1s2

s1c3 + c1c2s3 ¡s1s3 + c1c2c3 ¡c1s2

s2s3 s2c3 c2

1
A ;

where ci = cos qi and si = sin qi for i = 1; 2; 3:
From the de¯nition of the angular velocity between the triad a and

the triad b, we have

a
!

b = b

0
@ !1

!2

!3

1
A ;

where

Rba

dRab

dt
=

0
@ 0 ¡!3 !2

!3 0 ¡!1

¡!2 !1 0

1
A :

But (after much simpli¯cation)

Rba

dRab

dt
=

0
@ 0 ¡ _q1c2 ¡ _q3 _q1s2c3 ¡ _q2s3

_q1c2 + _q3 0 ¡ _q1s2s3 ¡ _q2c3

¡ _q1s2c3 + _q2s3 _q1s2s3 + _q2c3 0

1
A ;
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i.e.,

a
!

b = b

0
@ _q1s2s3 + _q2c3

_q1s2c3 ¡ _q2s3

_q1c2 + _q3

1
A :

If we know the con¯guration coordinates q1 (t), q2 (t), and q3 (t) as func-
tions of time, then we can compute their derivatives as functions of time
and, consequently, the angular velocity between the triad a and the triad
b as a function of time.

Conversely, suppose that

a
!

b = b

0
@ u1 (t)

u2 (t)
u3 (t)

1
A ;

where u1 (t), u2 (t), and u3 (t) are known functions of time. It follows
that

_q1s2s3 + _q2c3 = u1 (t) ;

_q1s2c3 ¡ _q2s3 = u2 (t) ;

and

_q1c2 + _q3 = u3 (t) ;

or, equivalently,0
@ s2s3 c3 0

s2c3 ¡s3 0
c2 0 1

1
A

0
@ _q1

_q2

_q3

1
A =

0
@ u1 (t)

u2 (t)
u3 (t)

1
A :

The coe±cient matrix on the left-hand side is non-singular as long as¯̄̄
¯̄̄ s2s3 c3 0

s2c3 ¡s3 0
c2 0 1

¯̄̄
¯̄̄ = ¡ sin q2 6= 0:

It follows that the di®erential equations in the unknown functions q1 (t),
q2 (t), and q3 (t) are non-singular for q2 6= n¼ for any integer n. Given
initial conditions q1 (t0), q2 (t0) 6= n¼, and q3 (t0) ; the di®erential equa-
tions can be solved for q1 (t), q2 (t), and q3 (t), until such a time t

¤ when
q2 (t¤) = n¼ for some integer n.

The result can be substituted back into the rotation matrix

Rab =

0
@ c1 (t) c3 (t) ¡ s1 (t) c2 (t) s3 (t) ¡c1 (t) s3 (t) ¡ s1 (t) c2 (t) c3 (t) s1 (t) s2 (t)

s1 (t) c3 (t) + c1 (t) c2 (t) s3 (t) ¡s1 (t) s3 (t) + c1 (t) c2 (t) c3 (t) ¡c1 (t) s2 (t)
s2 (t) s3 (t) s2 (t) c3 (t) c2 (t)

1
A

to yield the orientation of the rigid body relative to the observer A.
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8.4 Examples

8.4.1 Rotations about ai

Let A and B be two observers with reference points A and B and reference
triads a and b, respectively, such that r

AB is constant and

Rab = R ('; 1; 0; 0) =

0
@ 1 0 0

0 cos' ¡ sin'

0 sin' cos'

1
A

corresponding to a pure rotation by an angle ' about an axis parallel to
the a1 basis vector.

From the de¯nition of the linear and angular velocity, it follows that

A

v
B =

a
dr

AB

dt
= 0

and

a
!

b = b

0
@ _'

0
0

1
A ;

since

Rba

dRab

dt
=

0
@ 0 0 0

0 0 ¡ _'
0 _' 0

1
A :

If P is an arbitrary point that is stationary relative to B, i.e., such
that

B

dP

dt
= 0;

(Ex. 8.14 {

Ex. 8.15)
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then

A

dP

dt
=

B

dP

dt
+ A

v
B + a

!
b
£ r

BP

= 0 + 0 +

¯̄̄
¯̄̄ b1 b2 b3

_' 0 0
b
¡
r

BP
¢
1

b
¡
r

BP
¢
2

b
¡
r

BP
¢
3

¯̄̄
¯̄̄

= b

0
@ 0

¡ _' b
¡
r

BP
¢
3

_' b
¡
r

BP
¢
2

1
A :

The speed of the point P relative to the A observer is then

°°°°°
A

dP

dt

°°°°° = _'

q
b (rBP )

2

2
+ b (rBP )

2

3
;

i.e., proportional to the angular speed and the perpendicular distance
from the axis through B that is parallel to the a1 = b1 basis vector.

Illustration 8.8

If two triads a and b are related through the rotation matrix

Rab = R ('; 0; 1; 0) =

0
@ cos' 0 sin'

0 1 0
¡ sin' 0 cos'

1
A ;

then the angular velocity becomes

a
!

b = b

0
@ 0

_'
0

1
A ;

since

Rba

dRab

dt
=

0
@ 0 0 _'

0 0 0
¡ _' 0 0

1
A :
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a
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b
1

a
3
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2

b
2

b
3

a
2

b
2
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1

b
1

a
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3
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Similarly, if two triads a and b are related through the rotation matrix

Rab = R ('; 0; 0; 1) =

0
@ cos' ¡ sin' 0

sin' cos' 0
0 0 1

1
A ;

then the angular velocity becomes

a
!

b = b

0
@ 0

0
_'

1
A ;

since

Rba

dRab

dt
=

0
@ 0 ¡ _' 0

_' 0 0
0 0 0

1
A :

8.4.2 Euler Angles

Suppose you want to describe the motion of a free rigid body relative to a
background. Introduce an observer A, relative to which the background
is stationary, with reference point A and reference triad a. Denote by
B and b the reference point and reference triad, respectively, of the rigid
body.
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Since the rigid body's motion is unconstrained, the position of the
reference point B relative to the observer A is given by the coordinate
representation

A

B =

0
@ q1

q2

q3

1
A ;

where q1, q2, and q3 are the corresponding Cartesian coordinates. Simi-
larly, the orientation of the triad b relative to the triad a is given by the
rotation matrix

Rab = R (q4; 0; 0; 1)R (q5; 1; 0; 0)R (q6; 0; 0; 1) ;

where q4, q5, and q6 are the Euler angles corresponding to a 3 ¡ 1 ¡ 3
sequence of rotations. From the de¯nitions of the linear and angular
velocities of the rigid body, it follows that

A

dB

dt
= a

d
A

B

dt
= a

0
@ _q1

_q2

_q3

1
A

and

a
!

b = b

0
@ _q4s5s6 + _q5c6

_q4s5c6 ¡ _q5s6

_q4c5 + _q6

1
A ;

since

Rba

dRab

dt
=

0
@ 0 ¡ _q4c5 ¡ _q6 _q4s5c6 ¡ _q5s6

_q4c5 + _q6 0 ¡ _q4s5s6 ¡ _q5c6

¡ _q4s5c6 + _q5s6 _q4s5s6 + _q5c6 0

1
A ;

where ci = cos qi and si = sin qi for i = 4; 5; 6.

Illustration 8.9

Alternatively, introduce two additional triads t
(1) and t

(2), such that

Rat(1) = R (q4; 0; 0; 1) ;

Rt(1)t(2) = R (q5; 1; 0; 0) ;

and

Rt(2)b = R (q6; 0; 0; 1) :

As before, it follows that

Rab = Rat(1)Rt(1)t(2)Rt(2)b:
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From the previous section, we ¯nd

a
!

t
(1)

= _q4a3;

t
(1)

!
t
(2)

= _q5t
(1)

1
;

and

t
(2)

!
b = _q6t

(2)

3
.

Thus,

a
!

b = a
!

t
(1)

+ t
(1)

!
t
(2)

+ t
(2)

!
b

= bRba

0
@ 0

0
_q4

1
A + bRbt(1)

0
@ _q5

0
0

1
A + bRbt(2)

0
@ 0

0
_q6

1
A

= b

0
@ _q4 sin q5 sin q6 + _q5 cos q6

_q4 sin q5 cos q6 ¡ _q5 sin q6

_q4 cos q5 + _q6

1
A

as expected.

8.4.3 Multibody Mechanisms

We repeat for reference the discussion from Chapter 6 of the bench-based
radial arm saw as shown in the ¯gure below.

There are four parts that move relative to the stationary workbench,
namely, the tool arm, the tool trolley, the blade support, and the blade.
A vertical cylinder attached to the workbench provides the support for
the mechanism. Speci¯cally:

² The tool arm is free to slide up and down along this cylinder as well
as rotate about the cylinder;
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² The tool trolley is free to slide along the arm;

² The blade support is free to rotate relative to the tool trolley about
an axis parallel to the arm;

² The blade is free to rotate about an arm perpendicular to the axis
of rotation of the blade support.

Introduce a main observer W, relative to which the workbench remains
stationary. Let its reference point W be located at the center of the
vertical cylinder and level with the table top. Let its reference triad w be
oriented such that the table top is parallel to the w1 and w2 basis vectors
and w3 points away from the table top in the direction of the tool arm.

Introduce an auxiliary observer A, relative to which the tool arm
remains stationary. Let its reference point A be located at the center of
the vertical cylinder and level with the tool arm. Let its reference triad
a be oriented such that a3 equals w3 and a2 is parallel to the tool arm.
Then,

r
WA = q1w3 and Rwa = R (q2; 0; 0; 1) ;

where q1 and q2 are con¯guration coordinates. It follows that

W

v
A = _q1w3 and w

!
a = _q2a3:

Introduce an auxiliary observer B, relative to which the tool trolley
remains stationary. Let its reference point B be located on the center
line of the tool arm and symmetric relative to the ends of the trolley. Let
its reference triad b equal a. Then,

r
AB = q3a2 and Rab = Id;

where q3 is a con¯guration coordinate. It follows that

A

v
B = _q3a2 and a

!
b = 0:

Introduce an auxiliary observer C, relative to which the blade support
remains stationary. Let its reference point C be located at the center of
the axis about which the blade support rotates. Let its reference triad c

be oriented such that c2 equals a2 and c3 points toward the center of the
blade. Then,

r
BC = ¡p1a3 and Rbc = R (q4; 0; 1; 0) ;

where p1 is some time-independent parameter and q4 is a con¯guration
coordinate. It follows that

B

v
C = 0 and b

!
c = _q4c2:
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Finally, introduce an auxiliary observer D, relative to which the blade
remains stationary. Let its reference point D be at the center of the blade.
Let its reference triad d be such that d3 equals c3. Then,

r
CD = p2c3 and Rcd = R (q5; 0; 0; 1) ;

where p2 is some time-independent parameter and q5 is a con¯guration
coordinate. It follows that

C

v
D = 0 and c

!
d = _q5d3.

From the relations derived in Section 8.2, we ¯nd

w
!

d = w
!

a + a
!

b + b
!

c + c
!

d

and

W

v
D = W

v
A + A

v
D + w

!
a

£ r
AD

= W

v
A + A

v
B + B

v
D

+ a
!

b
£ r

BD + w
!

a
£

¡
r

AB + r
BC + r

CD
¢

= W

v
A + A

v
B + B

v
C + C

v
D

+ b
!

c
£ r

CD + a
!

b
£

¡
r

BC + r
CD

¢
+ w

!
a

£

¡
r

AB + r
BC + r

CD
¢
:

Alternatively, we may choose to compute w
!

d and W
v

D directly from
their de¯nitions.

8.5 The

The Mambo toolbox includes functions for computing the time deriva-
tive of an expression (DiffTime), the velocity of a point relative to an
observer (LinearVelocity), and the angular velocity between two tri-
ads (AngularVelocity). Before invoking either of these procedures, it is
necessary to declare which variables are con¯guration coordinates, and
consequently, implicitly dependent on time. This is achieved with the
DeclareStates procedure1, which stores the necessary information in
the global variables GlobalExplicit and GlobalImplicit.

In the following Mambo toolbox session, the DeclareStates proce-
dure is invoked to declare the variables q1, q2, and q3 implicitly dependent
on time t. The subsequent calls to DiffTime illustrate its use.

> Restart():
> DeclareStates(q1,q2,q3):

1The declaration of a con¯guration coordinate as implicitly time-dependent

through the DeclareStates procedure has no e®ect on whether to treat the coordinate

as a Mambo state variable or a Mambo animated variable.
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> DiffTime(q1-q2*sin(q3));

q1t ¡ q2t sin(q3 ) ¡ q2 cos(q3 ) q3t

> DiffTime([q1,q2-q3*ln(q1)]);

[q1t ; q2t ¡ q3t ln(q1 ) ¡

q3 q1t

q1
]

> DiffTime(q1=q2*q3);

q1t = q2t q3 + q2 q3t

> DiffTime(MakeRotations(q1,3));

2
4 ¡sin(q1 ) q1t ¡cos(q1 ) q1t 0

cos(q1 ) q1t ¡sin(q1 ) q1t 0
0 0 0

3
5

> DeclareTriads(a):
> DiffTime(MakeTranslations(a,q1,q2,q3),a);

table([

\Type" = \Vector"

\Size" = 1

1 = table([

\Coordinates" = [q1t ; q2t ; q3t ]

\Triad" = a

])

])

Note, in particular, the need for a second argument to DiffTime when
computing the time derivative of a vector relative to some triad.

The AngularVelocity and LinearVelocity commands compute the
angular velocity between two triads and the linear velocity of a point
relative to an observer following the rules developed in this chapter. For
example,

> Restart():
> DeclareTriads(a,b,c):
> DefineTriads([a,b,q1,1],[b,c,q2,cos(t),sin(t),0]):
> DeclareStates(q1,q2):
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> AngularVelocity(a,b);

table([

\Type" = \Vector"

\Size" = 1

1 = table([

\Coordinates" = [q1t ; 0; 0]

\Triad" = b

])

])

> AngularVelocity(a,c);

table([

\Type" = \Vector"

\Size" = 2

1 = table([

\Coordinates" = [q1t ; 0; 0]

\Triad" = b

])

2 = table([

\Coordinates" =

[cos(t) q2t ¡ sin(q2 ) sin(t); sin(q2 ) cos(t) + sin(t) q2t ; ¡1 + cos(q2 )]

\Triad" = c

])

])

Similarly,

> DeclareObservers(A):
> DeclarePoints(A,B,C):
> DefineObservers([A,A,a]):
> DefinePoints([A,B,a,q3,q4,q5],[B,C,b,0,q6,0]):
> DeclareStates(q3,q4,q5,q6):

> LinearVelocity(A,B);



table([

\Type" = \Vector"

\Size" = 1

1 = table([

\Coordinates" = [q3t ; q4t ; q5t ]

\Triad" = a

])

])

> LinearVelocity(A,C);

table([

\Type" = \Vector"

\Size" = 2

1 = table([

\Coordinates" = [q3t ; q4t ; q5t ]

\Triad" = a

])

2 = table([

\Coordinates" = [0; q6t ; q1t q6 ]

\Triad" = b

])

])

where the ¯rst argument corresponds to the observer label and the second
argument corresponds to the point label.
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8.6 Exercises

Exercise 8.1 Let a and b be two arbi-
trary triads. Show that

Rba (t)
dRab (t)

dt
=

=

0
@ 0 ¡!3 (t) !2 (t)

!3 (t) 0 ¡!1 (t)
¡!2 (t) !1 (t) 0

1
A

for some functions !1 (t), !2 (t), and !3 (t).

Solution. From Chapter 5, we recall
that
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Rba (t)Rab (t) =

0
@ 1 0 0

0 1 0
0 0 1

1
A :

Di®erentiating with respect to t on both sides
of this equality yields

dRba (t)

dt
Rab (t) + Rba (t)

dRab (t)

dt

=

0
@ 0 0 0

0 0 0
0 0 0

1
A ;

i.e.,

dRba (t)

dt
Rab (t) = ¡Rba (t)

dRab (t)

dt
:

From matrix algebra, we recall that

(AB)T = B
T
A

T

for arbitrary matrices A and B. Since
(Rab)

T = Rba, it follows that

·
Rba (t)

dRab (t)

dt

¸T

=
d (Rab (t))T

dt
(Rba (t))T

=
dRba (t)

dt
Rab (t)

= ¡Rba (t)
dRab (t)

dt
:

In terms of indices, this implies that·
Rba (t)

dRab (t)

dt

¸
ij

= ¡

·
Rba (t)

dRab (t)

dt

¸
ji

;

which is only possible if

Rba (t)
dRab (t)

dt

=

0
@ 0 ¡!3 (t) !2 (t)

!3 (t) 0 ¡!1 (t)
¡!2 (t) !1 (t) 0

1
A

as claimed.

Exercise 8.2 Let A and B be two ob-
servers with reference points A and B and
reference triads a and b, such that

r
AB = a

0
@ t

cos t

sin t

1
A

and

Rab = R

³
¼

2
; cos t; sin t; 0

´
:

Find the linear and angular velocities of B

relative to A:

Solution. The linear velocity is given by

A

v
B =

a
dr

AB

dt

= a
d

a
¡
r

AB
¢

dt

= a

0
@ 1

¡ sin t

cos t

1
A :

Similarly, since

Rba

dRab

dt
=

0
@ 0 1 cos t

¡1 0 sin t

¡ cos t ¡ sin t 0

1
A ;

we conclude that the angular velocity equals

A

!
B = b

0
@ ¡ sin t

cos t

¡1

1
A :

Exercise 8.3 Let A and B be two ob-
servers with reference points A and B and
reference triads a and b. Find the linear ve-
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locity A
v

B when r
AB =

a) a

0
@ t

2

sin t

e
5t

1
A b) a

0
@ cos t

t sin t

t
3
e
5t

1
A

c) a

0
@ 2

0
3

1
A d) a

0
@ 2t

0
3 ¡ 2t

1
A

e) a

0
@ t ¡ t

2

1 ¡ 2t
¡2

1
A f) a

0
@ cos t

2

sin t
2

1

1
A

Exercise 8.4 Let a and b be two arbi-
trary triads. Find the angular velocity a

!
b

when Rab =

a) R (t; 1; 0; 0) b)
R (t; 1; 0; 0) ¢

R (2t; 0; 0; 1)
c) R (2t; t; 0; t) d) R (cos t; 0; 0; 1)
e) R (cos t; cos t; 0; 1) f) R (t; t; 1; 0)

Exercise 8.5 Let a and b be two arbi-
trary triads and let v be an arbitrary vector.
Show that

bRba

dRab

dt

b
v = a

!
b
£ v.

Solution. From Exercise 8.1, we ¯nd
that

bRba

dRab

dt

b
v

= b

0
@ 0 ¡

b
!3

b
!2

b!3 0 ¡
b!1

¡
b!2

b!1 0

1
A

0
@ b

v1

bv2

bv3

1
A

= b

0
@ b!2

bv3 ¡
b!3

bv2

b
!3

b
v1 ¡

b
!1

b
v3

b!1
bv2 ¡

b!2
bv1

1
A :

Similarly,

a
!

b
£ v =

¯̄̄
¯̄̄ b1 b2 b3

b!1
b!2

b!3

b
v1

b
v2

b
v3

¯̄̄
¯̄̄

= b

0
@ b

!2
b
v3 ¡

b
!3

b
v2

b!3
bv1 ¡

b!1
bv3

b!1
bv2 ¡

b!2
bv1

1
A

and the claim follows.

Exercise 8.6 Let a and b be two arbi-
trary triads. Show that

a
!

b = b1

µ
a
db2

dt
² b3

¶

+b2

µ
a
db3

dt
² b1

¶

+b3

µ
a
db1

dt
² b2

¶
:

Solution. Recall the relation between
the derivative of a vector relative to two dif-
ferent triads:

a
dr

dt
=

b
dr

dt
+ a

!
b
£ r.

In particular,

a
dbi

dt
=

b
dbi

dt
+ a

!
b
£ bi

= a
!

b
£ bi;

since the basis vector bi has a time-
independent matrix representation relative
to the b triad. It follows that

a
db1

dt
=

¯̄̄
¯̄̄ b1 b2 b3

b
!1

b
!2

b
!3

1 0 0

¯̄̄
¯̄̄

= b
!3b2 ¡

b
!2b3;

a
db2

dt
=

¯̄̄
¯̄̄ b1 b2 b3

b
!1

b
!2

b
!3

0 1 0

¯̄̄
¯̄̄

= ¡
b
!3b1 + b

!1b3;

and

a
db3

dt
=

¯̄̄
¯̄̄ b1 b2 b3

b!1
b!2

b!3

0 0 1

¯̄̄
¯̄̄

= b
!2b1 ¡

b
!1b2:
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Consequently,

b1

µ
a
db2

dt
² b3

¶
+ b2

µ
a
db3

dt
² b1

¶

+ b3

µ
a
db1

dt
² b2

¶
= b1

b
!1 + b2

b
!2 + b3

b
!3

as claimed.

Exercise 8.7 Let a and b be two arbi-
trary triads. Compute the time derivatives
of the basis vectors of the b triad relative to
the a triad, if Rab =

a) R (t; 1; 0; 0) b)
R (t; 1; 0; 0) ¢

R (2t; 0; 0; 1)
c) R (2t; t; 0; t) d) R (cos t; 0; 0; 1)
e) R (cos t; cos t; 0; 1) f) R (t; t; 1; 0)

Exercise 8.8 Let a and b be two arbi-
trary triads. Show that

a
d

a
!

b

dt
=

b
d

a
!

b

dt
:

Solution. For an arbitrary vector r, we
have

a
dr

dt
=

b
dr

dt
+ a

!
b
£ r:

In particular, it follows that

a
d

a
!

b

dt
=

b
d

a
!

b

dt
+ a

!
b
£

a
!

b

=
b
d

a
!

b

dt
;

since

a
!

b
£

a
!

b = 0:

Exercise 8.9 Let a and b be two arbi-
trary triads. Show that

a
dr

dt
=

b
dr

dt

for an arbitrary vector r if and only if Rab is
time-independent.

Solution. If Rab is time-independent,
then

Rba

dRab

dt
=

0
@ 0 0 0

0 0 0
0 0 0

1
A ;

i.e.,

a
!

b = 0:

It follows that

a
dr

dt
=

b
dr

dt
+ a

!
b
£ r

=
b
dr

dt

for any vector r.

Conversely, if

a
dr

dt
=

b
dr

dt

for an arbitrary vector r, then

a
dbi

dt
=

b
dbi

dt
= 0

for any basis vector of the triad b. This im-
plies that the matrix representations of the
basis vectors of b relative to the triad a are
time-independent. But

b = aRab;

i.e., the columns of Rab are time-independent
as claimed.

Exercise 8.10 Show that the angu-
lar velocity of a rigid body relative to an
observer A with reference triad a is indepen-
dent of the choice of reference triad for the
rigid body.



A

B

P

B

1

P2
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Exercise 8.11 Two bodies in contact
are said to be in relative slip relative to an
observer A if the velocities of the points in
contact relative to A are not equal. Show
that if two bodies in contact are in relative
slip relative to an observer A, then they are
in relative slip relative to any other observer
B.

Solution. Denote the contact points on
the two bodies by P1 and P2. It follows that

r
BP1 = r

BP2 :

The bodies are in relative slip relative to A

if

A

dP1

dt
¡

A

dP2

dt
6= 0:

Since

A

dP

dt
=

B

dP

dt
+ A

v
B + a

!
b
£ r

BP
;

it follows that

B

dP1

dt
¡

B

dP2

dt
=

=
A

dP1

dt
¡

A

v
B

¡
a
!

b
£ r

BP1

¡

A

dP2

dt
+ A

v
B + a

!
b
£ r

BP2

=
A

dP1

dt
¡

A

dP2

dt

6= 0

and the claim follows.

Exercise 8.12 Let B1 and B2 be two
arbitrary points on a rigid body with refer-
ence triad b. Show that

A

dB2

dt
¡

A

dB1

dt
= a

!
b
£ r

B1B2 ;

where A is an arbitrary observer with refer-
ence point A and reference triad a.

[Hint: Let B be an observer with reference
point B and reference triad b, relative to
which the rigid body is stationary. Use the
formula

A

dP

dt
=

B

dP

dt
+ A

v
B + a

!
b
£ r

BP
;

where the ¯rst term on the right-hand side
vanishes for any point P on the rigid body.]

Exercise 8.13 Let a and b be two ar-
bitrary triads. Suppose that

a
!

b = b

0
@ u1

u2

u3

1
A

and ¯nd the relationship between the Eu-
ler angles and their time derivatives and the
quantities u1, u2, and u3 if the rotation ma-
trix Rab corresponds to a

a) 1 ¡ 3 ¡ 1 b) 2 ¡ 3 ¡ 1
c) 2 ¡ 1 ¡ 3 d) 2 ¡ 1 ¡ 2
e) 3 ¡ 2 ¡ 1 f) 1 ¡ 2 ¡ 1

sequence of rotations.
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Exercise 8.14 Let A be an arbitrary
observer with reference point A and refer-
ence triad a. Introduce a triad b, such that
b1 is parallel to the velocity

A

dB

dt

of a point B on some rigid body and b2 is
parallel to the time derivative of the vector
b1 relative to the a triad. Find the angular
velocity a

!
b.

Solution. Following the problem state-
ment, we introduce

b1 =
A

dB

dt
=

°°°°°
A

dB

dt

°°°°° ;

b2 =
1

· (t)

a
db1

dt
;

where · (t) =
°°°a

db1

dt

°°° is known as the cur-

vature of the path in space followed by B

relative to the observer A, and

b3 = b1 £ b2:

From a previous exercise, we recall that

a
!

b = b1

µ
a
db2

dt
² b3

¶

+b2

µ
a
db3

dt
² b1

¶

+b3

µ
a
db1

dt
² b2

¶
:

Here,

a
db1

dt
² b2 = · (t)b2 ² b2 = · (t) :

Moreover, since

0 = b3 ² b1

for all t, it follows that

0 =
a

d

dt
(b3 ² b1)

=
a
db3

dt
² b1 + b3 ²

a
db1

dt

=
a
db3

dt
² b1 + · (t)b3 ² b2

=
a
db3

dt
² b1:

Similarly,

1 = b3 ² b3

for all t implies that

0 =
a

d

dt
(b3 ² b3)

= 2
a
db3

dt
² b3:

Since b is a basis, we must have

a
db3

dt
= ¡¿ (t)b2;

where ¿ (t) is known as the torsion of the
path in space followed by B relative to the
observer A.

Finally, since

0 = b2 ² b3

for all t, it follows that

0 =
a

d

dt
(b2 ² b3)

=
a
db2

dt
² b3 + b2 ²

a
db3

dt

=
a
db2

dt
² b3¡¿ (t)b2 ² b2;

i.e.,

a
db2

dt
² b3 = ¿ (t)

and, consequently,

a
!

b = ¿ (t)b1 + · (t)b3:
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Exercise 8.15 Let A be an observer
with reference point A and reference triad a.
Let B1, B2, and B3 be three, non-colinear
points on a rigid body with reference triad b,
such that the di®erences

v2¡1

def

=
A

dB2

dt
¡

A

dB1

dt

and

v3¡1

def

=
A

dB3

dt
¡

A

dB1

dt

are not parallel, and such that the vectors
v2¡1 £ v3¡1 and r

B1B2
£ r

B1B3 are not per-
pendicular. Find expressions for the direc-
tion and magnitude of the angular velocity
a
!

b of the rigid body relative to A in terms
of v2¡1 £ v3¡1 and r

B1B2
£ r

B1B3 .
Solution. From a previous exercise, it

follows that

v2¡1 = a
!

b
£ r

B1B2

and

v3¡1 = a
!

b
£ r

B1B3 :

If we form the cross products of the two left-
hand sides and the two right-hand sides, we
¯nd

v2¡1 £ v3¡1

=
£
a
!

b
£ r

B1B2

¤
£

£
a
!

b
£ r

B1B3

¤
= a

!
b
£¡

a
!

b
£ r

B1B2

¢
² r

B1B3

¤
¡r

B1B3

£¡
a
!

b
£ r

B1B2

¢
²

a
!

b
¤

= a
!

b
£
a
!

b
²

¡
r

B1B2
£ r

B1B3

¢¤
:

Here, we used the facts that

w1 £ (w2 £ w3) = w2 (w1 ² w3)

¡w3 (w1 ² w2)

(cf. result of Exercise 3.74) and

(w1 £ w2) ² w3 = w1 ² (w2 £ w3)

for any vectors w1, w2, and w3, and the ob-
servation that the vector

a
!

b
£ r

B1B2

is perpendicular to a
!

b. It follows that the
angular velocity vector a

!
b is parallel to the

cross product v2¡1 £ v3¡1, i.e., a unit vec-
tor parallel to the angular velocity vector is
given by

v2¡1 £ v3¡1

kv2¡1 £ v3¡1k

:

Moreover,

(v2¡1 £ v3¡1) ²

¡
r

B1B2
£ r

B1B3

¢
= kv2¡1 £ v3¡1k

°°rB1B2
£ r

B1B3

°° cos µ;

where µ is the angle between the vectors
v2¡1 £v3¡1 and r

B1B2
£r

B1B3 , i.e., between
a
!

b (or ¡
a
!

b) and r
B1B2

£ r
B1B3 : On the

other hand,

(v2¡1 £ v3¡1) ²

¡
r

B1B2
£ r

B1B3

¢
=

£
a
!

b
²

¡
r

B1B2
£ r

B1B3

¢¤2
=

°°a
!

b
°°2 °°rB1B2

£ r
B1B3

°°2

cos2 µ:

Substituting for cos µ from the ¯rst expres-
sion then yields

°°a
!

b
°° =

kv2¡1 £ v3¡1kp
(v2¡1 £ v3¡1) ² (rB1B2 £ rB1B3)

:

Exercise 8.16 Use theMambo toolbox
to compute the angular velocity vector of a
rigid body relative to some observer A, where
the orientation of the rigid body relative to
A is described in terms of Euler parameters.

[Hint: Recall the Euler parameter represen-
tation of the rotation matrix between the
reference triad a of the observer A and the
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reference triad b of the rigid body in Illus-
tration 6.4.]

Exercise 8.17 Use the Mambo tool-
box to compute the velocity relative to an
observer A of the end point of a rigid rod
connected at the other end to a stationary
hinge joint.

Solution. Let the joint axis be given by
the vector

v = a

0
@ v1

v2

v3

1
A ;

where a is the reference triad of the observer
A: Introduce an auxiliary observer B, such
that the reference point B coincides with the
hinge joint and the basis vector b1 of the cor-
responding reference triad is parallel to the
separation

¡!

BP , where P is the end point of
the rod. In particular, let

r
AB = a

0
@ r1

r2

r3

1
A

describe the position of the reference point
B relative to A.

The following Mambo toolbox state-
ments establish the basic geometry.

> Restart():
> DeclareObservers(A,B):
> DeclarePoints(A,B,P):
> DeclareTriads(a,b):
> DefineObservers([A,A,a],[B,B,b]):
> DefinePoints([A,B,a,r1,r2,r3],
> [B,P,b,l,0,0]):
> DefineTriads([a,b,q1,v1,v2,v3]):
> DeclareStates(q1):

Here, l represents the length of the rod
and q1 is the con¯guration coordinate repre-
senting the rotation angle. The velocity of P

relative to A is now obtained from the state-
ment

> LinearVelocity(A,P);

A

dP

dt
= b

0
@ 0

lv3 _q1=
p

v2

1
+ v2

2
+ v2

3

lv2 _q1=
p

v2

1
+ v2

2
+ v2

3

1
A :

Exercise 8.18 Use the Mambo tool-
box to compute the velocity relative to an
observer A of the end point of a rigid rod
connected at the other end to a stationary
spherical joint.

[Hint: Decompose the rotation into a se-
quence of rotations about basis vectors.]

Exercise 8.19 Use theMambo toolbox
to compute the velocity relative to an ob-
server A of the center point of a rigid square
plate connected at one corner to a stationary
ball joint.

[Hint:
> Restart():
> DeclareObservers(A,B):
> DeclarePoints(A,B,P):
> DeclareTriads(a,b):
> DefineObservers(
> [A,A,a],[B,B,b]):
> DefinePoints([A,B,a,r1,r2,r3],
> [B,P,b,s/2,s/2,0]):
> DefineTriads([a,b,[theta,3],
> [phi,1],[psi,3]]):
> DeclareStates(theta,phi,psi):

> LinearVelocity(A,P);

]

Exercise 8.20 Suppose the coordinate
representation of a point P on a rigid body
relative to an observer A is expressed using
spherical coordinates, i.e.,

A

P =

0
@ q1 sin q2 cos q3

q1 sin q2 sin q3

q1 cos q2

1
A :

Use the Mambo toolbox to compute the ve-
locity of the point P relative to an observer
B, where

r
BA = 0 and Rba = R (!t; 0; 0; 1) :
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Here, A, B, a and b are the reference points
and reference triads of the observers A and
B, and ! is a constant.

Solution. The following Mambo tool-
box statements establish the basic geometry:

> Restart():
> DeclareObservers(A,B):
> DeclarePoints(A,B,P):
> DeclareTriads(a,b):
> DefineObservers(
> [A,A,a],[B,B,b]):
> DefinePoints([B,A,b,0,0,0],
> [A,P,a,q1*sin(q2)*cos(q3),
> q1*sin(q2)*sin(q3),q1*cos(q2)]):
> DefineTriads([b,a,omega*t,3]):
> DeclareStates(q1,q2,q3):

The linear velocity is then obtained from

> LinearVelocity(B,P);

Exercise 8.21 Suppose the coordinate
representation of a point P on a rigid body
relative to an observer A is expressed using
spherical coordinates, i.e.,

A

P =

0
@ q1 sin q2 cos q3

q1 sin q2 sin q3

q1 cos q2

1
A :

Use the Mambo toolbox to compute the ve-
locity of the point P relative to an observer
B; where

r
BA = b

0
@ R sin (µ + !t) cosÁ

R sin (µ + !t) sinÁ

R cos (µ + !t)

1
A ;

a3 is parallel to r
BA, and a1 = b3 £ a3.

Exercise 8.22 A sphere of radius R is
constrained to be in tangential contact with
a plane that contains the reference point A

of an observer A and is parallel to the ba-
sis vectors a1 and a2 of the reference triad
a of A. Use the Mambo toolbox to ¯nd the
velocity of the contact point on the sphere
relative to A.

Solution. Let the reference point B of
the sphere be located at the center of the

sphere and denote by b the reference triad of
the sphere. Then,

r
AB = a

0
@ q1

q2

R

1
A

and

Rab = R (q3; 0; 0; 1)R (q4; 1; 0; 0)R (q5; 0; 0; 1) :

If P is some arbitrary point on the rigid
body, then

A

dP

dt
=

B

dP

dt
+ A

v
B + a

!
b
£ r

BP

= A

v
B + a

!
b
£ r

BP
;

since

B

dP

dt
= 0:

If P corresponds to the point currently in
contact with the plane, then

r
BP = a

0
@ 0

0
¡R

1
A :

The Mambo toolbox statements
> Restart():
> DeclareObservers(A):
> DeclarePoints(A,B):
> DeclareTriads(a,b):
> DefineObservers([A,A,a]):
> DefinePoints([A,B,a,q1,q2,R]):
> DefineTriads([a,b,[q3,3],[q4,1],
> [q5,3]]):
> DeclareStates(q1,q2,q3,q4,q5):
> vel:=LinearVelocity(A,B) &++
> (AngularVelocity(a,b) &xx
> MakeTranslations(a,0,0,-R)):

show that

A

dP

dt

= a

0
@ _q1 + R _q5 cos q3 sin q4 ¡ R _q4 sin q3

_q2 + R _q5 sin q3 sin q4 + R _q4 cos q3

0

1
A :
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Exercise 8.23 Consider the sphere in
the previous exercise. Then,

A

dP

dt
=

a
dr

AP

dt

=
a
dr

AB

dt
+

a
dr

BP

dt
:

Is it correct to substitute

r
BP = a

0
@ 0

0
¡R

1
A

into this expression?
Solution. P is the ¯xed point on the

surface of the sphere that coincides with the
current contact point with the plane. Thus,
while

r
BP = a

0
@ 0

0
¡R

1
A

is true at the moment that P is in contact
with the plane, it is not generally true be-
fore and after this moment. Since the ex-
pression for the velocity of P above involves
a derivative with respect to time, we can-
not simply use the expression for r

BP at the
present time. Clearly,

a
d

dt
a

0
@ 0

0
¡R

1
A = a

d

dt

0
@ 0

0
¡R

1
A = 0;

while
a
drBP

dt
6= 0

in general.
Since P is ¯xed on the surface of the

sphere, it follows that

b
drBP

dt
= 0

and thus that

a
drBP

dt
=

b
drBP

dt
+ a

!
b
£ r

BP

= a
!

b
£ r

BP
:

While the derivative on the left requires
knowledge of the matrix representation of
r

BP relative to a over some interval contain-
ing the present time, the expression on the
right involves the value of r

BP only at the
present time. While we cannot substitute
the expression

r
BP = a

0
@ 0

0
¡R

1
A

on the left-hand side, it is correct to substi-
tute it on the right-hand side, as done in the
previous exercise.

Exercise 8.24 A cylinder of radius R is
constrained to be in tangential contact along
a straight line with a plane that contains
the reference point A of an observer A and
is parallel to the basis vectors a1 and a2 of
the reference triad a of A. Use the Mambo
toolbox to ¯nd the velocity of any point on
the line of contact relative to A.

Exercise 8.25 A circular disk of radius
R is constrained to be in tangential contact
with a plane that contains the reference point
A of an observer A and is parallel to the ba-
sis vectors a1 and a2 of the reference triad
a of A. Use the Mambo toolbox to ¯nd the
velocity of the contact point on the disk rel-
ative to A.
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Summary of notation

A di®erentiation symbol with a left superscript, such as
a

d

dt
or

A
d

dt
, was

used in this chapter to denote di®erentiation with respect to time
relative to a triad a or an observer A.

A time derivative of a point B with respect to an observer A was de¯ned
in this chapter as the time derivative of the position vector from the
observer's reference point to the point B relative to the observer's

reference triad and was denoted by
A

dB

dt
:

A bold-faced lower-case v with a left and right superscript, such as A
v

B;

was used in this chapter to denote the linear velocity of an observer
B relative to an observer A.

A bold-faced lower-case ! (omega) with a left and right superscript,
such as A

!
B or a

!
b, was used in this chapter to denote the angular

velocity of an observer B relative to an observer A or the angular
velocity between two triads a and b.

Summary of terminology

The limiting direction relative to an observer of the translation between
the reference point of some rigid body at times t and t+h as h ! 0
is called the instantaneous direction of translation of the rigid body
relative to the observer.

The limiting value relative to an observer of the ratio between the mag-
nitude of the translation between the reference point of some rigid
body at times t and t + h and the time step h as h ! 0 is called
the linear speed of the rigid body relative to the observer.

The limiting direction relative to an observer of the rotation between
the reference triad of some rigid body at times t and t+h as h ! 0
is called the instantaneous direction of rotation of the rigid body
relative to the observer.

The limiting value relative to an observer of the ratio between the mag-
nitude of the rotation between the reference triad of some rigid
body at times t and t + h and the time step h as h ! 0 is called
the angular speed of the rigid body relative to the observer.

The linear velocity of an observer B relative to an observer A is the time
derivative of the position vector r

AB relative to the reference triad
a:

The angular velocity of an observer B relative to an observer A is the
vector whose matrix representation relative to the reference triad b

is given by the entries of the anti-symmetric matrix Rba (dRab=dt) :
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The time derivative of a vector v relative to a triad a equals the vector
whose matrix representation relative to a is the time derivative of
the matrix representation of v relative to a.

In the Mambo toolbox, the procedure DiffTime computes derivatives
of scalar and vector quantities with respect to time t.

In the Mambo toolbox, the procedure LinearVelocity computes the
velocity of a point relative to an observer.

In the Mambo toolbox, the procedure AngularVelocity computes the
angular velocity between two triads.

In the Mambo toolbox, the procedure DeclareStates declares all vari-
ables that are understood to be dependent on time t.



Chapter 9

Constraints

wherein the reader learns of:

² Formulating con¯guration and motion constraints to model the limi-

tations imposed by the environment on the con¯guration and motion

of a mechanism;

² Introducing independent velocity coordinates to capture the allow-

able motions that satisfy all imposed constraints;

² Formulating kinematic di®erential equations whose solutions gen-

erate allowable motions that satisfy all imposed constraints;

² Singularities in the kinematic di®erential equations.



Practicum

This is it! With the tools of this

chapter, you are all set to produce

visually satisfying animations of all

the model mechanisms in this text.

In particular, you are ready to im-

plement con¯guration and motion

constraints on the project mecha-

nisms listed in Appendix C.

I recommend that you consider

adopting the methodology in the

last section of this chapter, whereby

constraints are imposed a few at a

time and Mambo is used to verify

the correctness of the constraint for-

mulation. You should also consider

experimenting with di®erent choices

of independent velocity coordinates

to better grasp the notion of singu-

larities. Have fun with it!
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9.1 Kinematic Di®erential Equations

9.1.1 Complementary Representations

The con¯guration of a rigid body relative to an observer W is given by a
pure translation TW corresponding to the position vector

r
WB = w

W

B

from the reference point W of the observer to the reference point B of
the rigid body; and a pure rotation R

W
corresponding to the rotation

matrix

Rwb

from the reference triad w of the observer to the reference triad b of the
rigid body.

Every choice of coordinate representation WB and every choice of
rotation matrix Rwb corresponds to some con¯guration of the rigid
body. Similarly, every choice of time-dependence WB (t) and Rwb (t)
corresponds to some motion of the rigid body.

Given a time-dependence WB (t) for the coordinate representation of
the point B relative to the observer W, you can compute the velocity

W

dB

dt
(t)

of the point B relative to W. Similarly, given a time-dependence Rwb (t),
you can compute the angular velocity

w
!

b (t)

between the reference triad w of W and the reference triad b of the rigid
body.

But what about the converse? Is it possible to compute W
B (t) and

Rwb (t) from knowledge of
W

dB

dt
(t) and w

!
b (t)? Put di®erently, if I know

at what linear speed and in what direction I am traveling at any moment
in time, can I deduce my position as a function of time? Similarly, if I
know at what angular speed and about what direction I am rotating at
any moment in time, can I deduce my orientation as a function of time?

Clearly, two rigid bodies at di®erent positions relative to W may have
the same linear velocity relative to W. Simply knowing the linear velocity
is not going to su±ce to prescribe the positions of the two bodies as
functions of time. So, let me modify the question: if I know my position
at some time t0 and I know at what linear speed and in what direction I
am traveling at any arbitrary time, can I deduce my position as a function
of time? Similarly, if I know my orientation at some time t0 and I know
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at what angular speed and about what direction I am rotating at any
moment in time, can I deduce my orientation as a function of time?

That the answer to both questions is yes follows from the following
argument, parts of which are a review from the previous chapter.

Let q1, q2, and q3 represent the Cartesian coordinates of the point B

relative to W and q4, q5, and q6 represent the Euler angles corresponding
to a 3 ¡ 1 ¡ 3 sequence of rotations, such that

W

B =

0
@ q1

q2

q3

1
A

and

Rwb = R (q4; 0; 0; 1)R (q5; 1; 0; 0)R (q6; 0; 0; 1)

=

0
@ c4c6 ¡ s4c5s6 ¡c4s6 ¡ s4c5c6 s4s5

s4c6 + c4c5s6 ¡s4s6 + c4c5c6 ¡c4s5

s5s6 s5c6 c5

1
A ;

where ci = cos qi and si = sin qi for i = 4; 5; 6: Every con¯guration of
the rigid body corresponds to some set of values of the con¯guration
coordinates q1 through q6. Similarly, every motion of the rigid body
corresponds to some set of time-dependencies for the con¯guration co-
ordinates q1 (t) through q6 (t). In particular, if I know my position and
orientation at some time t0, then I can ¯nd the corresponding values
q1 (t0), : : : , q6 (t0).

The linear and angular velocities of the rigid body relative to W are

W

dB

dt
=

w
drWB

dt
= w

0
@ _q1

_q2

_q3

1
A ;

where the dot superscript is shorthand for a time derivative; and

w
!

b = b

0
@ _q4s5s6 + _q5c6

_q4s5c6 ¡ _q5s6

_q4c5 + _q6

1
A ;

since

Rbw

dRwb

dt
=

0
@ 0 ¡ _q4c5 ¡ _q6 _q4s5c6 ¡ _q5s6

_q4c5 + _q6 0 ¡ _q4s5s6 ¡ _q5c6

¡ _q4s5c6 + _q5s6 _q4s5s6 + _q5c6 0

1
A :

Now, assume that

W

dB

dt
= w

0
@ u1

u2

u3

1
A and w

!
b = b

0
@ u4

u5

u6

1
A ;
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where u1 through u6 are known functions of time. It follows that

_q1 = u1;

_q2 = u2;

_q3 = u3;

_q4 sin q5 sin q6 + _q5 cos q6 = u4;

_q4 sin q5 cos q6 ¡ _q5 sin q6 = u5;

_q4 cos q5 + _q6 = u6;

or, in matrix form,0
BBBBBB@

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 sin q5 sin q6 cos q6 0
0 0 0 sin q5 cos q6 ¡ sin q6 0
0 0 0 cos q5 0 1

1
CCCCCCA

0
BBBBBB@

_q1

_q2

_q3

_q4

_q5

_q6

1
CCCCCCA

=

0
BBBBBB@

u1

u2

u3

u4

u5

u6

1
CCCCCCA

:

Since the variables u1, : : : , u6 are known functions of time, this is a
system of ¯rst-order di®erential equations in the unknowns q1 through q6.
Given a set of values for the con¯guration coordinates at some time t0, the
fundamental theory of di®erential equations guarantees the existence of a
unique solution q1 (t), : : : , q6 (t) over some interval of time around t = t0.
The existence and uniqueness theory breaks down when the coe±cient
matrix becomes singular, i.e., when¯̄̄

¯̄̄
¯̄̄
¯̄̄

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 sin q5 sin q6 cos q6 0
0 0 0 sin q5 cos q6 ¡ sin q6 0
0 0 0 cos q5 0 1

¯̄̄
¯̄̄
¯̄̄
¯̄̄
= ¡ sin q5 = 0:

Thus, as long as q5 6= n¼ for all integers n, I may solve the di®erential
equations for the con¯guration coordinates as functions of time. Substi-
tuting the results back into the expressions for WB and Rwb then yields
the desired position and orientation as functions of time.

The di®erential equations derived above are known as the kinematic

di®erential equations. The discussion shows that a motion of the rigid
body can be generated by specifying initial values for the con¯guration
coordinates and explicit functions of time for the independent velocity

coordinates u1, : : : , u6. This representation of the motion is comple-

mentary to that given by explicit functions of time for the variables q1,
: : : , q6.

The kinematic di®erential equations may be hard or even impossible
to solve analytically, but a unique solution is guaranteed to exist by the
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B

W

r
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fundamental theory of di®erential equations. We expect that a numerical
algorithm should be able to generate a reasonable approximation.

9.1.2 The Free Rigid Body

If the con¯guration of the rigid body is unconstrained, all six con¯g-
uration coordinates are necessary to describe arbitrary positions and
orientations of the rigid body relative to W. These con¯guration coordi-
nates are independent. The free rigid body has six geometric degrees

of freedom.

Similarly, if the motion of the rigid body is unconstrained, all six
components of the linear and angular velocity vectors are independent.
It takes six independent velocity coordinates to describe arbitrary linear
and angular velocities of the rigid body relative to W. The free rigid
body has six dynamic degrees of freedom.

9.1.3 Motion Along a Plane

Suppose that the rigid body is constrained in such a way that its reference
point B is con¯ned to a plane through the reference point W that is
stationary relative to the observer W. If

n = w

0
@ n1

n2

n3

1
A
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is a vector perpendicular to the plane, then

r
WB

² n = 0;

since r
WB is parallel to the plane. It follows that the con¯guration of

the rigid body is constrained. This condition is an example of a con¯gu-

ration constraint.
Equivalently,

W

dB

dt
² n = 0;

since the velocity of the point B relative to W must be parallel to the
plane. It follows that the motion of the rigid body is constrained. This
condition is an example of a motion constraint.

If we di®erentiate the left-hand side of the con¯guration constraint
with respect to time relative to the w triad, we obtain

w
d

dt

¡
r

WB
² n

¢
=

w
dr

WB

dt
² n =

W

dB

dt
² n;

since n is constant in the w triad. It follows that a motion that satis¯es
the con¯guration constraint automatically satis¯es the motion constraint.
But how about the converse? Speci¯cally, if a motion satis¯es the motion
constraint, does it automatically satisfy the con¯guration constraint?

Clearly, the motion constraint requires only that the velocity be per-
pendicular to n. It follows that the rigid body will move in such a way
that B is con¯ned to some plane perpendicular to n, but not necessarily
the plane through W . However, if B is known to lie on the chosen plane
at some time t0, then a motion that satis¯es the motion constraint will
automatically satisfy the con¯guration constraint.

This observation may be expressed in terms of a new set of kine-
matic di®erential equations. In terms of the con¯guration coordinates
introduced in the initial section of this chapter, the motion constraint
becomes

0 =
W

dB

dt
² n = _q1n1 + _q2n2 + _q3n3:

The components of the linear velocity of the rigid body relative to W are
no longer independent, sinceÃ

W

dB

dt
² w1

!
n1 +

Ã
W

dB

dt
² w2

!
n2 +

Ã
W

dB

dt
² w3

!
n3 = 0:

It is not possible to assign arbitrary functions of time to all three com-
ponents of the linear velocity, since one of these components can always
be expressed in terms of the other two.
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In light of the motion constraint on the components of the linear
velocity, consider introducing known functions of time u1 (t), : : : , u5 (t),
such that

W

dB

dt
= w

0
@ u1

u2

¢

1
A and w

!
b = b

0
@ u3

u4

u5

1
A ;

where the ¢ denotes a quantity that depends on the u's: Using the expres-

sions for
W

dB

dt
and w

!
b that we derived previously, we must have

_q1 = u1;

_q2 = u2;

_q4 sin q5 sin q6 + _q5 cos q6 = u3;

_q4 sin q5 cos q6 ¡ _q5 sin q6 = u4;

_q4 cos q5 + _q6 = u5;

and

_q1n1 + _q2n2 + _q3n3 = 0;

where the last equation restates the motion constraint. In matrix form,
these equations become0

BBBBBB@

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 sin q5 sin q6 cos q6 0
0 0 0 sin q5 cos q6 ¡ sin q6 0
0 0 0 cos q5 0 1
n1 n2 n3 0 0 0

1
CCCCCCA

0
BBBBBB@

_q1

_q2

_q3

_q4

_q5

_q6

1
CCCCCCA

=

0
BBBBBB@

u1

u2

u3

u4

u5

0

1
CCCCCCA

:

These kinematic di®erential equations are non-singular as long as the
determinant of the coe±cient matrix is non-zero, i.e.,¯̄̄

¯̄̄
¯̄̄
¯̄̄

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 sin q5 sin q6 cos q6 0
0 0 0 sin q5 cos q6 ¡ sin q6 0
0 0 0 cos q5 0 1
n1 n2 n3 0 0 0

¯̄̄
¯̄̄
¯̄̄
¯̄̄
= n3 sin q5 6= 0:

If n3 = 0, these equations are everywhere singular, and cannot be solved.
This re°ects a bad de¯nition of the independent velocity coordinates u1,
: : : , u5. If n3 6= 0, then the kinematic di®erential equations can be solved
away from q5 = n¼ for any integer n.

Alternatively, the choice

W

dB

dt
= w

0
@ u1

¢

u2

1
A and w

!
b = b

0
@ u3

u4

u5

1
A
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yields0
BBBBBB@

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 sin q5 sin q6 cos q6 0
0 0 0 sin q5 cos q6 ¡ sin q6 0
0 0 0 cos q5 0 1
n1 n2 n3 0 0 0

1
CCCCCCA

0
BBBBBB@

_q1

_q2

_q3

_q4

_q5

_q6

1
CCCCCCA

=

0
BBBBBB@

u1

u2

u3

u4

u5

0

1
CCCCCCA

:

which are non-singular as long as¯̄̄
¯̄̄
¯̄̄
¯̄̄

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 sin q5 sin q6 cos q6 0
0 0 0 sin q5 cos q6 ¡ sin q6 0
0 0 0 cos q5 0 1
n1 n2 n3 0 0 0

¯̄̄
¯̄̄
¯̄̄
¯̄̄
= ¡n2 sin q5 6= 0:

Thus, if the previous choice of independent velocity coordinates yields
everywhere singular kinematic di®erential equations (as would happen
if n3 = 0), the present choice need not be everywhere singular (unless
n2 = 0 as well).

Finally,

W

dB

dt
= w

0
@ ¢

u1

u2

1
A and w

!
b = b

0
@ u3

u4

u5

1
A

yields0
BBBBBB@

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 sin q5 sin q6 cos q6 0
0 0 0 sin q5 cos q6 ¡ sin q6 0
0 0 0 cos q5 0 1
n1 n2 n3 0 0 0

1
CCCCCCA

0
BBBBBB@

_q1

_q2

_q3

_q4

_q5

_q6

1
CCCCCCA

=

0
BBBBBB@

u1

u2

u3

u4

u5

0

1
CCCCCCA

;

which are non-singular as long as¯̄̄
¯̄̄
¯̄̄
¯̄̄

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 sin q5 sin q6 cos q6 0
0 0 0 sin q5 cos q6 ¡ sin q6 0
0 0 0 cos q5 0 1
n1 n2 n3 0 0 0

¯̄̄
¯̄̄
¯̄̄
¯̄̄
= n1 sin q5 6= 0:

Thus, if the previous choices of independent velocity coordinates yield
everywhere singular kinematic di®erential equations (as would happen if
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n2 = n3 = 0), the present choice will not be everywhere singular, since
n 6= 0 and therefore at least one of the ni's must be non-zero.

Assuming that the kinematic di®erential equations are not everywhere
singular, we may now solve for the con¯guration coordinates q1 (t), : : : ,
q6 (t) as functions of time. Since the motion constraint is automatically
satis¯ed by such a solution, it follows from the above discussion that
the con¯guration constraint is automatically satis¯ed by this solution,
provided that the initial values q1 (t0), : : : , q6 (t0) satisfy the con¯guration
constraint.

As shown above, only ¯ve of the components of the linear and angu-
lar velocity vectors are independent. It takes ¯ve independent velocity
coordinates to describe arbitrary linear and angular velocities of the rigid
body relative to W. This rigid body therefore has ¯ve dynamic degrees
of freedom.

9.1.4 Motion Along a Line

Suppose that the rigid body is constrained in such a way that its reference
point B is con¯ned to a straight line through the reference point W that
is stationary relative to the observer W. If

p = w

0
@ p1

p2

p3

1
A

is a vector parallel to the line, then

r
WB

£ p = 0;

since r
WB is parallel to the line. It follows that the con¯guration of the

rigid body is constrained. This condition is a con¯guration constraint.

Equivalently,

W

dB

dt
£ p = 0;
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since the velocity of the point B relative to W must be parallel to the
line. It follows that the motion of the rigid body is constrained. This
condition is a motion constraint.

If we di®erentiate the left-hand side of the con¯guration constraint
with respect to time relative to the w triad, we obtain

w
d

dt

¡
r

WB
£ p

¢
=

w
drWB

dt
£ p =

W

dB

dt
£ p;

since p is constant in the w triad. It follows that a motion that satis¯es
the con¯guration constraint automatically satis¯es the motion constraint.
As discussed above, the converse is true, provided that B is known to lie
on the straight line at some time t0:

In terms of the con¯guration coordinates introduced previously, the
motion constraint implies that

0 =
W

dB

dt
£ p = w

0
@ p3 _q2 ¡ p2 _q3

¡p3 _q1 + p1 _q3

p2 _q1 ¡ p1 _q2

1
A :

It follows that the components of the linear velocity of the rigid body
relative to W are no longer independent, since

p3

Ã
W

dB

dt
² w2

!
¡ p2

Ã
W

dB

dt
² w3

!
= 0;

¡p3

Ã
W

dB

dt
² w1

!
+ p1

Ã
W

dB

dt
² w3

!
= 0;

p2

Ã
W

dB

dt
² w1

!
¡ p1

Ã
W

dB

dt
² w2

!
= 0:

These are three equations in three unknowns. It would appear that all the
components of the linear velocity are determined by these equations. It
would appear that we have no freedom at all to assign functions of time
to the components of the linear velocity. But that is counterintuitive.
The motion constraint says nothing about the linear velocity of the rigid
body along the straight line. We must have some freedom left. How do
we resolve this?

Let's express the motion constraint in matrix form, such that0
@ 0 p3 ¡p2

¡p3 0 p1

p2 ¡p1 0

1
A

0
@ _q1

_q2

_q3

1
A =

0
@ 0

0
0

1
A :

The determinant of the coe±cient matrix¯̄̄
¯̄̄ 0 p3 ¡p2

¡p3 0 p1

p2 ¡p1 0

¯̄̄
¯̄̄ = 0;
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i.e., these equations are everywhere singular. For example, if p3 6= 0, then
the third constraint equation can be expressed in terms of the other two:

p2 _q1 ¡ p1 _q2 = ¡

p2

p3

(¡p3 _q1 + p1 _q3) ¡

p1

p3

(p3 _q2 ¡ p2 _q3) :

It follows that a motion that satis¯es the ¯rst two constraint equations
automatically satis¯es the third constraint equation. Alternatively, if
p3 = 0, but p2 6= 0, then the second constraint equation can be expressed
in terms of the ¯rst:

p1 _q3 = ¡

p1

p2

(¡p2 _q3) :

It follows that a motion that satis¯es the ¯rst constraint equation auto-
matically satis¯es the second constraint. Finally, if p2 = p3 = 0, then the
¯rst constraint equation is automatically satis¯ed.

Assume that p3 6= 0 and let

W

dB

dt
= w

0
@ ¢

¢

u1

1
A and w

!
b = b

0
@ u2

u3

u4

1
A :

The kinematic di®erential equations then become0
BBBBBB@

0 0 1 0 0 0
0 0 0 sin q5 sin q6 cos q6 0
0 0 0 sin q5 cos q6 ¡ sin q6 0
0 0 0 cos q5 0 1
0 p3 ¡p2 0 0 0

¡p3 0 p1 0 0 0

1
CCCCCCA

0
BBBBBB@

_q1

_q2

_q3

_q4

_q5

_q6

1
CCCCCCA

=

0
BBBBBB@

u1

u2

u3

u4

0
0

1
CCCCCCA

;

where the last two rows of the coe±cient matrix corresponds to the ¯rst
two motion constraints (recall that the third constraint can be expressed
in terms of the ¯rst two constraints). These equations are non-singular,
as long as¯̄̄

¯̄̄
¯̄̄
¯̄̄

0 0 1 0 0 0
0 0 0 sin q5 sin q6 cos q6 0
0 0 0 sin q5 cos q6 ¡ sin q6 0
0 0 0 cos q5 0 1
0 p3 ¡p2 0 0 0

¡p3 0 p1 0 0 0

¯̄̄
¯̄̄
¯̄̄
¯̄̄
= ¡p

2

3
sin q5 6= 0:

Since p3 6= 0, the kinematic di®erential equations are not everywhere
singular.

If, instead, p3 = 0, but p2 6= 0, let

W

dB

dt
= w

0
@ ¢

u1

¢

1
A and w

!
b = b

0
@ u2

u3

u4

1
A :
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The kinematic di®erential equations then become0
BBBBBB@

0 1 0 0 0 0
0 0 0 sin q5 sin q6 cos q6 0
0 0 0 sin q5 cos q6 ¡ sin q6 0
0 0 0 cos q5 0 1
0 0 ¡p2 0 0 0
p2 ¡p1 0 0 0 0

1
CCCCCCA

0
BBBBBB@

_q1

_q2

_q3

_q4

_q5

_q6

1
CCCCCCA

=

0
BBBBBB@

u1

u2

u3

u4

0
0

1
CCCCCCA

;

where the last two rows of the coe±cient matrix corresponds to the ¯rst
and last motion constraints (recall that the second constraint can be
expressed in terms of the ¯rst constraint). These equations are non-
singular, as long as¯̄̄

¯̄̄
¯̄̄
¯̄̄

0 1 0 0 0 0
0 0 0 sin q5 sin q6 cos q6 0
0 0 0 sin q5 cos q6 ¡ sin q6 0
0 0 0 cos q5 0 1
0 0 ¡p2 0 0 0
p2 ¡p1 0 0 0 0

¯̄̄
¯̄̄
¯̄̄
¯̄̄
= p

2

2
sin q5 6= 0:

Since p2 6= 0, the kinematic di®erential equations are not everywhere
singular.

Finally, if p2 = p3 = 0, but p1 6= 0, let

W

dB

dt
= w

0
@ u1

¢

¢

1
A and w

!
b = b

0
@ u2

u3

u4

1
A :

The kinematic di®erential equations then become0
BBBBBB@

1 0 0 0 0 0
0 0 0 sin q5 sin q6 cos q6 0
0 0 0 sin q5 cos q6 ¡ sin q6 0
0 0 0 cos q5 0 1
0 0 p1 0 0 0
0 ¡p1 0 0 0 0

1
CCCCCCA

0
BBBBBB@

_q1

_q2

_q3

_q4

_q5

_q6

1
CCCCCCA

=

0
BBBBBB@

u1

u2

u3

u4

0
0

1
CCCCCCA

;

where the last two rows of the coe±cient matrix corresponds to the last
two motion constraints (recall that the ¯rst constraint is automatically
satis¯ed). These equations are non-singular, as long as¯̄̄

¯̄̄
¯̄̄
¯̄̄

1 0 0 0 0 0
0 0 0 sin q5 sin q6 cos q6 0
0 0 0 sin q5 cos q6 ¡ sin q6 0
0 0 0 cos q5 0 1
0 0 p1 0 0 0
0 ¡p1 0 0 0 0

¯̄̄
¯̄̄
¯̄̄
¯̄̄
= ¡p

2

1
sin q5 6= 0:
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Since p1 6= 0, the kinematic di®erential equations are not everywhere
singular.

In any of the three cases, we may now assign arbitrary functions
u1 (t), : : : , u4 (t) and solve for the corresponding q1 (t), : : : , q6 (t). Since
the motion constraint is automatically satis¯ed by such a solution, it
follows from the above discussion that the con¯guration constraint is
automatically satis¯ed by this solution, provided that the initial values
q1 (t0), : : : , q6 (t0) satisfy the con¯guration constraint.

As shown above, only four of the components of the linear and angu-
lar velocity vectors are independent. It takes four independent velocity
coordinates to describe arbitrary linear and angular velocities of the rigid
body relative to W. This rigid body therefore has four dynamic degrees
of freedom.

9.1.5 No Translation

Suppose that the rigid body is constrained in such a way that its reference
point B coincides with the reference point W of the observer W. Then,

r
WB = 0.

It follows that the con¯guration of the rigid body is constrained. This
condition is a con¯guration constraint.

Equivalently, we conclude that

W

dB

dt
= 0;

since B is stationary relative to W. It follows that the motion of the
rigid body is constrained. This condition is a motion constraint.

As in previous sections, a motion that satis¯es the con¯guration con-
straint automatically satis¯es the motion constraint. Similarly, a motion
that satis¯es the motion constraint automatically satis¯es the con¯gura-
tion constraint provided that B coincides with W at some time t0:
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In terms of the con¯guration coordinates introduced in previous sec-
tions, the motion constraint implies that

0 =
W

dB

dt
= w

0
@ _q1

_q2

_q3

1
A :

Now, let

w
!

b = b

0
@ u1

u2

u3

1
A :

The kinematic di®erential equations become0
BBBBBB@

0 0 0 sin q5 sin q6 cos q6 0
0 0 0 sin q5 cos q6 ¡ sin q6 0
0 0 0 cos q5 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

1
CCCCCCA

0
BBBBBB@

_q1

_q2

_q3

_q4

_q5

_q6

1
CCCCCCA

=

0
BBBBBB@

u1

u2

u3

0
0
0

1
CCCCCCA

;

where the last three rows correspond to the motion constraints. The
equations are non-singular, as long as the determinant of the coe±cient
matrix is non-zero, i.e.,¯̄̄

¯̄̄
¯̄̄
¯̄̄

0 0 0 sin q5 sin q6 cos q6 0
0 0 0 sin q5 cos q6 ¡ sin q6 0
0 0 0 cos q5 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

¯̄̄
¯̄̄
¯̄̄
¯̄̄
= sin q5 6= 0:

The kinematic di®erential equations can be solved away from q5 = n¼ for
any integer n.

Since the kinematic di®erential equations are not everywhere singu-
lar, we may now assign arbitrary functions u1 (t), : : : , u3 (t) and solve
for the corresponding q1 (t), : : : , q6 (t). Since the motion constraint is
automatically satis¯ed by such a solution, it follows from the above dis-
cussion that the con¯guration constraint is automatically satis¯ed by
this solution, provided that the initial values q1 (t0), : : : , q6 (t0) satisfy
the con¯guration constraint.

As shown above, only three of the components of the linear and
angular velocity vectors are independent. It takes three independent
velocity coordinates to describe arbitrary linear and angular velocities
of the rigid body relative to W. This rigid body therefore has three

dynamic degrees of freedom.
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9.2 General Formalism

9.2.1 Eliminating Redundant Coordinates

In the examples above, constraints on the con¯guration of a mechanism
were formulated as con¯guration constraints and associated motion con-
straints. In terms of the con¯guration coordinates, the con¯guration
constraints were

q1n1 + q2n2 + q3n3 = 0

in the case of con¯nement to a plane,

p3q2 ¡ p2q3 = 0;

¡p3q1 + p1q3 = 0;

p2q1 ¡ p1q2 = 0

in the case of con¯nement to a line, and

q1 = q2 = q3 = 0

in the case of no translation. The corresponding motion constraints were
the time derivatives of these equations.

In each of the examples, all six con¯guration coordinates were retained
to describe the con¯guration of the rigid body and the con¯guration
constraints were only addressed through the solution of an associated
system of kinematic di®erential equations. But, in each of the examples,
we could also have eliminated redundant con¯guration coordinates. For
example, if n3 6= 0 in the case of con¯nement to a plane, then we could
have speci¯ed the coordinate representation of B relative to W as

W

B =

0
@ q1

q2

¡
1

n3

(q1n1 + q2n2)

1
A ;

such that

r
WB

² n = q1n1 + q2n2 +

µ
¡

1

n3

¶
(q1n1 + q2n2)n3 = 0;

i.e., the con¯guration constraint would be automatically satis¯ed.
If we now let

W

dB

dt
= w

0
@ u1

u2

¢

1
A and w

!
b = b

0
@ u3

u4

u5

1
A ;

the kinematic di®erential equations would be0
BBBB@

1 0 0 0 0
0 1 0 0 0
0 0 sin q5 sin q6 cos q6 0
0 0 sin q5 cos q6 ¡ sin q6 0
0 0 cos q5 0 1

1
CCCCA

0
BBBB@

_q1

_q2

_q4

_q5

_q6

1
CCCCA =

0
BBBB@

u1

u2

u3

u4

u5

1
CCCCA ;
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i.e., a system of ¯ve di®erential equations in ¯ve unknowns q1, q2, q4, q5,
and q6. Since these are not everywhere singular, we may assign arbitrary
functions of time for u1 (t), : : : , u5 (t) and solve for the con¯guration
coordinates as functions of time. In contrast with the analysis in the
previous section, there is no need to be concerned about initial values
for the con¯guration coordinates, since the con¯guration constraint is
automatically satis¯ed.

Similarly, in the case of con¯nement to a straight line or the case
of no translation, we could eliminate two and three of the con¯guration
coordinates, respectively. In each case, the con¯guration constraint would
be automatically satis¯ed. The resulting kinematic di®erential equations
would have dimension four and three, respectively. So why did I not
follow this course of action? What was the rationale for retaining all
con¯guration coordinates? After all, by retaining all six con¯guration
coordinates, it was necessary to solve a system of six kinematic di®erential
equations instead of ¯ve, four, or three, respectively. Moreover, it was
necessary to ensure that the initial values of the con¯guration coordinates
satisfy the con¯guration constraint.

The alternatives are as follows:

Alternative 1. Find a solution q1 (t0), : : : , qn (t0) of the con¯guration
constraints at some initial time and subsequently solve the kine-
matic di®erential equations with inputs u1 (t), : : : , um (t) to ¯nd
q1 (t), : : : , qn (t) as functions of time.

Alternative 2. Solve the con¯guration constraints for n¡m of the con-
¯guration coordinates in terms of the remaining con¯guration coor-
dinates and subsequently choose between assigning arbitrary func-
tions of time to the remaining con¯guration coordinates or solving
the kinematic di®erential equations with inputs u1 (t), : : : , um (t).

In the examples above, both alternatives were equally tractable. In

general, this is not the case. In fact, Alternative 2 su®ers from a sig-
ni¯cant drawback, namely the need to solve the con¯guration constraints
ahead of time for n ¡ m of the con¯guration coordinates in terms of the
remaining coordinates. This was easy in the examples above. In general,
this is impossible

1!

Illustration 9.1

Assume that the kinematic di®erential equations of a multibody mecha-
nism are

_q1 = u1;

_q1 sin q2 + _q2q1 = u2;

1In terms of elementary functions and operations.
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which are non-singular, as long as q1 6= 0. Consider the imposition of the
con¯guration constraint

q1q
2

2
+ sin (q1 + q2) = 0:

It is easy to ¯nd values for q1 and q2 that satisfy this equation, e.g.,
q1 = q2 = 0. It is impossible, however, to solve the equation for q1 in
terms of q2, or vice versa. We simply cannot pursue Alternative 2.

If, instead, we di®erentiate the constraint with respect to time, we
¯nd

_q1q
2

2
+ 2 _q2q1q2 + ( _q1 + _q2) cos (q1 + q2) = 0;

i.e., a motion constraint. It is no longer possible to assign arbitrary
functions u1 (t) and u2 (t) in the kinematic di®erential equations above.
The motion constraint implies that u1 and u2 are dependent. If, instead,
we replace the equation de¯ning u2 with the motion constraint, we obtain
the kinematic di®erential equations

_q1 = u1;

_q1q
2

2
+ 2 _q2q1q2 + ( _q1 + _q2) cos (q1 + q2) = 0;

which are non-singular, as long as

2q1q2 + cos (q1 + q2) 6= 0.

These equations can be solved for arbitrary functions u1 (t) to generate a
motion that automatically satis¯es the motion constraint. If q1 (t0) and
q2 (t0) satisfy the con¯guration constraint, then the generated motion will
automatically satisfy the con¯guration constraint for all time.

More generally, suppose that

f (q1; : : : ; qn; t) = 0

is a con¯guration constraint expressed in terms of the con¯guration co-
ordinates q1, : : : , qn. While this equation may be practically impossible
to solve for one of the con¯guration coordinates in terms of the others, it
is generally possible to ¯nd numerical values for the con¯guration coor-
dinates that do satisfy the constraint. These can be used as initial values
for solving the kinematic di®erential equations.

Using the chain rule of di®erentiation, the time derivative of this equa-
tion becomes

_q1

@f

@q1

(q1; : : : ; qn; t) + ¢ ¢ ¢ + _qn

@f

@qn

(q1; : : : ; qn; t) +
@f

@t
(q1; : : : ; qn; t) = 0;
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i.e., a motion constraint. We can now replace one of the original kine-
matic di®erential equations with this motion constraint. If the resulting
equations are not everywhere singular, their solution will generate a mo-
tion that automatically satis¯es the motion constraint. Given the initial
values from above, the solution will automatically satisfy the con¯gura-
tion constraint.

9.2.2 Integrability

As shown in the previous section, every con¯guration constraint corre-
sponds to a motion constraint by di®erentiation with respect to time.
Indeed, while the con¯guration constraint may be very complicated and
non-linear in the con¯guration coordinates, the corresponding motion
constraint will always be linear in the derivatives of the con¯guration
coordinates.

But what about the converse? Is every motion constraint that is linear
in the derivatives of the con¯guration coordinates the time derivative of
a con¯guration constraint?

De¯nition 9.1 A motion constraint is said to be integrable or holo-

nomic if it can be obtained by di®erentiation with respect to time of a
con¯guration constraint. In this case, any motion that satis¯es the mo-
tion constraint, and for which the initial values satisfy the con¯guration
constraint, will automatically satisfy the con¯guration constraint for all
time.

A motion constraint that does not correspond to a con¯guration con-
straint as described above is said to be non-integrable or non-holonomic.

Illustration 9.2

Suppose that Á (t) is a solution to the di®erential equation

dy

dt
= ¡

®2 (y; t)

®1 (y; t)
;

where ®1 and ®2 are two di®erentiable functions of y and t and ®1 is not
identically equal to zero. In other words,

d

dt
Á (t) = ¡

®2 (Á (t) ; t)

®1 (Á (t) ; t)
:

Then, the con¯guration constraint

q1 ¡ Á (q2) = 0
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corresponds to the motion constraint

_q1 ¡ _q2

d

dq2

Á (q2) = _q1 +
®2 (Á (q2) ; q2)

®1 (Á (q2) ; q2)
_q2

= _q1 +
®2 (q1; q2)

®1 (q1; q2)
_q2

= 0;

where the ¯rst equality follows by replacing t by q2 in the di®erential
equation above and the second equality follows from replacing Á (q2) by
q1 using the con¯guration constraint.

The result of the illustration shows that any motion constraint of the
form

_q1 +
®2 (q1; q2)

®1 (q1; q2)
_q2 = 0

corresponds to a con¯guration constraint

q1 ¡ Á (q2) = 0;

provided that Á (t) is a solution to the di®erential equation

dy

dt
= ¡

®2 (y; t)

®1 (y; t)
:

The fundamental theory of di®erential equations guarantees that such a
solution can be found as long as ®1 6= 0. It follows that motion constraints
that involve only two con¯guration coordinates are holonomic.

Illustration 9.3

Consider the motion constraint

®1 _q1 + ®2 _q2 + ®3 _q3 = 0;

where the ®i's are non-zero, di®erentiable functions of q1, q2; and q3.
Suppose that this motion constraint can be obtained from a con¯guration
constraint

f (q1; q2; q3) = 0:

Di®erentiation with respect to time then yields the motion constraint

@f

@q1

_q1 +
@f

@q2

_q2 +
@f

@q3

_q3 = 0:

It follows that

@f

@q1

=®1 =
@f

@q2

=®2 =
@f

@q3

=®3 = g
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for some non-zero function2 g (q1; q2; q3), or

@f

@q1

= g®1;
@f

@q2

= g®2, and
@f

@q3

= g®3:

Since the second partial derivatives of a multivariable, continuously dif-
ferentiable function are independent of the order of di®erentiation, we
have

@
2
f

@qi@qj

=
@

2
f

@qj@qi

:

Applying this to the expressions above yields

@g

@q2

®1 + g
@®1

@q2

=
@g

@q1

®2 + g
@®2

@q1

;

@g

@q3

®1 + g
@®1

@q3

=
@g

@q1

®3 + g
@®3

@q1

;

and

@g

@q3

®2 + g
@®2

@q3

=
@g

@q2

®3 + g
@®3

@q2

;

which can be rewritten as

g

µ
@®1

@q2

¡

@®2

@q1

¶
=

@g

@q1

®2 ¡

@g

@q2

®1;

g

µ
@®3

@q1

¡

@®1

@q3

¶
=

@g

@q3

®1 ¡

@g

@q1

®3;

g

µ
@®2

@q3

¡

@®3

@q2

¶
=

@g

@q2

®3 ¡

@g

@q3

®2:

Finally, multiplying the ¯rst equation by ®3, the second equation by ®2,
and the third equation by ®1; and adding up the results yields

®3

µ
@®1

@q2

¡

@®2

@q1

¶
+ ®2

µ
@®3

@q1

¡

@®1

@q3

¶
+ ®1

µ
@®2

@q3

¡

@®3

@q2

¶
= 0:

The result of the illustration shows that a motion constraint in three
con¯guration coordinates

®1 (q1; q2; q3) _q1 + ®2 (q1; q2; q3) _q2 + ®3 (q1; q2; q3) _q3 = 0

2g is typically called an integrating factor.
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is holonomic, only if3 the functions ®1, ®2, and ®3 satisfy the condition

®3

µ
@®1

@q2

¡

@®2

@q1

¶
+ ®2

µ
@®3

@q1

¡

@®1

@q3

¶
+ ®1

µ
@®2

@q3

¡

@®3

@q2

¶
= 0:

For example, the velocity constraint

_q1q3 + _q2 = 0

is non-integrable, since here ®1 = q3, ®2 = 1, and ®3 = 0; which implies

®3

µ
@®1

@q2

¡

@®2

@q1

¶
+ ®2

µ
@®3

@q1

¡

@®1

@q3

¶
+ ®1

µ
@®2

@q3

¡

@®3

@q2

¶
= ¡1 6= 0:

9.2.3 Physical Modeling

From the previous section, we conclude that it is possible to invent motion
constraints that are linear in the derivatives of the con¯guration coordi-
nates that do not correspond to some con¯guration constraints. But do
such motion constraints occur in practice?

Suppose you want to model the motion of a paddle blade through
water. Experience shows you that there is signi¯cant resistance from
the water to motions of the blade in the direction perpendicular to the
blade surface. In contrast, there is very little resistance from the water
to motions of the blade in a direction parallel to the blade surface. To
approximate this behavior, we may impose the motion constraint that
the component of the blade's velocity relative to the water that is per-
pendicular to the blade must be zero.

Introduce a main observer W, relative to which the water is stationary,
with reference point W and reference triad w. Let B be an auxiliary
observer, relative to which the paddle remains stationary, with reference
point B at the center of the paddle blade and reference triad b, such
that b3 is along the paddle handle and b1 is perpendicular to the paddle
blade. The constraint may then be formulated as

W

dB

dt
² b1 = 0.

3It is, in fact, possible to show that this condition is su±cient for integrability.
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Illustration 9.4

Let the coordinate representation of B relative to W be given by

W

B =

0
@ q1

q2

q3

1
A :

Furthermore, let the orientation of the paddle relative to W be given by
the rotation matrix

Rwb = R (q4; 0; 0; 1)R (q5; 1; 0; 0)R (q6; 0; 0; 1) :

Then, the motion constraint on the velocity of the paddle becomes

_q1 (cos q4 cos q6 ¡ sin q4 cos q5 sin q6)

+ _q2 (sin q4 cos q6 + cos q4 cos q5 sin q6) + _q3 sin q5 sin q6 = 0:

This motion constraint is holonomic only if there exists a function

f (q1; q2; q3; q4; q5; q6) = 0;

such that

@f

@q1

= (cos q4 cos q6 ¡ sin q4 cos q5 sin q6) g (q1; q2; q3; q4; q5; q6) ;

@f

@q2

= (sin q4 cos q6 + cos q4 cos q5 sin q6) g (q1; q2; q3; q4; q5; q6) ;

@f

@q3

= sin q5 sin q6g (q1; q2; q3; q4; q5; q6) ;

@f

@q4

=
@f

@q5

=
@f

@q6

= 0
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for some function g. The last three conditions imply that f is independent
of q4, q5, and q6. But this is only possible if the three expressions

(cos q4 cos q6 ¡ sin q4 cos q5 sin q6) g (q1; q2; q3; q4; q5; q6) ;

(sin q4 cos q6 + cos q4 cos q5 sin q6) g (q1; q2; q3; q4; q5; q6) ;

and

sin q5 sin q6g (q1; q2; q3; q4; q5; q6)

are independent of q4, q5, and q6. The last expression is independent of
q4 only if g is independent of q4: But if g is independent of q4, then the
¯rst two expressions will depend on q4. In conclusion, it is impossible
to ¯nd a function f , such that the motion constraint is equivalent to the
con¯guration constraint

f (q1; q2; q3; q4; q5; q6) = 0:

The motion constraint on the paddle is non-holonomic!

Suppose that you want to model the motion of a skate on an icy
surface. Experience shows you that there is signi¯cant resistance from the
ice to motions of the blade edge of the skate in the direction perpendicular
to the blade edge and parallel to the ice. In contrast, there is very little
resistance from the ice to motions of the blade edge in a direction parallel
to the blade edge and to the ice. To approximate this behavior, we may
impose the motion constraint that the component of the blade edge's
velocity relative to the ice that is perpendicular to the blade edge and
parallel to the ice must be zero.

Introduce a main observer W, relative to which the ice is stationary,
with reference point W and reference triad w, such that w3 is perpendicu-
lar to the ice. Let B be an auxiliary observer, relative to which the skate
remains stationary, with reference point B at the center of the skate's
blade edge and reference triad b, such that b3 is perpendicular to the
skate blade and b1 is parallel to the ice. The constraint may then be
formulated as

W

dB

dt
² (b1 £ w3) = 0,

since

b1 £ w3

is a vector that is parallel to the ice and perpendicular to the blade edge.
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Illustration 9.5

Let the coordinate representation of B relative to W be given by

W

B =

0
@ q1

q2

q3

1
A :

Furthermore, let the orientation of the skate relative to W be given by
the rotation matrix

Rwb = R (q4; 0; 0; 1)R (q5; 1; 0; 0)R (q6; 0; 0; 1) :

Then, the motion constraint on the velocity of the skate becomes

_q1 (cos q4 cos q5 sin q6 + sin q4 cos q6)

+ _q2 (sin q4 cos q5 sin q6 ¡ cos q4 cos q6) = 0:

The result of Exercise 9.10 shows that this constraint is non-holonomic.

In both examples above, the motion constraint was imposed to model
your experience of the resistance to motion by the water or the ice. The
con¯guration constraints introduced in previous sections also model your
experience of the resistance to motion; away from a plane, away from a
straight line, or away from a point, respectively. Ultimately, constraints
are models of our experience. They represent our interpretation of the
limitations on con¯gurations or motions of a rigid body.

As a ¯nal example, suppose you want to model the rolling motion of
a rigid body along some stationary surface. Experience shows you that
friction between the body and the surface results in a great resistance to
sliding motion of the rigid body relative to the stationary surface at the
point of contact. To approximate this observation, we may impose the
motion constraint that the velocity relative to the surface of the contact
point parallel to the surface must be zero. In fact, if the rigid body
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remains in contact with the surface (although the point of contact may
change), then the component of the velocity perpendicular to the surface
must also be zero. A motion that satis¯es this motion constraint is called
rolling without slipping.

Introduce a main observer W, relative to which the surface is station-
ary, with reference point W and reference triad w. Let B be an auxiliary
observer, relative to which the rigid body remains stationary, with ref-
erence point B and reference triad b. Denote by P the current contact
point between the rigid body and the surface. As shown in Exercises 8.11
and 8.22, the constraint may then be formulated as

W

dP

dt
= 0,

i.e.,

W

dB

dt
+ w

!
b
£ r

BP = 0:

Illustration 9.6

Specialize to the case of a sphere rolling without slipping on a plane, such
that w1 and w2 are parallel to the plane and w3 points away from the
plane toward the center of the sphere. Let the coordinate representation
of the point B relative to W be given by

W

B =

0
@ q1

q2

R

1
A ;

where R is the radius of the sphere. Let the orientation of the sphere
relative to W be given by

Rwb = R (q3; 0; 0; 1)R (q4; 1; 0; 0)R (q5; 0; 0; 1) :

The position of the contact point P relative to B is given by the position
vector

r
BP = w

0
@ 0

0
¡R

1
A :

The motion constraint now becomes

0 =
W

dB

dt
+ w

!
b
£ r

BP

= w

0
@ _q1 ¡ R _q4 sin q3 + R _q5 cos q3 sin q4

_q2 + R _q4 cos q3 + R _q5 sin q3 sin q4

0

1
A ;
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i.e.,

_q1 ¡ R _q4 sin q3 + R _q5 cos q3 sin q4 = 0;

_q2 + R _q4 cos q3 + R _q5 sin q3 sin q4 = 0:

The result of Exercise 9.11 shows that these motion constraints are non-
holonomic.

9.3

9.3.1 Basic Methodology

Given a geometry description in a .geo ¯le, there are three di®erent ways
of generating a time-dependent motion in a Mambo animation, namely:

Method 1. Declare all con¯guration coordinates as Mambo animated
variables and assign explicit functions of time to each variable.

Method 2. Declare all con¯guration coordinates as Mambo state vari-
ables and import a Mambo .sds ¯le with the values of the state
variables listed in tabular format.

Method 3. Declare all con¯guration coordinates as Mambo state vari-
ables, de¯ne the kinematic di®erential equations, and assign explicit
functions of time to the independent velocity coordinates.

Methods 1 and 2 only work if all constraints can be formulated as
con¯guration constraints. Moreover, even if that is the case, they require
that a sequence of values has been found for the con¯guration coordi-
nates that satisfy all con¯guration constraints and generate a motion
that appears visually continuous.

Method 3, on the other hand, applies to systems with arbitrary con-
straints. It does not require one to ¯nd values that satisfy the con¯g-
uration constraints except for the initial values. The versatility of
Method 3 makes it the method of choice.

As discussed in Chapter 4, the kinematic di®erential equations are
provided to theMambo application in aMambo motion description, i.e.,
a .dyn ¯le. For example, suppose that q1, q2, and q3 are con¯guration
coordinates that appear in the Mambo geometry description. Impose
the motion constraints

_q1q2 + _q3 = 0;

_q2q
2

1
= cos t:
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Then, it follows that the derivatives of the con¯guration coordinates are
not independent. A possible set of kinematic di®erential equations is
given by 0

@ 1 0 0
q2 0 1
0 q2

1
0

1
A

0
@ _q1

_q2

_q3

1
A =

0
@ u1

0
cos t

1
A ;

which are non-singular, as long as¯̄̄
¯̄̄ 1 0 0

q2 0 1
0 q2

1
0

¯̄̄
¯̄̄ = ¡q

2

1
6= 0:

The corresponding Mambo motion description would then include
the statements

states q1,q2,q3;

time t;

insignals f

u1 = 1;

g

ode f

rhs[q1] = u1;

rhs[q2] = 0;

rhs[q3] = cos(t);

mass[q1][q1] = 1;

mass[q1][q2] = 0;

mass[q1][q3] = 0;

mass[q2][q1] = q2;

mass[q2][q2] = 0;

mass[q2][q3] = 1;

mass[q3][q1] = 0;

mass[q3][q2] = q1^2;

mass[q3][q3] = 0;

g

Here, u1 (t) = 1 as speci¯ed in the insignals block. The ode block
contains information about the coe±cient matrix (mass) and the right-
hand side (rhs) of the kinematic di®erential equations. The Mambo
state variables are used to label the rows and columns of these matrices.
Since the order of the equations is irrelevant, the row indices can be
permuted arbitrarily. Moreover, by default, there is no need to include
matrix entries that equal zero. Thus, an equivalent ode block could read:

ode f

rhs[q2] = u1;
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rhs[q3] = cos(t);

mass[q2][q1] = 1;

mass[q1][q1] = q2;

mass[q1][q3] = 1;

mass[q3][q2] = q1^2;

g

TheMambo toolbox procedure MotionOutput can be invoked to gen-
erate a Mambo motion description including the kinematic di®erential
equations (which can be very complicated). For example, the following
statements result in a motion description equivalent to that shown above.

> kde:=fq1t*q2+q3t=0,q2t*q1^2=cos(t),q1t=u1g:

> MotionOutput(ode=kde,states=[q1,q2,q3],
> insignals=[u1=1]);

states q1,q2,q3;

time t;

insignals {

u1 = 1;

rhs_q1 = cos(t);

mass_q1_q2 = q1^2;

}

ode {

rhs[q1] = rhs_q1;

rhs[q3] = u1;

mass[q1][q2] = mass_q1_q2;

mass[q2][q1] = q2;

mass[q3][q1] = 1;

mass[q2][q3] = 1;

}

The MotionOutput procedure attempts to generate an optimized com-
putation sequence that reduces the number of function calls. This is re-
°ected in the introduction of the rhs q1 and mass q1 q2 variables. Their
de¯nitions are placed within the insignals block, since they e®ectively
provide input signals to the kinematic di®erential equations.

We can use Maple's genmatrix and det procedures to ¯nd the de-
terminant of the coe±cient matrix and thereby detect any singularities:

> det(genmatrix(kde,[q1t,q2t,q3t]));

q1 2

The di®erence in sign from the determinant computed above is attributab-
le to a switch of two of the rows of the coe±cient matrix. The det

function works ¯ne for relatively sparse matrices of relatively low dimen-
sion. For large matrices that have many non-zero entries, the memory
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requirements for computing the determinant are beyond what most in-
stallations of Maple are set up to handle. As an alternative, Mambo
will detect singularities and notify the user as a .dyn ¯le is loaded (if
the kinematic di®erential equations are everywhere singular) or during a
simulation (if a singularity is approached). Finally, we may include the
option checksings when invoking the MotionOutput procedure to check
whether the initial values for the con¯guration coordinates correspond to
a singularity of the kinematic di®erential equations as in the following
Mambo toolbox statement:

> MotionOutput(ode=kde,states=[q1,q2,q3],
> checksings,insignals=[u1=1]);

Error, (in MotionOutput) Mass matrix initially singular!

where the states=[q1,q2,q3] argument establishes the default initial
values for q1, q2, and q3; i.e.,

q1 = q2 = q3 = 0:

Since the kinematic di®erential equations are singular whenever q1 = 0;
the MotionOutput procedure returns an appropriate error message.

9.3.2 Switching Between Constraints

It is possible to switch between di®erent sets of constraints and di®erent
sets of kinematic di®erential equations within the sameMambo .dyn ¯le,
provided that the number of con¯guration coordinates stays the same.
Suppose, for example, that you want to model the motion of a rigid
body, such that the point P1 on the rigid body is stationary relative to
the main observer when sin

¡
2¼ t

T

¢
¸ 0 and the point P2 on the rigid

body is stationary relative to the main observer when sin
¡
2¼ t

T

¢
< 0:
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We can achieve this by switching between the kinematic di®erential
equations

W

dP1

dt
² w1 = 0;

W

dP1

dt
² w2 = 0;

W

dP1

dt
² w3 = 0;

w
!

b
² b1 = u1;

w
!

b
² b2 = u2;

w
!

b
² b3 = u3;

which are valid when sin
¡
2¼ t

T

¢
¸ 0 and

W

dP2

dt
² w1 = 0;

W

dP2

dt
² w2 = 0;

W

dP2

dt
² w3 = 0;

w
!

b
² b1 = u1;

w
!

b
² b2 = u2;

w
!

b
² b3 = u3;

which are valid when sin
¡
2¼ t

T

¢
< 0.

Alternatively, we may consider the combined kinematic di®erential
equations Ã

k

W

dP1

dt
+ (1 ¡ k)

W

dP2

dt

!
² w1 = 0;

Ã
k

W

dP1

dt
+ (1 ¡ k)

W

dP2

dt

!
² w2 = 0;

Ã
k

W

dP1

dt
+ (1 ¡ k)

W

dP2

dt

!
² w3 = 0;

w
!

b
² b1 = u1;

w
!

b
² b2 = u2;

w
!

b
² b3 = u3;

and set k = 1 when sin
¡
2¼ t

T

¢
¸ 0 and 0 otherwise.
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The following Mambo session generates the necessary kinematic dif-
ferential equations:

> Restart():
> DeclareObservers(W,B):
> DeclarePoints(W,B,P1,P2):
> DeclareTriads(w,b):
> DefineObservers([W,W,w],[B,B,b]):
> DefinePoints([W,B,w,q1,q2,q3],[B,P1,b,p11,p12,p13],
> [B,P2,b,p21,p22,p23]):
> DefineTriads([w,b,[q4,3],[q5,1],[q6,3]]):
> DeclareStates(q1,q2,q3,q4,q5,q6):
> kde:=fseq(((k &** LinearVelocity(W,P1)) &++
> ((1-k) &** LinearVelocity(W,P2))) &oo
> MakeTranslations(w,i)=0,i=1..3),
> seq(AngularVelocity(w,b) &oo
> MakeTranslations(b,i)=cat(u,i),i=1..3)g:
> simplify(det(genmatrix(kde,
> [q1t,q2t,q3t,q4t,q5t,q6t])));

sin(q5 )

> MotionOutput(ode=kde,states=[q1,q2,q3,q4,q5,q6]);

states q1,q2,q3,q4,q5,q6;

insignals {

t1 = sin(q5);

t2 = sin(q6);

t3 = t1*t2;

t5 = cos(q6);

t6 = t5*t1;

t10 = 1-k;

t15 = k*(t3*p12-t6*p11)+t10*(t3*p22-t6*p21);

t16 = cos(q4);

t20 = cos(q5);

t28 = k*(t6*p13-t20*p12)+t10*(t6*p23-t20*p22);

t29 = sin(q4);

t31 = t16*t20;

t33 = t29*t5+t31*t2;

t43 = k*(t20*p11-t3*p13)+t10*(t20*p21-t3*p23);

t46 = -t29*t2+t31*t5;

mass_q5_q4 = t20;

t56 = t29*mass_q5_q4;

t58 = t16*t5-t56*t2;

t62 = -t16*t2-t56*t5;

t72 = k*(t5*p12+t2*p11)+t10*(t5*p22+t2*p21);

t79 = -k*t2*p13-t10*t2*p23;

t85 = -k*t5*p13-t10*t5*p23;

mass_q3_q5 = t5;

t98 = -k*p12-t10*p22;

t102 = k*p11+t10*p21;

}

ode {

rhs[q3] = u1;

rhs[q4] = u2;

rhs[q5] = u3;

mass[q2][q2] = 1;

mass[q6][q1] = 1;
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mass[q1][q3] = 1;

mass[q2][q4] = -t15*t16*t1+t28*t33+t43*t46;

mass[q1][q4] = t15*t20+t28*t1*t2+t43*t1*t5;

mass[q3][q4] = t1*t2;

mass[q4][q4] = t5*t1;

mass[q5][q4] = mass_q5_q4;

mass[q6][q4] = t15*t29*t1+t28*t58+t43*t62;

mass[q2][q5] = -t72*t16*t1+t79*t33+t85*t46;

mass[q1][q5] = t72*mass_q5_q4+t79*t1*t2+t85*t1*t5;

mass[q3][q5] = mass_q3_q5;

mass[q4][q5] = -t2;

mass[q6][q5] = t72*t29*t1+t79*t58+t85*t62;

mass[q2][q6] = t98*t33+t102*t46;

mass[q1][q6] = t98*t1*t2+t102*t1*mass_q3_q5;

mass[q5][q6] = 1;

mass[q6][q6] = t98*t58+t102*t62;

}

In addition to specifying u1, u2, and u3 as functions of time in the
insignals block, we also need to specify k. For example,

insignals f

u1 = cos(t);

u2 = -1;

u3 = 0;

k = sin(2*pi*t/T)>=0;
...

will do the trick. Naturally, p11, : : : , p23; and T all have to be declared as
parameters and can subsequently be changed interactively by the user. A
syntactically correctMambomotion description would thus be generated
by the Mambo toolbox statement

> MotionOutput(ode=kde,states=[q1,q2,q3,q4,q5,q6],
> insignals=[u1=cos(t),u2=-1,u3=0,k=(sin(2*Pi*t/T)&>=0)],
> parameters=[p11,p12,p13,p21,p22,p23,T],
> filename="switching.dyn");

where the output has been spooled directly to the ¯le switching.dyn.

9.4 Additional Examples

The ultimate goal of the discussion in the next few subsections is to
model the motion of a sphere rolling without slipping on a plane. In a
previous section, we accomplished this with a minimal set of ¯ve con-
¯guration coordinates, two motion constraints, and three independent
velocity coordinates: In the present section, we shall retain all six con¯g-
uration coordinates for the sphere and arrive at the ¯nal mechanism only
after introducing a sequence of successive motion constraints.

(Ex. 9.16 {

Ex. 9.17)
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9.4.1 Point Contact

Suppose that the con¯guration of a sphere of radius ½ is constrained in
such a way that some point on the surface of sphere always coincides with
some point on a plane.

Introduce a main observer W, relative to which the plane is stationary,
with reference point W somewhere on the plane and reference triad w,
such that w1 and w2 are parallel to the plane and w3 points away from
the plane toward the center of the sphere. Let A be an auxiliary observer,
relative to which the sphere is stationary, such that the reference point A

coincides with the center of the sphere. Let a denote the reference triad
of A.

Introduce con¯guration coordinates, such that

r
WA = w

0
@ q1

q2

q3

1
A

and

Rwa = R (q4; 0; 0; 1)R (q5; 1; 0; 0)R (q6; 0; 0; 1) :

Some point on the sphere's surface will coincide with some point on the
plane provided that the distance from the sphere's center to the plane
is less than or equal to the radius of the sphere. In other words, the
condition on the sphere's con¯guration is satis¯ed as long as¯̄

r
WA

² w3

¯̄
· ½:
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Since this is an inequality, it does not correspond to a con¯guration
constraint. As long as jq3j < ½, there are no constraints on the values of
the con¯guration coordinates.

Illustration 9.7

The following Mambo toolbox statements establish the basic geometry
of the sphere:

> Restart():
> DeclareObservers(W,A):
> DeclarePoints(W,A):
> DeclareTriads(w,a):
> DefineObservers([W,W,w],[A,A,a]):
> DefinePoints([W,A,w,q1,q2,q3]):
> DefineTriads([w,a,[q4,3],[q5,1],[q6,3]]):
> DeclareStates(q1,q2,q3,q4,q5,q6):

In particular,

> FindTranslation(W,A) &oo
> MakeTranslations(w,3)<=rho;

q3 · ½

As long as jq3j < ½, there is actually an entire circle of points on
the sphere that coincide with a circle of points on the plane. As the
con¯guration of the sphere changes, the circle changes position on the
surface of the sphere and on the plane.

Suppose now that we want to locate some point P on this circle and
trace its motion as the con¯guration of the sphere changes. To this end,
let

r
AP = a

0
@ ½ sin q7 cos q8

½ sin q7 sin q8

½ cos q7

1
A ;

where q7 and q8 are two additional con¯guration coordinates that specify
the coordinate representation of P relative to A. Since the point P is
assumed to coincide with some point on the plane, we must have

r
WP

² w3 = 0:

This is a con¯guration constraint. Equivalently,

W

dP

dt
² w3 = 0;
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since the velocity of the point P must be parallel to the plane. This is a
motion constraint.

As in previous sections, a motion that satis¯es the motion constraint
will automatically satisfy the con¯guration constraint, provided that the
con¯guration constraint is satis¯ed by the initial values for the con¯gu-
ration coordinates.

Illustration 9.8

We continue with the previous Mambo toolbox session.

> DeclarePoints(P):
> DefinePoints([A,P,a,rho*sin(q7)*cos(q8),
> rho*sin(q7)*sin(q8),rho*cos(q7)]):
> DeclareStates(q7,q8):

The con¯guration constraint and corresponding motion constraint are
then obtained from the statement

> confconst1:=FindTranslation(W,P) &oo
> MakeTranslations(w,3)=0:
> motionconst1:=DiffTime(confconst1):

Since there are no constraints on the con¯guration or motion of the
sphere, the components of the linear and angular velocities of A relative
to W are all independent. We are free to assign arbitrary functions of
time to these components, say

W

v
A = w

0
@ u1

u2

u3

1
A and w

!
a = a

0
@ u4

u5

u6

1
A :

Since the position of P relative to A is described using only two con-

¯guration coordinates, at most two of the components of
A

dP

dt
can be

independent from each other. Similarly, it follows that at most two of

the components of
W

dP

dt
can be independent of the components of W

v
A

and w
!

a. The additional condition imposed by the motion constraint

reduces the number of independent components of
W

dP

dt
to one, e.g.,

W

dP

dt
= w

0
@ u7

¢

¢

1
A :

Illustration 9.9

We continue with the previous Mambo toolbox session. The following
statement de¯nes the kinematic di®erential equations.
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> kde:=f
> seq(LinearVelocity(W,A) &oo
> MakeTranslations(w,i)=cat(u,i),i=1..3),
> seq(AngularVelocity(w,a) &oo
> MakeTranslations(a,i)=cat(u,i+3),i=1..3),
> LinearVelocity(W,P) &oo MakeTranslations(w,1)=u7,
> motionconst1g:

From the result of the statement

> simplify(det(genmatrix(kde,[seq(cat(q,i,t),i=1..8)]))):

we conclude that the kinematic di®erential equations are not everywhere
singular.

Since the kinematic di®erential equations are not everywhere singular,
we may now assign arbitrary functions u1 (t), : : : , u7 (t) and solve for the
corresponding q1 (t), : : : , q8 (t) until we reach a singularity of the kine-
matic di®erential equations. Since the motion constraint is automatically
satis¯ed by such a solution, it follows from the above discussion that the
con¯guration constraint is automatically satis¯ed by this solution.

9.4.2 Tangential Contact

Now, suppose that the sphere in the previous section makes tangential
contact with the plane at the point P . This implies that all tangent
directions to the sphere's surface at the point P are parallel to the plane.

From

r
AP = a

0
@ ½ sin q7 cos q8

½ sin q7 sin q8

½ cos q7

1
A ;

we conclude that any vector tangent to the sphere's surface at the point
P is a linear combination of the vectors

t1 = a
@

@q7

0
@ ½ sin q7 cos q8

½ sin q7 sin q8

½ cos q7

1
A = a

0
@ ½ cos q7 cos q8

½ cos q7 sin q8

¡½ sin q7

1
A

and

t2 = a
@

@q8

0
@ ½ sin q7 cos q8

½ sin q7 sin q8

½ cos q7

1
A = a

0
@ ¡½ sin q7 sin q8

½ sin q7 cos q8

0

1
A :

Illustration 9.10

We continue with the previous Mambo toolbox session. The following
statements de¯ne the con¯guration constraints
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t1 ² w3 = t2 ² w3 = 0:

> confconst2:=MakeTranslations(a,rho*cos(q7)*cos(q8),
> rho*cos(q7)*sin(q8),-rho*sin(q7)) &oo
> MakeTranslations(w,3)=0:
> confconst3:=MakeTranslations(a,-rho*sin(q7)*sin(q8),
> rho*sin(q7)*cos(q8),0) &oo
> MakeTranslations(w,3)=0:

The corresponding motion constraints are obtained by di®erentiating
with respect to time.

> motionconst2:=DiffTime(confconst2):
> motionconst3:=DiffTime(confconst3):

The imposition of the two additional motion constraints reduces the
number of independent components of the velocities discussed above by
another two. We expect to only be able to assign arbitrary functions of
time to ¯ve components of the velocities, e.g.,

W

v
A = w

0
@ u1

u2

¢

1
A and w

!
a = a

0
@ u4

u5

u6

1
A :

Illustration 9.11

The Mambo toolbox statement

> kde:=fseq(LinearVelocity(W,A) &oo
> MakeTranslations(w,i)=cat(u,i),i=1..2),
> seq(AngularVelocity(w,a) &oo MakeTranslations(a,i)
> =cat(u,i+3),i=1..3),motionconst1,
> motionconst2,motionconst3g:

de¯nes the corresponding kinematic di®erential equations. Again, the
result of the statement

> simplify(det(genmatrix(kde,[seq(cat(q,i,t),i=1..8)]))):

shows that the kinematic di®erential equations are not everywhere sin-
gular.

Since the kinematic di®erential equations are not everywhere singular,
we may now assign arbitrary functions u1 (t), u2 (t), u4 (t), u5 (t), and
u6 (t) and solve for the corresponding q1 (t), : : : , q8 (t) until we reach
a singularity of the kinematic di®erential equations. Since the motion
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constraints are automatically satis¯ed by such a solution, it follows from
the above discussion that the con¯guration constraints are automatically
satis¯ed by this solution.

9.4.3 Rolling Without Slipping

Now, suppose that the point on the sphere that currently coincides with
P has zero velocity relative to W. This is the rolling-without-slipping
motion constraint, since the plane is stationary relative toW. Speci¯cally,

W

dA

dt
+ w

!
a

£ r
AP = 0:

The con¯guration constraints imposed in the previous two subsections
already guarantee that the velocity component away from the plane, i.e.,
in the w3 direction, is zero. The rolling-without-slipping constraint thus
implies that Ã

W

dA

dt
+ w

!
a

£ r
AP

!
² w1 = 0;

Ã
W

dA

dt
+ w

!
a

£ r
AP

!
² w2 = 0:

The number of dynamic degrees of freedom are reduced by another
two. We conclude that only three components of the velocities introduced
above may be assigned arbitrarily, e.g.,

w
!

a = a

0
@ u4

u5

u6

1
A :

Illustration 9.12

We continue with the same Mambo toolbox session.

> motionconst4:=(LinearVelocity(W,A) &++
> (AngularVelocity(w,a) &xx FindTranslation(A,P))) &oo
> MakeTranslations(w,1)=0:
> motionconst5:=(LinearVelocity(W,A) &++
> (AngularVelocity(w,a) &xx FindTranslation(A,P))) &oo
> MakeTranslations(w,2)=0:
> kde:=fseq(AngularVelocity(w,a) &oo
> MakeTranslations(a,i)=cat(u,i+3),i=1..3),motionconst1,
> motionconst2,motionconst3,motionconst4,motionconst5g:

The result of the statement

> simplify(det(genmatrix(kde,[seq(cat(q,i,t),i=1..8)]))):



shows that the resulting kinematic di®erential equations are not every-
where singular.

Since the kinematic di®erential equations are not everywhere singu-
lar, we may now assign arbitrary functions u4 (t) ; : : : ; u6 (t) and solve
for the corresponding q1 (t) ; : : : ; q8 (t) until we reach a singularity of the
kinematic di®erential equations. Since the motion constraints are auto-
matically satis¯ed by such a solution, it follows from the above discussion
that the con¯guration constraints are automatically satis¯ed by this so-
lution, provided that they are satis¯ed by the initial values.
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9.5 Exercises

Exercise 9.1 Consider the free rigid
body in Section 9.1.1. Find the kinematic
di®erential equations corresponding to the
independent velocity coordinates u1, : : : , u6,
where

W

dB

dt
= w

0
@ u1

u2

u3

1
A and w

!
b = w

0
@ u4

u5

u6

1
A

and determine where they are non-singular.

Exercise 9.2 Consider the free rigid
body in Section 9.1.1. Suppose that the ori-
entation of the rigid body relative to W is de-
scribed in terms of Euler parameters (cf. Il-
lustration 6.4). Find the kinematic di®eren-
tial equations corresponding to the indepen-
dent velocity coordinates u1, : : : , u6, where

W

dB

dt
= w

0
@ u1

u2

u3

1
A and w

!
b = b

0
@ u4

u5

u6

1
A

and determine where they are non-singular.

[Hint: Recall that the Euler parameters ~qi

satisfy the con¯guration constraint

~q2

1
+ ~q2

2
+ ~q2

3
+ ~q2

4
= 1:

]

Exercise 9.3 Consider the free rigid
body in Section 9.1.1. Find the kinematic
di®erential equations corresponding to the
independent velocity coordinates u1, : : : , u6,
where

W

dB

dt
= w

0
@ u1

u2

u3

1
A and w

!
b = w

0
@ u4

u5

u6

1
A

when the orientation of the rigid body rel-
ative to W is described using a 1 ¡ 2 ¡ 3
sequence of Euler angles.

Exercise 9.4 Consider the constrained
rigid body in Section 9.1.4. Find the kine-
matic di®erential equations corresponding to
the independent velocity coordinates u1, : : : ,
u4, where

W

dB

dt
= w

0
@ ¢

¢

u1

1
A and w

!
b = b

0
@ u2

u3

u4

1
A

and the motion constraints are

a)
p1 _q3 ¡ p3 _q1 = 0
p2 _q1 ¡ p1 _q2 = 0

b)
p3 _q2 ¡ p2 _q3 = 0
p2 _q1 ¡ p1 _q2 = 0

Determine where the kinematic di®erential
equations are non-singular.
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Exercise 9.5 Consider the constrained
rigid body in Section 9.1.4. Find the kine-
matic di®erential equations corresponding to
the independent velocity coordinates u1, : : : ,
u4, where

W

dB

dt
= w

0
@ ¢

u1

¢

1
A and w

!
b = b

0
@ u2

u3

u4

1
A

and the motion constraints are

a)
p3 _q2 ¡ p2 _q3 = 0
p1 _q3 ¡ p3 _q1 = 0

b)
p1 _q3 ¡ p3 _q1 = 0
p2 _q1 ¡ p1 _q2 = 0

Determine where the kinematic di®erential
equations are non-singular.

Exercise 9.6 Consider the constrained
rigid body in Section 9.1.4. Find the kine-
matic di®erential equations corresponding to
the independent velocity coordinates u1, : : : ,
u4, where

W

dB

dt
= w

0
@ u1

¢

¢

1
A and w

!
b = b

0
@ u2

u3

u4

1
A

and the motion constraints are

a)
p3 _q2 ¡ p2 _q3 = 0
p2 _q1 ¡ p1 _q2 = 0

b)
p1 _q3 ¡ p3 _q1 = 0
p2 _q1 ¡ p1 _q2 = 0

Determine where the kinematic di®erential
equations are non-singular.

Exercise 9.7 Consider a rigid body
whose motion is constrained, such that its
angular velocity relative to some observer is
perpendicular to a plane that is stationary
relative to the observer. Introduce con¯g-
uration coordinates, formulate the corre-
sponding motion constraint, introduce inde-
pendent velocity coordinates, formulate the

kinematic di®erential equations, and deter-
mine where these are non-singular.

Exercise 9.8 Consider a rigid body
whose motion is constrained, such that its
angular velocity relative to some observer is
parallel to a plane that is stationary relative
to the observer. Introduce con¯guration co-
ordinates, formulate the corresponding mo-
tion constraint, introduce independent ve-
locity coordinates, formulate the kinematic
di®erential equations, and determine where
these are non-singular.

Exercise 9.9 For each of the follow-
ing con¯guration constraints, ¯nd the corre-
sponding motion constraint.

a) q
2

1
+ q

2

2
+ q

2

3
= 1

b) q1q
2

2
+ q3 sin q1 = 0

c) q1 cos (q2 + q3) = q2

d) q1e
q2

¡ q2e
q1 = 0

Exercise 9.10 Show that the following
motion constraint is non-holonomic:

_q1 (cos q4 cos q5 sin q6 + sin q4 cos q6)

+ _q2 (sin q4 cos q5 sin q6 ¡ cos q4 cos q6) = 0:

Exercise 9.11 Show that the following
motion constraints are non-holonomic:

_q1 ¡ R _q4 sin q3 + R _q5 cos q3 sin q4 = 0;

_q2 + R _q4 cos q3 + R _q5 sin q3 sin q4 = 0:

Exercise 9.12 For each of the following
holonomic motion constraints, ¯nd a corre-
sponding con¯guration constraint.

a) _q1 + q2 _q2 = 0
b) f (q2) _q1 + q1 _q2 = 0

Exercise 9.13 Consider a mechanism
whose con¯guration can be described by
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three con¯guration coordinates q1, q2, and
q3. Impose the con¯guration constraint

q
2

1
+ q

2

2
+ q

2

3
= 1

and ¯nd a set of kinematic di®erential equa-
tions that are nowhere singular.

Exercise 9.14 Consider a mechanism
whose con¯guration can be described by
three con¯guration coordinates q1, q2, and
q3. Impose the con¯guration constraint

q
2

1
+ q

2

2
= 1:

Find a set of kinematic di®erential equations
that will guarantee that the con¯guration
constraint is approximately satis¯ed after a
su±ciently long time even if the initial con-
ditions do not satisfy the con¯guration con-
straint.

Solution. The con¯guration constraint
above corresponds to the motion constraint

2q1 _q1 + 2q2 _q2 = 0:

As we have three con¯guration coordinates,
it follows that the mechanism has two dy-
namic degrees of freedom, i.e., that two in-
dependent velocity coordinates are necessary
to describe all allowable motions of the mech-
anism, e.g.,

u1 = _q1;

u2 = _q3;

which lead to the kinematic di®erential equa-
tions0

@ 1 0 0
0 0 1

2q1 2q2 0

1
A

0
@ _q1

_q2

_q3

1
A =

0
@ u1

u2

0

1
A ;

which are non-singular as long as

q2 6= 0:

From the discussion in the text, it follows
that the solution to the kinematic di®eren-
tial equations will automatically satisfy the

con¯guration constraints as long as the ini-
tial conditions satisfy the con¯guration con-
straint. If this is not the case, e.g., if initially

q
2

1
(0) + q

2

2
(0) = 3;

then

q
2

1
(t) + q

2

2
(t) = 3

for all time.

Alternatively, consider the kinematic dif-
ferential equations

0
@ 1 0 0

0 0 1
2q1 2q2 0

1
A

0
@ _q1

_q2

_q3

1
A

=

0
@ u1

u2

¡

¡
q
2

1
+ q

2

2
¡ 1

¢
1
A ;

which are non-singular as long as q2 6= 0.
If the initial conditions satisfy the con¯g-
uration constraint, then it follows that the
matrix on the right-hand side reduces to the
matrix on the right-hand side of the kine-
matic di®erential equations proposed above.
Since the con¯guration coordinates will con-
tinue to satisfy the con¯guration constraint,
the new set of kinematic di®erential equa-
tions reduces to the previous set for all time.

But what happens if the initial conditions
do not satisfy the con¯guration constraint?
Consider the function

f (t) = q
2

1
(t) + q

2

2
(t) ¡ 1:

Then, the last of the new set of kinematic
di®erential equations reads

df

dt
= ¡f;

the solution to which is

f (t) = Ce
¡t

;
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where

C = f (0) = q
2

1
(0) + q

2

2
(0) ¡ 1:

Clearly, f ! 0 independently of C as t ! 1:

In fact, the rate of convergence can be in-
creased by increasing the magnitude of the
coe±cient on the right-hand side. It follows
that the solution to the new set of kinematic
di®erential equations will approximately sat-
isfy the con¯guration constraint after a su±-
ciently long time independently of the choice
of initial conditions for the con¯guration co-
ordinates.

Exercise 9.15 Consider the mechanism
in the previous exercise and suppose that an
approximate solution to the kinematic dif-
ferential equations will be obtained using a
numerical integration routine. Discuss the
bene¯ts of using the second set of kinematic
di®erential equations even if the initial con-
ditions for the con¯guration coordinates do

satisfy the con¯guration constraint.

Exercise 9.16 Repeat the construction
in Section 9.4 for a thin disk rolling without
slipping on a plane that is stationary rela-
tive to some observer. Determine whether
the motion constraints are holonomic or non-
holonomic. Find the number of dynamic de-
grees of freedom. Use the Mambo toolbox
to derive the corresponding kinematic di®er-
ential equations.

Exercise 9.17 Repeat the construction
in Section 9.4 for a cylinder rolling without
slipping on a plane that is stationary rela-
tive to some observer. Determine whether
the motion constraints are holonomic or non-
holonomic. Find the number of dynamic de-
grees of freedom. Use the Mambo toolbox
to derive the corresponding kinematic di®er-
ential equations.
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Summary of notation

A lower-case u with suitable subscripts was used in this chapter to denote
independent velocity coordinates.

Summary of terminology

The smallest number of con¯guration coordinates necessary to describe
the con¯guration of a rigid body is called its number of geometric

degrees of freedom.

The number of independent velocity coordinates necessary to describe
the linear and angular velocities of a rigid body is called its number
of dynamic degrees of freedom.

A complete set of di®erential equations in the con¯guration coordinates
as functions of time parametrized by the independent velocity co-
ordinates is called a set of kinematic di®erential equations.

A condition on the con¯guration coordinates is called a con¯guration

constraint.

A condition on the con¯guration coordinates and their derivatives with
respect to time is called a motion constraint.

Two bodies in contact are said to be rolling without slipping on each
other if the velocities of the contact points on the two bodies are
equal relative to some observer.

The kinematic di®erential equations are declared in the ode block in a
Mambo motion description, a Mambo .dyn ¯le.

The time-dependence of the independent velocity coordinates is declared
in the insignals block in a Mambo .dyn ¯le.

Subexpressions generated in optimizing the evaluation of the kinematic
di®erential equations are declared in the insignals block in a
Mambo .dyn ¯le.

In theMambo toolbox, the procedure MotionOutput generates aMam-
bo motion description.



Chapter 10

Review

wherein the reader learns of:

² Combining the elements developed in previous chapters into a gen-

eral methodology for describing the geometry and motion of a multi-

body mechanism.



Practicum

Having gotten this far, you should

feel a great sense of pride. Al-

though at the end of this journey

the core thoughts can be summa-

rized in a few key concepts, these are

very powerful. They fully provide

you with a global strategy for an-

alyzing multibody mechanisms that

can reach almost arbitrarily far in

complexity.

After completing this chapter, you

are encouraged to return to the

list of sample projects in Appendix

C and throughout the text, and

to attempt to implement these in

Mambo. But this is only the begin-

ning. Creative ideas beyond those

presented here are bound to spark in

you after further experimentation. I

wish I could be there to see where

they take you.
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10.1 Rationale

When we left o® at the end of Chapter 7, we had formulated a com-
prehensive methodology for quantitatively describing the instantaneous
con¯guration of a multibody mechanism. With con¯guration coordinates
at least as numerous as the number of geometric degrees of freedom, we
were able to identify those con¯gurations that satis¯ed all con¯guration
constraints, i.e., all allowable con¯gurations. Sequences of sets of numeri-
cal values for the con¯guration coordinates that satis¯ed the con¯guration
constraints could be generated to produce visually appealing animations
of a moving multibody mechanism.

But all was not well. In treating the model mechanisms in Chapter
7, two problems of distinct natures were identi¯ed, at least one of which
was more than a matter of convenience.

10.1.1 Animations of Allowable Con¯gurations

To ¯nd allowable con¯gurations, we were led to employ numerical equation-
solving routines. Given initial guesses for the solutions to a system of
con¯guration constraints, these routines would arrive at an approximate
set of values for the con¯guration coordinates through some iterative and,
hopefully, convergent, scheme. Indeed, the rate of convergence could be
increased by improved choices for the initial guess given to the numerical
scheme. In generating a single frame as was done in Chapter 7, we indi-
cated the possibility of using Mambo to visually organize the mechanism
in an (almost) allowable con¯guration.

To pass through a pre-processing stage within Mambo, while ade-
quate for a single frame, turns overwhelmingly cumbersome when gener-
ating a sequence of frames for an animation of allowable con¯gurations.
It would be helpful with a more automated methodology for optimizing
the initial guess given to the numerical scheme. One might imagine some
approach of extrapolating from previously found allowable con¯gurations
and the associated sets of numerical values for the con¯guration coordi-
nates. Indeed, as a zeroth-order initial guess, we might simply assume
that, after changing the values of a number of con¯guration coordinates
equal to the number of geometric degrees of freedom, all other con¯gu-
ration coordinates remain constant.

Illustration 10.1

Suppose, for example, that the allowable con¯gurations of a one-geometric-
degree-of-freedom mechanism are those that satisfy the con¯guration con-
straint

q1q
2

2
+ sin (q1 + q2) = 0

expressed here in terms of two con¯guration coordinates, q1 and q2. Sim-
ple inspection then establishes one allowable con¯guration corresponding
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to the choice

q1 = q2 = 0:

Given a small change in q1, say to 0:1, we employ a numerical equation-
solving scheme, such as the Maple fsolve routine to arrive at a cor-
responding value for q2. Using the zeroth-order guess, q2 ¼ 0; we ¯nd
q2 ¼ ¡0:1010205146 as seen below.

> fsolve(subs(q1=0.1,q1*q2^2+sin(q1+q2)=0),fq2=0g);

fq2 = ¡:1010205146g

A further change in q1 to 0:2 yields

> fsolve(subs(q1=0.2,q1*q2^2+sin(q1+q2)=0),
>fq2=-0.1010205146g);

fq2 = ¡:2087122728g

where, again, the previous value for q2 is used as an initial guess.

But we can do better than that. Increased precision in the initial guess
for q2 in the above illustration is obtained by a ¯rst-order approximation
to the change in q2 that results from a change in q1.

Illustration 10.2

Return to the mechanism in the previous illustration and suppose that
one allowable con¯guration is given by the choice

q1 = q
ref

1
, q2 = q

ref

2

for the con¯guration coordinates. Then, if q1 is close to q
ref

1
, an allowable

con¯guration is obtained from q2 = q
ref

2
+ ¢q2, where the change ¢q2

is similarly small. In fact, substituting q1 and q2 = q
ref

2
+ ¢q2 into the

con¯guration constraint and subsequently Taylor expanding in ¢q2, we
¯nd

0 = q1

¡
q
ref

2
+ ¢q2

¢2

+ sin
¡
q1 + q

ref

2
+ ¢q2

¢
= q1

¡
q
ref

2

¢2

+ sin
¡
q1 + q

ref

2

¢
+

¡
2q1q

ref

2
+ cos

¡
q1 + q

ref

2

¢¢
¢q2 + higher-order terms,

i.e.,

q2 = q
ref

2
+ ¢q2 ¼ q

ref

2
¡

q1

¡
q
ref

2

¢2

+ sin
¡
q1 + q

ref

2

¢
2q1q

ref

2
+ cos

¡
q1 + qref

2

¢ :

With q1 = 0:1 and qref

2
= 0; we ¯nd

¢q2 ¼ ¡0:1003346721 ) q2 ¼ ¡0:1003346721;
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which is clearly a superior guess for the value of q2 corresponding to
q1 = 0:1 than that found in the previous illustration.

Similarly, with q1 = 0:2 and qref

2
¼ ¡0:1010205146; we ¯nd

¢q2 ¼ ¡0:1056449777 ) q2 ¼ ¡0:2066654923;

again illustrating the improved accuracy in the initial guess to the nu-
merical equation-solving scheme.

In the previous illustrations, the changes in q1 were small, but dis-
tinct. A smoother appearance to an animation sequence of allowable
con¯gurations is obtained by reducing the size of the change in q1 be-
tween subsequent frames. Repeating the calculation above for decreasing
steps in q1, a pattern quickly emerges as to the relationship between the
change in q1 and the corresponding change in q2.

Illustration 10.3

Return to the mechanism in the previous illustrations and suppose, again,
that one allowable con¯guration is given by the choice

q1 = q
ref

1
, q2 = q

ref

2

for the con¯guration coordinates. This time, substitute

q1 = q
ref

1
+ ¢q1, q2 = q

ref

2
+ ¢q2

into the con¯guration constraint and perform a two-variable Taylor ex-
pansion in ¢q1 and ¢q2:

0 =
¡
q
ref

1
+ ¢q1

¢ ¡
q
ref

2
+ ¢q2

¢2

+ sin
¡
q
ref

1
+ ¢q1 + q

ref

2
+ ¢q2

¢
= q

ref

1

¡
q
ref

2

¢2

+ sin
¡
q
ref

1
+ q

ref

2

¢
+

³¡
q
ref

2

¢2

+ cos
¡
q
ref

1
+ q

ref

2

¢´
¢q1

+
¡
2qref

1
q
ref

2
+ cos

¡
q
ref

1
+ q

ref

2

¢¢
¢q2 + higher-order terms.

Since

q
ref

1

¡
q
ref

2

¢2

+ sin
¡
q
ref

1
+ q

ref

2

¢
= 0;

it follows that

¢q2 ¼ ¡

¡
qref

2

¢2
+ cos

¡
qref

1
+ qref

2

¢
2qref

1
qref

2
+ cos

¡
qref

1
+ qref

2

¢¢q1:

With q
ref

1
= 0 and q

ref

2
= 0; we conclude that

¢q2 ¼ ¡¢q1
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with increasing accuracy for decreasing ¢q1. Similarly, with qref

1
= 0:1

and qref

2
¼ ¡0:1010205146; we conclude that

¢q2 ¼ ¡1:031036325¢q1

with increasing accuracy for decreasing ¢q1.

Now, consider ¢q1 and ¢q2 as the average changes in the con¯gura-
tion coordinates over some interval ¢t of time and divide the relationship
formulated in the previous illustration between ¢q1 and ¢q2 by ¢t:

¢q2

¢t
¼ ¡

¡
q
ref

2

¢2

+ cos
¡
q
ref

1
+ q

ref

2

¢
2qref

1
qref

2
+ cos

¡
qref

1
+ qref

2

¢ ¢q1

¢t
;

thus rephrasing it as a relationship between the average rates of change
of the con¯guration coordinates over the interval ¢t.

The process of successively reducing the length of the time interval
¢t and, consequently, the size of ¢q1 and ¢q2 suggests taking limits as
¢t ! 0 on both sides of the equation. In this limit, the in°uence of
higher-order terms that were disregarded in the derivation of the above
equation becomes negligible, thus turning ¼ into =, i.e.,

lim
¢t!0

¢q2

¢t
= ¡

¡
q
ref

2

¢2

+ cos
¡
q
ref

1
+ q

ref

2

¢
2qref

1
qref

2
+ cos

¡
qref

1
+ qref

2

¢ lim
¢t!0

¢q1

¢t

provided that these limits both exist. When they do exist, they represent
the instantaneous rates of change of the con¯guration coordinates with
respect to time, i.e.,

_q2 = ¡

¡
qref

2

¢2
+ cos

¡
qref

1
+ qref

2

¢
2qref

1
qref

2
+ cos

¡
qref

1
+ qref

2

¢ _q1:

Thus, by the desire to generate increasingly smooth animation sequences
of allowable con¯gurations, we are naturally led to formulate a motion
constraint. It is a straightforward exercise to show that this is the mo-
tion constraint obtained by di®erentiation of the original con¯guration
constraint.

10.1.2 Animations of Allowable Motions

While sequences of frames of allowable con¯gurations often su±ce to
generate visually appealing animations, they fail to address motion con-
straints that have no counterpart in a con¯guration constraint, i.e., non-

holonomic constraints. In contrast to the constraints on the allowable
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con¯gurations that we considered above, such motion constraints con-
strain the allowable changes in con¯guration, i.e., the allowable motions

of the mechanism.

Illustration 10.4

Suppose, for example, that the allowable con¯gurations of a two-geometric-
degrees-of-freedom mechanism are those that satisfy the con¯guration
constraint

q1q
2

2
+ sin (q1 + q2) = 0

and that the allowable motions of this one-dynamic-degree-of-freedom
mechanism are those that additionally satisfy the motion constraint

_q1q2 + _q3 = 0

expressed here in terms of three con¯guration coordinates, q1, q2, and q3.
From the motion constraint, it follows that small, but ¯nite, changes

¢q1 over some interval ¢t in time would correspond to small changes in
q3 according to

¢q3 ¼ ¡q
ref

2
¢q1

with increasing accuracy for decreasing ¢q1. Furthermore, from the pre-
vious illustration, we recall the correspondence between ¢q2 and ¢q1:

¢q2 ¼

¡
qref

2

¢2
+ cos

¡
qref

1
+ qref

2

¢
2qref

1
qref

2
+ cos

¡
qref

1
+ qref

2

¢¢q1

with increasing accuracy for decreasing ¢q1.

A smooth animation consisting of individual frames of allowable con-
¯gurations and sequences of frames of allowable motions can be generated
as in the illustration. Here, we introduce small changes in the values of
some set of con¯guration coordinates, as numerous as the number of
dynamic degrees of freedom, and subsequently compute the associated
changes in the remaining con¯guration coordinates using the motion and
con¯guration constraints. As long as the changes in the con¯guration
coordinates remain small, we might even forego a call to a numerical
equation-solving routine in the hope that the con¯guration constraints
remain approximately satis¯ed throughout the motion.

10.1.3 The Kinematic Di®erential Equations

The ¯rst-order relations between small changes in the con¯guration co-
ordinates that were derived in the above discussion correspond to the
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iterative Euler method for ¯nding approximate solutions to systems of
di®erential equations. In the last illustration, ¢q1 was assumed given by
some external input (in the language of Chapter 9, this could correspond
to the product of an independent velocity coordinate u1 with the length
of the time interval ¢t), and all derivatives in the corresponding motion
constraints were replaced by ¯nite-di®erence ratios, i.e.

_q1 !

¢q1

¢t
, _q2 !

¢q2

¢t
, and _q3 !

¢q3

¢t
:

Although the methodology o®ered in the previous section is capable of
generating animations of approximately allowable con¯gurations and mo-
tions, it might be necessary to reduce the growth of errors introduced in
considering ¯nite steps in time ¢t and space ¢q1, ¢q2, and so on. A vari-
ety of higher-order methods for ¯nding approximate solutions to systems
of di®erential equations can be employed for this purpose. Indeed, the
Mambo application allows the user to select from a number of routines
that are part of the Matlab suite of di®erential equation integrators.

For most practical applications of the kinematic di®erential equations
in the realm of visualization, it should be possible to obtain highly satis-
factory animations. In applications more geared toward simulating physi-
cal behavior, it might still be necessary to augment the kinematic di®eren-
tial equations to control the deviation away from allowable con¯gurations
at each instant.

Illustration 10.5

Consider again the mechanism in previous illustrations, whose allowable
con¯gurations are those that satisfy the con¯guration constraint

f (q1; q2) = q1q
2

2
+ sin (q1 + q2) = 0:

The corresponding motion constraint

df

dt
(q1; q2) =

@f

@q1

_q1 +
@f

@q2

_q2

= _q1q
2

2
+ 2q1q2 _q2 + ( _q1 + _q2) cos (q1 + q2)

= 0

would then be included in the kinematic di®erential equations.
Now, suppose that the numerical integration routine used to solve the

kinematic di®erential equations results in a local error, such that

¡" <
df

dt
< "

for some small number " > 0. It follows that
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¡"t + f0 < f < "t + f0;

i.e., errors grow at worst linearly in time.
If, instead, we considered the motion constraint

df

dt
+ f = _q1q

2

2
+ 2q1q2 _q2 + ( _q1 + _q2) cos (q1 + q2) + q1q

2

2
+ sin (q1 + q2) = 0;

then the same local error

¡" <
df

dt
+ f < "

implies that

¡" + (" + f0) e
¡t

< f < " + (f0 ¡ ") e
¡t

;

i.e., the error remains bounded.

10.2 Modeling Algorithm

Throughout the ¯rst six chapters, I advocated the following algorithm
for arriving at a complete description of the geometry of a multibody
mechanism:

Step 1. Identify all constituent rigid bodies. In doing this,
I recognize that a rigid body may consist of multiple
parts, each of which is a separate rigid body. However,
the multiple parts of a rigid body are assumed to be
stationary relative to each other. They move as a union
relative to all other constituent rigid bodies.

Step 2. Introduce a reference point and a reference triad for
each constituent rigid body. I usually pick some point
that has particular signi¯cance for the geometry, say a
symmetry point of the rigid body. Similarly, I will pick
a triad for which at least one basis vector is parallel to
some symmetry line of the rigid body.

Step 3. Introduce a main observer, relative to which all con-
¯gurations are ultimately described. As suggested in
Chapter 2, the choice of main observer is motivated by
the purpose of the modeling, whether primarily graphics-
or physics-oriented. I often pick a reference point and a
reference triad of the main observer, such that it is re-
lated to the geometry of some object that is stationary
relative to the main observer.
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Step 4. Introduce a separate auxiliary observer for each rigid
body whose con¯guration may change relative to the
main observer. I pick the reference point and the refer-
ence triad of the auxiliary observer, such that the rigid
body remains stationary relative to the auxiliary ob-
server. It is not necessary that the reference point of
the auxiliary observer coincides with any point on the
corresponding rigid body.

Step 5. Arrange the observers and rigid bodies in a tree
structure with the main observer as the top node, the
auxiliary observers as internal nodes, and the rigid bod-
ies as leaf nodes. I often organize the auxiliary ob-
servers to re°ect the presence of mechanical joints that
restrict the relative motions between di®erent auxiliary
observers. This is analogous to the discussion of describ-
ing the con¯gurations of the digits on the hand relative
to you by describing the digits' con¯gurations relative to
the palm and the con¯guration of the palm relative to
you.

Step 6. Introduce con¯guration coordinates to quantify the
position vectors and rotation matrices that relate the
positions and orientations of successive nodes in the tree
structure. I recommend simplicity over cleverness. Often
the simplest solution is quite su±cient and will enhance
the understanding over a particularly clever solution that
may be detrimental to the understanding. I expect that
you will have experienced both possibilities when looking
at the various examples throughout the text.

Step 7. Identify any con¯guration constraints that restrict
the allowable values for the con¯guration coordinates to
actually correspond to geometrically correct con¯gura-
tions of the mechanism.

The insights gained in the previous two chapters allow us to add to
this algorithm to arrive at a complete description of the allowable motions
of the multibody mechanism. In particular,

Step 8. Identify any motion constraints that restrict the al-
lowable changes of the con¯guration coordinates to actu-
ally correspond to kinematically correct motions of the
mechanism. This will include di®erentiating the con¯g-
uration constraints found in Step 7 with respect to time.

Step 9. Introduce a su±cient set of independent velocity co-
ordinates that are linear in the rates of change of the con-
¯guration coordinates and derive the corresponding set
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of kinematic di®erential equations. In doing this, I am
guided by two considerations, namely the desire to avoid
everywhere singular kinematic di®erential equations and
the desire to use independent velocity coordinates that
have a straightforward physical interpretation. I am not
concerned with the complexity of the kinematic di®eren-
tial equations, as these will ultimately be solved numer-
ically in any case. In the development phase, it is often
helpful to iterate Steps 8 and 9 one motion constraint
at a time. Often this allows for a better understanding
of the interpretation of the independent velocity coor-
dinates and enables one to avoid choices that lead to
everywhere singular kinematic di®erential equations.

Step 10. Identify initial values of the con¯guration coordi-
nates that satisfy the con¯guration constraints while be-
ing away from singularities of the kinematic di®erential
equations derived in Step 9. As suggested in Chapter
7, initial values of the con¯guration coordinates that
approximately satisfy the con¯guration constraints can
be obtained through trial and error using Mambo. Im-
proved accuracy can then be achieved through the use
of a numerical equation-solving algorithm, e.g.,Maple's
fsolve procedure.

Di®erent choices of time-dependence for the ¯nal set of independent
velocity coordinates will result in di®erent motions of the mechanism with
initial con¯guration determined in Step 10. It will be possible to (numer-
ically) solve the kinematic di®erential equations as long as a singularity
is not encountered. If the singularity is of coordinate origin, a di®erent
choice of con¯guration coordinates and independent velocity coordinates
may eliminate the singularity (but possibly create one for a di®erent
con¯guration). In contrast, if the singularity is physical, it cannot be
eliminated through a change in the choice of coordinates. Instead, you
must carefully select the time-dependence for the independent velocity
coordinates to avoid the singularity.

10.3 A Bicycle

The algorithm in the previous section establishes the complete descrip-
tion of the allowable con¯gurations and motions of a multibody mech-
anism. In this section, we return to the bicycle discussed in Chapter 7
and implement the last steps of the modeling algorithm. For reference,
we summarize the development of the corresponding geometry hierarchy
detailed in Chapter 7.
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10.3.1 Geometry Hierarchy

Introduce a main observer W with reference point W and reference triad
w; such that the stationary plane with which the bicycle makes contact
is the plane through W spanned by w1 and w2.

Introduce four auxiliary observers Arear wheel, Afront wheel, Aframe, and
Asteering, relative to which the rear wheel, front wheel, frame, and steering
column, respectively, are stationary. In particular, let the reference point
Arear wheel of the rear wheel observer Arear wheel be located at the center
of the rear wheel. Choose the reference triad a

(rear wheel) of Arear wheel,

such that the wheel axis is parallel to the vector a
(rear wheel)

3
. Similarly,

let the reference point Afront wheel of the front wheel observer Afront wheel

be located at the center of the front wheel. Choose the reference triad
a(front wheel) of Afront wheel, such that the wheel axis is parallel to the

vector a
(front wheel)

3
.

Let the reference point Aframe of the frame observer Aframe coincide
with Arear wheel. Choose the reference triad a(frame) of Aframe, such that

a
(frame)

3
equals a

(rear wheel)

3
and a

(frame)

1
is parallel to the forward direction

of the bicycle saddle. Finally, let the reference point Asteering of the steer-
ing column observer Asteering coincide with Afront wheel. Choose the ref-

erence triad a
(steering) of Asteering, such that a

(steering)

3
equals a

(front wheel)

3

and a
(steering)

1
is parallel to the axis of rotation of the steering column.
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The con¯guration of the observer Aframe relative to the main observer
W is described by a pure translation T

W!Aframe
corresponding to the

position vector

r
WAframe = w

0
@ q1

q2

q3

1
A

and a pure rotation RW!Aframe
corresponding to the rotation matrix

Rwa(frame) = R (q4; 0; 0; 1)R (q5; 1; 0; 0)R (q6; 0; 0; 1) :

The con¯guration of the observer Arear wheel relative to the observer
Aframe is described by a pure translation T

Aframe!Arear wheel
corresponding

to the position vector

r
AframeArear wheel = 0

and a pure rotation R
Aframe!Arear wheel

corresponding to the rotation ma-
trix

Ra(frame)a(rear wheel) = R (q7; 0; 0; 1) :

The con¯guration of the observer Asteering relative to the observer
Aframe is described by a pure translation TAframe!Asteering

corresponding
to the position vector

r
AframeAsteering = a

(frame)

0
B@

p3 + p1p5
p

p
2

1
+p

2

2

¡
p2p6

p

p
2

1
+p

2

2

cos q8

p4 + p2p5
p

p
2

1
+p

2

2

+ p1p6
p

p
2

1
+p

2

2

cos q8

p6 sin q8

1
CA

and a pure rotation RAframe!Asteering
corresponding to the rotation matrix

Ra(frame)a(steering) = R (µ; 0; 0; 1)R (q8; 1; 0; 0) ;

where

cos µ =
p1p

p2

1
+ p2

2

and sin µ =
p2p

p2

1
+ p2

2

:

Finally, the con¯guration of the observer Afront wheel relative to the
observer Asteering is described by a pure translation T

Asteering!Afront wheel

corresponding to the position vector

r
AsteeringAfront wheel = 0

and a pure rotation RAsteering!Afront wheel
corresponding to the rotation

matrix

Ra(steering)a(front wheel) = R (q9; 0; 0; 1) :
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10.3.2 Con¯guration Constraints

The only con¯guration constraints restricting allowable con¯gurations of
the bicycle are those requiring that the rear and front wheels make tan-
gential contact with the stationary plane. To simplify the formulation of
these constraints, we introduced the points Prear contact and Pfront contact

to represent the points on the rear wheel and front wheel, respectively,
that make contact with the plane and at which points the tangent direc-
tion to the corresponding wheel is parallel to the plane. In particular, we
let

Arear wheelPrear contact =

0
@ R cos q10

R sin q10

0

1
A

and

Afront wheelPfront contact =

0
@ R cos q11

R sin q11

0

1
A ;

where R is the wheel radius. Then, tangential contact with the plane is
ensured if

w3 ² r
WPrear contact = 0;

w3 ² r
WPfront contact = 0;

r
Arear wheelPrear contact

²

³
w3 £ a

(rear wheel)

3

´
= w3 ²

³
a

(rear wheel)

3
£ r

Arear wheelPrear contact

´
= 0;

and

r
Afront wheelPfront contact

²

³
w3 £ a

(front wheel)

3

´
= w3 ²

³
a

(front wheel)

3
£ r

Afront wheelPfront contact

´
= 0:

10.3.3 Motion Constraints

We begin by deriving the motion constraints corresponding to the con-
¯guration constraints formulated above. Speci¯cally,

w3 ²

w
dr

WPrear contact

dt
= 0;

w3 ²

w
dr

WPfront contact

dt
= 0;

w3 ²

w
d

dt

³
a

(rear wheel)

3
£ r

Arear wheelPrear contact

´
= 0;
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and

w3 ²

w
d

dt

³
a

(front wheel)

3
£ r

Afront wheelPfront contact

´
= 0:

Now, impose the condition that the bicycle's wheels are rolling with-
out slipping on the stationary plane. In Chapters 8 and 9, this was found
to imply that the velocity of the point on the rim of each of the wheels
that is currently in contact with the plane has zero velocity relative to
the plane, i.e., relative to W. Following Chapter 9, we thus ¯nd that the
rolling-without-slipping constraints can be written as

W

dArear wheel

dt
+ w

!
a
(rear wheel)

£ r
Arear wheel Prear contact = 0

and

W

dAfront wheel

dt
+ w

!
a
(front wheel)

£ r
Afront wheelPfront contact = 0:

Since each of these equations corresponds to three motion constraints,
the rolling-without-slipping constraint coupled with the previously for-
mulated con¯guration constraints add up to a total of 10 motion con-
straints. If all of these constraints were independent, it would follow
that the number of dynamic degrees of freedom of the bicycle would be
one: Equivalently, it would follow that, at most, one independent veloc-
ity coordinate would be necessary to describe all allowable motions of the
bicycle. But this is counterintuitive. After all, a given angular speed of
the rear wheel does not uniquely de¯ne the angular speed of the front
wheel, since the latter also depends on the rate of change of the steering
angle. As was the case with the motion constraints in Section 9.1.4, the
10 motion constraints derived here cannot be independent.

In fact, in Section 9.4.3, we similarly concluded that the velocity com-
ponent in the w3 direction already had to be zero as a consequence of
the previously imposed con¯guration constraints. Here,

W

dArear wheel

dt
+ w

!
a
(rear wheel)

£ r
Arear wheel Prear contact

=
w

drWArear wheel

dt
+ w

!
a
(rear wheel)

£ r
Arear wheel Prear contact

=
w

d
¡
r

WPrear contact
¡ r

Arear wheel Prear contact

¢
dt

+w
!

a
(rear wheel)

£ r
Arear wheel Prear contact
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=
w

drWPrear contact

dt
¡

w
drArear wheel Prear contact

dt

+ w
!

a
(rear wheel)

£ r
Arear wheel Prear contact

=
w

drWPrear contact

dt
¡

a
(rear wheel)

drArear wheel Prear contact

dt

=
w

drWPrear contact

dt
¡ _q10a

(rear wheel)

0
@ ¡R sin q10

R cos q10

0

1
A

=
w

dr
WPrear contact

dt
¡ _q10

³
a

(rear wheel)

3
£ r

Arear wheelPrear contact

´
:

It follows that

w3 ²

Ã
W

dArear wheel

dt
+ w

!
a
(rear wheel)

£ r
Arear wheel Prear contact

!

= w3²

w
drWPrear contact

dt
¡ _q10w3²

³
a

(rear wheel)

3
£ r

Arear wheelPrear contact

´
;

which automatically equals zero if the con¯guration constraints are satis-
¯ed throughout the motion. Following an identical argument for the front
wheel, we conclude that the 10 motion constraints are not independent.
Indeed, we are free to eliminate the ¯rst two motion constraints listed
at the top of this section, leaving a total of eight motion constraints.
Although it is not immediately evident that these are independent, this
would follow if it were possible to choose a set of independent veloc-
ity coordinates that results in a not-everywhere-singular set of kinematic
di®erential equations.

10.3.4 Independent Velocity Coordinates and Kine-

matic Di®erential Equations

We turn to the selection of independent velocity coordinates to uniquely
specify all allowable motions of the bicycle. Under the assumption that
the eight motion constraints derived in the previous section are actually
independent, it follows that the bicycle has three dynamic degrees of free-
dom, i.e., that three independent velocity coordinates su±ce to specify
all allowable motions of the bicycle.

While there are in¯nitely many choices for the independent velocity
coordinates, we are guided by our experience with bicycles to consider
the three di®erent ways in which the rider controls the bicycle motion,
namely:

² Controlling the rate of change of the orientation of the real wheel
relative to the frame, _q7;
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² Controlling the rate of change of the tilt of the frame relative to
the stationary plane, _q5;

² Controlling the rate of change of the orientation of the steering
column relative to the frame, _q8.

Consequently, we propose the following choice of independent velocity
coordinates:

u1 = _q5;

u2 = _q7;

u3 = _q8:

We thus arrive at a complete set of kinematic di®erential equations:

_q5 = u1;

_q7 = u2;

_q8 = u3;

w3 ²

w
d

dt

³
a

(rear wheel)

3
£ r

Arear wheelPrear contact

´
= 0;

w3 ²

w
d

dt

³
a

(front wheel)

3
£ r

Afront wheelPfront contact

´
= 0;

w1 ²

Ã
W

dArear wheel

dt
+ w

!
a
(rear wheel)

£ r
Arear wheel Prear contact

!
= 0;

w2 ²

Ã
W

dArear wheel

dt
+ w

!
a
(rear wheel)

£ r
Arear wheel Prear contact

!
= 0;

w3 ²

Ã
W

dArear wheel

dt
+ w

!
a
(rear wheel)

£ r
Arear wheel Prear contact

!
= 0;

w1 ²

Ã
W

dAfront wheel

dt
+ w

!
a
(front wheel)

£ r
Afront wheelPfront contact

!
= 0;

w2 ²

Ã
W

dAfront wheel

dt
+ w

!
a
(front wheel)

£ r
Afront wheelPfront contact

!
= 0;

w3 ²

Ã
W

dAfront wheel

dt
+ w

!
a
(front wheel)

£ r
Afront wheelPfront contact

!
= 0:

where the last eight equations correspond to the motion constraints re-
tained at the end of the previous section. As quickly becomes evident, the
above set of kinematic di®erential equations is algebraically very compli-
cated. Any e®ort to locate singularities by computing the determinant
of the coe±cient matrix as in Chapter 9 is thus doomed to fail. Instead,
we will rely on the ability of Mambo and the Mambo toolbox to detect
con¯gurations that correspond to singularities.
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10.3.5 An Initial Con¯guration

Initial values for the con¯guration coordinates that would correspond to
an allowable con¯guration were already found at the end of Section 7.3.
There it was suggested that a collection of such sets of values for the
con¯guration coordinates could be generated to give the appearance of a
smooth allowable motion. As suggested there, in addition to being very
cumbersome, this methodology would fail to address the rolling-without-
slipping constraints on the bicycle wheels.

In contrast, the formulation derived above in terms of the kinematic
di®erential equations guarantees that the con¯guration constraints and

the motion constraints are satis¯ed for all time as long as the initial
con¯guration is an allowable con¯guration and as long as singularities
are not encountered. Now, every choice of time-dependence of the three
independent velocity coordinates, u1 (t), u2 (t), and u3 (t) will generate
an allowable motion.

10.3.6

We recall the formulation of the geometric hierarchy of the bicycle in the
Mambo toolbox from Chapter 7:

> Restart():
> DeclareObservers(W,Arear,Afront,Aframe,Asteer):
> DeclarePoints(W,Arear,Afront,Aframe,Asteer):
> DeclareTriads(w,arear,afront,aframe,asteer):

> DefineObservers([W,W,w],[Arear,Arear,arear],
> [Afront,Afront,afront],[Aframe,Aframe,aframe],
> [Asteer,Asteer,asteer]):
> DefinePoints([W,Aframe,w,q1,q2,q3]):
> DefineTriads([w,aframe,[q4,3],[q5,1],[q6,3]]):
> DefinePoints([Aframe,Arear,NullVector()]):
> DefineTriads([aframe,arear,[q7,3]]):
> v:=MakeTranslations(aframe,p1,p2,0):
> aframe1:=MakeTranslations(aframe,1):
> aframe2:=MakeTranslations(aframe,2):
> aframe3:=MakeTranslations(aframe,3):
> b1:=(1/VectorLength(v)) &** v:
> b2:=(1/VectorLength(aframe3 &xx b1)) &**
> (aframe3 &xx b1):
> b3:=b1 &xx b2:
> DefineTriads([aframe,asteer,
> [matrix(3,3,(i,j)->cat(aframe,i) &oo cat(b,j))],
> [q8,1]]):
> DefinePoints([Aframe,Asteer,[aframe,p3,p4,0],
> [asteer,p5,p6,0]]):
> DefinePoints([Asteer,Afront,NullVector()]):
> DefineTriads([asteer,afront,q9,3]):
> DefineNeighbors([W,Aframe],[Aframe,Arear],
> [Aframe,Asteer],[Asteer,Afront]):
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and the implementation of the con¯guration constraints using the follow-
ing Mambo toolbox statements:

> DeclarePoints(Prear,Pfront):
> DefinePoints([Arear,Prear,arear,R*cos(q10),
> R*sin(q10),0],[Afront,Pfront,afront,R*cos(q11),
> R*sin(q11),0]):
> f1:=simplify(FindTranslation(Arear,Prear) &oo
> (MakeTranslations(w,3) &xx
> MakeTranslations(arear,3)))=0:
> f2:=FindTranslation(W,Prear) &oo
> MakeTranslations(w,3)=0:
> f3:=simplify(FindTranslation(Afront,Pfront) &oo
> (MakeTranslations(w,3) &xx
> MakeTranslations(afront,3)))=0:
> f4:=FindTranslation(W,Pfront) &oo
> MakeTranslations(w,3)=0:

The kinematic di®erential equations derived above are obtained from the
Mambo toolbox statements

> DeclareStates(seq(cat(q.i),i=1..11)):

> kde:= fq5t=u1,q7t=u2,q8t=u3g union DiffTime(ff1,f3g)
> union fseq((LinearVelocity(W,Arear) &++
> (AngularVelocity(w,arear) &xx
> FindTranslation(Arear,Prear)))
> &oo MakeTranslations(w,i)=0,i=1..3),
> seq((LinearVelocity(W,Afront) &++
> (AngularVelocity(w,afront)
> &xx FindTranslation(Afront,Pfront)))
> &oo MakeTranslations(w,i)=0,i=1..3)g:

Finally, we use MotionOutput to check whether the initial con¯gu-
ration found in Chapter 7 corresponds to a singularity of the kinematic
di®erential equations and, if not, to export the motion description to the
¯le bike.dyn.

> MotionOutput(ode=kde,states=[q1=0,q2=0,q3=.4207354924,
> q4=0,q5=1,q6=.1280053711e-1,q7=0,q8=.8,q9=0,
> q10=-1.583596864,q11=3.288069682],parameters=
> [p1=-.348968837,p2 =.937134317,p3=1.296859217,
> p4=.6774200135,p5=-.7601008180,p6=-.10,R=.5],
> insignals=[u1=0,u2=0,u3=0],checksings,
> filename="bike.dyn");

10.4 A Desk Lamp

As a ¯nal example, we return to the desk lamp discussed in Chapter 7
and implement the last steps of the modeling algorithm as suggested. For
reference, we summarize the development of the corresponding geometry
hierarchy detailed in Chapter 7.
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10.4.1 Geometry Hierarchy

Introduce a main observer W with reference point W and reference
triad w: Introduce six auxiliary observers Abase, Alower beam, Amiddle beam,
Aupper beam, Abracket, and Alamp shade, relative to which the base, the
lower, middle, and upper beams, the bracket, and the lamp shade, re-
spectively, are stationary.

In particular, let the reference point Abase of the base observer Abase

be located at the top of the base centered between the vertical posts.
Choose the reference triad a

(base) of Abase, such that the vertical posts

are parallel to the vector a
(base)

3
and are separated in a direction paral-

lel to the vector a
(base)

2
. Let the reference point Alower beam of the lower

beam observer Alower beam be located at the center of the horizontal bar
connecting the beam to the base. Choose the reference triad a

(lower beam)
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of Alower beam, such that the beam is parallel to the vector a
(lower beam)

3

and the horizontal bar is parallel to a
( lower beam)

2
. Similarly, let the ref-

erence point Amiddle beam of the middle beam observer Amiddle beam be
located at the center of the horizontal bar connecting the beam to the
base. Choose the reference triad a

(middle beam) of Amiddle beam, such that

the beam is parallel to the vector a
(middle beam)

3
and the horizontal bar is

parallel to a
(middle beam)

2
. Moreover, let the reference point Aupper beam

of the upper beam observer Aupper beam be located at the center of the
horizontal bar connecting the beam to the base. Choose the reference
triad a(upper beam) of Aupper beam, such that the beam is parallel to the

vector a
(upper beam)

3
and the horizontal bar is parallel to a

(upper beam)

2
.

Let the reference point Abracket of the bracket observer Abracket co-
incide with the hinge joint connecting the bracket to the lower beam.
Choose the reference triad a(bracket) of Abracket, such that the line be-
tween the hinge joints connecting the bracket to the lower beam and the

lamp shade, respectively, is parallel to a
(bracket)

3
and the hinge axes are

parallel to a
(bracket)

2
. Finally, let the reference point Alamp shade of the

lamp shade observer Alamp shade coincide with the hinge joint connecting
the lamp shade to the bracket. Choose the reference triad a(lamp shade) of
Alamp shade, such that the symmetry axis of the lamp shade is parallel to

a
(lamp shade)

3
and the hinge axis is parallel to a

(lamp shade)

2
.

The con¯guration of the observer Abase relative to the main observer
W is described by a pure translation TW!Abase

corresponding to the
position vector

r
WAbase = w

0
@ q1

q2

q3

1
A

and a pure rotation RW!Abase
corresponding to the rotation matrix

Rwa(base) = R (q4; 0; 0; 1)R (q5; 1; 0; 0)R (q6; 0; 0; 1) :

The con¯guration of the observer Alower beam relative to the observer
Abase is described by a pure translation TAbase!Alower beam

corresponding
to the position vector

r
AbaseAlower beam = a

(base)

0
@ 0

0
p1

1
A

and a pure rotation RAbase!Alower beam
corresponding to the rotation ma-

trix

Ra(base)a(lower beam) = R (q7; 0; 1; 0) :
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The con¯guration of the observer Amiddle beam relative to the observer
Abase is described by a pure translation T

Abase!Amiddle beam
corresponding

to the position vector

r
AbaseAmiddle beam = a

(base)

0
@ 0

0
p2

1
A

and a pure rotation RAbase!Amiddle beam
corresponding to the rotation

matrix

Ra(base)a(middle beam) = R (q8; 0; 1; 0) :

The con¯guration of the observer Aupper beam relative to the observer
Abase is described by a pure translation T

Abase!Aupper beam
corresponding

to the position vector

r
AbaseAupper beam = a

(base)

0
@ 0

0
p3

1
A

and a pure rotation RAbase!Aupper beam
corresponding to the rotation ma-

trix

Ra(base)a(upper beam) = R (q9; 0; 1; 0) :

The con¯guration of the observer Abracket relative to the observer
Alower beam is described by a pure translation TAlower beam!Abracket

corre-
sponding to the position vector

r
Alower beamAbracket = a

(lower beam)

0
@ 0

0
p4

1
A

and a pure rotation RAlower beam!Abracket
corresponding to the rotation

matrix

Ra(lower beam)a(bracket) = R (q10; 0; 1; 0) :

Finally, the con¯guration of the observer Alamp shade relative to the
observer Abracket is described by a pure translation TAbracket!Alamp shade

corresponding to the position vector

r
AbracketAlamp shade = a

(bracket)

0
@ 0

0
p5

1
A

and a pure rotation RAbracket!Alamp shade
corresponding to the rotation

matrix

Ra(bracket)a(lamp shade) = R (q11; 0; 1; 0) :
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10.4.2 Con¯guration Constraints

The only con¯guration constraints restricting allowable con¯gurations of
the desk lamp are those requiring that the upper beam and the bracket
connect at the appropriate hinge joint. To simplify the formulation of
these constraints, we introduced the points Hbracket and Hupper beam to
represent the points on the bracket and upper beam, respectively, that
coincide with the corresponding hinge joint. In particular, let

Aupper beamHupper beam =

0
@ 0

0
p6

1
A

and

AbracketHbracket =

0
@ ¡p7

0
p8

1
A :

Then, the points Hbracket and Hupper beam will coincide with the corre-
sponding hinge joint, provided that

a
(base)

1
² r

HbracketHupper beam = 0;

a
(base)

3
² r

HbracketHupper beam = 0:

10.4.3 Motion Constraints

We begin by deriving the motion constraints corresponding to the con-
¯guration constraints formulated above. Speci¯cally,

a
(base)

1
²

a
(base)

dr
HbracketHupper beam

dt
= 0;

a
(base)

3
²

a
(base)

dr
HbracketHupper beam

dt
= 0:

Now, impose the condition that changes in the orientations of the upper
and middle beams are constrained by the presence of the spur gears. Here,
we will model this constraint as a rolling-without-slipping constraint on
the two gears, i.e., that the contact points on the two gears have identical
velocities.

Let P1 and P2 denote the contact points on the upper and lower gears,
respectively. Similarly, let C1 and C2 denote the points at the center of
the upper and lower gears, respectively. Then, it follows that

a
(base)

dP1

dt
=

a
(base)

dC1

dt
+ a

(base)

!
a
(upper beam)

£ r
C1P1
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and

a
(base)

dP2

dt
=

a
(base)

dC2

dt
+ a

(base)

!
a
(middle beam)

£ r
C2P2 :

But, the center points are stationary relative to the base, i.e.,

a
(base)

dC1

dt
=

a
(base)

dC2

dt
= 0:

Also,

a
(base)

!
a
(upper beam)

= _q9a
(base)

2
;

a
(base)

!
a
(middle beam)

= _q8a
(base)

2
;

r
C1P1 = ¡R1a

(base)

3
;

r
C2P2 = R2a

(base)

3
;

from which we conclude that

a
(base)

dP1

dt
= ¡R1 _q9a

(base)

1

and

a
(base)

dP2

dt
= R2 _q8a

(base)

1
;

where R1 and R2 are the radii of the upper and lower gears, respectively.
The rolling-without-slipping constraint implies that

a
(base)

dP1

dt
=

a
(base)

dP2

dt
;

i.e., the motion constraint becomes

R2 _q8 = ¡R1 _q9:

It is interesting to note that the motion constraint derived here is
actually holonomic in the sense that it can be obtained by di®erentiation
with respect to time of the con¯guration constraint

R2q8 = ¡R1q9 + arbitrary constant.

We might be led to conclude that the desk lamp only has eight geomet-
ric degrees of freedom, instead of the nine that were previously found.
Indeed, this would be true if there was a way by which a unique value
could be selected for the arbitrary constant in the constraint equation
above. That there is no unique choice of value for the arbitrary constant
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corresponds to the absence of a unique choice of initial relative con¯g-
uration of the upper and middle beams. We conclude that, although
holonomic, the motion constraint is only a constraint on changes to the
relative orientation.

As in the case of the bicycle, it is not immediately evident that the
three motion constraints derived here are independent. This would fol-
low, however, if it were possible to choose a set of independent velocity
coordinates that results in a not-everywhere-singular set of kinematic
di®erential equations.

10.4.4 Independent Velocity Coordinates and Kine-

matic Di®erential Equations

We turn to the selection of independent velocity coordinates to uniquely
specify all allowable motions of the desk lamp. Under the assumption that
the three motion constraints derived in the previous section are actually
independent, it follows that the desk lamp has eight dynamic degrees
of freedom, i.e., that eight independent velocity coordinates su±ce to
specify all allowable motions of the desk lamp.

While there are in¯nitely many choices for the independent velocity
coordinates, we are guided by our experience with desk lamps to consider
the eight di®erent ways in which a person controls the desk lamp motion,
namely:

² Controlling the components of the linear velocity of the base relative
to W, W

v
A(base) ;

² Controlling the components of the angular velocity of the base rel-

ative to W, w
!

a
(base)

;

² Controlling the angular velocity of the upper beam relative to the

base, a
(base)

!
a
(upper beam)

;

² Controlling the angular velocity of the lamp shade relative to the

bracket, a
(bracket)

!
a
(lamp shade)

.

Consequently, we propose the following choice of independent velocity
coordinates:

u1 = w1 ²
W

v
A(base) ;

u2 = w2 ²
W

v
A(base) ;

u3 = w3 ²
W

v
A(base) ;

u4 = a
(base)

1
²

w
!

a
(base)

;

u5 = a
(base)

2
²

w
!

a
(base)

;

u6 = a
(base)

3
²

w
!

a
(base)

;
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u7 = a
(base)

2
²

a
(base)

!
a
(upper beam)

;

u8 = a
(base)

2
²

a
(bracket)

!
a
(lamp shade)

:

We thus arrive at a complete set of kinematic di®erential equations:

_q1 = u1

_q2 = u2

_q3 = u3

_q4 sin q5 sin q6 + _q5 cos q6 = u4

_q4 sin q5 cos q6 ¡ _q5 sin q6 = u5

_q4 cos q5 + _q6 = u6

_q9 = u7

_q11 = u8

¡ p4 _q7 cos q7 + p6 _q9 cos q9

¡ ( _q7 + _q10) (p7 sin (q7 + q10) + p8 cos (q7 + q10)) = 0

p4 _q7 sin q7 ¡ p7 _q9 sin q9

¡ ( _q7 + _q10) (p7 cos (q7 + q10) ¡ p8 sin (q7 + q10)) = 0

_q8 + _q9 = 0;

where the last three equations correspond to the motion constraints de-
rived in the previous section, and we have assumed that the spur gears
have identical radii. These di®erential equations are non-singular, as long
as

q5 6= n¼

for any integer n and

p8 sin q10 ¡ p7 cos q10 6= 0:

Of these two singularities, we have encountered the ¯rst one on nu-
merous previous occasions whenever the orientation of a rigid body was
described in terms of 3 ¡ 1 ¡ 3 Euler angles and the components of the
angular velocity vector in the body-¯xed triad were chosen as indepen-
dent velocity coordinates. A di®erent choice of Euler angles or a di®erent
choice of independent velocity coordinates would move this singularity to
a di®erent con¯guration. In fact, the singularity could be entirely elimi-
nated by retaining the de¯nition of the independent velocity coordinates
but describing the orientation using Euler parameters (cf. Exercise 9.2).

To understand the signi¯cance of the second singularity, consider the
cross product

r
AbracketHbracket

£ r
Alower beamAbracket = ¡p4 (p8 sin q10 ¡ p7 cos q10)a

(base)

2
:



Abracket

Hbracket

r
AbracketHbracket

r
Alower beamAbracket

Aupper beam

Alower beam
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The singular con¯guration evidently corresponds to the case when this
cross product equals zero, i.e., when the vectors

r
AbracketHbracket and r

Alower beamAbracket

are parallel as shown in the ¯gure below.

Clearly, it is no longer possible to increase the inclination of the up-
per beam any further without breaking the constraint at the hinge joint.
The origin of the singularity must therefore lie in our choice to control
the rate of change of the orientation of the upper beam relative to the
base through the independent velocity coordinate u7. If, instead, we
had chosen to control the rate of change of the orientation of the lower
beam relative to the base, the above con¯guration would not have corre-
sponded to a singularity of the kinematic di®erential equations. Instead,
a singularity would have occurred when the vectors r

AbracketHbracket and
r

Aupper beamHupper beam became parallel.
Retaining the present de¯nition of u7, the singularity could also be

avoided by appropriately designing the geometry of the desk lamp. In
fact, it is possible to select values for the parameters p1, p2, p3, p4, p5,
p6, p7, and p8, such that the singular con¯guration cannot occur for
any values of the con¯guration coordinates that satisfy the con¯guration
constraints. It is an interesting exercise to show that the choice

p1 = 11; p2 = 12:5; p3 = 14; p4 = 45;

p5 = 3:5; p6 = 45; p7 = 1:5; p8 = 2:6

that was used in Chapter 7 accomplishes this.

10.4.5 An Initial Con¯guration

Initial values for the con¯guration coordinates that would correspond to
an allowable con¯guration were already found at the end of Section 7.4.
There it was suggested that a collection of such sets of values for the
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con¯guration coordinates could be generated to give the appearance of a
smooth allowable motion. As suggested there, in addition to being very
cumbersome, this methodology would fail to address the rolling-without-
slipping constraint on the spur gears.

In contrast, the formulation derived above in terms of the kinematic
di®erential equations guarantees that the con¯guration constraints and

the motion constraints are satis¯ed for all time as long as the initial
con¯guration is an allowable con¯guration and as long as singularities
are not encountered. Now, every choice of time-dependence of the eight
independent velocity coordinates, u1 (t), u2 (t), u3 (t), u4 (t), u5 (t), u6 (t),
u7 (t), and u8 (t) will generate an allowable motion.

10.4.6

We recall the formulation of the geometric hierarchy of the desk lamp in
the Mambo toolbox from Chapter 7:

> Restart():
> DeclareObservers(W,Base,Lamp,Bracket,UpperBeam,
> LowerBeam,MiddleBeam):
> DeclarePoints(W,Base,Lamp,Bracket,UpperBeam,
> LowerBeam,MiddleBeam):
> DeclareTriads(w,base,lamp,bracket,upperbeam,
> lowerbeam,middlebeam):
> DefineNeighbors([W,Base],[Base,LowerBeam],
> [LowerBeam,Bracket],[Bracket,Lamp],[Base,MiddleBeam],
> [Base,UpperBeam]):

> DefineObservers([W,W,w],[Base,Base,base]
> [LowerBeam,LowerBeam,lowerbeam],
> [MiddleBeam,MiddleBeam,middlebeam],
> [UpperBeam,UpperBeam,upperbeam],
> [Bracket,Bracket,bracket],[Lamp,Lamp,lamp]):

> DefinePoints([W,Base,w,q1,q2,q3],
> [Base,LowerBeam,base,0,0,p1],
> [Base,MiddleBeam,base,0,0,p2],
> [Base,UpperBeam,base,0,0,p3],
> [LowerBeam,Bracket,lowerbeam,0,0,p4],
> [Bracket,Lamp,bracket,0,0,p5]):

> DefineTriads([w,base,[q4,3],[q5,1],[q6,3]],
> [base,lowerbeam,q7,2],[lowerbeam,bracket,q10,2],
> [bracket,lamp,q11,2],[base,middlebeam,q8,2],
> [base,upperbeam,q9,2]):

and the implementation of the con¯guration constraints using the follow-
ing Mambo toolbox statements:

> DeclarePoints(HUpperBeam,HBracket):
> DefinePoints(
> [UpperBeam,HUpperBeam,upperbeam,0,0,p6],
> [Bracket,HBracket,bracket,-p7,0,p8]):
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> f1:=FindTranslation(HBracket,HUpperBeam) &oo
> MakeTranslations(base,1)=0:
> f2:=FindTranslation(HBracket,HUpperBeam) &oo
> MakeTranslations(base,3)=0:

The kinematic di®erential equations derived above are obtained from the
Mambo toolbox statements

> kde:=fseq(LinearVelocity(W,Base) &oo
> MakeTranslations(w,i)=cat(u,i),i=1..3),
> seq(AngularVelocity(w,base) &oo
> MakeTranslations(base,i)=cat(u,i+3),i=1..3),
> AngularVelocity(base,upperbeam) &oo
> MakeTranslations(base,2)=u7,
> AngularVelocity(bracket,lamp) &oo
> MakeTranslations(base,2)=u8g
> union fq8t+q9t=0g union DiffTime(ff1,f2g):

Finally, we use MotionOutput to export the motion description to the
¯le lamp.dyn.

> MotionOutput(ode=kde,parameters=[p1=11,p2=12.5,p3=14,
> p4=45,p5=3.5,p6=45,p7=1.5,p8=2.6],states=[q1,q2,q3,q4,
> q5=.01,q6,q7=1.200039725,q8=1.8,q9=1.2,
> q10=-.6769771893,q11=2],insignals=[u1=0,u2=0,u3=0,
> u4=0,u5=0,u6=0,u7=-.2*cos(t),u8=cos(t)],
> filename="lamp.dyn"):

Here, the choice q5 = 0:01 avoids the singularity at q5 = n¼ for some
integer n.



Chapter 11

A Look Ahead

wherein the reader learns of:

² Fundamental means of describing mass distributions;

² The in°uence of the distribution of mass on the motion of real-world

objects;

² The motion of isolated rigid bodies relative to inertial observers;

² Formulating dynamic di®erential equations for the motion of rigid

bodies relative to inertial observers;

² The physical modeling of constraints.



Practicum

Use Mambo to explore the im-

plications of the discussion in this

chapter. Investigate the visual char-

acteristics of the motion of isolated

rigid bodies relative to inertial ob-

servers. Investigate the visual char-

acteristics of the motion of isolated

rigid bodies relative to non-inertial

observers.

Implement the dynamic and kine-

matic di®erential equations for the

example systems in Mambo and

study the resulting motion. Dis-

cuss the process of modeling phys-

ical phenomena and the method for

validating or discarding a particular

model. Consider, in particular, the

notions of inertial observers, forces,

and torques.
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11.1 Principles of Newtonian Mechanics

11.1.1 Mass Distributions

The motion of real-world objects is determined by their interactions with
other real-world objects. Experience shows you that the e®ects of these
interactions on the motion of a given real-world object depend on the
amount of matter contained within the object and the way in which
that matter is distributed throughout the object. It is dramatically more
di±cult to a®ect the motion of a train engine traveling even at slow speeds
than it is to a®ect the motion of a baseball traveling at the same speed. It
is signi¯cantly easier to slow the turning of a pencil about its symmetry
axis than it is to slow the rotation of the wings of a windmill.

The physical quantity representing the total amount of matter in a
real-world object is called its mass: It is far from obvious how to measure
the mass of an object. All means of measurement, e.g., using a balance
scale or looking at collisions between objects, rely on scienti¯c theory of
the outcome of such experiments as a function of the mass. The validity
of such theory can only be ascertained through experiments.

The distribution of matter throughout an object may di®er signi¯-
cantly between di®erent objects of the same shape. Let P denote a point
within an object and consider the ratio between the amount of matter
contained within a volume element centered on P and the volume of the
element. Experience shows you that for small (but not microscopic) val-
ues of the radius, this ratio is more or less independent of radius. The
value for the ratio in this range of radii is called the density at the point

P and is denoted by ½ (P ). Variations in ½ as a function of location
throughout an object quantify the way in which matter is distributed
throughout the object.

Illustration 11.1

If ¢V is the volume of a small element of matter centered on a point P

of an object, then
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¢M ¼ ½ (P )¢V

is the mass of the matter contained within the volume. Experience shows
you that the mass of a composite object equals the sum of the masses of
all its constituent parts. In other words,

M =
X

¢M ¼

X
½ (P )¢V:

In the limit that the volume ¢V goes to zero, the sum becomes in¯nite
and turns into an integral over all points in the object, i.e.,

M =

Z
V

½ (P ) dV:

If ½ is constant throughout the object, i.e., ½ (P ) = ½
0
, then

M =

Z
V

½ (P ) dV = ½
0

Z
V

dV = ½
0
V;

i.e., the mass equals the density multiplied by the volume occupied by
the object. When ½ is constant, the object is said to be homogeneous.

Suppose n is an arbitrary vector of unit length. The ¯rst moment of

inertia of a mass distribution about the straight line through a point A

that is spanned by n is given by the integral

Z
V

n £ r
AP

½ (P ) dV:

The contribution to this integral of a small volume of matter at a point P

is proportional to its distance to the straight line through A. The integral
is a measure of how evenly spread out the mass is about the point A.

Since n is independent of the point P , we may rewrite the above
integral as

n £

Z
V

r
AP

½ (P ) dV;

i.e., the ¯rst moment of inertia about an arbitrary straight line through
A can be computed from the vector

Z
V

r
AP

½ (P ) dV .



n

P

W

A

r
AP

r
WP

r
WA

dV
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Suppose that W is the reference point of an observer W. Then, since
r

AP = r
WP

¡ r
WA and A is independent of P , we ¯nd

Z
V

r
AP

½ (P ) dV =

Z
V

r
WP

½ (P ) dV ¡ r
WA

Z
V

½ (P ) dV

=

Z
V

r
WP

½ (P ) dV ¡ Mr
WA

:

It follows that if the point A is de¯ned by

r
WA =

1

M

Z
V

r
WP

½ (P ) dV;

then the ¯rst moment of inertia of the mass distribution about A is zero
for all directions.

The point A whose position relative to the observer W is de¯ned
by the position vector above is called the center of mass of the mass
distribution. Since the ¯rst moment of inertia about the center of mass is
zero for arbitrary directions, the mass is, in some sense, evenly distributed
about the center of mass.

Illustration 11.2

The center of mass of a homogeneous body is independent of the density,
since

1

M

Z
V

r
WP

½ (P ) dV =
1

½
o
V

Z
V

r
WP

½
0
dV =

1

V

Z
V

r
WP

dV:

This point is called the centroid of the volume occupied by the object.

For example, suppose you want to ¯nd the center of mass of a homo-
geneous sphere of radius R. Let W correspond to the center of the sphere
and let w be some arbitrary triad. We may express the position vector



n

m

P

A

r
AP

dV
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r
WP in spherical coordinates:

r
WP = w

0
@ r sinÁ cos µ

r sinÁ sin µ

r cosÁ

1
A :

It follows that

1

V

Z
V

r
WP

dV =
3

4¼R3

Z
R

0

Z
¼

0

Z
2¼

0

w

0
@ r sinÁ cos µ

r sinÁ sin µ

r cosÁ

1
A r

2 sinÁdµdÁdr

= 0;

i.e., the center of mass of the sphere coincides with the sphere's center.

Two real-world objects may share the same center of mass, yet have
very di®erent mass distributions. To detect such di®erences, it is neces-
sary to consider higher-order measures of the spread of matter about the
center of mass.

Suppose n and m are two arbitrary vectors of unit length. The second

moment of inertia of a mass distribution about the straight lines through
a point A that are parallel to n and m, respectively, is given by the
integral Z

V

¡
n £ r

AP
¢

²

¡
m £ r

AP
¢
½ (P ) dV:

The contribution to this integral of a small volume of matter at a point
P is proportional to the product of the distances from the point to the
two straight lines through A. As with the ¯rst moment of inertia, this
integral is a measure of how spread out the mass is about the point A.

The result of Exercise 11.1 shows thatZ
V

¡
n £ r

AP
¢

²

¡
m £ r

AP
¢
½ (P ) dV = (w

n)T w
I

A w
m;
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where wn and wm are the matrix representations of n and m relative to a
triad w and the [i; j]-th entry of the moment of inertia matrix wIA about

the point A relative to the triad w is given by the formula1

w
I

A

ij
=

Z
V

³°°rAP
°°2

±ij ¡
w

¡
r

AP
¢
i

w
¡
r

AP
¢
j

´
½ (P ) dV:

Illustration 11.3

Consider the homogeneous sphere in the previous illustration with

r
WP = w

0
@ r sinÁ cos µ

r sinÁ sin µ

r cosÁ

1
A :

Then,

w
I

W

12
= w

I
W

21
= ¡½

0

Z
R

0

Z
¼

0

Z
2¼

0

r
4 sin3

Á cos µ sin µdµdÁdr = 0;

w
I

W

13
= w

I
W

31
= ¡½0

Z
R

0

Z
¼

0

Z
2¼

0

r
4 sin2

Á cosÁ cos µdµdÁdr = 0;

w
I

W

23
= w

I
W

32
= ¡½

0

Z
R

0

Z
¼

0

Z
2¼

0

r
4 sin2

Á cosÁ sin µdµdÁdr = 0;

w
I

W

11
= ½0

Z
R

0

Z
¼

0

Z
2¼

0

r
4 sinÁ

¡
sin2

Á sin2
µ + cos2 Á

¢
dµdÁdr

=
8¼R

5

15
½
0
;

w
I

W

22
= ½

0

Z
R

0

Z
¼

0

Z
2¼

0

r
4 sinÁ

¡
sin2

Á cos2 µ + cos2 Á
¢
dµdÁdr

=
8¼R5

15
½
0
;

and

w
I

W

33
= ½

0

Z
R

0

Z
¼

0

Z
2¼

0

r
4 sin3

ÁdµdÁdr =
8¼R5

15
½
0
;

where we have again used the volume element expressed in spherical
coordinates:

dV = r
2 sinÁdµdÁdr:

Since

M =
4¼R3

3
½
0
;

1Recall the Kronecker delta notation ±ij =

½
1 i = j
0 i 6= j

.
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it follows that the moment of inertia matrix about the center of mass of
the sphere relative to the arbitrary triad w is given by

w
I

W =

0
@ 2

5
MR2 0 0
0 2

5
MR2 0

0 0 2

5
MR

2

1
A :

The ¯rst moment of inertia equals zero about arbitrary straight lines
through the center of mass of an arbitrary mass distribution. It is natural
to ask whether there might exist a (possibly di®erent) point, such that
the second moment of inertia equals zero about arbitrary pairs of straight
lines through this second point. But, if n = m, then the second moment
of inertia becomes Z

V

°°n £ r
AP

°°2

½ (P ) dV:

Since the integrand is ¸ 0, this integral can only equal zero if the inte-
grand is zero everywhere. Since the density cannot equal zero everywhere,
we must have

n £ r
AP = 0

for all points in the mass distribution. This is only possible if all points
lie on the straight line through A that is spanned by n. But real-world
objects always have non-zero volume, and so the second moment of inertia
cannot equal zero for arbitrary pairs of straight lines through any point
in a mass distribution.

11.1.2 Linear and Angular Momentum

Suppose that the reference point B of a rigid body is located at its center
of mass and let b denote the rigid body's reference triad. As discussed in
the previous chapter, the motion of the rigid body is entirely determined
by the velocity of the reference point B relative to an observer W, i.e.,

W

dB

dt

and the angular velocity between the reference triad w of the observer W

and the reference triad b, i.e.,

w
!

b
:

From experience, we conclude that the degree to which the motion
of a rigid body can be changed depends not only on the velocity of its
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reference point and the angular velocity of its reference triad, but also
on the amount of matter contained within the rigid body and the way
the matter is distributed throughout the body. To account for these
observations, we introduce the dynamical quantities W

p and W
h, called

the linear momentum and angular momentum, respectively, of the rigid
body relative to W.

In particular, let

W

p = M

W

dB

dt
= w M

d w
¡
r

WB
¢

dt
;

where M is the total mass of the rigid body, and

W

h = b
b
I

B b
¡
w
!

b
¢
;

where b
I

B is the moment of inertia matrix about the center of mass
relative to the body-¯xed reference triad b.

11.1.3 Isolated Rigid Bodies and Inertial Observers

The motion of real-world objects is determined by interactions with other
real-world objects. An object that does not interact with any other ob-
jects is said to be isolated . The ¯rst law of Newtonian mechanics es-
tablishes the existence of a privileged collection of observers, relative to
which the linear and angular momenta of any arbitrary, isolated rigid
bodies do not change with time. Such observers are known as inertial

observers.
If N is an inertial observer and B is the center of mass of an isolated

rigid body, it follows that

N

p = M

N

dB

dt

is constant relative to N . Since the amount of matter does not change
with time, the velocity of the center of mass relative to the inertial ob-
server must also be constant. It follows that the center of mass moves
along a straight line relative to the inertial observer. This conclusion is
contained in Newton's ¯rst law of motion:

The center of mass of an isolated rigid body moves along
a straight line with constant speed relative to an inertial ob-
server.

Illustration 11.4

Let the reference point B of an isolated rigid body be located at the cen-
ter of mass of the body. The position of the rigid body relative to an
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inertial observer N is then given by the position vector

r
NB = n

0
@ q1

q2

q3

1
A ;

where N is the reference point of the inertial observer, n is the refer-
ence triad of the inertial observer, and q1, q2, and q3 are con¯guration
coordinates.

Since the rigid body is isolated, its motion cannot be constrained.
Thus, we can introduce three independent velocity coordinates u1, u2,
and u3, such that

N

dB

dt
= n

0
@ u1

u2

u3

1
A ;

from which the kinematic di®erential equations

_q1 = u1;

_q2 = u2;

_q3 = u3

follow.
The linear momentum of the rigid body now becomes

N

p = M

N

dB

dt
= n

0
@ Mu1

Mu2

Mu3

1
A :

Since the linear momentum is constant relative to the inertial observer,

n
d

N
p

dt
= 0;

i.e.,

_u1 = 0;

_u2 = 0;

_u3 = 0:

These di®erential equations in the independent velocity coordinates are
called the dynamic di®erential equations. Since the derivatives with re-
spect to time of the independent velocity coordinates all equal zero, the
independent velocity coordinates must also be constant, i.e., u1 (t) =
u1 (0), u2 (t) = u2 (0), and u3 (t) = u3 (0). The kinematic di®erential
equations then yield

q1 (t) = u1 (0) t + q1 (0) ;

q2 (t) = u2 (0) t + q2 (0) ;

q3 (t) = u3 (0) t + q3 (0)
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corresponding to motion along the straight line through the point

r
NB = n

0
@ q1 (0)

q2 (0)
q3 (0)

1
A

with constant tangent vector

n

0
@ u1 (0)

u2 (0)
u3 (0)

1
A :

From Exercise 11.4, we ¯nd that the moment of inertia matrices of a
rigid body about its center of mass B relative to two di®erent triads n

and b are related by the formula

Rnb
b
I

B
Rbn = n

I
B

:

Thus, if N is an inertial observer and b is the reference triad of an isolated
rigid body, it follows that

N

h = b
b
I

B b
¡
n
!

b
¢

= nRnb
b
I

B
Rbn

n
¡
n
!

b
¢

= n
n
I

B n
¡
n
!

b
¢

is constant relative to N . In contrast with the case of the linear velocity,
this does not imply that the angular velocity of the rigid body relative
to N is constant. Instead, it is only required that the orientation of the
rigid body relative to N changes in such a way that the matrix product

n
I

B n
¡
n
!

b
¢

remains constant.

Illustration 11.5

Let b denote the reference triad of the rigid body in the previous illus-
tration. The orientation of the rigid body relative to an inertial observer
N is given by the rotation matrix

Rnb = R (q4; 0; 0; 1)R (q5; 1; 0; 0)R (q6; 0; 0; 1) ;

where n and b are the reference triads of the inertial observer and the
rigid body and q4, q5, and q6 are con¯guration coordinates.

Since the rigid body is isolated, its motion cannot be constrained.
Thus, we can introduce three independent velocity coordinates u4, u5,
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and u6, such that

n
!

b = b

0
@ u4

u5

u6

1
A ;

from which the kinematic di®erential equations

_q4 sin q5 sin q6 + _q5 cos q6 = u4;

_q4 sin q5 cos q6 ¡ _q5 sin q6 = u5;

_q4 cos q5 + _q6 = u6

follow.
The angular momentum becomes

N

h = b

0
@ b

I
B

11
u4 + b

I
B

12
u5 + b

I
B

13
u6

b
I

B

21
u4 + b

I
B

22
u5 + b

I
B

23
u6

bIB

31
u4 + bIB

32
u5 + bIB

33
u6

1
A :

Since the angular momentum is constant relative to the inertial observer,

n
d N

h

dt
=

b
d N

h

dt
+ n

!
b
£

N

h = 0;

i.e.,

b
I

B

11
_u4 + b

I
B

12
_u5 + b

I
B

13
_u6 + b

I
B

31
u4u5 + b

I
B

32
u

2

5
+ b

I
B

33
u5u6

¡
b
I

B

21
u4u6 ¡

b
I

B

22
u5u6 ¡

b
I

B

23
u

2

6
= 0;

b
I

B

21
_u4 + b

I
B

22
_u5 + b

I
B

23
_u6 + b

I
B

11
u4u6 + b

I
B

12
u5u6 + b

I
B

13
u

2

6

¡
b
I

B

31
u

2

4
¡

b
I

B

32
u4u5 ¡

b
I

B

33
u4u6 = 0;

and

b
I

B

31
_u4 + b

I
B

32
_u5 + b

I
B

33
_u6 + b

I
B

21
u

2

4
+ b

I
B

22
u4u5 + b

I
B

23
u4u6

¡
b
I

B

11
u4u5 ¡

b
I

B

12
u

2

5
¡

b
I

B

13
u5u6 = 0:

These dynamic di®erential equations are called Euler's equations. In
contrast to the dynamic di®erential equations corresponding to the time-
independence of the linear momentum relative to the inertial observer,
these equations do not imply that the independent velocity coordinates
u4, u5, and u6 are constant. In fact, their time-dependence can be quite
complicated. The resulting changes in the orientation of the rigid body
relative to the inertial observer can be quite dramatic.
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Now, suppose that N1 and N2 are two inertial observers with reference
points N1 and N2 and reference triads n(1) and n(2), respectively. If B is
the center of mass of an arbitrary isolated rigid body, then

N1 dB

dt
=

N2 dB

dt
+ N1v

N2 + n
(1)

!
n

(2)

£ r
N2B

:

Since

N1 dB

dt
and

N2 dB

dt

must both be constant, it follows that

N1v
N2 + n

(1)

!
n

(2)

£ r
N2B

must also be constant. This must be true of an arbitrary isolated rigid
body, including all those for which r

N2B changes with time. We conclude
that, for any two inertial observers N1 and N2;

N1v
N2

is constant and

n
(1)

!
n

(2)

= 0:

The converse is also true, namely that if

N1v
N2

is constant and

n
(1)

!
n

(2)

= 0

and N1 is an inertial observer, then N2 is also an inertial observer.

Any observer with constant linear velocity and vanishing
angular velocity relative to an inertial observer is also an in-
ertial observer.

Illustration 11.6

Since the velocity of the center of mass of an isolated rigid body is con-
stant relative to an inertial observer N1, an observer N2 with reference
point at the center of mass of the rigid body and with constant orientation
relative to N1 is also an inertial observer.

Note, however, that the rigid body need not be stationary relative to
N2, since its orientation may be changing with time.
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Suppose the center of mass P of an isolated rigid body moves with
constant velocity relative to an inertial observer N along the straight line
spanned by the vector n1 + n3 through the reference point of N . If A is
a second observer, such that

r
NA = 0 and Rna = R (!t; 1; 0; 0) ;

then the point P moves along a spiral relative to A. Clearly, in this case,
the observer A is not an inertial observer.

Suppose, more generally, that the center of mass of a rigid body moves
along a curved line relative to an observer A. Then, if the rigid body is
isolated, A cannot be an inertial observer. Similarly, if A is an inertial
observer, the rigid body cannot be isolated. In other words, if A is
thought to be an inertial observer, it follows that the rigid body must
be interacting with other objects in the world, since otherwise it would
move along a straight line with constant velocity relative to A. Similarly,
if the rigid body is thought to be isolated, we must conclude that A is
not an inertial observer.

The introduction of inertial observers was based entirely on the notion
of isolated rigid bodies and their motion. We can detect whether a rigid
body is isolated by observing its motion relative to an inertial observer.
Conversely, we can detect whether an observer is an inertial observer by
observing the motion of an isolated rigid body relative to the observer. If
this sounds like a circular de¯nition, that's because it is! There appears
to be no way of separating the notion of an inertial observer from that of
an isolated rigid body.
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11.1.4 Kinetic Energy

Suppose that N is an inertial observer. Then, the result of Exercise 11.10
shows that

d

dt

Ã
1

2
N

p ²

N

dB

dt
+

1

2
N

h ²
n
!

b

!
=

n
d N

p

dt
²

N

dB

dt

+
n
d N

h

dt
²

n
!

b

= 0

for an isolated rigid body, where the reference point B of the rigid body is
at the center of mass and b is a body-¯xed reference triad. The quantity

N

K =
1

2
N

p ²

N

dB

dt
+

1

2
N

h ²
n
!

b

is known as the kinetic energy of the rigid body relative to the inertial
observer. Since the kinetic energy of an isolated rigid body remains con-
stant relative to an inertial observer, the motion of an isolated rigid body
is said to be conservative.

Illustration 11.7

Using the expressions for the linear and angular momenta derived in pre-
vious illustrations, we ¯nd

N

K =
M

2

¡
u1 u2 u3

¢0
@ u1

u2

u3

1
A +

1

2

¡
u4 u5 u6

¢
b
I

B

0
@ u4

u5

u6

1
A :

11.1.5

The motion of an isolated rigid body may be visualized with Mambo
by appending the independent velocity coordinates to the Mambo state
variables and the corresponding dynamic di®erential equations to the ode
block.

The Mambo toolbox procedures LinearMomentum and AngularMo-
mentum can be invoked to compute the linear and angular momentum
of a rigid body relative to an observer. Their use is illustrated in the
following sequence of statements:

> Restart():
> DeclareObservers(N):
> DeclarePoints(N,B):
> DeclareTriads(n,b):
> DefineObservers(N,N,n):
> DefinePoints(N,B,n,q1,q2,q3):
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> DefineTriads(n,b,[q4,3],[q5,1],[q6,3]):
> DeclareStates(q1,q2,q3,q4,q5,q6):
> p:=LinearMomentum(N,B);
> h:=AngularMomentum(N,b);

p := table([

\Size" = 1
1 = table([

\Triad" = n

\Coordinates" = [M q1t ; M q2t ; M q3t ]

])

\Type" = \Vector"

])

h := table([

\Size" = 1
1 = table([

\Triad" = b

\Coordinates" = [Inertia11 (sin(q5 ) q4t sin(q6 ) + q5t cos(q6 ))

+ Inertia12 (cos(q6 ) q4t sin(q5 ) ¡ sin(q6 ) q5t)

+ Inertia13 (q6t + q4t cos(q5 ));

Inertia21 (sin(q5 ) q4t sin(q6 ) + q5t cos(q6 ))

+ Inertia22 (cos(q6 ) q4t sin(q5 ) ¡ sin(q6 ) q5t)

+ Inertia23 (q6t + q4t cos(q5 ));

Inertia31 (sin(q5 ) q4t sin(q6 ) + q5t cos(q6 ))

+ Inertia32 (cos(q6 ) q4t sin(q5 ) ¡ sin(q6 ) q5t)

+ Inertia33 (q6t + q4t cos(q5 ))]

])

\Type" = \Vector"

])

We may replace every occurrence of a derivative of a con¯guration co-
ordinate by an expression linear in the independent velocity coordinates
through a suitable introduction of kinematic di®erential equations.

> kde:=fseq(LinearVelocity(N,B) &oo
> MakeTranslations(n,i)=cat(u,i),i=1..3),
> seq(AngularVelocity(n,b) &oo
> MakeTranslations(b,i)=cat(u,i+3),i=1..3)g:
> kde:=solve(kde,fq1t,q2t,q3t,q4t,q5t,q6tg);

kde := fq5t = ¡u5 sin(q6 ) + cos(q6 ) u4 ; q3t = u3 ;

q4t =
cos(q6 ) u5 + u4 sin(q6 )

sin(q5 )
; q1t = u1 ; q2t = u2 ;

q6t = ¡

cos(q5 ) cos(q6 )u5 + cos(q5 ) u4 sin(q6 ) ¡ u6 sin(q5 )

sin(q5 )
g
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> p:=Simplify(subs(kde,eval(p)));

p := table([

\Size" = 1
1 = table([

\Triad" = n

\Coordinates" = [M u1 ; M u2 ; M u3 ]

])

\Type" = \Vector"

])
> h:=Simplify(subs(kde,eval(h)));

h := table([

\Size" = 1
1 = table([

\Triad" = b

\Coordinates" = [Inertia11 u4 + Inertia12 u5 + Inertia13 u6 ;

Inertia21 u4 + Inertia22 u5 + Inertia23 u6 ;

Inertia31 u4 + Inertia32 u5 + Inertia33 u6 ]

])

\Type" = \Vector"

])

The dynamic di®erential equations are obtained by di®erentiating the
linear and angular momenta with respect to time relative to the inertial
observer and setting the result equal to zero. In particular, in order to
turn these vector equations into scalar equations, we take the dot product
with the basis vectors of the inertial observer and those of the rigid body
reference triad, respectively.

> DeclareStates(u1,u2,u3,u4,u5,u6);
> dde:=f
> seq(DiffTime(p,n) &oo MakeTranslations(n,i)=0,i=1..3),
> seq(DiffTime(h,n) &oo MakeTranslations(b,i)=0,i=1..3)g:

Finally, the MotionOutput procedure may be invoked to formulate a
Mambo-compatible description of the kinematic and dynamic di®erential
equations.

> MotionOutput(ode=kde union dde,
> states=[seq(cat(q,i),i=1..6),seq(cat(u,i),i=1..6)],
> parameters=[M,seq(seq(cat(Inertia,i,j),
> i=1..3),j=1..3)]);

states q1,q2,q3,q4,q5,q6,u1,u2,u3,u4,u5,u6;

parameters M,Inertia11,Inertia21,Inertia31,Inertia12,Inertia22,

Inertia32,Inertia13,Inertia23,Inertia33;

insignals {

mass_u1_q6 = -Inertia21*u4-Inertia22*u5-Inertia23*u6;
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mass_u6_q6 = Inertia11*u4+Inertia12*u5+Inertia13*u6;

t7 = cos(q5);

t8 = -mass_u1_q6;

t10 = cos(q6);

t11 = sin(q5);

t12 = t10*t11;

t16 = Inertia31*u4+Inertia32*u5+Inertia33*u6;

t19 = sin(q6);

t20 = t11*t19;

mass_q1_q4 = t7;

mass_u5_q5 = t10;

}

ode {

rhs[u4] = u3;

rhs[q6] = u1;

rhs[q4] = u2;

rhs[u5] = u4;

rhs[u3] = u5;

rhs[q1] = u6;

mass[u1][u4] = Inertia11;

mass[q5][u4] = Inertia31;

mass[u6][u4] = Inertia21;

mass[q2][u1] = M;

mass[u1][q6] = mass_u1_q6;

mass[q1][q6] = 1;

mass[u6][q6] = mass_u6_q6;

mass[u1][q4] = -t7*t8+t12*t16;

mass[q5][q4] = -t12*mass_u6_q6+t20*t8;

mass[u5][q4] = t11*t19;

mass[u3][q4] = t10*t11;

mass[q1][q4] = mass_q1_q4;

mass[u6][q4] = -t20*t16+mass_q1_q4*mass_u6_q6;

mass[u1][q5] = -t19*t16;

mass[q5][q5] = t19*mass_u6_q6+t10*t8;

mass[u5][q5] = mass_u5_q5;

mass[u3][q5] = -t19;

mass[u6][q5] = -mass_u5_q5*t16;

mass[u1][u5] = Inertia12;

mass[q5][u5] = Inertia32;

mass[u6][u5] = Inertia22;

mass[u2][u3] = M;

mass[q6][q1] = 1;

mass[q4][q2] = 1;

mass[u4][q3] = 1;

mass[q3][u2] = M;

mass[u1][u6] = Inertia13;

mass[q5][u6] = Inertia33;

mass[u6][u6] = Inertia23;

}

11.1.6 Forces and Torques

Suppose that N is an inertial observer with reference point N and ref-
erence triad n. Then, the linear and angular momentum of an isolated
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rigid body are constant relative to N , i.e.,

n
d N

p

dt
= 0

and

n
d

N
h

dt
= 0:

This is not generally true for a rigid body that is interacting with its
environment. Instead, the rate of change of the linear momentum relative
to the inertial observer is given by the di®erential equation

n
d N

p

dt
= F;

where F is known as the force acting on the rigid body. This is the content
of Newton's second law of motion.

Similarly, the rate of change of the angular momentum relative to the
inertial observer is given by the di®erential equation

n
d N

h

dt
= T;

where T is known as the torque acting on the rigid body.
The force and torque acting on a rigid body contain all the in°uence

of interactions with the environment on the position and orientation of
the rigid body relative to an inertial observer. Clearly, for the isolated
rigid body, F = T = 0: The converse, however, does not follow, since it
is possible to imagine that the interactions with the environment cancel
each other.

If a small volume of matter centered at a point P of a rigid body
experiences a net interaction with its environment, we say that a force
FP is applied at the point P . Experience shows you that a force FP
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applied at a point P results in a net force and a net torque on the rigid
body. Indeed, we ¯nd

F = Fp and T = r
BP

£ Fp;

where B is the center of mass of the rigid body.
Moreover, if forces FP and FQ are applied at two points P and Q of

the rigid body, then experience shows that

F = FP + FQ and T = r
BP

£ FP + r
BQ

£ FQ:

As an example, if FQ = ¡FP then there is no net force acting on the
rigid body. The net torque

T = r
BP

£ FP ¡ r
BQ

£ FP

=
¡
r

BP
¡ r

BQ
¢

£ FP

= r
QP

£ FP ;

depends only on the relative position of the points P and Q and not on
their absolute position relative to the center of mass. Such a pair of forces
is called a couple.

Illustration 11.8

Suppose that the interactions of a rigid body with its environment are
captured by a force

F = ¡Mgn3

and torque

T = 0;

where g is some constant and n3 is the third basis vector of the reference
triad of an inertial reference frame N . It follows that

n
d

N
p

dt
= F = ¡Mgn3

and
n
d

N
h

dt
= T = 0:

The dynamic di®erential equations corresponding to the angular momen-
tum equation are identical to those derived in Illustration 11.5. The
dynamic di®erential equations corresponding to the linear momentum
equation become

_u1 = 0;

_u2 = 0;

_u3 = ¡g;
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which can be solved to yield

u1 (t) = u1 (0) , u2 (t) = u2 (0) , and u3 (t) = ¡gt + u3 (0) .

From the kinematic di®erential equations derived previously, we conclude
that

q1 (t) = u1 (0) t + q1 (0) ;

q2 (t) = u2 (0) t + q2 (0) ;

q3 (t) = ¡

gt
2

2
+ u3 (0) t + q3 (0) .

The path followed by the center of mass of the rigid body relative to
the inertial observer deviates from a straight line by an amount propor-
tional to the square of the time variable. It follows that the path is given
by a parabola.

The parabolic path followed by the center of mass of the rigid body
in the illustration is independent of the mass distribution of the rigid
body. The same path is followed by all objects with the same initial
position and initial linear velocity. As an example, all objects with zero
initial linear velocity relative to the inertial observer will move in the
opposite direction to the n3 vector in such a way that the distance from
the starting position increases by a factor of four as the elapsed time
doubles.

Experiments by the Italian renaissance scientist Galileo Galilee showed
that this type of motion is exhibited by objects released from rest near
the Earth's surface. Thus, if there exists an inertial observer stationary
relative to the Earth's surface, this implies that objects near the Earth's
surface experience a net interaction in the local downward direction that
is proportional to the mass of the objects.

Illustration 11.9

We may simulate the motion of the rigid body in the previous illustra-
tion using Mambo. Continuing with the same Mambo session as in the
previous section, we may rede¯ne the dynamic di®erential equations and
re-invoke the MotionOutput procedure.

> dde:=f
> seq((DiffTime(p,n) &-- MakeTranslations(n,0,0,-M*g))
> &oo MakeTranslations(n,i)=0,i=1..3),
> seq(DiffTime(h,n)
> &oo MakeTranslations(b,i)=0,i=1..3)g:
> MotionOutput(ode=kde union dde,
> states=[seq(cat(q,i),i=1..6),seq(cat(u,i),i=1..6)],
> parameters=[M,seq(seq(cat(Inertia,i,j),
> i=1..3),j=1..3),g]);
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Here, we have included the union of the kinematic and dynamic dif-
ferential equations in the ode block of the Mambo motion description in
order to ensure that there are as many di®erential equations as there are
states.

Suppose that the interactions of a rigid body with its environment
are captured by a force

F = k
¡
l0 ¡

°°rNP
°°¢ r

NP

krNP
k

and a torque

T = r
BP

£ F;

where k and l0 are two constants and P is some point on the rigid body,
such that

r
BP = b

0
@ p1

p2

p3

1
A :

This formulation is a close approximation to the interactions between a
rigid body and a spring attached at one end to the reference point of the
inertial observer and at the other end to the point P .

We may simulate the motion of the rigid body under these interac-
tions using Mambo. Continuing with the same Mambo session as in the
previous section, we may rede¯ne the dynamic di®erential equations and
re-invoke the MotionOutput procedure.

> DeclarePoints(P):
> DefinePoints([B,P,b,p1,p2,p3]):
> rNP:=FindTranslation(N,P):
> rBP:=FindTranslation(B,P):
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> dde:=f
> seq((DiffTime(p,n) &--
> ((k*(l0/VectorLength(rNP)-1)) &** rNP)) &oo
> MakeTranslations(n,i)=0,i=1..3),
> seq((DiffTime(h,n) &-- (rBP &xx
> ((k*(l0/VectorLength(rNP)-1)) &** rNP))) &oo
> MakeTranslations(b,i)=0,i=1..3)g:
> MotionOutput(ode=kde union dde,
> states=[seq(cat(q,i),i=1..6),seq(cat(u,i),i=1..6)],
> parameters=[M,seq(seq(cat(Inertia,i,j),
> i=1..3),j=1..3),g,p1,p2,p3,k,l0]);

11.1.7 Non-inertial Observers

Suppose that N is an inertial observer and A is a non-inertial observer.
From a previous chapter, we recall that

N

dB

dt
=

A

dB

dt
+

N

dA

dt
+ n

!
a

£ r
AB

;

where B is a point on a rigid body, A is the reference point of A; and n

and a are the reference triads of N and A, respectively. If we di®erentiate
with respect to time relative to the n triad on both sides of this relation,
we obtain

N

d
2
B

dt2
=

n
d

dt

Ã
A

dB

dt
+

N

dA

dt
+ n

!
a

£ r
AB

!

=
A

d
2
B

dt2
+ n

!
a

£

A

dB

dt
+

N

d
2
A

dt2
+

n
d

n
!

a

dt
£ r

AB

+ n
!

a
£

Ã
A

dB

dt
+ n

!
a

£ r
AB

!
:

But if B is the center of mass of a rigid body, then this implies that

F =
n
d N

p

dt

= M

N

d2B

dt2

= M

A

d
2
B

dt2
+ M

N

d
2
A

dt2
+ 2M n

!
a

£

A

dB

dt

+M
n
!

a
£

¡
n
!

a
£ r

AB
¢

+ M

n
d

n
!

a

dt
£ r

AB
;

i.e.,

a
d

A
p

dt
= F ¡ M

N

d
2
A

dt2
¡ 2M n

!
a

£

A

dB

dt

¡M
n
!

a
£

¡
n
!

a
£ r

AB
¢

¡ M

n
d n

!
a

dt
£ r

AB
:
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If we wish to describe the motion relative to the non-inertial observer
using Newton's second law, we will ¯nd that there are forces acting on
the rigid body that cannot be explained in terms of interactions with
the environment. From the above expression, we see that these terms
originate in the relative motion of the two observers. The term

¡M

N

d2A

dt2

gives a non-zero contribution if the reference point of A is accelerated
relative to N . If the reference triad of A is rotating relative to N , the
Coriolis term

¡2M n
!

a
£

A

dB

dt

gives a non-zero contribution that is perpendicular to the velocity of the
point B relative to A. Similarly, the centrifugal term

¡M
n
!

a
£

¡
n
!

a
£ r

AB
¢

gives a non-zero contribution that is proportional to the distance from
the point B to the instantaneous axis of rotation of A relative to N :

Finally, the term

¡M

n
d

n
!

a

dt
£ r

AB

gives a non-zero contribution if the angular velocity of A relative to N is
time-dependent relative to N :

Thus, if A knows of the time-dependence of its con¯guration relative
to the inertial observer N , then A can add the correction terms to New-
ton's second law and proceed to analyze the motion of the rigid body.
If, instead, A is unaware of it being non-inertial, then it will conclude
that its inability to predict the motion of the rigid body without includ-
ing additional forces is due to yet-undiscovered interactions between the
rigid body and its environment. This begs the question that was raised
in an earlier section as to whether A can determine with any certainty
whether it is inertial or not. As intricate as the entanglement of the no-
tions of an inertial observer and an isolated rigid body were, as intricate
is the connection between an inertial observer and the notion of forces
and interactions between a rigid body and its environment.

11.1.8 Action { Reaction

Interactions between real-world objects come at a cost. When a force
is applied to a rigid body, there results a change in its linear momen-
tum. Newton's third law of motion establishes a strict bookkeeping,
whereby that change is balanced by an opposite change in the total linear
momentum of the objects in the rigid body's environment. In particular,
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If the interaction between two objects results in a force
F on one of the objects, then the other object experiences a
force ¡F.

When two bodies are in contact, the force imposed by one body on
the other at the contact point is opposed by a force of equal magnitude
but opposite direction imposed by the second body on the ¯rst. If B1 and
B2 denote the centers of mass of the two bodies and the corresponding
contact points are P1 and P2, then a force F applied to the second body
at P2 results in a torque

T2 = r
B2P2

£ F

on the second body and a torque

T1 = r
B1P1

£ (¡F) 6= ¡T2

on the ¯rst body. Thus, the change in angular momentum of the sec-
ond body is not generally balanced by an opposite change in angular
momentum of the ¯rst body.

11.1.9 Constraint Forces

The motion of an isolated rigid body is entirely unconstrained. In con-
trast, constraints on the motion of the rigid body must correspond to the
imposition of forces and torques that restrict the allowable motions of the
body. Such forces and torques are called constraint forces and constraint

torques.

Suppose that the motion of a rigid body is constrained, such that its
center of mass stays at a ¯xed distance l from the reference point N of
an inertial reference frame N : In particular, let

r
NB = n

0
@ q1

q2

q3

1
A ;

where B denotes the center of mass of the rigid body and n is the reference
triad of N : It follows that

N

dB

dt
= n

0
@ _q1

_q2

_q3

1
A :

The constraint on the position of the center of mass implies that the com-
ponents of the velocity of B relative to N are not independent. Indeed,
since the distance from N to B is constant, we must have

r
NB

² r
NB = l

2
, q

2

1
+ q

2

2
+ q

2

3
= l

2
:
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The corresponding motion constraint is

2
N

dB

dt
² r

NB = 0 , 2q1 _q1 + 2q2 _q2 + 2q3 _q3 = 0:

Following the methodology introduced in previous chapters, we could in-
troduce two independent velocity coordinates and derive the correspond-
ing kinematic di®erential equations, guaranteeing that the motion con-
straint would be satis¯ed for all time.

Here, we will take a di®erent approach. Let's, instead, treat the rigid
body as if it were free, but acted upon by a constraint force

Fc = n

0
@ Fc1

Fc2

Fc3

1
A ;

whose sole purpose is to ensure that the motion constraint is satis¯ed.
Introduce a full complement of independent velocity coordinates

N

dB

dt
= n

0
@ u1

u2

u3

1
A ;

from which we ¯nd the kinematic di®erential equations

_q1 = u1;

_q2 = u2;

_q3 = u3:

The linear momentum of the rigid body relative to the inertial observer
now becomes

N

p = n

0
@ Mu1

Mu2

Mu3

1
A

and Newton's second law of motion

n
d

N
p

dt
= Fc

yields the dynamic di®erential equations

M _u1 = Fc1;

M _u2 = Fc2;

M _u3 = Fc3:

The question is what form the coordinates Fci of the constraint force
relative to the reference triad n must take in order to ensure that the so-
lution to the kinematic and dynamic di®erential equations is an allowable
motion.
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Recall that any set of functions q1 (t), q2 (t), q3 (t) that satis¯es the
motion constraint

2q1 _q1 + 2q2 _q2 + 2q3 _q3 = 0

and for which the set of values q1 (t0), q2 (t0), and q3 (t0) satis¯es the
con¯guration constraint

q
2

1
+ q

2

2
+ q

2

3
= l

2

will satisfy the con¯guration constraint for all time.
Now, consider the time derivative of the motion constraint2

2 _q2

1
+ 2q1Äq1 + 2 _q2

2
+ 2q2Äq2 + 2 _q2

3
+ 2q3Äq3 = 0

called an acceleration constraint. In analogy with the previous state-
ment, any set of functions q1 (t), q2 (t), q3 (t) that satis¯es the acceler-
ation constraint and for which the set of values q1 (t0), q2 (t0), q3 (t0),
_q1 (t0), _q2 (t0), and _q3 (t0) satis¯es the motion constraint will satisfy the
motion constraint for all time.

In conclusion, any set of functions q1 (t), q2 (t), q3 (t), u1 (t), u2 (t),
and u3 (t) that satis¯es the acceleration constraint and the kinematic dif-
ferential equations, and for which the set of values q1 (t0), q2 (t0), q3 (t0),
u1 (t0), u2 (t0), and u3 (t0) satis¯es the motion and con¯guration con-
straints will satisfy the con¯guration constraint for all time. In particular,
using the kinematic and dynamic di®erential equation, the acceleration
constraint becomes

0 = 2u2

1
+ 2q1

Fc1

M
+ 2u2

2
+ 2q2

Fc2

M
+ 2u2

3
+ 2q3

Fc3

M

=
2

M

0
@M

°°°°°
N

dB

dt

°°°°°
2

+ r
NB

² Fc

1
A :

If this condition is satis¯ed by the coordinates of the constraint force,
then the acceleration constraint is automatically satis¯ed.

To uniquely determine the constraint force, it is necessary to impose
additional conditions on its coordinates. Recall that the kinetic energy
relative to an inertial observer is constant for an isolated rigid body.
Here, the body is no longer isolated. Nevertheless, it appears reasonable
to expect that the constraint force will be unable to change the kinetic
energy of the rigid body. Since

d N K

dt
=

n
d N

p

dt
²

N

dB

dt
+

n
d N

h

dt
²

n
!

b

= Fc ²

N

dB

dt
;

2The double dots refer to a second derivative with respect to time.
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it follows that the kinetic energy remains unchanged only if Fc is per-

pendicular to
N

dB

dt
for arbitrary velocities. From the motion constraint,

we recall that the velocity is constrained to be perpendicular to r
NB. It

follows that Fc must be parallel to r
NB, i.e.,

Fc = Fc

r
NB

krNB
k

:

Using the acceleration constraint, it follows that

Fc =
r

NB
² Fc

krNB
k

= ¡M

°°°°°
N

dB

dt

°°°°°
2

=
°°rNB

°° :

11.2 Dynamics

The analysis of the possible motions of a multibody mechanism a®ected
by forces and torques is known as dynamics. Rather than impose a certain
motion on a mechanism as was done in previous chapters, the goal of a
dynamical analysis is to understand the motion that results from the
imposition of forces. These forces may be due to fundamental physical
processes in the universe or a result of mechanical actuation, e.g., using
motors, muscles, and so on.

The laws of motion that were presented in the previous section have
been found to describe the dynamics of real-world mechanisms to a great
degree of accuracy and are therefore universally accepted when studying
a majority of everyday mechanisms. Their failure to adequately address
physical processes involving extreme length and timescales (for which the
theories of quantum mechanics and relativity need to be invoked) in no
way reduces their importance to the engineer and physicist.

A successful application of the laws of Newtonian mechanics relies
entirely on the ability to formulate expressions for the forces and torques
a®ecting real-world objects. To formulate such expressions is the role
of physical modeling. This is no longer an exact science. Instead, ex-
perimental observations and theoretical considerations are combined to
suggest possible mathematical models for the interactions between ob-
jects. These models can be validated only by comparison of the pre-
dicted dynamics with actual experimental observations. Improvements
in the models typically follow upon such comparisons, and the process is
repeated until a desired degree of accuracy has been achieved.

The combined kinematic and dynamic di®erential equations governing
the motion of a multibody mechanism are generally too complicated to
be solved analytically. Instead, we resort to any one of a large number
of approximate numerical algorithms. While numerical approximations
can be computed through hand calculations, it is only with the advent
of high-speed computing that it has become possible to implement such
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numerical algorithms with a large degree of accuracy for simulations over
long periods of time.

But with numerical prediction does not necessarily come cognition.
As scientists, we strive beyond the ability to simulate multi-degree-of-
freedom systems with speci¯c initial values for the con¯guration coor-
dinates and the independent velocity coordinates. Instead, we seek to
make qualitative and quantitative statements regarding the behavior of
these systems under a variety of di®erent initial conditions and a variety
of di®erent force and torque descriptions.

11.2.1 Central Forces

Suppose that N is an inertial observer with reference point N and ref-
erence triad n. Denote by B the center of mass of a rigid body of total
mass M and suppose that the rigid body's motion is governed by a force

F = f
¡°°rNB

°°¢
r

NB
;

where f is some arbitrary function, and torque T = 0. The rigid body
is said to be a®ected by a central force. Newton's second law of motion
yields

n
d N

p

dt
= M

n
d2

r
NB

dt2
= f

¡°°rNB
°°¢

r
NB

:

The force acting on the rigid body is always parallel to the position vector
from the reference point of the inertial observer to the center of mass of
the rigid body. Moreover, its magnitude depends only on the distance
between N and B:

Now, consider the vector quantity

H = r
NB

£

n
dr

NB

dt
:

Then,

n
dH

dt
=

n
d

dt

µ
r

NB
£

n
drNB

dt

¶

=
n
dr

NB

dt
£

n
dr

NB

dt
+

f
¡°°rNB

°°¢
M

r
NB

£ r
NB

= 0:

It follows that H is constant relative to the inertial observer. Since

r
NB

² H = 0;

it follows that r
NB lies in the plane perpendicular to H for all time, i.e.,

that the center of mass of the rigid body stays in a plane through the
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reference point N perpendicular to the vector H. Given an initial position
and initial velocity of the point B relative to N , we can compute H and,
consequently, ¯nd the plane in which the point B will remain.

Illustration 11.10

Suppose that the force acting on the rigid body is given by

F = ¡kr
NB

;

i.e., that the magnitude of the force is proportional to the distance be-
tween N and B. Suppose that the reference triad n is chosen such that
H is parallel to n3, i.e., such that

H = n

0
@ 0

0
h

1
A ;

where h is constant throughout the motion.
Now, consider the quantities

Ei =
M

2

µ
n
drNB

dt
² ni

¶2

+
k

2

¡
r

NB
² ni

¢2

, i = 1; 2:

Then,

dEi

dt
= M

µ
n
d2

r
NB

dt2
² ni

¶µ
n
drNB

dt
² ni

¶

+k

µ
n
dr

NB

dt
² ni

¶¡
r

NB
² ni

¢
= ¡k

¡
r

NB
² ni

¢µ
n
drNB

dt
² ni

¶

+k

µ
n
drNB

dt
² ni

¶¡
r

NB
² ni

¢
= 0;

i.e., E1 and E2 are constant relative to the inertial observer.
Since r

NB is perpendicular to H, we have

r
NB = n

0
@ q1

q2

0

1
A ,

n
drNB

dt
= n

0
@ _q1

_q2

0

1
A :

It follows that

h = q1 _q2 ¡ q2 _q1

and

E1 =
M

2
_q2

1
+

k

2
q
2

1
, E2 =

M

2
_q2

2
+

k

2
q
2

2
:
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Eliminating _q1 and _q2 from these equations yields

h =

r
2

M

Ã
q1s2

r
E2 ¡

k

2
q2

2
¡ q2s1

r
E1 ¡

k

2
q2

1

!
;

where s1 and s2 equal plus or minus 1. Solving this equation for q1 and
reorganizing the result then yields

¡
4E2q1 § 2q2

p

4E1E2 ¡ kMh2
¢2

8ME2h
2

+
kq

2

2

2E2

= 1;

i.e., the equation of an ellipse centered at N:

Suppose that the force acting on the rigid body is given by

F = ¡

k

krNB
k
3
r

NB
;

i.e., that the magnitude of the force is inversely proportional to the square
of the distance between N and B. Suppose that the reference triad n is
chosen such that H is parallel to n3, i.e., such that

H = n

0
@ 0

0
h

1
A ;

where h is constant throughout the motion.
Now, consider the quantity

E =
M

2

n
drNB

dt
²

n
drNB

dt
¡

k
p

rNB
² rNB

:

Then,

dE

dt
= M

n
d2

r
NB

dt2
²

n
drNB

dt
+ k

n
dr

NB

dt
² r

NB

krNB
k
3

= ¡

k

krNB
k
3
r

NB
²

n
drNB

dt
+ k

n
dr

NB

dt
² r

NB

krNB
k
3

= 0;

i.e., E is constant throughout the motion.
Similarly, consider the vector quantity

R = MH £

n
dr

NB

dt
+ k

r
NB

p

rNB
² rNB

:
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Since H is constant, it follows that

n
dR

dt
= MH £

n
d
2
r

NB

dt2
+ k

" n
dr

NB

dt

¡
r

NB
² r

NB
¢

¡r
NB

³
n

dr
NB

dt
² r

NB

´ #

krNB
k
3

= ¡k

2
4

³
r

NB
£

n
dr

NB

dt

´
£ r

NB
¡

n
dr

NB

dt

°°rNB
°°2

+r
NB

³
n

dr
NB

dt
² r

NB

´
3
5

krNB
k
3

= 0;

where we have used the identity

(c £ b) £ a = a £ (b £ c) = b (a ² c) ¡ a (b ² c)

which was shown in Exercise 3.74. From the de¯nitions, we see that

R ² H = 0;

i.e.,

R = n

0
@ r1

r2

0

1
A ;

where r1 and r2 are constant throughout the motion.
Since r

NB is perpendicular to H, we have

r
NB = n

0
@ ½ cos µ

½ sin µ

0

1
A ,

n
dr

NB

dt
= n

0
@ _½ cos µ ¡

_µ½ sin µ

_½ sin µ + _µ½ cos µ

0

1
A ;

where ½ and µ are polar coordinates in the n1, n2 plane. It follows that

h = ½
2 _µ;

E =
M

2

³
½
2 _µ

2

+ _½2

´
¡

k

½
;

r1 = ¡M½
2 _µ _½ sin µ ¡ M½

3 _µ
2

cos µ + k cos µ;

and

r2 = M½
2 _µ _½ cos µ ¡ M½

3 _µ
2

sin µ + k sin µ:

Eliminating _½ and _µ from these equations yields

E =
1

2

r2

1
+ r2

2
¡ k2

Mh2
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and

½ =
h2M

k ¡ r1 cos µ ¡ r2 sin µ
;

i.e., the equation of a conical section (i.e., the curve created when slicing
a cone with a plane) with focus at N . Depending on the values of E, h,
k, and M , this curve is either an ellipse, a parabola, or a hyperbola.

11.2.2 The Two-body Problem

Let B1 and B2 denote the centers of mass of two rigid bodies of mass M1

and M2. Newton's law of gravity states that, to the lowest approximation,
the two rigid bodies interact by means of a mutually attracting force
that is proportional in magnitude to the masses of the rigid bodies and
inversely proportional to the square of the distance between B1 and B2.
Speci¯cally, denote by F1 and F2 the forces on the two bodies. Then,

F1 = ¡G
M1M2

krB1B2k
3
r

B2B1 and F2 = ¡G
M1M2

krB2B1k
3
r

B1B2 = ¡F1;

where G is some constant of nature. In the absence of other interactions,
Newton's second law of motion implies that

M1

n
d
2
r

NB1

dt2
= ¡G

M1M2

krB2B1k
3
r

B2B1 ;

M2

n
d
2
r

NB2

dt2
= ¡G

M1M2

krB1B2k
3
r

B1B2 ;

where n and N are the reference triad and reference point of an inertial
observer N .

Now, consider a point P , such that

r
NP =

M1r
NB1 + M2r

NB2

M1 + M2

:

Using the dynamic di®erential equations, it follows that

n
d
2
r

NP

dt2
= 0;

i.e., the point P moves with constant velocity relative to the inertial
observer. Let N

¤ be an observer with reference point N¤ at P and
reference triad n¤ coinciding with n: Then, N

¤ is also an inertial observer.
Since

0 = r
N

¤
P =

M1r
N

¤
B1 + M2r

N
¤
B2

M1 + M2

;



it follows that

r
B1B2 = r

N
¤
B2

¡ r
N

¤
B1 =

µ
1 +

M2

M1

¶
r

N
¤
B2

and

r
B2B1 = r

N
¤
B1

¡ r
N

¤
B2 =

µ
1 +

M1

M2

¶
r

N
¤
B1 :

It follows that the dynamic di®erential equations relative to the N
¤

inertial observer are

M1

n
¤

d
2
r

N
¤
B1

dt2
= ¡G

M1M2³
1 + M1

M2

´2

r
N

¤
B1

krN¤B1k
3

and

M1

n
¤

d2
r

N
¤
B2

dt2
= ¡G

M1M2³
1 + M2

M1

´2

r
N

¤
B2

krN¤B2k
3
:

By comparison with the equations in the previous section, we conclude
that the centers of mass of the two rigid bodies move on conical sections
with focus at the reference point N

¤
: For example, as long as the initial

velocities of the points B1 and B2 are su±ciently small, the resulting
orbits are ellipses.
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11.3 Exercises

Exercise 11.1 Show that there exists a
matrix w

I
A, such that

Z
V

¡
n £ r

AP
¢

²

¡
m £ r

AP
¢
½ (P ) dV

= (w
n)T w

I
A w

m;

and ¯nd a formula for the [i; j]-th entry of
wIA.

[Hint: Let

r
AP = w

0
@ w

¡
r

AP
¢
1

w
¡
r

AP
¢
2

w
¡
r

AP
¢
3

1
A

and expand the product
¡
n £ r

AP
¢

²¡
m £ r

AP
¢
: Then compare the result to that

obtained from the product

(w
n)T

B
w
m

for an arbitrary matrix B.]

Exercise 11.2 Show that the moment
of inertia matrix bIB is symmetric for any
choice of reference triad b and reference point
B.

Exercise 11.3 Find the moment of in-
ertia matrix about the center of mass for a
homogeneous rectangular block relative to a
triad with basis vectors parallel to the edges
of the block.
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Exercise 11.4 Show that the moment
of inertia matrices aIQ and bIQ about a point
Q relative to two di®erent triads a and b are
related by the formula

b
I

Q = Rba
a
I

Q
Rab:

Solution. From Exercise 11.1, we recall
thatZ

V

¡
n £ r

QP
¢

²

¡
m £ r

QP
¢
½ (P ) dV

= (a
n)T a

I
Q a

m

=
¡
b
n
¢T

b
I

Q b
m;

since the left-hand side is independent of the
triad. Since

a
n = Rab

b
n

a
m = Rab

b
m

we ¯nd

(a
n)T a

I
Q a

m

=
¡
Rab

b
n
¢T

a
I

Q
Rab

b
m

=
¡
b
n
¢T

Rba
a
I

Q
Rab

b
m

and the claim follows, since the statement
must be true for arbitrary n and m.

Exercise 11.5 Show that the moment of
inertia matrix of a homogeneous cube about
its centroid (i.e., its geometric center) is in-
dependent of the triad.

[Hint: Compute the moment of inertia ma-
trix about the centroid relative to a triad
whose basis vectors are parallel to the edges
of the cube. Then use the result of the pre-
vious exercise to ¯nd the moment of inertia
matrix relative to some other triad.]

Exercise 11.6 Show that for every
point A there exists a triad, relative to which

the moment of inertia matrix about A is di-
agonal. The directions through A spanned
by the basis vectors of this triad are called
the principal inertia directions at A. The
corresponding diagonal entries of the mo-
ment of inertia matrix are called the prin-

cipal moments of inertia at A.
Solution. Recall from linear algebra

that for every symmetric matrix S there ex-
ists an orthogonal matrix V , such that the
matrix product

V
T
SV

is diagonal with the eigenvalues of S along
the diagonal.

Now, consider the moment of inertia ma-
trix wIA about a point A relative to a triad
w. From a previous exercise, we recall that
wIA is symmetric. Let p be a new triad, such
that Rwp equals the corresponding V matrix.
Then,

p
I

A = Rpw
w
I

A
Rwp;

i.e., pIA is diagonal.

Exercise 11.7 Use the result of Exercise
11.4 to show that the angular momentum of
a rigid body with reference triad b relative to
an inertial observer N is given by

h = a
a
I

B a
¡
n
!

b
¢
;

where a is some arbitrary triad. Comment
on the advantage of using b

I
B in the original

de¯nition of the angular momentum.

[Hint: b
I

B is a time-independent matrix.]

Exercise 11.8 Formulate Euler's equa-
tions in the triad that was found in Exercise
11.6. Show that these are satis¯ed by

u4 (t) = const, u5 (t) = u6 (t) = 0;

u5 (t) = const, u4 (t) = u6 (t) = 0;

and

u6 (t) = const; u4 (t) = u5 (t) = 0:
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Exercise 11.9 Consider initial values
in the vicinity of any of the three solutions
discussed in the previous exercise and use
Mambo to study the subsequent rotational
motion of the rigid body.

Exercise 11.10 Show that

d

dt

Ã
1

2
N

p ²

N

dB

dt
+

1

2
N

h ²
n
!

b

!

=
n
d N

p

dt
²

N

dB

dt

+
n
d N

h

dt
²

n
!

b

Exercise 11.11 Suppose that there is a
force applied to every element of matter in a
rigid body whose magnitude is proportional
to the amount of mass in the element and
whose direction is independent of position
in the rigid body. Show that the net force
acting on the rigid body is independent of
position and orientation of the rigid body
and has a magnitude that is proportional to
the total mass M of the rigid body. Show
that there is no net torque acting on the
rigid body.

Exercise 11.12 Suppose that the center
of mass of a rigid body moves along a helical
curve with constant linear speed. Find the
net force that must be acting on the rigid
body.

Exercise 11.13 Suppose that the cen-
ter of mass of a rigid body moves along an
elliptical curve with linear speed inversely
proportional to the distance from the center
of the ellipse. Find the net force that must
be acting on the rigid body.

Exercise 11.14 Use Mambo to visu-
alize the motion of the rigid body in Section
11.1.9. What happens if the initial con-
ditions on the independent velocity coordi-
nates do not satisfy the motion constraint?

Exercise 11.15 Repeat the derivation
of the constraint force for the rigid body in
Section 11.1.9 under the assumption that it
is a®ected by an additional force F.

Exercise 11.16 Use Mambo to visu-
alize the motion of the rigid body in the
previous exercise when F is a constant force.

Exercise 11.17 Use Mambo to visu-
alize the motion of the rigid body in the
previous exercise with the imposition of an
additional force opposite in direction and
proportional in magnitude to the velocity of
the center of mass.

Exercise 11.18 Use Mambo to visual-
ize the motion of an otherwise free rigid body
that is acted upon by a constraint force Fc

that ensures that the center of mass of the
rigid body stays on a given helical curve.
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Summary of notation

The Greek letter ½ (rho) was used in this chapter to denote the density
of a mass distribution.

An upper-case I with a left and a right superscript, such as w
I

A, was
used in this chapter to denote the moment of inertia matrix of a
mass distribution about a point relative to a triad.

A bold-faced lower-case p with a left superscript was used in this chap-
ter to denote the linear momentum of a rigid body relative to an
observer.

A bold-faced lower-case h with a left superscript was used in this chapter
to denote the angular momentum of a rigid body relative to an
observer.

An upper-case K with a left superscript was used in this chapter to
denote the kinetic energy of a rigid body relative to an observer.

Summary of terminology

The mass of an object is a measure of the amount of matter in the
object.

The density of a mass distribution at a point is a measure of the average
mass per unit volume contained in a small volume around the point.

A mass distribution is homogeneous if the density is the same at all
interior points.

The ¯rst moment of inertia of a mass distribution about a straight line
through a point is a measure of how the matter is distributed about
the point.

The ¯rst moment of inertia is zero about any straight line through the
center of mass of a mass distribution.

The second moment of inertia of a mass distribution about two straight
lines through a point is a measure of how the matter is distributed
about the point.

The moment of inertia matrix of a mass distribution about a point
relative to a triad consists of the second moments of inertia of the
mass distribution about any pair of straight lines through the point
that are parallel to the basis vectors of the triad.

The linear momentum of a rigid body relative to an observer is the
product of the mass of the body with the velocity of the center of
mass of the body relative to the observer.
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The angular momentum of a rigid body relative to an observer is a
vector whose matrix representation relative to a body-¯xed triad
equals the product of the moment of inertia matrix of the body
about the center of mass relative to the body-¯xed triad and the
matrix representation relative to the body-¯xed triad of the angular
velocity of the rigid body relative to the observer.

A rigid body is isolated if it does not interact with its environment.

The linear and angular momenta of an isolated rigid body are constant
relative to an inertial observer.

Newton's ¯rst law of motion states that the center of mass of an iso-
lated rigid body moves along a straight line relative to an inertial
observer.

The dynamic di®erential equations govern the rate of change of the
independent velocity coordinates.

The kinetic energy of an isolated rigid body is constant relative to an
inertial observer.

Newton's second law of motion states that the rate of change of the
linear momentum of a rigid body relative to an inertial observer
equals the force applied to the body.

The rate of change of the angular momentum of a rigid body relative to
an inertial observer equals the torque applied to the body.

Newton's third law of motion states that if the interaction between two
rigid bodies results in a force on the ¯rst body, then a force of equal
magnitude but opposite direction acts on the second body.

Forces and torques that act to sustain a con¯guration or motion con-
straint on a rigid body are called constraint forces and constraint

torques.

In the Mambo toolbox, the procedure LinearMomentum computes the
linear momentum of a rigid body relative to an observer.

In the Mambo toolbox, the procedure AngularMomentum computes the
angular momentum of a rigid body relative to an observer.
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Appendix A

As becomes evident when treating complicated mechanisms with long
chains of linked observers, the intensity of the algebra grows rapidly.
Only the simplest of problems are amenable to back-of-the-envelope cal-
culations, and there is a serious risk for errors at any step in more complex
situations. In the past several decades, tools have emerged for perform-
ing algebraic manipulations using interactive computer environments.
Programs such as Maple and Mathematica have grown to encom-
pass much of algebra, analysis, and numerics. In addition to a plethora
of commands for prepackaged mathematical operations, these programs
generally contain a programming environment reminiscent of high-level
programming languages such as Pascal or C, allowing the user to add
functionality and to automate repetitive actions.

A.1 General Syntax

The Mambo toolbox described in the main body of this text is based on
a set of procedures written using the Maple programming language and
compatible with Maple V and later versions as well as with Matlab's
extended symbolic toolbox.

Illustration A.1

In the sample Maple session below, we highlight some fundamental syn-
tactic conventions and basic operations of the Maple system. For ex-
ample, the result of a computation is only revealed if the command line
ends with a semicolon, being suppressed if it ends with a colon. If either
is missing, the system will not recognize the end of the line.

> factor(a^2-b^2);

(a ¡ b) (a + b)

> simplify((x^3-y^3)/(x-y));
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x
2 + y x + y

2

> soln:=solve(x^2+p*x+q,x);

soln := ¡

1

2
p +

1

2

p
p2

¡ 4 q; ¡

1

2
p ¡

1

2

p
p2

¡ 4 q

> simplify(subs(x=soln[1],x^2+p*x+q));

0

> diff(x*ln(x)-sin(x)^2,x);

ln(x) + 1 ¡ 2 sin(x) cos(x)

> int(1/sqrt(1+x^2),x=0..t);

ln(t +
p

t2 + 1)

> with(linalg):

Warning, new definition for norm

Warning, new definition for trace

> A:=matrix(3,3,[[1,0,0],[0,cos(t),sin(t)],
[0,-sin(t),cos(t)]]);

A :=

2
4 1 0 0

0 cos(t) sin(t)
0 ¡sin(t) cos(t)

3
5

> eigenvals(A);

1; cos(t) +
p

cos(t)2 ¡ 1; cos(t) ¡

p
cos(t)2 ¡ 1

> simplify(multiply(A,transpose(A)));2
4 1 0 0

0 1 0
0 0 1

3
5

Placeholders for complicated algebraic expressions are assigned through
the assignment operator := as in the example with the matrix A above.
The statement

> A:='A';

A := A

unassigns the placeholder A. To unassign all placeholders and global vari-
ables, use the restart command.

Note the excellent Maple help facility, accessible through the menu
system or by typing a question mark followed by the command one re-
quires help with, e.g., ?subs. For the majority of commands, the help
window will contain a number of examples that further highlight the
grammar and syntax. Take some time to explore Maple and familiarize
yourself with its functionality.
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AllMaple statements included in this text will run in aMatlab sys-
tem with the extended symbolic toolbox, provided that they are entered
as maple('statement'), where statement is one or several syntactically
correct Maple statements. For example,

>> maple('factor(a^2-b^2);')

ans =

(a-b)*(a+b)

>> maple('simplify((x^3-y^3)/(x-y));')

ans =

x^2+y*x+y^2

are equivalent to the ¯rst twoMaple statements above. Here, theMaple
statements are passed to the maple function in Matlab within single
apostrophes corresponding to a Matlab string. Note that Matlab uses
a semicolon to suppress output, so that the statement

>> maple('factor(a^2-b^2);');

results in no output.
In a Maple session, it is possible to break statements across sev-

eral lines without any special indication. In Matlab, a statement that
doesn't ¯t on one line may be continued to the next line, provided that
an ellipsis (i.e., : : : ) is inserted at the line break. Thus, we might write

>> 2+3*...

(2-3)

ans =

-1

To break a Matlab string across several lines requires extra care, since
the ellipsis should not be included in the string. Consider the following
examples:

>> ['tree',...

'stump']

ans =

treestump
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>> maple(['with(linalg):',...

'A:=matrix(3,3,[[1,0,0],[0,0,-1],[0,1,0]])'])

ans =

A := matrix([[1, 0, 0], [0, 0, -1], [0, 1, 0]])

where we have enclosed the substrings within square brackets and sepa-
rated the two substrings with a comma followed by the ellipsis.
Maple variable assignments, such as the above de¯nition of the ma-

trix A, allocate memory within the Matlab session and can be accessed
in subsequent Maple statements. For example,

>> maple('eigenvals(A)')

ans =

1, i, -i

These variables do not become part of the Matlab workspace, however.
To allow the inclusion of single apostrophes within the Maple state-

ment (as within any Matlab string), it is necessary to double each apos-
trophe as in

>> 'The dog''s owner'

ans =

The dog's owner

>> maple('A:=''A'';')

ans =

A := 'A'

Finally, it is syntactically incorrect to use an upper-case I on the
left-hand side of an assignment within Maple, since I represents the
imaginary unit and may not be rede¯ned. In contrast, a lower-case i or
j represents the imaginary unit in Maple statements within a Matlab
session and must be avoided on the left-hand side of an assignment or
within for loops and seq statements (see below).

A.2

We di®erentiate between data structures and the actions that can be
performed on them. The Mambo toolbox makes use of four di®erent
types of constructs that serve di®erent, and quite intuitive, purposes in
the programming paradigm. These are the set , the list , the table, and
the array.
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Sets

In Maple, the set data structure retains the everyday meaning of the
terminology. A set is an unordered sequence of elements, delimited by
curly braces. Thus, the statements

> r:=fa,b,cg:

> s:=fg:

assign a set with three elements, a, b, and c, to the variable r, and an
empty set to s. The following statements perform some useful actions on
sets:

> r[2];

b

> r union ff,dg;

fa; b; f; c; dg

> r minus ff,cg;

fa; bg

> member(a,r);

true

The ¯rst line selects the second element of r, but since r is unordered,
the answer may change if r is assigned the same set again. The second
line creates a new set, which is the union of r and ff,dg, while the set
that results from the third line is the di®erence between r and ff,cg.
Finally, the result of the last line is true if a is an element in r, and false
otherwise.

Lists

The list data structure di®ers from the set in that the elements are or-
dered, and thus selecting the i-th element always returns the same vari-
able. Lists are delimited by square brackets. Except for the set-theoretic
statements above, everything else would hold by replacing braces with
brackets.

> r:=[a,b,c]:

> s:=[]:

> r[2];

b

Instead of the union command, we would write

> [op(r),f,d];

[a; b; c; f; d]
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to create a list that contains the elements of r followed by f and d. Here,
the operator op extracts the elements of r. A related useful command is
nops, which returns the number of elements.

Tables

A Maple table is essentially a look-up table, such that to each index
element there corresponds at most one expression. For example, the
statements

> r:=table():

> r[a]:=15:

> r[a,b]:=Pi:

assign an empty table to r after which the correspondences a$15 and
(a,b)$ ¼ are established within r. In fact, any expressions are valid as
indices. To check whether a table contains a particular index element,
one can use the assigned command, as in

> assigned(r[a]);

true

which returns true since r[a] does exist. Similarly, an index together
with the corresponding entry may be removed from a table using the
unassign command, as in

> unassign('r[a]');

after which the statement

> assigned(r[a]);

false

returns false. It should be noted that the statement

> r;

r

will return only the name r. In order to see the actual table, one could
write

> print(r);

table([

(a; b) = ¼

])

Similarly, to access the content of a table, we use the eval command, as
in

> subs(Pi=3.14,eval(r));
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table([

(a; b) = 3:14

])

where every occurrence of ¼ in r is replaced by 3:14.

Arrays

The array construct di®ers from tables in that the indices are limited to
integers. For example, the statement

> r:=array(1..3,1..3):

assigns a three-by-three array to r. Array entries are accessed by the
selection operator, but an error is returned if an index lies outside the
prescribed range. Thus, r[1,2] is allowed, while r[0,2] would return
an error. A special type of array is a matrix. This is a two-dimensional
array, whose indices always start at 1. Maple contains all the standard
linear algebra operations on matrices, including determinants, eigenvalues
and eigenvectors, and many others. These are accessed by ¯rst typing
with(linalg): at the command prompt. As with tables, one can use
the print command to see the actual array or the eval command to
access the actual array.

A.3

We turn to actual programming in Maple. We will describe an imple-
mentation of the quicksort algorithm for sorting a list of °oats.

Illustration A.2

Consider the utility function below that swaps two entries in a list.

swap:=proc(v,i,j)

local local v,temp;

local v:=v;

temp:=local v[i]; local v[i]:=local v[j]; local v[j]:=temp;

RETURN(local v);

end;

As with tables and arrays, the procedure is assigned to the variable
swap. In order to view the procedure de¯nition, it is necessary to give
the command print(swap). We have chosen to follow Maple's internal
typographical settings, which display reserved keywords in the Maple
language in bold-face. The procedure de¯nition begins with the keyword
proc followed by a, possibly empty, sequence of arguments, separated
by commas, within the parentheses. If the arguments are omitted, then
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they can be accessed through the local variable args and their number
through the local variable nargs.

We remark that procedure calls are \call by value" { the procedure
has no access to the variable that was used in a procedure call, only its
value. That is the reason for the local variable local v and the statement
local v:=v. Note that no semicolon is necessary on the procedure line.
Following the procedure head, we declare the local variables that we will
use. This list is optional, since any non-global variable that appears
within a procedure is assumed to be local. It is also possible to declare
global variables at this point. The procedure is exited via a RETURN

statement. This returns a value to the calling environment that can then
be assigned to a variable or as part of an expression. We note that there is
no type checking of the inputs in this example (although this is possible,
if desired), nor of the output. Such error checking will be omitted in this
text.

The following sequence of statements illustrate the function of the
procedure swap.

> names:=["Hanna","Harriet","Haley"];

names := [\Hanna"; \Harriet"; \Haley"]

> swap(names,1,3);

[\Haley"; \Harriet"; \Hanna"]

With the help of the swap function, we can now show the complete
quicksort program:

quicksort:=proc()

local v,n,i,temp,last;

v:=args; n:=nops(v);

if (n<=1) then

RETURN(v);

else

v:=swap(v,1,trunc((1+n)/2));

last:=1;

for i from 2 to n do

if (v[i]<v[1]) then last:=last+1; v:=swap(v,last,i); ¯;

od;

v:=swap(v,1,last);

RETURN([op(quicksort([op(1..(last-1),v)])),

v[last],op(quicksort([op((last+1)..n,v)]))]);

¯;

end;

This procedure expects a list of numbers as the argument. It reorga-
nizes the list so that all elements smaller than the middle element (note
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the trunc command) are moved to the left of this element. The pro-
cedure then calls itself recursively with the sublists to the left and to
the right of the middle element. Sorting ends with lists containing one
or fewer elements and control is passed back up to the calling routine.
This procedure makes use of some standard programming statements for
execution control. These constructs { the for loop and the if condi-
tional statement { are fairly self-explanatory. Note the if-fi and do-od

pairing to delimit the block. A sample run with quicksort would be

> unirand:=rand(1..100):

> numbers:=[seq(unirand(),i=1..10)];

numbers := [62; 49; 4; 24; 96; 74; 90; 38; 58; 100]

> quicksort(numbers);

[4; 24; 38; 49; 58; 62; 74; 90; 96; 100]

Here, unirand is de¯ned as a procedure that returns random integers
between 1 and 100. The seq statement creates a sequence of 10 integers
separated by commas.

In a Matlab session, Maple procedures may be de¯ned at the com-
mand prompt as they would within Maple. It is also possible to store
the procedure de¯nitions (and other Maple statements) without the en-
closing maple(' ') in a separate text ¯le and load this into the Mat-
lab session using the Matlab procread command. Thus, if the ¯le
quicksort.src contains the de¯nitions of the swap and quicksort pro-
cedures as shown above, then the statements

>> procread('quicksort.src');

>> maple('unirand:=rand(1..100);');

>> maple('numbers:=[seq(unirand(),k=1..10)];')

ans =

numbers := [56, 64, 58, 61, 75, 86, 17, 62, 8, 50]

>> maple('quicksort(numbers);')

ans =

[8, 17, 50, 56, 58, 61, 62, 64, 75, 86]

illustrate the use of the quicksort routine within a Matlab session.
Note the use of the symbol k instead of i in the call to seq as per the
discussion in Section A.1.
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The Mambo Toolbox

The Mambo toolbox contains procedures for establishing a geometry,
extracting information about the geometry, and formulating conditions
on the geometry. Within a Maple session, on-line help with Mambo
toolbox commands is o®ered through the Maple help facility, i.e., by
typing a question mark followed by the procedure name at the command
prompt, e.g.,

> ?DeclareStates

To load the Mambo toolbox into Maple, it is necessary to append
the folder containing the Mambo toolbox source to the Maple library
path, followed by a with command, e.g.

> libname:=libname,"D:\\Mambo":

> with(Mambo):

Warning, new definition for norm

Warning, new definition for trace

Warning, new definition for fortran

\Mambo, version 1.0"

The syntax for specifying a path di®ers between operating systems and
should be found from the Maple manual.

To load the Mambo toolbox into Matlab, change the current di-
rectory to the folder containing the Mambo toolbox source and use the
procread command, as described in Appendix A.
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B.1 Establishing a Geometry

A Mambo toolbox geometry is spanned by a set of observers, a set of
points, and a set of triads. Speci¯cally, an observer is de¯ned by its cor-
responding reference point and reference triad; a pair of points is de¯ned
by the position vector from the ¯rst point to the second point, and vice
versa; and a pair of triads is de¯ned by the rotation matrix between the
¯rst triad and the second triad, and vice versa.

If the position vector (rotation matrix) between a pair of points (tri-
ads) has been explicitly de¯ned or can be computed from explicitly de-
¯ned position vectors (rotation matrices) using vector addition (matrix
multiplication), the points (triads) are said to be related.

An observer hierarchy is established within the Mambo toolbox by
declaring pairs of observers as immediate neighbors within the hierarchy.
If two observers have been declared immediate neighbors, they are said
to be directly related. If two observers belong to the same hierarchy but
are not immediate neighbors, they are said to be indirectly related.

Three separate steps are involved in establishing a Mambo toolbox
geometry, namely:

² Declaring the observer, point, and triad labels;

² De¯ning the reference point and reference triads of declared ob-
servers, the position vectors between declared points, and the rota-
tion matrices between declared triads;

² De¯ning the observer hierarchy.

In following these steps, it is entirely acceptable to declare (and de¯ne)
points and triads that do not correspond to reference points and refer-
ence triads of any observers. Such unassociated points and triads may
represent geometrical features of objects that are stationary relative to
an observer.

B.1.1 Global Variables

The Mambo toolbox geometry is represented by three pairs of global
variables as listed below.

GlobalObserverDeclarations GlobalObserverDefinitions

GlobalPointDeclarations GlobalPointDefinitions

GlobalTriadDeclarations GlobalTriadDefinitions

The global variable GlobalObserverDeclarations is a Maple table
with indices given by declared observer labels. If A is the label of a
declared observer, then the entry GlobalObserverDeclarations[A] is a
set containing the labels of all directly related observers.
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The global variable GlobalPointDeclarations is a Maple table
with indices given by declared point labels. If A is the label of a declared
point, then the entry GlobalPointDeclarations[A] is a set containing
the labels of all directly related points.

The global variable GlobalTriadDeclarations is a Maple table
with indices given by declared triad labels. If a is the label of a declared
triad, then the entry GlobalTriadDeclarations[a] is a set containing
the labels of all directly related triads.

The global variable GlobalObserverDefinitions is a Maple table
with indices given by declared observer labels. If A is the label of a
declared observer, then the entry GlobalObserverDefinitions[A] is a
table with entries given by the corresponding reference point and refer-
ence triad.

The global variable GlobalPointDefinitions is a Maple table with
indices given by pairs of declared point labels. If A and B are the labels
of two declared points, then the entry GlobalPointDefinitions[A,B]

is given by the corresponding position vector from A to B.
The global variable GlobalTriadDefinitions is a Maple table with

indices given by pairs of declared triad labels. If a and b are the labels
of two declared triads, then the entry GlobalTriadDefinitions[a,b] is
given by the corresponding rotation matrix between a and b.

Upon loading the Mambo toolbox, an empty Mambo toolbox geom-
etry is established. Subsequent declarations and de¯nitions modify this
Mambo toolbox geometry. The statement

Restart();

resets the Mambo toolbox geometry to its initial, empty state. The
statement

Undo();

undoes any changes to the Mambo toolbox geometry that resulted from
the previous procedure call.

B.1.2 Declaring a Geometry

The procedures DeclareObservers, DeclarePoints, and DeclareTriads

can be invoked to declare the labels of an arbitrary sequence of observers,
points, and triads, respectively.

DeclareObservers(A1,...,An);

DeclarePoints(P1,...,Pn);

DeclareTriads(a1,...,an);

Each of the arguments to these procedures must be an unassigned

Maple name. It is syntactically correct to use the same Maple name
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both as an observer label, a point label, and a triad label. It is not
possible to declare a Maple name twice for the same object type. These
commands are independent of one another and can occur in any order.

B.1.3 Vectors and Rotation Matrices

The procedure MakeTranslations can be invoked with an arbitrary se-
quence of vector speci¯cations to generate a representation of a composite
vector relative to the Mambo toolbox geometry. When multiple vector
speci¯cations are contained within a single procedure call, the parameters
governing each separate vector speci¯cation are enclosed within brackets.
The result of a call to MakeTranslations that includes multiple vector
speci¯cations is the vector sum of the individual vectors.

Vector speci¯cations can take one of three syntactically correct forms.
Speci¯cally:

² a1,i { denotes the i-th basis vector in the triad a1;

² a1,v1,v2,v3 { denotes the vector whose matrix representation in
the a1 triad is given by the algebraic quantities v1, v2, and v3;

² pv { denotes a previously computed vector.

All three forms are allowed within a single call to MakeTranslations.
The statement

NullVector();

returns the zero vector.

The procedure MakeRotations can be invoked with an arbitrary se-
quence of rotation-matrix speci¯cations to generate a representation of a
composite rotation matrix. When multiple rotation-matrix speci¯cations
are contained within a single procedure call, the parameters governing
each separate rotation-matrix speci¯cation are enclosed within brackets.
The result of a call to MakeRotations that includes multiple rotation-
matrix speci¯cations is the matrix product of the individual rotation
matrices.

Rotation-matrix speci¯cations can take one of three syntactically cor-
rect forms. Speci¯cally:

² phi1,i { denotes the rotation matrix corresponding to a rotation
by an angle phi1 about the i-th basis vector in the current triad;

² phi1,v1,v2,v3 { denotes the rotation matrix corresponding to a
rotation by an angle phi1 about the vector whose matrix represen-
tation in the current triad is given by the algebraic quantities v1,
v2, and v3;



B.1 Establishing a Geometry 489

² rm { denotes a previously computed orthogonal matrix.

All three forms are allowed within a single call to MakeRotations.

B.1.4 De¯ning a Geometry

The procedures DefineObservers, DefinePoints, and DefineTriads

can be invoked to de¯ne an arbitrary sequence of observers, points, and
triads, respectively. When de¯ning multiple elements within a single
procedure call, the parameters governing each separate de¯nition are en-
closed within brackets.

DefineObservers(A,P,a);

DefineObservers([A1,P1,a1],...,[An,Pn,an]);

Here, the ¯rst parameter is the label of a declared observer, the second
parameter is the label of a declared point, and the third parameter is the
label of a declared triad. An observer may only be de¯ned once.

DefinePoints(P,Q,pv);

DefinePoints([P1,Q1,pv1],...,[Pn,Qn,pvn]);

Here, the ¯rst and second parameters are the labels of two declared
points and the third parameter contains a speci¯cation of the position
vector from the ¯rst to the second point. Speci¯cally, the syntax for the
third parameter is identical to that for the argument list in a call to the
MakeTranslations procedure. It is not possible to de¯ne the position
vector between a pair of already related points.

DefineTriads(p,q,rm);

DefineTriads([p1,q1,rm1],...,[pn,qn,rmn]);

Here, the ¯rst and second parameters are the labels of two declared
triads and the third parameter contains a speci¯cation of the rotation
matrix between the ¯rst and the second triad. Speci¯cally, the syntax for
the third parameter is identical to that for the argument list in a call to
the MakeRotations procedure. It is not possible to de¯ne the rotation
matrix between a pair of already related triads.

B.1.5 De¯ning Neighbors

The procedure DefineNeighbors can be invoked to de¯ne an arbitrary
sequence of pairs of observers as directly related. When de¯ning multiple
pairs of neighbors within a single procedure call, the parameters governing
each separate de¯nition are enclosed within brackets.

DefineNeighbors(A,B);
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DefineNeighbors([A1,B1],...,[An,Bn]);

Here, the ¯rst and second parameters are the labels of two declared
observers. It is not possible to de¯ne a direct relation between a pair of
already related observers.

B.1.6 De¯ning Objects

The procedure DefineObjects can be invoked to associate an arbitrary
sequence of Mambo objects, such as spheres, cylinders, and blocks, with
de¯ned observers. When associating multiple objects within a single pro-
cedure call, the parameters governing each separate de¯nition are en-
closed within brackets.

DefineObjects(A,Type,properties);

DefineObjects([A1,Type1,properties1],...,

[A2,Type2,properties2]);

Here, the ¯rst and second parameters are the label of a de¯ned ob-
server and one of the object type keywords 'Sphere', 'Cylinder', or
'Block', including the apostrophes1. The speci¯cation of the object
properties is given by a sequence of optional arguments:

² point=Point { where Point is the label of a point that is related
to the reference point of the parent observer or a position vector
describing the position of the reference point of the object relative
to the parent observer. In the absence of a point speci¯cation, the
reference point of the object is assumed to coincide with that of the
parent observer;

² orient=Triad { where Triad is the label of a triad that is related
to the reference triad of the parent observer or a rotation matrix
describing the orientation of the reference triad of the object relative
to the parent observer. In the absence of an orient speci¯cation,
the reference triad of the object is assumed to coincide with that of
the parent observer;

² radius=R, length=L, xlength=XL, ylength=YL, zlength=ZL {
where R, L, XL, YL, and ZL are algebraic expressions. Of these,
the radius speci¯cation only applies to spheres and cylinders, the
length speci¯cation only applies to cylinders, and the xlength,
ylength, and zlength speci¯cations only apply to blocks. In the
absence of any of these speci¯cations, the corresponding dimensions
(when appropriate) are assumed to equal 1;

1Note the need to double the apostrophes whenever DefineObjects is part of a

Maple statement entered at the command prompt in Matlab (see Appendix A).
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² color=Color { where Color is the label white, black, red, green,
blue, yellow, magenta, or cyan, or is a Maple string of the form
\fr,g,bg", including the double quotes, where r, g, and b are al-
gebraic expressions. In the absence of a color speci¯cation, the
object color is assumed to be white.

The de¯nition of objects associated with de¯ned observers is re°ected in
the global variable GlobalObjectDefinitions.

B.1.7 Declaring Coordinates

The procedure DeclareStates can be invoked to declare an arbitrary
sequence of variables time-dependent.

DeclareStates(q1,...,qn);

This declaration is re°ected in the global variables GlobalExplicit

and GlobalImplicit, which are referenced by any Mambo toolbox com-
putation involving di®erentiation with respect to the time variable t.
This declaration does not imply that the corresponding variables will be
declared asMambo states in an associatedMambo motion description.

B.2 Extracting Information

The relative position and orientation of points, triads, and observers
within theMambo toolbox geometry may be extracted through a number
of Mambo toolbox utilities:

² FindRotation(a,b) { returns the rotation matrix between the re-
lated triads a and b;

² FindOrientation(A,B) { returns the rotation matrix between the
related reference triads of the de¯ned observers A and B;

² FindTranslation(P,Q) { returns the position vector from the point
P to the related point Q;

² FindPosition(A,B) { returns the position vector from the refer-
ence point of the de¯ned observer A to the related reference point
of the de¯ned observer B;

² FindCoordinates(A,P) { returns the coordinate representation of
the declared point P relative to the de¯ned observer A, provided
that the reference point of A is related to P.
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The Mambo toolbox utility GeometryOutput can be invoked to gen-
erate a Mambo geometry description corresponding to a connected com-
ponent of theMambo toolbox geometry based at some declared observer.

GeometryOutput(main=observer,filename=string,

states=statelist,parameters=parlist,

anims=animlist,time=timevar,

checkargs,checktree);

Here, the main observer is declared to GeometryOutput through the
main=observer argument.

The optional argument filename is used to spool the output straight
to the ¯le whose path (unless you are saving in the working directory)
and ¯lename are speci¯ed by the given string string. Furthermore, the
optional argument checkargs together with speci¯cations of anyMambo
state variables, parameters, animated variables, and time variable con-
tained in the Maple lists statelist, parlist, and/or animlist and
the label timevar aborts the creation of a Mambo geometry description
if some algebraic symbols in the geometry description have not been de-
clared. Finally, the optional argument checktree aborts the creation
of a Mambo geometry description if the reference point and/or refer-
ence triad of some observer have not been de¯ned. In the absence of
the checktree argument, unde¯ned reference points and/or reference
triads result in omitted POINT and ORIENT statements in the ge-
ometry description. Similarly, if the reference points and reference triads
of an observer have been de¯ned but are not related to the parent refer-
ence point and reference triad, respectively, the corresponding POINT

and/or ORIENT statements are empty, resulting in a syntactically in-
correct Mambo geometry description.

Changes in the relative position and orientation of points, triads, and
observers within the Mambo toolbox geometry and the associated linear
and angular momenta may be extracted through the LinearVelocity,
AngularVelocity, LinearMomentum, and AngularMomentum functions:

² LinearVelocity(A,B) { returns the velocity of the point B rela-
tive to the observer A, provided that the point B is related to the
reference point of the observer A;

² AngularVelocity(a,b) { returns the angular velocity between the
related triads a and b;

² LinearMomentum(A,B) { returns the linear momentum of a rigid
body with center of mass at the point B relative to the observer A,
provided that the point B is related to the reference point of the
observer A;



B.3 Formulating Conditions on a Geometry 493

² AngularMomentum(A,b) { returns the angular momentum of a rigid
body with reference triad b relative to the observer A, provided that
the triad b is related to the reference triad of the observer A.

B.3 Formulating Conditions on a Geometry

B.3.1 Vector Utilities

The ¯ve binary operations &++, &**, &¡¡, &oo, and &xx implement vector
addition, scalar multiplication, vector subtraction, the vector dot prod-
uct, and the vector cross product. The function VectorLength returns
the length of a vector as de¯ned by the square root of the vector dot
product of the vector with itself.

v &++ w;

v &¡¡ w;

v &oo w;

v &xx w;

k &** v;

VectorLength(v);

Here, v and w are two arbitrary vectors and k is an algebraic expres-
sion. The binary operations all have the same precedence, and parenthe-
ses should be employed where necessary to enforce a particular order of
evaluation.

The Express procedure converts an arbitrary vector v to its expres-
sion relative to an arbitrary declared triad a, provided that all the triads
in the description of v are related to a.

Express(v,a);

The Simplify procedure applies Maple's simplify command to the
coordinates of an arbitrary vector v.

Simplify(v);

B.3.2 Constraints

The vector utilities and the Mambo toolbox query utilities described in
previous sections can be invoked to formulate constraints on the Mambo
toolbox geometry. Following the methodology in the main text, all such
constraints should be converted to linear constraints in the derivatives of
the con¯guration coordinates.

The function DiffTime returns the derivative with respect to time
(assumed to be denoted by t) of its argument.
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DiffTime(expr);

DiffTime(v,a);

Here, the ¯rst form of the function call applies as long as expr is an
algebraic expression, an equality involving algebraic expressions, or a set,
list, table, or array of algebraic expressions. In the second form of the
function call, the Mambo toolbox vector v is di®erentiated with respect
to time relative to the declare triad a, provided that the triad a is related
to all the triads in the speci¯cation of v.

The Mambo toolbox utility MotionOutput exports the kinematic
and dynamic di®erential equations corresponding to the Mambo tool-
box geometry, the motion constraints, and the equations of motion into
a Mambo motion description.

MotionOutput(ode=odeset,filename=string,states=statelist,

parameters=parlist,anims=animlist,

insignals=insiglist,time=timevar,

checkargs,checksings);

Here, the kinematic and dynamic di®erential equations are declared to
MotionOutput through the ode=odeset argument, where odeset is a
Maple set of equations. The MotionOutput command will fail to gener-
ate a motion description if the number of di®erential equations is di®erent
from the number of state variables declared in theMaple list statelist.

The optional argument filename is used to spool the output straight
to the ¯le whose path (unless you are saving in the working directory)
and ¯lename are speci¯ed by the given string string. Furthermore, the
optional argument checkargs together with speci¯cations of anyMambo
state variables, parameters, animated variables, insignals and time vari-
able contained in theMaple lists statelist, parlist, animlist and/or
insiglist, and the label timevar aborts the creation of a Mambo mo-
tion description if some algebraic symbols in the motion description have
not been declared. Finally, the optional argument checksings aborts
the creation of a Mambo motion description if the di®erential equations
are singular for the initial con¯guration given by the initial values for the
state variables and values for the parameters provided in statelist and
parlist.



Appendix C

Simulation and

Visualization Projects

As indicated in the preface, this text has served as course literature for
sophomore-level, senior-level, and beginning graduate-level courses on
multibody mechanics and visualization o®ered at Virginia Polytechnic
Institute and State University in Blacksburg, Virginia, USA, and at the
Royal Institute of Technology in Stockholm, Sweden. A substantial com-
ponent of the performance assessment in these courses is based on a team
simulation and visualization project, in which the students (in groups of
two or three) are challenged to implement the theoretical knowledge im-
parted to them in the regular lectures to model, simulate, and animate
the motion of an actual mechanism.

The following is a list of suggested team projects. Additional projects
can be found in the Exercise sections in Chapters 2, 4, and 6.

1. A puppeteer performing for money in a crowded train station with
escalators.

2. A couple of trapeze artists performing advanced tricks over a group
of acrobats.

3. A six-degree-of-freedom °ight simulator at Disney World on which
a cricket has landed.

4. A four-degree-of-freedom industrial robot working at a conveyor
belt in a plant where the operators move around on unicycles.

5. A rowboat race down the Charles River in Boston.

6. An NHL hockey game with crowds doing the \wave.

7. A mosquito biting a person on the neck.

"
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8. A person demonstrating the functionality of an umbrella stroller.

9. A person rollerblading and opening an umbrella.

There is clearly no unique desirable solution to any of these animation
tasks. In all cases, the groups are challenged to make modeling decisions
as to the visual complexity of their multibody mechanism, the mathe-
matical complexity of its kinematics, and the physical complexity of any
kinematical constraints.

C.1 Project Presentation

At the conclusion of the semester, the teams present the results of their
e®orts in oral and written presentations. The evaluation of these presen-
tations is based on the following desirable high-level objectives:

² Content { reasonable modeling, correct mathematics, relevant ma-
terial, integrating quantitative and qualitative material, clear pre-
sentation;

² Form { adequate composition, clear description of basic assump-
tions, approach and results, logically organized presentation of the-
ory and method;

² Language and style { appropriate use of terminology, high level of
readability, correct grammar and spelling.

The following table describes a suggested detailed structure for the ¯nal
written report.
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Geometry

Modeling of speci¯c problem. [Use mathematical notation to sim-
plify discussion. IncludeMambo toolbox commands to further
explain the meaning of your de¯nitions.]

Choice of observers

Choice of con¯guration coordinates

Choice of parameters

Formulation of con¯guration constraints

Choice of geometry hierarchy

Mambo implementation. [IncludeMambo ¯les as appendix.]

Animated motion through frame-by-frame description of so-
lution to con¯guration constraints

Kinematics

Modeling of speci¯c problem. [Use mathematical notation to sim-
plify discussion. IncludeMambo toolbox commands to further
explain the meaning of your de¯nitions.]

Formulation of motion constraints

Choice of independent velocity coordinates

Formulation of kinematic di®erential equations

Animated motion through speci¯cation of time-dependence
of independent velocity coordinates. [IncludeMambo ¯les
as appendix.]

Dynamics

Modeling of speci¯c problem. [Use mathematical notation to sim-
plify discussion. IncludeMambo toolbox commands to further
explain the meaning of your de¯nitions.]

Physical realization of con¯guration and motion constraints

Formulation of dynamic di®erential equations for simple com-
ponent

Animated physical motion. [Include Mambo ¯les as ap-
pendix.]
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Abelian group, see group,
Abelian

a±ne space, see space, a±ne
angular momentum, see

momentum, angular
angular speed, see speed,

angular
angular velocity, see velocity,

angular

Cartesian coordinates, see

coordinates, Cartesian
center of mass, see mass, center

of
centrifugal e®ect, 460
centroid, 441
composition symbol ±, 45
con¯guration, 3

allowable, 169
constrained, 161, 262
constraint, 163, 169, 262
decomposition of, 19
non-uniqueness of

decomposition of, 20
reference, 3
uniqueness of

decomposition of, 21
con¯guration coordinates, see

coordinates,
con¯guration

conical section, 469
constraint

acceleration, 463
con¯guration, 163, 169,

262, 369, 372, 376,

378, 380
point contact, 396
regular point of, 165
singular point of, 165
tangential contact, 399

forces, 461
motion, 369, 373, 376, 378,

381
holonomic, 381, 382
integrable, 381
non-holonomic, 381
non-integrable, 381
on bodies in rolling

contact, 387
on paddle blade, 384
on skate, 386
point contact, 398
rolling without slipping,

388, 401
tangential contact, 400

torques, 461
coordinates

Cartesian, 159
con¯guration, 158, 168, 258
constrained, 28
dependent, 28
generalized, 168
independent, 27
independent velocity, 367,

370, 371, 376, 377
orientation, 26
polar, 160
position, 24
redundant, 161
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Coriolis e®ect, 460
cosine theorem, 103
couple, 456
cross product, see vectors, cross

product of
curved space, 17

deformable bodies, 28
degrees of freedom

dynamic, 368, 372, 376, 377
geometric, 27, 161, 168,

258, 261, 368
density, 439
dot product, see vectors, dot

product of
dynamic di®erential equations,

446, 448
dynamics, 464

equivalence
class, 94
relation, 94

Euler angles, 228, 345
Euler parameters, 260
Euler's equations, 448

¯rst moment of inertia, 440
¯xed, 4
°at space, 17, 94
force, 455, 460

central, 465

geometric degrees of freedom,
see degrees of freedom,
geometric

group, 48
Abelian, 49

homogeneous body, 440

identity rotation, see rotations,
trivial

identity translation, see

translations, trivial
implicit function theorem, 165,

166

independent velocity
coordinates, see

coordinates,
independent velocity

instantaneous axis of rotation,
14, 327

instantaneous direction of
rotation, see

instantaneous axis of
rotation

instantaneous direction of
translation, 13, 327

integrating factor, 383

kinematic di®erential equations,
367, 369{371, 374,
375, 377, 378

in Mambo, see Mambo,
kinematic di®erential
equations in

kinetic energy, 451
Kronecker delta, 121

linear momentum, see

momentum, linear
linear speed, see speed, linear
linear velocity, see velocity,

linear
locally °at, 17

Mambo

animated variables, 179,
271

block, 73
reference triad of, 268

BODY, 72
body block, 72
cylinder, 73

reference point of, 174
reference triad of, 268

dataset, 180, 192
.dyn ¯le, 73, 177, 179, 191,

389, 392
.geo ¯le, 71, 73, 75, 173,

179, 389
geometric primitives, 73
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geometry description, 71,
73, 75, 172, 187, 267,
389

insignals, 182, 390, 391,
395

kinematic di®erential
equations in, 389

mass, 182, 390
MODULE, 72
module block, 72
motion description, see

Mambo, .dyn ¯le, 177,
191, 389

object block, 73
ode, 182, 390, 451
ORIENT, 267

absence of, 267
parameters, 177, 271
POINT, 172

absence of, 173
rhs, 182, 390
.sds ¯le, 180, 192
sphere, 73

reference point of, 174
reference triad of, 268

state variables, 179, 180,
182, 271, 390, 451

time variable, 177, 271
Mambo toolbox

&**, 124, 493
&++, 124, 493
&¡¡, 124, 493
&oo, 124, 276, 493
&xx, 124, 276, 493
AngularMomentum, 451, 492
AngularVelocity, 349, 492
DeclareObservers, 74, 487
DeclarePoints, 183, 487
DeclareStates, 348, 491
DeclareTriads, 122, 274,

487
DefineNeighbors, 74, 187,

278, 489
DefineObjects, 190, 283,

490

DefineObservers, 185,
278, 489

DefinePoints, 183, 489
DefineTriads, 274, 489
DiffTime, 348, 493
Express, 276, 493
FindCoordinates, 186, 491
FindOrientation, 278, 491
FindPosition, 186, 491
FindRotation, 276, 491
FindTranslation, 185, 491
GeometryOutput, 75, 76,

187, 278, 492
GlobalExplicit, 348, 491
GlobalImplicit, 348, 491
GlobalObjectDefinitions,

491
GlobalObserverDeclarations,

74, 486
GlobalObserverDefinitions,

486
GlobalPointDeclarations,

183, 486
GlobalPointDefinitions,

183, 486
GlobalTriadDeclarations,

122, 274, 486
GlobalTriadDefinitions,

274, 486
LinearMomentum, 451, 492
LinearVelocity, 349, 492
MakeRotations, 229, 488
MakeTranslations, 122,

126, 488
MotionOutput, 391, 453,

494
NullVector, 123, 488
Restart, 74, 487
Simplify, 493
Undo, 188, 280, 487
vector, 122
Size, 122

VectorLength, 124, 125,
276, 493

Maple
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array, 478, 481
data structure, 478
det, 391
eigenvals, 230
eval, 122, 480, 481
genmatrix, 391
help, 476, 485
inverse, 230
linalg, 481
list, 478, 479
nops, 480
op, 480
print, 481
programming, 481

args, 482
conditional construct,

483
do-od, 483
if-¯, 483
loop construct, 483
nargs, 482
proc, 481
RETURN, 482

rand, 483
seq, 483
set, 478, 479

di®erence, 479
union, 479

simplify, 493
syntax, 475
table, 122, 478, 480

assigned, 480
unassign, 480

transpose, 230
trunc, 483
with, 481, 485

mass, 439
center of, 441

homogeneous body, 442
of composite body, 440
of homogeneous body, 440

Matlab

extended symbolic toolbox,
475

procread, 483, 485

syntax, 477
matrix

identity, 215
moment of inertia, 443
orthogonal, 213
rotation, 207
symmetric, 112

moment of inertia matrix, 443
of homogeneous sphere, 444

momentum
angular, 445

rate of change for
isolated rigid body,
455

rate of change of, 455
linear, 445

rate of change for
isolated rigid body,
455

rate of change of, 455
motion constraint, see

constraint, motion

Newton
¯rst law of motion, 445
law of gravity, 469
second law of motion, 455
third law of motion, 460

non-holonomic motion
constraint, see

constraint, motion,
non-holonomic

observers, 30
angular velocity, see

velocity, angular
auxiliary, 31, 50, 56
directly related, 57, 74
indirectly related, 57
inertial, 56, 445, 454, 460

relation between, 449
linear velocity, see velocity,

linear
main, 56
motion of, 325
neighbors, 57
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non-inertial, 459, 460
notation for, 50
reference point of, 152
reference triad of, 250
stationary, 325
tree structure of, 50
world, 56, 72

orientation, 3
reference, 3
relation to rotations, 21

orthonormal basis, see vectors,
basis, orthonormal

points
coordinate representation

of, 159
distance between, 85
graphical representation of,

83
notation for, 83
reference, 152
velocity of, 332

polar coordinates, see

coordinates, polar
position, 3

reference, 3
relation to translations, 21

position vectors, see vectors,
position

pure rotations, see rotations
pure translations, see

translations

quicksort, 481, 482

reference con¯guration, see

con¯guration,
reference

reference orientation, see

orientation, reference
reference point, 152
reference position, see position,

reference
reference triad, 250
rigid bodies, 28

constrained, 262

isolated, 445, 460
conservative motion of,

451
motion of center of mass,

450
motion of, 325
stationary, 325

rolling without slipping, see

constraint, motion,
rolling without
slipping

rotation matrices
composition of, 218
corresponding to inverse,

220
de¯nition of, 207
for identity rotation, 215

rotations
combinations of, 10, 12, 45
combinations with

translations, 18, 19
de¯nition of, 9
equivalent, 9, 18
inverse of, 47
non-trivial, 12
notation for, 44
related through, 9
relation to orientation, 21
scaling of, 44
trivial, 44

scalar multiplication, see

vectors, multiplication
by scalar

second moment of inertia, 442
separations

de¯nition of, 84
equivalent, 93
graphical representation of,

84
length of, 85
midpoint of, 87
motion along, 85
notation for, 84

space
a±ne, 89
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vector, 106
basis of, 121
dimension of, 121
inner product on, 108
linear combination in,

120
linear independence, 121
norm on, 107

speed
angular, 14, 327, 331
linear, 13, 327, 328

stationary, 4

torque, 455, 460
translations

combinations of, 7, 8, 45
combinations with

rotations, 18, 19
commutative property, 8
de¯nition of, 4
equivalent, 5
inverse of, 47
non-trivial, 12
notation for, 43
on surface of sphere, 15
related through, 5
relation to position, 21
relation to separations, 94
relation to vectors, 97
scaling of, 44
trivial, 44

triads
reference, 250

vector space, see space, vector
vectors, 97

addition of, 100
basis, 110

left-handed orthonormal,
118

orthonormal, 113, 114

right-handed
orthonormal, 117

coordinates relative to
basis, 111, 113

cross product of, 105
in right-handed

orthonormal basis, 118
derivative of, 331
direction of, 96
dot product of, 103

in orthonormal basis, 114
linearity of, 105

expressed relative to basis,
111

graphical representation of,
96

heading of, 96
length of, 96
matrix representation of,

115
multiplication by scalar, 99
notation for, 97
position, 96

notation for, 96
relation to separations,

96
relation to translations, 97
spanning a line, 109
spanning a plane, 110
spanning space, 110
triad, 203

graphical representation
of, 203

notation for, 203
zero, 98

velocity
angular, 330, 333
linear, 328, 332
of point, 332

zero vector, see vectors, zero
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