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Foreword

The material contained in this book originated in interrogations about
modern practice in time series analysis.

• Why do we use models optimized with respect to one-step ahead forecast-
ing performances for applications involving multi-step ahead forecasts?

• Why do we infer 'long-term' properties (unit-roots) of an unknown process
from statistics essentially based on short-term one-step ahead forecasting
performances of particular time series models?

• Are we able to detect turning-points of trend components earlier than with
traditional signal extraction procedures?

The link between 'signal extraction' and the first two questions above is not
immediate at first sight. Signal extraction problems are often solved by suit-
ably designed symmetric filters. Towards the boundaries (t = 1 or t = N) of a
time series a particular symmetric filter must be approximated by asymmet-
ric filters. The time series literature proposes an intuitively straightforward
solution for solving this problem:

• Stretch the observed time series by forecasts generated by a model.
• Apply the symmetric filter to the extended time series.

This approach is called 'model-based'. Obviously, the forecast-horizon grows
with the length of the symmetric filter. Model-identification and estimation
of unknown parameters are then related to the above first two questions.

One may further ask, if this approximation problem and the way it is
solved by model-based approaches are important topics for practical purposes?
Consider some 'prominent' estimation problems:

• The determination of the seasonally adjusted actual unemployment rate.
• An assessment of the 'trend' of the actual GDP movement.
• Inferences about the 'global heating' in recently observed climatologic

changes.

These problems all suggest that there is some kind of 'signal' which is over-
lapped by undesirable perturbations which mask the actual state of an inter-
esting phenomenon. Formally, actuality of the estimates translates into bound-
ary signal estimation. Signals often have a prospective component towards the
boundary t = N: the detection of a turning-point of a trend component is in-
formative about the future of the time series. So the corresponding estimation
problem is highly relevant for many applications. Furthermore, Since model-
based approaches like TRAMO/SEATS or Census X-12-ARIMA1 are widely

1 Although X-12-ARIMA is not a 'pure' model-based approach, see chapter 2,
the procedure nevertheless relies on forecasts for computing boundary estimates.
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used for 'signal extraction' one may then ask if the resulting method is effi-
cient2?

The empirical results obtained in chapter 7 and more recently in Wildi,
Schips[99]3 demonstrate that 'traditional' model-based boundary signal esti-
mates are far from being efficient. The examples demonstrate that the relative
mean-square error (between outputs of symmetric and asymmetric filters) can
be reduced substantially (more than 30% in the mean over all time series con-
sidered) when using the efficient estimation method presented in this book.
Moreover, the new method outperforms model-based approaches for all 41
time series in Wildi/Schips[99]. Optimal filter designs and properties of im-
portant statistics involved in the estimation problem are presented in chapters
3 and 4. The consistency, the efficiency and the asymptotic distribution of the
resulting filter parameter estimates are derived in chapter 5 for a wide class of
input signals (processes). An extension of this method which enables & faster
detection of turning points for 'smooth' trend components is also presented in
chapter 5. Chapter 6 presents finite sample issues and empirical examples are
to be found in chapters 7 and 8.

As shown in chapter 7 as well as in Wildi/Schips[99] the observed ineffi-
ciency of model-based approaches is partly due to wrongly inferred unit-roots.
The business survey data analyzed in Wildi/Schips[99] cannot be integrated
because the time series are bounded. However, traditional unit-root tests such
as (augmented) Dickey-Puller or Phillips-Perron are often unable to reject the
null hypothesis (integration) for such time series.
It is in fact strange that 'long-term' dynamics (unit-roots) are often inferred
from statistics based on 'short term' one-step ahead forecasting performances
of particular time series models. Experience suggests that short term forecast-
ing performances generally do not allow for sufficiently strong rejection of the
null hypothesis : 'Traditional' ADF- or PP-test-statistics may be well-suited
for short-term (one-step ahead) forecasting but they are often misleading for
problems requiring good multi-step ahead forecasting performances.
In the general context of 'signal extraction', unit-roots are important because
they are related to particular restrictions of the asymmetric filters, see chapter
5. Therefore, great attention has been devoted to 'unit-roots' in this partic-
ular context and new solutions - which 'fit' specifically the signal extraction
problem - are presented in chapter 5.

2It is known that one- and multi-step-ahead forecasting performances may be
conflicting, see chapter 1. Therefore it is surprising that few attention has been
deserved to efficiency issues in signal extraction problems.

3The authors analyze the performance of trend boundary estimates for a repre-
sentative sample of 41 business survey indicators
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Introduction

1.1 Overview

For many applications a well known problem is to 'extract' or equivalently to
estimate some predefined 'signal' or component from a time series contami-
nated by 'noise' (which is not necessarily a white noise process). Consider

Xt=Yt + vt (1.1)

where Xt is observed, Yt is the interesting signal and vt overlaps and 'con-
taminates' the signal. Let t € TL (discrete time) and assume Xi,X2, . . . ,^JV

have been observed. The problem is to 'compute' values for the unknown
YI,Y2,...,YN- The following figures illustrate some practically relevant signals
for monthly economic time series.

• In fig. 1.1, a particular time series (described in chapter 7) and a 'trend'
defined by the canonical decomposition (see section 2.3) can be seen.

• In fig.1.2, the same time series and the 'seasonally adjusted' component
(signal) defined by the canonical decomposition (see section 2.3) can be
seen.

• Finally, both signals are compared in fig.1.3.

These examples are treated in detail in chapters 7 and 8. The signals are doc-
umented in chapter 2.

A general approach for estimating Yt given Xt in 1.1 relies on stochastic
processes. The observable process Xt is then called the input process or the
input signal and Yt is called the output signal (this is because If can often
be estimated by the output of a particular filter, see section 1.2 below). It
is intuitively reasonable to allow a signal estimation method to depend on
the particular stochastic 'properties' of the input process Xt in 1.1. As an
example, assume
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Xu := Yt

cos(tu>2

where u>i ^ 0J2 and <?i and ^2 are independent random variables uniformly dis-
tributed in [—7T, TT]. Suppose the interesting signal is given by YJ = cos(ia>+^),
where 0 is uniformly distributed in the interval [—n,n}. Xu, i — 1,2 and Yt
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Fig. 1.3. Trend and seasonally adjusted series

are particular harmonic processes. The latter (Yj) can be extracted from
by eliminating A\ cos(twi+^i) and A^ cos{tu)2Jr^2)- This may be achieved by
a suitable 'filter' (see chapter 3). If the input process is Xu instead, then the
same filter could be used for extracting Yt in principle. However, it is readily
seen that the resulting estimation method would be unnecessarily complicated.
In fact, a simpler filter eliminating A\ cos(£wi +^i ) 'only' could be used. For
processes which are not deterministic (as the harmonic processes above) too
complicated devices are generally inefficient: eliminating additional compo-
nents involves a 'cost' which is quantified in chapter 5. Therefore, knowledge
of particular stochastic properties of the DGP (Data Generating Process)
of Xt is necessary for computing efficient signal estimates. If the relevant
properties of Xt are unknown, then they must be inferred from the sample
Xi,..., Xjv- Model-based approaches (MBA) are widely used for solving signal
extraction problems because they try to infer the DGP of Xt from a finite
sample Xi,..., X^. Resulting signal estimates can account for stochastic prop-
erties of the input signal Xt but the efficiency cannot be asserted in general
(see section 1.2).

A new method, called direct filter approach (DFA) is presented here for
solving the signal estimation problem. The main advantages of this approach
are efficiency and flexibility. Filters can be optimized with respect to the tra-
ditional mean square error criterion or with respect to another practically
important objective, namely the 'fast detection of turning-points'. Often, sig-
nal estimates are subject to significant time delays towards the end point
t = N of a finite sample. Therefore, 'turning-points' of the signal cannot be
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detected 'in time'. The DFA enables to constrain filters such that the time
delay becomes smaller. These issues are analyzed in chapters 3 and 5. Model-
based approaches do not allow for time delay constraints.

Unit-roots of the DGP are important properties of the input signal which
affect the performance of the estimation procedure if they are ignored, see
chapter 7. It is shown in chapter 5 that unit-roots of the DGP 'translate' into
particular constraints for the optimal asymmetric filter. In principle these
constraints allow for more general non-stationarities than 'unit-roots' of the
DGP only. A formal procedure for testing these hypotheses (constraints) is
presented in chapter 5. The advantage of such a test is that it is specifically de-
signed for the signal estimation problem whereas 'traditional' unit-root tests
(such as Dickey-Fuller or Phillips-Perron for example) are derived from one-
step ahead forecasting performances (of a model for the DGP) only. Therefore,
the power of 'traditional' tests against stationary alternatives with roots close
to the unit-circle is typically low (this situation is common for a lot of appli-
cations including many economic time series) because a 'long-term' property
(a unit-root at frequency zero) is inferred from a statistic based on 'short-
term' performances. Cochrane [18], p.914, argues "These models (ARIMA) ...
draw inferences about the long-run dynamics from a model fit to the short-
run dynamics ... However, if the long-run dynamics cannot be captured in the
model used to study the short-run, these identification procedures bias con-
clusions about long-run behavior". The new test implicitly accounts for one-
and multi-step ahead forecasting performances and it is explicitly designed
for the signal estimation problem.

For the proposed DFA, particular attention is accorded to finite sample
issues (overfitting problem, see chapter 6). 'Parsimony' in the sense of 'cau-
tiously' parameterized models (see Box and Jenkins [9]) is a relevant con-
cept. Feldstein [31], p.829, argues: "A useful model is not one that is 'true'
or 'realistic' but one that is parsimonious, plausible and informative". The
proposed direct filter approach is based on a new filter class, so called Zero-
Pole-Combination (ZPC-) filters. ZPC-filters are obtained by a parsimonious
parameterization of ARMA-filters for which each parameter (degree of free-
dom) becomes straightforwardly interpretable, see chapter 3.
Although the principle of parsimony may help in alleviating the overfitting
problem, it is not a 'panacea'. Therefore, new solutions are proposed for the
DFA in order to avoid specific overfitting problems, see chapter 6. Empirical
evidences listed in chapters 7 and 8 confirm the effectiveness of the proposed
method. Simulated and 'real-world' time series are analyzed and the perfor-
mances of the DFA and the MBA are compared both 'in' and 'out of sample'.

A signal estimation method which relies on an explicit model for the DGP
of Xt is called a MBA. Different methods have been proposed which are char-
acterized by various assumptions and/or model structures. Chapter 2 provides



1.2 A General Model-Based-Approach 7

an (necessarily limited) overview on the topic. Model-based approaches are
often referenced as 'the MBA' here and in the following chapters (despite
methodological differences of various approaches) by opposition to 'the DFA'
which does not rely on an explicit model for the DGP of Xt. A brief descrip-
tion of the MBA is proposed in the following section. It is suggested that the
optimization criterion underlying the MBA does not 'match' the signal esti-
mation problem for misspecified models (which is the rule in practice). There-
fore, model-based estimates may be inefficient. Empirical results in chapter 7
as well as in Wildi/Schips[99] confirm this statement.

1.2 A General Model-Based-Approach

For 'general' (stationary or non-stationary integrated) linear stochastic pro-
cesses, the signal estimation problem is solved by linear filters. A (linear) filter
is a sequence jk> k & 7Z ot square summable (in our context real) numbers:
SfeL-oo \~fk\2 < oo. MA-, AR- and ARMA-filters are characterized by partic-
ular finite sets of parameters generating -jk- If the sequences Yt and Xt are
related by

Yt=
fc=-oo

then Yt,Xt are called the output and the input signals of the filter jk respec-
tively. If Xt = Yt + ut where Xt, Yt and vt are linear stochastic processes, then
it has been shown that the best estimate Yt (in the mean square sense) of Yt is
the output of a particular linear filter if some 'mild' assumptions are satisfied
(see Whittle [95] for stationary Xt and Bell [4] for non-stationary integrated
Xt; results for non-linear processes are presented in Gihman and Skorohod
[39], p.273-274).

For a realization of infinite length (...,X-2,X-I,XQ,XI,X2, •••) (infinite
sample), the best extraction filter is generally symmetric (jk = 7-fc, k > 0)
and of infinite order (i.e. there does not exist a n0 such that 7fc = 0 for all
k > no ). The symmetry ensures that the phase or equivalently the time shift
of the filter vanishes, see chapter 3. The following example illustrates these
properties for a particular signal estimation problem: Xt is given by 1.1, where
vt is a white noise process and Yt is a random walk (so called Muth-model,
see for example Mills [67] p.69 ff.):

Xt=Yt + vt

Yt = y t - i + et

where et, vt are independent iid sequences. The best mean square estimate of
the signal (the random-walk) is then given by :
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ewxt_k

where 6 depends on the signal to noise ratio (the ratio of the variances of ut

and e<). The optimal filter coefficients ~o2~® a r e symmetric and decay

exponentially fast but they never vanish if 6 ^ 0.

Clearly, filters of infinite order cannot be used if the available input sample
XI,...,XN is finite. But the symmetry property leads to problems even for
niters of finite orders. Difficulties arise if t is 'close' to the boundaries t = 1
or t = N of the sample. Therefore, the filter output Yt of the symmetric filter
(which solves the so called signal extraction problem) must be estimated too,

say by Yt. The latter is called a solution of the finite sample signal estimation

problem. Model-based approaches provide solutions for both Yt and Yt. The
latter problem is solved as follows (see Stier and Wildi [87] and Wildi [98]) :

• replace unknown Xi (i < 1 or i > N) in 1.2 by fore- and/or backcasts
Xi generated from a model of the DGP (for example an ARIMA or a
RegARJMA-model, see Findley et al.[32] or EUROSTAT [30])

• apply the symmetric filter (7fc)fc€^ to the 'extended' sample X% :—
[Xtt£{l,...,N]
\ Xt else

One obtains :

fe= — oo
t-1 t-N-1

k=t-N fc=-oo fc=t

t - 1 t-N-1 N oo N

k=t j=l

N I oo

J
j=i \k=t I

-fcJ )Xo + 53 53 T*a*-fcj XJ

(1-4)
3=1

where at-kj are the coefficients of Xj, j = 1, ...,AT, in the (linear) forecasting
function of Xt-k if f - fc ^ {1,..., AT} and

v ^°° - - • i' — 1 Af

S J j - i iv , L 5 .
else
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Note that (jt-j)j=i N depends on t and that it is an asymmetric filter in
general.

If the DGP of Xt is known, then the above estimate Yt satisfies a mean
square optimality criterion (see for example Cleveland [15], Bell [3], Bell [4],
Huot and all [55] and Bobbitt and Otto [7]). The 'true model' (DGP) can be
used for

1. linearizing the sample (identify 'outliers' or 'shifts' and remove them from
the original series)

2. supplying missing values
3. denning components and corresponding symmetric signal extraction niters

for realizations of infinite length (see chapter 2)
4. supplying fore- and backcasts in order to compute signal estimates for

finite samples.

In the following, the last point i.e. the determination of an efficient signal es-
timate for finite samples is analyzed. This is an important problem for many
applications (an example is given in section 1.5) because in practice only
finitely many observations of an input process Xt are available. It is now sug-
gested that the MBA does not efficiently solve this problem if the DGP is
unknown.

If the DGP is unknown, then a 'suitable' model must first be identified. In
this case, 'misspecification' is the rule for most applications, see for example
Box [8]. Therefore, it is generally impossible to assert optimality properties
for the proposed MBA. Also, in case of misspecification the minimization of
the one-step ahead mean-square forecasting error does not necessarily 'match'
the signal estimation problem (for finite samples) because 1.3 involves one-
and multi-step-ahead forecasts. Clements and Hendry [14], p.244, argue : "as
it is not possible to prove that 1-step estimation is optimal when models are
misspecified, dynamic estimation could improve multi-period forecast accu-
racy" (dynamic estimation means that parameters of forecasting functions
are estimated separately for each forecasting step, by minimizing directly the
corresponding forecasting error) and p.282 "Indeed the 'best' model on 1-step
forecasts need not dominate at longer horizons". However, dynamic estimation
is cumbersome and it is not a 'panacea', as shown by the same authors. With
regards to the model selection procedure, Clements and Hendry p.281. claim
"we find that the usual criteria based on t- and F-tests are not applicable when
models are to be chosen on the basis of their ability to multi-step forecast".
As a result, inferences based on 'traditional' tests do not straightforwardly
extend to estimation problems involving multi-step ahead forecasts (such as
the signal estimation problem). But even if the right model has been selected
(for example in an artificial simulation context), Clements and Hendry are
warning against careless use p.292 "... a poor forecast could result from the
estimated DGP relative to the false autoregressive model" (in their study, the
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'false' model is a pure random-walk model whereas the true DGP is a station-
ary process with an AR-root close to one). The authors show that the relative
performances of 'true' and 'false' models generally depend on the chosen fore-
cast horizon.
Consequently, the model-based optimization procedure does not 'match' the sig-
nal estimation problem for finite samples if the DGP is unknown because one-
step and multi-step ahead forecasting performances are generally conflicting

in the presence of misspecification. In fact E[(Yt —Yt)
2] should be minimized

instead of the mean square error of the residuum in the model equation for Xt.
More generally, optimizing with respect to 'short term'performances (one-step
ahead forecasts) may be misleading when estimating 'long term' components
(like a trend for example).

The approximation of Yt by Yt can be stated in terms of a filter approxi-
mation problem. For that purpose, a suitable 'distance' measure is needed.
The DFA bases on the minimization of such a measure. It is shown in chap-
ter 5 that the solution of the corresponding optimization criterion minimizes

E[(Yt — Yt)2] up to an error term which is smallest among a general class of
estimators. Also, the asymptotic distribution of the estimated filter param-
eters can be derived, see chapter 5. Therefore, inferences for the DFA are
not based on one-step ahead performances only (as for the MBA) but implic-
itly account for one- and multi-step ahead performances simultaneously. This
is particularly important when testing for unit-roots for example, see chap-
ters 5 and 7, since unit-roots determine the 'long-term' dynamics of a process.

Before introducing the DFA, a well known identification problem is stated
in the following section.

1.3 An Identification Problem

Let

Xt = Tt + Ct + St+It (1.6)

Then there are 4N unknowns or unobservable variables for N equations only.
Without additional (strong) assumptions the components on the right hand
side are unidentified. To simplify, suppose one is interested in estimating the
trend Tt given Xi, ...,XN. If it is assumed that the trend evolves according to
a predefined deterministic time pattern (for example a polynomial in t) then
'ad hoc' filters can be used (for example a Spencer filter, see Brockwell and
Davis [10] and Kendall and Stuart [57] or a Henderson filter, see Gray and
Thomson [41]). However, components such as the trend are often assumed
to be stochastic. In this case various identifying assumptions exist like for
example:
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• impose perfect dependence of the components so that knowledge of a par-
ticular one determines the others (see Beveridge and Nelson [6] and section
2.2 below);

• impose independence of the components and regularity or smoothness
of trend and seasonal components (see the canonical decomposition in
Hillmer and Tiao [52], Burman [11] and section 2.3 below).

• specify the individual component-models a priori (see the structural mod-
els approach in Grether and al. [70], Harvey [47] and section 2.4 below);

The above methods rely on explicit components (see section 2): the com-
ponents are then estimated by the output of a particular 'extraction' filter.
Alternatively, components could be denned implicitly by the output of a filter
satisfying a particular criterion. As an example, the output Tt of a Hodrick-
Prescott filter minimizes

JT&t - Tt)
2 + A £ ((Tt+i - Tt) - (Tt - IU)) 2 (1.7)

t=l t=2

where A is given a priori. Larger A lead to increased 'smoothness' of the fil-
ter output, see Hodrick and Prescott [54]. The first term penalizes deviations
of Tt from the original time series and the second one penalizes 'roughness'
(as denned by the mean of the squared second order differences). A similar
approach underlies the Henderson filter, see Henderson [51] and section 2.5
below. Many of these methods were introduced by Whittaker [93] and [94]. At
first sight, the identification problem seems to be 'circumvented' by implicit
component definitions. However, criteria such as 1.7 are often difficult to in-
terpret. For the Henderson filter, Wallis [92] p.164 argues: "... nor any later
author has asked whether the symmetric Henderson filter produces a good
estimate of the trend, however: for this purpose the trend is simply denned as
the Henderson output". Moreover, the identification problem is often shifted
towards the more or less arbitrary choice of a particular parameter of the filter
(for example A in 1.7).
The following fig.1.4 plots the Hodrick-Prescott 'growth component' Tt (solid
line, A := 1600 is a 'default' setting for many applications) and the canoni-
cal trend from TRAMO/SEATS (dotted line, see section 2.3) for a particular
time series (UK-car-sales series, see chapter 7).

To summarize, the signal identification problem can be stated as follows

• different particular signal definitions generally lead to different compo-
nents, see for example figs. 1.4 and 2.11;

• a priori knowledge is always necessary for a unique identification of the
components in 1.6, due to the 'large' number of unobservable variables
(which define the so called 'structural form' of the process Xt). There-
fore, a 'universal' definition of unobservable components of a time series
is impossible. At last, implicit subjective convictions based on individual
experience seem to motivate particular definitions.
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Bell [5] p. 176 argues that "in seasonal adjustment the components are really
artificial constructs presumed useful to estimate; there is no objective 'truth'".
In agreement with this comment, neither a new component definition nor a
corresponding symmetric extraction filter are proposed here. Instead, the sig-
nal estimation problem for finite samples (Yt) is stressed: given t S {1,..., N}
and Yt the output of a symmetric signal extraction (or 'smoothing') filter of

possibly infinite order, find Yt which approximates Yt given Xi, ...,Xjv-

In the next section, the DFA is briefly introduced. This is a new signal
estimation method for finite samples. The presentation is informal. 'Technical'
issues are postponed to following chapters.

1.4 The Direct Filter Approach

The following section relies on Wildi [98]. Suppose (the output of) some sym-
metric filter with transfer function r(cj), —IT <OJ<TT must be approximated
by (the output of) an asymmetric filter with transfer function r(u>). As seen in
the preceding section, the asymmetry results from the 'truncation' of realiza-
tions of infinite length. For notational convenience one 'hat' of the estimates

Yt and Yt in section 1.2 is eliminated. Therefore, Yt becomes Yt (the output

of the symmetric filter) and Yt becomes Yt (the output of the asymmetric
filter). Assume QN := {wk\wk = k2n/N,\k\ = 0,...,[N/2]} where [N/2] is
the greatest integer smaller or equal to N/2 and N is the sample size. As-
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sume for simplicity of exposition that Xt is stationary (generalizations for
non-stationary integrated processes are provided in chapter 5) and let

N

(1.8)
" 2TTN

denote the periodogram of the input process computed for u)k £ £2N, see
chapter 4. Then, under suitable regularity assumptions (see chapter 5) the
solution /Q(-) of

2

min— Yl \r(uk)-r(uJk)\2lNx(uk) (1.9)
r k=-[N/2]

generates an output Yto which minimizes E[(Yt-Yt)
2] up to an asymptotically

negligible error term which is smallest possible (for a given class of estima-
tors, see below). This result was first stated in Wildi [96]. The solution of 1.9
is attained within a general class of filters described in chapter 3. An intu-
itive explanation of the preceding statement can be given by considering the
following approximation:

9 [N/2] [N/2]

£ \r{)r()\2i()£ \r{wk)r(wk)\iNX(u>k)*
k=-[N/2] fc=-[JV/2]

where AYt :=Yt — Yt. The approximation 1.10 corresponds to a finite sample
convolution and 1.11 corresponds to a finite sample spectral decomposition of
the mean square filter approximation error (see chapter 5). Under suitable
regularity assumptions, 1.11 is a best linear unbiased estimate (BLUE) of the
theoretical mean square error E[(Yt — ̂ t)2]j see chapter 5. Efficiency of the
DFA then depends on the error term in the approximation 1.10: it is shown
that the expression on the left hand side is a superconsistent estimate of 1.11,
see chapter 5. Therefore, the DFA 'inherits' the efficiency property (BLUE)
of 1.11, i.e. Yto minimizes E[(Yt — Yt)2} up to an error term which is smallest
possible among the class of linear estimators (of E[(Yt — Yt)2]). Note that in
general 1* and therefore 1.11 and E[(Yt — Yt)2} are unknown for finite samples
whereas the left hand side of 1.10 can be computed.
In order to derive the consistency and the efficiency as well as the distri-
bution of the estimated filter parameters for a large class of input signals
(including non-stationary integrated processes) technical results involving the
periodogram 1.8 are needed. These are reported in chapter 4 and in the ap-
pendix. It is shown in chapter 5 that 1.9 can be generalized so that the time
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delay of the resulting filter is 'smaller'. It is then possible to detect 'turning-
points' of a particular component earlier, see chapter 8.

The proposed signal estimation method for finite samples is called a direct
filter approach because the coefficients 7^ of the resulting asymmetric filter
are computed 'directly' from the minimization of (an efficient estimate of) the
mean square error E[(Yt—Yt)

2}. In comparison, the filter coefficients of model-
based approaches are derived indirectly from the equivalence between 1.3 and
1.4. They rely on the minimization of the mean square one-step ahead fore-
casting error of the model (whereas the signal estimation problem requires
good one- and multi-step ahead forecasting performances). Moreover, time
constraints (for the resulting asymmetric filter) cannot be 'build' into 1.3 for
the MBA so that turning-points of trend components cannot be detected 'ear-
lier'.

In the following section, a typical application for an efficient finite sam-
ple signal estimation method is provided. Also, the content of the following
chapters is briefly summarized.

1.5 Summary

For economic time series, interesting signals are often seasonally adjusted com-
ponents or trends, see chapter 2 (recall that component definitions depend on
strong a priori assumptions, see section 1.3). An efficient and general signal es-
timation method is needed for these important applications because economic
time series are characterized by randomness (the DGP is not deterministic)
and complex dynamics. Moreover, 'typical' users are often interested in signal
estimates for time points near the upper boundary t = N1. Consequently, fil-
ters are heavily asymmetric so that efficient estimation methods are required.

A new method, the DFA, is presented here. The book is organized as
follows:

• In chapter 2, model-based approaches are presented. The aim is not to
provide an exhaustive list of existent methods but to describe established
procedures which are implemented in 'widely used' software packages. The
objective is to compare the DFA to established MBA.

• The main concepts needed for the description of filters in the frequency do-
main (such as transfer functions, amplitude functions or phase functions)
are proposed in chapter 3. A new filter class (ZPC-filters) is derived whose
characteristics 'match' the signal estimation problem.

• For the DFA, an eminent role is awarded to the periodogram (or to statis-
tics directly related to the periodogram). It 'collects' and transforms the

'For assessing the actual state of the 'business cycle' for example
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information of the sample XI,...,XN into a form suitable for the signal
estimation problem. Therefore, properties of the periodogram and tech-
nical details related to the DFA are analyzed in chapter 4. In particular,
the statistic is analyzed for integrated processes. Stochastic properties of
squared periodogram ordinates are analyzed in the appendix. Both kind
of results are omitted in the 'traditional' time series literature and are
needed here for proving theoretical results in chapter 5. An explorative
instrument for assessing possible 'unit-root misspecification' of the filter
design for the DFA is proposed also.
The main theoretical results for the DFA are reported in chapter 5: the con-
sistency, the efficiency, the generalization to non-stationary integrated in-
put processes, the generalized conditional optimization (resulting in asym-
metric filters with smaller time delays) and the asymptotic distribution of
the estimated filter parameters (which enables hypothesis testing). In par-
ticular, a generalized unit-root test is proposed which is designed for the
signal estimation problem.
In order to prove the results in chapter 5, regularity assumptions are
needed. One of these assumptions is directly related to finite sample is-
sues (overfitting problem). Therefore, the overfitting problem is analyzed
in chapter 6. Overparameterization and overfitting are distinguished and
new procedures are proposed for 'tackling' their various aspects. An es-
timation of the order of the asymmetric filter is presented (which avoids
more specifically overparameterization), founding on the asymptotic dis-
tribution of the parameter estimates. The proposed method does not rely
on 'traditional' information criteria, because the DGP of Xt is not of im-
mediate concern. However, it is shown in the appendix that 'traditional'
information criteria (like AIC for example) may be considered as special
cases of the proposed method. Also, new procedures ensuring regularity of
the DFA solution are proposed which solve specific overfitting problems.
The key idea behind these new methods is to modify the original op-
timization criterion such that overfitting becomes 'measurable'. It is felt
that these ideas may be useful also when modelling the DGP for the MBA.
Empirical results which are based on the simulation of artificial processes
(1(2), 1(1) and stationary processes) and on a 'real-world' time series are
presented in chapter 7. The DFA is compared with the MBA with respect
to mean square performances. It is shown that the DFA performs as well
as maximum likelihood estimates for artificial times series. If the DGP
is unknown, as is the case for the 'real-world' time series, the DFA out-
performs two established MBA, namely TRAMO/SEATS and CENSUS
X-12-ARIMA (see chapter 2 for a definition). The increased performance
is achieved with respect to various signal definitions (two different trend
signals and a particular seasonal adjustment) both 'in' and 'out of sample'.
It is also suggested that statistics relying on the one-step ahead forecasts,
like 'traditional' unit-root tests (augmented Dickey-Fuller and Phillips-
Perron tests) or diagnostic tests (like for example Ljung-Box tests) may
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be misleading for the signal estimation problem if the true DGP is un-
known. Instead, specific instruments derived in chapters 4, 5 and 6 are
used for determining the optimal filter design for the DFA. These instru-
ments, which are based on estimated filter errors (rather than one-step
ahead forecasting errors of the model), indicate smaller integration orders
for the analyzed time series (1(1)- instead of I(2)-processes as 'proposed'
by the majority of the unit-root tests). A possible explanation for these
differences may be seen in the fact that filter errors implicitly account
for one- and multi-step ahead forecasts simultaneously. A further analy-
sis of the revision errors (filter approximation errors) suggests that the
I(2)-hypothesis should be rejected indeed.

• Finally, an empirical comparison of the DFA and the MBA with respect
to their ability of detecting 'turning-points' (of two different trend compo-
nents) is conducted in chapter 8. The MBA is compared with the 'original'
DFA and with the result of a generalized constrained optimization (whose
filter solution has a smaller time delay). As in the preceding chapter, the
DFA generally outperforms the MBA with respect to the proposed crite-
rion.

In the following chapter 2, well established model-based approaches are pre-
sented. Two of them are used as 'benchmarks' in chapters 7 and 8.



Model-Based Approaches

2.1 Introduction

Model-based approaches attempt to identify the DGP of the input process
and to estimate its parameters. They provide

1. Definitions of the theoretical components Ytj (identification), where j =
l,...,n and n is the number of components.

2. Estimates Ytj of the components for realizations of infinite length.

3. Estimates Ytj of the components for finite samples.

The general identification problem analyzed in section 1.3 led us to exam-
ine the last estimation problem only. Therefore, we here use the terminology
'model-based approach' whenever a method relies on back- or forecasts gen-
erated by a model for approximating Ytj by Ytj. From this perspective, the
well-known X-11-ARIMA and X-12-ARIMA procedures can be considered as
'model-based' although the definitions of the signals at the first stage are 'im-
plicit' (not model-based), see for example Dagum [22], Findley et al. [32] and
section 2.5 below.

Most of the approaches to be presented here are based on the following
two decompositions of Xt

Xt=Tt + Ct + St+It (2.1)

Xt = TtCtSJt (2.2)

where Tt, Ct, St and It are the 'trend', the 'cyclical', the 'seasonal' and the
'irregular' components respectively (see Nerlove, Grether and Carvalho [70]
for an interpretation of these components). The number of four components is
not to be seen as a limitation. More (or less) components may be considered
too. The multiplicative decomposition (2.2) can be justified by the observation
that seasonal or irregular variations often grow with the 'level' Tt of a series.
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Methods based on the multiplicative decomposition can be defined explicitly
(see section 2.5) or they can be derived from the additive representation (2.1)
by using a preliminary log-transform of Xt. Besides the additive and the mul-
tiplicative decompositions, some methods allow for additional representations
of Xt, see for example section 2.5.

Additive or multiplicative component models are defined by supplying spe-
cific stochastic assumptions. Model-based approaches generally differ with re-
spect to these assumptions. For the MBA in the following section, components
are assumed to be dependent.

2.2 The Beveridge-Nelson Decomposition

The Beveridge-Nelson decomposition is a so called 'ARIMA'-model-based-
approach. Let

Xt=Tt+Ct

where it is assumed that

Xt=Xt-1+/ji + 5(B)et (2.3)

where S(B) := ££Lo &Bk = T ^ T 0 " * . is a stable ARMA operator (a0 =

Po = 1), see Beveridge and Nelson [6]. Consider a forecast Xt+k\Xt,Xt-i, •••
of Xt+k for k 'large':

Xt+k =

~ kn + Xt + I f^tj \et +

where Yl'jLiZk ^ X)^li Iffcl < °° because of the ARMA-structure (which
induces an exponential decay of the coefficients). The slope of the forecast is
given by fi and its 'level' is defined by Tt which is a stochastic process. In fact

(2.4)

so that Tt is a random walk with drift /J,. Beveridge and Nelson call Tt the
permanent component: "the value the original series would have if it were on
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the long-run path (as defined by the long run forecast) in the current time
period. The permanent component is then the long-run forecast of the series
adjusted for its mean rate of change...", see [6], p.156.

Remarks

• The permanent component can be interpreted as a 'trend'. Prom (2.4) the
successive trend increments increase by /i + (X f̂cLo€k) et- If EfcLo £fc| > 1
then the trend is more 'erratic' than the original series. Figure 2.1 il-
lustrates the latter point : the solid line corresponds to a seasonally ad-
justed series (UK-car-sales series, see chapter 7) whereas the dotted line
corresponds to the Beveridge-Nelson 'trend'. The permanent component
Tt is estimated using the software-package 'RATS' (see below). AR- and
MA-model orders were set to p = 0 and q = 1 so that Xt — Xt-i is
a MA(1) process. The estimated positive lag coefficient 6 then implies
Yl'jLo^j = 1 + # > 1 in (2-4). Note that this phenomenon ('erratic' trend)
has lead to criticism, see for example Metz [66] p.290. In fact, for many
applications 'smooth' components are of interest (because it is felt that
'short term' variations should be 'smoothed out').

• As shown in equation 10 in Beveridge and Nelson [6] the 'cyclical' com-
ponent Ct := Xt — Tt is stationary and its innovation process is given
by et- Therefore, trend and cyclical components are dependent since they
share the same innovation et : the 'shocks' which generate the business
cycle are the same as those which generate the growth process. Beveridge
and Nelson interpret Ct as "a stationary process which represents the fore-
castable momentum present at each time period but which is expected to
be dissipated as the series tends to its permanent level", see [6], p. 158.

• Finite sample signal extraction problems do not exist here because Tt can
be computed without knowledge of 'future' observations XN+I,XN+2, ...
as can be seen from (2.4).

An algorithm for computing the Beveridge-Nelson-decomposition has been
proposed in Newbold [71]. This algorithm has been implemented in RATS.
The corresponding procedure is called 'bndecomp.src'. The text-file can be
downloaded from www.estima.com. The time series in figure 2.1 has been
computed accordingly. Note that (2.3) does not allow for a seasonal compo-
nent. Therefore, the input series has been previously seasonally adjusted. The
corresponding seasonal adjustment procedure is presented in the following
section.

2.3 The Canonical Decomposition

The following model-based approach is based on ARIMA-models too. How-
ever, the identifying assumptions for the components are 'at the opposite' of
those in the preceding section (recall section 1.3). Indeed, it is assumed that Tt,
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1985 1987 1989 1991 1993 1!

Pig. 2.1. UK-car sales (solid) and Permanent Component (dotted)

St and It are independent processes and that Tt and St are 'smooth'. Hillmer
and Tiao [53] argue "To perform seasonal adjustment of the data, an arbitrary
choice must be made. Considering that the seasonal and trend components
should be slowly evolving, it seems reasonable to extract as much white noise
as possible from the seasonal and trend components... Thus we seek to maxi-
mize the innovation variance of the noise component". The "slowly evolving"
(smooth) trend and seasonal components or, more precisely, the maximization
of the variance of the noise component characterizes the canonical decompo-
sition.

Once an ARIMA-model for the DGP of Xt has been selected and (param-
eters) estimated, models for the individual DGP's of the components must be
denned such that

• the resulting model is admissible i.e. the components sum up to Xt and
are independent and

• the components may be interpreted as 'trend', 'seasonal' or 'irregular'.

Together with the above 'smoothness' property (see Box, Hillmer and Tiao
[37] and Pierce [21]) these assumptions uniquely define the components. A
good 'initiation' to the method is given in Maravall and Pierce [65] who con-
sider a very simple ARIMA-process generating trend, seasonal and irregular
variations. This is described in the following section.

2.3.1 An Illustrative Example

Let
(2.5)
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which may be suitable for modelling semiannual data for example, see Mar-
avail and Pierce [65]. The latter authors call the above difference equation a
"prototypical seasonal adjustment model". Consider the following (fractial)
decomposition of the 'z-transform' of the above model

where the denominators 1 — z and 1 + z determine the trend (unit-root at fre-
quency 0) and the seasonal (unit-root at frequency n) components respectively
and <TT,°'S}a'i a r e the standard deviations of the corresponding component
innovations. Maravall and Pierce [65] p.362 argue "in order to avoid model
multiplicity, we assume |/3| < 1, |-yj < 1". One can show by straightforward
calculations that for orthogonal (independent) components

2

4(1-/3)2
2

^ = 4(l + 7 ) 2

4(1-/3)2 ' 4(1+ 7 ) 2

see equations 3.6 and 3.7 in Maravall/Pierce [65]. Thus, in order that a] > 0
one must have

-/3(l + 7 ) 2 + 7 ( l - / ? ) 2 > 0 (2.6)

It is easily seen that this condition does not uniquely identify the parameters.
The inequality (2.6) determines the set of admissible solutions. According to
the above definition, the canonical decomposition determines the unique one
for which the variance of the irregular component is maximized or, equiv-
alently, for which the variances of the trend innovations and the seasonal
innovations are minimized, resulting in /? = —1,7 = 1 (recall that |/3| < 1,
l7l < 1).
Definition 2.1 (Components of the Canonical Decomposition). Under
the above assumptions (additive orthogonal model, a\ —> maxj the components
for model (2.5) are defined by

It := 4

Orthogonality here means that ef, ef+i, e't+k are pairwise orthogonal (indepen-
dent) for any t,i,k. It is easily seen that the canonical condition determines
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uniquely the parameters (3,7 and thus the components. Inserting in (2.1) leads

^ l + B T l - B
et

X-BH^1 + BH

2
The pseudo spectral density of Tt is hr(u>) = -^-

1 + exp(—IL
For w ^ 0

— exp(—iu>)\2

it is a decreasing function which vanishes in w = n ('smoothness'). There-
fore, the canonical decomposition 'partitions' the noise in such a way that the
trend becomes as smooth as possible. The following comment can be found
in EUROSTAT [30] "Is this assumption (erf ->• max) reasonable? We believe
it is. Even if this assumption is arbitrary, it seems reasonable, since seasonal
component and trend are as stable as possible, meeting the economic require-
ments ".

After the components have been defined, they must be estimated. For
realizations of infinite length, estimation is traditionally achieved by Wiener-
Kolmogorov filtering (which has been generalized to non-stationary integrated
processes in Pierce [74] and Bell [4]). The procedure is illustrated for the trend.
The estimate ft of Tt given ...,X-2,X-1,X0,X1,X2,... is

where \PX(B),'&T(B) are the transfer functions of Xt and Tt, B and F are the
backward and forward operators and a\ and ax are the variances of the inno-
vations of the trend and of Xt respectively. This procedure is intuitively very
appealing. Indeed, the inverted operator \Px(B) (denominator) transforms Xt

into ej. The operator in the numerator then transforms a suitable 'portion'
2

of the innovation et (of Xt), namely -y-, into the estimated trend Tt. Al-ax
though optimal (in a mean square sense) this procedure has two undesirable
consequences.

• The same innovation process et 'generates' all estimated components.
Therefore, the estimated components must be dependent.

• The (pseudo) spectra of the estimated components are 'distorted'. The
filter in (2.7) produces 'dips'. The pseudo spectral density of Tt vanishes
at seasonal frequencies (whereas the pseudo spectral density of T< does
not vanish there), see Burman [11] and EUROSTAT [30], p.45. This is
true for the estimated seasonally adjusted and irregular components too.
So for example, the spectral density of the estimated irregular component
is not constant (as it should be for a white noise component). The reason
for these undesirable properties of the estimated components is again the
dependence of the estimates: ft, St and It are based on (the same) et

whereas Tt, St and It are based on independent processes ef, ef and t\.
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Therefore, the filter 'erroneously' removes spectral power belonging to (the
unobservable and indistinguishable) ef, ef and e% respectively.

The above problem is 'well known' in the econometric literature. The 'struc-
tural form' on the right hand side of (2.1) cannot be recovered from the
'reduced form' on the left hand side (econometric constraints enabling a re-
covery of the corresponding signals are not given).

For model (2.5) the filter equation (2.7) becomes

2

f ^ (2.8)

For finite samples problems exist near the boundaries t = 1,2 and t = N—1,N
because X_i,Xo and XM+I,XM+2 in (2-8) are not observed. Consider the
problem for general processes Xt. If the DGP (of Xt) is known, then, as argued
in section 1.2, optimal estimates of a particular component, say estimates Ti
of Tt, are obtained by replacing Xt, for t ̂  {1,.. . , N} by back- and forecasts:

0 N oo

ft:= ]T 7t-;^- + X > - ; * i + £ i*-i*i (2'9)
j= — oo j = l j=N+l

where Xj is the optimal fore- or backcast of Xj. In particular, if t = N then

0 N oo

j=—oo j=l j=N+l

N oo

~5>*-^-+ E iN-jXj (2.10)
j=l j=N+l

The approximation (2.10) is valid for 'large' iV because the filter coefficients
7j (induced by ARMA-models) converge exponentially fast to 0. Therefore,
backcasts can often be neglected when estimating a signal towards the end
point t = N.

For finite samples, a further consequence of the canonical decomposition
(chosen as an identifying device) is commented in Maravall and Pierce [65],
p.375: "the revision variances are maximized at the canonical decomposition
values ... The occurrence of larger revisions may indicate a price paid for
choosing the canonical decomposition (i.e. a trade-off between size of the re-
vision and cleanness of signal)". The term 'revision variances' corresponds to
E[(f - ft)

2} (or more generally to E[(Y - Yt)
2], where Yt is the output of

the symmetric signal extraction filter and Yt is the output of the asymmetric
finite sample filter, see section 2.3.4).
It is true that the revision error variances for the trend and for the season are
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maximized for the canonical decomposition. Therefore, the inverse is true for
the seasonally adjusted component: its revision error is minimized. In fact,
by definition, the 'canonical season' has less power than any other admissible
seasonal component. Thus, the 'canonical' seasonal adjustment filter removes
a minimal amount of spectral power so that the resulting revision errors are
indeed minimized. Combining this property with the fact that statistical agen-
cies aim at 'stable' estimates (i.e. none or 'small' revisions or updates of past
estimates) may explain why model-based procedures relying on the canoni-
cal decomposition (such as TRAMO/SEATS for example) are called 'seasonal
adjustment procedures' instead of 'trend extraction-' or 'signal extraction pro-
cedures' for example. It should be stressed however that the smaller revision
errors for the seasonally adjusted time series (of the canonical decomposition)
are not due to improved statistical performances but to an arbitrary definition
of the signal. As a result, the seasonally adjusted signal corresponding to the
canonical decomposition is generally 'rough' which is not necessarily an ad-
vantage (when assessing the presence of turning-points for example).

From a methodological point of view the listed 'deficiencies' of the pro-
posed component estimates such as

• large revision errors (except for the seasonally adjusted signal),
• dependent estimates (whereas 'true' components are independent)
• and 'distorted' pseudo spectral densities

are unsatisfactory. However, the underlying problems (causing these deficien-
cies) cannot be solved more efficiently by other statistical methods. If the
proposed model and its assumptions are felt 'reasonable' and if the DGP is
known, then the proposed estimation method is efficient for realizations of
infinite length as well as for finite samples . If the DGP (of Xt) is unknown,
then 'signals' are generally misspecified and corresponding estimates are inef-
ficient, recall section 1.2.

In the next section a practically more relevant process is analyzed. The
corresponding 'airline'-model is often selected by TRAMO or CENSUS-X12-
ARIMA for modelling particular time series.

2.3.2 The Airline-Model

The so called 'airline'-model

(1 - B){\ - B12)Xt = (1 - OiB)(l - 612B
12)et (2.11)

(see Box and Jenkins [9]) is often used for modelling monthly time series.
A report of EUROSTAT [30], p. 19 states that "as extended evidences have
shown, the airline model can be used very often to describe a great number
of series". The model depends on three parameters only which are easily
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interpretable : 6\ and #12 measure the 'stability' of the trend and of the
seasonal components and of measures the variance of the innovation of Xt.
Despite its advantages, the airline model is to be criticized:

• Season and trend are not properly separated. The parameter #12 'acts'
simultaneously on the trend and on the season (see also section 2.4 for a
method which 'solves' this problem).

• Xt is an I(2)-process with a double unit-root at frequency zero and sim-
ple unit-roots at the frequencies kir/6, k = 1,...,6. Differencing a time
series twice often leads to non-invertible moving-average terms. Maravall
[32], p.156 argues that "moderate overdifferencing causes, in practice, lit-
tle damage". However, it is not clear what the terms 'moderate' and 'little
damage' mean. It is well known that non-invertibility can lead to forecast-
ing problems (because a convergent AR-representation does not exist).
More generally, it is shown in chapter 5 that imposing too large integra-
tion orders results in asymmetric filters satisfying constraints which are
unnecessarily severe and which impair the fit (i.e. which induce larger re-
vision errors). Empirical evidences based on simulation results are reported
in chapter 7.

• Seasonal unit-roots are often difficult to interpret because seasons are al-
lowed to 'permute' for such a model. If for example it is known that summer
levels always exceed winter levels, then seasonal unit roots are misspecified,
see also the concluding remarks in section 2.3.5.

• The unique parameter 612 cannot account for different seasonal patterns
(for example a large unstable fundamental TT/6 and smaller stable har-
monics kn/6, k — 2,...,6). However, such patterns can be observed for
time series for which the airline-model 'feigns' reasonably good fits, see for
example chapter 7.

Nevertheless, 'airline-models' are often selected by software packages like
TRAMO or CENSUS-X-12-ARIMA (in particular for monthly economic time
series). They are often 'preferred' by information criteria (like AIC) and they
often 'pass' diagnostic tests (like Ljung-Box for example). In the following, a
slightly more general process is analyzed. Canonical components and extrac-
tion filters are derived for

(1 - B){\ - Bs)Xt = (1 - OXB){1 - 9sB
s)et

which admits a 'periodicity' of arbitrary length s. In the remaining of the
section, canonical components and rules for computing the extraction filters
for the airline model are derived.

Despite its simplicity, the airline-model leads to algebraically cumbersome
derivations. Therefore, results already obtained in the literature are exten-
sively used in the following. The canonical components are used (among other
possible signal definitions) for the examples in the last two chapters so that
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a brief overview is given here. Readers which are not interested in these par-
ticular results may skip the remaining of the section which is not needed for
understanding the DFA or for interpreting the empirical results in the last
two chapters.

It is assumed that a2 = 1 mainly for notational simplicity. One can then
verify by partial fractions that

- 6aB')(l - 6XF){1 - 6SF°) =

- B){\ - B')(l - F)(l - F

(1-B)2(1-F)2 U(B)U(F)

where

-9SY' 12 4 ( 1 - ^ )

] (2.13)

and

(1 - Bf{\ - F)2QS(B) := (1 - 0S)2(1 - ^ )

- F) - (^=i(l - 6xf + 1 ^ ! ) (2.14)

where U(B) := Y,k=lBk s 0 t h a t l ~ B" = i1 ~ B)U{B). These equations are
for example derived in Hillmer and Tiao [53] p.331 (note that the coefficient
(1 - 0S)2 erroneously stands on the left hand side of (2.14) in the cited litera-
ture). The first term in (2.12) can be interpreted as trend (the pseudo spectral
density exhibits an infinite peak at frequency 0), the second one is a seasonal
component (infinite spectral peaks at seasonal frequencies) and the last one
corresponds to the irregular component. The above authors then show that
the condition

9S > 0 (2.15)

ensures admissibility of the model (i.e. a decomposition into additive orthog-
onal components). More precisely, Hillmer and Tiao [53] p.331 define

Q*s(B) := Qs(B) + U(B)U(F) (c - ^ ( 1 * l ) ) (2.16)

Q*T(B) := QT(B) - C(l - B)2(l - F)2 (2.17)
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where C := — - , assuming that the constant -1 in QT(—1) replaces back-
16

and forwardshift operators B and F = B in the expression (2.13) for QT-
A simple algebraic manipulation shows that (2.12) becomes

QUB) Q:(B) . . ( i + fli)2 , 2 1 8 ,
(1-£) 2 (1-F) 2 U(B)U(F) s 4 y '

Therefore, if 6S > 0, then the last (constant) term in the above expression cor-
responds to the (constant) spectral density of the irregular component (which
must be positive) whereas the first two terms correspond to the (pseudo) spec-
tral densities of the trend and the seasonal components respectively (in order
to obtain the pseudo spectral densities, B and F must be replaced by exp(—iw)
and exp(zw) and the terms must be suitably normalized). Prom a practical
point of view, airline-models are interesting because admissibility - i.e. the ex-
istence of an orthogonal additive component decomposition - is easily verified.

The expression (2.18) is an admissible (but not necessarily the canonical)
decomposition. In order to obtain the canonical decomposition, the variance
of the irregular component must be maximized. In this case, spectral power
could not be 'transferred' anymore from the trend or the seasonal components
to the irregular component in (2.18). Note that any transferred spectral mass
(of trend or seasonal components) must correspond to white noise i.e. it should
be a constant. It is readily seen that (2.17) and the definition of C imply that
the pseudo spectral density of the trend (2.17) vanishes at TT. Therefore, a
positive constant cannot be removed from the pseudo spectral density of the
trend (2.17). Since the canonical decomposition is unique, the trend (2.17)
must already be the canonical trend.
For the seasonal component, the expression Q*s(exp(-iui)), where exp(-Mj)
replaces the operator B and exp(iw) replaces the operator F in (2.16), does
generally not vanish as a function of u>. This can be seen as follows. If 6S is
sufficiently small then

16 ' 16s2 [ W-Os)2 12 4(1 -6>i)2

(1 _ ( _ ! ) ) ( ! _ (_ ! ) )

= 0(1)

a r-i a \2
Therefore C — > 0 in (2.16) as soon as 9S is sufficiently small. It

follows that

Q*s(exp(-iu)) := Q
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+tf (exp(-tw))tf (exp(iw))

> 0

for all w. In fact, the second term on the right of the equality vanishes only
for u> := kn/s, k = 1,..., s but the first term does generally not vanish there
since it corresponds to a seasonal component.
Since Q^(exp(—iu>)) does not vanish, it is possible to 'transfer' a white noise
component from St to It. The canonical seasonal component may be computed
by the following device: find u>o so that Q*s(exp(—UJQ)) is minimal and define

Q*S*(B) := Q*S(B) - U(B)U(F)C2 (2.19)

where Ci := —; ^—r^—;——. rr. The canonical decomposition for the
U(exp(-iuio))U{exp{iu}O))

airline model is then obtained from:
Q*T(B) QT(B)

(1 - B)*(l - F)^ + U(B)U(F) + °s

where C2 > 0. Once the canonical components have been defined it remains
to derive the coefficients of the optimal signal extraction filters, see (2.7).
Besides the convolution rule the following is useful for deriving corresponding
expressions :

fc=0 fe=0

By suitably combining both rules the coefficients may be computed from (2.7),
setting in the expression on the left hand side of (2.12) (for the denominator)
and (2.17) (for the numerator Q*T(B) of the trend) or (2.19) (for the numer-
ator Q*S*(B) of the seasonal component).
Analytical derivations of the transfer functions of the symmetric extraction
filters are 'cumbersome'. Instead, the following figures illustrate transfer func-
tions for a particular example (a model used in chapter 7). In figure 2.2 the
transfer function of the canonical trend extraction filter can be seen for the
model

(1 - B)(l - B12)Xt = (1 - 0.60£)(l - 0.27B12)et (2.21)

In figure 2.3 the transfer functions of the seasonal adjustment filters for an
admissible component (solid line) and for the canonical component (dotted
line) can be seen for the above model (2.21). The 'peaks' of the canonical sea-
sonal adjustment filter are larger than those of the other extraction filter. In
fact, the canonical season has less power than any other admissible seasonal
component. Therefore, the corresponding seasonal adjustment filter has to re-
move less spectral power (smaller revision errors, recall the previous section).
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Fig. 2.2. Extraction filter : canonical trend

Fig. 2.3. Extraction filter SA: canonical (dotted) and an admissible (solid)

2.3.3 An Example

The following results illustrate the boundary signal estimation problem to-
wards the end point t — N of a sample, where symmetric niters must be
replaced by asymmetric designs. A formal description of the example is post-
poned to chapter 7 after the theoretical 'background' has been provided. It
is therefore not necessary to understand precisely the way the results are ob-
tained here.

The proposed MBA has been implemented in TRAMO/SEATS which can
be downloaded from www.bde.es. The method is also available in DEMETRA,
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a user friendly Windows interface which has been developed by EUROSTAT
(version 2.0, April 22 2002 is used here). DEMETRA includes also CENSUS-
X12-ARIMA and can be downloaded from

http://forum.europa.eu.int/Public/irc/ dsis/eurosam/library.

The following airline-model has been selected and estimated by TRAMO
for the UK-car-sales series, see fig.2.4 (the series is contained in the sample
files of DEMETRA: it has been previously adjusted for outliers by TRAMO
and log-transformed, see chapter 7) :

- B12)Xt = (1 - 0.60J5)(l - 0.27B12)et (2.22)

The canonical trend generated by this model is shown in fig.2.4. As t moves
towards the boundary (February 1997) more weight is given to forecasts and
the (finite sample) filter becomes more and more asymmetric. The amplitude
functions (see chapter 3 for a definition) of the symmetric (solid line) and the
asymmetric filters (dotted line) are compared in figure 2.5. The asymmetric
filter can be used for estimating the signal at the end point t = N. It is easily
seen that both amplitude functions differ substantially: this difference leads to
revision errors, see chapter 7 for a detailed analysis. The amplitude function
of the asymmetric filter is more 'permeable' for higher frequencies.
The trend (solid line) is compared to the seasonally adjusted signal (dotted
line) in fig. 2.6. As for the trend filter, the seasonal adjustment (SA) filter
becomes increasingly asymmetric towards the end point t = N. The ampli-
tude functions of the symmetric seasonal adjustment filter (solid line) and of
the asymmetric filter (dotted line) are compared in fig.2.7. Finally, the time
delays (one unit=one month, see chapter 3 for a definition) of the asymmetric
boundary filters for the trend (solid line) and for the seasonal adjustment fil-
ter (dotted line) are compared in fig.2.8. For the asymmetric trend extraction
filter the delay increases beyond 3 months. This may lead to problems when
the detection of 'turning points' towards the end point t = N is an issue.

The importance of asymmetric boundary filters for practical applications
was stressed in section 1.5. Ideally, the time delay of the asymmetric filter
should vanish and its selectivity properties (amplitude function) should be as
good as those of the symmetric filter. Unfortunately, both requirements can-
not be met simultaneously, see chapter 3. If the time delay of the asymmetric
filter is 'too large' or if its amplitude function is not selective enough, then
its output signal is a poor estimate. It is therefore quite surprising that the
properties of the asymmetric boundary filters (of TRAMO or X-12-ARIMA)
have not been analyzed or that the corresponding software packages do not
provide this information (if it exists). Instead, transfer functions of symmetric
filters only are available for SEATS (or the corresponding version of SEATS in
DEMETRA). This 'lack of interest' may perhaps be explained by the 'faith'
modelers put into the forecasting-ability of their models. Indeed, if the DGP
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I 1 " ! " 1 ! 1 " ! 1 " ! " 1 ! 1 " ! 1 " ! 1 " ! 1 " ! 1 " ! 1 "
1985 1967 1989 1991 1993 1995

Fig. 2.4. Original series (dotted) and canonical trend (solid)

Fig. 2.5. Amplitude of symmetric (solid) and asymmetric (dotted) trend filters

were known, then the resulting asymmetric boundary filters (2.24) would 'au-
tomatically' generate optimal estimates in the mean square sense. Therefore,
a further analysis of the characteristics of the asymmetric boundary filters
would be unnecessary. Findley et al [32] p.176 argue: "Maravall seems to
place a heavy reliance on quantities calculated from ARIMA models under
the assumption that the models are correct, a reliance that goes beyond mere
use of a MBA to try to achieve good seasonal adjustments".
If the DGP is unknown and must be inferred from the data then

• models are generally misspecified and
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1987 1989 1991 1993 1995

Fig. 2.6. Trend (solid) and seasonally adjusted signals (dotted)

Fig. 2.7. Amplitude symmetric (solid) and asymmetric (dotted) SA-fllters

• the optimization criterion for the MBA (the minimization of the one-step
ahead mean square forecasting error) does not 'match' the signal estima-
tion problem, see section 1.2.

Therefore, the asymmetric filters of the MBA are generally suboptimal and
characteristics such as selectivity and time delay may be informative. More-
over, if one is interested in detecting turning points then time delays (of the
asymmetric filter) are important even if the DGP is known.

It is shown in section 5.4 that the revision error variance (i.e. the vari-
ance of the filter error) can be decomposed into selectivity and time delay
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Fig. 2.8. Time delays trend (solid) and SA (dotted)

'components'. Therefore, an analysis of the characteristics of the asymmetric
filters (as given by amplitude and time delay functions) can reveal 'deficien-
cies' which are not detected by traditional diagnostic tools (relying on the
one-step ahead forecasting error). More generally, assume that the output Yt
of a symmetric filter is to be estimated for a particular time point, say t = N.
Then instruments are needed

• for the selection of the 'best' asymmetric filter design (instead of the 'best'
model)

• for the estimation of corresponding filter parameters (instead of model
parameters)

• for a diagnostic of the performances of the filter (instead of a 'check' of
model assumptions)

Corresponding instruments which 'match' specifically the particular structure
of the signal estimation problem are proposed in the following chapters. A de-
tailed empirical analysis of these issues is provided in chapters 7 and 8. For the
signal estimation problem, inferring the DGP from a sample of observations
is not of prime importance. Instead, an optimal asymmetric filter minimizing
the revision error variance is seeked. For that purpose the way the informa-
tion is being processed differs from optimal one-step ahead forecasting. The
revision error variance for the MBA is analyzed in the following section.

2.3.4 The Revision Error Variance

Let Yt be the output of a symmetric filter (for example the estimate of a signal
Yt as defined by the canonical decomposition). Then
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Yt =

(2.23)

where bk are the MA-coefficients of Xt. These need not to be absolutely
summable i.e. Xt may be integrated for example, but in this case it is as-
sumed that Xt has been initialized in the past (for example XQ = 0). The
coefficients 7^ in (2.23) belong to the symmetric extraction filter. Therefore,
the estimate of Fjv-r, r = 0,..., N — 1 for the finite sample is

N-r-l

E h*-i eN-r-k

because back- and/or forecasts of et vanish for t < 1 or t > N. Note that if
N — r is 'large', then the estimate for finite samples can be approximated by

(2.24)

because the 'weights' SS :0 ^jlk-j often converge rapidly to zero (as k in-
creases). Therefore, the revision error variance towards the upper boundary
is

fc=-c

where a2 is the innovation variance. The right hand side of (2.25) corresponds
to the accumulated variance of those tt which do not appear in the expression
on the left hand side of (2.24). The approximation (2.26) is valid if N - r is
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'large' because the approximation (2.24) (right hand side) can be used.

The following remarks conclude the presentation of the MBA based on the
canonical decomposition.

2.3.5 Concluding Remarks

1. If the DGP is unknown, then the definition of the signals is implicitly
dependent on N since it depends on the selected model and on estimated
parameters. These issues are discussed in Dosse and Planas [26], p.7. One
solution for solving the problem is to 'freeze' models and parameters.

2. Some authors (see for example Hylleberg [56] or Grether and Nerlove and
Carvalho [70]) argue that the orthogonality assumption needed for the
identification of the components may be a source of misspecification for
the model. Indeed, these authors present convincing evidences against the
orthogonality assumption of trend and season for particular economic time
series.

3. Unaccounted changes in seasonal patterns may lead to spurious seasonal
unit-roots, see for example Ghysels [38] or Pranses [33]. Often the seasonal
unit-root model is "a convenient misspecification" ([38] p. 166). Hylleberg
[56] p. 168 argues "that unit-roots only exist at some of the seasonal
frequencies". Therefore, the 1 — B12 operator may be misspecified.

4. Signals are completely defined by the input series Xt and the particu-
lar DGP identification and estimation method. Therefore, signals are 're-
vealed' (identified) only a posteriori (after a suitable model has been esti-
mated). In particular, signals do not depend on the 'research' interest of
particular users (see for example Canova [13]). For the analysis of business-
cycles Garcia-Ferrer and Bujosa-Brun [35] argue : "... the other methods
(the canonical decomposition as implemented in TRAMO/SEATS and
the structural models as implemented in STAMP 5.0) provide less smooth
variations, and their associated trend derivatives are too volatile and ir-
regular to be useful for dating turning-points in monthly data". Analysis
and criticism of the canonical components are provided in Stier [83] and
[84].

5. An admissible decomposition of an ARIMA-model into orthogonal compo-
nents is generally related to parameter restrictions. For the airline model
this amounts to a simple restriction for 9S (8S > 0) which is generally
achieved because the I(2)-assumption often induces a 'convenient' overdif-
ferencing of real-world time series. Therefore 'admissibility' is generally
not an issue when using an airline model.

6. The results in section 2.3.2 demonstrate that the (canonical) decomposi-
tion into orthogonal components can be involving: analytical expressions
are often complicated non-linear functions of the parameters even for the
relatively simple airline model. The resulting 'complexity' (of the canoni-
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cal decomposition) implicitly restricts the set of possible ARIMA-models
for a time series Xt.

The model-based approaches relying on the earlier Beveridge-Nelson decom-
position and on the canonical decomposition are based on ARJMA-models for
Xt- In the following section another method is presented which is based on
models for the components of Xt.

2.4 Structural Components Model

Without strong arbitrary a priori hypotheses the components Xi, Ct, St and It
in (2.1) are not uniquely defined for the preceding two approaches. 'Models' for
the components (the transfer functions on the right hand side of (2.20)) are un-
known a priori since they are derived (by partial fractions) from the ARIMA-
model for Xt which is unknown too (a priori). Therefore, it is generally im-
possible to account for 'a priori knowledge' about the components. Moreover,
the components may be uninterpretable a posteriori. Grether, Nerlove and
Carvalho [70] and Harvey [47] circumvent the identification and interpreta-
tion problems by specifying 'plausible' models (DGP's) for the components a
priori.
The MBA in the preceding two sections corresponded to a 'top-down' identifi-
cation strategy for which the DGP of Xt is decomposed into uniquely defined
components. The present approach is a 'bottom-up' modelling strategy which
derives the DGP of Xt from the prespecified DGP's of its components. Harvey
and Todd [49], p.341-358 motivate the structural components model by the
following arguments :

• ARIMA-models are often difficult to identify ('traditional' methods like
correlogram and partial autocorrelation analysis do not always provide
accurate estimates of the model orders p, q for small samples)

• the relation of the DGP of Xt to its components is often 'obscure' (transfer
functions of the components are 'cumbersome' non-linear functions of the
parameters of the DGP, see section 2.3.2). Therefore, an interpretation of
the resulting components is difficult or impossible to achieve.

Harvey [48] p.194 argues that "The problem with ARIMA class is that there
are many models and parameter values which have no sensible interpretation
and give forecast functions which may have undesirable properties". Harvey
and Todd [49] suggest that "an alternative way of proceeding is to formu-
late models directly in terms of trend, seasonal and irregular components.
This necessarily limits the choice to those models that have forecast functions
satisfying any prior considerations. Such models will be termed structural
models".

Definition 2.2. Their so called basic structural model (BSM) is defined by
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tt

Tt = Tt-i +

Pt = Pt-i +
vt

fc=i

where the noise terms are (mutually independent) iid gaussian random vari-
ables. Tt can be interpreted as a 'locally' linear trend with varying (adaptive)
level and slope:

• for <r| > 0 the 'slope' Pt is a random walk process,
for <J| = 0 the trend Tt is a random walk with drift /3t = Po

% | t is a linear function of t with slope /?ofor o% = x | =

As for the trend, the parameter a^ 'controls' the stability of the seasonal
component. The only parameters in the above model are the variances of the
white noise processes. The authors argue that "although the model is relatively
simple, it contains the main ingredients necessary for a time series forecasting
procedure in that it projects a local linear trend and a local seasonal pattern
into the future". Further advantages of the model are:

• no identification problem and no admissibility constraints
• the DGP of Xt is given by

xt =
Pt Vt

U(B)

where pt is an MA(1) process (see for example Harvey and Todd [49],
p.346 for a derivation). Since one can show that distinct parameters act
separately on trend and season, a confusion is excluded here (recall that
#12 influences both the season and the trend for the airline-model).

As shown in Harvey [47], model parameters and components can be efficiently
estimated by a so called 'state space approach', using the well known Kalman-
filter (and smoother) for deriving the likelihood function (if the assumptions
of the model are satisfied). A state space representation of the BSM is given
by

Tt

Pt
St

St-i
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\°t

1 1 0
0 1 0
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0 0 1

0 0 0
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Tt \

X t = ( 1 0 1 0 • • • < ) ) / '
<~>t-i

\St-sJ
see Harvey [47]. Evidently, more complex components models (than those im-
plied by the BSM) can be considered. The trend can for example be defined
by a 'local' polynomial of arbitrary order, see Harrison and Stevens [46]. A re-
cent survey of possible seasonal models (DGP's) is given in Proietti [76]. The
latter author also compares various models with respect to their forecasting
performances.

The structural components model provides an alternative approach for
defining signals and deriving an expression for the DGP of Xt ('bottom-up'
modelling strategy). However, despite obvious differences to the MBA in the
previous two sections, the structural components model-based approach does
not solve the finite sample signal estimation problem (namely to approxi-
mate symmetric filters by asymmetric designs) differently. In fact, state space
models and the Kalman filter provide a 'convenient' method for deriving the
likelihood function of the DGP of Xt (if the components are not misspecified).
Since the model assumes gaussian white noise sequences, the optimization cri-
terion bases on the minimization of the one-step ahead mean-square forecast-
ing error (as for the previous two MBA). The main difference to the preceding
ARIMA-MBA lies in the 'coding' of the information i.e. in the structure of
the model for the DGP of Xt.
If the DGP is unknown, then models are generally misspecified. Inferences
about the integration order of the process based on hypotheses of the type
o^ = 0 or cr| = 0 are often difficult to assess and decisions based on one-step
ahead forecasting performances may be misleading for multi-step ahead usage.
Therefore, the signal estimates - especially boundary estimates - are generally
inefficient because the signal estimation problem involves one- and multi-step
ahead forecasts. Ultimately, advocates of the structural components model
argue that the 'amount of misspecification' may be smaller or at least that
misspecification is better 'under control' for the particular 'coding' (of the in-
formation) proposed by this approach. However, it is not clear why this claim
should be pertinent in the context of the boundary estimation problem of
signal extraction. In order to overcome the discrepancy between the one-step
ahead forecasting performance (on which the method relies) and the accuracy
of the resulting asymmetric filter (which is of interest) too parsimonious mod-
els are generally selected which cannot fully account for the 'salient' features
of practical time series (the more or less complex low-frequency and seasonal
components). An alternative 'coding' of the information is proposed in chap-
ter 3 where a new filter class is presented - so called ZPC-filters - which are



2.5 CENSUS X-12-ARIMA 39

specifically designed for the boundary signal estimation problem.

The following arguments should also be taken into account.

• There are known limitations for the Kalman-filter approach, see for exam-
ple Maddala and Kim [44] p. 475-478.

• Arbitrary identifying assumptions of the ARIMA-MBA in the preceding
two sections are replaced by arbitrary a priori definitions of the DGP's of
the components for the structural components model.

The structural components model approach has been implemented in STAMP
(Structural Time series Analyzer, Modeler and Predictor). See http://stamp-
software.com for more information about the topic.

2.5 CENSUS X-12-ARIMA

X-12-ARIMA is the latest version of the seasonal adjustment procedure of the
Census Bureau (Washington). It is described in Findley et al [32] (see also
the reference manual [72]). Both documents as well as the software package
can be downloaded from the ftp-server ftp.census.gov. Readers interested in
technical details are referred to these sources. In this section, the presentation
of X-12-ARIMA is informal.

X-12-ARIMA combines so called 'regARIM A'-models and the well known
X-ll procedure. The latter has become "something of a standard that was
used by statistical agencies around the world", see Findley et al [32] p.127.
Basically, the 'novelty' of X-12-ARIMA is to provide model-based 'informa-
tion' to X-ll in order to enhance boundary estimates (finite sample estimation
problem). Therefore, one can distinguish the 'new' model-based part and the
'old' X-ll part (note that more filter specifications and new decompositions
are now available in X-ll which has been 'refreshed' too).

In X-ll various decompositions such as an additive, a multiplicative, a
log-additive or a pseudo-additive decomposition are provided, see section 1.1
in Findley et al.[32]. Descriptions of the X-ll 'default' procedures for various
decomposition are also provided in this article, p. 149. The following three
stages can be distinguished:

1. Compute preliminary estimates of the trend and the season based on
'simple' filters (for example a centered 12-term moving average for the
trend). A first seasonal adjustment is performed.

2. More 'sophisticated' trend filters, so called Henderson-filters, are used to
estimate the trend based on the previously adjusted series. Final seasonal
factors are computed for the detrended series. The final seasonal adjust-
ment is performed.
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3. Compute the final trend using a Henderson filter (whose order can be
made 'data dependent') for the previously seasonally adjusted series. The
final irregular component is obtained as It := Xt — T^— St for the additive
decomposition (and similarly for the other decompositions).

The transfer function of the resulting trend filter is shown in Findley et al.
[32], fig.3 p.131 (symmetric filter). Edel and Stier [27], p.207-222 use an inge-
nious device for computing the transfer function of the trend and the seasonal
adjustment filter of X-ll empirically, see figs. 1-4 and 9-12 in the cited doc-
ument. Analytic expressions for these functions are generally not available
because different filters 'interact' in a complex way in the three-stage proce-
dure briefly described above. Therefore, empirical evaluations are important
for assessing the properties of X-ll .

The central trend filter of X-ll is the Henderson filter (which 'interacts'
with various filters in the three stage procedure). The symmetric Henderson
filter has been originally designed for satisfying a 'smoothness' criterion sub-
ject to the restriction that a cubic polynomial (in t) can pass the filter without
being altered, see Henderson [50], [51]. More recently, Gray and Thomson [41]
have shown that some requirements are unnecessarily severe. To see this, let

Xt+j :=a + b(t + j) + c(t + j)2 , j = - ( n + 3 ) , - (n + 2),...,n (2.27)

The authors show that the coefficients hj of a Henderson filter of order n are
determined by requiring

£ hi
j=-n

and

E = E {A3(J2 '
j =—n

where A3 is the third difference operator and e< is a gaussian white noise se-
quence (the equality follows from A3Xt+j = 0). The above expectation may
be interpreted as a measure of smoothness so that the Henderson filter satis-
fies a smoothness optimality criterion. It can be shown that hj = h-j so that
the symmetry is a consequence of the above weaker requirements. Since the
coefficients hj correspond to a Henderson filter, cubic polynomials pass the
filter also without being altered.
The output of the Henderson filter of order n must become 'smoother' for in-
creasing n because quadratic (or cubic) polynomials have at most one (or two)
turning point(s) in — (n + 3), — (n + 2), ...,n. Evidently, large n imply heav-
ily asymmetric boundary filters: improved smoothness induces larger revision
errors towards the end point t = N. This statement is not specific to Hender-
son filters but merely results from a fundamental uncertainty principle, which
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is for example described in Grenander [42] and Priestley [75] chap. 7. The
13-term (n = 13) Henderson filter is often used for monthly data. However,
the trend cannot be very smooth because a cubic polynomial can exhibit two
extremes in the corresponding interval (of length 13). Therefore, the trend
is not free of 'subannual' variations, see for example figure 2.10 below and
Schips and Stier [81] and Findley et al.[32],p.l30 and fig.3 p.131. Attempts
for weakening the problem have been proposed in Dagum [23] and Dagum
et al. [24]. Findley et al [32] p.134 argue that "X-ll's relatively short-term
trends cannot fully capture long-term correlation in the data if it exists". The
relatively small order n = 13 is often preferred because it is associated with
revision errors of 'acceptable' size towards the end point t — N. For the newer
X-12-ARIMA procedure, the order of the Henderson filter can be made data
dependent through the so called 'variable trend cycle routine', see Findley et
al.[32] p 150,151.
Towards the boundaries of the sample, the symmetric filters of X-ll are orig-
inally replaced by asymmetric filters, so called 'Musgrave Surrogates', see
Findley et al.[32], p.150. The latter minimize the error variance of the esti-
mates if the input process is a linear trend overlapped by gaussian white noise,
see Musgrave [69] and Laniel [60]. Wallis [92] argues that X-ll is an inconsis-
tent procedure because the symmetric Henderson filter assumes a local cubic
trend, whereas the asymmetric filter assumes a local linear trend (see also the
reply of Findley et al. [32] p.173, which argue that pure MBA are inconsistent
too). This concludes the brief informal overview of the 'old' X-11-part.

X-12-ARIMA uses so called regARIMA-models. The 'regression part' ac-
counts for deterministic effects (such as for example 'calendar effects'), for
singular effects (for example outliers or level shifts) or even for missing data,
see for example [32] p.129. Once these effects have been removed, the 'ARIMA-
part' provides forecasts of the 'adjusted' or 'linearized' series. Note that both
aspects cannot be strictly separated in practice: regression- and ARIMA-part
interact until a 'convenient' regARIMA-model is identified. As a result, sym-
metric filters of X-ll can be used for the series extended by back- and forecasts
(the original asymmetric filters of X-ll are no more of prime importance).
Therefore, X-12-ARIMA solves the finite sample signal estimation problem as
described in section 1.2.

Wallis [92] p. 165 argues "In any event X-12-ARIMA is not a model-based
approach". Findley et al. [32] p. 172 confirm this statement "no stochastic
model can produce an adjustment filter, through conventional signal extrac-
tion, that contains just the U(B)(1+F) unit-roots (as given in X-ll)" and on
p. 173 "no stochastic model leads to any of the symmetric Henderson filters
because the latter's transfer functions are negative for some frequencies, some-
thing that cannot result from Wiener-Kolmogorov signal extraction". In fact
the filters of the 'old' X-ll (and thus of X-12) are not explicitly designed for es-
timating a properly denned stochastic component (attempts have been made
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to approximate the additive decomposition of X-11 by linear signal extraction
filters, see for example Wallis [91] and Cleveland and Tiao [17]). Wallis [92]
p.164 argues : "neither Musgrave nor any later author has asked whether the
symmetric Henderson filter produces a good estimate of the trend, however:
for this purpose the trend is simply defined as the Henderson output". In our
view, this is not completely correct, since the trend is defined as the output of
the Henderson filter in the last stage of the above procedure: the correspond-
ing filter is something like a 'Henderson with seasonal dips'.
Henderson filters satisfy a particular smoothness criterion whose relation to
'signal extraction' is not immediately obvious. For X-11 (and X-12) a 'com-
ponent' like the trend has no other interpretation than being the output of
the corresponding filter. Schaeffer [80], p.35 classifies X-11 into the family of
so called 'implicit' seasonal adjustment procedures (implicitly defined compo-
nents). With respect to 'detrending' Wallis [92] p. 164 argues: "thus Henderson
detrending reduces an 1(4) series to 1(0) and overdifferences an I(d) series if
d < 4. Overdifferencing implies noninvertibility of the output series and hence
the absence of a convergent autoregressive representation". This may be im-
portant if the detrended series is to be forecasted.

The above objections address the definition of the components for the 'old'
X-11-part. However, the signal estimation problem for finite samples is solved
by the 'new' ARIMA-MBA. Therefore, X-12-ARIMA is considered as a MBA
in the particular perspective of this book.

Implicit component definitions are a drawback because interpretations are
not possible. However, it is not clear if model-based approaches propose a
'better' solution (see for example section 2.3.5). Cleveland [16] p. 154 argues:
"It can be difficult to model time series, and X-12 appears to deal with awk-
ward series better than many signal-extraction procedures would, or at least
do it with less work" and, as stated already, Findley et al. [32] p. 176 ar-
gue "Maravall seems to place a heavy reliance on quantities calculated from
ARIMA models under the assumption that the models are correct, a reliance
that goes beyond mere use of a MBA to try to achieve good seasonal ad-
justments". Note that the last argument addresses X-12-ARIMA too, so for
example Morry and Chhab [68] p. 161 "not all series lend themselves readily to
regARIMA modelling" and the same authors p. 163 : "it does not necessarily
follow, however, that the method with the lower forecast errors yields better
seasonally adjusted estimates". The last statement confirms forecasting issues
briefly mentioned in section 1.2 and analyzed in Clements and Hendry [14].
This concludes our informal overview on X-12-ARIMA. A short example is
now provided.

X-11 has become "something like a standard" and as such it is avail-
able in various statistical software packages like for example SAS, RATS,
SPSS or Eviews. The 'new' X-12-ARIMA has not yet supplanted X-11 in all
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these packages (probably because they provide own identification and estima-
tion procedures for the DGP of Xt). X-12-ARIMA can be downloaded from
ftp.census.gov. Comfortable versions with graphical facilities and easy access
to diagnostic tools have been implemented in Eviews 4 and in DEMETRA,
see section 2.3.3. The latter is used here.
The X-12-ARIMA trend for the UK car-sales series is shown in fig. 2.9 (the
series has been linearized and log-transformed, see chapter 7). X-12-ARIMA

i

1987 1989 1991 1993 1995

Fig. 2.9. Input series (solid) and X-12-ARIMA trend (dotted)

trend (solid line) and SEATS trend (dotted line) are compared in figure 2.10.
As can be seen, the order of the (automatically) selected 13-term Henderson
filter may be too low (there are unnecessarily many turning-points). Finally,
the permanent component of the Beveridge-Nelson decomposition ('rough' se-
ries) is compared to the trends of X-12-ARIMA and SEATS in figure 2.11. As
can be seen, different identifying (a priori) assumptions may lead to dramatic
differences between outputs of the symmetric filters for the theoretical compo-
nents (here : trends).

This concludes the (necessarily restrictive) presentation of important 'es-
tablished' MBA. In the next chapter the main concepts for characterizing
filters in the frequency domain are proposed. A well-known general class of
asymmetric filters is then derived for the boundary signal estimation problem.
In order to improve 'out of sample' results and to control for overfitting a new
filter class is proposed and analyzed. It is characterized by improved 'parsi-
mony' (few parameters to estimate) and a straightforward interpretation of
the remaining degrees of freedom. This filter class is used for the examples in
chapters 7 and 8.



44 2 Model-Based Approaches

1985 1987 1989 1991 1993 1995

Fig. 2.10. X-12-ARIMA trend (solid) and SEATS trend (dotted)

1985 1987 1991 1993 1995

Fig. 2.11. Census-, Tramo- and Beveridge-Nelson-trends
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The objective is to approximate (outputs of) symmetric filters by (outputs of)
asymmetric filters towards the boundaries of a sample. A general filter class is
needed here because input signals and symmetric filters are of a general form
too, recall section 1.5 and chapter 2. Some care is needed however, since it
was suggested in section 1.1 that 'excessive' generality may lead to overfitting
problems : good 'in sample' performances may be contradicted by poor 'out
of sample' performances. Therefore, a general and parsimonious filter class is
proposed in this chapter.

In Section 3.1 concepts relevant to the frequency domain are presented:
an informal introduction to the theoretical material presented in chapter 5 is
provided. In section 3.2 parsimonious filter designs (ARMA, minimum phase
and quasi minimum phase (QMP) filters) are introduced. Finally, a new filter
class, the so called zero-pole combination (ZPC) filter, is presented in section
3.3. The latter filter design is characterized by a constraint which stresses
further parsimony and which enables a straightforward interpretation of the
remaining degrees of freedom.

3.1 Filters : Definitions and Concepts

Definition 3.1. A sequence 7^ of square summable numbers (XIfeL-00 \~tk\2 <
00 j is called a filter. The complex function F(-) : [—IT, n] —> W defined by :

fc=—00

is called the transfer function of the filter 7^. If the sequences Yt and Xt are
related by

00

Yt = ^2
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then Yt,Xt are called the output and the input signals of the filter jk respec-
tively.

In the following, the concepts of 'filter' and 'transfer function' are merged.
Therefore, F(-) is called a filter. Conditions under which this identification is
allowed formally are well known, see for example Gasquet and Witomsky [36]
or standard textbooks in functional or Fourier analysis. A sufficient condition
for this 'merging' is the continuity of F(-) on [—TT, TT] which is assumed in the
following. A filter r (-) is called real if 7fe G IR for all k (in this case T(0) G 1R)
and it is called symmetric if 7fc = j-k for all k. If /"(•) is symmetric and real
then r(cj) G IR for all UJ.

Let X\, ...,X/v be a finite sample and consider the signal
oo

Yt= J2 ̂ Xt-k
fc=—oo

where F(-) is some real filter : if there exist to, ko such that 1 < to < N and
to — ko < 1 or to — ho > N and 7fc0 ^ 0 then Yt0 cannot be computed directly
from X\, ...,XN- Instead, Yt0 has to be estimated. For that purpose, define
the following general distance measure between two filters /"*(•) and t{-):

[N/2]

2 \r(uk) - f(cjk)\
2G(u;k) (3.1)

k=-[N/2]

where Uk G [—n, n] for all k and where it is assumed that G(-) > 0 and the
coefficients of /*(•) satisfy:

7 f e = 0 , kt{to-l,...,to-N} (3.2)

The latter condition ensures that the output

Yt0= ^ %Xt0_k (3.3)
k=to-N

can be computed using the finite sample X\, ...,Xjv- Thus an estimate Yt0 of
the unknown Yto may be defined by the output of the filter P(-) minimizing
(3.1). For particular Uk and particular 'weights' G{u>k) it is shown in chapter
5 that the resulting Yto satisfies an optimality criterion for a general class of
input signals Xt- However, the necessary theoretical background must be put
up first.

A direct optimization of the filter coefficients 7fc in (3.3) involves too many
unknown parameters. Therefore, an attempt should be made to 'parameter-
ize' the 7fe using 'few' parameters. For that purpose, the classical ARMA-
approximation method is proposed here (see for example Box and Jenkins [9]
and Stier and Wildi [86]). Consider the following input-output relation:
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Q Q

fe=l fc=-r

where r := N -t0, Q + q + r « N and where it is assumed that the roots of
the characteristic polynomial 1 - J2k=i akzk h'e outside the unit circle. The
resulting filter is called a stable ARM A filter. It is then well known that the
input-output relation (3.4) can be expressed by

(3-5)
fc=-r

where the coefficients Ck decay towards 0 in a suitable manner, e.g. exponen-
tially fast. Expression (3.5) is called the equivalent MA(oo) representation of
the ARM A filter. The sequence Cfc is now determined by<5 + q i-|-r-|-l(<< N)
parameters only. One difficulty remains, since the coefficients in (3.5) do not
satisfy (3.2). This problem may be solved for example by

• truncating the equivalent MA(oo)-representation of the ARMA-filter at
k = to — 1 or

• by a suitable initialization of the filter (corresponding solutions are pre-
sented in the appendix).

Note however an important difference between ARMA-processes and (3.4): for
the former, the input signal is a white noise sequence whereas for the latter
the input signal Xt is a general - not necessarily stationary - process.

From definition 3.1 the transfer function of the ARMA-filter (3.4) is given
by

exp(-iku)

„ ,. ,n"=i(^2j-i-exp(-iu;))(Z2jexp(ia;))
= Cexpurw)—— (3.6)

nL(^ (i))(ft (H)

where Z2j := Z2j-i, j = l,...,n and P2fe := Pik-i (i-e. (Z2j-i,Z2j),
j = l,... ,n are complex conjugate zeroes and (P2k-i,P2k)> k = 1, ••-,«'
are complex conjugate poles) and Zj,j = 2n + 1, ...,q + r are real zeroes,
Pk,k = 2n' + 1,...,Q are real poles and C is a real constant (normalization).
The equivalent representation (3.6) follows from a factorization of the numer-
ator and denominator polynomials in the 'variable' exp(—ILJ). The index 'p'
denotes the number of parameters i.e. q + r + Q+1— p. For notational sim-
plicity the index 'p' is dropped (if it is not explicitly required) so that FP(LJ)
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is written F(OJ). Stability (or equivalently the existence of a convergent MA
representation of the ARM A filter) requires \Pk\ > l,k = 1,...,Q and invert-
ibility requires \Zk\ > l,k = l,...,q + r (invertibility means that the filter
possesses a convergent AR representation). The importance of these proper-
ties of the ARMA filter is stressed in section 3.2. Here and in the following,
ARMA-filters are denoted with a 'hat' because they are used for solving the
signal estimation problem for finite samples.

Consider the following identity

) (3.7)

where F(-) is a general transfer function (not necessarily symmetric or of
'ARMA-form') and note that F(-) determines arg(-) up to multiples of 2ir if
the transfer function does not vanish.

Definition 3.2. Let jk be a real filter whose transfer function F(-) is contin-
uous, vanishes nowhere and satisfies F(0) > 0. The amplitude and the phase
functions of F{uS) are then defined by

A(J) := \r(w)\
*(w) :=-arg(r(w))

where arg(-) is defined as a continuous and odd function ofui.

Remarks

• F(0) = J^fcL-oo 7*: S IR by assumption. Therefore, the requirement F(0) >
0 in the previous definition is well defined. It constrains the 'sign' of the
filter.

• Since the phase is odd and continuous it must satisfy ^(0) = 0.
• The 'traditional' arctan(-) function (as it is implemented in most software

packages) does generally not fulfill the above requirements for arg(-). In
particular, it is generally discontinuous.

• The phase function of a real and symmetric filter vanishes identically.

If F(-) does not vanish and is analytic in a region including the unit circle, then
the phase function is infinitely often differentiable : from (3.7) the solution is
given by

( ) (3.8)

where ln(-) is defined as the principal branch of the complex logarithm, see
for example Ahlfors [1], chap.8. Requiring arg(-) to be continuous and odd
uniquely determines the phase function of stable invertible ARMA-filters :

Proposition 3.3. The phase function &(•) of a stable invertible ARMA filter
exists and is uniquely defined.



3.1 Filters : Definitions and Concepts 49

Proof. Stability requires \Pk\ > 1, k = 1, ...,Q so that the transfer function is
analytic in an annulus containing the unit circle. Invertibility requires \Zk\>
l,k = l,...,q + r and thus there exists an open set including the unit circle for
which the (analytic) transfer function does not vanish. From (3.8) a continuous
and odd phase function then exists. Assume <£(•) and £*(•) are two continuous
and odd functions satisfying

f(w) = A(UJ) exp(-iS(u)) (3.9)

Then 1 = exp (—i (S(UJ) —&'(LJ))\ for all w because the transfer function

does not vanish on the unit circle. Thus S(LO) = S'(UJ) + fc(o»)27T where
k(u>) G TL. The mean value theorem then implies k(u>) = ko- Since both
functions are odd and continuous, they satisfy <P(0) = <?'(0) = 0, so that
fc0 = 0 which proves the proposition. D

If

fc=l

is a stable invertible ARMA filter then Y^k=x &rk (•) is
 a continuous and odd

function satisfying (3.7). Thus the uniqueness property implies

so that the phase function is a homomorphism.

The following description of the properties of the phase function as well
as its interpretation are informal. It provides a first introduction in concepts
treated in chapter 5. Let the (complex) input signal of a stable and invertible
ARMA filter satisfying P(0) > 0 be given by Xt := exp(iwi), t G TL. From

%exp(iu(t — k)) — exp(iu;t) ^ %exp(-iuk) = exp(iwt)r(u>) (3.11)
fe=—r k=—r

one deduces that Xt,t £ 2L is a, periodic eigensignal of the filter with eigen-
value F(UJ). Denote r(Xt) := Z^feL-rT'fe^t-fc- The linearity of the filter then
implies:

f(Re(Xt)) + if(lm(Xt)) = f(Xt) = Re{f(Xt)) + i lm(f(Xt))

This together with (3.11) implies that cos(wi) and sin(wf) are eigenfunctions
too. Moreover, input and output signals are related by

cos(tw) -> A(u) Fcos(tw) cos(-
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= A(w) cos(tu - S(u)) (3.12)

sin(to;) —» A(LJ) cos(£u>)sin(— S(LJ)) + sm(tu>)COS(—S(LO))\

= A{w) sin(tw - S(LJ)) (3.13)

where A(-) := \F(-)\, so that

cos(tw) —>• A(u) cos(w(i — <P(w)/w))

sin(£u;) —» >l(a;) sin(w(£ — 4>(u))/u>))

Thus </>(w) := <&{<JJ)/UJ may be interpreted as a iime s/ii/t function of the
ARMA filter at frequency ui. Equation (3.10) then shows that time shifts of
serially connected filters add (homomorphism). Moreover,

dS
lim 4>(u>) = lim <I>(u))/w = —

id—>o w—>o duj

exists because $(u>) was defined as a continuous (infinitely often differentiable
for stable and invertible ARMA-filters, see above) and odd function. The ex-
istence follows from #(0) = 0 and from a Taylor series approximation at the
origin. The time shift 4>(0) of the filter at frequency zero plays an important
role for integrated input processes, see section 5.3.

The condition F(0) > 0 required in definition 3.2 is necessary because the
identity — cos(iw) = cos(iw+7r) implies that the phase function of a filter satis-
fying r (0) < 0 cannot be both continuous and odd (because <£(0) = TT). Also,
the time shift of such a filter cannot be bounded if ui —> 0 (i.e. n/u —> oo
as u> approaches zero). The time shift is an important characteristic of an
asymmetric filter because 'good' filters (generating 'good' signal estimates)
are characterized by 'small' time shifts and 'good' selectivity properties, see
for example chapters 5, 7 and 8. The time shift is denned for most relevant
signal extraction filters (such as seasonal adjustment or trend filters for ex-
ample) because they often satisfy -T(O) = 1 > 0, i.e. the assumption F(0) > 0
is satisfied.
Definition 3.2 can be extended to non-invertible ARMA filters with zeroes
on the unit circle. The phase then becomes a piecewise continuous and odd
function (formal aspects are ignored here).

The amplitude function A(LJ) may be interpreted as the weight (damping
if A((j) < 1, amplification if A(u>) > 1) given by the filter to a sinusoidal input
signal of frequency ui. It characterizes the selectivity properties of a filter.

In (3.1), the signal estimation problem is reduced to the minimization of a
particular measure of the 'distance' between transfer functions. This problem
can now be stated in terms of amplitude and phase functions, i.e. in terms
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of selectivity and time shift 'fitting'. Suppose /"(•) is used for approximating
r(- ) . Then

• A(LJ) should 'mimic' A(LJ) and
• &(•) should 'mimic' <?(•) (the latter vanishes identically for symmetric fil-

ters) .

Both the selectivity properties (as given by the amplitude functions) and the
time shifts should match as closely as possible. Section 3.2 and chapter 5 show
that these requirements are conflicting so that efficient boundary signal esti-
mation is the result of an optimal compromise between both requirements.

The aim of decomposing the transfer function into amplitude and phase
functions is to separate selectivity and time shift properties of a filter. This
gives access to more flexible optimization procedures, including for example
the 'faster' detection of turning points (of a particular trend component) by
computing filters with 'best' possible selectivity characteristics subject to a
time shift (phase) constraint, see section 5.4. Model-based approaches do not
allow for such flexibility because the transfer function of the boundary filter
(1.4) is obtained implicitly. Therefore, a decomposition into phase and ampli-
tude matchings is impossible.

In the next section a first restriction of the ARMA-filter class is proposed.
This is based on time-shift properties of the filters.

3.2 A Restricted ARMA Filter Class : QMP-filters

Moving-average or more generally ARMA-filters are well known filter classes.
A comparison of both classes is given in Stier [85], section 17.5 together with
a presentation of particular filter designs. In this section, a restricted class
of ARMA filters is derived whose (desirable) properties 'match' the signal
estimation problem for finite samples.

Definition 3.4. A stable ARMA filter is called minimum phase if and only
if all its zeroes Zk lie outside the unit circle (invertibility) and r = 0 in (3.6)
(causality).

Invertibility and stability imply that the ARMA representation of the filter
is equivalent to convergent AR(oo) or MA(oo) representations: Xt may be
recovered from Yt-r,Yt-r-i, ••• and analogously Yt may be recovered from
Xt+r, Xt+r-i,— • Causality requires r = 0. Therefore, minimum phase filters
can be used for estimating a signal at the end point t = N of a sample. Before
generalizing this filter class, an optimality property of minimum phase filters
is presented here.
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Proposition 3.5. Every stable, causal and non-invertible ARMA filter /"(•)
without zeroes on the unit circle can be uniquely decomposed into a minimum
phase filter F(-) and an allpass filter (a filter whose amplitude function is
identically equal to one), i.e.:

/"(w) = f{uj)Hap{u) (3.14)

where \Hap(-)\ = 1 and where the time shift of the allpass filter is positive.

A proof is provided in Oppenheim and Schafer [73], p.352. The above propo-
sition and the identity (3.10) imply that minimum phase ARMA filters are
characterized by small(est) time shifts (for a given amplitude function). Since
the time shift is generally positive in the passband of the filter (for trend
extraction or for seasonal adjustment filters for example) it follows that min-
imum phase filters are 'optimal' designs.

Definition 3.6. A stable ARMA filter F(-) as given by (3.6) is called quasi
minimum phase (QMP) if it factorizes into

n

r(w) := exp(irw) J\ {z'k ~ exp(-iw)) f '(w) (3.15)
fc=i

where F(OJ) is minimum phase, 0 < r < TV—1 and Z'k := exp(iAfc), k = 1,..., n.

The identity (3.10) implies that the QMP filter /"(•) in (3.15) inherits the
property of small(est) time shift from the minimum phase filter F(u>). More-
over, the proposed QMP filter class enables

• optimal signal estimation at arbitrary time points N-r (the term exp(irw)
in (3.15) indicates that the full sample Xi, ...,XN can be used for estimat-
ing Y/v_r, see for example the correspondence of (3.4) and (3.6))

• 'handling' of non-stationary integrated input processes by including a

'unit-root' operator rifc=i [Z'k ~ exp(—zut)) (a formal treatment is given
in section 5.3).

QMP filters are a general parsimonious filter class satisfying an optimal-
ity property (smallest time shift) which make them 'natural' candidates for
boundary filter approximation problems. Section 3.3 presents a further and
final restriction strengthening and improving the parsimony concept.

An intuitive explanation of the minimum time shift property of minimum
phase filters can be given in the time domain. Oppenheim and Schafer [73]
chap.7 prove the inequality

£ 7 ? > £ ( 7 ; ) 2 (3.16)
3=0 3=0
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for all n, where the coefficients jj and 7^ belong to /"(•) and /"(•) in (3.14).

Using the Parseval relation (A.11) (see the appendix):

Af/ \ 2 7 / A t \

•j=» •"• •*-" j=o

Therefore, (3.16) implies that the minimum phase filter gives less weight to
past observations which reflects the smaller time shift.

Ideally, the time shift of an asymmetric filter should vanish and the latter
should be as selective as the symmetric filter. It is shown in the following
theorem that both requirements cannot be met simultaneously because phase
and amplitude functions are related.

Theorem 3.7. Amplitude and phase functions of a minimum phase filter sat-
isfy

= c+—pv[ &($)cot (6-^-\d6
2 7 r J-K V 2 /

dO

where c is a constant and PV means the principal value of the integral.

Note that the function cot(#) has a singularity at 6 = 0. This fact motivates
the use of a special class of integrals denoted by 'principal value'. It is defined
by considering the 'symmetric' limit: lim<5_»o \J1V + /J+5) • The expressions
(3.17) then exist because cot(-) is an odd function and because the integrated
functions are regular (infinitely often differentiable).

Remarks

• The proof makes use of t{uj) := ln(r(uj)) = ln(A(oj)) — i<P(uj) which is
analytic in an open region containing the unit circle if F(u>) is minimum
phase. Hence, it relates real and imaginary parts of an analytic function,
see for example Oppenheim and Schafer [73] chap.7 (note that the phase
has an opposite sign in the cited document).

• Since cot(-) is periodic and odd, equation (3.17) implies that &(LJ) = 0 for
all u> whenever A(u) is constant. Both conditions together imply -T(o;) =
K £JR, i.e. the filter is not selective at all.

• A straightforward consequence of the above theorem is that the best asym-
metric filter (which minimizes the revision error variance) must result from
a 'compromise' between an amplitude matching (i.e. 'small' \A(CJ) — A(u>)\)
and a time shift (phase) matching (i.e. 'small' \$(LJ) - &(u>)\) where A(-)
and $(•)(= 0) are the amplitude and the phase functions of the symmetric
filter. These and related issues are analyzed in chapter 5.
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In the last section of this chapter a final restriction of the QMP filter class
is proposed which stresses on the parsimony concept. It is shown that the
parameters of the proposed filter class are straightforwardly interpretable.
Empirical results confirming improved 'out of sample' performances of this
filter design are presented in chapter 7.

3.3 ZPC-Filters

Definition 3.8. An ARMA filter /"(•) is called a pure zero-pole-combination
(or simply a ZPC-) filter if and only if

• the number of poles is equal to the number of zeroes, i.e. Q — q + r, and
• all poles Pk,k = 1, ...,Q and zeroes Zj,j = 1,...,Q may be grouped into

pairs (Zk,Pk),k = 1,...,Q, called zero-pole pairs, for which arg(Pfc) =
arg(Zfc).

An ARMA filter (3.6) consisting of one zero-pole pair is called an elementary
ZPC-filter. An ARMA filter with zero-pole pairs and 'single7 zeroes and/or
poles is called a mixed ZPC-filter.

It is readily seen that the elementary ZPC-filter C(Z — exp(—ioj))/(P -
exp(-iw)) with arg(Z) = arg(P) is more general than a single zero or a single
pole: simply let \Z\ —> oo or |P | —> oo and set C := 1/Z or C = P in order to
obtain a single pole or a single zero. Each zero-pole pair (Pk, Zk),k = 1, ...,p
has three degrees of freedom which may be given for example by Afc, | Zk | and
\Pk\- However, it is shown below that the set of 'parameters'

• Afc,
• \Zk\,
• (\Zk\ - l)/(|P fc | - 1), where \Pk\ > 1 (stability)

is more appealing.

An analysis of the properties of ZPC-filters is necessary in order to moti-
vate the constraint arg(Zfc) = arg(Pfc). For that purpose assume

P - exp(-nv)

is an elementary ZPC-filter with A := — arg(P) = — arg(Z). An important
property of elementary ZPC-filters, namely the monotonicity of the ampli-
tude function on both sides of A, is derived in the following proposition. The
'non-monotonicity' of the amplitude function of particular filter designs may
result in 'overshooting' (see for example Stier [85], section 17.5, fig.17.24 and
17.25) which results in inefficient seasonal adjustment or trend extraction. The
monotonicity property of ZPC-filters is needed in the proof of proposition 3.11
below.
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Proposition 3.9. For Z = (1 + x) exp(-zA), P = (1 + y) exp(-iA) and 0 <
x < y the amplitude function A(u) := \r(w)\ has a unique minimum in A.
More precisely

dA{uj)
dui

dA(u)

dA{uj)

< 0 if LJ < A

= 0 if ijj = A and x > 0

> 0 if u > A

IfQ<y<x then the amplitude function has a unique maximum in A.

Proof. Assume first x > 0 and let

In
Z —
P — exp(—iu

\u>)) - ln(|C|)

Thus

£ £ - expHa,)|) - £ ln(|P -
Analyzing the first term on the right of this equality :

Z — exp(—i

— exp(—iw))Im(iexp(—iw)) J-

— exp(-iu;))Im(iexp(«w)) \

Re (Z — exp(—i<J))i exp(iw)

Re iw)

Im Z exp(iw)

=: Mz(u)

(3.19)

(3.20)
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Thus (3.19) becomes

aio
- MP(u>) (3.21)

where P simply replaces Z in the expression for Mp{uj) corresponding to
(3.20). It is easily verified, that MZ(X) = MP(\) = 0 because Zexp(i\) is
real in (3.20). From (3.21) and from

(3.22)

it then follows that the derivative of the amplitude function must vanish in A
if x > 0 (because J4(A) > 0). Moreover, it is easily verified that the derivative
of the amplitude function vanishes whenever to — X = kn, k € TL since then
Zexp(iu>) € IR in (3.20), so that Mz vanishes in (3.21) (and analogously for
Mp). Let UJ — A ^ kn and x > 0. Then:

Z - exp(-iu)\2

Im[Zexp(tw)]

(1 + x)2 + 1 - 2(1 + x) cos(A - w)
(1 + x)

L
A)

1 + x
1

sin(o;-A)
+2cot(A-o;)

and equivalently

with f(ui — X) being an odd function 'centered' in A. The assumption x < y
then implies l/Mz{-) < 1/MP(-) for u > X and 1/MZ(-) > 1/MP(-) for u < X.
This result together with (3.21), (3.22) and the positivity of the amplitude
function proves that

dA(co) ( < 0 if UJ < X

duj 1 > 0 if UJ > X

A similar reasoning applies if x > y which completes the proof of the propo-
sition. D

The monotonicity of the amplitude function (on both sides of A) of two
particular ZPC-filters can be seen in fig.3.2. In the following theorem another



3.3 ZPC-Filters 57

important property of ZPC-filters is analyzed. It is shown that the filter effect
(damping or amplification) can be concentrated in an open interval of arbi-
trary width containing A (the common argument of the zero and the pole).
Therefore 'components' with frequencies outside this interval remain almost
unaffected by the filter. This property is important for seasonal adjustment
since only the seasonal spikes are to be removed. The other components should
'pass' the filter without being affected.

Theorem 3.10. Let /"(•) be defined by (3.18) where it is assumed for sim-
plicity that C := 1 and let A € [—TT,TT]. Let also e,5 > 0 and 0 < r ^ 1 be
arbitrary real numbers (r may even be infinite). Define Z = (1 + x) exp(-iX),
P = (1 + y)exp(-iX) in (3.18). Then there exist x > 0,y > 0 (where y does
not depend on r) so that

• A(X) = l/r and
• \A(w) - 1| < S, \S(u>)\ < 5 and \f(uj) - 1\ < 6 whenever \UJ - A| > e

where A(-) and &(•) are the amplitude and phase functions of P(-).

Remark

• For r = 1 the pole and the zero cancel so that parameters are not uniquely
defined. Therefore, r — 1 has been excluded in the above assumptions.

• For r > 1 the filter 'damps' components whereas for r < 1 components are
amplified. However, the effect (amplification or damping) can be concen-
trated in an open interval of arbitrarily small width containing A.

Proof of the theorem. For the proof it is assumed that r > 1 so that
A(X) < 1 i.e. the filter damps input signals. Consider first the following fig.3.1
where P and Z are the pole and the zero of the ZPC-filter and Au> is a small

it Circle

Fig. 3.1. Elementary ZPC-filter in the plane

arc on the complex unit circle (so that it may be approximated by a small line
segment). From x := \Z\ — 1 and A(X) = l/r it follows that y = \P\ — 1 = rx:
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the damping factor r thus determines the relative locations of the zero and
the pole. It remains to determine either x or y so that the theorem is true.
The complex transfer function is analyzed first.
For that purpose, x (= \Z\ — 1) is sought so that

6>\i-r{w)\ =
P — exp(-iui) — (Z — exp(—iu>))

P — exp(—iuS)

(r —

\P - exp(—iu))\

(r - l)x
|1 + rx — exp(—iv)\

(3.24)

for all {u> ||w — A| > e} where v :— AUJ — UJ — A in (3.24). Since the denomina-
tor is monotonic in v this condition reduces to a condition on the boundary

S>
(r -

1 + rx — exp(—ie)
(r -

rx + ie
(3.25)

Note that if e is small, then the boundary condition justifies the approximation
of the arc AUJ by a straight line in fig. 3.1. From \rx ± ie\2 = (rx)2 + e2 the
approximation (3.25) becomes

S2e2 > [(r - I)2 - <52r2]z2

If r < 1/(1 — 6) the above inequality is satisfied for all x = \Z\ — 1 > 0 (because
the filter almost degenerates to the identity). Otherwise x must satisfy

x <
6e

- I)2 - 62r2
(3.26)

The inequality shows that Z (and thus P, since |P | — 1 = r(\Z\ — 1)) has to be
located closer to the unit circle whenever 1/r, e or 6 decrease. Assuming (3.26)
to be satisfied, the assumptions for the amplitude function readily follow from

for all u> with \w — A| > e. This last result and the following trigonometric
identity

\f(uj) - 1|2 = A(w)2 + 1 - 2A(UJ) cos

= A(UJ)2 + 1 - 2A(UJ) 11 -

- I)2 + A(UJ)S(OJ)2 (3.27)

then show that 62 > | l - f (w)|2 > A(OJ)S(UJ)2, SO that \S(w)\ < 6/y/T^S ~ S.
Define x := x(r) by
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6e
x := (3.28)

Then (3.26) is satisfied:

Since \P — 1| = y = rx = Se > 0 does not depend on r the proof is completed.
A similar proof applies to the case 0 < r < 1 (in this case the ZPC-filter
amplifies sinusoidal input signals of frequency A). •

Note that the filter remains stable even if r —> oo because \P\ > 0 does
not depend on r. The next result shows that weaker conditions (than (3.26))
lead to \A(u>) — 1| < S. An interpretation of this result is that in a given sense
the fit of the amplitude function is easier than the fit of the phase function.

Proposition 3.11. Let the assumptions of the preceding theorem be fulfilled
and assume A(X) = \jr < 1. Then \A(u>) —1| < 5 for all \LJ — X\ > e whenever

x <
V26

V / r - 2 ( l -2<5)- l

where x := \Z\ — 1.

Proof. First an x > 0 is sought so that A{\) = 1/r and

(3.29)

for \UJ — A| > e. Proposition 3.9 implies that A(ui) is strictly monotonic on
each side of A so that (3.29) reduces to a condition on the boundary A ± e :

1 -
(rx)2 + e2

where the Pythagorean identity was used (approximate the small arc Au> by
a straight line of length e in figure 3.1). This implies

x2(r2{l-25)-l) <26e2

If r < l / \ / l — 2(5 then the last inequality is satisfied for all x = \Z\ — 1 > 0
(because the filter almost degenerates to an allpass). Otherwise x must satisfy

x < (3.30)

Since
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25>\1- i2(u/)l = I1 - ^M| | l + ^ H l (3-31)

it follows immediately that | l - i ( w ) | < 25 and thus 2-25 < \1+A(u))\ < 2+25
so that (3.31) implies

| l - i H | < 2S =5 + O(52)^5
|1 + A(u)\

if 5 is small, which proves the proposition. •

Note that (3.30) is weaker than (3.26) since 5 is replaced by y/5 in the for-
mer condition. The degrees of freedom (parameters) pi,P2,P3 of an elementary
ZPC-filter (3.18) can be interpreted as follows:

1. The common argument pi := A of the zero and the pole determines the
frequency for which the amplitude of the filter has an extremum (damping
or amplification).

2. Assume the filter is 'normalized' : for example |.T(0)| = 1 so that \C\ =

Yz\ m (3.18). Define the 'parameter'

Then pi determines the relative damping (amplification) of a sinusoidal in-
put signal of frequency A (when compared to components with frequencies
close to zero). If |A| > > max(|Z| — 1, \P\ — 1), then p% can be approxi-
mated by (\Z\ — 1)/( |P| — 1).

3. Let A be given and suppose \Z\ and \P\ are varied such that A(X) re-
mains constant. Then the third parameter p$ := \Z\ determines the width
e (of the interval where the filter damps or amplifies) for a given approx-
imation 5 (see theorem 3.10). Figures 3.2 (amplitude functions) and 3.3
(phase functions) illustrate this effect for a damping effect (by a factor
two) in A = TT/2 and for the alternative parameter values pj, := \Z\\ = 1.1
(dotted lines) and P3 := \Z\\ = 1.01 (solid lines). A comparison of both
figures confirms that the amplitude function seems easier to approximate
than the phase function: for \Z\ = 1.01 the amplitude function converges
rapidly (to a constant \Z — 1|/|P — 1|) whereas the decay of the phase
function (in absolute value) is slower on both sides of A := TT/2: this fact
is established in proposition 3.11 in which it is shown that weaker condi-
tions are necessary for ensuring the convergence of the amplitude function
towards the identity. Note also that $(0) ^ 0 here because the filters are
complex.

ZPC filters strengthen the parsimony concept and their degrees of free-
dom (parameters) are straightforwardly interpretable. The plots in the above
figures suggest that ZPC-designs can be advantageously used for seasonal
adjustment (because non-seasonal components remain 'almost unaffected').
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0.0 0.2 0.4 0.6 0.8 1.0

Fig. 3.2. Amplitude for \Z\ = 1.1 (dotted) and \Zi\ = 1.01 (solid)

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 3.3. Phase for \Z\ = 1.1 (dotted) and \ZX\ = 1.01 (solid)

Empirical results (see chapter 7) confirm this conjecture.

Recall the definition 3.6 for a QMP filter :

n
f(u>) := exp(ircj) J J (z'k -

fe=i

where Z'k are zeroes on the unit circle.

Definition 3.12. The class of QMP-ZPC filters is defined by
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n
r(w) := exp(irw) J ] (z'k -

fe=i

where the minimum phase filter r'(u>) is assumed to be a pure zero-pole com-
bination filter.

These filters are characterized by the following properties:

• minimum time shift,
• generality (the unit-root operator can be used when the input process is

integrated)
• estimation for arbitrary time points N — r,0<r<N — l,
• enhanced parsimony and straightforward interpretation of the parameters

(remaining degrees of freedom of the zeroes and poles of the filter).

An equivalent parameterization of the QMP-ZPC-filter F(-) is given by di-
viding numerator and denominator polynomials of the minimum phase filter
?'(•) by n*=r Zj and l[f=1

 pj respectively:

hll , „ n"=i (^2j - i - exp{-iu)){Z2j - exp(-iw))
1 (u>) = O -,

Uk=i(p2k-i ~ exp(-iu>)){P2k - exp(-iw))

iELan'+ito-'
_i)(l — exp(—iuS)/Z2j)

Y\j=\ pj FlLiC1 - exp(-iu;)/P2fc_i)(l - exp(-iw)/P2fc)

TT'-r » (1 - exp(-ix— i - 2 n "+ 1

-p2kexp(-iuj))

(3.33)

II"*'" '/ •

where D := C—75P and 2j- = 1/Zj and pfc = 1/Pfc. The parameters Zj and
j i j

Pk of the minimum phase filter are now within the unit disk. Moreover, the
ZPC constraint (common argument) straightforwardly extends to the new set
of parameters. This new set is often preferred to the previous one, because
vanishing MA- or AR-coefficients (in (3.4)) are associated with vanishing ze-
roes Zj or poles pk (whereas Zj —> 00 or P& —> 00 which leads to inconsistency
of estimates and undesirable properties of their variance-covariance matrix for
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overparameterized designs).

It was argued at the beginning of this chapter, that suitable choices of Wk
and G(aJfc) in (3.1) can lead to a criterion for which the (asymmetric) filter
solution has 'desirable properties'. In chapter 5 it is shown that the optimal
weighting function G(-) is closely related to the periodogram. Therefore, some
well known and also some new results are presented for the periodogram in
the following chapter 4. These are necessary for deriving asymptotic as well
as finite sample results for the DFA.



The Periodogram

Within the methodological framework of the new signal estimation procedure
(DFA), an eminent role is attributed to the periodogram or to statistics di-
rectly related to the periodogram: it 'collects' and transforms the information
of the sample Xi, ...,Xjv- Therefore, properties of the periodogram (used in
(1.9)) are presented in this chapter. Some results are well known (so references
to the literature are given only), others are generalizations of known results
or are new. In the latter two cases, extensive proofs are given.

In sections 4.1 and 4.2 spectral decomposition and convolution theorems
are presented based on the periodogram. The obtained results are generalized
to non-stationary integrated processes in section 4.3. Explorative instruments
for deciding between different optimization procedures or filter designs are
derived.
The results of these sections are the 'main core'. Sporadic uses of particular
stochastic properties of the periodogram make it necessary to develop other
aspects further. These are reported in chapter B in the appendix.

4.1 Spectral Decomposition

Define X := 1/N J2?=i xt (sample mean) and QN := {wfe|wfc = kn/[N/2], \k\ =
0,..., [./V/2]} where [N/2] is the greatest integer smaller or equal to N/2 and
N is the sample size.

Definition 4.1. Define the discrete Fourier transform of Xi, ...,X/v by :

) X t

Note that the discrete Fourier transform defined for u>k £ ON may be extended
to the real interval [—TT, IT] , see below. Define the weights
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1 , - [AT/2] < k < [N/2] if N is odd

i f A r i slt 7V 1S1/2 , |fc| = AT/2

The following discrete orthogonality relations are useful in the sequel:

._: «p (

An orthogonal spectral decomposition of XL, ...,XN may be obtained from the
following proposition:
Proposition 4.2. Lei Xf be a finite sequence of length N and let S^xi^k)
be the discrete Fourier transform of Xf. Then

y/2^
Xt = -j= ^2 exp(itu>k)wkE:Nx(^k) (4.4)

V-W k=-[N/2]

Proof. A complete proof is provided here, because in the literature mostly the
case of an odd integer N is found only. If N is even, then [iV/2] = N/2. Thus

k=-N/2

1 N/2 N

— Y2 wk exp(ituk) Yl Xi exp(-iju;fe)
k=-N/2 J = l

JV N/2

JV^Aj" £ wkexp(-i(j-t)wk) (4.5)
j = l k=-N/2

^ N N

— ^2 xj exp(-i(j - t)uj_N/2) ̂ 2
j = l fe=0

JV JV

^2
fc=i

where the last equality follows from the orthogonality relations (4.3). If AT is
odd then wk = 1 for all k and (4.5) becomes :

1 N [N/2]

j = l fc=-[iV/2]

AT AT
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which completes the proof of the proposition. •

67

By analogy to (A.I) (see the appendix) (4.4) is called an orthogonal spec-
tral decomposition of the sequence Xt. Note however that stationarity is not

required here. The expression —=WkE!Nx{wk) corresponds to the orthogonal
VN

incremental process dZ(u>) in (A.I).

Definition 4.3. The periodogram of a sequence Xt, t = 1,...,N is defined by

INx{uk) := \ZNx(oJk)\2 , k = -[N/2],..., [N/2] (4.6)

Up to now the sequence Xi, ...XN is completely arbitrary. If Xt is a stochastic
process (which is assumed in the following) then the statistic lNx(^k) is a
random variable. Its distribution is analyzed in chapter B in the appendix.
Note that the above definition slightly differs from the original one in Schuster
[82] by a normalizing constant.

Equation (4.3) implies

N

t=i
2-KN

for any constant C if u>k ^ 0. In particular

1 N

2TTN
t = i

(4.7)

(4.8)

so that the periodogram is 'immunized' against the parameter /J, := E[Xt] if
uik 7̂  0. For a>o(= 0) however

INX(0) =
1

(4.9)

The following proposition shows that the periodogram can be interpreted as
an estimate of the spectral density /i(wfc) (see also (A.6) in the appendix):

Proposition 4.4. The periodogram of a sequence X\,...,XN satisfies

N-l

I 2TT

(4.10)

where

N-\j\

(4.11)
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A proof showing the equivalence of (4.6) and (4.10) is given in Priestley [75]
lemma 6.1.1. If Xt is a stationary process and E[Xt] = /z ^ 0, then Xt

may be replaced by the 'centered' variables X[ := Xt — X. The statistics
R(j) corresponding to X[ are then the usual estimators of the autocovariance
function. Prom (4.8) and (4.10) one deduces

(4-12)

The following proposition presents a spectral decomposition of the autoco-
variance estimates (see also its analogue (A.5) in the appendix).

Proposition 4.5. Let Xt be a finite sequence.

• R(j) defined in (4-11) can be decomposed into

~ [N/2]

R(') — — Y^ (—" )I ( ) (A 13)
fe=-[JV/2]

where the weights w^ are given by (4-2).
• The sample variance of Xt can be decomposed into

N [AT/2]

T 7 ^ ( ^ < ~ ^ 0 = "A7 A^ WklNxi^k) — X (4-14)
t=l k=-[N/2]

Proof. A proof of the first assertion follows exactly the same line as the proof
of proposition 4.2, using (4.10) and the orthogonality relations (4.3). The
second assertion follows from (4.13) and

which completes the proof of the proposition. •

There exist different extensions of the periodogram from the discrete set
wjt,|fc| = 0,...,[N/2] to the continuous set u> £ [—n,?rj. Fuller [34] defines a
piecewise constant function:

1NX{U) := iNxi^k) (4.15)

if u>k — K/N < UJ < u>k + n/N. A motivation for this particular extension
is given in theorem B.2 in the appendix. It is also possible to extend the
definition of the periodogram 'directly' by allowing u> £ [—TT, IT] in (4.6) or
(4.10) :



2irN

4.2 Convolution Theorem 69
n

AT

exp(-ittj) (4.16)

The proof of lemma 6.1.1 in Priestley [75] shows that (4.6) and (4.10) are
identical for the latter extension. If X[ := Xt — X and if the extension (4.16)
is used, then in general INX>{U) ^ INX(U) if w ^ ON- Also, the stochastic
properties of the resulting random function will become more complex (see
for example the last assertion of Theorem B.4 in the appendix). Extension
(4.16) is useful for defining the periodogram of integrated processes, see 4.35.

4.2 Convolution Theorem

Let et be a weakly stationary white noise process : E[et] = 0, E[e2] = a2 < oo
and E[etet+i] = 0 for alii ^ 0 and let

k= — oo

be a two-sided stationary MA(oo)-process. The following definition proposes
an important regularity condition.

Definition 4.6. A filter F(-) is said to belong to the class CJ, u S M, if

oo

£ i7fcii*r<«>
fe=—oo

By analogy, the MA-process Xt in (4-17) is said to belong to the class CJ if

k=—oo

The above definition does not make a distinction between processes and filters.
Instead, the rate of decay of the MA-parameters (of the filter or of the MA-
process) is of interest. Immediate consequences of the above definition are:

1. Cy D C) if v > u.
2. A stationary ARMA-process Xt is in CJ for all u > 0 (denoted by Xt €

Cf).
3. Xt e Cy implies

|i?(i)||jr<oo (4.18)
j=-oo

A proof of the second assertion follows from proposition 2.2 in Hamilton [45]
and the last assertion follows from R(j) = a2 J2T=-oo bkbk+j and the following
proposition:
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Proposition 4.7. / / aj,bk are sequences satisfying J27L-<x>\aj\\J\u < °°;
£fci-oo \h\\k\v < oo where u,v>0, then

E E «*
j=—oo fc=—oo

Proof. Let w := mm(u,v) > 0. Then

lilmin(u,u)

E
k=—oo

oo oo

\j\w< E
J = — OO fc = —CO

oo oo

X) S) l
— oo —oo

= max(l,2u'-1)2u'-1)
OO OO

< OO

j ±

< 00

which completes the proof of the proposition. •

The following convolution theorem corresponds to theorem A.3 in the ap-
pendix. The first two assertions of the theorem are 'classical' results if Xt is a
white noise process. A generalization to MA(oo) input processes is proposed
here. The last assertion is a generalization of a result in Brockwell and Davis
[10] (proposition 10.8.5). It is used for deriving the efficiency of the DFA.

Theorem 4.8. Assume Xt is given by (4-17), let Yj = Xvfc=-oo lkXt-k be the
output of the filter -T(-) with coefficients 7^ and assume u>k G &N-

1. IfXt,r(-) £ C°f and jix = Q then

where limjV_0Osup1<;fcefijv E[\RNYx{uk)\] = 0.

2. IfXt G C°f, r(-) 6 C1/2 and \xx = 0 then

E[\R'NYX{"k)\2]=0{l/N)
(4.19)

where ENY(') was defined in (4-1) and the approximation is uniform in
u>k- Moreover,

(4.20)

where E[\RNYX(uJk)\] = 0(1/-//V) uniformly in uk.
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3. Assume /"(•) is real. If \ix ^ 0 then the above results are valid for u>k ^ 0.
For too = 0 one obtains the approximation :

W o ) = |r(o)|2/,vx(o)

+RNY'X> (0) + 2^=r(0)fixR'NY>x, (0) (4.21)

where Y{ = Yt-E[Yt], X[ = Xt-E[Xt] so that the error terms RNY'X'(0),

R'flfY'X'fi) meet the respective assertions of the theorem for the case fix =
0.

4. IfXt e C) and T(-) € C)'2 then

2TT [N/2]

— Y,
j=-[N/2]

2_
= AT E WjMuitflNxW+rtf (4.22)

j=-[N/2]

where E[\rN\] = o(l/y/N).

Proof. Assume first •E't-X'*] = 0. A proof if Xt is an iid sequence with finite
fourth order moments is given in Brockwell and Davis [10], theorem 10.3.1.
These results are extended here to more general input processes. From

z.NY(w) =

2 ^ I 2 ^ lkXt-k I exp(-ituj)
t=l \fc=-oo /

N

—i(t — k)u>)
fc= — oo * t = l

oo nr- JV-fc

7feexp(-ifco;)--= J^ Xtexp(-itw) (4.23)
fc= —oo

it follows that

oo

R'NYX(U) = X) -
k=—oo

N X

itw) (4.24)
\t=l-k t=l

Thus
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E[\R'NYX{u)\2]=E
oo oo

y j 5 J lilk exp(—ijw) exp(ifcw)
J =—oo fc=—oo

x f ) |iJ(i)|

J = ~ OO fc = — OO

{ o(l) first assertion
O(l/iV) second assertion

(4.25)

(4.26)

where the inequality (4.25) follows by noting that the differences of the two
sums on the left involve min(2j, 2N) and min(2fc, 2N) summands only. The
last equality (4.27) follows from (4.18) and the required assumptions, in par-
ticular the autocovariance function is absolutely summable by (4.18). Finally,
the approximation (4.20) then follows from:

INY(OJ) = \r(cj)\2INX(oj)
+2Re(R'NYX(-oj)r(u)SNX(uj)) \R'NYX(u)\2 (4.28)

and the preceding result (using the Cauchy-Schwartz inequality for the middle
term on the right hand side of 4.28). If nx ^ 0 then the preceding results are
true for u>k ^ 0 (by orthogonality of the exponential family for u>k € /2jv)-
Define X[ := Xt - fix, X := l / ^ E t ^ i xu My := E\Yt], Y' := Y - fiy, and
Y := 1/N 5Zt=i Yt- A proof of the third assertion then follows from

= \r(o)\2iNX,(o)

= INY>(0) +
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-RNY>X'(0) -

\/N
2^

' (0)

= INY(0) - RNY'X'(0) -

which completes the proof of the third assertion. A proof of the last assertion
may be based on proposition 10.8.5. in Brockwell and Davis [10]. However,
the latter result is shown only for F(-) being a one-sided stable ARM A filter
(which is more restrictive than JT(-) £ Cj ) and Xt = et being a white noise
process. Therefore, a generalization is needed here. For that purpose consider

fc= —oo

-k N

4=1

'min(fc,iV)

t=l

t-k exp(-i(t - kpj) - XN+t-k exp(-i(N +1 - /C)

t = i
1-t-k exp{-i(N

i_4_fc exp(- i ( l - t - k)uij

k= — oo

rain(fe,AT)

t=l

min(-fc,iV)

-feJ exp(-i(t - k)u>j)

-t-fc - ^i- t -fc) exp(- i ( l

where the last equality follows from u>j € QN- From (4.28) the error term
in (4.22) can be decomposed according to
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[N/2]

rN =
2TT

~N wj2Re(R'NYX(-u}j)r(cjj)ENX(uJj))
j=-[N/2]

0 [N/2]

_ v̂
N 2-J

 W-'
From (4.27) the second term is negligible. Consider therefore

«, [AT/2]

^ i=-[AT/2]

2 [JV/2] oo oo

j exp(-i(k -r

= - o o l = - o o

min(;,A r) AT

r=l t=l

2 \

j"=-[JV/2] fc=-oo i=-o

r=l t=l
Wj exp(—i(k — 1 + r + t)uij)

where I{i>o] a n d I{i<o} a r e indicator functions. For k,l,r fixed let
s = r — k mod(JV) so tha t

j=-[N/2]

Thus

N [N/2]

j = -[N/2]

< 2\lkll\E[X*\

and analogously

E
1 ^

t = l

[AT/2]

5 J Wj exp(—i(k — 1 + r •
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<2\lkll\E[X2
t)

Therefore

E[\rN\] « E

<E

4TT2

2TT

lv

2TT
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[iV/2]

j = -[JV/2]

[JV/2]

j=-[JV/2]
oo

2 2|7fc7i||min(|Z|,A0|£[X2j
oo oo

fc=—oo( = —oo

where the last equality follows from

S E E
fc=-oo/ = -oo

1*

= O{1/VN)

= 0 for each I. This completes thesince -T(-) € C .̂ and lim -

proof of the theorem. •

Remarks

• A stronger result than that in the second assertion of the above theorem
is presented in theorem 6.2.2 in Priestley [75], namely

INY(u>) = R NYX {OJ)

where

E[\RNYX{w)\2]=O{l/N2a) (4.29)

for F € Cf and Xt a white noise sequence. Unfortunately, this result is
false for arbitrary a as can be seen by the following argument:

N-l

k=N-l

see (4.10). Thus the bias of the periodogram of Yt is of order 1/./V if Yf is
not white noise. On the other hand, the periodogram of the white noise
sequence Xt is unbiased (see for example Brockwell and Davis [10], p.344).
This contradicts (4.29) if a > 1/2 (private note of H.R. Kuensch). Theorem
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6.2.2 in Priestley [75],p.424, relies on a result in Walker [90]: in that article,
a was not explicitly constrained to be less than 1/2 although a look at the
proofs on p . I l l , 113, 115 reveals that the approximations (inequalities)
are valid for a < 1/2 only (Walker uses d instead of a).

• It is shown in equation (4.10) that INY(0) = ^Y2 = O(N) if fiy ^ 0.
Therefore, the error term RNY'X'{0) + ̂ ^r(0)nR'NY,x,(0) = 0(1) in
(4.21) is negligible.

In the next section properties of the periodogram of non-stationary inte-
grated processes are analyzed. It is shown that explorative instruments useful
for selecting particular filter designs (constraints) for the DFA can be derived
from these results.

4.3 The Periodogram for Integrated Processes

In this section important properties of the periodogram of integrated input
processes are presented which are not discussed in the literature. Also, a set
of explorative instruments (specific to the signal estimation problem) are de-
rived from these results. The proposed instruments can be used for choosing
optimal filter designs.

Assume the process Xt satisfies

f[(l-ZkB)d"Xt=0(B)et
fc=i

where Zk = exp(iAfc) (and B is the backshift operator) and dk, k — l,...,p
are positive integers. Let Xt := 0(B)et = SfcL-oo kfcet-fc ^ ^ / an(^ assume
also that the spectral density of Xt satisfies h(\k) > 0 (so that Xt is indeed
integrated). Recall that the spectral density of Xt must exist because its coef-
ficients were assumed to be absolutely summable, see (4.18). Define the order
of integration d of Xt as d := max.k(dk)- Then Xt is called an /(rf)-process
with ^2 dk unit-roots.

4.3.1 Integrated Processes of Order One

Let Z = exp(iA) and assume that the process Xt satisfies the difference equa-
tion

Xt=Xt- ZXt-i = P{B)et (4.30)

where Xt € C°f, E[Xt] = 0. If

h{\) > 0 (4.31)

then Xt has a simple unit-root located at frequency A.
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Definition 4.9. The pseudo spectral density h(oj) of Xt is defined by

h{w):=

oo UJ = A

Assume for sake of simplicity that the process is initialized in t — —1 i.e.
X_i = 0. Therefore, Xt — Y?j=o Z^Xt-j- The following theorem summarizes
results from theorem B.IO in the appendix.

Theorem 4.10. Let Xt and Xt be defined by (4.30) i.e. Xt G Cj, E[Xt] = 0,

Z = exp(iA), h(X) > 0, X-i = 0 and let

f2N+1 := = k27r/(N + 1), \k\ = 0,..., [(N

For u) £ .O/v+i define the periodogram //v+ix(w) by (4-16) and use a similar
extension for the discrete Fourier transform SN-\

'- A then

\1 - Zexp(-icok)\
2

where the random variable v := ZN+1EN+1^{\) is independent of
If Xt G C® and A G &N+I then

(4.32)

(A) = (N + 1)2CA where lim E[Cx] = WA)/3
AT—too

Proof. Only the first assertion is proved here (see theorem B.IO in
pendix for a complete proof). Consider:

I

(4.33)

the ap-

2TT(N

2n(N +1)

1
2TT(N + 1)

1
2ir(N + 1)

(4.34)

t=o

Xt exp{-ituj)
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1 1

| l-Zexp(-iu;) |2 27r(iV+l)
AT

^2xt exp(-ituj) - ZN+1 exp(-i(N + 1
4=0

^AT+IXM - ZN+l exp{-i(N + l)w)Sj

JV

) w ) ^ X t Z - 4

t=0

(4.35)

If u G i^N+i, then exp(—i(N + l)u>) = 1 which proves the first assertion of
the theorem (see the appendix for a proof of the second assertion). •

Remark

• Theorem 4.8 (convolution theorem) does not apply here, since the filter co-
efficients of 1/| 1 — Zexp(—iu)k)\2 do not converge to zero (or, equivalently,
the MA-coefficients of Xt do not converge to zero). Theorem B.10 in the
appendix shows that the periodogram is biased even asymptotically (as an
estimate of the pseudo spectral density) and that lNx{^k) and INX(^I)
are correlated even asymptotically for k ^ /. The 'infinite memory' induced
by the integration operator is responsible for these undesirable properties.

The important special case Z = 1 (i.e. Xt = Xt-i + Xt) is treated in the
following corollary.

Corollary 4.11. Assume Xt — Xt-i — Xt with Xt G C® and h(0) > 0 (so
that Xt is indeed integrated). Assume also X_i = 0 and the sample is given
by XQ, ...,XN- Define an adjusted time series by X[ := Xt — tX^/(N + 1).
Then

0 w f c=0
(4.36)

1 - exp(-icok)\
2

where IN+IX'{-) is the periodogram of the adjusted series.

Proof.

Xt = AXt = Xt- Xt_i = X't - X[_x +

where C := XN/(N + 1). Equation (4.7) then implies

IN+lx(UJk) =lN+lAX'(Uk) (4-37)

for all wk(e i?N+1) ^ 0. Note also that AY := Y^oAXt/(N+l) = XN/(N+
1) (because X_i = 0). Therefore AX' = AX - AX = 0. It follows that
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| l - exp( - iw f c ) | 2 (4-38)

for all Wfc(6 /?AT+I) ^= 0. The first equality follows from the first assertion
of theorem 4.10. The second one uses AX' = 0 and (4.12) which imply
ZN+IAX'{$) = AX' ^/{N + 1)/2TT — 0 and therefore the random variable
v vanishes in (4.32) or equivalently in (4.38). The last equality follows from
(4.37) which completes the proof of the corollary. •

It is shown in the corollary that the periodogram of (the adjusted series)
X't may be considered as an estimate of the pseudo spectral density of the
integrated process, at least for uik ̂  0. Unfortunately this estimate is very
poor for wo = 0 (since it equals zero whereas the pseudo spectral density is
infinite). If it is known that Xt is integrated, then ijv+ix'(0) : = °° ls the right
choice. Otherwise, IN+IX'(0) can be replaced by /AT+IX(0) = "^r-^ • This
is a more 'flexible' estimate because

• for stationary input signals proposition 7.5 in Hamilton [45] proves that

i.e. E[IN+1X(O)} ~ h(0) (if E[Xt] = 0)
• and for integrated processes it is shown in theorem 4.10 (second assertion)

that
(N + I)2 ~

E[IN+lx(0)}~2ir{1 y> h(0)

which grows quadratically in N and linearly in h(0).

Therefore, ^j^X adapts for stationary as well as /(l)-processes (these issues
may play a role in signal extraction, especially for 'misspecified' designs, see
sections 5.3 and 7.2).

In the following section, results for the periodogram of /(2)-processes are
presented. A generalization of the above corollary 4.11 is proposed. It is shown
that these results can be used for deriving explorative instruments for choosing
among different possible filter designs for the DFA.

4.3.2 The Periodogram for I(2)-Processes

Let (1 - ZB)*Yt = (3{B)et with Z = exp(iA) and define Xt := (1 - ZB)Yt.
Assume also h(X) > 0 where h(-) is the spectral density of Xt := (1 — ZB)Xt
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(so that Xt is an /(l)-process and Yt is /(2)). Define the pseudo spectral
density of Yt by

hY(co) :=

Equation (4.32) implies

- Zexp(-iwt)\4 W ^ A

OO UJ = A

^t=oxt

(4.39)

2ir(N-

M

Z exp( \ —
(4.40)

where M := ZN+1 J2^=o xtz~l i s independent of wk. Furthermore, (4.33)
implies that

1

2ir(N-

>rem 4

f 1

10

y|M|2

twice

1

2TT(N

(for INY

jv+iy(A)

+ 1)

N

t=0

(A) = O(iV2

A) and then

= O(N4)

C A. LJI v/\L }

)

for INX(^

(4.41)

)) implies that

(4.42)

Remark

• Assume \wk — \\ > 6 where 5 is fixed (independent of N) and satisfies
7T — A > S > 0. Equations (4.40) and (4.41) imply that the bias of the
periodogram (as an estimate of the pseudo spectral density) at w^ is of
order O(N2) which shows that this statistic is not to be recommended for
processes whose integration order is equal to or greater than two. Section
7.2 exemplifies the consequences of this 'misspecification' using a simulated
example.

Important special cases for the location of the unit-roots are treated in the
following generalization of corollary 4.11.

Corollary 4.12. 1. Assume (1 - B)2Yt = Xt with Xt 6 C°} and h(0) > 0
(so that d = 2) and let Yt be initialized in the past (for example Y_i = 0).
Assume YQ,YI, ...,Y/V o,re observed and define

Yj:=Yt-t( AY- (4.43)

where AY and A2Y are the arithmetic means of AYt := Yt — Yt-i and
A2Yt := Yt - 2Yi_i + Yt-2- Then

0 fe = 0

else
(4.44)
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2. If (1 - B){\ - B12)Yt = Xt with Xt e C°f and h(kn/6) > 0, k = 0,1, ...,6
(so that d = 2), then define

Y[' := Yt - ±( ^ )

i)(2S (4.45)

where A12Y and A12AY are the sample means of Yt — Yt-i2 and Yt —
Yt-i — Yt-i2 + Yt-13. It then follows that

0 wfc = 0
H ) ( 4 . 4 6 )

| l - e x P H w f c ) | 2 | l - e x p H l 2 u ; f c ) | 2 %I j = 0,...,6

It is here assumed that all sample means are computed from t = 0 to t = N,
otherwise the above expressions must be slightly modified.

Proof. A proof of the corollary is established for (4.44) only (a similar proof
applies to (4.46)). From

AYl = AYt - {AY - ^^AW^ -(t- 1/2)(AW)

= AYt-AY- (AW) ((* - 1/2) - (4^

(where (t — 1/2) = (N — l)/2 is the arithmetic mean oft — 1/2 J and from

A2Yl = A2Yt - A2Y = Xt-X (4.47)

one deduces

AY' = A2Y' = 0 (4.48)

Moreover, (4.47) together with (4.7) imply

lN+iA'Y'(uk) = IN+ix(uk) (4.49)

for Wfc(€ i?iv+i) 7̂  0. It follows that

lN+lY'\Uk) — : ;—: rr^— (4.50)
l - e x p ( i w f c ) 2

| l - exp( - iw f e ) | 2

'^r~ (4-5i)

l - exp( - iw f e ) | 4
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for Wfe(G 1?AT+I) ^ 0. The first equality follows from the first assertion of the-
orem 4.10. The second one uses (4.48) and (4.12) which imply 5N+IAY'(0) =
AY's/(N + l)/2?r = 0 and therefore the random variable v\ vanishes in
(4.32) or equivalently in (4.50). The third equation again follows from the
first assertion of theorem 4.10 (applied to iN+iAY'&k))- As before, the
fourth equality follows from (4.48) and (4.12) (implying Sjv+i42y(0) =
A2Y'^/(N + l)/2ir = 0). Finally, the last equality follows from (4.49), which
completes the proof of the corollary. •

Defining an adjusted series Y{ or Y" as done in the above corollary may
seem unnecessarily complicated if the only issue is to replace the poor esti-
mate 7jvy(u;fc) by (4.44) or (4.46). However, the adjusted series Y{ or Y" are
interesting per se since they may be used advantageously for selecting partic-
ular filter designs. More precisely, they can give indications as to whether the
DGP is integrated or not. This is shown in the following examples.

Assume Yt is integrated of order two with roots Z\ = Z2 = 1 and Y_i =
Y-2 = 0. A straightforward calculation (see for example the development
preceding (4.35)) shows that

(1 - exp(-«wfe))5jv+iY(a;fc) = EN+iAY(^k) - ^N+IAY(0) (4-52)

Since AYt is 1(1) with a unit-root at frequency zero, it is shown in theorem 4.10
that the second term on the right of this equality is of order £N+IAY(®) —
O(N) so that it dominates BN+IAY^U) if \^k\ > 8, where 6 is held fixed
(independent of N). Therefore

|H^+1^y(0)|2

|l-exp(-iu; fe)|2

| l-exp(-iw fc)|2

| l-exp(-iw fe)|4

Taking expectations implies that

E

|

|2 -\

- exp(-iwfc)|
4 + E

-exp(-?wfe)|4
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* • >

1N+1X

= E[I
N+1Y

{uk)]

where the orthogonality of EN+1^{u>k) and EN+1^{0) is used in deriving
the approximation and where I^+ivi^k) is the periodogram of the adjusted
series. Thus, J/v+iy(wfc) asymptotically dominates /jv+iy(wfe) (in the mean).
Let for example

(1 - B)(l - B12)Yt = (1 - 0.65X1 - 0.5B)et

A particular realization (dotted line) and the result of an adjustment of order
two Y" (4.45) (solid line) of this process are shown in figure 4.1. To see the

Fig. 4.1. Adjustment for an I(2)-process (adjusted : solid line)

effect of the adjustment compare the periodograms of Yj and Y" in figure 4.2
(the smallest frequency corresponds to u>i) : spectral power which 'contami-
nates' the periodogram of Yi has been removed in the adjusted series Y" (this
power corresponds to v in (4.32)).

Assume now Yj is integrated of order one with the root Z — \ and let
y_i = 0. It is shown in (4.52) (or (4.35)) that

| l - exp( - iw f c ) | 2

Since AYt is stationary, equation (B.10) (see theorem B.4 in the appendix)
shows that SN+iAy{uk) and EN+IAY{Q)

 a r e asymptotically uncorrelated ran-
dom variables if o^ ^ 0. Therefore
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Fig. 4.2. Periodogram : adjusted (solid) and unadjusted (dotted)

E[IN+1Y(wk)]=E

>E

| l-exp(-iu;fc) |2

?N+lAY(uk)\'
| l-exp(-«u; fe)|2_

(0)|2

Jl-exp(-iwfc)|
2_

= E[IN+lY>(Uk)]

where Y{ is a first order adjustment, see corollary 4.11. The two examples
above suggest that the condition

AT/2

2J
AT/2

or equivalently

> (4.53)

N- ivTT ^ 2
(4.54)

t=0

are indicative for a unit-root of the process Yt (at frequency zero). Note that
the latter inequality (4.54) follows from (4.53) and the discrete spectral de-
composition (4.14). Note also that (4.54) affords less computational efforts
than (4.53) (which justifies use of adjusted series here).

As an example consider

(1 - B)Yt = (1 - 0.6B)(l - 0.
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A particular realization (dotted line) and a (first order) adjustment (solid line)
of this process are shown in figure 4.3. The sample variances are

Fig. 4.3. Adjusted (solid) and original (dotted) time series

N N
262 = ~Y)2>

NTT
= L "

The above examples illustrate the 'underadjustment' effect which is due to
the asymptotic dominance of the periodogram of the unadjusted (integrated)
series, as seen in (4.53). Consider now examples of 'overadjustment'. Assume
Yt £ C°t (so that adjustment is unnecessary). Prom (4.52) and using u>x =
ir/[N/2] one obtains

(YN - Y_i

= O(1/JV) + 0(1/VN)

(recall that wi = TT/[N/2] which explains the O(l/N) term in the last equal-
ity). Therefore, the periodogram of the (over)adjusted series satisfies

O(l/N2)

= 0{N)
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Since the periodogram of the original series is IN+\Y{^\) = 0(1), 'overad-
justment' produces spurious spectral power (towards u>i).

Remark

• ZN+IAY(UI) and SV+I/1Y(0) (and therefore IN+IAY(^I) and IN+IAY(0))
are not asymptotically independent here, as suggested by theorem B.4
(and theorem B.2) in the appendix. In fact theorem B.4 (and theorem
B.2) assumes that the spectral density of the stationary process is strictly
positive whereas here h^y(0) = 0 (due to 'overdifferencing').

The 'overadjustment' effect can be observed for integrated processes too. Let
for example

(1 - B12)Yt = (1 - 0.45)(l - 0.5B)et (4.55)

Attention is focused on the unit-root at frequency zero (a similar analysis could
be made for the 'seasonal' unit-roots). A realization of this process (dotted
line) and the result Y" of a second order adjustment (4.45) (solid line) can be
seen in figure 4.4. The adjustment of order two is 'misspecified' here since the
process is 1(1). As can be seen in fig.4.5, the adjustment does not significantly

Fig. 4.4. Overadjustment for an I(l)-process (solid line)

affect 'high frequencies' (both periodograms are almost indistinguishable).
However, for o»i = TT/[N/2] one obtains

= 0 0 7 3
| l -exP(- i l2wi) | 2

INY(UI) =0.52
INY"(UI) = 4.8
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Fig. 4.5. Periodogram : (over)adjusted (solid) and unadjusted (dotted)

where INA12Y(-) is the periodogram of the stationary MA(2)-process on the
right of (4.55). The first estimate is the 'natural' (unbiased) estimate of the
pseudo spectral density. As expected, the adjustment of order two (for an
I(l)-process) has induced spurious spectral power towards u>i: INY"(^I) is
significantly larger than the other two statistics. Also, the periodogram of the
integrated process ijvr(wi) dominates the 'natural' estimate as expected by
the previous 'underadjustment' effect. Note that the unit root at frequency
zero is not easy to detect here because it is 'masked' by the 1 + B + ... + Bn

operator in 1 - B12 = (1 - B)(l + B + ... + Bn) and by the negative MA-
coefficients in (4.55).

In the last example, 'overadjustment' of order two is analyzed. Consider
the (stationary) ARMA-process

(1 - 0.7B)Yt = (1 - 0.45)(l - 0.55)et

A realization (dotted line) and the result Y" of an adjustment of order two
(4.45) (solid line) are shown in figure 4.6. As can be seen by comparing the
periodograms in fig.4.7, the unnecessary adjustment induces 'large' spurious
spectral power towards UJ\ = ir/[N/2].

To summarize : ignoring a unit-root implies that the periodogram of the
integrated time series asymptotically dominates the periodogram of the ad-
justed series ('underadjustment'). On the contrary, 'overdifferencing' ('over-
adjustment') implies that the periodogram of the already stationary series
is asymptotically dominated by the periodogram of the erroneously adjusted
series. More generally, the unbiased estimate of the (pseudo) spectral density
of the input signal is asymptotically dominated by the misspecified (biased)
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Fig. 4.6. Overadjustment for an I(0)-process (solid line)

Fig. 4.7. Periodogram : adjusted (solid) and unadjusted (dotted)

'under' or 'overadjusted' spectral estimates. Therefore, adjusted series (Y{ or
Y"), periodograms of adjusted and of unadjusted (original) series and condi-
tions like (4.53) or equivalently (4.54) can be used for an explorative analysis of
unit-roots as shown above. However, these instruments are not an alternative
to 'traditional' unit-root tests (for example Dickey-Fuller or Phillips-Perron
tests). This point is now briefly discussed.

It is shown in chapter 5 that the best choice for the weighting function
G(-) in (3.1) is the unbiased estimate of the (pseudo) spectral density of the
input signal Xt. Therefore, 'local' differences
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or

(where Y{ is the adjusted series) towards 'potential' unit-root frequencies (for
example frequency zero) or 'global' difference measures

N/2 N/2

>

or
N/2 N/2

<
k^O kjtO

give indications for the choice of the optimal weighting function G(-). The di-
rection '>' indicates a possible 'underadjustment' (ignored unit-root) whereas
the direction '<' suggests unnecessary 'overadjustment' (overdifferencing).
The choice of the best weighting function G(-) improves the performances of
the resulting optimal asymmetric filter. Therefore, the proposed explorative
instruments emphasize the boundary signal estimation problem (instead of
the determination of the DGP). It is shown in section 5.3 that unit-roots of
integrated processes induce particular constraints for the optimal asymmetric
filters. Therefore, 'unit-roots' for the MBA are transposed into 'constraints' for
the DFA. However, such constraints (i.e. particular designs of the asymmetric
filters) may enhance the finite sample performances of the filters whether or
not the input process is integrated. The proposed explorative instruments indi-
cate which filter design (constraint) possibly performs better. Therefore, these
instruments cannot replace traditional unit-root tests because they 'measure'
a different aspect of the problem. As shown in chapter 7, a unit-root identified
by a MBA for a particular series does not necessarily lead to a correspond-
ing identification of a filter constraint for the asymmetric filter by the newly
developped statistics for the DFA and conversely: both sets of statistical in-
struments measure different aspects of the same problem which are suited
for their respective application fields. If a unit-root assumption enhances the
one-step ahead forecasting performance of a particular model (for the DGP
of Xt), then it does not necessarily follow that the corresponding constraint
for the asymmetric filter improves the signal estimation performance (and
conversely). Both problems are different for finite samples and an efficient so-
lution for one does not necessarily lead to an efficient solution for the other.
Adjusted series and periodograms of adjusted series are used as explorative
instruments for inferring the best filter design in chapter 7, where the per-
formances of various methods are compared empirically. Formal instruments
(tests and filter selection criteria specifically derived for the signal estimation
problem) for choosing among different filter designs are obtained from the
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distribution of the filter parameters in sections 5.7 and 6.2.

Remarks

• The adjusted time series satisfies YQ = Y'N (first order adjustment) and
AYQ = AY^j (second order adjustment), i.e. the 'levels' and the 'slopes'
for t = 0 and t — N are identical. This is achieved by subtracting linear
(first order) or quadratic (second order) time trends whose coefficients
are estimates of the means of the first and second order differences, see
corollary 4.12. If It € Cp then these estimates are of order O(l/v^V) (see
for example Brockwell and Davis [10] theorem 7.1.2 p.219). For integrated
processes however these estimates do not vanish asymptotically (they do
not even converge). The resulting 'spurious' linear or quadratic time trends
induce the bias of the periodogram of the unadjusted integrated time series.
By eliminating the 'spurious' trend through a suitable adjustment the
periodogram of the resulting time series becomes an unbiased estimate of
the (pseudo) spectral density for u>k ^ 0.

• 'Over' or 'underadjustment' can be detected by the fact that the unbiased
estimate of the (pseudo) spectral density is dominated by the misspecified
(under- or over adjusted) biased spectral estimates. If an adjusted time
series is not 'overadjusted', then the transformation 'flattens' the original
series which results in smaller unbiased estimates for the (pseudo) spectral
density. However, in the presence of overadjustment the original series is
'inflated' which produces spurious spectral power (bias).

• Generalizations to arbitrary integration orders d are not difficult. The
adjustment then removes a polynomial of order d in t. However, for most
applications d = 2 is sufficient.

• A comparison of (4.44) and (4.39) reveals that the periodogram of the ad-
justed series Y( can be interpreted as estimate of the pseudo spectral den-
sity of the integrated process Yj, at least for tOk ^ 0 (a similar conclusion
would hold for (4.46)). But it is again a very poor estimate for u>o = 0. As
in the preceding section, the poor estimate Jjv+iy(0) = 0(= IN+IY"(0))
can be replaced by /jv+iy(0) = ^^Y for frequency a>o = 0. This choice
is more sensible since the resulting estimate is able to adapt for unit-roots
asymptotically.

In this chapter, properties of the periodogram were analyzed for station-
ary and integrated processes. Moreover, explorative instruments (specific to
the signal estimation problem) for deciding between possible filter designs
were derived from these results. The properties analyzed so far are useful for
establishing theoretical results for the DFA in the following chapter 5.



Direct Filter Approach (DFA)

The new DFA briefly presented in section 1.4 is analyzed formally in this
chapter. It is shown that the obtained signal estimates are consistent and ef-
ficient for a large class of input signals. For the DFA, the filter coefficients are
obtained 'explicitly' by minimizing an efficient estimate of the revision error
variance whereas for the MBA the filter coefficients are obtained 'implicitly'
by minimizing the one-step ahead mean square forecasting error of a suitable
time series model. Therefore, the DFA is efficient and 'more flexible'. So for
example the 'fit' of the transfer functions (of symmetric and asymmetric fil-
ters) can be decomposed into the 'fit' of the amplitude functions and the 'fit'
of the time shift (phase) functions. The separation of 'selectivity' and 'time
shift' properties of the asymmetric filter can be used for optimizing filters
subject to a time shift constraint. Therefore, it is possible to detect 'turning
points' (for example of a trend signal) earlier than for traditional model-based
methods.

An informal introduction is provided in section 5.1 where the main con-
cepts are presented. In Sections 5.2 and 5.3 the consistency of the DFA is
derived for stationary and non-stationary (integrated) input signals. In sec-
tion 5.4 a generalized conditional optimization procedure is presented. The
result is a filter with optimal selectivity properties subject to a time shift
constraint. The efficiency of the direct filter approach is assessed in section
5.5. Two alternatives are analyzed: a 'linearized' approach and a solution
based on a 'non-linear convolution'. The common asymptotic distribution of
the estimated filter parameters is derived in section 5.6 under a generalized
stationarity requirement. Thus, parameter hypotheses can be tested in the
DFA and a criterion for inferring the optimal number of parameters of the
asymmetric filter can be derived. Also, a 'unit-root' test specific to the signal
estimation problem is proposed in section 5.7. Finally, a link between the DFA
and the MBA is presented in section 5.8.
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5.1 Overview

The transfer function of an ARMA filter is given by (recall (3.6)):

M = Cexp(iruj) ' . — — (5.1)
rife=i(-p2fe-i - ( ) ) ( P ( ) )

k=-r

where (Z2j-i,Z2j), j = 1, ...,n and (P2fc-i,P2fc)> & = 1, ••-,«' are pairs of
complex conjugate numbers (zeroes and poles) and Zj, j = 2n + 1, ...,q + r,
Pfe, k = 2n' + 1,...,Q are real numbers (zeroes and poles). The superscript
'Qq' and the subscript r determine the AR- and the MA-orders of the filter
(which are Q and q + r respectively). Moreover, r indicates estimation for the
time point i = TV —r in the sample, see definition 3.6. If the number of param-
eters p = Q + q + r + l is relevant (but not the AR- or MA-orders), then the
filter is also denoted by F^(-). Note that an ARMA-filter assumes knowledge
of a semi-infinite sample ...,XN-2,XN-I,XN. For simplicity of exposition,
this problem is ignored here but solutions are proposed in section D.I in the
appendix.

Estimation for the time point t = N — r implies that N — r sample val-
ues Xi, ...,Xjff-r can be used 'on the left' of the filter and r sample values
XN-r+i,...,XN 'on the right'. If r ^ N/2, then the filter f]?(-) is gener-
ally asymmetric. Therefore, the estimation problem becomes more difficult
for 'small' r. In principle, the filter (5.1) could be used for estimating Y/v-r',
where r' > r. However, such a choice would generally be inefficient because
additional information as given by Xjv-(r'-r)+i>-^i\r-(r'-r)+2i •••J^N can be
used for estimating Y/v-r' •

Define AY®q := Yt—Y^9 where Yt is the (unknown) output of a symmetric
filter F(-) and Y®q is the output of the (generally) asymmetric filter P^q(-).
Then a solution of

mm E[{AY%«?\ (5.2)
l r

solves the signal estimation problem for the time point t = N — r in the
class of ARMA(Q, q + r)-filters. This is not necessarily the 'best' filter when
considering a larger class of admissible solutions. However, in finite samples
'good' solutions can often be achieved for suitable choices of Q and q (this
problem is discussed in section 6.2). Therefore, estimation of the parameters
of ARMA(<5, q + r)-filters is of interest in this chapter. For notational conve-
nience, 'Qg' and V are often dropped from the notations rf?q(u>) or Y®q if
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not explicitly required. But beware of misinterpretation:

The expression on the left hand side of the inequality is the sample estimate
of (5.2) (which is of interest), whereas the expression on the right hand side
is not meaningful: Y^_t and Y®q

N_t, are outputs of different filters if t ^ t'.
Also, the expression

mm E[(AYt)
2}

t
implicitly assumes an optimization for some fixed Q, q if not explicitly stated
otherwise.

Note that the distinction between ZPC- (zero-pole-combination) and gen-
eral ARMA-filters is not relevant in this chapter, because asymptotic results
are analyzed only. The ZPC-constraint, namely the common argument of the
zero-pole pair, intends to weaken overfitting which is a problem in finite sam-
ples (see chapters 6 and 7 for corresponding issues).

For most applications neither Yt nor the data generating process of Xt

(and thus of AYt := Yt — Yt) are known. Therefore, an approximation of the
expectation in (5.2) is needed. Assume the input signal is a stationary MA
process:

J2 (5.3)
k= — oo

where et is white noise. Consider the following expression :

o

—
k=-[N/2]

where AT(-) := f(-) -/"(•) and ujk € DN. The weights wk are denned in (4.2)
and INX(-) is the periodogram of the input signal Xt, see section 4.1. The
convolution theorem 4.8 shows that |Z\.T(a;fc)|2J/vx(wfc) can be interpreted as
IN AY (wfe)> i-e. as the periodogram of the output of the filter AF(-). Thus

[N/2]2TT
 [N/2]

 2TT

Yl \Ar{)\2I()
2TT

Yl wk\Ar{ujk)\
2INX(ujk) ~ — ^2 wkINAY{u)k) (5.4)

k=-[N/2] k=-[N/2]

Note also that the left hand side can be computed from Xi, ...,X^ whereas
the right hand side cannot in general (since Yt is unknown). Summing up
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) in (5-4) corresponds to a (discrete) spectral decomposition of the
natural estimate of the final revision error variance:

2

"JT7 £ ™klNAY{uk) = -YJ{AYt? (5-5)
fc=-[JV/2] t = l

The idea of the direct filter approach is the following : find a filter F(-) which
minimizes the left hand side of (5.4)- The corresponding filter output then
minimizes (5.5) (up to a negligible error term), the latter expression being a
natural (and efficient) estimate of (5.2).
A formal development is provided in the following sections.

5.2 Consistency (Stationary MA-Processes)

The DFA is analyzed for stationary MA(oo) input processes. Wold's theorem
(see section A. 1.2 in the appendix) shows that a general stationary process
can be decomposed into the sum of a MA(oo)-process and a linear determinis-
tic harmonic process. Harmonic processes are ignored here, basically because
most empirical time series seem not to be 'overlapped' by strictly sinusoidal
components. Therefore, the class of MA-processes can be considered as a gen-
eral class of stationary input signals.

Assume the symmetric (extraction) filter satisfies F(-) 6 Cj, so that the
function F(-) is continuous and bounded. Therefore, it may seem 'natural' to
require F(-) to be bounded uniformly in N (i.e. independently of N). Assume
also Xt € C° so that the spectral density h(-) of the input process is contin-
uous and bounded, see proposition B.I in the appendix. Imposing continuity
(in some sense uniformly) of the approximating ARMA filter seems another
'natural' and more restrictive requirement (examples of bounded and discon-
tinuous (in the limit) niters are provided in chapter 6). These issues are now
motivated more formally.

Assume that the input process Xt is regular (i.e. it is not linear deter-
ministic, see section A. 1.2 in the appendix). Then Xt admits a one-sided
MA-representation Xt = YlT=o ^k^t-k (of possibly infinite order, see section
A. 1.2 in the appendix). Assume also that this one-sided representation is
invertible, i.e. that Xt admits a (absolutely) convergent AR representation
Xt = Yl'kLi akXt-k + f-t with Y^k=\ \ak\ < oo (this is for example useful
when computing forecasts for the MBA). Finally, assume Xt 6 C9 so that its
spectral density function exists (recall that the spectral density is the Fourier
transform of the autocovariance function and use (4.18)). Invertibility implies
that h(u) — a2 Efelo f̂e exP(~iku)\ > 0 for all u (otherwise a A would exist
such that 1 — Y^k=i ak exp(—ifcA) = 1/ J f̂clo t>k exp(-ifcA) = oo which con-
tradicts the absolute summability of the sequence afe). Using the fact that



5.2 Consistency (Stationary MA-Processes) 95

1/ ]>3fclo ^kBk transforms Xt into et, (2.24) then implies that the transfer
function of the filter minimizing (5.2) is given by

(5.6)

The subscript r of F£°(LJ) indicates estimation for the time point t = N — r
(the filter (5.6) assumes knowledge of Xt+r,Xt+r-i, •••) and the superscript
oo indicates that the filter may involve infinitely many parameters. It is easily
seen from equation (5.6) that the optimal filter Fj?° is continuous and bounded
(use | J2JLo bj exp(—ijw)\2 — h(u) > 0, and proposition 4.7 for the numerator
polynomial), which confirms the regularity requirements stated above.

Since the coefficients bj are generally unknown, F£°(-) is unknown too and
must be estimated. Therefore, solutions generally depend on N, the length
of the sample. Prom the preceding discussion it is then natural to require
uniform continuity (stability of the ARMA-filters) of the estimated solutions:

Definition 5.1. A sequence of ARMA filters /V( -) is called uniformly stable
or uniformly continuous ifYl'kL-r \lNk\ < M for some M > 0, where M does
not depend on N.

If the number of parameters p is fixed (independent of N), then definition 5.1
implies that for stable ARMA filters

oo

53 \iNk\\k\a<Ma
k=-r

for all a (where Ma > 0 does not depend on N but on a). Section 6.4 extends
definition 5.1 to ARMA filters for which the number of parameters p — p(N)
may increase unboundedly as a function of N.
It is now assumed that a sequence of estimates /OJV(0 of (5.6) is uniformly
stable. This can be achieved by techniques presented in chapter 6.

In the following proposition it is shown that the left hand side of (5.4) is
a (super) consistent estimate of the right hand side expression for fixed stable
ARMA filters.

Proposition 5.2. Let Xt £ C° be the stationary MA-process (5.3)

Xt = i^x "I"
fc=—oo

and let

2 [AT/2] N

— 53 wk\Ar(u,k)\
2INX(u,k) = jj^2(AYt)

2+rN (5.7)
fc=-[AT/2] t = l
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where AT(-) := T(-) - /"(•) and AYt := Yt-Yt. Assume further that f(-) is
a fixed and stable ARMA-filter.

• IfT(-) G C£ then liniAr̂ oo £ [ M ] = 0.
• IfT(-) G C} /2 iften E[\rN\] = o{l/VN).

Proof. If JT(-) € C" then the stability of /•(•) and the triangular inequality

|7fe - 7*1 < W + iTfel imply that Ar(-) e Cf. Define AY := £ £ t
d dand consider

9TT
 [N/2]

t = l k=-[N/2]

2TT

-77

fc=-[JV/2]

where the second equality follows from the spectral decomposition of the sam-
ple variance, see proposition 4.5. Theorem 4.8 then implies

2

X ) s [ l ^ ( ) | ] (5.8)

_ J o(l) first assertion
1^2 second assertion

However, a stronger result is needed for the second assertion. This is given by
(4.22) in the last assertion of theorem 4.8. •

The error r^ is called 'convolution error' because it is determined by
RNAYxi^k) in theorem 4.8. The left hand side of (5.7) can be computed
(using XI,...,XN only). It is shown in the above proposition that this ex-
pression is a superconsistent estimate (i.e. the error is of smaller order than
1/y/N) of the unknown 'sample variance' jf ^2t=i(AYt)2. The following the-
orem shows that the left hand side of (5.7) is also a consistent estimate of
the revision error variance .E[(ziYt)2]. The 'decomposition' of the resulting
approximation error into the above convolution error rjv and an additional
error term is useful when analyzing the efficiency of the DFA, see section 5.5.
More importantly, the theorem shows that the approximation remains valid
for the sequence of stochastic filters minimizing the left hand side of (5.7),
provided the latter define a uniformly stable sequence.

Theorem 5.3. 1. Let F(-) be a fixed stable ARMA-filter, let Xt be given by
(5.3) and assume tt is iid and E[ef] < oo. Furthermore let

2

— Y, wk\Ar(cjk)\
2INX(Lok) = E[(AYt)

2}+RN (5.9)
k=-[N/2]
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where uk G ̂ N and AT(-) := T(-) - f(-) .

• IfXt,reC°f then lim^oo E[\RN\] = 0.

• 7/Xt G Cjl, r G C^ and a > 1/2 iften E[\RN\] = O

2. If the sequence of solutions /OAT(-) of

2

min— 5 ] wk\AT(uk)\
2INX(uk) (5.10)

r fc=-[AT/2]

is uniformly stable, then the results obtained in the preceding assertion
remain valid for the stochastic filters /OJV(-).

Proof. For the first assertion the required assumptions together with the trian-
gular inequality {'jk — 7fc| < |7fc| + life I imply ^i-T(-) € Cf whenever F(-) £ Cf
(since /"(•) 6 C^° by the stability assumption). This together with Xt G C°
and proposition 4.7 implies AYt G C°. Therefore

E[AYt}
2

t=l
[AT/2]

2?r O

+—\Ar(0)\2INX(0) + rN1 + rN2 + rN3 (5.12)

where E[r2
Ni\ = O(l/N),i = 1,2 (see for example Brockwell and Davis [10]

remark 1 p.230 and theorem 7.1.2 p.219) and £[|rjv3|] = o(l) or ^[|rjv3|] =
0(1/y/N) depending on the above assumptions (see proposition 5.2).
Since the above proof only requires stability of the ARMA-filter it remains
valid if the constant (fixed) filter /"(•) is replaced by the stochastic filter /OAT(-)

provided the sequence FON(-) is uniformly stable. To see this, note first that
and rjV2 in (5.12) remain bounded as asserted by the theorem because
- fON(-) G CJ uniformly in N:

oo oo
V ^ I - n ; la ^ V ^ /I i ,
N |7fc -7fcOAr||«[ < y . (|7fc| +

fe=—oo fc=—oo

(where Ma can be chosen independently of N) whenever F(-) G CJ. There-
fore, the assumption Xt G C° and proposition 4.7 imply Yt — If ON G C9
uniformly in N, i.e. J^fcl-oo \ck0N\ < M1 where CkoN are the MA-coefficients
of Yt — YtoN and M' can be chosen independently of N. Brockwell and Davis
[10] (remark 1 p.230 and theorem 7.1.2 p.219) then show that r^i and
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converge as required.
The remaining 'error' rjv3 in (5.12) has been analyzed in the preceding propo-
sition or, more precisely, in theorem 4.8. It can be verified directly by ana-
lyzing the corresponding proof, that the uniform stability assumption implies

= o(l/y/N) as claimed. This completes the proof of the theorem. •

The consistency of the DFA is proved in the following corollary. It is as-
sumed that the unknown solution f(-) of

min E[(Yt-Yt)
2}

r

is selected in the class of ARMA(Q, q + r)-R\ters, where Q and q are fixed, and
that it is stable (the latter requirement has been motivated at the beginning
of section 5). Denote by 7^ and Yt the MA-coefficients and the output of F(-).

Corollary 5.4. Let the assumptions of theorem 5.3 be satisfied and assume
also that the sequence of ARM A (Q,q + r)-filters -TOJV(-) solving

2TT
 [N/2]

min— J2 wk\Ar(ujk)\
2INX(ujk) (5.13)

r k=-[N/2]

is uniformly stable. Then the output YtoN of /bjv(') satisfies
E[(Yt - YmN)2} = E[(Yt - Ytf] + RN (5.14)

where RN = o(l) or RN = 0(1/y/N) depending on F € C° or F € Cj .

Proof. The corollary is proved for F G C\ , i.e. RN = O(l/y/N) (a similar
proof would apply if F € C°). Let

E[(Yt - YtQN)2} = min E[(Yt - Yt)
2] + RN

r

and suppose

^ = o ( l ) (5.15)

It is shown that this hypothesis leads to a contradiction:

27T [ ^ ]

min— 22 wk\AF(ujk)\
2INx(^k)

r k=-[N/2]

2TT

k=-[N/2]
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= E[(Yt-Yt0N)*+O(l/y/N)
= mmE[(Yt-Yt)

2]+O(RN)
t

0(RN)

0{RN)

The second equality follows from theorem 5.3, second assertion. The third
equality is a consequence of (5.15). The last equality follows from the first as-
sertion of theorem 5.3, using the stability of the solution of min/. E[(Yt — Yt)

2]
which implies that R'N = O(1/V~N) so that R^ asymptotically dominates R'N
(by assumption (5.15)). Since RN ^ 0 by assumption, the above development
contradicts (5.15) which completes the proof of the corollary. •

The resulting signal estimation procedure is called a direct filter approach
because the ARMA-filter /OJV(') 'directly' minimizes (a consistent estimate
of) the revision error variance.

Remarks

1. The uniform stability requirement is necessary for establishing the pre-
ceding result. One can implement uniform stability in the form of a
constrained optimization. Often sup^, |-T(w)| is known a priori (symmet-
ric trend estimation and seasonal adjustment filters for example often
satisfy supw \r(u>)\ = 1). Boundedness of the functions /bjv(-) may be
achieved by imposing supw |/OJV(W)| < Mi where Mi is an a priori
bound (for example M\ := 1). Alternatively, a constraint of the type
supw \droN{uS)/dduj\ < Mi could be used. However, such restrictions are
often not easily interpretable. So for example the amplitude function of
the best asymmetric trend extraction filter often exceeds 1, see for exam-
ple fig.2.5. Therefore, an a priori choice of the bounds Mi or M2 is not
obvious in general. An alternative method is to restrict the poles, i.e. to
require \Pk\ > 1 + e for k = 1,...,Q, where e > 0 is fixed. However, the
(a priori) choice of e is still arbitrary. Chapter 6 presents more refined
devices which let the data choose the 'degree of smoothness' required for
the asymmetric filter /biv(0-

2. The interpretation of (5.9) is intuitively appealing : the signal estimation
problem for finite samples and stationary input signals corresponds to
a weighted sum of transfer function errors (sampled at a^ 6 l?jv)- The
(non-parametric) weighting function is the periodogram of the input sig-
nal. The periodogram is a measure of the 'power' of the signal in the
intervals [wfc_i,Wfc]. Therefore, the strength of the corresponding compo-
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nents of Xt 'modulates' the fit of the asymmetric transfer function. The
approach is essentially based on discrete spectral decomposition (of the
sample revision error variance) and on discrete convolution results.

3. The filter AT(-) £ Cf is a continuous function. Therefore |AT(-)|2

'smooths' the periodogram in (5.9). Using non-parametric consistent es-
timates of the spectral density of Xt ('smoothed' periodogram) is unnec-
essary here.

4. An alternative proof of theorem 5.3 could be based on

9 _ [AT/2] ., [N/2]

1 J2 ^
k=-[N/2] k=-[N/2]

f \Ar(u)\2h(w)dL0 (5.16)
J — 77

E[(Yt-Yt)
2}

where suitable regularity assumptions are needed for ensuring a good ap-
proximation. A justification for the approach followed in proposition 5.2
and theorem 5.3 is the better understanding of efficiency problems (see
section 5.5). On the other hand, the above approximation steps (based on
the integration of the spectral density) reveal uniform stability problems
better (see chapter 6).

5. The approach taken in (5.14) implicitly accounts for one- and multi-step
ahead forecasts (as opposed to the MBA whose parameters are optimized
with respect to one-step ahead performances only). Note also that fore-
casting problems resulting from non- or 'nearly' non-invertible input pro-
cesses are avoided (using the DFA).

6. It is easily seen from (4.10) and (5.12) that the difference between /"(•)
and F(-) at frequency UJ0 = 0 induces a bias (of the estimate Yt) and that
the differences of the transfer functions at w^ ^ 0 determine the variance
of the estimate. Consider an estimate of the bias:

(AY)2 = f W(0)

= ^ (\Ar(0)\2INX(0) + RNAYX(0)) (5.17)

where the first equality follows from definition 4.4 and where the error
term is

RNAYX(0) = RNAY'X'(0) + 2-=Ar(0)fixR'NAY,x,(0) (5.18)
V2TT

see (4.21). The bias problem can be 'tackled' as follows:
• Constrain the optimization by requiring F(0) = F(0) (see for ex-

ample section 5.3). As a consequence |/i-T(0)|2 = 0 which implies
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that the bias vanishes asymptotically, see (5.17) and (5.18) (note that
RNAY'X'(0) = o(l), see theorem 4.8). Unfortunately, the constraint
r(0) = -T(O) is unnecessarily severe for stationary input processes.
A better method is proposed here. Transform Xt to X't := Xt — X so
that INX' (0) = 0. If X[ is used instead of Xt, then the bias vanishes
asymptotically (RNAY'X'(0) = o(l) in (5.17), see theorem 4.8). In the
next step the optimal filter FON(-) is computed using the periodogram
of X't. The transformed signal X[ is then mapped to the corresponding
filter output Y{. In order to 'recover' the optimal estimate Yj define

which can be motivated by invoking the linearity of the filter. Unfor-
tunately, /JVX'(0) = 0 so that /OJV(O) is generally suboptimal. The
following definition is recommended instead

Yt := Yl + r(0)X

It can be shown that the proposed 'level correction' F(0)X is an
asymptotically best linear unbiased estimate of the level \xy of Yt, see
for example Brockwell and Davis [10] p.220. Therefore, the filter F0N(-)
can be optimized for minimizing specifically the variance, neglecting
thereby the bias problem. Moreover, a (generally unnecessarily severe)
restriction of the form F(0) = F(0) can be avoided.

In the following, the index N of the solution -ToAr(-) (minimizing (5.9)) is
dropped if not explicitly required. Denote the result obtained in corollary 5.4
by

[N/2]

k=-[N/2]

2?r
min— ^2 wk\Ar(ujk)\

2INx{uJk)

(5.19)

where the left-right-arrow '<->' indicates that both expressions are equal and
that the solution fo(-) of the left hand side is also a solution of the right hand
side (and vice versa).

In this section, sufficient conditions ensuring (5.19) in the case of linear
input processes were presented. Chapter E in the appendix analyzes an exten-
sion of the DFA to non-linear input processes. The following section proposes
a generalization of the DFA (as given by (5.19)) to non-stationary integrated
processes.
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5.3 Consistency (Integrated Processes)

It is assumed that the input process Xt is integrated and that the unit-roots
are known. One can then show that the basic idea of the DFA, namely to esti-
mate the revision error variance by a consistent functional of the asymmetric
filter (see (5.9)), can be generalized. The key requirements for this general-
ization are additional regularity assumptions and a set of constraints. If they
are satisfied, the revision error variance is finite (although the variance of the
input process is infinite). Therefore, if the signal Yj is integrated, then Yt and
Yt must be cointegrated.

The existence of unit-roots and the a priori knowledge of their location(s)
on the unit circle are 'academic' assumptions useful for establishing for-
mal proofs. Nevertheless 'potential' unit-roots and their location are often
known a priori (for economic time series for example, possible 'candidates'
are exp(—i\k), where Ao = 0 and Xk k > 1 correspond to 'seasonal' funda-
mental or harmonics). Unit-root tests (for example Dickey-Fuller- or Phillips-
Perron- or HEGY-tests, see for example Hamilton [45], chap. 17) offer formal
approaches for testing such hypotheses. Tests specific to the signal estimation
problem (as solved by the DFA) are presented in section 5.7. The importance
of unit-roots, i.e. consequences of unit-root misspecification(s), are illustrated
empirically in section 7.2. In the present section, attention is restricted to
asymptotic results under the assumption that the unit-roots are known. Thus
a particular aspect of the signal estimation problem is highlighted formally.

Let

Xt •= M + I I (exp(-iAj) - B) 'Xt (5.20)
J=I

where dj £ IN are integers, B is the backshift operator, Xt is a real process and
Xt is a stationary real MA-process. It is assumed that Xt has been suitably
initialized in the 'past' (for example XQ = X-\ = ... = X^max(^}) = 0). It
is also assumed that Xt € C° (so that its spectral density h(-) exists) and
that h(Xj) > 0 for j = 1, ...,n. Therefore, Xt is integrated. Assume P(-) is
sufficiently regular (see below for a formal requirement) and define

AT(w) := <

%

(5.21)

where AF(w) := r(oj)—r(ijj) and Ajk are the corresponding MA-coefficients.
The limiting expression for w = A; is derived from Taylor series developments
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of numerator and denominator polynomials : it exists if certain assumptions
are satisfied (see below) and then the revision error variance is finite. Define
also AF1(OJ) as the i-th. derivative of F(u>) — F(u>) with respect to ui, where
AF°(u>) := r(w) - f(u>) for i = 0.
The following theorem is needed for generalizing the preceding results for
stationary input signals to non-stationary integrated input signals.

Theorem 5.5. Let Xt defined in (5.20) be the input signal ofF(-) and assume
Xt has been initialized in the past (for example Xo = 0,). Assume

• the regularity requirements:
- r(-) e Cd

f
+5+a where d := max(dj)j=i,...,n, 5 > 0 and a > 0.

- /•(•) is a stable ARMA-filter and
- XteCj and h(Xj) > 0 for j = 1,..., n.

• the constraints :

[Xj) = 0 , i = 0,...,dj - 1 andj = l , . . . , n (5.22)

where ArW(-) has been defined above.

Then the following assertions are true :

• AYt := Yt — Yt £ C° and thus AYt is a stationary process. Moreover
condition (5.22) is necessary for ensuring the finiteness of the revision
error variance.

• AF(-) € Cf where AF(-) has been defined above.

Proof. The theorem is proved for two unit-roots Ai and A2, i.e. for integration
orders d = 1,2 only. Similar arguments apply to larger integration orders.
Define

Apl^ := 7 1 - f f M t • ̂
^exp(—^Al) — exp(—iu>))

so that:
00 00

2_^ ^7feexp(—iku>) = (exp(—iAi) — exp(—iufj) 2_J A^\exp(—ikui)
k= — 00 k=—00

Thus

00

AJI = ] T Alk+j exp(i(j + l)Ai) (5.23)
j=o

Introducing the second unit-root and using (5.23) for

AF{UJ) = ( i A 2 ) — exp(—i

leads to:
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A% = 2J^7fc+jexp(i(j-
0=0

= exp(i(Ai + A2))

= exp(i(Ai + A2))

= exp(i(Ax + A2))

= exp(j(Ai + A2))

j=o
OO

0=0

oo

1=0

z/A2) exp(i(j -
1-0

exp(ijAi) - Ai))

(=o

j A i
«(j + 1)(A2 —

i(A2 - Ai)) -

i, A2) (5.24)
j=o

where A% are the coefficients of (5.21) and the definition of /(•) is straight-
forward. Assume first d = 1 i.e. Ai ^ A2.

• By assumption AT(Ai) = Ar(\2) = 0. Thus

oo

2_, Alk+jexp(ijAi)/(j, Ai,A2) = CiAT(Ai) + C2^r'(A2) = 0

where C\ and C2 are constants (the first equality can be verified straight-
forwardly by inserting the definition of /(•) and simplifying). Therefore,

can be written as:

/, Ai,A2) A;>0
A%=

• Assuming k > 0, one obtains

j exp(ijXi)f(j, Ai, A2) fc < 0

exp(yAi)/(j, Ai,

(5.25)

3=0

= O(k -a-s-d) (5.26)
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where M = sup -̂ \f(j, Ai,A2)| < 2/|exp(i(A2 — Ai)) - 1|. A similar result
is obtained for k < 0, using (5.25). For d = 1 and S > 0 the last result
implies AF(-) 6 CJ as was to be proved.

Assume now Ai = A2 = A so that d = 2 and thus f(j, Ai, A2) = exp(i2A)(j' + l)
(use de l'Hopital's rule for example). Therefore, (5.24) implies

oo

= exP(i2A) ] T Alk+j exp(ijX){j
3=0

The identity

exP(z2A) E°lo

- exp(i2A) Ejl-o

follows (for k < 0) from:

exp(ijA) (j + 1) fc > 0

+j exp(yA)(j + 1) * < 0
(5.27)

j=-oo

exp(-yA)(-*(j + 1)) = exp(iA) —

= 0

where (5.22) is used, i.e. Ar(\) = 0 =
Af(-) € Cf. Assume first k > 0 so that

. It is now shown that

3=0

= O(k-a-s-d+l= O(k (5.28)

and similarly for k < 0, using the identity (5.27). Therefore /^-T(-) S Cf, since
d = 2. This proves the second assertion of the theorem. A proof of the first
assertion follows from

oo

AYt=
fe=—oo

oo

fe=—oo \ j '=—oo
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(where bj are the MA-coefficients of Xt). Since AF(-) £ C° and Xt € C°,
proposition 4.7 implies that AYt € C° as required. The 'necessity' part of
the assertion follows from the spectral decomposition of the variance of the
stationary process

Var(AYt) = —

where h(-) is the spectral density of the stationary process Xt and AT(-) is
defined in (5.21). Since the continuous spectral density h(-) satisfies h(\j) > 0
for all unit-root frequencies (by assumption) the integral remains bounded if
and only if the expression in (5.21) exists. Therefore, the constraints (5.22)
are necessary. This completes the proof of the theorem. •

The necessity part in the second assertion of the theorem implies that the
condition (5.22) (together with regularity assumptions) is important because
otherwise the variance of the filter error would be infinite (asymptotically). A
practical implementation of this condition is therefore proposed now.
The condition (5.22) can be realized by a conditional optimization of the
zeroes and poles of /"(•) on the left hand side of (5.9). In particular, if n =
1, di = 1, Ai = 0 (random walk Xt = Xt-i + Xt) and P(-) is a real symmetric
extraction filter satisfying -T(O) ^ 0 then

) := Ctr(u)

provides a simple parameterization of the 'conditional' ARMA filter
(since -Tc(O) = T(0) or equivalently (5.22) is satisfied). For the simple random-
walk hypothesis, the condition (5.22) or equivalently /b(0) = F(0) therefore
implies equivalence of the 'levels' of the outputs Yt and Yt. This is quite
reasonable, since random-walks grow unboundedly (in absolute value).
If r(0) = 0 then define fc(w) := (1 - exp(-iw))r(w). The last definition
straightforwardly extends to more general processes with unit-roots Zj =
exp(iAj), j = 1,..., s, where Â  ̂  Â  for j ^ k. If F(\j) = 0, j = 1,..., s as for
example in seasonal adjustment filters, then :

- exp(—iw))(exp(iAj) - exp(—i

satisfies the conditions (5.22). The above first order conditions for processes
with integration order one therefore amount to a perfect matching of the trans-
fer functions of -T(-) and F(-) at the unit-root frequencies.
This requirement can often be weakened. Note first that (5.29) does not de-
pend on the phase function of the ARMA-filter (because the filters are real).
If F(\j) = 0 for all unit-root frequencies Â  ̂  0 (seasonal adjustment or trend



5.3 Consistency (Integrated Processes) 107

extraction filters generally satisfy this assumption), then Fc(Xj) = F(Xj) = 0,
j = 1, ...,s do not depend on the phase function of the ARMA-filter. There-
fore, in this particular situation (which is often given in practice), the first
order conditions can be alternatively stated as perfect matching of the am-
plitude functions at the unit-root frequencies. Note however that this 'weak
form' of (5.22) assumes F(Xj) = 0 for Xj ^ 0. Otherwise it is generally false
(i.e. the phase must be accounted for).
In chapter 7 so called 'airline'-models are used. These models assume the
exsitence of a process of integration order two (double unit-root at frequency
zero). Therefore, additional second order conditions must be considered in
(5.22). Assume first -T(O) ^ 0 (for example a trend extraction or a seasonal
adjustment filter). A simple parameterization of a corresponding 'conditional'
ARMA-filter, denoted by Fcc(>^), is given by

(5.30)

where Fc{ui) is defined in (5.29). In fact one easily verifies that AF^°\0) :=
T(0) - fcc{0) = 0 and dfCc(v)/du> = 0. The last result shows that

AT«(0) := = 0
ui=0

in (5.22) (use the symmetry of the extraction filter F(-) which implies
dr(oj)/duj\w=o = 0). A disadvantage of (5.30) is to be seen in the convo-
lution of rc(w) with itself which may worsen the initialization problem of
the ARMA-filter (see sections 3.1 and D.I in the appendix). Therefore an
alternative solution is proposed here. Consider

so that

(5.31)

where for the moment it is assumed that /cc(0) = -T(O) (first order condition
only) so that .4(0) = ACc{0)- Note that dACc(u)/du> = 0 because the
ARMA-filter is assumed to be real (and thus the amplitude function is an
even function with an extremum at frequency zero). Since Acc(0) = A(0) =
|.T(0)| > 0 by assumption, the derivative in (5.31) vanishes at w = 0 (which
implies AT^^O) = 0, i.e. (5.22), see above) if and only if

= fe(0) = ° (5-32)
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where the definition of the time shift function has been used (together with
the fact that the phase function vanishes at u> = 0, recall definition 3.2).
Therefore, the second order condition for processes with a double unit-root at
frequency zero is equivalent with a vanishing time shift of the ARMA-filter
Fed') (at frequency zero) which may be satisfied by a simple constrained
optimization. The following device is used for the examples in chapter 7: let

z ~
P — exp(—iu

(a;)

and assume that (Z, P) is a real stable and invertible zero-pole-pair i.e. Z £ IR
and Z > 1 and analogously for P. It is now shown how to choose Z and P so
that the second order condition is satisfied (the first order condition is achieved
by a simple normalization which does not affect the time shift-condition).

0 = dfcci")
= l-. P-Z Z-l df'cc{u)

u=0

Solving for P results in:

P-l du>

Zf'cc{0)

P = (5.33)

which can be solved for any Z > 1 under the constraint P > 1 (stability).

Note that / ^ ( O ) and i dF%{uj) = -(i2)A'cc{Q)ficc{Q>) (see (5.31)) are
real numbers, so that P is indeed real. Moreover, if Z > 1, then P > 1 is
'automatically' satisfied if r'cc(ti) > 0 and </>'cc(0) > 0 (the latter ensures
that i(Z — 1) — ^ > 0 in (5.33)). These conditions are satisfied for
asymmetric ARMA-approximations of many important signal extraction fil-
ters (for example general trend extraction or seasonal adjustment filters).
Equivalently, solving for Z would result in

(5.34)

Until now, the (most important) case P(0) ^ 0 was analyzed for an 1(2)-
process. If r(0) = 0, then using the symmetry of the extraction filter (which
implies dr(w)/dw\u~ = 0) implies that /bc(^) := (1 -exp(—iuj))2t{uj) sat-
isfies AT(°)(0) = ArW(0) = 0 as required by (5.22).

iPf'cc

ir'cd

(0)Hh ( P -

(P-

- 1 )

1)

dfyc(w)
du

df'cc{u)
du
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An intuitive explanation for the second order condition </>cc(0) = 0 (for
the case -T(O) ^ 0) can be given as follows. The 'slope' (first difference) of a
realization of an I(2)-process (with a double unit-root at frequency zero) is
a random-walk. Thus the slope grows unboundedly in absolute value as time
passes. Therefore, the paths are 'strongly' trending so that filters with non-
vanishing time shifts are penalized.

Proposition 3.11 already suggested that 'amplitude matching' is a simpler
task than 'phase (or time shift) matching'. It is therefore not surprising that
the 'weak form' of the first order conditions relate to the amplitude function
(provided F(\j) = 0 for A., ^ 0) and that second order conditions relate to
the time shift (phase) function.

These remarks conclude the practical implementation of the important
condition (5.22) (for most practically relevant cases). An extension of the DFA
to integrated input processes is proposed in the following corollary. Assume
Xt £ C®, so that the spectral density h(-) exists and is continuous (recall
(4.18)). Moreover, it is assumed that h(Xj) ^ 0 for j = 1, ...,n. This condition
ensures that the 'local' integration order of Xt at A.,- is indeed dj, for j = 1,..., n
(i.e. assumption (5.22) is not unnecessarily severe).

Corollary 5.6. Let Xt and Xt be defined by (5.20) and let the assumptions
of theorem 5.5 be satisfied.

1. If the assumptions of proposition 5.2 or theorem 5.3 are satisfied for the
stationary input signal Xt then the corresponding assertions remain true
if the expression on the left hand side of (5.9) is replaced by

2 [if/2]

— £ wk\AT(wk)\
2INJt(uk) (5.35)

k=-[N/2]

i.e. if one replaces Xt by Xt and AF(-) by AF(-) (as defined in (5.21))
in (5.7) and (5.9).

2. If the assumptions of corollary 5.4 are satisfied, then

2TT
 [N/2]

i
Fc k=-[N/2]

nun E[(Yt - Yt)
2} + 0 (-±=\ (5.36)

where / c ( 0 satisfies (5.22) and the error term is of order O(l/^/N) in
absolute mean.

Recall that the symbol '<->' indicates that the expressions on both sides
are equal and that a solution of the left hand side (which is constrained by
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(5.22)) also is a solution of the right hand side (which is not constrained a
priori) and vice versa.

Proof of the corollary. If the sequence of constrained (ARMA) filters
FCON(') minimizing (5.35) is uniformly stable (as assumed by theorem 5.3),
then the approximations (5.26) and (5.28) in the proof of theorem 5.5 can be
made independent of N. Therefore, the assertions of theorem 5.5 remain true
for the sequence /boiv(-) (independently of N). In particular, the second asser-
tion shows that the (set of) conditions (5.22) are necessary. Therefore, the filter
minimizing the right hand side of (5.36) must satisfy the conditions (5.22).
Furthermore, the first assertion of theorem 5.5 ensures that AF(-) € CJ, i.e.
the regularity assumptions required by proposition 5.2 or theorem 5.3 are
satisfied. Therefore, the latter results can be applied to the stationary input
signal Xt € C°, replacing AF(-) by AF(-) in (5.7) and (5.9) as claimed. As
a consequence, corollary 5.4 can be applied, implying (5.36) (by analogy to
(5.19)). This completes the proof of the corollary. •

The following remarks complete the analysis for integrated processes. As-
sume for the sake of simplicity that n = 1 and Ai = 0 in (5.20). Thus, Xt is
a non-stationary process of integration order one with a single unit-root at
frequency zero. The (conditional) filter Fc(-) defined in (5.29) then satisfies
the condition (5.22). Denote the Fourier coefficients of Fc{-) by ^ck-

Remarks:

• The expression on the left hand-side of (5.36) may be formally rewritten
as

(5.37)
k=-[N/2] n » ( ( i A ) H ) )

where the singularities are replaced by the limiting values obtained in the-

orem 5.5. Theorem 4.10 shows that E
L

INx(^k) - T T , MO| l-exp(-zw f c) |2

0(1) for all u>k ^ 0, so that solutions minimizing (5.37) and solutions
minimizing the left hand side of (5.9) (which is based on the periodogram
of the integrated process) generally differ. Which solution is the better?
The results above imply that the periodogram of the differenced (station-
ary) process Xt must be used in order to derive the optimal approxima-
tion to F(-). The main reason for this is that the coefficients of the filter

never decay, thus the convolution theorem 4.8 cannot be

applied anymore (i.e. INx(uk) ^ M _ e x ,_i(jJ \\2INx(uk) + o(l), see

theorem 4.10).
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Adjusted series (see corollaries 4.11 and 4.12) are interesting, because their
periodograms are identical with the weighting function in (5.37) (except
for ujQ = 0). Applications are given in chapter 7.
The filter AF(-) and the process Xt are mathematical 'constructs' used
for estimating the parameters of F(-). They are not of interest per se.
Assume that the assumptions of theorem 5.5 and of corollary 5.6 are sat-
isfied so that Xt <E C°f. If E[Xt] = 0, then 7^(0) = ^- (T)* = 0(1),

where X is the sample mean of the differenced stationary process (see for
example Brockwell and Davis [10] theorem 7.1.2, p.219, and use Xt 6 C°).

It is also shown in theorem 5.5 that AF(-) as denned in (5.21) is bounded.

Therefore ^|/if(0)|27Ar^(0) = O(l/N) can be neglected in (5.36): if
H = 0, then the bias problem can be neglected asymptotically (recall re-
mark 6, p. 100).
Suppose now that n ^ 0 in (5.20) so that Xt has a linear drift. Then it fol-

lows that INx(0) = — IX) — O(N). As a consequence, the frequency

a>o = 0 cannot be neglected in (5.36): if /x ^ 0, then the bias problem
does not vanish even asymptotically. The interpretation of the difference
between both cases (no drift vs. drift) is straightforward : while a pure ran-
dom walk is asymptotically almost surely bounded by ±a-^/2N ln(ln(iV))
(the so called law of the iterated logarithm, see for example theorem 2.1.13
in Embrechts et al. [28]) the corresponding bound for a random walk with
drift increases linearly. In the latter case, the accuracy of the approx-
imation of the level of Yt must be enhanced. This is accomplished by
'strengthening' the order of the constraint Fc(0) = -T(O). In fact, consider

lim dATc(u)
- lck)k

fc= — oo

= \Af(0)\ (5.38)

where the second equality follows from (5.21). A look at the left hand side

of (5.36) shows that if INx(0) = — (X) increases (quadratically) as

a function of //, then |AT(0)|2 (and thus the derivative in (5.38)) must
decrease, since |zir(0)|2 is weighted by INx(0)- As a consequence, AFc(-)
or, more precisely, the phase of AFc(-) becomes more 'flat' in UQ = 0 (be-
cause the derivative must decrease in (5.38)). The first order approximation
now tends towards a higher order approximation located between orders
one and two. The random walk with drift therefore corresponds to an
intermediate case between I(l)-processes without drift and I(2)-processes
whose 'slope' is asymptotically infinite in absolute value (for the latter the
derivative in (5.38) must vanish, recall (5.32)).

The remarks above conclude the extension of the direct filter approach
to non-stationary integrated processes. As many practical examples demon-
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strate, a solution /b(-) of (5.19) or a solution /bo(") of (5.36) (depending on
Xt being stationary or integrated) often implies substantial time shifts (de-
lays) of the output signal, see for example fig.2.8. This may be problematic if
the detection of a 'turning point' (of the signal) towards the boundary t = N
of the sample is a key issue. Therefore, the next section presents a general-
ized conditional optimization procedure. Its solution is a filter with optimal
selectivity properties under a time shift constraint.

5.4 Conditional Optimization

Often the detection of a 'turning point' (of the signal) towards the boundary
t = N of a sample is an issue in applications. Without further hypotheses, the
concept of a 'turning point' is somewhat diffuse (recall by analogy the iden-
tification problem of a 'component' of a time series in section 1.3). However,
it is not possible to review here identifying assumptions for 'turning points'
discussed in the literature. Instead, a simple definition is provided: a turning
point is a local extremum of a trend signal. Evidently, this definition depends
on the (a priori) choice of the trend signal (see for example Proietti [76] for
more 'sophisticated' definitions). Identifying turning points as extremes of
trend signals permits illustrating the effects of the proposed method more
clearly. Examples are provided in chapter 8.

For simplicity it is assumed that Xt is a stationary MA process (the pre-
sented results are straightforwardly extended to integrated processes). The
task of detecting turning points 'earlier' involves the dimension of time. As
seen in section 5.1, the time shift function of an asymmetric ARMA-filter /"(•)
is 4>(LL>) := ${u))/ui where $(u>) is the phase function of the filter. If J1(-) is a
real symmetric positive (> 0) filter (which is true for a large class of problems)
then <&{u)) = 0. For convenience it is therefore assumed that $(LJ) = 0 = 4>(OJ).

In this case, obvious time shift conditions for the asymmetric filter are for ex-
ample |(/>(wfc)| < Jfe where 5k are some small prespecified numbers. However,
this seems to be a too simplistic approach:

1. According to (3.17) phase and amplitude functions are 'intimately' re-
lated. Therefore, the numbers 5k should be carefully selected because oth-
erwise the amplitude function (or equivalently the selectivity properties
of the asymmetric ARMA-filter) could be severely damaged.

2. The set of conditions |(/>(wfc)| < 5k, for k = 1, ...,n may be large. This can
affect the algorithmic performance (speed of convergence).

3. There does not exist any 'reasonable' a priori criterion for choosing 5k-
Moreover:
• Time-shifts essentially affect components in the pass band of the fil-

ters (since the remaining components are damped or eliminated). It is
therefore intuitively reasonable to 'weight' time shift constraints (for
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example with the amplitude functions of symmetric and asymmetric
filters).

• Time shift constraints at frequency u>k should account for the presence
or absence of corresponding components in the input signal Xt- This
can be achieved by periodogram 'weights'.

The above intuitive requirements can be formalized. To see this, decompose
\Ar(uj)\2 = \r(u) - r(w)|2 into

|f(w) - f(w)\2 = A(LJ)2 + i(w)2 - 2A(w)A(u) cos

+2A(w)A(u>) [ l - cos (S(u>) - <2>(u>))l (5.39)

It is now assumed that #(<*;) = 0 (symmetric extraction filter). Inserting (5.39)
into the left hand side of (5.9) gives

2 [AT/2]

- ^ Y, (A(Luk)-A(uk))
2INX(uk) (5.40)

fe=-[JV/2]

[JV/2]

+-£ 5 1 2A{wk)A(<jjk) [l - cos
k=-[N/2]

The first sum can be interpreted as that part of the (estimated) revision error
variance which is caused by differences of the amplitude functions. This is
called 'amplitude matching' which characterizes the selectivity of f(-). The
second sum corresponds to that part of the (estimated) revision error variance
which is caused by differences of the phase functions (here : departures from
0(w) = 0). This is called 'phase matching' and it measures the time shift effect
of the asymmetric filter. These considerations lead to the following time shift
condition :

[ ( ) ] (5.41)
fc=-[AT/2]

The proposed restriction affects directly that part of the revision error variance
which is due to time shift effects of the asymmetric filter. Note also that (5.41)
can be approximated by

2?r
— 2 J A{wk)A{ujk)Ji(j){ujk)

2INx{^k)<5 (5.42)
k=-[N/2]

where 2 1 - cos[l -
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A minimization of (5.40) subject to the constraint (5.41) can be achieved
alternatively by minimizing

I-K
 [N/2]

— £
k=-[N/2]

r
l(A(uk) - A(uk))

2 (5.43)

+(1 + \)2A(uk)A{Ljk) [l - cos

where A > 0 is a Lagrange multiplier. The latter 'controls' the relative impor-
tance of time shift (phase matching) and selectivity (amplitude matching) of
the asymmetric filter.
The parameter A can be determined as follows. Define the excess mean time
shift T of the filter by

ICfc—
r :=

where the same approximation as in (5.42) is used. It is readily seen that if the
(absolute value of the) time shift \4>(u})\ systematically exceeds k time units,
then T > k. The excess mean time shift corresponds to a suitable weighting
of the time shifts at u>k. Define now

A := r (5.44)

The parameter A gives more importance to 'time shift matching' in (5.43) if
the excess mean time shift is large.

Remarks :

1. Model-based approaches cannot account for time shift restrictions be-
cause corresponding asymmetric boundary niters are not obtained explic-
itly (rather they are defined implicitly by (1.4) which is equivalent to
(1.3)).

2. The expression (5.43) can generally no more be interpreted as an estimate
of the (final) revision error variance. Therefore, if fo(-) minimizes (5.43),
then an estimate of the variance (of the corresponding filter output) is
obtained by inserting Fo(-) into (5.40).

3. The expressions involved in (5.40) reveal the antagonism between am-
plitude and phase fitting in the optimum. Improving the fit of either one
results in less accurate matching of the other (in such a way that the mean
square error of the filter output increases). This problem corresponds to
the famous uncertainty principle in physics, see for example Priestley [75]
chap.7 and Grenander [42].
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4. The approximation of the cosine by a second order polynomial in (5.42)
makes sense because the conditional optimization constrains its argument
(the phase). A shift of one time unit at the frequency A := TT/6 (the fun-
damental seasonal frequency for monthly data) corresponds to a phase
£(71-/6) = TT/6 SO that cos(?r/6) - (1 - (TT/6)2 /2) ~ 0.0031 which is negli-
gible. For higher frequencies (> TT/6) the trend filter generally damps so
that the corresponding time shift restrictions can be neglected (since they
are weighted by the amplitude functions).

In previous sections, the consistency of the DFA has been derived for a
large class of input signals and signal extraction filters. The efficiency of the
DFA is analyzed in the following section. The obtained theoretical results are
confirmed empirically in chapter 7.

5.5 Efficiency

It is shown in proposition 5.2 and theorem 5.3 that the error terms TN and
RN in (5.7) and (5.9) are of orders o(l)/V~N and O(l)/VN under suitable
regularity assumptions. If the O(l)-term is 'small' then the DFA is efficient.
Therefore, the error term R^ is analyzed in this section. Moreover, a method
is proposed for which r/v = O(N~1^2~a) where a > 0 depends on regularity
assumptions.

Let the assumptions of theorem 5.3 be satisfied (thus Xt E C® : re-
sults straightforwardly extend to integrated processes using theorem 5.5). Let
•Aw(') denote the solution of (the left hand side of) (5.19) with corresponding
output YtoN- Also, let

1 N

r'0N := E[(Yt - Yt0N)2} - - £ ( Y t - Yt0N)2

4 = 1

be the error of the arithmetic mean of the process (Yt — Itoiv)2 and let

2n [N/2] 1 N

roN := -^r Y^ wk\ArON{ujk)\
2INx{oJk) - jj Yl^Yt ~ Y0Nt)2

k=-[N/2] t=l

be the 'convolution error' in proposition 5.2, then

= r'0N — rojv (5.45)

where RON is the interesting error term in theorem 5.3 (it is the error term
induced by the DFA). It is shown in the following proposition that the first
component r'0N = O(l/VN) is 'small'.
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Proposition 5.7. Assume Xt € C°, F(-) € C° and et is an iid sequence with

finite fourth order moments. Assume also that the solutions -Tbiv(-) of (5.19)
(left hand side) define a uniformly stable sequence and that the signal Yt is
known. Then

is an asymptotically best linear unbiased estimate of E[(Yt — Itoiv)2]-

Proof. Let AYt0N := Yt - Yt0N and AT0N(-) := T(-) - fON{-). r(-) G C°

and the uniform stability of the sequence PON(-) imply that AFON(-) € C°
uniformly i.e. there exists an M > 0 independent of N such that

oo

< ^2 I7fcl + l7fcoiv| <M
fc=—oo k=—oo

If Xt G C2 (as assumed), then proposition E.2 in the appendix implies that

3=0

where R(AYON)2U) is the autocovariance function of the process (AYt0N)2 and
M' does not depend on N. Therefore the spectral density of (<4Yto./v)2 exists
and is a continuous function (because its Fourier coefficients R(AY0N)2{k) are
absolutely summable). Grenander and Rosenblatt [43], section 7.3, then show
that (AY)QN := -^ X)t=i(/^-^*0JV)2 ^s a n asymptotically best linear unbiased
estimate of E[(Yt — ^tow)2] which completes the proof of the proposition. •

Note that the linearity in proposition 5.7 refers to the process zt := (Yt —
'- the arithmetic mean z is a linear estimate of its expectation. The close

correspondence of the sample mean (AY)%N and the maximum likelihood
estimate of E[(Yt — YtoN)2] can be seen by setting zt := AYfQN and assuming
that Zt is a stationary gaussian AR-process. One can show (see for example
Priestley [75], p.348) that the maximum likelihood estimate of the expectation
of Zt is then given by

~z\ +a{z2 + ••• + o,plp

Hz : r
fli + 0-2 + ••• + ap

where Zj+i := -j^— X)t=p+i-t Zt an<^ % a r e the maximum likelihood estimates
of the AR-parameters (a generalization to arbitrary stationary processes is
suggested in Brockwell and Davis [10], exercise 7.2, p.236). Since Zj, i = 1, ...,p
are 'almost' identical to 1 it follows that the sample mean z is 'almost' equal
(up to order O(l/N)) to the maximum likelihood estimate of the expectation
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of zt (which is the revision error variance E[(Yt —

These results show that the first error component r'0N in (5.45) is 'small'.
Proposition 5.2 and the proof of theorem 5.3 reveal that TQN = o(l/y/N) so
that the DFA (5.19) 'inherits' its efficiency from ^ S t l i C ^ ^ W ) 2 - In fact,
the expression on the left hand side of (5.19) is a superconsistent estimate
of the asymptotically best linear unbiased estimate -^ ^2t=i(^Yt0N)2 (of the
revision error variance).
Although the first error term rojv is asymptotically negligible, 'closer' approx-
imations of

are still possible. A corresponding method is proposed now.

The error term roN is induced by convolution errors RNAYONX (W). The
latter result from the approximation of the unknown periodogram

N-k

22 Xt exp(—ULS)
t=\-k

(see (4.23)) by \AroN(^)\2lNx(^)- INAYON(W) is a 'non-linear' discrete con-
volution (the summation limits of the inner sum depend on the index of
the outer sum), which assumes knowledge of the infinite sample of Xt.
|z}.ToAr(u;)|2/jvx(w) can then be interpreted as a first order ('linearized') ap-
proximation which assumes knowledge of the available sample only. In the
following, a 'non-linear' convolution is proposed which assumes knowledge of
Xi,..., XJV only. The subscript '0' for filters or time series (indicating solutions
of the DFA) is now dropped for notational convenience.
Let M and j3 be such that N = M + 2N0, where 1 > j3 > 0, and define

N0 p— N-N0-k

- "V V Xtexp(-itu) (5.46)
k=-Nf>

l3 N

j Yl Xtexp(-itw)
fc=-oo V M +

oo rr- N-2N13

^ Xtexp(-itu))

t=1

=: (I) + (II) + (III)

This expression can be computed for the sample (Xi, . . . ,XJV). Moreover, the
convolution is 'non-linear' for 0 < \k\ < N13 (corresponding to the first term
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(I)) and is 'linear' for k > N13 or k < N@ (corresponding to (II) or (III)). If
Ajk decays 'sufficiently fast', then the errors arising from the 'linear' terms
(II) and (III) may become negligible. The following theorem gives a precise
result:

Theorem 5.8. Let P and M be such that N = M + 2N0, where 1 > (3 > 0.
Assume T(-) € Cj+1/2, Xt <E Cu

f and f(-) is a stable ARMA-filter. Define

DN(u) := SMAY(w) - E'NAY{UJ) (5.47)

where EMAY{U) is the Fourier transform of the sample AYi+^o,...,
(assuming knowledge of the infinite sample of Xt) and B'NAY (w) *s defined by
(546). Then

E[\DN(u;)\2} = O(iV-1-2a /3) (5.48)

Proof.

DN{UJ) =

k= — oo

rr- I N-N0-k N

—? I ^2 Xtexp(-ituj)- ^2 Xtexp(-itw)

N-N^-k N-2N0

Xtexp(-iku>)- Y^ Xtexp(-itu)
t=l+NI>-k t=l

+ DN2(LJ) (5.49)

say. It is now shown that E[\DN2(u)\2] = O(A?-1-2a:/3).

[ oo oo

^2 ^2 ^7j^7fe exp(-yw) exp(ifcw)
lk=NI3+l

N-N0-j N-2N*3

Xt exp(-itcj)
N-2Nff \

Xt exP( i iw) ~ Y\ xt exp(ifw)
fe ^ / j

„ oo oo
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E
oo

X

i=-oo
oo

l=-oo
oo oo

X E
2TT 1

oo oo
X

(where 1/M = 1/(N -2N13) = O(N~1) is used). A similar proof with obvious
modifications shows that

which completes the proof of the theorem. •

The following corollary is the analogue of proposition 5.2 for the proposed
'non-linear' convolution.

Corollary 5.9. Assume Xt eC°f,r G Ca
f
+l/2, a > 0 and let M, (3 be defined

as in theorem 5.8. Let

2TT
 [M/2] 1 M

— E M"WK) = ] |E( Z 1 ^) 2 + ̂  (5-50)
fc=-[M/2] t=l

where I'NAY(^k) •= \Z'NAY(uk)\2 (defined by (546)) and u>k € OM •=

{k2ir/M | 0 < |Jfc| < [M/2]\. Then

E[\rN\] = OiN-1'2-^)

Proof. • Theorem 5.8 and (4.28) show that

) +
uniformly in k.

• The proof of proposition 5.2 shows that

2?r [M/2] 1 M

EE ^klNAY^k) = JT
k=-[M/2] t=l
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combining both results completes the proof of the corollary. •

Let /OAT(-) (with p(N) parameters) denote the solution of

[M/2]

fc=-[M/2]

where I'MAY^I*) are the squared moduli of (5.46) (see corollary 5.9). Assume
that -Toiv(') is a uniformly stable sequence. Then corollary 5.4 implies

2 . [M/2]
2TTm-in ~M ^ w ^ W k ) w mJn £[(yt - Ytf] + RON (5.51)

r fc=-[M/2] r

where ARMA-filters with p parameters are optimized on both sides and where
R0N = O(l)/\/iV (i.e. a solution of the left hand side is also a solution of the
right hand side and conversely). The convolution error part row in RON is now
of order O ^ - 1 / 2 - ^ ) .
Note also that the obtained results straightforwardly extend to integrated
input processes because theorem 5.5 and its corollary transpose the non-
stationary in the (constrained) stationary case.

The obtained results suggest that the convolution error row may be re-
duced at the expense of r'0N in (5.45). Indeed, increasing (3 in corollary 5.9
implies that r0N = O(Jv"-1/2-a/3) a n d M := N - 2N0 both decrease (at least
asymptotically for the former). But a smaller M implies poorer performances
of -k Ttii^t+m? (i-e. a larger r'0N).

The consistency and the efficiency of the DFA have been proved for a large
class of input signals and extraction filters. The asymptotic distribution of the
filter parameters for the DFA is analyzed in the following section. Results are
derived which can be used for inferring the filter orders Q and q + r in (3.6).
Moreover, hypothesis tests for the filter parameters are proposed.

5.6 Inference Under 'Conditional' Stationarity

The assumption here is that Xt is stationary or, more generally, that the
conditions (5.22) are satisfied if Xt is integrated (so that Xt in (5.20) is sta-
tionary). The latter requirement is called 'conditional stationarity' which is
subject to the constraints (5.22). A hypothesis test for the conditions (5.22)
is proposed in section 5.7.
In the previous section, the efficiency of the DFA was derived for the resulting
estimate Yt of the unknown signal Yj. However, nothing was said about the es-
timates of the filter parameters (zeroes, poles and normalizing constant). An
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expression for the asymptotic distribution of the filter parameter estimates
for the DFA is obtained in the first section 5.6.1 under the above 'station-
arity' assumption. Applications of this result are given in the remaining two
sections: section 5.6.2 analyzes the spurious decrease of the optimization cri-
terion (from which estimates of the unknown filter orders Q and q can be
derived) and section 5.6.3 proposes a test of parameter hypotheses.

5.6.1 The Asymptotic Distribution of the Parameters of the
'Linearized' DFA

It is first assumed that Xt is stationary. An extension to non-stationary in-
tegrated processes is provided in the remarks below. Consider an ARMA-
difference equation in the time domain as given in (3.4):

Q Q

Yt = J2akYt-k + Yl hkXt-k (5-52)
fc=l k=-r

Such a filter can be used for estimating ljv-r but not YN-r+i because it
assumes knowledge of the regressors Xt+r,Xt+r-i, •••,Xt-q. Instead of the
'traditional' AR- and MA-parameters in (5.52) the parameter set could be
denned by Zk and p^ in (3.33). The latter is often preferred because useful re-
strictions can be more easily implemented (so for example the ZPC-constraint
or unit-root constraints (5.22)).
The following theorem proposes an expression for the asymptotic distribution
of filter parameter estimates for the DFA (5.19). For that purpose denote
the (unknown) stable ARMA(Q, q + r)-filter minimizing the revision error
variance (in the class of ARMA(Q,q + r) filters) by -T<3g(-) and denote the
corresponding (unknown) (Q + q + r + l)-dimensional vector of parameters by
b.

Theorem 5.10. Assume

• F(-) S C/ and Xt € CJ . The white noise sequence e* (defining Xt) is
an iid sequence satisfying E[ef] < oo.

• The parameter set is given either by 'traditional' AR- and MA-parameters
in (5.52) or by zj andpk in (3.33).

• The DFA solutions /Q 9 ( - ) of (5.19) (for estimating YN-T) define a uni-
formly stable sequence of ARMA(Q,q + r) filters.

• The matrix (hessian)

= f_ j p ( | / » - /Q,(U;)|2) h(u)dLj (5.53)

is strictly positive definite in a neighborhood ofb.

It then follows that
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1. the vector \/^V(b — b) is asymptotically normally distributed with mean
zero. More precisely

VN(b - b) ~ AN(O, U Q ^ V Q < 1 U Q 1 ) (5.54)

where AN means asymptotically multivariate normally distributed and
where U Q 9 is defined in (5.53) and

VQq := 47r|" £ ( | / » - rQq(u>)\*) ( ^ (|r(a,) - /

xh(tj)2dw (5.55)

<92 9
onrf i/ie operators -^To(') and TS~(")

 a r e ^ e hessian and the gradient (of
oh oh

their arguments) respectively and h(-) is the spectral density o
2. the matrices UQQ and V Q 9 can be consistently estimated by

2
: = ] V E g^\r^k)-fQq(u,k)\

2INX(wk) (5.56)
fc=-[AT/2]

4 2 [N/2] 8

fc=-[JV/2]

( ^ (|r(wfc) - rQ 9(a; f c) |2)) / J V X H ) 2 (5.57)

More precisely

and

vQ g = vQg + 0(1/VN)

where the approximations are defined elementwise and in absolute mean.

Remark

Note that /"(•) and f(-) have the same ARMA-structure (same AR- and
MA-orders) but different parameters. One could set -T(w) := r(b,w) and
r(uj) := F(h,w) where -T(-,w) represents the common ARMA-structure.
Therefore

b = b
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and similarly for second order derivatives. The derivatives are taken either
with respect to AR- and MA-parameters or with respect to arguments and
moduli of Zk and pk as denned in (3.33).

• The strict positive definiteness of the Hessian implies that the parameters
are uniquely identified in the vicinity of b. So for example, cancelling zeroes
and poles of the ARMA-filters -TQ^-) and /QQ(-) are not allowed.

Proof of theorem 5.10. For notational convenience the index Qq is dropped
from rQq(-) and /Q 9 ( - ) and from the matrices UQ 9 , VQ 9 , U Q , and Vgq.
Define

2 [N/2] a

g
k=-[N/2]

A first order Taylor series development of P(-) centered in b then leads to

P ( b ) = U ( b - b ) + O((b-b) 2 ) (5.58)

Since the DFA is consistent the higher order term is asymptotically negligible.
It is shown in proposition 10.8.6 in Brockwell and Davis [10] that

Q+q+r+l

\ \ (5.59)

for any arbitrary array 1 of dimension Q + q + r + l (the proof is given for
ARMA-processes whose transfer functions are in C^°; however, a closer look

-I In

shows that the proof requires Cf 'only' as assumed by theorem 5.10). Note
also the slightly different periodogram definitions which imply a different nor-
malization of the integral in (5.59).
The Cramer-Wold device then implies

p(b) ~ AN(o, ^ I ^\r(w) - f HI2

Hoj)2doA (5.60)

The matrix U converges to U in probability. To see this, use the development
leading to (5.64) below and the consistency of the DFA-estimate : the latter
implies that the order of the approximation in (5.63) is at least o(l) in mean
square (which is sufficient for the required convergence). Since U is strictly
positive definite by assumption, U"1 must converge to U"1 by proposition
7.1 in Hamilton [45]. As a result, proposition 7.3 in Hamilton [45] (example
7.5) implies that asymptotically
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(b - b) ~ U^POb) (5.61)

where ~ means 'distributed as'. Note that

(b - b) = O(l/y/N) (5.62)

(use (5.60) and (5.61)). Taken together, these results imply (5.54) (note that
the hessian U is symmetric so that U = U' and that E[ef] < oo is needed
because otherwise the expression for the variance (5.54) would be infinite).
Consider now the estimates for the variance covariance matrix of the param-
eter estimates. In particular

2

TT E
k=-[N/2]

9 [N/2]

f E
k=-[N/2)

E | / 1 K ) r ( ) | 2 M ) 0(l/^V) (5.63)

j
fc=-[iV/2]

^ { u ) - f(u)\2h(uj)dcj + 0(1/VN) (5.64)

The second equality follows from (B.9) in the appendix. The third equality
follows from (5.62) which implies

F)2 r)2

A / * *" " =O(l/y/N)

uniformly in u>k- Finally, (5.64) follows from proposition 5.11 below, using the
regularity of r(uk) (which is infinitely often differentiable since it is a stable
ARMA filter) and the assumptions /i(-) e C1/2 and f(-) € CbJ2 so that the
second order derivatives of -T(-) are in Cy (note that the product of these

112

functions must be in Cf by proposition 4.7). Finally, consider

' N ^ '

fc=-[AT/2]| E |
k=-[N/2]
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k=-[N/2]

xh(ujk)
2+O(l/VN)

(5.65)

The second equality follows from

• the identity

E[INX(cok)
2} = Var{INX{ujk)) + E[INX(wk)]

2

2h(wkf + O(l/y/N)

see (B.2) and (B.18) in the appendix;
• the approximation

"-If E
k=-[N/2]

A 2

[JV/2] [N/2]

+ E E
fe=-[JV/2]j=-[/V/2],j#fc

= OQ./N) (5.66)

where #(•) is an arbitrary bounded function. The order in (5.66) is a con-
sequence of (B.3) and the boundedness of g(-). Note that

in (5.65) is bounded elementwise because of regularity assumptions.

The last two steps leading to (5.65) are identical to the last two steps in (5.64).
This completes the proof of the theorem. D

The following proposition is needed in the proof of theorem 5.10:

Proposition 5.11. Assume /(•) G CJ . Then

r 2TT [N/2]

/ f{oj)duj-— Y, f(uk) =O(1/VN)
•*-* k=-[N/2]
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Proof. Let w be fixed and X € [LJ — n/N, w + TT/N] be such that

Then

max |
' e [o>-7r/JV,u)+7r/JV]

Ik {exp (-i\) - exp(-iw)}
fc=—oo

k=-VN

7fe{exp(-iA)-
|fc|>\/JV

•O(i/VN)

y/N
k=—oo

= O(I/VN)

uniformly in LJ. Therefore

\k\>VN

/

27T
<—

[N/2]

k=-[N/2]

max

= O(I/VN)

as claimed. D

Remarks

• It is assumed in theorem 5.10 that -TQg(-) is the best filter among the
class of ARMA(<3, q + r) filters. However, such a filter may be optimal
in the class of all filters in C°. To see this, assume Xt is a stationary
and invertible ARMA process. Then a 'closed-form' solution of the signal
estimation problem (best filter in C2) is given by

(5.67)

see (5.6). If F(UJ) is a symmetric MA(2q + l)-filter, then the numerator
polynomial becomes

-j) exp(-iku)
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k=-r \j=0

The first term corresponds to a MA-filter and the second one to an ARMA-
filter (since it is the convolution of ARMA and MA filters). Their sum is
again an ARM A-filter, see for example Hamilton [45], chap.4. Since the
denominator polynomial in (5.67) is an ARMA filter too, the quotient F(-)
is again an ARMA-filter.

• Theorem 5.10 can easily be generalized to integrated processes provided
the conditions (5.22) are satisfied (together with regularity assumptions
for -T(-))- The key result is given in theorem 5.5 which transforms the non-
stationary into the stationary case. The process Xt must then be replaced
by the differenced stationary process Xt and the optimization procedure
(5.19) must be replaced by (5.36).

An expression for the distribution of the filter parameter estimates for a par-
ticular 'least-squares' approach is obtained in section C.I in the appendix.
Although the approach is based on unrealistic assumptions it is nevertheless
interesting from a theoretical point of view because it provides further insights
into the signal estimation problem.

5.6.2 Spurious Decrease of the Optimization Criterion

The following corollary of theorem 5.10 is needed for computing estimates
of the filter orders Q and q in section 6.2. It provides an expression of the
decrease of

E
N

k=-[N/2]

(5.68)

(where r(ojk) is the DFA estimate) as overparameterization arises i.e. Q >
Q' and q > q' where Q' and q' are the filter orders of the best unknown
asymmetric filter JH(-) (which is supposed to exist in section 6.2). Ideally,
(5.68) should remain constant for Q > Q' and q > q' (which would indicate
the true filter orders Q and q) but overfitting leads to a 'spurious' decrease.
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Corollary 5.12. Let the assumptions of theorem 5.10 be satisfied. Then

- [N/2]

2nE J2
.k=-[N/2]

[AT/2]

k=-[N/2]

-o(l) (5.69)

where tr(-) is the trace operator (i.e. the sum of the diagonal elements of a
quadratic matrix) and Ugg and V Q , are defined in theorem 5.10.

Remark

• If overparameterization is attained (i.e. if Q > Q' and q > q') then

[AT/2]

Y | i> f c) - fQq(ujk)\
2INx(uJk)

k=-[N/2]

does no more depend on Q nor on q. Therefore, the right hand side of
(5.69) reflects the 'spurious' decrease of (5.68) as Q(> Q') or q(> q') vary.

Proof of corollary 5.12. As in the proof of theorem 5.10 the subscript Qq of
filters and matrices is omitted for notational convenience. Consider the Taylor
series development centered in b

[N/2]

k=-[N/2]

[AT/2]

k=-[N/2]

-(b-bYu(b-b) +o{l)N(b-b)' (b-b\

where the first order derivative vanishes by definition of /"(•) and U = U +
O(1/T/N) has been used. Since

N x Var (b - b) = IT1

asymptotically (see (5.54)) it follows that

r [N/2]

.k=-[N/2]
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[N/2]

J2 \r{ujk)-f{ujk)\
2INX{u;k)

fc=-[JV/2]

t (VE [(b b) (b b)'- b) (b - b)']) + o(l)

2
= itr(VU-1)+o(l)

as claimed. D

5.6.3 Testing for Parameter Constraints

Assume F(-) and Xt satisfy the assumptions of theorem 5.10. Assume also
that the parameter constraints can be set up in the form Rb = r where
b := (ai, ...,a,Q,b-r,...,bgy is the true parameter vector and where R and r
are a,m*(Q + q + r + l)-matrix (with rank m) and a m-dimensional vector
respectively. The so called Wald-form (see for example Hamilton [45], p.213)
of the test of Ho : Rb = r against Hi : Rb ̂  r is given by the test-statistic

N(Rh - r)' (RtT 1 VU^R') ~* (Rb - r) (5.70)

where U and V are defined in theorem 5.10 and b is the DFA-parameter
estimate. The test-statistic (5.70) is asymptotically ^-distributed with m de-
grees of freedom, where m is the number of (linear independent) restrictions.
Simple hypotheses like Ho : OQ = 0 or bq = 0 (i.e. verification of AR- and
MA-orders Q and q + r + 1 of the ARMA-filter) or more complex linear con-
straints can be tested, using the above Wald-form of the hypothesis-test.

5.7 Inference : Unit-Roots

If Xt is stationary or if the conditions (5.22) are satisfied, then theorem 5.10
can be used in order to derive the asymptotic distribution of the test-statistic.
Often, however, it is not known a priori if an input process is stationary
or, more generally, if the constraints (5.22) are satisfied. Therefore, a test is
needed from which conclusions about the necessity of imposing restrictions of
the type (5.22) can be inferred. Unfortunately, theorem 5.10 cannot be used
in this particular situation. The problem as well as the relevant theory for
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solving it are presented here.

Two parameter sets are distinguished for non-stationary integrated input
processes:

• the set of the parameters which are 'freely' estimated and
• the set of the parameters which are determined conditionally to the esti-

mated parameters through the restrictions (5.22).

Note that the two classes of parameters are generally not uniquely defined.
For an I(l)-process with a single unit-root at frequency zero, it is assumed in
the following that the normalizing constant C is determined by the condition
F(0) — r(0), i.e. the parameter C belongs to the second set. For the parame-
ters in the second set, 'tests' cannot be implemented because the parameters
are not estimated actually. An estimation procedure for these parameters is
presented here and the asymptotic distribution of the estimates is derived.
The distribution is non-standard and asymmetric. It is shown that a suitably
transformed test statistic has an asymptotic Dickey-Fuller distribution, where
the transformation depends on the current signal estimation problem (i.e. on
h(-) and F(-)). As a result, it becomes possible to test hypotheses of the type
(5.22).

5.7.1 I(l)-Process

Suppose that Xt is 1(1) with a single unit-root located at frequency zero
and assume the parameters are estimated using the procedure described in
corollary 5.6, i.e. the filter parameters are estimated using the corresponding
constraint (5.22)

C := r (0 ) / f (0) (5.71)

(see (5.29)) and the periodogram is based on the differenced input process
Xt = Xt - Xt-\. Therefore, the DFA is consistent as shown in corollary 5.6.
Let now all the estimated parameters be fixed except C and assume the latter
parameter is estimated using (5.10): the resulting estimate C is then based
on the periodogram of the undifferenced input signal Xt. The resulting two-
stage estimation procedure may be motivated informally as follows: in the first
stage, the 'nuisance' parameters ZJ and pk are consistently estimated implying
that the estimation procedure of C in the second stage may be based (at least
asymptotically) on knowledge of the true (nuisance) filter parameters. If all
parameters (including C) were estimated simultaneously, then the estimates
of the nuisance parameters would be inconsistent because lNx(uk) is a bi-
ased estimate of the pseudo spectral density, recall section 4.3. Therefore, the
estimation of C would be 'biased' too which is undesirable.
The asymptotic distribution of the proposed two-stage estimate C is derived in
the following theorem. For simplicity of exposition, it is assumed that F(0) = 1
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(trend-extraction or seasonal-adjustment filters for example satisfy this as-
sumption) .

Theorem 5.13. Assume

• Xt is integrated, Xt := Xt - Xt-i € C1/2 and T(0) = 1

• T ( - ) G CS
f
+5/2, where 6 > 0

• the sequence of estimated ARMA(Q, q + r) filters /"(•) in the first stage of
the estimation procedure (satisfying hence the first order restriction) define
a uniformly stable filter sequence (as N increases)

• the best (unknown) asymmetric filter /"(•) in the class of ARMA(Q,q + r)-
filters is stable

• the normalizing constant C is estimated in the second stage, conditionally
on the 'nuisance' parameters Zj,pk (estimated in the first stage) and using
the estimation procedure (5.10).

Then asymptotically

T?0 + H 2^fe>oK + vk )p- - 21T 2^

where ~ means 'distributed as' and where

• £/ie random variable in the denominator on the right hand-side of (5.72)
is positive

• C satisfies the restriction (5.22) (i.e. (5.71))
• A and B are the constants:

-i: |l-exp(-tw)|2 h(0)
du>

B -f
J —IT

TT r{w)Re (f{ui)\
2

— exp(—iw)\2 -duj

• the random variables Uk, k = 0,1, . . . are pairwise independent standard
normal variables

• the random variable £0 is a standard normal random variable which is not
correlated with v\~,k > 1 but which is correlated with VQ and v'k according
to

Cov [£o,^o] = 2
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The constants A and B can be consistently estimated by

r(wk)Re(f(uk))-\f(wk)9

k=-[N/2]

[AT/2]

N

(5.73)

k=-[N/2]

where IN-^(0) is a consistent estimate of h(0) (for example a smoothed
window-estimate).

Remarks

• If Xt is integrated, then the best (unknown) ARMA(Q,g + r)-filter /"(•)
satisfies (5.22), i.e. f (0) = 1.

• The assumption -T(O) = 1 is not necessary, but simplifies exposition of
results.

• The distributional identity (5.72) implies that C is a superconsistent es-
timate. Moreover, its asymptotic distribution is skewed because of the
presence of x2-random variables in the expression on the right hand-side.

• The distribution of the random variable on the right hand-side of (5.72) is
non-standard. It can be tabulated, using the described stochastic proper-
ties of the random variables £o> vk (k > 0) and u'j (j > 1). A transformation
of (5.72) which has the Dickey-Fuller distribution is presented in corollary
5.14 below.

Proof of theorem 5.13. Denote /"(•) := f(-)/C where JT(-) is the filter
estimate computed in the first stage (i.e. /"(•) satisfies the first order condition
-T(O) = r(0)(= 1)) and C is the corresponding normalizing constant. As a
result, /"(•) is independent of the normalizing constant. Assume also that C
is estimated in the second stage using the periodogram of Xt (instead of Xt

as in the first stage). The periodogram of Xt can also be expressed as

wo(= 0)

see (4.9) and (4.32). Then estimation of C is based on

[N/2]
d 2TT

k=-[N/2]
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dC N ^vx(0)l2

2Re (/>fc) - C r K)) Re (-/> f c))

2Im

H-exp(-iu, f c) | a

I m (--

= 0

where, for LJQ = 0, the singularity is replaced by its limiting value, see the
corresponding expression for INX(^O) above. Solving for C leads to:

27r

C =
2 .

(5.74)

where Re(i~'(-)) = F(-) and Im(ir'(-)) = 0 have been used. Consider first the
numerator in (5.74):

2TT

k=-[N/2]
(5.75)

x\BNX(u;k) - BNX(0)\2

fc=-[JV/2]

(5.76)

where T(0) — 1 and — T(w)Re (-T'(w)) = 0 has been used (the deriva-

tive vanishes because T(w)Re (f'(uj)) is an even function of w). The equiva-

lence of (5.75) and (5.76) implies that

(5.77)
| l - e x p H o ;Ho;)|2
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is a well defined bounded function on [—TT,TC], i.e. the numerator removes the
singularity of 1/|1 — exp(—iw)\2 where use is made of the regularity assump-
tions with respect to F(-) and /"(•) (which are both at least twice continuously
differentiable).
The denominator in (5.74) becomes:

[AT/2]

E2TT

N ^ | l -exp(-i
k=-[N/2] ' HV

k=-[N/2]
| l - exp( - jw f c ) | 2

N
k=-[N/2]

| l -exp(-io;fe) |2

where use is made of /"(0) £ 1R and of the symmetry of |/"(wfe)|2 around zero
(so that the first derivative vanishes). Therefore

-r (o ) 2

| l - exp( - iw f c ) | 2 = 0(1) (5.78)

is a well defined bounded function too in [—n, n] (because of the assumed
uniform stability). It follows that the expression for C in (5.74) becomes

N

c =
k=-[N/2]

N

f"(0)2) g

fc=-[AT/2]

2TT [ JV/2]

k=-[N/2]

r'(o)

(5.79)

where -T(-) is the filter estimate in the first stage of the estimation procedure,
i.e. P(-) satisfies the first order constraint P(0) = 1(= -T(O)). In order to
establish (5.79), use is made of



• the identity
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a + b a be — ad a be — ad
|| =

c + d c c(c + d) c
c2 + o(l/N) for the expres-

sions

o [N/2]

a •= f'(0)— S^

[N/2]

= f'(o)§ £
k=-[N/2]

2 .

= 0(1)

|l-exp(-zu;fc)|2

k=-[N/2]
[N/2]

k=-[N/2]

(note that the magnitude of the orders follow from (5.77), (5.78) and (5.85)
below)

• and of the identity ^ ) , i.e. C = where C is^ u k ) , e C „

r'(o) r'(o) r'(o)
the 'true' value of the normalizing constant (conditionally on the estimated
parameters in the first stage).

Equation (5.79) implies that C — C = O(l/N). Moreover, the numerator in
(5.79) can be approximated by

M r(wfe)Re

fc=-[JV/2] |l-exp(-io;fc)|2

N
fe=-[JV/2]

(5.80)
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k=-[N/2] \l - exp(-iuik)\
2

-L -h{w)du>

— exp(—J

where use is made of

h(cjk)+INX(Q)

(5.81)

• the consistency of /"(•) which allows replacing /"(•) by / (• ) in (5.80)
• theorem B.4 in the appendix which states that the 'midterm'

- r(o)
k=-[N/2] '

in (5.80) vanishes asymptotically since the random variables SNX{tOk)
(and therefore Ke(ENX(u>k))) are 'centered' and asymptotically indepen-
dent
corollary B.3 (which allows replacing INX(-) by h(-) on the right of the

second equality), noting that Xt € C'j implies h{-) G C/
proposition 5.11 (for the transition from the discrete sums to integrals),
using the assumed regularity requirements for F(-) and f(-): specifically

-\r{w)\2 =

because the function vanishes in 0 and its derivative vanishes too since it is
an even function. It is then easily verified that the regularity requirements
of theorem 5.5 are satisfied for the function

- t(u) (5.82)

(in place of AF(-)), assuming a = 1/2 and d = 2 (recall that F(-) €

Cj and F(-) is uniformly stable by assumption). Therefore the same
proof as that used in theorem 5.5 can be used to show that the function in
(5.82) is in C1/2. Noting that h(-) G C1/2 (since Xt G C1/2 by assumption),

it then follows that the integrated functions in (5.81) are in Cj. Thus,
proposition 5.11 can be used.

The denominator in (5.79) can be approximated by
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-2^Y» — + —d
k>0 " fe>0

where

• C = l/r'(O) satisfies the first order constraint (5.22)

ffe and u'k are iid standard normal distributed random variables corre-
sponding to the real and imaginary parts of the (normalized) discrete
Fourier transforms

(see the first assertion of theorem B.4 in the appendix). Note that Xt £ C°
implies that h{u>) is a continuous function so that h(ujk) « h(0), k =
0,...,VN. Therefore

N2(o = INX(0), see (4.33). In particular E[(o] = h(0)/3, see (B.35),

\/h(0)—T= is the square root of î o- In particular, £o is standard normalv v3

distributed asymptotically. The covariances of 770 := \lh{Q)-j= with v0
v V3
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and Vk, v'k
 a r e described in corollary B.l l in the appendix where it is shown

that r/o is asymptotically correlated with the imaginary part of BNX(u>k)
only (corresponding to the random variable u'k), see the remark on p.254.

• the summations in (5.85) may be extended from k = 1 to infinity because
the sequence I/A;2 is absolutely convergent,

• the o(./V)-term has been neglected in (5.85).

^ [ A T / 2 ] . „ / v _ - / Q x | 2

Note that — V^ . , " ^ , , — in (5.83) is a positive random
k=-[N/2] ' yK *n

variable so that the random variable in (5.85) and therefore the denominator
in (5.72) must be positive too, as claimed. Collecting the results obtained for
the numerator and the denominator in (5.79) completes the proof of the the-
orem (it is not difficult to extend the proof to the case F(0) ^ 1). •

Consider the numerator in (5.72): A + v^B. If Xt is a pure random-walk
so that Xt = et is a white noise sequence, then A = B and the numerator
simplifies to A(1+VQ). liXt is not a random-walk, then A ^ B and the random
variable on the right of (5.79) depends on the signal estimation problem (i.e.
on the ratio A/B). This is undesirable since tabulation of percentiles of the
random variable then depends on a 'nuisance' parameter A/B which can take
on any real value. A completely analogous situation arises for 'traditional'
unit-root tests when allowing for serial dependence of Xt, see for example
formula 17.6.6 in Hamilton [45] where a 'nuisance' parameter (A2 — 7o)/A2

enters in the determination of the resulting random variable for the approach
taken by Phillips and Perron. By analogy to the Phillips-Perron unit-root
test, a term correcting for 'departures of the pure random-walk hypothesis'
i.e. correcting for serial dependence of Xt can be subtracted on both sides of
(5.72):

where Z is the random variable in the denominator of (5.72). Dividing on
both sides by B and replacing A and B by their estimates then leads to the
'corrected' test statistic

\

= 7? (5.86)

where

• the estimate

TV
B

D is

cC

\

defined

2n
N

by

D
[N/2]

k=-[N/2]
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D := AlNJt(0)

k=-[N/2]
| l-exp(-iw fc)|2 INX(u>k) (5-87)

Note that Zh(0) « ^ E^-j iv^] JNx(uk) by the proof of theorem 5.13.
Multiplying numerator and denominator in A/Z by h(0) then implies, that
D is independent of h(0) (or of the estimate 7^(0)) .
A and B are defined in theorem 5.13
INx(0) is the consistent estimate of h(0) used in determining A, see (5.73):
this estimate disappears in (5.87) and therefore it disappears in the test-
statistic (5.86) too
/•(•) is the filter estimate obtained in the first stage of the estimation
procedure (therefore f(Q) = T(0))
the random variable r\ is asymptotically distributed as

£->? E
-(5.88)

fe>0 fc>0

which does no more depend on 'nuisance' parameters.

Note that r\ corresponds to the restterm on the right hand-side of (5.79)
(after correction for serial dependence of Xt in (5.86)). After normalization
with N/B this restterm becomes:

N_

B

\

\

2TT

TV
k=-[N/2]

2TT

~N

[AT/2]

k=-[N/2]

NINX(0)

2TT
[N/2]

(5.89)

(5.90)

k=-[N/2]

if Xt is integrated. It is tempting to replace the expression (5.86) for the test
statistic r] by the simpler expression (5.90) which does involve neither F(-)
nor F(-) and which is therefore independent of the signal estimation problem.
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However, one should keep in mind that the error (o(l))-term in (5.89) was
shown to be negligible under the assumption that Xt is integrated, see (5.79).
If Xt is stationary, then it is not difficult to show that this error term is of
order 0(1) so that (5.86) and (5.90) differ ((5.90) has low power against sta-
tionary alternatives because it is of order 0(VN) if Xt e C° so it is clearly
not interesting as a test-statistic candidate).

Tabulation of percentiles of r\ for given significance levels provides corre-
sponding critical regions for the test statistic (5.86). In this context it may be
interesting to compare the distribution of TJ to the Dickey-Fuller distribution
of the random variable N(p — 1) where p is the estimated AR-coefficient for
a pure random-walk process, see Hamilton [45], p.488. This is done in the
following corollary.

Corollary 5.14. Let the assumptions of the preceding theorem 5.13 be satis-
fied. Then the random variable

)

where rj is the test statistic (5.86), has the Dickey-Fuller distribution tabulated
in Table B.5 (case 1) in Hamilton [45], p.762.

Proof. Under the assumption of the preceding theorem Xt is integrated, so
that (5.90) is a valid approximation (recall the above comment). Inserting
(5.90) into (5.91) (and ignoring the approximation error in (5.90)) leads to

l/2[ ± IT," Xt) -2TT/I(0)
= V ^ y )_

27r/ l(0)l /2(^(l)2- l )

(5.92)

where ~ means 'asymptotically distributed as' and where W(r) is the stan-
dard Brownian motion process (a continuous parameter process), see Hamilton
[45], proposition 17.3, identities a) and h), p.506 (noting that the parameter

A in the cited literature is simply J2nh(0)). The third equality in the above
proof follows from the definition of the periodogram and from (4.13) : note
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that the 'weights' Wk in (4.13) are ignored since their contribution is of order
O(l/N) if N is even (for N odd wk = 1 for all k, see (4.2)). This completes
the proof of the corollary since the random variable in (5.92) has the asserted
Dickey-Fuller distribution, see for example 17.4.7 in Hamilton [45]. D

The following remarks conclude the analysis for Xt being an integrated
input process with a single unit-root at frequency zero.

Remarks

• Although the constraint F(0) = F(0) allows for more general non-
stationarities than a single unit-root at frequency zero, the asymptotic
distribution of the proposed test-statistics were derived under the hypoth-
esis that Xt is 1(1), see the first assumption of theorem 5.13. In this con-
text, testing Ho : f(0) = F(0) amounts to a particular unit-root test,
specifically designed for the signal estimation problem. Other forms of non-
stationarity (for example trend-stationarity around a linear trend function)
would result in different asymptotic distributions which are not reported
here.

• Since £OJ ̂ o a nd v'k, k > 1 in theorem 5.13 are standard normal and since VQ
and i/'k, k > 1 are mutually orthogonal, one deduces from the covariances
(correlations) between £o and Vo, v').-, k > 1:

fe>l

where 6Q is gaussian with mean zero and variance

- 1 T-̂  1

4 ^ kHn2

fe>i

Therefore, rj in (5.88) can be tabulated using standard normal distribu-
tions.
In order to use the statistic (5.86), percentiles of the distribution of r]
must be tabulated using the stochastic properties of the random variable
described in theorem 5.13 (see the preceding remark). Note that the ex-
pression (5.86) does not depend on h(0). This is an advantage because
estimation of the spectral density of a process at frequency zero is a prob-
lem which affects the 'long run' behavior of the process and which can-
not be satisfactorily solved for finite samples (which is precisely the crux
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when testing for unit-roots). On the other hand, the distribution of the
test statistic (5.91) is already tabulated (see for example table B.5, case
1 in Hamilton [45]). Unfortunately, the statistic requires a consistent esti-
mate of h(0). It is therefore suggested to use (5.86) instead. Note that the
Phillips-Perron test(s) or the augmented Dickey-Fuller test(s) also require
knowledge of h(0), see for example Hamilton [45]p.5O9 and p.523.
The distribution of the random variable rj in (5.86) can be tabulated using
the standard normal distribution, see the remark above. A continuous pa-
rameter process (standard Brownian motion W(-), see corollary 5.14) is not
needed for that purpose. This simplifies the tabulation by Monte Carlo sim-
ulation, because realizations of continuous parameter processes are more
difficult to generate than the expression (5.88). Although Donsker's func-
tional central limit theorem leading to standard Brownian motion is an
elegant mathematical device for computing the asymptotic distribution of
unit-root tests, the distribution of the resulting random variable is more
difficult to tabulate than the expression (5.88) resulting from theorem 5.13.

If F(-) is a trend extraction filter then the expression F(wk)Re f F(u>k)) —

r(wfc) in (5.79) becomes negative in the stop band of F(-). In the pass-
band \f(-)\ generally exceeds F(-) (remember that F(-) is the constrained
filter satisfying f(0) = T(0)). Therefore, C is downward biased if F(-)
'smoothes' the input signal. This can easily be seen from (5.72) since both
A and B are negative and all other expressions on the right hand-side are
positive (note that this statement is not necessarily true if F(-) does not
'smooth' the input signal).
The preceding remark implies that the test against the interesting alter-
native hypothesis Hi : f(Q) < 1 (which happens if Xt is stationary and
F(-) is a 'smoothing' filter) is one-sided: large values of rj in (5.86) imply
a rejection of Ho : F(0) = 1.
Consider the ratio

J»Re ~h{uJ)

— exp(-iw)|2 HO)
du)

L F{uj)Re F{UJ)

- exp(—iuj)\2 -dui

This expression is 'small' if h(cj)/h(0) is 'small', i.e. if the low-frequency
part of the stationary process Xt is strong or, equivalently, if the autocor-
relation function of Xt decays slowly. Otherwise, if the low frequency part
is weak, then the above ratio is 'large'. Therefore, the term correcting for
serial dependence in (5.86) is 'small' for processes with pronounced low fre-
quency content (in the sense of a slowly decaying autocorrelation function
of Xi) and 'large' for processes with pronounced high frequency compo-
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nents. Stated otherwise: the (negative) bias of the estimate C is 'small' for
processes Xt whose first differences Xt have strong low frequency compo-
nents.

5.7.2 I(2)-Process

Now consider the problem for a test of the second order constraint ^(0) = 0
which is for example useful if Xt has a second order unit-root located at
frequency zero (but which allows for more general non-stationarities). Assume
that all parameters are estimated simultaneously using first and second order
constraints in the first stage. In the second stage, all parameters are fixed
except C, Z and P where C is the normalizing constant and Z, P are real
numbers defined in (5.33) or, equivalently, in (5.34). Denote by

- P - expHuQ -

that part of the filter P(-) which does not depend on C,Z or P (which cancel
on the right hand-side of the above equality). In the second stage of the
estimation procedure, -T'(-) is fixed, the first order constraint F(0) = F(0)
is maintained and the second order constraint 4>(0) = 0 is relaxed. Z and P
are then allowed to vary independently from each other while C is uniquely
determined by the condition

where F(0) = 1 has been assumed. Therefore, in the second stage, one has to
minimize

N
 k ^ 1 - ^ - ^ 2

2 . ^

(Z - exp(-iwfc)) P - l

(5-93)

with respect to Z (or, alternatively, with respect to P). Note that f(0) = 1
(first order restriction) so that the quotient in the above summation is well
defined and continuous on [—n, n] and note also that Xt is 1(1) under Ho so
that INx{0) is of order O(N2). Differentiating (5.93) with respect to Z and
solving for Z is not difficult but leads to an expression which is 'too lengthy'
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to be reasonably reproduced here. Simplifying notations one can write the
resulting solution Z in the following form:

z =

iPf'(O) -\

if'(O) +

-(P-

(P-

- 1 )

1 ) -

dr'(w)
dui

f'{oj)
du

N
k=-[N/2]

9(0)
2TT

[AT/2]
(5.94)

iPf'(0) + (P - 1)
i^i=0

i/"(0) + (P - 1)

where

• the first term on the right hand-side of (5.94) corresponds to (5.34),
• ^NAxi^k) in (5.94) is the periodogram of the stationary process AXt :=

{l-B)2Xu

• /(•) and g(-) are 'complicated' (lengthy) expressions involving P(-), P(-)
and the spectral density of AXt

• and where the 'residual' term r^ can be shown to be of order 0(1 /N) as
in the proof of theorem 5.13 (if Xt is 1(2)).

If f AA = 0 then 4>(0) = 0, i.e. the second order constraint (5.34) is satisfied.
Otherwise,

/

N Z-

iPf'cc{0) + (

ifcdO) + (1

P - l ) -

3 - l ) -

if'cc{w)
duj

r'cc{uj)
du)

ui=0

J
is a 'non-degenerate' random variable whose distribution may be derived as
for the case analyzed in theorem 5.13 (first order restriction), inserting the
corresponding expressions for /(•) and g(-). The derivation is not difficult
(it follows exactly the same line as the proof of theorem 5.13) but cumber-
some and the constants corresponding to A and B in (5.72) are complicated
and 'lengthy' expressions which are not reproduced here. However, the re-
sulting test statistic has exactly the same asymptotic distribution. Evidently,



5.8 Links Between the DFA and the MBA 145

the same transformation as proposed in corollary 5.14 can be used here so
that the resulting transformed test statistic has the Dickey-Puller distribution
(asymptotically) which is tabulated in table B.5 (case 1) in Hamilton [45].

Remarks:

• Testing restrictions of the type (5.22) is not primarily concerned with 'unit-
roots' which are a property of the DGP of the input signal Xt. Instead,
performances of the asymmetric filter matter: does a particular constraint
(5.22) enhance the estimation of the signal Yt or not (wether or not the
DGP is an integrated process)? Therefore, the 'spirit' of hypothesis-tests
based on (5.86) or on (5.91) is not the same as for 'pure' unit-root tests (like
Dickey-Fuller (ADF) or Phillips-Perron (PP) for example). Nevertheless,
both approaches rely (after suitable transformations) on the same asymp-
totic Dickey-Fuller distribution. The differences then lie in the 'weight'
given to particular properties of the input signal (as measured by the
spectral density h(-) and, in particular, h(0)) and the relevant estimation
problem (which, here, involves JH(-) and F(-) via the constants A and B
in (5.72)).

• The restrictions (5.22) are of interest. Since integrated processes play a
major rule in modern econometrics, the term 'unit-root constraints' is
reserved to (5.22) although technically the first order constraint T(0) =
F(0) is a 'level' constraint and 4>(0) = 0 is a 'time-shift' constraint for
the asymmetric filter -T(-). These conditions allow for more general non-
stationarities, so for example trend-stationarity around a linear (first order
constraint) or a quadratic time trend (second order constraint). However,
the asymptotic distribution of the test-statistics depends on the type of
non-stationarity considered. In the preceding results Xt was assumed to be
integrated (either 1(1) or 1(2)) without a trend. Asymptotic distributions
for processes with deterministic (linear or quadratic) time trends can be
derived analogously. They are not reported here because it is felt that the
corresponding DGP's of Xt are less relevant empirically.

In the last section of this chapter, a link between the MBA and the DFA
is proposed. It is shown that a slight modification of the DFA enables simpler
computations if r > 0 in (3.6).

5.8 Links Between the DFA and the MBA

Suppose Y^-r is to be estimated for r > 0. Assume for simplicity that Xt € Cj
and that T() € Cf and a > 0. The filter T(-) and the spectral density of the
input signal may be arbitrary functions subject to weak regularity assump-
tions only. Therefore, if r > 0, then the corresponding asymmetric ARMA-
filter Fr(-) (for estimating Yjv_r) may require a 'large' number of parameters
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for an optimal approximation. The following modification proposes a simple
and yet effective solution for this problem. Define

r^):=Ctrr
tr(.) + fr(-) (5.95)

where rtr(-) := exp(wu>) Ylk=-*17fc exp(—ikui) is the truncated theoretical
extraction filter and Fr(-) is defined in (3.6) (both filters use the whole sam-
ple for 'estimating' YN-r) and Ctr is a normalization. The filter /£(•) results
from an 'overlapping' of the output signals of the two (generally asymmetric)
filters on the right. The ARMA-filter Fr(-) may be interpreted as a correc-
tion of the output of rtr(-). The normalizing constants C in (5.1) and Ctr
in (5.95) 'weight' the respective outputs. As r increases, Ftr(-) becomes less
asymmetric and C generally decreases. It is suggested to replace Fr(-) by F^(-)
in (5.19) (or (5.36)).

If Xt is a white noise process, then Ftr(-) is optimal (because back- and/or
forecasts of the process vanish, see (1.4)). More generally, assume a simple
preliminary model for Xt has been identified and estimated. Then Ftr(-)
can be replaced by (1.4) in (5.95). The filter Fr(-) can correct for model-
misspecification. The resulting design of the filter /"/(•) defines a link between
the DFA and the MBA (see also Wildi [97]).

Until now, the signal estimation problem was restricted to the approxima-
tion of a symmetric filter F(-) because signal extraction filters are generally
symmetric. This restriction is not necessary and may be dropped. By doing
so, the filter approximation problem may be interpreted as a generalization
of the forecasting problem. For that purpose, define F{uS) := exp(ikoj) which
is now an asymmetric filter. The asymmetric filter for r = 0 (boundary filter)
which best approximates JH(-) (in the mean square sense) provides as output a
signal Yt which best approximates Xt+k (in the mean square sense) given the
information set X\, ...,Xt- This can be seen by noting that exp(ikuj) (in the
frequency domain) corresponds to Fk (in the time domain), where F := B~x

is the forward operator, i.e. FXt = Xt+i. For t = N, Y^ is the fc-step ahead
forecast of X^+i-. Therefore, the DFA could be used for computing forecasts of
an input signal Xt as does, for example, the MBA. This direction of research is
not pursued further here although time delay constraints for multi-step ahead
forecasts would be worth additional investigations. Instead, interest is focused
on the signal estimation problem, i.e. the approximation of symmetric filters.

In this chapter, main asymptotic results have been presented for the DFA.
In the next chapter, finite sample problems and regularity issues are analyzed.
Particular attention is paid to overfitting problems and uniform stability of
the solutions of the DFA. It is shown that both issues are related.
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Finite Sample Problems and Regularity

In the preceding chapter, asymptotic properties of the DFA were presented.
An important regularity assumption, namely the uniform stability of the se-
quence of DFA solutions, was necessary for establishing the consistency and
the efficiency of the approach. However, some care is needed since 'excessively
smooth' DFA solutions may be suboptimal. In the present chapter finite sam-
ple problems are analyzed. Methods are proposed for solving the uniform
stability problem.

In section 6.1 'overfitting' is analyzed and related to the 'regularity' of the
DFA (or the MBA) solution. The distinction between 'overfitting' and 'over-
parameterization' is stressed. This leads to different instruments for solving
finite sample problems. In section 6.2 a method for selecting Q and q (or
equivalently AR- and MA-filter orders) is proposed for the DFA. As such,
the method emphasizes overparameterization issues. In section 6.3 an appli-
cation of the so called 'cross-validation' principle to the DFA is presented.
This method can be used to assess the extent of overfitting and also to infer
an 'optimal' number of parameters (of the asymmetric filter).
A drawback of both methods is that they are essentially 'descriptive'. Correc-
tions of the estimated (filter) parameters are not proposed (in case of 'serious'
overfitting). Therefore, a new approach is developed in sections 6.4 and 6.5
which aims at a 'regular' solution of the DFA (necessary for the uniform sta-
bility). It is more fundamental because overfitting is closely related to 'singu-
larity' issues (see section 6.1). The idea is to modify the original optimization
criterion such that particular aspects of overfitting become 'measurable'. As a
consequence, the resulting estimates are corrected for 'undesirable' properties
of the asymmetric filter. The approach is felt as a promising area for future
research (in particular for 'tackling' the overfitting problem).
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6.1 Regularity and Overfitting

Let XI,...,XN be a finite sample generated by a stationary AR(p)-process.
Assume p is known and suppose the parameters of the process are estimated
by least-squares. The estimates are random variables whose realizations gener-
ally deviate from the true values. In the following, this phenomenon is called
overfitting. Often, the term 'overfitting' in the time series literature means
that 'too many' parameters are estimated (which results in excessive loss of
'degrees of freedom' of the data). In this chapter, the term overparameteri-
zation is reserved for this notion. An attempt is made here to differentiate
overfitting and overparameterization.

Here, overfitting in its most general sense means random deviations of
estimates from true parameter values. It is a fundamental problem which is
independent of the number of parameters being estimated. Consider the above
estimation problem and assume the innovations of the AR-process are iid
(recall that p is known). The AR-parameters are completely determined by the
second order moments of the process (by the so called Yule-Walker equations,
see for example Brockwell and Davis [10], chap.8). Unfortunately, estimates of
the parameters, such as for example least-squares estimates, are not functions
of moments (which are unknown) but functions of the realizations of the
process which are subject to 'randomness'. The least-squares principle implies

N N

where et are the true innovations. This inequality justifies the term 'overfit-
ting' for the proposed example : the fit produced by the estimated model
seems better than that of the true model, when measured by the squared
errors. More generally, assume unknown 'entities' must be estimated (to sim-
plify, call them 'parameters'). This is often achieved by searching for the
extremum (say a minimum) of a particular criterion which is a function of
the unknown parameters (for example the left hand side of (5.9)). Then the
minimum of this criterion is smaller than (or equal to) the realized value for
the 'true' parameter values. This inequality again justifies the term 'overfit-
ting' for the general case (recall the 'spurious decrease' of the optimization
criterion for the DFA in section 5.6.2). It is a consequence of fitting uninten-
tionally the generally unknown random component of the stochastic process.
Note that the overfitting problem often vanishes asymptotically if the sample
length increases faster than the number of estimated parameters. This effect
is due to the well known 'law of large numbers'.
If the order p of the AR-process is unknown, then various orders p' may be
tried by fitting corresponding models to the data. It is then well known that
estimates from 'too large' models (p' > p) are 'poorer' (the estimates are
subject to larger variances). This effect is described here by the term over-
parameterization. It is an unnecessary reduction of the 'degrees of freedom'
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of the data. The impact of overparameterization is to exacerbate the over-
fitting effect. However, overfitting exists even without overparameterization.
This distinction is useful for evaluating the effects of 'finite sample' instru-
ments, see below.

Box [8], p.792 argues that: "since all models are wrong the scientist can
not obtain a correct one by excessive elaboration ... Just as the ability to
devise simple but evocative models is the signature of the great scientist so
elaboration and overparameterization is often the mark of mediocrity". This
comment stresses the importance of parsimonious models (see Box and Jenk-
ins [9]) or parsimonious filter designs (recall section 3.3).

Overparameterization ("excessive elaboration") of filters or models of-
ten results in overfitting characterized by almost discontinuous or unstable
transfer functions. The 'typical shape' of the amplitude functions is generally
unnecessarily complicated by peaks and troughs. Overfitting and regularity
('smoothness') of the transfer function are therefore related. In the sense of
Box's comment one can argue that regularity (of the transfer function) and
simplicity (of the model or of the filter) are linked. Overfitting problems due
to insufficient regularity of the DFA solution are now described.

Assume for simplicity that the input signal Xt is stationary and recall the
approximation (5.16):

„ [N/2] [AT/2]

^ J2 wk\AF(uk)\
2INX(wk)c^ £ wk\AT(wk)\

2h(wk)(6.1)
k=-[N/2] k=-[N/2]

= E[(Yt-Yt)
2

Overfitting, i.e. random errors of finite sample parameter estimates, can ap-
pear because the unknown spectral density h(-) is replaced by the periodogram
INX(')- It can also appear because the continuous integral is approximated by
a finite sum. In the latter case (discretization effect), differences between F(-)
and F(-) are 'measured' on the set of discrete frequencies uik £ &N only. This
may be problematic if AT(-) is not sufficiently regular ('smooth'). Consider
the following cases:

• It was shown in theorem 3.10 that the effect of a single zero-pole-pair
can be concentrated in an open interval of arbitrary width. It is therefore
possible to achieve perfect fits (of the theoretical transfer function F(-))
on &N- Suppose for example that A = Ljko € HN and F(X) = 0. Then it is
possible to determine a real ZPC-filter such that

A (A) = 0
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|1-AMI <S if \w-\\ > e

where e > 0 and S > 0 are arbitrarily small real numbers. Therefore, the
left hand side of (6.1) decreases because the contribution of //vx(A) to
the sum vanishes (other frequency ordinates remain almost unaffected if e
and S are sufficiently small). It is not difficult to verify that a sufficiently
large number of ZPC designs define an asymmetric filter which is able
to 'reproduce' T(-) arbitrarily well on QN (the left hand side of (6.1)
vanishes in the limit). Evidently, extreme distortions may appear for u €
[—7T, TT] — QN- These distortions cannot be 'detected' by the optimization
criterion (5.19) (left hand side). As a result, the corresponding output Yt

would be a poor approximation of the signal Yt. Note that the ZPC-filter
in the above example becomes nearly singular: the zero is on the unit circle
and the pole is extremely close to the unit circle. The zero is closer to (or
on) the unit circle than the pole because the component at A is damped
(eliminated), see figure 3.2. This is called a non-invertibility singularity. A
finite discontinuity of the transfer function is induced in the limiting case.

• In the preceding example the (common) argument of the zero-pole-pair is
in QM- The overfitting problem is now examined for zero-pole-pairs whose
argument A does not lie in J?jv. They are called hidden zero-pole-pairs
because their 'main' effect (at A) can be measured indirectly only on flN.
In fact, minimizing the left hand side of (6.1) 'controls' zeroes and poles
by an implicit regularity assumption (residing in the invertibility and the
stability of the minimum phase component of the QMP-ZPC filter, see def-
inition 3.6). Consider the following example where this implicit regularity
assumption is not satisfied (in the limiting case):

|A(A)|=M
|1-AMI <5 if \LJ-\\ >e

where e > 0 and 6 > 0 are arbitrarily small real numbers and M > 1 is
arbitrarily large. It was shown in theorem 3.10 that such a filter exists. A
strong component which distorts the filter output can be generated 'arti-
ficially' if M is sufficiently large. If A = , then this component

cannot be 'detected' by (6.1) if e and S are sufficiently small. Again, the
ZPC-filter is (nearly) singular. Now the pole is closer to the unit circle
than the zero of the pair (because the component with frequency A is am-
plified). This is called an instability singularity. An infinite discontinuity
of the transfer function is induced in the limiting case (M —> oo).

Both cases stress the invertibility and the stability of the approximating filter.
Clearly, instability singularities are harmful: a single zero-pole-pair can com-
pletely distort the filter output. Non-invertibility singularities are 'less dan-
gerous'. Moreover, such designs are necessary for removing components with
sharp and narrow spectral 'spikes' (such as seasonal components for example,
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see chapter 7). Sections 6.4 and 6.5 propose solutions which ensure regular-
ity of the asymmetric filter. In the first section, instability and invertibility
singularities are both penalized. In the second section, potential instabilities
(poles close to the unit circle) are 'tracked' only by allowing Uk £ ON to vary
'locally'. Therefore, potentially dangerous zero-pole pairs become 'apparent'.

For the sake of completeness consider the following overparameterization
problems:

• Complex conjugate zeroes and/or poles are located far away from the unit
disk. Then their relative effect (damping or amplification or time shift) on
different frequency components can be neglected. The ratio of the mini-
mum distance (to the unit circle) to the maximum distance (to the unit
circle) is almost equal to one. Therefore, the 'amplitude effect' is approxi-
mately constant. Moreover, the arguments of the complex conjugate pairs
nearly cancel each other so that the phase is almost equal to zero. Thus
the normalization C in (5.1) cancels the effect of such zeroes and/or poles.

• Zeroes of the numerator cancel poles of the denominator.

Both problems relate to the determination of the number of parameters. They
eventually impair the speed of convergence of a numerical optimization algo-
rithm (by unnecessarily increasing the dimension of the problem or by 'de-
flating' the gradient). However, they do not affect the statistical estimation
problem. Instead, problems of numerical optimization are addressed here.

In the following section, the determination of the number of parameters
of the asymmetric filter, i.e. overparameterization is addressed. An approach
based on theorem 5.10 is presented.

6.2 Filter Selection Criterion

6.2.1 Overview

An estimation of Q and q or equivalently of AR- and MA-filter orders must
account for two conflicting requirements. General signal extraction problems
necessitate flexible asymmetric filter designs (i.e. 'large' Q or q) for matching
the 'contour' of the best asymmetric boundary filter. Unfortunately, 'too flex-
ible' designs (excessively large Q or q) also match random features specific to
a given sample. Therefore, 'good' estimates Q and q should reflect a compro-
mise between flexibility and parsimony.

The determination of the 'true' model order (in the MBA) is related to
the identification of the data generating process (see for example Granger and
Newbold [40], section 7.3). Criteria for solving the so called TS-identification
problem (time series identification, see the previously cited literature) are
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available, see for example Stier [85], chap.8. Well known approaches are infor-
mation criteria (see Akaike [2]) or minimum description length principles (see
Rissanen [77] and [78]). It is shown in Caines [12], p.281 that both approaches
are identical.
The determination of the number of parameters p for the asymmetric filter of
the DFA is not directly related to the identification of the DGP. Instead, a
filter is sought for which the expectation E[(AYt)

2] is minimized. The statis-
tic proposed in this section does not rely on 'information' or 'identification'
concepts because the DGP is not of immediate concern. However, it is shown
in the appendix that information criteria can be considered in a sense (to be
precised there) as special cases of the proposed filter selection criterion.

Before presenting the relevant concepts, a further difference between the
MBA and the DFA is stressed here:

• The MBA tries to determine the unknown DGP.
• The DFA tries to approximate the known symmetric transfer function of

the extraction filter.

Therefore, the solution of the DFA is inherently subject to 'control' by di-
rect comparison with the symmetric transfer function in (5.19). Such a 'con-
trol' is not given for the MBA, because the DGP is unknown. Thus, it is to
be expected that the DFA is less sensitive to overparameterization than the
MBA. Chapter 7 confirms this conjecture from an empirical point of view: it
is shown that overparameterized filters perform as well as correctly param-
eterized (model-based) maximum likelihood estimates for various simulated
processes.

6.2.2 The MC-Criterion

A formal estimation procedure for Q and q in (3.6) is now proposed. Assume
Y/v_r is to be estimated and recall (5.69):

N'

[AT/2]

[AT/2]

£
Lfc=-[JV/2]

• Y, \r(<^k)-rQq(ujk)\
2iNX(ujk)

fe=-[AT/2]

l t r

N
(6.2)

where UQ^ and VQ 9 can be consistently estimated, see theorem 5.10. The
index Qq indicates that ARMA(Q,q + r) filters are considered. If the best
filter is an ARMA(Q' ,Q ' + r) then
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fe=-[JV/2]

does not depend on Q or q it Q > Q' and q > q'. Therefore

N

r [AT/2]

* E
Lfc=-[AT/2]

[JV/2]

k=-[N/2]

The last term describes the mean decrease of the criterion (5.19) subject to
overparameterization (overfitting effect). A straightforward estimation of Q
and q for the DFA (5.19) may then be based on the minimization of the
general criterion

fc=-[JV/2]

as a function of Q and q, where /(•) is such that f(x) > x. Note that
and Vgg and therefore VQ,JUQJ are positive definite so that tr (VQ,J

is positive definite too. Thus the second term in (6.4) must be positive too
and can be interpreted as a 'penalty' for overparameterization. Therefore, /
must satisfy f(x) > x for x > 0 only. This function can be defined according
to information criteria (so for example f(x) := 2x would correspond to AIC).
In general, the matrices U Q 9 and VQ^ must be estimated in (6.4). The MC-
criterion used in chapter 7 is

2_
MC(Q,q):=— J2

k=-[N/2]

2N-Q-q-r-l

2?r

fc=-[JV/2]

trl
+rN-Q-q-r-l
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where U Q , and V Q 9 are defined in (5.56) and (5.57) and f(x) = 2N_g^q_r_1x
corresponds to the penalty term of AICC (see Brockwell and Davis [10], sec-
tion 9.3). The filter orders Q and q are determined by minimizing (6.5) as
a function of Q and q. Note that the penalty term of AICC increases more
rapidly than that of AIC (it is known that the latter may lead to overparam-
eterization for the MBA).

Remark

• The results in section C.2 in the appendix emphasize that the determina-
tion of Q and q based on the minimization of M(Q, q) may be interpreted
as a generalization of a particular identification approach of the DGP of
Xt based on information criteria.

The method proposed in this section addresses mainly overparameterization.
But 'good' estimates of Q and q are not necessarily a guarantee against over-
fitting. Therefore, the next section proposes a method assessing overfitting
'indirectly'.

6.3 Cross-Validation

Basically, cross-validation is the separation of the estimation procedure (or
estimation phase) and the validation procedure (or validation phase) by par-
titioning a sample Xi, ...,XN into estimation- and validation-subsamples. The
second subsample is used for assessing 'out of sample' performances of the fil-
ter (or model) optimized for the first subsample. Overfitting 'nuisances' (poor
'out of sample' performances) may be detected by this method, but the over-
fitting problem is not solved explicitly: the estimated parameters are not cor-
rected for overfitting effects, which is a drawback of the method.
Cross-validation is often used for selecting a 'good' p (recall that p =
Q + q + r + 1). For that purpose, the sample is partitioned into X\, ...,XN1 and
XjVj+i, •••,-XAT and it is assumed that AYt is a stationary ergodic process (so
that the stochastic properties do not vary from one subsample to the other).
Then the number of parameters p of the asymmetric filter can be determined
as follows.

For a 'candidate' value p oip, the DFA solution -TbpG) is computed on the
first subsample.
The sample variance N1N Y^t-N1+i(^/tp)2 1S then computed on the re-
maining subsample.
The value p := p0 for which N1N ^ZtL^+ii^^tpo)2 is minimal is then
selected for estimating the DFA solution on the whole sample.

Although Yt (and thus N^N St^Ni+iX^^*?)2) are generally unknown, it is
often possible to find approximations on suitable shorter subsamples (see for
example chapter 7 where this problem is analyzed in more detail).
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During the estimation phase, a smaller subsample (Ni < N) is used which
implies poorer parameter estimates. For the DFA, an alternative separation
of 'estimation' and 'validation' is possible which preserves the original sample
length. This is presented now.

The idea is to perform the estimation in the frequency domain (as given by
the left hand side of (5.7)) and to conduct the validation in the time domain
(as given by the right hand side of (5.7)). A comparison of both expressions
reveals potential instabilities of the asymmetric filter. It amounts to assess
the 'convolution error' rjv- Unfortunately, the remaining error r'N in (5.45)
cannot be assessed which is the 'price' paid for using the whole sample for
the estimation (instead of a subsample only). The procedure is fairly similar
to 'traditional' cross-validation.

• For a 'candidate' value p of p, the DFA solution /bp(0 is computed (in the
frequency domain and using the whole sample).

• The sample variance j? J2t=i(AYtp)2 is then computed (in the time do-
main and for the whole sample).

• The value p := po for which -^ X}t=/v(^^tpo)2 is minimized is chosen as
estimate of p.

A weakness of both approaches lies in the absence of explicit parameter
corrections. Basically, this is because both methods rely on an 'outer control'
(of the DFA solution) only. The next two sections propose methods including
an 'inner control' by suitably modifying the original optimization criterion (as
given by the left hand side of (5.19)) such that overfitting becomes 'measur-
able'. As a result, estimates are explicitly corrected for 'insufficient' regularity
of the filter.

6.4 A Singularity-Penalty

Overfitting often results in 'too complicated' asymmetric filters which may be
even singular (or 'nearly' singular), recall section 6.1. Assume for the moment
that Xt G Cf and that F 6 CJ, where /? and a are positive real numbers.
From the discussion at the beginning of section 5.2, it seems 'natural' to
require

(where /br(-) is the DFA solution for estimating Y/v-r) in some sense 'uni-
formly' in N because:

• otherwise poles of FOr(-) can approach the unit circle arbitrarily closely
(as N increases) which may induce noticeable distortions of the output
signal, see section 6.1;
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• from (5.6) (and proposition 4.7) the best filter satisfies F^r € Q™in(<*,p)^
where the subscript oo indicates that the filter minimizing the revision
error variance may involve infinitely many parameters.

For notational ease the subscript V is dropped from now on but it should
be clear that asymmetric filters are optimized for particular time points t =
N - r. If the number of parameters p(N) is a bounded function of N, then
uniform stability (see definition 5.1) implies (6.6) for all a, /3. However, if p(N)
may grow unboundedly, then the uniform stability requirement does no more
necessarily imply (6.6) uniformly in N. The following definition generalizes
uniform stability for the case of unbounded p(N):

Definition 6.1. .A sequence of QMP-filters / J V ( 0 (with p(N) parameters) is
called uniformly a-stable if

oo

Y,\lNk\\k\a<Ma (6.7)
k=-r

for some Ma > 0 which does not depend on N.

Definitions 5.1 and 6.1 are identical \ip{N) is bounded.

Consider now the criterion

2 [AT/2] oo ]

77 E lr(w*) - rCktfiNxfa) + A £ |7fcp|min(a^ \ (6.8)
{ k=-[N/2] fc=0 J

For increasing iV its solutions define a uniform min(o;, /3)-stable sequence (re-
quired by (6.6)) provided A > 0. The parameter A controls the regularity of
the asymmetric QMP-filter. Unfortunately, the proposed 'penalty' term has
undesirable properties:

• Increasing A 'forces' /"(•) towards zero (i.e. it becomes ' too smooth ') .
• The weight A depends on the extraction filter F(-). The 'regularity' of

-T(-), as measured by YHZLo l7fcIW""^"'^'; has an influence on the value
attained by J X 0 |7 f e | | f c | m i n ^> in (6.8).

• The weight A depends on the sample XI,...,XN- The 'scaling' of the

variables and the difficulty of the approximation problem are reflected

in f Z[NJ-\N/2] \r(wk) - r(ujk)\
2INX(wk) in (6.8).

Therefore, some kind of 'normalization' is needed. Assume that F(-), the DFA
solution, is an ARMA(Q, q + r) filter and let /"(•) denote the best asymmetric
ARMA(Q, q + r) filter. Then

k=-[N/2]
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where C\ is a constant that does not depend on the parameters of F(-), see
for example (C.22) in the appendix. Equivalently,

( N-r-1

where C2 does not depend on Q or on g.The logarithm can be used as a
'natural' normalization. A new criterion can then be defined by

\ (6.9)

Equivalently, a simple multiplicative criterion

f / 97T
min ^ 1 + ^ E |r(u;fe)-f(a,fc)|

2/ivx(a;fc)
r I V fc=-[W/2]

/ N-r-1 \ A ^ |

[1+ E i^ -Tfe i i fc r^^ l > (6.10)

can be used. The proposed optimization criteria (6.9) or (6.10) are character-
ized by the following properties.

• From the assumption f(-) € Cfin{a'0) and from

|7fel - |7fe| < \lk - 7fel ^ l7fel + l7fcl

it follows at once that (6.9) or (6.10) penalize filters which are not suffi-
ciently regular if A > 0.

• Increasing A does no more 'force' the asymmetric filter towards zero. More-
over, as shown below, the penalty term is 'optimal' if the input signal is
white noise.

• The logarithms 'normalize' both sums in (6.9). The additional '1 ' in the
argument of the logarithms prevent the criterion (6.9) to diverge to —00
for 'overfitted' designs. Equivalently, (6.10) cannot vanish by including the
additional '1 ' .
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• Minimizing (6.9) or (6.10) corresponds to 'fuzzy' restrictions on the filter
parameters. This is in contrast to 'hard' shape or exclusion restrictions of
the type |Pfc| > 1 + d where 5 is specified a priori. The latter restrictions
may imply 'too smooth' DFA solutions, excluding thereby optimal filter
solutions.

Setting 7fc := 7fc for k = —r,..., N — r — 1 minimizes the penalty term in (6.9).
Recall that this choice is optimal if Xf is a zero mean white noise process
(because back- and/or forecasts of the process vanish in (1.4)). Therefore,
increasing A in this particular case does not impair the solution of (6.9) (on
the contrary). However, in general the input signal is not a white noise process
and larger A may impair the goodness of the solution of (6.9). Therefore, a
final improvement of the criterion (6.9) is proposed (a similar modification
may be applied to (6.10) too):

f / 2n lN/2]

min In 1 + - ]T \r(uk) - r{cJk) \2INX (
r [ \ k=-[N/2]

where the coefficients ~/'k are computed using either of the following methods:

• 7JJ. are derived from a DFA solution which is constrained to be regular. The
regularity can be achieved by using the MC-criterion (6.5) (for estimating
the filter orders Q and q + r + 1) and by constraining poles so that \Pk\ >
1 + 6 for k = 1,..., Q. Experience suggests that S — 0.15 may be a 'good'
choice for a variety of applications.

• 7j[. are derived from a MBA based on a simple preliminary model (for
example an 'airline' model).

The role of the first sum in (6.11) is to 'fit' /"(•) to the sample and the role of
the second sum is to penalize 'too elaborate' solutions. Therefore, when com-
puting j ' k using a MBA, 'best fitting' models are not a priority. Instead, a
simple parsimonious model (for example an 'airline' model) is needed so that
the coefficients ~f'k define a sufficiently regular 'control sequence' for % (ensur-
ing the uniform min(o!,/3)-stability of/'(•)). Increasing A in (6.11) strengthens
the regularity of the asymmetric filter. Also, increasing A 'pulls' the estimate
towards a preliminary DFA or MBA solution which is felt better than the
constant zero in (6.8) or the solution for a white noise input process in (6.9)
(which is implicitly assumed by setting fk

 : = 7fc> f° r ^ = ~r> •••> N — r — 1).
Note that it is not intended to 'shrink' the original DFA solution towards
a simple regular preliminary solution j ' k by minimizing the criterion (6.11).
'Shrinkage' methods are well known in Bayesian estimation, see for example
Litterman [62], which proposes a Bayesian approach based on mixed estima-
tion. In (6.11), the parameter A is typically 'small' so that the 'shrinkage
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effect' is small too. Moreover, \% - -y'k\ is weighted by |fc|min(«./3) in (6.11)
which implies that regularity aspects dominate here. In fact, singularity of
the transfer function has to do with slowly decaying filter coefficients, which
is penalized by the weights |fc|min(Q-0).

A formal procedure for choosing A and min(a, /?) is unknown up to now.
It is reasonable to assume that A —> 0 as N —> oo since otherwise the solu-
tion of (6.11) is eventually an inconsistent estimate (if 7̂ . are inconsistent for
example). Experience suggests that A = l/\/JV and min(a,/3) = 1 or 2 often
provide good results for a large variety of applications. Note also that (6.11)
offers a link between the DFA and the MBA if -y'k are based on a model (a
similar link was already provided in section 5.8).

As noted in section 6.1, 'instability singularities' (generated by zero-pole-
pairs whose poles are closer to the unit circle than the corresponding zeroes)
are potentially more 'harmful' than 'non-invertibility singularities'. Moreover,
the latter may be necessary for specific tasks (like for example seasonal ad-
justment, see chapter 7). Unfortunately, the above penalty terms do not suf-
ficiently differentiate both types of singularities. In the next section, an alter-
native modification of the optimization criterion (5.19) is proposed, which is
able to realize such a differentiation. It is then possible to focus on 'instability
singularities' only by tracking hidden zero-pole-pairs on the entire frequency
intervall [—TT, TT]. AS for the previous method, overfitting is 'tackled' directly
by modifying parameter estimates accordingly.

6.5 Variable Frequency Sampling

Assume for simplicity that Xt £ C® is a stationary MA process, that F(-) £ C°

and that /"(•) is a real ZPC filter satisfying

|r(A)| = M (6.12)

\l-f(u))\ <5 if |w-A| >e

where A = —— and M is a large positive number (the stationarity

assumption is not required but it simplifies the exposition). Assume also
h(u>) > 0 for all u>, where h(-) is the spectral density of Xt. Then lNx(^k) 7̂  0
and INX(UIS;+I) 7̂  0 with probability one (because they are real random vari-
ables with variances h(u>k)2 > 0 and h(tJk+i)2 > 0 respectively, see theorem
B.2). The potential instability of the ZPC-filter /"(•) cannot be detected by
the criterion (5.19) if e and d are sufficiently small, because the frequency
ordinates u>k := k2n/N are fixed. Therefore the 'main effect' of /*(•) at A
is hidden. If M > 1, then the filter /•(•) amplifies components (which exist
because h(X) > 0 by assumption). Assume for example that T(') satisfies
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r(X) = 0 : then the estimated output Yt can be a (very) poor estimate of Yt

(depending on the amplification M).

If u>k were allowed to vary in (5.19) then the problem could be solved.
More precisely, let A be arbitrary and define

/ wk, A £ ]wfc - kn/N,uk + hir/N] . .
A, else ( 6 - 1 3 )

) := INx(uk) (6.14)

Also, define Q'N := {w'k\Q < \k\ < [N/2]}. The set Q'N enables to 'track'
the pole of the ZPC filter /'(•). A new optimization criterion is defined by
replacing Q^ by O'N in (5.19):

9-7T

f £ \Ar{u,'k)\*INX{u,'k) (6.15)
r fe=-[JV/2]

An instability singularity (an arbitrarily large M in (6.12)) would be incom-
patible with the minimization in (6.15) because / J V X ( ^ ) := /ivx(^fc) > 0
with probability one (as shown above).
The frequency ordinates u'k are variables (in fact they are random variables
in (6.15)) which depend on the argument of the ZPC filter but the 'extent' of
their variability is very limited as N increases. The above definition 6.13 can
be straightforwardly extended to the case of multiple ZPC filters :

, - = f wfe if Xj £ ]uk - kir/N,(jk + kir/N] , j = 1,..., n . .
k 1 ^j e^se

where Aj0 is defined as

Xj0 :=

<Xj - kn/N,u)k + kir/N] and |1 - \Pj\\ is minimal| (6.17)

and n is the number of poles. If Q'N is defined as fi'N := {uJk\0 < \k\ < [A^/2]},
then Q'N 'tracks' all poles simultaneously. Moreover, if the arguments of sev-
eral poles lie in ]u>k — kn/N,ujk + kn/N], then D'N tracks the most unstable,
see (6.17).

Denote the solutions of the left hand side of (5.19) and of (6.15) by
and FQ(-) respectively, where the only differences are the sets Q^ and Q'N
used for the optimization (so for example Q = Q' and q = q' i.e. both niters
are ARMA(<3,g + r)-filters). The following proposition proves the equivalence
of both solutions under regularity assumptions.
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Proposition 6.2. Let /b(-) and •To(-) be given as above and let n = o(N) be
the number of poles of the filters. Then

2TT
[N/2]

k=-[N/2]

[If/2]
2_

k=-[N/2]

where e^ = o(l) if F(-) and both ARMA filters are in C'j uniformly in N. If
F(-) and both ARMA filters are in Cj uniformly, then e^ = O(n/N).

Proof. The proof is given under the assumption that both filters are in Cj

uniformly in iV (a similar reasoning applies if both filters are in C'j uniformly).
If /b(-) € Cj uniformly then

2

—

9

W2]

k=-[N/2]

W2]

because the event u>'k ^ iok occurs at most n times and because

(ro(u/k) - fo(u>k))\

= O(1/AT)

where the last equality follows from the regularity assumption (which im-
plies that the filters are differentiable uniformly in N). Equivalently, assuming
-TQ(-) € Cj uniformly implies

2TT

2TT

[JV/2]

wk\r(u,k)-f"o(wk)\
2iNX(wk)

k=-[N/2]

k=-[N/2]

Therefore
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27T [N/2]

— J2
k=-[N/2]

„

fc=-[JV/2]

[A72]

fc=-[JV/2]

where the inequalities are direct consequences of the definition of /o( -) a n d
/'o(-). This completes the proof of the proposition. •

Both solutions are (almost) identical under regularity assumptions. The
filter FQ(-) is preferred because poles are 'tracked' in (6.15). Therefore, unsta-
ble designs are avoided.

An alternative to definition 6.14 is

-, A > uk

but this would lead to unnecessary additional algorithmic complexity, since
not only the frequencies but also the periodogram would become a function
of the filter coefficients.

The new frequency ordinates ui'k are functions of the filter parameters.
This may have incidences on the numerical optimization algorithm. Steepest-
gradient or Newton-Raphson algorithms usually speed up the search. Unfor-
tunately, (6.13) is a discontinuous function of A (the argument of the pole).
Therefore, (6.13) is replaced by a more regular (twice differentiable) function
such as

A ̂  ]uk- kn/N - e,ujk + kn/N + e]
A 6 jw/b - kn/N - e,tok — kn/N]
A s ]u>k — kn/N,uk + kn/N]

. - ojk)g{\) A e ]cok + kn/N, ujk + kn/N + e]

i _ ) ~« ' v ~ w f c ) / ( A ) A 6 ]w/b - kn/N - e,ujk- kn/N] fR-,Q\
Wfc : ~ ^ A G H - kn/N,wk -L i-Mrl lb-18J
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where e is an arbitrarily small real number and /(A), g(X) generate 'smooth'
(twice differentiable) transitions u!k —> A and A —» Wfc. Therefore, /(•) must
satisfy:

_ /
- \
_ / 0 A = wfe - kir/N - e

\ A = wfc -

0 A = wk ~ kir/N

where /'(•) is the derivative of /(•) (analogous conditions must hold for <?(•)).
An infinitely often differentiable solution is for example given by

(6.19)

where r(A) := . For denning g(\), simply replace r(A) by

u)k - A + kx/N + e .
q(X) := - in (6.19).

Until yet the variable frequency ordinates u>'k 'track' a pole P\ := \P\\ exp(iA)
irrespectively of the modulus \P\\. This is not always necessary, especially
if \P\\ is 'significantly' larger than 1 i.e. if the pole is sufficiently far away
from the unit disk. Hence, the new frequency function ui'k', say, should become
a function of A if and only if |P \ | < 1 + e, where e is some positive real
number. Consequently, u)'k' now becomes a function of the argument as well as
of the modulus \P\\- A straightforward smooth (infinitely often differentiable)
generalization of (6.18) is then given by

ffc \Px\>l + e + 6
Jk' := I ujk + K - uk)f2(\P\\) 1 + c < |PA| < 1 + c + S (6.20)

[ 'k else

where

and r2( |P\ |) := r • The newly denned frequency ordinates uk

track poles if and only if the latter become 'nearly unstable', where the pa-
rameter e defines 'near instability'. For many practical applications e := 0.1
may be chosen for example. The new optimization criterion is then given by
replacing QN by J% := {cj'k'\\k\ < [AT/2]} in (5.19).

In this chapter, finite sample methods were presented for solving the over-
fitting problem. They supplement the asymptotic results obtained in the pre-
ceding chapter. As a complement to the proposed theory, empirical results are
presented in the last two chapters. First, the MBA and the DFA are compared



164 6 Finite Sample Problems and Regularity

for various simulated input processes. Then the performances of both meth-
ods are assessed using empirical time series. In chapter 7 both approaches are
compared with respect to the mean square error criterion. In chapter 8 the
methods are compared with respect to their ability to discover turning points
towards the boundary of a sample.



Part II

Empirical Results



Empirical Comparisons : Mean Square
Performance

7.1 General Framework

In the following two chapters model-based estimates (of a signal) are com-
pared to estimates obtained by the DFA. In this chapter, attention is given to
the performance as measured by the revision error variance: the smaller the
variance, the better the method.
Simulated examples and a 'real-world' time series are examined. For the for-
mer, the experimental design is set up such that MBA-estimates are also
maximum likelihood estimates. For the 'real-world' time series the MBA is
based on TRAMO (release November 1999, see Maravall and Gomez [64])
and Census X-12-ARIMA (release version 0.2.8, see Findley et al. [32]). The
DFA is based on solutions of

2 [W/2]

^ n 4 E \Ar("k)\2lNx(u>k) (7-1)
r fc=-[JV/2]

(for stationary input signals, see (5.19)) or on solutions of

2_ W2]
m i n "F £ \AT(uk)\

2INx{u,k) (7.2)
Fc k=-[N/2]

(for integrated input processes, see (5.36)), where FQ is a constrained filter (a
complete description is given below).
For notational convenience and to save space the analysis is restricted to
boundary signal estimates only, i.e. r = 0 in (3.6). For r = 0 the estimation
problem is most difficult since the approximating filters are completely asym-
metric.
The methods are compared with respect to true revision error variances (for
the simulated series) and with respect to estimated revision error variances
(for both the simulated series and the 'real-world' time series). The following
revision error variance estimates are used.
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For both approaches:
- sample estimates:

N-M

Y (yt
N-yt)2 (7-3)

7V-2M
t=M+l

where Yf is the output of the asymmetric filter (which is based on
Xi,...,Xt, i.e. r = 0) and Yt

N is the output of an 'almost' symmetric
filter (which is based on the whole sample X\, ...,XN). If M is suffi-
ciently large, then Yt

N is a 'good' estimate of the unknown signal Yt

for t = M + 1,..., N — M: a precise statement is given below.
- 'frequency estimates' as given by the expressions (7.1) or (7.2). Note

that frequency estimates can be computed for the MBA too, since
AF(-) can be computed from knowledge of AR- and MA-parameters
of the model.

• For the MBA only:
- the expression

- X / c o \ 2

-2 E Ev»-i (7-4)

fe=-oo \j=0 )

see (2.26). In the latter case, infinite sums are always 'conveniently'
truncated and unknown true parameters (a2 and bj) are replaced by
estimates (jk are known since they correspond to the symmetric ex-
traction filter).

Seasonally adjusted time series (defined by the canonical decomposition of
the airline-model, see section 2.3.2) and trends define the signals. The trend
of the canonical decomposition is used. However, since this signal is based on
a particular model-based approach (implemented in TRAMO/SEATS), the
corresponding estimation routine is possibly favored (when compared to X-
12-ARIMA for example). Therefore, another trend signal is considered here
which does not 'favor' a particular approach. The transfer function of the
symmetric filter is defined by

0 < |w| < TT/9

0 TT/7 < \LJ\ < -K

whose Fourier coefficients are

fcos(A;7r/7)-cos(fe7r/9)

l
+

( 7 6 )
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This trend filter does neither 'favor' a particular MBA nor the DFA. It does
not affect components with frequencies smaller than TT/9 and eliminates com-
pletely components corresponding to frequencies greater than n/7 (for exam-
ple seasonal components of a monthly time series). If 'smooth' signals are of
interest, the above filter may be considered as 'ideal' since its output is not
affected by 'high frequency' components. It can be verified (numerically) that

30 oo

£^/£^>0-997 (7.7)
fe=l fe=l

which shows tha t a truncated filter (of length 2 x 3 0 + l = 61 ) i s very close
to the 'ideal' filter (which is of infinite length). In the following, the finite
approximation is normalized:

30

Tt:= £ ikXt.k (7.8)
fe=-30

where ~f'k := 7fc/X^fc=-3o7fc a r e the (normalized) Fourier coefficients of the
transfer function

30

T » : = J2 Yfc«*p(-i*w) (7.9)
fc=-30

Although the truncated filter does not eliminate all high frequency compo-
nents, the damping is so strong the attribute 'ideal' is still justified. Note
that Tt can be computed for finite samples (whose length exceed 60) and that
the corresponding transfer function belongs to C^°. Therefore, the regularity
assumptions required by the theoretical results presented in the last chapters
are satisfied. Moreover, one can set M := 30 in (7.3).
For the DFA, parsimonious QMP-ZPC-filter designs are used (recall section
3.3). The exact parameterization of the filters is described in the correspond-
ing sections.

In section 7.2, different simulation experiments are analyzed. They confirm
theoretical results obtained in preceding chapters and illustrate various issues
related to overfitting and misspecification of integration orders. Results for a
'real-world' series are presented in section 7.3.

7.2 A Simulation Study

Airline-models are very often selected by TRAMO (and often by X-12-
ARIMA) for modelling 'real-world' time series. Since these procedures are
widely used for 'extracting' (estimating) signals, a corresponding simulation
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experiment is proposed in the first section. However, I(2)-processes (assumed
by the airline-model) are not always 'well-suited' for modelling economic time
series (as shown below, I(2)-processes assume 'strong' trends which are un-
likely to be observed in practice). Therefore, other models (assuming 1(1)-
and I(O)-processes) are analyzed also in the following sections. The various
experiments are designed in such a way that the MBA provides maximum
likelihood estimates of the signal. The results indicate that the DFA performs
as well as the maximum likelihood method if all the unit-roots are correctly
accounted for by the constraints (5.22). Otherwise, misspecification is quanti-
fied empirically. Particular forms of misspecification reveal the 'robustness' of
the proposed DFA. In this section, the 'test-signal' Tt is given by (7.8) which
does not favor a particular approach.

7.2.1 Airline-Model

The present simulation experiment is based on the following 'design':

• Generate 100 replications of length N — 1234 of the process

- Bl2)Xt = (1 - 0.6S)(l - 0.55)et (7.10)

with standard normal distributed error terms. The process is 'initialized'
by setting XQ = .. = X-12 = 0. The first 1000 sample values are dis-
carded. The remaining sample X1001, •••,^1234 is used for the simulation
experiment, which is denoted by Xi,..., X234. The data are generated using
RATS (Regression Analysis of Time Series), version 5.1.

• Compute the boundary filters (for more details see below) of the MBA
and the DFA using a subsample of length N = 180 (15 years) and collect
'in sample' results for t = 112,..., 180 (the first 111 values are retained for
avoiding initialization problems of the filters of the MBA and the DFA:
this is probably excessively large but it ensures that initialization problems
are not confounded with estimation issues). Compute out of sample per-
formances for t = 181,..., 204. The remaining values for t = 205,..., 234 are
used for implementing the symmetric (truncated) extraction filter (7.8).

• Compute the revision error variance estimates (sample variances, fre-
quency estimates and model based estimates, see the preceding section)
and compare their average value (over the 100 realizations) 'in-' and 'out
of sample' with the known true revision error variance.

The boundary filters are computed as follows. For the MBA, the parameters
of the model are estimated using the true model (no model identification) by
unconditional maximum likelihood. This can be achieved by transforming the
model into a state space form (using the procedure DLM -Dynamic Linear
Models- of RATS for example) and initializing the Kalman-filter recursions by
the first two unconditional moments (of the differenced stationary process).
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Therefore, the resulting filter outputs Yt of the MBA are maximum likeli-
hood estimates. This is because estimated model parameters are maximum
likelihood estimates and because the maximum likelihood estimate of a (well
behaved) function of the parameters (such as the signal estimate) is simply
the value of this function obtained for the maximum likelihood parameter es-
timate i.e. / (#ML) is the maximum likelihood estimate of f(9).
For the DFA, three different filter designs are proposed. Two of them corre-
spond to particular misspecifications of the integration order.

• The first estimate (estimate I) is the output of the solution of (7.1). By
purpose, it is erroneously assumed that Xt is a stationary input signal
(misspecification of order two of the true integration order).

• Estimate II is the output of the solution of (7.2). More precisely, it is
assumed that

Xt = (1 - Bl2)Xt (7.11)

(which implies first order conditions r(j-rr/6) = F{J-K/&),J = 0,...,6 in
(5.22)). This is misspecified too.

• Estimate III is the output of the solution of (7.2) where it is assumed that

Xt = (1 - B)(l - B12)Xt

Therefore a second order condition at frequency zero (as proposed in
(5.34)) together with first order conditions r(jn/6) = r(jir/6),j = 1,..., 6
in (5.22) are considered for this correctly specified design.

The corresponding filters are parameterized as follows:

• For estimate I, seven zero-pole-pairs (plus complex conjugate pairs) are
used, which amounts to 7 x 3 + 1 = 22 parameters. Six zero-pole pairs
can account for the six seasonal spectral peaks (six peaks for monthly
data) and the remaining zero-pole pair can adapt for the spectral mass at
frequency zero.

• For estimate II, seven zero-pole pairs are used also (plus complex conju-
gate pairs) but 13 degrees of freedom are lost because of the constraints
f(jir/6) = r(jn/6) for j = 0, ...,6 implied by (5.22). Specifically, it is
assumed that r(0) = f(0) = 1 and that f(jir/6) = 0 for j = 1, ...,6
(note that the latter condition is satisfied exactly by (7.5) but it is sat-
isfied only approximately by (7.9): in the following this is neglected be-
cause the damping of (7.9) is very strong). The latter constraints require
Zj = exp(—ijir/6), j = 1,...,6, which determines the argument and the
modulus of the corresponding zeroes. The first condition corresponds to a
normalization so that only one degree of freedom is lost.

• For estimate III, seven zero-pole pairs are used but 14 degrees of freedom
are lost (12 for the seasonal unit-roots and two for the order two constraint
at frequency zero implied by (5.22)).
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For the DFA, all filter designs are more or less heavily overparameterized : the
experiments reveal the effect of this overparameterization on the estimates as
measured 'out of sample'. In fact, the true structure (assuming two degrees
of freedom only) is not assumed to be known exactly here. Therefore, a flexi-
ble filter design is required which is able to handle potentially more complex
tasks. If the more general (overparameterized) filters perform well, then good
results are to be expected for 'non-artificial' data too.

Table 7.1 summarizes the performances of the various approaches (the
values in parentheses are empirical standard errors). The top-left a2 = 0.132

Table 7.1.
a2 - 0.132

MBA
DFA III
DFA II (unadjusted)
DFA II (adjusted)
DFA I (unadjusted)
DFA I (adjusted)

0.136(0.0043)
0.132(0.0042)
0.182(0.0053)
0.161(0.005)
6.732(0.457)
0.288(0.0163)

0.126(0.0078)
0.129(0.0072)
0.172(0.010)
0.157(0.003)
7.062(0.464)
0.274(0.0188)

0.121(0.012)
0.118(0.012)
0.163(0.018)
0.145(0.011)
6.160(0.800)
0.259(0.045)

\a2 -a2\
0.026(0.0022)
0.025 (0.0021)
0.045 (0.0051)
0.041 (0.0023)
35.59 (4.42)
0.099 (0.0158)

in this table indicates the theoretical revision error variance (obtained by the
optimal filter based on the true DGP). The columns 'of/ and la\j are sample
revision error variances (7.3) 'in' and 'out of sample'. The column la2

p' is the

mean of (Yiso - ^ISO)2 over the 100 replications (it is thus an estimate of the
revision error at the 'end point 't = 180). The column '|<r2 — cr2|' is defined as
follows

• for the MBA and the DFA III the values correspond to the mean (over
the 100 replications) of the absolute differences between the theoretical
revision error variance (0.132) and the estimates (7.2) (for the DFA III) and
(7.4) (for the MBA). For the DFA III the resulting error term corresponds
to .Rjv in theorem 5.3 or, more precisely, to RN in corollary 5.4 (the error
term after minimization).

• for the misspecified DFA II and DFA I the values in the last column cor-
respond to the mean (over the 100 replications) of the absolute differences
between the sample revision error variances (7.3) and the 'frequency esti-
mates' (7.1) (for the DFA I) or (7.2) (for the DFA II). Therefore the error
term corresponds to r^ in proposition 5.2. Measuring deviations of the
frequency estimates (7.1) and (7.2) from a2 = 0.132 would be mislead-
ing here, because the filter designs are misspecified, i.e. the corresponding
(unknown) true revision error variances are larger than 0.132.
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Remarks

• The estimation at the end point has been considered in a separate (third)
column because the end point is a particular 'in sample' observation: pa-
rameter estimates (of the model) and periodograms cannot account for
'future' observations at the end point. Therefore, this situation reflects
more precisely what happens in practice (when estimating a signal for the
end point t = N). As can be seen, the results are not significantly different
from 'in sample' results. Evidently, the variance of the estimate is larger
because only one observation is available for each replication.

• A confirmation of the efficiency (or not) of the DFA can be obtained from
the last column. The DFA aims at the minimization of an estimate of
the revision error variance. The performance of the DFA thus depends on
the performance of this estimate. The fourth column reports the latter
performance.

The results obtained in table 7.1 are now briefly commented. None of the
above differences between the MBA and the DFA (estimate III) are signifi-
cant at a standard 5% level. Out of sample results are stable: they are even
slightly (although not significantly) better than 'in sample' results. The last
column for estimate III shows that the 'frequency estimate' of the revision
error variance is efficient (at least as efficient as the maximum likelihood esti-
mate of the MBA), as was shown in section 5.5. Therefore, the DFA (estimate
III) makes sense since it minimizes an efficient estimate of the revision error
variance. Note that both methods significantly outperform the 'misspecified'
DFA designs (at a 5% level).

Both DFA II (adjusted and unadjusted) perform significantly worse than
the preceding two approaches. The loss in accuracy or equivalently the in-
crease of the revision error variance (estimates) is approximately 20% . This
increase is mainly due to a non-vanishing time delay at frequency zero (which
is about 0.06 time units in the mean over all realizations). The DFA II ad-
justed performs slightly better than the DFA II unadjusted. The periodogram
of the former is based on the series

X'i := Xt - {-2

see (4.45) (adjustment of order two).

DFA I involves 22 parameters which may lead to problems for the numer-
ical optimization algorithm. In fact, results for DFA I are not always reliable
in the sense that the performance of the numerical optimization used for the
above experiments depends on initial values: depending on which values are
used, the optimization may 'stop' at different local minima. Alternative algo-
rithms searching for the global minimum could be used instead (for example
'genetic' search) but they would be much more time consuming. In order to
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focus on the statistical problem (rather than numerical issues) the numerical
optimization algorithm for DFA I is initialized by solutions obtained for DFA
II or DFA III (this method is used for all simulation experiments). The latter
are 'reliable' in the sense that corresponding solutions do not appear to de-
pend on particular initial values.
The last two rows of table 7.1 show results for the DFA I which is based on
the periodogram of the 'untransformed' Xt (estimate I unadjusted) and on
the periodogram of

'l := Xt -12

see (4.45) (estimate I adjusted). The unadjusted periodogram is subject to a
'misspecification' of integration order two which explains the poorer perfor-
mances of estimate I (recall the bias problem analyzed in section 4.3.2). The
periodogram of the adjusted series satisfies

* if «* * W 6 , 3 = 0,..,6 (7.12)

where Xt is the differenced stationary process, see (4.44) (note that
j\T + 1 2

//v+ix"(0) = 0 has been replaced by X , see the corresponding remark
2TT

on p.90). The filter estimates of the 'adjusted' series perform significantly bet-
ter because //v+ix"(^fc) is approximately an unbiased estimate of the pseudo
spectral density of the process Xt (for cjk ^ jn/6, j = 0, ...,6). Comparing
(5.37) and (7.12) shows that estimate III corresponds to a constrained esti-
mate I (adjusted case). The former is less heavily overparameterized and it
accounts exactly for all unit-roots (i.e. the conditions (5.22) are satisfied).
Therefore, the difference between the performances of both methods (about
50% decrease of the revision error variance) is roughly what can be gained
here by imposing (5.22). Note that this result depends on the experimental de-
sign: in particular the initialization length 1000 is important here because the
realizations of the I(2)-process are already strongly 'trending', see for exam-
ple figure 7.2 below. For shorter initialization lengths the differences between
DFA I, DFA II and DFA III become less pronounced.

Consider the following realizations of the airline model (7.10) as shown in
figures 7.1 and 7.2. For both realizations initial values were set to zero i.e.
X-M = ••• = X-M-u — 0. The first one assumes M = 0 (fig.7.1) and for the
second one the initialization length is M = 1000 (fig. 7.2). Evidently, the shape
('mean slope') of the realizations heavily depends on M : this effect is due to
the integration order two of the process. The length M = 1000 corresponds
to an effective duration of 1000 months which is approximately 80 years. If
models with a double unit-root (at frequency zero) were a good approxima-
tion of the DGP of economic time series (as suggested by software packages
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25 50 75 100 125 150 175 200

Fig. 7.1. Initialization with M = 0

25 50 75 100 125 150 175 200

Fig. 7.2. Initialization with M = 1000

like TRAMO or X-12-ARIMA) then many economic time series should 'look'
similarly to the realization in fig.7.2. However, this seems not to be the case.
Note also that a 'preliminary' signal extraction for the second graph could be
done fairly easily by fitting a straight line: in fact, 'turning-points' become
very rare as the initialization length M increases.
Recall that the second order condition at frequency zero is >̂(0) — 0 (the first
order being A(0) = A(0) — 1). It has been shown in theorem 5.5 that this
is not only a sufficient but also a necessary condition. The reason is that the
slope i.e. the first differences of an I(2)-process (with a double unit-root at
frequency zero) grows unboundedly in absolute value. However, this 'strong'
trending behavior cannot often be observed for 'real-world' time series. There-
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fore, the condition <̂ (0) = 0 is generally unnecessarily restrictive. Does this
condition impair the fit? It has been shown that phase (time delay) and am-
plitude functions of minimum phase filters are related. Recall in particular
expression (5.40) which has revealed that 'amplitude fitting' and 'phase fit-
ting' are antagonistic in the optimum: improving either one is possible only at
the expense of the other one and it results in a larger revision error variance.
Therefore, it is to be expected that airline models induce asymmetric filters
satisfying a condition which is unnecessarily restrictive (at least for many
'real-world' time series) and which generally impairs the fit.

Therefore, a non-stationary process with integration order one and a sta-
tionary process are analyzed in the following subsections. The effect of unnec-
essarily imposing a second order constraint (vanishing time shift at frequency
zero) is quantified empirically. In particular, the first section analyzes a 'quasi-
airline model' for which one of the two unit-roots at frequency zero is replaced
by the stationary root 1 - 0.95.B.

7.2.2 'Quasi'-Airline Model

The general experimental 'design' remains unchanged except for the model
which is now

- 0.95J3)(l - B12)Xt = (1 - - 0.5B)et (7.13)

i.e. the unit-root 1 — B is replaced by a stationary root 1 — 0.95-B. Param-
eters are estimated using the true model, so that three parameters must be
estimated: the AR(1)- and the two MA-parameters (estimating airline-models
would often result in non-invertible MA-terms generating forecasting difficul-
ties). The results obtained for 100 replications are summarized in table 7.2.
The various approaches DFA I to DFA III (adjusted or unadjusted) are de-

Table 7.2.
a'1 - 0.120

MBA
DFA III
DFA II (unadjusted)
DFA II (adjusted)
DFA I (unadjusted)
DFA I (adjusted)

*?.
0.123(0.0036)
0.128(0.0043)
0.125(0.0037)
0.128(0.0041)
0.564(0.0463)
0.171(0.0067)

0.126(0.0075)
0.132(0.0085)
0.128(0.0051)
0.128(0.0078)
0.561(0.0505)
0.166(0.01)

0.128(0.012)
0.135(0.015)
0.123(0.015)
0.125(0.017)
0.644(0.092)
0.172(0.018)

a2-a2

0.0253(0.0015)
0.0264 (0.0021)
0.0242 (0.0017)
0.0252 (0.0022)
0.358 (0.043)
0.074 (0.005)

fined in the previous section. Their relative performances illustrate the effects
of various filter designs (accounting for particular unit-roots) on the revision
error variance. The top-left a1 = 0.120 is the theoretical revision error vari-
ance (for the asymmetric filter based on the true DGP). For model (7.13) the
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DFA II (unadjusted) is correctly specified whereas DFA II (adjusted), DFA
III (integration order two) and DFA I (stationary case) are 'misspecified'.
None of the differences between the MBA and the DFA II are significant (at
'reasonable' significance levels). Comparing DFA II (unadjusted) and MBA
for the last column of the above table shows that the frequency estimate (7.2)
is an efficient estimate of the theoretical revision error variance (which again
justifies the DFA).
The adjustment of order two for the DFA II (adjusted) is too strong since the
integration order of the process is one only. The 'overadjustment' effect has
been analyzed in section 4.3.2. Figure 7.3 shows a particular realization of the
process (7.13) (dotted line, initialization length=1000) and its adjustment

- (L + - ) (A12AY)

(solid line), see (4.45). As can be seen by comparing the periodograms in fig.7.4

Fig. 7.3. Original (dotted) and adjusted (solid) series

the adjustment (of order two) induces spurious spectral power towards the low
frequencies. Therefore, the low frequency content of the signal is overestimated
and the time shift (delay) of the corresponding 'optimal' asymmetric filter (at
frequency zero) is unnecessarily reduced. The DFA III (unnecessarily) con-
strains the time shift (delay) of the resulting filter to vanish at frequency
zero.
Figures 7.5 and 7.6 compare amplitude and time shift functions of DFA II un-
adjusted (short marks), DFA II adjusted (long marks) and of DFA III (solid
line) for a particular realization. The time shift of the (optimal) DFA II un-
adjusted is largest at frequency zero (about 2.8 time units) and the time shift
of DFA II is larger than that of DFA III towards the low frequencies. Also, an
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Fig. 7.4. Periodogram : adjusted (solid) and unadjusted (dotted)
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Fig. 7.5. Amplitude functions DFA IPs and DFA III

examination of the amplitude function of DFA II reveals that the correspond-
ing filter removes more power at seasonal frequencies (wider troughs). Despite
these differences, the results in table 7.2 suggest that the described approaches
perform quite similarly. This is because the stationary root is close to the unit-
root. However, it is interesting to note in this example the impact of 'small'
differences of a particular model parameter on the relative performances of
the various filter designs (when compared to the preceding airline-model).
The last two rows show the performance of the DFA I estimates. DFA I un-
adjusted performs poorly because the stationary AR-root 1 — 0.95B is close
to a unit-root. Therefore, the process is 'almost' 1(2) which implies that the
periodogram of the unadjusted series is strongly biased, see section 4.3.2. DFA
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Fig. 7.6. Time shifts DFA IPs and DFA III

I adjusted underestimates the spectral power at frequency zero (no unit-root
is imposed at frequency zero). The loss in performance is about 30% (increase
of revision error variance).

In the last two simulation experiments, the performances of the various
filter designs are analyzed for particular stationary input signals. A quantifi-
cation of the overadjustment effect and of the unnecessarily severe first and
second order conditions (5.22) is provided for the particular examples chosen
there.

7.2.3 Stationary Input Signals

The experimental design is still the same as in the preceding two sections
except for the chosen input signals. The first stationary signal is generated by

- 0.9B12)Xt = et (7.14)

Parameters are estimated using the true model. The results obtained for 100
replications are summarized in the following table 7.3. MBA, DFA I (unad-
justed) and DFA II (unadjusted) perform best. DFA III is significantly worse
(at 5% ) and the performances of DFA I (adjusted) and DFA II (adjusted)
are in between. Imposing a second order constraint (vanishing time shift at
frequency zero) results in a 25% increase of the revision error variance when
compared to the best methods. Similarly, a second order adjustment as in
DFA II 'adjusted' results in a 20% increase of the revision error variance.
Obviously, the adjustment of order two is too strong, since the process is sta-
tionary. Figure 7.7 shows a particular realization of the process (7.14) (dotted
line, initialization length=1000) and the adjusted series
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Tkble 7.3.

a* = 0.0423

MBA
DFA III
DFA II (unadjusted)
DFA II (adjusted)
DFA I (unadjusted)
DFA I (adjusted)

0.040(0.0020)
0.054(0.0022)
0.043(0.0017)
0.051(0.0021)
0.041(0.0016)
0.047(0.0018)

0.046(0.0035)
0.053(0.0042)
0.044(0.0031)
0.047(0.0033)
0.041(0.0029)
0.046(0.0032)

&ep

0.043(0.0049)
0.061(0.0071)
0.040(0.0051)
0.049(0.0064)
0.047(0.0051)
0.046(0.0057)

a2 -a2

0.0115 (0.0010)
0.0126 (0.0011)
0.0111 (0.0010)
0.0118 (0.0010)
0.0108 (0.0010)
0.0118 (0.0013)

x» := xt - ±

(solid line), see (4.45). As can be seen by comparing the periodograms in

Fig. 7.7. Original (dotted) and adjusted (solid) series

fig.7.8 the adjustment (of order two) induces spurious spectral power at the
lowest frequency u>± (INX"(WI) — 14 and /jvx(wi) — 0.5 ). Therefore, the low
frequency content of the signal is overestimated and the time shift (delay) of
the optimized filter at frequency zero is unnecessarily small. A comparison of
the values in the last column of table 7.3 shows that 'frequency estimates' (as
given by (7.1) and (7.2)) of all approaches except DFA III are 'almost' effi-
cient (since their performances are comparable to the model-based maximum
likelihood estimate).

The last experiment is based on the AR(l)-process

(1 - 0.6B)Xt = et (7.15)
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Fig. 7.8. Periodogram : adjusted (solid) and unadjusted (dotted)

Parameters are estimated using the true model, as in preceding sections. The
results obtained over 100 replications are summarized in table 7.4.



182 7 Empirical Comparisons : Mean Square Performance

Table 7.4.
a* - 0.182

MBA
DFA III
DFA II (unadjusted)
DFA I (unadjusted)

0.181(0.0088)
0.243(0.0099)
0.218(0.0099)
0.179(0.0090)

ft.
0.188(0.0154)
0.257(0.0184)
0.230(0.0167)
0.195(0.0149)

ftp
0.176(0.0226)
0.234(0.0340)
0.253(0.0312)
0.208(0.0301)

a2 -a2

0.0677 (0.0059)
0.0573 (0.0055)
0.0566 (0.0052)
0.0548 (0.0050)

The loss in performance of the 'misspecified' DFA III and DFA II is ap-
proximately 35% and 25% when compared to the optimal MBA and DFA I. It
can be seen from figs.7.9 (original and adjusted series) and 7.10 (periodograms

Fig. 7.9. Original (dotted) and adjusted (solid) series

of adjusted and unadjusted series) that the adjustment of order two unneces-
sarily induces variance or equivalently spurious spectral power (at the lowest
frequency u)\) for a particular realization of (7.15). Similarly, it is shown in
figs.7.11 and 7.12 that an (unnecessary) adjustment of order one also induces
spurious spectral power for the same realization. Both results indicate that
differencing is unnecessary (at least for solving the signal extraction problem
for the given realization).

The results obtained so far are summarized in the last section.

7.2.4 Conclusions

• If the unit-roots are correctly accounted for by the conditions (5.22), then
the DFA performs as well as the maximum likelihood estimate (given by
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Fig. 7.10. Periodograms : original (dotted) and adjusted (solid) series

Fig. 7.11. Original (dotted) and adjusted (solid) series

the MBA). The reason for the efficiency of the DFA can be seen from
the last columns of the above tables: the 'frequency estimates' (7.1) and
(7.2) are efficient estimates of the revision error variance (see section 5.5).
Therefore, if the numerical optimization algorithm converges to the global
minimum of (7.1) or (7.2), then the DFA performs well.
Despite a more or less pronounced overparameterization, the DFA also per-
forms well 'out of sample'. Therefore, overfitting seems to be 'under con-
trol' for the above examples. A possible explanation for this phenomenon
has been given on p. 152. As a result, DFA II or DFA III designs (involving
9 and 8 parameters respectively) can often be used for 'real-world' series
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Fig. 7.12. Original (dotted) and adjusted (solid) series

too. The MC-criterion (6.5) can be used for inferring the better filter de-
sign: DFA I is generally rejected because it involves too many parameters.
'Misspecified' filter designs generally perform significantly worse than the
maximum likelihood estimate. Misspecification of integration order one
means that one or several (but different) unit-roots are ignored in the con-
ditional optimization (7.2). In that case, the loss in accuracy generally is
somewhere between 20% and 40% (of the revision error variance) for the
above examples. An exception is seen in table 7.2 where DFA I 'unad-
justed' performs very poorly. For that example the 'quasi' airline model
has a unit-root (1 — B) and a stationary root (1 — 0.955) very close to the
unit circle.
For a misspecification of integration order two the results depend on
whether a double unit-root, i.e. a second order constraint is ignored for
an 1(2) input process or whether a second order constraint is unnecessar-
ily imposed (for example for an 1(0) input process):
- In the former case, table 7.1 shows that DFA I 'unadjusted' performs

markedly worse than the other methods.
- In the latter case, tables 7.3 and 7.4 show that the loss of performance

of DFA III is somewhere between 30% and 40% (additional empirical
evidences are given in tables 7.5, 7.6, 7.7 and 7.8 below).

In cases of doubt (such as contradicting unit-root test results for example),
one may deduce from the preceding remark that it might be preferable
to account for an eventual unit-root than to ignore it. However, for finite
samples the magnitude of the revision error variance depends on the length
N of the sample and on the length M of the initialization phase of the
process (where it is assumed that X _ M = 0 and Xi is the first observable
process value). As seen in the first example (airline model) the 'slope' of a
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particular realization grows unboundedly in absolute value as M increases.
However, if M is small, then the second order condition <ji>(0) = 0 is often
not stringent because the 'slope' is 'small' too. Therefore, ignoring unit-
roots may be 'beneficial' for particular 1(2) processes depending on N and
M.
Unit-root tests may give valuable information for imposing (or not) re-
strictions (5.22) for the DFA. However, conflicting evidences of different
tests are often confusing for 'real-world' time series, see for example section
7.3.1. It may then be preferable to base a decision on adjusted series (and
their periodograms), on the MC-criterion proposed in section 6.2 or on
the test statistics (5.86) or (5.91) since these instruments are specifically
designed for the DFA and the underlying signal estimation problem (see
section 7.3 below for a detailed example). The reason is that model-based
instruments rely on one-step ahead forecasts (for determining the DGP)
whereas the proposed instruments for the DFA implicitly rely on one- and
on multi-step ahead forecasts in the form required by the signal estimation
problem.
The airline-model may be misspecified for time series which are not
strongly 'trending' (in the sense that their first differences are bounded
for example). For such series the second order constraint >̂(0) = 0 (van-
ishing time shift at frequency zero) is unnecessarily severe and may impair
the fit of the corresponding filter output as shown in tables 7.3 and 7.4.
In the next section 7.3, this statement is confirmed for a 'real-world' time
series (for which different unit-root tests do not unambiguously reject the
I(2)-hypothesis).
Ignoring unit-roots (for artificially generated data) generally results in
unbounded revision error variances of the resulting filter outputs for in-
creasing sample sizes. However, the DFA is inherently 'robust' against
misspecification of order one (of the integration order). As an example,
consider DFA I (adjusted or unadjusted) which is optimal for stationary
input signals. The proposed periodogram estimate satisfies

« 0 ) = -X2

2

for U>Q = 0. For an I(l)-process X grows linearly in N. Therefore, INX(0)

grows quadratically in N if Xt is an I(l)-process. As a consequence, first
order constraints are satisfied for DFA I asymptotically (otherwise, if
| r(0) - r (0) | 2 > 5 > 0 asymptotically, then the expression (7.1) would
grow unboundedly as N increases which would be a contradiction since
the expression is minimized). It follows that DFA I is inherently 'robust'
against I(l)-alternatives (the case of DFA II is analyzed in the remark be-
low; robustness of DFA II against an I(2)-alternative can be seen from table
7.1). Unfortunately, second order constraints are generally not achieved for
DFA I (adjusted or unadjusted) even asymptotically because the time shift
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is not explicitly involved in (7.1). This explains why misspecification of or-
der two (of the integration order) may lead to poor estimates (as can be
seen for DFA I in table 7.1).

• It is seen from the above tables that DFA II 'unadjusted' is particularly
robust and performs well for a large class of input processes including
1(0), 1(1) and 1(2) processes with or without stationary or non stationary
seasonality. The good performance of DFA II for the 1(2) process (airline
model) can be explained as follows: consider the expression (5.21) for u>o =
0 which here becomes

Af(fl) =
ui—0

12

see for example (5.31) for the last equality and use A(0) — 1, $(0) = 0.
Thus, the expression

f 0(0)
12
2

WO)

12
X

appears in (7.2) (X is the arithmetic mean of the 1(1) process Xt :=
Xt — Xt-i2)- Therefore, DFA II (adjusted or unadjusted) takes the time
shift at frequency zero explicitly into account. Note that <f>(0) must vanish

—2
asymptotically for DFA II, because X grows unboundedly as N increases
(therefore the minimization in (7.2) implies that ^ | A T ( O ) ! 2 ! ^ ( 0 ) must
remain bounded which requires 4>(0) —> 0 as AT —> oo). A similar analysis
would reveal that the time shift of DFA II (adjusted) must vanish too
asymptotically.

This concludes the analysis for simulated time series. In the next section,
comparisons based on an empirical time series are presented.

7.3 'Real-World' Time Series

The (monthly) 'UK' time series (car sales from January 1985 to February 1997,
AT = 146) is shown in figure 7.13. This particular sample is chosen because
the series is dominated by a strong seasonal component so that efficient filters
are needed for estimating a trend or the seasonally adjusted signal. Another
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1985 1987 1991 1993 1995

Fig. 7.13. UK-Series

reason is that the series is delivered with DEMETRA, the official seasonal ad-
justment 'package' of EUROSTAT (DEMETRA is a graphical interface giving
access to TRAMO/SEATS and Census X-12-ARIMA, see chapter 2). There-
fore, it is to be expected that the MBA as given by TRAMO or X-12-ARIMA
does not perform badly for this time series.

For the DFA, the MC-statistic (6.5) selects a particular filter design,
namely DFA II 'unadjusted' (see below for the corresponding realized val-
ues). This design is characterized by increased robustness against unit-root
misspecification (see the simulation results in the previous section) and it is
based on the solution of

(7.16)
Z7T ^—•*

mm— 2_^
t c k=-[N/2]

where Xt •= (1 — B12)Xt and fc(-) satisfies the first order conditions
rc{jir/6) = r(jir/G),j = 0, ...,6 in (5.22). In addition to the DFA II, a DFA
III design is used to allow instructive comparisons. The latter is based on an
expression similar to (7.16) (for which Xt is replaced by AXt := (1 — B)Xt),
with an additional second order constraint </>(0) = 0 at frequency zero (see
p.107). However, the DFA III filter design is rejected by the MC-criterion in
favor of DFA II, see below.

Seven zero-pole pairs (21 parameters) are used for the DFA : 13 degrees of
freedom are lost for DFA II because of first order constraints at the frequen-
cies /c7r/6,fc = 0,1, ...,6 and one more degree of freedom is lost for DFA III
for the second order constraint at frequency zero. The remaining degrees of
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freedom are sufficient to account for the width of the seasonal spectral peaks
and the shape of the peak at frequency zero. Regularity of DFA-solutions is
achieved by the variable frequency sampling procedure (6.20).
For the MBA, the identification of a 'well behaved' model becomes an impor-
tant issue since the DGP is unknown (recall that corresponding issues were
ignored in the simulation experiments since the true model structure was
used for estimation). TRAMO/SEATS and Census X-12-ARIMA propose au-
tomatic selection procedures for choosing the 'best' model. The ARIMA mod-
els were identified and estimated by using the option 'Detailed Analysis' of
DEMETRA and specifying:

• selection of the best model and maximum likelihood estimation of its pa-
rameters

• no intercept (inclusion of an intercept would result in poorer parameter
estimates for the present time series)

• test for calendar effects (trading-days, Easter effect)
• inclusion of outliers (additive outliers, level shifts and transitory changes)
• test for (log) transformation.

Calendar effects were detected by TRAMO and X-12-ARIMA and the log-
transform was chosen by both procedures. The input series are accordingly the
linearized (adjusted for calendar effects and/or outliers) and log-transformed
series because the models are identified and estimated using the correspond-
ing transformed data sets. The transformed series are shown in figure 7.14 : a

A

1986 198B
• TRAMO

1992 1994
X-12-ARIMA

Fig. 7.14. Linearized Log-Series (TRAMO : solid, X-12-ARIMA : dotted line)

comparison with figure 7.13 shows that the original series has been adjusted
for a large outlier ('missing spike') for August 1995. It can be seen from figure
7.14 that the transformations induced by TRAMO or X-12-ARIMA generate
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time series which are very similar. In the following, these two time series de-
fine the input signals.

In this section particular trend estimation and seasonal adjustments are
analyzed for the linearized series. The following section analyzes the estima-
tion of the trend defined by the filter (7.8). Model-based signals are proposed
in further sections.

7.3.1 Mean-Square Approximation of the 'Ideal' Trend

It is assumed that the signal Tt is denned by the output of the (truncated)
filter (7.8). This choice does not 'favor' a particular estimation method as
could possibly be the case for particular model-based signals. For the series
linearized by TRAMO, the model

(1 - B)(l - B12)Xt = (1 - 0.6OB)(l - 0.27B12)et (7.17)

was selected and estimated (by TRAMO). For the series linearized by X-12-
ARIMA, the model

(1 - B)(l - 512)(1 + 0.57S + 0MB2)Xt = (1 - 0.35B12)et (7.18)

was selected and estimated (by X-12-ARIMA). Note that the AR(2) operator
of model (7.18) can be interpreted as a truncated AR(oo) representation of the
MA-operator (1 — 0.60B) of the airline model (7.17). The models selected and
estimated by both procedures 'pass' the respective diagnostic tests: Ljung-Box
and Box-Pierce for residuals and squared residuals (see for example W.Enders
[29], p.87 for a description of these test statistics).

Figure 7.15 shows the periodogram of the series linearized by TRAMO.
It is readily seen that the spectral peaks are of various height and width
which justifies the use of individual zero-pole-pairs for each seasonal frequency.
Additional and more formal evidence for choosing individual zero-pole-pairs
is given by the MC-statistics (see (6.5))

2TT
MC(DFA II) := — } J \r(wk) - rQq{L0k)\

2INX{wk)
k=-[N/2]

tr
+N-Q-q-r

= 4.62 x 1(T4

MC(DFA II restricted) = 5.02 x 1(T4

where the zero-pole pairs of the 'DFA II restricted' are constrained to be iden-
tical for all seasonal frequencies (3 degrees of freedom left). Clearly, the less
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Fig. 7.15. Periodogram of linearized series

constrained DFA II is preferred by MC (similar results are obtained for the
series linearized by X-12-ARIMA).

For the time series linearized by TRAMO the adjusted (dotted line) and
unadjusted (solid line) time series are shown in figure 7.16. The (second order)

1985 1967 1989 1991 1993 1995

Fig. 7.16. Unadjusted (dotted) and adjusted (solid) series

adjustment is defined by

YA+\
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see (4.45). Figure 7.17 shows the periodograms of the unadjusted (dotted)

Fig. 7.17. Peridograms of unadjusted (dotted) and adjusted (solid) series

and the adjusted series (solid line). The larger spectral peak of the adjusted
series at u>i = ir/[N/2] = TT/73 indicates that the adjustment of order two
induces spurious spectral power at u>\. A comparison of the MC-values (see
(6.5)) attained for DFA III and DFA II:

MC(DFA III) = 5.53 x 1(T4

MC(DFA II) = 4.62 x 10"4 (7.19)

shows that the latter is to prefer, i.e. integration order one is preferred to
integration of order two implied by DFA III. Finally, a test based on the
conditions (5.22) leads to the following conclusions:

• The test statistic rf defined in (5.91) attains a value of -3.6 which is in-
significant at the 10% significance level (the corresponding quantile of the
Dickey-Fuller distribution is -5.7, see table B.5, case 1 in Hamilton [45],
p.762). Therefore, the hypothesis Ho : "the level restriction f(0) = T(0)
is necessary" cannot be rejected.

• However, the second order constraint (/>(0) = 0 (time-shift constraint) can
be rejected since the test statistic takes on the value -17.5 which is signif-
icant at the 1% significance level (the corresponding quantile is -13.6).

These findings are in contradiction with the selected model (7.17) since the
integration order two of the airline model would imply a time-shift restriction
4>(0) = 0 (similar conflicting evidences are obtained for the series linearized
by X-12-ARIMA). Therefore, additional 'pure' unit-root tests are computed
for
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Xt:=Xt-Xt-12 (7.20)

where Xt is the series linearized by TRAMO. If Xt is integrated, then Xt is
1(2), otherwise it is 1(1). The hypothesis that ut = Xt— Xt-i is white noise is
rejected at the 1% significance level. Therefore, an 'augmented' Dickey-Fuller
(ADF) unit-root test is used here. The hypotheses are

fc=i

against
p

H1:Xt= pXt-i + Y, AXt-k + ut
fc=i

where p is the number of AR-lags. The procedure 'URADF' in RATS tries to
determine the best lag length p, using either information criteria (AIC or BIC),
Ljung-Box statistics or Lagrange multiplier tests for serial autocorrelation of
the residuals ut. All criteria choose p = 1 except AIC which chooses p = 3.
For p = 1, the ADF t-statistic is —2.59 which is significant at the 1% level
(the critical value is -2.58, see Hamilton [45], table B.6, case 1). If Ho is tested
against

p

H1:Xt=a + pXt-i + J2 Axt-k + «t
fc=i

then the t-statistic becomes -2.61 which is not significant at the 5% level
(see Hamilton [45], table B.6, case 2). Note however that the estimate for
the constant a is not significantly different from zero (this is not surprising
since a is a drift term for the undifferenced series Xt which does not seem to
show evidence of a linear time trend). The F-test for the composite hypothesis
a = 0,p = 1 is rejected at 5% . If lag-length p = 3 is chosen instead of p — 1,
as suggested by AIC, then the t-statistic becomes -1.57 which is insignificant
even at the 10% level.
A Phillips-Perron test of

HQ : Xt = Xt-i + Ut

against
Hi : Xt = pXt-i + ut

where ut is a MA-process is implemented in the procedure 'UNITROOT' of
RATS. The corresponding Zp-statistics are between -3.76 (window size 1) and
-3.95 (window size 4). Since the critical 10% value is -5.6 (see Hamilton [45],
table B.5, case 1) HQ cannot be rejected (this result does not change if a
constant is included in the alternative hypothesis).
Note also that the estimated MA-parameters in model (7.17) do not suggest
non-invertibility which favors HQ too.
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Finally, unit-roots can be inferred from the so called variance ratio test, see
for example Lo and MacKinlay [63]. Briefly, the idea of the test consists in

2
computing -r-^ where a\ and a\ are the variances of the one- and the k-

step ahead forecasting errors of a particular process, say Xt. If Xt is a pure
random-walk, then the variance ratio becomes

E[(Xt+k-Xt)
2}

where a2 is the variance of the noise process and Xt is the optimal forecast
for Xt+k for all k > 0. Since the expectations are generally unknown in (7.21),
variances are replaced by sample estimates

- \Xt+k ~ Xt^> (7.22)

The asymptotic distribution of the (sample) variance ratio (7.22) has been
derived for Xt a pure random-walk with iid gaussian innovations (an assump-
tion which is too restrictive for the process Xt := Xt — Xt-n obtained from
the car-sales series above), see for example Lo and MacKinlay [63]. Under
this assumption (7.21) is equal to one and (7.22) is approximately equal to
one (as functions of k) whereas for stationary processes both ratios converge
to zero for increasing k, as N —> oo (because E[(Xt+k — Xt)

2} is bounded).
For general /(l)-processes, the ratios (7.21) and (7.22) converge to a pos-
itive number (> 0) for increasing k. This number reflects the impact of a
shock on future observations of the process ('persistence') and depends on the
autocorrelation structure of Xt — Xt-i- The (sample) variance ratios (7.22)
for the differenced car-sales series Xt defined by (7.20) (dotted line) and for
(1 — B)Xt (solid line) for k — 1,..., 100 are plotted in fig.7.18. It can be seen
from this figure that (1 — B)Xt is stationary and that Xt 'seems integrated'
for k < 30 since its variance ratio has stabilized at approximately 0.2. But
for k > 30 the statistic converges to zero. Therefore, the impact of a shock in
Xt is perceptible over a 'long' horizon although it finally seems to decline to
zero which indicates stationarity of the process. This situation is common for
a large set of economic time series and it corresponds to parameter values of
the DGP for which the power of unit-root tests based on one-step ahead fore-
casting performances is very poor. Cochrane [18] analyzes the US-GNP-series:
he argues p.898 "If fluctuations in GNP are partly temporary ... that reversal
is likely to be slow, loosely structured, and not easily captured in a simple
parametric model. The variance of fe-differences (variance ratio) can find such
loosely structured reversion whereas many other approaches cannot".
The variance ratio statistic can be used as an explorative tool (as in figure
7.18) or as a testing device. The advantage of the variance ratio test over
'traditional' unit root tests (such as the above ADF and PP procedures) is
that it is based on one- and on multi-step ahead 'forecasting' performances



194 7 Empirical Comparisons : Mean Square Performance

Fig. 7.18. Variance ratios of Xt (dotted) and (1 — B)Xt (solid line)

(of a simple random-walk model). The main disadvantage of the test is that
the test result heavily depends on a particular forecasting horizon k, see for
example Maddala [44], p.87. Also, the assumption of a pure random-walk are
not satisfied for Xf Therefore, an explorative approach (fig. 7.18) has been
preferred to a (misspecified) test result here.

The contradictory test results based on one-step ahead forecasting perfor-
mances (such as ADF- and PP-tests) reflect the difficulty of the determination
of the integration order for the UK-car-sales series but this is mainly an issue
for the MBA. For the DFA the relevant problem is to determine if a particular
constraint of the type (5.22) is needed for improving the fit of the asymmetric
filter whether unit-roots are present in the DGP or not. For that purpose, the
test statistic jf in (5.91), the MC statistic in (7.19) and the spurious spectral
power induced by the second order adjustment in figure 7.17 indicate that
'integration order two' may induce an unnecessarily severe restriction for the
filter of the DFA (and subsidiary a possible misspecincation of the model for
the MBA). Note that one- and multi-step ahead forecasting performances are
simultaneously accounted for by the proposed methods so that the choice of a
particular forecasting horizon k (as for the variance ratio test) is unnecessary.
The term 'unit-root' is still used in the remaining of the chapter but it should
be clear that a corresponding constraint (5.22) of the filter is really meant
here rather than a particular property of the DGP.

The boundary estimates for the MBA (long marks) and the DFA II (short
marks) together with the signal (7.8) (solid line) are shown in figures 7.19
(for the series linearized by TRAMO) and 7.20 (for the series linearized by
X-12-ARIMA). The samples extend from December 1989 to July 1994 : 60
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1992 1993 1994

Fig. 7.19. Boundary estimates and signal (TRAMO-linearized)

1991 1992 1993 1994

Fig. 7.20. Boundary estimates and signal : (X-12-linearized)

values were retained on the left for avoiding initialization problems and 30
values were retained on the right in order to implement (7.8).

Tables 7.5 and 7.6 compare the following revision error variance estimates:

• the frequency estimates (7.2),
• the sample variances (7.3) and
• the MBA-variances (7.4).

Note that the transfer function of the boundary filter for the MBA can be
explicitly computed, using the relation
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I t - j ••=
{ jt-j + E l J ^ o o 1 lk<h-k,j + Efe l t 7k(H-k,i 3 = 1> •••>N

0 else

see (1.5) (the corresponding expression is a rather cumbersome non-linear
function of the parameters of the model). Therefore, frequency estimates (7.2)
of the revision error variance may be obtained for the MBA (by inserting the
corresponding expression for the transfer function into (7.2), evidently without
performing the minimization). MB A-variances are available for the MBA only
of course.

Table 7.5. Series linearized by TRAMO

Estimation by
Sample Variances
Frequency Estimates
MB A-Variances

DFA
4.61
4.16
—

II
x 10
x 10

- 4

- 4

DFA
5.91
5.00
—

Ill
x 10
x 10

- 4

- 4

TRAMO
7.64
7.34
6.22

10
10
10

- 4

- 4

- 4

Table 7.6. Series linearized by X-12-ARIMA

Estimation by
Sample Variances
Frequency Estimates
MB A-Variances

DFA
5.21
4.00
—

II
10
10

- 4

- 4

DFA
6.38
4.29
—

Ill
10-4
10-4

X-12-ARIMA
6
4
4

95
60
19

10-4

ID"4

ID"4

For both series the DFA provides more accurate estimates with respect to
sample variances (approximately 30% and 60% improvement when comparing
the sample variances of DFA II and MBA for the series linearized by X-12
and TRAMO respectively). Note also that the frequency estimates for the
MBA are closer to the sample variance estimates than the MBA-variances as
expected by the efficiency of the DFA, see section 5.5.
In order to analyze these results in more detail, it is instructive to decompose
the frequency variance estimates (7.2) into an amplitude component (selec-
tivity) and a phase component (time delay) according to

2?r
[AT/2]

fc=-[iV/2]

[AT/2]

= TV
(7.23)
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2A(u>k)A(uk) [l - cos2TT

fc=-[JV/2] '

The first sum (7.23) corresponds to that part of the revision error variance
which is due to the (less selective) amplitude function of the boundary filter.
The second sum (7.24) corresponds to that part of the revision error variance
which is due to the phase (time shift) of the boundary filter (see (5.40) in
section 5.4).
The results of such a decomposition are shown in tables 7.7 (for the series lin-
earized by TRAMO) and 7.8 (for the series linearized by X-12). The columns

Table 7.7. Series linearized by TRAMO

Estimation
Selectivity
Time delay

method :
variance
variance

DFA
2.45
1.71

II
io-4

io-4

DFA
3.81
1.19

111
io-4

io-4

TRAMO
3.98
3.36

io-4

io-4

Table 7.8. Series linearized by X-12-ARIMA

Estimation
Selectivity
Time delay

method :
variance
variance

DFA
2.29
1.71

II
10
10

- 4

- 4

DFA
3.25
1.04

III
io-4

io-4

X-12-ARIMA
2.66
1.95

io-4

io-4

of these two tables sum up to the frequency variance estimates of tables 7.5
and 7.6 (neglecting rounding errors).
For the series linearized by TRAMO (table 7.7), DFA II outperforms the MBA
with respect to both selectivity and time delay properties. DFA III outper-
forms both competitors with respect to time delay 'fitting' but it also provides
the worst amplitude 'fitting'. The effect of the second order constraint of DFA
III is best seen by considering the ratio of the selectivity variance to the time
delay variance (in the above tables). This ratio increases from approximately
1.5 (for DFA II) to over 3 for DFA III . Such a 'disequilibrium' between both
variance components may be indicative for a 'misspecification' (in the sense
of either missing or unnecessary constraint (s)).
Amplitude and time delay functions of the boundary filters of DFA II (solid
line) and of the MBA (dotted line, the amplitude is based on model (7.17)
for the series linearized by TRAMO) are shown in figures 7.21 and 7.22. The
amplitude function of DFA II is closer to the amplitude of the symmetric fil-
ter (7.8) (which is almost equal to (7.5)) than the amplitude function of the
MBA in the neighborhood of the 'unit-roots' (more precisely : of the spectral
peaks). Note that the part of the revision error which is due to the phase of
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Fig. 7.21. Amplitude Functions : DFA II (solid) MBA (dotted)

Fig. 7.22. Time shifts : DFA II (solid) MBA (dotted)

DFA II is smaller than that of the MBA because the time delay is smaller for
the low frequencies (except at LJ = 0, but the time delay 0(0) is less relevant
provided the second order constraint is not needed which seems to be the case
here).

Why does DFA II markedly outperform the MBA? The revision errors of
DFA II and of the MBA are shown in figure 7.23 and the periodograms of
these revision errors are shown in figure 7.24. The gain in performance of DFA
II is achieved mainly towards the low frequencies which again confirms the
choice of a first order constraint F(0) = F(0) 'only' at frequency zero (similar
conclusions hold for the series linearized by X-12-ARIMA). All these results
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Fig. 7.23. Revision errors of DFA II (solid) and MBA (dotted)

Fig. 7.24. Periodograms revision errors DFA II (solid) and MBA (dotted)

show that the I(2)-hypothesis is questionable (i.e. the integration order of the
DGP seems to be less than two).

The estimated filter parameters of DFA II are listed in the following table
7.9 (note that the arguments of the zeroes and the poles are identical because
of the ZPC-design). The normalizing constant is C := 391 26392, resulting from
the first order condition F(0) = -T(O) = 1. The moduli of the poles reflect the
width of the amplitude at the different seasonal frequencies (wider spectral
peaks ask for wider corresponding troughs of the amplitude function of the
extraction filter which are obtained by larger moduli of the poles). Although
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Table 7.E

Arguments
0.02202
0.16666
0.33333
0.50000
0.66666
0.83333
1.00000

1. Filter parameters for DFA II

Moduli (Zeroes)
1.08994
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000

Moduli (Poles)
1.14068
1.23029
1.67798
1.76846
1.68560
2.20813
1.27615

the gain of DFA II is minor for higher frequencies, it is nevertheless instruc-
tive to reveal its behavior there. Figure 7.25 corresponds to figure 7.24 where
the low frequencies (below TT/4) have been omitted. It is readily seen that the

Fig. 7.25. 'Truncated' Periodograms revision errors DFA II (solid) and MBA (dot-
ted)

DFA II outperforms the MBA almost uniformly and especially at the 'unit-
root frequencies' (0.33, 0.5, 0.66, 0.83 and 1.0 in the above figure) which again
motivates use of individual zero-pole-pairs.

After having performed an extensive analysis of 'in sample' properties,
'out of sample' results are now briefly compared for the MBA and the DFA
II. The interesting criterion is the arithmetic mean of the squared 'out of
sample' errors. For that purpose, models were selected and estimated on the
subsample 85.01-92.12 (N = 96) which was used also for computing the pe-
riodogram. Substantially smaller subsamples lead to problems for both DFA
and MBA (overfitting and misspecification). It should be specified here that
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some 'full sample' information is still used because the input series are the
same linearized series (in order to make comparisons with 'in sample' results
meaningful): adjustment for outliers and/or calendar effects is still based on
the full sample but this additional information should not favor a particular
approach.

The estimated (TRAMO) subsample-model is

(1 - B){1 - B12)Xt = (1 - 0.62B)(l - 0.29B12)ef

Table 7.10 summarizes results for the series linearized by TRAMO. The last

Table 7.10. Out of sample results (series linearized by TRAMO)

Identification
DFAII
TRAMO

and estimation on :Subsample
8.11 x 1(T4

9.94 x 10"4

Full
7.36
9.64

Sample
x 10~4

x 10"4

column shows the results for the validation sample if the information of the
full sample is used, i.e. model (7.17) and the full sample periodogram (these
are slightly different from the results of table 7.5 because the validation sam-
ples are different). A comparison of both columns shows that the DFA II is
possibly subject to slight overfitting (9 parameters are estimated for a sample
of length N = 96). However, the gain in performance of DFA II is still over
20% (out of sample).

For X-12-ARIMA the estimated subsample-model is

(1 - 5)(1 - 512)(1 + 0.495 + 0.1lB2)Xt = (1 - 0.24B12)et

Table 7.11 summarizes results for the series linearized by X-12-ARIMA. As

Table 7.11. Out of sample results (series linearized by X-12-ARIMA)

Identification and estimation on
DFAII
X-12-ARIMA

Subsample
3.32 x 10~4

4.21 x 10~4

Full Sample
3.44 x 10"4

4.49 x 10~4

before, the last column shows the results for the validation sample if the in-
formation of the full sample is used (again, these are slightly different from
the results of table 7.6 because the validation samples are different). A com-
parison of both columns shows that the DFA II is not subject to overfitting
and that 'out of sample' results of both approaches even slightly outperform
'in sample' results using the full sample. The gain in performance of DFA II
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is over 25% (out of sample).

This concludes the analysis of the best mean square approximation of the
trend (7.9). A natural question addresses the validity of these results, namely
the overall better performance of the DFA, if the theoretical signal is model-
based (see section 2.3.2). In fact, whereas the trend filter (7.9) does not 'favor'
a particular approach, one might possibly expect that the MBA performs
better for its 'own' signal. This hypothesis is analyzed from an empirical point
of view in the following section.

7.3.2 Mean-Square Approximation of the 'Canonical Trend'

Let the theoretical signal be defined by the trend of the canonical decompo-
sition ('canonical trend') for the (full sample) model (7.17) for the UK series
linearized by TRAMO (as shown in fig. 7.14). X-12-ARIMA is ignored here
since its implicit signal definition is not model-based. For the DFA, the selec-
tion of the filter design is based on MC which prefers DFA II

MC(DFA III) = 5.76 x 1(T4

MC{DFA II) = 4.86 x 1(T4 (7.25)

Note that these values differ from (7.19) because the MC-criterion depends on
the revision error variance, i.e. on the symmetric filter which has to been ap-
proximated. The transfer function induced by model (7.17) is shown in fig. 7.26
(an analytic expression for the transfer function is cumbersome, see section

Fig. 7.26. Trend Extraction Filter

2.3.2 for a derivation). Since the filter is symmetric, its phase function van-
ishes. Therefore, the amplitude function in fig.7.26 is also the transfer function
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of the filter. Note also that the 'squared gain of trend filter' in DEMETRA is
obtained by squaring the function in fig.7.26. Squaring the amplitude function
can be motivated by the convolution theorem which relates spectral densities
of in- and output signals (see (A.3) in the appendix). However, this transfor-
mation can distort or 'mask' important properties of the filter : figure 7.26 for
example shows that the 'side lobes' of the transfer function are quite large for
u) > TT/6, which means that 'subannual' high frequency components belong to
the trend (see for example Stier [83] and [84] for a discussion on this topic).
By squaring the amplitude function, the side lobes look much smaller which
is misleading. The canonical trend (solid line) and the 'ideal' trend (7.9) are
compared in figure 7.27 (i.e. the corresponding filter outputs are compared).
The canonical trend cannot be computed exactly because the corresponding
extraction filter is of infinite length. However, the filter coefficients decay suf-
ficiently fast in order to obtain a good approximation.

1987 1968 1

Fig. 7.27. Ideal (dotted) and Canonical (solid line) Trends

The outputs of the boundary filters for the MBA (long marks) and for the
DFA II (short marks) are shown in fig.7.28 together with the canonical trend
(solid line). Table 7.12 summarizes the results obtained for the revision error
variance estimates. As in the preceding section, the time span for which the
sample estimates are computed extends from December 1989 to July 1994.
The DFA II still clearly outperforms the MBA (more than 60 percent im-
provement with respect to the sample variance). Also, the frequency estimate
is more accurate than the MBA-variance which underestimates the mean of
the squared revision errors.
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12.0 •

Fig. 7.28. DFA II (short marks) and MBA (long marks)

Table 7.12. Revision error Variances for the canonical trend

Sample Variances
Frequency Estimates
MBA-Variances

DFA
4.70
4.34
—

II
10-4

10-4

MBA
8.04
7.19
5.88

io-4

io-4

lO"4

It is again instructive to decompose the frequency estimates into selectiv-
ity and time delay properties as done in table 7.13 (see (7.23) and (7.24) in the
preceding section). Again, the DFA outperforms the MBA both with respect

Table 7.13. Amplitude (selectivity) and phase (time delay) 'fitting'

Estimation
Selectivity
Time delay

method : DF
2.07
2.27

10
10

- 4

- 4

MBA
3.76 10~4

3.43 IO"4

to selectivity and time delay properties. Amplitude and time shift functions
of the boundary filters (DFA II : solid line; MBA : dotted line) are shown in
figs.7.29 and 7.30. For the DFA II, both functions are closer to the corre-
sponding functions of the symmetric filter in the vicinity of the 'unit-roots'
(except the time delay of the DFA II at frequency zero, but this is less impor-
tant if a second order constraint is not needed which seems to be the case here).

Figure 7.31 shows the revision errors of DFA II (solid line) and MBA (dot-
ted line). The periodograms of the revision errors are compared in figure 7.32.
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Fig. 7.29. Amplitude DFA II (solid) MBA (dotted)

Fig. 7.30. Time Shift DFA II (solid) MBA (dotted)

One can see from these figures that the better performance of the DFA II is
mainly achieved in the low frequency domain of the spectrum (which can be
considered as a further evidence against the I(2)-hypothesis).

This concludes the analysis of trend signals. In the following section the
DFA and the MBA are compared with respect to seasonal adjustment as
performed by the canonical decomposition.
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1990 1991 1992 1993 1994

Fig. 7.31. Revision Errors DFA II (solid) MBA (dotted)

Pig. 7.32. Periodgrams DFA II (solid) MBA (dotted)

7.3.3 Mean Square Approximation of the 'Canonical Seasonal
Adjustment' Filter

Let the theoretical signal be the seasonally adjusted series (as defined by the
canonical decomposition of the process (7.17), see section 2.3) for the UK
series linearized by TRAMO. As for the canonical trend in the preceding
section, X-12-ARIMA is ignored here because its implicit signal definition is
not model-based. For the DFA, the filter design DFA II is preferred by MC:

MC{DFA III) = 4.35 x 1(T4

MC(DFA II) = 4.16 x 1(T4
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The transfer function of the canonical seasonal adjustment filter resulting from
model (7.17) is shown in fig.7.33 (solid line). The squared transfer function is
plotted as dotted line in the same figure. The 'squared gain of seasonal adjust-

Fig. 7.33. Seasonal Adjustment Filter

ment' filter (solid line) and the 'squared gain of seasonal filter' (dotted line) as
computed by DEMETRA are shown in fig.7.34. Note that the transfer func-

Fig. 7.34. DEMETRA-Filters: S (dotted), SA (solid)

tions of the seasonal adjustment (SA) and of the seasonal (S) filters should
add to one by definition so that the square roots of the functions in figure 7.34
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should add to one (note that these are the squared transfer functions). How-
ever, the (squared) S-filter vanishes between the seasonal frequencies fc-7r/6
but the (squared) SA-filter is always substantially smaller than one. This is
probably a software problem (of DEMETRA, version 2.0). In any case, the
squared amplitude of the seasonal adjustment filter of DEMETRA in fig.7.34
does not correspond to the canonical decomposition.

In fig.7.35 the canonical trend (solid line) and the seasonally adjusted se-
ries (dotted line) are compared for the time span from December 1989 to
July 1994. It is readily seen that the seasonally adjusted signal is 'rougher'

1990 1991 1992 1993 1994

Fig. 7.35. Seasonally Adjusted signal (dotted) and Canonical Trend (solid)

than the trend because the transfer function does not damp all higher fre-
quencies. Which signal should be used for detecting 'turning points' towards
the end point t = N is still an open question. Basically, the problem can be
summarized as follows: the trend is 'smooth' but generally more difficult to
approximate towards the boundary (larger revisions and time delays) whereas
the seasonally adjusted signal is 'rough' (which makes detection of turning-
points more difficult) but often subject to smaller revision errors and smaller
time delays. Discussions of these topics are to be found in Edel, Schaffer, Stier
[27].

Table 7.14 summarizes estimation results obtained for the revision error
variance estimates. The latter are computed for the time span from December
1989 to July 1994: 60 values are retained on the left for avoiding initialization
problems and 30 values are retained on the right for implementing the sym-
metric extraction filter. As can be seen, the DFA II outperforms the MBA by
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Table 7.14. Revision error variance estimates

209

Sample Variances
Frequency Estimates
MBA-Variance

DFA
4.39
3.82
—

II
io-4

lO"4

MBA
6
5
5

61
10
34

io-4

io-4

io-4

a 30% decrease of the sample variances.

Remark

• The MA-coefficients of the seasonal adjustment filter are shown in figure
7.36. They converge very slowly to zero. In fact, if the signal is estimated
for t =July 1994 as illustrated in figure 7.36 (30 months lie between July
94 and the end point February 1997), then non-negligible weight is still
given to non-observable values beyond the end point. Therefore, in this
particular situation the sample has been extended by forecasts in order to
obtain sufficiently accurate outputs for the symmetric filter of the MBA
(in all the preceding examples, forecasts were used for the asymmetric filter
only). Evidently, this extension is not used for the DFA II and therefore it
may possibly favor the MBA (since both asymmetric and symmetric filters
rely on the same forecasts). However, this effect has not been considered
here.

-0.210 J rap
1995 19% 1997 1998 1999 2000 2001 2002

Fig. 7.36. Coefficients of SA-fllter

A decomposition of the frequency estimates into selectivity and time delay
components (see (7.23) and (7.24)) leads to the results in table 7.15. It is
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Table 7.15. Selectivity and time delay properties of the boundary filters

Estimation method
Selectivity
Time shift

DFA II
1.71 10"4

2.10 10~4

MBA
9.94 10"
4.10 10"

Fig. 7.37. Amplitudes : DFA II (short marks), MBA (long marks)
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Fig. 7.38. Time shifts : DFA II (short marks), MBA (long marks)

seen that the better performance of the DFA II is due to its time shift proper-
ties. Obviously, too much 'weight' is given to the selectivity part by the MBA,
neglecting henceforth the time shift properties of the corresponding filter. The
resulting 'disequilibrium' between both components may be indicative for a
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misspecification of the model (7.17). The amplitude functions of the symmet-
ric filter (solid line), of the DFA II (short marks) and of the MBA (long marks)
are shown in figure 7.37. In figure 7.38 the time shift functions of the DFA II
(short marks) and the MBA (long marks) are compared.

A detailed comparison of the performances of the MBA (as given by
TRAMO and X-12-ARJMA for the UK car sales series) and the DFA was
conducted in this section. More precisely, the analysis focused on the mean
square error criterion. In the following chapter, these methods are compared
with respect to their ability to detect 'turning points' towards the boundary
of a sample.



8

Empirical Comparisons : Turning Point
Detection

A 'turning point' is a particular time point in a given time series. The main
difficulty in defining 'turning points' formally is often due to the unprecise
characterization of their particularity. In the context of economic time series
Garcia-Ferrer and Bujosa-Brun [35] argue "with the exception of annual data,
where turning points are easily defined, the remaining data frequencies often
present many situations where precise definitions of recessions and contrac-
tions are case dependent" or "Even for seasonally adjusted quarterly data,
using the NBER rule for defining a recession ... has had serious flaws in char-
acterizing business cycle facts" and "no simple rule is sufficient to translate
quarterly GNP changes into official cyclical turning points. Somehow there
seems to be a need for ad hoc rules that work with certain types of data and
also may hold for future turning points in a large number of cases".

Instead of reviewing possible definitions of turning points depending on
particular contexts and/or particular time series a more formal approach is
chosen here which enables straightforward comparisons of the MBA and the
DFA. A turning point is defined as a 'local extremum' of a (smooth) trend
component of a time series. More precisely, to is a turning point for the time
series Xt if (Yto+\ — Yto)(Yto - Yta-i) < 0 where Yt is a (smooth) trend com-
ponent of Xt. Examples of (smooth) trend components are the 'canonical
trend' (see section 7.3.2) and the 'ideal' trend (7.8). Note that the proposed
definition of a turning point generally depends on the input series Xt (which
for example determines the model and thus the 'canonical' trend) or on the
'cutoff' frequency A2 = vr/7 of the 'ideal' trend (7.5) (or the truncated version
(7.9)).

Two different perspectives may be distinguished, namely the 'prospective'
and the 'historical' perspective. For the former, 'present' and possible 'future'
outcomes are of interest, whereas for the latter 'past' events are analyzed. In
a historical perspective, the study of turning points (defined as extremes of
a trend component) is generally easier because selective symmetric (no phase
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shift) trend filters can be used. However, for many applications the prospec-
tive perspective is of main interest. Therefore, asymmetric filters are needed
which detect turning points 'as early as possible'.

Once turning-points are uniquely defined and the objective, namely a
prospective analysis of turning points, is clarified it remains to determine
a measure of the performance of the competing methods. Again, there exist
many criteria which for example differ whether they account for 'true' and
'false' decisions only or whether they include also the magnitude of the error
term and how 'false' and 'true' decisions are weighted. Various criteria are pro-
posed in Edel, Schaffer and Stier [27], p. 143-154. Since the aspects which they
measure may be conflicting, a simple comparison is proposed here, namely a
visual inspection of the time series (of the estimated trend components) pro-
duced by the competing methods.

In the following sections, the UK car sales series (linearized by TRAMO or
X-12-ARIMA, see section 7.3) is considered. The presented results are based
on the 'full sample' information (almost identical conclusions would hold 'out
of sample', i.e. if models and periodograms were estimated for subsamples,
because the revision error variances 'in' and 'out of sample' are very similar,
see for example tables 7.10 and 7.11). The first section is devoted to the
analysis of turning points defined by the 'ideal' trend (7.8) and the second
section is devoted to a corresponding analysis for the canonical trend.

8.1 Turning Point Detection for the 'Ideal' Trend

The detection of turning points for the 'ideal' trend is based on models (7.17)
(TRAMO) and (7.18) (X-12-ARIMA) for the MBA and on the filter design
DFA II which is preferred by MC, see for example (7.19). For the DFA, the
time series YJ (estimated signal) is computed as follows:

• For each t = N — r, r = 0,1,. . . , N — 1, the estimate Y/v_r is the output
of a constrained QMP-ZPC-filter (3.6) whose parameters are optimized so
that the expression

- Y, \Afr{wk)\
2INJl{uk) (8.1)

fc=-[JV/2]

becomes minimal. Specifically, for DFA II

l-exp(- t l2u; f c )

Xt = (1 - B12)Xt
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where f(-) and /£(•) are defined in (7.9) and (5.95) respectively (a sim-
ple truncation is used for rtr(-) in (5.95)). For the DFA II, first order
conditions (constraints) F^jir/G) = r'(jir/6), j = 0, ...,6 are considered.
As in the preceding chapter, seven zero-pole pairs are used for each filter
resulting in 7-3 + 1 — 13 = 9 degrees of freedom (see section 7.2.1).

• A separate optimization is needed for each r = 0,1,2,..., N — 1 in (8.1).
Note however that the differences between the resulting optimal filters
are negligible for r > 10 (at least for the chosen trend signals). There-
fore, Yff-io,Yff-n,Ytf-i2--- are all based on the same filter (optimized
for estimating Yjv-io)- For r < 10, the successive filters can be computed
iteratively: the optimization procedure in the r-th step can be 'initialized'
with the solution obtained in the preceding step r — 1. Using Newton-
Raphson numerical algorithms then make computations very fast because
the 'initial solutions' are already close to the optima.

• A so called 'composed' filter -Tc(-) may formally be defined by setting its
output equal to the time series Y/v_r defined above.

• If AT is replaced by N' < N in the above definitions and if N' varies,
then it can be observed how the composed filter -Tc(-) 'adapts' for new
information. In fact, passing from N' to N' + 1 means that Y/v+i-r is
estimated using information up to Xjy+i (instead of X^i) which enhances
the quality of the estimates Y/v'+i-r for r > 1.

An 'early' detection of turning points is often of interest because it corresponds
to a particular (qualitative) forecast. However, asymmetric trend filters are
often subject to substantial time delays. Therefore, the method proposed in
section 5.4 is used here in order to 'control' the time delay of the asymmetric
filters. The resulting constrained (smaller time shift) composed filter Fc(-) can
be defined in various ways. Two of them are proposed here:

• The 'end point' filter Fr(-) of Fc(-), where r — 0, is replaced by an 'end
point' filter whose time delay (phase shift) is restricted. The other filters
rr(-), r > 1 of Tc(-) are not affected. If 'information' Xx,...,XN>, N' < N
is used, then the increment YN> - Y/v-i (which is generally subject to the
largest time delay) tends to detect the turning point earlier.

• Another possibility is to restrict the time delay (phase shift) of the bound-
ary and the subsequent filters i.e. to restrict Fr(-), r = 0,1,....

Both methods are illustrated in this chapter.

8.1.1 Series Linearized by TRAMO

Assume X\, ...,XN are available and the composed filter -Tc(-) is applied to
Xi,...,XN' with N' < N. Thus the observed filter outputs are Y\,...,YN'- A
'simulation' of the characteristics of the composed filter /"(•) can be obtained
by varying JV'(< AQ. Figures 8.1 and 8.2 plot the outputs of composed filters
for the MBA and the DFA, where N' is varying from 92.05 to 92.11. The ver-
tical line indicates a turning point of the trend (solid line) in June 92 (92.06).
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Fig. 8.1. Turning point detection : TRAMO
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Fig. 8.2. Turning point detection : DPA II (no phase constraint)

As can be seen, DFA II (without a time delay constraint) detects the turning
point one month earlier than the MBA (92.10 vs. 92.11). Moreover, in 92.11
the turning point is clearly identified by DFA II. Also, the boundary estimates
of DFA II are closer to the trend than those of the MBA. The smaller revision
error variance of DFA II was already observed in the preceding chapter.

Between 94.01 and 95.01 turning-points occur twice. Figs. 8.3 and 8.4 show
the outputs of the composed filters of the MBA and the DFA (N' varies from
94.06 to 95.01). Here the situation is not as simple as for the preceding ex-
ample. The MBA does not unambiguously 'detect' the first turning point. In
fact the first increment YN> — YN>-I is always positive (indicating a positive
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Fig. 8.3. Turning point detection : TRAMO
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Fig. 8.4. Turning point detection : DFA II (no phase constraint)

slope) whereas successive increments become negative (indicating a negative
slope). As a result, the second turning point seems to be detected very early
(at least by the first increment). For the DFA, the analysis is less ambiguous
since both turning points are clearly identified. But the second one does not
appear before 95.01 (at this time the second increment of the MBA becomes
positive also).

Up to now, the phase functions of the asymmetric boundary filters of DFA
II were not restricted. In the following figure 8.5 the boundary filter (r = 0)
has been optimized with respect to a phase constraint (see (5.43) where the
Lagrangian parameter A is defined in (5.44)). The other asymmetric filters
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Fig. 8.5. Turning point detection : DFA II (phase constraint)

(r > 0) are not affected. Comparing fig.8.5 with fig.8.4 reveals that both
turning points are now detected one month earlier. As already shown in pre-
ceding chapters, a 'price' must be paid for the smaller time delay, namely a
poorer (less selective) amplitude function of the new boundary filter (r = 0).
The resulting larger 'noise' can easily be seen in fig.8.5. Since the phase func-
tions of subsequent niters of the composed filter f c(-) are not restricted, the
difference between YJV'-I (unrestricted) and Yw (restricted) is pronounced.
Restricting the phase functions of the asymmetric filters for r = 0,1,... results
in a 'smoother' overall shape as shown in the example below.

Amplitude and phase functions of the restricted and the unrestricted end
point filters (r = 0) of the DFA II are compared in figs.8.6 and 8.7. As
expected, the amplitude function of the conditional filter is uniformly poorer
(less selective) whereas its time delay function performs uniformly better in
the passband. Note also that the sample error variance (7.3) of the restricted
filter is 7.38 -10~4. It is larger than that of the unconditional filter as expected,
but it is still smaller than that of the MBA (TRAMO) which is 7.64 • 10~4,
see table 7.5.
The difference between the time shifts of the unrestricted and the restricted
DFA II filters (solid line) and the difference between the time shifts of the
MBA-(boundary)filter and the restricted DFA II filter are shown in figure 8.8.
It is readily seen that the time shift of the conditional filter is approximately
one time unit (month) smaller than that of the other competitors in the
'passband' [0,TT/6] (which corresponds to the turning points).
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Fig. 8.6. Amplitude : restricted (dotted) and unrestricted (solid line)

Fig. 8.7. Time shift : restricted (dotted) and unrestricted (solid line)

8.1.2 Series Linearized by X-12-ARIMA

The composed filters of the MBA and DFA II are shown in figs.8.9 and 8.10
after a trough-turning point of the trend has occurred (in October 1991, see
fig.7.20). It is particularly difficult to assess the existence of the turning point
because the trend is almost 'flat' in the corresponding period. However, it is
seen that the MBA seems to give more evidence to a false 'down-swing' than
the DFA which is 'hesitating'. In fact, the 'up-swing' is recognized one month
earlier by the DFA than by the MBA. Note also the relatively smaller revision
errors of the DFA.
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Fig. 8.8. Time shift differences: unrestr.-restr. DFA (solid); MBA-restr. DFA (dot-
ted)
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Fig. 8.9. Turning point detection : X-12

As for the series linearized by TRAMO, two turning-points occur between
94.01 and 95.01. Composed niters for the MBA and for DFA II (unrestricted
phase) are shown in figs.8.11 and 8.12. The first trough-turning point is
discovered two months earlier by DFA II than by the MBA. The second peak-
turning point is discovered simultaneously by both approaches. The output
of a composed filter whose phase functions are restricted for all asymmetric
filters is shown in figure 8.13. The second turning point is detected one month
earlier. Again, a 'price' must be paid as seen by the increased 'noise level'
in (8.13) (when compared to fig. 8.12). Overall, the shape is smoother than
in fig.8.5 because the phase functions of all filters entering rc(-) have been
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Fig. 8.10. Turning point detection : DFA II (unrestricted phase)
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Fig. 8.11. Turning point detection : X-12

restricted.

Amplitude and phase functions of restricted and unrestricted end point
filters (r = 0) are shown in figs.8.14 and 8.15. The amplitude function of
the restricted DFA II performs poorer (especially for the 'stopband') but the
conditional time delay function performs better (uniformly better in the pass-
band).

In the following section empirical results based on the trend of the canon-
ical decomposition are presented.
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Fig. 8.12. Turning point detection : DFA II (unrestricted phase)
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Fig. 8.13. Turning point detection : cond. DFA II

8.2 Turning Point Detection for the Canonical Trend

For the MBA, TRAMO is used only. As in the preceding chapter, X-12-
ARIMA is ignored because the canonical trend is defined by the TRAMO-
model (7.17). For the DFA, the filter design DFA II is preferred by MC, see
(7.25). The outputs of the composed filters for the MBA and DFA II are
shown in figs.8.16 and 8.17. DFA II detects the turning point in 92.10 while
the MBA again leads to ambiguous evidences since the first increments have
negative slope until 92.12 (where the increment is nearly flat). Note also the
smaller revision errors of the DFA.
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Fig. 8.14. Amplitude : restricted (dotted) and unrestricted (solid line)

Fig. 8.15. Time delay : restricted (dotted) and unrestricted (solid line)
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Fig. 8.16. Turning point detection : TRAMO
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Fig. 8.17. Turning point detection : DF

These results conclude the empirical comparisons of the MBA and the
DFA. A brief summary of the 'material' worked out so far is proposed in the
following final chapter .
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Conclusion

In the preceding chapters, an efficient signal estimation method or, stated
more generally, an efficient approximation of (outputs of) symmetric filters
by (outputs of) asymmetric filters was proposed for finite samples. The main
difference of the DFA to the 'established' model-based approach is the direct
optimization of filter parameters with respect to (an efficient estimate of) the
squared filter approximation error. Therefore it is not necessary to infer an
explicit model for the DGP based on available data. Although the traditional
method based on the MBA is intuitively very appealing, its efficiency cannot
be asserted if the DGP is unknown. The main problem is the fact that the
corresponding optimization procedure - based on one-step ahead forecasting
performances only - does not 'fit' the estimation problem to be solved be-
cause signal extraction requires good one- and multi-step ahead forecasting
performances simultaneously. Since both objectives are generally conflicting in
the presence of model misspecification (see for example Clements and Hendry
[14]), a different approach is needed.

The differences between the DFA and the MBA may be illustrated on the
basis of the so called 'unit-root' problem. A unit-root is a particular property
of the DGP of Xt which has important implications for the estimation of a
signal. In the context of the MBA, this property is 'traditionally' inferred from
short term one-step ahead forecasting performances of a particular model de-
spite the fact that unit roots specify particular long run dynamics of a time
series. In the DFA, unit-roots are transposed into constraints which result in
particular filter designs. In principle, these constraints allow for more general
non-stationarities than 'integration' only. In particular, it is not relevant if Xt

is difference stationary (I(l)-process) or trend stationary - stationary about
a linear trend1 - since the same first order constraint determines the filter
design towards frequency zero for the DFA. Therefore, such constraints can

1The same reasoning would also apply for more general deterministic trends with
bounded first derivative and diverging to infinity at a suitable rate.
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enhance the finite sample performances of the asymmetric filter whether or
not the input process is integrated. Explorative instruments (statistics based
on adjusted time series) as well as formal instruments (the test statistics r\ and
rj or the MC-criterion) can be used to indicate which filter design ought to
perform better. The proposed instruments are derived directly from the sig-
nal estimation problem and implicitly account for one- and multi-step ahead
forecasting performances2. However, these statistics cannot replace traditional
unit-root tests in general because they emphasize aspects related to the long
run dynamics of a time series which are specific to the (boundary) signal esti-
mation problem. On the opposite, deducing filter constraints from traditional
unit-root identification often results in inefficient filter designs. If a unit-root
assumption enhances the one-step ahead forecasting performance of a partic-
ular model (for the DGP of Xt) then it does not necessarily follow that the
corresponding constraint for the asymmetric filter improves the signal estima-
tion performance (and conversely). Therefore, both methods - MBA and DFA
- should rely on different statistical instruments specific to their own partic-
ular estimation problems. Both problems are related but different for finite
samples and the solution of one does not necessarily solve the other optimally.

It is suggested in various places (see for example section 5.8 or chapter C in
the appendix) that the signal estimation procedure of the DFA can be inter-
preted as a generalization of the ARIMA model-building process, for which
the 'noise' term is autocorrelated3. A useful 'byproduct' of this generaliza-
tion is the possibility of optimizing filters subject to a time delay restriction.
The proposed DFA is more flexible (general) than the MBA because the fil-
ter parameters are optimized directly, so that interesting constraints (such as
the time delay for example) can be 'build into' the resulting asymmetric filter.

Particular attention has been devoted to finite sample issues. First, a new
parsimonious filter class, so called ZPC-filters, was introduced for which the
parameters could be straightforwardly interpreted. Then, an attempt was
made to distinguish overparameterization and overfitting and new instru-
ments avoiding overparameterization (MC-criterion) or overfitting (a singular-
ity penalty and the variable frequency sampling) were proposed. Essentially,
overfitting was tackled by modifying the original optimization criterion with-
out affecting efficiency issues of the resulting estimates. Overfitting manifests
itself in an unnecessarily 'elaborate' transfer function of the asymmetric filter.
If 'elaboration' is measured by the rate of decay of the MA coefficients (of the
filter) then a new criterion 'penalizing' overfitting can be derived. A balance
between 'fit' and 'regularity' was proposed. It was suggested that the idea of

2Although a model for the DGP is not explicitly required
3Note that the autocorrelated noise term is also an 'innovation' : it is orthogonal

to past observations (regressors) because it is a weighted sum of future et's, see
formula (C.8).
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penalizing excessively singular designs by including a term measuring the rate
of decay of the estimated coefficients could be used for the MBA too which
would open a field for future research. An alternative new method for avoid-
ing more specifically instability of the asymmetric filter was proposed too by
allowing the fixed frequency ordinates to vary in a well defined restricted man-
ner, depending on the estimated filter parameters. Thus, potentially unstable
poles could be 'tracked'.

Empirical evidences suggest that both methods - MBA and DFA - perform
equally well if the MBA is based on the true DGP. However, the DFA often
outperforms the MBA for real-world time series (for which model misspecifi-
cation is the rule). Results similar to that obtained for the UK car sales series
were obtained in Wildi/Schips[99] for a representative sample of 41 business
survey indicators. For the MBA, it seems that models are often too parsimo-
niously parameterized4 and that unnecessarily severe restrictions are main-
tained for the asymmetric filter (resulting from the I(2)-hypothesis which is
often a misspecification for economic time series). In combination, these forms
of misspecification can lead to severe losses in efficiency as shown in Part
II and in Wildi/Schips[99]. However, diagnostic statistics based on the one-
step ahead forecasting error (for example Ljung-Box or Box-Pierce statistics)
are often unable to detect the relevant departures from the 'true' DGP. For
the US-GNP series Cochrane [18], p.912, argues "Low-orders ARMA-models
systematically overestimate the random-walk component of (US) GNP, even
though they adequately represent the series by all the usual diagnostic tests".

Much effort has been and is still spent in deriving and/or modifying proce-
dures for selecting the 'best' model for the DGP and for improving parameter
estimates in the MBA. However, the criterion with respect to which the qual-
ity of empirical models is measured is (in general) the minimization of the
squared one-step ahead forecasting error which is only partly in accordance
with the signal estimation problem. To conclude, it is felt that the statistical
'apparatus' presented here solves the finite sample signal estimation problem
more efficiently than the MBA because, unlike the latter, the optimization
criterion for the DFA is derived directly from the estimation problem which
has to be solved really.

4 Low frequency as well as seasonal components of practical time series are gen-
erally characterized by more or less complex dynamics which cannot be suitably
mapped into a two-parameter model such as for example the airline-model. Unfor-
tunately, richer parameterized models are often unable to catch the 'salient' fea-
tures of a time series and the discrepancy between the one-step ahead forecasting
performance and the performance of the resulting asymmetric filter becomes more
pronounced (overfitting).
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Decompositions of Stochastic Processes

A general stochastic process can be decomposed into a weighted sum (discrete
or uncountable) of orthogonal increments. Two classical decompositions are
briefly presented here. Particular proofs for the DFA refer to these results.
The first kind of results address (weakly) stationary processes.

A.I Weakly Stationary Processes of Finite Variance

A weakly or wide sense stationary real stochastic process Xt of finite variance
(called a stationary process in the following) is characterized by the following
moment conditions :

E[Xt\ = n, Cov(Xt,Xt±i) = R(i) (A.I)

Two important decompositions of stationary processes follow.

A.1.1 Spectral Decomposition and Convolution Theorem

Theorem A.I (Spectral Decomposition of Xt). A stationary process Xt
with mean \x can be uniquely decomposed (in the mean square sense) into a
weighted continuous sum (stochastic integral)

Xt=/j,+ I exp{ituj)dZ{w) (A.2)
J — TV

where the continuous parameter process Z(OJ), u> £ [—n, IT] satisfies : E[Z{UJ)\ =
0 andCov{Z(bJi)-Z(ui2),Z(w'l)-Z{J2)) = 0 whenever [ui, w2]n[UJ[,LJ'2] — 0
(orthogonal increment process).

For a proof see for example Doob [25], p.480. For real processes Z(u>) is real
too and the integration above may be restricted to [0,n]. More precisely, one
obtains
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Xt = fi + I cos(tu>)du(u>) + / sm(tu>)dv(<jj)
Jo Jo

where u(-),v(-) are two mutually uncorrelated real zero mean continuous pa-
rameter processes with orthogonal increments, see Doob [25], p. 482. Equation
(A.2) corresponds to a spectral decomposition of the process Xt from which a
spectral decomposition of the second order moments may be derived. Specif-
ically, define the integrated spectrum H(UJ) of Xt by

H{u) = P E[\dZ(9)\2} (A.3)
J -it

One can show that H(LU) behaves like a distribution function (see for example
Doob [25], p.488) so that it may be uniquely decomposed into :

H(w) = Hi(u) + H2{u>) + H3(w) (A.4)

(Lebesgue decomposition) where i?i(-) is the absolutely continuous, .HaO) the
discrete (a step function with countably many steps) and H3(-) the singular
component. For univariate processes Hs(-) can often be neglected except for
'pathological' processes which are not considered here, see for example Whittle
[95], p.25 or Priestley [75], p.226 ff. The processes corresponding to H\{-) and
H2G) are analyzed in section A. 1.2. The next theorem relates the spectral
distribution H(-) to the second order moments of Xt :

Theorem A.2 (Spectral Decomposition of R(-)). The autocovariance
function R(-) of a weakly stationary process can be decomposed according to

R(k) = I exp(iku)dH(u) (A.5)
J — -K

A proof can be found in Doob [25], chap. X and Priestley [75], chap.4. If H(w)
is absolutely continuous (H(u) = Hi(w)), its 'derivative' h(u>) = dH(u>)/du>
is called the (non-normalized) spectral density of Xt. In virtue of (A.5), h(u>)
is then the Fourier transform of the (discrete) autocovariance function R(-) :

to (A.6)
fe= — oo

It is easily verified that for a white noise process, Xt := et, the spectral density
is a constant

*(«) = £ (A-7)
The terminology 'white' noise process is derived from physics by analogy to
'white' light for which the power distribution is constant too over the visible
spectrum. The normalized integrated spectrum F(-) is defined by
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It inherits all properties of H(-) : distribution function (more precisely, F(-) is
a probability distribution), Lebesgue decomposition (A.4), spectral decompo-
sition of the normalized autocovariance or the auto correlation function (sim-
ply replace dH(-) by dF(-) and R(-) by R(-)/R(0) in (A.5)), see for example
Priestley [75].

Assume the spectral density of Xt exists and the processes Yt,Xt are
related by the time invariant difference equation

Yt= Y, b*Xt-k (A.9)
fc=-oo

The following important theorem relates the spectral densities of Yt and Xt:

Theorem A.3 (Convolution Theorem). Suppose Xt is a stationary pro-
cess with spectral density h(u>) and Yt is defined by (A.9) with (real) coef-
ficients bk being absolutely summable Yl'tL-oo l̂ fct < oo. Then the spectral
density of Yt exists and satisfies :

= \0(u>)\2hx(u) (A.10)

where /?(•) := E£L-oo bk exp(-ik-).

A proof of the theorem can be found in Priestley (1983) chap. 4, sec. 12. The
function /3(-) is called the transfer function of the linear time invariant trans-
form (filter) : Xt -> Yt in (A.9). Spectral densities of AR-, MA- and ARMA
processes are obtained from (A.7) and the above theorem by setting Xt := et

in (A.9).

The so called Parseval relation

i=-oo
h r|

follows from theorem A.2 (setting k := 0) and theorem A.3. In the follow-
ing section a decomposition of a stationary process in the time domain is
presented.

A. 1.2 The Wold Decomposition

Denote the variance of the one-step ahead forecasting error of Xt by CT(1)2 =
Var{Xt(l)), where Xt(l) is the best linear one-step ahead forecast of Xt+i
given Xt,Xt-i,.... A process Xt is called linear deterministic or singular if
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<r(l)2 = 0. It is called regular if cr(l)2 > 0. Note that the linearity assump-
tion is important in this context. An example for a regular but nevertheless
deterministic process is given for example in Priestley [75] p.760 (the 'perfect'
forecast is based on a non-linear function). Wold [100] proved the following
important theorem:

Theorem A.4 (Wold Decomposition). Every stationary process Xt (of
finite variance) can be uniquely decomposed into the sum of two stationary
processes X\t, X2t

Xt=Xlt+X2t (A. 12)

where Xu and X2t are characterized by the following properties:

• X\t is a stationary one-sided MA(oo)-process X\t =
• X2t is a linear deterministic process orthogonal to
If Xt is singular, then X\t = 0. If Xt is regular then X2t does not necessarily
vanish. In the latter case one can show that

• X2t is a harmonic process

fe=i

where Â  and Ak are constants, the Ak being square summable X̂ fcLi A\ <
oo and <?k are independent rectangularly distributed random variables in
the real interval [—TT,TT] (see for example Whittle [95], p.25 and Priestley
[75], p.758) and

• the spectral distributions of Xit correspond to Hi(-) in (A.4), see Doob
[25], p.572 ff.

Note that if Xt is singular (Xt = X2t) then its spectral distribution H(-) is
not necessarily discontinuous and thus in general H(-) ^ H2(-) in the latter
case (see for example Brockwell and Davis [10], example 5.6.1, p. 185). To
analyze these differences it is useful to introduce the class of so called general
MA processes. Xt is called a general MA process if it can be decomposed
according to

x t =
fe=—oo

where et is a white noise (not necessarily independent) sequence and the co-
efficients bk are square summable. If tt are independent, then Xt is called a
general linear process. The following two propositions relate singularity (reg-
ularity) of a process to a result in the frequency domain.

Proposition A.5. A stationary process Xt has an absolutely continuous spec-
tral distribution function, i.e. a well defined spectral density h(ui), if and only
if it is a general MA process.
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A proof can be found in Doob [25], chap.10, sec. 8.

Proposi t ion A.6 (Kolmogorov or Szego formula). The variance of the
one-step ahead forecasting error <r(l)2 (linear forecasting function) of a general
MA process Xt is related to the spectral density h(-) by

j - f ]n(h(u))dJ

For a proof, see Doob [25], chap. XII and Caines [12], theorem 3.4. The fol-
lowing results are direct consequences from the above propositions and the
Wold decomposition :

• A general MA process whose spectral density vanishes on a set with posi-
tive Lebesgue measure must be singular (linear deterministic) because for
such a process (A.15) implies <J(1)2 = 0.

• From theorem A.4 and propositions A.5 and (A.6) it follows that the two
sided representation Xt = X!fcL_oo f̂e£t-fe of a general MA process may
be transformed into a one-sided representation Yl'kLo ckut-k where ut is
a white noise process if and only if ln(/i(w)) is Lebesgue integrable on
[—7r,7r].

From the above it follows that a general singular (linear deterministic)
process may be represented as the sum of a singular general MA process and
a harmonic process. The spectral distribution function of the former is abso-
lutely continuous and the spectral distribution of the latter is a step function.
Note also that whereas a weighted countable sum of harmonic processes is lin-
early deterministic, an uncountable weighted sum (as given by the stochastic
integral (A.2)) may be singular or regular, depending on cr(l)2 being greater
than zero or not.

A.2 Non-Stationary Processes

For non-stationary processes (A.I) is no more true in general. A generalization
of the Wold-decomposition to a non-stationary process Xt has been proposed
in Cramer [20] :

Xt=Dt+Yt

where Dt is a deterministic process and

k=0

is a regular process orthogonal to Dt and satisfying Ĵ fcLo bk{t)2 < oo for all
t.
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Stochastic Properties of the Periodogram

This chapter completes the results obtained in chapter 4. In the first sec-
tion stochastic properties of the periodogram are analyzed which are needed
in proofs for the DFA. In the second section, a generalization of the peri-
odogram to stationary processes of infinite variance is analyzed. Although
this has not been considered in the main text, it is felt that an extension of
the DFA based on these results may be an interesting issue for future research.

B.I Periodogram for Finite Variance Stationary
Processes

Assume
oo

Xt= Yl b^~k (B-1)
fc=-oo

where et is a white noise process and the coefficients bk are square summable.
If Xt is regular then it must admit a one-sided MA-representation, see section
A.1.2. The following proposition relates smoothness properties of the spectral
density of Xt to the rate of decay of the coefficients bk-

Proposition B.I. If Xt £ CJ then d? h(u))/cLji are continuous functions for
all integers j satisfying 0 < j < [u], where [u] is the greatest integer smaller
or equal to u and d°h(uf) jdu>° := h{oS).

Proof. A proof immediately follows from (4.18) and (A.6). •

In the following theorem, moments and the distribution of the periodogram
are analyzed subject to various assumptions about et- The first three assertions
are 'classical' results whereas the last assertion is new and requires a complete
proof. It is used in deriving the consistency of the estimate for the asymptotic
variance-covariance matrix of the filter parameter estimates in theorem 5.10.
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Theorem B.2. 1. If Xt is a gaussian white noise process and uij € QN,
then the corresponding periodogram ordinates INX(^>J) ore pairwise inde-
pendent and

W ^ O - j ^ else

where Xi;Xi are chi-square random variables with one respectively two
degrees of freedom.

2. Assume Xt S Cj, et is an iid sequence and h(u>) > 0 for all u>. Then
the periodogram iNxi^k) converges in distribution to an exponentially
distributed random variable with mean h(u)k) for all Wk S QN satisfying
0 < u)k < n. If Ui 7̂  ojj then the corresponding periodogram ordinates
are asymptotically independent. If TT G ON then /JVX(TT) ~ h{ii)x\, where
x\ is a chi-square distributed random variable with one degree of freedom.
Also INX(0) ~ h(0)xl

3. If Xt S CJ and et is an iid sequence satisfying E[ej ] = rja4 < oo, then

COV (INx (0Jj ), I NX (Wfc ) )

( 2h{Ljjf + 0(1/VN) UJJ = Wfc = 0 or 7T
= < h(u>j)2 + 0(1/VN) 0 < a;,- = wfc < n (B.2)

[ 1

forujj,ojk 6 ON- The termsO(l/V~N) andO(N~1) are bounded uniformly
in j and k.

4- If Xt € Cj and et is an iid sequence satisfying E[ef] < oo, then

Cov (INX(UJ)2, iNx^kf) = OiN-1) CJJ ? Wfc (B.3)

for uij,ujk € ON- The term 0(N~1) is bounded uniformly in j and k.

Proof. For proofs of the first three assertions see Priestley [75] theorem 6.1.1
and Brockwell and Davis [10] theorem 10.3.2 (for the second and the third
assertion: note that equation 10.3.4 in the cited literature implies that the first
extension (4.15) of the periodogram is used). A proof of the last assertion is
now given. Let
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where Mk := E[e^] (so for example M^ — c2) . The less restrictive condition
for a non-vanishing expectation is the last one (i = 0,j = k,l = m,n = p)
since it involves four constraints only (whereas all others imply five or more
constraints). Since

the first six moment restrictions above all induce O(l/./V)-terms for the covari-
ance (because the remaining degrees of freedom are of order O(iV3)). There-
fore, the last restriction is the only one which results in an O(l)-term in the
expression E[lNx(vk)2lNx{uj)2} for the covariance. Now consider

= E

JV N N 8

(B.5)

14

N N N

*1 = 1 »2 = 1 8 = 1

17 -

V(2m-l)-'P(2m)+'

L P m=l \l=-oo

—12+13— ii)) exp(— iu

(B.6)

where the terms which do not correspond to M^ in (B.4) are collected in the

6(6i
p ( 2 m _ 1 ) _ j p ( 2 m ) +( I is the sum over all ad-

)
O(l/iV)-term and

P m=l \l=-oo )

missible permutations P of the integer set {1,2, ...,8}. The set of admissible
permutations is defined by all pairwise combinations of et's appearing in M^
in (B.4): there are 7 x 5 x 3 = 105 such permutations.
It is shown in Brockwell and Davis [10], p.349, that the permutations cor-
responding to 'cross-products' (for which there exists an m such that 1 <
P(2m - 1) < 4 and 5 < P(2m) < 8 or for which 5 < P(2m - 1) < 8 and
1 < P(2m) < 4) lead to terms of order O(l/N) if wj ^ wfe. The proof is
reproduced here. Assume for simplicity that P(2m — 1) = 1 and P(2m) = 5
(analogous proofs apply to all other 'cross products'). Then

JV N

Ul = l
N N

E

i1 = l ;5=lm=-oo

N N
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N N-u

= y j 2_2 R(s)exp{—isu>j)exp(—iu(tjjj+u)k))
U=l5=1—U

N-l N-s

= y j R(s) exp(—isu)j)
3=0

S=-N+1 U=l-8

(B.7)

where -R(s) is the autocovariance function of Xt. For ŵ  7̂  w^ the orthogonality
relations (4.3) imply

N-s

exp(—m(uj
u = l

AT

u=AT-5+l

N

0 -

<

for 0 < s < N - 1 and

AT

U=l — S

for -iV + 1 < s < - 1 . Therefore, (B.7) is bounded by

1 / 2

which implies that

r N N

= O(iV1/2)

Note that this result is independent of the signs of LJJ and a»fc. Therefore,

E

»„ = !
for all 'cross products' 1 < im < 4 and 5 < in < 8 (or 5 < im < 8 and
1 < *« < 4). Note also that 'cross products' must appear pairwise for the
admissible permutations. Thus
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i7 - is))

for each permutation P enabling 'cross products' (where the two O(iV1//2)-
terms correspond to at least one pair of 'cross product' terms). As a result,
(B.6) becomes

'(2m-l|"lP'(2m)

exp(—iu)j(ii — ii + i% — 24)) exp(—iwfc(i5 - i6 + i7 — is)) + O(l/N)

where the permutations P' belong to II, the set of admissible permutations
which do not involve 'cross-product' terms. However, the resulting 0(1)-
expression exactly cancels with the corresponding O(l)-expression for

since for the latter the set of admissible permutations is identical with 77
(i.e. all admissible permutations without 'cross product' terms). The other
non-vanishing term in (B.8) involves E[tj] and is of order O(l/N) because of
the constraint i = j = k = 0 in E[etet+iet+jCt+k] (implying only one remain-
ing degree of freedom). The latter statement is also proved in Brockwell and
Davis [10], equation 10.3.17 (note that the right hand side of 10.3.17 should
be O(A^-1) instead of O(N~2) because one degree of freedom is left in the
sum 10.3.14). This completes the proof of the theorem. •

The following corollary presents a useful result needed in deriving approx-
imations in particular proofs for the DFA.

Corollary B.3. Let the assumptions of the preceding theorem, second or third
claim, be satisfied and assume g(u>) is a bounded function. Then

2n [^] 2, [N/2]

jf (B.9)
k=-[N/2] k=-[N/2]

where r/v = o(l) (second claim) or r/v = C^l/ViV) (third claim).

Proof.
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k=-[N/2] k=-[N/2]

Consider now

/2n W2] \ ^ 2 [N/2]
Var\~N ^ sKH \=JJ2 E

\ k=-[N/2] j k=-[N/2]
4 ^ 2 [AT/2] [N/2]

+ AT2" E E

[JV/2] IN/2] [N/2]

\fe=-[JV/2]

_ / _ { o(l) second claim
= TN = \ O(l/N) third claim

where ||g||oo := sup(|g(o;)|) and the last equality follows from (B.2). Therefore

2,

k=-[N/2] k=-[N/2]

o [N/2]

k=-[N/2]

2n lN/2]

k=-[N/2]

where rN = o(l) (second claim), see (B.17) below or r'^ =
(third claim), see (B.18) below. In the last equality r;v = O(l/y/N) (third
claim) follows from the boundedness of g(-) and the uniform approximation
of E[Ipfx(uk)] by h(wk). This completes the proof of the corollary. D

The next theorem proposes results for E^x^k) which are usefull for de-
riving proofs in the case of integrated processes. Some of the assertions could
not be found in the literature so that extensive proofs are provided.

Theorem B.4. 1. Assume Xt £ C°, tt is an iid sequence and h(w) > 0.
Then real and imaginary parts of the discrete Fourier transform S^x(^k)
(see (4-1)) converge in distribution to two independent gaussian random
variables with mean 0 and common variance h(uik)/2 for all tvk £ Q^. If
u>i ^ u>j then the corresponding ordinates are asymptotically independent.
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2. If Xt £ C J and et is a white noise sequence (not necessarily iid) and
cjj,u>k € QN> then

where the terms O(N~1^2) are bounded uniformly in j and k.
3. If Xt € Cj and tt is a white noise sequence (not necessarily iid) and

\ui — \\ > 0, then

\Cov(SNX(u>),ENX(\))\ <

where the extension (4-16) is used (for SNX{W))-
» IfXteC°fthen

lim
JV-+00

• If Xt £ C1/2 then

uniformly in w.
• If Xte C) then

Proof. For Xt an iid sequence, the first assertion follows from equation 10.3.8
in Brockwell and Davis [10] (note that equation 10.3.4 in the cited literature
shows that extension (4.15) is used for the discrete Fourier transform BNX{'))-
For MA-processes, this result together with (4.19) proves the first assertion
for the general case.
In order to prove the second assertion assume first Xt = et is a white noise
process. Then

COV(~NX(LJ),~NX(\)) = E[SNX(u)SNX(X)]
N N I

Yjetexp(—itui) y_\etexp(iiA)
t=i t=i

JV

t=i

0 if u> = uij ^ u>k = A
a2 (B.13)
—— a> = A
2?r
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where the last equality follows from the orthogonality relations (4.3). For MA-
processes this result together with (4.19) proves the second assertion.
In order to prove the third assertion, assume Xt = et is a white noise process.
Then

N

N
exp(—it(u> — A))

1 - exp(-iN(io - A))
- exp(-i(w - A)))

2
JVjl -exp(-i(cj •

n
N\u - A|

Inserting this result into (B.12) :

\COV(5NX(L>),5NX(X))\<?-

(B.14)

(B.15)

For Xt =
follows that

2TTN\W-X\

CJ define B(UJ) := Efcl-oo h exp(-itcj). It

E [B(uj)ENe(uj)B(X)ENe(X)] | •

B(u)B(X) |Cov(^e(a;),^£(A))|
7T

< y/h(u)k(X)- (B.16)

where the first equality follows from (4.19) and the inequality follows from
(B.15) and (A.10). The proof readily extends to the case .EpQ] — /J, ^ 0 with
obvious modifications.
In order to prove the last assertion, note that Xt € C® implies that the
spectral density h(-) is continuous, see proposition B.I. It is then shown in

Priestley [75], p. 416-418, that limAr_+ooyar(5'Arx(w)) = h(u). If Xt G C} / 2 ,
then (4.19), (A.10) and (B.13) (the case u> = A) imply that Var(ENX(uf) =

h(u>) + O ( -7= J uniformly in u> (because the bound for the convolution error

in (4.19) does not depend on <j). If Xt e Cj and et is an iid sequence, then
Var(ENX(u)) = h{w) + O(hg(N)/N), see Priestley [75], equation 6.2.12.
Since Var(S^x(u>)) only depends on the first two moments of e< this result
straightforwardly extends to white noise sequences (not necessarily iid ran-
dom variables) which completes the proof of the theorem. D

The bias of the periodogram is analyzed in the following corollary:

Corollary B.5. • If Xt 6 C) then
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// Xt £ C)'2 then

uniformly in u.
• IfXt eCj then

+ 0

Proof. A proof immediately follows from the last assertion of theorem B.4 by
noting that E[SNX{u)] = 0, i.e. V ar{~ N X(LJ)) = E[INX(u>)]. •

B.2 Periodogram for Infinite Variance Stationary
Processes

Assume the process Xt satisfies

E[\Xtn = \Mu<°°>U<a (B.20)

For a < 2, Xt is a process of infinite variance. Often, a distribution Fa(-)
of the random variable Xt (satisfying (B.20)) is considered such that it is
invariant (up to proper scaling and translation) under arbitrary summations
of the random variables Xt. That means that

t=-oo

where = means equivalence in distribution and c and d depend on bt- Such
processes are called a-stable processes and a is called the characteristic expo-
nent of the distribution Fa(-), see for example Embrechts et al. [28], chapter 2.
If Fa(-) is symmetric, the corresponding process is called symmetric a-stable
or simply sas. One can show that -F^O) is the gaussian distribution (and hence
it is symmetric), see Embrechts [28], theorem 2.2.3. The results proposed be-
low can be extended to non-symmetric and non-stable distributions but this
would require more technical assumptions and more complicated notations.
In the following two sections, MA-processes and suitably defined second or-
der moments, spectral densities and periodogram estimates are proposed and
analyzed.

B.2.1 Moving Average Processes of Infinite Variance

A straightforward generalization of MA-processes of finite to infinite variance
is given by the following definition.
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Definition B.6. The class of so called MAa-processes is defined by

oo

Xt = £ bkZt-k
fe=-oo

where Zt is an iid sequence of sas random variables.

A necessary and sufficient condition for the existence (stationarity) of Xt is
given by

oo

£ \bk\
a<oo

k— — oo

see for example Embrechts et al. [28], p.378. Obviously, for a = 2 the tradi-
tional stationarity assumption results. In particular, Xt is distributed accord-
ing to Zt (J^fc=-oo IM") (because of the stability of the distribution of Zt,
Xt is itself an sas random variable).

For such a process the main theorems A.I and A.4 are no more valid.
Although a formal extension of (A.2) to the class of so called harmonizable
processes is possible (see for example Rosinski [79] : Z{LS) in (A.2) then be-
comes a so called sas-random measure) this generalization suffers from the
fact that the class of harmonizable processes does not even contain the MAa-
processes of definition B.6, see Rosinski [79]. However, decompositions are still
possible for suitably normalized moments. The latter are introduced in the
following section.

B.2.2 Autocorrelation Function, Normalized Spectral Density and
(Self) Normalized Periodogram

It is assumed that the coefficients of Xt in (B.21) satisfy

bk\sk < oo, where
fc=-oo

J = l i f l < a < 2 (B.22)

5 < a if a < 1

Define the sample autocorrelation f (•) by

t(k) .= M = E£fc ******
m EL*?

and the theoretical autocorrelation by

r{k) := £ f i T 6 ' % + * (B.23)
2
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Theorem B.7 (Estimation of the Autocorrelation Function). Assume
that Xt is a MAa process satisfying (B.22) and assume also that the distribu-
tion of Zt is sees. Then for each m

°(^(l)- ' -( l) ,- .rM-r(m))-i(yi , . . .>rn i) (B.24)

where Yk := ET=Ar(k + J) + r(k ~ J) ~ ^{j)r{k)}^- and where Uj, j > 0

are independent stable random variables.

A proof of this theorem can be found in Brockwell and Davis [10], theorem
13.3.1. As an immediate consequence

(B.25)

for m = 1, where the symbol Op(l) means boundedness in probability, see for
example Brockwell/Davis [10] chap.6.

Remark

• Although second order moments do not exist if a < 2, (B.23) is well
defined and evidently corresponds to the (linear) dependency structure
of the process Xt in the form of its (properly denned) autocorrelation
function.

Definition B.8. The normalized spectral density of a MAa-process Xt is de-
fined by

—i =55 p - (B.26)
k=-OO 1—/K—00 K

The normalized periodogram is defined by

1
N 2

(Xt - X) exp(-ituj) (B.27)

The self normalized periodogram is defined by

1
(B.28)

The last definition may be motivated by

• the fact that a is generally unknown in (B.27) and
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• that N-2la Y,t=i xt -^ E^=-oo btGo where Go is a positive a/2 sta-
ble random variable. Hence the normalization in (B.28) "stabilizes" the
estimate, see for example Embrechts et al [28], p.390.

Theorem B.9 (Convergence of the (Self) Normalized Periodogram).
Assume that Xt is a MAa process satisfying (B.22) and assume also that Zt
is sas-distributed. Suppose /(w) > 0, Va». Then

• for arbitrary frequencies 0 < OJ\ < ... < u>m < n,

^ (B-29)

where V$ are dependent sas-random variables.
• for an arbitrary frequency u>

JArxH- i /H( l + T(w)) (B.30)

where P[l + T(ui) > x] < exp(—ex), x > 0 where c is independent of the
(sots) distribution of Zt, E[T(u)] = 0 and Cov(T(w),T(u')) = 0 , 0 < w ^
UJ' < -K.

A proof of these results can be found in Kluppelberg and Mikosch [58] and
[59]. The close relationship to the finite variance case is revealed by the sec-
ond claim. Note however, that different periodogram ordinates are no more
independent, see for example theorem 7.4.3 in Embrechts et al. [28].

The above results allow a formal extension of the direct filter approach to
input processes of infinite variance. In the following section, properties of the
periodogram for non-stationary integrated processes are analyzed.

B.3 The Periodogram for Integrated Processes

Theorem 4.10 has been presented in chapter 4. A complete proof is provided
here.

Theorem B.10. Let Xt and Xt be defined by (4.30) i.e. Xt € C°f, E[Xt] = 0,

Z = exp(i\),h(X) > 0 and let

QN+l := {wfc |wfc = k2Tt/{N + 1), \k\ = 0,..., [(N + l)/2]}

For co £ f?N+i define the periodogram IN+IX(<*>) by (4-16) and use a similar
extension for the discrete Fourier transform EN+IX(U)-

• / / Wfe ^ A then

I - / \ I 2

lN+ix(Uk) = TZ—^ T~-—\W (B.31)
l -Zexp(- iw f c ) 2
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where the random variable v :— ZN+1BN+1-^(X) is independent of u>k-
More precisely, suppose \u>k — A| > w/(N + 1). Then

| l - e x p H K - A ) ) | 2

where the random variable £W|C satisfies

lim E[(uk] — h(X) + h(ujk)
N—KX)

If Ct is an iid sequence and w ^= OJ1 , both different from X, then

2 \ _

(B.32)

A = (B.33)

^£ C^ , then the approximation for the first moment becomes :

h(X) + h(uk) + 0(1/VN)

(h(X) + h(cjkj) ( l + 0

• If Xt G C° and A € i^N+i, then

IN+IX(X) = (N + 1)2

Proof. Consider:

if A 6
(B.34)

e l s e

Jim E[(x) = h(X)/3 (B.35)
AT—>oo

1
2TT(N

1

27r(iV

t = 0

AT

,,exp(-^)

( *v—^ • ~

\j=o

exp(-itw)

'AT-t

t=0 \j=0

t=0

N

t=0

AT-t

exp(-ijw) (B.36)

1 - Zexp(—iw)



248 B Stochastic Properties of the Periodogram

1 1

- Z exp(-iu/)|
N

exp(-itw) - ZN+1 exp(-i(iV
t = 0

N

t=0

7 - 1

(B.37)

If w € fijv+i, then exp(-i(Af + l)w) = 1 which proves the first assertion. The
first moment of the periodogram satisfies

-2Re (E [~ E

where

R'N = 0 or R'N =
N

or R'N = 0(ln(N)/N) according to
(B.17) or (B.18) or (B.19), depending on whether Xt € C^ or Xt e C1

or Xt € (7).
• From (B.IO) respectively (B.ll) one deduces

1/2

\RN\< 7T +0(JV-1/2) e/se
)|wfc-A| v ;l)\uk

In order to verify the assertion for the second order moments, let u> ^ u/ be
two arbitrary but fixed frequencies different from A. Then

iw)|2|l - Zexp{-iLj')\2Cov[IN+lx{Lj)IN+lx(u)')}lim |1 -
N—>oo

-2Re (5 l)u)EN+lx(X))

) ~ 2Re {Z

(B.38)
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= f 2~h(X)2 A = 0,7T

~ \ h(\)2 else

where in the first equality (B.37) is used and the second equality follows from
the asymptotic independence of £N+ix(w) and EN+1^(UJ'), see theorem B.4.
In order to prove the third assertion set Wk '•= A which, inserted into (B.36),
leads to

IN+1X{A) =
2n(N-

1

N

*) exp(-itX)
t=o

t=o
AT N

(B.39)

cos((i — u)A)

N N-\s

1 -
t

N + l

s=-N

1 - t+ \s\
N + l

t = 0

cos(sA)

see for example Priestley [75], p.399 for the last two equalities above. Using
the approximations

M

t =
M(M M2

and
t=o

A 2 _ M(M 2) _ M(M

t=0

one obtains

N-\s\

N N + l N + l

{N-\s\
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Thus

N
- (N + I)2— y^ R(s

N

-(N + l)2 — - Y^ .R(s)cos(sA)
2 n 3 S=-N

(B.40)
o

The first equality follows from E[Xt] = 0 (recall the discussion concerning
(4.30)). The assumption Xt £ C°f implies J2kLo \^(k)\ < °°> s e e (4-18). There-
fore, the first approximation follows from Lebesgue's dominated convergence
theorem and lim;v->oo O(\s\/N) = 0 for all s. The second approximation again
follows from the absolute summability of the autocovariance function, which
completes the proof of the theorem. O

Remarks

• As was seen in (B.31), the bias of the periodogram (see (B.34)) depends
on the discrete Fourier transform of the differenced signal at the unit-root
frequency A. As well, (B.31) implies that different periodogram ordinates
are correlated (through the common random variable u), see for example
(B.33). Note that a dependence structure of periodogram ordinates was
already observed for stationary processes of infinite variance, see theorem
B.9.

• Theorem 4.8 does not apply here, since the filter coefficients of 1/|1 —
Z,\exp(—iuk)\2 never decay (or, equivalently, the MA-coefficients of Xt
never decay). It is thus the 'long memory' of the integration operator
which makes periodogram ordinates biased and correlated.

• The interpretation of the random variable v is fairly easy : for finite samples
its purpose is to replace the singularity of the theoretical pseudo spectral
density h(u>) at A by

This reflects the finite sample information about the true integration order
1 as given by the periodogram.
Equation (B.39) reveals that the periodogram at A is obtained by 'taper-
ing' the series Xt (see for example Priestley [75], section 7.4.1 or Cooley
and Tukey [19]), i.e. by replacing the original data Xt by Xtht where the
sequence of constants ht := 1 — t/{N + 1) is called a 'taper'. The effect of
a taper essentially consists in reducing bias and increasing variance of the
spectral estimate for h(\).
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The following corollary proposes a result needed for 'unit-root' tests, more
precisely, for testing conditions of the type (5.22) (whose importance is as-
sessed empirically in section 7.2). For that, assume A = 0 in theorem B.IO so
that Xt = Xt — Xt-i is stationary. The random variable Co defined in (B.35)
(where A = 0) can be represented as Co = Vo where

N

Vo •= (B.41)
t = i

see (B.39). The dependency of r]o and EN^(wk) is analyzed in the following
corollary.

Corollary B . l l . Let the assumptions of the preceding theorem B.IO be sat-
isfied and assume that the unit-root of the process Xt is located at frequency
zero so that Xt - Xt^x = Xt e Cj i.e. A = 0. Then

Mo) + o(1)
Cov[r]o,ENx(uk)} = { {

 2

(h(O) + o(l)) uik = o
(B.42)

= 0

where rjo is defined in (B.41), i is the imaginary number and k =

Proof. By assumption tJk = o(l). Assume first, uJk ^ 0. A proof then follows
from

E

i = l t ' = l
JV-1 AT+rain(O,s)

^ ^ ^ 2 fi(a)(l-t/7V)exp(-««;fc(t-«))
s=-(N-l) t=max(0,s) + l

1 "-1

2TTN
s=-(N-l)

JV+min(O,s) AT+min(0,«)

^2 exp(-iukt)-—
t=max(0,s) + l t=max(0,s)+l

(B.43)

1
JV-1

2-KN
R(s

1

s=-(N-l)

N"+min(0,«)

texp{-iujkt) (B.44)
t=max(0,«)+l
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where the last equality follows from

• the bound

1
N+min(O,a)

2 7 r i V
t=max(0,s)+l t = i

- 2-KN

see the orthogonality relations (4.3)
• the absolute summability of the autocovariance sequence R(s)
• and Lebesgue's dominated convergence theorem.

If s > 0 then

1 T ^— 2J texp(-iujkt) =
t=s+l

1 8 N

' ' ~ — 7 CA.JJ I CUJfc L I

t = 3+l

. 1 d exp(-iNu>k) -

(exp(—iNuih) — exp(—i

_
— iN + isexp(—i

N V (1 -

1 — iJV + «sexp(—isu>k) + O(s)
^ (T

1 + O(s/N)
(1 -

If s < 0 then

N-\s\

%N duj
t = i

=

N

d exp(-i{N - \s\)wk) -
N dui (1 — exp(ja»fc))

(B.45)

(B.46)

(B.47)
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-i(N - |a|) exp(-i(N -

253

= lN
(exp(-i(N - \s\)uk) - l)iexp(iwfc)

...If -i(N-\s\
= exp(i\s\ujk)i— '

- exp(-i\s\u!k))iexp(iojk)
(1 - exp(iu;fc))2

-iN + is + O(s. . . . 1
= exp(i\s\ujk)i—

N (1 - exp(icak))

Inserting (B.46) and (B.48) into (B.44) leads to

E
" 1 "

i ^

i ^

i
(1 - exp(iwfc))
(N-\

1
27rAT

exp(zs

1+C

1

/2TF5V

W f e ) i v

AT

^ Xt/ exp(-iwfci')

AT+min(0,6)

Vj texp(—u
t=max(0,s)+l

3(iWfe))

) ) + 0

- 1

R(s)(l+O(a/N))
s=0

g ̂ ^
f;
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where the fourth and fifth equalities follow from the absolute summability of
the autocovariance function and Lebesgue's dominated convergence theorem
(using Uk = o(l) so that limjv-too exp(is<x>fc) = 1 for all s in the fifth equality).
If u>k = 0 then the left hand-sides of (B.45) and (B.47) can both be approxi-

N - 1
mated by — 1- O(s). Note that now

N+mm(0,s)

2-KN
exp(-iwfci)

t=max(0,s)+l

in (B.43) so that the corresponding expression becomes

N ., N

E
2-KN

AT+min(O,s) JV+min(O,s)

t=max(O,s) + l t=max(O,s) + l

t

s -
N-l

(B.49)

This completes the proof of the corollary. •

Remark

• The approximation

Cov[Vo,SNJt(uk k)} = -~- (

for ^ 0 in (B.42) implies that 770 is correlated with the imaginary part of
ENx(uk) only since the expression on the right hand-side is purely imag-
inary. Therefore, 770 and the real part of the discrete Fourier transforms
are not correlated (asymptotically and for Wfc = o(l)).



A 'Least-Squares' Estimate

C.I Asymptotic Distribution of the Parameters

Assume that the output Ytr of the filter minimizing

E[(Yt - Ytrf] (C.I)

is known for £ = 1 — Q,...,N — 1 but that the filter parameters are unknown
and are estimated by 'least-squares'. For that purpose, consider an estimate
based on an ordinary least-squares regression of Yt on Yt-iir, ...,Yt-Qr and
Xt+r, ...,Xt-q

Q q

fe=l fc=-r

Note that the filter corresponding to YtT is based on 'future' Xt+i, ...,Xt+r: it
is thus optimal for estimating Yiv_r where N is the end point of the sample
(for r = 0 the filter is completely asymmetric). In the following, the subscript
r of Ytr is omitted for notational convenience. It is assumed that the signal
Yt, t = 1, ...N is known too in (C.2) and that the best (unknown) asymmetric
filter minimizing (C.I) is an ARMA(Q',q' + r)-filter say. If Xpf+i, •••,-̂ 'iv+r
are known too, then TV equations are available for estimating the filter pa-
rameters in (C.2).

Remark:

• If Yt is known, then the filter parameters could be determined exactly
since the true error terms AYt would be observable. However, this is not
the point here: what really imports are the properties of the resulting least-
squares parameter estimates or, more precisely, their asymptotic distribu-
tion since it can be shown that the latter coincides with the asymptotic
distribution of the DFA parameter estimates. The above 'setup' is artifi-
cial: it is needed for showing that filter parameter estimates of the DFA
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are as good (asymptotically) as the least-squares estimates which assume
knowledge of Yt and Yt.

Assume Q > Q' and q > q' in (C.2) and assume cancelling zeroes and poles
of ARMA filters are not allowed. Let b denote the least squares estimate of
the unknown parameter vector b := (ai, ...,ag,6_r, •••,bq)' in (C.2), where
o-Q'+i = ••• = «Q = bq'+i — ... = bq = 0 (because the best filter is an
ARMA(Q',q' + r) and zeroes cannot cancel poles). Denote by Z the N * p-
matrix whose p = Q + q + r + 1 columns correspond to the time series of the
regressors involved on the right of (C.2). Therefore, the least squares estimate
is

b = ( Z ' Z ^ Z ' Y (C.3)

where Y' = (Yi,..., Yjy). Consider the so called 'projection matrix'

M : = I - Z ( Z ' Z ) " 1 Z '

It can be shown that M = M' and that it is idempotent with rank N — p, see
Theil [88], p.40. Moreover

AY = MAY

where AY is the vector of least squares 'residuals' and AY is the vector of
'true' error terms. Note that if Q > Q' and q > q' (as assumed), then AYt

does not depend on Q nor on q.
Assume AYt is stationary (which may be achieved by suitable constraints
(5.22) for example). Assume also for convenience that Xt, Yt are stationary
too (the latter two assumptions may be relaxed) and define

y0A'fc_|i_i|+r+Q+iJ else

where RAY{-), Ry(') a nd Rx(-) denote the autocovariance functions of AYt,
Yt and Xt respectively. It is not difficult to show that the (Q + q + r + 1) *
(Q + q + r + l)-matrix W := (toy) is symmetric (a formal proof is provided
in the following theorem).

The 'least-squares' estimate (C.3) is analyzed in the following theorem.

Theorem C.I. Assume

• F(-) £ C° and Xt £ C° is a zero mean stationary MA-process. The white
noise sequence et (of Xt) is iid and satisfies E[ef] < oo.
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• The best asymmetric filter F(-) for estimating Y}v_r is a stable ARMA(Q',
q' + r) filter. It is assumed that the AR- and MA-orders Q and q + r used
for the least squares estimate satisfy Q > Q' and q + r > q' + r and that
cancelling zeroes and poles of ARM A filters are not allowed.

• Yt and Yt are known for t = 1,..., N and t = 1 — Q, ...,N — 1 respectively.
• Q := liiriAr_,oo(-j^Z'Z) is strictly positive definite (its existence as a limes

in probability is shown in the proof below).

Then

• The asymptotic distribution of the (suitably normalized) estimated filter
parameters is

VN(b-b) ~,4iV(0,Cr1WCr1) (C.5)

where b is the true parameter vector and the elements Wij of the (sym-
metric) matrix W are given by (C-4) and AN means asymptotically mul-
tivariate normally distributed.

Proof. The least squares estimate satisfies

b = b + (Z /Z)-1Z /ZiY (C.6)

Therefore

(fff
A proof that the matrix Q := lkn/v_,oo j^Z'Z exists in probability is for ex-
ample given in Hamilton [45], p. 192 and 193 (use Yt € C° and Xt G C°).
Since the inversion is a continuous operator (for the strictly positive definite
matrix Q), Q " 1 := limw_o o(^Z'Z)~ : L also exists in probability (see for ex-
ample Hamilton [45], proposition 7.3).
Next, the consistency of the least-squares estimate is assessed and second order
moments of the vector Z'AY/vN are derived. Let za := Yt-% for 1 < i < Q
and zu := Xt+r+Q+x-i for i > Q be the (i, £)-element of the matrix Z'. For
Q > Q' and q > q'

Zb = Y

(this is not true if Q < Q' or q < q' since then the best asymmetric filter f(-) is
no more an admissible solution of the corresponding least squares estimation
problem). Thus the 'true' error term satisfies AYt = Yt — YJ. Using (2.23) and
(2.24) (note that Yt in (2.23) corresponds to Yt here and that Yt in (2.24)
corresponds to Yt here), one deduces

= Yt-Yt

oo

j=0 J k=-r \j=0



258 C A 'Least-Squares' Estimate

- r - l / oo

fc=-oo \j=0

(C.8)
fc=l

Moreover

Yt-i = Y^=o ckXt+r-i-k = H r_i_ f e for 1 < i < (

_fe for t > Q

Therefore AYt is orthogonal to the space spanned by the regressors so that
the 'least-squares' estimate is consistent. Moreover, it follows that for t' < t

E = E

= E

ZitZjf

ZitZjt

+E

= E

z- z

ZitZjf
_

-E [zitZjf]

= E [zitZjf

fc=l

OO

oo

fe=l
oo

s Oh ^t 1 T* I /c

fc=l

r °°
U=i

%(< - *')

7 ygfcet'+r+fc
fc=l

t-t'

fc=l

oo

ffe ^ ^ 9ket'+r+k
k=t-t'+l

oo

fc=t-t'+l
oo

r+fc / j 9k^tr-\-r+k
k=t-t'+l

where RAy{t ~ *') ^s t n e autocovariance function of AYt. The third and the
fourth equalities follow from the independence assumption of ê . Similarly, for
t = t' one deduces :

E [zitAYtzjtAYt\ =

and for t < t':

E E [zitZjt,] E 9k£t+r+k\
L f c = l k=t'-t+l

= E[zitZjt'}RAY(t-t')

where use is made of the stationarity of AYt ( s 0 that its autocovariance func-
tion is an odd function i.e. RAY(t — t') = RAY(t' ~ *))• Now
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E[zitZjt>

E [yt-i • -f + (j- i))

E

E

For 1 < i,j < Q, one obtains

'z-AYZ;

-j

-i] = Rx(t -t' + (j -i)) i

E = E
N N

\t=X t=i

J V - l

fc=-JV+l
oo

RAy(k)Ry(j-i (C.9)

where k := t — t'. The last equality follows from Lebesgue's dominated con-
vergence theorem. In fact, Yt G C2 and AYt G C® imply that RAy{k) and
RY(k) are absolutely summable (recall (4.18)) so that R^yi^RyU — i + k)
is absolutely summable too as a function of k. Lebesgue's dominated conver-
gence theorem then implies (C.9). Similar expressions are obtained for i > Q
or j > Q by replacing RY(j — i + k) in (C.9) by the corresponding moments
of E [zitZjf] given above. One obtains

Q<i,j<Q

l<i<Q,j>Q
(CIO)

Q, Q

where k = t—t' and the matrix W with elements Wij is (up to a negligible error
term) the variance covariance matrix of Z' AY. Note that the expressions for
1 < i < Q,j > Q can be transformed according to

E
k= — oo

oo

E^
k=—oo

iJ^y(A:)£; [rfc+0_ i )_r_o_1Xo] =
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k=—oo

r i
RAY(k)E[Y0Xk_{j_i)+r+Q+1\

fc=—oo

which shows that the last two expressions in (CIO) are identical to

oo

E p (V.\ p \\r y
*iAY\K)£/ [*0-Afc-|j-t|-

fc=-oo

Also

fc=—oo k= — oo
oo

fc=—oo

and

oo oo

= 53
fc=—oo k=—oo

oo

fe=—oo

Z'/iY
so that the matrix W is symmetric. It is now shown that —•==- is asymp-

vJV
totically normally distributed. For that, consider one particular element (say

Z'AY
the i-th) of the vector —-j= -̂ and assume i < Q. Then

viV

1 N j v / o o oo

t=l V J V t=l \k=l j=0

oo /X^N , v^°° A
l 2^t=l e*+r+fe 2^7=0 ajet+r-i-jl

Since et is an iid sequence, the process ct+r+k Y^jLo dj^t+r-i-j defines a mar-
tingale difference sequence. Therefore
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is asymptotically normally distributed N(0, ̂ VariY^)), see for example
Hamilton [45], example 7.15, p. 194 (note that E\Yt-i\ = E[Yt

2] by stationar-
ity). Since AYt £ C®, its coefficients must be absolutely summable. Therefore
the random variable

1 / 2 e k l

is well defined and must be asymptotically normally distributed too

N

see (C.9) and recall that i < Q is assumed. An identical proof applies if i > Q
with the distribution

t=l

where i?^y(fc) and Rx(k) are the autocovariance functions of AYt and
respectively. It can be verified that

1—7=- ~ AN (0, l'Wl)

where 1 is an arbitrary Q + q + r + 1-vector and W is given by (CIO). The
Cramer-Wold device can then be used to infer

As a consequence

' Z'/SY'

) (C.ll)

see example 7.5 in Hamilton [45], p.185. Note that E[ef] < oo is required
because otherwise the variance in (C.ll) may be infinite. This completes the
proof of the theorem. D

The following corollary is the equivalent of corollary 5.12 for the DFA. It
provides an expression of the decrease of the variance estimate of the 'least-
squares' residuals jj X)£Li AY? due to 'overparameterization' (see below).
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Corollary C.2. If the assumptions of theorem C.I are satisfied, then

N N

t = i t=l

tr(WQ-1)+o(l)
N

(C.12)

where tr(') is the trace operator (i.e. the sum of the diagonal elements of a
quadratic matrix) and W and Q are defined in theorem C.I.

Note that W and Q depend on the number of parameters being estimated
since they are (Q + q + r + l)*(Q + q + r + l) matrices. As in the previ-
ous section the subscript Qq has been dropped for notational convenience.
Moreover, -^ Y^,tLi AY? does not depend on Q nor on q because theorem C.I
assumes 'overparameterization' i.e. Q > Q' and q> q' (where Q' and q' are
the filter orders of the best ARMA filter /•(•)). Therefore, the right hand side
of (C.12) accounts for the mean decrease of the variance estimate of the resid-
uals jf J3t=i AYt 3s 'overparameterization' arises.

Proof of corollary C.2. A Taylor series development of -^ X^t=i
tered' at the least squares estimate b provides

'cen-

t r (Q(b - b)(b - b) ' )
t = l

where the first o(l)-term follows from the consistency and the second one
additionally accounts for the convergence of ^ p to Q, see theorem C.I. The
third equality follows from a property of the trace operator, see for example
Theil [88], problem 1.5, p.16. Therefore, neglecting the o(l)-term:

E
t=\

str(Q£?[(b-fi)(b-6)'])

tr (QQ-1WQ~1)

~ iv
_ tr ( W Q - 1 )
~ N

where the first equality follows from theorem C.I. This completes the proof
of the corollary. D
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The above least-squares estimate requires knowledge of Yj and Yj • Since the
DFA solves the estimation problem without these (unrealistic) assumptions,
it would be interesting to compare the asymptotic distributions of the filter
parameters for the 'least-squares' and for the DFA estimates. It is shown in
the following corollary that both asymptotic distributions are identical. For
that purpose assume the parameter set is defined by the 'traditional' AR-
and MA-parameters for both approaches (so that derivatives are taken with
respect to the same variables).

Corollary C.3. // the assumptions of theorem 5.10 and of theorem C.I are
satisfied, then

Q~1WQ-1 = U ^ V L T 1 (C.13)

More precisely:

Q = i u and W = ^V

Proof. In the proof for the last assertion of theorem 4.8 it was shown that

1 N
 2TT

 [N/2]

4j 4 Y, wk\r^k) r{wk)\INX{wk) + rN (C.14)
t=l k=-[N/2]

where rjv = o(l/y/N). The proof is based on the assumptions that the filter
coefficients (here of f(-) -/"(•)) are in C1/2 and that Xt € Cj. Therefore, the
same proof can be used to show that

-§-rN = o(l/VN)
S (C15)

provided the corresponding first and second order derivatives of the filter co-
efficients (of F(-) — P(-) in (C.14)) are in Cf, where derivatives are taken

with respect to the parameters of the optimal ARMA filter /"(•) (the corre-
sponding modifications of the proof of the last assertion of theorem 4.8 are
not difficult so they are not reproduced here). The latter requirement, namely
that the differentiated filter is still in CJ , can be verified as follows: since
F(-) is a stable ARMA filter (by assumption, see theorem C.I) it follows that

£ ( r ( 0 - f(0) = A f (•) and ^ - ( r ( - ) - f (•)) = ^ - f ( - ) are stable
ARMA filters too. Therefore, the derivatives of the corresponding filter coef-
ficients are in CJ* C C/ as required.
Using (C.15), an equivalence between Q and W can be derived. Specifically,
consider
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V Z'iZ3

liTvi \ (/W ^

1 9 9

/ [JV/2!

2 96; dbj

, o 1 /̂2]

S 9^
k=-[N/2] l

where the fifth equality follows from corollary B.3 (in the appendix) and
proposition 5.11 is used in deriving the sixth equality. As a result

Next, an equivalence between W and V is derived. Recall (5.58):

P(b) = U(b - b) + O((b - b)2)

where b is the DFA estimate and where

~ IV ^ 9b
fe=-[AT/2]

t = l

where Zj is the Q + q + r + 1-vector defined by

z f ft-i 1 < * < Q
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Comparing (5.60) and (CIO) implies that

W = - V
4

It follows that

which completes the proof of the corollary. D

Remarks

• As a special case of theorem C.I consider the 'classical' regression assump-
tion, i.e. AYt is an iid sequence. Then (C.4) becomes

{ RAy{Q)Ry{j - i) l<hj<Q

RAY(0)Rx(j-i) Q<i,j<Q + q + r + l

_ RAY(0)E [yoXr+Q+1_y_ i|)] else

Therefore W = RAY(0)Q. Setting aAy := RAY(0) one obtains

and

Jirn^ E [iV(b - b)'Q(b - b)] = tr [a\y QQ"1)

which are the well known 'classical' regression results. If the regressors
where deterministic, then these results would be true for finite sample
sizes too.
Theorem C.I requires Xt € C9 and P £ C9 whereas theorem 5.10 assumes

the stronger restrictions Xt e Cj and F € Cj . This is because Yt is not
assumed to be known in theorem 5.10. Therefore, stronger assumptions are
needed too ensure that the convolution \F(-) —F(-)\2INX(-) is 'sufficiently
close' to (the unknown) INAY(-)-

The assumption E[e^} < oo is necessary for deriving a finite expression for
the variance of the least-squares estimate b in the proof of theorem C.I.
For the more 'traditional' case of independent AYt, which is extensively
treated in the literature, it is often assumed that E[ef] < oo, see for exam-
ple Hamilton [45], case 4, p.215. However, this is insufficient for deriving
expressions for the variance-covariance matrix of the resulting estimates,
because the former involves 8-th order moments.
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C.2 A Generalized Information Criterion

Consider first estimation of the parameters in (3.4) (in the time domain) by an
ordinary least-squares regression of Yj on Yt_\,..., Yt-Q and Xt+r, Xt+r-x,...
as given in (C.2) i.e.

Q q

Yt = 5>feft_fe + J2 hXt-k + AYt (C.17)
fe=l fe=-r

where Yt,t=l,...,N and the output (of the best unknown asymmetric filter)
Yt,t = l — Q,..., N — 1 are assumed to be known, see section C.I. It is again
assumed that the best asymmetric filter /"(•) is an ARMA(Q',q' + r)-filter,
where Q' and q' are unknown.
If the 'true' error terms AYt would define a gaussian white noise process (which
they do not for the signal estimation problem), then 'traditional' information
criteria could be used for estimating Q and q. A widely used information
criterion is AIC (Akaike's Information Criterion):

j) + | (C.18)AIC(Q,q) = log(L) + 2 ( Q + ^ + r + 1) ~ log(fi

where L is the likelihood function and p = Q + q + r + 1. Also, the sign ~
means 'proportional to' and CT2 := 1/JV J2t=i ^^t ' s ^ne sample mean square
error (for a filter with p parameters). Estimates of Q,q are those values which
minimize AIC(Q, q). The success of AIC is due to its simplicity as well as its
interpretation as a 'maximum likelihood estimation of models' (which is more
general than maximum likelihood estimation of parameters of a fixed model),
see for example Tong [89], section 5.4.2.

Unfortunately, the 'true' error terms AYt are generally correlated for the
signal estimation problem. Therefore &% is not (proportional to) the likelihood
function even if the input process Xt is gaussian. Another more general ap-
proach relying on corollary C.2 is proposed here.

Let the assumptions of corollary C.2 be satisfied and consider

N , N

E

A comparison with (C.16) shows that (C.19) is a generalization of the well
known regression result

E [4Y'4YJ - E [AY'AY] = po\y (C.20)

if AYt a r e iid and independent of the regressors (which is not true for the
signal estimation problem).
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The right hand side of (C.19) describes the mean 'loss' (decrease) of the least
squares estimate AY' AY as Q and/or q increase (because E \AY' AY\ does
not depend on Q nor on q if Q > Q' and q > q' as assumed). Estimation of
Q' and q' may now be based on this result. In fact, adding a suitable penalty
term (growing faster than the mean 'loss' (C.19)) to the least squares variance
estimate leads to the general criterion

min (AY'AY + f (tr (Q^W)) )

where it is assumed that f(x) > x. Equivalently, estimation of Q and q may
be achieved by defining

where f(x) > x again. This can be seen by the following approximation

(AYAY\_ AY'AY/N-RAY(0)

AY'AY

where the approximation follows from a first order Taylor series development
'centered' in RAY(0) = E IAY'AY]. Note that K is constant (it does not
depend on Q or on q) so that a minimization of (C.21) provides estimates for
Q and q if f(x) > x (i.e. if the penalty term increases faster than the 'loss'
of the least squares estimate). In the situation leading to (C.20) (AYt are iid
and independent of the regressors) (C.21) reduces to

x r l ^ ^ J + / w ; (c-23)
For f(x) = 2x this is the AlC-criterion (C.18). However, this particular choice
of /(•) is in some sense arbitrary. Penalty functions corresponding to AICC
or BIC or SIC can be considered as well (see for example Brockwell and
Davis [10], chap.9).

The results in this section emphasize that the determination of Q and q
for the 'least squares' estimate may be interpreted (by the way it is carried
out) as a generalization of a particular identification approach of the DGP of
Xt based on information criteria, see (C.23). The generalization is due to the
fact that AYt is not restricted to be a white noise process. Since the expres-
sions (6.2) and (C.19) are identical (see corollary C.3) the MC-criterion (6.5)
may be interpreted as a generalized information criterion too (whose penalty
function corresponds to AICC).
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Note that the expression (C.21) is not of practical interest because the 'least-
squares' estimate is based on unrealistic assumptions. The 'least-squares' esti-
mate is interesting for theoretical purposes only, since an analysis of its prop-
erties produces more insights into the signal estimation problem as solved by
the DFA.
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Miscellaneous

D.I Initialization of ARMA-Filters

Suppose X\,...,XN are observed and let

j=0

(D.2)
fc=-r

At t0
 : = max(p + 1, q + 1) the determination of the filter output Yta depends

on past filter outputs Yto-i,Yto-2,...,lto_p which are generally unknown in
(D.I). Equivalently, Yto depends on XQ,X-I,X-2,... which are also unknown
in (D.2). If the poles of the filter are not too close to the unit-circle, then
the MA-coefficients in (D.2) decay sufficiently fast in order to provide good
approximations simply by truncating the representation at the origin t = 1
of the sample. Since one is often interested in estimating the signal towards
the upper boundary t = N (see section 1.5), this simple procedure can often
be applied. An alternative method is to replace Xo, X-i, X-2, ••• by backcasts
computed from a model (for example ARIMA) of the DGP of Xt. A third way,
based on a suitable initialization of Yto-i, Yto-2, •••, Yto-P, is briefly described
in this section.

Define

Xt l<t<N
X2N-t N <t<2N

Thus the extension X[ is obtained by appending the time reversed sample to
the original sample at t = N. The unknown filter outputs Yto-\, Yto-2, •••, ^ t o -p
are then estimated (initialized) by the outputs Y2'N_to+1, Y2'^_to+2-, •••, Y2'N_to+p
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obtained by applying the filter to X't. Note that longer samples may be de-
fined in an analogous way by appending the original sample (either reversed
or not, depending on the last orientation of time) to the preceding extension.
In order to start the procedure one may set Yto-i := Xto-i, i = 1, •••,£>• By
extending the sample this set of initial conditions is 'forgotten'.
If at least one pole is (very) close to the unit circle then the following procedure
can be used to enhance the above initialization procedure:

• SetYto-i:=Xto-i,i = l,...,p
• Replace the almost unstable pole Pk at time t > to by

DJ-*0) (D.3)

where 0 < c < 1 and D > 0 (eventually adjust the normalization of the
filter at unit-root frequencies)

• compute Y{ from its ARM A representation, replacing Pf. by P'kt.

Since |P^4| > Pk, the initial conditions Yta-% '•= Xto-i, i = 1, ...,p are 'forgot-
ten' more rapidly.

Initialization procedures relying on the above sample extensions depend on
time reversibility issues: interested readers are for example refereed to section
4.4 in Tong [89] or to Lawrance [61].
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Non-Linear Processes

A stationary linear MA-process admits a representation

fe=—oo

where et are iid. For a non-linear process, et are uncorrelated but not neces-
sarily iid. The first two assertions of the convolution theorem 4.8 show that
the independence of et is not a necessary condition for the asymptotic rate of
decay of rn3 (as defined in the proof of theorem 5.3). Therefore, if the process
(AYt)

2 is ergodic i.e. if

t=i

where rjv converges appropriately to zero, then the assertions of theorem 5.3
remain true. The next theorem establishes a formal result.

Theorem E.I. Assume Xt € C°, F € Cf, a > 1/2 and the first four mo-
ments of et are finite and correspond to moments of an iid sequence. Then
E[\RN\] = O \-7fij where R^ is defined in theorem 5.3.

Proof. It is sufficient to show that E[|i?Ar|] = E[\rm+rN2+rN3\] = O(l/\/N),
where r^i, i = 1,2,3 are defined in the proof of theorem 5.3. It is shown in
the last assertion of theorem 4.8 that .E[|rjv3|] = o(l/%//V). It remains to show
that E[\rN1 + rN2\] = O{1/VN). Since

E[{AYtf\ - 1 f>F t )
2 = rm + rN2

t=i

it is sufficient to prove that the process (AYt)
2 is an ergodic process with a

suitable rate of convergence of its arithmetic mean (stationarity of the process
is established in proposition E.2 below). Consider
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N-l

= O(1/JV)

where R(AY)2U) is the autocovariance function of (AYt)
2. The last equality

follows from the inequality (E.I) below. An application of Jensen's inequality
completes the proof of the theorem. •

Evidently, corollary 5.4 can be generalized to non-linear stationary input
signals, because its proof bases on theorem 5.3 which has been generalized
already. Therefore, the DFA (5.19) straightforwardly extends to non-linear
processes. Note however that non-linear methods may perform better than
linear filters.

Proposition E.2. Let Xt,F(-) € CJ, a > 0 and let €t be a sequence of
random variables whose first four moments are identical with the moments
of an iid sequence. Assume also that the requirements of theorem E.I are
satisfied. Then Y2 (where Yt is the output of F(-)) is a stationary process
whose autocovariance function satisfies

J2 |Q<oo (E.I)
fc=-oo

Proof.

fc=-oo

where ck are the MA-coefncients of Yt. Define

ft,fc := 2iiYitt-k + ck(e
2_k - a2) + 2et_fc ^

j>k

Vkj := Afi^a2 + 2nY2(ck + ck+j)E[el\ (E.2)
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The above assumptions imply : E[vt:k] = 0, E[vfk] = Vko, E[vttkiyt,k±i] = 0
for all t, k and all i ^ 0. More generally, proposition E.3 below shows that

(note that these results do not depend on t). Therefore

f] (E.4)
k=-oo

From the moment properties (E.3) it follows that

RY2{j)=E ckvt,k
.k=—oo k~ — oo
o

~2 ck+jckVkj (E.5)
fc=—oo

where Ry^{j) is the autocovariance function of Y2. Since this result does not
depend on t, the process Y2 is stationary. Proposition 4.7 and the assumptions
of theorem E.I imply Yt e CJ, so that ^fcl-oo lcfcll^|a < °° anc^ Vkj is
bounded (as a function of k, j). The boundedness of Vkj, (E.5) and proposition
4.7 then imply

oo

J2 liMAoi i^r < oo
k=—oo

which completes the proof of the proposition. •

Proposition E.3. Let the assumptions of the preceding proposition be satis-
fied. Then

0 i
E[vt+i,k+jVt,k] =

where vttk and Vkj were defined in (E.2).

Proof

It is first assumed that i ^ j , More precisely, E[vt+i^k+jVttk] ^ 0 leads to
a contradiction if i ^ j :

E{vt+i,k+jVtA = I 2/iy2e t+i_(fc+j) + ck+j \e2
t+i_{k+i) - a2)

l>k+j
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-k + (e?_fc - + 2tt-k ClCt~l

= AE clet+i-l (E.6)

All fourth order moments including an isolated ef vanish by the assumptions
of the proposition. The following conditions must then be satisfied in order to
obtain squared terms E[e^,e^,] in (E.6) (which is necessary for E[vt+i k+j^t k] 7̂
0 ) :

k + j — i > k and k + j — i < k

which contradicts the initial assumption if i 7̂  j . If i = j then

= E

I
V

= vki

where Vk% was defined in (E.2). D

f^k - a2) + 2et-fc
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