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Preface

Monte Carlo approximations to the distributions of statistics have become
important tools in statistics. In statistical inference, Monte Carlo approxima-
tion is performed by comparing the distribution of a statistic based on the
observed data and that based on reference data. How to generate reference
data is a crucial question in this research area.

In a parametric setup, the Monte Carlo test (MCT) was first introduced
by Barnard (1963), in his discussion of Bartlett’s (1963) paper. MCT has some
nice features and is very similar to the parametric bootstrap; see Beran and
Ducharme (1991). There are several developments afterwards. The optimality
and computational efficiency of MCT have been investigated. MCT has also
been applied to approximating spatial distributions. To perform MCT, it is
crucial that we can generate reference datasets which allow the test procedure
to approximate the null distribution of the test. This is because we wish
that the approximation procedure allow the test to maintain the significance
level and to have good power performance. However, for distributions and
models with semiparametric structures, generating such reference datasets is
a challenge.

In these notes, we propose an alternative approach to attack the problems
with semiparametric and nonparametric structures: that is, the nonparametric
Monte Carlo test (NMCT). The NMCT is motivated by MCT and other
Monte Carlo approximations such as the bootstrap for the distributions of
test statistics. The algorithms of NMCT are easy to implement and, in some
cases, the exact validity of the tests can hold. Furthermore, the accuracy of
the approximations is also relatively easy to study. We will describe this in
Chapter 3.

This book was written on the basis of my journal papers and the seminars
at East China Normal University, Shanghai, China when I visited there as an
adjunct chair Professor in summers. I am using the opportunity to thank my
friends and students.

I owe much to my friends and colleagues Y. Fujikoshi, K. Naito, G.
Neuhaus, K. W. Ng, W. Stute, and K. C. Yuen for their help and the stimu-
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lating conversations. The materials in this book are mostly due to the collab-
orations with them.

The first manuscript was read by my student Ms. W. L. Xu. Her careful
reading helped me correct many typographical errors. Chapter 8 was jointly
written by her and me because most of the material in this chapter will be a
part of her PHD thesis. Chapter 6 is based on an unpublished paper jointly
with R. Q. Zhu who was in charge of all simulations of this chapter. Dr. Z. Y.
Zhu and Dr. Z. Q. Zhang also gave me some helpful comments when I gave
seminars.

The work was done with the partial support of the University of Hong
Kong and the Research Grants Council of Hong Kong, Hong Kong, China
(#HKU7129/00P, #HKU7181/02H, #HKU7060/04P). As a Humboldt Re-
search Award winner, I was also supported by the Alexander-von Humboldt
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this book.
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1

Monte Carlo Tests

1.1 Parametric Monte Carlo Tests

Often in hypothesis testing the exact or limiting null distribution of a test
statistic is intractable for determining critical values, leading to the use of
Monte Carlo approximations. As an easily implemented methodology, the
Monte Carlo test (MCT) has received attention in the literature. In his dis-
cussion of Bartlett’s paper (1963), Barnard (1963) first described the idea of
MCT. Hope (1968) proved that in the parametric context, if there are no
nuisance parameters Monte Carlo tests admit exact significance levels and
have very high power even when compared with uniformly most powerful
(UMP) tests. MCT is also applicable when there are nuisance parameters;
that is, MCT can be efficiently applied in parametric settings. Besag and Dig-
gle (1977) used MCT in spatial patterns when there are nuisance parameters
in the distribution of random variables. Engen and Lilleg̊ard (1997) applied
MCT when the necessary simulations can be conditioned on the observed
values of a minimal sufficient statistic under the null hypothesis. In certain
circumstances with nuisance parameters, Monte Carlo tests still admit the
exact levels of significance. Zhu, Fang, and Bhatti (1997) constructed a pro-
jection pursuit type Crämer-von Mises statistic to the testing for distribution
in a parametric class. Hall and Titterington (1989) showed that in paramet-
ric settings with or without nuisance parameters, the level error of a MCT
is an order of magnitude less than that of the corresponding asymptotic test
whenever the test statistic is asymptotically pivotal, and a MCT is able to
distinguish between the null hypothesis and alternative distinct n−1/2 from
the null. These results reinforced the use of MCT.

We use a simple example to explain the use of MCT. Consider indepen-
dent identically distributed (i.i.d.) random variables {x1, · · · , xn} having a
distribution F (·). Suppose that we want to test whether F (·) = G(·, θ) for
some unknown parameter θ where G(·) is a given function. In this circum-
stance, for any test statistic of choice, say, T (x1, · · · , xn), a MCT requires the
construction of a reference set of values of the test statistic by sampling from
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T (x′
1, · · · , x′

n) where x′
1, · · · , x′

n are independently drawn from the distribution
G(·, θ̂) with θ̂ being an estimator of θ. Suppose that the null hypothesis will
be rejected for large values of T ; for two-sided tests, modifications are easily
done. Let T (x1, · · · , xn) =: T0 and T1, · · · , Tm be obtained from the Monte
Carlo procedure. The p-value is estimated as

p̂ = k
/
(m + 1),

where k is the number of values in T0, T1, . . . , Tm that are larger than or
equal to T0. Therefore, for given nominal level α, whenever p̂ ≤ α, the null
hypothesis will be rejected.

It is worthwhile to point out that parametric bootstrap approximations
developed in 1980’s are similar to the above procedure, see, e.g. Beran and
Ducharme (1991).

1.2 Nonparametric Monte Carlo Tests (NMCT)

1.2.1 The Motivation

In semiparametric or nonparametric settings, however, we may have difficulty
in simulating reference datasets under the null hypothesis in order to per-
form a MCT. The major difficulty is that even under the null hypothesis, the
model cannot be expressed with a specific structure up to a finite number of
unknown parameters. For example, consider testing whether the distribution
of the collected data is in the class of elliptically symmetric distributions (el-
liptical distribution for short). A d-dimensional random vector X is said to
have an elliptical distribution if for any d × d orthogonal matrix H, there are
a shape matrix A and a location µ such that the distribution of HA(X −µ) is
identical with that of A(X − µ). When the second moment, Σ, of X is finite,
A is Σ−1/2. See Fang, Kotz, and Ng (1990) for details. From this definition,
we know that the class of elliptical distributions is too large to be a paramet-
ric class. One of the powerful methods to use is the Bootstrap. Efron (1979)
proposed this now time-honored methodology, and now it has become one of
the most commonly used solutions to the above difficulty. The basic idea of
Efron’s bootstrap, which will be called Classical Bootstrap later, is to draw
the reference datasets from the empirical distribution of the collected data.
There are a number of variants and developments in the literature. See e.g.,
Davison and Hinkley (1997) for details. Shao and Tu (1995) is also a com-
prehensive reference. However, several concerns need to be tackled. First, the
accuracy of the approximations is difficult to study. The research of accuracy
or asymptotic accuracy is still from case to case, there is no a unified approach
and not many papers deal with this issue. Related work is, for instance, Singh
(1981). In the one-dimensional case, Zhu and Fang (1994) derived the accu-
rate distribution of the bootstrap counterpart of the Kolmogorov statistic and
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obtained the
√

n consistency. To our knowledge, this is the only paper dealing
with the accurate distribution of bootstrap statistics. Second, the bootstrap
approximations cannot make a test exactly valid, but possibly asymptotically
valid because the reference data are from the empirical distribution that con-
verges in distribution to the underlying distribution of the collected data;
Third, bootstrap approximations are sometimes inconsistent and the correc-
tion for inconsistency is still from case to case. The m out of n bootstrap is a
solution for correcting for the inconsistency, but in many cases, the m out of
n bootstrap is less efficient. A variant proposed by Wu (1986) for reducing the
bias of variance estimation in regression analysis and well developed by Mam-
men (1992), who named it Wild Bootstrap , is a powerful alternative solution.
Wild bootstrap is successfully used in several areas, especially model checking
for regression models; see Härdle and Mammen (1993) and Stute, González
Manteiga, and Presedo Quindimil (1998). In some cases, it can overcome the
inconsistency of Efron’s classical bootstrap approximation. However, it fails
to work in some other cases. Chapter 4 shows an example of its inconsistency
when we consider the dimension-reduction type test for regression functions.
Chapter 6 also provides a similar example when testing for heteroscedasticity.
Fourth, in hypothesis testing, the bootstrapping sample needs to be delicate
so as not to deteriorate the power of the tests.

The permutation test is another option. See Good (2000). It can be ex-
actly valid in some cases. However, in one-sample cases, its applications are
restrictive because most of the time we have difficulty in permuting the data
so as to obtain the reference data. Its implementation is also time consuming.

Note that the bootstrap is a fully nonparametric methodology which needs
few conditions on the model structure and the underlying distribution of data.
Therefore, when the model is not fully nonparametric, but semi-structured,
say the class of elliptical distributions, we may use other Monte Carlo approx-
imations that can better use the information provided by the data. Based
on these observations, we propose Nonparametric Monte Carlo Test (NMCT)
Procedures. In Chapter 2, we will apply the NMCT to the testing problems
for four types of distributions and will show its exact validity. In Chapter 3,
we prove that when there are some nuisance parameters in the distributions
studied in Chapter 2, the NMCT can obtain the asymptotic validity with
the

√
n consistency. This is what bootstrap approximation cannot achieve.

In Chapters 4–6, we consider the model checking for regression models. The
inconsistency of Wild bootstrap will be shown in Chapters 4 and 6. In Chap-
ters 7–9, we consider some other problems in which bootstrap approximations
work. But the NMCT procedures are easier to implement and the power per-
formance is better. In the following two subsections, we separately describe the
NMCT procedures when the random variables are independently decompos-
able and when the test statistics are asymptotically the functionals of linear
statistics.
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1.2.2 NMCT Based on Independent Decompositions

We motivate our procedures from the testing for several kinds of multivariate
distributions that have played important roles and then propose a generic
method. The detailed investigation on testing for multivariate distributions is
presented in Chapter 2.

There are four commonly used classes of multivariate distributions. They
are elliptically symmetric, reflectively symmetric, Liouville-Dirichlet and sym-
metric scale mixture distributions. The definitions of these classes of distrib-
utions will be presented in Chapters 2 and 3. These distributions are respec-
tively the generalizations of normal, symmetric, Beta and stable distributions.
See Fang, Kotz and Ng (1990), and references therein.

Tests of the adequacy of elliptically symmetric and reflectively symmet-
ric distributions have received much attention; see, for example, Aki (1993),
Baringhaus (1991), Beran (1979), Ghosh and Ruymgaart (1992), Heathcote,
Rachev, and Cheng (1995). Note that the classes, for example, of elliptically
symmetric distributions, are nonparametric, that is, the classes cannot be
characterized by finite parameters. Therefore, we cannot simply apply a Monte
Carlo test mentioned in Section 1.1 to approximate the sampling null distri-
bution of a test statistic because the distribution of data is intractable. Also
often in hypothesis testing the limiting null distribution of a test statistic is in-
tractable for determining critical values. See, for instance, Zhu, Fang, Bhatti,
and Bentler (1995). Diks and Tong (1999) proposed a conditional Monte Carlo
test. When a density function is invariant under a compact group G of iso-
metrics, the set of G-orbits is a minimal sufficient statistic and the simulation
can be conditioned on the observed values of the G-orbits. They applied the
method to testing for spherical and reflection symmetries of multivariate dis-
tributions without nuisance parameters. Neuhaus and Zhu (1998) and Zhu
and Neuhaus (2003) also constructed conditional test procedures for these
two types of symmetry of multivariate distributions.

We introduce the following method of generating reference datasets. The
method relies on a property of independent decomposition of distribution.

Definition 1.2.1 A random vector X is said to be independent decomposable
if X = Y • Z in distribution, Y and Z are independent and Y • Z is a dot
product, that is Y • Z = (Y (1)Z(1), . . . , Y (d)Z(d)) if both Y and Z are d-
dimensional vectors, and Y •Z = (Y (1)Z, . . . , Y (d)Z) if Z is scalar, where the
Y (i)’s are the components of Y ; similarly, Y •Z = (Y Z(1), . . . , Y Z(d)) if Y is
scalar.

When either Y or Z has an analytically tractable distribution, the above
decomposition motivates the following MCT procedure. Let x1, . . . , xn be an
i.i.d. sample of size n. A test statistic T (x1, . . . , xn), say, can be rewritten
as T (y1 • z1, . . . , yn • zn), if the xi’s are independently decomposable with
xi = yi•zi under the null hypothesis. NMCT requires the construction of a ref-
erence set of values of the test statistic by sampling from T (y′

1•z1, . . . , y
′
n•zn),
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where y′
1, . . . , y

′
n have the same distribution as that of y1, . . . , yn. That is, con-

ditionally on z1, . . . , zn, the Monte Carlo calculations can be performed based
on y′

1, . . . , y
′
n, where y′

1, . . . , y
′
n are drawn independently from the distribution

of Y . The p-value of the test statistic T can be estimated as follows. Suppose
that the null hypothesis will be rejected for large values of T ; for two-sided
tests, modifications are easily done. Let the values of T be T0 for the origi-
nal data set and T1, . . . , Tm obtained from the Monte Carlo procedure. The
p-value is estimated as

p̂ = k
/
(m + 1),

where k is the number of values in T0, T1, . . . , Tm that are larger than or
equal to T0. Therefore, for given nominal level α, whenever p̂ ≤ α, the null
hypothesis will be rejected.

Since T (x1, . . . , xn) and T (y′
1 · z1, . . . , y

′
n · zn) have the same distribution

and also have the same conditional distribution given z1, . . . , zn, exact validity
of the test can be expected. The following proposition states this property.

Proposition 1.2.1 Under the null hypothesis that the vector X is indepen-
dently decomposable Y · Z, then for any 0 < α < 1

Pr(p̂ ≤ α) ≤ [α(m + 1)]
m + 1

,

where the notation [c] stands for the integer part of c.

Justification. Under the null hypothesis, T0, . . . , Tm are independent iden-
tically distributed given z1, . . . , zn, and p̂ ≤ α implies k ≤ [α(m + 1)] . In the
case where there is no tie among the Ti’s, p̂ is distributed uniformly on the
set

{
1

m+1 , . . . , m+1
m+1

}
, so that

Pr(p̂ ≤ α | z1, . . . , zn) =
[α(m + 1)]

m + 1
.

If there are ties, k ≤ [α(m + 1)] and the strict inequality may hold. Then
T0 is larger than at least m + 1 − [α(m + 1)] of Ti’s. Hence

Pr(p̂ ≤ α | z1, . . . , zn) ≤ [α(m + 1)]
m + 1

.

The proof is concluded by integrating out over the zi’s.
This proposition clearly shows the exact validity of the NMCT when the

variable is independently decomposable. In contrast, the bootstrap and per-
mutation tests do not have such an advantage. In Chapter 2 we will apply it
to the testing for the aforementioned four types of distributions.
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1.2.3 NMCT Based on Random Weighting

When the hypothetical distribution of data does not have the property of
independent decomposition, we suggest in this subsection a random weighting
approach to generate reference datasets. This approach is rooted in empirical
process theory: the random weighting method for convergence of stochastic
processes.

Suppose that {x1, · · · , xn} is an i.i.d. sample. Consider a test statistic,
say Tn = T (x1, · · · , xn). When Tn can be rewritten as T ◦ Rn where T is a
functional on Rn, Rn is a process with the form

Rn = { 1√
n

n∑
j=1

J(xj , t), t ∈ S}

for a subset S ∈ Rd and an integer d, or a random variable if S is a single point
set where E(J(X, t)) = 0. We can use Tn(En) = T ◦Rn(En) as the conditional
counterpart of Tn to construct an approximation of the distribution of Tn

where

Rn(En) = { 1√
n

n∑
j=1

ejJ(xj , t), t ∈ S}

and En = {e1, · · · , en} are random variables independent of Zi. When ej ’s
are equally likely ±1, this random weighting approach is called random sym-
metrization (Pollard, 1984), and when ej ’s are normally distributed with mean
0 and variance 1, it has been used by Dudley (1978) and Giné and Zinn (1984).
This algorithm is similar to Wild bootstrap (see, Mammen (1992)). When
{x1, · · · , xn} are exchangeable random variables, van der Vaart and Wellner
(2000) formulated this algorithm as Exchangeable Bootstrap.

However, most of test statistics cannot have such a simple representation.
More often, a test statistic Tn(x1, · · · , xn) can be expressed asymptotically as
follows:

Tn(x1, · · · , xn, Pn) = T ◦ Rn + op(1), (1.2.1)

where Rn is a process with the form 1√
n

∑n
j=1 J(xj , ψ, t) with E(J(X, ψ, t)) =

0, ψ is an unknown parameter of interest and ψ may be infinite dimensional,
say, an unknown smooth function. Therefore a generic procedure is as follows:

• Step 1. Generate random variables ej , j = 1, ..., n independent with mean
zero and variance one. Let En := (e1, · · · , en) and define the conditional
counterpart of Gn as

Rn(En, t) =
1√
n

n∑
j=1

ejJ(xj , ψ̂, t), (1.2.2)

where ψ̂ is a consistent estimator of ψ based on {x1, · · · , xn}. The resultant
conditional test statistic is
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Tn(En) = T ◦ Rn(En). (1.2.3)

• Step 2. Generate m sets of En, say E
(i)
n , i = 1, ., m, and then get m values

of Tn(En), say Tn(E(i)
n ), i = 1, ..., m.

• Step 3. Assume that we reject the null hypothesis for large value of Tn.
The modification is easily done for two-sided tests. The p-value is estimated
by p̂ = k/(m + 1) where k is the number of Tn(E(i)

n )’s which are larger
than or equal to Tn. Reject H0 when p̂ ≤ α for a designed level α.

Proposition 1.2.2 Assume that ei’s are i.i.d. and compactly supported, Rn

converges in distribution to a continuous Gaussian process R, and ψ̂ − ψ =
Op(n−a) for some a > 0. Furthermore, assume that for any fixed t ∈ S the
function J has second partial derivatives with respect to ψ, and all partial
derivatives have finite first moments uniformly over all t. Then for almost all
sequences (x1, · · · , xn), Tn(En) has the same limit as Tn.

Justification. By the designed conditions, we can derive that

Rn(En, t) =
1√
n

n∑
j=1

ejJ(zj , ψ, t) + op(1). (1.2.4)

Let J = {J(·, t) : t ∈ S}. In other words, Rn(En, ·) is an empirical process
indexed by a class of functions. Invoking Theorem 3.6.13 of van der Vaart
and Wellner (2000), Rn(En) has the same limit as Rn. The proof is concluded
from the continuity of T .

Remark 1.2.1 The following examples show some tests that can be expressed
asymptotically as functionals of linear statistics in (1.2.1). Consider a regres-
sion model

Y = Φ(X) + ε

where Φ(·) is an unknown function, Y is 1-dimensional response random vari-
able, and X is p-dimensional column random vector independent of random
variable ε. When we want to test the hypothesis

H0 : Φ(·) ∈ {Φ0(·, θ) : θ ∈ Θ},

where Φ0 is a given function and Θ is a compact set of q-dimensional Euclid-
ean space Rq. Thus, we can find a column vector θ0 such that Φ(·) = Φ0(·, θ0)
under the null hypothesis. A commonly used method is to use residuals to con-
struct a test statistic. When residuals are more likely to be away from zero, the
values of the test statistic are large and the null hypothesis is rejected. From
this idea, the following test statistics can be considered.
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Suppose that {(x1, y1), · · · , (xn, yn)} is an i.i.d. sample.

A score type test. Let ε̂j = yj −Φ̂0(xj , θ̂0), j = 1, · · · , n be the residuals
obtained by fitting the hypothetical regression function Φ0(·, θ0) where θ̂0 is
an estimator of θ0. A score type test can be defined by

Tn = [
1√
n

n∑
j=1

ε̂jw(xj , θ̂0)]2

where w(·) is a weight function to be selected and θ̂0 is a consistent es-
timator. Let Rn = 1√

n

∑n
j=1 ε̂jw(xj , θ̂0). When θ̂0 is a least squares esti-

mator, it is easy to see that under H0 and certain regularity conditions,
θ̂0 − θ0 can have an asymptotic linear representation with the form θ̂0 − θ0 =
1
n

∑n
j=1 J1(xj , yj , E(Φ′

0)
2, θ0) + op(1/

√
n) where

J1(xj , yj , E(Φ′
0)

2, θ0) =: [E(Φ′
0(X, θ0))(Φ′

0(X, θ0))τ ]−1Φ′
0(xj , θ0)εj

and Φ′
0 is the first derivative of Φ0 with respect to θ. The notation “τ” stands

for transpose. Clearly, the expectation E(J1(X, Y, E(Φ′
0)

2, θ0)) = 0. Further-
more, let

J(xj , yj , E(Φ′
0)

2, E(Φ′
0w), θ0)

= εjw(xj , θ0) − (J1(xj , yj , E(Φ′
0)

2, θ0))τE[Φ′
0(X, θ0)w(X, θ0)].

We then obtain that asymptotically

Rn(t) = 1/
√

n
n∑

j=1

J(xj , yj , E(Φ′
0)

2, E(Φ′
0w), θ0).

The functional T in (1.2.1) is a quandratic functional.

Crämer-von Mises type and Kolmogorov type tests. Let Rn(x) =
1√
n

∑n
j=1 ε̂jw(xj , θ0)I(xj ≤ x) where “X ≤ x” means that each component

of X is less than or equal to the corresponding component of x. Similar to
the score type test, we can also write Rn, asymptotically, as a linear sum
1√
n

∑n
j=1 J(xj , yj , E(Φ′

0)
2, E(Φ′

0w), θ0, w, x) with a function J(·). In this case,
the Crämer-von Mises type test statistic is Tn =

∫
[Rn(X)]2dF (X) and the

Kolmogonov type test statistic is supt,x |Rn(x)|. The T will be the integration
and supremum functionals respectively.

It should be pointed out that the algorithms developed here are similar
to Wild bootstrap (see, e.g. Härdle and Mammen (1993) and Stute, González
Manteiga and Presedo Quindimil (1998)). The difference is that Wild boot-
strap draws the sample (X∗

i , Y ∗
i )’s when the random variables ei’s multiply the

residuals ε̂i, while NMCT places ei’s on the summands of Rn. We can prove
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that when testing the adequacy of linear models, that is, Φ0(x, θ0) = θτ
0x,

Wild bootstrap is equivalent to NMCT if we use the above tests. The equiv-
alence does not necessarily hold when other tests are used. In Chapter 4, we
will provide mode details. For more general models, when the Crämer-von
Mises test is used, the equivalency between NMCT and the Wild bootstrap
also fails. We will discuss this in Chapter 5.



2

Testing for Multivariate Distributions

In this chapter, we investigate testing for multivariate distribution. For mul-
tivariate analysis, although testing for multivariate normality is still a topic,
much effort has been devoted to nonparametric settings. In multivariate dis-
tribution theory, there are several important classes of distributions. In this
chapter, we consider four kinds of distributions. Most of material in this chap-
ter comes from Zhu and Neuhaus (2000).

In order to apply the methodology of NMCT developed in Chapter 1 to
testing for multivariate distributions, we need to analyze which distributions
have the property of independent decomposition. Let X be a d-dimensional
random variable. Write it as X = Y ·Z in distribution. We study in which cases
Y and Z are independent and the distribution of Y is analytically tractable.

2.1 Four Classes of Multivariate Distributions

• Case (a). Spherically symmetric distributions.
Here X = U • ‖X‖ in distribution, where U is independent of ‖X‖ and is
distributed uniformly on the sphere Sd = {a : ‖a‖ = 1, a ∈ Rd} and ‖ · ‖
is the Euclidean norm in Rd. Let Y = U and Z = ‖X‖. The multivariate
t distribution (Fang, Kotz, and Ng, 1990, Example 2.5) and the normal
distribution N(0, Id) belongs to this class. In practical use, U = X/‖X‖.

• Case (b). Reflectively symmetric distributions.
Here X = −X in distribution, where X has the independent decomposition
as X = e • X in distribution, in which e = ±1 with probability one half.
Let Y = e and Z = X. The uniform distribution on the cube [−c, c]d, for
positive c, is a member of this class.

• Case (c). Liouville-Dirichlet distributions.
Here X = Y • r in distribution, where Y is independent of r, a scalar
variable, and has a Dirichlet distribution D(α) with known parameter
α = (α1, · · · , αd) on the simplex Bd = {(y(1), . . . , y(d)) ∈ Rd : y(i) ≥
0, Σd

i=1y
(i) = 1}. Let Y = X/(

∑d
i=1 x(i)) and r =

∑d
i=1 x(i) where X =
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(x(1), · · · , x(d)). The class includes multivariate Beta and inverted Dirichlet
distributions (Olkin and Rubin (1964); Guttman and Tiao (1965)).

• Case (d). Symmetric scale mixture distributions.
Here there is a scalar function g(x) satisfying g(x) = g(−x) and g(x) �= 0
for x �= 0 such that x

/
g(x) is independent of g(x) and is distributed

uniformly on the space Cd = {y = (y(1), . . . , y(d)) ∈ Rd : g(y) = 1}. Let
Y = X/g(X) and Z = g(X). This is a broad class of distributions including
all spherically symmetric distributions. The multivariate extension of the
Laplace distribution with density function c exp(−

∑d
i=1 |x(i)|) is one of its

members.

For the above types of distribution, one can generate y′
i from the uniform

distribution on Sd for Case (a), the two-point distribution for Case (b), the
Dirichlet distribution on Bd for Case (c) and the uniform distribution on Cd

for Case (d).

The above classes of distributions do not contain nuisance parameters.
For the testing problems in Section 2.3, we consider the distributions with
nuisance location parameters. Let µ be the location of the distribution of X
such as the mean or median.

When, in distribution,
X − µ = Y • Z,

often Z can be expressed as a function of (X − µ), h(x − µ), say. Consider
the following distributions that are associated with Cases (a), (b) and (d):

• Case (a1). Spherical symmetry about µ.

X − µ = U • ‖X − µ‖ in distribution

• Case (b1). Reflection symmetry about µ.

X − µ = −(X − µ) in distribution

• Case (d1). Symmetric scale mixture with unknown location µ.

Here (x − µ)/g(x − µ) is independent of g(x − µ) and x−µ
g(x−µ) is distributed

uniformly on the space Cd = {y = (y1, . . . , yd) ∈ Rd, g(y) = 1}.
For these three cases, h(x − µ) will be, respectively, ‖x − µ‖, (x − µ) and

g(x − µ).

2.2 A Test Statistic Based on Characteristic Function

Let ϕx(t) = E{exp(it′X)} be the characteristic function of a multivariate
distribution. When X = Y • Z in distribution, ϕx(t) can be rewritten as
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ϕx(t) = EZ{ϕY (t′Z)} where ϕY is the characteristic function of Y . Consider
the integral ∫ ∥∥ϕx(t) − Ez{ϕY (t′z)}

∥∥2
Wa(t) dt,

where Wa(·) is a continuous weight function, with parameter a, on its support
set such that the integral is finite. Different but related statistics were used in
goodness-of-fit tests for multivariate normality by Henze and Wagner (1997).
The integral equals zero if the null hypothesis is true. Under the alternative,
the positivity of the integral may be related in a certain manner to the choice
of the weight function. If the support of Wa(.) is Rd, as with a normal density
function, the integral will be positive. When the support is a compact subset
of Rd, this may not hold, so that a test based on the integral may not be
consistent against all fixed alternatives. However, the problem is not very
serious as the following example shows. Assume that the support of Wa is
compact and contains the origin of Rd, that the characteristic functions are
continuous and that the underlying distribution of X has moments of all
orders. It can be shown as follows that the integral equals zero if and only if
the two characteristic functions are equal. For the integral to be zero, the two
characteristic functions must be equal almost everywhere and then everywhere
in the support set by continuity. Since the support set includes the origin,
Taylor expansion of the characteristic functions at the origin implies equality
of all moments of the two distributions. Thus, the two distributions are the
same. The sufficiency is clear.

The test statistic is constructed by replacing the underlying distribution by
the empirical distribution. The test is consistent against any fixed alternative
when the weight function is chosen suitably. In this chapter, we consider the
normal and uniform density functions.

Note that the term Ez{ϕY (t′z)} involves the integral of Y . This may not
have a simple analytic form. Because the distribution of Y is analytically
tractable, we could approximate it by NMCT.

Under the null hypothesis, X is independently decomposable, we have∫ [
ϕx(t)Ez{ϕY (t′z)}

]
Wa(t) dt =

∫ ∥∥Ez{ϕY (t′z)}
∥∥2

Wa(t) dt where f(t) de-
notes the dual function of f(t). Hence,∫ ∥∥ϕx(t)

∥∥2
Wa(t) dt −

∫ ∥∥Ez{ϕY (t′z)}
∥∥2

Wa(t) dt = T − T1,

say. An estimator of T is its empirical counterpart: if Fnx is the empirical
distribution of x1, · · · , xn, then

Tn =
∫ ∥∥∫ eit′xdFnx(x)

∥∥2
Wa(t) dt

=

{∫ ∣∣ ∫ cos(t′x)dFnx(x)
∣∣2Wa(t) dt +

∫ ∣∣ ∫ sin(t′x)dFnx(x)
∣∣2Wa(t) dt

}
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is clearly a consistent estimator of T when the distribution of X, Fx, is con-
tinuous.

Analogously, T1, if Fnz is the empirical distribution of z1, . . . , zn, can be
estimated by

Tn1 =
∫ ∥∥∫ ϕY (t′z)dFnz

∥∥2
Wa(t) dt .

As mentioned above, the integral of Y needs not have a simple analytic form,
but the evaluation of the integral is not necessary. Whenever z1, . . . , zn are
given, Tn1 is a constant under the test procedures proposed in Section 1.2 of
Chapter 1. Omitting from the test statistic this constant term and the values
of its conditional counterpart generated by NMCT will have no effect on the
p-values determined. Hence we need focus only on Tn in NMCT procedure.

The integral with respect to t takes closed forms with some commonly
used weights such as normal density weight and uniform density weight.

Proposition 2.2.1 Let Wa(t) = (2πa)−d/2 exp
(

− ‖t‖2
/
2a2

)
Tn =

1
n2

n∑
i,j=1

exp
(

− 1
2

∥∥(xi − xj)
∥∥2

a2
)

= TN , (2.2.1)

say. When Wa(t) = (2a)−d for t ∈ [−a, a]d, and zero otherwise,

Tn =
1
n2

∑
i �=j

d∏
k=1

sin
{
a(xi − xj)k

}
a(xi − xj)k

+
1
n

= TU , (2.2.2)

say, where (xi − xj)k stands for the kth component of (xi − xj).

Proof. Note that the characteristic function of the normal distribution
N(0, a2Id) is exp(−a2‖x‖2/2). Hence∫ ∥∥∫ eit′xdFnx(x)

∥∥2
Wa(t) dt

=
1
n2

n∑
j,k=1

∫
eit′(xj−xk)(2πa)−d/2 exp

(
− ‖t‖2/2a2

)
dt

=
1
n2

n∑
j,k=1

exp
(

− 1
2

∥∥(xj − xk)
∥∥2

a2
)
.

For ( 2.2.2), recalling that cos(x) cos(y) + sin(x) sin(y) = cos(x − y), and
noticing that since the uniform distribution on [−a, a]d is symmetric, its char-
acteristic function is real. Then
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Tn =
∫ ∥∥∫ eit′xdFnx(x)

∥∥2
Wa(t) dt

=

{∫ ∣∣ ∫ cos(t′x)dFnx(x)
∣∣2Wa(t) dt +

∫ ∣∣ ∫ sin(t′x)dFnx(x)
∣∣2Wa(t) dt

}

=
1
n2

n∑
j,k=1

(2a)−d

∫
[−a,a]d

cos{t′(xj − xk)} dt

=
1
n2

n∑
j,k=1

∫
[−1,1]d

cos{t′a(xj − xk)} dt

=
1
n2

n∑
j,k=1

Re[
∫

[−1,1]d
exp{it′a(xj − xk)} dt]

=
1
n2

n∑
j,k=1

Re
( d∏

l=1

∫
[−1,1]d

exp[itl{a(xj − xk)}l9 dtl

)

=
1
n2

n∑
j,k=1

Re
( d∏

l=1

∫
[−1,1]d

exp[itl{a(xj − xk)}l] dtl

)

=
1
n2

∑
i �=j

d∏
k=1

sin
{
a(xi − xj)k

}
a(xi − xj)k

+
1
n

,

where Re(·) denotes the real part of a complex number.

Remark 2.2.1 Estimate µ consistently by µ̂, such as the sample mean or
sample median. Generate data y′

1, . . . y
′
n by the Monte Carlo method and let

x′
i = y′

i · h(xi − µ̂). A test statistic T , say, TN or TU , can be computed given
{z1, . . . , zn}. Hence, T1, . . . , Tm can be obtained by the Monte Carlo procedure.
The test procedure can follow that in Section 2.2 exactly. As µ̂ is a consistent
estimator of µ, the test is then asymptotically valid.

2.3 Simulations and Application

2.3.1 Preamble

In this section, simulations provide evidence about the performance of NMCT
in conjunction with the test statistics TN and TU for reflection symmetry, el-
liptical symmetry, Liouville-Dirichlet and symmetric scale mixture. We also
make a comparison with bootstrap tests. The application to a real data ex-
ample is illustrated.

To demonstrate the performance of NMCT, we considered a comparison
with the bootstrap test:
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T ∗ =
∫ ∥∥ϕ̂∗

x(t) − ϕ̂x(t) − [Ê∗
z∗{ϕY (t′z∗)} − Êz{ϕY (t′z)}]

∥∥2
Wa(t) dt,

where ϕ̂∗
x(t) is the empirical characteristic function based on the bootstrap

data {x∗
1, · · · , x∗

n} from {x1, · · · , xn}, ϕ̂x(t) is that based on {x1, · · · , xn},
Ê∗

z∗{ϕY (t′z∗)} is the sample mean of ϕY (t′z∗
j ) with the bootstrap data

{z∗
1 , · · · , z∗

n} from {z1, · · · , zn}, and Êz{ϕY (t′z)} is that based on {z1, · · · , zn}.
We define T ∗ as T ∗

N and T ∗
U respectively, with the normal and uniform weights.

2.3.2 Simulations

Throughout the simulations, the nominal level was α = 0.05 and the sample
sizes were n = 10 and 20. The dimensions of the random vector X were d = 2, 4
and 6. For each sample, the p-value was determined using 1000 replications of
the Monte Carlo procedures. The empirical powers were estimated as the pro-
portions of times out of 1000 that each procedure rejected the null hypothesis.
The random vector had a distribution N 

{
b(χ2

1 −1)
}
, the convolution of two

distributions where N was a hypothetical distribution in accordance with the
null hypothesis and χ2

1 − 1 was d-dimensional distribution whose marginals
are the centered chi-squared distribution with one degree of freedom. In the
simulations, b = 0 and b = 1 correspond respectively to the null hypothe-
sis and the alternative. We also investigated the effect of the parameter in
the weight function Wa(·) on the test statistics TN and TU . We considered
a = 0.5, 2, 3.5, 5 and 7.5. The unknown location was estimated by the sample
mean.

Case (a). Testing for spherical symmetry.

Let D = N be the standard normal N(0, Id). Clearly the data have zero
mean, but we analyzed them as if the location were both known and unknown.
Figure 2.1 shows how the power of the tests TU and TN varies with a. We
only present the results for cases of known location. The results for bootstrap
tests and for unknown location are similar. For TU a = 2 seems a good choice,
while for TN a = 5 may be better. The power of TU is quite low while that of
TN may be worthwhile.
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Fig. 2.1. The estimated rejection rate of NMCT for spherical
distribution. Solid line is for normal weight and dashed line for
uniform weight; a is the parameter in the weight.

In Table 2.1, we report the empirical powers of TN and T ∗
N with a = 5.

Table 2.1. Spherical symmetry: Empirical power with a = 5

Test known location unknown location
d n statistic N N  (χ2 − 1) N N  (χ2 − 1)
2 10 TN 0.048 0.237 0.033 0.237

10 T ∗
N 0.071 0.213 0.028 0.208

20 TN 0.053 0.407 0.047 0.410
20 T ∗

N 0.061 0.393 0.039 0.397
4 10 TN 0.050 0.430 0.037 0.427

10 T ∗
N 0.069 0.421 0.029 0.410

20 TN 0.048 0.470 0.043 0.463
20 T ∗

N 0.061 0.447 0.040 0.458
6 10 TN 0.062 0.450 0.053 0.440

10 T ∗
N 0.074 0.442 0.045 0.430

20 TN 0.044 0.430 0.053 0.420
20 T ∗

N 0.063 0.442 0.044 0.426
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With a very small sample size n = 10, the size of TN in the known location case
is close to the nominal level but the size of TN with the unknown location is
sometimes lower. When n = 20, the situation improves. This is the case also
for the bootstrap test T ∗

N , but T ∗
N does worse at achieving the significance

level and has lower power than TN . It is encouraging that both the Monte
Carlo test and the bootstrap test are little affected by the dimensionality
of the data although twenty data points are clearly scattered sparsely in 6-
dimensional space. The dimensionality and the nuisance location parameter
do not seem to be very serious problems in this example.

Case (b). Testing for reflection symmetry.

Let D = N be the standard normal N(0, Id). The data have zero mean,
but similar to Case (a), we analyzed them as if the mean were both known
and unknown. Figure 2.2 presents the plots of the power functions. Looking
at Figure 2.2, the power against a shows that a = 2 may be a good choice
for the uniform weight function. However for the normal weight function, the
choice of a may depend on the sample size. With n = 10, a = 5 seems to be
suitable, and a = 2 may be better for n = 20. In contrast with Case (a), the
power of TU is good, and even better than that of TN .
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Fig. 2.2. The estimated rejection rate of NMCT for reflectively
symmetric distribution. Solid line is for normal weight and dashed
line for uniform weight; a is the parameter in the weight.

Tables 2.2 and 2.3 show the empirical powers of TU and TN with a = 2
and a = 5. As in Case (a), the dimensionality may not be a major factor on
the performance of the tests. In maintaining the level of significance, both
TN and TU have similar performance. But the powers of the tests decrease as
the dimension of the variable increases. The power of the tests with a known
location is slightly higher than that with a nuisance location. The bootstrap
tests have similar behavior to that described above, but, overall, perform
slightly worse.
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Table 2.2 Reflection symmetry for know location: Empirical power

a = 2
N N  (χ2 − 1) N N  (χ2 − 1)

n = 10, TN 0.056 0.370 (a = 5) n = 10, TU 0.030 0.515
n = 10, T ∗

N 0.072 0.365 (a = 5) n = 10, T ∗
U 0.040 0.507

d = 2
n = 20, TN 0.056 0.783 (a = 2) n = 20, TU 0.047 0.714
n = 20, T ∗

N 0.067 0.774 (a = 2) n = 20, T ∗
U 0.042 0.701

n = 10, TN 0.061 0.483 (a = 5) n = 10, TU 0.053 0.550
n = 10, T ∗

N 0.068 0.472 (a = 5) n = 10, T ∗
U 0.062 0.527

d = 4
n = 20, TN 0.040 0.697 (a = 2) n = 20, TU 0.060 0.733
n = 20, T ∗

N 0.044 0.702 (a = 2) n = 20, T ∗
U 0.077 0.712

n = 10, TN 0.030 0.467 (a = 5) n = 10, TU 0.037 0.533
n = 10, T ∗

N 0.041 0.461 (a = 5) n = 10, T ∗
U 0.044 0.522

d = 6
n = 20, TN 0.053 0.470 (a = 2) n = 20, TU 0.064 0.673
n = 20, T ∗

N 0.059 0.464 (a = 2) n = 20, T ∗
U 0.074 0.659

Table 2.3. Reflection symmetry with unknown location: Empirical power

a = 2
N N  (χ2 − 1) N N  (χ2 − 1)

n = 10, TN 0.050 0.296 (a = 5) n = 10, TU 0.031 0.383
n = 10, T ∗

N 0.058 0.299 (a = 5) n = 10, T ∗
U 0.038 0.380

d = 2
n = 20, TN 0.051 0.707 (a = 2) n = 20, TU 0.057 0.597
n = 20, T ∗

N 0.049 0.701 (a = 2) n = 20, T ∗
U 0.064 0.589

n = 10, TN 0.043 0.420 (a = 5) n = 10, TU 0.043 0.430
n = 10, T ∗

N 0.049 0.407 (a = 5) n = 10, T ∗
U 0.045 0.433

d = 4
n = 20, TN 0.054 0.590 (a = 2) n = 20, TU 0.062 0.617
n = 20, T ∗

N 0.056 0.568 (a = 2) n = 20, T ∗
U 0.068 0.607

n = 10, TN 0.049 0.433 (a = 5) n = 10, TU 0.056 0.530
n = 10, T ∗

N 0.053 0.430 (a = 5) n = 10, T ∗
U 0.072 0.520

d = 6
n = 20, TN 0.059 0.410 (a = 2) n = 20, TU 0.065 0.643
n = 20, T ∗

N 0.058 0.397 (a = 2) n = 20, T ∗
U 0.077 0.644

Case (c). Testing for Liouville-Dirichlet.

Let the hypothetical distribution D = L be an exponential distribution
with the density function exp(−∑d

i=1 x(i)) with x(i) ≥ 0, i = 1, . . . , d where
the x(i) are the components of X. In this case Dirichlet distribution D(α)
is with parameter α = (1, 1, · · · , 1). Figure 2.3 showing the power against a
suggests that, in the weight function Wa(·), a = 0.50 may be a good choice
for both TN and TU .
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Fig. 2.3. The estimated rejection rate of NMCT for Liouville-
Dirichlet distribution. Solid line is for normal weight and dashed
line for uniform weight; a is the parameter in the weight.

The power reported in Table 2.4 shows that all the tests have higher power
with larger dimension. On the other hand, the tests TN and TU maintain the
significance level well in most cases but the bootstrap tests T ∗

N and T ∗
U do

not.



22 2 Testing for Multivariate Distributions

Table 2.4. Liouville distribution: Empirical power with a = 0.5

L L  (χ2 − 1) L L  (χ2 − 1)
n = 10, TN 0.076 0.133 n = 10, TU 0.056 0.161
n = 10, T ∗

N 0.081 0.137 n = 10, T ∗
U 0.070 0.157

d = 2
n = 20, TN 0.063 0.200 n = 20, TU 0.053 0.250
n = 20, T ∗

N 0.063 0.201 n = 20, T ∗
U 0.067 0.233

n = 10, TN 0.043 0.343 n = 10, TU 0.060 0.322
n = 10, T ∗

N 0.061 0.322 n = 10, T ∗
U 0.067 0.324

d = 4
n = 20, TN 0.060 0.601 n = 20, TU 0.056 0.543
n = 20, T ∗

N 0.065 0.580 n = 20, T ∗
U 0.064 0.547

n = 10, TN 0.046 0.526 n = 10, TU 0.051 0.540
n = 10, T ∗

N 0.060 0.508 n = 10, T ∗
U 0.058 0.531

d = 6
n = 20, TN 0.063 0.757 n = 20, TU 0.043 0.723
n = 20, T ∗

N 0.068 0.740 n = 20, T ∗
U 0.054 0.711

Case (d). Testing for symmetric scale mixture.

The hypothetical distribution D = S corresponds to the density func-
tion 1

2d exp(−∑d
i=1 |x(i)|). Let g(X) =

∑d
i=1 |X(i)|; the density of X is a

product of exp(−∑d
i=1 |x(i)|) and a constant on the domain Cd =

{
u : u ∈

Rd,
∑d

i=1 |u(i)| = 1
}
. Hence,

∑d
i=1 |X(i)| is independent of X

/∑d
i=1 |X(i)|.

The mean is zero. We also regard it as a known and an unknown location.
NMCT was applied to test whether the underlying distribution has the form
f
(∑d

i=1 |x(i)|
)
. Figure 2.4 reporting the plot of power versus a suggests that,

for TU , a good choice of a is 2, and for TN , with normal weight, a = 3.5
may be good. The power of TU is quite low so that the normal weight seems
preferable here.

In this case the dimensionality of the variable influences the power perfor-
mance. The significance level is maintained well by TN , but the bootstrap test
T ∗

N has larger size than the nominal level in most cases. However, the tests
seem not to be sensitive to the alternative. The choice of the weight function
deserves further study.
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Fig. 2.4. The estimated rejection rate of NMCT for symmet-
ric scale mixture distribution. Solid line is for normal weight and
dashed line for uniform weight; a is the parameter in the weight.
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Table 2.5. Symmetric scale mixture: Empirical power with a = 3.5

known location unknown location
S S  (χ2 − 1) S S  (χ2 − 1)

n = 10, TN 0.055 0.160 0.060 0.150
n = 1, T ∗

N 0.058 0.162 0.062 0.147
d = 2

n = 20, TN 0.050 0.231 0.045 0.223
n = 20, T ∗

N 0.054 0.234 0.048 0.227
n = 10, TN 0.050 0.232 0.055 0.261
n = 10, T ∗

N 0.055 0.233 0.058 0.250
d = 4

n = 20, TN 0.055 0.255 0.057 0.313
n = 20, T ∗

N 0.056 0.251 0.060 0.301
n = 10, TN 0.061 0.235 0.062 0.292
n = 10, T ∗

N 0.059 0.237 0.067 0.279
d = 6

n = 20, TN 0.045 0.353 0.053 0.369
n = 20, T ∗

N 0.047 0.360 0.059 0.354

In summary, generally NMCT maintains the level of significance well and
outperforms the bootstrap tests. The nuisance location parameter does not
have much impact on the performance of NMCT, but the dimensionality of
the variable and the choice of weight function may. For instance, the uniform
weight function is good in testing reflection symmetry, while the normal weight
function is better in testing elliptical symmetry and symmetric scale mixture.

2.3.3 Application

We revisited the dataset presented and examined by Royston (1983) for multi-
normality. The six measurements are hemoglobin concentrations, x1, packed
cell volume, x2, white blood cell count, x3, lymphocyte count, x4, neutrophil
count, x5, serum lead concentration, x6. There are 103 observations. Before
the analysis, x3, x4, x5 and x6 were logarithmically transformed. Royston
employed the Shapiro-Wilks W test for normality of the data and concluded
that all the six marginal distributions may be univariate normal. However,
there is evidence (Royston, 1983) to suggest that the transformed squared
radii are jointly non-normal. We used TN with a = 2 to check whether or not
the measurements are jointly reflectively symmetric and jointly spherically
symmetric. One thousand Monte Carlo simulations were carried out for cal-
culating p-values. The estimated p-values are 0.149 and 0.141, which do not
provide convincing evidence against the null hypotheses of these two types
of symmetry. On the other hand, the scatter plot of x3 against x4 shows a
remarkable linear relationship and the correlation coefficient of these two vari-
ables is 0.61. Based on the measurements except x3, the p-values of the test
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TN for reflection and elliptical symmetries are respectively 0.67 and 0.71. The
symmetries are tenable.



3

Asymptotics of Goodness-of-fit Tests for
Symmetry

3.1 Introduction

In chapter 2, we proposed the goodness-of-fit tests for four kinds of multi-
variate distributions. Because of the importance of symmetric distributions in
practice, testing for elliptically symmetric distribution and reflectively sym-
metric distribution have received more attentions than the other two types
of distributions. Therefore, we consider more studies of tests for these two
types of distributions. Especially, we study the asymptotic behavior of tests.
In this chapter, we construct tests that are based on characteristic functions
of distribution. The elliptical symmetry is a generalization of the spherical
symmetry that was discussed in Chapter 2. Most of materials in this chapter
are from Zhu and Neuhaus (2003).

Definition 3.1.1 Let X be a d-dimensional random vector. The distribution
of X is said to be elliptically symmetric with a center µ ∈ Rd and a matrix
A if for all orthogonal d by d matrices H the distributions of HA(X − µ) are
identical. A is called the shape matrix.

It is easy to prove that when A is the identity matrix and µ = 0, the
distribution of X is spherically symmetric. Readers can refer to Fang, Kotz and
Ng (1990). Throughout this chapter, we assume that the covariance matrix Σ
of X is positive definite. In this case, A is equal to Σ−1/2 and Σ−1/2(X − µ)
is spherically symmetrically distributed if X has an elliptically symmetric
distribution.

Symmetric distributions play crucial roles in multivariate data analysis.
Elliptically symmetric distribution (elliptical distribution for short) possesses
many nice properties which are analogous to those of multivariate normal dis-
tribution. Hence, if one knows that the variable is elliptically symmetrically
distributed, some tools for classical multivariate analysis, as Friedman (1987)
pointed out, may still be applicable for analyzing the data. Additionally, the
dimensional reduction techniques have been developed in recent years for over-
coming the problem of dimensionality in data analysis, one of which is Sliced
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Inverse Regression (SIR) (see Li, 1991). The most important subclass of dis-
tributions satisfying the designed condition of SIR is just the one of elliptical
distributions. Consequently, testing elliptical symmetry is important and rel-
evant in multivariate analysis. The hypothesis to be tested is that whether
the underlying distribution of X is elliptically symmetric or not. Further, if
we have reflection symmetry of a distribution, which is defined in Chapter 2,
the SIR can also be approximately used.

3.2 Test Statistics and Asymptotics

3.2.1 Testing for Elliptical Symmetry

The null hypothesis is, for all orthogonal matrices H,

H0 : Σ−1/2(X − µ) = HΣ−1/2(X − µ) in distribution.

That is, we want to test whether Σ−1/2(X − µ) is spherically symmetrically
distributed. The spherical symmetry implies that the imaginary part of the
characteristic function of Σ−1/2(X − µ) is zero, that is,

E
(
sin(taτΣ−1/2(X − µ))

)
= 0

for all t ∈ R1 and a ∈ Sd = {a : ||a|| = 1, a ∈ Rd}. The empirical version
of this imaginary part is Pn{sin(taτ Â(X − µ̂))} where Pn is the empirical
probability measure based on the sample points {X1, · · · , Xn} which are i.i.d.
copies of X, Pn(f) stands for (1/n)

∑n
j=1 f(Xj) for each function f(·), Â =

Σ−1/2 or = Σ̂−1/2, the sample covariance and µ̂ = µ or = X̄ the sample mean
respectively in accordance with the parameters being known or unknown.

A test statistic is defined as∫
Sd

∫
I

(
√

nPn{sin(taτ Â(X − µ̂))})2w(t)d td ν(a), (3.2.1)

where w(·) is a weight function with a compact support, ν is the uniform
distribution on Sd and I is a working region. In this chapter, we consider that
I is a compact subset of the real line R. The null hypothesis H0 is rejected
for the large values of the test statistic.

In order to study the asymptotic properties of the test statistic, we define
an empirical process by

Vn = {Vn(Xn, µ̂, Â, t, a) =
√

nPn{sin(taτ Â(X − µ̂))} : (t, a) ∈ I × Sd},

(3.2.2)

and the test statistic in (3.2.1) can be rewritten as

Tn =
∫

Sd

∫
I

{Vn(Xn, µ̂, Â, t, a)}2dw(t)dν(a). (3.2.3)
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The asymptotic behavior, under the null hypothesis, of the empirical
process defined above is presented in the following theorem and corollary.
For simplicity, assume a Gaussian process with the index set I ×Sd is contin-
uous if its sample paths are bounded and uniformly continuous with respect
to (t, a) ∈ I × Sd.

Theorem 3.2.1 Assume that P{X = µ} = 0 and E||X − µ||4 < ∞. Then
under H0

1). If the center µ is given and then µ̂ = µ, the process Vn converges in
distribution to a centered continuous Gaussian process V1 = {V1(t, a) : (t, a) ∈
I × Sd} with the covariance kernel: for (t, a), (s, b) ∈ I × Sd

E{sin(taτA(X − µ)) sin(sbτA(X − µ))}.

(3.2.4)

2). If the center µ is an unknown parameter and then µ̂ = X̄. Let

k(t, a, x) = sin(taτA(x − µ)) − taτA(x − µ)E(cos(taτA(X − µ))).(3.2.5)

The process Vn converges in distribution to a centered continuous Gaussian
process V2 = {V2(t, a) : (t, a) ∈ I × Sd} with the covariance kernel: for
(t, a), (s, b) ∈ I × Sd,

E{k(t, a, x)k(s, b, x)}. (3.2.6)

The convergence of the test statistic is a direct consequence of Theorem
2.1.

Corollary 3.2.1 The test statistics Tn that are associated with known and
unknown centers converge in distribution to the quadratic functionals∫

Sd

∫
I

V 2
1 (t, a)dw(t) d ν(a) and

∫
Sd

∫
I

V 2
2 (t, a)dw(t) d ν(a)

respectively.

We now investigate the behavior of the test under alternatives. For conve-
nience, let sin(i)(c) be i-th derivative of sin(·) at point c. If there is a direction
a ∈ Sd such that E[sin(taτA(X − µ))] �= 0 for some t ∈ I, it is easily de-
rived that from the continuity of function E[sin(taτA(X − µ))] w.r.t. (t, a),
the test statistic Tn converges in distribution to infinity since the process Vn

converges in distribution to infinity. This means that the tests are consistent
against global alternatives. The rest of this section focuses on the investigation
with local alternatives.

Suppose that the i.i.d. d-dimensional vectors Xi = Xin have the expression
Zi+Yi/nα, i = 1, · · · , n for some α > 0. The center µ = µn = E(Z)+E(Y )/nα.
When Zi is independent of Yi, the distribution of Xin is a convolution of two
distributions, and one of them converges to the degenerate distribution at zero
with the rate nα in certain sense.
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Theorem 3.2.2 Assume that the following conditions hold:

1) Both distributions of Z and of Y are continuous. In addition, Z is ellipti-
cally symmetric with the center E(Z) and the shape matrix Σ.

2) There is an integer l being the smallest one such that

sup
(t,a)∈I×Sd

|Bl(t, a)|

=: sup
(t,a)∈I×Sd

|E((taτA(Y − E(Y ))l sin(l)(taτA(Z − E(Z))))| �= 0,

E(||Y ||2l) < ∞, and E(||Y ||2(l−1)||Z||2) < ∞. (3.2.7)

Then when α = 1/(2l), if µ̂ = µ

Tn =⇒
∫

Sd

∫
I

(V1(t, a) + Bl(t, a)/l!)2dw(t)d ν(a), (3.2.8)

and if µ̂ = X̄,

Tn =⇒
∫

Sd

∫
I

(V2(t, a) + Bl(t, a)/l!)2dw(t)d ν(a). (3.2.9)

where “ =⇒ ” stands for the convergence in distribution, V1 and V2 are the
Gaussian processes defined in Theorem 3.2.1.

Remark 3.2.1 Comparing the limits under the null hypothesis in Corol-
lary 3.2.1 with those under the alternative in Theorem 3.2.2, we see that
the test can detect the local alternatives distinct O(n−1/(2l)) from the null.
In certain cases, this rate can achieve O(n−1/2), that is, l = 1. For ex-
ample, suppose that Z has the uniform distribution on Sd and Y = (Z2

1 −
1, · · · , Z2

d − 1), we can see easily that, via a little elementary calculation,
sup(t,a)∈I×Sd |E(taτAY cos(taτAZ))| �= 0. In contrast, when Z and Y are
independent, l ≥ 3, namely, the test can detect, at most, alternatives distinct
O(n−1/6) from the null. In fact, it is clear that for l = 1, 2

sup
(t,a)∈I×Sd

|E((taτAY )l sin(l)(taτAZ))| = 0.

3.2.2 Testing for Reflection Symmetry

As defined in Chapter 2, a d-variate random variable X is said to be reflectively
symmetric about a center µ if

(X − µ) and −(X − µ) have the same distribution.

Note that it is equivalent to the imaginary part of the characteristic function
of X − µ being equal zero, i.e.,

E{sin(tτ (X − µ))} = 0 for t ∈ Rd. (3.2.10)
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Let X1, . . . , Xn be i.i.d. copies of X and Pn(·) the corresponding empirical
probability measure. Based on (3.2.10), the test statistic can have a similar
form to that for elliptical symmetry:

Q2 = n

∫
A

{Pn(sin(tτ (X − µ̂)))}2dw(t)

where A (a general region) are working regions, w(·) is a distribution function
on Rd, and Pn(f(x)) is defined in Subsection 3.2.1. We now use other notations
to represent Q2. Define an empirical process

{Un1(Xn, µ̂, t) =
√

nPn{sin(tτ (X − µ̂))} : t ∈ A}, (3.2.11)

where Xn = (X1, . . . , Xn), µ̂ is an estimate of µ when µ is unknown. The test
statistic is then rewritten as

Q2(Xn, µ̂) =
∫

A

[Un1(Xn, µ̂, t)]2dw(t), (3.2.12)

Heathcote, Rachev and Cheng (1995, Theorem 3.2) have obtained the
convergence of Un1 to a Gaussian process U under the null hypothesis that
in distribution, X − µ = −(x − µ). The convergence of Q2(Xn, µ̂) is a direct
consequence of their result. Therefore, we only investigate the behavior of the
test and the NMCT’s under s.

For convenience, let sin(i)(tτX) be i-th derivative of sin(·) at the point
tτX. Suppose that i.i.d. d-dimensional variables have the representation Zi +
yi/nα, i = 1, . . . , n, for some α > 0. This means that the distribution of x is
the convolution of a symmetric distribution and a distribution converging to
the degenerate one. The following theorem reveals the power behavior of the
tests for such local alternatives.

Theorem 3.2.3 Assume that the following conditions hold:

1) Both distributions of Z and of y are continuous and, in addition, Z is
reflectively symmetric about a known center µ.

2) Let l denote the smallest integer, such that

sup
t∈A

|Bl(t)| := sup
t∈A

|E(tτ (y − Ey)l sin(l)(tτ (Z − EZ)))| �= 0,

E(||y||2l) < ∞, and E(||y||2(l−1)||Z||2) < ∞. (3.2.13)

Then

{
√

nPn{sin(tτ (Z + y/n1/(2l) − EZ − Ey/n1/(2l)))} : t ∈ A}
= {

√
nPn{sin(tτ (Z − EZ)) + (1/l!)Bl(t)} : t ∈ A} + op(1). (3.2.14)

This leads to convergence in distribution (=⇒)
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A

{√
nPn(sin(tτ (Z + y/n1/(2l) − EZ − Ey/n1/(2l))))

}2
dw(t)

=⇒
∫

A

(U(t) + (1/l!)Bl(t))2dw(t), (3.2.15)

where {U(t) : t ∈ A} is a Gaussian process defined in Heathcote, Rachev and
Cheng (1995, Theorem 3.2).

Remark 3.2.2 It is worthwhile to note that the results of this theorem are
similar to that of Theorem 3.2.2. We can also conclude that the test can
detect local alternatives converging to the null hypothesis at n1/(2l)-rate or
slower (that is, the test statistic will converge in distribution to infinity under
the local alternative distinct with slower convergence rate from the null). This
rate can also achieve O(n−1/2), that is, l = 1. For example, if Z has a uniform
distribution on [−

√
3,

√
3]d and if y = (z2

1 − 1, · · · , z2
d − 1), we can also see

that supt∈[−1,1]d |E(tτy cos(tτZ))| �= 0. Hence, l = 1. Similar to the testing
for elliptical symmetry, when Z and y are independent of each other, l is at
least three, and the tests can detect, at most, alternatives converging to the
null hypothesis at n1/6-rate. In fact, it is clear that for l = 1, 2

sup
t∈[−1,1]d

|E((tτy)l sin(l)(tτZ))| = 0.

3.3 NMCT Procedures

3.3.1 NMCT for Elliptical Symmetry

Since under the null hypothesis A(X −µ) is spherically symmetrically distrib-
uted, we have

A(X − µ) = U • ||A(X − µ)|| in distribution (3.3.1)

where U = A(X − µ)/||A(X − µ)|| is uniformly distributed on Sd and inde-
pendent of ||A(X − µ)|| (see, e.g. Dempster (1969)). Hence for any U being
uniformly distributed on Sd, U • ||A(X − µ)|| has the same distribution as
A(X − µ). When µ and A are known, the situation is the same as that dis-
cussed in Chapter 2: we can have the exact validity of the test.

It is worthwhile to point out that when both µ and Σ are unknown, the
NMCT procedure needs some modification when the test statistic Tn is used.
For the convenience of comparison, we still present the algorithm with known
µ and A.

Step 1. Generate by computer i.i.d. random vectors, say ui, of size n
with uniform distribution on Sd, let Un = (u1, · · · , un). The new data are
ui • ||A(Xi − µ)||.
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Step 2. Accordingly as the empirical process defined in (3.2.2), we define
a conditional empirical process. For fixed Xn = (X1, · · · , Xn), let

Vn1(Un)
= {Vn1(Xn,Un, t, a) =

√
nPn{sin(taτu||A(X − µ)||)} : (t, a) ∈ I × Sd},

(3.3.2)

and calculate the value of the statistic

Tn1(Un) =
∫

Sd

∫
I

{Vn1(Xn,Un, t, a)}2dw(t)dν(a). (3.3.3)

Step 3. Repeat steps 1 and 2 m times to obtain m values En1(U
(j)
n ), j =

1, · · · , m.
Step 4. Define En1(U

(0)
n ) as the value of En. Estimate the p-value by

p = k/(m + 1) where k is the number that En1(U
(j)
n ) j = 0, 1, · · · , m are

greater than or equal to En1(U
(0)
n ).

From Proposition 1.2.1, we can obtain the exact validity of the test.

When the center µ is known but the shape matrix A is unknown, we still
use the above algorithm except replacing A by its estimator Â = Σ̂−1/2.
When µ is unknown, the situation is not so simple. This is different from
that of Chapter 2 because of the use of a different test statistic. In order to
ensure the equivalence between the conditional empirical process below and
its unconditional counterpart, we shall use the following fact to construct
conditional empirical process. It can be derived by the triangle identity and
PnX = X̄ that uniformly on t ∈ I and a ∈ Sd

√
nPn(sin(taτ Â(X − X̄)))

=
√

n
(
Pn(sin(taτ Â(X − µ)))

)(
cos(taτ ÂPn(X − µ))

)
−

√
n
(
Pn(cos(taτ Â(X − µ)))

)(
sin(taτ ÂPn(X − µ))

)
=

√
nPn(sin(taτA(X − µ))

−
√

n
(
Pn(cos(taτA(X − µ)))

)(
sin(taτAPn(X − µ))

)
+ op(1).

We then define a conditional empirical process in Step 2 of the algorithm as

Vn2(Un) = {Vn2(Xn,Un, µ̂, Â, t, a) : (t, a) ∈ I × Sd}, (3.3.4)

where

Vn2(Xn,Un, µ̂, Â, t, a)
=

√
nPn{sin(taτu • ||Â(X − µ̂)||)}

−
√

nPn{cos(taτu • ||Â(X − µ̂)||) sin(taτPn(u • ||Â(X − µ̂)||)).
(3.3.5)
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The associated conditional statistic is defined as

Tn2(Un) =
∫

Sd

∫
I

{Vn2(Xn,Un, µ̂, Â, t, a)}2dw(t)dν(a). (3.3.6)

In the following theorem, we present the asymptotic equivalence between the
conditional empirical processes Vn1(Un) and Vn2(Un) and their unconditional
counterparts. The asymptotic validity of Tn1(Un) and Tn2(Un) is a direct
consequence.

Theorem 3.3.1 Assume, in addition to the conditions of Theorem 3.2.1,
that P{X = µ} = 0. Then the conditional empirical processes Vn1(Un) and
Vn2(Un) given Xn in (3.3.2) and (3.3.5) converge, for almost all sequences
{X1, · · · , Xn, · · ·}, in distribution to the Gaussian process V1 and V2 defined
in Theorem 2.1 respectively, which are the limits of the unconditional coun-
terparts Vn with known and unknown centers. This leads up to the conclu-
sion that the conditional statistics Tn1(Un) and Tn2(Un) given Xn in (3.3.3)
and (3.3.6) have almost surely the same limits as those of the statistics Tn

with known and unknown centers respectively, T =
∫

(V (a, t))2dw(t)dν(a) and
T1 =

∫
(V1(a, t))2dw(t)dν(a).

Remark 3.3.1 The optimal choice of the working region I and the weight
function w(·) is an interesting problem. But it is worth mentioning that, in
some cases, the choice of working regions is not very important. We now
show an example in which the fact the imaginary part of the characteristic
function being equal zero in a compact subset of Rd such as [−2, 2] × Sd is
equivalent to that the imaginary part is zero in whole space Rd. Suppose that
the moment generating function of a multivariate vector, X say, exists in a
sphere [−b, b] × Sd, b > 0. Then the moment generating function of aτX, the
linear projector of X on R1, exists in an interval [−b1, b1] for any a ∈ Sd,
where b1 does not depend on a. If the imaginary part of the characteristic
function of X equals zero in a sphere [−b2, b2] × Sd, so does the imaginary
part of the characteristic function of aτX in an interval [−b3, b3]. It is easy
to see that all moments of aτX with odd orders equal zero. This means that
the characteristic function of aτX is real, and then aτX is symmetric about
the origin for any a. This conclusion implies, in turn, that the imaginary part
of the characteristic function of X is zero in Rd. Consequently, the choice of
working region is not very important in such a case.

Remark 3.3.2 Romano (1989) proposed a general method of the randomiza-
tion tests. From the idea of permutation test proposed by Hoeffding (1952),
the randomization tests are constructed in terms of the invariance of the dis-
tribution for a class Gn of transformations, see page 151 of Romano (1989).
The spherically symmetric distribution has such an invariance property. For
testing spherical symmetry, our test procedure is similar to Romano’s.
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3.3.2 NMCT for Reflection Symmetry

We use a generic notation where Pn stands for a probability measure which
may rest upon different sets of variables for each appearance. Here Pn is the
empirical measure of (ei, xi), i = 1, . . . , n, where e1, . . . , en are i.i.d. univariate
variables, ei = ±1, i = 1, . . . , n, with probability values one half; define En =
(e1, . . . , en). For the known center case define an NMCT process, given Xn,
by

{Vn(En,Xn, t) =
√

nPn{sin(tτe • (X − µ))} : t ∈ A}. (3.3.7)

The resulting NMCT statistics given Xn are

Q2(En,Xn) =
∫

A

(Vn(En,Xn, t))2dw(t). (3.3.8)

When the working region A is a cube [−a, a]d and the weight function w(·) is
the uniform distribution on this cube, Q2(En,Xn) has a specific form which
is easy to compute. In fact,

Q2(En,Xn) =
∫

[−a,a]d
(Vn(En,Xn, t))2dw(t)

=
1
n

n∑
i=1

n∑
j=1

eiejI(i, j), (3.3.9)

where

I(i, j) =
1
2

( d∏
k=1

sin(a(Xi − Xj)k)
a(Xi − Xj)k

−
d∏

k=1

sin(a(Xi + Xj − 2µ)k)
a(Xi + Xj − 2µ)k

)
,

and (x)k means the k-th component of x.
This formula can be justified as follows. Note that

sin(x) · sin(y) =
1
2
(cos(x − y) − cos(x + y)).

Then

Q2(En, Xn) = (2a)−d

∫
[−a,a]d

{ 1√
n

n∑
i=1

sin(tτei • (Xi − µ)
}2

d t

=
1
n

n∑
i,j=1

{
(2a)−d

∫
[−a,a]d

sin(tτ (Xi − µ)) sin(tτ (Xi − µ))d t
}

eiej

=
1
n

n∑
i=1

n∑
j=1

{
(2)−d−1

∫
[−1,1]d

cos(tτa • (Xi − Xj))

− cos(tτa • (Xi + Xj − 2µ))d t
}

eiej

:=
1
n

n∑
i=1

n∑
j=1

eiejI(i, j).
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Denote “Re” the real part of the characteristic function of a distribution.
Since the uniform distribution on [−1, 1]d is symmetric, we have for u having
uniform distribution on [−1, 1]d

I(i, j) = 2−d−1E(cos(uτa • (Xi − Xj)) − cos(uτa • (Xi + Xj − 2µ)))

= 2−d−1
(
Re E(e(uτ a•(Xi−Xj))) − Re E(e(uτ a•(Xi+Xj−2µ)))

)
= 2−d−1

(
Re

d∏
k=1

E(e(uk a(Xi−Xj)k)) − Re

d∏
k=1

E(e(uk a(Xi+Xj−2µ)k))
)

=
1
2

( d∏
k=1

sin(a(Xi − Xj)k)
a(Xi − Xj)

−
d∏

k=1

sin(a(Xi + Xj − 2µ)k)
a(Xi + Xj − 2µ)

)
.

The justification is completed.

When µ is known, the exact validity of the test of (3.3.8) can follow the
generic theory in Chapter 1; we omit the details here.

For the unknown center case, we need a modified version. In order to
ensure the equivalence between the conditional empirical process, which will
be defined below, and its unconditional counterpart in (3.2.11), both versions
cannot be the same. The definition of our conditional empirical process is
motivated by the following fact which is similar to that of (3.3.4). For an
unknown center µ, an estimate µ̂ is needed. We use µ̂ = X̄, the sample mean.
It can be proved that uniformly on t ∈ A

√
nPn(sin(tτ (X − X̄)))

=
√

n
(
Pn(sin(tτ (X − µ)))

)(
cos(tτPn(X − µ))

)
−

√
n
(
Pn(cos(tτ (X − µ)))

)(
sin(tτPn(X − µ))

)
=

√
nPn(sin(tτ (X − µ))

−
√

n
(
Pn(cos(tτ (X − µ)))

)(
sin(tτPn(X − µ))

)
+ op(1).

Accordingly, we define an estimated conditional process {Vn1(En,Xn, X̄, t) :
t ∈ A} given Xn by

Vn1(En,Xn, X̄, t)
=

√
nPn(sin(tτe • (X − X̄)))

−
√

n sin(tτPn(e • (X − X̄)))Pn(cos(tτe • (X − X̄))). (3.3.10)

The NMCT is defined by

Q2(En,Xn, X̄) =
∫

A

(Vn1(En,Xn, X̄, t))2dw(t). (3.3.11)

The following theorem states the asymptotic validity of the NMCT Q2.



3.3 NMCT Procedures 37

Theorem 3.3.2 Assume that X1, . . . , Xn, . . . are i.i.d. random variables which
are reflectively symmetric about an unknown center µ. Let E

(1)
n , . . . , E

(m)
n , . . .

be independent copies of En. Then for any 0 < α < 1,

lim
n→∞ P{Q2(Xn, X̄) > m − [mα] of Q2(E(j)

n ,Xn, X̄)τs}

= lim
n→∞ P

{
Q2(E0

n,Xn, µ) + Op(1/
√

n) >

m − [mα] of (Q2(E(j)
n ,Xn, µ) + Op(1/

√
n))τs

}
≤ [mα] + 1

m + 1
. (3.3.12)

3.3.3 A Simulation Study

When shape matrix is known, Chapter 2 has contained a simulation. In this
section, we only consider a simulation with unknown shape matrices. That is,
1) µ is given and Σ is unknown parameter; and 2) both µ and Σ are unknown.
The test statistics Tni, i = 1, 2 are in accordance with these two cases respec-
tively. The simulation is only for elliptical symmetry. In the simulation results
reported below, the sample size n = 20, 50. The dimension d of random vector
X is 2, 4, 6. For a power study, we consider the vector X = Z + b · Y with
b = 0.00, 0.25, 0.5, 0.75, 1.00, and 1.25, where Z has a normal distribution
N(µ, Σ) and Y is the random vector with the independent χ2

1 components.
The hypothetical distribution was normal N(µ, Σ). That is, b = 0.00 corre-
sponds to the null hypothesis H0. When b �= 0.00, the distribution is no longer
elliptically symmetric. In the simulation, we generated data from N(0, I3) and,
accordingly as different setup, regarded the symmetric center and the shape
matrix as known or unknown parameters separately.

To determine critical values when given the data {(Y1, Z1), · · · , (Yn, Zn)},
we generated 1000 Un pseudo-random vectors of n = 20 and n = 50 by the
Monte Carlo method. The basic experiment was replicated 1000 times for
each combination of the sample sizes and the underlying distributions of the
vectors. The nominal level was 0.05. The proportion of times that the values
of the statistics exceeded the critical values was recorded as the empirical
power.

Table 3.1 Power of the tests with n = 20

b 0.00 0.25 0.50 0.75 1.00 1.25
d = 2 Tn1 0.046 0.201 0.332 0.584 0.776 0.870

Tn2 0.043 0.223 0.391 0.578 0.630 0.663
d = 4 Tn1 0.045 0.181 0.315 0.577 0.679 0.861

Tn2 0.040 0.238 0.402 0.579 0.633 0.643
d = 6 Tn1 0.053 0.195 0.345 0.581 0.667 0.860

Tn2 0.038 0.251 0.407 0.576 0.616 0.654
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Table 3.2 Power of the tests with n = 50

b 0.00 0.25 0.50 0.75 1.00 1.25
d = 2 Tn1 0.046 0.261 0.392 0.664 0.874 0.950

Tn2 0.046 0.283 0.455 0.648 0.797 0.853
d = 4 Tn1 0.045 0.281 0.385 0.637 0.881 0.957

Tn2 0.046 0.288 0.462 0.635 0.831 0.850
d = 6 Tn1 0.053 0.295 0.395 0.640 0.866 0.960

Tn2 0.043 0.311 0.487 0.641 0.818 0.846

Looking at Table 3.1 with n = 20, we see that, under the null hypothesis,
that is b = 0.00, the size of the test Tn1 is close to the nominal level and Tn2 is
somewhat conservative. But it gets better with the increasing of sample size
to n = 50. See Table 3.2. Under the alternatives, namely b �= 0.00, when b is
small, it seems that Tn2 with the estimated center and shape matrix would be
more sensitive to alternatives than is Tn1. See the cases with b = 0.25, 0.50.
With larger b, the situation is reversed. Since the location is not needed to
estimate, NMCT with Tn1 should simulate the null distribution of the test
statistic better. Hence it is understandable that Tn1 has better performance
at maintaining the significance level than does Tn2. When n = 50, the margin
is small. It seems that n = 50 can be regarded a large size of sample. See
Table 3.2. Also when n = 50 the power of the tests is higher than that with
n = 20. Furthermore, the power performance of the tests are less affected by
the dimension of variable.

3.4 Appendix: Proofs of Theorems

In this section, we only present the proofs of theorems about elliptical sym-
metry testing. Similar arguments can be applied to prove the theorems for
reflection symmetry testing; we omit them here.

Proof of Theorem 3.2.1 Ghosh and Ruymgaart (1992) have proved that,
when the center and the shape matrix are given, the process Vn converges in
distribution to V1 with the covariance kernel in (3.2.4). When the shape matrix
is replaced by the sample covariance matrix Σ̂, applying the triangle identity,
we have

√
nPn(sin(taτ Â(X − µ)))

=
√

nPn(sin(taτA(X − µ))) cos(taτ (Â − A)(X − µ)))
+

√
n(Pn(cos(taτA(X − µ))) sin(taτ (Â − A)(X − µ)))

=: In1(t, a) + In2(t, a).
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It is well-known that by the conditions max1≤j≤n ||Xj − µ||/n1/4 → 0, a.s.,
√

n(ÂA−1 − Id) = Op(1), and E
(
A(X − µ) cos(taτA(X − µ))

)
= 0 which is

implied by the spherical symmetry of A(X − µ), we then easily derive that,
uniformly over (t, a) ∈ I × Sd,

In1(t, a) =
√

nPn(sin(taτA(X − µ))) + Op(1/
√

n),

In2(t, a) = taτ
√

n(ÂA−1 − Id)(Pn(A(X − µ) cos(taτA(X − µ)))
= op(1).

This implies that Vn with the sample covariance matrix Σ̂ is asymptotically
equivalent to that with Σ. Conclusion 1) is proved. For conclusion 2), the
argument is analogous since we can derive that
√

nPn(sin(taτ Â(X − µ̂))) =
√

nPn(sin(taτ Â(X − µ))) cos(taτ Â(µ̂ − µ)))
−

√
n (Pn(cos(taτ Â(X − µ))) sin(taτ Â(µ̂ − µ)))

=
√

nPn(sin(taτ Â(X − µ)))
−

√
n taτ Â(µ̂ − µ))E(cos(taτ Â(X − µ))) + op(1).

The proof of Theorem 3.2.1 is completed.

Proof of Theorem 3.2.2. Consider the case of µ̂ = µ first. Assume no
loss of generality that the center µ = 0 and the covariance matrix of Xin

is Σn = (An)−2. Note that Σn converges to the covariance matrix of the
variable Z, Σ say. Applying the Taylor expansion to the sine function, for
any (t, a) ∈ I × Sd,

√
nPn{sin(taτAn(Z +

Y

n1/(2l) ))}

=
√

nPn{sin(taτAnZ)} +
l−1∑
i=1

1
i!

n−i/(2l)√nPn{(taτAnY )i sin(i)(taτAnZ)}

+
1

l!n

n∑
j=1

{(taτAnYj)l sin(l)(taτAn(Zj +
(tτYj)∗

n1/(2l) ))) − sinl(taτAnZj))}

+
1
l!

Pn{(taτAnY )l sin(l)(taτAnZ)}, (3.4.1)

where (taτAnYj)∗ is a value between 0 and taτAnYj . We need to show that
the second and third summands on RHS of (3.4.1) tend to zero in prob-
ability as n → ∞, and the fourth summand converges in probability to
E{(taτAY )l) sin(l)(taτAZ)}. The convergence of the fourth term is obvious.
Noticing that E{(taτAY )i) sin(i)(taτAZ)} = 0 for 1 ≤ i ≤ l−1, and a similar
argument used in the proof of Theorem 3.2.1 can be applied. The proof for
Vn with the known center and then for Tn is finished.

For Vn with an estimated covariance matrix, we note that
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max
1≤j≤n

||Yj ||/n1/(2l) → 0, a.s.

√
n(Ân − An) = Op(1) and An − A = o(1).

Furthermore,

sup
(t,a)∈I×Sd

∣∣∣Pn

(
sin(taτ Ân(Z − E(Z)) + (Y − E(Y )/n1/(2l)))

− sin(taτ Ân(Z − E(Z)))
)∣∣∣

≤ cPn||Ân(Y − E(Y ))||/n1/(2l) = O(n−1/(2l)) a.s.,

and

sup
(t,a)∈I×Sd

|1 − cos(taτPn(Ân(Z − E(Z)) + Ân(Y − E(Y )/n1/(2l))))|

≤ c(||PnÂn(Z − E(Z))||2 + ||PnÂn(Y − E(Y ))||2/n1/l = Op(n−1).

Similar argument used in the proof of Theorem 3.2.1 can be applied again.
The details are omitted. From the convergence of Vn we immediately derive
the convergence of Tn in (3.2.8).

For the case of µ̂ = X̄, we further note that

sup
(t,a)∈I×Sd

∣∣∣√n
(

sin(taτPnÂn((Z − E(Z)) + (Y − E(Y )/n1/(2l))))

− sin(taτPnÂn(Z − E(Z)))
)∣∣∣

≤ c
√

n||Ân(PnY − E(Y ))||/n1/(2l) = Op(n−1/(2l)).

Based on the above inequalities and the triangle identity, it is easy to see that
√

nPn(sin(taτ Ân(Z + Y/n1/(2l) − (Z̄ + Ȳ /n1/(2l)))))
=

√
nPn(sin(taτAn(Z + Y/n1/(2l) − (E(Z) + E(Y )/n1/(2l)))))

−
√

nPn(cos(taτAn(Z − E(Z))) sin(taτPnAn(Z − E(Z))) + Op(n−1/(2l))
=

√
nPn(sin(taτA(Z − E(Z))))

+
1
l!

E{(taτA(Y − E(Y )))l sin(l)(taτA(Z − E(Z)))}

−
√

n sin(taτPnA(Z − E(Z)))E(cos(taτA(Z − E(Z))) + op(1)
=⇒ V2(t, a) + (1/l)Bl(t, a). (3.4.2)

It implies the convergence of Tn in (3.2.9). The proof is completed.

Proof of Theorem 3.3.1. We only need to show the convergence of the
processes, which implies the convergence of the test statistics. First we show
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that {Vn1(Un,Xn, t, a) : (t, a) ∈ I × Sd} given Xn converges almost surely
to the process {V1(t) : (t, a) ∈ I × Sd} which is the limit of Vn with the
known center. The argument of the proof will be applicable for showing the
convergence of the process Vn2(Un).

For simplicity of notation, write Xj for A(Xj − µ). Define sets

D1 = { lim
n→∞

1
n

n∑
j=1

‖Xj‖2 = E‖X‖2},

D2 = { lim
n→∞ sup

(t,a),(s,b)

∣∣∣ 1
n

n∑
j=1

(sin(taτXj) sin(sbτXj))

−E(sin(taτX) sin(sbτX))
∣∣∣ = 0}

and D = D1 ∩ D2. By the Lipschitz continuity of the sine function and
the Glivenko-Cantelli theorem for the general class of functions (e.g. Pollard
(1984), Theorem II 24, pp. 25), it is clear that D is a subset of sample space
with probability measure one.

We assume without further mentioning that {X1, · · · , Xn, · · ·} ∈ D in the
following.

For the convergence of the empirical process defined in the theorem, all
we need to do is to prove fidis convergence and uniform tightness. The proof
of the fidis convergence is standard, so we only describe an outline. For any
integer k, (t1, a1) · · · (tk, ak) ∈ I × Sd. Let

V (k) =
(
cov(sin(tiaτ

i x), sin(tlaτ
l x))

)
1≤i,l≤k

.

It needs to be shown that

V
(k)
n1 = {Vn1(Un,Xn, ti, ai) : i = 1, · · · , k} =⇒ N(0, V (k)).

It suffices to show that for any unit k-dimensional vector γ

γτV
(k)
n1 =⇒ N(0, γτV (k)γ). (3.4.3)

Note that the variance of LHS in (3.4.3), as follows, converges in probability
to γτV (k)γ

γτ
(
Ĉovi, l

)
1≤i,l≤k

γ,

with Ĉovi, l = 1
n

∑n
j=1 E(sin(tiaτ

i u‖Xj‖) sin(tlaτ
l u‖Xj‖)) where the expec-

tation is taken over u. Hence if γτV (k)γ = 0, (3.4.3) is trivial. Assume
γτV (k)γ > 0. Invoking the boundedness of the sine function and the Lin-
deberg condition for central limit theorems,

γτV
(k)
n1 /

√
γτV (k)γ −→ N(0, 1).
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That is, (3.4.3) holds, and the fidis convergence is then proved.

We now turn to prove the uniform tightness of the process. All we need to
do is to show that for any η > 0 and ε > 0, there exists an δ > 0 for which

lim sup
n→∞

P
{

sup
[δ]

|Vn1(Un,Xn, t, a) − Vn1(Un,Xn, s, b)| > 2η
∣∣∣ ‖Xn‖

}
< ε

(3.4.4)

where [δ] = {((t, a), (s, b)) : ‖ta − sb‖ ≤ δ}. Since the limiting properties are
investigated with n → ∞, n is always considered to be large enough below,
which simplifies some arguments of the proof.

It is easy to show that if a d-dimensional vector u is uniformly distributed
on Sd, then u can be expressed as e · u∗ where e = ±1 with probability one
half, u∗ has the same distribution as u and e and u∗ are independent. The
justification can be done by noting that for this e independent of u, eu has
the same distribution as u and e is also independent of eu. From which, the
LHS of (3.4.4) can be written as

P
{

sup
[δ]

√
n|Pn(sin(taτe • u∗‖X‖) − sin(sbτe • u∗‖X‖))| > η

∣∣∣‖Xn‖
}

= P
{

sup
[δ]

√
n|P ◦

n(sin(taτu∗‖X‖) − sin(sbτu∗‖X‖))| > η
∣∣∣‖Xn‖

}
(3.4.5)

where P ◦
n is the signed measure that places mass ei/n at ui‖Xi‖, which is

analogous to that of Pollard (1984, p.14).
We now consider conditional probability given U∗

n = (u∗
1, · · · , u∗

n) and
‖Xn‖. Combining (3.4.5) with the following inequality

| sin(taτu∗‖X‖) − sin(sbτu∗‖X‖)| ≤ ‖ta − sb‖ ‖X‖,

the Hoeffding inequality implies that

P
{√

n|(P ◦
n(sin(taτu∗‖X‖) − sin(sbτu∗‖X‖))) > ηc‖ta − sb‖

∣∣∣ ‖Xn‖,U∗
n

}
≤ 2 exp(−η2/32).

In order to apply the chaining lemma (e.g. Pollard (1984), p.144), we need to
check, together with the above inequality, the covering integral

J2(δ, ‖ · ‖, I × Sd) =
∫ δ

0
{2 log{(N2(u, ‖ · ‖, I × Sd))2/u}}1/2du (3.4.6)

is finite for small δ > 0, where ‖ · ‖ is the Euclidean norm in Rd and the
covering number N2(u, ‖ · ‖, I × Sd) is the smallest l for which there exist l
points t1, · · · , tl with min1≤i≤l ‖ta − tiai‖ ≤ u for every (t, a) ∈ I × Sd. It is
clear that
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N2(u/c, ‖ · ‖, I × Sd) ≤ cu−d.

Consequently, for small δ > 0,

J2(δ, ‖ · ‖, I × Sd) ≤ c

∫ δ

0
(− log u)1/2du ≤ cδ log δ ≤ cδ1/2.

Therefore (3.4.6) holds. Applying now the chaining lemma, there exists a
countable dense subset [δ]∗ of [δ] such that

P
{

sup
[δ]∗

√
n|(P ◦

n(sin(taτu∗‖X‖) − sin(sbτu∗‖X‖))|

> 26cJ2(δ, ‖ · ‖, I × Sd)
∣∣∣ ‖Xn‖,U∗

n

}
≤ 2cδ.

The countable dense subset [δ]∗ can be replaced by [δ] itself because
√

nP ◦
n{sin(taτu‖X‖) − sin(sbτu‖X‖)}

is a continuous function with respect to ta and sb for each fixed ‖Xn‖.
Hence, choosing properly small δ, and integrating out over U∗

n, the uniform
tightness in (3.4.4) is proved. Therefore, the convergence of the process is
proved. Then the convergence of Tn1(Un) follows. The convergence of the
process Vn2(Un) can be proved by following the above argument and noticing
Â − A = Op(1/

√
n) and µ̂ − µ = Op(1/

√
n). The limit of Vn2(Un) is V2, the

limit of its unconditional counterparts. The asymptotic validity of Tn2 then
follows. The proof of Theorem 3.3.1 is finished.
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A Test of Dimension-Reduction Type for
Regressions

4.1 Introduction

Parametric models describe the impact of the covariate X on the response
Y in a concise way. They are easy to use. But since there are usually several
competing models to entertain, model checking becomes an important issue.

Suppose that {(x1, y1), · · · , (xn, yn)} are i.i.d. observations satisfying the
following relation:

yi = φ(xi) + εi i = 1, · · · , n, (4.1.1)

where yi is one-dimensional, xi = (x(1)
i , · · · , x(d)

i )′ is the d-dimensional column
vector and εi is independent of xi. We want to test

H0 : φ(x) = φ0(·, β) for some β, (4.1.2)

where φ0(·, ·) is a specified function.
For this testing problem, there are a number of non-parametric approaches

available in the literature. One approach to constructing a test statistic is
through a suitable estimate of φ(·) − φ0(·, β). The local smoothing for esti-
mating φ is often employed. See Härdle and Mammen (1993). The success of
this locally smoothing method hinges on the presence of sufficiently many data
points to provide adequate local information. For one-dimensional cases, many
smoothing techniques are available and the tests obtained have good perfor-
mance; the book by Hart (1997) gives an extensive overview and useful refer-
ences. As the dimension of the covariate gets higher, however, the total number
of observations needed for local smoothing escalates exponentially. Another
approach is to resort to the ordinary residuals ε̂i = yi −φ0(xi, βn), where βn is
an estimate of β. Globally smoothing method includes CUSUM tests (Buckley,
1991; Stute, 1997; Stute, González Manteiga and Presedo Quindimil, 1998);
the innovation transformation based tests (Stute, Thies and Zhu, 1998; Stute
and Zhu, 2002); and the score type tests (Stute and Zhu, 2005).
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For a practical point of view, however, these two testing approaches suffer
from the lack of flexibility in detecting subtle dependence patterns between
the residuals and the covariates. As a remedy, practitioners often rely on
residual plots, i.e. plots of residuals against fitted values or a selected number
of covariates for model checking. But this poses a problem when the number
of covariates is large especially when one wants to include all possible linear
combinations of covariates.

In this chapter, we recommend a dimension-reduction type test for seeking
a good projection direction for plotting and constructing a test statistic. Most
of materials are from Zhu (2003).

For any fixed t, consider

In(t) =
1√
n

n∑
j=1

Σ̂−1/2(xj − x̄)I(ε̂j ≤ t), (4.1.3)

where I(ε̂j ≤ t) = 1 if ε̂j ≤ t, and = 0, otherwise; Σ̂ is the sample covariance
matrix of xi’s. For any a ∈ Sd = {a : ||a|| = 1}, define

Tn(a) = aτ
[ 1
n

n∑
i=1

(In(xi)Iτ
n(xi))

]
a. (4.1.4)

One test statistic is defined by

Tn := sup
a∈Sd

Tn(a). (4.1.5)

In this chapter, the estimate βn of β is given by the least squares method,
that is,

βn = arg min
β

n∑
j=1

(yj − φ0(xj , β))2.

The maximizer a of Tn(a) over a ∈ Sd will be used as the projection direction
to plot the residuals. Note that Tn and a are simply the largest eigenvalue and
the associated eigenvector of the matrix

[
1
n

∑n
i=1(In(xi)Iτ

n(xi))
]
, therefore the

implementation is easy.
The motivation is quite simple. If the model is correct, e = y − φ0(x, β) is

independent of x. Under the null hypothesis H0

E(Σ−1/2(X − EX)|e) = 0

where Σ is the covariance matrix of X. This is equivalent to

I(t) = E[Σ−1/2(X − E(X))I(e ≤ t)] = 0 for all t ∈ R1.

Consequently, for any a ∈ Sd
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T (a) := aτ
[ ∫

(I(t))(I(t))τdFe(t)
]
a = 0,

where Fe is the distribution of e. Then the test statistic Tn = supa Tn(a) is
the empirical version of supa T (a). The null hypothesis H0 is rejected for the
large values of Tn.

Note that the test Tn does not involve the local smoothing, and the deter-
mination of the projection direction is easily done. The dimensionality prob-
lem may largely be avoided. The next section contains the limit behavior of
the test statistic. For computing the p-value, the consistency of bootstrap
approximations and NMCT is discussed in Section 4.3. A simulation study
on the power performance and the comparison between the bootstrap and
NMCT are reported in Section 4.4. The residual plot is also presented in this
section. Section 4.5 contains some further remarks. Proofs of the theorems in
Sections 4.2 and 4.3 are postponed to Section 4.6.

4.2 The Limit Behavior of Test Statistic

Before stating the theorem, we present the linear representation of the least
squares estimate βn first. Note that under certain regularity conditions, βn

can be written as

βn − β =
1
n

n∑
j=1

L(xj , β)εj + op(1/
√

n),

where, letting φ′
0 be the derivative of φ0 at β, L(X, β) = (E[(φ′

0)(φ
′
0)

τ ])−1 ×
φ′

0(X, β). Especially, when φ0 is the linear function

βn = S−1
n XnYn

with Xn = {x1 − x̄, · · · , xn − x̄}, Yn = {y1 − ȳ, · · · , yn − ȳ} and Sn = (XnXτ
n).

We now state the asymptotic result of Tn. Let V1(X) =
(
E[Σ−1/2(X −

E(X))(φ′
0(X, β))τ ]

)
L(X, β).

Theorem 4.2.1 Assume that the density function fε of ε exists, the deriva-
tive φ′

0(X, β) of φ0(X, β) at β is continuous and has (2 + δ)-th moment for
some δ > 0, and both the covariance matrix of φ′

0(X, β) and Σ are positive
definite. Then under H0

In(t) =
1√
n

n∑
j=1

Σ−1/2(xj − E(X))
(
I(εj ≤ t) − Fε(t)

)
+fε(t)

(
E[Σ−1/2(X − E(X))(φ′

0(X, β))τ ]
) 1√

n

n∑
j=1

L(xj , β)εj + op(1),
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and then Tn converges in distribution to a vector of Gaussian process

I = B − fε · N (4.2.1)

in the Skorohod space Dd[−∞,∞], where B is a vector of Gaussian processes
(B1, · · ·Bd)τ with the covariance function cov(Bi(t), Bi(s)) = Fε(min(t, s))−
Fε(t)Fε(s), Fε(t) and fε(t) are respectively the distribution and density func-
tions of ε, and N is a random vector with a normal distribution N(0, σ2V )
with V = E(V1V

τ
1 ). The covariance function of each component of I, I(i) say,

is that for s ≤ t

K(i)(s, t) = Fε(s) − Fε(s)Fε(t) + fε(s)fε(t)E(V (i)
1 )2

−fε(s)
∫

εI(ε ≤ t)dFεE(V (i)
1 (Σ−1/2(X − E(X)))i)

−fε(t)
∫

εI(ε ≤ s)dFεE(V (i)
1 (Σ−1/2(X − E(X)))i),(4.2.2)

where (Σ−1/2(X − E(X)))i is the i-th component of Σ−1/2(X − E(X)). The
process convergence implies that Tn converges in distribution to
T = supa aτ

( ∫
(I(t)I(t)τ )dFε(t)

)
a.

But the result of Theorem 4.2.1 does not help in determining the p-values
because the distribution of T is intractable. Monte carlo approximations will
be helpful.

4.3 Monte Carlo Approximations

We first consider bootstrap approximations. The basic bootstrap procedure
for our setup is as follows: Let (x∗

i , y
∗
i ), i = 1, · · · , n be a reference dataset, and

let β∗
n be the least squares estimator computed from this sample; a conditional

counterpart of In given {(x1, y1), · · · , (xn, yn)} is defined by

I∗
n(t) = n− 1

2

n∑
j=1

(Σ̂∗)−1/2(x∗
j − x̄∗)I(ε̂∗

j ≤ t), (4.3.1)

where ε̂∗
j ’s are the residuals based on (x∗

i , y
∗
i )’s, that is, ε̂∗

j = y∗
j − φ0(x∗

j , β
∗
n)

(or ε̂∗
j = y∗

j −(β∗
n)τx∗

j when φ0 is linear) and (Σ̂∗)−1/2 is the covariance matrix
of x∗

i ’s. The conditional counterpart of Tn will be

T ∗
n = sup

a
aτ
[ ∫

(I∗
n(t))(I∗

n(t))τdF ∗
n(t)

]
a, (4.3.2)

where F ∗
n is the empirical distribution based on ε∗

i , i = 1, · · · , n. For com-
puting the p-values, we generate m sets of data {(x∗

j , y
∗
j ), j = 1, · · · , n}(i),

i = 1, · · · , m, then compute m values of T ∗
n . The p-value is estimated by
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p̂ = k/m where k is the number of T ∗
n ’s which is larger than or equal to Tn.

For the nominal level α, when p̂ ≤ α, the null hypothesis is rejected.
There are three Monte Carlo approximations to use: Wild bootstrap,

NMCT and the classical bootstrap. We describe their algorithms below.

Option 1. Wild Bootstrap. Define

x∗
i = xi and y∗

i = φ0(xi, βn) + ε∗
i

where ε∗
i are defined as

ε∗
i = w∗

i ε̂i

and w∗
i are i.i.d. artificial bounded variables with

E(w∗
i ) = 0, Var(w∗

i ) = 1 and E|w∗|3 < ∞. (4.3.3)

The bootstrap residuals ε̂∗
i = y∗

i − φ0(xi, β
∗
n) which are used to construct the

bootstrap process I∗
n1 and then the test statistic T ∗

n1, like those in (4.3.1) and
(4.3.2).

Option 2. NMCT. Let

x∗
i = ei(xi − x̄) and ε̂∗

i = ε̂i − (
1
n

n∑
j=1

ejL(xj , βn)ε̂j)eiφ
′
0(xi, βn), (4.3.4)

where the weight variables ei are the same as those in the wild bootstrap and
L(·, ·) is defined in the estimate βn. When the model is linear, (4.3.4) reduces
to x∗

j = ej(xj − x̄) when ej is replaced by w∗
j and

ε̂∗
i = ε̂i − S−1

n (
1
n

n∑
j=1

x∗
j ε̂j)x∗

i =: ε̂i − (β∗
n)τx∗

i . (4.3.5)

The NMCT process and the resulting statistic can then be created, say
I∗
n2 and T ∗

n2.

Option 3. The Classical Bootstrap. Draw the independent bootstrap
data from the residuals ε̂i , say e∗

1, · · · , e∗
n. Define

x∗
i = xi and y∗

i = φ0(xj , βn) + e∗
i .

The bootstrap residuals e∗
i = y∗

i − φ0(xj , β
∗
n), which are used to define the

bootstrap process and the test statistic like those in (4.3.1) and (4.3.2), say
I∗
n3 and T ∗

n3.

As shown in the literature, Wild Bootstrap is a useful approximation
in model checking for regression, Stute, González Manteiga and Presedo
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Quindimil (1998) formally proved that, when an test based on the residual
marked empirical process is applied, the classical bootstrap fails to work but
the wild bootstrap works. It is also true when a test based on the squared dis-
tance between the parametric and nonparametric fit of data. See Härdle and
Mammen (1993). Interestingly the situation in our case is reversed, that is,
the classical bootstrap is consistent while the wild bootstrap is inconsistent.
The consistency of the NMCT is also true. The following theorem states the
consistency of the classical bootstrap and NMCT approximations.

Theorem 4.3.1 Under H0 and the assumptions in Theorem 2.1, we have
that with probability one both I∗

n2 and I∗
n3 converge weakly to I∗ in the Sko-

rohod space Dd[−∞,∞]. where I∗ has the same distribution as I defined in
Theorem 4.2.1

The inconsistency of the wild bootstrap is as follows.

Theorem 4.3.2 In addition to the assumptions in Theorem 2.1 assume that
w∗ = ±1 with one a half probability and the density of ε is symmetric about
the origin. Under H0, I∗

n1 does not converge in distribution to B − fε · N .

4.4 Simulation Study

4.4.1 Power Study

In order to demonstrate the performance of the proposed test procedures,
small-sample simulation experiments were performed. Since the wild boot-
strap is not consistent with our test statistic, we made a comparison among
Stute , González Manteiga and Presedo Quindimil’s (1998) test ( T ∗

S ), the
NMCT ( T ∗

n2 )(Option 2) and the classical bootstrap test ( T ∗
n3 )(Option 3).

The model was

y = aτx + b(cτx)2 + ε (4.4.1)

where x is d-dimensional covariate. The dimension d = 3, 6. When d = 3, a =
[1, 1, 2]τ and c = [2, 1, 1]τ and for 6-dimensional case a = [1, 2, 3, 4, 5, 6]τ and
c = [6, 5, 4, 3, 2, 1]τ . Furthermore, let b = 0.00, 0.3, 0.7, 1.00, 1.50 and 2.00 to
provide evidence on the power performance of the test under local alternatives.
b = 0.00 corresponds to the null hypothesis H0. The sample size n = 25 and
50. The nominal level was 0.05. In each of the 1000 replicates, 1000 bootstrap
samples were drawn.

Figure 4.1 presents the power of the tests. From it, we have three findings
on the comparison. First, looking at Figure 4.1(1) and 4.1(2), we find that with
increasing the size of sample, both T ∗

n2 and T ∗
n3 improve their performance

more quickly than T ∗
S . Figure 4.1(3) and 1(4) also indicate this tendency.

Second, in the 6-dimensional cases, T ∗
S has much higher power but cannot

maintain the size of the test. The size are 0.09(d = 6, n = 25) and 0.083(d =
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6, n = 50). Both T ∗
n2 and T ∗

n3 are a bit conservative. Third, T ∗
n2 and T ∗

n3 are
competitive with each other. As T ∗

n2 is computationally more efficient, it may
be worthwhile to recommend.
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Fig. 4.1. Plots (1) and (2) are with 3-dimensional covariate and plots (3)
and (4) are for 6-dimensional case. The solid, dot dashed and dashed lines
are respectively for the power of T ∗

S , T ∗
n2 and T ∗

n3.

4.4.2 Residual Plots

In addition to the formal test, we also consider the plots of ε̂i against the
projected covariate ατxi along the direction α selected by (4.1.5). We use
model (4.4.1) with b = 0 and b = 1 to generate n = 50 data points. b = 0
and b = 1 correspond respectively to linear and nonlinear models. Figure 4.2
presents the plots of the residuals versus the projected covariates for linear
and nonlinear model respectively when the models are fitted linearly. Plots
(1) and (3) in Figure 4.2 show that there is no clear indication of relationship
while plots (2) and (4) show some relationship.
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Fig. 4.2. The residual plots against ατx where α is determined by (4.1.5).
Plots (1) and (2) are for the 3-dimensional cases with b = 0 and b = 1 and
plots (3) and (4) are for 6-dimensional cases with b = 0 and b = 1.

4.4.3 A Real Example

We now analyze a real data set. Consider the 1984 Olympic records data of
men on various track events as reported by Dawkins (1989). Principal com-
ponent analysis has been applied to study the athletic excellence of a given
nation and the relative strength of the nation at the various running dis-
tances. For the 55 countries the winning times for men’s running events of
100, 200, 400, 800, 1,500, 5,000 and 10,000 meters and Marathon are reported
in Dawkins. It is of interest to study whether a nation whose performance
is better in running long distances may also have greater strength at short
running distances. It may be more reasonable to use the speed rather than
the winning time for the study as did Naik and Khattree (1996). Convert the
winning time to the speed defined as x1, . . . , x8. From principal component
analysis we may regard 100, 200 and 400 meters as short running distances
and 1,500 meters and longer as long running distances. A linear model was
fitted by considering the speed of the 100 meters running event (x1) as the
response and the speed of the 1,500, 5,000 and 10,000 meters and Marathon
running events (x5, . . . , x8) as covariates. The p-values of T ∗

S , T ∗
n2 and T ∗

n3 are
0.02, 0.08 and 0.01. We may have to reject the null hypothesis that a linear
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relationship between the speed of the 100 meters running event and the long
distance running events is assumed. Looking at Figure 3 which presents the
plots of the residuals versus ατx we find that Figure 4.3(1) shows some rela-
tionship. But after removing the point of Cook Islands, no clear indication of
relationship is presented. Using T ∗

S , T ∗
n2 and T ∗

n3 again for the data except that
of Cook Islands, the p-values are 0.57, 0.64 and 0.06 respectively. Therefore,
the linear model may be tenable. We may regard the point of Cook Islands
as an outlier.
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Fig. 4.3. (1) and (2) are the residual plots against ατx where α is deter-
mined by (4.1.5). Plots are for the countries with and without Cook Islands
respectively.

4.5 Concluding Remarks

In this chapter, we recommend a dimension-reduction approach for model
checking for regression models. The formal test and the residual plots can be
constructed in terms of the projected covariate. The implementation is very
easy. A negative aspect of our approach is that the test may highly rely on
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the assumption of independence between the covariate X and the error ε.
This suggests that the test may be difficult to apply to the case where only
E(ε|x) = 0 is assumed. Furthermore, an interesting finding is that the wild
bootstrap is inconsistent, but the NMCT and the classical bootstrap work.
This means that the use of bootstrap approximations needs to be delicate.

4.6 Proofs

For simplifying the presentation of proofs, throughout this section we as-
sume no loss of generality that X is scalar and φ0(X, β) is a linear func-
tion, βτX. We can assume so because asymptotically φ0(X, βn) − φ0(X, β) =
(βn −β)τφ′

0(X, β) and βn −β has an asymptotically linear representation like
that in the linear model case, hence the proof for the general φ0 is almost the
same as that for linear function. We also assume that Σ is the identity one
and Σ̂ is replaced by the identity matrix. This replacement does not affect
the asymptotic results at all.

We first present a lemma. The idea of proving it will serve as an useful
tool for all proofs of the theorems.

Lemma 4.6.1 Assume that for any sequence θn = O(n−c) for some c > 1/4,
the density function fε is bounded and E||x||2+δ < ∞ for some δ > 0. Then

sup
θn,t

Rn(θn, t) = sup
θn,t

| 1√
n

n∑
j=1

(xj − Ex){I(εj − θτ
n(xj − Ex) ≤ t) − I(εj ≤ t)

−Fε(t + θτ
n(xj − Ex)) + Fε(t)}|

=: sup
θn,t

| 1√
n

n∑
j=1

gn(xj , εj , θn, t)| −→ 0, a.s. (4.6.1)

as n → ∞.

Proof. For any η > 0, application of Pollard’s symmetrization inequality
(Pollard, 1984, p. 14) yields for large n

P{sup
θn,t

|Rn(θn, t)| ≥ η}

≤ 4P{sup
θn,t

| 1√
n

n∑
j=1

σjg(xj , εj , θn, t)| ≥ η

4
} (4.6.2)

provided that for each t and θn

P{|Rn(θn, t)| ≥ η

2
} ≤ 1

2
.

By the Chebychev inequality and the conditions imposed, the LHS of (4.6.2)
is less than or equal to 4θncov(x)/η. Hence, (4.6.2) holds for all large n.
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To further bound the RHS of (4.6.2) we recall that the class of all func-
tions g(·, ·, θn, t) discriminates finitely many points at a polynomial rate; see
Gaenssler (1983). An application of the Hoeffding inequality ( e.g. see Pollard,
1984, p.16) yields for some w > 0

P {sup
θn,t

| 1√
n

n∑
j=1

σjg(xj , εj , θn, t)| ≥ η

4
|x1 · · ·xn, ε1 · · · εn}

≤
(

cnw sup
θn,t

exp

[
− η2

32 supt
1
n

∑n
j=1 g2(xj , εj , θn, t)

])
∧ 1 (4.6.3)

where “ ∧ ” means the minimum. To bound the denominator in the power,
similar to Lemma II. 33 in Pollard (1984, p. 31), we derive that for any c1 > 0
there exists a c2 > 0

sup
θn,t

1
n

n∑
j=1

|I(εj − θτ
n(xj − Ex) ≤ t) − I(εj ≤ t)|c1 = op(n−c2). (4.6.4)

By the Hölder inequality, the sample mean of g2(·, ·, θn, t) is less than or
equal to a power of n−1 ∑n

j=1(xj − Ex)2+δ times n−c2 for some c2 > 0. This
shows that the RHS of (4.6.3) goes to zero. Integrate out to get the result.
Lemma 4.6.1 is proved.

Proof of Theorem 4.2.1. Slightly modifying the argument of proving
Koul’s (1992) theorem 2.3.3 or applying Lemma 4.6.1, we can prove the the-
orem. The details are omitted.

Proof of Theorem 4.3.1 We deal with I∗
n2 first. Recall I∗

n2 has the form,
together with (4.3.5),

I∗
n2(t) =

1√
n

n∑
j=1

x∗
j{I(ε̂j − (θ∗

n)τx∗
j ≤ t),−F ∗

n(t)}

where

F ∗
n(t) =

1
n

n∑
j=1

I(ε̂j − (θ∗
n)τx∗

j ≤ t).

First of all, we can obtain that for any θn with a constraint that ||θn|| ≤
c log n/n

1
2 and for almost all sequences {(x1, y1), · · · , (xn, yn), · · ·}

R∗
n(t) =

1√
n

n∑
j=1

{[x∗
j (I(ε̂j − θτ

nx∗
j ≤ t) − I(ε̂j ≤ t))

−Ew[x∗
j (I(ε̂j − θτ

nx∗
j ≤ t) − I(ε̂j ≤ t))]}

−→ 0 a.s. (4.6.5)
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uniformly on t, where Ew stands for the integration over the variable w∗. The
argument is very similar to that used to prove Lemma 4.6.1 by noticing that
θ∗

n = Op(1/
√

n) and letting θn = θ∗
n. Decompose I∗

n2 as

I∗
n2(t) = R∗

n(t) + R∗
n1(t) + R∗

n2(t) − R∗
n3(t),

where

R∗
n1(t) =

1√
n

n∑
j=1

x∗
j{I(ε̂j ≤ t) − Fn(t)},

R∗
n2(t) =

1√
n

n∑
j=1

{Ewx∗
j [I(ε̂j − (θ∗

n)τx∗
j ≤ t) − I(ε̂j ≤ t)]}, (4.6.6)

R∗
n3(t) =

1√
n

n∑
j=1

Ew{x∗
j [F

∗
n(t) − Fn(t)]}.

Hence we need to show that, combining with (4.6.5), R∗
n1 converges in dis-

tribution to the Gaussian process B, R∗
n2 converges in distribution to fε · N

and R∗
n3 tends to zero in probability. Invoking Theorem VII 21 of Pollard

(1984, p. 157), the convergence of R∗
n1 can be derived for almost all sequences

{(x1, y1), · · · , (xn, yn), · · ·}. The basic steps are as follows: First, we show that
the covariance function of R∗

n1 converges almost surely to that of B. This
is easy to do via a little elementary calculation. Second, we check that the
conditions in Pollard’s Theorem VII. 21 are satisfied, mainly condition (22)
on p. 157 (Pollard, 1984). Similar to Lemma 4.6.1 the class of all functions
x∗(I(ε̂ ≤ ·)−Fn(·)) (this class depends on n) discriminates finitely many point
at a polynomial rate, see Gaenssler (1983). The condition (22) is satisfied by
applying Lemma VII 15 of Pollard (1984, p. 150) ( the definition of covering
integral is also on p. 150). Owing to the above description, we omit the details
of the proof. The convergence of R∗

n3 is much easier to obtain as long as we
notice that

√
n(F ∗

n − Fn) and 1√
n

∑n
j=1 x∗

j has a finite limit, the conclusion
then holds. The work remaining is to deal with R∗

n2. Let

R∗
n21(t)

= Ew

{
1√
n

n∑
j=1

x∗
j [(I(ε̂j − (θ∗

n)τx∗
j ≤ t) − Fε(t + (βn − β)τ (xj − x̄) + (θ∗

n)τx∗
j )

−(I(ε̂j ≤ t) − Fε(t + (βn − β)τ (xj − x̄)))]

}

=: Ew

{
1√
n

n∑
j=1

x∗
j [...]

}
.

Noticing ε̂ = ε − (βn − β)τ (xj − x̄) and following Lemma II. 33 of Pollard
(1984, p. 31), we have that
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sup
t

1
n

n∑
j=1

(x∗
j )

2[...]2 = o(n−c2) a.s.,

for almost all sequences {(x1, y1), · · · , (xn, yn), · · ·} we then easily derive that,
similar to Lemma 4.6.1, R∗

n21 converges in probability to zero uniformly on t.
Note that Ew

[
x∗

j (I(ε̂j ≤ t) − Fε(t + (βn − β)(xj − x̄)))
]

= 0. Hence

R∗
n2(t) − R∗

n21(t)

=
1√
n

n∑
j=1

Ew

[
x∗

j{Fε(t + (βn − β)τ (xj − x̄) + (θ∗
n)τx∗

j )

−Fε(t + (βn − β)τ (xj − x̄))}
]

=
1√
n

n∑
j=1

Ew

[
x∗

j (θ
∗
n)τx∗

j

]
fε(t) + op(1)

= Ew

[
1√
n

n∑
j=1

(w∗)2(xj − x̄)(xj − x̄)τ (θ∗
n)

]
fε(t) + op(1)

=: Ew[...]fε(t) + op(1)

converges in distribution to fε ·N as long as we note the fact that the sum [...]
is asymptotically equal to 1√

n

∑n
j=1 x∗

j ε̂j and then is asymptotically normal by
the CLT for almost all sequences {(x1, y1), · · · , (xn, yn), · · ·}. The convergence
of I∗

n2 is proved.
We now turn to the proof of the convergence of I∗

n3. Note that

I∗
n3(t) =

1√
n

n∑
j=1

(xj − Ex){I(ε̂∗
j − (β∗

n − βn)τ (xj − x̄) ≤ t) − F ∗
n(t)}

where

F ∗
n(t) =

1
n

n∑
j=1

I(ε̂∗
j − (β∗

n − βn)(xj − x̄) ≤ t).

Similar to (4.6.6), decompose I∗
n3 as

I∗
n2(t) = J∗

n(t) + J∗
n1(t) + J∗

n2(t) − J∗
n3(t)

where

J∗
n(t) =

1√
n

n∑
j=1

{(xj − Ex)(I(ε̂∗
j − θτ

n(xj − x̄) ≤ t) − I(ε̂∗
j ≤ t)

−E∗[I(ε̂∗
j − θτ

n(xj − x̄) ≤ t) − I(ε̂∗
j ≤ t)])},

J∗
n1(t) =

1√
n

n∑
j=1

(xj − Ex){I(ε̂∗
j ≤ t) − Fn(t)},
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J∗
n2(t) =

1√
n

n∑
j=1

(xj − Ex)E∗[I(ε̂∗
j − θτ

n(xj − x̄) ≤ t) − I(ε̂∗
j ≤ t)]},

J∗
n3(t) =

1√
n

n∑
j=1

(xj − Ex)E∗[F ∗
n(t) − Fn(t)]}. (4.6.7)

Similar to (4.6.5) we can derive that, for any θn with the constraint that
||θn|| ≤ c log n/n

1
2 and for almost all sequences {(x1, y1), · · · , (xn, yn), · · ·},

J∗
n(t) −→ 0 a.s.

uniformly on t, where E∗ stands for the integration on the bootstrap variable
ε̂∗

i . Along with the arguments used for proving I∗
n2, we can verify that J∗

n1
converges in distribution to B, J∗

n2 converges in distribution to fε ·N and J∗
n3

tends to zero in probability. We omit the details of the proof.

Proof of Theorem 4.3.2 The argument of the proof is similar to that
for Theorem 3.1, hence we only present an outline. Let

R∗
n4 =

1√
n

n∑
j=1

(xj − x̄){I(ε∗
j − (β∗

n − βn)τ (xj − x̄) ≤ t) − I(ε∗
j ≤ t)}.

Consider R∗
n4 − Ew∗R∗

n4 first where

Ew∗R∗
n4 =

1√
n

n∑
j=1

(xj−x̄)Ew∗
j
{I(w∗

j ε̂j−(β∗
n−βn)τ (xj−x̄) ≤ t)−I(w∗

j ε̂j ≤ t)},

and Ew∗ is the expectation over w∗. Since β∗
n −βn = O(log n/

√
n) a.s., similar

to Lemma 4.6.1, for almost all sequences {(x1, y1) · · · , (xn, yn), · · ·}, we can
verify that

R∗
n4(t) − Ew∗R∗

n4(t) −→ 0 a. s.

uniformly on t ∈ R1. Decompose I∗
n1(t) as

I∗
n1(t) = R∗

n4(t) − Ew∗R∗
n4(t) + R∗

n5(t) + Ew∗R∗
n4(t)

where R∗
n5(t) = 1√

n

∑n
j=1(xj − x̄)I(ε∗

j ≤ t). We now show that Ew∗R∗
n4 con-

verges to −fε · N . Let Eε,w∗ denote the expectation on ε and w∗. Define

Eε,w∗R∗
n41(t)

=
1√
n

n∑
j=1

(xj − x̄)[Eεj ,w∗
j
I(w∗

j ε̂j − (β∗
n − βn)(xj − x̄) ≤ t) − Eεjw∗

j
I(w∗

j ε̂j ≤ t)].

Then
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Ew∗R∗
n4(t) = {Ew∗R∗

n4(t) − Eε,w∗R∗
n41(t)} + Eε,w∗R∗

n41(t).

Along with the argument of proving Lemma 4.6.1 again, we can derive that
{Ew∗R∗

n4(t) − Eε,w∗R∗
n41(t)} −→ 0 a.s. uniformly on t ∈ R1. Now con-

sider Eε,w∗R∗
n41(t). Note that for each j, Ew∗

j
I(w∗

j ε̂j ≤ t) = 1/2I(ε̂j ≤
t) + 1/2I(−ε̂j ≤ t) and then

Eεj ,w∗
j
I(w∗

j ε̂j ≤ t) =
1
2
Fε

( t − (βn − β)τ
(j)(xj − x̄)

1 − (xj − x̄)τS−1
n (xj − x̄)

)
+

1
2

(
1 − Fε

( −t + (βn − β)τ
(j)(xj − x̄)

1 − (xj − x̄)τS−1
n (xj − x̄)

))

where (βn − β)(j) = S−1
n

∑
i �=j(xj − x̄)εi. Taylor expansion yields that

Eεw∗(R∗
n41(t))

= − 1
2
√

n

n∑
j=1

(xj − x̄)(xj − x̄)τ (βn − β)(fε(t) + (fε(−t)) + op(1) a.s.

= −fε(t) · N + op(1) a.s.

The last equation is due to the symmetry of fε. Now we are in the position to
show that R∗

n5 does not converge in distribution to the Gaussian process B
so that the conclusion of the theorem is reached. We can see this immediately
by calculating the variance of R∗

n5 at each t. Actually,

lim
n→∞ Var(R∗

n5(t)) =
1
4
E(I(ε ≤ t) − I(−ε ≤ t))2

which is not equal to Var(B(t)) = Fε(t)(1− (Fε(t)). The proof of the theorem
is completed.



5

Checking the Adequacy of a Partially Linear
Model

5.1 Introduction

In this chapter, we consider the hypothesis testing for a partially linear model.
It is defined by

Y = β′X + g(T ) + ε

where X is d-dimensional random vector, T is d1-dimensional, β is an unknown
parameter vector of d-dimension, g(·) is an unknown measurable function,
and the conditional expectation of ε given (T, X) equals zero. Without loss of
generality, it is assumed throughout this chapter that X has zero mean. There
are many proposals in the literature for the estimation of β and g. Among
others, for instance, Cuzick (1992), Engle et al. (1986), Mammen and van de
Geer (1997), Speckman (1988).

When fitted with independent observations (t1, x1, y1), · · · , (tn, xn, yn),
checking the adequacy of the above fitted model is important and relevant. In
this chapter, we consider the null hypothesis as

H0 : E(Y |X = ·, T = ·) = α + β′ · +g(·) , for some α, β and g (5.1.1)

against the saturated alternative

H1 : E(Y |X = ·, T = ·) �= α + β′ · +g(·) , for any α, β and g

For parametric models, many proposals have been recommended in the
literature. For instance, among others, Dette (1999) suggested a test based
on the difference of variance estimators, Eubank and Hart (1992) studied the
test of score type, Eubank and LaRiccia (1993) proposed a method through
variable selection, Härdle and Mammen (1993) considered a test statistic of
difference between the parametric and nonparametric fit, Stute (1997) investi-
gated a nonparametric principal component decomposition and derived some
optimal tests when the covariate is one-dimensional, Stute, González Man-
teiga and Presedo Quindimil (1998) applied the test based on residual-marked
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process, Stute, Thies and Zhu (1998) and Stute and Zhu (2002) proposed an
innovation approach to determine p-values conveniently and Fan and Huang
(2001) suggested an adaptive Neyman test and Stute and Zhu (2005) recom-
mended a score type test for single-index models. Hart (1997) contains fairly
comprehensive references. Most of materials come from Zhu and Ng (2003).

Our test is based on a residual marked empirical process. In the litera-
ture, there are several approaches available for constructing test statistics.
The main reasons that we use the residual-marked process approach are as
follows: since the setting we study is with multivariate covariate, the locally
smoothing test constructed by the difference of parametric and nonparametric
fits (Härdle and Mammen (1993)) may suffer dimensionality problems because
the local smoothing for the nonparametric fit is involved. As for the adaptive
Nyeman test (Fan and Huang (2001)), we have not yet known whether it is
an asymptotic distribution free test because a nonparametric estimate of g(·)
would make the asymptotic null distribution intractable. Moreover, its power
performance highly depends on the smoothness of εj = yj − β′xj − g(tj) as a
function of j. As Fan and Huang (2001) pointed out, making such a smooth-
ness with multivariate predictors is very challenging.

On the other hand, although the globally smoothing tests based on residual
marked empirical process have the drawback that the tests are less sensitive
to the alternatives of regression functions with the form of oscillation, namely
high-frequency, it still shares some desired features as

• the test is consistent for all global alternatives;
• the test is able to detect local alternatives of the order arbitrarily close to

n−1/2;
• the test is the asymptotically distribution-free (so that the information on

the error distribution is not required);
• only lower-dimensional nonparametric function estimate is required for the

computation.

As known, the rate of n−1/2 is the possibly fastest achievable rate for lack
of fit tests in the literature. The adaptive optimal rate of the adaptive Neyman
test is O(n−2s/(4s+2)(log log n)s/(4s+1)) for some s > 0 (see Spokoiny (1996)
or Fan and Huang (2001)). This means that, theoretically, the test proposed
is more sensitive to some local alternative. The fourth feature is desired for
multivariate regression problem.

Furthermore, since the exact or limiting null distribution of the test sta-
tistic is intractable for computing p-values, we also have to use Monte Carlo
approximation, like we do in Chapter 4. In the circumstance we study herein,
the situation is complicated. The classical bootstrap approximation has been
proved to be inconsistent in the parametric case (see Stute, González Manteiga
and Presedo Quindimil (1998)). Even for the wild bootstrap approximation,
we are not sure whether it is consistent or not because in related works of test-
ing for the adequacy of parametric models in Chapter 4 and heteroscedasticity
checking in Chapter 6, it is shown not to work.
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In order to tackle this problem, we apply the NMCT proposed in Sec-
tion 1.2.3 of Chapter 1.

5.2 A Test Statistic and Its Limiting Behavior

5.2.1 Motivation and Construction

For any weight function w(·), let

U(T, X) = (X − E(X|T )), V (T, Y ) = (Y − E(Y |T )), (5.2.1)

and

β = S−1E[U(T, X)V (T, Y )w2(T )], γ(t) = E(Y |T = t), (5.2.2)

with a positive definite matrix S = E(UU ′w2(T )). Then it is clear that H0 is
true if and only if

E(Y |X, T ) = β′U(T, X) + γ(T ).

That is, H0 holds if and only if

E[(Y − β′U(T, X) − γ(T ))|(X, T )] = 0.

This implies that, for all t, x,

E[Y − β′U(T, X) − γ(T )]w(T )I(T ≤ t, X ≤ x) = 0, (5.2.3)

where “X ≤ x” means that each component of X is less than or equal to
the corresponding component of x and similarly for “T ≤ t”. The empirical
version of LHS of (5.2.3) based on these observations is defined as

1
n

n∑
j=1

[yj − β′U(tj , xj) − γ(tj)]w(tj)I(tj ≤ t, xj ≤ x)

which should be close to zero under H0. When all unknowns are replaced by
consistent estimators, we can have the residuals ε̂j = yj − β̂′Û(tj , xj) − γ̂(tj).
The estimation of the unknown parameter β and functions γ(·) and E(X|T =
·) will be studied in the next section. We consider a residual marked empirical
process

Rn(t, x) =
1√
n

n∑
j=1

ε̂jw(tj)I(tj ≤ t, xj ≤ x). (5.2.4)

The proposed test statistic is defined as

CVn =
∫

(Rn(T, X))2dFn(T, X) (5.2.5)
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where Fn is the empirical distribution based on {(t1, x1), · · · , (tn, xn)}. We
should reject the null hypothesis for the large values of CVn.

It is worthwhile to mention that CVn is not a scale-invariant statistic.
Usually a normalizing constant is needed, say the estimator of the limiting
variance. When the limiting null distribution of the test, if available, is used
for p-values, say Fan and Huang (2001), the selection of a good estimator of
variance becomes important under the consideration of power performance.
It is however not easy to choose. But in our approximation, we do not need
such a normalizing constant because in the NMCT approximation, it keeps
constant for given (ti, xi, yi)’s. Therefore it does not have any impact on the
conditional distribution of the NMCT test statistic. The detail is presented
in Section 3. This should be another merit of the NMCT approximation.

5.2.2 Estimation of β and γ

From (5.2.1) and (5.2.2), we can construct estimators. Define for i = 1, · · · , n,

f̂i(ti) =
1
n

n∑
j �=i

kh(ti − tj),

Êi(X|T = ti) =
1
n

n∑
j �=i

xjkh(ti − tj)/f̂i(ti),

Êi(Y |T = ti) =
1
n

n∑
j �=i

yjkh(ti − tj)/f̂i(ti),

Û(ti, xi) = xi − Êi(X|T = ti), V̂ (ti, yi) = yi − Êi(Y |T = ti),

Ŝ = Ê(Û Û ′w2(T )) =
1
n

n∑
j=1

Û(tj , xj)Û(tj , xj)′w2(tj)

where kh(t) = (1/h)K(t/h) and K(·) is a kernel function defined in Assump-
tions 5.5.1. The resulting estimators are

β̂ = (Ŝ)−1 1
n

n∑
j=1

Û(tj , xj)V̂ (tj , yj)w2(tj), γ̂(ti) = Êi(Y |T = ti). (5.2.6)

We have the following asymptotic results about β̂ and γ̂.

Theorem 5.2.1 Under conditions 1–6 listed in Section 5.5.1, we have that

√
n(β̂ − β) = S−1 1√

n

n∑
j=1

U(tj , xj)εjw
2(tj) + Op([

1
h
√

n
+ h2√n]1/2)

(5.2.7)
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converges in distribution to N(0, S−1E[U(T, X)U(T, X)′w4(T )ε2]S−1), where
N(0, Λ) stands for the normal distribution with mean zero and covariance
matrix Λ and for any subset [a,b] with 0 < a < b < 1,

sup
a≤t≤b

|γ̂(t) − γ(t)| = Op(
1√
nh

+ h). (5.2.8)

5.2.3 Asymptotic Properties of the Test

We now state the asymptotic properties of Rn and CVn. Let

J(T, X, Y, β, U, S, F (X|T ), t, x)

= εw(T )
{

I(T ≤ t, X ≤ x) − E
[
I(T ≤ t, X ≤ x)U(T, X)′w(T )

]
S−1U(T, X)

−F (X|T )I(T ≤ t)
}

,

where F (x|T ) is the conditional distribution of X given T .

Theorem 5.2.2 Under conditions 1–6 in Section 5.5.1, we have that under
H0,

Rn(t, x) =
1√
n

n∑
j=1

J(tj , xj , yj , β, U, S, F (xj |tj), t, x, ) + op(1)

converging in distribution to R in the Skorokhod space D[−∞, +∞](d+1),
where R is a centered continuous Gaussian process with the covariance func-
tion, for any (t1, x1), (t2, x2)

E(R(t1, x1)(R(t2, x2)) (5.2.9)
= E

(
J(T, X, Y, β, U, S, F (X|T ), t1, x2, )J(T, X, Y, β, U, S, F (X|T ), t2, x2)

)
.

Therefore, CVn converges in distribution to CV :=
∫

R2(T, X)dF (T, X) with
F (·, ·) being the distribution function of (T, X).

We now investigate how sensitive the test is to alternatives. Consider a
sequence of models indexed by n

E(Y |X, T ) = α + β′X + g(T ) + g1(T, X)/
√

n. (5.2.10)

Theorem 5.2.3 In addition to the conditions of Theorem 5.2.1, assume that
g1(T, X) has zero mean and satisfies the condition: there exists a neighborhood
of the origin, U , and a constant c > 0 such that for any u ∈ U

|E(g1(T, X)|T = t + u) − E(g1(T, X)|T = t)| ≤ c|u|, for all t and x.
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Then under the alternative of (5.2.10), Rn converges in distribution to R+g1∗,
where

g1∗(t, x)

= E
{

[g1(T, X) − E(g1(T, X)|T )]w(T )I(T ≤ t, X ≤ x)
}

−E
{

U(T, X)′(g1(T, X) − E(g1(T, X)|T ))w2(T )}S−1

×E
{

U(T, X)w(T )I(T ≤ t, X ≤ x)
}

is a non-random shift function and thus CVn converges in distribution to∫
(B(T, X) + g1∗(T, X))2dF (T, X).

From the expression of g1∗, we realize that it cannot be null unless
g1(T, X) = β′

0X. Hence the test CVn is capable of detecting the local al-
ternative distinct arbitrarily close to n−1/2 from the null. From the proof of
the theorem in the Appendix, it is easy to see that the test is consistent against
any global alternative such that g1(T, X)w(T ) is not constant function with
respect to T ∈ [a, b] and X.

5.3 The NMCT Approximation

Let

J1(T, X, Y, t, x, β) = εw(T )I(T ≤ t, X ≤ x),
J2(T, X, Y, t, x, U, S) = εw2(T )E[U(T, X)′w(T )I(T ≤ t, X ≤ x)]S−1U(T, X),
J3(T, X, Y, t, x, β, FX|T ) = εw(T )F (X|T )I(T ≤ t),

then

J(T, X, Y, t, x, β, U, S, FX|T )
= J1(T, X, Y, t, x) − J2(T, X, Y, U, S, t, x) − J3(T, X, Y, β, F (X|T ), t, x).

From Theorem 5.2.2, we have that asymptotically

Rn(t, x) =
1√
n

n∑
j=1

J(tj , xj , yj , β, U, S, Fxj |tj
, t, x),

Therefore, we can use the NMCT approximation in Subsection 1.2.3. That
is, we consider the conditional counterpart of Rn and the procedure of deter-
mining p-values as follows:

• Step 1. Generate random variables ei, i = 1, ..., n independent with mean
zero and variance one. Let En := (e1, · · · , en) and define the conditional
counterpart of Rn as
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Rn(En, t, x) =
1√
n

n∑
j=1

ejJ(tj , xj , yj , β̂, Û , Ŝ, F̂xj |tj
, t, x, ). (5.3.1)

where β̂, Û , Ŝ, F̂ are consistent estimators of the unknowns in Rn. The
resultant conditional test statistic is

CVn(En) =
∫

(Rn(En))2Fn(t, x). (5.3.2)

• Step 2. Generate m sets of En, say E
(i)
n , i = 1, ..., m and then to get m

values of CVn(En), say CVn(E(i)
n ), i = 1, ..., m.

• Step 3. The p-value is estimated by p̂ = k/(m+1) where k is the number
of CVn(E(i)

n )’s which are larger than or equal to CVn. Reject H0 when
p̂ ≤ α for a designed level α.

The following result states the consistence of the approximation.

Theorem 5.3.1 Under either H0 or H1 and the conditions in Theorem 5.2.2,
we have that for almost all sequences {(t1, x1, y1), · · · , (tn, xn, yn), · · ·}, the
conditional distribution of Rn(En) converges to the limiting null distribution
of Rn.

Remark 5.3.1 The conditional distribution of CVn(En) serves for determin-
ing p-values of the test; we naturally hope that the conditional distribution can
well approximate the null distribution of the test statistic no matter whether
the data are under either the null or the alternative. On the other hand, as
we do not know the underlying model of the data, when a Monte Carlo ap-
proximation is applied, we would take the risk that under the alternative the
conditional distribution may be far away from the null distribution of the test.
If so, it will make the determination of the p-values inaccurate and deteriorate
the power performance. However, Theorem 5.3.1 indicates that the conditional
distribution based on the NMCT approximation could get rid of this problem
to a certain extent.

Remark 5.3.2 We now give some details to explain why we need not choose
a normalizing constant in constructing the test statistic. In view of Theo-
rem 5.2.1, we know that a normalizing constant could be

Cn = sup
t,x

1
n

n∑
j=1

(
J(tj , xj , yj , β̂, Û , Ŝ, F̂xj |tj

, t, x)
)2

,

which is the supremum of the sample variance of J(T, X, Y, β, U, S, FX|T , t, x, )
over t and x. Looking at (5.3.1), we realize that it keeps constant when the
(ti, xi, yi)’s are given. Therefore if this normalizing constant is used in the test
statistic, that is, the statistic is CVn/Cn, then the Monte Carlo value of this
will be CVn(En)/Cn. For determining p-values, it equivalent to CVn and its
conditional counterpart CVn(En).
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5.4 Simulation Study and Example

5.4.1 Simulation Study

In the simulations we conducted, the underlying model was

y = βx + bx2 + (t2 − 1/3) +
√

12(t − 1/2)ε (5.4.1)

where t is uniformly distributed on [0,1], x and ε are random variables. We
considered four cases: 1). Uni-Uni: both x and ε are uniformly on [-.05, 0.5]; 2).
Nor-Uni: standard normal x and uniform ε on [-0.5, 0.5]; 3). Nor-Nor: standard
normal x and standard normal ε; 4). Uni-Nor: uniform x on [-0.5, 0.5] and
standard normal ε. The empirical powers of these four cases are plotted in
Figure 5.1. In the simulations, we chose β = 1 and b = 0.0, 0.5, 1.0, 1.5 and 2.0
for showing the power performance for different alternatives. Note that b = 0.0
corresponds to H0. The sample size was 100 and the nominal level was 0.05.
The experiment was performed 3000 times. We chose K(t) = (15/16)(1 −
t2)2I(t2 ≤ 1) as the kernel function; it has been used by, for example, Härdle
(1990) for estimation and Härdle and Mammen (1993) for hypothesis testing.
Bandwidth selection is a concern in hypothesis testing. Fan and Li (1996),
a relevant work, did not discuss this issue at all. Gozalo and Linton (2001)
employed generalized cross-validation (GCV) to select the bandwidth without
arguing its use. Eubank and Hart (1993) stated that with homoscedastic errors
GCV is useful, while with heteroscedastic errors its usefulness is not clear.
Selecting a bandwidth in hypothesis testing is still an open problem and is
beyond the scope of this chapter. In our simulation, in order to obtain some
insight on how the bandwidth should be chosen, we combined GCV with a
grid search. We first computed the average value of h, hegcv, selected by GCV
over 1000 replications, then we performed a grid search over [hegcv-1, hegcv+1].
For the cases with uniform error, h = 0.30 worked best, with h = 0.57 best
for the cases with normal error. The size is close to the target value of 0.05.
The following table only reports the results with these h’s.

Table 5.1. Empirical powers of test CVn with α = 0.05
b 0.00 0.50 1.00 1.50 2.00

Uni-Uni case h = 0.30 0.0460 0.2350 0.4880 0.7940 0.9600
hegcv 0.0440 0.2370 0.4970 0.7950 0.9570

Nor-Uni case h = 0.30 0.0560 0.6500 0.9800 1.0000 1.0000
hegcv 0.0540 0.6200 0.9600 1.000 1.000

Nor-Nor case h = 0.57 0.0450 0.3350 0.4410 0.5100 0.6040
hegcv 0.0450 0.3550 0.4440 0.5130 0.6060

Uni-Nor case h = 0.57 0.0600 0.0700 0.1000 0.1900 0.2600
hegcv 0.057 0.0700 0.0800 0.1800 0.2300

We considered a comparison with Fan and Li’s (1996) test (FL). Since the
FL test involves kernel estimation with all covariates including t, we used a
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product kernel, each factor of which was K(t) = (15/16)(1 − t2)2I(t2 ≤ 1). In
our initial simulation for the FL test, we were surprised to find that the test
had almost no power. We found that the estimate of variance being used has
severe influence on power performance since, under the alternatives, its value
gets fairly large. Based on this observation, we used the estimate of variance
under H0, with some constant adjustment so as to maintain the significance
level. The results of the power are reported in Figure 5.1. Since we know
of no other tests for partial linearity except the FL test, we also included a
comparison with the adaptive Neyman test of Fan and Huang (2001), who
reported that the test was able to detect nonparametric deviations from a
parametric model with Gaussian error. The estimate of the variance is also
the one under the null hypothesis. In Figure 5.1, Adj-FL and Adj-FH stand,
respectively, for the FL test and Fan and Huang’s test with the adjustment of
variance estimation. For ease of the comparison, we plot the power functions
in Figure 5.1, which is put at the end of this chapter.
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Fig. 5.1. In all plots, the solid line is for the test CVn with a combined search
of GCV and grid points; the dashdot is for the ADJ-FH test; the star is for the
ADJ-FL test.
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Looking at Figure 5.1(1) – (4), for uniform x, CVn has higher power than
Adj-FL and Adj-FH. The adaptive Neyman test Adj-FH works well with
the normal covariate x, see Figure 5.1(2) and (3), while our test does not
perform well in this case. After the adjustment, Adj-FL is very sensitive to
the alternative in the Nor-Uni case. It seems that there is no uniformly best
test here.

5.4.2 An Example

The data are the depths and locations of n = 43 earthquakes occurring near
the Tonga trench between January 1965 and January 1966 (see Sykes, Isacks
and Oliver (1969)). The variable X1 is the perpendicular distance in hundreds
of kilometers from a line that is approximately parallel to the Tonga trench.
The variable X2 is the distance in hundreds of kilometers from an arbitrary
line perpendicular to the Tonga trench. The response variable Y is the depth of
the earthquake in hundreds of kilometers. Under the plate model, the depths
of the earthquakes will increase with distance from the trench and the scatter
plot of the data in Figure 5.2 shows this to be the case. Our purpose is
to check whether the plate model is linear or not. Looking at Figure 5.2
we find that the plots of Y against X1 indicate an apparent linear relation
with heteroscedasticity, while that between Y and X2 is not very clear. We
find that a linear model is tenable for Y against X1 with the fitted value
Ŷ = −0.295 + 0.949X1, while the linear model for Y against X2 is rejected.
If we try a linear model for Y against both X1 and X2, Y = β̂0 + β̂τX where
X = (X1, X2)τ , Figure 5.2 (5) and (6) would support the linearity between
Y and X, and the residual plot against β̂τX shows a similarity to that of
Y against X1 in Figure 5.2 (2). This finding may be explained as a greater
impact on Y by X1 than by X2. However in Figure 5.2 (4), we can see that
there is some curved structure between the residuals and X2. The effect of X2
is not negligible. These observations lead to a more complicated modeling.
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Fig. 5.2. (1), (3) and (5) are scatter plots of Y against X1, X2 and β̂τX, where
β̂ is the least squares estimator of β; (2), (4) and (6) are the residual plots against
X1, X2 and β̂τX when a linear model is used.

A partially linear model Y = β0+β1X1+g(X2)+ε = β0+β1U +r(X2)+ε,
with U = X1−E(X1|X2), provides some reasonable interpretation. Looking at
Figure 5.3 (b), we would have E(X1|X2) a nonlinear function of X2. Checking
Figure 5.3 (c), (Y − β0 − βU) should be nonlinear. The residual plot against
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X2 in this modeling shows that there is no clear indication of relation between
the residual and X2. Using the test suggested in the present chapter, we have
Tn = 0.009 and the p-value is 0.90. A partial linear model is tenable.
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Fig. 5.3. (a). Scatter plot of Y against X2; (b). Scatter plot of X1 against X2

and the fitted curve Ê(X1|X2) (the solid line); (c). Scatter plot of Y − β0 − βU
where U = X1 − E(X1|X2) and the fitted curve of E(Y |X2) (the solid line); (d).
The residual plot against X2 when the data are fitted by partially linear model
Y = β0 + βX1 + g(X2).

5.5 Appendix

5.5.1 Assumptions

The following conditions are required for the above theorems.
1) Write the first derivative of E(Y |T = t) as E(1)(Y |T = t). Assume that
E(1)(Y |T = t), E(X|T = t) and the conditional distribution function of X
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given T = t, F (x|t) say, all satisfy the following condition: there exists a
neighborhood of the origin, say U , and a constant c > 0 such that for any
u ∈ U and all t and x

|E(X|T = t + u) − E(X|T = t)| ≤ c|u|;
|E(1)(Y |T = t + u) − E(1)(Y |T = t)| ≤ c|u|;

|F (x|t + u) − F (x|t)| ≤ c|u|. (5.5.1)

2) E|Y |4 < ∞ and E|X|4 < ∞.
3) The continuous kernel function K(·) satisfies the following properties:

a) the support of K(·) is the interval [−1, 1];
b) K(·) is symmetric about 0;
c)

∫ 1
−1 K(u)du = 1, and

∫ 1
−1 |u|K(u)du �= 0.

4) As n → ∞ √
nh2 → 0 and

√
nh → ∞

5) E(ε2|T = t, X = x) ≤ c1 for some c1 and all t and x.
6) The weight function w(.) is bounded and continuous on its support set [a,b]
with −∞ < a < b < ∞ on which the density function f(·) is bounded away
from zero.

Remark 5.5.1 For the conditions imposed, we can see conditions 1) and 3)
are typical for convergence rate of the involved nonparametric estimates. Con-
dition 2) is necessary for asymptotic normality of a least squares estimate.
Condition 4) ensures the convergence of the test statistic. Condition 6) is to
avoid the boundary effect when a nonparametric smoothing is applied.

5.5.2 Proof for Results in Section 5.2

Proof of Theorem 5.2.1. Note that the convergence of Êi(Y |t) and Êi(X|t)
has been already proved in the literature. With little modification of Stone’s
(1982) approach or by the argument of Zhu and Fang (1996), we can derive
that

max
a≤ti≤b

|Êi(Y |T = ti) − E(Y |T = ti)| = Op(1/
√

nh + h),

max
a≤ti≤b

|Êi(X|T = ti) − E(X|T = ti)| = Op(1/
√

nh + h), (5.5.2)

where “| · |” stands for the Euclidean norm. As for the convergence of β̂, note
that V̂ (tj , yj) = yj − Êj(Y |T = tj) = β′Û(tj , xj) + (yj − β′xj) − (Êj(Y −
β′X)|T = tj). It can be derived that

β̂ = β + Ŝ−1 1
n

n∑
j=1

Û(tj , xj)((yj − β′xj) − (Êj(Y − β′X)|T = tj))w2(tj).

It is easy to see that, combining with (5.5.2), Ŝ converges in probability to S.
The work remaining is to show that under the conditions, we have
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1√
n

n∑
j=1

Û(tj , xj)((yj − β′xj) − (Êj(Y − β′X)|T = tj))w2(tj)

=
1√
n

n∑
j=1

U(tj , xj)w2(tj)εj + Op

(( 1
h
√

n
+ h2√n

)1/2
)
. (5.5.3)

To this end, we need to show that the following three terms are negligible,
i.e.,

r1 =
∣∣∣ 1√

n

n∑
j=1

(
Û(tj , xj) − U(tj , xj)

)
×

(
Êj((Y − β′X)|T = tj) − E((Y − β′X)|T = tj)

)
w2(tj)

∣∣∣
= Op(1/(

√
nh) +

√
nh2)1/2,

r2 =
∣∣ 1√

n

n∑
j=1

U(tj , xj)(Êj((Y − β′X)|T = tj) − E((Y − β′X)|T = tj))w2(tj)
∣∣

= Op(1/(
√

nh) + h),

and

r3 =
∣∣ 1√

n

n∑
j=1

(Û(tj , Xj) − U(tj , Xj))((yj − β′xj) − E((Y − β′X)|T = tj))w2(tj)
∣∣

= Op(1/(
√

nh) + h).

Without loss of generality, assume that X is scalar in the following. Since the
data are independent, E(ε|X, T ) = 0 and (Y − β′X) − E((Y − β′X)|T ) = ε,
it is easy to see that for i �= j,∣∣∣E((

(Û(tj , xj) − U(tj , xj))w2(tj)εi

)(
(Û(ti, xi) − U(ti, xi))w2(tj)εj

))∣∣∣ = 0.

Together with conditions 5) and 6),

E(r2
3) ≤ c1E(Û(T1, X1) − U(T1, X1))2 = c1E{(Ê1(X1|T1) − E(X1|T1))2}

= O(1/(nh) + h2).

Hence r3 converges in probability to zero at the rate Op( 1√
nh

+ h). Let ĝi :=

Êi[(Y − β′X)|T = ti]. Note that Y − β′X = g(T ) + ε is only dependent on T
and ε and the conditional expectation of U(Ti, Xi) given Tj ’s and Xj , j �= i
equals zero. Combining the zero conditional expectation of U(T, X) given T ,
it is easy to see that∣∣E[(U(Ti, Xi)(ĝi − g)w2(tj))(U(Tj , Xj)(ĝj − g)w2(tj))]

∣∣ = 0 i �= j.
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Similar to the proof for r3, we have

E(r2
2) ≤ E[U2(T, X)(ĝ(T ) − g(T ))2w4(T )]

≤ sup
t

[(ĝ(t) − g(t))2w2(t)]E[U2(T, X)w2(T )]

= O(1/(nh) + h2). (5.5.4)

Hence r2 = Op(1/
√

nh + h). We now turn to prove that r1 goes toward zero
as n tends to infinity. This can be done by using the Cauchy inequality:

r2
1 ≤

√
n

√√√√ 1
n

n∑
j=1

(Û(tj , xj) − U(tj , xj))2w2(tj) ×

√√√√ 1
n

n∑
j=1

ĝ2
j w2(tj)

≤ Op(1/(
√

nh) +
√

nh2)

since

sup
i,x

|
(
Û(ti, x) − U(ti, x)

)
w(ti)|

= sup
i

|
(
Êi(X|ti)) − E(X|ti)

)
w(ti)| = Op(1/(

√
nh) + h).

The proof is then concluded from condition 4).

Proof of Theorem 5.2.2. We prove the results under the null and alter-
native separately. Consider the case with the null hypothesis first. By Theo-
rem 5.2.1 and a little elementary calculation, it can be shown that

Rn(t, x) =
1√
n

n∑
j=1

εjw(tj)I(tj ≤ t, xj ≤ x)

−E(U(T, X)′w(T )I(T ≤ t, X ≤ x))S−1 1√
n

n∑
j=1

U(tj , xj)εjw
2(tj)

− 1√
n

n∑
j=1

ĝ(tj)w(tj)I(tj ≤ t, xj ≤ x)

+
1√
n

n∑
j=1

g(tj)w(tj)I(tj ≤ t, xj ≤ x) + Op

(( 1
h
√

n
+

√
nh2)1/2

)
=: I1(t, x) − I2(t, x) − I3(t, x) + I4(t, x) + Op

(( 1
h
√

n
+

√
nh2)1/2

)
.

The convergence of I1 and I2 just follows the standard theory of empirical
process, see, e.g. Pollard (1984, Chapter VII). We now prove that I3 − I4 con-
verges in distribution to a Gaussian process. Deal with I3. By a little elemen-
tary calculation, we can derive that, letting r̂i(ti) = 1

n

∑n
j �=i(yj −β′xj)kh(ti −

tj), and invoking (5.5.2), for a ≤ tj ≤ b
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ĝ(tj) =
r̂j(tj)

f̂j(tj)
=

r̂j(tj)
f(tj)

+
r(tj)
f(tj)

f(tj) − f̂j(tj)
f(tj)

+
r(tj)
f(tj)

(f(tj) − f̂j(tj))2

f̂j(tj)f(tj)
+

r̂j(tj) − r(tj)
f(tj)

f(tj) − f̂j(tj)

f̂j(tj)

=
r̂j(tj)
f(tj)

+ g(tj)
f(tj) − f̂j(tj)

f(tj)
+ Op(

1
hn

+ h2),

where g(tj) = r(tj)/f(tj). Hence

I3(t, x) =
1√
n

n∑
j=1

r̂j(tj)
f(tj)

w(tj)I(tj ≤ t, xj ≤ x)

− 1√
n

n∑
j=1

g(tj)
f̂j(tj)
f(tj)

w(tj)I(tj ≤ t, xj ≤ x)

+
1√
n

n∑
j=1

g(tj)w(tj)I(tj ≤ t, xj ≤ x) + Op(
1

h
√

n
+

√
nh2)

=: I31(t, x) − I32(t, x) + I33(t, x) + Op(
1

h
√

n
+

√
nh2).

We now rewrite I31(t, x) as a U -statistic. Let w1(t) = w(t)/f(t) and

Uh(ti, xi, yi; tj , xj , yj ; t, x)

=
[
(yi − β′xi)w1(tj)I(tj ≤ t, xj ≤ x) + (yj − β′xj)w1(ti)I(ti ≤ t, xi ≤ x)

]
×

kh(ti − tj).

Applying the symmetry of kh(·) we have for fixed h (i.e. for fixed n)

hI31(t, x) =
1

2n3/2

n∑
j=1

n∑
i �=j

hUh(ti, xi, yi; tj , xj , yj ; t, x).

For the sake of convenience, let ηj = (tj , xj , yj). We define a degenerate U -
statistic by

√
n

2n(n − 1)

n∑
j=1

n∑
i �=j

I ′
31(ηi, ηj , t, x)

=:
n

n − 1
h I31(t, x) − E(h I31(t, x))

− 1√
n

n∑
j=1

{
E1[hUh(η; ηj ; t, x)] − E[hUh(T, X, Y ; T1, X1, Y1; t, x)]

}
where “E” stands for the overall expectation over all variables and “E1” stands
for the conditional expectation of η, whose distribution is the same as that
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of ηj , given other ηj . Note that E1
(
I ′
31(η, ηj , t, x)

)
= E1

(
I ′
31(ηj , η, t, x)

)
= 0

and the class Gn of functions consisting of hUh(·, ·; t, x) − E1[hUh(η, ηj ; t, x)]
over all t and x is a VC class of functions. Therefore Gn is P-degenerate with
envelope

Gn(η1, η2)

=
∣∣∣[(y1 − β′x1)w1(t2) + (y2 − β′x2)w1(t1)

]
|k((t1 − t2)/h)

∣∣∣
+ 2

∣∣∣E[
(Y1 − β′X1)w1(T2) + (Y2 − β′X2)w1(T1)

]
|k(T1 − T2)/h)

∣∣∣
+
∣∣∣E[

(Y1 − β′X1)w1(t2) + (y2 − β′x2)w1(T1)
]
|k(T1 − t2)/h)

∣∣∣
By Theorem 6 of Nolan and Pollard (1987) on p. 786, we have

E sup
x

|
∑
i, j

I ′
31(ηi, ηj , t, x)| ≤ cE(αn + γnJn(θn/γn))/n−3/2

Jn(s) =
∫ s

0
log N2(u, Tn,Gn, Gn)du,

γn = (TnG2
n)1/2, αn =

1
4

sup
g∈Gn

(Tng2)1/2,

Tng2 :=
∑
i �=j

g2(η2i, η2j) + g2(η2i, η2j−1) + g2(η2i−1, η2j) + g2(η2i−1, η2j−1)

for any function g, and N2(·, Tn,Gn, Gn) is the covering number of Gn under
L2 metric with the measure Tn and the envelope Gn. As Gn is the VC class,
following the argument of the Approximation lemma II 2.25 of Pollard (1984,
p. 27) the covering number N2(u(TnG2

n)/n2, Tn/n2,Gn, Gn) can be bounded
by cu−w1 for some positive c and w1, both being independent of n and Tn.
Further in probability for large n

TnG2
n = O(hn2 log2 n) a.s.

Hence for large n, TnG2
n/n2 is smaller than 1 as h = n−c for some c > 0 and

N2(u, Tn/n2,Gn, Gn) ≤ cu−w1 . Note that

N2(u, Tn,Gn, Gn) = N2(u/n2, Tn/n2,Gn, Gn).

We can then derive that

Jn(θn/γn) ≤ Jn(1/4)

= n2
∫ 1/(4n2)

0
log N2(u, Tn/n2,G1, G)d u

= −cn2
∫ 1/(4n2)

0
log udu = c log n
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and

γ2
n = TnG2

n = O(hn2 log2 n) a.s.

Therefore for large n, E supt,x |∑i, j I ′
31(ηi, ηj , t, x)| ≤ c

√
h/n log n. Equiva-

lently

I ′
31(t, x) =

1√
n

n∑
j=1

{E1[Uh(η; ηj ; t, x)]} + Op(log n/
√

nh) (5.5.5)

Consequently, noting n
(n−1)E(I31(t, x)) =

√
n

2 E[Uh(η; η1; t, x)], we have

I31(t, x) =
1√
n

n∑
j=1

E1

[
Uh(η; ηj ; t, x)

]
−

√
n

2
E
[
Uh(η; η1; t, x)

]
+ Op(

1√
nh

). (5.5.6)

From the definition of Uh, condition 1) and some calculation, we have

E[Uh(η; η1; t, x)]

= 2E
[
g(T1)w1(T )I(T ≤ t, X ≤ x)kh(T1 − T )

]
= 2E[g(T + hu)f(T + hu)w1(T )I(T ≤ t, X ≤ x)K(u)]
= 2E[g(T )w(T )I(T ≤ t, X ≤ x)] + O(h2)

(5.5.7)

and

E1Uh(η; ηj ; t, x)

= w1(tj)I(tj ≤ t, xj ≤ x)
∫

g(hu + tj)f(hu + tj)K(u)d u

+ (yj − β′xj)
∫

F (x|T )f(T )w1(T )I(T ≤ t)K((T − tj)/h)/h dT

=: a
(1)
j (t, x) + a

(2)
j (t, x)

where F (X|T ) is the conditional distribution of X given T .
Let

b
(1)
j (t, x) = g(tj)f(tj)w1(tj)I(tj ≤ t, xj ≤ x),

b
(2)
j (t, x) = (yj − β′xj)F (x|tj)f(tj)w1(tj)I(tj ≤ t). (5.5.8)

We have from conditions 1)–4) and 6)

sup
t,x

E(a(1)
1 (t, x) − b

(1)
1 (t, x))2 = O(h2),

sup
t,x

E(a(2)
1 (t, x) − b

(2)
1 (t, x))2 = O(h2). (5.5.9)
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Note that w1(t) = w(t)/f(t). Then

E(b(1)
j (t, x)) = E(b(2)

j (t, x)) = E[g(t)w(T )I(T ≤ t, X ≤ x)],

E(a(1)
j (t, x) + a

(2)
j (t, x)) = E[Uh(T, X, Y ; T1, X1, Y1; t, x)]. (5.5.10)

Let cj(t, x) = (a(1)
j (t, x)+ a

(2)
j (t, x)− b

(1)
j (t, x)− b

(2)
j (t, x)). We now show that

uniformly over t and x

1√
n

n∑
j=1

(cj(t, x) − Ecj(t, x)) = Op(h1/2 log n + h2√n). (5.5.11)

Note that

sup
t,x

V ar(cj(t, x)) ≤ sup
t,x

E(c2
j (t, x))

≤ 2 sup
t,x

E
[(

a
(1)
1 (t, x) − b

(1)
1 (t, x)

)2 +
(
a
(2)
1 (t, x) − b

(2)
1 (t, x)

)2]
≤ O(h2).

Recall the class of all functions cj(t, x) = c(tj , xj , yj , t, x) with indices (t, x)
discriminates finitely many points at a polynomial rate (that is, the class is a
VC class), see Gaenssler (1983). The application of symmetrization approach
and Hoeffding inequality, see Pollard (1984, p. 14–16), yield that for any δ > 0
and some w > 0

P{sup
t,x

1√
n

n∑
j=1

(cj(t, x) − Ecj(t, x)) ≥ δ}

≤ 4E{P{sup
t,x

1√
n

n∑
j=1

σj(cj(t, x) − Ecj(t, x)) ≥ δ/4|(Tj , Xj , Yj), j = 1, · · · , n}}

≤ E{(cnw sup
t,x

exp([− δ2

32 1
n

∑n
j=1(cj(t, x) − Ecj(t, x))2

]) ∧ 1}.

In order to prove the above to be asymptotically zero, we now bound the
denominator in the power. Applying condition 1) and the uniformly strong
law of large numbers, see Pollard (1984, p. 25, Chapter II Th. 24)

sup
t,x

1
n

n∑
j=1

(cj(t, x) − Ecj(t, x))2 = Op(h).

Let δ = h1/2 log n. This implies (5.5.11). Furthermore by (5.5.9),
√

nE[ci(t, x)] =
O(

√
nh2) = o(1). Together with (5.5.8) and (5.5.11), we see that

I31(t, x) =
1√
n

n∑
j=1

(b(1)
j (t, x) + b

(2)
j (t, x) − Eg(T )w(T )I(T ≤ t, X ≤ x))
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+Op(
1√
nh

+ h)

= I4(t, x) +
1√
n

n∑
j=1

(b(2)
j (t, x) − Eg(T )w(T )I(T ≤ t, X ≤ x))

+Op(
1√
nh

+ h). (5.5.12)

Consider I32. Following exactly the above argument of U -statistic, with us-
ing condition 1) and w2(·) = w(·)g(·) in lieu of yj −β′xj and w(·) respectively,
we can verify that

I32(t, x)

=
1√
n

n∑
j=1

g(tj)w(tj)I(tj ≤ t, xj ≤ x)

+
1√
n

n∑
j=1

(
g(tj)w(tj)F (x|tj)I(tj ≤ t) − E

[
g(T )w(T )I(T ≤ t, X ≤ x)

])
+Op(

1√
nh

+ h)

= I33(t, x)

+
1√
n

n∑
j=1

(
g(tj)w(tj)F (x|tj)I(tj ≤ t) − E

[
g(T )w(T )I(T ≤ t, X ≤ x)

])
+Op(

1√
nh

+ h). (5.5.13)

By (5.5.5), (5.5.12) and (5.5.13),

I3(t, x) − I4(t, x) =
1√
n

n∑
j=1

εw(tj)F (x|tj)I(tj ≤ t) + Op(
1√
nh

+ h).

(5.5.14)

It clearly converges in distribution to a Gaussian process. The proof of the
theorem is concluded from (5.5.5) and (5.5.14).

Hence I3 − I4 is a centered stochastic process converging in distribution
to a Gaussian process. The proof is finished.

Proof of Theorem 5.2.3. First note that from the proof of Theorem 5.2.1

√
n(β̂ − β) = S−1{ 1√

n

n∑
j=1

U(tj , xj)εjw
2(tj)} + C1 + op(1)

where C1 = S−1E[U(T, X)(g1(T, X) − E(g1(T, X)|T )w2(T )]. Similar to the
first part of the proof for the case with the null hypothesis, it is derived that
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Rn(t, x)

=
1√
n

n∑
j=1

εjw(tj)I(tj ≤ t, xj ≤ x)

−E(U(T, X)′w(T )I(T ≤ t, X ≤ x))S−1[
1√
n

n∑
j=1

U(tj , xj)εjw
2(tj) + C]

− 1√
n

n∑
j=1

(ĝ(tj) − g(tj))w(tj)I(tj ≤ t, xj ≤ x) + Op(
1

h
√

n
+

√
nh2)

+
1
n

n∑
j=1

(g1(tj , xj) − E(g1(T, X)|T = tj))w(tj)I(tj ≤ t, xj ≤ x)

=
1√
n

n∑
j=1

εjw(tj)I(tj ≤ t, xj ≤ x)

−E(U(T, X)′w(T )I(T ≤ t, X ≤ x))S−1[
1√
n

n∑
j=1

U(tj , xj)εjw
2(tj)]

− 1√
n

n∑
j=1

(ĝ(tj) − g(tj))w(tj)I(tj ≤ t, xj ≤ x)

+g1∗(t, x) + Op(
1

h
√

n
+

√
nh2)

=: J1(t, x) − J2(t, x) − J3(t, x) + g1∗(t, x) + Op

(
(

1
h
√

n
+

√
nh2)1/2

)
,

(5.5.15)

where g1∗(t, x) is defined in Theorem 5.2.3. Let Ỹ = β′X + g(T ) + ε,
g2(t) = E(Ỹ − β′X|T = t) and its estimator, at point ti, ĝ2(ti) = Êi(Ỹ −
β′X|T = ti), similar to that in (5.2.6). It is clear that g(ti) = g2(ti) +
E(g1(T, X)|T = ti)/

√
n and ĝ(ti) = ĝ2(ti) + Êi(g1(T, X)|T = ti)/

√
n. Fur-

thermore, supi Êi(g1(T, X)|T = ti) − E(g1(T, X)|T = ti)| → 0 in probability
as n → ∞. Together with this fact,

J3(t, x)

=
1√
n

n∑
j=1

(ĝ2(tj) − g2(tj))w(tj)I(tj ≤ t, xj ≤ x)

+
1
n

n∑
j=1

[
Êj(g1(T, X)|T = tj) − E(g1(T, X)|T = tj)

]
w(tj)I(tj ≤ t, xj ≤ x)

=
1√
n

n∑
j=1

[
ĝ2(tj) − g2(tj)

]
w(tj)I(tj ≤ t, xj ≤ x) + op(1).
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Therefore J3 is asymptotically equal to I3(t, x) − I4(t, x) and J1 and J2 are
analogous to I1 and I2 in (5.5.5). The proof follows from the argument for
proving Theorem 5.2.2.

5.5.3 Proof for Results in Section 5.3

Proof of Theorem 5.3.1. All we need is to show that, for almost all sequences
{(t1, x1, y1), · · · , (tn, xn, yn), · · ·} and by Wald’s device, i) the covariance func-
tion of Rn(En) converges to that of R, ii) finite distributional convergence
(Fidis Convergence) of Rn(En) holds for any finite indices (t1, x1), · · · , (tk, xk),
and iii) uniform tightness is true. The properties i) and ii) are easily verified
with the use of the fact that even under the local alternative, β̂, Û , Ŝ and
F̂ (X|T ) are consistent to β, U , S and F (X|T ). The details are omitted. We
present the details of the proof for iii). We first notice that the functions
J(·, t, x) over all indices (t, x) is a VC class of functions.

For given {(t1, x1, y1) · · · , (tn, xn, yn)}, define the L2(Pn) seminorm as
dn((t, s), (t′, s′)) = (Pn(J(T, X, Y, t, s) − J(T, X, Y, t′, s′))2)1/2, where Pn is
the empirical measure based on {(t1, x1, y1) · · · , (tn, xn, yn)} and for any
function f(·) of (T, X, Y ), Pnf(T, X, Y ) denotes the average value of n values
f(T1, X1, Y1), . . . , f(Tn, Xn, Yn). For uniform tightness, all we need to do is to
prove is the equicontinuity lemma holds true, see Pollard (1984, p. 150). By
Theorem VII 21 of Pollard (1984, p. 157), Rn(En) converges in distribution
to a Gaussian process R. Namely, for any η > 0 and ε > 0, there exists a
δ > 0 such that

lim sup
n→∞

P{sup
[δ]

|Rn(En, t, s) − Rn(En, t′, s′)| > η|Tn, Xn, Yn} < ε,

(5.5.16)

where [δ] = {((t, s), (t′, s′)) : dn((t, s), (t′, s′)) ≤ δ} and (Tn, Xn, Yn) =
{(t1, x1, y1), · · · , (tn, xn, yn)}.

Since the limiting property with n → ∞ is investigated, n will always
be considered large enough below to simplify some arguments of the proof.
Let J ′(·, t, s) be the function J(·, t, s) with all true values in the lieu of
the estimators, G = {J ′(·, t, s) : t ∈ R1, s ∈ Rd} and d((t, s), (t′, s′)) =
[Pn(J ′(T, X, Y, t, s)−J ′(T, X, Y, t′, s′))2]1/2. By the convergence of all estima-
tors invloved, we have that sup(t,s),(t′,s′) |dn((t, s), (t′, s′))−d((t, s), (t′, s′))| →
0 in probability. Hence for large n

P{sup
[δ]

|Rn(En, t, s) − Rn(En, t′, s′)| > η|Tn, Xn, Yn}

≤ P{ sup
<2δ>

|Rn(En, t, s) − Rn(En, t′, s′)| > η|Tn, Xn, Yn} (5.5.17)

where 2δ >= {(t, s) : d(t, s) ≤ 2δ}.
In order to apply the chaining lemma (e.g. Pollard (1984), p. 144), we need

to check that
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P{|Rn(En, t, s) − Rn(En, t′, s′)| > η d((t, s), (t′, s′))|Tn, Xn, Yn}
< 2 exp(−η2/2) (5.5.18)

and

J2(δ, d, G) =
∫ δ

0
{2 log{(N2(u, d, G))2/u}}1/2du (5.5.19)

is finite for small δ > 0 where the covering number N2(u, d, G) is the smallest m
for which there exist m points t1, . . . , tm such that min1≤i≤m d((t, s), (ti, si)) ≤
u for every (t, s). (5.5.18) can be derived by the Hoeffding inequality and
(5.5.19) is implied by the fact that G is a VC class and N2(u, d, G) ≤ c uw for
some constants c and w. Invoking the chaining lemma, there exists a countable
dense subset < 2δ >∗ of < 2δ > such that, combining with J2(δ, d, G) ≤ c u1/2

for some c > 0,

P{ sup
<2δ>∗

√
n|Rn(En, t, s) − Rn(En, t′, s′)| > 26cd1/2|Tn, Xn, Yn}

≤ 2cδ. (5.5.20)

The countable dense subset < 2δ >∗ can be replaced by < 2δ > itself because
Rn(En, t, s) − Rn(En, t′, s′) is a right-continuous function with respect to t
and s. Together with (5.5.17), the proof is concluded from choosing δ small
enough.
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Model Checking for Multivariate Regression
Models

6.1 Introduction

Suppose that a response vector Y = (y1, . . . , yq)T depends on a vector
X = (x1, . . . , xp)T of covariables, where T denotes transposition. We may
then decompose Y into a vector of functions m(X) = (m1(X), · · · , mq(X))T

of X and a noise variable ε, which is orthogonal to X, i.e., for the condi-
tional expectation of ε given X, we have E(ε|X) = 0. When Y is unknown,
the optimal predictor of Y given X = x equals m(x). Since in practice the
regression function m is unknown, statistical inference about m is of im-
portance. In a purely parametric framework, m is completely specified up
to a parameter. Fort example, in linear regression, m(x) = βT x, where
β = (β1, · · · , βq) is an unknown p × q matrix which needs to be estimated
from the available data. More generally, we can study a nonlinear model with
m(x) = Φ(β,x) = (φ1(β1,x), · · · , φq(βq,x))T , where the vector of the link
function Φ(·) may be nonlinear but is specified.

As discussed in Chapters 4 and 5, checking the adequacy of parametric
models becomes one of central problems in regression analysis because any
statistical analysis within the model, to avoid wrong conclusions, should be
accompanied by a check of whether the model is valid or not. When the
dimension q = 1, this testing problem has been studied in Chapters 4 and 5.

Note that all of works mentioned in Chapters 4 and 5 focus on the
cases with one-dimensional responses. In principle, the relevant methodolo-
gies could be, with some modifications, employed to deal with multivariate
regression models. However, we should pay particular attention to the cor-
relation between the components of the response. Any direct extension of
existing methodology cannot construct a powerful test. This is one of our
goals in studying this problem.

In this chapter, we study a score type test for goodness-of-fit. The limiting
behavior will be investigated. To enhance the power, we study the optimal
choice of the weight function involved in the test statistic.
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The second focus of this chapter is the determination of p-values. If we
use the limit distribution to do this, power performance of the test is a con-
cern when the sample size is small or moderate. There are several propos-
als of Monte Carlo approximations available in the literature such as the
time-honored Bootstrap (Efron, 1979). Note that the existing methodologies
are either parametric (see, e.g. parametric bootstrap, Beran and Ducharme
(1991)) or fully nonparametric. If the distribution of the covariables or errors
are semi-structured, we should consider semiparametric methodology to take
the structure into account, rather than to simply regard the distribution fully
nonparametric, and to construct an approximation to the underlying null dis-
tribution of the test. As those investigated in Chapter 2, many commonly
used classes of distributions are of semi-structured framework. Therefore, in
this chapter, we will employ NMCT developed in Chapter 2 to obtain the con-
ditional counterpart of the test to determine p-values. Furthermore, when we
do not have information on the structure of the distribution, NMCT in Sec-
tion 1.2.3 of Chapter 1 will be applied. The consistency of the approximations
will be proved.

We note that in the score type test, the estimation of the limiting co-
variance matrix has to be involved. This is because without this estimation,
the limit null distribution cannot be distribution-free and the test cannot be
scale-invariant. However, such a plug-in estimation deteriorates the power per-
formance of the test as the estimator becomes larger under alternative than
that under the null. It is very difficult to select an estimator which is not
affected by the alternative. Interestingly, NMCT completely eliminates this
problem. The estimation for that matrix is unnecessary. This is helpful for
enhancing the power.

This methodology can easily be applied to a classical problem with the
multivariate linear model. To investigate which covariable(s) insignificantly af-
fects the response, the likelihood ratio test called Wilks lambda is a standard
test contained in textbooks. The p-values can be determined by chi-square
distribution, see e.g., Johnson and Wichern (1992). When the underlying dis-
tribution of the error is normal, the Wilks lambda has been proved to be very
powerful. However, it is not true when normality is violated. In this chapter,
NMCT will be constructed. We will theoretically and empirically show how
the NMCT works. The limited simulations show that the power performance
of the NMCT is better than the Wilks lambda even in the normal case.

Most of the materials in this chapter are from Zhu and Zhu (2005).

6.2 Test Statistics and their Asymptotic Behavior

6.2.1 A Score Type Test

Suppose that {(x1,y1), · · · , (xn,yn)} is a sample drawn from a population
which follows the model as:
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Y = m(X) + ε, (6.2.1)

where ε = (ε1, · · · , εq)T is a q-dimensional error vector independent of X.
For model checking, we want to test the null hypothesis: for some matrix
β = (β1, · · · , βq)T almost surely

H0 : m(·) = Φ(β, ·), (6.2.2)

where for each i with 1 ≤ i ≤ q, mi(·) = φi(βi, ·), versus, for any β, in
probability

H1 : m(·) �= Φ(β, ·).

Let e = Y − Φ(β,X). Clearly, under H0, e = ε and then E(e|X) =
0. It implies that for any q-dimensional weight function W (β, ·) of X,
E(e • W (β,X)) = 0 where the dot product “ • ” stands for the multipli-
cation componentwise. From which, we can define a score type test through
an empirical version of E(e • W (β,X)). Let

T n =
1
n

n∑
j=1

êj • W (β̂,xj), (6.2.3)

where êj = yj − Φ(β̂,xj) and β̂ is a consistent estimator of β. The resulting

test statistic is a quadratic form TT n = T T
n Σ̂

−1
T n where “T” stands for

transposition and Σ̂ is a consistent estimator of the covariance matrix of T n.
Clearly, there are three quantities in the test statistic to be selected: two

estimators β̂ and Σ̂ and the weight function W (β, ·). The two estimators
are for the consistency of the test statistic to obtain a tractable limit null
distribution of TT n. The selection for the weight function has an important
role for enhancing power performance of the test. If it is not properly selected,
the power would be very bad. For instance, if the model is linear, when the
estimator β̂ is the least squares estimator, and the weight function is selected
as a W (x) = x, the test will have no power at all because the residuals êj

are orthogonal to xj . We will return to this topic in Section 6.3.

6.2.2 Asymptotics and Power Study

To estimate β, we adopt the least squares estimation. The estimator is defined
as the maximizer β̂, over all β, of the following sum:

n∑
j=1

(yj − Φ(β,xj))T (yj − Φ(β,xj)).

Clearly each column β̂i of β̂, i = 1, · · · , q, is the maximizer of
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n∑
j=1

(y(i)
j − φi(βi,xj))T (y(i)

j − φi(βi,xj))

over all βi.
Under regularity conditions, the estimators β̂i are the solutions of the

following equations:

n∑
j=1

φ′
i(βi,xj)(y

(i)
j − φi(βi,xj))T = 0 (6.2.4)

where φ′ is the p × 1 derivative vector of φ with respect to βi provided that
φi are differentiable. As we know, each of β̂i has an asymptotically linear
representation. For model (6.2.1), y

(i)
j = mi(xj) + e

(i)
j , j = 1, · · · , n. Denote

by η = Φ(β,X) − m(X), and ηj = Φ(β,xj) − m(xj). Then (η1, · · · ,ηn) are
i.i.d. random variables. The asymptotically linear representations of β̂i are as
follows:

β̂i − βi =
1
n

n∑
j=1

S−1
ni φ′

i(βi,xj)e
(i)
j +

1
n

n∑
j=1

S−1
ni φ′

i(βi,xj)η
(i)
j + op(1/

√
n)

=: Bni + Cni + op(1/
√

n) (6.2.5)

where Sni = 1
n

∑n
j=1(φ

′
i(βi,xj))(φ′

i(βi,xj))T . A relevant work is Stute, Zhu
and Xu (2005).

Note that in probability, Bni = O(1/
√

n) and under fixed alternatives, Sni

and Cni are consistent; that is, Sni → Si := E
(
(φ′

i(βi,X))(φ′
i(βi,X))T

)
, and

Cni → Ci := S−1
i E

(
φ′

i(βi,X)η(i)
)
. Thus, β̂i converges to βi + Ci if Ci �= 0.

Clearly, Ci �= 0 corresponds to the alternative H1. In the following, we study
the asymptotic behavior of the test statistics under both H0 and H1.

Theorem 6.2.1 states the asymptotic results of T n = (Tn1, · · · , Tnq)T .

Theorem 6.2.1 Assume that
1.) The second derivatives of φi and the first derivative of W (i) are con-

tinuous and can be bounded by a function M(·) with E(M(x))2 < ∞.
2.) The second moments of φi, W (i) and e(i) are finite.
3.) The asymptotic representation of β̂ in (6.2.5) holds. We have

√
nTni =:

1√
n

n∑
j=1

V
(i)
j e

(i)
j +

1√
n

n∑
j=1

V
(i)
j η

(i)
j + op(1). (6.2.6)

where V
(i)
j =

(
W (i)(βi,xj))−E[(W (i)(βi,X))(φ′

i(βi,X))T ]S−1
i (φ′

i(βi,xj))
)
.

Then
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• Under H0,
√

n(Tni − Ti) =⇒ N(0, σii) where the notation “=⇒” stands
for weak convergence and σii is the variance of V

(i)
j e

(i)
j . Therefore letting

T = (T1, · · · , Tq)T ,
√

n(T n − T ) =⇒ N(0,Σ) with Σ = (σlm)1≤l,m≤q

and σlm is the covariance between V
(l)
j e

(l)
j and V

(m)
j e

(m)
j for any pair of

1 ≤ l, m ≤ q. This results in that TT n is asymptotically chi-squared with
degree q of freedom.

• Under H1, when for some i with 1 ≤ i ≤ q, if
[ 1√

n

∑n
j=1 V

(i)
j η

(i)
j

]2 → ∞,

then TT n → ∞ in probability; and if
[ 1√

n

∑n
j=1 V

(i)
j η

(i)
j

]
→ Si, a con-

stant, then Tni converges in distribution to Ti+Si where Si = E
[
V (i)η(i)

]
.

Let T = (T1, · · · , Tq)T and S = (S1, · · · , Sq)T . TT n then converges in dis-
tribution to (T +S)T Σ−1(T +S) that is a non-central chi-squared random
variable with the non-centrality ST Σ−1S.

This theorem means that the test can detect the alternatives distinct n−1/2

from the null hypothesis if the non-centrality ST Σ−1S is not zero. The fol-
lowing subsection discusses the selection of W .

6.2.3 The Selection of W

Consider the case of q = 1 first. The distribution of (T + S)T Σ−1(T + S) is
the non-central chi-squared with the non-centrality ST Σ−1S. See Stute and
Zhu (2005) and Zhu and Cui (2005). When we consider the one-sided test,
its power function is Φ(−cα/2 + Σ−1/2S) + Φ(−cα/2 − Σ−1/2S) where cα is
the upper (1 − α)-quantile of the normal distribution. It is easy to prove that
this function is a monotone function of |Σ−1/2S|. This implies that the power
function of the test is a monotone function of the non-centrality ST Σ−1S.
For the multivariate response case, we have the following lemma.

Lemma 6.2.1 Under the conditions of Theorem 6.2.1, the power function re-
lating to the distribution of (T + S)T Σ−1(T + S) is a monotone function of
ST Σ−1S.

From Lemma 6.2.1, we can see that to enhance the power, we should select
W to allow

∑q
i=1 v2

i = ST Σ−1S as large as possible.

Lemma 6.2.2 Under the conditions of Theorem 6.2.1, the optimal choice of
W satisfies the equation that Σ−1/2V = [E(η2)]−1/2η where [E(η2)] is a
diagonal matrix each element on the diagonal is E(η(i))2 and of which where
V = (V (1), · · · ,V (q))T and V (i) are defined in Theorem 6.2.1.

Remark 6.1. Lemma 6.2.2 provides a way to search for an optimal weight
through resolving an equation. In a special case, the solution has a closed
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form. When W is orthogonal to φ′, V is actually equal to W . If the compo-
nents of W are orthogonal to one another, ε is independent of X and has a
common variance, σ2, of all components e(i), we have that Σ is also a diagonal
matrix each element on the diagonal being σ2E(W (i)), i = 1, · · · , q. Hence,
Σ−1/2V = σ2[E(W 2)]−1/2W = [E(η2)]−1/2η. This means that W can be
selected as η because σ2 is a constant. This selection fits a direct observation
that the weight function proportional to η should be a good candidate. Fur-
thermore, the orthogonality of W to φ′ is a reasonable request because the
departure from the null model can be within the space perpendicular to the
space spanned by φ′(β,X) for all X. When φ′(β,X) = X, a good weight
function should be selected within the space which is orthogonal to the linear
space spanned by all X. For a univariate response case, a similar discussion
can be seen in Zhu and Cui (2005) and Stute and Zhu (2005). On the other
hand, when we do not have much prior information on the alternatives, η is
unknown and is not even estimable. Thus, this optimal weight cannot be used.
In this situation, the desired test should be an omnibus test. For this, a more
practically useful method is to use the plots of residuals or of Y against Φ.
We will describe this graphical method in Section 6.4.

6.2.4 Likelihood Ratio Test for Regression Parameters

Let us describe the classical diagnostic issue through likelihood ratio. This
can be found in any textbook of multivariate analysis, see, e.g. Johnson and
Wichern (1992). Consider the linear model

Y = βT X + ε (6.2.7)

where ε is independent of X. To check whether some component of X has
impact for Y , we want to test the hypothesis

H0 : βT
(1) = 0,

where βT = (βT
(1),β

T
(2)), βT

(1) is a q × l matrix and βT
(1) is a q × (p− l) matrix.

Let xT = ((x(1))T , (x(2))T ) with (x(1))T being a l-dimensional row vector and
(x(1))T being a (p− l)-dimensional row vector. Under H0, the model becomes

Y = βT
(2)X

(2) + ε.

When a sample {(x1,y1), · · · , (xn,yn)} is available, by least squares estima-

tion, we can separately obtain the least squares estimators β̂
T

and β̂
T

(2) of βT

and βT
(2) respectively. Hence two sums of squares and cross-products can be

derived as

Σ̂ =
n∑

j=1

(yj − β̂
T
xj)(yj − β̂

T
xj)T ;

Σ̂2 =
n∑

j=1

(yj − β̂
T

(2)x
(2)
j )(yj − β̂

T

(2)x
(2)
j )T .
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A modified logarithm of the likelihood ratio test, popularly called the Wilks
lambda test, is

Λn = −[n − p − 1 − 1/2(q − p + l + 1)] ln
(
|Σ̂|/|Σ̂2|

)
. (6.2.8)

Under H0, this statistic converges to a chi-square distribution with q(p − l)
degree of freedom.

6.3 NMCT Procedures

From Theorem 6.2.1 for TT n and the limit behavior of Λn, we can easily
determine p-values of the tests in Section 2 through chi-square distributions.
However, when the sample size is small, the limit distributions do not work
well. Furthermore, for TT n, a deterioration for the power comes from a plug-in
estimation for the covariance matrix Σ = Cov(V • ε). This is because under
the alternative ε is no longer centered and this covariance matrix will be
much larger than that under H0. In the literature, there are many proposals
for approximating the null distributions of TT n and λn. Bootstrap is the
most popularly used approximation. Since Efron’s (1979) time-honored work,
many variants of the bootstrap have been appearing in the literature. Among
others, especially for model checking, Wild bootstrap (Wu (1986), Härdle and
Mammen (1993), Stute, González Manteiga and Presedo Quindimil (1998)) is
a good alternative. However, a bootstrap procedure also requires an estimation
for Σ.

6.3.1 The NMCT for TT n

The above algorithm cannot be applied directly to the regression problem.
Note that the error ε is unobservable. In other words, it is impossible to
generate reference random variables which have the same distribution as ε.
Note that our test is residual-based. To approximate the null distribution of
the test, we cannot simply simulate residuals like that described in Chapter 2
because under alternative, the distribution of the Monte Carlo test based on
the simulated residuals is not an approximation to the null distribution, but
an approximation to the distribution under alternative. We have to study the
structure of the test first to see how a NMCT should be constructed.

Recalling the asymptotic representation of Tn in (6.2.6), the first term
relates to the errors and the second term is associated with the alternative re-
gression function. This motivates us to construct a conditional approximation
based on the first term. For the sake of notational simplicity, we only present
an algorithm with elliptically symmetric distribution of the error. Similarly
for other classes of distributions described in Chapter 2.



92 6 Model Checking for Multivariate Regression Models

• Step 1. Generate independent identically distributed random variables
ui = N i/‖N i‖, i = 1, . . . , n where N i has normal distribution N(0, Iq).
Clearly, ui is uniformly distributed on the sphere surface. Let Un :=
{ui, i = 1, . . . , n} and define the conditional counterpart of T n as

T̃ n(En) =
1√
n

n∑
j=1

V̂ j • uj • ‖êj‖, (6.3.1)

where V̂ j =
{

W (β̂,xj) − Ê[(W (β̂,X))(φ′(β̂,X))T ]Ŝ
−1

(φ′(β̂,xj))
}

.

The resulting conditional counterpart of the test statistic TT ′
n = T T

nT n

is

TT ′
n(U) =

[
T̃ n(Un)

]T [
T̃ n(Un)

]
. (6.3.2)

• Step 2. Generate m sets of Un, say U (i)
n , i = 1, . . . , m and get k values of

TT ′
n(Un), say (TT ′

n(Un))(i), i = 1, . . . , m.
• Step 3. The p-value is estimated by p̂ = k/(m+1) where k is the number

of (TT ′
n(Un))(i)’s which are larger than or equal to TT ′

n. Reject H0 when
p ≤ α for a designated level α.

Remark 6.2. From the above procedure, we can see that we use a NMCT
statistic TT ′

n which differs from TT n. Also TT ′
n is not scale-invariant. How-

ever, when we use this NMCT, any constant scalar is eliminated in terms of
comparing the values of TT ′

n(Un) with TT ′
n. Therefore, scale-invariance is

not important in our case. The following result states the consistency of the
approximation.

Theorem 6.3.1 Assume that 1/n
∑n

j=1(V j •ηj)(V j •ηj)T converges to zero
in probability and the conditions of Theorem 6.2.1 hold. Then we have that,
for almost all sequences {(xi,yi), i = 1, . . . , n, · · · , }, the conditional distrib-
ution of TT ′

n(Un) converges to the limiting null distribution of TT n. When
(1/n)

∑n
j=1(V j • ηj)(V j • ηj)T converges in probability to a constant ma-

trix, TT ′
n(Un) converges in distribution to TT which may have a different

distribution from the limiting null distribution of TT n.

When the distribution of ε does not have a special structure, in other
words, ε is fully nonparametric, we can also construct a NMCT based on the
idea described in Section 1.2.3 which is easy to implement.

• Step 1′. Generate independent identically distributed random vectors
ui, i = 1, . . . , n with bounded support and mean 0 and covariance ma-
trix 1. That is, all components are identical. Let Un := {ui, i = 1, . . . , n}
and define the conditional counterpart of T n as
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T̃ n(Un) =
1√
n

n∑
j=1

V̂ j • uj • êj , (6.3.3)

where V̂ j =
{

W (β̂,xj) − Ê[(W (β̂,X))(Φ′(β̂,X))T ]Ŝ
−1

(Φ′(β̂,xj))
}

.

The resulting conditional counterpart of TT ′
n is

TT ′
n(Un) =

[
T̃ n(εn)

]T [
T̃ n(Un)

]
. (6.3.4)

• Step 2′. Generate m sets of Un, say U (i)
n , i = 1, . . . , m and get m values

of TT ′
n(Un), say (TT ′

n(Un))(i), i = 1, . . . , m.
• Step 3′. The p-value is estimated by p̂ = k/(m+1) where k is the number

of (TT ′
n(Un))(i)’s which are larger than or equal to TT ′

n. Reject H0 when
p ≤ α for a designated level α.

Theorem 6.3.2 Assume that (1/n)
∑n

j=1(V j • ηj)(V j • ηj)T converges to
zero in probability and the conditions in Theorem 6.2.1 hold. Then the con-
clusion of Theorem 6.3.1 holds.

6.3.2 The NMCT for the Wilks Lambda

For the Wilks lambda, we also study its structure first. Let Y = (y1, · · · ,yn),
X = (x1, · · · ,xn), X(2) = (x(2)

1 , · · · ,x(2)
n ), E = ((e1, · · · , en)) be, respectively,

the q × n response matrix, p × n and (p − l) × n covariate matrices and q × n

error matrix. Note that β̂ =
(
XX T

)−1
XYT and β̂(2) =

(
X(2)X T

(2)

)−1
X(2)YT .

It is easy to obtain that

Y − YX T
(
XX T )

)−1
X = E

[
I − X T

(
XX T )

)−1
X
]
,

Y − YX T
(2)

(
X(2)X T

(2))
)−1

X(2) = E
[
I − X T

(2)

(
X(2)X T

(2))
)−1

X(2)

]
,

where I is a n × n identity matrix. From the definition of Σ̂ and Σ̂2 of
Subsection 6.2.4, the above implies that

Σ̂ =
[
Y − YX T

(
XX T

)−1
X
][

Y − YX T
(
XX T

)−1
X
]T

= E
[
I − X T

(
XX T )

)−1
X
]
ET ;

Σ̂2 =
[
Y − YX T

(2)

(
X(2)X T

(2)

)−1
X(2)

][
Y − YX T

(2)

(
X(2)X T

(2)

)−1
X(2)

]T

= E
[
I − X T

(2)

(
X(2)X T

(2)

)−1
X(2)

]
ET .
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From these two formulae, we now define a NMCT. Like that in Subsec-
tion 6.3.1, generate q × n random matrix Un = (u1, · · · ,un); define

Σ̂(Un) =
(
Un • Ê

)[
I − X T

(
XX T

)−1
X
](

Un • Ê
)T

;

Σ̂2(Un) =
(
Un • Ê

)[
I − X T

(2)

(
X(2)X T

(2)

)−1
X(2)

](
Un • Ê

)T

where “ • ” stands for dot product, see Section 1.2.2 of Chapter 1. Repeat
this step m times to generate m values of Λn(Un) = −[n − p − 1 − 1/2(q −
p + l + 1)] ln

(
|Σ̂(Un)|/|Σ̂2(Un)|

)
, say Λn(U (1)

n ), · · · , Λn(U (m)
n ); and count the

number k of Λn(U (i)
n )’s which are greater than or equal to Λn to obtain the

estimated p-value k/(m + 1).
Similar to Theorem 6.3.1, we have the asymptotic equivalence between

Λn(Un) and Λn.

Theorem 6.3.3 Assume that the fourth moment of X and Y exists. Then
for almost all sequences {(x1,y1), · · · , (xn,yn)}, the conditional distribution
Λn(Un)) converges to the limit distribution of Λn.

6.4 Simulations and Application

6.4.1 Model Checking with the Score Type Test

Example 1. The model is with continuous response, namely

Y = (βT X) + cX2 + ε (6.4.1)

where Y is q-dimensional and X p-dimensional, X and ε are independent, and
X is multivariate normal N(0, Ip). To check the performance of the NMCT
procedure, we considered three distributions of the error ε: N(0, Iq), normal;
Uq(−0.5, 0.5), uniform on the cube (−0.5, 0.5)q, and χ2

q(1) all components
following chi-square with degree 1 of freedom respectively. The hypothetical
model was Φ(X) = βT X and s(X) = x2. Therefore the null model holds if
and only if c = 0. In the simulation, we considered c = 0, 0.1, 0.2, · · · , 1 and
p = 3 and q = 2 and the matrix β = B = [1, 0; 1, 1; 0, 1].

When we regard the alternatives as directional ones, the weight function
can be selected as X2. As we discussed above, the residual plots of ε against
X are also informative. We plotted all components of ε against all components
of X, and associated linear combinations βT

i X. In Figure 6.1, we only report
the plots of the residuals against βT

i X with 300 generated data points. The
plots indicate a pattern of quadratic curve and then weight function X2 is
also suggested. Hence, for this model, we used W (X) = X2.
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Fig. 6.1. This figure reports the plots of residuals Yi − βT
i X i = 1, 2 against the

fitted linear models βT
i X with model (6.4.1) when c = 0.5.

Since this is the first research work with multivariate responses in this
area, there are no other competitors in the literature; we compared the power
performance of the test when the critical values were determined by the limit
distribution and the NMCT. The sample sizes were n = 20, 40, 60. From
Figure 6.2, we can clearly see the superiority of the NMCT when the sample
size is n = 20. Another interesting observation is that in all cases with different
error distributions, the NMCT performs better than the limit distribution
although when the sample size is large, the powers with these two testing
procedures are very close one another.
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Fig. 6.2. This figure reports the plots of the power against the departure with c
for testing model (6.4.1). The first row is for normal error and the second row for
chi square error and the third row for uniform error.

6.4.2 Diagnostics with the Wilks Lambda

Consider the linear model as

Y = c(β(1)X
(1)) + (βT

(2)X
(2)) + ε (6.4.2)

where Y is q-dimensional, X = (X(1), (X(2))T )T where X(1) is 1-dimensional,
X(2) is (p − 1)-dimensional independently of ε, X is multivariate normal
N(0, Ip). Three distributions of the error ε: N(0, Iq), normal; Uq(−0.5, 0.5),
uniform on the cube (−0.5, 0.5)q, and χ2

q(1), all components following chi-
square with degree 1 of freedom respectively. The hypothetical regression
function is βT

(2)X
(2). Therefore the null model corresponds to c = 0. In the

simulation, we considered c = 0, 0.1, 0.2, · · · , 1 and p = 3 and q = 2, and
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β(2) = (1, 1; 0, 1) and β1 = (1, 0). Figure 6.3 reports the simulation results.
We can find that the Monte Carlo test outperforms the limit one in all of the
cases especially when sample size is small.
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Fig. 6.3. The figure repots the plots of the power against the departure with c for
model (6.4.2). The first row is for normal error and the second row for chi square
error and the third row for uniform error.

6.4.3 An Application

The 1984 Olympic records data on various track events were collected as
reported by Johnson and Wichern (1992). For a relevant dataset of women’s
track records, Dawkins (1989) used principal component analysis to study the
athletic excellence of a given nation and the relative strength of the nation
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at the various running distances. Zhu (2003) studied the relation between the
performance of a nation in long running distance and short running distance.
For 55 countries winning times for women’s running events at 100, 200, 400,
800, 1,500, 3,000 meters and the Marathon distance are reported in Johnson
and Wichern (1992). Now we want to know whether a nation of women whose
performance is better in running long distances may also have greater strength
at short running distances. To make the analysis more reasonable, the winning
time is transformed to speed. Let these speeds be x1, . . . , x7. We regard 100,
200 and 400 meters as short running distances, 1,500 meters and longer as long
running distances. The hypothetical model is linear by considering the speed
of the 100, 200 and 400 meters running events (x1, x2, x3) as the covariates
and the speed of the 1,500, 3,000 meters and the Marathon running events
(Y1, Y2, Y3) as covariates.

To test the linearity, we used the proposed test TT n in Section 6.2 and
the NMCT in Section 6.3. For NMCT, we assumed two cases: the error fol-
lows an elliptically symmetric distribution and a general distribution respec-
tively. Therefore, we used respective algorithms to construct NMCT statistics
TT ′

n(Un) and TT ′
n(En) as reported in Section 6.3. From Figure 6.4, we found

that the non-linearity may be mainly from Y3, the Marathon. There might be
quadratic curves in the plots of Y3 against Xi, i = 1, 2, 3. Hence, we chose X2

3
as a weight function W . With these three tests, the p-values are, respectively,
0.09 with TT n; 0.0001 with TT ′

n(Un) under the elliptical distributional as-
sumption and 0.03 with TT ′

n(Un) under a general distribution assumption.
Clearly, Monte Carlo test suggests a rejection for a linear model. Furthermore,
since the observation from Figure 6.4 indicates that the non-linearity may be
mainly from Y3, the Marathon and there might be quadratic curves in the
plots of Y3 against Xi, i = 1, 2, 3, this implies that the nation with either
great strength or weak strength at short running distance may not have good
performance in running the Marathon. We then fit a model linearly with X1,
X2, X3 and X2

3 . The p-value with the three tests are: 0.97 with TT n; 0.34 with
TT ′

n(Un) under the elliptical distribution assumption and 0.99 with TT ′
n(Un)

under a general distributional assumption. These tests provide a very strong
evidence for the tenability of the model with a two-order polynomial of X3.

Let us turn to the classical testing problem with likelihood ratio test.
First, we note that the speeds of 100 and 200 meters are greatly correlated
with correlation coefficient 0.9528. Regressing X2 on X1, we obtain X̂2 =
1.1492X1. Hence, we considered a new model, letting X̃1 = X2 − 1.1492X1,
X̃2 = X2 + 1.1492X1,

Y = aX̃1 + bX̃2 + dX3 + cX2
3 + ε. (6.4.3)

The purpose was to test whether X̃1 has a significant impact for Y : that is, the
coefficient a = 0 or not. The p-values are: 0.08 for the Wilks Lambda; 0.20 for
the NMCT with uniformly distributed weights and 0.38 for the NMCT with
normally distributed weights. All of the three tests provide evidence that X̃1
has less impact for Y . Hence we can use a model as
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Fig. 6.4. This figure reports the plots of the responses Y1, Y2, Y3 against the
covariates X1, X2, X3 for the 1984 Olympic records data.

Y = bX̃2 + dX3 + cX2
3 + ε

to establish the relationship between Y and X̃2, X3, X
2
3 .

6.5 Appendix

Proof of Lemma 6.2.1. Note that Σ−1/2(T + S) is normally distrib-
uted as N(Σ−1/2S, Iq) where Iq is a q × q identity matrix. Hence, the
components, say, ui i = 1, · · · , q, of Σ−1/2(T + S) are independent normal
with the mean vi and variance 1 where vi’s are the components of Σ−1/2S.
Therefore, (T + S)T Σ−1(T + S) can be written as the sum of independent
non-central chi-squared variables

∑q
i=1(ui + vi)2, each has the non-centrality



100 6 Model Checking for Multivariate Regression Models

v2
i . From the univariate response case, we know that P{(ui + vi)2 ≥ c}

for any c > 0 is smaller when |vi| gets larger. Consider q = 2. Note that
the distribution of (u1 + v1)2 + (u2 + v2)2 is a convolution of two distribu-
tions, each decreasing according to smaller value vi respectively. First note
that P{(u1 + v1)2 + (u2 + v2)2 > c} =

∫
(1 − F1,v1(c − x2))dF2,v2(x2) =∫

(1 − F2,v2(c − x1))dF1,v1(x1). Then for any pairs (v1, v2) and (v′
1, v

′
2) with

|vi| ≥ |v′
i|, because of the independence between u1 and u2, we derive that

P{(u1 + v1)2 + (u2 + v2)2 > c} =
∫

(1 − F1,v1(c − x2))dF2,v2(x2)

≥
∫

(1 − F1,v′
1
(c − x2))dF2,v2(x2) =

∫
(1 − F2,v2(c − x1))dF1,v′

1
(x1)

≥
∫

(1 − F2,v′
2
(c − x2))dF1,v′

1
(x2) = P{(u1 + v′

1)
2 + (u2 + v′

2)
2 > c}.

When we use induction, the same can apply to prove the general case, we
omit the details.

Proof of Lemma 6.2.2. Let V ′ = Σ−1/2V =: ((V ′)(1), · · · , (V ′)(q)).
Since Si = E(V (i)η(i)), then

∑q
i=1 v2

i =
∑q

i=1 E[(V ′)(i)η(i))]2. Invoking
the Cauchy-Schwarz inequality and the fact that E[(V ′)(i)]2 = 1, we ob-
tain that ST Σ−1S ≤ ∑q

i=1(E[η(i))]2 and the equality holds if and only if

(V ′)(i) = η(i)/
√(

E(η(i))2
)
.

Proof of Theorem 6.3.1. First note that under the null,

T̃ n =
1√
n

n∑
j=1

V j • ej + op(1). (6.5.1)

It is easy to see that when the sequence of {(xi, ‖εi‖), i = 1, . . . , n, · · · , } is
given, 1√

n

∑n
j=1 V j • ej has the same distribution as 1√

n

∑n
j=1 V j • uj • ‖ej‖

because εj/‖εj‖ is independent of ‖εj‖, and the distribution of εj/‖εj‖ is
identical to that of uj and so do the distributions of the associated uncondi-
tional counterparts. This implies that the limit distribution of T̃ n is the same
as that of 1√

n

∑n
j=1 V j • uj • ‖ej‖. Note that this is in turn asymptotically

equivalent to T̃ n(Un). The proof can be done as follows.
Note that in

T̃ n(Un) =
1√
n

n∑
j=1

V̂ j • uj • ‖êj‖, (6.5.2)

uj are independent of {(xj ,yj), j = 1, · · · , n}, and all estimators involved in
V̂ j and êj are consistent. Then we can easily derive that, by Taylor expansion,
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1√
n

n∑
j=1

[
V̂ j • uj • ‖êj‖ − V j • uj • ‖ej‖

]
=

1√
n

n∑
j=1

uj •
[
V̂ j • ‖êj‖ − V j • ‖ej‖

]
in probability. The proof is finished.

Proof of Theorem 6.3.2. To prove the result, we only need to prove two
things: asymptotic normality of T̃n(Un) and the identical of the covariance
matrix to the limiting covariance of T̃ n. Note that uj are independent of
{(xj ,yj), j = 1, · · · , n}. Then, when {(xj ,yj)} are given, the covariance ma-
trix of T̃n(Un) is (1/n)

∑n
j=1(V̂ j • ε̂j)(V̂ j • ε̂j)T . By the consistency of the

estimators involved, Taylor expansion and the weak law of large numbers, it
is easy to see that this sum converges to E

[
(V • ε)(V • ε)T

]
. This is just the

limiting covariance of T̃ n. As for the asymptotic normality, we only need to
note that when {(xj ,yj)} are given, T̃n(Un) is a sum of i.i.d. random vectors.
combining central limit theorems, we can verify that the limit is distributed
as N(0,E

[
(V • ε)(V • ε)T

]
). This is identical to the limit distribution of T̃ n.

The proof is finished.

Proof of Theorem 6.3.3. The proof is almost the same as those for the
previous theorems. The details are omitted.
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Heteroscedasticity Tests for Regressions

7.1 Introduction

Checking on heteroscedasticity in regression models should be conducted when
all of the error terms are assumed to have equal variance. Visual examination
of appropriate residual plots is a frequently used technique. The residual analy-
sis has also been applied to constructing formal tests of heteroscedasticity. A
rather complete discussion of such tests is given in Carroll and Ruppert (1988,
Section 3.4).

When regression and variance functions are parametric, there are some
tests in the literature. Examples are score tests (Cook and Weisberg (1983)),
quasi-likelihood tests and pseudo-likelihood tests (Davidian and Carroll (1987)
and Carroll and Ruppert (1988)). Most of the tests are studied under normal-
ity assumption on the distribution of the error. Bickel (1978) extended the
classic framework to include ”robust” tests in which normality needs not be
imposed. Carroll and Ruppert (1981) further studied properties of Bickel’s
test when the regression function is assumed to be linear.

Recently, some efforts have been devoted to the testing problem with
non-parametric regressions. Eubank and Thomas (1993) investigated the case
where no parametric form is assumed for the regression function. Their test
is a score type test. The input is scalar and the distribution of the error is
assumed to be normal. Diblasi and Bowman (1997) recommended a test using
non-parametric smoothing techniques in linear model with normal error. The
resulting test is actually also a score test with a transformation of the resid-
uals. Again for the case of scalar input, Dette and Munk (1998) proposed a
test in the non-parametric regression set-up with fixed design. Their test has a
nice property that it does not involve direct estimation of the regression curve
and does not depend on the subjective choice of smoothing parameter. In
the case of high-dimensional input, Müller and Zhao (1995) proposed a test
where, under alternative, the error terms follow a generalized linear model
while the regression model is non-parametric. No distributional assumptions
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are made on the distribution of the error except for some moment properties
essentially amounting to existence of the eighth moment. They studied the
limit behavior of the test statistic under the null hypothesis, but have not
provided theoretical or numerical evidence on the power performance of the
test. Eubank and Thomas (1993) investigated the behavior of the test under
directional local alternatives.

In this chapter, we shall recommend a unified approach to constructing
test statistics which can handle parametric and non-parametric regression
models with multi-dimensional input. No assumptions on the distribution of
the errors and the form of variance function are made except continuity and
fourth moments. Hence the models are more general and the assumptions are
weaker than those in Müller and Zhao (1995). Furthermore, regardless of the
type of regression functions and the variance functions, the tests can detect
the local alternatives distinct 1/

√
n from the null hypothesis. It should be

mentioned that although only the results about random designs are presented
here, the method can readily handle the cases with fixed designs.

When a non-parametric model is studied, we need to use a non-parametric
smoothing method to estimate the regression function, which involves smooth-
ing parameters. It is typically a concern on whether the choice of the smooth-
ing parameters affects seriously estimation efficiency. For our testing problem,
the choice will not be crucial. In a wide range of the smoothing parameters,
the limit distributions of the test statistics will be identical. We shall show
that if the covariable is one-dimensional and the fourth conditional moment
of the error given the covariable is a constant function, which is the case
when the covariable is independent of the error, the tests will be asymptoti-
cally distribution-free. For high-dimensional cases, the tests do not share this
property generally. In order to determine critical values, Monte Carlo approx-
imations may be resolutions. We shall investigate the behavior of the classical
bootstrap and the NMCT. Related works are Stute, González Manteiga and
Presedo Quindimil (1998) and Stute, Thies and Zhu (1998).

7.2 Construction and Properties of Tests

7.2.1 Construction

Consider a regression model:

Y = φ(X) + ε,

where X is a d-dimensional covariate, E(ε|X = x) = 0 and E(ε2|X = x) =:
σ2(x). Without loss of generality, write them as E(ε|x) and E(ε2|x) respec-
tively. The hypothesis to be tested can be written as, almost surely,

H0 : σ2(·) = σ2, a constant,
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versus
H1 : σ2(·) is a non-constant function.

Clearly, if the null hypothesis holds true, σ2 should just be the variance of ε,
Eε2. Hence H0 being true is equivalent to, for almost all x,

E(ε2|x) − E(ε2) = 0

which is further equivalent to, assuming the distribution function of X, F (·),
is continuous,

T (x) :=
∫

I(X ≤ x)(E(ε2|X) − E(ε2))dF (X)

= E(ε2(I(X ≤ x) − F (x))) = 0, for all x, (7.2.1)

where “X ≤ x” means that the components of X are less than or equal to the
corresponding components of x. Let {(x1, y1), · · · , (xn, yn)} be the collected
data. The fitted model ŷi = φ̂(xi) based on the data produces the residuals
ε̂i = yi − ŷi where φ̂(x) is an estimator of φ(x). The empirical version of T (x)
is

Tn(x) =
1
n

n∑
j=1

ε̂2
j (I(xj ≤ x) − Fn(x)), (7.2.2)

where Fn is the empirical distribution based on xj ’s. The test statistic should
be a functional of Tn. In this chapter, we define a test of Cramér-von Mises
type, the quadratic form of Tn, as

Wn = nC−2
n

∫
[Tn(x)]2dFn(x), (7.2.3)

where C2
n is the sample variance of ε̂2

j , a normalizing constant.
The above procedure can be applied to several types of models. It is pos-

sible to apply the idea to some types of model. For different kinds of models,
we should estimate regression functions together with their own characters for
the consideration of efficiency. In this chapter we only deal with two types of
models: that is, parametric and non-parametric regression models.

1. Parametric model: Y = φβ(X)+ε where φ is a known function. We can
estimate β first to get a fitted model φβ̂(xj) and then the residual yj −φβ̂(xj).
A test statistic can be defined through (7.2.2) and (7.2.3).

2. Non-parametric model: Y = φ(X) + ε where φ is an unknown function.
Since little is known on the form of φ, we have to apply local smoothing
technique to estimate it and then to define test.

7.2.2 The Limit Behavior of Tn and Wn

In order to clearly describe the limit behavior of the tests, we give only the
details for the linear and pure non-parametric model. Similar results can be
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derived for parametric models. Suppose that the data (x1, y1), . . . , (xn, yn) are
i.i.d. observations.

Linear Model Case. The model here is Y = α+β′X+ε. The least squares
estimator (LSE) of β is defined as, with Ŝ being the sample covariance matrix
of xj ’s, β̂ = Ŝ−1 ∑n

j=1(xj − x̄)(yj − ȳ). β̂ is root-n consistent to β, that is
β̂ − β = Op(1/

√
n) provided that the covariance matrix of X, S say, is finite

and positive definite. The estimator of α, say α̂, can be defined by ȳ − β̂′x̄.
Hence ε̂i = yi − α̂ − β̂′xi. The following theorem states the limit behavior of
Tn and then of Wn defined in (7.2.2) and (7.2.3).

Theorem 7.2.1 Assume that the distribution, F , of X is continuous and
the fourth moments of X and ε are finite and the covariance matrix of X is
positive definite. Then under H0

Tn =⇒ B1 (7.2.4)

in the Skorohod space D[−∞,∞)d and

Wn =⇒ W := C−2
∫

B2
1(x)dF (x),

where d is the dimension of X, B1 is a centered Gaussian process with the
covariance function

E(B1(x)B1(x1)) = E
[
(ε2 − σ2)2

(
I(X ≤ x ∧ x1) − F (x)I(X ≤ x1)

−F (x1)I(X ≤ x) + F (x)F (x1)
)]

(7.2.5)

for all x and x1 with C2 being the variance of ε2 and “ ∧ ” means taking
minimum between two values and if x and x1 are vectors, the minimum is also
a vector whose components are the minimum of corresponding components of
the two vectors.

Non-parametric Case. For non-parametric set-up, the situation becomes
more complicated. In the linear model, the estimators of the parameters have
the root-n rate of convergence. But this is no longer the case in the non-
parametric regression set-up. Typically, the estimator of the regression func-
tion may only have n−(m+1)/(2(m+1)+d) rate of convergence to the true regres-
sion curve where d is the dimension of the covariate X and m is an indication
for the smoothness of the regression function and distribution function of
X.(c.f. Subsection 7.5.1 below). We now use the kernel method to define an
estimator of the non-parametric function φ. Let g(x) = φ(x)f(x). The kernel
estimators of f(x) and g(x) have the following forms:

ĝ(x) =
1
n

n∑
j=1

yjKh(x − xj), f̂(x) =
1
n

n∑
j=1

Kh(x − xj),

φ̂(x) = ĝ(x)/f̂(x), (7.2.6)
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where h is a bandwidth, K(·) is a kernel function and Kh(·) = K(·/h)/hd.

Theorem 7.2.2 Assume that conditions 1) — 5) listed in Subsection 7.5.1
hold. Then under H0, the conclusions in Theorem 7.2.1 continue to hold.

The following consequence is useful in some special cases.

Corollary 7.2.1 In addition to the assumptions in Theorem 7.2.1 or Theo-
rem 7.2.2, assume further under the null hypothesis H0 that E((ε2−σ2)2|X) =
a constant. Tn converges weakly to B1 with the covariance function

E(B1(x)B1(x1)) = C2E[(I(X ≤ x ∧ x1) − F (x)F (x1))] (7.2.7)

where C2 is the variance of ε2. In the one-dimensional case, Wn converges
weakly to

∫ 1
0 B2(x)d x with B being the Brownian bridge.

We now investigate how sensitive the test is to alternatives. Consider a
sequence of local alternatives indexed by n

σ2(x) = σ2 + s(x)/na a ≥ 0. (7.2.8)

The following conclusion indicates that the test is consistent against all
global alternatives (corresponding to a = 0) and can detect the local alterna-
tives converging to the null at up to a parametric rate 1/

√
n ( corresponding

to 0 < a ≤ 1/2).

Theorem 7.2.3 Assume that the conditions in Theorem 7.2.1 for parametric
models or those in Theorem 7.2.2 for non-parametric models hold. Then under
the above alternative with 0 ≤ a < 1/2, Wn → ∞ as n → ∞ in probability
and with a = 1/2

Tn =⇒ B1 + SF,

where SF (x) = E(s(X)(I(X ≤ x) − F (x)) is a non-random shift function.
Consequently, for a continuous F , Wn =⇒ C−2

∫
(B1 + SF )2dF .

We now discuss the determination of critical values. In the one-dimensional
case, if under the null hypothesis the error is independent of X, the critical
values can be determined by existing table (e.g. Shorack and Wellner (1986)).
But in general, especially in high-dimensional cases, the test statistic Wn

may not be distribution-free. Approximations to the null distributions are
necessary. In the next section, Monte Carlo approximations are investigated.

7.3 Monte Carlo Approximations

We discuss three Monte Carlo approximations in this section: the Classical
bootstrap, the Wild bootstrap and the NMCT.
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1. The Classical Bootstrap

a) Linear Model Case. Draw bi’s independently from ε̂i (with replacement)
Let y∗

i = α̂ + β̂′xi + bi. The bootstrap LSE of β will be (see Efron (1979))

β∗ = Ŝ−1
n∑

j=1

(xj − x̄)(y∗
j − ȳ∗), α∗ = ȳ∗ − (β∗)′x̄.

The bootstrap residuals are with b∗
i = bi − (1/n)

∑n
j=1 bj

ε̂∗
j = y∗

j − α∗ − β∗′xj = −(β∗ − β̂)′(xj − x̄) + b∗
j

which creates a conditional counterpart of Tn

T ∗
n1(x) =

1√
n

n∑
j=1

(ε̂∗
j )

2(I(xj ≤ x) − Fn(x))

and then

W ∗
n1 = C−2

n

∫
(T ∗

n1(x))2dFn(x). (7.3.1)

b) Non-parametric Model Case. Let e∗
i be independently drawn from ε̂i =

yi − φ̂(xi) (with replacement). Define a bootstrap process by

T ∗
n1(x) =

1√
n

n∑
j=1

(e∗
j )

2(I(xj ≤ x) − Fn(x))

where g∗(x) = 1
n

∑n
j=1 e∗

jKh(x − xj)/f̂(x). Define a bootstrap statistic as

W ∗
n1 = C−2

n

∫
(T ∗

n1(x))2dFn(x). (7.3.2)

Theorem 7.3.1 Under the conditions in Theorem 7.2.1 or Theorem 7.2.2,
for almost all sequences {(x1, y1), · · · , (xn, yn), · · ·}, the limit conditional dis-
tribution of W ∗

n1 in (7.3.1) or (7.3.2) is identical to the limit null distribution
of Wn with the covariance function in Corollary 7.2.1.

Remark 7.3.1 From this theorem, we learn that, no matter whether the null
hypothesis holds true, the limit of the bootstrap test statistic W ∗

n1 in (7.3.1) or
(7.3.2) is only the same as that of Wn when E(ε4|X) is a constant under H0.
Although this is the case when, under H0, the covariate and the error are in-
dependent, the bootstrap test statistic is inconsistent in general. Consequently,
the classical bootstrap is only applicable in some special cases.
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2. The Wild Bootstrap

In our case, the wild bootstrap, as in Wu (1986) and Härdle and Mammen
(1993), does not work. To see this, consider the linear model and define x∗

i =
xi, y∗

i = β̂′xi+ε∗
i with ε∗

i = wiε̂i where wi are i.i.d. artificial bounded variables
generated by computer such that

Ewi = 0, Var(wi) = 1.

By the least squares method, the bootstrap LSE of β based on the data
{(x∗

1, y
∗
1), · · · , (x∗

n, y∗
n)}, say β̂∗, satisfies β̂∗ − β̂ = β̂ − β + Op(1/

√
n) almost

surely, see Liu (1988) or Härdle and Mammen (1993). The bootstrap residuals
will be y∗

i − (β̂∗)′xi = ε∗
i − (β̂∗ − β̂)′xi. The bootstrap version of Tn, say T ∗

n ,
is then

T ∗
n(x) =

1√
n

n∑
j=1

(y∗
i − (β̂∗)′xi)2(I(xj ≤ x) − Fn(x))

=
1√
n

n∑
j=1

((y∗
i − (β̂∗)′xi)2 − σ̂2)(I(xj ≤ x) − Fn(x))

which has a similar decomposition to Tn:

1√
n

n∑
j=1

(w2
i ε̂2

j − σ̂2)(I(xj ≤ x) − Fn(x))

−(β̂∗ − β̂)′ 2√
n

n∑
j=1

wiε̂jxj(I(xj ≤ x) − Fn(x))

+
√

n(β̂∗ − β̂)′ 1
n

n∑
j=1

xjx
′
j(I(xj ≤ x) − Fn(x))(β̂∗ − β̂)

=: I∗
1 (x) − I∗

2 (x) + I∗
3 (x). (7.3.3)

The following is an outline of the proof. Intuitively, note that due to the root-
n consistency of β̂∗ the process I∗

3 = {I∗
3 (x), x ∈ Rd} is clearly converging

to zero in distribution. For the process I∗
2 = {I∗

2 (x), x ∈ Rd}, the sum term
is a centered process which has a finite limit, and, together with the root-n
consistency of β̂∗, I∗

2 goes to zero. When w2
i = 1, the process I∗

1 = {I∗
1 (x), x ∈

Rd} is simply equal to Tn which is a non-random function for a given data and
when w2

i is not a constant, I∗
1 can be verified to converge weakly to a different

limit from the limit of Tn. Hence asymptotically, the conditional counterpart
of Wn, say W ∗

n , is inconsistent.
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3. The NMCT

We consider a simple case. Let e1, . . . , en be i.i.d. variables equally likely
taking values ±1. The NMCT counterpart of Tn is defined by

Tn(En, x) =
1√
n

n∑
j=1

ei(ε̂2
i − σ̂2)(I(xj ≤ x) − Fn(x)) (7.3.4)

where En := (e1, · · · , en). The resulting test statistic is

Wn(En) = C−2
n

∫
(Tn(En, x))2dFn(x)). (7.3.5)

Generate m sets of En, say E
(i)
n , i = 1, ..., m and then get m values of Wn(En),

say Wn(E(i)
n ), i = 1, ..., m. The 1 − α quantile of Wn(E(i)

n )’s will be as the α-
level critical value for Wn.

Theorem 7.3.2 Assume that the conditions in Theorem 7.2.1 for para-
metric models or those of Theorem 7.2.2 for non-parametric models hold.
When σ2(x) = σ2 + s(x)/na for some a > 0 for almost all sequences
{(x1, y1), · · · , (xn, yn), · · ·} the conditional distribution of Wn(En) converges
to the limiting null distribution of Wn in Theorem 7.2.1.

As s(·) = 0 corresponds to the null hypothesis and s(·) �= 0 to the lo-
cal alternative, this conclusion indicates that the critical values determined
by the NMCT, under local alternatives, equal approximately the ones under
the null hypothesis. Hence the critical values remain unaffected in the large
sample sense by the underlying model with small perturbations from constant
conditional variance.

For global alternatives, that is, a = 0, Wn(En) has a finite limit while Wn

goes to infinity. Therefore the test is also consistent.

7.4 A Simulation Study

To give evidence of how the proposed tests work, a small sample simulation
experiment was conducted. Comparisons were made with some existing tests
in the literature.

Following Diblasi and Bowman (1997), the variance functions were σ1(x) =
1, σ2(x) = 0.25+x, σ3(x) = 0.25+4(x−0.25)2 and σ4(x) = 0.25 exp(x log(5)).

Throughout, the basic experiment was performed 500 times and the nomi-
nal level was 0.05. The tables below show the percents of times out of 500 that
each procedure rejected the null hypothesis. Bandwidth selection is a concern.
But similar to Eubank and Thomas (1993) who used a spline smoother, the
difficulty with the theorems’ treatment of the bandwidth is that it does not
allow the data-driven choices for h. In homoscedastic cases, the generalized
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cross validation (GCV) method works well for estimating the bandwidth while
it may not be useful with the heteroscedastic errors. As Diblasi and Bowman
(1997) did, we considered several values of h in a fairly wide range and em-
pirically chose it. See Tables 6.1 and 6.3 and the discussions below. We also
calculated the average value of 500 data-driven bandwidths obtained by GCV
under the null hypothesis to help our choice. In the simulation with model
(7.4.1) below, as Diblasi and Bowman (1997) used, we reported the empirical
powers of the tests with h = 0.08, 0.16 and 0.32.

In the tables, the row “Linear” means that we used the least square method
to estimate the parameters in the model. “Nonpara” means that we regarded
the underlying model as a non-parametric one and estimate the regression
function by the kernel method as Diblasi and Bowman (1997). The kernel
function was (15/16)(1−t2)2I(t2 ≤ 1) ( see, e.g., Härdle and Mammen (1993)).
We considered an one-dimensional model as

yi = β0 + β1xi + εi, i = 1, · · · , n, (7.4.1)

where the εi were the independent normal random variables with zero means
and xi has a uniform distribution on [0,1]. In the simulation, the values for
the parameters were β0 = 1 and β1 = 2.

The critical value of our asymptotic test is given e.g. on page 748 of Shorack
and Wellner (1986). In Tables 6.1 and 6.2, we denote that C&W : Cook &
Weisberg’s test in Cook and Weisberg (1983), D&B : the bootstrap test in
Diblasi and Bowman (1997), NEW: the asymptotic test in the paper, NMCT:
the NMCT, CBT : the classical Bootstrap test.

Table 6.1. Empirical sizes of the tests (σ1(x) = 1)
n = 50 C&W D&B New NMCT CBT
Linear 4.4 5.0 6.4 5.6
Nonpara. h = 0.08 4.6 6.0 7.6 9.2
Nonpara. h = 0.16 4.4 5.0 5.8 6.4
Nonpara. h = 0.32 4.8 5.0 4.4 4.8
n = 70 C&W D&B New NMCT CBT
Linear 5.0 3.8 4.6 5.0
Nonpara. h = 0.08 4.6 5.4 6.6 8.2
Nonpara. h = 0.16 4.2 5.6 5.8 6.8
Nonpara. h = 0.32 5.2 4.4 4.6 5.2

In view of Table 6.1, one may see that the asymptotic test has the best
performance among the tests on holding the level of significance. In a fairly
wide range of bandwidth values, the size of the asymptotic test remains quite
close to the nominal level. This fits well with the theoretical assertions in
the theorems. Not surprisingly, the C&W test also has good performance
in a normal linear model. For the D&B test and the other two conditional
tests, properly choosing the bandwidth is needed, but one may see that the
performance of the conditional tests is good at h = 0.32 and is not bad at
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h = 0.16 either. The average values of GCV bandwidths were h̄GCV = 0.30
and h̄GCV = 0.28 according to n = 50 and n = 70 respectively.

For the powers presented in Table 6.2, we chose h = 0.32 in the non-
parametric cases. The comparison with the parametric C&W test whose as-
sumption for the variance of the errors is σ2

0 exp(λxi), i = 1, . . . , n, where λ
is an unknown parameter. The scores were selected as the centered deriva-
tive of the variance function as Cook and Weisberg (1983) did. The power
performances of tests rested on the variance functions. When the paramet-
ric assumption is appropriate, the C&W test has the best performance. But
there is no a single test which outperforms others in all cases. Consequently,
the asymptotic test can be recommended because it needs less computational
work and can be applied to various models.

Table 6.2. Empirical powers of the tests
n = 50 C&W D&B New NMCT CBT
σ2(x) = 0.25 + x

Linear 92.2 85.4 91.4 87.0
Nonpara. 84.8 85.4 87.0 85.4
σ3(x) = 0.25 + 4(x − 0.25)2

Linear 37.6 41.4 19.2 44.8
Nonpara. 83.2 39.4 17.2 45.8
σ4(x) = 0.25 exp(x log 5)
Linear 97.0 93.6 96.4 94.4
Nonpara. 90.6 92.4 91.6 93.0
n = 70 C&W D&B New NMCT CBT
σ2(x) = 0.25 + x

Linear 97.0 95.4 96.4 96.0
Nonpara. 94.4 94.2 94.8 94.6
σ3(x) = 0.25 + 4(x − 0.25)2

Linear 40.8 59.8 23.0 60.8
Nonpara. 96.4 59.8 21.6 59.6
σ4(x) = 0.25 exp(x log 5)
Linear 98.8 99.2 99.4 99.0
Nonpara. 98.4 98.6 98.2 98.2

We also performed another set of simulations. The underlying model was

yi = β0 + β1xi1 + β2xi2 + εi, i = 1, · · · , n. (7.4.2)

In the simulation, β0 = 1, β1 = 2 and β2 = 3 were used and εi were normal
variables with zero mean. We generated xi1 and xi2 in the following way: In the
interval [0,1], let x̃i1 be from the uniform distribution and x̃i2 = (2x̃i1)2. Define
xi1 = x̃i1 + 0.5x̃i2 and xi2 = 0.5x̃i1 + x̃i2. Hence (7.4.2) is a model associated
with one-dimensional variable x̃i1. The asymptotic test is still available. The
performance of the re-sampling tests were also investigated. Similar to Diblasi
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and Bowman (1997), h = 0.16, 0.32 and = 0.64 were used. The average values
of 500 bandwidths obtained by GCV were h̄GCV = 0.38 and h̄GCV = 0.34
according to n = 50 and n = 70 respectively.

Based on Table 6.3, the performance of the asymptotic test is still encour-
aging.

Table 6.3. Empirical sizes of the tests (σ1(x) = 1)
n = 50 C&W NEW NMCT CBT
Linear 4.6 5.0 6.4 5.8
Nonpara. h = 0.16 6.4 9.8 16.2
Nonpara. h = 0.32 5.2 4.4 6.2
Nonpara. h = 0.64 4.8 1.8 4.0
n = 70 C&W NEW NMCT CBT
Linear 5.8 5.2 6.8 5.8
Nonpara. h = 0.16 6.6 10.2 14.6
Nonpara. h = 0.32 5.4 4.2 6.4
Nonpara. h = 0.64 5.0 3.6 6.0

Table 6.4. Empirical powers of the tests
n = 50 C&W NEW NMCT CBT
σ2(x) = 0.25 + x1 n = 50
Linear 78.4 82.0 82.4 73.8
Nonpara. h = 0.32 81.4 80.8 77.2
σ3(x) = 0.25 + 4(x1 − 0.25)2

Linear 92.4 99.8 99.6 97.8
Nonpara. h = 0.32 99.8 99.8 99.2
σ4(x) = 0.25 exp(x1 log 5)
Linear 95.2 98.4 99.8 94.4
Nonpara. h = 0.32 98.6 99.8 98.2
n = 70 C&W NEW WBT CBT
σ2(x) = 0.25 + x1

Linear 90.6 93.2 93.2 89.2
Nonpara. h = 0.32 92.0 92.4 91.8
σ3(x) = 0.25 + 4(x1 − 0.25)2

Linear 94.4 100.0 99.8 99.8
Nonpara. h = 0.32 100.0 100.0 100.0
σ4(x) = 0.25 exp(x1 log 5)
Linear 97.0 99.4 99.6 96.4
Nonpara. h = 0.32 100.0 99.4 98.6

For the powers in Table 6.4, h = 0.32 was considered. The asymptotic
test and the wild bootstrap test are superior over the others. The scores of
C&W test were selected as the centered derivative of the variance function
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σ2
0 exp(λx1). It is a bit surprising that the score test cannot outperform other

tests, even if the parametric assumption is appropriate. But looking at the
results reported in Table 1 of Eubank and Thomas (1993), we learnt that the
derivative of the variance function might not always be the optimal choice.
Note that the test in Eubank and Thomas (1993) is, in univariate cases, a
generalization of C & W test. In their simulation, the test T1 cannot do better
than the test T2 even in the case in which the parametric assumption for the
variance of the errors is appropriate for T1.

Furthermore, it is noted that the test of Eubank and Thomas (1993) is
also asymptotically distribution-free in the case where the covariate is one-
dimensional and the error is normally distributed. The limiting null distrib-
ution is χ2- distribution with 1 degree of freedom. Their test is defined by a
quadratic form of the weighted sum of the squares of the residuals. It is also a
Cramér-von Mises type. The choice of weights is involved. For obtaining good
power performance, the weights are related to alternatives. In their simulation,
three choices of weights were used. The corresponding tests were written as
T1, T2 and T3. Following them, we reported the percents of times out of 1000
that each procedure rejected the null hypothesis for the four variance func-
tions: v0(x) = 1, v1(x) = exp(x), v2(x) = exp(x2) and v3(x) = 2 for x > 0.5
and v3(x) = 1 for x < 0.5. Sample sizes were n = 100 and n = 200. In the
simulation, two regression functions were considered: φ1(x) = 3 + 2.7x + 3x2

and φ2(x) = 3exp(−2x). Similar to the tests T1 and T2 on page 149 in Eu-
bank and Thomas (1993), our asymptotic test is also reasonably insensitive
to the choice of regression function φ, we in Table 6.5 only report the results
associated with φ1. The bandwidth was h = 0.32.

Table 6.5. Empirical powers of the asymptotic test
variance v0 v1 v2 v3

n = 100 5.4 46.0 46.3 51.0
n = 200 5.0 76.5 78.0 82.0

Our asymptotic test can hold the level well, while as noted in Eubank and
Thomas (1993), their tests have some difficulty on holding the significance
level especially for n = 100. Their T2 is more sensitive to alternative than
ours in the cases conducted.

To summarize, the asymptotic test may be a good choice in the case that
critical values can be determined, otherwise, the NMCT is worthwhile to rec-
ommend.

7.5 Proofs of the theorems

7.5.1 A Set of Conditions

The following conditions are required for the theorems in Sections 7.2 and 7.3
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1). For non-negative integers m1, . . . , md, m = m1+· · ·+md, g(x) = φ(x)f(x)
and f(x) are mi-times differentiable about the i-th component of x, say xi,
and their m-th derivatives of g and f , say g(m)(x), and f (m)(x), satisfy the
following condition, that is, there exists a neighborhood of the origin, say U ,
and a constant c > 0 such that for any u ∈ U and some 0 < r < 1

|f (m)(x + u) − f (m)(x)| ≤ c|u|,
|g(m)(x + u) − g(m)(x)| ≤ c|u|.

2). E|Y |4 < ∞ and E|X|4 < ∞.
3). The continuous kernel function K(·) =

∏d
i=1 K(i)(·) satisfies the following

properties:
a) the support of K(i)(·) is the interval [−1, 1] for i = 1, . . . , d ;
b) K(i)(·) is symmetric about 0;
c)

∫ 1
−1 K(i)(u)du = 1, and

∫ 1
−1 ulK(i)(u)du = 0, l = 0, . . . mi, i = 1, . . . d.

4). As n → ∞ h ∼ n−c1 where the positive numbers c1 satisfies that 1
4(m+1) <

c1 < 1
2d for d < 2(m + 1), where the notation “∼” means that two quantities

have the same convergence order.
5). 0 < c1 ≤ inf f(x) ≤ sup f(x) ≤ c2 < ∞.

Remark 7.5.1 Conditions 1) is concerned with the smoothness of the den-
sity function of x and the regression curve φ(x). Without further restriction
on the regression curve, Condition 2) is necessary for the asymptotic conver-
gence of Tn and then of Wn. We note that the asymptotic behavior of Tn in
Theorem 7.2.2 does not depend on the choice of the bandwidth h when Con-
ditions 4) is fulfilled. The choice of h is relatively flexible. For example in the
one-dimensional cases, d = 1 and m = 0, the range of h is near from n− 1

2 to
n− 1

r which contains the optimal convergence rate of h = Op(n− 1
3 ). Hence it

may be said that the test Wn is not sensitive for the choice of the smoothing
parameter h. Condition 5) is a typical restriction that avoids boundary effect
problem.

Since similar arguments can be applied to develop proofs for multivariate
cases, we only investigate the univariate situation here.

7.5.2 Proofs of the Theorems in Section 2

Proof of Theorem 7.2.1. Since the xj are assumed to be scalar as men-
tioned above, the notations will be simpler. First it is known that Ŝ → S
in probability and supx |Fn(x) − F (x)| = Op(1/

√
n). Noticing that ε̂j =

(εj−ε̄)−(β̂−β)(xj−x̄), ε̂2
j = (εj−ε̄)2−2(β̂−β)(xj−x̄)(εj−ε̄)+(β̂−β)2(xj−x̄)2,

and (x̄ − EX) = Op(1/
√

n), ε̄ = Op(1/
√

n), we then have
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Tn(x) =
1√
n

n∑
j=1

(ε2
j − σ2)(I(xj ≤ x) − F (x))

− 2√
n

(β̂ − β)
n∑

j=1

εj(xj − EX)(I(xj ≤ x) − F (x))

+
1√
n

(β̂ − β)2
n∑

j=1

(xj − EX)2(I(xj ≤ x) − F (x)) + Op(1/
√

n)

=: I1(x) − I2(x) + I3(x) + Op(1/
√

n). (7.5.1)

Since the class of functions fx(X) = X2(I(X ≤ x) − F (x)) over all in-
dices x is a VC class (see, e.g. Pollard (1984), Giné and Zinn (1984)),
(1/n)

∑n
j=1 x2

j (I(xj ≤ x)−F (x)) → E(X2(I(X ≤ x)−F (x))) a.s. uniformly
on x (see Pollard (1984), p.25). Then I3(x) = Op(1/

√
n) a.s. uniformly on x.

Again the class of functions f1x(X) = Xε(I(X ≤ x)−F (x)) for all indices x is
also a VC class, hence the Equicontinuity lemma (Pollard (1984), p. 150) holds
true. By Theorem VII 21 (Pollard (1984), p. 157) 1/

√
n
∑n

j=1 εjxjI(xj ≤ x)
converges weakly to a centered Gaussian process. This implies that, combin-
ing with (7.5.1), I2(x) = Op(1/

√
n) a.s. uniformly on x. Applying Theorem

VII 21 of Pollard (1984) again, I1 converges weakly to the process B1 defined
in (7.2.5) upon noticing that Cn → C in probability. From this conclusion,
we immediately get that under the conditions in Theorem 7.2.1, applying the
continuous mapping theorem, Wn converges weakly to W . This completes the
proof.

Proof of Theorem 7.2.2. Similar to the decomposition of Tn in (7.5.1), we
have

Tn(x) =
1√
n

n∑
j=1

(ε2
j − σ2)(I(xj ≤ x) − F (x))

− 2√
n

n∑
j=1

εj(φ̂(xj) − φ(xj))(I(xj ≤ x) − F (x))

+
1√
n

n∑
j=1

(φ̂(xj) − φ(xj))2(I(xj ≤ x) − F (x)) + op(1)

=: I4(x) − I5(x) + I6(x) + op(1). (7.5.2)

What we now need to do is to show that I5 and I6 tend to zero in probability.
For I6, we have that

sup
x

|I6(x)| ≤ 1√
n

n∑
j=1

(φ̂(xj) − φ(xj))2

which is
√

n multiplying the mean square error of the estimator of φ. Under
conditions assumed in Subsection 7.5.1, it is easy to see that the mean square
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error of the estimator of φ is Op((1/
√

nh+hm+1)2). We are then able to show
that I6(x) = Op(1/

√
nh +

√
nh2(m+1)) uniformly on x.

We now prove that I5 converges to zero in probability uniformly on x. It
can be derived that

φ̂(x) − φ(x) =
ĝ(x)

f̂(x)
− g(x)

f(x)

=
ĝ(x) − g(x)

f(x)
− φ(x)

f̂(x) − f(x)
f(x)

− (ĝ(x) − g(x))(f̂(x) − f(x))

f̂(x)f(x)

+
φ(x)(f̂(x) − f(x))2

f̂(x)f(x)
. (7.5.3)

By the similar arguments for computing mean square error of estimator, we
have that, along with conditions 1) through 3),

n∑
j=1

(
ĝ(x) − g(x)

)2 = Op((log n)4/(nh) + h2(m+1)),

n∑
j=1

(
f̂(x) − f(x)

)2 = Op((log n)4/(nh) + h2(m+1)).

Combining (7.5.3) and condition 5)

I5(x) =
2√
n

n∑
j=1

εj

( ĝ(xj) − g(xj)
f(xj)

)
(I(xj ≤ x) − F (x))

− 1√
n

n∑
j=1

εj

(
φ(xj)

f̂(xj) − f(xj)
f(x)

)
(I(xj ≤ x) − F (x))

+Op((log n)4/
√

nh +
√

nh2(m+1))

=: J1(x) − J2(x) + Op((log n)4/
√

nh +
√

nh2(m+1)). (7.5.4)

We shall now prove that J1 and J2 converge to zero in probability uniformly
on x. Since the arguments are similar for both cases, we give details only for
J1.

Let

W 1
h (xi, xj , yi, εj , x) =

(yiK((xi − xj)/h) − g(xj))φ(xj)εj

hf(xj)
(I(xj ≤ x) − F (x))

and observe that
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J1(x) =
1

2n3/2

n∑
i �=j

W 1
h (xi, xj , yi, εj , x) + W 1

h (xj , xi, yj , εi, x) + Op(
1√
nh

)

=: J ′
1(x) + Op(

1√
nh

) (7.5.5)

Let η = (X, Y, ε). Define

Wh(ηi, ηj , x) = h
(
W 1

h (ηi, ηj , x) + W 1
h (ηj , ηi, x)

)
−h

(
E(W 1

h (η, ηj , x)|ηj)) + E(W 1
h (ηi, η, x)|ηi))

)
where E(W 1

h (η, ηj , x)|ηj)) is the conditional expectation of W 1
h given ηj and

J ′′
1 =

1
2n3/2

n∑
i �=j

Wh(ηi, ηj , x).

Hence J ′′
1 is a U-process (see, e.g. Nolan and Pollard (1987)). As is well known,

the class of indicator functions is a VC class. Note that for any x the function
W 1

h (·, x) is the product of the centered indicator function (I(· ≤ x) − F (x))
and a given function which is independent of x. We then have that for any
fixed n the class of functions Gn = {Wh(·, x) : x ∈ R1} is a vector space of real
functions having the same dimension as that consisting of indicator functions.
Therefore, by Lemma II.18 (Pollard (1984), p. 20), for any fixed n, Gn is
the VC class whose degree is not greater than that of the class of indicator
functions. Note that E(Wh(η1, η2, x) = 0. Therefore Gn is P-degenerate with
envelope

Gn(η1, η2)

=

∣∣∣∣∣ (y1K( (x1−x2)
h ) − g(x2))φ(x2)ε2

f(x2)

∣∣∣∣∣ +

∣∣∣∣∣ (y2K( (x2−x1)
h ) − g(x1))φ(x1)ε1

f(x1)

∣∣∣∣∣.
By Theorem 6 of Nolan and Pollard (1987) on p. 786, we have

E sup
x

|
∑
i, j

Wh(ηi, ηj , x)| ≤ cE(αn + γnJn(θn/γn))

Jn(s) =
∫ s

0
log N2(u, Tn,Gn, Gn)du,

γn = (TnG2
n)1/2, αn =

1
4

sup
g∈Gn

(Tng2)1/2,

Tng2 :=
∑
i �=j

g2(η2i, η2j) + g2(η2i, η2j−1) + g2(η2i−1, η2j) + g2(η2i−1, η2j−1)
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and N2(·, Tn,Gn, Gn) is the covering number of Gn under L2 metric with
the measure Tn and the envelope Gn. As Gn is the VC class, following the
argument of Approximation lemma II 2.25 (Pollard (1984), p. 27) the covering
number N2(uTn/n2G2

n, Tn/n2,Gn, Gn) can be bounded by cu−w1 for some
positive c and w1, both being independent of n and Tn. Further in probability
for large n

TnG2
n ≤ 2

n∑
j=1

n∑
i=1

((yiK((xi − xj)/h) − g(xj)
)
φ(xj)εj

f(xj)

)2

= O(hn2 log2 n) a.s.

Hence for large n, Tn/n2G2
n is smaller than 1 and N2(u, Tn/n2,Gn, Gn) ≤

cu−w1 . Note that N2(u, Tn,Gn, Gn) = N2(u/n2, Tn/n2,Gn, Gn). We can then
derive that

Jn(θn/γn) ≤ Jn(1/4)

= n2
∫ 1/(4n2)

0
log N2(u, Tn/n2,G1, G)d u

= −cn2
∫ 1/(4n2)

0
log udu = c log n

and

γ2
n = TnG2

n = O(hn2 log2 n) a.s.

Therefore for large n, E supx |∑i, j Wh(ηi, ηj , x)| ≤ c
√

hn log n. This yields
that E supx |J ′′

1 (x)| ≤ c
√

h log n/
√

n, and then

J ′′
1 = h

1√
n

n∑
j=1

E(W 1
h (η, ηj , x)|ηj) + Op(

√
h log n/

√
n), (7.5.6)

equivalently

J ′
1 =

1√
n

n∑
j=1

E(W 1
h (η, ηj , x)|ηj) + Op(log n/

√
nh)

=
1√
n

n∑
j=1

E
(
(Y − g(xj)Kh(X − xj)φ(xj)(I(xj ≤ x) − F (x))

εj

f(xj)

)
+ Op(log n/

√
nh)

=: J3(x) + Op(log n/
√

nh). (7.5.7)

By conditions 1) and 3) in Subsection 7.5.1, for each xj

E(Y − g(xj))Kh(X − xj) = E(g(X) − g(xj))Kh(X − xj)
= E(g(xj + hu) − g(xj))K(u) = O(hm)
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and

Var(E((Y − g(xj))Kh(X − xj)φ(xj)(I(xj ≤ x) − F (x))
εj

f(xj)
)))

= O(h2(m+1)).

Applying Theorem 3.1 of Zhu (1993) or mimicking the proof of Theorem II.37
(Pollard (1984), p. 34) gives

sup
x

|J3(x)| = o(h2(m+1)(log n)2) a.s.

The proof is concluded from combining (7.5.5), (7.5.7) with condition 4).

Proof of Corollary 7.2.1. When E((ε2−σ2)2|X) equals a constant, it should
be C2. Making a time transformation, we can derive that W =

∫ 1
0 B(x)2d x

with B being a Brownian bridge on [0,1].

Proof of Theorem 7.2.3. It is easy to see that either (7.5.1) or (7.5.2) still
holds. The same argument used in the proof of Theorem 7.2.1 or 7.2.2 can be
borrowed to prove I2 and I3 (or I5 and I6) asymptotically zero. For I1 (or I4)
we have

I1(x) =
1√
n

n∑
j=1

(ε2
j − (σ2 + s(xj)/na))(I(xj ≤ x) − F (x))

+
n1/2−a

n

n∑
j=1

s(xj)(I(xj ≤ x) − F (x)).

The first sum converges weakly to B1 and the second tends to infinity or SF
in Theorem 7.2.3 corresponding to 0 ≤ a < 1/2 or a = 1/2.

7.5.3 Proofs of the Theorems in Section 3

Proof of Theorem 7.3.1. Let us deal with T ∗
n1 in the linear model case first.

Similar to Tn, T ∗
n1 can be decomposed as

T ∗
n1(x) =

1√
n

n∑
j=1

(ε̂∗
j )

2(I(xj ≤ x) − Fn(x))

− 2√
n

(β∗ − β̂)
n∑

j=1

ε∗
j (xj − x̄)(I(xj ≤ x) − Fn(x))

+
1√
n

(β∗ − β̂)2
n∑

j=1

(xj − x̄)2(I(xj ≤ x) − Fn(x)) + Op(1/
√

n)

=: I∗
1 (x) − I∗

2 (x) + I∗
3 (x) + Op(1/

√
n). (7.5.8)



7.5 Proofs of the theorems 121

From the process of drawing the bootstrap data, b∗
i are independent with

mean zero when the original data are given. This means that I∗
2 defined by

(7.3.1) is a conditionally centered process. If the weak convergence of I∗
2

can be verified, we then can bind (β∗ − β̂)I∗
2 by Op(1/

√
n) as (β∗ − β̂) =

Op(1/
√

n). It is easy to see that (β∗ − β̂)2I∗
3 can be bounded by Op(1/

√
n)

where I∗
3 is defined by (7.3.1). We now prove that for almost all sequences

{(x1, y1), · · · , (xn, yn), · · ·} I∗
2 converges weakly to a Gaussian process I2 with

the covariance function σ2E((X−EX)2(I(X ≤ x)−F (x)(I(X ≤ x1)−F (x1)))
for all x, x1.

First, it is easy to check that the covariance function of I∗
2 converges to the

above one. Along with the proof of Theorem VII 21 (Pollard (1984), p. 157-
159) or mimicking that in Zhu (1993), all we need to do is to verify condition
(16) in the Equicontinuity lemma (Pollard (1984), p.150). It can be done by
noticing that the class of the functions (X − EX)ε̂∗(I(X ≤ x) − Fn(x)) over
all indices x is a VC class. Hence condition (16) holds true. We can verify that
I∗
1 is a conditionally centered process and converges weakly to B1. Hence the

proof for the linear model case is finished. In the non-parametric regression
case, T ∗

n1 is analogous to I∗
1 in the linear model case and similar arguments

can be applied.

Proof of Theorem 7.3.2. It is easy to see that, together with the con-
vergence of β̂ in the linear model case and of φ̂, the covariance function
of Tn(En, ·) converges to that of Tn and finite-dimensional convergence of
Tn(En, ·) also holds. Therefore, it suffices to show uniform tightness. Let
gn(X, Y, t) = (ε̂2−σ2)(I(X ≤ t)−Fn(t)). For given {(x1, y1) · · · , (xn, yn)}, de-
fine dn(t, s) =

√
Pn(gn(X, Y, t) − gn(X, Y, s))2, the L2(Pn) seminorm, where

Pn is the empirical measure based on {(x1, y1) · · · , (xn, yn)} and for any func-
tion of (X, Y ), Pnf(X, Y ) denotes the average value of n values f(X1, Y1), . . . ,
f(Xn, Yn). For uniform tightness, all we need to do is to prove that for any
η > 0 and ε > 0, there exists a δ > 0 such that

lim sup
n→∞

P{sup
[δ]

|Tn(En, t) − Tn(En, s)| > η|Xn, Yn} < ε (7.5.9)

where [δ] = {(t, s) : dn(t, s) ≤ δ} and (Xn, Yn) = {(x1, y1), · · · , (xn, yn)}.
Since the limiting property with n → ∞ is investigated n will be always

considered to be large enough below simplify some arguments of the proof. Let
g(X, Y, t) = (ε2 − σ2)(I(X ≤ t) − Fn(t)), G = {g(·, t) : t ∈ Rd} and d(t, s) =√

Pn(g(X, Y, t) − g(X, Y, s))2 . By the convergence of β̂ in the linear model
and of φ̂ in non-parametric model, we have that supt,s |dn(t, s) − d(t, s)| → 0
in probability. Hence for large n

P{sup
[δ]

|Tn(En, t) − Tn(En, s)| > η|Xn, Yn}

≤ P{ sup
<2δ>

|Tn(En, t) − Tn(En, s)| > η|Xn, Yn} (7.5.10)
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where < 2δ >= {(t, s) : d(t, s) ≤ 2δ}.
In order to apply the chaining lemma (e.g. Pollard (1984), p.144), we need

to check that

P{|Tn(En, t) − Tn(En, s)| > η d(t, s)|Xn, Yn} < 2 exp(−η2/2) (7.5.11)

and

J2(δ, d, G) =
∫ δ

0
{2 log{(N2(u, d, G))2/u}}1/2du (7.5.12)

is finite for small δ > 0 where the covering number N2(u, d, G) is the smallest
m for which there exist m points t1, . . . , tm such that min1≤i≤m d(t, ti) ≤ u for
every t ∈ A, (7.5.11) can be derived by the Hoeffding inequality and (7.5.12)
is implied by the fact that G is a VC class and N2(u, d, G) ≤ c uw for some
constants c and w. Invoking the chaining lemma, there exists a countable
dense subset < 2δ >∗ of < 2δ > such that, combining with J2(δ, d, G) ≤ c u1/2

for some c > 0,

P{ sup
<2δ>∗

√
n|Tn(En, t) − Tn(En, s)| > 26cd1/2|Xn, Yn}

≤ 2cδ. (7.5.13)

The countable dense subset < 2δ >∗ can be replaced by < 2δ > itself because
Tn(En, t) − Tn(En, s) is a right-continuous function w.r.t. t and s. Together
with (7.5.10), the proof is concluded from choosing δ small enough.
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Checking the Adequacy of a
Varying-Coefficients Model

8.1 Introduction

The defining characteristic of a longitudinal study is that individuals are mea-
sured repeatedly through time and a prime objective of the analysis is to
evaluate the change of the mean response over time and the effects of the ex-
planatory variables on the mean response. Recently, many efforts have been
made towards varying-coefficient models in longitudinal analysis because the
existing parametric and nonparametric approaches may be either too restric-
tive to accommodate the unknown shapes of the curves or lacking the specific
structures of being biologically interpretable for many situations, among oth-
ers, Hoover, Rice, Wu and Yang (1998), Wu Chiang and Hoover (1998), Fan
and Zhang (1999), Wu and Chiang (2000), Fan and Zhang (2000), Huang,
Wu and Zhou (2002), Chiang, Rice and Wu (2001), Wu and Liang (2004) and
Huang, Wu and Zhou(2004).

The motivating example of some relevant papers above is the Multicenter
AIDS Cohort Study, the data include the repeated measurements of physi-
cal examinations, laboratory results and CD4 cell counts and percentages of
283 homosexual men who became HIV-positive between 1984 and 1991. Since
CD4 cells are vital for immune function, as stated in Wu and Chiang (2000),
CD4 cell counts and percentage, i.e., CD4 cell count divide by the total num-
ber of lymphocytes, are currently the most commonly used markers for the
health status of HIV infected persons, it is important to build some statistical
models for the CD4 cell counts or percentage. The data set is an important
special case of longitudinal data since the covariate variables are independent
of the time t, i.e. the observations are cross-sectional. For this special data
set {(tij , Yij , X

T
i ) : i = 1, · · · , n; j = 1, · · · , ni} where Xi = (1, X(1)

i , · · · , X(k)
i )

existed in several longitudinal studies. Wu and Chiang (2000) employed the
following varying-coefficient model

Y (t) = Xτβ(t) + ε(t) (8.1.1)
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where X = (1, X(1), · · · , X(k), X(l), l = 1, · · · , k are time independent co-
variates, β(t) = (β0(t), . . . , βk(t))τ , βr(t) are smooth functions of t tak-
ing values on the real line, ε(t) is a mean zero stochastic process with
variance V ar(ε(t)) = σ2(t) and covariance Cov(ε(t), ε(s)) = ρε(t, s). Also
X(1), . . . , X(k) are assumed to be random.

In some relevant researches, the model checking for the covariate effects has
received much attention through detecting whether certain coefficient func-
tions in a varying-coefficient model are constant. Among others, Cai, Li and
Fan (2000) suggested a goodness-of-fit test based on a non-parametric max-
imum likelihood ratio test to detect whether certain coefficient function in
varying-coefficient model are constant or whether any covariates are statis-
tically significant in the model. Fan and Zhang (2000) tested whether some
covariate effects follow certain parametric forms; the test statistics are based
on the maximum deviations of the estimated coefficient functions from the
true coefficient functions. Huang, Wu and Zhou (2002) introduced a hypoth-
esis testing procedure for testing constant covariate effects based on function
approximations through basis expansions and resampling subject bootstrap.
When ni = 1 for all i = 1, · · · , ni in (8.1.1), i.e., a special case of the mod-
els described by Hastie and Tibshirani (1993), Cai, Fan and Li (2000) sug-
gested a goodness-of-fit test based on a nonparametric maximum likelihood
ratio test to detect whether certain coefficient function in varying-coefficient
model are constant or whether any covariates are statistically significant in
the model; Fan and Zhang (2000) proposed a test to check whether some co-
variate effects follow certain parametric forms, the test statistics are based
on the maximum deviations of the estimated coefficient functions from the
estimated parametric coefficient functions. However, these studies are not for
model (8.1.1) with a longitudinal data set. Some tests have been proposed to
handle the testing problem for the model where X is the function of t. See
Huang, Wu and Zhou (2002) and Sun and Wu (2004), Clearly, model (8.1.1)
is a special case. However, the asymptotical properties of test statistics and
this bootstrap procedure used to evaluate the null distribution in Huang, Wu
and Zhou (2002) were not derived theoretically even in checking whether the
varying-coefficients are constants.

On the other hand, note that it is a piece of useful information that X is
not a function of t. Clearly, although the tests designed for those more general
models could be applicable, the information provided by the data set was not
fully used and then in our setup those tests would not be powerful.

Therefore, in our setup, it is of great interest to construct tests to check
whether some covariate effects in (8.1.1) follow certain parametric forms, and
also more simply, detect whether certain coefficient functions in a varying-
coefficient model are constant. However, to our knowledge, no reference has
investigated the hypothesis testing for model (8.1.1) with the longitudinal
data set.

This chapter aims to develop a global test procedure to assess the ad-
equacy of the above model. Most of the materials are from Xu and Zhu
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(2004). We focus on our attention to longitudinal samples with a real time
t, a time-dependent response variable Y (t), and a time-independent covariate
vector X = (X(0), . . . , X(k))τ with real valued X(l). Like usual linear models
with an intercept term, we set X(0) ≡ 1 and denote by (Yij , Xi, tij) the jth
measurement of (Y (t), X, t) for the i of the n independent subjects, where
Xi = (X(0)

i , . . . , X
(k)
i )τ , X

(0)
i ≡ 1 and j = 1, 2, . . . , ni. Assume that Xi are

i.i.d. with distribution function F and tij are i.i.d. with distribution function
G.

For model (8.1.1), when E(XXτ ) is invertible, β(.) is uniquely defined and
satisfies:

β(t) = (E(XXτ ))−1E(XY (t)) (8.1.2)

As the popularly used conventional diagnostics, we want to test whether
βr(·) = 0 for a component r of interest with 0 ≤ r ≤ k. We consider a
more general problems. For any r with 1 ≤ r ≤ k, let βr(Θ) = {βr(.) ≡
βr(., θ); θ ∈ Θ} be a family of parametric functions on an open subspace Θ of
Rd for some d ≥ 1. When a particular βr(.) is of interest, the problem can be
formulated as testing the null hypothesis:

H0 : βr(·) = βr(·, θ0) for some θ0 ∈ Θ (8.1.3)

against the saturated alternative

H1 : βr(·) �= βr(·, θ0) for any θ0 ∈ Θ (8.1.4)

For model (8.1.1) with the typical longitudinal sample we adopt a glob-
ally smoothing method to construct test statistic. Since t is real-valued time,
the innovation approach proposed by Stute, Thies and Zhu (1998) can be
applied. Through this method, some optimal tests can be constructed. See
Stute (1997) and Stute, Thies and Zhu (1998). Furthermore, we also consider
the NMCT approximation to the sampling null distribution. Comparing with
a bootstrap, the NMCT approximation is much less computational burden
and is the proven powerful tool. See Zhu (2003) in the conventional regres-
sion settings. It is worthwhile to mention that the applications of these two
approaches are not trivial at all because the model structure with longitudi-
nal data is much more complex than the ordinary regression model structure
and then the construction of test and the study of its properties need to be
delicate.

8.2 Test Procedures

Let erl be the (r+1, l+1)th element of (E(XXτ ))−1, Zir =
∑k

l=0(eriX
l
i), Zijr =

ZirYij . It can be deduced from (8.1.2) that, for r = 0, 1, . . . , k,

βr(t) = E{Zijr|tij = t} (8.2.1)
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Under H0, that is, βr(.) = βr(., θ0) for some θ0 ∈ Θ, we have E{Zijr −
βr(tij , θ0)|tij = t} = 0, i.e. E{Zijr|tij = t} = βr(t, θ0), (i = 1, 2, . . . , n; j =
1, 2, . . . , mi). Now a new model can be written as:

Zijr = βr(tij , θ0) + εij , (i = 1, 2, . . . , n; j = 1, 2, . . . , mi) (8.2.2)

In this new model, we assume E(εij |tij) = 0,Var(εij |tij) = σ2(tij) and that
for each i, tij , i = 1, 2, . . . , n; j = 1, 2, . . . , mi are i.i.d. random variables drawn
from a continuous distribution F . Since E{Zijr − βr(tij , θ0)|tij = t} = 0 for
all t is equivalent to R(t) = E{Zijr −βr(tij , θ0)I(tij ≤ t)} = 0, for all t, under
H0,

T =
∫

R(t)2dF (t) = 0 (8.2.3)

where F is the distribution of tij .
Let N =

∑n
i=1 mi and RN (t) = 1√

N

∑n
i=1

∑mi

j=1{(Zijr −βr(tij , θ0))I(tij ≤
t)} as an empirical version of R(t) if both Zijr and βr(tij , θ0) are known,
otherwise it should be R̃N (t) = 1√

N

∑n
i=1

∑mi

j=1{(Ẑijr −βr(tij , θN ))I(tij ≤ t)}
where θN and Ẑijr are the estimators of θ0 and Zijr respectively. The estimator
θN of θ0 is given by the least squares method, i.e.

θN = arg min
θ

1
N

n∑
i=1

mi∑
j=1

(Zijr − βr(tij , θ))2

let Σ̂ = 1
n

∑n
i=1 XiX

τ
i , êrl be the (r + 1, l + 1)th element of Σ̂−1, Ẑri =∑k

l=0(êriX
l
i), Ẑijr = ẐriYij .

Define a test statistic

TN =
∫

R̃N (t)2dFN (t) =
1
N

n∑
i=1

mi∑
j=1

R̃N (tij)2 (8.2.4)

where FN is the empirical distribution based on {tij ; (i = 1, 2, . . . , n; j =
1, 2, . . . , mi)}. The null hypothesis H0 is rejected for large values of TN .

8.3 The Limit Behavior of Test Statistic

We first cite a standard result of least squares estimator. See, Jennrich (1969).

Proposition 8.1. Under H0 and the regularity conditions:
(i) A sequence of real valued responses Zijr has the structure

Zijr = βr(tij , θ0) + εij , (i = 1, 2, . . . , n; j = 1, 2, . . . , mi)
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where βr(·, ·) are continuous functions, with given form, on a compact subset
Θ of a Euclidean space and the εij are i.i.d. errors with zero mean and finite
variance σ2 > 0, and θ0 and σ2 are unknown.

(ii) The tail cross product of βr(θ) = {βr(tij , θ) : i = 1, 2, . . . , n; j =
1, 2, . . . , mi} with itself exists and that Q(θ) = |βr(θ) − βr(θ0)|2 has a unique
minimum at θ = θ0. The definition of tail cross product can be found in
Jennrich (1969).

(iii) Put, for ; l = 1, . . . , d,

β′
rk(θ) = {∂βr(tij , θ)

∂θk
: i = 1, . . . , n; j = 1, . . . , mi} : k = 1, . . . , d

β′
rkl(θ) = {∂2βr(tij , θ)

∂θk∂θl
: i = 1, . . . , n; j = 1, . . . , mi} : k = 1, . . . , d

every element of β′
rk(θ) and β′

rkl(θ) exists and is continuous on Θ and that
all tail cross products of the form [f, h], where f, h = βr, β

′
rk(θ), β′

rkl(θ), exist.
(iv) The true parameter vector θ0 is an interior point of Θ and the matrix

a(θ0) is non-singular where a(θ) = ((∂βr(.,θ)
∂θi

× ∂βr(.,θ)
∂θj

)ij.

Then N
1
2 (θN − θ0) converges in distribution to a centered normal distrib-

ution with covariance structure σ2a−1(θ0).

We now state some regularity conditions for the need of the process con-
vergence:

(A) (i) βr(tij , θ) is continuously differentiable with respect to θ in the
interior set of Θ. Let

g(tij , θ) = gradθ(βr(tij , θ)) = (g1(tij , θ), . . . , gd(tij , θ))τ ,

and assume that
(A) (ii) |gi(tij , θ)| ≤ M(tij) for all θ ∈ Θ and 1 ≤ i ≤ d for an F-integrable

function M.
(A) (iii) σ−1(tij)|gi(tij , θ)| ≤ M(tij) for all θ ∈ Θ and 1 ≤ i ≤ d.
Set: G(x, θ) =

∫ x

−∞ g(u, θ)F (du). Under the condition of (A)(i) and (ii),
we can get the following theorem:

Theorem 8.2. Under H0 and condition A, R̃N = {R̃N (t) : t ∈ R1} converges
in distribution to a process

R̃∞ = B − Gτ (x, θ0)N

in the Skorohod space D[−∞, +∞], where B is a centered Brownian motion
with covariance function Cov(B(x1), B(x2)) = ψ(x1 ∧ x2), where ψ(x) =∫ x

−∞ V ar(Zijr|tij = t)F (dt), tij ∼ F and N is a centered normal vector with
covariance σ2a−1(θ0). The convergence of the process implies that TN con-
verges in distribution to T =

∫
R̃∞(t)2dF (t).
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It is clear that the distribution of TN and of T are intractable. Therefore,
for determining critical values, we have to consider an approximation or a test
statistic based on R̃N but having a tractable distribution. In the following,
we introduce two approaches.

8.3.1 Innovation Process Approach

This approach has been used in Stute, Thies and Zhu (1998). We now apply
it to the situation with longitudinal data. First, introduce scale invariant
versions of RN and R̃N , namely,

R0
N (t) = N−1/2

n∑
i=1

mi∑
j=1

I(tij ≤ t)σ−1(tij)(Zijr − βr(tij , θ0))

and

R̃0
N (t) = N−1/2

n∑
i=1

mi∑
j=1

I(tij ≤ t)σ−1(tij)(Ẑijr − βr(tij , θN ))

Replacing condition (A)(ii) by (A)(iii), we can obtain the convergence of R0
N

in distribution to the process B0 where B0 is a centered Brownian motion with
covariance function Cov(B0(x1), B0(x2)) = F (x1 ∧ x2), and R̃0

N converges in
distribution to a process B0 − G0(x, θ0)τN0 where

G0(x, θ0) =
∫ x

−∞
σ−1(t)g(t, θ0)F (dt)

and N0 is a standard normal vector.
A detailed study of B0−G0(x, θ0)τN0 is difficult. As a result, a strategy will

be to first transform B0 −G0(x, θ0)τN0 into B0. That is, we construct a linear
transformation L satisfying LB0 = B0 in distribution and L(G0(x, θ0)τN0) ≡
0. Below, we present the form of L. Set

A(s) =
∫ +∞

s

g(t, θ0)g(t, θ0)τσ−2(t)F (dt)

a positive definite d × d-matrix, defining

(Lf)(s) = f(s) −
∫ s

−∞
σ−1(t)g(t, θ0)τA−1(t)[

∫ +∞

t

σ−1(z)g(z, θ0)f(dz)]F (dt)

With these L, it is easy to prove L(G0(s, θ0)τN0) ≡ 0 and since L is a linear
operator, LB0 is a centered Gaussian process. To prove LB0 = B0, we only
need to show that

Cov(LB0(r), LB0(s)) = Cov(B0(r), B0(s)) = F (rΛs). (8.3.1)

A proof of (8.3.1) will be deferred to Section 8.5.



8.3 The Limit Behavior of Test Statistic 129

Theorem 8.3. Under condition A, the regularity conditions in Proposition
3.1 and the null hypothesis H0 with the assumption that A(x) is nonsingular
for all x, we have that, in distribution,

L(B0 − G0(x, θ0)τN0) = L(B0) = B0 (8.3.2)

and LR̃0
N converges in distribution to B0 in the Skorohod space D[−∞, +∞].

From statistical applications such as goodness-of-fit testing, Theorem 8.3
is still inappropriate since both R̃0

N and L involve unknown quantities like
σ2(tij), θ0 and F (tij). To apply our method to a given set of data, the trans-
formation L, for example, needs to be replaced by an empirical analog, LN .
We then need to show that the resulting processes have the same limit as
LR̃0

N .
In the homoscedastic case we simply have to replace R̃0

N by σ−1
N R̃N ,

where σ2
N is the sum of the squared residuals and similarly in L. In the gen-

eral heteroscedastic case, however, it is the function σ2(tij) rather than the
constant σ2 which needs to be estimated from the data. Because σ2(tij) =
E{Z2

ijr|tij = t} − βr(tij)2, any consistent non-parametric regression curve
estimator may serve as an empirical substitute for the conditional second
moment. Under H0, βr(tij)2 may be estimated by βr(tij , θN )2. As it turns
out, this procedure works in principle, under some restrictive smoothness as-
sumptions on σ2(tij). A workable approach is the following: split the whole
sample {(tij , Zijr), (i = 1, 2, . . . , n; j = 1, 2, . . . , mi)} into two parts, say
S1, S2. We assume that S1 = {(tij , Zijr) : i = 1, . . . , n1; j = 1, . . . , mi} and
S2 = {(tij , Zijr) : i = n1 + 1, . . . , n; j = 1, . . . , mi}, the sizes of S1 and S2
equal N1 =

∑n1
i=1 mi and N2 =

∑n
n1+1 mi, assuming that both N1 and N2

converge to infinity as N → ∞. Then we estimate σ2(tij) from the first part,
say by σ2

N1
(tij), and let the process based on the second part. This leads to

the two processes

R1
N (t) = N

−1/2
2

n∑
i=n1+1

mi∑
j=1

I(tij ≤ t)σ−1
N1

(tij)[Zijr − βr(tij , θ0)],

R̃1
N (t) = N

−1/2
2

n∑
i=n1+1

mi∑
j=1

I(tij ≤ t)σ−1
N1

(tij)[Ẑijr − βr(tij , θN1)].

Finally, the transformation LN is defined by

(LNf)(s)

= f(s) −
∫ s

−∞
σ−1

N1
(t)g(t, θN1)

τA−1
N1

(t)[
∫ +∞

t

σ−1
N1

(z)g(z, θN1)f(dz)]FN1(dt).

Here FN1 is the empirical d.f. of {Zijr, (tij , Zijr) ∈ S2}, the estimator θN1 and
Ẑijr are computed from {Zijr, (tij , Zijr) ∈ S2}, and
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AN1(s) =
∫ +∞

s

g(t, θN1)g(t, θN1)
τσ−2

N1
(t)F1(dt).

To demonstrate the effect of splitting the data into two parts, note that con-
ditionally on the first N1 data, R1

N is a sum of independent centered processes
with the covariance function

KN1(r, s) =
∫ r∧s

−∞
σ2(t)/σ2

N1
(t)F (t).

We shall see that under appropriate conditions:

supr,sE|KN1(r, s) − F (r ∧ s)| → 0 (8.3.3)

which together with the above-mentioned independence of summands yields

R1
N (t) → B0 in distribution.

For σN1(t) in LN we recall that under no condition other than square-
integrability of Zijr do there exist universally consistent estimators of σ2

N (t)
satisfying:

E

∫
|σ2

N1
(t) − σ2

N (t)|F (dt) → 0 N1 → ∞. (8.3.4)

For the convergence of the covariance function KN1 , we need to assume that
σ2(t) is bounded away from zero, that is σ2(t) ≥ a > 0 for some a. For
theoretical purposes we also want to guarantee that the σ2

N1
(t) are bounded

away from zero.

Theorem 8.4. Under the condition of Theorem 8.3 and (8.3.4) with σ2
N1

being
a universally consistent estimator of σ2 bounded away from zero. We have,
under the null hypothesis H0,

LN R̃1
N → B0 in distribution in the D[−∞, +∞] (8.3.5)

The convergence of the above process implies that T̃N :=
∫

(LN R̃1
N (t))2dFN (t)

converges in distribution to
∫

B0(t)2d(t).

8.3.2 A Non-parametric Monte Carlo Test

For a comparison with the innovation process approach, we consider NMCT
for determining critical values in this section. Note that under the null hy-
pothesis H0 and the regularity conditions in Proposition 8.1, we have

N1/2(θN − θ0) = N−1/2
n∑

i=1

mi∑
j=1

l(tij , Zijr, θ0) + op(1)
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where l is a vector-valued function such that

E(l(tij , Zijr, θ0)) = 0, E{l(tij , Zijr, θ0)l(tij , Zijr, θ0)′} = σ2a−1(θ0).

Let J(Zr, T, θ0, t) = I(T ≤ t)(Zr − βr(T, θ0)) + E(T ≤ t)l(T, Zr, θ0). Then

R̃N (t) =
1√
N

n∑
i=1

mi∑
j=1

J(Zijr, tij , θ0, t) + op(1).

The algorithm is as follows.

Step 1. Generate independent identically distributed random variables
eij , i = 1, . . . , n; j = 1, . . . , mi, each having bounded support with mean zero
and variance one. Let EN := {(eij , i = 1, . . . , n; j = 1, . . . , mi} and define the
conditional counterpart of RN as

R̃N (t, EN ) =
1√
N

n∑
i=1

mi∑
j=1

eijJ(Ẑijr, tij , θN , t). (8.3.6)

The resulting test statistic is

TN (EN ) =
∫

R̃N (t, EN )2dFN (t). (8.3.7)

Step 2. Generate k sets of EN , say E
(i)
N , i = 1, . . . , k and get k values of

TN (EN ), say TN (EN )(i), i = 1, . . . , k.

Step 3. The p-value is estimated by p̂ = k/(m+1) where k is the number
of TN (EN )(i)’s which are larger than or equal to TN (EN ). Reject H0 when
p ≤ α for a designated level α.

The following result states the consistency of the NMCT approximation.

Theorem 8.5. Under the null hypothesis H0, and the conditions in Theo-
rem 8.2, we have that, for almost all sequences {(Xi, Yij , tij), i = 1, . . . , n; j =
1, . . . , mi}, the conditional distribution of TN (EN ) converges to the limiting
null distribution of TN .

8.4 Simulation Study and Application

8.4.1 Simulation Study

We consider parametric model of (8.1.1). The model has the coefficient curves
β0 = t + at2 and β1 = 1 and the covariate vector X = (1, X)τ where X is a
standard normal random variable.
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We generated the i.i.d. time points {tij}1≤i≤n,1≤mi
from the uniform dis-

tribution on [0, 1], and the random errors of εij from the mean zero Gaussian
process with covariance function:

If i1 = i2, Cov(ε(ti1,j1), ε(ti2,j2)) = λexp(−λ|ti1,j1 − ti1,j1 |); otherwise 0.

The responses {Yij}1≤i≤n,1≤mi
are obtained by substituting the correspond-

ing time points, covariate vectors, random errors and coefficient curves into
(8.1.1).

In our simulation study we let β0(Θ) = {β0(.) ≡ θt} be the family of linear
functions. Hence H0 : β0(t) ∈ β0(Θ) holds with θ0 = 1 and if and only if a = 0.
Throughout the simulations, the nominal level is α = 0.05 and various values
for λ = 0.5, 1, 2 and a = 0, 0.5, 1, 1.5, 2, 2.5 are considered.The number of
independent subjects and measurement are n = 20, 50 and mi ≡ 20, 50. For
each sample, the p-value is determined using 1000 replications of the Monte
Carlo procedures.

Table 8.1. Empirical powers of test Tn with α = 0.05: λ = 1; Innovation method
a 0.00 0.50 1.00 1.50 2.00 2.50
n = 20, m = 20 0.0220 0.0740 0.2480 0.5320 0.8180 0.9220
n = 20, m = 50 0.0240 0.1740 0.6000 0.8960 0.9780 0.9960

Table 8.2. Empirical powers of test Tn with α = 0.05: λ = 1; NMCT
a 0.00 0.50 1.00 1.50 2.00 2.50
n = 20, m = 20 0.0400 0.0933 0.2833 0.4667 0.7033 0.9000
n = 20, m = 50 0.0200 0.1467 0.5333 0.8667 0.9800 1.0000

From Tables 8.1 and 8.2, we can see that the tests based the two methods
have good power performance even when the sample size of n is so small. It
clearly shows the sensitiveness of the tests to the alternatives. It also shows
that when the sample size is large with m = 50, the power increases greatly.
Comparing the power performance of the two methods, we can find that they
are comparable. See Figure 8.1 for a clearer picture. Considering the com-
putation burden issue, we may recommend the innovation approach in the
examples we conducted.
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(3): INNO vs. NMCT n=20, m=20
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(4): INNO vs. NMCT n=20, m=50

Fig. 8.1. (1) The dashdot line is the estimated power of Innovation method with
n = 20 and m = 20 and the solid line is with n = 20 and m = 50; (2) The dashdot
line is the estimated power of NMCT with n = 20 and m = 20 and the solid line is
with n = 20 and m = 50; (3) The dashdot line is the estimated power of Innovation
method with n = 20 and m = 20 and the solid line is for NMCT with n = 20 and
m = 20; (4) The dashdot line is the estimated power of Innovation method with
n = 20 and m = 50 and the solid line is for NMCT with n = 20 and m = 50.

8.4.2 Application to AIDS Data

As mentioned in the introduction, the data set considered here came from the
Multi-Center AIDS Cohort Study. It contains the HIV status of 283 homosex-
ual men who were infected with HIV during the follow-up period between 1984
and 1991. All individuals were scheduled to have their measurements made at
semi-annual visits, but because many individuals missed some of their sched-
uled visits and the HIV infections happened randomly during the study, there
are unequal numbers of repeated measurements and different measurement
times per individual. Further details about the design, methods and medical
implications of the study can be found in Kasolw et al.(1987).

The focus of our statistical analysis is to detect the effects of cigarette
smoking, pre-HIV infection CD4 percentage and age at HIV infection on the
mean CD4 percentage after the infection. Denote by tij the time in years of
the jth measurements of the ith individual after HIV infection, by Yij the
ith individual’s CD4 at time tij and by X

(1)
i the ith individual’s smoking
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status; X
(1)
i is 1 or 0 if the ith individual ever or never smoked cigarettes, re-

spectively, after the HIV infection. For a clear biological interpretation of the
coefficient functions , we define X

(2)
i to be the ith individual’s centered age

at HIV infection, obtained by subtracting the sample average age at infection
from the ith individual’s age at infection. Similarly, X

(3)
i , the ith individual’s

centered pre-infection CD4 percentage, is computed by subtracting the av-
erage pre-infection CD4 percentage of the sample from the ith individual’s
actual pre-infection CD4 percentage. These covariates, except the time, are
time-invariant.

The varying-coefficient model for Yij , tij and Xi = (1, X
(1)
i , X

(2)
i , X

(3)
i ) is

Yij = β0(tij) + X
(1)
i β1(tij) + X

(2)
i β2(tij) + X

(3)
i β3(tij) + εij

where β0(t) , the baseline CD4 percentage, represents the mean CD4 percent-
age t years after the infection for a non-smoker with average pre-infection CD4
percentage and average age at HIV infection, and the time-varying effects for
cigarette smoking, age at HIV infection and pre-infection CD4 percentage on
the post-infection CD4 percentage at time t are described by β1(t), β2(t) and
β3(t) respectively.

In three prior analysis of the same dataset, Wu and Chiang (2000) and
Fan and Zhang (2000) considered the nonparametric estimation of βl(t)(l =
0, 1, 2, 3) using locally smoothing methods. Huang, Wu and Zhou (2002) pro-
posed globally smoothing methods to estimate βl(t)(l = 0, 1, 2, 3) and do some
inference procedures to detect whether coefficient functions βl(t)(l = 0, 3) in
a varying-coefficient model are constant or whether covariates X

(1)
1 , X

(2)
1 are

statistically significant in the model. The findings of Wu and Chiang (2000),
Fan and Zhang (2000) and Huang, Wu and Zhou (2002) for estimating the
varying-coefficient coefficients are basically the same, see Huang, Wu and Zhou
(2002) for the estimation results.

We analysed the same data and introduced two methods to test whether
some covariate effects follow certain parametric forms, we considered eight
null hypotheses for coefficient curves, βi(t) = ai + bit, i = 0, 1, 2, 3 and βi(t) =
ci, i = 0, 1, 2, 3, that is we first test whether the effect of smoking, age, baseline
and Pre-CD4 is linear, then check whether they are constant effect. With 1000
replication times for p-values in NMCT method, the results are summarized
in Table 8.3 at the 0.05 significance level. Since Huang, Wu and Zhou (2002)
investigated the same data and considered four null hypotheses, β1(t) = 0,
β2(t) = 0, β0(t) = c0 and β3(t) = c3, i.e. smoking has no effect, age has no
effect, baseline effect is constant and pre-CD4 effect is constant respectively,
their results are listed in Table 8.4 for compare.
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Table 8.3. Application to AIDS data, α = 0.05:
Innovation NMCT Innovation NMCT

Null Hypothesis p-value p-value Null Hypothesis p-value p-value
β0(t) = a0 + b0t 0.2490-0.2878 0.8900 β0(t) = c0 0.0000 0.0060
β1(t) = a1 + b1t 0.7012-0.8910 0.9880 β1(t) = c1 0.2490-0.2878 0.6000
β2(t) = a2 + b2t 0.7012-0.8910 0.9960 β2(t) = c2 0.0879-0.0999 0.4200
β3(t) = a3 + b3t 0.4672-0.5652 0.9760 β3(t) = c3 0.3346-0.2878 0.6660

Table 8.4. Result of Huang, Wu and Zhou(2002) α = 0.05
Null hypothesis p-value

β1(t) = 0 0.176
β2(t) = 0 0.301
β0(t) = c0 0.000
β3(t) = c3 0.059

From the results, all three methods have convincing evidence for rejecting
the null hypothesis β0(t) = c0 and no sufficient evidence to reject other null
hypothesis.

8.5 Proofs

As we described in Section 8.3, the following lemma can provide the basis for
the result in Theorem 8.2.

Lemma 8.6. We have

Cov(LB0(r), LB0(s)) = Cov(B0(r), B0(s)).

Proof. Without loss of generality assume that r ≤ s. According to the defini-
tion of L we have

(LB0)(r) = B0(r) −
∫ r

−∞
σ−1(t)g(t, θ0)τA−1(t)[

∫ +∞

t

σ−1(z)g(z, θ0)B0(dz)]F (dt).

Note that the mean of LB0 and of B0 are zero. By some elementary calcula-
tion, we obtain that

E(LB0(r) × LB0(s))
= E{B0(r) × B0(s)}

−E{B0(r) ×
∫ s

−∞
σ−1(t)g(t, θ0)τA−1(t)[

∫ +∞

t

σ−1(z)g(z, θ0)B0(dz)]F (dt)}

−E{B0(s) ×
∫ r

−∞
σ−1(t)g(t, θ0)τA−1(t)[

∫ +∞

t

σ−1(z)g(z, θ0)B0(dz)]F (dt)}

+E{
∫ r

−∞
σ−1(t)g(t, θ0)τA−1(t)[

∫ +∞

t

σ−1(z)g(z, θ0)B0(dz)]F (dt)

×
∫ s

−∞
σ−1(t)g(t, θ0)τA−1(t)[

∫ +∞

t

σ−1(z)g(z, θ0)B0(dz)]F (dt)}. (8.5.1)
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Upon using rules for stochastic integrals, we can get that

E(LB0(r) × LB0(s)) = Cov{B0(r), B0(s)}

−
∫ s

−∞
σ−1(t)g(t, θ0)τA−1(t)[

∫ r

t

σ−1(z)g(z, θ0)F (dz)]F (dt)

−
∫ r

−∞
σ−1(t)g(t, θ0)τA−1(t)[

∫ s

t

σ−1(z)g(z, θ0)F (dz)]F (dt)

−
∫ r

−∞

∫ s

−∞
σ−1(t)g(t, θ0)τA−1(t)A(t ∨ z)A−1(z)σ−1(z)g(z)F (dz)F (dt).

Because the fourth element of the above equality is∫ r

−∞

∫ s

−∞
σ−1(t)g(t, θ0)τA−1(z)σ−1(z)g(z)I(t ≥ z)F (dz)F (dt)

+
∫ r

−∞

∫ s

−∞
σ−1(t)g(t, θ0)τA−1(t)σ−1(z)g(z)I(t < z)F (dz)F (dt)

=
∫ r

−∞

∫ s

−∞
σ−1(t)g(t, θ0)τA−1(z)σ−1(z)g(z)I(t ≥ z)F (dz)F (dt)

+
∫ r

−∞

∫ s

−∞
σ−1(t)g(t, θ0)τA−1(t)σ−1(z)g(z)I(t < z)F (dz)F (dt).

Finish the proof of the lemma by summation and application of the Fubini
Theorem.

Lemma 8.7. Under H0, we have in probability and uniformly on compact set

LR̃0
N = LR0

N + op(1). (8.5.2)

Proof. By the definition of L,

(LR̃0
N )(s) = R̃0

N (s)

−
∫ s

−∞
σ−1(t)g(t, θ0)τA−1(t)[

∫ +∞

t

σ−1(z)g(z, θ0)R̃0
N (dz)]F (dt),

(LR0
N )(s) = R0

N (s)

−
∫ s

−∞
σ−1(t)g(t, θ0)τA−1(t)[

∫ +∞

t

σ−1(z)g(z, θ0)R0
N (dz)]F (dt).

Because∫ s

−∞
σ−1(t)g(t, θ0)τA−1(t)

[ ∫ +∞

t

σ−1(z)g(z, θ0)R̃0
N (dz)

]
F (dt)

= N−1/2
n∑

i=1

mj∑
j=1

∫ s

−∞
σ−1(t)g(t, θ0)τA−1(t)I(t,∞)(tij)σ−2(tij) ×

g(tij , θ0)(Zijr − βr(tij , θ0))F (dt)
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and ∫ s

−∞
σ−1(t)g(t, θ0)τA−1(t)[

∫ +∞

t

σ−1(z)g(z, θ0)R0
N (dz)]F (dt)

= N−1/2
n∑

i=1

mj∑
j=1

∫ s

−∞
σ−1(t)g(t, θ0)τA−1(t)I(t,∞)(tij)σ−2(tij) ×

g(tij , θ0)(Ẑijr − βr(tij , θN ))F (dt).

Hence

(LR̃0
N )(s) − (LR0

N )(s)
= {R̃0

N (s) − R0
N (s)}

−{N−1/2
n∑

i=1

mj∑
j=1

∫ s

−∞
σ−1(t)g(t, θ0)τA−1(t)I(t,∞)(tij)σ−2(tij) ×

g(tij , θ0)(Ẑijr − Zijr)F (dt)}

+{N−1/2
n∑

i=1

mj∑
j=1

∫ s

−∞
σ−1(t)g(t, θ0)τA−1(t)I(t,∞)(tij)σ−2(tij)g(tij , θ0) ×

(βr(tij , θN ) − βr(tij , θ0))F (dt)} (8.5.3)

We can get that, uniformly in s ≤ s0 for some fixed finite s0, under H0 and
condition A

R̃0
N = R0

N − G0(tij , θ0)τN1/2(θN − θ0) + op(1),

N−1/2
n∑

i=1

mj∑
j=1

∫ s

−∞
σ−1(t)g(t, θ0)τA−1(t)I(t,∞)(tij)σ−2(tij)g(tij , θ0)

×(βr(tij , θN ) − βr(tij , θ0))F (dt)

=
∫ s

−∞
σ−1(t)g(t, θ0)τA−1(t)

∫ ∞

t

σ−2(z)g(z, θ0)g(z, θ0)τF (dz)F (dt) ×

N1/2(θN − θ0)
+op(1)

= Gτ
0(s, θ0)N1/2(θN − θ0) + op(1),

and

1
N1/2

n∑
i=1

mj∑
j=1

∫ s

−∞
σ−1(t)g(t, θ0)τA−1(t) ×

I(t,∞)(tij)σ−2(tij)g(tij , θ0)(Ẑijr − Zijr)F (dt)
= op(1).
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The proof is finished.

We are now in the position to prove the theorems.

Proof of Theorem 8.2. Note that

R̃N (t) =
1√
N

n∑
i=1

m∑
j=1

{(Ẑijr − βr(tij , θN ))I(tij ≤ t)}

=
1√
N

n∑
i=1

m∑
j=1

{(Zijr − βr(tij , θ0))I(tij ≤ t)} − 1√
N

n∑
i=1

m∑
j=1

{(βr(tij , θN )

−βr(tij , θ0))I(tij ≤ t)} +
1√
N

n∑
i=1

m∑
j=1

{(Ẑijr − Zijr)I(tij ≤ t)}.

It is not difficult to show that 1√
N

∑n
i=1

∑m
j=1{(Zijr − βr(tij , θ0))I(tij ≤ t)}

converges in distribution to a centered Brownian motion B with covariance
function Cov(B(x1), B(x2)) = ψ(x1 ∧ x2), 1√

N

∑n
i=1

∑m
j=1{(βr(tij , θN ) −

βr(tij , θ0))I(tij ≤ t)} and 1√
N

∑n
i=1

∑m
j=1{(Ẑijr − Zijr)I(tij ≤ t)} converge,

respectively, in distribution to Gτ (x, θ0)N and op(1). The proof of this theo-
rem is completed.

Proof of Theorem 8.3. From Lemma 8.6, we can easily derive that, in distri-
bution,

L(B0 − G0(x, θ0)τN0) = L(B0) = B0. (8.5.4)

LR0
N → B0 and Lemma 8.7 implies that LR̃0

N → B0 in distribution. The
proof of Theorem 8.3 is completed.

Proof of Theorem 8.4. First, similar to the proof of Lemma 8.7, we obtain,
upon using the fact that σN1 is bounded away from zero, that

LN R̃1
N = LNR1

N + op(1)

uniformly in s ≤ s0. Second, we show that

LNR1
N = LR1

N + op(1).

Note that

LR1
N − LNR1

N + op(1)

=
∫ s

−∞
σ−1

N1
(t)gτ (t, θN1)A

−1
N1

(t)
∫ ∞

t

σ−1
N1

(z)g(z, θN1)R
1
N (dz)FN1(dt)

−
∫ s

−∞
σ−1

N1
(t)gτ (t, θ0)A−1(t)

∫ ∞

t

σ−1
N1

(z)g(z, θ0)R1
N (dz)F (dt)
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=
∫ s

−∞
σ−1

N1
(t)gτ (t, θ0)A−1(t)

∫ ∞

t

σ−1
N1

(z)g(z, θ0)R1
N (dz){FN1(dt) − F (dt)}

+
∫ s

−∞
{σ−1

N1
(t)gτ (t, θN1)A

−1
N1

(t)
∫ ∞

t

σ−1
N1

(z)g(z, θN1)R
1
N (dz)

−σ−1
N1

(t)gτ (t, θ0)A−1(t)
∫ ∞

t

σ−1
N1

(z)g(z, θ0)R1
N (dz)}FN1(dt)

= : I1 + I2 (8.5.5)

Putting

αN (t) = σ−1
N1

(t)gτ (t, θ0)A−1(t)
∫ ∞

t

σ−1
N1

(z)g(z, θ0)R1
N (dz)

it is not difficult to see that along with (8.3.3) and the boundedness of σN1 ,
the sequence αN is tight. We can conclude that the first part I1 of (8.5.5)
tends to zero uniformly in s ≤ s0.

From condition (A) and the boundedness of σN1 , we obtain that the
processes βN defined by

βN (s, θ) =
∫ s

−∞
σ−1

N1
(t)gτ (t, θ)A−1

N1
(t, θ)

∫ ∞

t

σ−1
N1

(z)g(z, θ)R1
N (dz)FN1(dt)

are uniformly tight and continuous in θ. But θN1 → θ0 in probability so that
the integral in the second part I2 of (8.5.5) tends to zero in probability as N
and N1 → ∞.

In the above L, σ has to be replaced by σN1 . Now mimic the proof of
Theorem 8.3 to complete the proof of Theorem 8.4.

Proof of Theorem 8.5. By Wald’s device, for almost all sequences {(Xi, Yij , tij) :
i = 1, . . . , n; j = 1, . . . , mi; N → ∞}, all we need is to show that i) The covari-
ance function of RN (., EN ) converges to that of RN , ii) Finite distributional
convergence of RN (., EN ) holds for any finite indices {tij : i = 1, . . . , k; j =
1, . . . , mi} and iii) Uniform tightness. The properties i) and ii) are easily ver-
ified, the details are omitted. Therefore, it suffices to show uniform tightness.
It can be done along the lines of the proof of Theorem 3.2 of Zhu, Fujikoshi
and Naito (2001). The detail is also omitted.
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On the Mean Residual Life Regression Model

9.1 Introduction

The mean residual life (MRL) function e(x) of a non-negative random variable
X with finite mean is given by

e(x) = E(X − x|X > x) = S(x)−1
∫ T

x

S(u)du, (9.1.1)

for x < T , where S(x) = P (X > x) is the survival function and T = inf{x :
S(x) = 0} ≤ ∞. Put e(x) = 0 whenever x ≥ T . Like the hazard function,
the MRL function completely determines the distribution via the inversion
formula

S(x) =
e(0)
e(x)

exp
(

−
∫ x

0
e(u)−1du

)
, (9.1.2)

for x < T , which is easily obtained from (9.1.1). This function turns out to be
very useful in the study of replacement policies since the expected remaining
life of a component gives us an indication of whether to replace an item
or not. Other applications can be found in actuarial work, biomedical and
demographic studies.

Oakes and Dasu (1990) proposed a new semiparametric proportional MRL
model. Shortly thereafter, Maguluri and Zhang (1994) extended this model
to a regression context. Their model specifies the conditional MRL function
through

e(x|z) = exp(−β′z)e0(x), (9.1.3)

where z′ = (z1, . . . , zp) is a p-dimensional covariate vector, β′ = (β1, . . . , βp)
is a vector of p regression parameters, and e0(x) is the MRL function cor-
responding to a baseline survival function S0. They proposed two estimators
for β. One is based on the underlying proportional hazards structure of the
model while the other is called the simple estimator, based on the maximum
likelihood equation of the exponential regression model. Both estimators were
presented for uncensored data only.
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The purpose of this chapter is to introduce a goodness-of-fit test for the
MRL regression model and to examine two Monte Carlo approximations for
the implementation of the test. Part of the material is from Zhu, Yuen and
Tang (2002) and the proof of the theoretical results is from Zhu, Yuen and
Tang (2000). In Section 9.2, we construct a test based on an appropriate sto-
chastic process which is asymptotically Gaussian. Since the limiting null distri-
bution of the test statistic is difficult to derive analytically, two Monte Carlo
methods are applied to determine the p-values: the classical bootstrap and
the NMCT approximation. It can be shown that both Monte Carlo methods
yield asymptotically valid distributional approximations. These are described
in Section 9.3. In Section 9.4, the performance of the two methods is assessed
through a simulation study. The proofs of the main results are given in Sec-
tion 9.5.

9.2 Asymptotic Properties of the Test Statistic

Suppose that {(X1, Z1), . . . , (Xn, Zn)} are independent observations from a
population having distribution function F (x, z) = P (X ≤ x, Z ≤ z). The
notation “Z ≤ z” means that each component of Z is less than or equal to
the corresponding component of z. After some algebraic manipulation, model
(9.1.3) leads to

e0(x) = G(x, z)−1
∫ T

x

∫ z

0
exp(β′u)(t − x)F (dt, du), (9.2.1)

where
∫ z

0 stands for
∫ z1

0 · · ·
∫ zp

0 and G(x, z) = F (T, z)−F (x, z). Let us denote
the right-hand side of (9.2.1) by A(x, z). Then our null hypothesis becomes

H0 : e0(x) = A(x, z) for all z and all x < T. (9.2.2)

In particular, when the model is true, the function A should be independent
of z.

The so-called simple estimator β̂ of β is defined as the solution of the
equation

−Û(β) = n−1
n∑

i=1

Zi −

n∑
i=1

XiZi exp(β′Zi)

n∑
i=1

Xi exp(β′Zi)
= 0. (9.2.3)

Let t = (t1, · · · , tp)′ and ||t|| be the L2−norm of t. Assume that E(exp(t′Z)) <
∞ with ||t|| < ε and ε > 0 and that E((Z ′Z + 1) exp(2β′Z)X2) < ∞. Under
these conditions, the arguments of Maguluri and Zhang (1994) derived the
strong consistency and asymptotic normality of β̂. Without further proof, the
two conditions are assumed throughout the paper.
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Our test statistic is based on the process, for any z0,

Vn(x, z, z0) = n
1
2 (Ân(x, z) − Ân(x, z0)), (9.2.4)

for all x < T and z > z0 , where

Ân(x, z) =

n∑
i=1

exp(β̂′Zi)(Xi − x)I(Xi > x, Zi ≤ z)

n∑
i=1

I(Xi > x, Zi ≤ z)
(9.2.5)

is the empirical estimate of A(x, z) in (9.2.2). Under the null hypothesis, the
process Vn equals

Vn(x, z, z0) = Mn(x, z) − Mn(x, z0), (9.2.6)

where Mn(x, z) = n
1
2 (Ân(x, z) − A(x, z)). Our test of (9.1.3) will be based on

the Cramér-von Mises type statistic

Wn =
∫ b

0

∫ b

z0

∫ T

0
V 2

n (x, z, z0)FXn(dx)FZn(dz)FZn(dz0), (9.2.7)

where FXn and FZn are the empirical counterparts of the marginal distribu-
tions of X and Z, FX and FZ , respectively. The upper limit b = (b1, . . . , bp)
in the first two integral signs is a vector of some arbitrarily large constants.
One may simply choose bj as the largest jth coordinate of Z in the sample.
When the observed value of the test statistic is too large, the null hypothesis
will be rejected.

Define

f(x, z, z0, X, Z; β, G)

=
(X − x) exp(β′Z)I(X > x, z0 < Z ≤ z) − G(β, x, z, z0)

G(x, z)

− (I(X > x, z0 < Z ≤ z) − G(x, z, z0))G(β, x, z0)
G(x, z)G(x, z0)

+
(
Z ′ − XZ ′ exp(β′Z)

E(X exp(β′Z))

)
Θ−1(β)

( Ġ(β, x, z, z0)
G(x, z)

− Ġ(β, x, z0)G(x, z, z0)
G(x, z)G(x, z0)

)
− ((X − x) exp(β′Z)I(X > x, Z ≤ z0) − G(β, x, z0))G(x, z, z0)

G(x, z)G(x, z0)

+
(I(X > x, Z ≤ z0) − G(x, z0))G(x, z, z0)G(β, x, z0)

G(x, z)G(x, z0)2
, (9.2.8)

with x < T and z > z0 where

G(β, x, z) =
∫ T

x

∫ z

0
exp(β′u)(t − x)F (dt, du),
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G(β, x, z, z0) = G(β, x, z) − G(β, x, z0),
G(x, z, z0) = G(x, z) − G(x, z0),

Θ(β) =
[

∂

∂β1
U(β), . . . ,

∂

∂βp
U(β)

]
p×p

U(β) =
E(XZ exp(β′Z))
E(X exp(β′Z))

− E(Z),

Ġ(β, x, z0) =
(

∂

∂β1
G(β, x, z0), . . . ,

∂

∂βp
G(β, x, z0)

)′
,

Ġ(β, x, z, z0) =
(

∂

∂β1
G(β, x, z, z0), . . . ,

∂

∂βp
G(β, x, z, z0)

)′
, (9.2.9)

provided that Θ(β) is a p × p non-singular matrix. The following theorem
states the distributional convergence of Vn.

Theorem 9.2.1 Under (9.2.2), Vn converges in the Skorohod space D([0, T )×
[0,∞]2p) in distribution to a centered Gaussian process V with covariance
function, for any two pairs x, z, z0 and x0, z0, z0

0 ,

Cov(f(x, z, z0, X, Z; β, G), f(x0, z0, z0
0 , X, Z; β, G)). (9.2.10)

Consequently, Wn of (9.2.7) converges in distribution to

W =
∫ b

0

∫ b

z0

∫ T

0
V 2(x, z, z0)FX(dx)FZ(dz)FZ(dz0). (9.2.11)

Obviously, the complicated structure of the covariance function (9.2.10)
does not allow for an analytic treatment of the involved distributions. To
handle this problem, we use two resampling schemes to approximate the dis-
tribution of W .

We now study the power of our test statistic Wn for local alternatives
converging to the null. Consider a sequence of e(x|z) indexed by n

en(x|z) = e0(x) exp(−β′z − δ(z)n− 1
2 ), (9.2.12)

where δ(z) is an unknown function not depending on β. Parallel to (9.2.1),
the baseline MRL function under (9.2.12) takes on the form

e0(x) = G(x, z)−1
∫ T

x

∫ z

0
exp(β′u + δ(u)n− 1

2 )(t − x)F (dt, du).

From Taylor’s expansion, it can be rewritten as

e0(x) = G(x, z)−1
∫ T

x

∫ z

0
exp(β′u)(1 + δ(u)n− 1

2 + o(n− 1
2 ))(t − x)F (dt, du).
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Hence Ân of (9.2.5) under (9.2.12) becomes

δÂn(x, z) =

n∑
i=1

exp(β̂′Zi)(Xi − x)I(Xi > x, Zi ≤ z)

n∑
i=1

I(Xi > x, Zi ≤ z)

+
n− 1

2

n∑
i=1

exp(β̂′Zi)(Xi − x)δ(Zi)I(Xi > x, Zi ≤ z)

n∑
i=1

I(Xi > x, Zi ≤ z)
+ op(n− 1

2 )

=

n∑
i=1

exp(β̂′Zi)(Xi − x)I(Xi > x, Zi ≤ z)

n∑
i=1

I(Xi > x, Zi ≤ z)
+

n− 1
2 Q(x, z)

G(x, z)
+ op(n− 1

2 ),

where Q(x, z) = E(exp(β′Z)(X−x)δ(Z)I(X > x, Z ≤ z)). Therefore, parallel
to Vn, under (9.2.12) we consider the process

δVn(x, z, z0) = n
1
2 (δÂn(x, z) − δÂn(x, z0))

= n
1
2 (Ân(x, z) − Ân(x, z0)) +

(
Q(x, z)
G(x, z)

− Q(x, z0)
G(x, z0)

)
+op(1). (9.2.13)

Note that the first term is the same as Vn of (9.2.4) and the second term is a
non-random function. In other words, under alternative (9.2.12), the process
Vn has a non-random shift.

9.3 Monte Carlo Approximations

A sensible way to cope with the intractability of the asymptotic null distri-
bution of Wn is to seek Monte Carlo schemes to approximate critical values
of the test. Here we study distributional approximations through the classical
bootstrap and the NMCT method.

1. The Bootstrap Approximation. Let {(X∗
1 , Z∗

1 ), . . . , (X∗
n, Z∗

n)} be a
bootstrap sample. Denote the bootstrap estimate of β by β∗ as the solution
of −U∗(β) = 0, where U∗(β) is the bootstrap counterpart of (9.2.3). The weak
convergence of β∗ are discussed in Section 9.5. The bootstrap version of the
process (9.2.6) is denoted by

V ∗
n (x, z, z0) = M∗

n(x, z) − M∗
n(x, z0), (9.3.1)

where
M∗

n(x, z) = n
1
2 (A∗

n(x, z) − Ân(x, z)) (9.3.2)
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and A∗
n is the bootstrap analogue of (9.2.5). Clearly, W ∗

n takes on the form

W ∗
n =

∫ b

0

∫ b

z0

∫ T

0
(V ∗

n (x, z, z0))2F ∗
Xn(dx)F ∗

Zn(dz)F ∗
Zn(dz0), (9.3.3)

where F ∗
Xn and F ∗

Zn are the bootstrap marginal distributions. Following the
work of Burke and Yuen (1995), one can show that (9.2.7) and (9.3.3) have
the same limiting distribution under (9.2.2).

Theorem 9.3.1 Under (9.2.2), for a given sample {(Xi, Zi); i = 1, . . . , n},
W ∗

n of (9.3.3) converges in distribution to W of (9.2.11) for almost all se-
quences {(X1, Z1), . . . , (Xn, Zn), . . .}.

2. The NMCT Approximation. We first generate independent bounded
random variables ei, i = 1, . . . , n, with zero mean and unit variance. Then, in
this case, the NMCT process is defined as

V R
n (x, z, z0) = n− 1

2

n∑
i=1

eif(x, z, z0, Xi, Zi; β̂, Gn),

where f is given in (9.2.8) and Gn is the empirical estimate of G. The resulting
Cramér-von Mises statistic becomes

WR
n =

∫ b

0

∫ b

z0

∫ T

0
(V R

n (x, z, z0))2FXn(dx)FZn(dz)FZn(dz0). (9.3.4)

Denote the observed value of Wn be WR0
n . Repeating the Monte Carlo proce-

dure K times, we obtain WR1
n , . . . , WRK

n . Since we reject the null hypothesis
when Wn is too large, the estimated p-value is

p̂ =
k

K + 1
,

where k is the number of values in {WR0
n , . . . , WRK

n } that are larger than or
equal to WR0

n . Therefore, for a given nominal level α, the null hypothesis is
rejected whenever p̂ ≤ α.

Theorem 9.3.2 For almost all sequences {(X1, Z1), . . . , (Xn, Zn), . . .}, we
have, under (9.2.2), the conditional distribution of WR

n given the data is as-
ymptotically equal to the limiting distribution of Wn.

Theorems 9.3.1 and 9.3.2 imply that both Monte Carlo approximations
yield valid distributional approximations. It can be easily seen that asymp-
totically the test statistic has power one for fixed alternatives.
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For local alternative (9.2.12), according to (9.2.13), we have the following
result analogous to Theorem 9.3.2 based on the NMCT statistic (9.3.4).

With the NMCT, the distribution of WR
n depends on

δV R
n (x, z, z0)

= n−1/2
n∑

i=1

ei

(
f(x, z, z0, Xi, Zi; β̂, Gn) − n− 1

2

(
Q(x, z)
G(x, z)

− Q(x, z0)
G(x, z0)

))
,

if the data come from (9.2.12). This form of δV R
n (x, z, z0) implies that the

distribution of WR
n under (9.2.12) is asymptotically the same as that under

(9.2.2), and hence that (9.2.2) and (9.2.12) yield the same critical value of the
test asymptotically. The result is below.

Theorem 9.3.3 Under the alternative (9.2.12), the conditional distribution
of WR

n of (9.3.4) converges to that of W of (9.2.11) for almost all sequences
{(X1, Z1), . . ., (Xn, Zn), · · ·}.

9.4 Simulations

To demonstrate the performance of the two methods, a simulation study is
carried through with sample sizes of n = 50, 100, 200, and 300. We consider
the case of a single covariate. The value of the covariate Z is either 0 or 1,
with equal probability 0.5, so that we are in a two-sample case. From model
(9.1.3), it is easy to see that the MRL of one sample is proportional to that
of the other one with a factor exp(−β). Furthermore, (9.1.3) together with
(9.1.1) and (9.1.2) yield

S(x|z) = S0(x)
(∫ T

x

µ−1
0 S0(u)du

)exp (βz)−1

, (9.4.1)

where µ0 = E(X) = e0(0). Given a value of Z and a specific S0, X can
be generated from (9.4.1). In each simulation, 1000 independent bootstrap
samples are drawn to compute the critical values for significance levels α =
0.1, 0.05 and 0.025. Similarly, 1000 sets of (e1, . . . , en), taking values of ±1
with probability 0.5 were generated when performing the NMCT test.

Throughout, we assume that S0(x) = (1 − 0.5x)+ which comes from the
class of survival distributions having a linear MRL function, introduced by
Hall and Wellner (1984). The value of β used equals 0.8. The key results are
summarized in Table 9.1. Each entry presents the proportion of cases when the
null hypothesis was rejected, based on 1000 simulations. The bootstrap test
looks rather conservative for small samples. As n increases, the actual levels
converge to the true nominal levels from below. On the whole, the NMCT
method produces values closer to the true levels.
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Table 9.1. Empirical sizes for the resampling methods

Bootstrap NMCT
n α = 0.1 α = 0.05 α = 0.025 α = 0.1 α = 0.05 α = 0.025
50 0.077 0.031 0.010 0.104 0.061 0.031
100 0.073 0.036 0.020 0.071 0.039 0.021
200 0.091 0.037 0.018 0.096 0.049 0.022
300 0.100 0.047 0.024 0.106 0.052 0.033

As to empirical powers, we generate X from the proportional hazards
model with the baseline distribution being Weibull. That is, the baseline is
λ(x|z) = λ0(x) exp(0.8z). The baseline hazard takes on the form λ0(x) =
abxa−1. The two parameters a and b are set to be 3 and 0.00208, respectively,
so that we have an increasing hazard function. Table 9.2 presents the em-
pirical powers of the test for detecting alternatives to the proportional MRL
assumption in the two-sample case. As shown in Table 9.2, the NMCT ap-
proximation outperforms the bootstrap. In particular, it works much better
for small samples. Table 9.2 also indicates that for both methods, the power
of the test approaches one as the sample size gets larger.

Table 9.2. Empirical powers for detecting non-proportional MRL

Bootstrap NMCT
n α = 0.1 α = 0.05 α = 0.025 α = 0.1 α = 0.05 α = 0.025
50 0.401 0.246 0.109 0.588 0.548 0.496
100 0.684 0.548 0.406 0.914 0.874 0.821
200 0.923 0.876 0.802 0.988 0.974 0.964
300 0.991 0.985 0.960 0.999 0.997 0.995

Generally speaking, both Monte Carlo approximations perform fairly well
for moderate sample sizes. The above simulations show that the NMCT ap-
proximation is better for small sample sizes. To improve the performance of
the naive bootstrap, one may use the bootstrap t method which requires a
larger amount of computation. On the other hand, the NMCT procedure is
computationally more efficient.

9.5 Proofs

In Section 9.2, four G functions, namely G(x, z), G(β, x, z), G(x, z, z0), and
G(β, x, z, z0) were defined. Recall that the Gn’s are their empirical coun-
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terparts with Gn(x, z, z0) = Gn(x, z) − Gn(x, z0) and Gn(β, x, z, z0) =
Gn(β, x, z) − Gn(β, x, z0).

Proof of Theorem 9.2.1. By definition, the function Ân of (9.2.4) can be writ-
ten as

Ân(x, z) =
Gn(β̂, x, z)
Gn(x, z)

.

For x < T and z > z0,

Ân(x, z) − Ân(x, z0)

=
Gn(β̂, x, z)
Gn(x, z)

− Gn(β̂, x, z0)
Gn(x, z0)

=
Gn(β̂, x, z, z0) − G(β̂, x, z, z0)

Gn(x, z)
− (Gn(x, z, z0) − G(x, z, z0))Gn(β̂, x, z0)

Gn(x, z)Gn(x, z0)

+

(
G(β̂, x, z, z0)

Gn(x, z)
− G(x, z, z0)Gn(β̂, x, z0)

Gn(x, z)Gn(x, z0)

)
=: In1 − In2 + In3 .

From the theory of empirical processes, we can easily derive that n
1
2 (Gn(x, z)−

G(x, z)) and n
1
2 (Gn(β, x, z) − G(β, x, z)) are asymptotically Gaussian. More-

over G(β, x, z) is continuous with bounded first derivative with respect to β.
Using these facts together with the strong consistency and asymptotic nor-
mality of β̂, one can apply Taylor’s expansion to obtain

n
1
2 In1 =

n
1
2 (Gn(β, x, z, z0) − G(β, x, z, z0))

G(x, z)
+ op(1), (9.5.1)

n
1
2 In2 =

n
1
2 (Gn(x, z, z0) − G(x, z, z0))G(β, x, z0)

G(x, z)G(x, z0)
+ op(1). (9.5.2)

Under H0, G(β, x, z, z0) = G(x, z, z0)G(β, x, z0)/G(x, z0). Therefore we have

In3 =
1

Gn(x, z)

(
G(β̂, x, z, z0) − G(β, x, z, z0)

−G(x, z, z0)

(
Gn(β̂, x, z0)
Gn(x, z0)

− G(β, x, z0)
G(x, z0)

))

=:
1

Gn(x, z)
(In31 − G(x, z, z0)In32). (9.5.3)

Furthermore,
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n
1
2 In31

Gn(x, z)
=

n
1
2 (β̂ − β)′Ġ(β, x, z, z0)

G(x, z)
+ op(1), (9.5.4)

n
1
2 G(x, z, z0)In32

Gn(x, z)
=

n
1
2 (Gn(β̂, x, z0) − G(β̂, x, z0))G(x, z, z0)

Gn(x, z)Gn(x, z0)

+
n

1
2 (G(β̂, x, z0) − G(β, x, z0))G(x, z, z0)

Gn(x, z)Gn(x, z0)

− n
1
2 (Gn(x, z0) − G(x, z0))G(x, z, z0)G(β, x, z0)

Gn(x, z)G(x, z0)Gn(x, z0)

=
n

1
2 (Gn(β, x, z0) − G(β, x, z0))G(x, z, z0)

G(x, z)G(x, z0)

− n
1
2 (Gn(x, z0) − G(x, z0))G(x, z, z0)G(β, x, z0)

G(x, z)G(x, z0)2

− n
1
2 (β̂ − β)′Ġ(β, x, z0)G(x, z, z0)

G(x, z)G(x, z0)
+ op(1), (9.5.5)

where Ġ(β, x, z0) and Ġ(β, x, z, z0) are defined in (9.2.9). Note that (β̂ −β) =
−Θ−1(β)Û(β) + op(1/

√
n). Combining (9.5.1)-(9.5.5), we have

Vn(x, z, z0) = n
1
2 (In1 − In2 + In3)

= n
1
2

(
Gn(β, x, z, z0) − G(β, x, z, z0)

G(x, z)

− (Gn(x, z, z0) − G(x, z, z0))G(β, x, z0)
G(x, z)G(x, z0)

− Û(β)′Θ−1(β)
G(x, z)

(
Ġ(β, x, z, z0) − Ġ(β, x, z0)G(x, z, z0)

G(x, z0)

)
− (Gn(β, x, z0) − G(β, x, z0))G(x, z, z0)

G(x, z)G(x, z0)

+
(Gn(x, z0) − G(x, z0))G(x, z, z0)G(β, x, z0)

G(x, z)G(x, z0)2

)
+ op(1)

= n− 1
2

n∑
j=1

f(x, z, z0, Xj , Zj ; β, G) + op(1), (9.5.6)

where Û(β), Θ(β), and f are given in (9.2.3), (9.2.9) and (9.2.8), respectively.
Let the family of functions F be {f(x, z, z0, X, Z; β, G); (x, z, z0) ∈ [0, T )×

[0,∞)2, z0 < z}. Since the functions G(x, z) and G(β, x, z) are absolutely
continuous and the family of indicator functions {I(X > x, Z ≤ z); (x, z) ∈
[0, T ) × [0,∞)} is a VC class, F is also a VC class (see Pollard (1984)).
Lemma VII 15 and Theorem VII 21 of Pollard (1984, pages 150 and 157)
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imply that Vn converges in distribution to a centered Gaussian process with
covariance function (9.2.10). The proof is complete.

For the proofs of Theorems 9.3.1, 9.3.2, and 9.3.3 to follow, we recall that
all arguments hold for almost all sequences {(X1, Z1), . . . , (Xn, Zn), . . .}.

Proof of Theorem 9.3.1. From Taylor’s expansion , we have

0 = n
1
2 Û(β̂) = n

1
2 Û(β) + Θ̂(β)n

1
2 (β̂ − β) + op(1), (9.5.7)

0 = n
1
2 U∗(β∗) = n

1
2 U∗(β̂) + Θ∗(β̂)n

1
2 (β∗ − β̂) + op(1), (9.5.8)

where Θ̂ and Θ∗ are the empirical and bootstrap counterparts of Θ defined in
(9.2.9), respectively. Following Burke and Yuen (1995), we obtain the conver-
gence of Θ̂(β) and Θ∗(β̂). Note that both converges to Θ(β). Then, applying
techniques of Yuen and Burke (1997), one can show that n

1
2 (U∗(β̂) − Û(β̂))

and n
1
2 (Û(β)−E(Û(β))) have the same normal distribution in the limit. The

idea is to write n
1
2 (Û(β) − E(Û(β))) in terms of stochastic integrals involv-

ing empirical processes and β. Similar integral expressions can be written for
n

1
2 (U∗(β̂) − Û(β̂)) with the bootstrap empirical processes and β̂. The theory

of empirical processes and its bootstrap analogue leads to the desired result.
By definition, Û(β̂) = E(Û(β)) = 0. Therefore, it can be seen from (9.5.7) and
(9.5.8) that n

1
2 (β∗ − β̂) and n

1
2 (β̂ −β) have the same asymptotic distribution.

Denote the bootstrap version of the G’s by G∗
n’s. From the standard boot-

strap theory, all the G∗
n’s are consistent estimators of G’s. Repeating the first

step in the previous proof, we have

A∗
n(x, z) − A∗

n(x, z0)

=
G∗

n(β∗, x, z)
G∗

n(x, z)
− G∗

n(β∗, x, z0)
G∗

n(x, z0)

=
G∗

n(β∗, x, z, z0) − Gn(β∗, x, z, z0)
G∗

n(x, z)

− (G∗
n(x, z, z0) − Gn(x, z, z0))G∗

n(β∗, x, z0)
G∗

n(x, z)G∗
n(x, z0)

+

(
Gn(β∗, x, z, z0)

G∗
n(x, z)

− Gn(x, z, z0)G∗
n(β∗, x, z0)

G∗
n(x, z)G∗

n(x, z0)

)
=: I∗

n1
− I∗

n2
+ Ĩ∗

n3
. (9.5.9)

Denote the first derivatives of G∗
n(β, x, z, z0) and Gn(β, x, z, z0) with respect to

β by Ġ∗
n(β, x, z, z0) and Ġn(β, x, z, z0), respectively. It is easily seen that both

Ġ∗
n(β, x, z, z0) and Ġn(β, x, z, z0) converge weakly to Ġ(β, x, z, z0). Taylor’s

expansion and the asymptotic normality of β∗ yield

n
1
2 I∗

n1
=

n
1
2 (G∗

n(β, x, z, z0) − Gn(β, x, z, z0))
G(x, z)

+ op(1).
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Similarly, from the consistency of β∗ and the G∗
n functions, we have

n
1
2 I∗

n2
=

n
1
2 (G∗

n(x, z, z0) − Gn(x, z, z0))G(β, x, z0)
G(x, z)G(x, z0)

+ op(1).

Applying Theorem 2.4 of Giné and Zinn (1990), we immediately see from
(9.5.1) and (9.5.2), that n

1
2 I∗

n1
(n

1
2 I∗

n2
) and n

1
2 In1 (n

1
2 In2) have the same

limiting distribution. The last term in (9.5.9) can be written as

Ĩ∗
n3

=
1

G∗
n(x, z)

(
Gn(β∗, x, z, z0) − Gn(β̂, x, z, z0)

−Gn(x, z, z0)

(
G∗

n(β∗, x, z0)
G∗

n(x, z0)
− Gn(β̂, x, z0)

Gn(x, z0)

))

+
1

G∗
n(x, z)

(
Gn(β̂, x, z, z0) − Gn(x, z, z0)

Gn(β̂, x, z0)
Gn(x, z0)

)

=:
1

G∗
n(x, z)

(I∗
n31

+ Gn(x, z, z0)I∗
n32

) + R∗
n

=: I∗
n3

+ R∗
n.

Parallel to the derivation of (9.5.4) and (9.5.5), it can be shown that

n
1
2 I∗

n31

G∗
n(x, z)

=
n

1
2 (β∗ − β̂)′Ġ(β, x, z, z0)

G(x, z)
+ op(1),

and

n
1
2 Gn(x, z, z0)I∗

n32

G∗
n(x, z)

=
n

1
2 (G∗

n(β, x, z0) − Gn(β, x, z0))G(x, z, z0)
G(x, z)G(x, z0)

− n
1
2 (G∗

n(x, z0) − Gn(x, z0))G(x, z, z0)G(β, x, z0)
G(x, z)G(x, z0)2

− n
1
2 (β∗ − β̂)′Ġ(β, x, z0)G(x, z, z0)

G(x, z)G(x, z0)
+ op(1).

By the asymptotic normality of n
1
2 (β∗ − β̂) and invoking once again Theo-

rem 2.4 of Giné and Zinn (1990), one can derive that n
1
2 I∗

n3
and n

1
2 In3 have

the same asymptotic properties. Furthermore,

n
1
2 R∗

n = n
1
2
Gn(x, z)
G∗

n(x, z)
(Ân(x, z)−Ân(x, z0)) = n

1
2 (Ân(x, z)−Ân(x, z0))+op(1).

From (9.3.1), (9.3.2), (9.5.6), and (9.5.9), we have

V ∗
n (x, z, z0) = M∗

n(x, z) − M∗
n(x, z0)

= n
1
2 ((A∗

n(x, z) − A∗
n(x, z0) − (Ân(x, z)) − Ân(x, z0)))

= n
1
2 (I∗

n1
− I∗

n2
+ I∗

n3
) + op(1).



9.5 Proofs 153

Hence V ∗
n (x, z, z0) and Vn(x, z, z0) have the same limit under H0. This implies

that W ∗
n of (9.3.3) converges in distribution to W of (9.2.11).

Proofs of Theorems 9.3.2 and 9.3.3. Here, we only give the proof of Theo-
rem 9.3.2. Note that both (9.2.2) and (9.2.12) yield the same critical value
of the test asymptotically. Hence, Theorem 9.3.3 can be proved in the same
fashion.

As to Theorem 9.3.2, we need to prove that (i) the covariance function
of V R

n converges to that of V ; (ii) the finite-dimensional distributions of V R
n

converge to those of V ; and (iii) the uniform tightness of V R
n . Zhu, Yuen, and

Tang (2002) used similar method for proving the asymptotic validity of a test
for a semiparametric random censorship model using the NMCT approach.

Given a sample, the covariance of V R
n (x, z, z0) and V R

n (x0, z0, z0
0) is

n−1
n∑

j=1

f(x, z, z0, Xj , Zj ; β̂, Gn)f(x0, z0, z0
0 , Xj , Zj ; β̂, Gn),

which converges to the covariance function of (9.2.10). Therefore (i) holds.
The multivariate central limit theorem implies (ii). Let

F = {f(x, z, z0, X, Z; β̂, Gn) : (x, z, z0) ∈ [0, T ) × [0,∞)2}.

For notational convenience, we simply write f(xi, zi, z0i, X, Z; β̂, Gn) as fi. Let

Pn(fi) be n−1
n∑

j=1
f(xi, zi, z0i, Xj , Zj ; β̂, Gn). Define [δ] = {(f1, f2) : f1, f2 ∈

F , (Pn(f1 − f2)2)
1
2 ≤ δ}. The uniform tightness of (iii) requires that, for each

γ and ε > 0, there is a δ > 0 such that

lim sup
n→∞

P (sup
[δ]

n
1
2 |V R

n (x1, z1, z01) − V R
n (x2, z2, z02)| > ε | (X, Z)) ≤ γ.

(9.5.10)
By Hoeffding inequality,

P (n
1
2 |V R

n (x1, z1, z01) − V R
n (x2, z2, z02)| > ε | (X, Z))

≤ 2 exp
( −ε2

2Pn(f1 − f2)2
)
.

To derive (9.5.10), we need to show that the covering integral

J2(δ, F , Pn) =
∫ δ

0
(
2 log N2(u, F , Pn)2

u
)

1
2 du

is finite for some small δ where N2(u, F , Pn) is the smallest m for which there
exist m functions f1, . . . , fm such that

min
1≤i≤m

(Pn(fi − f)2)
1
2 ≤ u,
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for any f ∈ F . Note that F is a VC subgraph class of functions because
f is a linear combination of indicator functions, finite absolutely continuous
functions, and their products being members of a VC class. Therefore, for
some c > 0 and w > 0 independent of n,

N2(u, F , Pn) ≤ c u−w,

and then for some c > 0
J2(δ, F , Pn) ≤ c δ

1
2 .

This implies Condition (16) of the Equicontinuity Lemma in Pollard (1984,
pages 150-151). From the Chaining Lemma of Pollard (1984, page 144), there
exists a countable dense subset [δ]∗ of [δ] such that

P
(

sup
[δ]∗

n
1
2 |V R

n (x1, z1, z01) − V R
n (x2, z2, z02)| > 26J2(δ, F , Pn)|(X, Z)

)
≤ 2 δ.

Owing to the left continuity of the function f , [δ]∗ can be replaced by [δ] itself.
Choosing δ smaller than γ/2 and (ε/(26c))2, the tightness of WR

n is a direct
consequence.
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Homegeneity Testing for Covariance Matrices

10.1 Introduction

Under a multinormality assumption, hypotheses testing for homogeneity in
the k-sample problem can be handled by the likelihood ratio test (LRT).
The exact distribution of the LRT is very complicated. When the sample
size is sufficiently large, one usually employs the chi-square distribution, the
limiting null distribution, for the LRT. Box (1949) obtained a correction factor
for Bartlett’s LRT and proposed his M statistic with the same chi-square
distribution for testing homogeneity in the k-sample problem.

Without the multinormality assumption, likelihood ratios would be differ-
ent. If one still uses the statistics obtained under normality, then, for example,
the asymptotic null distribution for Bartlett’s homogeneity test is no longer
chi-square, but a linear combination of chi-squares as pointed out by Zhang
and Boos (1992). The lack of correct null distribution for traditional statistics
forces researchers to look for other means of implementing the tests. Monte
Carlo techniques such as the bootstrap represent one resolution. Beran and
Srivastava (1985) considered bootstrap implementation of tests based on func-
tions of eigenvalues of a covariance matrix in a one-sample problem. Zhang,
Pantula and Boos (1991) proposed a pooled bootstrap methodology. For the
k-sample problem, Zhang and Boos (1992, 1993) studied bootstrap procedures
to obtain the asymptotic critical values for Bartlett’s statistic for homogeneity
without the multinormality assumption. Among other things, Zhang and Boos
(1993) developed bootstrap theory for quadratic type statistics and demon-
strated the idea using Bartlett’s test as an example.

In this chapter, we introduce an alternative approach to constructing mul-
tivariate tests. It is based on Roy’s (1953) union-intersection principle. Most
of materials come from Zhu, Ng and Jing (2002). One uses the fact that a ran-
dom vector is multivariate normal if and only if every non-zero linear function
of its elements is univariate normal. This leads to viewing the multivariate hy-
pothesis as the joint statement (intersection) of univariate hypotheses of all
linear functions of univariate components, and a joint rejection region con-
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sisting of the union of all corresponding univariate rejection regions if they
are available. The two-sample Roy test is in terms of the largest and smallest
eigenvalues of one Wishart matrix in the metric of the other. But, so far, there
is no Roy test for the problem of more than two samples. One reason may
be the difficulty of extending the idea of comparison of variances in terms of
ratio to more than two samples. We briefly describe the difficulty. In a two-
sample case, we may use either σ2

1/σ2
2 or σ2

2/σ2
1 , as they are the reciprocal.

It is not so simple otherwise. If we want an aggregate statistic of pairwise
ratios, one way is to sum up σ2

i /σ2
j , 1 ≤ i �= j ≤ k. In case we sum up the

ratios over all i < j, as the ratios are not permutation invariant with i and
j, we may obtain conflicting conclusion if we use the sum of the ratios over
j > i as a test statistic. Furthermore if we sum up all ratios over i �= j,
although it will be invariant with i and j, there is some confounding. This
can be demonstrated for k = 2 with the statistic σ2

1/σ2
2 + σ2

2/σ2
1 . When the

first ratio is large, the second will be small, the average will be moderate and
vice versa. It is similar in the general case. However, the absolute values of
the differences (σ2

i − σ2
j )/(σ2

1 + · · · + σ2
k), 1 ≤ i �= j ≤ k, are invariant with

respect to i and j. The sum of the absolute values over i < j can be used as a
test statistic without a confounding effect, and so can the maximum of those
absolute values. In this article, we consider both the maximum and the sum
(average), and find in simulations that the sum test statistic works better.

Without multinormality and without reference to the likelihood ratio or
union intersection principle, we obtain homogeneity tests for more than two
samples based on eigenvalues of differences of the sample covariance matrices
subject to a common re-scaling. The asymptotic distributions of the test statis-
tics are identified. We also consider the validity of some resampling techniques,
namely the bootstrap, NMCT and permutation procedures, for calculating the
critical values and p-values for these tests. All of the techniques are asymptot-
ically valid for the problem. There is theory supporting the conclusion that
permutation procedures and NMCT perform better than the bootstrap in
adhering to the nominal level of significance in some cases. Our Monte Carlo
studies indicate that the permutation test generally has higher power than the
bootstrap test and that NMCT is compatible to the bootstrap in power per-
formance. NMCT, if applicable, is easy to implement. Simulation results also
suggest that the test proposed here is better than the bootstrapped Bartlett
test studied by Zhang and Boos (1992).

10.2 Construction of Tests

Let X
(i)
1 ,X

(i)
2 , · · · ,X(i)

mi
, i = 1, · · · , k, be an i.i.d. sample from a d-dimensional

distribution with finite fourth moments, mean µ(i) and covariance matrix
Σ(i). We are interested in the homogeneity hypothesis

H0 : Σ(1) = Σ(2) = · · · = Σ(k) vs H1 : Σ(i) �= Σ(j) for some i �= j .
(10.2.1)
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Denote the sample covariance matrix for the ith sample by

Σ̂
(i)

=
1

mi

mi∑
j=1

(X(i)
j − µ̂(i))(X(i)

j − µ̂(i))T , (10.2.2)

where µ̂(i) is either µ(i) or the sample mean, depending on whether µ(i) is
known or not. The pooled sample covariance matrix is

Σ̂ =
1
N

k∑
i=1

miΣ̂
(i)

, where N =
k∑

i=1

mi . (10.2.3)

Based on the idea of multiple comparison, (e.g. see Dunnett (1994), O’Brien
(1979, 1981)), we construct tests by combining pairwise comparisons. The
pairwise comparison between the lth and ith samples is based on

Mli = max
{

absolute eigenvalues of
√

mlmi

N
Σ̂

−1/2(
Σ̂

(l) − Σ̂
(i))

Σ̂
−1/2

}
,

Ali = average
{

absolute eigenvalues of
√

mlmi

N
Σ̂

−1/2(
Σ̂

(l) − Σ̂
(i))

Σ̂
−1/2

}
.

(10.2.4)

We propose using the average of the k(k − 1)/2 pairwise comparisons as the
test statistic,

LM =
2

k(k − 1)

∑
i<l

Mli, (10.2.5)

LA =
2

k(k − 1)

∑
i<l

Ali . (10.2.6)

The null hypothesis is rejected if LM (LA) is greater than the critical value
which is to be determined. We first identify the limiting distributions of LM
and LA in the following lemma.

To state results, we need some notation for vectorization of a symmetric
matrix. For a symmetric d × d matrix S, let vech(S) be the column vector
obtained by stacking up the d(d + 1)/2 distinct elements of S in the order
of the first column vector, then the second column vector omitting the first
element, etc.

Lemma 10.2.1 Assume mi/N → λi, 0 < λi < 1, as mi → ∞ for i =
1, · · · , k, and that the distributions of samples are continuous and have fi-
nite fourth moments. Under (10.2.1), the asymptotic joint distribution of√

mlmi/NΣ̂
−1/2(

Σ̂
(l)−Σ̂

(i))
Σ̂

−1/2
, 1 ≤ i, l ≤ k, is identical with the asymp-

totic joint distribution of
√

λiW l −
√

λlW i, 1 ≤ i, l ≤ k, where W 1, · · · ,W k
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are independent and vech(W i) is multivariate normal with zero mean vector
and covariance matrix

V i = cov
(
vech((X(i)

1 − µ(i))(X(i)
1 − µ(i))T )

)
. (10.2.7)

Furthermore, the asymptotic distributions of LM and LA are, respectively,
the distributions of the random variables

2
k(k − 1)

∑
i<l

max
{
absolute eigenvalues of

√
λiW l −

√
λlW i

}
, (10.2.8)

2
k(k − 1)

∑
i<l

average
{
absolute eigenvalues of

√
λiW l −

√
λlW i

}
.

(10.2.9)

Under the alternative in (10.2.1), LM and LA diverge to infinity.

Although the conclusion above does not lend itself to the calculation of
p-values, we may employ resampling techniques for implementation.

10.3 Monte Carlo Approximations

We consider three sampling techniques in this section, including the bootstrap,
NMCT and the permutation test.

10.3.1 Classical Bootstrap

We follow the pooled re-sampling procedure suggested by Zhang and Boos (1992)
and let

(Z1, · · · ,ZN ) =
(
X

(1)
1 −µ̂(1), · · · ,X(1)

m1
−µ̂(1), · · · ,X(k)

1 −µ̂(k), · · · ,X(k)
mk

−µ̂(k)) ,
(10.3.1)

where µ̂(i) is either µ(i) or the sample mean, depending on whether µ(i) is
known or not. Let (Z∗

1, · · · ,Z∗
N ) be drawn with replacement from the given

sample (Z1, · · · ,ZN ), and let

Σ̂
∗
i =

1
mi

Ni∑
j=1+Ni−1

(Z∗
j − Z̄i∗) (Z∗

j − Z̄i∗)T , i = 1, · · · , k , (10.3.2)

where Z̄i∗ is the sample mean of Z∗
j for Ni−1 + 1 ≤ Ni, Ni =

∑i
l=1 ml for

i = 1, · · · , k, and N0 = 0. Let

MB
li = max

{
absolute eigenvalues of

√
mlmi

N
Σ̂

−1/2(
Σ̂

∗
l − Σ̂

∗
i

)
Σ̂

−1/2
}

,

AB
li = average

{
absolute eigenvalues of

√
mlmi

N
Σ̂

−1/2(
Σ̂

∗
l − Σ̂

∗
i

)
Σ̂

−1/2
}

.
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The bootstrap counterparts of (10.2.5) and (10.2.6) are then

LMB =
2

k(k − 1)

∑
i<l

MB
li , (10.3.3)

LAB =
2

k(k − 1)

∑
i<l

AB
li . (10.3.4)

The asymptotic equivalence of LMB and LM and of LAB and LA is
established in the following theorem.

Theorem 10.3.1 Assume the conditions in Lemma 10.2.1. For almost all
sequences

(
X

(1)
1 , · · · ,X(1)

m1
, · · · ; X(2)

1 , · · · ,X(2)
m2

, · · · ; · · · ; X(k)
1 , · · · ,X(k)

mk
, · · ·

)
,

of independent d × 1 random vectors having finite fourth moments with
E(X(i)

j ) = µ(i) and cov(X(i)
j ) = Σ for i = 1, · · · , k, the conditional distribu-

tion of LMB (LAB) given the samples
(
X

(1)
1 , · · · ,X(1)

m1
; X(2)

1 , · · · ,X(2)
m2

, · · · ;
X

(k)
1 , · · · ,X(k)

mk

)
converges to the unconditional asymptotic distribution of LM

(LA).

In view of this asymptotic equivalence, the critical value of LM (LA) for
testing H0 can be calculated by repeated bootstrap sampling from the given
sample data.

10.3.2 NMCT Approximation

When the k samples have the same size, say m, we suggest another conditional
test procedure which is much easier to implement. The motivation of the
method is given below. We also give a brief justification for the exact validity
of the NMCT test in a special case. The asymptotic validity will be stated as
a theorem.

Consider the two-sample case as an illustration. Suppose that under the
null hypothesis all variables (X(1)

1 ,X
(1)
2 , · · · ,X(1)

m ) and (X(2)
1 ,X

(2)
2 , · · · ,X(2)

m )
are i.i.d. from a d-dimensional distribution with a given mean. Without loss
of generality, assume the mean to be zero. Let Yj denote (X(1)

j )(X(1)
j )T −

(X(2)
j )(X(2)

j )T . By assumption, Yj has a symmetric distribution. For a ran-
dom sign ej independent of Yj , Yj and ejYj are identical in distribution and
ej is independent of ejYj . The latter assertion can be seen by invoking the
independence of ej and Yj and the symmetry of Yj . Therefore, for any statistic
T (Y1, · · · , Ym), its distribution is the same as that of T (e1Y1, · · · , emYm) where
ei’s are i.i.d. random signs. Consequently, generate r sets of Rademacher
variables (e1, · · · , em), and then obtain r values of T (e1Y1, · · · , emYm), say
T 1, · · ·T r. Denote the value of the original T as T 0. We know that T i,
i = 0, 1, · · · , r, are r + 1 i.i.d. variables. Suppose for the moment the null
hypothesis will be rejected for large value of T (for two-sided tests, modifica-
tions are easily done). The p-value can be estimated by the fraction of values
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in T 0, T 1, · · · , T r that are larger than or equal to T 0. If the estimated p-value
is smaller than the nominal level α, the null hypothesis will be rejected. This
explains the exact validity of the NMCT approximation.

In practice, one cannot assume that variables in different samples are iid
and the mean is known. We have to use the estimate in place of unknown
mean. In the following we give the detail of constructing tests and of the
consistency of the NMCT approximation for the general case.

Since the NMCT is also a conditional test, we can work with the stan-
dardized data as in the bootstrap procedure:

Z
(i)
j = Σ̂

−1/2(
X

(i)
j − µ̂(i)) , j = 1, · · · , m; i = 1, · · · , k . (10.3.5)

Let {e1, · · · , em} be a set of random signs, the NMCT of Σ̂
−1/2

(Σ̂
(l) −

Σ̂
(i)

)Σ̂
−1/2

is, 1 ≤ i < l ≤ k,

W li =
1
m

m∑
j=1

ej

[
Z

(l)
j (Z(l)

j )T − Z
(i)
j (Z(i)

j )T
]

. (10.3.6)

The NMCT counterparts of LM and LA are

LMR =
2

k(k − 1)

∑
i<l

max
{

absolute eigenvalues of

√
m2

N
W li

}
, (10.3.7)

LAR =
2

k(k − 1)

∑
i<l

average
{

absolute eigenvalues of

√
m2

N
W li

}
.

(10.3.8)

We need to verify that LMR (LAR) is asymptotically equivalent to LM (LA).

Theorem 10.3.2 Under the assumptions of Lemma 10.2.1, the conditional
distribution of LMR (LAR) given the data converges to the unconditional
asymptotic distribution of LM (LA).

The p-value is estimated similar as at the end of Section 10.3.1. Let
LM

(1)
R , · · · , LM

(r)
R be r replications of NMCT with r independent sets of ran-

dom signs and let LM
(0)
R be the value of the original test statistic LM . The

estimated p-value equals the fraction of the values which are greater than or
equal to LM

(0)
R . The same procedure can be applied to LAR.

10.3.3 Permutation Test

A drawback of the NMCT is its restriction to equal sample size. The per-
mutation test can be applied to samples of unequal sizes. It also has some
advantages over the bootstrap, but is harder to implement than NMCT. It is
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easy to see that, similar to NMCT, when all variables in samples are iid, the
exact validity of the permutation tests can be achieved. The justification is
similar to that described for NMCT.

Pool the standardized data

Σ̂
−1/2(

X
(i)
j − µ̂(i)) , j = 1, · · · , mi; i = 1, · · · , k, (10.3.9)

into a sample of size N , then randomly divide it into k samples such that the
ith sample has size mi. Denote the ith sample by Z

(i)
j , j = 1, · · · , mi, and let

Σ̂
(i)
P =

1
mi

mi∑
j=1

Z
(i)
j (Z(i)

j )T . (10.3.10)

The permutation test statistics are

LMP =
2
∑

i<l max
{

absolute eigenvalues of
√

mlmi

N

(
Σ̂

(l)
P − Σ̂

(i)
P

)}
k(k − 1)

,

(10.3.11)

LMP =
2
∑

i<l average
{

absolute eigenvalues of
√

mlmi

N

(
Σ̂

(l)
P − Σ̂

(i)
P

)}
k(k − 1)

.

(10.3.12)

Analogous to NMCT, the exact validity of the permutation tests for the
case of given means can be obtained. In fact, under the null hypothesis, the
permutation counterpart has the same distribution as that of the original test
statistic. Therefore, similar to that illustrated for NMCT, exact validity can
be expected. As with NMCT it is of course restrictive, but simulation studies
show that in unknown mean cases, permutation tests outperform bootstrap
tests in getting closer to the nominal level. The following covers the asymptotic
validity of permutation tests for the general case.

Theorem 10.3.3 Under the assumptions of Lemma 10.2.1, the conditional
distribution of LMP (LAP ) given the data converges to the unconditional
asymptotic distribution of LM (LA).

With r independent random permutations, we have r replications of
(10.3.11), LM

(1)
P , · · · , LM

(r)
P . The p-value can be estimated as in preceding

procedures.

10.3.4 Simulation Study

This section reports the results of some Monte Carlo studies. These are car-
ried out to compare the three procedures using three families of multivariate
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distributions: multinormal N(0, Id), multivariate t-distribution MT (5;0, Id),
and a contaminated normal distribution NC2(0, Id) whose components are
independent, each being N(0, 1) with probability 0.9 and a χ2

(2) with prob-
ability 0.1. We consider k = 2 and k = 6, and the dimension of random
vector d = 2 and d = 5. The nominal 5% level of significance is chosen. In
each procedure, the number of replications for calculating a critical value is
r = 500. Each actual proportion of rejections of H0 is based on 1000 simula-
tions. As expected, the tests perform better when the means are known. Here
we only report results relating to the case of an unknown mean. As one can
see from Table 10.1, most of the time the actual proportion of rejection by
permutation (PERM) is closer to the nominal α than is the classical bootstrap
(BOOT), and in this aspect NMCT is comparable to the bootstrap (BOOT).
For different sample sizes, where NMCT is not available, the results are given
in Table 10.2. The table shows that PERM is better than BOOT in 8 of 12
simulations. Comparing LA with LM , we found that with equal sample sizes,
when k = 2, LA is worse than LM most of the time; when k = 6, LA is better
in all cases. With different sample sizes, LA is better than LM most of the
time.

Table 10.1: Percentage of times H0 (10.2.1) was rejected
k = 2,m1 = m2 = 20

N(0, Id) MT (5;0, Id) NC2(0, Id)
NMCT BOOT PERM NMCT BOOT PERM NMCT BOOT PERM

LM 0.053 0.045 0.048 0.053 0.046 0.054 0.055 0.046 0.056
d = 2

LA 0.059 0.057 0.054 0.062 0.046 0.057 0.063 0.060 0.061
LM 0.055 0.045 0.056 0.050 0.044 0.051 0.057 0.039 0.053

d = 5
LA 0.054 0.047 0.054 0.059 0.031 0.060 0.063 0.041 0.059

k = 6, mi = 20, i = 1, · · · , 6
N(0, Id) MT (5;0, Id) NC2(0, Id)

NMCT BOOT PERM NMCT BOOT PERM NMCT BOOT PERM
LM 0.033 0.062 0.060 0.032 0.064 0.059 0.033 0.061 0.058

d = 2
LA 0.053 0.058 0.057 0.060 0.060 0.056 0.057 0.060 0.055
LM 0.040 0.063 0.059 0.043 0.058 0.056 0.043 0.057 0.063

d = 5
LA 0.056 0.060 0.054 0.049 0.045 0.053 0.055 0.054 0.055

The bootstrap results in these Monte Carlo studies also provide some evi-
dence for comparing the test statistics LM and LA of (10.3.6) with Bartlett’s
statistic. As shown in Zhang and Boos (1992, p.428), the bootstrap procedure
for Bartlett’s homogeneity test performs worse as dimension d (they used p
for dimension) increases. The bootstrap procedure of our tests is quite stable;
see Table 10.1. When m1 = m2 = 20, α = 0.05 and d = 2, our proportions
of rejections for three distributions are 0.045, 0.046 and 0.046, against their
0.046, 0.045 and 0.50 respectively. But when dimension increases to d = 5,
ours become 0.045, 0.044 and 0.039, against their 0.012, 0.023 and 0.019 re-
spectively.
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Table 10.2: Percentage of times H0 (10.2.1) was rejected
k = 2, m1 = 20, m2 = 40

N(0, Id) MT (5;0, Id) NC2(0, Id)
BOOT PERM BOOT PERM BOOT PERM

LM 0.042 0.041 0.046 0.045 0.058 0.055
d = 2

LA 0.054 0.053 0.058 0.056 0.054 0.053
LM 0.047 0.049 0.053 0.055 0.064 0.060

d = 6
LA 0.055 0.052 0.049 0.048 0.053 0.053

k = 6, m1 = m2 = 20, m3 = m4 = 30, m5 = m6 = 40
N(0, Id) MT (5;0, Id) NC

BOOT PERM BOOT PERM BOOT PERM
LM 0.060 0.057 0.045 0.043 0.054 0.052

d = 2
LA 0.056 0.055 0.041 0.045 0.055 0.054
LM 0.066 0.062 0.065 0.063 0.064 0.059

d = 6
LA 0.060 0.057 0.043 0.045 0.045 0.055

The power of the tests was also studied for k = 2 samples with sample
size m1 = m2 = 20, for dimension d = 2. Multinormal and multivariate-t
distributions, N(µ,Σ) and MT (5, 0,Σ), were used to generate data. We pair
the identity matrix I2 with C2 and with V 2, respectively, where

C2 =
(

1 0.5
0.5 1

)
, V 2 =

(
2 0
0 4

)
.

The results are given in Table 10.3. For comparison with Bartlett’s test as
studied by Zhang and Boos (1992), we also calculate the adjusted power. The
rows marked (a−p) are obtained by using as critical values the 5th percentile
of the empirical distribution of p values under H0 obtained in constructing
Table 10.1. The table shows that the bootstrap has higher power when the
distribution is normal, but lower power than the permutation test and NMCT
in the case of multivariate t. This is also true for simulation results in the
three-dimensional case, not shown here in order to save space. Furthermore,
LA has better performance than LM most of the time.

The power studies of the bootstrap are in favor of our tests. Zhang and
Boos (1992) performed power studies of the bootstrapped Bartlett’s test with
C2 and V 2. The corresponding values (BartlettB) in Table 2 of Zhang and
Boos (1992) and in our Table 10.3 are collated below for easier comparison
(α = 0.05, k = 2, d = 2, m1 = m2 = 20) where the first column is for the case
of N(0,V 2) against N(0, I2), the second column for MT (5, 0,V 2) against
MT (5, 0, I2), the third column for N(0,C2) against N(0, I2), and the fourth
column for MT (5, 0,C2) against MT (5, 0, I2). The values in parentheses are
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the adjusted powers, assuming the population means to be unknown parame-
ters:

BartlettB 0.642(0.657) 0.487(0.525) 0.233(0.243) 0.155(0.177)
BOOT of (10.2.6) 0.770(0.818) 0.538(0.617) 0.276(0.299) 0.229(0.270)
NMCT of (10.2.6) 0.784(0.817) 0.570(0.640) 0.256(0.296) 0.230(0.274)
PERM of (10.2.6) 0.770(0.814) 0.589(0.637) 0.265(0.297) 0.234(0.275)

Table 10.3: Power study for d = 2, k = 2, m1 = m2 = 20
N(0,C2) & N(0, I2) N(0,V 2) & N(0, I2)

NMCT BOOT PERM NMCT BOOT PERM
LM 0.193 0.227 0.193 0.753 0.781 0.762

LM(a − p) 0.229 0.246 0.223 0.815 0.825 0.817
LA 0.256 0.276 0.265 0.784 0.770 0.770

LA(a − p) 0.296 0.299 0.297 0.817 0.818 0.814
MT (5;0,C2) & MT (5;0, I2) MT (5;0,V 2) & Mt(5;0, I2)
NMCT BOOT PERM NMCT BOOT PERM

LM 0.228 0.231 0.233 0.553 0.521 0.561
LM(a − p) 0.261 0.262 0.265 0.636 0.604 0.823

LA 0.230 0.229 0.234 0.570 0.538 0.589
LA(a − p) 0.274 0.270 0.275 0.640 0.617 0.637

In summary, we have the following recommendations: (1) the average value
test outperforms the maximum value test; (2) the tests of (10.2.5) and (10.2.6)
are preferred over Bartlett’s test, with or without the bootstrap; (3) if sam-
ple sizes are equal, use the NMCT procedure for easier implementation even
though its power performance may be slightly worse; (4) if sample sizes are
not equal, the permutation procedure is a good choice.

10.4 Appendix

To simplify notation we rewrite, in the two-sample case, m1 as m and m2
as n, and the second sample as (Y 1, · · · ,Y n). In this way, N = m + n. It is
clear that the convergence of the test statistics follows the convergence of the
random matrices defined. Hence we deal with convergence of random matrices.
Furthermore note that in the k-sample case the estimate Σ̂ of the covariance
matrix based on all data converges to a constant matrix in probability and
will not affect the limiting behavior of the test statistics. Hence, we simply
regard it as an identity matrix when studying the limit properties of tests.

The proof of Lemma 10.2.1 is simple and the proof of Theorem 10.3.1 is
a direct application of Theorem 2.4 in Giné and Zinn (1990). The details are
omiited.
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Proof of Theorem 10.3.2. We have to first prove the asymptotic normality
of {

√
miml/NW li, 1 ≤ i < l ≤ k}. We need only prove the asymptotic

normality of all linear combinations of the matrices
√

miml/NW li having
asymptotically the same covariance structure as that of the limiting random
matrices in Theorem 10.3.1. That is, for any constants bil with at least one
being nonzero,

∑
1≤i<l≤k bil

√
miml/NW li is asymptotically normal in the

sense of Lemma 10.2.1. These can be derived by the above with some more
calculation, details begin omitted. The proof is completed.

Proof of Theorem 10.3.3. We first prove the convergence of the permu-
tation empirical process in the two-sample case. Write m1 as m and the
second sample as {Y 1, · · · ,Y n}, N = m + n. Let Fm and FP

m be the em-
pirical distributions based on {X1, · · · ,Xm} and {Z1, · · · ,Zm} respectively,
and Gn and GP

n the empirical distributions based on {Y 1, · · · ,Y n} and
{Zm+1, · · · ,Zm+n}. Further, let HN (t) = (m/N)Fm(t) + (n/N)Gn(t) and
H(t) = λF (t) + (1 − λ)G(t). Applying Theorem 1 of Præstgaard (1995, p.
309), for almost all series {Xi} and {Y i},

{
√

nm/N(FP
m(t) − GP

n (t)) : t ∈ R1}
= {

√
mN/n(FP

m(t) − HN (t)) : t ∈ R1}
=⇒ RVH =: {RVH(t) : t ∈ R1}, (10.4.1)

where “ =⇒ ” stands for the convergence in distribution, RVH is a P -Brownian
bridge with H = λF + (1 − λ)G. The convergence is convergence in distribu-
tion in l∞(F), consisting of bounded, real-valued functions defined on F , the
class of indicator functions of half spaces {aτ · ≤ t}. As usual, ( see, e.g., Giné
and Zinn (1984)), the supremum norm on this space is considered. Note that
all sample paths of RVH are contained in C(F , H), a sub-collection consisting
of all bounded, uniformly continuous functions under the L2(H)-seminorm
d2(f, g) = EH(f − g)2 − (EH(f − g))2. It is known that C(F , H) is separable
(e.g. see Pollard (1984), p.169, ex.7). Furthermore, any point in C(F , H) can
easily be showed to be completely regular (Pollard (1984), p.67). By the rep-
resentation theory (e.g. Pollard (1984), p.71), we have, under uniform norm,

{
√

mN/n(FP
m(t) − HN (t)) : t ∈ R1} −→ {RVH(t) : t ∈ R1} a.s. (10.4.2)

We now turn to the proof for
√

mn/N{(Σ̂
(1)
P − Σ̂

(2)
P ). Consider the upper-

left element on the diagonal of the matrix,
√

mn/N{1/m
∑m

i=1[(Z
P
i )2 −

1/n
∑n

i=1(Z
P
i+m)2]}. Write it as√

mn/N

∫
(t2 − σ2)d

(
FP

m(t) − GP
n (t)

)
=
∫

(t2 − σ2)d {
√

mN/n(FP
m(t) − HN (t))}.
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From (10.4.2), it converges to TP :=
∫

(t2 − σ2)dRVH(t) a.s. This stochastic
integral is distributed normally. The work remaining is to check that its vari-
ance coincides with the variance of the upper-left element of W 1, E(x2−σ2)2.
Note that under the condition of Theorem 10.3.3, H = F . Via some elemen-
tary calculations, we have

E((TP )2) = E(
∫

(t2 − σ2)(t21 − σ2)dRVH(t)dRVH(t1))

=
∫

(t2 − σ2)2E(dRVH(t))2)

=
∫

(t2 − σ2)2dF (t) = E(x2 − σ2)2. (10.4.3)

The third equation uses
∫

(t2 − σ2)2(dF (t))2 = 0.
For the general case, we start with a lemma. We consider only the 3-

sample case, more samples can be treated with more complicated calcula-
tions. Let the data be {X

(1)
1 , · · · ,X(1)

m1
,X

(2)
1 , · · · ,X(2)

m2
,X

(3)
1 , · · · , X(3)

m3
} and

let {Z
(1)
1 , · · · ,Z(1)

m1
, Z

(2)
1 , · · · ,Z(2)

m2
, Z

(3)
1 , · · · ,Z(3)

m3
} be the data generated by

permutation. Let N = m1 + m2 + m3. Further, for l = 1, 2, 3 let Fml
and

FP
ml

be, respectively, the empirical distributions based on {X
(l)
1 , · · · ,X(l)

ml
},

and {Z
(l)
1 , · · · ,Z(l)

ml
}, and let HN−m1(t) = (m2/(N −m1))Fm2(t)+ (m3/(N −

m1))Fm3(t).

Lemma 10.4.1 Under the conditions of Theorem 10.3.3, the conditional em-
pirical process {

√
m2(N − m1)/m3(FP

m2
(t) − HN−m1(t)) : t ∈ R1} given

{Z
(1)
1 , · · · ,Z(1)

m1
} converges weakly to {RVF (t) : t ∈ R1}, where F is the dis-

tribution of the random variable X.

Proof. Note that when {Z
(1)
1 , · · · ,Z(1)

m1
} is given, the process

{
√

m2(N − m1)/m3 (FP
m2

(t) − HN−m1(t)) : t ∈ R1} is almost the same as
that in (10.4.2). Following the arguments used in the proof of Theorem 1 of
Præstgaard (1995), we can derive the conclusion. Details are omitted.

We now turn to the proof of the theorem and first consider the asymptotic
normality of {(Σ̂

(i)
P − Σ̂

(l)
P ), 1 ≤ i < l ≤ 3}. We show, for any constants

bil with at least one being nonzero,
∑

1≤i<l≤3 bil

√
miml/N(Σ̂

(i)
P − Σ̂

(l)
P ) is

asymptotically normal in the sense of Lemma 10.2.1. In the 3-sample case,
we consider the empirical permutation process

∑
1≤i<l≤3 bil

√
miml/N(FP

mii
−

FP
mll

) first, convergence of {(Σ̂
(i)
P −Σ̂

(l)
P ), 1 ≤ i < l ≤ 3} will be a consequence.

Invoking FP
m33 = (NFN − m1F

P
m1

− m2F
P
m2

)/m3, it can be verified that
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1≤i<l≤3

bil

√
miml/N(FP

mi
− FP

ml
)

=
√

m1

(
b12

√
m2/N + b13(1 + m1/m3)

√
m3/N

+b23
√

m1m2/(m3N)
)
(FP

m1
− FN )

+
√

m2

(
− b12

√
m1/N + b23(1 + m2/m3)

√
m3/N

+b13
√

m1m2/(m3N)
)
(FP

m2
− FN )

=:
√

m1bn1(FP
m1

− FN ) +
√

m2bn2(FP
m2

− FN ) (10.4.4)

where bn1 and bn2 go to constants. Further, noting that FN = m1/N(FP
m1

−
FP

N−m1
) + FP

N−m1
,

√
m1bn1(FP

m1
− FN ) +

√
m2bn2(FP

m2
− FN )

=
√

m1(bn1 + bn2
√

m1m2/N)(FP
m1

− FN ) +
√

m2bn2(FP
m2

− FP
N−m1

).
(10.4.5)

Note that (FP
m1

− FN ) is conditionally independent of (FP
m2

− FP
N−m1

). To-
gether with the proof for the two-sample case and the lemma, the process
then converges weakly to a Gaussian process. The work remaining is to check
that the limiting covariance structure of

∑
1≤i<l≤3 bil

√
miml/N(Fmii −Fmll)

coincides with that of
∑

1≤i<l≤3 bil

√
miml/N(FP

mii
− FP

mll
). As above,∑

1≤i<l≤3

bil

√
miml/N(Fmi

− Fml
)

=
√

m1(bn1 + bN2
√

m1m2/N)(Fm1 − FN ) +
√

m2bn2(Fm2 − FN−m1).
(10.4.6)

It is enough to show that

1)
√

m1N/(N − m1)(FP
m1

− FN ) and
√

m1(N − m1)/m3(FP
m2

− FP
N−m1

)
have the same limiting covariance structures as those of√

m1N/(N − m1)(Fm1 − FN ) and
√

m1(N − m1)/m3(Fm2 − FN−m1)

respectively, and

2) Fm1 − FN is uncorrelated with Fm2 − FN−m1 .

For 1), noting that Fm1 − FN = (N − m1)/N(Fm1 − FN−m1), it is easy to
see that the covariance at (t, t1) is

R(t, t1) =
m1(N − m1)

N

( 1
m1

+
1

N − m1

)
(F (t ∧ t1) − F (t)F (t1))

= F (t ∧ t1) − F (t)F (t1), (10.4.7)
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the covariance structure of a P -Brownian bridge, where “∧” denotes mini-
mum; similarly for

√
m1(N − m1)/m3(Fm2 − FN−m1).

For 2), via elementary calculations we have, applying the independence of
the variables having the common distribution F ,

E(Fm1(t) − FN (t))(Fm2(t1) − FN−m1(t1))

= −m3

N
E(FN−m1(t) − F (t))(Fm2(t1) − Fm3(t1))

= − m3

(N(N − m1))
[(F (t ∧ t1) − F (t)F (t1)) − (F (t ∧ t1) − F (t)F (t1))] = 0.

The proof is complete.
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