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Preface

As physicists, mathematicians or engineers, we are all involved with
mathematical calculations in our everyday work. Most of the laborious,
complicated, and time-consuming calculations have to be done over and
over again if we want to check the validity of our assumptions and
derive new phenomena from changing models. Even in the age of
computers, we often use paper and pencil to do our calculations.
However, computer programs like Mathematica have revolutionized our
working methods. Mathematica not only supports popular numerical
calculations but also enables us to do exact analytical calculations by
computer. Once we know the analytical representations of physical
phenomena, we are able to use Mathematica to create graphical
representations of these relations. Days of calculations by hand have
shrunk to minutes by using Mathematica. Results can be verified within
a few seconds, a task that took hours if not days in the past.

The present text uses Mathematica as a tool to discuss and to solve
examples from physics. The intention of this book is to demonstrate the
usefulness of Mathematica in everyday applications. We will not give a
complete description of its syntax but demonstrate by examples the use
of its language. In particular, we show how this modern tool is used to

solve classical problems.
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Preface

This second edition of Mathematica in Theoretical Physics seeks to
prevent the objectives and emphasis of the previous edition. It is
extended to include a full course in classical mechanics, new examples
in quantum mechanics, and measurement methods for fractals. In
addition, there is an extension of the fractal's chapter by a fractional
calculus. The additional material and examples enlarged the text so
much that we decided to divide the book in two volumes. The first
volume covers classical mechanics and nonlinear dynamics. The second
volume starts with electrodynamics, adds quantum mechanics and
general relativity, and ends with fractals. Because of the inclusion of
new materials, it was necessary to restructure the text. The main
differences are concerned with the chapter on nonlinear dynamics. This
chapter discusses mainly classical field theory and, thus, it was

appropriate to locate it in line with the classical mechanics chapter.

The text contains a large number of examples that are solvable using
Mathematica. The defined functions and packages are available on CD
accompanying each of the two volumes. The names of the files on the
CD carry the names of their respective chapters. Chapter 1 comments on
the basic properties of Mathematica using examples from different fields
of physics. Chapter 2 demonstrates the use of Mathematica in a
step-by-step procedure applied to mechanical problems. Chapter 2
contains a one-term lecture in mechanics. It starts with the basic
definitions, goes on with Newton's mechanics, discusses the Lagrange
and Hamilton representation of mechanics, and ends with the rigid body
motion. We show how Mathematica is used to simplify our work and to
support and derive solutions for specific problems. In Chapter 3, we
examine nonlinear phenomena of the Korteweg—de Vries equation. We
demonstrate that Mathematica is an appropriate tool to derive numerical
and analytical solutions even for nonlinear equations of motion. The
second volume starts with Chapter 4, discussing problems of
electrostatics and the motion of ions in an electromagnetic field. We
further introduce Mathematica functions that are closely related to the
theoretical considerations of the selected problems. In Chapter 5, we
discuss problems of quantum mechanics. We examine the dynamics of a
free particle by the example of the time-dependent Schrodinger equation

and study one-dimensional eigenvalue problems using the analytic and
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numeric capabilities of Mathematica. Problems of general relativity are
discussed in Chapter 6. Most standard books on Einstein's theory discuss
the phenomena of general relativity by using approximations. With
Mathematica, general relativity effects like the shift of the perihelion
can be tracked with precision. Finally, the last chapter, Chapter 7, uses
computer algebra to represent fractals and gives an introduction to the
spatial renormalization theory. In addition, we present the basics of
fractional calculus approaching fractals from the analytic side. This
approach is supported by a package, FractionalCalculus, which is not
included in this project. The package is available by request from the
author. Exercises with which Mathematica can be used for modified
applications. Chapters 2-7 include at the end some exercises allowing

the reader to carry out his own experiments with the book.
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1
Introduction

This first chapter introduces some basic information on the computer
algebra system Mathematica. We will discuss the capabilities and the
scope of Mathematica. Some simple examples demonstrate how
Mathematica is used to solve problems by using a computer.

All of the following sections contain theoretical background information
on the problem and a Mathematica realization. The combination of both
the classical and the computer algebra approach are given to allow a
comparison between the traditional solution of problems with pencil and

paper and the new approach by a computer algebra system.

1.1 Basics

Mathematica is a computer algebra system which allows the following
calculations:

® symbolic
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@® numeric
@ graphical
@ acoustic.

Mathematica was developed by Stephen Wolfram in the 1980s and is now
available for more than 15 years on a large number of computers for
different operating systems (PC, HP, SGI, SUN, NeXT, VAX, etc.).

The real strength of Mathematica is the capability of creating customized
applications by using its interactive definitions in a notebook. This
capability allows us to solve physical and engineering problems directly on
the computer. Before discussing the solution steps for several problems of
theoretical physics, we will present a short overview of the organization of
Mathematica.

1.1.1 Structure of Mathematica

Mathematica and its parts consist of five main components (see figure
1.1.1):

@ the kernel

@ the frontend

® the standard Mathematica packages
® the MathSource library

@ the programs written by the user.

The kernel is the main engine of the system containing all of the functions
defined in Mathematica. The frontend is the part of the Mathematica
system serving as the channel on which a user communicates with the
kernel. All components interact in a certain way with the kernel of
Mathematica.
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Standard
Packages

User
Packages

Figure 1.1.1.  Mathematica system

The kernel itself consists of more than 1800 functions available after the
initialization of Mathematica. The kernel manages calculations such as
symbolic differentiations, symbolic integrations, graphical representations,
evaluations of series and sums, and so forth.

The standard packages delivered with Mathematica contain a
mathematical collection of special topics in mathematics. The contents of
the packages range from vector analysis, statistics, algebra, to graphics and
so forth. A detailed description is contained in the technical report Guide
to Standard Mathematica Packages [1.4] published by Wolfram Research
Inc.

MathSource is another source of Mathematica packages. MathSource
consists of a collection of packages and notebooks created by
Mathematica users for special purposes. For example, there are
calculations of Feynman diagrams in high-energy physics and Lie
symmetries in the solution theory of partial differential equations.
MathSource is available on the Internet via
http://library.wolfram.com/infocenter/MathSource/.
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The last part of the Mathematica environment is created by each
individual user. Mathematica allows each user to define new functions
extending the functionality of Mathematica itself. The present book
belongs to this part of the building blocks.

The goal of our application of Mathematica is to show how problems of
physics, mathematics, and engineering can be solved. We use this
computer program to support our calculations either in an interactive form
or by creating packages which tackle the problem. We also show how non
standard problems can be solved using Mathematica.

However, before diving into the ocean of physical problems, we will first
discuss some elementary properties of Mathematica that are useful for the
solutions of our examples. In the following, we give a short overview of
the capabilities of Mathematica in symbolic, numeric, and graphical
calculations. The following, section discusses the interactive use of
Mathematica.

1.1.2 Interactive Use of Mathematica

Mathematica employs a very simple and logical syntax. All functions are
accessible by their full names describing the mathematical purpose of the
function. The first letter of each name is capitalized. For example, if we
wish to terminate our calculations and exit the Mathematica environment,
we type the termination function Quit[]. This function disconnects the
kernel from the frontend and deletes all information about our calculations.

Any function under Mathematica can be accessed by its name followed by
a pair of square brackets which contain the arguments of the respective
function. An example would be Plot[Sin[x],{x,0,7}]. The termination
function Quit[] is the one of the few functions that lacks an argument.

After activating Mathematica on the computer by typing math for the
interactive version or mathematica for the notebook version, or using just
a double click on the Mathematica icon, we can immediately go to work.
Let us assume that we need to calculate the ratio of two integer numbers.
To get the result, we simply type in the expression and press Return in the
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interactive or Shift plus Return in the notebook version. The result is a
simplified expression of the rational number.

69 /15

23

The input and output lines of Mathematica carry labels counting the
number of inputs and outputs in a session. The input label is In[no]:= and
the related output label is Out[no]=. Another example is the

exponentiation of a number. Type in and you will get

2710

1024

The two-dimensional representation of this input can be created by using
Mathematica palettes or by keyboard shortcuts. For example, an exponent
is generated by CTRL+6 on your keyboard

210

1024

Multiplication of two numbers can be done in two ways. In this book, the

multiplication sign is replaced by a blank:

25

10

You can also use a star to denote multiplication:
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2%5

10

In addition to basic operations such as addition (+), multiplication (*),
division (/), subtraction (-), and exponentiation (), Mathematica knows a
large number of mathematical functions, including the trigonometric
functions Sin[] and Cos[], the hyperbolic functions Cosh[] and Sinh[], and
many others. All available Mathematica functions are listed in the
handbook by Stephen Wolfram [1.1]. Almost all functions listed in the
work by Abramowitz and Stegun [1.2] are also available in Mathematica.

1.1.3 Symbolic Calculations

By symbolic calculations we mean the manipulation of expressions using
the rules of algebra and calculus. The following examples give a quick
idea of how to use Mathematica. We will use some of the following

functions in the remainder of this book.

A function consists of a name and several arguments enclosed in square
brackets. The arguments are separated by commas. One function
frequently used in the solution process is the function Solve[]. Solve[]
needs two arguments: the equation to be solved and the variable for which
the equation is solved. For each Mathematica function, you will find a
short description of its functionality and its purpose if you type the name
of the function preceded by a question mark. For example, the description
of Solve[] is

? Solve

Solve[egns, vars] attempts to solve an equation or set
of equations for the variables vars. Solve[edgns,
vars, elims] attempts to solve the equations
for vars, eliminating the variables elims. More..

A hyperlink to the Mathematica help browser is available via the link on
More.... If you click on the hyperlink, the help browser of Mathematica
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pops up and delivers a detailed description of the function. Each help page
contains additional examples demonstrating the application of the function.

The help facility of Mathematica ? or ?? always gives us a short
description of any function contained in the kernel. For a detailed
description of the functionality, the reader should consult the book by
Wolfram [1.1].

Let us start with an example using Solve[] applied to a quadratic equation

in t:

Solve[t? -t+a==0, t]

{{t>3 (1-Vi-2a)}. {e»> 2 (1+V1-2a)})

It is obvious that the result is identical with the well-known solutions
following from the standard solution procedure of algebra.

Next, let us differentiate a function with one independent variable. The
differential is calculated by using the derivative symbol 9., which is
equivalent to the derivative function D[]. Both functions are used for

ordinary and partial differentiation:

8. 8in[t]

cos(?)

The inverse operation to a differentiation is integration. Integration of a

function is executed by

Integrate[t?, t]

ta+1
a+1
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The same calculation is carried out by the symbolic notation in the
StandardForm:

fta dt

tu+1
a+1

Mathematica allows different kinds of input style. The first or input
notation is given by the spelled out mathematical name. The second
standard form is a two-dimensional symbolic representation. The third way
to input expressions is traditional mathematical forms. The integral from
above then looks like

[ea

tu+1
a+1

Each input form has its pro and con. The spelled out input form is always
compatible with the upgrading of Mathematica. The traditional form has
some features which prevents the compatibility but increases the
readability of a mathematical text. In the following, we will mix the
different input forms and choose that one which is appropriate for the
representation. For interactive calculations, we use the standard or
traditional form; for programming, we switch to input notations. The
different representations are also available in the output expressions. They
can be controlled by the Cell button in the command menu of Mathematica.

Next, let us examine some operations from calculus. The calculation of a
limit is given by
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Limit[sj-n%, t- 0]

The expansion of a function f(¢) in a Taylor series around ¢ = 0 up to third
order is given by

Series[f[t], {t, 0, 3}]

FO)+ £ 0+ % O+ é P07 +oah

The calculation of a finite sum follows from

1023
1024

The result of this calculation is represented by a rational number.
Mathematica is designed in such a way that the calculation results are
primarily given by rational numbers. This kind of number representation
allows a high accuracy in the representation of results. For example, we
encounter no rounding errors when using rational representations of
numbers.

The Laplace transform of the function Sin[t] is calculated using the
standard function LaplaceTransform[]:

LaplaceTransform[Sin[t], t, s]
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Ordinary and some kind of partial differential equations can be solved
using the function DSolve[]. A practical example is given by the relaxation
equation u' + @ u = 0. The solution of this equation follows from

DSolve[dru[t] +au[t] =0, u, t]

{{u - Function[{z}, e™'% ¢;]}}

In addition to the standard functions, Mathematica allows one to
incorporate standard packages dealing with special mathematical tasks (see
Figure 1.1.1). To load such standard packages, we need to carry out the
Get[] function abbreviated by << followed by the package name. Such a
standard package is available for the purpose of vector analysis.
Calculations of vector analysis can be supported using the standard
package VectorAnalysis, which contains useful functions for
cross-products of vectors as well as for calculating gradients of scalar
functions. Some examples of this kind of calculation follow:

<< Calculus VectorAnalysis"™

CrossProduct[{a, b, ¢}, {4, e, £}]

{bf—ce,cd—af,ae—bd)}

A more readable representation is gained by applying the function
MatrixForm([] to the result:

CrossProduct[{a, b, ¢}, {d, e, £}] // MatrixForm

bf-ce
[cd—af]

ae—bd

The suffix operator // allows us to append the function MatrixForm([] at
the end of an input line. MatrixForm[] generates a column representation
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of a vector or a matrix. The disadvantage of this output form is that it is
not usable in additional calculations. Another function available in the
package VectorAnalysis is a gradient function for different coordinate
systems (cartesian, cylindrical, spherical, elliptical, etc.). The following
example applies the Grad[] in cartesian coordinates to a function

depending on three cartesian coordinates x, y, and z:

Grad[f[x, y, z], Cartesian([x, y, z]] // MatrixForm

FO00x, y, 2)
FOL0, y, 2)
FOOD, y, 2)

These examples give an idea of how the capabilities of Mathematica

support symbolic calculations.

1.1.4 Numerical Calculations

In addition to symbolic calculations, we sometimes need the numerical
evaluations of expressions. The numerical capabilities of Mathematica
allow the following three essential operations for solving practical

problems.

The solution of equations, for example the solution of a sixth-order

polynomial x% + x> — 1 = 0, follows by

NSolve[x® +x2-1==0, x]

{{x - —0.826031}, {x = —0.659334 — 0.880844 i},
{x - —0.659334 + 0.880844 i}, {x — 0.659334 — 0.880844 i},
{x = 0.659334 + 0.880844 i}, {x — 0.826031}}

To evaluate a definite integral in the range x € [0, o], you can use the
numerical integration capabilities of NIntegrate[]. An example from

statistical physics is
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NIntegrat:e[x3 e*, {x, 0, co}]

0.25

Sometimes, it is hard to find an analytical solution of an ordinary
differential equation (ODE). The problem becomes much worse if you try
to solve a nonlinear ODE. The function NDSolve[] may help you tackle
such problems. An example of a second-order nonlinear ODE used in the
examination of nonlinear oscillators demonstrates the solution of the initial
value problem y"—y>+2y=0, y0)=0, y'(0) = % The initial value
problem describes a nonlinear oscillator starting at r = 0 with a vanishing
elongation and an initial velocity of % The formulation in Mathematica
reads

NDSolve[{y''[t] -y[t]®+2y[t] == 0,

1
y[0] == 0, y'[0] == ;}, v[t], {t, 0, 10}]

{{y(#) = InterpolatingFunction[( 0. 10.), <>][¢]}}

The result of the numerical integration is a representation of the solution

by means of an interpolating function.

The above three examples serve to demonstrate that Mathematica is also
capable of handling numerical evaluations. There are many other functions
which support numerical calculations. As a rule, all functions which
involve numerical calculations start with a capital N in the name.
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1.1.5 Graphics

Mathematica supports the graphical representation of different
mathematical expressions. Mathematica is able to create two- and
three-dimensional plots. It allows the representation of experimental data
given by lists of points, by parametric plots for functions in parametric
form, or by contour plots for three-dimensional functions. It further allows
the creation of short motion pictures by its function Animation. An

overview of these capabilities is given next.

As a first example of the graphical capabilities of Mathematica, let us
show how simple functions are plotted. The first argument of the plot
function Plot[] specifies the function; the second argument denotes the
plot range. All other arguments are options which alter the form of the plot
in some way. A standard example in harmonic analysis is

Plot[Sin[x], {x, -m, n}, AxesLabel » {"x", "Sin[x]"}];

Sin[x]
1t

0.5

This plot can be improved in several directions: Sometimes you need a
grid or other fonts for labeling or you prefer a frame around the plot.
These properties are accessible by specifying the appropriate options of

the following function:
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Plot[Sin[x], {x, -m, 7},

AxesLabel » {StyleForm["x", FontWeight » "Bold",
FontFamily -» "Tekton"], StyleForm["Sin[x]",
FontWeight -» "Bold", FontFamily -» "Tekton"]},

Frame -> True, GridLines -» Automatic,

AxesStyle » {RGBColor[1l, 0, 0], Thickness[0.01]},

TextStyle » {FontSlant » "Italic", FontSize -» 12}];

Sin[x]

1t u
-3 -2 -1 0 1 2 3

In three dimensions, we use Plot3D[] to represent the surface of a
function. A following example showing the surface in a rectangular water
tank. The arguments of Plot3D[] are similar to the function Plot[]. The
first specifies the function; the second and third specify the plot range; all
others are optional.
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Plot3D[Sin[x] Cos[y]., {x, -x, n}, {y, -2 7x, 27},
AxesLabel -> {"x", "y", "z"}, PlotPoints -> 35,
TextStyle » {FontSlant » "Italic", FontSize -» 12}];

Sometimes you may know a solution of a problem only in a parametric
representation. Consider, for example, the motion of an electron in a
constant magnetic field. For such a situation, the track of the electron is
described by a three-dimensional vector depending parametrically on time
t. To represent such a parametric path, you can use the function
ParametricPlot3D[]. The first argument of this function contains a list
which describes the three coordinates of the curve. A fourth element of this
list, which is optional, allows you to set a color for the track. We used in
the following example the color function Hue[]. The second argument of
the function ParametricPlot3D[] specifies the plot range of the parameter.
All other arguments given to ParametricPlot3D[] are options changing
the appearance of the plot.
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ParametricPlot3D[{2 Sin[t], 5Cos[t], t, Hue[0.4]},
{t, 0, 4 7}, Axes -> False];

Another example is the movement of a planet around the Sun, for which
the solution of the problem is in implicit form. According to Kepler's
theory (see Chapter 2, Section 2.5), a planet moves on an elliptical track
around the Sun. The path of the planet is described in principal by a
formula like x> +2 y? = 3. To graphically represent such a path, we can
use a function known as ImplicitPlot[] in Mathematica. This function
becomes  available if we load the standard  package
Graphics ' ImplicitPlot™. A representation of the hypothetical planet track
in x and y follows for the range x € [-2, 2] by

<< Graphics ImplicitPlot"
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pll = ImplicitPlot[x? + 2 y? == 3,
{x, -2, 2}, PlotStyle -> RGBColor[1l, 0, 0]];

The color of the curve is changed from black to red by the option
PlotStyle-»RGBColor[1,0,0].

If you have a function which is defined over a large range in x and y, such
as in dynamical relaxation experiments, it is sometimes useful to represent
the function in a log-log plot. For example, to show the graph of a scaling

4 in the range xe[l,10%], we can use

function like f(x)=x
LogLogPlot[] from the standard package Graphics Graphics® to show
the scaling behavior of the function. We clearly observe in the double
logarithmic representation a linear relation between y and x which is

characteristic for scaling (see Chapter 7 for more details).
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<< Graphics Graphics~;

LogLogPlot[x*'*,
{x, 1, 1000}, FrameLabel -> {"x", "y"},
GridLines -> Automatic, Frame -> True];

10000
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> 1000
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200
100
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If you have to handle data from experiments, Mathematica can do much of
the work for you. The graphical representation of a set of data can be done
by the function ListPlot[]. This function allows you to plot a list of data.
The input here is created by means of the function Table[]. The dataset,
which we will represent by ListPlot[] consists of pairs {x, sin(x) e‘%} in
the range x € [0, 6 1]. The data are located in the variable tabl. The
graphical representation of these pairs of data is achieved by the function
ListPlot[] using the dataset tabl as first argument. All other arguments are

used to set temporary options for the function.
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In[10]:=

tabl = Table[{x, Sin[x] e¥ }, {x, 0, 67, 0.2}];
ListPlot[tabl, PlotStyle ->
{RGBColor[0, 0, 0.500008], PointSize[0.015]},
AxesLabel -> {"x", "y"}, PlotRange -> All];

~0.2 < .

If you need to represent several sets of data in the same figure, you can use
the function MultipleListPlot[] contained in the standard package
Graphics MultipleListPlot". An example for two sets of data tabl and
tab2 is given below

<< Graphics MultipleListPlot”

tab2 =Tab1e[{x, Sin[x] e_T?}, {x, 0, 6m, 0.2}];
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MultipleListPlot[tabl, tab2,
AxesLabel -> {"x", "y"}, PlotRange -> All];

y
081 M
*
0.6 %
6. 5%
04, -
02w Q:
¥
: x
-0.2 ¢
0.4 5
*w*

Sometimes, results found by laborious calculations are poorly represented
by simple pictures and there might by a way to "dress them up" a bit. In
many situations, you can vary a parameter or simply the time period to
change the result in some way. The output of a small variation in
parameters can be a great number of frames which all show different
situations. To collect all of the different frames in a common picture, you
can use the animation facilities of Mathematica. The needed functions are
accessible if we load the standard package Graphics'Animation'. By
using the function Animate[] contained in this package, you can create, for
example, a flip chart movie for a planet moving around a star. The
following animation combines two graphics objects, the first contained in
the symbol pll representing the track of the planet and the second
consisting of a colored disk the planet.

<< Graphics Animation”

pl2 = Animate[{pll, Graphics[{RGBColor[O, 0, 1],

Disk[{V3 sin[x], V3/2 cos[x]}, 0.1]}]}, {x, 0,

27, 0.3}, PlotRange -> {{-1.9, 1.9}, {-1.5, 1.5}}]
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Note: In the printed version, we replace the animation by a single plot
containing the different plots distinguished by different colors. We use this
procedure to show the reader how an animation is generated and what kind

of plots are generated.

If Mathematica does not provide you with the graphics you need, you are
free to create your own graphics objects. By using graphics primitives like
Line[], Disk[], Circle[], and so forth, you can create any two- or
three-dimensional objects you can imagine. A simple example to combine
lines, disks, squares, and circles for depicting the scattering of « particles
on a gold bar follows.
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<< Graphics Arrow ;
Show [
Graphics[{{RGBColor[0.976577, 0.949233, 0.0195315],
Rectangle[{-2, -2}, {2, 2}]},
Line[{{0, 0}, {-12, 0}}], Line[{{O0, O}, {5, 6}}1],
Line[{{0, 0}, {2, 0}}], Line[{{O, O}, {3.4, 6.5}}],
Line[{{O0, 0}, {6.8, 5.7}}], {RGBColor|[O,
0.500008, 0], Disk[{-10, 0}, {1, 2}1},
{RGBColor[0.996109, 0.996109, 0.500008],
Disk[{-10, 0}, {.6, 1.5}]1}, {RGBColor|[O,
0, 0.996109], Disk[{5, 6}, {1.6, 1.3}1},
Arrow[{-12, 1.5}, {-10, 1.5}], Arrow[{5, 6},
{7, 8}], Text["b", {-11.88, 0.857724}],
Text["J", {-11.4616, 2.392}],
Text["Au", {-1.00059, 1.27616}],
Text["dN", {6.74052, 6.85534}],
Text["dQ", {3.74171, 7.483}],
Text["6", {1.64952, 0.578765}],
Text["db", {-8.88118, 0.997203}],
Text["a", {-12.0892, 1.97356}]}],
AspectRatio » Automatic];

O
O
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1.1.6 Programming

Mathematica not only is an interactive system but also allows one to
generate programs supporting scientific calculations. By solving the
following mathematical conjecture, we simultaneously demonstrate the
creation of an interactive function in Mathematica. The iteration of the

relation

et = et f(%)zdx (1.1.1)

under the initial conditions fy=cos(x) and f} =sin(x) results in a
polynomial whose coefficients are given by trigonometric functions. The

resulting polynomial can be represented in the form
Joo = COS(X) Yoy @y X + sin(x) Y07 by X" (1.1.2)

The related Mathematica representation is located in the variable poly. It
reads

poly = Cos[x] Za[n] x" + Sin[x] Zb[n] x"

n=0 n=0

Cos [x] Za[n] x" ¢ Sin[x] Zb[n] X0

n=0 n=0

The sums in the representation of the polynomial extend across the range
0<n<oco. In the first step of the calculation, we introduce a list
containing the initial conditions of the iteration. Lists in Mathematica are
represented by a pair of braced brackets which contain the elements of the
list separated by commas. To save the list for future use, we set the list
equal to the variable listf by

listf = {Cos[x], Sin[x]}

{Cos[x], Sin[x]}
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The first iteration step in Equation (1.1.1) is executed by the sequence

AppendTo[listf,
listf[[1] Int t [(listf[[z]])2 1] 7/ simplif
is ntegrate| | ————— | , x impli
g listf[1] P Y
{Cos[x], Sin[x], -xCos[x] +Sin[x]}

in which we append the result from an integration of the iteration formula
to listf by means of the function AppendTo[]. The next step just changes

the indices of the iteration and is given by

AppendTo[listf,
listf[[2] Int t [(listf[m])2 1] 7/ simplif
is ntegrate| | ————— | , x impli
g listf[2] P Y
{Cos[x] , Sin[x], -x Cos[x] +Sin[x],

—%x (-3 +x%+3xCot[x]) Sin[x}}

Here, we increase the indices of the list elements in listf by one. The next
interactive step results in

AppendTo [listf,
listf[4]

2
e ) ¢ ¥ 7/ stmeliey

listf[3] Integrate[ (

{cos[x], sin[x], -x Cos[x] +Sin[x],

1
-3 X (-3 +x?+3xCot[x]) Sin[x],

%;@ (x (-15+x%) Cos[x] +3 (5-2%%) Sin[x]) }

Applying the function Plus[] to listf adds all elements of the list together,
resulting in the representation of the polynomial in the form
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poly = Apply[Plus, listf] // Simplify

6 5

4
1—x—x2—x—+x—
3 5

Cos [x] + (2 + X - ) Sin[x]

The coefficients of the trigonometric functions Cos[] and Sin[] are

accessed by

Coefficient[poly, Cos[x]]

%6

4
1—x—x2—x—+—
3 45

and

Coefficient[poly, Sin[x]]

verifying the conjecture that the resulting function of the iteration is a
polynomial with coefficients Cos[x] and Sin[x]. The disadvantage of this
calculation is that we need to repeat the iteration. To avoid such repetition,
we define a procedural function which performs the repetition
automatically. Function Iterate[] derives the polynomial up to an iteration

order n.
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Iterate[initial List,maxn ] :=Module[

(* --- local variables --- *)

{df={},dfh, f=initial, £h},
(* --- iterate the formula and collect the results
- %)

Do [AppendTo[£,
f[[n]] Integratel[(f[[n+111/£[[n]])"2,x]11,
{n,1,maxn}];

(* --- calculate the sum of all elements in f --- *)
f = Expand[Apply[Plus,Simplify[£]]];
(* --- extract the coefficients from the polynom ---

)
fh = {Coefficient[f,initial[[1]]1]};
AppendTo [fh,Coefficient[£f,initial[[2]1]1]];
(* --- return the result --- *)
fh
1

The application of this sequential program Iterate[] to the starting
functions Cos[] and Sin[] delivers

Iterate[{Cos[x],Sin[x]},4]

, xt o xt X7 2%
{l—x—x——+—— + —_—,
3 5 5 945
o x 2x®  x° %8 x10

+ +
15 45 105 4725

The result is a list containing the polynomial coefficients of the Cos[] and
Sin[] functions, respectively. A more efficient realization of the iteration is
given by the following functional program. The first part defines the
iteration step:

Iterator[{exprl , expr2 }] :=
Expand[exprl Integrate[ (expr2 / exprl) “2, x]]

The second part extracts the last two elements from a list:

takeLastTwoElemets[l List] := Take[l, -2]
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The third part carries out the iteration:

Iteratel[input , n ] :=
Block[{F = input, tl1l}, tl = Apply[Plus, Flatten]|
Simplify[Last[Table[Flatten[AppendTo[F, Expand[
Apply[Iterator[takeLastTwoElemets[#]] &,
{Flatten[F]}]1]1]1, {n}]11111;
Map[Coefficient[tl, #] &, input]]

The results of the two functions can be compared by measuring the

calculation time:

Iteratel[{Cos[x], Sin[x]}, 5] // Timing

4

x
{15.87Second, {l—x—x2—7+
x6 x7 2X9 Xll Xl3 X15
- - =4 - + - ,
45 45 945 4725 42525 4465125
2 x5 x5 «8 5 %10 4 x12 14
2+ X - + — - + - + H
15 45 105 4725 42525 297675

Iterate[{Cos[x], Sin[x]}, 5] // Timing

4

{5.82 Second, {1 -x-x%- XT +
X6 X7 2 X9 Xll Xl3 X15
— -4 - + - ,
45 45 945 4725 42525 4465125
2 XS X6 X8 2 XlO 4 x12 x14
2 +xX- + — - + - + H
15 45 105 4725 42525 297675

The finding is that the procedural implementation is more efficient than the
functional implementation. In addition to the efficiency, the two
realizations of the programs demonstrate that a program in Mathematica
can be generated in different ways. Other methods to implement
algorithms are object-oriented programs, A-calculus, rule-based

programs,and so forth.

However, with Iterate[], we can change the mathematical conjecture in the
following way. Let us examine what happens if we use as initial conditions
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hyperbolic functions instead of trigonometric functions. The result is easy

to derive if we use Iterate[] in the form of

Iterate[{Cosh[x],Sinh[x]}, 3]

K 2x
{E+?—x2+x+l,x—?}

Again, we obtain a polynomial whose coefficients are given by hyperbolic
functions. The interchange of initial conditions demonstrates that the

iteration

Iterate[{Sinh[x], Cosh[x]}, 3]

PO 25
{E+—3——x2+x+l,x——15—}

provides the same result. Meaning that the function is symmetric with
respect to the interchange of functions. However, the resulting polynomials
are different from the results gained from trigonometric functions:

Iterate[{Sin[x], Cos[x]}, 3]

{x6 x4+ 2 il 25 2x3+}
45 3 YTt as Tt

This small example demonstrates the capabilities of Mathematica for
finding solutions to a specific problem allowing us, at the same time, to
modify the initial question. However, the iterative solution of the
conjecture is not an exact proof. It only demonstrates the correctness of the
conjecture empirically. Yet, the empirical proof of the conjectured

behavior is the first step in proving the final result.

From the above example, we have seen that the use of Mathematica
facilitates our work insofar as special functions become immediately
available to us, not only analytically but also numerically and graphically.
This notwithstanding, we first need to be able to understand the physical
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and mathematical relationships before we can effectively use Mathematica

as a powerful tool.

In the following chapters, we will demonstrate how problems occurring in
theoretical physics can be solved by the use of Mathematica. Note that we
will not provide the reader with a detailed description of Mathematica.
Instead, we will present a collection of mathematical steps gathered in a
package. This package is useful for solving specific physical or
mathematical problems by applying Mathematica as a tool. For a detailed
description of the Mathematica functions, we refer the reader to the
handbook by Wolfram [1.1] or the book by Blachman [1.3]. However, we
hope that the reader will readily understand the solutions, because the code
corresponds to notations in theoretical physics.



2

Classical Mechanics

2.1 Introduction

Classical mechanics denotes the theory of motion of particles and particle
systems under conditions in which Heisenberg's uncertainty principle has
essentially no effect on the motion and, therefore, may be neglected. It is
the mechanics of Galilei, Newton, Lagrange, and Hamilton and it is now

extended to include the mechanics of Einstein (Figure 2.1.1).

Galilei, Newton, Lagrange, Hamilton, and Einstein are the founding fathers of mechanics.

Fi 2.1.1.
‘gure These theoreticans remarkably defined the current understanding of mechanics.

This book is an attempt to present classical mechanics in a way that shows
the underlying assumptions and that, as a consequence, indicates the
boundaries beyond which its uncritical extension is dangerous. The
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presentation is designed to make the transition from classical mechanics to
quantum mechanics and to relativistic mechanics smooth so that the reader
will be able to sense the continuity in physical thought as the change is
made.

The aim of classical mechanics and theoretical physics is to provide and
develop a self-consistent mathematical structure which runs so closely
parallel to the development of physical phenomena that, starting from a
minimum number of hypotheses, it may be used to accurately describe and
even predict the results of all carefully controlled experiments. The desire
of accuracy, however, must be tempered by the need for reasonable
simplicity, and the theoretical description of a physical situation is always
simplified for convenience of analytical treatment. Such simplification
may be thought of as arising both from physical approximations (i.e., the
neglect of certain physical effects which are judged to be of negligible
importance) and from mathematical approximations made during the
development of the analysis. However, these two types of approximation
are not really distinct, for usually each may be discussed in the language of
the other. Representing as they do an economy rather than an ignorance,
such approximation may be refined by a series of increasingly accurate
calculations, performed either algebraically or numerically with a
computer.

More subtle approximations appear in the laws of motion which are
assumed as a starting point in any theoretical analysis of a problem. At
present, the most refined form of theoretical physics is called quantum
field theory, and the theory most accurately confirmed by experiment is a
special case of quantum field theory called quantum electrodynamics.
According to this discipline, the interactions among electrons, positrons,
and electromagnetic radiation have been computed and shown to agree
with the results of experiment with an over all accuracy of 1 part in 10°.
Unfortunately, analogous attempts to describe the interactions among
mesons, hyperons, and nucleons are at present unsuccessful.

These recent developments are built on a solid structure which has been
developed over the last three centuries and which is now called classical
mechanics. Figure 2.1.2 illustrates how classical mechanics is related to



2. Classical Mechanics 33

other basic physical theories. The scheme is by no means complete. It

represents a rough sketch of a discipline with great diversity.

‘ Classical Mechanics |

| | | |

General Relativity |
T ]
v

Celestial Mechanics

‘ I dy I IQMm“NM b } }Smnsuc;\\ hani I
1 I

Theory of Solids

Plasma Theory Kinetic Theory

i ]
Molecular Dynamics

‘ Accelerator Physics Theory of Liguids Cosmology |

¥

‘ Theory of Ligth |-——| Theory of Atoms H Particle Dynamis F-/—-| Astraphysics |

Figure 2.1.2.  Classical mechanics as proof for other disciplines in physics.

A theory that describes the motion of a particle at any level of
approximation must eventually reduce to classical mechanics when
conditions are such that relativistic, quantum, and radiative corrections can
be neglected. This fact makes the subject basic to the student's
understanding of the rest of the physics, in the same way that over the
centuries it has been the foundation of human understanding of the

behavior of physical phenomena.

Classical mechanics accurately describes the motion of a material system
provided that the angular momentum of the system with respect to the
nearest system which is influencing its motion is large compared with the
quantum unit of angular momentum 7% = 1.054x 10727 g cm? /s. Examples

of typical angular momentums are given in Table 2.1.1.
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System Approximate angular
momentum in units of 7

Earth moving around 10%
the Sun
Steel ball 1cm radius 10%

rolling at 10 cm/s
along a plane

Electron 108
moving in a circle

of radius 1 cm

at 10 cm/s

Electron moving in an 0,1,2,...
atom

Table 2.1.1.  Comparison of fundamental scales.

Clearly, in all but the last case, the existence of a smallest unit of angular
momentum is irrelevant, and the error introduced by using the
approximation of classical mechanics will be small compared with both
unavoidable experimental errors and other errors and approximations
made in describing the actual physical situation theoretically. However,
classical mechanics should not be studied only as an introduction to the
more refined theories, for despite advances made during this century, it
continues to be the mechanics used to describe the motion of directly
observable macroscopic systems. Although an old subject, the mechanics
of particles and rigid bodies is finding new applications in a number of
areas, including the fields of vacuum and gaseous electronics, accelerator
design, space technology, plasma physics, and magnetohydrodynamics.
Indeed, more effort is being put into the development of the consequences
of classical mechanics today than at any time since it was the only theory
known. A recent development in classical mechanics is connected with
chaotic behavior. Our aim is to provide a transition from traditional
courses in classical mechanics to the rapidly growing areas of nonlinear
dynamics and chaos and to present these old and new ideas in a broad and
unified perspective.
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2.2 Mathematical Tools

2.2.1 Introduction

This section introduces some of the mathematical tools necessary to
efficiently describe mechanical systems. The basic tools discussed are
coordinates, transformations, scalars, vectors, tensors, vector products,
derivatives, and integral relations for scalars and vector fields.

Coordinates are the basic elements in mechanics used to describe the
location of a particle in space at a certain time. These numbers are changed
if we change the position in space. Thus, we need a procedure to describe
the transition from the original position to the new position. The process of
going from one location to another is carried out by a transformation. To
describe the single elements of the coordinates, we need single figures,
which are called scalars. If we arrange two or more of the scalars in a
column or row, we get a vector. The arrangement of scalars in a
two-dimensional or higher-dimensional array will lead us to tensors.
Among the scalars, vectors, and tensors there exist algebraic and geometric
relations which are defined in vector products, special derivatives, and

integral relations.



2.2 Mathematical Tools

2.2.2 Coordinates

In order to represent points in space, we first choose a fixed point O (the
origin) and three directed lines through O that are perpendicular to each
other, called the coordinate axes and labeled the x-axis, y-axis, and z-axis.
Usually, we think of the x- and y-axes as being horizontal and the z-axis as
being vertical and we draw the orientation of the axis as in Figure 2.2.1.
Now, if P is any point in space, let a be the (directed) distance from the
yz-plane to P, let b be the distance from the xz-plane to P, and let ¢ be the
distance from the xy-plane to P. We represent the point P by the ordered
triple (a, b, c¢) of real numbers and we call a, b, and ¢ the components of P;
a is the x-component, b is the y-component, and c is the z-component. At
the same time a, b, and ¢ are the cartesian coordinates that describe the
position of the point P relative to the coordinate system. Later, we will see
that there exist other coordinates like angles and so forth. Thus, to locate
the point (a, b, ¢) in space, we can start at the origin O and move a units
along the x-axis, then b units along the y-axis, and then c¢ units parallel to
the z-axis. Coordinates are numbers in a system of reference. Usually, they
define a point with respect to the origin in a coordinate system.

Az

Figure 2.2.1.  Coordinate system with coordinates a, b, and ¢ of a point P.

Very often, it is not convenient to describe the position of even a single
particle in terms of rectangular cartesian coordinates referred to a
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particular set of coordinate axes. If for example, the particle moves in a
plane under the influence of a force which is directed toward a fixed point
in the plane and which is independent of the azimuthal angle 6, it is usually
more convenient to use plane polar coordinates

12

qr=r1="+y) (2.2.1)

and

2= ¢ =tan'($) (2.2.2)

or if the force is spherically symmetric it is natural to use the spherical
coordinates

1/2
q =r= (x2+y2+z2)/

-1
g2 = ¢ = cot (W) (2.2.3)
gz = 0 = tan”'(3).
Here, tan™! and cot™! denote the inverse functions of tan and cot,

respectively. The coordinates (2.2.3) are also used if the particle is

constrained to move on a fixed circle or fixed sphere.

Sometimes, it is useful to look at the motion of the particle from the
moving frame. In such a coordinate system, the coordinates ¢q;, ¢», g3 is in
uniform motion, for example, with respect to the x direction having
velocity v relative to the system x, y, z

q1 =x—-Vvit,
g2 =Y, (v = const), (2.2.4)
q3 =2

or from a uniformly accelerated system

qi=x- 5 gt*  (g=const),
0=y, (2.2.5)
q3 = Z.
In general, each transformation of the coordinate system x; to a new set ¢;
may be expressed as a set of three equations of the form
xi = xi(q1, g2, g3, 1) withi=1,2, 3. (2.2.6)

For the stationary coordinate systems (2.2.2) and (2.2.3), the relations

between x; and g; do not involve the time 7.
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If equations (2.2.6) are such that the three coordinates g; can be expressed
as functions of the x;, we have

qi = qi(x1, xp, x3, 1) withi=1, 2, 3. 2.2.7)

The ¢g; are as effective as the x; in describing the position of the particle.
The g; are called generalized coordinates of the particle. The generalized
coordinates may themselves be rectangular cartesian coordinates or they
may be a set of any three variables, not necessarily with the dimension of
length, which between them specify unambiguously the position of the
particle relative to some set of axes.

2.2.3 Coordinate Transformations and Matrices

Let us consider a point P which has cartesian coordinates (x;, x,, x3) with
respect to a certain coordinate system. Next, consider a different
coordinate system that can be generated from the original system by a
single rotation; let the coordinates of the point P with respect to the new
coordinate system be (X, X, X3). The transformation is illustrated for a

two-dimensional case in Figure 2.2.2.

Figure 2.2.2.  Rotation of the original coordinate axis.

The new coordinate X; is the sum of the projection of x; onto the ¥; axis
plus the projection of x, onto the X;-axis. The X,-coordinate is determined
by similar projections of x; and x, onto the %;-axis. The general relation
for the coordinate transformation in three dimensions is given by

X = Zj /\ijx]‘ withi = 1, 2, 3, (2.2.8)
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where the A;; are the direction cosine of the ¥;-axis relative to the x;-axis. It
is convenient to arrange the A; into a square array called a matrix. The
symbol A will be used to denote the totality o the individual elements A;;
when arranged in the following manner:

Al A A3
A=A A Ay | (2.2.9)
A31 Az Ass

Once the direction cosines which relate the two sets of coordinates are
found, the general rules for specifying the coordinates of a point in either

system. A is called a transformation matrix.

The A matrix has equal numbers of rows and columns and is therefore
called a square matrix. It is not necessary that a matrix be square. In fact,
the coordinates of a point may be written as a column matrix:

T=| % (2.2.10)

or as a row matrix
X= (X1 X3 Xx3). (2.2.11)

We must now establish rules whereby it is possible to multiply two
matrices. Let us take a column matrix for the coordinates. Then, we have

the following equivalent expressions:

%= 2 A xg, (2.2.12)
T= A% (2.2.13)

or in Mathematica notation

X =

A1 Az Az X1
Az1 A2z Az X, |; X // TableForm
A3z1 Az Az X3

X1 A11 + X2 A2 + X3 A1z
X1 Ag1 + X2 Aoz + X3 Az3
X1 A31 + X2 A3z + X3 A3z
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This relation completely specifies the operation of matrix multiplication
for the case of a matrix of three rows and three columns operating on a
matrix of three rows and one column. The next step is to generalize this
result to matrices of nxn order.

The multiplication of a matrix A and a matrix B is defined only if the
number of columns of A is equal to the number of rows of B. For such a
case, the product A.B is given by

C = AB,

Cij = 2 A By

It is evident that matrix multiplication is not commutative. Thus, if A and

(2.2.14)

B are both square matrices, then the sums
2k A By and X, By Ay

are both defined, but, in general, they will not be equal. This behavior is
shown by the following example.

Example:

If A and B are the matrices

2 4
A=(-5 1)
2 4
(5 1)
and

9 —4
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then

A.B
46 —-12
(—16 —14)

but

B.A
0 22
( 38 32 )

An important operation on a matrix is the transposition. A transposed

matrix is a matrix derived from the original matrix by the interchange of
rows and columns. The transposition of a matrix A is denoted by AT.

According to this rule, we have
)tg =Aj (2.2.15)

If we define the A matrix by

A1 Az Ag3
I=]22n A A

A31 A3 Az
Al A Az
Ao A Ap
A31 Az Asz

the transposed matrix is given by
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lT

Al A2 Az
Az A Az

Az Az A3

Another property of matrices is that any matrix multiplied by the identity
matrix is unaffected:

IdentityMatrix[3].

Al A Az
Ao A Ap

A3 Az A3

or

17 IdentityMatrix[3]

Air A1 A3
Az A A3
A3 Az Asz

Consider matrix A to be known. The problem is to find the inverse matrix
A~! such that

At =2t = 1. (2.2.16)
If Cj; is the cofactor of A (i.e., the minor of A with the sign (—l)”j), then
the inverse is determined by

C
-1 _ J
N = T (22.17)

if det(A) # 0. Note that in numerical work it sometimes happens that det())
is almost equal to 0. Then, there is trouble ahead. In Mathematica, the
inverse of a matrix is calculated by the function Inverse[]. The application
of this function to the matrix A gives us
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Inverse(/)

{{ (22 A3z = Aa3 A32) / (=A13 A2z Asp + Agp Aoz Asp +
A13 A21 Azz = A1 A2z Azz — A1z Aa1 Azz + Ag1 gz Azz)
(A13 Az2 = A1z Az3) / (=A13 Aoz Azp + Azz Aaz Asp +
A1z A21 Azz = A1 A2z Azz — A1z Aa1 Azz + Az1 Aoz Azz)
(A12 A2z — A1z Az2) / (=13 Aoz Azp + Agz A2z Azp +
A13 A21 Azz = A11 A2z Azz — Az Az1 Azz + Az Az A3z) },
{(A23 A31 = A21 A33) / (=A13 A2z Asp + Aza Aoz Asp +
A13 A21 Azz — Ar1 A2z Azz = Az Az1 Azz + Aqx Az A3z),
(A11 Azz = A13 Az1) / (=13 Aoz Azp + Aap Azz Azp +
A1z A21 Azz — A11 A2z Azz — A1z Aa1 Azz + Ag1 Aoz Azz)
(A13 A21 = A11 A23) / (=A13 Aoz Azp + Azz Aaz Asp +
A13 A21 Azz = A11 A2z Azz = Az Az1 Azz + Aqx Aaz Azz) ),
{(A21 A3z = A22 A1) / (—A13 A2z Asp + Azx Aoz Asp +
A13 Az1 Azz = A11 A2z Aza = A1z Aa1 Azz + Ag1 Ao Azz)
(A12 Az1 = A1 Az2) / (=13 Aoz Azp + Axz A2z Asp +
A13 A21 Azz — Az1 A2z Azz — Az Az1 Azz + Aqx Az A3z),
(A11 A2z = A2 A21) / (=13 Aoz Az1 + Axz A2z Asp +
A1z A21 Azz — Az1 Azz Azz — Azz Aa1 Azz + Ag1 Aoz Azz) b}

Knowing the inverse of A, we can check the definition (2.2.16)

Simplify[l.I~1]

100
010
001

which, in fact, reproduces the identity matrix.
For orthogonal matrices, there exist a connection between the inverse
matrix and the transposed matrix. This connection is

A-''= AT only for orthogonal matrices! (2.2.18)

We demonstrate this relation for the 2x2 rotation matrices. A rotation by
an angle ¢ in two dimensions is given by the matrix
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(c05(¢) sin(¢))
—sin(¢) cos(®)

cos(¢) sin(¢)
( —sin(¢) cos(¢) )

The inverse of this matrix is

R7! // Simplify

cos(¢p) —sin(¢)
(sin(¢) c08(¢))

and the transpose is

RT

cos(¢) —sin(é)
(sin(¢>) cos(e) )

obviously both matrices are equivalent. This result in two dimensions can
be generalized to higher dimensions and to the general representation of A.
To demonstrate the relation (2.2.16) and the consequences from this
definition for the transposes matrix, we write

117 == IdentityMatrix[3]

{{)@1 + )‘52 + )€3 '
A11 A21 + A1z Az + A1z Az, Ar1 Az + Arp Asp + Ags Asz ),
{A11 A21 + A1z Azz + A1z Aoz, AJp + A3, + A35,
A21 Az1 + A2z Azz + A2z Azz}, {A11 Azx + Azz Az + A3 Ass,
A1 As1 + Aoz Asz + Aoz Asz, A5y + A3, + 235} ) ==
{{1, o, o}, {0, 1, 0}, {0, O, 1}}

We observe that if the matrix A is orthogonal, the off-diagonal elements
have to vanish and the diagonal elements are identical to 1. This property
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can be verified if we replace the symbolic values A; by their
representations with directional cosines. If we can satisfy these conditions,
the transpose and the inverse of the rotation matrix A are identical. In fact,
the transpose of any orthogonal matrix is equal to its inverse. The above
relation allows an equivalent representation in components

2 Aij A = ks (2.2.19)
where 0y is the Kronecker delta symbol
s 0 ifi+k
= Lot (2.2.20)

This symbol was introduced by Leopold Kronecker (1823-1891). The
validity of Equation (2.2.19) depends on the fact that the coordinate axes
in each of the systems are mutually perpendicular. Such systems are said to
be orthogonal and Equation (2.2.19) is the orthogonality condition.

The following examples demonstrate how rotations act on coordinate
transformations. Let us first consider the case in which the coordinate axes
are rotated counterclockwise through an angle of 90" about the x3-axis. In
such a rotation, X| = xp, X, = —x;, and X3 = x3. The only nonvanishing
cosines are

cos(X1, x2) = 1 = Ay,
cos(Xz, x1) = =1 =123, (2.2.21)
COS()~C3,X3) =1-= /\33.

Thus the A matrix for this case is

0 0 1
010
-1 00
0 1

The multiplication of this transformation matrix with vectors along the
three coordinate axes shows us how the coordinate axes are changed. For
the x| -axis represented by
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we find

x1t = 2,,.x1

0
-1
0

which transforms the x;-axis to the —X,-axis. In case of the x,-axis, we find

X2t = Ay, X2

showing us that the x;-axis is transformed to the X;-axis. Finally, the

X3-axis remains unchanged:




2. Classical Mechanics 47

x3t = Ay, .x3

The following illustration demonstrates this kind of coordinate

transformation:

)xl

Another transformation about the x;-axis is defined as follows:

1 00
Axl=[0 0 1]

0 -1 0
1 00
0 01
0 -10

In the next step, let us apply the two rotations about the x3- and the x;-axis
in such a way that we first carry out the rotation around the xj3-axis

followed by a rotation about the x;-axis. Defining the vector X by
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we first transform this vector to an intermediate vector x/:

xh=2,%

3

X2
-X;

X3

this vector is again used in the rotation around the x;-axis:

Xt = A, .Xh

x
X3

X1

which results in a final vector with interchanged coordinates. This final
state of the vector was generated by two transformations A, and A,

which can be verified by

Ay, e Ay, o R

X2
X3

X1

The result is the same as the sequential application of the rotations. Thus,
the complete rotation can be represented by single transformation
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A, = Ay, AL,

- o O
[ e
S = O

which again delivers the same final state of the vector when applied to the

original vector:

A, F

X2
X3

X1

Note that the order in which the transformation matrices operate on X is

important since the multiplication is not commutative. Changing the

product order, we find

}

Agy Ay X

X3
-X]

—-X

which is different from the previous result because

Axy «Ax; #F Ax; - Axy

True

Thus, an entirely different orientation results.

Next, consider a coordinate rotation around the xz-axis which allows to

continuously vary the transformation angle ¢ around the x3-axis. Such a
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transformation is identical with a rotation in the x;- x,-plane. We denote

this kind of rotation by

cos(¢p) sin(¢p) 0
Ry ($) := [—sin(¢) cos(¢) 0 ]
0 0 1

The action of this transformation can be demonstrated by transforming an

arbitrary vector X

by means of the transformation matrix R,,. The result of such a
transformation is given by a vector containing the original coordinates

X1, X2, and x3:

rh = R, ()X

cos(¢) x1 + sin(¢) x»
cos(¢) xa — sin(@) x

X3

If we change the angle ¢ continuously, the original vector undergoes a
rotation around the x3-axis. This behavior is demonstrated in the following

illustration.

Map|[ (Show[Graphics3D[ {RGBColor[0, 0, 0.996109],
Line[{{0, 0, 0}, rh // Flatten}] /.
{x1->1, %x->1, x3>1, ¢ >#}}], PlotRange »
{{-1.5, 1.5}, {-1.5, 1.5}, {0, 1.5}}]) &,
Table[i, {i, 0, 2w, .3}]1];
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Another rotation frequently used in the theory of rigid bodies is a rotation
around the x,-axis.

cos(d) 0 —sin(9)
R,,(0)) :=[ 0 1 0 ]
sin(@) 0 cos(0)

The application of this transformation matrix to the vector X gives us

X2r = R,,(0)3

X2

[cos(@) x1 — sin(6) x3 ]

sin(@) x; + cos(6) x3

The graphical representation for specific coordinates looks like
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Map|[ (Show[Graphics3D[ {RGBColor[0, 0, 0.996109],
Line[{{0, O, 0}, x2r // Flatten}] /.
{x1->1, %x,>1, x3>1, 6> #}}], PlotRange »
{{-1.5, 1.5}, {-1.50, 1.5}, {-1.5, 1.5}}]) &,
Table[i, {i, 0, 2w, .3}]1]:

These two rotation matrices can be used to generate a general rotation in
three dimensions. The three angles ¢, 6, and ¥ are known as Euler angles.
Applications of this kind of transformation matrice will be discussed in
Section 2.10 on rigid body motion.
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genRot = R, (¥).Ry, (0).R.,($)

{{Cos[O] Cos[¢] Cos[y] -Sin[¢] Sin[¥],

Cos[6] Cos[¢] Sin[¢] + Cos[¢] Sin[y¥], -Cos[y¥] Sin[O]},
{-Cos[¥] Sin[¢] - Cos[O] Cos[¢] Sin[¥],

Cos[¢] Cos[yY] - Cos[O] Sin[¢] Sin[¥], Sin[O] Sin[¥]},
{Cos[¢] Sin[O], Sin[6] Sin[¢], Cos[O] }}

Our application here is just a general rotation in three dimensions:

Map[(Show[Graphics3D[{RGBColor[O, 0, 0.996109],
Line[{{0, 0, 0}, genRot.X // Flatten}] /.
bl 7
{x1—>1, X, -2 1l, X351, ¢ —3—, e - —4—, 1//—’#}}]:
PlotRange -» {{-1.5, 1.5}, {-1.50, 1.5},
{-1.5, 1.5}}]) &, Table[i, {i, 0, 27, .3}1];
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2.2.4 Scalars

In the mathematical description of physical processes, the values of a great
many quantities can be specified by a single real number. For example,
length, time, mass, and temperature are such quantities. The values of
these quantities can be arranged on a single scale. They are called scalars.

The scale on which we measure the scalars is connected with a measuring
unit. For the sake of consistency, we cannot always choose the units
arbitrarily. What we can choose are a few so-called fundamental units.
Other units are derived from this basic set and, thus, are uniquely
determined. For example, if we choose to measure the length in
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centimeters (cm), meters (m), or kilometers (km), the units of area and
volume are already given.

The smaller number of necessary units for physical quantities is bound to
be small. There is an agreement that a number smaller than 3 is of no
practical interest. Historically, there are different systems of measurement,
the cgs, the mks, and the Giorgi system. The cgs system uses the
fundamental units length, mass, and time measured in centimeter, gram
and second. Even electrical and magnetic units are derived from this
system. In the mks system, the units are meter, kilogram, and second. The
ampere is taken to be a fundamental electric unit in the mks system. This
additional unit turns the mks system into the mksa or the Giorgi system.

Scalars can be positive, as mass and volume, or both positive and negative
such as the density of electric charge. Every physical quantity has what is
called a given dimension as defined by the measuring units. However, the
ratio between two quantities of the same kind is dimensionless or a pure
number.

The calculus used for pure numbers is valid for scalars. However, in
physics, only scalars of the same kind and of the same dimension can be
added or subtracted. By multiplication and division, we get quantities of
different dimensions expressed in other units.

Let us examine the real meaning of a scalar. For this, let us consider an
array of particles with different masses. Each particle is labeled according
to its mass (see Figure 2.2.3). The coordinate axes are shown so that 7 is

possible to specify a particular particle by a pair of numbers (x, y).
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Figure 2.2.3.  Change of coordinates and action on the scalar quantities.

The mass m of the particle at (x, y) can be expressed as m(x, y). Now,
consider the axes rotated as shown in Figure 2.2.3. It is evident that each
mass is now located at (%, ). However, because the masses itself did not

change during the transformation, we can state
m(x, y) = m(%, y) (2.2.22)

because the mass of any particle is not affected by a change in the

coordinate axes.

Quantities which have the property that they are invariant under coordi-
nate transformations are termed scalars.

Although it is possible to give the mass of a particle relative to any
coordinate system by the same number, it is clear that there are some
physical properties associated with the particle which cannot be specified
in such a simple manner. For example, the direction of motion and the
direction of force are such quantities. The description of these more
complicated quantities require the use of vectors.
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2.2.5 Vectors

Not all physical quantities can be characterized by a single number. There
are a large number of quantities which need two or more numbers to
provide an exact description of the quantity. Simply stated, the
combination of two or more numbers in an array are called vectors.
Vectors consist of components specifying a direction in space. The term
vector is used to indicate a quantity that has both magnitude (a scalar) and
direction. A vector is often represented by an arrow or a directed line
segment. The length of the arrow represents the magnitude of the vector

and the arrow points in the direction of the vector.

Physical quantities of the vector type are velocities, forces, torques, and so
forth. Vectors can be two, three, or n dimensional. However, in this text,
we consider vectors in three-dimensional Euclidian space. As an historical
aside, it is interesting to note that the vector quantities listed are all taken
from mechanics, but that vector analysis was not used in the development
of mechanics and, indeed, had not been created. The need of vector
analysis became apparent only with the development of Maxwell's
electromagnetic theory and in appreciation of the inherent vector nature of

quantities such as electric field and magnetic field (see Chapter 4).

Vectors are characterized by a magnitude and a direction in space. As we
will see in a moment, vectors are defined by their transformation
properties. Consider a coordinate transformation of the type

X o= X Ayx; (2.2.23)
with
2 Nij g = 6y (2.2.24)

If under such a transformation a quantity ¢ = @¢(x;, x», x3) is unaffected,
then ¢ is called a scalar.

If a set of quantities (A}, Ay, A3) is transformed from the x; system to the
X; system by means of a transformation matrix A with the result

A = Y, A A (2.2.25)
then the quantities A; transform as the coordinates of a point and the
quantity A= (A1, Ay, A3) is termed a vector.
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A vector can be conveniently represented by an arrow with length
proportional to the magnitude. The direction of the arrow gives the
direction of the vector, the positive sense of direction being indicated by

the point. In this representation, vector addition, e.g.

=A+B

al

A+B

consists in placing the back end of vector B at the point of vector A.
Vector C is then represented by an arrow drawn from the back of A to the
point of B. This procedure, the triangle law of addition, assigns meaning to
the Equation (2.2.25) and is illustrated in Figure 2.2.4.

—

B

Figure 2.2.4.  Triangle law of vector addition.

By completing the parallelogram, we see that

C==B+A

Note that the vectors are treated as geometrical objects that are
independent of any coordinate system. Indeed, we have not yet introduced

a coordinate system.
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A direct physical example of this triangle addition law is provided by a
weight suspended by two cords (Figure 2.2.5). If the junction point O is in
equilibrium, the vector sum of the two forces F, and F, must just cancel
the downward force of gravity, f3. Here, the triangle addition law is

subject to immediate experimental verification.

Figure 2.2.5.  Equilibrium of forces. Fi+F,=F;.

2.2.6 Tensors

Physical quantities can be of still higher complexity than scalars and
vectors. For example, the inertia of a rigid body is described by a tensor.
Tensors are distinguished by their rank. The combination of n vectors in an
array generates, in general, an n-rank tensor. In this scheme, scalars are
tensors of rank zero and vectors are first-rank tensors. A tensor of the
second rank, for example, has 3> = 9 components. A tensor can usually be
said to define the dependence of a vector upon another vector.

In Section 2.2.4, a quantity that did not change under rotations of the
coordinate system that is, an invariant quantity, was labeled a scalar. A
quantity whose components transformed like those of the distance of a
point from a chosen origin was called a vector (see Section 2.2.5). The
transformation property was adopted as the defining characteristic of a
vector. There is a possible ambiguity in definition (2.2.23)
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o= 25 Ay (2.2.26)

in which A;; is the cosine of the angle between the X;-axis and the x;-axis.

If we start with our prototype vector X, then

6x,
= Z T (2.2.27)

by partial differentiation. If we set
0%;
Aj = B, (2.2.28)
Equations (2.2.26) and (2.2.27) are consistent. Any set of quantities x;
transforming according to

~ 0%
X = Z il (2.2.29)

is defined as a contravariant vector.

A slightly different type of vector transformation is encountered by the
gradient V¢, defined by

Aéab ~ 0p | 0P
Jax +k6x3’

(2.2.30)

where the vectors 1, j, and k denote the unit vectors of the coordinate

system. The gradient transforms as
99 _ 09 0xj

82,- - J 6xj 82,- ’ (2231)

using ¢ = ¢(x;, X2, x3) and ¢ = (%, X, ¥3) defined as a scalar quantity.
Notice that this differs from Equation (2.2.29) in that we have dx;/0%;
instead of d%;/0x;. Equation (2.2.31) is taken as the definition of a
covariant vector with the gradient as the prototype.

In cartesian coordinates,

0x;j 0%
EES = (3_xj = Aij, (2.2.32)

and there is no difference between contravariant and covariant
transformations. In other systems, Equation (2.2.32), in general, does not
apply, and the distinction between contravariant and covariant is real and
must be observed. In the remainder of this section, the components of a
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contravariant vector are denoted by a superscript, x', whereas a subscript is

used for the components of a covariant vector x;.

To remove some of the fear and mystery from the term fensor, let us
rechristen a scalar as a tensor of rank zero and relabel a vector as a tensor
of first rank. Then, we proceed to define contravariant, mixed, and

covariant tensors of second rank by the following equations:

A0 9% 0% 4y

A= D ow Tu A%, (2.2.33)
B - i 9OX pk

B; = Zkl Ox; 0% By, (2.2.34)
¢ = dx Ox

Cij= Zkl % 0%, Cu- (2.2.35)

We see that A¥ is contravariant with respect to both indices, Cy is
covariant with respect to both indices, and Bf transforms contravariantly
with respect to the first index k but covariantly with respect to the second
index /. Once again, if we are using cartesian coordinates, all three forms
of the tensors of second rank, contravariant, mixed, and covariant, are the

same.

The second-rank tensor A (components AY) can be conveniently
represented by writing out its components in a square array (3x3 if we are

in three-dimensional space):

All A12 Al3
A =| A% A2 AP | (2.2.36)
A31 A32 A33

This does not mean that any square array of numbers or functions forms a
tensor. The essential condition is that the components transform according
Equations (2.2.33-2.2.35).

This transformation requirement can be illustrated by examining in detail

the two-dimensional tensor:
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2
—xy -
T=( y y)
X Xy

—xy -
2 xy

11
In a rotated coordinate system the 7 component must be —X 7, as
discussed for vectors. We check to see if this is consistent with the
defining Equation (2.2.33):
1 5= X 0%
r=-xy= Zki x o 1 (2.2.37)
= Yu ik Ay TV

setting i and j equal to 1. Then, with the rotation matrix given by

I _( cos(0) sin(0))
~ \—sin(@) cos(6)

cos(f) sin(6)
( —sin(f) cos(6) )

we can represent the original vector X = (x, y) in the transformed system as

r= Flatten[lam.(i )]

{x cos(6) + ysin(), y cos(#) — x sin(6)}

Combining the coordinates from the transformed vector and the right-hand
side of Equation (2.2.37), we end up with an identity:

2 2
-2[1] BM2] == ZZ lam[1, k] lam[1, 1] T[k, 1] // Simplify
k=11=1

True
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Repetition of the other three components verify that all transform in
accordance of Equation (2.2.33) and that T is, therefore, a second-rank
tensor.

This transformation property is not something to be taken for granted. For
instance, if one algebraic sign were changed, if 72> were —x y instead of
+Xx y, then the array is

2

2
_x —
T=( y -y ];
X -Xy

and condition (2.2.33) reduces to

2 2
-2[1] BM2] == ZZ lam[1, k] lam[1l, 1] T[k, 1] // Simplify
k=11=1

2xysin?(@) == 0

which states that the equality is not satisfied and, thus, 7' is not a tensor
because it does not require the transformation properties.

The addition and subtraction of tensors is defined in terms of the
individual elements just as for vectors. To add or subtract two tensors, the
corresponding elements are added or subtracted. If

A+ B=C, (2.2.38)
then
AV + Bi = CV. (2.2.39)

Of course, A and B must be tenors of the same rank and both expressed in
a space of the same number of dimensions.
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2.2.7 Vector Products

Having defined vectors, we now proceed to combine them. The laws for
combining vectors must be mathematically consistent. From the
possibilities that are consistent, we select two that are both mathematically
and physically interesting.

The combination of AB cos(6), in which A and B are the magnitudes of two
vectors and 6, the angle between them, occurs frequently in physics. For
instance,

Work = Force x Displacement x cos(6)

is usually interpreted as displacement times the projection of the force

along the displacement. With such application in mind, we define

AB == ZiAi B;

as the scalar product of A and B. We note that for this definition A.B = B.A.

We have not yet shown that the word scalar is justified or that the scalar
product is indeed a scalar quantity. First let us demonstrate that a vector A

multiplied by itself is a scalar. For example

AA

AA

Now, let us define a vector C that is the sum of two other vectors A and B:

al
1l
>
+
=l

|
+
=)

The scalar product of C with itself is thus
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c.C // Expand

(A+B).(3 +B)

Because the scalar product is commuting, we find with C.C = C?

N 1
AB == > (-A?-B*+(?

AB===(-A>-B*+ (%

Because the right-hand side of this equation is invariant (i.e., a scalar
quantity), the left-hand side, K.F, must also be invariant under rotation of
the coordinate system. Hence, A.Bis a scalar.

Another property of the dot product is

(A -B)(A+B)

A’ - B?

We next consider another method for the combination of two vectors, the
so-called vector product or cross-product. For example, the angular
momentum of a body is defined as

Angular momentum = Radius arm x Linear momentum
= Distance * Linear momentum?* sin(6)

First, we assert that this operation x does, in fact, produce a vector. The
product considered here actually produces an axial vector, but the term
vector product will be used in order to be consistent with popular usage.
The vector product of A and B is denoted by a cross x; older notation
includes [AB|, [A.B], and [A A B|. For convenience in treating problems
relating to quantities such as angular momentum, torque, and angular

velocity, we define the cross-product as
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with
C = ABsin(6) (2.2.40)

and where C is the vector that we assert results from this operation. The
components of C are defined by the relation

Ci=2 € Aj By (2.2.41)
where the symbol € is the permutation symbol or Levi—Civita density and

has the following properties:

0, if any index is equal to any other
€k = { +1, if i, j, k, formaneven permutationof 1, 2, 3
-1, if i, j, kformanodd permutationof 1, 2, 3.

We note that AxB is perpendicular to the plane defined by A and B
because

A (A xB)

and

B.(AxB)

Since a plane area can be represented by a vector normal to the plane and
of magnitude equal to the area, evidently C is such a vector. The positive
direction of C is chosen to be the direction of advance of a right-hand
screw when rotated from A to B.
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We should note the following properties of the vector product which
results from the definitions:

—_

AxB==-BxA

but, in general,

C=

Kx(Ex@) == (Kxﬁ)x@

True

meaning that the cross-product is not associative. Another important result
of the cross-product is

Ax(BxC)

ACB-ABC

The scalar product of two cross-products is expressed by the difference of

two dot products

(AxB).CxD)

ACBD-ADBC

The following identities useful in simplifying some expressions are stated
without proof:
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=)
e

X
3

(XXE\)X(-C\XB)

ix(BD)C - Ax(B.C)D

(AxB).(AxB)

AR - (AB)

The sum of a cyclic permutation of a triple cross-product vanishes:

Applying the rules from above to the following example, we are able to
simplify this expression to

(@ - B)x(A +B)
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2.2.8 Derivatives

If a scalar function ¢ = ¢(s) is differentiated with respect to the scalar
variable s, then because neither part of the derivative can change under a
coordinate transformation, the derivative itself cannot change and must
therefore be a scalar; that is, in the x; and X; coordinate systems, ¢ = ¢ and
s =75, sothatd¢ = d ¢ and ds = d 5. Hence,

dé _ dé _ (ﬁ)' (2.2.42)
In a similar manner, we can formally define the differentiation of a vector
A with respect to a scalar s. The components of A transform according to

A= 3 A (2.2.43)
Therefore, upon differentiation, we obtain, since A is independent of 3,

d A d dA;
5 = a5 @A) = Zj Nj 5 (2.2.44)

Since s and 3 are identical, we have

A dA;
= (&= A 4 (22.45)

Thus, the quantities dA;/ds transform as do the components of a vector

d
d

}z

=t

and, hence, are the components of a vector which we can write as d A /ds.

The derivatives of vector sums and products obey the rules of ordinary
vector calculus; for example,

d(A(s) + B(s))
ds

A (5)+B ()

The dot product differentiated gives
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d(A(5).B®))
Js

As).B (5)+Bs)A (5)

Differentiation of a cross-product results in

d(As)xB(s))
as

As)xB (5)+ A (s)xB(s)

A product of a scalar and a vector yields

d(p() As))
as

A ¢ (5)+ B A (s)

Knowing that a vector depending on a scalar can be differentiated without
changing the nature, we now turn to the discussion of the most important
member of a class called vector differential operators. The most important
operator of this class is the gradient operator.

Consider a scalar ¢ which is an explicit function of the coordinates x; and,
moreover, is a continuous, single-valued function of these coordinates
throughout a certain region of space. Then, under a coordinate
transformation that carries the x; into the %;, ¢(X;, X2, %3) = d(x1, X2, X3),
and by the chain rule of differentiation, we can write

X
0%

a¢ an
j 8xj 8%1 :

(2.2.46)

Similarly, we obtain for d¢ /8%, and d¢ /83, so that in general we have

99 _ N 04 9%

51 Bl (2.2.47)
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Now, the inverse coordinate transformation is

Xj= Zk Akj X- (2248)
Differentiating this relation, we find

0x; ox

= ax (S Ay Xe) = Z Ny g (2.2.49)

However, the term in the last expression is just dy;, so that
LETRES 0 T 2.2.50
% Zk kj Oki — \i5- ( oo )

Substituting Equation (2.2.50) into Equation (2.2.47), we obtain

¢3 d¢
Lo Z 7 i (2.2.51)

Because it follows the correct transformation equation, the function
0¢/0x; is the jth component of a vector which is termed the gradient of
the function ¢. Note that even though ¢ is a scalar, the gradient of ¢ is a
vector. The gradient of ¢ is written either as grad ¢ or as V.

Since the function ¢ is an arbitrary scalar function, it is convenient to
define the differential operator described above in terms of the gradient
operator

(grad), = V; = aix,- (2.2.52)

We can express the complete vector operator as

grad = V=" ¢, % (2.2.53)

The gradient of a scalar function is of extreme importance in physics
expressing the relation between a force field and a potential field.

Force = -V potential

Thus, we can state that the gradient operator can operate directly on a
scalar function as V¢, be used in a scalar product with a vector function in
V.A called the divergence of A, or be used in a vector product with a
vector function as in V x A which is known as the curl of A.

The successive operation of the gradient operator produces

62
AEDIE - e FER (2.2.54)
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This important product operator is called the Laplacian and is also written

2 N 2
Ve = i ox?
The following lines demonstrate some properties of the gradient. First, we
check the product rule on scalar functions. Given two scalar functions

¢ = ¢(X) and ¥ = Y(X), we are interested in the action of V on the product:

Nabla[¢ ¥ ]

AL A AL

Another example is the calculation of the gradient for the function

S=@u2+ y2 + z2)_3/2

1
2+ + 2)%?

The gradient is a vector containing three components:

gr = Grad(S); gr // MatrixForm

_ 3x
(2+y2+22)?
-3y
(x2+y2+22 )5/2

3z
- (x2+v2+z2)5/2

If we apply the divergence operator on this vector, we find

di = Simplify[Div(gr)]

6
(2 +y2+22)?
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We are also able to determine the curl of the gradient field:

Curl(gr) // MatrixForm

saying that the curl of a gradient vanishes. This result, demonstrated for a

specific example, has the generalization

Nabla[] xNabla[U]

Another relation combining V is the divergence of a curl applied to a
vector field:

Nabla[] .Nabla[] xV

2.2.9 Integrals

The vector which results from the volume integration of a vector function
A = A(®) throughout a volume V is given by

J,Adv = (f,Avdv, [, Aydv, [ Asdv) (2.2.55)
Thus, the integration of the vector A throughout V is accomplished simply
by performing three separate, ordinary integrations.

The integral over the surface S of the projection of a vector function

A = A(®) onto that surface is defined to be

J;Ada (2.2.56)
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where d d is an infinitesimal element of area of the surface. We write d @
as a vector quantity since we can attribute to it not only a magnitude da but
also a direction corresponding to the normal to the surface at the point in
question. If the unit normal vector is 7, then

dd = nda. (2.2.57)
Therefore, we have

J;Ada = [[Atida (2.2.58)
or

JsAdd = [[3; A;da;. (2.2.59)

Equation (2.2.58) states that the integral of A over a surface S is the
integral of the normal component of A over this surface. The normal to a
surface can be taken to lie in either of two possible directions (up or
down); thus, the sign of 7 is ambiguous. If the surface is closed, we adopt
the convention that the outward normal is positive.

The line integral of a vector function A = A(X) along a given path
extending from the point B to the point C is given by the integral of the
component of A along the path:

JoeAds = fi 3 Aidx;. (2.2.60)

The quantity d3 is an element of unit length along the given path. The
direction of d 3 is taken to be positive along the direction in which the path
is traversed.

The form (2.2.60) is exactly the same as that encountered when we
calculate the work done with a force that varies along the path,

W = [Fdr. (2.2.61)

In this expression F is the force exerted on a particle.

2.210 Exercises

1. Show that the components of a vector @ in the direction orthogonal
to a vector b is
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a—(ab) L = & (Bx(@xh) (22.62)

h2

2. Show that under double reflection in two mirrors, one in the x —z
plane and te other in the x — y plane, a axial vector transforms in the
same way as a polar vector.

3. The transformation x i=-x; (j=1,2,3) describes a reflection in
the origin. Draw a diagram to illustrate how two radius vectors 7; and
7, and their vector product 7| X 7, transform under this reflection.

4. Prove the following identities:
a)V(B.A)=2VBA+BVA+2VAB+AVE
b)VxX(VXA)"=AV>+VAV
) Vx(Vg)"=0
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2.3 Kinematics

2.3.1 Introduction

Kinematics is concerned with the motion of a body. We assume that the
motion is in itself present. At the moment, we do not ask for the origin of
the motion (i.e., the forces causing the motion). The consideration of the
forces will be discussed in Section 2.4, where we discuss the dynamics of a

mass point.

Kinematics is concerned with the mathematical description of the path a
body moves along. The body is taken as a mass m with vanishing
extension. We call such an object a point mass or, in short, a particle. The
location of this point is measured with respect to a second point, a
reference point. This reference point is part of a fixed system. In practical
applications, the fixed system is the Earth. Defining on the surface of the
Earth, a fixed point allows us to introduce coordinates x, y, and z. These
so-called cartesian coordinates allow us to locate a point in space by
specifying the position by the triple (x, y, z) which may depend on time if
the particle moves in space. In such a case, the location of the particle is
given by a vector 7 = 7(¢) given by
x(1)
) = | ¥ | (23.1)
2D
For a certain time ¢, the position of the point is given by Equation (2.3.1)
(see Figure 2.3.1)
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A
z
r
X
Figure 2.3.1. A track in a coordinate system. Time is used as a parameter of the motion.

If time r changes continuously, the point moves along a track.

To characterize the particle in a more precise way, we not only need the
position but also other quantities like the velocity or acceleration of the
particle. The following subsections will discuss these terms in more detail.

2.3.2 Velocity

We already mentioned that the coordinates describing a particle may vary
with time. Let us consider a system consisting of a single particle. The
position of the particle is described by the values of its cartesian
coordinates x; at each value of the time fr. The rate at which these
coordinates change with time gives the velocity of a particle. Denoting the
cartesian components of velocity by v;, we have

dx;
Vi = T = X; (2.3.2)
This can be written in vector notation as
N dr .
V= T =r. (2.3.3)

Velocity can be described in terms of generalized coordinates of Section
2.2. From Equation (2.2.6), we see that

xi = x{(q1, 92, g3, 1). (2.3.4)
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depend on the ¢; and also on fr. Then, the temporal change of the

coordinates is

' 6x,- ' 8x,~
N = B, It o

(2.3.5)

where we used the Einstein summation convention to sum over the m
components. If desired, these equations can be solved for the g, in terms
of the x; even though the number of equations might be greater than the
number of unknowns, because the equations are not independent but must

satisfy the constraints.

The cartesian components of velocity are seen to be linear functions of the
generalized velocity components and are, in general, nonlinear functions
of the g;'s no matter how the generalized coordinates are defined. This
means that it is easy to express velocities in generalized coordinates. The
term 0x;/0t appears only when there are moving constraints on the system
or in the rare cases where it is convenient to introduce moving coordinate

axes.

Example 1: Coordinate Systems

We can apply the results from above to commonly used special coordinate
systems defined by Equations (2.2.1-2.2.3). In order to describe the
motion of a particle in a plane, it is convenient to introduce the plane polar
coordinates rand 8 defined by Equations (2.2.1) and (2.2.2), r being the
length of the position vector of the particle and 6 the angle between the
position vector and the x-axis (see Figure 2.3.2).
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-
X
Figure 2.3.2.  Polar coordinates.

We solve Equations (2.2.1) and (2.2.2) for x and y and assume that all
coordinates depend on ¢. In Mathematica notation, we write

polar = {x(t) == r(¢) cos(6(1)), y(t) == r(t) sin(6(¢))}; TableForm[polar]

x(t) == cos(6(1)) r(t)
W) == r(t) sin(6(2))

The velocity components are found by differentiating this relation with
respect to time:

dpolar

velocity = ; TableForm[velocity]

X () == cos(0(0) ¥ (1) — r(¢) sin(6(t)) &' (1)
Y (1) == sin(0(8) () + cos(6(t)) (1) &/ (¢)

The terms in r' give the velocity toward or away from the origin, and those
in 8' give the velocity around the origin. The equations can be solved for r'
and 6'
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TableForm[Flatten[Simplify[PowerExpand[FunctionExpand[
Solve[velocity, {r’(¢), 8’ ()}] /. Solve[polar, {r(t), 0()}11411111]

Solve::ifun : Inverse functions are being used by Solve, so some solutions may not be found.

() X (O+y(0) Y ()

r/ ————— e e
O 0

x(0) Y (=) X' ()

00 = =

Example 2: Moving Particle

For a particle moving under the influence of a force which possesses
spherical symmetry (i.e., is directed toward a fixed point and depends only
on the distance of the particle from the point), it is convenient to introduce
the spherical coordinates defined by Equation (2.2.3). We solved for the
x's; these yield

spherical = {x(t) == r(¢) sin(6(¢)) cos(¢(?)), y(t) == r(¢) sin(6(¢)) sin(¢(¢)),
z(t) == r(¢) cos(6(t))}; TableForm[spherical]

x(1) == cos(¢(1)) r(t) sin(6(1))
W) == r() sin(6(r)) sin(¢(1))
(1) == cos(6(n) 1)

The geometrical significance of these coordinates is the following: r is the
length of the radius vector of the particle; 6 is the angle between the radius
vector and the z-axis; ¢ is the angle between the plane containing the
radius vector and the z-axis and the plane containing the x-axis and the

z-axis.

The velocity components are found by differentiating with respect to #:
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dspherical

velocity = v

{x' (1) == cos(é(1)) sin(6(r)) r' (r) +
cos(6(1)) cos(¢(1)) (1) &' (1) — r(2) sin(0(1)) sin((1)) ¢' (1),
Y () == sin(6(®)) sin(¢(1)) 7' (¢) + cos(6(1)) r(t) sin(¢()) &' (1) +
cos(@(t)) r(1) sin(6(t)) ¢’ (1), 2 (1) == cos(6(0)) 7' (t) — r(t) sin(0(1)) &' (1)}

2.3.3 Acceleration

In general, the components of the position vector (as well as velocity and
acceleration) depend on the generalized coordinates and their time
derivatives. So, the velocity components of a particle can vary with time.
The rate of change of the velocity components gives the acceleration

components

a; = v, = x,. (2.3.6)
The acceleration in vector notation for a particle is

a=v =7 23.7)

Acceleration components can be given in terms of the generalized
coordinates. From Equation (2.3.5), we obtain

6x,~ " 62Xi

N Px; 0%x;
qm 6q"1 6qn

G, +2 g or Im T G2 - (2.3.8)

S
If the transformation from the x;'s to the g;'s does not depend explicitly on
time, which is the usual situation, Equation (2.3.8) reduces to

" 0x; " 62)(,‘
X, = ——

! 6qm Im + 66["1 66]" qlm q‘” (239)

The cartesian acceleration components are nonlinear functions of the first
derivatives of the generalized coordinates and depend linearly on the
second derivatives of the generalized velocity components. The quadratic
dependence on the generalized velocity coordinates disappears only if all
of the second derivatives of the transformation function with respect to the
¢'s vanish; that is, only if the x's are linear functions of the ¢'s. The terms
quadratic in the velocity components, which enter whenever the coordinate
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curves g; = const are not straight lines, represent effects like the centripetal
and Coriolis acceleration.

Higher derivatives of the coordinates with respect to time could be named
and discussed. However, this proves unnecessary because the laws of
mechanics are stated in terms of the acceleration. Even the computation of
the components (2.3.8) of the acceleration in terms of generalized
coordinates can become tedious for relatively simple problems. The
advantage of introducing generalized coordinates would then seem to be
counterbalanced by the algebraic complexity of the acceleration
components which are to be inserted in the dynamic law F =md.
Fortunately, a method due to Lagrange, discussed in Section 2.7, makes it
possible to avoid this difficulty and to write down equations of motion in
terms of generalized coordinates without ever having to compute the
second time derivatives of these coordinates.

2.3.4 Kinematic Examples

Having the fundamental quantities such as velocity and accelaration
available, we are able to examine physical systems. In the following we
will examine two examples demonstarting the application of the notons
introduced.

Example 1: Motion on a Helix

As a first example of kinematics, let us consider the motion of a bead with
constant orbital velocity confined to a helix. This motion can be divided
into two parts. First, we have a circular motion of the bead in the
(x, ¥)-plane and a linear motion in the z-direction. The motion of the bead
can be described in a parametric way by using time ¢ as a parameter. For
example, the three coordinates are given by

coordinates = {p sin(w?), p cos(w?), yt}

{psin(t w), p cos(t w), ty}
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where p, w, and y are certain parameters determining the radius, the time
of revolution, and the velocity along the z-direction,respectively. The
velocity of this track is given by

0 coordinates

velocity = 5

{p wcos(t w), —p w sin(t W), y}

The amount of the velocity is determined by the three parameters «, §, and

v

Simplify[\/ velocity.velocity ]

V2 + p2 o2

The acceleration follows by

9? coordinates
at ot

acceleration =

{—p w? sin(t w), -p w? cos(t w), 0}

which has a total amount

PowerExpand[Simplify[\/ acceleration.acceleration ]]

pow’

independent of y. If we choose these parameters in a certain way, we can
plot the path of the bead in cartesian coordinates. Let us take a circle of
radius p = 1, w = 1/2, and the velocity along the z-directiony = 1/10.
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1 1
parameterRules={p->1, 0> —, ¥ > —
2 10

{p—)l,wﬁé,yﬁ%}

With these values, the three coordinates of the bead simplify to

Coord = coordinates /. parameterRules

() () 1)

The related velocity and acceleration are

vel = velocity /. parameterRules;

accel = acceleration /. parameterRules;

The track of the bead can be displayed by plotting the coordinates by
varying the parameter :
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track = ParametricPlot3D[Coord, {¢, 0, 10 7}];

+1

-0.5

0

The motion of the bead itself follows by creating a table containing the
coordinates along the track. Again, for each point, we change the time ¢ in
steps of 0.5:

points = Table[{RGBColor[0, 0, 0.996109],
PointSize[.1], Point[Coord]}, {¢, 0, 10 7, .5}];

We also generate a table containing the velocity of the bead

li = Table[{RGBColor[0.996109, 0, 0],
Line[{Coord, Coord + vel}]}, {z, 0, 10, .5}];

and the acceleration
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ac = Table[{RGBColor[0, 0.500008, 0],
Line[{Coord, accel + Coord}]}, {z, 0, 10 x, .5}];

Combining the graphics, the track, and the location of the bead, we can
follow the movement by just changing the time ¢. The following
illustration shows the movement of the bead along the helix. The velocity
of the bead is always tangential to the helix and the related acceleration is
perpendicular to the velocity:

(Show[Graphics3D[#1], track,

PlotRange —> {{—1.2, 1.2}, {-1.2, 1.2}, {-.1, 3.}}] &) /@
Transpose[{li, ac, points}];

The illustration demonstrates that the bead climbs up the helix with a
constant speed and revolves around the center of the (x, y)-plane. We can
check that v is perpendicular to @ by the scalar product:
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velocity . acceleration

At this stage of our understanding, we described a physical system (a bead)
by means of a parametric description. At the moment, we do not
understand what kind of laws this motion governs. A similar situation is
encountered if we describe the kinematic movement of a projectile.

Example 2: Motion of a Projectile

The motion of a projectile was and is an example of importance because in
a baseball or golf play, we need to know where the ball touches down if we
give it a strike. Ancient people needed also to know where the stones or
bullets go if they are thrown by a bow. Applications for military purposes
are evident.

In this example let us consider the motion of a projectile or a ball in the
atmosphere. In our considerations, we neglect the air resistance.
Furthermore, we consider only kinematics; we also demand that the
projectile follows a parabolic orbit with a vertical symmetry axis and with
constant horizontal velocity. The motion of the ball takes place in a
three-dimensional space; thus, the velocity and the location of the ball is a
certain vector with three components, respectively. These components are
independent of each other and, thus, can be considered on its own. Thus
we are able to separate each direction of the motion from the others. If we
assume that the projectile is moving in a plane, we only need two
coordinates to describe the motion. Let us further assume that the ball is
thrown with a finite velocity vy inclined by an angle o with respect to the
horizontal direction. To simplify things, let us first define the origin as the
starting point of the ball. Later, we will generalize this to the situation
where the starting point does not coincide with the origin. The track of the
ball is defined by the parametric representation in ¢ by
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1 2
track = {tvx + x0, E (-g)t" +vyt+ y0};

where x and yg are the starting point and v, and v, are the velocities in x-
and y-direction, respectively. The assumption that the origin is the starting
point of the track causes the vanishing of xy and yy.

condl = Solve[Thread[{0, 0} == track /. £t > 0, List],
{x0, y0}] // Flatten

{x0 - 0, y0 - 0}

Inserting these initial conditions into the track, we find a simplified
representation by

tracS = track /. cond1

fron, vy - £}

The assumption that the ball is thrown in a certain direction with
inclination « to the horizon and initial velocity v allows us to determine the
parameters vx and vy in the track representation.

cond2 = Flatten[
dtracS

Solve| Thread]{ cos(e), v sin(@)} == /-t = 0, List], {vx, vy}]]

{vx = vcos(a), vy = vsin(@)}

Again inserting the results into the track coordinates, we end up with the
final representation of the path by
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tracS1 = tracS /. cond2

2
{t vcos(a), tvsin(a) — 52_ }

This representation contains two parameters v and «, the amount of the
velocity and the inclination, respectively. Choosing this parameters allows

us to plot the track of the ball:

T
BallTrack = ParametricPlot[Evaluate[tracS1 /- {v >1L,a-> 3, g- 1}],

{t, 0, 2}, AxesLabel —» {''x'', ”z”}];

0.3
0.2
0.1

0.2 0.4 0.6 0.8 1
-0.1
-0.2

The ball itself for different times can be represented by the coordinates

Ball = Table[{RGBColor0, 0, 0.62501], PointSize[.08],

Point[tracS1 /. {v > 1, & - % g~ 1}]}, &, 0,18, .1}];

Combining both sets of data allows us to display the movement of the ball.
The illustration shows that the ball moves first upward and then

downward, hitting the ground at a finite distance.

(Show[BallTrack, Graphics[#1], PlotRange —> {-0.2, 0.5}] &) /@ Ball;
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0.5¢
0.4
0.3}
0.2}
0.1}

0.2 0.4 0.6 0.8 1
-0.1¢

-0.2"

This sequence of pictures was generated by plotting the parametric
representation of the motion. The general equation of the path y(x) can be

obtained be eliminating the variable 7 in the track representation:

generalTrack =
Flatten[Simplify[Solve[ Eliminate[ Thread[{x, y} == track, List], ], y11]

{ 2y0vx2+2vy(x—x0)vx—g(x—x0)2}
BN
Y 2 vx?2

Writing out the velocity component yields

gTrack = Simplify[generalTrack /. cond2]

212 (0 + (x — x0) tan(e)) — g (x — x0)? sec?(a)
{r- }
22

for the ball's path. This relation is of the form of a parabola passing
through the point (xy, yo). The following figure shows the path of a ball:



2. Classical Mechanics 91

T
Plot[y /. gTrack /. {x0 >1Ly0-»2,v->2,a- E, g- 9.81},
{x, 1, 2.3}, AxesLabel - {"'x", ""y"},
0 2.5
PlotStyle -» RGBColor{0, 0, 0.996109], PlotRange  ( 0 25 )I;

y
2.5
1.5

0.5

X
0.5 1 1.5 2 2.5

The range of the flight can be determined from the condition that the y
elevation vanishes. This condition serves to determine x from the relation

ranges = Simplify[Solve[gTrack /. {Rule —» Equal, y - 0}, x]]

{{ . cos(a) sin(@) 12 + cos2(@) V2 g y0 sec2(a) + 12 tan(a) v + g X0 }
x ,
8

{x . cos(a) sin(@) 12 — cos2(@) V2 g y0 sec2(a) + 12 tan?(a) v + g X0 }}
8

The solution of the quadratic equation in x delivers two solutions. Because
we are looking for positive ranges, we select the first solution:

range = ranges[1]

{ cos(@) sin(@) v? + cos2(@) V2 g y0 sec2(a) + v2 tan?(a) v + g X0 }
X —
8
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The total flight time 7 is gained by inserting this result into the
x-component of the track and solving the resulting equation with respect to
t.

T = Flatten|
Simplify[Solve[ Thread[{x} == track[1]], List] /. range /. cond2, ¢]]]

{t . V2 g y0sec(a) + v2 tan?(a) cos(a) + v sin(@) }
8

This expression shows only a dependence on the y initial condition,
meaning that the total flight time is not only dependent on the initial
velocity v and the inclination angle & but also on the height from which the
ball is thrown. With these two expressions, we are able to solve problems
of the following kind. Imagine a joyful physics student throwing his cap
into the air with an initial velocity of 24.5 m/s at 36.9° from the
horizontal. Find a) the total time the cap is in the air and b) the total
horizontal distance traveled.

To solve this problem, we first have to convert the angle a given in degree
into radians:

7T
B=36.92 —;
360

The other parameters are given by

para={v > 24.5, ¢ - B, g - 9.81, y0 - 0, x0 - 0};

Inserting the values into the expression for the total time of flight, we get

T /. para

{t = 2.99904}
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corresponding to approximately 3 s. The range the cap transverses is given
by

range /. para

{x = 58.758}

in meters.

Another problem of the same kind is the following. A helicopter drops a
supply package to soldiers in a jungle clearing. When the package is
dropped, the helicopter is 100 m above the clearing and flying at 25 m/s at
an angle @ = 36.9° above the horizontal. The question is how wide must
the clearing extend in one direction that the package is available for the
soldiers and how long does it take to hit the ground?

We collect the numerical data in the list paraHeli and apply this rules to
the expressions for the range and the total flight time derived above:

3692w

paraHeli = {v - 25, @ > , g~ 9.81, y0 > 100, x0 - 0};

We find that the extension of the clearing should be

range /. paraHeli

{x - 125.902}

in meters. The time to touch down is

T /. paraHeli

{t > 6.29758}
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in seconds. The following figure shows a graph of y versus x for supply
packages dropped at various initial angles and with an initial speed of 25
m/s.

Plot[Evaluate[Table[y /. gTrack /. @ - i /. paraHeli, {i, .2, .7, .1}]],
{x, 1, 130}, AxesLabel - {"x", "y"},
PlotStyle - Table[Hue[i], {i, .2, .7, .1}], PlotRange - {0, 120}];

120
100
80
60
40
20

20 40 60 80 100 120

Note that the maximum range no longer occurs at 45 ° (verify this).

The examples demonstrate that once we know the path 7(¢) of a particle as
a function of time 7, we are able to answer any question related to the
motion of the particle. The following sections of this chapter deal with the
central problem of classical mechanics: to determine the path of one or
more particles under the action of given forces.

2.3.5 Exercises

1. A particle is constrained to move with constant speed on the ellipse
a,»jx,»szl (l,]=1,2)
Find the cartesian and polar components of its acceleration.

2. In Exercise 1, introduce as a generalized coordinate the angle 6
between the radius vector of the particle and the major axis of the
ellipse, and find the velocity and acceleration in terms of 6.
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3. A particle is constrained to move with constant speed in the circle
r=a. Find the cartesian and polar coordinates of its velocity and
acceleration.

4. A gun is mounted on a hill of height & above a level plain. Assuming
that the path of the projectile is a parabola, find the angle of elevation
«a for greatest horizontal range and given initial speed V,

cosec’ (@) = 2(1+ gh/V?).

What physical effects are neglected in the above approximation?
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2.4 Newtonian Mechanics

2.4.1 Introduction

The science of mechanics seeks to provide a precise and consistent
description of the dynamics of particles and systems of particles; that is,
we attempt to discover a set of physical laws that provide us with a method
for mathematically describing the motion of bodies and aggregates of
bodies. In order to do this, we need to introduce certain fundamental
concepts. It is implicit in Newtonian theory that the concept of distance is
intuitively understandable from a geometric viewpoint. Furthermore, time
is considered to be an absolute quantity, capable of precise definition by
an arbitrary observer. In the theory of relativity, however, we must modify
these Newtonian ideas (see Chapter 6). The combination of the concepts of
distance and time allows us to define the velocity and acceleration of a
particle. The third fundamental concept, mass, requires some elaboration
which we will give in connection with the discussion of Newton's laws.

The physical laws that we introduce must be based on experimental facts.
A physical law can be characterized by the statement that it "might have
been otherwise". Thus, there is no a priori reason to expect that the
gravitational attraction between two bodies must vary exactly as the
inverse square of the distance of them. However, experiment indicates that
this is so. Once a set of data has been correlated and a postulate has been
formulated regarding the phenomena to which the data refer, then various
implications can be worked out. If these implications are all verified by
experiment, there is reason to believe that the postulate is generally true.
The postulate then assumes the status of a physical law. If some
experiments are found to be in disagreement with the predictions of the
law, then the theory must be modified in order to be consistent with all
known facts.
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Figure 2.4.1.  Sir Isaac Newton born January 4, 1643; died March 31, 1727.

Newton (Figure 2.4.1) has provided us with the fundamental laws of
mechanics. We will state these laws in modern terms and discuss their
meaning and then proceed to derive the implications of the laws in various
situations. It must be noted, however, that the logical structure of the
science of mechanics is not a straightforward issue. The line of reasoning
that is followed here in interpreting Newton's laws is not the only one
possible. An alternate interpretation is given by Ernst Mach (1838-1916).
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Figure 2.4.2.  Ernst Mach born February 18, 1838; died February 19, 1916.

Mach expressed his views in his famous book, The Science of Mechanics,
first published in 1883. We will not pursue in any detail the philosophy of
mechanics, but will give only sufficient elaboration of Newton's laws to
allow us to continue with the discussion of classical dynamics.

2.4.2 Frame of Reference

We start out by outlining the Newtonian framework. An event intuitively
means something happening in a fairly limited region of space and for a
short duration in time. Mathematically, we idealize this concept to become
a point in space and an instant in time. Everything that happens in the
universe is an event or collection of events. Consider a train traveling from
one station P to another R, leaving at 10 a.m. and arriving at 11 a.m. We
can illustrate this in the following way: For simplicity, let us assume that
the motion takes place in a straight line, say along the x-axis; then, we can
represent the motion by a space—time diagram in which we plot the
position of some fixed point on the train against time. The curve in the

diagram is called the history or world-line of the pointer.
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P 10.00 a.m R 11.00 a.m

We will call individuals equipped with a clock and a measuring rod or
ruler observers. Had we looked out of the train window on our journey at a
clock in a passing station, then we would have expected it to agree with
our watch. One of the central assumptions of the Newtonian framework is
that two observers will, once they have synchronized their clocks, always
agree about the time of an event, irrespective of their relative motion. This
implies that for all observers, time is an absolute quantity. In particular, all
observers can agree on an origin of time. In order to fix an event in space,
an observer may choose a convenient origin in space together with a set of
three coordinate axes as a frame of reference. Then, an observer is able to
locate events; that is, determine the time ¢ an event occurs and its position
(x1, xp, x3) relative to the origin. We will refer to these collectively as a
frame of reference.

Newton realized that in order for the laws of motion to have meaning, a
reference frame must be chosen with respect to which the motion of bodies
can be measured. A reference frame is called an inertial frame if Newton's
laws are valid in that frame; that is, if a body subject to no external force is
found to move in a straight line with constant velocity (or to remain at
rest), then the coordinate system used to establish this fact is an inertial
reference frame. This is a clear-cut operational definition and one that also

follows from the general theory of relativity.

In Newtonian mechanics, the principle of relativity plays an outstanding
role. Two bodies, for example, fall downward because they are attracted
toward the Earth. Thus, position has a meaning only relative to the Earth,
or to some other body. In just the same way, velocity has only a relative
significance. Given two bodies moving with uniform relative velocity, it is
impossible to decide which of them is at rest and which is moving.

In view of the relativity principle, the frames of reference used by different
unaccelerated observers are completely equivalent. The laws of physics
expressed in terms of xj, x,, x3, and ¢ must be identical with those in terms
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of the coordinates of another frame, xyl, x'2, x'3, and ¢, respectively. They
are not, however, identical with the laws expressed in terms of the
coordinates used by an accelerated observer. The frames used by
unaccelerated observers are called inertial frames.

We have not yet said how we can tell whether a given observer is
unaccelerated. We need a criterion to distinguish inertial frames from
others. Formally, an inertial frame can be defined to be one with respect to
which an isolated body, far removed from all other matter, would move
with uniform velocity. This is, of course, an idealized definition, because
in practice we never can get infinitely far away from other matter. For all
practical purposes, an inertial frame is one whose orientation is fixed
relative to the fixed stars and in which the Sun (the center of mass of the
solar system) moves with uniform velocity. It is an essential assumption of
classical mechanics that such frames exist.

It is generally convenient to use only inertial frames, but there is no
necessity to do so. Sometimes, it proves convenient to use a non inertial
(e.g., rotating) frame in which the laws of mechanics take on a more
complicated form.

2.4.3 Time

In Newton's theory, time is an absolute quantity, capable of precise
definition by an arbitrary observer. It exists and flows in a continuous way.
We assume further that there is a universal timescale in the sense that two
observers who have synchronized their clocks will always agree about the
time of any event.
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2.4.4 Mass

In order to understand the motion of a system of particles, it is necessary to
consider the environment of the system — potentially all of the other
particles in the universe — and learn how that environment influences the
motion of the system in question. We begin by considering two particles
which influence each other's motion but which move in such a manner that
we may reasonably expect all other matter in the universe to have
negligible effect on their relative motion. Thus, for example, we may
imagine two particles connected by a small spring and free to move on a
smooth horizontal table. We should expect that the matter in the Earth
would not affect the motion of the masses in the plane of the table and that
extraterrestial matter would be too far away to have anything but a
negligible effect. It is found that under such conditions, if @4 and dp are
the accelerations of the two particles A and B, respectively, then these
vectors are parallel and in the opposite sense and that the ratio of the
magnitudes of ds and dp is a constant for a given pair of particles. This
ratio is called the ratio of the masses of the two particles:

m a

ma - }ﬁ—i (2.4.1)
It is also found that if mass C is allowed to interact with A in the absence
of B, not only is it true that @4 and d¢ are parallel and in the opposite
sense but that

m a

ma - % (2.4.2)

is identical with the ratio (my4 /mp)/(mc /mp) determined by comparing A
and B in the absence of C, and C and B in the absence of A.

Thus, with each particle there may be associated a mass that has a unique
meaning no matter how many stages it goes through in being compared to
another and which may, therefore, eventually be compared with a standard
mass of platinum called the international prototype kilogram, which is
preserved in Sevres. If in an experiment the vectors d4 and dp were found
not to be parallel, the two particles would be considered as not acting on
each other alone, and the discrepancy would be attributed to the influence
of another particle or system.
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Another way to measure a mass is by a direct comparison using a balance
with arms of unequal lengths /4 and /g. The ratio of weights wy and wpg is

given by
/
= (2.4.3)

Because the weights are the forces exerted by gravity on the masses
(wqg =mgu g, wg = mp g, etc.) and gravity is assumed not to vary across
the balance, we have

LR (2.4.4)

mg Iy

The masses compared in this manner are sometimes referred to as
gravitational masses, in contrast to the inertial masses defined by
Equation (2.4.1). According to Newton's law of gravitation, the
gravitational attractive force between two masses m, and mp separated by
a distance r is

G
F = 27240k (2.4.5)

where G is the gravitational constant and m, and mp are the gravitational
masses. If, however, the masses of two particles attracting each other by
gravity are compared by the method discussed in Equation (2.4.1), taking
the ratio of their accelerations, then it is the masses appearing in the
equation F' = md which are compared. A priori there is no reason for these
to be identical with the masses appearing in Equation (2.4.4).

However, it has not proved possible to distinguish experimentally between
these two apparently different types of mass. Galileo was the first to test
the equivalence of inertial and gravitational mass in his experiment with
falling weights at the Tower of Pisa. Newton also considered the problem
and measured the periods of pendula of equal lengths but with bobs of
different material. Neither found any difference, but the method was quite
crude. Later experiments are due to R.V. E6tvos, L. Southerns, and P.
Zeeman. More recent experiments by R.H. Dicke have improved the
accuracy, and it has now been established that inertial and gravitational
mass are identical to within a few parts in 10''. In Newtonian theory, we
accept this result as an empirical fact and refer to the mass of a body
without specifying which method is to be used to measure it. One
important feature of the general theory of relativity is that from this point
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of view the distinction between the two types of mass loses its meaning so
that they become automatically identical. The assertion of the exact
equality of inertial and gravitational mass is termed the principle of

equivalence.

2.4.5 Newton's Laws
Newton's laws of mechanics are stated as follows:
I. (lex prima)

A body remains at rest or in uniform motion unless acted upon by a force.
II. (lex secunda)

A body acted upon by a force moves in such a manner that the time rate of
change of momentum equals the force.

II1. (lex tertia)

If two bodies exert forces on each other, these forces are equal in magni-
tude and opposite in direction.

These laws were enunciated by Sir Isaac Newton (1642—1727) in his
Philosophiae naturalis principia mathematica or, in short, Principia,
1687. Galileo had previously generalized the results of his mechanics
experiment with statements equivalent to the First and Second Laws,
although he was unable to complete the description of dynamics because
he did not appreciate the significance of the Third Law and therefore

lacked a precise meaning of force.

These laws are so familiar that we sometimes tend to lose sight of their
true significance as physical laws. The First Law, for example, is
meaningless without the concept of force. In fact, standing alone, the First
Law conveys a precise meaning only for zero force; meaning that a body
which remains at rest or in uniform motion is subject to no force
whatsoever. A body which moves in this manner is termed a free body or a
free particle. We note that the First Law by itself provides us with only a
qualitative notion regarding force.

An explicit statement concerning force is provided by the Second Law, in
which force is related to the time rate of change of momentum. Momentum
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was appropriately defined by Newton. He called momentum the quantity
of motion. The momentum of a particle acted upon by mechanical,
gravitational, or electrical forces is defined to be the product of its mass
and its velocity:

B = mv. (2.4.6)

The force F acting on a particle is defined by the rate of change of
momentum it produces:

F=42 _5 (2.4.7)

The definition of force becomes complete and precise only when mass is
defined. Thus, the First and Second Laws are not really laws in the usual
sense of the term as used in physics; rather, they can be considered as
definitions. If the mass of the particle is constant in time, then

'
—

p=mv = ma, (2.4.8)

—

where @ is the acceleration vector. Thus, in this case, the force on the
particle can be defined by

—

F=mda=mr7. (2.4.9)

Thus, if F =0, the velocity of the particle is constant. This is Newton's
First Law.

The Third Law, on the other hand, is indeed a law. It is a statement
concerning the real physical world and contains all of the physics in
Newton's laws of motion. When two particles exert forces on each other,
as they are made to do in the measurement of their mass ratio, we have

mAﬁA = —mBﬁB. (2410)

Thus, when two particles exert forces on each other, these forces are equal
in magnitude and opposite in direction. This is the Third Law of Newton
that action is equal and opposite to reaction.

We must hasten to add that the Third Law is not a general law of Nature.
The law applies only in the event that the force exerted by one body on
another body is directed along the line connecting the two objects. Such
forces are called central forces. However, the Third Law applies whether a
central force is attractive or repulsive. Gravitational and electrostatic
forces are central forces, so Newton's Laws can be used in problems
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involving these types of force. Sometimes, elastic forces originating from
microscopic electrostatic forces are central in character. For example, two
point masses connected by a straight spring or elastic string are subject to
forces that obey the Third Law. Any force that depends on the velocities of
the interacting bodies is non central in character, and the Third Law does
not apply in such a situation. Velocity-dependent forces are characteristic
of interactions that propagate with finite velocity. Thus, the force between
moving electric charges does not obey the Third Law because the force
propagates with the velocity of light. Even the gravitational force between
moving bodies is velocity dependent, but the effect is small and difficult to
detect; the only observable effect is the precession of the perihelia of the
inner planets (see Chapter 6). This chapter is concerned exclusively with
gravitational and elastic forces; the accuracy of the Third Law is quite
sufficient for all such discussions.

From definition (2.4.7) of F, it follows that since P is a vector, so also is
F. Thus, if the force F is the sum of two forces F; and F, this sum must
be understood as a vector sum.

Fa

Figure 2.4.3.  Parallelogram law for forces.

This constitutes the parallelogram law for the composition of forces (see
Figure 2.4.3). However, the parallelogram law is a trivial mathematical
fact. It acquires physical significance in those cases where the force
between two particles is independent of the presence of other particles.
The parallelogram law is valid only when the various forces are
independent. This independence does exist for most of the forces met
within mechanics, such as gravitation and the forces between charged
particles. It does not exist between polarizable molecules moving in
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electric fields, for the induced electric moment of a molecule depends on
the field at that location of the molecules and the fields at those locations.
The forces between nuclear particles can be of this many-body character

rather than simple two-body forces.

The Second Law (2.4.7), on the other hand, is central in mechanics. This
relation constitutes the simplest form of the equations of motion for a
particle. Equations (2.4.7) and (2.4.9) are a set of ordinary differential
equations of the second order. If the forces are given as functions of
position and time, the values of the coordinates and of the velocity
components at a given time #, determine the solution of the equations
uniquely and thus determine the whole future course of the motion. We say
the history of the motion is deterministic. However, in certain cases, the
motion of the particle can be very complicated, if not chaotic. Chaotic
means here that the final state of the motion is not predictable if the initial
state is changed by a very small amount. In any case, the future states of a
system are determined by the state at any given time and by the equations
of motion.

2.4.6 Forces in Nature

The full power of Newton's second law emerges when it is combined with
the force laws that describe the interactions of objects. For example,
Newton's law for gravitation gives the gravitational force exerted by one
object on another in terms of the distance between the objects and the
masses of each. This combined with Newton's second law, enables us to
calculate the orbits of planets around the sun, the motion of the moon, and
variations with altitude of g, the acceleration due to gravity.

2.4.6.1 The Fundamental Forces

All of the different forces observed in nature can be explained in terms of
four basic interactions that occur between elementary particles.

1. The Gravitational Force
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The gravitational force between the Earth and an object near the Earth's
surface is the weight of the object. The gravitational force exerted by the
Sun keeps the planets in their orbits. Similarly, the gravitational force
exerted by the galaxies in the universe generates a certain structure or
distribution of galaxies. Figure 2.4.4 shows a group of galaxies interacting
with each other.

Figure 2.4.4.  Group of galaxies in the cluster MS1054-03.

This galaxy cluster, called MS1054-03, is 8 billion light-years away —
one of the most distant known groups of galaxies. Although hundreds of
galaxies appear in this NASA/ESA Hubble Space Telescope image, a
European-led team of astronomers has studied in detail 81 galaxies that
certainly belong to the cluster, 13 of which are remnants of recent
collisions or pairs of colliding galaxies. This is, by far, the largest number
of colliding galaxies ever found in a cluster.
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Figure 2.4.5.  Collisions of galaxies various stages.

A gallery of HST images showing distant galaxies in various stages of
collision (see Figure 2.4.5). The merging galaxies have weird, distorted
shapes unlike normal spiral or elliptical galaxies. Some show streams of
stars apparently being pulled from one galaxy into another. All of the
galaxy pairs shown here are located in a larger grouping of galaxies known
as MS1054-03.

2. The Electromagnetic Force

The electromagnetic force includes both the electric and the magnetic
force. A familiar example of the electric force is the attraction between bits
of paper and a comb that is electrified after being run through hair. The
magnetic force between a magnet and iron arises when electric charges are
in motion. These two forces were recognized in the 19th century as
independent forces from gravitation. The electromagnetic force between
charged elementary particles is vastly greater than the gravitational force
between them. For example, the electrostatic force repulsion between two
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protons is of order of 10°® times the gravitational attraction between them.
The lightning shown in Figure 2.4.6 is the result of the electromagnetic
force.

Figure 2.4.6.  Lightning in a thunder storm.

3. The Strong Nuclear Force (Also Called Hadronic Force)

The strong nuclear force occurs between elementary particles called
hadrons, which include protons and neutrons. The strong force results from
the interaction of quarks, the building blocks of hadrons, and is
responsible for holding nuclei together. The magnitude of the strong force
decreases rapidly with distance and is negligible beyond a few nuclear
diameters. The hydrogen bomb explosion shown in Figure 2.4.7 illustrates
the strong nuclear forces.
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Dp———

Figure 2.4.7.  Atomic explosion in 1951 at Eniwetok Atoll in the South Pacific.

In 1951, a test at Eniwetok Atoll in the South Pacific, demonstrated the
release of energy from nuclear fusion. Weighing 65 tons, the apparatus
was an experimental device, not a weapon, that had been constructed on
the basis of the principles developed by Edward Teller and Stanislaw
Ulam. On November 1, 1952, a 10.4-megaton thermonuclear explosion
code-named MIKE, ushered in the thermonuclear age. The island of
Elugelab in the Eniwetok Atoll was completely vaporized.

4. The Weak Nuclear Force

The weak nuclear force, which also has a short range, occurs between
leptons (which include electrons and muons) and between hadrons (which
include protons and neutrons). The bubble chamber photographs (Figure
2.4.8) illustrate the weak interaction.

Figure 2.4.8.  Bubble chamber photographs.
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2.4.7 Conservation Laws

We now turn to a detailed discussion of the Newtonian mechanics of a
single particle and derive the important laws regarding conserved
quantities. The background of the conservation laws are symmetries [2.9].
However, at this stage of the presentation, we do not go into a detailed
examination of symmetries but use physical arguments to motivate the
conserved quantities. We are merely deriving the consequences of
Newton's laws of dynamics. The fact that these conservation laws have
been found to be valid in many instances furnishes an important part of the
proof for the correctness of Newton's laws. Today, we know that these
proofs are valid for nonrelativistic systems.

2.4.7.1 Linear Momentum

The first of the conservation laws concerns the linear momentum of a
particle. If the particle is free (i.e., if the particle experiences no force),
then Newton's second law (2.4.7) becomes

op
ot

==0

Therefore, P is a vector constant in time, and the linear momentum of a
free particle is conserved. Associated with this conservation law is the fact
that Newton's equation of motion for a free particle is invariant with
respect to translations in the coordinates. We also note that this result is
derived from a vector equation 9, =0 and therefore applies to each
component of the linear momentum.

The derived result can be stated in other terms if we let § be some constant

vector such that F.5 = 0, independent of time. Then,
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or, integrating with respect to time,

0]
f P s dt == const
ot

3P(t) == const

which states that the component of linear momentum in a direction in
which the force vanishes is constant in time.

2.4.7.2 Angular Momentum

The angular momentum L of a particle with respect to an origin from
which 7 is measured is defined by

L@ ==FOxP@)

L(1) == /) x P(t)

The torque or moment of force M with respect to the same origin is
defined to be

0]

M @) == F@)xF (t) == F()x

M () == Ht)xF(t) == #(t)x P’ ()

Now,

AL __ 9GOxp©)
a at

momentum =

L' () ==70xp 0 +7 O)xP()
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but the product 7xp = m7x7 = 0, so that

N A0
momentum /. p(t) - m 7

L' (0 ==70)xP (1)

which is the representation of the torque. If there is no torque acting on a
particle (i.e., M = 0), then Zv =0 and L is a vector constant in time. This is
the second important conservation law: The angular momentum of a
particle subject to no torque (1\7 = 0) is conserved. We note that this
conservation law is associated with the symmetry of rotation.

2.4.7.3 Work and Energy

Work and energy are important concepts in physics as well as in our
everyday life. In physics, a force does work when it acts on an object that
moves through a distance and there is a component of the force along the
line of motion. For a constant force in one dimension, the work done
equals the force times the distance. This differs somewhat from the
everyday use of the word work. When you study hard for an exam, the
only work you do as the term is understood in physics is in moving your

pencil or turning the pages of your book.

The concept of energy is closely associated with that of work. When work
is done by one system on another, energy is transferred between the two
systems. For example, when you do work pushing a swing, chemical
energy in your body is transferred to the swing and appears as kinetic
energy of motion or gravitational potential energy of the Earth-swing
system. There are many forms of energy. Kinetic energy is associated with
the motion of an object. Potential energy is associated with the
configuration of a system, such as the separation distance between some
objects and the Earth. Thermal energy is associated with the random
motion of the molecules within a system and is closely connected with the
temperature of the system.
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If work is done on a particle by a force F in transforming the particle from
condition 1 to condition 2, then this work is defined to be

2
Wiy = J F[?] dT
1

2
f F@®dr
1

Now,
S . V@) Ir@)
F () DifferentialD(7) == m . DifferentialD(t) ==
ot at
V() 1 GIGONID))
m m ———— DifferentialD(¢)

J(¢) DifferentialD(f) == —
2 ot

DifferentialD(?) F(7) == m DifferentialD(r) V' (1).F (r) ==
m DifferentialD(r) ¥ (7).9(f) == m DifferentialD(r) v(¢) V' (r)

Therefore, the integrand is an exact differential and

1
Wip = (—2- mvz) i == —2-m(v§—v§) ==T, -T

where T = %mv2 is the kinetic energy of the particle. If 7} > T5, then
Wi, < 0 and the particle has done work with a resulting decrease in kinetic

energy.

The total work done on a particle is equal to the change in its kinetic
energy:

_ _ 1 2 1 2
Wioat = AT = 5 mv; — 5 mvy.

This theorem is known as the work—kinetic energy theorem. It holds
whether the force is constant or variable. The theorem holds for all kinds
of force. The theorem does not tell anything about where the energy AT
goes.
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2.4.7.4 Constant Forces

The work W done by a constant force F whose point of application moves
through a distance d 7 is defined to be

== fﬁd?::AA? == F cos(f) Ax == F, Ax

where 6 is the angle between F and the x-axis, and Ax is the displacement
of the particle.

Work is a scalar quantity that is positive if Ax and F, have the same signs
and negative if they have opposite signs. The dimensions of work are those
of force times distance. The SI unit of work and energy is the Joule (J),

which equals the product of a Newton and a meter: 1 J = 1 Nm.

When there are several forces that do work, the total work is found by
computing the work done by each force and summing:

Wiotal == F1x AXq + Fa AXp + ...

When the forces do work on a particle, the displacement of the force Ax; is
the same for each force and is equal to the displacement of the particle Ax:

Wiotal == AX F1x + AXFp + oo == (F15x + Fax + ...) AX == F o AX

Thus, for a particle, the total work can be found by summing all of the
forces to find the net force and then computing the work done by the net
force.

Let us now examine the work integral from a different point of view. In
many physical problems, the force F has the property that the work
required to move a particle from one position to another without any
change in kinetic energy is dependent only on the original and final
positions and not upon the exact path taken by the particle. This property
is exhibited, for example, by a constant gravitational force field. Thus, if a
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particle of mass m is raised through a height %, then an amount of work
mgh has been done on the particle and the particle has the capacity to do
an equal amount of work in returning to its original position. This capacity

to do work is called then potential energy of the particle.

We can define the potential energy of a particle in terms of the work
required to transport the particle from a position 1 to a position 2:

2
f F@)di == Uy - U,
1

That is, the work done in moving the particle is simply the difference in
the potential energy U at the two points. This equation can be written in a
different way if we represent F as the gradient of the scalar function U’

F@#) == -VUG)

F®==-VU®

Then,

In most systems of interest, the potential energy is a function of position
and, probably, the time: U = U(#) or U = U(7, 1).

It is important to note that the potential energy is defined only to within an
additive constant; that is, the force defined by —V U is not different from
that definition by —V(U + const.). Therefore, potential energy has no
absolute meaning; only differences of potential energy are physically
meaningful.

Knowing the potential and kinetic energy, we are able to define the total
energy of a particle. The total energy of a particle is defined to be the sum
of the kinetic energy and the potential energies:
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H=T+U

Assuming that H = H(t), we can ask for the time derivative of the total
energy. In order to evaluate the time derivatives appearing on the
right-hand side of this equation, we first note that the time derivative of the
kinetic energy can be represented by

aT@® . or@®

- F(r

ri=

T'@) » F®F ()

For the potential energy, we have

ouU(t) AUF®), )
=Tt ot

r2

U'(H) » UYGE0), 0 +7 @) U@, 1)

Substituting these two expressions into the derivative of H, we find

H () AT +U®) N AUF(®), 1)
—= [ Ar, 12} . FG¢) » - ———
ot ot or @)

H'() == UD@0), 1)

Since the force can be represented by the negative gradient of the
potential, we are able to simplify the result. Now, if U is not an explicit
function of the time, then the force field represented by F is said to be
conservative, meaning that F=-VU (X) and that U(X) exists. This
condition can be equivalently stated as Vx F(Z) =0. Under these
conditions, we have the third important conservation law: the total energy

H of a particle in a conservative force field is a constant in time.
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Note that the general law of conservation of energy was formulated in
1847 by Hermann von Helmholtz (1821-1894). His conclusion was based
largely on the calorimetric experiments of James Prescott Joule
(1818-1889), which were begun in 1840.

2.4.8 Application of Newton's Second Law

Newton's equation F = d P/ dr, can be expressed alternatively as

F= L mv)=mil = mi" (2.4.11)
if we assume that the mass does not vary with time. This is a second-order
differential equation for 7 = 7(r), which can be integrated if the function F
is known. The specification of the initial values of 7 and 7' = v then allows
the evaluation of the two arbitrary constants of integration. The following
examples will demonstrate how Newton's equation is applied to different

physical systems.

2.4.8.1 Falling Particle

The motion of a particle that has constant acceleration is common in
nature. For example, near the Earth's surface, all unsupported objects fall
vertically with constant acceleration (provided air resistance is negligible).
The force acting on a falling particle is governed by the acceleration of
gravity by

—

F,=m3, (2.4.12)

where g is the acceleration of gravity. Inserting relation (2.4.12) into

Equation (2.4.11), we end up with the equation of motion:
mg =m7". (2.4.13)

This equation contains on the left-hand side a vector g with its direction
toward the center of the Earth. This is the one and only component of g. If
g and 7" are parallel, then the direction of 7"is the same as that of g. Thus,
the vector equation is reducible to a single component. If we choose the
coordinate r along the direction of g, we get
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equation8 = -mg == mO,.r[t]

—gm==mr"(f)

defining Newton's equation for a falling particle. This second-order
ordinary differential equation determines the motion of the particle. If we
can solve this equation, we gain information on the path #(¢). The solution
in Mathematica can be derived by

solution = DSolve[equation8, r, t]

{{r N Function[{l}, - i;i tort Cl]}}

The solution represented in a pure function form tells us that the path #(¢)
of the particle is determined by the acceleration of gravity g and in
addition by two constants C[1] and C[2]. These two constants are
constants resulting from the integration process behind the function
DSolve[]. They are determined by initial values of the motion.
Incorporating the initial values of the motion right into the solution of the
equation of motion, we can write

solution = DSolve|[
{equation8, r[0] == xr0, r'[0] ==v0}, r, t] // Flatten

{r 5 Function[{t}, % (g2 +2v01+2 rO)]}

where ry and vy are the position and velocity at initial time, respectively. It
is obvious by comparing the two solutions that C[1] = ry and C[2] = vy.

At this stage of our examinations, we know how a particle behaves if a
constant acceleration is applied to it. However, if we want to examine the
motion of a particle starting at rest at a certain height, we have to specify
the initial conditions that way. For example, let us assume that a ball starts
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from rest at a height of ry = 100 m above the surface of the Earth. Under
these conditions, the path of the particle simplifies to

ssol =r[t] /. solution /. {r0-» 100, v0->0, g-» 9.81}

1 2
5 (200-9.817)

This special solution can be used to simulate the actual motion of the
particle. To generate the animation, we have to know how long the particle
needs to go before it touches down on the surface. This question can be
solved by solving the equation and selecting the positive solution:

end = Solve[ssol == 0, t] // Flatten; Tend = t /. end[2]

4.51524

The result for the total time is used to generate different states of the
falling particle:

track = Table[{RGBColor[0.996109, 0, O],
Disk[{0, ssol}, 5]}, {t, 0, Tend, .2}];

These states are displayed in the following sequence of pictures:

Map [Show[Graphics[#], PlotRange » {0, 105},
AspectRatio » Automatic] &, track];
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The animation of these states show how the particle increases its velocity
during the time. The analytic expression for the velocity is gained by
differentiating the solution with respect to time. The following plot
demonstrates that the velocity v linearly increases. The negative sign of v
indicates that the orientation of the velocity is parallel to the acceleration.
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Plot[Evaluate[O; ssol],
{t, 0, Tend}, AxesLabel » {"t", "v"},
PlotStyle -» RGBColor[0, 0, 0.996109]]:;

—-10:

-20:

-30:

—40 !

Up to the present stage of our discussion, we assumed that the particle is
falling in a vacuum, meaning there is no resistance if the particle moves in
the air. If we consider a real falling particle, we have to take into account
that in addition to the gravitational force, several other forces act on the
particle. For example, in addition to Fg, there are drag forces which slow
down the motion of the particle. These forces are typically functions of the
velocity. Incorporating additional forces, the total force is then

F=F,+F,0). (2.4.14)

It is sufficient to consider that F, is simply proportional to some power of
the velocity. In general, real retarding forces are more complicated, but the
power-law approximation is useful in many instances in which the velocity
does not vary greatly. With the power-law approximation in mind, we can
then write

(2.4.15)
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where y is a positive constant that specifies the strength of the retarding
force and v/v is a unit vector in the direction of V. Experimental
observations indicate that for small objects moving at low velocities in air,
n =~ 1; for larger velocities still below the velocity of sound, the retarding
force is approximately proportional to the square of the velocity.

The next step of our examination is the influence of the retarding force on
the path of the particle. Newton's equation for this case in one dimension is
given by

-mg + my (%) = m7. (2.4.16)

In Mathematica notation, this equation is given by

equationll = -mg -my (8er[t])? ==md¢,cr[t]

-myr? @) —gm==mr"(t)

The solution of this ordinary differential equation under the initial
conditions r(0) = ry and v(0) = vo and n = 1 follows from

solutiond =
DSolve[{equationll, r[0] ==x0, r'[0] ==v0} /. n->1,
r, t] // Flatten

e (e 10y? —e’7gly+e’7VOy—VOy+e’7g—g)]}

{r — Function|{#}, 5
Y

Using the same initial conditions for the particle as in the case without
drag, we find the solution

ssold =r[t] /. solutiond /.
{r0-100, v0>0, g—»9.81, y>1/2}

4e77(-4.905 ¢ 1 +34.81 " - 9.81)
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The total time of the particle needed to touch the ground is determined by
solving the above relation if the particle's position equals zero.

endd = Solve[ssold == 0, t] // Flatten;
Tendd = t /. endd[[2]

7.03757

The result is that the total falling time increases, meaning that the motion
of the falling particle is slowed down by a certain factor. The following
simulation shows that the motion of the particle at the end of the path

reaches a constant velocity:

trackd = Table[ {RGBColor[0, 0.500008, 0],
Disk[{12, ssold}, 5]}, {t, 0, Tendd, .2}];

Map [Show[Graphics[#], PlotRange » {0, 105},
AspectRatio » Automatic] &, trackd];
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The behavior that the velocity becomes constant can be checked with

Limit[-0¢ssold, t -» ]

19.62

The plot of the velocity versus time shows the same result.
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Plot[Evaluate[-0: ssold],
{t, 0, Tendd 2}, AxesLabel -» {"t", "v"},
PlotStyle -» RGBColor[0, 0, 0.996109]]:;

20
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2 4 6 8 10 12 14
Our general observation is that a particle accelerated by gravity and
influenced by additional forces change the behavior of motion.

2.4.8.2 Harmonic Oscillator

Let us consider the oscillatory motion of a particle that is constrained to
move in one dimension. We assume that there exists a position of stable
equilibrium for the particle and we designate its point as the origin of our
coordinate system. If the particle is displaced from the origin, a certain
force tends to restore the particle to its original position. This force is, in
general, some complicated function of the displacement and of the
particle's velocity. We consider here only cases in which the restoring
force F is a function only of the displacement:

Force = F[x];

We will assume that the function F(x) describing the restoring force
possesses continuous derivatives of all orders so that the function can be
expanded in a Taylor series:
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f = Series[Force, {x, 0, 2}]

F(0)+ F'(0) x + % F"(0) 2% + O(x%)

where F(0) is the value of F at the origin (x = 0), and F®™(0) is the value
of the nth derivative at the origin. Because the origin is defined to be the
equilibrium point, F(0) must vanish. Then, if we confine our attention to
displacements of the particle that are sufficiently small, we can neglect all
terms involving x> and higher powers of x. We have, therefore, the
approximate relation:

where we have replaced F'(0) = —k. Since the restoring force is always
directed toward the equilibrium position, the derivative F’(0) is negative
and, therefore, k is a positive constant. Only the first power of the
displacement occurs in F(x), so that the restoring force in this
approximation is a linear force. Physical systems that can be described in
terms of linear forces are said to obey Hooke's law.

The equation of motion for the simple harmonic oscillator can be obtained
by substituting Hooke's law force into the Newtonian equation F = ma.
Thus,

o Px@) k20
equationl = m == —kx(t
. ot ot

mx"(t) == —k x(¢)

If we define wj = k/m, the equation of motion becomes
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equationl = (equationl /. k - wim)/m

X' (1) == —wi x(1)

The solution of this equation can be found by

solutionl = DSolve[equationl, x, #]

{{x - Function[{¢}, c¢| cos(t wg) + ¢; sin(t wy)]}}

where C[1] and C[2] are constants of integration determining the
amplitude of the oscillation. Thus, the solution for the harmonic oscillator
are trigonometric functions with period 7' = 2 7/ wy.

Plot[x(?) /. solutionl /. {wy = 2, c; = 1, ¢, = 1}, {t, 0, 4 7},
AxesLabel - {''t", ''x"}, PlotStyle - RGBColor[0, 0, 0.996109]];

A A
VUV

The relationship between the total energy of the oscillator and the

amplitude of its motion can be obtained as follows. Using the derived
solution, we find for the kinetic energy
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1 (0x® )’
T = Simplify[; m (T) /. solutionl]

1
{5 m (wq ¢3 cos(t wy) — wq ¢y sin(t wo))z}

The potential energy for the harmonic oscillator can be calculated in the
same way following the definition of work; that is, the work required to
displace the particle a distance x is equivalent with the potential difference.
The incremental amount of work dW that is necessary to move the particle
by an amount dx against the restoring force F is

dW = -k xdx;

Integrating from O to x and setting the work done on the particle equal to
the potential energy, we have

()
U= f kxdx
0

1
5 k x(1)?

Then,

U = Simplify[U /. solutionl]

{% k (¢1 cos(t w) + ¢ sin(z wo))z}

Combining the expressions for 7 and U to find the total energy E, we have
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Energy = Simplify[T + U /. k - w} m]

(Fmai@+a)

so that the total energy is proportional to the square of the amplitude; this
is a general result for linear systems. Notice also that the energy is
independent of time; that is, energy is conserved. The conservation of
energy must be expected because the potential U does not depend
explicitly on time.

2.4.8.3 The Phase Diagram

So far, few attempts have been made to visualize the nature of a solution.
We only plotted the position variable x = x(t) oscillating periodically in
time. A most valuable description of a solution is gained by examining its
behavior in the phase plane or, more generally, in phase space.

Returning to the harmonic oscillator, the state of motion of a
one-dimensional oscillator will be completely specified as a function of
time if two quantities are given: the displacement x(f) and the velocity
v(t) = x'(¢). The quantities x(#) and x'(f) can be considered to be the
coordinates of a point in a two-dimensional space, called the phase space.
As the time varies, the point (x, x'), which describes the state of the
oscillating particle, will move along a certain phase path in the phase
space. For different initial conditions of the oscillator, the motion will be
described by different phase paths. Any given path represents the complete
time history of the oscillator for a certain set of initial conditions. The
totality of all possible phase paths constitutes the phase portrait or the
phase diagram of the oscillator.

According to the results of subsection 2.4.8.2, we can represent the point
(x, x") in the phase plane for the single harmonic oscillator by
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ox(t
pt = Flatten[{x(?), -—ax—i—)—} /- solution]

{c1 cos(t wy) + ¢ sin(t wy), wo ¢ cos(f wy) — wy ¢ Sin(t wop)}

This point is a two-dimensional parametric representation of the path for
all initial conditions. The initial conditions are chosen by specifying the
values for C[1] and C[2]. Knowing this, we can plot for different initial

conditions a phase portrait by continuously changing the time.

1
(ParametricPlot[Evaluate[Table[pt /- {cl >i,c> 1, wy > E}’ {i, 1, 5}]],

{t, 0, #1}, AxesLabel - {"'x", "x'"},
PlotStyle - RGBColor[0, 0, 0.996109], AspectRatio - Automatic,

-7 7
PlotRange — ( 4 4 )] &) /@ Table[te, {te, .5, 4.2 7, .5}];
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The complete phase portrait is generated by
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1
ParametricPlot[Evaluate[Table[pt /- {cl >, 1, w) > E}’ {i, 1, 5}]],

{t, 0, 4 7}, AxesLabel - {''x'", "x'"},
PlotStyle - RGBColor[0, 0, 0.996109], AspectRatio — Automatic];

7= =N
QY

We are going to show that the paths in the phase plane are ellipses with the
center as origin. The graphical representation given is based on the
parametric representation of the curves. The equation governing the paths
is derived from this parametric representation by eliminating the time ¢
from the defining equations:

curve = First[FullSimplify| Eliminate[ Thread[{x, xd} == pt, List], ¢]]]

xd? == W3 (=% + & +c3)

Since the energy H of the harmonic oscillator was connected with the
initial conditions, we can use this connection to eliminate them. First,
solving the relation for the energy with respect to the integration constant
C[1],

1
sh = Solve[H == P (e} + ) wj, ¢1]

{{Cl—>—i 2 %mw062_H },{Clﬁfi 2 %mw%c%—[-[ }}
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we are able to replace the two constants C[1] and C[2] by the energy H:

Union[Simplify[curve /. sh]]

{xd2 +x2w% == 271-1}

The result is the representation of an ellipses for the coordinates x and x'.
Because the derived expression contains the total energy as a parameter,
we know that each phase path corresponds to a definite total energy of the
oscillator. This result is expected because the system is conservative (i.e.,
H = const.).

We observe that the phase paths do not cross. This is a general feature of
the trajectories; for if they could cross, this would imply that for a given
set of initial conditions x(#y) and x'(#p), the motion could proceed along
different phase paths. However, this is impossible since the solution of the
equation of motion is unique.

2.4.8.4 Damped Harmonic Oscillator

The motion represented by the simple harmonic oscillator is termed a free
oscillation; once set into oscillation, the motion would never cease. This is,
of course, an oversimplification of the actual physical case in which
dissipative or frictional forces would eventually damp the motion to the
point that the oscillations would no longer occur. It is possible to analyze
the motion in such a case by incorporating into the differential equation a
term that represents the damping force. It is frequently assumed that the
damping force is a linear function of the velocity Fy = —y¥. In this
subsection, we will consider only one-dimensional damped oscillations so
that we can represent the damping term by —y x'. The damping constant y
must be positive in order that the force indeed is resisting.

Thus, if a particle of mass m moves under the combined influence of a
linear restoring force —k x and a resisting force —y x', the differential
equation which describes the motion is
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mx"+yx' +kx=0, 24.17)

which we can write as

Ix@®) Px@)

equationl2 = x(¢) w2 + 2 +
q Owy+2f— atat

xO) Wi +2BXE) +x(1)==0

Here, S =v/2m is the damping parameter and wg = (k /m)'* is the
characteristic frequency in the absence of damping. The solution of this
equation follows by

solution = Flatten[DSolve[equation12, x, ¢]]

{x - Function[{l}, e’(_ﬁ_ a3 ) c1+ e’( pr-t —p) cz]}

There are three general cases of interest distinguished by the radicand

B -k
a) Underdamping: w>p?
b) Critical damping: w%=ﬁ2
¢) Overdamping: wi<p?

As we shall see, only the case of underdamping results in oscillatory
motion.

Underdamped Motion

For this case, it is convenient to define
W =W} - B, (2.4.18)

where w? > 0; then, the exponents of the solution becomes imaginary and
the solution reduces to



2. Classical Mechanics 135

underdampedSolution = PowerExpand[x(¢) /. solution /. w3 —» B2 + w?]

o CB0D o 4GB o)

We call the quantity w; the frequency of the damped oscillator. Strictly
speaking, it is not possible to define a frequency when damping is present
because the motion is not periodic (i.e., the oscillator never passes twice
through a given point with the same velocity). If the damping £ is small,
then

Series|V wf — B2, {B, 0, 1}]

Vi +0(B%)

the term frequency may be used, but the meaning is not precise unless
B = 0. Nevertheless, for simplicity, we will refer to w; as the frequency of
the damped oscillator, and we note that this quantity is less than the

frequency of the oscillator in the absence of damping.

The maximal elongation of the motion of the damped oscillator decreases
with time because of the factor e %!, where B> 0, and the envelope of the
displacement versus time curve is given by

envelope = underdampedSolution /. w; - 0

ePei+e B,

This envelope as well as the displacement curve is shown in the following
plot.
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Plot[Evaluate[
{envelope, -envelope, underdampedSolution} /.
{wys>1, 8>1/7, C[1] »1, C[2] »1}],
{t, 0, 15}, AxesLabel » {"t", "x(t)"},
PlotStyle » {RGBColor[0, 0, 0.996109],
RGBColor[0, 0, 0.996109],
RGBColor[0.996109, 0, 0]}, PlotRange -» All];

X(t)
2

-2

In contrast to the simple harmonic oscillator, the energy of the damped
oscillator is not constant in time. Rather, energy is continually given up to
the damping medium and dissipated as heat.

The "energy" of the damped oscillator is defined by
H = % m(x")? + % k x?, (2.4.19)

whereas the loss rate of the energy is dH /dt; both quantities are given in
the following plot for a specific choice of parameters:
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1
Plot[Evaluate[{? (8¢ underdampedSolution)? +
1 2 2 : 2
E (w7 + B*) underdampedSolution®,
1 2
Oc (? (0t underdampedSolution) “ +
1 2 2 2
; (w] + B*) underdampedSolution )} /.
{wx>1, B>1/7, C[1] » 1, C[2] » 1}],

dH

t, 0, 15}, AxesLabel » {"t", "H, — ",
d
t

PlotStyle -» {RGBColor[0, 0, 0.996109],
RGBColor[0, 0.500008, 0]}, PlotRange - All];

daH

> dt
2
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The rate of energy loss is proportional to the square of the velocity so the
decrease of energy does not take place uniformly. The loss rate will be a
maximum when the particle attains its maximum velocity near the
equilibrium position and it will instantaneously vanish when the particle is
at maximum amplitude and has zero velocity.

The phase diagram for the damped oscillator can be generated by plotting
the coordinates x and x' for different choices of the integration constants
C[1] and C[2].
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ParametricPlot[
dunderdampedSolution
ot

/.

Evaluate[Table[Re({underdampedSolution,

1
{wl il 1’ ﬂ - ;’ (4 Bd i’ (&g 1}]3 {ls 13 5}]]3 {t’ 0’ 25}’

AxesLabel - {"'x", ''x'"'}, PlotStyle - RGBColor[0, 0, 0.996109],
AspectRatio - Automatic, PlotRange —» All];

The above figure shows a spiral phase path for the underdamped oscillator.
The continually decreasing magnitude of the radius vector and the
decrease of the velocity affect the path in such a way that the terminal
point of the motion ends in the origin.
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Critically Damped Motion

In the case that the damping force is sufficiently large (i.e., if 5% > w}), the
system is prevented from undergoing oscillatory motion. If there is zero
initial velocity, the displacement decreases monotonically from its initial
value to the equilibrium position x =0. The case of critical damping
occurs when $? is just equal to wj. For this choice of parameters, we have
to solve the original equation of motion a second time because this special
choice of parameters generates a bifurcation of the solution. A bifurcation
of the solution means that the nature of the solution changes if we change
the parameters in a special way in the equation of motion. We note that the
reason behind this bifurcation is a change of the symmetry group of the
equations of motion. The solution for the critical damping case is derived
by

criticallydampedSolution = x(¢) /.
Flatten[DSolve[{equation12 /. wZ - B2, x(0) == x0, x’(0) == v0}, x, £]]

"B (tv0 +x0+1x0 B)

where xy and v, are the initial values for the position and the velocity,
respectively. Let us assume that the oscillator starts with a finite elongation
of xo = 1 at a vanishing velocity vy = 0; we get the displacement by
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pleritical =
1
Plot[Evaluate[criticallydampedSolution /- {ﬂ - E’ x0- 1, v0 > 0}],

{t, 0, 25}, AxesLabel - {"'t", "x"},
PlotStyle -» RGBColor{0, 0, 0.996109]];
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For a given set of initial conditions a critically damped oscillator will
approach equilibrium at a rate more rapid than that for either an
overdamped or an underdamped oscillator. This fact is of importance in
the design of certain practical oscillatory systems when it is desired that
the system return to equilibrium as rapidly as possible.

Overdamped Motion

If the damping parameter [ is even larger than wy, the overdamping
results. Since 5% > w3, it is convenient to define

where w3 > 0; then the exponents of the solution become real and the
solution reduces to

overdampedSolution = PowerExpand([x(¢) /. solution /. w3 - > — w3]

& B ¢ 4 gl @B) )
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The solution derived from the calculation contains two constants of
integration ¢y and c¢,, which are connected with the initial values for the
elongation and the velocity by

gll = x0 == overdampedSolution /. t - 0

x0==c| +c,

The defining equation for the velocity is

0doverdampedSolution
gl2 =v0 == = [.t—>0

VO==c| (-B—-w2)+c2(w2—f)

The solution of these two equations with respect to the constants ¢; and c;
is given by

sh = Simplify[Solve[{gl1, gI2}, {c1, ¢c2}]]

{{Cl _)_V0+x0ﬁ—x0w2762_) v0 + x0 B + x0 w, }}

2wy 2wy

Inserting this relations into the solution for the overdamped oscillator, we
get

os = overdampedSolution /. sh

{ @B NO+x08+x0w,) € B (vO +x0 8 — x0w,) }
2wy 2w,

Note that w, does not represent a frequency because the motion is not
periodic; the displacement asymptotically approaches the equilibrium
position as shown in the following plot:
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1 1
ploverd = Plot[Evaluate[os /- {ﬂ - g, wy > E, x0 -1, v0 » 0}],
{t, 0, 25}, AxesLabel - {"'t", ""x"'},

0 25
PlotStyle - RGBColor[0.996109, 0, 0], PlotRange — ( 0 LI )],
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Comparing this plot with the plot of the critical damped oscillator, we
observe that the displacement of the overdamped oscillator is always
greater than the displacement of the critically damped oscillator. This
behavior is important for the construction of certain practical oscillatory
systems (e.g., galvanometers).
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Show][plcritical, ploverd];
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0.6
0.4
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t
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The case of overdamping results in a non oscillatory asymptotic decrease
of the amplitude to zero. However, depending on the initial value of the
velocity, there might be a change of sign of x before the displacement
approaches zero. If we limit our considerations to initial positive
displacements x(0) = xo > 0, there are three cases of interest for the initial
velocity x' (0) = vy.

a) vo>0, so that x(t) reaches a
maximum at some t>0
before approaching zero.

b) v<0, with x(t) monotonically
approaching zero.

c) v<0, but sufficiently large so
that x(t) changes sign,
reaches a minimum value,

and then approaches
zero.

These three cases are illustrated in the following plot where we used a
positive initial displacement and nine different initial values for the
velocity. We observe that all three cases occur.
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Plot[Evaluate[
1 1
Table|os /. {8 - PRt A b i}, i, -1, 1, .25}]],

{t, 0, 25}, AxesLabel - {"'t", ''x'"'}, PlotRange — All,
PlotStyle -» RGBColor{0, 0, 0.996109][;

‘ ‘ ‘ t
B——10— 1526 —75

-1+

The phase plane of the overdamped oscillator is constructed by plotting x'
versus x. This is possible if we first determine the velocity of the

overdamped oscillator:

dos
dos = —
ot

{ €' @278 (wy — B) (VO + x0 B + x0 wy) _
2 wy
€' A9 (=B — w,) (VO +x0 B — X0 w») }
2wy

The parametric plot of the displacement and the velocity for different
values of the initial velocity generates a characteristic picture for the

damped oscillator.
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ParametricPlot[Evaluate[
1 1
Table[Flatten[{os, dos}] /. {8 - @2 X0 1Lvo i},

{i, -2, 2, .25}]], {t, 0, 25}, AxesLabel - {''x", ""x'"'},
PlotRange — All, PlotStyle - RGBColor[0, 0, 0.996109]];
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2.4.8.5 Driven Oscillations

In the preceding sections, we found that a particle undergoing free
oscillations would remain in motion forever. In every real system,
however, there is always a certain amount of friction that eventually damps
the motion to rest. This damping of the oscillations may be prevented if
there exists some mechanism for supplying the system with energy from an
external source at a rate equal to that at which it is absorbed by the
damping medium. Motions of this type are called driven oscillations.

The simplest case of driven oscillations is that in which an external driving
force varying harmonically with time is applied to the oscillator. The total
force on the particle is then

F=—-kx—-yx'+Fycos(wt) (2.4.21)

where we consider a linear restoring force and a viscous damping force in
addition to the driving force. The equation of motion becomes
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ax(@) Px(@)
+m
ot atdt

equationl7 =y +kx(t) == Fycos(wt)

kx(®)+y X @) +mx"(f) == cos(tw) Fy

or using our previous notation

axt) *x(®)
+

equationl7 =2 g8 5 FYEY

+ Wi x(t) == A cos(wt)

x(t) Wi +2 B (1) + X' () == A cos(t w)

where A = Fy/m is the reduced amplitude of the driving force and w is the
frequency of that force. The solution of this equation follows by

solution17 = Flatten[FullSimplify[DSolve[equation17, x, ¢]]]

e ﬁz_‘“%)cl +e’( p=a} =) c+
(-Am\/mcos(m)wz+
24 BV B=w0) (B+wg) \ B2 -} sintw)w+
Awp Vm\/rw%cosuw))/
((B=w0) (B+w0) (Biw- B —w})(Brio—p-w})

ey e |

{x - Function[{t}, e’(

We observe that the solution consists of two parts. The first part represents
the complementary solution containing initial conditions denoted by the
constants of integration c¢; and c,. The second part is the particular
solution free of any constant of integration. This part is present in any case
independent of the initial conditions. To separate the two parts from each
other, we first extract the particular solution from the total solution by
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particularSolution = x(¢) /. solution17 /. {c; - 0, ¢; - 0}

(~AVB=w0) Bron) VB - wh costta)w? +
24 BVB=w0) Bran) \ B2 -} sinttw)w+
AN B=a0) Bran B -uf costtw) |
((B-w0 B+on(p-iv-yp-ot)(p+io-VB-o})
s =) o)

The complementary solution incorporating the initial conditions follows by

complementarySolution =
Simplify[(x(¢) /. solution17) — particularSolution]

e (BVE 0t ) (61 e 62)

This solution is just the result derived for a damped oscillator. The general
solution for the driven oscillator is

xX(t) = x,(t) + x:(0). (2.4.22)

The complementary solution containing the initial conditions ¢; and c; is
responsible for the transient effects in the solution (i.e., effects that depend
upon the initial conditions). The complementary solution damps out with
time because of the factor e . The partial solution x, represents the
steady state effects and contains all of the information for time ¢ large
compared to 1/8. For this reason let us first examine the particular
solution.

The important part of the particular solution x, is its amplitude. To extract
the amplitude from the variable particularSolution, we use the property
that the amplitude is independent of time. Thus we can set r - 0 and make
sure that the radicand S —wj is a positive quantity (i.e., we replace
W} - B + w} with w? > 0). After the simplification we rewrite the result

in the original parameters % and w3.
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amplitude = (particularSolution /. {t > 0, wZ -» B2 + w?} //
PowerExpand // Simplify) /.

{02 > 0} - B2, 0} (03-p%)"} // FullSimplify

AV B —wy VB +wy (w%—wz)
V(B—wo) (B+wy) (42w +(w—wy)* (w+wp)?)

The result shows that the total amplitude A of the particular solution
depends on the driving frequency w, the damping constant S, the
frequency of the undamped oscillator wy, and on the reduced amplitude of
the applied driving force A. We can reduce this four parameter relations to

a three parameter expression if we introduce the scaled amplitude 6 = A/ A:

amplitude
scaledAmplitude = T // PowerExpand // Simplify

Wi — w?

4B 02 + (w2 - wd)

A plot of this relation reveals, that the scaled amplitude of the driven
oscillator encounters a zero at the frequency of the undamped oscillator.
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Plot[Evaluate[
Table[scaledAmplitude /. {A - 1, wy = 1, B > i}, {i, .1, 1.2, .1}]],
{w, 0, 3}, AxesLabel - {""w", "A/A"},
PlotStyle - RGBColor[0, 0, 0.996109]];

A/A

This behavior indicates that the scaled amplitude is a combination of two
parts. These parts are the amount of the amplitude and the phase factor ®
of the amplitude. The phase occurs because the driving frequency w is
different from the frequency of the undriven oscillator wy. The scaled
amplitude contains this difference in the numerator. Dividing the
numerator by the square root of the denominator, we get the phase shift

factor of the amplitude

Numerator[scaledAmplitude]
phase =

v Denominator[scaled Amplitude]

wj—w

\/4[32 W + (W2 - w3)

The amplitude itself is given by the inverse square root of the denominator
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1

amplitudeAmount =

v Denominator[scaled Amplitude]

1

\/4,82w2+((u2—w%)

2

Multiplication of both factors reveals the original expression for the scaled

amplitude
amplitudeAmount phase
W — w?
4820 + (W2 - wd)

Having separated the two parts of the scaled amplitude, we can plot the
two quantities for different values of the damping factor 5. The amount of
the amplitude looks like

Plot[Evaluate[
Table[amplitudeAmount /. {A - 1, wy - 1, B8 - i}, {i, .1, 1.2, .1}]],
{w, 0, 4}, AxesLabel - {"'w", "A/A"},
PlotStyle - RGBColor[0, 0, 0.996109]];




2. Classical Mechanics 151

The graphical representation of the phase factor for different values of the

damping constant is given by

Plot[Evaluate[Table[phase /. {A - 1, wy = 1, 8 > i}, {i, .1, 1.2, .1}]],
{w, 0, 4}, AxesLabel - {"w", "®"},
PlotStyle - RGBColor[0, 0, 0.996109]];

P
1

0.5

-0.5

1

That is, there is a real delay between the action of the driving force and the

response of the system.

The amplitude, and therefore the energy, of the system in the steady state
depends not only on the amplitude of the driver, but also on its frequency.
In the two plots above, we observe that if the driving frequency is
approximately equal to the natural frequency of the system, the system will
oscillate with a very large amplitude. This phenomenon is called
resonance. When the driving frequency equals the natural frequency of the
oscillator, the energy absorbed by the oscillator is maximum. Thus we
have to distinguish two frequencies when resonances occur: First the
amplitude resonance with its largest elongation and second an energy
resonance with the largest energy transfer.

In order to find the resonance frequency wg at which the amplitude A/A
is a maximum, we solve the defining equation for the maximal deviation
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0 amplitudeAmount
ow

wWR = Solve[ ==, w]

{to= 0 foo —Vei-2p ) fo Vei -2 )

The result contains three roots. Only the positive root is a physical
realization of the frequency wy at which the largest displacement occurs.
We also observe that the resonance frequency wg is lowered as the
damping coefficient f is increased. There is no resonance, of course, if
B*> w}§ /2, for then wg is imaginary and A decreases monotonically with

increasing w.

Energy resonance is observed when the kinetic energy becomes a
maximum. The kinetic energy for the driven oscillator is governed by the
particular solution since the complementary solution dies out for large .
The kinetic energy becomes

1 ( dparticularSolution )2]

T = Simplify| — m
g y[2 ot

A2 mw? 2 Bwcos(tw) + (w? — wd) sin(t w))*

24 P+ (@ - }))

In order to obtain a value of 7 which is independent of the time, we

compute the average of T over one complete period of oscillation. Thus,

27
w o
TMean = — f T d't [/ Simplify
27 Jo

A% mw?

4(4 B2 02 + (@2 - R}))

The value of w for (T') a maximum is labeled wg and is obtained from
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dTMean
wg = Solve[—g——- ==0, a)]
w

{{w - 0}, {w - —wp}, {w > —iwp}, {w > iwy}, {wW - wol}

Since the trivial, negative, and complex solutions of this condition are of

minor physical importance, we get as a result

wg = {w-> wo}

{w = wp}

so that the kinetic energy resonance occurs at the natural frequency of the

system for undamped oscillations.

We see therefore that the amplitude resonance occurs at a frequency

\ W} —2 B* whereas the kinetic energy resonance occurs at wy. Since the
potential energy is proportional to the square of the amplitude, the

potential energy resonance must also occur at \/w§—2 2. That the
kinetic and potential energies resonate at different frequencies is a result of

the fact that the damped oscillator is not a conservative system; energy is
continuously exchanged with the driving mechanism and energy is being
transferred to the damping medium.

Although we have emphasized the steady-state motion of the driven
oscillator, the transient effects are often of considerable importance. The
details of the motion during the period of time before the transient effects
have disappeared (i.e., t<1/B) are strongly dependent on the conditions of
the oscillator at the time that the driving force is first applied and also on
the relative magnitude of the driving frequency w and the damping

frequency \/ wi— B2
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2.4.8.6 Solution Procedures of Liner Differential Equations

This subsection discuses two methods useful for solving linear ordinary a
well as partial differential equations. The discussed methods are especially
useful for solving initial value problems. The presented methods are the
Laplace transform method and the Green's function method.

The Laplace Transform Method

In the preceding sections, we have mainly used straightforward methods in
solving the differential equations that describe oscillatory motion. The
procedure has been to obtain a general solution and then to impose the
initial conditions in order to obtain the desired particular solution. The
procedure discussed in this subsection is the Laplace transform method.
This technique, which is generally useful for obtaining solutions to linear
differential equations, allows the reduction of a differential equation to an
algebraic equation. This is accomplished by defining the Laplace

transform f(p) of a function F(f) according to
fp) = [ e P Frydt. (2.4.23)

The Laplace transform of a function F(#) exists if F(f) is sectionally
continuous in every finite interval 0 < ¢ < co and if F(¢) increases at a rate
less than exponential as ¢ becomes infinitely large. In general, the
parameter p may be complex, but we will not have occasion to consider
such a case here. The Laplace transform of a function F(¢) will be denoted
by L7[F[f]], where the lower index denotes the original variable ¢ and the

upper index refers to the Laplace variable p.

For example, if F(f) = 1, the Laplace transform is given by

L7111

1
p

Similarly, for F(t) = e~*', we find
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L[e™"]

1
pta

Some important properties of Laplace transforms are the following:

The Laplace transform is linear. If @ and § are constants, then

LileH®O + BG®)]

BLYIG®)] +a LV[H(1)

The Laplace transform of the derivative of H () is given by

0H(t)
L v |

pLITH(®] - H(0)

The transforms of higher derivatives can be calculated similarly; for
example,

p aZH(t)
fl at dt |

LIH®] p* —H(©O) p—H'(0)

The substitution of p + a for the parameter p in the transform corresponds
to multiplying F(z) by e . For example,
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L [cos(w )]

S A
P+ w?

so that

Ll [e™®" cos(wt)] // Simplify

P+a
pr+2ap+a?+w?

Knowing some of the main properties of the Laplace transform, let us
apply this method to solve the problem of a driven damped oscillator. The
equation of motion is just equationl7. Let us assume that the initial
conditions are x(0) =0 and x'(0) =0. The Laplace transform of this

equation is

IpTr = £f[equation17]

Ap

L[x(0)] p* = x(0) p + wi LIXD]+2 B(p LI [x(1)] = x(0)) = ¥ (0) == rar

Applying the initial conditions to the Laplace representation

IpTr = IpTr /. {x(0) - 0, x"(0) - 0}

2 2 2 A
L] P+ 2 BLID] p+ wf LY [x(0)] == ———
p*+w

we get a simplified version of the Laplace representation. Solving this
expression with respect to the Laplace representation of x(p) = LV [x(1)],
we find
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slpTr = Simplify[Solve[lpTr, LPIx®O1

A
{{eron- o m fzﬁp +w3) I

This is the solution of our initial value problem represented in Laplace
space. The inversion of this expression will provide the solution

solution = InverseLaplaceTransform[slpTr, p, ¢] // Simplify

-
(A e”(ﬂ“/m) (—eZ’W B+ B+ ezh/m \/mw2 +

B - w2+4e’(ﬁ+\'ﬁz'“’%)ﬁ B? — W} sin(t w) w -
ANEE gt pap+ 20 PV - 0f @ - o)
cos(tw)—ez"/ﬁz_‘”% w} \/,32—0)% - w} \/:32“”(2) ))/

VB -} (48 + @ - wd)))})

The graphical representation of this solution for different damping factors
B is given below
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Plot[Evaluate[
Table[x(?) /. solution /. {A - 1, wy = 2, B =i, v » 1}, {i, .1, 4, .5}]],
{t, 0.1, 25}, AxesLabel - {''t", ""x(t)"'},
PlotStyle - RGBColor[0, 0, 0.996109]];

X(t)

0.2

-0.2 |

~0.4 |

Green's Method

Green's method is generally useful for the solution of linear,
inhomogeneous differential equations. The main advantage of the method
lies in the fact that Green's function G(z, T), which is the solution of the
equation for an infinitesimal element of the inhomogeneous part, already
contains the initial conditions. To demonstrate these facts, let us consider
the linear ordinary differential equation

Liu] = f() (2.4.24)

where L, is a linear differential operator. If this linear differential operator
has an inverse L,’1 = @, the solution can be written as

u@) = [* Gt 1) f@)dr (2.4.25)

where the integration is over the range of definition of the functions
involved. Once we know G(¢, 7), Equation (2.4.25) gives the solution u(f)
in an integral form. However, how do we find G(t, 7)? If L, is a local
differential operator, we obtain

L G(t, 7)=6(t—1). (2.4.26)
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G(t, 1) is called Green's function for the differential operator L,. Thus,
Green's function is nothing more than the solution of an linear ordinary
differential equation under the condition that at # = 7, a unique force acts
on the system. Let us examine this behavior for the damped harmonic

oscillator. The linear operator L, for this physical system is defined by

af Bzf
LE):=fw?+28—
@):=fawp+2p ot oot

Taking this definition into account, Green's function follows from relation
(2.4.26) by

Green = L(G(t, 7)) == DiracDelta[t — 7]

G, ) w3 +2 8GO, 1)+ GO, 1) == (1 - 1)

We assume that the system starts from rest, meaning G(¢, 7) =0 for 7 < 1,
so that G(t, ) is the response of the system on a unit force action at ¢ = 7.
For times ¢ > 7, there is no force acting on the equation. Thus, Green's
function is determined by the homogeneous equation

Green = L(G(, 7)) == 0

G(t, D) wy +2BG01, 1)+ G0, 1) == 0

The solution of this equation follows by applying the Laplace transform
method to this equation. The Laplace transform is

IpGreen = £7[Green]

LG, 1] p* - GO, 1) p + wj LI[G(t, T)] +
2B(p LG, D] - GO, 1) - G0, 1) == 0

Solving this relation with respect to the Laplace variable LIG(t, 1)], we
get
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IpSolution = Solve[lpGreen, £7[G(t, 7)]]

p G, T)+2 BGO, T) + G190, 1) }}

P -
{{£rce 1 Ty

The inversion of the Laplace transform provides us with the solution

GreenF = InverseLaplaceTransform[lpSolution, p, #] // FullSimplify

1
V(B - wo) (B + wp)

(e7# (V(B = wo) (B+wy) cosh(t V(B —wo) (B+wy) ) GO, 1)+
sinh(1 V(B - wo) (B+ w) ) (BG(O, 1) + G0(0, r))))}}

{{G(t, 7) -

A transformation to a pure function representation allows us to use Green's

function in symbolic expressions:

rl = G - Function[{t, 7}, $w] /. $w = G(t, 7) /. GreenF)

1

V(B = wo) (B + wo)
(7P (V(B=wo) (B+wy) cosh(t V(B —wo) (B+wp) ) GO, 7) +
sinh(t V(B = wo) (B+ wo) ) (8GO, 7) + G100, 7))

G- Function[{t, T},

€+T €+T
res = f Green[1] dt == f DiracDelta[t — 7] dt /.
T—€ T

—€

{Gr-€1) >0, (¢ 1) > 0}

f - (G(t, 1) wj +2 BGMOt, 1) + GOt 1)) dt == 6(e) — 6(—€)

To estimate the terms in the above relation, we assume that the maximum
of G is finite Max( | G|) < oo, so that we can estimate the integral term by
I < Max(| G|)2e€, meaning that for € - 0, the integral term vanishes. If
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we, in addition, assume that the time derivative of G is finite,
Max( | G |) < oo, then we can estimate the behavior of Green's function as
|G| < Max( | G|)2€. This again means that G vanishes if € » 0. These

two properties allow us to define the following conditions for the Green's

function:
Gr+0,n=1, (2.4.27)
G(t-0,7)=0.

These two conditions represent the behavior that the particle right after the
application of a unit force stays at the same position but gets a unique
momentum. Conditions (2.4.27) allow us to determine the initial

conditions for Green's function. The first equation reads

eql = (G(t, 7) /. r1) =

1
(B—wo) (B+ wo)
(€™ (V(B=wo) (B+wo) cosh(r v (B—wy) (B+wy) ) G(O, T) +
sinh(t V(B - wo) (B +wo) ) (BG(O, 1)+ G(0, 1)) == 0

The second Equation of (2.4.27) reads

aG(t, 1)

eq2=( /.t—)‘r/.rl)::

1
(B~ wo) (B + wo)
(e7P7 ((B — wo) (B + wp) G(O, T) sinh(T V(B - wp) (B+wy) ) +
(B = wo) (B+ wp) cosh(t V(B —wo) (B+w))

1
V(B=wo) (B +wo)
(7 B(V(B=wo) (B+wo) cosh(t V(B —wo) (B+wo) ) GO, 1) +
sinh(7 V(B = wo) (B+wo) ) (BGO, 1) + G"(0, 1)) ==

(BGO, 1)+ G0, 1)) -
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Solving these two equations for the initial conditions of Green's function,
we get

sol = Simplify[Solve[{eql, eq2}, (G0, 1), GO, D]

{6190, 7) > " |cosm{e B a7 )+ - sin{r V) |
Ve -k

ePr sinh(‘r B2 — w}
GO, 7) > -

Inserting these results into the original representation of the solution, we
gain

GreenF = Simplify[G(¢, 7) /. r1 /. sol]

ef D sinh((l -1)\ 2 - W} )

)

2
B2~ wp

representing the Green's function for ¢ > 7. For # <0 the Green's function
vanishes. Knowing the Green's function, we are able to solve the
inhomogeneous differential equation by integrating the product of the
inhomogenity and the Green's function

P sinh(I -0V -p+0})

I\/—ﬂ2+w(2,

Ih = {

2P sin((t -1)\ W} -2 )

e
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Knowing the Green's function also allows us, for example, to calculate the
solution for a constant force of unit strength by

Simplify[ f PowerExpand[TrigReduce[lh[1]]] dT]
0

1B B o
e—rﬁcos(l\/ﬂ)_'_ e__@\/%t:oiﬁz_) .
2-

wj

The solution for a harmonic force g cos(wy?) in the case of vanishing
damping is given by

solution =

Simplify[ f PowerExpand[TrigReduce[g cos(wo 7) Ih[1] /. B - 0]1d T]
0

g tsin(f wy)
2 wo

Another example is an exponential decaying force for the damped

harmonic oscillator resulting in

hl =
t
Simplify[j PowerExpand[TrigReduce[h e ™" 1h[1]]] dlt]
0

(e"(ﬁ”) h (—e" \ Wi - B2 cos(l \ Wi - B2 ) +e' (y-p) sin(t \ Wi - B2 ) +

ANt - ) /(i -8 02 =28y +wh)

All of these solutions are solutions free of any transient effects.
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2.4.8.7 Nonlinear Oscillation

Solutions of certain nonlinear oscillation problems can be expressed in
closed form in terms of elliptic integrals. The pendulum is one example of
a nonlinear model exhibiting elliptic functions as solutions. A pendulum is
a system with mass m which is kept in orbit by a massless supporting rod
of length [ (see Figure 2.4.9). The pendulum moves within the
gravitational field of the Earth and is thus exposed to the vertical
gravitational force mg. The dynamic force F is perpendicular to the

supporting rod and takes the form F(¢) = —mg sin(¢).

7

m

Figure 2.4.9.  Pendulum as a nonlinear system.

For small amplitudes, we can model the pendulum in terms of a linear
system which is equivalent to a harmonic oscillator. The accuracy of this
approximation will be determined in the course of our calculations. Taking
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the angle of libration to be ¢ (see Figure 2.4.9), the equation of motion for

an oscillating particle of unit mass is
¢" +wjsin(¢) = 0, (2.4.28)

with w} = g /1 being the ratio between the gravitational acceleration g and
the length of the pendulum /. If the amplitudes around the equilibrium
position are small, then sin(¢) in Equation (2.4.28) can be approximated by

sin(@) = ¢@.

Series[sin(¢), {¢, 0, 1}]

¢+ 0"

As a result, the equation of motion is reduced to an equation of a

harmonic oscillator
¢ +wj¢=0. (2.4.29)

Within this approximation, the oscillation period 7 is given by
T=2n/w=2nrVI/g and is independent of the amplitude.

If we wish to determine the oscillation period for larger amplitudes, we
need to start with Equation (2.4.28). Since we have neglected damping in
our equations, the total energy of the system can be written as the sum of

the potential and kinetic energy (conservation of energy):
Tiin +V = E = const. (2.4.30)

This formulation allows us to easily construct the solution to Eqation
(2.4.28). Equation (2.4.30) gives a first integral of motion. Due to the
explicit time independence of the equation of motion (2.4.28), the second
step of the integration process can be done by a quadrature. The duration
of oscillation can be expressed in the form of an integral.

If we choose the origin of the potential energy to be at the lowest point in
the orbit, then we get for the potential energy
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V=mgl (1-Cos[¢[t]])

g lm (1 = cos(¢(1)))

V=mgl(l-cos(¢)). (2.4.31)

A graphical representation of the potential energy is given in the following
plot. In addition to the potential energy, we also plotted three different
energy values of the pendulum. As we will see, these values correspond to
three different kinds of motion of the pendulum.

4 7
Plot[{1- cos[¢], 5 2, ?},

vigl
mgl }’
PlotStyle » {Hue[0], Hue[0.2], Hue[0.4], Hue[0.6]}];

{¢, -2 7, 27}, AxesLabel » {"¢", n

Vi¢]

mgl

//\\12

A
JAY

The kinetic energy is derived from the equation

6 -4 -2

1
Tkin = £y ml? (. p[t])?

1
5 Pme )

Ty = + m2(@). (2.4.32)
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The total energy of the pendulum then follows by adding up the kinetic
and potential energy as

H=Tkin+V

% Pm¢' (0 +glm(1 - cos((t)))

A phase space portrait of the pendulum is generated next by specifying the
parameters /, m, and g.

<< Graphics ImplicitPlot~;
ImplicitPlot[
Evaluate[Table[H ==e/. {1-510, g-» 10, m-> .01,
1 1
¢lt] > ¢, 8:o[t] >}, {e, 35 ?}]],

{d, -2 7w, 27}, {p, -7, 7}, PlotPoints - 41,
AxesLabel » {"¢", "¢'"},

i
PlotStyle-»Table[Hue[%], {i, 0, 15}]];:

The phase space diagram shows that three different kinds of motion are
possible. Near the center, there exist oscillations. For larger energies, we
find revolutions, and for a certain energy, there is an asymptotic motion
starting at one point and terminating at the upper turning point of the
pendulum. This third kind of motion separates the two other motions. The

phase space curve is thus called a separatrix.
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Combining the energy plot with the phase space plot, we get an impression
of how the motion in the different region of the potential takes place.

<< Graphics Graphics3D";
ShadowPlot3D[Evaluate|[
H/.{1->10, g>10, m->0.01, ¢[t] >, d:d[t] > D}]1,

{$¢, -2 7w, 27}, {p, -3, 3}, PlotPoints - 45,
AxesLabel -» {"¢", "¢'", "H"}, Axes - True,
SurfaceMesh » False, ShadowMesh -» False,
ViewPoint -> {1.756, -2.089, 2.000}];

If we designate the angle at the highest orbital point as ¢;, the potential
and the kinetic energies at this point are given by

(2.4.33)

V(p=¢1)=E=mgl(1-cos(¢)),
(2.4.34)

Tiin(é = ¢1) = 0.
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By means of the trigonometric identity cos(¢) =1 —2 sin’(¢/2), the total
energy at the upper reversal point can be expressed in the form

E=2mglsin’(§-). (2.4.35)

Because E is constant in time, this expression is also valid for amplitudes
smaller than ¢;. The potential energy takes the form

V=2mglsin® ($); (2.4.36)

we used the trigonometric identity cos(¢) =1 —2 sin®(¢p/2) to simplify the
relation. In accordance with Equation (2.4.30), the kinetic energy is given
as the difference between the total energy and the potential energy by

% mi2¢?=2mgl (sm ( ¢21 ) — sin’ (%)) (24.37)

In other words, we get

6\ 12

¢'=2wy (sm (¢1 ) sinz(i)) . (2.4.38)

Separating the variables, we find
dg¢
dt = .
2 wp  sin? (4 )-sin®($) (24.39)

We can obtain the oscillation period T of the pendulum by integrating both

sides over a complete period

D1
L di=4 dé . (2.4.40)
o 2wy st (g)-sin($)

The left hand side of (2.4.35) can be directly integrated and we find

P
T=2 aé . (2.4.41)
0 0 v sinz(%‘)—sinz(%)
Thus, the oscillation period is reduced to a complete elliptic integral. By
substituting z = sin(¢/2)/sin(¢; /2) and k = sin(¢; /2), the integral on the
right-hand side of Equation (2.4.41) is transformed to the standard form

1

Tt | i
@ Jo Va2 a-L ) 2.4.42)

= LK@,

wo
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K(k?) denotes the complete elliptic integral of the first kind and
= E /(2 m g ) denotes the modulus of the elliptic function.

By calling EllipticK[], Mathematica executes K (k?). Integrate[] executes
the integration of Equation (2.4.42):

1 1
PowerExpand[ f dz]

0 \/(I_ZZ)(I_kZZZ)

If[Im(% +0\/mmk +0\/
% 0/\Re( )>l\/1+%:=0/\Re(k)<O\/
—==1/\Re(k)20\/%==1/\Re(%)+1<0\/

Re(%) >1\Rety=0\/ Re(%) +1<0 \ Re(k) <0,

Z-Dk22-1)

K(k?), Integrate[ {2, 0, 1},

Assumptions - — (Im( );& O\/Im(k) * 0\/
::o/\Re(E)> 1\/1+; =0 A\Retwy <0/
%:zl/\Re(k)zo\/%zzl/\Re(%)+ 1<0\/
Re(%)> 1/\Re(k)zO\/Re(%)+ 1<0 /\ Re(k) <o)]]

Once we know the length of the pendulum and its initial angular
displacement, the oscillation period is completely determined. Since
Mathematica recognizes all elliptic integrals as well as all Jacobian
elliptic functions, we can straightforwardly determine the dependence of
the period on the initial amplitude. A graphical representation of K(k) via
¢, can be found in Figure 2.4.10. We are now able to evaluate the period
T with the following function:
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T[omega , phil ] := Block[{k, duration},
phil ]
2 I

k = Sin[

duration = 4 EllipticK[k?] / omega

]

Our input values are the angle of displacement ¢; and the frequency
Wy = \/m . We first calculate the modulus k> in accordance with the
above definition and then determine the period in accordance with
Equation (2.4.42). As we see from Figure 2.4.10, K(k) with k =1 tends
toward oo (i.e., at the upper point of reversal ¢; = 7, the period is infinitely
large).

Approximated equations are often cited in the literature for the period. To
obtain a valid comparison between exact and approximated oscillation
periods, we use the approximation procedure described below. If the
pendulum oscillates, we know that k < 1. Using this condition, we can
expand the second part of the integrand in Equation (2.4.42) into a Taylor
series:

2.2 44
‘/_1_;222 =1+ e e (2.4.43)

We execute this procedure using

1
res = Series| ———, {k, 0, 8}]
V1-k2z2

272 474 6 1.6 81,8
z“k 377k 572°k 35z°k 9
1+ > + 3 + T + 28 + O(k”)

We have expanded the expression 1 / 1 -k2z2 around k =0 up to the
eighth order by calling the function Series[], which yields a Taylor
expansion. The period is expressed by using the Taylor representation
1 K272 34
1+ 2' +T'+...
dz, (2.4.44)

=) o)

which in Mathematica looks as follows:
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1
4 Normal[res]

o V122

w

TN = Expand|

1225k 257k 9nk* wk® 2n

81920 1280 3w 20

By calling Normal[], we eliminate the symbol O(k°) from the variable res.
After executing the integration of the truncated expression res with
Integrate[] and applying Expand[] to simplify the result, we get the same
result as given by Landau with respect to the first set of orders:

k2 9k*
Ty~ 2% (1 e ) (2.4.45)

To use the same independent variables in a graphical representation, we
replace k by sin(¢, /2). Mathematica executes such a replacement with the
operator ReplaceAll[] (/.) .

1
tn=TN /. k > sin(%)

1225nsin® (%) 257sin®(4H)  9xsin*(4)  wsin’($)  2x

81920 | 128w | 3w | 2w @

In order to get a graphical representation of this approximation, we now
need to specify a value for w in Ty to obtain an expression void of any
parameter. To keep it simple, we choose w = 4. The replacement is

executed by

tn = tn /. w-4;

T and Ty can now be graphically presented as follows:
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Plot[{T[4, ¢1], tn},
{¢1, 0, w}, AxesLabel -> {"¢,", "T,TN"}];

T,TN
4.5
4
3.5}
3
25

05 1 45 2 25 3 "

1.5°

Comparison between the exact period 7 (upper curve) and the approximation 7y with an

Fi 2.4.10.
1gure ) expansion up to the eighth order with wy = 4.

Plot[] here is used together with a list of functions pertaining to the first
argument. The second argument contains the range of representations. The
third argument contains the axis labels.

Figure 2.4.10 shows that for small ¢, the amplitudes between the exact
period and its approximations are negligible. However, the difference
between the exact theory and the approximation becomes larger and larger
for angular displacement larger than ¢, ~ 2. In other words, for large ¢,
(i.e., for large amplitudes), a larger number of higher-order Taylor
components is needed to obtain an accurate representation of the period.

If, however, we make the period dependent on the initial displacement ¢
and note that k is connected to the initial condition via
k=sin(¢,/2) =~ ¢ /2 — qﬁ /48..., the range of agreement is further
reduced by

2 1 11
Ty~ == (1+ 5¢ 61+ 35575 01 +...). (2.4.46)

wWo

The steps in Mathematica for this formulation are
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1
sin = Series[sin(%), {41, 0, 4}];

TN = TN /. k -» Normal[sin];

Expand[TN]

1225 7 ¢1%* 12251 ¢1%2 .
230844665274826752w  1202315964973056 w

85751 120 2562518 46757 p1'°

100192997081088 w _ 6262062317568 w | 38654705664 @
8075 w14 . 217737912 7571 ¢1'°
3623878656 w 905969664 w 6291456 w

9rpl1d 25741 1lxgl*  n¢l?  2n

2097152 w 73728 w 1536 w 8w w

Series[] produces an expansion of sin at ¢; = 0 up to the fourth order. In
the second step, k in Ty is replaced by the series expansion sin and is
simplified by Expand([] in the last step.

Despite the limited accuracy, we can see from this approximation
procedure that the period of a nonlinear problem depends on the initial
conditions. In case of linear approximation, however, the period is
independent of initial conditions.

Solutions for Different Values of Energy

When we look at the potential V(x) =1 —cos(x) for the mathematical
pendulum, we observe that three forms of motion are possible. For a total
energy smaller than the maximum value of the potential energy,
oscillations occur (bound motion). For energy values of E > V,,,«, we get
rotations. Finally, for E = V,,x, we get the asymptotic behavior of the
pendulum (see Figure 2.4.11). The solutions for the different values of
energy result from (2.4.38) in the form of

¢' =4~/ 2 (E—mP W} (1 -cos¢)). (2.4.47)
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V(X)
2 L
1.5
1 L
0.5
X
-3 -2 -1 1 2 3
Figure 2.4.11.  Scaled potential V(x) for the mathematical pendulum.
Scaling the energy with E* = E / (m I> w3), we get
¢'=+wyV2(cosp—1+E*). (2.4.48)

Different forms of motion occur for different values of the scaled energy

E*>2 rotation
Er =2 asymptotic motion (2.4.49)
0<E"<2  oscillations

In the following, we will investigate a case that is characterized by its fixed
energy E* = 2. For this case, Equation (2.4.48) takes the form

¢=xwygV2(cosp+1). (2.4.50)

Substituting cos ¢ = y, we get

y
V2o fldt'= | —2——. (2.451)
L NIy )
The integration of this equation yields
V+y) (1-y?) )
+wo V2 t=-V2 Arctanh| ——=—————|. 2.4.52
V2 1= ~VZ Arctanh{ TR (24.52)

By inverting these functions, the solution for the angle ¢ is obtained:

¢ = arccos(1 — 2 tanh’ wot). (2.4.53)
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From Equation (2.4.48), we get for 0 < E* < 2,
1

4 " _ 1 d¢y
INE 5o | Vew o (2.4.54)

If we replace 1 — E* = cos ¢ and k = sin(¢; /2), we can express Equation
(2.4.54) in the form

y
L dy' -1
tw [dt'= =sn!(y, k), (24.55)
0 fo\/(l—y'z)(l—kzy'z)

where sn is the inverse function of the Jacobian elliptic function, in

Mathematica known as JacobiSN[], and leads to

vy = sn(wy t, k). (2.4.56)
Solving Equation (2.4.55) with respect to angle ¢, we get the expression

¢ = 2 arcsin(k sn(wy ¢, k)). (2.4.57)

If we choose E* > 2, we obtain the solution for the angle by applying a
similar strategy to the one above. The solution is

¢ =2am(<L", k), (2.4.58)

where am denotes the JacobiAmplitude[]. The course of the solutions for
the various k values is k = {0.1, 0.5, 0.9}; different initial amplitudes and
wy =4 are shown in Figures 2.4.12, 2.4.13, and 2.4.14. The figures are
produced with Plot[] as well as with ArcSin[], JacobiSN[], and
JacobiAmplitude[]. The Jacobi elliptic functions have two arguments: the
independent variable wy t and the modulus k.
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2.5

1.5

0.5

05 1 15 2 25 3

Figure 2.4.12.  Solution for E* = 2.

Solutions for 0 < E* <2. The amplitudes of the solution increase by increasing the values

Figure 24.13- ¢ the modulus k = (0.1, 0.5, 0.9).
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35
30
25
20
15
10

1 2 3 4 5 6

Solutions of the mathematical pendulum for E* > 2. The slope of the solution decreases by

Fi 2.4.14.
1gure increasing the modulus k. The three values for & are {0.1, 0.5, 0.9}.

2.4.8.8 Damped Driven Nonlinear Oscillator

Another familiar example is the planar pendulum subject to a driving force
and frictional damping. This example is used to demonstrate that the
incorporation of nonlinearity can result to unpredictable or chaotic
behavior. For the definition of chaos, see Section 2.9. The motion of the
damped, driven pendulum is described by the equation

x"+ax'+ % Sinx =y Ccoswt. (2.4.59)
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Apart from its application to the pendulum, this equation is used to
describe a Josephson tunneling junction. In a Josephson junction, two
superconducting materials are separated by a thin nonconducting oxide
layer. Among the practical applications of such junctions are
high-precision magnetometers and standards of voltage elements. The
ability of these Josephson junctions to switch rapidly and with very low
dissipation from one current-carrying state to another might provide
microcircuit technologies for, say, supercomputers, which are more
efficient than those based on conventional semiconductors. Hence, the
nature of the dynamic response of a Josephson junction to the external
driving force — the cos w fterm — is a matter of technological as well as
of fundamental interest.

One of the characteristics of this equation is the occurrence of chaotic
states. These states depend on the choice of parameters for damping and
driving force. Since standard analytical techniques are of limited use in the
chaotic regime, we demonstrate the existence of chaos by relying on
graphical results from numerical simulations.

We first note that because there is an external time dependence in the
equation of motion, the system really involves three first-order differential
equations. In a normal dynamic system, each degree of freedom results in
two first-order equations and such a system is said to correspond to
one-and-a-half degrees of freedom. To see this explicitly, we introduce the

variable z = w t and rewrite the equation of motion (2.4.59) resulting in

x'= (), (2.4.60)
v'= —av(t) - & sin(x(®) + y cos(z(r), (24.61)
7= (24.62)

The equations show how the system depends on the three generalized
coordinates x, v, and z. Note further that the presence of damping implies
that the system is no longer conservative but is dissipative and, thus, can
have attractors.

Analysis of the damped driven pendulum illustrates two separate but
related aspects of chaos: first, the existence of a strange attractor and,
second, the presence of several different attracting sets and the resulting
extreme sensitivity of the asymptotic motion to initial conditions.
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To identify the signature of chaos, we use the Poincaré technique to
represent a section of phase space. A Poincaré section is a plot showing
only the phase plane variables x and x'. A stroboscopic snapshot of the
motion is taken during each cycle of the driving force. The obtained
complicated attracting set of points shown in Figure 2.4.20 is, in fact, a
strange attractor and describes a never-repeating, non periodic motion in
which the pendulum oscillates and flips over its pivot point in an irregular,
chaotic manner. Before we examine this chaotic behavior, let us first

discuss the regular motion of the system.

Regular Motion

We use for the numerical integration Equations (2.4.60) and (2.4.61). The
relevant system of equations reads

’ dx() o
eql = ot ==V
x'(1) == (1)
av(t)
eq2 = ke y cos(wt) — av(t) + sin(x(®)) (—w?)
V(£) == —sin(x(t)) w3 + v cos(t w) — a v(7)

where we abbreviated g /I = w3, and « and y are the damping constant and
the amplitude of the driving force, respectively. Since we cannot access the
solution of the driven nonlinear pendulum by analytic procedures, we are
forced to carry out numerical integrations. For that reason, we have to
select specific numerical values for the parameters:

parameterRules = {wy - 1, @ > 0.2, ¥ - 0.52, w - 0.694}

{wo—1,- 0.2,y - 0.52, w— 0.694}
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To generate the numerical solution, we select 30 cycles of the driving
frequency for the endpoint in time.

cycles = 30;

The numerical solution then follows from

pts = NDSolve[
{eql, eq2, x[0] == 0.8, v[0] == 0.8} /. parameterRules,
cycles (2 x)

x, v}, {t, 0,
! ! { 0.694

}., MaxSteps »20000]

{{x - InterpolatingFunction[( 0. 271.607 ), <>],
v - InterpolatingFunction[( 0. 271.607 ), <>]}}

The result of the integration procedure is now displayed in phase space by
a parametric plot (see Figure 2.4.15):

ParametricPlot[Evaluate[{x[t], v[t]} /. pts],
{t, 0, 271}, AxesLabel -» {"x", "x'"},
PlotStyle -» RGBColor[0, 0, 0.996109]];

ik

Figure 2.4.15.  Phae space representation of a trajectory for the driven pendulum.
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The solution we gain by NDSolve[] is in principle defined for any value of
x (i.e., x € (—o0, 0)). However, the real motion of a pendulum is restricted
to the range x € (—m, n). Thus, we can reduce the total integration time to
the interval (—z 7). To find the motion modulo 27, we define the function

Mod[x,2 xwl/; Mod[x,2 x] < 7;

red[x 1

red[x ] (Mod[x,2 xw]1-2 n) /; Mod[x,2 x]l > x;

Mapping this function onto the first argument of each of the solutions pts,
we generate a reduced representation of the phase space modulo 27 (see
Figure 2.4.16).

ParametricPlot[Evaluate[{red[x[t]], Vv[t]} /. pts],
{t, 0, 271}, AxesLabel » {"x", "x'"},
PlotStyle -» RGBColor[0, 0, 0.996109]];

Figure 2.4.16.  Reduced phase space for the driven pendulum.

Extending the plot space by the third coordinate, the time #, we get a

three-dimensional representation of the track.
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ParametricPlot3D][
Evaluate[Flatten[{red[x[t]], v[t], red[0.694 t],
RGBColor[0, 0, 0.996109]} /. pts]l].,
{t, 0, 271}, AxesLabel » {"x", "x'", "t"},
PlotPoints » 1700] ;

To show the oscillating behavior of this solution, a Poincaré section is
created by a stroboscopic map (see Figure 2.4.17). We extract only those
points of the solution which are commensurate with the driving frequency:
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ListPlot|Table[Flatten[{red[x[t]], v[t]} /. pts],

27

0.694)}]'

PlotStyle » {RGBColor[l, 0, 0], PointSize[0.025]},
AxesLabel » {"x", "v“}];

{t, 16, 271, 2 (

* B

0.5}
0.25 ¢
°

-3 -2 -1 1 2 3
-0.25¢}

-0.5¢

® -0.75¢ [ )

Figure 2.4.17.  Poincaré section of the driven pendulum for a periodic solution.

Chaotic Behavior

If we change the model parameter in the equations of motion, the solution
of the driven nonlinear oscillator behaves differently from the result found
earlier. Let us consider the damped driven pendulum with parameters
a= %, vy=1.15 and w= % Initial conditions are the same as in the
previous calculation: x(0) = 0.8 and v(0) = 0.8. The procedure to generate
the solution is the same as earlier. First, we define the parameters by

cycles = 300;
parameterRules = {wy - 1, @ > 0.5, y - 1.15, w - 0.6666}

{wo—>1,— 0.5,y > 1.15, w - 0.6666}

The next step generates the numerical solution
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ptsChaos = NDSolve[
{eql, eq2, x[0] == 0.8, v[0] == 0.8} /. parameterRules,

{x, v}, {t, 0, cycles ( )}, MaxSteps -» 200000]

0.6666

{{x - InterpolatingFunction[( 0. 2827.72), <>],
v - InterpolatingFunction[( 0. 2827.72), <>1}}

The representation of the solution in phase space is given by

ParametricPlot|[
Evaluate[{x[t], v[t]} /. ptsChaos], {t, 0, 2827},
AxesLabel » {"x", "x'"}, PlotPoints > 120,
PlotStyle -» RGBColor[0, 0, 0.996109]];

Figure 2.4.18.  Phase space representation of the driven pendulum in a chaotic state.

Comparing Figure 2.4.18 with Figure 2.4.15, we observe that the phase
plane picture is more complicated. A reduction of the phase space to the
interval (—m, m) reveals the impression of a chaotic entanglement (see
Figure 2.4.19):
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ParametricPlot|[
Evaluate[{red[x[t]], v[t]} /. ptsChaos], {t, 0, 2827},
AxesLabel » {"x", "x'"}, PlotPoints -» 100,
PlotStyle -» RGBColor[0, 0, 0.996109]];

Figure 2.4.19.  Chaotic behavior of the driven pendulum in the reduced phase space.

The representation of the solution in a Poincaré section shows that the
intersecting points are not randomly scattered in the plane but are located
along a strange entangled curve. We observe from Figure 2.4.20 that the
motion in phase space takes place on a finite attracting subset. This subset
of phase space has a characteristic shape depending on the parameters
used in the integration process. The complicated attracting set shown is in
fact a strange attractor and describes a never repeating, non periodic
motion in which the pendulum oscillates and flips over its pivot point in an
irregular, chaotic manner.
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ListPlot|Table[Flatten[{red[x[t]], v[t]} /. ptsChaos],

27

0.6666 )}]
PlotStyle » {RGBColor[1l, 0, 0], PointSize[0.012]},
AxesLabel » {"x", "v“}];

{t, 16, 2827, (

\Y
-3+ -2 -1 1 2 3
./",--" -0.5| .
:_,'\ i ‘.
“ .
-  -15]
... .I
._27.. °

Figure 2.4.20.  Strange attractor of the driven pendulum.

A convenient way to delineate the dynamics of a system is given by the
Poincaré section. The Poincaré section represents a slice of the phase
space of the system. For the three-dimensional case under examination, a
slice can be obtained from the intersection of a continuous trajectory with
a two-dimensional plane in the phase space. One method of creating a
Poincaré section is to check the system over a full cycle of the driving
frequency. If we are dealing with a periodic evolution of period #, then this
sequence consists of n dots being indefinitely repeated in the same order
(compare Figure 2.4.17). If the evolution is chaotic, then the Poincaré
section is a collection of points that show interesting patterns with no
obvious repetition (compare Figure 2.4.20). The process of obtaining a
Poincaré section can be compared to sampling the state of the system
randomly instead of continuously.
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2.4.9 Exercises

1. A system of particles moves in a uniform gravitational field g in the
z-direction. Show that g can be eliminated from the equations of
motion by a transformation of coordinates given by

x=x y=y, z=z-1gr

2. A particle of mass m confined to the x-axis experiences a force —k x.
Find the motion resulting from a given initial displacement x, and
initial velocity vy. Show that the period is independent of the initial
coordiates, that a potential energy function exists, and that the energy
of the system is constant.

3. An oscillator moves under the influence of the potential function V
given by

V= %kx2 + Kk x*,

Find the period of the moton as a function of the amplitude and derive
an approximate expression for the period of a simple pendulum as a
function of the amplitude.

4. A particle is attracted toward a center of force according to the
relation F = — mk? /x*. Show that the time required for the particle to
reach the force center from a distance d is d? / k.

5. A particle is projected with an initial velocity vy up a slope which
makes an angle « with the horizontal. Assume frictionless motion and
find the time required for the particle to return to its starting position.

2.4.10 Packages and Programs

This subsection contains some declarations for notations used in the text.
We also made some extensions of functions Cross[] in connection with the
cross-product, the function Dot[] for the scalar product, the function
Derivative[] in connection with vector multiplications, and the functions
Times[] and Equal[] related to the multiplication of equations. The
definitions introduced below allow a more convenient to use of
mathematical expressions in the text. The idea was to generate an

environment for the reader which is very similar to traditional textbooks.
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Notations

Symbolize[wp]

Symbolize[wy , WorkingForm — TraditionalForm]

Symbolize::bsymbexs :
Warning: The box structure attempting to be symbolized has a similar or identical
symbol already defined, possibly overriding previously symbolized box structure.

Symbolize[wg ]

Symbolize[wg , WorkingForm — TraditionalForm]

Symbolize[wg ]

Symbolize[w, , WorkingForm — TraditionalForm]

LaplaceTransform

Notation[ L3-[f_] <= LaplaceTransform[f_, x_, p_],
WorkingForm — TraditionalForm]

Notation[(L‘l)f_‘ [f_] & InverseLaplaceTransform[f , x_, p_],

WorkingForm — TraditionalForm]

Notation[.&’}:[f_] < LaplaceTransform[f , x , p ]]

Notation|[
(L'l)zf[f_] < InverseLaplaceTransform[f , x , p ]]
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Li[0]

(L™ YHelal

Integrate

Unprotect[Integrate];

Integrate[f , {x , x0 , xe }] :=
Map[Integrate[#, {x, x0, xe}] &, £] /; ! FreeQ[£f, Plus]

Protect[Integrate];

Cross Product

al = Attributes[Cross]

{Protected, ReadProtected}

Unprotect[Cross]

{Cross}

ClearAttributes|[Cross, al]

Attributes[Cross]
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Cross[a , b ] :=0/;
a=bA ! FreeQ[a, OverVector] A ! FreeQ[b, OverVector]

Cross[a , b OverVector] :=0 /; FreeQ[a, OverVector]

Cross[b OverVector, a ] :=0 /; FreeQ[a, OverVector]

Cross[c_a , b ] :=
c Cross[a, b] /; FreeQ[c, OverVector] A
! FreeQ[a, OverVector] A ! FreeQ[b, OverVector]

Cross[a , c_ b ] :=
c Cross[a, b] /; FreeQ[c, OverVector] A
! FreeQ[a, OverVector] A ! FreeQ[b, OverVector]

Cross[b , a OverVector] := Map[Cross[#, a] &, b] /;
Head[b] == Plus A ! FreeQ[b, OverVector]

Cross[a OverVector, b ] :=Map[Cross[a, #] &, b] /;
Head[b] == Plus A ! FreeQ[b, OverVector]

Cross[a , b ] :=
(c[x_] :=Map[Cross[x, #] &, b];
Fold[Plus, 0, Map[c[#] &, Level[a, 1]]]) /:
Head[b] == Plus A Head[a] == Plus A
! FreeQ[b, OverVector] A ! FreeQ[a, OverVector]

Cross[a OverVector,
Cross[b OverVector, c_OverVector]] :=
Dot[a, ¢c] b-Dot[a, b] c

Cross[Cross[a OverVector, b OverVector],
Cross[c_OverVector, d OverVector]] :=
(Dot [Cross[a, b], d] ¢ -Dot[Cross[a, b], c] d)
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SetAttributes[Cross, al]

Attributes[Cross]

{Protected, ReadProtected}

Protect[Cross]

Dot Product

a2 = Attributes[Dot]

{Flat, Oneldentity, Protected}

Unprotect[Dot]

{Dot}

ClearAttributes[Dot, a2]

Attributes[Dot]

Dot[a , b OverVector] :=0 /; FreeQ[a, OverVector]

Dot[b OverVector, a ] :=0 /; FreeQ[a, OverVector]
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Dot[a OverVector, b OverVector] := HoldForm[Dot[a, b]]

Dot[a , b ] :=(a/. OverVector[x J[y 1~ x[yl?) /;
a=bA ! FreeQ[a, OverVector] A
! FreeQ[b, OverVector] A FreeQ[a, Plus] A
FreeQ[b, Plus] A FreeQ[a, Cross] A FreeQ[b, Cross]

Dot[a OverVector, b OverVector] :=
(a /. OverVector[x ] -» x?) /; a == b AFreeQ[a, Plus] A
FreeQ[b, Plus] A FreeQ[a, Cross] A FreeQ[b, Cross]

Dot[c_a , b ] :=cDot[a, b] /; FreeQ[c, OverVector] A
! FreeQ[a, OverVector] A ! FreeQ[b, OverVector]

Dot[a , ¢ b ] :=cDot[a, b] /; FreeQ[c, OverVector] A
! FreeQ[a, OverVector] A ! FreeQ[b, OverVector]

Dot[b , a OverVector] := Map[Dot[#, a] &, b] /;
Head[b] == Plus A ! FreeQ[b, OverVector]

Dot[a OverVector, b ] := Map[Dot[a, #] &, b] /;
Head[b] == Plus A ! FreeQ[b, OverVector]

Dot[a , b ] :=
(c[x_] :=Map[Dot[x, #] &, b];
Fold[Plus, 0, Map[c[#] &, Level[a, 1]1]) /:
Head[b] == Plus A Head[a] == Plus A

! FreeQ[b, OverVector] A ! FreeQ[a, OverVector]

Dot [Cross[a OverVector, b OverVector],
Cross[c_OverVector, d OverVector]] :=
Dot[a, Cross[b, Cross[c, d]]]
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Dot[a OverVector, Cross[c OverVector,
d OverVector]] :=0/; c==aVas==

SetAttributes[Dot, a2]

Attributes[Dot]

{Flat, Oneldentity, Protected}

Protect[Dot]

Derivative

a3 = Attributes|[D]

{Protected, ReadProtected}

Unprotect[D]

{D}

ClearAttributes[D, a3]

Attributes[D]

D[Equal[a , b ], t ] :=Equal[D[a, t], D[b, t]]
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D[Cross[a , b ], t ] :=
Cross[D[a, t], b] + Cross[a, D[b, t]] /;
! FreeQ[a, OverVector] A ! FreeQ[b, OverVector] A
! FreeQ[a, t] A ! FreeQ[b, t]

D[Times[c , Cross[a , b ]], t ] :=
c (Cross[D[a, t], b] + Cross[a, D[b, t]]) /:
! FreeQ[a, OverVector] A ! FreeQ[b, OverVector] A
! FreeQ[a, t] A ! FreeQ[b, t]

D[Dot[a , b ], t ] :=Dot[D[a, t], b] +Dot[a, D[b, t]] /;
! FreeQ[a, OverVector] A ! FreeQ[b, OverVector] A
! FreeQ[a, t] A ! FreeQ[b, t]

D[f , t ] :=Map[D[#, t] &, £] /;
(! FreeQ[f, Cross] V! FreeQ[£f, Dot]) A
! FreeQ[f, OverVector] A Head[f] == Plus

SetAttributes[D, a3]

Attributes[D]

{Protected, ReadProtected}

Protect[D]
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Times

a4 = Attributes[Times]

{Flat, Listable, NumericFunction, Oneldentity, Orderless, Protected}

Unprotect[Times]

{Times}

ClearAttributes[Times, a4]

Attributes[Times]

Times[Dot[a , b ], ¢ ] := Times[Dot[a, c], b] /;
! FreeQ[b, Dot] A ! FreeQ[c, OverVector]

SetAttributes[Times, a4]

Attributes[Times]

{Flat, Listable, NumericFunction, Oneldentity, Orderless, Protected}

Protect[Times]
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Equal

a5 = Attributes[Equal]

{Protected}

Unprotect[Equal]

{Equal}

ClearAttributes[Equal, a5]

Attributes[Equal]
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(hkkkdkhkhkkrhhhhhhhhhkkhhhhhrkhkhrkhhhkkrhhkdkrk)
Equal /: Integrate[left ==right , limits ] :=
(kkkkhkhrkhhhkkhhhkhrhhkkrkhhhkkhhhkkrkhkkrkhk)
Block[{lhs = Expand[left], (¥left hand sidex)
rhs = Expand[right] (#*right hand sidex)},
(*hint:There is no other need of an
integration constant orx) (¥xof another

lower integration level instead of Zero:x*)

Off[Integrate: :gener];
If[! AtomQ[lhs], If[Head[lhs] === Plus,
lhs = Map[Integrate[#, limits] &, 1lhs];,
lhs = Integrate[lhs, limits];];,
lhs = Integrate[lhs, limits];];
If[! AtomQ[rhs], If[Head[rhs] === Plus,
rhs = Map[Integrate[#, limits] &, rhs];,
rhs = Integrate[rhs, limits];];,
rhs = Integrate[rhs, limits];];
On[Integrate: :gener];

(*return resultx)

lhs == rhs]

Equal /: Plus[left_ ==right , term ] :=

Plus[left, term] == Plus[right, term]

Equal /: Times[left ==right , term_ ] :

Times[left, term] == Times[right, term]

(*Equal/:f [left ==right ]:=
f[left]==£f[right]/;Fold[And, True,Map|[
FreeQ[f,#]&, {List,Rule,RuleDelayed, ToRules}]]*)
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Fold[And, True,
Map[FreeQ[£f, #] &, {List, Rule, RuleDelayed, ToRules}]]

True

SetAttributes[Equal, a5]

Attributes[Equal]

{Protected}

Protect [Equal]

RHSTOLHS = Equal[a , b ] :» Equal[a-Db, 0]

a_::b_l—)a—b::o

LHSToRHS = Equal[a , b ] :» Equal[0, b-a]

a_::b_l—)O::b—a

Plus[a == Db, c]

a+c==b+c

a+ (b==c)

a+b==a+c
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Times[a == b, c]

ac==bc
d (c == b)
cd==bd

J(f[x] == g[x?]) dx

f(—kx)[x] dx== fg(xz) dx

a==b

Va=h

Log[a ==Db]

log(a) == log(b)

f[a ==Db]

(=k x)[a] == (—k x)[b]
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2.5 Central Forces

2.5.1 Introduction

This section discusses the two-body problem in a central field. We restrict
our discussion mainly on planet movements. The nonintegrable problems
in central fields are briefly discussed and examined.

The motion of a two-body problem with central forces is important with
respect to its applications. This kind of model is applicable to macroscopic
as well as microscopic systems. An important macroscopic example
governed by these laws is the motion of planets around the Sun. A
microscopic example from atomic physics is the movement of electrons
around a nucleus. An example in between the macroscopic and the
microscopic range is the scattering of a-particles on gold atoms, so called
Rutherford scattering.

We mentioned in Section 2.4.6 that gravitation is the weakest force of the
four fundamental forces. This kind of force is negligible in considerations
concerning nuclear components such as neutrons and protons. It also is of
no importance if we examine interactions of molecules and atoms.

In our daily life, gravitation is omnipresent but does not influence our
actions. For example, a sky scraber with its mass has some gravitational
influence on a car standing in front of such a building. However, the
strength with which the building interacts with the car is much smaller than
the interaction of the car with the Earth. Gravitation is an important factor
if we consider the interaction of planets. It is only gravitation which holds
us to Earth, which determines the movement of Earth around the Sun, and
which determines the motion of planets in the solar system. Gravitation
also is responsible for the development, creation, and history of stars,
galaxies, and the whole universe. Gravitation determines the evolution of
our life and the development of our universe.
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2.5.2 Kepler's Laws

The dark sky with its myriads of stars always impressed mankind. At the
end of the 16th century, Tycho Brahe (1546—-1601) examined the sky with
great accuracy. These experimental data were the basis for his co-worker
and successor, the imperial mathematician Johannes Kepler (1571-1630)
(see Figure 2.5.1).

Johannes Kepler born December 27, 1571 in Leonberg/Wiirttemberg and died Nvember 15,

Figure 2.5.1. 1630 in Regensburg.

In a laborious work, Kepler extracted from these observations his three
general planetary laws. In his famous Rudolphine tables, he summarized
his work, which took him 20 years to the completion. He demonstrated in
his Astronomia nova that the planetary tracks are ellipses slightly deviating
from a circle. Also in this work, he discussed the velocity of planets, which
is highest in the perihelion and lowest in the aphelion. In his extensive
calculations, Kepler derived a mathematical expression connecting the
mean diameter of a track with the period of revolution around the Sun. The
last law was given by him in his 1619 published book Hamonices mundi
10 years after the formulation of his first and second law. These three laws
were the basics for Newton's theory on gravitation. The three laws by

Kepler read as follows:

L All planets move on ellipses around the Sun.
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1L In equal times, equal areas are scanned by a planet.

III. The square of the period is proportional to the third power of
the mean radius.

Kepler, for example, determined that the Earth's track is nearly circular
with its shortest distance in the perihelion of about 1.48x 10''m and the
largest distance in the aphelion of about 1.52x10''m. The mean radius of
the track around the sun is approximately 1.5x10''m. This quantity is
today defined as an astronomical unit (AU).

Later, Newton demonstrated mathematically that the planets of the solar
system move on ellipses, parabolas, or hyperbolas in a ¥~2-force field. This
kind of curves also occur in conic sections. This is the reason why Kepler's
paths are also called conic sections. Figure 2.5.2 demonstrates the four
types of conic section.

Hyperbola Parabola

Ellipse Circle

Conic sections. The sections are created by intersecting a cone with a plane. Different
Figure 2.5.2.  section angles between the center line of the cone and the plane result to different
intersecting curves.

This figure demonstrates that circles also occur as a deviation from
ellipses. Circles and ellipses are those paths on which planets move
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periodically around the Sun. On parabolas and hyperbolas, objects move
only once in the direction of the force center and then depart from it to
infinity. Kepler was a harmony-loving man who connected the different
planet paths of the solar system with the platonic bodies known at that
time. His idea was that each platonic body is connected with the period of
a planet (see Figure 2.5.3).

: al:uMulmiJ:%;n&rtxsm&%wm L3
ko i do oo oo Fepratcolers

Figure 2.5.3.  Planet model by Kepler represented by the platonic bodies.

It is remarkable that Kepler was the one and the only at his time who could
calculate the exact position of a planet with high accuracy. The main tool
for his calculations was his collection of data in the Rudolphin tables.
These tables were published by Kepler after a long journey in 1628 to Ulm.

Later, Newton demonstrated that an ellipse is a possible track in a 1/72
potential. The first law by Kepler becomes with Newton's theory a
mathematical basis. The second law by Kepler that the areas of scanned
arcs are equal is supported by the central action of forces between the Sun
and a planet. These forces are called central forces.

The following illustration shows a consequence of Kepler's second law.
The planet moves in the vicinity of the Sun faster than far away from it. As
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we will see, this behavior is closely related to the conservation of the

angular momentum.

0.3

0.1
_0'5\8;11
03

The third law by Kepler relates the time of revolution with the mean

distance between a planet and the Sun. If we denote the mean distance of
the planet from the Sun by r and the time of revolution by T, we are able to

mathematically formulate the third Kepler law by
T?> = CP, (2.5.1)

where C is a universal constant for the planet system. This relation is a
direct consequence of the 1/72 force law. If we are interested in the period
of revolution of Jupiter around the Sun, we can use Kepler's third law. The
unknown constant C is determined from the Earth's period of revolution by

¢ = Solve[T?. == Cry,, C] // Flatten

2
{C—) ’I,;E:}

For Jupiter's period, we find

Solve[T; == Cr} /. ¢, Ty]

3/2

3/2
rj TEr rj TEr
{{T’ cTT } {T’ ST }}
I'gr TEr

where we used C from the calculation for the Earth. This demonstrates that

the knowledge of the mean distances allows us to determine the times of
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revolution. The mean distances for our solar system in astronomical units
(AU) are known to be

planetList = {{Mercury, 0.387"}, {Venus, 0.7237},
{Eros asteroid, 1.457}, {Earth, 1}, {Mars, 1.5237},
{Ceres asteroid, 2.767"}, {Jupiter, 5.27},
{Sarturn, 9.57"}, {Uranus, 19.287},

{Neptune, 30.14"}, {Pluto, 39.887}};

TableForm[planetList]

Mercury 0.387
Venus 0.723
asteroid Eros 1.45
Earth 1
Mars 1.523
asteroid Ceres 2.767
Jupiter 5.2
Sarturn 9.57
Uranus 19.28
Neptune 30.14
Pluto 39.88

A graphical representation of these data in connection with Kepler's third
law shows a linear dependence with slope @ = 3 /2 in a log-log plot:
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Tyl
100
10
1
Mercury
r [AU]
05 1 5 10 50

This double logarithmic representation of data shows that a scaling law
between time and distance exists. This characteristic behavior relates time
and distance via a finite transformation as

=ab (2.5.2)
B r, -

~Nt

where a = const. Eliminating the constant a, it follows that

2
[2

- L (2.5.3)

~t |Nl
1)

Scaling time by a and the orbit by a??, we get another orbit and another
time of revolution. Both orbits are related by the relation ?2 / P = /3. In

fact, this relation is, in essence, the third law by Kepler.
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2.5.3 Central Field Motion

This subsection discusses the movement of two bodies interacting via a
gravitational field. We note that all central force problems are integrable.
Our system consists of two masses m; and m,. The interaction of the
masses are described by an interaction potential U. The assumption here is
that interaction of the two particles only depend on relative coordinates
71 — T, or velocities 7'; — 7', (prims denote differentiation with respect to
time). Such a system possesses six degrees of freedom and, thus, six
generalized coordinates. These six degrees of freedom are mathematically
represented by the center of mass R and the difference vector 7 =7, — 7»
(see Figure 2.5.4).

Characteristic configuration of a two-body problem. The two masses m; and m, are a

Fi 2.5.4. N
1gure distance r away from each other. The center of mass is given by R.
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The center of mass in a two-body system moves like a single particle. The
forces acting on the single particles are transformed to the center of mass.
The equations of motion for the single particles with masses m; and m, are

given by
detet = my 2D __ Py
articlel = m == t
- ' Totar !
my # (1) == F (1)
and
70 R
particle2 = m, ==F,@®)

my 7% (1) == Fo(t)

Adding up both equations, we find

cmMotion = Thread[particlel + particle2, Equal]

mi 7 () + my 7 () == F1 () + F(t)

Defining the center of mass by

mq F1(t) + my P2 (t)

M

cm = ﬁ(t) ==

my 71(1) + my T ()

ﬁ(l) == "

with M = m; + m; and replacing 7| by (M R-m Tz)/ml in the center
of mass equation, we get
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. M R(@) - my75(0)
cmMotion = cmMotion /. {r1 - Function[t, —]}
my

MR ) ==F 1)+ F20)

Since the forces in the system are central forces and since the masses m
and m; are interchangeable, we must consider

F, = -F, (2.5.4)

by Newton's second law. Thus, the center of mass moves in a force-free
state:

emMotion = cmMotion /. F 1(t) -» —F »(t)

MR (1)==0

Taking into account Newton's first law, the center of mass is at rest or
travels with constant velocity.

On the other hand, subtracting both equations of motion, we get

particlel  particle2

rel = Thread[(Thread[#l, Equal] &) /@ ( ), Equal]

my my

Fi)  Fa0)

ny

W=7 (1) ==

We introduce the reduced mass u by

mym;
reducedMass = y == ————
my+my

my nmy
my +nmy
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Here, u is always smaller than the smallest mass. Inserting this relation
into the difference of the equations of motion and transforming to relative
coordinates 7, we find

rel = Simplify[rel /. {#; - Function[t, 7(¢) + 72(®)],
Fi- Functiont, F o), Fio Functiont, -F ol}]

P (1) == (mi2 + mil)f(t)

With the reduced mass replaced, we get

relEquation = Simplify[rel /. Flatten[Solve[reducedMass, m]]]

The introduction of center of mass and relative coordinates allowed us to
separate the two-body problem into two independent problems. First, the
center of mass moves force-free and, second, the fictitious particle with
mass u is governed due to the central force F in direct connection to the

masses.

The equation of motion for the center of mass delivers

DSolve[cmMotion, §[t] , t]

{{F(t) -c+ tcz}}

meaning a center of mass at rest (c; =0) or a movement with a constant
velocity (c; # 0). The constants ¢; and ¢, are determined by the initial
conditions of the motion.

The relative movement is described by a fictitious particle. The force F

governing this movement can be directed toward the center of mass or in
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the opposite direction. The direction of the force determines some
properties of the movement. The instrumental behavior is that the force is
a central force. The following observations summarize these properties.

First, we observe the following:

The movement under the action of a central force always is bound to a
plane.

This property is obviously governed by the direction of the force, the
direction of the location vector, and the acceleration. The central force and
the acceleration are parallel to the position vector 7. Thus, 7", 7', and 7 all
belong to the same plane. The particle will never leave this plane because

there is no force component directing outward this plane.

Second, we observe the following:

The angular momentum is a conserved quantity.

The angular momentum L along the track is

angularMomentum = L(?) = F() x (£

L(1) == /) xP(t)

with P the linear momentum given by P = u7'. Replacing p by this
expression in the representation of the angular momentum, we obtain

ar@)
angularMomentum = angularMomentum /. p(¢) - u —é—t—

L(t) == pi(0) <7 (1)

Differentiating this expression with respect to time, it follows that
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dangularMomentum
ot

timeDerivativeOfL =

L () == ui)x#" (1)

Since 7 is parallel to 7" (i.e., 7" = a7) the temporal changes in L are thus

2 -
r
timeDerivativeOfL = timeDerivativeOfL /.

' (==0

This relation shows that L is a conserved quantity:

DSolve[timeDerivativeOfL, i, t]

{{L > Function[{#}, c11}}

L is fixed for all times in direction as well as in total.

These two properties are major consequences of the central character of
the acting force. In each two-particle system with central forces, these
properties hold.

Because the force in direct connection between the particles is only
dependent on the radial distance, we restrict our considerations to the case
where the interaction potential U = U(r) is a pure function of the distance
r. Note that the force is derivable from U by the gradient. The behavior of
radial dependence only establishes a spherical symmetry of the problem,
meaning that an arbitrary rotation around any axis will not change the
solution of the problem. The spherical symmetry simplifies the problem
because there are conserved quantities related to this symmetry.
Especially, the angular momentum is such a quantity.
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Figure 2.5.5.  Geometrical relations between momentum 7 and radius # definig the angular momentum L.

It is natural to use spherical coordinates (r, 6, ) for a spherical symmetric
problem. r is the radial coordinate, ¢ is the zenith angle, and 8 describes
the azimutal angle. If we chose the polar axis as the direction of L, then the
movement always is perpendicular to L (see Figure 2.5.5).

The mathematical description of the movement can be based on cartesian
coordinates. The position vector 7 is represented by

X = {x(@), y(@), z()}; X¥ // MatrixForm

x(1)
¥(@®)
Z(1)

The kinetic energy in cartesian coordinates is given by

1
oy B (OcX) . (OcX)

1
S H W@+ YO +Z @07
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Now, the transformation to spherical coordinates can be carried out by the

following transformations:

coordinates =
{x » Function[t, r[t] Sin[6[t]] Cos[¥[t]]].,
y -» Function[t, r[t] Sin[6[t]] Sin[¥[t]]].,
z » Function[t, r[t] Cos[6[t]]]};
coordinates // TableForm

x — Function[#, r(¢) sin(6(¢)) cos((2))]
y — Function[z, r(¢) sin(6(2)) sin((2))]
z = Function([t, r(f) cos(6(1))]

Since ¥ is a fixed quantity ( = 7), the kinetic energy is simplified to

n
kineticEnergy = Simplify[7 /. coordinates /. - Function]t, —2—]]

% w (@O + (0?60

This expression represents the kinetic energy in polar coordinates. The
constant angular momentum py = / is determined from this expression by

OkineticEnergy

angularMomentum = ——— ==
36(t)
0=

ur)? e ==1

The fact that [ is a constant has a geometrical interpretation. The position
vector 7 overrides in a time interval df a certain area dA (see Figure 2.5.6):

2 dé
dA = ——
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Figure 2.5.6.  The position vector 7 overrides in a time interval df =, — t; an area dA.

This expression divided by dt generates the area velocity:

dA@) r@)> d o) 1

dt ~ 2dt 2u

1 /
A1) == 5 )’ 00 == e

We observe that the area velocity is a constant of motion. This relation
was first established by Kepler in 1609. He derived this relation on an
empirical basis by studying Brahe's (died 1601) observations. It is of
fundamental importance that the second law by Kepler is not related to the
1/72 dependence of the Newtonian force field. However, it only resides on
the existence of central force. Thus, this law exists for any central force
problem independent of the structure of the force field.

I addition to the conservation of the linear momentum of the center of
mass and the conservation of the angular momentum, the kinetic energy of
the relative movement is conserved:
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totalEnergy = H == KkineticEnergy + U (r(¢))

H==U(®)+ %u (0 + 1) 0 ()

or with

20(t)
sangular = Flatten[Solve[angularMomentum, -—a—t—-]]

, I
{ow- 7 }

we find

totalEnergy = Expand[totalEnergy /. sangular]

2

12 (1)

H==U?)+ %y( + r’(t)z)

2.5.3.1 Equations of Motion

Knowing the total energy and the interaction potential U(r) of the
two-body problem allows us to derive the equations of motion. The
equation depends on the two conserved quantities H and [, the total energy
and the angular momentum, respectively. Solving the total energy with
respect to ', we find the equation of motion for the radial coordinate:
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eql =
Flatten[Simplify[Solve[totalEnergy /. (9; rle)? = &, 111 /- k = @, r[t])? /.
Rule —» Equal // Flatten[Solve[#, 0,r[f]]] &

iviJzﬁy—H+Umm
N :

{r/(t) - -

iVZJzﬁﬁ—H+Umm

r(t) - Nm }

We select the second solution because of the plus sign:

equationOfMotion = eq1[[2]

iﬁ\/ﬁ—H+U(r(t))

rt) -
Vi

Since the result is separable, we solve this expression with respect to dt

and carry out an integration on both sides:

[rai=- f\/ ar

5 +H-U®))

The above integral delivers an expression for ¢ = #(r) as a function of time.
If we can invert this expression, we get the radial distance as a function of
time. An alternative representation is gained by eliminating time as an

parameter by the relation
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dodtdr  B2dr
pathEquation = d 6 == ==
dtdr or(®)
o

Using the conservation of the angular momentum by the definition
6' = 1/(ur?), we can write

l

urri

de = dr. (2.5.5)

In addition, the total energy delivers r' and thus we get

pathEquation /. sangular /. equationOfMotion /. r(t) - r

ildr

\/Erz\/ﬁ —L—H+U(r)

2r2p

==d0

Integrating both sides, we find

)
fldﬂ::f dr

VIR VR || =5t + 1 - 00

| | ———dr
2
2| =5 U

V2 Vi

0 ==

Since [ is a constant of motion, the sign of §' cannot change. Thus, the
angle 6(¢) is an monotonous increasing function in time.

So far, we gained a formal solution of the equation of motion. The explicit
solution of the problem depends mainly on the interaction potential U(r).
Such solutions are symbolically accessible for a certain kind of forces
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F(r)=—0,U(r). In cases where the potential U(r) ~ r**! is represented
by a power law relation with n an integer or rational expression the
solution is given by elliptic integrals. For the specific cases n = 1, -2 and -

3 the solutions are known symbolically.

2.5.3.2 Orbits in a Central Force Field

The radial velocity of a fictitious particle with mass u is determined by the

relation

equationOfMotion /. Rule » Equal

iJEJE%ﬁ—H+Umm
Vi

7 (t) ==

It is obvious that the radial velocity vanishes if the particle comes to rest.
This situations occurs at a turning point when the particle changes its
direction. If the radial velocity vanishes, then the following relation must
hold:

12

turningPoints = — +H-U@r) ==

2ur?

12
21

+H-U()==0

Because this relation is at least quadratic in r, we can expect that under
certain conditions, there exist two turning points. These two points can be
finite ry;, and ry, or one of these points is located at infinity. Under
certain conditions determined by U(r), H, and [, there exists only one
turning point. A detailed discussion is given below. In such a case, we have

r'=20 (2.5.6)

for any time ¢. This property means r = const. or the orbit is a circle.
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If the motion of the particle is periodic in the potential U(r), then we find
two turning points. If, in addition, the radial oscillations are rational
commensurable with the angular oscillations, then we find closed orbits.
The following illustration shows two examples of such orbits.

If, however, the radial and angular frequencies are rational
incommensurable, then the orbits are not closed. The particle now sweeps
out the complete space without any recurrence of the orbit. Two examples
of this behavior are given in the following illustrations.
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Mathematically, this behavior is determined by the formula
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max

1
———————— 7
' 2
Fanin r2 r—2;—2H+2U(r)
Vu

AO==-2il

[ 272 closed orbits
Af = | n ) (2.5.7)
any, open orbits.

2.5.3.3 Effective Potential

Up to now we discussed different principal forms of orbits. However, we
did not solve the problem by integration. This subsection discusses under
which conditions a solution is derivable and what kinds of solution are
allowed.

For example, we know that the radial velocity v can be determined by the
total energy H and the angular momentum /. The radial velocity r'=v is
gained from energy conservation:

v2

totalEnergy = H == HT +U(®r)

H== ”TV )

or

velocity = Solve[totalEnergy, v] // Flatten

(oo NG | NIV
Vi oo Vu

In the case of planetary motion, we already know the radial velocity:
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equationOfMotion /. Rule -» Equal

iﬁ\/ﬁ—bHU(V(l))
Vu

7 (t) ==

The right-hand side of this expression follows from the total energy. In
addition to the total energy H and the potential U(r), this expression
contains a term expressed by

12 1 2[60(t) ]2
_ == — pur?| —
2r2p 2 ot
2 1
_ —_— r2 (2
Y > Ho@

This relation expresses the rotational energy on the orbit. Because the
left-hand side shows a radial dependence, we can interpret this term as a
sort of effective potential. The part of the total potential is given by

12

2 ur?

12

22 u

The related force corresponding to the orbit potential is

cForce = -0.U.

l2
ru
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This kind of force is known as centrifugal force. The conventional

representation of this force is written as
F. = mra?, (2.5.8)
where m is mass and w is the frequency of revolution. This kind of force

was first introduced by Christian Huygens (1629-1695). If we identify w =

6' and u = m, we are able to write

d 1 | \
Fc= E(ilurzgz):lurez (259)

. . . 2 . . .
This allows us to identify ﬁ as a centrifugal potential. Because U, is a
pure function in r, we can combine the interaction potential U(r) with U,

to an effective potential. This potential is

lZ

effectivePotential = +U)

ur?

2

212 u

+U(r)

The effective potential is an fictitious potential consisting of the real
interaction potential and a part containing the energy of rotation.

In Newton's theory of the two body problem the central force is assumed to

decrease quadratic in the radial coordinate

k
force = — —
o
k
=

The related potential is thus given by
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The effective potential U, then takes the explicit form:

effectivePotential
2 k
2r2u  r

A graphical representation of the effective potential is given in figure 2.5.7.

12 1.4

Figure 2.5.7.  Effective potential for central forces.

In this representation of the effective potential Uy, we assume the
vanishing asymptotic behavior for » - co.

Figure 2.5.8 shows the effective potential with three different values for
total energy. The three values for the total energy H;, H,, and Hj
characterize three different regimes of orbits.
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Figure 2.5.8.  Three regimes of motion (circular, elliptic, hyperbolic).

First, if the total energy H; = 0, then the motion on the orbit is infinite. In
this case, the fictitious particle moves in the direction of the force center at
r =0 and repells at r = rjat the force wall. The vertical distance between
the total energy H| and the potential U(r) is given by the kinetic energy
T = % wr'?. If the particle hits the potential wall, the total energy and the
potential energy become identical. At this point, the particle comes to rest
(.., r'=0).

The second case is given where H, < 0. Here, we find two turning points
located at r, < r < ry. Again, in r, and r4, the radial velocity vanishes;
that is '=0 and the sign in front of r' changes. Since we have two
changes of the sign, the particle oscillates between the two radii.

The third case is defined by H3. In this case, the total energy H = H3 is
always equal to the potential energy at the potential minimum
H; = U (rmin)- The radial velocity is always zero; that is the radius is a
finite constant. Thus, the particle moves on a circle around the force center
at r = 0. Energies smaller than Uett (Fmin) = —p k% /(21%) are of no
physical relevance because here 7' < 0 (i.e., imaginary velocities).



2. Classical Mechanics 227

2.5.3.4 Planet Motions

Taking into account the forces derived in the previous subsections, we can
use Newton's equation of motion to write down the second-order equation
for the radial component:

> a(_'_’_ — L
. o°r(@) 2002 1©
KeplersEquation = u == -
ot ot or()
P k

WO e

The acting forces are the gravitation force and the centrifugal force. The
aim of this subsection is to solve this equation of motion. The equation of
motion is primarily a second-order nonlinear time-dependent ordinary
differential equation. Our interest is to find the orbit of the particle defined
by the radial and angular coordinates. Our goal is to find a relation which
connects the radial coordinate with the angular coordinate; that is, we are
looking for a relation r = r(f). In a first step, we represent the angular
momentum of the particle on the orbit by 6'. The total energy then
becomes

a0(t)
KE = KeplersEquation /. I - pr(f)> =

s / k
pr () == ur() 0'(1)° - o

This equation is the starting point of our examinations. We get a
parameterization of the orbit by 6 if we introduce the following
transformation:
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1
trafol = u(0(¢t)) == —
r(t)

1
u(B0) == o~

Differentiation of this transformation with respect to time and a solution
for du/dé, we get

dtrafol Ju(6(t))
sol1 = Flatten|Solve| , |] /- Rule - Equal
ot 200(t)
, . rm
{wom == Eﬁ%ﬂ

On the other hand, we know that the angular momentum is given by the
relation 72 @' = [/ u. This provides the substitution

a0(t) 1
substitution2 = —— -

ot ur@®?

PO ey

With this relation, du /d# is represented by

sol2 = soll /. substitution2

4oy

{wom) == -

Differentiating a second time with respect to time and solving for r
delivers
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dsol2 &’ r()
sol3 = Flatten[Solve[ 5 ]]
ot atot
{r) - - L0
u

Now, replacing €' and r by the above derived relations, we finally get

substitution3 = sol3 /. substitution2 /. r(t) > ———
u(0())

P u) u(6) }

{ro- -

This relation can be simplified by applying the found substitutions for 7",
r, and 6'. The equation of motion now reads

KkEu = KE /. substitution3 /. substitution2 /. r(t) -
u(0@®)

_Pu@o) u0@) P u@@)’
M

— ku(6(n))*

A solution with respect to u" gives

*u(0@)

KEU = Solve|kEu, ————
d6(t) 6()

| /- (Rule > Equal, 6¢:) - 6}

2 3
,u(l Liﬁ(‘}) k u(@)z) )
2 u(6)*

(w@) == -

This equation can be simplified again if we introduce a translation in u by
an amount of ku/(?) providing the new dependent variable
y =u—ku/(l%). Applying this transformation to the equation of motion
gives the simple equation
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kp
kEUe = Simplify[KEU /. u - Function[#, = y®]]

(YO +y"(®)==0)

However, this equation is identical with the equation of motion for a
harmonic oscillator. We already know the solutions of this equation which
are given by harmonic functions with 6 as an independent variable. The
solution of this equation follows using

solution = Flatten[DSolve[KEUe[1], y, 61]

{y — Function[{6}, ¢ cos() + ¢, sin(0)]}

Here, ¢; and ¢, are constants of integration. ¢; and c, are determined by
the initial conditions (i.e., the total energy). To fix cjand c¢;, we multiply
the radial equation of motion by r":

or(t)
ke = KeplersEquation

2

’ 7 — _ L ’
pr' 0o ——(—Mt)3 o )r(z)

Integrating with respect to time delivers

totalEnergy = f kedt /. RHSToLHS /. 0 > H

2

1 k
—— + —ur(t} - —==H
2 1) > H Q]

"

Applying to this relation the transformations for r', r, u, and §' we gain
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tEnergy =

auO®)
1 ar(t) 900
%

. - .0 0/.
u(6(t)) ot 7] 66> 6/

totalEnergy /. r(¢t) -

. kp
u - Function[6, 5 +y(©0)]

2
(% +y0) _k(ku o 2y®? _

- =H
oy nt ¥(0) By

Inserting the solution y = y(f) into this relation and choosing c¢; = 0, we
find

Energy = tEnergy /. solution /. ¢c; - 0 // Simplify

23 uk?
=2 ,n
2u 22

This expression relates ¢; with / and H. Solving with respect to ¢, delivers

const = Simplify[Solve[ Energy, c]]

Inverting all transformations so far used, we find the final solution

k 1
gh=u(f) == —” + y(0) /. solution /. c2 = 0 /. u() > —— /. const[2]
2 r(0)

L kn, VA 1 2H cosO) Vi

r(6) 2 )

The representation of the solution can be improved by introducing the
following expressions:
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12
gh =gh |— | // Simplify
ku

kur@ M

2 1+ ”[—’2‘2 +2 H cos(6) .
+

Coefficient[qh[2]), cos(0)] == €

l\/ﬁ[éz— +2H

—_— == c

kN

and

Coefficient[gh[2]), cos(6)]

z\//‘,—’;2+2H

kN

sh = Flatten[Solve[ Coefficient[qh[2], cos()] == €, H]]

202 _
{H—> k (62121)/.1}

Applying these substitutions to the original form of the solution, we obtain

shh = SimplifyAll[gh /. sh /. I* > k p a]

2 = ecos(®) + 1
rg) == €COS

This relation is known as the standard representation for conical sections.
Johann Bernoulli (1667-1748) was the first to demonstrate that orbits in a
1/r potential are identical with conic sections (1710). € in the above
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expression is the eccentricity of the orbit and 2@ determines the latus
rectum of the orbit.

The above equation approaches a minimum in r if cos(f) reaches a
maximum (i.e., 8 = 0). Closely related to this behavior is the determination

of the integration constant c,; that is we measure 6 starting at 7.

Since the eccentricity is closely related to the energy, the type of the orbit
can be determined by this parameter. The following table collects the
different types of orbit and connects them with the energy and eccentricity:

e>1 H>0 hyperbolas

e=1 H=0 parabolas

O<ex<1 Unin< H<O0 ellipses

€e=0 H=Uy circle

e<0 H < Upin not allowed
Table 2.5.1.  Different motions in a central force field.

The equation for conical sections is also graphically accessible if we
represent r and 6 in cartesian coordinates. The equation in cartesian
coordinates reads

ck=shh /. r[6] »r /. {r—>‘\lx2+y2, 6 -» ArcTan[x, y]}

a

Va2 +y?

==ecos(tan"!(x, y)) + 1

The Figure 2.5.9 contains the different types of orbit:
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The classification of the orbits by means of the eccentricity € is equivalent to the

Figure 2.5.9. X . . . .
g classification due to the energy values in an effective potential.

The following considerations discuss the connections among energy,
angular momentum, and the parameters of the orbit (i.e., eccentricity,
mean distances of the ellipse from the center, etc.). The geometrical
notions are given in the Figure 2.5.10.
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Geometric relations for the two-body prolem. P denotes the focus of the track, a and b are

Fi 2.5.10. . . . e
igure 2.5.10 the principal axis of the ellipse. € and « denote the eccentricity and the latum rectum.

Figure 2.5.10 shows that the larger principal axis can be expressed by
minimal and maximal radius of the ellipse:

2a = Fmax + Tmin- (2.5.10)

By definition, the velocity vanishes in the aphelion and in the perihelion.
This behavior guaranties that ry;, and r,,x are solutions of the following
relation:

ar(t)
turningPoints = totalEnergy /. {T -0, r@ - r}

The two solutions are

st = Solve[turningPoints, r]

{{r_) Ve k-Vuk2+2HE } {r_) Vuk?+2H2 -k«/ﬁ}}
2HA | 2HE
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On the other hand, the two extremas in r are represented by € and @ with

the help of
1%
Fmax = 1—c
a
1-€
and
1%
Fmin =
e+1
a
e+1

Both relations follow directly from the orbit geometry. The sum of both
relations connects € with a to

eql = Simplify[ryax + rmin == 2a]

2a

a7 ==2a

which provides the representations for the eccentricity e:

sh = Solve[eq1, €]

ffe - e )

Using the root with the plus sign and substituting @ = 1> / (ku), we obtain
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12
€/.sh[2] /.« » — // Simplify
kp

2
\/a_H

Va

The major principal axis is thus represented by

1
majorAxis = Simplify[a == > [Fold[Plus, 0, r /. st]|]

-

a == ——

8}

The smaller principal axis follows:

a 2 k
b = SimplifyAlll ——— //. Flatten|{e > —, sh[2], a - |— —-I}]
1-¢€ k[l 2H

IV

V2 Vk Vi

At this stage, we know the relations among energy, angular momentum,

and principal axes.

In the following, we will derive Kepler's laws from the orbit data. First, let
us consider the temporal change of the area swept by the particle. We
know that this law is independent of the interacting forces. The temporal
change of the area is
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dA@) r@)* d o) 1

dt ~ 2dt 2u

1 l
AW == 200 == 72

Because the total area of the ellipse is swept out by the particle in the
period 7, we can write

T A D
fldt::f —IidA
0 o [

On the other hand, we know the relation for the total area of an ellipse:

A=mab

alﬂ\/g
V2 ViV

Thus, the period is given by

2(Ap)

period = 7 ==

VZarvii 51

Vi

T==

The total energy is related to the major principal axis by
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en = Solve[majorAxis, H]

Solve:ifun : Inverse functions are being used by Solve, so some solutions may not be found.

which allows a simplification of the period to

prd = period /. en[[2]

__ 2anvu Vid
vk

The fact that the period is proportional to a*? is known as the third law by
Kepler. This result is valid for the fictitious one-particle problem. For this
simplification, the reduced mass u is a combination of two parts. Kepler's
original formulation of this law was that the square of the period of a
single planet is proportional to the third power of the major principal axis
of this planet. A major assumption by Kepler was that the constant relating
the square period with the third power of a is a universal constant for all
planets. Taking the mass dependence of the planet into account, Kepler's
original formulation is wvalid within this correction. Especially for

gravitational forces, we have
F(r) = -G 2 = =F, (25.11)

thus, the constant % is given by

rl=k > Gmym,

k- Gmymy

The period can now be expressed as
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mim;
Simplify[prd /. r1 /. p -
my +my

2anV]al \/ ;%

ma1 my

T ==

If we assume my >> my,we find

) 2anVal \’ %
7 == Series| s {my, 0, 13]

V Gm1 my

oo 2a7r\/|a| _an la| my +0(m%)

\/GMQ nip VGM2

Thus, the original Kepler formulation is valid if m; is much smaller than

the mass m, of the central star.

2.5.4 Two-Particle Collisions and Scattering

One of the most important methods to gain information on the internal
structure of materials is the application of scattering. Scattering is tightly
connected to the two-body problem and Kepler's law. The result of a
particle bombardment is the scattering of many particles in different
directions. The distribution of the particles in space depends on the inner
structure and the internal forces of the target particle. To understand the
experimental results and how the scattered particles are deflected, we must
examine the internal interaction of the target particles and the interaction
of the incoming particles. Our main goal here is to understand how the

internal structure influences the distribution of these particles.

If two particles interact, the relative motion of these particles are
influenced by the interaction force. This interaction can be direct as with
two billiard balls or indirect via an interaction potential. For example, a

comet is scattered at the Sun due to the existence of the gravitational
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potential. a-Particles are scattered due to electromagnetic forces near the
core of the atom. We demonstrated earlier that in case of known
interaction laws, the movement for a two-particle system is completely
determined. On the other hand, knowing the conservation laws such as
conservation of energy and angular momentum, we are able to derive
valuable knowledge in lack of information on the interaction process. The
knowledge of conservation laws allows us to determine the final state of
the motion from the initial state.

Figures 2.5.11 and 2.5.12 show characteristic scattering processes on a
microscopic and macroscopic scale.

Figure 2.5.11.  Proton—proton scattering in a bubble chamber.
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Figure 2.5.12.  Orbit of a falling star in the gravitation field of the Earth.

2.5.4.1 Elastic Collisions

A collision usually occurs between two interacting particles. The time of
interaction is very short compared with the total flight time. On the other
hand, during the collision, the external forces are very small compared
with the internal interaction forces. If the interaction time is very short,
then we can assume that the forces are central and in the opposite
direction. This property guarantees the conservation of the total
momentum of the two-particle system. The interaction time usually is very
short so that we can assume that the center of mass is at rest.

If the total energy before and after the collision is the same amount, we
call this collision elastic. When energy conservation is not satisfied, then
an inelastic collision occurred. A completely inelastic collision has occurs
if the two particles stick together and all of the kinetic energy is converted

to thermal or interaction energy.
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An example of an inelastic collision is shown in the Figure 2.5.13. A bullet
with initial velocity v = 850 m/s hits an apple which destroyed within a few
milliseconds.

Figure 2.5.13.  Inelastic collision of a bullet with an apple.

Our interest here is in a completely elastic collision. We restrict our
discussion to this kind of scattering because elastic collisions can be
examined by the use of conservation laws. We also know from the
discussions in the previous subsections that the examination simplifies if
we assume that the center of mass is at rest. The standard situation of any
collision is that a moving particle hits a second particle at rest. A real
collision does not have a resting center of mass. Contrary to this
simplifying mathematical assumption, one of the two particles will move in
the laboratory and the other will be at rest. After the collision, both
particles will move in the same direction. It is essential for our discussions
that we distinguish between descriptions in the laboratory system and the

center of mass system.

Figure 2.5.14 shows the geometry of a two particle collision for masses 1,
and m,. Mass m; is moving with velocity 7%, toward mass m;. The
movement of particle 1 is along the x-axis. The separation between the two
particles in a perpendicular direction to the movement is called the impact

parameter.
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m,

1 > .
—
V

m,
o

u,=0

Figure 2.5.14.  Two particles in a central collision at the initial stage represented in the laboratory system.

After the collision, the masses m; and m, travel with velocities V; and v,
respectively. The angles ¢ and { measured with respect to the x-axis
determine the directions of the particles (see Figure 2.5.15).

2

Figure 2.5.15.  Two particles in a central collision at the final stage represented in the laboratory system.

The velocity V denotes the center of mass velocity in the laboratory
system. The following illustration shows the collision in the laboratory
system:
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In the center of mass system, a collision is represented by two particles
moving in the opposite directions (see also Figures 2.5.16 and 2.5.17).

Uy
m, e @ » 4T.m2
2

Two particles in a central collision at the initial stage represented in the center of mass

Figure 2.5.16.
system.

Primed symbols denote velocities in the center of mass system. After the
collision, we find the representation in Figure 2.5.17.
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Two particles in a central collision at the final stage represented in the center of mass

Figure 2.5.17.
system.

The following illustration shows the collision in the center of mass system:
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In figure 2.5.18, 8 denotes the scattering angle in the center of mass
system. Up to now, we have distinguished four different situations: before
collision and after collision and the two reference systems center of mass
and laboratory system. These four situations can be combined in a
common figure. We combine the end velocities of the laboratory system
and the center of mass system as a single vector.

Figure 2.5.18.  Representation of the initial and final states of a collision in a single diagram.

The interpretation of this diagram is the following: If we add to the center
of mass velocity V the end velocity \7'1 of the particle with mass m;, then
we get end velocity in the laboratory system \7'1. Dependent on the
scattering angle 6, 17'1 terminates on a circle with radius v;. The center of
this circle is the terminal point of the center of mass velocity V. We find
the scattering angle in the laboratory system by connecting the termination
point of 17'1 with the origin of V. If the center of mass velocity V <V,
then there exists a unique relation among the velocities v, \7'1, and \7'1 and
the angle 6. However, if V > vvl, the relation is note unique. In this case,

there exist two scattering angles in the laboratory system (6, 6;), a
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backward and a forward scattering angle, but only one angle i in the
laboratory system (see Figure 2.5.19).

Representation of the initial and final states of a collision in a single diagram with

Figure 2.5.19. backward and forward scattering.

In a real experiment, the angle ¥ is measured. In such a case, there are two
scattering angles in the center of mass system related to a single scattering
angle in the laboratory system. So far, we discussed a scattering process
more qualitatively. The following examinations give a more quantitative

approach to a scattering process. First, we define the center of mass by

ceneterOfMass = M R(t) == mq ri(t) + my ry(t)

M R(t) == my ri(t) + my rp(2)

Differentiation with respect to time gives

velocity = O, ceneterOfMass

M R'(t) == my ¥} (t) + my ¥5(0)
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If we introduce the substitutions

OR®@) ary(t) ar(t)
velNam = { - V@), — - uy (), - u®);
velNam // TableForm
R@®) - V(@
MOEST0)
() = (1)

and consider the second particle at rest in the laboratory system

ary ()

rule = {M - my +m;, - 0}

then we can represent the center of mass velocity by

R@®)
Flatten[Solve[velocity /. rule, Bt ]] /. velNam
my u (f)
{V(t) - my + ny }

Because mass m; is at rest in the initial state, the center of mass velocity of
this mass is V (i.e., v, = V because the two masses are approaching each
other).

A potential advantage of the center of mass system is that the total
momentum is zero. Consequently, the two particles are approaching each
other in a straight line. After the collision, they depart from each other on
opposite directions. In an elastic collision, mass, momentum, and energy
are conserved quantities. These conservation laws have the following
consequences in the center of mass system for the velocities:

uy=v, and uy = v,. (2.5.12)

Since u; describes the relative velocity of both particles in the center of

mass or laboratory system, we have



250 2.5 Central Forces

uy = 1. (2.5.13)

Thus, the final velocity for m; in the center of mass system is

v I ug

V= s - (2.5.14)
! ' 1

Vi=Uy—uUy = W (2.5.15)

Referring to Figure 2.5.18 we find

v sin(f) = vy sin(y) (2.5.16)
and

vy cos(d) +V = vy cos(ih). (2.5.17)

Division of both equations by each other gives

vy sin(y) _ 1 sin(@)

v1 cos(y) Ty + cos(0) ¥y

sin(6) 7,
V + cos(6)

tan(y) ==

Thus, we get for V and v;,

mi uy . ma uy
rule2 = {V - , V1> }; rule2 // TableForm
my +my mi +my
v - my uy
mi+my
~ my uj
Vi~ my+my

Inserting this relation into the angle relation, we find

rel2 = Simplify[rell /. rule2]

sin(6) my
my + cos(0) my

tan(y) ==
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We observe that the mass ration m; /m, determines which of the two cases
is realized in a collision. We also observe that for m; < m,, the center of
mass system is nearly identical with the laboratory system:

rel2[1] == Series[rel2[2], {m, 0, 0}]

tan(y) == tan(6) + O(m})

This property means that the scattered particles do not influence the target
particle and, thus, we have

Y~ 60 form; < my. (2.5.18)

On the other hand, for m; = m,, we get

rel2 /. my »m; // Simplify

tan(y) == tan(g)

and, thus,

v = % form; =m. (2.5.19)

The scattering angle in the laboratory system is twice as large as the angle
in the center of mass system. Since the maximal scattering angle in the lab
system is ¥ = 7, the scattering angle in the center of mass system can be, at
the utmost, /2.

Relations relating to the kinetic energy in a scattering process are

1
labEnergy = T == = myu3

1 2
Ty == Eml uj

The same in the center of mass system
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- 1
Ty = E(mliif+m2ﬁ§)

1
5 (my IZ% +my IZ%)

simplifies by applying the relations

mi uy . mj uy
, U = }; rulel // TableForm
my +my my +my

rulel = {ilz -

mpuj
my+my
~ my ug

my+ny

to the kinetic energy

Simplify[Ty /. rulel] /. Flatten[Solve[labEnergy, u1]]

my T

my +mp

The result demonstrates that the kinetic energy Ty in the center of mass
system is always a fraction m, /(m; + my) < 1 of the initial energy in the
lab system. The kinetic energy of the final stage in the center of mass
system is

1
T, = E m ftf /. rulel /. Flatten[Solve[labEnergy, u;]]

m% T()
(my + my)*

and



2. Classical Mechanics 253

. 1
T, = —m; ﬁ; /. rulel /. Flatten[Solve[labEnergy, u;]]

my my Ty

(my +my)?

To express T} by Ty, let us consider the ratio

. T, mq v%
ratio = — == VTR
0 5 (myuf)
T] V%
Ty ul

v1 is connected with v; and V via the law of cosines:

. 2
cosineLaw = ] == V2 — 2y cos(¥) V + 13

17% ==V2- 2cos(W)vi V + v%

Introducing this relation into the energy ratio, we get

_y2 72
% _ Vv 2v1l‘]/12cosgb+vl . (2.5.20)

On the other hand, we know the relations
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. mjpuy my uy 171 sin(0)
rule2={v1—) , Vo y V) > ————,
my +my my +my sin(y)
. sin(0)
yotan | ————r }; rule2 // TableForm
cos(f) + m—:
DN my Uy
1 my+my
V> mp uy
my+my

v = csc(y) sin(6) v,

-1 sin(6)
w - tan ( cos(9)+% )

Inserting all of these relations into the energy ratio, we find

enrat = ratio //. rule2 // Simplify

T m} + 2 cos(6) no my + m3

Ty (my +m)?

This relation allows us to express T by Ty. For identical particles, this

simplifies to

Simplify[enrat /. m; - m;]

More relations for the second particle follow by similar considerations.
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2.5.4.2 Scattering Cross Section

From a historical point of view, the theoretical background of the
two-body problem was solved by discussing the planet's motion around the
Sun. However, the two-body problem is also of great importance if we
consider scattering problems in the atomic region. Scattering by atoms is
governed by electric central forces determining the behavior of the

scattering process.

The scattering problem of particles is governed by different influences.
The main influence is defined by the central force acting on the particles.
We assume in the following that all scattered particles are of the same kind
of material (homogenous beam). All scattered particles have the same

mass and the same energy.

In addition, we assume that the central force declines very fast for large
distances. We characterize the incoming beam by his intensity 7. The
beam intensity is a measure for the number of particles transmitted through
a normal unique area per second. If a particle approaches the center of
force, it either is attracted or repelled. In either case the particle is
deflected from his straight way toward the force center. If the particle has
passed the center of force, the interaction becomes smaller and smaller and
the particle gets on a straight track again. Thus, the scattering process is
characterized by three regions: two asymptotics where the particle moves
nearly on a straight track and the interaction where the particle is deflected
from one direction to another one. The scattering cross section for a
certain direction in space is defined by

do@)= 42 40 =

(Number of §cattereq particlfzs per timF: intodQ)/ 2.521)

(Number of incomming particles per time and per area)

ey
Here, df2 denotes the solid angle in the direction Q. dois also called the
differential scattering cross section. In case of central forces, there exists
rotation symmetry along the incoming beam. Taking this symmetry into

account, the solid angle d.2 is given by

dQ = 2xsin(0) dé, (2.5.22)
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where 8 denotes the angle between the initial and final direction. 8 is also
called the scattering angle. For an elastic scattering process, we assume
conservation of energy and momentum. The angular momentum is also a
conserved quantity. It is of great advantage to express the angular
momentum by the impact parameter b and the initial energy 7j. The
impact parameter b is defined as the perpendicular distance between the
initial direction and the scatterer. Let u; be the initial velocity of the
incoming particle. The angular momentum of the particle with respect to

the scattering center is then defined by
L=mub. (2.5.23)

The initial velocity u, is given by the initial energy Ty = m u? /2 and, thus,
the angular momentum reads

L=b\2mT,. (2.5.24)

As soon as b and T are fixed, the scattering angle 6 is uniquely fixed. Let
us for the moment assume that different b values will not result in a single
scattering angle. The number of scattered particles into a solid angle d £
in the range 6 and 6+ dé# is given by the incoming particles. The impact
parameter is the in the range b to b + db. The mathematical relation is

Au

(on

Figure 2.5.20.  The parameters in a scattering process.
2nIbldb|= 2no(Q) I sin(®) | d|. (2.5.25)

Since the differentials can change sign, we introduced the amount of db

and d#. The number of particles and all other quantities are positive. Let
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us assume that the impact parameter is a function of the scattering angle 6
and the energy H:

b = b0, H). (2.5.26)
The scattering cross section becomes a function of the scattering angle

do®) _ b db.
dQ T sin(6) | dg I (2.5.27)

The derivation of this formula follows from the assumption of particle
conservation; that is, elastic scattering satisfying

dN), = (dN), (2.5.28)

The initial number of particles are given by

dNi=7dA/.dA - bdbd¢

bdbde T

The number of particles after the scattering is

dNf = -7 6o dQ /. dQ - sin(0) d0 dp

—dfd¢ I 6o sin(f)

Conservation of particles implies

particleConservation = dNi == dNf

bdbdg I == —-dfd¢ I 6o sin(h)

Thus, the scattering cross section follows as
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do
Flatten[Solve[particleConservation, ool /. 6o - E]

d bdb cso(t)
(@ —a )

A formal expression for the scattering angle 8 can be derived by symmetry
considerations. Since the particle's track is symmetric with respect to the
line focus scattering center, we can find from the geometry of the track the
relation

0=n-2y (2.5.29)

This relation follows from the geometry given in Figure 2.5.21

| I A/ A

b v
A

Figure 2.5.21.  Angular relations between the scattering angles and the impact parameter.

We already demonstrated that the change in ¢ for a particle with reduced

mass (1 is given by

rmax r2
Ay = f Ui dr. (2.5.30)
e 2H(H -U=-52)

‘min

In case of riy.x — oo we gain for
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t/f=f %dr (2.5.31)
N1 =U/To-b2]

Tmin

with Ty = & ii}. Concerning the energy, we find for r — co that H = T
since U(r = o0) = 0. rpin denotes a root of the radicand and measures the

shortest distance to the force center.

Since ¥ depends on # and the above integral is a function of » only for
given U(r) and T\, we find that the impact parameter b is a function of 6:

b = b(®).

This discussion delivers the scattering cross section in the center of mass
system if we assume m;, the target, at rest. If m, > m,, the scattering cross
section in the center of mass system is nearly the same as in the laboratory
system. If this mass relation is not satisfied, a transformation between the
center of mass and the laboratory system must be used to convert ¢ into 6.
Because the number of scattered particles are equal in the center of mass

and laboratory system, we find

do(9) v _ do@)
dQ a2’ = d Q) s,
(2.5.32)
do(f . d .
;—f(z) 2xsin(@)dd = % 2 sin(y) dy,

with 6 and ¥ the scattering angles of the center of mass and laboratory
system. Thus the scattering cross section in the laboratory system is given
by

do@) _ do® sin@) dé
dQ T dQ  sin(y) dy

(2.5.33)

The derivation d¢ / dy is determined by the transformation

sin(6(y)) m»
eh = tan(y)) == —8 —
my + cos(0(¥)) m
an(y) — SO m>

my + cos(0(y)) my
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Differentiating this relation with respect to ¥ and solving for d¢/dy, we
obtain

deh 90(y)

sb = Flatten[Simplify[Solve[—aZ-, _6—117—

1l

sec?(¥) (my + cos(O(Y)) my)* }
my (cos(6(y)) my + my)

{rw) -

With this relation, the scattering angle 6(¢) in the laboratory system is
given by

sh = Simplify[Solve[eh, 6(¥)]]

Solve:ifun : Inverse functions are being used by Solve, so some solutions
may not be found; use Reduce for complete solution information. More...

{{0@) - —cos™! (— # (cos2(¢) (m1 my tan® () +
2

cott)sec (@ m an) - i m an' @) )}

{O(zp) - cos"l(— L (cosz(w) (m1 my tan® () +
"

cot(y) y/sec )t @) - i an' ) ).

{0@) 5 —cos—l(mi% (cos2(¢) (cot(tﬁ) | sec2(p) mi tan? () — m? m tan* () —

my ny tanz(w))))},

{0(¢) 5 cos‘l(mi% (cos2(¢) (cot(tﬁ) \ sec2() mé tan? () — mi} mi} tan(p) —

o))

Inserting this expression into the factor (sinf/siny)dé&/dy¢, we get the
transformation
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sin(6(¥))
in(y

26()

a

vh = Simplify[(PowerExpand //@ #1 &)[-——f——-
s

3 d /. sb /. sh]]




262

2.5 Central Forces

2
{~{costwy <o) (m s = cor) fsec2w) s anw) - i ')

1 4 5
\/(1 - =7 (COS W) (ml my tan”(¥) + cot())

ny

2
Vsec2(u) m tan (@) — mf w3 tan'(v) ) ))) /

(2 (3 = sin® () m} s — cos (W) cot(w) my

V sec2(u) mi tan2(@) - it mi ant) ),

2
(cos6) cot) (m s = o)y sec@) m )~ i i ') |

\/(1 - (cos4<w> (1 ma tan’ () +

my

2
cot(w) /sec?() m tan(y) — -3 tan* ) )]] /

(12 (3 = sin® () m} > — cos* W) cot(y) my

V sec2(y) m an’(@) - it mi tant(w) ),

2

—(cos(z//) cot(y) (\/ sec2(y) m3 tan?(y) — m} m3 tan*(Y) cot(y) + myy le)

1 4 5
\/ (1 iy (COS W) (ml my tan”(y) — cot(y))

ny

2
Vsec2(u) m tan (@) — mf w3 tan'(v) ) ))) /

(mz (m% — sin2() m? ma + cos2 () cot(y) m;

V sec2(u) mi tan2(@) - it mi ant) ),

2

(COS(I/I) cot(y) (\/ sec2(y) m3 tan2(y) — m} m3 tan* () cot(yy) + my I’I12)

\/(1 ~ L (cos4<w> (1 ma tan’ () -

my

2
cot(w) /sec?(y) m tan(y) — it m3 tan* ) )]] /
(mz (m% — Sin2(Y) m? ma + cos2(Y) cot(y) m

\ sec2w) mé tan2(@) — m} w3 tan' ) )}

The two solutions carry out the transformation from the center of mass to
the laboratory system.
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Let us consider the limiting case of equal masses m; = mjy; then, this
formula reduces to

vt = Simplify[(PowerExpand //@ #1 &)[
Simplify[(PowerExpand //@ #1 &)[Simplify[vh /. m; — m]]]1]

{0, 0, =4 cos(¥), 4 cos(y)}

Thus, the scattering cross section for equal masses is transformed by

d do @
;‘ff’ = 4cos (¥) ,f,’é) lo=24- (2.5.34)

The general transformation between the center of mass and the laboratory
system is thus given by

o(y) == vh2] o(6)

2
oW = [cosw) cot) (m1 m> = cot) y sec>(y) m tan’ ) — i i an' () )

\/(1 - L (cos4<w> (1 ms tan* @) +
m

2

2
cot(y) sec? (@) ms ) - i m an' ) | )

0'(9)) / (m2 (mg — sin?(W) m? ma — cos* (W) cot() m;

\ sec2 W) mé tan2() — m} w3 tan' () ))

For some experimental setups, it is more convenient to know the scattering
information on the total space. In such cases, we can calculate the
so-called total scattering cross section by integrating over the total space:

o= [,,00)dn
(2.5.35)
=27 [ o(6) sin(9) dé.

Contrary to the scattering cross section the total cross section is

independent of the scattering system.
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Example 1: Hard Sphere Scattering

Let us consider the example of hard spheres scattered on each other. The
geometry of the scattering process is represented in Figure 2.5.22.

Figure 2.5.22.

Geometry of a hard-sphere scattering process.

Taking the geometric relations for the radii into account, we find

1l = R1+R2

R+ R,

For the angles, we have

<
I
vy

(2]
2

N
|

The impact parametr is given by
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b= 18in[y]

cos(g) (R +Ry)

Differentiating the impact parameter b with respect to the scattering angle
0 gives

db = 9eb

—% sin(g)(Rl +Ry)

The scattering cross section thus becomes

6= ———db// Simplify
Sin[6]

1(R +Ry)?
4 1 2

We observe that the scattering cross section for hard spheres is
independent of the scattering angle 6. The total cross section of this
example is

Us
ot = ZNJ do Sin[6] dé
0

7 (Ri +Ry)?
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2.5.4.3 Rutherford Scattering

One of the most important applications of the two-body problem is the
scattering of charged particles in an electric field. The electric field for a
Coulomb scattering is U(r) = k/r, where k is a constant determined by the
charges ¢; and g5 : k=g ¢». kK may be a constant of both signs. k >0
resembles a repulsion and k <0 an attraction. The determining equation

for the track and scattering angle 6 of a particle is determined by

Y o= /| — dr = .
N 1-U/Ty-b2r2

min

bjr? dr
V1 =k/(To n- b2/

in

(2.5.36)

This integral is solved by the well-known substitution # = 1 /r. The result

of the integration is
(x/b)

cos(y¥) = m s (2.5.37)

where k =k/(27Tg). Solving this equation with respect to the impact

parameter b, we find

Remove[b]

K
impact = PowerExpand[Simplify[Solve[cos(u/z) = b]]]

(o xeol &) o= wen )

The angle Y isy =n/2—-6/2, so we get
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b3
imp = impact /. y » — — —
p pact /. >3

{{p= seo(3)) o~ o3}

The derivation of the impact parameter with respect to the scattering angle
is given by

The d(imp /. b - b(09))
00

[0+ 4ot §) o=~ o5

Now, the scattering cross section follows from

3b(6)

‘:Z) /. Flatten[Join[db, imp]]]

scatSection = Simplify[o- == -

o == % K csc4(§)

or

k
sc = scatSection /. k > ——

2T

k? csc“(%)
g == -——T—
167,

This formula is known as Rutherford's scattering formula. This relation
was experimentally verified for a-particles by Geiger and Marsden in 1913
[2.10].
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If the masses m; and m;, or charges g;and g, are equal, we know that the
kinetic energy reduces to Ty = Ty/2. In this case, the scattering section
reduces to

- T
scatSection /. x> /. Ty~ il
2T, 2
k? csc4(%)
16T}

The transformation of the scattering section for equal masses (charges)
from the center of mass to the laboratory system follows from the

following formulas:

_k
=97 (2.5.38)
do ) 1 do(6)

dQ T Zdcosy dQ  l0=2¢ (2.5.39)

and
Ty = % (2.5.40)

The result of this transformation is

Sc =

Solve[scatSection /. {K -» —,

0520 /. Ty — 2
210" Ty 0 22T 50

k? sec(§) tan(5)
(fr Sy

The characteristic of Rutherford's scattering is the 1 /sin* dependence of
the scattering cross section. This dependence is valid in the laboratory as
well as in the center of mass system. The experimental verification of the
Rutherford relation was carried out by scattering a-particles on gold
atoms. Since the gold particles are much heavier than a-particles,
Mmay > m,, there is no difference between the center of mass and the
laboratory system. The scattering cross section is given by
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k
sc = scatSection /. k > ——
2T,

k? csc“(%)

16 T3

Plotting this result in a log-log scale we get a nearly straight line for small
scattering angles. Figure 2.5.23 shows this relation

<< "Graphics'Graphics™';
LogLogPlot(o /. (sc /. Equal - Rule) /. {k » 4, Ty - 1},
{0, 0.2, 7}, AxesLabel - {"6", "0'16T§/k2"});

o16T5/k?
10000

1000 |
100 ¢

10 ;

1

0.2 0.5 1 2

Figure 2.5.23.  Rutherford's scattering cross section in a log-log plot.

From the derivation of the scattering cross section, we know the total
number of particles conserved in the scattering process:

@dN), = -1 240 = -1 92 sin6asdy, (2.5.41)
IN
Z_fz =-7 Z—Z = const. (2.5.42)

Measuring the particle number in a certain solid angle and multiplying this
quantity by do/d(2, we get a constant. This kind of check was applied by
Geiger and Marsden to their experimental data. Geiger and Marsden
determined for the (Au, @) system scattering angles in the laboratory
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system, the number of a-particles and the product of the scattering cross
section and the number of particles. In the following lines, we collect these
data in different lists:

10 = {e, t 7 }s

4 4
sin[ <] sin[]

The scattering angles are

11 = {15, 22.5, 30, 37.5, 45,

7T
60, 75, 105, 120, 135, 150} %2
360

{0.261799, 0.392699, 0.523599, 0.654498, 0.785398,
1.0472, 1.309, 1.8326, 2.0944, 2.35619, 2.61799}

The cross section depends on the scattering angle as

1
12 = Map[——z- &, 11]
sin[4]

{3445.16, 690.331, 222.851, 93.6706, 46.6274,
16.,7.28134, 2.52426, 1.77778, 1.37258, 1.14875}

The total number of scintillations N for a given angle are

13 = {132000, 27300, 7800, 3300,
1435, 477, 211, 69.5, 51.9, 43, 33.1}

{132000, 27300, 7800, 3300, 1435, 477, 211, 69.5, 51.9, 43, 33.1}

The ratio of N and the Rutherford characteristic is
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14 =13 /12

{38.3146, 39.5463, 35.0009, 35.2298, 30.7759,
29.8125, 28.9782, 27.5329, 29.1937, 31.3278, 28.814}

The following table collects all of these data:

1h = Prepend[Transpose[ {11, 12, 13, 14}], 10];
1lh // TableForm

0
0.261799
0.392699
0.523599
0.654498
0.785398
1.0472
1.309
1.8326
2.0944
2.35619
2.61799

esct(5)
3445.16
690.331
222.851
93.6706
46.6274
16.

7.28134
2.52426
1.77778
1.37258
1.14875

J
132000
27300
7800
3300
1435
477
211
69.5
51.9
43
33.1

Jesch(4)
38.3146
39.5463
35.0009
35.2298
30.7759
29.8125
28.9782
27.5329
29.1937
31.3278
28.814

If we plot (6, N/sin(@/ 2)4), we observe that the experiment is in

accordance with the theoretical prediction.
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ListPlot[Transpose[{11, 14}],
PlotRange -» {{0, 2.7}, {0, 39}},
AxesLabel » {"@", "N/sin(6/2)%"},
PlotStyle -» RGBColor[0.996109, 0, 0],
Prolog » {PointSize[0.02]}];

N/sin(9/2)*

35| O O

30 ° L4 ° ° ¢ °
25
20 |
15|
10 |
5t

0.5 1 1.5 2 2.5

2.5.5 Exercises

1. Show that the relative motion of two particles is not affected by a
uniform gravitational field.

2. Two particles connected by an elastic string of stiffness k& and
equilibrium length a rotate about their center of mass with angular
momentum L. Show that their distance r; of closest approach and their
maximum sparation r, are related by

r%r%(rl-f—rz—Za) _ 12

ri+r E
where u is their reduced mass and r; > a, r, > a.

3. Find the force law for a central force which allows a particle to
move in a logarithmic spiral orbit given by r=k@?, where k is a
constant.

4. A particle moves in a circular orbit in a force field given by

F(r)=—k/r.
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If suddenly k decreases to half its original alue, show that the particle's
orbit becomes parabolic.

5. Discuss the motion of a particle in a central inverse square law force
field for the case in which there is a superimposed force whose magni-
tude is inversely proportional to the cube of the distance from the
particle to the force center; that is

F = -4, ki>o

Show that the motion is described by a precessing ellipse. Consider the
cases A < L%/, A=L*/u,and A > L*/ .

2.5.6 Packages and Programs

Programs

The following lines are used to load special commands used in this
notebook. The commands and definitions are contained in the file
NewtonsLaws.m. Before you can use this file, you should set the path
where it is located. Change the following line in such a way that the file is
found.

SetDirectory["C:\Mma\Book\ThPhl"] ;

This line loads the contents of the file NewtonsLaws.m.

<< NewtonsLaws.m;

This line defines a function which maps PowerExpand[] to each level of
an expression and simlifies the result by Simplify[].

SimplifyAll[x ] :=
MapAll[Simplify[PowerExpand[#]] &, x]
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2.6 Calculus of Variations

2.6.1 Introduction

The term calculus of variations was first coined by Leonhard Euler (see
Figure 2.6.1) in 1756. This kind of calculus introduces a special derivative,
the variational derivative. We call this derivative the Euler derivative in
honor of Euler's achievements in this field. He used it to describe a new
method in mechanics which Lagrange had developed a year earlier. Thus,
the original application of the Euler derivative originates from mechanics.
In this context, Euler and Lagrange used this derivative to write down their
famous equations, the Euler-Lagrange equations. Up to now, the main
application of this derivative in physics has been the formulation of
dynamical equations. Before we discuss the Euler derivative and its
implementation, we briefly recall the basic properties of the origin in the

calculus of variations.

Leonhard Euler (born April 15, 1707, died September 18, 1783) was Switzerland's foremost
scientist. He was perhaps the most prolific author of all time in any field. From 1727 to
Figure 2.6.1. 1783, his writings poured out in a seemingly endless flood, constantly adding knowledge to
every known branch of pure and applied mathematics, and also to many that were not
known until he created them. Euler was a native of Basel and a student of Johann Bernoulli.

The calculus of variations was first used by Johann Bernoulli in July 1696
when he presented the brachystochrone problem. The problem can be
formulated as follows: A point mass is moving frictionless in a
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homogenous force field along a path joining two points. The question is,
Which curve connects the two points for the shortest travel? Johann
Bernoulli announced the solution of the problem, but did not present his
findings in public. He preferred to first challenge his contemporaries to
also examine the problem. This challenge was particularly aimed at his
brother and teacher Jakob Bernoulli, who was his bitter enemy. Jakob
found one solution but did not present it to Johann. It was only upon the
intervention of Leibniz, with whom Jakob had a lifelong friendship and a
scientific correspondence, that he sent the solution to his brother in May
1697. The most fascinating event was that this solution was a cycloid, a

curve also discovered at this time.
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2.6.2 The Problem of Variations

As mentioned, the main idea in the calculus of variations arose from the
work of Euler and Lagrange. Later, Hamilton contributed the term
minimum principle to the theory, which is still in use today. The main idea
of all these considerations of Euler, Lagrange, and Hamilton is the
assumption that there exists a generating functional F. This functional F is
responsible for the dynamical development of the motion. The key point in
the calculus of variations is to find a function which makes the functional
F an extremum. The solution of this issue is to vary the function by
introducing a test function. Thus, the variation of F is actually carried out
by replacing the function u by a slightly changed new function u + ew,
where € is a small parameter and w denotes an arbitrary test function. After
replacing u and all of its higher derivatives in the functional F, we have to
determine the extreme values of F. The functional in this representation
can be considered as a function of the parameter €. The extreme values of
F are found if we use the standard procedure of calculus for finding
extremums. In mathematical terms, we need to calculate the derivative of
F with respect to € under the condition that € vanishes:

dF(e)
de

= 0. (2.6.1)

e=0

The basic problem of the calculus of variations is to determine a function
u(x) such that the integral

Flu] = f(x, u, uy, ...)dx
(2.6.2)

Il
~
~
ks

<
=
<

&
»

1l

—_
n

X1

assumes an extreme. f(x, u, u,, ...) is known as the density of the
functional F. An extremum here is either a maximum or a minimum. In
Equation (2.6.2), u, =0du/dx denotes the partial derivative of u with
respect to the independent variables x, where x is a vector of coordinates.
Let us assume first that we have only one independent variable x. This
assumption will make it easier to represent and discuss the theory. A
generalization to more independent variables will be given next.
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The expression F[u] given in Equation (2.6.2) is called a functional
defined by an integral over a density f which depends on the independent
variable x and the unknown function u. In general, this density may also
depend on derivatives of u up to a certain order k, denoted by ug). The
limits in the integral (2.6.2) are assumed to be fixed. We note that fixed
limits are not necessary. If they are allowed to vary, the problem increases
in such a way that not only u(x) but also x; and x; are needed to bring F to
an extreme value. The question is one of how to manage the functional F
in becoming an extremum. Let us assume that an extremum of F exists if a
function u =u(x) makes the functional F a minimum. Then, any
neighboring function, no matter how close it approaches u(x), must make
F increase. The definition of a neighboring or test function may be as
follows. We introduce a parametric representation of u = u(x; €) in such a
way that for € =0 and u = u(x; € = 0) = u(x), we get the identity and the
functional yields an extremum. We write the small perturbation of « as

u(x; €) = ulx; 0) + ew(x), (2.6.3)

where w(x) is the test function which has continuous derivatives and
vanishes at the endpoints x; and x,. We note that the vanishing of w(x) at
x; and xp w(x;) = w(xp) =0 is one of the basic assumptions of the
calculus of wvariations. The above considerations are graphically
represented in Figure 2.6.2.

uXx)+e w1(x)
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Two variations of the solution u(x) with two different test functions w; and w,. The test

Figure 2.6.2. . . .
e functions vanish at the endpoints x; and x,.

If functions of the type given in Equation (2.6.3) are considered as
variations of u, the functional F becomes a function of €:

Fluse] = f f(x, ulx; ), ug(x, e, ...)dx. (2.6.4)

The condition that the integral has a stationary value (in other words, an
extremum) is that F' be independent of € in first order. This means that

oF

—-— =0 2.6.5
e (2.6.5)

=0

for all functions w(x). This is a necessary condition but not a sufficient
one. We will not pursue the details of the sufficient conditions here. They
were extensively discussed by Blanchard and Briining [2.11]. To
demonstrate how these formulas work in detail, let us consider the simple
example of the shortest connection between two points in an Euclidean

plane.

Example 1: Shortest Connection

Let us consider the equation of a curve in an Euclidean space which yields
the shortest distance between two points in the plane. The geometrical

increment of distance ds in the (u, x)-plane is given by

d 2
ds = \Ndd +did = /1+(d_“) . (2.6.6)
X

The total length s of the curve between two points x; and x; is

s = fxz \ 1 +u2 dx = Flu]. (2.6.7)

We know that the shortest connection between two points in the Euclidean

plane is a straight line given by
u(x)=a x+p, (2.6.8)

where « and 3 are constants determining the slope and the intersection of
the line with the ordinate. Now, let us consider the line in the range x € [0,
2m]. To demonstrate the numerical behavior of the functional F, we choose
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a special test function w(x) = sin(4 x). Using our representation of u given
by Equation (2.6.8) with a=1 and =0 for example, we get for the

derivative of u,
u, = 1 + 4ecos4x). (2.6.9)

Inserting this representation into Equation (2.6.7), we find

27
Fle] = V1 +4ecos@d x) dx. (2.6.10)
0

This relation represents our specific functional, now a function solely of e.
We are looking for the minimum of this function to get the extremum of
the functional. Considered as a function of €, this relation cannot be
explicitly solved for e. However, to get an idea of the dependence on the
parameter €, we can use Mathematica. If we define Equation (2.6.10) as a
function depending on €, we can use the numerical capabilities of
Mathematica to graphically represent the dependence of F on e. First, let
us define Equation (2.6.10) by

Fle ] := NIntegrate[

\/1+ (L+4ecCos[4x])?, {x, 0, 27}]

We then use the defined function F[] in connection with Plot[] to represent

the value of the functional for certain values of €:
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Plot[Evaluate[F[e]], {e, -1, 1}, AxesLabel » {"e", "F"},
PlotStyle » RGBColor[1l, 0, 0]];

=
18

16
14
12

10
-1 -0.5 0.5 1

€

The result of our calculation shows that the value of the functional is
minimal for e=0 and increases for all other values of €. Thus, we
demonstrated numerically that the minimum of the functional exists. In a
second plot, we demonstrate the influence of € on the function u(x) = x for
different values of €. This shows us that the value of F[u; €] is always
greater than F[u; 0], no matter which value (positive or negative) is chosen
for e.
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Plot [Evaluate[

1
{vix, 01, yI[x, 1], y[x, _?]} /.

y » Function[{x, €}, x+ € Sin[4 x]]],

{x, 0, 27},

AxesLabel » {"x", "y"},

PlotRange -» All,

PlotStyle » {RGBColor[0, 0, 0.996109],
RGBColor[1.000, 0.000, 0.000],
RGBColor[0.000, 0.251, 0.251]}];

- D W~ 00 O

X

1 2 3 4 5 6
From this figure, we can conclude that the line u(x) = x is one realization
of the shortest connection between two points in the Euclidean plane.

2.6.3 Euler’s Equation

In this section, we derive the analytical representation of the Euler
derivative. The construction of this sort of derivative is based on condition
(2.6.5). If we carry out the differentiation with respect to €, Equation
(2.6.4) will provide

oF

I
5 © Ef f(x, u, uy, ...)dx. (2.6.11)
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Since the limits of the integral are fixed, the differentiation affects only the

density of the functional F. Hence,

oF
o€
f (6f ou of du, Of Ouyy )
+ —_— 4+ + - |dx.
x \Ou e ou, Oe Ouyy Oe€

(2.6.12)

If we now use the representation of u = u(x; €) as given in Equation (2.6.3)
to introduce the € dependence for the variable u and the derivatives ug,, we
get

u ou 6ux,x
Y w(x), 6; =W = W e (2.6.13)

Using these relations in Equation (2.6.12), we find

OF of af af )
5 = j; ( w(x) + o wy + s Wy + - |dx.  (2.6.14)

The result so far is that the integrand contains derivatives of the density f
and the test function w. Since we do not know anything about the
derivatives of w, we need to reduce (2.6.14) in such a way that it only
contains the test function w. The reduction can be obtained by an
integration of parts with respect to the test function. Additional use of the
conditions w(x;) = w(x;) = 0 simplifies expression (2.6.14) to

R e )

&2 (af
—_— d
" d x? (6ux,x) ) -

The integral in Equation (2.6.15) seems to be independent of e. However,

(2.6.15)

the function u = u(x; €) and all derivatives of u are still functions of €. We
know from the representation of u(x; €) that this dependency disappears if
we set € = 0. Before we start this calculation, we generalize Equation
(2.6.15) to arbitrary orders in the derivatives:

aF am ( of
— = (x) (- 1)” ( )Jd \ 2.6.16
j;lz e [Z e )| ( )

n=0

where u,), = 0"u/0x" denotes the nth derivative of u with respect to x.
Our aim was to find the extremum of F. A necessary condition for the
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existence of an extremum is the vanishing of the derivative
0F /d€le=9 = 0. In our calculations, we assumed that w is an arbitrary
function. Thus, the derivative of F can only vanish if the integrand

vanishes and so we end up with the result

2, i \Gu) = 0 (2.6.17)

where u and all the derivatives of u are now independent of €. This result is

known as Euler’s equation and it is a necessary condition for the functional
F to allow an extremum. The Euler equation is reduced to the well-known
Euler-Lagrange equation if we restrict the order of the derivatives to 2.
Since the Euler equation is needed in the derivation of equations of
motion, we define a special symbol for this operation and call it the Euler

operator.

2.6.4 Euler Operator

The Euler operator is also known as a variational derivative in the field of
dynamical formulations or statistical mechanics. In this subsection, we

define this operator as a special type of derivative.

Definition: Euler Operator

Let f = f(x, u, u,, ...) be the density of a functional F[u]. Then we call
oF - d" 0
o i)
ou =0 dx Bu(,,)

the functional derivative of F and

- 0
&=Y (-1'D,
;) 614(")

an Euler operator. D,, = d" /dx" denotes the nth-order total derivative.

The actual information of this definition is that the functional derivative
OF /6u can be replaced by ordinary and partial derivatives if we know the
density of the functional F. Consequently, we can introduce a general
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derivative, the Euler operator, which is based on known operations. The
essential content of the above definition is that knowing the density f of a
functional F is sufficient to calculate the corresponding functional
derivative. The functional derivative follows just by differentiation of the
density f. An additional merit is the knowledge of the Euler equation for
this functional F. The above definition is a result of the calculus of
variations. Thus, the Euler derivative can be calculated by an algorithmic
procedure.

2.6.5 Algorithm Used in the Calculus of Variations

Our next goal is to define a Mathematica function allowing the calculation
of the Euler derivative. Before we present the function, we briefly repeat
the main steps of the calculus of variations. These steps are intimately
related to the definition of the Euler derivative and are thus the basis of the
calculation. The four main steps of the algorithm are as follows:

1. Replacement of the dependent function u by its variation
U=u+ ew.

2. Differentiation of the functional density with respect to the parame-
ter € and replacement of e by zero after the differentiation.

3. Use the boundary conditions for the test function to eliminate the
derivatives in w.

4. The coefficient of the test function w delivers the Euler equation.

These four steps define the calculation of the Euler derivative
algorithmically. The function defined in Mathematica is based on these
four steps. When looking at the definition of the Euler derivative &, we
realize that we need at least three pieces of information to carry out the
calculation. First, we should know the density of the functional F, second
the dependent variable, and third the name of the independent variable.
From our discussions of the algorithm, we expect that the highest order of
differentiation should be determined by the function itself. Thus, we define
the function EulerLagrange[] with three necessary arguments. A fourth
optional argument allows influencing the representation of the result of the

function. The following lines contain the definitions for EulerLagrange[]:
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(# --- Euler derivative for ---x)
(* --- one dependent
and one independent variable ---%)

Clear [EulerLagrange] ;
Options[EulerLagrange] = {eXpand » False};

EulerLagrange[density , depend , independ ,
options ] :=
Block[{£f0, rule, fh, €, w, y, expand},
(*--- check options ---%)
{expand} = {eXpand} /. {options} /.
Options[EulerD] ;

(¥*--- rule for the variation of u---%)

£f0 = Function[x, y[x] +ew[x]];

(*--- rule for the replacement of
derivatives of w --- %)

rule =b . w'®) [independ] :»

(-1)™ HO1ldFOTm[ (independ,n) D] 7
(¥*--- step of variation ---%)
fh = density /. depend -» £0 /.

{x » independ, y - depend};

(¥--- differentiation

with respect to € ---%)
fh = Expand[8.fh /. € » 0] ;
(*--- transformation to w ---%)
fh = fh /. rule /. w[independ] » 1;
(¥*---- Euler equations --- %)

If[expand, fh = ReleaseHold[£fh], fh]]

This function is part of the Mathematica package EulerLagrange. The
package also contains functions for larger numbers of independent and
dependent variables. To make the use of the Euler operator more
convenient, we also defined a single symbol for the Euler operator. This
symbol looks like &E[f], where u denotes the dependent variables, x the
independent variables, and f the density of the functional. The symbol is
available by a function button which can be generated by the following
pattern by using the menu command File+Generate Palette from Selection.



286

2.6 Calculus of Variations

& 101

Using the function EulerLagrange[] or its equivalent operator &, it is
straightforward to calculate the functional derivative of any density
containing one dependent and one independent variable. We demonstrate
the application of this function by discussing the famous brachystochrone

problem already mentioned earlier.

Example 1: Brachystochrone

Let us discuss the classical problem of the brachystochrone solved by
Johann Bernoulli in 1696. The physical content of this famous problem is
the following: Consider a particle moving in a constant force field. The
particle with mass m starts at rest from some higher point in the force field
and moves to some lower point. The question is, Which path is selected by
the particle to finish the transit in the least possible time? Let us reduce the
problem to the point of deriving the Euler equation. The dimensionless
functional density governing the movement of the particle can be derived

from the integral ¢ = fp P2y /vds, where t is time, ds is the line element, and
1

v is the velocity. Expressing the line element and the velocity in cartesian
coordinates, we can express the density of the functional by

1+ui)
2gx

12

(2.6.18)

k)

fx u, uy) =(

where u describes the horizontal coordinate and x the vertical one. The

application of our function EulerLagrane[] to this functional density

f_\/ 1+ (8xu[x])?
- 2gx

w (x)?+1
gx

V2
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gives us by applying the Euler operator to the density f a second-order
nonlinear ordinary differential equation for the variable u.

brachystochroneEquation = Simplify[PowerExpand[&][ f1]1]

W)+ (x) -2 xu’(x)

V2 Vg W+ )"

=0

This equation of motion determines the movement of the particle. To
understand how this equation is generated, we recall Euler's equation for
the specific density f Equation (2.6.18) by

af d (of
L4 (2l)==o. (2.6.19)

Since the density f does not depend on u but only on u,, Euler's equation
reduces simply to

d (0f
dx ( ou, )

==0. (2.6.20)

However, relation (2.6.20) indicates that the expression (0 f/du,) is a
constant with respect to x. On the other hand, this means that our derived
second-order nonlinear ordinary differential equation
brachystochroneEquation can be integrated once. If we start the integration
we fail to get a satisfying result

Integrate[brEquation[1], x]

W ()3 +u’ ()=2 x u”’ (x) 7
f B2 w (x2+1Y? dx

2V2 Vg

meaning Mathematica is, at the moment, unable to find first integrals of a
given second-order ordinary differential equation. However, we know that
the a first integral exists which, we denote by (4 a g)~/ and represent as
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brachystochroneEquation2 =

Simplify[PowerExpand[ds,uix] (£)1] ==
4ag

u'(x) _ 1

VIVE VT Vet el 2Vag

Squaring both sides of this equation, we can derive a differential equation

which can be solved by integration:

dth = Thread[brachystochroneEquation22 , Equal]

W (x)? 1
2gxwx?*+1)  4dag

Solution with respect to first-order derivatives gives an first-order ordinary

differential equation which can be solved by separation of variables.

dthh = Solve[dth,u'[x]];dthh/.Rule->Equal

v = =

In the following calculation, we use the second equation, which can be

formally integrated to
(2.6.21)

u= de.
|35

The integrand of this relation is represented by
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int = u'[x] /. dthh[[2]]

The derived expression represents the integrand of the action integral. We
simplify the integrand to a more manageable form for Mathematica by
substituting

substl = x-a(l-Cosl[6]);

The differential dx is replaced by the new differential & multiplied by a
factor.

dx = g (x /. substl)

a sin(6)

The integrand in the updated variables is given by

ints = dx int/.substl

aVa(l—-cos() sin(d)

2a—a(l-cos(9))

This expression is simplified by the following chain of functions to

ints = \/ ints® // PowerExpand // Simplify // PowerExpand

2asin2(g)

which can easily be integrated with the result
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u = Jints de // Simplify

a (0 —sin(6))

We now know that the path between p; and p, in a parametric form given
by the coordinates x and y depends on 6. x and y describe the fastest
connection between two points in a homogeneous force field. Parameter a
contained in the above representation has to be adjusted so that the path of

the particle passes point p,. The curve derived is known as a cycloid.

curve = {u,-x/.substl}

{a (8 —sin(#)), —a (1 — cos())}

A parametric representation of the solution for different parameters a is
created by the function ParametericPlot[] and given as follows:



2. Classical Mechanics 291

k1l = curve /. a-l;
k2 = curve /. a»2;
k3 = curve /. a-»1l.25;
k4 = curve /. a-l1l.5;

ParametricPlot [{kl,k2,k3,k4},{6,0,27},AxesLabel->{"u"
, lell}] ;

-4
Example 2: Mechanical System

Another example of the application of the function EulerLagrange[] is
the derivation of the Euler—Lagrange equation for a mechanical system
with one degree of freedom. For a detailed discussion of the
Euler-Lagrange equation, see Section 2.7. The functional density for such

a problem is generally given by the Lagrange function L:

£ = 1[t, q[t], q'[t]]

I, q(0), 4'(1)

where g denotes the generalized coordinate of the particle and ¢ denotes
the time. The Euler-Lagrange equation for the general Lagrangian then
follows by
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SetOptions[EulerLagrange, eXpand -» True];

&Ll

A1V, q(n), q'(1)

1019, g(p), ¢ (1) - o

If we are interested in the explicit form of the Euler—Lagrange equation,
we can set the option eXpand —False. Then, the result reads

SetOptions[EulerLagrange, eXpand -» False];

&Ll

=q" () 19D, q0), ¢ ) + 1910, q(1), ¢ (1)) -
g 1%V, 1), ¢ (1) — 11V, g(1), ¢'(1)) == 0

This equation is the general representation of the FEuler-Lagrange
equation.

The Euler operator defined earlier was the result of the variation of a
functional. We demonstrated the calculation for a single dependent
variable u = u(x) which was a function of one independent variable x. The
generic case in applications is more complex. We rarely find systems with
only one dependent variable. Thus, we need a generalization of the
formulation considering more than one dependent variable in the
functional F. In the following exposition, we assume that a set of g
dependent variables u® exists. The functional F for such a case is
represented by

Flu', u*, o f f(xu X,...)dx. (2.6.22)

The variation of the dependent variables is now performed by introducing
a set of test functions w®. Using this set of auxiliary functions, we can
represent the variation by
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u*(x;e) = u?(x;0) + ew*(x), a=1,2,3,...,¢q. (2.6.23)

The derivation of the Euler operator proceeds in exactly the same way as
presented earlier. We skip the detailed calculations and present only the
result:

)

OF 4 af
- = 1" Dy —— w" (x) dx. .6.
e j; ;{;( ) ()6u‘(7§1)}w (x) dx (2.6.24)
Since the individual variations w® (x) are all independent of each other, the
vanishing of Equation (2.6.24) when evaluated at e=0 requires the separate
vanishing of each expression in curly brackets. Thus, we again can define
an Euler operator for each of the ¢ dependent variables u®.

2.6.6 Euler Operator for ¢ Dependent Variables

In this subsection, we extend the definition of the Euler derivative to a set
of g dependent variables. Let f = f(x, ul, W, ., u)lc, u)%, ...) be the

density of the functional F [u!, u?,...]. Then, we define the Euler operator
Eq as

) ) P
8(1 = Z‘;)(_l) D(n) 61/{—81) , ¥ = l’ 29 e g, (2625)

which will give us the ath Euler equation when applied to the density f:

Ef =0. (2.6.26)

The only difference between this definition and the definition for a single
variable is the number of equations contained in Equation (2.6.26). The
occurrence of the g equations in the theoretical formulas must now be
incorporated in our Mathematica definition for the Euler derivative
EulerLagrange[]. The theoretical definition (2.6.25) only alters our
Mathematica function in a way that, for several dependent variables, a set
of Euler equations results. Thus, we change our Mathematica function in
such a way that all dependent variables are taken into account in the
application of the &, operator. We realize this by including a loop
scanning the input list of the dependent variables. The code of this
generalized Euler operator is
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EulerLagrange[density , depend List,
independ , options ] :=
Block[{f0, fh, e, w, ¥y, expand,
euler = {}, wtable},
{expand} = {eXpand} /. {options} /.
Options[EulerD] ;
wtable = Table[w[i],
{i, 1, Length[depend]}]:
£f0 = Function[x, y[x] +ew[x]];
rules[i ] :=
b . wtable[i] ‘) [independ] :»
(-1)" HoldForm[ 09 independ,n} P1;
Do [
fh = density /. depend[j] » £0 /.
{x » independ, y - depend[j].,
w > wtable[[j]};:
fh = Expand[6.fh /. e > 0] ;
fh =fh /. rules[j] /.
wtable[[j] [independ] - 1;
AppendTo[euler, fh],
{j, 1, Length[depend] }]:;
If[expand,
euler = ReleaseHold[euler],
euler]]

Let us demonstrate the application of this function by two examples.

Example 1: Two-Dimensional Oscillator System

Assume that we know the functional density of a two-dimensional
oscillator system. Let us further assume that the two coordinates of the
oscillators are coupled by a product. We expect that the two equations of
motion follow by applying the Euler derivative. The Lagrange density of
the system reads

Clear[u]
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1=ult] v[t] + (cu[t])?+ (8ev[t])? - ult]®-v[t]?

—u@®? + v ul®) —v(O? + () +v 1)

The corresponding system of second-order equations follows by

azu,v) [l ]

(=2 u(®) +v(E®)=2u"(t) == 0, u(®) =2 v(t) — 2" (¢) == 0}

Note that we used the same name, EulerLagrange[], for the operators &
and &,. This sort of definition is possible and provides a great flexibility in
the application of a single symbol for different operations. Mathematica is
able to distinguish the two different functions by the different arguments.

Example 2: Two-Dimensional Lagrangian

Another example for a two-dimensional Lagrangian is given by the

function

f=uf[t] v[t] + (8cu[t])? + (Bev[t])2 +28cu[t] Ocv[t]

WOZ+2VO W@ +V @+ u@ v

This density is a special model of a Dirac Lagrangian containing the
derivatives with respect to time as a binomial. The corresponding
Euler-Lagrange equations read

Stu,v) [f ]

v -2u”(@)-2V"(t) == 0, u(r) -2 u" (1) - 2v" (1) == 0}
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representing a coupled system of second-order ordinary differential
equations.

So far, we are able to handle point systems depending on one independent
variable. However, equations occurring in real situations depend on more
than one independent variable. Thus, we need a generalization of our Euler
derivative to more than one independent variable. In fact, the definitions of
an Euler operator can be extended from the g+ 1-dimensional case to the g
+ p-dimensional case. We define this operator in the following section.

2.6.7 Euler Operator for g + p Dimensions

Here, we will discuss the general definition of an Euler operator. This sort
of operator, for example, is used to write down field equations such as
Maxwell’s equations, Schrodinger's equation, Euler's equation in
hydrodynamics, and many others.

Definition: (q, p)-Dimensional Euler Operator

Let f = f(x,uy) be the density of the functional F[u] with
x=(x" %% ..., xP), and u = (u', u?, ..., u9) be the p- and g-dimensional
vectors of the independent and dependent variables, respectively. By uy,
we denote all the derivatives with respect to the independent variables. We
call

0
8(1 = -D
ZJ:( v 2.6.27)
the general Euler operator in ¢ dependent and p independent variables. J is
a multi-index J = (ji, ..., iy with1 < jr<p,k =0. 1

Since the functional densities f depend on a finite number of derivatives
u§, the infinite sum in Equation (2.6.27) is terminated at this upper limit.
Again, the Euler equations for a given functional F[u] follow from the
application of &, to F:

EF=0, a=1,2..4q (2.6.28)

From a theoretical point of view, we know the general Euler operator. Our
next step is to make this operation available in Mathematica. We define
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the generalized Euler operator by taking into account the different
independent variables. The corresponding definition of EulerLagrange[]

for g + p dimensions is given by

EulerLagrange[density , depend List,
independ List, options ] :=
Block[{f0, fh, e, w, ¥y, x$m, expand,

euler = {}, wtable},
{expand} = {eXpand} /. {options} /.
Options[EulerD] ;
wtable = Table[w[i],
{i, 1, Length[depend]}]:
f0 = Function[x$m, y +ew];
ruleg[i ] :=
b . wtable[i] ) ee@ independ :»
(-1)Flusee(n)
HoldForm[Odpelete[Thread[{independ, {n}}],0] P] 7
Do [
fh = density /. depend[j] » £0 /.
{x$m » independ,
Y-
depend[j] @@ independ,
w > wtable[j] @@ independ};
fh = Expand[6.fh /. e > 0] ;
fh = fh /. ruleg[j] /.
wtable[[j] @@ independ -» 1;
AppendTo[euler, fh],
{j, 1, Length[depend] }]:;
If[Not[expand],
euler = ReleaseHold[euler],

euler]]

We demonstrate the application of the function EulerLagrange[] to the
wave equation in 2+1 dimensions and to a system of coupled nonlinear

diffusion equations.
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Example 1: Quadratic Density

Let us consider a functional in ¢ =1 and p = 3 variables and assume that

the density is quadratic in the derivatives given by
1
Flul= 5 f (W2 (a1, 22, x3) — 12, — 1) v, dxy dixs, (2.6.29)
Calculating the variational derivative, we immediately find that the Euler
equations are given by the Laplace equation
—Uy, x, F Uy, F Uy, = 0. (2.6.30)

Using the generalized definition of EulerLagrange[], we can reconstruct
the result of our pencil calculation. First, let us define the density by

1
f= EY ((Ox1u[xl, x2, x3])2 -

(Ox2u[xl, x2, x3])2% - (Oxsu[xl, x2, x3])2)

1
> (—u(o’o’l)(xl, x2, x3)2 —u O], x2, x3)2 +u09(x1, x2, x3)2)

The application of the Euler operator to f gives

wave = 85;;”‘2”‘3) [f]

w2 (x1, x2, x3) + UV (x1, x2, x3) - u**V(x1, x2, x3) == 0}

The resulting equation is known as the wave equation in 2+ 1 dimensions.

Example 2: Diffusion of Two Components

In this example, we will consider a system in two field variables (g = 2)
and two independent variables (p = 2). The physical background of this
model is the diffusion of two components in a nonlinear medium. The
Lagrange density of this field model has the representation
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1l = v[x, t] 0 u[x, t] +
O, u[x, t] 8x v[x, t] +u[x, t]% v[x, t]?

u(x, l)2 v(x, t)2 + u(o’l)(x, Hv(x, 1)+ u(l‘o)(x, 1) v(l’o)(x, 1)

The related equations of motion follow by

cnondiffu = TableForm[ng:‘v’) [l]]

2u(x, Hv(x, 1> —vOD(x, 1) —vEO(x, 1) == 0
2v(x, 1) u(x, 1 + u®V(x, ) —u@O(x, 1) == 0

representing two coupled nonlinear diffusion equations for the variables u
and v. The same equations of motion can be derived from the functional /,
given by

11 = -u[x, t] 6 v[x, t] +
O, u[x, t] 8x v[x, t] +u[x, t]% v[x, t]?

u(x, l)2 v(x, t)2 —u(x, 1) v(o‘l)(x, 1+ u(l‘o)(x, 1) v(l’o)(x, 1)

The equations of motion follow then from

TableForm|&[;} [11]]

{uy}

2u(x, Hv(x, 1> —vOD(x, 1) —vO(x, 1) == 0
2v(x, 1) u(x, 1 + u®V(x, ) —u@O(x, 1) == 0

This behavior demonstrates that field equations can be derived from
different functionals.
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2.6.8 Variations with Constraints

This section deals with the problem of having a standard setup for a
problem in the calculus of variations and, in addition, some constraints on
the function for which we are looking. For example, we are looking for the
shortest connection on a curved surface. The fact that the solution we are
looking for is part of the surface can be formulated in a condition such as

g(gi— =0 (2.6.31)
defining the surface itself. For a sphere, the condition g is given by

§=qi+q+q5 -1 =0, (2.6.32)
where 7 is the radius of the sphere. We call the functional relation g also a

boundary condition for the problem of variation.

For the first approach of boundary conditions involved in a variational
problem, let us assume that there exist two coordinates ¢; = y and g =z
depending on each other. The functional density depends, in addition to
the coordinates ¢; and ¢, on the derivatives of the coordinates with
respect to ¢. The density of the functional then is

ft,qi gy = f@ y, ¥,z 2). (2.6.33)

The corresponding functional reads

Fly, 2] = f fa y .,z 2. (2.6.34)

If we carry out the variation of the two unknown function y and z, we get

o
de  le=0
ftz {( of _i( yaf : )) 6(y+8W1)
1 6(;)}7“+8(W1) di (3(;);+8’W1) (‘zg (2.6.35)
} d ; Iz+eWs)
( dG@+eW, — di ( 0(Z+eW') )) - oe : }dt Ln

In addition, we have the boundary condition in the form
gt y, 2 =0. (2.6.36)
Applying the variations also to this condition, we find

g(t9 ytewy, 2 +8W2) = 0. (2637)
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This condition shows that the two independent variations (test functions w
and w,) become dependent on each other. Differentiation g with respect to
the parameter €, we find

dg _ dg I (y +ew)
de = 9y +ewy) oe
o D rew) _ (2.6.38)
g(z +ewy) 656 -
8 8
= a(y+gw% + a(z+st) wy =0 (2.6.39)
= w =~ (5w e (2.6.40)
Inserting this result into the functional F we get
oo Of d (0f
= 0 Gy - w ) w
of d (0f
(57— @ (57)) wajdt
Cwdf  d (Of (2.6.41)
_fn {6y T odt (ay')
of d (0f 0g/o
- (5 - @ (37)) (ai/ai)} widt = 0.
Since the w; are arbitrary, we find
o~ (5) = (G~ () age (2:6.42)
1 ' ' 1
=(F-a@)z=(E- (&) am (2.6.43)

3y

Since the left-hand side contains only derivatives of f and g with respect
to y and y' and the right-hand side contains only derivatives with respect to
z and z', we can separate the relation by introducing a common function A
depending only on the independent variable f¢. Thus, the resulting
determining equations for f and g are

9 3
T’; @ (35 )+ Mf) : (2.6.44)
9 3

L-L(G)rwE=o (2.6.45)

The problem is solved if we can determine the three unknown functions
y = y(1), z = z(¢), and A = A(¢). For these three unknowns, we know three
equations first the two Euler equations resulting from the functional F
(2.6.44) and (2.6.45), second the boundary condition g = 0. Thus, we have
a sufficient number of equations to determine the unknowns y, z, and A. A,
the additional unknown, is called a Lagrange multiplier, which Lagrange in
1788 originally introduced in his Mechanique Analytique. The
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generalization from two variable to many variables and many boundary
conditions is now obvious. The procedure demonstrated above can be
applied to a more complicated problem. The resulting determining

equations are

af d [ of M 9 _ _
G~ () + Qg MO Gy = =0 (2.640
(g, =0, (2.6.47)

with i=1,2, .., N and j=1,2, .., M. The first equation represents a
system of equations consisting of N equations for N + M unknowns. In
addition, there exist M boundary conditions which allow a consistent
solution of the problem. For N + M unknown functions, there exist N + M
equations.

In practical applications, the system of equations g; (¢;, t) = 0 is equivalent
to a system of M differential equations

9g; _ .
ia—qigq;—O, i=1,2, ... N,

j=1,2 ..M.

(2.6.48)

Mechanical problems are usually formulated in such a way that the M

boundary conditions are represented by differential equations.

Example 1: Rolling Wheel on an Inclined Plane

(5

Vi

S

Figure 2.6.3.  On a inclined plane, a wheel is rolling downward without any slip.

Let us consider a rolling wheel on an inclined plane (see Figure 2.6.3). The

y coordinate is then given by
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y = RO, (2.6.49)

where R is the radius of the wheel. The boundary condition for the

mo

vement is thus

gy, Q) =y-RO=0

arc

the quantities related to the Lagrange multiplier.

2.6.9 Exercises

1. Show that the shortest distance between two points in three-dimen-
sional space is a straight line.

2. Show that the geodesic on the surface of a right circular cylinder is a
helix.

3. Find the dimensions of the parallelepiped of maximum volume that
is circumscribed by 1) a sphere of radius R and 2) an ellipsoid with
semiaxes a, b, and c.

4. Find the ratio of the radius R to the height /& of a right circular
cylinder of fixed volume V that will minimize the surface area A.

5. A disk of radius R rolls without slipping inside the parabola
y = ax*. Find the equaion of constraint. Express the condition which
allows the disk to roll so that it contacts the parabola at one and only
one point, independent of its position.

2.6.10 Packages and Programs
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EulerLagrange Package

The EulerLagrange package serves to derive the Euler-Lagrange equations
from a given Lagrangian.

If [$MachineType == "PC",
$EulerLagrangePath = $§TopDirectory <>
"/AddOns/Applications/EulerLagrange/";
AppendTo[$Path, $EulerLagrangePath],
$EulerLagrangePath =
StringJoin[$HomeDirectory, "/.Mathematica/3.0/
AddOns/Applications/EulerLagrange", "/"];

AppendTo[$Path, $EulerLagrangePath]];

The next line loads the package.

<< EulerLagrange.m

Notation[gu:[den_] <> EulerLagrange[den , u , x_]]

& 101
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2.7 Lagrange Dynamics

2.7.1 Introduction

In this chapter, we discuss one of the fundamental principles of classical
mechanics — the Lagrangian formulation (see Figure 2.7.1). This
formulation also provides the necessary background to learn about the
Hamiltonian formulation, which, in turn, provides the natural framework in
which to investigate the ideas of integrability and nonintegrability in a
wide class of mechanical systems. Many of the differential equations so far
discussed describe the motion of a particle moving in some force field and,
as such, they are examples of Newtonian equations of motion. Since
Newton's work, the Laws of Mechanics have been the subject of ever more
general and elegant formulations.

Figure 2.7.1.  Joseph Louis Lagrange born January 25, 1736; died April 10, 1813.

In order to circumvent some of the practical difficulties which arise in
attempts to apply Newton's equations to particular problems, alternative
procedures can be developed. All such approaches are, in essence, a
posteriori because it is known beforehand that the result equivalent to the
Newtonian equations must be obtained. Thus, in order to effect a
simplification, it is not required to formulate a new theory of mechanics —
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the Newtonian theory is quite correct — but only to devise an alternative
method of dealing with complicated problems in a general manner. Such a
method is contained in Hamilton's principle and the equations of motion
which result from the application of this principle are called Lagrange's
equations.

General equations of motion can be seductively derived by invoking such
fundamental principles as the homogeneity of space and time and the use
of an almost magical variational principle, Hamilton's principle, to the
extent that the resulting laws would appear to have been determined from
purely deductive principles. In view of the wide range of applicability that
Hamilton's principle has been found to possess, it is not unreasonable to
assert that Hamilton's principle is more fundamental than are Newton's
equations. Therefore, we will proceed by first postulating Hamilton's
principle; we will then obtain Lagrange's equation and show that these are
equivalent to Newton's equations.

2.7.2 Hamilton's Principle Historical Remarks

Minimal principles in physics have a long and interesting history. The
search for such principles is predicated on the notion that Nature always
acts in such a way that certain important quantities are minimized when a
physical process takes place. The first such minimum principles were
developed in the field of optics.

Hero of Alexandria, in the second century BC, found that the reflection of
light is based on the shortest possible path of a ray.

In 1657, Fermat (see Figure 2.7.2) reformulated the principle by
postulating that a light ray travels in such a way that on its path it requires
the least time. Fermat's principle of least time leads immediately not only
to the correct law of reflection but also to Snell's law of refraction.
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Pierre de Fermat (born August 17, 1601; died January 12, 1665), a French lawyer, linguist,

Figure 2.7.2. ..
and amateur mathematician.

Newton, Leibniz, and Bernoulli discussed the problem of the
brachystochrone and the shape of a hanging chain (a catenary).

In 1747, Maupertius first applied the general minimum principle in
mechanics (see Figure 2.7.3). He asserted that dynamical motion takes
place with minimum action. His theological reasoning was that action is
minimized through the wisdom of God.

Pierre de Maupertuis (born September 28, 1698; died August 27, 1759), a French
mathematician and astronomer. He is most famous for formulating the principle of least
action. The first use to which Maupertius put the principle of least action was to restate
Fermat's derivation of the law of refraction (1744).

Figure 2.7.3.
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In 1760, Lagrange put the principle of least action on a firm basis (see
Figure 2.7.1). However, the principle of least action is less general than
Hamilton's principle.

In 1828, Gauss developed a method of treating mechanics by his principle
of least constraint; a modification was later made by Hertz and embodied
in his principle of least curvature. These principles, which were formulated
6 years later are closely related to Hamilton's principle. However,
Hamilton's more general formulation is still today in use.

Carl Friedrich Gauss (born April 30, 1777; died February 23, 1855), worked in a wide
variety of fields in both mathematics and physics, including number theory, analysis,
differential geometry, geodesy, magnetism, astronomy, and optics. His work has had an
immense influence in many areas.

Figure 2.7.4.

In 1834 and 1835 Hamilton (see Figure 2.7.5) announced the dynamical
principle upon which it is possible to base all of mechanics and, indeed,
most of classical physics. Hamilton's principle reads:

Of all the possible paths along which a dynamical system can move from
one point to another within a specific time interval, the actual path
followed is that which minimizes the time integral of the difference
between the kinetic and potential energies.

In terms of the calculus of variations, Hamilton's principle becomes
fy _
5f,1 (T-V)dt = 0.

This variational statement of the principle requires only that 7 —V be an
extremum, not necessarily a minimum, but in almost all applications of
importance in dynamics, the minimum condition obtains.
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Sir William Rowan Hamilton (born August 04, 1805; died Septembe 02, 1865), Scottish
mathematician and astronomer, and later, Irish Astronomer Royal. In 1843, Hamilton

Figure 2.7.5.  discovered the quaternions, the first noncommutative algebra to be studied. He felt this
would revolutionize mathematical physics and he spent the rest of his life working on
quaternions.

Let us consider a mechanical system consisting of a collection of particles
— interacting among each other according to well-defined force laws;
experience has shown that the state of the system is completely described
by the set of all the positions and velocities of the particles. The coordinate
frame need not be cartesian, as was the case in Newton's work, and the
description can be effected by means of some set of generalized
coordinates q;, (i = 1, ..., n) and generalized velocities ¢';, (i = 1, ..., n).

If the system moves from a position at some time f;, labeled by the
coordinate set ﬁ(l)z(ql(tl), ...» gn(t1)), to a position ﬁm:(ql(tz),
..., qn(t)) at another time f,, then the actual motion can be determined
from Hamilton's principle of least action. This requires that the integral of
the so-called Lagrange function takes the minimum possible value
between the initial and final times. For the moment, we treat the
Lagrangian as a black box, merely stating that it can only be some function

of those variables on which the state of a system can depend, namely

L=Lgi, ..., qn, q'1> --» @5 1). (2.7.1)

The famous principle of least action or Hamilton's principle requires that
the action integral
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W= sz(a,a', ndt (2.7.2)

be a minimum. For the moment, we drop the subscript on the g;'s and ¢g';'s
and assume a single degree of freedom. The positions gV and ¢® at the
initial and final times #; and t,, respectively, are assumed fixed. There can
be many different paths g() connecting ¢/ and ¢®, and the aim is to find
those that extremize the action (2.7.2). This is done by looking at the effect
of a first variation, that is adding a small alteration along the path which
vanishes at either end. A remarkable feature of this procedure is that we
are considering the effect of these variations about a path which we do not
yet know. The first variation of the action is then determined by

& £
—j Llq[t], 6cq[t], t]d t
6q Jy,

-O¢e,1y L0 [q[t]

(el, a'[t], ]+
L9 [qlt], g'[t], £] ==0

t]

This equation is known as Lagrange's equation.

For n degrees of freedom ¢, ¢, ..., g,, the variation must be effected for
each variable independently (i.e., g; + ew;). The result gained is a set of
equations

5 [t
Map[(é—#j L[qgl[t], g2[t], g3[t], Bcql[t],
€

1

deq2[t], 8eq3[t], t] dlt) &, {ql, g2, q3}]

{-0¢,1y L0000 g1 1t], g2(t], g3[t], g1’ [t],
g2'[t], a3'[t], t] + L2000 0000 Ty e,
q2[t}: qB[t]l qll[t]l qzl[t}: q3/[t}: t] ==0,
-0(¢,1y L0000 1q17E], gq2(t], g3[t], ql’[t],
g2'[t], a3'[t], t] + L2000 000 gy [t],
q2[t}: qB[t]l qll[t]l qzl[t}: q3/[t}: t] == O,
-0(¢,1y L0000 1q17t], g2(t], g3[t], ql’[t],
g2'[t], a3'[t], t] +L(® 010000 Ty [t],
q2[t}: qB[t]l qll[t]l qzl[t}: q3/[t}: t] == O}
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which are the celebrated Lagrange equations. If the explicit form of the
Lagrangian is known, then the set of equations of motion are a set of
second-order equations. If, in addition, the initial dates (g;(0), g'; (0),
i=1,2,3,...) are given, the entire history of the system is determined.
For Laplace, this deterministic framework appeared so powerful that he
claimed: We ought then to regard the present state of the universe as the

effect of its preceding state and as the cause of its succeeding state.

At this point of the theory, we know how to derive the Lagrange equations
from a given Lagrangian. However, up to now, we did not discuss how we
can find the Lagrangian. In determining the correct form for the
Lagrangian function, it is interesting to see how far one can go in making
this choice by invoking only the most basic principles. Landua and Lifshitz
[2.2] argue that for a free particle, the principles of homogeneity of time
and isotropy of space determine that the Lagrangian can only be
proportional to the square of the velocities. The two mentioned properties
ensure that the motion can be considered in the context of an inertial
frame, (i.e., independent of its absolute position in space and time). If the
constant of proportionality is taken to be half the particle mass, then the
Lagrangian for a system of noninteracting particles is just their total kinetic
energy; that is,

L= Z=1 Lmg?=1 (2.7.3)

Beyond this, experimental facts have to be invoked in that if the particles
interact among each other according to some force law contained in a
potential energy function V(qi, q2, ..., g,), then Landau and Lifshitz say
experience has shown that the correct form of the Lagrangian is

L=T-V = Zi:l Lmq' -V, g, o q). (2.7.4)

The potential energy function is such that the force acting on each particle
is determined by

- d
Fi = =57 V@ a2 ... q). (2.7.5)
This provides a definition of the potential energy because it ensures that
the net work done by a system in traversing a closed path in the
configuration space 1is zero. For velocity-independent potentials,
Lagrange's equations become
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SetOptions[EulerLagrange, eXpand -> False];

5 [

1
2q ., (;m (8ealt])? —V[q[t]]) dt

-V'[g[t]] -mg”[t] ==0

which, in the case of cartesian coordinates, are just Newton's equations.

In general, the Lagrange equations of motion are a set of n ordinary
differential equations of second order. A complete solution will contain
2 n arbitrary constants. These constants are usually taken to specify the
state of the system at some initial time. Instead of giving the initial state of
the system, one might give the initial configuration and a later
configuration. These conditions might not be self-consistent because the
second configuration might not result from the first one under the action of
the given forces, no matter how the initial velocity components are chosen.

One of the most useful devices for solving the Lagrange equations of
motion is to discover the first integrals of the motion. A first integral of a
set of differential equations is a function of the unknowns and contains
derivatives of one order lower than the order of the differential equations
themselves and remains constant by virtue of the differential equations.
Examples of such integrals are the energy and the momentum of isolated
systems. The advantage of having an integral of the motion is that it
reduces the order of the system of equations to be solved.
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2.7.3 Hamilton's Principle

To see how Hamilton's principle works, let us consider a mechanical
system consisting of N interacting particles. As we noted in Section 2.7.2,
it is sufficient to introduce a functional depending on coordinates and
velocities. The choice of coordinates and velocities only is a matter of
experience. The chosen coordinates must not be cartesian coordinates.
However, Newton's mechanics is based on cartesian coordinates. In
Hamilton's principle, it is sufficient to choose so-called generalized
coordinates qi (i=12,..., N) and generalized velocities
q'; (i=1,2, ..., N). These coordinates are chosen in such a way that the
mathematical description of the problem is simplified.

The choice of generalized (appropriate) coordinates is motivated by the
following arguments. A point system consisting of N points has, in
general, to satisfy a number » constraints. These restrictions are given by

8axg, ) =0 =12, .r, =12, .., 3N 2.7.6)

where xg denotes the 3N cartesian coordinates. The degrees of freedom for
such a system are determined by f = 3 N —r. Our aim is to replace the
3N cartesian coordinates xg by f generalized coordinates g;. These f
generalized coordinates g; are free of any constraints and allow a complete
description of the system. The physical meaning of the coordinates can be
different from the cartesian coordinates. For example, the generalized
coordinates can be distances, angles, line elements, and so forth. It does
not matter how one interprets these coordinates, but it is important that the
number of the coordinates equal the degrees of freedom of the system.
Such coordinates are optimized coordinates for the system.

2.7.3.1 Classes of Constraints
Constraints which are given by algebraic expressions like
8a (xp, 1) = 0, a=1.2,.r, 2.7.7)

with r < f = 3 N —rare called holonomic.
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Constraints not representable by algebraic relations are called
nonholonomic. Another classification of constraints is based on the time
dependence or independence. Time-dependent constraints are termed
rheonimic. Constraints independent of time are called scleronomic. The
following table summarizes the terms used to classify mechanical

constraints.
rheonom skleronom
with time without time
holonom 8e(qi)=0 8a(g))=0
nonholonom 82a(q:,H)s0 24(g)s0

Table 2.7.1.  Classification of constraints as rehonom, skleronom, holonon, and nonholonom conditions.

The motion of a particle system with N generalized coordinates from a
position ﬁ(l) = (q1 (t1), q2 (t1) ...qn (#1)) at t=1; to a different position
ﬁ(z) =(q1 (1), q2 () ...qn (1)) at t=1t, is governed by Hamilton's
principle. Hamilton's principle itself is governed by a functional called the
Lagrange functional whose density is a function of generalized coordinates
and velocities:

L = L(‘Il, q2, .-.5 4N, q'] s qu, ceey q'N’ t) (278)

This kind of density takes on an extremal value in a time interval ¢ to t, if
the right path is chosen. At the moment we assume that such a density
exists and ask for consequences for the density. If the density exists then
we are able to write down the corresponding functional

L[CII] = J:Z L(ql’ q2; --- 4N> q'I > q'Z’ ceey q'N’ t)dt~ (279)

Calculus of variations tells us that this functional assumes an extremal

value if the Euler equations are satisfied; that is

&§L=0= g_cf i=12 ...N (2.7.10)
or explicitly

0L d (0L _

L _d(%E)-=o (2.7.11)

In Mathematica, we get for a system with N coordinates the expression
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SetOptions[EulerLagrange, eXpand -> True];

q[:.] [L[q[l] [t] ’ atq[l] [t] 1 t]]

~Oe,1y L0 9 [q[i][t], qli]’[t], t] +
LB [q[i] [t], q[i]’[t], t] == 0

which is identical with relation (2.7.11). This kind of equation is also
known as Euler—Lagrange equation. The Euler-Lagrange equations are
ordinary differential equations of second order. If we carry out the

differentiation explicitly, we get a second-order ODE.

SetOptions[EulerLagrange, eXpand -> False];

8qriy [LIQlil[t], Oeq[il[t], t]]

LD [q[i] [t], q[i]'[t], t] -

qli]7[e] £ [q[i] [t], q[i]'[t], t] +
LB [q[i] [t], a[i]'[t], t] -

ali]’[e] LB [q[i] [t], q[i]'[t], t] == 0

At this stage of our calculations we note that the order of differentiation of
Euler-Lagrange equations is identical with the order of differentiation of

Newton's equation.

If Hamilton's principle has a real physical meaning, then the equations of
motion must be identical with Newton's equation of motion. To establish
this connection, we define a Lagrange density which separates into two
parts. The first part contains only velocity-dependent components and the
second part contains only information on coordinates. This separation is
motivated by the two energies known as kinetic energy and potential

energy. Let us first assume that both energies are linearly combined:

L=aT + V. (2.7.12)
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where 7 and V denote kinetic and potential energies, respectively. The
parameters « and S are, up to now, unknown. The kinetic energy is a
function of generalized velocities ¢'; given by

T=T(q\, g5 - q'5) = T(q)). (2.7.13)

This function is defined in Mathematica by

T=7[0cq[i] [t]]

Tlali]'[t]]

The potential energy is a function of the generalized coordinates ¢; given
by
V=V, g, - qn) = V(g). (2.7.14)

or in Mathematica by

V=V[q[i] [t]]

V0a[i] [t]]

The Lagrange density is the given by relation (2.7.12)

L=aT+BV

a7 [q(i]"[t]] +BV[a[i] [t]]

From the Euler-Lagrange equations, we get the following system of
equations of motion

oL d (&)
dq; dt
dt \og; ) — 6ql 8¢, qi =
/3 v PT . )
- % g e gi =0 i=1,2, ..., N. (2.7.16)

in Mathematica, it follows that
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SetOptions[EulerLagrange, eXpand -> False];

ElerLagrangeEquation = &5 [L]

BV [ali] [t]] —a7”[q[i]"[t]] q[i]7[t] ==0

Newton's theory provides for an N-particle system the following system of
equations

m;q";, = Fj, i=1,2, ..,N. 2.7.17)
If we, in addition, assume that the forces F; can be represented by a
potential gradient

av(g) -
F = — a—qq i=1,2, .. N, (2.7.18)

then we get Newton's equation in the form

av(q) "
a; tmig" =0, (2.7.19)

or in Mathematica,

NwtonsEquations =
Oqrarrer (VIQlil [t]]) +m[i] B¢, eq[i] [t] == 0

Vig[i][t]] +m[i] q[i]”[t] ==0

If both systems of equations are identical, the difference of the two
systems must vanish:

rell = NwtonsEquations[1] -
ElerLagrangeEquation[[1l] // Simplify

- (=1+8) Vgli][t]] + (m[i] +a7” [q[i]"[t]]) q[1]" [t]
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Because the second-order derivative in the g;'s and the potential gradient
are not equal to zero, the coefficients of these terms must vanish. The
coefficient with respect to the potential gives

rl =
Solve[Coefficient[rell, Oqiijre; VIq[il[t]]] ==0, B] //
Flatten

{B-1}

The relation for « is gained by

r2 = Solve|
Coefficient[rell, O.,cq[i][t]] == 0, a] // Flatten

If we, in addition, assume that the kinetic energy is a quadratic function in
the generalized coordinates, then the masses m; are the front factors of the
quadratic term. Thus, we can set

r2 =1r2 /. Oqpiyrrel,qrirrrel 7 [ali] "[t]] ->m[i]

{a—> -1}

Now, the two unknowns @ and (8 are determined and the Lagrange density
becomes

L=L/.xrl/.r2

In standard mechanics texts, the Lagrange density is defined by

L=T(q") - V(g (2.7.20)
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However, the sign does not matter because the resulting system of
equations of motion is invariant with respect to a change of all signs. This
is demonstrated by the derivation of the equations of motion by

8511y [£L]

V0qdi] [e]] +77[q[i]"[t]] q[i]"[t] == 0

and

The major assumption in the derivation of the Lagrange density was that
the kinetic energy is a quadratic function in the generalized velocities gq';.
A simple realization is given by

T(q') =547 + g+ e (2.7.21)
The simplest form of the kinetic energy for an N-particle system is thus
N A
T(q) =)  5a’ (2.7.22)

In general, the kinetic energy is a homogenous quadratic function in the

generalized velocities g';:
T=) ., and;d (2.7.23)
Differentiation of this relation with respect to g'; delivers
dT _d 1 1 _ L [ 1
dq; T dg; {Zk,j 4 q' 9} = Zk,j N
dq; dq'
= O T q'v + q'; T (2.7.24)
Zk, j 7 dq i8ji J dq iy
= Zk’j aj (0iq'y + q';0k) = 2k @i q'y + Zj ajiq';
Multiplying this with ¢'; and summing over i gives

i dT [l [l 1 ]
Ziﬂhﬁ = Xk Qi gy q + Zi,j ajiq ;q; (2.7.25)
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which is equivalent to
Zi q' jTTl =22k kg q'; (2.7.26)
because the indices in the second sum are changeable. Then, it follows that
Z; q' 5TT',- = 2T. (2.7.27)

This result, however, is a special case of the more general Euler theorem

on homogenous functions f (yi) given by

0
Y g =nf. (2.7.28)

The main result is that the Lagrange density can be chosen as the
difference of kinetic and potential energy if we require that Newton's
equations be the target of Hamilton's principle. We also realized that the
Lagrange density is gauge invariant with respect to a common factor which
does not alter the resulting equations of motion. We demonstrated that the

variation of
& [T (g = Vg dt leo = 0 (2.7.29)

delivers the equations of motion, which is just Hamilton's principle.

Example 1: Harmonic Oscillator

As a first example let us examine the harmonic oscillator. This kind of
system is central in different fields of physics (e.g., in solid state physics to
describe crystals, in quantum physics to examine harmonic interactions).
The kinetic energy of a single harmonic oscillator in generalized velocities

is given by

T= 2 (8.q[t])?
= > td

The potential energy is given by the harmonic function
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v K [t]?
= 2 q

1 2

Ekq[tl

where m is mass and k is a force constant. The Lagrange density follows by

Applying the Euler-Lagrange operator to this density, we find the
governing equation of motion

harmonicOs = &;[L]

~kglt] -mg”[t] ==0

The solution of this equation demonstrates that the motion is described by

harmonic functions:

DSolve[harmonicOs, q, t] // Flatten

JVk t
m

{qe Function[{t}, cl1] Cos[

Example 2: Rolling Wheel on an Inclined Plane

Let us consider a wheel rolling on a inclined plane. The kinetic energy
consists of two parts. The first part is purely translational and the second

purely rotational. The total kinetic energy is given by
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1 1 1
T = e (Bey[t])? + ?I (6c0[t1)2 /.1 -> ;mRz

1 , 2, 1 2 4 2
— m t — mR“ O [t
S my [e]?+ 5 [t]

where m is the mass, 7 = m R /2 is the moment of inertia with respect to
the center, and R is the radius of the wheel. The potential energy is mainly
generated by Earth's gravitation:

V=mg (1-y[t]) Sin[a]

mgSinfa] (1-y[t])

where [ is the total length of the plane. The generalized coordinates here
are y and 6. The origin of the potential is chosen in such a way that at the
bottom of the ramp, V = 0. The Lagrange density of the system is given by

-mgSin[a] (L-vy[t]) +%my/[t]2 + % mR? o [t]?

representing a function in y, y', and 6'.

&
T

Figure 2.7.6.  Wheel on a ramp. Definition of constraints and coordinates.
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In addition to the Lagrange density, the system has to satisfy the additional
constraint of nonslip; that is,

g=y[t] -RO[t] ==0

y[t] -RO[t] == 0

The degrees of freedom f for the system is then determined by
f=N-M=2-1=1; (2.7.30)

that the system has one degree of freedom if the wheel rolls without
slipping. Thus, we can use either y or 6 as the generalized coordinate. Let
us choose y as the appropriate coordinate. Then, from the constraint g, we
get

y[t]
]

gconst = 6 -> Function[t,
R

y[t] ]

[S= Function[t, R

Inserting this relation into the Lagrangian density, we get

Ly =L /. gconst

~mgSinfal (1-vy[t]) +%my’[t]2

If we prefer to chose 6 as the appropriate coordinate we find

IL6=L/.y->Function[t, RO[t]]

-mg8infa] (L-RO[t]) + %mRz e’ [t]?
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Both Lagrangians are equivalent for the description of motion. The
governing equation of motion follows for each case

eqy = & [Ly]
. 3 .,
mg Sinf[a] - Emy [t] ==0
and

ego = &5 [LO]

\ 3
mRgSin[a] - ?mR2 6”[t] ==0

The solutions for each case follows by

soly = DSolvel[eqy, y, t] // Flatten

{y%FunCtion[{t}, c[1]+tC[2] + % t2 g 8ina] H

solé = DSolvel[eg®, 6, t] // Flatten

t2 gSin[a] ]}

{6 > Function|[{t}, C[1] +tC[2] + R

The point of view of this problem is to assume that y and 6 are
independent of each other. In this case, we have to carry out Hamilton's
principle under the action of constraints. The constraints are used to
determine the Lagrange multiplier. The Lagrange equations now read

ell = 85 [L][1] + A[t] Oype gI1] ==

mgSin[a] + A[t] -my”[t] ==0
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el2 = & [L] [1] + A[t] Bore; 91T ==

-RA[t] - %mR2 e’[t] ==0

In addition, the constraint gives

gconst

y[t] ]

[S= Function[t, 2

These three relations are the basis for the solution of the problem.

Let us first differentiae the constraint relation twice with respect to ¢ and
solve the resulting relation with respect to 6"

solconst = Solve[0O:,tg[1]] == 0, O¢,:©[t]] // Flatten

y'[t] }

{e[t] - =

Then, we can use the result in the second Euler-Lagrange equation and

solve for the Lagrange multiplier:

solA = Solve[el2 /. solconst, A[t]] // Flatten

Inserting the result into the first Euler-Lagrange equation, we find

eqll = ell /. solA

mgSinf[a] - % my”’[t] ==0
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which determines the Lagrange multiplier completely:

LagrangeMultiplier =
solA /. Flatten[Solve[eqll, O,:y[t]l]]

{are] »7% mg Sin[a] }

The Euler—Lagrange equations then follow by inserting the Lagrange
multiplier:

ellf = ell /. LagrangeMultiplier

2 ,
3 mgSin[a] —-my”[t] ==0

el2f = el2 /. LagrangeMultiplier

1 . 1
?ngSln[Oﬁ] - ?mR2 e’[t] ==0

The integration of the two equations with initial conditions introduced
deliver

DSolve[Join[{ellf}, {y[0] ==y0, y'[0] ==vO0}], y, t] //
Flatten

y > Function| {t}, L (3tv0+3y0+t?gSinfal)
3

DSolve[Join[{el2f}, {6[0] ==60, 6'[0] ==w0}], 6, t] //
Flatten

3RO0+3Rtw0+t?gSinfa] H

{e%FunCtion[{t}, IR




2. Classical Mechanics 327

Example 3: Sliding Mass Connected to a Pendulum

Let us consider two mass points as a coupled pendulum. The first mass m;
is sliding on a horizontal bar in the x-direction. The second mass is
connected with the first one by a stiff rod. At each end of the rod, one mass
point is located (see Figure 2.7.7). The second mass m, is the pendulum

mass.

Figure 2.7.7.  Sliding mass pendulum.

The movement of mass m; is restricted to the x-direction. The second mass
m, undergoes translations in x as well as oscillations around its support.

The total kinetic energy is generated by two parts:
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ml
TL= — ((0ex1[t])? + (0cz1[t])?)

% ml (x1'[t]? +z1 [t]?)

and

m2 2 2
T2 = - ((0ex2[t])? + (0c22[t])?)

2

% m2 (x2'[t]?%+z2'[t]?)

The potential energies of the two masses are

Vi=0

and

V2 =m2 g z2[t]

m2 g z2[t]

The total kinetic and potential energies are

T =T1+ T2

% ml (x1'[t]?+ 21 [t]?) + % m2 (x2'[t]?

+z2 [t]?)

and
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V =V1+V2

m2gz2[t]

To introduce generalized coordinates, we have to take the constraints into
account. The following rules define a transformation between original
coordinates and generalized coordinates:

generalizedCoordinates =
{x1l -> Function[t, x[t]], 21 -> Function[t, 0],
X2 -> Function[t, x[t] +1 Sin[¢[t]]].,
z2 -> Function[t, -1 Cos[¢[t]]]}

{x1 » Function[t, x[t]], zl1 » Function[t, 0],
x2 -» Function[t, x[t] +1Sin[¢[t]]],
z2 » Function([t, -1 Cos[¢[t]]]}

The transformed kinetic energy follows with

7 =T /. generalizedCoordinates // Simplify

1

> ((ml+m2) x' [t]?+

21m2Cos[o[t]] x' [t] ¢'[t] +1%2m2 ¢ [t]?)

The potential energy is

Y =V /. generalizedCoordinates // Simplify

-1m2gCos[@[t]]

The Lagrangien density in x and ¢ is given by
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1

1m2gCos[o[t]] + > ((ml+m2) x'[t]?+
]

21m2Cos[o[t]] x' [t] ¢’ [t] +12m2 ¢ [t]?)

From the Lagrange density, the two Euler-Lagrange equations are derived
via the application of the Euler operator:

ell = L [L]

1m2sin[é[t]] ¢’ [t]? -mlx"[t] -
m2x”’[t] -1m2Cos[¢[t]] ¢ [t] == 0

el2 = &5 [L]
-lm2g8in[¢[t]] -1m2Cos[p[t]] x”[t] -1°m2¢”[t] ==0

A view at these two equations shows that the second-order derivative in x
can be used to decouple the two equations. Solving for the generalized
acceleration x", we find

sol2 = Solve[el2, O,:x[t]] // Flatten

Sec[o[t]] (lm2gSin[o[t]] +12m2¢”[t]) }

e -

This result is used to eliminate x in the first Euler-Lagrange equation:

ellp = ell /. sol2 // Simplify

1 ¢ [E]%+

(ml+m2) gTan[¢[t]] + 1 m2 Sin[¢[t]
[plt]]) ¢”[t] ==0

1 (-m2Cos[¢[t]] + (ml +m2) Sec
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The resulting equation is an equation containing only ¢ as the unknown
quantity. Because the derived equation is nonlinear, there is no direct
method to find an analytic solution. If we assume that ¢ and the first
derivatives of ¢ are small quantities, we are able to Taylor expand the
equation around the equilibrium point ¢ = 0. Because ¢ is a small quantity,
squares of ¢ are even smaller than ¢ itself. If we use these information in
the expansion, we get

linell¢p = (Series[ell¢[1], {$[t], O, 2}] // Normal) /.
{(8e[t])? >0, ¢[t]* > 0}

(ml+m2) gp[t] +1ml @’ [t]

a linear harmonic equation. The solution of this equation follows with

sol¢ = DSolve[linell¢ == 0, ¢, t] // Flatten

{@ - Function[ {t},

[t\/mlg+m2g

V1 vm1

[t mlg+m2g H}

V1 Vml

C[1] Cos | +c[2] sin

Knowing the solution for ¢, we are able to get an equation for x. At this
stage, we also need to approximate the resulting equation under the same
assumptions as for ¢. The solution of the equation is a function linear in
time with oscillations around this trend.
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DSolve[x''[t] ==
Normal[Series[x''[t] /. sol2, {¢[t], O, 1}]] /.
sol¢ // Simplify, x, t] // Flatten

{x - Function[ {t},

c[3] +tCl4] - m—ll

[ﬁ VJul c[1] wﬂ%}

[\/Tx/ml m2 g C[2] Cos[t;—“_;“l\*/r;_zl)}

(ml+m2) g

A (m1+m2) g

A1 A/ml m2gC[1] Sin[tﬁ%] J]/

( (ml+m2) g (C[Z} COS[M} -

VT vt
C[llsin[%%]])+
{\/T\/HCP] sin[%i]
[\/f\/ﬁng(:[ﬂ COS[%} _
(ml+m2) g

N/T\/Hm2gc[1]sin[4—*’itv}ir‘?\/%)—] /
(ml+m2) g

tx/(ml+m2)g}_

( (ml+m2) g [C[ZJ cos|

A1 /ml
cl1] sin[4t \;%1\;[%%9 ]])]”

Thus, we derived a harmonic solution for ¢ and an increasing solution with
oscillations for x. The question arises of whether this kind of solution is
also observed for the nonlinear coupled system of x and ¢. To find an
answer to this question, we first have to specify the parameters in this
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model (i.e., the masses, the length of the pendulum, and the acceleration
g). The following list contains one example for these parameters:

parameters = {ml ->1, m2 -> .5, 1 -> .7, g->9.81}

{ml-1, m2-50.5,1-50.7, g—>9.81}

The numerical solution of the two Euler—Lagrange equations then follows
upon specifying the initial conditions for x, x', ¢, and ¢'. The following
line contains all of these steps:

nsol = NDSolve]|[
{ell, el2, x[0] == .1, x'[0] == 0.01, ¢[0] ==0.1,
¢$'[0] == 0.01} /. parameters, {x, ¢}, {t, 0, 13}]

{{x > InterpolatingFunction[{{0., 13.}}, <>],
¢ - InterpolatingFunction[{{0., 13.}}, <>]}}

The resulting functions can be represented in a plot showing that both
coordinates oscillate with a certain frequency. It is also obvious that the
solution for x increases in time as expected from the linear approximation
of the Euler—Lagrange equations.
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Plot[Evaluate[{x[t], ¢[t]} /. nsol], {t, 0, 13},
AxesLabel -> {"t", "x,¢"}, PlotStyle ->
{RGBColor[1l, 0, 0], RGBColor[O, O, 1]1}1:

X,
0.3

0.2

AALAALAN
VTP IR

The solutions gained can be used to generate a flip-chart movie showing

the movement of the two masses

Thus, we get the information on how the two masses move under a specific
initial condition.
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Example 4: Sliding Mass on a Curve

This example is an extension of the previous example. The change here is
the movement of mass m;. We assume that mass 1 can move in the
x-direction and z-direction restricted by a given curve. The second mass is
again connected with the first one by a stiff rod. At each end of the rod,
one mass point is located (see Figure 2.7.8). The second mass my, is the

pendulum mass.

The movement of mass m; is governed by a function of x. We assume that
this curve is given by a polynomial of order 8. A plot of the polynomial is

as follows:
Z
ol
11!
: X
-2 -1 1 2
_1 b

Figure 2.7.8.  Sliding mass pendulum on a curve. Here we used the relation z = x® — 2 x® as an example.

The second mass m; undergoes translations in x as well as oscillations
around its support. The total kinetic energy is generated by two parts:

ml 2 2
T1 = - ((Bex1[t])? + (8ezl[t])?)

% ml (x1'[t]? + 21 [t]?)
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and

m2 2 2
T2 = - ((0ex2[t])?+ (0c22[t])?)

2

% m2 (x2'[t]?+z2'[t]?)

The potential energies of the two masses are

Vi=mlgzl[t]

mlgzl[t]

and

V2 =m2 g z2[t]

m2gz2[t]

The total kinetic and potential energies are

T =T1+T2

%ml (x1'[t]? + 21 [t]?) + % m2 (x2'[t]?%+z2'[t]?)

and

V =V1+V2

mlgzl[t] +m2gz2([t]
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To introduce generalized coordinates, we have to take the constraints into
account. The following rules define a transformation between original
coordinates and generalized coordinates:

generalizedCoordinates = {x1 -> Function[t, x[t]],
z1 -> Function[t, x[t]® - 2 x[t]°],
x2 -> Function[t, x[t] +1 Sin[¢[t]]].,
z2 -> Function[t, x[t]® -2 x[t]® -1 Cos[¢d[t]]]}

{x1 - Function[t, x[t]],

z1 - Function[t, x[t]® -2x[t]®],

x2 - Function[t, x[t] +1Sin[¢[t]]],

z2 » Function[t, x[t]®-2x[t]®-1Cos[¢p[t]]]}

The transformed kinetic energy follows by

7 =T /. generalizedCoordinates // Simplify

% (mi(1+16x[t]* (3-2x[t]?)”) x'[£]?+
m2 ((x'[t] +1Cos[p[t]] ¢ [t])?+ (-12x[t]°>x'[t] +
8x[t]”x [t] +18in[¢[t]] ¢'[t])"))

The potential energy is

Y =V /. generalizedCoordinates // Simplify

g (-1lm2Cos[¢[t]] -2 (ml+m2) x[t]®+ (ml+m2) x[t]®)

The Lagrangian density in x and ¢ is thus given by
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L=7T-%Y

—g(-1lm2Cos[p[t]] -2 (ml+m2) x[t]®+ (ml+m2) x[t]®) +
% (mi(1+16x[t]™ (3-2x[t]?)”) x'[t]?+
m2 ((x'[t] +1Cos[p[t]] ¢ [t])?+ (-12x[t]°x [t] +
)

)

8x[t]”x [t] +1sin[¢[t]] ¢’ [t])’

From the Lagrange density, the two Euler-Lagrange equations are derived
via the application of the Euler derivative:

SetOptions[EulerLagrange, eXpand -» False];

ell = L [L]

12mlgx[t]®+12m2gx[t]®-8mlgx[t]’ -
8m2gx[t]’ —72Omlx[t]9x’[t}2 -720m2x[t]°x [t]?+

1152ml x[t]*r x [t]2 +1152m2 x[t] ¥ %' [t]? -
448mlx[t]BP x[t]?-448m2x[t]x[t]%+

1m2 Sin[¢[t]] ¢ [t12+121m2 Cos[o[t]] x[t]° ¢ [t]?-
8 1 m2 Cos[¢ [ 11 x(t]7 ¢ [t]?-mlx”[t] —m2x"[t] -
144 ml1 x[t]*° ”[t] ~144m2x[t]P0 x7[t] +

192ml x[t]*? x”[t] +192m2 x[t]12 x’[t] -
64mlx[t]x [t] —64am2x[t]Mx7(t] -

1m2Cos[p[t]] ¢”[t] +121m2 sln[mt}] x[t]® ¢ [t] -
81m2sin[¢[t]] x[t]” ¢ [t] ==

el2 = §5[L]

-1m2g8in[¢[t]] +601m2Sin[p[t]] x[t]*x [t]? -
56 1 m2 sln[a[t}] x[t]®x'[t]? -
1m2 Cos[o[t]] x'[t] +121m28Sin[¢[t]] x[t]®x"[t] -
81m2S8in[¢[t]] x [t]7x”[t]—
12m2 Cos[¢[t]]1% ¢ [t] -12m2 Sin[p[t] ]2 ¢ [t] == 0O
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The derived Euler—Lagrange equations are a set of coupled nonlinear
second-order equations. It is likely that this set of equations does not allow
a symbolic solution Thus, we switch to numerical work and specify the
values for parameters as well as initial conditions. The following list

contains one example for the parameters:

parameters = {ml ->1, m2 ->1.5, 1-> .7, g->9.81}

{fml-1, m2-1.5, 1-0.7, g—>9.81}

The numerical solution of the two Euler—Lagrange equations then follows
upon specifying the initial conditions for x, x', ¢, and ¢'. The following

line contains all these steps:

nsol = NDSolve[{ell, el2, x[0] == .01, x'[0] == 0.3,
¢$[0] == 0.5, ¢'[0] == 0.01} /. parameters,
{x, ¢}, {t, 0, 43}, MaxSteps -> 11000]

{{x - InterpolatingFunction[{{0., 43.}}, <>],
¢ - InterpolatingFunction[{{0., 43.}}, <>]}}

The resulting functions can be represented in a plot showing that both
coordinates oscillate. It is also obvious that the solution for x increases in
time. Thus, the presnt model shows similar behavior as the solution of the
original model.
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Plot[Evaluate[{x[t], ¢[t]} /. nsol], {t, 0, 43},
AxesLabel -> {"t", "x,¢"}, PlotStyle ->
{RGBColor[1l, 0, 0], RGBColor[O, O, 1]1}1:

X,
40 ¢

30 |

20 ¢

10|

10 20 30 40

The solutions obtained can be used to generate a flip-chart movie showing
the movement of the two masses:
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2.7.4 Symmetries and Conservation Laws

The solution of equations of motion are tightly connected with
conservation laws. Conservation laws allow to reduce the number of
integration steps, iff they are known. A method for determining
symmetries of differential equations is given in the author's book [2.9]. We
start our examinations with the Euler—Lagrange equations

oL _ d ot
aq; dt

Wy) =0, i=12, .. (2.7.31)
If the Lagrange density £ = L£(g;, q';, t) is independent of a coordinate
qgi, that is

oL

3 =0 (2.7.32)

we call this coordinate cyclic or ignorable. For the ith Euler-Lagrange
equation, it immediately follows that

d (0L
- g) =0 (2.7.33)
In other words,

o = const (2.7.34)
representing a conserved quantity. If a Lagrangian contains cyclic
variables (i.e., is independent of this variable), then the derivative with
respect to the generalized velocity is a conserved quantity. This conserved
quantity represents an ordinary differential equation of first order. Thus,
the second-order differential equation in the ith component is replaced by
a first-order one.

The cyclic behavior of the Lagrangian is mainly dependent on the choice
of coordinates for the problem. Thus, it is useful to choose such
coordinates that generate a large number of cyclic coordinates.
Conservation laws are thus related to cyclic coordinates. On the other
hand, conservation laws are related to symmetries allowed by the
Lagrangian. For example, conservation of energy is connected with the
symmetry of translations with respect to time. Conservation of momentum
is a consequence of the translation symmetry in space. Conservation of
angular momentum follows from the rotation symmetry of the Lagrangian.
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All of the mentioned conservation laws can be represented as balance

equations.

2.7.4.1 Conservation of Energy and Translation in Time

To check conservation of energy, we examine the Lagrangian with respect
to translations in time. A consistent representation of the formulas is

gained by using the Euler-Lagrange equations:

Remove[L]

OcLfqi[t], Ocqilt], t]

1 d aj: aL " 81:
- z{qlgt-(ﬁ'l)'i_ W-l i}+ o
d oL oL (2.7.35)
_Z,E( 3q'iq1)+ o
d oL oL
= w20 5, 1)

Collecting the time derivatives to a total time derivative we obtain

d

oL oL
E (L — . —aq'i q; ) = 7’ (2736)
d oL 0L
71‘- ( i aq'i q i L) = - W (2737)

This relation represents the energy balance in terms of the Lagrangian and
the generalized coordinates.

Assuming scleronomic constraints, the cartesian coordinates x3 = x3(g;)
are independent of time. Thus, the kinetic and potential energies are also
independent of time. Consequently, the Lagrangian is a pure function of
the coordinates independent of time (i.e., d£/dt = 0). Thus, we get

A0 % q;—L)=0 (2.7.38)
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and

S @' — L = const (2.7.39)

This expression is a conserved quantity remaining constant in a time
evolution. Applying Euler's homogeneity relation on the sum of the
left-hand side, we get

Zi STL'; =2, gTT'; q; = 2T, (2.7.40)
and taking the Lagrangian as £ =T —V that it follows,

2T - T+V =T+ V = const. = H. (2.7.41)

Conservation of energy is guaranteed if the Lagrangian is invariant with
respect to time translations (i.e., independent of time). For such a case, the
Lagrangian does not change if we move in time. This behavior also means
that the total number of possible tracks starting at a fixed time are
independent of the initial time. Consequently, there is no way to determine
by observation of the tracks the initial time if the acting forces are known.

The connection between conservation laws and invariants or symmetries
are very important in all fields of modern physics.

The derived function H is known as Hamilton's function and is also called
the Hamiltonian. The Hamiltonian in terms of the Lagrangian is given by

a 1
H=Y % q, - L. (2.7.42)

Note: The Hamiltonian is identical to the total energy if the following two

requirements are satisfied:

1) The kinetic energy is homogeneous of degree 2.

i) The potential energy is independent of the velocity.
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2.7.4.2 Conservation of Momentum

Assuming that space is homogenous in an inertial system, we can conclude
that the Lagrangian is invariant with respect to spatial translations in the
case of a closed system. To prove this conclusion, let us consider an
infinitesimal transformation of the coordinates:

itrafo = g -> Function[e, g+ € §[q]]

g - Function[e, g+€ £[q]]

g = qi + €& (q)), (2.7.43)

with £ an infinitesimal parameter and &;(g;) as the infinitesimal element of
the global transformation:

Series[q[q, €], {€, 0, 1}]

alg, 0]+ [q, 0] e+0[e]?

4; = 4;(qgi, &

~ _ 9g;
7;(qi, € = 0) + -2
qi + € &(q) + 0(&%)

with & = 0g;/0¢ IE:O.

+0(D) (2.7.44)

Consider the Lagrangian as a function of the new coordinates §;, so that
L = I(g;, g') represents the transformed Lagrangian. Expanding this
new Lagrangian around the identity & = 0, we find

=7 9L 2

L=I|  +egs| , +0& (2.7.45)
with

Lleco =L q") = L. (2.7.46)
Now, if we set

Z-r=6£=2L|_0e+0@, (2.7.47)
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where terms of order 0 (g?) vanish. If we assume that £ is invariant with
respect to the infinitesimal transformation then, we find

L =1r (2.7.48)

and thus we get the sufficient condition

c=0 € + 0(&). (2.7.49)

g0 = 0. (2.7.50)

Writing this formula explicitly, we find

Z; % % o +Zi % G|, =0 (2.7.51)

%—Z o = il (2.7.52)
0q';/0e = 0since ', = q'; velocities are not due to transformations and
thus, we can write

Zi % L, =0 D i) =0 (2.7.53)

- g_é = 0. (2.7.54)

Taking the Euler—Lagrange equations into account, we get

d (0L
- (Wi) =0 (2.7.55)
or
G- = const (2.7.56)

The Lagrangian is assumed to be expressed by the difference of kinetic
and potential energy. In addition, the kinetic energy is a homogenous
function of degree 2. Taking these considerations into account, we get

oL 0 oT !
Wyi = sz (T-V) = Wyl = m;q; = const., (2.7.57)
G = P = pO). (2.7.58)

The total linear momentum thus becomes

37“’-‘; =2, pi®) = X; pi(0) = P(0). (2.7.59)

i
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In conclusion, the total momentum is a conserved quantity. This result
holds for a spatial homogenous system.

2.7.4.3 Conservation of Angular Momentum

The discussion of inertial systems revealed that the related space is
isotropic, meaning that the mechanical properties are independent of the
orientation in space. Especially the Lagrangian is invariant with respect to
an infinitesimal rotation. We restrict our considerations to infinitesimal
rotations because global rotations are generated by many infinitesimal

rotations.

Rotation of a system by an infinitesimal angle 66 transforms a position
vector 7 to another position vector 7 + ¢ 7 (see Figure 2.7.9)

Figure 2.7.9.  Rotation of a position vector 7.

The infinitesimal position vector is determined by
67 = 50 x7. (2.7.60)

In addition to the change of the position vector, an infinitesimal rotation
changes the velocity also. The infinitesimal velocity change is determined
by

57 = 60 x 7. (2.7.61)
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Now, consider a single particle in cartesian coordinates. The infinitesimal
change of the Lagrangian in these coordinates is given by

= 9L 5. oL o . _
oL = Zi Ox; 0x; + Z; ox'; ox = 0. (2.7.62)

On the other hand, the linear momenta are represented by means of the

Lagrangian by
oL
P, = o (2.7.63)

The temporal change of the momenta are thus

dp; _ d 9Ly _ oL
o = a e ) = o (2.7.64)

This relation holds because the Euler—Lagrange equations are satisfied.

Thus, the infinitesimal change of the Lagrangian is given by
6L =30, pid + IL, pidk' = 0. (2.7.65)
The components can be replaced by the vectors and result in the relation
pL.oT+por = 0. (2.7.66)

Using the infinitesimal representations of the position vector and the
velocity, we obtain

P (60x7)+p(60x7) = 0. (2.7.67)

A cyclic interchange of infinitesimal vectors and vectors provides the
compact relation

SO{(FxP) + (P xpP)} =0 (2.7.68)
e 60. L (Gxp) =0 (2.7.69)

Since the infinitesimal change of the angle was arbitrary, we conclude that
the temporal change of the cross-product vanishes:

d o

@ (7xP) =0, (2.7.70)
meaning that the quantity

7xp = const. = L 2.7.71)

is a conserved quantity. The presented infinitesimal changes of the
Lagrangian all result in a conserved quantity. In general, the infinitesimal
changes are related to symmetries of the Lagrangian. The symmetries itself
are determined by infinitesimal transformations. In modern physics, this
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relation between symmetries and conserved quantities is very important.
Symmetries determine the conserved quantities and vice versa. In the
above discussions, we considered the simplest symmetries (translations
and rotations) under which a Lagrangian may be invariant. However, there
are many more symmetry transformations related to other conserved
quantities. The results so far derived are collected in the following table:

Properties of the propeties of £ conserved quantity
inertial system

homogenity in independent of total energy

time time

homogenity in translation linear omentum

space invariance

isotropy of space rotation angular momentum
invariance

Table 2.7.2.  Lagrangian properties and conserved quantities.

The symmetry considerations are far more general then presented above.
This generalization was given by Emmy Noether (Figure 2.7.10) in her

famous theorem in 1915.

Figure 2.7.10.  Emmi Noether born March 23, 1882; died April 14, 1935.
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Theorem: Noether Theorem

Given the time-independent Lagrangian £(g;, ¢';) of an holonomic system
which is invariant with respect to an invertible transformation around the
identity with € = 0,

g = §; = 4;(q), € (2.77.72)
with g; (g;, € = 0) = g;, that is for all &, we have
N = (a N dai
L(qi’ q[) - L(ql’ (qj’ 8)’ Zj:l 66[7 qj)
= -[:(Z]i’ q'i’ ‘9) = L(ai’ q'i)’

then the quantity

. or 94;(qie)
1(gi, q';) = E 4, ——
;o

is a conserved quantity of the Euler—Lagrange equations.H

(2.7.73)

o (2.7.74)

The symmetries under which the Lagrangian is invariant are also known as
continuous symmetries. This notion was introduced because ¢ is a

continuous parameter determining the symmetries of the corresponding
group.

In the following, we prove the Noether theorem. We start by checking the
invariance of the Euler-Lagrange equations under coordinate

transformations
oL d 0L _
% @ g - 0. (2.7.75)

The check can be carried out by replacing g — Q; this is left as an exercise
for the reader. The derivation of the transformed equation with respect to &
gives us

dL(qi.q") oL dg oL dg; .

dz =0= ; 3_7], iz + W s (2.7.76)

again using the Euler-Lagrange equation, we find

_ N d(9Lyda oL d dg,
0= Zi dr (az,',.) de T 9g, dr de

_ (Y 9L 4

= ar\ 2y 97, de

(2.7.77)
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Thus, the expression

1 8 d~i
g, q' &) = ), ﬁ S (2.7.78)

is a conserved quantity for any ¢.

The resulting integrals are linearly dependent on each other for different
g's. Thus, it is sufficient to consider only one value for €. We chose € =0

and get

1 a-[: dQI
Hain 47 €=0) = ) 55 as

0
P - (2.7.79)

This is the conserved quantity given in the Noether theorem.

Example 1: Invariant Lagrangian

Let us consider the Lagrangian
= F @2+ yH) -V = Lx, x\ ). (2.7.80)
As a transformation consider

X = x, (2.7.81)
Y=y+e (2.7.82)

with € a constant. Applying the transformation to the Lagrangian with € a

constant, we find

L(x x, y)=L(X, X', Y'- &)

= L(X, X, Y &
- mxa Ly -y (2.7.83)
= L(X, X, Y).

Invariance of the Lagrangian guaranties the assumptions in the Noether
theorem. The conserved quantity is thus given by

B G B o)

0X' oOe oY O =0

oL
Y g (2.7.84)

=mY' |8:0

I :( 0L Ox oL o(y+e)

=my'

Thus, the y-component of the linear momentum is a conserved quantity.
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2.7.5 Exercises

1. Show that the equations of motion derivable from a Lagrangian are
unchanged if to the Lagrangian there is added the total time derivative

of an arbitrary function of ¢,,, and ¢.

2. Write down the expressions for the kinetic energy of the following
systems, using the minimum number of coordinates: (i) a free particle;
(ii) a particle constrained to remain on a sphere; (iii) a particle con-
strained to remain on a circular cylinder.

3. Write down the Lagrangian for a particle confined to a horizontal
plane in cartesian coordinates. Introduce the additional constraint
x*> + y?> = a® by means of a Lagrange multiplier A and show that A is
proportional to the centripedal force exerted by the constraint upon the
particle.

2.7.6 Packages and Programs

Euler-Lagrange Package

The EulerLagrange package serves to derive the Euler—Lagrange equations

from a given Lagrangian.

If[$MachineType == "PC",
$EulerLagrangePath = $TopDirectory <>
"/AddOns/Applications/EulerLagrange/";
AppendTo[$Path, $EulerLagrangePath],
$EulerLagrangePath =
StringJoin[$HomeDirectory, "/.Mathematica/3.0/
AddOns/Applications/EulerLagrange", "/"];

AppendTo[$Path, $EulerLagrangePath]];

The next line loads the package.
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<< EulerLagrange.m

Get::noopen : Cannot open EulerLagrange.m. More..

SFailed

Options[EulerLagrange]

{eXpand -» False}

SetOptions[EulerLagrange, eXpand -» True]

SetOptions: :optnf :
eXpand is not a known option for EulerLagrange. More..

SetOptions[EulerLagrange, eXpand - True]

Define some notations.

<< Utilities Notation~

Define the notation of a variational derivative connected with the
Euler-Lagrange function.

6 t2
Notation[ 5 j f dt ¢ EulerLagrange[f , u , t_]]
u t.

iL

To access the variational derivative, we define an alias variable var
allowing us to access the symbolic definition by the escape sequence [Est]
var [,

1) €2
AddInputAlias [ 6_ f od o, "var“]
t

o 1

Here is an example for an arbitrary Lagrangian:
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S t2
—j L[u[t], 6. u[t]]d t
Su t1

~0¢e,1y LY [ue], w el ]+ [uft], uw'[t]] ==0

We also define an Euler-Lagrange operator allowing us to access the
Euler-Lagrange functon as a symbol:

x7
Notation[au_[den_] < EulerLagrange[den , u , x_]]

Here is the alias notation for the Euler—Lagrange operator:

[m]
AddInputAlias [SD [O]. "ELop“]
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2.8 Hamiltonian Dynamics

2.8.1 Introduction

Hamiltonian dynamics is an alternative formulation of the Lagrangian
dynamics. In Lagrangian dynamics, we used the generalized coordinates g;
and velocities ¢'; as basic variables. Hamilton's dynamic introduces a set of
canonical variables which are basically the coordinates ¢g; and the
generalized momenta p;. We defined the generalized momenta in
Lagrange's dynamic by the relation

pi = gT{i’ i=1,2, . (2.8.1)

In a similar way, the generalized forces F; were expressed by the relations

oL .
Fi = ETE i=1,2, .. (2.8.2)

If the generalized coordinates ¢g; are identical with the cartesian
coordinates, we can identify the generalized momenta with the linear
momenta p; = mq';. On the other hand, the Euler-Lagrange equations are
reduced to Newton's second law:

p = F i=1,2 ..N. (2.8.3)

The main advantage of the Hamilton formulation is that different theories
such as quantum mechanics, statistical physics, and perturbation theory
can be based on this formulation. Hamilton's formulation of classical
mechanics also allows a natural approach to chaotic systems and the
question of integrability. The concept of a phase space opens the door for
an efficient study of integrability and nonintegrability. However,
Hamilton's formulation of classical mechanics introduces nothing new in
physics but allows an efficient treatment of mechanical systems. The two
formulations, Lagrange's and Hamilton's, are equivalent to each other and
allow a direct transition between the two theories.
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2.8.2 Legendre Transform

We demonstrate here that the Hamilton and Lagrange formulation of
classical mechanics can be transformed into each other. Lagrange used for
his formulation of mechanics the generalized coordinates and velocities
(gi» q';) as basic quantities. Contrary Hamilton decided to introduce the
fundamental coordinate set (g;, p;) where ¢g; are the generalized
coordinates as in the Lagrange formulation and p; are the generalized
momenta. Already Euler and Leibniz knew that a transformation between
such basic quantities exists. The two sets of coordinates can be converted
into each other by a so called Legendre transform. This transform uses the
property that a function f = f(x) can be either represented by the standard
set of coordinates (x, f) or by the coordinate and the functions tangent. To
demonstrate these relations let us consider a function

y=f W (2.8.4)

under the restriction that &> f /dx* > 0; tat is, we consider convex
functions. Under this assumption, the Legendre transform of f is a new
function g depending on a new variable s. The relations among f, g, and s
are defined in Figure 2.81.

g(s)
/ h‘

X=X(s) X

Figure 2.8.1.  Legendre transform of a function y = f(x) to its Legendre representation g(s).
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Figure 2.8.1 shows that g(s) counts the maximal distance between the
inclined line y = s x and the function f(x); that is,

g(s) = sx — f(x) = G(s, x(5)). (2.8.5)
Since x(s) is defined as maximum of g, we find from this relation

S =s—f'(x) = 0. (2.8.6)
It is obvious that the new variable s can be identified with the tangent of
f(x); that is,

s=f"(). (2.8.7)

Since f is convex, x = x(s) is uniquely determined.

Let us consider a mechanical example which allows a Hamilton function of
the kind H = H(p). We also state at this moment that one of Hamilton's
equations is given by ¢' = dH /9 p. If we carry out the above construction
in the (y, p)-plane and call the new function L(s), we find

L(s) = sp — H(p). (2.8.8)

The new variable s follows now from the extremal condition as
s =0H /dp = q'so that the Legendre transform becomes

Lg) = q'p — H(p), (2.8.9)

where p is a function of ¢' defined by ¢' = dH /d p.

The above theoretical steps can be represented in Mathematica by the
following lines. First, define the Hamiltonian as a function of p:

H=h[p]

h(p)

Then, introduce the new function L as
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L=sp -H

ps—h(p)

The extremal condition allows on to establish an equation which provides
the new variable s:

etl=0,L==0

s=H(p)==0

If we solve with respect to s and take into account one of Hamilton's
equations

subst = Flatten[Solve[etl, s]] /. h'[p] ->q"'

{s—q'}

we find that s is just given by ¢'. Substituting this knowledge into the

function L, we obtain

L /. subst

pq —h(p)

as a function of ¢'. The procedure to carry out a Legendre transform is thus
algorithmic and can be implemented in a single function. Before we
implement the Legendre transform, let us consider the more general case
when the Hamiltonian is a function of several independent variables.

The generalization of this result to a Hamiltonian depending on a set of N

coordinates (g;, p;) is given by

H(g, p) = XN, piq — L (2.8.10)



358

2.8 Hamiltonian Dynamics

the corresponding Lagrangian is then defined by
L=3Y pq;-H, 2.8.11)

where the generalized momenta p; are defined by the standard relation

0
pi = WL, (2.8.12)
These relations are valid under the assumption that the Jacobian
determinant
= det L _
A= det(aq,iaq,j) £ 0 (2.8.13)

does not vanish. The property that A # 0 guarantees that the generalized
velocities ¢'; can be uniquely solved for p; and vice versa. This relation is

a generalization of the convexity.

As an example, let us consider the following Lagrange density:
N
L= Fmaq} -V (2.8.14)
First, we determine the generalized moment by
6 '
pi = —L = mq,. (2.8.15)

The check of convexity shows

2
aq(?ifqvl. = m; 6, (2.8.16)
PL
det( aq',.aq'j) = det (m; 6y) # 0. (2.8.17)

This relation guarantees that the generalized momenta can be expressed by
the generalized velocities; that is,

q, = L. (2.8.18)

Thus, the Hamiltonian in g; and p; is given by
H(qi, pi)
A N /S L R R
- Zizl Pi T {Zi=1 2 mi mi) V(q,)} (2.8.19)



2. Classical Mechanics 359

The procedure discussed above is implemented in the following function.
The function LegendreTranform[] allows one to transform a given
density to an alternate representation:

LegendreTransform[A , x List, momenta List,
indep : {t}] := Block[{momentaRelations} o
momentaRelations =

MapThread[d4; A == #2 &, {x, momenta}];
sol = Flatten[Solve[momentaRelations, x]];

Length[x]

Simplify[Expand| Z x[1i] OxpiyA -A] /. sol]]
i=1

The following Lagrangian density with two degrees of freedom describes
two particles interacting by a general potential V:

Clear[V]

ml o m2 o
1= Ty (Oeql[t])” + Ty (0cq2[t])“ -V[gl[t], q2[t]]

% ml gl + % m2q2'(0°* - V(q1(0), q2(1)

The transformation to a Hamiltonian needs the Lagrangian and the sets of
original and final variables.

h = LegendreTransform[1l,
{Oeql[t], Ocq2[t]}, {pP1l[t], P2[t]}]

pl? . p2(*
2ml 2m2

+ V(ql(®), 2(1))

The result is a representation of the Hamiltonian in a new set of
coordinates (g;, p;). The back transformation to the Lagrangian uses the
Hamiltonian as density, the set of momenta as initial coordinates, and the
generalized velocities as target coordinates of the transformation:
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LegendreTransform[h,
{pl[t], p2[t]}, {Ocql[t], Ocq2[t]}]

S (M1 QII6P +m2 g2 -2 V(g 0), 2(7)

This simple example can be extended to a more complicated one.

Example 1: Moving Beat on a String

Let us consider a beat (mass point) in a homogenous gravitational field.
The beat is restricted to move on a string of the form y = f(x). The
functional relation of the string acts as a constraint on the movement of the
mass point. Let us first discuss the movement without any constraint. Thus,
we have to use two coordinates in the Lagrangian. The kinetic energy for a
plane movement is given by

-im((a x[t])%+ (Bey[t])?
=3 ¢ ty[t])©)

% m (1) + Y (0)°)

The potential energy is

V=mgy[t]

gmy()

and, thus, the Lagrangian is

l 72 72y _
2m(x(z) +Y () —gmy@
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If we now introduce the constraint of the movement by y = f(x), we can
write the Lagrangian as

lconstr =L /.y ->Function[t, £[x[t]]]

1 ’ 2 rin2 72
Em(f (x(@)” X' (1) + X' (D7) — g m f(x())

We observe that the degree of freedom of this problem reduces from two
to one if the constraint is introduced in the Lagrangian. The Hamiltonian
for this Lagrangian then follows by applying the function
LegendreTransform[] to the Lagrangian:

ham = LegendreTransform[lconstr, {9.x[t]}, {p[t]}]

28 f(x(0) (f'(x(0))* + 1) m? + p(2)*
2m(f(x())* + 1)

The result is a nontrivial expression for the Hamiltonian combining the
coordinate and momenta by means of the arbitrary function f. To
understand how the transformation was carried out, let us calculate the
generalized momentum from the Lagrangian by

mom = Og,.x[t] Lconstr // Simplify

m (f'(x(®)* + 1) X' ()

The result shows that for this case, the generalized momentum is not only a
function of the velocity x' but also a function of the coordinate x. The
generalized velocity thus is
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Solve[mom == p[t], d:x[t]]

, 40)
o G

These two relations were applied to the transformation from the
Lagrangian to the Hamiltonian. Especially the last relation was necessary
to eliminate the velocity by means of the generalized momentum.

2.8.3 Hamilton's Equation of Motion

If we know the Lagrangian of a mechanical system, the equations of
motion follow by the application of Hamilton's principle. Another way to
derive the equations of motion is by applying Hamilton's formalism to the
Hamiltonian. To derive Hamilton's equations, let us consider the
Hamiltonian as a function of generalized coordinates. On the other hand,
the same Hamiltonian can be derived from the Lagrangian. The
equivalence of both approaches delivers Hamilton's equation. First, let us
demonstrate this procedure for a mechanical system with one degree of
freedom. The Hamiltonian for this case can be derived from the
Lagrangian by means of the Legendre transform:

h=pv-1[q, v, t]

pv-Ilg,v, 1)

where v represents the generalized velocity of the system. If we calculate
the total derivative of this representation of the Hamiltonian and use the
Euler-Lagrange equations as well as the definition of the generalized

momentum, we get

rl =Dt[h] /. {8q1[q, Vv, t] -> PP, Ov1[q, Vv, t] -> p}

vdp—-ppdq—-ditl®Vig, v, 1)
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On the other hand, let us consider the Hamiltonian as a function of the two
generalized coordinates (g, p). Then, the total derivative of this
representation is

r2 =Dt[H[qg, p, t]]

dtH**Y(g, p,n)+dpH*' (g, p,n)+dqgH" (g, p, 1)

If both relations describe the same system, we are able to extract the
factors of the total differentials. The following line examines the difference
of both expressions and extracts the coefficients of the total differentials:

Map[# == 0 &,
Map[Coefficient[rl - r2, #] &, {Dt[t], Dt[p].,
Dt[ql}] /. {v->q', pPp->p'}] // TableForm

—H<°'°’1)(q, p. 10— l<0,0,1)(q’ q, 1 ==
g —H®g, p.n==0
-p' =H"%g, p,n==0

The result is that the time derivative of the Hamiltonian is equal to the
negative time derivative of the Lagrangian. The two other equations
represent the time derivative of the generalized coordinate and momentum.
The first of these relations state that the time evolution of the coordinate is
given by the derivative of the Hamiltonian with respect to the momentum.
The evolution of the momentum is determined by the negative derivative
of the Hamiltonian with respect to the coordinate. If the Hamiltonian or
Lagrangian is independent of time, the first relation does not exist.

The same procedure as demonstrated above can be applied to a mechanical
system of more than one degree of freedom. First, let us calculate the total
derivative of the Hamiltonian in the Legendre representation. Carrying out
the calculation, we find
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C oL . oL
2i pidq’; +q'dp; = Fo= dq' = o= dq';

i

dH

-5 (2.8.20)
_ | 9L 4. _ 9L
= 2i 4dp; — g da’y — Gt
The Euler-Lagrange equations provide

%_d(@.ﬁ

g = ar agy) = P (2821)

Thus, the total derivative of the Hamiltonian becomes
p— 1 ' 6L
dH = ), q';dp; — p';dq; — > dt. (2.8.22)
On the other hand, the Hamiltonian is a function of the ¢; and p;, so that

o0H OH OH
dH = ) 6_q, dqi + 3_17, dpi + o dt. (2.8.23)

Comparing both expressions, we gain the relations

0H

pi=- P4 (2.8.24)
\ OH

¢i= 2. (2.8.25)
oL _ _ oH

oL - (2.8.26)

These relations are Hamilton's famous equations. Because of their
symmetrical appearance, these equations are also called canonical
equations. The set of variables (g;, p;) are known as canonical variables.
The above system of equations is a first-order ordinary differential system
of 2N equations. This system of equation is equivalent to the second-order
equations resulting from Hamilton's principle.

The above system of equations is called Hamilton's equations although
these equations are known since 1809 to be derived by Lagrange and
Poisson. However, both did not realize the importance of their derived
results in mechanics. Until 1831, when Cauchy pointed out the importance
of these equations for mechanical systems, the equations were applied to
mechanical problems. Hamilton derived these equations in 1834 from a

variational principle. He opened a wide field of applications with his work.

To simplify the derivation of Hamilton's equations of motion, we collect
the necessary steps in the function HamiltonsEquation[]. This function
assumes that the Hamiltonian is a function of the generalized coordinates
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and momenta. It is also assumed that the coordinates are functions of time
by default:

HamiltonsEquation[hamiltonian ,
gcoordinates List, gmomenta List, indep :t] :=
Block[{qp, PP}, QP = Map[Oingep # &, gcoordinates];
PP = Map[Oingep # &, gmomenta]; Flatten[
{MapThread[#1 == 04, hamiltonian &, {gp, gmomenta}],
MapThread[#1 == -9y, hamiltonian &,
{pp, gcoordinates}]}]]

To see how this function works, let us examine an example.

Example 1: Hamilton's Equation for a Sliding Beat

We already know that the Hamiltonian of a sliding bead is given by

t 2
hamB = PO +gm ()

2
2m((455") +1)

pt?

m +gm f(x(1)

Applying the above function to this Hamiltonian, we find

hamEqs = FullSimplify[HamiltonsEquationthamB, {x()}, {p(®)})];
TableForm[hamEqs]

') == — PO
X (t) T m fr (@) +m

2 o1
ey (ZORL @) o
o ))((f’umﬂmz ”m)

m

p'(t) ==

These two equations describe the time evolution of the coordinate x and
the momentum p. The constraint of the movement is defined by the
arbitrary function f. If we choose this function in a specific way, for
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example as a parabola, we find the explicit representation of Hamilton's
equation:

hamEgs /. f - Function[x, «*] // TableForm

’ __ p)
X (t) T 4mx@?+m

2p(1l2 —om?
p'(t) == ZX([)((MU)ZH)Z g )

m

2.8.4 Hamilton's Equations and the Calculus of Variation

Hamilton's principle is the basis for the derivation of Euler-Lagrange

equations. The mathematical background of this derivation is the
variational principle for the Lagrangian

d d_ t ,
7z Llal =0 = 7 [ L@ q' ndt]| _ =0 (2.8.27)
The variation of the coordinates delivered the equation of motion in the
representation
oL d (0L .
G~ ar (g )=0 =12 (2.8.28)

We also know that the Hamiltonian can be obtained from the Lagrangian
by means of a Legendre transform by

H=3piq—L (2.8.29)
Since the Legendre transform is invertible, we find
L=2piq;— H(—p:b. (2.8.30)

The variational principle based on £ from which the equations of motion
follow is represented by

dL d t !
(&) le=0= 25 J (Zi pig'i —H)dt =0 = 0. (2.8.31)
The variation here means that all variables g;,q'; and p; take part in the
variation of the functional. This is expressed by the following relations
q; = qi + Ew, (2.8.32)
Di = pit evi. (2.8.33)
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Inserting this representations of the changed functions ¢; and p; into the

functional L, we find

dL d t ~ e -
T o= 25 [T 21~ H@;, Py ) dt |o0 = 0

f Z q v + plwl—(a{I Q;Z’ + g—g} %))dt
_ftz D (@l Vi + piw') — Z( ,+g—;livi)}dt
t
=ft12 (Zi(‘]'i_ Vz"‘z 'i_a—ql)wl)dt.

If v; and w; are independent of each other, we get

OH

a0 = Gp (2.8.34)
1l 6H
Pi= =G (2.8.35)

This set of equations are Hamilton's equation of motion. Another example
demonstrating the application of Hamilton's equations is the motion of a

particle on a cylindric surface.

Example 1: Motion on a Cylinder

Let us assume that a mass point moves on the surface of a cylinder which
extends in, z-direction to infinity. For the geometry, see Figure 2.8.2.
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>V

Figure 2.8.2. A beat on the surface of a cylinder. The cylinder is the surface of movement.

The surface of the cylinder is defined by
2+ =R (2.8.36)

In addition, we assume that the force on the particle is proportional to the
distance measured from the center of the cylinder. We assume

F = —k7, (2.8.37)

where k is a scalar constant. The potential related to this force is

V= -]21 (R? + z[t]?)

1 2 2
Ek(R +2(1)°)

The squared velocity of the particle in cylindrical coordinates is
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v2 = (8cr[t])?+ r[t]? (8cO[t])? + (8cz[t])?

YO +70 + 100 0)°

Since the motion of the particle is restricted to the surface with r = R and R

is a constant, the kinetic energy becomes

m
= ? v2 /. r -> Function[t, R]

%m@mﬂwwmﬁ

The Lagrangian then follows as

L=T-V

%m@@%«%ﬁﬁ—%uﬁ+wﬁ

The two generalized coordinates of £ are 6 and z. The corresponding
generalized momenta are

Po = Os.01t]1 £

mR* 9 ()

and

Pz = a6tz[t] L

mZz (t)

Since we are dealing with a conservative system and time is not explicitly
present in the Lagrangian, we can find the Hamiltonian by a Legendre
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transform. The resulting Hamiltonian is a sum of kinetic and potential

energy. The Hamiltonian is calculated by

hamCyl = LegendreTransform[ L,
{oce[t], dcz[t]}, {pO[t], pz[t]}] // Expand

polt)®
2mR2

kR*  pat)?

> " Tom

bk +
3 Z

Hamilton's equation of motion follow from

hEgs = HamiltonsEquation[hamCyl,
{6[t], z[t]}, {pO[t], pz[t]}]; hEgs // TableForm

o0 ==
Z(f) == 240
pt'(1) ==0

pz'(1) == —k z(1)

We observe that the temporal change in the angular momentum vanishes.
This property states that py is a conserved quantity which is defined by

eqe = pe == X

mR*9' (1) ==«

This relation states that the angular momentum with respect to the z-axis is
a conserved quantity. We expect this result because the system is invariant
with respect to rotations around the z-axis. If we use the second of these
equations and differentiate with respect to time and replace the temporal

changes of p, with the last equation, we find
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eqz = Map [0 # &, hEgs[[2]]] /. (hEgs[4] /. Equal -> Rule)

s ==

This equation is a harmonic equation for the z coordinate. Thus the

movement along the z direction is harmonic. The solution is given by

solZ = DSolve[eqgz, z, t] // Flatten

{Z N Function[{t}, ¢ COS( \\//l;—lt ] T Sin[ \\//_%t ]]}

The solution for the angular coordinate follows from

sole = DSolve[eqgd, 6, t] // Flatten

{0 - Function[{t}, % + Cl]}

The track of the beat is generated by using the symbolic solutions.
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gral = ParametricPlot3D[
{RSin[6[t]], RCos[6[t]], 2[t]} /. solZ /. solé /.
{R->1, m->1, k->0.1, x->2, C[1] ->0, C[2] -> 1},
{t, 0, 6 7w}, PlotPoints -> 120];

To see how the beat is moving along the track, we generate some points
and collect them in a table.

points =
Table[{RGBColor[0, 0, 1], PointSize[0.1], Point[
{RSsin[6[t]], RCos[6[t]], z[t]} /. solZ /. solé /.
{R->1, m->1,k->0.1, x->2, C[1] ->0,
C[2] ->1}1}, {t, 0, 6, 0.2}];

These points are used in sequenz of plots generating an illustration of the
motion.
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Map [Show[gral, Graphics3D[#]] &, points];

2.8.5 Liouville's Theorem

A mechanical system in Hamiltonian dynamics is represented by two sets
of canonical coordinates: the generalized coordinates ¢; and the
generalized momenta p;. Each set of coordinates is the basis of a space.
Both spaces are completely independent of each other. The two spaces are
called the configuration space and the momentum space, respectively. The
union of both spaces allows one to collect the total information on the
mechanical system in a single space, the so, called Hamiltonian phase

space.
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Let us consider the example discussed in the last subsection. We examined
the motion of particle on an infinite cylinder. The phase space is generated
by the coordinates 6, py, z, and p,. Our examinations demonstrated that py
is a conserved quantity. This conservation of the angular momentum
reduces the number of independent directions in the phase space from four
to three. The actual phase space consist only of the coordinates 6, z, and
p.. We know from the derived equations that the z-coordinate undergoes a
harmonic motion. On the other hand, we know that from the conservation
of angular momentum, the rotation frequency ' is a constant. Thus, the
angle 6 increases linearly in time. The temporal change in the momentum
p. is given by

p'. =kz (2.8.38)

Since z oscillates harmonically, p, also shows a harmonic oscillation.

This information determines the structure of the phase space. In the
(z, py)-plane, generally the motion takes place on an ellipse. Since 6
increase linearly in time, the track of a particle in phase space lies on an
elliptic spiral. Figure 2.8.3 shows a single track of a particle in phase space.

P,

Figure 2.8.3.  Motion on a cylinder represented in phase space coordinates.

An orbit in phase space at constant energy H = const. is an elliptic spiral.
If we know the initial conditions of a mechanical system (i.e.,
qi (t =0), p; (¢t =0)), and if the system is conservative, then a unique orbit
in phase space is defined. The initial conditions determine the total energy.
This kind of description is not restricted on a single particle but can be
extended on an arbitrary number of particles. From a practical point of
view, we face the problem that each additional particle in the phases space
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extends its dimension by six coordinates. For example, if we want to treat
an ensemble of 10% particles, we have a phase space of the same number
of freedoms. From a practical point of view, such an approach is not
efficient.

We need to introduce a method allowing us an appropriate description of a
large number of particles. One such method is to measure the density in
phase space. The number of particles in phase space dv is

N = pay, (2.8.39)
with
dv = dq,dq, ...dq,dp, dp, ...dp,, (2.8.40)

where « is the dimensionality of the configuration space.

Let us consider an infinitesimal volume element in phase space. Because
the underlying dynamical system generates continuous changes in phase
space, we observe that a certain amount in the coordinates ¢; and p; will
flow into the volume and another part will flow out of the volume.

dp, —
dq

k
+ Pl
>

qk qk

P«

Figure 2.8.4.  Infinitesimal phase space volume. There is flow into and out of the volume.

For example, the inflow on the left surface of the volume is determined by
the density of particles in phase space at this location and by the temporal
change of the coordinate:

dq' ,
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The inflow from the bottom is

ap' .
Thus, the total number of incoming particles are
Jjn = p(q'ydp, + p'ydqy). (2.8.43)

The drain of particles from the volume can be approximated by the

gradient in the coordinates:

. Y
Jow = (pq's + 5= (04’ day)dp, +

9 (2.8.44)
(PP'k + e pr') de)d‘Ik'
The particle balance is thus given by
. . 0 ' 0 '
Jin = Jow = {= 5= (P4’ = 5= (P P | day dpy. (2.8.45)

The sum balance currant must be equal the temporal changes in the density

for all possible configurations of the volumes

[ R
D e (P + g (PP =0
dp P dp op
< ot +Zk1 Oqgy, qr + Pkpk
p 9q'y o'y Op
+Zk=l R (2.8.46)

p ap op
+ Zk 1 O 7 ape P
94, . 0Py )
* Z ( 1 opx )’
Hamilton's equations provide

o _0H

P = = G (2.8.47)

\ OH

9 = o (2.8.48)
or

opy _ _ _OH

e 305 0P (2.8.49)
and

94y _ _&H

gy _aQPk gy y (2.8.50)

00 _ 04y 2.8.51)

op Oqr *
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Thus, the equation for p reduces to

90 AR /N

Bt Dy T Akt g P = 0. (2.8.52)
This formula is equivalent to a total temporal change of p, meaning the
density p in phase space is a conserved quantity. This result is equivalent
with Liouville's theorem that the density of the phase space is conserved
while the system develops dynamically. This result was published by
Liouville in 1838. The theorem by Liouville is a special case of a more

general theory based on Poisson brackets.

2.8.6 Poisson Brackets

Let us consider a function similar to the phase space density which

depends on phase space coordinates gy, py, and t:

f=f(a po D). (2.8.53)

The structure of the phase space is governed by Hamilton's equations

qdr = s’ (2.8.54)
L} 6H
Pk = "3g " (2.8.55)

The total temporal change of f is given by

a _ of Z”a_fy of

a = ot o1 g Ak T T P (2.8.56)

Inserting Hamilton's equation of motion into this expression gives us

& _ o, N Of o of on
dt — ot + Zk:l aqr  Opx opx  Oqi ° (2857)

On the phase space spanned by the coordinates g; and py, let us define an
abbreviation for the following expression:

SV Ao 0f oy oy

k=1 Oqrx Opy apr Ok (2.8.58)

known as Poisson's bracket. The subscript {g, p} denotes the set of
variables of the phase space. Inserting this bracket, the temporal change of

f becomes

daf of
o= S+ f. HYy,, (2.8.59)
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This relation allows us to calculate the temporal changes of any function f
depending on the phase space variables. The Poisson bracket itself has
some remarkable properties which will be discussed below.

We already encountered conserved quantities which have the property that
temporal changes of this quantity vanish. This vanishing can be expressed
by Poisson brackets in a very convenient way. Because the conservation of

a quantity f assures that

a _
- =0 (2.8.60)

which is identical with

of
S if HYy,, = 0. (2.8.61)

If the conserved quantity f is independent of time, we find
{f. HYyp =0, (2.8.62)

(i.e., the Poisson bracket of the conserved quantity f and the Hamiltonian

vanishes).

Let us consider two functions f and g depending on the phase space
variables. Using these functions in the Poisson bracket, we can derive
some of the general properties of this kind of brackets
- N 9f g _ of 9g _
{fs g}lq,p} - Zk:l dgr Opx apr Oqr {f, g} (2.8.63)
In the following, we use also the short notation {f, g} for the

representation of the Poisson bracket {f, g}, - This notation is used when

la.p
no confusion on the phase space variables is possible. The Poisson bracket

owns the following properties

{f. g = —{g, f}  antisymmetry. (2.8.64)
If one of the functions f or g are constants the Poisson bracket vanishes
{f.ct =0=1{cg} (2.8.65)

If we have three functions f, g, and k which arepart of the phase space,

then, we can check the properties

{(f+h g} =1{f, g +{h g} linearity (2.8.66)
{fhogt= flh g} + h{f, g} Leibniz's rule (2.8.67)
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17} 0, . ..
56[ {f. g = {a—{, g} + {f, a—f} differentiation rule (2.8.68)

If one of the two functions f or g reduces to a phase space variable the
Poisson bracket reduces to the partial derivative of the function with
respect to the conjungate coordinate. For example if g equals either g; or
P the result of the Poisson bracket is

{f,ax} = ~ (2.8.69)
(f P = . (2.870)

If we chose for both f and g coordinates of the phase space then we gain
the fundamental Poisson brackets

ti. ;) = 0 2.8.71)
tpir pj} =0 (2.8.72)
— s dqi  Opj dq; Op;
{qi9 pl} = Zk:l 3_(“ m — 3_pk ﬁ_qk
= i1 O Ok = 0y (2.8.73)

These relations of the fundamental Poisson brackets are the basis of
quantum mechanics. For three functions of the phase space there exists a
special relation the so called Jacobi identity

f, g, b} + {g, th, I} + (b, {f, gl = 0. (2.8.74)

The above properties determine the algebraic properties of the Poisson
bracket. Especially, linearity, antisymmetry, and the Jacobi identity define
the related Lie algebra of the bracket.

Another important property of the Poisson bracket is the ability to derive,
from two conserved quantities J; and J;, another conserved quantity

{J1, Jo} = const. (2.8.75)

This behavior is known as Poisson's theorem. A direct proof is feasible if
we assume that J; and J, are independent of time. Let us replace in the
Jacobi identity the third function by the Hamiltonian of the system; then,

we get
(H, {(J1, Lo} + (1, (o HY + (o (H, J1}) = 0. (2.8.76)
Since {J,, H} = 0 and {H, J;} = 0, we find
{H, {J1,12}} = 0. (2.8.77)
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Thus, the bracket {J;, J,} is also a conserved quantity. We note that the
application of Poisson's theorem will not always provide new conserved
quantities because the number of conserved quantities of a standard
mechanical system is finite. It is known that the total number of conserved
quantities is given by 2n — 1 such quantities if n is the degree of freedom
in the phase space. Thus, Poisson's theorem sometimes delivers trivial
constants or the resulting conserved quantity is a function of the original
conserved quantities J; and J,. If both cases fail, we obtain a new
conserved quantity.

The main application of Poisson brackets is the formulation of equations
of motion. The derivation of conserved quantities is a special property of
these brackets. To see how equations of motion follow by Poisson's
bracket, let us consider that the first argument is one of the phase space
variables. As second argument, we use the Hamiltonian. The resulting
relations are

q'k = {qk’ H} =
Zf %_ﬂﬁ_lfzzs OH s _ OH (2.8.78)
i=1 Op;  Opi 9q; i=1 Op; M= ap
pyk = {pk’ H} =
Z& Ope OH _ Op OH _ _ 9H (2.8.79)
i=1 O0q; Op; opi 0qi —  Oqi

However, these equations are Hamilton's equation of motion:

9 =tar, HY = Zp- (2.8.80)
L} H
Py =1{p, H} = - 27. (2.8.81)

Thus the dynamic of a Hamiltonian system follows by means of the
Poisson bracket if we know the Hamiltonian

q'« = {qw, H}, k=1,2, ..., (2.8.82)
P = {pe, H} (2.8.83)

This system of equations defines the phase space flow.

The following Mathematica lines define the Poisson bracket in such a way
that some of the above properties are incorporated:

- N Of o8 Of 9
{f9 g}[q,p} - Zk=l aqk apk - apk aqk . (2884)
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First, we define a notation for the Poisson bracket in such a way that the
symbolic use in Mathematica is related to the use in the text. The
following line defines such a notation:

<< Utilities Notation~

Notation[

{f < PoissonBracket[f , g , q , p_]]

9 Yq oy

The next few cells are representations for the bilinearity of the Poisson
bracket. First, we define properties of the bracket for symbols occurring in
a product that are independent of the phase space variables.

PoissonBracket[a f , g ,
coordinates List, momenta List] :=
a PoissonBracket[ £, g, coordinates, momenta] /;
(Apply[And, Map[FreeQ[a, #] &, coordinates]] A
Apply[And, Map[FreeQ[a, #] &, momenta]])

PoissonBracket[ £ , a g ,
coordinates List, momenta List] :=
a PoissonBracket[ £, g, coordinates, momenta] /;
(Apply[And, Map[FreeQ[a, #] &, coordinates]] A
Apply[And, Map[FreeQ[a, #] &, momenta]])

The next two cells define the linearity in the first and second argument of
the Poisson bracket (PB):

PoissonBracket[a + £ , g ,
coordinates List, momenta List] :=
PoissonBracket[ a, g, coordinates, momenta] +
PoissonBracket[ £, g, coordinates, momenta]
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PoissonBracket[ £ , a + g ,
coordinates List, momenta List] :=
PoissonBracket[ £, a, coordinates, momenta] +
PoissonBracket[ £, g, coordinates, momenta]

The following two cells stand for Leibniz" rule:

PoissonBracket[ £ h , g ,
coordinates List, momenta List] :=
f PoissonBracket[ h, g, coordinates, momenta] +
h PoissonBracket[ £, g, coordinates, momenta]

PoissonBracket[g , £ h ,
coordinates List, momenta List] :=
f PoissonBracket[g, h, coordinates, momenta] +
h PoissonBracket[ g, £, coordinates, momental]

The next cell is related to differentiations:

Unprotect[D] ;
D[PoissonBracket[ £ , g ,
coordinates List, momenta List], indepl ] :=
PoissonBracket[D[f, indepl], g, coordinates,
momenta] + h PoissonBracket] £,
D[g, indepl], coordinates, momenta]
Protect|
D];

So far, no specific calculation was defined for the PB. The following cell
defines how the actual calculations are carried out in the PB:

PoissonBracket[f , g , coordinates List, momenta List,
indep : t] :=Block[{}, Fold[Plus, 0, MapThread[
(O41 £ O42g — O42 £ O419) &, {coordinates, momenta}]]]
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Now, the application of the function demonstrates the action. Let us check
the linearity first. Assume that we have three functions defined on the
phase space. Linearity is then demonstrated by

{af[6[t], PO[t]] +Bg[6[t], PO[t]],
hie[t], pO[t]1]} (ert1}, tpoltl}}

a (WP @), po) FH000), po®) — £OD @), pot) KV @6(r), o)) +
B V@), pa®) §00), po1) — gV B(), po() KO 0(), po(1)))

An example for Leibniz' rule is given next:

{a f[a[t]] h[g[t], p[t]], E[alt], p[t]]
(Baglpltl] +vHI[altl, PIt]1]) }carels, orelts

a (h(q(), p()) (g, p®) (B f(q®) g (p®) + f(q®) HOP(q(), p®)) +
(Bg(p(0) +y H(q(®), p®) f'(q®) "V (g, pt) +
Fq@@®) g, p) (B g (p®) KV (q(r), p() +y H"V(q(®), p(t)
H0q@), p(t) = KOV (q), p@e)) H'O(q(), p(0))) +
(Bg(p®) +y H(g), p)) (" (q(), p(®) h"O(q(0), p(t)) -
HOD(q(o), p(0)) £Mq@), p())))

An example for the derivation rule is given by

Oc {£[qlt]l], hlqltl, PIt]]}(qre1y, toltl )

q'® £ (q6) KOV(g(2), p(t) +
F/(q@) (p' () WO (q(t), p@) + ¢’ (&) k"D (q(2), p(2)))
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2.8.7 Manifolds and Classes

So far, we defined a few functions for the Poisson bracket. However, a PB
is an object possessing some properties and some methods. The properties
are the phase space variables and the methods are the algebraic relations
defined in Section 2.8.6. From a theoretical point of view, a PB is part of a
dynamic structure incorporating phase space properties and algebraic
methods. We already know that a PB is intrinsically connected with the
phase space, which is, on its own, a differentiable manifold. The manifold,
respectively the phase space, is defined by the phase space variables g
and py. In this phase space, there are functions depending on the phase
space variables, such as energy, momentum, angular momentum, and o
forth. The PB for the set of variables g; and p; generates an algebraic
structure on this manifold. Thus, it is natural to separate the total phase
space into the algebraic structure and the coordinates defined by the phase
space variables. This separation allows us to introduce a concept known as
object-oriented representation. Objects in this representation are derived
from classes that define a general view of the system. A class consists of
properties and methods. In our case, the properties are the phase space
variables and the methods are the algebraic structure of the manifold.
Thus, we can use an object-oriented representation of the PB which is
defined by the class PoissonB:
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PB

= Class["PoissonB", Class["Element"],
{description = "Poisson Bracket",

{P = Null, Description -» "momentas"},
{Q =Null, Description - "coordinates"},
{T = t, Description -» "independent variable"},

{A = {a-» a}, Description-» "set of
parameters (given by a list of rules)"}},

{(* --- constant factor extraction --- %)

PoissonBracket[a f , g ] :=
a PoissonBracket[ £, g] /;
(Apply[And, Map[FreeQ[a, #] &, Q]] A
Apply[And, Map[FreeQ[a, #] &, P]]).,
(# --- constant factor extraction --- %)
PoissonBracket[ £ , a g ] :=
a PoissonBracket[ £, g] /;
(Apply[And, Map[FreeQ[a, #] &, Q]] A
Apply[And, Map[FreeQ[a, #] &, P]]).,
(# --- Linearity --- *)
PoissonBracket[a + £ , g ] :=
PoissonBracket[ a, g] + PoissonBracket[ £, g],
(# --- Linearity --- %)
PoissonBracket[ £ , a + g ] :=
PoissonBracket[ £, a] + PoissonBracket[ £, g],
(# --- product relation --- =*)
PoissonBracket[ £ h , g ] :=

f PoissonBracket[ h, g] + h PoissonBracket[ £, g],

(*# --- product relation --- =*)
PoissonBracket[g , £ h ] :=

f PoissonBracket[g, h] + h PoissonBracket[ g, f],

(¥ --- Calculation of the bracket --- %)
PoissonBracket[f , g ] :=
Block[{}, Fold[Plus, 0, MapThread|[

(041 £ 0429 - Op2£ 041 9) &, {Q, P}]1] /. A],
PB[Pnew List, Qnew List, Tnew Symbol, Anew ] :=
Block[{}, P = Pnew; Q = Qnew; A = Anew] }

— Class PoissonB —
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The class PB is defined by means of the software package Elements
allowing one to generate classes for objects. An object here is a specific
form of PB designed for a specific phase space. The following examples
demonstrate how this software concept can be used to efficiently carry out
calculations. Before we give some examples, let us define a simpler
notation for a PB.

Since we separated the phase space from its algebraic structure, we are
able to replace the phase space coordinates by the phase space object. The
following line defines a template for the Poisson bracket combining the

poisson manifold as an object and the algebraic properties of the bracket:

Notation[

{f_, g_}ob:i < Dot[obj , PoissonBracket[f , g ] ]]

2.8.7.1 A Two-Dimensional Poisson Manifold

Let us first examine phase spaces with two dimensions of freedom. For
such a case, we have two phases space variables: the coordinate g(¢) and
the momentum p(¢). Functions in this manifold solely depend on these two
coordinates.

The following line defines an object derived from the class PB for these
two coordinates. The coordinates p and ¢ are functions of time. The

two-dimensional Poisson manifold is represented by the object pm:

pm = PB.new[{P > {p[t]}, Q- {q[t]}}]

— Object of PoissonB —

The package Elements offers a function GetPropertiesForm[] to check
the properties of a given object. The properties of the defined Poisson
manifold are derived by
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GetPropertiesForm[pm]

Property | Value

description | Poisson Bracket
P {p®)}
q(0)}

> 3|

{
t
{

a - al

This table shows that the momenta are given by the functions p(¢) and the
coordinates by ¢(#). In addition, the manifold may depend on parameters
which can be collected in the variable A.

Let us assume that we have a physical system characterized by its kinetic
energy Tand its potential energy V given by

t2
h=p()
2m

+V(q®)

p(t?
2m

+ V()

This is a Hamiltonian existing on the defined Poisson manifold. Let us
apply the Poisson manifold to the two functions p(f) and g(). The Poisson
manifold in the Poisson bracket is given as a subscript to the bracket.

{th, PO} pm

V'(q(®)

{th, 4O} pm

0
m
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The following is another example for a general Hamiltonian H:

H(p®), 4®)), O}y,

—H"O(p(1), q(t))

A third example deals with a general Hamiltonian H and an arbitrary
function f depending on the two coordinates of the manifold. The Poisson
bracket of these two functions are

{aHq®), p®)), fq®), pO)}ym

a (fOV @), p(t)) H*Oqt), p(t) - H*V(q@), p@) Vg, p@)))

This relation represents Jacobi's identity for three functions H, f, and g :

Simplify[(f (¢, p@®)), {g@q(®), p©®), @ H@®, pO)}yn}, +
{8(q®, p®), la HG®, p®)), [ @O, pE)}pn},, +
{aH(q®), p®), {f(q@®), p@)), g(q®, p(t))}pm}pm]

The next example represents linearity in the second argument:

{aH@g®), p®), f(q@®), p®) +£@q®), pO))}pm

a (-H®Y(q@), p®) @), p() - H*V(q®), p) gV q@), p®) +
£V, pt) HYOq), p) + gV (g(®), pt) H'V(q), p(1)))
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2.8.7.2 A Four-Dimensional Poisson Manifold

The following line defines a second Poisson manifold for two coordinate
pairs g; and p;. The manifold is represented by the object

pm2 = PB.new[{P -» {pl[t], p2[t]}, Q- {ql[t], q2[t]}}]

— Object of PoissonB —

The properties of this manifold is gained by

GetPropertiesForm[pm2]

Property | Value

description | Poisson Bracket

P {p1(®), p2(1)}
0 {ql(®), q2(n)}
A {a > a}

Let us assume that we know a Hamiltonian in this four-dimensional
Poisson manifold given by

h4 PIO* | p20)* V(ql®), Q2
e + S + V(ql@®), q2(5))

pl? . p2(1*
2ml 2m2

+V(ql®), q2(n)

The Hamiltonian consists of two terms: the kinetic energies and a general
expression for the potential V. The Poisson brackets for this Hamiltonian
and the coordinates in this manifold follow from
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(thd, #1} 1y &) /@ {p1(@), P2(t), q1(®), q2(1)}

pl(®)

p2(?)

{v“"’)(ql(r), a2, V*P(qlo), @21), ==,

m2

}

Another two-dimensional Hamiltonian with a different potential V gives

1¢)?
hat = 2 (
2ml

p2(t)°
2m2

+V(ql@®)

pl(1?
2ml

p2(t)°
2m2

+V(ql(®)

(th41, #1},,,, &) /@ {p1(®), p2(), q1(¢), q2(1)}

pl(®

p2(r) }

{viaian. 0. - 222 -

The following is an example incorporating two specific functions of the

Poisson manifold:

pl(®)’
{ +
2

p2(t)°

+V(ql@), q1()” - p1@) 20}

pm2

p1(1) p2(1) - 2pl(1) q1(1) — q2() V' (q1 (1))

This example demonstrates that the Poisson bracket having two integrals

of motion as arguments vanishes:

pl(®)’?
(=

-+

p2(t)°
2

+V(ql@®),

pl®)’
+

p2(1)°

+V(ql@))

pm2
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2.8.7.3 Hamilton's Equations Derived from the Manifold

Having available an object-based reprsentation, it is convenient to inherit
properties of one class to another. This is especially useful in deriving
Hamilton's equations based on PBs. In the previous subsection, we
introduced class PoissonB collecting all properties and methods of a
Poisson manifold. This class can be wused by the class
HamltonianEquations defined by the phase space variables. Those
variables are the basis of the Hamilton manifold. The algebraic structure
defined for the PBs is also used by this class.

It is convenient here to define a class for Hamilton's equations which
inherits the properties of the Poisson bracket. The properties of the

Poisson manifold are equivalent to the properties of the Hamilton manifold.

The following lines define the class HamiltonEquations:

HamiltonEquations = Class["HamiltonEquations", PB,
{description = "Hamilton's equations"},
{HamEgs[H , V_/; FreeQ[V, List]] :=

07V == PoissonBracket[H, V],
HamEqs[H , V_List] := Map[HamEqs[H, #] &, V],
HamEqgs[H ] := Map[HamEqgs[H, #] &, Flatten[{P, Q}]1].,
HamiltonEquations[
Pnew List, Qnew List, Tnew_Symbol] :=
Block[{}, P = Pnew; Q = Qnew; T = Tnew] }

— Class HamiltonEquations —

To handle the class for Hamiltonian equations and the derived objects in
the same way as in a textbooks or in case of Poisson brackets, we
introduce the notation

Notation[Hg; = [£_] e Dot[obj_, HamEqs[£_]]]
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and define the corresponding palette

{0, 0},

Heq [O]

Having these tools available, we can apply the classes to specific problems.

2.8.7.4 Hamilton's Equations Derived from the
Hamilton—Poisson Manifold

As a first example, let us examine a Hamilton—Poisson (HP) manifold with
a single coordinate and a single momentum. The object defining the HP
manifold is created by

haml = HamiltonEquations.new[{P -» {p[t]}, Q- {g[t]}}]

— Object of HamiltonEquations —

Specifying a single-particle Hamiltonian by kinetic and potential energies,
we can derive the set of Hamilton's equations by applying the manifold to
the Hamiltonian:

GetPropertiesForm[haml]

Property | Value

description | Hamilton' s equations
P {p()}
q(1)}

> 3|0

{
t
{

a - a}




2. Classical Mechanics 393

p@)?
Hgam! — Vig®)]

{p'() ==V'(q0), ¢(1) == —p(®)}

The result is a system of equations defining the dynamic of this particle.

A second example is concerned with a four-dimensional HP manifold. The
generalized coordinates and the momenta are primarily given by g1, ¢2, pi,
and p,.

ham2 = HamiltonEquations.
new[{P » {pl[t], p2[t]}, Q- {qgl[t], q2[t]}}]

— Object of HamiltonEquations —

As an example, let us consider the double pendulum. The Hamiltonian for
this system reads

HamDoublePendulum =
1

21212 m, (m +m; Sinfe;[t] - 62[t]]%)
(L mypa[t]? + 1] (m +mp) p2[t]? -
2my; 1; 1; pa[t] p2[t] Cos[61[t] -62[E]]) -
my; gl; Cos[6;[t]] - (m; +my) gl; Cos[O;:[t]]

—g cos8(01(8)) I my — g cos(01(1) I (my +my) +
Bmy pr(H? = 2cos(01(1) = 62(t) I L my pa(d) pr(0) + 13 (my + mp) pa(H?
2 BB (my sin* (6, (1) — 62(0)) + my) my
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where p; (i = 1, 2) are the generalized momenta, /; and m; are the inertia
momenta and the masses of the particles,rspectively, and 6; are the angles
of deviation. The HP manifold ham2 defined above does not exactly
correspond to the variables used in the Hamiltonian. However, we are able
to change the coordinate names by setting the properties of the HP
manifold using

SetProperties[ ham2,
{P- {p1[t], p2[t]}, Q- {6:[t], 62[t]}}]

Now, the HP manifold is defined for the coordinates

GetPropertiesForm[ham2]

Property | Value

description | Hamilton's equations
P {p1(®), p2(0)}

{61(0), 62(1)}

t

> S50

{@ > a}

The four equations of motion can then be obtained using
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equationsOfMotion = 2™ [HamDoublePendulum]

(P == gsin@ @)l omy +m2) +
1 (zﬁﬂwﬂﬂ—aﬂﬂﬂlbmzpﬂﬂpﬂﬂ B
25 Bmy o sin(01 () — 62(8)) + m
(2 cos(81 (1) — 2(1)) sin(8y (1) — 0a(1)) ma (15 my 1 (1)* =
2cos(01 (1) = 62(0) Iy Ly my pa(1) pr (D) + 5 (my +ma) pa()*) /

(my sin” (6, (1) — 65(1)) + ml)z} p(1) ==

gsin(62(0) b mp + ((2 cos(8:1(1) — 62(1)) sin(6: (1) — 62(1))

2 l% l% my
my (13 my p1()* = 2cos(01(1) — 02(0) It L ma pa(®) pr(0) +
B (my +my) pa(6)%) | o sin®(0, (1) — 0:0)) + my)’ -
2sin(0, () - hibmy pi() p2(D) , -
ma sin (0, () — 02(8)) + my ) ==
2 cos(01(1) = (D) [y L my pa(t) =213 my py(2)
213 B my (my sin® (6, (1) — 62(0)) + my)
05 (1) ==
2 cos(01(t) = (1) [y b ma pi (1) = 213 (my + my) pa(1) }
213 B my (my sin® (6, (1) — 62(2)) + my)

They represent the dynamics of the double pendulum in the
Hamilton—Poisson manifold. This example demonstrates that an
object-oriented approach in symbolic computing allows one to mimic the
theoretical background as close as possible. It is natural in an
object-oriented environment to use the mathematical notions in a
one-to-one corespondence. Thus, symbolic computing becomes a basis for
theoretical constructs. The ease of use and the close connection to
textbook presentations allows for a fast manipulation and reliable
calculation of results. In addition to these examples, many other
applications of Elements to similar subjects are ahead.
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2.8.8 Canonical Transformations

The basic idea of canonical transformations is to simplify a Lagrangian
system of equations. Canonical transformations convert a Lagrangian by
means of a coordinate change to a simpler representation of the
Lagrangian. In addition to the simplification of the Lagrangian, it is often
observed that the related equations of motion are also simplified. The
coordinate change is given by means of a transformation of the following
kind:

qi — Qi = 0(gi, 92, - qN)- (2.8.85)

An example of such a canonical transformation is the introduction of
cylindrical coordinates if the problem allows a rotation symmetry around a

distinguished axis.

In the Hamiltonian description of mechanics, we not only have coordinates
but also generalized momenta to describe the motion of the system. Since
the generalized momenta have the same importance in phase space as
generalized coordinates, we have to extend the transformation from
coordinates to momenta as well. The new coordinates are thus given by

qi —>Qi = Qi(QI, q2 --s gN> P15 s pN)’ (2886)
Di —>Pi Pi(%, q2, s N5 P15 oo pN) (2887)

The transformation is executed in such a way that the new coordinates
(Q;, P;) are functions of the old coordinates (¢;, p;), i, j=1,2, ..., N. If
the transformations simplify to the form

qi— Qi =0i(q)

2.8.88
pi— Pi=Pi(p), ( )

Ty : {
where the coordinates depend only on coordinates and momenta depend
only on momenta; we call this kind of transformation a point
transformation. The general relation of a transformation for Q; and P;
incorporating both the coordinates and the momenta are called canonical
transformations. A specific feature of canonical transformations is that the
Hamiltonian equations of motion are invariant with respect to the
transformation; that is
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[ 6H 1 6H
Piz_a_ql. Qiz_a_pi
LN (2.8.89)
, oH , OH
Pi==ag Qi = op;

with H = H (Q; (qx, pi), Pi(qx, q1)) as the new Hamiltonian.

The application of canonical transforms to a Hamiltonian always saves the
structure of the Hamiltonian equations but simplifies the resulting
representation of the equations of motion. This simplification aims at a
reduction of the equation in such a way that a straightforward integration
of the equations is possible. An optimum of a canonical transformation is
gained in such a case when all new coordinates are cyclic; that is there
exist a transformation of the kind

H(pi, s PN> Q15 s qn) — H (P1, .., Py). (2.8.90)
The Hamilton equations of motion are then given by

P, = — g—g =0 e, P =const. i=1, ..,N (2.8.91)

0 = g_;li = f(P, ..., Py), (2.8.92)

where f; are functions depending only on the new momenta and do not
show any explicit time dependence. The consequence of this
representation is that the solution for the generalized coordinates follows

by
Qi = fit + 6, i=1, ..,N, (2.8.93)

with ¢; = Q;(0) the initial condition for the coordinates. The momenta are
just conserved quantities in this representation. If we are able to uncover
these momenta or transformations, we are able to solve the corresponding
equations of motion. The P; and §; are then integrals of motion. The N
momenta P; are the distinguished integrals of motion allowing us to carry
out a complete integration. The ¢§; allow us to complete the integration and
terminate the nontrivial solution process. If we know the solution, we are
able to invert the transformation and represent the solution in the original

coordinates. For an optimal canonical transformation two facts must exist:
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1) Find the new variables
2) Transform the Hamiltonian to the new representation.

2.8.9 Generating Functions

Canonical transformations are determined by generating functions. To
demonstrate the meaning of a generating function, let us consider again the
Liouville theorem. Simplifying things, we consider a mechanical system
with a single degree of freedom. The original canonical variables are
(p, q) and the target variables are (P, Q). The theorem by Liouville states
the conservation of the phase space volume B

|y [apd, = [, [ dPdQ. (2.8.94)

From Stokes theorem on volume integrals it is obvious that an integral on
the space B is replaced by a contour integral along ¢ in such a way that we
have

¢ pdg = §PdO. (2.8.95)

In addition, we assume that the target coordinates P and Q depend on the
original coordinates ¢ and p; that is, P = P(p, q) and Q = Q(p, q). The
dependence of the target coordinates on the original coordinates may be
different from this assumption. It is also possible that we have a relation
like P = P(Q, q) and p = p(Q, q) where now Q and ¢ are the independent
variables. If we assume such a relation, we find from the line integral the
following relation:

${P(Q. ¢dg - P (Q, 9)dQ} = 0. (2.8.96)

This kind of representation suggests that the integrand is given by a total
differential of the function F'y = F (Q, ¢); that is,

$(pdq — PdQ) = § d F\(Q, q)
2.8.
- § 8 dg + gy, @890

Comparing the coefficients of the total differentials, we find

or
R (2.8.98)

OF
P=- % (2.8.99)
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The first of these equations provide a relation between p and (g, Q) which
must be inverted to gain the functional dependence of Q = Q(p, q). The

inversion is possible if

O F,
Ir %0, (2.8.100)

Inserting the derived relation Q = Q(p, ¢) into the second equation, we get
an expression for the target momentum: P = P(q, p).

The first example deals with (g, Q) as independent variables. It is also
possible to use other combinations of variable pairs such as (P, g), (Q, p)
and (P, Q) for independent variables. Let us consider the case when (P, q)
are independent variables. Then, the conservation of the phase space

volume provides
$(pdg — PdQ) = §(pdg + QdP) (2.8.101)

with @d(PQ) = ®PdQ + PQdP. On the other hand, the generating function
isnow F, = F, (P, q); thus, the line integral is

§ (22 ap + 36_?[1(1) = §pdq + QaP. (2.8.102)

From this relations, it follows that

aF,

= o - (2.8.103)
OF
0= S5 (2.8.104)

An example for this kind of generating function is F, = pg, which
simplifies the two determining transformations to identical transformations:

0F,

= GL =P (2.8.105)
OF.
0= 282 -4 (2.8.106)

The combination of the independent variables allows two other generating

functions given by

F; = F5(Q, p) (2.8.107)

and

Fy = F4 (P, p). (2.8.108)
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If the canonical transformation is independent of time, then the
representation of the Hamiltonian is gained just by coordinate
transformations; that is,

A= HP, Q) =H(pP Q) qP, Q). (2.8.109)
As an example, let us consider the harmonic oscillator with its
Hamiltonian:
PP k ,
H = + —dq
2m 2
2 2
P~ kg
2m 2

By substituting w® = k/m, we get the representation

Ht=H/. k ->muw?

The Hamiltonian in the present representation suggests that the canonical
transformation is designed in such a way that the target variable Q is a
cyclic variable. We assume that the canonical transformation is given by
the following relation:

£[P]

canonTrafo = {p -> £[P] Cos[Q], g -> Sin[Q] };

mw
canonTrafo // TableForm

p = cos(Q) f(P)

f(P)sinQ)
97 e

where f(P) is an arbitrary function of P. Applying this transformation to
the Hamiltonian, we get
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hth = Ht /. canonTrafo // Simplify

[y
2m

It is obvious that Q is a cyclic variable and, thus, P represents a conserved
quantity. The unknown function f(P) is determined by the following
procedure. First, represent the canonical transformation for the original
momentum p by

sl = B— == (R /. canonTrafo) // Solve[#, p] &
q q

{{p > mqwcot(Q)}}

This relation suggests that the generating function is of type
F = F(q, Q) = F; because we have

eql = .F[q, Q] == (p /. Flatten[sl])

F19(q, Q) == mqw cot(Q)

This relation can be solved to provide

s2 = DSolve[eql, F, {g, Q}] // Flatten

{F - Function|{q, 0}, % mwcot(Q) ¢* + ¢ [Q]]}

The simplest solution is generated by setting the arbitrary function c{(Q)
equal to zero which allows us to write

Fy = 5> ¢*cot 0. (2.8.110)

The second relation defining the target momentum is solved with respect
to the old coordinate:
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solCoordinates = (Solve[P == -9qF[q, Q] /. s2, q] /.
C[1] -> Function[Q, 0]) // PowerExpand

{{q o V2 VP sin(Q) }, {q N V2 P sin(Q) }}

Vm Vo Vm Vo
__OF _ _mag
P=- = 55ds (2.8.111)

Using the ansatz for the canonical transformation and the gained results for
the old coordinate, we can compare the two results to determine the
unknown function f(P) by

SOolF =
Solve[ (g /. canonTrafo) == (q /. solCoordinates[2]),
£[P]] // Flatten

{fP) > V2 Vm VP Vo

The target Hamiltonian then becomes

targetHamiltonian = hth /. solF

Pw

Since Q is a cyclic variable, we immediately observe that P is a constant of
motion. The value of this constant is determined by the total energy E and
the frequency w by

- £ (2.8.112)

w

The equation of motion for the O coordinate reduces to

teqQ = 0:Q[t] == Op targetHamiltonian

oM ==w
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The solution of this equation is derived by

solQ = DSolve[teqQ, Q, t] /. C[1] -> a

{{Q - Function[{t}, @ + t w]}}

where « is the constant of integration. The final solution for the
coordinates can be derived by inverting the transformations. Using the
introduced representations, we find

g=qg /. canonTrafo /. Q ->Q[t] /. solQ /. solF /.

&
P -> — // PowerExpand
)

{ﬁ\/gsin(a+tw)}
Vm w

However, this solution is the well-known solution of a harmonica
oscillator. The above example demonstrates how the generating function
can be determined if one is able to guess a basic representation of the

canonical transformation.

2.8.10 Action Variables

The method used in the previous subsection demonstrated that the
generating function is the basic tool to determine canonical
transformations. However, the presented procedure in this section is not a
systematic procedure and connected with guesswork. This section is
concerned with a systematic approach to derive and determine the
generating function in a systematic way. To demonstrate the method let us
consider the generating function of the type F, = F; (¢;, P;) = F» (g;, @),
with @; = P;. This generating function is denoted by S in the following:

S=S(Gis s GNs Uiy oy AN) = Fa. (2.8.113)
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This kind of generating function defines the momenta p; and coordinates
Q; = B; in the known way by

0S (gi,;)

pi = S (2.8.114)
0S (gi,a;

B = —éqai“). (2.8.115)

The B;'s are the target coordinates conjungate to the «;'s. The relation
between the original and the target Hamiltonian is given by

[N )

A = H(a) = H(gi, p) = H (g a0

(2.8.116)

Since the total energy is a conserved quantity for standard Hamiltonian
systems (i.e., H (@;) = const.), the relation

65)

A (@) = H(g o

(2.8.117)

defines a hypersurface in phase space. On the other hand, this relation
defines the generating function. The relation defining the S function is a
partial differential equation of first order. The generating function S
depends on N independent coordinates ¢; (i=1,2, ..., N). Relation
(2.8.117) is known as the time-independent Hamilton—Jacobi equations.

In the case of a time-dependent Hamiltonian, the Hamilton—-Jacobi
equation also becomes time dependent and generalizes to

aS aS
== + H(qi, 6_q,-) =0. (2.8.118)

In this case, the generating function also depends on the time ¢. If the
system is a conserved system, then the time is separated from the function
by

S=S(;a)-Et. (2.8.119)

In this case, the time-dependent Hamilton—Jacobi equation reduces to

oS
9is 3,

—H(gs, g—i) —E=H ().

B 1 Hlgs, g—;)z—E+H( )=0

(2.8.120)

It is well known that first-order partial differential equations (PDEs) of the
above type need N independent integrals of motion for their solution.
However, this integrals are given by the target momenta P;=¢;
(i=1,2, .., N), which are constants of motion. The problem of finding
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the generating function now reduces to solving the Hamilton—Jacobi
equations, which is equivalent to the solution of the canonical equations of
motion. The derivation of an explicit solution for the Hamilton—Jacobi
equations in its most general form is a very difficult task. This tasks
simplifies if we prescribe the property of separation to the Hamiltonian.
The functional dependence of S on the coordinates suggests

ds=Y" 9 5= 5Y, pidg, (28.121)

which results in the general representation
Szﬁpﬂ% (2.8.122)

where ¢go =(q1 (0), ¢2(0), ..., gn(0)) are the initial conditions of a
trajectory in phase space. If the quantities «; are known, the trajectory
q=(q1 (@), q2(t), ..., gy (1)) for times greater than zero are also known. It
is obvious that for a determination of S, the trajectories g; = g; (f) must be
known beforehand. At this point, the question arises of whether the
Hamilton—Jacobi theory is a useful theory to derive practical results. This
question will be resolved in the following subsections.

2.8.10.1 One-Dimensional Hamilton-Jacobi Equation

In case of a one-dimensional Hamiltonian system, the Hamilton—Jacobi
equation is solvable. Let us assume that we are dealing with a Hamiltonian
depending on the variables (g, p):

H=H(q, p). (2.8.123)

The target Hamiltonian A is thus a function in a single variable: the
canonical momentum. In addition, the target momentum is a conserved
quantity:

H = H (). (2.8.124)
For time-independent Hamiltonians, the solution step is the equivalence of

this conserved quantity with the Hamiltonian:
A = a. (2.8.125)

Thus, @ is just the total energy of the system. The Hamilton—Jacobi
equation then becomes
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65)

H(g, o7 . (2.8.126)

At the same time, the two relations for the generating functions hold:

0S(q,@)

= S (2.8.127)
dS(q,
B = % (2.8.128)

Since the transformation are canonical transformations, the equations of
motion in the target variables become

a' = - g—g =0, (2.8.129)
g = %_2’ - 1. (2.8.130)

These two equations can be solved by

a = const. = H, (2.8.131)
B =1t—1t. (2.8.132)

Knowing the solution in the target variables, we are able to express the
solutions in the original variables by

oS (g, d
t-1y= 500 - 0 [ pig, @) dg (2.8.133)
t-tg= [ LD oplaa) g4, (2.8.134)

As an example, let us examine the motion of a particle in the potential
V = V(g). The Hamiltonian then becomes

H(g, p) = ZP_; + V(g). (2.8.135)

Since the Hamiltonian satisfies the relation

H(g, p) = Ha = a), (2.8.136)
we find

Tt V@ =« (2.8.137)
or

plg. @)=+ V2m(@-V(g). (2.8.138)

The final solution of the problem thus results from
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-t = [’ %(i 2m(a - V(q)))dq

- /ﬂqu
2 )y VeV

Since for a conserved system, @ is equal the total energy, the solution

(2.8.139)

reduces to a simple quadrature

q
m dq
t—tg=+ 5> | ——.
0 ) j;o PN (2.8.140)

However, this result is already known from the integration procedures we
discussed in Section 2.4. The question of what is the advantage of this
procedure compared with the standard quadrature arises. The main
advantage is that we are now in a position to introduce variables, action
angle variables, allowing us to simplify the problem.

2.8.10.2 Action Angle Variables for one Dimension

The examinations so far demonstrated that the trajectories in phase space
are closed curves. The period a particle needed to traverse the complete
path is given by 27/w, where w denotes the cycle frequency of a
trajectory. The idea here is to use the periodicity to introduce coordinates
which possess this 2 7 periodicity. We are looking for coordinates which
increase their values by 2r if the particle traverses the total path. The
targeted variables are denoted by J and 6; J is the conjungate momentum

to 6. The set of defining equations for the generating function now reads

0S(q.J)
= 8—‘2, (2.8.141)
_ 0S(g))
= = (2.8.142)
The related Hamilton—Jacobi equation is
H(g, &) = a = H(). (2.8.143)

For a trajectory with fixed a (i.e., fixed J, a = H (J)), we find by
differentiating 8 with respect to ¢ that

&0 _ 9 (oS
7 = ar (o) (2.8.144)
Our assumption on 8 is that it should increase by 2 if the trajectory is

completely traversed; that is,
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J aS 0
21 = §dt = 57 § (G5 )da = 57 & pda. (2.8.145)
This condition is satisfied if

1
J = 5- ¢ plg, @) dg. (2.8.146)

Relation (2.8.146) is also known as the definition of the action variable.
The integration is carried out along the trajectory C, which is determined
by the total energy @ =H (J) =E.

The related canonical equations of motion are

oH (J)
06

0H (J)

aJ

J = -

=0, (2.8.147)
0' = = w(J). (2.8.148)
The two equations are solved by

J = const., (2.8.149)
0 =wl)t+ 0, (2.8.150)

where w(J) is the characteristic frequency of the motion and ¢ = 6(0) is
determined by the initial condition.

Example 1: Harmonic Oscillator

As an example, let us examine the harmonic oscillator to demonstrate the
derivation of the action angle variables. The Hamiltonian is given by

1
H=x5 (P* + * ).
The Hamilton—Jacobi equation reads
1 21
7(%) T f =, (2.8.151)

where « is an integration constant equal to the total energy E = H. The
action variable thus follows by

o
J= o 9@ V2E- L) dg. (28.152)

with C the closed trajectory in the phase space. This trajectory possesses
two turning points at g = + V2 E / w. A direct calculation shows
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E
J==. (2.8.153)

This relation connects the constant of integration « = E with the quantity
J; that is,

a=EH({U) = Jw.

The generating function S is then given as

q
S(q, J) = f\/Z(Jw—%wzqz) dq.

q0

Using the original coordinates, we can represent the solution for the
generating function by

as a (!
=35 = Wf \/2(Jw—%w2q2) dg
q0

= 2a)i 1

2 200-% w2 g

40

(2.8.154)

- w — Ly
\ V2(0w-5 w?g?)

0

= [ 2L sin@ + o),

where § = arc sin (qo w/VZE).

The introduction of action angle variables is not only restricted to a
two-dimensional phase space. This concept can be generalized to the
2 N-dimensional case. For our example, it was essential to use the total
energy as a conserved quantity in the calculations. In the case of a
2 N-dimensional Hamiltonian system, the knowledge of N integrals of
motion allows one to separate the Hamiltonian in appropriate coordinates.
In any case in which this separation exists, the solution of the problem
simplifies dramatically.



410

2.8 Hamiltonian Dynamics

2.8.10.3 Separation of Hamiltonians

Based on the Hamilton—Jacobi equation, we discuss here the separation of
Hamiltonian systems. The Hamilton—Jacobi equation for a N-dimensional

system is
H(qis wdns gs o gg) = @1, o ay) (2.8.155)

where ¢; are the generalized coordinates and p; =30S/dq; are the
generalized momenta generating the phase space. The «; are the conserved
quantities in this space. Thus, the Hamilton—Jacobi equation is the
determining equation of S in N independent coordinates g;.

First-order PDEs allow N independent integrals of motion which
determine the solution. We will show that these constants of motion are
related to the «;'s. The Hamilton—-Jacobi equation in general is not
solvable in a closed analytic form until the Hamiltonian is separable.

If the Hamiltonian separates, then the generating function S also separates.
On the other hand, this means that S is a direct sum of the separated

components depending only on a single coordinate:

S(gis @) = Tooy Sk (qes @iy oy @) (2.8.156)

A simple class of Hamiltonians satisfying this condition is those which

decay in N subsystems by

H(pi q) = Ypey Hi (P q0)

(i.e., a system of N decoupled oscillators). In this case, the
Hamilton—Jacobi equation reduces to the one-dimensional case discussed

earlier:
oS
Hy (g 5,-) = o k=1, ..N. (2.8.157)
The integrals a; of this special case are connected to the Hamiltonian by
the sum
a=a +ar+..+ay = H, (2.8.158)

where H is the transformed Hamiltonian. For practical cases, this
separation is very seldom usd and thus it is very rare to apply this kind of
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theory to a problem. However, if we are able to introduce appropriate
coordinate transformations, we gain a representation a few steps apart
from the solution.

Let us assume that the generating function separates; then, the following
relations for generalized momenta hold:

_ 6S(qk,a’1,...(YN)
P, = B Pra— (2.8.159)
The meaning of this relation is that each target momentum P; only
depends on a single coordinate g;. If we assume, in addition, that the

motion in gy, is periodic, we can introduce a set of action variables I; by

i
Ik = 57 &, Pulaw @i, . an) dgy, (2.8.160)

where C; is a closed loop in phase space. This relation establishes a
relation between the action I, and the integrals a;. This relation is used to
replace the a;'s by the actions I; in the generating function S. After the
replacement, we can evaluate the two relations for the target coordinates.
The angle variables follow from

— a_S _ N aSM (QmaIleN)
%= = D 0 Ik ' (2.8.161)

By definition, the angles 6, are automatically conjungate to the actions /.
If we know the variables in the transformed phase space, we can derive the

canonical equations from the Hamiltonian # = H (I;, ..., Iy) by
I = — ‘”’(a’l—gk’m _— (2.8.162)
0% = ‘37’;' = we (i, o Iy), (2.8.163)

where wy is the cycle frequency of the kth coordinate. Since all equations

are decoupled, the solution is accessible by an integration:

I, = const., (2.8.164)
Or = wr Iy, .., IN)t + 6y, (2.8.165)

where 6, is the initial condition of the angles at r=0. Different
examinations demonstrate that the knowledge of the action angle variables
are a basic tool to solve the Hamilton—Jacobi equations. The main point of
this procedure is the uncovering of a sufficient number of integrals of
motion.
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Let us assume that I; (pg, gi) is an integral of motion; then, we know that
along a trajectory, the value of this integral does not change; that is,

I (pr, qi) = «;. (2.8.166)
If we know, in addition, the total energy, then we have
{;, H} = 0, (2.8.167)

independent of the coordinates used. If we add H to the set of integrals, we
can introduce the term "completely integrable Hamiltonian systems".

Definition: Complete Integrability

A Hamiltonian with N degrees of freedom is said to be completely
integrable if N integrals of motion, I, I, ..., Iy, exist. These integral of
motion are in involution with each other by

{5, I;} =0 for 4,j=12 .., Nnm (2.8.168)

The meaning of this definition becomes obvious if we remember the
meaning of an integral of motion. The existence of N integrals of motion /;
restricts the motion to an N-dimensional manifold M. The total motion in
the 2 N-dimensional phase space is restricted to an N-dimensional
submanifold. An example was the harmonic oscillator which demonstrated
this behavior clearly: that is,. the motion of the two-dimensional phase
space is restricted to a one-dimensional curve. Knowing the N integrals,
we are able to show that the geometric structure of the manifold M is a
N-dimensional torus.

Let us assume that one of the integrals is given by the Hamiltonian I; = H.
Then, we know that the equations of motion follow from the Poisson

brackets:
q'; = {qi H}, (2.8.169)
py ={pi H}. (2.8.170)

The system of equations defines a Hamiltonian flow in phase space. This
flow is restricted to the manifold M because there are /; integrals of
motion known. The velocity field of the flow is defined by

& =J.VJ i=12 .,N (2.8.171)
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where V.= (@,,, 04, , ..., 04, 0y, ..., 0,,) and J is the symplectic
matrix
; 0 1
= ( 10 ) (2.8.172)

with 1 a Nx N identity matrix. This representation of the equations of
motion is possible by introducing a set of coordinates with equal standing
7 = (21, 22, - 2N) = (G15 925 s GN> P15 - Py). The Hamiltonian in
these coordinates is then

H = H(gi, ..., pi) = H(z). (2.8.173)
The Poisson bracket simplifies to

{f.8), =VfJ. Vg (2.8.174)
and the equations of motion result from

2'=1{z, H} = Vz.J.VH, (2.8.175)
Zz'=J.VH.

The symplectic formulation of the equations of motion simplifies the
representation but not the physical meaning. The mathematical
representation becomes more compact and clear. The velocity field of the
Hamiltonian system is then

-

¢&=J.VH. (2.8.176)

The main property of the velocity field or flow of the Hamiltonian is that
the flow is always tangential to the manifold M. For each of the N

integrals of motion, the flow is defined by

& =17V, i=1,2, ... N. (2.8.177)

Each of the flow fields are tangential to the manifold M. Because the
completely integrable system is characterized by the independent integrals
I;.
Now, we switch to a topology argument contained in the Poincaré—Hopf
theorem. Each N-dimensional manifold M characterized by N integrals of
motion with the related flows establishes the topology of a N-dimensional
torus.
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For two dimensions, we can plot such a torus with the flow fields on top of
the surface. In this case, the flows are just the coordinates on the surface
(see Figure 2.8.5).

Figure 2.8.5.  Flow fields on a two-dimensional torus. &; and &, are the two possible velocity fields.

A practical interpretation of the flow fields on a torus is that the fields can
be combed. In each direction of the flow, you can pervade along the flow.
In contrast to a torus, a sphere cannot be combed (see Figure 2.8.6). The
fields on the poles destroy this property on a sphere.

Figure 2.8.6.  Flow fields on a sphere. Here, the flow field cannot be combed.
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On a sphere there is always a velocity field, hair, which prevents a comb
from moving on the total surface. Knowing this topological interpretation
and the existence of integrals of motion allows us to present a
coordinate-free definition of action angle variables.

An N-torus is a natural object which can be generated as a direct product
of N independent 2 r periodic phase space curves C; (see Figure 2.8.7).
The phase space curves are designed in such a way that they cannot be
transformed to other curves or shrunk to a point.

Figure 2.8.7. A two-dimensional torus as an example for 27 periodic phase space curves.

The set of action variables is thus defined by

1
L= 5= & St Pudd,, (2.8.178)
The related generating function
S = S(CII, wos gN> 119 ceey IN) (28179)

allows the derivation of the angle variables:

oS (ql,..., 4qn, 11’..., IN)
01y )

O = (2.8.180)

Both sets of variables are related to the Hamilton equations of motion:

Ty = - %ﬂ =0, (2.8.181)
. OH, .1
6y = Hleealtd — 1, ., Iy). (2.8.182)
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Knowing this set of equations, the solution for the problem can be derived.
Note that the transformation to action angle variables is a global
transformation; that is, the total phase space is covered by tori and the
trajectories are located on top of the surface.

The initial conditions (gq; (0), g2 (0), ..., gn (0), p1(0), ..., py (0))
determine the specific values of the integrals of motion:

I (pi (0), ¢i(0) = a, k=1, .., N. (2.8.183)

The I;'s determine on which torus a trajectory is located. The value of the
angle variable determines the position where a particle is located on the
torus for a two-torus see Figure 2.8.8.

Figure 2.8.8.  Action angle variables on a 2-torus.

A conserved Hamilton system is determined by the dimensions collected in
Table 2.8.1.

Phase space 2N-Dp
dimension

Hyper surface of the 2N-1=Dg
energy

Tori dimension N=Dy

Table 2.8.1.  Definition of different dimensions.

Thus, for N-degrees of freedom, we get Table 2.8.2.
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N|[1][2]3]4] 5
Dp|2|4|6|8]10
Dg [1]3]5]7
Dr|1]2[3|4] 5

Table 2.8.2.  Collection of different dimensions related to an N-degrees, of freedom, system.
The numbers given allow the following conclusions:

In case of a single degree of freedom the hypersurface of the energy and

the torus surface are identical.

For N =2, the two-dimensional tori are embedded in the
three-dimensional energy hypersurface. Especially the energy hypersurface
divides the phase space in an inner and outer region. If there is a gap
between these regions, a trajectory in this region will stay forever in

this gap. Gaps occur for nonintegrable Hamiltonians.

For N = 3, trajectories in gaps can escape into other portions of the
energy hypersurface. This phenomenon is known as Arnold diffusion.

The Hamilton equations of motion show that the motion of the angle
coordinates is periodic:

, i
9, = ng = w. (2.8.184)

For a multidimensional Hamiltonian system there exist N frequencies of
revolution. The ratios of these frequencies determine whether the
trajectories in phase space have a closed rational ratio and thus the motion
is periodic, or the ratio is irrational and the motion is aperiodic. In the last
case, the tori are completely covered by the trajectories and there is no
return to the starting point. This case is also known as quasiperiodic. If a
trajectory completely covers a torus the system is denoted as ergodic. The
discussed properties are obvious for a two-dimensional system. In such a
case, we have two frequencies: w; and w,. If the ratio

1

z—z = irrational, (2.8.185)

then we have an ergodic system. In case of a rational ratio with

w
Wy

%, with n, meN, (2.8.186)
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the trajectories are closed. This behavior is graphically represented by the
torus itself or by an angle chart containing the paths (Figure 2.8.9).

0

SN

&

Figure 2.8.9.  Path on a torus and the corresponding angle chart.

Up to now, we discussed completely integrable systems. In such cases, we
have N integrals for N degrees of freedom. All of the integrals of motion
are in involution (i.e., {;, I;} = 0, i, j=1, ..., N). For a nonintegrable
system, the question arises of what happens if a single integral of motion
does not exist. This nonexistence of an integral causes tremendous
problems in the process of integration. The questions related to this topic
are as old as mechanics itself. Generations of physicists and
mathematicians are hunting for the facts of nonintegrable systems.
However, the problem was partially solved by Kolmogorov, Arnold, and
Moser in 1960 by their famous theorem:

Theorem: KAM Theorem

If the ration w;/w, of two frequencies w; and w, is sufficiently irrational
(.e.,

|w1 r C

- > = (2.8.187)

wr N

with fixed ¢ and ¢), and if the disturbance of the Hamilton system is
sufficiently small, then there exists a torus which is the center for spinning
trajectories with w; and w,. If the disturbance of the Hamiltonian slightly
increases € H; = 0, then the torus is twisted and exists up to a critical

value &, H; .1

However, the KAM theorem does not provide an upper limit for the
critical parameter and thus only delivers a qualitative estimation. Due to
Henon (1966), the disturbance of a Hamiltonian system can be of the

magnitude e H; = 10_48, where a Moser torus is dislocated.
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2.8.11 Exercises

1. An harmonic oscillator is described by the Lagrangian
L= %m(x'2 — w? x?). Construct the Hamiltonian and write out the
equations of motion.

2. A particle moves vertically in a uniform gravitational field g, the
Lagrangien being L = %z'z — g z. Construct the Hamiltonian. Hint:
Add a total time derivative such as %d()t 2)/dt=Xdzz'" to the
Lagrangian.

3. A particle of mass m moves under the influence of gravity along the
spiral z = k 6, r = const., where k is a constant and z is vertical. Obtain
the Hamiltonian equations of motion.

4. A particle of mss m moves in one diimension under the influence of
a force

Foo 1= 2519,

where k and g are positive constants. compute the Lagrangian and
Hamiltonian functions. Compare the Hamiltonian and the total energy,
and discuss the conservation of energy for the system.

2.8.12 Packages and Programs

Elements Package

The package Elements provides an object-oriented environment. The
notations and definitions are described in the help text of the package. In
short, Elements allows one to define classes and derive objects from these
classes. Each class is divided into two sections containing properties and
methods. Simply speaking, properties are parameters of the class and
methods are the functions used to calculate some mathematical
expressions. Classes are able to inherit properties and methods. For a
detailed discussion of the package, see the help text.
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AppendTo[$Path,
"C:\\Mma\\Work\\TUMObjects\\Elements05"] ;

(* -- change the path above to the location
where the package Elements is located -- x)

<< Elements"

Off [General: :spell]; Off[General::spelll];

GetProperties[o ] :=
Thread[Map [ToExpression[#] &, Properties[o]] -
(o.# & /@ Properties[o])]

GetPropertiesForm[obj ] :=
DisplayForm[GridBox[Prepend[GetProperties[obj],
{StyleForm["Property", FontWeight -> Bold],
StyleForm["Value", FontWeight -> Bold]}],
RowLines » True, ColumnLines - True,
GridFrame » True, ColumnAlignments -» {Left}]]

<< Utilities Notation~

Define some notations for Poisson brackets:

Notation[
{f_, g_}obj < Dot[obj , PoissonBracket[f , g_]]]

Notation|
{£_, g_}ob:.l <> Dot[obj , PoissonBracket[f , g 1],

WorkingForm -» Traditional Form]

Define some notations for Hamilton's operator:

Notation[‘?-(gsj*[f_] & Dot[obj , HamEqgs[£f ]]]
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Notation[#Hg - [£_] < Dot[obj_, HamEqs[£_]],

WorkingForm -» Traditional Form]

Euler-Lagrange Package

The Euler—Lagrange package allows one to derive the Euler—Lagrange
equations for a given Lagrangian.

If [$MachineType == "PC",
$EulerLagrangePath = $TopDirectory <>
"/AddOns/Applications/EulerLagrange/";
AppendTo[$Path, $EulerLagrangePath],
$EulerLagrangePath =
StringJdoin|[$HomeDirectory, "/.Mathematica/3.0/
AddOns/Applications/EulerLagrange", "/"];

AppendTo[$Path, $EulerLagrangePath]];

Needs["EulerLagrange "]

LegendreTransform[A , x List, momenta List,
indep : {t}] := Block[{momentaRelations},
momentaRelations =

MapThread[dy: A == #2 &, {x, momenta}];
sol = Flatten[Solve[momentaRelations, x]];

Length[x]

Simplify[Expand | Z x[1i] OxpiyA - A] /. sol]]
i=1
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2.9 Chaotic Systems

2.9.1 Introduction

We discussed the structure of the phase space in the last section. The main
structuring component was the existence of integrals of motion. Each
integral added a certain amount to the tori representing the surfaces where
the regular solutions live. The trajectories in phase space exist on these tori
and are either periodic or at least quasiperiodic. A fundamental
characteristic of a trajectory living on a tori is that it intersects a plane
cutting the tori in a characteristic way. The closed or quasiclosed trajectory
generates a characteristic pattern on this plane. Figure 2.9.1 demonstrates
the global behavior in phase space.

Figure 2.9.1.  Phase space structure intersected with a plane.

The pattern generated on the intersecting plane will show dots representing
the position of the trajectory of the torus. If the trajectory is closed and
thus periodic, the pattern will consist of a finite number of points. The
number of points is related to the frequency with which a point cycles on
the trajectory on the torus. If the trajectory is not closed (the trajectory is



2. Classical Mechanics 423

quasiperiodic), the points are continuously distributed on the surface of the
torus. The pattern then is given as a quasiconnected line on the intersecting
plane. Figure 2.9.2 shows a periodic trajectory on a torus.

Figure 2.9.2.  Periodic trajectory projected on a phase space intersection.

Let us consider a single torus for a two-dimensional system. The geometric
structure of the torus is determined by the two action variables J; and J;.
These quantities are completely determined by the total energy fixed by
the initial conditions for the system. The flow on the torus (the dynamics)
is determined by the two conjugate angle variables #; and 6,(see Figure
2.9.3). The evolution in time for these two quantities are given by

6 = wit + 0y, 2.9.1)
6 = wryt + 05. (2.9.2)

The two frequencies w; and w, are determined by the Hamiltonian
I:I :1:1(119 12)by

dH
w) = (3_11’ (293)
)i

The time T, to traverse the complete angle range 6, given by 2 is
determined by the relation

T, = 2%, (2.9.5)

2

During this time interval, the angle ,changes by
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Ot+T)=060)+w 1
— W
=6,(1) + 27 P (2.9.6)
=6 (t) + 2rall, b),
where @ = « (I}) denotes the winding number of the trajectory defined by

wi

@ = 2 (2.9.7)

w2

The winding number is expressed as a function of /; because it is always
possible to express I, by I; since the total energy E = H (I}, I,) establishes
a relation between the two quantities. If we now consider the (I, 6;)-plane
as the intersecting plane, the intersecting points are determined by

Pi= (0, +iTy), I). (2.9.8)

Figure 2.9.3.  Intersection plane of a two-dimensional torus described in action angle variables.

The intersecting plane is also known as the Poincaré plane. The mapping
in this plane is represented by the following iterative mapping:

9,41 = 9[ + 27'[0’(],’), (299)
Ly = I. (2.9.10)

The mapping shows that the action variable is not changed during the
iteration, whereas the angle continuously increases by a fixed amount
given by the winding number. The map given is known as the twist map of
the system. A twist mapping performs a mapping of the torus to itself. A
fundamental property of the twist mapping is the conservation of the

mapping area. This property is closely related to Liouville's theorem, the
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conservation of space volume. The conservation of the mapping area
means that the Jacobi determinant has a fixed value:

0 (Bir1,1in1)

SaET = L (2.9.11)

Thus, we expect that the intersections with a torus are regular curves more
or less filled with points of the trajectory.

For nonintegrable Hamiltonians, there is a lack of integrals that fix the
structure in phase space. For such systems, there is the common
assumption that the Hamiltonian is separated into an integrable and into an
nonintegrable part. The integrable part is denoted by

H = Hy ). (2.9.12)

The total system consists of this integrable part extended by a
nonintegrable part eH U j» 8)), which is considered as a disturbance. The
nonintegrable Hamiltonian thus becomes

H =HyI)+ H U, 6). (2.9.13)

The disturbance & H; is the origin of the nonexisting integrals which
suppress the integrability and, thus, the torus structure of the phase space.
The missing integrals allow a more flexible choice of paths for the
trajectories. In the case of the twist mapping, this means that both sets of
variables are disturbed. The angle as well as the action variables are thus

given by
Ois1 = 0; +2na () + €f (6, 1), (2.9.14)
Ly =1 + {;‘g(gi, I;). (2915)

The functions f and g are generated by the Hamiltonian £H;. The
functions must be chosen in such a way that the conservation of the
intersection area is guaranteed.

An example for an area-conserved twist mapping is the Hendé map
introduced in 1969 by Hen6 to examine a nonlinear oscillating system. The

Hené map is given by

0.1 = GicosQma) — (I; — 6)sin2ra), (2.9.16)
Iy = 6;sinRnra) + (I; — Hiz) cos 2 ). (2.9.17)
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The parameter @ denoting the winding number of the twist map is the
critical parameter. We can check the area conservation by defining the
Jacobi matrix for the functions by

JacobiMatrix[fun List, vars List] :=
Outer[D, fun, vars]

The Hend map is realized by

Clear [HenonMap]

HenonMap[{6 , W }, a ] :=Block[{},
{6Cos[2ma] - (W-62) Sin[2wa],
esin[2na] + (W-6%) Cos[2ma]}]

The Jacobi determinant is thus defined via the Jacobi matrix:

JacobiMatrix[HenonMap[{6, W}, a], {6, W}] // MatrixForm

cosRma)+20sinra) —sin2rwa)
( sin2ra)—260cosQra) cosRma) )

The determinant is calculated by

JacobiMatrix[HenonMap[{©6, W}, a], {6, W}] // Det //
Simplify

demonstrating that the Hené map is an area-conserving map. In the
following we will use the Hen6 map to examine the structure of the related
phase space. In a first step, we change the total energy of the system by
changing the initial angle 6 continuously. An increase of the angle gives

the following picture:
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initial = Table[{i, 0.0}, {i, .1, .84, .015}];

henonPlot = {};

The list of initial values are used to calculate the intersecting points in the
Poincaré plane. Each initial point is connected with a series of point
represented in the Poincaré plane:

Do [AppendTo[henonPlot, ListPlot][
NestList[HenonMap[#, .2114] &, initial[k], 255],
PlotStyle » Hue[k / Length[initial]], Frame - True,
AspectRatio-» 1, AxesLabel » {"6", "W"},
PlotRange -» {{-1, 1}, {-1, 1}}1],

{k, 1, Length[initial]}]

-0.75

-0.75-0.5-0.25 0 0.25 0.5 0.75 1

The generated sequence of figures allows one to study the evolution
process of the torus by increasing the energy. We observe that the initial
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circular torus deforms to a more egg-shaped structure. At a very low
energy, we observe a granular structure in the Poincaré plane. This discrete
structure represents periodic solutions. Increasing the energy, the discrete
structure disappears and a quasicontinuous covering of the torus is
observed. At this point, we reach the quasiperiodic regime. At a certain
threshold of the energy, the torus splits to five eggs. A single torus merges
to a fivefold torus. If we further increase the energy, the fivefold torus
again becomes a single torus which disintegrates into a broad band of
points. This disintegration is the start of the torus destruction. The
disintegration of the torus also happens at lower energies, especially in the
neighborhood of so-called hyperbolic points. An overview of the different
kind of tory is given in the following:

Show[henonPlot] ;

0.75 |
0.5

0.25

-0.25;
-0.5;

-0.75|

-0.75-0.5-0.25 0 0.25 0.5 0.75 1

The following figure shows the behavior around a hyperbolic fix point.
Here, the disintegration of the tori as well as the occurrence of different
tory structures are seen.
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It is clearly shown that the torus around the hyperbolic fix point is
demolished. The destruction of the tori becomes more and more diluted.
We also realize in the above figure that in the neighborhood of the
hyperbolic fix point are several elliptic fixpoints. The existence of elliptic
fix points indicates that the tori continue to exist in these neigborhoods.
The transition between the regular to the chaotic state seems to be a
continuous process. The transition is controlled by the KAM theorem. A
similar picture is gained at each hyperbolic point in the Poincaré plane.
Hyperbolic fix points occur in between two elliptic fixpoints. This
similarity of the pictures led to the term "self-similar structure of the
Poincaré plane". Each magnification of the surrounding of a hyperbolic
fixpoint looks similar to the above figure. The geometric structure of the
Poincaré plane at these points will posses a scaling symmetry representing
the self-similarity. In other words, the neighborhood of hyperbolic
fixpoints shows the same structure on different scales.
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If we not only change the energy but also the winding number «, we
observe that the torus cycles through different states. These states are also
determined by the KAM theorem:

henonPlotl = {};

Do [AppendTo[henonPlotl, ListPlot|[
NestList[HenonMap[#, k] &, {0.51, 0.165}, 255],
PlotStyle » Hue[k], Frame -» True,

AspectRatio-» 1, AxesLabel » {"6", "W"},
PlotLabel » "k = " <> ToString[k] <> "\n",
PlotRange » {{-1, 1}, {-1, 1}}]1], {k, 0.1, .85, .02}]

k=0.1
W

0.75;

0.5

0.25;

-0.25;

=058

-0.75;

-0.75-0.5-0.25 0 0.25 0.5 0.75 1

An overview of the different states is given in the following figure:
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Show[henonPlotl, PlotLabel -> ""];

0.75 ¢

0.5

0.25

-0.25
-0.5 ¢

-0.75

-0.75-0.5-0.25 0 0.25 0.5 0.75 1

The different colors are related to the different winding numbers.

2.9.2 Discrete Mappings and Hamiltonians

The last subsection introduced the Hené map. Although Hend's map is
area conserving, it is not derivable from a Hamiltonian. This subsection is
concerned with the question of deriving area-conserving maps from a
Hamiltonian. As a first example, let us consider the one-dimensional
Hamiltonian:

H(p.q)=5p +V(©. (2.9.18)
The related Hamilton equations are

q' = p, (2.9.19)
p=-9 (2.9.20)
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The left-hand side of the differential equation can be approximated by
introducing first-order discrete approximations by a difference scheme of
the first order:

e (2.9.21)

where ¢g;.; = g(t + At) and g; = g(¢). The discrete representation of the

Hamilton equations then follows by
g1 = qi + pi At (2.9.22)
pivt = pi = AU (G5 |gmgs (29.23)

However, this system is not area conserving since the Jacobi determinant is

1 - At(%v) |q=qg

At 1

9(qiv1, pis1)  _
0(qi-pi)

(2.9.24)

=1+ (At)z(a;—;)q:qi 1

The map can be transformed to an area-conserving map if we replace the
forces at time ¢ by forces at time ¢ + At; that is,

gis1 = ¢ + pi At (2.9.25)
ov
pirt = pi = At (GE) lg=gu - (2.9.26)

This map is area-preserving. A second possibility to represent an area
preserving map for the above Hamiltonian is

Giv1 = qi + Atpyy, (2.9.27)
oV
pir1 = pi — At (W) lo=a: (2.9.28)

This representation is used in the following example.

Example 1: Mathematical Pendulum

Let us consider the example of a mathematical pendulum. The potential of
this system is given by

_ _k_q_
Vig) = 2n7 (1 — cos(2mq)). (2.9.29)
Assuming that the time step At = 1, we get the following map

qi+1 = 4i + Dit1, (2.9.30)
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k.
Pi+1 = pi + 5o 8In 2rq)). (2.9.31)

Both equations are examined on a restricted range modulo 1. The mapping
is known as the Taylor—Chiricov or standard mapping.

The transition from regular to chaotic behavior discussed earlier for the
Hen6 map can be examined for the standard map on a Poincaré section.
The mapping generates a discrete flow of the Hamilton system and can be
used to follow the temporal evolution of the system. First, let us define the
standard mapping by

Clear[Standard]

Standard[{xi , yi }, k ] :=Block[{},
y =Mod[yi-kSin[2nxi]/ (27x), 1];
x = Mod[xi+y, 1];
{x, v} 1

The mapping is iterated for a certain amount of steps with different initial
conditions changing the total energy of the Hamiltonian.

Do[h = {0, .54};

ListPlot[Table[h = Standard[h, k], {i, 1, 1000}],
PlotRange -» {{0, 1}, {0, 1}}, Frame -» True,
PlotStyle -» RGBColor[0.996109, 0, 0],
AspectRatio-» 1], {k, .5, 2.8, .1}]
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The illustration of the results shows that different dynamical regimes exist.
The patterns range from discrete points, to looped curves, to scattered
points in the Poincaré section. These different regimes are initiated by
different initial energies. It is clearly seen that an increase of the energy
changes the dynamical behavior from regular to chaotic behavior. The

following subsection discusses the different regimes in connection with a
measure to quantify the different states.
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2.9.3 Lyapunov Exponent

A basic behavior of the chaotic dynamic is that the infinitesimal change of
initial conditions results in an unpredictable state for long times. This
deviation of closely related initial trajectories is measured by the so-called
Lyapunov exponent. The Lyapunov exponent represents an estimation of
the degree of divergence of initially closely related trajectories. The
exponential increase of the distance of neighboring trajectories is
measured by the Lyapunov exponent. He measured the mean increase of
the enlargement of the distance between the trajectories. The Lyapunov
exponent is a numerical property of the Hamiltonian system but is not
restricted to this kind. This measure can be also applied to
non-Hamiltonian systems or maps. To get some insight into the theoretical
background, let us consider an n-dimensional autonomous system

B o Fix1y e )y i= 1,200 (2.9.32)
Our aim is to estimate the rate of deviation for two initially closely related
trajectories. To accomplish this task, we linearize the system in Equation
(2.9.32) by considering an infinitesimal neighboring trajectory
x = (x1, ..., X,). The linearization provides the tangent representation of

the equations of motion:

ddk; ! OF,;
qaox sx. (9F: . N
dt Zi:l X; ( Ox;j )x:i(t) (2.9.33)

The distance or norm of the distortion 0x; is

d(t) = 3L, %3 (1) . (2.9.34)

This quantity is the basis for the estimation of the Lyapunov exponent A.
The Lyapunov exponent measures the divergent of two trajectories: a
reference trajectory x and a neighboring trajectory x(0) + 6x(0). The mean
divergence rate is defined by
TS Y d(1)
A = lim () In( 757 ). (2.9.35)

>0
d(0)-0

where d(0) is the norm of the initial state. One characteristic property of
the Lyapunov exponent is that A vanishes for a regular motion because d(¢)
increases linearly or, at least, algebraically in time.



436

2.9 Chaotic Systems

The relation between the Lyapunov exponent and the trajectory become
more obvious if we restrict our examinations to a one-dimensional map:

X1 = f(x). (2.9.36)
As an example for f let us take the logistic function f(x) = 40 x(1 — x).

The tangent maps defined in Equation (2.9.33) is given by

oxi = (L) oxi (2.9.37)

Assuming that the distance 0x; is fixed in each iteration, we can simplify
the relation to

0xir1 = [Timo f' () 6%, (2.9.38)

where f'(x;) is the derivative of f at x =x;. The related Lyapunov
exponent (2.9.35) then is

A= lim 5 [T, £ (x) 6]
(2.9.39)

= lim 7 S In(f" (x)).

This relation demonstrate that the Lyapunov exponent is independent of
the initial condition xy. The relation given is implemented as follows:

Clear[£f, x]

f[x , 0 ]=40x (1-x)

4(1-x)x0o

The derivation of the logistic function is

glx_, o ]=0x £[x, o]

4(1-x)oc—-4x0

Iterating relation (2.9.33) and calculating the derivative at x; are the basic
calculations for determining the Lyapunov exponent. Since the logistic
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function depends on a parameter o, we are also able to study the influence
of o on A. The following figure shows this dependence:

logpl = ListPlot[ Table[
{o, Last[FoldList[Plus, 0, Map[Log[Abs[g[#, o]]] &,
NestList[f[#, o] &, .6, 250]]]] / 252},
{o, .01, 1, .005}], PlotStyle >
RGBColor[0.996109, 0, 0],
PlotJoined -» True, AxesLabel » {"o", "A"}];

The iteration of the logistic map is as follows:

logi = Flatten|
Table[Map[{oc, #} &, Sort[Take[NestList[f[#, o] &, .6,
115], {25, 115}11], {o, .01, 1, .005}], 1];
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pllogi = ListPlot[logi, AxesLabel » {"o", "x"},
PlotStyle » RGBColor[0, 0, 0.996109]];

X
-
0.8
0.6
0.4/
02/
/

0.2 04 0.6 0.8 1

A magnification around the second bifurcation shows

Show|[pllogi, Graphics[{Circle[{0.852, 0.469}, 0.1]},
AspectRatio -» Automatic, Axes -» Automatic]];

X
-
0.8
0.6
0.4/
02/
/

0.2 0.4 0.6 0.8 1

Our interest is the section of this figure marked by a circle. The

representation of this selected part in a magnification shows that we get a
similar picture:
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logil = Flatten[Table[Map[{o, #} &, Sort|[
Take[NestList[f[#, o] &, .6, 215], {75, 215}]11]11.,
{c, 0.84, 0.91, .0005}], 1];:

pllogil = ListPlot[logil, AxesLabel -» {"o", "x"},
PlotStyle » RGBColor[0.996109, 0, 0],
PlotRange -» {{0.84, 0.91}, {.29, .69}}];

o
0.84 0.85 0.86 0.87 0.88 0.89 0.91

Again, a selection and magnification marked by a circle
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Show[pllogil, Graphics[{Circle[{0.886, 0.528}, 0.01]},
AspectRatio » Automatic, Axes -» Automatic]];

é*ﬁ_-.p' % et

- WP ELE R X

=l o
0.84 0.85 0.86 0.87 0.88 0.89 0.91

shows again that the result looks similar to that earlier. We observe
bifurcations as in the original figure. The bifurcation continues and
transverses into an unstructured behavior.

logi2 = Flatten[Table[Map[{o, #} &, Sort[
Take [NestList[£[#, o] &, .6, 215], {75, 215}111],
{o, 0.883, 0.896, .00005}], 1];
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pllogi2 = ListPlot[logi2, AxesLabel -» {"o", "x"},
PlotStyle » RGBColor[0, 0.500008, 0],
PlotRange -» {{0.883, 0.896}, {0.429, 0.603}}];

X
0.6

0.575 ¢

0.525 |
0.884 0.886 0.888

0.475

0.45 ¢

The repeated pattern indicates that the bifurcations occur again and again
until a critical value o, is reached. At this value, the bifurcating behavior
skips to chaos. We define chaos as such a state where the Lyapunov
exponent is positive. The different magnification ranges are summarized in
the following figure:

glist = {pllogi, pllogil, pllogi2};
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Show[glist];

05 06 07 08 09
The different colors represent the regions of magnification. The following

illustration gives a dynamic view of the magnification.

Map [Show[#] &, glist];

X
1
0.8
0.6
0.4
0.2 j.,.-'

0.2 0.4 0.6 0.8 1

A combination of the bifurcation diagram with the Lyapunov exponent
demonstrates that the bifurcation regime is reached at the border of
0.~ 0.9. It is also obvious that the chaotic regime is intermitted by regions

where a purely periodic behavior is recover.
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Show[logpl, pllogi, PlotRange -» All];

A
' /—q
f o
2 0.4 0.6 1
1
-2t
_3 t
)

In the periodic regime, the Lyapunov exponent periodically increases and
decreases up to zero. At the critical value o, A transcends the border line
at zero. We also observe that the Lyapunov exponent possesses
singularities at —oco. These singularities are supercyclic periods of the
logistic map. Above the critical value o, the Lyapunov exponent wobbles
between the chaotic and the periodic state in ever shorter cycles. However,
the supercyclic periods also exist in that regime above o.. The transition
between the regular and chaotic states is a major characteristic of a
nonlinear chaotic system.

Feigenbaum in 1975 extensively studied the transition to chaos. He
observed that the period doubling skips to chaos at a critical value of
0. =0.892486.... Below this value, he demonstrated that the ratio of
interval lengths has a fixed value determined by the relation

6 = lim 22Tl = 4669 .., (2.9.40)

n—o0 n+1=0n
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which is now called the Feigenbaum constant. The ratio ¢ exists because
the bifurcations occur in decreasing o intervals. Such a bifurcation pattern
is the origin of a self-similar pattern. The bifurcation diagram derived is a
rich source of self-similar structure and a repetition on ever decreasing o
intervals. Let us measure the distance with respect to the critical point o,
with Ac; then, the period T doubles like 7 = 2" if the distance o decreases
by 6. Thus, the periods between two bifurcations are given by

Ao

T(55-)=2T0), (2.9.41)

where Ao = o, — 0 and 1/6 = 0.21418.... The period T as a function of
Ao shows a scaling property. The solution of the functional relation
(2.9.41) is given by

T(Ao) = co Ad”, (2.9.42)

which provides the relation

Ac”

skal = ¢y == 2 cg Ao”

0V A0V g ==2A0” ¢

The solution is given by

sskal = Solve[skal, v]

log(2)
{{V - 1Z§(5) }}

The replacement of ¢ by its numerical value provides the scaling exponent
as

sskal /. 6> 4.669

{{v - —-0.44982}}
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Exactly by this scaling law the period doubles. The relation can be seen as
a self-similar scaling behavior before chaos sets in. Since the scaling
exponent is a fractional value, some authors call the periodic regime a
fractal. Despite the supercyclic periods, the Lyapunov exponent is positive
for o > o.. Huberman and Rudnick observed that the envelope A above o
also follows a scaling law of the form

A~ (o -0

where, again, v = —In(2)/In(6). Because of the change of sign at o, and
the fact that the increase of A is given by a power law, this transition is
called a phase transition of the second kind. The terms are borrowed from
the theory of critical phenomena and statistical physics.

The mathematical relations discussed so far are also presentable in
graphical form. The main feature of the logistic function is its
self-similarity given by the scaling period doubling. The self-similar
behavior of the mapping is also seen in its algebraic structure. The
following lines show different state of iteration and the generated
polynomial:

its = NestList[f[#, o] &, x, 3]; TableForm[its]

X

4(1-x)x0o

16(1-x)xc2(1-4(1-x)x0)
641-0)x>(1-4(1-x)x)(1-16(1 -0 xc2(1-4(1-x)x0))

where the first item of this table has no meaning other than to initiate the
iteration. The iteration of the logistic map generates at each step a new
value for x. This value is the starting point for the next value in x ans so
forth. The iteration process can be depicted by means of the function
logistic[], which generates a mapping consisting of # iterations for a given
o and xo:
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logistic[o , x0 , n ] :=Block[{pll, dlil, d1lh},
1h = f[x, o];
1i1 NestList[f[#, o] &, x0, n];
pll Plot[Evaluate[{x, 1h}], {x, 0, 1},
PlotLabel » "o =" <> ToString[o], AspectRatio-> 1,
PlotStyle » {RGBColor[0.996109, 0, 0],
RGBColor[0.996109, 0, 0]},
DisplayFunction -» Identity];
Show[pll, Graphics[Table[{Line[
{{1i1[iQ, 1i1Mi+10}, {1i1[i + 1], 1i1[Mi+10}}].,
Line[{{1il[i + 1], 14i1[i +17]}, {1il[di + 1],
1il1fi +2]3}}]1}, {i, 1, Length[1il] - 2}]],
AspectRatio -» Automatic, PlotRange » All,

DisplayFunction -» $DisplayFunction]

1

To show the changes of fix points f(x*) = x*, we change the parameter o

Do[logistic[o, .01, 70], {o, .7, 1, .025}]
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The result of the generated sequence shows how a series of fix points
emerge from a single point. The creation of these fixpoints can be
observed if we plot the higher iterations £ of the logistic mapping. The

intersection with the bisector shows how the fixpoints are generated. The
following illustration shows the iteration up to ordern =5 :

Do[Show[GraphicsArray[Partition|[

Table[Plot[Evaluate[{its[1], its[i] } /. o > oo],
{x, 0, 1}, PlotStyle » RGBColor[0.996109, 0, 0],
PlotRange -» All, PlotLabel » "n = " <>

ToString[i] <>" "<>"o = "<>ToString[oo],
AspectRatio—» 1, DisplayFunction -» Identity],
{i, 2, Length[its]}], 2]1]1.,
DisplayFunction -» $DisplayFunction],
{oo, .7, 1, .025}];
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n=2 c=0.7 ] n=3 c=0.7
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It is clearly shown that the number of fixpoints increases with larger o

values.

2.9.4 Exercises

1. Calculate the Lyapunov exponent for the discrete map x;;.; = 2 x;.
Demonstrate that 4=In(2).

2. Examine the scaling properties of the logistic map.

3. Examine the fix points and stability as a function of the control
parameter A of the cubic map
Xpit = Ax,(1 = X%)

4. Consider a ball bouncing between two walls (neglect gravity) for
which one wall has a small periodic motion. Show that the dynamics is
not governed by a linear operator.
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2.10 Rigid Body

2.10.1 Introduction

All bodies around us consist of atoms or molecules. These basic elements
of the matter are either in a regular or irregular order forming the rigid
bodies. The rigid bodies are very resistant to mechanical loads. The
diameter of atoms and molecules in a solid are small compared with the
interatom or intermolecular distances. To a good approximation, solids can
be represented as a collection of mass points with fixed distances between
atoms. Bodies with the property of fixed interatomic distances are defined
as rigid bodies.

To describe the motion of a rigid body, we introduce two kinds of
coordinate system:

1. An inertial coordinate system
2. A body-centered coordinate system

The description of the motion is related to six coordinates. These
quantities are the coordinates of the mass center and three angles
determining the orientation with respect to the inertial system. For the
three angles, we choose the Euler angles already introduced in Section
2.2.2. Related to these coordinates are two basic types of motion: a
translation and a rotation. These kinds of motion can be motivated by
considering infinitesimal small movements of the rigid body. In addition, if
we locate the center of mass in the origin of the coordinate system, we are
able to separate the energy terms by translation and rotation energy
components, meaning the motion is separated by a center of mass
movement and a movement around the center of mass.

If, in addition, the potential energy is also separable, the total Lagrangian
splits into two parts: the translation and the rotation parts. Each part is
independent of the other and determines an independent solution and, as
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such, an independent state of motion. This behavior was first realized by
Euler in 1749.

2.10.2 The Inertia Tensor

Let us examine a rigid body consisting of n particles with masses m,,
a=1,2, .., n. Letus assume that this rigid body is rotating with angular
velocity @ around a fixed point with respect to the body-centered
coordinate system. In addition, let us assume that the total rigid body is
moving with a velocity V with respect to the inertial coordinate system.
Then, the velocity of the ath particle is determined by Equation (2.10.2).

For a rigid body, the coordinates are fixed in the rotating frame and thus

v= (L) =o. (2.10.1)
The velocity of the ath particle in the inertial coordinate system is thus
given by

Vg = V 4+ @ x Ty (2.10.2)

The velocities are all measured in the inertial system because the velocities
in the rotating system are zero because of the rigidity of the body. The
kinetic energy of the ath particle is thus determined by

My 2

T, = 22, (2.10.3)

which results in the total kinetic energy, including translations and
rotations of the rigid body, being

T=5 Zzzl ma (V + @ x7,) (2.10.4)

Expansion of the quadratic term results in

_ LN o
r= 22(1:1 ma(v +2V’(wxra)+(wxra))
1 m _\2 1 m N
-7 7 D X7 2.10.
b el mg V. + 5 Za:l V.(@x7,)m, + (2.10.5)

1 n SN
2 Z(y:l my (a)xr{,) .

This expression represents the general representation of the total kinetic
energy. This expression is valid for any choice of origin from which the
location of the athe particle 7, is measured.
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Locating the origin of the coordinate system into the center of mass, this
expression is simplified to a much shorter expression. The second term is
rewritten as

Y V.@xF)my = V.G x Ty ma T (2.10.6)
With

Shet Mo Tq = MR, (2.10.7)
it follows that

Y V. @xi)me=V.GxMR (2.10.8)

Since the center of mass is located in the origin, we must set R =0, which
reduced the total kinetic energy to

R e B N S
T= 5 )V 45 ) ma(@xTy) (2.10.9)

with
1 =2
Tos = vV M (2.10.10)
and
1 n SN
Tro = 2 Za:l mgy (@ x ra/)z- (2.10.11)

Tians and Ty are expressions for the translation and rotation part of the
kinetic energy, respectively.

In the following, we will specifically look at the rotation part of the motion:
1 n SN
T = 5 ), e @x 7). (2.10.12)
2 ey e s s
Applying the vector identity(A X B) =(A X B) . (A x B) =A?B? - (A .B)
to the rotation energy, we are able to write
1 n a2
T = 5 ), ma {3 —(@x7,)). (2.10.13)
Replacing the vectors W= (w;, wy, w3) and 7y = (X41, Xa2, Xe3) bY their
components, we get
1 n
Trot = 3 Za:l My (Z?:l wzz) (Zi:l xi'k) -

(2.10.14)
(Z?:l w; Xij) (Zi‘:l wj xij)'
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The frequencies w; are represented by introducing Kronecker's symbol
wi = ¥ 0 w). (2.10.15)

The insertion of the frequencies in this form allows us to combine the sums
over i and j as a common sum and extract them from the expression

Tro[ = 1 E " My E } {0.),'0.)‘ 6," 22_1 lek
2 a=1 i,j=1 J o - a
— W; Wj Xgi Xgj) (2.10.16)
3 n
_ Z z 3 2
- i, j=1 Wi (A)]{ a=1 Mo [611 Zk:l x”k B xo’ixﬂj]}'

If we introduce the definition

n
3
@ = Za:l Ma (8 Yact Xop — Xai Xaj }s (2.10.17)
then the rotation energy is the simple form
1 3
Tt = 5 Xij=1 wi®ijwj, (2.10.18)
where ©;; is known as the inertia tensor. The components of this tensor
are
e =
Zg:l My (X§2 + 'x(213) - Zg:l mflzxfll x2012 Zg:l My Xo2 Xa3 (21019)
- ZZ:| My Xa2 Xal ZZ:I My (xal + xq}) - 23:1 My Xa2 Xa3
- ZZ:| My X3 Xal - Zz:l My X3 X2 Zz:l My (x‘zyl + xiz)

The elements on the diagonal ®; are known as main inertia moments,
whereas the ®; in the off-diagonal elements are known as deviation

moments. From the structure of the elements in ©;;, it is obvious that this

ij’
tensor is a symmetrical tensor; that is,

0; = 0. (2.10.20)

Taking this property into account, it is clear that only six components of
the tensor are independent of each other. Another essential property of the
inertia tensor is that the sum over particles is extractable from the tensor
structure. In other words, we can replace the masses by a continuous mass
distribution p (7) = p(x;, X2, x3) and replace the sum by an integral over
the spatial coordinates. This replacement results in the continuous

representation of the inertia tensor:

0 = [, oM {65 Xk xF — xi, x;}dxy dx dxs, (2.10.21)
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where V is the total volume of the body under consideration.

2.10.3 The Angular Momentum

The angular momentum of a rigid body with respect to a fixed point O in
the body-centered coordinate system is given by

L= Y0 Ta X Py (2.10.22)
Appropriate choices for such a point are as follws

1. A fixed point in the body and inertial system around which the body
circles (top)

2. The center of mass

In the body-centered coordinate system, the momentum P, is
Do = Mo Vo = My (@ X Ty). (2.10.23)

Thus, the angular momentum becomes

L= 30 mgFex @ xT7y). (2.10.24)
The vector identity A x (§ x K) =A’B- A x(ﬁ.z) allows us to
simplify L to

L= mf{fad—7a(t.0). (2.10.25)

The replacement of vectors by their components provides the ith
component of the angular momentum:

n 3 2 3
L = Za:l Mg { Wi Yj=1 X — Xoi Zj:l x/zjwj}
n 3 3 2
= Zazl maz.: {wjdij Xiat Xk = Xai Xaj W}
3 2
= Zj 1 Z my 51] Zk 1 Xok — Xai xrzy}

—Z - w; 6

In tensor notation, we write

(2.10.26)

L=0.w. (2.10.27)
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Multiplying the ith component of the angular momentum by %wi and
summing up the components, we get

31 1 1., 7
Zi:l 5 Wy Li = 5 Z;,i=l ‘”t‘”/®t/ = Trot = 5 w. L. (21028)

2.10.4 Principal Axes of Inertia

If we consider the angular momentum and the kinetic energy as a function
of the inertia tensor, we observe that these expressions simplify if the
inertia tensor takes on a special form such as

®; = ©; §; (2.10.29)
or
® 0 0
=10 6 0| (2.10.30)
0 0 O

This simplification is known as the principal axes representation of the
inertial tensor. If we are able to write down the ® tensor in such a way, it
follows for the angular momentum that

Li=2; 0 djw; = 06w, (2.10.31)
and for the rotation energy,
1 1
Trol = 3 Zi,j ®i 6,](4), wj = ? Zi ®i a)[2 (21032)

This simplification only occurs if we are able to find a body-centered
coordinate system in which the deviation moments ®;; vanish. In this case,
the inertia tensor consists of three independent components: the principal
inertia moments.

Uncovering this special coordinate system is related to the idea that the
rotation around a principal axes is characterized by the alignment of the
angular momentum L and the angular frequency @; that is,

L1=00 (2.10.33)

The representation of the angular momentum in the principal axes system
and in the general system must be identical. This invariance of the physical
quantity L provides the following set of equations:
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Li = 0OQw; = 0w + Opw; + O3 ws,
L2 = ®w2 = @21 w) + @22 wy + @23 w3, (21034)
Ly = OQws = 031w + 03wy + B33 w3,

= ©; —0O) w; + Opw, + Ozws =0,
Oy w; + (O — BO)wy + O3w3 =0, (2.10.35)
O3iw; + Onwy + (033 — O)w; =0,

= 3, @5 - 06w =0, i=123 (2.10.36)

A condition to find non-trivial solutions of this system of equations is
det(®; — ®4;) =0, (2.10.37)

which represents a cubic algebraic relation for ®. The three different
solutions for ® are related to the principal inertia moments @, ®,, and 5.
Knowing these three quantities, it is possible to classify the behavior of the
rigid body or top.

With all three components different,
0, £+ 0, # 03, (2.10.38)

we call the top unsymmetrical. With two components equal to each other,

0 = 0, + 05 (2.10.39)
we call the body a symmetric top. With all three components equal to each
other,

01 = 6, = 63, (2.10.40)

we have a spherical top.

The steps discussed above are implemented by a few lines. The inertia
tensor with principal diagonal elements is

th = IdentityMatrix[3] {6, 6, 6}

HH

S O
S > O
> O O
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The general inertial tensor is represented by a two-dimensional matrix:

theta = Table[O[i, j], {j, 1, 3}, {i, 1, 3}];
theta // MatrixForm

0(1,1) 62,1) 63,1)
0(1,2) 6(2,2) 6@3,2)
0(1,3) 6(2,3) 63, 3)

The angular velocity @ is given by the vector

w={wl, w2, w3}

{wl, w2, w3}

The invariance condition for the angular momentum reads

Thread[th.w == theta.w, List] // TableForm

fwl == wl (1, 1)+ w262, 1)+ w363, 1)
0w2 == wl 6(1, 2) + w202, 2) + W3 63, 2)
0w3 ==wl 6(1, 3) + w202, 3) + W3 63, 3)

For a nontrivial solution of this set of equations, the following relation
must hold. The determinant defines the third-order polynomial in ® and
allows three solutions depending on the components of the general inertia
tensor.

Solve[Det[theta - th] == 0, 6] // Simplify

{{9 - % (20601, H+602,2)+63,3) -

23 (=261, 1 +3 (02, 2) + 63, 3) 61, 1)* +
362,27 -463,3)002,2)+63, 3% -36(1,2) 62, 1) -
36(1, 3)63, 1) +66(2, 3)6(3, 2)6(1, 1) —
260(2,27° -263,3)° +36(2,2)603, 3)* +
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186(1, 3)6(2, 2)6(3, 1) -
276(1, 3)6(2, 1) 63, 2) —96(2, 2)6(2, 3) 63, 2) —
96(1,2)(36(2,3)0(3, D +6(2, 1) (B2, 2) —26(3, 3)) +
362, 2263, 3)-96(1, 3)63, 1) 63, 3) -
96(2,3)6(3, 2)6(3, 3) +
V(@oa, 1* =362, 2)+6(3, 3) (1, 1)* +3 (=62, 2)° +
460(3,3)0(2,2)— 63, 3> +36(1, 2) 62,
D+36(1,3)63, 1)-66(2, 3)6(3, 2))
61, D+262,2)° +26@3, 3)° -
36(2,2)6(3, 3> - 186(1, 3)6(2, 2) 63, 1) +
276(1, 3)60(2, 1) 63, 2) + 9 6(2, 2) 62, 3)
6(3,2)+96(1,2) (362, 3)63, 1) +
02, 1) (62, 2) =2 6(3, 3))) —
362,263, 3)+96(1, 3)63, 1) 63, 3) +
96(2, 3)63, 2) 63, 3))° —
4(6(1, 1)> — (62, 2) + 63, 3) 6(1, 1) + 62, 2)* +
03,32 +36(1,2)62, 1)+36(1, 3)63, 1) +
36(2,3)6(3, 2) - 6(2, 2) (3, 3))3))A(1 /3) -

(23/3(0(1, 1% = (02, 2)+ 603, 3)6(1, 1) +6(2, 2)* +
63,3 +36(1,2)6(2, 1) +36(1, 3) 63, 1) +
36(2,3)6(3,2) - 62, 2) 63, 3))) /
(=261, 1’ + 362, 2)+ 63, 3) 6(1, D* +
3(6(2,2)% -46(3,3)02,2)+6(3, 3> -36(1,2)6(2, 1) —
36(1,3)63, 1)+ 662, 3)6(3, 2)6(1, 1) -
2602,2)° -26@3, 3> +36(2,2)0(3, 3)* +
186(1,3)6(2,2)6(3, 1) —
276(1, 3)6(2, 1) 63, 2) —96(2, 2) 62, 3) 63, 2) —
96(1,2)(36(2, 3)6(3, 1) +6(2, 1) (82, 2) =2 6(3, 3))) +
36(2,2)%6(3, 3) -96(1, 3) 63, 1) 63, 3) —
96(2, 3)6(3, 2)6(3, 3) +
V(@ea, 1 =32, 2)+63, 3) 61, 1)* +
3(-6(2,2° +46(3, 3)6(2,2) — 03, 3)> +
36(1,2)62, ) +36(1, 3)63, 1) —
66(2,3)63,2)6(1, H+26(2,2)° +
26(3,3)° -36(2, 2)6(3, 3)*> - 186(1, 3)
62, 2)63, 1) +276(1, 3) 62, 1) 63, 2) +
96(2,2)6(2, 3)6(3,2) +96(1, 2) 362, 3)
03, 1)+ 62, 1) (02, 2) =263, 3))) —
36(2,2)%6(3,3)+96(1, 3)63, 1)
0(3,3)+ 962, 3)6(3, 2) 63, 3))" —
461, 1> = (62, 2) + 63, 3)) 6(1, 1) +
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02,22 +6(3, 32 +36(1,2) 62, 1) +
36(1,3)6(3, 1) +36(2, 3)6(3, 2) -

62,263, 3)"))~(1/3)},

{0 N % (40601, H+602,2)+63,3) +
22/3

(1-
iV3)
(-26001, 1)’ +3 (62, 2)+ 63, 3) (1, 1)* +
302,22 -46(3,3)62,2)+6(3, 3)>-36(1,2) 602, 1) -
36(1,3)63, D +66(2,3)6(3,2)6(1, 1) -
26002,2)° -26@3, 3> +36(2,2)6(3, 3)* +
186(1,3)6(2, 2)6(3, 1) -
276(1, 3)6(2, 1) 63, 2) -
96(2,2)6(2,3)6(3, 2) —
96(1,2) 362, 3)0(3, 1) +6(2, 1) (62, 2) —26(3, 3))) +
362,263, 3)-96(1, 3)63, 1) 63, 3) -
96(2,3)6(3,2)6(3, 3) +
V(@ea, 1)* =362, 2)+6(3, 3)6(1, 1)* +
3(-02, 2 +46(3,3)6(2,2) - 03, 3)* +
36(1,2)62, 1) +36(1, 3)6(3, 1) —
66(2,3)0(3,2)0(1, 1) +262, 2)° +
20(3,3)° =362, 2) 63, 3)> - 186(1, 3)
6(2,2)6(3, 1) +276(1, 3) 62, 1) 6(3, 2) +
96(2,2)6(2, 3)6(3,2) +96(1, 2) 362, 3)
03, 1) + 62, 1) (62, 2) — 2 6(3, 3))) —
362,226, 3)+96(1, 3)63, 1)
03, 3) + 962, 3)6(3, 2)6(3, 3))° —
4(0(1, 1)®> = (02, 2) + 63, 3) 6(1, 1) + 62, 2)* +
03, 3)2+36(1,2)62, 1) +36(1, 3) 63, 1) +
362, 3)6(3,2) - 62, 2)6(3, 3))3))A(1 /3) +

(2{/3 (1+iV3) @1, 1> =02, 2)+63,3) 61, 1) +
62, 2> +6(3, 3> +36(1,2)62, 1) +
36(1,3)6(3, 1) +36(2,3)6(3,2) - 602, 2)63, 3))) /
(2601, 1’ +3(62, 2)+ 63, 3)) (1, 1)* +
3(6(2,2)% -46(3,3)02,2)+6(3, 3> -36(1,2)6(2, 1) —
36(1,3)63, 1)+ 662, 3)6(3, 2)6(1, 1) —
260(2,2)° -263, 3> +36(2, 2)6(3, 3)* +
186(1, 3)6(2, 2) 63, 1) —
276(1, 3)6(2, 1)6(3, 2) —96(2, 2)6(2, 3) (3, 2) —
96(1,2)(36(2,3)63, 1) +6(2, 1) (62, 2) =263, 3))) +
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36(2,2)%6(3, 3)-96(1, 3)63, 1) 63, 3) —
96(2, 3)6(3, 2)6(3, 3) +
V(@ea, 1’ =302, 2)+ 63, 3) 61, 1)* +
3(=6(2, 2% +463, 3)6(2, 2) — 63, 3)> +
36(1,2)62, ) +36(1, 3) 63, 1) —
66(2,3)6(3,2)0(1, 1) +26(2, 2)° +
26(3,3)° =362, 2)6(3, 3> - 186(1, 3)
6(2,2)6(3, 1) +276(1, 3)62, 1)6(3, 2) +
96(2,2)6(2, 3)6(3,2) +96(1, 2) 362, 3)
03, 1) +6(2, 1) (62, 2) — 263, 3))) -
362,263, 3)+96(1, 3)63, 1)
03, 3)+ 962, 3)6(3, 2) 63, 3))° —
4(0(1, 1> — (62, 2) + 6(3, 3)) 6(1, 1) +
0(2,2)%+6(3,3)* +36(1,2) 02, 1) +
36(1,3)63, 1) +36(2,3)63, 2) -

62,263, 3)"))7(1/3)},

{0 5 % (4001, 1) +62,2)+63, 3) +
22/3
(1+
iV3)
(2001, 1)’ +3 (62, 2)+ 63, 3) 6(1, 1)* +
302,22 -46(3,3)62,2)+6(3, 3)>-36(1,2)602, 1) -
36(1,3)63, D +66(2,3)6(3,2)6(1, 1) -
202,27 =263, 3)° +36(2,2)603, 3)* +
186(1,3)6(2, 2)6(3, 1) -
276(1, 3)6(2, 1) 63, 2) -
96(2,2)6(2, 3)6(3, 2) —
96(1,2) (362, 3)0(3, D +6(2, 1) (B2, 2) —26(3, 3)) +
362,263, 3) -
94(1, 3)6(3, )63, 3) —
962, 3)6(3, 2) 63, 3) +
V(@ea, 1)’ =362, 2) +6@3, 3) 61, 1)* +
3(-0(2,2)° +46(3,3)6(2,2) - 63, 3)> +
36(1,2)02, D +36(1, 3)63, 1) —
66(2,3)6(3,2)6(1, 1) +26(2,2)° +
263, 3)° -36(2,2) 63, 3)> - 186(1, 3)
6(2,2)6(3, 1) +276(1, 3) 62, 1) 6(3, 2) +
96(2,2)6(2,3)6(3,2) +96(1, 2) 362, 3)
03, 1) + 62, 1) (6(2, 2) =2 6(3, 3))) —
362,263, 3)+96(1,3)63, 1)
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03, 3) + 962, 3)6(3, 2)6(3, 3))° —

4(6(1, 1)> — (62, 2) + 63, 3) 6(1, 1) + 62, 2)* +
03,32 +36(1,2)62, 1)+36(1, 3)63, 1) +
36(2,3)6(3, 2) - 6(2, 2) (3, 3))3))A(1 /3) +

(23/5(1 -m/?) @1, D? =62, 2)+ 63, 3) 61, 1) +
62, 2)% +6@3, 3)* +
36(1,2)6(2, 1) +36(1,3)63, 1) +
362, 3)6(3,2) - 6(2, 2) 63, 3))) /
(=261, 1 +3 (62, 2)+ 63, 3) 6(1, D* +
3(6(2,2)% -46(3,3)02,2)+ 603, 3> -36(1,2)6(2, 1) —
36(1,3)63, 1)+ 662, 3)63, 2)6(1, 1) -
262,2)° -263, 3> +36(2, 2)6(3, 3)* +
186(1, 3)6(2, 2) 63, 1) —
276(1, 3)6(2, 1) 63, 2) -9 6(2, 2) 62, 3) 63, 2) —
96(1,2)(36(2, 3)6(3, 1) +6(2, 1) (2, 2) =263, 3))) +
36(2,2)%6(3, 3) -96(1, 3) 63, 1) 63, 3) —
96(2, 3)6(3, 2)6(3, 3) +
V(@ea, 1 =32, 2)+63, 3) 61, 1)* +
3(-6(2, 22 +46(3, 3)6(2,2) — 03, 3)> +
36(1,2)62, ) +36(1, 3)63, 1) —
66(2,3)6(3,2)0(1, 1) +26(2, 2)° +
26(3,3)° -36(2, 2)6(3, 3> - 186(1, 3)
62, 2)6(3, 1) +276(1, 3) 62, 1) 63, 2) +
96(2,2)6(2, 3)6(3,2) +96(1, 2) 362, 3)
63, 1) +6(2, 1) (62, 2) — 263, 3))) -
36(2,2)%6(3,3)+96(1, 3)63, 1)
0(3,3)+ 962, 3)6(3, 2) 63, 3))° —
4(0(1, 1% — (02, 2) + 63, 3) 6(1, 1) +
62, 2> +6(3, 32 +36(1, 2) 62, 1) +
36(1,3)63, 1) +36(2,3)63, 2) -

62, 2)63, 3)")"(1/3)}}

2.10.5 Steiner's Theorem

In practical calculations, it is more convenient to determine the inertia
tensor with respect to a symmetry point or a symmetry line. The point or
line of symmetry is usually defined by the rigid body itself. The geometric
shape distinguishes such points or lines. Let us assume that the symmetry
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point Q is in the direction @ apart from the center of mass. Then, the inertia

tensor with respect to the point Q is given by

0, = Zazl Mo (85 Yast Fox — Fai Xoj by (2.10.41)
where
Xoi = Xai + a;. (2.10.42)

Inserting the new coordinates into ®;, we get

©; = ZZ=1 Mo {65 Tiey (oo + @)’
(Xpi +a) (X5 +aj)}
= Dy Mal0y ey X =i + (2.10.43)
e (6 5y 2+

ak-i-ak (@i Xoj + aj X0 + a; a;) }
= 0; + Z My 5U2k ,ap — aiaj}+

(2.10.44)
2{1:1 Mo {265 Xiot Xok G — i Xgj = @} Xi )
Terms containing sums of the type
Ya=1 Mo X = 0 (2.10.45)

vanish because we are in the center of mass system. Thus, the inertia
tensor reduces to

O, =0; + ! mo (6, Y., dt — a;a;}
=00 Dy el 4 ’ (2.10.46)
= ®U+M(6ija2— a,»aj)

withM = Y"_, myand a®> = Y;_, ai.

The inertia tensor with respect to the center of mass is determined with
respect to the symmetry point by

®ij = ®ll — M(5ija2 - a;aj) (21047)

This relation is known as Steiner's theorem.
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2.10.6 Euler's Equations of Motion

Let us first examine the motion of a force-free rigid body. As already
discussed, the movement of the center of mass does not affect the spinning
portion of the top. Thus, it is sufficient to consider the Lagrangian as a
function of the rotational components which are given by

L=Ty= 1% 60 (2.10.48)

The representation of the rotation is efficiently described by the three
Euler angles ¢, 6 and . The angular velocity @ can be represented by
these three angles as
@'sinfsinyy + 6'cosy
W =|¢'sinfcosy — @'siny
¢p'cosf + /8

= a(‘P’ 0’ lﬂ, ‘P" 9', lﬂ')

The Lagrangian thus depends on the three generalized coordinates ¢, 6,

(2.10.49)

and . The Euler—Lagrange equations for the rotating rigid body are thus

given by
L _ d (9L _
b ~ @ le5) =0 (2.10.50)
aL _ d (9L _
& (2_%) = 0, (2.10.51)
G~ lay) =0 (2.10.52)

Each of these equations determines the rotation of the top. We note that
the Lagrangian and the Lagrange equations are set up in different
coordinates. Since both coordinates are related by Equation (2.10.49), it is
obvious that the derivatives in the Euler—Lagrange equations are calculated
by the following rules. For example, the last equation provides

oL _ NV 0L dwp

oy T Zi:l ow; O > (2.10.53)
and for the velocities, we have

oL _ NV 0L dw;

oy T Zi:] ow; oY (2.10.54)

The total Euler—Lagrange equations then become

3 0L dw oL dw,
Zizl (S S0 - £ (5o 5+)) =0 (2.10.55)
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For example, let us demonstrate the calculations for the y-coordinate. A
differentiation of w; with respect to ¢ and y' delivers the following
relations:

80.)1 Ve ' -

o = ¢ sinfcosy — O'siny = wy, (2.10.56)
Jp —@'sinfsiny — 0'cosy = — wy, (2.10.57)
doy _ ), (2.10.58)

oy
oy
and

9wy
o
9wy
o
Sws _

0 = 1. (2.10.61)

On the other hand, the Lagrange function provides

=0, (2.10.59)
=0, (2.10.60)

L _ e _ g, (2.10.62)

8w,- 8w,-

From the Euler-Lagrange equation, we obtain

d
O w w + Orwy(—w) — - B3w3 =0 (2.10.63)

— (@1 - @2)(4)1 Wy — @3(1)'3 = 0.
The other two equations are derived by similar calculations. However, we
can short-cut the calculation by permuting the indices of w and ® because

the x3-axis was chosen arbitrarily as the rotation axis:

O3 - ONw w3 — Grw' =0,

2.10.64
(@2 - @3) w3 Wy — @1 w'1 0. ( )

The three equations of motion can be amalgamated in a single relation by

using the Levi-Civita tensor &;; and a index notation:
(®i - ®j) w;W; — Zk ®k (,U'k Eijk = 0. (21065)

The derived three equations are also known as Euler equations. Leonard

Euler derived these equations in 1758 for a force-free top.

To show how the Euler equations look for the Euler angles, let us carry out
the same calculations as above in Mathematica. First, let us define the

angular velocity @ as a vector using Equation (2.10.49):
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w={0:¢p[t] Sin[6[t]] Sin[¥[t]] + OcO[t] Cos[¥[t]],
O:¢[t] sin[O[t]] Cos[¥[t]] -O:O[t] Sin[¥[t]],
OcY¥[t] Cos[O[t]] +0+d[t]}; w // MatrixForm

cos(y(1) sin(6(r)) ¢’ (1) — sin(y(1)) &' (1)

cos(W(1)) 0 (7) + sin(6(1)) sin(Y(1)) ¢’ (1) J
@' () + cos(B() ' (1)

—_——

The inertia tensor with three different principal values are given by

thl = IdentityMatrix[3] {©1, €2, ©3}; thl // MatrixForm

1 0 0
[OG)ZOJ

0 0 @e3

The Lagrangian for the force-free top follows by the relation

1
= —w.thl.w
2

1
7 (O2 (cos(y (1)) sin(8(1)) ¢ (1) — sin@(0) 0'(1))* +
O1 (cos(@(1) € (1) + sin(6(1)) sin((1) ¢' (1) + O3 (' (1) + cos(6(1) ¥ (1))

Applying the Mathematica function EulerLagrange[] introduced in
Section 2.7 on Lagrange dynamics, we find three coupled nonlinear

ordinary differential equations of second order.
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EulerLagrange[L, {¢, ¥, 6}, t]

{_ 9(©1 cos(y(1)) sin(0(1)) sin((n) 0 (1))
ot
9(=02 cos(¥(1)) sin(8(n) sin((1) # (1))
ot
A@O3¢'(1)  A(O2 cos’(W(1)) sin* (1)) ¢'(1))
ar ot -
9(©1 sin’(O) sin’ (@) ¢'(1) _ IO3cos @)Y’ (®) __
ot ot T
®1 sin(6(1)) 0/ (1) ¢’ (1) cos* (Y (1)) — O2 sin(8(1)) &' (1) ¢' (1) cos” (Y (1)) —
O1 sin(W (1)) 0 (1)? cos( (1)) + O2 sin(W(£)) & (1)* cos(n)) +
©1 sin(8(1)) sin(Y()) ¢' (1) cos(W(1)) —

®%Wﬂmmwmwﬁwwm—mmwﬁmwm‘
2 ’
403 cosa(tﬂ(t))¢ ®) —O1 sin(0(0) sin W) 0/ () ¢/ (1) +

©2 sin(6(1)) sin*(Y(1) &/ (1) ¢' (1) == 0,
®1 cos(6(1)) sin(6(1)) sinz(w(t)) qﬁ'(t)2 + 02 cos(6(r)) cos*(W(£)) sin(6(1)) qﬁ’(t)2 +
B1 cos(6(1)) cos((1)) sin( (1) 6 (1) ¢’ (1) —
2 cos(A(1)) cos(y(t)) sin(y (1)) 6 () ¢’ (1) — O3 sin(A(t)) ' (1) ¢’ (1) —
9(®1 cos*(Y()) ' (1))
at -
A(@2sin®(W(1) O (1)) _ 0(®1 cos(y(r)) sin(6(r)) sin(y (1)) ¢' (1))
ot ot
(=02 cosy () sin(6() sin((1) ¢'(1) _ _ 0}
ot

03 cos(8(1)) sin(6(r)) ¥’ (1)* —

The three equations contain the principal inertial moments ®;, ®,, and O3
as parameters. A much simpler representation of these equations follows if
we consider the top to be a spherical top for which all three moments of
inertia are equal. For this case, the equations of motion read
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EulerLagrange|[
L/.{el->e, e2->0e, 03 ->0e}, {é¢, ¥, 6}, t]

(2erw) 5@ cos? (1) sin®(B(1) ¢/ (1))

ot ot
A(@sin*(8(r)) sin® (Y (1)) ¢/ (1)) _ 0@cos(Bn) Y1) __ 0
ot ot -
_ 0@cos(0() ¢'(1) (@ cos* @Y () __ 0
ot ot T

® cos(6(1)) sin(6(1)) sinz(w(t)) ¢ (t)2 + 0 cos(6(r)) cos?(¥(r)) sin(6(r)) (15’(t)2 -
O sin(8() ¥/ (1) ¢/ (1) — © cos(6(r)) sin(6(1) ¥/ (1)’ —
(@ cos?(Y(1) #'(1) OO sin® (W (1) 0/ (1))
_ == o}
ot ot

So far, we examined the equations of motion for a force-free top. In such
cases when the top is moving in a force field, the equations of motion
change. To derive the equations of motion for a top spinning in a force
field, let us start with the temporal change of the angular moment which
equals the force moment acting on the top:
(%) - M, (2.10.66)
fix

where M is the moment generated by the force. However, the change of
the angular moment in the inertial system is determined by the expressions
in the body system:

dL) _ (4L SxT

( dr )ﬁx - ( dr )body +oxL (2.10.67)
or

G +oxL=M. (2.10.68)

The components along the x3-axis are given by
L's + w1 L, — w, L1 = Ms. (2.10.69)

Since we selected the coordinate system in such a way that the coordinate
axis is identical with the principal axis of the inertia tensor, we can express
the angular moments by

L = ©;w; (2.10.70)
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then, it follows that

O;w'3 — (O - O)ww; = M. (2.10.71)
The general case is expressed by the relation

©; - O)wjw;j — 3 (Brw'y — M) gy = 0. (2.10.72)

Equations (2.10.72) are the equations of motion for a top moving in a
force field.

We note here that the motion of a top is mainly determined by its inertial
moments. Consequently, two tops with equal inertia moments but different
shapes carry out the same motion. This behavior was first realized by
Cauchy in 1827. As a consequence of this observation, Cauchy introduced

the equivalent ellipsoid.

2.10.7 Force-Free Motion of a Symmetrical Top

Let us examine the motion of a force-free symmetrical top. For a
symmetrical top, we have ® = ©; = ®, # 3. The three Euler equations
thus read

EulerEquations = {(6-63) w2[t] w3[t] -60.wl[t] ==0,
(63 -6) w3[t] wl[t] -60.w2[t] ==0, -63 0 w3[t] ==0};
EulerEquations // TableForm

(0 -63) W2(1) W3(1) —Bwl’(t) == 0
03 - 0) wl(t) W3(1) — O W2'(t) ==
-3 w3'(1) ==

Let us, in addition, assume that the center of mass is at rest. This simplifies
the motion to a pure rotation. In addition, we assume that the angular
velocity @ is not pointed in the direction of the principal inertia directions.
The solution of the third equation of motion shows that w; is a constant

equal to «3:
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sol3 = DSolve[EulerEquations[3], w3, t] /.
C[1] -> x3 // Flatten

{w3 — Function[{z}, 3]}

Thus, the first two Euler equations simplify to

EulerEquationsl2 = Take[EulerEquations /. sol3, {1, 2}];
EulerEquationsl2 // TableForm

@ —-03)K3w2(H) —0wl’(H)==0
@3- K3wl()—0w2'(H)==0

The two first-order coupled equations can be solved by

soll2 =
DSolve[{EulerEquationsl2}, {wl, w2}, t] // Flatten

103 k3

03 k3
t OK )]7

w2 - Function[{z}, 5 COS(t K3 — t939/<3 ) -c sin(t K3 — t03;<3 )]}

{(ul - Function[{l}, c cos(t K3 — ) +c sin(t K3 —

where ¢; and ¢, are constants of integration. The angular velocity then
becomes

w={wl[t], w2[t], w3[t]} /. sol3 /. soll2

1033

{c1 cos(z K3 —

1)) COS(ZK3 - 103(;’6 ) ¢ Sin(1K3 B f@?;K3 )7 K3}

J+esinfre - L2,

It is obvious that the length of the angular velocity vector remains constant
by checking
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Vow.w // Simplify

k32 +c3 +63

The three constants of integration ¢y, c,, and k3 fix the value of the angular
velocity. As defined in section 2.10.1, we are talking about a symmetrical
top with an inertia tensor:

©® = IdentityMatrix[3] {6, 6, 63}; 6 // MatrixForm

o o
o o o
3 o o

The corresponding angular momentum is given by the vector

L=6.0w//Simplify

e

HOZBE) ¢ sin LOZBE10)) 43.3)

6 (c2 cos( 7

Examining the angular momentum in the inertial system, we have to check
the relation

Simplify[wxL + Oy L]

{0, 0, 0}

The result demonstrates that the angular momentum is a conserved
quantity in the inertial system. Another conservation law is given by
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1
T = 5 w.0.w // Simplify

1
5 (63 K32 +0(ct+c3)

The kinetic energy of the force-free top is also a quantity which is purely
determined by the constants of integration and the values of the inertial
tensor.

In conclusion, our observations are that the value of the angular velocity,
the angular momentum in the inertial system, and the kinetic energy are
conserved quantities. The conservation of angular velocity and angular
momentum cause the projection of the angular momentum to the angular
velocity to also be a conserved quantity. Thus, the motion of the angular
velocity is executed in such a way that @ precesses with a constant angle
between the angular momentum around the x3-axis. This behavior is
shown in the following illustration:
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The red line is related to the angular momentum, whereas the blue line
represents the angular velocity.

2.10.8 Motion of a Symmetrical Top in a Force Field

Let us examine the motion of a forced symmetrical top. The inertia tensor
of a symmetrical top is characterized by ® = ©; = 0, # 03. We define
this tensor by

©® = IdentityMatrix[3] {6, 6, 63}; © // MatrixForm

o o <
o o o
3 oo

The three Euler equations thus read

EulerEquations = {(6-63) w2[t] w3[t] -60.wl[t] == M1,
(63 -06) w3[t] wl[t] -60Lw2[t] == M2,
-63 0. w3[t] == M3}; EulerEquations // TableForm

(0 - 63) w2(1) W3(t) — H w1’ (H) == M1
03 = 0) wl(H) W3(1) — H W2’ () == M2
63 w3'(H) == M3

where M|, M,, and M3 are the acting moments of the force. Let us assume
that the center of mass is at rest. This simplifies the motion to a pure
rotation. In addition, we assume that the angular velocity @ is not pointed
in the direction of the principal inertia directions. The solution of this
coupled system of equations is given by

sol = DSolve[EulerEquations, {wl, w2, w3}, t] // Flatten
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{w3 — Functio

) t\
wl - Functlon[{t}, ¢> COS|

1

M3t]’

(1) e — ===

22030+ 603> 2603¢; —M31)

+

9+ (0-63)

2603

2663
!
V[K;SS%

K$305+/ (0 - 63)* (263 ¢; — K$305 M3)

260063

[ [z O-63)?% 2603¢;—M31)
COS

M2 (6 — 63) sin

M1 v (@ - 63)

K$305/ (0 — 63)* (263 ¢; — K$305 M3)
2003

COS

!
dK$305 + [ f
K$1694

K$1693 / (0 — 63)* (263 ¢, — K$1693 M3)J

-M2(6-63)

COS|

2663

M1+ 6 - 63)
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2663

w2 - Function[
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NP —2030+632 2603¢; —M30)
C3 COS| 2003

(—c1 032+ M3103+6c, 03 -M316) +

0(0-63) 2603

1 [ [t\/(9—63)2(293c1—M3t)]f[
COoS
K

$1694
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[—M2 6-63)

2003

M1 v (@ - 63)

S

K$1693 v/ (0 —63)* (263 ¢c; — K$1693 M3)
S

K$1693 / (0 — 63)* (263 ¢; — K$1693 M3)

26003

dK$1693 - M2 (6 -63)

t
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S1n|

2663
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[9 03
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where ¢, ¢, and c3 are constants of integration. We realize that the
solution is determined up to an integration. The angular velocity for this
kind of motion is thus given by

w={wl[t], w2[t], w3[t]} /. sol

NP -2030+603 203¢; —M31)
2003

{cz cos +

1 [ [: 6-637° 203¢; —M31)
COS|

0 /(0_93)2 2603

[MZ (60— 63) sin

M1+ (6 -63)

K$305/ (0 — 03)* (263 ¢; — K$305M3) ]

!
—[K\%OG

K$3054/ (6 - 63)? (263 ¢c; — K$305M3) J

2603

COS|

!
dK$305 + [f
K$1694

K$1693 4/ (0 — 03)* (263 ¢; — K$1693 M3)
2603

2603

-M2(6-63)

COs

M1 v (@ - 63)

K$1693 v (0 - 63)* (263 ¢; — K$1693 M3)
2603

dK$1693

| ©@-63?% 263¢; -M3 1)
st 2063

s

i -2036+63% 263¢; -M30)
s 2063

2603 26003

[693[\/92—2030+932 (263¢c;-M37 M3t 62 -2630+63° ]
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3

t\/92—2030+932 (263¢; —M31)
€08 2003

(=c1 632 +M3163 +6c, 63 -M316) +

1
!
V[K; 1694

00 -63)

N (O —=603)? 2603¢; —M30)
cos 2003

)

-M2(6-63)

K$1693 v (0 — 63)* (263 ¢; — K$1693 M3)

475

COS|

M1+ (6 - 63)

26003

K$1693 /(0 —63)* (263 ¢c; — K$1693 M3)

2603

3
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K$306

M2 (6 — 63) sin|

K$305 v/ (0 - 63)* (263 ¢; — K$305 M3)

)

M1 v/ (@ - 63) cos[

2603

K$305+/ (6 - 63)? (263 ¢; — K$305M3)

2603

e ©-603?% 203¢; -M3D)
s 2003
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sin|

t\/92—2030+932 (263¢; —M31)
2063 /

(=1 32 +M3103+0c, 03 -M316), ¢ —
M3t}
03

2.10 Rigid Body

Contrary to the force-free case, it is clear that the length of the angular

velocity is not a constant. However, the value of the length is now

determined by the principal values of the inertia tensor, the integration

constants, and the acting moments:

Vw.w // Simplify

1
\/ T 6> (M32 2 —2M363cit+032 (3 + 3 +c2)(@-63)° +

'
63? [ f [—MZ 6-63)
K$1694

COS

K$1693 / (0 — 63)* (263 ¢; — K$1693 M3)

26003

M1+ (6 - 63)

K$1693 v/ (0 —63)* (263 ¢; — K$1693 M3)

s 2663

2

dK$1693

+932[

f [MZ 0-03)
K$306

s 2663

M1+ (6 - 63)

K$305+/ (6 - 63) (263 ¢; — K$305 M3)

K$305 4/ (8 - 63)* (263 ¢; — K$305 M3) ]

cos 2063




2. Classical Mechanics 477

2

+20+ (0-63)>

'
03% ¢3 f [—MZ 6-63) cos[
K$1694

K$1693 / (0 — 63)* (263 ¢; — K$1693 M3)
2663

dK$305

M1+ (6-63)

K$1693 /(0 —63)* (263 ¢c; — K$1693 M3) J]

st 2063

dK$1693 +20+/ (0-63)> 632 ¢,

K$305/ (0 — 603)* (263 ¢; — K$305 M3)
2003

K$306

M2 (6 - 63) sin

M1+ (6 - 63) cos[

K$305/ (0 — 603)* (263 ¢; — K$305 M3)

00 dK$305

The corresponding angular momentum is given by the vector

L=0.0//Simplify

{0 N (@—-63)? (263¢; —M31) .
€2€08 2063

| 0=-83)?% 263¢; -M3 D)
csm 2063

N———
+
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!
£$306

K$305/ (0 — 603)* (263 ¢; — K$305 M3)
2003

1 [ [z O-63)?% 263¢,—M31)
COS

0 /(9_93)2 26003

M2 (6 — 63) sin
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!
dK$305 + [f
K$1694
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26003
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!
dK$1693 — [ f
K$306

K$305+/ (8 - 63) (263 ¢c; — K$305M3) J

[MZ (60— 63) sin XTE

MI1+/ (@ - 63)? cos[

K$305/ (8- 63)> (263 ¢; — K$305 M3)
5003 dK$305
_ t\/(9—03)2 (263 ¢) —-M31)

sS1n| 2093 +
\ (0-63)?

V(O —-63)?% 263¢; —M31)
€3 €08 2003 -

|t ©-683)? 263¢; —M3 1)
c sm[ 2003 , 03¢ —M3 t}

Examining the angular momentum in the inertial system, we observe that
the angular momentum equals the acting moments:

Simplify[wxL + 8¢ L]

{-M1, -M2, —-M3}

At this time, the angular momentum is not a conserved quantity in the
inertial system. Also the kinetic energy no more is conserved.

1
T = ; w.0.w // Simplify
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200 -63)% 63

! OM322 -2M383 ¢, ¢ 2 243 —03)?
114+603(@3ci+6(c3+¢3))(0—-63)"+

-M2 (6 -63)

!
. [ [
K$1694

cos 2063

K$1693 4/ (0 —63)* (263 ¢; — K$1693 M3)J

M1+ (6 - 63)

K$1693 /(0 —63)* (263 ¢, — K$1693 M3) ]

sin

2603

2

dK$1693

t
[IK;BOG

+63

K$305+/ (6 - 63)* (263 ¢; — K$305M3)
2603

M2 (6 — 63) sin|

M1+ (6-63)

K$305/ (0 — 03)* (263 ¢c; — K$305M3) ]

COS|

2603

2 f

+260+ (6-63)? 03¢

dK$305

K$1694

—M2 (6 — 63) cos 3003

K$1693/ (0 - 63)* (263 ¢, — K$1693 M3) ]

M1 v/ (0 - 63)

K$1693 4/ (0 — 63)* (263 ¢; — K$1693 M3)
2063

dK$1693 + 26+ (0-63)* 63 ¢,

S

!

K$306




2. Classical Mechanics 481

K$305/ (0 - 03)* (263 ¢c; — K$305M3)
2003

M2 (6 — 63) sin

M1+ (6 - 63)

K$3054/ (6 - 63)* (263 ¢c; — K$305 M3)
2063

cos| dK$305

In conclusion, our observations are that neither the values of the angular
velocity, the angular momentum in the inertial system, nor the kinetic
energy are conserved quantities.

2.10.9 Exercises

1. Investigate the motion of a symmetrical top in a gravitational field,
one point on th axis of the top being held fixed. Show that the total
energy E and the angular momenta py and py about the vertical axis
and about the symmetry axis of the top are constants of the motion.

2. Show that none of the principal moments of inertia can exceed the
sum of the other two.

3. Calculate the moments of inertia /;, I, and I3 for a homogenous
sphere of radius R and mass m.

4. A door is constructed of a thin homogenous slab of material; it has a
width of 1 m. If the door is opened through 90 ° it is found that upon
release, it closes itself in 2 s. Assume that the hinges are frictionless
and show that the line of hinges must make an angle of approximately
3 © with the vertical.

2.10.10 Packages and Programs

Euler-Lagrange Package

The Euler-Lagrange package serves to derive the Euler—Lagrange
equations from a given Lagrangian:
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If [$MachineType == "PC",
$EulerLagrangePath = $TopDirectory <>
"/AddOns/Applications/EulerLagrange/";
AppendTo[$Path, $EulerLagrangePath],
$EulerLagrangePath =
StringJoin[$HomeDirectory, "/.Mathematica/3.0/
AddOns/Applications/EulerLagrange", "/"];

AppendTo[$Path, $EulerLagrangePath]];

The next line loads the package.

<< EulerLagrange.m

EulerLagrange™ 1.0 (Dos/Windows®)

© 1992-2003 Dr. Gerd Baumann

Runs with Mathematica® Version 3.0 or later
Licensed to one machine only, copying prohibited

Options[EulerLagrange]

{eXpand - False}

SetOptions[EulerLagrange, eXpand -» True]

{eXpand — True}

Define some notations

<< Utilities Notation~
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Define the notation of a variational derivative connected with the function

EulerLagrange:

é t2
Notation[ 5 j f dt ¢ EulerLagrange[f , u , t_]]
u_ Je

iL

To access the variational derivative, we define an alias variable var
allowing one to access the symbolic definition by the escape sequence

var [.

1) €2
AddInputAlias [ 6_ f od o, "var“]
o Je

1

The following is an example for an arbitrary Lagrangian:

5 (v
—J L{u[t], O u[t]]d t
Su t1

-0, 1y LY [ue], w el ]+ [uft], uw'[t]] ==0

We also define an EulerLagrange operator allowing us to access the
EulerLagrange functon as a symbol

Notation[au:[den_] <> EulerLagrange[den , u , x_]]

The following is the alias notation for the EulerLagrange operator:

[m)
AddInputAlias [8D [O], "ELop“]
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Nonlinear Dynamics

3.1 Introduction

In recent years, nonlinear dynamics became an actual topic of research.
Nonlinear models are generic of all sciences. The exception in nature are
linear models. However, linear models are useful for examining
phenomena with a direct response. A principal theme of the preceding
chapter has been nonlinear systems of just a few degrees of freedom
showing complex behavior. A natural question to ask is, "What happens to
this dynamical systems in the limit of infinite degree of freedom?" In this
limit, the model become continuous and the discrete variables are replaced
by fields. Thus, the description of a system in terms of a finite number of
ordinary differential equations (ODEs), with time as the only independent
variable, goes over to a partial differential equation (PDE) with both
spatial and temporal variables as the independent variables. If only a few
nonlinear ODEs can display complex behavior, it might be thought that a
continuum of them could only display more complicated behavior. In
many cases, this is indeed so, and nonlinear PDEs will display chaos in

both time and space. However, there is also an important class of nonlinear
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PDEs whose behavior is remarkably regular. This regular dynamic is the
subject of this chapter.

Here, we examine a nonlinear field model by means of purely analytic
solution procedures. The symbolic approach is supported by numerical
calculations which demonstrate the findings of the symbolic calculations.
The model discussed is a standard models in nonlinear dynamics.
However, the solution procedures are applicable for different model
equations belonging to the same class of regular models. The nonlinear
field equation we are going to examine is the Korteweg—de Vries (KdV)
equation. This equation is a model with many physical and engineering
applications. For example, shallow water waves are the original physical
system described by Korteweg and deVries in 1895. The derivation of the
KdV equation resolved a long dispute on observations made by Russel in
1844 when he follows a solitary wave on horseback along the Union Canal
outside Edinburgh. After Korteweg and deVries's work, the problem
disappeared and it was not until the early 1960s that the KdV equation
reappeared in certain plasma physics problems. A motivation for studying
the KdV equation was provided by the work of Fermi, Ulam, and Pasta
(FPU) in 1955 (Figure 3.1.1 and 3.1.2).

Figure 3.1.1.  Enrico Fermi born September 29, 1901; died November 29, 1954.
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Figure 3.1.2.  Stanislaw Marcin Ulam born April 03, 1909; died May 13,1984.

The question of FPU was the energy distribution in a nonlinear coupled
chain of oscillators. FPU initially assumed that a certain amount of energy
will be continuously distributed in a chain after a certain time. However,
numerical experiments on the Los Alamos MANIAC computer
demonstrated that this assumption was wrong. The energy periodically
cycled through the initially populated modes and there was little energy
sharing. A decade later in 1965, Kruskal and Zabusky picked up the FPU
contradiction and examined the discrete FPU model in the continuous
limit. One result was that the FPU model can be reduced to the KdV
equation if an asymptotic solution approach is used. They studied the KdV
equation by numerical integration and observed that for certain initial
conditions, stable cycling solutions in the chain exists, which they called
solitary waves. The numerical results were derived by the development of
a remarkable new solution technique by Kruskal and co-workers [3.3],
which led to the development of a whole new area of mathematical physics.

To begin, we first investigate some of the more elementary properties of
the KdV equation. The chapter is organized as follows. In Section 3.2, we
present a procedure to derive nonlinear field models starting from a
dispersion relation. Section 3.3 introduces a general procedure to
analytically access a nonlinear equation of motion by means of the inverse
scattering method. The method is based on the asymptotic behavior of the
solution and uses the Marchenko equation to derive the solutions. Section
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3.4 is concerned with the conservation laws for the KdV equation. This
section presents general procedures applicable also to other nonlinear field
equations. Section 3.5 discusses a numerical procedure to solve the KdV
equation. The numerical procedure presented is used to simulate the
collision of solitons. We demonstrate that the solution procedure has to
satisfy certain restrictions to gain reliable numerical results.

3.2 The Korteweg—de Vries Equation

Weak nonlinear waves can be described by an integro-differential equation
of the form

u—uug+ [ K(x—&ug€, 1)dé = 0. (3.2.1)

The dispersive behavior of the waves is contained in a kernel K. The
dispersion relation K is obtained by a Fourier transform of the related
phase velocity c(k) = w(k) / k by

K@= 5= [Z ety et~ dk, (32.2)

where w(k) is the dispersion relation of the wave. The Korteweg—deVries
(KdV) equation was first derived at the end of the 19th century to describe
water waves in shallow channels. Experimental data of the dispersion
relation in such channels show that the square of the phase velocity is
expressed by a hyperbolic relation:

c?(k) = £ tanh kh, (3.2.3)

where /1 is the mean depth of the channel measured from the undisturbed
surface of the water and g is the acceleration of gravity of the Earth. For
waves with large wavelengths, we observe that the argument of tanh is
small. Thus, we can use a Taylor expansion to approximate the phase
velocity by

ek = £ anhkh ~Vgh (1 - L2 0. (3.2.4)

As a consequence, the kernel K given in Equation (3.2.2) is represented by
an expansion in the form
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KW= [ Ve (1-EE)erar
= Ve (60 + L 5" (),

where d(x) is the Dirac's delta function and the primes denote derivatives

(3.2.5)

with respect to the argument. If we consider these relations in our original
equation of motion (3.2.1), we get

w—uuy+Vgh f (ba-0+ L 5" -0 ucte. nd e

h2
=u,—uu,+vVgh (ux+?uxxx)=0

Transforming Equation (3.2.6) to a moving coordinate system by

(3.2.6)

X =x+vtforv=—-+vgh, scaling the time ¢ and the wave amplitude u by
T=hvt/6 and a=u/H®v), respectively, results in a standard
representation of the KAV equation:

Uy — 6 Uy, + gy = 0. (3.2.7)

In Equation (3.2.7), we use the original variables to denote the transformed

quantities.

The derivation of the KdV equation can be supported by Mathematica by
defining the related functions used in the above calculations. First, we
introduce a definition of the dispersion relation using Equation (3.2.4):

c[k ] :=Block[{g, h}, Sqrt[gTanh[kh] /k]]

which reproduces the square root of the tanh:

c[k]

gtanh(h k)
k

The linearized dispersion relation necessary for the kernel definition

follows by a Taylor expansion with
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disperse[k , n ] :=
Block[{}, Normal[Series[c[k], {k, 0, n}]]]

providing in fourth-order approximation:

dispersel[k, 4]

19 1
%h“vgh k4—€h2\/gh K+vVgh

The dispersion kernel (3.2.5) is defined by the inverse Fourier transform as

K[xi , n ] :=
Block[{k, itrafo, dis, t}, dis = disperse[k, n];
itrafo = Simplify[
1/‘\] 2 Pi InverseFourierTransform[dis, k, t] ] 7

itrafo=itrafo/. t»>x- xi]

providing for a second-order approximation of the dispersion relation:

K[E, 2] // Expand

1
g Veh &= +Ngh 6(x—§)

The incorporation of the integral in Equation (3.2.6) defines the resulting
equation:

Equation[n ] :=
Block[{gl}, gl = Integrate[X [xi, n] D[u[xi, t], xi],
{xi, -Infinity, Infinity}]:;
gl = Simplify[gl];
gl =D[u[x, t], t] -u[x, t] D[u[x, t], x] +gl]

which, on application, gives
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KdV = Equation[3]

1
u®Dx, ) —uCx, HuOx, 0+ g Veh @0, nyh? +6u"O(x, 1)

We can use this function to derive higher-order dispersive equations by
increasing the approximation order. The following is an example for n = 5:

Equation[5]

uOOx, 1) = ux, ) u O, 1) +

1
350 Vegh 19uB0x, 1) h* + 60 u®0(x, 1) h* + 360 u"0(x, 1)

Since only the dispersion effects are used in the calculation, we cannot
change the nonlinear character of the equation. The nonlinearity in the
present form is crucial for the application of the following solution
procedure. The standard version of the KdV equation follows by the

following transformation:

kd = Simplify[KdV /.u-> Function[{x, t},

Vgh
6

hz'\/g_hu[x—‘\/g_ht, h? t]]]/.
{x-Vgh t ->x, h? vi_ht->t}J/(gh5J

6

M((),l)()67 H—6ulx, f) u(l.O)(x’ )+ u(3~0)(x, 1)

Here, we used a transformation with the general form
u=aU(x+ vt, nt), where a, v, and n are constants to be determined in

such a way that the equation simplifies.
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3.3 Solution of the Korteweg—de Vries Equation

In this section, we derive the analytical solutions of the KdV equations
using certain initial and boundary conditions. The KdV equation is given
by

U —6ul, +uy, =0 withtz>0and —oo < x < 3.3.1)

and the initial condition u(x, t = 0) = uy(x). We assume natural boundary
conditions; that is, the solution of the KdV equation (3.3.1) is assumed to
vanish sufficiently fast at | x| —» oo. To arrive at our solution, we us the
inverse scattering theory (IST). This procedure is closely related to its
linear counterpart, the Fourier transform (FT). In Section 5.2, we use the
Fourier transform technique to construct solutions of the Schrodinger
equation. In addition to its methodical connection with IST and FT, both
IST and FT are also logically related to the Sturm—Liouville problem. The
main difference between IST and FT is that the Fourier transform is only
capable of solving linear problems, whereas the IST can also be applied to

nonlinear differential equations.

3.3.1 The Inverse Scattering Transform

The solution steps for the inverse scattering transform are summarized as
follows (see Figure 3.3.1):

scattering

u(x,0) » S(0)
c
Qo
u =
<}
= o
(]
E

u(x,t) - S(t)

inverse scattering

Solution procedure of the inverse scattering. Start with a nonlinear PDE. Determine the
Figure 3.3.1.  scattering data from the initial conditions. Carry out a time evolution of the scattering data.
Invert the scattering data to the original coordinates.
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1. The starting point is a set of nonlinear partial differential equations
(nPDE?s) for a certain initial condition u(x, 0).

2. By a scattering process, we get the scattering data S(0) at the initial
time # = 0 from the initial data.

3. Since the characteristic data of the scattering process is related to a
linear problem, we can determine the time evolution of the scattering
data for the asymptotic behavior | x| — co.

4. The inverse scattering process gives us the solution u(x, #). The
inverse scattering process is closely related to a linear integro-differen-
tial equation, the Marchenko equation, well known in the theory of
scattering.

Using these four steps in the solution process, we get a large number of
solutions. The most prominent solutions contained in this set are for
solitons and multisolitons. We note that the solution process discussed so
far is not only applicable to the KdV equation but also delivers solutions
for more complicated equations. A collection of equations solvable by IST
is given by Calogero and Degasparis [3.1]. Note that the IST procedure is
not applicable to all nonlinear initial value problems. There exists,
however, a set of equations for which the IST procedure works very well.
One of these equations is the KdV equation, which is a completely
integrable equation. Other types of nonlinear equation can be solved by
Lie's symmetry analysis discussed in the author's book on symmetry

analysis of differential equations [7.21].

As mentioned earlier, the starting point of the IST is the initial condition
u(x, 0) = up(x). In close analogy to the example discussed in the chapter on
quantum mechanics (Section 5.5), we examine here a scattering problem
with the scattering potential u(x, 0) = ug(x). To calculate the scattering
data S(0), we consider the related Sturm-Liouville problem in the form

Y + (A = ug(x) ¥ =0, —00 < X < 00, (3.3.2)

where A represents the eigenvalue. The time-independent scattering data is
derived from the asymptotic behavior of the wave function . Our
treatment of Equation (3.3.2) is analogous to our calculations in quantum

mechanics. The asymptotic behavior of the wave function is given by

e*ikx +b(k) eikx fOI' x—

a(k) e_ikx for X > —o00, (333)

o~ {
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where A >0 and k = ﬁ refer to the case of a continuous spectrum and
where

Un(x) ~c,e* for x - o0 n=1,2, .., N (3.3.4)

for A <0 and k, = V—A refers to the case of discrete eigenvalues. The
characteristic data of the scattering process is the set of reflection and
transmission indices b(k) and a(k) and the normalization constant c,. This
set of data is called the scattering data S(0) and is collected in a list
S(0) = {a(k), b(k), c,}. The listed data support the theory. The measurable
quantities in a scattering process are the reflection and transmission
coefficients b(k) and a(k). The question from the experimental point of
view is how the measurable quantities can be used to derive the interaction
potential. Theoretically, the answer is given by Marchenko [3.2]. He
demonstrated that knowledge of the scattering data and eigenvalues of the
Sturm-Liouville problem are sufficient to reconstruct the potential of the

scattering process by a linear integral equation of the form

Kx, )+ Mx+2)+ [T Kx, )M(y+2)dy =0, (3.3.5)
where M is defined by the scattering data as

M@ =3, et 5= [ b et~ dk. (3.3.6)

The solution K(x,z) of the integral equation (3.3.5) delivers the

representation of the potential uq(x):
d
-2 =5 K(x, x) = uo(x). 3.3.7)

Knowing the scattering data, we are able to reconstruct the potential u(x)
by means of the Marchenko equation (3.3.5).

Another aspect of solving the KdV equation is how time influences the
scattering. Up to now, we have only considered the stationary
characteristics of the scattering process. We now consider not only the
initial condition u = u(x, t = 0) in the scattering process but also the full
time-dependent behavior of the solution u(x, f). We assume that the
time-dependent potential u(x, f) in the Sturm-Liouville problem satisfies
the natural boundary conditions requiring that for | x| — oo, the solution
vanishes sufficiently fast. In all of the expressions, the time variable ¢ is
considered as a parameter. Because of the parametric dependency of the
Sturm-Liouville problem on ¢, we expect that all spectral data also depend



495

3.3 Solution of the KdV

on t. We assume the eigenvalues A = A(f) to include a time dependence in
the Sturm—Liouville problem which, in this case, reads

Yxex + (A —ulx; )¢ =0, (3.3.8)

where u(x, r) satisfies the KdV equation (3.3.8). Differentiation of
Equation (3.3.8) with respect to x as well as with respect to ¢ gives us

Yoo —ux Y + (A —u) Y, = 0, 3.3.9)
Yo+ A —u) Yy + (A —u)y; = 0. (3.3.10)

By introducing the expression
Rx, )=y, +u, ¢y 2w -2y, (3.3.11)

we find that the current ¥, R — i R, satisfies the relation

(% WR—-yR) =M y?, (3.3.12)

which connects the time derivative of the eigenvalues A to the gradient of
the current. To derive this relation, we have used Equations (3.3.9) and
(3.3.10) as well as the KdV equation (3.3.1) itself.

If the eigenvalues A of the Sturm-Liouville problem are discrete
(Kn =vV-A ), an integration of Equation (3.3.12) with respect to x yields

(S (&)
0=y, R—-UR, _mza,ﬁmwzdx. (3.3.13)

Since the wave function ¢ and its derivatives vanish for |x|— oo, the
left-hand side of Equation (3.3.13) is gone. Normalizing ¥ by
[ y?dx = 1 results in

d 1
dt

=0 or K, = const. 3.3.14)

We therefore have an isospectral problem. We now can use Equation
(3.3.11) to determine directly the normalization constants c,. On the other
hand, u and ¥ vanish for x - co. Using the asymptotic representation of the
eigenfunctions i, we find, with the help of

Yn(x; 1) ~ () €7 (3.3.15)

and the asymptotic form (3.3.11)

de,
S 4K, =0. (3.3.16)

Integrating this expression gives
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) =c,(0)e*S !, n=1,2, .., N, (3.3.17)

where ¢,(0) are the normalization constants of the time-independent
Sturm—Liouville problem. Following these steps, we see how the discrete
part of the spectral data follows from the time-independent eigenvalue

problem.

The continuous part of the spectral data is derived by an analogous
procedure. The integration of relation (3.3.12) with respect to x produces
the continuous part of the eigenvalues:

Yy R—Y R, = g(t; k). (3.3.18)

The asymptotic representation of the eigenfunctions is now

Wix; t, k) ~ alk; t) e % for x- —o

W(x; 1, k) ~ e 5 4 b(k; 1) e kX for x— oo. (3.3.19)
In the limiting case of x — oo, we find by using Equation (3.3.11)

RO 1, k) ~ (44 +4ik3 a) ik (33.20)
and thus we obtain

VR—¢YR, -0 for X = —oo. (3.3.21)
This relation allows a further integration, which results in

R=h(t; k). (3.3.22)
Using Equation (3.3.22) we get the expression

42 4ikPa=ha, (3.3.23)
The corresponding relations for x — co are expressed by

Db gikx 1 413 (eTkx — b elk¥) = o (71K + b efk), (33.24)

dt

Since the trigonometric functions are linearly independent functions, we

can write
4L 4ikdb=hob, (3.3.25)
h=4ik’. (3.3.26)

Equation (3.3.23) is thus reducible to

da

22 =0, (3.3.27)
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A simultaneous integration of Equations (3.3.27) and (3.3.25) gives

a(k; 1) = a(k; 0), (3.3.28)
bk; t) = b(k; 0) 8% 1. (3.3.29)

For times ¢ > 0, we obtain a time-dependent reflection index b(k; f) and a

constant transmission rate a(k; 1).

The complete set of scattering data (discrete plus continuous data) for the
time-dependent scattering problem of the KdV equation is summarized as
follows:

S(1) = {cn(®) = c,(0) €41, a(k; 0), bk; t) = b(k; 0) 8K 1). (3.3.30)

The assumption of a time-dependent potential is reflected in the scattering
data through both the time dependent normalization constants c¢, in the
discrete spectrum and the time-dependent reflection coefficients b in the

continuous spectrum.

To complete the solution process of the inverse scattering transform, we
need to take into account the time-dependence of the scattering data in
Marchenko's integral equation. Since time appears only as a parameter in
the relations of the scattering data, we can use the expression from the
stationary part of the scattering process and extend it to obtain the
equations of the time-dependent scattering. The time-dependent potential
and the solution of the KdV equation follow from the time-dependent
Marchenko equation. The spectral characteristics are contained in the M
term. If we generalize relation (3.3.6) for the time-dependent case of

spectral data, we get

M(x; 1) = le cn(0)? 851 % [ blk; 0) e/ EF k9 g k. (3.3.31)
The original Marchenko equation then transforms to

K,z +Mx+z0+ [ K(x, y; ) M(y+2; 1) dy = 0. (3.3.32)
The solution of the KdV equation follows from

u(x, 1) = =2 2= K(x, x;1), (33.33)

In principle, Equation (3.3.33) gives the solution for the KdV equation
provided the spectral data are known. However, deriving the spectral data
is not simple, even for the KAV equation. Calculating the general solution
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of the Marchenko equation is a second problem in the solution process.
This situation is similar to the Fourier technique, for which the inverse
transformation is, at times, unrecoverable. Given a spectral density A(k), it
is sometimes impossible to analytically invert the representation from
Fourier space into real space. However, since our main problem is the
application of the IST, we show in the following subsection that the IST
can be successfully applied to the solution of the KAV equation.

3.3.2 Soliton Solutions of the Korteweg—de Vries Equation

In the previous subsection, we saw how nonlinear initial value problems
can be solved using the inverse scattering method. In this subsection, we
construct the solution for a specific problem. As an initial condition, we
choose the potential in the Sturm-Liouville problem to be
up(x) = -V sech® x. This famous potential was used by Poschel and Teller
for an anharmonic oscillator. We will discuss this type of potential in
Section 5.5 when examining the quantum mechanical Poschel-Teller
problem. We observe there that the reflection index b(k) vanishes if the
amplitude of the potential is given by Vo = N (N + 1), with N an integer. In
our discussion of solutions for the KdV equation, we restrict our

considerations to this case.

We assume that N =1. The initial condition is thus reduced to
uy(x) = -2 sech® x. The related Sturm-Liouville problem (3.3.2) for this
specific case reads

Yo + (A —2sech’ x)y = 0. (3.3.34)

Equation (3.3.34) is identical to Equation (5.5.57) of Chapter 5 with
Vo =2. We will demonstrate in the quantum mechanical treatment of the
problem that in this case, the corresponding eigenfunctions are given by
the associated Legendre polynomials P} (x) = sech(x) / \/5 . The
corresponding eigenvalue is «; = 1. The normalization constant follows
from the normalization condition f_ D; Y*>dx=1. According to our
considerations in the previous subsection, we can immediately write down
the time evolution of the normalization constant ¢; as

ci() =2 . (3.3.35)



499

3.3 Solution of the KdV

Since we are dealing with a reflectionless potential (b(k) = 0), we can write
the M term of the Marchenko equation as

M(x;f) =287, (3.3.36)
The Marchenko equation itself reads
K(x, 1) +2e8 0 42 [T K(x, y; 1) 8- 0%) dy = 0. (3.3.37)

Solutions of Equation (3.3.37) are derivable by a separation ansatz for the
function K in the form K(x, z; ) = K(x; f) e7*. Substituting this expression
into Equation (3.3.37) gives us the relation

K +2e8 " +2K(x; 1) [7 872V dy =0. (3.3.38)

We have thus reduced an integral equation to an algebraic relation for K.
The solution of Equation (3.3.38) is given by
81— x

K1) = -5 (3.3.39)

The unknown K(x, z; f) is thus represented by
. _ 2 eS —x .

K(x, z;0) = ~TisIr € - (3.3.40)
In fact, the solution of the KdV can be obtained using Equation (3.3.32) to
derive the time-dependent potential u(x, ) from K:

2 L’S t-2x

T+e82x

u(x,z)=2i(

e ): ~2 sech?(x - 41). (3.3.41)

This type of solution is known as the soliton solution of the KdV. It was
first derived at the end of the 19th century by Korteweg and de Vries. The
solution itself describes a wave with constant shape and constant
propagation velocity v = 4 moving to the right. By choosing the amplitude,
we derive one solution out of an infinite set of solutions for the KdV
equation. In the following, we discuss more complicated cases where two
and more eigenvalues have to be taken into account for the calculation.

To demonstrate how IST can be applied to more complicated situations,
consider the case with an initial condition uy(x)=—-6 sech’ x. The
difference between this case and the case discussed earlier appears to be
minor. However, as we will see, the difference in the solutions is
significant. The selected initial condition corresponds to a Pdschel-Teller
potential with a depth of N = 2. The discussion of the eigenvalue problem
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in Section 5.5 shows that the eigenvalues are given by x; = 1 and «, = 2.
The corresponding eigenfunctions are

Wl = \/? tanh x sech x (3.3.42)

y3 = Y2 sech’ x. (33.43)
The normalization constants ¢; and ¢, for this case are given by

c1=V6 and ¢ =2V3. (3.3.44)
The time evolution of ¢ is determined by

1) =6 &', (3.3.45)

er(t) =23 321, (3.3.46)

In close analogy to N = 1, we get the M terms of the Marchenko equation
by using relation (3.3.31) in the form

M(x; 1) =668 + 12541727, (3.3.47)
The Marchenko equation itself is given by

K(x, 73 1) + 687079 4 12 641724 4

[7 K, yi0) (6877049 4 12£541720%9) dy = 0. (3-34%)
We obtain the solution of Equation (3.3.48) in the form
K(x, ;1) = K| (x; ) e™* + Ky (x; 1) 727 (3.3.49)

by again using a separation ansatz for K. In the general case of N
eigenvalues, we can use the ansatz

Kx,z20) =YY, K,(x;1)e™* (3.3.50)

to reduce the integral equation to an algebraic relation. Since ¢~* and e~2?
are linearly independent functions, we can derive from Equation (3.3.48)
the following system of equations:

Ki+68 54668 (K [T e dy+ Ky [ eV dy) =0, (33.51)
Ky +1254172x 4

126641 (Kl fxoo e—3y dy + Kz f;o €_4y dy) -0 (3352)

Integrating Equations (3.3.51) and (3.3.52), we get a linear system of

equations for the unknowns K;:

1+3 eSt—Zx 268t—3x 1(1 -6 eSt—x
( ): . (3.3.53)

4 eﬁ4t—3x 1+3 eﬁ4t—4x K2 —-12 eﬁ4t—2x
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For cases with N > 2, we get a general system of equations:

AK =B, (3.3.54)
where

A = O + % B’ i=(min)x (3.3.55)
and

B, = —c2(0) 87 i1, (3.3.56)

The final solution reads
2
ux, )= =2 4 log|A |, (3.3.57)

Equation (3.3.57) is the general representation of the solution for the KdV
equation. For the specific case with N = 2, we get

6 (672 -5 x_eS t—x)

Ki(x; 1) = e , (3.3.58)

Ky(xi ) = — 12(664;2(;;)672'7“) (33.59)
The determinant D(x, ) = det A = | A | of Equation (3.3.53) is

D(x, 1) = 1+3e872% 43041745 4 o721-6x (3.3.60)

The solution of the KdV equation then reads

u(x, 1) =-2 2 (K e + Ky e72%)
_ 1, 3+4cosh(2 x—81)+cosh(4 x—641) (3.3.61)
(3 cosh(x—28 f)+cosh(3 x-36 £))*>

This type of solution is called a bisoliton solution in the theory of inverse
scattering. To make the term soliton more understandable, we examine the
behavior of solution (3.3.61) in a certain time domain. Since the KdV
equation is invariant with respect to a Galilean transformation, we can use
t <0 in our calculations. A sequence of time steps illustrating Equation
(3.3.61) is presented in Figure 3.3.2-3.3.4. In order to give the impression
of a wave packet, we have plotted the negative amplitude of the solution u
in this figure. Initially, there are two separated peaks. As time passes, the
two humps overlap and form a single peak at time ¢ = 0, which represents
the initial solution uy(x) = —6 sech® x. For times 7 > 0, we observe that the
single peak located at x = O splits into two peaks with differing amplitudes.
We observe that wave packets with larger amplitudes split from those with
smaller amplitudes. Larger wave packets travel faster than smaller ones. If
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we compare the soliton movement before and after the collision of pulses,
we observe during the scattering process that neither the shapes nor the
velocities of the pulses change. The term soliton originates from its
insensitivity to any variance in the scattering process. This phenomenon
was first observed by Zabusky and Kruskal [3.5]. Another characteristic of
solitons is that larger pulses travel faster whereas smaller pulses move
more slowly. This means that larger pulses will overtake smaller ones
during the evolution of motion. We can understand this evolution by
examining the propagation velocity with respect to the amplitude of the

solitons.

From Figure 3.3.2, we note that for times |7]|— co the shape of the
solitons remains stable. As already mentioned, the shape of the pulses is
recovered in a scattering process. However, the phase of the pulses does
not stay continuous. It smoothly changes at the interaction of the solitons.
A two-soliton scattering is pictured in Figure 3.3.3, created with
ContourPlot[]. We observe in this plot that smaller packets retard
whereas larger ones advance.

-u -u
t = -0.4 t = -0.2
6 6

X bd
-10-50 510 -10-50 510
-u -u
t = -0.1 t=20
8
6
X X
-10-50 510 -10-50 510
-u -u
t = 0.2 t = 0.4
8 8
6 6
4 4
2 2
bd bd
-10-50 510 -10-50 510

Figure 3.3.2.  Soliton solution of the KdV equation. The initial condition is u(x, 0) = —6 sech? x.
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Contour plot of the bisoliton solution. The space coordinate x is plotted horizontally and
Figure 3.3.3.  time ¢ is plotted vertically. We can clearly detect the discontinuity of the phase in the
contour plot at #=0. The gap occurs in the spatial direction.
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-u -u
t =-0.3 t =-0.2
X X
-26100 1020 -26100 1020
-u -u
t =-0.1 t =20
X X
-26100 1020 -206100 1020
-u -u
t =0.2 t =0.3
X X
-26100 1020 -26100 1020
Time series for a quartic soliton solution. The given time points are ¢ = —0.5, 0.00001, and

Figure 334.
The Mathematica functions needed to create the figures for the soliton
movement are collected in the package KDVAnalytic'. The function
needed to plot the solitons is Seliton[] and a graphical representation of an
N-soliton solution is obtained by using the function PlotKDV[]. An
example of a quartic soliton solution is given in Figure 3.3.4, created by
calling PlotKdV[-0.5,0.5,0.02,4]. The four pictures created in the time
domain ranging from ¢t =-0.5 up to ¢+=0.5 in steps of At=0.02 are
collected in one picture by using Show[] in connection with
GraphicsArrayf[].

To demonstrate the application of functions from KDVAnalytic®, we first
calculate a one-soliton solution by
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Soliton[x, t, 1]

8 @8 +2x

(e8! + &2 x)2

Next, we generate a flip chart movie for a three-soliton collision by

PlotKdv[-1, 1, 0.1, 3]

—u(x,t)

14
12

N O

X
-20 -10 10 20

3.4 Conservation Laws of the Korteweg—de
Vries Equation

Conservation laws such as the conservation of energy are central quantities
in physics. The conservation of angular momentum is equally important to
quantum mechanics as it is to classical mechanics. Conservation laws
imply the existence of invariant quantities (e.g., when applied to the
scattering of molecules). The Boltzmann equation is an example, as the
particle density remains constant, since particles are neither created nor
destroyed.
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3.4.1 Definition of Conservation Laws

Denoting the macroscopic particle density with p(x, f) and the streaming
velocity with v(x, f), we can express the conservation law in the differential
form of a continuity equation:

3,p(x, 1) + . (pv) = 0. (3.4.1)

Assuming that the current j = pv vanishes for |x|— co and integrating

over the domain x € (—co, c0), we get for the density p the relation

d(pd==pv| =0, (3.4.2)
and thus
f_o; p dx = const. (34.3)

Equation (3.4.3) expresses the conservation of mass although the density p
follows the time evolution in accordance with Equation (3.4.1). The simple
idea of mass conservation in fluid dynamics can also be transformed to
more general situations. If we write down for a general density 7 and its

corresponding current J a continuity equation such as
0;T +09,J =0, (34.4)

we find the related conservation law. To extend the formulation of the
general continuity equation to nonlinear partial differential equations, we
assume that 7 and J depend on ¢, x, u, u,, u,.and so forth, but not on u,.
If we retain the assumption that J(x - +o0) — 0, then Equation (3.4.4) can
be integrated over all space as was done for Equation (3.4.1), getting

L [T Tdx=0 (3.4.5)
or

[T dx = const. (3.4.6)
The quantity defined by Equation (3.4.6) is an integral of motion in the
theory of nonlinear PDEs.
As an example, we consider the KdV equation

U —6uu, +uy, =0. (3.4.7)
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The KdV equation already takes the form of a continuity equation. 7} = u
is the density and J = u,, — 3 u? is the current. If the density T is integrable
and 0, J vanishes at the points x = + oo, we can write

7 uCx, 1) dx = const. (3.4.8)

Equation (3.4.8) must be satisfied for all solutions of the KdV equation
satisfying the conditions listed earlier. However, not all solutions of the
KdV equation satisfy the asymptotic relations. For example, the
conservation laws do not apply to periodic solutions of the KdV equation.

Another conserved quantity can be obtained if Equation (3.4.7) is
multiplied by u. In this case,

0y (5 uD) + 0y (Ut — + 12 —2u%) = 0. (3.4.9)

2

The second conserved quantity is given by 7, =u“°, which directly

integrates into
f; u? dx = const. (3.4.10)

This notation holds for solutions vanishing sufficiently rapidly at
| x| = oo. The physical interpretation of these equations is that relation
(3.4.8) represents conservation of mass and that Equation (3.4.10)
represents conservation of momentum (compare also Section 3.2). We
have thus derived two conserved quantities by simple manipulations of the
KdV equation. The question now is whether we can derive other conserved
quantities from the KdV and how these quantities are related to each other.
This question was first discussed by Miura et al. [3.3]. They observed that
there are a large number of conserved quantities for the KdV equation.
They discovered that, in fact, there exists an infinite number of conserved

quantities for the KdV equation. For example,

T =1+ 512, (3.4.11)
Ty=5u*+10uu? + 2. (3.4.12)

T5 can be identified as the energy density. The higher densities 7, for
n > 3 have no physical interpretation in terms of energy, momentum and so
forth. Other conserved quantities are obtained algorithmically. In the
following, we show how Miura et al. constructed the infinite hierarchy of
constants of motion.
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3.4.2 Derivation of Conservation Laws

Miura et al. [3.3] made an important step in understanding the
phenomenon of invariants in nonlinear PDEs. The tool they invented is a
transformation vehicle which linearizes the nonlinear PDE. Today, this
tool is known as the Miura transformation of the KdV equation to the
modified KdV equation (mKdV):

V=6V v, 4V = 0. (3.4.13)
By transforming the field v to the field u according to
u(x, 1) = vi(x, 1) + vylx, 1), (3.4.14)

solutions of Equation (3.4.13) are also solutions of the KdV equation. The
Miura transformation v = y(x, 1) /¢, (x, t) connects the KdV equation with
its related Sturm-Liouville problem. The Miura transformation (3.4.14) is
primarily used for the construction of conservation laws. If, for example,
we replace field v in Equation (3.4.14) by

- L
v=5-+EwW, (3.4.15)
where ¢ is an arbitrary parameter, we get the Miura transformation for w in
the form
T (3.4.16)
T 42 X A,

If we additionally assume the Galilean invariance for u to be (&t = u + 1),
we can simplify relation (3.4.16) to

U=w+ew, + & w (3.4.17)

This transformation connecting w with u is called a Gardner
transformation. Substituting the transformation (3.4.17) into the KdV
equation (3.4.7) gives us

Uy — Uty + Uy =
W+ ew, +28ww, —
6(W+ew, + W) Wy + Wy +22ww,) + (3.4.18)
Wiex + E Wy + 282 (WWy) =

(1+sﬂ—6x+282w)(w,—6(w+82w2)wx+wm).
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As is the case for the Miura transformation, « is a solution of the KdV
equation and thus w is also a solution of the KdV equation:

Wy — 6 (W + 2 W) Wy + Wiy = 0. (3.4.19)

If we set the parameter to be £ = 0, Equation (3.4.19) reduces to the KdV
equation. For this case, the Gardner transformation yields the identity
transformation u# = w. The Gardner transformation is closely related to a

continuity equation of the form

AW+, Wy —3W?> =22w’) =0. (3.4.20)
Thus, we get
[ wdx = const. (3.4.21)

(i.e., another conserved quantity). To construct the conservation laws of
the KdV equation by an algorithm, we use the parameter €. The important
aspect of this operation is that for € —» 0, w converges to u. For this reason,

we expand field w as a power series in &:

WX, t; &) = Yo " wi(x, ). (3.4.22)
From Equation (3.4.21) it follows

f; wdx =Y, &" f; wy(x, t) dx = const. , (3.4.23)
or

f; w,, dx = const. for n=0,1,2, ... (3.4.24)
The expansion of the Gardner transformation (3.4.17) yields

O Wy = =& N & W — (5 & W) (3.4.25)

The conserved quantities resulting from the first terms of this expansion are

Wo = U, (3.4.26)
Wi = —Wox = —Uy, (3.4.27)
Wy = =W — W% = Uy —u*, (3.4.28)
W3 =—Wr,—2Wow = —(uxx—uz)x+2uux. (3.4.29)

The quantities w; and ws are given by total differentials and thus provide

new information on the conservation laws.

Since the construction of the invariants of motion follows from a

completely algorithmic procedure, Mathematica can be used to derive the
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higher densities of the conservation laws. Indeed, a calculation by hand
immediately shows us that a manual approach is very cumbersome.
However, Mathematica can do all the calculations for us.

The algorithm to derive the conserved densities starts out from a power
series expansion of the field w. The comparison of equal powers of € in
Equation (3.4.25) gives us the expressions for the w,'s. If we replace the
wy,'s by the w,_;'s, we get a representation of function u. The steps used to
carry out the calculation are summarized in the package KdVIntegrals'.
The Gardner[] function activates our calculation of conserved quantities.
Given an integer as an argument, Gardner[] creates the first n conserved
densities. These densities are collected in a list. Applying Integrate[] to
the result of Gardner[], all even densities result in an integral of motion.
Results of a calculation with n = 6 are as follows:

g6=Gardner [u,x, t, 5]

{utx, 1), "D (x, 1), uO0x, 1) = ulx, 17, dulx, ) uO(x, 1) - w0, 1),
—5u19(x, 1) — 4 ulx, ) u®O(x, 1) = 2 ulx, ) @O, 1) — ulx, %) +
u®O(x, ), 14 uOx, ) u®O(x, 1) + 4 uO(x, 1) @O (x, 1) — ulx, H?) -
2ulx, ) G ulx, ) u"Ox, 1) — uBOx, ) + 4 ux, D uCOx, 1) +
2u(x, ) @0(x, 1) = 2uCx, HuOx, 1) - u®O(x, )

After integrating the list, we obtain

Integrate[g6, x]

{fu(x, Ndx, —u(x, 1), f(u(z’o)(x, ) —ulx, 1?)dx,

2u(x, 1 —u®Ox, 1), f(—S ut0(x, t)2 —4u(x, Hu®Ox, 1) -
2u(x, ) @0 (x, ) = ux, ) +u*O(x, ) dx,

16
-3 u(x, 03+ 8uPOx, Hu(x, 1) + 5 uMV(x, t)2 — u*0x, t)}
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3.5 Numerical Solution of the Korteweg—de
Vries Equation

Our considerations of the solutions of the KdV equations have so far been
restricted to reflectionless potentials and thus we have used a special type
of potential (Poschel-Teller potential) in the analytic calculations. In this
section, we examine solutions of the KdV equation for arbitrary potentials
u(x, 0). For an arbitrary potential u(x, 0), we cannot expect the reflection
coefficient to be b(k) =0. For a reflectionless potential, we solve the
Marchenko equation by a separation ansatz. For b(k) # 0, however, there is
no analytic procedure available to solve the Marchenko equation. In this
case, the KdV equation can be solved numerically. There are several
procedures for finding numerical solutions of the KdV equation. An
overview of the various integrating methods is given by Taha and
Ablowitz [3.4].

Nonlinear evolution equations are solvable by a pseudospectral method or
by difference methods. With respect to the difference methods, there are
several versions of the standard Euler method known as leap-frog and
Crank—Nicolson procedures. For our numerical solution of the KdV
equation, we use the leap-frog procedure as developed by Zabusky and
Kruskal [3.5].

All of the difference methods represent the continuous solution u(x, t) for
discrete points in space and time. In the process of discretization, the space
and time coordinates are replaced by x=mhand t=nk. m=0,1, .., M,
n=0,1,2, ..., h, and k determine the step lengths in the spatial and
temporal directions. Since the x domain of integration is restricted to an
interval of finite length, we choose & =27x/M for the step length in the
x-direction. The continuous solution u(x, f) is approximated for each

n.
m>

integration step by u(x, ) = u,; that is, steps h and k have to be chosen

properly to find convergent solutions as follows.

All discretization procedures differ in the representation of their
derivatives. The main challenge of the discretization procedure is to find
the proper representation of the needed derivatives. Errors are inevitable in
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this step and we have to settle for an approximate solution. Various
representations of the derivatives give us a varying degree of accuracy for
the representation of the solution. The leap-frog method of

—6uu+uy =0 3.5.1)
by the formula

n+l _ ut 1 "
Uy~ = Uy, + 37 (um+l + um + um l) (um+l m—l) s

k (35.2)

7w (ufsz =2u 22U —ul ).
The first term on the right-hand side of Equaton (3.5.2) represents the first
derivative with respect to time. The second term gives a representation of
the nonlinearity in the KdV equation. The last term in the sum of the
right-hand side describes the dispersion term of third order in the KdV.
The main advantage of the Zabusky and Kruskal procedure is the
conservation of mass in the integration process Zm —o Un,- Another aspect
of this discretization procedure is the representation of nonlinearity by
% (), + ul, +ulh,_;). In this representation, the energy is conserved up to
second order:

M-1 M-1
3 Zm:o W)’ = 3 Zm:(, @Y =003 for k-0  (3.53)

if u is periodic or vanishes sufficiently rapidly at the integration end
points. Since the Zabusky and Kruskal procedure is a second-order method
in the time domain, we face the problem of specifying the initial conditions
for the terms " and «"'. This problem can be solved if we use as a first
step of integration an Euler procedure given by

+1 _
“21 um + 37 k (um+l + L{ + um l) (um-H Z—l) -

(3.5.4)
hs (U = 2 Uy + 205y — Uy )
To find stable solutions for this integration process, we have to choose the
time and space steps appropriately. If we assume linear stability of the
solution procedure, we have to take the following relation into account:
h3

k< T (3.5.5)
where |u| denotes the maximum magnitude of u. The process of
integration includes the following steps:

1. Create the initial conditions.
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2. Execute the first step of the integration by applying the simple Euler
procedure using relations (3.5.4).

3. Iterate the following steps by using Equation (3.5.2).

4. Create a graphical representation of the results for equal time
intervals.

The above four steps for integrating the KdV equation are contained in the
package KdVNumeric'. KdVNIntegrate[] activates the integration
process. KdVNIntegrate[] needs steps /4 and &, the number of points used
in the x domain, and the initial solution for =0 as input parameters.
Results of an integration with the initial condition u(x, 0) = -6 sech® x are
given in Figure 3.5.1. As we know from our analytical considerations in
the previous section, we expect a bisoliton solution. Choosing a larger
amplitude in the initial condition u(x, 0) =—-10 sech’ X, we get two
solution components. In addition to the soliton properties, we observe a
radiation solution in Figure 3.5.2. The radiation part of the solution moves

in the opposite direction to that of the soliton and decreases in time.

c
c

2040608001020

204 0608/@ 01020 2040608001020

2040608001020 20406080 0

Numerical solution of the KdV equation for the initial condition u(x, 0)= — 6 sechx. The
time points shown from left to right and top to bottom are ={0,0.16,0.32,0.64}. The
calculation is based on 128 points in the x domain corresponding to a step size of & = 0.2.
The steps in the time domain are k = 0.002.

Figure 3.5.1.
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[=
[=

204 Q020 2040608001020

[

H=
[

H=

20406080 0

[

H=
[

H=

u u
X X
-4} 204 06 080 0 -4, 2040608 0
Numerical solution of the KdV equation for the initial condition u(x, 0) = - 10 sech x. The

Figure 3.5.2.  time points shown from left to right and top to bottom are #={0,0.16,0.32}. The calculation
is based on 128 points in the x-domain with a step size of 4 = 0.2.

The following cell demonstarates the application of the function
KdVNIntegrate[]. The solution of the KdV equation is generated on a
spatial grid line with 256 points. The time step is 0.001 and the spatial step
is 0.2. The initial condition is given by the function —12 sech(x).

KdVNIntegrate[-12 Sech[x], 0.2, 0.001, 256]
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50 10 50 200 250

14|

We observe fom the results that a four soliton plus and radiation is
generated. The three solitons move to the right where the radiation moves
to the left.

3.6 Exercises

1. Using the package KdVEquation®, find the type of differential
equation for approximating orders n = 3. Does this approximation
change the nonlinearity of the equation? What kinds of effect occur in
higher approximations?

2. Change the package KdVEQuation™ so that you can treat arbitrary
dispersion relations.Caution: Make a copy of the original package first!

3. Examine the motion of the four solitons of the KdV equation. Study
the phase gap in the contour plot of the four solitons.

4. Demonstrate that the odd densities of the conservation laws of the
KdV equation w, .41 (n =0, 1, 2, ...) are total differentials of the w,,,'s.

5. Reexamine the determination of eigenvalues for the anharmonic
oscillator. Discuss the link between the eigenvalue problem and the
KdV equation.

6. Derive a single soliton solution by using the inverse scattering
method for the KdV equation.

7. Examine the numerical solution of the KdV equation for initial
conditions which do not satisfy b(k) = 0.
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8. Change the step intervals in the space and time parameters of the
numerical solution procedure for the KdV equation. Examine the
accuracy of the numerical integration process. Compare the numerical
solution to the analytical solution of the KdV equation.

9. Study the influence of the discretization number M in the numerical
integration of the KdV equation.

3.7 Packages and Programs

3.7.1 Solution of the KdV Equation

The following package implements the solution steps for the KdV equation
discussed in Section 3.3:

BeginPackage ["KdVAnalytic™"];
Clear [PlotKdV, c2,Soliton];

Soliton::usage = "Soliton[x ,t ,N ] creates the N
soliton solution of the KdV
equation.";

PlotKdV::usage = "PlotKdV[tmin ,tmax ,dt ,N ]
calculates a sequence of

pictures for the N soliton solution of the K4V
equation. The time interval

of the representation is [tmin, tmax]. The variable
dt measures the length

of the time step.";

Begin[" "Private™"];

(* --- squares of the normalization constants c n
- %)
c2[n , N 1 := Block[{hl, x},

hl = LegendreP[N, n, x]*2/(1-x"2);

hl Integrate[hl, {x, -1, 1}1]

(¥* --- N soliton solution --- *)
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Soliton[x ,t ,N ] :=
Block[{cn,A,x,t,deltanm,u},

(* --- calculate normalization constants --- *)
cn = Tablelc2[i, N1, {i, 1, N}1;

(* --- create the coefficient matrix A --- ¥*)
A = Tablel

If[n==m, deltanm = 1, deltanm=0];
deltanm + (cn[[m]] Exp[8 m™"3 t - (m + n)
x]1)/(m + n),
{m, 1, N}, {n, 1, N}I;
(* --- determine the solution --- *)

u = -2 D[Log[Det[a]l]l,{x,2}]1;
u = Expand[u];
u = Factor|[ull
(* --- time series of the N soliton solution --- *)

PlotKdV[tmin ,tmax ,dt ,N ]:=Block[{pl,color,u},

(* --- create the N soliton --- ¥*)
u = SolitonIx, t,N];

(* --- plot the N soliton --- *)
Do [

If[t>0,color=RGBColor[0,0,1],color=RGBColor[1,0,0]];
Plot[-u, {x,-20,20},PlotRange->{0,15},
AxesLabel->{"x","-u(x,t)"},
DefaultColor->Automatic,
PlotStyle->{{Thickness[1/170],color}}],
{t,tmin, tmax,dt}]]
End[];
EndPackage ] ;

3.7.2 Conservation Laws for the KdV Equation

The following package is an implementation of the determination of
conservation laws for the KdV equation discussed in Section 3.4:

BeginPackage ["KdVIntegrals "] ;
Clear [Gardner] ;
Gardner: :usage = "Gardner[u ,x ,t ,N ] calculates

the densities of the integrals of
motion for the KdV equation using Gardner's method.
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The integrals are

determined up to the order N. u, x, t are the
symbols for dependent and independet variables,
respectively.";

Begin[" "Private™"];

Gardner[u ,x ,t ,N ] :=

Block [{expansion, eps,x, t,sublist
={},1list1={},list2},

list2=Table[1l, {i,1,N+1}];

(* --- representation of a Gardner expansion --- *)
expansion = Expand [
Sum[eps”n wlx,t,n] - eps” (n+l)
DIwlx, t,n],x],
{n,0,N}] -
eps”2 (Sumleps”n wix,t,nl, {n,0,N}])"2
ulx, t]
1;
(* --- compare coefficients --- *)

Do [AppendTo[listl,

Expand [Coefficient [expansion,eps,i] -w[x,t,1]111,
{i,0,N}1;

list2[[1]1] = -1istl[I[1]1];
(* --- define replacements and application of the
replacements --- *)

Dolsublist={};

Do [AppendTo [sublist,w[x,t,1] ->1ist2[[i+1]] 1,
{i,0,N}1;

AppendTo [sublist,D[w[x,t,n] ,x]->D[list2[[n+1]],x11];
list2[[n+2]] = listl[[n+2]] /. sublist,
{n,0,N-1}1;
list2
1;

End[];

EndPackagel];

3.7.3 Numerical Solution of the KdV Equation
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The following package provides functions for the numerical solution of the
KdV equation discussed in Section 3.5:

BeginPackage ["KdVNumeric™"] ;
Clear [KdVNIntegrate] ;

KdVNIntegrate: :usage =
"KdVNIntegrate[initial ,dx ,dt ,M ] carries out a
numerical

integration of the KdV equation using the procedure
of Zabusky & Kruskal.

The input parameter initially determines the initial
solution in the procedure;

e.g. -6 Sech”2[x]. The infinitesimals dx and dt are
the steps with respect

to the spatial and temporal directions. M fixes the
number of steps along

the x-axis.";

Begin[" "Private™"];

KdvNIntegrate[initial ,dx ,dt ,M ]:=Block[
{uPresent, uPast, uFuture, initialh, m,

n},
(* --- transform the initial conditions on the grid
- %)
initialh = initial /. £ [x ] -> £[(m-M/2) dx];
h=dx;
k = dt;
(* --- calculate the initial solutions on the grid
—o- %)
uPast = Table[initialh, {m,1,M}];
(* --- initialization of the lists containing the
grid points
uPresent = present (m)
uFuture = future (m+1)
uPast = past (m-1) --- %)
uPresent = uPast;
uFuture = uPresent;
ik = 0;
(* --- iteration for the first step --- *)
Do [
uPresent[[m]] = uPast[[m]l] + 6 k (uPast[[m+1]] +

uPast[[m]] + uPast[[m-1]1])
(uPast[[m+1]] - uPast[[m-1]]1)/(3 h) -
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k (uPast[[m+2]] - 2 uPast[[m+1]] + 2

uPast[[m-1]] -
uPast[[m-2]]1)/h"3,

{mI3IM_2}] 7

(* --- iterate the time --- *)
Dol
(* --- iterate the space points --- *)
Do [

uFuture[[m]] = uPast[[m]] + 6 k

(uPresent [ [m+1]] +
uPresent[[m]] + uPresent[[m-1]])

(uPresent [[m+1]] - uPresent[[m-111)/(3

h) -
k (uPresent[[m+2]] - 2 uPresent[[m+1]]

2 uPresent[[m-1]1] -
uPresent[[m-2]1])/h"3,
{m,3,M-2}1;
(* --- exchange lists --- *)
uPast = uPresent;
uPresent = uFuture;

(* --- plot a time step --- *)
If[Mod[n,40] == O,
ik = ik + 1;
(*--- plots are stored in al[ll, al2], a[6] ---%*)

a[ik] = ListPlot[uFuture,
AxesLabel->{"x","u"},
Prolog->Thickness[0.001],
PlotJoined->True,
PlotRange->{-15,0.1}11,
{n,0,500}]
1;
End[];
EndPackage ] ;
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