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1

Introduction

1.1 A Very Brief History of Financial Time Series

Conditionally heteroscedastic models for time series play an important role
in todays financial risk management, which typically tries to make financial
decisions based on observed discrete time asset price data P;. The prices P;
are believed to be nonstationary, and therefore they are often transformed to
so—called log—returns

Xi =log P —log P;_;.

The log-returns are approximately equal to the relative price changes and
appear to be in agreement with the hypothesis of stationarity, at least over
periods of time that are not too long (see Chapter 3).

It has frequently been suggested that (X;) constitutes a sequence of inde-
pendent and identically distributed (iid) random variables, or in other words,
that the log—prices (log P;) evolve according to a random walk. The founda-
tion for the random walk hypothesis was laid by the work of Samuelson and
is summarized in his comprehensive survey article [122]. Samuelson proposed
modeling speculative prices in continuous time imposing a geometric Brow-
nian motion. The discretization of this model leads to a random walk with
iid Gaussian increments for the discrete time log—prices. In the early days of
modern finance, the normal distribution played an important role. Its mathe-
matical tractability, particularly in the multidimensional case, paved the way
to elegant theories, such as the Markowitz portfolio theory [93] or the option
pricing theory of Black and Scholes [16], to name but a few.

For some time, the random walk hypothesis with Gaussian increments was
not statistically tested, mainly because of the fact that the graphical repre-
sentation and analysis of large data sets was very complicated without the
assistance of computers. This situation changed in the early sixties. Com-
puters became widespread, and people started to analyze financial data. The
hypothesis of geometric Brownian motion was soon rejected, e.g. by Mandel-
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brot [92] and Fama [48]. Their empirical studies were based on several US
stock log—return time series and their conclusion was that

e there is serial dependence in the data,
e the volatility changes over time,

e the marginal distribution of the data is heavy—tailed and asymmetric and
hence non—Gaussian.

These observations, sometimes called “stylized facts of financial data” and il-
lustrated in Chapter 3, are clear indications that a random walk with Gaussian
increments is not a very realistic model for financial log—price data.

It took some time before a satisfactory discrete time model was found by
Engle [46]. This important discovery was recognized by the Nobel Prize in
Economics of 2003. Engle’s model kills two birds with one stone. Not only
does it capture the stylized facts described above relatively well, but it is
also simple and in particular stationary, so that statistical inference is pos-
sible. Engle avoided the less elegant and more ad—hod methods to allow for
shifts in the variance, which were in fashion at that time. He called his model
autoregressive conditionally heteroscedastic (ARCH) because its conditional
variance (squared volatility) is nonconstant over time and shows an autore-
gressive structure. In ARCH, the observations are equal to iid white noise
(Z4), up to coordinate—wise multiplication with a positive process (o), where
for every fixed ¢ the noise variable Z; and o; are assumed independent. The
sequence (o) is also called the volatility process. The dynamics of (07) are
given via a linear regression with past squared observations.

A few years later, Bollerslev [18] enlarged the ARCH class by the intro-
duction of GARCH (generalized autoregressive conditionally heteroscedastic)
models. A stochastic process (X;) is called GARCH(p, q) (generalized autore-
gressive conditionally heteroscedastic) if it satisfies the equation

Xt :UtZta (11)

where (Z;) is a sequence of iid random variables with EZy = 0 and Var(Z,) =
1, and (o) is a nonnegative process obeying the recursive equation

p q
ol =a0+ Y X} +Y Biot . (1.2)

i=1 j=1

The parameters o; and 3; are nonnegative and the case ¢ = 0 corresponds
to ARCH(p). Again, o; and Z; are independent for every fixed ¢. The use of
GARCH often enhances parsimony, because compared to a pure ARCH pro-
cess, less parameters are needed for the description of the data. GARCH(p, q)
is still the benchmark model, although a variety of alternative conditionally
heteroscedastic time series models have been proposed in the meantime (see
Shephard [123] or Carrasco and Chen [31] for references).
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1.2 Contents of the Monograph

Despite the seemingly simple model equations (1.1)—(1.2), some of the stochas-
tic properties of GARCH(p, q) are not easy to establish. GARCH differs sub-
stantially from the (linear) autoregressive moving average (ARMA) models
(see Section 3.2 for their formal definition). This starts already with the con-
ditions for stationarity. When GARCH was introduced, it was quickly assumed
that >0 o + 2?21 B; < 1 1is necessary and sufficient for the existence of
a unique stationary solution to (1.1)—(1.2). The “proof” given for this state-
ment was the fact that the squares of a GARCH(p, q) process obey a cer-
tain ARMA (max(p, q),q) equation with noise sequence (X7 — o7), for which
S i+ 23:1 Bj < 11is necessary and sufficient for causality. Such a con-
clusion is however incorrect because it already presupposes the existence of a
stationary GARCH(p, ¢) process. At that time it was furthermore not realized
that the noise sequence is not iid and might have an infinite second moment.
Nelson [105] found the correct criterion for stationarity in GARCH(1, 1): nec-
essary and sufficient for stationarity is the condition E[log(a;Z2 + 1)] < 0,
and there are parameters with a1 + 37 > 1 in the domain of stationarity. Later,
Bougerol and Picard [21] gave a sufficient and necessary condition for station-
arity of GARCH(p, q); however, as we will see in Section 3.3, this condition
is in terms of the top Lyapunov exponent associated with a multidimensional
stochastic dynamical system, and it cannot be verified other than with Monte
Carlo methods.

Another source of difficulty was the limit behavior of the sample autoco-
variances of Xy, |X;| or X2. A complete answer was given by Basrak et al. [5]
(see Section 8.2 for the special case of GARCH(1,1)). As regards parame-
ter estimation, many questions remained open until recently, when Berkes et
al. [8] studied the so—called quasi maximum likelihood estimator (QMLE) in
GARCH(p, ¢), under minimal assumptions.

This book deals with parameter estimation in conditionally heteroscedas-
tic time series models. We extend the results of Berkes et al. [8] insofar that
we allow more general and “highly nonlinear” conditionally heteroscedastic
time series models such as asymmetric or exponential GARCH (see Section
1.2.1 below). We base our reasoning on so—called stochastic recurrence equa-
tions. We believe that this approach is adapted to the problem and that it
leads simultaneously to a high degree of generality, simplicity and clarity.
A second part is devoted to questions related to the limit behavior of the
QMLE if the tails of the innovations are heavy and of the Whittle estimator
in GARCH(1,1).

We have tried to write up the ideas and techniques in a pedagogical way so
that future research can hopefully benefit from our considerations. Although
the book rather focuses on theoretical questions and mathematical founda-
tions, many illustrations are included. In what follows, we provide some more
specific information about the topics of this book.
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1.2.1 Parameter Estimation in a General Conditionally
Heteroscedastic Time Series Model

A considerable part of this book (the Chapters 5 — 7) is devoted to the analysis
of a multiplicative model of form

{Xt = 014y,

teZ 1.3

0t2 :gG(thla-")thpagg—lv"'aag—q)a © ’ ( )
where the volatility process (o:) is nonnegative and {gg} denotes a finite—
dimensional parametric family of nonnegative functions on R? x [0, 00)? fulfill-
ing certain conditions. (Z;) is a sequence of iid random variables with EZ; = 0
and Var(Zp) = 1. We assume that Z; is independent of oy for every fixed ¢.
This fairly large class of models creates conditional heteroscedasticity because
Var(X; | Xe—1,..., X¢—py41,07 1,-..,07_,41) = 07 is in general a random pro-
cess. It contains e.g. GARCH(p, ¢q), asymmetric GARCH(p, ¢) and exponential
GARCH (see Section 3.3 for a definition of these models). In Chapter 5 we
study the so—called quasi maximum likelihood estimator (QMLE) and Chap-
ter 6 provides an analysis of the maximum likelihood estimator (MLE) applied
to the model (1.3). Immediately, there are important questions which might
be raised:

e How can one establish stationarity conditions for model (1.3) ?
e How can one approximate the unobservable sequence (07) from data ?
e How can one build up a (quasi) likelihood function ?

e How does one derive the limit properties of the (Q)MLE ?

The aim is to give answers as general as possible, but still useful enough
to be applicable to concrete examples. For the sake of simplicity we restrict
ourselves to the case p = ¢ = 1 in the following exposition. As we will see
in the subsequent chapters, it is apart from notational complications not too
demanding to generalize these ideas to higher order models.

Stationarity

By replacing X;_1 in (1.3) by 04_1Z;_1, one recognizes that (07) is a homo-
geneous Markov chain with transition mechanism

0’? = g(Utflztfl, 0?71)7 t e Z, (14)

where g = gg, with 6y the true parameter. Alternatively, one can interpret
relationship (1.4) as a random transformation of o;_;. Traditionally the sta-
tionarity (or stochastic stability) of nonlinear time series models has been



1.2 Contents of the Monograph 5

treated with techniques from the theory of general state space Markov chains,
see e.g. Meyn and Tweedie [96]. We believe that applying this methodology
would lead to an estimation theory which is too general, such that a vari-
ety of new problems would be created. Likelihood inference for discrete time
Markov processes was developed by Billingsley [11] and later extended to
non-Markovian discrete time processes by Hall and Heyde [62], but a plain
application of these fairly general results to model (1.3) is not straightforward
because of the fact that (o) is unobservable.

Instead we use contraction techniques of so—called stochastic recurrence
equations (SREs). An example of a SRE is provided by the recursive relation-
ship (1.4). Note that one can alternatively write (1.4) as

Ut2+1 = 1/’t(gf): teZ, (1.5)

where ¢;(s) = g(v/sZt, s) is a random map [0, 00) — [0, 00). This means that
07, is a random transform of o7. For a definition of the notion of a SRE on
a general separable complete metric space, which is due to Bougerol [20], and
a summary of the relevant tools, we refer to Section 2.6 of this monograph.
Concerning SREs we have been very much inspired by the excellent survey
article by Diaconis and Freedman [38]. An important technique in this field
is the backward iteration idea, which says that one should start the Markov
chain induced by (1.5) at a time point ¢ — m in the past with some initial
value, ¢2 say. The observation at time ¢ of the Markov chain initialized in this
way is called the mth backward iterate and equal to

5f,m =1y 10t g0---0 1/1t—m(§g).

The further in the past the Markov chain starts, i.e., the larger m, the “closer”
to stationarity will the chain be at the present, i.e., at time ¢. Letac [86] was
the first who made this intuition mathematically precise. His principle can be
summarized as follows: if

e (67,,)men converges almost surely (a.s.), with a limit irrespective of 7,

e the random map ?; is continuous a.s.,

then (limy,— 00 5§,m)t€Z is the unique stationary sequence obeying (1.5). In
practice one would like to have mathematically tractable criteria which imply
the almost sure convergence of (&f’m)meN. Similarly to the classical Banach
fixed point theorem for deterministic sequences generated by functional iter-
ation, the requirement that ; is “contractive on average”, i.e.,

|9e(s) — Pe(3)] < A(¢r) |s — 3] (1.6)

with E[log A(10)] < 0, suffices for the almost sure convergence of (67,,)men,
with a limit irrespective of ¢3. Here A(t);) denotes the random Lipschitz co-
efficient
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Al s,gilég;é; |s — 3|
The condition E[log A(19)] < 0 can even be weakened. Already the contrac-
tivity of r—fold iterates for a certain r > 1 implies the almost sure convergence
of (67,,)men with a limit irrespective of ¢§. This means that it is enough to
require
Ellog A(Ypgo---0tp_p41)] <O. (1.7)

Since A is submultiplicative, the condition (1.7) is certainly weaker than
E[log A(tpo)] < 0. Often it is not enough to analyze the maps 1; when one
wants to establish the almost sure convergence of the sequence (67 ,,)men as
it might well be that E[log A(10)] > 0 but E[log A(¢go---0tp_,41)] < 0 for a
certain . This is e.g. the case for the SRE arising from the state space repre-
sentation of GARCH(p, ¢), see Section 3.3.1. The key result about stationary
solutions of SREs used over and over again in this monograph, Theorem 2.6.1,
relies on a contraction condition of form (1.7).

Reconstruction of (o)

Now, the problem of stationarity being resolved, we assume data Xo, ..., X,
from model (1.3) has been observed. The “canonical approach” used by time
series analysts and econometricians in order to approximate o? from data
Xo,...,Xn, is to take a starting value 65 = ¢¢ say, and then to iteratively
generate

Gty = u(67) (1.8)
with ¢:(s) = g(Xt,s) for t = 1,...,n (see e.g. Nelson [106]). To make this
algorithm work, the error of approximation should decay to zero as t — oo,
ie.,

62 — 02| = 0. (1.9)

It is shown in Section 5.2 that this requirement can be interpreted as an
invertibility property of the model. Note that an alternative interpretation of
(1.8) is that (67)sen is a solution of the SRE

St+1 = ¢t(3t)7 t € N. (110)

Another statement of the key result Theorem 2.6.1 is as follows: if the random
map ¢go- - -0¢_,41 is “contractive on average” for some r > 1,1i.e., E[log A(¢go
-++0¢_p11)] < 0, then the so—called forward iterates (67);cn converge towards
the stationary solution (¢7) of the SRE (1.10) with index set Z, and the error
is exponentially decaying, i.e., there is a v > 1 such that

767 — o] == 0, t — oo.

Thus the condition E[logA(¢go---0¢_,11)] <0 for an r > 1 implies (1.9).
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Deriving a Likelihood

Suppose that Z; has density k,, where v is some nuisance parameter. Then,
provided we knew (o), the log-likelihood of observations (X, ..., X,) would
equal

zn: (—logoy +log ki (X¢/0t)) - (1.11)

t=1

But now we need to approximate o7 under the parameter hypothesis 6. The
“canonical approach” is similar to the fixed parameter case 8 = 6. Take an
initial value ho(60) = 2 and set

hi41(6) = go(Xy, hu(6)) (112)

for t > 1. This generates a sequence of random functions (hy)ien, and by
replacing o7 by h:(6), we obtain the log-likelihood

R n R X
Pn(0,0) =34 —log/hu(0) +logh, |
= Vi)

The MLE is the maximizer of L, with respect to (6,v). Often one does
not want to specify the class {k,}. Then it is advisable to maximize the
log-likelihood with respect to a standard normal density (i.e., k,(z) =
(27)~1/2¢-2"/2) since the resulting estimator, which is called the (Gaussian)
quasi maximum likelihood estimator (QMLE), is strongly consistent under
relatively weak regularity assumptions, see Section 5.3.

A Stationary Approximation of (hy):en

Observe that (hy)ien is nonstationary in general. Before we can tackle the
limit properties of the (Q)MLE, we need to present the idea of a stationary
approximation. When starting to think about the problem of finding an ap-
proximation of (iLt)teN by a stationary sequence (h;)ten, one soon arrives at
the conjecture that such a sequence must obey

ht+1 (0) = gg(Xt, ht(e))a t e N. (113)

Assume 6 € K C R? where K is compact, and denote by C(K) the space
of continuous functions on K, equipped with the sup—norm || - ||x. We then
introduce random maps ®; on C(K) given by

[@:()](0) = go(X:,5(0)), s € C(K).

Comparing this with (1.13), we deduce that (h:)ien is a stationary solution
of the SRE
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St+1 = q)t(St), te N, (114)

on C(K). We study the existence and uniqueness of a stationary solution to
the SRE (1.14) with index set Z again by means of Theorem 2.6.1. By similar
arguments as before, the backward iterates to (1.14) converge almost surely
if there is > 1 such that the random map ®go:-- 0o ®_,. 4 is “contractive
on average”, i.e., E[log A(®go---0®_, ;)] < 0. In that case, the sequence
defined by

ht: lim ‘}tflo"'o(ﬁt,m(g%), tEZ,

m— 00

is the unique stationary ergodic solution of the SRE (1.14) (with index set
Z); cf. Section 5.2.3. Moreover, the forward iterates (ﬁt)teN approach (hy)ien
with an error decaying exponentially fast as t — oo, i.e., there is a % > 1 such
that

by = hellxe =0, ¢ — oo. (1.15)

Thus the stationary ergodic sequence (ht)ien indeed approximates (ﬁt)teN.

The SRE approach is also useful for the treatment of the first and second
derivatives of h;. From differentiation of both sides of (1.13) with respect to
0, we obtain

096
Os

. b .
Biia(0) = S (Xi,1u(0)) +

(X0, hn(0) y(6).  (1.16)
Similar arguments as before yield that (ﬁ;)teN can be approximated by the
stationary sequence (d)ten, where (d;) is the unique stationary ergodic solu-
tion of the linear SRE

096
Os

0ge

St41 = 00 (X¢, he) +

(Xt,ht) St, t e Z,

and ||h} — dy||x — 0 at an exponential rate when ¢ — co. Not unexpectedly it
turns out that d; coincides with the first derivative h}. Similar statements hold
true for ﬁg’, see Section 5.5. It is perhaps worth mentioning that the random
maps transforming A} into h) 41 are nonstationary (since (h¢)¢en is nonstation-
ary). By virtue of (1.15) these random maps “tend to stationary ones with
an error decaying exponentially fast”. The additional difficulty arising from
nonstationary transformations is treated in Theorem 2.6.4.

The Limit Properties of the (Q)MLE

Our approach to the derivation of the limit properties is classical, see e.g.
Lehmann [85], Ferguson [51] or van der Vaart [129]. A brief summary of the
main steps in such proofs is given in the following:

Strong Consistency.

One first shows that f/n/n == L, where the almost sure convergence is
uniform, say on a compact set which contains the true parameter. In a second



1.2 Contents of the Monograph 9

step, one proves that the limit function L is uniquely maximized at the true
parameter (6g,1q); this implies the strong consistency of the (Q)MLE (note
that there is no maximization with respect to v in the case of a QMLE).

Asymptotic Normality.

The proof relies on a second order Taylor expansion of L, about the
(Q)MLE of (0,v). Although the methodology is rather standard, the nec-
essary validation of all the formal arguments is fairly technical.

Difficulties and their Resolution.

The main difficulty stems from the fact that (h;)icn is nonstationary so
that the limit of L, /n cannot be obtained via the ergodic theorem. At first
sight, the influence of the initializing constant ¢? in the definition (1.12) of
(hy)ien is unclear. A way out is offered by the stationary approximation
(ht)ten. One replaces hy in (1.11) by h; and so obtains an approximation

n

La(®,v) =" {—log Viu(®) +log, (wiit(m) } |

t=1

of L,. Note that L, is easier to handle than L,, because L,, is the partial sum
of a stationary ergodic sequence, so that the use of the ergodic theorem is
possible. Since the approximation error ||i; — || tends to zero at a geometric
rate, one can show that, uniformly in (0, v),

Ln(0,v) = L,(0,v) + Os(1). (1.17)

From this uniform error bound, which of course is only valid under regularity
assumptions on {k, }, one concludes that strong consistency of the maximizer
of L,, and strong consistency of the (Q)MLE are equivalent. Since the sequence
(h¢)een is free of the constant 3, the latter equivalence (1.17) moreover implies
that ¢7 is asymptotically irrelevant for the (Q)MLE. From a similar error
bound on the first derivative of L,, — L, one can prove that it is sufficient to
establish asymptotic normality for the maximizer of L,. The mathematical
elaboration of these ideas leads to many technicalities, as is revealed from a
glance at Chapters 5 and 6.

There is one mathematical tool which deserves to be mentioned in the
introduction: the ergodic theorem for sequences of random functions in
C(K,R%). Although it allows one to establish uniform convergence of L, /n
in a simple and straightforward way, it seems to be rather neglected in the
literature (see Section 2.2).

Misspecification

The distribution of the innovations Z; does not need to be specified for the
QMLE, as the quasi likelihood is built up under the synthetic assumption of
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standard Gaussian errors. Despite this misspecification, the QMLE is strongly
consistent. This is in line with the statistical rule of thumb which says that
maximizers of likelihoods with respect to Gaussian errors provide consistent
estimates of the parameter of interest. Another example of this kind is multi-
ple regression, where imposing iid Gaussian errors leads to the least—squares
estimator, which is consistent even if the errors are in fact non—Gaussian.
The situation is totally different when we base the MLE on the distribu-
tional assumption
Zy iid ~ ky(z) dz, (1.18)

and k, non—Gaussian. Suppose we are wrong, i.e., there is no v such that
(1.18) applies. Then the O-parameter of the MLE is inconsistent. Section 6.2
provides a detailed discussion of this problem, and complements and clarifies
similar observations made by Newey and Steigerwald [108].

Heavy Tails

As a matter of fact, for asymptotic normality of the QMLE in GARCH(p, q),
the innovations must have a finite 4th moment, i.e., EZ¢} < co. In Chapter 7
the limit behavior of the QMLE is determined in the case EZj = oo. More
precisely, one supposes that ZZ is regularly varying with index « € (1,2), i.e.,

P(Z3 > z) = L(z) 27", z = 00,

where L is a slowly varying function. We defer the formal definition of a
slowly varying function to Chapter 7 and content ourselves to mention that
L(z) plays the role of a constant (a constant function is slowly varying). Under
the above distributional assumption, one can use a central limit theorem for
infinite variance stationary ergodic martingale difference sequences of Mikosch
and Straumann [103] in order to obtain the limit behavior of the QMLE:

e The QMLE is strongly consistent.

1-1/k

e The rate of convergence is of magnitude n , and the limit distribution

is (multivariate) k—stable.

This asymptotic result is of qualitative nature since it is of limited use for
inference; at the time being, the parameters of the k—stable limit distribu-
tion are not explicitly known. With different techniques, Hall and Yao [63]
established the same result.

1.2.2 Whittle Estimation in GARCH(1,1)

Since the squares X7 of GARCH(p, q) obey an ARMA (max(p, q),q) equation
with white noise, one can apply the classical Whittle estimator to the squares
of GARCH(p, ¢). Giraitis and Robinson [56] show in this context that the
Whittle estimator for the parameters in the resulting ARMA model is strongly
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consistent and asymptotically normal provided the marginal distribution of
the process has a finite 8h moment. In Chapter 8 we focus on the case when
EX§ = 0o and GARCH(1,1). This case corresponds to various real-life log—
return series of financial data. We show that the Whittle estimator applied
to squared GARCH(1,1) is consistent as long as the 4th moment is finite
and inconsistent when the 4th moment is infinite. Using classical methods
from the theory of Whittle estimation, one shows that the rate of convergence
and the limit distribution of the Whittle estimator are determined by the
convergence rate of the sample autocovariances of the squares X}? and their
joint finite—dimensional weak limits. Once all the necessary technicalities have
been overcome for proving this, it is straightforward to apply the results of
a paper by Mikosch and Starica [99]. Using the theory of Kesten [72] and
Goldie [58] on the tail behavior of solutions of stochastic recurrence equations,
Mikosch and Stérica show that for a stationary GARCH(1, 1) process (X;)
there exists a so—called tail index x > 0 and a positive constant ¢ with

P(|Xo| > z) ~ ca™", T — o0.

The case EX; < oo and EX§ = oo, which we are considering for Whittle
estimation, corresponds to a tail index k € (4,8]. Moreover, Mikosch and
Starica [99]. prove that the sample autocovariances of the squares X? are
strongly consistent estimators of their deterministic counterparts, with a rate
of convergence given by n'=%/%_ Properly normalized, the finite—dimensional
vectors of sample autocovariances converge in distribution to some non-—
Gaussian limit. Altogether we can conclude that the fatter the tail of Xy,
i.e., the smaller &, the slower the rate of convergence of the Whittle estimator
to the true parameters. This limit result is again qualitative and not partic-
ularly useful for statistical inference because the emerging limit distribution
is not easy to handle. Exactly the same results hold for the least—squares
estimator because it is asymptotically equivalent to Whittle.

1.3 Structure of the Monograph

To conclude, we give a short description of the individual chapters:

Chapter 2. We discuss certain mathematical tools and concepts: stationarity,
ergodicity, uniform strong law of large numbers, matrix norms, weak con-
vergence, exponentially fast almost sure convergence, SREs.

Chapter 3. We give a short survey of linear and (nonlinear) financial time
series models and describe their stochastic properties.

Chapter 4. We motivate certain estimators and provide a survey of existing
limit results in the literature.
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Chapter 5. We analyze the QMLE in the general model (1.3) and apply the
resulting theory to specific models. A small simulation study is included.

Chapter 6. We analyze the maximum likelihood estimator (MLE) in model
(1.3) and discuss the issue of misspecification. Moreover, the MLE for
AGARCH(p, q) with Student ¢, innovations is treated.

Chapter 7. Here we study the QMLE in model (1.3) when the innovations
are heavy—tailed, i.e., have an infinite 4th moment. The resulting theory
is applied to GARCH(p, q)-

Chapter 8. This is a technical chapter, where the limit properties of the Whit-
tle estimator applied to the squares of GARCH(1, 1) are derived.



2

Some Mathematical Tools

This chapter introduces the relevant notation and gives a collection of auxil-
iary results, which will be needed later in this monograph. It may be skipped
upon first reading since in the subsequent chapters we will indicate whenever
we make use of one of the results of this chapter. After a discussion of station-
arity and ergodicity of sequences of random elements with values in general
spaces, we treat the uniform strong law of large numbers. This is followed by
a small section on matrix norms. We then give a summary of results related
to weak convergence in the space of continuous functions on compact subsets
of R?. Then we introduce a notion of convergence less common in the litera-
ture: exponentially fast almost convergence. The last part is about stochastic
recurrence equations, which play a crucial role in our exposition on estimation
in conditionally heteroscedastic time series models.

2.1 Stationarity and Ergodicity

Stationarity and ergodicity of stochastic processes play an important role in
time series analysis. In what follows we recall the definitions of stationarity
and ergodicity for sequences of random elements with values in a general space
and state two important results which enable one to establish stationarity
and ergodicity in a straightforward way. In our notation we closely follow
Section 1.4 in the monograph of Krengel [77]. We also refer to Stout [124],
where the more elementary case of stationary real sequences is treated.
As a general definition for this monograph,

N={0,1,2,..}.

For any sequence (v¢)tcz we write (v;) in abridged form. Let (Q2, A,P) be a
probability space and (E, £) a measurable space. Then a function on ) taking
values in E and being A-€ measurable is called an F—valued random element.
A sequence (v¢) of E—valued random elements is called stationary if for all
teZ,neNandhe€Z,
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d
(Vty s Vt4n) = (Vtthy - -+, Vbt htn)s

where the symbol 4 denotes equality in distribution. A sequence (v) of E—
valued random elements gives rise to the definition of the canonical space E%
of doubly infinite sequences in FE, i.e.,

E*={(e;)|es € Eforallt € Z}.

By equipping E? with the o-field £% generated by the family of finite—
dimensional product cylinders, i.e.,

€% = a({gc

we obtain the measurable space (E%,£Z). Then a sequence (v;) of E—valued
random elements may also be regarded as a random element taking values
in E” and inducing a measure P on (E?,£%) by P(C) = P((v;) € C) for all
Ce&?

Ergodicity of sequences of random elements is defined in terms of the
canonical space because it involves a measure preserving transformation,
which in general has to be constructed on (E%, £%,P). This transformation is
the backshift operator 7 in E%, i.e., 7((e;)) = (et41), t € Z, which is measur-
able. It can be verified that 7 preserves the measure P, i.e., P(771(C)) = P(C)
for all C € £7, if and only if (v;) is stationary. For the following we assume
that (v;) is stationary (and hence 7 measure preserving). Furthermore we call
aset C' € £Z invariant if 771(C) = C, and we say that (v;) is ergodic if for all
invariant sets C, either P(C') = 0 or P(C') = 1. The definition of stationarity
and ergodicity of one-sided sequences (v¢)ien is similar, see Krengel [77].

The standard example of a stationary ergodic sequence of random elements
is an iid sequence; note that the ergodicity of an iid sequence is implied by
Kolmogorov’s 0-1 law. If one has a certain stationary ergodic sequence, it
is relatively simple to generate others. This is the content of the following
well-known result, see e.g. Proposition 4.3 in Krengel [77].

Proposition 2.1.1. Let (E,&) and (E,€) be measurable spaces. If (v;) is a
stationary ergodic sequence of E—valued random elements and f : (BN, EN) —
(E, &) is measurable, then the sequence (v;) defined by

EInZO:Ci:Efor|i|>nand0i€5for|i|§n}),

f}t :f(Ut,’Utfl,...), t EZ, (21)
is stationary ergodic.

Proof. We demonstrate this result for the sake of completeness. Note that the
measurable space (EY, EY) is defined analogously to (E?,£7%). We follow the
lines of proof of Proposition 4.3 in Section 1.4 of Krengel [77]. For stationarity
we have to demonstrate that (7;) 4 (D¢4) for every fixed k € Z. Let 7 denote
the backshift operator on E? and note that the special form (2.1) of f implies
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fork=7rof. (2.2)

From this we conclude {(vi1) € f1(C)} = {(B14x) € C} for any C € &7,
and hence

P((7) € C) =P((ve) € f () = P((ve41) € fH(C)) = P((Br44) € C)

by stationarity of (v;). Thus the stationarity of (¢;) is shown. For proving the
ergodicity of (#;), we assume that C' € £ is an invariant set. We claim that
f ’1(C~') is invariant under the backshift operator 7 on E%. Indeed, by virtue
of for =70 f we have

FHO =G HO) =G f) HC) = (for) HO) =7 1(F H(O)).

Because f~1(C) is invariant for (v;), it is trivial and P((v;) € f~1(C)) either
0 or 1. The proof is completed by noting P((¢;) € C) = P((v¢) € f~1(C)). O

Remark 2.1.2. An analogous statement is true for one-sided stationary
ergodic sequences (vg)ien: if f @ (BEY,EN) — (E,&) is measurable, then
(0¢)ten = (f(ve,Ve41, - . .))ten is stationary ergodic; see Krengel [77]. O

The following corollary is particularly useful for showing stationarity and
ergodicity of time series models which are defined through some limit relation.

Corollary 2.1.3. Let (2, A,P) be a probability space, and let (E,E) be a
measurable space and E a complete and separable metric space, which we
endow with its Borel o—field £ = B(E). Assume that (v;) is a stationary er-
godic sequence of E—valued random elements. Let f,, : (EN,EN) — (E, ),
m € N, be measurable maps such that for some to € Z the sequence

(fm (Vg Veo—1,---))men converges in E a.s. Then there evists a measurable
map f: (EY,EN) — (E,&) such that for all t € Z,

1~)t = lim fm(Utavt—la---) = f(Ut;Ut—la---) a.s.,
m—00

and the sequence (U¢) is stationary ergodic.

Proof. Although the content of the corollary seems quite elementary, we are
not aware of any reference.
Define the subset

By = {(et) e EY| lim fm((er)) exists}

m—0o0

and the function f : (EY,&N) — (E, &) by

hmm%oo fm((et))a (et) S EO)
€o, (et) ¢ EO:

f(er)) =
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where &, € E is an arbitrary fixed element. The proof is completed if we
can show that f is measurable. Because by construction of f we have that
fm(ve,ve—1,...) = f(vt,v4—1,...) as m — oo if and only if (v, vi—1...) € Ey.
Since we assume that f,,(vi,, v—1,-..) converges almost surely,

[P((’Uto,’l}to_l, . ) € Eo) =1. (23)

Because of the stationarity of the sequence (v:), relation (2.3) implies that
P((vt,vt—1,...) € Ep) = 1 for every t € Z, and consequently we have
lim,, oo frn(ve,ve—1,...) = f(vs,v4-1,...) as. for every t € Z. The station-
arity and ergodicity of the sequence (#;) then follow by an application of
Proposition 2.1.1.

We now show that f is measurable. The ideas are based on Section 4.2
of Dudley [43]. Let us first prove that Fy € V. Since E is complete, Ey is
equivalent, to the set of elements (e;) € E" with (f,((et)))men being Cauchy
in E, i.e., if d stands for the metric in E,

Bo= (U N {(e) € B [d(fml(e0), faller)) < 1/k }.
k>1neNm>n

At this stage the separability assumption has to be exploited because one
cannot directly conclude that the sets { (e;) € E"|d(fm((er)), fu((er))) <
1/k} are measurable. There is a countable subset M = {é1,é,...} C E
whose closure is equal to E. We define h,, : (EY,EN) = (E, &) by

hm((er)) = argmingg. ;=1 . ny d(fm((et)), &),

where by convention the minimizer is the element é; with lowest index i if
two or more points are equally close to fi,,((e:)). Note that the range of Ay,
is included in the finite set {é;,...,én,}. It is standard to verify that h,, is
measurable and that (f,,((et)))men converges if and only if (h.,((€t)))men
converges. Thus we have the representation

=N U N {0 € B b, halle) < 1/k }.

k>1neNm>n

Since h,, and h,, are measurable and have a finite range, one can show that

the sets
{ (e1) € ¥ [d(hm((e0)), hu((e0))) < 1/ }

are measurable for all m,n and k, and consequently Ej is measurable, i.e.,
Ey € EN. From this we can deduce that the functions

- fm €t)), €t Ep,
uey =4 ((er), (er) €
€0, (er) ¢ Eo

are measurable for every m € N. Also note that f, — f as m — oo on
EY. Since a sequence of measurable functions taking values in a metric space
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and converging everywhere has a measurable limit, see e.g. Theorem 4.2.2 in
Dudley [43], f is measurable. This completes the proof of the corollary. O

It is now an easy matter to establish the stationarity and ergodicity of causal
linear processes.

Example 2.1.4. Let (X;) be a causal linear process, i.e., of the form
o0
thzwjzt—ja tEZ,
j=0

where (1;)jen is an absolutely summable sequence with ¢y = 1 and (Z;) is
an iid sequence with mean zero. Then, since (Z;) is iid (and hence stationary
ergodic by Kolmogorov’s 0-1 law) and X; = lim,, Z;TL:O Y;jZi_j as., the
process (X;) is stationary ergodic as well by Corollary 2.1.3. We remark that
E( Z;”zo ;] 1Z:—;]) < oo by the monotone convergence theorem, which shows
that 337" o [¥;]1Zi—j] < oo as. O

Remark 2.1.5. Corollary 2.1.3 in its present formulation does not allow one
to show the stationarity and ergodicity of non—causal linear processes, i.e.,
processes of the form

thzl/]jzt—ja teZa
JEZ

where .7 [1;] < oo and (Z;) is iid with mean zero. However, recalling that
(2.2) was the crucial property used in the proof of Proposition 2.1.1, one may
generalize Proposition 2.1.1 and Corollary 2.1.3 by merely requiring that the
maps f and f,,, obey the relation (2.2). The generalized results will then enable
one to verify the stationarity and ergodicity of non—causal linear processes.
We omit details. O

2.2 Uniform Convergence via the Ergodic Theorem

We begin by recalling Birkhoff’s ergodic theorem [15] for real-valued sequences
of random variables: if the sequence (X;) or (X})sen, respectively, is stationary
ergodic with E|Xy| < oo, then

1 as

ZXt 22 EX,, n — oo.
n

t=1

Note also that the ergodic theorem is a generalization of the strong law of
large numbers for iid sequences to dependent sequences. A proof of the ergodic
theorem is contained in most advanced textbooks on probability theory.
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In proofs for establishing consistency and asymptotic normality of M-
estimators, one often has to show that the uniform strong law of large numbers
is valid. To be more specific, let us assume that K C R? is a compact set.
Then C(K,R%) denotes the space of continuous R? ~valued functions on K
and, for short, C(K,R) = C(K). We equip C(K, Rd’) with the supremum
norm

ol = sup fo(s)], v € Cl&,RY),
sEK

where |v(s)| = (v}(s) + -+ + v%(s))!/? is the Euclidean norm of the vector
v(s) = (vi(s),...,va(s)T. It is well-known that C(K,R%) is a separable
Banach space, see e.g. Kufner et al. [78]. For enabling probability theory,
we endow C(K,R%) with the Borel o—field generated by the open sets in
C(K, Rdl). Let us assume that we are given a stationary ergodic sequence of
random elements (v;) ) (or (v¢)en) with values in C(K,R?). In this context
we say that the uniform strong law of large numbers holds, if in C(K, Rd’),

1~ e
wy = E v = 0, n — 00, (2.4)
n
t=1

where the function v is defined pointwise by
v(s) = E[vo(s)], s € K. (2.5)

Note that (2.4) entails that v € C(K,R?) a.s. Many authors establish the
validity of the uniform strong law of large numbers in two steps. First they
show pointwise convergence, i.e.,

I ae
wn(s): nzvt(s) 41}(5)7 n — o0,
t=1

for every fized s € K, e.g. by applying the ergodic theorem to the real-valued
ergodic sequence (v:(s)). In a second step, uniformity is proved, i.e.,

|wn —v]|k = 0, n — oo.

Recall that a sequence of functions converges in C(K, R?) if and only if it con-
verges pointwise and constitutes an equicontinuous family; see e.g. Lang [80].
Therefore the almost sure uniform convergence of (wy)n>1 is equivalent to
pointwise convergence and equicontinuity of the family {w, | n > 1} with
probability one. In the literature there exist various conditions which imply
equicontinuity, see e.g. Andrews [2]. These conditions often involve certain
Lipschitz or Hélder conditions. For example the condition

sup{ sup |wn(s) B wn(u)| } < oo a.s.

n>1 | s,ueK,s#u |S - ’U,|
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implies the almost sure equicontinuity of {wy, | n > 1}. If one assumes that K
is connected and wv; is continuously differentiable with probability 1, then the
latter condition is implied by E||lv{l|x < oo, as follows by an application of
the mean value theorem and the ergodic theorem (note that (v;) is stationary
ergodic). This is actually the kind of condition which is verified in the articles
of Lee and Hansen [84], Lumsdaine [90] and Berkes et al. [8]. We suggest a
simpler method, which avoids the calculation of the first derivatives. It is based
on the ergodic theorem for C(K,R% )—valued sequences of random variables
and requires that the stationary sequence (v¢) is ergodic and has a bounded
expected norm.

Theorem 2.2.1. Let (v;) or (ve)ien, respectively, be a stationary ergodic se-
quence of random elements with values in C(K,R%). Then the uniform strong
law of large numbers is implied by

E||lvo||lk < o0.

Hence the ergodicity of (v;) together with E||vo||x < oo implies the a.s. equicon-
tinuity of {w,, | n > 1}. Theorem 2.2.1 goes back to Ranga Rao [115] and is
e.g. contained in Parthasarathy [110]. In the subsequent sections we explain
the background of Theorem 2.2.1 and provide a proof in the more general
setting of a separable Banach space.

Exploiting the work of Wald [131] and Le Cam [81] on the consistency
of the maximum likelihood estimator for 4id data (see also Ferguson [51]),
it is also possible to provide a proof of Theorem 2.2.1 merely based on the
ergodic theorem for real-valued sequences together with certain topological
arguments; we omit the details.

2.2.1 Bochner Expectation

We assume that B denotes a separable real Banach space with norm || - ||,
endowed with its Borel o—field B generated by the open sets with respect to
|| - ||. The separability of B assures that any linear combination of B—valued
random elements is again measurable (and therefore a random element); see
Ledoux and Talagrand [83]. However, also the expectation of B-valued ran-
dom elements needs to be defined. If B has finite dimension d, the space
B is isomorphic to R?, and taking the expectation is essentially coordinate—
wise (ordinary) Lebesgue expectation. A general infinite-dimensional space
B however calls for an extension of the Lebesgue expectation. This task was
accomplished in 1933 by Bochner [17]. Since B is assumed to be separable, we
may use Lemma V-2-4 and Proposition V-2-5 in Neveu [107] for introducing
the Bochner expectation Eg,. It is defined for B—valued random elements Y
with E||Y]] < oo. Note that ||Y]| is automatically an ordinary nonnegative
random variable because taking the norm is a continuous and therefore mea-
surable transformation. Lemma V-2-4 in Neveu [107] says that such a Y may
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be approximated by simple random elements, i.e., by random elements of the
form

km
Ym = E Cm,i ]‘Am,i?
i=1

where ¢y, ; € B are deterministic and A, ; € A constitute a disjoint decom-
position of €2, such that

(a) for every w € : YV (w) = limy 00 Yin (w),
(b) for every w €  and m € N: ||V, (w)|| < |V ()]l

(€) limyms o0 E|[Y;n — Y| = 0.

This leads to a natural definition of the Bochner expectation Ego,Y with
respect to the probability measure P:

1. For a simple random element Y = Zle c;14, we define the Bochner
expectation by

k
EBOY = Z C; ]P’(Az)
i=1

2. A general random element Y is approximated by a sequence of simple
random elements (Y;,)men fulfilling lim,, o E||Y,, — Y| = 0. The exis-
tence of such a sequence is guaranteed by Lemma V-2-4 in Neveu [107]. It
is easy to show that ||Ep,Z|| < E||Z|| for any simple random element, Z.
This inequality and the facts that linear combinations of simple random
elements are again simple and that the operator Ep, is linear in the space
of simple random elements. imply

[EsoYinsj — EnoYiull < BVt — Youll < EllYinsj — Y| + El|Ys, — Y.

Since E||Y,, — Y|| — 0, this shows that (EpoYy,)men forms a Cauchy
sequence in B and hence has a limit. We define the Bochner expectation
by

EBOY = lim EBoYm-

m—»00

The Bochner expectation is well-defined since the definition of Ep,Y is
irrespective of the approximating sequence. Indeed, if (Yy,)men is another
sequence fulfilling lim,, o E||Y,, — Y| = 0, then by

||EB0Ym - IE:Boffmn = ||EB0(Ym - 1~fm)“ < E”Ym - Y/mH
S E”Ym - Y” +E||Y - f/mH =0

we may conclude that lim,, o Ego Yy = lim,, EBOY’m.
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3. It is immediate that the Bochner expectation is linear and decreases the
norm, that means for any random elements Y7 and Y2 with E||Y;|| < oo,
i=1,2,and a;,as € R

Ego(a1Y1 + a2Y2) = a1EgoY1 + a2Eg, Yo,
IEpo Y1l < EJYal.

4. Because the Bochner expectation of simple real-valued random variables
coincides with the Lebesgue expectation, the Bochner expectation of real—
valued random variables is equivalent to the Lebesgue expectation; hence
Bochner expectation can be regarded as a generalization of Lebesgue ex-
pectation.

Remark 2.2.2. The Bochner expectation may also be defined for functions
taking values in a non—separable real Banach space, but then Lemma V-2-4
in Neveu [107] cannot be applied and only those Y’s are integrable, for which
there exists an approximating sequence (Y;;,)men of simple random elements
such that lim,, ,~ Y,, =Y a.s. and lim,,—o0 E||Y;, — Y'|| = 0. This also means

that E||Y|| < oo is in general not sufficient anymore for Bochner integrability;
cf. Yosida [134]. 0

Later it will be essential that we can make use of the change of variables
formula. Fortunately it carries over to Bochner expectation. This is formalized
in the following proposition.

Proposition 2.2.3. Let (2, A, P) be a probability space, (E,E) a measurable
space and h : (Q,A) = (E,E) a measurable map. Let B be a separable real
Banach space and Y be a B-valued random element on E. Denote by h o P
the measure on (E,E) induced by h. Then the following is true:

Enor||Y|] < 00 <= Ep||Y o hl| < o0,

Hence Y is Bochner integrable with respect to h o P if and only if Y o h is
Bochner integrable with respect to P. In that case, we have the change of
variables formula

Eppo(Y oh) = Enop,Bo(Y).

Proof. The first relation follows from the observation that ||Y o hl| = ||Y || o h
and from the change of variables formula for real-valued random variables. It is
easy to verify that the change of variables formula is valid for simple random
elements. Therefore let Y be a general random element which is Bochner
integrable with respect to the measure h o P. Then there exists a sequence of
simple random elements (Y;,)men s0 that lim,, o Epop||Ym — Y| = 0. Since
by the change of variables formula for real-valued random variables,

Erop||[Ym — Y| = EBp(||Yin — Y| 0o h) = Ep||Yinoh —Y o b,
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the simple random elements Y;,, o h also fulfill lim,, o Ep||Y;, 0 h—Y o k|| = 0.
Therefore by definition of the Bochner expectation and the change of variables
formula for simple random elements,

Eppgo(Y o h) = mlgnoo Eppo(Ym o h) = mlgnoo Ehor.Bo(Yim) = Eror,Bo(Y),
which concludes the proof. O

In the following proposition we have a closer look at the Bochner ex-
pectation of C(K,R? )-valued random elements. Recall that C(K,R%) is a
separable real Banach space. There is a tight relationship between Bochner
expectation and pointwise Lebesgue expectation. As usual we use the supre-
mum norm in C(K, Rd’) and impose the Borel o—field generated by the open
sets.

Proposition 2.2.4. A C(K,R?)-valued random element Y is Bochner inte-
grable if and only if
E||Y||x < o0,

and in that case Ep,Y is characterized by
Eso[Y](s) =E[Y(s)], se€K.

Proof. The criterion for Bochner integrability is immediate. Therefore we only
have to show the validity of the characterization. Let s € K be fixed. First
note that Y (s) is measurable because it results from a continuous transform of
Y. The relation Eg,[Y](s) = E[Y (s)], s € K, clearly holds for simple random
elements Y. For general Y we take the approximating sequence (Y;,)men of
simple random elements constructed in Lemma V-2-4 of Neveu [107], which
yields EgoY = lim,,_ o, EpoYi,. Because uniform convergence of functions
trivially implies pointwise convergence, also
Epo[Y](s) = lim Epo[Yin](s) = lim E[Y;,(s)].
m—ro0 m—ro0

Since lim,, 0 Yin(s) =Y (s) and |V, (s)| < |[Yimllx < |V for every w € Q,
as a consequence of the Lebesgue dominated convergence theorem we obtain
limy;, s 00 B[Yin(s)] = E[Y (s)] a.s. This proves the assertion. O

2.2.2 The Ergodic Theorem for Sequences of B—valued Random
Elements

The following theorem is implied by Theorem 2.1 in Section 4.2 of Krengel [77].

Theorem 2.2.5. Let (B, B) be a separable Banach space and (vi) or (vt)ien,
respectively, a stationary ergodic sequence of B—valued random elements such
that E||vo|| < co. Then

I~ e

th - Egovo, n — oo. (2.6)
n

t=1
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Proof. We only provide the proof in the case of doubly—infinite stationary
ergodic sequences. Let P denote the probability measure on (B%, B%) induced
by (v;) and let f : (B% B%*) — (B,B) be the measurable map defined by
f((et)) = e1. Recall that 7 is the backshift operator. Then we have the relation

LS u= S re o,

t=1 k=0

The probability space (B%, BZ, ]f”) together with f and the measure preserving
transformation 7 fulfill the conditions of the Banach space—valued version of
the ergodic theorem, see e.g. Theorem 2.1 in Section 4.2 of Krengel [77]; note
in particular that f is Bochner integrable with respect to P since by the change
of variables formula (Proposition 2.2.3),

B || f1l = Ellvol| < oo,

Therefore for P-almost every (e;) € B%,

1 n—1

S FE(e)) = By (1), n oo

k=0

n

This is equivalent to saying that P-almost surely,

1 n
nZw—)IE@BO(f), n — 00.
t=1

Now another application of the change of variables formula for the Bochner
expectation yields Eg p (f) = EBovo and completes the proof. O

To finish this section we mention that the proof of Theorem 2.2.1 is a con-
sequence of Proposition 2.2.4 and Theorem 2.2.5, where we choose B =
C(K,RY).

2.3 Matrix Norms

In this monograph we use two different matrix norms, as the case may be; since
all matrix norms are equivalent, the particular choice of a norm is (mostly)
irrelevant from a mathematical point of view. Recall that the Frobenius norm
of a matrix A = (a;;) € R¥4, is defined by

d

1= (3 a)" 27)

i,j=1
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The following inequality is valid for the Frobenius norm: if x,y € R¢ are
column vectors and |- | denotes the Euclidean norm in R¢, then the Frobenius
norm of the matrix xy” is bounded by

Iy ™Il < [x| |y]- (2.8)

Occasionally we use the matrix operator norm with respect to the Euclidean
norm instead, i.e.,
|Ax|

Al = . 2.
l|A ], i‘f& x| (2.9)

Finally we define the norm of a continuous matrix—valued function A on a
compact set K C R?%, i.e A € C(K,R?*%) by

|A[lx = sup [|A(s)]. (2.10)
seK

Of course Theorem 2.2.1 carries over to sequences of matrices: a stationary
ergodic sequence of random elements (A;) with values in C(K,R¢ *%) and
with E||Ag||x < oo fulfills

Lgm,y ee

ZAt — Mo, n — 00,
n

t=1

where My(s) = E[Ao(s)], s € K; note that the expected value of a random
matrix is defined element-wise. Moreover, inequality (2.8) carries over: for any
two x,y € C(K,R%),

Iy [l < 1%l 1yl (2.11)

2.4 Weak Convergence in C(K,R?)

While Section 2.2 dealt with the almost sure convergence of C(K, R? )-valued
sequences, this section summarizes a number of useful results concerning weak
convergence in C(K, Rd’), which will be applied in Chapter 8. We assume that
the reader is familiar with the definition of weak convergence in separable
metric spaces; otherwise we refer to Billingsley [12].

The first well-known result gives sufficient and necessary conditions for
weak convergence in C(K,R®).

Theorem 2.4.1. Let v, (vp)nen be random elements with values in C(K,R).
Then the following two statements are equivalent:

(i)
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(ii) (a) The finite-dimensional distributions converge, i.e., for any s1,...,8m €
K

)

Wa(51),- -, Un(5m)) 5 (0(s1), ..., 0(sm)),  m = o0,

(b) For every ¢ > 0,

lim lim sup IP( sup |vn(s) — vp(t)] > E) =0.
00 n—oco |s—t|<d

For a proof consult e.g. Billingsley [12], Theorem 7.3. The following corol-
lary is an important implication of Theorem 2.4.1 and useful for the analysis
of M—estimators.

Corollary 2.4.2. Let (vp)nen be a C(K, Rdl)fvalued sequence of random
elements having weak limit v in C(K,R%). Then for any sequence of random
variables (Ty,)nen C K which converges to so € K in probability,

v (Th) 4, v(so), n — 00.

Proof. Since vy, (so) <4 v(s0), it suffices to show that |v, (T}) — v (s0)] )
as n — 00. Let € > 0 be fixed. Then for any é > 0,

limsup P (|vn(Th) — vn(S0)| > €)

n— o0

< lim sup IP( sup |vn(s) —vn(t)| > €, |Tn — so| < (5)

n— 00 [s—t|<d

+limsup P (|T,, — so| > 9)

n—oo

< limsup P ( sup |vn(s) — v, (t)| > e).

n—00 [s—t|<d

By Theorem 2.4.1 the right-hand side of the latter inequality converges to
zero as 0 J 0. O

The next theorem contains a statement about sequences with two indices.
It is an adaptation of Theorem 3.2 in Billingsley [12].

Theorem 2.4.3. Suppose that (Unm,Un)nen and (Vy,)men are sequences of
random elements taking values in C(K,R?) x C(K,R%) and C(K,R?), re-
spectively. Assume v is a C(K,R?)~valued random element. Then if

d
(a) Upm — Uy aS N — 00,

(b)vmimj as m — 0o,

and if
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(c) for every e > 0,

lim lim sup ]P’( [tnm — unl|lx > e) =0,
Mm—00 p—oo

d
then also u,, — v as n — oco.

2.5 Exponentially Fast Almost Sure Convergence

Let T = N or T = Z. For sequences (vt)icz we write (v¢) in abridged form.
The following definition will facilitate the formulation of many of our results.

Definition. A sequence (v;)ier of random elements with values in a normed

vector space (B, || - ||) is said to converge to zero exponentially fast almost
surely as t — oo, henceforth denoted by v; =% 0 if there exists v > 1 with
Y o] | == 0. O

Various proofs in this monograph rest on the following proposition, which
is about the absolute convergence of sums with stochastic weights decaying
exponentially fast. The proposition also shows that exponentially fast decay
towards zero is preserved under component—wise multiplication with a station-
ary sequence having a finite positive logarithmic moment. Let log™ (z) = logz
if z > 1 and 0 otherwise.

Proposition 2.5.1. Let (&)icr be a sequence of real random variables with
& 5 0 and (vi)ier a sequence of identically distributed random elements
with values in a separable Banach space (B, || - ||). If E(log™ ||vol|) < oo, then
Yoo & converges as., and one has &, Y, v = 0 and &, =3 0 as
n — oo.

The proof of the proposition is basically a consequence of the following
standard result.

Lemma 2.5.2. If (X;)ien is a sequence of identically distributed random
variables with E(log™ | Xo|), then for any |p| < 1 one has that Y72, ptX; is
absolutely convergent almost surely.

Proof. Without loss of generality, X; > 0 and 0 < p < 1. Define events A; =
{X; > p~t/?}. Then due to the fact that the X;’s are identically distributed,

> P(4)

Y PX; > p7?) =D P(logt Xo > —(t/2) log p)

t=1 t=1

< - E(log™ Xo) < oo,
log p

where the last inequality is a consequence of EY = fooo P(Y > t)dt < oo
for any random variable Y > 0. Thus by the Borel-Cantelli lemma, with
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probability one A; occurs only finitely many times, i.e., p!X; < pt/2 for all
but finitely many #’s. Since S50, pt/? < 0o, the lemma is proved. O

Proof of Proposition 2.5.1. Note that the separability of B is needed in or-
der to guarantee that the partial sums )., ;&wv; are again measurable, see
e.g. Ledoux and Talagrand [83]. Since & =5 0, there is v > 1 with v¢|&] == 0.
Hence there exists a random variable C' > 0 with [&] < Cy ™! a.s. for all ¢ € N.
The facts that 7% < 1 and E(log™ ||vo|]) < oo imply 5o, v vl < o0
a.s. by Lemma 2.5.2. Therefore

oo oo oo
Yo lgwll =D 1&l el < €Y v ol < oo as.
=0 t=0 =0

Since B is complete, this implies that Y ;- &v; converges in B a.s. As to the
second part of the lemma, choose 4 > 1 small enough such that n = 5/~ < 1.
Since n'/? < 1 and E(log™ ||vol]) < oo imply Yoo n?/?|jvi]| < oo a.s., the
estimate

XN

o

n
& e =n"y"l6l
t=0

n n oo
|| < on 3o n il < on2 Yo n 2w
t=0 t=0

t=0

e.a.s.

establishes &, Y. (v —> 0 as n = oo and &,v, — 0. This completes the
proof. O

Note that E(log™ ||vo||) < oo is implied by the existence of some power
moment E||vg||? < oo, ¢ > 0, because log™y = o(y?) as y — oo. If two
random elements have a finite expected positive logarithmic norm, then so do
their sum and the product of their norms. This follows from the facts that
log™ (y1+y2) <log" (2max(y1y»)) < log2+log* y1 +log" y» and log™ (y1y2) <
logt y1 4+ logT s, for all y1,y> > 0. These properties, which are summarized
in the following lemma, will be often used without any explicit reference.

Lemma 2.5.3. Let v and vy be two random elements taking values in a
separable Banach space. Then the existence of a ¢ > 0 such that E|jv1||? < oo
implies E(log™ ||v1]]) < 0o. Moreover

E(log™ [lv1 + va]]) < log2 +E(log™ ||vi]|) + E(log™ [[uz]])

and
E[log™ ([lv1]| llval)] < E(log™ [|v1]]) + E(log™ [|val|).-

We also need the following auxiliary result.

Lemma 2.5.4. Let (Y;)ier and (Yi)ier be sequences with |Y; — Y| =3 0 as
t — 0o. Then:

(i) |V¢['/2 = V|2 250 as t — oo.
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(ii) If in addition (Yi)ier is stationary with E|Ys| < oo, then also |exp(Y;) —
exp(Y;)| =5 0.

Proof. (i): Without loss of generality, Y;,Y; > 0. By assumption on |Y; — Y|,
thereis ay > 1 with v*|Y; —Y;| 2% 0. Consequently there exists to (depending
on the realization w) such that for each t > to, either {min(Y;,Y;) < v,
max(Y;, V) < v~ */2} or {min(Y;,Y;) > v *}. Using this observation and by
an application of the mean value theorem to the difference of square roots, we
conclude

(V)12 = (7)'7%) < max {7772, 279 2 = Tl L >t

This shows that 7¢|(Y;)1/2 — (V;)1/?| =5 0if 1 < 7 < /2 and thus |(V;)'/? —
(V)12 =% 0. i
(ii): As soon as |Y; — Y;| < 1, by the mean value theorem

|exp(Y;) — exp(¥y)| = exp(¥;) [1 — exp(V; — ¥3)| < exp(1 +Y7) [Y; — Vi,

e.a.s.

Now the claim follows from |Y; — Y;| ©*3 0 together with E[log™* {exp(1 +
Y0)}] < 14+ E|Ys| < oo and an application of Proposition 2.5.1. This concludes
the proof. O

The following elementary result about random products is used in abun-
dance in this monograph.

Lemma 2.5.5. Let (Y;)ier be a stationary ergodic sequence of random vari-
ables with E(log |Yo|) < 0. Then

n
HYt =% 0, n — 00.
=0

If, in addition, (Yi)ieT is an iid sequence with BE|Ys|? < oo for some q > 0,
then there exist 0 < ¢ < q and 0 < A < 1 such that

n—1
B[ 11
t=0

Proof. The first assertion follows from a straightforward application of the
ergodic theorem to the logarithm of [];" |¥;| together with E(log|Ys|) < 0.
Concerning the second claim, observe that the map s + E|Yp|® on [0, ¢] has
first derivative equal to E(log |Yy|) < 0 at s = 0. This shows the existence of
a g € (0,q] with X := E[Yp|? < 1, and since (V;)ser is iid, B(| [}, V|7 =
(E|Yp|?)™ = A™. This concludes the proof of the lemma. O

q
):)\", n — o0o.
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2.6 Stochastic Recurrence Equations

We have chosen to base our treatment of inference in conditionally het-
eroscedastic time series models on stochastic recurrence equations (SREs)
because we believe that such an approach is well adapted to the problems one
encounters. Stochastic recurrence equation (SRE) techniques play a prominent
role in classical time series analysis, albeit this is often not explicitly expressed
in the literature. One also has to be aware of the fact that every homogeneous
Markov chain can be seen as a solution to a SRE, see e.g. Proposition 7.6 in
Kallenberg [71]. We think that it is worthwhile to lay down a mathematically
precise notion of a SRE. Before we start, we would like to mention the excel-
lent survey article by Diaconis and Freedman [38] for an overview and other
nice applications of SREs.

Although we merely work in Banach spaces, we present the notion of
a stochastic recurrence equation (SRE) in the more general case of a com-
plete separable metric space (i.e. Polish space), as it was e.g. formulated by
Bougerol [20]. Hence, let (E,d) be a Polish space equipped with its Borel
o-field B(E). Recall that a map ¢ : E — E is called Lipschitz if

7 P CCRT .12)

z,yeE,x#y d(l’,y)
is finite and called a contraction if A(¢) < 1. Also note that A is submulti-
plicative, i.e., if ¢ and v are Lipschitz maps £ — FE, then

A(pop) < A(g) A(). (2.13)

We consider a process (¢;) of random Lipschitz maps E — E with ¢;(x) being
B(E)-measurable for every fixed € FE and ¢ € Z. In what follows, T'= N or
T = Z. If for a stochastic process (X;);cr with values in E,

Xt+1 = ¢7t(Xt) a.s., t e T, (214)

we say that (Xi¢)ier obeys the SRE associated with (¢;). Alternatively,
(Xt)ter is referred to as a solution to the SRE (2.14).

We write (¢§"))HGN for the sequence of the n—fold iterations of past and
present transformations, i.e.,

n ldg, =0,
(m 0B " (2.15)
Gropt 10 0Pt nyi1, n>1,

where Id g is the identity map in E. The following theorem due to Bougerol [20]
is a generalization of results by Letac [86] and can be considered as a stochas-
tic version of Banach’s fixed point theorem. It makes statements about the

solutions of the SRE (2.14) under the assumption that (¢;) is stationary er-
)

godic and that ¢¢ or a certain r—fold iterate qb(()r is “contractive on average”.
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Theorem 2.6.1 (Theorem 3.1 of Bougerol [20]). Let (¢:) be a station-
ary ergodic sequence of Lipschitz maps from E into E. Suppose the following
conditions hold:

S.1 There is y € E such that E[log™ d(¢o(y),y)] < oc.

S.2 E[log™ A(¢o)] < oo and for some integer v > 1,
E[log A(¢")] = E[log A(¢o o -~ 0 ¢_rp1)] < 0. (2.16)

Then the SRE (2.14) admits a stationary ergodic solution (Yi)icT, which has
the stochastic representation

th = lgn gzﬁt,l ©o---0 (z)t,m(y), telT. (217)

The random elements Y; are measurable with respect to the o—field generated
by {pe—r | k > 1}. If (Yi)ter is any other solution to (2.14), then

d(Y;, ;) 2230,  t— oo. (2.18)

Moreover, in the case T = 7 the stationary solution to the SRE (2.14) is
unique.

Remarks 2.6.2. Note that there are in general many solutions to (2.14).

Indeed, if T'= N, take any z € F in order to produce a solution (¢§Ql(z))teN.
The elements

0 () = dr_r0--0po(2), >0,

are also called the forward iterates associated with the SRE (2.14), whereas
the elements

A (2) = r_1 00 d_m(z), m >0,

with ¢ fixed are called backward iterates. Thus relation (2.17) can be read
as Y; being the limit of its backward iterates, and relation (2.18) means that
the forward iterates approach the trajectory of the unique stationary solution
(Y:)ter with an error decaying exponentially fast as ¢ — co. We also mention
that the limit of the backward iterates is irrespective of z € E, as follows
from the limit relation (2.20) below. In general, the stationary distribution
associated with the SRE (2.14) cannot be determined analytically.

The limit relation (2.18) provides a mean for the simulation of the station-
ary solution (Y3)en: take an arbitrary z € E and set Yt+1 = ¢ (17}) for t > 0.
Then d(Y;,Y;) 223 0 as t — oo.

If we have T' = N, there is more than one stationary solution to (2.14).
One can however show that the law of the stationary solutions is unique; see
Corollary 3.3 of Bougerol [20]. To illustrate this statement, consider a causal
autoregressive process of order 1 with index set 7' = N and iid innovations
Zy ~N(0,1), ie.,

Xt+1 - ¢t(Xt)7 t e N, (219)
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where ¢;(z) = Bz + Z;41 and |B] < 1. Then for any random variable Yy ~
N(0, (1 — 8%)~1) which is independent of (Z;), the sequence (Y;) defined by

Yo, t=0,
Y; =
BYo + X5 8" 21+, t>1,
provides a stationary solution of (2.19). O

Proof of Theorem 2.6.1. For the existence of a stationary ergodic solution it
is enough to prove that the limit on the right-hand side of (2.17) exists; it
is then obvious that (Y;):en is a solution of the SRE X;11 = ¢:(X;). Indeed,
the condition E[log™ A(¢;)] < oo implies that A(¢;) < oo a.s., and hence ¢;
is continuous a.s. From this we deduce

(1) = én( lim 6{")()) = lim 9" () = Vi1 as.

The fact that (Y%) is stationary ergodic and that Y; is measurable with respect
to the o—field generated by {¢:_. | k > 1} is a consequence of Corollary 2.1.3.

We now show that qﬁgﬂ (y) converges as m — oo. Due to the stationarity

of (¢¢), it is sufficient to show that ¢((Jm) (y) converges. By virtue of relation
(2.13), for all mq,ms € N,

log A(¢(()m1+m2)) = log A(qb(()ml) o (Z?(_n:,fl)) < log A(qﬁ(()ml)) + log A(qﬁ(_nf,ff)

Thus the sequence (log A( (()m)))meN (together with the backshift operator on
the space of doubly—infinite sequences of Lipschitz functions on E) is subaddi-
tive; see e.g. Section 10.7 in Dudley [43] for a detailed treatment of the notion
of a subadditive sequence. Now, as a consequence of Kingman’s subadditive
ergodic theorem [74], with

. 1 (m)
p=inf  EllogA(dy™)]
the following limit relations hold true:

1 1
lim  E[logA(¢{™)] = lim mlogA(qS(()m)):p a.s. (2.20)

m—oo M

Note that (2.20) is valid for any stationary ergodic sequence (¢;) fulfilling
E[log" A(¢o)] < oo and that condition (2.16) implies in particular p < 0.
Also observe that E[log™ d(¢o(y),y)] < oo together with the Borel-Cantelli
lemma implies

;L logt d(¢_m (), y) == 0, m — 00. (2.21)

Now, accounting for (2.20) and (2.21), we have
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lim sup log d(¢(m+1) (v), ¢)(()m) ()

m—oo MM

= lim sup 31 log d((zﬁ(()m) (D-m(¥)), (()m) (¥))

m—»00

1
< limsup logA( )+limsup logd(p—m(y),v)

m—00 m—soo MM

=p as.

Since p < 0, this shows that ( (m)( ))men is a Cauchy sequence a.s., and thus

converges due to the completeness of E. Concerning the limit relation (2.18),

we first note that ¢! log A( tt 11)) =5 p by Kingman’s subadditive ergodic

theorem. This entails
A =30, ¢t oo
Using definition (2.12), we obtain
d(¥:, Ye) = A5 (%), 615" (T0) < A@#5") d(¥o, ¥o) =5 0.

It remains to demonstrate the uniqueness of the stationary solution (Y%). If
(Y;) is yet another stationary solution of the SRE (2.14), then by (2.12) and
the triangle inequality,

AV, Y7) = (@) (Viem), 847} (Viem)) < A" d(Vemrm, Vierm)
< A" ATy ) +d(y, Yiem))- (2.22)
The relation (2.20) with p < 0 and the stationarity of (¢;) imply
A((Z)Er_nf) =30, m — 0o.

Since (d(Yi—m,¥))men and (d(y, Yi—m))men are stationary, a Slutsky argu-
ment shows that the right-hand side of (2.22) converges to zero in probabil-
ity. For this reason, P(d(Y;,Y;) = 0) = 1, and (Y;)te7 and (Y;)ser are indeed
indistinguishable. O

Example 2.6.3. In order to illustrate Theorem 2.6.1, we apply it to autore-
gressive processes of order 1. Let (Z;) be an iid sequence with E|Zy| < oo,
and consider the SRE

Xit1 = BXt + Ziga, teZz, (2.23)

on R. Thus ¢;(x) = Bz + Z;+1 and A(d)(()r)) = |B|" for all » > 1. Also note that
E[log™ |¢0(0)|] = E(log™ |Z1]) < oo due to E|Zp| < co. According to Theorem
2.6.1 the condition |3| < 1 is sufficient for the existence and uniqueness of a
stationary solution (Y;) to (2.23). From (2.17) we have the representation
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m— 00

m—1 00
Y= lim ¢p100¢m(0)= lim 3 5°Z = f"Z & as
k=0 k=0

The sequence (Y;) is stationary ergodic and Y; is measurable with respect
to the o—algebra generated by {Z;, Z;_1,...,} for each ¢t € Z, or in other
words, the solution (V%) is causal, i.e., Y; is a function of the past and present
innovations. This result is well-known, see e.g. or Brockwell and Davis [29].
However, Theorem 2.6.1 does not capture the fact that there are also unique
stationary ergodic solutions when |8| > 1, because these solutions are non—
causal. O

The following result relates the solutions of a SRE associated with a sta-
tionary ergodic sequence (¢;) of Lipschitz maps with the solutions of a certain
“perturbed” SRE.

Theorem 2.6.4. Let (B,|| - ||) be a separable Banach space and (¢:) be a
stationary ergodic sequence of Lipschitz maps B into B. Impose:

S.1 E(log™ [|¢o(0)[]) < oo

S.2 E[log™ A(¢o)] < oo and for some integer r > 1,

E[log A(¢”)] = E[log A(¢o o -+ 0 ¢_pp1)] < 0.

Assume that E(log™ |[Yo]|) < oo for the stationary solution (Y;)iexn of the SRE
associated with (¢¢) given by (2.17). Let (¢t)ten be a sequence of Lipschitz
maps such that

S.3 166(0) — ¢¢(0)]| =23 0 and A(dy — ¢4) =5 0 as t — oo.
Then for every solution (Y;)ien of the perturbed SRE

Xiy1 = ¢A7t(Xt), teN,

one has that .
|V = V|| =3 0, t — oo. (2.24)

Proof. Note that the sequence (¢;) fulfills the conditions of Theorem 2.6.1
with d the metric induced by || - ||. It is sufficient to demonstrate ||Ysigr —
Yoirr]| = 0 as k — oo for each s € [0,7); indeed, the latter limit relation
implies ||V; — Vil < 32070 Varityr] = Yogofe/nll =5 0 as t — oco. To begin
with, we establish the auxiliary results

d = |67 (0) — ¢ (0)| 230 and e := A — g{") =530, (2.25)

as t = oo, i.e., the condition S.3 is fulfilled for the r—fold convolutions &ET)
and qbgr). Note that the limit relation (2.25) is true if r = 1 by virtue of
condition S.3. The proof of (2.25) goes by induction on r. Indeed, by the
triangle inequality for any m > 1,
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16749 (0) = 6™ D (O)]] = l|dr © 371 (0) = 1 0 6™ (O)]
< lir 0 371 (0) = du 0 6" ()| + 11(& — 1) © ¢71(0) = (30 — G (O)|
+(de — e (0)]
< A@)16™(0) = L O)]] + A — )16 (O) ] + [161(0) — 1 (0)]]-

The e.a.s. convergence to zero of the left—hand side is a consequence of
(ét) < Ay — d0) +Aldr), E[logt A()] < oo, the limit relation [|4{”, (0) -
( )| =23 0 for every ¢ € [0,m], and E(log™ ||ng(m)( 0)]]) < oo together with
repeated application of Proposition 2.5.1. Exploiting the submultiplicativity
of A, one finds in a similar way that

A = ™) < AGOAWG™ = ¢(™) + Al = d)AG™) =50,

and thus (2.25) is established.

If we set ¢ = A((Z)Er)) and take into account that every map ¢ on E fulfills
lo(@)Il < llo(z) — ¢(0)[| + [|#(0)[| < A(S)[|z]| + [|¢(0)]|, z € B, we obtain

Vet = Yorsrll = 1800 Pt imyr) = 801 Vet ey

< ||¢g?kr 1( s(k—1)r) — ‘f;g?krﬂ(ysﬂkq)r)u
1 e Yot omyr) = 67 Vo emnyo)

< MBS o) Vst ety = Yooyl 4 MGy = 680 —) Yo (il
S () R ()]

= és+kr71 ||Ys+(k—1)r - s+(k—1)7‘|| + (eerkrfl ||Y;+(k—1)r|| + ds+kr71)-

Iterating the latter inequality until £ = 1, we receive the final estimate

k
||Yt9+kr - s+kr|| < (H és+lr—1> ||Y; _sz“

(=1

k k
+Z ( H éerirl) (eerlrfl ||Ys+(£—1)r|| + ds+€r71)-

(=1 \i=(+1
(2.26)

We show that the right-hand side of the latter inequality tends to zero
e.a.s. Set ¢ = A( Y)). An application of the monotone convergence theo-
rem to E[log™ (co + €)] and an application of the dominated convergence the-
orem to E[log™ (co + €)] show E[log(co + €)] — E[logco] as € | 0. Thus there
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is € > 0 such that E[log(co + €9)] < 0, and from Lemma 2.5.5 it follows
Hif:l(cﬁgrfl + €9) =5 0 as k — oo. This limit relation together with the
facts that ¢; = A(((]By) — qﬁgr)) + ¢§r)) < e; + ¢ and a.s. e; < ¢ for all but
finitely many t’s leads to

s

k k
H és+£r71 S H(eerlrfl + cs+£r71) 1> 07 k— 00, (227)
(=1 (=1

and shows that (Hf:1 Cortr—1)||Vs = Vil 225 0. As regards the second term in
(2.26), we use Proposition 2.5.1 together with (2.25) and E(log™ ||Y5||) < oo
to prove that Ps+tr—1 ‘= €spr—1 ||Yrs+(£71)r|| + ds—i—(r—l =% 0 when £ — oo.
This limit result and (2.27) imply the existence of a random variable ao and
anumber 0 < v < 1 so that pyye—1 < agy’ for all £ > 1. From this bound we
obtain

k k k k
Z < H és—&-ir—l) Ds+r—1 < GOZ < H és—&-ir—l) 7€~

£=1 \i=(+1 £=1 \i=(+1

Since the map ¢ — E[log(co+0)] is continuous and increasing and E(log ¢p) <
0, there exists a do > 0 such that 0 > E[log(co + do)] > log~y. Set
¢ = é + 0o and & = ¢ + 0y, and note that we are done if we can
show 2521(1_[?:“1 Corir—1)Y =25 0. Since (&) is stationary ergodic and
E(logéy) > log~y, we have that yf(Hle Cspir—1)"t =% 0. Using a Taylor
argument together with ét, ¢ > g, we conclude

| (éerirfl)il - (Eerirfl)il | S (1/55) |és+ir71 - Es+ir71| 3 07 L — o0,
and therefore the identical arguments as used for (2.27) yield that also
WE(Hle Csyir—1) + =% 0. This implies the existence of a random variable
bo with 7 (TT'_; ésrir_1)~" < bo for all £ > 1, so that

k k k
> ( I ) ¥ bk Lo 1250, £ 00
i=1

=1 \i={(+1

For the last step we used that Hle Corir—1 =250, which is a consequence of
E(logég) < 0 and |¢; — é&| = 0 together with the same arguments as applied
in the derivation of (2.27). This completes the proof. O

Example 2.6.5 (Continuation of Example 2.6.3). Consider the autore-
gressive equation
Xip1=0:Xe + Zya,  teEN, (2.28)

e.a.s.

with time dependent coefficients g; — 8 € (—~1,1) as t — oo and (Z;) an
iid sequence with E|Zp| < co. Assume that (Y;):;en is a certain solution of
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(2.28). Then by incorporating the results of Example 2.6.3 and by an appli-
cation of Theorem 2.6.4, we immediately receive that

i
k=0

=30, t — oo.

We mention that the condition E(log™ | >-72, 8¥Z:_«|) < oo needed for the
applicability of Theorem 2.6.4 is met by virtue of E(} r-  |B8|¥|Zi—k|) = (1 —
|B8)) 7 E| Zo| < oo. O
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Financial Time Series: Facts and Models

Financial time series analysis deals with the analysis of data collected on fi-
nancial markets. Its main goal is to gain reliable information in order to make
rational decisions about the future. In the language of statistics, one seeks
to predict the future behavior of financial markets. Although the economic
sciences have gained insight into various phenomena related to economic ac-
tivity, it is widely accepted that it is difficult, if not impossible, to precisely
predict future economic indicators or prices of financial assets. This scepticism
is based on the argument that these quantities are determined by a variety of
interdependent factors, whose evolution and influence are difficult to quantify
and to measure, and some of which might even be unknown. For this reason,
stochastic models are often considered as more realistic than deterministic
models. Whatever preferences one has, one should always keep in mind that a
model for the description of financial markets hardly ever reflects total reality.
Any model can only describe a few aspects of financial or economic processes.

Although every model is likely to be incorrect, one would like to distin-
guish between “better” and “worse” models. A statistical model is commonly
regarded as a good approximation to reality if it yields a “satisfactory” fit
to observed data. Raw financial data consists of a time series of prices P,
t =0,...,n, of a certain asset. This financial asset could e.g. be the stock
of a certain company or a stock index, a foreign currency, or a commodity,
such as gold or oil. We assume that the times of observations are equidistant,
so that we can avoid the particular difficulties of high—frequency data, where
observations are usually irregularly spaced over time, see e.g. the book by
Dacorogna et al. [33].

It is a common technique (Taylor [126]) to take log—differences so that the
observations are transformed into so—called “log-returns”

Pt_Pt1>

Xy =log P, —log P,_1 = log (1 +
Py

A Taylor series argument shows that log—returns are almost indistinguishable
from relative returns, provided the latter are small, i.e.,
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Pt_Pt—l

X; ~
! Py

Log-returns are often preferred to relative returns because they are additive
with respect to aggregation over different time periods, a property which rel-
ative returns do not share.

One of the most fundamental working hypotheses in financial time series
analysis is the (strict) stationarity of log-return data, at least over “appro-
priate” (not “too long”) time periods. See Section 2.1 for a mathematical
definition of the stationarity of a stochastic process. Only recently the hy-
pothesis of stationarity has been questioned. Since this monograph is focused
rather on theoretical questions than on data analysis, we refer the reader to
Mikosch and Starica [101, 100] or Mikosch [97] for a detailed discussion of the
non—stationarity issue. In this monograph we work under the assumption of
stationarity.

In what follows, we present some of the “stylized facts” of financial log—
return time series data. As an illustration, we include a chart with the daily
closing prices of the New York Stock Exchange Composite Index (NYSE
Composite) in Figure 3.1. The corresponding log-returns are provided by
Figure 3.2. The NYSE Composite measures the performance of all com-
mon stocks listed on the NYSE. We mention that access to information
about the composition of this index and to historical data is granted under
http://www.nyse.com/marketinfo/marketinfo.html.

5000

NYSE Composite (on log scale)
1000

500

01/03/1966 01/03/1973 01/03/1980 01/03/1987 01/03/1994 01/03/2001
Time

Fig. 3.1. NYSE Composite closing prices from January 3, 1966 — January 28, 2003.
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Fig. 3.2. NYSE Composite log-returns from January 3, 1966 — January 28, 2003.

3.1 Stylized Facts of Financial Log—return Data

3.1.1 Uncorrelated Observations

In classical time series analysis, the dependence between consecutive observa-
tions is most often measured via the autocovariances or autocorrelations, see
e.g. the books by Brockwell and Davis [28, 29] or Fuller [52], which we consider
as comprehensive references. Let (X;) be a stationary stochastic process with
finite variance. Then the autocovariance yx (h) and autocorrelation px (h) at
lag h € Z is the covariance and correlation, respectively, between observations
which are h time steps apart, i.e.,

B _ Cov(Xo, Xp)
vx (h) = Cov(Xo, Xp) and px(h)= Var(Xp)

The functions vx(-) and px(-) defined on the integers are called autocovari-
ance function (ACVF) and autocorrelation function (ACF), respectively. The
sample counterparts of the autocovariances and autocorrelation, the sample
autocovariances and sample autocorrelations, are the estimators

n—|h|
Tox ()= S (X = X)Xy = X) and  pax(h)

t=1

_ Yn,x (h)
Tn, X (0)

3
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where X =n~' """ | X, is the sample mean of the data (Xi,...,X,). When
Yn,x (*) or pp x(-) are regarded as functions, one speaks of the sample auto-
covariance function (SACVF) and sample autocorrelation function (SACF).
Provided (X}) is also ergodic, a straightforward application of the ergodic
theorem yields for every fixed h € Z that

Yn,x(h) = yx(h) and p, x(h) = px(h), n — 0o.

This means that the estimators vy, x (h) and p, x(h) are strongly consistent
for yx(h) and px(h). Real-life log-return data often exhibit the following
peculiar behavior:

e pp x(h) vanishes at all lags h # 0, except perhaps at the first lag |h| = 1.

e In contrast, the sample autocorrelations p, |x|(h) of the absolute log-
returns are different from zero for a large number of lags h.

The sample autocorrelations belonging to the NYSE Composite data exactly
show this behavior, see Figure 3.3.
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Fig. 3.3. Sample autocorrelations for NYSE Composite log-returns and absolute
log—returns. At every fized lag the dotted horizontal lines define an asymptotic 95%
acceptance region of the null hypothesis of iid finite variance noise. For a derivation
of this region, we refer to Section 7.2 in Brockwell and Davis [29].

Therefore, a reasonable stochastic model for log-returns seems to be a
stationary white noise process (U;), which is not iid. We recall that a process
(Uy) is a white noise process (or sequence) if (U;) has constant mean and
constant finite variance, and autocovariances vy (h) = 0 at lags h # 0.
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3.1.2 Time-varying Volatility (Conditional Heteroscedasticity)

As a matter of fact, financial markets react “nervously” in the presence of
political disorders, economic crises, war or fear of war, or in the event of a
major natural catastrophe or man—made disaster, which is believed to threaten
human society. During such stress periods the prices of financial assets usu-
ally fluctuate strongly. In statistical terms, the conditional variance given the
past, i.e., Var[X; | X;—1, X¢—2,...] is not constant over time and the underly-
ing stochastic process (X;) is conditionally heteroscedastic. Econometricians
would also say that the volatility

o = (Var[Xt | Xt—la Xt—27 .- '])1/2

changes over time. The human eye easily detects stress periods in the NYSE
Composite time series of Figure 3.2. The corresponding historical events,
which are presumed to have triggered these market conditions, at least to
some extent, are as follows: the Prague spring invasion (summer 1968), the oil
crisis of 1974, the fall of the Shah of Persia (spring 1980), the stock market
crash in fall 1987, the second Gulf War (summer 1990), the economic crisis
in Southeast Asia (fall 1997), the Russian financial crisis (fall 1998), and the
September WTC attacks (2001). We are aware of the fact that our list merely
cites the most incisive events and is far from being complete.

Without any model assumption it is rather difficult to statistically esti-
mate the unobservable quantity o;, and any chosen nonparametric method can
probably be put into question by a critically minded person. We decided to
employ the exponentially weighted moving average (EWMA) as an estimator,
i.e., we compute the squared volatility recursively by

67 = (1= NX7 + 674

and starting value 62 = 0, say. The exponent 0 < A < 1 can be regarded
as a smoothing parameter, for it was shown by Gijbels et al. [54] that the
EWMA can be interpreted as the Nadaraya—Watson kernel estimator of E[X7 |
| X¢—1,...,Xo], with a kernel function that is zero in its positive argument.
EWMA is also applied by RiskMetrics© [119]. The estimated volatility is
graphed in Figure 3.4. For more sophisticated ways of nonparametric volatility
estimation we refer to Bithlmann and McNeil [30].

3.1.3 Heavy—tailed and Asymmetric Unconditional Distribution

Many financial log—return time series seem to indicate that the unconditional
distribution of X; is heavy—tailed, i.e., not all moments of X; exist. A QQ—
plot of the negative and positive values of X; against standard exponential
quantiles in Figure 3.5 reveals that the left and right tails of NYSE Composite
log-return data decay slightly slower than the tail of an exponential distribu-
tion. In order to investigate the tail of | X;|, we fit a (generalized) Pareto tail
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Fig. 3.4. NYSE Composite log-returns (top) and estimated volatility (bottom).

For EWMA, the smoothing parameter A = 0.99 was used. The first 300 values of 6
have been discarded.

to the tail of the empirical distribution function of absolute NYSE Composite
log-returns. Figure 3.6 indicates a nice fit. The value a = 3.31 can be seen as
an estimate for the tail index of the data generating model and seems to indi-
cate that the tail of the distribution function of | X[, i.e., F(z) = P(|X;| > ),
decays like a power function:

F(z) ~ cx™®, T — 00.

Here the symbol ~ is defined as follows: two nonnegative functions f(z) and
g(x) on Ry (or N) fulfill f(x) ~ g(z) as z = oo if

f(z)

— 1, T — 00.
9(x)

For other possible methods of tail index estimation we refer to Chapter 6
of Embrechts et al. [45]. The lower graph in Figure 3.5 indicates that the
distribution of X; might be asymmetric, i.e., the distributions of X; and — X}
differ in the tails. However, since we totally neglected the dependence, our ad
hoc exploratory data analysis has to be interpreted with some care.
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Fig. 3.5. Top: QQ-plots of negative (left) and positive (right) NYSE Composite log—
return data against standard exponential. Bottom: Comparison of the distributions
of X; and of —X; via a QQ-plot. Due to symmetry of the QQ-plot it is sufficient
to display the part with nonnegative first coordinate only.

3.1.4 Leverage Effects

There are theoretical considerations which suggest that volatility tends to
respond asymmetrically to positive and negative log—returns. It is believed
that this asymmetric behavior is caused by so—called leverage effects; see Nel-
son [106] for an accessible account on this subject. Outside the framework
of a model there is no unique procedure for a statistical verification of the
presence of leverage effects. As a very simple ad hoc method we propose to
compare the conditional distribution of | X;| given X;_1 > 0 to the conditional
distribution of | X;| given X;_; < 0, which can be achieved by comparison of
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1-F(x) (on log scale)
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Fig. 3.6. Tail of the empirical distribution function of absolute NYSE Composite
log-returns, evaluated at the 150 largest values. The solid line is a plot of the tail
of the GPD (Generalized Pareto Distribution), F(z) = (14 (af8) ™ (z — p)) ™%, with
parameters a = 3.31, . = 0.00861, 8 = 0.00194. The fit was obtained by application
of the Splus function gpd of the EVIS Software package by McNeil [94].

the corresponding empirical quantiles. The resulting plot in Figure 3.7 should
again be interpreted restrainedly by reason of unknown effects caused by the
dependence between the sample quantiles of the two different conditional dis-
tributions. The QQ—plot does not contradict the economic hypothesis that a
negative return is followed by volatilities which are larger than the volatilities
following a positive return of the same absolute size.

3.2 ARMA Models

We introduce autoregressive moving average (ARMA) processes because they
form the backbone of classical time series analysis and because squared
GARCH processes can be interpreted as ARMA processes, see Section 4.2.2.
ARMA processes are however not very suitable models for log—return time
series, as we will see below. Recall that a stationary stochastic process (X}) is
said to be an ARMA (p, ) process (with mean zero) if it satisfies the difference
equation

Xe=o1 Xea 4+ Ao Xs p+NZp g+ -+ 72 g+ 7y, tEZ, (3.1)
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Fig. 3.7. Sample quantiles of the conditional distribution of | X| given X;_; > 0
(on z—axis) against the sample quantiles of the conditional distribution of | X;| given
X1 <0.

where ¢1,...,pp, Uh,...9; are real coefficients and where (Z;) is a zero—
mean iid sequence. Often the Z;’s are called innovations or noise. A stochastic
process (X;) is ARMA(p,q) with mean p € R if (X; — p) is a zero-mean
ARMA(p, q) process. Equivalently, one writes

@(B)(Xy — p) =9(B)Z, (3.2)

where B denotes the backshift operator and
e(z)=1—@12— - —@pa¥, Hz)=14+Dz+ - + 0427

are the so—called characteristic polynomials. In the following we may assume
without loss of generality that 4 = 0 and that the two polynomials have no
common zeros since otherwise one can cancel out the corresponding factors of
p(z) and 9¥(z) (see also Remark 1 in Chapter 3 of Brockwell and Davis [29]).
It is well-known that the equation (3.1) admits a unique stationary ergodic
solution (X;) provided ¢(z) # 0 on {|z| = 1} (Theorem 3.1.3 in Brockwell
and Davis [29]).

In what follows, we restrict ourselves to causal ARMA processes, i.e., we
assume that X; can be written in the form

X, = Zzpjzt_j, tez, (3.3)
j=0
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where (¢;) is an absolutely summable real sequence with ¢ = 1. The causality
assumption (3.3) of course entails stationarity; compare with Example 2.1.4.
As a matter of fact, causality is equivalent to the property that the polynomial
©(z) has no root in the unit disc, i.e., p(z) # 0 for |z] < 1. In that case, the
coefficients (¢;) of (3.3) are determined by the Taylor series representation of

Hz)/(2), ie.,

o0

o 9(z

Sue =0 k<
=0 v

Another important property is invertibility. An ARMA(p, ¢) process is said

to be invertible if there exists a sequence (7;)jen of absolutely summable

constants such that

Zy=>Y mXej, teL.
7j=0

In other words, the unobserved noise Z; can be perfectly reconstructed from
the present and past observations X, j < ¢. A causal ARMA(p, q) process is
invertible if and only if the corresponding characteristic polynomials are such
that the polynomial ¥(z) has no root in the unit disc, and in that case (7;) jen
is determined by the Taylor series representation of ¢(z)/9(z), i.e.,

Zﬂ'jzj = ;’;Z; , |z| < 1. (3.4)
=0

Causality and invertibility are usual assumptions in the classical treatment
of the estimation of ARMA parameters, see Chapter 8 of Brockwell and
Davis [29]. We mention that general models of the form (3.3) with an ab-
solutely summable sequence (1);) are also called causal linear processes (or
MA(00)). Therefore, causal ARMA processes form a subclass of linear pro-
cesses.

ARMA models are important for several reasons. First of all, they are
mathematically tractable. The determination of the parameter regions of sta-
tionarity, causality and invertibility are relatively simple and many relevant
stochastic quantities, such as autocovariances or the spectral density, can be
computed explicitly. Parameter estimation is well understood. Analogously
to linear differential equations, the study of ARMA processes has led to the
development of a beautiful theory, which nowadays can be regarded as fairly
complete.

Secondly, the practical relevance of causal ARMA processes lies in the fact
that they approximate general stationary processes in a certain sense. Indeed,
to any linear process (3.3) one can find a causal ARMA(p, ¢) process with an
error of approximation as small as we desire. This follows from the spectral
representation theorem together with the fact that the set of spectral densities
of causal ARMA processes is dense in the space of spectral densities of linear
processes (with respect to the sup—norm). We refer to Chapter 4 of Brockwell
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and Davis [29] for the spectral theory of linear time series or to the books by
Priestley [114] or Fuller [52]. See also Chapter 4 of this monograph for a brief
summary of spectral theory. According to the Cramér—Wold decomposition,
a general (not necessarily linear) stationary ergodic process (X;) with mean
zero and finite variance has unique representation

Xi=)Y &Uiy,  tez, (3.5)
j=0

where (£;);>0 is a sequence of numbers with § = 1, 377% &7 < oo and (Uy)
is a white noise sequence; consult Section 5.7 in Brockwell and Davis [29] for
a proof of the Cramér-Wold decomposition and note that (U;) will not be
iid in general. From (3.5) we infer that there exists a linear process (Y;) with
identical second—order moment structure, i.e., with the same autocovariance
function as (X;), and even with Gaussian innovations. Hence causal ARMA
models are at least suitable for capturing the second—order moment struc-
ture of an arbitrary stationary process. It was however shown by Bickel and
Biithlmann [9] that causal ARMA models fail in general when it comes to
approach the entire distribution of nonlinear processes. On the other hand,
these two authors obtained the remarkable result that it is nevertheless im-
possible to sharply distinguish a nonlinear process from a high enough order
MA process. Linear processes can exhibit “nonlinear behavior”.

Many authors also admit white noise sequences (Z;) in the definition (3.1)
of an ARMA(p, q) model, but then not every ARMA process will be linear in
the sense of definition (3.3). In this monograph we do not use such a general
notion of ARMA models because it is only useful if one does not want to go
beyond studying the second—order moment properties. Without any additional
assumptions it is impossible to do statistical inference. This statement is nicely
illustrated in Chapter 8. There it is shown that the so—called Whittle estimator
applied to the squares of a GARCH(1, 1) process, which obeys an ARMA(1,1)
equation with a mon—iid white noise sequence, has totally different statistical
properties than the Whittle estimator of an ARMA(1,1) process with the
same parameters and iid noise.

It is not difficult to give arguments against ARMA models for log-return
data. A main reason why ARMA is not suitable for the description of log—
returns lies in the fact that they do not allow conditional heteroscedasticity.
Indeed, in a causal ARMA process the volatility is constant over time because

Var(Xt | Zt—la Zt_g, .- ) = VaI‘(Zo).

Furthermore, the only invertible causal ARMA (p, ¢) process with uncorrelated
observations is (X;) = (Z;), i.e., iid white noise. Recall that we indicated in
Section 3.1.1 that financial log—returns do not seem to be iid at all. Hence we
have to find models which are more appropriate than ARMA.
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3.3 Conditionally Heteroscedastic Time Series Models

Many conditionally heteroscedastic time series models can be written in the
form
Xt = ¢ + O'tZt, t e Z, (36)

where (Z;) is an iid sequence with EZy = 0 and Var(Zp) = EZ3 = 1, and (i)
and (o) are stochastic processes which are assumed to depend only on the
past, i.e., for every fixed t € Z the random variables p;11,0¢41 are measurable
with respect to the o—field

Fie=0(Z;,j <t). (3.7

Hence X; is Fi;—measurable for every ¢, which can be seen as an analogue to
causality in ARMA models. Note that p; = E(X¢|F;—1) is the conditional
mean of X; given the past and that |o¢| can be interpreted as the volatility at
time ¢ since 07 = Var(X;|F;—1) by EZ? = 1. In most models, g; > 0 a.s. Con-
ditional heteroscedasticity emerges if (07) is a nontrivial process. Observe that
any causal ARMA process satisfies (3.6) with o; = 1. In financial applications
the processes (u;) and (o) are not directly observable. The autocovariances
in model (3.6) can be obtained through the equations

Wx(h) = COV(X(),X“L‘)
=E I:COV(X(),X“L‘ |.7:0)] + Cov [E(XO | fO)aE(X“L\ |‘7:0)]
= Cov [Xo, (X | Fo)]

which are valid if (X;) is stationary and Var(Xy) < oco. In the special case of
pt = p = const., we have (X, | Fo) = B[E(X 4[| Fin—1) | Fo] = u a.s. since
Fo C Fip)—1 and E(X ) | Fipj-1) = p a.s. Hence, if yy = p, then

vx(h) =0, h #0,

which means that (X;) is a white noise process. We now provide some non-
trivial and important examples.

3.3.1 AGARCH Models

Here we introduce the class of so—called asymmetric GARCH (AGARCH)
models, which also contains ordinary GARCH. The aim of the present sec-
tion is to collect the basic facts of AGARCH and its subclasses GARCH and
ARCH.

A time series (X;) is called an AGARCH(p,q) (asymmetric generalized
autoregressive conditionally heteroscedastic) process if it satisfies

Xt - UtZta te Z, (38)
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where (Z;) is a sequence of iid random variables with EZy = 0 and EZ2 = 1
and (o) is a nonnegative process obeying the recurrence equation

p q
of =ao+ Y oi(|Xii| =y Xii)? + D Bjot;,  teL. (3.9)

i=1 j=1

The parameters o; and (3; are assumed nonnegative in order to ensure the
nonnegativity of the squared volatility process (07), and |y| < 1.

We will see in Remark 3.3.2 below that ,/ag plays the role of a scale
parameter. If v = 0, then we have the so—called GARCH(p, ¢) model, which
was introduced by Bollerslev [18] as an extension of ARCH earlier developed
by Engle [46]. The ARCH model corresponds to ¢ = 0. The AGARCH(p, q)
models form a subset of the so—called asymmetric power GARCH models,
which were proposed by Ding et al. [39]. Observe that |y| < 1 is a necessary
identifiability condition. Indeed, if || > 1, the parameters
o1 . (1+~)? )
’7_77 az—(1+1/7)2a17 7/217
would lead to an identical model for the (squared) volatility since a;(1 +
7?2 = a;(1 +74)% and a;(1 —v)? = a;(1 — 4)%. Note that one can interpret
AGARCH(p, q) as a special case of a so—called threshold GARCH(p, q) model
since (3.9) may also be written as

p q
ol =ao+ Y ai((1 -7 +4yL(x,_. <o) X7+ D Bio .
i=1 j=1

Here 1;., denotes the indicator function. Threshold GARCH models were
independently introduced by Glosten et al. [57] and Zakoian [135]. The latter
representation also shows that the volatility responds asymmetrically to rises
and falls in stock prices if v # 0; the case where negative log-returns have a
larger impact than positive log—returns corresponds to v > 0 and the converse
case to v < 0. The AGARCH model allows leverage effects in the sense of
Section 3.1.4.

GARCH (and some of its relatives) gained popularity in financial econo-
metrics and among practitioners because it often gives a reasonable fit to real—
life data and can explain some of the stylized facts of financial log—returns.
There is nowadays a vast econometric literature supporting the relevance of
GARCH, see e.g. Shephard [123] for a review of the literature until 1996. A
nice example of a successful application of GARCH models in financial risk
management is the thorough study by McNeil and Frey [95].

Stationarity

Despite the seemingly simple defining equations (3.8)—(3.9), the stochastic
properties of AGARCH are not easy to deduce. The problem of finding a
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necessary and sufficient condition for stationarity of GARCH waited for a
solution until Nelson [105] provided the answer for GARCH(1, 1) and Bougerol
and Picard [21] for the general GARCH(p, q) case.

The main idea for tackling the stationarity question is to write the squared
AGARCH(p, q) process in state space form and to analyze the resulting
stochastic recurrence equation. Since an AGARCH(p,q) process is also an
AGARCH(p', ¢') process for any p' > p, ¢' > ¢, we may without loss of gener-
ality assume p,q > 2. We then introduce the (p + ¢ — 1)-dimensional vectors

Y= (07,07 g (IXecal =7 Xe1)? o (X mpia | = 7 X pi1)?) T,
B= (a0a07"')0)T7
and the (p+q¢—1) x (p+ g — 1) matrices

(| Z:| — VZt)z + 61 B By—1 Bgaz az - ap1

1 0O~ 0 00O0O-- 0 O

0 1--- 0 00O0--- 0 0
A = 0 0 1 000 0o 0], t€Z.

(1Z¢] — vZ:)? 0 0 00 O 0 0

0 0 0 010 0 0

0 0--- 0 00O0--- 1 0
(3.10)

Then the two equations (3.8)—(3.9), imply

Yt+1 =AY, + B, t € Z. (3].].)

Observe that ((Ag,B)) is an iid sequence. A functional relationship between
the present and the past of a stochastic process is also called a stochastic
recurrence equation (SRE); see Section 2.6 for a precise definition of the notion
of a SRE. Therefore (3.11) is a linear SRE on the state space RPT?71; the term
“linear” is justified by the fact that the map which transforms Y into Y;41 is
(affine) linear. Alternatively, one could view (3.11) as a stochastic dynamical
system or a vector autoregression with random coefficients (A;). A solution
to a given SRE is a stochastic process obeying the corresponding stipulated
relationship.

It is not difficult to see that (3.8)—(3.9) have a unique stationary solution
if and only if (3.11) has a unique stationary solution with nonnegative coor-
dinates (for short: a unique nonnegative stationary solution). We only have
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to give an argument for the sufficiency of the latter statement since necessity
has been shown already by derivation of (3.11). Assume that the linear SRE
(3.11) has a unique nonnegative stationary solution. Then it can be verified
that the first coordinate of Yy obeys (3.9), and X is then obtained via relation
(3.8).

Therefore the stationarity question has been translated into the problem
of existence and uniqueness of a nonnegative solution to the linear SRE (3.11),
where A; and B are as above. A complete answer to the latter problem was
given in Bougerol and Picard [21]. Roughly speaking, one has to show that
the random map y — Apy + B is “contractive on average”. More precisely,
the so—called top Lyapunov exponent associated with (A;) has to be negative,
ie.,

. 1
p = inf { Pl E(log||Ao---A_t||op) } <0, (3.12)

where || - ||, stands for the matrix operator norm corresponding to the Eu-
clidean norm, see Section 2.3. Actually the value of the top Lyapunov exponent
p is independent of the norm | - | because in finite-dimensional vector spaces
all norms are equivalent and because p is also characterized through the limit
relation (3.14) below; alternatively one might work with a non-Euclidean
norm. We exclude the case ag = 0 because it would lead to the trivial solu-
tion Xy = 0. The following theorem is a straightforward generalization of the
results by Bougerol and Picard [21] on the stationarity of GARCH(p, q).

Theorem 3.3.1. Let ap > 0 and o, 8; be nonnegative numbers and || < 1.
Then the AGARCH equations (3.8)—(3.9) admit a unique stationary ergodic
solution ((X¢,0¢)) if and only if the condition (3.12) holds. The corresponding
solution (Y¢) of the SRE (3.11) has the almost sure representation

Y, :B+§: (ﬁAt_i)B. (3.13)

Remark 3.3.2. Note that Y; is F;_;—measurable for every ¢t € Z and for this
reason every stationary AGARCH(p, ¢) process belongs to the general condi-
tionally heteroscedastic class given in (3.6). In other words, every stationary
AGARCH(p, q) process is automatically causal, i.e., X; is F;—measurable for
every t. This is in contrast to ARMA processes, see Example 3.1.2 in Brockwell
and Davis [29]. Observe also that o, is F;_;—measurable and thus independent
of Z; for every fixed t € Z. Since (Y;) is homogeneous in «ag, the parameter
/o is recognized as a scale parameter for ((X;,o0¢)). This entails: if (X;) is
an AGARCH(p, ¢) process with parameters 8y = (o, -..,ap,B1,---B4,7)7,
then for any A > 0 the process (VAX;) is AGARCH(p, q) with parameters
0o = (Aag,1,...,ap,B1,...,04,7)T and identical innovations (Z;). O

Proof. The sufficiency of p < 0 for the existence and uniqueness of a nonneg-
ative solution to (3.11) follows from a direct application of Theorem 2.6.1. We
rephrase the SRE (3.11) on RPT7=1 ag
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Yii1 = ¢e(Ye), teZ,

with
¢i(y) = Aty + B.

In order to check the assumptions of Theorem 2.6.1, we work with the metric
induced by the Euclidean norm in RPT7~! Then it is easily seen from a
comparison of (2.9) and (2.12) that

Alpoo---0¢_ri1) =|Ao - A_ritllop-

Thus (3.12) implies E(log A( (()T))) < 0 for some r > 1, and condition (2.16)
of Theorem 2.6.1 is met. Moreover, E[log™ A(¢g)] = E(log™ ||Agll.,) < o0
trivially follows from E||Agl|., < 0o, which is a consequence of E(Z3) = 1
and the fact that every matrix norm is equivalent to the Frobenius norm
(2.7). Condition S.1 of Theorem 2.6.1 is trivially true if we take y = 0. The
expression of the right-hand side of (3.13) is the limit m — oo of the backward
iterates ¢y—1 0 - -0 Py, (0) and has nonnegative coordinates. We conclude the
proof of the sufficiency part by mentioning that Bougerol and Picard [21] did
not use the “high—level” Theorem 2.6.1 in order to establish the sufficiency of
p < 0 (with v = 0) for the stationarity of GARCH(p, q). They directly applied
Kingman’s subadditive ergodic theorem [74] to norms of products of random
matrices, which yields

1 J
. log H H A,
J i=1

Hence || [T/_; Ai—ill., =5 0, which shows that the series (3.13) is absolutely
continuous a.s. Furthermore (3.13) defines a nonnegative stationary ergodic
solution to (3.11). This method is not essentially different from the lines of
proof of Theorem 2.6.1 presented in Section 2.6 of this monograph.

The proof that condition (3.12) is also necessary requires the use of results
from the theory of random matrices. More or less we copy the arguments in
Bougerol and Picard [21]. Suppose (Y}) is a solution of (3.11). We then need
to show that the top Lyapunov exponent p associated with (A;) is negative.
Using the iteration (3.11) repeatedly, we have

- p <0, j — oo. (3.14)

Y[) = A_lY_l +B = A_1A_2Y_2 + A_lB + B

t J
= -+ =AA---A Y1 +B +Z (HA—i)B~

j=1 i=1
Since all coefficients of A;, B; and Y; are nonnegative,

t J

> ( 1A_i)B <Y,

j=1 i=
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where the relation “>” has to be understood componentwise. For this reason
the series E L(IT—, A_;)B converges a.s. To show that this implies p < 0
one has to make use of a result from the theory of random matrices. Observe
that (A;) is iid with E(log™ ||Ao||.,) < co. Then Lemma 2.1 in Bougerol and
Picard [21] says that p < 0 is implied by

tl;rg() lAo---A_¢l|l., =0 as. (3.15)

If (er,) denotes the canonical basis in RPT¢~! for (3.15) it is enough to prove
that
lim Ag---A_se;, =0 as. (3.16)
t—00

for each 1 < kK < p+q— 1. Since B = ape;, ag > 0 and the series
Z;Zl( 7_, A_;)B converges a.s., relation (3.16) is certainly true for k = 1.
Furthermore, A_te, = fpe; together with (3.16) for ¥ = 1 imply (3.16)
for k = ¢. For the indices k = (¢ — 1),...,2, the property (3.16) follows
from a backward recursion. Indeed, if (3.16) is valid for 3 < k < ¢, then
A_iep, = frer + ep41, implies
lim A() . -A_tek = ﬂk) lim A() te A_H_lel + lim A() e A_t+1ek+1 =0.
t—o0 t—o00

t—00

Using the same arguments for e;11,...,€p14-1 and
A_iepig-1 =aper,  A_jeqipo1 = aper + egqp

for 2 < k < p—1, we see that (3.16) holds for each e, and hence p < 0. This
completes the proof. O

Given coefficients a; and 3; and the distribution of Zy, the verification
of condition (3.12) in general requires a simulation approach based on (3.14)
because there are no tractable expressions for the norms of matrix products
Ay --- A_;. There exist however special cases, for which one can easily decide
whether the top Lyapunov exponent p < 0 or p > 0.

Proposition 3.3.3. The following statements hold true for the top Lyapunov
exponent p associated with (Ay).

(a) If E(log||Ao 0 A_r41]l.p) < O for some r > 1, then p < 0.
(b) The relation

p
> " aE[(|Zo] — 7Z0)’] + ZﬁJ <1
i=1

implies p < 0.
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(c) If the parameters fulfill a;, 3; > 0 for all i,j and |y| < 1 and the innova-
tions distribution is such that P(|Zy| = 0) =0 and P(|Zy| < z) < 1 for all

z >0, then
p q
> Bl Z0] —7Z0)° 1+ Y _ B =1
i=1 j=1

implies p < 0.

() If X25_, Bj > 1 then p > 0.

Proof. (a): This implication is obvious from the definition (3.12) of the top
Lyapunov exponent p. (b): Arguing by induction on p and expanding the
determinant with respect to the last column, one can verify that EA has
characteristic polynomial

p
det (Mgt = BAo) = W70 (1= 3 aiBl(1Zo| = 7Z0)? Z Bix ).
i=1

Here I 41 denotes the identity matrix of dimension p+¢—1.If |A| > 1, then
by the triangle inequality |z — y| > |z| — |y| applied to the latter equation,

p
det(A\Lpyq 1 —EAo) > 1 - ouB[(|Z0] — vZ0)? Z@ >0,
i=1

which shows that EAg has spectral radius ¢ < 1. Recall that the spectral
radius of a matrix is its maximal absolute eigenvalue. Since the top Lyapunov
exponent always fulfills p < log g (see (1.4) in Kesten and Spitzer [73]) the
assertion is proved. An alternative proof will be provided in Proposition 3.3.5
below.

(c), (d): The proofs of these statements again parallel those of Corollaries 2.2
and 2.3 in Bougerol and Picard [21] and so we omit the details. O

Stationarity of AGARCH(1,1)

If p=¢q =1, i.e., in the special case of AGARCH(1, 1), it is enough to consider
the linear SRE

U?Jrl = Q) =+ Oél(|Xt| — ’)/Xt)Q + ﬁlaf = Ataf =+ Qp (317)

with A; = a1 (|Z] —vZ)? + B1. Notice that (A;) constitutes an iid sequence.
The latter SRE has a unique nonnegative stationary solution if and only if

E(log Ao) = E[log(a1 (| Zo| — vZ0)* + B1)] <0, (3.18)

and in that case, similarly to (3.13), the almost sure representation
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00 J
Ut2 = Qo +0é02 (HAt—i)
j=1 =1

oo ]

= (1 + Z H(Oél(|Zt—i| —vZ_i)® + ﬂ1)) (3.19)

j=1i=1

is valid. The sufficiency of (3.18) for stationarity is a consequence of the fact
that the map s — v¥g(s) = Aos + ap has Lipschitz coefficient A(vy) = Ao
together with an application of Theorem 2.6.1. Alternatively one may directly
check via Lemma 2.5.5 that []7_; A;—; =3 0 as j — oo. This then implies that
the series in (3.19) converges absolutely a.s., and then it is readily verified that
(3.19) provides a solution of (3.17). If (62) is yet another stationary solution
of (3.17), then since (07) and (67) are stationary and []_, A;—; =3 0 one
has that

lof =671 = Aeo1 - A jlof_; — 7

<A g "At—j(Ut{j + 5?7]') L 0, J =0
for every t. This shows P(67 = 0?) = 1, i.e., the uniqueness of the solution
(07). The stationarity and ergodicity of (3.19) is clear from Proposition 2.1.1.
An argument for the necessity of condition (3.18) for the stationarity of
AGARCH(1, 1) can be given as follows. If (¢7) is stationary and obeys (3.17),
then by repeated application of (3.17) together with the nonnegativity of A;
and ayp,

o2 > ag (1 + f:l (ZﬁlAt_i)) (3.20)

Assuming E(log Ag) > 0 by contradiction, we have

J
lim sup Zlog(At,i) =00 a.s.

since (3°7_, log(A;—;));>1 is a random walk with nonnegative drift E(log Ay).
As a consequence of this limit result applied to the lower bound (3.20) and
Ay > 0 for every t, we get 07 = oo a.s. This is the desired contradiction and
hence necessarily E(log 4g) < 0.

The arguments we have given here go back to Nelson [106]. If v = 0, the
condition (3.18) reduces to

E[log(a; Zg + 61)] <0,

which is Nelson’s sufficient and necessary condition for stationarity in the
GARCH(1,1) model. Summarizing, we have treated the stationarity in the
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AGARCH(1, 1) process by means of elementary techniques and have obtained
a rather tractable necessary and sufficient criterion for stationarity as com-
pared to Theorem 3.3.1. An important conclusion from (3.18) is the insight
that there ezist stationary AGARCH(1, 1) processes with a; +3; > 1. Indeed,
if a; + /1 =1 and v = 0, then by Jensen’s inequality

E[log(cn Z§ + B1)] < log(Elay Zg + B1]) = log1 = 0,

which entails stationarity. Now a continuity argument indicates that there are
ai + B1 > 1 with E[log(a1 Z2 + £1)] < 0.

Heavy Tails

Under mild conditions on the distribution of Zy, the unconditional distribution
of a stationary AGARCH process is heavy-tailed. We restrict ourselves to
AGARCH(1,1), because only the results of this case will be used later on.
We now give a heuristic argument for the heavy—tailedness. Recall that the
squared volatility of an AGARCH(1, 1) process obeys the linear SRE

of = Ao} + g,  tEL, (3.21)

where A; = a1(]Z;| — vZ;)? + (1. Suppose IEAS/2 > 1 for some ¢ > 0. Then,
since A; and o;—1 are nonnegative and ag > 0, equation (3.21) implies

q a/2_q
ol > A oy

Taking the expectation on both sides of the latter inequality, using that A,
and o} are independent and exploiting the stationarity of (A;) and (¢7), one
may conclude that

Eol > EAY? Eol > Eol.
The latter inequality implies Eod = oo. On the other hand, an application

of the Minkowski inequality to the representation (3.19) yields for any ¢ > 0

that
max(1,q/2)

Eod < ag/z (1 + Z(EAS/Z)j/ ma"(l’qﬂ))
i=1

which is finite if EAg/ <1 Altogether, the following criterion is valid:
E|Xo|%, Eol < 0o <= EAY? <1,  ¢>0.

Note that under the mild assumption P(Ag > 1) > 0 there exists a ¢ > 0 with

]EAg/ > > 1 since EA§ — oo as s — oo. Hence the random variables | Xo| and
oo do not have finite moments of all orders; hence they are heavy—tailed. This
statement can be made more precise. Under regularity conditions, one can
show that the existence of a positive solution & to the equation EAS/ =1
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implies that P(og > x) ~ cz™" as x — oo. Conditions for the validity of
this statement were given in Mikosch and Starica [99] for GARCH(1,1) and
in Basrak et al. [5] for GARCH(p, ¢). They are an immediate consequence of
work by Kesten [72] and Goldie [58] on the tail behavior of stationary solutions
to linear SREs.

In the next theorem we present the version for AGARCH(1,1), which
is a straightforward generalization of the results by Mikosch and Starica [99].
Notice the remarkable phenomenon that the distribution of X; is heavy—tailed
even if Z; has light tails, e.g. if Z; ~ N(0,1).

Theorem 3.3.4. Assume that the parameters oy, (1,7 and the distribution
of Zy satisfy the following conditions:

(i) Zo has a positive density on R.

(ii) Let the parameters fulfill ag > 0, ay,31 > 0 and |y| < 1 and suppose
that E(log Ao) = E[log(a1(|Zo| — vZ0)* + 1)] < 0 (so that there exists
a unique stationary ergodic AGARCH(1, 1) process, which is nontrivial).

iii) There exists sy < oo such that BA§ < oo for all s < sy and BA® = oo
(iii) 0 0
or BAJ® < oo for all s > 0 and lim,_,o, EAS = c0.

Then the following statements hold:
(A) The equation
EAY? =1

has a unique positive solution k.

(B) The unique stationary solution ((Xi,01)) to the AGARCH(1,1) equa-
tions (3.8)—(3.9) satisfies

P(|Xo| > z) ~ E|Zo|" P(og > ) ~ cox™ ", T — 00, (3.22)

for some ¢y > 0.
In what follows, we refer to k as the tail index.

Basrak et al. [5] have put up precise conditions under which the tails of the
distribution function of | Xy| and o9 in GARCH(p, q) are Pareto-like in the
sense that (3.22) holds for certain x,co > 0. However, the characterization of
the tail index & is less explicit compared to (A). An extension of these results
to AGARCH(p, ¢) would be possible.

To conclude this section, we mention a useful criterion for a finite uncon-
ditional variance in AGARCH(p, ¢), or in other words, for covariance station-
arity (or weak stationarity).

Proposition 3.3.5. Let (X;) be a stationary AGARCH(p, q) process with
ag > 0. Then if
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p
> " aiE[(Zo] — 7Z0)*] + Zﬂ] <1, (3.23)
i=1

the random variable X¢ has finite variance equal to

EXZ = ao(l - Zal (1Zo| = 7Z0)? Zﬂj) . (3.24)

i=1

Otherwise EXg = oo

Proof. In the GARCH(p, q) case (i.e. v = 0), this criterion was given by
Bollerslev [18]. Necessity is relatively easy to obtain. Since X; = 0;Z; and oy
and Z; are independent, EXZ = Eo3. Taking the expectation on both sides of

0'3—&04—2&1 |Z l|_’yZ +Z/33 737

i=1

and accounting for the stationarity of (¢7) and for the independence of o_;
and Z_;, we receive

p q
Eog = a0+ Bog | Y aBl(1Z-i| = vZ-)°1+ D B;

i=1

This equation in Eo has a finite nonnegative solution if and only if relation
(3.23) holds.

Regarding the sufficiency of (3.23) for (3.24), one first derives a Volterra
type series expansion of o7. We mention that the same approach was taken
by Giraitis et al. [55] in their analysis of (covariance) stationarity of ARCH(o0)
processes. Since every AGARCH(p,q) process can be written as an
AGARCH(max(p, ¢), max(p, q)) process, we may assume p = ¢ without loss
of generality. Introduce

O = ai(|1Zi| =720 + B, teL
for i € [1, p] and note that (3.9) with p = ¢ then reads
p -
o} =a+ Y Ol (3.25)
i=1

Subsequently replacing o7 ; by the equivalent expression ag +Z Ct(z) 2

z]otzg

n (3.25), we formally obtain
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p
2 _ (1) 2
o; =ap+ E C’tﬂ-1 oy i,

i1=1
(1) L NS NS i) i)
2 2 2

= ap + ap Z G, + Z Z Chr i et NP /AN
i1=1 t1=1142=1

= ag (1 +3 Mt(k)), (3.26)
k=1

where v
M (k) = Z Ctgz—ll)1 Ct(izi)l—lé o Ct(ﬁcl)l— =i (327)

11,0l =1

Now our task is to show that the Volterra series expansion (3.26) of o7 is valid
under (3.23). To do so, it is enough to verify that Y-, M;(k) < oo a.s. In-
deed, since the right-hand side of (3.26) obeys (3.25) and since the AGARCH
equations have a unique solution (Theorem 3.3.1), the representation (3.26)
is clearly true. In order to establish Y~ , My(k) < oo a.s., we compute the
first moment of M;(k). Using the fact that the factors appearing under the
sum (3.27) are independent for each fixed k, we have

y4 y4
E[M(1)] = Y ECS = 3" (aEl(|Zo| — vZ0)*] + Bi) =: A, (3.28)
i=1 =1
Moreover, since
p
Mi(k+1) =Y C) My, (k),
i1=1

since the random variables Ct(ili)l and M;_;, (k) are independent for every iy
and since E[M;(k)] does not depend on ¢,

E[M(k + 1)] = AE[M, (k)]
Combining this with (3.28) we finally obtain
E[M (k)] = \*,  k>1.
Recall that A < 1 by assumption (3.23). Now an application of Fubini’s the-

orem gives E[Y o, Mi(k)] = Ype, AF < oo and shows Y 2, My(k) < oo
a.s. As a by—product we receive Eg} < oo, which completes the proof. O
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IGARCH

Let (X¢) be a stationary GARCH(p, ¢) process with ag > 0. Then the bound-

ary case of parameters
P q
S+ g =1 (3.29)
i=1 j=1

is referred to as integrated GARCH (or IGARCH); here the term “integrated”
stems from the fact that (X}?) is formally an ARMA process with an AR part
containing a unit root. We refer to Section 4.2.2 for a more detailed analysis of
the squared GARCH process. From a straightforward application of Theorem
3.3.4 (with v = 0) it follows that the IGARCH(1, 1) process has a marginal
distribution with tail index k = 2, provided the regularity assumptions (i)—(iii)
of Proposition 3.3.4 hold. To the best of our knowledge, “integrated AGARCH
processes” have not been introduced in the literature.

3.3.2 EGARCH Models

In its simplest form, the exponential GARCH (EGARCH) process of Nel-
son [106] is of form
Xt - UtZta (330)

with a squared volatility obeying
logo? = a+ Blogoi_y +vZi 1+ 6|2 1), t€Z, (3.31)

where a,v,0 € R and || < 1. Note that the sequence (logo?) constitutes a
causal AR(1) process with mean p = (a+ 0E|Zp|)/(1 — B) and error sequence
(vZi—1 + 6(|Zi—1| — E|Zy|)). Since the innovations have a finite mean and
|8] < 1, it follows by the theory of ARMA processes that the unique stationary
solution to (3.31) is given by

[ee]
logo} =a(l =)' +> B (VZioiok +0|1Ziakl),  te€Z.  (3.32)
k=0

Hence the stationarity issue does not pose any problems.

In addition we suppose that 0 < 3 < 1 and § > |y|. This seems reasonable
from an economics point of view. One expects a positive relationship between
volatilities on successive days, i.e., 8 > 0. The squared volatility o7 as a
function of Z;_; should be nondecreasing on the positive real line (i.e. y+4 >
0) and non-increasing on the negative real line (i.e. 6 —~ > 0). Observe that
the volatility responds asymmetrically to rises and falls in stock prices if and
only if v # 0; the case when negative log-returns have a larger impact than
positive log-returns corresponds to v < 0 and vice versa. Thus EGARCH
captures leverage effects.. Altogether, vz + d|z| > 0 for all z € R. From this
we also deduce
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logo? > a(l —3)~* a.s.

The tail behavior of an infinite series as it appears on the right—hand side of
(3.32) is well-studied. Let us define nonnegative random variable Wy = (yZp+
8|Zo|) and let My, (r) = E[e"™°] be its moment generating function. We
start with the case that W, has a subexponential distribution; see Embrechts
et al. [45] for the definition of subexponentiality. The subexponential class
contains heavy—tailed distributions such as the lognormal or distributions with
a tail which decays like a power function. A subexponentially distributed Wy is
not particularly interesting for practical applications because by the inequality
logo? > a(l — 8)~! + Wy and the fact that Myw,(r) = oo, we would have
M,og 52(r) = oo, which implies that any moment of oy is infinite, i.e., Eof = 00
for all ¢ > 0. This means that g9 would be extremely heavy—tailed.

In the case that Wy has a distribution which admits a finite moment
generating function, it is relatively simple to determine the moment generating
function of log o2. Indeed, by straightforward computation, which exploits the
independence of the innovations (yZ; + 0|Z;|), one shows that

Migg3(r) = exp(ra(l = 8)71) T] Mw, (6"r)
k=0

= exp(ra(1 - )") exp (D log M, (87))..

k=0

Now we can conclude that

o0
Eo§ = Miog o3 (a/2) = exp(qa(l - 8) 7 /2) exp (Y log Miw, (8"4/2)),

k=0

and thus obtain the criterion

Eog <oo <= Y logMw,("¢/2) <00,  ¢>0.
k=0

There exist Abel-Tauber theorems relating tails and moment generating func-
tion in a neighborhood of zero, see Bingham et al. [14], but we do not develop
the theory further. We also refer to recent work by Lindner and Meyer [87],
who study the extremes of (X;) in the special case of 3 = 0 and Zg ~ N (0,1).

3.4 Stochastic Volatility Models

For the sake of completeness we also mention the stochastic volatility models.
A stochastic volatility model has form

Xi = 017, t ez,
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where the sequences (0;) and (Z;) are assumed independent of each other.
Note that the conditionally heteroscedastic time series models we have seen
so far, are not stochastic volatility models in the sense of the latter definition
(although their volatility (o:) is a random process). Since in a stochastic
volatility model (o) and (Z;) are independent of each other, (X;) is stationary
if and only if (o) is stationary. A simple example is the case where (logo?)
is modeled as a causal ARMA(1, 1) process independent of (Z;), i.e.,

logo; = a+ Bloga;_ + i, teZ, (3.33)

where o and |3] < 1 are the ARMA parameters and (7;) is an iid sequence
independent of (Z;). Stochastic volatility models are usually not easy to handle
statistically because it is rather difficult to estimate the unobserved volatilities
(0¢). Since we do not pursue stochastic volatility models furthermore, we
merely mention the two comprehensive survey articles by Ghysels et al. [53]
and Shephard [123], which also contain extensive bibliographies.
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Parameter Estimation: An Overview

After a survey of estimation in ARMA models, we introduce the (Gaus-
sian) quasi maximum likelihood estimator (QMLE) for the parameters of
GARCH(p,q) and the so—called Whittle estimator, which is applied to the
squares of a GARCH process. We summarize the existing results concerning
the asymptotic behavior of these estimators and try to avoid technicalities.
The emphasis is on general ideas and principles; this chapter is intended to
facilitate the reading of Chapters 5 — 8, which are rather technical.

4.1 Estimation for ARMA Processes

In this section we give a short review on the estimation of ARMA parameters.
We present three classical estimators: the Gaussian quasi maximum likelihood
estimator, the least—squares estimator and the Whittle estimator. It has been
well-known since the seminal paper by Hannan [64] that these three estimators
are asymptotically equivalent, i.e., they have identical asymptotic behavior.
The theory of estimation in linear ARMA models is an indispensable basis
for a deeper understanding of the estimation problem in GARCH or other
conditionally heteroscedastic time series models. We maintain the notation of
Section 3.2 as far as possible.

4.1.1 Gaussian Quasi Maximum Likelihood Estimation

Suppose that (X;) is a causal invertible ARMA(p,q) process given as the
stationary solution to the difference equation

¢°(B)X; = 0°(B)Z,

where (Z;) is iid with mean zero and finite variance (0°)? and where the
characteristic polynomials

0 (z) =1—plz— - —@pzl and 9°(z) =1+ 07z + -+ 92!
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are assumed to have no common zeros and (¢),v7) # (0,0). We want to
estimate the true parameters 6 = (¢9,...,¢5,97,...,99)" and (0°)? from
data X1, ..., X,. Observe that the type of the distribution of Z; is not specified
in the present framework, and hence it is impossible to determine a likelihood.
A common approach in such a situation is to suppose that Z; iid ~ A(0,1).
Under this synthetic assumption, (X;) is a zero-mean Gaussian process, and
therefore it is possible to determine a so—called (Gaussian) quasi log-likelihood

En(ev 02) = log f9,0'2 (X1) + Zlog fe,a2 (Xe | Xe—1,..0, X0), (4.1)

t=2

where the symbol fg ,2(-) stands for any kind of conditional or unconditional
density related to a zero-mean Gaussian ARMA (p, ¢) process with parameters
0= (p1,-.-,¢p,V1,...,9)T and Var(Zy) = 2. Since the assumption that
Z; iid ~ N(0,0?%) together with the parameter hypothesis 8 implies that the
vector (X1,...,X;)T is multivariate normally distributed (with a covariance
matrix depending on @ and 02), we have

X Xio1,..., X1~ N(X:(8),0%7(8)), (4.2)
where
Xt(B) :E97g2(Xt|Xt,1,...,X1) and ft(O) :Eg’az[(Xt —Xt(ﬂ))z]/az.

Note that we used that Var(X; | X;—1,...,X1) is constant and consequently
equal to 7 () by virtue of the multivariate normality. Also observe that X;(8)
coincides with the best linear predictor of X; based on Xi,...,X; 1, and
7+(@) is its normalized mean square error. We set X;(8) = 0 so that 7 (8) =
Eg.,2[X?]/0?. In practice, the quantities X;(0) and 7(@) are determined by
means of the so—called innovations algorithm, see Brockwell and Davis [29] .
Combining (4.2) with (4.1) and taking logarithms, one obtains

3 2y _ " 1y 2 (X: — X:(0))?

La(8,0%) =~ log(2m) - ; (oge?ru(on + L") (43
The quasi maximum likelihood estimator ( QMLE) is a maximizer (2;) of
L, with respect to 02 € (0,00) and @ € C, where

c=1locprrt p(2)0(z) #0 for |z]| < 1,
¢(2),¥(z) have no common zeros and (¢p,¥,) # (0,0) [~

In the definition of the latter set, the conditions that the characteristic poly-
nomials p(z) = 1—p12—---—ppzP and ¥(z) = 1+ Y12+ - - - + 9,27 must not
have common zeros and (,,9,) # (0,0) are necessary for the identifiability
of the ARMA models. Identifiability means that there are no distinct vectors



4.1 Estimation for ARMA Processes 65

6,0 € C which lead to the identical model. We also mention that by Remark 3
of Section 10.8 in Brockwell and Davis [29], the set C' is open and bounded.
Hannan [64] established the consistency and asymptotic normality of 8, in
full generality. See also Brockwell and Davis [29] for a textbook treatment of
the original Hannan proof.

Theorem 4.1.1 (Hannan [64]). Let (X;) be a causal invertible ARMA(p, q)
process with true parameters 6y € C and 0 < Var(Zg) = (0°)? < oo. Then

0, == 6y, G2 2% (0°)2, n — 0o,

n

and
Vn (0, — 0)) -5 N(0,[W(0)]™"), n— oo,

where the asymptotic covariance matriz is the inverse of

W(00) = 1 /ﬂ <810gg(z\;00)>T<8logg()\;00)) ar

4w ) 00 00
with 0 ,)\)|2
He ™
A 0) = ) , A€ (—m, 7.
IO = ey e

Remark 4.1.2. Observe that the asymptotic covariance matrix [W(68o)] !
of Theorem 4.1.1 does neither depend on the distribution nor on the inno-
vations variance (0°)2. For practical computations there exists an alternative
representation of W (6y), see formula (8.8.3) in Brockwell and Davis [29]. O

Remark 4.1.3. Elementary calculus shows that 62 is related to 0,, by

62 = Su(Bn) (4.4)

where
& _ Zn (X; — X4(0))?
Sn(6) = pot 7+(6) '

Substitution of (4.4) into (4.3) then yields that @, is a maximizer of the
so—called reduced log-likelihood

Qn(0) = —log(n 'S,(0)) —n~ 1> logi(6). (4.5)

Hence the latter trick eliminates the scale parameter o2 from the quasi log—
likelihood and thereby reduces the dimension of the parameter space, in which
one has to find a maximum, by 1. By the same arguments, o2 can be removed
from the approximate conditional Gaussian log-likelihood Iin, which will be
defined in equation (4.7) below. a
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Conditional Gaussian Likelihood

In what follows, we explain the derivation of an estimator which is asymptoti-
cally equivalent to 6,,. The present exposition will be helpful when it comes to
derive an approzimate conditional Gaussian likelihood in the GARCH model.

Instead of using the exact Gaussian log-likelihood (4.1), we concentrate on
finding an approximation to a conditional Gaussian likelihood. Under param-
eter @ and innovations variance o2 we have that the vector (Xi,...,X,)T
given Xo,...,X_py1,%0,...,%Z_¢+1 is conditionally multivariate normally
distributed with conditional Gaussian log-likelihood

n

Ln(0,6°) = —Z log(2mo?) — 2;_2 > (Xi - X1(9))%. (4.6)

t=1

Here ) .
=Y 0iXi i(0) + > 9,7t ;(6)
i=1 j=1
where the random variables

Zt; t S 0)
Z4(0) =
X; — Ele ﬁpithi — E?:l 19th,]'(0), t> 0,

are the innovations at time ¢ under the parameter hypothesis 6. In particular,
note that Zt(OQ) = Zt = Xt — Xt(OO) when ¢ > 0.

Since in practice Zp,...,Z_ 441 are unobservable and X,..., X ,11 are
not available, the quantities X,(@) and Z,(0) have to be approximated in some
way. Since EX; = EZ; = 0, a natural choice is to impute X; = Z; = 0 for all
t < 0, which then leads to

. min(p,t—1) min(g,t—1) .
ZO)=Xi— Y @eXei— > 0iZi;0), t>0,
i=1 j=1

as an approximation of Z,(), and

. min(p,t—1) min(g,t—1) .
X0 = > eXiit+ >, 9Z;0), t>0,
i=1 j=1

as an approximation of X;(0). We now replace X;(6) in (4.6) by X,(6) and
so obtain an approximation to the conditional Gaussian log—likelihood L,
namely

Ln(8,0%) = log (2m0?) = o2 Z X, — X,(0))%. (4.7)
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Denote by (zg ) the maximizer of L,. As we have alluded to already, the two

estimators 6, and 0, are asymptotically equivalent, i.e., \/n(6, — 8y) and
V/n(0,, — 0g) have the same weak limit as n — oo.

Corollary 4.1.4. Under the assumptions of Theorem 4.1.1, one has that

62 =% (0°)? and the estimators 6, and 0, are asymptotically equivalent

since . ~
Vnl6, — 6, =0, n — oo.

Sketch of Proof. We are not aware of a proof to this corollary in the literature.
Since a complete proof is beyond the scope of this monograph, we restrict
ourselves to explaining the main ideas. One can show (see Problem 5.15 in
Brockwell and Davis [29]) that

0)=> m(0)X,—;, t>0,
where 7;(0) is defined through

o~ i P(2) _1—prz == pp2? <1
Zﬂ-](g)z Pz) 1+z+-- +09,20° lzl < 1.

This suggests the following definitions:
Zt(e) = ZWJ(O)Xt g te Z)

and ) ,
= Z wiXi—i+ Z V;Zs4(0), teZ.
i=1 j=1

Recalling equation (3.4) reveals that X;(0) coincides with the best linear
predictor of X; based on the infinite past, i.e.,

Xt(O) :Eg’a.z(Xt |Xt,1,Xt,2,...), t € Z.
These observations are useful for understanding the asymptotic equivalence

of @, and én, since they imply that

|1Z:(6) |— 0)Xi—; Zm NXe—;l,  t>0.

Thus there is a constant ¢ > 0 such that

|X:(0) — X,(8)] < ¢ Z |7 (0)] | X¢—;],  t>max(p,q). (4.8)
Jj=t—q



68 Parameter Estimation: An Overview

An application of the Cauchy inequalities (see Rudin [120]) shows that |7;(0)|
decays to zero exponentially fast as j — oo. Since E|Xy| < oo implies

E(log" |Xo|) < oo (Lemma 2.5.3), an application of Proposition 2.5.1 to the
right-hand side of inequality (4.8) demonstrates that the error |X;(0)— X;(8)|
decays to zero exponentially fast with probability 1, i.e.,

|X:(0) — X4(0)] =5 0, t — o0.

From this one concludes that L, (0,02) = L,(8,0%) + R, with n 1 R,, = 0,
where

Ln(0,0%) = log (2m0?) ~ oy Z X — X.(0

In fact one can even show that, uniformly on a suitable compact set containing
the true parameter vector, n |L, — L,| == 0 and n~Y/2|L! — L'| =5 0 as
n — oo (' denotes the derivative with respect to (6,02)7). The same limit
results hold true for the differences |L,, — L,,|. Hence

nY Ly — Lp| 250 and  n”Y2 L - L | 250, n—oo. (4.9)

Then an evident adaptation of the proofs of Theorem 5.3.1 and Lemma 5.6.5
shows that the limit relation (4.9) implies v/n(60,, — 6,,) = 0. O

4.1.2 Least—squares Estimation

The least—squares estimator is a minimizer éf of the quantity

which already appeared in the~reduced log—likelihood (4.5). In the literature
sometimes also the minimizer -5 of

=) (X — Xi(0))?
1

n
t=

is referred to as a least—squares estimator. It can be shown (see the proof of
Theorem 10.8.2 in Brockwell and Davis [29]) that under the assumptions of
Theorem 4.1.1 one has 6, — 8, = op(n='/2). This implies that . and @,
are asymptotically equivalent. Using the techniques exploited for the proofs of
Theorem 10.8.2 and Propositions 10.8.3 and 10.8.4 in Brockwell and Davis [29]

it is also possible to establish OLS én = op(n~'/?). As a remark we mention

that the asymptotic properties of On were also studied by Klimko and Nel-
son [75] and Tjgstheim [127] in the context of general (nonlinear) time series
models.
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4.1.3 Whittle Estimation

Whittle [133] devised an approximation to the Gaussian log-likelihood L,
based on the so—called periodogram. So far we have worked in the time domain,
whereas the periodogram is an estimator used if one concentrates on the
frequency domain, or equivalently, if one conducts spectral analysis of time
series. In what follows, we briefly summarize the main ideas and facts about
spectral time series analysis. We refer to Priestley [114] or to Chapter 4 of
Brockwell and Davis [29] for a treatment in full mathematical generality. A
further reference for Whittle estimation is Dzhaparidze [44].

Spectral Distribution Function and Spectral Density

At the origin of spectral theory lies the spectral representation theorem, which
states that any stationary stochastic process (X;) with mean zero and finite
variance admits an almost sure stochastic integral representation

X; :/ eMAU (M), t €7, (4.10)
(77777"]

with respect to a mean—zero complex valued process (U(A))rg[—r,r With un-
correlated increments and such that

ElUM) =UM)P =Fo) = F(\), 1< <h<,

where F' is a nondecreasing right—continuous bounded function on [—m, 7]
and standardized to F'(—m) = 0. The function F'(A), A € [—m, @], is called the
spectral distribution function of the autocovariance function yx(-). One can
show that the relationship

vx(h) = / e"dF(N), hez,
(777777]

is valid and that there is a one-to—one relationship between autocovariance
functions and spectral distribution functions; for these reasons, time domain
results have equivalent frequency domain counterparts. If F' is absolutely con-
tinuous with respect to Lebesgue measure, the derivative f(\) = F'()) is
called spectral density. For example, if the autocovariances are absolutely
summable, then F' is absolutely continuous. In that case the spectral density
has Fourier series representation

1 )
> (e
2m hEZ

)

= 217T (7}((0) +2 va(h) cos(hA)) , AE (—m,@. (4.11)
h=1
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Roughly speaking, the spectral representation theorem (4.10) says that X is
a “weighted superposition” of trigonometric functions exp(iAt), A € (—m, 7],
with “zero—mean uncorrelated random weights, which have variances propor-
tional to f(A\)” (provided F' is absolutely continuous).

Our aim is to compute the spectral density of a causal ARMA process (X;)
with Var(Zp) = 0 < oo and parameter vector 8 = (p1,...,0p,91,...,9,) 7.
To this end, one exploits the fact that the application of a time-invariant
linear filter n(B) = 3272, 7;B’ to a stationary process (Y;) with spectral
density fy (A) corresponds to a multiplication of fy (A) with the associated
power transfer function

) i 2
ne ™) = > nye
j=0

, A€ (—m,m).

Indeed, if }°72 || < oo, then by Theorem 4.4.1 in Brockwell and Davis [29]
the process

‘/t:n(B)Yi:ZnJthfja tEZ)
j=0

has spectral density

Q) =P frN,  Ae(=mm]. (4.12)
Now recall from Section 3.2 that a causal ARMA process (X;) with parameter
vector @ = (¢1,...,0p,01,...,94)T has the representation

X; = ¢(B)~"0(B)Z; = $(B) Z, t€Z,

where
I(2)  TH+diz4-+09,20 j
z) = = = iz7, z| < 1.
PO = ) T i e m e — e gzw 2] <

Then, since (Z;) has spectral density fz()\) = 0?/(27) and Y72, [1;| < oo,
the spectral density of (X;) equals
0.2 |19(671A)|2 0.2
A 0) = . = A0 AE (- 4.13
fX( ) ) o |(,0(€7l)\)|2 o g( ) )7 E( ﬂ-aﬂ-]a ( )
by virtue of relation (4.12); notice that the expression g(\;0) has already
appeared in Theorem 4.1.1, where it determined the asymptotic covariance
matrix [W(6o)] .

The following observation turns out to be essential for the definition of the
Whittle estimator. Suppose 8¢ € C'; then

" g(X;6o) =
2 for all 4.14
/_ﬂg()\;e)d)\> , orall @ € C, 0 +#0,, (4.14)

or in other words, the function 6 — ffﬂ g(X;00)/9(X;0)dX on C is uniquely
minimized at 6 = 6, (Proposition 10.8.1 in Brockwell and Davis [29]).
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The Periodogram

The periodogram of the (mean-corrected) sample X7, ..., X, is defined as
1| < ’
In,X (/\) = Z(Xt - X) eii)\t ) A€ (_7r7 7T] ) (415)
n
t=1

where X denotes the sample mean. It is straightforward to verify that alter-
natively
Ix(N) = Yy x(h)e™™,
[h|<n

which shows that the periodogram is (up to the multiplicative constant 27)
nothing but a moment estimator for the spectral density of the underlying
time series (X;), i.e., it is a sample analogue of the spectral density (4.11).
Since this monograph does not primarily deal with the asymptotic properties
of the periodogram, we refer to Chapter 10.3 of Brockwell and Davis [29] for a
comprehensive discussion. We merely mention that the periodogram is often
evaluated at the Fourier frequencies
21y .

/\j: n’ J:_[(n_l)/2]7 (KRR [n/2]’ (416)
since then numerical computations can be made via the fast Fourier transform;
see Chapter 10.7 in Brockwell and Davis [29].

Definition of the Whittle Estimator

We have now collected the necessary items which make us understand the
definition of the Whittle estimator. The property (4.14) suggests that

" g(A; 00)
= 9(\;0)

is a suitable objective function to be minimized. A naive estimation procedure
for By is therefore given as follows:

60— dA (4.17)

e Replace the (unknown) spectral density g(A; @y) under the integral (4.17)
by its sample version, the periodogram.

e Replace the integral ffﬁ in (4.17) by a Riemann sum evaluated at the
Fourier frequencies (4.16):

_y L Lnx(A))
O, (0) = ) .
X n XJ: g(7j; 0)

(The summation is taken over all Fourier frequencies.)
e Minimize o;, x(6) with respect to 6 € C.
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This leads to the Whittle estimator given by

9‘: = arognéin 5;2%)( 0). (4.18)
€

We mention that Whittle’s [133] derivation of 9:: was rather motivated
through an approximation to the Gaussian log—likelihood L,, whereas our
way of explaining @: is mainly influenced by Hannan’s [64] proof of consis-
tency. Since |0 —0,,| = op(n~1/2) as n — oo (see the proof of Theorem 10.8.2
in Brockwell and Davis [29]), the estimators 6,
equivalent.

Theorem 4.1.5 (Hannan [64]). Let (X;) be a causal invertible ARMA(p, q)
process with true parameters 6y € C' and 0 < Var(Zy) = (¢°)? < co. Then

and 0, are asymptotically

AW a.s. — AW a.s.
0, — 6o, Uz,X(Bn) 25 (6°)?, n — 0o,

and
W

Vn (0, —00) <5 N(0,[W(8)] "), n— o0,
where W (0q) is as in Theorem 4.1.1.

4.2 Estimation for GARCH Processes

We discuss the (Gaussian) quasi maximum likelihood estimator (QMLE) in
the GARCH(p, ¢) model and the Whittle estimator applied to the squares of
a GARCH(p, q) process (X¢). In contrast to ARMA processes discussed in the
previous sections, the two procedures do not lead to asymptotically equivalent
estimators for the GARCH(p, q) parameters. This phenomenon stems from the
fact that the Whittle estimator is applied to transformed data, i.e, the squares
(X?), which formally constitute an ARMA (max(p, q), ¢) process with a certain
white noise sequence. For this reason, a direct comparison of the QMLE and
Whittle estimator is rather inappropriate, and the asymptotic inequivalence
of the two estimators is not totally unexpected.

As a matter of fact, it is beneficial to use the QMLE because it is much
less sensitive with respect to a heavy tailed unconditional distribution of | Xp|
than Whittle. For consistency, the Whittle estimator requires a finite 4th un-
conditional moment, i.e., EX] < oo, whereas the QMLE is consistent for
all stationary GARCH(p, q) processes, provided the distribution of Zj is not
concentrated in two points. If also EZ§ < oo, then the QMLE is even asymp-
totically normal. In contrast, the Whittle estimator in GARCH(p, q) is only
asymptotically normal if EX§ < oo and has slower than \/n-rate of con-
vergence in the case of a tail index x € (4,8). As an illustration of these
statements, let us consider parameter estimation in an IGARCH(1, 1) model,
i.e., a GARCH(1,1) model where a; + 31 = 1; suppose the innovations (Z;)
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are standard Gaussian. We have seen on p. 60 that the distribution of | Xy| has
tail index k = 2 and EXZ = oco. Thus the QMLE applied to IGARCH(1, 1) is
asymptotically normal, whereas Whittle is inconsistent.

Instead of Whittle estimation one might also want to apply the least—
squares estimator to (X7). Since the arguments of Brockwell and Davis [29]
for the asymptotic equivalence of Whittle and least—squares estimator remain
valid in the GARCH case, the least—squares estimator has the same limit
behavior as the Whittle estimator. For this reason we may without loss of
generality focus on an analysis of the Whittle estimator.

4.2.1 Quasi Maximum Likelihood Estimation

The quasi maximum likelihood estimator (QMLE) is the most common proce-
dure for estimating GARCH parameters. Most statistical computer packages
or specialized software for financial time series analysis contain the QMLE as
a built—in function. But despite its popularity, a mathematical proof for the
consistency and asymptotic normality had not been provided for a long time.
Recently, Berkes et al. [8] established consistency and asymptotic normality
of the QMLE in GARCH(p, ¢) under weak assumptions on the parameters
and the distribution of the underlying noise sequence (Z;). Thereby they gen-
eralized work by Lee and Hansen [84] and Lumsdaine [90] on GARCH(1,1).
Straumann and Mikosch [125] provided a unifying theory of the QMLE in con-
ditionally heteroscedastic time series models and applied it to AGARCH(p, q);
the latter theory is presented in Chapter 5 of this monograph.

In what follows, we show how one can derive an approximation to the
conditional Gaussian likelihood of a stationary GARCH(p, q) process (X),
ie.,

XtZO'tZt, tEZ,

where (Z;) is a sequence of iid random variables with EZy = 0 and Var(Z,) =
1, and

P q
o} =af + Za?XtZ_i + Zﬂfaf_j, t €Z. (4.19)

i=1 j=1
Denote the true parameter vector by 8y = (ag,...,ap, 57, .. ,B(‘;)T. In con-

trast to ARMA, even under the synthetic assumption that the Z;’s are
iid ~ N(0,1), there is no explicit expression of the probability density of
a GARCH(p, q) vector (X1,...,X,)7T since the distribution of (o,...,0,)7
is not known. To overcome this difficulty, one can consider an approximate
conditional Gaussian log-likelihood instead, similarly to the approach which
has lead to én in Section 4.1.1.

Let 8 = (ao,...,qp,B1,-..,3,)" denote the presumed parameter and
make use of the decomposition
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log fo(X1,..., Xn | Xo,-. o, X_pi1,00,.--,07 4 11)
n
Z nge Xt | Xt 17"'7X—p+170027"'702_q+1)

. . 2 2 .
in order to observe that X; given Xy 1,...,X ;41 and o3,...,02 4, is con-

ditionally Gaussian distributed with mean zero and variance hy(0) recursively
given by

o7, t<0,
Qg + Ele ainfi + Z?:l ﬁjiLt,j (0), t>0.

This implies that the conditional Gaussian log-likelihood has the form

h(6) =

log fo(X1,..., Xn|Xo0,.. ., X_ps1,08,---,0° 441)

n

= _’; log(2r) — Z <h‘§0) +log ht(e)) . (4.20)

Since X, ..., X_p11 are unavailable and the squared volatilities 03, ..., 02,

unobservable, the conditional Gaussian log-likelihood (4.20) cannot be nu-
merically evaluated without a certain initialization for 0(2),...,02_p 41 and
Xo,..., X g+1. It will follow in Chapter 5 that the initial values are asymp-
totically irrelevant so that we set the X;’s equal to zero and h(8) =
ap/(1— B — - — By) for t <0; formula (4.26) below together with (4.28) is

a possible justification of our particular choice for Bt(a), t < 0. We arrive at

iy [P0l =, <o
+(0) = . )
ao—i—zmmpt 1)04 X7, +E;1-:1 Bihi—;(0), t>0.

The function (h¢(8))Y/2 can be understood as an estimate of the volatility
at time ¢ and under parameter hypothesis 8. The results of Chapter 5 imply
that, uniformly on the compact set K defined in (4.22) below, |hy — he| <=5 0
as t — oo. This suggests that by replacing h;(0) by hy(8) in (4.20) we obtain
a good approximation to the conditional Gaussian log-likelihood. Since the
constant —nlog(27)/2 does not matter for the optimization, we define the

QMLE 6,, as a maximizer of the function
R I~ [ X? .
Ln(0) = - ( ! +log ht(0)>
2 ; he()
with respect to 8 € K, where the compact set K fulfills

K C (0,00) x [0,00) x B (4.22)
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with g
B={(,....8)" €[0,1)7] Y p; < 1}.
j=1

We now list several conditions, which will be needed for the consistency
and asymptotic normality of 6,,:

Q.1 The distribution of Zj, is not concentrated in two points.

Q.2 (ap,B;) # (0,0), a5 > 0 and there is i« > 0 with af > 0. The poly-
nomials a°(z) = ajz + -+ +ap2P and °(z) =1 -3z —--- — 3 21
do not have any common zeros.

Q.3 The true parameter 6 lies in the interior of K.
Q.4 There is p > 0 such that P(|Zg] <t) = o(t*) as ¢ | 0.

We are now ready to quote Theorems 4.1 and 4.2 of Berkes et al. [8]. We
present the results in a slightly more general form.

Theorem 4.2.1 (Berkes et al. [8]). Let (X;) be a stationary GARCH(p, q)
process with true parameter vector 6y € K. Suppose the conditions Q.1 and
Q.2 hold. Then the QMLE 8,, is strongly consistent, i.e.,

0, == 0y, n — 00.

If in addition EZ; < oo and Q.3 and Q.4 hold true, the QMLE 0, is also
asymptotically normal, i.e.,

Vn (8, — 85) 5 N(0,F; GoF;h),

where the (p+ ¢+ 1) x (p+ g+ 1) matrices Go and Fy are given by

2
Fo= TE(ZE-1) Go,
Go — E(Z5 - 1) E 1 (0ho(80)\" dho(8o)
°T 4 ol 00 08 |-

The C(K)-valued stochastic process (hy) is the unique stationary solution of
the difference equation

p q
h(0) = o+ > aiX] ;+ Y Bil—;(0), teZ (4.23)
i=1 j=1

Remark 4.2.2. Berkes et al. [8] even require E|Zo|*T¢ < oo for some € > 0. It
seems however that EZ¢ < oo is sufficient since the proof of their Theorem 4.2
goes through under the weaker condition EZ§ < oo. O
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A Discussion of the Conditions Q.1 — Q.4

The conditions Q.1 and Q.4 are rather mild technical assumptions. Note
that the requirement P(|Zy| < t) = o(t*) as t — 0 prevents the distribu-
tion of |Zp| from having too much mass around zero. It is e.g. fulfilled if
Zp has a bounded Lebesgue density in some neighborhood of zero.

Observe that the set K given in (4.22) may contain parameters 6 that do
not belong to a stationary GARCH(p, ¢) model. Crucial in the definition
of K is however the restriction 3 + -+ + 3, < 8 < 1 and 3; > 0 for all
0 € K; the latter restriction is necessary for the existence and uniqueness
of a stationary solution to (4.23) or equivalently the validity of represen-
tation (4.26) below.

Condition Q.2 is needed to ensure the identifiability of the GARCH(p, q)
parameters, i.e., that there is no 8y = (ag,ag,. .. Np,ﬂl, ..,ﬂ") # 6Oy

such that
Z A X7, + Z ﬁoat ; a.s.

The exclusion of af = 0 is evident since af = 0 implies 67 = 0. If af =0
for all i € [1,p], we would have 0?7 = af /(1 — ;1-21 f33), which implies that
parameters lying on the curve ap/(1 — 25:1 B;) = const lead to iden-
tical models. Observe that the difference equation (4.19) for the squared

volatility of a GARCH(p, ¢) process can be written as

a
3°(B)o? = a°(B) (a (01) +X > (4.24)
in backshift operator notation, where a°(z) and 8°(z) are the polynomials
defined in condition Q.2. Analogously to ARMA models, the occurrence
of common zeros in the polynomials a°(z) and 3°(z) would imply that
nontrivial common factors in a°(z) and 3°(z) cancel out, which leads to
an identifiability problem. If (ap, 37) = (0,0), then multiplication of both
sides of (4.24) with an appropriate linear factor (aB + ¢) shows that there
is By # 0y belonging to the identical GARCH(p, ¢) model.

Condition Q.3 rules out that 6y lies on the boundary of the set of
GARCH(p, q) parameters belonging to a stationary model. For bound-
ary points asymptotic normality of the QMLE is of course impossible: if
e.g. the QMLE of GARCH(1,1) is applied to ARCH(1) data, then 87 =0
and ﬁ§") > 0 (label 8,, = (&5”%&5”% AYL))T) so that the coordinate ﬂ}n)
cannot be asymptotically normal. Q.3 also implies that the order (p, q) of
the GARCH model must be perfectly specified for asymptotic normality.
We mention that Berkes et al. [8] work under the assumption Q.3 also for
consistency. This restriction is obsolete if the techniques of Jeantheau [70],
which go back to Pfanzagl [112], are employed for the proof of consistency.
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Moreover, Berkes et al. [8] assume E|Zp|?>T? for a § > 0. This is again not
necessary if one uses the consistency proof of Pfanzagl [112]; cf. the proof
of Theorem 5.3.1 in this monograph.

Some Remarks Concerning the Proof of Theorem 4.2.1

Here we merely sketch the main steps of proof of Theorem 4.2.1. In Chap-
ter 5 we develop a general theory for quasi maximum likelihood inference
in conditionally heteroscedastic time series models which may be applied to
GARCH(p, q) for obtaining Theorem 4.2.1.

The proof essentially consists of a careful analysis of the asymptotic behav-
ior of (ﬁn)nzl and the corresponding sequences of first and second derivatives.
As a first step, one seeks to find a stationary approximation to the sequence
(log hy + X?2/ ht)teN with an asymptotically negligible error. It turns out that
one has to replace ht in L, by the unique stationary solution of the difference
equation (4.23):

n 2

Ln(0) = —; ; (hito) + log ht(o)) : (4.25)

Then one analyzes the maximizer of Ly, which is asymptotically equivalent
to 0,,. In what follows, we give some additional details.
As regards the difference equation (4.23), note that in backshift operator
notation it becomes
Qp

Bo(BY(6) = aa(B) (0 + 7).

where ag(z) = a1z + -+ apzP and fB(z) =1 — Bz — - — B;29. Observe
that the conditions 8 + ---+ 8; < B < 1 and 3; > 0 imply that the poly-
nomial B¢(z) has no zeros in the unit disc. For this reason, analogously to
ARMA theory one may prove that the operator ag(B) can be inverted. Since
E|X,|*" < oo for some small enough 1 > 0, as will be demonstrated in Exam-
ple 5.2.5, and since the Taylor coefficients of ag(z)/Be(z) (in the expansion
about 0) decay exponentially fast, the difference equation (4.23) has a unique
stationary ergodic solution with almost sure representation

Qo

1 (0) = Ga(B) " an() (|20 +37)

+ (Bo(B)) " ae(B) X}

ﬂe( )
= Be(1) + ;Wj(e)thja eK, (4.26)

where the sequence (7;(0));>1 is determined by
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Som@: =00 <

Also observe that hy(6g) = o7 a.s., in which case (4.26) can be interpreted
as the ARCH(o0) representation of GARCH(p, q); cf. Giraitis et al [55]. By
means of the Cauchy inequalities one can show that there exist ¢ > 0 and
0 < p < 1 such that the ith derivatives of m; with respect to @ fulfill

@O) <cpf,  j20, (4.27)

for every 8 € K, i = 0,1,2. This is utilized to demonstrate that the random
functions h¢(0), @ € K, t € Z, are almost surely twice continuously differ-
entiable (in the interior of K'); this implies that the matrices Go and Fy of
Theorem 4.2.1 are well-defined. By induction it is straightforward to verify
that

he(0) = ﬂj‘(()l) + ; T (0)X7 (4.28)

for all ¢ > 1. Thus by combining (4.26)—(4.28), for all @ € K

|(0) 0)| < Zlm X7 < CZPUQ{J-

= cpthszk. (4.29)

Since E|X|*" < oo for n > 0 small enough, as will be shown in Example 5.2.5),
also E(log™ X2) < oco. Therefore from an application of Proposition 2.5.1 to
the right—hand side of (4.29),

lhe — hellg 230, ¢ — oo, (4.30)

where ||-||x denotes the sup-norm in C(K), the space of continuous functions
on K. For this reason the sequence (h:);cn can be regarded as a “stationary
approximation” of (h¢)ien. This compares with Section 5.2.3. By replacing
ﬁt, one obtains the random elements L, see (4.25). A Taylor argument shows
that n=t|L, — Lp||x == 0.

The sequence (L, ),en is easier to handle than (f,n)neN because (X7 /hs +
log ht)ien is a stationary ergodic sequence. It can be shown that the maximizer
of L,, is asymptotically equivalent to 6,,; to this end one verifies that n=! ||ﬁn -
Lollg =5 0 and n='/2||L,, — L!||x =3 0 as n — oo. The analysis of the
maximizer of L,, then follows from the standard steps of proof for consistency
and asymptotic normality of M—estimators.

Observe the “sandwich”—form of the asymptotic covariance matrix
F,'GoF ' If Z, is actually standard Gaussian, then Go = —Fy. Such a
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structure for the asymptotic covariance matrix is typical for asymptotically
normal QMLEs; see e.g. Gouriéroux and Monfort [59] for further examples.
This form will also become apparent in our derivation of asymptotic normality
of the QMLE in general conditionally heteroscedastic time series models; see
Theorem 5.6.1 of Chapter 5.

Some Remarks Concerning the Practical Application of
Theorem 4.2.1

To the best of our knowledge it is impossible to explicitly compute the matrices
Gy and Fy. If one wants to determine Gg or F, one has to rely on simulation
techniques. In contrast to the asymptotic covariance matrix [W(6o)]~! of
the QMLE in ARMA, see Theorem 4.1.1, the asymptotic covariance matrix
F;'GoF; ' of GARCH(p, q) critically depends on the form of the distribution
of Zy. This statement can be justified by simulations. There are strongly
consistent estimators of the matrices G and Fy. Indeed,

A 1 - A s as

A, = (L,0,)'L (6,) 2 Gy, n — 00,
n

sl 1 1A a.s.

B, = nLn(Bn) — Fo, n — o0o.

See Remark 5.6.2 for an alternative covariance estimator, which avoids the
computation of second derivatives of L,.

The practical implementation of the QMLE may pose numerical problems.
For GARCH(1, 1), Zumbach [137] suggests a parameter transform which facil-
itates the numerical maximization. Furthermore one has to keep in mind that
Theorem 4.2.1 is merely an asymptotic result. The small sample behavior of
6,, also depends on the initialization for X2, ... , X2 .1 and 0f,...,0% .
We are not aware of any method which would lead to an “optimal” choice of
an initialization.

4.2.2 Whittle Estimation

It has already been observed shortly after the introduction of the GARCH
model (Bollerslev [18]) that the squares (X?) of a GARCH(p, q) process for-
mally obey an ARMA(k,q) equation with k& = max(p,q). Indeed, one can
rephrase the defining GARCH equations

Xt = 01y,
p q
=1 j=1

as follows (substitute o7_; by the equivalent expression X7 ; — (X7 ;—o07_;)):
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k q
Xi=ao+ Y oiXP,+n— Bin-j, tEL (4.32)
i=1 j=1
where
0i = a; + By,

(if i € (p,q], set a; =0 and if 7 € (g, p] set B; = 0) and
vo=X} -0}l =0(Z2 - 1), t € Z.

It is readily verified that under the assumptions of (¢?) being strictly sta-
tionary and Eog < oo, the sequence (1) constitutes a (non-iid) white noise
sequence (i.e., (v;) has mean zero, constant variance and is uncorrelated).

The ARMA structure (4.32) justifies the application of the Whittle esti-
mator (or the least—squares estimator) to (X?), giving estimates of the param-
eters ; and ;. As a matter of fact, the econometrics folklore on estimation
in GARCH processes claims that the least—squares estimator is “inefficient”
and should be avoided for this reason, often by referring to the original article
of Engle [46], where the ARCH(p) model was introduced. In fact, Engle deals
with estimation in a so—called ARCH regression model, which is basically a
static regression model with ARCH errors. He computes the efficiency gain
for the regression parameter in case one accounts for the ARCH structure of
the errors. Engle’s theory is therefore far from being a comparison between
least—squares estimator and QMLE of ARCH parameters.

The claimed “inefficiency” of the least—squares estimator, which can e.g. be
observed in simulations, is more related to its unfavorable limit properties in
the case of EX§ = oo. Ould Ahmedou Voffal [109] was the first to observe
that the least—squares estimator in ARCH(p) converges at a rate slower than
v/n in case that EX§ = oo. Giraitis and Robinson [56] provided the theory of
the asymptotically equivalent Whittle estimator in the general GARCH(p, q)
model, under the assumption that EX§ < oco. Mikosch and Straumann [102]
completed the picture by studying the limit properties of the Whittle estima-
tor in heavy-tailed GARCH(1, 1) processes (i.e., in the case EX§ = 00); see
Chapter 8.

In order to give an exact definition of the Whittle estimator, introduce the
polynomial

p(z) =B(z) —alz) =1—pr1z— - — 2",
and note that a(z) = a1z + -+ apzP and B(z) = 1 — 1z — -+ — G421
have already been defined in Section 4.2.1. In backshift operator notation the
difference equation (4.32) then becomes

v(1)

By recalling the criterion (3.23) and formula (3.24), we recognize that the
quotient ag/¢(1) in (4.33) is well-defined and equals EXZ. Therefore (X7)

o) (X2 - ) ) = 8. (433)
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is formally an ARMA(k,q) process with mean ag/p(1) and white noise se-
quence (v¢); it is not ARMA in the sense of our definition of Section 3.2 be-
cause (1) does not constitute an iid sequence. The equivalence between (4.31)
and (4.33) is useful for determining the second-order moment structure of a
GARCH(p, q) process. In particular, we may compute that (X? — EXZ) has
spectral density

o2 BN _ o?

A9) = , g\
sy = g0 T = 7 o)
by means of relation (4.13). Here, we denote o2 = Eir? and let 9 =

(015 s@k, P15+, B,)T. The analogy to Section 4.1.3 motivates to define

the statistic ) I )
_92 n,X2\N\j
Un,X2 (19) = E ’ . )
n j g(>‘] I ﬂ)

where I,, x2()\) denotes the periodogram of X7,..., X2 as defined in (4.15)
and where the summation is as usual taken over all Fourier frequencies (4.16).
For fixed constants # < 1 and ¢ < 1, we define the compact set

K={9eRM|0<p;<p, 0<B;<yj, Bt +B,<B}. (434

Then the Whittle estimator of ¥ is given by

9, = argmin 52 52 (0) . (4.35)
9eK '

The asymptotic properties of 9, have been studied in Giraitis and Robin-
son [56].

Theorem 4.2.3 (Giraitis and Robinson [56]). Let (X;) be a station-
ary GARCH(p, q) process with true parameter 6y = (ag, ..., ap, 57, .-, ﬂfl’)T,
such that conditions Q.1 and Q.2 of Section 4.2.1 hold.
(A)IfEX¢ < oo, then the transformed parameter

o = (¢3,..., 05,07, ,ﬂ(‘;)T is consistently estimated by 9, i.e.,

v, == Yy, n — 00,

and .

5’3)){2 ('19”) i} 02

Y n — o0.

(B) If moreover EX§ < 0o and 9 lies in the interior of K, then
Vi (B = 90) <5 N (0, [W(B0)] ™" + [W(B0)] ™ V@)W (30)] "),

where the matriz
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1 [T (Blogg(\90)\ " [ 0logg(X; Do)

is as in Theorem 4.1.1, and
V(9o

202/ / ( (1/gA: 190)))7’ (6(1/95(:;190)))f(A,—w,w)d)\dW.

The function f under the latter integral is the fourth—order cumulant spec-
trum

fAw u)

Z Cov(XoX;, X1 X)) A S W= (=m, 7).
J.kJEL

Remarks 4.2.4.

1. The nonnegative definite matrix [W(99)] 2V (90)[W ()] ! appearing
in the asymptotic covariance matrix of 1J,, can be seen as an extra term
due to the non-linearity of (X7 — EXJ).

2. We are not aware of any method which would yield a tractable expres-
sion for the matrix V (i), and hence we cannot explicitly determine the
asymptotic covariance matrix. It is however possible to consistently esti-
mate V() from data, see Remark 2.2 in Giraitis and Robinson [56].

3. Giraitis and Robinson [56] leave out the estimation of the parameter ayg.
Estimation of g could be based on the formula

Var(Xp) = o(1)

A natural estimator of ag is therefore given by

&0 = Y, x(0)(1 —P1 — - — @)

where ¢; is the Whittle estimator of ¢;, j = 1,...,k. It is possible to
determine the joint limit behavior of (&g, &1, ..., ap, Bi,... ,Bq)T. In the
light of the fact that the Whittle estimator should not be used for the
estimation of GARCH parameters, a detailed elaboration is however not
worth doing. Compare with the similar Remark 8.3.7.

4. The moment conditions EXj < oo and EX§ < oo are rather severe,
particularly in the light of the fact that financial log—return data often
seem to have an infinite 8th moment; see e.g. Chapter 6 of Embrechts et
al. [45]. Theorem 4.2.3 does not give any information about the rate of
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convergence of ¥, in the case of EX§ = oo and about consistency when
EX; = oco. In Chapter 8 we provide a detailed study of the asymptotic
properties of ¥, in GARCH(1, 1) with EX§ < oco. For the case of a general
GARCH(p, q) process, we make the following conjecture concerning the
asymptotics of I Suppose the distribution of | Xy| has tail index & > 0,
ie.,

P(|Xo| > z) ~ cz™", T — 00, (4.36)

where ¢ > 0 is some constant. The value of k governs the asymptotics of
9,,. As regards the tail index &, observe that (4.36) implies that | Xo| has
a finite pth moment if and only if p < k. One has to distinguish between
the following cases: .

e k < 4: The Whittle estimator 1,, is inconsistent.

e 4 < k < 8 The Whittle estimator 9, is strongly consistent, but the
rate of convergence is n'~%/%, i.e., slower than v/n. The limit distribu-
tion is non—Gaussian.

e k > 8 Since EX§ < oo is implied, this case is covered by Theo-
rem 4.2.3; one has strong consistency and asymptotic normality.
O
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Quasi Maximum Likelihood Estimation in
Conditionally Heteroscedastic Time Series
Models: A Stochastic Recurrence Equations
Approach

In this chapter we study the (Gaussian) quasi maximum likelihood estima-
tor (QMLE) in a general conditionally heteroscedastic time series model of
multiplicative form

Xt = 0474,
2

, ) A tez, (5.1)
oy = gB(thla v 7Xt7paa—t—17 tee Jgt—q)7

where the volatility process (o¢) is nonnegative and (Z;) is a sequence of
iid random variables with EZy; = 0 and EZZ = 1. The parametric family
{ge | @ € O} of nonnegative functions on R x [0, c0) fulfills certain regularity
conditions. We suppose that ® C R?. Since we also require that o; is Fy_1—
measurable, the model (5.1) belongs to the previously introduced class (3.6).

The techniques of stochastic recurrence equations (SREs) introduced
in Section 2.6 enable us to develop a unifying theory for the QMLE in
model (5.1). We will apply this theory to the conditionally heteroscedastic
time series models of Section 3.3: AGARCH(p, ¢) and EGARCH. The con-
tents of this chapter are based on Straumann and Mikosch [125].

5.1 Overview

In this section we merely sketch the main problems and ideas in order to give
a flavor of this chapter of the monograph. First of all, we must investigate
whether the equations (5.1) admit a stationary solution ((X;,o:)). Substitut-
ing o4_;Z;_; for X;_; in the second equation of (5.1) results in

07 = 90(0t—1Zt—1, -, Ot—pZt—py Of—1- -5 U?_q), tez, (5.2)

and shows that the vectors ,o7 = (07,...,07_,, )" with k = max(p, q) obey

a SRE 07, = ¥:(07) on [0,00)k; see (5.6) for the exact definition of (¢;).
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Stationarity is equivalent to the existence of a nonnegative stationary solution
to the latter SRE.

The second important issue is the reconstruction of the unobservable
volatility sequence (o) from data. In the context of model (5.1), we intro-
duce the notation

Xt :(Xt,...,Xt,p+1)T and o'f: (Jf,...,af_q+1)T,
and write 07 = go(Xy—1,07 ;) for short. A natural way to approximate the
unobservable vector 7 of squared volatilities from data X_p11,..., X, is as
follows:

1. Set 67 = ¢2 for an arbitrary initial value ¢3 € [0, 00)?.

2. Define c}fJrl = ¢t(Xt,&f) for 1 <t < n, where

d)t(s) = (gGD(XhS))Sl)- . -)Sqfl)T) s = (Sl)- . -7811)T € [07 oo)q'

Here 6, denotes the true parameter. The assumption that Xg,...,X_,41 are
observed is in contrast to Section 4.2.1, but it may be made for the ease of
argument since it turns out to be irrelevant for the asymptotic behavior of
the QMLE. One would like that

|&? — ol LN 0, t — oo, (5.3)

irrespective of the chosen initialization ¢3. In Section 5.2.2 we will explain in
more details why property (5.3) has to be regarded as an invertibility condition
for the nonlinear model (5.1).

Analogously to the GARCH(p, ¢q) case discussed in Section 4.2.1, we have
to define an estimate flt(O) of the squared volatility under parameter hy-
pothesis 8. We write hy(8) = (h(8), ..., hi_y41(0))T and recognize that it is
natural to proceed according to the following recursive scheme for the deter-
mination of (hy(6))en:

~ So» t= 07
®_1(hy—1(9)), t>1,

where [®,(s)](0) = (go(Xt,5(0)),51(0),...,8,-1(0))T for any vector function
s = (s1,...,85)T. Then by the same considerations as in Section 4.2.1, one
can define an approzimate conditional Gaussian log—likelihood by

Ln(8) = —; > <AXt -f—logﬁt(e)) .

t=1 ht(e)

The QMLE 0, is a maximizer of ﬁn(ﬂ) with respect to 8 € K, where K is a
suitable compact subset of the parameter space ©. For analyzing the QMLE,
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it is essential that we understand the limit behavior of (Ly), and hence also
of the sequence (ilt)teN. We desire to approximate (ﬁt)teN (and thus also
(h)ien) by a stationary ergodic sequence (hy)ien = ((he, . - cyhi—gi1) Dien
because this simplifies the analysis. It is intuitively clear that (h;) obeys the
SRE

ht+1 - q)t(ht)a te Z, (54)

Hence the problem consists of giving conditions which guarantee the existence
of a stationary solution to (5.4). The assumption that ®; is a “contraction on
average” will be sufficient. We then set

10 = =) 3 (1 +108100))

t=1

and observe that n’lﬁn and n~!L,, have the same almost sure limit. For this
reason, consistency of én is equivalent to the consistency of the maximizer
0,, of L,. Most technicalities for establishing consistency of én emerge from
proving the existence of the sequence (h;), the remaining arguments are almost
routine. Already the verification of invertibility, which is necessary for the
existence of an approximating sequence (h;);cn since (flt(Oo))teN = (&f)teN,
may be an intricate and unpleasant problem. We are e.g. not able to check
invertibility in the general EGARCH model without a simulation approach,
see Example 5.2.8.

The step from consistency to asymptotic normality necessitates that we
analyze the first and second derivative of L, with respect to the parameter 6,
and hence that we establish differentiability of h;. For this problem, the SRE
approach is again helpful and leads to an elegant unifying theory.

The novel approach presented in this chapter is to explicitly formulate
and solve the arising problems of quasi maximum likelihood estimation by
making use of SREs. In this way a high degree of simplicity and generality
can be achieved. A further novelty is the consequent application of the ergodic
theorem for C(K,R?) valued random elements (Theorem 2.2.1). This tool
allows us to avoid the computation of third derivatives of the log-likelihood,
which leads to more elegant proofs and regularity conditions which are easier
to verify. In statistical literature, proofs of the asymptotic normality of M—
estimators often impose the classical regularity conditions by Cramér [32],
which involve third derivatives.

5.2 Stationarity, Ergodicity and Invertibility

We recall that
ft:U(ZjajSt)

denotes the o—field generated by the random variables {Z; | j < t} and appeal
to Section 2.6 for the techniques of SREs.
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5.2.1 Existence of a Stationary Solution

In this and the following section we suppress the parameter € in our no-
tation because for the treatment of stationarity and invertibility it can be
assumed as fixed. In order to discuss the stationarity issue, we first embed
model (5.1) into a SRE. To this end, introduce o7 = (07,...,07 ;)7 and
set  Z, = (Z4,...,Z4_+1)T for k = max(p,q). Then by substituting the
Xi—i’s by Zy_jo1_; in the second equation of (5.1), we observe that (kaf) is
a solution of the SRE

St41 = 'l[)t(St), t e Z, (55)
on [0, 00)*, where
Pi(s) = (g(sl/2 ©® 1Z,,8),51,.. see1)t (5.6)

with s'/2 = (31/2,...,si/2)T for s € [0,00)%; recall that ® stands for the
Hadamard product, the componentwise multiplication of matrices or vectors
of the same dimension. On the other hand, if a stationary sequence (s¢) is a
solution of (5.5) and s; is measurable with respect to F;_1, then the sequence
((s;/l2 Zs, 52/12)) (here 5;/12 denotes the first coordinate of si / %) is stationary and
obeys the equations (5.1). Hence for proving the existence and uniqueness of a
stationary sequence ((X¢,0:)) fulfilling (5.1) and o7 being JF;_1-measurable,
we may focus on showing that there exists a unique stationary nonnegative
solution (s;) to (5.5) for which s; is F;_;-measurable. After noticing that (;)
is stationary ergodic, an application of Theorem 2.6.1 with (¢;) = () and d
the Euclidean metric results in the following proposition.

Proposition 5.2.1. Fiz an arbitrary ¢ € [0,00) and suppose that the fol-
lowing conditions hold true for the stationary ergodic sequence (¢¥i) of maps
defined in (5.6):

S1 - E(log* lo(sd)]) < oo.
S.2  E[log" A()] < 0o and for some integer r > 1 it holds that
E[log A(y§”)] < 0.

Then the SRE (5.5) admits a unique stationary ergodic solution ( ,07) such
that o7 is Fi_1-measurable for every t € Z. The following almost sure rep-
resentation is valid:

K07 = mlgnoo Y10 0 pm(sy), t€Z, (5.7)

where the latter limit is irrespective of ¢3. For any other solution ( .67 of the
SRE (5.5) with index sets Z or N,

e.a.s.

| 07 — 402 | 230, t — o0o. (5.8)
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Remark 5.2.2. In general, the stationary distribution induced by the SRE
(5.5) is not known and thus the perfect simulation of ((Xt,0¢))ien is im-
possible. The following algorithm provides an approximation with an error
decaying exponentially fast almost surely:

1. Take an initial value 2 € [0,00)*, set .65 = <3, and generate ,6; ac-
cording to (5.5).

2. Set (X1,60) = (v62,)° (Z,1),  t=0,1,....
From Proposition 5.2.1 it is immediate that |67 — 07| =5 0 as t — oc.

Moreover, by virtue of Proposition 2.5.1 and Lemma 2.5.4 we can conclude
| Xt — Xi| = |Z¢| |6+ — 0¢] = 0 as t = co. Compare with Remarks 2.6.2. O

We now apply Proposition 5.2.1 to AGARCH(1,1) and EGARCH.

Example 5.2.3. The AGARCH(1, 1) process of Section 3.3.1 has a squared
volatility of the form

o; = a0+ ar(|Xioa| =y Xi21)? + prof,, L€,
where ag > 0, aq, 41 > 0 and |y| < 1. Thus
9(z,5) = ag + ax(|z] = vz)* + fus

and
Ui(s) = g(VsZi,8) = o + (a (1 Ze] — vZ1)* + Bu)s.

Note that log A( ((JT)) = >0 log(ai(|Z1—i| — vZ1-4)® + B1). For this reason
condition S.2 of Proposition 5.2.1 is equivalent to

E[log(a1(]Zo| = 7Z0)* + B1)] < 0. (5.9)

Condition (5.9) is also necessary for stationarity as was indicated on p. 54.
Since relation (5.7) is valid for arbitrary initial values ¢, we have that

02 = lim 9100t (0)
m—r o0

3

= lim ap <1+

-1 k
m— 00

(ar(|1Ze—il = vZe—i)* + ﬁl))

k=1 i=1

oo k
@ <1 + 3 (a1 Zenil = vZe-i)® + ﬂ1)> a.s.

k=1i=1

This is once again formula (3.19).
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Example 5.2.4. The EGARCH model introduced in Section 3.3.2 has a
volatility obeying the SRE

logo} = a+ Blogof | +vZi—1 +90|Zi—1|, tEZ, (5.10)

where @ € R, § > |y] and 0 < 3 < 1. In other words, the sequence (logo?)
constitutes a causal AR(1) process with non-centered innovations sequence
(o +vZs—1 + 0| Z¢_1|) or, equivalently, a causal AR(1) process with nonzero
mean. Although EGARCH falls into the class of models defined by (5.1),
we avoid writing the SRE (5.10) in the form o7 = g(X;_1,07_,) since this
would unnecessarily complicate the question of stationarity. Instead we apply
Theorem 2.6.1 to the SRE

logo},, = ¥i(logo}), tEZ, (5.11)

where
'QZJt(S):Oé+ﬂS+’)/Zt+6|Zt|, t € L.

We recognize that |3| < 1 together with E[log™ (e + vZo + 6| Zo|)] < 0 is a
sufficient condition for the existence of a unique stationary solution to (5.10);
since EZZ = 1, the innovations (a + vZ;—1 + 6|Z;—1|) automatically have a
finite positive logarithmic moment by Lemma 2.5.3. By taking the limit of
the backward iterates associated with the SRE (5.11), it is straightforward to
see that the unique stationary solution (loga?) of (5.10) has the almost sure
representation

IOg O'tz = a(l — ﬂ)71 —+ Zﬂk (’)/thlfk =+ (5|Zt—1fk:|)a t € Z, (512)
k=0

which is well-known from the theory of the causal AR(1) process, see
e.g. Brockwell and Davis [29]. O

Example 5.2.5. In the AGARCH(p, q) model of Section 3.3.1 the squared
volatility is of form

p q
O't2 =g + Zai(|Xt,i| — ’)/Xt,i)2 + Zﬁjot{j, t €7, (513)

=1 j=1

where ag > 0, ;,3; > 0 and |y| < 1. Note that v = 0 in AGARCH(p, q)
corresponds to a GARCH(p, q) process. It is possible to treat stationarity of
AGARCH by means of Proposition 5.2.1, but the resulting sufficient condi-
tions would not be very enlightening. Instead one adapts the particular meth-
ods developed in Bougerol and Picard [21] for the treatment of GARCH(p, q)
and derives a SRE with iid linear random transition maps. This was worked
out in Section 3.3.1. There we introduced

Y= (07,507 g 1 Xecal =7 Xem0)?, o (X pit| = 7 Xe—pi) )T,
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the (p+ ¢ —1) x (p+ g — 1)-matrix valued iid sequence (A;) and the vector
B, given by

a1 (| Ze| =yZ)* + B Bo -+ By1 By az oz -+ a1 oy

1 0.+ 0 000-- 0 0
0 1--- 0 000-- 0 0

A = 0 0.+ 1 000-- 0 0], (514)
(1Ze] =720 0 0 000 0 0
0 0.+ 0 01 0-- 0 0
0 0-- 0 000-- 1 0

B = (ao,0,---,0)7 e RPFI L,
Then (Y;) obeys the SRE
Yt+1 - Ath + B, te 7. (515)

We showed that there is a unique stationary AGARCH(p, ¢) process if and
only if the SRE (5.15) admits a unique nonnegative stationary solution. The
latter is in turn equivalent to (A;) having a negative top Lyapunov exponent,
ie.,
1
= inf {

Cen Lt 41
Here || - ||, denotes the matrix operator norm (2.9) with respect to the Eu-
clidean norm on RPT?~1 Moreover, (Y;) is ergodic and measurable with re-
spect to F;_1 and almost sure representation

-y (]:[ A )B,  teZ (5.17)

k=0

E(logllAo- AL, ) } <0. (5.16)

We had that .
> @i B[(|1Zo] — 7Z0)%] + Zﬂ] <1
i=1

is sufficient for stationarity and implies EXZ < oo, and we recognized that

q
Zﬂj <1
j=1
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is necessary for stationarity of AGARCH(p, q). In what follows, we show that
E|Y0|77 < o0

if n is small enough. By (5.16) there is r > 1 with E(log [|Ag -+ A_rt1llop) =

E(log ||A(()T)||op) < 0. This and Lemma 2.5.5 imply the existence of n > 0 and
0 < A <1 such that

[(H Al ||op) ] =", om> 1 (5.18)

Without loss of generality, n < 1. Since every matrix norm is equivalent to
the Frobenius norm (2.7), E||Ao||,, < oo, and hence also E[|Ayl|? < oo. The
identity (5.18) together with the facts that ||-||,, is submultiplicative and (A;)
is iid demonstrates

r—rlk/r)

EA | < BIIAS 7)™ (&) A1) <eAlb/r g >0,

op —

where ¢ = max(1, (E||Ao||?)"). Finally by an application of the Minkowski
inequality to (5.17),

E||Y.|]” < ZEHA(k 17 1B < cal ZAWH < 0.

op —

Note also that E[Yo|” < co entails

E|oo|2" < 0.

5.2.2 Invertibility

For real-life data sets which we assume to be generated by a model of type

(5.1), the volatility oy will be unobservable. In such a case, it is natural to

approximate the unobservable squared volatilities o7 = (o7,...,07 , )"

from data X_p41,X_p19,... in the following way:

Initialization
1. Set 6 = 62, where ¢2 € [0,00)? is an arbitrarily chosen vector.
Recursion

2. Let 67, = ¢¢(67) for t = 0,1,2,..., where the random functions ¢; are
defined as follows:

o1(s) = (9(Xy, 8), 81, - - .,sq,l)T, s = (s1,.. .,sq)T € [0,00)?. (5.19)
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In the context of our nonlinear model we say that the unique stationary er-
godic solution ((X¢, 0+)) to the equations (5.1) is invertible (or: model (5.1) is
invertible) if

~2 2 P

|6; — o7 — 0, t — o0.
Note that this is equivalent to |62 — 02| — 0. In other words, invertibility
guarantees that the above algorithm converges. There is a second interpreta-

tion, which at the same time clarifies the relationship between invertibility in
ARMA models and our notion. Note that (&7 )sen is a solution of the SRE

St+1 = Pe(st), teN, (5.20)
on [0, c0) and recall that the backward iterates associated with (¢;) are defined
by

0'?,0 = Cga
Ofm = Gt—10- 0 -m(sy), m>1,

for t € Z. Observe the relationship 67 = o7, for all t > 0. Furthermore, since

we suppose that ((X¢,04)) is stationary, ((67,,,07)) is stationary for every

fixed m > 0 (Proposition 2.1.1). Thus

d . " .
vam—afzafnvm—afn:afn—afn, m > 0.
Therefore invertibility is equivalent to
2 P 2 21
Oim — O m — 00, (5.21)

for every t € Z. Relation (5.21) together with Corollary 2.1.3 and a subse-
quence argument implies the existence of a measurable function f such that

0'% = f(thlthf%-”) a.S.

for every t € Z. In other words, given one has all the observations of the past,
one can evaluate o7. If we impose o7 > 0 a.s. for the model (5.1), the invertibil-
ity allows us to represent Z; as a function of the past and present observations
{X:i_k |k > 0}. Compare this with the notion of invertibility in ARMA. Re-
call that an ARMA (p, ) model with parameters (1, ..., 0y, 91,...,9,)  is a
stochastic process (X;) which obeys the difference equation

p q
X; = Z(pithi + Zﬁth,j + Zy, tez,
i=1 j=1

where (Z;) is a given white noise sequence with mean zero, see Section 3.2. In-
vertibility is defined as follows: there exists an absolutely summable sequence
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of constants (7;);>o such that Z; = 372 m; X, a.s., or, in other words, the
innovation at time t is a linear functional of the past and present observations
{X¢_1 |k > 0}. If the two characteristic polynomials ¢(z) = 1 — >°F_| ¢;2°
and ¥(z) =1+ 25:1 ¥;2/ have no common roots, then the ARMA process is
invertible if and only if 9(z) # 0 for all z € C such that |z| < 1. For nonlinear
time series models, however, the invertibility issue can be a hard problem. Our
notion of invertibility is an adaptation of the notion introduced by Granger
and Andersen [61] in the context of a general nonlinear autoregressive mov-
ing average model. The following proposition is an immediate consequence of
Theorem 2.6.1 applied to the SRE (5.20) with d the Euclidean metric.

Proposition 5.2.6. Assume that there exists a unique stationary ergodic
solution ((X¢,01)) to the equations (5.1). Suppose in addition for (¢) given
n (5.19

):

S.1 E(log™ |po(s2)|) < oo.

S.2  E[log" A((;So)] < oo and for some integer r > 1 it holds that
E[log A(¢))] <

Then ((Xt,0¢)) is invertible. In particular, irrespective of 63,

e.a.s.

|67 — 7] <25 0, t — oc.

Moreover we have the stochastic representation

o} = mlgn ¢t 1(§0) a.8.

Example 5.2.7 (Continuation of Example 5.2.3). In the AGARCH(1,1)
model, ¢:(s) = ag+ay (| X¢|—yX¢)?+31s. Condition S.1 is fulfilled by virtue of
E|X|*" < oo for n > 0 small enough (see Example 5.2.5). Since A(d)(()r)) =0y,
the restriction 1 < 1 is sufficient for invertibility of AGARCH(1,1). But
B1 < 1is already implied by the necessary and sufficient stationarity condition
(5.9) since log 1 < E[log(au (| Zo| —vZ0)? + B1)] < 0. Hence every stationary
AGARCH(1,1) process is invertible. By Proposition 5.2.6 we also have the
a.s. representation o7 = lim,, gzﬁ(m)( 0). Thus

= ao(l—B1)” +a1251 (X 1] —7Xs k) as. (5.22)

a

Example 5.2.8 (Continuation of Example 5.2.4). Recall that a € R,
0 < B <1andd > |y| for the parameters of EGARCH. As we mentioned in
Example 5.2.4, it is beneficial to consider the SRE for (log o?), which slightly
differs from the general setup of this chapter. From (5.12) and vz + d|z| > 0
for all z € R one concludes logo? > a(l — 3)7!, so that we may interpret
(5.10) as a SRE
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logoj,, = ¢i(logay), teZ, (5.23)
on the (restricted) set I = [a(1 — 8)7!, 00), where

o1(s) = a+ Bs + (vX; + 0| Xy|) exp(—s/2).

Condition S.1 is obviously met because of E(logo2) < oo. As regards S.2,
let us determine A(gp). Since ¢o is continuously differentiable, A(¢py) =
SUPser |¢6(3)| Maximizing

[¢0(5)] = 18 — 271 (vXo + 0| Xo|) exp(—5/2)]
over I, we obtain

A(go) = max (8,27 " exp(—a(l = B)7'/2)(vXo + 0| Xo|) = 8).  (5.24)

It does not seem to be possible to derive a tractable expression for A( (()T))
when r > 1 and it is not clear how to find a bound sharper than the trivial
bound A( (()T)) < Ago) -+ A(¢p—r41)- Recalling the representation (5.12) and
substituting Xo by 00Zp in (5.24), the condition E[logA(¢o)] < 0, which
implies invertibility, reads

E[ log (max{3,Yo}) ] <0, (5.25)

where

Yo =2 Lexp <21 N B (v Zop + 5|Zk1|)> (YZo + 0] Zo]) — B.

k=0
In practice one would have to rely on simulation methods for its verification.

Proposition 5.2.9. Let (X;) be a stationary ergodic EGARCH process. Then
the condition (5.25) is sufficient for invertibility since

|A2 c.a.s.

67 — o] =% 0, t — oc. (5.26)

Proof. By an application of Theorem 2.6.1 to the SRE (5.23) one has |log 67 —
logo?| =5 0. Taking the expectation in (5.12) and accounting for E|Z;| <
(EZ2)'/? = 1, we obtain E(logo?) < (a+ §)(1 — 8)~" < oco. Consequently
(5.26) is valid by virtue of Lemma 2.5.4 (ii). |

Remarks 5.2.10.

1. In contrast to AGARCH(1,1) it seems impossible in EGARCH to find an
explicit and accessible representation for o7 in terms of past observations.
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2. The case § = 0 leads to a simpler condition and illustrates that there
exist invertible EGARCH models. For § = 0 the condition (5.25) be-
comes —log2 + (0/2)E|Zy| + E[log(vZo + 0| Zo|)] < 0. Note that § < 1
implies the latter condition. Indeed, since E|Zy| < (EZ3)Y? = 1 we
have E(vZy + 6|Zo|]) < 6 < 1. Now the Jensen inequality implies
Ellog(vZy + 0|Zo])] < 0. From the relation 1/2 < log2 one obtains
(6/2)E|Zp| —log2 < 0, which proves the assertion.

3. We restricted the SRE (5.23) to the set I = [a(1 — 3)7!,00). This is not
necessary, as can be seem from the arguments in Section 5.4.1. a

Example 5.2.11 (Continuation of Example 5.2.5). For the AGARCH(p, q)
model the random maps (5.19) are affine linear, i.e.,

P
pi(s) = (040 + Z ;i (| Xep1—i| — 7Xt+17i)2)e1 + Cs, s € [0,00)7,
=1

where

B B2 - Beor By
1 0 0
0O 1 O 0
C= € R9*1,
0 0 1 0 0
o --- 0 O 1 0

Condition S.1 is fulfilled by virtue of E|X(|?" < oo for n > 0 small enough
(see Example 5.2.5). Regarding S.2, observe that A(d)(()r)) < ||C"||op for any
r € N (the inequality in the latter relation is a consequence of the fact that
the domain of ¢; is but a subset of R?). In order to prove log ||[C"||,, < 0
for large enough r, first recall that a necessary condition for stationarity in
AGARCH(p, q) is 85 := 23.’:1 B; < 1. Arguing by recursion on ¢ and expand-
ing the determinant with respect to the last column, it can be shown that C
has characteristic polynomial p(A) = det(Al; — C) = X(1 — >79_, ;A7) If
Al > ,312/ ? then by repeated application of the the triangle inequality together
with 0 < By < 1,

P> 1= BN > 1= 8857 > 1- 51 8 =0.

j=1 j=1 Jj=1
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Consequently, the matrix C has spectral radius strictly smaller than 612/ 1 By
the Jordan normal decomposition this entails

IC" ||, < B9, >0,

where ¢ is a constant depending on ¢ and Sy, and thus logA(d)(()T)) —
—o00 as r — oo. This means that the conditions of Proposition 5.2.6 are
met for stationary AGARCH(p, q) processes. Consequently, every stationary
AGARCH(p, q) process is automatically invertible. It is also possible to give
an explicit representation of o7 in terms of (X;_1, X;_a,...,); see equation
(5.43) below.

Let us also indicate how a bound on ||C"||,, is directly derived. Take an
arbitrary by € R? and let b, = C"bg, where r € N. We claim that

IC™bo| < g B/ by|,  reEN. (5.27)

Indeed, due to the special structure of C, we have

a

byi=Y» Bb,1; and byp=b, 141, r>1,2<k<q (528
j=1

Since max(|b,;| | 7 =1,...,q) < |b,|for all r, relations (5.28) imply |b, 1| <

Bx|br_1|- Hence |by 1| < 8x|bg|. By an inductive argument exploiting (5.28),

|bia| < Bslbel, i=1,....q

Due to (528) one has bq = (bq71,bq_171, . ,b171)T, which implies |bq,j| S
Bx|bo| for all j. Thus |byr11] < B%|bol, and so on, yielding |b,.1| <
/3[27“/11}-5-1 |bg| for all r € N. This bound on the coordinates of b, gives (5.27),
and as a trivial implication

IC |l < sup  |C'bygl/|bo| < /g BY/T =0, 1= oo
bocRa\{0}

5.2.3 Definition of the Function h;

In this section we do not suppress the parameter 8 anymore, i.e., we write
0t2+1 = go(Xt,0?). Assume that 0 belongs to some compact parameter space
K C © C R? and that ((X;,0¢)) is the unique stationary ergodic solution
to the equations (5.1) with true parameter 8 = 6y. For any initial value
63 € [0,00)? we define the following random vector functions h; on K:

h; = ) (5.29)
O,y (hy_y), t>1,
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where the random maps ®; : C(K,[0,00)?) — C(K,[0,00)?) are given by
[@:(s)](0) = (g0(X4,8(0)),51(0),..., sq,l(B))T, teZ. (5.30)

We can regard hy(0) = (hi(0),...,h; 4+1(0))T as an “estimate” of the
squared volatility vector o7 under the parameter hypothesis @, which is based
on the data X_,44,...,X;. Also observe that flt(Oo) = 6'% for all ¢ € N.

For establishing the consistency of the QMLE it is essential that one can
approximate (h¢)ien by a stationary ergodic sequence (h:)ien such that the
error iLt — hy converges to zero sufficiently fast as ¢ — oo and such that
(he(0)) = (07) a.s. if and only if @ = Og; see Theorem 5.3.1. In particular, these
requirements on (h¢);eny comprehend the invertibility of the time series (X;)
because h(0o) = 2. We mention that invertibility is a common assumption
in the classical theory of parameter estimation in ARMA time series. Only
recently certain aspects of estimation in non—invertible linear time series have
been studied, see e.g. Davis and Dunsmuir [34] or Breidt et al. [26].

For finding a candidate (h¢)ien for such an approaching sequence, first

observe that (flt)teN is a solution of the SRE
St41 = <I>t(st), t e N, (531)

on C(K,[0,00)?) (provided certain regularity assumptions on gg are fulfilled).
Theorem 2.6.1 at hand, it is clear that if ®q or one of its r—fold iterates is a
contraction on average, then the unique stationary ergodic solution of the SRE
(5.31) with index set Z provides the desired sequence (h;). We summarize our
findings in a proposition.

Proposition 5.2.12. Assume that model (5.1) admits a unique stationary
ergodic solution ((X¢,04)) and that the map (0,s) — go(x,s) is continuous
for every x € RP, which implies that (®:) is a stationary ergodic sequence of
mappings C(K,[0,00)?) — C(K,[0,00)?). We suppose the following conditions
hold:

S.1 E(log+ [|1®0(s2)|| k) < 0.

S.2 E[log™ A(®¢)] < oo and there exists an integer v > 1 such that
E[log A(‘I>(()T))] < 0.

Then the SRE (5.31) (with the index set N replaced by Z) has a unique sta-
tionary solution (h;), which is ergodic. For every t € Z, the random elements

h; are F;_1-measurable and hy(0y) = o7 a.s. Moreover,

by — hyl|x 2250, ¢ — oo. (5.32)

Proof. The existence and uniqueness of a stationary ergodic solution to (5.31)
and the limit relation (5.32) are a direct consequence of Theorem 2.6.1. It
remains to give arguments for the other assertions. The backward iterates
associated with (5.31) are given by
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2 — 0
by, =420 . T (5.33)
Qtflo"'oétfm(go)a m > 1.

This reveals that they are of form hy,, = fin(Xi—1,Xi—2,...) for certain
measurable maps f,. Since hy ,,, — h; as t — 0o, an application of Corollary
2.1.3 shows that hy = f(X;_1,X;_o,...) a.s., where f is measurable. From this
we conclude that hy is F;_;-measurable for every t. The relation hy(6y) = o7
a.s. follows from

; ; d .
hm(60) -0} =07, —0f =6

together with |62, — o2,| =3 0, as shown in Proposition 5.2.6. o

5.3 Consistency of the QMLE

Suppose we observe data X_,41,..., X0, X1,...,X, generated by the model
(5.1) with 8¢ as the true parameter; here we have to emphasize that by a shift
of the index we can always assume that the data X_,11,..., X are available
to us. By this convention, ﬁl is then well-defined. We set

n

1 (6) = —; 3 (ﬁi; | +log ht(o)> , (5.34)

t=1

which can be regarded as an approximate conditional Gaussian likelihood up
to some omitted constant, see Section 5.1. Note that hy is the first coordinate
of the random vector function hy = (hy,..., by 441)7 defined in (5.29). The
function hy (@) serves as an estimate of the vector o2 = (02, .. 07 )T
under the parameter hypothesis 6, see Section 5.2.3. The (Gaussian) QMLE
6,, maximizes L, on K , where K is an appropriately chosen subset of the

parameter space O, i.e.,

6, = argmaxg.  Ln(8) . (5.35)

As a remark we mention that én can be chosen to be measurable; this fol-
lows from a selection theorem going back to von Neumann [130], see e.g.
Parthasarathy [111], Section 8.

_ Assume that the conditions of Proposition 5.2.12 are satisfied. These imply
Ilhy — he||xk =5 0 as t — oo, where (h;) is the unique stationary solution of
the SRE s;11 = ®,(s;), t € Z. Note also that this is equivalent to

1By = hallx <=5 0, t — oo.
We then define
L@ = -25 (X2 4 toghio) (5.36)
W=y he(@) T B ‘

t=1
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together with R
0, = argmaxgc g Ln(0). (5.37)

From a theoretical point of view, it is more convenient to work with (L)
because (X7 /hi + logh;) is stationary ergodic whereas (Xf/ﬁt + log hy)sen
is not. In what follows, we give a set of conditions which imply the strong
consistency of 8,, (and 0,,):

C.1 Model (5.1) with @ = 6y admits a unique stationary ergodic solution
((X¢,01)) with E(logt 03) < oco.

C.2 The conditions of Proposition 5.2.12 are fulfilled for a compact set
K C © with 6 € K.

C.3 The class of functions {go|0 € K} is uniformly bounded from be-
low, i.e., there exists a constant g > 0 such that gg(x,s) > ¢ for all
(x,8) € RP x [0,00)? and 0 € K.

C.4 The following identifiability condition holds true on K: for all 8 € K,

ho(6) = o3 a.s. if and only if @ = 6.

C.5 The random elements o3 /ho and log hy have a finite expected norm:

2
gt

b < 00 and E||log ho|lx < 0.
0

K

These conditions are similar to those of Jeantheau [70].

Theorem 5.3.1. Under the conditions C.1 — C.4 the QMLE 0,, is strongly
consistent, i.e., .
0, == 0y, n — oo.

Proof. In the first part we give the proof under the additional condition C.5
which allows one to apply Theorem 2.2.1 to L,,/n. In the second part we will
indicate that C.5 is not needed. We have chosen to give two different proofs
since the use of the uniform strong law of large numbers is intuitively more
appealing than the proof without C.5.

Part 1. Assume C.1 — C.5. First we show that L,/n == L in C(K) as
n — 00, where

2
0o

1
10 = )

+logh0(0)> , B€K.
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Secondly, we need to prove that L is uniquely maximized at @ = 0. In the
third step one shows that the a.s. uniform convergence of L, /n towards L
together with the fact that the limit L has a unique maximum implies strong
consistency.

(i) We first establish L,/n — L in C(K) by an application of Theo-
rem 2.2.1. Proposition 5.2.12 shows that the sequence (¢;) = —271(X?/h; +
log ht) of random elements with values in C(K) is of the form (¢;) =
(f(X¢, X¢—1,-..)), where f is measurable, and hence stationary ergodic (Propo-
sition 2.1.1). Since Xo = 0¢Zp with Z, independent of oy and ho and
EZZ = 1, assumption C.5 implies E||X0/h0||K = El||o3/hollx < oo. Alto-
gether, E||€0||K < 00, so that L,/n = L by Theorem 2.2.1. The prop-
erty Ln/n = L follows if we can demonstrate ||L, — Lp|lx/n = 0.
Since ht,ht > g > 0, an application of the mean value theorem leads to
[1(h) ™" = (he) "Ml ic < 97217 = Tl i and || log by —log el < g~ ||y — Tl .
Thus there exists ¢ > 0 with

n o0
Lo = Lullx < ¢ > (L+ XP)lhe — hellxe < €Y (1 + XP)||he — hellc.
t=1 t=1

e.a.s.

By Proposition 5.2.12, ||y — he||x =% 0 and by condition C.1 together with
EZ2 = 1 and Lemma 2.5.3 we have E[log* (1 + X2)] < co. An application
of Proposition 2.5.1 demonstrates Y -, (1 + X2)||he — hyl|x < 00 a.s. Hence
|l Ln — Ll /n =2 0 and Ly, /n =5 L, as claimed.

(ii) For the uniqueness of the maximum of L on K we need to prove that
L(0) < L(6y) for all @ € K\{0y}. Since E(log ) is finite and does not depend
on the parameter 6, we can equivalently demonstrate that the function

Q(0) =& 1og o) hX(e>> =5 (1o o) h(j(e))) 0k

is uniquely maximized at @ = 9. One can verify that log(z) — z < —1 for
all z > 0 with equality if and only if z = 1. Hence Q(0) < —1 = Q(0y) with
equality if and only if 62 /ho(8) =1 a.s. By C.4, 03/ho(0) = 1 if and only if
0 = 6y, which shows that ) and L are uniquely maximized at 8 = 6.

(iii) Showing that (i) and (ii) imply strong consistency is accomplished by
using standard arguments, which go back to Wald [131] and Le Cam [81]. Let
e > 0 be arbitrary and suppose by contradiction that P(limsup,,_, o |9n -
60| > €) > 0. Since the set K/ = KN {0 : | — Oy| > €} is compact and
Ln/n =5 L in C(K), there is an event D C {limsup,_,. |0, — 60| > €}
having positive probability and being such that for every w € D one can find
a convergent subsequence (Gnk) C K' with limy,_,o Om =0 and Lnk /ng — L
in C(K); notice that (ny) and 6 € K' depend on the realization w. On the
other hand, by the definition of the QMLE, L(6) = limj_o0 Ln, (O, ) /1 >
limg oo ﬁnk (6o)/ny = L(6y) on D. Since D # (), there exists at least one
point @ € K' with L(6) > L(8), which contradicts the fact that L is uniquely
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maximized at By. Consequently with probability one, |9n — 6| < e for all but
finitely many n. Since € > 0 was arbitrary, we conclude 0,, == 0y as n — co.

Part 2. Without C.5 there is no longer uniform convergence of L, /n to-
wards L. The proof of strong consistency rests on an argument by Pfan-
zagl [112]. By virtue of Proposition 5.2.12 and C.3 the function

0 — 0,(0) = L log h:(€
= by )——2 ht(0)+ og I ()
is continuous on K with probability 1. Since for every fized @ € K the sequence
(€:(@)) is stationary ergodic, one has that n=* >;" | £,(0) == L(0) = E[(,(0)]
as n — oo by an application of the ergodic theorem for real random variables;
note that if EX3 = oo the latter limit can take the value —oo at certain points
0, but ho(0) > g > 0 guarantees L(€) < +oo for all @ € K. Therefore we
can use exactly the same arguments as given in the proof of Lemma 3.11 of
Pfanzagl [112] in order to show that the function L is upper—semi—continuous
on K and limsup,,_, ., SUpgegr Ln(0)/n < supgey L(0) with probability 1
for any compact subset K’ C K. Since C.1 — C.4 imply ||L,, — L||x /n = 0,
the inequality lim sup,,_, ., Supge k- Ln(8)/n < supgc g+ L(0) a.s. is valid also.
Because an upper—semi—continuous function attains its maximum on compact
sets, one can demonstrate 0, == 0o, similarly to step (iii) of the proof of
Part 1. O

5.4 Examples: Consistency

For the purpose of illustration we apply Theorem 5.3.1 to EGARCH and
AGARCH(p, q). Our task will be to define the set K in an appropriate way
and to verify the conditions C.1 — C.4.

5.4.1 EGARCH

Subsume the EGARCH parameters «,3,y and ¢ into @ = (a, 3,7,8)” and
denote by 8y = (ag,Bo,70,0)" the true parameter vector. As discussed in
Example 5.2.8, we suppose 0 < By < 1, dp > |70|- The parameter space is of
form ©® =R x [0,1) x Dg, where

Dg={(7,0)" eR*|y€R, 6> ||}

The compact set K C O will be defined below. The restriction 0 < Gy < 1
guarantees that the SRE (5.11) has a unique stationary ergodic solution
(logo?). From the almost sure representation (5.12) of this solution, one rec-
ognizes E(log 03) < oo, which establishes C.1.

Rather than checking condition C.2 of Theorem 5.3.1, we directly verify its
consequences which were used in the proof of the latter theorem, namely the
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fact that a stationary ergodic sequence (h;) of random elements with values
in C(K,[0,00)) can be defined such that

hs is F;_1-measurable and h:(6) = o7 a.s. for every t, (5.38)
X2||h7t = b Y|k <25 0 and ||log hy — log hy|lx =5 0 as t — oo, (5.39)
To this end, we consider the SRE
log s;+1 = ®:(log s¢), teZ, (5.40)
where
[®:(s)](0) = a + B5(0) + (7X¢ + 6| X¢|) exp(—s(0)/2), 6 € K.

Observing that (vX:+ 6| X¢|) exp(—s(0)/2) > 0, we find that for any constant
function s = log s and € > 0 the forward (and backward) iterates associated
with (5.40) fulfill

log hu(6) = [@,", (log 3)](0) > a(l + B+~ + 1) + Bl log ¢
>a(l-p)"" -

for large enough t. Therefore we may suppose without loss of generality that
the SRE (5.40) lives on the subset C(K,[m — €,00)) with m = infgecx (1 —
B)~1. Note also that C(K,[m — €,00)) is a complete and separable metric
space. By a comparison with the derivation of (5.24), one recognizes that

A(®o) = sup Ac(8) = [|Acllx,
6cK
where
Ae(0) = max (3,27 exp(—(m — €)/2)(vXo + 6| Xo|) — B). (5.41)

Since E(log||A¢||x) — E(log | Aollx) as € | 0, the condition E(log||Aollx) <
0 implies E(log||X¢|lxk) < 0 for € small enough. Hence, if we assume K is
chosen such that E(log||Aol|x) < 0, then the sequence (A(®;)) obeys the
conditions of Theorem 2.6.1, and thus the SRE (5.40) (on C(K,[m — €, 0)),
where € > 0 small) admits a unique stationary solution (logh;), which is
ergodic. Moreover log h; is F;—1—measurable and the property h:(0) = h;(6o)
a.s. follows from similar arguments as in the proof of Proposition 5.2.12. Thus
(5.38) is established. As regards the verification of (5.39), note that || log hy —
loghtl|k =5 0 by Theorem 2.6.1. The mean value theorem applied to the
function e~*/2 together with the facts that log It > m — € for t large and
log hy > m for all t yields a constant ¢ > 0 with

X7 \[(he) ™ = (he) Ml = X7 || exp(—(log ) /2) — exp(—(log he) /2)|

< eX? ||log by — log he|| k<25 0.
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The latter limit relation is a consequence of E(log™ X2) < oo, implied by
E(logo?) < oo and EZ2 = 1, and an application of Proposition 2.5.1. This
completes the demonstration of the limit relations (5.39).

Since condition C.3 is automatically fulfilled for the EGARCH process,
we are left with the verification of the identifiability condition C.4. Before
we start, we need to impose the mild technical assumptions that (vo,d0) #
(0,0) and that the distribution of Zj is not concentrated in two points. Note
that the case 79 = 09 = 0 would lead to an identifiability problem because
then logo? = ap(1 — Bo) ! by representation (5.12), which implies that there
are infinitely many parameters leading to the identical model. Observe that
ho(@) = of a.s. is equivalent to logh:(@) = logh:(0y) a.s. for all t € Z
because of the stationarity of (logh; — o7) and the property logho(6y) =
log 02. We now show the nontrivial implication log h;(6) = log h;(60) = 0 =
0o. Replacing loghy by ®;_;(loghs—1) in the identity logh.(@) = logh.(6o)
and accounting for h;_1(0) = o?_,, we obtain

(@ —ag) + (B=Bo)logai_y + { (v —10) Zi—1 + (6 — 80)| Z¢-1]} =0 as.

If 3 # S, the random variable log o7 ; would at the same time be a measur-
able function of Z;_; and independent of Z;_;. By Lemma 5.4.2 below this im-
plies that log o?_; is deterministic. However, taking the variance in (3.32) gives
Var(log o?_,) = Yo B3 Var(y0 Zo+00| Zo|) > 0 since the facts that (yo,d0) #
(0,0) and that the distribution of Zj is not concentrated in two points imply
Var(voZo + 0| Zo|) > 0. To avoid this contradiction, necessarily 8 = fy. Fur-
thermore, if (& — ag,7 — 70,0 — do) # (0,0,0), there are three distinct cases
concerning the roots of the function f(z) = (ag — o) + (v —0)z + (6 — do)|2]:

1. f has less than or equal to 2 roots.

2. f=0o0n]0,00) and f # 0 on (—00,0).

3. f#0on (0,00) and f =0 on (—o0,0].
Using this observation and the facts that EZy = 0, EZ5 = 1 and that the dis-
tribution of Zy is not concentrated in two points, we conclude that f(Z;—1) = 0
a.s. if and only if (o, 8,7) = (a0, 70,00)- Thus @ = By, which concludes the ver-

ification of C.4. Therefore the strong consistency of the QMLE in EGARCH
can be established by an application of Theorem 5.3.1.

Theorem 5.4.1. Let (X;) be a stationary EGARCH process with parameters
0o = (a0, Bo,70,00)T such that (yo,8) # (0,0). Suppose the distribution of
Zy is not concentrated in two points. Let K C R x [0,1) x Dg be a compact
set with Oy € K and such that

E(log[[Aollx) <O,

where o is given by (5.41) with m = infecix (1 — B)~! and e = 0. Then the
QMLE 8., is strongly consistent.
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Eventually we provide the previously announced auxiliary lemma.

Lemma 5.4.2. Let the real random variable U be at the same time measurable
with respect to a o—algebra A and independent of A. Then U is necessarily a
constant.

Proof. The proof is by contradiction. If U is not a constant, there exists a € R
such that 0 < P(U < a) < 1. Then since the event {U < a} € A is independent
of itself,

P(U < a) = U < a},{U < a}) = (B(U < a))”.

This contradicts 0 < P(U < a) < 1 and concludes the proof. |

5.4.2 AGARCH(p,q)

Set 0 = (ag,...,ap,B1,-..,B,7) " and write Gy = (ag,...,a;,ﬂf,...,ﬂ;’,v")T
for the true parameter vector of AGARCH(p,q). We suppose that 6y ad-
mits a unique stationary ergodic solution ((X¢, o)) to the AGARCH(p,q)
equations (3.8)—(3.9), which is equivalent to a negative top Lyapunov expo-
nent of the associated matrix sequence (A;) given by (5.14) with a; = af,
Bj = Bj and v = 7°; see Example 5.2.5 or Theorem 3.3.1. Moreover, sup-
pose a; > 0 for some i = 1,...,p because otherwise the constant sequence
of = ag(l -7, B7)~" is the unique stationary solution of (5.13), which
would imply that one cannot discriminate between ag and the 37’s (non—
identifiability). Another necessary restriction is (ap,87) # (0,0). Let K be a
compact subset of (0, 00) X [0,00)? X B x [—1, 1] containing the true parameter
0y, where

B:{(ﬂl,-..,ﬂq)TE[O,l)q‘ ijﬁja}. (5.42)

We now verify C.1 — C.4.

In Example 5.2.5 we have shown the existence of a 7 > 0 with Eog” < oo.
Thus E(log™ 02) < oo and C.1 is valid.

As regards C.2, note that the random maps (5.30) are of form

(@0())(8) = (00 + Y 031 Xiail =7 Xi1-0)* )1 + C(O)s(0),

for s € C(K,[0,00)?), where
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e; =(1,0...,00T e RY,
/31 62 ﬁqfl /311
1 0 v v v 0
O 1 0 - -+ 0
Cc(0) = € RI*Y,
0 0 1 0 0
0 0 0 1 0

Compare with Example 5.2.11. Note that A((I)ér)) = A(C"), r € N, where C"
has to be understood as the map s — C’s on C(K,[0,00)?). We recognize
B = SUPgc (E?Zl Bj) < 1 since K is compact. A pointwise application of
the inequality (5.27) yields the bound

(Cs)(0)] < \/q(Zﬂ;)

for any s € C(K, |0,
bound one obtains

r/q]

[s(0)], 0 €K,

00)?). Taking the supremum on both sides of the latter

IC7sllx < Va B/ lslle,

showing that A(C") < \/q Blr/d — 0 as r — oo. Therefore condition S.2
of Proposition 5.2.12 has been verified. It is standard to check S.1. Hence
C.2 holds true and hy = (hy,...,htg+1)7 is properly defined by virtue of
Proposition 5.2.12.

C.3 being obviously fulfilled, we turn to the identifiability condition C.4.
We split our arguments into a series of lemmas. First we derive an almost sure
representation of h;, similarly to Berkes et al. [8].

r >0,

Lemma 5.4.3. The following almost sure representation for hy is valid:

he( +ZW (IXi—e| —7Xi—0)?, O €K, (5.43)
with the sequence (m¢(0))een given by
= _ag(?)
mo(8) = ﬂe( ( Zﬁ]) and ;m(e)z" "~ Belz)’ <1,
(5.44)

where ag(z) =

Y izt and Bo(z) =1 - 37, B2
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Proof. The proof rests on the observation that (h:(0)) obeys an ARMA(p, q)
equation, i.e.,

p q
h(0) = a0+ > ai(|Xei| =y Xei)> + > Bilu—j(0),  tEZ, (5.45)
i=1

j=1
or shorter, in backshift operator notation,
Bo(B)hi(0) = g + ae(B)(|X¢| — vX1)?, tez. (5.46)

Since B < 1, the roots of the polynomial Bg(z) lie outside the unit disc;
indeed, if |z| < B~/ then |Be(2)| > 1 — ;1.:1 Bilzl! > 1 - B(B~1)1 = 0.
This suggests the a.s. representation (5.43), as can be seen from a comparison
with Section 3.2 or Chapter 3 of Brockwell and Davis [29]. To prove this
a.s. representation we can however not directly apply Proposition 3.1.2 in
Brockwell and Davis [29] because the “innovations” (| X;| — vX;)? may have
an infinite moment and because (5.45) depends on the parameter 6. One
possible way to validate the a.s. representation is to show that the right—-hand
side of (5.43) is well-defined, continuous on K a.s., and that it obeys (5.46)
regarded as a difference equation on C(K). Then, since the SRE for (h;)
admits a unique stationary ergodic solution (h;), as follows from Proposition
5.2.12, the right-hand side of (5.43) must coincide with h;. To show the three
assertions mentioned before, first note that there are 0 < A < 1 and ¢ > 0 with
|Te(0)] < e for all £ > 1 and @ € K (apply the Cauchy inequalities to the
complex function 1/8¢(2)). Thus 7y — 0 in C(K) with geometric rate. Since
¢ is continuous on K and E| |Xo| —v° X, |*" < oo for an 7 > 0 (see Example
5.2.5), the series >, m¢(0)(|X¢—¢| — 7X¢—¢)? converges absolutely a.s. in
C(K) by virtue of Proposition 2.5.1. Hence (5.43) is continuous a.s. Eventually
it is an elementary exercise to prove that the a.s. representation for (h;) obeys
(5.46). Indeed, plugging (5.43) into the right-hand side of (5.45) and bearing
in mind that the series >, 7¢(0)(|X;—¢| — yX¢—¢)? converges absolutely for
all t, we obtain

ao + ag(B)(|Xe| = 7X¢)* + (1 - Bo(B))he ()
= ag + (1= Be(1)ao(Be (1)) " + (ae(B) + xo(B))(|Xe| — 7.X¢)?,

where xo(z) = (1—86(2)) > pe, me(0)25. By Yoo, me(0)2¢ = ae(2)/Be(2), one
has ag(z) + xe(z) = ag(z)/Be(z) and hence the right—hand side of the latter
display coincides with (5.43). This completes the proof of the lemma. a

The next lemma is concerned with the identifiability of the parameter ~.

Lemma 5.4.4. Suppose that the distribution of Zy is not concentrated in two
points. Then for any 0 € K the relation ho(0) = ho(0o) a.s. implies v = ~°.
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Proof. Note that ho(0) = ho(6o) a.s. is equivalent to hy(0) = hy(6o) for any
k, in particular k = max(p, q). We rewrite hy (@) = hi(60p) a.s. by

k
(ag — ap) + Z Yi_iop ;=0 as., (5.47)

i=1

where Yi_; = o (| Zk—i| = v°Zk—i)? — ai(|Zp—i| — vZk—i)* + (87 — B;)- Here
we define a;,af = 0 if i € (p,k] and f;, 6 = 0 if i € [g,k). Introduce
k* =min(i € [1,p] | af > 0). Then by repeatedly expressing each term of_j,
j=1,...,(k* — 1), in the equation

p q
o} = ag + Z af (| Xemi| =7° Xi—i)® + Zﬂ;?o-tz—j
i=k* j=1

by past observations and past squared volatilities, one sees that o7 can be

written as a function of
{(|Xt—k*| — ’)/OXt_k*)2, (|Xt—k*—1| — ’)/OXt_k*_l)Q, [P Ut27k:* , Ut27k*71: .. .},

and consequently o? is JF;_p«-measurable. Relation (5.47) together with
of_, > af > 0 implies that Y;_; is a function of 03,...,07_, and conse-
quently F_j+_1—measurable. Since Y;_; is at the same time independent of
Fr—k=—1, it must be degenerate (Lemma 5.4.2). With the identical arguments,
Yi_o,..., Y, g+ are degenerate. The degeneracy of Y} - means that

— Y Zp—ppr)? = e (| Zh—pr | = Y Zp—i=)? =

Lo

ag.(

for a certain constant c. Note that with probability one on the sets {Zj_g+ >
0} and {Zp_s+ < 0},

(ap-(1—=7°) —ap-(1=7)?) Zi_4. =c

and
(af-(L4+7°)? —ap(14+7)%) Zi_4- = ¢,

respectively. Because the distribution of Zj_ - is not concentrated in two
points, these two equations can only be jointly fulfilled if ¢ = 0. Since
EZy_i- = 0 and EZ}_,. = 1, the distribution of Z;_j- has positive mass
both on the negative and the positive real line, which implies

(1 =7 =ap-(1—=9)* and  ag. (14+7°)? = ag- (1 +7)°.

From these two equations together with aj. > 0 we conclude ag- > 0.
Subtracting and adding the latter two equations yields v = y°aj. /oy and
1492 = (14 (v°)?)ag. /oy~ . Because of the constraint |y| < 1 we can conclude

v =+° (and ag+ = aj.), which completes the proof. O
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Eventually we establish the identifiability condition C.4.

Lemma 5.4.5. Suppose that the distribution of Zy is not concentrated in two
points and that the polynomials ag, and B¢, defined in Lemma 5.4.3 do not
have any common roots. Then for any 6 € K,

ho(0) =02  if and only if 6 = 6.

Proof. We have shown in Lemma 5.4.4 that ho(6) = o2 implies v = 7°, so
that in consideration of (5.43) the relation ho(0) = ho(6p) becomes

o0

70(8) — m0(60) + 3 (71(8) — e (B))(IX o] ~1°X ¢)” =0,
(=1

We first show 7,(60) — m(8p) = 0 for all £ € N by contradiction. Denote
by ¢* > 1 the smallest integer ¢ > 1 with §; := m¢(0) — m¢(6y) # 0. Since
02, > af > 0, we have that

(1Z-p=| = Z_¢-)?

= (mo(00) = m0(®) + 3 (me(B0) = (@)X o =1°X 0)?) /(Ge-0% )

is at the same time F_;«_j—measurable and independent of F_;«_;, which
by Lemma 5.4.2 is only possible if (|Z_+| —v°Z_+)? is degenerate. However,
from the assumption that the distribution of Zj is not concentrated in two
points it follows that (|Z_«|—v°Z_¢)? cannot be degenerate, i.e. the desired
contradiction. Using 7,(0) = m¢(6p) in (5.44), we conclude ag(z)/Pe(z) =
ag,(2)/Be,(z). Write ag(z) = r(z)ag,(z) and Be(z) = r(z)Be,(z). The ra-
tional function r(z) does not have any pole because otherwise ag,(z) and
Be,(z) would have a common root. Hence r(2) is a polynomial. The degree of
r is zero, because otherwise either ag(z) or Bg(z) would have degree strictly
greater than p or g, respectively, since (aj,3;) # (0,0). Finally, r = 1 be-
cause the constants in the polynomials 3¢ and B¢, are 1. Hence ag = ag, and
Be = Be,, which gives @ = 6y and concludes the proof. ad

Now an application of Theorem 5.3.1 yields the strong consistency of
the QMLE in AGARCH(p, ¢). Mutatis mutandis the result is true also for
GARCH(p, q), cf. Theorem 4.2.1. The necessary notational changes and mod-
ifications of the proofs are evident.

Theorem 5.4.6. Let (X;) be a stationary AGARCH(p, q) process with true
parameters 6y = (ag, ..., ap, B7,. .. ,ﬂ;’,vo)T such that

1. af >0 for some i > 0 and (ay, B7) # (0,0).

2. The polynomials a°(2) = Y.7_, afz' and °(z) = 1 = 3°9_, 3527 do not
have any common roots.
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Suppose that the distribution of Zy is not concentrated in two points and let
K C (0,00) x [0,00) x B x [—1,1] be compact and contain Oy, where B is
given in (5.42). Then the QMLE 0,, is strongly consistent.

5.5 The First and Second Derivatives of h; and flt

For establishing the asymptotic normality of the QMLE, it is essential to un-
derstand the limit behavior of the sequences of functions (h});en and (hY)en
and to study the differentiability properties of h;; the symbol ' denotes dif-
ferentiation with respect to 8. The interpretation of the arising problems in
terms of SREs is fruitful once again. The results obtained here will prove
useful in Section 5.6.

We recall from Section 5.2.3 that

heyr = @4 (hy), teN, (5.48)

where the random maps ®; on C(K,[0,00)?) are defined in (5.30). Assume
that the SRE associated with (®;) is contractive, i.e., (®;) obeys the conditions
of Theorem 2.6.1 (or Proposition 5.2.12). The SREs for the first and second
derivatives of hy are basically determined by (®;). An important insight will
be the facts that (h});en and (h});en are solutions of contractive SREs “up
to an exponentially fast decaying perturbance”. By this we mean that

., =&,(h)) and B}, =&(h)), teN,

where the nonstationary sequences of maps (<I>t)teN and (@t)teN can be ap-
proximated by stationary sequences (®;)sex and (®;)en in the sense of The-
orem 2.6.4, and moreover the SREs

qi+1 = <i’t(qt) and qi+1 = (-I-)t (qt), t e Z, (549)

are contractive. These statements are valid under relatively weak additional
assumptions in Proposition 5.2.12. Then it is evident from Theorem 2.6.1
that the SREs (5.49) have unique stationary ergodic solutions (d;) and (dy).
Moreover Theorem 2.6.4 says that (h});cy and (h))sen are approximated by
(d¢)ter and (dy)sen, respectively, with an exponentially fast decaying error.
Additional arguments prove that (d;) and (d;) coincide with (h}) and (hY),
where we recall that (h;) denotes the unique stationary ergodic solution of
the SRE St41 = <I>t(st).

To begin with, we derive a SRE for (flt)teN. We will take the derivative with
respect to 8 on both sides of (5.48). For a notationally tractable representation
of the arising SREs, we introduce the maps

or: K x[0,00)1 = K x[0,00)%, (0,u)— (0,(ge(X¢,u),u1,...,uq-1)),

p2: K x[0,00)7 = [0,00)?, (6,u)— u,
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and set ¢, = p2 o <p§r) for fixed » > 1. A comparison with the definition of
®; in (5.30) reveals that

(") (5)](8) = ¥1..(8,5(8)), s € C(K,[0,00)),

for every t € Z and r > 1. In this (and only this) section, we work under the
convention that the first and second order partial derivatives of a function
f=(fi,...,fm)T : U CR® = R™ are written as column vectors:

f' = (0if,0%F,...,00f,...,...,0LF,...,0n )7,
"= (80,00, 00 ,8%’”f, U S SR Ll 3
oI PO it SO il SN, Lals § K

where 94 := (0f;)/(0xy,) and Bfl’ka := (0% f;)/(0zy, Oxy,). In what follows,
we suppose that the following regularity conditions hold true:

D.1 The conditions of Proposition 5.2.12 are fulfilled with a compact set
K C © C R%. Suppose that K coincides with the closure of its (open)
interior. The function (0, s) — gg(x,s) on K x [0,00)? is continuously
differentiable for every fixed x € RP.

D.2 Forallje{l,....q} and k€ {1,...,d+q},

E

log™ <sup |(9j’C wo,l(a,ho(o)n) ] < o0. (5.50)
0eK

Moreover there exist a stationary sequence (Cy (t)) with E[log™ Cy(0)] <
oo and & € (0,1] such that
sup |8f1/1t71(0,u) - 6f¢t71(0,ﬁ)| <Ci(t)lu—1al®, wu,ae€|0,00),
0cK
(5.51)
for every j € {1,...,q}, k€ {l,...,d+q} and t € Z.

Equation (5.48) can be understood as
hiy1(0) = (0 (0)) = ¥,1(6,0:(0)), 6 €K.

Taking the derivatives with respect to @ on both sides yields

O hy41(8) = Oy, (6,hy(0 +Zad“ 1(0,0,(0)) 0f By(0),  teEN,

(5.52)
for indices j € {1,...,q},k € {1,...,d}, or in abridged form,

h2+1 - q)t(flg)a teN.



112 The QMLE in Conditionally Heteroscedastic Time Series Models

In order to find a stationary approximation to (ﬁ;)teN, we replace hy by hy
and h} by q; in (5.52). This leads to the linear SRE

qi+1 = i’t(qt)a t e Z, (553)

on C(K,R%), where for £ = (j —1)d + k € {1,...,dq},

[Qe+1(0)]e = 05 1,1(6,h(8)) + Zaf+i¢t71(9,ht(9)) (:(0)] (i—1)dtk-

i=1
We will recognize shortly that the SRE (5.53) is contractive and hence has a

unique stationary ergodic solution (d;). This indicates that (d;):en provides

a stationary approximation to (h});en. Note that this rationale is in line with
Proposition 5.2.12. In what follows, we show:

(1) The SRE (5.53) has a unique stationary solution (d;), which is ergodic.
The random element d; is F;_j;—measurable for every ¢.

(2) We have that ||h} — di||x <=5 0 as t — oo, i.e., (d¢)een is a stationary
approximation of (h}):en.

(3) The random functions h; are a.s. continuously differentiable on K, and
for each t € Z,
dt = hé

Since we establish relation (1) via Theorem 2.6.1, we need to show that <i>§")
is a contraction on average for r large enough. As is obvious from elementary
calculus,

[, (q)(6)]¢

= Oty (0, 0y 1 (0)) + D 08 4py (0, 0y 41(0)) [A(0)](i—1)asre- (5.54)

i=1
From ¢ ,(0,u) = ps o gagr) (6,u) = <I>§") (u) we deduce that
Ger(8,1) — (0, 0)] < A@) [u—a],  ube 0,00,
and therefore

sup 07 4 (8, 1(0)] < ARY)),  teZ, (5.55)
€

for all i € {1,...,q}. Using the representation (5.54) and applying inequality
(5.55), we obtain
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(7 ()(8)]e — [#” (@) O)]e |

< A(‘I’l(sr)) Z | [a(6)]i—1yatr — [@()]i—1)ar |

i=1
< const x A(®")) [la—dllx,  a,d€ C(K,RY),
for all £€{1,...,dq} and 8 € K, whence
A@") < cA@)

for a certain constant ¢ > 0 not depending on r. It follows from the proof of

Theorem 2.6.1 that E[log A(@gr))] — —o0 as r — oo. For this reason we can
choose r so large that

E[log A(®{)] < logc + E[log A(®\")] < 0.

Thus the SRE qy41 = ®;(q;) obeys the condition S.2 of Theorem 2.6.1, and
S.1is true by virtue of (5.50). Consequently the SRE (5.53) admits a unique
stationary ergodic solution (d;), for which d; is F;_;—measurable for every t¢.
As regards the limit relation (2), we need to study the perturbed SRE

arr1 = D4(qp), teN,

which has (h}):en as one of its solutions. By the assumption (5.51), the triangle
inequality, Proposition 5.2.12 and an application of Proposition 2.5.1, we have
that

1$:(0) — :(0)||x < const x Cy(t) ||hs — he|) <=5 0, t — o0,

and ~
A(®; — &;) < const x Cy(t) ||hy — hy||5 <250, t — oo.

Now an application of Theorem 2.6.4 demonstrates ||h} — dy||x =3 0 as
t — oo. It remains to prove relation (3). Since K coincides with the closure
of its interior, the continuous differentiability of h; on K can be established
by showing the existence of a sequence (f,)nen of continuously differentiable
functions on K such that f, == h; in C(K,RY) and £, == d; in C(K,R%)
as n — oo; cf. Theorem 5.9.12 in Lang [80]. For every fized m > 0, the
sequence ((hj,,,d;)):ez is stationary ergodic by virtue of Proposition 2.1.1
(see (5.33) for the definition of h ,,). Since hy, , = h!,, another application
of Proposition 2.1.1 implies

W, —d; b, —d,, m>0,

e.a.s.

On the other hand, we have already shown that |[h), — d,,||x <=5 0. Thus
by, — dillx 25 0 as m — oo, and therefore there is a subsequence
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(h} ... Jnen with [[h} . —d;|[x = 0 asn — oc. If we set f, = hy p,,, n €N,
then the sequence (f,)nen satisfies £, — h; in C(K,R?) and f;, == d; in
C(K,R%) as n — oo. This completes the proof of assertion (3). Summarizing,

we have obtained the following proposition.

Proposition 5.5.1. Assume that conditions D.1 and D.2 are fulfilled. Then
the SRE quq1 = &, (at) defined by (5.53) has a unique stationary solution (d;),
which is ergodic. For every t € Z the random element d; is F;_1—measurable.
For every t € Z, the first derivatives of hy coincide with s; on K a.s. Moreover,

B, — di||x 2250, ¢ oo.
This justifies the following definition for the first derivatives of hy: hi = d;.

Similar results can be derived for (flé’ )ten- At the origin of the analysis we
have the observation that (h!);ey obeys a SRE, which is contractive provided
certain regularity assumptions hold. One can more or less follow the lines of
proof of Proposition 5.5.1. In addition to D.1 and D.2, we will also assume

the following set of conditions.

D.3 The function (0,s) — ge(x,s) on K x [0,00)? is twice continuously dif-
ferentiable for every fixed x € RP. For all j € {1,...,q} and ky, k2 €
{17""d+q}7

E [log+ <sup ok ¢0,1(0,h0(0))|>] < 0. (5.56)
0cK

The sequence of first derivatives (hy) fulfills E(log™ ||hf||x) < 00. More-
over there exist a stationary sequence (Ca(t)) with E[log™ C2(0)] < oo
and & € (0, 1] such that

sup [95F2 4y 1 (8, 1) — 05 *4y 1 (0, 0)] < Co(t) [u—alF, w it € [0,00)7,

0cK
(5.57)
for every j € {1,...,q}, k1, k2 € {1,...,d+q} and t € Z.

Proposition 5.5.2. Assume that conditions D.1 — D.3 are fulfilled. Then
By —dl|re 2250, - o0,

where (&t) is characterized as the unique stationary ergodic solution of the
linear SRE (5.58) defined below. For every t € 7 the random element d, is
Fi—1—measurable. The second derivatives of hy on K coincide with (~1t a.s. for
every t. Therefore the following definition for the second derivatives of hy is
Justified: hj = d,.

Proof. Differentiation of both sides of (5.52) with respect to 6 shows that

fll’tﬁrl = &,(h!"), where &, is a linear random map. More precisely, for every
JjE {1,...,(]} and ki, ks € {1,...,d},
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;" ey (0) =

942 (8,10 +Zak2,d+z 1(0,h,(8)) 8 1y ()

q
+Z <aklvd+l (6,hy(0)) + > _ 9™ vd“q,bt,l(o,htw))a;ilht(o)) d% h,(0)

i'=1

q
+Za}i+i1/1t71(97f1t(9))8f17k2f1t(9); teN.

i=1
This suggests to consider the following linear SRE on C(K, Rdzq):

Qi1 = Pi(ar), tez, (5.58)

where for £ = (j — 1)d*> + (k1 — 1)d + k2 € {1,...,d%q},

[©+(a)(8)]c =

q
07" 1 (0,14(8)) + 3 07" .1(6,14(6)) 97" 1y (6)

i=1

q
+Z <a’“1*d“ (6,h(0)) + > _ 05" *d“%l(e,ht(e))aﬁlht(0)> 9% h,(0)

i'=1

q
+D 07 4y 1(0,04(0)) [A(O)]i— 1)@+ (ky—1)dskes A € C(K,RTY),

i=1

Exploiting the conditions (5.56) and E(log™ ||h}||x) < oo in D.3, one shows
with exactly the same arguments as in the proof of Proposition 5.5.1 that the
SRE (5.58) obeys the conditions of Theorem 2.6.1, which implies that it has a
unique stationary ergodic solution (Elt) Furthermore, &t is F;_1—measurable
for every t. By means of the decomposition

~

abé — abe = (@ — a)be + (@ — a)(b — b)c + (@ — a) (b — b)(é — ¢)
+(a—a)b(é —c) +alb—b)c+alb—b)(Eé—c)+abé—c)  (5.59)

and application of the bounds (5.57) together with ||f1t he||% =% 0 and

e.a.s.

|h] — hi||% <=5 0, it can be verified that (®;) and (®;)¢ex fulfill the condi-
tions of Theorem 2.6.4. Thus ||h} — dt||K 2% 0. Analogously to the proof of
Proposition 5.5.1 one demonstrates d, = h/. This concludes the proof. 0
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5.6 Asymptotic Normality of the QMLE

As we have previously indicated, it is convenient to first establish the asymp-
totic normality of 8, defined in (5.37), and secondly to establish the asymp-

totic equivalence of 8, and the QMLE @, i.e., \/n(6, — 0,) L5 0. Fol-
lowing the classical approach, we will establish the asymptotic normality
of @, by means of a Taylor expansion of L, = (37, t), where {; =
—271(log ht + X? /ht). For this reason it is essential to study the limit proper-
ties of L! and L!!. Now we formulate the basic assumptions used throughout

this section.

N.1 The assumptions C.1 — C.4 of Section 5.3 are fulfilled and the true pa-
rameter Oy lies in the interior of the compact set K.

N.2 The assumptions D.1 — D.3 of Proposition 5.5.2 are met for a compact
ball K which contains 6y in its interior.

N.3 The following moment conditions hold:

i) EZ$ < o,
hiy(00)|?
(ii) E(' 0(4°)| ) < o0,
%0
(iii) El|Glz < oo.
N.4 The components of the vector aagoo (Xo,a'g) oo are linearly indepen-
=Uto

dent random variables.

By virtue of Theorem 5.3.1, condition N.1 implies consistency. The require-
ment N.2 enables the differentiation of L, on K. Since 8,, == 6y, only the
differentiability of L,, in a neighborhood of 8y is needed in the proof. For the
sake of simpler arguments we assume without loss of generality that K = K.
Assumption N.4 assures that the asymptotic covariance matrix is regular.

Observe that with probability one,

oy 1O (| X7
6(0) =~ 1 (6) (1 - ht(0)> , (5.60)
4O =~y g (OO (2,70 ~1) 4 O1(0) - x2))

(5.61)

From Propositions 5.2.12, 5.5.1 and 5.5.2 together with Proposition 2.1.1 we
infer that (¢;) and (¢}') are stationary ergodic sequences of random elements
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with values in C(K,R?) and C(K,R%*?), respectively. An inspection of the
proof of Theorem 5.3.1 shows that condition N.1 also implies 6,, == 0.
Consequently, for large enough n the following Taylor expansion is valid:

L},(6,) = L},(80) + L7 () (8. — 60), (5.62)

where |(,, — 60| < |én — 0. Since 0,, is the maximizer of L, and 6 lies in

the interior of K, one has L!, (0,,) = 0. Therefore (5.62) is equivalent to
ntLY(C,) (8, — 00) = —n 1L (8y). (5.63)

On account of E||(j||x < oo and the stationarity and ergodicity of (£}), we
may apply Theorem 2.2.1 to obtain L /n == L" in C(K,R%*9) as n — oo,
where L"(0) = E[({(0)], @ € K. This uniform convergence result together
with ¢, — 6y implies

Ly (¢,)/n == E[l5(60)] = Fo, n — 0.

By Propositions 5.2.12, 5.5.1 and 5.5.2 hg, h{ and hj are F_;—measurable.
Exploiting ho(6y) = o a.s., Xo = 092y and the independence of Zy and F_1,
one may conclude that

Fo = —27'E [(h{(6o)) " hy(80) /o] - (5.64)

It is shown in Lemma 5.6.3 below that Fy is invertible. Consequently, the
matrix L (¢,,)/n has inverse Fy ' (1 4 op(1)), n — oo, and (5.63) implies

Vn (8, —0y) = —Fy (1 +o0p(1))L,(80)/v/n,  n — oo. (5.65)

Therefore the limit of v/n(@, — 69) is determined by that of —Fy 'L’ (80)/+/n-
Since hy(6y) = 07 a.s. and X; = 0,7,

L (8o) = ;z'oo ;Z 22—1)

Since the random element hj}/ otz is F;_1—measurable and since F;_ i is in-
dependent of Z; and EZ}? = 1, the sequence (¢}(0y))ten is a stationary er-
godic zero-mean martingale difference sequence with respect to the filtration
(Ft)ten- By virtue of the moment condition N.3 the sequence (£;(6y)):en has
furthermore finite variance. Consequently we can apply the central limit the-
orem for finite variance stationary ergodic martingale difference sequences,
cf. Theorem 18.3 in Billingsley [13], which says that

nY2L (00) <5 N(0,Go),  n— oo,
where

Go = E[(65(60)) "l (80)] = 47'E(Zg — 1) E[(hg(60)) " hg(80) /o).
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Together with (5.64) and (5.65) we conclude
Vn (0, — 60) <5 N(0,Vy),  n— o0,
where
Vo = Fy'GoFy ' = 47'E(Z5 — 1) (El(ho(60)) " ho(Bo) /o)) ™" (5.66)

It is shown in Lemma 5.6.5 below that v/n |0, — 8,] == 0 so that an appli-
cation of Slutsky’s lemma finalizes the proof of the following theorem.

Theorem 5.6.1. Under the conditions N.1 — N.4, the QMLE 0., is strongly
consistent and asymptotically normal, i.e.,

Vn (0, —0)) -5 N(0,Vy),  n— oo,

where the asymptotic covariance matriz Vo is given by (5.66).

Remark 5.6.2. In general it seems impossible to find a tractable expression
for the asymptotic covariance matrix Vo due to the fact that the joint distri-
bution of (02, h{,(6o)) is not known, not even for GARCH(1,1). It is however
possible to consistently estimate Vg from the data. Defining the residual by
7" = X, /(hy(6,))/2, the matrix sequence

o) _ [ 1 S ptoya 1S (00T (0)
Vo' = (4n ;((Zt ) 1)> (n; hi(0),,)2 >

is a strongly consistent estimator for the matrix V. We sketch how this can
be demonstrated. Define

1~ (h4(0)"hi(8 ; 1§~ (1 (0)"hi (8

and suppose E| hy/hol|3 < oo in addition to N.1 — N.4. Then by an ap-
plication of Theorem 2.2.1, M,, =% M in C(K,R%*%) where M(8) =
E[(h(8))T 1, (0)/(ho(8))?]. Using the same method as in Lemma 5.6.4, one de-
rives a bound for ||M,, — M, ||x and shows ||M,, — M, ||x == 0, which implies
M, =% M in C(K, R%*?) as n — 0o. Therefore (M, (0,,))™! == (M(8,))~ .
Likewise, n=2 S>_ ((Z{™)*~1) can be shown to converge to E(Z2—1) a.s. Al-
together, V(()n) =25 V. We also mention that the practical implementation
for the computation of the matrix V(()n) becomes particularly simple if one
makes use of the recursion for h}, see equation (5.52). O

t=1

For the proof of the remaining assertions, we first show that the asymptotic
covariance matrix is regular.

Lemma 5.6.3. The assumptions N.1 — N.4 imply that Fy = E[{[(00)] is
negative definite.
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Proof. Fy being negative definite is equivalent to Jo = E[(h}(00))T h{(80)/0d]
being positive definite. It is evident that Jo is positive semi—definite. Assume
xtJoxg = 0, some x¢ € R%. This is equivalent to

2

ho(Bo)xo |~ _ 0

E
2
)

which implies hy(60o)xo = 0 a.s. Note also that h}(6¢)xo = 0 for every ¢t due
to the stationarity of (h}). Differentiation of hy(0) = go¢(Xo,ho(0)) at 8 = 0,
yields

996

X 2‘ X 2‘
(Xo,00) 6:60+ 8s( 0,0)

dge
00

Multiplying this equation from the right with xo and accounting for h} (6g)xo =
0 and h{(6¢)xo = 0 results in

hi(eo) =

GOhg(eo).

dge
90 (Xo,O'g) ‘ :BOXO =0 a.s.
Condition N.4 implies x¢ = 0. This concludes the proof. O

The remaining steps are devoted to the proof of Lemma 5.6.5.

Lemma 5.6.4. The assumptions N.1 — N.2 imply
n V2L~ Lk 250, n— oo

Proof. Notice that C.3 implies h(8),h;(8) > g > 0 for all & € K. This and
the mean value theorem applied to the function f(a,b) = ab=!(1 — X2/b),
a€R,b> g, yield

i, (1 Xf) h (1 Xf)
iLt iLt ht ht

< o1+ XP) {Ilhe = hllsc + [l = il + 1hi = Bl s}

(5.67)

16t — Lill e =

K

for some ¢ > 0. Recall that we assume E(log™t 02) < oo, E(log™ ||h}|x) < oo,
and observe that Propositions 5.2.12 and 5.5.1 imply ||th — hy]lk =3 0 and
Ay — Byl 25 0 as t — oco. Now (5.67) together with an application of
Proposition 2.5.1 and Lemma 2.5.3 show ||L!, — L’ ||k < 3292, |6} — £]|x < o0

a.s. This completes the proof. d

Lemma 5.6.5. The assumptions N.1 — N.4 imply

\/n|én—@n|i>0, n — oo.
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Proof. From the mean value theorem,
Ly, (82) = Ly,(82) = L3 (C,) (8 — 0,), (5.68)

where &'n lies on the line segment connecting 6,, and 0,,. This line segment is
completely contained in the interior of K provided n is large enough. Since
L! (0,) =L!(08,) =0, equation (5.68) is equivalent to

n= 2 (L),(00) = L3,(00)) = n7 ' L1 (C,) n' /2 (B, - 6,,). (5.69)

By virtue of Lemma 5.6.4, both sides of (5.69) tend to 0 a.s. as n — oo.
Because of N.3 (iii) we can apply Theorem 2.2.1 to L /n and together with
¢, =5 @ conclude L"(C,)/n =2 Fo = E[lI(6))]. Since the matrix Fy is
invertible, as shown by Lemma 5.6.3, we can deduce /n(0, — 6,) = 0,
which completes the proof. O

5.7 Examples: Asymptotic Normality

In this section we establish the asymptotic normality of the QMLE in
AGARCH(p, q) and EGARCH models. We start with the simpler case of
AGARCH(p, q). For EGARCH we can only treat the special case of models
with g = 0.

5.7.1 AGARCH(p,q)

Take a compact set K C (0,00) x [0,00)? X B x [—1,1], where B =
{(Bi,--,B)T € [0,1)7 | 329, B; < 1}. Assume that the true parameter
vector 8y = (ag,...,ap,B7,..., 0, 7°)T is contained in the interior of K and
suppose the conditions of Theorem 5.4.6 hold true. This entails N.1. For the
verification of N.2 — N.3 we can assume without loss of generality that K is
a compact ball about 8y with «;,3; > 0 for all ¢,j and |y| < 1 on K. Anal-
ogously to Berkes et al. [8] we assume EZ§ < oo and suppose there is g > 0
such that

P(|Zo| < 2) = o(2"), z40. (5.70)

As regards N.2, the verification of conditions D.1 — D.3 of Section 5.5 is
rather straightforward. The only steps which require some care are the mo-
ment conditions. We have shown in Example 5.2.5 that there is an n > 0 with
E|og|?" < 00, and hence also E|X(|*" < oo (provided 5 < 1). The Minkowski
inequality applied to (5.43) yields E||hol|% < co. Altogether E(log™ 02) < oo
and E(log™ ||hollx) < oo. As to the moments of h}, observe that differentia-
tion (with respect to €) and the sum in (5.43) can be interchanged. Indeed,

the equality
o) = (51! z (2:8 )) -t <aao (ZZE?))

z=0
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shows how to compute 7;(0) from g (z)/Bs(2). An application of the Cauchy
inequalities to 0/(00)(ag(2)/Be(z)), where one exploits the fact that Sg(z) #
0 for |z| < B1/9 (see the proof of Lemma 5.4.3), demonstrates that there
are 0 < A < 1 and é > 0 with ||7)||x < é\’. This together with Proposi-
tion 2.5.1 shows that the sequence of first derivatives of fp,(0) := mo(0) +
Sy me(0)(| Xe—e| — ¥ X¢—¢)? converges a.s. on C(K,RPTIT?) as m — oo.
Since with probability one f,, — h; in C(K) and (f],) converges uniformly
on K,

hi(0) = 7(68) + > my(8) (IXi—e| — vXi—¢)?
=1

(ZW VX - (| Xo—e] — 7 X0 ())em+2 as., (5.71)

where e, 442 = (0,...,0,1)7 € RPT9+2, This establishes that differentiation
and summation in (5.43) can be interchanged. The representation (5.71) to-
gether with the identical arguments for E||ho||% < oo yields E||hg||% < oo.
Consequently E(log™ ||h)||x) < co. Altogether we have established N.2.

It is more complicated to prove the moment conditions of N.3. At the origin
lies the observation that the random variables ||hg/hol|x and ||h§ /hol|x have
finite moments of any order and that

E|| X3 /holl% < oo (5.72)

for any x < 2; see Lemmas 5.7.4 and 5.7.5 below. The inequality (2.11) to-
gether with the triangle inequality applied to (5.61) imply
) (5.73)
K

INaAE X2 X2
1Nk < 0 201701 +1) + 1+150°
2\ hollx ho ||

ho
By an application of the Hélder inequality together with Lemmas 5.7.4 and
5.7.5, E||¢y||lk < oo follows. Thus conditions N.1 — N.3 of Section 5.6 are
fulfilled.
N.4 will be verified in Lemma 5.7.3 below. Now an application of Theorem
5.6.1 yields the following result.

Theorem 5.7.1. Let (X;) be a stationary AGARCH(p, q) process with pa-

n
ho ||

rameter vector 6y = (af, . .. s, BT ,ﬂ;’,vo)T such that the polynomials
p .
a°(z):Zafz’ and B°( —1—Zﬂ P
i=1

do not have any common roots. Let K C (0,00) X [0,00)? x B x [—1,1] be
compact and contain @y in its interior. Assume that the distribution of Z
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is mot concentrated in two points and that Zy fulfills EZ; < oo and (5.70).
Then the QMLE (5.35) is strongly consistent and asymptotically normal with
asymptotic covariance matriz Vo given by (5.66).

Remarks 5.7.2.

1. Note that the requirement that @y lies in the interior of K entails a5 > 0
for some i > 0 and (ayp,37) # (0,0), i.e., all conditions of Theorem 5.4.6
are met under the assumptions of Theorem 5.7.1.

2. Mutatis mutandis Theorem 5.7.1 is true also for GARCH(p, q); cf. Theo-
rem 4.2.1. The necessary notational modifications and changes in proofs
are obvious.

Lemma 5.7.3. Under the conditions imposed by Theorem 5.7.1, the condition
N.4 is fulfilled.

Proof. By straightforward computation,

0ge 9
60 (X07 0-0) 0=6,

= (1) (|X0| - ’YOXO)Q) ) (|sz+1| - ’YOX*PJrl)Z’Ug; s )a—iq-ﬁ-l;
—205 Xo (| Xo| = 7°X0) = -+ = 20) X1 (| Xpia| = 7° X 1))

Assume for a € = (N, .., Ap, fi1, - - -, fbg, v) T € RPTIT2 that

0ge 2 _
20 (Xo,0%) oo, £E=0. (5.74)

Writing out the latter equation results in
Mo + 05 (M(1Zo] —7°20)* + 1 — 2va3 Zo(|1Zo| —7°Z0)) +Y_1 =0 as.,

where Y_; is a certain F_j;—measurable random variable. By Lemma 5.4.2 the
multiplier of 02 in the latter identity must be degenerate, i.e.,

AL (1 + (7)) + 2va57°) Z5 — (29°\1 + 2vag) Zo| Zo| + 1 = ¢ as. (5.75)

for a certain ¢ € R. Since the distribution of Zg is not concentrated in two
points, {1, Zo|Zo|, Z2} are linearly independent. Combining this information
with (5.75) and taking into account that af > 0 and |y°| < 1, we conclude
A1 =v = py —c = 0. Thus we must show the linear independence of 1, (| Xo| —
7°Xo0)?, . (IX2 0] = °X p11)?,08,...,0% 1. The following arguments
are similar to the ones used by Berkes et al. [8] for the proof of their Lemma
5.7. Equation (5.74) with v = 0 and the stationarity of ((X¢,0¢)) imply

p q
Ao + Z (| Xi—i] = v Xemi)® + Zﬂjaij =0 a.s.,

i=1 j=1
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which equivalently written in backshift operator notation becomes
Ao+ AB)(|1X¢| —7°Xe)? + u(B)o? =0 as., (5.76)
with

P q
A(z) = Z Nzt and  p(z) = Zujzj.
i=1 j=1

Recall Lemma 5.4.3, where we derived the a.s. representation

Q o o — o]

o = goryy T O BEB)HIXI] = X (5.77)
with a°(z) = >0 agz% and 3°(z) = 1 — 23:1 B327. Plugging (5.77) into
(5.76), we obtain that

)\ /1,(1)048 )\B B oB oB —1 X _ oX 2 __
0+ﬁo(1)+(( ) + 1(B)a®(B)(B°(B))™") (IXe = 7°X)* =0 as,
and with the identical arguments as given in Lemma 5.4.5, we conclude
a’(z 1)ag
Az) + p(z) ﬂogz; =0 and Ao+ uﬂ(o()l)o =0.

If u # 0, the rational function u(z)a®(z)/5°(z) has at least p+1 zeros (counted
with their multiplicities) since u(0) = 0 and $°(0) > 0, whereas A(z) has at
most p roots, which is a contradiction. Therefore p(z) = A(z) =0 and £ =0,
which completes the proof. a

In what follows, we formulate the AGARCH counterparts of Lemmas 5.1
and 5.2 in Berkes et al. [8].

Lemma 5.7.4. Let (X;) be a stationary AGARCH(p, q) process with param-
eter vector 8y = (ag, ..., ap, 57, - ,ﬂ;’,7°)T. Let K C (0,00) x [0,00)P X B x
[—1,1] be a compact ball about 6y such that a;, 3; > 0 for all i,j and |y| < 1
on K. Assume that the iid innovations (Z;) are such that E|Zy|** < oo and
(5.70) holds. Then for any 0 < K < &,

K

< 00. (5.78)
K

2
0

B
‘ho

Proof. In the proof of Lemma 5.1 in Berkes et al. [8] one has to replace (the
innovations) (&) by (|Z¢] — vZ:) and (the observations) (y;) by (| Xt| — vX%).
Also take into account that there is ¢; > 0 such that for all 8 € K,

Cth2 S (|Zt| — ’}/Zt)z S 2Zt2 and ClX,;Z S (|Xt| - ’th)Z S 2Xt27 (579)

since || < 1 on K. Exploiting this observation in the steps of proof by Berkes
et al. [8] establishes the assertion (5.78). We omit the details. O
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Lemma 5.7.5. Let (X;) be a stationary AGARCH(p, q) process with param-
eter vector 6y = (ag, ..., ap, 57, .,ﬂg,fyO)T. Let K C (0,00) % [0,00)P x B x
[—1,1] be a compact ball about By such that a;,3; > 0 for all i,j and |y] < 1
on K. Then for any x > 0,

K K

!
0

ho ||,

II

h < (5.80)

?

<oo and EH

Proof. The arguments of Lemma 3.2 in Berkes et al. [8] show that there exist
ca,c3 > 0 with

O] < erlme(®) and | O) < sBmi(0),  €>1  (5.81)
for all @ € K. Differentiating both sides of (5.71) with respect to @ yields

h'(0) = ! (6 +Z7r ) (1 X—e| = vXi—0)?

oo

—2( (= O) Xt Kot = 7Xe—) )l 12
(=1
~2ep g2 ( Y THO) Xome (| Xime] = 7Xi0))
=1

o0
+2 ( Z WZ(G)XE—K) ep+q+2eZ+q+2-
{=1

This together with (5.81) and applications of (5.79) proves that there is a
constant C' > 0 with

B(®)]. 117 ©)] <c(1+ze2m XE,).

With this and (5.79) one can follow the lines of proof of Lemma 5.2 in Berkes
et al. [8] in order to obtain (5.80). This completes the proof. O

5.7.2 EGARCH

We appeal to Section 5.4.1, where we established the consistency of the QMLE
in EGARCH. We considered a certain SRE

IOg St+1 = @t(log St), t e Z, (582)

in order to give a proper definition for (log h;). Unfortunately we were not able
to find a tractable expression for A((I)E)T)) when r > 1. This is the reason why
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we applied Theorem 2.6.1 to the SRE (5.82) with » = 1 only. The resulting
contraction condition, which also guarantees the consistency of the QMLE in
EGARCH, is rather awkward because one has to check it by means of stochas-
tic simulation. In this section we encounter another unpleasant problem about
EGARCH. As a matter of fact, one has to show the moment conditions N.3
QMLE. This necessitates to estimate the moments of stationary solutions of
general SREs z¢11 = ¢¢(x;), which is a nontrivial task if the random Lipschitz
coefficients (A(¢;)) are dependent. Essentially one would have to find accurate
moment bounds for Hle A(¢;). We are not aware of any results solving this
kind of problem, not even if (A(¢;)) fulfills mixing conditions. The random
Lipschitz coefficients (A(®;)) appearing in EGARCH are not independent. As
a matter of fact, we can only demonstrate the asymptotic normality of the
QMLE in the subclass of EGARCH models with 8 = 0 because there the
corresponding sequence of random Lipschitz coefficients is 1-dependent.

We follow the notation of Section 5.4.1, but consider EGARCH models
with 8 = 0, i.e., the parameter space is of form @ = R x Dg, where Dg =
{(v,0)T € R*|y € R, § > |y|}. The true parameter vector is denoted by
0y = (ap,%,%)". We take a compact subset K C © containing 6y in its
interior such that

E(log||Aol|x) <0 (5.83)

with
Xo(0) =27t exp(—a/2)(vXo + 0| Xol),

where a = infgeg{a}. The distribution of Z; must not be concentrated in
two points. Then Theorem 5.4.1 tells us that the QMLE is strongly consis-
tent. Another implication of Theorem 5.4.1 is the fact that the SRE (5.82)
has a unique stationary solution (log h;), which is ergodic and where h; is
Fi—1—measurable for every t. In what follows, we study the derivatives of
¢, = log hy + X?/h;. Note that we cannot directly apply Theorem 5.6.1 be-
cause in EGARCH we work with a SRE for (log h) rather than for (h:). The
necessary modifications are given in the following. First we show that log h; is
twice continuously differentiable on a compact ball K about 8y and compute
moments of the derivatives. For notational ease we can assume K = K. We
use the techniques of Section 5.5. In the second step, asymptotic normality
will be proved along the lines of the proof of Theorem 5.6.1. Before we start,
we introduce

d = max ( sup (y + 6), sup (§ — 7))
6cK 6cK
and observe that vz + d|z| < 6 |z| for all z € R.
Lemma 5.7.6. Suppose the conditions imposed for this section. Then log h;
is continuously differentiable on K, (logh:)' is Fi—1—measurable and

l(log k)" — (log hy)' || =250, ¢ — oo. (5.84)
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If there is 7 > 0 such that

A= 2""exp(—na/2)6"E|o1 Zo|" < 1, (5.85)
then El|(log ht)'||3, < oo.

Proof. Differentiation with respect to 8 of both sides of
lOg ilt+1 = ge (Xt, IOg i’Lt)
= a+ (yXi1 + 8| Xe|) exp(—2 L (log b)),  tEN,

leads to . . . . . .
(IOg ht+1)l = @t((log ht)’) = At(log ht)l + Bt, (586)

where

0 . R
A = 6930 (X¢,loghy) = =27 (v Xy + (5|Xt|)exp(—2_1 log ht),

A 0ge

B; = 90 (X¢,log ilt) = (1, X;exp(—2""log iLt)7 | X;| exp(—2 ' log ﬁt))

We mention that dgg/06 denotes the derivative with respect to the first coor-
dinate of the function (0, s) — ge(z, s) and Jgg/0s the derivative with respect
to the second coordinate. Replacing log It by log h; in A; and B, we obtain
the corresponding stationary sequences (A;) and (B;). Define on C(K,R?) the
SRE

Jt+1 = @t(qt) = AtQt + Bt, t € Z. (587)

Since E(log™ | Xo|) < 00, log hs,log by > o and ||log by — log he||x <=5 0, one
has

A(® — &) = || A — Ayl < 2715 |Xy| exp(2a)|[log by — log hel|xc <=3 0.
Moreover,

19¢(0) — &1(0) | = 1B, — Billxc < const x |Xy| || log hy — log hu||xc =5 0.

By virtue of E(log A(®y)) = E(log||4o|lx) < E(log||Ao||x) < 0, the SRE
(5.87) is contractive. From an application of Theorem 2.6.4 and identical
arguments as used in the proof of Proposition 5.5.1, the differentiability of
log hy and the relation (5.84) follow. It remains to prove El|(logh:)'||7, < oo.
Due to the linearity of the SRE (5.87), its unique stationary ergodic solution
((log ht)") has the representation

k—1

(log hy)' = i ( H At,i)Bt,k a.s.

k=1 i=1
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Noticing that ||Bt||x < ¢1(1 + |X¢|) for some constant ¢; > 0 and applying
the triangle inequality to the latter representation, we receive

o0
l(log he)'llc < €1 > Prgor (14| X)), (5.88)
k=1

where P, j, stands for the product of random Lipschitz coefficients Hle [|As—il| x
(set P;o = 1). Note that

|A¢||x < 2716 X¢| exp(—27"a). (5.89)

Since we consider an EGARCH model with 3y = 0, the volatility o; is a
function of Z;_; for every ¢, and the decomposition

k k
Hthi =711 <H Ot—it1 Zti) Otk

i=1 =2

consists of independent, factors. Using the latter decomposition together with
(5.89) and (1 + | X;—g])7 < 27(1 + | X;—k|"), we obtain

k—1
BIF ey (1 X0 4)"] = B((0+ P TT 40l

i=1

< 2=kt 1) gn(k=1) oxny(—2  an(k — 1))
k—1 k
x (E( I1 |Xt_i|’7) + E( II |Xt_,-|’7)>
i=1 i=1
= 2791(=k+D k=) exp (27 an(k — 1))E| Zo|"Eo!
x{ (Elo Zo|")* 2 + (Bloy Zo|")* ' }

= A2 (5.90)

with ¢ = 07exp(27 an)(E|Zo|")(Eog)(1 + E|oy Zo|"). From E|o; Z|" < oo
it is easy to see that ¢y < oo. An application of the Minkowski inequality to
(5.88) and incorporation of (5.90) gives

o0

1/ max(1, max(1,n)
Ell(log ho) |l < eI { Y (BIP,_, (1+ [Xei)) /™7 )
k=1

= 1/ max(1,n) max(1,n)
< c’f{ Z (c2AF72) " } < 0.
k=1

This completes the proof. O
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Lemma 5.7.7. Suppose all the conditions of Lemma 5.7.6, in particular also
the existence of n > 0 such that A < 1. Then logh; is twice continuously
differentiable on K, (loghy)" is Fy—1-measurable and

l(log hy)" — (loghe)" ||k =30,  t — oo. (5.91)

Moreover, E||(log ho)"||717(/2 < 0.

Proof. Differentiation of (5.86) with respect to 6 yields

(log her1)" = 4((log he)") = A;(log )’ + Cs, (5.92)

where

N ~ 8299 ~ T ~
Cy = 96 (X, log hy) + (28083 (Xtaloght)) (log he)'

8° A ) )
+ aj;’ (X¢,log ) ((log ie)')T (log h)’

= -2 Yexp(—(log ht)/2) (0, Xy, | X )T (log he)’
+272(v Xy + 6| X,|) exp(—(log ht) /2) ((log he)') T (log hy )"

The corresponding stationary sequence (C}) is obtained from a substitution
of (log h¢, (log ht)') by (log hy, (log ht)') in Cy. We define the SRE

Qi1 = ®i(qr) = Arar + Ci, teZ,

on C(K,R3*3) and mention that C(K,R3**3) is equipped with the supre-
mum norm (2.10) induced by the Frobenius norm. It is clear that the above
SRE is contractive. It is standard to show that ||$;(0) — ®:(0)||x =3 0 and
A(®; — &;) =% 0 as t — oo: use a decomposition of form (5.59) and in-
equality (2.11), recall that E(log™ | Xp|) < oo and be aware that Lemma 5.7.6
implies E(log™ ||(log h:)'||x) < oo and ||(loght)" — (loghe)||x =5 0. Hence
an application of Theorem 2.6.4 followed by the identical arguments as used
in the proof of Proposition 5.5.2 yield (5.91). Starting point for establishing

E||(log ho)”||77K/2 < o0 is the a.s. representation

oo

k—1
(log hs)" = Z ( H At_i)Ct_k a.s. (5.93)

k=1 =1
By means of inequality (2.11) one can show that there is ¢3 > 0 so that
1C:Ix < es]Xel (l(log e)' [l + [ (log he)'lI%)-

This estimate and an application of the triangle inequality to (5.93) gives
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1(Qog he)"llc < €3 ) Prp—1|Xe—rl (I|(l0g he—t)'ll ¢ + Il(10g he—r)'lI%)
k=1

o0
=cs > UpiVik, (5.94)
k=1
where Ut,k = Pth_1|Zt_k| and mG = Ut—k(”(loght—k)IHK + ||(10ght_k)’||§().
Similarly to the derivation of (5.90) we can demonstrate that EU/", < ca\F
for some ¢4 > 0. This implies IEUZ,/C2 < Jes AR/, Using inequality (5.88) and
the same arguments which lead to (5.90), we establish

Eljo;/*(log hy)'||k < oo and  Eljoy(log he)'||k < oo, (5.95)

so that EV;",?Z < oo follows. Since Uy ;, and V; ;, are independent, thereis ¢ > 0
so that E[(U; xVik)"?] < csAF/2. This result and the Minkowski inequality

applied to (5.94) show EJ|(log ho)”||77K/2 < o00. This concludes the proof of the
lemma. O

Next we treat the derivatives of 1/h;. Differentiation of exp(— log h:) leads
to

<;t> - ;t (log h)', (5.96)

(;t>” = (;)2 ((log he)") " (log )" — ;t (log hy)". (5.97)

The following lemma, provides limit relations and moment estimates necessary
in the proof of asymptotic normality.

Lemma 5.7.8. Under the conditions of Lemma 5.7.7,

! ! n n
) =Gl e e G ()
ht ht K ht ht

Moreover,
n/2 "
1y 1
o/ |l & 0

<oo and E
Proof. The relations (5.98) follow from the decomposition (5.59) together with
arguments which are standard by now; we omit details. As a starting point
for showing (5.99) we make use of the inequalities (5.89) and (5.94) to con-
clude E||o3(log ho)”||17K/2 < o0o. This relation together with E||(log ho)'||% < oo,
E||(log ho)”||77K/2 < 00, (5.95), ho > exp(a) and the facts that Zg is independent
of {log ho, (log ho)', (log ho)"} and E|Zy|" < oo yields the desired results. O

e.a.s.

— 0, t—o0.
K

(5.98)

n/2

E < 0. (5.99)

K
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_ We are now ready to demonstrate the asymptotic normality of the QMLE
0, in EGARCH with g = 0.

Theorem 5.7.9. Let (X;) be a stationary EGARCH process with parameters
0o = (a0,70,00)7. Let K C R x Dg be a compact set which contains 0y in
its interior. Suppose that the distribution of Zy is not concentrated in two
points and that (5.83) holds true. Assume that condition (5.85) is met with
n > 2. Then the QMLE 0,, is strongly consistent and asymptotically normal
with covariance matrizc

Vo =4"E(Zy — 1) (1+ (7§ + 65 + 27000E(Zo| Zo|)) /4)

x (U — (Wo + WT)/2) ',
where
Uo = E[(1, Zo, | Zo|)" (1, Zo, | Zo]) ],
Wo = (1+6E|Zp|/2) "
x (80| Zo|, 60 ( Zo| Zo|) + Y0, 70E(Zo| Zo|) + 00)" (1,0, E|Zo)).

Proof. The relations El|(logho)'||}, < oo, IE||(logh0)"||nK/2 < oo and (5.99)
show that E||{j||x < oo and E|(logho)'(60)|*> < oo. The assumption A < 1
and n > 2 imply E|oy Zy| < co. Since @y lies in the interior of K, there exists
0 > 0 such that d0Zp + Y0|Zo| > 26|Zy|. Consequently, E|Zyexp(d|Zo|)| <
exp(—ap/2)E|o1 Zy| < oo, showing that the moment generating function of
|Zo| is finite in a neighborhood of zero, which implies that Zy has finite mo-
ments of any order, in particular, EZ; < oo. Hence the moment conditions
required by N.3 hold and all the steps in the proof of Theorem 5.6.1 are valid.
We merely mention that the matrix Fo = E[£{{(0)] is positive definite be-
cause (loghg)'(6o)x = 0 a.s. implies (1, Zy,|Zo|)x = 0 a.s. for every x € R?,
which can only be true if x = 0. Note that the SRE for (logh;)" evaluated at
0 = 0, leads to

Oge d9ge
! _ 2 2 !
(log h1)'(Bo) = oy (Xo,log o) oo, T Os (Xo,logop) e:oo(logho) (6o)
1
= (1, Z0,120l) =, (0 Zo + d0|Zo]) (log ho)"(6o).- (5.100)

Since Zy and (log hy)" are independent, taking the expectation on both sides
of (5.100) gives

E[ (log ho)'(B) | = (1 + 0| Zo|/2) ™" (1,0, E| Zo)).

Likewise, squaring the equation (5.100) and taking the expectations on both
sides yields the value of E[((logho)'(60))” (log ho)'(6o)]. Plugging the latter
expression into (5.66) gives the asymptotic covariance matrix Vo and com-
pletes the proof of the theorem. O
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5.8 Non-Stationarities

So far our considerations were based on the fundamental working assumption
that we sample from the unique stationary solution to the equations (5.1) of
the general heteroscedastic model. This is a strong assumption, particularly in
the light of Remark 5.2.2. There we mentioned that simulating the stationary
solution is in general impossible, and we provided an algorithm which gener-
ates a sequence (67 );en which approaches the stationary solution ( ,07)sex
of (5.5) with an error decaying to zero exponentially fast as t — oo:

1. Take an initial value 62 € [0,00)*, set .65 = <2, and generate ,6; ac-
cording to (5.5).
2. Set (62,%) = (,62,)"° (1,2), teN

Notice that ¢o € [0, 00)? is an arbitrarily chosen initial value. Correspondingly

we define X; = 6;Z; and observe that |X? — X?| = |Zi| |6+ — o] 223 0 as
t — oo by virtue of Lemma 2.5.4. To the best of our knowledge, simulation
studies have been based on random samples of (X;,t =0,...,n) rather than

of (X;,t=0,...n), see e.g. Lumsdaine [89]. The effects of this inherent non—
stationarity due to some initialization error have hardly ever been addressed.
Although simulation studies are most often carried out for determining the
small sample behavior of estimators, from a theoretical point of view a minimal
requirement to validate the simulation approach would be the asymptotic
equivalence of the QMLE applied to ()N(t)teN and to (X;)ten- Let

- 1 - -
L,= —2;(Xt /he +log hy)

denote the likelihood based on the observations (Xt,t = 0,...,n) (here we
set Z; = 0 for ¢t < 0 such that hg can be properly defined). To establish the
asymptotic equivalence of 6,, and of the maximizer of L,,, we merely need to
show

nH Ly — Lollk <30,  n— o0 (5.101)
and ) R
nV2 L, — Lk =50, n— oo (5.102)

One can impose conditions on the functions gg, which imply (5.101) and
(5.102), but since everything is in line with the ideas already presented in this
chapter, we omit details and merely mention that the QMLE in nonstationary
AGARCH(p, ¢) has limit behavior identical to when applied to stationary
data.

5.9 Fitting AGARCH(1,1) to the NYSE Composite Data

As an illustration of the QMLE, we fit the AGARCH(1, 1) model to the NYSE
Composite log—returns, which were already considered in Chapter 3. For ob-
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taining a fit, we use the routine garch, of the commercial software package
S+Finmetrics [69]; for a detailed description of the features of S+Finmetrics
we refer to Zivot and Wang [136]. The estimates

do = 1.492 x 107%, &, = 0.06706, 3, = 0.9079, 41 = 0.3594
have standard errors
Se(@p) = 4.910 x 1077, §e(ay) = 0.0144, $e(31) = 0.0194, §e(51) = 0.0415.

The standard errors are based on the normal approximation provided by The-
orem 5.7.1, where the asymptotic covariance matrix V; is replaced by its con-
sistent estimator VO("), which was defined in Remark 5.6.2. Unfortunately,
the documentation to S+Finmetrics does not give any information about the
chosen initialization ho(0) = 3. Recall that we base the parameter estimation
on NYSE Composite data of the time period January 3, 1966 — January 28,
2003 (n = 9328). Over such a long period of time, the stationarity hypothesis
might be unrealistic; see Mikosch and Starica [101, 101] for a critical appraisal
of the working hypothesis of stationarity.

In Figure 5.1 we graph the NYSE Composite log—returns together with the
estimated AGARCH(1, 1) volatilities. Also compare with the ad—hoc EWMA
method used to produce Figure 3.4. In Figure 5.2 we provide a simple graph-
ical analysis of the residuals Z\™ = X,/(h(0,))!/? in order to assess the
goodness—of-fit. As predicted by the asymptotic theory of the QMLE in
AGARCH(1, 1), the sample autocorrelations of |ZAt(n)| are close to zero. The es-
timated absolute residuals do not reveal any linear dependence; this is clearly
in contrast to Figure 3.3, which depicts that the sample autocorrelations of
the absolute log—returns do not vanish. Moreover, the QQ—plot of the residu-
als against standard normal indicates that the distribution of the innovations
Zy is heavy—tailed (with respect to the Gaussian family) and skewed. The
numbers 4; = 0.3594 and se(y;) = 0.0415 indicate that there are significant
leverage effects since an (asymptotic) test of the hypothesis vf = 0 would
be rejected at any reasonable level of significance; compare with Figure 3.7,
where the leverage effects were identified graphically.

5.10 A Simulation Study

In order to investigate the small, moderate and large sample behavior of the
QMLE in AGARCH(1,1), we conduct a simulation study. We consider three
models, which all have the parameters estimated from the NYSE Composite
log-return data in the previous section:

ad =1.492 x 1075, oS = 0.06706, 82 = 0.9079, 7¥ = 0.3594.  (5.103)

We assume that the innovations Z; have Student ¢, density with v = 00,9,5
(the value v = oo corresponds to standard normal innovations). Note that
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Fig. 5.1. NYSE Composite log—returns (top) and volatilities estimated through a
fit of the AGARCH(1, 1) model (bottom).

we have to standardize the ¢, densities such that the variance is 1; see (6.12).
Observe that EZ¢ < oo, and hence the statements of Theorem 5.7.1 apply. By
using the S+Finmetrics [69] function simulate.garch we generate for each
model time series of lengths n = 250, 500, 1000, 5000 and 10000, to which
the function garch is applied in a second step in order to obtain parameter
estimates. We repeat this procedure 500 times and hence get 500 independent
replicates of @,, for each model and sample size n = 250, 500, 1000, 5000,
10000. X

In what follows we analyze the distributions of the vectors @,, by compil-
ing boxplots and tables for each estimated parameter. The outcome is slightly
disappointing. A glance at the figures below shows that in the three models
considered, the QMLE is not very reliable for small and moderate sample
sizes (n = 250, 500, 1000). Particularly the distribution of 4y has a huge “rel-
ative variation”, even for n = 5000 and n = 10000. For all sample sizes the
parameter o is systematically overestimated, with a bias which is large in
comparison to the true value ag. This feature is rather disturbing when con-
trasted to common best—practice risk management methods, which often base
estimation on one year of daily log-returns, i.e., n & 250, see e.g. McNeil and
Frey [95]. In this context it is also worth mentioning that in each of the three
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Fig. 5.2. NYSE Composite residuals obtained from a fit of AGARCH(1,1). Top:
Sample autocorrelations of absolute residuals. Bottom: QQ-plot of residuals against
standard normal.

models the simulation runs sometimes yielded values 31 close or equal to zero
when the sample size is n = 250. We conjecture that this is caused by the
fact that «of is rather close to the plane @y = 0, on which the parameters
are nonidentifiable; cf. Hannan and Deistler [65] for a thorough treatment of
identifiability issues in linear models. Moreover it seems that Bl systematically
underestimates 87, with a bias which is of the order s?e(Bl). In contrast, &; has
a positive bias. It seems difficult to estimate the leverage parameter 7, since
the distribution of 4; is rather scattered, even for sample sizes n = 10000. As
a general observation we mention that the finite sample distributions of the
QMLE are the more scattered the heavier the tails of the innovations Z;, i.e.,
the smaller ».
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Fig. 5.3. Boxplots of independent realizations of the QMLE of &p in the
AGARCH(1,1) process with Student ¢, innovations and parameters (5.103). Var-
ious sample sizes n and degrees of freedom v are compared. The dotted horizontal
lines represent the true value af.
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median std. dev. std. err.
2.834 x 107% 1.015 x 107° 5.191 x 10~
1.916 x 1075 2.076 x 107° 1.649 x 10~°
1.651 x 107° 9.522 x 1077 7.921 x 10~7
1.551 x 107% 2.846 x 1077 2.836 x 10~
1.504 x 107% 1.909 x 1077 1.955 x 10~ "
2.714 x 107% 6.512 x 107° 5.123 x 10~
1.914 x 1075 4.252 x 107° 4.986 x 10~
1.631 x 1076 8.851 x 1077 8.683 x 10~ 7
1.555 x 107% 3.169 x 1077 3.212 x 10~”
1.540 x 107°% 2.211 x 107 2.226 x 10~7
3.159 x 1075 7.736 x 1075 3.946 x 10~°
2.010 x 107% 2.655 x 1076 2.659 x 10~°
1.750 x 107° 1.506 x 107° 1.212 x 107°
1.608 x 107% 4.090 x 1077 4.063 x 10~
1.542 x 1076 2.987 x 1077 2.838 x 10~

14 n mean
250 5.632 x 107°

500 2.422 x 1076

oo 1000 1.849 x 10°¢
5000 1.559 x 10~
10000 1.527 x 10~©
250 4.758 x 107°

500 2.764 x 107°

9 1000 1.829 x 10~¢
5000 1.579 x 10~
10000 1.558 x 10~¢
250 5.332 x 107

500 2.650 x 10~¢

5 1000 2.066 x 10~¢
5000 1.631 x 10°
10000 1.561 x 10~

Table 5.1. Key figures of the finite sample distribution of &o for various n and
v. The column std. err. contains the sample means of the standard errors $e(éo),
which are based on the normal approximation to & and estimated with the method
of Remark 5.6.2. The column std. dev. consists of the sample standard deviations
of the replicates of &o.

v n  mean median std. dev. std. err.

250

500

oo 1000
5000
10000
250

500

9 1000
5000
10000
250

500

5 1000
5000
10000

0.09312 0.08769 0.040860 0.058050
0.07147 0.06865 0.025900 0.032570
0.06825 0.06732 0.018580 0.020940
0.06738 0.06722 0.008154 0.008441
0.06782 0.06775 0.005547 0.005866
0.06582 0.05872 0.046040 0.046380
0.06365 0.05982 0.032060 0.032670
0.06355 0.06317 0.023940 0.020160
0.06745 0.06680 0.009526 0.009469
0.06728 0.06735 0.006862 0.006655
0.07467 0.05993 0.062800 0.050680
0.06692 0.05990 0.045120 0.047510
0.06336 0.06271 0.027030 0.023260
0.06751 0.06711 0.013180 0.011860
0.06831 0.06744 0.013030 0.009313

Table 5.2. Key figures of the finite sample distribution of &; for various n and
v. The column std. err. contains the sample means of the standard errors §e(a:),
which are based on the normal approximation to & and estimated with the method
of Remark 5.6.2. The column std. dev. consists of the sample standard deviations
of the replicates of &;.
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Fig. 5.4. Boxplots of independent realizations of the QMLE of &: in the
AGARCH(1,1) process with parameters (5.103) and Student ¢, innovations and
parameters (5.103). Various sample sizes n and degrees of freedom v are compared.
The dotted horizontal lines represent the true value af.



138 The QMLE in conditionally Heteroscedastic Time Series Models

1.0

0.8

B1
0.4 0.6

R §

0.2

0.0

n=250 n=500 n=1000 n=5000 n=10000

0.0

n=250 n=500 n=1000 n=5000 n=10000

«q
<]

0.0

n=250 n=500 n=1000 n=5000 n=10000

Fig. 5.5. Boxplots of independent realizations of the QMLE of Bl in the
AGARCH(1,1) process with Student ¢, innovations and parameters (5.103). Var-
ious sample sizes n and degrees of freedom v are compared. The dotted horizontal
lines represent the true value 7.
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v n mean median std. dev. std. err.
250 0.8327 0.8721 0.129800 0.098550

500 0.8900 0.8946 0.045310 0.041910

oo 1000 0.9004 0.9026 0.024770 0.023240
5000 0.9062 0.9062 0.008620 0.009049
10000 0.9064 0.9067 0.005987 0.006318
250 0.8539 0.8860 0.123600 0.108800

500 0.8877 0.8994 0.067460 0.098850

9 1000 0.9033 0.9061 0.025750 0.025740
5000 0.9059 0.9060 0.010400 0.010430
10000 0.9065 0.9069 0.007576 0.007283
250 0.8305 0.8699 0.133700 0.172900

500 0.8827 0.8929 0.066430 0.072770

5 1000 0.8985 0.9016 0.032490 0.031850
5000 0.9046 0.9051 0.013480 0.013470
10000 0.9056 0.9058 0.011390 0.009988

Table 5.3. Key figures of the finite sample distribution of B1 for various n and v.
The column std. err. contains the sample means of the standard errors 523(,5’1), which
are based on the normal approximation to Bl and estimated with the method of
Remark 5.6.2. The column std. dev. consists of the sample standard deviations of
the replicates of Bl-

v n  mean median std. dev. std. err.
250 0.2728 0.2683 0.19420 0.33480

500 0.3445 0.3312 0.16780 0.27450

oo 1000 0.3774 0.3632 0.13410 0.18200
5000 0.3666 0.3597 0.06143 0.06417
10000 0.3580 0.3576 0.04013 0.04306
250 0.5074 0.4405 0.42360 0.33940

500 0.4801 0.3966 0.31650 0.27160

5 1000 0.4396 0.3766 0.24140 0.18690
5000 0.3687 0.3648 0.07185 0.07141
10000 0.3648 0.3603 0.05060 0.04949
250 0.4975 0.5012 0.45940 0.34600

500 0.5051 0.4352 0.34510 0.29530

9 1000 0.4549 0.4007 0.26020 0.21310
5000 0.3706 0.3599 0.09792 0.08781
10000 0.3613 0.3556 0.07228 0.06084

Table 5.4. Key figures of the finite sample distribution of 4; for various n and v.
The column std. err. contains the sample means of the standard errors $é(91), which
are based on the normal approximation to 41 and estimated with the method of
Remark 5.6.2. The column std. dev. consists of the sample standard deviations of
the replicates of 4;.
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Fig. 5.6. Boxplots of independent realizations of the QMLE of 4; in the
AGARCH(1,1) process with Student ¢, innovations and parameters (5.103). Var-
ious sample sizes n and degrees of freedom v are compared. The dotted horizontal
lines represent the true value ~7.
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Maximum Likelihood Estimation in
Conditionally Heteroscedastic Time Series
Models

The GARCH(p, q) model with Student ¢, innovations has attracted some at-
tention in the literature and is considered as a realistic model for real-life
log—return data. The fact that the S+FinMetrics [69] software package con-
tains a routine which fits this model to data indicates that it is also popular
among practitioners.

It is well accepted that the estimated innovations of real-life log—return
data often exhibit heavy tails, see e.g Bollerslev [19], Baillie and Bollerslev [4]
or McNeil and Frey [95] for convincing empirical evidence. One possible way
for capturing this feature is to consider GARCH models with Student ¢, inno-
vations, as proposed in Bollerslev [19] and Baillie and Bollerslev [4]. Concern-
ing the maximum likelihood estimator (MLE) of GARCH(p, ¢), Engle and
Gonzélez—Rivera [47] and Drost and Gonzdlez—Rivera [41] discuss the effi-
ciency gain with respect to the quasi maximum likelihood estimator (QMLE).
Since both articles Engle and Gonzalez—Rivera [47] and Drost and Gonzélez—
Rivera [41] do not contain rigorous proofs for the consistency and asymptotic
normality of the MLE, many of the authors’ conclusions are somewhat heuris-
tic.

In this chapter we analyze the maximum likelihood estimator (MLE) in
the general conditionally heteroscedastic model (5.1) of Chapter 5. We assume
that the iid innovations Z; have a Lebesgue density k,, which belongs to a
known and well-specified class of densities D, which is parametrized by v. The
(unknown) finite dimensional nuisance parameter v is jointly estimated with
6. We establish consistency and asymptotic normality of the resulting MLE.
In view of Theorems 5.3.1 and 5.6.1, the analysis of the MLE does not really
pose any additional problems as compared to the QMLE apart from nota-
tion and extra regularity assumptions. Because of the practical relevance, we
will state precise conditions for consistency and asymptotic normality of the
MLE in (A)GARCH(p, ¢), and as an important example we cover the special
case of Student t, innovations. Moreover we discuss the problems related to
misspecification of the class D. In general, misspecification of the innovations
distribution leads to inconsistent maximum likelihood estimates.
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To lay down the framework, let us summarize as follows. We consider the
general conditionally heteroscedastic time series model of Chapter 5, i.e.,

{Xt = 0144,

\ , , tez, (6.1)
O :gO(Xt—1:~-~:Xt—paat—la-~-vat—q)’

where the volatility process (o;) is nonnegative and {gg |08 € K} denotes a
parametric class of nonnegative functions on R? x [0, 00)? fulfilling conditions
to be specified later. Concerning the innovations (Z;), we additionally suppose

Zy iid ~ ky(z)dz, (6.2)

where {k, | v € V'} is a parametric class of Lebesgue densities on R with

/ xky,(z)de =0 and / 22 ky(z)de =1 for all v.

—c0 —00

We assume that K ¢ R? and V c R? are compact sets and use the vector

notation
<0>
T=
1 24

for the parameters. In order to define the maximum likelihood estimator of
7, we observe that the approximate conditional log—likelihood is equal to

Ln(r) =) _log fu(r), (6.3)

where

2 1 Xy
t\T) = . kl, ~
fim) (he(8))'/2 ((ht(B))1/2>

with the random function k() as in Chapter 5. With the notation hy =
(hty...,hi—g+1)T this means that

. S35 t=0,
®1(hir), 21,
where the random maps ®; : C(K, [0,00)7) — C(K,[0,00)9) are given by
[@:(s)](0) = (90(X¢,5(6)),51(0), ..., 5,-1(0)", teZ,

for every s € C(K,[0,00)7). We remind that X; = (Xt,...,X; 4+1)7, that
62 is an arbitrary initial value and that Xo,..., X _,41 are assumed to be
observed. We now define the MLE of 7 as follows:

Tn = ArgMax, ¢ gy Ln(T). (6.4)
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Under the conditions of Proposition 5.2.12, the sequence (flt)teN can be ap-
proximated by a stationary ergodic sequence (h;);en such that the error
by — he|| e <=5 0 as t — oo. The sequence (h;) is characterized as the unique
stationary solution to the stochastic recurrence equation (SRE)

str1 = Pi(se), t ez,

on C(K,[0,00)9). Analogously to Chapter 5, we introduce

Ly(r) =) log fi(r), (6.5)

where

1 X,
HO= oy k”((htw))l”)'

The summands in (6.5) are stationary and n~!L,, approximates n1L, with
an error decaying to zero as n — oo. Observe that in Chapter 5 the func-
tions L,, and Ly signified conditional Gaussian log-likelihoods, whereas in
this chapter L, and L, denote conditional log-likelihoods in model (6.1)—
(6.2).

6.1 Consistency of the MLE
We now list several regularity assumptions for the class
D={k,|veV}

of densities, which will be needed for establishing the strong consistency of
the MLE 7,:

M.1 The densities k, are strictly positive, i.e., for all v € V and z € R, one
has k,(z) > 0.

M.2 Themap RxV — (0,00): (z,v) — ky(z) is continuous.

M.3 From k,(z) = ky/(z) for all z € R it follows that v = v/'.

M.1 and M.2 are technical assumptions and M.3 guarantees the identifia-
bility of the parameter v.

6.1.1 Main Result

The subject of the following theorem is the strong consistency of 7.
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Theorem 6.1.1. Let (X;) be a stationary process of form (6.1)—(6.2) with

true parameter vector To = (,‘jg) Let the compact set K be such that the

conditions C.1 — C.4 of Section 5.3 hold. Assume additionally:
1. The class D meets the conditions M.1 — M.3 and vg € V.

2. The true innovations density k., fulfills

E|logky,(Zo)| < oc. (6.6)
3. D is such that
n71||ﬁn - Ln“KXV == 0: n — o0. (67)

Then the MLE defined by (6.4) is strongly consistent, i.e., Ty — To.

Proof. One can follow the lines of proof of Theorem 5.3.1. The only step
which requires additional arguments is to establish that the objective function
L(7) = E[log fo(7)] is indeed uniquely maximized at 7 = 7.

Observe that

L(ry) = E[log fo(70)] = ~ yE(log 53 ) + E[loghu, (Z0) ]

is finite because of E|logo?| < co and (6.6). Since logz < o — 1 for all z > 0
with equality if and only if z = 1, we obtain

v - m) = (log 0 ) <u(F0)) -1 @9

with equality if and only if fo(7) = fo(70) a.s. We now evaluate the expecta-

tion E[fo(7)/ fo(T0)]. Set
00
r(0) = .
Vho(6)
By recalling that Xo = 09Zp = \/ho(Bo)Zo and that r(0) is independent of
Zy ~ ky,(z) dz, one concludes that

= (i) ===y r@)]) =m0 =1

Together with inequality (6.8) this implies L(7T) < L(1o) with equality if and
only if fo(T) = fo(70) a.s.

Since fo(T) contains the random scale y/hg(8), a conditioning argument
is needed for proving that fo(7) = fo(70) a.s. implies 7 = 7. We observe
that fo(7) = fo(70) a.s. is equivalent to

kuo(Zo) = 7(0) k. (r(0) Zp) a.s. (6.9)

As an auxiliary tool for showing that (6.9) entails 7 = 79, the following
observation is useful.



6.1 Consistency of the MLE 145
Lemma 6.1.2. Let a > 0 be a constant. Then for allv € V:
a#1 = Plky,(Zo) # ak,(aZy)] > 0.

Proof. Indeed, because Zp has Lebesgue density k,,, which is positive and
continuous on R, the relation Plk,,(Zo) # ak.(aZp)] = 0 implies k,,(z) =
aky (az) for all z € R. Hence

o0 o0

1= / 22ky, (z) do = / z?ak, (ax)dzr = 1/d®,
—0oQ — 00

and therefore @ = 1 follows. Thus P[k,,(Zo) # ak.(aZp)] = 0 implies a = 1,

which is the counterposition of the implication to be proved. Thus we have

completed the proof of the lemma. O

We now show that (6.9) implies 8 = 6y and v = v. First, suppose by
contradiction @ # 60y. Then, since 03 = ho(0) a.s. if and only if 6 = 6y, as
assumed in Condition C.4, we have P[r(6) # 1] > 0. From Lemma 6.1.2 we
conclude that

Plky,(Zo) # r(0)k(r(0)Zo) |7(6)] >0 on {r(f) # 1},
and thus
Plky,(Zo) # r(0)ku (r(0) Z0) | = E[Plky,(Zo) # r(0)k.(r(8) Zo) | r(0)]] > 0,

which contradicts (6.9). Therefore necessarily @ = 6, and it remains to show
that ku,(Zo) = ku(Zy) with probability 1 implies v = vq. From k,,(Zy) =
k.(Zy) as. and M.1 and M.2 we conclude k,,(z) = k,(z) for all z € R,
so that by assumption M.3, v = vq follows. Altogether we have shown that
fo(T) = fo(7o) as. if and only if 7 = 79, or equivalently L(7) < L(1o) with
equality if and only if 7 = 7¢. This concludes the proof. O

Remark 6.1.3. One may replace the almost sure convergence in (6.7) by
convergence in probability. Under the weaker assumption

_ = P
n 1||Ln_Ln||K><V—>O; n — 00,

T is weakly consistent, i.e., 7, N 7. This follows because all the arguments

used in Part 2 of the proof of Theorem 5.3.1 can be adapted if the pointwise

almost sure convergence n~'L,(8) == L(@) is replaced by n—1L,(6) N

L(0) for all 8 € K. We omit details. O

A straightforward conclusion of Theorem 6.1.1 is the strong consistency
of the MLE in GARCH(p, q). But first we appeal to condition Q.2 of Sec-
tion 4.2.1 on the GARCH(p,q) or AGARCH(p,q) parameters, i.e., 8y =

(ag,...,a;,ﬁi’,...,ﬂ‘q’)T or 6p = (af, .. .,a;,ﬁi’,...,ﬂ‘q’,v")T, respectively:
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Q.2 (ap,0;) # (0,0), ag > 0 and there is i > 0 with af > 0. The poly-
nomials a°(z) = ajz + - +apzP and 3°(2) =1 - Bz — -+ — 3727
do not have any common zeros.

We also remind the definition of the set B:

q
B= { Bry--,B) " €[0,1)7 DB < 1}.

j=1
Since in GARCH(p,q) the condition Q.2 implies C.1 — C.4, the MLE in
GARCH(p, q) is strongly consistent under M.1 — M.3.

Theorem 6.1.4. Let (X;) be a stationary GARCH(p,q) process with in-
novations obeying (6.2) and true parameter vector T9 = (gg) Take K C
(0,00) x [0,00)? x B compact such that it contains Oy and assume that con-
dition Q.2 applies to By. Suppose the class of densities D = {k, |v € V} is
such that M.1 — M.3 are fulfilled and properties (6.6) — (6.7) hold. Then the

MLE 7, is strongly consistent.

In the proof of Theorem 5.4.6 we verified C.1 — C.4 for AGARCH(p, q)-
Therefore the following result is immediate.

Theorem 6.1.5. Let (X;) be a stationary AGARCH(p, q) process with in-
novations obeying (6.2) and true parameter vector To = (gg) Take K C
(0, 00) x [0, 00)? x B x[—1, 1] compact such that it contains Oy and assume that
condition Q.2 applies to By. Suppose the class of densities D = {k, |v € V'}
is such that M.1 — M.3 are fulfilled and properties (6.6) — (6.7) hold. Then the
MLE 7, is strongly consistent.

6.1.2 Counsistency of the MLE with Respect to Student t,
Innovations

In this section we consider MLE with respect to Student ¢, innovations in
model (6.1). The difficulty is to establish (6.7). The following criterion is
tailored for the treatment of Student ¢, innovations.

Lemma 6.1.6. Under C.1 — C.4 of Section 5.3, property (6.7) is fulfilled if
there exist ¢ > 0 and 0 < k < 1 such that for all z,y € R
sup [log k, () —logky (y)| = [[log k. (z) —log k. (y) llv < efa® — 47"
ve
(6.10)

Proof. Observe that

n

(En(r) = La(r)) = 5 > (log he(6) ~ logh,(6)

t=1

1
n

+ i 3 (log Ky ((h+(8)) /2 X;) — log K, ( (ht(e))*l/th)) . (6.11)

t=1
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The prOOf Of Theorem 531 ShOWS that
1 H 5” (log hy — log hy) H =0 —
- n — o0.
m p g It g Nt )

Consequently, we are left to treat the second sum (6.11), which we denote by
R, (T). By virtue of inequality (6.10),

1 & Ny _
1Rallscscv < -3~ INog k(b2 X0) = log k(7 X sy

t=1

n

& 213 — _
<. PP Gl ey S
t=1
~ n
C 2117 a.s.
< nZXtht—htH;( 250, n — co.
t=1

The last inequality (with ¢ > 0 some constant) is a consequence of the mean
value theorem, and h¢, hy > g > 0. The limit relation follows from the facts

that ||hy — he||% <=5 0 as t — oo and E(log™ X2) < oo together with an
application of Proposition 2.5.1. This concludes the proof. ad

Now we explicitly assume that the underlying distribution of Zp in
model (6.1) is Student ¢, with unit variance, i.e., Zy has Lebesgue density

ky(z) = c1(v) (1 + ca(v) &%)~ HD/2) z € R, (6.12)
where
, _I((v+1)/2) v
a) = VavT(v/2) \/l/ -2’
(v>2)
co(v) = , i 5"

Observe that we have chosen ¢y (v) and ¢ (v) such that [*_ 2%k, (z)dz = 1.
Let V' C (2,00) be compact and contain vp in its interior. It is straightfor-
ward to see that D = {k, |v € V} fulfills M.1 — M.3 and assumption (6.6).
Furthermore, since

v+1 .
|logk, (z) — logk,(y)| < 5 |log (1+ c2(v)2®) —log (1 + c2(v) y2)|
1 .
< CQ(V) (2V+ ) |.’L’2 _y2|
the inequality (6.10) holds true with ¢ = sup, ¢y {(v+1)/(2v —4)} and £ = 1.
It is also easy to see that (6.6) holds true for a Student t,, random variable.

?
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Consequently, provided the conditions C.1 — C.4 of Section 5.3 are met, the
MLE 7, with respect to Student ¢, innovations is strongly consistent by
virtue of Theorem 6.1.1. This insight leads to the consistency of the MLE in
model (6.1) or (A)GARCH(p, q) with Student ¢, innovation.

Corollary 6.1.7. Let (X;) be a stationary process of form (6.1) with inno-
vations obeying (6.2), where D consists of the Student t, densities (6.12).
Denote by 79 = (ﬁg) and assume that the compact set K contains 0y and
is such that conditions C.1 — C.4 of Section 5.3 hold. Suppose that the com-
pact set V. C (2,00) contains vo. Then the MLE defined by (6.4) is strongly

. . L as.
consistent, i.e., T, — To.

Corollary 6.1.8. Let (X;) be a stationary (A)GARCH(p,q) process with
innovations obeying (6.2), where D consists of the Student t,, densities (6.12).
Denote by T = (90 ) and assume that the compact set K C (0, 00) X [0, 00)P x
B (or K C (0,00) % [0,00)P x B x [—1,1], respectively) contains 6y and that
condition Q.2 applies to By. Suppose that the compact set V contains vg. Then
the MLE 7, is strongly consistent, i.e., Tn — To.

6.2 Misspecification of the Innovations Density

Apart from artificially generated time series, it is impossible to specify the
distribution of the innovations Z; completely. In particular, we can never be
certain that the distribution underlying Zy belongs to the class D = {k, |v €
V'}. Assume that we have misspecified D, i.e., there is no vy € V such that
Zy has Lebesgue density k,,. In this situation it does not make sense to talk

about consistency of 7, = (g" ) because there is no true parameter vy. But

as we are primarily interested in the parameter 8, we could still ask whether
én =% 0y as n — co. Since the QMLE is consistent even though it is based on
an incorrect likelihood (see Theorem 5.3.1), we might be tempted to conjecture
that 6, is a consistent estimator for 6. However, this guess is wrong.

6.2.1 Inconsistency of the MLE

In the next theorem we study the MLE of 6 in a misspecified model.

Theorem 6.2.1. Let (X;) be a stationary process of form (6.1) with (Z;) 4id
and BZy = 0, EZZ = 1. Suppose the compact set K is such that the conditions
C.1-C.4 of Theorem 5.3.1 hold and that the true parameter 0y is contained in
the interior of K and E(h)(80)/02) # 0. Let the functions Ly() and Ly (T)
be as in (6.3) and (6.5), with respect to the class of Lebesque densities

D={k,|veV}.

Define 7,, = (g") as a magimizer of L, (T). Suppose:
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1. The class D obeys M.1 — M.3.

2. The function RxV — (0,00): (z,v)
tiable, for every v € V the functwn k!
integrable and

— ky(z) is continuously differen-
1 (z) (here ki, (x) = Oky(x)/0z) is

k(@) = o(le| ™), Ja] > .

3. The moment conditions

a(l
E||log follxxy < 0o and E H (log fo) o
or KxV
hold and the following limit relations are valid:
7 a.s. o azn aLn .
n71||Ln_Ln||KXv =50 and n B 0
or oT
KxV
4. Forallv €V,
g ( 7.k (Zo) 4 613
"k (Zo) : :

Then the estimator @n 1S inconsistent.

Remark 6.2.2. Note that the condition E(h{(0y)/03) # 0 of the theorem is
e.g. fulfilled in (A)GARCH(p, q) since there

Oh(
Bt (1—2@) >0

for every 6. O

Proof. From integration by parts together with k, (z) = o(|z|~!) as |z| — oo,

/00 T F () ky(z)dz = /OO rkl(r)dr = —/OO ky(z)dz = —1

—00 ku(ﬂi) —00 —00

for all v € V. Therefore Assumption 4 ensures that the class D is indeed
misspecified. By virtue of Assumption 3 and an application of Theorem 2.2.1,

||n_1I:n — L||K><V Rl 0,
||n_1i/’n — LIHKXv Rl 0,

where
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L(r) = E[log fo(7) ],

L) = 8[(;5_7') g <610g5{_0(‘r)> '

Assume by contradiction that 0,, is consistent, i.e., 0, BN 0y as n — oo.
Since every random sequence converging in probability contains a subse-
quence converging almost surely, we may assume that 0., a—A> 0, for this
proof. Choose a realization w €  such that simultaneously 6,, — 6y and
In~'L! — L'|lkxy — 0 as n — oo. Since V is compact, there is a conver-
gent subsequence ¥, having a certain limit & € V. Altogether we have the
convergence 7, — (6,’70) as k — oo. Since O lies in the interior of K and

Uy, maximizes L, , we conclude that ain(énk)/ao = 0 for ny, large enough.
Because of 8,, — 6y and ||n,;1L’mc —LUl|gxv — 0,
OL
00
On the other hand, observe that

OL(t) _ 1 [ho(@) ki, ((ho(8)) /2 Xo) (ho(8)) /2 X
90 __QE{ho(g) (” "k ((ho(8)) /7 Xy) 0>]

and hence (recall that ho(6y) = 02 a.s. and that hg, h{ are independent, of
Zo),

400 (10552 -5 (4o

Since E(h}(8o)/02) # 0 by assumption, consistency of @,, implies

(i) =

This contradicts (6.13) and concludes the proof of the theorem. O

(00, 17) =0.

Theorem 6.2.1 is of little value as long as we do not have an answer to the
question as to whether there are any distributions of Zy which obey (6.13).
The problem is resolved by the following theorem: whenever k, is not the
standard normal density, it is possible to construct a random variable Z, with
EZy = 0 and EZZ = 1 which fulfills (6.13). At the same time the theorem
may be seen as a characterization of the standard normal density.

Theorem 6.2.3. Let k(z) be a positive and twice differentiable Lebesque den-
sity, which fulfills [ xzk(z)dz =0 and [*_x*k(z)dz = 1. Then

5(242) = 619

for every random variable Z with EZ = 0 and EZ* = 1 if and only if k is the
standard normal density.
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Proof. Clearly, k(z) = ¢(z) = (2r)~'/? exp(—xz?/2) is sufficient for (6.14). For
proving the necessity, we assume that k(z) # ¢(z). The proof is completed if
we can construct a random variable Z with EZ = 0 and EZ? = 1 such that

El[q(Z)] # 0, where F (o)

There are three cases between which we distinguish.

Case I: There is a > 1 such that ¢g(a) + g(—a) # 0. Then for any random
variable Z with distribution P(Z = a) = P(Z = —a) = 1/(2a?), P(Z = 0) =
1-1/a?, we have that EZ = 0, EZ? = 1, but E[q(Z)] = (¢(a)+q(—a))/(2a®) #
0.

Case 2: For all x > 1: ¢(z) + ¢(—z) = 0 and g(a) + ¢(—a) # 0 for some
0 < a < 1. We define a distribution by P(Z = a) = P(Z = —a) = 1/4 and
P(Z =V2—a?) =P(Z = —/2 — a?) = 1/4. Clearly, EZ = 0, EZ? = 1, but
Elq(Z)] = (q(a) + g(—a))/4 # 0, so that we are left with studying the last
case.

Case 3: For all z € R: ¢(z)+ q(—z) =0, i.e., ¢ is odd. We claim that there
exists a > 0 with g(a) # aq'(a). Indeed, z¢'(z) = ¢q(z) for all z € R would
imply ¢q(z) = Az for some A € R, or in other words k'(z)/k(z) = —x + A,
from which we conclude k(z) = Cexp(—z%/2 + \z) for some C > 0, i.e., k is
a normal density. Since the mean of £ is assumed to be zero, we end up with
A =0 and k(x) = ¢(z), which provides a contradiction to our assumption
k(x) # ¢(x). Thus q(a) # ag'(a) # 0 for at least one a > 0.

For the specification of a distribution of Z for which E[q(Z)] # 0, we take
p = (2a®> +2)7! and set € = pd/a, where § > 0 is a small number. Then we
define P(Z =a+0)=p—6P(Z = —-a+0d) =p+¢e, P(Z=0b) =P(Z =
—b) = (1—2¢)/2, where b > 0 is chosen such that EZ? = 1. We also note that
EZ = 0. The Taylor theorem together with the fact that ¢ is odd yields

Elg(Z)] = (p — €)q(a + ) +
=(p—€)gla+0) - (p+e)qa—9)
= pla(a+6) —qla —9)) —e(ga + ) + q(a - 5))
= 2pq'(a)d — 2eq(a) + o(9)
=2p(¢'(a) — q(a)/a)d + o(5), & 10.

Since ¢'(a) # g(a)/a, one can find a 6 > 0 such that E[¢(Z)] # 0. This
completes the proof of the theorem. O

(p+€)q(—a+9)

Remark 6.2.4. It is possible, but more involved, to construct a random
variable Z having a Lebesgue density. The idea is to approximate the discrete
distributions constructed above by piecewise constant densities. d
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Remark 6.2.5. From a combination of Theorems 6.2.1 and 6.2.3, we recog-
nize that in a model of form (6.1) where the innovations have true density
kv, (x), even a tiny misspecification of the class D = {k, |v € V} of den-
sities in general leads to inconsistent maximum likelihood estimates 6,. In
contrast, the QMLE is always consistent (provided weak regularity assump-
tions hold, see Theorem 5.6.1). At this occasion, we clarify the meaning of a
“tiny misspecification”. Suppose that the family D fulfills regularity assump-
tions ensuring that one can construct a distribution function F' such that for
Zo~ F,

ki (Zo)
kv (Zy)

This implies that in the so—called gross error model (cf. Huber [67])

E<1+Z0 >;é0 forallv e V.

Zy ~ (1 — €)ky, () dz + e dF (2), (6.15)

where 0 < € < 1 is a contamination parameter and vg € V,

k, (Zo))

E{1+ "7 0 forallveV.
( ku(ZO) 75

Therefore, under the distributional assumption (6.15), the MLE based on D

is inconsistent, even when € > 0 is very small.

Example 6.2.6. For pedagogical reasons we also illustrate the implications of
Theorem 6.2.3 in a different, but closely related context. We study maximum
likelihood estimation of scale in an iid sample. Consider the scale model

Y, =02, (6.16)

where Z; iid ~ ko(z) dz and EZy =0 and EZZ = 1, i.e.,

/ zko(x)dz =0 and / 2% ko(z) dz = 1.

— 00 — 00

o > 0 is an unknown scale parameter. Suppose we observe Y7,...,Y, and
misspecify the density ko, i.e., we incorrectly base the estimation of ¢ on the
log-likelihood with respect to a density ki # ko, i.e., we maximize

L, (o) = —nlog(o) + Zlog ki (Yi/o).

t=1

The maximizer of L, can be seen as a quasi maximum likelihood estimator
of scale.Also observe that kg and k; denote two fized densities; there is no
nuisance parameter v.

Under regularity conditions on ky and ki, uniformly on a compact set,
n 'L, = Land n 'L =% L' as n — oo, where
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L(o) = —log(o) + E[log k1(Yo/0) ],

L'(o) = —iE <1+ io :igﬁ;g;) .

Denoting the true scale by ¢° and following the arguments in the proof of
Theorem 6.2.1, we recognize that L'(c°) =0, i.e.,

5 (%) =

is a necessary condition for the consistency of the QMLE of scale. As we have
shown in Theorem 6.2.3, this condition is (in general) not fulfilled, unless
ki (z) = ¢(x) = (1/v/27) exp(—22/2). The choice k; = ¢ leads to the sample
standard deviation &,,. In other words,

Lo 1/2
On = (n Zy?) (6.17)
t=1

is the only quasi maximum likelihood estimator of ¢ which is strongly con-
sistent for all possible distributions of Zy. For the scale model (6.16), the
Gaussian QMLE (6.17) is in a sense “robust” with respect to misspecification
of the density of Z;, whereas the MLE is sensitive or “nonrobust”. It is impor-
tant to recognize that this notion does not coincide with classical definitions
of robustness. The standard deviation (6.17) is e.g. not a qualitatively robust
estimator, cf. Huber [67].

Related considerations were made by Gouriéroux et al. [60] in the frame-
work of certain multivariate nonlinear regression models. They show that for
such models quasi likelihood estimators are (strongly) consistent if and only
if they are based on so—called quadratic exponential families. The scale model
(6.16) also fits into their setup, and one might have the idea that their results
are contradicted by our conclusions above. This discrepancy can however be
resolved by observing that there is exactly one quadratic exponential family
with respect to Lebesgue measure on R: the Gaussian family.

There is another possible interpretation of Theorem 6.2.3. Since the work
by Akaike [1] it has been well-known that maximum likelihood estimation of
misspecified models (or quasi maximum likelihood estimation) asymptotically
amounts to a minimization of the so—called Kullback—Leibler [79] discrepancy
(KLD) between the true distribution and the model distributions. Under reg-
ularity assumptions (see e.g. White [132]), the QMLE converges a.s. to the
model parameter which minimizes the KLD, and is in addition asymptotically
normal. Possessing this information, the consequences of Theorem 6.2.3 may
be alternatively formulated as follows:

For data of form (6.16), the only scale model for which the KLD is always
minimized at the true parameter ¢°, is X; = 0Z; with Z; iid ~ N(0,1).

a
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6.2.2 Misspecfication of D in the GARCH(p,q) Model

The problem of misspecfication of D in the GARCH(p,q) model was first
described by Newey and Steigerwald [108] in the context of a general ARCH
type model. To overcome the inconsistency problem, Newey and Steigerwald
suggest to include an additional scale parameter o, i.e., to compute the MLE
with respect to the extended class

D={o""k,(-/o)|vEV,o >0}

They also bring up conditions under which consistency of the resulting es-
timator 6, can be expected. Unfortunately these conditions are in general
not satisfied by model (6.1)—(6.2) as their Assumption 2.4 is not even met by
GARCH(1,1). The reason is that the inclusion of an extra scale parameter
leads to nonidentifiability.

Related problems concerning misspecification can be found in Berkes and
Horvéth [7]. They consider (non—Gaussian) QMLE with respect to a fized
density ko(z) in a GARCH(p, q) model. In their framework, no nuisance pa-
rameter v is jointly estimated with the GARCH parameters. Let us explain
their main insight by means of the example of a Laplace density, standardized
to unit variance, i.e.,

ko(z) = 27172 e~ V22l z € R. (6.18)

The quasi log—likelihood with respect to ky becomes
Ln(8) = —(loghi(6)"* + log ko(X:/(hi(6))*/?)).
t=1
Berkes and Horvath [7] demonstrate that the maximizer of the latter function
is inconsistent iff E| Zy| # 2'/2. More precisely, 8,, == 8, 4 as n — oo, where

ad af ap r
N _ 0 1 D o o
00,d_ <d27 d27 R d2ﬂﬂ17"'7ﬂq)
and d = (V2E|Zo|)™" (recall that 8y = (af,...,a5,8;,...,8;)T). Berkes
and Horvath also establish asymptotic normality of 6,.. A short argument
for the special form of 8y 4 can be given as follows. By similar arguments as

provided in the proof of Theorem 5.3.1, one shows that L, /n <= L in C(K),
where the compact set K is as in Theorem 4.2.1 and

1 Vo (00) Zo
o= (l"g[m k°< \/h0(9)>

Since the function s — E(log[sko(sZp)]) is uniquely maximized at s = d, the
limit function L is maximal if and only if ho(89)/ho(0) = d* a.s. From rep-
resentation (4.26) for ho(@) we deduce that the latter statement is equivalent
to @ = 90d Therefore 0 RN 00d as n — oo. If e.g. Zg ~ N(0,1), then
d = /m/2 =~ 0.89. The following important example is in a similar spirit.
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Quantification of the Error due to Misspecification of the
Innovations Density

We consider the GARCH(p, ¢) model. The aim of this section is to determine
the a.s. limit of the @n parameter in the MLE with respect to the Student
t, density when there is misspecification. We appeal to the definition of the
Student t, density in (6.12) and define

v+1

T E[log(1+ ()52 22)]

F(s,v) = E[log{sk,(sZp)}] = logs+logci(v)—

We need two auxiliary results.

Lemma 6.2.7. There is a unique positive function d(v) such that

sup F'(s,v) = F(d(v),v) for every v > 2.
s>0

Proof. 1t is clear that F(s,v) — —oo as s | 0. Moreover, since

v+1

5 E[log(1 + c2(v)s*Z3)] > (v + 1) log s + const

for some constant not containing s, we have F(s,v) — —oo as s — 0o. There-
fore the function s — F(s,v) attains its maximum on (0, 00), say at d(v).
Since OF (d(v),v)/0s = 0, the point d(v) obeys

(v) d(v) 23 )Zdl

(”“)E<1+c2< Yawyz2) = dw)

¢
2 (v) d(v) _ 1
E<1+02(V)d( )2Z2> v+l
)

1 v
E = .
<1+C2(1/)d(u)2Zg> v+1
From a monotonicity argument we then deduce that d(v) is unique. O

We also employ the function d(v) in the following lemma.

Lemma 6.2.8. Let (X;) be a stationary GARCH(p,q) process with pa-
rameter vector @y = (ag,...,a;,ﬁf,...,,@;)T. Take a compact set K C
(0,00) x [0,00)? x B with 8y € K and assume that conditions Q.1 and Q.2
of Section 4.2.1 hold. Take v > 2 and suppose that

] [e] (o)
Qg o7 @y

T
éO,d(U) = (d(l/)z ) d(l/)2 y v ,d(V)Q ) 6?7 762) € K.
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Then the function
1
6 ~ — Ellogho(6)] + E[log ko((ho(0))12X0)], 6O€K, (6.19)

with v fizved, is uniquely mazimized at 907(1(,,).

Proof. Adding the constant 2 'E[log ho(6o)] to the function (6.19), condi-
tioning the expression on the right—hand side of (6.19) on hy and taking into
account that hg is independent of Zj, we note that maximization of (6.19) is
equivalent to maximizing E[F({ho(80)/ho(8)}'/?,v)] with respect to 0 € K.
Lemma, 6.2.7 implies

E[F({ho(60)/ho(@)}'/* ,v)] < F(d(v),v)
with equality if and only if

ho(6o)

ho(6) =d(v)® as. (6.20)

From representation (4.26) we conclude that (6.20) is equivalent to @ = 8y 4(,).
Indeed, sufficiency of @ = 6y 4, for ho(6)/ho(0) = d(v)? is a trivial impli-
cation of the facts that the backshift operator B¢(B) is the same for both
6 =60, and 6 = 907d(,,) and that ag(B) is linear in (ap,...,ap); see Section
4.2.1 for the definitions of ag(z) and Fg(z). Necessity is a consequence of
ho(0) = ho(Bo) a.s. iff @ = 0y (Theorem 2.5 in Berkes et al. [8] or Lemma
5.4.5 with v° = 0). This completes the proof of the lemma. O

With evident notational modifications, the same statements are true in
AGARCH(p, q) because the function F(s,v) does not depend on the particular
model and because h:(0) in AGARCH(p, ¢) is also linear in (aq,...,ap), see
representation (5.43). In AGARCH(p, q), we have that h:(0¢)/h(0) = d(v)?
iff @ =09 q0,) = (ag/d(v)?, ..., a;/d(y)2,ﬂf, e ,ﬂ;’,'yo)T.

We now exploit Lemmas 6.2.7 and 6.2.8 in order to investigate the asymp-
totic behavior of the MLE 0,, in GARCH(p, ¢). We take the usual definition
of the MLE, see (6.4) Also assume that the compact set K is given by (4.22)
and Q.1 and Q.2 hold and that V' C (2, 00) is compact. It is standard to show
n~'L, =5 L = E(log fo) in C(K x V). Alternatively, we write L(6,v) for
L(t), 7 = (%). The strategy we pursue is to first maximize L with respect
to @ € K, and in a second step with respect to v € V. Lemma 6.2.8 tells us
that for v € V fixed, 6 — L(0,v) is uniquely maximized at @ = 907[1(,,), in
particular

sup L(8,v) = L(8o,4(v),v) = F(d(v),v) + const,

6eK
where the constant does not depend on v. Thus, if the function v — F(d(v),v)
is uniquely maximized at 7 € V and 6y 45, € K, then the function L is
uniquely maximized at L(0o 4(5,), %), and by standard arguments,
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0r == 00,4(50) n — 00.

In exactly the same manner the AGARCH(p, ¢) case can be treated. Rather
than formulating a mathematical theorem, we provide graphs of F(d(v),v)
and of d(v) when Zy ~ N(0,1) in Figure 6.1 and when Z, has Laplace density
(6.18) in Figure 6.2.

-1.48 -1.46 -1.44 -1.42

04 06 08 1.0

5 10 15 20 25 30
Fig. 6.1. We assume that the innovations'are standard normal, i.e., Zg ~ N(0,1).
Top: Graph of F(d(v),v). Bottom: Graph of d(v). The error is tiny, provided the set
Vcontains large values, because d(v) — 1 as v — co. Observe that (#,,) converges to
the right boundary of Vas n — oo. This is not surprising in the light of the fact that
the Student ¢, distribution tends to the standard normal distribution as v — oo.

6.3 Asymptotic Normality of the MLE

We now establish asymptotic normality of the MLE 7, in model (6.1)—(6.2).
The techniques are similar as in the proof of asymptotic normality of the
QMLE, see Theorem 5.6.1. As the arguments heavily depend on a Taylor
expansion of L,(7), we start by formally computing the derivatives of the
function

Lo(T) = log fo(T) = log s(0) + log k. (s(0)Xo) ,

where

5(8) = (ho(8)) /2.

Since we primarily want to gain intuition, we are not yet concerned about
technical details. Regularity assumptions will be imposed later, see below.

We suppose that (X;) is the unique stationary ergodic solution to model
(6.1)-(6.2) with 7 = 79 = (82). Assume that ho(8) and k,(z) are twice
continuously differentiable. We introduce the notation



158 The MLE in Conditionally Heteroscedastic Time Series Models

o
=~
&
[Te)
@
&
o
o
s
a 5 10 15 20 25 30
A
o
@
o
©
o
-
o
5 10 15 20 25 30

Fig. 6.2. We assume that the innovations Z; have Laplace density (6.18). Top:
Graph of F(d(v),v). Bottom: Graph of d(v). The maximum of F'(d(v),v) is attained
at 7o = 3.9 (numerical approximation), and d(Zp) = 0.9841. Therefore the error is
tiny, provided 7y € V. Moreover 2, — 7y, which may be regarded as rather peculiar
since the Laplace distribution is light—tailed; we would also have expected that (2y,)

converges to the right boundary of V.

_ Ok, (x)

b (z) ov

This function should not be confounded with k;, (), which is the first deriva-
tive of k, (x) with respect to z. Correspondingly, k., (z) is a mixed derivative.

We calculate that

oy $(0)  K.(s(0)Xo)s' ()Xo
) ko (s(0)Xo)

6(0 kU(S(a)Xo)
ov k )

The matrices

20 oy [ 2 (B0 x,,

%l 0 [ ku.(s(8)Xo)
o2 ov \k

and

(6.21)

(6.22)

(6.23)

(6.24)



6.3 Asymptotic Normality of the MLE 159

ki (s(8)Xo) (s'(6))"s"(0)XG + ki, (5(8)Xo)s" (8)Xo
kV(S(O)Xo)

(s'())7'(8) R(O)X0) o K (s(0)Xo)
T (s(0) <(8(9’X°) o (s(6) Xo) T2 (H)XO)ku<s(0>Xo>>

K, (5(0) Xo)
o) <1 T 6OX0) " 0)X,) )

form the entries of the Hessian of (1), i.e.,

824, 824,
|: 6260 :| 602 000v
2 =
or 924, 92,
ovoo ov?

We now introduce several matrices:

w1 (010) - (M) ex
o-a(18)-1a(88) v

For Z ~ k,(z) dz we set




160 The MLE in Conditionally Heteroscedastic Time Series Models

Observe that I(v) is the Fisher information about v in the model of densities
{kuv(z)|v € V}. The matrix I;(v) is the Fisher information at o = 1 in the
scale model of densities {ok,(cx)|o > 0}, where v € V' is fized.

We now state regularity assumptions for model (6.1)—(6.2) and the true
parameters 8y, vo:

M.4 The assumptions N.1 and N.2 of Section 5.6 are fulfilled. Moreover, the
matrices M(6y) and N(6y) are well-defined and M(6y) is positive defi-
nite.

M.5 The function R x V — (0,00): (x,v) — ky(x) is twice continuously
differentiable in the interior of its domain.

M.6 The true parameter v lies in the interior of V' and the density k., is
such that the following relations are true and the quantities appearing
therein are well-defined for Zy ~ ky,(z) da:

E|log kv, (Zo)] < oo,

& < d? 102135(20) (V0)> I, (6.26)

B (ZO :IZZEZ; ) =-1, (6.27)

2(% g ) =B (ay )= 6
s(fo@) a2 @)

Moreover, I(vy) is positive definite.

M.7 For every v € R? \ {0} the random variable

Koo (Z0)\ " oo (Z0) v
<”Z° m(%)) o (Z)

is nondegenerate.

M.8 The random element ¢y obeys the following moment conditions:

2

2
%% < 0

oT?

8[0 (To)

E H or

0, E‘
KxV
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M.9 The following limit relations are satisfied:

0L, 0L,
or or

n_1||ﬁn—Ln||vai>0 and n~'/?

KxV

Remark 6.3.1. Assumption M.4 guarantees that the function h; is twice
continuously differentiable and that 6 lies in the interior of K. Observe that
the positive definiteness of M(6y) required in M.4 can be verified by check-
ing Assumption N.4 of Section 5.6; see the proof of Lemma 5.6.3. Equation
(6.26) in M.6 is a common regularity assumption about the Fisher information
matrix, see e.g. Lehmann [85]. Relations (6.27)—(6.29) validate the following
formal computations:

E <Z0 iy (Zo) ) = /OO zky, (z) dz = xky, () ‘OO - /OO ky,(z)dz

kuo(ZO) —00 —oo —o0
:—/ kyo(z)dz = -1,
. kll (ZO) [ee] s oo
2 Vo — 2.1 2t _ !
E<Z0 kuo(Z0)> = /ﬂx)m ky,(z)dr = = k,jo(m)‘iOo 21wmkuO(m)dm

= —2/ zky, (z) dz

— 00

25 (%017 )

E < buo (Z0) > = /:X) ky, (2) de = xky, () ‘Oo - /OO a:k,',o(x) dz

kVO(ZO) —o0 —oo
—/ $k,’/0 (z)dz

— 00

!
—E( 2z kuo (ZO) )
kl’o (ZO)
For verifying (6.27)—(6.29), one has to justify every step in the above calcu-
lations. M.7 is a technical assumption for which there does not seem to be
any nice interpretation; M.7 will be exploited in the proof of the negative
definiteness of Fy in Lemma 6.3.2 below. We will see in the proof of Theorem
6.3.3 below that the moment conditions M.8 are needed for the applications

of Theorem 2.2.1 and the martingale central limit theorem. M.9 ensures that
the maximizer of L, (7) is asymptotically equivalent to 7. O
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Lemma 6.3.2. Under the conditions M.1 — M.8, the following matriz equal-

ities are valid:
B o T (ot
o (%) (%)

04y
FO =E |: T2 (TO):|

Furthermore Fy is negative definite.

Proof. After noticing that

(350(T0))T5€0(T0) _ [ 0ty(To) 650(7'0)}T {350(70) 850(7'0)}
or or . 00 ' ov 20 ' ov

I <8€0(T0)>T Ao (To) (azo(ro))T 8lo(T0)

U oe o0 90 ov
dlo(0)\ " lo(T0) Blo(o)\ " Dlo(T0)
L ov 00 ov ov

the identity (6.30) is established by routine calculations, where one takes
into account that s(6g) = 1/09, s'(8p) = —271h{(0o)/cs and s"(6y) are
independent of Zy and where one applies (6.26)—(6.29) to (6.21)—(6.25) with
T =To.

It is evident that the matrix Fy is negative semi—definite. To show that it
is also negative definite, one proceeds as in the proof of Lemma 5.6.3. Assume
that there is x = () with u € R? and v € R? such that x”Fox = 0. This is
equivalent to

660(T0) _ 860(7’0) 6(0(7’0) _
< or x = 20 u + Py v=0 as.
ki, (Zo)) hp(Bo)u _ kuy(Zo) v
kuo (ZO) 0(2) kuo (ZU)
The case x # 0 leads to contradictions, as can be seen from an analysis of the
following distinction of subcases:

or

-2t (1 + Zo =0 as. (6.31)

{u =0, v # 0}: This contradicts the assumption M.6 that I(v¢) is positive
definite.
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{u # 0, v = 0}: By Assumption M.4, the matrix M(60y) is positive
definite, and hence P(h{(6¢)u/oi # 0) > 0. It is also evident that
P(1 + Zok,,,(Z0)/kv,(Zo) = 0) < 1. But this contradicts the fact that
the random variables 1+ Zok,, (Zo)/kv,(Zo) and hy(Bo)u/og are inde-
pendent.

{u# 0, v # 0}: This would mean that

hiy(8y) u ( K (zo>>—1 o (Zo) v
=21+ Z 0 0
o2 T b (Z0)) huo(Z0)

The right-hand side of the latter equation is nondegenerate by Assump-
tion M.7. This however contradicts the independence between Z; and
h{(0¢)u/o¢ (Lemma 5.4.2).

Hence we have shown that (6.31) implies u = v = 0, which proves that Fy is
indeed negative definite. This completes the proof. O

We are now ready to tackle asymptotic normality.

Theorem 6.3.3. Let (X;) be a stationary process of form (6.1)—(6.2) and
true parameter vector To. Under the assumptions M.1 — M.9 the MLE T, is
asymptotically normal, i.e.,

Vn(Fn—10) B N(0,-FyY),  n— oo, (6.32)
where Fy is defined by (6.30).

Proof. Observe that M.1 — M.9 imply that one can apply Theorem 6.1.1 so
that 7, — T¢. From M.9 we can deduce analogously to the proof of Lemma,
5.6.5 that the maximizer 7, of L, is asymptotically equivalent to 7, in
particular even /n |7, — 75| —> 0. Consequently it is enough to prove (6.32)
with 7, replaced by 7,. By arguments identical to the proof of Theorem 5.6.1,

—-1/2 9Ln (7o)

nt?(F, —79) = =F5' (14 op(1)) n or

n — oo, (6.33)

By an application of the central limit theorem for finite variance stationary
ergodic martingale difference sequences (Theorem 18.3 in Billingsley [12]) to-
gether with relation (6.30),

172 aLa:O _ Z 3&% (To) 4, A0, —Fy),  n— o0 (6.34)

A combination of (6.33) and (6.34) followed by an application of Slutsky’s
lemma gives

Vn (Frn — To) BN N(0,-F;1).
This completes the proof. O
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Remarks 6.3.4. The inverse of a partitioned matrix
Y1 Y
Y= ,
(221 pIPH)

B 211 212
= <221 E22>

is equal to

where
S = (3 - T )7
2 = _pis,sl
¥ = 3%, 3,
2 = (By — 22121_11212)71;

see e.g. Magnus and Neudecker [91]. An application of these formulas to —Fg
shows that the asymptotic covariance matrix of 6,, equals

35, = [L(r0)M(Bo) — (N(8o))" I (vo) (L(r0)) "' (J(»0))"N(Bo)]*. (6.35)

Since [I(vg)]™! is positive definite by assumption M.6, also the matrix
(N(00)TI(vo)(I(vo)) *(I(vo))T is positive semi—definite and thus

I (vo)M(6o) > Xo,, (6.36)

where the notation A > B for two square matrices means that A — B is
positive semi—definite. Observe also that one has equality in (6.36) if and
only if (N(80))TJ(vo) = 0, By Theorem 24 in Chapter 1 of Magnus and
Neudecker [91], relation (6.36) is equivalent to

L5 (20)M(8))] ™" < Zp ), (6.37)

and one has strict inequality if and only if (N(8¢))TJ(v¢) = 0. Also observe
that the matrix [I;(v9)M(6p)]~! can be interpreted as the asymptotic covari-
ance matrix of the MLE 6,, based on the true density ky,. Therefore (6.37)
implies that the inclusion of an unknown nuisance parameter v in general

increases the asymptotic covariance matrix 2;01 of én as compared to MLE
based on fixed and known k,,. The situation where 2501 > [Li(vo)M(0g)] L

is referred to as the estimator 6, being non—adaptive for 0, see e.g. Bickel et
al. [10]. In the context of adaptiveness in GARCH, one has to mention the
articles by Drost and Klaassen [42] and Ling and McAleer [88]. These authors
show that the GARCH(p, ¢) parameters € cannot be adaptively estimated and
that one can construct adaptive estimators for (a1, s, ..., ap, B1,-.-,8,) 7.
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We mention that formula (6.35) can be used for determining the asymp-
totic relative efficiency of the QMLE with respect to the MLE. It seems that
in general one has to rely on simulation methods for determining Fy or Xg,.
The asymptotic covariance matrix —F ! (or 2501) can be consistently esti-
mated from data, cf. Remark 5.6.2. We omit details because the form of this
estimator is obvious. O

6.4 Asymptotic Normality of the MLE with Respect to
Student t, Innovations

We continue the discussion of Section 6.1.2. Our task is to verify M.1 — M.9
in model (6.1) with iid Student ¢, innovations. Recall that

ku('r) :cl(l/) (1+02(V) xQ)_(U+1)/25 €z ERa

where for v > 2,

CT(w+1)/2) | v
al)= T2 \/y_z’
1
CQ(I/) = V—2.

For the sake of clarity, we devise assumptions which will be sufficient for
M.1 — M.9. For the unique stationary solution (X;) to model (6.1)—(6.2) with
iid Student t,, innovations and D = {k, | v € V} we assume:

T.1 Conditions N.1, N.2, N.4 of Section 5.6 hold.

T.2 The compact set V' C (2, 00) contains the true parameter vy in its inte-
rior.

T.3 The following moment conditions are met:

2

hl
i) E ho < o0,
0 llK
.. hg hy|?
0 llk hg K
0_2|hl|2
iii) E| °V0 < 00, . oohl!
(i) h |k (vi) E 3/3 < o0.
hg K
: aolhg?
(iv) E 7/ < 00,
h’O/ K
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We only sketch how M.1 — M.9 can be verified since the complete ar-
guments are lengthy and not very instructive. The validity of M.1 — M.3 is
evident. As regards M.4, the moment assumptions in T.3 imply that M(6g)
and N(6g) are well-defined. Since T.1 contains N.4 of Section 5.6, by the
arguments in the proof of Lemma 5.6.3 the matrix M(6y) is positive definite.
M.6 and M.7 follow from straightforward arguments. Concerning M.8, one
recognizes that there are constants Cy,C> > 0 such that for all z € R and
vev,

o8 k(™) | 0 10g(1 + Coa?), Ologhv(@)| ¢,
ov ox
k! (z) 02 log k, ()
v < <
ko(z)| — 1y ‘ Oxdv <G,
0?logk, () 0?logk, ()
‘ o2 < Cy, ‘ o2 < (.

By using these upper bounds together with the moment conditions in T.3 one
establishes M.8. The limit relations in M.9 are shown by means of application
of the mean value theorem to £;() — £;() and (8/87)(fy(T) — £:(T)), respec-
tively, together with similar arguments as in the proof of Theorem 5.3.1 and
Lemma 5.6.4. Thus we obtain the following corollary of Theorem 6.3.3.

Corollary 6.4.1. Let (X;) be a stationary process of form (6.1)—(6.2) with
true parameter vector To = (,‘ig ) Let the class of densities D and the compact
sets K and V be such that the conditions T.1 — T.3 are met. Then the MLE
Tn 1s strongly consistent and

Vn (T, — To) i)J\/(O,—Fal), n — 00,

where the matriz Fo is as in Lemma 6.3.2.

The case of (A)GARCH(p, ¢) with Student ¢, innovations is quite relevant
for applications. For GARCH (or AGARCH) we replace T.1 by Q.2 and Q.3
of Section 4.2.1. Observe that Q.1 and Q.4 are automatically fulfilled if Zy has
a Student ¢, distribution. Q.1 — Q.4 in turn imply N.1, N.2 and N .4, i.e. con-
dition T.1. For the verification of T.3 we recall that in (A)GARCH(p, q) with
a Student t,, distribution ||hy/hol|x and ||hf/ho||k possess finite moments of
any order (Lemma 5.7.4) Moreover, E||02/hol|5 < oo provided s € [0,v/2)
by Lemma 5.7.5. With these two moment properties and Holder’s inequality
one establishes the finite moments required in T.3. Consequently the following
corollary holds true.

Corollary 6.4.2. Let (X;) be a stationary (A)GARCH(p, q) process with Z;
1d ~1,,. Let the compact set K be as in Theorem 4.2.1 and assume the con-
ditions Q.2 and Q.3 of Section 4.2.1 are met. Take V C (2,00) compact such
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that vy € V.. Then the MLE T, with respect to the t,, density is asymptotically
normal, i.e.,

Vn (7, — To) i>/\/’(0,—Fgl), n — 0o,

where the matriz Fo is as in Lemma 6.5.2.

For illustration we attach Table 6.1, which contains asymptotic relative
efficiencies of the QMLE with respect to the MLE of 8 in AGARCH(1,1)
models with ¢, innovations. We provide the asymptotic relative efficiencies
for each parameter since in general there is no A > 0 with 2501 = AM(0y)!
(see formula (6.35)). In Figure 6.3 we compare the finite sample distributions
of the QMLE and MLE for f;.

v o a1 51 71

5 0.277  0.105 0.247  0.509
9 078 0.834 0.805 0.829

Table 6.1. Asymptotic relative efficiencies of the QMLE with respect to the MLE in
an AGARCH(1,1) model with Student ¢5 innovations and parameters ag = 1.492 x
107%, a§ = 0.06706, 85 = 0.9079 and ~{ = 0.3594 (the same parameters as used in
Section 5.10). The numbers are ratios of means of estimated standard errors in 500
independent replications of the AGARCH(1,1) time series with 10000 observations.
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Fig. 6.3. AGARCH(1,1) model with Student ¢5 innovations and parameters ag =
1.492 x 107, af = 0.06706, B = 0.9079 and ~{ = 0.3594. For various sample sizes
n, boxplots of 500 independent realizations of the QMLE and MLE of 3; are drawn.
The graphs show that it is beneficial to apply the MLE for any of the considered
sample sizes n.



7

Quasi Maximum Likelihood Estimation in a
Generalized Conditionally Heteroscedastic
Time Series Model with Heavy—tailed
Innovations

In this chapter we study the asymptotic behavior of the QMLE in the general
heteroscedastic time series model (5.1) when the innovations are heavy in the
sense that EZ¢ = oco. It turned out in the course of the proof of asymptotic
normality (Theorem 5.6.1) that the asymptotic behavior of the QMLE 0, is
essentially determined by the limiting behavior of

n

h,
L' (8y) = Z ((7 (ZF-1).

t 1

In this context,
h(60)

2 )
0}

H; = te Z;
is a stationary ergodic sequence of random vectors, which is adapted to the
filtration

He = O'( sy S < t)

where Y; = Z?—1 constitutes an iid sequence with mean zero. If Hy has a finite
first moment, the sequence (H;Y}) is a transform of the martingale difference
sequence (Y}), hence a stationary ergodic martingale difference sequence with
respect to (H). If E|Hp|?> < oo and EY < oo, an application of the central
limit theorem for finite variance stationary ergodic martingale differences (see
Billingsley [13], Theorem 18.3) yields

n~2 3 HY, -5 N(0,3), (7.1)
t=1

where ¥ = E(Y? HI Hy) is the covariance matrix of HoYp. This result does
not require any additional information about the dependence structure of
(H,Y%). For the asymptotic normality of the QMLE shown in Section 5.6 we
imposed among others the moment conditions N.3 (i,ii), i.e., EZ§ < oo and
E|Hp|? < oo, which is equivalent to E(Y |Hg|?) < co. It is needless to say
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that the purpose of N.3 (i,ii) was the applicability of the martingale central
limit theorem (7.1).

If E(Y{ |Ho|*) = oo a result as general as the CLT for stationary ergodic
martingale differences is not known. However, some limit results for station-
ary sequences with marginal distributions in the domain of attraction of an
infinite variance stable distribution exist. Recently, Hall and Yao [63] gave
the asymptotic theory for QMLE in GARCH models when EZ; = oco. To
be more specific, they assume regular variation with index x € (1,2) for the
distribution of Z2. The aim of this chapter is to reprove these results in the
setting of the general conditionally heteroscedastic time series model (5.1).
The theory is based on a general limit result for the martingale transforms
i Hi Y, when the iid noise (Y;) is regularly varying with index « € (1,2),
which was obtained by Mikosch and Straumann [103]. In contrast to Hall and
Yao [63], the asymptotic theory for the QMLE presented here is not restricted
to GARCH processes. The main difficulty of our approach is the verification
of certain mixing conditions. In contrast to the case of asymptotic normal-
ity, such conditions cannot be avoided with our approach. It is difficult to
check for a given model that these conditions hold; see Section 7.4 in order
to get a flavor of the task to be solved. This chapter is based on Mikosch and
Straumann [103].

7.1 Stable Limits of Infinite Variance Martingale
Transforms

The literature on central limit theorems for martingales with infinite vari-
ance seems to be sparse. To the best of our knowledge, Mikosch and Strau-
mann [103] are the only authors who provide some general results for a special
class of martingales, so—called martingale transforms of a random walk. As-
sume (Y:) has the particular form

Y;: = H;Y;, teZ,

where (Y;) is an iid sequence and (H;) is a strictly stationary sequence of
random vectors with values in R? such that (H;) is adapted to the filtra-
tion given by the o-fields H; = o(Y;, s < t). If EYy = 0 and E[Hp| < oo,
then E(H;Y; | Hi—1) = 0 a.s., and therefore (H;) is a martingale difference
sequence. The sequence

S():O, Sn:Y1+"'+Yn, TLZl,

is the martingale transform of the martingale (3, ¥;),>1 by the sequence
(H:). We keep this name even if E|Y(| = co. We now introduce several as-
sumptions:

A.1 Y} is regularly varying with index & € (0, 2).
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A.2 There is some § > 0 with E[Ho|**° < co.

A.3 The sequence (Y;) = (H;Y}) is strongly mixing with a geometric rate.

A random variable X is called regularly varying with index x > 0 if there exist
a probability p € [0,1] and a slowly varying function L such that indexgslowly
varying

L(z)

g T — 00.
T

P(X > z) :me(f) and P(X <-z) = (1-p)
L slowly varying means that lim, ,o, L(tz)/L(z) = 1 for all ¢ > 0. As
an example, Pareto distributed random variables are regularly varying with
L(z) = const., cf. Embrechts et al. [45]. Another example is provided by the
stationary AGARCH(1, 1) process (X;), where the unconditional marginal dis-
tribution is in general regularly varying, i.e., Xy is a regularly varying random
variable (Theorem 3.3.4). The same statement holds true for GARCH(p, q),
see Basrak et al. [5]. As regards A.3, we recall that a stationary sequence (Y¢)
is strongly mixing if
sup |P(ANB) —P(A)P(B)| =:a — 0, k— oo.

A€o (Y, t<0)
Beo(Y:,t>k)

If (ar)ken decays to zero at a geometric rate, then (Yy) is said to be strongly
mixing with geometric rate; see Ibragimov and Linnik [68], Bradley [24],
Doukhan [40] or Rio [118]. Theorem 3.2 in Mikosch and Straumann [103]
is as follows.

Theorem 7.1.1. Consider the martingale transform

O Yihuen = (O HiYi)nen
=1 t=1

defined above. Assume that the conditions A.1 — A.3 are satisfied. Moreover,
if k € (1,2) assume that BYy = 0 and, if K = 1, that Yy is symmetric. Then
a's, 4 D,, (7.2)
where the sequence (ay,) is given by
P(|Yo| > an) ~n~t, n — 00, (7.3)

and Dy, is a k-stable random vector. If (Y;) has extremal index € > 0, then
the random vector Dy is furthermore nondegenerate.

Remark 7.1.2. We refrain from giving the definition of the extremal index
and refer to Leadbetter, Lindgren and Rootzén [82] instead. It is worth men-
tioning that the extremal index of (Y;) exists under A.1 — A.3; see Theorem 2.1
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in Mikosch and Straumann [103]. k—stable random vectors are usually defined
in terms of their characteristic function. See Samorodnitsky and Taqqu [121]
for definitions and properties of k—stable distributions. Any linear combina-
tion of the components of an k—stable random vector is again (univariate)
k—stable. A nondegenerate k—stable random variable is regularly varying with
index &; see Feller [50]. Concerning the asymptotic behavior of (an)n>1, it is a
well-known fact from the theory of regular variation that (7.3) together with
the regular variation of Yp implies

an = L(n)n’", n — 00,

for some slowly varying L; see Bingham et al. [14], or Resnick [117]. From
this observation together with (7.2) we read off that the rate of convergence
of S,,/n in Theorem 7.1.1 is

na; ' = (L(n))~tn'=Y/x,

Since L(n)/n® — 0 and L(n)n® — oo for all s > 0, the function L,, is “flat”
compared to a power function and plays the role of a constant. From « € (0, 2),
we conclude that the rate of convergence of S, /n is slower than the \/n rate
in the central limit theorem for finite variance random variables. O

The proof of Theorem 7.1.1 rests on a general limit theorem for sums of
dependent and heavy-tailed random vectors, see Theorem 2.8 in Davis and
Mikosch [35]. One of the conditions, which have to be verified in order that
Theorem 2.8 can be applied, is the (multivariate) regular variation of the
finite—dimensional distributions of (Y¢); see Resnick [116, 117] for a definition
of multivariate regular variation of random vectors. The regular variation
property of (Y;) follows by a famous result of Breiman [27]: if X, Y > 0 are
two independent random variables, X is regularly varying with index x > 0
and EY" < oo, then

P(XY > z) ~ EY"P(X > z2), z = 00, (7.4)

i.e., the product XY is regularly varying with the same index . The con-
ditions A.1 — A.2 and the special structure of Y; = H,;Y; together with an
application of (7.4) show that |Y¢| is regularly varying with index k. With
refined arguments, and repeated application of property (7.4), one can estab-
lish the regular variation of the finite-dimensional distributions of (Y}). For
detailed background information we refer to Mikosch and Straumann [103].

7.2 Infinite Variance Stable Limits of the QMLE

This section treats the limit behavior of the QMLE in the general conditionally
heteroscedastic time series model (5.1) when EZ; = oco. This complements
Theorem 5.6.1. We keep the notation of Chapter 5. Before we start, we modify
the condition N.3 of Section 5.6 by omitting EZ3 < oo:
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N.3’ The following moment conditions hold:

o 5(HOF) s

)

(i) E[llx < oo.
We recall that

La(0) =Y 60) = -, ( ;?0) +log Me))

t=1 t=

and

- I [ X}
L,(0) = () = — t log h(8) | .
@ =300 ==, 3 () +losn@))
The QMLE @n is defined as a maximizer of I:g with respect to @ € K, where
K C © C R? is compact, and the sequence 8, maximizes the function L.
First we identify the limit determining term for 6,, and 0,,.

Proposition 7.2.1. Let ((X;,0:)) be the stationary ergodic solution in model
(5.1) with true parameter vector 0. Suppose the conditions N.1,N.2, N.3’ and
N.4 hold true. Then the QMLE 0., is strongly consistent. If there is a positive
sequence (Zp)n>1 with T, = o(n) as n — oo and

L (6
Tn n(00) N D, n — 0o, (7.5)
n
for an R%—valued random variable D, then the QMLE 0., satisfies the limit
relation

2n(0, — 00) 5 —F;'D,  n— oo, (7.6)
where the matriz Fo = E[{;(00)] is negative definite.

Proof. The arguments are identical to the ones used in the proof of Theorem
5.6.1. We repeat them here for the sake of completeness. Since in the proofs
for the strong consistency of 8,, (Theorem 5.3.1) and the negative definiteness
of Fy (Lemma 5.6.3) we did not use that EZ$ < oo, the QMLE 0, is strongly
consistent and the matrix Fy is negative definite under the assumptions of the
present proposition. Analogously to the derivation of the limit relation (5.65),
one first shows that the minimizer 0,, of L, obeys
L;,(60)

mn(én - 00) = _FO_I(]' + O]P’(]-)) Tn ) n — o0.
n

This together with (7.5) and a Slutsky argument gives

mn(én —0y) 4, —Fng, n — oo.
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In a second step one establishes

Tn(0n —0,) 250, n— oco. (7.7)
This and an application of Slutsky’s lemma then imply the limit result (7.5).
Relation (7.7) is derived as follows. Use the same arguments as in the proof
of Lemma 5.6.5 in order to show

T (Bn — 0,) = FyL (1 + 02(1)) “;" (L' (8,) — L' (0,), n—oo. (7.8)

The identical steps as employed in Lemma 5.6.4 yield ||L!, — L'|x <
Yoy 16 —t}]|x < co. From this bound applied to (7.8) and lim, o0 2, /n = 0
we deduce the relation (7.7). Thus we have completed the proof. O

Now we state the main result.

Theorem 7.2.2. Suppose that ((X;,0)) is the stationary ergodic solution to
model (5.1) with @y. Suppose the conditions N.1,N.2, N.3’ and N.4 hold true.
In addition, assume:
hi(6o)
207
(ii) The random variable Z3 is reqularly varying with index k € (1,2).

(i) The sequence < (Z} — 1)) is strongly mizing with a geometric rate.

Then the QMLE 0, is strongly consistent and
£n(én—00) i>D,¢, n — 0o,
where D, is k—stable and (z,)n>1 = (nay)p>1 with (an),>1 given by

P(Z3 > a,) ~n*, n — oo.

If the stationary sequence (hlégo) (7% — 1)) has an extremal index different

from zero, then the random vector Dy is nondegenerate.

Remarks 7.2.3. Before proving the theorem, we discuss its practical conse-
quences for parameter inference:

1. The rate of convergence x,, has — roughly speaking — magnitude n!'~1/%,

which is less than y/n. The heavier the tails of the innovations, i.e., the
smaller k, the slower is the convergence of 6,, towards the true parameter
6.

2. The limit distribution of the standardized differences (8, — 8y) is s-stable
and hence non—Gaussian. The exact parameters of this k—stable limit are
not explicitly known.

3. Confidence bands based on the normal approximation of Theorem 5.6.1
are false if EZ§ = oo. 0



7.3 The QMLE in GARCH(p,q) with Heavy-tailed Innovations 175

Proof of Theorem 7.2.2. The proof follows from a combination of Proposi-
tion 7.2.1 and Theorem 7.1.1. One can apply Theorem 7.1.1 with H; =
hi(60)/(20%) and Y; = (Z} — 1) to

1 <= hi(69)

! _ t 2
o =53 "z,

t=1

We verify A.1— A.2 of the aforementioned theorem. One can show that P(Yy >
2) =P(Z2 -1 > 2) ~P(Z2 > z) as 2 — oo (use e.g. Theorem A3.2 in
Embrechts et al. [45]), and thus Yy = Z2 — 1 is also regularly varying with
index k and P(Yy > a,) ~ n~! as n — oo. Thus we have verified A.l.
Assumption A.2 is fulfilled by virtue of N.3’ (i) together with x € (1,2). Thus
from the application of Theorem 7.1.1,

i) ]557

LI
ap ' L1, (60) = zy, "5}00)

where D,, is k-stable. Proposition 7.2.1 implies

20 (0, — 00) % —F;'D, = D,.

Recalling that a linear transform of an k-stable random vector is again x—
stable shows that D, is k—stable. When the sequence (hi(oo) (Z% — 1)) has

2

93
nonzero extremal index, then D, is nondegenerate, and since F ! is regular,
also D, is nondegenerate. O

7.3 Limit Behavior of the QMLE in GARCH(p,q) with
Heavy—tailed Innovations

The main difficulty in the application of Theorem 7.2.2 to GARCH(p, q) is the
verification of the mixing property (i). The demonstration of strong mixing of a
sequence of dependent random variables is often a nontrivial task. At the time
being we can e.g. not deliver a proof for strong mixing of the sequence (Y;) in
AGARCH(p, q). We state the theorem and remind once again that Hall and
Yao [63] derived the identical result by means of different techniques. Berkes

and Horvath [6] confine themselves to a derivation of the rate of convergence
of the QMLE in GARCH.

Theorem 7.3.1. Let (X;) be a stationary GARCH(p, q) process with true
parameter vector 8y = (af, . . ., Qp, B - - - ,B;)T. Suppose that Z2 is regularly
varying with index k € (1,2) and that Q.1 — Q.4 of Section 4.2.1 hold true.
Moreover, assume that Zy has a Lebesgue density f, where the closure of the
interior of {f > 0} contains the origin. Define (z,)n>1 = (nay;'),>1, where

P(Z% > ap) ~n~t, n — 0o.
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Then the QMLE én is consistent and
xn(én —6y) BN D,, n — 0o, (7.9)

for some nondegenerate k—stable random vector D.

Remark 7.3.2. By the definition of a GARCH process, the distribution of the
innovations Z; is unknown. Therefore assumptions about the heaviness of the
tails of its distribution are purely hypothetical. Depending on the assumptions
on the distribution of Zj, one can develop different asymptotic theories for
QMLE of GARCH processes: asymptotic normality as provided by Theorem
4.2.1 or infinite variance stable distribution as provided by Theorem 7.3.1.
In view of this rather disturbing result, one could think of introducing an
alternative estimator for 8y, whose asymptotic properties do not break down
in case of infinite fourth moment innovations. Horvath and Liese [66] solved
this problem for the ARCH(p) process. They show that the so—called weighted
Ly estimator does not require any moment condition on Z; for asymptotic
normality. ad

Proof of Theorem 7.3.1. The proof is an application of Theorem 7.2.2. Under
Q.1 — Q.4 the conditions N.1, N.2 and N.4 hold true as can be seen from
an evident adaptation of the arguments in Sections 5.4.2 and 5.7.1; these
arguments did not rely on EZ; < co. Some care has to be taken with respect
to the moment conditions of N.3’. By Lemma 5.2 in Berkes et al. [8] the
random variable ||h{/ho||x has finite moments of any order and thus N.3’ (i) is
true; we also appeal to Lemma 5.7.5 of this monograph. Concerning, N.3’ (ii),
Lemma 5.1 in Berkes et al. [8] (cf. Lemma 5.7.4) says that E||XZ/hol|% < oo
for every v € (0, ). This fact together with an application of the Minkowski
inequality to the decomposition (5.73) yields E||¢j||x < oo so that N.3 (ii) is
established. Consequently we are left to prove that the stationary sequence

o= (" z2-).

2
20}

is strongly mixing with geometric rate and that it has extremal index e > 0.
Since the proof of the strong mixing with geometric rate is a problem on
its own and rather lengthy, it is deferred to Section 7.4. As regards € > 0,
according to Theorem 3.7.2 in Leadbetter et al. [82], if ¢ = 0, then if for
some sequence (u,),>1 the relation liminf, . P(Mn < up) > 0 holds, one
necessarily has lim,, o, P(M,, < uy) = 1. Here M,, = max(|Y1|,...,|Yy|) and
(M,,) is the corresponding sequence of partial maxima for an iid sequence (R;)
where Ry has the same distribution as |[Yy|. Assume € = 0 by contradiction.
The random variable | Y| is regularly varying with index & by Breiman’s result
(7.4) together with N.37 (i). Hence (a;;' M,),>1 converges weakly to a Fréchet
distribution, see e.g. Embrechts et al. [45], Chapter 3. More precisely, with

®,(z) = e * " onehas P(M,, < anz) — ®,((x) asn — oo for all z > 0, where
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= (E|h(80)/(203)0]")"/%. Thus lim inf,, oo P(M,, < anz) = ®,((z) > 0 for
all z > 0. However, P(M,, < xa,) — 1 does not hold for all positive z. Indeed,
make use of (5.43) with v = 0 to obtain the a.s. representation

hi(0) = m(0) + im(@)Xf_(, 0cK,

where m(0) = ap/Be(1) and Y ,o, m(0)2 = as(2)/06(2), |2| < 1, with
ag(z) = D0 a2’ and PBe(z) = 1 — 23'21 B;z7. As shown in the proof of
Lemma 5.4.3, there is 7 > 0 such that the polynomials fg(z) have no roots
in the disc {|z| < 1+ 7} for all @ € K, and hence the above Taylor series
e, me(0)z¢ converges for |z| < 1+ 7. Now straightforward arguments ex-
ploiting

= 0m(8) 2t
= <
Z Bar; z Bo(2)’ lz2| <1+,

foralli=0,...,p and 22:1 Bj < 1on K show that
Ome(0) X e ome(0)\ , «o(z)
> d i = ; <1 )
da; >0 an ;(;a da; )z Bo(2) lz2| <1+7r
for all @ € K. Thus the partial derivatives of h; satisfy

Ohy(6)

p
ah
ooy 20 foralli=0,...,p and Z i _ht(o) (7.10)

Since the Euclidean norm is equivalent to the 1-norm |y| = p+q+1 |ye| and

0 < ay,B; <M on K for a certain constant M > 0, there is ¢ > 0 such that
RO . ¢ (s~ |0h(O)] <~ , |9h:(6)
> ; ,
hi(0) ~ hi(0) Z “ MR aB;

j=1
8ht(0)‘ ¢ <= 0Ohy(8)
Note that the last two equalities in the latter display are a consequence of
(7.10). Then by o7 = h(89) and inequality (7.11),

|12¢(60)
207

> 1(6) 2

i=0

o = MO e s Gz oa, e

This and P(|Z2 — 1| > a,,) ~P(Z¢ > a,) ~n~! as n — oo imply

P(M, < zap) < 1P’<rtn<ax|Zf—1| < 2c_1anx> — &, (2c712) < 1, n — oo.
sn

From this contradiction we conclude € > 0, and this finishes the proof. O
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Before we proceed by the verification of the mixing property, we illustrate
Theorem 7.3.1 by means of a simulation. We choose GARCH(1, 1) parameters

af = 1.492 x 1075, o} = 0.06706, B; = 0.9079 (7.12)

and suppose Z; ~ t,, where t, is the Student ¢ distribution with v degrees of
freedom standardized to unit variance. We compare two cases. When v = 5
the moment condition EZ; < oo in Theorem 4.2.1 holds true and the QMLE is
asymptotically normal. In the case v = 3 the random variable Z7 is regularly
varying with index 3/2 and hence the regular variation condition of Theorem
7.3.1 applies. Then the QMLE converges at rate n! =2/ = n!/3. The boxplots
in Figure 7.1 below are based on 500 independent replicates of &; for various
sample sizes n. It is clearly visible that the speed of convergence to the true
value a3 is slower when v = 3. Furthermore we illustrate in Figure 7.2 that
the normal approximation (according to Theorem 4.2.1) is misleading when
v=23.

v=35
L
Q
g —
ln [
o [
o —_ —_— —_—
° n=250 n=500 n=1000 n=5000 n=10000
v=3
0 S
o -
Ela . - N
[Te) JE— -
S = _
o
n=250 n=500 n=1000 n=5000 n=10000

Fig. 7.1. Boxplots of independent realizations of the QMLE of &; in the
GARCH(1,1) process with parameters (7.12) and Student ¢, innovations. The dot-
ted horizontal lines represent the true value af.
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Studentized statistics

-3 -2 -1 o 1 2 3
Quantiles of Standard Normal

Fig. 7.2. GARCH(1,1) model with parameters (7.12) and Student ¢3 innovations.
QQ-plot of 500 independent realizations of the studentized statistics of &1 for sample
size n = 10000. Moreover the line {z = y} is drawn.

7.4 Verification of Strong Mixing with Geometric Rate
of (Y:) in GARCH(p,q)

To begin with, we quote a powerful result due to Mokkadem [104], which allows
one to establish strong mixing in stationary solutions of so—called polynomial
linear stochastic recurrence equations (SREs). A sequence (Y:) of random
vectors in R? obeys a linear SRE if

Yt+1 =P, Y; + Qt: t e Z, (713)

where ((Py,Qq)) constitutes an iid sequence with values in R4*¢ x R4, A
linear SRE is called polynomial if there exists an iid sequence (e;) in R? such
that P, = P(e;) and Q; = Q(e;), where P(x) and Q(x) have entries and
coordinates, respectively, which are polynomial functions of the coordinates
of x. The existence and uniqueness of a stationarity solution to (7.13) has
been studied by Brandt [25], Bougerol and Picard [22], Babillot et al. [3]
and others. The following set of conditions is sufficient, compare with the
proof of Theorem 3.3.1: E(log™ ||Po]|.,) < oo, E(log™ |Qo|) < oo, and the
top Lyapunov exponent associated with the matrix operator sequence (P;) is
strictly negative, i.e.,

. 1
p=int{,  B(logllPo---P_iL.)} <o0. (7.14)

Here || - ., is the matrix operator norm corresponding to the Euclidean norm
(2.9). We also need the notion of absolute regularity (or S-mixing), which is
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more restrictive than strong mixing. A stationary sequence (Y;) is absolutely
regular if

E( sup |P(B |0(Yt,t§0))—]P’(B)|> =: by =0, k — oo.
Beo(Y:,t>k)

(7.15)
Indeed, absolute regularity implies strong mixing with the same mixing coef-
ficients by. The following result is an easy generalization of Theorem 4.3 in
Mokkadem [104].

Theorem 7.4.1. Let (e;) be an iid sequence of random vectors in RY . Then
consider the polynomial linear SRE

Yir1 =Ple)Ye + Q(ey), t € Z, (7.16)

where P(e;) is a random d x d matriz and Q(e;) a random vector in R?.
Suppose:

(1) P(0) has spectral radius strictly smaller than 1 and the top Lyapunov ez-
ponent p corresponding to (P(et)) is strictly negative.

(2) There is s > 0 such that

E[[P(eo)

*<oo and E|Q(eo)|® < oo.

(3) There is a smooth algebraic variety V C RY such that ey has a density f
with respect to Lebesguian measure on V. Assume that 0 is contained in
the closure of the interior of the set {f > 0}.

Then the polynomial linear SRE (7.16) has a unique stationary solution (Y;),
which is ergodic and absolutely regular with geometric rate and consequently
strongly mizing with geometric rate.

Remark 7.4.2. As regards the definition of a smooth algebraic variety, we
first introduce the notion of an algebraic subset. An algebraic subset of R is
a set of form ,

V={xeR?|F(x)="- = F.(x) =0},

where F1, ..., F,. are real multivariate polynomials. An algebraic variety is an
algebraic subset which is not the union of two proper algebraic subsets. An
algebraic variety is smooth if the Jacobian of F = (F},..., F,)T has identical
rank everywhere on V. Examples of smooth algebraic varieties in R? are the
hyperplanes of RY or V =R?. O

Remarks 7.4.3. The original Theorem 4.3 by Mokkadem [104] differs from
the above theorem only in a stronger moment condition for |P(ep)||.,. Instead
of condition (2), Mokkadem imposes:

(2)” There is s > 0 such that E|[P(eo)||5, < 1 and E|Q(ep)|* < oo.



7.4 Strong Mixing with Geometric Rate of (Y;) in GARCH 181

Note also that (2)’ makes the requirement of a strictly negative top Lyapunov
exponent of (P(e;)) in (1) obsolete since by Jensen’s inequality

E(log [[P(eo)|l.,) = s~ E(log|[P(eo)|l5,) < s~ log(El[P(eo)[[5,) < 0.

Unfortunately the moment condition E[|P(eo)||2, < 1is often not easy to check
or, even worse, not fulfilled. This is e.g. the case for GARCH, but the same
difficulty appears also in bilinear time series models, which have a Markovian
representation of form (7.16). Several authors devised highly sophisticated cri-
teria to circumvent this problem, see e.g. Feigin and Tweedie [49], Pham [113]
or Tjgstheim [128]. Our generalization in Theorem 7.4.1 offers simpler remedy.

The proof of Theorem 4.3 in Mokkadem [104] makes use of techniques from
general state space Markov chain theory and algebraic topology and is by no
means simple. The special structure of P(e;) and Q(e;) and conditions (1)—(3)
enable one to construct a o—finite measure p such that the Markov chain
started at some initial value at time ¢ = 0 and obeying (7.16) is p—irreducible;
then Markov chain theory can be applied. Mokkadem formulates his results
in the framework of so—called polynomial autoregressive processes, a more
general class than the polynomial linear SREs. We mention that Carrasco
and Chen [31] apply Theorem 4.3 of Mokkadem [104] to several conditionally
heteroscedastic time series models and that Boussama [23] uses the theory of
Mokkadem [104] in order to establish absolute regularity with geometric rate
of GARCH(p, q). O

Proof of Theorem 7.4.1. There is nothing to prove if E||P(eq)||?, < 1 for some
§ > 0 as this special case is the content of Theorem 4.3 in Mokkadem [104].
For the general case it suffices to prove the absolute regularity with geometric
rate for some subsequence (Yt )tez, where m > 1is fixed. Indeed, the mixing
coefficient by, is nonincreasing and since (Y;) is a Markov process, the simpler
representation

by =E < sup  |P(B|a(Yo)) _P(B)|>

B€a(Yit1)

is also valid, see e.g. Bradley [24]. Since p < 0 and (P;) is stationary, there is
m > 1 with E(log ||P(en,) - - - P(e1)]|o,) < 0. From the fact that the first deriva-
tive of the map u — E||P(e,,) - - - P(e1)[|%, equals E(log [|P(ey,) - - - P(e1)|l.,) <
0 at u = 0, we deduce that there is 0 < § < s with E||P(ep,) - - P(e;)[|?, < 1.
Then note that (Y;) = (Y¢m) obeys a polynomial linear SRE:

Y =P@)Y:+Q&), tez,
€(t+1)m—1
where €& =

€tm
and
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P(e;) = P(e(t+1)m71) o Plegn),

m—1 4
Q(ét) = Q(e(t+1)m—1) + Z (H P(e(t+1)m—i)> Q(e(t+1)m—£—1)-

(=1 \i=1

Since both the matrix P(&;) and the vector Q(&;) are polynomial functions
of the coordinates of & and the sequence (&) is iid, (Y;) obeys a polynomial
linear SRE. Observe that P(0) = (P(0))™ has spectral radius strictly smaller
than 1, that E||f’(é0)||fp < 1 and E|Q(&)|* < co and that & has a density
with respect to Lebesgue measure on V™, where V™ is a smooth algebraic
variety (see A.14 in Mokkadem [104]). This density obeys (3). Thus an ap-
plication of Theorem 4.3 in Mokkadem [104] yields that (Y;) is absolutely
regular with geometric rate. This proves the assertion. O

We now give an auxiliary result.

Lemma 7.4.4. Let (P;) be an iid sequence of k x k—matrices with E[|Po||?, <
oo for some s > 0. Then the associated top Lyapunov exponent p < 0 if and
only if there exist c >0, § >0 and 0 < A < 1 so that

E||P;--- Py} < e, t>1. (7.17)

op —

Proof. For the proof of necessity, observe that by definition (7.14) of the top
Lyapunov exponent there exists m > 1 such that E(log||P, - - P1]].,) < 0.
From the fact that the map u — E||P, --- Py || has first derivative equal to
E(log [|Pm - - -P1]lop) at u =0 and (P;) is stationary, we deduce that there is
§> 0 with E||Py, ---Py]|5 = A < 1. Since the matrix operator norm || - ||,, is
submultiplicative and the factors in P --- Py are iid,

E||P;---Py|° < Alt/m] <£ [max 1E||Pg---P1||§p> <eX,  t>1,
_max

=1,...,

forc = \"1 (max¢—1, .. m—1E||P¢---P1]|¥) and X = AL/m_ Regarding the proof
of sufficiency, the definition (7.14) together with Jensen’s inequality leads to

1 1 -
p<  Ellog|[Pr - Pill,,) =, E(log|[Ps-- Py

log A

1 <
< i3 log(E||P;---Pq]|2) < _ (logc+tlogA) = , t — o0,

1
t5
and shows p < 0. This completes the proof of the lemma. O

The next proposition shows that the top Lyapunov exponent of block lower
triangular matrices is strictly negative if and only if the building blocks have

a strictly negative top Lyapunov exponent. The same statement is of course
true for block upper triangular matrices.
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Proposition 7.4.5. Suppose that

At Opy(h—r
p=( ' ) ez, (7.18)
B, C,

forms an iid sequence of k x k—matrices with B||Pql|2 < oo for some s > 0,
where Ay € R™*", B; € RE—)*7 gnd C, € RE—7*XE=7) | Then its associated
top Lyapunov exponent pp < 0 if and only if the sequences (A;) and (Cy)
have top Lyapunov exponents pa < 0 and pc < 0.

Proof. For the proof of sufficiency of pao < 0 and pc < 0 for pp < O, it
is by Lemma 7.4.4 enough to derive a moment inequality of form (7.17) for
(Py). Since all matrix norms are equivalent, we may without loss of generality
replace || - ||, by the Frobenius norm (2.7), denoted by || - ||. By induction we

obtain
At e Al Orx(kfr)
P, Py = :
Q: Ci---Cy

where
Qt = BtAtfl e Al + CtBtflAt72 T Al + CtCt—lBt—ZAt73 e Al
+--+C;---C3B3A; +C; - CyB;.

Since we use the Frobenius norm, the following bounds are valid:

max (||[A; -+ Ay[], [|[Cr - Cul| ) < [Py Py
< Ag- Al 4+ [|Ce - Cal| + [1Qul]. (7.19)

It is sufficient to show (7.17) (with || - ||., replaced by || - ||) for each block
in the matrix Py ---P;. Because of pa < 0, pc < 0 and E||Ao]|*, E||Col|® <
E||Po||* < oo, Lemma 7.4.4 already implies moment bounds of form (7.17) for
(A¢) and (C;). Thus we are left to bound ||Q:||. Without loss of generality
we may assume that the constants A < 1 and §,¢ > 0 in the inequality (7.17)
are equal for (A;) and (C;) and that § < s < 1. From an application of the
Minkowski inequality and exploiting the independence of the factors in each
summand of Q;, we receive the desired relation

El|lQ:l* < PtE[BolIPA* " < &N,

some \ € (A, 1), ¢ > 0. For the proof of necessity, assume pp < 0. Then the
left-hand estimates in (7.19) and Lemma 7.4.4 imply that pa < 0 and pc < 0.
This completes the proof. O

Finally we can exploit Theorem 7.4.1 and establish strong mixing with
geometric rate of the sequence (Y;) = (h}(60)(Z7 —1)/(207)) in GARCH(p, q).
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Proposition 7.4.6. Under the conditions of Theorem 7.3.1 the sequence (Y¢)
is absolutely regular with geometric rate.

Proof. For the proof of this result we first embed (Y}) in a polynomial linear
SRE. Without loss of generality assume p,q > 3. Write

N 2 2 2 2
Y, = (at,...,atfqﬂ,xtfl,...,XH,H,

Ohy(6o) Ohi—q+1(60) Ohy(6o) Ohi—q+1(60)

8&0 gy 8&0 sy (30ép yerey aap N
6ht(00) 6ht_q+1(00) aht(go) Bht_q+1 (90))T
6& Sy 6& Sy 6@1 yeeey 8,3,1 .

Since Z? = X} /o?, we have
U(Yt,t>k)CU(Yt+1,t>k) and U(Yt,tSO)CU(?t+1,tSO).

Consequently, it is enough to demonstrate absolute regularity with geometric
rate of the sequence (Yt) The goal is to derive a linear polynomial SRE for
(Y:)- To this end we introduce various matrices. Write 04, x4, for the d; X da
matrix with all entries equal to zero and let I; denote the identity matrix of
dimension d. Then set

o5 e g
M, (7)) = I, O0-1)x1 O—1)x(p—2) Og—1)x1 ,
¢y 01x1 O1x(p—2) 01x1
0(p—2)x(q—-1) O(p—2)x1 | 0(p—2)x1
where

o= (B +0a3 22,55, B ) € R,
¢, = (2},0,...,0) € RM*(4=1),
a’ = (a;,...,a;ﬂ) e R1x(P—2)

Note that M;(Z;) coincides with (3.10) with v = 0. Moreover, define

0q><(p+q—1) A2
U,
M (Z;) = _ and My=| : |,
] VvV
U, !

where U; € RI*(P+a=1) and V; € R7*(PT4=1) are given by
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[Uilk.e = Ske11 Z3,
[Uilre = Okea(g+i1)s i > 2,
[Vilk,e = Ok

Here, 0. denotes the Kronecker symbol. Also introduce the ¢ X ¢ matrix

C:< B - /33 >7
| P O0-1)x1

M; = dlag(cap + 1)7 M; = dla‘g(ca q)

and let

be the block diagonal matrices consisting of p + 1 (or q) copies of the block
C. Finally, we define

Ml(Zt) 0(p+q71)X(p+1)q O(erqfl)Xt;{2
P(Zt) - Mz(Zt) M3 0(p+1)qxq2
M, 0q2X(:D+1)q M;

and Q € RpHa—1+a(ptatl) by [Q], = agdy, 1 +0k p+ - Differentiating both sides
of hi1(8) = a0 + 37y i X7y + 225 Bjhi1-4(0) at the true parameter
0 = 6, we recognize that

h;+1(00) =
(17X1;27 v 7X2£27p+170-;527 cee 7U§7q+1) + ﬂfhg(eo) +oeet ﬂ;h£+1,q(00)-

From this recursive relationship together with o7, , = af + af X7 + --- +
apX}? 1 + Bf0} + -+ BSo7_ ., we have that (Y;) obeys the following
polynomial linear SRE on Rrte—1+a(ptatl).

yt+1 = P(Zt)yt + Q (720)

The proof of Proposition 7.4.6 follows if we can show that the polynomial liner
SRE (7.20) obeys the conditions of Theorem 7.4.1. Then its unique stationary
solution, (Y), is ergodic and absolutely regular with geometric rate. The
verification is carried out in the following lemma O

Lemma 7.4.7. Under the assumptions of Proposition 7.4.6, the polynomial
linear SRE (7.20) obeys the conditions of Theorem 7.4.1.

Proof. Since EZ2 = 1, it is immediate that E||P(Zp)]|., < oo since this state-
ment is true for the Frobenius norm and all matrix norms are equivalent.
Treat the blocks M;(Z;), M3 and My separately. Recall that the matrix
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M, (Z;) appeared in Section 3.3.1 as the random transition map for the vec-
tors (07,...,07 411, X7 1,--- X7 ,41)7 in GARCH(p,q); choose v = 0 in
(3.10). Theorem 3.3.1 states that stationarity of GARCH(p, q) is equivalent
to (M;(Z;)) having a strictly negative top Lyapunov exponent. Moreover, ar-
guing by recursion on p and expanding the determinant with respect to the
last column, it is easily verified that M, (0) has characteristic polynomial

q
det(ALppg1 — My(0)) = APT771 [ 1) goa~
j=1

Since 25:1 B; < 1in a stationary GARCH(p, q) process, by repeated appli-
cation of the triangle inequality

q q q
1= A >1=> A7 >1-) >0
j=1 j=1 j=1

if |A| > 1, and hence M; (0) has spectral radius < 1. Observe that the building
block C has characteristic polynomial

q
det(AL, —C) = A7 [1-> 85277 |,
j=1

showing that its spectral radius is strictly smaller than 1 (use the same argu-
ment as before). Thus the deterministic matrices M3 and Mj5 have spectral
radius < 1, which also implies that their associated top Lyapunov exponents
are strictly negative. Combining these results, we deduce that P(0) has spec-
tral radius < 1 and conclude by twice applying Proposition 7.4.5 that (P(Z;))
has strictly negative top Lyapunov exponent. Condition (3) of Theorem 7.4.1
is automatically fulfilled since we assumed in Theorem 7.3.1 that Zy has a
Lebesgue density f, where the closure of the interior of {f > 0} contains the
origin. This concludes the proof of the lemma. O

Remark 7.4.8. Since (X2, 02) is a subvector of Y, 1, stationary GARCH(p, q)
processes are absolutely regular with geometric rate; this result has previously
been established by Boussama [23]. O
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Whittle Estimation in a Heavy—tailed
GARCH(1,1) Model

This chapter is mainly based on the paper by Mikosch and Straumann [102]
and can be seen as a continuation of the discussion in Section 4.2.2. It consists
of a detailed study of the limit properties of the Whittle estimator applied
to the squares of a stationary GARCH(1, 1) process (X;). Thereby we extend
the results obtained by Giraitis and Robinson [56], which are summarized by
Theorem 4.2.3 of this monograph: the Whittle estimator is strongly consistent
and asymptotically normal provided the process has a marginal distribution
with a finite 8th moment.

In this chapter we focus on the case when EX§ = oo. This case corresponds
to various real-life log—return series of financial data. We show that the Whit-
tle estimator is consistent as long as the 4th moment is finite and inconsistent
when the 4th moment is infinite. Moreover, in the finite 4th moment case,
the rates of convergence of the Whittle estimator to the true parameter are
the slower the fatter the tail of the distribution of Xg. These findings are in
contrast to Whittle estimation of ARMA processes with iid innovations. In-
deed, in the latter case it was shown in Mikosch et al. [98] that the rate of
convergence of the Whittle estimator to the true parameter is the faster the
fatter the tails of the innovations distributions.

8.1 Introduction

We maintain the notation of the previous chapters. To make this chapter
as self-contained as possible, we briefly summarize the most important facts
about GARCH(1,1) and recall the definition of the Whittle estimator.

GARCH(1,1)
We consider a GARCH(1,1) process (X;), which is given by the equations

Xy =0:Z; and o7, =ag+ a1 X; + Bioy, teZ, (8.1)
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where (Z;) is a sequence of iid symmetric random variables with Var(Zp) = 1,
(0¢) is a nonnegative process, and ag > 0, a1, 81 > 0. Observe that, in contrast
to Chapter 3, we have added the technical assumption that Zj is symmetric,
ie.,

4

Zo=—2p.

This restriction has been made for the proof of Theorem 8.2.1 below; it is not

clear whether this condition can be weakened. The sequence (o?) obeys the

linear SRE
oy = Ao} + By, tELZ, (8.2)

where Ay = a1 Z2 + 81, By = ap, and ((4y, By)) iid. Since the latter SRE has
a unique strictly stationary solution if and only if

E(log Ag) = E[log(a1 Z3 + 41)] < 0, (8.3)

condition (8.3) is sufficient and necessary for a unique stationary GARCH(1, 1)
process (8.1) to exist (Nelson [105]). In particular, 3; < 1is necessary for (8.3)
since

0 > E[log(a, Za + 31)] > log(31) . (8.4)

In what follows, we always assume that condition (8.3) is satisfied and that
(X¢) is a strictly stationary GARCH(1,1) process. We have discussed in Sec-
tion 3.3.1 that the marginal distributions of (A)GARCH have heavy tails. For
this chapter we assume the conditions of Theorem 3.3.4 with v = 0 so that
| Xo| has a Pareto-like tail, i.e.,

P(|Xo| > z) ~ E|Zo|" P(og > ) ~ cox™ ", x — 00, (8.5)

for some cy > 0; recall that the tail index xk > 0 is related to the random
variable Ay through the equation

EAS? = 1. (8.6)

Whittle Estimation

As shown in Section 4.2.2, every squared stationary GARCH(1, 1) process can
be embedded in an ARMA(1,1) model:

XP = X2 +vi— v, teZ, (8.7)

where v, = 02(Z2 — 1), ¢1 = ay + 41 and the stationary sequence (v;) con-
stitutes white noise if Var(XZ) < oo. This property leads one to consider the
Whittle estimator of the squared GARCH process with model parameter

9= (‘Pl;ﬁl)T = ( +51,51)T-

Provided the variance of vy is finite, the process (X? — EXZ2) has spectral
density
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2

O—I/
F9) = 7 g(N9), A€ (—mal,
where | Bre- 2
1—pe™ 2 2
) = ) =E
g( ’ ) |1 —<,01€_”‘|2 ) g, Vo

We learned from (8.4) that $; < 1 is a necessary condition for stationarity.
Therefore we search for the minimum of the objective function

_2 _ 1 In7X2()‘j)
On,x2 (19) - n Z g()\],ﬂ) (88)

(here I, x2();) denotes the periodogram at the Fourier frequency A;, the
summation is taken over all Fourier frequencies (4.16)) on the set

C={9eR*|0< B <1, B <y <1} (8.9)

The particular definition of the periodogram in (4.15) ensures that I, x2(0) =
0 and therefore rules out irregular asymptotic behavior of the periodogram
at zero. For \; # 0 the value of the periodogram I,, x=(});) is invariant with
respect to the centering of the X?’s. It will turn out in the proofs below that
centering of the X?’s becomes necessary when one wants to use the asymptotic
results for the sample autocovariance function.

One observes that &> (1) has a minimum on the closure C =Cu{(1,1)}
of C. Therefore the following adaptation of the Whittle estimator is well
defined: R
¥, = argmin 527)(2 (9). (8.10)

veC

8.2 Limit Theory for the Sample Autocovariance
Function

Recall that for any sample Y7,...,Y, from a stationary sequence (Y;), the
sample autocovariance function (sample ACVF) is defined by

n—|k|
1
Ty (k)= Y M -Y)Yeu -Y), kel

t=1

(for |k| > n the sums are interpreted as zero), where Y denotes the sample

mean, and the corresponding sample autocorrelation function (sample ACF)

by

_ 'Yn,Y(k)
Y,y (0) 7

Their deterministic counterparts are the ACVF

pn,Y(k) keZ.
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er(k) = COV(Y07Yk)7 k € Z7

and the ACF
py (k) = vy (k) /v (0), ke

In this section we formulate the basic asymptotic results for the sample ACF
and sample ACVF of the squares of a stationary GARCH(1, 1) process (X).
For its formulation we need the notions of stable random vector and multivari-
ate stable distribution; we refer to the encyclopedic monograph by Samorod-
nitsky and Taqqu [121] for definitions and properties. The following results
are given in Mikosch and Starica [99].

Theorem 8.2.1. Assume the conditions of Theorem 3.8.4 with v = 0 hold
and that the innovations (Z;) are symmetric. Let (z,,) be a sequence of positive
numbers given by

nl—4/k, if Kk <8,
Ty = n>1, (8.11)
nt/2, if K > 8,

where k is the tail index of |Xo| as provided by Theorem 3.3.4. Then the
following limit results hold.
(A) The case k < 4.

d

Tn [Yn,x2(R) Jn=0,...k — (Vi)h=0,...k » (8.12)
[pn,X2(h)]h:1,m’k -4 (Va/Vo)n=1,...k » (8.13)
where the vector (Vy, ..., Vi) has positive components with probability one
and it is jointly k/4—stable in RF+1,
(B) The case 4 < Kk < 8.
T [Yn,x2(h) — vx2(h) Jn=0,... k <4 (Vh)h=0,...k » (8.14)

Ty [ pn,x2(h) — pxz(h) Jn=1,...k <4 Y2 (0) [Vi = pxz (M) Vo Jn=1,....k »

(8.15)
where the vector (Vo, ..., Vi) is jointly k/4-stable in RFTL.
(C) The case k > 8.
T [Yn,x2(h) — vx2(h) Jn=o,... k 4 (Vh)h=0,....k » (8.16)

n [ pnxz(h) = pxz(h) Jnet,k — 52 (0) [ Vi — pxz (W) Vol .k »
(8.17)

where the vector (Vo, ..., Vi) is multivariate centered Gaussian.
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Remark 8.2.2. An a-stable random variable Y with o < 2 (the nondegen-
erate components of an a—stable random vector are a—stable as well) has tail
P(|Y| > z) ~ cx~®. Hence the limits of the sample ACVF in parts (A) and
(B) have infinite variance distributions, in part (A) even infinite first moment
limits.

In part (A), the ACF and ACVF of (X7?) are not defined since EX = cc.
The sample ACF converges weakly to a distribution with finite support.

In part (B), the ACVF and ACF of (X?) are well defined. In view of (8.11),
the rate of convergence of the sample ACF to the ACF is the slower the closer
K to 4.

In part (C), X2 has finite variance, and the limit results are a consequence
of a standard CLT for strongly mixing sequences with geometric rate. O

Remark 8.2.3. In the case k¥ < 4, the sample ACVF and sample ACF can be
replaced by the corresponding versions for the noncentered X2, ..., X2. This
follows from the results in Davis and Mikosch [35]. A particular consequence
is that the limiting random variables V}, are positive with probability 1. O

8.3 Main Results

Now we are ready to formulate the main results on the asymptotic behavior
of the Whittle estimator for the squared GARCH(1,1) case. We start with
the consistency.

Theorem 8.3.1. Let (X;) be a strictly stationary GARCH(1, 1) process with
parameter vector 9o = (03, 82)1 = (a$ + 89, 80)T € C, satisfying the condi-
tions of Theorem 3.3.4 with v = 0 and symmetric innovations (Z;). Then the
following statements hold.

(A)If the tail index k < 4 and af, 3y > 0, i.e., Yo lies in the interior of C,
the Whittle estimator 9, defined in (8.10) is not consistent.
(B)If k > 4, the Whittle estimator is strongly consistent.

The inconsistency is illustrated in Figure 8.1. Part (B) of the theorem
raises the question as to the rate of convergence of 1, to ¥¢. Here is the
answer. But first recall the definition of (z,) from (8.11):

nl=4/% if K < 8,
Ty = A
nt/2, if kK > 8.

Theorem 8.3.2. In addition to the conditions of Theorem 8.3.1 assume that
the tail index k > 4 and EZ§ < oo. Then the following limit relation holds:

Zn(Dn — 90) ~ [W (D))" (fo(ﬂo)Vo +2 Z £y (ﬂo)Vk), (8.18)
k=1
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Fig. 8.1. GARCH(1, 1) model with parameters aj = 8.58 x 10 7%, o} = 0.072, 8} =
0.925 and standard Gaussian innovations. The tail index k = 3.2 was determined
by solving the equation (8.6) through Monte—Carlo simulation; see Mikosch [97]
for more details. The finite sample distributions of the Whittle estimator of fi,
represented by boxplots of 2000 independent replicates (top), indicate that it is not
consistent. In contrast, the QMLE of 8; (bottom) converges at \/n-rate. This is in
line with Theorems 8.3.1 and 5.7.1.

where (Vi)n=0.1,... is a sequence of k/4-stable random variables as specified
in (8.14) for k € (4,8) and a sequence of centered Gaussian random variables
as specified in (8.16) for k > 8. The infinite series on the right-hand side of
(8.18) is understood as the weak limit of its partial sums. Moreover, [W (9¢)] !
is the inverse of the matriz

_ o2 [T [Dlogg(A;¥)] [0logg(A;d0)]"
W(’%)‘zw/ﬂ{ o0 H o9 ] °
and 1 (™ a(1/g(N®
fi.(90) = / ( /9;19’ o)) e"*rd),  k>0.
™ J—n

Remark 8.3.3. In the case of finite 8th moments, the above results follow
from the paper of Giraitis and Robinson [56]. The proof of the corresponding
part of Theorem 8.3.2 does not provide any additional work and so we included
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it for completeness. In contrast to the results in Giraitis and Robinson, we do
not use martingale central limit, theory. O

Remark 8.3.4. The rate of convergence of the QMLE in GARCH(1,1) is
determined by L! (6o) (the function L, was defined in (5.36)). Since

1,80 = — L3 Mil80) (g g2y

and since h}(6o)/ht(09) has moments of any order (see Berkes et al. [8]) and is
independent of Z2, the y/n-rate and the asymptotic normality of the QMLE
under EZ} < oo of the QMLE (Theorem 4.2.1) is not totally surprising. In
contrast, the Whittle estimator is virtually a function of the sample autocor-
relations of (X?) and their (slow) rate of convergence determines the conver-
gence rate of the Whittle estimator. This may be seen as a key argument for
the superiority of the QMLE over the Whittle estimator. O

Remark 8.3.5. As a matter of fact, the Whittle estimator is extremely flexi-
ble under various modifications of the ARMA model. For example, the Whittle
estimator also works when estimating the parameters of an ARMA process
with infinite variance innovations (Z;) and can be extended to long memory
FARIMA processes with or without infinite variance; see Mikosch et al. [98]
for the ARMA case and Kokoszka and Taqqu [76] for the FARIMA case. It
turns out that the \/n—asymptotics for the Whittle estimator in the case of
finite variance ARMA has to be replaced by more favorable rates of conver-
gence in the infinite variance case. Roughly speaking, the Whittle estimator
works the better the heavier the tails of the innovations (equivalently, the
tails of the X;’s). A careful study of the proof shows that the results heav-
ily depend on the faster than /n-rates of convergence for the sample ACVF
and sample ACF of linear processes. These rates were derived by Davis and
Resnick [36, 37]. Keeping in mind the slower than /n—rates of convergence
for the sample ACF of the squared GARCH(l 1) process when k € (4,8), the

rate z, = n'=%/* for the Whittle estimator ¥, is not totally unexpected. O

Remark 8.3.6. The gaps k = 4 and k = 8 in the above results are due to
the fact that the corresponding results for the sample ACVF of the squared
GARCH(1,1) process are not yet available in these cases. O

Remark 8.3.7. (Compare with Remark 4.2.4(3)) In the above discussion we
left out the estimation of the parameter ag. Estimation of ag can be based

on the formula
o

1—¢f"

A natural estimator of aq is therefore given by

&0 = Yn,x(0) (1 — 1),

Var(Xy) =
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where ¢ is the Whittle estimator of . If k > 4, then 7,, x (0) = Var(Xy) by
virtue of the ergodic theorem and, hence, &g is strongly consistent under the
assumptions of Theorem 8.3.1. Moreover, under the conditions of Theorem
8.3.2,

Ty (G0 —ag) = (Yn,x(0) —¥x(0)) zn (1 — $1) + vx(0) mp ((—=P1 + ¢7))
-4 1% (0)Y,

where the limit distribution of Y is defined through Theorem 8.3.2. Therefore
one can show via a continuous mapping argument that the joint limit distri-
bution of (z, (& — af, a1 — af, B — 69)T) exists. It can again be expressed
by the random variables (V}). We omit details. O

8.4 Excursion: Yule-Walker Estimation in ARCH(p)

The Yule-Walker matrix equation for the AR(p) model V; = 1Y, 1 +--- +
wpYi_p+ Z; for a white noise sequence (Z;), 1 —p1z2—---—ppzP #0, |2| < 1
(causality) is

Ro=p, (8.19)

where R is the p x p matrix (py (i — j))ij=1,..p» & = (p1,.-.,p)T and
p=(py(1),...,py(p))T, provided Var(Y;) < co. The Yule-Walker estimator
of ¢ is then obtained as the solution to (8.19) with R and p replaced by
Ry = (pny (i = §))ij=1,..p and p, = (pn,y(1),...,pny ()", respectively.
According to Brockwell and Davis [29], Proposition 5.1.1, (R,)~! exists if
Yn,v(0) > 0, and then

¢, = Rn) ' b, (8.20)

From this representation it is immediate that (}5” estimates ¢ consistently if
the sample ACF is a consistent estimator of the ACF. Moreover, following the
argument on p. 557 of Davis and Resnick [37], we conclude that

~

¢n - ¢0 =D (i)n - pO) + O]P’(i)n - pO) (821)

for some nonsingular matrix D.
Recall that the squares of an ARCH(p) process (X;) can be written as an
AR(p) process

XP=af+ai X7+ -+ X7+, (8.22)
where vy = X? — 0} = 07(Z} — 1) is a white noise sequence provided
Var(X2) < oo. If we replace in the above remarks (Y;) by (X7?), the same
arguments apply as long as the sample ACF of (X?) is consistent. Thus the
Yule-Walker estimator of the parameters «; based on the AR(p) equation
(8.22) is consistent. Assume that the statements of Theorems 3.3.4 with v =0
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and 8.2.1 hold accordingly for ARCH(p) (see Basrak et al. [5] for a precise for-
mulation). Then we also may conclude from (8.21) and Theorem 8.2.1 (with
GARCH(1,1) replaced by ARCH(p)) that in ARCH(p) the rate of convergence
is the same as for the sample ACF:

where for k > 4, Y = 7}%(0)(‘/;1 — px2(h)Vo)n=1,...p with the specification
of (Vi) as given in parts (B) and (C) of Theorem 8.2.1. For x < 4, by virtue
of part (A), a consistency result for the Yule-Walker estimator cannot be
expected. Indeed, if v, x2(0) > 0, an appeal to (8.20) shows that the Yule-
Walker estimator is a continuous function of the first p sample autocorrelations
which converge weakly to a nondegenerate limit. For example, for p = 1 we
obtain the usual estimator &; = p, x2(1) which has a nondegenerate limit
distribution as described in part (A) of Theorem 8.2.1.

The Whittle estimator for an AR process is asymptotically equivalent to
the Yule-Walker estimator and to the least—squares estimator defined in Sec-
tion 4.1.2. (If one uses in the definition (8.8) an integral instead of a Riemann
sum, the Yule-Walker and the Whittle estimator even coincide). Therefore its
asymptotic properties only depend on a finite number of the sample autocor-
relations and, therefore, an application of the continuous mapping theorem
yields the limit distribution and convergence rate for the Yule-Walker esti-
mator. The Whittle estimator based on the ARMA structure of a general
squared GARCH(p, q) process is not as easily treated as the ARCH case since
the Whittle estimator then depends on an increasing (with the sample size n)
number of sample autocorrelations. This will become clear for the GARCH
case in the proofs of Sections 8.5 and 8.6.

8.5 Proof of Theorem 8.3.1

The proof in the case k > 4 is identical with the one for ARMA processes
with iid noise as provided in Brockwell and Davis [29], Section 10.8. The proof
only makes use of the ergodicity of (X;); see Giraitis and Robinson [56] or
Mikosch and Starica [101, 100]. In the remainder of this section we study the
case k < 4.

For any compact K C R% C(K) denotes the space of continuous func-

tions on K equipped with the supremum topology and 4, stands for con-
vergence in distribution in C(K). Similarly, we write C(K,R?) for the space
of 2-dimensional continuous functions on K, equipped with the supremum-
topology. We use the same symbol 45 for convergence in distribution in this
space.

Proposition 8.5.1. Assume the conditions of Theorem 8.3.1 hold and k < 4.
Then for any compact set K C C':
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(4)
Thxz > prbe in C(K) (8.23)
Uy = ’ — v = m , .
7n7X2 (0) keZ PROK

where pr, = Vi/Vo, (Vi) is the sequence of limiting k/4-stable random
variables defined in (8.12), and

_ 1 " 1 —1kA
=5 [ gy A
(B)
Vu, -5 Vo in C(K,R?), (8.24)

and the limiting process has representation

Vo= pr Vb. (8.25)
kEZ

Here V denotes the gradient.

Proof of Proposition 8.5.1. Part (A). We appeal to some of the ideas in the
proof of Proposition 10.8.2 in Brockwell and Davis [29]. We start by observing
that the Cesaro sum approximation

- ! mi: PIRACIERSEESY <1 - |mk|> bi, () e *2.

J=0 |k|<j |k[<m

to the periodic function ¢(\;¢) = 1/g(A\; ) is uniform on [—m, 7] x K (The-
orem 2.11.1 in Brockwell and Davis [29]). Hence, for every € > 0, there exists
mg > 1 such that for m > my,

sup lgm (A;9) — g(\;9)] < e,
A9 E[—m,m]x K

and as in (10.8.9) of Brockwell and Davis [29], for every n > 1,

lun — tunmllxk <€ as., (8.26)
where
un(9) = N an x2(Xj)/g(\j59),
Unm ("9) Y, X2 Z In X2 qm A] ) 19)

We will show the following limit relations in C(K):
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(a) For every fixed m > 1, as n — oo,

Unm ~5 U = Y (1= |k|/m) pi b .

|k|<m
(b) As m — 00, vy, 45 0.
(c) For every € > 0,
lim limsup P (||unm — unllx >¢€) =0, (8.27)
m—=00 poo
where || - ||k denotes the supremum norm on K.

It then follows from Theorem 2.4.3 the desired relation
up L5 v in C(K).

By virtue of (8.26), (c) is satisfied, and so it remains to prove (a) and (b).
Before we proceed, we give two auxiliary results.

Lemma 8.5.2. Under the conditions of Proposition 8.5.1, there exist 0 <
a <1 and ¢ > 0 such that

lop(9)] < cal*!, keZ 9cK.

Furthermore, the modulus of continuity of by () decays exponentially fast in
|k, i.e.,

sup |bp(9) — b(9")] < c(6) al*,
9-9'|<5

where limsyo c(d) = 0. The same statements remain valid if by, is everywhere
replaced by its gradient Vby,.

The proof is standard by using that the function f(z;9) = (1—¢12)/(1—
B1z) is analytic with a power series representation with exponentially decaying
coefficients, uniformly in 9 € K.

Lemma 8.5.3. Under the conditions of Proposition 8.5.1, for each fixed k >
0,
pmxz(n—k)l>0, n — oo.

Proof of Lemma 8.5.3. Observe that

pn7xz (n — k)

k k K
=n! (Z Xz;ZXt2+n—k + k(X?)? — X2 § :th - Xz ZXt2+"_k> /'mez(O).
=1 t=1 t=1

Here X2 = n~ '3} | X} denotes the sample mean of the squared observa-
tions. By stationarity, for every fixed t,
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nT 1+ XD X 0k 0, n — 00.

Hence it suffices to show that

1+ (X2)2+X2 »p
— 0. 8.28
rYn,Xz (0) ( )

We have , ,
X2 (X2
(X" za(X9° (8.29)
7n7X2 (0) 'T"nr)/n,X2 (0)
Recall that k < 4. According to (8.12), z,,7,, x2(0) converges in distribution
to a positive x/4-stable random variable. If k > 2, by the ergodicity of the
GARCH(1, 1) process,

(X2)? 25 (EX2)? < oo.

Now, since lim,,—, o z,, = 0 the sequence in (8.29) converges to zero in proba-
bility. If K < 2 then for 0 < € < k/2

E[(wil/ZXQ)n/Qfe] < n*lﬁ}/4+6/2+26/lﬁ} E|X0|n72e.

For small ¢, the right-hand side converges to zero. Therefore and by Markov’s
inequality,
x}L/QX?i)O, n — 0.

This shows that (8.29) is asymptotically negligible. The other terms in (8.28)
can be treated in a similar way. We omit details. a

Proof of (a). Observe that

i@ = Y (1= @@ +2 5 (1= F Yoo - 00
k=1

|kl<m

= (1_ L@)pmxz(k)bk(ﬂ)—l—olp(l).
|kl<m

The second sum on the first line of the latter display converges to zero in
probability uniformly for ¥ € K, by virtue of Lemma 8.5.3 and since b () is
bounded on K (Lemma 8.5.2). A continuous mapping argument, paired with

the weak convergence of the sample ACF, see (8.13), proves unm 4, U, a8
n — 0o.

Proof of (b). By Kolmogorov’s existence theorem (see Billingsley [12]), we
may assume that the sequence of limiting random variables (py) is defined on
a common probability space. Since supgc >, [bx(9)] < 0o and |pi| <1 a.s.,
Lebesgue dominated convergence yields
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vm(®) = > (1= [kl/m)prbi(9) =Y prbr(9) = v(¥),  m — oo,
|kl<m kEZ

in C(K). This proves (b) and concludes the proof of (8.23).

Part (B). Now we turn to the weak limit of the gradient Vu,. As a matter
of fact, one can follow the lines of the above proof, replacing everywhere the
Fourier coefficients by by their derivatives Vb, and making use of Lemma 8.5.2
for the gradients. Then the same arguments show that

Vun(9) -5 Y peVbe(9)  in C(K,R?).
kEZ

It remains to show that one can interchange V and ), ., in the limiting
process. This follows by an application of Lemma 8.5.2, the fact that |pg| <
1 a.s. and Lebesgue dominated convergence. This proves (8.24), (8.25) and
concludes the proof of the proposition. ad

Proof of Theorem 8.3.1. As mentioned above, the case k > 4 is identical with
the one for ARMA processes with iid noise and therefore omitted. Throughout
we deal with the case k < 4.

The proof is by contradiction. So assume the Whittle estimator s consis-
tent, i.e.,

A~

B — Do. (8.30)

By assumption, ¥ is an interior point of C'. Therefore we can find a compact
set K C C such that 9 is an interior point of K. We conclude from Proposi-

tion 8.5.1 that Vu,, 4 Vouin C(K,R?). This, combined with the consistency
assumption (8.30) and Corollary 2.4.2, yields that

Vun(@n) 4, Vo (), n — o0.
However, Vun(@n) = 0 as soon as 19n is in the interior of K, and therefore

0 = V(o) = Vbo (o) +2 > p Vbi (D). (8.31)
k=1

We will show below that (8.31) implies that
Vbo(¥) = 0. (8.32)
On the other hand, Vbg (o) can be calculated directly from

b (9) — 1 [™ 14 ¢? — 2 cos(N) d/\_1+cpf+2<,01,81
O( ) — 2 1 2 - A2 9
7w J_» 1+ B — 203 cos(N) 1- 32

and it is easy to see that Vb (9g) # 0. This yields the desired contradiction
to the consistency assumption (8.30).
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Thus it remains to show (8.32). We again proceed by contradiction: as-
sume that |Vbg(o)| > 6 for some § > 0. By Lemma 8.5.2, |Vby ()| decays
exponentially fast. Therefore and since |py| < 1 a.s., for every 6 > 0 one can
find M > 1 such that

o0

> pVbi()

k=M+1

2 <6/2.

Define
M M
c=Y |Vby(do)| and Dy = {Zpk < 5/(40)} .
k=1 k=1
Recall from Remark 8.2.3 that py, is positive with probability 1. Then on Dy,
2 < 4,

> pEVbi(90)

k=1

from which we deduce with the triangle inequality that

Vbo(9o) + 2 pkVbe(90) #0  on Dy
k=1
It remains to show that Dj,; has positive probability. It was proved in Davis
and Mikosch [35] that the limits p, = Vj/Vp are nondegenerate, hence
Vi,...,Var is not a multiple of V5. The vector (Vp,..., V) is jointly x/4—
stable with all components nondegenerate and positive. Hence (V5, ch\il Vi)
is jointly k/4-stable with a Lebesgue density. Therefore, P(Djas) > 0 which
finally concludes the proof of Theorem 8.3.1. O

8.6 Proof of Theorem 8.3.2

The proof is similar to the ARMA case with iid innovations; see Brockwell
and Davis [29], Section 10.8, for the finite variance and Mikosch et al. [98]
for the infinite variance case. As in the latter references, the proof crucially
depends on the understanding of the limits of the quadratic forms

Zﬂ(/\j)[n,x2()\j) (8.33)

for some appropriate functions 7n; cf. Proposition 10.8.6 in Brockwell and
Davis [29] and Lemma 6.3 in Mikosch et al. [98]. The following result says
that, for appropriate functions 7, the weak limit of the quadratic forms (8.33)
is determined by the weak limits of the sample ACVF of (X7?).

Proposition 8.6.1. Assume the conditions of Theorem 8.3.2 hold. Let n(\)
be a continuous real-valued 2w —periodic function such that
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(i) JZ. 1) g(X;90) dX = 0,

(ii) The Fourier coefficients fr = (2m)™" [ n(X) e "* dX of the function n
decay geometrically fast, i.e., there exist 0 < a < 1 and ¢ > 0 such that

| 71| < cal®!, ke Z.

Then

( 277 I, x2( ) HkaVL, n— 0o, (8.34)

kEZ

where Vi, = V_y and (V},) is the distributional limit of the sample ACVF of
the squared GARCH(1,1) process as specified by (8.14) and (8.16).

The proof will be given at the end of the section.

Proof of Theorem 8.3.2. We proceed analogously to the classical proof as
given for Theorem 10.8.2, pp. 390-396, in Brockwell and Davis [29]. A Taylor

expansion of 52 (1) /89 at ¥, gives
052 (09) _ 052(9,) RACH)
o9 99 99?

9252 (9

8192 n) ({9n - '190)’ (8'35)

(@n — o) =
where [, — 9, < [9o — Dn|. Since k > 4, the Whittle estimator is strongly

consistent, i.e., 19 =25 199; see Theorem 8.3.1. Therefore 9, = 9. The
same arguments as for the proof of Proposition 8.5.1 (A) yield that

%62(9) . 0l [T o 0%(1/g(X0))
99? _’2w/_ﬂg(A’ﬂ°) g9 P

)

uniformly on any compact K C C, where o, = Ey§ and (1) = (X7 — 07).
The uniformity of convergence and 19,, — 9o imply that

22279 2w 2 :
0 067;9(;9”) - ;:r / 9(A; o) 0 (1/691(9);, o)) d\ = W(¥y), n — o0.
(8.36)

The last identity is proved on pp. 390-391 in Brockwell and Davis [29].

Since the matrix W () is strictly positive definite with inverse [W(d¢)] !,
(8.35), (8.36), a continuous mapping and a Cramér—Wold device argument
suggest that it suffices to prove the relation

e’ (mn 35355;90)> N <f0(190)V0 + 2§:fk (ﬂo)Vk> : (8.37)

k=1

for any ¢ € R2. Observe that
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19 1/g(X; 9
o’ 30 ) - 277 I x2(}j), where n(\)=c" 9 /ga(ﬁ, ) .
The function 7 satisfies the conditions of Proposition 8.6.1 as shown on p. 391
of Brockwell and Davis [29]. An application of that proposition proves (8.37)
and concludes the proof. d

Proof of Proposition 8.6.1. The main idea is to express the sum on the left—
hand side of (8.34) as a linear combination of sample autocovariances of the
process (X?) and to apply Theorem 8.2.1 on the asymptotic behavior of the
sample ACVF. This idea will be made to work in various steps through a
series of lemmas.

Write the left-hand expression of (8.34) as follows:

Tp 277 an )
T _; .
=" Z Z r)/n X2 )6 ihAs
J |h|<n
T _; .
=SS ) (s () = ()
J |hl<n
acn Z Z )y (h —ih);
J |hl<n
— L + L. (8.38)

Lemma 8.6.2. Under the assumptions of Proposition 8.6.1, Is — 0.
Proof of Lemma 8.6.2. Note that

. 0, it m ¢ nZ,
D e = (8.39)
J

n, if m € nZ,

where the summation is over the Fourier frequencies (4.16). Since n(\) =
> rez fre™® for all X € R and making use of (8.39), we have
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T,
BT S g T
k€Z|h\<n
= Tn Z 'YXZ(h)thJrsn
|h|<n SEZ
= Tn Z Yx2(h) fo + n Z vx2(h Z frtsn
|h|<n |h|<n s€Z\{0}
= Iy + Is.

Observe that by Assumption (i) of Proposition 8.6.1

() fu = o 3 xe () ( IR eihm)

heZ hGZ

o / <Z e A) °

hEZ

= o2 / 0N g(xs 9o) dA = 0,

-7

from which fact it follows that 32, o, vx2(h)fa = = 32 45, Yx2(h) fn- Re-
call that both the autocovariances yx=(h) and the Fourier coefficients decay
exponentially fast in |h|. Hence

lim Iy = — hm Tn Z vxz(h) fr, = 0.

n—00
[h|>n

The convergence I, — 0 follows from the bounds

Z fh+sn S Kan_lh‘a |h| < n,
seZ\{0}
for some constant K > 0. This concludes the proof. O

We continue to deal with I; in (8.38). Again substituting n();) by its
Fourier series, taking into account (8.39) and setting

h) = faysn (8.40)
SEZL
we obtain
L =2z, Z fn ’Yn X2 ) Yx2 (h)) (841)

|h|<n

For m > 1, we want to approximate I; by
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) =Tp 2 Fn(h) (fn,x2(h) — vx2(h))-

|h|<m

Observe that for every fixed h € Z,
lim f,(h) = fp.

n—o0

Therefore and by virtue of the weak convergence of the sample ACVF, see
(8.14) and (8.16), we have

y=an > falh) (uxe(B) —yx2 () =5 > faVi  (842)

[h|<m [h|<m

Hence by Theorem 2.4.3 it remains to show the following two limit relations:

S Ve -5 Ve, m— oo, (8.43)
[h|<m hez

lim limsupP (|I; — I1(m)] >€) =0 for all € > 0. (8.44)

m—=00 poo
However, (8.43) follows from (8.44):

Lemma 8.6.3. Assume (8.44) holds. Then the sequence ), <, faVh has a
weak limit as m — oo, which we denote by Y, ., fuVh.

Proof. Since weak convergence is metrized by the Prohorov metric 7 and
the space of distributions on R is complete (see Billingsley [13], p. 72-73),
it is enough to show that the distributions induced by Z‘h|<m frnVy form a
Cauchy sequence with respect to the Prohorov metric. We also observe that
for any two random variables X,V the relation P(|X — Y| > €) < € implies
m(Px,Py) < €. Hence

lim ]P’(‘ S thh‘>e): lim  lim P(|7(m) — I (k)| > ¢)

m,k—00 m,k— 00 n—00

m<|h|<k
<2 lim limsupP(|l1(m) — | >¢€/2)=0
m—=00 p—oo
for all € > 0 implies that ), ., fnVh is a Cauchy sequence. O

The proof of (8.44) is quite technical. It is given in the remainder of this
section (Proposition 8.6.4) and concludes the proof of Proposition 8.6.1. O

Notice that the coefficients f,(h) in (8.40) satisfy the following bounds:
there exists K > 0 such that

|fn(h)| = ‘fh + Z(fh-i—sn + fh—sn) < K(alh‘ + ani‘hl), |h| <n.

s=1

Therefore the desired relation (8.44) follows from the following proposition.
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Proposition 8.6.4. Assume that the conditions of Theorem 8.3.2 hold. Let
gn(h), 0 < h < n, be numbers satisfying

|gn(h)] < K(a" +a""") (8.45)

for some constants K > 0, 0 < a < 1. Then for every e > 0,

n

S 9alh) (s () = x2(h)| > €) = 0. (8.40)
h=m+1

lim limsupP (
m—=00 p—oo

Proof of Proposition 8.6.4. Relation (8.46) is equivalent to

lim_im sup P (mn S gn(h) (v x(h) = yxe (h))‘ > e) =0 (8.47)
m—0 nsco hema1

for every € > 0. Indeed, an argument similar to the proof of Lemma 8.5.3
shows that for every fixed h > 0,

P
Ty (Yn,x2(n — h) — yx2(n — h)) — 0.
We reduce (8.47) to a simpler problem. Write

n—m n—h

B(m) =2 Y gn() [(uxe(B) = 1xa(W) = | S (XEXZ, — B33,
h=m+1 t=1
Lm=""Y g i (XPX2,, ~ BIXIXF])
h=m+1 t=1

Lemma 8.6.5. The following relation holds:

lim limsup P(|Is(m)| >¢€) =0. (8.48)

m—00 pnoco

Remark 8.6.6. A careful study of the proofs shows that I3(m) =50 as
n — oo for every fixed m provided 4 < k < 8, whereas we could show only
the weaker relation (8.48) for x > 8. ]

Proof of Lemma 8.6.5. We write I3(m) as follows:
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. n—m n—h
Iom) = ="" X2 3 ga(h) 3 (XF —BX)
h=m+1 t=1
. n—m n—h
ST Y el YD (X, —EXD)
h=m+1 t=1
n—m n—h , -
D DA ORI e 3 v
h=m+1
~zn Y ga(h) [1— . ]%@(h)
h=m+1

= —X2%(I31 + I32) + I33 — I34.

We have by (8.45),

n—m

Tn .
[I34] < K " > (@ +a" ") hyxa(h).
h=m+1

Since the ACVF ~yx2(-) decays exponentially fast to zero and z,/n — 0 we

conclude that I35 — 0.

The term I33 can be treated by observing that the central limit theorem

holds;
Jn (X2 - EXg) -4 N(0,0?)

for some positive 0. This follows from a standard central limit theorem (see
e.g. Ibragimov and Linnik [68]) for strongly mixing sequences with geometric
rate; see Boussama [23] for a verification of the latter property in the general

GARCH(p, q) case.

Since the terms I3; and I3 can be treated in the same way we only focus

on I3;. Its variance is given by

n—hn—h'

Var(I31) = Zg i i gn(h) gn(h') Z Z vxz (|t —t']).

h=m+1 h'=m+1 t=1 t'=1

Since yxz(h) decays exponentially in h, there is a constant ¢’ > 0 such that

n—h n—h'

> axe(ft—t)) < c'n,

t=1 t'=1

and, consequently,
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Var 131 < Z Z Ign n |(C n) CIQ;:( z_: |gn(h)|> .

h m+1 h'=m+1 h=m+1
(8.49)

Recall that (22 /n) is bounded (and converges to zero for k < 8). Therefore
and in view of condition (8.45) on g, (h) we conclude that the right—hand side
of (8.49) converges to zero by first letting n — oo and then m — co. This and
an application of Markov’s inequality conclude the proof. ad

By virtue of Lemma 8.6.5 it suffices for (8.47) to show that for every e > 0,

lim limsup P (|Is(m)| > €) = 0.

m—00 n—o00

We show this by further decomposing I,(m) into asymptotically negligible
pieces.
For ease of notation write

n—h
- 1 .
Ge(h) = 3 (XEXZ,, — BLX3XF])

t=1

Choose a constant p > 0 such that
7=1-4/min(x,8) + plog(a) < 0, (8.50)

where we recall that |g,(h)| < K(a" + a™"); see the assumptions of Propo-
sition 8.6.4. Write

[plog(n)] n—[plog(n)] n—m
I4(m = (

>+ Y o+ Y >gn<hm,xz<h>

h=m+1  h=[plog(n)]+1 h=n—[plog(n)]+1
=1Iu (m) + Iy + Iy3 (m)

We start by showing that Iy, L5 0 as n — oco. This follows from a simple
estimate for the first moment: for some constant K’ > 0,

n—[plog(n)] n—h
In <
Bllol < 7Y lgu(h)] Y 2B(X7 X, )
h=[plog(n)] t=1

n—[plog(n)]
<2 (EXg) Tn Z lgn(h)]

h=[plog(n)]

< K'zp aPlos(m) = g’ 5 pplos(a)

The right hand expression is of the order n”, where 7 < 0 as assumed in
(8.50).
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Thus it remains to bound Iy (m) and I43(m). It suffices to study I41(m)
since the other remainder I43(m) can be treated in an analogous way.
In what follows we will use truncation techniques for the summands

X?X?,, —E[X§X}]. We choose the truncation level a, in such a way that
nP(|Xo| > an) ~n *.

It is then immediate from the tail behavior of | Xj| that one can choose a,, =
(con)/*; see (8.5). Write

Iy (m) = Iy (m) + Iy2(m),

where
" [plog(n)] n—h
Iyi1(m) = nn > o) D (XX 500y — BT XD 0 5003])s
h=m-+1 t=1
. [plog(n)] n—h
Iyi2(m) = nn D 9a) Y (KXo, <any — BIXP X110, <a,])-
h=m-+1 t=1

The treatment of I41;(m) heavily depends on the fact that the volatility pro-
cess (o7) satisfies the SRE (8.2), i.e., 07, = A407 + By, with 4, = a3 Z7 + 37
and B; = ag. An iteration of this SRE yields the identity

otin =Un +Vino;, h>1, (8.51)
where
h—1
U, = Z At+h—1 o .At+jBt+j_1 + Bt+h—1 and Vi, = At+h—1 - At~
j=1

Lemma 8.6.7. For every e > 0,

lim limsup P (|I411(m)| >¢€) =0.

m—0o0 n 0o

Proof of Lemma 8.6.7. By (8.51),

XtZXt2+h1{0t>an} = Utzl{m>an}(ZtQZt2+hUth) + 0?1{0t>an}(Zt2Zt2+h‘/th)7
(8.52)
where Z?Z2 Uy, and ZZZ}, Vi are independent of of for h > 0. Since
p] = aj + B7 <1 there exists a constant ¢ > 0 such that

h—1
E[ZUunZ20) = (BZ7) (EZ},) (EUm) = of (3 (¢1)" 77 +1) <.

j=1

E[Z{VinZiih) = (BZE14) (EVinZ{]) = (aFEZy + B7) (91)" " <,
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for all h > 1. Taking the expectation in (8.52), we have
EX? X7 1 10,5a,3) < 2¢B[0g1{65a,3], h>1
when a, > 1. The latter inequality implies that

[plog(n)] n—h

T
E[Ls11(m)| < : > lga) Y 2BIX? X2 116, 5a,]
h=m+1 t=1

[plog(n)]

<dernBloglisysay]l D, lon(B)l- (8.53)
h=m+1

By Karamata’s theorem (see e.g. Embrechts et al. [45], Theorem A3.6),

Tn E[091{sy>a,1] ~ const. (8.54)

The Markov inequality together with lim,,,_,~ lim sup,,_, . ng:k;sfl)] lgn(h)| =

0, (8.53) and (8.54) yield the statement of the lemma. O

We continue with Iy15(m). Substituting X? by 07 Z7 and X2, by (U +
Vino?)Z;, ,, we obtain

Iy12(m)
[plog(n)] n—h
= Y M) D (0! oi<any ZiVinZisn — Blot Loy<any Zi Vin Zisr])
h=m+1 t=1
" [plog(n)] n—h
+ h_z:H gn(h) ;(Ufl{atsan}ZfUcherh ~El0715,<a,} ZiUn 221 1))

= Iy191(m) + Is122(m).
The following two lemmas deal with I412;(m), i = 1,2, and conclude the proof

of Proposition 8.6.4.

Lemma 8.6.8. For every e > 0,

lim limsup P (|I4121(m)| > €) = 0.

m—00 po00

Proof of Lemma 8.6.8. Set Sy, = ZfVinZE, ). We first prove that there is
¢ > 0 such that
ES?, <c forallt€Z, h>0. (8.55)

From the convexity of the function g(r) = EAj and g(x/2) = 1, see (8.6), we
conclude that g(2) = EA3 < 1. Hence
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EStQh = E[ZfA%] (EA%H) T (EA%+h71)(EZf+h)

= (El(a9)?25) + E(af 7 28) + EI(8)? Z4]) (BAZ,,) - (BAZ,,_,)(BZ2),
which proves (8.55). Since S, is independent of o2, we can further decompose

Ii191(m) = Iyi911 (M) + Iia212(m),

where
" [plog(m)] n—h
Lion(m) =" > ga(h) Y (0! 140,<a,y — Blo}1{5,<0,3]) (ESwn),
h=m+1 t=1
" [plog(n)] n—h
Lipoia(m) =" Z gn(h) Z O'le{a'tgan}(sth — ESw).
L ) =1

One can easily see that the summation in Iy1211(m) can be extended to t =

1,...,n without an impact on the asymptotics. Indeed,
" [plog(n)] n »
TZL S gnh) D (01 1n<any — Elot (s, <an}]) (ESun) — 0,
h=m+1 t=n—h-+1

since the first absolute moment converges to zero. Moreover, we may drop the
indicators 1¢,,<4,} in 41211 (m) since for all € > 0,

[plog(n)]

. T -
lim sup P ( " E gn(h) E (Ufl{m>an} - E[U?1{0t>an}] ) (Esth) > 6)
n—00 n he —
=m+1 t=1
-0, m — 00.

This can be shown by computing the first absolute moment of the random
variable in the above probability, where one has to account for the asymptotic
rate of E[0}1({y,5q,}] in (8.54) and for

[plog(n)] [plog(n)]
lim lim sup Z lgn(h)| < lim limsup K Z (™ +a™ ) =0.
Mm—00 p_seo il M—00 n_ 500 hmit

(8.56)
Because of these two observations and since ES;, is bounded by +/c according
to (8.55) and Lyapunov’s inequality, it suffices to study the convergence of

R " [plog(n)] n [plog(n)]
L1 (m) = nn > gn(h)) (0} —EBo}) = 209n,02(0) D> gn(h).
h=m+1 t=1 h=m+1

(8.57)
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It is shown in Section 5.2.2 of Mikosch and Starica [99] that z,,7, »2(0) <4
W for some random variable W. This together with (8.56) and a Slutsky
argument show that

lim limsup P (|Ig1211(m)] > €) =0

Mm—00 p—oo

and therefore
lim limsup P (|Is1211(m)| > €) = 0.

m—=00 n—oo

It remains to study Is1212(m). We will study the second moments:

A 22 [plog(n)] [plog(n)] n—hn—h'
Elliz2(m)?]="7 > Y g W)Y E[F(t, bt ),
n h=m+1 h'=m+1 t=1 t'=1

where
F(t,h, t, h’) = U?l{a-tgan}o.?l l{at,gan}(sth —BES:1)(Spn — BSpp).

Notice that E[F(t, h,t',h’)] = 0 whenever |t —¢'| > min(h, h'). Indeed, assum-
ing without loss of generality ' > t and ' — ¢t > h, Syp is independent of
0%, S, o}. Then it is straightforward that

E(F(t,h,t', 1) |0},05,Sm) =0  as.
Therefore

z2 [plog(n)] [plog(n)]

E[I41212 Z Z gn n Z Z E th tl I)]

h=m+1 h'=m+1
|t —t|<m1n(h R")

Note that by Holder’s inequality, independence of o7 and Sy, and (8.5;8);58)
E[F(t,h,t', h")]
< (B[0} {5, <au} (Sth = EStn)* 1)/ (Blof Lo, <an} (Serw — ESpn)*])!/?
= B(061{so<a,y) (Var[Sea])'/? (Var[Syp])'/?
< cE(0g1{s0<an}) - (8.59)

In the case 4 < k < 8 , which we will pursue (if xk > 8 the inequality
E(0§1{ry<a,1) < Bof§ < oo will do), Karamata’s theorem gives

E(0§1{so<a,}) ~ const x a5 ", n — 00.

This together with (8.58), inequality (8.59) and min(h, h') < v/hh' leads to
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2 [plog(n)] [plog(n)]

E[l41212(m) D > g gn(R)] 20 VARG

h=m+1 h'=m+1

2 [plog(m)]
=2 ""aS™ | N0 B ga(h)
n h=m+1

for some ¢’ > 0. Note that

-1 8 K

n J,' a, " ~ const.

Moreover, since |g,(h)| < K(a" + a™ "),

[plog(n)] [plog(n)] [plog(n)]
Z B2\ ga(h)| < K Z h'2a" + [plog(n 1/2 Z a”
h=m+1 h=m+1 h=m+1

[plog(n
<K Z W+ B (1) logga)] s

o0
- K Z h/2a" as n — 00,
h=m-+1

— 0 as m — 00.
Therefore

lim lim sup E[[41212 (m)2] = 0,

m—=00 p—oo

which relation together with Markov’s inequality finishes the proof of the
lemma. a

It finally remains to show that I4102(m) is negligible.
Lemma 8.6.9. For every e > 0,
lim limsup P(|I4122(m)| > €) = 0.

m—00 p—soo
Proof of Lemma 8.6.9. Let Sy, = ZEUn Z}, . Write
Ii122(m) = Is221(m) + Is1222(m),

where
" [plog(n)] n—h )
Ii1221(m) = : Z gn(h) Z(Ugl{mga"} —Elo71{5,<an}]) Sth,
h=m+1 t=1
" [plog(n)]
Is1222(m) = nn Yooy Z 0t 110 <an} (Stn — BSin ).

h=m+1
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Now one can follow the lines of the proof of Lemma 8.6.8 with Sy, replaced
by Si,. Note that ESy, is also bounded by a constant; set ¢ = (EAZ2)'/? and
note that 0 < EAg < ¢ by Lyapunov’s inequality. Hence

ES2, _ EU?,

2(08)(EZ5)?  2(ag)?

. h—1 2

oo |2 ZAt+h_1-"At+jBt+j—1 +2B}
2(0{0) j=1

h—1 h—1

Z Z Aprno1- - Apj - Arpnoa - Ay

j=1j'=1

IN

1+E

h—1 h—1

=1+ Z Z (EA2)h—max(3:3") (F Ag) ']

j=1j'=1

h—1 h—1

<14+ Y3 ghm2metid)gli=i|

j=1j'=1

h—1 h—1

=143 i

j=1j'=1

h—1 2
=1+ Z q"i
j=1

Secondly the term corresponding to (8.57) in Lemma 8.6.8 has to be treated
by the central limit theorem, see also Lemma 8.6.5. O

Remark 8.6.10. As a matter of fact, the only place in the proof of Propo-
sition 8.6.4, where we made use of the assumption EZ§ < oo, was the proof
of Lemma 8.6.8. We conjecture that this assumption can be replaced by
E| Zo|"*+® < oo for some positive J.
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