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Preface

The field of oncology is now in the midst of evolution owing to rapid advances in
biotechnologies and cancer genomics that increasingly accelerate our understanding
of cancer biology and the development of new diagnostics and therapeutics. This
field is actually becoming one of the most promising disease fields in the shift
toward precision medicine, involving the provision of a new paradigm of clinical
trials based on molecular markers. Accordingly, many new statistical challenges
have emerged in this field which warrant further progress in the methodology and
practice of biostatistics. Importantly, biostatisticians have a critical role more than
ever in the discovery of disease mechanisms/biomarkers and in the development of
effective healthcare strategies for disease prevention, early detection, and treatment.
Based on the accumulation of their experiences in these medical researches, bio-
statisticians will help establish the new framework of evidence-based medicine in
the new era of precision medicine, with advanced statistical methodologies and
tools.

This book presents state-of-the-art biostatistical methods and their applications
in various stages of current cancer studies. Topics include molecular epidemiology,
disease screening, complex clinical trials with drug combinations or predictive
biomarkers, development of prognostic biomarkers/risk calculators, meta-analysis,
and the analysis of large-scale omics and imaging data. Several chapters, providing
general overviews on specific topics or fields in cancer research, would be bene-
ficial for very wide audiences, including clinical investigators, translational scien-
tists, and others who are involved in clinical studies. Several chapters provide nice
methodological overviews for specialists and students in biostatistics and bioin-
formatics. On the other hand, as one of the unique features of this book, many
chapters provide lush aspects in practical biostatistics that would be beneficial for
practitioners and, also, methodologists and students in biostatistics.

Lastly, this book project was motivated by the first Pacific Rim Cancer
Biostatistics Conference in Seattle in the summer of 2015 to establish an interna-
tional network of biostatisticians in the oncology field. We sincerely express our
thanks to all of the contributors to this project, who are leading experts in academia
and government organizations for providing the “frontiers” of biostatistics in this
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field. We also thank a Grant-in-Aid for Scientific Research (16H06299) and
JST-CREST (JPMJCR1412) from the Ministry of Education, Culture, Sports,
Science and Technology of Japan for supporting the conference and book project.

Nagoya, Japan Shigeyuki Matsui
Seattle, USA John Crowley
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Challenges for Biometry in 21st Century
Oncology

Richard Simon

Abstract This chapter provides an overview of the current state of translational
cancer research and a discussion of some of the opportunities for biostatisticians,
bioinformaticians and computational biologists to accelerate progress in the efforts
to reduce cancer mortality. We describe how advances in understanding of tumor
genomics have changed the development of anti-cancer treatments and stimulated
the development of new clinical trial designs. We propose that further progress will
require the development of treatment focused systems-biology modeling that uti-
lizes deep sequencing data and other new tumor and immunology characterization
assays. The chapter urges biometricians to participate in trans-disciplinary collab-
oration and maximize the impact of their contributions by investing time to
understand the biological subject matter and the therapeutic context of the problems
they work on.

Keywords Translational research � Trans-disciplinary collaboration �
Translational systems biology

1 Introduction

Many aspects of cancer research have changed dramatically as a result of the
development of whole genome biotechnology platforms and advances in tumor
genomics. Translating these developments into reduction in cancer mortality has
been difficult, however. In this chapter I will provide a brief review of some of the
traditional areas of translational research, highlighting some of the accomplish-
ments and challenges in each area. I will then make some comments about chal-
lenges and opportunities that I see for accelerating progress in oncology using the
tools of biostatistics, bioinformatics and biological modeling.

R. Simon (&)
R Simon Consulting, 11920 Glen Mill Rd, Potomac, MD 20854, USA
e-mail: rmaceysimon@gmail.com
URL: http://rsimon.us
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2 Translational Cancer Research

2.1 Cancer Cause and Prevention

Many human cancers are caused by tobacco and alcohol use, exposure to ionizing
and ultraviolet radiation, oncogenic viruses or industrial chemicals. Defining the
specific molecular steps of carcinogenesis has been elusive for most kinds of cancer
and the search for specific dietary and lifestyle factors that are associated with high
penetrance risk has had limited success. Much of epidemiologic research in the past
decade has been focused on finding inherited DNA polymorphisms associated with
cancer risk. Although genome-wide association studies of thousands or tens of
thousands of individuals have identified polymorphic sites associated with cancer
risk, the effect size of these polymorphisms has generally been too small to be of
value for clinical intervention or genetic counseling. Tomasetti and Vogelstein [1]
have suggested that a large portion of human cancers are caused by mutations
resulting from the thermodynamics of cell division. They showed that the estimated
number of cell divisions in organ specific stem cells is correlated with organ
specific cancer incidence rates. There are, however, geographic variations in cancer
incidence that suggest that specific exposures or lifestyle factors also play a role.

The most successful cancer prevention program in the United States has been for
reduction in tobacco use. The HPV vaccine for preventing cervical cancer is another
success. Chemoprevention has been less successful because the agents identified as
being effective have often had serious adverse effects which have limited their use.
Radiation exposure is carefully regulated but programs for lifestyle reduction in
alcohol exposure or dietary changes have not been successful.

2.2 Early Cancer Detection

Many kinds of human epithelial cancers are considered to have a pre-clinical course
with an interval of many years from initiation to detection [2]. This long pre-clinical
course should provide opportunities for early detection before the tumor has
metastasized and could be cured by surgery. Early detection has been hampered by
two main factors. One is technology for identifying early tumors and the other is
identifying tumors which will become life threatening. New technologies for highly
sensitive detection of circulating tumor DNA may help overcome the first limita-
tion. However, because resection of the tumor can involve removal of a normal
organ with serious adverse effects, the second factor is still limiting. What is needed
is a better understanding of the steps of development for early tumors which will
enable one to distinguish those which are likely to become life-threatening if not
resected from those which are less likely to become clinically significant during the
lifetime of the individual.
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2.3 Cancer Treatment

Prior to 1990, curative drug treatments were developed for several types of cancer
including pediatric leukemias, Wilms tumors, lymphomas and testicular cancer. The
key principles employed in developing these curative regimens were (i) a given dose
of drug kills a fixed proportion of the tumor cells, not a fixed number of cells;
(ii) combinations of drugs can overcome resistant sub-populations of tumor cells
existing at diagnosis and (iii) combining active drugs which do not have overlapping
toxicity are often most effective. Unfortunately, these principles have not resulted in
substantial cure rates when applied to advanced epithelial solid tumors of adults.

A new principle of drug treatment was developed following the identification of
recurrent somatic mutations of oncogenes in tumors. For example, about half of
metastatic melanomas contained an identical point mutation in the BRAF gene [3].
BRAF is a kinase which acts as a switch in translating signals received by mem-
brane receptors to transcription factors which activate gene expression and cell
proliferation. The mutation found in BRAF sets the switch to the “on” position even
in the absence of a receptor signal. A drug, vemurafenib, was developed to interfere
with the constituative activation of mutated BRAF and this drug was found to be
very active, even as a single agent, against melanomas. Figure 1 shows the
progression-free survival curves from the phase III trial comparing chemotherapy
alone to vemurafenib in melanoma patients bearing the BRAF tumor mutations [4].

The development of crizotinib for patients with NSCLC bearing an ALK
translocation followed a similar development path as that of vemurafenib for
melanoma [5]. ALK translocations are found in about 4% of patients with NSCLC
but because NSCLC is itself so common, it was possible to conduct a randomized
pivotal clinical trial of crizotinib. ALK is also a kinase which is activated by the
translocation.

The successes of drugs molecularly targeted to mutated kinase genes or
over-expressed receptors established this approach as one of the two dominant
strategies for drug development in oncology today. Drug development is driven by the
recurrent somaticmutations in oncogenes found in large tumor sequencing studies [6].
The discovery of these recurrent somatic mutations has also had a strong influence on
the kinds of clinical trials being conducted. Targeted “enrichment” randomized phase
III trials in which patients are selected whose tumors carry the genomic alteration
targeted by the new drug can require many fewer randomized patients than the usual
broad eligibility clinical trial [7–9]. New “umbrella” trial designs consist of multiple
targeted enrichment trials with a common infrastructure for sequencing the patients’
tumors and triaging the patients to the trial appropriate for their identified genomic
alteration [10]. Phase II “basket” clinical trials evaluate drugs approved for the subset
of patients with a particular histologic type of tumor which carries a specific genomic
alteration. Such a drug is evaluated in patients whose tumors are of a different his-
tologic type but carry the same genomic alteration as that for which the drug was
approved. These phase II basket trials are very popular [11].

Challenges for Biometry in 21st Century Oncology 3



Fig. 1 Distribution of progression-free survival in a randomized clinical trial of vemurafenib
versus decarbozine for patients with metastatic melanoma whose tumors contain the V600E BRAF
mutation [4]
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The second active area of cancer therapeutics today is immunotherapy. Although
attempts to stimulate the immune system to attack human tumors had been
attempted over many years, success has been limited by (i) difficulty in identifying
good tumor-specific antigenic targets; and (ii) immune anergy in patients with
cancer. It has now been determined that in many tumors there are actually tumor
specific mutated neo-antigens presented on MHC molecules, but that the tumor
plays an active role in down-regulating the immune response. One of the ways that
tumors down-regulate the immune response is by secreting ligands which bind
checkpoint receptors on the surface of effector T lymphocytes. These checkpoint
receptors have evolved to limit the possibility of auto-immune responses but are
used by tumors for other purposes. Inhibitors of the CTLA and PD-1 checkpoint
receptors have been demonstrated to be able to cause sustained complete remissions
of metastatic disease in several types of cancer [12]. The extension of these results
to other types of cancer and other checkpoints is an active area of clinical research.
Highly promising results have also been reported with transplantation of genetically
engineered and expanded T lymphocytes.

3 Challenges for Biometry

I am using the term “biometry” in its traditional meaning as “the application of
mathematical and statistical methods to the collection, analysis, and interpretation
of biological data.” Today, the application of such methods generally involves
heavy use of computers and so we might view biometry as encompassing bio-
statistics, bioinformatics and computational biology.

3.1 Biostatistics

Biostatisticians have made major contributions to many areas of oncology research,
particularly clinical oncology. The rise of genomics has introduced new problems
involving high dimensional data analysis and challenges to the traditional clinical
trial paradigm. The organ site based classification of cancer has been shown to be
inaccurate in many cases; cancers of the same primary site are often different
diseases with different causative mutations, different natural courses and different
responses to treatment. Statisticians have for many years emphasized the impor-
tance of performing broad eligibility clinical trials to try and simulate the population
of patients who might receive the test treatment in clinical practice. Such clinical
trial designs are in some cases not appropriate for the newer molecularly targeted
drugs which are very unlikely to be effective for patients whose tumors are not
driven by de-regulation of the molecular target of the drug. Many of the clinical trial
analysis procedures, such as the use of interaction tests, are also not appropriate for
clinical trials in which a pre-specified subset hypothesis is part of the primary
analysis plan. New classes of clinical trials such as enrichment designs [7–9] and
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adaptive enrichment designs [13–15], have been developed for such trials. There is
increasing realization that even in clinical trials for which there is a statistically
significant treatment effect for the eligible population, that population is not nec-
essarily the best intended use population for the treatment. The treatment effect for
the eligible population is often small because it is diluted by a substantial fraction of
the eligible patients who do not benefit from the test treatment. Although such
clinical trials may lead to regulatory approval of the test treatment, payers may
refuse to pay for a drug with such a small average treatment effect. This accounts
for some of the great interest in enrichment designs and in predictive biomarkers
which identify patients most likely to benefit from a treatment. There is a growing
recognition that a clinical trial has two major objectives; one to test whether a new
treatment has any benefit relative to the control for the population as a whole, and
the second to provide guidance for determining whom to treat with the new regi-
men. The second objective is not a hypothesis testing problem; it is one of deter-
mining a predictive classifier with good classification properties [16–18].

There has been relatively little research on “predictive classifiers”. Instead, most
of the biostatistics focus has been on developing “prognostic classifiers” when the
number of candidate predictors is much greater than the number of cases.
Unfortunately, prognostic classification studies are often performed in a manner
which ignores the medical context and consequently have no impact. Prognostic
classifiers can be medically useful if they help physicians identify the patients who
need treatment, or who need more treatment than a standard control regimen, among
patients in a medical context generally defined by stage and prior treatment history.
Developing a classifier using a dataset of patients with a wide range of stages who
have subsequently received a wide range of treatments is much less likely to produce
a medically useful decision tool. Also, the question is often whether among patients
with the same stage of disease who subsequently received no systemic treatment, is
there a subset with such good prognosis that similar future patients do not need
systemic treatment. That question is often not addressed; instead attention is focused
on testing hypotheses about outcome differences for the risk groups.

Many “big data” problems that biostatisticians encounter involve genomic data
and involve biological discovery or prediction rather than hypothesis testing. One of
the main challenges for biostatistics in the future will be overcoming the viewpoint
that their field is only about inference. Overcoming this will include overcoming the
bias that proving theorems about asymptotic behavior is more valuable than
development or application of novel tools for data analysis. Important contributions
to specific fields of science must be highly valued. Departments should aim to train
statistically knowledgeable scientific leaders, not just mathematical experts.

3.2 Bioinformatics

The advent of biotechnology platforms for whole genome characterization, par-
ticularly gene expression profiling and nucleic acid sequencing, has transformed

6 R. Simon



biology and genetics research. These technologies have enabled new scientific
questions to be addressed and old questions addressed in new ways. The generation
of this data has necessitated the development of new methods for upstream and
downstream analysis. It has also led to major growth in the fields of Bioinformatics
and Computational Biology for development and use of these methods. Individuals
from a wide variety of backgrounds have been attracted to the field and are needed
in the field. I believe that a major challenge for bioinformatics is to develop a
culture of trans-disciplinary collaboration and to do a better job of generating
biologically meaningful knowledge. Although a project need not be hypothesis
driven, good projects are usually motivated by clear scientific questions. Without a
clear scientific question, it is not possible to design the appropriate experiment or to
use the appropriate assay platform. A successful project obtains clear answers. To
achieve this usually requires a closely working team of biological scientists and
bioinformatics scientists. I headed a Computational and Systems Biology Branch at
the National Cancer Institute and have focused on hiring computational biologists
with strong biological backgrounds. We found that the development of innovative
bioinformatics systems which permit biological scientists to directly perform
detailed analyses of high dimensional data without computer programming can also
be effective for enhancing discovery [19].

3.3 Translationally Focused Systems Biology Modeling

Somatic mutations have complex effects on tumor cell populations and on their
interactions with surrounding tissue and the immune system. One might think that
mathematical and computational modeling would have an important role in helping
to understand these biological systems, but to date it has had limited impact on the
development of improved prevention or treatment strategies. Too often the focus
has been on characterizing general system properties rather than on elucidating
actionable methods for system control. One of the problems with biological systems
modeling is that we rarely know enough to model the system at a very detailed
level. If we need to understand the system at that level, then we will have to
perform many experiments and take many measurements. This is often beyond the
scope of the modeler and beyond the interest of the experimentalist whose wants to
develop treatments, not models. For the collaboration to be successful, the mod-
eling process must be helpful in the development of effective interventions. It must
be a stepwise approach at a level of detail chosen so that each step provides new
clues about what kinds of interventions might be successful. Such modeling efforts
need to be approached from a different perspective than the current standards in
systems biology. Systems biology in therapeutics should have a clear objective. For
example, a model of interaction of signaling pathways might have the objective of
improving the development of combinations of molecularly targeted agents based
on a tumor profile of genomic alterations. Similarly, a model of the interaction of a
tumor with its stroma and the immune system might have the objective of

Challenges for Biometry in 21st Century Oncology 7



improving the development of improved combinations of immunomodulating
agents for eradicating tumors by T effector lymphocytes. Such models cannot be
built based on public databases developed without focus on the particular objective.
Experiments must be conducted to generate the data for the next stage of the
process. This requires a close collaboration with the objective being not to develop
the model per se, but to use the modeling process to discover new approaches for
improved treatment. Although such systems modeling is challenging, therapeutics
development, particularly improving response to immunotherapy regimens, is very
complex and contains too many non-understood variables to be effectively pursued
without some form of computational systems modeling.

4 Discussion

Progress in prevention, early detection and treatment of human cancers has in many
cases been modest. More rapid progress may await a better understanding of the
earliest stages of oncogenesis. Most of the experimental models of cancer are
deficient in one form or other but the development of increasingly data rich whole
genome assays provides the opportunity to more deeply probe and better under-
stand human tumors. Translating this data into meaningful biological information,
however, is very challenging and requires the involvement of biometric scientists.
The pursuit of this area of research will continue to provide many opportunities for
development of novel biostatistical methodology.

Major therapeutic advances in oncology are likely to require deeper under-
standing of cancer biology. The strategy of matching drugs to somatic mutations
has been useful but has generally led to early drug resistance in treating patients
with metastatic disease. Focused systems biology modeling and deep tumor
sequencing studies are needed to elucidate the biology of tumors and the immune
system and the interaction of signalling pathways to enable improved treatment
regimens to be developed.

The randomized clinical trial will continue to play a very important role in
therapeutics development. The genomic heterogeneity of tumors both between
patients and within individual patients will, however, lead to new clinical trial
designs which are more closely aligned with discoveries in tumor biology and
immunology. There is sometimes a tension in the design and analysis of clinical
trials which biostatisticians will continue to struggle with. No single clinical trial
answers all the questions or produces the final treatment regimen. The appropriate
analysis and interpretation of a clinical trial depends on the medical context, and on
other available treatments. For a biostatistician involved in therapeutics develop-
ment, the objective is to participate in a process that leads to more effective
treatment for patients, not to just avoid type I errors. Cancer clinical trials are
becoming based on stronger biological science with better tools for classifying the
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tumors and for measuring treatment effect. As in the past, the effective use of these
tools will open up new methodological problems whose solution will depend on the
participation of talented and dedicated biostatisticians.
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Statistical Challenges with the Advances
in Cancer Therapies

Rajeshwari Sridhara

Abstract Statistical challenges in designing, analyzing and interpreting the data
are being encountered with the recent development of new classes of drugs to treat
cancer. The existing paradigm of drug development from Phase I to Phase III
clinical trials is not optimal. New and innovative trial designs and statistical
methods are needed to evaluate the new classes of drugs. In this chapter we present
the regulatory considerations in the evaluation of drug products, the drug devel-
opment paradigm in the last century and the current time, and the statistical chal-
lenges that need to be addressed.

keywords Regulations � Cancer drug development paradigm � Immunotherapies

1 Regulatory Considerations

With the signing into law of the Kefauver-Harris Drug Amendments to the Food
and Drug Cosmetic Act in 1962, drug manufacturers were for the first time required
to prove to the US FDA the effectiveness of their products before marketing them
[1]. This amendment was intended to ensure both drug efficacy and safety, and gave
a statistical framework for conducting clinical trials to prove the effectiveness of
drug products. Section 505(d) of the Food and Drug Cosmetic Act [2, 3] as
amended states that “…evidence consisting of adequate and well-controlled
investigations, including clinical investigations, by qualified scientific experts, that
proves the drug will have the effect claimed by its labeling …”. This statement has
been used as the regulatory standard for establishing evidence and interpreted to
mean the following: the evidence should be reproduced in at least two independent
studies, the probability of one-sided type I error should be controlled at a threshold
of 0.025, a clinically meaningful treatment effect should in general be established
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even if the results are statistically significant, and the product should have an
acceptable risk-benefit profile.

Two decades later, in 1981, the FDA and the Department of Health and Human
Services revised the regulations for the protection of human subjects, detailing the
contents of informed consent and widening the representation in institutional review
boards. Another landmark in the history of the FDA was the publication of regu-
lations in 1991 establishing a new path to accelerate the review of drugs for
life-threatening diseases. Today we have two regulatory pathways for marketing
approval of drug products: regular or traditional approval and accelerated approval.

The regular approval decision is based on demonstrated clinical benefit of the
drug product, for example, improved overall survival in cancer patients compared
to placebo, or on an outcome that clearly benefits a patient, such as an improvement
in disease related symptoms. The accelerated approval decision is based on a
surrogate endpoint reasonably likely to predict clinical benefit, such as objective
tumor response rate, and the treatment effect should be better than available therapy.
Products approved under the accelerated approval pathway are, however, required
to subsequently establish improved clinical benefit by conducting a confirmatory
clinical trial.

The statistical considerations in evaluating drug products include (1) quality and
quantity of data, (2) design of the study, (3) method of analyses, and (4) interpre-
tation of the results from the analyses. With respect to clinical trial design, the
important considerations are whether the study is randomized or not, the presence
or absence of adaptive features, whether a superiority or non-inferiority hypothesis
is tested, the extent to which the overall false positive rate is controlled, and
whether the results are replicated. Important considerations in the analyses include
clear definition, measurement and validation of the outcome of interest; the statistic
used to test the hypothesis and whether the data conform to the assumptions of the
chosen analysis method; whether any subgroups were identified and pre-specified to
be tested; imbalances between treatment groups in the subgroup; and finally
whether multiple hypothesis testing was conducted.

2 The Drug Development Paradigm in the Last Century

The development of cytotoxic drugs, the predominant treatment of cancer in the last
century, has generally been comprised of a step-wise approach with clearly defined
phases of clinical trials: Phase I trials for dose finding, Phase II trials to determine
drug activity, and Phase III trials for confirming efficacy. Phase I trials have been
designed to find the maximum tolerated dose (MTD), commonly using an algo-
rithmic design such as a 3 + 3 design or more recently a model-based design
(for example, modified continual reassessment methodology). In these trials, the
dose was continuously increased until dose limiting toxicity (DLT) was observed.
A lower dose than the DLT dose was considered the maximum tolerated dose
(MTD). The MTD was further evaluated in the next phases of the study to assess
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the efficacy and overall risk-benefit of the drug. In this cytotoxic paradigm a ‘more
is better’ approach was used, because of the desire to kill the maximum number of
cancer cells. For cytotoxic therapies, there were reasonably good preclinical models
prior to conducting first-in-human Phase I studies, treatment was limited to a finite
number of treatment cycles of 21–28 days, the dose given to a patient was based on
body surface area, toxicities were observed in a short period of time, and the
toxicities (hematologic, neurologic, etc.) were well characterized.

The Phase II single-arm trials evaluated activity of the drug using intermediate
outcomes such as tumor response rate that could be observed in a relatively short
time. Typically, these trials were designed using the Simon two-stage approach [4]
as single-arm studies. In this approach, patients would be enrolled and treated in
two stages. If the tumor response rate in the group of patients enrolled and treated at
MTD in the first stage was less than a pre-specified threshold, the drug would not be
studied any further; and if response rate was more than this threshold, an additional
group of patients would be enrolled to the second stage. Only if the overall response
rate was more than a desired threshold in the two groups of patients combined
would the drug would be further evaluated in Phase III trials.

The confirmatory Phase III trials evaluating the efficacy and safety of the drug
were randomized controlled trials comparing the investigational drug to the stan-
dard of care, with overall survival as the primary outcome of the clinical trial.
Because the toxicities were well characterized for the cytotoxic products and the
treatment was limited to a finite number of treatment cycles, the toxicities observed
during the different phases of drug development formed an adequate basis to guide
physicians in the management of patient treatment.

3 The Current Drug Development Paradigm

With the understanding of the biology of the disease and the development of
non-cytotoxic drugs such has kinase inhibitors and immunotherapy, cancer treat-
ment options have changed in the last two decades. In terms of both toxicity and
activity/efficacy, these products are very different from cytotoxic products. There
are few if any good pre-clinical models to predict the likely starting dose and
toxicities in humans, although these products are in general better tolerated. Severe
toxicities of these drugs are not always observed in a short duration of time, and
treatment is not limited to a few cycles, but typically continued until disease pro-
gression is observed. Many of these products are taken orally and administered in
fixed doses rather than based on body surface area. Often a long-term effect on
overall survival is observed in the absence of objective tumor response rate
(example: sorafenib, ipilimumab) [5, 6]. Thus, the cytotoxic paradigm fails in every
phase of drug development for the current generation of drug products. The
cytotoxicity-based definition of dose-limiting toxicity is no longer useful, because
many of these products do not have the well characterized hematologic or
non-hematologic toxicities. For example, the kinase inhibitor erlotinib has severe
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skin toxicity, which is not observed with typical cytotoxic drugs. Many of the
toxicities do not occur within the short time of observation in the Phase I trials
where more refractory patients with a shorter life expectancy are enrolled. Some of
these drugs may not shrink tumors but rather stabilize the disease, resulting in poor
response rates and requiring randomized Phase II studies to better understand the
activity of the products with respect to other outcomes such as progression-free
survival. Because of the unknown long-term toxicities of these drugs it is not
uncommon to have dose interruptions and reductions in Phase III trials, with the
result that when the confirmatory clinical trial is completed, recommended dose and
monitoring guidelines for patient care are not always clear.

3.1 Biomarker-Based Clinical Trials

The patient population enrolled in a clinical trial is recognized to be heterogeneous,
(for example with respect to age, race, gender, genetic markers, subgroups of the
disease, etc.), despite stringent inclusion and exclusion criteria. Therefore, when
confirmatory clinical trial results do not demonstrate efficacy of the investigational
drug, it is common to hypothesize that the drug is likely to be effective in a
subgroup of the population. However, the challenge is in finding the specific
subgroup that may benefit from the investigational drug. It is important to recognize
whether the subgroup is defined based on a prognostic or predictive biomarker
or both.

A prognostic biomarker is a biomarker that is measured at baseline (prior to
administration of a treatment) that correlates with the treatment outcome for a
heterogeneous set of patients and is independent of the treatment (Fig. 1a). For
example, stage of disease that is measured at baseline is a prognostic marker of the
overall survival of a given patient irrespective of the treatment received. A pre-
dictive marker is a biomarker that is measured at baseline prior to administration of
a treatment that predicts whether a particular treatment is likely to be beneficial and
it is associated with outcome of a specific therapy (Fig. 1b). Based on the predictive
marker status, it is expected that there would be a differential benefit of a given
treatment. For example, patients with metastatic melanoma with BRAF mutations
benefit from BRAF inhibitors such as vemurafenib [7] and dabrafenib [8], and on
the contrary, patients whose tumor is BRAF-negative (i.e., the BRAF gene is not
mutated, or wild type) do not benefit from these treatments. Thus in many cases the
biomarker status may guide the treatment options.

Various adaptive designs have been used and reported in the literature to identify
and evaluate prognostic and predictive biomarkers. An ideal design would be to use
a biomarker-stratified, randomized design as shown in Fig. 2. An example of this
design is the lung cancer MARVEL trial [9] in which the patients’ tumors were
assessed prior to randomization for epidermal growth factor receptor gene (EGFR)
status as measured by fluorescent in situ hybridization (FISH). Randomization was
stratified by the EGFR status, and patients are randomly assigned to receive either
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erlotinib or pemetrexed. In this design, the biomarker status is known for all ran-
domized patients, and it can be evaluated as a prognostic and a predictive marker.
On the other hand, if there is scientific evidence that given the mechanism of action
of a particular drug it is unlikely that patients with biomarker-negative tumors
would benefit from that drug, then an enrichment design (Fig. 3) is preferred as in
the example of vemurafenib clinical trial where only patients whose tumor
expressed BRAF mutation [7]. However, such a design assumes that the biomarker
is predictive, and as such this design does not lend to evaluation of the biomarker as
a prognostic or a predictive biomarker since marker-negative patients are not
studied. Use of enrichment designs have increased with the development of targeted
therapies. However designing such trials can be challenging as often the treatment
effect of the standard of care in the enriched population may be unknown due to
lack of information on the biomarker of interest in the historical control resulting in
potentially underpowered Phase III studies, or the prevalence of the biomarker
subgroup may be too small for a randomized clinical trial to be feasible.
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The ideal goal is to treat patients who benefit from a drug while not exposing
patients who may not benefit and experience unwanted toxicity. However, due to
the complex biology of the diseases not all characteristics that influence the out-
come are measurable or known, and it is difficult to identify characteristics of
patients who are likely to respond to a given treatment. Clinical trial designs have
been proposed that evaluate predictive and prognostic molecular biomarkers and
identify subgroups of patients who are likely to benefit from a given treatment after
the clinical trial is completed in all patients [10–12].

More complex designs with adaptive enrichment strategies where enrichment
occurs during the course of the clinical trial based on interim analysis of the data
have also been suggested [13, 14]. Such designs with pre-planned decision criteria
provide a scientific strategy to select the enriched population based on data accu-
mulated in the initial stages of the clinical trial. Recently clinical trial designs
[15–18] that can evaluate multiple diseases, multiple molecular biomarkers and/or
multiple drugs (umbrella, platform, or basket trials) have been adopted in disease
areas with unmet medical need. These trials typically have one umbrella or master
protocol with a central governance structure, with adaptive features that allow
adding and removing treatment arms, and are an efficient way of using patient
resources. These clinical trials require adequate resources, coordination among
different stakeholders and a trial network to conduct the studies. The approval of a
new drug based on another trial while the current trial is ongoing, frequent adap-
tations to the design, multiple hypotheses testing, and overlapping characteristics of
patients among two or more subgroups can pose challenges in execution and
interpretation of the results of such clinical trials. Careful and detailed pre-planning,
particularly in international studies, is essential.

Another component of the biomarker-based clinical trials is the companion or
complementary diagnostics that are essential in defining the subgroups. Analytical
validation of the biomarker assay based on performance (precision, accuracy,
sensitivity and specificity), and quantitative and qualitative variability (e.g., dif-
ferences in platforms, labs, technicians) are crucial in ensuring replication and
interpretation of results. Because the use of a targeted drug is often tied to a
diagnostic device in identifying the patient to be treated, there needs to be
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Fig. 3 Enrichment design
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coordination between the drug and device manufacturing companies as well as
co-development of drug and device during the course of the product development
cycle [19]. Often clinical trials are conducted with an investigator- or site-based
diagnostic. It can be a challenge in evaluating the drug-device product for regu-
latory approval if the investigator- or site-based diagnostic differs with respect to
operating characteristics from the scaled up version that is manufactured at a device
manufacturing company.

3.2 Clinical Trials Evaluating Immunotherapy

Unlike chemotherapy and other targeted therapies, immunotherapy activates the
immune system and thus indirectly targets the malignant disease. Thus, the early
assessment of activity of products using tumor-based endpoints such as objective
tumor response rate may not be ideal. Table 1 lists the FDA-approved
immunotherapy products for the treatment of patients with advanced metastatic
disease. These products have been approved under both accelerated approval and

Table 1 Immunotherapy products USFDA approved in metastatic diseases

Ipilimumab Pembrolizumab Nivolumab

March 2011, RA
Unresectable/metastatic
melanoma

September 2014, AA
Unresectable/metastatic
melanoma after Ipilimumab
and BRAF inhibitor when
indicated

December 2014, AA
Unresectable/metastatic
melanoma after Ipilimumab
and BRAF inhibitor where
indicated

October 2015, AA
PD-L1 + metastatic NSCLC
after platinum based chemo

March 2015, RA Metastatic
squamous NSCLC after
platinum based chemotherapy

December 2015, RA
Unresectable or metastatic
melanoma

September 2015, RA as single
agent in
unresectable/metastatic
melanoma with BRAF wild
type tumor
January 2016, AA
combination with Ipilimumab
in unresectable/metastatic
melanoma
AA in BRAF mutant
unresectable/ metastatic
melanoma

October 2015, RA metastatic
NSCLC after platinum based
chemo

November 2015, RA
metastatic RCC after
anti-angiogenic treatment
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regular approval provisions. The observed objective response rates were not always
large, although duration of response tended to be long among those who have a
response, and there were no meaningful differences observed in progression-free
survival despite significant differences in overall survival [20]. In the im-
munotherapy clinical trials, it is also common to observe non-proportionality of
hazard function in the analysis of progression-free survival [21]. Although some of
the clinical trials evaluating antibodies blocking programmed cell death receptor 1
(PD-1) appear to suggest that programmed death ligand 1 (PD-L1) expression may
be a predictive marker, it has not been evaluated systematically and it is unclear
what threshold or cut-off value for PD-L1 expression is optimal in identifying the
subgroup that benefits from these products [22]. In general in the clinical trials for
these products the treatment continued until disease progression was observed.
Because of this design, it is not known if the treatment can be stopped after a finite
number of cycles of therapy or whether continued use is necessary. Although the
currently approved products have demonstrated a favorable benefit-to-risk ratio,
these early approvals have relatively short follow-up, and the safety of long-term
use of these products is unknown at this time.

In designing future studies, the challenges will be in selecting the optimal
endpoints for evaluation of these types of products, both in early-phase clinical
trials where the objective is to evaluate the activity of product using intermediate
endpoints that can be observed in relatively short time, and in late-phase clinical
trials where it may be difficult to demonstrate superiority with respect to overall
survival compared to currently approved products due to switch-over of control to
experimental treatment arm after disease progression.

4 Summary

Our current understanding of diseases at a molecular level, based in part on
advances in genomics, has made it possible to further subdivide disease categories
previously defined by site and histology, resulting in smaller populations to study
new products. The current generation of products do not fit into the cytotoxic
chemotherapy paradigm and require innovative thinking in designing, conducting
and interpreting results from clinical trials. We must rethink the goal of each phase
of clinical trials in the overall development of new drug products given the differing
mechanisms of action and treatment effects of new targeted therapies. Future
clinical trials are likely to be more complex and biomarker-based, with adaptive
features. Simulation of such designs may become necessary to understand the
operational complexities such that statistical properties such as type I error control
and study power are not compromised. Further research is needed in identifying
intermediate endpoints (for example, response criteria that would capture responses
to immunotherapy) so that informative go-no-go decisions for further development
of a product can be made.
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Most of the clinical trials with time-to-event endpoints are designed assuming an
exponential distribution of the outcome measure and a proportional hazard function.
However it is not uncommon to observe that these assumptions are violated.
Simulation of clinical trials where these assumptions do not hold may be useful in
designing and planning such clinical trials. Ultimately, there should be a
prospective statistical plan detailing alternative statistical methods for analyzing and
summarizing the data should be in place if these assumptions do not hold true.

The selection of endpoints can become even more challenging if, for example,
immunotherapy in combination with chemotherapy is being studied. A single
intermediate endpoint in such circumstances may not capture the activity and ef-
fectiveness of both types of therapies. Careful consideration of the selection of
endpoint, length of treatment and length of follow-up would be needed at the design
stage.

The importance of timing and rigor in determining the analytic performance of
the companion diagnostic test cannot be ignored with the advent of increasing
number of targeted therapies. Understanding the statistical properties of the device
such as sensitivity, specificity, positive and negative predictive values is essential.

Finally, with the limited number of patients and other resources, collaboration
among pharmaceutical and device companies, academicians, government agencies
including regulatory agencies, payers and patient advocacy groups is crucial in
order to conduct future clinical trials that are informative as to the safe and effective
use of a product. Statisticians are in a unique position to resolve the complexities
inherent in the design of efficient and informative clinical trials.
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Random Walk and Parallel Crossing
Bayesian Optimal Interval Design for Dose
Finding with Combined Drugs

Ruitao Lin and Guosheng Yin

Abstract Interval designs have recently attracted enormous attention due to their
simplicity, desirable properties, and superior performance. We study random-walk
and parallel-crossing Bayesian optimal interval designs for dose finding in
drug-combination trials. The entire dose-finding procedures of these two designs
are nonparametric (or model-free), which are thus robust and also do not require the
typical “nonparametric” prephase used in model-based designs for
drug-combination trials. Simulation studies demonstrate the finite-sample perfor-
mance of the proposed methods under various scenarios. Both designs are illus-
trated with a phase I two-agent dose-finding trial in prostate cancer.

Keywords Bayesian method � Dose finding � Drug combination � Interval
design � Random walk

1 Introduction

Given a large number of approved agents for cancer treatment, it becomes com-
monplace to evaluate the joint effects when multiple drugs are used in combination.
In general, combined therapies are expected to induce better patient response, but
meanwhile they may lead to more severe adverse events and toxicity. Hence, the
primary objective in a two-agent dose-finding trial is to find the maximum tolerated
dose (MTD) combination that yields a prespecified target toxicity rate. However,
dose finding for combined therapies is complicated since the joint toxicity order of
paired doses is only partially known. For a single-agent trial, dose movement is
along a line and the toxicity order is known due to the monotonic toxicity
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assumption. By contrast, there are up to eight adjacent dose combinations for the
next dose movement in a two-agent combination trial, including diagonal and
off-diagonal directions.

To find the MTD combination based on the partially known order, a common
approach is to reduce the dimensionality of the dose searching space to a
one-dimensional searching line [1]. Toward this goal, Yuan and Yin [2] introduced
a simple design based on the partial orders of the joint toxicities, which is com-
patible with any single-agent dose-finding method. In contrast to dimension
reduction approaches, numerous designs have been proposed by directly modeling
the joint toxicity rates, which, in general, are extended from the conventional
single-agent designs. Thall et al. [3] proposed an adaptive two-stage Bayesian
design by considering a six-parameter joint toxicity rate model. Yin and Yuan [4]
utilized a copula-type approach to linking the toxicity rates of two drugs in com-
bination based on several viable conditions, which can be viewed as a generalized
or two-dimensional version of the continual reassessment method (CRM) [10]. In a
more general framework, Yin and Yuan [5] introduced a latent contingency table
approach to two-agent dose finding. Wages et al. [6] developed a partial ordering
CRM by laying out several selected orders for the joint toxicity rates. Shi and Yin
[7] extended the method of escalation with overdose control by utilizing a
four-parameter logistic regression model for drug combinations. For a compre-
hensive review on the model-based designs, see [8]. Most of the existing two-agent
model-based designs often involve relatively more unknown parameters due to
extra characterization of the joint toxicity action. Thus, estimation of these
parameters can be unstable due to a limited sample size, especially at the beginning
of a trial when decisions need to be made after even one or two cohorts of patients
are treated. To address this issue, Hirakawa et al. [9] proposed a shrunken predictive
approach to finding the MTD for drug-combination trials.

Often, a start-up phase using a certain algorithm is required prior to the initiation
of a model-based method to ensure stable estimates at the beginning of a trial, while
there is no universal rule for the prephase and it is unclear when the transition
should be initiated. On the other hand, algorithm-based designs do not require such
a start-up procedure because no parameter estimation is needed. Due to their
model-free nature, algorithm-based designs can proceed to locate the MTD without
imposing any parametric assumptions, and thus they are considered more robust
than the model-based counterparts. Despite the advantages of algorithm-based
designs, limited research has been conducted on nonparametric dose-finding
methods for two agents. Conaway et al. [11] developed an isotonic design for
two-agent dose-finding trials based on simple and partial orders. Ivanova and Wang
[12] applied the Narayana design and bivariate isotonic regression to
drug-combination trials. Huang et al. [13] introduced a two-agent “3 + 3” design by
dividing the two-dimensional space into several dose zones. Fan et al. [14] pro-
posed a three-stage “2 + 1 + 3” design, which allows for both one- and
two-dimensional dose searching. Lee and Fan [15] made a further extension by
considering the toxicity profile of each agent. The escalation rules in most of the
existing nonparametric designs for two agents are rather ad hoc and do not have
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solid theoretical support, which cannot guarantee the convergence of the selected
dose to the true MTD. Furthermore, some of these methods are not flexible enough
to target any chosen toxicity rate.

To develop a more flexible nonparametric approach to two-agent dose finding,
Lin and Yin [16] proposed a simple two-dimensional interval design by extending
the Bayesian optimal interval (BOIN) design [17] to drug-combination trials. The
strategy of interval designs is to guide the dose-finding procedure by comparing the
observed toxicity rate with a prespecified toxicity tolerance interval. If the observed
toxicity rate falls inside the interval, the current dose level should remain for the
next cohort; otherwise, the dose level is either escalated or de-escalated, depending
on whether the observed toxicity rate is below the lower bound or above the upper
bound of the interval. Yuan and Chappell [18] suggested retaining the current dose
level if the corresponding estimated toxicity rate is within (0.2, 0.4) when the target
toxicity rate is 0.2. Gezmu and Flournoy [19] considered a similar approach to
dose-finding trials, which is called the group up-and-down design. However, the
treatment allocation rule for the next cohort is only based on the data from the
current cohort of patients. To account for the cumulative information at the current
dose including both the current and previous cohorts at the same dose level,
Ivanova et al. [20] introduced a more formal cumulative cohort design. Interval
designs, which are built upon a solid theoretical foundation, are extremely easy to
implement in practice [21]. To choose an appropriate interval, Liu and Yuan [17]
cast the design in a Bayesian decision-making framework. By minimizing the
probability of incorrect dose allocation, an optimal tolerance interval can be derived
that has desirable finite- and large-sample properties. We study two versions
extended BOIN designs for two-agent dose-finding trials: the random walk BOIN
(RW-BOIN) design and the parallel crossing BOIN (PC-BOIN) design. With ease
of implementation, both can adaptively search for the MTD using the accrued
information. We compare the two interval designs with existing model-based
methods and show their comparative and stable operating characteristics.

The rest of the chapter is organized as follows. In Sect. 2, we review the
single-agent BOIN design. Section 3 extends the BOIN design to two-dimensional
dose-finding trials. In Sect. 4, we illustrate the RW-BOIN and PC-BOIN with a
prostate cancer trial example. Simulation studies are conducted in Sect. 5 to
examine the operating characteristics of the new designs. Section 6 concludes with
some remarks.

2 Single-Agent Interval Design

In a single-agent interval design, let p1 < ��� < pJ be the true toxicity probabilities of
a set of J doses for the drug under consideration, and let / denote the target toxicity
rate specified by the investigator. Furthermore, let DL [ 0 and DU [ 0 denote the
prespecified lower and upper cutoffs, satisfying 0\DL\DU\1: Suppose the
current cohort is treated at dose level j, and let p̂j denote the estimated toxicity
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probability based on the cumulative data at level j. The decisions on the next dose
assignment are described as follows:

• if DL\p̂j\DU , then the next cohort continues to be treated at the same dose
level j;

• if p̂�DL, escalate the dose level to j + 1 for the next cohort;
• if p̂�DU , de-escalate the dose level to j − 1.

To determine DL and DU , we consider three hypotheses at dose level j [17],

H0j; pj ¼ /; H1j; pj ¼ /1; H2j; pj ¼ /2;

where /1 denotes the highest toxicity probability that is deemed sub-therapeutic
such that dose escalation should be pursued, and /2(>/1) denotes the lowest tox-
icity probability that is deemed overly toxic such that dose de-escalation is needed.

Let pij be the prior probability of the ith hypothesis being true, i = 1, 2, 3. For
simplicity, we specify a noninformative prior probability for the three hypotheses,
i.e., p0j ¼ p1j ¼ p2j ¼ 1=3. The probability of incorrect decisions can be formu-
lated as

PrðIncorrectjyjÞ ¼ p0j PrðE orDjH0jÞþ p1j PrðS orDjH1jÞþ p2j PrðS orEjH2jÞ
¼ p0j Prðp̂j �DL or p̂j �DU jH0jÞþ p1j Prðp̂j [DLjH1jÞ
þ p2j Prðp̂j\DU jH2jÞ;

where E, D and S stand for “Escalation”, “De-escalation” and “Stay”, respectively.
By minimizing the probability of incorrect decisions at each step, the lower and
upper bounds of the optimal interval have closed forms,

DL ¼
log 1�/1

1�/

� �

log /ð1�/1Þ
/1ð1�/Þ

n o ; DU ¼
log 1�/

1�/2

� �

log /2ð1�/Þ
/ð1�/2Þ

n o : ð1Þ

The single-agent Bayesian optimal interval (BOIN) design is easy to implement
and has comparable average performance with the existing dose-finding methods
[17]. In practice, the choices of /1 2 ½0:5/; 0:7/� and /2 2 ½1:3/; 1:5/� are suit-
able for most trials. Moreover, one can also use varying /1 and /2 to take into
consideration the accumulated sample size. For example, a smaller gap between /1

and /2 would accelerate the trial at the earlier stage, while a larger gap at the later
stage of a trial tends to keep more patients treated at the MTD. We set /1 = 0.6/
and /2 = 1.4/ as the default values.
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3 Double-Agent Interval Design

3.1 Random Walk BOIN

In a two-dimensional dose-finding study, let pjk denote the toxicity probability of
the two agents at dose combination (j, k), j = 1, …, J, k = 1, …, K. Suppose the
current dose combination is (j, k), and let p̂jk denote the estimated toxicity rate based
on the accumulated information on dose combination (j, k), p̂jk ¼ yjk=njk, where yjk
and njk denote the number of toxicities and patients at dose combination (j, k),
respectively. We define an admissible dose escalation set as AE ¼
fðjþ 1; kÞ; ðj; kþ 1Þg and an admissible dose de-escalation set as
AD ¼ fðj� 1; kÞ; ðj; k � 1Þg. The two-dimensional random walk BOIN
(RW-BOIN) design proceeds as follows:

1. Treat the first cohort at the lowest dose combination (1, 1).
2. For the next cohort of patients:

(a) If p̂jk �DL, we escalate to the dose combination that belongs to AE and has
the largest value of Pr pj0k0 2 ðDL;DUÞjyj0k0

� �
:

(b) If p̂jk �DU , we de-escalate to the dose combination that belongs to AD and
has the largest value of Pr pj0k0 2 ðDL;DUÞjyj0k0

� �
:

(c) Otherwise, if DL\p̂jk\DU , then the doses stay at the same combination (j,
k).

3. This process continues until the total sample size is exhausted.

During dose escalation and de-escalation, if there are multiple optimal dose
combinations in the sets of AE and AD, we randomly choose one with equal
probability. If no dose combinations exist in the sets of AE and AD, we retain the
current dose combination. We further consider the boundary cases. If j = 1 and
p̂jk �DU , the next dose combination is (j, k − 1), unless (j, k) = (1, 1) for which the
dose would remain at the same combination. If j = J and p̂jk �DL, the next dose
combination is (j, k + 1), unless (j, k) = (J, K) for which the current dose combi-
nation retains. Due to symmetry between j and k, the same rules also apply to k. To
impose a non-informative prior distribution, we take the Jeffreys prior Beta (0.5,
0.5) for each pjk, which corresponds to the information of one subject only.

3.2 Parallel Crossing BOIN

The major advantage of the RW-BOIN design is that it does not incorporate any
model assumption of the two-dimensional toxicity surface and can be easily
implemented. However, the RW-BOIN design aims at locating only one of the
MTDs without conducting a more extensive exploration of other MTDs. To search
for multiple MTDs, we propose a parallel crossing BOIN (PC-BOIN) design such
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that a broader spectrum of dose levels can be explored. The PC-BOIN design
consists of two stages: Stage 1, named as the parallel subtrial stage, converts the
two-dimensional dose-finding trial to a series of parallel one-dimensional subtrials
by fixing the dose level of one drug. Several candidate MTDs can be identified from
the one-dimensional subtrials based on the single-agent BOIN design. After pooling
the information together from all the dose levels using the pool adjacent violators
algorithm (PAVA), stage 2 starts from the candidate MTD that is closest to the
target toxicity rate, and the corresponding subtrial is treated as the primary
one-dimensional subtrial. If the accumulated data indicate that the primary subtrial
does not contain the MTD, we adaptively switch the primary subtrial to another
one. A key feature of stage 2 is to continuously validate the candidate MTD by
crossing between the subtrials, and hence we name stage 2 as the crossing subtrial
stage.

Without loss of generality, suppose J < K. We first divide the entire
two-dimensional space into J parallel subtrials by fixing the dose level of drug A at
j, j = 1, …, J. In the parallel subtrial stage, we impose the sequential scheme [2],
which is depicted in Fig. 1 (left panel) and described as follows.

Stage 1 (Parallel subtrials):

(1) Sequentially divide the J subtrials into groups of size 3, and thus we have
ceiling(J/3) subgroups, where ceiling(x) rounds x to the next larger integer.

(2) Starting from the first group, sequentially conduct the subtrials in the following
order:

(i) First, run the intermediate-dose subtrial to find the candidate MTD,
which is denoted as (j*, k*).

(ii) Based on the candidate MTD of the intermediate-dose subtrial, shrink
the dose searching ranges of the higher- and lower-dose subtrials. More
specifically, the range of the higher-dose subtrial is from (j* + 1, 1) to
(j* + 1, k*) or (j* + 1, k* − 1), depending on whether the estimated
toxicity rate at dose level (j*, k*) is smaller or greater than /. Similarly,
the lower-dose subtrial is from (j* − 1, k*) or (j* − 1, k* + 1) to
(j* − 1, K), depending on whether the estimated toxicity rate at dose
level (j*, k*) is smaller or greater than /.

Fig. 1 Illustration of the PC-BOIN design with the parallel subtrial stage (left panel) and crossing
subtrial stage (right panel)
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(iii) Each subtrial is terminated if more than six patients have been treated at
any dose level.

For additional rules to appropriately truncate the dose searching space, see [2]. If
the cohort size is m, and the number of dose levels in the current subtrial is K′ (K
′ � K), we assign mK′ patients to that subtrial. Based on this allocation rule, the
parallel subtrial stage can be viewed as the preliminary stage. By adaptively con-
ducting the parallel subtrials, we can obtain J possible MTDs. For more accurate
identification, the trial then enters into the second stage.

Stage 2 (Crossing subtrials):

(1) Based on the observed data, we perform two-dimensional PAVA to borrow all
the information to estimate the dose–toxicity surface. The dose level (j*, k*),
which belongs to the candidate MTD set as well as being closest to the target
toxicity rate, is selected as the starting dose level for the crossing subtrial stage.

(2) Suppose the current dose level is (j, k), and we observe yjk DTLs,

(i) If p̂jk �DL and no patient has been assigned to dose level (j, k + 1), we
escalate the dose level to (j, k + 1). Otherwise, if dose level (j, k + 1) has
been administrated before, we consider an admissible escalation set
AE ¼ fðj; kþ 1Þ; ðjþ 1; k0Þg; where (j + 1, k′) is the dose level in the
higher-dose subtrial with the isotonically estimated toxicity rate greater
than that of the current level as well as being closest to /. We then select
the dose level from AE whose toxicity rate is closer to /.

(ii) If p̂jk �DU , we define an admissible dose de-escalation set AD ¼
fðj; k � 1Þ; ðj� 1; k0Þg; where (j − 1, k′) is the dose level in the
lowerer-dose subtrial with the isotonically estimated toxicity rate less
than that of the current level as well as being closest to /. We then select
the dose level from AD whose toxicity rate is closer to /.

(iii) Otherwise, we retain the same dose level (j, k) for the next cohort.

(3) This process continues until the total sample size is exhausted.

If there are multiple optimal dose levels, we randomly choose one with equal
probability. Cautions should be taken at the boundaries of the dose searching space.
Typically, we eliminate those levels outside of the dose range from the admissible
escalation or de-escalation set. In addition, if no dose level lies in the admissible set,
we retain the current dose level. By continually updating the information, the
PC-BOIN design can switch among these subtrials and thus prevent the trial from
being trapped in some suboptimal dose level.

For further safety, we implement extra rules for both RW-BOIN and PC-BOIN
to exclude overly toxic dose combinations that satisfy Prðpjk [/jyjkÞ� k, where k
is a prespecified threshold probability. In addition, the trial is terminated early if the
dose combination (1, 1) is overly toxic, as noted by Prðp11 [/jy11Þ� k. By
imposing these safety rules, we can avoid assigning a large number of patients to
the overly toxic dose combinations.
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Once the trial is completed, we perform the isotonic regression so that the
estimated toxicity rates satisfy partial orders when fixing one drug at a certain dose
level. Specifically, let ~pjk denote the bivariate isotonic regression estimator of the

observed toxicity rate p̂jk using the PAVA. The MTD ðjy; kyÞ is finally selected as
the dose level whose toxicity rate ~p

jyky is closest to the target /:

ðjy; kyÞ ¼ argmin
ðj;kÞ2N

j~pjk � /j;

where the set N ¼ fðj; kÞ : njk [ 0g contains all the dose levels that have been
administered. When there are ties for ~p

jyky on the same row or the same column, the

highest dose combination satisfying ~p
jyky\/, or the lowest dose combination

satisfying ~p
jyky [/, is selected as the MTD. However, when the ties lie on dif-

ferent rows or columns, e.g., (j + 1, k − 1) and (j − 1, k + 1), we select the one that
has the largest value of Prfp

jyky 2 ð/� DL;/þDUÞjy
jykyg, which is approxi-

mately equivalent to the dose tested with more patients.

4 Illustrative Example

4.1 Prostate Cancer Trial

For patients with metastatic hormone-refractory prostate cancer, mitoxantrone has
been demonstrated to be an active agent, while its prostate-specific antigen response
rate is low. Genasense is a phosphorothioate antisense oligonucleotide comple-
mentary to the bcl-2 mRNA open reading frame, which contributes to inhibiting
expression of bcl-2, delaying androgen independence as well as enhancing
chemosensitivity in prostate and other cancer models. As a result, a phase I
dose-finding study of combined treatment with mitoxantrone and genasense is
considered to meet the need for more effective treatment of prostate cancer [24].
The goal of the trial is to evaluate the safety and biological effect of the combination
of genasense and mitoxantrone, and to determine the preliminary antitumor activity.
Specifically, three doses (4, 8, and 12 mg/m2) of mitoxantone and five doses (0.6,
1.2, 2.0, 3.1, 5.0 mg/kg) of genasense were investigated in this trial. To identify the
MTD combination, the trial selectively chose seven ad hoc combined levels: (mi-
toxantone, genasense) = (4, 0.6), (4, 1.2), (4, 2.0), (4, 3.1), (8, 3.1), (12, 3.1), (12,
5.0), and applied the modified 3 + 3 dose escalation scheme. However, the chosen
dose pairs from the two-dimensional space are arbitrary, so that the MTD might
have already been excluded. In addition, using the 3 + 3 design, only one MTD can
be identified in the trial, even though multiple MTDs may exist in the
drug-combination space. The performance of the 3 + 3 design is known to be
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inferior to some existing model-based methods, which further demonstrates the
need for a more effective as well as simple dose-finding design in drug-combination
trials.

4.2 RW-BOIN Design

We applied the RW-BOIN design to the aforementioned prostate cancer trial for
illustration. As described previously, the trial examined 3 dose levels of mitox-
antrone and 5 dose levels of genasense, which results in a 3 � 5 drug-combination
space. The target toxicity rate is / = 0.3, the cohort size is set as 3 and 20 cohorts
are planned for the trial. Based on formula (1), the optimal interval is ðDL;DUÞ ¼
ð0:236; 0:358Þ: In addition, we impose a safety rule by setting the threshold
k = 0.95. The first cohort of patients is treated at the lowest dose level (1, 1).
Figure 2 (the top panel) shows the path of the dose assignments for the subsequent
cohorts, from which we can see that the BOIN design can search the MTD adap-
tively and treat most of the patients at the right dose level. Specially, three
dose-limiting toxicities (DLTs) are observed for the 8th cohort at dose level (3, 3),
thus de-escalation should be made for the next cohort. The admissible de-escalation
set is {(3, 2), (2, 3)} while dose level (3, 2) has never been administrated before, so
the RW-BOIN design selects dose level (3, 2) for the next assignment. In addition,
dose-escalation for the 14th cohort is based on comparing the posterior probabilities
Prðp23 2 ðDL;DUÞjy23Þ and Prðp32 2 ðDL;DUÞjy32Þ; and chooses dose level (2, 3)
due to its larger value of the posterior probability. At the end of the trial, the
estimated toxicity probability matrix after implementing the two-dimensional
PAVA is given by

� 0:67 0:67 � �
� 0:21 0:21 0:28 �
0 0 0 � �

2
4

3
5;

where “–” represents the dose levels that have not been administered in the trial.
Thus, dose level (2, 4) would finally be selected as the MTD.

4.3 PC-BOIN Design

Next, we consider the prostate cancer trial again using PC-BOIN. Since drug A
(mitoxantrone) has 3 levels, we first divide the two-dimensional space into three
subtrials. We start the trial at the lowest dose level (2, 1) of the intermediate-dose
subtrial with 5 cohorts assigned. From Fig. 2 (the bottom panel), dose level (2, 3) is
selected as the potential MTD at the end of the intermediate subtrial. The estimated
toxicity probability at dose level (2, 3) is 0.17. As a result, we focus on the levels
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from (1, 4) to (1, 5) in the lower-dose subtrial, and (3, 1) to (3, 3) in the higher-dose
subtrial. Both the two subtrials are terminated immediately when two cohorts are
treated and the outcomes are collected. The parallel subtrial stage finally chooses
dose levels (1, 4), (2, 3) and (3, 2) to be the candidate MTD set, among which (3, 2)
is determined as the starting dose in the crossing subtrial stage since it has the
estimated toxicity probability closest to the target. With the remaining ten cohorts
of patients, the crossing subtrial stage continually assesses the subtrial: the trial
crosses from the higher-dose subtrial to the intermediate-dose subtrial at the 13th
cohort, and then crosses back at the 16th cohort. Based on all the available infor-
mation at the end of the trial, the estimated toxicity matrix after isotonic regression
is

0 0:33 � � �
0 0 0:17 0:67 �
� � 0 0:17 �

2
4

3
5;

which suggests that dose level (3, 2) should be chosen as the MTD.

5 Simulation Study

To assess the performances of the RW-BOIN and PC-BOIN designs for
drug-combination trials, we make comparisons of their operating characteristics
with two algorithm-based and two model-based methods: the up-and-down design
(UD), the up-and-down design using the Student t test statistic (UDT), the partial
ordering CRM (POCRM), and the copula-type regression using the Clayton copula
function (CLAYTON). We examine the ten scenarios in Table 1, which involve
various numbers and locations of the MTDs.

We take the maximum sample size to be 60 with a cohort size of 3, and the target
toxicity probability / is set at 0.3. For the RW-BOIN and PC-BOIN designs, we set
/1 ¼ 0:6/ and /2 ¼ 1:4/, and thus the optimal interval is ð/� DL;/þDUÞ ¼
ð0:236; 0:359Þ: In addition, we apply a safety rule for both interval designs: any
dose combination satisfying Prðpjk [/jyjkÞ� 0:95 would be eliminated. For the
POCRM, we utilize six default orderings, and assign an equal prior probability to
them. The skeleton is chosen by the model calibration method of Lee and Cheung
[22] using an indifference interval of 0.03 and an initial guess of the MTD position
at 13 for each ordering. For the CLAYTON method, we set the dose escalation and
de-escalation cutoffs to be 0.7 and 0.45, respectively [23]. We also take an even
distribution from 0 to 0.3 for both skeletons: (0.06, 0.12, 0.18, 0.24, 0.3) and (0.1,

JFig. 2 Trial examples of RW-BOIN (top panel) and PC-BOIN (bottom panel). Circles represent
patients without toxicity, triangles one toxicity, diamonds two toxicities, and crosses three
toxicities. The candidate MTDs are inside the large squares
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0.2, 0.3). The two model-based methods require a start-up phase to collect some
preliminary data to gain stable estimates of the unknown parameters at the begin-
ning of the trial, and the start-up schemes utilized in the simulation study corre-
spond to those in the original papers [4, 6]. To ensure comparability across different
methods, we do not impose the early stopping rule, so that we run the entire trial
until exhaustion of the maximum sample size. We simulate 1000 replications for
each scenario.

Figure 3 presents the percentages of MTD selections of our two interval designs
in conjunction with those of existing algorithm- and model-based methods. Clearly,
RW-BOIN and PC-BOIN perform much better than the algorithm-based UD and
UDT methods with improvements between 5 and 35%, and on average, the interval
designs tend to assign 6 more patients to the true MTDs. Scenarios 1–5 are typical
examples of toxicity probabilities of different dose pairs. In scenario 4, the interval
designs show the most striking superiority over other algorithm-based designs: The
percentages of MTD selections are doubled and the numbers of patients treated at
the MTDs are more than tripled. In comparison with the model-based methods, both
RW-BOIN and PC-BOIN have comparable performance for these five scenarios.
Scenarios 6 and 7 have irregular toxicity surfaces, for which RW-BOIN has the best

Table 1 Ten toxicity scenarios for two-drug combinations, with a target toxicity probability of
30% in boldface

Dose level Agent 1

1 2 3 4 5 1 2 3 4 5

Agent 2 Scenario 1 Scenario 2

3 0.15 0.30 0.45 0.50 0.60 0.45 0.55 0.60 0.70 0.80

2 0.10 0.15 0.30 0.45 0.55 0.30 0.45 0.50 0.60 0.75

1 0.05 0.10 0.15 0.30 0.45 0.15 0.30 0.45 0.50 0.60

Scenario 3 Scenario 4

3 0.10 0.15 0.30 0.45 0.55 0.50 0.60 0.70 0.80 0.90

2 0.07 0.10 0.15 0.30 0.45 0.45 0.55 0.65 0.75 0.85

1 0.02 0.07 0.10 0.15 0.30 0.30 0.45 0.60 0.70 0.80

Scenario 5 Scenario 6

3 0.07 0.09 0.12 0.15 0.30 0.15 0.30 0.45 0.50 0.60

2 0.03 0.05 0.10 0.13 0.15 0.09 0.12 0.15 0.30 0.45

1 0.01 0.02 0.08 0.10 0.11 0.05 0.08 0.10 0.13 0.15

Scenario 7 Scenario 8

3 0.30 0.50 0.60 0.65 0.75 0.08 0.15 0.45 0.60 0.80

2 0.15 0.30 0.45 0.52 0.60 0.05 0.12 0.30 0.55 0.70

1 0.07 0.10 0.12 0.15 0.30 0.02 0.10 0.15 0.50 0.60

Scenario 9 Scenario 10

3 0.15 0.30 0.45 0.55 0.65 0.70 0.75 0.80 0.85 0.90

2 0.02 0.05 0.08 0.12 0.15 0.45 0.50 0.60 0.65 0.70

1 0.005 0.01 0.02 0.04 0.07 0.05 0.10 0.15 0.30 0.45
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performance. In these cases, no models can fit the joint toxicity surfaces well and
thus the model-based designs also lead to inferior performance. Under scenarios 8,
9 and 10 where only one MTD exists, RW-BOIN still ranks the second best among
all the two-agent designs. On average, RW-BOIN performs slightly better than
PC-BOIN in terms of the MTD selection and patient allocation percentages, and
both perform superior to the CLAYTON method. With regard to the average
number of DLTs, all six designs are comparable with each other. Overall, the
simulation study demonstrates that both the RW-BOIN and PC-BOIN indeed offer
substantial gains over the currently existing algorithm-based two-agent designs.

Fig. 3 Comparison of the RW-BOIN and PC-BOIN designs with existing algorithm- and
model-based methods in terms of the percentage of MTD selections, the percentage of patients
treated at the MTD(s), and the average number of DLTs based on ten scenarios with a target
toxicity rate of 0.3

RW- and PC-BOIN for Dose Finding with Combined Drugs … 33



Furthermore, their performances are generally competitive with those of
model-based designs, while they are much easier to implement in practice.

6 Concluding Remarks

By extending the one-dimensional BOIN design to the two-agent cases, we intro-
duce two versions of the BOIN designs for drug-combination trials: RW-BOIN
searches only one MTD in the entire two-dimensional space, while PC-BOIN can
recommend several possible MTDs. We have demonstrated the good performance
and desired operating characteristics of the two interval designs via extensive
simulation studies. From statistical and clinical standpoints, both the RW-BOIN
and PC-BOIN designs are easy to understand and straightforward to implement.
Due to their nonparametric nature, the interval methods are robust against any
arbitrary dose–toxicity surface of the drug combinations. Meanwhile, the non-
parametric designs, without implementing a start-up phase, have comparable per-
formance with the model-based designs, such as the partial ordering CRM and the
copula-type regression method. Moreover, the two-dimensional interval designs can
be modified for trials with more than two drugs in combination. In conclusion, the
RW-BOIN and PC-BOIN designs can be recommended for general
drug-combination trials with broad applications.

Acknowledgements We thank Professor Matsui and Professor Crowley for many constructive
suggestions that have led to significant improvements in the article. The research was supported in
part by a Grant (17125814) from the Research Grants Council of Hong Kong.

References

1. Kramar A, Lebecq A, Candalh E. Continual reassessment methods in phase I trials of the
combination of two drugs in oncology. Stat Med. 1999;18:1849–64.

2. Yuan Y, Yin G. Sequential continual reassessment method for two-dimensional dose finding.
Stat Med. 2008;27:5664–78.

3. Thall PF, Millikan RE, Müller P, et al. Dose-finding with two agents in phase I oncology
trials. Biometrics. 2003;59:487–96.

4. Yin G, Yuan Y. Bayesian dose finding in oncology for drug combinations by copula
regression. J R Stat Soc Ser C Appl Stat. 2009;61:211–24.

5. Yin G, Yuan Y. A latent contingency table approach to dose finding for combinations of two
agents. Biometrics. 2009;65:866–75.

6. Wages NA, Conaway MR, O’Quigley J. Dose-finding design for multi-drug combinations.
Clin Trials. 2011;8:380–9.

7. Shi Y, Yin G. Escalation with overdose control for phase I drug-combination trials. Stat Med.
2013;32:4400–12.

8. Harrington JA, Wheeler GM, Sweeting MJ, et al. Adaptive designs for dual-agent phase I
dose-escalation studies. Nat Rev Clin Oncol. 2013;10:277–88.

34 R. Lin and G. Yin



9. Hirakawa A, Hamada C, Matsui S. A dose-finding approach based on shrunken predictive
probability for combinations of two agents in phase I trials. Stat Med. 2013;32:4515–25.

10. O’Quigley J, Pepe M, Fisher L. Continual reassessment method: a practical design for phase 1
clinical trials in cancer. Biometrics. 1990;46:33–48.

11. Conaway MR, Dunbar S, Peddada SD. Designs for single- or multiple-agent phase I trials.
Biometrics. 2004;60:661–9.

12. Ivanova A, Wang K. A nonparametric approach to the design and analysis of two-dimensional
dose-finding trials. Stat Med. 2004;23:1861–70.

13. Huang X, Biswas S, Oki Y, et al. A parallel phase I/II clinical trial design for combination
therapies. Biometrics. 2007;63:429–36.

14. Fan SK, Venook AP, Lu Y. Design issues in dose-finding phase I trials for combinations of
two agents. J Biopharm Stat. 2009;19:509–23.

15. Lee BL, Fan SK. A two-dimensional search algorithm for dose-finding trials of two agents.
J Biopharm Stat. 2012;22:802–18.

16. Lin R, Yin G. Bayesian optimal interval design for dose finding in drug-combination trials.
Stat Methods Med Res. 2017; doi: 10.1177/0962280215594494.

17. Liu S, Yuan Y. Bayesian optimal interval designs for phase I clinical trials. J R Stat Soc Ser C
Appl Stat. 2015;64:507–23.

18. Yuan Z, Chappell R. Isotonic designs for phase I cancer clinical trials with multiple risk
groups. Clin Trials. 2004;1:499–508.

19. Gezmu M, Flournoy N. Group up-and-down designs for dose-finding. J Stat Plan Infer.
2006;136:1749–64.

20. Ivanova A, Flournoy N, Chung Y. Cumulative cohort design for dose finding. J Stat Plan
Infer. 2007;137:2316–7.

21. Oron A, Azriel D, Hoff P. Dose-finding designs: the role of convergence properties. Int J
Biostat. 2011. 7. Article 39.

22. Lee S, Cheung Y. Model calibration in the continual reassessment method. Clin Trials.
2009;6:227–38.

23. Yin G, Lin R. Comments on ‘Competing designs for drug combination phase I dose-finding
clinical trials’ by M-K. Riviere, F. Dubois, S. Zohar. Stat Med. 2015;34:13–7.

24. Chi KN, Gleave ME, Klasa R, Murray N, Bryce C, de Menezes DEL, D’Aloisio S,
Tolcher AW. A phase I dose-finding study of combined treatment with an antisense bcl-2
oligonucleotide (genasense) and mitoxantrone in patients with metastatic hormone-refractory
prostate cancer. Clin Cancer Res. 2001;7:3920–7.

RW- and PC-BOIN for Dose Finding with Combined Drugs … 35

http://dx.doi.org/10.1177/0962280215594494


A Comparative Study of Model-Based
Dose-Finding Methods for Two-Agent
Combination Trials

Akihiro Hirakawa and Hiroyuki Sato

Abstract Little is known about the relative relationships of the operating charac-
teristics for rival model-based dose-finding methods for two-agent combination
phase I trials. In this chapter, we focus on the model-based dose-finding methods
that have been recently developed. We compare the recommendation rates for true
maximum tolerated dose combinations (MTDCs) and over dose combinations
(ODCs) among these methods under 16 scenarios with 3 � 3, 4 � 4, 2 � 4, and
3 � 5 dose combination matrices through comprehensive simulation studies. We
found that the operating characteristics of the dose-finding methods varied
depending on (1) whether the dose combination matrix is square or not, (2) whether
the true MTDCs exist within the same group consisting of the diagonals of the dose
combination matrix, and (3) the number of true MTDCs. We also discuss the details
of the operating characteristics and the advantages and disadvantages of the
dose-finding methods compared.

Keywords Combination of two agents � Dose-finding design � Phase I trial �
Oncology

1 Introduction

Phase I trials in oncology are conducted to identify the maximum tolerated dose
(MTD), which is defined as the highest dose that can be administered to a popu-
lation of subjects with acceptable toxicity. A model-based dose-finding approach is
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efficient to estimate the MTD in phase I trials. The continual reassessment method
(CRM) [2, 10] has provided a prototype for such an approach in single-agent phase
I trials.

In two-agent combination phase I trials we need to capture the dose-toxicity
relationship for combinations of two agents and to identify maximum tolerated dose
combinations (MTDCs) of two agents. To accommodate these requirements many
authors have developed dose-finding methods. Thall et al. [13] proposed a
six-parameter model for the toxicity probabilities of the dose combinations and a
toxicity equivalence contour for two-agent combinations. Conaway et al. [3]
determined the simple and partial orderings of the toxicity probabilities by defining
the nodal and non-nodal parameters. Wang and Ivanova [14] proposed a
logistic-type regression for dose combinations that used the doses of the two agents
as the covariates. Yin and Yuan developed a Bayesian adaptive design based on
latent 2 � 2 tables [18] and a copula-type model [19] for two agents. Braun and
Wang [1] proposed a hierarchical Bayesian model for the probability of toxicity for
combinations of two agents. Wages et al. developed both Bayesian [15] and
likelihood-based [16] designs based on the notion that there exist pairs of dose
combinations for which the ordering of the probabilities of toxicity cannot be
known a priori, resulting in a partial ordering. Hirakawa et al. [6] proposed a
dose-finding method based on the shrunken predictive probability of toxicity for
combinations of two agents. Recently, Riviere et al. [12] compared two
algorithm-based and four model-based dose-finding methods using three evaluation
indices under 10 scenarios of a 3 � 5 dose combination matrix. Among their
conclusions was that the model-based methods performed better than
algorithm-based ones such as the 3 + 3 method.

In this chapter, we compare the operating characteristics of the representative
model-based dose-finding methods recently developed for two-agent combination
phase I trials through the simulation studies under various toxicity scenarios. The
existing methods can be roughly categorized into two groups: (1) those using a
flexible (Bayesian) model with/without an interaction term of the two agents; and
(2) those that extend CRM, taking into consideration the partial ordering of toxicity
probabilities for dose combinations. As to the former methods, we focus on
methods based on a copula-type model [19], termed the YYC methods. We also
evaluate the method using a hierarchical Bayesian model [1], termed the BW
method. Furthermore, we add the likelihood-based dose-finding method using a
shrinkage logistic model [6], termed the HHM method. As to the latter method, we
choose likelihood-based CRM with partial ordering (POCRM) [16], termed the
WCO method. In the simulation studies, we compare the recommendation rates for
true MTDCs and overdose combinations (ODCs) among these methods under the
16 scenarios with 3 � 3, 4 � 4, 2 � 4, and 3 � 5 dose combination matrices with
different position and number of true MTDCs. Average number of patients allo-
cated to true MTDCs, overall percentage of observed toxicities, average number of
patients allocated to at a dose combination above the true MTDCs were also
evaluated.
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2 Dose-Finding Methods Compared

In this section we overview the four dose-finding methods for two-agent combi-
nation trials we compared. Their methodological characteristics are summarized in
Table 1. The YYC and BW methods have been developed based on Bayesian
inference, while the HHM and WCO methods are based on likelihood inference.
The YYC and HHM methods model the interactive effect of two agents on the
toxicity probability, but the BW method does not. The WCO method is based on
the CRM and uses a class of under-parameterized working models based on a set of
possible orderings for the true toxicity probabilities. In terms of the restriction on
skipping dose levels, the BW method allows the simultaneous escalation or
de-escalation of both agents, while the YYC and HHM methods do not. On the
other hand, the WCO method allows a flexible movement of dose levels throughout
the trial, and does not restrict movement to “neighbors” in the two-agent combi-
nation matrix.

In this section we introduce both the statistical model for capturing the
dose-toxicity relationship and the dose-finding algorithm for exploring the MTDCs,
because almost all of the dose-finding methods for two-agent combination trials
have been often developed by improving or devising these components of the
method. The other detailed design characteristics are not shown in this chapter. We
considered a two-agent combination trial using agents Aj (j = 1, …, J) and Bk

(k = 1, …, K) respectively, throughout. We denote the targeting toxicity probability

Table 1 Methodological characteristics of the 4 dose-finding methods we compared

Method YYC BW WCO HHM

Estimation
theorem

Bayesian Bayesian Likelihood Likelihood

Dose-toxicity
model

Copula Hierarchical Power Shrinkage
logistic

Prior toxicity
probability
specification

Yes Yes Yes No

Inclusion of
interactive effect in
the model

Yes No No Yes

Cohort size used in
the original paper

3 1 1 3

Restriction on
skipping on dose
levels

One dose level of
change only and
not allowing a
simultaneous
escalation or
de-escalation of
both agents

One dose level of
change only but
allowing a
simultaneous
escalation or
de-escalation of
both agents

No
skipping
restriction

Same as
the YYC
method
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specified by physicians by /. The other symbols are independently defined by the
dose-finding methods we compared.

2.1 Bayesian Approach Based on Copula-Type
Model (YYC)

Yin and Yuan [19] introduced Bayesian dose-finding approaches using copula-type
models. Let pj and qk be the pre-specified toxicity probability corresponding to Aj

and Bk, respectively, and subsequently paj and qbk be the modeled probabilities of
toxicity for agent A and agent B, respectively, where a[ 0 and b[ 0 are unknown
parameters. Yin and Yuan [19] proposed to use a copula-type regression model in
the form of

pjk ¼ 1� 1� paj
� ��c

þ 1� qbk
� ��c

�1
n o�1=c

;

where c[ 0 characterizes the interaction of two agents (i.e., the YYC method).
Several authors have recently provided a more in-depth discussion on multiple
binary regression models for dose-finding in combinations [4, 5, 20].

Using the data obtained at the time, the posterior distribution is obtained by

f a; b; cjDatað Þ / L a; b; cjDatað Þp ðaÞp ðbÞp ðcÞ;

where L a; b; cjDatað Þ is the likelihood function of the model and p ðaÞ, p ðbÞ, and
p ðcÞ are prior distributions, respectively.

Let ce and cd be the fixed probability cut-offs for dose escalation and
de-escalation, respectively. Patients are treated in cohorts of three. Dose escalation
or de-escalation are restricted to one dose level of change only, while not allowing a
translation along the diagonal direction (corresponding to simultaneous escalation
or de-escalation of both agents). After adopting a start-up rule for stabilizing
parameter estimation (not shown in this chapter), the dose-finding algorithm
functions as follows: (1) If, at the current dose combination ðAj;BkÞ,
Pr ðpjk\/Þ[ ce, the dose is escalated to an adjacent dose combination with
probability of toxicity higher than the current value and closest to /. If the current
dose combination is AJ ;BKð Þ, the doses remain at the same levels. (2) If, at the
current dose combination Aj;Bk

� �
, Pr pjk [/

� �
[ cd , the dose is de-escalated to an

adjacent dose combination with the probability of toxicity lower than the current
value and closest to /. If the current dose combination is A1;B1ð Þ, the trial is
terminated. (3) Otherwise, the next cohort of patients continues to be treated at the
current dose combination (doses staying at the same levels). (4) Once the maximum
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sample size Nmax has been achieved, the dose combination that has the probability
of toxicity that is closest to / is selected as the MTDC.

2.2 A Hierarchical Bayesian Design (BW)

Braun and Wang [1] developed a novel hierarchical Bayesian design for two-agent
combination phase I trials. Let aj and bk be the dose levels corresponding to Aj and
Bk respectively, and the values of them will not be the actual clinical values of the
doses, but will be “effective” dose values that will lend stability to their
dose-toxicity model. It is assumed that each pjk has a beta distribution with
parameters ajk and bjk. Braun and Wang [1] proposed to model ajk and bjk using the
parametric functions of aj and bk,

log ajkðhÞ
� � ¼ h0 þ h1aj þ h2bk and log bjkðkÞ

� � ¼ k0 � k1aj � k2bk;

respectively, where h ¼ h0; h1; h2f g has a multivariate normal distribution with
mean l ¼ l0; l1;l2f g, k ¼ k0; k1; k2f g has a multivariate normal distribution with
mean x ¼ x0;x1;x2f g, and both h and k have variance r2I3, in which I3 is 3 � 3
identity matrix. The samples from the posterior distribution for ðh; kÞ are easily
obtained using Markov chain Monte Carlo (MCMC) methods. These samples lead
to posterior distributions for each element of h and k, which, in turn, lead to a
posterior distribution for each pjk. The corresponding posterior means �pjk are
calculated.

The BW method necessitates careful elicitation of priors and effective dose
values. Development of priors begins with the specification of pj1 and q1k, which
are a priori values for the Eðpj1Þ and Eðp1kÞ. Braun and Wang [1] set the lowest
dose of each agent to zero, that is, a1 = b1 = 0. Consequently, log ða11Þ = h0 and
log ðb11Þ = k0; so that h0 and k0 describe the expected number of DLTs for com-
bination (A1, B1) and the remaining parameters in h and k will describe how the
expected DLTs for other combinations relate to (A1, B1). Braun and Wang [1] also
used the fact that

Kp11
K 1� p11ð Þ ¼

a11
b11

¼ exp h0f g
exp k0f g ¼ exp l0f g

exp x0f g :

Then the prior values for l0 and x0 are obtained via l0 ¼ log ðKp11Þ and x0 ¼
log Kð1� p11Þf g; where K = 1000 was chosen as a scaling factor to keep both
hyperparameters sufficiently above 0. Further, Braun and Wang [1] select l1 ¼
l2 ¼ x1 ¼ x2 ¼ 2

p
r2 so that 97.5% of the prior distributions for h1, h2, k1, and

k2 will lie above 0, depending upon the value of r2. The authors point out that a
value in the interval [5, 10] is often sufficient in their settings for adequate operating
characteristics, but each trial setting will require fine tuning of r2. Braun and Wang
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[1] further define elicited odds ratios that can be approximated by ~nj� ¼
exp l1 þx1ð Þaj

� �
and ~n�k ¼ exp l2 þx2ð Þbkf g in which effective dose values are

obtained by solving for aj and bk. All doses are rescaled to be proportional to
log-odds ratios relative to the combination (A1, B1). The development of priors and
effective dose values in BW are somewhat complex, and it is recommended to read
the original paper of BW for further details.

The dose-finding algorithm is similar to that of the YYC method. Specifically, if a
stopping rule for safety (not shown in this chapter) is notmet, we extract the set of dose
combinations, that is S ¼ ðj; kÞjji�1 � 1� j� ji�1 þ 1; ki�1 � 1� k� ki�1 þ 1f g;
that contains combinations that arewithin one dose level of the corresponding doses in
the combination assigned to the most recently enrolled patient (1, 2,…, (i − 1)), and
we subsequently allocate the dose combination Aj� ;Bk�

� �
in S as the one with smallest

�pjk � /
�� �� to the next patient i. We repeat these steps until the maximum sample size
Nmax is reached. Notably, the BWmethod allows for simultaneous dose escalations of
both agents, and the cohort size of patients is 1.

2.3 Partial Ordering Continual Reassessment
Method (WCO)

The CRM for partial orders is based on utilizing a class of working models that
corresponds to possible orderings of the toxicity probabilities for the combinations.
Specifically, suppose there are M possible orderings being considered which are
indexed by m. For a particular ordering, Wages et al. [16] model the true probability
of toxicity, pjk, at combination Aj;Bk

� �
via a power model

pjk � pjkðmÞ
	 
bm ; m ¼ 1; . . .;M;

where the pjkðmÞ represent the skeleton of the model under ordering m. We let the
plausibility of each ordering under consideration be described by a set of prior
probabilities sðmÞ ¼ sð1Þ; . . .; sðMÞf g, where sðmÞ� 0 and

P
m sðmÞ ¼ 1. Using

the accumulated data, Xn, from n patients, the maximum likelihood estimate
(MLE) b̂m of the parameter bm can be computed for each of the M orderings, along

with the value of the log-likelihood Lm b̂mjXn

� �
at b̂m. Wages et al. [15, 16]

proposed an escalation method that first chooses the ordering with the largest
maximized updated probability

xðmÞ ¼
exp Lm b̂mjXn

� �n o
sðmÞ

PM
m¼1 exp Lm b̂mjXn

� �n o
sðmÞ
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before each patient inclusion. If we denote this ordering by m�, the authors use the
estimate b̂m� to estimate the toxicity probabilities for each combination under

ordering m�, so that p̂jk � ½pjkðm�Þ	b̂m� :
The next entered patient is then allocated to the dose combination with estimated

toxicity probability closest to the target toxicity rate /. Within the framework of
sequential likelihood estimation, an initial escalation scheme is needed, since the
likelihood fails to have a solution on the interior of the parameter space unless some
heterogeneity (i.e. at least one toxic and one non-toxic outcome) has been observed.
The trial begins at the lowest combination A1;B1ð Þ and, in the absence of toxicity,
escalates to either A1;B2ð Þ or A2;B1ð Þ. As long as no toxicities occur, the doses of
each agent are escalated one at a time. This procedure continues until a toxicity is
observed, at which time the second stage, based on the modeling described above,
begins.

2.4 Approach Using a Shrinkage Logistic Model (HHM)

Hirakawa et al. [6] developed the dose-finding method based on a shrinkage logistic
model. Hirakawa et al. [6] first model the joint toxicity probability pi for patient
i using an ordinary logistic regression model with a fixed intercept b0, as follows:

pi ¼ exp b0 þ b1xi1 þ b2xi2 þ b3xi3ð Þ
1þ exp b0 þ b1xi1 þ b2xi2 þ b3xi3ð Þ ;

where xi1 and xi2 are the actual (or standardized) dose levels of agents A and B,
respectively, and xi3 represents a variable of their interaction such that xi3 ¼
xi1 � xi2 for patient i. Using MLEs for the parameters b̂l (l = 1, 2, 3), Hirakawa
et al. [6] proposed the shrunken predictive probability (SPP):

~pi ¼
exp b0 þ 1� d1ð Þb̂1xi1 þ 1� d2ð Þb̂2xi2 þ 1� d3ð Þb̂3xi3

� �

1þ exp b0 þ 1� d1ð Þb̂1xi1 þ 1� d2ð Þb̂2xi2 þ 1� d3ð Þb̂3xi3
� � ;

where the shrinkage multiplier 1� dl (l = 1, 2, 3) is a number between 0 and 1.
Hirakawa et al. [6] also developed an estimation method of the shrinkage
multipliers.

Hirakawa et al. [6] invoke a rule-based dose allocation algorithm with the cohort
size of 3 until the MLE for each parameter is obtained, although we do not show
this rule in detail in this chapter. After obtaining the MLEs for the regression
parameters, we calculate the SPP of toxicity for the current dose combination dc. We
adopt the same restriction on skipping dose levels proposed by the YYC method.
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Let c1 and c2 be the allowable bands from the target toxicity limit / as MTDCs.
Hirakawa et al. [6] proposed the following dose-finding algorithm: if, at the current
dose combination dc, /� c1 � ~pðdcÞ�/þ c2, the next cohort of patients continues
to be allocated to the current dose combination; otherwise, the next cohort of
patients is allocated to the dose combination with the SPP closest to / among the
adjacent or current dose combinations; once the maximum sample size Nmax is
reached, the dose combination that should be assigned to the next cohort is selected
as the MTDC. In addition, if we encounter the situation where dc ¼ d1 and
~pðdcÞ[/þ c2, we terminate the trial for safety.

3 Simulation Studies

3.1 Simulation Setting

We compare the operating characteristics among the 4 methods by simulating 16
scenarios with 3 � 3, 4 � 4, 2 � 4, and 3 � 5 dose combination matrices with
different positions and number of true MTDCs, as shown in Table 2. The target
toxicity probability that is clinically allowed, /, is set to 0.3. The maximum sample
size Nmax is set to 30 throughout. Each simulation consisted of 1000 trials.

We used the C++ source program released at http://odin.mdacc.tmc.edu/
*yyuan/index_code.html to perform the YYC method. The values of pj are set
to (0.15, 0.3) for J = 2, (0.1, 0.2, 0.3) for J = 3, (0.075, 0.15, 0.225, 0.3) for J = 4,
and (0.06, 0.12, 0.18, 0.24, 0.3) for J = 5, respectively. The same setting are made
for qk . The fixed probability cut-offs for dose escalation and de-escalation are ce =
0.80 and cd = 0.45, respectively. As prior distribution for each parameter, we
assumed gamma(2, 2) as the prior distribution for a and b and gamma(0.1, 0.1) as
the prior distribution for c.

We used the R code released at http://www-personal.umich.edu/*tombraun/
BraunWang/ to perform the BW method. The variance parameter r2 is set to 3 in
order to stabilize the implementation of the R package rjags. The prior probability
of each dose combination is shown in Table 3.

For the WCO method, we utilized a subset of six possible dose-toxicity order-
ings, formulated according to the rows, columns, and diagonals of the drug com-
bination matrix, as suggested by Wages and Conaway [17]. We placed a uniform
prior sðmÞ ¼ 1=6 on the orderings. The skeleton values, pjkðmÞ, were generated
according to the algorithm of Lee and Cheung [9] using the getprior function in
R package dfcrm. Specifically, for 3 � 3 combinations, we used getprior(0.05,
0.3, 4, 9); for 4 � 4 combinations, we used getprior(0.05, 0.3, 7, 16); for 2 � 4
combinations, we used getprior(0.05, 0.3, 4, 8); and for 3 � 5 combinations, we
used getprior(0.05, 0.3, 7, 15). The location of these skeleton values was adjusted
to correspond to each of the six orderings using the getwm function in R package
pocrm. All simulation results were carried out using the functions of pocrm with a
cohort size of 1 in both stages.
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We performed the HHM method using the SAS/IML in SAS 9.3 (SAS Institute
Inc., NC). The fixed intercept b0 is set to be −3 throughout. c1 and c2 were
commonly set to 0.05. We set x1 = {1, 2, 3} and x2 = {1, 2, 3} for 3 � 3 dose
combinations, x1 = {1, 2, 3, 4} and x2 = {1, 2, 3, 4} for 4 � 4 dose combinations,
x1 = {1, 2} and x2 = {1, 2, 3, 4} for 2 � 4 dose combinations, and x1 = {1, 2, 3}
and x2 = {1, 2, 3, 4, 5} for 3 � 5 dose combinations, respectively.

Table 2 Sixteen scenarios for a two-agent combination trial (MTDCs are in boldface)

A

1 2 3 4 5 1 2 3 4 5

B Scenario 1 Scenario 2

3 0.30 0.40 0.50 0.50 0.70 0.80

2 0.20 0.30 0.40 0.30 0.60 0.70

1 0.10 0.20 0.30 0.05 0.30 0.50

Scenario 3 Scenario 4

3 0.40 0.60 0.80 0.15 0.40 0.60

2 0.30 0.50 0.70 0.05 0.30 0.40

1 0.05 0.10 0.40 0.01 0.05 0.15

Scenario 5 Scenario 6

4 0.30 0.50 0.65 0.70 0.30 0.50 0.60 0.70

3 0.10 0.30 0.60 0.65 0.15 0.40 0.50 0.60

2 0.05 0.10 0.30 0.50 0.10 0.30 0.40 0.50

1 0.01 0.05 0.10 0.30 0.05 0.10 0.15 0.30
Scenario 7 Scenario 8

4 0.40 0.45 0.60 0.85 0.15 0.60 0.75 0.80

3 0.15 0.30 0.55 0.60 0.10 0.45 0.70 0.75

2 0.08 0.15 0.23 0.30 0.04 0.30 0.45 0.60

1 0.01 0.02 0.03 0.04 0.02 0.10 0.15 0.40

Scenario 9 Scenario 10

2 0.10 0.20 0.30 0.40 0.30 0.40 0.50 0.60

1 0.05 0.10 0.20 0.30 0.01 0.10 0.20 0.30
Scenario 11 Scenario 12

2 0.15 0.28 0.32 0.34 0.50 0.60 0.70 0.80

1 0.10 0.15 0.28 0.32 0.10 0.20 0.30 0.40

Scenario 13 Scenario 14

3 0.25 0.30 0.40 0.50 0.70 0.20 0.45 0.50 0.60 0.75

2 0.10 0.25 0.30 0.40 0.50 0.05 0.30 0.45 0.55 0.60

1 0.05 0.10 0.25 0.30 0.40 0.01 0.05 0.15 0.30 0.50

Scenario 15 Scenario 16

3 0.30 0.35 0.40 0.45 0.60 0.10 0.20 0.40 0.55 0.65

2 0.05 0.20 0.30 0.40 0.45 0.05 0.10 0.30 0.50 0.60

1 0.01 0.05 0.10 0.20 0.30 0.01 0.05 0.10 0.20 0.40
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3.2 Simulation Results

Table 4 shows the operating characteristics of the 4 methods under 16 scenarios.
For scenarios 1 and 2 of 3 � 3 dose combination matrix where the underlying true
MTDCs exist along with the diagonals of the dose-combination matrix, the WCO
method showed higher recommendation rates for true MTDCs than the YYC, BW,
and HHM methods by approximately 5–10%, while those were comparable among
the YYC, BW, and HHM methods. The recommendation rates for true MTDCs
were similar among all the methods under scenario 3. The recommendation rates of
the BW and HHM methods were higher than the other 2 methods under scenario 4.
The WCO method outperformed the other methods in scenarios 5 and 7, while the
HHM method outperformed the other three methods in scenario 6. The recom-
mendation rates for the ODCs of the HHM method were lower than or equal to the
other methods under scenarios 1–8.

The recommendation rates for true MTDCs of the HHM and WCO methods in
scenario 9, of the YYC, HHM, and WCO methods in scenario 10, of the BW and
WCO methods in scenario 11, and of the WCO method in scenario 12 were higher
than the remaining methods, respectively. The difference of the recommendation
rates between the methods was approximately 10–15%. The WCO method per-
formed as well or better than the other three methods under scenarios 9–12, and a
similar tendency was observed under scenarios 13–16. The HHM method was
competitive of the WCO method in scenarios 14 and 15. In terms of recommending
the ODCs, the HHM method was lowest among the 4 methods under scenarios 9,
10, 12 and 13–16 scenarios.

Across the 16 scenarios, the YYC, BW, WCO, and HHM methods demonstrated
average recommendations rates of 34, 40, 46, and 42% for true MTDCs, respec-
tively. The YYC, BW, WCO, and HHM methods demonstrated average recom-
mendations rates of 41, 33, 32, and 25% for ODCs, respectively. As to the other
performance indices, the average number of patients allocated to true MTDCs of
the YYC, BW, WCO, and HHM methods were 6, 9, 10, and 8, respectively.

Table 3 Prior toxicity probabilities we used in the simulation studies in the BW method

A

1 2 3 4 5 1 2 3 4 5

3 � 3 4 � 4

B 4 0.30 0.375 0.45 0.525

3 0.30 0.40 0.50 0.225 0.30 0.375 0.45

2 0.20 0.30 0.40 0.15 0.225 0.30 0.375

1 0.10 0.20 0.30 0.075 0.15 0.225 0.30

2 � 4 3 � 5

3 0.30 0.35 0.40 0.45 0.50

2 0.30 0.35 0.40 0.45 0.20 0.25 0.30 0.35 0.40

1 0.15 0.20 0.25 0.30 0.10 0.15 0.20 0.25 0.30
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The overall percentage of observed toxicities of the YYC, BW, WCO, and HHM
methods averaged of 23, 30, 28, and 20%, respectively. The average number of
patients allocated to at a dose combination above the true MTDCs of the YYC, BW,
WCO, and HHM methods were 8, 11, 9, and 5, respectively.

3.3 Operating Characteristics for Each
Representative Setting

According to the results of simulation studies, we found that the operating char-
acteristics of the dose-finding methods varied depending on (1) whether the dose
combination matrix is square or not, (2) whether the true MTDCs exist within the
same group consisting of the diagonals of the dose combination matrix, and (3) the
number of true MTDCs.

Table 5 shows the average recommendation rates for true MTDCs and ODCs of
the four methods with respect to each type of the dose combination matrix, and
position and number of true MTDCs. In the cases of the square dose combination
matrix, the WCO method outperformed the YYC, BW, and HHM methods when
the true MTDCs exist along with the diagonals of the dose-combination matrix and
the number of true MTDCs is greater than or equal to 2. The HHM methods
demonstrated the highest recommendation rates for true MTDCs when the true
MTDCs do not exist along with the diagonals of the dose-combination matrix but
the number of true MTDCs is greater than or equal to 2, or the number of true
MTDCs is one. Next, in the cases of the rectangle dose combination matrix, the
WCO method outperformed the other 3 methods when the true MTDCs exist along
the diagonals of the dose-combination matrix and the number of true MTDCs is
more greater or equal to 2, and when the number of true MTDCs is one, while the
HHM and WCO methods outperformed when the true MTDCs do not exist along
the diagonals of the dose-combination matrix but the number of true MTDCs is
greater than or equal to 2. The HHM method demonstrated the lowest recom-
mendation rates for the ODCs under all the configurations presented. The HHM
method can be considered a more conservative method than the others evaluated in
this work.

3.4 Some Possible Rationale for the Observed
Performance Difference

The method in group (1) (i.e., YYC, BW, and HHM) showed the best performance
with respect to recommendation for true MTDC(s) under five scenarios, while that in
group (2) (i.e., WCO) did under ten scenarios. In Scenario 14, the WCO and HHM
methods yielded nearly identical performance. Accordingly, the under-parameterized
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approaches may be more efficient than the approaches using a flexible model with
several parameters. This is because parameter estimation generally does not workwell
under the practical sample size of 30, irrespective of whether frequentist and Bayesian
approaches are employed.Additionally, the cohort size of the trial may also impact the
difference between the methods in groups (1) and (2). To further examine this, we ran
YYC using cohorts of size 1, but the results were very similar on average. There were
differences within particular scenarios, with size 3 doing better in some cases, and size
1 doing better in others. For instance, in Scenario 8, YYC with size 3 yielded a
recommendation percentage for true MTDC’s of 4.6%. Using cohorts of size 1
increased this to 8.4%. Conversely, decreasing the cohort size from 3 to 1 decreased
the recommendation percentage in Scenario 6 from 44.3 to 38.4%. The average
recommendation percentage for trueMTDC across the 16 scenarios was 34% for size
3 and 35% for size 1. We also ran HHM using cohorts of size 1 and found that the
average recommendation percentage for trueMTDC across the 16 scenarios was 40%
for size 1, and slightly smaller than that for size 3 (i.e., 42%). In the WCO method
using cohort size of 1, once a DLT is observed in Stage 1, one can quickly move to the
Stage 2 and obtain model-based estimates. This would be a very attractive feature for
model-based dose-finding methods. Among the methods in group (1), the superiority
in terms of recommending true MTDC(s) were HHM, BW, and YYC in that order.
The shrinkage logistic model includes the model parameters for agents A and B, and
its interaction, but does not need to specify the prior toxicity probability for each agent
and hyper-parameter for prior distributions as in YYC and BW. Furthermore, YYC
and BW commonly specify the prior toxicity probability for each agent, but the
number of hyper-parameters for the prior distributions in BW (e.g., only r2) is smaller
than that of YYC (e.g., a; b; c). Thus, our simulation studies suggested that the degree
of assumptions with regards to prior toxicity probability, hyper-parameters, and
dose-toxicity model in themethodmay be associated with the average performance of
selecting true MTDCs.

4 Discussion

In this chapter, we characterized the operating characteristics of the model-based
dose-finding methods using the practical sample size of 30 under various toxicity
scenarios. Although there are certain scenarios in which each of the methods per-
forms well, and the operating characteristics between the methods are comparable,
on average the WCO (46%) method yielded the largest recommendation rates for
true MTDC’s by at least 4% over the nearest competitor (HHM; 42%). These
conclusions hold for patient allocation to true MTDC’s as well. This average
performance is across sixteen scenarios that encompass a wide variety of practical
situations (i.e. dimension of combination matrix, location and number of true
MTDC’s, etc.). We also considered additional scenarios in which there was no
“perfect” MTDC. That is, in each scenario, there are no combinations with true
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DLT rate exactly equal to the target. In these scenarios, we evaluated the perfor-
mance of each method in choosing, as the MTDC, combinations that have true DLT
rates close to the target rate. The conclusions from the simulation studies above
held, with WCO yielding the highest (37.1%) average recommendation percentage
for combinations within 5% of the target rate (data not shown). Although we did not
introduce them in this chapter, the dose-finding design based on order restricted
inference proposed by Conaway et al. [3], termed the CDP method, and the
Bayesian dose-finding method using standard logistic model proposed by Riviere
et al. [11], termed the RYDZ method, are also useful. The average operating
characteristics of the CDP and RYDZ methods were similar to that of the WCO
method [7, 8].

There are no silver bullet designs to the two-agent dose-finding problem. The
operating characteristics of model-based dose finding methods vary depending on
prior toxicity probability, prior distributions, and cut-off probabilities for dose
escalation and de-escalation. The simulation studies indicated that the performances
in terms of recommending true MTDCs among the 4 methods may be associated
with the degree of assumptions required in each method. Specifically, the uncer-
tainty assumptions (e.g., prior toxicity probability, hyper-parameters, and specific
dose-toxicity model) are less in order of WCO, HHM, BW, and YYC and the
performances in terms of recommending true MTDCs were on average better in this
order. This tendency was also found in the other performance indices. Although the
operating characteristic of a dose-finding method is influenced by many method-
ological characteristics, this hypothetical consideration would be one of the reasons
for the performance differences among the 4 methods.

Based on the results of simulation studies, we provide some recommendations in
implementing each method in practice. The YYC and BW methods require spec-
ifications for both the toxicity probabilities of two agents and the hyper-parameters
of prior distributions; therefore, these methods would be most useful in the cases
where the toxicity data are available from a previous phase I monotherapy trial for
each agent. We need to pay particular attention in using the YYC method because
its operating characteristics were greatly impacted by the toxicity scenarios. The
performance of the BW method was intermediate between the HHM and YYC
methods. In implementing BW, the prior value of the variance should be fine-tuned,
as the authors recommend. The HHM method can be employed without prior
information on the two agents, but requires the MLE for the three parameters in the
shrinkage logistic model. If investigators desire to be a bit more conservative, while
still maintaining an adequate recommendation rate for true MTDCs, the HHM
method can be recommended.
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Evaluation of Safety in Biomarker Driven
Multiple Agent Phase IB Trial

Motomi Mori, Racky Daffé, Byung S. Park and Jeffrey Tyner

Abstract Tyner and colleagues in the Center for Hematological Malignancies,
Knight Cancer Institute, at the Oregon Health & Science University have recently
developed a novel kinase-inhibitor assay and rapid mutation screening to identify
molecularly targeted drugs to which patient leukemic cells are sensitive. As a proof
of concept and feasibility trial, they proposed a phase IB trial focusing on feasibility
and safety of an assay-based kinase-inhibitor treatment assignment in combination
with the standard induction chemotherapy among newly diagnosed acute myeloid
leukemia patients. Because each patient receives one of five kinase inhibitors in
combination with standard chemotherapy, the sample size for each kinase inhibitor
group is varied and limited. In addition, there is a different toxicity profile asso-
ciated with each inhibitor, making safety assessment challenging. We will discuss a
continuous toxicity monitoring plan in biomarker driven, multiple agent feasibility
and safety trials, and evaluate its operating characteristics in a simulation study.
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1 Introduction

Acute myeloid leukemia (AML) is the most common type of blood cancer in adults,
with more than 50% of cases recorded in individuals over 65. The American Cancer
Society estimates about 20,830 new cases in 2015 in the U.S. The disease is
aggressive, with only 40–50% of patients that can be cured [1, 2]. Relapse is nearly
always fatal [3]. The standard initial treatment for newly diagnosed AML consists
of a combination chemotherapy with 7 days of continuous infusion of cytarabine
and 3 days of anthracycline, referred to as the “7 + 3” treatment. It results in 70–
80% complete response in patients, while 20–30% of patients are refractory and
require re-induction. AML is considered a highly heterogeneous disease in terms of
genetic and molecular characteristics, clinical presentation, response to treatment
and overall prognosis [4], making it challenging to establish a successful,
single-agent modality.

Tyner et al. [5] in the Knight Cancer Institute at Oregon Health & Science
University developed a rapid, high-throughput kinase inhibitor screening assay to
identify tyrosine kinase inhibitors to which patient’s leukemic cells are sensitive.
The assay is a 384-well plate format, containing eight different concentrations of 90
small-molecule kinase inhibitors (drugs) that are FDA approved or in clinical trials.
Briefly a patient’s primary leukemia sample (peripheral blood or bone marrow) is
subject to in vitro cell viability assay, a dose-response curve is generated for each
drug with the response being % of live leukemia cells at each concentration, and the
IC50 (“half maximal inhibitor concentration”) is determined for each drug (Fig. 1).
IC50 is the dose that kills 50% of leukemia cells. To standardize the IC50s across
all drugs, percent (%) median IC50 is computed by dividing the observed IC50 by

Fig. 1 Illustration of the kinase inhibitor assays and target drug identification
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the median IC50 of the drug based on the past samples. A drug with the lowest %
median IC50 is considered as the most sensitive drug for the patient.

The OHSU eIRB #11766 (NCT02779283) (PIs: Marc Loriaux, MD, PhD;
Stephen Spurgeon, MD) is a phase IB trial to evaluate the feasibility and safety of
the combination of a target kinase inhibitor and the standard chemotherapy regimen
for newly diagnosed AML patients. In this trial, five FDA approved drugs are being
studied: dasatinib, sorafenib, sunitinib, ponatinib, and nilotinib. A patient receives
the standard chemotherapy plus the target drug. The inhibitor assay is used to
determine a target drug by Day 7, which is administered on Day 8 (Fig. 2). Because
the five kinase inhibitors have not been combined with the “7 + 3” regimen, safety
assessment is considered critical; specifically, it was felt necessary to establish
continuous toxicity monitoring.

2 Statistical Methods for Continuous Toxicity Monitoring

2.1 Single-Stage, Single-Agent Trial

Ivanova et al. [6] proposed a method for deriving a continuous stopping boundary
for toxicity in a single-arm, single-stage phase II oncology trial. The boundary is
derived based on Pocock [7] boundaries with K stages, where K is equal to the
number of patients enrolled in a trial. A basic concept is presented below:

Notations:

N the sample size
H the probability of a dose limiting toxicity (DLT)
h0 the target DLT probability (i.e.the maximum acceptable DLT probability)
u the probability of early termination when h = h0
bk the boundary for the kth subject

The goal is to construct a stopping boundary (bk) based on the target DLT
probability such that the probability of early stopping is at most u if the DLT
probability is equal to h0. In order to find a boundary, a set of pointwise probabilities
a1; . . .; aKð Þ are chosen and bk is then computed as the smallest integer such that Pr
(Yk � bk) � ak, where Yk denotes the cumulative DLT events among k patients and
a binomial random variable with parameter k and h0. A Pocock boundary is obtained
by setting a1 ¼ � � � ¼ aK ¼ a where a is such that if h = h0 the probability of early
stopping is as close as u as possible. The solution for a is tabulated by Jennison and
Turnbull [8]. Ivanova provides an online program to calculate a continuous stopping
boundary for toxicity for a single-arm, single-stage trial: http://cancer.unc.edu/
biostatistics/program/ivanova/ContinuosMonitoringForToxicity.aspx. For example,
if N = 40 (sample size), h0 = 0.20 (target DLT probability), and u = 0.05 (proba-
bility of early termination when h = h0), the program provides the boundary and the
operating characteristics shown in Table 1.
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2.2 Extension to Assay-Guided Multiple Agents Trial

Tang et al. [9] proposed an extension of a group sequential procedure to multiple
endpoints. More recently Ye et al. [10] proposed a group sequential Holms pro-
cedure for multiple endpoints. However, these approaches are not intended for

Fig. 2 Flowchart of OHSU eIRB #11766 (a combination of the “7+3” treatment and the targeted
therapy). Note that MRD refers to minimal residual disease
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multiple agents. We will extend the approach of Ivanova et al. [6] to a biomarker
driven trial where multiple agents are studied.

Let N be the total sample size, and p be the number of drugs under study. Let
ðf1; . . .; fpÞ denote a vector of frequencies of p target drugs. Let (h1,. . .,hp) denote
the true DLT probability of each drug. The goal is to construct a continuous
stopping boundary based on DLT events for the all drug groups combined as well
as for each drug group separately such that the probability of early termination is at
most u if the toxicity rate is equal to h0. A rationale for having both types of
stopping boundaries are: (a) to evaluate the safety of the assay-based drug
assignment as a whole; (b) if one drug is associated with higher DLT, a
drug-specific boundary will allow the drug group to stop, while allowing all other
drug groups to continue, and; (c) since some drug groups have small sample sizes,
combining all drug groups may provide more power in detecting excessive DLTs.
We would like to protect patients from excessive DLT events, while evaluating the
feasibility of the assay-guided approach.

Notations:

ðf1; . . .; fpÞ the frequency of p target drugs
(h1,. . .,hp) the true toxicity rate of p drugs
ðN1; . . .;NpÞ the number of patients in p drug groups
ðY1; . . .; YpÞ the number of toxicity event in p drug groups
N ¼ Pp

i¼1 Ni the planned sample size
Y ¼ Pp

i¼1 Yi the total number of DLT events
h0 the target DLT probability
u the probability of early termination when h ¼ h0

Conditional on ðN1; . . .;NpÞ, ðY1; . . .; YpÞ is independently distributed as bino-
mial Ni; hið Þ, and therefore the joint distribution is given by:

f ðY1; . . .; YpjN1; . . .;NpÞ ¼
Y
i

Ni

Yi

� �
hYii 1� hið ÞNi�Yi

The number of patients in each target drug group, ðN1; . . .;NpÞ, follows a
multinomial distribution with the parameters ðf1; . . .; fpÞ. Therefore, a joint distri-
bution of ðN1; . . .;NpÞ and ðY1; . . .; YpÞ is:

f ðY1; . . .; Yp;N1; . . .;NpÞ ¼ f ðY1; . . .; YpjN1; . . .;NpÞf N1; . . .;Np
� �

¼
Y
i

Ni

Yi

� �
hYii 1� hið ÞNi�Yi N

N1 � � �Np

� �
f N1
1 � � � f Np

p

The marginal distribution of ðY1; . . .; YpÞ can be obtained by summing over all
possible ðN1; . . .;NpÞ configuration. Similarly conditional on ðN1; . . .;NpÞ, the
distribution of the total number of DLT events, Y ¼ Pp

i¼1 Yi, is binomial (N,
P

fihi)
given by:
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f ðY jN1; . . .;NpÞ ¼ N
Y

� �
ð
X

fihiÞYð1� ð
X

fihiÞÞN�Y

A joint distribution of ðN1; . . .;NpÞ and Y is given by:

f Y ;N1; . . .;Np
� � ¼ f ðY jN1; . . .;NpÞf N1; . . .;Np

� �
¼ N

Y

� �
ð
X

fihiÞYð1� ð
X

fihiÞÞN�Y N

N1 � � �Np

� �
f N1
1 � � � f Np

p

To derive continuous toxicity boundaries, let’s simplify a problem and assume
first that Ni is fixed and equal to m, so that N = mp. This means that the trial
continues until m patients are enrolled in each drug group. In this special setting,
ðY1; . . .; YpÞ is independently distributed as binomial m; hið Þ, and therefore the joint
distribution is given by:

f ðY1; . . .;YpÞ ¼
Y
i

m
Yi

� �
hYii 1� hið Þm�Yi

The Pocock type boundaries can be derived by finding a set of common bk under
hi = h0 for all i = 1, …, p such that bk is the smallest integer to satisfy:

Pr
[
i

ðYi � bkÞ
" #

¼ 1�
Y
i

½1� Pr Yi � bkð Þ� � 1� 1� að Þp � p � a

where Yi denotes a binomial random variable with parameter k and h0, and a is such
that if h = h0 the probability of early stopping is as close as u as possible. Note that

in general, regardless of independence or dependence, Pr
S
i
ðYi � bkÞ

� �
is equal to

or less than a, providing the upper probability of the overall type I error rate for the
multiple boundary problem.

In many cases, while the total sample size is fixed, the number of patients in each
target drug group is a random variable. Deriving a continuous toxicity boundary is
complex when ðN1; . . .;NpÞ is a random vector with the multinomial distribution
with the parameters ðf1; . . .; fpÞ. In theory, the boundaries can be constructed using
the marginal distribution of ðY1; . . .; YpÞ with the expected value and variance are
given by:

E Yið Þ ¼ E E YijNið Þ½ � ¼ E Nihið Þ ¼ Nfihi

Var Yið Þ ¼ Var E YijNið Þ½ � þE Var YijNið Þ½ �ð Þ ¼ h2i Nfið1� fiÞþNfihi 1� hið Þ

The term h2i Nfið1� fiÞ reflects additional variance due to Ni being a random
variable.
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For the OHSU eIRB #11766 trial, there are six toxicity boundaries, one for the
total number of DLT events, and five for DLT in each drug group. Each boundary
was derived using a = 0.02, so that the overall probability of early termination
when h = h0 for all drug groups is at most pa = 0.12. However, because the number
of subjects in each drug group is not fixed and can be regarded as a random
variable, we evaluated the operating characteristics of the boundaries through a
simulation study.

3 Evaluation of Operating Characteristics

3.1 Simulation Settings

Using Ivanova’s online program, we derived a continuous toxicity boundary under
the following specifications: (1) N = 40 patients; (2) the maximum acceptable DLT
probability (h0) = 20%; (3) the probability of early termination when h = h0 is 5%.
The boundary is then applied to DLT events in each drug group as well as the total
DLT events for all groups combined. The overall probability of early termination
due to any of six boundaries is at most 30%.

We evaluated the stopping boundaries under the following eleven conditions
(Table 2). The frequency of each of five drug groups is denoted by fi, which are
chosen to match with the expected frequency of each drug in the trial. Eleven
toxicity profiles are assumed (Table 2) ranging from the case of uniform safety
(Case 1), uniform moderate toxicity (Case 2) to high toxicity (Case 11). The overall
toxicity represents a weighted average of the target drug frequency and DLT
probability, h ¼ P

i fihi. A simulation was run 1000 times under each condition.

3.2 Simulation Results

Table 2 shows overall and drug-specific probabilities of early termination for ele-
ven different DLT probability profiles. The expected number of patients in each
drug group is based on the expected frequencies in the OHSU eIRB #11766 trial.
Figure 3 shows the probability of early termination as a function of DLT proba-
bility by each drug group as well as all drug groups combined. When the DLT
probability is uniformly low (10%), the probability of early termination is close to
0. In contrast, when the DLT probability is uniformly high (70–80%), the proba-
bility of early termination is high (100%). When the toxicity profile is heteroge-
neous, e.g., 10–80%, the probability of early termination depends on both DLT
probability and the frequency of the target drug group, i.e., the number of subjects
in each drug group. When the frequency of the target group is moderate (e.g., 30%,
Drug A), a drug-specific boundary has a reasonable probability of early termination
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in the presence of excess toxicity. Not surprisingly when the frequency of the target
drug group is low (e.g., 3%, Drug E), the probability of early termination is low
regardless of the DLT probability. In contrast, the boundary based on the total DLT
events is more powerful and has a higher probability of termination than any of the
drug-specific boundaries because of a larger sample size (Fig. 3). This benefit is
evident in the 7th condition where DLT probabilities are 40% for Drugs A–D and
10% for Drug E; the boundary based on the total DLT events is clearly more
powerful than drug-specific boundaries and is likely to be able to detect moderately
higher DLT event rates in four drug groups. Note that presumably because the
power is so low, a multiplicity problem is not apparent (i.e., an increased proba-
bility of early termination when the DLT probability is low).

4 Concluding Remarks

In early phase oncology clinical trials, it is common to have a continuous toxicity
boundary in order to insure patient safety. We extended the method of Ivanova [6] to
a biomarker driven, multiple agent trial, where the sample size for each drug is not
fixed. We evaluated the operating characteristics of multiple toxicity boundaries
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Fig. 3 Probability of early termination as a function of DLT probability by each drug group and
all groups combined
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through simulation. The results indicate that having both drug-specific and overall
toxicity boundaries is beneficial in early phase trials, when the sample size is rela-
tively small. Overall, however, the results point out that having a fixed sample size
for each drug group is necessary if we would like to assess the safety of each drug
group, even when the objective of the trial is to evaluate the assay-guided strategy
rather than individual drug efficacy. The results also highlight the challenge of safety
evaluation in precision medicine settings, when there are several drugs being eval-
uated in a single trial, and where the sample size for each drug may be very small.

In toxicity and safety monitoring, we are more interested in detecting any
possible safety issues, and therefore the increased a level due to multiple bound-
aries may be acceptable. In the simulation the power is uniformly low when the
sample size is small, which is typically the case in early phase oncology trials.
Therefore, to achieve a reasonable power, we may need to accept a larger a level. In
practice, crossing the toxicity boundary does not always result in the immediate
early termination of the trial, but triggers a more rigorous safety evaluation
including dose modification, dose schedule change, and reassessment of the eligi-
bility criteria. In those instances, having both drug-specific and overall boundaries
may be helpful, as well as setting the minimum sample size for each drug group to
allow safety evaluation of each drug under study. Further research on this topic is
encouraged, including Bayesian adaptive toxicity boundaries that leverage prior
toxicity information as well as cumulative toxicity events across drug groups.
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Bayesian Phase II Single-Arm Designs

Satoshi Teramukai

Abstract Phase II exploratory clinical trials in oncology are often designed as
single-arm trials using a binary efficacy outcome with or without interim moni-
toring. This chapter focused on the Bayesian designs which considered both effi-
cacy and safety outcomes associated with early stopping. In particular, we introduce
a Bayesian adaptive design denoted as predictive sample size selection design
(PSSD). The design allows for sample size selection following any planned interim
analyses for early stopping of a trial, together with sample size determination. An
extension of the PSSD to add continuous monitoring of safety is also described. We
investigate the operating characteristics of the design through simulation studies.

Keywords Sample size determination � Analysis prior � Design prior � Prior
predictive distributions � Sample size re-estimation � Bayesian adaptive design �
Predictive sample size selection design � Beta priors � Bayesian conjugate
analysis � Predictive probability criterion � Interim monitoring

1 Introduction

The aim of exploratory clinical trials in oncology is to determine whether an
experimental treatment is promising for evaluation in confirmatory clinical trials.
Phase II exploratory trials focus mainly on the evaluation of efficacy, and
single-arm trials are designed to assess the clinical response related to anti-tumour
activity as the primary endpoint. If such an efficacy-related clinical response is
based on tumor shrinkage, the assessment will be made using the response eval-
uation criteria in solid tumors (RECIST), which is based on computed tomography
scans of tumor size [1]. In this case, the response is categorised as progressive
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disease, stable disease, partial response, or complete response. This ordinal
response is often further dichotomised as a binary response according to some
threshold that defines the “success” or the “failure” of the treatment.

One of the most commonly-used designs for a phase II single-arm trial is
Simon’s two-stage group sequential design [2], in which the trial is terminated early
if the clinical response rate is poor in the first stage. However, Zohar et al. [3]
emphasised that Bayesian approaches are ideal for such exploratory clinical trials,
as they take into account previous information about the quantity of interest as well
as accumulated data during a trial. In this context various Bayesian designs have
been proposed. For instance, Tan and Machin [4] developed a Bayesian two-stage
design called the single threshold design (STD), and Mayo and Gajewski [5, 6]
extended this proposition into a design incorporating informative prior distribu-
tions. Whitehead et al. [7] formulated a simple approach to sample size determi-
nation (SSD) in which they incorporate historical data in the Bayesian inference.
Furthermore, Sambucini [8] proposed a predictive version of the STD (PSTD) using
two kinds of prior distributions pursuing different aims: the ‘analysis prior’ used to
compute posterior probabilities and the ‘design prior’ used to obtain prior predictive
distributions. Indeed, according to Sambucini and Brutti [8, 9], the two-priors
approach is useful when implementing the Bayesian SSD process and providing a
general framework that incorporates frequentist SSD (corresponding to a
non-informative analysis prior and a degenerate design prior) as a special case.

Sambucini [10] modified the PSTD and suggested a Bayesian adaptive two-stage
design in which the sample size for the second stage depends on the results of the
first stage. However, as these methods [4–6, 8, 10] focus on the two-stage design
only, their application is somewhat restricted. Brutti et al. [11] proposed a Bayesian
SSD with sample size re-estimation based on a two-priors approach; however their
approach was based on approximately normally distributed outcomes and not
directly on binary outcomes. Lee and Liu [12] proposed a Bayesian predictive
probability approach for single-arm trials that combines SSD with multiple interim
analyses. Recently, Teramukai et al. [13] proposed a Bayesian adaptive design for
single-arm exploratory clinical trials with binary outcomes based on a two-priors
approach and predictive probabilities. The design, denoted as predictive sample size
selection design (PSSD), consists of SSD at the planning stage and sample size
selection at any required stage following interim analyses during the course of the
trial.

Such flexible designs seem attractive because they avoid the problem of con-
tinuing to treat patients enrolled in a trial with a futile treatment. However, in such a
phase II trial toxicity data are also collected, since the toxicity information in its
preceding phase I trial may not be reliable, as patients in the phase I trial typically
differ from those in the phase II trial. Unfortunately, most of the commonly-used
designs for phase II trials, including two-stage designs, do not explicitly utilize the
toxicity data but rather separately impose arbitrary stopping rules for safety on the
clinical trial protocol in case of excessive toxicity, rather than within the designs
themselves. As a result, these imposed rules might obscure or even nullify the
designs’ operating characteristics. Some authors have proposed adaptive designs
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that model efficacy and toxicity data jointly. The first to propose such a group
sequential design in a frequentist framework were Bryant and Day [14], who
developed a method evaluating both clinical response and toxicity, similar in
structure to Simon’s two-stage designs. They were followed by Thall et al. [15],
Conaway and Petroni [16], Stallard et al. [17], and Chen and Smith [18], who later
proposed phase II designs jointly modelling toxicity and efficacy data using
Bayesian inference. In this context, Teramukai et al. [19] proposed an integrative
approach that takes into account both binary efficacy and toxicity data and that also
provides sample size determination. It seems more ethical and informative to
evaluate safety and efficacy according to interim monitoring for each endpoint.
Safety monitoring may also be done more frequently than efficacy monitoring to
avoid missing important signals regarding toxicity.

The outline of this chapter is as follows. Sect. 2 introduces some preliminaries
on the Bayesian setting. In Sect. 3, we describe the basic concept of PSSD. We
show the procedures and operating characteristics of the design in Sect. 4. We
illustrate an extension of PSSD that considers both efficacy and safety, and we
present the properties of the design through some simulations in Sect. 5, and an
illustrative example in Sect. 6. Finally, we conclude with a discussion in Sect. 7.

2 Preliminaries

Suppose that n patients are treated in a trial. Let hT and hR denote the parameters
representing the probabilities of toxicity and efficacy of the experimental treatment,
respectively. Let YT;i denote the binary toxicity outcome for patient i for
i ¼ 1; . . .; n, which takes a value of 1 with probability hT and 0 with probability
1� hT, and similarly let YR;i denote the binary efficacy outcome for the same
patient, which takes a value of 1 with probability hR and 0 with probability 1� hR.
Let T and S denote the random numbers of patients who experience toxicity and
efficacy, respectively, such that T ¼ Pn

i¼1 YT;i and S ¼ Pn
i¼1 YR;i. Then, T and

S have the following marginal binomial distributions, respectively:

fnðtjhTÞ ¼ Binðt; n; hTÞ for all t ¼ 0; . . .; n; and

fnðsjhRÞ ¼ Binðs; n; hRÞ for all s ¼ 0; . . .; n:

We assume the Beta priors for hT and hR, that is, respectively,

pðhTÞ ¼ BetaðhT; aT; bTÞ and pðhRÞ ¼ BetaðhR; aR; bRÞ; ð2:1Þ

where aT, bT, aR, and bR are hyper-parameters. In a Bayesian conjugate analysis,
we obtain the following posterior distributions, respectively:
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pnðhTjT ¼ tÞ ¼ BetaðhT; aT þ t; bT þ n� tÞ and
pnðhRjS ¼ sÞ ¼ BetaðhR; aR þ s; bR þ n� sÞ: ð2:2Þ

3 Basic Concept of the Predictive Sample-Size
Selection Design (PSSD)

3.1 Sample Size Determination

The sample size determination method is based on the concept proposed by
Sambucini [8], where a predictive probability criterion with two types of prior
distributions, that is, a “design prior” used to obtain prior predictive distributions,
and an “analysis prior” used to compute posterior probabilities, is adopted. As the
sample size determination in the trial is usually based on the efficacy outcome, we
consider the design and analysis priors for the efficacy probability parameter hR.
Based on Eq. (2.1), these are represented with superscripts “D” and “A”, respec-
tively, as follows:

pDðhRÞ ¼ BetaðhR; aD; bDÞ and pAðhRÞ ¼ BetaðhR; aA; bAÞ; ð3:1Þ

where aD ¼ nDpD0 þ 1, bD ¼ nDð1� pD0 Þþ 1, aA [ 0, and bA [ 0; pD0 represents
the prior mode, and nD is a type of tuning parameter for the variance of pDðhRÞ;
aA ¼ bA ¼ 1 if there is no prior information for efficacy. Let hR;0 denote a fixed
value that previous evidence suggests would be the efficacy probability with a
control or standard treatment, and let d represent a ‘minimally clinically significant
effect’. Therefore, hR;0 þ d is a pre-specified target value for the efficacy probability.
In this connection, the prior mode pD0 should be chosen such that pD0 [ hR;0 þ d. In
particular, when nD ¼ 1, pDðhRÞ is the degenerate distribution at pD0 .

If S patients among n patients experience efficacy, the posterior distribution for
the analysis prior pAðhRÞ is obtained as pAn ðhRjSÞ in the same manner as Eq. (2.2).
Then, for S ¼ 1; . . .; n, the posterior probability that hR is greater than hR;0 þ d,
denoted as pnðSÞ, can be represented as follows:

pnðSÞ ¼ pAn ðhR [ hR;0 þ djSÞ:

For a pre-specified probability threshold k 2 ð0; 1Þ, the treatment is declared effi-
cacious if the observed number of successes s is such that

pnðsÞ ¼ pAn ðhR [ hR;0 þ djS ¼ sÞ� k: ð3:2Þ
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The predictive probability criterion is defined as follows [9]: for a pre-specified
probability threshold c 2 ð0; 1Þ, the smallest n is selected as the sample size N, such
that

PD½pnðsÞ� k� � c;

where PD is the probability measure associated with the prior predictive distribution
on the design prior. The prior predictive distribution is given by

mDðsÞ ¼
Z1

0

fnðsjhRÞpDðhRÞdhR for all s ¼ 0; . . .; n:

The prior predictive probability of the treatment being declared efficacious at the
sample size N may therefore be rewritten as

PD½pNðsÞ� k� ¼
XN
s¼uN

mDðsÞ; ð3:3Þ

where uN ¼ min s 2 f0; . . .;Ng : pNðsÞ� kf g.
In the PSSD, the above sample size N can be adaptively increased up to a

maximum, denoted as Nmax, during the course of a trial, depending on some belief
of the efficacy probability. A method for determining a maximum sample size Nmax

can be based on a ‘sceptical’ design prior pDsceptðhRÞ. This design prior has the same
beta distribution as Eq. (3.1), but reflects a sceptical belief of the efficacy proba-
bility, such that

pDsceptðhRÞ ¼ Beta(hR; nDpD0;scept þ 1; nDð1� pD0;sceptÞþ 1Þ;

where pD0;scept represents the mode of pDsceptðhRÞ. But note that if it should be

determined that hR;0 þ d\pD0;scept\pD0 , although nD is not changed in pDðhRÞ, it
results in N\Nmax. In the same manner as Eq. (3.3), the prior predictive probability
on the sample size Nmax is given by

PD½pNmaxðsÞ� k� ¼
XNmax

s¼uNmax

mDðsÞ;

where uNmax ¼ min s 2 f0; . . .;Nmaxg : pNmaxðsÞ� kf g.
Table 1 shows the required sample size N for different values of hR;0 þ d, pD0 , n

D,
k and c (pAðhRÞ ¼ Betað1; 1Þ: non-informative). nD ¼ 100 corresponds to
approximately 0.20 for the range of the 95% credible interval. The larger k or c is
relative to the other parameters, the greater the sample size. The choice of pD0 has
some degree of impact on the sample size, and nD has a large effect if pD0 is close to
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hR;0 þ d. The two-priors approach is a general framework that incorporates the
frequentist SSD method as a special case when pAðhRÞ is non-informative and
pDðhRÞ is degenerate. The sample size for nD ¼ 1 is slightly larger but almost the
same as that obtained from the frequentist approach that corresponds to the
hypothesis testing framework: null hypothesis H0 : h� hR;0 þ d and alternative
hypothesis H1 : h� pD0 , a ¼ 1� k and b ¼ 1� c. The frequentist results are dis-
played in brackets in Table 1.

3.2 Sample Size Selection

To select the sample size, we specify the number of sample size selections, K. We
recommend K = 1 because multiple sample size selections result in complicated
switching between N and Nmax during the course of a trial. Given a sample size N or
Nmax (see Sect. 3.1), suppose that we plan J interim observations or ‘looks’ for
efficacy ðJ�KÞ. Let nj be the number of patients at interim observation j for
j ¼ 1; 2; . . .; J, and let Sj ¼

Pnj
i¼1 YS;i be the number of efficacies obtained at the

interim observation of nj patients. After observing sj successes out of nj patients, the
posterior predictive distribution for S at interim observation j, denoted as mðsÞ, is
given by the beta-binomial, since:

mðsÞ ¼
Z1

0

frjðsjhRÞpnjðhRjSj ¼ sjÞdhR for all s ¼ 0; . . .; rj; ð3:4Þ

where rj ¼ N � nj or rj ¼ Nmax � nj.
Then, we make a choice between N and Nmax as the final sample size on the basis

of the posterior predictive probabilities that are calculated based on Eq. (3.4) for
N and Nmax, that is,

PN�nj
s¼uN�sj mðsÞ and

PNmax�nj
s¼uNmax�sj mðsÞ. If

PN�nj
s¼uN�sj mðsÞ is greater

than or equal to
PNmax�nj

s¼uNmax�sj mðsÞ, N is selected; otherwise, Nmax is selected.

3.3 Interim Monitoring for Efficacy

Interim monitoring for efficacy should be based on predictive probability to be
consistent with the sample size determination and selection process. As mentioned
above, the predictive probability during the trial depends on the final sample size,
N or Nmax. The stopping rule for efficacy is as follows: let sR 2 ½0; 1� be
pre-specified probability thresholds. If

PN�nj
s¼uN�sj mðsÞ\sR under the final sample

size N or
PNmax�nj

s¼uNmax�sj mðsÞ\sR under the final sample size Nmax(see Sect. 3.2), we
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will stop the trial for inefficacy; otherwise, the trial will be continued until the next
interim observation or the final analysis.

4 Procedures and Operating Characteristics for PSSD

Before starting a trial

Step 1: Determine two sample sizes, N and Nmax.
Step 2: Specify an interim monitoring plan.
Step 3: Specify a sample size selection plan.

During the trial

Step 1: At the interim looks for efficacy, if the predictive probability for efficacy
is low, stop the trial for inefficacy; otherwise, continue the trial.

Step 2: At the interim look with sample size selection, choose between N and
Nmax as the final sample size, based on the predictive probabilities.

4.1 Example

Suppose that the design parameters are specified as hR;0 þ d = 0.3, pD0 = 0.50,
pD0;scept = 0.45, nD ¼ 1, pAðhRÞ ¼ Betað1; 1Þ, k = 0.9 and c = 0.8. In this case, the
two sample sizes will be calculated as N = 28 and Nmax = 48. An interim analysis is
planned after enrolling 10 patients and sample size selection is also planned at that

Table 2 Posterior mean and predictive probability at the first interim look, when hR;0 þ d = 0.3,
pD0 = 0.50, pD0;scept = 0.45, nD ¼ 1, pAðhRÞ ¼ Betað1; 1Þ, k = 0.9, c = 0.8, n1 = 10, sR = 0.1

s1 Posterior mean Predictive probability

N = 28 (uN = 12) Nmax = 48 (uNmax = 19)

0 0.083 0.00035 0.00187

1 0.167 0.00710 0.02146

2 0.250 0.05347 0.10543

3 0.333 0.20806 0.30009
4 0.417 0.48631 0.57091
5 0.500 0.76962 0.80789
6 0.583 0.93489 0.94059
7 0.667 0.98937 0.98799

8 0.750 0.99910 0.99852

9 0.833 0.99996 0.99990

10 0.917 1.00000 0.99999
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time. Suppose that the probability threshold for inefficacy stopping sR is 0.1.
Table 2 shows the posterior mean and predictive probability for success number at
the first interim look s1 (=0,…,10). If s1 is 2 or less, the predictive probability of
trial success is smaller than 0.1 and the trial will be stopped for inefficacy. If s1 is 3
or more, the trial will be continued until the final analysis, and the sample size will
be selected by comparing the predictive probabilities. If s1 is 3–6, the predictive
probability under Nmax is larger than that under N (in boldface), and thus Nmax = 48
should be selected. If s1 is 7 or more, the predictive probability under N is larger
than that under Nmax (in boldface), and thus N = 28 should be selected.

4.2 Operating Characteristics

We have compared the frequentist operating characteristics of the proposed design
with those of fixed sample size designs based on 10,000 simulated trials. The data
were generated from Bernoulli distributions. In the context of hypothesis testing,
H0 : h� hR;0 þ d versus H1 : h� pD0 , the evaluated properties are the probability of
a type I error at h ¼ hR;0 þ d, the probability of type II errors at h ¼ pD0 and
h ¼ pD0;scept, the probability of early termination (PET) and the expected sample size
(ESS) at pre-specified design values. Table 3 shows the results when hR;0 þ d =
0.30, pD0 = 0.50, pD0;scept = 0.45, nD ¼ 1, pAðhRÞ ¼ Betað1; 1Þ, k = 0.9, c = 0.8,
N = 28, Nmax = 48, sR = 0.1. As references, two fixed sample size designs
(A: pD0 = 0.50 and N = 28; B: pD0 = 0.45 and N = 48) are considered.

As the number of interim looks increases, the probability of type I errors slightly
decreases and that of type II errors increases. The type I error probabilities of the
proposed PSSD are similar to those of the non-adaptive designs (nearly equal to
1 − k). In this case, as the fixed sample size design A or B without interim analysis
is optimised at h ¼ pD0 (=0.50) or h ¼ pD0;scept (=0.45), respectively, the type II error
probabilities evaluated at these values are around 0.20 (equal to 1 − c). The type II
error probabilities of the PSSD are between those of the two fixed sample size
designs. The type II error probabilities in the PSSD are around 0.05 higher than that
in fixed sample size design B. It was found that the PET increases and the ESS
decreases as the number of interim looks increases. The ESS of the PSSD are
between those of the two non-adaptive designs.

5 An Extension of the PSSD

The process of sample size determination and selection, and interim monitoring for
efficacy for the extension of the PSSD is the same as that of the original PSSD. In
this extension, we need to specify an interim monitoring plan for toxicity.
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5.1 Interim Monitoring for Toxicity

In the following, suppose that we plan L interim observations or ‘looks’ for toxicity.
We assume that the number of interim observations of toxicity, will be equal to or
larger than that of interim observations of efficacy, J (see Sect. 3.3); L� J. Let nl be
the number of patients at interim observation l for l ¼ 1; 2; . . .; L; then
fn1; . . .; nJg 2 fn1; . . .; nLg, that is, the J efficacy analyses are a subset of the
L safety analyses.

There are two types of options available for methods of safety monitoring: the
posterior probability-based method and the predictive probability-based method.

Posterior probability-based method
Let hT;0 denote a pre-specified maximum tolerated toxicity value, and let Tl ¼Pnl

i¼1 YT;i be the number of toxicities obtained at the interim observation of nl
patients. At the lth interim observation, if tl patients among nl patients experience
toxicity, then the posterior distribution is pn1ðhTjTl ¼ tlÞ (see Eq. 2.2). The poste-
rior probability that the toxicity probability hT is greater than hT;0 is then

pnlðTlÞ ¼ pnlðhT [ hT;0jTlÞ:

For a pre-specified probability threshold xT 2 ð0; 1Þ, the trial will be stopped for
safety if the observed number of toxicities tl is such that pnlðtlÞ�xT; otherwise, the
trial will be continued until the next interim observation or the final analysis.

For a pre-specified probability threshold M2i �M1i, the trial will be stopped for
safety if the observed number of toxicities PFSr is such that PFS; otherwise, the
trial will be continued until the next interim observation or the final analysis.

Predictive probability-based method
Let the minimum number of toxicities for the treatment being declared toxic at
sample size N and Nmax be denoted vN ¼ minft 2 f0; . . .;Ngg such that
pNðtÞ�xT, and vNmax ¼ minft 2 f0; . . .;Nmaxgg such that pNmaxðtÞ�xT. At the lth
interim observation, if tl patients among nl patients experience toxicity, the pos-
terior predictive distribution for T at interim observation l, denoted as mðtÞ, is again
given by beta-binomial, since:

mðtÞ ¼
Z1

0

frlðtjhTÞpnlðhTjTl ¼ tlÞdhT for all t ¼ 0; . . .; rl; ð5:1Þ

where rl ¼ N � nl or rl ¼ Nmax � nl. Based on Eq. (5.1), the posterior predictive
probabilities for toxicity for N and Nmax, are represented as

PN�nl
t¼vN�tl mðtÞ andPNmax�nl

t¼vNmax�tl mðtÞ, respectively, in the same manner as those for efficacy. The stop-
ping rule is as follows. Let sT 2 ½0; 1� be the pre-specified probability thresholds. IfPN�nl

t¼vN�tl mðtÞ[ sT under the final sample size N or
PNmax�nl

t¼vNmax�tl mðtÞ[ sT under the
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final sample size Nmax, the trial will be stopped for toxicity; otherwise, the trial will
be continued until the next interim observation or the final analysis.

5.2 Simulation Study

Suppose that the design parameters are specified as hR;0 þ d = 0.3, pD0 = 0.5,
pD0;scept = 0.45, nD ¼ 1, pAðhRÞ ¼ Betað1; 1Þ, k = 0.9 and c = 0.8. In this case, the
two sample sizes are N = 28 and Nmax = 48. The interim observation for sample
size selection is planned once after enrolling 10 patients, i.e., K = 1, and the interim
observation for efficacy is planned twice after enrolling 10 and 20 patients, i.e.,
J = 2, with sR = 0.1.

Suppose that the pre-specified maximum tolerated toxicity value hT;0 is 0.2 and
the two types of priors for toxicity probability with the same mode (0.2) are
pðhTÞ ¼ Betað1:2; 1:8Þ and pðhTÞ ¼ Betað3; 9Þ, which represent a less informative
case and a more informative case, respectively. In particular, the latter corresponds
to the case in which data on toxicity from the previous phase I trials are available.
For the safety monitoring plan, we will have eight interim analyses; that is L = 8
and nl = 10, 15, 20, 25, 30, 35, 40, 45. We specify xT as 0.8 in the posterior
probability-based method and both xT and sT as 0.8 in the predictive
probability-based method.

Under the following six scenarios, we examined the operating characteristics, the
probability of early termination (PET) and the expected sample size (ESS), of the
proposed design based on 10,000 simulated trials.

Scenario 1: low response and low toxicity (true response h�R = 0.3 and true toxicity
h�T = 0.1)

Scenario 2: low response and middle toxicity (h�R = 0.3 and h�T = 0.2)
Scenario 3: low response and high toxicity (h�R = 0.3 and h�T = 0.3)
Scenario 4: high response and low toxicity (h�R = 0.5 and h�T = 0.1)
Scenario 5: high response and middle toxicity (h�R = 0.5 and h�T = 0.2)
Scenario 6: high response and high toxicity (h�R = 0.5 and h�T = 0.3)

To incorporate the correlation q between efficacy and toxicity into the simula-
tions, the joint probability h�RT is transformed into a correlation through the fol-
lowing relationship [20]:

q ¼ h�RT � h�Rh
�
Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h�Rð1� h�RÞh�Tð1� h�TÞ
p :

The range of the correlation is limited by the joint probability. When h�RT = 0, the
correlation will be the smallest at
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�h�Rh
�
Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h�Rð1� h�RÞh�Tð1� h�TÞ
p :

Conversely, when h�RT ¼ minðh�R; h�TÞ, the correlation will be the largest value. We
conducted simulations for each scenario under three possible correlations:
minimum/negative, none/zero, and maximum/positive.

Table 4 shows the safety stopping boundaries according to different priors and
methods to monitor safety. In this setting, the prior for toxicity has little impact on
the stopping boundary. The posterior-based method has a more stringent stopping
boundary for toxicity than the predictive-based method.

In Table 5, we show the simulation results when pðhTÞ ¼ Betað1:2; 1:8Þ using
the two types of methods of safety monitoring, compared with the results of using
efficacy monitoring alone as references. In each cell, the maximum value and the
minimum value as a range under the three possible correlations are shown. Both
methods have similar operating characteristics under all the scenarios. When the
response is low (scenario 1–3), the probability of positive results is 0.087 under the
reference case, which corresponds to a type I error rate, i.e., 1� k = 0.1. The higher
the true toxicity, the lower are the probabilities of positive results, the PET for
inefficacy, and the ESS. By contrast, the PET for toxicity dramatically increases
according to the true toxicity probability. If toxicity is high (scenario 3), then the
trial will stop for toxicity with probability of 0.45–0.6. If response is high (scenarios
4–6), the probability of positive results will be 0.893, which corresponds to the
power. The higher the true toxicity, the lower are the probability of positive results
and the ESS. However, the PET for inefficacy remains unchanged. In particular, if
toxicity is low (scenario 4), the probability of positive results (the power) is still
greater than 0.8. If toxicity is high (scenario 6), the trial will stop for toxicity with
probability of 0.7–0.85. The posterior probability-based method has a higher PET
for toxicity due to the stringent stopping boundary. The simulation results for
pðhTÞ ¼ Betað3; 9Þ show less PET for toxicity than for pðhTÞ ¼ Betað1:2; 1:8Þ,
reflecting the less stringent stopping boundaries.

Table 4 Stopping boundaries for safety monitoring

Prior: pðhTÞ Methods for safety
monitoring

nl
10 15 20 25 30 35 40 45

Betað1:2; 1:8Þ Posterior
probability-based

3 5 6 7 8 9 10 11

Predictive probability-based

N = 28 4 5 7 8 – – – –

Nmax = 48 4 5 6 8 9 10 11 12

Betað3; 9Þ Posterior
probability-based

4 5 6 7 8 9 11 12

Predictive probability-based

N = 28 5 6 7 8 – – – –

Nmax = 48 4 6 7 8 9 10 11 12
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6 An Illustrative Example

Marlin et al. [21] conducted a single-arm trial for assessing success rates in children
of achieving optimal hematopoietic progenitor cells harvest after mobilization with
300 lg/kg of pegfilgrastim. The success was defined as achieving at least 5 � 106

Table 5 Probability of positive results, probability of early termination and expected sample size
under various scenarios when pðhTÞ ¼ Betað1:2; 1:8Þ
Methods and scenarios Probability of positive

results

PET for

inefficacy

PET for

toxicity

ESS

Posterior probability based method for safety monitoring

Efficacy monitoring only 0.087 0.511 – 29.7

Efficacy and safety monitoring

Low response

(h�R = 0.3)

1. Low toxicity

(h�T = 0.1)

0.065–0.083 0.503 0.031–0.083 27.0–

28.8

2. Middle toxicity

(h�T = 0.2)

0.008–0.061 0.464–0.469 0.234–0.402 17.3–

23.7

3. High toxicity

(h�T = 0.3)

0.000–0.023 0.381–0.426 0.513–0.619 10.0–

16.0

Efficacy monitoring only 0.893 0.065 – 42.1

Efficacy and safety monitoring

High response

(h�R = 0.5)

4. Low toxicity

(h�T = 0.1)

0.812–0.832 0.064–0.065 0.068–0.084 39.5–

39.8

5. Middle toxicity

(h�T = 0.2)

0.425–0.498 0.059–0.064 0.433–0.480 28.9–

29.1

6. High toxicity

(h�T = 0.3)

0.056–0.146 0.057–0.063 0.797–0.868 16.7–

17.5

Predictive probability based method for safety monitoring

Efficacy monitoring only 0.087 0.511 – 29.7

Efficacy and safety monitoring

Low response

(h�R = 0.3)

1. Low toxicity

(h�T = 0.1)

0.078–0.086 0.508–0.510 0.007–0.026 28.9–

29.5

2. Middle toxicity

(h�T = 0.2)

0.017–0.072 0.485–0.501 0.145–0.273 21.6–

26.3

3. High toxicity

(h�T = 0.3)

0.000–0.037 0.436–0.466 0.445–0.534 12.0–

19.1

Efficacy monitoring only 0.893 0.065 – 42.1

Efficacy and safety monitoring

High response

(h�R = 0.5)

4. Low toxicity

(h�T = 0.1)

0.868–0.875 0.065 0.022–0.026 41.4–

41.5

5. Middle toxicity

(h�T = 0.2)

0.586–0.645 0.061–0.065 0.278–0.312 34.0–

34.5

6. High toxicity

(h�T = 0.3)

0.127–0.236 0.058–0.065 0.706–0.787 21.3–

21.7

PET probability of early termination, ESS expected sample size
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CD34+ cells/kg during the first standard apheresis (less than 3 blood volumes
processed). There was no planned sample size, with a target success rate of 30%.
After 26 inclusions, the final success rate was 61.5% (16/26). Out of the first 10, 20,
and 26 enrolled patients, successes were observed in 7, 10, and 16 patients,
respectively. In this trial, no drug-related adverse events (AE) of grade >3 occurred.

For illustration of the proposed approach, we hypothetically specified the design
parameters such that hR;0 þ d = 0.3, pD0 = 0.5, pD0;scept = 0.45, nD ¼ 1,

pAðhRÞ ¼ Betað1; 1Þ, k = 0.8, c = 0.9. From these parameters, the two sample sizes
were calculated as N = 26 (uN = 10) and Nmax = 47 (uNmax = 17). Suppose that two
efficacy interim analyses were planned after enrolling the first 10 and 20 patients
(n1 = 10, n2 = 20), and sample size selection was planned at the first interim
analysis, i.e., J = 2 and K = 1. Suppose that the probability threshold for inefficacy
stopping sR was 0.1. For safety monitoring, suppose that hT;0 = 0.2,
pðhTÞ ¼ Betað1:2; 1:8Þ, L = 8 and nl = 10, 15, 20, 25, 30, 35, 40, 45. If we specify
xT as 0.8 in the posterior probability-based method, the stopping boundary for
safety monitoring was shown in the first row of Table 4.

In the case of low toxicity such that the observed AE would be under the
stopping boundary, at the first interim analysis for efficacy, the success rate was
70% (7/10) and the predictive probability

PN�10
s¼N�7 m

AðsÞ was 0.998, andPNmax�10
s¼Nmax�7 m

AðsÞ was 0.995. Because the former value was over 0.10, the trial had
not been stopped for inefficacy. For the sample size selection, as the predictive
probability based on N was larger than that based on Nmax, N should be selected as
the re-determined sample size. At the second interim analysis for efficacy, the
success rate was 50% (10/20). As the predictive probability

PN�20
s¼N�10 m

AðsÞ was 1,
the trial had been continued until 26 patients were enrolled. Because the final
success rate was 61.5% (16/26), the posterior mean was 60.7% (95% credible
interval: 42.4–77.6%) and the posterior probability that the success probability was
greater than the target value was as follows:

pA26ðhR [ 0:3jS ¼ 16Þ ¼ 0:9996

Accordingly, we would conclude that a single injection of pegfilgrastim in the
haematological steady state is an efficient and well-tolerated method in children with
solid malignancies, as also concluded in the original report. By contrast, in the case of
high toxicity such that the observed AE would be over the stopping boundary, the trial
could be stopped for safety before reaching the determined sample size.

7 Conclusion Remarks

The PSSD is a coherent Bayesian adaptive design in the sense that we only use
predictive probabilities for determining sample sizes, monitoring efficacy outcomes,
and selecting a final sample size. At the design stage, we recommend that an analysis
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prior pAðhÞ should be objectively determined based on prior information such as
reliable historical or external data. In practice, Biswas et al. [22] have reported that
they have used 20% or less as a discount factor for historical information. As a result,
if it is difficult to take existing information into consideration, since the amount of
available data can be limited and there can be some uncertainty about the treatment
effect in most exploratory clinical trials, a uniform non-informative analysis prior
Betað1; 1Þ may be appropriate. Robust Bayesian SSD [9] considers a class of
plausible analysis priors instead of a single analysis prior in order to incorporate the
uncertainty of prior information into SSD. However, it should be emphasised that
uncertainty in a design prior is more important for SSD, where the inference could be
based on subjective information about the quantity of interest. To consider the
uncertainty of prior information, we employ nD (a tuning parameter for the variance
of design priors) and two kinds of design priors. The elicitation and determination of
design parameters, including hR;0, d, pAðhRÞ, pDðhRÞ and pDsceptðhRÞ, are essential
aspects of designing clinical trials.

In the PSSD, the sample size determination is based on the approach of
Sambucini [8] and Brutti et al. [9]. On the other hand, the interim monitoring based
on predictive probability is based on the method of Lee et al. [12]. As they
emphasised, the predictive probability approach for interim monitoring is a con-
sistent, efficient and flexible method that more closely resembles the clinical
decision making process. Unlike the approach by Lee et al. [12], the PSSD does not
require intensive computation for sample size searching due to the separation of the
interim monitoring procedure from the SSD procedure. Instead, comprehensive
simulations may be required at the design phase to evaluate the operating charac-
teristics (including type I and type II error probabilities) from the frequentist point
of view. The adaptive predictive single threshold design (APSTD) by Sambucini
[10] is an adaptive design that allows additional sample size while keeping the
‘Bayesian power’ based on updated information, i.e., updated analysis priors and
updated design priors. In the APSTD, the consistency of design parameters between
SSD at the first stage and sample size re-estimation at the second stage (adaptive
stage) seems not clear, and early stopping for efficacy is inevitably incorporated into
the procedure. In contrast, our design provides two fixed sample sizes (N and Nmax),
mainly for practical reasons, and it selects an optimal sample size by comparing the
‘Bayesian power’ between the two sample sizes at the interim stage. The difference
in ‘Bayesian power’ may be very small (at most 0.10 as shown in the example of
Table 2). By applying sample size selection, however, type II error probabilities are
reduced by 0.10–0.12 while type I error probabilities remain unchanged, as shown
in Table 3.

We also proposed an extension of the PSSD to monitor efficacy with sample size
adaptation, and add continuous monitoring of safety. In the design, we considered
two types of methods to monitor safety: the posterior-based method and the
predictive-based method. From the simulation results using the same threshold
values ðxT ¼ sT ¼ 0:8Þ, the probability of early termination for toxicity with the
posterior-based method is higher than that with the predictive-based method. This is
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due to the way the stopping boundaries are determined, so that the boundaries of the
posterior-based method are similar to but slightly more stringent than that of the
predictive-based method. As a result, we recommend the posterior probability
based-method to monitor safety, because in general posterior probabilities are easier
to calculate and interpret than predictive probabilities. To determine priors of
toxicity probabilities, we may use toxicity data from previous phase I trials.
However, if the prior is too informative, the prior will dominate stopping bound-
aries over data from current trials. Therefore, we propose the less informative prior
for toxicity, for example, pðhTÞ ¼ BetaðhT; aT; bTÞ with hyperparameters aT ¼
pT þ 1 and bT ¼ ð1� pTÞþ 1, where pT is an average toxicity probability estimated
from the previous studies. Thall et al. [15] and Brutti et al. [23] assumed the
Dirichlet-multinomial model which took into account the association between the
toxicity and efficacy outcomes, in order to allow us to monitor both of them. The
former provided an approach for multi-stage or continuous monitoring for multiple
outcomes but not a sample size determination. Two stopping boundaries of this
approach were substantially constructed on the basis of the beta-binomial models,
the so-called marginal models, for the toxicity and efficacy outcomes. The latter
developed a sample size determination scheme in the context of two-stage moni-
toring. Its stopping boundaries were based on the joint probability of simultane-
ously experiencing efficacy and no toxicity and on the marginal probability of
experiencing toxicity. On the other hand, we combined both ideas and give a
compromise proposal. Consequently, our proposed design has the following
advantages: (1) frequent, multi-stage, or continuous monitoring for the toxicity and
efficacy outcomes like Thall et al.’s approach, (2) sample size determination at the
planning stage of a trial like Brutti et al.’s design, plus the sample size selection
during a course of the trial, and (3) much easier design parameter specification and
computational procedure for the marginal model than counterparts for the joint
model. For the first advantage, being able to have a close monitoring of the tol-
erance without penalising the efficacy monitoring is more ethical for patients, as in
early phase clinical trials the safety of a new drug or combination is still uncertain.
Particularly, the designs based on the joint model would, if anything, intend to
simultaneously monitor both safety and efficacy at any interim observation. Unless
both types of monitoring are completed, the joint probability of simultaneously
experiencing efficacy and no toxicity cannot be obtained at the interim observation.
For the second advantage, the sample size required for a trial from a viewpoint of
efficacy can be not only determined in advance but also increased as necessary in
our proposed design. However, the third advantage, to put it the other way around,
leads to some limitation of our design that cannot explicitly consider the association
between toxicity and efficacy outcomes. It will be possible to further extend the
design to single-arm trials with multinomial endpoints with the use of the
Dirichlet-multinomial model, as such a model has some advantages in terms of
flexibility with respect to types of endpoints and their associations, although it may
be more complicated. The design could be also extended to multi-arm trials, other
types of endpoints, and other types of outcome measures including odds ratios or
relative risks through more appropriate Bayesian modelling.
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Phase III Clinical Trial Designs
Incorporating Predictive Biomarkers:
An Overview

Shigeyuki Matsui

Abstract Advances in biotechnology have revolutionized clinical trials in oncol-
ogy, shifting the emphasis to co-development of molecularly targeted drugs and
companion predictive biomarkers. However, the difficulty in developing and vali-
dating biomarkers in the early phases of clinical development complicates the
design and analysis of definitive phase III trials that aim to establish the clinical
utility of new treatments with the aid of predictive markers. This chapter provides
an overview of several designs for phase III trials that incorporate predictive
markers at various levels of development and credibility, the latter in terms of these
markers’ abilities to predict treatment responsiveness at the initiation of phase III
trials. We first discuss the enrichment design and marker-stratified all-comers
designs with a single binary marker. For the marker-stratified designs, multi-stage
analyses for sequential testing across the subgroups and adaptive subgroup selec-
tion are provided. We also discuss other adaptive designs, including the adaptive
threshold design and the adaptive signature design with some variants, in cases
where the threshold for marker positivity is unclear or a single marker for use in
evaluating treatment efficacy is not available at the initiation of phase III trials.
Lastly, we introduce the prospective-retrospective approach that allows for the
evaluation of treatment efficacy in a marker subgroup based on external evidence.
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1 Introduction

Recent advances in biotechnology have revealed that the biology of human cancers
is highly complex, and is heterogeneous among histologically defined cancers. With
better understanding of cancer biology, treatment has shifted to the use of molec-
ularly targeted drugs that inhibit specific targeted molecules related to carcino-
genesis and tumor growth.

The anti-cancer effects of many molecularly targeted drugs are likely to be
restricted to a subgroup of patients in whom alterations in the drug target are driving
the growth of the cancer. Hence the traditional randomized clinical trial design,
which evaluates an average treatment effect in a broad patient population, is no
longer effective for this type of drug. The chance of overlooking effective drugs
may increase due to the dilution of the treatment effect by enrolling non-responsive
patients. This may lead to an under-treatment problem as a result of missed
opportunities to treat future responsive patients using effective drugs. On the other
hand, even if the overall effect of a molecularly targeted drug is significant, this
does not necessarily mean that the treatment will be efficacious in all patients. This
may raise concerns regarding over-treatment of future non-responsive patients when
using this drug.

The way to address the above fundamental problems of the traditional design of
randomized clinical trials is to incorporate a predictive biomarker to capture the
heterogeneity in drug responsiveness or to identify a subgroup of patients who
benefit from the treatment. One example of a predictive marker is the V600E BRAF
point mutation when using the BRAF enzyme inhibitor vemurafenib in melanoma
patients [1]. Another but more complex example with graded or continuous markers
is the use of the overexpression of the HER2 protein or amplification of the HER2
gene when using a monoclonal antibody, trastuzumab, in metastatic breast cancer
patients [2, 3].

Assays for predictive markers need to be analytically validated to confirm that
they accurately measure the status of binary markers (e.g., the presence or absence
of a point mutation) and that they are robust and reproducible when measuring
levels of ordered or continuous markers (e.g., gene amplification or gene/protein
expressions) [4, 5]. For the latter type of markers, it is often unclear how to
determine marker positivity precisely when used in defining the subgroup of
patients who are deemed to benefit from the treatment, and thus a threshold for
marker positivity should be identified in earlier phase I and II trials.

In addition to being analytically validated, a predictive marker should be clinically
validated to assess its ability to predict treatment responsiveness in a patient popu-
lation [4, 6]. The clinical validity of a candidate predictivemarker is typically assessed
on the basis of short-term endpoints in earlier clinical trials (e.g., pharmacodynamic
endpoints in proof-of-concept trials or tumor shrinkage/progression-free survival
endpoints in phase II trials). The actual predictive accuracy may also reflect the
analytical accuracy of the marker. However, the clinical utility of the predictive
marker ultimately needs to be evaluated in a confirmatory phase III trial to
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demonstrate that it is actionable in clinical practice and that its use results in improved
patient outcomes (in terms of clinical endpoints) [4, 6].

One approach to designing phase III trials to establish the clinical utility of a
predictive marker is to randomize patients either to the use or non-use of the marker
in determining treatments [7, 8]. However, such a marker-strategy design is gen-
erally inefficient because patients in both the marker-based and non-marker-based
arms may receive the same treatment. For example, in a setting in which patients in
the marker-based arm receive an experimental treatment if they are marker-positive
and a standard treatment if they are marker-negative, and those in the
non-marker-based arm receive the same standard treatment regardless of whether
they are marker positive or negative, the treatment effect for comparing the two
strategy arms may reduce to the treatment effect in the marker-positive subgroup
multiplied by the prevalence of marker-positive patients in the trial population [9].
When the marker prevalence is very low (or there is substantial overlap in the
number of patients receiving the standard treatment in both strategy-based arms),
the inefficiency of such a strategy-based design becomes a serious problem. The
enrichment or marker-stratified all-comers designs are generally more efficient than
the marker-strategy design because they can directly evaluate treatment efficacy in a
marker-positive subgroup [9–12]. These designs demonstrate the clinical utility of a
treatment with the aid of a marker (through evaluating the efficacy of the treatment
across marker-defined subgroups), instead of demonstrating the clinical utility of
using the marker itself (through evaluating the efficacy of using a marker-based
strategy in the entire patient population).

In this chapter, we provide an overview of the enrichment and various all-comers
designs for phase III trials to establish the clinical utility of new treatments with the aid
of predictive markers. As we have seen so far, the process needed for marker devel-
opment and validation complicates the clinical development of new treatments. At the
design stage of confirmatory phase III trials, the status of marker development and
validation may vary widely, and candidate markers may have differing levels of
credibility. This means that such phase III designs may be more complicated than
traditional phase III designs that do not involve assessment of predictive markers.

We first consider situations where a single binary marker is available at the
launch of phase III trials. We discuss the enrichment design in Sect. 2 and
marker-stratified all-comers designs in Sect. 3. For the marker-stratified all-comers
designs, we discuss various multiple hypothesis tests across the marker subgroups,
depending on assumptions regarding the ability of the marker to predict treatment
responsiveness. We also discuss multi-stage analyses for sequential testing across
the subgroups and adaptive subgroup selection. In Sect. 4, we discuss other
adaptive designs for marker development and validation in cases where the
threshold for positivity is unclear, or a single marker for use in evaluating treatment
efficacy is not available when initiating phase III trials; these designs include the
adaptive threshold design and the adaptive signature design, with some variants. In
Sect. 5, we introduce the prospective-retrospective approach to evaluating treat-
ment efficacy in a marker subgroup based on external evidence. Lastly, concluding
remarks are provided in Sect. 6.
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2 Enrichment Designs

When a binarymarker that is analytically and clinically validated is available and there
are compelling biologic or early trial data that support the assumption, called
Marker-Assumption (I), that the benefit of the new treatment is only limited to
marker-positive patients, it is best to consider an enrichment or targeted design that
limits the eligibility for treatment randomization to these patients [9–14] (see Fig. 1a).
The enrichment design is more efficient than the traditional all-comers design (which
does not measure the marker) in terms of the number of randomized patients, espe-
cially under the condition that the prevalence of marker-positive individuals in the
general population is small (e.g., <0.5) and the treatment is relatively ineffective in
marker-negative patients [15]. If this condition is satisfied, enrichment trials can be
fairly small in size because relatively large treatment effects can be expected for
marker-positive patients. This attractive feature, however, does not necessarily imply
a small number of patients formarker screening or a short study duration. In particular,
when the marker prevalence is low, a substantial number of patients might have to
undergo marker screening until the required number of marker-positive patients is
enrolled to ensure treatment randomization [16].

A major drawback to the enrichment design relates to correctness of the strong
Marker-Assumption (I) that only marker-positive patients benefit from the treat-
ment. Possible factors that can threaten this assumption include imperfections in
measuring the molecular target, such as misclassification errors, possible alternative

Randomize New treatment 
Control treatment Marker screening 

Marker-positive patients 
Marker-negative patients Off study 

(a) Enrichment design

(b) Marker-stratiϐied all-comers  design
Randomize New treatment 

Control treatment Marker screening 
Marker-positive patients 
Marker-negative patients Randomize New treatment 

Control treatment 
Fig. 1 Enrichment and marker-stratified all-comers designs
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threshold points that could better define marker-positives (especially for graded or
continuous markers), and possible off-target effects of the treatment [9, 14]. When
information regarding these factors is limited at the design stage of a phase III trial,
we cannot rule out the possibility that the remaining marker-negative patients might
also benefit from the treatment. The major limitation of the enrichment design is
that it does not provide data to evaluate treatment efficacy in marker-negatives to
check Marker-Assumption (I) in the confirmatory phase of clinical development.

To address this issue, some authors have proposed a sequential enrichment
approach that conducts a second trial for marker-negative patients when an initial
trial for marker-positive patients demonstrates treatment efficacy [17, 18]. It is
believed that this approach allows for quicker assessment of the treatment for the
patient population that is considered to most likely benefit from it [17]. This tandem
approach, however, could require a long period of clinical development as a whole.
Also, the sequential subgroup assessment is not necessarily efficient when treatment
effects are relatively homogeneous across marker subgroups [16].

3 Marker-Stratified All-Comers Designs

Another approach to situations where a binary marker is available when planning
phase III trials is the concurrent assessment of both marker-positive and
marker-negative patients using a marker-stratified, randomize-all or all-comers
design (see Fig. 1b). The stratification ensures observation of the marker status for
all randomized patients and can also incorporate possible prognostic effects of the
marker. When planning a marker-stratified trial, it is natural to make a more general
assumption than Marker-Assumption (I), namely, that the treatment is more
effective in marker-positives than in marker-negatives; this will be referred to as
Marker-Assumption (II). However, this assumption may complicate the statistical
analysis of treatment efficacy within marker subgroups and also in the overall
population. Recently, various hierarchical or split-alpha multiple testing procedures
have been proposed for marker-stratified trials with single and multiple stages of
analysis. In what follows, we suppose a two-arm phase III trial to compare a new
treatment with its control treatment using one-sided statistical tests to spend the
study-wise alpha (or type I error) rate of a = 0.025.

3.1 Single-Stage Designs

Under Marker-Assumption (II), when there is relatively strong evidence on the
marker that a treatment is efficacious in marker-positive patients, a fixed-sequence
procedure that first tests treatment efficacy in marker-positives would be reasonable.
If this test is significant at a level of a = 0.025, then the treatment effect is also
tested in marker-negatives at the same significance level a. This procedure was
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employed in a randomized phase III trial of panitumumab with infusional fluor-
ouracil, leucovorin, and oxaliplatin (FOLFOX) versus FOLFOX alone for untreated
metastatic colorectal cancer [19]. The treatment arms were first compared regarding
progression-free survival in patients with wild-type KRAS tumors, and treatment
comparison in patients with mutant KRAS tumors was conditional on a significant
difference in the first test for the wild-type KRAS subgroup. The power of the
fixed-sequence procedure is determined by the (first) test for the marker-positive
subgroup, like in the enrichment and sequential enrichment designs. Accordingly,
the fixed-sequence procedure is expected to perform well when there is a fairly
large treatment effect in marker-positives [20]. This might be the case where the
marker accuracy in predicting treatment responsiveness is excellent, such that a
qualitative treatment-by-marker interaction holds, where there is a large treatment
effect in the marker-positive subgroup, but null (or clinically meaningless) effects in
the marker-negative subgroup.

In more common cases where there is no strong evidence on the marker, it is
reasonable to consider split-alpha procedures that allocate some portion of alpha to
the possibility that the treatment is also efficacious in the marker-negative subgroup;
that is, the treatment is efficacious in the overall population under
Marker-Assumption (II). A simple procedure for this “co-primary” analysis is to
apply the Bonferroni approach. For example, in the SATURN trial [21] to assess the
use of erlotinib as maintenance therapy in patients with non-progressive disease
following first-line platinum-doublet chemotherapy, progression-free survival after
randomization was tested in all patients at a significance level of 0.015, and at a
level of 0.01 in patients whose tumors had EGFR protein overexpression. We can
improve the efficiency of the co-primary approach using less stringent significance
levels that incorporate the correlation between the overall and subgroup tests [22,
23]. Another more efficient split-alpha procedure is guided by a test on
treatment-by-marker interaction to determine whether treatment efficacy is tested in
the marker-positive subgroup or in the overall population [20]. The interaction test
can also serve as a definitive analysis for clinical validation of the predictive
marker, if it is appropriately sized and powered under a qualitative interaction of
clinical importance. For a full comparison of the hierarchical and split-alpha pro-
cedures, see [20].

The important feature of the aforementioned multiple testing procedures is that
they can make either of two kinds of assertions regarding treatment efficacy, one for
the overall population and the other for the marker-positive subpopulation of
patients. However, a caveat for the co-primary analysis approach is that treatment
efficacy in the overall population can be demonstrated even when there is a large
treatment effect in the marker-positive subgroup, but no effect in the
marker-negative subgroup [20]. This is problematic because it could lead to
over-assertion of treatment efficacy in marker-negative patients who are in fact not
treatment responsive. An additional assessment on treatment efficacy in the
marker-negative subgroup is therefore warranted, outside of the primary analysis, to
protect future marker-negative patients from over-treatment [20, 24, 25].
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It can be argued that this issue reflects a failure in incorporating
Marker-Assumption (II) in the co-primary analysis approach to test null hypotheses
H0
(o) and H0

(+) (and their intersection H0
(o) \ H0

(+)). Here H0
(o) and H0

(+) represent a null
effect in the overall population and that in the marker-positive subgroup, respec-
tively. In contrast, in a subgroup-specific analysis, e.g., the fixed-sequence proce-
dure, the two null hypotheses H0

(+) and H0
(–) are tested, where the latter represents a

null effect in the marker-negative subgroup. Marker-Assumption (II) restricts to the
two possible null effect scenarios, (1) true H0

(+) and true H0
(–), called the global null

hypothesis, and (2) false H0
(+) and true H0

(–). The fixed-sequence procedure strictly
controls the study-wise type I error rate for both null scenarios. On the other hand,
the co-primary analysis approach does not control for it (in testing H0

(o) and H0
(o) \

H0
(+)) for the second null scenario. This represents a failure in incorporating

Marker-Assumption (II), a source of possible over-assertion of treatment efficacy
for marker-negative patients in the co-primary analysis approach.

One approach to addressing this issue is to modify the split-alpha procedures for
a strict control of both null scenarios, i.e., strong control [26]. A hybrid of the
fixed-sequence and alpha-split procedures was recently proposed [27]. Another
possibly more practical approach is to separate the inspection of the
marker-negatives from the primary analysis to test treatment efficacy across the
populations, given a strict control of the study-wise alpha under the global null
hypothesis, i.e., weak control [20]. Here, the global null hypothesis can be tested
using a procedure to test the intersection hypothesis, H0

(o) \ H0
(+), in the co-primary

analysis approach or using a stratified test that assumes constant effects across
marker subgroups in the subgroup-specific analysis. The second approach allows
for various degrees of alpha control, probably less stringent for the second null
scenario (i.e., false H0

(+) and true H0
(–)) on a case-by-case basis, given strict alpha

control under the global null hypothesis. In determining the alpha level for the
second null scenario, many external factors could be incorporated, probably
involving the analytical performance of the marker, marker prevalence, possible
adverse effects, prognosis of the disease, availability of other treatments, treatment
costs, etc. [20]. For example, given a demonstration of a very large treatment effect
in the marker-positive subgroup, it could be worthwhile to consider a less stringent
or even informal control for testing H0

(–) for advanced diseases with no established
treatments. This is similar to the approach that separates the demonstration of
treatment efficacy and consideration of an indication classifier to identify the
marker-based characteristics of the patients for whom the new treatment should be
used [24]. Here the former component is accomplished by a significant result with
strict alpha control under the global null hypothesis.

3.2 Multi-stage Designs

Generally, interim analysis is warranted to fulfill ethical requirements for the safety
and benefit of the patients enrolled in a clinical trial, as well as for other patients
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who will be treated in the future. An appropriate early stopping guideline may allow
patients enrolled in the trial to make earlier decisions about treatment changes, as
well as help provide future patients with more timely information regarding better
treatments. In marker-stratified trials, owing to Marker-Assumption (II), an interim
analysis for non-efficacy or futility would be particularly warranted for
marker-negative patients with presumably limited treatment efficacy to protect them
from unnecessary treatments and follow-ups [6]. On the other hand, an interim
analysis for efficacy or superiority could be worthwhile for marker-positive patients
with presumably high treatment efficacy in order to quickly deliver superior
treatment to these patients. Another aim of interim analysis relates to improving the
efficiency of clinical development with a marker-stratified trial. In particular, the
statistical power in detecting treatment effects could be enhanced by adaptively
narrowing the patient population down to a patient subgroup that could benefit from
the treatment, based on interim clinical trial data.

For time-to-event endpoints typically evaluated in the primary analysis of phase
III oncology trials, however, flexible interim adaptations are generally precluded
due to the specific difficulty in assuring the independence of an adaptation from any
subsidiary information derived from censored cases who have not experienced an
event at the time of the interim analysis [28]. For possible techniques to address this
difficulty, see [29, 30]. In many cases, the adaptation rule, including the information
fraction at the interim analysis, may be pre-specified based on the primary test
statistic on the time-to-event endpoint. This is essentially equivalent to the tradi-
tional group sequential analysis.

Brannath et al. [31] considered a futility stopping rule for marker-negative
patients to determine which of the overall or only marker-positive patients are
followed up and analyzed at the end of the trial (Fig. 2a). Treatment efficacy is
tested in both overall and marker-positive patients using a closed testing procedure
that incorporates possible early futility stopping in the marker-negative subgroup
based on multiple stage combination tests, such as those with inverse normal
combination functions. In this design, a combination of the conditional error
function and the split-alpha approach can improve the efficiency in testing the
intersection hypothesis, H0

(o) \ H0
(+), in the closed testing procedure [32].

In the framework of group sequential analysis, Magnusson and Turnbull [33]
proposed a group sequential enrichment design incorporating subgroup selection,
which may also be applicable to clinical trials with time-to-event endpoints. Taking
into account the complicated nature of interim monitoring across subgroups under
possible marker assumptions, Redman et al. [34] considered subgroup-focused
interim monitoring in evaluating the efficacy of cetuximab for advanced non-small
cell lung cancer. The interim monitoring plan specifies interim evaluations of both
efficacy and futility in the marker-positive (EGFR FISH-positive) subgroup alone.
The futility-monitoring plan to determine early stopping in the marker-negative
subgroup is based on evaluation within both marker-positive and -negative sub-
groups and the entire study population.

More recently, Matsui and Crowley [16] proposed a simple but flexible
subgroup-focused design that allows for both sequential assessment across the
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subgroups as well as adaptive subgroup selection, while retaining assessment using
the entire patient data at the final analysis stage. The scheme of a two-stage design
in this approach is shown in Fig. 2b. This can be viewed as a concurrent
subgroup-focused design with a futility stopping rule in the marker-negative sub-
group and a superiority stopping rule in the marker-positive subgroup. It involves
sequential testing across the subgroups as in the sequential enrichment design (Case
II in Fig. 2b), and adaptive patient selection (Cases III–IV). In Case IV with no
early stopping in either subgroup, the subgroup data are combined for the final
analysis, possibly using the established marker-based multiple testing procedures
described in Sect. 3.1. See [16] for an assessment of the impact of introducing the
within-subgroup interim analyses on the number of randomized patients, the
number undergoing marker screening, and the study duration in a marker-stratified
design, as well as a comparison among various marker-based designs.

Another subgroup-focused design is proposed in the framework of Bayesian
inference using a family of priors for four-points (combination of two levels of
treatment effect, a null and an effect of clinical importance, and a binary marker) to
represent the degree of a priori confidence in the predictive marker [35]. This design
involves interim analysis to stop accrual of marker-negative patients or accrual of
all patients. Although this design intends to provide a rigorous testing of the global
null hypothesis, it also provides a useful tool for determining the treatment indi-
cation across marker subgroups. The combination of a frequentist inference for
testing treatment efficacy and a Bayesian inference for deriving a tool for decision
on treatment indication would be an interesting area for future research.

Fig. 2 Two-stage marker-stratified designs with adaptive patient selection
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3.3 Sample Size Determination

We have seen so far that marker-stratified all-comers trials test multiple hypotheses
on treatment efficacy across different patient populations. In determining sample
sizes of such trials, it is natural to introduce the total power Ptotal, defined as the
probability of obtaining a statistically significant result for any hypotheses on
treatment efficacy across all the tests (in single or multi-stage designs) planned in
the trial under some scenario of non-null treatment effects across marker-subgroups.
For the statistical analysis plans described in Sects. 3.1 and 3.2, Ptotal may corre-
spond to the probability of asserting treatment efficacy for either the overall pop-
ulation or the marker-positive subpopulation [20]. Specifically, it can be
decomposed into two components, one asserting treatment efficacy for the overall
population, Poverall, and the other relevant to the marker-positive subpopulation,
Psubgroup, such that Ptotal = Poverall + Psubgroup, based on the individual hypotheses
tested in the statistical analysis plan [20]. Ptotal can also be interpreted as asserting
treatment efficacy at least for the marker-positive subpopulation.

The component probabilities Poverall and Psubgroup may be particularly useful
when the multiple tests are used not only for testing treatment efficacy but also for
making a decision on whether treatment efficacy should be asserted on the overall
population or the marker-positive subpopulation. For example, under a scenario
with qualitative treatment-by-marker interaction (with a large treatment effect in
marker-positives, but no or clinically meaningless effect in marker-negatives), one
may try to ensure a high level of Psubgroup, but a small level of Poverall to reduce the
chance of over-treatment for marker-negatives. On the other hand, under a scenario
where the treatment has effects of clinical importance in both marker-positive and -
negative subgroups (i.e., constant effects or quantitative interactions), one may
desire to have a high level of Poverall, but a small level of Psubgroup to protect
marker-negatives from under-treatment. See [20] for evaluation of Ptotal, Poverall,
and Psubgroup for various analysis plans in single-stage designs.

In many marker-stratified trials, the researchers may consider testing all the
patient populations, so that they are adequately sized. However, there may be some
exceptions. For example, in a subgroup-specific analysis using the fixed-sequence
procedure, one may consider sizing the marker-positive subgroup only, because the
first test on that subgroup determines Ptotal. In this case, one could also consider an
additional criterion on the size of the marker-negative subgroup to ensure a rela-
tively high level of Poverall for the same level of Ptotal. When the marker prevalence
in the general population is known to be relatively small, say 0.2, where a large
number of patients has to be screened for the marker to enroll the targeted number
of marker-positives, this additional criterion could help prevent enrolling extra
marker-negatives (with presumably limited treatment efficacy). On the other hand,
when the marker prevalence is fairly large (>0.5), this criterion for sizing the
marker-negative subgroup might not be pursued because it could entail an extension
of patient accrual for this subgroup after the targeted number of marker-positives is
recruited.
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In determining sample sizes of marker-stratified all-comers trials, possible pro-
files of treatment effects across subgroups under Marker-Assumption (II), particu-
larly qualitative and quantitative treatment-by-marker interactions, need to be
accommodated. Practically, a sensitivity analysis assuming a plausible range of
treatment effect profiles should be conducted.

4 Unstratified All-Comers Designs with Marker
Development and Validation

When the biology of the molecular target of a new treatment is not well understood
because of the complexity of disease biology, it is quite common that a completely
specified predictive marker is not available before initiating the definitive phase III
trial. In one scenario, a single marker may be available but no threshold for marker
positivity is defined before the phase III trial. In another scenario, a single marker
for use in evaluating treatment efficacy is not available, but data on several can-
didate markers or even tens of thousands of genomic markers are measured for
pre-treatment tissue specimens before the trial or are scheduled to be measured
during the trial. In the latter situation with high-dimensional genomic marker data,
there are no a priori credentials for predictive markers from among the large number
of genomic markers. One approach to these situations is to prospectively design and
analyze the randomized trial in such a way that both developing a predictive marker
(or signature) and testing treatment efficacy based on the developed marker are
conducted in a valid manner.

Unlike a marker-stratified trial with a prespecified binary marker as described in
Sect. 3, all-comers trials in this approach may not be stratified by any markers.
Unstratified randomization does not diminish the validity of inference regarding
treatment efficacy within marker-defined subgroups with moderate-to-large sizes.
Under unstratified randomization, marker measurements can be delayed until the
time of analysis. This strategy may permit situations where an analytically validated
marker is not available at the start of the trial but will be available by the time of
analysis [6, 9]. However, careful consideration of missing marker data is needed to
ensure collection of sufficient numbers of patients with observed marker status and
also to prevent selection bias, i.e., dependence of missing measurements on the
treatment assignment and other clinical variables.

As the marker for evaluating treatment efficacy is not available at the initiation of
the trial, the analysis for marker development and validation would be positioned as
a fallback option that spends a small portion of the study-wise alpha, a*, say 0.005
(of a = 0.025), and it is conducted only when a test of treatment efficacy in the
overall population that spends the main portion of the study-wise alpha, a – a*, say
0.02, is not significant. The outstanding features of this approach are the application
of an optimization or prediction algorithm to develop a marker (or signature) to
identify an appropriate marker-positive subgroup in the development stage and the
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implementation of a single test on treatment efficacy within an identified
“marker-positive” subgroup based on the developed marker in the validation stage.
The latter feature is in contrast to the traditional exploratory subgroup analysis with
multiple tests across subgroups. All the elements in the analysis for marker
development and validation must be prospectively defined and specified in the
statistical analysis plan.

4.1 Adaptive Threshold Design

The adaptive threshold design [36] is for settings where a single marker is available
but no threshold of positivity for the marker is predefined. The basic idea is that for
a set of candidate threshold values (b1,…, bK) one searches for an optimal threshold
value by maximizing a log likelihood ratio statistic for testing treatment efficacy in
the patient subgroup with marker value � bk over possible threshold values (k = 1,
…, K). The maximum log likelihood ratio (at the optimal threshold value) T is used
as the test statistic for testing treatment efficacy. Its null distribution under the
global null hypothesis that the new treatment is no better than control for any
marker-determined subgroup is approximated by repeating the whole analysis after
randomly permuting treatment levels several thousand times. The P value to reject
the global null hypothesis is obtained as an upper percentile for the observed value
of T in the null permutation distribution. A confidence interval of the chosen
threshold can be constructed based on a non-parametric bootstrap method. For a
given value of the marker, the empirical distribution of the chosen threshold across
bootstrap samples can provide an estimate of the probability that the true threshold
level is less than that value, possibly interpreted as the probability that a patient with
given marker value will benefit from the treatment in the absence of overall
treatment effect.

4.2 Adaptive Signature Design

The adaptive signature design develops a predictor or predictive signature using a
set of covariates x, possibly high-dimensional genomic markers [37]. In the marker
development and validation stage, the full set of patients in the clinical trial is
partitioned into a training set and a validation set by the split-sample method.
A pre-specified algorithmic analysis plan is applied to the training set to generate a
predictor. This is a function of x and predicts whether a given patient with a
particular covariate value x is responsive or non-responsive to the new treatment.
Specifically, using a training dataset, we develop a signature score U(x; A, training
data) for a given covariate value x based on a pre-specified scoring algorithm A. For
example, such a score can be derived as a linear predictor in the logistic or Cox
proportional hazard models, possibly using penalized regression techniques to
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handle high-dimensional data [38–40]. Typically, a patient with covariate value
x will be predicted as “responsive” to the new treatment, if U(x) > c, and
“non-responsive” otherwise, using a threshold point c on U. The predictor devel-
oped using the training data is used to make a prediction for each patient in the
validation set. Then, the treatment efficacy is tested in the subset of patients who are
predicted to be responsive to the treatment in the validation set.

4.3 Cross-Validated Adaptive Signature Design
and Its Variant

The efficiency of the adaptive signature design can be enhanced by applying a
cross-validation method rather than the split-sample method in Sect. 4.2 [41]. In a
K-fold cross-validation, the entire patient population is split into K roughly equally
sized, non-overlapping subsamples based on a prospectively defined rule.
Accordingly, the full dataset, D, in the trial is split into K subsets, such that
D = (D1, …, DK). The kth training dataset consists of the full dataset except for the
kth dataset, Tk = D – Dk (k = 1, …, K).

In the kth round of cross-validation, we apply all aspects of the signature
development, including feature selection, from scratch to the training dataset Tk to
obtain a prediction score function Uk(x; A, Tk). When the feature selection is
optimized based on a cross-validated predictive accuracy, a nested inner loop of K-
fold cross-validation should be applied for the training dataset Tk [42, 43]. The
threshold point ck on Uk can be pre-specified or tuned based on predictive accuracy
using the nested inner loop of cross-validation. Then, the score function Uk(x; A, Tk)
and the threshold ck are applied to make a prediction for each patient in the
remaining dataset, Dk, i.e., the validation set.

At the end of the cross-validation, each of the study patients is predicted to be
either responsive or non-responsive to the new treatment. The former now con-
stitute a “marker-positive” subgroup. The treatment efficacy in this subgroup can be
tested using a standard test statistic (e.g., a log-rank statistic) to compare the out-
comes on the primary endpoint between the two treatment arms. However, since the
marker-positive subgroup is data-driven, i.e., obtained via cross-validation of the
entire study sample, the standard asymptotic distribution does not apply to the test
statistic. As in the adaptive threshold design, a permutation method is applied to test
the global null hypothesis or a sharp null hypothesis of no treatment effects in any
patients. In this method, the whole process of the analysis to obtain the test statistic
is re-performed for each dataset generated by permuting treatment levels.

A variant of this design, called continuous cross-validated adaptive signature
design, is proposed to provide a continuous function of the underlying treatment
effects across patients as a more relevant diagnostic tool, rather than qualitatively
classifying patients (using a threshold point ck) as members of the responsive
subgroup or not [44].
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In the kth round of cross-validation, the prediction scoring function Uk(x; A, Tk)
built in the training set is directly used to obtain a predicted score for each patient in
the validation set. Specifically, using an empirical cumulative distribution Fk(u) of
Uk(x; A, Tk) in the training set, we obtain a quantile score for a patient with
covariate x* in the validation set as Sk(x

*) = Fk(Uk(x
*; A, Tk)) 2 (0, 1). Of note, this

score can be interpreted as a pre-validation score, which will be used for modeling
using clinical variables [45].

At the end of the cross-validation, the cross-validated prediction score, S, which
is essentially continuous, is used to model treatment responsiveness using the entire
patient population. For example, for a time-to-event endpoint, we assume the
multivariate Cox proportional hazards model,

log hi t; ri; sið Þ=h0 tð Þf g ¼ b1ri þ f2 sið Þþ rif3 sið Þ;

where ri is the treatment assignment indicator such that ri = 1 if patient i is assigned
to the new treatment and ri = 0 otherwise, and Si is the prediction score for patient
i (i = 1, …, n). The functions f2 and f3 capture the main effect of S and the
interaction between S and r, respectively. From this model, we can derive the
treatment effects function,

W sð Þ ¼ b1 þ f3 sð Þ;

which represents the log hazard for a patient with the prediction score s when
receiving the new treatment minus that when receiving the control treatment, where
negative values of W represents better outcomes when receiving the new treatment
rather than the control treatment. Figure 3 is an estimated treatment effects function
[44] using a fractional polynomial [46] for f3 that was obtained using microarray
gene expression data from pre-treatment plasma cells in a randomized clinical trial
with multiple myeloma [47, 48].

Based on an estimated function, we can define a marker-positive subgroup X,

such that X ¼ fs: bW sð Þ\cg, where c is set as zero or the minimum size of clinically
meaningful effects. Like in the original cross-validated adaptive signature design,
we can test treatment efficacy in the marker-derived subgroup using an average
treatment effect in that subgroup based on the estimated function as a test statistic:

T ¼
Z

s2X

bW sð Þds:

Again, its null distribution under the strong null hypothesis can be derived using
the permutation method, where the P value is obtained as the proportion of per-
mutations when the values of T are equal to or less than the observed value of T. In
the multiple myeloma example, using the threshold of c = 0 for defining
marker-positives, the P-value obtained from 2000 permutations was 0.019 [44].
Lastly, in this estimation framework, we can develop signature-based, patient-level
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survival curves to predict survival distributions of future individual patients,
through incorporating a cross-validated prognostic score, as well as the
cross-validated predictive score S [44].

5 Prospective-Retrospective Approach

Another approach to the situations where no single promising predictive marker has
been identified by the time of initiation of the phase III trial is to delay the eval-
uation of treatment efficacy within a marker-based subgroup until the time when
external evidence on the predictive marker(s) becomes available [49]. With this
approach, one could reserve a small portion of the total alpha for a single test of
treatment effect in the subgroup to be determined in the future [9]. This approach is
only applicable to clinical trials that archive pre-treatment specimens for marker
evaluation. At the time of evaluating a new marker in the future, the analysis plan
will be prospectively specified for retrospectively utilizing and analyzing the
archived specimens.

Typically, accumulating biological evidence can identify an appropriate pre-
dictive marker. For example, a marker of KRAS mutation status was identified to be
useful for predicting responsiveness to an anti-EGFR (epidermal growth factor

0.0 0.2 0.4 0.6 0.8 1.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

Signature Score

Es
tim

at
ed

 T
re

at
m

en
t E

ffe
ct

s

Fig. 3 An estimate of the treatment effects function W for the predicted signature score, S, in
terms of logarithm of hazard ratio in a randomized clinical trial with microarray gene expression
data from pre-treatment plasma cells in multiple myeloma. The score S was derived via a 5-fold
cross-validation with a compound covariate predictor based on a test statistic on treatment-by-gene
interaction. A fractional polynomials function was used for modelling the effect of S on survival
outcomes (see [44] for more detail of the analysis)
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receptor) antibody, cetuximab, for colorectal cancer [50]. Actually, the prospective-
retrospective approach could limit the indication for the treatment to a subgroup of
patients with KRAS wild-type tumors after demonstrating treatment efficacy in the
overall population [50]. Another possibility is the development of a new predictive
signature using the data-driven approach using external clinical trial data, as in the
development of predictors or signatures in the adaptive signature designs.

Simon et al. [49] proposed several conditions for appropriately conducting the
prospective-retrospective approach to establish the clinical utility of a treatment
with the aid of a companion marker. In summary,

(1) Archived specimens, adequate for a successful assay, must be available from a
sufficient large number of patients to permit appropriately powered analyses in
the pivotal trial and to ensure that the patients included in the marker evaluation
are representative of the patients in the trial.

(2) Substantial data on the analytical validity of the marker must exist to ensure that
results obtained from the archived specimens will closely resemble those that
would have been obtained from analysis of specimens collected in real time.
Assays should be conducted blinded to the clinical data.

(3) The analysis plan for the marker evaluation must be completely developed
before the performance of the marker assays. The analysis should focus on a
single diagnostic marker that is completely defined and specified. The analysis
should not be exploratory, and practices that might lead to a false-positive
conclusion (e.g., multiple analyses of different candidate markers based on the
archived specimens from the same trial) should be avoided.

(4) The results must be validated in at least one or more similarly designed studies
using the same assay techniques.

6 Concluding Remarks

A deeper understanding of the molecular heterogeneity of histologically defined
cancers has led to a paradigm shift in the clinical development of cancer treatments
toward precision or predictive medicine, with the co-development of molecularly
targeted drugs and companion predictive markers. Confronted with this paradigm
shift, statistical methodologies for design and analysis of clinical trials have to
evolve, involving the integration of statistical inference and prediction analysis.

On the other hand, the clinical development of new treatments becomes more
complicated, compared with the traditional paradigm of clinical development
without the use of predictive markers. The critical role of biostatisticians is to
appropriately inform clinical investigators of the effectiveness and limitations of the
new statistical methodologies and to practice them appropriately. The ultimate goal
should not just be to achieve reconciliation with the new paradigm of predictive
medicine, but to play an active role in implementing its concepts.
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Bayesian, Utility-Based, Adaptive
Enrichment Designs with Frequentist
Error Control

Noah Simon

Abstract Our improving understanding of the biology underlying various diseases
has reinforced the idea that many diseases previously considered homogeneous are
in fact heterogeneous collections with different prognoses, pathologies, and causal
mechanisms. To this end, the biomedical field has begun to focus on developing
targeted therapies: therapies aimed at treating only a subset of the population with a
given disease (often derived by the molecular pathology of the disease). However,
characterizing these subsets has been a challenge: Hundreds of patients may be
required to effectively characterize these subsets. Often information on this many
patients is not available until well into large-scale trials. In this chapter we discuss
adaptive enrichment designs: clinical trial designs that allow the simultaneous
construction and use of biomarkers, during an ongoing trial. We first detail common
scenarios where adaptive enrichment designs could be fruitfully applied to gain
efficiency over classical designs. We then discuss two classes of adaptive enrichment
strategies: Adaptation based on prespecified covariate-based stratification, and
adaptation based on modeling response as a potentially more complex function of
covariates. We will contrast these strategies with more classical non-enriched bio-
marker strategies (based on post hoc modeling/testing). Finally, we will discuss and
address a number of potential issues and concerns with adaptive enrichment designs.

Keywords Clinical Trial � Adaptive Enrichment � Biomarker � Bayesian

1 Introduction

Therapies have classically been developed with the intent to treat an entire popu-
lation with a given disease; and with the hope that the majority of that population
will benefit from treatment. This has been successful in the past: prednisone and
immune-suppressants successfully control many autoimmune diseases; broad
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spectrum antibiotics are effective for bacterial infections; and chemotherapy/
radiotherapy have been key for treating many cancers.

However, in many cases, this approach has not been successful. As our
understanding of biomolecular pathology of disease grows, we see that many/most
diseases are actually very heterogenous. Where we once considered cases of a
disease to have near identical underlying biology, we now understand that most
“diseases” are a heterogeneous collection that manifests in phenotypically similar
ways, but with different causal mechanisms and different protective mutations.
Given this, we cannot hope to successfully treat all patients with the same therapy.

We have begun to create targeted therapeutics, molecules that inhibit particular
pathways dysregulated in a subset of the diseased population. These molecules can
only be expected to effectively treat those patients whose disease is driven by that
target pathway. Thus, there is significant interest in using clinical and genomic
information to develop predictive biomarkers that indicate those patients with such
dysregulation, who will benefit from the targeted therapy over standard of care.
Targeting has several success stories: trastuzumab [19, 33]/tamoxifen [22] for
HER-2/ER positive breast cancer; vemurafenib [8] for melanoma with certain
B-Raf mutations; cetuximab [1, 2, 7] for colon cancer without mutant KRAS; and
immune checkpoint inhibitors for cancers with activated immune checkpoints [9],
among others [5, 20, 23, 30].

In evaluating targeted therapeutics there is an additional challenge: One needs to
determine the intent-to-treat (ITT) population. For non-targeted therapies this is
generally everyone with the disease (perhaps restricted by disease severity, or
simple clinical features). For a targeted therapy we require a strong characterization
of the target population (those patients for whom the molecular pathology of their
disease indicates they will benefit from the new treatment). In particular, we need a
reproducible assay, and a rule based on this assay, that we can use to determine who
we believe will benefit from treatment. Potential biomarkers include, but are not
limited to, disease histology, mutation status, expression of various genes or pro-
teins, or epigenetic abnormalities. In some cases a strong characterization of the
target population is available before phase III, in which case one should employ an
enrichment design [11, 16, 24]. Rather than enrolling all diseased patients into the
trial (provided they meet the usual broad enrollment criteria; e.g. sick enough but
not too sick… etc.), we instead assay potential patients, and enroll only those our
biomarker indicates will benefit. By choosing not to enroll patients who will clearly
not benefit we improve our trial in two ways: (1) we estimate efficacy of treatment
for only our intended treatment population, and (2) we run a more effective clinical
trial. Enrolling patients who clearly will not benefit would decrease our effective
sample-size and add additional noise to our estimates [27].

Unfortunately, we often only have a broadly characterized target population
entering phase III trials. We may have a biological rationale and some experimental
evidence for a candidate biomarker; however we generally do not have strong
evidence of its predictive strength in humans. In addition, even if we have an assay
which is clearly related to the effectiveness of treatment, there are often still
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questions: For multivariate assays (e.g. mutations at multiple sites), one needs to
identify how to combine measurements; even for univariate continuous assays, one
must determine an optimal cut-point for characterizing patients as biomarker pos-
itive. In these cases, restricting enrollment at the onset of the trial may be prema-
ture. However, as the trial progresses, we may be able to leverage new patient
information to address these questions and improve our characterization of the
target population. As we better understand which patients to target we may wish to
use that knowledge to change our enrollment criteria and enrich that target popu-
lation in our trial. We call designs of this nature, that outcome-adaptively update
enrollment criteria to enrich an in-progress trial, Adaptive Enrichment Designs.

2 Adaptive Enrichment for 3 Scenarios

We will consider 3 scenarios in which one might employ an adaptive enrichment
design: Developing a biomarker for a treatment based on

1. A single categorical assay: This could be binary (e.g. mutation status at a single
position); based on simple combinations of binary markers (e.g. HER2 vs ER +/
PR + vs TN breast cancer); ordered categorical (e.g. gene copy number) or based
on an ordered categorical breakdown of a continuous assay (e.g. protein expres-
sion in tumor microenvironment measured via IHC, though there is a natural
ordering here that one can leverage). This scenario becomes more difficult as the
number of categories increases (especially for unordered categories).

2. A single continuous assay: This is often seen with expression of a single can-
didate gene or protein (either in the tumor, or in peripheral blood), but can also
be based on other serum/plasma level measurements (e.g. testosterone level).

3. A combination of several assays: This could be multiple candidates for mea-
suring the same underlying biology (e.g. HER2 expression via IHC vs HER2
copy number for trastuzumab); or multiple candidate drivers in the same
pathway (e.g. EGFR expression vs RAS mutations vs BRAF mutation, for
cetuximab [6, 15, 25]); or even multiple candidates from various pathways. We
would caution against using a large number of candidate assays in an adaptive
enrichment design. While in theory this could be employed with genome-wide
technologies, we recommend restricting those technologies to more uniformly
exploratory designs (rather than the combination exploratory/confirmatory nat-
ure of an adaptive enrichment design).

In addition we will touch on two classes of adaptive enrichment designs. The first
are designs wherein we have prespecified strata in which we evaluate treatment
effect separately, and may drop at interim points during the trial. The second are
stratification free designs, wherein we do not need to prespecify strata: During the
trial we build/update models linking outcome, treatment, and candidate
biomarker-features to block-sequentially update our enrollment criteria. In these
stratification-free designs, though we use models to aid in decision-making, the
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validity of our null-hypothesis test does not depend on correct specification of our
models.

2.1 Single Categorical Biomarker

There are a number of biomarkers that are naturally categorical: Disease histology,
mutation status in a pathway of interest, status of several candidate mutations [14,
31]. The levels of this categorical variable define natural strata. A stratification-based
adaptive enrichment design is natural in this setting. The main strategy here is to run
a group sequential trial, and to potentially drop strata at interim analyses: as treat-
ment reveals itself to be ineffective in certain strata, patients from those strata are no
longer recruited for the trial [17, 26, 32, 35, 36].

2.2 Single Continuous Biomarker with Unknown Cutpoint

There are many examples of single continuous candidate biomarkers: expression of
surface receptors (e.g. HER2, EGFR), protein expression in tumor microenviron-
ment (e.g. PDL-1) or peripheral blood (e.g. inflammatory cytokines),
immune-response to candidate antigens (e.g. as measured by ELISA or ELISPOT
assays). In this scenario one could create strata based on ranges of the continuous
assay; from here one could use designs developed for the categorical biomarkers of
Sect. 2.1. However this ignores the natural ordering of the strata—which in practice
can be quite important for efficient cutpoint evaluation. In addition it can lead to
difficult decisions: Suppose we expect higher expression levels to benefit more from
treatment; if we observe a very significant effect in the medium expression stratum
and a more marginal effect in the high expression stratum, we might like to
incorporate our prior expectation and reject both; however an analysis based on
simple stratification which ignores ordering will not.

2.3 Combination of Assays/Biomarkers

In this final scenario, we aim to combine multiple sources of information into a
single rule that characterizes the target population. These sources might be the
expression of multiple genes [13, 18, 29] or proteins; we might also combine
different data-types like mutation status and epigenetic features (e.g. transcription
factor binding or methylation in a nearby genetic region). Though the term
“Biomarker” is often used to refer to each individual source of information, we will
use it here to refer to the “rule” which combines them all. This is the most general
scenario, and in many ways the most difficult.
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3 Flexible Adaptive Enrichment

In this chapter we discuss a general framework for adaptive enrichment. This
framework can accommodate all of the scenarios above; it can be used with
stratification, without stratification (where we build models connecting treatment,
features and outcome), for single markers, or for combining multiple markers. This
framework is built around work discussed in [34]. There are several important
points we will touch on in this chapter but would like to quickly outline below:

• In this framework, a single null hypothesis will be tested. This will be a fre-
quentist test and will not be dependent on any modeling assumptions.

• Intermediate decisions (about who to enroll) may be made using models (and
potentially Bayesian methods).

• Estimation of various quantities for a successful trial (based on our
assumption-free frequentist null hypothesis test) may involve the use of models/
Bayesian methods. This includes characterizing the “biomarker-positive” sub-
population and evaluating treatment-effect in that subpopulation.

In addition we note that the designs we outline in this chapter are not solely
concerned with statistical optimality (as is often the case in statistical literature). We
try to balance statistical performance, administrative burden, robustness to depar-
tures from assumptions, and parsimony.

3.1 Framework

We give an overview of the framework here. Suppose we have a single new
treatment we are comparing to control. We randomize each patient that we accrue
with equal probability to one of the two arms. Let xi (2 X � R

p) denote a vector of
covariates measured on patient i: Let yi be the outcome for patient i where yi ¼ 1
for response and yi ¼ 0 for non-response, and let zi be the treatment assignment (1
for treatment, 0 for control). Note, we illustrate the framework with binary
response, but it could just as easily be used with continuous, or time-to-event
outcome (though with time-to-event, a short term surrogate outcome might be
required within block). Suppose we accrue patients sequentially in K blocks. In the
kth block we accrue 2nk patients with nk randomized to treatment and nk to control.
Assume that we observe the responses (yi) for patients on the k th block before
accruing patients for block kþ 1:

Further, assume we have some rule, which for each block (kÞ takes in all the data
from previous blocks (covariates, assignments, and outcomes) and creates a deci-
sion function/indication classifier Dk, with Dk xð Þ 2 0; 1f g for all covariate vectors
x: For each block we admit only patients with Dk xið Þ ¼ 1:
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More formally, let Xk; yk; zk be the X; y and z values for block k; let Dk ¼
X1; y1; z1; . . .;Xk; yk; zk½ �:We define our “rule”D as a function which takes in D and
returns an enrollment criteria D Dkð Þ 2 DjD : X! ½0; 1�f g:

We conduct our trial as follows:

1. Prespecify K; n1; . . .; nk, and D.
2. For the first block use D1ðxÞ ¼ 1 for all x: Enroll (without restriction) and

randomize 2n1 patients for this block.
3. For blocks k ¼ 2; . . .;K repeat:

(a) Calculate Dk ¼ D Dk�1ð Þ based on previous patients outcomes.
(b) Enroll 2nk new patients with DkðxÞ ¼ 1; and randomize treatment

assignment.

4. At the final analysis a single significance test is performed using as test statistic

z ¼ 1ffiffiffiffiffiffiffiffi
n=2

p X
k�K

ffiffiffiffiffiffiffiffiffiffi
nk=2

p p̂TðkÞ � p̂CðkÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂poolðkÞ 1� p̂poolðkÞ

� �
=nk

q
0
B@

1
CA

where p̂TðkÞ and p̂CðkÞ are the response proportions for the treatment and control
arms in block k; p̂poolðkÞ ¼ p̂TðkÞ þ p̂CðkÞ

� �
=2; and n ¼P

k�K nk.

Our statistic here, z; is the usual inverse normal combination test statistic that has
been widely used in adaptive trial designs [4]. Comparing this statistic to the tails of
a standard Gaussian distribution provides a test which asymptotically controls type
1 error essentially regardless of how we construct the Dk . The power of this test and
its ability to identify the subset that benefits from treatment, however, strongly
depend on that construction. This tests the strong null hypothesis H0 :
pTðxÞ� pCðxÞ for all covariates x; where pTðxÞ and pCðxÞ are the true response
probabilities on the test treatment and control for a patient with covariate vector
x. This test preserves the type I error regardless of the method used for making
enrichment decisions and regardless of (possibly data dependent) time trends in the
characteristics (measured or not) of the patients. One might consider using a
rerandomization test; however, as discussed in [34], simple rerandomization tests
which are nominally level 0.05 can have type I error in excess of 0.2.

There is a useful alternative formulation of the strong null hypothesis. If we let
H � xjpTðxÞ[ pCðxÞf g be the set of feature-values for which treatment outper-
forms control, then our strong null is equivalently testing if X is empty.

For time-to-event data there is potential concern about bias due to followup of
censored observations in subsequent blocks [3]. In this framework there is no bias
so long as, in the final analysis, observations are included in the block in which they
were recruited. This is because there is no sample-size re-estimation, the number of
blocks is fixed in advance, and (under H0) statistics within each block are Nð0; 1Þ:

The design above still leaves several open questions: How do we choose D? At
the conclusion of a successful trial how do we determine treatment indication?
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And how do we estimate the treatment effect-size in the indicated population? In
contrast to our model-free method for testing the null hypothesis, these decisions
will be based on working models for pTðxÞ and pCðxÞ: In particular we discuss a
Bayesian formalism which provides justified choices for all of these questions.

4 A Bayesian Framework for Adaptation

As mentioned above, we propose the use of working models to assist with the
various decisions one needs to make both during the trial, and at its termination
(excluding hypothesis testing). In particular one must estimate pTðxÞ and pCðxÞ:
These estimates need to be updated after each block of patient accrual. In addition
one needs to assess the uncertainty of these estimated models for each x:We believe
that this is simplest to do using the Bayesian paradigm as: (1) the likelihood
principle implies that the sampling distribution of the x’s need not be considered in
evaluating the uncertainty of our estimates; and (2) decisions can be made to
maximize a posterior predictive utility. To apply Bayesian ideas to this process we
require specification of 2 things before the trial:

1. A model class for pT and pC (the functions indicating response probability on
new treatment and standard of care/control as a function of our candidate fea-
tures); as well as a prior distribution, P, on that model class. Choices for the
model-class and prior are discussed further in Sect. 5.

2. A measure of utility, U; for a trial: Trials that successfully reject the null
hypothesis should be of higher utility than those do not. Utility should also take
into account operating characteristics of the “discovered” biomarker (e.g.
sensitivity/specificity), accrual time, among other things. This is also discussed
in more detail in Sect. 5.

From here one can specify an optimal decision rule (given the prior, P) for the
specified utility measure, U: That is the rule that maximizes the expected utility of
the trial: D� ¼ argminDEP U trialDð Þ½ �: In practice finding the optimal decision rule
over all potential decision rules is computationally intractable, so we optimize over
a more restricted class. As our prior, P is generally only a rough estimate of the
truth; we worry less about optimality for that prior, and more about balancing good
performance under our prior with parsimony and computational tractability. These
restrictions are discussed further in Sect. 4.1.

Operationally, our procedure which optimizes over these decision functions will
look like:

1. Choose a prior for pT ; pcð Þ; and a utility measure U for the trial.
2. Enroll the first block of patients without restriction.
3. Update our prior based on the observed treatments, outcomes, and covariates of

enrolled patients to get a posterior.
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4. Using the posterior, simulate the rest of the trial (many times) to find an “op-
timal” enrollment decision rule (with respect to our utility) for enrolling patients
in the next block.

5. Enroll a new block of patients using our “optimal” rule.
6. Repeat steps 2–4 for each additional block.

We still have several decisions to make: we need a prior distribution for pT ; pcð Þ;
as well as a utility function. To make things computationally tractable, a few
simplifications will be employed in developing an “optimal” enrollment decision
rule. These will be discussed further, in Sect. 5.

4.1 Utility-Based Enrollment Criteria

Our decision function gives us a rule for determining eligibility at each stage of our
trial. As mentioned in Sect. 4, given a utility, model-space, and prior distribution,
there is an optimal decision rule for maximizing the expected utility of the trial:
UðtrialÞ: More formally, for an enrollment rule D our expected utility is

E UðtrialÞ½ � ¼
Z

E UðtrialÞjD; pT ; pCð Þ½ �dP pT ; pCð Þ; ð1Þ

where trialjD; pT ; pCð Þ is a random trial generated with true response probabilities
pTðxÞ and pCðxÞ; run using rule D. Unfortunately, maximizing the quantity in (1)
involves a functional maximization over an infinite dimensional space, and to our
knowledge the solution in general is computationally intractable.

We instead propose optimizing the utility over a restricted class of decision
functions. To make this optimization tractable we suggest considering only a finite
number of candidates. One tractable and relatively flexible option is to use rules of
the form:

DðDk�1ÞðxÞ ¼ DkðxÞ ¼ 1 : P pTðxÞ[ pCðxÞþ ejDk�1ð Þ[ gk Dk�1ð Þ
0 : else

�
ð2Þ

where e	 0 is a prespecified minimum relevant treatment efficacy, and gk Dk�1ð Þ is
a single parameter per block over which we optimize (from a discrete set of pre-
specified candidate values). Here we only allow decisions to be made based on the
posterior probability that a patient has a higher response rate on the new treatment
than standard of care. This functional of the data effectively combines information
about the expectation and variability of pTðxÞ � pCðxÞjDk�1, though other func-
tionals may also work well. Also note, gk is written as gk Dk�1ð Þ to make clear that it
is a function of the previous data—this allows one to be more conservative or
liberal in our enrollment, based on the quality of information attained so far in the
trial. In addition, we note that by using a discrete set of candidate models,
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optimization over this class be done by brute force: simulating a large number of
trials under each potential rule, and choosing the decision function for which those
simulations had the highest average utility.

We should note that we are not just enrolling patients in each block who are in
our current best estimate of H: At intermediate stages of the trial we need to take
into account both (a) if we expect a given patient to benefit and (b) how likely that
expectation is to change given additional data. Thus our enrollment criteria is a bit
broader than what our estimated indication would be if the trial terminated at that
stage: In addition to enrolling patients whom we expect to benefit, we would also
like to enroll patients whom we do not have enough information on to make a well
informed decision. While a criterion based on (2) contains a happy medium of
information from (a) and (b), there are many other options to use instead e.g. a
pre-specified quantile of the distribution of pTðxÞ � pCðxÞjDk�1ð Þ; or a 2 dimen-
sional statistic like E pTðxÞ � pCðxÞjDk�1½ � and var pTðxÞ � pCðxÞjDk�1ð Þ—though
this increases the size of the search space.

One might wonder at the cost of using this restricted optimal rule, rather than the
unrestricted optimal rule. While this is hard to assess, one might believe the cost is
minimal (if there is a cost at all). The unrestricted rule is only “optimal” in so far as
the model class and prior for pT and pC are correctly specified. In practice we never
believe this specification (especially of the prior) is perfect; and thus do not worry
overly about optimality—we use the Bayesian framework as a principled way to
choose a good rule, rather than a dogma forcing us to choose the “optimal” rule.

4.2 Estimates for Labeling

At the termination of a successful trial we are left with two important labeling
questions. For whom should the treatment be indicated? And what is the effect size
of treatment in that indicated population? We discuss two options for answering
these questions. As we move forward we will let X � X denote our treatment
indication.

Model-Free Approach: The first approach uses the enrollment criteria for the final
period as our treatment indication: i.e.

X xjDKðxÞ ¼ 1f g:
We can estimate treatment-effect in that indicated population by just the dif-

ference in sample means from our final period:

d̂ ¼ p̂TðKÞ � p̂CðKÞ:

The upside of this approach is that, as with our hypothesis test, the validity of these
estimates does not require correct specification of our models or priors. The
downside is two fold: (1) we only get to use a subset of our data in estimating
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treatment effect. While this estimate is unbiased, it may be high variance, and this
approach may result in a negative effect-size estimate for a trial which in-fact rejects
the null hypothesis; and (2) using utility-based enrollment, for many utility choices,
enrollment in the final block may not be optimized towards enrolling only those
patients whom we believe benefit from treatment—there may still be patients
enrolled for whom there is uncertainty leading into the final block (but perhaps not
uncertainty after that block). We would like to use that information from the final
block to further refine our classifier.

Model-Based Approach: The second approach leverages the models pTðxÞ; and
pCðxÞ to determine our indication and evaluate treatment-effect. At the end of the
trial, we can base our indication on our posterior expectation for both models using:

X xjE pTðxÞ � pCðxÞjDK½ � 	 ef g;

where e	 0 is some minimal relevant effect-size (possibly 0). This is just the set of
patients for whom we expect posterior benefit. In practice this could be a com-
plicated set (likely not characterized by a simple linear rule). Using the posterior
distribution affords the ability to consider things like the optimal linear rule:

X xjx>a DKð Þ	 a0 DKð Þ� �
where

ða; a0Þ DKð Þ  argmaxa;a0

Z
x
E pTðxÞ � pCðxÞ½ �I a>x[ a0

� �
dGðxÞ

with dGðxÞ the density of our covariate(s), x: Regardless of the rule we use, esti-
mating average treatment is straightforward in these scenarios: We just use the
posterior estimate

d̂ ¼ 1
GðXÞ

Z
x2X

E pTðxÞ � pCðxÞjDK½ �dGðxÞ:
In the Bayesian framework, our effect-size estimates do not have selection bias

(even though we use our models to select the subset over which we average). Here,
the prior provides natural shrinkage.

Estimating the Distribution of Covariates: In estimating effect-size (or choosing
the optimal linear rule) we need an estimate of the distribution of our covariates.
One possibility is to use the empirical distribution of covariates in the first block of
the trial. Unfortunately, using the unmodified empirical distribution from future
blocks of the trial will lead to a bias because the changing enrollment criteria (based
on adaptive enrichment) will lead to biased covariate distribution. However, in
practice, while not all patients will be enrolled in the trial, in every block, all
candidate patients who apply to the trial will need to have their covariate values
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measured (to check their eligibility). If these measurements are saved, then we can
use the empirical distribution of all those measurements for d̂G:

4.3 Benefit-Based Stratification

Rather than only characterizing the subpopulation of patients believed to benefit
from treatment over control, one may want to stratify patients into more subgroups;
e.g. perhaps 3 subgroups: those likely to benefit, those unlikely to benefit, and those
for whom there is no clear indication either way. One way to develop these sub-
groups is based on a statistic that combines posterior expected benefit, and posterior
variance, e.g.:

TðxÞ ¼ E pTðxÞ � pCðxÞ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var pTðxÞ � pCðxÞð Þp :

For some prespecified cutpoint c[ 0; we can define

Xunlikely ¼ xjTðxÞ\�cf g
Xuncertain ¼ xj � c� TðxÞ� cf g

Xlikely ¼ xjTðxÞ[ cf g:

However, these sets may have complicated boundaries in x which are highly
non-linear.

Instead we may consider the linear combination, x>a; from our optimal linear
rule. Here we can find cutoffs alow and ahigh based on this linear combo; with

Xunlikely ¼ xjx>a\alow
� �

Xuncertain ¼ xjalow� x>a� ahigh
� �

Xlikely ¼ xjx>a[ ahigh
� �

:

Here, alow and ahigh might be selected based on quantiles of x>a: Or they could be
selected based on

T x ; amin; amaxð Þ �
Z
amin\x>a\amax

pTðxÞ � pCðxÞð ÞdGðxÞ

where ahigh is selected to be the minimum value such that

E T x ; ahigh;1
� �� 	� effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var T x ; ahigh;1
� �� �q [ c
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and alow is selected to be the maximum value such that

E T x;1; alowð Þ½ � � effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var T x ;1; alowð Þð Þp \�c

This is one of many potential options that considers both the expected treatment
effect and the variability of that treatment effect.

5 Choosing Utility, Models, and Priors

As mentioned in Sect. 4, to run an adaptive enrichment trial under this framework
one must choose a utility, and model classes with a joint prior for response as a
function of covariates under treatment and control. We discuss these choices below,
and give recommendations under various scenarios.

5.1 Choice of Utility

There are many possibilities for codifying utility. One noteworthy aspect here is
that utility is not solely a function of trial success/power (and enrollment time) as it
might be in a classical biomarker-free trial. Power is generally maximized by
choosing only a very small subset of patients—rather than enrolling all patients who
would likely benefit from treatment, instead, power is increased by including only
those who will receive very large benefit from treatment. However, this is at odds
with our goal of characterizing and enrolling all those patients who would benefit
from the new treatment over control. The utility we choose should reflect this,
combining power to reject the global null, with sensitivity of the developed bio-
marker. One can directly combine these with something like

UðtrialÞ ¼ a I rejectH0f g|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
trial success

þ 1� að Þ
Z R

I x 2 X DKð Þf gI pTðxÞ � pCðxÞ[ 0½ �dGðxÞR
I pTðxÞ � pCðxÞ[ 0½ �dGðxÞ

� �
dP pT ; pCjDKð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
average biomarker sensitivity

;

where 0� a� 1 is a prespecified weight, and X DKð Þ is our subpopulation indicated
for treatment at the end of the trial. Other utilities might also be used. One strong
candidate is what we term expected future patient outcome penalized by accrual
time:

UðtrialÞ ¼ expected future patient outcomeð Þ � c Accrual Timeð Þ;

where expected future patient outcome (EFPO) is
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EFPO ¼
R
XðI x 2 X DKð Þf gE pTðxÞjDK½ �
þ I x 62 X DKð Þf gE pCðxÞjDK½ �ÞdGx : if we rejectH0R

X E pCðxÞjDK½ �dGðxÞ : if we fail to rejectH0

8<
:

and c is some prespecified parameter that trades off between future patient benefit
and accrual time. Note, if our indicated subpopulation is just the subpopulation with
posterior expected benefit, i.e.

X xjE pTðxÞ � pCðxÞjDK½ � 	 0f g;

then for a successful trial, our utility becomes

Z
X

max E pTðxÞjDK½ �;E pCðxÞjDK½ �f gdGðxÞ:

This utility naturally balances accrual time, power, and sensitivity:

Accrual Time: Penalizing by accrual time means we will not run too lengthy a trial
(often in practice, even trials with c ¼ 0 are not too long).
Power: Because we only allow the treatment to be used for future patients if we
successfully reject H0, this criterion attempts to increase power.
Sensitivity: As we better characterize our biomarker + subgroup, we gain value
from using I x 2 X DKð Þf gE pTðxÞjDK½ � þ I x 62 X DKð Þf gE pCðxÞjDK½ � in our utility.

We also note that this utility optimizes for future patient outcome using the rule
we plan to develop during the trial, i.e. if we use an optimal linear rule then future
patient outcome is based on the optimal linear rule.

5.2 Modeling Outcome as a Function of Treatment
and Covariates

As discussed earlier, we propose the use of working models to assist with the
various decisions one needs to make both during the trial, and at its termination
(excluding hypothesis testing). In particular one must estimate pTðxÞ and pCðxÞ:
Here, we will discuss modeling strategies for the 3 scenarios from Sect. 2.

5.2.1 Unordered Categorical Biomarker

Here we suppose our assay takes on one of M values: x 2 v1; . . .; vMf g: This is the
simplest scenario. Without biomarker-specific apriori knowledge, one might use
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pTðvmÞ
Beta aT ; bTð Þ pCðvmÞ
Beta aC; bCð Þ for eachm

where aC; bC are chosen based on historical response rates, and aT ; bT are based on
early clinical or preclinical data. If insufficient data are available for selecting aT ; bT
one can use aT ¼ aC; bT ¼ bC. One should note that choosing aT ; bT such that
E pTð�Þ½ �[ [E pCð�Þ½ � actually leads to more conservative adaptation (as it
encourages us to believe that treatment is generally beneficial across levels of the
biomarker). In addition, our final hypothesis test is completely frequentist and does
not incorporate the prior, so this does not lead to anti-conservatism. This is in
contrast to a trial with a Bayesian hypothesis test, where choosing a prior with a
large treatment effect will lead to inflated type-1 error.

In situations where more information is known about the prognostic value of the
biomarker, but no information is available on treatment, one might use

pTðvmÞ
Beta am; bmð Þ pCðvmÞ
Beta am; bmð Þ for eachm;

where am; bm are chosen based on biomarker-level specific historical response rates.
This can be extended via hierarchical Bayesian modeling [12].

5.2.2 Univariate Continuous Biomarker

Here, for ease of notation we will assume our assay, x; takes on values in ½0; 1�: One
simple approach is to use separate logistic models for response on treatment and
control:

logit pTðxÞð Þ ¼ b0þ bx logit pCðxÞð Þ ¼ a0þ ax:

This is equivalent to a single model with interactions

p y ¼ 1jx; treatmentð Þ ¼ c0þ c1I treatment ¼ Tf gþ c2xþ c3xI treatment ¼ Tf g

with c0 ¼ a0, c1 ¼ b0 � a0, c2 ¼ a, and c3 ¼ b� a. One could extend this to a
more flexible estimate using a basis expansion: Let w1; . . .;wM be pre-specified
functions. One might consider the model

logit pTðxÞð Þ ¼ b0þ
XM
m¼1

bmwm xð Þ logit pCðxÞð Þ ¼ a0þ
XM
m¼1

amwm xð Þ

Some potential choices for wmf gMm¼1 are polynomial basis functions or a spline
functions with prespecified knots. In particular, using 0-th order splines (i.e.
wmðxÞ ¼ I x	 tmf g where tm is a prespecified knot) is equivalent to discretizing our
continuous marker into a categorical marker. If we specifying priors for
a0; . . .; b0; . . . then these become Bayesian models. Those priors can encode known

118 N. Simon



information about directionality of an effect. For example suppose we were
designing an adaptive enrichment trial to test the efficacy of trastuzumab vs
chemotherapy, and were using HER2 expression in the tumor as a candidate bio-
marker. Our prior belief is that increased HER2 expression is a negative prognostic
factor on chemotherapy; but likely correlated with increased effectiveness of tras-
tuzumab. In this case one would want a joint prior on all the parameters such that:
(a) there is little (or no) prior weight on any parameter-vectors with am [ 0 for any
m ¼ 1; . . .;M; and (b) there is little (or no) prior weight on any parameter-vectors
with bm � am\0 for any m:

This approach with 0-th order splines can also be applied in the case of ordered
categorical variables (with prior information on directionality). Here we assume
categorical variables are coded as 1; . . .;M; and we can use wmðxÞ ¼ I x	mf g:

5.2.3 Multivariate Biomarker

Here we are interested in combining a number of features (potentially a combination
of continuous and categorical features): x1; . . .; xp. For ease of exposition we
assume that any categorical features are encoded as dummy-variables in the pre-
ceding representation. One simple but generally effective strategy is to use
linear-logistic models

logit pTðxÞð Þ ¼ b0þ
X
j

bjxj logit pCðxÞð Þ ¼ a0þ
X
j

ajxj:

This would assume monotonicity of effects and an additive-only structure. This
approach can be made more flexible by including interactions and/or basis
expansions of the features (as discussed in Sect. 5.2.2). Complex models however
require many observations to fit: it is recommended here to restrict attention to those
features for which there is strong biological rationale and limit additional com-
plexity due to interactions/basis expansions. Recall that these models are used at
intermediate stages to assist in the decision making process, but validity of the
global null hypothesis test does not hinge on correct model specification.
Furthermore there is no potential for confounding as patients on the trial are ran-
domized to treatment arms. This relieves many of the modeling concerns that might
push us towards more complex models. As with our other scenarios, these models,
by specifying a joint prior for a0; . . .; b0; . . . we create Bayesian models. Informed
prior specification for these joint models can be difficult—we recommend in most
cases using very diffuse priors. A more in depth discussion of Bayesian multivariate
logistic modeling can be found in [28].
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6 Discussion

There are a number of additional philosophical and practical issues one might have
about this framework for adaptive enrichment. We address some of these below.

6.1 Bayesian Versus Frequentist Enrichment

The framework detailed in this chapter uses the Bayesian paradigm for enrichment
decisions, and the frequentist paradigm for testing. One might instead consider
using a Bayesian test or frequentist models for enrichment decisions. We give our
rationale for our choices below.

Making choices about adaptation is a decision theory problem. The Bayesian
paradigm has simple, straightforward machinery for formalizing and optimizing
decision theory problems. In addition updating our models after each block of
patients is most easily done as a Bayesian. The likelihood principle implies that we
need not concern ourselves with how covariate values are selected in calculating
posterior model distributions. In contrast, as a frequentist, in finite samples the
variability of our estimated model is not easily tractable: the x-values we see in
future blocks are informative for the outcomes seen in previous blocks. Thus the
maximum likelihood estimate conditional on our x-values is not our usual MLE.
Finally, in estimating effect size the Bayesian framework allows natural shrinkage
through the choice of prior distribution (though this may not be a simple choice). It
is not clear how one might employ principled shrinkage in the frequentist
formulation.

For ensuring that trial-wise type I error is controlled at a specified level, we
believe the frequentist paradigm is more robust. For a Bayesian test to be valid we
need valid models for pTðxÞ and pCðxÞ; and we would need to demonstrate that the
repeated sampling properties of the design are robust for a wide range of priors
different from the ones used in the trial. Our frequentist test requires no modeling or
parametric assumptions, and relies only very lightly on asymptotics. For pivotal
regulatory clinical trials strong emphasis is placed on stringent control of the
study-wise type I error in a manner not heavily dependent on model assumptions.
However, in phase II trials where our covariates define a small number of pre-
specified strata, a Bayesian test could be appropriate.

6.2 The Strong Null Hypothesis

In this chapter, we have discussed trial designs that test the strong null hypothesis:
H0 : pT xð Þ� pC xð Þ for all x 2 X, where pTðxÞ and pCðxÞ are the response proba-
bilities for a patient with covariate vector x under treatment and control
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respectively. This protects the study-wise type I error, but does not ensure that
treatment is effective for the subpopulation indicated at the end of the trial. We do
not believe this discrepancy is a common occurrence—one should only have
additional power (over 0:05Þ to reject H0 when our enrollment algorithm is actually
enrolling patients for whom treatment is effective.

In addition a somewhat symmetric criticism can be applied to classical designs.
There we test for overall treatment efficacy ignoring any potential biomarkers.
When we do find a significant treatment effect, this is often driven by a small subset
of patients for whom treatment is effective. In a classical trial however, we haven’t
characterized that subset, so rather than trying to target treatment at all, we indicate
it for the entire population, incorrectly treating many patients! At least with these
adaptive designs we give ourselves the opportunity to characterize the subpopu-
lation. That said, this criticism is slightly less severe as in a traditional trial we have
a formal statistical test showing that on average treatment benefits our indicated
population (in that case the entire diseased population). In our adaptive design,
though there is strong evidence for this, a formal statistical test was not run on that
hypothesis.

In addition there is a literature on seamless phase II/III trials [10, 21] that takes
another approach to this problem: They use a closed testing procedure in a two
block design to reject the specific hypothesis selected in the second stage. We do
not take this approach because (1) it requires prespecification of strata; the
framework here is developed for a potentially continuous covariate space without
the need to stratify; (2) if there are many strata, then the closed testing procedure
will require one to test many intersection hypotheses. However, for problems with a
small number of discrete covariates (with few levels) this closed testing approach
could be a fruitful alternative.

6.3 Conclusion

In this chapter we have discussed a framework for adaptive enrichment trials. This
framework formalizes the choices one needs to make (in terms of utility, prior
response rates, a decision functional, and potential cutpoints) in an adaptive trial
and carries through Bayesian machinery to make effective decisions. This chapter
gives suggestions for these choices. In addition, a recipe is given for carrying out a
complete adaptive enrichment clinical trial. The recipe uses a frequentist test to
control the type 1 error, and this type 1 error control is valid regardless of unknown
time-trends in the data. When the global null hypothesis is rejected, Bayesian
methods are used to effectively find a subset of patients who will benefit from
treatment and to estimate the average treatment effect in that subset. This may serve
to reduce the over-treatment of the patient population that takes place in many
clinical trials that use the initial eligibility criteria as the basis for defining the
intended use population.
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Evaluating Personalized Medicine
in Multi-marker Multi-treatment Clinical
Trials: Accounting for Heterogeneity

Xavier Paoletti and Stefan Michiels

Abstract The assessment of the added value when matching the right treatment to
the right population based on a molecular profile raises numerous statistical issues.
Due to the low prevalence of potential molecular predictive factors of response to
treatment as well as of the existence of many types of histology in oncology, it is
often impossible to carry out a separate trial for each histology and molecular
profile combination. Instead, several contemporary randomized clinical trials
investigate the efficacy of algorithms that combine multiple treatments with mul-
tiple molecular markers. Some of them focus on a single histology, whereas other
are histology-agnostic and test whether selecting the treatment based on biology is
superior to selecting the treatment based on histology. Several important sources of
variability are induced by these types of trials. When this variability also concerns
the treatment effect, the statistical properties of the design may be strongly com-
promised. In this chapter, using the randomized SHIVA trial evaluating personal-
ized medicine in patients with advanced cancers as example, we present strengths
and pitfalls of designs and various analysis tools. In particular, we illustrate the lack
of power in the case of an algorithm being partially erroneous, the necessity to use
randomized trials compared to designs where the patient is his or (her) own control,
and propose a modeling approach to account for heterogeneity in treatment effects
at the analysis step.
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1 Introduction

Building on recent advances in biology and biotechnology, most new agents in
oncology are designed to target molecular alterations or immunologic specificities
involved in carcinogenesis. Anti-tumor activity is expected only in the presence of
the matching molecular alterations or markers, which play the role of predictive
factors of increased treatment benefit. Tumour genetics is increasingly being
claimed as the main source of variability in the treatment effect compared to his-
tology. Nevertheless, molecularly targeted agents (MTAs) have been assessed to
date according to tumor location and histology before considering the molecular
target. For instance, trastuzumab was first developed in breast cancer patients
over-expressing HER2 before anti-tumor activity in advanced/metastatic stomach
cancers with the same target was demonstrated [2]. This approach, that allows a fine
description of the activity of new agents in every combination of histology and
molecular marker, is rapidly limited by the sample sizes required for clinical trials:
the combination of the low prevalence of some markers as well as low prevalence
of specific tumor types transforms several subgroups into rare diseases. The clas-
sical sequential development of a MTA by tumor type with the same molecular
abnormality is thus unrealistic in most cases. Therefore, there is strong interest in
the possibility to investigate several tumors with common biological characteristics
or markers matching several treatments in the same trial. Besides clinical trials,
numerous companies or academic programs propose patients with refractory dis-
eases to derive their molecular profiles and to apply an algorithm in order to select
the most appropriate off-label regimen (Caris, Foundation Medicine, Myriad
Genetics among others). So far, a convincing demonstration of the clinical utility of
these algorithms on patients outcomes has not been made.

The integration of biomarkers in the design and analysis of clinical trials is a vast
field of research. It includes the identification of the target population that may
benefit from a treatment, the validation of a prognostic or predictive biomarker to
treat patients, and the investigation of complex algorithms to select the adequate
treatment among a set of agents in a single or in multiple diseases. Readers
interested in the statistical designs tailored for the investigation of biomarkers in a
single disease and for a single treatment are referred to several high-quality con-
tributions that provide a comprehensive review of various approaches [4, 5, 26].

In this chapter, we focus on the issue of designing and analyzing trials with
multiple tumour types and/or multiple treatments to assess the added value of a
pre-defined algorithm. So far, the major successes of using molecular abnormalities
rather than histology to drive treatment comes from non-randomized trials or
cohorts. A recent meta-analysis of phase I trials compared the outcomes within
phase I trials that selected patients based on the molecular abnormality versus those
who did not. The authors concluded that there was a benefit of selecting treatment
for refractory cancer based solely on the tumor biology [30, 35]. A pilot study by
Von Hoff evaluated a multi-treatment multi-histology algorithm by comparing for
each patient the progression-free survival (PFS) obtained with the targeted strategy
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to the PFS obtained during the previous line of treatment [37]. This is the so-called
PFS ratio or tumor growth modulation index. However, the lack of randomization
vs standard of care in these studies did not allow for drawing definitive conclusions
[6]. Recently, several randomized trials assessing the added value of personalized
medicine have been carried out [16] or are ongoing. The aim of these studies is no
longer to investigate a unique biomarker but to study whether an algorithm, that is a
combination of agents and rules to allocate the agents to patients, would be more
efficient than the standard approach based on histology. These trials raise numerous
issues at both the design and the analysis level. One of the common roots to these
issues is the heterogeneity in the population characteristics and in the intervention
(several agents, several targets). This heterogeneity is con-substantial of these trials
that aim at demonstrating a global personalized approach.

To illustrate the various methodological questions we need to address to set up a
trial in this context, we use the SHIVA trial [15] as running example. Multiple
treatments were investigated in patients with any solid tumor cancers refractory to
approved treatments for their disease.

Briefly, the SHIVA trial was designed to evaluate whether tumor biology is a
more important driver for treating cancer patients than tumor location and histology
in advanced, refractory cancers. The concept appeared particularly attractive for less
common or rare tumor types for which dedicated randomized trials of MTAs are
usually not carried out, which supported the idea to include all solid tumor types.
This randomized trial compared MTAs approved at the time of the trial (outside of
their approved indications) based on metastasis molecular profiling versus
chemotherapy (or best supportive care) at investigators’ choice. Eleven MTAs were
available in the investigation arm.

It is important to remind that the preliminary step before engaging in such
scientific questions, is to assess the validity of the measure of the marker [18]. It
must be shown to have the properties of a solid diagnostic test, which includes the
reproducibility of the assay, the metronomic quality of the measures, a high sen-
sibility and specificity. This topic is beyond the scope of this chapter and the reader
is encourage to refer to the evaluation of genomic applications in practice and
prevention initiative (EGAPP) that proposes very rigorous means to evaluate the
validity of proposed biomarkers; they include criteria for preliminary ranking of
topics, hierarchies of data sources and study designs for the components of eval-
uation, criteria for assessing internal validity [32]. These recommendations apply to
all diseases as there is no reason why oncology should develop its own (and
weaker) set of rules. Many assays remain experimental and, if used, one should be
certain that they will not be modified during the course of the trial, which would
considerably limit the interpretation of the final results. We will assume that this is
available, even if in many situations, including the trial used as example, we might
lack this level of evidence.

We first introduce the rationale for the design, the choice of algorithm and
endpoints of the trial (Sect. 2), and we discuss the type of conclusions we can draw,
and specificities and limits due to this type of clinical question. In Sect. 2.5, we
investigate the (lack of) power of randomized trials in case only part of the
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algorithm would be efficient, that is if only some MTAs actually work in the
presence of the selected target while others do not. In Sect. 3, we then present a
statistical analysis framework to evaluate the treatment effect in the overall study
population, while estimating the treatment effect within patient groups defined by
different markers with low prevalence. In the last Sect. 4, we review the PFS ratio
as an endpoint and investigate its properties and distribution in a simulation study
mimicking the SHIVA trial.

2 Design and Characteristics of Multi-marker
Multi-treatment Trials

As recalled by EGAPP, a randomized clinical trial is mandatory to obtain high level
of evidence of the clinical utility of omic-based classifiers to guide patients treat-
ment compared to standard approaches [32]. Although the tumor biology, the
mechanisms of drug resistance, and the role of the tumor environment are expected
to be crucial to accurately predict patient outcomes, they remain largely unknown,
making it necessary to have a comparator [29]. Furthermore, the prognosis of the
highly selected patients (those whose tumors have a set of pre-defined molecular
markers) enrolled in such trials is not well-known and may vary across molecular
profiles. Only an intent-to-treat analysis that makes full use of the randomization is
the most appropriate way to evaluate the efficacy.

To refine the context, consider that the primary objective is to compare the
overall efficacy (global effect) of molecularly targeted therapy based on molecular
profiling versus conventional therapy in patients with solid tumors refractory to
standard treatments. Secondary efficacy objectives include the investigation of
variations in the treatment effect according to the altered pathway (interaction tests
or subgroup analyses). The primary endpoint is PFS.

2.1 Flowchart

Figure 1 describes the flowchart of the SHIVA trial. The molecular profile obtained
from a mandatory biopsy/resection of a metastasis of a patient is analyzed. A short
delay between biopsy and treatment recommendation is needed in order to not delay
patients’ treatment. It was set to be less than four weeks in SHIVA, and even as
short as two weeks in the M-PACT trial (NCT01827384) that is introduced in the
next subsection. If one or several molecular alterations are identified, a pre-defined
algorithm is applied to select the MTA. Patients are then randomized between
receiving the selected MTA or receiving a conventional therapy.
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Sample size computation is delicate due to the large number of unknown
quantities. In the SHIVA trial, the expected PFS of this population in the control
arm could be derived from the one reported in phase I clinical trials of cytotoxic
agents that have eventually been approved: the 6-month PFS in this patient pop-
ulation was around 15% [11]. Under the hypothesis that doubling the 6-month PFS
probability from 15 to 30% was clinically relevant (i.e. a hazard ratio of 0.63), a
total of 142 events was required to detect a statistically significant difference in PFS
between the randomized arms with a two-sided type I error of 5% and a power of
80%. To observe these events after an accrual time of 18 months and a minimum
individual follow-up of six months, about 200 patients were randomized onto this
trial. A total of 780 patients were eventually enrolled for molecular screening to end
up with 195 randomized patients.

Patients were treated until progression. At progression, patients initially ran-
domized in the intervention group were then allowed to receive conventional
chemotherapy based on their tumor type, and patients in the control arm were
allowed to receive the MTA matching the molecular alteration identified on the
biopsy performed at inclusion, provided all eligibility criteria were still fulfilled at
the time of progression. Those patients were then followed-up to the second pro-
gression or death. Several endpoints illustrated in Fig. 2, are determined:

• Progression free survival 1 PFS1ð Þ that is the time from randomization to first
progression or death whatever the cause. Patients alive and free of progression at
the cut-off date are censored. This was the primary endpoint.

Fig. 1 Simplified flow chart of the multi-marker trials Shiva trial; IHC stands for immuno histo
chemistry; MTAs for molecular targeted agents; NGS for next generation sequenting
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• Progression free survival 2 PFS2ð Þ that is the time from cross-over to second
progression or death whatever the cause. Patients alive and free of second
progression at the cut-off date are censored. PFS2 cannot be computed for
patients who do not progress after the first treatment (censored PFS1Þ.
Of note, for the patients going into the second period, PFS1 is in fact time to

progression TTP1ð Þ as patients dying before before progression 1 is observed do not
receive second treatment. We will use PFS1 for clarity in the following. This type of
cross-over gave an opportunity to compare both therapeutic strategies in the same
patients using each patient as his (her) own control but this raises specific design
and analysis difficulties that are reviewed in Sect. 4.

2.2 Definition of the Algorithm

This complex intervention combines two aspects: the treatment effect and the
choice of the putative matching marker. Therefore, the resulting efficacy can be
related to either of the two and the final interpretation is the evaluation of the whole
strategy compared to another strategy (standard therapy based on histology). As in
any scientific experiment, the algorithm to select patients must be duly described,
reproducible and applicable to all participants [17]. An example coming from the
SHIVA trial is provided in Table 1. It includes the choice of treatments as well as a
the set of rules to match treatments and targets. In particular in the case multiple
molecular alteration would be detected in a patient, prioritization should be explicit.
Algorithm rapidly gets quite complex as several levels can be considered that
include the alterated pathway, the number and type of abnormalities, the specific
mutations.

Fig. 2 Cross-over in the SHIVA trial
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2.2.1 Approved versus experimental agents

A very large set of MTAs is on the market or under development [1], with various
levels of evidence of activity depending on the stage of development. For SHIVA,
approved MTAs in France had been chosen as such activity and safety profile were
well known. The relative treatment effect against standard of care had been
demonstrated and quantified in at least one histology, which in turn provided us
with reasonable hypotheses on the expected effect in other histologies. Eleven
different targeted treatments have been administered based on 22 targets charac-
terized by several dozens molecular alterations (see Table 1 from [17]). Those
targets corresponded to three main biological pathways on which the randomization
and analysis were stratified: (1) the hormone receptors pathway, (2) the
PI3 K/AKT/mTOR pathway, and (3) the MAP kinase pathway.

Conversely some other trials, such as the MD Anderson program [30], tested
new agents that had not fully demonstrated their efficacy in pivotal trials at the time
of trial initiation. New molecules may have greater promises regarding the pre-
dictive value of the targeted molecular alterations, but the treatments activities are
largely unknown, introducing another source of variability.

Defining the treatment algorithm is challenging as the knowledge regarding the
biology of the tumors and the high-throughput platforms evolve quickly over time.
Initial biological assumptions may become outdated during the course of the trial.
Platforms should ideally use the same protocol throughout the trial. Likewise, all

Table 1 Algorithm for agent selection in the SHIVA trial

Targets Molecular alterations MTAs

ER, PR Protein expression >10% IHC Tamoxifen or Letrozole

AR Protein expression >10% IHC Abiraterone

PI3KCA, AKT1 Mutation − Amplification

AKT2/3, mTOR,
RICTOR, RAPTOR

Amplification Everolimus

PTEN Homozygous deletion, Heterozygous
deletion + mutation or IHC

STK11 Homozygous deletion, Heterozygous
deletion + mutation

INPP4B Homozygous deletion

BRAF Mutation − Amplification Vemurafenib

KIT, ABL1/2, RET Mutation − Amplification Imatinib

PDGFRA/B, FLT3 Mutation − Amplification Sorafenib

EGFR Mutation − Amplification Erlotinib

HER-2 Mutation − Amplification Lapatinib + Trastuzumab

SRC Mutation − Amplification Dasatinib

EPHA2, LCK, YES1 Amplification

ER, PR and AR stand for Estrogen, Progesterone and Androgen receptors respectively; IHC stands
for immuno histochemistry; MTA for molecularly targeted agents
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bioinformatics analyses have to be centralized and applied to all patients regardless
of recruitment center. Finally, the algorithm should be applied to all patients
enrolled in the trial in the same way. Any modification (new marker, new thresholds
to define amplification etc.) induces extra variability in the overall experiment and
hence in the data. This is crucial as any research must be self-explanatory and
reproducible. A treatment algorithm that relies only on unstated experts opinion
would not be applicable outside of the center and conclusions would not be
applicable and generalizable to other samples. This is a key condition to be able to
scientifically evaluate the overall efficacy of the intervention. A black box approach
might initially lead to impressive results, but they may be difficult to reproduce.

2.2.2 Treatments, biomarkers and algorithm effect

The treatment algorithm is expected to have a prognostic impact; for instance HER2
amplification is associated with poor prognosis in breast cancer, but randomization
should allow for controling this source of heterogeneity. An important question that
will not be addressed in this type of trial is the independent effect of the matching
algorithm. If a given MTA is active irrespective of the measure of the target, we
would draw the same conclusions as if the treatment worked due to the adequate
selection of the patients. The US National Cancer Institute sponsored M-PACT trial
(NCT01827384) has been designed to specifically address the question of the added
value of the algorithm independently of the treatment effects. M-PACT focuses on
four MTAs. Patients whose tumor expresses molecular alterations are randomized
between the MTA matching the detected molecular alteration versus one of three
other non-matching therapy arms. In the latter case, the MTA is randomly allocated.
Only the added value of the algorithm is tested. Conversely, the control arm used in
the M-PACT trial does not correspond to any standard of care and the trial will not
be able to conclude whether the global strategy is superior to the standard of care.
Both types of trials are therefore quite complementary.

2.3 Tumor Diversity

Eligible patients in SHIVA had heterogeneous tumor types and had received var-
ious number of previous lines of treatment, which could be associated with various
levels of prognosis. In clinical trials open to all tumour types, the distribution of
cancer types depends strongly on the prevalence of the various cancers and the
specific expertise of the participating centers. Yet, less common tumour types with
frequent molecular abnormalities are of particular interest. To limit the risk that
most patients have the same tumour type, which might reduce the applicability of
the results, heterogeneity in the tumour-type may be increased by the design.
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Quotas for tumor types can be set up to avoid over-representation of more frequent
tumor types such as breast, lung or colorectal cancers. The obvious consequence is
to increase the potential variability in treatment effects and to induce a risk of a
cohort effect if patients with common histologies are included first and patients with
rare histology are included later in the trial. In order to control for patient hetero-
geneity from differences in prognosis, randomization was stratified according to the
signaling pathway relevant for the choice of the MTA and on the patient prognosis
based on the two categories of the Royal Marsden Hospital (RMH) score for
oncology phase I trials [21]. The randomization and the planned primary analysis
were then stratified on six strata (three pathways and two prognostic levels).

2.4 Blinding

Blinding to the molecular profile is requested as the expectations of the physicians
and of the patients in omic-based algorithms to select MTAs are high; there is a risk
of bias in the follow-up as well as in the measure and interpretation of the primary
outcome that may favor the intervention arm. Ideally, a double blind trial should be
designed, which is delicate when several formulations, schedules, agents are tested
in the same trial. Practically speaking even blinding the molecular profile is difficult
to achieve as a large fraction of patients with advanced disease have participated to
other profiling programs and the profile is nowadays often part of the medical
records.

2.5 Interpretation and Limits

Several sources of variability related to the complexity of the intervention may
contribute to the final results of the experiment. A non exhaustive list includes the
tumor histology, the activity of MTAs and the validity of the various assays to
define an altered pathway. The diversity of the tumor types in the SHIVA trial was
increased in the hope of drawing conclusions that would be broadly applicable.

If randomization guarantees that the two groups of patients have comparable
characteristics and the same overall prognosis, each prognostic factor may also be a
predictive factor of response to MTA, also called treatment modifier, and hence
impact the power of the experiment.

2.5.1 Power and Predictive Factors

A fundamental assumption behind the design is that the intervention has similar
effects (or absence of effects) in all strata, whatever the allocated treatment and
whatever the molecular alteration used to select the treatment. This is the
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homogeneity assumption. Statistically, lack of homogeneity corresponds to an in-
teraction between the MTA effect and patients characteristics. In other words, the
algorithm to select the right treatment would be efficient for some molecular
alterations (or equivalently for some MTAs) and not for others. For instance, in the
SHIVA trial suppose that the MTA selected to match an alteration on the
PI3 K/AKT/mTOR pathway is not active in this subset of patients; this would
reduce the power of the primary analysis.

To illustrate this aspect, let’s consider the following framework. The outcome is
a binary endpoint, e.g. PFS rate at six months assuming no censored observations
before 6 months. Six strata of equal prevalence are considered. The trial is designed
to demonstrate an increase in the 6-month PFS rate from 15 to 33%, that is an odds
ratio (OR) of 2:67. As reported in [23], the power of the experiment in presence of
heterogeneity across strata would be lower than the planned 80%. In the forest plots
in Fig. 3, each line represents the expected MTA effect in a different stratum as
measured with an odds ratio (OR) for the binary outcome considered here. In panel
A, we have homogeneity of the MTA effect across all strata: whatever the signaling
pathway and the prognostic group, the odds ratio for PFS is 2.67. Conversely, in
panel B, the MTA has no effect in one of the strata and the overall power of the
primary stratified analysis is reduced from 80 to 66%. The magnitude of the power
loss depends on the number of strata where the MTA is not active, as shown in
Table 2. The power calculation can be done through simulations or exact calcu-
lations [12]. The size of each stratum has also a direct impact on the power (results
not shown). Homogeneity tests (or interaction tests) are notoriously underpowered
as shown in Table 2 and a strong heterogeneity may remain statistically undetected
at the 5% significance level.

Fig. 3 Impact of heterogeneity in the treatment effect related to the algorithm assuming balanced
prevalence for the six different strata and the same follow-up for all patients censored at the cut-off
date. High and low risk denote the risk group; Pathway 1, 2, 3 correspond to the grouping of the
different targets; MTA stands for molecularly targeted agent; CT stands for control treatment; N is
the total sample size; OR stands for odds ratio; Point estimates and 95% confidence intervals
(horizontal lines) are provided. Panel A Homogeneous benefit of the targeted treatment selected
based on molecular alterations in all strata (OR = 2.67); Panel B benefit of the targeted treatment
selected based on molecular alterations in all but one stratum
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2.5.2 Inclusion Criteria and Generalizations

As shown in the Consort flowchart of the SHIVA trial (Fig. 4), only about 33% of
the included patients were eventually randomized. The main cause of failure was
the inability to obtain a molecular profile of the patients due to insufficient tumor
cells in the sample or failures of the high throughput platform analyses. An analysis

Table 2 Power of a randomized comparative trial of size N ¼ 200 to detect an overall increase in
the 6-month PFS rate from 15 to 33% in case of heterogeneity assuming balanced prevalence of
signaling pathways and Royal Marsden Hospital risk groups

Number of strata in which MTA
is better

Power for the comparative
test (%)

Power for heterogenity
test (%)

6 83 –

5 66 25

4 49 36

3 32 38

2 17 34

In strata where MTA selected on the target is not better than standard chemotherapy
Homogeneity is tested using Woolfs test
Heterogeneity = test for different OR accross the strata

Fig. 4 Flowhchart in the SHIVA trial before cross-over; HD stands for high definition; PD for
Progressive disease; CT for chemotherapy; MTA for Molecular targeted agents; † symbolizes
death
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of prognostic factors of a successful biopsy on 228 patients from the SHIVA study
showed that success of biopsy was less frequent with chemotherapy guidance than
with surgical or palpation-guided biopsy and was higher in soft tissues and lymph
nodes than that in visceral metastasis; ongoing chemotherapy decreased tumor cell
content and consequently the success of the biopsy samples for molecular profiling
[7].

2.6 Summary

In summary, randomized designs allow for comparing two complex strategies on a
valid clinical endpoint, while controlling for numerous confounding factors,
including the prognostic value of the algorithm. A statistically significant difference
between the two arms would be appropriately interpreted as the superiority of
treating patients with MTAs based on molecular alterations and a pre-defined
treatment algorithm compared to the conventional approach. However, treatment
effect of the MTAs as well as biomarkers effects per se are not a principal result of
such trials and cannot be disentangled, except if the same MTAs with or without the
use of algorithm are randomly compared. In Sect. 3, we will explore the estimation
of the various components of the algorithm. Nevertheless, in case of heterogeneity
of the predictive value of part of the algorithm (that is different magnitude of
interactions between each MTA and biomarkers), the power of the overall test is
strongly reduced. As medium-sized trials lack power to detect interactions, inter-
pretation of the final results is difficult in such setting. A non-significant global test
of the efficacy of the algorithm may cover various situations; MTAs may lack of
activity irrespective of the predictive factors of response to treatment or part of the
algorithm only may be valid.

3 Analysis of a Multi-marker Multi-treatment Trial

As shown in Sect. 2 several assumptions regarding the homogeneity of treatment
effects of the targeted therapies and the predictive value of the matched markers are
made in trials evaluating algorithms to select the best treatment based on markers. If
mutations in cancer cells are all predictive of enhanced benefit from different
MTAs, that is if the treatment effect is homogeneous across mutations, the
semi-parametric Cox model adjusting for mutation effect as well as for overall
treatment effect would be a valid tool for analysis. But, if the homogeneity
assumption does not hold, random effects models [8] could be used to estimate the
overall treatment effect of the marker-based strategy and the treatment effect within
patient groups defined by different markers; some of the subgroups may even
correspond to rare diseases. Suppose that we observe censored time-to-event data
from a study with L mutations and n‘ subjects per mutations ‘ ¼ 1; . . .; Lð Þ, so that
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N ¼PL
‘¼1 n‘ is the total sample size. How to incorporate the mutation effects into

the analysis when the homogeneity assumption may not hold and when the number
of events may be too low to adjust for all possible mutations per treatment
combinations?

3.1 Random Effects Models

Let us consider the mixed effects Cox model where the hazard hðtÞ is proportional
to the baseline hazard h0ðtÞ through the fixed effects of the design matrix X as well
as of the random effects b for the design matrix Z:

hðtÞ ¼ h0ðtÞ expðXbþ ZbÞ

where b is classically assumed to follow a normal distribution.
This general formulation allows for introducing M‘ the ‘th marker and E the

group of therapy (experimental or control). A random effect can be introduced at
various levels depending on the objectives of the trial. If the interest focuses on both
the prognostic effect of markers and the treatment, while accounting for treatment
variations across subgroups defined by markers, then marker by treatment inter-
actions can be seen as random and be included in the Z matrix.

hðt;E;M dj Þ ¼ h0ðtÞ expðbEþ
XL
‘¼2

c‘M‘ þ
XL
‘¼1

d‘M‘EÞ ð1Þ

where c‘, the fixed prognostic effects of the markers are part of X and dj are random
effects drawn from a normal distribution whose variances capture the variations of
the treatment effect on the six subgroups defined by the markers.

When the prognostic effect of mutations is of no interest per se, a
semi-parametric model stratified on the markers could estimate the treatment effect
adjusted for the various components with a smaller number of degrees of freedom.

hðt;E;M dj Þ ¼ h0jðtÞ expðbEþ
XL
‘¼1

d‘M‘EÞ ð2Þ

Stratification may however negatively impact the power of the trial as the number
of markers (and hence the number of strata) increases and may also run into
convergence problems if the number of events in particular strata is small. The
various strata may then be replaced by a semi-parametric model where the prog-
nostic values of the markers c‘ are also included in the Z matrix.
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4 Using the Patient as His/Her Own Control: Time
to Progression Ratio

In the SHIVA trial, patients were afforded the possibility to cross-over and to
receive the alternative treatment. While it was primarily intended to give the pos-
sibility to patients from the controlled arm to eventually receive the targeted
treatment, it provided additional information for evaluation of the treatment effect.

4.1 Background

As displayed in Fig. 2, two PFS variables PFS1;PFS2ð Þ were measured for patients
who progressed and were eligible to the cross-over. While the analysis of cross-over
experiments with survival endpoints can be performed in the same way as with
binary or continuous endpoints [31], that is estimating the treatment effect using
survival models for correlated outcomes controlling for the period effect, Von Hoff
[36] proposed to consider the ratio of the two progression free survival PFSrð Þ. The
fundamental idea was that the tumor growth in metastatic patients gets faster as the
disease gets more advanced. In other words, the natural history of the cancer should
lead to PFS2 being shorter than PFS1 and hence the period effect can be considered
to be known. If PFS2 is in fact longer than PFS1 (or equivalently the ratio greater
than 1) then it should reflect the superiority of the treatment administered during the
second period over the one administered in the first period. Several trials have
proposed to use the patient as his or her own control [10, 28]. It can be noted that
this approach has lot in common with the “preferences”‘ approach proposed by
France et al. [9] for survival data where the preference for each patient is obtained
by comparing the two outcomes at the two periods of time. Nevertheless, France
et al. continued to defend the need for a randomized trial to control for the period
effect. The statistical power of the analysis of PFSr might theoretically be higher
than the one comparing the treatment efficacy between the two parallel groups as it
enables control for the various sources of patients-related heterogeneity such as the
natural history of the disease (the tumor location and histology), the history of
previous treatments etc. The underlying hypothesis is expressed statistically as the
existence of a strong correlation between the PFS of the two consecutive lines of
treatment. The stronger the correlation, the more powerful the statistical analysis
would be [6, 19].

In the pilot study by Von Hoff [37], the observed PFS was compared to the PFS
from the previous line of treatment. That latter one was collected retrospectively
from medical records. The ratio was compared to a cut-off value of 1:33 to derive a
binary variable (success or failure).

In addition to the underlying assumption of a natural history of cancer that would
be known for each individual, another limit is the assessment of PFS1 based on
retrospective data; progression may be defined differently for both measures.
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Conversely, in the SHIVA trial, both PFS1 and PFS2 were evaluated prospectively
following the same protocol and the same RECIST v1.1 definition. Furthermore,
cross-over was proposed to all randomized patients: the experimental design was
much closer to a real cross-over design. Nevertheless, as shown in the flow chart 4,
only one third of the patients switched from MTA to chemotherapy, introducting a
high risk of selection bias and making any comparisons between the two sequences
difficult to interpret.

4.2 Estimation and Testing Procedure

As patients typically do not start a second line of treatment before progression has
been documented, PFS1 is not censored and observed on all patients included in the
analysis. That means that PFS1 is in fact a time to progression measure. Conversely,
PFS2 can be censored at the time of analysis raising additional difficulty. The ratio
can thus be seen as a continuous positive and censored value.

4.2.1 Uncensored PFSr

Let us denote this ratio PFSr ¼ PFS2
PFS1

where PFS2 is the outcome of the investiga-
tional strategy. In absence of censored observation, the distribution is straightfor-
ward to estimate. Von Hoff [37] considered that a patient for whom PFS2 is 33%
longer than PFS1 benefited from the treatment.

Mick et al. [19] have proposed a testing framework that can serve to design the
trial in terms of sample size if the expected correlation is known. The sample size is
computed to detect a ratio between paired PFS of magnitude c0, which describes the
expected ratio under which the investigational strategy is inefficient: PFSr� c0 (the
null hypothesis is typically 1 or 0:7Þ against some alternative; power is calculated
under some value c1 that would reflect a clinically significant increase (i.e.
c1 ¼ 1:33Þ. Suppose that most of the observations are not censored, we can use a
paired signed rank test [19]. Using their notation, for the ith patient, let ri be equal to

þ 1 if logðPFS2Þ[ logðPFS1Þþ logðc0Þ
� 1 if logðPFS2Þ� logðPFS1Þþ logðc0Þ andPFS2 is uncensored

The test statistic (equivalent to a sign test statistic) is

K ¼
X
i

ri

 !2

=
X
i

r2i
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has a v2 distribution with 1 degree of freedom as there is one pair by patient. This
test formulation can easily be inverted to provide sample size calculation when the
true correlation is known. For instance, for a type I error of 0.05, an 80% power,
and a 50% expected correlation between the two consecutive PFS (adjusted for
treatment effect), the sample size will be roughly reduced by a factor 4 as compared
to the number of patients needed to carry out a randomized parallel arms trial.

4.2.2 Censored PFSr

In case of censored ratio (that is censored PFS2Þ, the Kaplan-Meier approach
provides an estimate of the probability to exceed some threshold values c ¼ 1:3 and
its variance. A Gehan-Wilcoxon test [13] can also be derived. Under the log-linear
model for correlated failure times used by Mick et al. [19], the proposed rank test is
unbaised in case of censored PFS2; the pair does not contribute to the test statistics.

Another non-parametric test approach uses the ranks of each pair PFS1;PFS2ð Þ
[14]. Ranks of censored PFS2 can be estimated by midranks. For each patient i, an
interval ðL2i;R2iÞ for PFS2i is built as follows. If PFS2 is uncensored, the interval is
squeezed to the point ½PFS2i;PFS2i� otherwise it is ½PFS2i; þ1Þ. The midranksM2i

are computed using the minimum and the maximum ranks calculated over the 2n
values of R2i and L2i with i ¼ 1; . . .; n and n the number of patients (or pairs). The
minimum and maximum ranks are the ranks of L2i and R2i that minimize:

min
2i

: R2ð1Þ �R2ð2Þ � � � � �R2ðmini �1Þ � L2i �R2ðminiÞ � � � � �R2ð2nÞ

max
2i

: L2ð1Þ � L2ð2Þ � � � � � L2ðmaxi �1Þ �R2i � L2ðmaxiÞ � � � � � L2ð2nÞ

M2i ¼ min2i þ max2i
2

To estimate the distribution function at value c; SðcÞ;PFS1 is replaced by PFS01 ¼
PFS1 � c as done previously, the midranks of ðPFS01;PFS2Þ in turns provide the
probability of interest:

ŜðcÞ ¼ 1
n

Xn
i¼1

1ðM2i �M1iÞ

where the indicator function 1 takes value 1 if M2i �M1i and 0 otherwise.
Alternatively, Kovalchik et al. [14] followed by Texier et al. [33] proposed

parametric methods to estimate the PFSr. In advanced diseases, a Weibull distri-
bution commonly provides satisfactory goodness-of-fit on PFS data. As the
dependence between PFS1;PFS2 is due to patients’ characteristics that are then
shared by the two time-to-event variables, it can be modeled in a very natural way
via shared frailty models. Applied to Weibull marginal distributions for
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PFS1;PFS2, with common shape parameter k and common frailty ui for patient i,
we can write the density fj of PFSj where j takes values 1 or 2 as

fjðx; k; kj uij Þ ¼ kðuikjÞ�kxk�1 exp
� x

uikj

� �k

Kovalchnik proposed to approximate the density of the ratio by a lognormal dis-
tribution. Owen has previously shown that in this setting the ratio follows a
log-logistic distribution [22]:

f ðc; k; kÞ ¼ kkkck�1ð1þðckÞkÞ�2

where k ¼ k1=k2 and d� 0. The function f does not depend on the shared frailty ui
anymore. Texier et al. [33] proposed maximum likelihood estimates of the distri-
bution parameters ðk̂; k̂Þ and we directly derive the probability of interest from the
survival function

Sðc; k̂; k̂Þ ¼ 1þðck̂Þk̂
� ��1

:

4.3 Application to the SHIVA Trial

The flow chart of the SHIVA trial after cross-over is illustrated in Fig. 5: among the
197 patients randomized, 95 crossed over, including 70 patients from the standard
chemotherapy arm to the MTA arm and 25 patients from the MTA to the standard
chemotherapy arm. Two additional patients without disease progression PFS1ð

Fig. 5 Work flow of the SHIVA trial including cross over after first progression; PD stands for
progressive disease; respectively 25 patients and 62 patients progressed or died due to progression
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censored) crossed over in the standard chemotherapy arm and were excluded.
Patients dying without progression documented radiologically after cross-over were
assumed to have died from their disease as it was very unlikely that they died from
an unrelated cause. For clarity, the measurement under MTA will always be in the
numerator. The PFS ratio is PFSMTA

PFSCT
. In patients who switched over from

chemotherapy to MTA, PFSr corresponds to PFS2=PFS1, where PFS2 denotes the
PFS at the second period. For the other arm, this is equal to PFS1=PFS2.

Patients who did cross-over had a better prognosis at baseline as measured by the
Royal Marsden prognostic score than patients who did not [3]. This selection bias
makes any comparison between the two randomized arms (the two sequences)
potentially biased; the complete cross-over design analysis cannot benefit from the
randomization. Each arm is thus reported separately. Median follow-up at the time
of the analysis was 14 months [range 0–32] in both arms. In the 70 patients who
were randomized to the standard chemotherapy and received MTA at cross-over,
median PFS under MTA in second period, denoted PFSMTA was 2:1 months [95%
CI 2.0–3.8] and median PFSCT in first period was 2:0 months [95% CI 1.9–2.4].
The PFSMTA

PFSCT
ratio exceeded 1:3 in 37% ([95% CI 26–52%]) of patients who

crossed-over from the chemotherapy to the MTA arm (Fig. 6). Some cut-off values
are provided in Table 3. In the group of 25 patients who received MTA and then
chemotherapy, PFSMTA was longer than PFSCT � 1:3 in 61% [95% CI 44–85 of
patients (Table 3), including 31% of patients with a ratio exceeding 2.
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Fig. 6 Kaplan-Meier estimates of progression-free survival ratio PFSrð Þ on (left) 68 patients who
crossed-over from CT to the MTA, and on (right) the 25 patients who crossed over from MTA to
CT. MTA stands for Molecularly targeted agents and CT for chemotherapy. Vertical lines
correspond to the thresholds 0:7, 1 and 1:3
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The ratio was comprised between 1 and 1.3, 0.7 and 1.0, and was below 0.7 in
13, 13, and 12% of patients, respectively.

Von Hoff [37], in his pilot study, reported that 27% of the patients had ratio
greater than 1:3, which suggests that the results in the SHIVA trial are also
promising. In absence of fair comparisons, interpretation of these results is delicate.
Have we identified a group of patients who benefited from the overall strategy of
treatment selection based on the molecular profile? In other words, can we conclude
to the algorithm superiority? As for any comparison to an historical control, the
specifications of the null and the alternative hypotheses are central. In our context,
PFS2 greater than 1:3 was set up as promising without the support of scientific data
in similar populations; careful examination of the distribution is reported in the next
paragraph.

4.4 Calibration

4.4.1 Correlation on the Shiva data

In the SHIVA trial, the distribution of PFS1 and PFS2 were best fitted with
log-normal distributions: mean lnðlÞ ¼ 4:35 and scale r ¼ 0:7 for PFS1 and
lnðlÞ ¼ 4:34 and scale r ¼ 0:84 for PFS2. Using the 87 uncensored measures of
PFSr, the Spearman rank and Kendall’s tau correlations were approximated using a
simple non parametric estimator. The rank correlation was 0:35, while Kendall’s tau
was 0:25. The rank correlation is in the range of the values reported in several other
trials [19]. Alternatively, a Clayton copula approach assuming log-normal marginal
distributions was fitted on all data. The resulting Kendall’s tau was similar 0:22ð Þ
quantifying a moderate correlation between PFS1 and PFS2. Going back to the
power curves of Mick et al., using the patient as his (her) own control would not
have increased strongly the power of the experiment compared to parallel ran-
domized design in the setting of multi-histology trials due to the moderate
correlation.

This moderate correlation together with the known large variability of lognormal
distribution raise the concern of the correct calibration of a clinically significant
ratio. We explored the distribution of the PFS ratio using simulations. Were sur-
vival endpoints to follow Weibull distributions with common shape parameters, we
could have used the results of Owen [22] that the ratio follows a log-logistic
distribution.

Table 3 Selected values of the ratio of the PFSMTA over PFSCT in patients who received
chemotherapy and crossed over to receive MTA

PFSr Sequence <0.7 0.7–1.0 1.0–1.3 � 1.3 � 2

Cumulative probability CT ! MTA 0.24 0.29 0.10 0.37 0.23

MTA ! CT 0.12 0.13 0.13 0.61 0.31
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4.4.2 Simulation setting

Contrary to Mick et al. [19] who generated data using proportional exponential
distributions, we carried out simulations mimicking the context of the Shiva trial
using the Clayton copula model to generate pairs of correlated PFS1;PFS2. The
Kendall’s tau correlation was fixed at 0:25. Lognormal distributions
lnðlÞ ¼ 4:35; r ¼ 0:7ð Þ, corresponding to the observed distribution of PFS1 in the
SHIVA trial, were used as margins in the Clayton copula. We had the treatment
effect vary from no effect lnðl1Þ ¼ lnðl2Þð Þ for PFS1 and PFS2Þ to a doubling of
median survival time lnðl2Þ � lnðl1Þ ¼ 0:65ð Þ. It is worth noticing that there is no
straightforward link between lognormal parameters and PFSr. A median PFSr of
0:7 corresponds to lnðl2Þ ¼ 3:99.

We generated data for 5000 subjects from the copula model under the null
hypothesis of no treatment effect and under the alternative hypothesis, and we
derived the empirical distribution of PFSr. In all scenarios, administrative censoring
was generated by setting a cut-off length of follow-up PFS1 þPFS2ð Þ in order to
have about 10% of censored PFS ratios as in the SHIVA trial. Therefore, the cut-off
delay was increased when the treatment effect was increased. Of note, the censoring
process is not completely independent of the PFSr distribution as earlier cut-off
point may be associated with excess of censored data in long PFS1.

4.4.3 Simulation results

Under the null hypothesis of two correlated similar lognormal survival distributions
(no treatment effect), the PFSr distribution was quite similar to the one obtained in
the SHIVA trial as illustrated in Table 4. The mean value of the ratio was 1:2. If
there is no period effect (time to progression is not shorter between the two con-
secutive treatment lines) and if the survival times are drawn from lognormal dis-
tributions, we should expect a large proportion of patients who display ratio greater
than 1.

When increasing the treatment effect, the probabilities of PFSr greater than 1:3
and 2 increased up to :72 and 0:49 respectively (see Fig. 7), suggesting that careful
calibration of the null hypothesis and of the clinically relevant cut-off to declare a
treatment successful in a patient are requested. A simple description of the patients
who have “success” as defined by PFSr greater than 1:3 may not allow for drawing
any robust conclusions. A test should be carried out.

Table 4 Scenario 2 simulations under the null hypothesis: distribution of PFSr for selected values

PFSr <0.7 0.7–1.0 1.0–1.3 >1.3 >2

Cumulative probability 0.32 0.18 0.13 0.37 0.20
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4.4.4 Some general remarks

To date there are few studies that have investigated this aspect and the correlation
between consecutive progression free survival times is probably dependent upon
the tumour type. For instance, strong correlation in GIST tumors treated with
imatinib [38] and low correlations in colo-rectal trials [34] have been reported.
They are on line with the largest review done so far by Mick et al. [19] but an
update based on more recent trials may be useful.

PFSr can be computed using either retrospective assessment of PFS1 or
prospective assessment ofPFS1. In the first case and in absence of randomized control
sequence (true cross-over), estimation of the treatment effect based on the ratio is
expected to be unbiased under two conditions: (i)PFS1 can bemeasuredwith the same
criteria and on the same lesions as PFS2, which is uncommon as criteria measured in
clinical trials are typically not used for standard care; (ii) natural history of the disease
is homogeneously regular, i.e. for all patients, the successive lines of treatment are
associated with shorter and shorter PFS in absence of treatment effect.

In the second case, one should also bear in mind the intrinsic selection bias related
to the PFSr if only patients who progressed after the initial treatment are included in
the analysis. Therefore, a shared frailty model would be strongly recommended for
inference. Instead of excluding patients dying or censored before the first progression
is duly documented, those patients contributes to the estimate of PFS1.

Fig. 7 Probability to exceed two PFSr values as a function of the true treatment effect
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Finally, an important drawback of allowing cross-over is tomost often compromise
the analysis of the overall survival. Due to the uncertainty on the correlation between
PFS1 and PFS2 in patients with multiple histologies and the huge variability of the
ratio, this endpoint should preferably be used in the framework of a “complete”
cross-over design (where the 2 sequences are proposed). It then gains high power due
to the cross-over design while it maintains the benefit or randomization. The main
limitation is then ethical. In the SHIVA trial, after failure of the targeted agents, should
patients eligible for subsequent treatment receive systematically conventional thera-
pies that have not demonstrated activity in advanced patients, or be proposed to enter
in another trial? The set of trials that are currently designed based on PFSr will bring
valuable information on the appropriate calibration of the ratio and the observed
intra-patient correlation that will serve to design future trials.

5 Discussion

More than 900 MTAs are currently under development [24] and many subgroups
based on molecular markers represent less than 15% of the cancer patients with a
tumor type. Several randomized trials have been set up to investigate which of
tumor biology or tumor location and histology is the most important to select
treatment in patients with cancer refractory to the standard of care. Interpretation of
the results of such trials are complicated by the complexity of the algorithm, but
only randomized trials can disentangle the consequence of prognostic factors in
these highly selected patients from the intervention effect and enable to control for
confounding factors in order to allow reliable conclusions [4]. The heterogeneity in
the population will be balanced between the two treatment arms and thus should not
induce spurious association, but heterogeneity in the treatment effect may dilute the
benefit of the intervention. The standardization of the process to identify druggable
molecular alterations and the matching MTA, as well as the blinding of the results
are key elements in such trials. The same principles as those applied for the
development of diagnostic tools should be implemented [27]. However, the
assumption of an homogeneous treatment effect in all subgroups defined by
biomarkers is central. As shown, violation of this assumption has major conse-
quences on the statistical properties of the design and cannot be completely sal-
vaged at the analysis time using mixed effect or random effects Cox models.

There is clearly a need for more sensible endpoints to evaluate such complex
interventions. PFS is mildly sensitive to treatment variations and interaction tests to
identify differential effects according to the matching between treatment and target
are not powerful with 200 patients. Using the patient as his (her) own control
requires more investigations as the variability induced by the ratio of two skewed
distributions is quite large in multi-histology samples. Pharmacodynamic endpoints
such as functional imaging or biomarkers are promising to detect early treatment
failure but none have been yet validated. Overall, cancer biology is at the heart of
this type of histology-agnostic trial. Current knowledge of tumor biology does not
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enable us to systematically predict the final outcome as shown by the disappointing
efficacy obtained with vemurafenib in BRAF mutated colon cancer [25], or those
obtained with crizotinib in neuroblastoma (that has common ALK-alterations) [20].
Taking into account the presence or absence of several molecular alterations might
improve the accuracy of the treatment algorithms using systems biology approa-
ches. However, any treatment algorithm should be clearly defined and rigorously
evaluated in randomized trials. In addition, the tumor environment is likely an
important factor of success of a therapeutic approach, as illustrated with the recent
approval of immunotherapeutics. Nevertheless, the question of how to account for
the multiple sources of variability in medium-sized trials samples is crucial for the
validity of the research. Currently the risk of type I or type II errors is weakly
controlled.
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The Probability of Being in Response
Function and Its Applications

Wei Yann Tsai, Xiaodong Luo and John Crowley

Abstract Cancer clinical trials usually have two or more types of related clinical
events (i.e. response, progression and relapse). Hence, to compare treatments,
efficacy is often measured using composite endpoints. Temkin (Biometrics 34: 571–
580, [18]) prosed the probability of being in response as a function of time (PBRF)
to analyze composite endpoints. The PBRF is a measure which considers the
response rate and the duration of response jointly. In this article, we develop, study
and propose estimators of PBRF based on multi-state survival data.

Keywords Probability of being in response function � Nonparametric estimation

1 Introduction

The past decade has witnessed the introduction of multiple new therapies for the
treatment of cancer patients, supported by evidence from clinical trials. Cancer
clinical trials usually have composite endpoints. Patients with cancer typically
experience different states of health as the disease advances or retreats, often as a result
of treatment. For example, patients with solid tumors may experience a response
(shrinkage of the tumor by a defined amount) after treatment, or instead a progression
of disease (enlargement of the tumor). Patients in response may also eventually
progress. Hence, to compare treatments, efficacy is often measured using multiple
outcome variables. The fraction of responding patients and the duration of response in
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responding patients are widely evaluated in cancer clinical trials, and both measures
are considered clinically important determinants of therapeutic value by oncologists.
Besides response rate and duration of response, many clinical trials use a primary
composite endpoint such as disease-free survival or progression-free survival for
measuring treatment efficacy. The analysis focuses on the time to first event such as
time to progression or time to response for responders; Kaplan–Meier or cumulative
incidence estimates, log-rank tests and Cox proportional hazardsmodeling are used to
produce graphical comparisons, p values and hazard ratios of the time to first event.
Although the use of the primary composite endpoint causes no difficulty, it is not
uncommon for different endpoints to indicate different results. As demonstrated by
Temkin [18], the trial of two chemotherapeutic agents against testicular cancer (de-
noted by A and ABV) completed by the Eastern Cooperative Oncology Group is one
such case. Treatment ABV had a significantly higher response rate, but once response
is achieved, treatment A had a significantly longer median duration of response.

In order to provide an objective measure which considers multiple endpoints to
assist in the choice of therapy, some endpoints/measures have been developed.
Gelber and Goldhirsch [6] and Gelber et al. [7] developed a quality-of-life-oriented
endpoint which is time without symptoms of disease and toxicity of treatment
(TWiST). Gelber et al. [8] applied TWiST to assess the benefit of treatment for
cancer patients.

There are also other composite endpoints in many other types of clinical trials.
For example, in cardiovascular (CV) trials, the endpoint of interest is often a
composite of two or more types of related clinical events such as a composite of
hospitalization and death. Pocock et al. [15] pointed out that the analysis of the time
to first event has an inherent limitation. Hence Pocock et al. [15] proposed an
alternative method, the win ratio, to analyze composite endpoints. Since hospital-
ization is of lesser concern than death, Pocock et al. [15] first compared the death
times of two patients. If the death times cannot be compared due to censoring, then
they compared the hospitalization times. Luo et al. [11] established a statistical
theory for this win ratio approach.

Temkin [18] proposed as a summary measure the probability of being in
response state as a function of time (PBRF), and suggested a method for its esti-
mation. In an attempt to combine both the response rate of the treatment and the
duration of response in responders, Ellis et al. [5] generalized the PBRF to define
the expected duration of response (EDOR) for the entire sample. Ellis et al. [5]
formally compared treatments using the EDOR by assuming that the time to
response, time to relapse and duration of response all follow exponential distri-
butions. It can be easily seen that the area under the PBRF, if available to infinity, is
identical to EDOR. Hence, the PBRF (and functions of the PBRF) can be used to
compare treatment efficacy in cancer clinical trials. The PBRF is an excellent
measures which consider the response rate and the duration of response simulta-
neously. In particular, other composite endpoints may give contradictory results.

After the introduction of the PBRF by Temkin [18], Begg and Larson [2] studied
the properties of the PBRF under exponential assumptions. Voelkel and Crowley
[19] provided for nonparametric inference for the PBRF for a class of semi-Markov
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models. Tsai [16] and Pepe [13] proposed and studied nonparametric estimations of
the PBRF, without any parametric or semi-parametric assumptors. However,
though the PBRF was introduced and studied three decades ago, there have been
few clinical trials using the PBRF. As pointed out by Perez et al. [14] that there
were no statistical tests for comparison of two samples associated with the PBRF
method, let alone K-sample testing procedures and statistical inference based on
regression models which relates covariates to the PBRF. In this article, we establish
the asymptotic properties of the estimator of the PBRF proposed by Temkin [18]
under fully nonparametric assumptions. The statistical methods developed in this
article extend and generalize the Kaplan–Meier estimator to multiple endpoints with
censoring in survival analysis.

2 Methods

2.1 Introduction and Background

In clinical trials, the time that patients enter a specific illness state and the length of
time the patient stays in that state are often of interest. Each patient may respond
(RP) to a given treatment, may progress (PG) without responding, or may show no
change (NC). Each patient who responds may then relapse (RL). Several models
have been proposed for multistate survival analysis. Lagakos [9, 10] proposed a
homogeneous Markov model in which the times of transition from one state to
another are exponential random variables. Temkin [18] suggested a nonhomoge-
neous Markov model to describe the history of each patient. Voelkel and Crowley
(1982) proposed a semi-Markov model.

According to the Eastern Cooperative Oncology Group (ECOG) criteria, the
clinical criteria for entry into the PG state and the RL state are identical. Hence, we
will borrow the concept of bivariate random variables introduced in Tsai’s Ph.D.
thesis to use the time T0 to represent the progression time or the relapse time. Let
T0, X0 and C be random variables, respectively, representing the time (relapse time
or progression time), the response time, and the censoring time of the patient. We
assume the patients cannot respond after relapse or progrssion. We assume that
C and (T0, X0) are independent. As usual we cannot observe (T0, X0, C) completely,
instead we observe T ¼ min T0;Cð Þ;X ¼ min T0;X0;Cð Þ; dT ¼ I T ¼ T0ð Þ and
dX ¼ I X ¼ X0ð Þ; where I �ð Þ is the indicator function. If dX ¼ 1, then X is the
response time, T is the relapse time when dT ¼ 1, or T is the censoring time when
dT ¼ 0. If dX ¼ 0 then T is the progression time when dT ¼ 1 (progression before
response) or T = X is the censoring time when dT ¼ 0 (censored before response
and progression). The data has a special censoring pattern. In the region
t; xð Þ xj \tf g only the time T0 may be censored, which is represented by right

arrows in Fig. 1. In the diagonal line t; xð Þ tj ¼ xf g either the response time may be
censored (represented by up arrow in Fig. 1), or both the response time and
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progression time may be censored. The probability of the shaded region in Fig. 1 is
the PBRF at time t.

2.2 Nonparametric Estimators of the PBRF

Let R(t) be the PBRF at time t, which is defined as

R tð Þ ¼ Pr X0 � t� T0� �
:

Respectively, the marginal survival functions ST ; SC and SY of random variables
T0, C and Y0 ¼ min T0;X0ð Þ can be defined as

ST ¼Pr T0 � t
� �

;

SC ¼Pr C� tð Þ

and

SY ¼ Pr Y0 � t
� �

:

Fig. 1 Censoring pattern and
PBRF
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It is easy to see that

R tð Þ ¼ ST tð Þ � SY tð Þ and R tð Þ ¼ Ro tð Þ
SC tð Þ ;

where Ro tð Þ ¼ P X � t\Tð Þ. Let Ti;Xi; dTi ; dXið Þ; i ¼ 1; . . .; n are the observed
random samples. Tsai [16] proposed following two nonparametric estimators of
R tð Þ as

R̂1 tð Þ ¼ŜT tð Þ � ŜY tð Þ

R̂2 tð Þ ¼ Re
o tð Þ

ŜC tð Þ ;

where

ŜTðtÞ ¼
Y
Ti\t

1� dTi
NT Tið Þ

� �
;

ŜY ðtÞ ¼
Y
Yi\t

1� dYi
NY Yið Þ

� �
;

ŜCðtÞ ¼
Y
Ti\t

1� 1� dTið Þ
NT Tið Þ

� �
;

Re
oðtÞ ¼

Xn
i¼1

I Xi � t\Tið Þ=n;

NTðtÞ ¼
Xn
i¼1

I Ti � tð Þ;

NY ðtÞ ¼
Xn
i¼1

I Yi � tð Þ;

Yi ¼ min Xi; Tið Þ and

dYi ¼ 1� 1� dTið Þ 1� dXið Þ:

It easy to see that ŜT ; ŜY and ŜC are, respectively, the K-M estimator of ST ; SY
and SC.

Under the nonhomogeneous Markov model assumption, Temkin [18] proposed
an estimator R̂3 tð Þ, which maximized the likelihood, and is defined as

R̂3ðtÞ ¼
X
Xi\t

dXi ŜY Xið Þ~STðtÞ
NY Xið Þ~ST Xið Þ ;
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where

~STðtÞ ¼
Y

Ti\t
1� dTidXi

N�
T Tið Þ

� �
; and N�

T tð Þ ¼
Xn

i¼1
I Xi � t� Tið Þ:

~S is also a Product-Limit [17] estimator based on left truncated and right cen-
sored data Ti;Xi; dTið Þ with Ti [Xi.

Although the estimator R̂1ðtÞ is a nonparametric estimator, it is possible that
R̂1ðtÞ\0. The estimator R̂3ðtÞ is properly bounded, that is 0� R̂3ðtÞ� 1 However
Temkin [18] proposed an estimator of variance of R̂3ðtÞ which was obtained from
large sample properties of MLEs under the nonhomogeneous Markov model and
assumptions that response times, progression time and relapse times are discrete
and finite. However the calculation of the variance estimator requires inverting a
large size matrix.

2.3 Asymptotic Properties

In this section, we establish the consistency and asymptotic normality of R̂3ðtÞ. The
asypmtotic properties of R̂1ðtÞ and R̂2ðtÞ have been studied by Tsai [16] and Pepe
[13]. In Tsai’s thesis, he showed by simulation that the performance of these 3
estimators are very similar even when the nonhomogeneous Markov model
assumption fails. Also, without censoring, all three estimators R̂iðtÞ; i ¼ 1; 2; 3, will
reduce to the estimator Re

o tð Þ, which is the empirical estimator of R(t). It is expected
that the estimator R̂3ðtÞ will be consistent even without nonhomogeneous Markov
model assumption. The estimator ~STðtÞ in the definition of R̂3ðtÞ is the product-limit
estimator of the survival function of T0 under random left truncation and right
censoring, so the conditions of asymptotic properties of the product-limit estimator
should also be applied here (see [17, 20]). We have following two theorems about
the asymptotic properties of R̂3ðtÞ:
Theorem 1 (Consistency) If there exists a positive � such that RðtÞ[ � for
a� t� b and STðaÞ ¼ 1 then R̂3ðtÞ is consistent for t� b even when the nonho-
mogeneous Markov assumption fails.

Theorem 2 (Asymptotic Normality) Under same conditions of Theorem 1,ffiffiffi
n

p
R̂3ðtÞ � RðtÞ� �

converges weakly to a mean zero Gaussian process <3 tð Þ as
n ! ∞ with the variance covariance matrix Cov <3ðsÞ;<3ðtÞð Þ that can be con-
sistently estimated by
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n�1
Xn
i¼1

ê31iðsÞ � ê32iðsÞþ ê33iðsÞ½ � ê31iðtÞ � ê32iðtÞþ ê33iðtÞ½ �

where

ê31iðtÞ ¼ dXiI Xi � tð Þ~STðtÞ
~ST Xið ÞŜC Xið Þ � R̂3ðtÞ

ê32iðtÞ ¼ dXidTiI Ti � tð Þ~STðtÞR̂3 Tið Þ
~ST Tið ÞRe

o Tið Þ

� n�1
Xn
j¼1

dXjdTj~STðtÞR̂3 Tj
� �

I dXi ¼ 1;Xi � Tj � Ti ^ t
� �

~ST Tj
� �

Re
o

� �2
Tj
� �

ê33iðtÞ ¼
~STðtÞ

NT Tið Þ=n
R̂3ðtÞ
~STðtÞ

� R̂3 Tið Þ
~ST Tið Þ

� �
I dTi ¼ 0; Ti � tð Þ

� n�1
Xn
j¼1

~STðtÞ
NT Tj

� �
=n

	 
2

R̂3ðtÞ
~STðtÞ

� R̂3 Tj
� �

~ST Tj
� �

( )
I dTj ¼ 0; Tj � t
� �

:

The detailed proofs of Theorems 1–2 are provided in the appendix.

3 Simulation and Real Data Analysis

3.1 Simulation

We have performed limited simulations. Sample sizes of 1000 and 1000 simula-
tions were performed. The progression time, the response time and the censoring
times were simulated from Weibull distributions with ða; kÞ ¼ ð2:0; 0:04Þ; ða; kÞ ¼
ð1:5; 0:05Þ and ða; kÞ ¼ ð1:5; 0:06Þ respectively, with the joint distribution of the
progression time and the response time being a bivariate normal copula with mean
zero, variance one and correlation coefficient −0.7. Figure 2 plots sample simula-
tion variance and bias over time t for the three PBRF estimators R̂iðtÞ; i ¼ 1; 2; 3.

The simulation sample variance and estimated variance (based on Theorem 2) of
R̂3ðtÞ were plotted in Fig. 3.

3.2 Real Data Analysis

We apply the three estimators for the following two data sets.
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I. Data from the Stanford heart transplant study illustrate another possible
application. Accepted patients can only receive a heart only if a suitable donor
heart becomes available. Some patients may die or may be censored before
suitable donor hearts become available. Other patients may die or be censored
after the transplant operation. In this setting, the random variable X0 represents
the waiting time (time from entry to transplant operation) for the heart

Fig. 2 Sample variance and bias of the three estimators where the solid lines are for R̂1ðtÞ, the
dashed lines are for R̂2ðtÞ and the dotted lines are for R̂3ðtÞ

Fig. 3 Sample variance versus estimated variance of R̂3ðtÞ
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transplant patients and the random variable T0 represents the death time from
acceptance. The function R(t) is the probability of being alive with a trans-
planted heart at time t after acceptance. The waiting times and death times and
event indicators of the first 103 patients were reported in Crowley and Hu [4].
Figure 4 shows the three estimates of R(t).

II. A randomized trial of two treatments (standard treatment and standard treat-
ment plus Thalidomde) for patients with myeloma was conducted by the
Myeloma Institute for Research and Therapy (MIRT). There were 334 patients
in the control arm and 323 in treatment arm; among these patients, at the time
of publication [1], 157 in control and 133 in treatment had died after partial
response, 104 in control and 142 in treatment partially responded without yet
dying, 56 in control and 33 in treatment died without partial response and 28
in control and 15 in treatment had not yet died nor responded. The three
estimates of R(t) for the combined sample are plotted in Fig. 5.

Figure 6 shows the estimates R̂3ðtÞ for the control arm and treatment arm based
on MIRT data, and the difference of two PBRF estimates along the 95% confidence
interval calculated based on the variance formula of Theorem 2.

Fig. 4 The estimates of
PBRF for the Standford heart
transplant data, where the
solid lines are for R̂1ðtÞ, the
dotted lines are for R̂2ðtÞ and
the dot-dashed lines are for
R̂3ðtÞ
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4 Discussion

In this article, we have proved the asymptotic properties of the estimator R̂3 which
was proposed by Temkin [18]. We have proved that R̂3 is consistent and converges
to a Gaussian process even when the nonhomogeneous Markov assumption doesn’t

Fig. 5 The estimates of PBRF for the cancer trial data respectively, where the solid lines are for
R̂1ðtÞ, the dotted lines are for R̂2ðtÞ and the dot-dashed lines are for R̂3ðtÞ

Fig. 6 Comparison of PBRFs in the treatment arm and control arm in the cancer trial based on
R̂3ðtÞ, where the dotted lines are the 95% point-wise confidence intervals for the difference
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hold. From the asymptotic normality, we may construct a 95% confidence interval
of the PBRF. Based on our simulation studies, the variance estimator is unbiased
and consistent. The methodologies developed here are useful additions to the sta-
tistical methods and theories in cancer research in the presence of censoring in
survival analysis. In the near future, we plan to propose and to study statistics which
are functional forms of the PBRFs and can be used to compare two or more
PBBRFs. The ultimate goal is to generalize the Cox proportional hazards model to a
proportional Log PBRF model and to study inference based on this generalization
model.

Appendix

Proof of Theorem 1 (Consistency) Let the joint probability functions (pdf) of (T0,
X0) be f(t, x). Define the two sub-marginal functions f1(t) and f2(x), respectively, as

f1ðtÞ ¼
Z t

0

f ðt; xÞdx

and

f2ðxÞ ¼
Z1
x

f ðt; xÞdt:

Using the method which is similar to Tsai et al. [17], we may prove that ~STðtÞ
converges almost surly to

S�TðtÞ ¼ exp �
Z t

0

f1ðsÞSCðsÞ
RoðsÞ ds

8<
:

9=
; ¼ exp �

Z t

0

f1ðsÞ
RðsÞ ds

8<
:

9=
;:

The Kaplan–Meier estimator ŜYðxÞ will converges almost surely to SYðxÞ.
Combining these and the properties of empirical cumulative distribution function,
we can show that R̂3ðtÞ will converge almost surely to

R3ðtÞ ¼ S�TðtÞ
Z t

0

f2ðxÞ
S�TðxÞ

dx:
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However, one may easily verify that

RðtÞ
S�TðtÞ

� �0
¼ f2ðtÞ

S�TðtÞ
;

which implies that

RðtÞ ¼ S�TðtÞ
Z t

0

f2ðxÞ
S�TðxÞ

dx

and the consistency result follows.

Proof of Theorem 2 (Asymptotic Normality)
By Taylor expansion,

ffiffiffi
n

p
R̂3ðtÞ � RðtÞ� � ¼ ffiffiffi

n
p

A1ðtÞþ
ffiffiffi
n

p
A2ðtÞþ

ffiffiffi
n

p
A3ðtÞþ opð1Þ;

where A1ðtÞ ¼ n�1 Pn
i¼1 e31iðtÞ;A2ðtÞ ¼ n�1 Pn

i¼1 e32iðtÞ;A3ðtÞ ¼ n�1 Pn
i¼1 e33iðtÞ

and for i ¼ 1; . . .; n

e31iðtÞ ¼ dXiI Xi � tð ÞS�TðtÞ
S�T Xið ÞSC Xið Þ � RðtÞ;

e32iðtÞ ¼ dXidTiI Ti � tð ÞS�TðtÞR3 Tið Þ
S�T Tið Þreo Tið Þ �

Z t

0

S�TðtÞRðsÞI Xi � s� Tið Þf11ðsÞds
S�TðsÞ reoðsÞ

� �2
e33iðtÞ ¼ S�TðtÞ

nTðTiÞ
RðtÞ
S�TðtÞ

� R3 Tið Þ
S�T Tið Þ

� �
I dTi ¼ 0; Ti � tð Þ

�
Z t

0

S�TðtÞ
n2TðsÞ

RðtÞ
S�TðtÞ

� RðsÞ
S�TðsÞ

� �
f2ðsÞds

nTðtÞ ¼EfNTðtÞg=n
f11ðsÞ ¼prðX� T ¼ s; dX ¼ 1; dT ¼ 1Þ
f2ðsÞ ¼prðT ¼ s; dT ¼ 0Þ

Since AjðtÞ; j ¼ 1; 2; 3 are all sum of i.i.d. random variables,
A1ðtÞþA2ðtÞþA3ðtÞ will converge to a mean zero Gaussian process <3 tð Þ as n !
1 with the variance covariance matrix Cov <3ðsÞ;<3ðtÞð Þ that can be consistently
estimated by

n�1
Xn
i¼1

ê31iðsÞ � ê32iðsÞþ ê33iðsÞ½ � ê31iðtÞ � ê32iðtÞþ ê33iðtÞ½ �;
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where ê3jiðtÞ is the estimate of the e3ji tð Þ when the unknown functions are substi-
tuted by their estimates, j ¼ 1; 2; 3.
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Cure-Rate Survival Models and Their
Application to Cancer Clinical Trials

Megan Othus, Alan Mitchell, Bart Barlogie, Gareth Morgan
and John Crowley

Abstract Many patients with cancer can be long-term survivors of their disease
and cure models can be a useful tool to analyze and describe cancer clinical trial
survival data. This goal of this chapter is to: (i) review what a cure model is,
(ii) explain when it can be appropriate to use cure models, and (iii) use cure models
to describe multiple myeloma survival trends, including analyses that account for
competing risks. This chapter will show that by using cure models, in addition to
the standard Cox proportional hazards model, we can evaluate whether there is
evidence that some myeloma therapies induce a proportion of patients to be
long-term survivors.
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1 Introduction

Advances in therapy have made cure a possibility for some cancers. For example,
multiple myeloma (MM) is generally considered an incurable disease [16], but
recent research suggests that some MM patients could be cured. Investigators at the
University of Arkansas for Medical Sciences (UAMS) have developed an approach
called Total Therapy that has recently been shown to cure up to 30% of MM
patients [14].

The most common regression model for survival data, the proportional hazards
(PH) model [13], does not explicitly allow for inference on heterogeneous popu-
lations. When a population is a mixture of patients with very poor and very good
outcomes, cure models can be useful in describing the different subgroups.

Cure models can also be useful for applications in which patients are not “cured”
but rather there is a proportion of patients who will not fail during the finite
follow-up of the study. These patients can be referred to as long-term survivors
rather than cured. In this case the “cured” proportion provides an estimate of the
proportion of patients who will not fail during follow-up.

Patients who have been cured of cancer will still eventually die of other causes,
which complicates the implementation of many cure models to describe overall
survival in datasets with long follow-up. Alternative cure models that incorporate
cause of death data in competing risks models are needed to make appropriate
inference for these populations.

This chapter is organized as follows: Sect. 3 reviews the general classes of cure
models; Sect. 4 summarizes important assumptions common to cure models; Sect. 5
describes computing options; Sect. 6 outlines design considerations for clinical trials
in which some patients may be cured; Sect. 7 proposes a competing risks cure model
that accounts for cured patients who are observed to die of other causes; and Sect. 8
summarizes an analysis of the UAMS MM data by several cure models.

2 Model Options

Cure models can be classified into two groups, mixture and non-mixture. Each
group will be reviewed below.

2.1 Mixture Cure Models

Mixture cure models assume that the underlying population includes both cured and
uncured patients. The first cure models were motivated by cancer survival trends
and assumed that survival for cured patients was different from and better than
survival for uncured patients [7]. The authors assumed a simple parametric model:
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SðtÞ ¼ pS0ðtÞþ ð1� pÞS0ðtÞ expð�ktÞ; ð1Þ

where p denotes the proportion of cured patients, S0ðtÞ denotes the survival of a
“general” or “normal” population, and k denotes the death rate due to cancer [7].
The authors were “surprised as well as gratified” to find that such a simple for-
mulation with only two parameters fit observed data quite well.

Further research on mixture cure models has focused on developing more
general and flexible formulations of Eq. (1). Most mixture cure models can be
written as

SðtjXÞ ¼ pðXÞþ ð1� pðXÞÞS0ðtjXÞ; ð2Þ

where X is a set of covariates, pðXÞ is a model for the probability that an individual
is cured, and S0ðtjXÞ is the survival function for patients who are not cured. Most
mixture cure models use a logistic model for pðXÞ. Proposed models for S0ðtjXÞ
include the exponential and Weibull distributions [18], the PH model [22, 38, 41],
accelerated failure time models [29], and general transformation models that can
include the PH and proportional odds [6] models as special cases [32].

Recent research on mixture cure models has focused on more complicated
survival data including interval censoring [31], dependent censoring [30, 36],
longitudinal data [27, 37, 39, 49], current status data [20, 33], and grouped survival
data [48].

2.2 Non-mixture Cure Models

Most non-mixture cure models parametrize the survival function as

SðtÞ ¼ expð�hFðtÞÞ; ð3Þ

where FðtÞ is the distribution function for a non-negative random variable. In this
model, the cumulative hazard function hFðtÞ is bounded and so the survival
function is an improper survival function with limt!1 SðtÞ[ 0. In Eq. (3), the
proportion of cured patients is equal to expð�hÞ. When FðtÞ does not depend on
covariates, Model (3) has a proportional hazards structure. Covariates are incor-
porated into this model through both h and FðtÞ. Often h is modeled with the
relationship hðXÞ ¼ expðb0XÞ. Common parametric forms for FðtÞ include the
Weibull, lognormal, logistic, and gamma distributions.

Parametric forms for FðtÞ can incorporate covariates and have been considered
by a number of authors [10, 40, 43]. Models with semiparametric FðtÞ have also
been proposed [44]. Some work has been done for non-mixture cure models with
alternative transformations of hFðtÞ [42, 50].

Non-mixture cure models are a popular framework for Bayesian cure models
because mixture cure models yield improperposterior distributions for many
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non-informativepriors, and the PH structure of non-mixture cure models is com-
putationally convenient [10, 21, 44]. Bayesian extensions to Eq. 3 include models
for multivariate survival data [11], models for spatial data with interval censoring
[1], and general transformations of hFðtÞ [46, 47].

2.3 Differences Between Mixture and Non-mixture
Cure Models

Choosing between mixture and non-mixture models is a matter of preference.
Frequentist results are available for both mixture and non-mixture models, but
Bayesian work has focused on non-mixture models due to computational ease.
Most non-mixture models allow for a PH interpretation of covariates. Mixture
models allow for separate covariate inference for cured and uncured patients.

3 Assumptions and Identifiability

All cure models (parametric and semiparametric, mixture and non-mixture) assume
that a cured fraction exists. This assumption requires that there is enough data to
estimate parameters related to the cure proportion. Often survival functions for
populations with cured patients exhibit a plateau at the end of the curve beyond
which there are no more failures and the survival curve is flat. Given this feature of
cure survival curves, Kaplan–Meier plots that exhibit plateaus at the end of the
curve are often interpreted to describe cured populations, and that shape of curve is
often taken as evidence that a cure model may be appropriate. For mixture cure
models, a test of the existence of a cure fraction based on the tail of the Kaplan–
Meier curve has been proposed [34], though it is not straightforward to implement
the test.

Care needs to be taken to ensure that semiparametric cure models are identifi-
able. Proofs of identifiability or non-identifiability exist for some general classes of
semiparametric mixture and non-mixture cure models. For example, the logistic-PH
model and Eq. (3) with logðhÞ linear in covariates without an intercept and FðtÞ
unspecified are both identifiable [28]. The mixture cure model Eq. (2) with survival
for those not cured modeled nonparametrically and assuming a constant probability
of cure (pðxÞ ¼ p for all x) is not identifiable [28].

Although common semiparametric mixture cure models have been proven to be
identifiable, in finite samples the models can exhibit “near-nonidentifiability” in
which the likelihood for cure parameters can be flat. To address this issue in
mixture cure models, some authors have proposed setting the survival function for
patients who are not cured [S0ðtÞ in Eq. (2)] equal to zero after the last observed
failure time [32, 38, 41]. The justification for this computational adjustment is that
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cure models are only appropriate when some patients are cured, and that long
follow-up is required to identify the plateau of the tail of a survival curve. If there is
sufficient follow-up to support the assumption of a cured proportion, authors argue
that it is reasonable to set the survival function to zero after the last failure. If there
is not sufficient follow-up or there is no rationale for why a cure proportion might
exist, the model should not be used. Similarly, semiparametric non-mixture survival
models usually assume that FðtÞ from Eq. (3) is equal to zero at the last failure.
Many Bayesian models can control the degree to which a model is semiparametric.
Bayesian semiparametric non-mixture models often model FðtÞ as having a
piecewise constant hazard. The number of pieces controls the “nonparametricity” of
the model and so small to moderate numbers of pieces are required to have the
models behave well [11].

4 Computational Implementation

Cure models are not standard functions in most statistical packages. Below we
review the limited R packages, SAS macros, and Stata modules available for cure
analyses.

4.1 R

At this time there are three packages to fit cure models in R. The package nltm
provides functions to estimate non-mixture proportional hazards and proportional
odds models from [42]. The package smcure provides functions to estimate
semiparametric PH mixture cure models and AFT mixture cure models using an
EM algorithm [9]. The package intercure provides functions to estimate
non-mixture cure models (with and without a frailty) for interval censored data. In
addition, the package NPHMC has a function to compute power or sample size for
the PH mixture cure model [8].

4.2 SAS

A SAS macro PSPMCM was published that fits some frequentist parametric and
semiparametric mixture cure survival models [12].
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4.3 Stata

There is a Stata module available to fit a frequentist parametric non-mixture cure
model as detailed in [40]. The module can be downloaded from http://ideas.repec.
org/c/boc/bocode/s446901.html. The package STGENREG has functions of para-
metric survival models, including parametric cure rate models [15]. Details on Stata
commands to fit cure models that incorporate expected background mortality and
that can estimate relative mortality have been published [23].

5 Design Considerations

Limited work has been done for power and sample size calculations assuming a
proportion of patients have been cured. All of the work as focused on mixture cure
survival models and most of that work has focused on power of tests of the cure
proportion. Gray and Tsiatis proposed a linear rank test derived to focus power at
the alternative that cure proportions are different but that survival among those not
cured is the same between the two groups [19]. This test has improved power over
the log-rank test when less than 50% of the population is cured. Laska and Meisner
proposed a test of cure proportions based on the tails of the Kaplan–Meier curves
[26]. Ewell and Ibrahim extended the results of [19] to cases in which the survival
distributions for non-cured populations may differ [17]. More recently, sample size
formulas for the proportional hazards cure model have published [45].

6 A Competing Risks Cure Model

Most cure models assume that cured patients will not experience an event. For some
outcomes this is reasonable but for other outcomes, such as outcome overall sur-
vival, this assumption is violated. As explained in the Introduction, for a study
population with finite follow-up cure models can still be useful to describe the
observed and expected survival patterns for survival curves with a plateau at the tail
of the curve. For some study populations, in particular studies with longer
follow-up, there may be scientific rationale to expect a cured proportion, but
because cured patients will eventually die of another cause, overall survival curves
may not exhibit a plateau and traditional cure models may not be appropriate.

An alternative approach is to use competing risks models with cause of death
data to estimate cure proportions. Such a model can be written

SðtjXÞ ¼ pðXÞScðtjX; bncanÞþ ð1� pðXÞÞSncðtjX; bncan; bcanÞ; ð4Þ
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where X is a set of covariates, pðXÞ is a model for the probability that an individual
is cured, ScðtjX; bncanÞ is the survival function for patients who are not cured with
regression coefficient bncan corresponding to the failure due to non-cancer causes,
and SncðtjX; bncan; bcanÞ is the survival function for patients who are not cured with
regression coefficients bncan and bcan corresponding to failures from non-cancer and
cancer causes, respectively. Patients who not cured can fail from either cancer and
non-cancer causes, while patients who are cured only fail from non-cancer causes.
If we assume exponential failure for both cancer and non-cancer causes, this sur-
vival function can be written

SðtjXÞ ¼ pðXÞ expð�t expðb0ncanXÞÞþ ð1
� pðXÞÞ expð�t½expðb0canXÞþ expðb0ncanXÞ�Þ: ð5Þ

In contrast to previously proposed mixture models for competing risks data [25],
the coefficient bncan is present in both survival function terms, not just the survival
function for non-cured patients ðSncÞ. While mixture cure models for relative sur-
vival use population-based mortality data to estimate the non-cancer survival
function [24, e.g., life table data], this model uses cause of death data to identify the
various components of the model.

7 Analysis of Multiple Myeloma Data

In an effort to distinguish between the various cure models, we will evaluate several
models on the multiple myeloma (MM) dataset mentioned in the Introduction. The
University of Arkansas for Medical Sciences has developed a series of “total
therapy” (TT) protocols since 1989 with the intent of curing some MM patients.
The first protocol, TT1, used a tandem autotransplant approach [3, 5]. The second
protocol intensified induction, added post-transplant consolidation, and randomized
between the addition of thalidomide, TT2+, or no thalidomide, TT2− [4]. The more
recent protocol, TT3, incorporated thalidomide and bortezomib for induction [2,
35]. Patient outcomes have improved over the protocols, so we will investigate the
trends in progression-free survival (PFS) over the protocols using several cure
models. PFS is defined from the date of registration to the first of death or pro-
gression, with patients last known to be alive without progression censored at the
date of last contact.

First we look at the survival curves for the four groups to evaluate whether cure
models are appropriate for this data. Figure 1 shows Kaplan–Meier plots of PFS
stratified by TT protocol. PFS has improved over time and each PFS curve has a
plateau at the tail indicating the potential that some patients may be cured.

Table 1 summarizes results for a univariate mixture cure model Eq. (2) with a con-
stant probability of cure, pðXÞ ¼ p, and exponential survival, S0ðtjXÞ ¼ expð�k tÞ.

The estimated cure proportions increase over the protocols, as Fig. 1 indicates.
The proportion of cured patients more than doubled between TT1 and TT2+/TT3.
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PFS for patients who are not cured has been stable over the protocols, indicating
that PFS gains over the protocols have been driven by an increase in the proportion
of cured patients.

Table 2 summarizes results [odds ratios (ORs), hazard ratios (HRs), and 95%
CIs)] from a semiparametric mixture cure model, the logistic-PH model, where
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Fig. 1 Kaplan–Meier plots for PFS

Table 1 Univariate exponential cure model regression results; CI = confidence interval

Cure proportion (%) (95% CI) Median PFS (years) (95% CI)

TT1 9.4 (5.4, 13.4) 2.3 (2.0, 2.7)

TT2− 10.3 (0, 22.1) 3.5 (2.7, 4.8)

TT2+ 23.2 (8.0, 38.4) 4.1 (3.0, 6.4)

TT3 52.7 (30.0, 75.1) 3.1 (1.8, 12.1)

Table 2 Logistic-proportional hazards regression results

Cure model PH model

OR 95% CI HR 95% CI

TT1 (ref)

TT2− 1.80 (0.99, 3.27) 0.67 (0.53, 0.86)

TT2+ 3.89 (2.3, 6.98) 0.56 (0.42, 0.75)

TT3 21.60 (11.52, 40.49) 0.86 (0.61, 1.21)

Age 0.97 (0.95, 0.99) 1.01 (0.99, 1.02)

CA 0.41 (0.25, 0.66) 1.45 (1.14, 1.85)
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SðtjXÞ ¼ expð�expðb0XÞKðtÞÞ and KðtÞ is an unspecified cumulative hazard
function. In this model, the probability of cure increased over the protocols.
Survival among those not cured in TT2− and TT2+ was significantly improved
over TT1, though survival among those not cured in TT3 was not significantly
improved over TT1. Increased age was associated with a decreased probability of
being cured. CA were associated with a decreased probability of being cured and
decreased survival for those not cured.

Table 3 Weibull non-mixture model regression results

HR 95% CI

TT1 (ref)

TT2− 0.64 (0.53, 0.78)

TT2+ 0.45 (0.37, 0.55)

TT3 0.29 (0.22, 0.37)

Age 1.03 (1.01, 1.05)

CA 1.72 (1.47, 2.01)

Scale

Intercept −7.03 (−8.24, −5.83)

Age −0.02 (−0.04, 0.01)

Shape

Intercept 0.56 (0.18, 0.94)

Age −0.01 (−0.01, −0.001)

Table 4 Proportional hazards model regression results

HR 95% CI

TT1 (ref)

TT2− 0.64 (0.53, 0.79)

TT2+ 0.45 (0.36, 0.55)

TT3 0.29 (0.22, 0.37)

Age 1.01 (1.001, 1.02)

CA 1.72 (1.48, 2.01)

Table 5 Estimates of cure proportions

Exponential mixture PH mixture Weibull non-mixture

TT1 9 9 6

TT2− 10 10 16

TT2+ 23 22 27

TT3 53 58 43
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An alternative semiparametric model is a non-mixture model Eq. (3). Table 3
summarizes results for FðtÞ following the Weibull distribution and letting
h ¼ expðb0XÞ. The results for the non-mixture model indicate that there was con-
tinued improvement in survival for all patients, on average, from TT1 through TT3.
Older age and presence of CAs are associated with decreased survival.

The standard survival model, the PH model, is summarized in Table 4. The PH
model has very similar estimates as the non-mixture cure models.

Table 5 summarizes estimates of cure fractions for each of the protocols from
the three cure models summarized above. Each model was fit with only covariates
for the protocols. Estimates were fairly stable across the models.

Table 6 Estimates from an exponential competing risks cure model

Cure proportion
(%) (95% CI)

Median survival (years)
cured patients (95% CI)

Median survival (years)
non-cured patients (95% CI)

TT1 28 (19, 38) 18 (14, 21) 5 (3, 7)

TT2− 21 (14, 31) 28 (24, 33) 6 (4, 8)

TT2+ 32 (24, 41) 41 (35, 47) 6 (4, 8)

TT3 70 (64, 76) 31 (28, 34) 3 (2, 4)
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TT1 non−myeloma death, events = 72
TT2 − Thal non−myeloma death, events = 62
TT2 + Thal non−myeloma death, events = 44
TT3 non−myeloma death, events = 44
TT1 myeloma death, events = 108
TT2 − Thal myeloma death, events = 160
TT2 + Thal myeloma death, events = 139
TT3 myeloma death, events = 70

Fig. 2 Cumulative incidence curves for overall survival

174 M. Othus et al.



One main difference between mixture and non-mixture models is parameter
interpretation. Mixture models explicitly model separately the probability of being
cured and the survival for those not cured, which allows for covariates to have
distinct relationships for cured and uncured patients. In contrast, the interpretation
of covariates within the non-mixture model is for survival averaged across patients.
In this application, the mixture model picked out different trends in the cure and
survival functions. The proportion of cured patients has increased continuously
from TT1 to TT3, while survival in TT2± and TT3 for those not cured was fairly
similar (and better than TT1).

Given the long follow-up available on these patients, if we are interested in the
endpoint of overall survival (OS) a competing risks model is needed. Figure 2
summarizes the cumulative incidence of death from myeloma or non-myeloma
causes for each of the protocols. Table 6 summarizes univariate results and Table 7
summarizes multivariable results.

In Table 6 the cure proportion is similar among TT1, TT2−, and TT2+ but
significantly higher in TT3. Median OS for cured patients is lower among the TT1
patients, but similar in the other three cohorts. Median OS among those not cured is
similar among the four cohorts, and significantly shorter than the survival of cured
patients. In the multivariable analysis older age is a significant prognostic factor for
poor outcomes for all components of the model. TT3 has a higher probability of
cure compared to TT1, but worse myeloma-specific survival. Non-myeloma sur-
vival is improved in TT2 and TT3 compared to TT1.

8 Concluding Thoughts

Design considerations in the presence of a cured proportion have not been deeply
explored as of yet. The competing risks analysis presented suggestions that further
methodological development of such models would be useful. Many applications
using cure models consider death an event, and the assumption that all patients who
died are not cured is likely not be valid in many datasets. Competing risks models
will allow more accurate estimates of cure proportions in such cases.

Table 7 Cure competing risks model results

Cure model Non-myeloma
survival

Myeloma survival

OR 95% CI HR 95% CI HR 95% CI

TT1 (ref)

TT2− 0.81 (0.36, 1.83) 0.50 (0.39, 0.64) 0.80 (0.58, 1.09)

TT2+ 1.32 (0.64, 2.72) 0.35 (0.27, 0.44) 0.78 (0.56, 1.08)

TT3 8.87 (4.66, 16.91) 0.41 (0.33, 0.52) 1.89 (1.21, 2.94)

Age 0.98 (0.95, 1.0) 1.04 (1.03, 1.04) 1.02 (1.01, 1.03)
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Evaluation of Surrogate Endpoints Using
a Meta-Analysis Approach with Individual
Patient Data: Summary of a Gastric
Cancer Meta-Analysis Project

Koji Oba and Xavier Paoletti

Abstract Statistical methodologies for evaluation of surrogate endpoints have
been developed actively since 1989. A meta-analytic approach is frequently applied
with data from several randomized controlled trials, and the surrogacy measures are
evaluated at the individual level and at the trial level. This approach needs indi-
vidual patient data for each trial and requires collaborative work with several
professionals. In this chapter, we introduce the Global Advanced/Adjuvant
Stomach Tumor Research International Collaboration (GASTRIC) project, which
is an academic, worldwide project that conducts individual patient data
meta-analyses of randomized controlled trials of post-operative adjuvant
chemotherapy for resectable gastric cancer or chemotherapy for advanced/recurrent
gastric cancer. We describe our statistical method for the evaluation of surrogate
endpoints. In particular, we focus on the practical aspects of group establishment,
data collection, and data analysis. Finally, future perspectives for the evaluation of
surrogate endpoints are discussed.
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1 Introduction

To determine the effectiveness of oncology drugs, improvement in the overall
survival (OS) is the gold standard endpoint (sometimes called a true clinical end-
point) in randomized controlled trials (RCTs) [3]. This endpoint has various
advantages, e.g., it is simple to measure, easy to interpret, clinically meaningful,
and straightforward to explain. Despite its clinical relevance, this endpoint is lim-
ited for assessments of treatment effects, since the cost and length of RCTs compete
with the urgency to develop, test, and market effective treatments for
life-threatening diseases. In addition, treatment effects may be diluted by additional
treatments after progression or relapse when OS is used as a primary endpoint.
A potential strategy in these situations is to identify surrogate endpoints that can be
measured more cheaply, more conveniently, more frequently, or earlier than the
true endpoint of interest [16].

Surrogate endpoints frequently used in oncology trials are disease-free-survival
(DFS) in the adjuvant setting (for patients whose tumor can be surgically resected
with a curative intent) and progression-free survival (PFS) in the advanced disease
setting (for patients whose tumor is locally advanced/metastatic or recurrent and
cannot be surgically removed). DFS is defined as the time from randomization to a
cancer recurrence, second cancer, or death from any cause, and PFS is defined as
the time from randomization to the time of progression or death from any cause.
Although DFS and PFS are common primary endpoints of phase III trials, their
value as surrogate endpoints for OS has been questioned. In particular, PFS is a
controversial endpoint because some new agents have a marked effect on PFS, but
no statistically and clinically significant benefit on OS in some tumor types [32].

Appropriate statistical analyses are necessary to evaluate surrogate endpoints in
clinical trials. In 1989, Prentice developed a framework for the validation of
putative surrogate endpoints [34]. He defined a surrogate endpoint as “a response
variable for which a test of the null hypothesis of no relationship to the treatment
groups under comparison is also a valid test of the corresponding null hypothesis
based on the true endpoint.” The operational definition and well-known Prentice’s
criteria are often very hard to verify in single RCT, and several authors have
proposed a meta-analytic approach using data collected from several RCTs [14, 18,
23]. Buyse and Molenberghs [13] introduced the concepts of individual- and
trial-level surrogacy for endpoint evaluations in a single-trial setting. Two years
later, these two surrogacy measures were successfully extended to the meta-analysis
context meta-analysis context [14]. Individual-level surrogacy, R2

indiv, measures the
association between the potential surrogate endpoint and the clinical endpoint,
adjusting for the effect of treatment across all trials included. Estimating R2

indiv
involves jointly modeling the surrogate and clinical endpoints. Trial-level surro-
gacy, R2

trial, describes how well one can predict the treatment effect on the clinical
endpoint in a future trial based on the observed association between the treatment
effects on the surrogate and clinical endpoints observed in previous trials. Both
R2
indiv and R2

trial are coefficient of determination measures, which take values
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between zero and one. Values of R2
indiv and R2

trial close to one indicate stronger
surrogate endpoints than values near zero. According to some reviews, the
meta-analytic approach is the most accepted statistical method to evaluate surrogate
endpoints [27].

The meta-analytic approach ideally requires individual patient data (IPD) to
derive R2

indiv and R2
trial [10]. However, IPD collection is costly, time-consuming, and

requires collaboration. Therefore, it is important to establish efficient and collabo-
rative methods for IPD collection. The GASTRIC (Global Advanced/Adjuvant
Stomach Tumor Research International Collaboration) project is an academic,
worldwide project that conducts IPD meta-analyses of RCTs of post-operative
adjuvant chemotherapy for resectable gastric cancer or chemotherapy for
advanced/recurrent gastric cancer [24, 25, 31, 33].

In this chapter, we introduce the GASTRIC project and describe our evaluation
of DFS and PFS as surrogate endpoints for OS. In particular, we focus on the
practical aspects of group establishment, data collection, and data analysis. Finally,
future perspectives for the evaluation of surrogate endpoints are discussed.

2 The GASTRIC Project

The GASTRIC project was initiated in 2006 with the following aims: (1) to
determine the usefulness of adjuvant chemotherapy in curatively resected gastric
cancer and chemotherapy in advanced/recurrent gastric cancer, (2) to evaluate DFS
and PFS as surrogates for OS, and (3) to evaluate the prognostic and predictive
value of clinical patient characteristics. As IPD meta-analyses are often conducted
retrospectively, i.e., IPD are collected after the publication of eligible RCTs, we set
up a steering committee and a secretariat to manage the project. Half of the 13
steering committee members were biostatisticians and the rest were clinical
researchers (medical doctors). Secretariats conducted electronic and manual sear-
ches to systematically review eligible published trials for the meta-analysis. The
search strategy is summarized in the appendix of each publication [24, 25].
Secretariats also negotiated collaborations with researchers who contributed their
trials to the meta-analysis after the protocols were approved. Potential collaborators
were approached privately by letter or direct contact from a steering committee
member to invite collaboration, explain the project, describe what participation
entails, and explain how the meta-analysis will be managed and published. If a data
center or study group was responsible for the management of the trial data, we
contacted the group representative separately. The GASTRIC group applied terms
of reference for the creation and operation of a Collaboration as follows (as of
October 2016):

1. The Global Advanced/Adjuvant Stomach Tumor Research through
International Collaboration is a non-profit organization.
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2. The main goal of the Group is to perform meta-analyses of randomized clinical
trials based on individual patient data obtained from the principal investigators
of all relevant trials. A detailed protocol is written by members of the Group for
each meta-analysis.

3. The principal investigators who contribute data to a meta-analysis may become
members of the Group. They may request access to the data from all other trials
of that meta-analysis. Such access must be approved by the principal investi-
gators of these trials and all publication rules described below must be
followed.

4. Data are sent to the Secretariat of the Group where they are kept secure. Data
are not shared with anyone under any form without the written approval of the
principal investigator.

5. The results of a meta-analysis are shared with the principal investigators who
contributed to it, and discussed in a meeting organized by the Group Secretariat
prior to presentation at scientific meetings or in publications. This meeting is
restricted to the contributors to that meta-analysis. The results of that
meta-analysis are not shared with anyone without approval from the principal
investigators.

6. After a meta-analysis is reviewed and discussed by all principal investigators, a
Writing Committee is formed. The Writing Committee ordinarily consists of
the clinicians in charge of the meta-analysis, the statisticians responsible for the
analyses, and the principal investigators who wish to contribute to the manu-
script. A separate writing committee is formed for each sub-protocol.

7. Publication of the results of a meta-analysis is in the name of the Group. The
names of all individuals in the Writing Committee are mentioned in a footnote.
The contribution of other investigators is acknowledged in an appendix.

8. All other manuscripts based on data collected for a meta-analysis must be
circulated to the principal investigators of all relevant trials for their approval.

9. A principal investigator who has contributed data for a meta-analysis may
withdraw at any time and for any reason, and demand that the data from his or
her trial be deleted from the manuscript.

10. The interpretation of the results of a meta-analysis is often complex and con-
troversial. Should an investigator disagree with the interpretation of the Writing
Committee, his or her opinion shall be mentioned as a minority opinion in the
manuscript.

3 Data Collection and Management

Data collection and management were conducted separately in France (in charge of
European data) and Japan (in charge of Asian and American data). Secretariats
provided the data format needed for each patient with the codes list for simplicity.
However, other codes were accepted and the full database for a trial could be
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provided if this proved to be less time consuming. The secretariat also requested
trial information and the original definition of each endpoint (or other variables, if
needed) from each collaborator.

After obtaining the IPD, we checked the data for accuracy (consistent with
publications or information), plausibility (including checking the distributions of
each variable, outliers, and missing data), appropriate randomization, and to ensure
they were up-to-date. Stewart and Clarke [38] provided useful guidance, including
practical advice on methods for checking and validating data. In particular, diag-
nostic tools for randomization quality were systematically applied to check whether
baseline variables were well balanced between arms and the randomization of the
accrued patients were chronologically balanced.

For the surrogate evaluation, the following data were requested for all individual
patients included in all trials: center, randomization date, treatment allocated by
randomization, date of last follow-up or death, survival status, cause of death (if
applicable), relapse status, and type and date of relapse if any. Detailed information
on the type of relapse was not always available.

4 Statistical Analysis

4.1 Statistical Methods for Evaluation of Surrogate
Endpoints

Forest plots were used to display the hazard ratios (HRs) for overall and individual
trials, and these HRs were used to evaluate DFS and PFS as surrogates for OS (true)
and for external validation trials. HRs were estimated through the Weibull pro-
portional hazard model, which gave acceptable goodness-of-fit in this setting.

Burzykowski et al. [8] proposed a two-stage approach for the evaluation of
surrogate endpoints. First, the treatment effects on the surrogate and on the true
endpoints were jointly estimated and the association at the individual level was
quantified. Then, association at the trial level was obtained through the regression
of the treatment effect of the surrogate endpoint on the treatment effect of the true
endpoint adjusting for the treatment effects uncertainty. We used Spearman’s rank
correlation coefficients to assess the surrogate at the individual level and the
coefficient of determination between the natural logarithm of the HRs to assess the
surrogate indicators at the trial level [12, 14]. At the individual level, the association
between the distribution of the true endpoint and the surrogate was evaluated using
a bivariate model based on the Plackett copula combined with trial-specific Weibull
models for surrogates and the true endpoint [8, 9]. The association between esti-
mates of treatment effects obtained using the bivariate model was used to assess
surrogacy at the trial level. A good surrogate was considered to provide a reliable
prediction of the treatment effect on the true endpoint (e.g., the HR for OS) based
on the treatment effect on the surrogate (e.g., the HR for DFS). It should be noted
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that HR estimates based on the bivariate model might differ from the crude esti-
mates shown in the forest plot.

In detail, let Tij and Sij be random variables denoting the true and surrogate
endpoints for the jth subject in the ith trial, respectively, and let Zij be the indicator
variable for treatment. At the first stage, two correlated failure-time random vari-
ables were modeled using the copula function and the joint survival function of (Sij;
Tij) was as follows:

F s,tð Þ ¼ Pr Sij � s,Tij � t
� � ¼ Ch FSij sð Þ,FTij tð Þ

� �

where FSij and FTij denote marginal survivor functions and Cθ is a copula, i.e., a
distribution function on [0; 1]2 with θ 2 R1. Following Burzykowski et al. [9], we
used Weibull proportional hazards models to determine the effect of treatment on
the marginal distributions of Sij and Tij within the ith trial:

FSij sð Þ ¼ exp � Zs

0

kSi xð Þ exp aiZij
� �

dx

( )

;

FTij tð Þ ¼ exp � Zt

0

kTi xð Þ exp biZij
� �

dx

( )

Here, λSi(x) and λTi(x) are baseline hazard functions, and αi and βi are, respectively,
the natural logarithm of the HRs of treatment Zij on the surrogate and true endpoints
for trial i. The association parameter θ in the copula function is generally hard to
interpret, but there is a link with Spearman ρ when the Plackett copula,

Ch u,vð Þ ¼
1þ uþ vð Þ h� 1ð Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ uþ vð Þ h� 1ð Þf g2 + 4h h� 1ð Þuv

q

2 h� 1ð Þ

is chosen [22]:

q ¼12
ZZ

I2

Ch u,vð Þdudv� 3

When the hazard functions are specified, the parameters for the joint model can
be estimated using maximum likelihood. We chose to specify the marginal hazard
functions for each trial parametrically using the Weibull distribution.

At the second stage, we considered a random effects model for the trial-specific
treatment effects given by

ai
bi

� �
¼ a

b

� �
þ ai

bi

� �
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where the random effects on the right-hand side of the above equation are assumed
to be normally distributed with mean zero and the following covariance matrix:

D ¼ daa dab
dbb

� �

Since αi and βi are estimated with estimation errors in each trial, we assume the
following model for the estimated treatment effects âi and b̂i:

âi
b̂i

� �
¼ ai

bi

� �
þ eai

ebi

� �

Here, the trial-specific estimation errors εai and εbi are assumed to be jointly
normally distributed with mean zero and the following trial-specific covariance:

Xi ¼ raa;i rab;i
rbb;i

� �
:

For the model parameters to be estimable, we assumed that the covariance
matrices Xi are known and equal to their estimates obtained from the first-stage
copula model. An adjusted estimate of trial-level surrogacy is given by the
following:

adjusted R2
trial ¼

d2ab
d2aad

2
bb

4.2 Surrogate Threshold Effect

Using a linear regression model adjusted for estimation error in the observed
treatment effects, we calculated the surrogate threshold effect (STE), defined as the
minimum treatment effect on a surrogate (i.e., DFS or PFS) necessary to predict a
non-zero effect on the true endpoint (i.e., OS) [6] in a trial of infinite size. A future
trial would require the upper limit of the confidence interval for the estimated
hazard ratio for the surrogate endpoint to fall below the STE in order to predict a
non-zero effect on the true endpoint.

4.3 External Validation

To assess the external validity of our results, we set several validation studies for
the adjuvant setting and advanced setting. In the adjuvant setting, we used 4 trials
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for which we did not receive IPD from the principal investigators and one
large-scale RCT for which only an interim analysis was available at the time of the
surrogate analysis. In the advanced setting, 12 RCTs were considered validation
studies. We extracted HRs for DFS or PFS and HRs for OS from the summary
statistics in the published paper if we did not have IPD.

4.4 Software

All analyses were performed on an intention-to-treat basis. Two-sided 95% confi-
dence intervals (CI) were calculated. All analyses were performed using SAS
software, except for the graphical displays (double forest plots were plotted using a
set of R functions developed at the International Drug Development Institute [IDDI]
and other figures were prepared using STATA). Software implementations for the
methods described in this paper are available at http://ibiostat.be/onlineresources/
onlineresources/surrogate or in the supporting information in Buyse et al. [15].

5 Results

5.1 DFS and OS in the Adjuvant Setting

A meta-analysis of trials for patients with resected gastric cancer was used to
evaluate DFS as a surrogate for OS. Data were available for 3288 patients from 14
training trials and 3281 patients from 6 validation trials with documented OS and
DFS [31].

At the individual level, a Plackett copula was fitted to model the joint distri-
bution of DFS and OS. The individual level association, quantified by the
Spearman’s rank correlation coefficient, was equal to 0.974 (95% CI [0.971,
0.976]), indicating a very tight correlation between DFS and OS for a given patient.
At the trial level, there was also a tight association between the treatment effects on
DFS and on OS (Fig. 1). Without adjustment for the estimation error in treatment
effects, R2

trial was 0.964 (95% CI [0.926, 1.000]). After adjusting for the estimation
error, adjusted R2

trial was approximately 1 (95% CI [0.999, 1.000]). It is worth
noting that because the estimated R2

trial value was very close to the upper limit of 1,
the numerical results need to be interpreted with caution.

The linear regression model adjusted for estimation errors was ln
(HROS) = 0.047 + 1.239 × ln(HRDFS). The 95% prediction limits indicate the
range of effects on OS that can be expected for a given effect on DFS. The STE was
0.92; hence, in a future trial using similar treatment modalities as those in the set of
trials in the meta-analysis, a HRDFS of <0.92 would predict a HROS of <1. This
quantifies the attenuation of the treatment effect when switching from DFS to OS.
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The results of our surrogate evaluation could be externally validated using six
trials not included in the meta-analysis. As shown in Fig. 2, there was excellent
agreement between the observed treatment effects on survival (HROS) in these 6
trials and the treatment effects on survival predicted from the treatment effects on
the surrogate (HRDFS). In the three trials for which the prediction limits of HROS

excluded one, the observed effects on survival actually reached statistical signifi-
cance P < 0.05.

5.2 PFS and OS in the Advanced Setting

The meta-analysis of trials in advanced disease was used for the purpose of eval-
uating PFS as a surrogate for OS. Data were available for 4069 patients from 20

Fig. 1 Trial-level association
between treatment effects on
DFS and OS in resectable
gastric cancer. Each trial is
represented by a bubble
whose size is proportional to
the trial sample size

Fig. 2 Observed treatment
effect on disease-free survival
versus predicted treatment
effect on overall survival in
validation trials. The
regression line, the observed
treatment effects on survival
(HROS) in six trials, and the
treatment effects on survival
predicted from the treatment
effects on the surrogate
(HRDFS), along with their
95% prediction intervals are
shown
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eligible randomized trials with documented OS and PFS [33]. As in the adjuvant
setting, 12 RCTs were considered as validation trials.

The individual level association, quantified by Spearman’s rank correlation
coefficient, was 0.853 (95% CI [0.852, 0.854]), indicating a substantial correlation
between PFS and OS for a given patient. At the trial level, the associations between
the treatment effects on PFS and on OS were only moderate. Adjusted R2

trial was
0.61 (95% CI [0.04, 1.00]). The large confidence intervals reflect the uncertainty
around this estimate, due in part to the small sample sizes of some of the trials
included in the meta-analysis. The linear regression model adjusted for estimation
errors was ln(HROS) = 0.042 + 0.779 × ln(HRPFS) (Fig. 3).

The moderate correlation at the trial level is reflected by a STE equal to 0.56;
hence, in a future trial using similar treatment modalities as those in the set of trials
in the meta-analysis, a HRPFS of <0.56 would predict a HROS of <1.

The results of our surrogate evaluation could be externally validated using 12
trials not included in the meta-analysis and treatment effects extracted from reports
published after the conclusion of the meta-analysis. Figure 4 shows regression line,
the observed treatment effects on survival HROS, and the treatment effects on
survival predicted from the treatment effects on the surrogate HRPFS in these trials,
along with their 95% prediction intervals. As shown in Fig. 4, the prediction
intervals of the regression of the observed treatment effects on survival HROS on the
treatment effects on survival predicted from the treatment effects on the surrogate
HRPFS are wide and include one (i.e., no treatment effect on OS) in all trials,
indicating that the observed effects on PFS do not enable the prediction of an effect
on OS in any of these 12 trials. However, 3 of the 12 trials showed a statistically
significant effect of treatment on survival [33].

Fig. 3 Trial-level association
between treatment effects on
PFS and OS in
advanced/recurrent gastric
cancer. The regression line
and the treatment effects in
the 20 trials included in the
analysis are shown. Each trial
is represented by a bubble
whose size is proportional to
the trial sample size. The 95%
prediction limits indicate the
range of effects on OS that
can be expected for a given
effect on PFS
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6 Discussion

The analyses summarized in Sect. 5.1 suggest that DFS is a good surrogate for OS
in patients with resectable gastric cancer. These findings parallel previous results for
resectable colon cancer as well as operable or locally advanced head and neck and
lung cancers [28, 29, 36]. Taken together, these findings suggest that in early forms
of cancer that are amenable to local treatment, DFS can be used as a reliable
surrogate for OS. In contrast, the analyses described in Sect. 5.2 suggest that PFS is
not a useful surrogate for OS in advanced/recurrent gastric cancer. PFS is also a
poor surrogate for OS in advanced breast cancer [7, 30]. In contrast, PFS is a good
surrogate in advanced ovarian cancer [9]. PFS appears to be a good surrogate for
OS in advanced colorectal cancer treated with fluoropyrimidines [11], but not with
more recent therapies [37]. All in all, PFS tends to be a poor surrogate for OS in
advanced solid tumors.

Other validation criteria for surrogate endpoints have been proposed. Alonso and
Molenberghs [2] addressed the issue that different settings lead to different mea-
sures at the individual level using an information theoretic approach. In our
example, this approach yields similar conclusions to those of the copula-based
meta-analysis approach [15]. Frangakis and Rubin [21] initiated a different
approach for surrogate evaluation based on causal inference. They introduced
so-called principal stratification to analyze data from a single trial. Drawing from
the causality literature, Taylor et al. [41] suggested the use of the concepts of
direct/indirect effects for surrogacy evaluation. Recently, Alonso et al. [1] revealed
an interesting relationship between the causal-inference and meta-analysis
approaches for the validation of surrogate endpoints. In particular, it is well
known that the evaluation of survival endpoints becomes very difficult when sur-
vival post-progression is long owing to effective second-line treatments (e.g.,
median survival post-progression of longer than 12 months) [5]. Since the causal
inference framework can be used effectively to assess the influence of second-line

Fig. 4 Observed treatment
effect on progression-free
survival versus predicted
treatment effect on overall
survival in validation trials.
The regression line, the
observed treatment effects on
survival HROS, and the
treatment effects on survival
predicted from the treatment
effects on the surrogate HRPFS

in these trials, along with their
95% prediction intervals are
shown
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treatment in an RCT in comparison with the counterfactual model, these method-
ologies may overcome limitations of the meta-analysis approach for surrogate
evaluation in the future [42] although the number of hypotheses necessary to fit
causal inference models make this approach very delicate to apply in practice.

Published meta-analyses of IPD are increasing. Riley et al. [35] reported that
only 57 articles were published before 2000, after which there was a considerable
rise, with an average of 49 articles published per year between 2005 and 2009. We
believe this growth will increase substantially in the era of data-sharing initiatives
[4, 17, 20, 26, 39, 40]. IPD meta-analyses have benefited from improved data
quality, increased analysis types, and advantages in achieving consensus around
results and interpretation by international collaborations. However, these analyses
have barriers related to resources and expertise, negotiating collaborations, data
availability, and a lack of standardization with respect to variable estimation and
data collection. Ideally, for prospective IPD meta-analyses, prospective collabora-
tions with research groups establishing potentially eligible RCTs before these trials
start (or before the results are disclosed) is preferable, as in the Early Breast Cancer
Trialists’ Collaborative Group (EBCTCG) [19].

The GASTRIC collaboration is now in its 2nd round. The aim of this project is
again to investigate surrogate endpoints of PFS against OS using recent trials as
well as to investigate new statistical methodologies for surrogate evaluations. We
believe this kind of collaborative work between clinicians and statisticians will
produce firm results and lead to breakthroughs in the medical scientific community.
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Machine Learning Techniques in Cancer
Prognostic Modeling and Performance
Assessment

Yiyi Chen and Jess A. Millar

Abstract Prognostic models for disease occurrence, tumor progression and sur-
vival are abundant for most types of cancers. Physicians and cancer patients are
utilizing these models to make informed treatment decisions and corresponding
arrangements. However, not all cancer prognostic models are built and validated
rigorously. Some are more useful and reliable than others. In this chapter, we briefly
introduce some popular machine learning methods for constructing cancer prog-
nostic models, and discuss pros and cons of each. We also introduce the commonly
used discrimination and calibration metrics for assessing predictive performance
and validating the prognostic models. In the end, we outline several challenges of
using prognostic models in the real world for clinical decision-making support, and
propose related suggestions.

Keywords Machine learning � Prognostic model � Cancer prediction � Validation

1 Introduction

Cancer prognoses are important to facilitate early cancer diagnosis, risk assessment
of future events, and clinical treatment decision-making. As a consequence, prog-
nostic models for disease occurrence, progression and survival are abundant for
nearly all type of cancers [18, 31, 42, 59, 70, 79]. An accurate prediction of risks for
cancer outcomes is critical for physicians and patients to make informed decisions
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on next steps. Governments and health-care departments also rely on cancer
prognostic models in planning and allocating health-care resources.

A typical cancer prognostic model will predict the risk of future clinical out-
comes at defined time points based on certain demographic, clinical and/or genetic
factors. Only factors correlated with the clinical outcome of interest should be
included in the model. These factors are called prognostic factors or risk factors, the
information of which is available before the clinical endpoint of interest is
observed. For example, the Prostate-Specific Antigen (PSA) and the Gleason score
are known as important risk factors for prostate cancer occurrence, recurrence, and
overall survival [33, 53].

Before we discuss how to construct, evaluate, and validate a cancer prognostic
model, let us first clarify what the term “prognostic model” means in this chapter.
Prognostic models make forecast of clinical endpoints in certain quantitative ways,
and are thus often used interchangeably with the term “predictive models” by many
researchers. We want to point out that prognostic models and predictive models are
not the same in the medical world. While both are used for predictions, or forecasts,
each has a different focus in the medical literature due to distinct definitions of
prognostic biomarkers and predictive biomarkers. In oncology, prognostic
biomarkers forecast the natural course and outcomes of cancer diseases, while
predictive biomarkers forecast the likelihood of cancer patients responding to
particular therapies [16]. As a consequence, prognostic models are often used to
identify subjects most likely to experience serious clinical outcomes (e.g., shorter
overall survival), while predictive models are more useful in identifying subgroups
of patients most likely to benefit from certain treatments. There is no clear sepa-
ration of prognostic biomarkers and predictive biomarkers. In fact, quite a few
biomarkers are identified as both predictive and prognostic factors, such as the
estrogen receptors and HER2/neu overexpression in breast cancer. Similarly, there
is no clear separation of prognostic models and predictive models. Regardless, we
want the readers to note that the prognostic models discussed in this chapter are for
future outcome forecasts under standard of care. We omit the discussion of study
design and data acquisition in this chapter because they are not as critical for
prognostic models compared to predictive models.

The top-ranked endpoints of interest for cancer prognoses are cancer incidence
[44, 64], recurrence [1, 40] and cancer survivability including overall survival [59],
progression free survival, and chance of survival for given length of time period
(e.g., 2-year survival, 5-year survival, see for example, [18, 54]). Since many factors
influence clinical outcomes of cancer patients, it is challenging to build cancer
prognostic models. In Sect. 2, we will introduce several popular machine learning
methods used in constructing a cancer prognostic model. While different methods
tackle the problem from different directions, all follow the same rule of principle: the
final prognostic model should be simple enough to be generalized. A relatively
parsimonious model has less chance of overfitting, is less likely to suffer from
missing data problems, and is easier to be validated. For example, the breast cancer
prognostic model developed by Delen et al. [18] and Lundin et al. [54], the prog-
nostic model for stage III non-small cell lung cancer patients developed by Oberije
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et al. [59], the prognostic lung cancer model by Sesen et al. [70], the individualized
conditional survival prognostic tool for rectal cancer by Wang et al. [79], the con-
ditional survival prognostic model for pancreatic cancer by Katz et al. [42], and the
prognostic model for metastatic cancer patients attending a palliative radiotherapy
clinic by Chow et al. [14] all had a limited number of risk factors.

While plenty of prognostic models have been developed and published, they vary
a lot in performances: some show more promising forecast ability than others. They
also vary a lot in the targeted patient population: some are very specific while others
are quite general. Not all published prognostic models are appropriately validated,
and there is a lack of well accepted criteria in establishing when a prognostic model
can be reliably applied to certain patient populations, and when more than one
prognostic model exists, how to choose among them. Generally speaking, prognostic
models developed and validated using large multi-institutional or national databases
are more reliable than those built upon a single institutional database of limited size.
However, if there is something unique about a single institution, and it is of specific
interest to predict clinical outcomes for patients in the institution, then using
single-institutional data to build and validate a prognostic model makes great sense.

Many online interactive tools are available for cancer survivability prediction for
different patient populations. For example, an interactive web-based risk prediction
model for prostate cancer developed by Ankerst and the team can be found in http://
deb.uthscsa.edu/URORiskCalc/Pages/calcs.jsp [4]. The risk factors included in the
model are: race, age, PSA level, family history, digital rectal examination and prior
prostate biopsy. Once all necessary information are entered, the program will
compute the risk of having a high-grade, a low-grade prostate cancer, or a negative
result in next biopsy.

Another web-based nomogram about prostate cancer can be found in http://labs.
fccc.edu/nomograms/main.php?nav=4&audience=1. While these online tools are
informative if used cautiously, we discourage cancer patients from using publically
accessible prognostic tools for survivorship estimation because patients often lack
clinical and statistical knowledge to appropriately interpret the prognosis outcome.

Prognostic models can be quite helpful for clinicians if they pay close attention
to the predictive quality and validity of the prognostic models before using them to
support clinical decision-making. Traditionally, clinicians rely more on personal
judgment in forecasting the potential clinical outcome of patients. Glare [27]
showed physicians’ personal judgment may not be as reliable as many people
expect. They reported poor agreement between the physicians’ clinical prediction of
survival and the actual survival for terminally ill cancer patients based on a
meta-analysis of 1563 subjects. They found that physicians tend to overestimate the
duration of survival for advanced cancer patients. Clinical decisions based on poor
prognostication may result in serious consequences such as overtreatment or
undertreatment, unnecessary large medical expenses, and inadequate access to
palliative care [15]. To obtain a more objective and reliable estimates on patients’
survival, we suggest to use only validated prognostic models with good perfor-
mance in both the training and validation data sets. Models with promising sta-
tistical metrics of predictive performance in the training set are not guaranteed to
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have good performance in the validation data set because good performance in the
training set can be achieved by overfitting to the noise only.

A useful prognostic model should be developed using a database of decent
sample size and a reasonable number of clinically relevant potential risk factors
without serious missing information. The model should be tested on an independent
sample, and should make sense to physicians. More importantly, it should be
compared with other existing prognostic models in the field, and be shown to
out-perform others for comparable or better prognostic accuracy.

In Sect. 2, we will introduce some useful tools to identify and combine multiple
prognostic factors for forecasting the risk of future clinical outcomes in individual
patients. Some of the tools are static and only utilize the available clinical and
demographic information at baseline to predict the clinical outcomes, while others
are dynamic and take into consideration the potential actions along the way before
outcomes become available. In Sect. 3, we will discuss statistical metrics for
evaluating the performance of a prognostic model before validation. Section 4
discusses several options of validating a cancer prognostic model. The chapter will
conclude with a discussion of the challenges of adopting a prognostic model for
clinical decision-making, and make several suggestions.

2 Machine Learning Methods for Cancer
Prognostic Models

Machine learning (ML) is a branch of artificial intelligence (AI). It combines the
fields of statistics, mathematics and computer science, and is used to discover
hidden patterns and correlations among covariates and endpoints. While many ML
methods are available for building cancer prognostic models, some are more fre-
quently used than others. The methods we discuss in this section are those widely
used in cancer prognostic modeling.

Quite a few studies are devoted to comparing multiple ML techniques for their
performances using one or two selected databases. While interesting and illustra-
tive, the findings are often technique-dependent and data-dependent. There is no
ML method that consistently outperforms others. For example, Delen et al. com-
pared decision trees (DT), artificial neural networks (ANN) and logistic regression
methods in constructing a prognostic model for breast cancer survival based on over
200,000 cases from a large cancer incidence database of the Surveillance,
Epidemiology, and End Results (SEER) program [18]. A similar data set was
further used by Bellaachia and Guven to compare DT, Naïve Bayes (NB), and
ANNs for predicting breast cancer survivability [5]. Both studies found that the DT
method outperforms the other two. However, in another breast cancer study,
Ahmad et al. [2] showed that the support vector machine (SVM) outperformed DT
and ANN in predicting breast cancer recurrence using 1189 records from Iranian
Center for Breast Cancer.
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Each ML method that is used widely in practice has its own strengths and
weaknesses. Although it is interesting to find out which method tends to perform
better under which circumstances, this chapter does not intend to make comparisons
among the methods or to make suggestions on which one to use. In most situations,
the performance of a prognostic model depends more on the available database and
the quality of information than on the method that is used to construct the model.
With a high quality database, most ML methods will yield descent prognostic
models with comparable performances.

2.1 Logistic Regression

Logistic regression is one of the most widely used statistical techniques for data
analysis in oncology. It has also gained much popularity as a tool in the machine
learning methodology. The endpoint to be predicted in the logistic regression model
has to be a categorical variable (e.g., binary, ordinal or multinomial), while the
prognostic factors can be of any type: binary, ordinal, multinomial or continuous. In
oncology, most prognostic logistic regression models are built to predict binary
endpoints.

Logistic regression is so named because it uses the logistic function to connect
prognostic factors and the outcome to be predicted. The connection is sometimes
also called logit link.

The standard logistic function

f xð Þ ¼ 1
1þ e�x

is an S-shaped curve that is bounded by 0 and 1. Therefore, it can be used to model
the probability of having an event for any particular subject. The x in the function
can be viewed as a linear function of all risk factors. For example, if the prognostic
model contains two risk factors: age (a continuous variable) and gender (a binary
variable), then x could be x = b0 þ b1 * ageþ b2 * gender, where b0 is the
intercept term and b1,b2ð Þ are the coefficients for age and gender, respectively.
A major task of the logistic regression modeling is to estimate b0, b1, and b2, which
are learned from the training set.

While the functional form of x is linear, the logistic regression model allows
more flexibility than it appears at first look. For example, instead of using age in the
original scale, the model allows us to use ln ageð Þ, or ffiffiffiffiffiffiffi

age
p

, or age2, if those terms
fit better with the data. It also allows the same risk factor to appear multiple times in
different scales. For example, the functional form of x can be
x = b0 þ b1 * ageþ b2 * age2 þ b3 * gender.

The logistic regression model is very transparent and easy to interpret. Unlike
some other ML techniques in which the construction of the prognostic model is like
a “black box”, the variables selection and model building steps are very clear in
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logistic regression. The final functional form of the fitted logistic regression model
allows researchers and physicians to evaluate the controlled influence of each co-
variate. In addition, the logistic function used in the model allows an easy inter-
pretation of the effect of covariates through the odds ratio, a well-understood
statistical index representing the odds of having an event for subjects with given
exposures, compared with the odds of having an event for subjects without the
exposures, assuming subjects are all the same for other prognostic factors.

The logistic regression model is only suitable when the endpoint of interest is a
categorical variable. It cannot be used to model other popular endpoints in oncology
studies: the time to a certain event (e.g., overall survival, progression free survival).
For survival endpoints the most often used statistical model is the Cox regression
model, also known as the proportional hazards regression model.

Although Cox regression in itself is not considered a part of the general family of
ML techniques, elements of it are used to extend ML methods for survival end-
points. For this reason, we briefly go over its general use for time-to-event data
here.

As with the logistic regression model, the Cox model also provides the estimated
controlled effect of the prognostic factors on the endpoint. Unlike the logistic
regression model, there is no link function that explicitly connects the time-to-event
outcome and the prognostic factors for Cox regression. Rather, baseline hazard has
to be estimated before a forecast in survival time can be made. However, if we only
want to estimate the effect of risk factors on survival outcomes, computing the
baseline hazard is not required, because the Cox regression model makes an
important assumption of proportional hazards. The proportional hazard assumption
assumes two subjects with and without exposure to certain prognostic factors
should have hazard functions that are proportional over time, given all other
prognostic factors are the same for the subjects. The influence of the prognostic
factors on the risk of an event happening at time t for subjects with and without
exposure to certain prognostic factors is expressed using the hazard ratio, which has
similar interpretation as the odds ratio computed in logistic regression. To date, Cox
regression is still the most often used technique in building a prognostic model for
cancer studies with time-to-event endpoints.

2.2 Tree-Based Methods

The regression tree method was initially introduced in 1960s for continuous end-
points [58]. It was later extended to classification trees for categorical endpoints
[41]. Tree-based methods have gained great popularity in cancer prognostic model
building because simple tree-based methods are often more intuitive and easier to
interpret for physicians and patients than regression models. In addition, if the
outcome variable is categorical, tree-based methods provide direct prediction of
classification for new subjects, while a logistic regression model only provides
estimated probabilities requiring a cutoff value before classification.
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Regression/Classification trees are effective tools to present complex prognostic
models to laymen [17]. A complex prognostic model often has a large number of
risk factors in varying scales, and two-way or three-way interaction components.
While a linear regression model or a logistic regression model can provide esti-
mated mean/probability of having an event based on a complex model, the influ-
ence of covariates and the structure of the prognostic models are not apparent. For
example, for a prognostic model with multiple interaction terms, it will be difficult
to tease out the influence of each covariate to the endpoint. This is because the
whole covariate space is partitioned into multiple sub-spaces through the interaction
terms. Such partitioning can be easily and naturally presented in a tree-based format
because recursive partitioning is the exact approach taken by tree-based methods in
building a prognostic model.

A simple tree-based method grows a tree from the root node, which represents
the whole covariate space (Fig. 1). In the beginning, the root node is the parent
node that can be split into two daughter nodes based on certain criteria (often based
on a cutoff value of a continuous or ordinal prognostic factor, or a Yes/No sepa-
ration of a binary prognostic factor). Each daughter node can be treated as parent
node for the next level and can then be split to form its own daughter nodes. A node
without daughter nodes is considered a terminal node, sometimes also referred to as
a leaf of the tree. Each leaf represents a unit resulting from the partition, and
subjects in the same leaf have the same predicted outcome values. The process of
recursive partitioning can be repeated until all nodes became leaves. Therefore, a
tree-based prognostic model centers around creating mutually exclusive and
exhaustive sub-spaces from the whole covariate space for meaningful predictions.
By recursively partitioning the covariate space into rectangular sets and then fitting
a simple model within each partition to the response [45, 51], tree-based methods
adopt a flexible nonparametric procedure in fitting a prognostic model, and thus are
less restricted by the distributional assumptions of most regression models. In
addition, a prognostic factor can be used multiple times in a tree, and different cutoff
values of a single prognostic factor can be used at different nodes for splitting.

Different tree-based methods use different criteria to determine how to best split
the parent nodes into daughter nodes. In general, the search of splitting criteria is
“greedy”, in that it only maximizes the split for the current step and may not be the
best overall in the full model. There are also various methods to determine when to

Fig. 1 Classification tree
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stop growing a tree, or to prune the tree once grown. This is a very important step to
reduce the chance of overfitting for the prognostic model.

In this subsection, we introduce two important tree-based methods that are used
in oncology: classification trees for categorical endpoints and regression trees for
time-to-event endpoints. Both methods share the characteristic of binary partitions
at each node; however their splitting criteria are based on different functions.

For regression trees with continuous endpoints, splits are chosen to minimize the
residual sum of squares, i.e. the “deviance” between the observed and the predicted
outcomes. In survival trees this was often accomplished through a log-rank statistic,
which is used to compare two survival curves [10]. A popular criterion proposed by
LeBlanc and Crowley uses the first step of a full likelihood estimation procedure
and allows hazard functions to be unknown [47]. This criterion can be implemented
using R package ‘rpart’.

In classification trees there are a number of broadly used methods. Similar to
residual sum of squares in regression, minimizing the misclassification rate is
sometimes used as a splitting criterion. While intuitive and easy to implement, it is
not sensitive to changes in node probabilities and so not often ideal for complicated
trees. The most common methods use the Gini Index and Information Gain, both
based on data variance within nodes. Lower variance of a node indicates its “node
purity”: how strongly it is dominated by a single type of observation. The Gini
Index chooses a split where the resulting daughter nodes will contain the higher
number of a single type of observation as possible. This creates the effects of
weighted partitions, where larger and purer nodes are selected for. This option
exists in many programs, with one of the more popular being the ‘tree’ package in
R. Information Gain is slightly different in that it measures the change in homo-
geneity of a node due to a split compared to the parent node. This method tends to
result in a large number of small, pure partitions. This is useful for new exploration
of data, but trees may be overly complex. The ‘party’ package in R can be used for
this kind of splitting. For each of these splitting criteria, smaller values indicate the
variable contributes greatly to the homogeneity of the nodes.

Once a tree is grown, it is important to check whether it is too complex and
overfits the training data. Instead of creating stricter splitting criteria that could
potentially miss important splits if stopped too soon, a large tree is created and then
pruned back into a smaller sub tree. A separate pruning criterion is required to be
set, many of which involve a misclassification cost. Reduced error pruning is very
simple and starts at the leaves of the tree, removing nodes and replacing them with
their dominant observations. If no significant change is seen in prediction accuracy,
the node is not added back. Cost-Complexity pruning is another option which has
the added benefit of including a penalty parameter that controls the tradeoff between
tree complexity and overall misclassification. Even with the use of pruning, single
trees still have lower predictive power than many other methods discussed in this
chapter. What makes the tree-based method attractive in real-world application is
the improved performance in prediction once many trees are grown and “ensem-
bled” together.
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Ensemble methods in machine learning involve building a collection of classi-
fiers (in this case, trees) and averaging them to create a new classifier. These types
of classifiers are often similar in bias, but have lower variance as the number of
classifiers increases. There are many algorithms that are used to accomplish this
averaging, which can be characterized as either non-adaptive (bagging, random
forest) or adaptive (boosting). In non-adaptive methods, each tree is built inde-
pendently. One of the simpler ways of accomplishing this is through bootstrap
aggregation, or bagging. In bagging, we take repeated samples from our original
training data and grow trees for each of the bootstrapped sample sets. In the case of
regression trees, all of the predictions are averaged to obtain an overall prediction.
In classification trees, class predictions are counted and decided by a voting
scheme, usually majority vote. It should be noted that none of the trees are pruned,
so each has high variance, but low bias. Since averaging the trees reduces variance,
the final classifier has both lower variance and bias than a single tree method.

One of the downsides of bagging that is inherited from the underlying tree
building method is that the trees are still biased towards strong predictors. If one
prediction variable in our set is particularly strong, most of the trees produced will
use that variable for the top split, resulting in most of the trees looking very similar
and will be highly correlated. To uncorrelate trees and further reduce the variance of
our classifier, we can use a more general method called random forest. Random
forest is very similar to bagging in that it also builds a set of decision trees from
bootstrapped training sets. The main difference is that in the process of building a
tree, at each split only a random subset of predictors are considered as candidates.
In classification based random forests, the size of this subset is chosen to be
approximately the square root of the total predictors in the dataset. For regression
trees, this subset is often set to a third of the total predictors. Bagging can be viewed
as a special case of random forest in which the predictor subset was set equal to the
original predictors. Overfitting is of less a concern with these ensemble tree-based
methods. However, we want to make sure enough bootstrapped samples are created
to grow trees. Cross validations methods are sometimes used to choose an optimal
number of bootstrapped trees. Using errorest in the R package ipred, testing error
can be calculated and will level off after an optimal amount of trees has been
reached.

Using bagging and random forest techniques, accuracy of prediction is greatly
improved by lowering variance and bias. This gain is unfortunately at the expense
of losing an easy interpretation of the tree structure. To aid in interpreting these
models, there are several measures to gage the overall importance of our predictors.
In regression trees, total reduction of residual sum of squares is measured for each
predictor due to their split in a model and averaged over all trees. Those with larger
residual sums of squares have greater influence over the model. For regression
trees, there are two general measures used. The first is the overall mean decrease in
the accuracy of our model if a variable is excluded. The other is the mean decrease
in Gini Index. The Gini Index measures the variance across all our input variables.
Smaller values for a node indicate its “node purity”, how strongly it is dominated by
a single type of observation. A larger decrease indicates the variable contributes
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greatly to the homogeneity of the nodes in our final model. With each of these
measures, a list of predictors with relative levels of importance can be obtained,
allowing for some general interpretation of the prognostic model in addition to
prediction. All of these procedures can be found in the R package ‘randomForest’.

In 2008, Ishwaran introduced the idea of using random forests to model survival
data [39]. This has now become one of the most common used tree-based methods
in oncology prognostic modeling for survival endpoints. This random survival
forest (RSF) approach was compared with both the Cox regression and the binary
classification random forests, and was found to have the lowest prediction error of
all three approaches. RSF was also found to be stable in the presence of noise
variables, while the other methods were progressively affected as more were added
to the model. Bou-Hamad et al., using a data set of 312 patients with primary biliary
cirrhosis of the liver, also found RSF to have an advantage over bagging and Cox
regression, which were similar to each other [10]. Yosefian et al. used the same
approach on 607 acute myocardial infarction (AMI) patients. Comparing saturated
survival trees, pruned survival trees, and RSF, RSF was found to be the most
reliable, with the advantage of also giving the most comparable results when dif-
ferent datasets were used [81].

A different ensemble method mentioned before is the adaptive model averaging,
the most commonly used being boosting. Instead of simply averaging many trees
together, boosting involves a weighted average of successively grown trees. It is an
iterative procedure, where each new tree is fit to the current model’s residuals,
instead of outcome prediction, and a new tree model is created with updated
residuals. Schapire and Freund created a very illustrative graph to represent the
process (Fig. 2; [66]). In boosting, the data points misclassified in the previous
model are given a higher weight in the next step, making it more likely to classify
these points correctly. This type of model learns from the data slowly, which helps
to handle the issue of overfitting that can occur from fitting single decision trees.
A shrinkage parameter can be used to control how slowly the model learns from the
data. The common choice of shrinkage parameter ranges from 0.1 to 0.001. The
smaller the value, the more slowly the model will learn. This parameter is closely
tied to the number of trees chosen to build, with smaller shrinkage parameters
requiring more trees to obtain good prediction accuracy. Overfitting a boosting
model is unlikely but still can occur with a large numbers of trees, as each of the
boosting trees are built upon previous trees. One other parameter that needs to be
specified in boosting is depth, the number of splits each tree can have. This will
affect the overall complexity of the model. A depth of one involves only one
variable in each tree.

Just as with random forest, boosting sacrifices a tree visual for increased accu-
racy. There are several alternative interpretation strategies, with one common rel-
ative importance measure found in the ‘gbm’ R package. It’s based on how often a
predictor is selected for splitting and then weighted by the squared improvement to
the model resulting from a split, all of which are averaged over all trees [22]. These
are scaled to sum to 100, with higher values having larger relative influence. The
glm package also offers the ability to graph partial dependence plots for the most
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influential variables. These show the marginal effects of a variable on the outcome
after integrating out the effects of other predictors. They can be a particularly useful
to aid in interpreting the underlying relationships of single predictors within the
model.

Since adaptive boosting as an ensemble classifier was introduced two decades
ago [21], it has been found to be useful to analyze many variables simultaneously,
specifically high dimensional omics data. These include classification and survival
studies on SNPS, genome wide association studies [48], gene markers [19], and
cancer proteomics [26]. This approach also has been found to work well for

D 1 D 2 D 3

h1 h2

h3

H = sign 0.42 + 0.65 + 0.92

=

Distribution

Weak
Hypothesis

Fig. 2 Algorithm of Adaboost. In the figure, a weak hypothesis fits a decision boundary on the
data set. The residuals from this model are obtained and the data points are weighted, more weight
given to misclassified data points. Another decision boundary is fit on the weighted residuals of the
previous model, and new residuals are calculated. Each of these are combined together to create a
final decision boundary
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high-dimensional, heterogeneous medical data, specifically for sample sizes less
that 2500 [62]. For very large sample sizes, large predictor variable sets can have
the drawback of overfitting the training set. Several papers have proposed cutting
down the datasets ahead of time to correct this issue. One often used is stability
selection, which involves resampling predictor variables and choosing those
selected often among subsamples [37, 55]. Another proposed method of handling
this involves utilizing both low dimensional clinical predictors and high dimen-
sional omics data. Using survival based breast cancer data, Bin et al. first fit a linear
cox model to clinical predictors. The residuals obtained are used as an initial offset
to the outcome variable and a boosting algorithm is applied using the omics data as
predictors [7, 11].

3 Illustrative Example for Logistic Regression
and Classification Trees

We use the American College of Surgeon (ACS) National Surgical Quality
Improvement Program (NSQIP) data set to illustrate the different results that can be
seen between growing a classification model and fitting a logistic regression model.
The NSQIP collects data on risk factors, operation variables, complications, and
mortality outcomes of major surgical procedures. Our goal is to construct a prog-
nostic model that will predict complications (a binary variable on whether subjects
experienced a complication after surgery within 30 days) for subjects who received
urology surgery. This variable is not readily available in the database, so we created
it based on the following variables in Table 1. Altogether, “Complications” had a
12% occurrence rate. We removed variables with issues of high correlation or
where over 5% to the data was missing, which left us with 35 input variables and
38,368 data points (Table 2).

We begin by fitting a simple classification tree to the dataset. With this particular
dataset, a model with only 2 input variables was chosen (Fig. 3). Our top split is
WORKRVU, which is used as a proxy for surgery complication, with values below
33.275 predicted to not have complications from the surgery. For subjects with
WORKRVUs over 33.275, they are further split by what year the patient had their
surgery. It is predicted that patients will have complications in 2009 and after, but
not before. This is likely due to the sparsity of data collected before 2009. We can
look at this closer by plotting these variables and examining the partitions assigned
by the classification tree (Fig. 4). It is worth noting that general classification trees
use a greedy algorithm which only maximizing at current step. For WORKRVUs
over 33.275, there are far fewer data points, many of which appear to be patients
with complications. There also appear to be fewer data point before 2009, which is
likely why the second split was chosen here. This is a good example of how large
datasets data taken over time can have an effect on the spread of the variables
themselves. Our test error comes out pretty good at 12.26%, however out false
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negative rates comes out at 87.28%. This would in general not be a very good
model to predict with.

Next, we take a look at a bagging model for the data. Compared to the
single-tree method, bagging showed an improved overall prediction, with a test
error rate of 10.80% and a better false negative rate of 71.13%. As other tree
assembling methods, we lost tree visual using bagging. We can however look at
two measures to gage the importance of our variables. The first is the overall mean
decrease in the predictive accuracy if a variable is excluded (Fig. 5a). The other is
the mean decrease in Gini Index (Fig. 5b). Looking at these variables, we can see
that WORKRVU appears to be the most influential, with OPTIME as the second
most. There are a few other variables, but their influence drops off quickly after the
first five variables.

In random forests, we take the same approach as bagging, but at each split we
take a random sample of the variables and are only allowed to use those as can-
didates. Right from the start, we can see the model is not as good as the bagging
model, with a test error rate of 11.41% and a false negative rate of 79.35%. This
may be due to the small number of influencing variables and their lesser ability to
sway in random forest. Looking at our influential variables, OPTIME has switched
with WORKRVU, but much of the rest look the same (Fig. 6).

Table 1 Variables used to create “complications” outcome variable

Variable description Variable name

Superficial Surgical Site Infection SUPINFEC

Deep Incisional SSI WNDINFD

Organ Space SSI ORGSPCSSI

Wound Disrupt DEHIS

Pneumonia OUPNEUMO

Unplanned Intubation REINTUB

Pulmonary Embolism PULEMBOL

Ventilator > 48 h FAILWEAN

Functional Health Pre-Surgery RENAINSF

Acute Renal Failure OPRENAFL

Urinary Tract Infection URNINFEC

CVA/Stroke with Neurological Deficit CNSCVA

Coma > 24 h CNSCOMA

Peripheral Nerve Injury NEURODEF

Cardiac Arrest Requiring CPR CDARREST

Myocardial Infarction CDMI

Bleeding Transfusions OTHBLEED

Graft/Prosthesis/FF OTHGRAFL

DVT/Thrombophlebitis OTHDVT

Sepsis OTHSYSEP

Septic Shock OTHSESHOCK
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We then fit a boosting model to our data. In boosting, we need to choose
shrinkage and depth parameters, which can be done through cross validation. At a
smaller shrinkage value, we start to see a gradual improvement in using a depth of
3. Unlike random forests, by using too many trees we risk overfitting in boosting.
We can use a shrinkage factor of 0.01 and depth of 3 (Fig. 7). For the boosting

Table 2 NSQIP prediction variables

Variable description Variable name

Work Value Units WORKRVU

Operation Time OPTIME

Return to OR RETURNOR_NUM

Days from Admin to Surgery HTOODAY

ASA Physical Status Classification ASACLAS_NUM

Transfusion 72 h Pre-Surgery TRANSFUS_NUM

Admission Year ADMYR

Age AGE

Functional Health Pre-Surgery FNSTATUS2_NUM

Weight WEIGHT

Wound Classification WNDCLAS_NUM

Weight Loss 60 Days Pre-Surgery WTLOSS_NUM

Height HEIGHT

Acute Renal Failure RENAFAIL_NUM

Ventilator 48 h Pre-Surgery VENTILAT_NUM

Transfer Status TRANSIT_NUM

Inpatient/Outpatient INOUT_NUM

Open Wound WNDINF_NUM

Ascites 30 Days Pre-Surgery ASCITES_NUM

Steroid Use for Chronic Condition STEROID_NUM

Dyspnea DYSPNEA_NUM

Bleeding Disorder BLEEDDIS_NUM

History of CHF 30 Days Pre-Surgery HXCHF_NUM

Anesthesia Technique ANESTHES_NUM

History of Severe COPD HXCOPD_NUM

Sepsis – SIRS PRSEPIS_SIRS

Emergency Case EMERGNCY_NUM

Dialysis DIALYSIS_NUM

History of Hypertension Requiring Rx HYPERMED_NUM

Sepsis Shock PRSEPIS_SHOCK

Smoker SMOKE_NUM

Admission Quarter ADMQTR

Disseminated Cancer DISCANCR_NUM

Sepsis PRSEPIS_SEP

Sex SEX_NUM
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model we end up with a test error rate of 11.20% and a false negative rate of
76.29%, only slightly better than random forest. Just as before, we have lost our tree
visual, but have several options to gage the importance of variables in our model.
The first is a list of the relative influence of each of the variables in the model.

Fig. 3 Classification tree of NASQIP data set

Fig. 4 Scatterplot of WORKRVU versus ADMYR data. Overlaying lies represent cutoff points
chosen in classification tree
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We can also get partial dependence plots for the most influential variables. These
showcase the marginal effects of a variable on the outcome after removing the
effects of other variables. In this model, WORKRVU and OPTIME are our most
influential variables (Fig. 8). Both of these variables appear to have complex
relationships with the complication, but in general increase at varying rates along
with the probability of a complication occurring, until hitting a point of saturation.

To compare these models with a more traditional approach, we also fit a logistic
regression model using Purposeful Selection (Table 3). In this model several
original variables were discarded, AGE, WORKRVU, and OPTIME were trans-
formed into splines, and seven interaction terms were included. In this model we

(a) (b)

Fig. 5 Bagging influential variables based on a mean decreased accuracy and b mean decrease of
Gini Index

(a) (b)

Fig. 6 Random forrest influential variables based on a mean decreased accuracy and b mean
decrease of Gini Index
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Fig. 7 Effect on test error
rate over different shrinkage
rates as number of trees
increases
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had a test error rate of 11.48%, false positive rate of 1.65%, and a false negative rate
of 79.78%. This is not much different from our other models and highlights that the
data source is the most critical factor to determine whether a good prognostic model
can be achieved. It is interesting to note that the area under the ROC curve (AUC)
for the logistic regression model is 0.7755, and that for the boosting model is
0.7863. We will discuss the AUC in more detail in later sections, but want to point
out here that AUC above 0.7 or 0.75 is often seen as acceptable predictive power in
literature. It warned us that we should not rely on one or two single parameters to
determine whether a prognostic model is a good one. The high false negative rates
of our models suggest the model may not be clinically useful.

One last note is that the logistic regression model is quite complex compared
with the tree-based method. It contains far more risk factors compared to tree-based
method with quite a few interaction terms. With comparable performance, the
tree-based method, such as bagging, is more preferred as it only requires a few key
variables to make predictions. The chance of overfitting is also higher for the
logistic regression model due to the complexity. Then why does the logistic
regression model contain so many terms? We believe it is because of the relatively
large sample size of our database since the variable selected by the logistic
regression model is determined by the statistical significance of the risk factors.
This example suggests that we should be more cautions in getting an unnecessary
complex logistic regression model when sample size is large. A different variable
selection method should be implemented for databases with large sample size.

3.1 Support Vector Machines

SVM is another ML method that has gained extensive applications in cancer
prognosis since its introduction in 1992 [8]. It has been used for classification,

(a) (b)

Fig. 8 Boosting partial dependence plots of a WORKRVU and b OPTIME
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Table 3 Logistic regression model output

Variable Coeff. Std. err. v2 p 95% CI

LB UB

ADMQTR0 0.130 0.049 6.963 0.009 0.034 0.225

ADMYRp1 269.995 21.400 159.179 <0.001 228.052 311.938

AGE

AGE0 −2.394 0.853 7.886 0.005 −4.065 −0.723

AGE65 0.341 0.044 60.029 <0.001 0.255 0.427

ANESTHES_NUM 0.442 0.153 8.344 0.004 0.142 0.741

ASACLAS

ASACLAS_3 0.314 0.054 33.697 <0.001 0.208 0.419

ASACLAS_4 0.716 0.107 44.845 <0.001 0.507 0.926

ASACLAS_5 2.077 1.264 2.699 0.101 −0.401 4.554

DYSPNEA_NUM 0.552 0.115 23.347 <0.001 0.328 0.776

EMERGNCY_NUM 0.427 0.146 8.605 0.004 0.142 0.712

FNSTATUS

FNSTATUS_1 0.327 0.123 7.064 0.008 0.086 0.568

FNSTATUS_2 0.887 0.236 14.142 <0.001 0.425 1.350

HTOODAYp1 0.392 0.050 62.741 <0.001 0.295 0.489

INOUT_NUM −1.294 0.537 5.807 0.016 −2.346 −0.242

OPTIME

OPTIME0 1.272 0.144 78.449 <0.001 0.991 1.554

OPTIME240 0.055 0.007 74.549 <0.001 0.043 0.067

OPTIME480 0.002 0.002 1.500 0.221 −0.001 0.004

RETURNOR_NUM −1.040 0.824 1.593 0.207 −2.654 0.575

TRANSFUS_NUM 1.280 0.191 45.268 <0.001 0.907 1.652

VENTILAT_NUM 2.293 0.850 7.284 0.007 0.628 3.958

WNDCLASS

WNDCLAS_3 0.565 0.150 14.230 <0.001 0.272 0.858

WNDCLAS_4 0.727 0.171 18.147 <0.001 0.393 1.062

WORKRVU

WORKRVU0 0.131 0.049 7.137 0.008 0.035 0.226

WORKRVU32p1 0.553 0.062 79.633 <0.001 0.432 0.674

WORKRVU32p2 0.416 0.030 200.832 <0.001 0.359 0.474

WORKRVU37 0.028 0.046 0.357 0.551 −0.062 0.117

WTLOSS_NUM 0.759 0.151 25.273 <0.001 0.463 1.055

AGE0xRETURNOR 3.078 1.302 5.591 0.019 0.527 5.629

AGE65xDYSPENEA_NUM −0.2974 0.1036 8.2427 0.0041 −0.501 −0.095

ANESTHESxOPTIME0 −0.8104 0.1445 31.4647 <0.0001 −1.094 −0.528

INOUTxAGE0 2.6480 0.8848 8.9562 0.0028 0.914 4.383

WORKRVU0xRETURNOR 0.5259 0.1165 20.3843 <0.0001 0.298 0.755

WORKRVU37xOPTIME240 −0.0046 0.0022 4.4462 0.0350 −0.009 −0.001
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pattern recognition and gene separation [6, 23, 32, 50, 74]. It was first introduced as
a tool of classification that maximizes the margin between the training samples and
the decision boundary through a linear combination of supporting patterns. We now
illustrate the idea of SVM using a simplest linear SVM with only two-dimensions
(Fig. 9). In the SVM, we aim to find a decision boundary (the solid green line in the
middle) which best separates the two groups, represented by the blue circles and the
red squares in Fig. 9. Instead of using all samples, the SVM identifies the “support
vector”, which is a small subset of the training samples that are closest to the
decision boundary. In Fig. 9, the support vectors are represented by the solid blue
circles and the red squares.

The decision boundary is when D(x) = 0, which is so determined that margins
are maximized on either size. D(x) is the decision function:

D xð Þ ¼ wxþ b

where w is the weight of the support vectors and b is the bias.
Since its introduction, the SVM has been quickly extended to using a “kernel

method” to allow a non-linear mapping of supporting patterns into a feature space
of higher dimensionality, and then identifying the hyperplane that best separates the
data into different classes. A detailed explanation on how the support vector
machines work can be found in Burges [12] and Vapnik [78].

To construct an SVM, we need to determine the capacity parameter, the kernel
type and its corresponding parameters. The capacity parameter, often denoted by C,
is a regularization of parameters that determines the tradeoff between maximizing
the margin and minimizing the classification error. Instead of minimizing the errors
on the training data, the SVM uses the structural risk minimization (SRM) principle
to minimize the upperbound on the expected risk. Therefore, it has more general-
izability compared to ANN methods (see Sect. 3.3 below) that minimize the errors
of the training data. This was partially confirmed by a study conducted by Liu et al.
[50], which compared the SVM with ANN using a dataset of 683 Breast Cancer
samples. The authors randomly divided the data set into two subsets: a training set

Fig. 9 Support vector
machine
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of 547 samples and a test set of 136 samples. They found that ANN had smaller
mean square error in the cross-validation of the training set, but the SVM preforms
slightly better on the test set.

The SVM has also been applied to survival endpoints. Since survival data
typically has censored observations, SVM based on observations that have actual
failure (death) times will result in an underestimated survival time. Quite a few
SVM methods has been developed to incorporate the censored observations in
survival endpoints, see, for example, Shivaswamy et al. [71], Khan and Zubek [43]
and Goldberg and Kosorok [29]. There are also SVM methods based on ranking
constraints which are mainly for classifying subjects into different risk groups [75].
We are not going to discuss those further since it is not the focus of this chapter.

One disadvantage of SVMs is that they are difficult to interpret, especially when
nonlinear kernel functions are used. They also do not always have great performance
compared to other more traditional methods. Stiphout et al. compared proximal
support vectormachinewith logistic regression using a dataset of 1552 cancer patients
with clinical and pathological features. They concluded that proximal support vector
machines do not improve the long-term rectal cancer outcome prediction as compared
to logistic regression [77]. Gupta et al. also used 400 support vector machines (SVMs)
with linear kernel to establish threeMLmodels for predicting cancer survivalship at 6,
12 and 24 months. They compared AUCs of theseMLmodels with that of clinicians’
prediction using a derivation cohort of 869 patients and a validation cohort of 94
patients. TheMLmodels only slightly outperform the clinician prediction [31]. On the
other hand, Ahmad et al. showed that SVM had the best performance in terms of
predictive accuracy when compared with C4.5 Decision trees and ANN [2].

3.2 Bayesian Network

Bayesian Network (BN) combines the probability theory and graph theory to a
graphical model that represents dependencies and conditional independencies
between variables. It uses nodes to represent input variables or features, and uses
arcs to represent direct or indirect dependencies among nodes. It can be used for
both supervised or unsupervised learning. The BN has been an important method in
the field of artificial intelligence (AI) for a long time.

A prognostic BN is composed of two important parts. The first is the Directed
Acyclic Graph (DAG), which determines the structure of the network and the
relationships among the nodes. Figure 10 is an example that shows the basic
relationships between three nodes: the serial connection, the divergent connection
and the convergent connection. In the serial connection, nodes A, B and C are
connected in serial, so that C depends on A through B. In a divergent connection,
both B and C directly depend on A. The convergent connection is sometimes also
called v-structure for how it looks. In this structure both A and B nodes lead to C
[69]. The DAG is a graphical way of showing the connections among all nodes, so
it may look like a tree or a web, but we can always identify the three basic
relationships throughout the DAG.
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Determining the DAG is a very complex task in prognostic BN, especially if the
number of potential prognostic factors is quite large. When constructing DAG, it is
important to include the known relationship and important prognostic factors shown
in literature or other science studies. Van Gerven et al. had a nice example to follow
for step by step constructions of the DAG for a carcinoid tumor model consisting
218 variables and over 74,000 parameters to estimate [76].

The second important component is the joint probability distribution of all
variables represented in the nodes of DAG. The outside information such as his-
torical studies and experts’ opinions can be incorporated through specifications of
prior distribution. Learning the DAG is a very complex task in prognostic BN.
Conditional independence test or network scores are often used to determine which
nodes should stay, and on whether two nodes are conditionally independent. The
complexity of querying largely depends on the DAG. Exact inferences can be used
when the DAG is relatively simple so that conditional probabilities can be com-
puted based on a specially crafted tree constructed based on the DAG. When the
DAG is large and complex, we often use approximate inference, which uses Monte
Carlo simulation to randomly generate observations from the BN, and computes the
query based on simulated samples.

The R package lnlearn (short for “Bayesian Network Learning”) is a useful tool
for constructing BNs. Aiming to unify temporal dimension with uncertainty, it
started from Static Bayesian networks, and proceeded to dynamic BNs which
incorporate time-dependent covariates.

3.3 Artificial Neural Network

ANN is a powerful tool that can handle a variety of classification and pattern
recognition problems [46, 57]. It has also been applied to predict the chance of

Fig. 10 Directed Acyclic
Graph (DAG) types—the
three basic components
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survival beyond certain time points for cancer patients [13, 18]. The name of ANN
was inspired by a biological neural network, as the structure of ANN looks like the
network of neurons, but the algorithms used in ANN are still quite different from
how the neurons work in the brain. Compared with traditional statistical methods,
ANN can easily accommodate prognostic variables that change over time, and can
provide a prediction based on complex multidimensional non-linear functions.

A typical ANN architecture consists of three layers: an input layer, a hidden
layer and an output layer (Fig. 11). The input layer represents the input features to
be used in the prognostic model, and the output layer gives the classification or the
prediction of the outcomes. Multiple prognostic outcomes may be predicted from
one single ANN. Figure 11 is a three-layer feed-forward fully connected ANN, the
most widely used ANN structure in oncology prognostic models. This structure has
a nice balance of simplicity and flexibility, and has been shown to be useful in
many studies in medical fields [9]. In Fig. 11, each layer has multiple neurons, as
represented by the circles. Sometimes the neurons are also called nodes in ANN
literature. The network refers to the interconnection between neurons in different
layers, represented by the arrowed lines. A fully connected ANN connects all input
neurons with each of the neurons in the hidden layer, and each neuron in the hidden
layer with each neuron in the output layer.

The number of neurons in the input layer depends on the input features in the
database, and the number of neurons in the output layer is determined by the
clinical outcomes to be predicted in the model. If there is only one outcome to be
predicted, the ANN will have only one neuron in the output layer. While it can be
challenging to determine the number of hidden layers and the associated number of
neurons analytically, in most cases single hidden layer is the default choice. As
Ganesan et al. [24] pointed out, the universal approximation theorem of neural
networks suggested that every continuous function that maps input neurons to
output neurons can be approximated arbitrarily closely by a multi-layer perception
with single hidden layer. Adding multiple hidden layers will add more flexibility

Input layer Hidden layer Output layer

Input #1

Input #2

Input #3

Input #4

Output #1

Output #2

Output #3

Fig. 11 Artificial neural network
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and complexity, but at the cost of slower training process and a higher risk of
overfitting. Therefore, the dominating majority of oncology prognostic models
developed using ANN used single hidden layer.

The number of neurons to be included in the hidden layer is also critical. Too
few neurons in the hidden layer may fail to adequately map the association between
input and output layers, while too many neurons in the hidden layer could result in
overfitting. While the number of neurons to be included could be determined based
on the smallest error rates in the test set, using that may lead to biased estimates on
the error rate of the ANN [68]. It is well understood that a traditional statistical
model requires 10 or more subjects per parameter to be estimated in the model. This
means the model should be kept simple if the sample size is very limited, and a
more complex model must be built upon a database with sufficient sample size and
number of events. The same rule also applies to the ANN model.

In ANN, the key parameters to be estimated are the weights of each intercon-
nection, which convert input nodes to output nodes through activation functions.
The weights are estimated “adaptively” using the training data through a
pre-determined learning algorithm. In oncology, the most widely used learning
mechanism is the back propagation learning algorithm [9]. The estimation of the
weights are adjusted over the repeated training cycles until the mean square error of
the cost function that represents the difference between estimated output and real
output is minimized. The number of iterations needed for the training process
depends on the learning algorithm, and initial values of weights. The mechanism of
iteratively training the system to learn from data and adjusting weights’ computa-
tion has similarity with Bayesian estimation of posterior distributions for parameters
of interest using Markov Chain Monte Carlo.

The complexity of a fully-connected ANN model thus depends on the number of
weights to be trained, which is jointly determined by the number of input and
output neurons, the number of hidden layers, and the number of hidden neurons.
The time required to train an ANN can vary substantially depending on the com-
plexity of the ANN models. Lisboa and Taktak have conducted a systematic review
to discuss the use of ANN in decision support in cancer [49]. They have identified
27 qualified cancer clinical trials published in 1994–2003 that used ANNs mod-
eling, including breast, prostate, cervical, bladder, head and neck, leukemia, skin,
liver, lung and paediatric osteosarcoma. For example, Lundin et al. used ANN to
predict 5-, 10- and 15-year survival [54].

Some studies showed a clear added benefit of using ANNs, while others sug-
gested ANNs were comparable to traditional statistical modeling approaches.
Faraggi et al. [20] showed that ANN in conjunction with regression trees can be
used to find a good continuous approximation of the hazard function, which
direction links to the traditional statistical modeling of time-to-event endpoints.
Overall, the ANN models were shown to be a useful tool, but with limited appli-
cation in routine clinical use. The reviews conducted by both Lisaboa et al. and
Schwarzer et al. [68] have conveyed some major issues commonly seen in the
application of ANN to oncology: (1) lack of overfitting control; (2) relatively small
data sets; (3) lack of validated comparisons with other methods.
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Another disadvantage of the ANN method is in its “black-box” feature, in that
the final output is not a simple figure or regression function evaluating the con-
trolled influence of each covariate. Due to the existence of the hidden layer, it can
be difficult to tell what the network has learned during the process, and to figure out
the rule each neuron plays in the network. It is, however, possible to extract
information about the influence of variables within these networks. The weights that
are connected to the neurons are similar to the weights or coefficients associated
with variables in a regression problem. For each input and possible output, all
possible hidden layer connecting weights can be extracted and scaled to the number
of connections [25, 28]. These can then be ranked to obtain a general relative
influence of the input variables with the possible outcomes, but will not be as easily
interpretable as regression coefficients. While predictive accuracy is always the
major concern of a prognostic model, physicians often feel more comfortable to use
a method that is more understandable and trackable.

4 Evaluating the Performance of a Prognostic Model

Once a prognostic model has been developed, its performance needs to be assessed
before finalizing it as the model to be validated. That is, the differences between the
predicted outcomes and the observed outcomes need to be evaluated within the
training dataset, at both individual and group levels. The underlying rationale is that
if the predicted and observed outcomes are not close enough even for the training
dataset, there is little chance the prognostic model will perform well in external
datasets. Therefore, a model should be screened out if it does not have good
predictive performance in the training dataset.

To evaluate the performance of a prognostic model, two types of measurements
should be considered: discrimination and calibration. Discrimination is to evaluate
whether the model can correctly classify subjects into one of the two categories
(e.g., 1-year PFS), whereas calibration is to describe how close the predicted
probabilities agree with the observed outcome. Both are important measurements
that require close evaluation. We would not suggest just evaluating discrimination
or calibration alone, because it is possible that a prognostic model has good dis-
crimination but not satisfactory calibration, or vice versa.

4.1 Discrimination Measurements

One of the most popular measures of discrimination for categorical outcomes is the
c-index produced in the Receiver Operating Characteristic (ROC) analysis. The c is
a continuous measurement reflecting the area under the ROC curve (AUC), ranging
from 0 to 1. To understand the c-index, let us consider a data set with a binary
outcome Y, say, pathology complete response (pCR) Yes or No. We use P11 to
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denote the predicted probability of having pCR for a subject with pCR, and P12 the
predicted probability of having pCR for a subject without pCR. The c-index is

Pr(P11 [P12Þþ 0:5Pr P11 = P12ð Þ

Intuitively, we can imagine the training set separated into two pools: Pool A with
all subjects who had pCR and Pool B with all subjects who did not have pCR. We
random sample one subject from each pool and compare the P11 and P12 for the two
subjects. If P11 [P12, i.e., the predicted probability of having pCR is higher for the
subject who actually had pCR, we call it a prediction success. If P11\P12, it is a
prediction failure. In rare situations where P11 ¼ P12, they are deemed as partial
prediction successes which gain only half the credit. The procedure is repeated
many times and the random draw is with replacement. The c-index is the proportion
of success out of the many random draws.

The c-index is often presented together with the ROC curve, which is a plot of
the sensitivity (true positive rate) against 1-specificity (false positive rate) for a
continuous series of potential cutoff value (Fig. 12). If a prognostic model has both
100% sensitivity and 100% specificity at certain cutoff value, the AUC can be one,
suggesting a perfect prediction. An AUC that is 50% or less suggests the prognostic
model is no better than a random guess, and thus is worthless. That is why the ROC
curve plots are often accompanied with a 45% degree line (which has an AUC of
50%). Any ROC curve close to or below the 45% degree line is meaningless.

Harrell et al. [34] and Pencina and D’Agostino [61] have proposed an overall
c-index that can be computed for prognostic models build upon the cox regression
method. When the endpoint is time-to-event, there is a time T of follow-up for each
participating subject. Therefore, subjects are likely to be censored if they did not
have an event before their maximum follow up time T. The overall c-index only
considers the censoring due to not having the event before the end of the study
period. For two randomly draw subjects, if the shorter of the two times is an event

Fig. 12 Receiver Operating
Characteristic (ROC) curve
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(uncensored), we do the comparison. If both subjects are censored, or the shorter of
the two times is censored, no comparisons will be made and the draw will be
discarded as not usable, because it is unknown who had the longer time-to-event
from the data. The observed and the predicted time-to-event are compared with
each other within the pair. If the subjects with longer predicted time-to-event also
had longer observed time-to-event, it is called a concordant pair. If the subject with
longer predicted time-to-event had a shorter observed time-to-event, then the pair is
a discordant pair. The overall c-index is

C ¼ pc
pc þ pd

where pc is the chance of having concordance pairs in all usable pairs.
It is suggested that the c-index be reported with a 95% confidence interval,

which can easily be computed using bootstrapping.
Some other measures of discrimination focus on how much the prognostic

groups are separated. For example, the discrimination slope [73] and simple index
of separation [3] for categorical outcomes, and the separation parameters (SEP) [65]
and D [63] for survival outcomes. These measurements are very useful in identi-
fying whether the prognostic model effectively separates different risk groups, but
not focusing on the closeness of prediction with the observed for individual subject.

4.2 Calibration Measurements

One well-known method of calibration is Hosmer-Lemeshow goodness-of-fit test
[38]. The idea of the goodness-of-fit test is to first sort the data set (either the
training set or the validation set) based on the predicted probabilities and then
divide it into g groups. In most common cases, g is set to 10 and each group has
approximately equal size. Within each group, we separate the observations into two
subgroups: one with the event and the other without the event. We count the
number of subjects in each subgroup and compare it with the expected counts of
subjects in the group based on the computed probability. For example, if in group 1,
there are 50 subjects, 5 had events and the rest 45 did not have events. Then we sum
the predicted probabilities of having event for all 50 subjects as the expected counts
of subjects that will have event (ce1k ). The sum will be compared with 5 o1kð Þ. We
also sum the predicted probabilities of not having events for all 50 subjects (ce0k ,
which is just 50 − ce1k Þ, and compare with 45 o0kð Þ.

The Hosmer-Lemeshow goodness-of-fit test statistic, Ĉ, is just the Pearson
Chi-square statistic from the g group [38].

Ĉ ¼
Xg
k¼1

o1k � ce1kð Þ2ce1k þ o0k � ce0kð Þ2ce0k
" #
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The test statistic follows a Chi-square distribution with degrees of freedom
g� 2. The H-L goodness-of-fit statistic provides a p-value that directly helps to
determine if the current model fits well. However, the H-L goodness-of-fit statistic
has been criticized for lack of robustness. Depending on the different g, the H-L
goodness-of-fit test may give different p-values. In addition, it is not always
appropriate for certain types of prognostic models. For example, if the number of
covariate patterns (J) of a prognostic model, which is simply the maximum number
of covariate spaces that can be partitioned using prognostic factors included in the
model, is much smaller than the sample size in the dataset, the Pearson Chi-square
statistic is more appropriate for goodness-of-fit assessment [38]. This typically
happens when all prognostic factors in the model are categorical.

For each covariate pattern j, as all subjects in the pattern have exact the same
covariate values, they share the same predicted values, denoted by bpj . Let yj denotes
the number of observed events in covariate pattern j, the Pearson Chi-square
statistic is computed using

X2 ¼
XJ
j¼1

yj � mj bpj� �2
mj bpj 1� bpj� �" #

The X2 follows a Chi-square distribution with degrees of freedom equals to
J � pþ 1ð Þ. Here p is the number of covariates included in the prognosticmodel. Note
that it does not equal to the number of factors included in the model, unless all factors
are binary (prognostic factors that are continuous without categorization suggests
Pearson Chi-square statistic may not be used as the J is likely to be close to n).

Another widely used calibration measurement that directly looks at the differ-
ence in predicted and observed outcomes is the Brier score (BS). The BS computes
the mean squared differences between the predicted and the observed.

BS ¼ 1
N

XN
i¼1

predictedi � observedið Þ2

where N is the sample size for either the training set or the validation set, and
i represents patient i. The smaller the BS, the better the prediction. BS are often
used for both continuous and categorical endpoints. Its computation can also be
extended to survival outcomes using the conditional probability of being uncen-
sored for a given time as weights [73].

5 Validating a Prognostic Model

If a prognostic model does not show promising performances in both discrimination
and calibration measures in the training data set, it may be re-developed using
alternative techniques, or additional prognostic factors may be added to the model.
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It is not suggested to go ahead and validate a prognostic model if it does not have
nice predictive ability using the same samples based on which it was developed. On
the other hand, if the model performances look satisfactory, it does not mean this is
a good prognostic model, as there are chances that the model overfits the sample.

Therefore, all prognostic models need to be validated because there is no
guarantee that a well-constructed prognostic model will work well in practice for
forcasting endpoints of interest for patients that are not used to build the model.

The variable selection and rule of prediction should be fully determined in the
prognostic model before validation is conducted. For example, if the outcome
variable is a binary endpoint, it is not enough to only have a predicted probability of
having an event without a cutoff value that dichotomizes the predicted probabilities
into two categories: having event or without event. Similarly, the hazard ratio alone
is not sufficient for a prognostic model for survival outcome. A predicted
time-to-event should be computable for all subjects.

The gold standard of validating a prognostic model is to evaluate the established
model on a set of subjects that is not used for constructing the prognostic model,
and to show that the model works well in predicting the endpoints of interest for
those subjects. This is called external validation. The choice of validation sample
set for external validation depends heavily on the proposed patient population that
is proposed for the application of the prognostic model. For example, if the patient
population is US patients who underwent surgery for a renal mass without meta-
static disease, and the training set is from a single institution for qualifying subjects,
the external validation set should be composed of multi-institutional data from
difference places in the US. If the patient population of the model is not limited to
the US patients, then external data from both US and other countries should be used
for validation. It is also suggested to have a different group of researchers for
external validation to ensure the generalizability.

Another well accepted approach is internal validation, where people use the
same data source for build the model and validate the model. Several methods have
being proposed for internal validation. Regardless of which method been used for
internal validation, we cannot bypass the limitation that the validation data set is
from the same source as the training data set. As a consequence, the robustness and
performance of the model on samples outside the data source is still questionable.
The only exception might be if the database is a huge national database that covers
all patient population for the prognostic model. Otherwise, we still suggest to use
external validation whenever possible.

When conducting interval validation, the data needs to be split into two sets: the
training set and the validation set. The most straightforward way is to split it just
once. There is no agreed upon single rule on the relative size of the two resulting
datasets, but popular choices are random samples of about 2/3 for training and 1/3
for the validation data set. Before fitting the prognostic model, researchers first
randomly divide the whole dataset into two parts: the training data set and the
validation data set. The validation data set will not be touched until the prognostic
model is fully developed and evaluated using the training data set. The performance
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of the prognostic model is then evaluated using the validation data set. If the good
performance persists, then the model is unlikely to be overfitting.

Splitting data into definitive training and validating set is very close to the
external validation, except for the data source. It is suggested when the database is
large so that both the training and validation set have sufficient sample size. There
are also deviations of the internal validation by using historical samples to build the
model and prospectively enrolled subjects to validate the model. This is sometimes
called temporal validation.

In certain situations with very limited sample size, a same database may be
re-sampled multiple times so that subjects are used for both constructing the model
and validating the model. This cost-efficient way of using data repeatedly for
internal validation can be realized via k-fold cross-validation, jackknife or
bootstrapping.

In a k-fold cross-validation, the original sample is randomly partitioned into
k equal-sized subsamples. For any single process, k − 1 subsamples are used as the
training set and the remaining single subsample is used as the validation set. The
cross-validation process is then repeated k times so that each of the k subsamples
are used as the validation data exactly once. The validation results are simply the
average of the k-fold results produced in each single process. While researchers
may choose any k as it fits the sample size, one most popular choices of k is to let
k = 10. Another popular choice of k is k = n, so that in each process, only one
subject was used as the validation set. The k-fold cross-validation that uses
k = n sometimes is also referred as the Jackknife. Draw Bootstrap samples with
replacement from the original database to form multiple generated datasets which
are expected to follow the sample distribution as the original database. The prog-
nostic model can be built upon the generated dataset, and be validated in the
original database, or be validated using subjects who are not used in building the
prognostic models. Bootstrapping is claimed to be the most efficient interval vali-
dation method [72].

The discrimination and calibration measures can be computed in the same way
for validation as we described in Sect. 3. It will be interesting to compare the
measurements of discrimination and calibration computed from the validation set to
those computed from the training set. While we typically expect the measurements
will look more favorable for those computed in the training set, big differences in
the measurements typically suggest an overfitting.

It is worth noting that statistical validation is not the same as the clinical vali-
dation. A clinically validated model should be statistically validated, and should
also been shown to outperform existing models, or has comparable performance in
prediction with reduced costs/requirements. A model will be practically valuable
only if it is clinically validated.
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6 Concluding Remarks

Cancer prognosis is an estimation on the likely course of cancer disease on a
specific patient. It is very important for both physicians and patients to gain
information on the cancer prognosis. In this chapter, we have introduced several
machine learning techniques in building and validating cancer prognostic models.
We have no doubt that more advanced tools for building and validating cancer
prognostic models will be developed and adopted in the near future.

There are several existing challenges that face cancer clinicians and researchers
at the moment in terms of utilizing a prognostic model to support clinical
decision-making.

Challenge 1 There are many prognostic models available for cancer studies,
maybe too many. For example, Louie et al. [52] have identified 127 unique prostate
cancer models that can be used for risk prediction. Williams et al. [80] identified 15
prognostic models that are applicable to general patient population for colorectal
cancer risk prediction. Meads et al. [56] identified 17 prognostic models for breast
cancer. There are also many online tools that provide risk computation for cancer
patients without a strong supporting publication. It is often quite difficult for
clinicians to determine which one to trust and use.

Quality control of prognostic models in oncology is in urgent need. We strongly
suggest (1) not to publish prognostic models that are not appropriately validated;
(2) to distinguish prognostic models from other models that are developed for
evaluating association between certain covariates and biomarkers with the clinical
outcomes, and require authors to clearly define the purpose of the model.

We also suggest that government or a leading academic institution set up a
website that includes only validated (both statistically and clinically) prognostic
models, and carefully arrange them by disease categories and targeted patient
population. These models should also be tested repeatedly using the new available
data set to make sure they are still applicable to current patient population. No new
prognostic models will be added unless they are targeting different patient popu-
lation that are not covered by any of the existing models, or they show comparable
or better performance compared to the models included in the website for the same
patient population. With such a website available, there may not be as many
overlapping efforts in building and validating prognostic models for same patient
population. Instead, more efforts could be spent on validating and updating the
existing prognostic models. More importantly, physicians will know a single
website to look for cancer prognostic models if they need to use one for clinical
reference.

Challenge 2 The predictive accuracy of prognostic cancer models is questionable.
It is still under debate on whether any cancer prognostic models should be used to
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support clinical decision-making. As we discussed earlier, a good prognostic model
at group or population level does not imply acceptable prediction for individual
cancer patient. For example, if a prognostic model predicts that there is 69% chance
for an average patient with given risk factor values to survive beyond 5 years, and if
the actual observed percentage for a group of such patients is exactly 69%, the
model seems to predict perfectly. However for single subject in the patient popu-
lation, a probability of 69% chance to survive beyond 5 years still has a lot of
uncertainty, since the actual observation can only be binary.

Henderson et al. and Schoop et al. suggested that it is unlikely to gain an
accurate estimate of projected survival time for an individual cancer patient due to
poor point estimates and low explained variation in survival outcomes [35, 67].
Parks has defined a “serious error” in survival prediction to be a predicted survival
time that is either less than half of the actual survival time or more than twice the
actual survival time, and found that the serious error rate in survival predictions is
typically 50–60% for most cancer prognostic models with a survival endpoint [60].
Some researchers thus suggested to limit the use of prognostic model of survival
time to group or population level [30, 36]. This is by far from ideal, as in most
situations subject-specific prediction is the primary interest.

If clinicians have to predict subject-specific survival they should present it with
great caution and emphasize the uncertainty in predicted outcomes. For example,
they could say “My best guess is that you will live 3 months or more but there is a
60% chance I will be seriously wrong”, or they may use the estimated 80% con-
fidence interval for an individual subject and tell “My best guess is that you will
live 3 months but there is an 80% chance the actual time is between 2 weeks and
2 years”.

It is often more effective in communicating the survival prediction using
graphics. The output of a prognostic model could be a histogram of the probabilities
of surviving beyond certain month.

If there does not exist a prognostic model that is good enough for
subject-specific prediction, we suggest to merely provide patients with descriptive
statistics on how other patients like her/him did. Clustering or a propensity score
method can be used to identify a group of patients that is similar to the patient
whose outcome is to be predicted. An example is shown Fig. 13a if less than 20
subjects are in the group (Data source Oberije et al. [59]). If the number of similar
patients is more than 20 subjects, Fig. 13b may be shown instead.

Challenge 3 Most cancer prognostic models are static so that predictions cannot
reflect the updated information of patients. Most cancer prognostic models have
been developed to predict the risk of having an event by given time-point from
diagnosis or treatment for patients. In real world, patients may be interested in
getting updated prediction based on newly available information, say, pathology
complete response after the initial treatment, or no complications after surgery.
Many cancer prognostic models do not contain such time dependent covariates, and
thus are unable to provide predictions that take into consideration such updated
information. A desirable cancer prognostic model should be dynamic at both
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subject-specific level and at patient population level. At the individual patient level,
it would predict subject-specific survival or chance of having certain event condi-
tioning on the current patient status. At the patient population level, it should be
flexible enough to allow updates to the prognostic model based on the newly gained
information about existing and new subjects. It should allow newly identified risk
factors be included once sufficient information supports the new risk factor would
improve the prediction, and should also gradually decrease the weights of historical
patients as the database grows. Ankerst et al. have proposed using Bayesian method
for updating prior knowledge with newly available data through the transformation
of prior odds to posterior odds [4]. They have successfully updated an online
prostate cancer prevention trial risk calculator to incorporate two new markers that
became available after the tool has been developed (http://deb.uthscsa.edu/

(a) Graphic Description for Similar Patients --- Smaller Group

(b) Graphic Description for Similar Patients --- Larger Group

Fig. 13 Graphic description for similar patients—a smaller group, b larger group
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URORiskCalc/Pages/uroriskcalc.jsp). An updated prognostic model should be
re-validated before being used.

A desirable cancer prognostic model should also be reasonably transparent in
building procedures and tell which prognostic factors are used. It should also have
an accompanying user-friendly tool for clinicians and patients to quickly obtain the
predicted outcomes.

Currently, many cancer prognostic models are presented using web-based
nomograms.

Examples can be found in https://www.mskcc.org/nomograms/prostate and
http://www3.mdanderson.org/app/medcalc/index.cfm?pagename=pancreascancer.

Almost all current nomograms ask the physicians or patient to self-input nec-
essary variables. This not only limits the number of covariates that can be included
in the prognostic model, but also increases the chance of unreliable predictions due
to inputting error. An ideal nomogram for cancer prognostic model should allow
automatic withdrawing of necessary information from electronic health records of
hospitals under privacy protection.

We should all be aware that the most critical thing to ensure the success con-
struction and validation of a prognostic model is a great database. Such a database
should be composed of multi-center, multi-region or even multi-country subjects
whose information is collected using uniform standards. Patients should be fol-
lowed closely for more precise endpoints (e.g., actual survival time), and
time-dependent variables. The sample size should be decent and the missingness
minimized. The database should be updated with reasonable frequency, with con-
sistent close data monitoring to ensure quality.
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Optimal Three-Group Splits Based
on a Survival Outcome

John Crowley, Alan Mitchell, Pingping Qu, Gareth Morgan
and Bart Barlogie

Abstract In clinical research it is often desirable to discretize a continuous or
ordered covariate. In this paper, we investigate the use of various running ordered
logrank tests for finding optimal 3-group splits based on a survival outcome and a
single covariate. We first present a successful application of using the modified
ordered logrank test (MOL) to find three prognostic groups on a myeloma dataset.
We then evaluate through simulations the performance of the running ordered
logrank tests and a hierarchical method based on recursive partitioning in different
scenarios: (1) when the true underlying distribution has three-groups, (2) when
there is a linear relationship between covariate and outcome, and (3) when there is
no association between covariate and outcome. We conclude that the MOL is the
most robust among all versions of the running ordered logrank tests if the under-
lying distribution truly has three-groups, although further research could help define
when the MOL is the statistic of choice more generally for finding optimal 3-group
splits.
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1 Introduction

The logrank test [10, 11] for comparing the survival curves S1ðtÞ and S2ðtÞ of
two-groups is one of the most commonly used procedures in survival analysis. The
running logrank plot [4] is a tool for finding an optimal split into two-groups based on
all possible cutpoints of a continuous or ordered categorical covariate, where opti-
mality is defined as the cutpoint which maximizes the logrank test for comparing the
two-groups defined as having covariate values above and below the cutpoint. This tool
can be used as part of a recursive partitioning scheme [6], with the first step being to
look across all possible covariates and all possible cutpoints for the highest of the
maximum logrank tests, and using that cutpoint on that covariate to define
two-groups; the procedure then repeats within each of the groups so defined.

The extension of the logrank test for K[ 2 groups is immediate due to Crowley
[2], but this omnibus test may lack power for an ordered alternative of the form
S1ðtÞ\S2ðtÞ\ � � �\SKðtÞ. In this article we will present several versions of an
ordered logrank test, and then use these to find ‘optimal’ splits into three-groups
based on exploring all possible pairs of cutpoints of a single covariate. These new
techniques for three-group splits will be applied to some data sets for patients with
multiple myeloma, and then will be compared through simulations, along with a
two-step recursive partitioning algorithm, and a test for trend due to Tarone [13].

2 Background on Multiple Myeloma

2.1 Clinical Setting

Multiple myeloma is a cancer involving plasma cells in the bone marrow, the cells
in the B cell lineage responsible for producing immunoglobulins. Patients with
myeloma typically produce large amounts of a specific clonal immunoglobulin
instead of a broad spectrum, and are thus immuno-compromised. They also suffer
from renal insufficiency, as their kidneys need to work overtime to clear quantities
of very large molecules produced by the tumor. Fractures caused by pockets of
bone destruction are also a serious issue.

At the Myeloma Institute of the University of Arkansas for Medical Sciences,
newly diagnosed patients with myeloma are treated with an aggressive regimen
called Total Therapy, which is based on a backbone of two cycles of high dose
therapy with autologous stem cell rescue, called tandem transplants.
A representative treatment schema for Total Therapy is given in Fig. 1.

Successive iterations of Total Therapy protocols, from Total Therapy 1, to Total
Therapy 2 that included a randomization to thalidomide or not, to Total Therapy 3
that added the proteasome inhibitor bortezomib, have increased the 5 year
progression-free survival from 27% to 65% (Fig. 2).
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2.2 Gene Expression Profiling and the GEP70 Score

Midway through accrual to Total Therapy 2 the investigators began to take samples
of the patients’ tumors for gene expression profiling (GEP) using the Affymetrix
platform U133Plus2. A prognostic score was developed using 70 of the 54k
probesets (subunits of genes) assayed for expression levels. The distribution of this
GEP70 score based on the 351 patients on Total Therapy 2 with gene expression
data is shown in Fig. 3.

The apparent bimodal distribution suggests a cutpoint for GEP70 dividing the
patients into two-groups. The survival experience of these two-groups on the training

Fig. 1 Basic schema for Total Therapy at the Myeloma Institute. The backbone consists of two
cycles of high dose melphalan followed by autologous stem cell rescue (tandem transplants).
* Patients� 70 years of age or with elevated serum creatinine (� 3.0 mg/dl) will receive MEL
140 mg=m2

Fig. 2 Progression-free
survival for successive Total
Therapy protocols.
TT2 ± Thal represent two
arms of a randomization to
thalidomide as part of the
regimen or not
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set (Total Therapy 2) and a validation set (Total Therapy 3) is shown in Fig. 4. This
prognostic signature is robust enough that the next generation of Total Therapy trials,
4 and 5, are designed separately for GEP70 low and high risk, respectively.

3 Extensions of the Logrank Test

We first introduce the two-sample logrank test, then consider some extensions. Let
the ordered uncensored failure times from the combined sample be given by
t1\ � � �\tn. At time tj, with numbers still at risk in the two samples R1j and R2j and
numbers of deaths D1j and D2j, the total number at risk and dying at tj is Rj ¼
R1j þR2j and Dj ¼ D1j þD2j (Table 1).

Define the expected number of deaths in sample i from standard contingency
table arguments to be Eij ¼ RijDj=Rj. Further define the variance term
Vj ¼ R1jR2jDjðRj � DjÞ=R2

j ðRj � 1Þ. Then the numerator of the logrank test for

Fig. 3 Distribution of the GEP70 score in Total Therapy 2

Fig. 4 Overall survival by GEP70 low risk (LoR) versus high risk (HiR) in the training set (Total
Therapy 2; left panel) and validation set (Total Therapy 3; right panel)
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comparing groups 1 and 2 is given by L12 ¼
Pn

j¼1 ðD1j � E1jÞ, and the logrank test

is
Pn

j¼1 ðD1j � E1jÞ
n o2

=
Pn

j¼1 Vj. Crowley [2] proved that the logrank test has an

asymptotic v2 distribution with 1 degree of freedom under the null hypothesis of no
association between survival and group assignment.

3.1 The Running Logrank Test

For a continuous or ordered categorical covariate X, the running logrank test is
defined by performing two-sample logrank tests for all possible ways to form
two-groups by those above and below a given cutpoint of X. An example plot of the
resulting v2 statistic is given in Fig. 5, from which the optimal split can be found as
the split which maximizes the logrank test.

This maximal value, and indeed the entire plot, can be judged against the per-
mutation distribution, as illustrated in Fig. 6. A full explication is given in Crowley
et al. [4]. Examples of the use of the logrank test in a recursive partitioning algo-
rithm are given in LeBlanc and Crowley [6].

Table 1 Contingency table
at time tj

D1j R1j � D1j R1j

D2j R2j � D2j R2j

Dj Rj � Dj Rj

Fig. 5 An example of the
running logrank test based on
data from patients with
non-Hodgkin lymphoma,
using a covariate based on the
major histocompatibility
index 2 (MHCII). The y-axis
is the value of the logrank test
in v2 form for patients above
and below each value of
MHCII
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3.2 Logrank Tests for Ordered Alternatives

Crowley [3] first proposed a modification of the logrank test sensitive to ordered
alternatives of the form S1ðtÞ� S2ðtÞ� � � � � SKðtÞ, with at least one of the
inequalities being strict. A Jonckheere [5] type statistic would be of the form
J ¼ PK

i¼1

PK
j¼iþ 1 Lij, remembering that Lij is the numerator of the logrank test for

comparing group i to group j. It was also noted that by algebra
J ¼ PK

i¼1

PK
j¼iþ 1 Lij ¼

PK�1
i¼1 LðiÞ, where LðiÞ is the numerator of the logrank test

for comparing group i to the pooled groups iþ 1 through K. This is particularly
advantageous, as the LðiÞ’s are uncorrelated [7]. Thus the standardized simple
ordered logrank statistic is

SOL ¼
XK�1

i¼1

LðiÞ
( )2,XK�1

i¼1

var LðiÞ
� �

:

There are two issues with the simple ordered logrank test as defined. The first is
that there is some arbitrariness in the order in which groups are compared. We can
start by comparing group 1 to the combined groups 2 through K and proceed “up”,
as above (call this SOL� 1), or we can start by comparing group K to the combined
groups 1 through K � 1, and proceed down ðSOL� 2Þ. These are not the same.
Secondly, as shown by Liu et al. [8], the simple ordered logrank test SOL� 1 lacks
power for alternatives of the form S1ðtÞ\S2ðtÞ ¼ � � � ¼ SKðtÞ, and symmetrically
SOL� 2 lacks power for alternatives of the form S1ðtÞ ¼ � � � ¼ SK�1ðtÞ\SKðtÞ.
They proposed as an alternative a modified ordered logrank test. Define LðiÞ as the
numerator of the logrank test for comparing the pooled groups 1 through i with the
pooled groups iþ 1 through K. Then

Fig. 6 Observed value of the
running logrank test from
Fig. 5, along with the
permutation distribution. The
signal clearly separates from
the noise
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MOL ¼
XK�1

i¼1

LðiÞ

( )2, XK�1

i¼1

var LðiÞ
� �þ 2

X
i\j

cov LðiÞ; LðjÞ
� �( )

;

where details of the covariance calculation are given in Liu and Tsai [9].

4 Three-Group Splits Based on a Single Covariate

We return to the example of patients with multiple myeloma treated with a Total
Therapy regimen, and with gene expression profiling data as summarized in the
GEP70 score. Separation into two risk groups was done by assessing the bimodal
distribution of the score, resulting in a cutpoint of 0.66 (the optimal split based on
the running logrank test is quite close to this value). The question arose—how best
to define 3 risk groups?

Qu et al. [12] addressed this issue by defining a latent class model, which
assumes that there ARE two-groups, but that there is an area of uncertainty in the
score, in which it is unclear to which group the patient belongs (a grey zone). Their
model assumed a Weibull distribution for progression-free survival within each risk
group, and a logistic model for the probability of being in a risk group given the
GEP70 score. The grey zone was defined by having a score such that the 95%
confidence limits for the logistic probability included the value 0.5. This resulted in
cutoffs of 0.49 and 1.07 for the score in the Total Therapy 2 training set. The
resulting 3 progression-free survival curves are shown in Fig. 7, along with the
results of applying these cutoffs to a test set of patients on Total Therapy 3.

Fig. 7 Progression-free survival for groups defined by the grey zone model, the middle group
being those who by the model are not clearly in either the high or low GEP70 risk groups. In the
legend Risk[ 0:49 is the middle group, for whom the risk score is between 0.49 and 1.07. The left
panel is the training set Total Therapy 2, and the right panel applies the same cutpoints to the
validation set Total Therapy 3
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The grey zone methods validates well, but note that the three resulting groups do
not have comparable separations, the two higher risk groups being fairly similar.
This motivated us to try the modified running ordered logrank test MOL to these
same data. Thus instead of searching for all possible cutpoints of a single covariate,
we search for all possible pairs of cutpoints, and choose the pair that maximizes the
MOL. Applying this procedure to the Total Therapy 2 progression-free survival data
gives cutpoints of 0.1549 and 0.5982. The resulting 3 curves are shown in Fig. 8,
along with curves for the Total Therapy 3 validation set using the same cutpoints.
Note that there is comparable separation among the 3-groups, which we consider a
desirable outcome.

5 Simulations

In an effort to see whether the proposed method for finding optimal three-group
splits based on a single covariate can uncover underlying structure, we performed a
simulation study based on an exponential model and a uniformly distributed
covariate on the interval [0,2]. The first model specified the exponential parameter
as a step function, k ¼ 3� Iðx� 0:67Þ � Iðx� 1:33Þ, that is, 3 risk groups with
hazards 3, 2 and 1, with cutpoints 0.67 and 1.33, and equal sample sizes for each
group. We did 500 simulations, each with sample size 300, and found cutpoints for
each simulation. For comparison we did a hierarchical running logrank split into
3-groups using two steps of a recursive partitioning algorithm, applying the running
logrank test at each step (the first step chooses an optimal cutpoint, the next step
fixes that cutpoint and chooses the next best split on the covariate, in either of the
original groups). We also included in the simulations Tarone’s trend test [13],

Fig. 8 Progression-free survival for groups determined by the MOL procedure in the training set
(Total Therapy 2; left panel) and the validation set (Total Therapy 3; right panel). Note that in the
legend Risk[ 0:1549 is the intermediate group, with risk score between 0.1549 and 0.5982
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which is a Cox regression [1] with covariate (3,2,1) for the 3-groups, respectively.
We chose for simplicity not to include censoring in the simulations. The results are
plotted in Fig. 9 (top row), from which it is apparent that the two ordered logrank
procedures MOL and SOL� 1 produce somewhat tighter clustering around the true
cutpoints of 0.67 and 1.33 than the 3 other methods. From the pattern in Fig. 9 it
seems that SOL� 2, Tarone’s trend test and the hierarchical procedure tend to be
less sensitive to the choice of the second cutpoint. The middle row of Fig. 9 shows
the results of a model which is linear in the covariate, which should favor the trend
test, and the bottom row is from a null model, showing no apparent clustering.

We also calculated the mean squared error (MSE), the Euclidean distance
between the estimated and true cutpoints averaged across the 500 simulations, for
both the step function and linear models. (For the linear model we took the “true”
cutpoints to be at 0.67 and 1.33, giving equal sample sizes to the 3-groups.) The
results are given in Table 2, from which it can be seen that for the step function
model SOL� 1 is the best of the 5 procedures, followed closely by MOL. For the
linear model Tarone performs best as expected, with the hierarchical procedure
nearly the same, while the 3 ordered logrank procedures perform relatively poorly.

Fig. 9 Results of 500 simulations for a step function covariate (top row), a linear covariate
(middle row) and a null model (bottom row). Blue dots are closer to the “true” cutpoints, red dots
are farther away

Table 2 MSE based on 500 simulations (equal group proportions, equal distances (3,2,1))

Hierarchical MOL SOL� 1 SOL� 2 Tarone

Step 0.0950 0.0653 0.0414 0.1327 0.1090

Linear 0.1177 0.2058 0.1916 0.1834 0.1122
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We varied the cutpoints and proportions in each group and found that sometimes
MOL is the best of the 5 procedures, followed closely by SOL� 1, and otherwise
there are no substantive differences in the rankings of the procedures. For example,
a step function model with cutpoints 0.5 and 1.0, and sample fractions 1/4, 1/4, and
1/2 yields results for MSE as in Table 3.

Varying the distance between the groups made a larger difference in the simu-
lation results. With the step function model with cutpoints 0.67 and 1.33 and equal
group sizes, but hazards 5,4,1, the results are in Table 4, and with hazards 5,2,1,
Table 5.

From these and other simulations, some observations emerge. When there are
3-groups, the comparison between SOL� 1 and SOL� 2 depends on whether
groups 1 and 2 are close together, or groups 2 and 3, because of the way groups are
combined in the test statistic. The modified ordered logrank test MOL represents a
more robust alternative test. Tarone’s test often performs similarly to the hierar-
chical running logrank procudeure, and is the best when the linear model holds.

6 Computational Considerations

The computational burden in finding optimal 3-group splits via the ordered logrank
tests is heavy, with calculations being on the order of n2 rather than order n as with
2-group splits (and thus the hierarchical procedure). This is of course especially
important for simulation studies and for permutation assessment of the null dis-
tribution. An important shortcut for the ordered logrank and hierarchical recursive
partitioning procedures is an updating algorithm for the running logrank test due to
LeBlanc and Crowley [6] which increases the computational speed by eliminating
the need for a recalculation of all the risk sets from scratch. It is possible that a

Table 3 MSE based on 500 simulations (unequal group proportions, equal distances (3,2,1))

Hierarchical MOL SOL� 1 SOL� 2 Tarone

Step 0.1144 0.0679 0.0858 0.2455 0.0999

Table 4 MSE based on 500 simulations (equal group proportions, unequal distances (5,4,1))

Hierarchical MOL SOL� 1 SOL� 2 Tarone

Step 0.1798 0.2187 0.0359 0.3284 0.3133

Table 5 MSE based on 500 simulations (equal group proportions, unequal distances (5,2,1))

Hierarchical MOL SOL� 1 SOL� 2 Tarone

Step 0.0165 0.2359 0.3107 0.0666 0.0211
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one-step version (first step of the Newton–Raphson algorithm) of Tarone’s test
might entail similar improvements in computational speed, but perhaps at the price
of an increase in MSE.

7 Concluding Remarks

We have attempted to motivate the use of some version of a running ordered
logrank test as an algorithm for creating 3 risk groups based on a single covariate.
The idea appears promising based on its application to data on myeloma patients
from the Myeloma Institute of the University of Arkansas for Medical Sciences.
The modified ordered logrank procedure MOL appears to be the best among the 3
ordered logrank tests for a step function model for the covariate, though in cer-
tain situations the hierarchical procedure is better. In an effort to understand the
differing results with the modified ordered logrank test MOL compared to the
hierarchical recursive partitioning algorithm, we chose one simulation where
the hierarchical procedure did well and MOL did not. The results are given in
Fig. 10, from which it is apparent that the procedure using MOL might preferen-
tially choose cutpoints where the survival of 2 of the 3-groups is relatively close.

Tarone’s trend test and the hierarchical procedure perform best under a linear
model ideally suited for Tarone’s test, but the hierarchical procedure is to be
preferred, being comparable in terms of MSE and much better in terms of speed.
Further simulations could help define when the MOL is the statistic of choice for
optimal 3-group splits.

Fig. 10 Simulated survival based on cutpoints determined by the MOL procedure (left panel) and
the hierarchical procedure (right panel) in a case where the MOL does poorly while the
hierarchical does well
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A Smooth Basis for Clinical Subgroup
Analysis

Michael LeBlanc

Abstract Data partitioning methods, including regression trees, have been widely
used to describe subgroups of cancer patients with differing prognosis. We describe
an alternative technique based on a modeling that characterizes subgroups through a
smooth basis function representation of subgroups. The strategy allows the user to
control the expected number of patients in the subgroup as well as the anticipated
survival in the targeted group. An example based on data from a clinical trial for
patients with Myeloma is used to illustrate the new method.

Keywords Regression � Tree-based Regression � Prognostic Groups

1 Introduction

There is a continuing need to expand the current set of analytic tools to better
understand the complex heterogeneity of patient outcomes in cancer clinical trials.
Our focus will be on extending statistical modeling tools that are helpful in facil-
itating the development of new clinical trials. We will discuss methods that give
well defined and interpretable prognostic groups and are potentially less variable
than the results obtained from tree-based algorithms. In addition, it is often useful to
control the mass of the prognostic groups (or size of the subgroups), and as such the
new method allows for that control.

In this chapter we propose a simple procedure based on combining existing
algorithmic components that yields model components that can lead to decision
rules. We first provide more motivation for constructing subgroups first in the
univariate setting, but then with multiple variables. We then describe a transfor-
mation of regression variables using a basis function representation, and show how
the new method fits into a general regression model formulation. We end with a
clinical trial data set example.
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2 Background

Providing simple descriptions of individuals with extreme risk, differing prognosis
or even greater treatment effect has long been an interest in oncology. Many
methods have been proposed that lead to simple logical or Boolean descriptions of
subgroups of patients. The most widely utilized is the decision rule (or cut-point)
developed on a single ordered biomarker related to patient outcome. This opti-
mization has even been extended to simultaneously look for multiple sub-groups
([4], this monograph). For cases of more than one marker or predictor, many
techniques have been developed that yield simple decision rules. These methods
include tree-based models [3, 5, 10, 11, 18, 7, 15], rule induction methods some-
times called bump hunting or peeling [6, 12], extreme regression [13] and methods
that construct Boolean combinations of binary predictors using a method called
Logic Regression [14]. While these methods have been useful, alternative rule
based methods that yield less variable results that can be used for decision making
and trial design are worthy of investigation.

As general motivation, below we consider a single gene expression variable for a
group of patients with Diffuse B-Cell Lymphoma (DBCL). The gene called
DR-Alpha (a member of MHC-Class II) genes is shown in Fig. 1. The smooth line
is a non-parametric estimate of the logarithm of the hazard ratio as a function of
values of the marker based on B-spline basis in Cox regression (e.g. [16]. One can
see here the hazard estimate decreases with increases in the marker. In other words,
survival is worse for patients with low values of the marker. In addition to this
relationship, it could be important to describe that rule for the region or the sub-
group R = {log DR-Alpha < −1}, the fraction of the patients that would fall into
that group, v(R), and the outcomes associated with that group.

While the strategy to select a single subgroup is relatively straightforward in the
univariate setting, obtaining decision rules in more than one dimension is more
complex. The best known class of algorithms is called tree-based or recursive
partitioning. In Fig. 2 we provide an example, this time with patients that have been
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Fig. 1 Smooth estimate of
relative risk as a function of
gene expression DR-alpha for
diffuse large B-Cell
Lymphoma patients. The
region or subgroup of patients
corresponding to those with
poor survival or high hazard
is indicated by region R
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treated for multiple myeloma. Without going into the details of how the model is
built, the rule appears as in Fig. 2. Successive univariate rules are estimated from
the data. Individuals associated with a terminal node (the end of any branch) are
those where the covariate rules apply for all the univariate rules down the path.
Thus the right-most node of the tree, corresponding to patients with high SB2M
(Serum beta2 microglobulin) and high CALCIUM (Serum Calcium) have the worst
survival, corresponding to a hazard ratio of 4.1 relative to the root node or overall
group hazard. For individuals in each group one could describe the prognosis or
survival for patients falling into that group.

|
SB2M< 3.65

ALB UMIN>=2.95

CALCIUM< 9.05

CALCIUM< 11.6

0.5371 0.8843

1.554

1.286 4.103

Fig. 2 Survival tree for patients with multiple myeloma. The terminal nodes in the tree give
hazard ratios relative to the root node
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While it has been recognized that trees yield useful descriptions, their extreme
discreteness can lead to relatively poor prediction and in some settings where
calibrating the size of the prognostic group is important, they are also too discrete to
achieve that goal. To address these issues, ensembles of trees and other machine
learning methods [2, 8] have been proposed, but the trade-off is that one can lose
the simple or parsimonious decision rule interpretation. This proposal works by first
viewing the prognostic subgroup modeling problem in terms of a regression
function representation.

2.1 Examples of Basis Function Regression

First we review some useful regression methods that are comprised of combinations
of simple univariate functions. While applications typically considered in oncology
use time-to-event (survival) data, or response binary data, we present background
and develop the ideas in terms of a general regression model set up. For instance,
with survival data there would be an observed time under observations T and an
indicator of whether the subject was observed to fail at the time denoted as
d ¼ f0; 1g. The underlying survival model is assumed to be modulated by patient
characteristics x through an index regression function gðxÞ: We start with the
simple linear model and reference some extensions. The linear model

gðxÞ ¼
Xp
i¼1

bixi

can also be used as the starting point for non-linear, non-additive, multivariate
regression methods. In the survival data setting the linear model could represent the
linear regression component in a proportional hazards model. Assume that the
regression function gðxÞ is in some and let B1ðxÞ; . . .;BpðxÞ be a basis for linear
functions useful to model the outcome distributions. Then we can write a gener-
alized regression function as follows:

gðxÞ ¼
Xp
i¼1

biBiðxÞ: ð1Þ

The linear model most widely used model in prognostic settings, is frequently
based on the Cox’s proportional hazards model.

Several nonparametric multivariate regression methodologies use a basis func-
tion approach, but rather than fixing the initial set of basis functions, these
approaches select the space at the same time the coefficients of the basis functions
are estimated. Some extensions are highlighted below:
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• Multivariate Adaptive Regression Splines (MARS) and related spline methods
(e.g. [9]): The basis functions that are used for MARS and related methods are
piecewise polynomials (splines) and their tensor products.

• Regression tree methods, such as Classification and Regression Trees (CART,
[3]): The basis functions that are used for tree methods are indicator functions
corresponding to rectangular regions of the predictor space.

• Logic Regression [14] is discussed below. The basis functions that are used for
Logic Regression are Boolean combinations of binary predictors.

• Rule Induction or Peeling [6, 12]: For this method there is a sequence of basis
function BiðxÞ representing nested boxes in the covariate space, but only one is
chosen for a given model.

Smooth regression methods using splines likely better capture the underlying
association but do not lead to simple descriptive subset rules. Regression tree or
Logic Regression methods are similar with respect to defining subsets or subgroups
of subjects based on Boolean or logical rules.

2.2 Trees via Basis Functions

Tree-based models have been described in many publications. However, a key
aspect of these models that needs to be emphasized is the concept of recursive data
splitting. Each split is induced by a rule of the form “x 2 S” where S � X. For
ordered variables the rule is of the form

S ¼ fx : xj � cg;

or S is a subset rule

S � B ¼ fv1; v2; . . .; vrg

of the r values of xj for categorical variables. The tree model is grown in a forward
stepwise fashion. For the remaining data set and predictor space, each variable and
potential split point is evaluated. The algorithm can be represented as generating a
sequence of indicator basis functions. Any split at a node h yields two nodes that
can also be represented with a pair of basis functions. Here, focusing only on the
ordered variable setting, the new basis function would be

bþ
hðjÞðxÞ ¼ IfxhðjÞ [ chðjÞg and b�hðjÞðxÞ ¼ IfxhðjÞ � chðjÞg:

Each step in the growing tree replaces a current node h with a left and right
daughter nodes lðhÞ and rðhÞ; or in other words, the current basis function BhðxÞ for
node h with the basis functions BlðhÞðxÞ and BrðhÞðxÞ
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BlðhÞðxÞ ¼ BhðxÞbþ
hðjÞðxÞ and BrðhÞðxÞ ¼ BhðxÞb�hðjÞðxÞ:

This split is equivalent to just creating a new basis function in the regression
model (1). For example, a typical regression function representing a node in a tree
would be

LðxÞ ¼Ifx1 [ c1g and Ifx2 � c2g and Ifx3 [ c3g:

2.3 Logic Regression and Basis

While Logic Regression models are constructed differently than trees, they can still
can be viewed as having a similar regression function representation:

f ¼ b0 þ
X

bjLjðXÞ:

The Logic Regression method used combinations of variables through basis
functions of binary data of

Lij ¼ fXij ¼ 1gOR Lij ¼ fXij ¼ 0g

for covariate j and observation i. For instance, a three term logic expression is

Li1 AND Li2 OR Li3:

This is a natural method for binary or discrete variables but “AND” or “OR” is
not a natural combination function for ordered variables. The primary reason we are
re-introducing Logic regression as part of this work is to motivate a modification to
regression modeling that would be appropriate for ordered variables and
combinations.

2.4 A New Smooth Basis Function and Combinations
of Variables

We propose to evaluate a new function approximation method that characterizes
individual ordered or continuous factors in terms of quantiles of their distribution
function, which can be used to describe regions or subgroups, R, described above.
In prior work, we used extreme functions (maximum and minimum) to construct
extreme regression functions, but that work used linear sub-functions and was
applicable only to continuous predictors [13]. However, optimization of the indi-
vidual component functions is quite complex for that method. Here we focus on a
simpler model building method analogous to tree-based regression or step-wise
regression.
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First we replace the step function transformation used in regression trees (with
ordered variables) with something smoother. For instance, we propose that

Ifx1 [ c1g or 1� Ifx1 [ c1g

could be just replaced with the rank transformation of the covariate, in terms of the
empirical distribution or survival distribution of the ordered covariate,

FnðXÞ or 1� FnðXÞ:

The empirical distribution function of the ordered feature is a natural extension
of the binary feature variable {0, 1} used in trees or Logic Regression. One could
also consider parameterized transformations of the distribution function

gaðFnðXÞÞ : ½0; 1� ! 0; 1�

to control for the impact of the variable X relative to other variables in the model.
An example of simple transformation would be

gaðFnðXÞÞ ¼ FnðXÞa

which is the power basis. Alternatively one could use a truncated spline a

FnðXÞðcþÞ ¼ aFnðXÞ if aFnðXÞ\c

¼ 1 if aFnðXÞ[ c:

Limiting our discussion to the power basis one could use the complement
function,

gaðFnðXÞÞ ¼ 1� gaðFnðXÞÞ;

or use these empirically transformed variables

bþ
hðjÞðxÞ ¼ gaðFnðXhðjÞÞÞ and b�hðjÞðxÞ ¼ 1� gaðFnðXhðjÞÞÞ:

An obvious choice is to consider products of the basis functions for each node in
the tree,

LjðXÞ ¼ gaðFnðX1ÞÞgaðFnðX2ÞÞð1� gaðFnðX3ÞÞÞ:

However, this definition is not directly useful in deriving regression rules.
However, a special surface is obtained by replacing the product term with the
minimum function. For instance, the term

LjðXÞ ¼ minðgaðFnðX1ÞÞ; gaðFnðX2ÞÞ; 1� gaðFnðX3ÞÞ
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results in a simple inverse function for the component term, LjðXÞ: That is, for each
component term lead, any level bjLjðXÞ[ q describes a Boolean decision rule. In
this case, the level sets or contours of the function move along coordinate axes, and
the subset of patients defined by any LjðXÞ\q is a Boolean combination of indi-
vidual thresholds FnðXjÞ\qj or FnðXjÞ� qj. That is, each basis function for a given
level output LjðXÞ[ q results q-level set X ¼ fx : LjðxÞ� qg. There are strong
connections to our prior work, Extreme Regression, but here we just construct
simple rank based transformations to construct regression models, rather than trying
to jointly specify a complex regression function of a combination of minima and
maxima of component terms used as part of extreme regression.

In Fig. 3, we give an example of a component term using the new method. Note
that the surface for the minimum-based basis function is locally univariate; so any
decision rule is an AND function. There is considerable flexibility with respect to
shapes depending on the power parameters. Some examples are given in Fig. 4.

3 Algorithm: Expand and Select

We propose to use standard regression function methods to combine the component
functions

f ¼ b0 þ bZþ
X

bjLjðXÞ:

We propose a simple model building strategy. For each variable Xj, consider a
range of transformation parameters a1; . . .; ak: This creates a set of potential basis
functions:
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Fig. 3 Example of the
combination of two basis
functions
minðFnðX1Þ;FnðX2ÞÞ. The
surface is locally univariate
and the threshold rule would
be in the form of the simple
binary decision rule
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fga1ðFnðX1ÞÞ; . . .gak ðFnðX1ÞÞ; . . .ga1ðFnðXpÞÞ; . . .gak ðFnðXpÞÞg:

Once that set of basis functions is constructed, consider that set for inclusion in
the model. In addition, allow for more complex basis functions to be considered by
combining them with one of the existing sets of basis functions

fBmþ 1ðXÞ ¼ minðBmðXÞ; gajðFnðXrÞÞg:

Here, the combination uses the minimum function, unlike most adaptive
regression function settings where the combinations used to construct interactions
are products. This stepwise process is continued, adding terms to grow a model to a
full size of K terms.

Now we use Lasso [17] regression (or elastic net) to choose which terms to
retain in the model and to estimate the component terms,

�lðb; kÞ ¼ �
Xnk
i¼1

liðbÞþ kPðbÞ;
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Fig. 4 Four examples of the combination of two basis functions a minðFnðX1Þ;FnðX2ÞÞ,
b minðFnðX1Þ; 1� FnðX2ÞÞ, c minðFnðX1Þ:5;FnðX2ÞÞ, d minðFnðX1Þ2;FnðX2Þ:5Þ
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where PðbÞ represents a penalty term, k is a positive penalty parameter, and
b ¼ ðb1; . . .bpÞ. Given that simplicity and variance control are both critical, it is
natural to consider an elastic net type penalty [19],

PaðbÞ ¼
X
j

PaðbjÞ

where
PaðbjÞ ¼ ½ð1� aÞb2j þ ajbjj�:

Although in many settings the elastic net will give better predictions, because we
want simple models the Lasso method is preferred. We choose to select model
complexity based on a variation of the AIC method, where the usual 2 per
parameter in the deviance is doubled to account for the adaptive selection. We have
not yet implemented k-fold cross-validation or other resampling techniques for this
algorithm, but they would be a feasible alternative.

4 Example: Smooth Prognostic Basis Modeling

We will demonstrate the modeling method on data generated from patients treated
for multiple myeloma on a clinical trial conducted by SWOG. The study was a
randomized Phase III study considering Standard Dose Versus Myeloablative
Therapy for Previously Untreated Symptomatic Multiple Myeloma [1]. Data con-
sidered in this example used five prognostic factors [Calcium, WBC, Serum beta 2
microglobulin, Albumin and Lactate Dehydroginase (LDH)], and survival times as
outcomes. For this example we chose to only use cases with complete data ele-
ments. In addition, because this was only to be intended as an exploration of the
new method, we chose to simulate the data via empirical bootstrap to achieve 600
cases from the existing data set of 432 cases. Thus this can be viewed as an
empirically motivated simulated data set.

We used the stepwise version of the method described above. We chose to select
the model complexity number of terms based on the AIC type penalty rather than
cross-validation to simplify computation. However, to acknowledge the additional
selection bias due to basis set selection, we used an AIC penalty of 4 rather than the
standard value of 2.

Ultimately the model selected had 3 terms with two terms involving a single
variable and the final term involving 3 variables:

f ðserum b2)þ f ðcalciumÞþ f ðserum b2, calcium,wbcÞ:

Importantly, since the goal is to be able to describe decision rules, we also
present the inverse of the component functions. It allows us to describe the rule that
corresponds to the worst (or best) grouping of patients based on that component
function. Figure 5 shows each of the inverse component functions, which happened
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to correspond to the 1st, 2nd and 4th terms in the model before it was simplified,
and are denoted as eta 1, eta 2 and eta 4. For example, if one wanted the group of
patients where the hazard ratio estimator for the term f(serum b2, calcium,
wbc) > .15, then that would approximately correspond to patients described by

fcalcium[ 9:2gANDfserum b2[ 3:5gANDfwbc\7g:

To explore the marginal impact of each component term, Fig. 6 presents survival
curves for all patients as divided by the 25th, 50th and 75th percentiles of the data.
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Fig. 5 Inverse function representation of each of the component functions of the new method.
The y-axis of each plot give the prognostic variable in the original scale. The x-axis for each plot is

the regression component function value bbjgjðXÞ:
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Fig. 6 A panel showing the impact of splitting patients into two groups based on 25th, 50th and
75th percentile of each of the component functions(terms) in the final model. The model terms are
(1) serum beta 2, (2) serum calcium, (3) combination of serum beta 2, serum calcium and wbc.
Therefore, these plots represent the “marginal” association with survival for each of these
component terms
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5 Discussion

We presented a simple experimental extension to standard regression models. It
consists of two parts: first, each covariate is rank transformed (or transformed to its
empirical distribution or survival function) and then different power transformations
are evaluated. Second, a model building method is used where interactions are built
up with minimum functions rather than products. These two small changes result in
a procedure that is covariate transformation invariant. In addition, any value of the
component of the regression function can be represented by a simple rule consisting
of an AND function, which leads to cut-point or decision rules for individual model
terms.
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Meta-Analysis of Prognostic Studies
Evaluating Time-Dependent Diagnostic
and Predictive Capacities of Biomarkers

Satoshi Hattori and Xiao-Hua Zhou

Abstract Prognostic biomarker studies, which examine the association between
biomarkers and patients’ prognoses, have played important roles in clinical decision
making. Since prognostic studies are often conducted with small sample sizes in a
limited number of centers, meta-analysis is expected to be a powerful tool to obtain
sound evidence on prognostic biomarkers. However, the application of meta-analysis
of prognostic studies has been limited partly due to the lack of sound statistical
methods. In this chapter,we introduce some recently developedmethods useful for the
evaluation of diagnostic or predictive capacities of biomarkers for binary or
time-to-event outcomes. In addition, we newly present a novel method to estimate the
time-dependent positive and negative predictive value curves based onmeta-analysis.

Keywords Cutoff value � Diagnostic studies � Prognostic studies �Meta-analysis �
Time-dependent predictive value curve � Time-dependent receiver operating
characteristics

1 Introduction

Prognostic studies have been widely conducted to determine whether specific
biomarkers or other demographic factors such as age are associated with patients’
prognoses. Such studies are very useful to understand disease progression and to
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identify subgroups of patients with poor/good prognoses. Therefore, they have
played important roles in clinical decision making, healthcare policy, and patient
management [18]. However, as noted by several authors [1, 19, 23, 31, 32],
prognostic studies are often conducted with small sample size data from a single or
a few centers. Therefore, the findings in a prognostic study should be further
assessed, and meta-analysis is expected to be useful for this purpose [32]. In the
context of evaluating treatment efficacy in clinical trials, meta-analysis based on
multiple independent studies has been widely applied as a powerful tool to derive
more reliable evidence. Findings by well-conducted meta-analyses are regarded as
highly reliable evidence [2].

However, the application of meta-analyses to prognostic studies has been very
limited. Among meta-analyses of prognostic studies recently reported, Becattini
et al. [3] conducted a meta-analysis to examine the association between troponins
and short-term death (binary outcomes) in patients with an acute pulmonary
embolism. They reported the combined odds ratio of the high-expression group of
troponin relative to the low-expression group for short-term death. Meta-analyses of
prognostic studies with time-to-event outcomes include de Azambujya et al. [11]
for the antigen Ki-67 in early-stage breast cancer, Callagy et al. [5] for the protein
BCL-2 in breast cancer, and Pak et al. [27] and Na et al. [26] for FDG-PET in head
and neck cancer and lung cancer, respectively. They reported the combined hazard
ratio of the high-expression group of a biomarker relative to the low-expression
group across studies. The definition of high- and low-expression depends on a
cut-off value for the biomarker, which is often study-specific. All the
above-mentioned meta-analyses of prognostic studies simply applied standard
meta-analysis techniques (such as fixed-effects or random-effects modelling),
ignoring the presence of heterogeneous cut-off values and making it difficult or
impossible to accurately interpret the combined odds or hazard ratio. This has been
one of the pressing issues in the meta-analyses of prognostic studies [19, 31, 42].

The issue of using different marker cut-off values across studies also arises in
meta-analyses of diagnostic studies. For meta-analysis of diagnostic studies, the
summary receiver operating characteristics (sROC) curve based on a pair of the true
positive rate (TPR) and the false positive rate (FPR) provides a way to make an
inference freely from the specification of cut-off values [22, 25, 30]. Here the TPR
and FPR are defined as conditional probabilities that a subject has an observation of
the biomarker more than a cut-off value, given that he/she does have an event and
does not, respectively. Recently, Hattori and Zhou [15] re-analyzed the acute
pulmonary embolism data by Becattini et al. [3] by using the sROC curve and
found that troponin T had a better diagnostic capacity than troponin I, which could
not be clearly concluded by the combined odds ratios by Becattini et al. [3].

Another methodological perspective in the meta-analysis of prognostic studies is
the application of other diagnostic measures, the positive predictive value
(PPV) and the negative predictive value (NPV), rather than the sROC curve based
on the TPR and FPR. Here the PPV is defined as the conditional probability that a
subject will experience an event given that his/her biomarker is equal to or higher
than the cut-off value, while the NPV is defined as the conditional probability that a
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subject will experience no event given that his/her biomarker value is less than the
cut-off value. The PPV and NPV provide useful information to medical doctors and
patients about the likely outcome for a given biomarker value [47]. Chu et al. [8]
and Leeflang et al. [21] proposed to make a summary of pairs of the PPV and NPV
with the summary operating point by applying the mixed-effect model. Riley et al.
[34] proposed to show a predictive region of the pair, PPV and NPV, of future
populations in presenting results of meta-analyses of diagnostic studies. However,
the summary indices proposed by these authors were dependent on the cut-off
values in the studies enrolled in the meta-analysis, so that it can be very hard to
compare predictive capacities of two or more biomarkers based on the results by
these methods. Hattori and Zhou [15] proposed a meta-analysis method for esti-
mating the positive/negative predictive value curves, that was earlier introduced by
Moskowitz and Pepe [24] in the presence of individual-level data (not in the setting
of meta-analysis).

Another new direction in methodological research on meta-analysis of prog-
nostic studies is to extend the sROC curve to time-to-event outcomes. Combescure
et al. [9] proposed a method to estimate a time-dependent ROC curve [17, 41, 46]
among others) in a meta-analysis of prognostic studies. Using the Kaplan–Meier
estimate of the survival function from each study at several time points as data,
Combescure et al. [9] proposed to apply a mixed-effect-based joint model with a
piecewise constant hazards function for time-to-event and a parametric distribution
of the biomarker. Hattori and Zhou [16] proposed two alternative methods, one an
extension of the bivariate normal model by Reitsma et al. [30] and the other an
extension of the bivariate binomial model by Macaskill [22].

In this chapter, we introduce the existing and some recently developed statistical
methods for meta-analysis of prognostic studies. In Sect. 2, we briefly introduce
some methods for meta-analysis of diagnostic studies with binary outcomes. In
Sect. 2.1, we briefly review how to estimate the sROC curve. Although the use of a
bivariate normal model by Reitsma et al. [30] provides a simple method to estimate
the sROC curve, we focus on the method based on a bivariate binomial model by
Macaskill [22], since it outperformed that based on the bivariate normal model
when the number of studies is small [12]. In Sect. 2.2, we introduce a method to
estimate the predictive value curves based on meta-analysis [15]. In Sect. 3, fol-
lowing Hattori and Zhou [16], we introduce a method to estimate the
time-dependent summary ROC curve based on the bivariate binomial model. The
key idea in this method is to impute the number of subject with the event before the
time point of interest both in the high- and low-expression groups from the censored
observations, and then to apply the bivariate binomial model. In Sect. 4, we
introduce a new statistical methods to estimate the time-dependent positive/negative
predictive curves [44, 45, 48] based on meta-analysis through applying the impu-
tation idea to the method in Sect. 2.2. In Sect. 5, we illustrate the methods given in
Sects. 3 and 4 using the data of BCL2 in breast cancer [5]. Lastly, we conclude this
chapter with some discussion in Sect. 6.
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2 Statistical Methods for the Meta-Analysis of Diagnostic
Studies (Binary Outcome)

2.1 Data

Suppose we are interested in conducting a meta-analysis of S diagnostic studies (or
prognostic studies with a binary outcome). Let D be a binary outcome
(disease/non-disease) and X be a continuous biomarker of a subject. We assume the
range of X is ½0;1Þ. We consider to make an inference based on information from
published papers. In this case, individual-level data of D and X are not observed.
Suppose we have the following study-level data. Let nðsÞ be the number of subjects
in the sth study and n ¼PS

s¼1 n
ðsÞ. Each study has a study-specific cut-off value for

X, which is observable and denoted by vðsÞ. For notational convenience, denote
vðsÞ0 ¼ 0; vðsÞ1 ¼ vðsÞ and vðsÞ2 ¼ 1. If a subject has X such as X\vðsÞ, the subject is
classified as the low-expression group, and otherwise as the high-expression

group. Let Z ¼ IðX� vðsÞÞ and NðsÞ
zd be a random variable, which denotes the

number of subjects with Z = z and D = d in the sth study. Denote NðsÞ
zþ ¼

NðsÞ
z0 þNðsÞ

z1 and NðsÞ
þ d ¼ NðsÞ

0d þNðsÞ
1d . Notation is summarized in Table 1.

A realization of NðsÞ
zd is denoted by nðsÞzd . Similarly, a realization of NðsÞ

zþ and NðsÞ
þ d is

denoted by nðsÞzþ and nðsÞþ d , respectively. Our observations are fnðsÞzd : z ¼ 0; 1; d ¼
0; 1g and vðsÞ for s ¼ 1; 2; . . .; S.

2.2 Summary Receiver Operating Characteristics

Rutter and Gastoni [36] proposed a hierarchical model for a pair of binomial
variables, the number of subjects in a high-expression and that in a low-expression
group. They proposed a Baysian inference procedure to estimate unknown
parameters. Later, Macaskill [22] proposed to apply the maximum likelihood
method. The maximum likelihood estimator can be obtained with a software
package covering the non-linear mixed-effect model such as the
NLMIXED PROCEDURE of SAS (SAS Institute, Cary, NC).

Table 1 Notations for cell frequencies of 2 � 2 table for the sth study

D = 0 D = 1

Z ¼ 0 : X\vðsÞ NðsÞ
00 NðsÞ

01 NðsÞ
0þ

Z ¼ 1 : X� vðsÞ NðsÞ
10 NðsÞ

11 NðsÞ
1þ

NðsÞ
þ 0 NðsÞ

þ 1
nðsÞ
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Define pðsÞd ¼ PðX� vðsÞjD ¼ dÞ. Suppose that, conditional on NðsÞ
þ d ¼

nðsÞþ d;N
ðsÞ
1d �BinðnðsÞþ d; p

ðsÞ
d Þ for d ¼ 0; 1. Consider the model,

logitðpðsÞd Þ ¼ fdþ dðsÞ þ ðaþ aðsÞÞZðsÞ
d g � expð�bZðsÞ

d Þ; ð1Þ

where logitðxÞ ¼ logfx=ð1� xÞg; ZðsÞ
1 ¼ 0:5 and ZðsÞ

0 ¼ �0:5. The quantities d,

a and b are fixed-effects, and dðsÞ and aðsÞ are random effects following a zero-mean
normal distribution independently. We call this model the bivariate binomial model.

The random effects dðsÞ and aðsÞ are shared by pðsÞ0 and pðsÞ1 , which account for the
effects of a study-specific cut-off value.

Setting the random effects dðsÞ and aðsÞ at zero and eliminating d in (1), the
summary receiver operating characteristics (sROC) curve is defined by

sROCðx; a; bÞ ¼ 1þ exp �ae�
b
2 � logitðxÞe�b

n oh i�1
:

We employ the maximum likelihood method for parameter estimation. The sROC
curve can be estimated by sROCðx; â; b̂Þ, where â and b̂ are maximum likelihood
estimators for a and b, respectively. The area under the sROC curve (sAUC) is
estimated by

sAÛC ¼ sAUCðâ; b̂Þ ¼
Z1
0

sROCðx; â; b̂Þdx: ð2Þ

The variance of ŝAUCðâ; b̂Þ is estimated by using the delta-method and the standard
likelihood theory for the bivariate binomial model (1).

2.3 Summary Predictive Value Curves

The sROC curve is very useful to evaluate the diagnostic capacity of a biomarker in
the presence of heterogeneous cutoff values. In this subsection, following Hattori
and Zhou [15], we introduce a method to estimate the predictive value curves,
which is an alternative to the ROC curve.

We assume that the distribution of the biomarker X has a parametric probability
density function f ðx : hÞ, where h is a column vector of unknown parameters in a
parameter space. The cumulative distribution function of X is denoted by Fðx : hÞ.
Further, we assume a parametric model for relationship between the biomarker and
the response. For this purpose, we adopt the logistic regression,
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PðD ¼ 1jXÞ ¼ expðaþ bXÞ
1þ expðaþ bXÞ ; ð3Þ

where a and b are unknown parameters. Denote gT ¼ ðhT ; a; bÞ, and their true
values are denoted by gT0 ¼ ðhT0 ; a0; b0Þ. The cumulative distribution function of

X is denoted by F(x). The likelihood function for the multinomial sample fnðsÞzd g is
given by

YS
s¼1

Y
z¼0;1

Y
d¼0;1

P NðsÞ
zd ¼ nðsÞzd

� �
¼
YS
s¼1

Y
z¼0;1

Y
d¼0;1

PðD ¼ d; vðsÞz \X � vðsÞzþ 1Þ
n onðsÞzd

¼
YS
s¼1

Y
z¼0;1

Y
d¼0;1

ZvðsÞzþ 1

vðsÞz

expðaþ bxÞ
1þ expðaþ bxÞ
� �d 1

1þ expðaþ bxÞ
� �1�d

f ðx : hÞdx

2
664

3
775
nðsÞzd

:

Then, one can estimate the unknown parameter gT ¼ ðhT ; a; bÞ with the maximum
likelihood estimator ĝT ¼ ðĥT ; â; b̂Þ.

Following Moskowitz and Pepe [24], the positive predictive value curve is
defined as PPVðuÞ ¼ PfD ¼ 1jFðXÞ� ug, which is the positive predictive value
with subjects with the biomarker value X at or above the v th percentile regarded as
the positive test result. In a similar fashion, the negative predictive value curve is
defined as NPVðuÞ ¼ PfD ¼ 0jFðXÞ\ug. Following Huang et al. [20], we call
FðXÞ the percentile value of the biomarker X, which is the standardized measure-
ment of X and enables us to compare the predictive values of several biomarkers of
their own scale.

Since PPVðuÞ ¼ ð1� uÞ�1PfD ¼ 1;X�F�1ðuÞg, if the parametric model
ff ðx : hÞg correctly specifies the true distribution and the model (3) for the rela-
tionship between the biomarker and the outcome is correctly specified, one can
estimate PPVðuÞ by PPVðu : ĝÞ, where

PPVðu : gÞ ¼ 1
1� u

Z1
F�1ðu:hÞ

Qðx : a; bÞf ðx : hÞdx;

and Qðx : a; bÞ ¼ expðaþ bxÞ=f1þ expðaþ bxÞg. We call PPVðu : ĝÞ the sum-
mary predictive value (sPPV) curve. As shown in Appendix A of Hattori and Zhou
[15], PPVðu : ĝÞ follows a normal distribution approximately and thus, a 100ð1�
cÞ% pointwise confidence interval is constructed by PPVðu : ĝÞ � zc=2r̂PPVðuÞ=

ffiffiffi
n

p
,

where zc=2 is the 100ð1� c=2Þ% percentile of the standard normal distribution and
r̂2PPV ðuÞ is a consistent variance estimator obtained following the standard likeli-
hood theory, whose definition is presented in Hattori and Zhou [15].

262 S. Hattori and X.-H. Zhou



Similarly, NPVðuÞ ¼ u�1PfD ¼ 0;X\F�1ðuÞg can be estimated by
NPVðu : ĝÞ, where

NPVðu : gÞ ¼ 1
u

ZF�1ðu:hÞ

0

f1� Qðx : a; bÞgf ðx : hÞdx:

We call NPVðu : ĝÞ the summary negative predictive value (sNPV) curve.
A 100ð1� cÞ% pointwise confidence interval is constructed by
NPVðu : ĝÞ � zc=2r̂NPV ðuÞ=

ffiffiffi
n

p
. The definition of r̂NPV ðuÞ is given in Hattori and

Zhou [15]. Some further inferential tools, including simultaneous confidence bands
for the PPV and NPV curves, are presented in Hattori and Zhou [15].

3 Time-Dependent Summary Receiver Operating
Characteristics

3.1 Data

Suppose we enroll S prognostic studies of a right-censored time-to-event outcome
into a meta-analysis. Let T and C be the time-to-event and the potential censoring
time of a subject, respectively, and X is a measurement at baseline of a biomarker of
interest. We assume that each study is subject to right-censoring by C. Let the

cut-off value for the s th study be denoted by vðsÞ, and SðsÞ0 ðtÞ ¼ PðT [ tjX � vðsÞÞ
and SðsÞ1 ðtÞ ¼ PðT [ tjX[ vðsÞÞ be the survival functions of the low- and the
high-expression groups, respectively. We assume that T is a continuous random
variable, and T and C are independent conditional on X. The distribution function of
C is assumed to be common across studies and C is independent of X. These facts
lead to independence between T and C.

We suppose that the individual-level data T, C and X are not observed and the
following study-level data are available. The number of subjects in the

low-expression group and that in the high-expression group are denoted by nðsÞ0þ and

nðsÞ1þ , respectively, and denote nðsÞ ¼ nðsÞ0þ þ nðsÞ1þ . Let Ŝ
ðsÞ
0 ðtÞ and ŜðsÞ1 ðtÞ be Kaplan–

Meier estimates of the low- and the high-expression groups, respectively. At

t ¼ t1\t2; . . .\tK , Ŝ
ðsÞ
0 ðtÞ and ŜðsÞ1 ðtÞ are extracted from the graphical plots of

Kaplan–Meier estimates. Graph scan software packages such as the digitize pack-

age [29] can be used for this purpose. We assume that nðsÞ0þ , n
ðsÞ
1þ and the Kaplan–

Meier estimates are available in each study. We further assume that the cut-off value
of each study is observed. Let the follow-up time be defined as Y ¼ minðT ;CÞ. The
median follow-up time is defined as the sample median of Ys, where the median is
taken over the entire sample (not separately by the high- or the low- expression
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group) of each study, which is often reported in prognostic studies. We assume that
in some studies enrolled in the meta-analysis, the median follow-up time is reported
to estimate the common censoring distribution.

3.2 Multiple-Imputation and Bivariate Binomial Model

Suppose we are interested in estimating the time-dependent ROC curve at t ¼ tK .
Denote D ¼ DðtKÞ ¼ IðT � tKÞ and Z ¼ ZðtKÞ ¼ IðX � vðsÞÞ. We use the same

notation presented in Table 1. That is, let NðsÞ
zd denote the number of subjects with

D ¼ d and Z ¼ z. Denote NðsÞ
þ d ¼ NðsÞ

0d þNðsÞ
1d . Note that N

ðsÞ
zd is not observed in the

presence of censoring. Our proposal is to impute fNðsÞ
zd g and then apply methods for

the meta-analyses of diagnostic studies, which have binary outcomes. To make a
valid inference accounting for variation in the imputation, we employ the multiple
imputation technique [14, 35]. The multiple imputation accounting for uncertainty
of the parameter estimation in the imputation model is called proper. To conduct a
proper multiple imputation, we need to draw samples from the conditional distri-

bution of missing observations given observed data. Let p̂ðsÞz ðtKÞ ¼ NðsÞ
z0 =n

ðsÞ
zþ . To

impute NðsÞ
z0 , which is missing in all the studies, we generate p̂ðsÞz ðtKÞ from its

conditional distribution given observed data ŜðsÞz ðtKÞ,

f ðp̂ðsÞz ðtKÞjŜðsÞz ðtKÞÞ ¼
Z1
0

f ðp̂ðsÞz ðtKÞjŜðsÞz ðtKÞ; SðsÞz ðtKÞÞf ðSðsÞz ðtKÞjŜðsÞz ðtKÞÞdSðsÞz ðtKÞ;

ð4Þ

where, f ðp̂ðsÞz ðtKÞjŜðsÞz ðtKÞ; SðsÞz ðtKÞÞ is the probability density function of p̂ðsÞz ðtKÞ
given observed data ŜðsÞz ðtKÞ and the true survival function ŜðsÞz ðtKÞ,
f ðSðsÞz ðtKÞjŜðsÞz ðtKÞÞ is a posterior distribution of SðsÞz ðtKÞ given observed data ŜðsÞz ðtKÞ
and dSðsÞz ðtKÞ is the Lebesgue measure on (0, 1). Let gðxÞ be a smooth and
monotone function from ð0; 1Þ to ð0;1Þ. The function g is introduced to make
samples for p̂ðsÞz ðtKÞ of between 0 and 1, and a choice is the logit function
gðxÞ ¼ log x� logð1� xÞ. As shown by Hattori and Zhou [16], it holds that

ffiffiffiffiffiffiffiffi
nðsÞzþ

q
gðp̂ðsÞz ðtKÞÞ � gðSðsÞz ðtKÞÞ

ŜðsÞz ðtKÞ � SðsÞz ðtKÞ
� � 	!d N

0
0

� �
;
XðsÞ

z

� �
; ð5Þ

where !d implies a convergence in distribution,
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XðsÞ
z
¼ g11; g12

g12; g22

� �
¼ _g2ðSðsÞz ðtKÞÞuðsÞz ðtKÞ; _gðSðsÞz ðtKÞÞuðsÞz ðtKÞ

_gðSðsÞz ðtKÞÞuðsÞz ðtKÞ; frðsÞz ðtKÞg2
� �

;

uðsÞz ðtKÞ ¼ SðsÞz ðtKÞf1� SðsÞz ðtKÞg, which is the variance of the binomial distribution,

and frðsÞz ðtKÞg2 is the Greenwood variance for the Kaplan–Meier estimator [16].

Then, the conditional distribution of
ffiffiffiffiffiffiffiffi
nðsÞzþ

q
fgðp̂ðsÞz ðtKÞÞ � gðSðsÞz ðtKÞÞg given

ŜðsÞz ðtKÞ � SðsÞz ðtKÞ is given by

N
g12
g22

ffiffiffiffiffiffiffiffi
nðsÞzþ

q
ŜðsÞz ðtKÞ � SðsÞz ðtKÞ
n o

; g11 1� g12ffiffiffiffiffiffiffiffiffiffiffiffi
g11g22

p
� �� �

:

Thus, conditional on ŜðsÞz ðtKÞ and SðsÞz ðtKÞ,

gðp̂ðsÞz ðtKÞÞ�N gðSðsÞz ðtKÞÞþ g12
g22

ŜðsÞz ðtKÞ � SðsÞz ðtKÞ
n o

;
1ffiffiffiffiffiffiffiffi
nðsÞzþ

q g11 1� g12ffiffiffiffiffiffiffiffiffiffiffiffi
g11g22

p
� �0

B@
1
CA;

ð6Þ

which holds approximately.
Let hðxÞ be a smooth and monotone function from ð0; 1Þ to ð0;1Þ. From an

asymptotic property of the Kaplan–Meier estimator with the delta method,

hfŜðsÞz ðtKÞgjSðsÞz ðtKÞ�NðhfSðsÞz ðtKÞg; r2h;zðtKÞÞ

holds approximately, where r2h;zðtKÞ ¼ _h2fSðsÞz ðtKÞgfrðsÞz ðtKÞg2=nðsÞzþ and _h is the

derivative of h. With a vague prior distribution hfSðsÞz ðtKÞg�Nðh	;1Þ, the pos-
terior distribution of hfSðsÞz ðtKÞg is given by

hfSðsÞz ðtKÞgjŜðsÞz ðtKÞ�N hfŜðsÞz ðtKÞg; r2h;zðtKÞ
� �

: ð7Þ

If the Greenwood variance frðsÞz ðtKÞg2 is known, one can generate p̂ðsÞz ðtKÞ from
the conditional distribution (4) given observed data ŜðsÞZ ðtKÞ by sampling from (7)
and (6). Thus a proper multiple imputation can be conducted. However, in practice,
frðsÞz ðtKÞg2 is unknown. Hattori and Zhou [16] proposed a consistent estimator of

frðsÞz ðtKÞg2 by utilizing observations of the median follow-up time. To be precise,
we propose to generate samples according to the following steps:

Step 1: Generate U�NðhfŜðsÞz ðtKÞg; r̂2h;zÞ, where r̂2h;zðtKÞ ¼ _hfŜðsÞz ðtKÞg
fr̂ðsÞz ðtKÞg2=nðsÞzþ , and set SðsÞz ðtKÞ ¼ h�1ðUÞ.
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Step 2: Generate

V �N gðSðsÞz ðtKÞÞþ g12
ĝ22

ŜðsÞz ðtKÞ � SðsÞz ðtKÞ
n o

;
1

nðsÞzþ
g11 1� g12ffiffiffiffiffiffiffiffiffiffiffiffi

g11ĝ22
p

� � !
;

where ĝ22 ¼ fr̂ðsÞz ðtKÞg2 and set p̂ðsÞz ðtKÞ ¼ g�1ðVÞ.
Step 3: Set NðsÞ

z0 as the nearest integer of nðsÞzþ p̂ðsÞz ðtKÞ and NðsÞ
z1 ¼ nðsÞzþ � NðsÞ

z0 .

For s ¼ 1; 2; . . .; S, L imputed 2� 2 tables at time tK are generated. We can
apply any meta-analysis methods for a binary response. Here, we apply the
bivariate binomial model [22].

By applying the bivariate binomial model (1) to the L sets of cell frequencies

fNðsÞ
zd g, we have L sets of the sROC curves and their sAUCs. Then, an inference can

be made according to the standard multiple-imputation methodology [14, 35]. The
simulation study by Hattori and Zhou [16] demonstrated that this
multiple-imputation-based method worked very well in practical situations.

4 Time-Dependent Summary Predictive Value Curves

The time-dependent PPV and NPV curves for the biomarker X are defined as
PPVðu; tÞ ¼ PfDðtÞ ¼ 1jFðXÞ� ug and NPVðu; tÞ ¼ PfDðtÞ ¼ 0jFðXÞ\ug,
respectively, where DðtÞ ¼ IðT � tÞ. Suppose we are interested in estimating the
PPV and NPV curves at tK . Using individual participant data (i.e., in a
non-meta-analysis setting), Zheng et al. [44, 45] and Zhou et al. [48] proposed
inference procedures for the time-dependent PPV and NPV curves. In this section,
we propose a method to estimate them based on meta-analysis of prognostic
studies, that have the data defined in Sect. 3.1.

Our idea is to apply the multiple imputation explained in Sect. 3.2, which was
developed for the time-dependent sROC curve, to the method presented in
Sect. 2.3. We assume that X has a parametric probability density function f ðx; hÞ,
which has the range of ½0;1Þ, and T follows the Cox proportional hazard model
[10],

logf� logfSðtjXÞgg ¼ logf� logfS0ðtÞggþ bX; ð8Þ

where S0ðtÞ is a baseline survival function. Alternatively, one may employ the
proportional odds model [4], which is defined as

log
1� SðtjXÞ
SðtjXÞ

� �
¼ log

1� S0ðtÞ
S0ðtÞ

� �
þ bX: ð9Þ
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More generally, these models can be regarded as special cases of the linear
transformation model [6, 7],

g	fSðtjXÞg ¼ g	fS0ðtÞgþ bX; ð10Þ

where g	ð:Þ is a known function. If g	ðxÞ ¼ logf� logðxÞg and
g	ðxÞ ¼ logð1� xÞ=x, the linear transformation model (10) lead to the proportional
hazards model (8) and the proportional odds model (9), respectively. Since
PfDðtKÞ ¼ 1jXg ¼ 1� SðtK jXÞ, setting a ¼ gfS0ðtKÞg, (10) leads to

PfDðtKÞ ¼ 1jXg ¼ 1� g�1
	 ðaþ bXÞ: ð11Þ

By applying the imputation method in Sect. 3.2, one can generate L sets of

imputed cell frequencies fnðsÞzd g, which is regarded as a realization of fNðsÞ
zd g. Then,

one can estimate unknown parameters g ¼ ðhT ; a; bÞ by maximizing the multino-
mial likelihood

YS
s¼1

Y
z¼0;1

Y
d¼0;1

P NðsÞ
zd ¼ nðsÞzd

� �
¼
YS
s¼1

Y
z¼0;1

Y
d¼0;1

PðDðtKÞ ¼ d; vðsÞz \X� vðsÞzþ 1Þ
n onðsÞzd

¼
YS
s¼1

Y
z¼0;1

Y
d¼0;1

ZvðsÞzþ 1

vðsÞz

fQgðx : a; bÞgdf1� Qgðx : a; bÞg1�df ðx : hÞdx

2
664

3
775
nðsÞzd

;

where Qgðx : a; bÞ ¼ 1� g�1ðaþ bxÞ. The maximum likelihood estimator for g
based on the lth imputed cell frequencies is denoted by ĝ½l
. Following the inference
procedure presented in Sect. 2.3, one can estimate the PPV and NPV curves and
their standard errors for the lth imputed cell frequencies. Then, following Rubin’s
multiple-imputation methodology, the PPV curve is estimated by
P�PVðuÞ ¼ L�1PL

l¼1 PPVðu : ĝ½l
Þ, which is called the time-dependent sPPV curve,
and its variance can be estimated by VfP�PVðuÞg ¼ AðtKÞþ ð1þ L�1ÞBðtKÞ,
where AðtKÞ ¼ L�1PL

l¼1fr̂½l
PPV ðuÞg2, BðtKÞ ¼ ðL� 1Þ�1PL
l¼1fPPVðu : ĝ½l
Þ�

�PPVðuÞg2, and fr̂½l
PPVðuÞg2 is the variance estimate for the lth imputed cell fre-
quencies. The construction of pointwise confidence intervals can be done with a
t-distribution of the degree of freedom mðtKÞ, where mðtKÞ ¼ ðL� 1Þf1þ q�1

ðtKÞAðtKÞg2 and qðtKÞ ¼ ð1þ L�1ÞBðtKÞ. Inference for the time-dependent sNPV
curve can be made in a similar way.
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5 Application to BCL-2 Data

Callegy et al. [5] reported the results of a meta-analysis of 18 prognostic studies for
BCL-2, which is an anti-apoptosis protein in breast cancer patients. We illustrate
our proposed methods by re-analyzing this data. Among the 18 studies, 9 studies
provided a graphical plot of the Kaplan–Meier estimate of the survival functions of
the overall survival for the high-expression and low-expression groups. The cut-off
values of the 9 studies ranged from 0.1 to 0.33. We extracted the Kaplan–Meier
estimate every six months. Among the 9 studies, 5 studies reported their median
follow-up times, which were required to estimate the Greenwood variance. We
applied the bivariate binomial model for estimation of the sROC curve at t = 4
(year) with the proposed multiple-imputation. The exponential distribution was
assumed for censoring and 30 imputed samples were generated. In Fig. 1, the
estimated sROC curve at t = 4(year) is presented with the observed pairs of the
sensitivity and the specificity of the 9 studies plotted. The estimated sROC curves
appeared to fit well to the observed data. The sAUC was estimated as 0.65 (95% CI:
0.59, 0.71). The lower limit of the 95% CI was higher than 0.5, indicating that
BCL-2 was significantly associated with the overall survival.

In addition, we estimated the time-dependent sPPV and sNPV curves. We
assumed that the overall survival followed the proportional hazards model (8) or the
proportional odds model (9). For simplicity of illustration, we considered only the
log-normal distribution for BCL-2. Using these models, we applied our method
with 10,000 random numbers for Monte-Carlo integration in the likelihood func-
tion. The average of the log-likelihood over the 30 imputed samples was −2611
with the proportional hazards model and was −2561 with the proportional odds
model. We therefore employed the proportional odds model. In Fig. 2, the
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estimated cumulative distribution function u ¼ Fðx : ĥÞ and PfDðtKÞ ¼ 1jXg are
presented. In Fig. 3, the estimated time-dependent sPPV and sNPV curves at t = 4
are presented with 95% pointwise confidence intervals. The right panel of Fig. 3
suggests that the sNPV curve was almost invariant up to u = 0.8. On the other hand,
the sPPV curve increased from about u = 0.7. The corresponding x was calculated
as 0:67 ¼ F�1ð0:7; ĥÞ, indicating that the subjects with BCL-2 measurement of
more than 0.67 comprised the upper 30% of subjects of the population enrolled in
the meta-analysis, and this subpopulation had a much higher risk of dying before
t = 4.

6 Discussion

Although meta-analysis is expected to be useful for prognostic biomarker studies,
methodological development and application remained very limited. In this chapter,
we introduced some recently or newly developed statistical methods for the
meta-analysis of prognostic biomarker studies: the time-dependent summary ROC
curve [9, 16] and the time-dependent summary predictive value curves. Alternative
to these methods related to diagnostic medicine, Riley et al. [33] and Sadashima

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

u=
F

(x
:th

et
a)

4 year

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

x

P
(D

=
1|

X
=

x)

4 year

Fig. 2 Estimated cumulative distribution function Fðx : ĥÞ (left panel) and PðD ¼ 1jXÞ (right
panel) curves
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et al. [37] proposed to perform a summary based on a combined hazard ratio. Riley
et al. [33] proposed to apply a multivariate meta-regression model, in which the
study-specific cut-off value was incorporated as a study-level covariate. Their focus
was on examining the association between hazard ratios and cut-off values.
Sadashima et al. [37] proposed to make a summary of reported hazard ratios with a
study-specific cut-off value by estimating the individual-level biomarker-hazard
relationship by applying the meta-analysis techniques for the dose-response [39,
43]. To the best of our knowledge, these references constitute all the main proposals
for the meta-analysis of prognostic studies. In other words, this research area has
only just opened.

As presented in Sects. 3 and 4, inference of the time-dependent summary ROC
or predictive value curves requires the Kaplan–Meier estimates as input data. On
the other hand, the methods of Riley et al. [33] and Sadashima et al. [37] utilized the
hazard ratios and their standard errors. Accordingly, the hazard-based approaches
by Riley et al. [33] and Sadashima et al. [37] can incorporate more studies, since
one can extract a hazard ratio estimate from a Kaplan–Meier estimate [28].
Moreover, it is our impression that researchers will be more likely to display
Kaplan–Meier estimates to highlight their findings. Therefore, the time-dependent
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Fig. 3 Estimated PPV (left panel) and NPV (right panel) curves (solid and bold line) with 95%
pointwise confidence intervals (broken line) based on the proportional odds model and the
log-normal distribution for BCL-2: u ¼ F�1ðxÞ is the percentile value of BCL-2, and open circles
are observed PPV and NPV of each study with the estimated percentile value of the cut-off value
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summary ROC or predictive value curves may suffer from more severe publication
bias issues. Future research should address how to detect and adjust for publication
bias for these methods.

Finally, although we have overviewed how to make an inference for the
time-dependent summary predictive value curves, many issues should be addressed
in future research. As can be seen in Fig. 3, there was large heterogeneity in the
observed PPVs and NPVs among studies. To capture the heterogeneity, one can
consider extensions of the model (11) such as PfDðtKÞ ¼ 1jXg ¼
1� g�1ðaþ cW ðsÞ þ eðsÞ þ bXÞ, where W ðsÞ is a study-level covariate and eðsÞ is a
zero-mean random-effect. This model allows study-specific prevalences and thus
would be useful to predict the PPV and NPV with a given cut-off value and a
prevalence of the population of interest.

In our analysis of the BCL data in Sect. 5, we selected the model with larger
average log-likelihood values over imputed samples in an intuitive matter. The
development of model-selection procedures for multiple imputation is a highly
important goal [38, 40] in the analysis of missing data. It is therefore imperative that
model-selection procedures also be developed for our method relying on
multiply-imputed samples.
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Statistical Methodology and Engineering
for Next Generation Clinical Risk
Calculators

Donna Pauler Ankerst, Andreas Strobl and Sonja Grill

Abstract In today’s practice of medicine, a variety of online clinical risk calcu-
lators are available to assist doctors and patients in informed decision-making.
These tools may have unparalleled accuracy when founded on large cohorts or
clinical trial populations; they may have passed the litmus test of multiple valida-
tions. However, evolving clinical practice, technology and population characteris-
tics, as well as the discovery of new markers, can quickly outdate an existing risk
tool, making it non-optimal for the contemporary patient. The traditional path of
waiting for the next clinical trial or grant collective to end in order to amass fresh
data and build a brand new model is too slow for today’s rapid science society,
suggesting novel re-calibration methods applied to compartmentalized models that
can be incrementally updated in real time. While Electronic Health Records pro-
mise an inexpensive, uninhibited and institution-tailored data flow, the percent
usable data can be crippled by selection bias, non-ignorable missing data mecha-
nisms and entanglement in indeterminate text fields, requiring novel big-data and
record-linkage approaches to unravel. In this chapter we outline statistical methods
and engineering approaches that can be used to tackle these challenges, and thereby
keep risk calculators up to date in a continually evolving clinical care landscape. To
illustrate we outline our experience adapting the Prostate Cancer Prevention Trial
Risk Calculator during the past decade to meet the evolving challenges to risk
prediction, and new research needed for the next generation of clinical risk pre-
diction tools.
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1 Introduction

As clinical research has become more translational and patient-focused, so too have
individualized online risk calculators flourished as a means for fast-tracking aca-
demic results into patient practice and population validation. It is now commonly
the case for these tools to serve as tangible products of clinical trials or large cohorts
where substantial resources have been invested to prospectively and completely
collect the relevant data elements. For example, based on a three-generation car-
diovascular study initiated with 5000 members of Framingham, Massachusetts, the
Framingham Risk Calculator asks 7 simple questions in order to calculate one’s
10-year risk of having a heart attack [1]. The commonly used Breast Cancer Risk
Assessment Tool (BCRAT) first produced in 1989 based on data from 6000 par-
ticipants in the Breast Cancer Detection Demonstration Project, asks five simple
questions on medical and reproductive history in order to estimate a woman’s risk
of developing breast cancer during the next five years [2]. And more recently, the
Prostate Cancer Prevention Trial Risk Calculator (PCPTRC) established in 2006
calculates the risk of finding prostate cancer on biopsy based on 6 clinical and
demographic questions, including the commonly used screening biomarker,
prostate-specific antigen (PSA) [3].

The posting online of these risk tools has spurred external validation, pushing
the boundaries of generalizability to other populations differing in substance from
those on whom the risk tool was developed, for example to Asian or minority
populations. The absolute risk prediction webpage on the National Cancer
Institute’s website conveniently lists all available prediction models according to
cancer type, with links to published validation studies and papers citing the tools.
For some of the risk calculators the actual data set used to build the model has been
posted, which serves as a valuable education tool for young researchers new to the
field. Users can submit their own model to be posted, though this is not required as
the website periodically queries the internet for new published risk tools.

What is common to most of the major clinical risk calculators is that they only
contain a small handful of the established predictors, making them well-powered,
unlikely prone to overfitting, and easy to use by patients and doctors. However,
their smallness derives from necessity rather than these considerations. For all
cancers, risk factors currently in use are not perfect, and most models have oper-
ating characteristics far from optimal. Expansive research groups, such as the Early
Detection Research Network (EDRN) and the genome-wide association study
(GWAS) consortia, continually invest an immense amount of effort at all junctures
of the biomarker discovery and validation pipeline in the search for better markers
to improve cancer prediction. In the meantime, developed risk tools serve the
clinical world by providing state-of-the-art estimates of risk to improve
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patient-doctor communication and decision-making, and the biomarker research
community by providing a benchmark against which to assess the independent
predictive value of new markers.

Posed as a state-of-the-art estimate, the challenge to current cohort-based risk
models is that the conditions under which the models were developed, including
diagnostic technology, clinical practice patterns and population characteristics,
undergo constant evolution. This raises the possibility that any risk tool can become
outdated at any time. As a reminder, nearly all major risk calculators were founded
on large populations extracted from well-conducted trials or observational studies
that took decades to perform. For example, the PCPTRC was based on an
18,882-participant prevention trial with annual screening of healthy men over a
period of 7 years, with the exclusive requirement that all men were requested to
undergo prostate biopsy at the end of the study regardless of their risk [3, 4]. It is
not optimal to toss out older models built on the large well-organized studies in
favor of finding more recent cohorts to build new models, as the typical observa-
tional cohort that is lying around is smaller, likely to have data errors, and be prone
to bias because its data collection was not subject to a protocol or quality check.
What is needed is a change from the traditional philosophy towards building risk
calculators, to move away from static single cohort-based models towards dynamic
multiple cohort-based ones.

In this chapter, we show the statistical methods that can be used to enact this new
philosophy towards building contemporary risk tools. For concreteness, we use as a
running example throughout our ongoing experience in adapting the PCPTRC to
keep it current. The original PCPTRC predicted the binary outcome of cancer or not
on biopsy using logistic regression, so we will restrict the scope of the chapter to
this model. However, PCPTRC 2.0 implemented multinomial logistic regression for
the prediction of the tri-variate outcome of no cancer, low-grade, and high-grade
cancer, so we state briefly how our proposed techniques straightforwardly scale to
this case. Extensions to survival models to predict the chance of developing a
cancer over an extended period of years, as used in the Framingham and Gail risk
tools, have been recently addressed in the literature using variations on what we
propose here, and are not covered.

Specifically, the remainder of this Chapter proceeds as follows. In Sect. 2, we
outline the Bayesian prior to posterior approach to updating an existing risk tool for
new markers, in Sect. 3 we provide methods for dynamically updating existing risk
prediction tools using annually collected data on the same risk factors, and in
Sect. 4 we provide concluding remarks.

2 Incorporating New Biomarkers into Existing Risk Tools

Novel genetic and biological markers are continually being discovered in the labo-
ratory and pushed through the validation pipeline, bringing with them the potential to
improve cancer prediction. It becomes imperative then to incorporate them into
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clinical decision-making, by merging the information they provide with that of the
established risk factors into a coherent forecast. As an example, the PCPTRC was
built in 2006 using the primary screening marker PSA in addition to the digital rectal
examination (DRE) and a few other demographic and clinical variables. But already
as it was being constructed, new markers were coming into clinical practice,
including percent free PSA and the urine marker PCA3. These markers could not be
retrospectively measured on stored specimens from the original PCPT participants,
making it seemingly impossible to include them in the PCPTRC. It appeared nec-
essary to find a new cohort that measured the new markers in addition to the
established risk factors in order to build a clean-slate model. While this might be the
only option under a single-cohort philosophy to risk model building, it is not under an
alternative multi-cohort compartmentalized approach, which will be outlined here.

We demonstrate the approach in the context of the PCPTRC, and thereby denote
the vector of risk factors used in the PCPTRC, including PSA, DRE, race, age, prior
biopsy history and first-degree family history of prostate cancer, by X [5]. We
denote new markers not contained in X by Y. The PCPTRC provided a prior risk
model for cancer based on factors X, P(Cancer | X), but what was needed was an
updated posterior risk based on the new information Y: P(Cancer | X, Y). By the
definition of conditional probabilities, this could be written as P(Cancer, Y | X)/P(Y |
X), and following factorization of the numerator, as P(Y | Cancer, X)P(Cancer | X)/
P(Y | X). The expression for P (No Cancer | X, Y) follows the same formula, with
No Cancer replacing Cancer. Taking ratios yields the following relationship:

PðCancerjX; YÞ
PðNoCancerjX; YÞ ¼

PðY jX;CancerÞ
PðY jX;NoCancerÞ �

PðCancerjXÞ
PðNoCancerjXÞ ; ð1Þ

which in layman’s terms can be stated as Posterior odds = Likelihood
ratio � Prior odds.

To evaluate (1) a patient enters their X and Y values, which are evaluated in the
two terms on the right-hand side. The function for the prior odds comes from the
existing risk tool. If logistic regression was used to construct the prior model, as
was the case for the PCPTRC, then the prior odds assume the simple expression exp
(b′X), where b is the vector of parameters that have been estimated in the PCPTRC
logistic regression. Parameters of the likelihood ratio (LR) have been estimated
from a separate study to the PCPTRC, one that measured Y and ideally as many
components as X as are predictive of the distributions of Y in cancer cases and
non-cancer cases. The distributions appearing in the LR depend on the variable type
of Y, for example, whether Y is continuous or discrete. A separate model selection
and fitting procedure has been performed in the external study to optimize the
densities appearing in the numerator and denominator of the LR.

The resulting LR is now a ratio of two densities to be evaluated as a function of a
new input Y, thus comparing how likely it would have been to observe Y under the
cancer case compared to non-cancer case distribution in the external study. If the
LR equals 1 then the likelihood of observing Y would have been the same under
both distributions, if it exceeds 1, Y was more likely to be observed among cancer
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cases, and if it is less than 1, then Y was more likely to be observed among
non-cancer cases. The LR shifts the prior odds either in favor of a high risk of
cancer, or of non-cancer, or adds no information to the prior odds, depending on the
value of Y. Once the LR is multiplied by the prior odds to achieve the posterior
odds, the posterior risk is obtained as Posterior Odds/[1 + Posterior Odds], and
remains a monotonic function of the LR.

It can be helpful to plot the LR and the posterior risk as a function of Y for fixed
values of X to see how the new marker moves the existing model risk. If the distri-
butions of the newmarker Y are largely overlapping between cases and controls in the
external study, then Y has little discriminatory power and the LR will be nearly
constant at 1 overmost of theY range. The variance of the posterior risk estimate can be
obtained using the delta rule, which convolves the variance resulting from the external
study used to form theLRwith that resulting from the prior risk. Typically the former is
much larger than the latter and contributes most of the variability. Ninety-five percent
confidence intervals can be calculated on the log-scale, where the function behaves
more nearly as a Normal distribution, and then transformed to the risk scale.

2.1 Example: Updating with Continuous Markers

Suppose that Y is a single continuous marker that can be assumed to follow a
Normal distribution with mean depending on the risk factors X and estimated via
separate linear regressions in cancer cases and controls. These were the assumptions
used to build the LR when the urine marker PCA3 was added to the PCPTRC [6].
The LR becomes:

LR ¼
1=

ffiffiffiffiffiffi
2p

p
rc exp �ðY � c0cXÞ2=ð2r2cÞ

n o

1=
ffiffiffiffiffiffi
2p

p
rn exp �ðY � c0nXÞ2=ð2r2nÞ

n o

¼ rn
rc

exp Y � c0nX
� �2. 2r2n

� �� Y � c0cX
� �2. 2r2c

� �n o
; ð2Þ

where the subscripts c and n refer to cancer cases and non-cancer cases, respec-
tively, the c’s refer to regression slope parameters and the r’s to standard devia-
tions. When different standard deviations for Y are assumed for cancer cases and
non-cancer cases ðrc 6¼ rnÞ, the logarithm of the LR is quadratic in Y, implying that
the logarithm of the posterior odds is also quadratic in Y. This case is equivalent to
quadratic discrimination analysis used in classification theory. However, under the
assumption of equal standard deviations ðrc ¼ rnÞ, the square term for Y cancels
out of the LR, making it linear and thus monotonic in Y, corresponding to linear
discriminant analysis. Our prior simulation studies and real data experiments have
shown that constraining the variance to be equal among the cancer cases and
non-cancer cases increases stability and reduces bias, resulting in more accurate
confidence interval coverage [7, 8].
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For Y a vector of continuous multivariate markers that can be assumed to follow
multivariate Normal distributions, the densities in the numerator and denominator
can be replaced accordingly. Our experience with incorporating the markers
proPSA and percent free PSA into the PCPTRC using bivariate Normal distribu-
tions indicated that constraining the variance matrices to be equal among cancer
cases and non-cancer cases became even more critical to avoid large
non-monotonic fluctuations in the posterior risk as a function of the two markers
[9]. The problem became exacerbated when we considered more flexible distri-
butions in the numerator and denominator to accommodate skewness and outliers
[unpublished report].

2.2 Example: Updating with Categorical Marker

Many markers are by nature categorical, and these may also be accommodated by
substituting the multinomial distribution into the numerator and denominator of the
LR. As an example, the PCPTRC includes as a risk factor the question of whether
or not a participant has a first-degree relative that has been diagnosed with prostate
cancer, coded as a binary yes/no variable. It has been established that more refined
measures of the extent of family history can improve risk estimates. Researchers
maintaining the Swedish Family-Cancer Database (SFCD), a comprehensive reg-
istry covering the entire population of Sweden, provided LR estimates corre-
sponding to more detailed family history patterns, including the number of
first-degree and second-degree male relatives diagnosed with prostate cancer,
whether these relatives were diagnosed under the age of 60, as well as the number
of female first-degree relatives ever diagnosed with breast cancer.

To incorporate a single detailed family history question, if we denote by Y the
presence of a particular detailed family history pattern, the LR becomes

LR ¼ pIðY¼1Þ
cancer ð1� pcancerÞIðY¼0Þ

pIðY¼1Þ
no cancerð1� pno cancerÞIðY¼0Þ ; ð3Þ

where I(A) denotes the indicator function equal to 1 if A is true and 0 otherwise. The
p’s were estimated as empirical proportions from the SFCD, by counting among
men diagnosed with prostate cancer the proportion with the family history pattern
for the numerator, and similarly for men not diagnosed with prostate cancer in the
SFCD for the denominator. To accommodate multiple detailed family history
questions, we established 23 disjoint categories of family history and used multi-
nomial distributions in the numerator and denominator; details can be found in [10].

LRs for detailed family history were not conditioned on the PCPTRC risk factors
X, in part due to necessity and in part by choice. Clinical risk factors, such as PSA,
DRE and prior biopsy, which are immediate risk factors measured close to diag-
nosis, would not be surmised to be associated with detailed family history. Because
detailed family history patterns are so rare, the SFCD population was restricted to
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men over 55 years and was predominantly Caucasian, dependence on race and age
was not modeled. First-degree relative prostate cancer history is in the PCPTRC but
was turned off in the prior odds model so as not to double measure it through the
LRs. Because of the SFCD confidentiality rules, the data could not be exported
outside of the source, which posed no inconvenience for the LR approach since the
LRs could be calculated on site and exported. Resulting posterior risk curves for
updated PCPTRC estimates incorporating family history patterns compared to the
PCPTRC itself are shown in Fig. 1.

Multinomial distributions were also used to update the PCPTRC for single
nucleotide polymorphisms (SNPs) associated with prostate cancer [12]. SNPs are
characterized by two alleles, such as A and G, with one denoted as the risk allele
due to past associations with prostate cancer. There are three outcomes to a SNP
corresponding to how many copies of the risk allele occur, 0, 1 or 2, and these
comprise the categorical SNP variable Y. Assuming no dependence of Y on the
PCPTRC risk factors, the LR becomes

Fig. 1 Comparison of the PCPTRC with and without updates for specific family history patterns
and single nucleotide polymorphisms (SNPs) as a function of PSA, adopted from [11]; FDR:
first-degree relative diagnosed with prostate cancer, 60+: relative was diagnosed over 60 years of
age, and 60−, under 60 years of age
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LR ¼ pIðY¼0Þ
0;cancerp

IðY¼1Þ
1;cancerp

IðY¼2Þ
2;cancer

pIðY¼0Þ
0;no cancerp

IðY¼1Þ
1;no cancerp

IðY¼2Þ
2;no cancer

; ð4Þ

where the p’s in the numerator sum to 1 and similarly for the denominator.
Frequencies of genotypes (p’s) in cases and controls are usually reported in
GWAS’s, and hence can be directly imported to analytically update the risk
calculator.

2.3 Meta-analysis for Importing Results from Multiple
Studies

The compartmentalized LR approach allows one to input results straightforwardly
from an external study to update the PCPTRC using the efficient case control
design, the method of choice for biomarker studies. GWAS reported SNPs are
frequently validated across all the major gene consortia, with resulting odds ratios
reported in the form of a meta-analysis.

When multiple studies report information that can be used to construct an LR,
the LR may also be subjected to a meta-analysis, with the average meta-analysis
estimate used for the LR, thus reducing the component of variability due to the LR
in the estimate of posterior risk. The meta-analysis proceeds as follows. First
S independent studies are identified that provide estimates of the parameters
comprising the LR, these are denoted by Ɵ1, …, ƟS and may be vectors. For
example, in (4) Ɵ would be a vector of the four independent p’s comprising the
proportions of cases and controls obtaining the 3 genotypes (two of p‘s are
determined since the vector of probabilities need to sum to one for cases and
controls). The studies should also provide the required estimates to construct
variances of the Ɵ’s, using the delta rule if necessary, denoted by V1, …, VS.
Although estimated, study variances are treated as fixed and known in the analysis,
they will be non-diagonal matrices whose forms depend on the distribution of the
component elements of Ɵ. Continuing the SNP example, the variance matrix will be
block diagonal, with dependence among the p’s within sets of cases and controls
and independence between them. It is assumed that studies are independent with
sufficiently large sample sizes so that

hi � Nðli;ViÞ independently for i ¼ 1; . . .; S: ð5Þ

Transformations, such as the log for parameters restricted to positive values, can
be used for this purpose. Assuming that the independent studies arise from a
common population, the heterogeneity among the study estimates is captured by
specifying
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li �Nðl;DÞ independently and identically for i ¼ 1; . . .; S: ð6Þ

Equations (5) and (6) imply that, marginally, Ɵi * N (µ, Vi + D) independently
for i = 1,…,S. The parameters µ and D can be estimated using a meta-analysis
function available in many statistical software packages. Estimates of µ and its
standard error from the meta-analysis are then used to form the LR and to compute
its variance.

We performed a meta-analysis to incorporate 30 multiply-validated SNPs for
prostate cancer into the PCPTRC in [11]. GWAS studies tend to report and validate
SNPs not in linkage disequilibrium (LD). Under the assumption of independence of
SNPs, the joint effect of multiple SNPs on the LR can still be estimated by separate
meta-analyses for each SNP due to the factorization:

LR ¼ PðY1; . . .; YrjX;CancerÞ
PðY1; . . .; YrjX;No CancerÞ ¼

Qr
i¼1 PðYijX;CancerÞQr

i¼1 PðYijX;NoCancerÞ
¼

Yr

i¼1
LRi ð7Þ

for markers Y1,…, Yr independently distributed given X and cancer status. In (7) LRi

is the likelihood ratio for each Yi that can be estimated from separate meta-analyses.
Due to independence, the update to the PCPTRC for incorporation of the 30 SNPs
allows any combination to be used, examples of some updates are shown in Fig. 1.

Groups of SNPs reported across different publications may be in LD, which
should be accounted for when analyzing them jointly in a meta-analysis for
simultaneous incorporation into the LR. Several genomic databases are available
that report estimates of LD based on haplotype studies, which can be incorporated
into the within-study variance Vi by back-solving haplotype probabilities [12]. Our
experience implementing this approach for the 30 prostate cancer SNPs showed
negligible differences to the independent analyses, likely due to the observed low
LD. However, simulation studies with artificially increased LD revealed only minor
increases in the width of confidence intervals [11].

2.4 Issues and Open Research

The simplicity of the LR approach to updating risk models with new information is
not without its limitations. The first is that typically the detailed collection of risk
factors X that makes the prior risk tool so powerful is not performed in the external
studies used to update the LR, forcing an assumption of independence to be made.
The large SFCD that contributed the detailed family history information based on
the entire population of Sweden certainly did not have current PSA or DRE
available at the individual level; out of necessity the assumption of independence of
detailed family history to these clinical factors was assumed. Similarly, the large
genomic consortia that collect millions of individuals in order to capture rare
variants could not be expected to rigorously collect established risk factors.
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Different studies specialize in the collection of alternative types of information,
which do not necessarily overlap. The strategy is to use relevant information from
all sources to the extent possible, making assumptions or approximations when
necessary. The naive Bayes classifier, commonly used in machine learning, ignores
dependence among multiple features, but in many practical scenarios and simula-
tion studies has shown accuracy approaching that of more complicated methods that
model the dependence [13]. The LR assuming independence is a function of the
naive Bayes classifier.

Grill et al. examined the impact of assuming independence between X and Y in
the LR, finding considerable bias when data were generated under various
dependence settings [7]. The bias was less pronounced for situations where the
prior risk of disease was not small, the so-called non-rare-disease setting, which
while the case for prostate cancer, is not for most diseases. Considering dependence
between X and Y in the LR but assuming equal standard deviations among the
cancer cases and controls was unbiased in all considered settings and showed
accurate predictive performance. Not constraining variances to be equal resulted in
poor calibration for higher risks in some of the settings.

How to link the dependence between Y and X when the new study measuring
Y does not measure X remains an open issue. If a separate study could be found and
used as a surrogate for estimating the correlation then some sort of imputation could
be performed, the accuracy of which would depend on the sample size of the
separate study.

Another issue that confronts the LR method is the potential difference in patient
attributes between cohorts supplying estimates for the LR and prior risk tool.
Mitigating these differences is the motivation behind conditioning the LR on the
prior risk factors X. However, even when X has been measured in both cohorts there
may be un-measured cohort differences beyond these factors that present contra-
dictory information to the dual parts of the model. For our prostate cancer studies
we typically restricted patients used in the LR to be 55 years or older, the minimal
age of men who were used to build the PCPTRC population. For the GWAS
reported SNPs this was not possible since individual patient age was unavailable.
The GWAS and SFCD markers were only available for Caucasian men, so the
updated PCPTRC for these markers was restricted to Caucasian men. However,
there are many lifestyle differences between European and US men, the populations
comprising the SFCD/GWAS and PCPTRC cohorts, respectively. For incorporat-
ing the new sera and urine markers, the case control studies that supplied them were
collected as part of Early Detection Research Network (EDRN) grants mandating
measurement of X. However, these were symptomatic patients presenting to a
tertiary care clinic, and not the healthy men who had been pre-screened to have low
PSA and normal DRE values to enter the seven year PCPT. Simulation studies are
needed to understand the extent of bias that can occur as the dissimilarity between
cohorts in terms of X and unmeasured factors increases.
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2.5 Away from Single Cohort-Based to Multiple Cohort
Compartmentalized Models that can be Updated One
Component at a Time

New markers with promise to improve prediction and the lives of patients con-
tinually traverse the pipeline from discovery to validation to clinical practice. This
dynamic necessitates a forward-looking view of risk models that may start with an
exclusive cohort, but builds in modular fashion, taking advantage of all the infor-
mation that specialized population-based studies have to offer as soon as the data
are available. This process of merging information from multiple data sources,
termed data transfer in the informatics literature, has the potential to result in
increased power due to larger sample sizes. It capitalizes on the use of “found data”,
a recent term for data that has been carefully constructed for other purposes, but that
becomes available for new objectives. Figure 2 shows the current new marker
options to the PCPTRC that are all available online to facilitate validation in new
populations.

Fig. 2 Current options for incorporating markers into the PCPTRC, population sources, and
sample sizes (n) on which they were built: PCPT: Prostate Cancer Prevention Trial [8], SABOR:
San Antonio Biomarkers Of Risk of prostate cancer [8], SFCD: Swedish Family-cancer database
[10], GWAS: multiple published genome-wide association studies [12]
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3 Dynamic Models

In addition to the problem of new markers coming into the field, clinical practice,
population changes and diagnostic technology improvements are constantly
occurring, which may compromise the validity of a prior risk tool itself. Precisely
such changes were occurring even as the PCPTRC was being completed in 2006.
The PCPT started in the late 1990’s when biopsies normally took only six sample
cores from the prostate, three on each side. Pathologists rated detected cancer
lesions on either side using a Gleason score ranging from 1 to 5, the total from both
sides was denoted as the total Gleason score or just Gleason score, and ranged from
2 to 10. It was generally accepted that Gleason score 7 or higher indicated more
aggressive disease, which was termed high-grade cancer. In the early 2000s, as
technology improved, standard clinical practice mandated 12 biopsy cores rather
than 6 to cover a wider area of the prostate. Following the adage that the more you
look the more you find, this consequentially led to higher rates of detection of
prostate cancer and high-grade disease. This then implied that the PCPTRC, based
on a cohort that only underwent six cores, would systematically underestimate
prostate cancer and high-grade prostate cancer rates in contemporary practice where
the biopsy took twelve cores.

Additionally, with the turn of the century, the extent of over-diagnosis of prostate
cancers became an issue, and the clinical field recognized different treatment options
for low grade or non-significant cancers. Watchful waiting or active surveillance of
patients with low grade cancers was endorsed, with periodic biopsies and no action
taken until indication of an upgrading of the cancer. This change in treatment rec-
ommendation was accompanied by an upgrading shift in the field of pathology,
whereby cancers that were normally graded under 7 by the Gleason score were more
liberally graded as 7 or above, perhaps unconsciously in response to anxiety about a
missed serious cancer. This upward shift in labeling over time threatened the risk of
high-grade disease produced as one of the PCPTRC outputs, implying that the
PCPTRC might underestimate the current risk of high-grade disease.

When fundamental changes such as these occur, one is faced with similar
options as for incorporating new markers: either rebuild the model from scratch
using a new cohort, with the same drawback of inefficiency, or patch up the existing
risk tool. We again suggest the second approach using the statistical method of
re-calibration of a risk model. As for incorporating the new markers, this approach
also requires additional data, but in this case the additional data is easier to obtain as
it just requires outcomes along with the established risk factors.

3.1 Updating a Statistical Model

Updating refers to any method of altering a risk model built on one population to
optimize its performance on a new population. The last decade has witnessed a
sharp increase in methods applied to dynamically updating models in intensive

286 D.P. Ankerst et al.



stations and critical care wards, where patient measurements flow in continuously.
Our interest focused on simple intuitive methods for updating a risk tool built from
logistic regression for application to a new or expanding population, where the
update could happen in real time, as soon as more data became available.
Specifically, we were interested in updating the PCPTRC to reflect patients seen
under current clinical practice conditions, including with elevated PSA for those
who were referred to a clinical practice versus normal PSA values for those
undergoing regular screening, and for patients receiving the more commonly used
10- or 12-core biopsy procedure. Noting that the established risk factors are rou-
tinely collected in the clinic and can be automatically de-identified, we were
motivated to see how serial updates applied to data from different institutions would
diverge. The following case study shows how we arrived at our recommendation
for dynamically updating logistic regression models.

3.2 Case Study: The Prostate Biopsy Collaborative Group

The Prostate Biopsy Collaborative Group (PBCG) was initially founded by the
epidemiologist Andrew Vickers in response to the observation that a vast number of
risk calculators were being produced in the urologic oncology field that gave widely
varying predictions of whether cancer would be indicated if biopsy were to be per-
formed. Concurrently he observed that multiple validation studies of a single risk tool
often produced conflicting conclusions as to the generalizability of the tool, adding
further confusion to the field. Collecting retrospective risk factor and outcome data
from ten international institutions, Vickers and colleagues noticed that cancer risk, as
a function of PSA, varied substantially from center to center, and that the differences
between centers could not be accounted for by adjustment for measured risk factors,
ushering in a conclusion that one-size-fits-all risk tools would not be optimal [14]. To
illustrate we performed a multiple validation of the PCPTRC on the ten cohorts, and
investigated the area-underneath-the-receiver-operating-curve (AUC), a measure of
the discrimination power of a risk tool that ranges from 50% (no better than flipping a
coin) to 100% (perfect ability to discriminate a cancer case from control). We
obtained AUCs ranging from 56.2 to 72.0%, which to put in context, produced larger
changes than those due to any improvement in a risk tool ever seen [15].

For a more detailed look at the institutional and temporal variation, we examined
the yearly number of biopsies performed and positive biopsy rate at five of the
PBCG cohorts in Table 1 and Fig. 3. The two urological referral centers, the
Durham VA and Cleveland Clinic, which also happen to be in areas with high
African American representation (a risk factor for prostate cancer), had cancer rates
much higher than the remaining primarily screening cohorts. The Tyrol cohort was
part of an Austrian screening study, where personal communication revealed that
the principal investigator led an aggressive screening program, referring men to
biopsy even with very minimal risk factors. The Durham VA clinic experienced
large fluctuations in the positive biopsy rate in some years, which we later learned
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coincided with changes in personnel. Examination of the temporal cancer rate
profiles revealed that specific local tendencies or changes incurred long-term and/or
fleeting impacts on risk.

As seen in Table 1, the number of biopsies performed annually in large centers is
quite high, meaning that these centers accrue enough patients to build their own
calculator in only a handful of years. Since the required variables to build a risk tool
are mandated by current clinical practice, we reasoned from Fig. 3 that procedures
could in principle be developed allowing local data trustees to build their own
institution-specific risk tools, which would be dynamically updated at intervals of
convenience, yearly, monthly or even daily. The PCPTRC could be used as an
initializing risk calculator for the institutions until enough data were available to
overrule it as a prior risk. Smaller institutions or those without the need to invest in
data cleaning and quality checks could use the default global PCPTRC, which had
accumulated its patients from across the US and Canada. The choice between using
a regional versus global calculator could be made akin to deciding whether to read
the local versus global news.

Once procedures were in place to accumulate data at regular temporal intervals, a
temporal validation procedure could be effortlessly established. The risk calculator
could be built on all data up to a current year, say Year 1, and then validated on the
next year, Year 2. Only when validation was acceptable on Year 2, could the Year 1
or Year 1 + Year 2 updated calculator be implemented for Year 3, and so forth.

With these data collection mechanisms in place, the next question becomes how
to actually construct a dynamically changing risk calculator. Considering
commonly-used modeling techniques, we arrived at the six methods in Table 2. It
was prudent to compare all dynamic methods to just using the static PCPTRC,
which would require no work to implement, as well as to the other extreme of
building a clean-slate model using the institution’s specific data and ignoring the
PCPTRC altogether. Recalibration and revision are ad hoc frequentist methods that
are straightforward to implement, using the linear predictor of a prior risk model as
a single covariate in a new model; see [16, pp. 363–370] for an overview of these
methods. The Bayesian approach fits a new logistic regression model to the data,
but uses the PCPTRC parameter and variance estimates as a prior for the parameters
comprising the log odds ratios. The specific details of these methods can be found
in [17]. Proceeding year by year, the six approaches were fit using as a training
set all data up to the current year and for validation, data from the next year.

There are currently many metrics available for evaluating risk predictions [16,
pp. 255–280]. We chose two aimed at complementary aspects, one for discrimi-
nation and one for calibration. Since we were to perform many external validations,
essentially the number of years of data from each cohort, we restricted ourselves to
single summary measures. For discrimination we chose the AUC, which can be
calculated as the Wilcoxon statistic for non-parametric two sample testing, available
in standard statistical packages.

For calibration we chose the Hosmer-Lemeshow goodness-of-fit statistic, whose
algorithm for calculation is shown in Fig. 4. Large values of the Hosmer-Lemeshow
statistic indicate that predicted risks from the training data do not match observed
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risks in the test data at least somewhere across the range from low to high risks. The
smaller the statistic value the better the fit, and with the null hypothesis indicating
goodness-of-fit, the less likely to reject the null hypothesis. We did not interpret
p-values of the statistic since a property of hypothesis testing is that with large
sample sizes the null hypothesis has a greater chance of being rejected. Our expe-
rience showed that indeed good calibration was only achieved for small test sets. We
therefore restricted attention to the size of the test statistic itself. Although the
statistic is restricted to evaluation over deciles, there is a slight dependence on

Fig. 3 Percent biopsies positive for cancer according to year performed for five cohorts of the
PBCG; reproduced with permission from [17]

Table 2 Six alternative
approaches for a prostate
cancer risk calculator, five
that change yearly by
incorporating institutional
information compared to a
baseline approach of just
using the static PCPTRC

PCPTRC: Use no institution-level data at all, just the online
PCPTRC

Recalibration: Fit a new logistic regression with the PCPTRC
linear predictor (b′X) as the only covariate in the model

Revision: Use the PCPTRC linear predictor (b′X) as one
potential covariate among the other risk factors in logistic
regression

Bayesian: Use prior to posterior updating on parameters in a
logistic regression

Clean-slate: Build a new model each year using logistic
regression

Random forests: An ensemble learning method that fits a series
of random classification and regression trees
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sample size, but since sample sizes did not vary dramatically over the years within a
cohort, the statistic values were comparable. We performed extra analyses over-
laying confidence intervals over the best methods, which revealed when changes
were statistically significant. These matched years of extreme fluctuations, but
because they made for busy graphs they are not shown.

Figure 5 shows how the AUCs of the different methods evolved annually over
the sequential test sets across the five cohorts. As a reminder, higher AUCs indicate
a greater probability for a model to assign higher risk to the cancer case among a

Fig. 4 Algorithm for computing the Hosmer-Lemeshow Goodness-of-fit test

Fig. 5 Annual AUC values for the six methods evaluated on the five cohorts of the PBCG; higher
AUC values indicate better discrimination of cancer cases from non-cancer cases; reproduced with
permission from [17]
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randomly chosen cancer case-control pair in the test set. The first observation from
Fig. 5 was that across all cohorts the AUCs did not improve with time, which was
unexpected since the training set cumulatively aggregated more past data with each
additional year. In Durham the AUC actually decreased during the initial years.
Durham had the oldest series, beginning in 1994 and at a time when PSA-based
screening was first becoming commonplace. Throughout the rest of the decade
clinical practice patterns surrounding the emphasis on PSA were likely undergoing
changes. The second observation was the lack of difference among the methods,
except for random forests, which always seemed to perform more poorly than all
others no matter how much its internal cross-validation parameters were tuned. As a
rank-based measure, the AUC is notoriously robust to minor changes in
model-based predictions, which could explain its lack of sensitivity for differenti-
ating among the methods. It is invariant to monotonic transformations, hence the
PCPTRC and recalibration yielded identical AUCs. The conclusion from Fig. 5 was
that if discrimination was the sole objective, the static PCPTRC, requiring no local
work, was good enough.

On the other hand, Fig. 6 revealed that calibration was where institution-specific
data mattered. For interpretation, high values of the Hosmer-Lemeshow test statistic
indicated poor rather than good fit as for the AUC. The PCPTRC performed
markedly worse than all the other adaptive methods, except for random forests,
whose values were so bad they fell off the graph, despite all the tweaking of tuning
parameters to optimize their performance. Still apparent was that calibration did not
improve with time, as one might have expected with the accumulation of more
training data. In the SABOR screening cohort all methods showed high fluctuation,
which could have resulted from changes over time in the screening protocol, such
as a retreat from annual PSA testing in the later years (personal communication).

Fig. 6 Annual Hosmer-Lemeshow test statistic values for the six methods evaluated on the five
cohorts of the PBCG; higher values indicate worse agreement between predicted and observed
risks; reproduced with permission from [17]
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All adaptive methods besides the random forests appeared to work equally well in
terms of calibration.

Based on this empirical study of five real study cohorts, our recommendation
was that if feasible, recalibration of a model to tailor it to a local data situation was
always preferable to use of a global risk tool. Five alternative updating methods
were investigated, all yielding equal performance except for random forests, which
appeared to over-fit. We therefore recommended the simplest, recalibration, which
only involves fitting a logistic regression with the single covariate, the logit of the
PCPTRC risk estimate. Discrimination based on the rank-based AUC measure is a
crude evaluation only of whether a risk tool provides higher values for cancer cases
compared to non-cases. Doubling all risk predictions or halving them yields the
same AUC since ranks are invariant to monotonic transformations. In this study,
recalibration tended to primarily act on the intercepts of the risk models, to capture
the large heterogeneity among cancer prevalence among the cohorts as witnessed in
Fig. 3. Therefore, recalibration essentially served as a monotonic transformation of
PCPTRC risks, thus not impacting the AUCs.

4 Discussion

In this chapter we have presented some of the contemporary issues facing risk
prediction tools and argued the case for updating with external data in order to keep
such tools relevant. The proposed methods were simple to implement, yet shown to
be as adequate as more complicated alternatives. Challenges to their widespread use
remain however, with future practical solutions and research needed.

4.1 Data Cleaning and Missing Values: Garbage in,
Garbage out

One of the major persistent hurdles for risk prediction tool construction is messy
data, which continues to plague most retrospective data archives despite all the
improvements in data storage technology. We hid the dirty details in our analysis of
the PBCG, but these ten international data sets, which took on average two years to
assimilate locally, were no exception. Some of the cohorts did not collect certain
PCPTRC risk factors at all, in particular family history, prior biopsy history and
race. With 100% missing data on these fields within a cohort, imputation was not an
option. To circumvent this issue, we derived alternative versions of the PCPTRC
that allowed missing fields, by fitting the reduced models to the PCPT population.
Other fields, such as DRE, were only collected sporadically by some of the cohorts,
and contained up to 75% missing values. We deleted these records for the com-
parison of the methods, but have for other analyses used within-cohort multiple
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imputation. Imputation methods assume data are missing at random; techniques to
handle non-random missing data require advanced statistical models with untestable
specifications.

Post hoc imputation for missing values is not as optimal as correct prospective
design to collect the right risk factors and prevent missing-ness altogether. Indeed
this is why most risk calculators are founded on large well-planned study popu-
lations rather than retrospectively collected databases. Motivated by the poor and
uneven quality of the retrospective PBCG data, we wrote a grant to prospectively
standardize collection of the established risk factors for prostate biopsy across the
ten centers. As the work has started it has become apparent that even some intuitive
data entry requirements require education, such as recording the date of risk factors
in relation to the date the outcome was assessed in order to ensure the risk factor
was not measured after the outcome or too early in advance of the predictive
window. Our grant has had to fund local administrative assistants to implement the
data entry, which is an expensive and time-consuming process.

4.2 The Promise and Pitfalls of Electronic Health Records
(EHR)

As an automated daily supply of hospital risk factors and procedure outcomes, the
EHR would appear to offer a simple alternative to manual preparation of data for
risk model construction. In principle, data quality control checks and risk model
building could be built directly into the EHR, sidestepping all the ethical hurdles
surrounding the collection and de-identification of data. With so much data avail-
able, models could be dispensed altogether in favor of non-parametric techniques
such as nearest-neighbor clustering that would just search for similar patients in
terms of their risk factors, returning the proportion of these that experienced the
outcome as the estimated risk.

However, the current state of most EHR systems offers little above that wit-
nessed by manual extraction, with data irregularly coded and often masked inde-
cipherably in text fields. Work needs to be done to design doctor charts
prospectively to enable automated data entry. Such systems have been implemented
in the Kaiser Permanente HealthCare system, where all infant beds have a computer
entry system attached, and all information has to be entered through drop-down
selection menus, with only certain notes typed and no hand-writing allowed [18].

The necessary resources are out there for keeping our valuable risk tools up to
state-of-the-art in order to benefit patients optimally. We have to keep working on
both levels, data and methods, to accelerate the progress.
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Evaluation of Cancer Risk
in Epidemiologic Studies with Genetic
and Molecular Data

Aya Kuchiba

Abstract Epidemiology has made significant contribution to better understanding
cancer etiology and improving public health. Recently, with increasingly available
genetic and molecular data, methodology in cancer epidemiology has been greatly
progressing through incorporation of those data. This chapter focuses on some
topics in Genome-Wide Association Studies and also provides some discussion of
investigating etiologic heterogeneity among molecular subtypes of cancer.

Keywords Genome-wide association studies � Multiple testing � Meta-analysis �
Prediction � Cancer heterogeneity

1 Introduction

In the past decade, a number of disease-associated genetic variants have been
identified by Genome-Wide Association Studies (GWAS) [1]. GWAS have become
larger-scaled, for example, recent GWAS for breast cancer included nearly 100,000
participants from several studies in the consortium, and evaluated more than hun-
dreds of thousands of SNPs [2]. In addition to advances in knowledge of the human
genome [3–7] and in technology for measuring genetic variants, considerable effort
in developing strategies for association analysis contributes to successful GWAS [8].

On the other hand, somatic genome or other molecular features of the cancers
have been investigated to understand the underlying pathogenesis mechanisms. In
parallel catalogs for variants in the human genome, The Cancer Genome Atlas
(TCGA) project (https://cancergenome.nih.gov/) and the International Cancer
Genome Consortium (ICGC) project (icgc.org) have discovered major
cancer-causing genomic alterations for more than 30 tumor types. Epidemiologic
research has increasingly examined the associations of risk factors with a cancer,
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taking into account the inherent molecular heterogeneity of a cancer, which might
reflect distinct processes of tumor development.

This chapter will provide an overview of some topics in GWAS, including gene
discovery and prediction model development. We also discuss studies of etiologic
heterogeneity among molecular subtypes of cancer.

2 Genome-Wide Association Studies

GWAS is an approach to scan associations of genetic variants with disease across
the whole genome by genotyping hundreds of thousands of SNPs simultaneously.
Typically, GWAS is carried out in a population-based case-control study. While a
genome-wide approach was proposed in 1996 as a most powerful method for
discovering genes associated with common complex diseases [9], recent advances
in the understanding of the human genome structure and in genotyping technology
have made an efficient genome-wide approach feasible.

The Human Genome Project [3, 4] and the HapMap Project [5–7] have revealed
human genome structures, including the positions of single nucleotide polymor-
phisms (SNPs) and the linkage disequilibrium (LD) patterns in the population by
ancestry groups. A SNP is a single base change in DNA, which is the most common
type of genetic variant in the human genome. LD is a phenomenon, where alleles at
flanking loci on the same chromosomes tend to occur together in the population, and
consequently SNPs in the region of strong LD tend to be correlated. This is generated
as a result of sharing ancestry of a population of chromosomes at some regions. This
knowledge enables us to use a SNP set with about 1 million SNPs in order to obtain
sufficient information on roughly 10 million SNPs over the human genome.

SNPs are used as markers indicating the location in the genome. SNPs them-
selves may be causative variants or the flanking markers that are highly correlated
with the causative variants through LD (Fig. 1). The more SNPs are measured, the
more likely one of the SNPs is located near the causative variants. The coverage of
the genome is one of the components for successful GWAS. Imputation has become
a routine approach to search the genome, in which unmeasured variants are pre-
dicted using existing catalogs and observed genotype data [10]. Imputation accu-
racy will depend on SNP density as well as the similarity of LD patterns between
the data used and the HapMap populations. Imputation is also potentially useful for
combining GWAS data sets in meta-analysis (discussed later) because the studies
often use different SNP panels and have partially overlapped genotyped data.

Fig. 1 Direct and indirect
associations
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GWAS evaluates the SNP-disease associations without distinction of direct or
indirect association, and involves narrowing down the regions that would include
the causative variants. The following sections will discuss some of the specific
topics in GWAS.

2.1 Summarizing GWAS Results Visually

Hypothesis testing of each SNP sequentially for comparing allele or genotype
frequencies between the cases and the controls is the common approach for GWAS
analysis; the P-value is usually used as a primary summary measure of association.
Logistic regression is often used for controlling potential confounders.
Consequently, we will have a million of P-values in a single GWAS. The whole set
of results with the huge number of P-values is visually summarized with
quantile-quantile (Q-Q) plots and Manhattan plots.

The Q-Q plot is a plot of the quantiles of the negative logarithm of the observed
P-values (i.e., −log10(P)) on the y-axis against the same quantiles of the expected
values assuming a uniform distribution on the x-axis (e.g., Supplemental Fig. 1 in
[11]). That is, if all SNPs are under the null hypothesis of no association, the Q-Q
plots will approximately lie on the y = x line. This plot is useful in the quality
control process on genotype data. Since most of SNPs will have no association,
some SNPs with extremely small P-values will deviate from the y = x line. If the
Q-Q plot departs from the y = x line overall, this may suggest that the genotype
data still contain a substantial amount of typing errors. It may be solved, at least
partially, by applying more strict criteria for the quality control checking of
genotype data (such as minor allele frequency, missing genotype frequency for a
SNP and for an individual, and violation of the Hardy-Weinberg equilibrium). The
difference in accuracy of genotyping between cases and controls will result in
biased estimates; in consequence, false positives can arise.

The Q-Q plot is also used to evaluate potential population stratification.
Population stratification is the differences in allele frequencies between cases and
controls due to systematic differences in ancestry, rather than association of genes
with disease. Allele frequencies vary among populations of different genetic
ancestry. Similarly, disease risk often varies among the populations for some rea-
sons, such as lifestyle differences. Evaluating whether population stratification
exists in the GWAS population is an important part of the quality control process on
genotype data. The genomic inflation factor [12] (usually denoted by k), which is
defined as the ratio of the median of the observed distribution of a test statistic to the
expected median, is often used to quantify the deviation with the Q-Q plot.

Also, hidden population structure can be estimated by principal component
analysis, which infers continuous axes of genetic variation using genotype data
[13]. The principal components can be included in the logistic regression model to
adjust for population stratification, as for the other potential confounders.
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The Manhattan plot represents the whole set of P-values from a different point of
view. In this plot, −log10(P) for each SNP is displayed on the y-axis, along with the
positions on chromosomes on the x-axis (e.g., Fig. 1 in [11]). Because a majority of
SNPs will be under the null hypothesis, the P-values look to be uniformly dis-
tributed, except for the smallest P-values deviating from such a trend. This plot
gives us a rough sense of the associations.

2.2 P-Value Adjustment

Given the hundreds of thousands of hypothesis tests, the multiplicity of compar-
isons should be accounted for to make a decision on whether the marker is “sig-
nificant” or not. Table 1 shows the results when testing m SNPs. In early GWASs, a
threshold of P � 10−7 or P � 5 � 10−7 was typically used to control family-wise
error rate (FWER), which is defined as Pr(V � 1). However, in current practice
more SNPs are genotyped or imputed with higher quality, a more strict threshold,
P � 5 � 10−8, is commonly accepted as a genome-wide significant level, which is
roughly corresponding to a Bonferroni correction to maintain FWER of 5% for
1 million independent comparisons for SNPs [14].

False discovery rate (FDR) is the other definition of error in the context of
multiple comparisons. FDR is defined to be the expectation of V/R, that is, the
expected proportion of the truly non-associated SNPs among the SNPs for which the
null hypotheses are rejected. FDR is represented as the function of the proportion of
truly associated SNPs (defined as a prior), and the power and alpha level of each test.

FDR was originally proposed in the frequentist framework by Benjamini and
Hochberg [15], and further formulated in the Bayesian framework [16, 17]. The
threshold of P-value can be obtained to maintain the FDR at a pre-specified level
(e.g., 0.05), or the FDR can be estimated for the decision based on hypothesis
testing. The q value, which is the minimum FDR that can be attained when
declaring a significant association, is proposed as an FDR-based measure of sig-
nificance for a particular SNP [18]. FDR is popular and successfully used in omics
studies, e.g., gene expression studies with microarrays, where the proportion of
non-null associations is generally not small. In contrast, the proportion of non-null
associations may be very close to 0 in many GWASs. In this case, the FDR
approach may not give much advantage over the FWER approach. That may be the
reason that the standard Bonferroni correction remains the most commonly used
adjustment for GWAS.

Table 1 Results when testing m hypotheses

Accept null Reject null Total

Null true U V m0

Non-null true T S m1

Total m − R R m
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It would be worthwhile to mention that empirical evaluation suggested that a
substantial portion of associations with borderline P-values (i.e., P � 10−7 and
P > 5 � 10−8) may be genuine associations [19]. This suggests that making a
prioritized list of SNPs to be studied in other secondary analyses or further studies,
not only identifying statistically significant SNPs, would be an important purpose
for GWAS analysis. Although the P-value is commonly used as a summary mea-
sure of association to prioritize (rank) the SNPs, there has been debate about
summary measures of associations in GWAS. As for combining the Bayesian idea
and classical statistical significance, false positive report probability (FPRP) has
been proposed, which is the joint probabilities from the hypothesis testing and the
probability of truth of the alternative hypothesis [20]. FPRP is defined as
FPRP ¼ pð1� pÞ/fpð1� pÞþ ð1� bÞpg, where p is the level of statistical sig-
nificance for a single test of association, 1 − b is the power of the test, and p is the
prior probability that the alternative hypothesis is true. Bayes factor may be another
option. The Bayes factor is defined as the ratio of the probability of the observed
data under the null hypothesis to the probability of the observed data under the
alternative hypothesis, requiring assumptions for effect sizes of SNP-disease
associations. Wellcome Trust Case Control Consortium has used Bayes factor to
prioritize the SNP as a complement to P value [21, 22].

2.3 Meta-analysis

GWAS findings should be followed in further independent studies to confirm
whether the significant associations are replicated, regardless of which decision
rules or summary measures are used. Meta-analyses are usually used to evaluate
evidence from the replication studies. Furthermore, GWAS focuses on selection of
potential disease-associated SNPs, and usually the effect size estimation is a sec-
ondary purpose. Indeed, the effect estimates (e.g., odds ratio) of the top hit SNPs
from discovery studies tend to be upward biased, which is known as “winner’s
curse” [23, 24]. Meta-analysis of replication studies has role of obtaining unbiased
effect size estimates.

In addition to confirmation, meta-analysis has become popular approach to
discovery new disease-associated variants. Basically, meta-analysis for this purpose
is to combine the effect estimates of each SNP across the studies, for all of SNPs
genotyped in GWASs. Statistical power will be increased and the true associated
SNPs are expected to rise to the top of the list. Also, the false positives caused by
random errors are expected to be reduced over those from a single study.

Suppose that genotype data from the same M SNPs are available for
S case-control studies. Let bij and vij denote the effect size and its variance of the ith
SNP (i = 1, …, M) in the jth study (j = 1, …, S). bij is typically logarithm of odds
ratio for the ith SNP in the jth study. The SNP specific combined estimate can be
expressed:
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b̂i ¼
Ps

j¼1 b̂ijŵijPs
j¼1 ŵij

;

where ŵij is the jth study-specific weight for the ith SNP. In the standard

fixed-effects model, ŵij can be the inverse of the variance estimate of b̂ij, and the
asymptotic variance of the combined estimate can be obtained as:

V̂i ¼ 1Ps
j¼1 ŵij

:

The fixed-effects meta-analysis approach assumes that the true effect of each SNP
is the same across the studies. The random-effects meta-analysis approach allows the
true effects to vary across studies, rather than assuming one true effect. The combined
estimate from a random-effects model represents the mean of all potential popula-
tions. wij includes two sources of the variance, within studies and between studies.

There would be no standard rule for choosing between a fixed or random effects
model for discover. In either case, quality control in each study, which includes
accuracy of imputed genotypes, is essential to avoid unnecessary between-study
heterogeneity. Also, all of the analyses must be planned to be as similar as possible
across the studies. In the sense of prioritizing SNPs, a random-effects meta-analysis
approach can be considered to penalize the SNPs showing heterogeneity between
studies and appears to be reasonable to discover new disease-associated SNPs. The
disadvantage of a random-effects meta-analysis approach will be to unnecessarily
penalize the SNPs that show heterogeneity by chance, leading those SNPs to be
moved downward in the priority list. The strengths and weaknesses of random
effects meta-analysis have been discussed in [25], although not in the context of
GWAS. Indeed, a fixed-effects approach is generally more powerful in terms of
raising the true positives to the top of the list [26]. In practice, both models can be
applied. If there are SNPs which show differences in rankings or effects by models,
the investigators should see the results in each study and explore the reasons for the
differences to judge whether the further studies for those SNPs are warranted.

The question may be raised as to resource allocation, i.e., how many studies
should be used for discovery studies and how many for replication studies.
Meta-analytic GWAS may give some reason to skip independent replication
studies, because the approach includes investigation of heterogeneity in effect
estimates of SNPs between studies.

2.4 Beyond a Single Locus Analysis

Single-SNP analyses are predominant in GWAS practice. This single-SNP
approach is sometimes referred to as “unbiased” since it requires no prior
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knowledge of location or function of genetic variants, but also it can be viewed as a
preliminary step in the gene identification process. Increasingly available knowl-
edge of human genome can extend GWAS analysis. Pathway-analysis is one of the
approaches (e.g., [27, 28]). These methods combine the effects from multiple SNPs
within given genes or biological pathways and examine the association of the joint
effect of a set of SNPs with an outcome. It could have a potential role as a
complement to single-SNP analysis, and provide an additional insight to identify
the disease-associated genes, especially where each SNP within a given pathway or
gene has relatively small effects on the disease.

Also, all SNPs may not be equally likely to have influence on disease, depending
on the location or function of the variants. It has been demonstrated that SNPs
identified in GWASs are enriched in protein-coding exons, in promoters, and in
untranslated regions (UTRs) [29]. A Bayesian framework can incorporate this prior
knowledge into the gene discovery process from the beginning. In particular, a
Bayesian hierarchical modelling approach would have promise for further analysis
using GWAS data [30, 31], although it is still less used in practice.

The importance of the potential interplay of environmental and genetic factors
has been discussed extensively [32, 33]. Studying the interaction is expected to
improve the power to discover underlying susceptibility loci and identify suscep-
tible subpopulations. Understanding gene-environmental interactions involved in
complex disease may also improve performance and utility of risk prediction
models for disease prevention and treatment. Gene-environment interaction has
been commonly explored with a test for the interaction term based on a logistic
regression model. However, most such studies have shown disappointing results,
suggesting that multiplicative interactions, even if present, are likely to have rela-
tively small impact for complex diseases and may not be easily detected in GWAS
approaches [34, 35]. The effective way to assess interactions in the context of
GWAS remains unclear. Statistical methods to detect the interaction have been
discussed in the several papers, which include a joint test of marginal association
and gene-environment interaction, case-only analysis, and shrinkage estimators
(e.g., [36–39]).

3 Prediction Model

In hereditary cancer, which is caused primarily by mutations in the
cancer-susceptibility genes, the high-penetrance genes such as BRCA1 and BRCA2
genes for breast and ovarian cancers are important for clinical management of
individuals. For example, a recent study suggests that the risk of developing breast
cancer by age 70 years is around 55% for BRCA1 mutation carries and 47% for
BRCA2 mutation carries [40]. The presence of mutations in the cancer-susceptibility
genes is clinically used in genetic testing and counseling of individuals in high-risk
families.
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For common complex diseases, stratifying the population based on distinct
disease risks could greatly contribute to the development of public health strategies
for disease prevention in the general population. For this purpose, the absolute risk,
which is the probability that an individual will develop the disease over a certain
time interval, is critical. Studying prediction models for estimating absolute risk has
been carried out with non-genetic risk factors for common cancers. For example,
the Gail model is one of the popular models for breast cancer risk prediction, which
provides the probability that a woman with given age and risk factors will develop
breast cancer over an age interval [a, a + s]. This probability, R, can be defined
from [41] with a vector of risk factors, x, as following:

R ¼
Zaþ s

a

kðtjxÞ expð�
Z t

a

½kðujxÞþ hðuÞ�duÞdt;

where kðtjxÞ is the age-specific incidence rate, hðuÞ is the age-specific mortality
from other causes than breast cancer. In this model, the absolute risk of developing
the disease over a specific age interval is defined as the sum of the probability that a
woman will develop the disease at a given age, t, given that the woman is
disease-free and alive until that age. In a prospective cohort study, kðtjxÞ can be
commonly modeled using the Cox proportional hazards model:
kðtjxÞ ¼ k0ðtÞ expðb0xÞ, where k0ðtÞ is a baseline hazard for the disease and b is a
vector of regression coefficients for x. The risk factors originally used in Gail model
were age at menarche, age at first live birth, number of previous biopsies, and
number of first-degree relatives with breast cancer [41]. The Gail model was
actually used for patient selection criteria in the tamoxiphen chemopreventive
intervention trial [42].

Wacholder et al. [43] investigated the model including adding 10 SNPs to the
original Gail risk factors, then compared the prediction performance of models by
the concordance index (known as C-index or C-statistics). Although the inclusion
of an additional 10 SNPs showed no substantial impact on prediction performance,
interestingly, their data suggested that a SNP-only model had almost the same
prediction performance (C-index: 58.0% for original Gail model; 59.7% for
SNP-only model). Early development of prediction models with GWAS findings
may be disappointing, since including the associated SNPs did not dramatically
improve prediction performance as expected.

In a recent prediction model development, the Polygenic Risk Score (PRS) (or
Genetic Risk Score (GRS)) has been used as genetic susceptibility for individuals,
instead of including each of the disease-associated SNPs into the model. PRS is
defined as a weighted combination of any type of variants that cause disease sus-
ceptibility, and considered to be summary measure of genetic susceptibility to the
disease for an individual. PRS may not be interpretable in itself, but the variation of
PRS in the population can be related to the heritability, which is the proportion of
phenotypic variation attributed to genetic variation among individuals in a
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population. The detailed explanation of the relationship of PRS and heritability has
been described in [44].

Several studies have shown that a substantial proportion of heritability in most
common cancers can be explained by GWAS SNPs [45, 46]. From the GWAS
findings, the PRS for each individual may be estimated as:

PRSj ¼
Xm
i¼1

b̂ixij;

where b̂i is an estimate of the per-minor allele log odds ratio for the ith SNP, xij is
the number of minor alleles for the ith SNP (0, 1, or 2), and m is the total number of
SNPs. Note that the PRS summarizes the effects of the susceptible SNPs and, here,
ignores the interaction effects between SNPs.

A number of SNPs with modest or small effects can be involved defining genetic
susceptibility for common complex diseases. Recently, Mavaddat et al. investigated
the absolute risk estimate for breast cancer based on PRS using 77 SNPs with
genome-wide significant levels [47]. This study showed that the estimated risk of
developing breast cancer by age 80 years for women in the lowest and highest 1%
of the PRS was 3.5 and 29.0%, respectively, although discrimination ability was
still modest with C-index = 0.622 [47].

Constructing an optimal PRS may be challenging. Estimating PRS essentially
requires two parts: selecting SNPs for constructing PRS and estimating the weights,
usually the estimates of regression coefficients on disease, for each SNP. Generally,
SNPs with genome-wide significant level are used for PRS calculation, suggesting
that sufficient large sample size is required to detect true SNPs with small effects.
Incorporating additional SNPs showing evidence for association, but not reaching
genome-wide statistical significance, may have potential to improve the prediction
performance. As more risk factors are identified for a disease and incorporated in a
model, estimated risks will be more variable between individuals. As a result, a
larger proportion of people could be identified as belonging more extreme risk
categories [44]. A potential challenge would be to include non-associated noisy
SNP. So far, empirical investigations for breast cancer and prostate cancer showed
that including non-significant SNPs into PRS have no impact on the prediction
performance [48]. The other concern may be that the effect size estimate (i.e., the
weight for each SNP) from a discovery data set can be upward biased and should be
obtained from independent samples. Consequently, the process for constructing
optimal PRS requires a large number of samples. Furthermore, regardless of using
PRS or not, evaluating predictive performance of the developed prediction model
will generally require an independent data set to avoid the over-fitting problem. It
can be easily expected that an enormous sample size is required to complete the
process of developing a prediction model. The optimum strategy for developing
prediction model would be an important future issue.

The utility of a prediction model depends on the prediction performance and also
on available actions based on the predicted risks. The evaluation of a prediction
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model should be suited to the available strategies for disease prevention.
Risk-prediction models first need careful calibration to ensure they provide unbi-
ased estimates of risk for individuals given their risk factor profiles. In addition to
calibration ability, good discrimination ability will be required in the high-risk
intervention, such as chemoprevention [49]. However, good discrimination ability
may be difficult in the PRS prediction model, because the risk factors must have
very large relative risks to achieve high discriminatory accuracy [50].

Genetic variants can be considered as a basis of individual susceptibility for the
diseases. There is potential for a stronger impact in modifying non-genetic factors
in higher risk group from PRS model. The distribution of modifiable risk factors in
the risk categories based on underlying genetic risk might provide useful infor-
mation to develop cost-effective intervention programs for prevention and health
management in the population.

4 Cancer Heterogeneity

The previous sections have focused on the germline genome and discussed studies
for understanding genetic contribution to cancer etiology. On the other hand, the
cancer of interest can often be classified into molecularly distinct subtypes. There
has been tremendous progress in using such cancer classification for the study of
prognosis in cancer patients and differences in treatment response. In this section,
we discuss cancer heterogeneity from the etiological perspective, in which
molecular data are used to define outcomes. For example, fatty acid synthase
(FASN) plays an important role in energy metabolism of fatty acids and is over-
expressed in subset of colorectal cancers. Although obesity is one of the established

Fig. 2 Subtype-specific effect and heterogeneity parameter Heterogeneity parameter between ith
subtype and jth subtype, aij=bj-bi
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risk factors of colorectal cancer, a recent study has suggested that obesity may be
associated with increased risk of FASN-negative (no or weak expression) colorectal
cancer but not associated with increased risk of FASN-positive (moderate to strong
expression) colorectal cancer [51]. Colorectal cancer subtypes by FASN may have
distinct etiology, in terms of obesity.

Basically, the study can evaluate the associations of a risk factor with each
subtype, separately, then compare the associations among subtypes (Fig. 2). In a
cohort study, a competing risks framework can be applied to model the hazards for
each subtype. Suppose that there are J molecular subtypes of interest for evaluating
etiologic heterogeneity. Let Ti denote time to the first occurrence of the cancer of
interest or the censoring. Yi denote an event indicator with Yi = j (1, …, J) if the jth
subtype occurs during follow-up, otherwise Yi = 0 (the censoring). Let Xi denote a
vector of the exposures of interest of the ith participant. For simplicity, Xi is
assumed to be time independent. The cause-specific proportional hazards model
[52] can be used to model a subtype-specific hazard at time t, kjðtÞ, as following:

kiðtjXiÞ ¼ k0jðtÞ expðb0jXiÞ; ð1Þ

where k0jðtÞ is a baseline hazard at time t for the jth subtype and bj is a vector of the
jth subtype-specific regression coefficient for Xi. In the above case of the associa-
tion between obesity and colorectal cancer subtypes, J = 2, and suppose that j = 1
for FASN-negative colorectal cancer and j = 2 for FASN-positive colorectal cancer.
X is BMI (kg/m2), which is one of the measurements of obesity, at baseline.
expðb2Þ and expðb2Þ are the hazard ratios of BMI for FASN-negative colorectal
cancer and FASN-positive colorectal cancer, respectively.

To estimate subtype-specific effects, bj, the standard Cox regression analysis can
be performed for each subtype separately, where the occurrence of the other sub-
types is treated as a censoring. Heterogeneity parameter between the kth subtype
and jth subtype can be defined as ajk ¼ bk � bj, which is equivalent to the ratio of
the hazard ratio for the kth subtype to the hazard ratio for the jth subtype. The data
duplication method [53] provides the joint estimation of subtype-specific parame-
ters and heterogeneity parameters. Each record for a participant is augmented for
each subtype and new exposure variable Xji is created as Xji = Xi for the jth subtype
and Xli = 0 for the lth subtype (l 6¼ j) in the augmented data set. Table 2 illustrates

Table 2 Example of an augmented data set with J = 2

ID = 1 in the original data set

ID Y T X

1 1 20 23.6

ID = 1 in the augmented data set

ID Y T X X1 X2 CENSOR TYPE

1 1 20 23.6 23.6 0 1 1

1 1 20 23.6 0 23.6 0 2
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augmented data, when J = 2, for a participant with ID = 1 who developed the 1st
subtype (Y = 1) at 20 months from the start of study (T = 20) and had body mass
index (BMI) of 23.6 kg/m2 at baseline (X = 23.6). X1 and X2 are the augmented
exposure variables. Two new variables will be also created: TYPE = 1 if the record
is for the 1st subtype and TYPE = 2 if the record is for the 2nd subtype; and
CENSOR = 1 if a participant developed the subtype indicated by TYPE, otherwise
CENSOR = 0. Model (1) can be rewritten on the augmented data set as follows:

kjðtjXiÞ ¼ k0jðtÞ expðb01X1i þ b02X2i þ � � � þ b0JXJiÞ
¼ k0jðtÞ expðb01Xi þ a012X2i þ � � � þ a01JXJiÞ:

In the association between obesity and colorectal cancer subtypes, the hazard
ratios for BMI � 30.0 (obese) compared to BMI of 18.5–22.9 (normal) were
estimated to be 2.25 (95% CI 1.49–3.40) for FASN-negative colorectal cancer and
1.27 (95% CI 0.88–1.83) for FASN-positive colorectal cancer; and the likelihood
test for a12 ¼ b2 � b1 ¼ 0 indicated statistical significance (P = 0.03) [51].

Note that the heterogeneity parameter can be estimated in case-only studies [54,
55]. This can be illustrated in the simple 3 � 2 table shown in Table 3. Here, the
subtype-specific effect is represented by odds ratio. The ratio of the odds ratio for

subtype 2 to the odds ratio for subtype 1 can be written as cf =de
af =be ¼ bc

ad, which is the

same as the odds ratio for subtype 1 versus subtype 2.
When the subtypes are characterized by multiple markers, the question of

interest might be which markers reflect the influence of the risk factors. For
example, microsatellite instability (MSI), CpG island methylator phenotype
(CIMP), and BRAF mutation status are known to be important molecular markers in
colorectal cancer. These markers are associated with each other, where CIMP-high
is associated with MSI-high and BRAF mutated in colorectal cancers [56, 57].
Previous studies have suggested that smoking may be associated with increased risk
of MSI-high colorectal cancer, but not with increased risk of MSI-low [58–61].
Similarly, smoking has been suggested to have an association with increased risk of
CIMP-high colorectal cancer, but not with that of CIMP-low colorectal cancer; and
to have association with increased risk of BRAF mutated colorectal cancer, but not
with that of BRAF wild-type colorectal cancer [59, 60, 62]. So far, it remains
unclear whether smoking is directly associated with increased risk of each of col-
orectal cancer subtypes; or smoking may be directly associated with one of three
subtypes and the association with the subtypes classified by the other two markers
may be observed indirectly through the direct association of smoking with the one
subtype.

Table 3 3 � 2 table with 2 subtypes and controls

Exposed Non-exposed

Subtype 1 a b

Subtype 2 c d

Control e f
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The model for a subtype-specific hazard described above has been extended to
address this question [63–66]. For simplicity, we will illustrate the approach with
focusing on a single and scalar exposure variable, for example smoking status.
Essentially, the jth subtype-specific effect of the exposure variable, bj, is further
modeled with the marker variables. Suppose that there are K markers (k = 1, …,
K) which comprise the molecular subtypes. Let mkj denote the level of the kth
marker variable corresponding to the jth subtype. Potential model for bj may be

bj ¼ c0 þ
PK

k¼1 ckmkj, where ck is a measure of the degree of etiologic hetero-
geneity among subtypes classified by the kth marker, under the other markers’
levels to be the same. This model reduces the number of parameters, ignoring
higher-order interaction between molecular markers. Considering the three binary
markers (k = 1, 2, 3): CIMP (high/non-high), MSI (high/non-high) and BRAF
(mutant/wild-type), 23 = 8 subtype-specific effects will be modeled with 4
parameters. expðc1Þ is the ratio of the hazard ratio of smoking for CIMP-high
colorectal cancer to that for CIMP-non-high colorectal cancer, adjusted for the other
markers’ influence. Similarly, expðc2Þ and expðc3Þ are the ratios of the hazard ratios
between the subtypes by MSI and between the subtypes by BRAF, respectively.
These ratios of the hazard ratios for CIMP, MSI and BRAF have been estimated to
be 1.23, 1.34, and 0.78, respectively [63].

In the GWAS context, restricting the analysis on each subtype may improve the
power to discover subtype specific associations and new loci. Focusing on subtypes
would lead to decreased sample size and loss of statistical power for common
genetic factors across the subtypes. On the other hand, some SNPs may have
subtype-specific effects. In this case, focusing on those subtypes may increase the
power to detect such effects even if sample size decreases. Etiologically homoge-
neous subtypes would be unknown, but similar molecular features in cancers are
likely to share common etiology. Previous study showed a relatively modest degree
of etiologic heterogeneity is necessary for the subtyping strategies to have improved
statistical power [67]. In addition, subset-based approach has been proposed for
heterogeneous traits [68].

Under similar rationale for investigating etiologic heterogeneity, common eti-
ology for related diseases or phenotypes can be investigated. Conceptually, subtype
can be defined by overall etiological differences [69]. Etiologically distinct subtypes
may provide a new classification method, as a complement for anatomic sites or
molecular subtypes.

Revealing etiologic heterogeneity has potential to contribute to risk-based pre-
vention strategy, through improving absolute risk prediction. Some intervention
may be effective in reducing some specific cancer subtypes. If the preventable
subtypes can be linked to specific risk factor profiles, identifying this subtype more
specifically would provide an advance with a potential prevention strategy.
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5 Remarks

In this chapter, we discussed some topics in cancer epidemiology, focusing on
genetic risk factors and genomic features in tumor tissues. Biomarker data from
both genomes (germline and somatic) have been increasingly and rapidly available
in epidemiologic researches, providing valuable opportunities and challenges to
refine genetic and biological cancer etiology. It would also require analysis methods
that are statistically powerful and unbiased, as well as sufficiently large study
samples from populations that effectively provide information regarding the
research question.

Next generation sequencing (NGS) technology opens new opportunities. In
terms of genetic risk factors, NGS will make it possible to evaluate the impact of
rare variants on developing cancer, which cannot be captured by typical GWAS
with SNP genotyping, although there have been debates about the “common dis-
ease common variant” versus the “common disease rare variant” [70]. Statistical
power in a standard single variant analysis would be low due to a low frequency,
and novel statistical analysis methods will be required to overcome this problem.
Finer cancer subtyping may facilitate a deeper insight into the mechanisms between
exposure and disease, while improving public health with that information may
require developing a conceptual framework along with actual available actions.

This growing and promising area requires further development of statistical
framework and methodology for utilizing the full potential of such data and making
a positive impact on public health.
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Effect of Helicobacter pylori Eradication
on Gastric Cancer Prevention in Korea:
A Randomized Controlled Clinical Trial

Jin Young Park, Byung-Ho Nam, Rolando Herrero and Il Ju Choi

Abstract Despite the decreasing trend shown worldwide, considering the
remaining high seroprevalence of H. pylori in the middle-aged population in the
Republic of Korea (Korea) and the notable increase in gastric cancer
(GC) incidence in specific age groups in the US, searching for and eradicating H.
pylori may offer a great opportunity to reduce GC incidence dramatically. However,
mass use of antibiotics that are necessary to eradicate the bacteria is likely to result
in substantial overtreatment and may not be feasible. There are still some doubts
about the effectiveness of H. pylori eradication in preventing GC and uncertainty
about the eradication programs to maximize effectiveness and minimize possible
adverse effects. A population-based double-blinded, randomized controlled clinical
trial has therefore been proposed and being conducted in Korea to investigate the
effectiveness of H. pylori eradication on GC prevention, addressing remaining
unresolved issues. A total of 11,000 people between 40 and 65 years of age who are
invited to the National Cancer Screening Program (NCSP) in Korea will be
included in this study, among which about 60% of them are expected to be
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H. pylori positive. Eligible participants who agree to participate and sign informed
consent undergo medical history and physical examination, and are administered a
detailed lifestyle questionnaire. Blood (15 ml) is also collected in selected centers
for ancillary studies. All participants undergo upper endoscopy and standard col-
lection of gastric biopsies is made for histology and H. pylori diagnosis. Individuals
who have already undergone their endoscopies as part of the NCSP or outside the
NCSP scheme but could not be enrolled in the study prior to their gastroscopy are
contacted for study participation and H. pylori status is determined with a breath
test. H. pylori positive subjects are randomly assigned to either the treatment or
placebo group in double-blind fashion. For those assigned to the treatment group,
H. pylori eradication treatment with a 10-day course of bismuth-based quadruple
therapy is provided while the others receive a placebo. Participants with no evi-
dence of H. pylori infection or baseline chronic atrophic gastritis constitute the
unexposed group to investigate natural history of the infection and GC precursors.
All trial participants are followed up within the NCSP at least for 10 years to collect
systematic information on medical conditions, in particular gastric cancer and
causes of death. The primary endpoint of this trial is the incidence of histologically
confirmed gastric adenocarcinoma. This study will be the first large clinical trial
with endoscopic follow-up to provide comprehensive clinicopathological infor-
mation about the H. pylori eradication effect on the GC incidence. Based on the
results from this study, effective guideline for GC prevention could be established.

Keywords Helicobacter pylori � Gastric cancer � Prevention � Randomised con-
trolled trial

1 Background

Gastric cancer is the fifth most commonly diagnosed cancer in the world with an
estimated 952,000 new cases in 2012 [1]. It is also the third leading cause of cancer
death in both men and women (723,000 deaths, 8.8% of the total) [1]. There is a
considerable geographical variation in the incidence of GC with some of the lowest
rates seen in North America and Western Europe and the highest rates in Central
and South America, Eastern Europe and East Asia [2]. Generally, age-standardized
incidence rates (ASRs) are about twice as high in men as in women, ranging from
4.3 in Northern Africa to 35.4 in Eastern Asia for men, and from 2.7 in Northern
Africa to 13.8/100,000 in Eastern Asia for women [1]. Almost half of the world
total is estimated to occur in China, Japan and Korea and several Latin America
countries including Costa Rica and Ecuador [1].

Over the past decades, the overall incidence of GC has markedly declined in most
countries irrespective of whether the background risk of GC is high or low [3].
However, a recent study demonstrated unexpectedly increasing GC (non-cardia)
incidence rates among whites aged 25–39 years over the last 30 years in the US
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(estimated annual percentage change, EAPC +2.7% among whites) [4], emphasizing
importance of age-specific trends rather than summary rates. Nonetheless, one should
note that evenwith the overall declining incidence trends, the absolute burden is likely
to remain static in coming years due to demographic effect, i.e. growth in world
population combined with increased longevity [2] as illustrated in Fig. 1 [1].

Gastric cancer has been the most commonly diagnosed cancer in Korea in men
since 1999 when the Korea Central Cancer Registry (KCCR) first reported
nationwide cancer incidence [5]. According to the most recent national statistics in
2013, it remains the most common cancer in men (ASR 55.3) while it is the fourth
most common cancer in women (ASR 22.4) [5]. Gastric cancer incidence signifi-
cantly increases with age; age-specific incidence rates were: 2.3 and 3.4 for
15–34 years old; 88.3 and 38.8 for 35–64 years old; and 396.3 and 149.3/100,000
for 65 years old or over in men and women, respectively. Gastric cancer is the third
most fatal cancer both in men (ASR 16.4) and in women (ASR, 6.1), having shown
a continuous decreasing trend since mid-1990s [5].

2 Helicobacter pylori Eradication and Gastric Cancer Risk

2.1 Previous Studies on Helicobacter pylori Eradication
and Gastric Cancer Risk

A meta-analysis of seven randomized trials that compared eradication treatment
with no treatment in H. pylori-positive patients in relation to GC risk showed a
pooled relative risk (RR) of 0.65 (95% confidence interval (CI), 0.43–0.98) in the
treatment group [6]. However, the data included in this meta-analysis were ques-
tioned due to inclusion of redundant data [7]. In 2012, Ma and colleagues published

Fig. 1 Estimated number of new gastric cancer cases in 2035. Figure drawn using GLOBOCAN
2012 database; population forecasts were extracted from the United Nations, World Population
prospects, the 2012 revision; numbers are computed using age-specific rates and corresponding
populations for 10 age-groups
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their 15-year follow-up results of a randomized trial in China showing that GC was
diagnosed in 3.0% of subjects who received H. pylori treatment and in 4.6% of
those who received placebo (odds ratio (OR) 0.61, 95% CI 0.38–0.96). Gastric
cancer deaths occurred among 1.5% of subjects assigned to H. pylori treatment and
among 2.1% of those assigned to placebo (hazard ratio (HR) of death = 0.67, 95%
CI 0.36–1.28) [8]. Their supplementary pooled analysis of previous four random-
ized trials resulted in relative risk of GC incidence of 0.66 (95% CI 0.46–0.95) in
the treatment group. A most recent systematic review and meta-analysis of six
RCTs suggests that searching for and eradicating H. pylori infection reduces the
subsequent GC incidence by 34% (a pooled RR = 0.66, 95% CI 0.46–0.95), with
the caveat that these data cannot be extrapolated to other populations because the
majority of the included studies were conducted in East Asia [9].

2.2 Helicobacter pylori Seroprevalence in Korea

In Korea, according to the most recent estimate, the seropositivity rate of H. pylori
was 54.4% among subjects aged >16 years who had no history of H. pylori
eradication nor current gastrointestinal symptoms [10]. The seroprevalence
increased with age and was the highest in people in their 60s (62%). This study
showed a statistically significant decrease in seroprevalence compared with the
figures estimated from the earlier surveys conducted in 1998 [11] and 2005 [12].

2.3 Helicobacter pylori Treatment in Korea

Considering high seroprevalence of H. pylori and substantial burden of GC in the
country, searching for and eradicating H. pylori may be considered as an effective
strategy for GC prevention. However, the revised guidelines for diagnosis and
treatment of H. pylori infection in Korea do not indicate H. pylori eradication for
the general population while definite indications for identifying and treating the
infection include (1) early GC, (2) previous indications of peptic ulcer including
scar, (3) Marginal zone B cell lymphoma (MALT type) and (4) idiopathic throm-
bocytopenic purpura [13]. Currently in Korea, standard triple therapy with a proton
pump inhibitor (PPI), amoxicillin, and clarithromycin is recommended as a primary
regimen for H. pylori treatment [14].

2.4 Antimicrobial Resistance

There is an increasing trend ofH. pylori treatment failure with traditional triple therapy
in many parts of the world [15]. Studies have shown that unsuccessful treatments
significantly increase resistance [16, 17]. It is therefore important to choose the most
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effective first-line treatment regime in order to avoid treatment failure and subsequent
secondary resistances. In Korea, prevalence of primary antibiotic resistance amongH.
pylori isolates was estimated to be 18.5% for Amoxicillin, 13.8% for Clarithromycin,
and 66.2% for Metronidazole in 2003 [17]. The study also compared H. pylori strains
isolated fromKorean patients in 1987, 1994 and 2003 and showed that the distribution
of minimal inhibitory concentrations (MIC) for amoxicillin, clarithromycin, metron-
idazole, tetracycline, azithromycin, and fluoroquinolone (ciprofloxacin, levofloxacin,
and moxifloxacin) have shifted to higher concentrations [17].

3 Cancer Screening and Registry in Korea

3.1 National Cancer Screening Program in Korea

The NCSP in Korea was first introduced in 1999 to reduce the high burden and
mortality from cancer, as part of a national 10-year plan for cancer control [18].
The NCSP provides GC screening every 2 years for those aged 40 or over using
direct or indirect upper gastrointestinal series (UGIS) or endoscopy [19]. The
proportion of participants who chose UGIS as a GC screening modality has steadily
decreased, and approximately 73% of participants were estimated to choose
endoscopy as a preferred modality in 2011 [20].

The impact of GC screening on GC mortality has been observed since early
2000 and the difference in mortality between people with and without screening
effect has steadily increased (National Cancer Center, Korea (NCC) internal data). It
has been projected that GC mortality during the periods of 2015–2019 will be at
least 30% less among those who undergo GC screening compared with who do not
(NCC internal data).

3.2 Korea Central Cancer Registry

The KCCR was initiated by the Korean Ministry of Health and Welfare as a
hospital-based cancer registry in 1980 [21]. In 1999, the KCCR expanded cancer
registration to cover the entire population under the Population-Based Regional
Cancer Registry program. The completeness of incidence data for 2013 was esti-
mated to be 97.8% [5].
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4 HELPER—Effect of Helicobacter pylori Eradication
on Gastric Cancer Prevention in Korea: A Randomized
Controlled Clinical Trial

4.1 Motivation for the Study

Despite the decreasing trend shown worldwide, considering the remaining high
seroprevalence of H. pylori in Korea and the notable increase in GC incidence in
specific age groups in the US, H. pylori screening and eradication may have a great
impact in reducing GC incidence dramatically. However, as pointed out in previous
studies, mass use of antibiotics is likely to result in substantial overtreatment and
may not be feasible [22]. Today, no country has yet implemented a
population-based H. pylori eradication program for GC prevention. This may reflect
some doubts about the effectiveness of H. pylori eradication in preventing gastric
cancer and about the generalizability of previous study results from China and
Japan to other populations. In addition, there exists uncertainty about how best to
apply eradication programs to maximize effectiveness and minimize possible
adverse effects including weight gain, gastroesophageal reflux disease and antibi-
otic resistance. Specifically, there is only limited information on the program fea-
sibility, appropriate target groups for intervention in different regions, and potential
harms of population-based H. pylori screening and treatment programs [23].

To address these issues and implement effective population-based GC preven-
tion strategies, a prevention trial has been developed [24]. It is a multi-center,
double-blind, randomized controlled clinical trial in Korea to evaluate the effect of
H. pylori eradication to prevent GC incidence in middle aged adults. The effect of
H. pylori eradication on the incidence of gastric dysplasia and other conditions that
may be associated with H. pylori infection or its eradication will also be investi-
gated. This study will be able to address possible adverse events caused by
antibiotic treatment as well as the role of environmental and host genetic factors in
development of GC and its precursors and as modifiers of the treatment. All par-
ticipants will be followed up for at least 10 years to assess the GC incidence. This
study will greatly benefit from already existing cancer control activities in the
country, such as the NCSP and the KCCR.

4.2 Study Hypothesis

H. pylori infection is an important cause ofGCdevelopment. Therefore, the risk ofGC
can be reduced by antibiotic eradication ofH. pylori infection in individuals in Korea.

320 J.Y. Park et al.



4.3 Objectives of the Study

Main Objective
The primary objective of the study is to determine if H. pylori eradication reduces
GC incidence in Korean population among 40–65 years old subjects.

Secondary Objectives

1. To determine if H. pylori eradication reduces incidence of gastric dysplasia
2. To assess adverse events caused by antibiotic treatment for H. pylori

eradication
3. To evaluate the impact of H. pylori eradication on the occurrence of selected

medical conditions potentially associated with the infection or its eradication
(e.g. obesity, diabetes, cerebrovascular disease, coronary artery disease, asthma,
esophageal diseases, other cancers, cognitive functions)

4. To evaluate the role of demographic, lifestyle, nutritional, environmental and host
genetic factors, compliance with treatment, and H. pylori strains in development
of gastric cancer and its precursors and as modifiers of the treatment

5. To assess whether the H. pylori treatment would result in similar gastric cancer
incidence compared to the Unexposed Group without H. pylori infection

6. To assess whether gastric cancer incidence in the group with successful erad-
ication is different from those refusing/failing eradication within the treated H.
pylori positive (treatment) group

7. To examine the difference in all-cause mortality between the treated H. pylori
positive group (treatment group) and untreated H. pylori positive group (pla-
cebo group)

8. To assess the difference in gastric cancer incidence between the untreated H.
pylori positive group (placebo) and the H. pylori negative group (Unexposed
Group)

9. To investigate the role of cofactors for gastric cancer development among
untreated H. pylori positive subjects (e.g. demographic, dietary, lifestyle, host
genetic, factors and inflammatory markers)

10. To assess the impact of H. pylori eradication on precancerous lesions (atrophy
score)

4.4 Overview of Study Design

The study design has been described previously [24]. Briefly summarizing the study
design with an additional recruitment method that has been newly adopted, men and
women between 40 and 65 years of age at entry who are invited to NCSP in Korea
are asked to participate in this trial until a total number of 11,000 are recruited at
local centers where the NCSP takes place. Eligible participants who agree to par-
ticipate and sign informed consent undergo medical history, physical examination
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and blood collection, and are administered a detailed lifestyle questionnaire.
Participants who visit study sites to undergo endoscopy outside the NCSP scheme
are also contacted for study participation. The participants are excluded if they meet
any of the following criteria: (1) personal history of GC; (2) family history of GC in
a first-degree relative; (3) history of other organ cancers within 5 years; (4) clinical
indication of H. pylori eradication; (5) other serious medical illnesses or conditions
that preclude adequate participation.

All participants undergo upper endoscopy and gastric biopsies are collected
according to the Updated Sydney System for histology [25] and H. pylori diagnosis.
H. pylori status is determined either by the rapid urease test (RUT) on an endo-
scopic biopsy specimen or pathology reading. Individuals who have already
undergone their endoscopies as part of the NCSP or outside the NCSP but could not
be enrolled in the study prior to their endoscopy receive Urea Breath Test (UBT) for
determination of H. pylori infection. Study participants undergo medical history,
physical examination and blood collection, and are administered a detailed lifestyle
questionnaire. Subjects who are H. pylori positive are randomly assigned to either
the treatment group (50%) or the control group (50%) (Fig. 2). Randomization is
performed using random permutation block size design stratified by sex and par-
ticipating center, generating an allocation sequence in which the number of
assignments to intervention groups satisfies a specified allocation ratio after every
“block” of specified size, by nQuery Advisor® (version 7.0, Cork, Ireland). This
will ensure the continued equivalence of group size. Both participants and inves-
tigators are blinded to the identity of the interventions.

For those assigned to the treatment group, eradication treatment with a 10-day
course of a bismuth based quadruple therapy (metronidazole 500 mg, 3 times a day,
tetracycline 500 mg, 4 times a day and, bismuth 300 mg, 4 times a day, and a PPI
(Lansoprazole) 30 mg, twice a day for 10 days) are provided. Participants assigned
to the control group receive a placebo with lookalike medications. Participants with
no evidence of H. pylori infection or baseline chronic atrophic gastritis will con-
stitute the unexposed group to investigate natural history of H. pylori infection and
GC precursors (Fig. 2).

All the trial participants will be followed up at least for 10 years to collect
systematic information on medical conditions, in particular GC incidence and cause
of death. Subjects who are identified outside the NCSP and agree to participate in
the study will be included in NCSP for regular follow-up within the program as
other participants. We anticipate approximately 80% of all participants will undergo
upper endoscopy every two years as part of the NCSP, assuming an active
follow-up. Extra efforts will be made to encourage participants to attend the
follow-up endoscopic examination. Gastric cancer cases will be identified during a
biennial endoscopic follow-up for those who participate in the NCSP. For those lost
to endoscopic follow-up, GC cases will be identified through a record linkage with
the KCCR. At the first follow-up visit in routine screening another biopsy collection
will be made for blinded assessment of the presence of H. pylori with the RUT
method. At the end of the follow-up all the examinations done at the baseline will
be repeated for all participants.

322 J.Y. Park et al.



4.5 Trial Endpoints

Primary Endpoint
The primary endpoint of the trial is the incidence of histologically confirmed gastric
adenocarcinoma. The incidence of GC will be compared between the treatment and
placebo groups at 10 years or when enough cases accumulate to satisfy the power
analysis outlined below.

Secondary Endpoints
In addition to the incidence of GC as the primary endpoint of the study, endpoints
to achieve the secondary objectives are the following:

• Incidence of gastric dysplasia
• Occurrence of adverse events caused by antibiotic treatment

Fig. 2 Overview of the study design with two different ways to recruit participants into the study
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• Incidence and mortality from other medical conditions such as obesity, diabetes,
circulatory diseases, oesophageal diseases as well as other cancers and cognitive
impairment

• Mortality from GC
• All-cause mortality
• Modification of atrophy score

4.6 Unblinding Criteria

The following events may require unblinding of the study:

• Compelling medical need as determined by the treating physician, such as:

– Occurrence of a serious adverse event where the knowledge of the partici-
pant’s assignment would directly influence or affect his immediate care.

• Ingestion of the study drugs in excessive quantity by the participant or by a
person other than the participant.

• Ingestion of study drugs by a child.
• Participant adamantly requests unblinding. Unblindings endanger the trial;

therefore, participants should be strongly discouraged from finding out their
treatment assignments before the completion of the study drugs. However, a
participant who is adamant in requesting his treatment assignment may refuse to
cooperate with follow-up efforts if he is not given this information.

Unblinding of individual participants, at the request of the Data and Safety
Monitoring Board (DSMB) and the Institutional Review Boards will also be
allowed. This individual unblinding will be performed in a manner that assures that
the overall study blinding is maintained, that staff involved in the conduct, analysis,
or reporting of the study remain blinded, and that any unblinding is appropriately
documented.

4.7 Stopping Criteria

Although the final evaluation between the treatment and placebo groups according
to GC incidence is planned to be conducted at 10 years from the last inclusion, the
evaluation in respect to the main end-point may be conducted as soon as the
specified total number of planned cases is reached. The DSMB will be responsible
for evaluating unblinded data on case accrual, efficacy and safety of the intervention
to recommend on continuation or interruption of the study. If major differences in
the management recommendations are put in place in Korea, the strategy of the
study will be revised in consultation with the DSMB to introduce the necessary
adjustments. Under the circumstances if a definite risk would be revealed for the
control group, the planned follow-up strategy may be stopped for the individuals at
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risk or the entire group. At the same time longer follow-up period (up to life-time
follow-up) may be justified to reach secondary end-points and conduct ancillary
studies after the primary end-point is reached. At any time points when the study
reveals clear benefits of H. pylori treatment for GC prevention, all the participants
including those who belong to the placebo group will be given the treatment.

4.8 Questionnaires and Data Management

Questionnaires are administered by trained staff following administration instruc-
tions and manuals. The staff involved in this process have to comply with the
requirements in the manual as well as with the potential further amendments to it.
Data are entered into the internet-enabled eVelos system operated by NCC which
serves the research team through a centralized platform (Fig. 3). This system creates
participant clinical profiles to include diagnosis, lab results, and family histories
helping with managing participants online during the research process, including
recruitment, registration, scheduling, visit tracking, data entry, notifications and
monitoring and data cleaning. The data in this database are kept strictly confidential
as required by law and available only to investigators and institutions who have
received approval from the Clinical Research Coordination Center at NCC after
certifying their adherence to patient data protection policies for the project.

Fig. 3 Velos system structure
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4.9 Data Linkage

Information on participants’ GC screening examination, diagnosis of cancer or
other diseases including obesity, diabetes, cerebrovascular disease, coronary artery
disease, asthma, esophageal diseases, cognitive functions, or survival data will be
obtained from the KCCR, National Health Insurance Corporation of Korea, NCSP,
Health Insurance Review & Assessment Service, Statistics Korea, or other national
data through a record linkage using participants resident registration numbers
during or at the end of the study. All the participants’ data collected will be treated
strictly confidential under the law.

4.10 Sample Size Calculation

The expected number of GC cases was estimated based on the assumptions of a risk
reduction in the GC incidence due to the intervention at least by 47%. Our
assumption for the effect size was based on the available literature [8, 26] as well as
the more recent Japanese study of early GC patients that reported a HR of 0.497
(95% CI 0.297–0.831) in the eradicated group for the incidence of metachronous
GC after endoscopic resection after maximum 10 years of follow-up [27]. When we
applied a significance level of 5% and a statistical power of 90%, we would need
104 GC cases (Table 1, in bold). Overall GC incidence (men and women com-
bined) in H. pylori positive population in Korea was calculated as 165
cases/100,000/year, using 5 year follow-up data from the NCSP in Korea (NCC,
internal communication). H. pylori prevalence was estimated to be 60% in Korean
adults aged 40–65 years old [12] and a relative risk of GC for H. pylori positives to
H. pylori negatives was assumed to be 6, based on the available evidence in the
literature [28]. Assuming a 10% of follow-up loss, it was estimated that the total

Table 1 Study sample sizes required to determine various effect sizes of H. pylori eradication in
reducing GC incidence at 10 years of follow-up

10 years of follow-up

GC
outcome
needed

Hp positive (N for
each treatment and
placebo group)

+10%
follow-up
loss

N for both
treatment
and placebo
groups

Total (treatment
group, placebo
group and
unexposed group)

HR 0.50
power 90%

87 2400 2667 5334 8890

HR 0.53
power 90%

104 2917 3241 6482 10,804

HR 0.55
power 90%

118 3332 3702 7404 12,340

HR 0.60
power 90%

161 4710 5234 10,468 17,446
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sample size of 11,000 (6600 H. pylori positive participants in both treatment and
placebo groups plus 4400 participants in the H. pylori negative group) with all
participants to be followed up for 10 years, would meet the requirement of the
study design to investigate a 47% reduction of GC risk (HR 0.53) in the treatment
group compared to the placebo group. nQuery (Statistical Solutions Ltd. Boston,
USA) Version 2.0 was used to calculate the sample size based on the log-rank test
assuming proportionality of hazard for the time to event analysis.

4.11 Statistical Analysis

This study is a randomized, phase III superiority trial. The primary objective of the
study is to compare treatment (H. pylori eradication) group against placebo group to
determine if H. pylori eradication reduces GC incidence in Korean population
among 40–65 years old subjects.

The primary endpoint of this study is the event free survival (EFS),which is defined
as the time from randomization to the incidence of histologically confirmed gastric
adenocarcinoma. The primary analysis will be performed based on intention to treat
(ITT) including all subjects who are randomized. Unstratified and stratified log-rank
test will be used to compare the two survival curves between the two groups at the
interim and/or final analyses. The event time associated with each group will be
summarized using the Kaplan-Meier method and displayed graphically where
appropriate. Confidence intervals for the 25th, 50th and 75th percentiles will be
reported. The proportionality of the HR will be examined and if this is satisfied, the
Cox proportional hazardmodel will be used to estimate the HR and the corresponding
95% CI. Both stratified and unstratified Cox regression models will be used. The
secondary endpoints include gastric dysplasia, GC mortality and all-cause mortality.
Similar survival analysis methods will be used for these secondary endpoints.

The v2 test and logistic regression model will be employed for analyzing cate-
gorical variables including adverse events. T-test or appropriate non-parametric
methods such as Wilcoxon’s rank-sum test will be used to compare some baseline
characteristics with continuous measures between the two groups.

Information on interruptions, changes or discontinuation of treatments will be
documented in order to perform additional analyses restricted to subjects who
completed their treatments. We will also perform a per-protocol analysis with data
obtained from subjects who complete this trial. In the per-protocol analysis, subjects
who are included in interruptions or exclusion criteria will be excluded. Interruptions
will be considered for subjects who are categorized as one of the following:

• Violation of inclusion or exclusion criteria
• Subjects in the control group who decided to receive H. pylori eradication
• Subjects taking treatment regimen for less than 7 days (<70%)

The main analysis planned for this trial will be conducted by the NCC and the
International Agency for Research on Cancer (IARC) investigators and will focus
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on the primary outcome, histologically confirmed gastric adenocarcinoma as
defined in the trial endpoints section. All statistical calculations will be performed
using SAS, version 9.1 (SAS institute, Cary, NC) and a 2-tailed p < 0.05 will be
considered statistically significant.

4.12 Interim Analysis

Independent statisticians will prepare the interim unblinded reports for the inde-
pendent DSMB, which oversee participant’s safety and the quality of trial conduct.
One formal interim analysis will be conducted using a two-sided significance test
with the O’Brien–Fleming spending function and a type I error rate of 5%. The
criteria for deciding on the timing of this analysis will be made by the members of
the DSMB after initiation of the study (without regard to any information on
treatment efficacy observed in the trial). The DSMB may recommend termination of
the study, on the basis of their assessment that the excess risk of adverse events in
the treatment group cannot be offset by a reduction in GC events or whenever an
interim analysis reveals a remarkably significant difference between the two groups,
whichever comes first.

5 Concluding Remarks

This prevention trial will generate evidence to demonstrate to what extent H. pylori
eradication can reduce the risk of GC. Furthermore, it will be able to identify not
only the target groups where the eradication would be most beneficial, but also its
potential deleterious effects, in addition to important environmental, genetic and
bacterial factors associated with GC and its preneoplastic lesions. The study would
have major public health implications by providing leads for prevention activities in
populations with elevated rates of GC, not only in Asia, but also other regions
including Latin American countries.
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Contemporary Evaluation of Breast
Cancer Screening

William E. Barlow

Abstract Mammography screening has been shown in randomized trials to reduce
breast cancer mortality by at least 20%, though it has risks as well due to radiation
exposure and overtreatment of benign conditions. However, mammography tech-
nology and breast cancer treatment have improved since these trials were conducted
and it is unlikely that large scale trials will ever be conducted again. Therefore,
prospective observational data need to be used to continuously assess improvements
in the screening process. We consider the successive steps for a woman undergoing
screening and attempt to measure and improve each step in that process to maximize
benefits while monitoring harms of screening. A large population-based study entitled
PROSPR is assessing longitudinal performance of screening mammography and
showing areas where improvements in follow-up of positive mammograms need to
be made. In this assessment we consider sources of bias in evaluation of observa-
tional data when assessing efficacy of screening. We also propose a chained statistical
model to look at steps in the overall process from screening participation to mortality.

Keywords Cancer screening � Observational data bias � Test performance � Risk
modeling � Sequential processes

1 Introduction

Randomized trials of mammographic screening to detect early breast cancer have
demonstrated a breast cancer mortality reduction benefit in women aged 50 years or
greater. Three separate meta-analyses of existing randomized trials of mammography
screening have shown very similar results: (1) RR = 0.80 with 95% confidence interval
(CI) 0.73–0.89; (2) RR = 0.82 (95% CI 0.74–0.94); (3) RR = 0.81 (95% CI 0.74–0.87)
despite differences in the computational methods [1]. Thus, regardless of analytic
approach there seems to be strong evidence showing a reduction in breast cancer
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mortality due to screening for women aged 50 years or above. However, there is
conflicting evidence of a benefit for screening women 40–49 [2, 3], and there is not
strong evidence for a particular interval between screens [1]. Furthermore, there are
downsides to screening due to costs, radiation exposure, an increase of false positive
biopsies, and over-diagnosis, i.e. the detection of cancers that would not have been lethal
or perhaps ever clinically detected had they not been found by screening. Therefore,
there is a need to balance screening risks and benefits. For the most part, guidelines for
recommendations for screening of average risk women are typically dependent solely on
age, but may be modified by breast cancer risk factors and co-morbidity [4].

Having already shown that screening mammography is beneficial for some women, it
is now unlikely that any new trials of mammography screening comparing screening to
no screening will ever be conducted. The intent-to-treat analyses in the randomized trials
compared offering screening to women versus not offering screening. Many women
assigned to the screening group refused to be screened and thus the hazard ratio may not
represent the true efficacy of mammography screening. Adjusting the meta-analysis for
adherence to screening showed an estimated ITT risk decrease of 22% (95% CI 15–28%)
in breast cancer mortality that became stronger after adjustment for adherence (30% with
95% CI 18–42%) [5]. However, it also showed that the over-diagnosis rate increased
from 19% (95% CI 15–23%) in the ITT analysis to 30% (95% CI 18–42%) after
adjustment. Thus, in an observational setting one might expect the benefit and harms of
screening to be comparable to these adjusted results if one was able to rule out bias in
screening uptake, i.e. participation in screening.

The percentage uptake of screening in a randomized trial can be seen to be a large
factor in determining the likelihood of finding a statistically significant result. However,
even if compliance is high, other factors would affect likely success. These include the
ability of the screening mammogram to detect the cancer at an earlier stage than would be
possible clinically. Secondly, suspicious lesions detected on a screening mammogram
must be confirmed with additional imaging, and ultimately a biopsy would be performed
if indicated. If a cancer is indeed detected, then there must be effective treatment available
that would decrease the likelihood of recurrence or metastasis compared to a cancer
detected clinically at a later time. Finally, early detection must reduce actual mortality
from breast cancer. In short, there are many steps that must go well in order for a
screening trial to show a significant benefit. Below we try to decompose the steps in the
screening process in order to improve how well screening works in actual practice.

2 Various Aspects, Issues, and Challenges in Assessing
Mammography Screening Using Observational Data

2.1 Biases in Evaluation of Screening from Observational
Studies

When it became clear that new trials of mammography screening were unlikely to be
conducted, many attempted to use existing observational data to show a benefit to
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screening. This has led to some biased evaluations of screening. The most pernicious
analysis is a comparison of screen-detected versus clinically-detected women with regard
to survival or clinical presentation of the cancer. For example, if one compares survival
from the time of diagnosis between screen-detected women versus clinically-detected
women, then survival might appear to confer a survival benefit [6]. However, this
observation is subject to many biases including lead-time bias [6]. Suppose that
regardless of diagnosis method, the cancer begins in a pre-detectable state, as it becomes
larger it becomes detectable by screening, and finally it becomes large enough to be
detectable clinically. However, suppose treatment is completely ineffective, and the
patient ultimately succumbs to the disease. It may be that screening has not actually led to
a better clinical outcome, but has merely shifted the diagnosis date earlier, but not
changed the ultimate outcome. Thus survival appears to be longer even though there has
been no benefit from screening. Similarly, comparisons of screen-detected cancers to
clinically-detected cancers with regard to tumor size, proliferation rates, and poor
prognostic characteristics may be misleading since faster growing cancers are less likely
to be detected by periodic screening and more likely to be clinically detected
(length-biased sampling) [7]. Therefore, it is still necessary to demonstrate in observa-
tional data that screening improves outcomes while avoiding bias.

2.2 Use of a Surrogate Outcome for Breast Cancer
Mortality

One method that has been suggested to address this bias is to focus on an earlier
surrogate for mortality, late stage disease incidence, which should theoretically be
prevented by screening. If one can show a reduction in late stage disease in a
screened group, it would suggest a downstream effect on death due to breast cancer.
In an attempt to determine whether late-stage disease may be a surrogate for future
breast cancer mortality, we evaluated the association of screening with this outcome
in a population-based study [8]. We characterized screening as a time-dependent
covariate in an analysis of time to late stage diagnosis followed by the effect on
mortality. We were unable to conclude that late stage disease was an appropriate
surrogate for breast cancer mortality. We also evaluated what were the potential
precursors for failing to diagnose late stage disease at an earlier screen [9]. We
determined that it was primarily a failure to conduct a screen at all, but also there
was a failure to diagnose even among women screened, and failure to appropriately
treat women who were diagnosed. Since failures can occur at each step in the
screening process, it is necessary to study each part of the screening process and the
factors that each part depend on.
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3 Decomposition of the Screening Process

3.1 Conceptual Model of Breast Cancer Screening

We have created a conceptual model of the screening process for breast cancer
shown in Fig. 1 [10; figure reproduced with permission].

So a randomized trial of screening requires that each step in this process work
well in order to achieve a mortality reduction. Even if randomized trials of
screening could be done, the overall timeline to find a mortality reduction would be
10–15 years from start of the trial. Therefore, it is necessary to decompose these
steps and deal with each separately. Each part of the process can be tested in a
randomized trial or more likely evaluated with observational data adjusting for
perceived major confounding.

Fig. 1 The PROSPR (“Population-based Research Optimizing Screening through Personalized
Regimens”) conceptual model of breast cancer screening that represents risk-based and
preference-based care within diverse multilevel systems. BI-RADS indicates Breast
Imaging-Reporting and Data System, 2D 2-dimensional, MRI magnetic resonance imaging;
chemo, chemotherapy, PPV positive predictive value, EOD extent of disease
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3.2 Population Undergoing Screening

The very first part of the process is to identify those most at risk for breast cancer
and prioritize screening for that population. The first and most common risk model
for breast cancer was developed by Gail [11]. This model includes age, family
history, age at menopause, number of live births, and previous diagnosis of atypical
hyperplasia, a benign breast condition. However, other than older age, risk factors
with high prevalence are few. Family history is a well-known risk factor but is not
common and not as predictive as most would believe. The specific mutations of
BRCA1 and BRCA2 are highly related to future breast cancer, but most women are
not tested for these mutations routinely unless there is a family history of early
onset of breast cancer or other compelling evidence for such testing.

Using data from 2.4 million screening mammograms from the Breast Cancer
Surveillance Consortium (BCSC [12]) we predicted a diagnosis of breast cancer
within one year [13]. Because the risk factors differ dramatically by menopausal
status, separate models were fit to premenopausal and postmenopausal women. For
premenopausal women only four risk factors were identified: (1) age; (2) breast
density; (3) prior breast procedure (e.g. biopsy); and (4) first-degree family history.
Breast density is the percentage of breast volume comprised of dense versus fatty
tissue. It is judged subjectively from the screening mammogram by the radiologist
and classified into four categories determined by BI-RADS [14]. Category 1 is the
least dense and category 4 the most dense. Higher density has higher risk for breast
cancer as well as making it more difficult to detect the breast cancer in a mam-
mogram [13, 15]. Using these four risk factors yielded a prediction AUC of 0.63.
For post-menopausal women many additional risk factors were identified including:
race, Hispanic ethnicity; age at first birth; current use of exogenous hormones;
surgically induced menopause; body mass index (BMI); and having had a previous
false positive mammogram. Nonetheless, even with many highly significant pre-
dictors of breast cancer risk the ability to discriminate high risk from low risk
remains poor (AUC of 0.62). Thus, it would be difficult at the current time to
recommend to women above age 50 that they not be screened due to low risk.
However, one could tailor the screening interval to risk level. That strategy is being
tested in a randomized trial funded by Patient-Centered Outcomes Research
Institute (PCORI) led by Dr. Laura Esserman [16]. They will randomize 10,000
women aged 40–74 years to annual screening or a personalized schedule based on
risk factors.

Until that trial is conducted, one may need to rely on information from obser-
vational studies about participation in screening for breast cancer and how it
depends on measured risk factors. For that reason the National Cancer Institute
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initiated an observational cohort study “Population-based Research Optimizing
Screening through Personalized Regimens (PROSPR)” [17]. This initiative studies
the actual application of screening for breast, cervical, and colorectal cancer in the
population. For example, one can identify each person in the population and
whether they have undergone screening and the outcome of that screening.
Therefore, using population-based data one can infer screening benefit (or harm) to
the entire population and not just individuals who are screened. The latter has been
a limitation of other research efforts that start follow-up at the point of the screen.
Furthermore, we can cluster individuals in their primary care practice and determine
the association of each primary care physician with likelihood of screening.
PROSPR has surveyed primary care physicians in order to understand how their
beliefs about the effectiveness and optimal timing of screening actually are asso-
ciated with screening by their patients [18]. Furthermore, we are looking at initi-
ation of screening when one becomes an appropriate age to be screened. Beaber and
colleagues have shown that even though screening is recommended at age 40 for
many women, it still takes one to two years to reach 50% screened after their 40th
birthday [19].

3.3 Mammography Interpretation and Cancer Detection

There has been extensive work on actual screening performance and how it depends
on patient and radiologist factors as well as technology [20]. The initial screening
mammogram is assigned a BI-RADS measure of suspicion of cancer that ranges
from 1 (least likely) to 5 (most likely) [14]. Scores of 1 and 2 are considered
“normal” and the patient is advised to return for screening in 1–2 years depending
on age or risk factors [21]. Scores of 3 are rarely used as it indicates an ambiguous
finding and the patient may be given a shorter screening interval (typically
6 months) until it is resolved. Scores of 4 or 5 may lead to consult with a surgeon or
a breast biopsy though few patients receive a 4 or 5 directly from the initial
screening mammogram. In cases where additional information is needed such as
more imaging or access to past mammograms, a 0 may be assigned as a placeholder
until the screening episode is resolved. Women assigned a 0 typically undergo
additional imaging such as a more focused diagnostic mammogram, ultrasound, or
a MRI image. After completion of this imaging, a final BI-RADS score may be
assigned with the woman either referred back to a return to screening in the future
or to an immediate surgical consult or biopsy. When forced to classify the initial
mammogram we typically call 0, 4, and 5 as a “positive” mammogram although the
underlying probability of cancer differs across those scores. The total positivity rate
of the initial screening exam will range from about 8 to 20% depending on age,
breast density, and whether this is the first screening examination for that woman.
Often this is characterized as the recall rate even though there may be no actual
recall and the woman is referred to biopsy.
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4 Common Measures of Mammography Performance

4.1 Retrospective Measures Sensitivity and Specificity

To determine sensitivity and specificity, it is typical to determine the “actual”
cancer state, preferably at the time of the screening examination. However, to do so
would require invasive procedures such as a breast biopsy for each patient, and that
would not be feasible or ethical in the absence of evidence of any breast cancer.
Instead, it is common to adopt a follow-up period of one year to determine if cancer
is diagnosed in that interval [19]. So sensitivity and specificity become conditional
on the observed disease state one year after the screening mammogram. This has
certain problems as well. First a rapidly growing cancer may not have been present
at time of the negative screening mammogram, but the screen is still classified as a
false negative examination in order to compute sensitivity. Secondly, the decision
to perform a biopsy is often conditional on the screening result, leading to ascer-
tainment bias of the true disease state. We have developed a doubly robust esti-
mator that considers the probability of ascertainment in order to address this bias
[22].

Sensitivity and specificity require a dichotomization of the BI-RADS scale into
positive and negative that can lose valuable information. One can use a ROC
approach that uses each value to generate either an empirical or modelled ROC curve.
For the empirical AUC the area the comparison of every cancer case to every non
cancer case with respect to which had the larger ordinal BI-RADS value. The
modeling uses an ordinal probit model with BI-RADS assessment as an ordinal
response (1, 2, 3, 0, 4, 5) reflecting increasing likelihood of a cancer diagnosis [20].
Disease status is the primary covariate that determines the AUC which can be
computed from the parameter estimates. The curve itself represents choice of cutoffs
determining true positive rate (sensitivity) and false positive rate (1-specificity) while
the area under the curve (AUC) is characterized as the overall discriminatory ability
of screening mammography. The modeled curve allows for adjustment for covariates
as main effects (moving along the ROC curve) or as interactions with disease status
(different ROC curves). Nonetheless, some difficulty in interpretation remains, par-
ticularly for unrealistic values of sensitivity or specificity. Consequently, use of direct
modeling of sensitivity and specificity may be more common.

4.2 Prospective Measures of Positive and Negative
Predictive Value

Sensitivity and specificity are “retrospective” as they condition on disease status
and then look backwards to determine screening assessment. This also allows
sampling of controls which are often more numerous than cases. However, one may
prefer probabilistic statements about the likelihood of cancer given a positive or
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negative screening mammogram. Therefore, positive and negative predictive value
may be valuable as prospective measures to guide patients. However, they are
highly dependent on the overall level of disease in the population of interest. Since
incident breast cancer is still rare in a population undergoing screening, negative
predictive value is often 99% or greater. Positive predictive value may be 5–20%
depending on the constellation of risk factors [23]. Thus, there may be considerable
anxiety associated with an initial positive screening mammogram until it is resolved
though further testing. Typically, additional imaging would be performed using
diagnostic (focused) mammography, ultrasound, or magnetic resonance imaging
(MRI). A new BI-RADs score may be assigned after this imaging. If the imaging is
negative, a woman may be returned to the usual screening interval. If positive, she
would likely be scheduled for a definitive biopsy.

There are actually three positive predictive values in common use named PPV1,
PPV2, and PPV3 [21]. PPV1 is the more usual definition of PPV which uses as a
denominator all positive screens and a numerator of all breast cancers diagnosed
within a year of the screen. PPV2 conditions on a recommendation of a biopsy
either from the initial screen or more likely from subsequent diagnostic imaging as
the denominator. PPV3 conditions on actual receipt of a biopsy that was initially
prompted by screening or follow-up imaging.

While we largely see PPV as being a “test” characteristic it is highly dependent
on risk factors and individual risk for cancer so may vary widely with age, breast
density, and other factors. It also includes BI-RADS categories 0, 4, and 5 which
have very different likelihood for cancer [20]. Since 4 and 5 are rare as the initial
screening result, this consolidation may have little impact.

4.3 Survival and Mortality Outcomes

Survival from point of initial diagnosis is often used as an outcome measure, but as
previously discussed this can be biased if comparing screened women to
unscreened women. Similarly, showing that screening is associated with smaller
earlier stage breast cancer is a necessary condition, but not a sufficient condition, for
demonstration of screening benefit. One actually has to show that there has been a
change in the outcome trajectory due to screening. This is best done in individu-
alized or group randomized trials of screening programs. In the absence of ran-
domization, mortality rates may be instructive provided one can adjust for
numerous sources of bias. Mortality in a population is measured from an arbitrary
point in time (e.g. beginning of a calendar year) and modeled in survival time
models with screening as a time-dependent covariate. Screening may be modeled as
“ever-screened” which would confer a life-time benefit or may be modeled as
time-limited such as “screened within the last 3 years prior to the current time
point”. Again such analyses are highly subject to the indication for screening
requiring collection and modeling of potential confounders.
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While the objective of screening is to reduce mortality due to breast cancer, this
can be a difficult outcome to study requiring lengthy follow-up. Our previous
attempts to use a surrogate outcome such as advanced disease were not successful
[8]. Screening may also reduce morbidity even if not reducing mortality. That is, the
intensity of treatment may be reduced in order to achieve the same outcome. Since
treatments have improved dramatically one may no longer observe a mortality
difference, but quality of life during treatment is higher and healthcare costs lower.

5 Current Research

5.1 New Technology in Imaging

Screening trials have used mostly film based mammography from two screening
views. Digital mammography has largely replaced film and appears to offer better
resolution. Mammography screening appears to improve each year [24]. Recently,
tomosynthesis (3-dimensional) mammography has started to replace 2-dimensional
digital mammography. It appears to have better performance than digital mam-
mography [25]. Thus, studies of mammography become outdated quickly and
modeling of benefit must adjust for these improvements.

5.2 Overtreatment Prevention

Breast cancer screening is a balance between reducing morbidity and mortality by
detecting early stage breast cancer earlier, but at the same time not identifying lesions
which would not be life-threatening. This is particularly true with an early form called
Ductal Carcinoma in Situ (DCIS) which may be a precursor to invasive breast cancer
in some, but not all, cases. It is almost universally detected by mammography
screening. One current goal of screening is to identify DCIS with malignant potential
usually requiring biomarker analysis of the DCIS specimen. Current models are not
sufficiently accurate to deter treatment resulting in possible overtreatment. The
tradeoff between overtreatment and early detection is largely responsible for differing
recommendations for screening initiation and interval. Therefore, efforts are under-
way to use molecular tools (e.g. Oncotype DX DCIS Recurrence Score) to determine
the level of treatment needed when DCIS is detected.

5.3 Population-Based Research of Screening
Mammography

The Breast Cancer Surveillance Consortium (BCSC) was originally funded by the
National Cancer Institute to quantify and describe mammography screening metrics
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[12]. They have been very productive with extensive publications describing factors
affecting mammography performance. The limitation was primarily that it captured
mostly a screening population and therefore little was known about those not
undergoing screening. Accordingly, the NCI began PROSPR to study
population-based screening in breast, cervical, and colorectal cancer. The intent is
to track large populations and ascertain level of screening and subsequent out-
comes. The initiative has started to be productive computing screening metrics for
all three cancers. It also allows an opportunity to develop statistical methodology
that will cover the entire screening process from screening participation, to diag-
nosis, and subsequent morbidity and mortality. This prospective statistical model
can be simplified as conditional steps in the process (Fig. 2).

The first step is to characterize the potential screening population requiring a full
enumeration of all eligible for screening and whether they have been recently
screened. This probability depends on personal characteristics such as age and other
breast cancer risk factors as well as her primary care provider, health plan guide-
lines, and higher level system variables. This numerator then becomes the
denominator in assessing the likelihood of the screen being deemed positive. This is
also affected by personal risk characteristics and demographics, screening history,
imaging equipment, and radiologist characteristics. Women who have positive
initial screens undergo subsequent exams with some probability based on their level
of concern or fear and the level of communication between the radiology facility,
primary care provider, and the woman. If the woman does receive appropriate
follow-up, the likelihood of cancer detection depends on both imaging and
pathologic assessments. Given a breast cancer diagnosis, treatment options depend
on the staging and type of breast cancer as well as individual preferences of the
woman and her oncologist. Finally, among women treated for breast cancer there is
great variability in survival even with similar characteristics. In practice it is quite
common for each step to be estimated separately. However, it would be possible to
characterize the complete process either by microsimulation or statistical modeling.

6 Conclusions

Overall, breast cancer screening has been successful, though it can continue to be
refined. Most recommendations are age-based and may need to depend more on
other risk factors such as breast density. Technology is improving which increases
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Fig. 2 Statistical model of the process of undergoing and evaluating screening
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the benefit and decreases the likelihood of overtreatment. It is clear that the entire
process needs to be continuously scrutinized and a prospective statistical model
needs to be developed that can comprehensively assess the importance of
person-level, provider-level, and system-level factors. This model can then be
generalized to other cancer screening arenas and to other health conditions.
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Mediation Analysis for Multiple Causal
Mechanisms

Masataka Taguri

Abstract In many health studies, researchers are interested in estimating the
treatment effects on the outcome around and through an intermediate variable. Such
causal mediation analyses aim to understand the mechanisms that explain the
treatment effect. Although multiple mediators are often involved in real studies,
most of the literature considers mediation analyses with one mediator at a time. In
this article, we review some recent advances in mediation analyses when there are
multiple causal pathways. We discuss the cases that (1) there is a mediator-outcome
confounder that is affected by the treatment when we are interested in one mediator
and (2) there are causally non-ordered multiple mediators.

Keywords Causal inference � Mediation analysis � Multiple mediators � Natural
direct effect � Natural indirect effect

1 Introduction

Inmany health studies, researchers are interested in estimating the treatment effects on
the outcome around and through an intermediate variable (called a mediator), where
the corresponding effects are called direct and indirect effects respectively, and their
sum is the total effect of the treatment on the outcome of interest. Such mediation
analyses aim to understand the mechanisms that explain the treatment effect. Robins
and Greenland [1] originally put forward a formal study of causal mediation analysis
using the potential outcome framework. Following their work, Pearl [2] showed that a
total effect can always be broken down into natural direct and indirect effects. There is
a growing literature on evaluating natural direct and indirect effects [3–11]. Although
a treatment often affects the outcome through multiple mediators in real studies, most
of the literature considers a mediation analysis with a single mediator only.
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The goal of this chapter is to review some recent advances in mediation analysis
in the presence of multiple causal pathways. Figure 1 presents two causal diagrams
with multiple causal pathways from the treatment or exposure variable A to the
outcome Y. For example, A is a cavity prevention intervention, M1 and M2 are oral
bacteria level and fluoride level at 12 months of follow-up, and Y is the number of
tooth decay at 24 months. Another example in cancer epidemiology is that A is
obesity, M1 and M2 are insulin resistance and increasing low-grade chronic
inflammatory state, and Y is the incidence of colorectal cancer. In addition, we may
use Fig. 1 for the surrogate endpoints evaluation. For example, A is a cancer
treatment (e.g. presence or absence of a new chemotherapy), M1 and M2 are tumor
response and standardized uptake value on PET/CT imaging after introduction of
the study treatment, and Y is the overall survival.

The critical difference between Fig. 1a, b is that in the former a mediatorM1 may
possibly affect the other mediator M2, whereas in the latter M1 and M2 are assumed
to have no causal relationship with one another. In this chapter, we discuss the cases
that (1) there is a mediator-outcome confounder that is affected by the treatment
when we are interested in one mediator but not the other (Fig. 1a; see also Fig. 2a)
and (2) there are causally non-ordered multiple mediators (Fig. 1b). See Daniel
et al. [12] and the references therein for mediation analysis when there are causally
ordered multiple mediators and all are of interest.

The remainder of this chapter is organized as follows. In Sect. 2, we briefly
review the direct and indirect effects in the single mediator setting and present
identification assumptions when there is a mediator-outcome confounder that is
affected by the treatment. In Sect. 3, we discuss mediation analysis when there are
causally non-ordered multiple mediators. We conclude with a discussion in Sect. 4.
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Fig. 1 A causal diagram
with treatment A, mediators
M1 and M2, outcome Y, and
confounding factors C under
a M1 causally affects M2, and
b M1 does not causally affect
M2
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2 Mediation Analysis with a Single Mediator

We first briefly review the causal mediation analysis with a single mediator. Let
Y denote an observed outcome for an individual, A denote a binary treatment or
exposure (1: treatment or exposure, 0: control or non-exposed), C denote a set of
confounding variables that may affect the treatment, mediator and/or outcome, and
M denote a single potential mediator that may be on the pathway from the exposure
to the outcome (Fig. 2). There may be other mediators as well but when focusing on
only one mediator, the effect through other mediators would be included in the
direct path from A to Y and not through M, as long as such mediators are not
causally related with M (Fig. 2b). When there exists a confounder L that is affected
by the treatment and itself affects the mediator and outcome (Fig. 2a), it is in fact
also a second mediator. That is, L lies on the pathway from the treatment to the
outcome and we are in a setting with multiple mediators even when we were only
interested in one mediator.

2.1 Notation and Assumptions for Identification When
There Is No Mediator-Outcome Confounder That Is
Affected by the Treatment

To conduct a causal mediation analysis, we use the potential outcome framework
[13, 14]. Let Y(a) and M(a) respectively denote the potential outcome and potential

A

C

Y

M1

M 2

L

A

C

Y

M

(a)

(b)

Fig. 2 A causal diagram in a
single mediator setting with
treatment A, mediator M,
outcome Y, and confounding
factors C under a there exists
a treatment-induced
mediator-outcome confounder
L, and b L does not exist
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mediator that would be observed if, possibly contrary to the fact, A were set to
a. Likewise, let Y(a, m) denote the potential outcome that would be observed if,
possibly contrary to the fact, A were set to a and M were set to m. We also make
assumptions referred to as the consistency and composition assumptions [7]. The
consistency assumption for (A, M) is that amongst the subgroup with the observed
treatment A = a and the observed mediatorM = m, the observed outcome Y is equal
to Y(a, m). The consistency assumption for the effect of the treatment on the
mediator is that amongst the subgroup with the observed treatment A = a, the
observed mediator M is equal to M(a). The composition assumption is that Y(a) = Y
(a, M(a)).

Robins and Greenland [1] and Pearl [2] considered the natural direct effect of
treatment A on outcome Y, {Y(1, M(0)) − Y(0, M(0))}. This natural direct effect
compares the potential outcome under treatment and control given the mediator
M at its natural level under control M(0), so is also referred as the “pure direct
effect” [1]. The natural indirect effect {Y(1, M(1)) − Y(1, M(0))} they considered
compares the potential outcome that would be observed when the subject is treated
and mediator is changed from M(0) to M(1). This natural indirect effect is also
referred as the “total indirect effect” [1]. The total effect can then be decomposed
into the natural direct and indirect effect as: Y(1) − Y(0) = Y(1, M(1)) − Y(0, M
(0)) = {Y(1, M(1)) − Y(1, M(0))} + {Y(1, M(0)) − Y(0, M(0))}. Alternatively, we
can also decompose the total effect as: Y(1) − Y(0) = {Y(1, M(1)) − Y(0, M
(1))} + {Y(0, M(1)) − Y(0, M(0))}, where {Y(1, M(1)) − Y(0, M(1))} is referred as
the “total direct effect” and {Y(0, M(1)) − Y(0, M(0))} as the “pure indirect effect.”

Because we are not able to observe all the potential outcomes for one subject in a
real study, the individual level effects cannot be identified. On the other hand, under
some assumptions, the population average effects can be identified. Given con-
founders C = c, the population average effects are conditional expectations of the
individual level effects E[Y(1) − Y(0)|c], E[Y(1, M(1)) − Y(1, M(0))|c], and E[Y(1,
M(0)) − Y(0, M(0))|c]. Various assumptions have been proposed for the identifi-
cation of the population average natural direct and indirect effects. When A and
Y have common causes we say that A-Y relation suffers from confounding. Most of
the literature first assumes no unmeasured confounding on three relationships.

A1. No unmeasured confounding of the A-Y relation.

Yða,mÞ
a

AjC for all ða,mÞ:

A2. No unmeasured confounding of the M-Y relation.

Yða,mÞ
a

MðaÞjA ¼ a,C for all ða;mÞ:
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A3. No unmeasured confounding of the A-M relation.

MðaÞ
a

AjC for all a:

These three assumptions imply that after conditioning (i.e. adjusting for) a set of
measured confounding factors, association means causation. For example, under
consistency and assumptions A1 and A2, E[Y(a, m)| A = a, M = m, C = c] = E[Y
(a, m)| C = c] holds. It follows that the conditional association between (A, M) and
Y given C equals the corresponding population causal effect given C. For instance,
{E[Y| A = 1, M = 1, C = c] − E[Y| A = 0, M = 0, C = c]} equals {E[Y(1,1)|
C = c] − E[Y(0,0)| C = c]}. In addition, Pearl [2] made the following assumption
for identification:

A4. A cross-world independence assumption.

Yða;mÞ
a

Mða�Þ Cj for all ða; a�;mÞ:

If we assume that data are generated from Pearl’s nonparametric structural equation
model (NPSEM) [15], then A4 will hold if there is no mediator-outcome con-
founder that is affected itself by the treatment. Figure 2b shows a causal diagram
that is compatible with assumptions A1–A4 under Pearl’s NPSEM.

2.2 Additional Assumptions for Identification When There
Is a Mediator-Outcome Confounder That Is Affected
by the Treatment

If a mediator-outcome confounder L is affected by the treatment (Fig. 2a), then
without additional assumptions, natural direct and indirect effects cannot be non-
parametrically identified even under Pearl’s NPSEM, irrespective of whether such a
confounder is measured or not [16]. Instead, we need to assume other strong
assumptions for identification in addition to the assumptions of no unmeasured
confounders similar to A1–A3 [17]. Robins and Greenland [17] assumed the
absence of treatment-mediator interactions at the individual level in the sense that
{Y(1, m) − Y(0, m)} is a random variable that does not depend on m. Petersen et al.
[18] relaxed it to

E Y 1;mð Þ � Y 0;mð ÞjM 0ð Þ; c½ � � E Y 1;mð Þ � Y 0;mð Þjc½ � ¼ 0 for all m:

Robins and Richardson [19] and Tchetgen and VanderWeele [20] proposed addi-
tional assumptions for identification within the NPSEM. One of the assumptions
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proposed by Tchetgen and VanderWeele [20] can be used for any type of (that is,
non-binary) L, and is given by:

E Y ja;m; l; c½ ��E Y ja;m�; l; c½ ��E Y ja;m; l�; c½ � þE Y ja;m�; l�; c½ � ¼ 0;

where m* 6¼ m and l* 6¼ l. That is, there is no average additive interaction between
L and M. Based on the principal stratification framework, Taguri and Chiba [21]
proposed the following assumptions for a binary mediator:

E Y 1; 1ð Þ � Y 1; 0ð ÞjA ¼ 1;M ¼ 1; c½ � � E Y 1; 1ð Þ � Y 1; 0ð ÞjA ¼ 0;M ¼ 1; c½ � ¼ 0;

for the pure direct effect and total indirect effect, and

E Y 0; 1ð Þ � Y 0; 0ð ÞjA ¼ 1;M ¼ 0; c½ � � E Y 0; 1ð Þ � Y 0; 0ð ÞjA ¼ 0;M ¼ 0; c½ � ¼ 0;

for the total direct effect and pure indirect effect. Taguri and Chiba [21] showed that
their estimator would have small bias in typical situations even if their assumptions
were violated by deriving the bounds of the bias terms. They also proposed a simple
method of sensitivity analysis.

3 Mediation Analysis for Two Causally
Non-ordered Mediators

Now we consider the situation that there are two causally non-ordered mediatorsM1

and M2, meaning that the causal relationship between M1 and M2 is absent as in
Fig. 1b. For example, a cavity prevention intervention (A) for high risk patients
often has an antibacterial component to reduce oral bacteria as well as fluoride
therapy to strength the teeth, where the two mediators oral bacteria level (M1) and
fluoride level (M2) are not causally related [22]. Another example in cancer epi-
demiology is that obesity (A) may increase the incidence of colorectal cancer
(Y) through two different mechanisms: one is that increasing insulin resistance (M1)
and the other is that increasing a low-grade chronic inflammatory state (M2). With
two causally non-ordered mediators involved, there are three path-specific effects
from exposure (A) to outcome (Y): the direct pathway (A ! Y), the indirect path-
way through M1 only (A ! M1 ! Y), and the indirect pathway through M2 only
(A ! M2 ! Y) (Fig. 1b).
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3.1 Notation and Assumptions

Let M1(a), M2(a), and Y(a, m1, m2) be obvious extensions of the potential outcomes
defined in Sect. 2.1. We also assume the consistency and composition assumptions
for these potential outcomes. The observed outcome Y is equal to Y(A, M1(A),
M2(A)). We assume that the potential mediator M2(a, m1) = M2(a) does not depend
on the value of m1, implying that M2 is not causally affected by M1.

We extend Assumptions A1–A4 to B1–B4 for two causally non-ordered
mediators M1 and M2.

B1. No unmeasured confounding of the A-Y relation.

Yða;m1;m2Þ
a

AjC for allða;m1;m2Þ:

B2. No unmeasured confounding of the (M1, M2)-Y relation.

Yða;m1;m2Þ
a

M1ðaÞ;M2ðaÞf gjA ¼ a;C for all ða;m1;m2Þ:

B3. No unmeasured confounding of the A-(M1, M2) relation.

MkðaÞ
a

AjC for all ða; kÞ:

B4. An extended cross-world independence assumption.

Y a;m1;m2ð Þ
a

M1ða�Þ;M2ða��Þf gjC;
M1ða�Þ

a
M2ða��ÞjC; for all a; a�; a��;m1;m2ð Þ.

Again, under the NPSEM, B4 will hold if there is no mediator-outcome confounder
that is affected by the treatment. See Robins and Richardson for a more detailed
discussion on the NPSEM and its relation to other graphical causal models [19].
Assumptions B1–B4 are sufficient to identify E Y a;M1 a�ð Þ;M2 a��ð Þð Þjc½ �
for all ða; a�; a��Þ [23].

3.2 A Two-Way Decomposition of the Total Effect
into the Joint Natural Direct and Indirect Effects

Under the causal relationshipsin Fig. 1b, one may consider M1 and M2 as a joint
mediator [24]. According to VaderWeele and Vansteelandt [24], the natural direct
and indirect effects with (M1, M2) as the mediator is defined by {Y(1, M1(0),
M2(0)) − Y(0, M1(0), M2(0))} and {Y(1, M1(1), M2(1)) − Y(1, M1(0), M2(0))},
respectively. The joint natural indirect effect here is the treatment effect mediated

Mediation Analysis for Multiple Causal Mechanisms 349



through M1 or M2, and the joint natural direct effect is the effect through neither M1

nor M2. Then, the total effect is decomposed into the joint natural direct and indirect
effects as follows:

Yð1Þ � Yð0Þ ¼ Y 1;M1ð1Þ;M2ð1Þð Þ � Y 1;M1ð0Þ;M2ð0Þð Þf g
þ Y 1;M1ð0Þ;M2ð0Þð Þ � Y 0;M1ð0Þ;M2ð0Þð Þf g ð1Þ

The definition is a natural extension of the decomposition of the total effect into the
total indirect effect and the pure direct effect to the two mediators setting. Another
similar decomposition of the total effect into the joint total direct effect and the joint
pure indirect effect is given as: Yð1Þ � Yð0Þ ¼ fYð1; M1ð1Þ;M2ð1ÞÞ �
Yð0;M1ð1Þ;M2ð1ÞÞg þ fYð0;M1ð1Þ;M2ð1ÞÞ � Yð0;M1ð0Þ;M2ð0ÞÞg:

The differences between the “pure” and “total” direct (indirect) effects are due to
the differential inclusion of the interaction between the treatment and the mediators.
In a single mediator case, VanderWeele [25] showed that the difference {total
natural direct effect − pure natural direct effect} = {total natural indirect effect –
pure natural indirect effect} corresponds to a “mediated interaction” between A and
M, which is the product of an additive interaction of the treatment and the mediator
on the outcome, {Y(1,1) − Y(1,0) − Y(0,1) + Y(0,0)}, and the effect of the treat-
ment on the mediator, {M(1) − M(0)} (see Sect. 2.1 for the notation). This medi-
ated interaction is arguably a part of the mediated effect, in the sense that it requires
that the treatment changes the mediator. Thus, we will focus on the decomposition
(1) in the remainder of this article for illustration. However, the methods discussed
in the paper could be directly applied to the other decomposition. It is important to
note that the joint natural direct and indirect effects can be identified even if M1 and
M2 are causally related [24].

3.3 Two Three-Way Decompositions of the Joint Natural
Indirect Effect into Path-Specific Natural Indirect
Effects

If our aim is to compare the relative importance of M1 and M2 as a mediator, then
we are interested in three path-specific effects from treatment to outcome; (i) the
direct effect around the two mediators (A ! Y), (ii) the indirect effect through M1

only (A ! M1 ! Y), and (iii) the indirect effects through M2 only
(A ! M2 ! Y) (Fig. 1b). Then, the joint natural indirect effect in (1) can be further
decomposed into two path-specific effects, as follows:
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Y 1;M1ð1Þ;M2ð1Þð Þ � Y 1;M1ð0Þ;M2ð0Þð Þ
¼ Y 1;M1ð1Þ;M2ð1Þð Þ � Y 1;M1ð0Þ;M2ð1Þð Þf g
þ Y 1;M1ð0Þ;M2ð1Þð Þ � Y 1;M1ð0Þ;M2ð0Þð Þf g

ð2Þ

¼ Y 1;M1ð1Þ;M2ð0Þð Þ � Y 1;M1ð0Þ;M2ð0Þð Þf g
þ Y 1;M1ð1Þ;M2ð1Þð Þ � Y 1;M1ð1Þ;M2ð0Þð Þf g; ð3Þ

where the first terms in (2) and (3) are indirect effects through M1, whereas the
second terms in (2) and (3) are indirect effects through M2. Daniel et al. [12]
showed that there are six decompositions of the total effect into three path-specific
effects. Of these six decompositions, Lange et al. [26] focused on (2) and (3) in
conjunction with (1), while Imai and Yamamoto [27] considered other two
decompositions. Here we will focus on (2) and (3) because these are only two
decompositions such that the sum of the indirect effects through M1 and throughM2

is equal to the joint total natural indirect effect in (1). For notational convenience,
we use PSE1(a) = Y(1, M1(1), M2(a)) − Y(1, M1(0), M2(a)) (a = 0, 1) to denote
indirect effects through M1. Likewise, we use PSE2(a) = Y(1, M1(a), M2(1)) − Y(1,
M1(a), M2(0)) (a = 0, 1) to denote indirect effects through M2. Using this notation,
(2) = PSE1(1) + PSE2(0) and (3) = PSE1(0) + PSE2(1).

3.4 A Three-Way Decomposition of the Joint Natural
Indirect into Path-Specific Natural Indirect Effects
and an Interactive Effect

If we are interested in both M1 and M2 there would be no clear reason which
decomposition is preferred between (2) and (3). However, the decompositions (2)
and (3) will not necessarily give the same results when PSEk(1) 6¼ PSEk(0) (k = 1,
2). If the analysis results from (2) and (3) diverge in the sense that indirect effects
for M1(M2) are different between these two decompositions, then there is no clear
guidance which decomposition to use. Note also that the total natural indirect effect
through M1 is equal to PSE1(1) [24], which is equal to the first term of (2).
Likewise, the total natural indirect effect through M2 only is equal to PSE2(1). This
indicates that the sum of the two total natural indirect effect through M1 and M2

considered separately is not equal to the joint total natural indirect effect in general.
To overcome these problems, Taguri et al. [23] proposed a further three-way

decomposition of the joint natural indirect effect (and thus a four-way decompo-
sition of the total effect). They showed that the joint natural indirect effect can be
decomposed into the following three components for binary mediators:
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Y 1;M1ð1Þ;M2ð1Þð Þ � Y 1;M1ð0Þ;M2ð0Þð Þ
¼ Y 1;M1ð1Þ;M2ð0Þð Þ � Y 1;M1ð0Þ;M2ð0Þð Þf g
þ Y 1;M1ð0Þ;M2ð1Þð Þ � Y 1;M1ð0Þ;M2ð0Þð Þf g
þ Y 1; 1; 1ð Þ � Y 1; 1; 0ð Þ � Y 1; 0; 1ð Þþ Y 1; 0; 0ð Þf g
M1ð1Þ �M1ð0Þf g M2ð1Þ �M2ð0Þf g:

¼ PSE1ð0Þþ PSE2ð0ÞþMI;

ð4Þ

The third component in (4) is called as a “mediated interactive effect” or “mediated
interaction” (MI) between M1 and M2. It is the product of the additive interaction
between M1 and M2 with A = 1, {Y(1, 1, 1) − Y(1, 1, 0) − Y(1, 0, 1) + Y(1, 0, 0)},
the effect of the treatment on M1, {M1(1) − M1(0)}, and the effect of the treatment
on M2, {M2(1) − M2(0)}. This mediated interaction is nonzero if and only if the
treatment affects both the two mediators and the additive interaction between M1

and M2 on Y is nonzero. This three-way decomposition includes the mediated
interactive effect so that it can be explicitly evaluated in a study and also resolves
the ambiguity concerning the choice between (2) and (3). In addition, by definition,
it follows that MI = PSE1(1) − PSE1(0) = PSE2(1) − PSE2(0). Using these
equalities, we obtain the following relations: PSEk(1) = PSEk(0) + MI (k = 1,2).
Thus, we can understand that the difference between (2) and (3) are the differential
inclusion of the mediated interaction for the indirect effect of M1 (decomposition
(2)) or for the indirect effect of M2 (decomposition (3)). Thus, the results from (2)
and (3) may diverge when there exists a large additive interaction between the two
mediators. Furthermore, using decomposition (4), we can understand how much of
the joint natural indirect effect is explained by the interactive effect of the mediators,
as well as by each separate indirect effect.

Given the individual level decomposition (4), we can obtain a similar decom-
position in the population average effect conditional on C = c by using B4, as
follows:

E Y 1;M1ð1Þ;M2ð1Þð Þ � Y 1;M1ð0Þ;M2ð0Þð Þjc½ �
¼ E Y 1;M1ð1Þ;M2ð0Þð Þ � Y 1;M1ð0Þ;M2ð0Þð Þjc½ �
þE Y 1;M1ð0Þ;M2ð1Þð Þ � Y 1;M2ð0Þ;M2ð0Þð Þjc½ �
þE Y 1; 1; 1ð Þ � Y 1; 1; 0ð Þ � Y 1; 0; 1ð Þþ Y 1; 0; 0ð Þjc½ �
E M1ð1Þ �M2ð0Þjc½ �E M2ð1Þ �M2ð0Þjc½ �:

ð5Þ

Taguri et al. [23] show the general formula which can be used for any-types (that is,
non-binary) of mediators. They also discuss extensions for the cases that there are
three mediators and there exists a vector of mediator.
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3.5 Identification and Estimation

Under B1–B4, we obtain the following identification formula of E[Y(a, M1(a
*),

M2(a
**))|c] for all (a, a*, a**):

E Y a;M1 a�ð Þ;M2 a��ð Þð Þjc½ � ¼
X

m1

X

m2

E Y ja;m1;m2; c½ �p m1ja�; cð Þp m2ja��; cð Þ:

ð6Þ

For continuous mediators, we simply replace sums by integrals in (6). Under B1
and B2, we have E[Y(a, m1, m2)|c] = E[Y|a, m1, m2, c], and Pr(Mk(a) = mk|c) = p
(mk|a, c) for k = (1, 2). Then, the all components in (5) as well as the joint natural
direct effect can be identified from the observed data by the following formulas
which can also be used for non-binary mediators:

E NDEjc½ � ¼
X

m1

X
m2

E Y jA ¼ 1;m1;m2; c½ � � E Y jA ¼ 0;m1;m2; c½ �f gp m1jA ¼ 0; cð Þ
�p m2jA ¼ 0; cð Þ;

E PSE1ð0Þjc½ � ¼
X

m1

X
m2

E Y jA ¼ 1;m1;m2; c½ � p m1jA ¼ 1; cð Þ � p m1jA ¼ 0; cð Þf gp m2jA ¼ 0; cð Þ;
E PSE2ð0Þjc½ � ¼

X
m1

X
m2

E Y jA ¼ 1;m1;m2; c½ �p m1jA ¼ 0; cð Þ p m2jA ¼ 1; cð Þ � p m2jA ¼ 0; cð Þf g;
E MIjc½ � ¼

X
m1

X
m2

E Y jA ¼ 1;m1;m2; c½ � p m1jA ¼ 1; cð Þ � p m1jA ¼ 0; cð Þf g
� p m2jA ¼ 1; cð Þ � p m2jA ¼ 0; cð Þf g;

ð7Þ

In (6) and (7), we considered effects conditional on the level of the covariates
C = c. To obtain marginal effect estimates, we average these expressions over the
marginal distribution of C. If at least one of the mediators is continuous and a linear
regression model for Y does not hold, then we cannot generally obtain analytical
formulas of (6) and (7) because we have to evaluate the integral on mediators. In
such a case, we can use a Monte Carlo approach according to the method described
in Imai et al. [27] to obtain marginal effect estimates. Standard errors and confi-
dence intervals can be obtained based on the nonparametric bootstrap.

Another possible approach for the estimation is the inverse probability weighting
(IPW) [26]. We can obtain an estimator of E[Y(a, M1(a

*), M2(a
**))] by taking a

weighted average of the outcome Y with the following weight wi for the individual i:

wi ¼ I Ai ¼ að Þ
Pr Ai ¼ ajCi ¼ cið Þ�

Pr M1i ¼ m1ijAi ¼ a�,Ci ¼ cið Þ
Pr M1i ¼ m1ijAi ¼ a,Ci ¼ cið Þ

� Pr M2i ¼ m2ijAi ¼ a��,Ci ¼ cið Þ
Pr M2i ¼ m2ijAi ¼ a,Ci ¼ cið Þ ,

where I(�) denotes the indicator function.
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3.6 Application

We apply the methods discussed in Sects. 3.4 and 3.5 to understand the mediation
effects in The Caries Management by Risk Assessment (CAMBRA) randomized
controlled clinical trial [28]. This trial aimed to assess whether combined
antibacterial and fluoride therapy has beneficial effects on preventing new caries
over 24 months follow-up. In the study, participants in the control group (A = 0)
received conventional treatment per usual practices, while participants in the
intervention group (A = 1) received a combined antibacterial and fluoride therapy.
The primary analyses showed that the intervention group had a statistically sig-
nificantly lower caries risk at follow-up and suggested a lower average caries
increment compared with control over 24 months [28]. Our interest in this medi-
ation analysis is whether this overall intervention effect was due mainly to bacteria
reduction through antibacterial therapy, fluoride increase through fluoride therapy,
or both.

The potential mediators of interest are two salivary oral bacteria (mutans
streptococci (MS) and lactobacilli (LB)) levels and salivary fluoride level at
12 months. To make our identification assumptions more plausible, we consider
MS and LB levels as a vector of mediators (M1) and consider fluoride level as the
other mediator (M2), where M1 and M2 are assumed to work through independent
pathways. The outcome of interest (Y) was the increment from baseline in the
number of decayed, missing, and filled permanent surfaces (DDMFS) at 24 months.
From a total of 231 participants randomized, 101 (intervention group: 51; control
group: 50) patients who had completed data on DDMFS and relevant covariates
were analyzed. Variables that were included in the set of C were: age, sex, race,
education, timing of last dental visit, brushed two times or more yesterday, used
fluoride toothpaste, fair or poor oral health, drank alcohol in past week, and smoked
cigarette within 30 days. We modeled p(y| a, m1, m2, c) with a negative binomial
regression and the conditional distributions of the three mediators with linear
regression models assuming normally distributed errors. In addition to the main
effects of all the covariates, we included interaction terms between A and M1, A and
M2, and M1 and M2, in the model for the outcome.

The estimated joint natural direct effect was −0.298 (95% CI −1.894 to 1.805),
and the joint natural indirect effect was −0.490 (95% CI −1.652 to 0.172), and thus
the total effect was −0.298 + (–0.490) = –0.788 (95% CI −2.108 to 0.847).
Applying the three-way decomposition of the joint natural indirect effect, the
indirect effect through M1 only was −0.373 (−1.541 to 0.195), the indirect effect
through M2 only was −0.022 (95% CI −0.366 to 0.789), and the mediated inter-
action was −0.095 (95% CI −0.807 to 0.171). Thus, of the total effect,
−0.298/−0.788 = 37.8% was attributable to the joint natural direct effect, −0.373/
−0.788 = 47.3% was attributable to the indirect effect through M1 only, −0.022/
−0.788 = 2.8% was attributable to the indirect effect through M2 only, and −0.095/
−0.788 = 12.1% was attributable to the mediated interaction. The overall propor-
tion mediated was 47.3 + 2.8 + 12.1 = 62.2%. The results indicate that the effect of
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the intervention (A) on DDMFS (Y) was mainly through its effect in decreasing
salivary oral bacteria levels (M1), although the effect is not significant due to the
smaller sample size for this analysis compared to the primary analysis. Of the
mediated effect, only a small portion of the effect was due to the effect in increasing
salivary fluoride levels (M2). However, the moderated size of the mediated inter-
active effect of M1 and M2 (more than 10%) indicates the effect of increased
salivary fluoride level on DDMFS through its interaction with decreased oral
bacterial level.

4 Discussion

In this chapter, we review methods of mediation analysis in the presence of multiple
causal pathways. We discuss the cases that (1) there is a mediator-outcome con-
founder that is affected by the treatment when we are interested in one mediator and
(2) there are causally non-ordered multiple mediators. We have seen that to estimate
direct and indirect effects, several strong assumptions are needed about con-
founding. We assume that there are no unmeasured confounders between the
treatment and outcome (B1), the mediators and outcome (B2), and the treatment
and mediators (B3). Although Assumptions B1 and B3 usually hold in a ran-
domized trial, Assumption B2 does not necessarily hold even under the random-
ization of the treatment because the mediator cannot be randomized in a real study.
Thus, there will be utility in conducting sensitivity analyses that examine the effect
of violations of B2. Further research is needed on this issue in the presence of
multiple mediators. Recently, VanderWeele and Tchetgen [29] considered media-
tion analyses when treatments and mediators vary over time. When longitudinal
data on treatments and mediators are obtained, their method can potentially increase
power in the direct and mediated effects by utilizing more data for the mediation
analysis.
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Sample Size Calculation for Differential
Expression Analysis of RNA-Seq Data

Stephanie Page Hoskins, Derek Shyr and Yu Shyr

Abstract The Holy Grail of precision medicine is the comprehensive integration of
patient genotypic with phenotypic data to develop personalized disease prevention
and treatment strategies. Next-generation sequencing technologies (NGS) and other
types of high-throughput assays have exploded in popularity in recent years, thanks
to their ability to produce an enormous volume of data quickly and at relatively low
cost compared to more traditional laboratory methods. The ability to generate big
data brings us one step closer to the realization of precision medicine; nevertheless,
across the life cycle of such data, from experimental design to data capture, man-
agement, analysis, and utilization, many challenges remain. In this paper, we
reviewed and discussed several statistical methods to estimate sample size based on
the Poisson and Negative Binomial distributions for RNAseq experimental design.

Keywords Cancer genomics � Next-generation sequencing � RNA-seq data �
Sample size calculation

1 Introduction

Next generation sequencing (NGS) technology has revolutionized genomic and
genetic research [1]. Replacing Sanger chain-termination sequencing that achieved
a number of significant accomplishments, including the completion of the human
genome sequence, NGS is a much faster and more economical application that has
shifted the paradigm of genomics to address biological questions on a genome-wide

S.P. Hoskins (&) � Y. Shyr
Center for Quantitative Sciences, Vanderbilt University, Nashville, TN, USA
e-mail: stephanie.p.hoskins@Vanderbilt.Edu

Y. Shyr
e-mail: yu.shyr@Vanderbilt.Edu

D. Shyr
Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
e-mail: derek.shyr@mail.harvard.edu

© Springer Nature Singapore Pte Ltd. 2017
S. Matsui and J. Crowley (eds.), Frontiers of Biostatistical Methods
and Applications in Clinical Oncology, DOI 10.1007/978-981-10-0126-0_22

359



scale. Whereas early protocols relied on samples that were harvested outside of the
typical clinical pathology workflow, standard formalin-fixed, paraffin-embedded
specimens can more regularly be used as starting materials for NGS. Furthermore,
protocols for the analysis and interpretation of NGS data, as well as knowledge
bases, are being amassed, allowing clinicians to act more easily on genomic
information at the point of care for patients.

In parallel, new therapies that target somatically mutated genes identified
through clinical NGS are gaining US Food and Drug Administration
(FDA) approval, and novel clinical trial designs are emerging in which genetic
identifiers are given equal weight to histology. Indeed, the application of NGS,
predominantly through whole-genome (WGS) and whole-exome technologies
(WES), has produced an explosion in the context and complexity of cancer genomic
alterations, including point mutations, small insertions or deletions, copy number
alterations and structural variations. By comparing these alterations to matched
normal samples, researchers have distinguished two categories of variants: somatic
and germ line. The whole transcriptome approach (RNA-seq) can not only quantify

Fig. 1 The workflow of integrating omics data in cancer research and clinical application. NGS
technologies detect the genomic, transcriptomic and epigenomic alterations including mutations,
copy number variants, structural variants, differentially expressed genes, fusion transcripts, DNA
methylation change, etc. Various kind of bioinformatic tools are used to analyze, integrate, and
interpret the data to improve our understanding of cancer biology and develop personalized
treatment strategy [1]
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gene expression, allelic expression, and intragenic expression profiles, but can also
detect alternative splicing, RNA editing and fusion transcripts. In addition, epige-
netic alterations, DNA methylation changes and histone modifications can be
studied using other sequencing approaches including Bifulfite-Seq and ChIP-seq.
The combination of these NGS technologies provides a high-resolution and global
view of the cancer genome. Using powerful bioinformatic tools, researchers are
gaining the capacity to mine huge amounts of data to improve our understanding of
cancer biology and develop personalized treatment strategies. Figure 1 illustrates
the workflow of integrating omics data in cancer research and clinical application.

2 Application of NGS Technologies in Cancer Genomics

Recent NGS-based studies have focused on the comprehensive molecular charac-
terization of cancers to identify novel genetic alterations contributing to oncogen-
esis, cancer progression and metastasis, and to study tumor complexity,
heterogeneity and evolution. These efforts have yielded significant achievements
for breast cancer [2–8], ovarian cancer [9], colorectal cancer [10, 11], lung cancer
[12], liver cancer [13], kidney cancer [14], head and neck cancer [15], melanoma
[16], acute myeloid leukemia (AML) [17, 18], etc. Table 1 summarizes the recent
advances in cancer genomics research applying NGS technologies.

Table 1 Recent NGS based studies in cancer

Cancer Experiment design Description References

Colon cancer 72 WES, 68
RNA-seq, 2 WGS

Identify multiple gene fusions such as
RSP02 and RSP03 from RNA-seq that
may function in tumorigenesis

[11]

Breast cancer 65 WGS/WES, 80
RNA-seq

36% of the mutations found in the
study were expressed. Identify the
abundance of clonal frequencies in an
epithelial tumor subtype

[7]

Hepatocellular
carcinoma

1 WGS, 1 WES Identify TSC1 nonsense substitution
in subpopulation of tumor cells,
intra-tumor heterogeneity, several
chromosomal rearrangements, and
patterns in somatic substitutions

[13]

Breast cancer 510 WES Identify two novel
protein-expression-defined subgroups
and novel subtype-associated
mutations

[2]

Colon and rectal
cancer

224 WES, 97 WGS 24 genes were found to be
significantly mutated, in both cancers.
Similar patterns in genomic alterations
were found in colon and rectum
cancers

[10]

(continued)
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Table 1 (continued)

Cancer Experiment design Description References

Squamous cell
lung cancer

178 WES, 19 WGS,
178 RNA-seq, 158
miRNA-seq

Identify significantly altered pathways
including NFE2L2 and KEAP1
potential therapeutic targets

[12]

Ovarian
carcinoma

316 WES Discover that most high-grade serous
ovarian cancer contain TP53
mutations and recurrent somatic
mutations In 9 genes

[9]

Melanoma 25 WGS Identify a significantly mutated gene,
PREX2 and obtain a comprehensive
genomic view of melanoma

[16]

Acute myeloid
leukemia

8 WGS Identify mutations in relapsed genome
and compare it to primary tumor.
Discover two major clonal evolution
patterns

[17]

Breast cancer 24 WGS Highlights the diversity of somatic
rearrangements and analyzes
rearrangement patterns related to DNA
maintenance

[5]

Breast cancer 31 WES, 46 WGS Identify eighteen significant mutated
genes and correlate clinical features of
oestrogen-receptor-postive breast
cancer with somatic alterations

[4]

Breast cancer 103 WES, 17 WGS Identify recurrent mutation in CBFB
transciption factor gene and deletion
of RUNX1. Also found recurrent
MAGI3-AKT3 fusion in
triple-negative breast cancer

[3]

Breast cancer 100 WES Identify somatic copy number changes
and mutations in the coding exons.
Found new driver mutations in a few
cancer genes

[6]

Acute myeloid
leukemia

24 WGS Discover that most mutatons in AML
genomes are caused by random events
in hematopoietic stem/progenitor cells
and not by an initiating mutation

[18]

Breast cancer 21 WGS Depict the life history of breast cancer
using algorithms and sequencing
technologies to analyze subclonal
diversification

[8]

Head and neck
squamous cell
carcinoma

32 WES Identify mutation in NOTCH 1 that
may function as an oncogene

[15]

Renal
carcinoma

30 WES Examine intra-tumor heterogeneity
reveal branch evolutionary tumor
growth

[14]
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2.1 Discovery of New Cancer-Related Genes

Cancer is largely caused by the accumulation of genetic alterations, which can be
inherited in the germ line or acquired somatically during a cell’s life cycle. The
effects of these alterations in oncogenes, tumor suppressor genes or DNA repair
genes, allows cells to escape growth and regulatory control mechanisms, leading to
the development of a tumor [19]. The progeny of the cancer cell may also undergo
further mutations, resulting in clonal expression [20]. As clonal expansion per-
vades, clones eventually invade surrounding tissues and metastasize to distant areas
from the primary tumor [21].

The sequencing of cancer genomes has revealed a number of novel
cancer-related genes, especially in breast cancer. Six contemporary papers have
reported findings on large-scale datasets related to breast cancer: The Cancer
Genome Atlas (TCGA) performed exome sequencing on 510 samples from 507
patients [2], Banerji et al. conducted exome sequencing on 103 samples and whole
genome sequencing on 17 samples, Ellis et al. did exome sequencing on 31 samples
and whole genome sequencing on 46 samples [4], Stephens et al. applied exome
sequencing on 100 samples, Shah et al. performed whole genome/exome and RNA
sequencing on 65 and 80 samples of triple-negative breast cancers [7], and
Nik-Zanial et al. performed whole genome sequencing on 21 tumor/normal pairs
[8]. Besides confirming recurrent somatic mutations in TP53, GATA3 and
PIK3CA, these studies also discovered novel cancer-related mutations. Although
novel mutations occur at low frequency (less than 10%), mutations of specific genes
are enriched in the subtype of breast cancers and could be grouped into
cancer-related pathways. For example, mutations of MAP3K1 frequently occur in
luminal A subtype [2, 4]. Pathways involving p53, chromatin remodeling and
ERBB signaling are overrepresented in mutated genes [7]. Furthermore, some
mutations indicated therapeutic opportunities such as the mutant GATA3, which
might be a positive predictive marker for aromatase inhibitor response [4].

2.2 NGS and Tumor Heterogeneity

What makes cancer a difficult disease to conquer has much to do with the evolution
of cancer that results from the selection and genetic instability occurring in each
clone, leading to heterogeneity in tumors [21]. This idea was first proposed by Peter
Nowell in 1976 as the clonal evolution model of cancer, which attempted to explain
the increase in tumor aggressiveness over a period of time. Further work by other
researchers in the 1980s supported this theory with studies of metastatic subclones
from a mouse sarcoma cell line [21]. NGS studies have demonstrated that tumors
typically compromise a founding clone and multiple subclones, and the possible
combination of mutations in each tumor clone is enormous, making each tumor
genetically unique. Clonal heterogeneity is strongly believed to have a role in

Sample Size Calculation for Differential Expression Analysis … 363



cancer progression, relapse, metastasis, and chemo-resistance due to functional
differences in genetically unique subclones, and recent therapeutic advances in
oncology have been driven by the identification of tumor genotype variations
between patients, called interpatient heterogeneity, that predict the response of
patients to targeted treatments. Subpopulations of cancer cells with unique genomes
in the same patient may exist across different geographical regions of a tumor or
evolve over time, called intratumor heterogeneity. NGS technologies can charac-
terize intratumor heterogeneity at diagnosis, monitor clonal dynamics during
treatment and identify the emergence of clinical resistance during disease pro-
gression. Yet, genetic interpatient and intratumor heterogeneity can pose challenges
for the design of clinical trials that use these data.

There has been a dramatic increase in the number of clinical trials using NGS
technologies since 2010 [1]. Ranging from WGS to RNA-seq and targeted
sequencing, clinical trials are using NGS to find genetic alterations that are the
drivers of certain diseases in patients and apply that knowledge into the practice of
clinical medicine. The information gained from these studies may help with drug
development and explain the resistance of certain treatments.

3 RNA-Seq Data

NGS-based studies of RNA populations from cancer cells have revealed vital
mechanisms of transcriptional activity and its role in cancer. A review by Patrick
Nana-Sinkam and Carlo Croce [22] discussed the role of microRNAs in gene
regulation in cancers. White et al. [23] presented important new descriptions of long
non-coding RNAs (lncRNAs) in lung cancers, and Wyatt et al. [24] described
transcriptomes in the context of therapy response in high-risk prostate cancers. The
method for detecting allele-specific expression contributed by Mayba et al. [25] will
also yield important insights into which variants detected by DNA sequencing are
actually being expressed in the transcriptome of cancer cells. The role of the epi-
genome in contributing to the patterning of transcriptomes and the possibility of
modulating RNA expression is emphasized in three primary research articles
exploring this aspect of tumor heterogeneity (Lund et al. [26], Fleischer et al. [27],
and Charlton et al. [28]).

RNA-seq technology has had a revolutionary impact on the field of expression
research. RNA-seq refers to the use of NGS technologies to sequence cDNA in
order to get information about a sample’s RNA content. Compared to microarray
technology, the RNA-seq method offers several distinct advantages. First, the
detection range of RNA-seq is not limited to a set of predetermined probes, as with
microarray technology, so RNA-seq is capable of identifying new genes. Second,
the resolution of a microarray is limited to the gene level for most arrays and the
exon level for specially designed exon arrays, whereas RNA-seq can detect
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expression at the gene, exon, transcript, and coding DNA sequence (CDS) levels.
Finally and most importantly, RNA-seq can detect structural variants, such as
alternative splicing and gene fusion. With the advancement of NGS technologies,
the price of RNA-seq is becomingly increasingly comparable to microarrays. The
competitive price and additional genomic information make RNA-seq an attractive
alternative technology for expression profiling. Recent studies predict the inevitable
replacement of microarray by RNA-seq [29, 30]; however, before this replacement
can occur, we must understand the differences and similarities of these two
technologies.

3.1 Microarray Versus RNA-Seq

The Microarray Quality Control (MAQC) project has shown that there is a high
level of intra-platform consistency across test sites and inter-platform concordance
in terms of genes identified as differentially expressed by microarray methods [31].
Similar to these microarray tests, RNA-seq data has been shown to estimate
expression level with high reproducibility [32]. In the largest comparative study
between microarray and RNA-seq methods to date using The Cancer Genome Atlas
(TCGA) data, Guo et al. [33] found high correlations between expression data
obtained from the Affymetrix one-channel microarray and RNA-seq (Spearman
correlations coefficients of � 0.8) that provides definitive evidence that RNA-seq
can indeed replace microarray in terms of expression analysis [33].

This large-scale, comprehensive analysis of RNA-seq and microarray gene
expression consistency using human data was the first evaluation of repeatability
and concordance of profiling between the two technologies that utilized data from
TCGA, a massive, collaborative initiative that has catalogued genomic data for over
20 types of cancers by the National Cancer Institute (NCI), the National Human
Genome Research Institute (NHGRI), and 27 institutes and centers of the National
Institute of Health (NIH). Because TCGA continuously collects and characterizes
various tumor types from genome results from around the world, choosing data sets
from here has the potential of showing an accurate estimate of each cancer site’s
estimated power and samples size. The study tested the consistencies between
RNA-seq and microarray data using Spearman’s correlation instead of Pearson’s
correlation for two reasons: (1) The Robust Multi-array Average (RMA) normal-
ization uses log2 transformation for microarray data, which is an impractical log
transformation for RNA-seq data given the number of zeros reported in this method.
(2) Pearson’s correlation is heavily influenced by outliers, and RNA-seq data is
heavily skewed. In addition to raw expression correlation, the directionality and
agreement of the significantly differentially expressed gene list between the two
technologies were also measured [33].
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Although RNA-seq outperforms microarray analysis when it comes to expres-
sion profiling, microarray technology does still hold several advantages over
RNA-seq. The analysis of microarray data is much less complex, where an
acceptable normalization method is RMA and a simple t-test is used to detect
differentially expressed genes. However, more complicated models have been
developed to handle RNA-seq’s non-expressed genes such as negative binomial:
DESeq [34], edgeR [35], baySeq [36], NBPseq [37], and Poisson distribution:
TSPM [38], DEGseq [39]; however, a consensus on the best approach for RNA-seq
data analysis has not been reached.

3.2 RNA-Seq Data Analysis

RNA-seq data analysis generally includes reads alignment, gene expression quan-
tification, differentially expressed genes/isoforms or alternative splicing detection
and novel transcripts discovery. RNA-seq data are a set of short RNA reads that are
often summarized as discrete counts. There are two major approaches to map
RNA-seq reads. One is to align reads to the reference transcriptome using standard
DNA-seq reads aligner. The alternative is to map reads to the reference genome
allowing for the identification of novel splice junctions using a RNA-seq specific
aligner. Having aligned reads, expression values are quantified by aggregating reads
into counts and differential expression analysis is performed based on counts
(DEseq [34], edgeR [35]) or FPKM/RPKM values (Cufflinks [40, 41]). Estimating
isoform-level expression is very difficult since many genes have multiple isoforms
and most reads are shared by different isoforms. To deal with read assignment
uncertainty, Alex-seq [42] counts only the reads that map uniquely to a single
isoform, while Cufflinks [40, 41] and Miso [43] construct a likelihood model that
best explains all the reads obtained in the experiment. In addition, fusion transcripts
can be detected, and a growing number of pathway-oriented tools is now becoming
available.

Alongside the technological innovations that have facilitated the large-scale
generation of RNA-seq data, it is important to consider the specific computational
and analytical challenges that still must be overcome. For example, RNA-seq is not
without computational cost; as compared to microarray analysis, RNA-seq data
analysis is much more complicated and difficult, and the discussion of experimental
design issues have recently emerged in regards to the relevant principles of ran-
domization, replication, and blocking of the RNA-seq framework [29, 30].
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4 RNA-Seq Sample Size

One of the principle questions in designing an RNA-seq experiment is: What is the
optimal number of biological replicates to achieve the desired power? (Note: In this
chapter, the term “sample size” is used to refer to the number of biological replicates
or number of subjects.) Currently, the field is developing and evaluating methods to
estimate power and sample size for RNA-seq in complex experimental designs.
Since RNA-seq data are counts, the Poisson distribution has been widely used to
model the number of reads obtained for each gene in order to identify differential
gene expression [31, 32]. Further, published literature has used a Poisson distri-
bution to model RNA-seq data and derive a sample size calculation formula based
on the Wald test for a single gene differential expression analysis [30].

4.1 Correction of Error Rates for Multiple Comparisons

Thousands of genes are assessed in a RNA-seq experiment, and differential
expression among these genes is tested simultaneously, requiring correction of error
rates for multiple comparisons. Several corrective measures have been proposed,
such as family-wise error rate (FWER) and false discovery rate (FDR), with many
testing circumstances illustrating the benefit of controlling FDR [33], as the
Bonferroni correction for FWER is often too conservative [44].

Many control methods of FDR in high-dimensional data have been proposed,
with many of the concepts extending to calculate sample size for microarray studies
[36, 37]. The sample size calculation methods for microarray studies are developed
based on two-sample t-test under the Gaussian distribution assumption. However,
since RNA-seq count data often have skewed distributions, the t-test is inappro-
priate for count data. Therefore, the sample size calculation method for microarray
studies cannot be directly applied to RNA-seq count data.

4.2 Past Methods for Calculating RNA-Seq Sample Size

One of the distributions that have been used to model RNA-seq is the Poisson
distribution. For instance, Marioni et al. [32] proposed a Poisson log-linear model
and utilized the likelihood ratio test; Wang et al. [39] assumed that log ratios of
counts have a normal distribution and utilized z-score; Li et al. [45] proposed a
Poisson log-linear model and utilized the score test [31, 32, 38]. It is worth noting
that a critical assumption of the Poisson model is that the mean and variance are
equal. And, as demonstrated by Li et al. [46], this assumption proves to be prob-
lematic due to RNA-seq’s over dispersion (variance greater than mean). When the
read counts exhibit over-dispersion, the sample size calculation based on the
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Poisson model will be underpowered due to underestimation of the variance, and,
therefore, a study based on the corresponding sample size will be underpowered. To
handle data with over-dispersion, Li et al. [45] suggested using a power transfor-
mation to make the data follow a Poisson distribution more closely. For data with
over-dispersion then, sample size calculation methods based on transformed data
could enable wider applicability.

On the other hand, to model with data with over-dispersion directly, several
approaches have been proposed, such as the negative binomial. Unlike Poisson, a
special case of negative binomial, this distribution can not only model count data,
but also have unequal mean and variance, allowing for over-dispersion. Another
important consideration for the design of an RNA-seq experiment is the number of
replicates for each biological condition. Ideally, researchers would like to know the
optimal number of replicates required to achieve a desired level of statistical power
to find differential expression.

4.3 Sample Size Calculation Based on the Exact Test

Specifically in RNA-seq experiments, an exact test is used to measure the statistical
significance of change in gene expressions between two conditions A and B. Li
et al. [46] developed a model to calculate statistical power and estimate sample size
for RNA-seq experiments based on a negative binomial model of variation in
counts per gene in each sample, and evaluated an exact test for differential
expression that tested for differentially expressed genes between two treatments or
conditions [47]. In Li et al.’s [46] comparison between the Poisson and negative
binomial distribution for the transcript regulation data set that had significant
over-dispersion, the results showed that the latter required a larger sample size than
the former. This difference appeared to be more significant as the fold change
increased, which, as a result, could signify the negative binomial’s flaw in over-
powering an experiment’s sample size [39].

Proposing a calculation method based on an exact test set forth by Robinson
et al. that replaced the hypergeometric probabilities of Fisher’s exact test with
negative bionomial properties, Li et al. [46] used the edgeR package to analyze the
expression values of selected genes from the RNA-seq data by returning the dis-
persion values and applying the exact test to calculate the fold change values of the
samples. After organizing the fold change values based on the set boundaries and
randomly selecting them based on the number of genes at the site, the desired
sample size, mean, dispersion, and fold change values are in a loop to create a list of
important values. These count values are arranged based on the control and treat-
ment groups and then input into particular edgeR functions, which output the p-
adjusted values. However, studies rarely have enough information to estimate all of
these parameters in practice, which leads to a conservative estimate of the required
sample size. Since the power increases as fold change and average read count
increases and decreases with dispersion, Li et al. [46] presents a sample size
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calculation method based on the minimum fold change of differentially expressed
genes, the minimum average read counts of differentially expressed genes in the
control group, and the maximum dispersion of differentially expressed genes under
negative binomial models [47]. As expected, such a method would be very
conservative.

The paper evaluated sample size requirements in a simulation experiment and by
reanalyzing published data for a liver and kidney RNA-seq data set. In this simu-
lation, in which variance among replicates was low /� ¼ 0:1ð Þ and log2-fold
change was 2.0 or more, only three to six replicates were required to find all of the
differential expression genes with coverage greater than five reads and a FDR less
than 5%. Increasing the variance to /� ¼ 0:5 triples the number of required
replicates, and lowering the log2-fold change to 1.0 (a twofold change in expres-
sion) increases the required number of replicates to 20 [47].

The general conclusion from the evaluation of this sample size calculation
method is that it is straightforward but not ideal for pilot data or data with a
specified desired minimum fold change, minimum read count, and maximum dis-
persion; the simulation and application sections showed how published RNA-seq
experiments often have very low power, as the calculated minimum sample size
required to achieve 80% power was impractically large for present RNA-seq
experiments [47]. And with a low study power leading to a decrease in research
reproducibility, this study draws attention to a critical issue in RNA-seq experi-
ments: the need to raise the quality of preclinical studies through more rigorous
experimental designs. Among fifty-three cancer papers that were published in
high-impacting journals and regarded as “landmark” studies, only six of them were
reproducible. Among of the six reproducible results, the studies paid attention to
bias, controls, randomization, and other important factors that can impact the
reliability of the results [48, 49].

4.4 Power Simulation of RNA-Seq Sample Size

As previously outlined, methods of calculating sample size for RNA-seq gene
differential expression experiments based on the Poisson distribution and the
negative binomial distribution have been developed and evaluated. While the
Poisson may seem to be an appropriate model, the issue of the distribution lies with
its critical assumption that the mean and variance must be equal, which proves
problematic with RNA-seq’s over-dispersion. Although the negative binomial
distribution can model count data and have unequal mean and variance, allowing
for over-dispersion, the distribution requires a substantially larger sample size as
fold change increases, which could lead to overpowering an experiment’s sample
size. In an attempt to devise a method that could handle the variety of RNA-seq data
structures and not be limited by any assumption that the Poisson and negative
binomial distribution require, Shyr et al. [50] developed an empirical,
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simulation-based approach to estimate the sample size for RNA-seq gene differ-
ential expression experiments [50].

Power simulations generally follow a series of steps. First, a distribution of
parameters, such as sequencing depth and fold change, must be established from
some data set that could be from published literature or study. From that data,
estimates of the model, including the mean, variance-covariance matrix, and other
parameters, can be obtained to help calculate the power. Second, count data needs
to be randomly generated from the distribution with the parameters estimated from
step one. Finally, the count data is used to determine whether the sample has
sufficient evidence to reject the null hypothesis and be statistically significant. Once
this is done for each sample, the power of the experiment can be calculated for that
particular sample size.

Shyr et al. [50] chose data sets from TCGA, selecting RNA-seq data of three
cancer organ sites—lung (LUSC), colorectal (COAD), and breast (BRCA)—con-
taining 459, 411, and 1062 samples, respectively. Conducting the simulations with
R version 3.0.2, the investigators created two functions, the first function enabling
the input of sample size, RNA-seq data, group variables (such as tumor and no
tumor; control and treatment), minimum number of reads, FDR cutoff, fold change
boundaries, and the number of random samples. The genes with a count value
greater than the minimum set for the function were selected from the RNA-seq data,
and edgeR was used to analyze their expression values by returning the dispersion
values and applying the exact test in order to calculate the fold change values of the
samples. Once the fold change values were organized according to the set
boundaries and randomly selected based on the number of genes at the site, the
desired sample size, mean, dispersion, and fold change values were used in a loop
to create a list of important values. Then, the SimCount function was implemented
to produce raw counts using the negative binomial distribution based on the input
parameters of the loop. Count values were arranged according to control and
treatment groups and inserted into specified edgeR functions, which generated p-
adjusted values. Based on the FDR cutoffs and the group of the samples, the false
negatives, false positives, true negatives, and true positives were calculated and
stored in the final output list containing the matrix, fold change, dispersion and
number of genes (Fig. 2) [50].

In the second function developed, the investigators provided two different
methods of calculating power. The first method used the sensitivity formula, which
is the number of true positives divided by the sum of the number of true positives
and false negatives. The second method took the number of true positives divided
by the total number of genes. Both types of power were compiled with corre-
sponding sample size and run time, and a violin plot is generate to capture the
details of the dispersion, as demonstrated in Fig. 3 [50].

Similar to the studies previously discussed [46, 51], the three cancer sites of the
RNA-seq data from TCGA have dispersion distributions that were heavily skewed
to the right. Yet, all three cancer sites had a dispersion value between 2 and 2.5 at
the 95th percentile, with a maximum dispersion ranging from 9.686 to 15.88.
Therefore, there were relatively few samples in these three cancer sites that had a
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Fig. 2 Flow chart of power simulation function
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large dispersion. Running simulations with different parameters for FDR and
minimum reads, the investigators demonstrated a relationship between sample size
and power when the desired minimum fold change was 2.0. From this, 80% power
required a sample size of LUSC 18, COAD 20, and BRCA 25, which appropriately
reflects the greater variance LUSC and BRCA in comparison to COAD. This
remained true even when the FDR and the minimum number of reads was adjusted,
and the results showed that each of the three cancer sites had its own unique
dispersion distribution, causing the sample size estimation to vary accordingly.

To evaluate the robustness of this method, Shyr et al. [50] conducted a simu-
lation based on the same kidney data set and transcript regulation data set used by
Li et al. [46] in their proposed sample size determination method based on the exact
test [51, 50]. Li et al. [46] showed that the kidney dataset required about 15 samples
to attain a power of 80% based on the Poisson and negative binomial model,

Fig. 3 Violin plots of dispersion for three cancer sites [50]
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whereas the empirical method proposed by Shyr et al. [50] showed a sample size of
15 reaching a minimum power of 90%, indicating a higher change of detecting the
true positives at a reduced experimental design cost. Similarly, for the transcript
regulation dataset, Li et al. [46] required a sample size of 79 and 31 for the negative
binomial model and Poisson model, respectively [51]. Shyr et al. [50] demonstrated
a power of 95 and 90% for the same sample size of 79 and 31, respectively,
requiring a much smaller sample size than Poisson and negative binomial models.

The proposed method requires the estimation of hyper-parameters. If a relatively
large pilot dataset is available, these parameters can be estimated on the pilot data.
Otherwise, it is recommended to conduct a pilot or feasibility study to generate
preliminary data for sample size calculation. When researchers construct an
experimental design, it’s important to have preliminary data on the number of
biological replicates needed for their experiment. While researchers criticize power
analyses for having too many mathematical assumptions, an empirical method
overcomes this issue and simply requires RNA-seq data for power and sample size
estimation. The flexibility of such a method also allows users to modify the pro-
posed procedure of the simulation by using different software packages to calculate
power or sample size, and it a realistic approach that reveals relationships among
parameters relevant to the power analysis.

Due to the complexities of RNA-seq experiments, it is no longer feasible to rely
on one simple power versus sample size curve while treating all other factors as
fixed input and holding strong assumptions, such as exchangeability between genes
and equating nominal error rate as actual error rate. Further, the definition of power
itself can vary in RNA-seq experiments: it could be the average marginal power as
the proportion of all identified differentially expressed genes, or the targeted power
as the proportion or number of differentially expressed genes identified from a
subset of genes. Therefore, sample size decisions based on a comprehensive
evaluation of statistical power and actual type I error over a range of sample sizes is
more ideal. Power simulations enable the user to visualize the relationship between
various types of power and sample size, expression level and biological variation,
and understand the cost of false discovery in different strata of genes. The power
simulation can thus assist the decision on sequencing depth, analysis plan, and
ultimately a sample size for an acceptable power.

4.5 Web-Based Tools for RNA-Seq Power
and Sample Size Calculation

The rise of next generation sequencing (NGS) technology has been a boon for the
field of bioinformatics, since the unprecedented throughputs—along with the
diversity of possible applications in research and healthcare—brought forth a new
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generation of software tools for sequence analysis and interpretation. Yet, the
advent of NGS technology has simultaneously created several challenges for ana-
lysts. For example, the data storage cost is significantly higher for RNA-seq than
microarray, and there is a lack of consensus on the best statistical method for
detecting differentially expressed genes, and as outlined in this chapter, the field
currently lacks general methods to estimate power and sample size for RNA-seq in
complex experimental designs. To date, most methods apply open-source software
whose development is based on the sharing and collaborative improvement of the
software source code, such as an R code. Open-source software often benefits from
regular input from the bioinformatic community, resulting in continued improve-
ment and increased utility, robustness and stability. While open-source tools have
many advantages, some of the limitations include a variable level of long term
support and maintenance and licensing for solely academic or non-profit institu-
tions, making it difficult for commercial companies to incorporate the software into
their platforms.

In recent years, the field has witnessed the onset of interactive web-based
applications that assist researchers with devising an experimental design with an
appropriate sample size and read depth to satisfy user-defined objectives. For
instance, RNAseqPS, a web-based power and sample size calculation tool created
by Guo et al. [52], not only addresses the multiple comparisons problem, but also
offers a highly interactive and intuitive graphical user interface [52]. Combining the

Fig. 4 Example of the graphical interface of RNAseqPS
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computation power of R with the interactivity of the modern web, RNAseqPS
incorporates applications that automatically react with different input and output
parameters, displaying new estimations of sample size and power with every
modification. This function enables users without any experience in statistics or
programming languages to easily visualize and assess the intrinsic relationship
between specified parameters and power [52] (Fig. 4).

5 RNA-Seq in the Era of Precision Medicine

Advances in genomics over the past several years have had a profound impact on
our grasp of molecular biology and genetics. In the laboratory, next-generation
sequencing (NGS) has been applied to identifying novel genomes for an array of
organisms, DNA resequencing, transcriptome sequencing, and epigenetics. Within
clinical settings, NGS is gaining prominence as an invaluable diagnostic tool.
Specifically, the ability to interpret the genetic mechanisms that underlie variations
in human gene expression through the direct analysis of the transcriptome makes
RNA-seq an attractive method to clinical diagnosticians. RNA-seq examines the
dynamic nature of the cell’s transcriptome, the portion of genome that is actively
transcribed into RNA molecules. While DNA remains relatively unchanged
throughout an individual’s lifespan, RNA, in the form of transcriptional elements,
can vary dramatically due to influences on epigenetic regulators, alternative spliced
variants, or post-transcriptional modifications.

Through the study of transcriptomes, researchers hope to determine when and
where genes are turned on or off in a variety of cell types. Methods such as
RNA-seq are quantifiable and provide insights to the level of gene activity or
expression within a cell. For instance, transcript information could reveal the gene
expression profile changes that are associated with cancer. Moreover, careful
analysis of the transcriptome may provide a comprehensive snapshot of what genes
are active during various stages of development.

Yet, for RNA-seq to transition from a purely analytical research discovery
method to a clinically useful tool, scientists and regulatory officials must adopt
standard analysis methodology and benchmark datasets for their level of accuracy
and reproducibility. Although there have been a number of publications and con-
ferences recently that tackle the topics of assessing sequencing platforms, specific
laboratory protocols, and data analysis software, consensus is far from being
unanimous. Additionally, recent comparisons of RNA-seq with conventionally
employed clinical methodologies for the analysis of differential expression were
found to be similar among RNA-seq, qPCR and microarrays. In general, RNA-seq
has provided increased detection sensitivity and allowed for new research
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opportunities in transcriptome analyses, such as the study of gene fusions,
allele-specific expression and novel alternative transcripts.

Since RNA-seq has such a wide dynamic range, the clinical pathologies that
would benefit from its sequencing capabilities are almost limitless, but most sci-
entists and publications would point to various types of cancers as being atop the
list of potential primary candidates for clinical RNA-Seq usage. For example,
fusion gene detection is quickly becoming a standard for several types of cancers
such as NSCLC (non-small cell lung cancer) and hematological disorders. If the
laboratory discovery phase is indicative of the breadth of disease states that
RNA-seq could address, then the era of precision medicine should begin to expand
exponentially within the next few years. RNA-seq is well positioned to handle the
large clinical workload if scientists can institute the appropriate practices and
procedures that are essential for precision clinical medicine.
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Efficient Study Designs
and Semiparametric Inference Methods
for Developing Genomic Biomarkers
in Cancer Clinical Research

Hisashi Noma

Abstract In the development of genomic biomarkers and molecular diagnostics,
clinical studies using high-throughput assays such as DNA microarrays generally
require enormous costs and efforts. Several efficient study designs for reducing the
costs of such expensive measurements have been developed, mainly in the field of
epidemiology. Under these efficient designs, expensive measurements are collected
only on selected subsamples based on adequate response-selective sampling
schemes, and total measurement costs are effectively reduced. In this study, we
discuss the application of these effective designs to genomic analyses in cancer
clinical studies, and provide relevant statistical methods such as gene selection (e.g.,
multiple testing based on the false discovery rate). Efficient semiparametric infer-
ence methods using auxiliary clinical information are also discussed.

Keywords Nested case-control study � Case-cohort study � Two-phase designs �
Genomic biomarker � Semiparametric inference � Weighted estimating equation �
Calibration estimator

1 Introduction

The establishment of high-throughput technologies such as DNA microarrays has
enabled the genome-wide investigation of cancer tumor samples to characterize
diseases at a molecular level, namely, that of genes. Such genomic studies are
potentially useful for elucidating disease biology and aggressiveness, identifying
new therapeutic targets, and developing new molecular diagnostics for optimized
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medicine for individual patients [1–3]. One of the primary objectives of these
genome-wide studies is the screening of differentially expressed genes among
different phenotypes, such as clinical subtypes and prognostic classes of disease, for
further investigation. Because of the large scale of these data, false findings are a
serious issue, and thus many researchers are concerned about controlling false
positives in the framework of multiple testing, particularly controlling the false
discovery rate (FDR) [4, 5]. However, distinguishing relevant genes from thousands
of non-interesting genes with null associations generally requires large sample sizes
to achieve sufficient statistical power [2, 3].

Furthermore, these genomic studies usually require enormous financial and other
resources to collect and/or process the large-scale measurements involved. In partic-
ular, it is still expensive to implement biological experiments using high-throughput
assays such as microarrays, and clinical researchers often find it burdensome to plan
and conduct such studies. Also, in most previous cancer clinical studies using such
high-throughput assays, these expensive experiments have been conducted for all
samples in the corresponding cohort (e.g., [6–8]). However, this strategy is not nec-
essarily cost-effective.

To resolve such serious practical issues, enormous efforts have been dedicated to
develop and apply effective study designs to reduce the costs and efforts of
obtaining expensive measurements in epidemiological studies [9]. Although these
methods have not been widely discussed in genomic clinical studies, they would
also be useful and effective tools to improve cost-effectiveness in this setting. The
underlying concept of these designs is to conduct the expensive experiments on
selected subsamples from the corresponding cohort based on adequate sampling
designs, and to implement valid inference using the observed information of the
subsamples while retaining statistical efficiency. For gaining efficiency, the sub-
sample selection scheme is systematically constructed from the outcome statuses of
each participant, and is called outcome-dependent sampling or response-selective
design [10, 11]. In particular, using recently developed semiparametric inference
methods, auxiliary variable information measured on the entire cohort (age, sex,
clinical stages, etc.) can be adapted for improving statistical efficiency [12–14].

In this chapter, we discuss efficient study designs and recent semiparametric
inference methods in applications to genomic analyses of cancer clinical studies.
The chapter is organized as follows: first, we briefly review the study designs and
basic statistical methods of the efficient study designs in Sect. 2. After that, we
discuss the semiparametric efficient inference methods of these designs in Sect. 3.
In Sect. 4, we present simulation studies to assess the utility of these designs in the
context of genomic studies. In Sect. 5, we briefly note the applications of these
designs to the development of prediction and classification algorithms. Lastly, we
provided concluding remarks in Sect. 6.
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2 Effective Study Designs

2.1 Setting and Notation

The concrete examples we consider in this chapter are microarray experiments, but
our methodology can be applied to other high-throughput measurements, e.g.,
genome-wide association studies [15]. The gene expression data considered here
comprise normalized log ratios from two-color cDNA arrays or normalized log
signals from oligonucleotide arrays (e.g., Affymetrix GeneChip). First, we assume a
certain cohort that is composed of n participants. In efficient study designs,
outcome-dependent sampling is conducted for this cohort and expensive mea-
surements are obtained for the subsamples, e.g., for a situation in which biopsy
samples were previously frozen and cryosectioned for all cohort participants, and
microarray experiments were implemented for the samples of the selected
participants.

For the ith participant, Xi ¼ Xi1;Xi2; . . .;Xiq
� �

denotes the covariates measured
for the entire cohort, and Zi ¼ Zi1; Zi2; . . .;Zip

� �
denotes the gene expression data

measured by the microarrays. For the phenotype variable, we typically assume
censored time-to-event outcomes Ti;Cið Þ (i = 1, 2, …, n) as in ordinary cancer
clinical studies, where Ti is the time-to-event variable and Ci is the indicator
variable of the event. In typical previous studies, the researchers measured gene
expression data for the all samples of n participants in the entire cohort, and
conducted standard analyses (e.g., Cox regression analyses for assessing associa-
tions between gene expression and time-to-event outcomes) with a small degree of
control for false findings in terms of the FDR [2, 3, 16].

2.2 Nested Case-Control Design

The nested case-control design [17] is one of the oldest and most widely used
designs for these purposes. We consider the proportional hazards regression model,

k tjXi; Zið Þ ¼ k0 tð Þexp b1Xi þ b2Zið Þ

in which our interest is in the regression parameters b ¼ b1; b2ð Þ. Here k0(t) is the
baseline hazard function. In this situation, the participants whose events are
observed during the follow-up period are regarded as cases, and the others as
non-cases. The parameter b is validly estimable using the ordinary Cox’s partial
likelihood method if the covariates are observed for all of the participants. To
reduce measurement costs in the nested case-control design, case-control sampling
is conducted within the cohort.

Without loss of generality, we denote the times of event occurrences in the
cohort as t1\t2\ � � �\tn1 where n1 is the total number of cases, and denote the
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corresponding indices of these cases as 1, 2, …, n1. We also denote R tj
� �

as the
risk-set at time tj j ¼ 1; 2; . . .; n1ð Þ in the entire cohort. In this design, at each event
time tj, k matched controls are sampled from the risk setsR tj

� �
, i.e., a small number

of controls are sampled from the risk set of the entire cohort whenever an event
occurs. This sampling scheme is called risk-set sampling. We denote the index sets
of the case and selected controls at tj as F tj

� �
. Expensive covariates Zi are mea-

sured only for the cases and selected controls. Although the covariate data of Zi
are partially observed in the entire cohort, we can validly estimate the regres-
sion parameter b regarding the cases and selected controls as a matched
case-control dataset stratifying by the event times via the conditional likelihood
function [17],

LNCC bð Þ ¼
Yn1
j¼1

exp b1Xj þ b2Zj
� �P

k2F tjð Þ exp b1Xk þ b2Zkð Þ

" #

Note that, in the random selection of controls from the risk set, a participant
randomly selected from the risk set as a control at an early time point can develop
an event and serve as a case at a later time point. However, this sampling assures
the validity of the inference based on LNCC bð Þ. The asymptotic variance can be
consistently estimated by the standard model variance based on LNCC bð Þ.

2.3 Case-Cohort Design

The nested case-control design can effectively reduce the cost of measuring
expensive covariates in the study as a whole. However, when there are multiple
outcomes of interest as seen in many clinical or epidemiologic studies, controls are
sampled for each of the outcomes, resulting in different controls across the out-
comes and thus elevating the total cost of the measurement of the covariates. The
case-cohort design [18] was developed to circumvent this issue. In this design,
controls are selected randomly from the entire cohort without referring to the
outcomes. Because a single, common set of controls is sampled for the multiple
outcomes, the total cost and effort required for measuring the expensive covariates
for multiple outcomes can be markedly reduced compared with the nested
case-control design. Since the control set is a representative subset of the entire
cohort, it is called a subcohort [9]. Note that some case and control samples can be
duplicated in this sampling scheme, because the controls are sampled from the
entire cohort. However, the measures of effects (e.g., hazard ratio) can be unbias-
edly estimated using the methods outlined in the next subsection.
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2.3.1 Analysis of Time-To-Event Outcomes

We here use the same notation as in Sect. 2.2, and we consider the proportional
hazards model. In this design, although the covariate data of Zi are also only
partially observed in the entire cohort, the regression parameter b is estimable by
modifying the Cox’s partial likelihood [18–21]. The most popular one is the inverse
probability weighting (IPW)-type pseudo-likelihood [20, 22, 23],

LIPW bð Þ ¼
Yn1
j¼1

exp b1Xj þ b2Zj
� �P

k2 ~R tjð Þ xkexp b1Xk þ b2Zkð Þ

" #

where xk = 1 for cases; xk ¼ n0=nð Þ�1 for non-cases, where n0 is the size of
subcohort; and n0=n is the sampling proportion of the subcohort from the entire
cohort. Also, ~R tj

� �
means the index set of risk set of time tj in the cases and

selected controls. Through adjusting the partial likelihood function by the sampling
probabilities of individual participants, we can obtain a consistent hazard ratio
estimator. The standard errors can be evaluated by the robust variance estimators
[20, 22].

Note that the sampling probabilities can be varied across certain strata, i.e., the
conventional stratified case-control sampling is applicable for the case-cohort
design. Stratified sampling enables us to effectively prevent an imbalance of dis-
tributions of relevant covariates, and to possibly increase the efficiency of estima-
tion of the regression parameter of the expensive covariate of primary interests (in
particular, if there is a strong correlation between the stratification covariates and Z)
[21]. For the stratified sampling designs, the hazard ratio can be consistently esti-
mated by adjusting the weights to the inverses of the stratum-specific sampling
probabilities of LIPW bð Þ.
Example 2.1 (Desmedt et al. [24])
Although the majority of patients with early breast cancer receive systemic adjuvant
therapy that may have serious side effects, it remains a challenge to predict which
patients actually require this therapy. To predict patients’ prognosis in lymph node–
negative primary breast cancer patients, Wang et al. [8] developed a 76-gene
prognostic signature based on gene expression data with Affymetrix HG-U133A
GeneChips (Affymetrix, Santa Clara, CA; m = 22,283). Desmedt et al. [24] con-
ducted a validation study of the 76-gene profile in 198 patients. For illustrative
purposes, we generated simulated case-cohort data from this cohort. We sampled all
41 cases who developed distant metastases during the follow-up period, and ran-
domly selected 99 patients as a subcohort (50% of the entire cohort). The total
subsample size was 140 (70.7% of the entire cohort), and the number of duplicated
samples was 21. We estimated standardized hazard ratios (increment of hazard ratio
per 1 SD of gene expression data for individual probes) by univariate Cox
regression with the IPW method. Table 1 presents the comparative results of the
entire cohort and the simulated case-cohort data for selected probes of the 76 genes
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in the prognostic signature. Using the IPW method, similar hazard ratio estimates
can be obtained with the case-cohort subsamples. In addition, although the sample
size can be reduced to around 70%, the asymptotic relative efficiency (ARE) could
generally be kept over 80%, and was greater than 90% for some probes. In other
words, if the cost and effort involved in microarray experiments of 198 samples
were available, more efficient statistical inference could be implemented using the
efficient study designs from a larger source population.

2.3.2 Analysis of Binary Outcomes

The case-cohort design can be applied to a cohort study with a binary outcome
(although the nested case-control design can be also formally adopted, if there is no
censoring). For cohort studies with binary outcomes, the sampling scheme of the
case-cohort design is quite the same as that of the time-to-event outcome, and the
control set is randomly sampled from the entire cohort. Analyses of these data
are relatively simple because the sampling scheme of case-cohort designs exactly
accord with conventional case-control studies [25]. This indicates that all
methodological results for the analyses of case-control studies can be applied to
case-cohort designs. Therefore, the odds-ratio in the entire cohort can be estimated

Table 1 Results of a simulated case-cohort study based on the breast cancer clinical study of
Desmedt et al. [24]

Gene (probe id) Entire cohort Case-cohort data Bias ARE

b2 SE P-value b2 SE P-value

204015_s_at −0.325 0.134 0.016 −0.304 0.157 0.053 −0.020 0.727

217767_at −0.200 0.138 0.147 −0.238 0.140 0.090 0.038 0.968

201664_at 0.369 0.162 0.022 0.345 0.164 0.035 0.023 0.972

219724_s_at −0.314 0.124 0.011 −0.289 0.128 0.024 −0.025 0.940

212014_x_at 0.256 0.172 0.150 0.288 0.174 0.099 −0.032 0.969

201288_at −0.404 0.149 0.007 −0.435 0.160 0.007 0.031 0.863

201068_s_at 0.159 0.160 0.319 0.195 0.174 0.263 −0.036 0.839

214919_s_at −0.365 0.159 0.022 −0.368 0.174 0.035 0.003 0.838

203306_s_at −0.386 0.151 0.010 −0.379 0.162 0.019 −0.007 0.868

219510_at 0.277 0.179 0.119 0.278 0.186 0.135 0.000 0.924

216693_x_at 0.155 0.162 0.340 0.178 0.176 0.313 −0.022 0.851

220886_at 0.231 0.173 0.181 0.225 0.178 0.207 0.006 0.940

Estimates for selected genes in the 76 gene prognostic signature of Wang et al. [8] from the entire
cohort and the simulated case-cohort data
b2 is the standardized log hazard ratio (log hazard ratio increment per 1 SD of the corresponding
gene expression data)
Bias, ARE (asymptotic relative efficiency): estimated bias and ARE based on the estimate of b2 of
case-cohort data compared with that of the entire cohort data
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by the ordinary prospective logistic regression model [26]. Only the intercept is
non-identifiable. Also, standard errors of the other regression coefficients b are
consistently estimated by the model variance. The odds-ratio estimator derived by
standard logistic regression achieves semiparametric efficiency provided that the
distribution of covariates is left unspecified [26, 27].

In addition, using the IPW method, the intercept of the logistic model can also be
validly estimated. Risk differences and risk ratios are also estimable by the IPW
method using binomial regression models with identity and log link functions [25].
Further, for comparing mean expression levels among cases and non-cases, the t-
test or Wilcoxon tests between the cases and non-cases in the selected subsamples
retain their validities because the sampling scheme of the case-cohort design is
equivalent to that of the case-control study.

Example 2.2 (Hatzis et al. [28])
Hatzis et al. [28] conducted a prospective multicenter study at the M.D. Anderson
Cancer Center to develop genomic predictors for neoadjuvant chemotherapy for
invasive breast cancer. Predictive signatures for response to preoperative neoad-
juvant chemotherapy were developed based on gene expression analysis using
Affymetrix HG-U133A microarrays (Affymetrix, Santa Clara, CA). We consider
here a two-group comparison problem between 86 excellent-response patients with
pathologic complete response or minimal residual cancer burden (RCB-I) and 215
lesser-response patients with moderate or extensive residual cancer burden
(RCB-II/III). We also simulated the case-cohort data from this cohort; we sampled
all 81 RCB-I patients and also 137 subsamples (45.5%) as a subcohort. The number
of RCB-II/III patients in the subcohort was 95 (total number of subsamples was
181; 60.1%), and the number of duplicated samples was 42. We could implement
logistic regression analyses as noted above, but here, we considered the assessments
of differences of mean gene expression levels between the two groups. We esti-
mated standardized mean differences (SMD; mean difference for standardized gene
expression data by SD of individual probes) and evaluated the differences between
the two groups via Student’s t-tests. We provide the comparative results of the
entire cohort and the simulated case-cohort data for selected probes with the
smallest P-values in Table 2. The biases of SMD estimates in the case-cohort data
from the entire cohort were generally not very large. Also, the sample size was
reduced to 60.1%, but the ARE were generally over 70% for all of the probes
presented.

Case-cohort designs have several advantages over nested case-control designs.
The subcohort samples may allow the estimation of the population frequencies of
certain covariates (e.g., genotypes) and permit multiple analyses to be conducted
with different time scales (e.g., time-on-study and attained age). Also, unlike nested
case-control studies, subcohort sampling is possible even in situations where the
case or non-case status of a cohort member is unknown prior to the control sam-
pling to determine the risk set at an event time. Further, as noted above, the
case-cohort design is more cost-effective for analyzing multiple outcomes. Owing
to these practical advantages, case-cohort designs are becoming more popular in
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epidemiologic research [12]. Also, this design can straightforwardly treat the case
of binary outcomes. So, in the remainder of this chapter, we mainly focus on the
case-cohort design when explaining various methodologies. However, most of the
methodological framework can be similarly adapted to the nested case-control
design.

3 Efficient Inference Methods

3.1 Formulation as Two-Phase Sampling Designs

As shown in the previous chapter, the nested case-control and case-cohort designs
can effectively reduce the cost and effort of conducting cancer clinical studies with
expensive covariate measurements by utilizing conventional inference methods that
only use the outcome and covariate information for selected participants. On the
other hand, in most studies, data on outcome and other covariates (whose mea-
surements are not necessarily expensive) are available for the other participants not
sampled from the entire cohort. Recently, several efficient inference methods have
been developed by incorporating such auxiliary information from the entire cohort
[12–14].

It is convenient to formulate these designs as two-phase sampling designs as
shown in Fig. 1. First, as a random sample we consider a target population that is
actually a source population from which the entire cohort is constructed. This
random sampling from the source population is regarded as phase-1 sampling.

Subcohort

Cases

Phase-1: Random Sampling from the Source 
Population (Observed Covariates: )

Phase-2: Response-Selective Sampling from
the Phase-1 Cohort

Source Population

(Observed Covariates: )

Fig. 1 Conceptual diagram
of the two-phase sampling
designs (this figure is from
Fig. 1 of Kulathinal et al. [23]
with modifications)

Efficient Study Designs and Semiparametric Inference Methods … 389



Second, outcome-dependent sampling (not random sampling) is conducted from the
phase-1 entire cohort. This sampling is regarded as phase-2 sampling. These
designs can be completely formulated as two-phase sampling designs from the
source population.

We usually have complete outcome variable data Yi and partial covariates
Xi ¼ Xi1;Xi2; . . .;Xiq

� �
for all of the participants in the phase-1 entire cohort

(i = 1, 2, …, n). In addition, the expensive covariates Zi ¼ Zi1; Zi2; . . .; Zip
� �

are
measured for the subsamples selected during the phase-2 sampling. In other words,
for the not-sampled participants at phase-2, the expensive covariates Zi are not
observed. Thus, considering the phase-1 cohort as the analysis set, we can formally
regard the dataset of Yi;Xi; Zið Þ (i = 1, 2, …, n) as an incomplete dataset from
which the covariates Zi are partially missing. Also, whether Zi is observed or
missing is completely discriminated by whether a participant is selected or not at
phase-2 sampling. Importantly, this missing mechanism is also completely
explained by the observed variables, because the stochastic mechanism of the
phase-2 sampling is completely specified by the adopted designs. Therefore, the
missing mechanism of Zi is assured to be missing at random (MAR). So, efficient
statistical inference can be implemented by applying efficient methods for the
missing data analyses under the MAR mechanism.

3.2 Semiparametric Inference Methods

3.2.1 IPW Estimator

One of the most popular approaches of semiparametric inference methods is the
IPW method for MAR-based incomplete data [29]. For two-phase designs, the IPW
method is intuitive because the sampling probability of each participant is known,
as explained in Sect. 2.2. Samuelson [30] also developed an IPW inference method
for nested case-control designs. These methods are formulated as weighted esti-
mation procedures using the inverses of probabilities of phase-2 sampling. For the
Cox regression, the pseudo-likelihood function is

LIPW bð Þ ¼
Yn1
j¼1

exp b1Xj þ b2Zj
� �P

k2 ~R tjð Þ wIPW ;kexp b1Xk þ b2Zkð Þ

" #

where the weights are wIPW ;k ¼ p�1
k and are inverses of the known probabilities of

phase-2 sampling (pk). Explicitly, the resulting weighted estimating function

UIPW bð Þ ¼ @ logLIPW bð Þ
@b
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is unbiased, E UIPW bð Þ½ � ¼ 0. So, the estimator of regression parameters b has
consistency. When the stratified sampling is adopted at phase-2, the weights are
changed to the inverses of stratum-specific sampling probabilities. Here we call this
weight the “design weight.” The standard error can be estimated by the sandwich
estimator [29], and the pseudo-Wald test and confidence interval can be constructed
in the standard manner.

3.2.2 Improving Efficiency Using Estimated Weights

The IPW estimator provides an (asymptotically) unbiased estimate of b based on
the dataset of Yi;Xi; Zið Þ from the phase-2 samples. However, the auxiliary infor-
mation of Yi; Zið Þ are available for all the participants in the phase-1 cohort. Using
this auxiliary information to improve the precision of inference on b, the simplest
but effective method is by altering the design weights to “estimated weights.” In the
nested case-control and case-cohort designs, the missing mechanism is completely
specified as noted above. Concretely, the models of missing probabilities can be
expressed by adequate binomial regression models, e.g., the logistic regression
model,

logit Pr Ri ¼ 1jWið Þ ¼ c0 þ c1Wi1 þ � � � þ clWil ð1Þ

where Ri is the observation/missing indicator of Zi with a value of 1 when the ith
participant is sampled at phase-2, and otherwise, a value of 0. Also, Wi = (Wi1, …,
Wil) are the explanatory variables of this logistic regression model, which involve
the outcome variables and phase-1 covariates Zi. In the usual missing data analyses
in clinical studies, we cannot know the true values of c or whether the missing
mechanism is MAR or not MAR. However, in these cases, the missing mechanism
is necessarily known to be MAR and the true values of c are completely specified
by the sampling designs. As noted above, we can use the true probabilities of
sampling at phase-2 based on the true value of c in the IPW estimation, which
correspond to the design weights.

However, Robins et al. [29] and Henmi and Eguchi [31] revealed a paradoxical
characteristic of the IPW estimator, namely that the asymptotic variance of this
estimator based on the true probabilities of being missing is uniformly improved by
altering it to the estimated weight that is based on the estimated probabilities of
being missing by the missing data mechanism model (1). Note that the estimated
probabilities have errors compared to the true probabilities and they are necessarily
misspecified, but it was shown that the resultant IPW estimator retains consistency
and gains efficiency [29, 31]. So, we can obtain a more precise estimator of b using
the estimated weight obtained by the model (1) into which an adequate estimate of c
is plugged-in (usually, the maximum likelihood estimate). A typical case involving
estimated weights uses the sampling fraction of stratified case-cohort sampling in
IPW estimation, not the known true probabilities of sampling (the “design weight”
noted above). This is well-known as Borgan’s type-II estimator in stratified
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case-cohort designs [21]. Note that the model (1) should be correctly specified for
assuring consistency, so all of the covariates related to the sampling mechanism at
phase-2 should be involved. However, it is better to model additional covariates
unrelated to the model (1) involving interaction terms to improve the fit of the
model. The theoretical reasons can be explained by geometric arguments. For
readers who are interested, please see Henmi and Eguchi [31].

The asymptotic variance can be consistently estimated by the sandwich estimator
[29]. For the IPW estimator with estimated weights, the asymptotic variance esti-
mator becomes more complex because we should consider the joint estimating
equation for (b, c). However, the computational program of the variance estimator
for the Cox regression and generalized linear models is available at R package
survey [14, 32]. The R package survey involves computational tools of the
IPW estimation for the two-phase sampling designs explained here. For the details
of the package, please see Lumley [32] and Lumley et al. [14].

3.2.3 Semiparametric Efficient Estimator

Under the MAR missing mechanism, although the IPW estimator has consistency,
it generally does not have asymptotic efficiency. Therefore, recent methodological
studies have explored providing improved estimators to gain efficiency. Robins
et al. [29] provided a theoretical general framework involving the IPW estimator to
construct the semiparametric efficient estimator that is the most precise estimator
within a class of semiparametric estimators. In this case, we consider a semipara-
metric model that does not provide parametric assumptions for the distribution of
Zi, because there should be required parametric specification of the distribution of Zi
for ordinary inference of the outcome dependent sampling [10]. Robins et al. [29]
derived the augmented IPW estimator (it is also known as the doubly robust esti-
mator in incomplete data analyses) as the semiparametric efficient estimator, which
has an adequate augmented term to the IPW estimating function. Several
researchers have presented practical computational methods to achieve semipara-
metric efficiency in these designs [33, 34]. For instance, Qi et al. [34] provided a
method to construct the augmented IPW estimating function of Cox regression
using a kernel smoothing function, and discussed its applications to case-cohort
designs. However, the augmented term involves unknown quantities to be esti-
mated, and it has computational difficulties in general [35]. So, some researchers
(e.g., Breslow and Wellner [35]) have discussed the fact that this term has never
been applied in practice with nested case-control and case-cohort designs. In the
near future, more advanced theoretical studies might resolve these problems, but in
current practice, we do not have sufficient methods or computational tools for
applying efficient methods to these study designs. Thus, recent studies have pro-
posed other efficient strategies that effectively circumvent these issues, as shown in
the next subsection.

Note that, for settings of binominal outcome data with only discrete categorical
covariates, explicit semiparametric efficient estimators were developed for
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two-stage case-control designs [11, 36]. Although these estimators can be applied to
restrictive settings, under some situations they might be practically useful in clinical
research with genomic data. See Noma and Tanaka [25] for the details of their
applications to case-cohort designs.

3.2.4 Application of the Calibration Technique
in Sample Survey Theory

In sample survey theory, many studies have been dedicated to improving the
conventional Horvitz-Thompson estimator [37], which has the same form as the
IPW estimator and partially inspired the development of IPW theory. These
improved estimators, which include the generalized regression estimator,
post-stratification estimator, raking estimator, and others [38], use information on
auxiliary variables collected from the source population to improve the efficiency,
similar to the two-phase designs in epidemiology. The calibration method, proposed
by Deville and Särndal [38], is a general framework that generalizes these esti-
mators. Breslow et al. [12, 13] proposed to apply this calibration technique to
improve the IPW estimator in case-cohort designs as a tractable alternative to the
semiparametric efficient methods (it can similarly be applied to the nested
case-control designs [39]).

Here we first explain the general methodological framework of the calibration
method. We use different notational approaches to maximize the clarity of our
explanations. As a simple formulation, we consider an estimating problem for the
population total atot ¼

P
i;jð Þ2X aij, of a certain target variable aij (i = 1, …, Nj;

j = 1, …, J) in the phase-1 samples under stratified sampling (but, we directly use
this formulation in the applications to analyses of case-cohort designs), where J is
the number of strata, Nj is the sample size of the jth stratum, and X is that of phase-1
cohort samples. We denote kij (i = 1, …, Nj; j = 1, …, J) as the sampling proba-
bility of each participant from phase-1, and dij = kij

−1 as its corresponding
design-based weight. Note that kij and dij are common within each stratum. The
well-known Horvitz-Thompson estimator of atot is the weighted sum of aij among
the phase-2 samples âHT ¼ P

i;jð Þ2N dijaij, where N is the index set of phase-2
samples. Apparently, âHT has consistency, but it only uses the observed information
of aij at phase-2. We also assume the availability of some auxiliary variables Qij

(i = 1, …, Nj; j = 1, …, J) that are measured for all participants in the phase-1
cohort. If the auxiliary variables Qij strongly correlate to the target variable aij, then
intuitively their information might be effectively used for improving the
Horvitz-Thompson estimator, because they have substantial information for
unmeasured aij. In the calibration technique [38], the naïve design weight is cali-
brated using the auxiliary information to improve the efficiency. To determine the
adjusted weight, we consider the following calibration equation:
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Q̂tot ¼
X
i;jð Þ2N

wijQij ¼
X
i;jð Þ2X

Qij ¼ Qtot

where there should be certain weights wij that satisfy the above equation.
Intuitively, when the auxiliary variables Qij have strong correlation with aij, âtot ¼P

i;jð Þ2N wijaij might provide a more accurate estimator than âHT . For an extreme
example, when Cor(aij, Qij) = 1, the adjusted Horvitz-Thompson estimator âtot
exactly equals the estimated parameter atot. The adjusted weights wij = dij gij are the
so-called “calibrated weights” [12, 13], where gij are correction factors. In general,
restriction of the calibration equation does not uniquely specify the weights and
requires some additional restrictions. Deville and Särndal [38] proposed to set the
calibrated weight as near as possible to the design weight dij based on a measure of
distance for quantifying the closeness G(w, d), i.e., the weight that minimizes the sum of
the distances G(wij, dij) over all i, j. Several distance measures have been discussed
e.g., G1(w, d) = (w − d)2/2d (linear function) and G2(w, d) = w log (w/d) − w + d
(Poisson deviance). For more distance measures and their properties, see Deville and
Särndal [38] and Deville et al. [40]

In case-cohort designs, we want to estimate b with individual score contributions
Uij (b) and information matrix Iij (b). Using the first-order Taylor approximation of
the score function around b0, the true value of b, the weighted estimator with naïve
design weight is approximated as

b̂IPW � b0 þ
X
N

dijI
�1
ij b0ð ÞUij b0ð Þ

Because b0 is a fixed quantity, the calibration technique can be formally applied to
the estimation of a population total, a problem discussed above, and we would
calibrate the weight with respect to some auxiliary variables correlated with
I�1
ij b0ð ÞUij b0ð Þ. A natural choice would be the dfbetas

Qij ¼ I�1
ij b̂

� �
Uij b̂

� �

where b̂ is the maximum likelihood estimate for complete phase-1 cohort data.
However, several phase-2 variables are missing, so in general, b̂ and the phase-1
dfbetas are unknown. Breslow et al. [12, 13] proposed using approximate dfbetas
obtained as follows:

(i) In obtaining the phase-1 cohort estimate b̂, several phase-2 variables are
missing. Breslow et al. [12, 13] proposed imputing a single suitable value to
the missing covariates. For predicting the missing covariates, construct a
regression model with the fully observed covariates as explanatory variables
and establish a prediction model using a weighted estimation.
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(ii) Using the imputed phase-1 complete dataset, with the predicted values gen-
erated in step (i), conduct a complete data analysis (e.g., a Cox regression).
Then, extract the dfbetas from the regression model.

Therefore, using the dfbetas as auxiliary variables to obtain new weights wij, the
calibration method can be implemented. Also, through a weighted regression
analysis with the calibrated weights, we can obtain the final estimates. Although
this procedure involves complex calculations, these computations are fully feasible
using the survey package [14, 32] in R (R Foundation for Statistical Computing,
Vienna, Austria). The variance estimation is also complicated because of the
uncertainty of the weight calibration, but this computation can be also implemented
by the survey package.

4 Simulation Studies for Evaluating Efficiency

To illustrate the uses of these estimators in clinical studies with genomic data, we
conducted simulation studies based on the breast cancer clinical study of Hatzis
et al. [28] that was adopted in Example 2.2. In Example 2.2, we simulated
case-cohort data in which we considered the microarray gene expression data as the
phase-2 variables, and applied the IPW method with design weights to detect
differentially expressed genes between the excellent-response patients (RCB-I) and
the lesser-response patients (RCB-II/III) groups. Here we conducted similar sim-
ulation studies to evaluate the semiparametric estimators in Sect. 3.

We supposed the two-group comparison problem here, with the goal of detecting
differentially expressed genes between the RCB-I and RCB-II/III groups. To avoid
imbalances of relevant covariates in phase-2 sampling, we adopted stratified sam-
pling, with stratification by nodal status, estrogen receptor (ER) status, and the
outcome variable. We considered several different scenarios, with sampling prob-
abilities of 50, 60, …, 90%. We generated 400 phase-2 samples from the 301
patients of the original cohort and analyzed these datasets by three IPW estimators
with design weights, estimated weights, and calibrated weights.

For the IPW estimator with calibrated weights, we constructed normal regression
models using individual gene expression data as the response variables and the
following independent variables as predictors: age, grade, ER status, progesterone
receptor status, and HER2 status. Also, we used the ranking distance function for
calibration. For the IPW estimator with estimated weights, we estimated the weights
using a predictive logistic regression model involving the stratum indicator and the
dfbeta, which was obtained in the construction process of the calibrated weights.
The design weights were set to inverses of the sampling proportions of the corre-
sponding stratum. In computing the three weighted estimators and their standard
error, we used the survey package of R (R Foundation for Statistical Computing,
Vienna, Austria) [14, 32]. In addition, as a reference conventional method, we
simulated 400 case-cohort data by unstratified sampling with the same sample sizes,
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and conducted conventional t-tests between the sampled RCB-I and RCB-II/III
groups.

As one of the standard analyses, we conducted multiple testing for screening
differentially expressed genes that control FDR. Since the obtained P-values for the
four methods above are valid, the standard P-value-based FDR controlling proce-
dures can be straightforwardly adopted. Here, we used the Benjamini-Hochberg
(BH) procedure [4] with FDR set at 1, 5, and 10%. The results are presented in
Table 3. The number of genes detected via the BH procedure increased mono-
tonically with both the proportion of subsamples and their efficiency gains, the latter
of which would be reflected in the statistical powers of these tests. Compared with
conventional t-tests, the number of significant genes identified by the IPW methods,
which use the phase-1 auxiliary information for improving efficiency, were mark-
edly larger. Even the naïve IPW method using the design weights performed well
compared with the t-tests. So, the stratified sampling and IPW analyses would be
favored compared with the crude t-tests to improve efficiency. The numbers of
significant genes were even larger for the IPW estimators with estimated and cal-
ibrated weights. Along with the theoretical properties of these estimators explained
above, the efficiency would be reflected in the powers of the corresponding

Table 3 Results from 400 simulated case-cohort studies from the breast cancer clinical study of
Hatzis et al. [28]

Proportion of total
subsamples (%)

FDR t-testa IPW methods

Design weight Estimated weight Calibrated weight

50 0.01 27.1 183.0 225.4 233.9

0.05 234.4 718.4 844.7 863.4

0.10 596.4 1330.4 1528.8 1553.3

60 0.01 89.2 281.1 318.6 324.5

0.05 502.2 960.7 1058.6 1071.8

0.10 1053.0 1677.7 1826.8 1843.4

70 0.01 347.2 562.9 583.7 581.9

0.05 1300.1 1569.1 1607.0 1602.5

0.10 2243.6 2484.6 2536.2 2529.9

80 0.01 402.1 759.4 773.4 772.5

0.05 1439.4 1910.2 1933.4 1931.5

0.10 2418.2 2884.3 2916.2 2913.9

90 0.01 495.9 935.6 942.9 943.0

0.05 1606.3 2174.1 2184.5 2184.4

0.10 2582.7 3185.6 3201.6 3200.0

Means of the numbers of significant genes by the Benjamini-Hochberg procedure with FDR
controlled at 1, 5, and 10%
aThe t-tests were applied to simulated unstratified case-cohort studies with the same sample size as
a reference method. The numbers of significant genes for t-tests of the entire (phase-1) cohort data
were 979, 2293 and 3264 under FDRs of 0.01, 0.05 and 0.10
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statistical tests. In practical gene screening in genomic research, these methods
would be useful tools to improve efficiency using phase-1 auxiliary variables.

We also evaluated the concrete efficiency gains for the phase-2 component of the
standard errors. In Fig. 2, we provide boxplots of the IPW estimates with calibrated
weights for SMD of 50 selected genes (with the largest SMD at the phase-1 cohort
data) for 400 simulated case-cohort designs. In general, all the means of the esti-
mates were located around the SMD estimates of the phase-1 cohort, and they
generally had small biases due to the phase-1 estimates. Also, the variations of the
estimates reflected the phase-2 component of the standard errors of estimates, and
they became smaller as the sizes of the total subsamples became larger. These
results clearly indicated the concrete efficiency of the calibration estimator.
Although the variations of the estimates seemed large when the proportions of
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Fig. 2 IPW estimates with calibrated weights for SMD of 50 selected genes (with the largest
SMD at phase-1 cohort) for 400 simulated case-cohort studies from the breast cancer clinical study
of Hatzis et al. [28]
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subsamples were small, they would be controlled via designing adequate sample
sizes. This implies that the same levels of efficiency could be achieved by smaller
sample sizes when effective study designs are adopted. The efficiency gains would
be directly reflected in the powers of multiple testing as shown above.

5 Predication and Classification

Another important goal of genomic analyses in cancer clinical studies is developing
prediction and classification algorithms. The effective designs can be also applied for
this purpose, because many standard classification algorithms are constructed by
plugging in valid estimates to discriminant functions developed by optimal theoretical
criteria (e.g., the Bayes rule) [41]. For example, to construct two-group classification
algorithms for linear discriminant analysis or diagonal linear discriminant analysis, the
mean and variance-covariance parameters are required for constructing the discrimi-
nant functions. As shown in Sects. 2 and 3, these parameters can be unbiasedly and
efficiently estimated by the IPW estimators. Also, in developing the logistic dis-
criminant function, the IPW estimators of the logistic regression model for the
case-cohort designs can be directly applied (remember, the case-cohort sampling
scheme is equivalent to the case-control sampling). Also, for survival prediction
models, e.g., based on the Cox proportional hazard regression model, the hazard ratio
estimators can be validly estimated by the IPW methods as noted in Sect. 3. The
baseline hazard function is also unbiasedly estimable via the IPW-adjusted Breslow
estimator [13]. For more complex algorithms (e.g., based on the regularized dis-
criminant functions [42] or machine learning methods [43]), methodological research
should be undertaken to develop valid and optimal classification algorithms, but these
algorithms would be able to be handled by similar principles.

6 Concluding Remarks

Methodological studies of efficient study designs in epidemiology began in 1970s.
Many useful methodologies have been developed thus far, and they have been
sufficiently established to be used at a practical level. These designs have already
been applied in many epidemiological studies, and they will be increasingly
important in research in various fields. In this chapter, we discussed their utility in
genomic studies of cancer clinical research, specifically for reducing the enormous
costs and efforts involved in high-throughput experiments. As shown in the sim-
ulation studies and several numerical examples, the effectiveness of these
methodologies in genomic studies is expected in practice. In particular, the semi-
parametric methods should be useful tools to improve efficiency in statistical
inference. If these methodologies are used effectively, the costs and efforts of these
studies should be effectively reduced while still retaining statistical efficiency.
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Supervised Dimension-Reduction Methods
for Brain Tumor Image Data Analysis

Atsushi Kawaguchi

Abstract The purpose of this study was to construct a risk score for glioblastomas
based on magnetic resonance imaging (MRI) data. Tumor identification requires
multimodal voxel-based imaging data that are highly dimensional, and multivariate
models with dimension reduction are desirable for their analysis. We propose a
two-step dimension-reduction method using a radial basis function–supervised
multi-block sparse principal component analysis (SMS–PCA) method. The method
is first implemented through the basis expansion of spatial brain images, and the
scores are then reduced through regularized matrix decomposition in order to
produce simultaneous data-driven selections of related brain regions supervised by
univariate composite scores representing linear combinations of covariates such as
age and tumor location. An advantage of the proposed method is that it identifies
the associations of brain regions at the voxel level, and supervision is helpful in the
interpretation.

Keywords Brain image � Multimodal � Big data � Risk score

1 Introduction

Glioblastoma is a World Health Organization (WHO) grade IV glioma, the most
common malignant primary brain tumor in humans and one having a poor prog-
nosis. The first line of treatment is usually surgery followed by radiation therapy or
combined with chemotherapy. Biomarkers provide useful information about
prognosis, diagnosis, and treatment strategy. Measurements based on magnetic
resonance imaging (MRI) are one such biomarker, used mainly for tracking treat-
ment response and tumor recurrence [20]. Image data have also been used in a
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randomized multicenter clinical trial to evaluate recurrence of glioblastoma in
patients treated with bevacizumab [7].

A tumor is divided into three major regions: edema, necrotic, and active with
two subtypes (enhancing and non-enhancing). In order to identify these, most
studies use four types of MR images taken using different parameters. To illustrate,
Fig. 1 shows one axial slice of an MR image of a glioblastoma patient; it has been
segmented into edema (dark blue), necrotic (green), enhancing active tumor (red),
and non-enhancing active tumor (light blue) areas. Also shown are the four MR
image types commonly used in this context: T1-weighted, T1-weighted contrast
(T1c), T2-weighted, and T2-weighted fluid-attenuated inversion recovery (FLAIR).
T1 is often used to look at brain structure. T1c is obtained by injecting gadolinium
into the body, causing tumor borders to appear brighter. T2 is the inverse of T1:
bright parts in T1 appear dark in T2, and vice versa. FLAIR is very similar to T2
and is helpful in separating the edema region from the cerebrospinal fluid (CSF),
because the free water signal is dark. The definition of tumor type based on these
MRI types was provided by Porz et al. [22] and Gutman et al. [9]: in short, edema
by T1, T2, and FLAIR; necrotic by T2 and FLAIR; enhancing by T1 and T1c;
non-enhancing by T1c, T2, and FLAIR. This general technique is called multi-
modal imaging and can reveal several disease mechanisms; see Liu [15] for an
overview of brain imaging techniques not only for brain tumors but also for
anatomical and functional biomarkers.

One of the most used collections of tumor characteristics is the Visually
Accessible Rembrandt Image (VASARI) feature set (https://wiki.
cancerimagingarchive.net/display/Public/VASARI+Research+Project), developed
using multimodal MR images by The Cancer Genome Atlas (TCGA) radiology

Fig. 1 Multimodal images of brain tumor
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working group, which has done extensive work on tumor analysis. They have relied
partly on image segmentation, which extracts binary images from the original MR
images to represent the tumor type and location, followed by computation of the
volume and identification of the tumor location. Such extractions have conven-
tionally been performed manually by trained radiologists; recently, however, fully
automated methods have been proposed. Gooya et al. [8] used a computer-based
glioma image segmentation and registration segmentation algorithm. Porz et al. [22]
provided the fully automatic segmentation software BraTumIA (Brain Tumor
Image Analysis), which allows the raw image as input and provided the output
given in Fig. 1. Tustison et al. [26] introduced supervised segmentation based on
random forests. Recently, deep learning has also been used [14]. These methods can
be regarded primarily as clustering analysis techniques that use the intensity to
extract the tumor region and evaluate the volume. A number of reviews of these are
available in the literature; see, for example, Bauer et al. [2], Liu et al. [16],
El-Dahshan et al. [6], and Dupont et al. [5]. The Multimodal Brain Tumor
Segmentation (BRATS) challenge has been ongoing since 2012 and has provided
benchmark data sets and the results from several methods.

The main goal of the technique described in this chapter is to evaluate a patient’s
prognosis using tumor information based on MRI data. There have been many
studies associating various MRI features with differences in survival time [9, 10, 19,
21]. Rios Velazquez et al. [25] and Wangaryattawanich et al. [27] investigated
relationships between MRI features and survival time, and the latter group pre-
sented a table giving details of VASARI features. Among researchers applying
advanced prediction methods, Cui et al. [4] used the survival LASSO method and
Macyszyn et al. [17] used the SVM to predict survival times of less than or greater
than 18 months.

In contrast to focusing onMRI features such as tumor volume, in this studywe have
attempted whole-brain data analysis using all voxel values as input. Brain imaging
data consist of the image intensity values for a million voxels in a 3-D array. Each
voxel value corresponds to a variable in a statistical term, so the data set is
high-dimensional. The voxel values represent the brain structure and tumor, and we
should expect to do some exploratory analysis. The strength of the whole-brain
approach is that we should be able to obtain additional information about the volume
from the segmentation. Because we will convert an image into a template (namely, a
common space in which each voxel corresponds to an anatomical division of the brain
region), it will be possible to interpret the resulting voxel related to the prognosis by
referring to the corresponding brain region. The statistical challenge is that the data set
is high-dimensional because of the large number of voxels, and there is a strong
correlation among intensities for voxels in the same neighborhood.

In order to overcome these challenges, we used a two-step dimension-reduction
method. Its original was proposed by Reiss and Ogden [24], and it was extended by
Araki et al. [1], Yoshida et al. [28], and Kawaguchi [11]. In the first step, taking into
account correlations based on data structure (namely, voxel neighborhood),
dimension is reduced by basis expansion. In the second step, taking into account
correlations based on data values, dimension is reduced by supervised multi-block
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sparse principal component analysis (SMS–PCA), a technique that is proposed in
this study.

This chapter is organized as follows: Sect. 2 describes the data to be analyzed; in
Sect. 3, the proposed method is given; in Sect. 4, the proposed method is applied to
the real data described in Sect. 2; and Sect. 5 summarizes the study, giving a final
conclusion.

2 Data and Preprocessing

We assessed the validity of the proposed method by applying it to real data. The
data used were obtained from The Cancer Imaging Archive (TCIA) database (http://
cancerimagingarchive.net), which is sponsored by the National Cancer Institute
(NCI) and is available through download [see Clark et al. [3] and Prior et al. [23] for
details]. Since TCGA has already de-identified patients, no Institutional Review
Board approval was required.

Our data set is for 86 glioblastoma patients with survival time and covariates
[age, gender, Karnofsky performance status (KPS)]. There are 63 events (27%
censored). Four images (types T1, T1c, T2, FLAIR) per patient are available. For
multimodal images and good performance, preprocessing was required. The first
step was to perform intensity homogeneity and resolution corrections by the
biasv_correct function with the N4 bias correction from the ANTsR package
(https://github.com/stnava/ANTsR). Skull stripping was also implemented using the
fslbet_robust function of the fslr package (http://CRAN.R-project.org/package=fslr
). All brain images for each modality were registered into the corresponding tem-
plate based on the SyN algorithm and B–spline interpolation.

The preprocessed images of the four image types were converted into probability
maps for four tumor types—edema, necrosis, enhancing tumor, and non-enhancing
tumor—to reduce the dependency on the segmentation algorithm and to move away
from the binary image type. First, the preprocessed images were segmented into the
four tumor types by using BraTumIA, which provides the result as binary images
representing one of the tumor types rather than as voxels. Next, we used the random
forests model on each resulting binary image and preprocessed the four image types
as predictors to compute the voxel-by-voxel classification probabilities for each
patient. The resulting four probability maps for non-enhancing tumor, enhancing
tumor, necrosis, and edema were used as inputs for the method described in the
following section to evaluate a patient’s prognosis.

3 Method

In this section, the two-step dimension-reduction method is described. Let the data
for n patients be represented by the notation
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s1a; s2a; s3a; s4a;Zað Þ; a ¼ 1; . . .; nf g;

where the brain imaging data (probability maps for edema, necrosis, enhancing
tumor, and non-enhancing tumor) are represented by sm ¼ sm v1ð Þ;ð
sm v2ð Þ; . . .; sm vNð ÞÞ>, m ¼ 1; 2; 3; 4 (the vectorized image data), in which vj 2 Z

3

j ¼ 1; 2; . . .;Nð Þ is the voxel location and N is the number of voxels (assuming the
same number among the modalities). Z is the scalar supervising measure, which can
be one or a combination of several baseline measurements related to the outcome
(survival time). The combination would be formularized using a regression model
or by using clinical input.

In the first step, the number of dimensions of the imaging data is reduced by
applying the basis expansion taking into account correlations based on data
structure (namely, voxel neighborhood). It should be noted that the use of a basis
expansion of this nature as a preprocessing procedure for reducing the number of
dimensions has been helpful for neuroimaging analysis as in, for example, Reiss
and Ogden [24], Araki et al. [1], Yoshida et al. [28], and Kawaguchi [11]. As the
dimensions for each mth image are the same, we use the same basis function to
reduce the dimension from N to q. Xm ¼ SmB is the n� q matrix, where Sm ¼
smaf g is the n� N matrix and B ¼ /k vj

� �� �
j¼1;...;N;k¼1;...;q is the N � q matrix in

which each element is the radial B–spline function

/k vð Þ ¼ 1
4h2

h3 � 3h2dk vð Þþ 3hdk vð Þ2þ 3dk vð Þ3 dk vð Þ� 0ð Þ
h� dk vð Þð Þ3 0\dk vð Þ� hð Þ
0 dk vð Þ[ hð Þ

8<
:

where dk vð Þ ¼k v� jk k �h,jk 2 Z
3 k ¼ 1; . . .; qð Þ is the pre-specified knot and

h[ 0 is the distance between knots. This basis function reduces the number of
parameters from N to q by converting each voxel to a component of the function.
The number q of basis functions is determined by the number of voxels and the
distance between pre-specified knots. In this study, we used 4–voxel (therefore,
h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 42
p

¼ 6:93) equally spaced knots because our simulation study [28]
showed that accuracy increased as the distance between knots became smaller.

Dimension reduction using the basis function is then followed by the use of the
SMS–PCA method, taking into account (sample) correlations based on data values;
this is the second step. We consider score t for the n� q matrices Xm, where
m ¼ 1; 2; . . .;M (M ¼ 4 in this study), with the following multi-block structure:

t ¼
XM
m¼1

bmXmwm; ð1Þ

where wm is the weight vector for the mth sub-block Xm, and bm is the weight for
the super-block. Here it should be noted that the scores in [1] are referred to as the
super score, whereas tm ¼ Xmwm is referred to as the block score. Thus, the super
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score, which is used in an application such as construction of a risk score, has a
hierarchical structure.

When matrix Xm is normalized by its columns, the weights w ¼
w1;w2; . . .;wMð Þ> and b ¼ b1; b2; . . .; bMð Þ> are estimated by maximizing the
function

L b;wð Þ ¼ 1� lð Þt>tþ lt>Z�
XM
m¼1

Pkm wmð Þ ð2Þ

subject to wmk k2¼ 1 and bk k2¼ 1, where l 2 ½0; 1� is the proportion of the
supervision (l ¼ 0:9 is used in this study), Pk xð Þ is the penalty function
[Pk xð Þ ¼ 2k xj j is used in this study], and k[ 0 is the regularized parameter that is
used to control the sparsity. The algorithm given in Table 1 is used to estimate the
weights in (1) by maximizing L in (2).

The larger value of the regularization parameter km has many nonzero elements
in wm, from which its optimal value is selected by minimizing the Bayesian
information criterion (BIC):

BIC kð Þ ¼ log

PM
m¼1 bX ðrÞm � Xm

��� ���2
nMq

0
B@

1
CAþ log nMqð Þ

nMq
df kð Þ;

where bXðrÞm ¼ TðrÞm PðrÞ
T

m with T rð Þ
m ¼ tð1Þm ; . . .; tðrÞm

h i
and P rð Þ

m ¼ pð1Þm ; . . .; pðrÞm
h i

obtained from r deflation steps (the projection of Xm onto the r-dimensional sub-
space), k ¼ k1; . . .; kMð Þ>, and df is the number of effective parameters (nonzero
elements in wm), which depends on the value of k.

Table 1 Algorithm for
SMS–PCA method

1. Initialize t and normalize the super scores
t t= tk k2:
2. Repeat until convergence
2.1 Set ~wm ¼ hkm bmX>m 1� lð Þ tk kþ lZf g� �

, where
hk yð Þ ¼ sign yð Þ yj j[ kð Þþ , and normalize as ŵm ¼ ~wm=~w2

m ¼ 1; 2; . . .;Mð Þ
2.2 Set tm ¼ Xm bwm and ~bm ¼ t>m 1� lð Þ tk kþ lZf g; then set

~b ¼ ~b1; ~b2; . . .; ~bM
� �>

and normalize as ~b ¼ ~b=~b2
2.3 Set t ¼PM

m¼1 b̂mXmŵm

3. (Deflation step) Set pm ¼ X>m tm=t
>
m tm and X̂m ¼ tmp>m , and

Xm  Xm � bXm

Note that the deflation step yields multiple components and has
several alternatives
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The R package msma is provided to implement the SMS–PCA method and is
available from the Comprehensive R Archive Network (CRAN) at http://CRAN.R-
project.org/package=msma.

4 Application

The proposed method was applied to TCGA data after images were preprocessed
and converted by the method described in Sect. 2. For the scalar supervising
measure Z, we computed the predicted value from a Cox regression model using a
dummy variable based on categorized age and tumor location as covariates. The
tumor location was identified by using the binary images from BraTumIA that were
byproducts of the computation of the probability images along with the standard-
ized atlas coordinate system provided by WFU (Wake Forest University) PickAtlas
[18], finding the portion of the tumor represented in the atlas region for each patient.
The dummy variable for Z represents three strata defined partly by the age category
and partly by the survival tree with the tumor location as predictors: (1) age � 70,
or 40 � age < 70 and enhancing tumor located outside the atlas; (2) 40 �
age < 70 and edema located inside the atlas but not in the superior frontal gyrus;
and (3) 40 � age < 70 and edema located in the superior frontal gyrus, or age <40.

The risk score was computed from the Cox proportional hazards model with the
SMS–PCA super score, and in order to take into account the different baseline
hazards, the strata were also incorporated into the model as a covariate. The final
variables were selected by the BIC based on the partial likelihood from the Cox
model. For the purpose of comparison, we also computed the score from the
unsupervised version of the method (MS–PCA), which is the case of l ¼ 0 in (2).

Two components (Components 3 and 10) were selected from ten candi-
date components for the proposed method. These components were of the forms:
T3 ¼ 0:54edemaþ 0:37necrosisþ 0:49enhancingþ 0:57nonenhancing and T10 ¼
0:42edemaþ 0:62necrosisþ 0:49enhancingþ 0:44nonenhancing. In both compo-
nents, the tumor types were equally associated. Table 2 shows the regression
coefficients, its exponential, its standard errors, the test statistics, and the p values
from the multivariate Cox model with scores computed using the proposed method,
the unsupervised version, the volume with the strata as covariates, and the strata
only for comparison. Use of the strata was very effective for this data set; however,
the SMS–PCA super scores were also effective in computing the risk score in
addition to the strata that are incorporated in the Cox model as a covariate.

In addition, we computed the prediction errors by the Brier score, which is a kind
of mean squared error for the bootstrap cross-validation technique:

BS t; Ŝ
� � ¼ 1

n

Xn
i¼1

Yi tð Þ � Ŝ tjXið Þ� �2
;
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where Yi tð Þ ¼ I Ti [ tð Þ is the observed survival time for patient i in the test set, and
Ŝ tjxð Þ is the estimated survival function from the Cox model given covariates x in
the training set. Figure 2 shows the prediction errors as a function of survival time.
Our method (red line) had lower errors for survival times of up to one year.

Table 2 Results of the Cox model

Coef. exp(coef.) se(coef.) z p value

Proposed method

Component 3 −0.03 0.97 0.01 −4.29 <0.0001

Component 10 0.04 1.04 0.02 2.28 0.0228

Strata 2 versus 1 −0.92 0.40 0.30 −3.11 0.0019

Strata 3 versus 1 −2.58 0.08 0.48 −5.40 <0.0001

Unsupervised version

Component 1 −0.03 0.97 0.01 −2.83 0.0047

Component 2 0.03 1.03 0.01 4.88 <0.0001

Component 5 0.02 1.02 0.01 2.46 0.0139

Component 6 0.02 1.02 0.01 2.28 0.0229

Strata 2 versus 1 −0.77 0.46 0.30 −2.54 0.0111

Strata 3 versus 1 −2.98 0.05 0.55 −5.45 <0.0001

Volume with strata

Enhancing (2000 units) 0.03 1.03 0.01 2.61 0.0091

Strata 2 versus 1 −0.74 0.48 0.32 −2.32 0.0204

Strata 3 versus 1 −1.86 0.16 0.45 −4.17 <0.0001

Strata only

Strata 2 versus 1 −0.99 0.37 0.29 −3.47 0.0005

Strata 3 versus 1 −2.10 0.12 0.43 −4.89 <0.0001

Fig. 2 Prediction error curves
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Figure 3 shows the Bw values overlaid onto the anatomical space for each tumor
tissue type. For Component 3, it can be seen that postcentral and cingulate gyrus,
sub-gyral are important and that its super score is negatively associated with sur-
vival; that is, as the score increases, the prognosis is worsened. For Component 10,
the frontal lobe is important, and its super score is positively associated with
survival.

5 Summary

We have proposed a novel approach for multimodal brain tumor image analysis
using a two-step dimension-reduction method, taking into account two types of
correlation and incorporating a supervised-learning feature, which is a part of our
ongoing study [13]. The software has been provided as the R package msma. Our
results show that the proposed method can produce a more accurate predictive risk
score than either the unsupervised version or the volume data. Although the pre-
dictive factors could be obtained from age and tumor location, the SMS–PCA score
had a complementary role in improving the accuracy. As an alternative approach,
stratified dimension reduction by the strata was considered to focus on the tumor
location; however, greater predictive accuracy was not obtained.

We used the BraTumIA software for the segmentation because of its ease of
implementation; however, its application is limited to patient sets that include all
four required MR modalities: T1, T1c, T2, and FLAIR. Although we converted to
probability images to eliminate the dependency on the segmentation algorithm, the
application of other algorithms would be worth investigating. On the other hand,

Fig. 3 Result for identified regions
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identified regions were similar in four tumor types. This is probably because of the
usage of the probability map; it may also be because of the spherical shape of the
basis function, which yields a wider associated region (for example, the region near
the eyes was detected). Since the radius of the basis function used in this chapter is
defined by the distance between voxels, the basis function on the higher resolution
image (with more voxels) yields smaller spheres even using the same radius as for a
lower resolution image. These smaller spheres could allow more flexible shapes by
their combination. Thus, although a more optimal shape may be required, if we
could use higher resolution images it would be adequate to use the spherical basis
function. In this study, although cross-validation was used to evaluate methods, an
independent validation data set should also be considered as in Cui et al. [4].

For future work, selection of images by using regularization on the super level
could be considered. In addition, a study of associations between imaging and
genomics (referred to as “imaging genomics,” or “radiogenomics” in the termi-
nology of Ellingson [7]) could be considered using a partial least-squares frame-
work. Only gene expression data for glioblastoma have been analyzed in our
previous study [12]. Furthermore, another modality such as PET imaging, which is
used in many cancer studies, could be incorporated, and such a study would provide
new knowledge about the interaction of different aspects of brain mechanisms.

In conclusion, this method has application in a number of multimodal imaging
studies and will be helpful for improving the construction of predictive risk scores.
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An Evaluation of Gene Set Analysis
for Biomarker Discovery
with Applications to Myeloma Research
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Abstract In this paper, we evaluate 15 methods for gene set analysis in microarray
classification problems. We employ four datasets from myeloma research and three
types of biological gene sets, encompassing a total of 12 scenarios. Taking a
two-step approach, we first identify important genes within gene sets to create
summary gene set scores, we then construct predictive models using the gene set
scores as predictors. We propose two powerful linear methods in addition to the
well-known SuperPC method for calculating scores. By comparing the 15 gene set
methods with methods used in individual-gene analysis, we conclude that, overall,
the gene set analysis approach provided more accurate predictions than the
individual-gene analysis.
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1 Introduction

Gene expression profiling (GEP) via DNA microarrays has been used extensively in
cancer research to study disease mechanisms and make predictions of clinical
outcomes. A typical microarray data analysis focuses on the selection of individual
genes. For example, to identify differentially expressed genes under different
conditions, one typically calculates a statistic and p value for each gene, followed
by multiple comparison adjustments since normally tens of thousands of genes are
measured in a microarray experiment. To select genes for predicting clinical out-
comes, one can resort to methods such as semi-supervised principal component
analysis (SuperPC) [1], partial least squares [2], Lasso [3], random forest [4], and so
on. However, this type of analysis can miss some important genes whose individual
contributions to a particular outcome may be moderate but whose combined effects
are significant. Another limitation of the individual-gene approach is frequently
inconsistent gene findings from similar studies conducted by different institutes
[5, 6]. These problems of the individual-gene analysis were discussed in Mootha
et al. [7] and Subramanian et al. [8], where they proposed a gene set enrichment
analysis (GSEA) idea, incorporating prior biological knowledge into the analysis
routine to identify important genes through gene sets. Since then many new sta-
tistical methods have been proposed for making inference on associations or pre-
dictions at gene set levels instead of individual-gene levels.

A gene set is a group of genes related in certain ways (e.g., they may be from the
same pathway or perform similar molecular functions). There are public databases
holding such information, for example those with the Gene Ontology (GO) anno-
tations [9] and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
[10]. For differential expression analysis, a gene set method aims to determine via
hypothesis testing whether a gene set as a whole is associated with an outcome of
interest. Examples include the pioneering GSEA algorithm [8], the Global Test
[11], ANCOVA Global Test [12], SAM-GS [13], and GSA [14], to name just a few.
For biomarker discovery, i.e. finding genes to build models for diagnostic/
prognostic purposes, the idea of incorporating gene set information is to improve
both performance and interpretability of resulting models. Tai and Pan [15] pro-
posed a modified linear discriminant analysis (LDA) approach for classification by
regularizing the covariance matrix and incorporating correlations among the genes
within gene sets. With simulated and real datasets plus information from KEGG
pathways, they showed that the new approach performed better than not incorpo-
rating the correlations within gene sets. Chen and Wang [16] proposed a two-step
procedure: first to create a “super gene score” using SuperPC [1] within each a
priori gene set obtained from GO and then to use Lasso or SuperPC again to build a
final model based on the super gene scores. With two survival microarray data they
demonstrated that their gene set-based models enjoyed improved prediction accu-
racy and generated more biologically interpretable results. Ma et al. [17] also took
a two-step approach, where they first divided genes into clusters by k-means,
followed by applying Lasso within each cluster to get refined gene clusters,
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and then they selected important gene clusters with group Lasso [18]. Luan and Li
[19] proposed a group additive regression model to incorporate pathway informa-
tion and the use of gradient descent boosting for model fitting. With both simu-
lations and a real microarray survival dataset, they showed improved accuracy by
their method when compared to not using gene group information.

In this paper, we aim to investigate several score methods in conjunction with
trees and random forests for gene set analysis and compare with individual-gene
analysis in classification problems. In the individual-gene analysis, neither the gene
selection nor the prediction process utilizes any biological information. For the
gene set analysis, we first identify important genes within a priori gene sets to create
summary gene set scores, and we then use the gene set scores as predictors for
constructing predictive models. We explore four myeloma microarray datasets and
three types of gene sets, and demonstrate that predictive accuracy depends on both
the method and the type of gene sets being investigated. In the next section we first
introduce our datasets from myeloma research. We then describe the analysis
methods in Sect. 3 and show our results from applying the methods to the myeloma
datasets in Sect. 4. Finally in Sect. 5, we conclude with a comparison of our results
with findings reported by others.

2 Datasets

All GEP datasets used in this investigation were from the Myeloma Institute (MI) at
the University of Arkansas for Medical Sciences (UAMS). Multiple myeloma
(MM) is a cancer of plasma cells in the bone marrow, with symptoms such as
elevated calcium, renal failure, anemia, and bone lesions (the so-called CRAB
symptoms). Normal plasma cells produce many immunoglobulins (antibodies) that
the body needs to identify and fight pathogens such as bacteria and viruses.
With MM, abnormal plasma cells from a single clone accumulate and eventually
crowd out normal plasma cells, causing the body to produce only one type of
immunoglobulin. It is not clear what causes MM, but it is characterized by genetic
abnormalities such as gene mutations and translocations. For example, deletions of
chromosome 17p and P53 gene mutations have been linked to poor clinical out-
comes in numerous MM studies. Typically prior to developing MM, abnormal
plasma cells accumulate in the body and the patient undergoes an asymptomatic
phase, comprising monoclonal gammopathy of uncertain significance (MGUS) and
smoldering multiple myeloma (SMM). Compared to MGUS, SMM has more
abnormal plasma cells in the bone marrow and higher levels of monoclonal
immunoglobulin (M-protein) in the serum. Both MGUS and SMM patients lack the
CRAB symptoms that define MM. However, MGUS patients have an approxi-
mately 1% risk per year of developing MM [20]. Among patients with SMM, about
10% annually will progress to MM within 5 years, and after the 5-year mark the
progression rate is similar to MGUS [21].
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In previous work, based on an earlier Affymetrix platform with *12,000 genes,
we identified differentially expressed genes that could distinguish in plasma cells
between normal and MM and between normal and MGUS [22]. An interesting
finding at the time was a lack of ability of the models to discriminate between
MGUS and MM at the gene expression level. Based on the newer platform
U133Plus2, and more samples, we aimed to do a more refined analysis in this
investigation, specifically to identify signature genes and build predictive models to
distinguish between (1) normal and MGUS, (2) MGUS and SMM, (3) SMM and
MM, and (4) P53 deletion and no deletion in MM. The MM patients in this study
were enrolled in a series of Total Therapy (TT) clinical trials, with the
MGUS/SMM patients in two observational clinical trials (SWOG S0120 and MI
M0120). P53 deletion was determined at baseline by interphase fluorescence in situ
hybridization (iFISH). For GEP, purified plasma cells (PC) by CD138 expression
were obtained from normal healthy subjects and the MM (MGUS/SMM) patients
prior to therapy (at registration of the observational trials). Microarray raw intensity
values were preprocessed and normalized using the MAS5 algorithm provided by
the manufacturer, and the normalized data also went through batch effect checking
and corrections [23].

3 Methods

Table 1 gives the sample sizes in each dataset. To ensure data quality, we first
implemented the following steps prior to analysis:

1. Use the genes with current annotations from Affymetrix.
2. Take the median if a gene is represented by more than one probe set.
3. Keep only those genes whose raw intensity values are >128 in at least 80% of

the samples to avoid any resolution problems that may be encountered by low
microarray intensity values.

Table 1 Number of samples used in the training and test sets for each disease comparison

Disease comparison Group 0 Group 1 # samples in training
set (group 0, group 1)

# samples in test set
(group 0, group 1)

Normal versus
MGUS

Normal MGUS (25, 73) (13, 44)

MGUS versus
SMM

MGUS SMM (73, 89) (44, 75)

SMM versus MM SMM MM (89, 174) (74, 178)

P53 deletion versus
no deletion

without P53
deletion

with P53
deletion

(377, 45) (294, 29)
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Since applying the above procedure to each GEP dataset separately produced
similar sets of genes, for simplicity we applied it to all the data combined to obtain a
total of 9624 genes before analysis.

3.1 What Gene Sets to Use?

There are different types and sources of biological gene sets. The Molecular
Signatures Database (MSigDB) [24] on the Broad Institute website is one of the
largest and most popular repositories. We downloaded three types of gene sets from
MSigDB: those associated with the GO biological processes (BP), the hallmark
gene sets, and the positional gene sets. Each gene set groups certain genes together
that share a particular biological property. GO BP gene sets contain genes asso-
ciated with biological processes, each of which is made up of many chemical
reactions or events leading to chemical transformations. However, the GO BP gene
sets are a broad category and do not necessarily comprise co-regulated genes. On
the other hand, the hallmark gene sets represent well-defined biological states or
processes and contain genes with coordinate expression [25]. The positional gene
sets group genes by chromosome and cytogenetic band. Such gene sets are helpful
in identifying effects related to chromosome abnormalities.

3.2 Approach for Gene Set Analysis

Our general approach for gene set analysis is a two-step procedure: (1) within each a
priori gene set create a summary gene set score after gene selection, and (2) construct a
predictivemodel based on the resulting gene set scores. BothChen andWang [16] and
Ma et al. [17] pointed out that typically not all members of a gene set will participate in
a biological process, or be relevant to the outcome of interest, and not doing gene
selection within gene sets could result in inferior prediction accuracy. Thus we carry
out variable selection twice, first to select important genes within each gene set to
calculate a summary gene set score (step 1), and then to select important gene sets
based on the gene set scores and build a final predictive model (step 2).

3.3 Variable Selection and Model Building

We investigated several linear and nonlinear methods for variable selection and
model building. The linear methods included the Lasso and three univariate score
methods, and the nonlinear methods included decision trees and random forests.

Lasso is a multivariate regression technique [3] that has become popular and
essential in genomic data analysis. By shrinking regression coefficients using an L1
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penalty term in the likelihood function for a logistic regression model, the
regression coefficients for some genes become exactly zero, thus enabling variable
selection. Classification will be done according to the estimated probabilities from
the resulting sparse model with the shrunken coefficients. We implemented Lasso
via the R package glmnet [26].

The idea of univariate score methods is to first rank genes by univariate analysis
(e.g., doing a t-test for each gene in a two-class problem) and then create a score by
a linear combination of the top ranking genes. There are many variants of this
method and we investigated three in this paper. In a two-class problem, let xi and ti
denote the expression level and the two-sample t-statistic for gene i, respectively.
The first score is based on a regularized compound covariate, where the t-statistics
are shrunken towards 0 by soft-thresholding. We denote it by ccscore, that is,

ccscore ¼
Xp

i¼1

sign tið Þ tij j � Dð Þþ xi; ð1Þ

where p is the total number of genes, xð Þþ = x if x [ 0 and 0 otherwise, and
0�D�maxi( tij j) is a tuning parameter to be determined by cross-validation. The
non-regularized version of the compound covariate method is also a popular choice
for constructing scores, which was originally proposed by Tukey [27] and discussed
in Huang and Pan [28] for classification problems with microarray data. The second
score is one that, instead of using the t-statistics from univariate analysis, only the
signs of the t-statistics are used, followed by dividing by the total number of
selected genes. We refer to it as “score”, that is,

score ¼ 1
Sj j
X

i2S
sign tið Þxi; ð2Þ

where S = i: tij j �Df g, Sj j = number of genes in S, and D is a tuning parameter
determined by cross-validation. Originally we employed a similar method to
develop the robust GEP70 model for risk stratification for MM patients undergoing
standard therapy [29]; we then modified it to its current form in (2). The third score
is an extension of SuperPC [1], originally developed for time-to-event data and
shown to perform well in gene set analysis [16]. It takes the top ranking genes and
calculates their first principal component as a score. We denote it here by pcscore,
that is,

pcscore ¼
X

i2S
bixi; ð3Þ

where S ¼ i: tij j �Df g, bi are loadings from the first principal component of the
genes selected in S, and D is a tuning parameter determined by cross-validation. For
all the aforementioned score methods, they were first created as continuous
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variables, and we then dichotomized them, balancing both sensitivity and speci-
ficity to create 2-group classification rules.

There is a rich literature concerning the development of predictive models using
decision trees and random forests and their applications in genomic data analysis
(e.g., see [4, 30–34]). A decision tree model based on recursive partitioning has the
advantage of easy interpretation. In a random forest model, many decision trees are
built by utilizing bootstrap samples and results from each tree are aggregated by
majority voting to make final predictions. By building each tree to the fullest, the
method is able to achieve low bias, and by aggregating results from many trees it
can also achieve low variance. Importantly, a random forest considers only a ran-
dom subset of the variables at each split. Doing so allows it to (1) produce less
similar bootstrap samples and trees and therefore low variance at the end, and
(2) identify a diverse set of important variables associated with the outcome of
interest even when there is multicollinearity in the data. We implemented decision
trees and random forests via the R packages rpart and randomForest.

For the individual-gene analysis, we used methods such as the Lasso, score,
ccscore, pcscore, trees, and random forests. For the gene set analysis, to maintain
focus we considered only various (instead of all) combinations of the methods
from individual-gene analysis. As genes within a biological gene set are more
likely to be co-regulated or co-expressed, we restricted to linear methods in step 1
(within gene sets), while in step 2 (between gene sets) we explored both linear
and nonlinear methods. There were a total of 15 combinations in the gene set
analysis we considered. We denote each combined methodology by using a
period between the names of the methods used in the two steps. For example,
suppose in step 1 we chose the score method to select genes while in step 2 trees
were employed; we would refer to the combined method by score.tree. Tables 2
and 3 list all the methods and their notations for both the gene set and
individual-gene analysis.

Table 2 Methods
investigated in
individual-gene analysis

Classification method Notation

Lasso Lasso

score score

ccscore ccscore

pcscore pcscore

decision tree tree

random forest rf
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3.4 Cross-Validation to Determine Tuning Parameter

For the univariate score methods described above, we employed 10-fold
cross-validation to select appropriate values for the tuning parameter D and to
achieve variable selection. The search range for D is normally between 0 and
maxi( tij j) as suggested in (1–3), which can be a big range. To reduce computational
burden, we restricted our search within the range of 1000 most significant genes
when doing the cross-validation. For example, if the absolute values of the t statistic
in the top 1000 genes vary between 4.5 and 5.6, we would assess each value from
4.5 to 5.6, with an increment of 0.1 in search of an optimal threshold for D. We used
error rate as the performance measure in the cross-validation.

3.5 Model Comparison

Each of the four datasets was split into training and test sets (Table 1), and we only
report error rates from the test sets as a guide to compare performance of the
different methods. All model building steps were performed in the training sets,
including gene selection or shrinkage parameter estimation with cross-validation.

Table 3 Methods investigated in gene set analysis

Classification method (within gene sets + between gene sets) Notation

Lasso + Lasso lasso.lasso

Lasso + random forest lasso.rf

Lasso + tree lasso.tree

score + Lasso score.lasso

score + score score.score

score + random forest score.rf

score + tree score.tree

pcscore + Lasso pcscore.lasso

pcscore + pcscore pcscore.score

pcscore + random forest pcscore.rf

pcscore + tree pcscore.tree

ccscore + Lasso ccscore.lasso

ccscore + ccscore ccscore.ccscore

ccscore + random forest ccscore.rf

ccscore + tree ccscore.tree
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4 Results

There are currently a total of 825 GO BP, 50 hallmark, and 326 positional gene sets
on the Broad website that we downloaded. Due to the fact that we had previously
performed a gene filtering step, we were left with fewer numbers of gene sets (736
GO BP, 50 hallmark, and 278 positional) as well as fewer genes within the gene
sets when we applied these gene sets to our datasets. We also focused on gene sets
containing at least 5 genes. Table 4 gives a summary of the number of genes in the
gene sets of our datasets. Both the GO BP and positional categories have a small
percent of gene sets with a large number of genes in them. However, if we look at
the median number of genes within gene sets, the hallmark gene sets have the
largest number (86) followed by the GO BP gene sets (54.76) and the positional
gene sets (25.9).

4.1 Methods Comparison

Table 5 shows the test set error rates achieved in the individual-gene analysis for
each disease comparison. To compare the methods, we ranked them by their
averaged error rates (AER) over all the disease comparisons—lower AER is better.
Overall, ccscore and score ranked as the top two classifiers in the individual-gene
analysis with AER being 0.16 and 0.17 respectively, followed by Lasso

Table 4 Summary on number of genes within each type of gene sets in our datasets

Type of gene sets Minimum 1st. quartile Median Mean 3rd. quartile Maximum

GO BP 5 9 16 54.76 47 1110

Hallmark 9 50.5 85.5 86 114 186

Positional 5 10 17 25.9 30 281

Table 5 Test set error rates achieved in the individual-gene analysis (columns 2–5), where D1,
D2, D3, D4 denote the four disease comparisons: normal versus MGUS, MGUS versus SMM,
SMM versus MM, p53 deletion versus no deletion, respectively

Classification method D1 D2 D3 D4 Average Rank by average

ccscore 0.16 0.31 0.10 0.10 0.16 1

score 0.19 0.31 0.08 0.10 0.17 2

lasso 0.25 0.39 0.06 0.07 0.19 3

rf 0.23 0.36 0.12 0.09 0.20 4

pcscore 0.19 0.31 0.15 0.16 0.20 5

tree 0.28 0.32 0.19 0.10 0.22 6

The last two columns have the averaged error rates (average) over 4 disease comparisons and the
rankings of the methods by the averaged error rates
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(AER = 0.19), random forest (AER = 0.20), and pcscore (AER = 0.20), and the
tree method ranked the lowest (AER = 0.22). Note that the AER were rounded to
the 2nd decimal point while the rankings were calculated using all decimal points.

For the gene set methods, Table 6 gives the test set error rates for each disease
comparison/type of gene sets combination (a total of 12 scenarios). Note that both
the method and type of gene sets affected the error rates for each disease com-
parison. We ranked the methods by their averaged error rates (AER) across all 12
scenarios. It turned out that lasso.lasso and all the methods that employed trees in
step 2 of the gene set analysis were low performers. However, Lasso performed
well in conjunction with random forests. When not combined with trees in the 2nd
step, the ccscore-related methods consistently ranked at the top followed by the
pcscore- and score-related methods, although the differences among them were
small (� 0.02) by the AER measure. More often than not, random forests were
good choices when combined with the score methods or Lasso.

4.2 Gene Set Analysis Versus Individual-Gene Analysis

The question is: did the gene set analysis improve prediction accuracy over the
individual-gene analysis? We compared the two types of analysis by calculating
differences in error rates. For example, suppose in individual-gene analysis we used
the Lasso, then we would compare it with those gene set methods that employed
Lasso in 2nd step of the gene set analysis such as ccscore.lasso, score.lasso,
pcscore.lasso, and lasso.lasso. By doing such comparisons, one can gauge whether
step 1 of the gene set analysis is necessary—without step 1 the gene set analysis just
reduces to individual-gene analysis. Table 7 lists reductions in error rate by using
gene set analysis compared to individual-gene analysis in all such comparisons.
Note that each gene set method was applied for each disease comparison three
times, each time utilizing a different kind of gene sets (either GO BP, hallmark, or
positional), while each individual-gene method was applied only once for each
disease comparison. Thus when calculating the differences in error rate, we repli-
cated those error rates of the individual-gene methods three times. We can see in
Table 7 that both the method and the type of gene sets affected whether there was
any improvement in performance by doing gene set analysis, where improvement
was measured by reduction in error rate. We highlighted those scenarios when the
reductions in error rate by doing gene set analysis were somewhat meaningful
(� 0.04), although 0.04 is an arbitrary choice. The fact that there are both posi-
tive and negative values in Table 7 indicates that sometimes individual-gene
analysis was better than gene set analysis in terms of prediction accuracy.
Averaged reductions in error rate were also calculated for each gene set method in
comparison to an appropriate individual-gene method (last column of Table 7).
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By this measure, all 15 gene set methods except two produced more accurate
models with reduced error rates. Figure 1 provides a visualization of the reductions
in error rate. Despite the variations, overall across all the methods, gene set analysis
reduced error rates by 0.02 on average, and 25% of the time by at least 0.05.

4.3 Disease Comparisons

Tables 5 and 6 is also a good summary of the overall prediction error rates for the
disease comparisons. To have a focused discussion here, we consider only the
ccscore and ccscore.lasso methods in this subsection and the next, as respectively
they were among the top methods used in the individual-gene and gene set analysis.
It appears that both the individual-gene and gene set methods were able to classify
SMM versus MM and P53 deletion versus no deletion very well with error rates
varying between 0.06 and 0.10. Clinically, SMM is characterized by a higher
percentage of abnormal plasma cells in the bone marrow and higher levels of
M-protein in the serum than MGUS. Thus being able to classify SMM versus MM
implies being able to discriminate between MGUS and MM as well. It turned out
that our hypothesis was right when we went to verify it—the test set error rate for
discriminating between MGUS and MM by an individual-gene analysis with the
ccscore was 0.099. This is contradictory to the findings reported in Hardin et al.
[22], where all the models failed to classify MGUS versus MM. A couple of factors
could be the cause here. First, the newer microarray platform U133Plus2 covers the
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Fig. 1 Boxplots of the reductions in test set error rate (shown in Table 7) by using each of 15
gene set methods compared to corresponding individual-gene methods
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whole genome more comprehensively than the older platform, so there is a better
chance to detect differentiable genes and therefore create more powerful models.
Second, we had more MGUS samples in this investigation: 73 compared to 21 in
Hardin et al. [22], while the MM samples in both investigations were plenty (174 in
ours and 218 in Hardin et al.). Nonetheless, the difficult case for us was to dis-
criminate between MGUS and SMM, as the error rates for this classification were
between 0.3 and 0.37 for the individual-gene and gene set analysis. This indicates
that at the molecular level MGUS and SMM are different for the most part, yet
they share certain genetic features that make them less indistinguishable. Also
interesting were the error rates for classifying MGUS versus normal varied between
0.16 and 0.21.

Taken together, these data seem to suggest that in terms of gene expression
levels SMM is very different from MM, while MGUS is somewhere between
normal and SMM, but more similar to SMM. At this point careful interpretation of
the results is warranted. When using CD138 expression to isolate plasma cells
(PC) before GEP—a standard procedure routinely performed at the Myeloma
Institute, the MGUS/SMM PC samples were infiltrated with normal PC, while the
MM PC samples were largely abnormal. Consequently, some of the differentially
expressed genes we identified between MGUS/SMM PC and MM PC samples
might be due to differences in the amount of normal PC in the samples rather than
due to disease differences. This problem was less when comparing normal versus
MGUS and MGUS versus SMM PC samples, as they were more comparable in
terms of the amount of normal PC in the samples.

4.4 Gene Lists and Gene Selection

We provide a list of genes and gene sets identified for each disease comparison by the
ccscore and ccsore.lasso methods from the individual-gene and gene set analysis
respectively (for the same reason described in the last subsection) (Tables 8, 9, 10,
and 11). For the ccscore.lasso gene set analysis, we chose the gene set that gave the
best result for each disease comparison (2nd row in Table 6). Furthermore, we
summarized the total number of genes identified by the two types of analysis. In all
except the comparison of P53 deletion versus no deletion, more genes were selected
by ccscore.lasso than ccscore, with comparatively few overlapping genes (Table 12).

4.5 Computing Time

We recorded computing time for all the methods in the individual-gene analysis
(Table 13). The evaluations were conducted on a laptop using 64-bit Windows 7
and running on a 4-core 3 GHz CPU with 8 GB of memory. For all the methods
except Lasso, we started with all 9624 genes. For random forests, however, we
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included another filtering step to consider only the top 1500 differentially expressed
genes prior to model selection. Our experience is that random forests can be very
slow without pre-filtering. As shown in Table 13, computing time increases as
sample size increases. The ccscore/score/pcscore finished in decent amounts of time
(a couple of minutes) but Lasso was no doubt the fastest algorithm in all cases.

5 Conclusions and Discussion

In this paper, we evaluated 15 methods for gene set analysis in classification problems
using four GEP myeloma datasets and three types of biological gene sets, encom-
passing a total of 12 scenarios. By comparing the 15 methods with individual-gene
methods, we conclude that, overall, the gene set analysis provided more accurate
models than the individual-gene analysis. Within a biologically defined gene set, genes
are more likely to be co-regulated or co-expressed. We propose to use linear methods
such as the ccscore, score, and pcscore (an extension of the SuperPC [1]) for calcu-
lating gene set scores before constructing final predictive models.

Our overall results after averaging across different datasets/gene sets are com-
parable to those reported by other authors. For example, Ma et al. [17] proposed

Table 9 Genes and gene sets identified from the classification of MGUS versus SMM (the
methods used were ccscore and ccscore.lasso for the individual-gene and gene set analysis,
respectively)

Disease
comparison

Analysis type Gene set Genes

MGUS
versus
SMM

Individual-gene
analysis

CTSH, GATA2, GSTA1, IGHD,
IGHM, IGK, IGKC, IGLC1,
IGLJ3, IGLV1-44, TNFRSF18

Gene set
analysis
(Hallmark)

TNFA
SIGNALING VIA
NFKB

BIRC3, TNIP1, ID2, NFAT5,
TNFAIP3

DNA REPAIR SUPT5H, AAAS, POLE4

APOPTOSIS IGFBP6, BIRC3, CYLD

PROTEIN
SECRETION

SEC31A, RAB2A

INTERFERON
GAMMA
RESPONSE

HIF1A, IL10RA, TNFAIP3

COMPLEMENT CTSH, CALM1, TNFAIP3,
APOBEC3F, PLA2G4A

EPITHELIAL
MESENCHYMAL
TRANSITION

EFEMP2

IL2 STAT5
SIGNALING

TNFRSF18, CD81, IL10RA,
CDC42SE2
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using Lasso within gene clusters to first select important genes before applying
group Lasso [18] on the refined gene clusters. In four microarray datasets, they
demonstrated either equal or better performance of their method than using regular
Lasso in individual-gene analysis. In our study, lasso.lasso, ccscore.lasso, score.
lasso, and pcscore.lasso are similar to their approach. Although both are two-step
procedures, in their 1st step they created refined gene clusters rather than summary
genet set scores. As shown in Tables 5 and 6, when compared to regular Lasso, the
ccscore.lasso, score.lasso, and pcscore.lasso each had a reduction in error rate
between 0.01 and 0.02, although lasso.lasso had a 0.01 increase in error rate.

Our general approach resembles with that of Chen and Wang [16]. In the 1st step
they created “super gene scores” with SuperPC [1], and in the 2nd step they
employed either Lasso or again SuperPC using the super gene scores as predictors.
With two microarray survival datasets they demonstrated the superiority of their
methods when compared to not using gene set information. Our pcscore is essen-
tially an extension of the SuperPC for binary outcomes, and therefore our pcscore.
pcscore and pcscore.lasso directly correspond to their methods except that they
focused on survival prediction instead of classification. When comparing to only
using pcscore or lasso in individual-gene analysis, we saw an averaged reduction of
at least 0.02 in error rate for pcscore.pcscore and pcscore.lasso (Tables 5 and 6),
confirming comparability of our results with theirs.

Additionally, Tai and Pan [15] proposed a modified LDA approach to incor-
porate pathway information. With both simulated and real datasets, their method

Table 12 Number of genes selected and number of overlapping genes in the individual-gene and
gene set analysis (the methods used were ccscore and ccscore.lasso for the individual-gene and
gene set analysis, respectively)

Disease Comparison # genes selected in
individual-gene analysis

# genes selected in
gene set analysis

# overlapping genes

Normal versus MGUS 20 96 4

MGUS versus SMM 11 26 2

SMM versus MM 19 260 3

P53 deletion versus
no deletion

66 55 32

Table 13 Computing time (in minutes) for training different models in individual-gene analysis.
Note that there were 9624 genes to begin with for the Lasso, score, ccscore, and pcscore methods,
and 1500 genes for random forest (rf)

Comparison Sample size in training set Lasso score ccscore pcscore rf

Normal versus MGUS 98 0.04 1.03 1.05 1.08 0.17

MGUS versus SMM 162 0.05 1.25 1.24 1.26 0.27

SMM versus MM 263 0.08 1.71 1.66 1.69 0.39

P53 deletion versus
no deletion

422 0.12 2.25 2.25 2.27 0.61
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was shown to perform better than not incorporating pathway information (e.g.,
when compared to PAM [35], which considers genes as independent). Genes are
naturally not independent from each other, therefore the improvements by their
method were reasonable and expected. Importantly, our ccscore/score/pcscore
methods already draw strength by combining correlated genes. As Park et al. [36]
have shown, averaging genes within gene clusters can improve prediction accuracy.
Our score method is essentially an extension of the averaged gene expression
method to account for genes with both positive and negative correlations with the
outcome. Although it is beyond the scope of this paper, it would be interesting to
apply their approach and PAM on myeloma datasets in future research. Further
investigations on the genes identified to examine whether the gene set analysis
could provide more coherent biological insights into the myeloma disease mech-
anisms would be another avenue of research.
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