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Preface 

From 26-30 September 2004, the "International Conference on Stochastic Fi- 
nance 2004" took place at  INSTITUTO SUPERIOR DE ECONOMIA E GESTAO 
(ISEG) da Universidade TBcnica de Lisboa, in Portugal. The conference was 
one of the biggest international forums for scientists and practitioners working 
in financial mathematics and financial engineering. 

Taking place just before the conference, on 20-24 September 2004 was the 
"Autumn School on Stochastic Finance 2004" hosted by the Universidade de 
Coimbra. The goal of this event was to present instances of the interaction of 
finance and mathematics by means of a coherent combination of five courses 
of introductory lectures, delivered by specialists, in order to stimulate and 
reinforce the understanding of the subject and to provide an opportunity for 
graduate students and researchers to develop some competence in financial 
mathematics and thereby simplify their participation in the conference. 

At both meetings the organizing and scientific committees worked in close 
contact, which was crucial for inviting many leading specialists in finan- 
cial mathematics and financial engineering - eleven plenary lecturers and 
eleven invited speakers. Besides these presentations, the conference included 
more than eighty contributed talks distributed among eight thematic ses- 
sions: Mathematical Finance-Stochastic Models, Derivative Pricing, Interest 
Rate Term Structure Modelling, Portfolio Management, Integrated Risk Man- 
agement, Mathematical Economics, Finance, and Quantitative and Computa- 
tional Models and Methods. 

Stochastic financial mathematics is now one of the most rapidly developing 
fields of mathematics and applied mathematics. It has very close ties with 
economics and is oriented to the solution of problems appearing every day 
in real financial markets. We recall here an extract from the "Editorial" note 
presented in volume 1, issue 1 of the journal Finance and Stochastics that 
Springer-Verlag began publishing in 1997: 



VI Preface 

"Nearly a century ago, Louis Bachelier published his thesis "ThBorie 
de la speculation", Ann. Sci. ~ c o l e  Norm. Sup. 3 (1900), in which he in- 
vented Brownian motion as a tool for the analysis of financial markets. 
A.N. Kolmogorov, in his own landmark work " ~ b e r  die analytischen 
Methoden in der Wahrscheinlichkeitsrechnung" , Math. Annalen 104 
(1931), pp.415-458, credits Bachelier with the first systematic study 
of stochastic processes in continuous time. But in addition, Bache- 
lier's thesis marks the beginning of the theory of option pricing, now 
an integral part of modern finance. Thus the year 1900 may be consid- 
ered as birth date of both Finance and Stochastics. For the first seven 
decades following Bachelier, finance and stochastics followed more or 
less independently. The theory of stochastic processes grew fast and 
incorporating classical calculus became a powerful mathematical tool 
- called stochastic calculus. Finance lay dormant until the middle 
of the twentieth century, and then was resurrected as an offshoot of 
general equilibrium theory in economics. With the work in the late 
1960s and early 1970s of Black, Merton, Samuelson and Scholes, mod- 
elling stock prices as geometric Brownian motion and using this model 
to study equilibrium and arbitrage pricing, the two disciplines were 
reunited. Soon it was discovered how well suited stochastic calculus 
with its rich mathematical structure - martingale theory, It8 calcu- 
lus, stochastic integration and PDE's - was for a rigorous analysis of 
contemporary finance, which would lead one to believe (erroneously) 
that also these tools were invented with the application to finance in 
mind. Since then the interplay of these two disciplines has become an 
ever growing research field with great impact both on the theory and 
practice of financial markets". 

The aims formulated in this text were the leading ideas for our conference. 
Indeed, all talks had, first of all, financial meanings and interpretations. All 
talks used and developed stochastic methods or solutions for real problems. 
Such joint mutual collaboration was useful both for financial economics and 
stochastic theory, and it could bring the mathematical and financial commu- 
nities together. 

In the present volume the reader can find some papers based on the plenary 
and invited lectures and on some contributed talks selected for publication. 

The editorial committee of these proceedings expresses its deep gratitude 
to  those who contributed their work to this volume and those who kindly 
helped us in refereeing them. 

It  is our pleasure to express our thanks to the scientific committee of the 
conference, as well as to plenary and invited lecturers and all the participants 
of Stochastic Finance 2004; their presence and their work formed the main 
contribution to the success of the conference. 
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How Often to Sample a Continuous-Time 
Process in the Presence of Market 
Microstructure Noise* 

Yacine Kit-Sahalia, Per A. Mykland, and Lan Zhang 

Bendheim Center for Finance, Princeton University, Princeton, NJ 08540 and 
NBER 
yacineQprinceton.edu 
Department of Statistics, The University of Chicago, Chicago, IL 60637 
myklandQuchicago.edu 
Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213 
lzhangQstat,cmu.edu 

Note: Reprint of: Yacine Kit-Sahalia, Per A. Mykland and Lan Zhang, How 
Often to Sample a Continuous-Time Process in the Presence of Market Mi- 
crostructure Noise, Review of Financial Studies, published in Volume 18 2 
(2005), pages 351-416, Oxford University Press (by permission of Oxford Uni- 
versity Press). 

Summary. In theory, the sum of squares of log returns sampled at high frequency 
estimates their variance. When market microstructure noise is present but unac- 
counted for, however, we show that the optimal sampling frequency is finite and 
derive its closed-form expression. But even with optimal sampling, using say five 
minute returns when transactions are recorded every second, a vast amount of data 
is discarded, in contradiction to basic statistical principles. We demonstrate that 
modelling the noise and using all the data is a better solution, even if one misspec- 
ifies the noise distribution. So the answer is: sample as often as possible. 

Over the past few years, price data  sampled a t  very high frequency have 
become increasingly available, in the form of the Olsen dataset of currency 
exchange rates or the TAQ database of NYSE stocks. If such data  were not 
affected by market microstructure noise, the realized volatility of the process 

* We are grateful for comments and suggestions from the editor, Maureen O'Hara, 
and two anonymous referees, as well as seminar participants at  Berkeley, Harvard, 
NYU, MIT, Stanford, the Econometric Society and the Joint Statistical Meet- 
ings. Financial support from the NSF under grants SBR-0111140 (Aiit-Sahalia), 
DMS-0204639 (Mykland and Zhang) and the NIH under grant R01  AG023141-01 
(Zhang) is also gratefully acknowledged. 
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(i.e., the average sum of squares of log-returns sampled at high frequency) 
would estimate the returns' variance, as is well known. In fact, sampling as 
often as possible would theoretically produce in the limit a perfect estimate 
of that variance. 

We start by asking whether it remains optimal to sample the price process 
a t  very high frequency in the presence of market microstructure noise, con- 
sistently with the basic statistical principle that, ceteris paribus, more data 
is preferred to less. We first show that, if noise is present but unaccounted 
for, then the optimal sampling frequency is finite, and we derive a closed-form 
formula for it. The intuition for this result is as follows. The volatility of the 
underlying efficient price process and the market microstructure noise tend to  
behave differently a t  different frequencies. Thinking in terms of signal-to-noise 
ratio, a log-return observed from transaction prices over a tiny time interval 
is mostly composed of market microstructure noise and brings little informa- 
tion regarding the volatility of the price process since the latter is (at least 
in the Brownian case) proportional to the time interval separating successive 
observations. As the time interval separating the two prices in the log-return 
increases, the amount of market microstructure noise remains constant, since 
each price is measured with error, while the informational content of volatil- 
ity increases. Hence very high frequency data are mostly composed of market 
microstructure noise, while the volatility of the price process is more apparent 
in longer horizon returns. Running counter to this effect is the basic statistical 
principle mentioned above: in an idealized setting where the data are observed 
without error, sampling more frequently cannot hurt. What is the right bal- 
ance to strike? What we show is that these two effects compensate each other 
and result in a finite optimal sampling frequency (in the root mean squared 
error sense) so that some time aggregation of the returns data is advisable. 

By providing a quantitative answer to the question of how often one should 
sample, we hope to reduce the arbitrariness of the choices that have been 
made in the empirical literature using high frequency data: for example, using 
essentially the same Olsen exchange rate series, these somewhat ad hoc choices 
range from 5 minute intervals (e.g., [5] ,  [8] and [19]) to as long as 30 minutes 
(e.g., [6]). When calibrating our analysis to the amount of microstructure noise 
that has been reported in the literature, we demonstrate how the optimal 
sampling interval should be determined: for instance, depending upon the 
amount of microstructure noise relative to the variance of the underlying 
returns, the optimal sampling frequency varies from 4 minutes to 3 hours, if 
1 day's worth of data is used a t  a time. If a longer time period is used in 
the analysis, then the optimal sampling frequency can be considerably longer 
than these values. 

But even if one determines the sampling frequency optimally, it remains 
the case that the empirical researcher is not making use of the full data at 
his/her disposal. For instance, suppose that we have available transaction 
records on a liquid stock, traded once every second. Over a typical 6.5 hour 
day, we therefore start with 23,400 observations. If one decides to sample once 
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every 5 minutes, then -whether or not this is the optimal sampling frequency - 
this amounts to retaining only 78 observations. Said differently, one is throwing 
away 299 out of every 300 transactions. From a statistical perspective, this 
is unlikely to be the optimal solution, even though it is undoubtedly better 
than computing a volatility estimate using noisy squared log-returns sampled 
every second. Somehow, an optimal solution should make use of all the data, 
and this is where our analysis goes next. 

So, if one decides to account for the presence of the noise, how should one 
go about doing it? We show that modelling the noise term explicitly restores 
the first order statistical effect that sampling as often as possible is optimal. 
This will involve an estimator different from the simple sum of squared log- 
returns. Since we work within a fully parametric framework, likelihood is the 
key word. Hence we construct the likelihood function for the observed log- 
returns, which include microstructure noise. To do so, we must postulate a 
model for the noise term. We assume that the noise is Gaussian. In light of 
what we know from the sophisticated theoretical microstructure literature, 
this is likely to be overly simplistic and one may well be concerned about the 
effect(s) of this assumption. Could it do more harm than good? Surprisingly, 
we demonstrate that our likelihood correction, based on Gaussianity of the 
noise, works even if one misspecifies the assumed distribution of the noise 
term. Specifically, if the econometrician assumes that the noise terms are 
normally distributed when in fact they are not, not only is it still optimal to 
sample as often as possible (unlike the result when no allowance is made for 
the presence of noise), but the estimator has the same variance as if the noise 
distribution had been correctly specified. This robustness result is, we think, 
a major argument in favor of incorporating the presence of the noise when 
estimating continuous time models with high frequency financial data, even if 
one is unsure about what is the true distribution of the noise term. 

In other words, the answer to the question we pose in our title is "as 
often as possible", provided one accounts for the presence of the noise when 
designing the estimator (and we suggest maximum likelihood as a means of 
doing so). If one is unwilling to account for the noise, then the answer is to 
rely on the finite optimal sampling frequency we start our analysis with, but 
we stress that while it is optimal if one insists upon using sums of squares of 
log-returns, this is not the best possible approach to estimate volatility given 
the complete high frequency dataset a t  hand. 

In a companion paper ([43]), we study the corresponding nonparametric 
problem, where the volatility of the underlying price is a stochastic process, 
and nothing else is known about it, in particular no parametric structure. 
In that case, the object of interest is the integrated volatility of the process 
over a fixed time interval, such as a day, and we show how to estimate it 
using again all the data available (instead of sparse sampling a t  an arbitrarily 
lower frequency of, say, 5 minutes). Since the model is nonparametric, we 
no longer use a likelihood approach but instead propose a solution based 
on subsampling and averaging, which involves estimators constructed on two 
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different time scales, and demonstrate that this again dominates sampling a t  
a lower frequency, whether arbitrary or optimally determined. 

This paper is organized as follows. We start by describing in Section 1.1 
our reduced form setup and the underlying structural models that support 
it. We then review in Section 1.2 the base case where no noise is present, 
before analyzing in Section 1.3 the situation where the presence of the noise is 
ignored. In Section 1.4, we examine the concrete implications of this result for 
empirical work with high frequency data. Next, we show in Section 1.5 that 
accounting for the presence of the noise through the likelihood restores the 
optimality of high frequency sampling. Our robustness results are presented 
in Section 1.6 and interpreted in Section 1.7. We study the same questions 
when the observations are sampled a t  random time intervals, which are an 
essential feature of transaction-level data, in Section 1.8. We then turn to 
various extensions and relaxation of our assumptions in Section 1.9: we add 
a drift term, then serially correlated and cross-correlated noise respectively. 
Section 1.10 concludes. All proofs are in the Appendix. 

1.1 Setup 

Our basic setup is as follows. We assume that the underlying process of in- 
terest, typically the log-price of a security, is a time-homogenous diffusion on 
the real line 

dXt = p(Xt; 8)dt + adWt , (1.1) 

where Xo = 0, Wt is a Brownian motion, p( . ,  .) is the drift function, a2 
the diffusion coefficient and 8 the drift parameters, 8 E Q and a > 0. The 
parameter space is an open and bounded set. As usual, the restriction that 
a is constant is without loss of generality since in the univariate case a one- 
to-one transformation can always reduce a known specification a (Xt )  to that 
case. Also, as discussed in [4], the properties of parametric estimators in this 
model are quite different depending upon whether we estimate 0 alone, a2 
alone, or both parameters together. When the data are noisy, the main effects 
that we describe are already present in the simpler of these three cases, where 
a2 alone is estimated, and so we focus on that case. Moreover, in the high 
frequency context we have in mind, the diffusive component of (1.1) is of order 
(dt)'l2 while the drift component is of order dt only, so the drift component 
is mathematically negligible a t  high frequencies. This is validated empirically: 
including a drift actually deteriorates the performance of variance estimates 
from high frequency data since the drift is estimated with a large standard 
error. Not centering the log returns for the purpose of variance estimation 
produces more accurate results (see 1381). So we simplify the analysis one step 
further by setting p = 0, which we do until Section 1.9.1, where we then show 
that adding a drift term does not alter our results. In Section 1.9.4, we discuss 
the situation where the instantaneous volatility a is stochastic. 
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But for now, 
Xt = o w t .  (1.2) 

Until Section 1.8, we treat the case where the observations occur a t  equidistant 
time intervals A, in which case the parameter a2  is therefore estimated a t  
time T on the basis of N + 1 discrete observations recorded a t  times TO = 0, 
TI = A, ..., TN = N A  = T. In Section 1.8, we let the sampling intervals be 
themselves random variables, since this feature is an essential characteristic 
of high frequency transaction data. 

The notion that the observed transaction price in high frequency financial 
data is the unobservable efficient price plus some noise component due to the 
imperfections of the trading process is a well established concept in the market 
microstructure literature (see for instance [lo]). So, where we depart from the 
inference setup previously studied in [4] is that we now assume that, instead 
of observing the process X a t  dates ~ i ,  we observe X with error: 

- 
X'Q = xn + uTi , (I*3) 

where the U k s  are i.i.d, noise with mean zero and variance a2 and are inde- 
pendent of the W process. In that context, we view X as the efficient log-price, 
while the observed -% is the transaction log-price. In an efficient market, Xt is 
the log of the expectation of the final value of the security conditional on all 
publicly available information a t  time t .  It  corresponds to the log-price that 
would be in effect in a perfect market with no trading imperfections, frictions, 
or informational effects. The Brownian motion W is the process representing 
the arrival of new information, which in this idealized setting is immediately 
impounded in X. 

By contrast, Ut summarizes the noise generated by the mechanics of the 
trading process. What we have in mind as the source of noise is a diverse ar- 
ray of market microstructure effects, either information or non-information re- 
lated, such as the presence of a bid-ask spread and the corresponding bounces, 
the differences in trade sizes and the corresponding differences in representa- 
tiveness of the prices, the different informational content of price changes due 
to informational asymmetries of traders, the gradual response of prices to a 
block trade, the strategic component of the order flow, inventory control ef- 
fects, the discreteness of price changes in markets that are not decimalized, 
etc., all summarized into the term U. That these phenomena are real are 
important is an accepted fact in the market microstructure literature, both 
theoretical and empirical. One can in fact argue that these phenomena justify 
this literature. 

We view (1.3) as the simplest possible reduced form of structural market 
microstructure models. The efficient price process X is typically modelled as 
a random walk, i.e., the discrete time equivalent of (1.2). Our specification co- 
incides with that of [29], who discusses the theoretical market microstructure 
underpinnings of such a model and argues that the parameter a is a summary 
measure of market quality. Structural market microstructure models do gen- 
erate (1.3). For instance, [39] proposes a model where U is due entirely to 
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the bid-ask spread. [28] notes that in practice there are sources of noise other 
than just the bid-ask spread, and studies their effect on the Roll model and 
its estimators. 

Indeed, a disturbance U can also be generated by adverse selection effects 
as in [20] and 1211, where the spread has two components: one that is due to 
monopoly power, clearing costs, inventory carrying costs, etc., as previously, 
and a second one that arises because of adverse selection whereby the specialist 
is concerned that the investor on the other side of the transaction has superior 
information. When asymmetric information is involved, the disturbance U 
would typically no longer be uncorrelated with the W process and would 
exhibit autocorrelation at  the first order, which would complicate our analysis 
without fundamentally altering it: see Sections 1.9.2 and 1.9.3 where we relax 
the assumptions that the U's are serially uncorrelated and independent of the 
W process, respectively. 

The situation where the measurement error is primarily due to the fact 
that transaction prices are multiples of a tick size (i.e., 2, = mi6 where K 

is the tick size and mi is the integer closest to X,/K) can be modelled as a 
rounding off problem (see [14], [23] and [31]). The specification of the model 
in [27] combines both the rounding and bid-ask effects as the dual sources of 
the noise term U. Finally, structural models, such as that of [35], also give 
rise to reduced forms where the observed transaction price x takes the form 
of an unobserved fundamental value plus error. 

With (1.3) as our basic data generating process, we now turn to the ques- 
tions we address in this paper: how often should one sample a continuous-time 
process when the data are subject to market microstructure noise, what are 
the implications of the noise for the estimation of the parameters of the X 
process, and how should one correct for the presence of the noise, allowing for 
the possibility that the econometrician misspecifies the assumed distribution 
of the noise term, and finally allowing for the sampling to occur at  random 
points in time? We proceed from the simplest to the most complex situation 
by adding one extra layer of complexity at  a time: Figure 1.1 shows the three 
sampling schemes we consider, starting with fixed sampling without market 
microstructure noise, then moving to fixed sampling with noise and concluding 
with an analysis of the situation where transaction prices are not only subject 
to microstructure noise but are also recorded at  random time intervals. 

1.2 The Baseline Case: No Microstructure Noise 

We start by briefly reviewing what would happen in the absence of market 
microstructure noise, that is when a = 0. With X denoting the log-price, 
the first differences of the observations are the log-returns Y, = 2, - 2,-, , 
i = 1, ..., N. The observations Y, = a (w,,,, - WTi) are then i.i.d. N(0, a2A) 
so the likelihood function is 
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where Y = (Yl, ..., YN)'.. The maximum-likelihood estimator of a2 coincides 
with the discrete approximation to the quadratic variation of the process 

which has the following exact small sample moments: 

and the following asymptotic distribution 

where 
-1 

w = ~ ~ ~ ~ ( & 2 ) = ~ ~ [ - l ( a 2 ) ]  = 2 a 4 ~ .  (1.7) 

Thus selecting A as small as possible is optimal for the purpose of estimating 
a2. 

1.3 When the Observations Are Noisy But the Noise Is 
Ignored 

Suppose now that market microstructure noise is present but the presence 
of the U's is ignored when estimating a2. In other words, we use the log- 
likelihood (1.4) even though the true structure of the observed log-returns 
Y,'s is given by an MA(1) process since 

where the E ~ S  are uncorrelated with mean zero and variance y2 (if the U's are 
normally distributed, then the c i s  are i.i.d.). The relationship to the original 
parametrization (a2,  a2) is given by 
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Equivalently, the inverse change of variable is given by 

Two important properties of the log-returns Y,'s emerge from the two 
equations (1.9)-(1.10). First, it is clear from (1.9) that microstructure noise 
leads to spurious variance in observed log-returns, a 2 A  + 2a2 vs, a2A. This 
is consistent with the predictions of theoretical microstructure models. For 
instance, [16] develop a model linking the arrival of information, the timing 
of trades, and the resulting price process. In their model, the transaction 
price will be a biased representation of the efficient price process, with a 
variance that is both overstated and heteroskedastic as a result of the fact 
that transactions (hence the recording of an observation on the process X) 
occur a t  intervals that are time-varying. While our specification is too simple 
to capture the rich joint dynamics of price and sampling times predicted by 
their model, heteroskedasticity of the observed variance will also arise in our 
case once we allow for time variation of the sampling intervals (see Section 1.8 
below). 

In our model, the proportion of the total return variance that is market 
microstructure-induced is 

a t  observation interval A. As A gets smaller, 7r gets closer to 1, so that a 
larger proportion of the variance in the observed log-return is driven by mar- 
ket microstructure frictions, and correspondingly a lesser fraction reflects the 
volatility of the underlying price process X. 

Second, (1.10) implies that -1 < q < 0, so that log-returns are (neg- 
atively) autocorrelated with first order autocorrelation -a2/(a2A + 2a2) = 

-7r/2. It  has been noted that market microstructure noise has the potential 
to explain the empirical autocorrelation of returns. For instance, in the simple 
Roll model, Ut = (s/2)Qt where s is the bid/ask spread and Qt, the order flow 
indicator, is a binomial variable that takes the values +1 and -1 with equal 
probability. Therefore Var[Ut] = a2  = s2/4. Since COV(Y,,K-~) = -a2, the 
bid/ask spread can be recovered in this model as s = 2 6  where p = y2v 
is the first order autocorrelation of returns. [18] proposed to  adjust variance 
estimates to control for such autocorrelation and [28] studied the resulting 
estimators. In [41], U arises because of the strategic trading of institutional 
investors which is then put forward as an explanation for the observed serial 
correlation of returns. [33] show that infrequent trading has implications for 
the variance and autocorrelations of returns. Other empirical patterns in high 
frequency financial data have been documented: leptokurtosis, deterministic 
patterns and volatility clustering. 
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Our first result shows that the optimal sampling frequency is finite when 
noise is present but unaccounted for. The estimator b2 obtained from maxi- 
mizing the misspecified log-likelihood (1.4) is quadratic in the Y,'s : see (1.5). 
In order to  obtain its exact (i.e., small sample) variance, we therefore need to 
calculate the fourth order cumulants of the Y,'s since 

(see e.g., Section 2.3 of [36] for definitions and properties of the cumulants). 
We have: 

Lemma 1. The fourth cumulants of the log-returns are given by 

Cum(y2,y j ,Yk,q  = 

2 Cum4[U] i f i = j = k = l ,  
(-1)3(i3j,k,l) cum4 [u] , if max(i, j ,  k, 1) = min(i, j ,  k, 1) + 1, (1.15) 
0 otherwise, 

where s(i ,  j ,  k, I) denotes the number of indices among (i, j , k, I) that are equal 
to min(i, j ,  k, I)  and U denotes a generic random variable with the common 
distribution of the Uks. Its fourth cumulant is denoted Cum4 [U]. 

Now U has mean zero, so in terms of its moments 

In the special case where U is normally distributed, Cum4 [U] = 0 and as a 
result of (1.14) the fourth cumulants of the log-returns are all 0 (since W is 
normal, the log-returns are also normal in that case). If the distribution of U 
is binomial as in the simple bid/ask model described above, then Cum4 [U] = 
-s4/8; since in general s will be a tiny percentage of the asset price, say 
s = 0.05%, the resulting Cum4 [U] will be very small. 

We can now characterize the root mean squared error 

1 / 2  
RMSE [b2] = ( ( E  [b2] - 02) + Var [b2 ] )  

of the estimator: 

Theorem 1. In small samples (finite T), the bias and variance of the esti- 
mator b2 are given by 
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2 (a4A2 + 4a2Aa2 + 6a4 + 2 Cum4 [ U ] )  
Var [32] = - 

T A  (1.18) 

- 
2 (2a4 + Cum4 [ U ] )  

T2 

Its RMSE has a unique minimum in A which is reached at the optimal sam- 
pling interval 

As T grows, we have 

The trade-off between bias and variance made explicit in (1.17)-(1.19) is 
not unlike the situation in nonparametric estimation with A-I playing the role 
of the bandwidth h. A lower h reduces the bias but increases the variance, 
and the optimal choice of h balances the two effects. 

Note that these are exact small sample expressions, valid for all T. Asymp- 
totically in T, Var [@] -+ 0, and hence the RMSE of the estimator is dom- 
inated by the bias term which is independent of T. And given the form of 
the bias (1.17), one would in fact want to select the largest A possible to 
minimize the bias (as opposed to the smallest one as in the no-noise case of 
Section 1.2). The rate a t  which A* should increase with T is given by (1.20). 
Also, in the limit where the noise disappears (a --+ 0 and Cum4 [U]  -, O), the 
optimal sampling interval A* tends to 0. 

How does a small departure from a normal distribution of the microstruc- 
ture noise affect the optimal sampling frequency? The answer is that a small 
positive (resp. negative) departure of Cum 4 [U]  starting from the normal value 
of 0 leads to an increase (resp. decrease) in A*, since 
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where A,!&,l is the value of A* corresponding to Cum4 [U] = 0. And of 
course the full formula (1.20) can be used to get the exact answer for any 
departure from normality instead of the comparative static one. 

Another interesting asymptotic situation occurs if one attempts to use 
higher and higher frequency data (A -t 0, say sampled every minute) over a 
fixed time period ( T  fixed, say a day). Since the expressions in Theorem 1 are 
exact small sample ones, they can in particular be specialized to analyze this 
situation. With n = T/A, it follows from (1.17)-(1.19) that 

2n (6a4 + 2 Cum4 [U]) 
Var [b2] = 

4nE [u4] 
T2 

+ o(n) = 
T2 

+ o(n) , (1.23) 

so ( ~ / 2 n ) b ~  becomes an estimator of E [u2] = a2 whose asymptotic variance 
is E [U4] . Note in particular that b2 estimates the variance of the noise, which 
is essentially unrelated to the object of interest a2. This type of asymptotics 
is relevant in the stochastic volatility case we analyze in our companion paper 
[43l 

Our results also have implications for the two parallel tracks that have de- 
veloped in the recent financial econometrics literature dealing with discretely 
observed continuous-time processes. One strand of the literature has argued 
that estimation methods should be robust to the potential issues arising in 
the presence of high frequency data and, consequently, be asymptotically valid 
without requiring that the sampling interval A separating successive observa- 
tions tend to zero (see, e.g., [2], [3] and [26]). Another strand of the literature 
has dispensed with that constraint, and the asymptotic validity of these meth- 
ods requires that A tend to zero instead of or in addition to, an increasing 
length of time T over which these observations are recorded (see, e.g., [6], [7] 
and [8]). 

The first strand of literature has been informally warning about the poten- 
tial dangers of using high frequency financial data without accounting for their 
inherent noise (see e.g., page 529 of [2]), and we propose a formal modeliza- 
tion of that phenomenon. The implications of our analysis are most salient 
for the second strand of the literature, which is predicated on the use of high 
frequency data but does not account for the presence of market microstruc- 
ture noise. Our results show that the properties of estimators based on the 
local sample path properties of the process (such as the quadratic variation to 
estimate a 2 )  change dramatically in the presence of noise. Complementary to 
this are the results of [22] which show that the presence of even increasingly 
negligible noise is sufficient to adversely affect the identification of a2. 
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1.4 Concrete Implications for Empirical Work with High 
Frequency Data 

The clear message of Theorem 1 for empirical researchers working with high 
frequency financial data is that it may be optimal to sample less frequently. 
As discussed in the Introduction, authors have reduced their sampling fre- 
quency below that of the actual record of observations in a somewhat ad hoc 
fashion, with typical choices 5 minutes and up. Our analysis provides not only 
a theoretical rationale for sampling less frequently, but also delivers a precise 
answer to the question of "how often one should sample?" For that purpose, 
we need to calibrate the parameters appearing in Theorem 1, namely a ,  a,  
Cum4[U], A and T. We assume in this calibration exercise that the noise is 
Gaussian, in which case Cume[U] = 0. 

1.4.1 Stocks 

We use existing studies in empirical market microstructure to calibrate the 
parameters. One such study is [35], who estimated on the basis of a sample of 
274 NYSE stocks that approximately 60% of the total variance of price changes 
is attributable to market microstructure effects (they report a range of values 
for n from 54% in the first half hour of trading to 65% in the last half hour, see 
their Table 4; they also decompose this total variance into components due to  
discreteness, asymmetric information, transaction costs and the interaction 
between these effects). Given that their sample contains an average of 15 
transactions per hour (their Table I),  we have in our framework 

These values imply from (1.13) that a = 0.16% if we assume a realistic value of 
a = 30% per year. (We do not use their reported volatility number since they 
apparently averaged the variance of price changes over the 274 stocks instead 
of the variance of the returns. Since different stocks have different price levels, 
the price variances across stocks are not directly comparable. This does not 
affect the estimated fraction n however, since the price level scaling factor 
cancels out between the numerator and the denominator). 

The magnitude of the effect is bound to vary by type of security, market 
and time period. [29] estimates the value of a to be 0.33%. Some authors have 
reported even larger effects. Using a sample of NASDAQ stocks, [32] estimate 
that about 50% of the daily variance of returns in due to the bid-ask effect. 
With a = 40% (NASDAQ stocks have higher volatility), the values 

yield the value a = 1.8%. Also on NASDAQ, [12] estimate that 11% of the 
variance of weekly returns (see their Table 4, middle portfolio) is due to  bid- 
ask effects. The values 
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imply that a = 1.4%. 
In Table 1.1, we compute the value of the optimal sampling interval A* 

implied by different combinations of sample length (T) and noise magnitude 
(a). The volatility of the efficient price process is held fixed a t  a = 30% in 
Panel A, which is a realistic value for stocks. The numbers in the table show 
that the optimal sampling frequency can be substantially affected by even 
relatively small quantities of microstructure noise. For instance, using the 
value a = 0.15% calibrated from [35], we find an optimal sampling interval 
of 22 minutes if the sampling length is 1 day; longer sample lengths lead 
to higher optimal sampling intervals. With the higher value of a = 0.3%, 
approximating the estimate from [29], the optimal sampling interval is 57 
minutes. A lower value of the magnitude of the noise translates into a higher 
frequency: for instance, A* = 5 minutes if a = 0.05% and T = 1 day. Figure 
1.2 displays the RMSE of the estimator as a function of A and T, using 
parameter values a = 30% and a = 0.15%. The figure illustrates the fact that 
deviations from the optimal choice of A lead to a substantial increase in the 
RMSE: for example, with T = 1 month, the RMSE more than doubles if, 
instead of the optimal A* = 1 hour, one uses A = 15 minutes. 

1.4.2 Currencies 

Looking now a t  foreign exchange markets, empirical market microstructure 
studies have quantified the magnitude of the bid-ask spread. For example, [9] 
computes the average bid/ask spread s in the wholesale market for different 
currencies and reports values of s = 0.05% for the German mark, and 0.06% 
for the Japanese yen (see Panel B of his Table 2). We calculated the corre- 
sponding numbers for the 1996-2002 period to be 0.04% for the mark (followed 
by the euro) and 0.06% for the yen. Emerging market currencies have higher 
spreads: for instance, s = 0.12% for Korea and 0.10% for Brazil. During the 
same period, the volatility of the exchange rate was a = 10% for the German 
mark, 12% for the Japanese yen, 17% for Brazil and 18% for Korea. In Panel B 
of Table 1.1, we compute A* with a = lo%, a realistic value for the euro and 
yen. As we noted above, if the sole source of the noise were a bidlask spread 
of size s,  then a should be set to s/2. Therefore Panel B reports the values of 
A* for values of a ranging from 0.02% to 0.1%. For example, the dollar/euro 
or dollarlyen exchange rates (calibrated to a = lo%, a = 0.02%) should be 
sampled every A* = 23 minutes if the overall sample length is T = 1 day, and 
every 1.1 hours if T = 1 year. 

Furthermore, using the bid/ask spread alone as a proxy for all microstruc- 
ture frictions will lead, except in unusual circumstances, to  an understatement 
of the parameter a ,  since variances are additive. Thus, since A* is increasing 
in a ,  one should interpret the value of A* read off 1.1 on the row corresponding 
to a = s/2 as a lower bound for the optimal sampling interval. 
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1.4.3 Monte Carlo Evidence 

To validate empirically these results, we perform Monte Carlo simulations. 
We simulate M = 10,000 samples of length T = 1 year of the process X, 
add microstructure noise U to  generate the observations 2 and then the log 
returns Y. We sample the log-returns a t  various intervals A ranging from 5 
minutes to 1 week and calculate the bias and variance of the estimator d2 
over the M simulated paths. We then compare the results to the theoretical 
values given in (1.17)-(1.19) of Theorem 1. The noise distribution is Gaussian, 
a = 30% and a = 0.15% - the values we calibrated to stock returns data above. 
Table 1.2 shows that the theoretical values are in close agreement with the 
results of the Monte Carlo simulations. 

The table also illustrates the magnitude of the bias inherent in sampling at 
too high a frequency. While the value of a2 used to generate the data is 0.09, 
the expected value of the estimator when sampling every 5 minutes is 0.18, 
so on average the estimated quadratic variation is twice as big as it should be 
in this case. 

1.5 Incorporating Market Microstructure Noise 
Explicitly 

So far we have stuck to the sum of squares of log-returns as our estimator 
of volatility. We then showed that, for this estimator, the optimal sampling 
frequency is finite. But this implies that one is discarding a large proportion of 
the high frequency sample (299 out of every 300 observations in the example 
described in the Introduction), in order to mitigate the bias induced by market 
microstructure noise. Next, we show that if we explicitly incorporate the U's 
into the likelihood function, then we are back in the situation where the 
optimal sampling scheme consists in sampling as often as possible - i.e., using 
all the data available. 

Specifying the likelihood function of the log-returns, while recognizing that 
they incorporate noise, requires that we take a stand on the distribution of 
the noise term. Suppose for now that the microstructure noise is normally dis- 
tributed, an assumption whose effect we will investigate below in Section 1.6. 
Under this assumption, the likelihood function for the Y's is given by 

where the covariance matrix for the vector Y = (Yl, ..., YN)' is given by +y2V, 
where 
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Further, 

and, neglecting the end effects, an approximate inverse of V is the matrix 

fl = [wijIi,j=l, ..., N where 

(see [15]). The product Vfl differs from the identity matrix only on the first 
and last rows. The exact inverse is V-l = [vij] i,j=l,, , , , where 

(see [24] and [40]). 
From the perspective of practical implementation, this estimator is nothing 

else than the MLE estimator of an MA(1) process with Gaussian errors: any 
existing computer routines for the MA(1) situation can therefore be applied 
(see e.g., Section 5.4 in [25]). In particular, the likelihood function can be 
expressed in a computationally efficient form by triangularizing the matrix V, 
yielding the equivalent expression: 

where 

and the q s  are obtained recursively as = Yl and for i = 2, ..., N : 

This latter form of the log-likelihood function involves only single sums as 
opposed to double sums if one were to compute Y'V-'Y by brute force using 
the expression of V-' given above. 
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We now compute the distribution of the MLE estimators of a2 and a2,  
which follows by the delta method from the classical result for the MA(1) 
estimators of y and q : 

Proposition 1. When U is  normally distributed, 
tent and its asymptotic variance is given by 

the MLE (d2, ii2) is consis- 

with, 

Since AvAR,,,,,~(~~) is increasing in A, it is optimal to sample as often 
as possible. Further, since 

the loss of efficiency relative to the case where no market microstructure noise 
is present (and AVAR(d2) = 2a4A as given in (1.7) if a2  = 0 is not estimated, 
or AVAR(d2) = 6a4A if a2 = 0 is estimated) is a t  order A'/'. Figure 1.3 
plots the asymptotic variances of d2  as functions of A with and without 
noise (the parameter values are again a = 30% and a = 0.15%). Figure 1.4 
reports histograms of the distributions of d2  and ii2 from 10,000 Monte Carlo 
simulations with the solid curve plotting the asymptotic distribution of the 
estimator from Proposition 1. The sample path is of length T = 1 year, 
the parameter values the same as above, and the process is sampled every 5 
minutes - since we are now accounting explicitly for the presence of noise, 
there is no longer a reason to sample a t  lower frequencies. Indeed, the figure 
documents the absence of bias and the good agreement of the asymptotic 
distribution with the small sample one. 

1.6 The Effect of Misspecifying the Distribution of the 
Microstructure Noise 

We now study the situation where one attempts to incorporate the presence 
of the U's  into the analysis, as in Section 1.5, but mistakenly assumes a mis- 
specified model for them. Specifically, we consider the case where the U's  are 
assumed to be normally distributed when in reality they have a different dis- 
tribution. We still suppose that the U's are i.i.d. with mean zero and variance 
a2. 

Since the econometrician assumes the U's to have a normal distribution, 
inference is still done with the log-likelihood l(a2,  a2) ,  or equivalently l(q, y2) 
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given in (1.25), using (1.9)-(1.10). This means that the scores i,z and iaz, or 
equivalently (C.l) and (C.2), are used as moment functions (or "estimating 
equations"). Since the first order moments of the moment functions only de- 
pend on the second order moment structure of the log-returns (Yl, ..., YN), 
which is unchanged by the absence of normality, the moment functions are 
unbiased under the true distribution of the U's : 

and similarly for i,z and i a z .  Hence the estimator (e2,iL2) based on these 
moment functions is consistent and asymptotically unbiased (even though the 
likelihood function is misspecified.) 

The effect of misspecification therefore lies in the asymptotic variance ma- 
trix. By using the cumulants of the distribution of U, we express the asymp- 
totic variance of these estimators in terms of deviations from normality. But 
as far as computing the actual estimator, nothing has changed relative to Sec- 
tion 1.5: we are still calculating the MLE for an MA(1) process with Gaussian 
errors and can apply exactly the same computational routine. 

However, since the error distribution is potentially misspecified, one could 
expect the asymptotic distribution of the estimator to  be altered. This turns 
out not be the case, as far as e2 is concerned: 

Theorem 2. The estimators (e2, iL2) obtained by maximizing the possibly mis- 
specijied log-likelihood (1.25) are consistent and their asymptotic variance is 
given by 

where AVARnOma1(b2, iL2) is the asymptotic variance i n  the case where the 
distribution of U is normal, that is, the expression given in  Proposition 1. 

In other words, the asymptotic variance of b2 is identical to its expression 
if the U's had been normal. Therefore the correction we proposed for the 
presence of market microstructure noise relying on the assumption that the 
noise is Gaussian is robust to misspecification of the error distribution. 

Documenting the presence of the correction term through simulations 
presents a challenge. At the parameter values calibrated to  be realistic, the 
order of magnitude of a is a few basis points, say a = 0.10% = But if U 
is of order Cum4[U] which is of the same order as U4, is of order 10-12. 
In other words, with a typical noise distribution, the correction term in (1.33) 
will not be visible. 

To nevertheless make it discernible, we use a distribution for U with the 
same calibrated standard deviation a as before, but a disproportionately large 
fourth cumulant. Such a distribution can be constructed by letting U = wT, 
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where w > 0 is constant and T,, is a Student t distribution with v degrees of 
freedom. T,, has mean zero, finite variance as long as v > 2 and finite fourth 
moment (hence finite fourth cumulant) as long as v > 4. But as v approaches 
4 from above, E[T:] tends to infinity. This allows us to produce an arbitrarily 
high value of Cum4[U] while 
The specific expressions of a2  

controlling for the magnitude of the variance. 
and Cum4[U] for this choice of U are given by 

Thus we can select the two parameters (w, v) to produce desired values 
of (a2, Cum4 [U]). As before, we set a = 0.15%. Then, given the form of the 
asymptotic variance matrix (1.33), we set Cum4 [U] so that Cum4 [U] A = 
AVARnOrma1(h2)/2. This makes AVARtr,,(h2) by construction 50% larger than 
AVARnOrmal (h2). The resulting values of (w, v) from solving (1.34)-(1.35) are 
w = 0.00115 and v = 4.854. As above, we set the other parameters to a = 30%, 
T = 1 year, and Ll = 5 minutes. Figure 1.5 reports histograms of the distri- 
butions of d2  and h2 from 10,000 Monte Carlo simulations. The solid curve 
plots the asymptotic distribution of the estimator, given now by (1.33). There 
is again good adequacy between the asymptotic and small sample distribu- 
tions. In particular, we note that as predicted by Theorem 2, the asymptotic 
variance of d2  is unchanged relative to Figure 1.4 while that of h2 is 50% 
larger. The small sample distribution of d2  appears unaffected by the non- 
Gaussianity of the noise; with a skewness of 0.07 and a kurtosis of 2.95, it is 
closely approximated by its asymptotic Gaussian limit. The small sample dis- 
tribution of h2 does exhibit some kurtosis (4.83), although not large relative 
to that of the underlying noise distribution (the values of w and v imply a 
kurtosis for U of 3 + 6/(v - 4) = 10). Similar simulations but with a longer 
time span of T = 5 years are even closer to the Gaussian asymptotic limit: 
the kurtosis of the small sample distribution of h2 goes down to 2.99. 

1.7 Robustness to Misspecification of the Noise 
Distribution 

Going back to  the theoretical aspects, the above Theorem 2 has implications 
for the use of the Gaussian likelihood 1 that go beyond consistency, namely 
that this likelihood can also be used to estimate the distribution of d2  under 
misspecification. With 1 denoting the log-likelihood assuming that the U's are 
Gaussian, given in (1.25), -1(d2,h2) denote the observed information matrix 
in the original parameters a2 and a2. Then 
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is the usual estimate of asymptotic variance when the distribution is correctly 
specified as Gaussian. Also note, however, that otherwise, so long as (k2, ti2) is 
consistent, p is also a consistent estimate of the matrix AvAR,,,,,I(~~, ti2). 
Since this matrix coincides with AVARtrUe(d2, ti2) for all but the (a2, a2) term 
(see (1.33)), the asymptotic variance of ~ ~ / ~ ( k ~  -a2)  is consistently estimated 
by p u z U 2 .  The similar statement is true for the covariances, but not, obviously, 
for the asymptotic variance of - a2). 

In the likelihood context, the possibility of estimating the asymptotic vari- 
ance by the observed information is due to the second Bartlett identity. For a 
general log likelihood 1, if S - EtrU,[ii']/~ and D - -EtrUe[i] /~ (differentia- 
tion refers to the original parameters (a2,  a'), not the transformed parameters 
(y2, q) )  this identity says that 

It  implies that the asymptotic variance takes the form 

AVAR = A(DS-' D)-I = AD-'. (1.37) 

I t  is clear that (1.37) remains valid if the second Bartlett identity holds only 
to first order, i.e., 

S - D = ~ ( l )  (1.38) 

as N -+ oo, for a general criterion function 1 which satisfies Etrue[l] = o(N). 
However, in view of Theorem 2, equation (1.38) cannot be satisfied. In 

fact, we show in Appendix E that 

,S - D = Cum4 [U] gg' + o(1) , (1.39) 

where 
~ ' / 2  

~ ( 4 a 2 + u ~ A ) ~ / ~  

(1.40) 

From (1.40), we see that g # 0 whenever a2 > 0. This is consistent with the re- 
sult in Theorem 2 that the true asymptotic variance matrix, AVARtrue(k2, ti2), 
does not coincide with the one for Gaussian noise, AVARnOrma1(k2, ti2). On the 
other hand, the 2 x 2 matrix gg' is of rank 1, signaling that there exist linear 
combinations that will cancel out the first column of S - D. From what we 
already know of the form of the correction matrix, D-' gives such a com- 
bination, so that the asymptotic variance of the original parameters (a2, a2) 
will have the property that its first column is not subject to correction in the 
absence of normality. 

A curious consequence of (1.39) is that while the observed information 
can be used to  estimate the asymptotic variance of 82 when a2 is not known, 
this is not the case when a2  is known. This is because the second Bartlett 
identity also fails to first order when considering a2 to be known, i.e., when 
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differentiating with respect to a2 only. Indeed, in that case we have from the 
upper left component in the matrix equation (1.39) 

= Cum4 [U] ( 9 , ~ ) ~  + o(1) 

which is not o(1) unless Cum4 [U] = 0. 
To make the connection between Theorem 2 and the second Bartlett iden- 

tity, one needs to  go to  the log profile likelihood 

X(a2) = SUP l (a2,a2) .  (1.41) 
a2 

Obviously, maximizing the likelihood l(a2,  a2) is the same as maximizing 
X(u2). Thus one can think of a2 as being estimated (when a2 is unknown) by 
maximizing the criterion function X(a2), or by solving i (+2 )  = 0. Also, the 
observed profile information is related to the original observed information by 

i.e., the first (upper left hand corner) component of the inverse observed infor- 
mation in the original problem. We recall the rationale for equation (1.42) in 
Appendix E, where we also show that Et,,,[X] = o(N). In view of Theorem 2, 

can be used to estimate the asymptotic variance of c ? ~  under the true 
(possibly non-Gaussian) distribution of the U's, and so it must be that the 
criterion function X satisfies (1.38), that is 

N-' E,,,, [ i ( ~ ~ ) ~ ]  + N - ' E ~ , , , [ ~ ( ~ ~ ) ]  = o(1) . (1.43) 

This is indeed the case, as shown in Appendix E. 
This phenomenon is related, although not identical, to what occurs in the 

context of quasi-likelihood (for comprehensive treatments of quasi-likelihood 
theory, see the books by [30] and [37], and the references therein, and for 
early econometrics examples see [34] and [42]). In quasi-likelihood situations, 
one uses a possibly incorrectly specified score vector which is nevertheless 
required to  satisfy the second Bartlett identity. What makes our situation 
unusual relative to quasi-likelihood is that the interest parameter a2 and the 
nuisance parameter a2 are entangled in the same estimating equations (i,z 
and i,z from the Gaussian likelihood) in such a way that the estimate of 
u2 depends, to first order, on whether a2 is known or not. This is unlike 
the typical development of quasi-likelihood, where the nuisance parameter 
separates out (see, e.g., Table 9.1, page 326 of [37]). Thus only by going to the 
profile likelihood X can one make the usual comparison to quasi-likelihood, 

1.8 Randomly Spaced Sampling Intervals 

One essential feature of transaction data in finance is that the time that sep- 
arates successive observations is random, or a t  least time-varying. So, as in 
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[4], we are led to consider the case where Ai = ri - ri-1 are either deter- 
ministic and time-varying, or random in which case we assume for simplicity 
that they are i.i.d., independent of the W process. This assumption, while not 
completely realistic (see [17] for a discrete time analysis of the autoregressive 
dependence of the times between trades) allows us to make explicit calcula- 
tions at  the interface between the continuous and discrete time scales. We 
denote by NT the number of observations recorded by time T. NT is random 
if the A's are. We also suppose that U,, can be written Ui, where the Ui are 
i.i.d. and independent of the W process and the Ais. Thus, the observation 
noise is the same at  all observation times, whether random or nonrandom. If 
we define the Y,s as before, in the first two lines of (1.8), though the MA(1) 
representation is not valid in the same form. 

We can do inference conditionally on the observed sampling times, in light 
of the fact that the likelihood function using all the available information is 

where ,6 are the parameters of the state process, that is (a2,  a2) ,  and $ are 
the parameters of the sampling process, if any (the density of the sampling 
intervals density L (ANT, ..., A1; $) may have its own nuisance parameters $, 
such as an unknown arrival rate, but we assume that it does not depend on the 
parameters ,6 of the state process.) The corresponding log-likelihood function 
is 

and since we only care about ,6, we only need to maximize the first term in 
that sum. 

We operate on the covariance matrix C of the log-returns Y's, now given 

Note that in the equally spaced case, C = y2V. But now Y no longer follows 
an MA(1) process in general. Furthermore, the time variation in 4:s gives 
rise to heteroskedasticity as is clear from the diagonal elements of C. This is 
consistent with the predictions of the model of [16] where the variance of the 
transaction price process is heteroskedastic as a result of the influence of 
the sampling times. In their model, the sampling times are autocorrelated and 



24 Yacine Kit-Sahalia, Per A. Mykland, and Lan Zhang 

correlated with the evolution of the price process, factors we have assumed 
away here. However, [4] show how to conduct likelihood inference in such a 
situation. 

The log-likelihood function is given by 

In order to calculate this log-likelihood function in a computationally efficient 
manner, it is desirable to avoid the "brute force" inversion of the N x N 
matrix C. We extend the method used in the MA(1) case (see (1.29)) as 
follows. By Theorem 5.3.1 in [13], and the development in the proof of their 
Theorem 5.4.3, we can decompose C in the form C = LDLT, where L is 
a lower triangular matrix whose diagonals are all 1 and D is diagonal. To 
compute the relevant quantities, their Example 5.4.3 shows that if one writes 
D = diag(gl, ... , g,) and 

L = 

then the g6s and K ~ S  follow the recursion equation gl = a2Al  + 2a2 and for 
2 = 2, ..., N: 

r;i = and gi = a2di + 2a2 + tcia2. (1.48) 

Then, define ? = L-lY so that Y'C-lY = ?'D-~?. From Y = L?, it 
follows that = Yl and, for i = 2, ..., N:  

And det(C) = det(D) since det(L) = 1. Thus we have obtained a computa- 
tionally simple form for (1.46) that generalizes the MA(1) form (1.29) to the 
case of non-identical sampling intervals: 

We can now turn to statistical inference using this likelihood function. As 
usual, the asymptotic variance of T ' / ~ ( & ~  - a 2 ,  h2 - a2) is of the form 

- 1 
+E -i(,2u2 l E  -i(,z,z 

A V A R . ~ , ~ )  = T lim -> w ( [. I ' [ I )  . (1.50) + E -1,2,2 [ "  I 
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To compute this quantity, suppose in the following that /?I and ,& can repre- 
sent either o2 or a2. We start with: 

Lemma 2. Fisher's Conditional Information is given by 

To compute the asymptotic distribution of the MLE of (Dl, D2), one would 

then need to compute the inverse of E 
EA denotes expectation taken over the law of the sampling intervals. From 
(1.51), and since the order of EA and d2/dP2P1 can be interchanged, this 
requires the computation of 

N 

En [ln det C] = Ea [In det Dl = EA [In (gi)] 
i= 1 

where from (1.48) the gis are given by the continuous fraction 

and in general 

It  therefore appears that computing the expected value of In (gi) over the law 
of (A,, A,, ..., A,) will be impractical. 

1.8.1 Expansion Around a Fixed Value of A 

To continue further with the calculations, we propose to expand around a 
fixed value of A, namely A. = E [A]. Specifically, suppose now that 

where E and A. are nonrandom, the t,!s are i.i.d. random variables with mean 
zero and finite distribution. We will Taylor-expand the expressions above 
around E = 0, i.e., around the non-random sampling case we have just fin- 
ished dealing with. Our expansion is one that is valid when the randomness 
of the sampling intervals remains small, i.e., when Var [Ai] is small, or o(1). 
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Then we have A. = E [A] = 0 (1) and Var [Ai] = A;c2 Var [&I. The natural 
scaling is to make the distribution of Ei finite, i.e., Var [&I = 0 (I) ,  so that 
c2 = 0 (Var [Ail) = o (1). But any other choice would have no impact on the 
result since Var [Ai] = o (1) implies that the product c2 Var [ti] is o (1) and 
whenever we write reminder terms below they can be expressed as Op (c3J3) 
instead of just 0 (c3). We keep the latter notation for clarity given that we 
set Ci = Op (1). Furthermore, for simplicity, we take the Jis to be bounded. 

We emphasize that the time increments or durations Ai do not tend to 
zero length as c -+ 0. It  is only the variability of the Ai's that goes to zero. 

Denote by Co the value of C when A is replaced by Ao, and let E de- 
note the matrix whose diagonal elements are the terms no&, and whose off- 
diagonal elements are zero. We obtain: 

Theorem 3. The MLE (e2,  B2) is again consistent, this time with asymptotic 
variance 

AVAR(G~, B ~ )  = A(O) + E ~ A ( ~ )  + o ( E ~ ) ,  (1.53) 

where 

and 
Var [El ~ ( 2 )  = 

(4a2 + Aoa2) 

with 

In connection with the preceding result, we underline that the quantity 
AVAR(e2, B2) is a limit as T -+ co, as in (1.50). The equation (1.53), therefore, 
is an expansion in c after T + co. 

Note that A(') is the asymptotic variance matrix already present in Propo- 
sition 1, except that it is evaluated a t  A. = E[A]. Note also that the second 
order correction term is proportional to Var[t], and is therefore zero in the 
absence of sampling randomness. When that happens, A = A. with proba- 
bility one and the asymptotic variance of the estimator reduces to the leading 
term A('), i.e., to the result in the fixed sampling case given in Proposition 1. 
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1.8.2 Randomly Spaced Sampling Intervals and Misspecified 
Microstructure Noise 

Suppose now, as in Section 1.6, that the U's  are i.i.d., have mean zero and 
variance a2,  but are otherwise not necessarily Gaussian. We adopt the same 
approach as in Section 1.6, namely to  express the estimator's properties in 
terms of deviations from the deterministic and Gaussian case. The additional 
correction terms in the asymptotic variance are given in the following result. 

Theorem 4. The asymptotic variance is given by 

where A(') and A(2) are given i n  the statement of Theorem 3 and 

while 
(2) (2) 

B ( ~ )  = Var [(I BU2',2 B62a2 ( B::r2)7 

with 

The term A(O) is the base asymptotic variance of the estimator, already 
present with fixed sampling and Gaussian noise. The term Cum4 [U] B(O) is 
the correction due to the misspecification of the error distribution. These two 
terms are identical to those present in Theorem 2. The terms proportional 
to c2 are the further correction terms introduced by the randomness of the 
sampling. is the base correction term present even with Gaussian noise in 
Theorem 3, and Cum4 [U] B ( ~ )  is the further correction due to the sampling 
randomness. Both and B ( ~ )  are proportional to Var[(] and hence vanish 
in the absence of sampling randomness. 
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1.9 Extensions 

In this section, we briefly sketch four extensions of our basic model. First, 
we show that the introduction of a drift term does not alter our conclusions. 
Then we examine the situation where market microstructure noise is serially 
correlated; there, we show that the insight of Theorem 1 remains valid, namely 
that the optimal sampling frequency is finite. Third, we then turn to the case 
where the noise is correlated with the efficient price signal. Fourth, we discuss 
what happens if volatility is stochastic. 

In a nutshell, each one of these assumptions can be relaxed without affect- 
ing our main conclusion, namely that the presence of the noise gives rise to 
a finite optimal sampling frequency. The second part of our analysis, dealing 
with likelihood corrections for microstructure noise, will not necessarily carry 
through unchanged if the assumptions are relaxed (for instance, there is not 
even a known likelihood function if volatility is stochastic, and the likelihood 
must be modified if the assumed variance-covariance structure of the noise is 
modified). 

1.9.1 Presence of a Drift Coefficient 

What happens to our conclusions when the underlying X process has a drift? 
We shall see in this case that the presence of the drift does not alter our earlier 
conclusions. As a simple example, consider linear drift, i.e., replace (1.2) with 

The contamination by market microstructure noise is as before: the observed 
process is given by (1.3). 

As before, we first-difference to get the log-returns Y, = x, - .$Ti-l + 
U, - UTi-, . The likelihood function is now 

where the covariance matrix is given in (1.45), and where A = (A1 , ..., AN)' .  
If p denotes either a2 or a2,  one obtains 

so that EIGplA] = 0 no matter whether the U's are normally distributed or 
have another distribution with mean 0 and variance a2. In particular, 

Now let ~ [ i ]  be the 3 x 3 matrix of expected second likelihood derivatives. 
Let ~ [ i j  = -TE[A]D + o(T). Similarly define ~ o v ( i ,  i) = TE[A]S  + o(T). As 
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before, when the U's have a normal distribution, S = D, and otherwise that 
is not the case. The asymptotic variance matrix of the estimators is of the 
form AVAR = E[A]D-'SD-I. 

Let D,2,,2 be the corresponding 2 x 2 matrix when estimation is carried 
out on a2 and a2  for known p, and D, is the asymptotic information on p 
for known a2 and a2. Similarly define S u 2  ,,z and AVAR,2,,2. Since D is block 
diagonal by (1.56), 

it follows that 

Hence 
- 1 AVAR(&~, ii2) = E[A] D;:,,~ ~~2 D , ~  ,a2 . (1.57) 

The asymptotic variance of (d2,ii2) is thus the same as if p were known, in 
other words, as if p = 0, which is the case that we focused on in all the 
previous sections. 

1.9.2 Serially Correlated Noise 

We now examine what happens if we relax the assumption that the market 
microstructure noise is serially independent. Suppose that, instead of being 
i.i.d. with mean 0 and variance a2, the market microstructure noise follows 

where b > 0, c > 0 and Z is a Brownian motion independent of W. UAIUo 
has a Gaussian distribution with mean e-"u0 and variance $ (1 - e-2bA) . 
The unconditional mean and variance of U are 0 and a2 = $. The main 
consequence of this model is that the variance contributed by the noise to a 
log-return observed over an interval of time A is now of order O(A), that is 
of the same order as the variance of the efficient price process a2A,  instead 
of being of order O(1) as previously. In other words, log-prices observed close 
together have very highly correlated noise terms. Because of this feature, this 
model for the microstructure noise would be less appropriate if the primary 
source of the noise consists of bid-ask bounces. In such a situation, the fact 
that a transaction is on the bid or ask side has little predictive power for 
the next transaction, or at  least not enough to predict that two successive 
transactions are on the same side with very high probability (although [ll] 
have argued that serial correlation in the transaction type can be a component 
of the bid-ask spread, and extended the model of [39] to allow for it). On the 
other hand, the model (1.58) can better capture effects such as the gradual 
adjustment of prices in response to a shock such as a large trade. In practice, 



30 Yacine Kit-Sahalia, Per A.  Mykland, and Lan Zhang 

the noise term probably encompasses both of these examples, resulting in 
a situation where the variance contributed by the noise has both types of 
components, some of order 0(1) ,  some of lower orders in A.  

The observed log-returns take the form 

where the wis are i.i.d. N(0,a2A),  the uis are independent of the wis, so we 
have Var [ K ]  = a 2 A  + E [u:] , and they are Gaussian with mean zero and 
variance 

instead of 2a2. 
In addition, the uis are now serially correlated at  all lags since 

for i 2 k. The first order correlation of the log-returns is now 

Cov (Y,, K-1) = - 
2b 2 

instead of q. 
The result analogous to Theorem 1 is as follows. If one ignores the presence 

of this type of serially correlated noise when estimating a 2 ,  then: 

Theorem 5. In small samples (finite T ) ,  the RMSE of the estimator (i2 is 
given by  

4 1 - ,-bA 4 (1 - e - b ~ ) 2  ( s e - 2 b A  - 1 + e-2Tb)  
R M S E  [82] = ( C  ( b2A2 + 

T2b2 (1 + e - b ~ ) ~  

so that for large T ,  starting from a value of c2 in the limit where A -, 0, 
increasing A first reduces R M S E  [(i2] . Hence the optimal sampling frequency 
is finite. 
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One would expect this type of noise to be not nearly as bad as i.i.d. noise 
for the purpose of inferring a2 from high frequency data. Indeed, the variance 
of the noise is of the same order O(A) as the variance of the efficient price 
process. Thus log returns computed from transaction prices sampled close 
together are not subject to as much noise as previously (O(A) vs. O(1)) and 
the squared bias P2 of the estimator S2 no longer diverges to infinity as A + 0: 
it has the finite limit c4. Nevertheless, ,B2 first decreases as A increases from 
0, since 

and 8b2/8A + -bc4 < 0 as A + 0. For large enough T, this is sufficient to 
generate a finite optimal sampling frequency. 

To calibrate the parameter values b and c, we refer to the same em- 
pirical microstructure studies we mentioned in Section 1.4. We now have 
T = E [u:] / (a2A + E [u:]) as the proportion of total variance that is 
microstructure-induced; we match it to the numbers in (1.24) from [35]. In 
their Table 5, they report the first order correlation of price changes (hence 
returns) to be approximately p = -0.2 at  their frequency of observation. Here 
p = Cov (Y,, / Var [Y,] . If we match T = 0.6 and p = -0.2, with a = 30% 
as before, we obtain (after rounding) c = 0.5 and b = 3 x lo4. Figure 1.6 dis- 
plays the resulting RMSE of the estimator as a function of A and T. The 
overall picture is comparable to Figure 1.2. 

As for the rest of the analysis of the paper, dealing with likelihood correc- 
tions for microstructure noise, the covariance matrix of the log-returns, y2V 
in (1.26), should be replaced by the matrix whose diagonal elements are 

c2 (1 - e-bA 
Var [ K ~ ]  = E [w:] + E [u:] = u 2 d  + 

b 
) 

and off-diagonal elements i > j are: 

Having modified the matrix y2V, the artificial "normal" distribution that as- 
sumes i.i.d. U's that are N(0, a2) would no longer use the correct second 
moment structure of the data. Thus we cannot relate a priori the asymptotic 
variance of the estimator of the estimator S2 to that of the i.i.d. Normal case, 
as we did in Theorem 2. 
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1.9.3 Noise Correlated with the Price Process 

We have assumed so far that the U process was uncorrelated with the W 
process. Microstructure noise attributable to informational effects is likely 
to be correlated with the efficient price process, since it is generated by the 
response of market participants to information signals (i.e., to the efficient 
price process). This would be the case for instance in the bid-ask model with 
adverse selection of [20]. When the U process is no longer uncorrelated from 
the W process, the form of the variance matrix of the observed log-returns Y 
must be altered, replacing y2vij in (1.26) with 

where dij is the Kronecker symbol. 
The small sample properties of the misspecified MLE for a2 analogous to 

those computed in the independent case, including its RMSE, can be obtained 
from 

1 
N 

Var [b2] = - 
2 i-l C Var [el + z C cov ( q 2 ,  q2) . T 2  . 2=1 T a = l  j=l 

Specific expressions for all these quantities depend upon the assumptions of 
the particular structural model under consideration: for instance, in the [20] 
model (see his Proposition 6), the U's remain stationary, the transaction noise 
UTi is uncorrelated with the return noise during the previous observation 
period, i.e., UTi-, - UT i-,, and the efficient return a (W, - WTi-,) is also 
uncorrelated with the transaction noises UT,i,+l and UTi,-, . With these in hand, 
the analysis of the RMSE and its minimum can then proceed as above. As 
for the likelihood corrections for microstructure noise, the same caveat as 
in serially correlated U case applies: having modified the matrix y2V, the 
artificial "normal" distribution would no longer use the correct second moment 
structure of the data and the likelihood must be modified accordingly. 

1.9.4 Stochastic Volatility 

One important departure from our basic model is the case where volatility 
is stochastic. The observed log-returns are still generated by equation (1.3). 
Now, however, the constant volatility assumption (1.2) is replaced by 
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The object of interest in much of the literature on high frequency volatility 
estimation (see e.g., [8] and 161) is then the integral 

over a fixed time period [0, TI, or possibly several such time periods. The es- 
timation is based on observations 0 = to < t l  < ... < t ,  = T, and asymptotic 
results are obtained when max& -+ 0. The usual estimator for (1.62) is the 
"realized variance" 

n 

In the context of stochastic volatility, ignoring market microstructure noise 
leads to an even more dangerous situation than when a is constant and T -+ 

co. We show in the companion paper [43] that, after suitable scaling, the 
realized variance is a consistent and asymptotically normal estimator - but of 
the quantity 2a2. This quantity has, in general, nothing to do with the object 
of interest (1.62). Said differently, market microstructure noise totally swamps 
the variance of the price signal at  the level of the realized variance. To obtain 
a finite optimal sampling interval, one needs that a2  -t 0 as n -+ co, that is 
the amount of noise must disappear asymptotically. For further developments 
on this topic, we refer to [43]. 

1.10 Conclusions 

We showed that the presence of market microstructure noise makes it optimal 
to sample less often than would otherwise be the case in the absence of noise, 
and we determined accordingly the optimal sampling frequency in closed-form. 

We then addressed the issue of what to do about it, and showed that 
modelling the noise term explicitly restores the first order statistical effect 
that sampling as often as possible is optimal. We also demonstrated that this 
remains the case if one misspecifies the assumed distribution of the noise term. 
If the econometrician assumes that the noise terms are normally distributed 
when in fact they are not, not only is it still optimal to sample as often as 
possible, but the estimator has the same asymptotic variance as if the noise 
distribution had been correctly specified. This robustness result is, we think, 
a major argument in favor of incorporating the presence of the noise when 
estimating continuous time models with high frequency financial data, even if 
one is unsure about what is the true distribution of the noise term. Hence, the 
answer to the question we pose in our title is "as often as possible," provided 
one accounts for the presence of the noise when designing the estimator. 
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Appendix A - Proof of Lemma 1 

To calculate the fourth cumulant Cum(x ,  Yj, Yk, K ) ,  recall from (1.8) that the ob- 
served log-returns are 

First, note that the ri are nonrandom, and W is independent of the U's, and has 
Gaussian increments. Second, the cumulants are multilinear, so 

Out of these terms, only the last is nonzero because W has Gaussian increments (so 
all cumulants of its increments of order greater than two are zero), and is independent 
of the U's (so all cumulants involving increments of both W and U are also zero.) 
Therefore, 

If i = j = k = 1, we have: 

with the second equality following from the independence of U,, and UTi-, , and the 
third from the fact that the cumulant is of even order. 

If max(i, j ,  I c ,  I) = min(i, j ,  k, 1) + 1, two situations arise. Set m = min(i, j, k, 1) 
and M = max(i, j,  k, 1). Also set s = s(i ,  j, k, I) = #{i,j, k, 1 = m). If s is odd, say 
s = 1 with i = m, and j, k, 1 = M = m + 1, we get a term of the form 

By permutation, the same situation arises if s = 3. If instead s is even, i.e., s = 2, 
then we have terms of the form 

Finally, if a t  least one pair of indices in the quadruple (i, j, k, 1) is more than one 
integer apart, then 

by independence of the U's. 
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Appendix B -Proof of Theorem 1 

Given The estimator (1.5) has the following expected value 

The estimator's variance is 

Applying Lemma 1 in the special case where the first two indices and the last two 
respectively are identical yields 

2 Cum4 [U] if j = i , 
(B.1) 

0 otherwise. 

In the middle case, i.e., whenever j = i+ l or j = i- 1, the number s of indices that 
are equal to the minimum index is always 2. Combining (B.l)  with (1.14), we have 

1 
N 

= - ) {2 Cov ( x ,  x ) '  + 2 Cum4 [U] ) + 
T2 i=l 

1 N-l + 7 C (2 Cov (K,  K+I)' + Cum4 [U]) + 
i=1 

with Var[K] and Cov (Yi,Yi-1) = Cov ( ~ , K + I )  given in (1.9)-(1.10), so that 

2 2N 2 ( N  - 1) 
Var [B ] = - {(u'A + 2a2)' + cum4 [u]} + 

T2 T2 
{2a4 + Cum4 [U]) , 

- - 2 (u4A2 + 4u2Aa2 + 6a4 + 2 Cum4 [U]) - 2 (2a4 + Cum4 [U]) 
T A  T2 , 

since N = T/A. The expression for the RMSE follows from those for the expected 
value and variance given in (1.17) and (1.19): 

4a4 2 (u4n2  + 4u2na2 + 6a4 + 2 Cum4 [U]) - 
T A  

- 2 (2a4 + Cum4 [U]) 
T2 
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The optimal value A* of the sampling interval given in (1.20) is obtained by 
minimizing R M S E  [e2] over A. The first order condition that arises from setting 
a RMSE [3'] /aA to 0 is the cubic equation in A : 

We now show that (B.3) has a unique positive root, and that it corresponds to a 
minimum of RMSE [32] . We are therefore looking for a real positive root in A = z 
to the cubic equation 

3 z + p z - q = o ,  (B.4) 

where q > 0 and p < 0 since from (1.16): 

3a4 + Cum4 [U] = 3a4 + E [u4] - 3 E  [u212 = E [u4] > 0 .  

Using ViBta's change of variable from z to w given by z = w -p/(3w) reduces, after 
multiplication by w3, the cubic to the quadratic equation 

in the variable y = w3. 
Define the discriminant 

The two roots of (B.5) 

are real if D 2 0 (and distinct if D > 0) and complex conjugates if D < 0. Then the 
three roots of (B.4) are 

(see eg . ,  Section 3.8.2 in [I]). If D > 0, the two roots in y are both real and positive 
because p < 0 and q > 0 imply 

Y l  > y2 > 0 

and hence of the three roots given in (B.6), z1 is real and positive and 2 2  and 23 are 
complex conjugates. If D = 0, then yl = yp = 912 > 0 and the three roots are real 
(two of which are identical) and given by 
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Of these, zi > 0 and 2 2  = 23 < 0. If D < 0, the three roots are distinct and real 
because 

4 4 yl = - + i(-D)'l2 rei0, y2 = - - i(_D)lI2 = re-i@ 
2 2 

- 

SO 
1/3 = ,,.11'3~i@/3 1/3 = r1/3 -i@/3 

Y1 7 92 e 3 

and therefore 

y:I3 + y:I3 = 2r113 cos (013) , y:l3 - y:I3 = 2ir1l3 sin (013) , 

so that 

zl = 2r1/3 Cos (013) 

z2 = -r1I3 cos (013) + 31/2r1/3 sin (013) 

z3 = -r1/3 cos (013) - 31/2r1/3 sin (013) 

Only zl is positive because q > 0 and (-0)'12 > 0 imply that 0 < 0 < ~ 1 2 .  
Therefore cos (013) > 0, so z1 > 0; sin(013) > 0, so z3 < 0; and 

31/2 
cos (013) > cos (x/6) = - = 3ll2 sin ( ~ 1 6 )  > 3112 sin (013) , 

2 

so z2 < 0. 
Thus the equation (B.4) has exactly one root that is positive, and it is given by 

zl in (B.6). Since RMSE [e2] is of the form 

RMSE [e2] 
~ T A ~ O ' - ~ A ~  (2a4 - 4 a 2 ~ 0 2 + c u m 4  [ U ] )  +2A (6a4T+2T cum4 [u]) +4a4T2 

T2A2 

with a3 > 0, it tends to +m when A tends to +m . Therefore that single positive 
root corresponds to a minimum of RMSE [s2] which is reached at 

Replacing q and p by their values in the expression above yields (1.20). As shown 
above, if the expression inside the square root in formula (1.20) is negative, the 
resulting A* is still a positive real number. 

Appendix C -Proof of Proposition 1 

The result follows from an application of the delta method to the known properties 
of the MLE estimator of an MA(1) process (Section 5.4 in [25]), as follows. Because 
we re-use these calculations below in the proof of Theorem 2 (whose result cannot. 
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be inferred from known MA(1) properties), we recall some of the expressions of the 
score vector of the MA(1) likelihood. The partial derivatives of the log-likelihood 
function (1.25) have the form 

and 

so that the MLE for y2 is 
1 

92 = - y'v-ly . 
N 

At the true parameters, the expected value of the score vector is zero: E 1 = 

E [&z] = 0. Hence it follows from (C.1) that 
[ '4 

thus as N --t cm 

Similarly, it follows from (C.2) that 

Turning now to Fisher's information, we have 

whence the asymptotic variance of T ' / ~ ( + ~  - y2) is 2y4A. We also have that 

whence the asymptotic covariance of T'/,(y2 - y2) and ~ ' " ( 9  - 77) is zero. 

To evaluate E -i',, , we compute [ I 

and evaluate both terms. For the first term in (C.6), we have from (1.27): 
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For the second term, we have for any non-random N x N matrix Q: 

E [Y'QY] = E [Tr [Y'QY]] = E [Tr [QYY']] = T r  [E [QYY']] 

= T r  [QE [YY']] = T r  [Q~ 'V]  = y 2 ~ r  [QV] , 

where T r  denotes the matrix trace, which satisfies Tr[AB] = Tr[BA]. Therefore 

Combining (C.7) and (C.8) into (C.6), it follows that 

In light of that and (C.5), the asymptotic variance of TI/'($ - 77) is the same as in 
the Y2 known case, that is, (1 - T,')A (which of course confirms the result of [15] for 
this parameter). 

We can now retrieve the asymptotic covariance matrix for the original parameters 
(u2,a2) from that of the parameters (y2,q). This follows from the delta method 
applied to the change of variable (1.9)-(1.10): 

Hence 

T ( (  - ( )  T---tm -+ N (0. A V A R ( ~ ~ , ~ ~ ) )  , 

where 
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Appendix D - Proof of Theorem 2 

We have that 

E~... [i&] = covtruC(in, 4 2  

where "true" denotes the true distribution of the Y's, not the incorrectly specified 
normal distribution, and Cum denotes the cumulants given in Lemma 1. The last 
transition is because 

since Y has mean zero (see e.g., Section 2.3 of [36]). The need for permutation 
goes away due to the summing over all indices (i, j ,  k ,  l ) ,  and since V-' = [vij] is 
symmetric. 

When looking at  (D. I ) ,  note that Cumnormal ( K ,  Yj , Yk , K )  = 0, where "normal" 
denotes a Normal distribution with the same first and second order moments as the 
true distribution. That is, if the Y's were normal we would have 

Also, since the covariance structure does not depend on Gaussianity, Covtrue(K, Yj) = 

Covnormal (K ,  Yj). Next, we have 

with the last equality following from the fact that i',,2 depends only on the second 

moments of the Y's. (Note that in general Etrue [i&] # -Etrue [i&] because the 

likelihood may be misspecified.) Thus, it follows from (D.l) that 
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It follows similarly that 

and 

We now need to evaluate the sums that appear on the right hand sides of (D.3), 
(D.4) and (D.5). Consider two generic symmetric N x N matrices [vi'j] and [wi9j]. 
We are interested in expressions of the form 

It follows that if we set 

then T(v,  w) = Cum4 [U] @(v, w) where 
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If the two matrices [vi'j] and [wili] satisfy the following reversibility property: 
vN+l-i,N+l-j - - vi,j and WN+l-i,N+l-j - Wi,j - (so long as one is within the index 
set), then (D.8) simplifies to: 

This is the case for V-' and its derivative dV-'/dl?, as can be seen from the . . 
expression for vZV3 given in (1.28), and consequently for dvilj/dg. 

If we wish to compute the sums in equations (D.3), (D.4), and (D.5), therefore, 
we need, respectively, to find the three quantities *(dv/dv, v) , +(dv/dv, dvldv), 
and *(v,v) respectively. All are of order O(N),  and only the first term is needed. . . 
Replacing the terms vZ33 and dvilj/dv by their expressions from (1.28), we obtain: 

2 
*(v'v) = (1 + $) (1 - v)3(1 - v2(1+~) )2  

{- (1 + 7) (1 - vZN) (1 + 2 3  + 2T/2(liN) 
+ v2(2+N)) + 

The asymptotic variance of the estimator (j2,rj) obtained by maximizing the 
(incorrectly-specified) log-likelihood (1.25) that assumes Gaussianity of the U's is 
given by 

AVAR,,,,(~~, rj) = A (0's- I D )  -' , 
where, from (C.4), ((3.5) and ((3.9) we have 
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and, in light of (D.3), (D.4), and (D.5), 

1 1 
s = -Etrue N [if] = - N E t r u e  [i] + Cum4 [U] ly = D + Cum4 [U] ly , (D.13) 

where 

from the expressions just computed. I t  follows that 

AVAR~,,,(+~, rj) = A (D (D + Cum4 [U] ~ ) - l  D)-' 

= A (D (Id + cum4 [u] D-'!P)-l)-l 

= A (Id + Cum4 [U] D-lly) D-' 

= A (Id + Cum4 [U] D-'.) D-l 

= AVAR,~,,,I(.~.~, 4) + A Cum4 [U] D-~PD-',  

where I d  denotes the identity matrix and 

so that 

By applying the delta method to change the parametrization, we now recover the 
asymptotic variance of the estimates of the original parameters: 

A V A R ~ , ~ , ( ~ ~ ,  a2) 

= vf(r2,r]) .  ~~~Rtrue(+~,rj).~f(y~,~)' 

4 & 6 ~  (4a2 + a2A) + 2 a 4 n  -a2Ah(A, a2 ,  a2) 
& (2a2 + a2A)  h(A, a 2 ,  a2) + A Cum4 [U] 

Appendix E -Derivations for Section 1.7 

To see (1.39), let "orig" (E.7) denote parametrization in (and differentiation with 
respect to) the original parameters u2 and a2, while "transf' denotes parametrization 
and differentiation in and v, and fin, denotes the inverse of the change of variable 
function defined in (C.10), namely 
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and VJnv its Jacobian matrix. Then, from lorig = v finV(u2, a2)'.itransf, we have 

where ~[i~,,, ,f] is a 2 x 2 matrix whose terms are linear in itransf and the se~ond  par- 
tial derivatives of fin,. Now Etrue[i0rig] = Etruo[ i t ransf ]  = 0, and SO Etrue[H[ltransf]] = 
0 from which it follows that 

with 
Dtransf = ~ - l ~ t r u e [ - i t r a n s f ]  , 

given in (D.12). Similarly, 

and so 

with the second equality following from the expression for Stransf given in (D.13). 
To complete the calculation, note from (D. 14) that 

where 

Thus 
2 2 

v f i n v ( f 1 2 , C Y 2 ) ' . @ . ~ f i n v ( u  , CY ) = gorig.gLg + ~ ( l )  , (E.4) 
where 

which is the result (1.40). Inserting (E.4) into (E.3) yields the result (1.39). 
For the profile likelihood A, let &:z denote the maximizer of 1(u2,a2) for given 

u2. Thus by definition X(u2) = l ( c ~ ~ , & ~ ~ ) .  From now on, all differentiation takes 
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place with respect to the original parameters, and we will omit the subscript "orig" 
in what follows. Since 0 = i a2  (a2 ,  822), it follows that 

so that 

The profile score then follows 

so that at  the true value of (a2,a2),  

i (02 )  = iu2(a2. a2) - Etrue[!u2a21 ia2 (a2 ,  a2) + oP(1) , 
Etrue[laza2] 

since 8' = a2 + op(N-l/ ') and 

as sums of random variables with expected value zero, so that 

while 
ia2 (a2,  a2) = O ~ ( N ' / ~ )  , 

also as a sum of random variables with expected value zero. 
Therefore 

since ~ t . ~ ~ [ i , ~ ( o ~ , a ~ ) ]  = Etrue [ia2(a2,a2)] = 0. In particular, ~ t . ~ . [ A ( a ~ ) ]  = o(N) 
as claimed. 
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Further differentiating (E.7), one obtains 

from (E.6). Evaluated a t  a2 = 8') one gets 6%z = 6' and ia2(d2,62) = 0, and so 

where F(b2,  6')-'1 is the upper left element of the matrix 1(6', ti2)-'. Thus 
u2uz 

(1.42) is valid. 
Alternatively, we can see that the profile likelihood X satisfies the Bartlett iden- 

tity to first order, i.e., (1.43). Note that by (E.8), 

2 
t r u e  aza2] ' = N - ~ E ~ . ~ .  [Cz(o',a')' + ( E  li laz (a2 ,  a2))  - 

E t r u e [ i h z a z ]  

by invoking (1.39). 
Continuing the calculation, 
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since from the expressions for Dorig and gorig in ( E . 2 )  and ( E . 5 )  we have 

( E .  11)  

Then by ( E . 9 )  and the law of large numbers, we have 

N - ' E ~ ~ & u ~ ) ]  = -11 [ D - ~ ] ~ ~ , ~  + 0 ( 1 ) ,  (E .12 )  

and ( 1 . 43 )  follows from combining (E . lO)  with ( E . 1 2 ) .  

Appendix F -Proof of Lemma 2 

CC-' - Id  implies that 

and, since C is linear in the parameters u2 and a 2  (see ( 1 . 4 5 ) )  we have 

so that 

In the rest of this lemma, let expectations be conditional on the A's. We use the 
notation E1.I A] as a shortcut for E1.I A N ,  ..., All. At the true value of the parameter 
vector, we have, 

with the second equality following from ( 1 . 46 ) .  Then, for any nonrandom Q, we have 

E  [Y'QY] = Tr [QE [YY']] = Tr [QC] . ( F . 5 )  

This can be applied to Q that depends on the A's, even when they are random, 
because the expected value is conditional on the A's. Therefore it follows from ( F . 4 )  
that 

with the last equality following from ( F . l )  and so 
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again because of (F.2). 
In light of (1.46), the expected information (conditional on the A's) is given by 

Then, 

with the first equality following from (F.5) applied to Q = d2C-'/8/32/31r the second 
from (F.3) and the third from the fact that Tr[AB] = Tr[BA]. I t  follows that 

Appendix G - Proof of Theorem 3 

In light of (1.45) and (1.52), 
C = C O + E U ~ E ,  

from which it follows that 

C-I = (zo ( ~ d  + E ~ ~ C , - ' E ) ) - ~  

= ( ~ d  + E ~ ~ C , - ~ E ) - ~  ~ , - l  

- - C-' o - E U ~ C ~ ' E C ~ ~  + &'u4 (Cc12) '  C c l  + 0 ( c 3 ) ,  (G.2) 

since 
( Id  + &A)-' = Id  - EA + + o ( E ~ )  
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Also , 
a~ ac0 au2 -- -- + E-E 
apl apl apl 

Therefore, recalling (F.6), we have 

We now consider the behavior as N -+ co of the terms up to order E'.  The 
remainder term is handled similarly. 

Two things can be determined from the above expansion. Since the [:s are i.i.d. 
with mean 0, E[E]  = 0, and so, taking unconditional expectations with respect to 
the law of the A:s, we obtain that the coefficient of order E is 

Similarly, the coefficient of order s2 is 

The matrix E [ E c ; ' ~ ]  has the following terms 
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and since E [<itj] = 6ij Var[<] (where 6ij denotes the Kronecker symbol), it follows 
that 

E [ E . E i 1 ~ ]  = A: Var[<] diag [Cil] , (G.4) 

where diag [Cil] is the diagonal matrix formed with the diagonal elements of c;'. 
From this, we obtain that 

To calculate E [i&3,], in light of (1.51), we need to differentiate E [Blndet C/Bpl] 
with respect to /32. Indeed 

where we can interchange the unconditional expectation and the differentiation with 
respect to ,f32 because the unconditional expectation is taken with respect to the law 
of the Ais, which is independent of the ,B parameters (i.e., n2 and a'). Therefore, 
differentiating (G.5) with respect to P;! will produce the result we need. (The reader 
may wonder why we take the expected value before differentiating, rather than the 
other way around. As just discussed, the results are identical. However, it turns out 
that taking expectations first reduces the computational burden quite substantially.) 

Combining with (G.5), we therefore have 

It is useful now to introduce the same transformed parameters (-y2,q) as in 
previous sections and write Co = -y2v with the parameters and V defined as in 
(1.9)-(1.10) and (1.26), except that A is replaced by A0 in these expressions. To 
compute 4 ( O ) ,  we start with 
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with dy2/dP1 and dv/dP1 to be computed from (1.11)-(1.12). If I d  denotes the 
identity matrix and J the matrix with 1 on the infra and supra-diagonal lines and 
0 everywhere else, we have V = v21d + qJ ,  SO that dV/dq = 2vId + J. Therefore 

Therefore the first term in (G.7) is O(1) while the second term is O(N) and 
hence 

This holds also for the partial derivative of (G.7) with respect to 02. Indeed, given 
the form of (G.8), we have that 

since the remainder term in (G.8) is of the form p ( ~ ) v q ( N ) ,  where p and q are 
polynomials in N or order greater than or equal to 0 and 1 respectively, whose 
differentiation with respect to will produce terms that are of order o(N). Thus it 
follows that 

Writing the result in matrix form, where the (1 , l )  element corresponds to 
(P1,Pz) = (u2,  u2), the (1,2) and (2 , l )  elements to (P1,P2) = (a2 ,a2)  and the 
(2,2) element to (PI, P2) = (a2, a2) ,  and computing the partial derivatives in (G.9), 
we have 
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As for the coefficient of order E', that is r$(') in ( G . 6 ) ,  define 

so that 

We have 

[Crldiag [Col]] 
8/31 

Next, we compute separately 

V-'diag [v-'1 V- 

N dv&i 
z -xvi-i- 

i=l 877 

- - O ( 1 )  - 2N77 ( 1  + 77' - 774 - $ + o ( ~ ' ~ ) )  + ~ ~ 0 ( ~ ~ ~ )  
( 1  + 172 )2  ( 1  - 7 7 9 4  ( 1  - 7 7 2 ( 1 + q 3  

- - -2Nq + 
( 1  - 7 7 2 ) 3  

and 
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Therefore 

which can be differentiated with respect to /32 to produce da/d/32. As above, dif- 
ferentiation of the remainder term o(N) still produces a o(N) term because of the 
structure of the terms there (they are again of the form p ( ~ ) g * ( ~ ) . )  

Note that an alternative expression for a can be obtained as follows. Going back 
to the definition (G.11), 

the first trace becomes 

Ci1diag [Ccl] C i  diag [ C i l ]  C i  -Cgl 
8/31 lrnO a/3 1 I 

= -Tr diag [&''I -.A,- [ 8/31 I 

so that we have 

4 1  a a = -a - -Tr 
2 8/31 
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where the calculation of Tr [ V 1 d i a g  [V-'I] is as before, and where the o(N) term 
is a sum of terms of the form P ( N ) T ~ ~ ( ~ )  as discussed above. From this one can 
interchange differentiation and the o(N) term, yielding the final equality above. 

Therefore 

Writing the result in matrix form and calculating the partial derivatives, we obtain 

Putting it all together, we have obtained 

where 

The asymptotic variance of the maximum-likelihood estimators AvAR(&', 6') is 
therefore given by 

-1 
where the final results for A(') = do [F(')] and A(') = -Ao 

obtained by replacing F(O) and F ( ~ )  by their expressions in (G.15), are given in the 
statement of the Theorem. 
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Appendix H - Proof of Theorem 4 

It follows as in (D.3), (D.4) and (D.5) that 

1 
= - E t r u e  pp,p2 \A] + q Cum4 [U] 11 

since Cumtrue(Y,, Y, ,  Yk, KIA) = 2, f 1, or 0, x Cumtrue(U), as in (1.15), and with 
11 defined in (D.8). Taking now unconditional expectations, we have 

with the first and third equalities following from the fact that Etrue[lp, IA] = 0. 
Since 

E t r u e  [ie1p2 IA] = Enormat I A] , 
and consequently 

Etrue [%,02] = E.orm.1 [ia102] 

have been found in the previous subsection (see (G.15)), what we need to do to 

obtain Etrue [io, io2] is to calculate 

With C-' given by (G.2), we have for i = 1,2  

and therefore by bilinearity of ?1, we have 
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where the "[2]" refers to the sum over the two terms where /3l and /3p are permuted. 
The first (and leading) term in (H.3), 

corresponds to the equally spaced, misspecified noise distribution, situation studied 
in Section 1.6. 

The second term, linear in E, is zero since 

with the first equality following from the bilinearity of 10, the second from the fact 
that the unconditional expectation over the A;s does not depend on the /3 parame- 
ters, so expectation and differentiation with respect to b2 can be interchanged, and 
the third equality from the fact that E [El = 0. 

To calculate the third term in (H.3), the first of two that are quadratic in E ,  note 
that 
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with the second equality obtained by replacing E [EC;'.Z] with its value given in 
(G.4),  and the third by recalling that Co = y 2 v .  The elements (i, j )  of the two 
arguments of ?I, in (H.4) are 

and 

from which 1C, in (H.4) can be evaluated through the sum given in (D.8). 
Summing these terms, we obtain 

where 

The fourth and last term in (H.3), also quadratic in E ,  

is obtained by first expressing 

in its sum form and then taking expectations term by term. Letting now 

we recall our definition of +(v, w) given in (D.8) whose unconditional expected value 
(over the Ais, i.e., over 3) we now need to evaluate in order to obtain a 2 .  

We are thus led to consider four-index tensors hijkl and to define 
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where X i j k l  is symmetric in the two first and the two last indices, respectively, i.e., 
~ i j k l  - j i k l  and ~ i j k l  - ~ i j l k  - X - . In terms of our definition of $J in (D.8), it should be 
noted that $J(u ,w)  = &A) when one takes X i j k l  = u i , j w k , '  . The expression we seek 
is therefore 

where X i j k l  is taken to be the following expected value 

1  = [ i , j  ] - E v wkgl  

with the third equality following from the interchangeability of unconditional ex- 
pectations and differentiation with respect to /3, and the fourth from the fact that 
E [ErSZtU] # 0 only when r = s = t = u,  and 

Thus we have 

and 

Summing these terms, we obtain 
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where 

Putting it all together, we have 

E ) ]  
+ E2 ( 0 1  [2] + a2) + 0(E3) 

Finally, the asymptotic variance of the estimator (d2,  8') is given by 

AVAR~., ,(~~, 6') = E [ A ]  (D's-' D)-' , (H.8) 

where 

1 1 1 
D = 0' = - - Et... [i] = - en or ma^ [g = -EnormaI [ii'] 

N N 
= F(O) + + o ( E ~ )  

is given by the expression in the correctly specified case (G.15), with F(O) and F ( ~ )  

given in (G.16) and (G.17) respectively. Also, in light of (H.l) ,  we have 

1 S = -E "' 1 
L..' [ I 1  ] = F E t r u e  [i] + Cum4 [U] IY = D + Cum4 [U]  P , 

where 

- P(O) + E29(2) + o ( E ~ )  . 
Since, from (H.3), we have 

ac- I  ac-I  
it follows that PC) is the matrix with entries &$ (*, *), i.e., 
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and 

with 

with 

It follows from (H.8) that 

A V A R ~ , , , ( ~ ~ ,  ( i 2 )  = E [A]  ( D  ( D  + Cum4 [U] P)-' D)  -' 

= A0 (Id + Cum4 [U] D- 'P)  D-' 

= A V A R , , , , , I ( ~ ~ ,  c2 )  + AO Cum4 [U] D-'PD-' , 

where 
2 AVAR,,,,,~ (e2,  (i ) = no D- = A(') + + 2 ~ ( 2 )  + o ( E ~ )  

is the result given in Theorem 3, namely (1.53). 
The correction term due to the misspecification of the error distribution is de- 

termined by Cum4 [U] times 
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where the matrices are given in the text. The asymptotic variance is then given by 

A V A R ~ ~ , , ( ~ ~ ,  8') = (A(') + Cum4 [U] B(o)) + a2 (A") + Cum4 [U] B ( ~ ) )  + 0(a3)  , 

with the terms A('), A('), B(O) and B(') given in the statement of the Theorem. 

Appendix I - Proof of Theorem 5 

From 
c2 (1 - e-bA) 

E [&2] = E [wf] + E [uf] = ff A + 
b , 

it follows that the estimator (1.5) has the following expected value 

c2 (1 - e-bA) 
= f f2  + bA 

bc2 
= (02 + c2) - lA + 0 ( A 2 ) .  

The estimator's variance is 

1 
Var [s2] = -? Var 

T 
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Since the x's are normal with mean zero, 

and for i > j 
cov (.kr,', yj2) = 2 cov ( ~ , y j ) ~  = 2 E [uiui12, 

since 
COV (K,  Y,)  = E [KY,] = E [(wi + ui) (wj + uj)] = E [uiuj] . 

Now we have 

so that 

,2 - e - b ~ ) 2  e-bA(i-j- l)  
Cov ( q 2 ,  Yj? )  = 2 

2b 

and consequently 

with N = T/A. The RMSE expression follows from (1.1) and (1.2). As in Theorem 
1, these are exact small sample expressions, valid for all (T, A). 



1 How Often to Sample a Continuous-Time Process ... 63 

Tables 

Value of a T = 1 d a y  T = 1 year  T = 5 years 

Pane l  A: a = 30% Stocks 

4 mn 
31 mn 
1.3 hr 
2.2 hr 
3.3 hr 
5.6 hr 

1.3 day 
1.7 day 

2.2 days 
2.7 days 
3.2 days 
3.8 days 
4.3 days 

6 mn 
53 mn 
2.2 hr 
3.8 hr 
5.6 hr 

1.5 day 
2.2 days 
2.9 days 
3.7 days 
4.6 days 
1.1 week 
1.3 week 
1.5 week 

Panel  B: a = 10% Currencies 

0.005% 4 mn 23 mn 39 mn 
0.01% 9 mn 58 mn 1.6 hr 
0.02% 23 mn 2.4 hr 4.1 hr 
0.05% 1.3 hr 8.2 hr 14.0 hr 
0.10% 3.5 hr 20.7 hr 1.5 day 

Table 1.1. Optimal Sampling Frequency 

This table reports the optimal sampling frequency A* given in equation (1.20) for 
different values of the standard deviation of the noise term a and the length of the 
sample T. Throughout the table, the noise is assumed to be normally distributed 
(hence Cum4 [U] = 0 in formula (1.20)). In Panel A, the standard deviation of the 
efficient price process is a = 30% per year, and at a = 10% per year in Panel B. In 
both panels, 1 year = 252 days, but in Panel A, 1 day = 6.5 hours (both the NYSE 
and NASDAQ are open for 6.5 hours from 9:30 to 16:OO EST), while in Panel B, 1 
day = 24 hours as is the case for major currencies. A value of a = 0.05% means that 
each transaction is subject to Gaussian noise with mean 0 and standard deviation 
equal to 0.05% of the efficient price. If the sole source of the noise were a bid/ask 
spread of size s ,  then a should be set to s/2. For example, a bid/ask spread of 10 
cents on a $10 stock would correspond to a = 0.05%. For the dollar/euro exchange 
rate, a bid/ask spread of s = 0.04% translates into a = 0.02%. For the bid/ask 
model, which is based on binomial instead of Gaussian noise, Cum4 [U] = -s4/8, 
but this quantity is negligible given the tiny size of s. 
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Sampling Theoretical Sample Theoretical Sample 
Interval Mean Mean Stand. Dev. Stand. Dev. 

5minutes 0.185256 0.185254 0.00192 0.00191 
15 minutes 0.121752 0.121749 0.00208 0.00209 
30 minutes 0.10588 0.10589 0.00253 0.00254 

1 hour 0.097938 0.097943 0.00330 0.00331 
2 hours 0.09397 0.09401 0.00448 0.00440 
1 day 0.09113 0.09115 0.00812 0.00811 

1 week 0.0902 0.0907 0.0177 0.0176 

Table 1.2. Monte Carlo Simulations: Bias and Variance when Market Microstruc- 
ture Noise is Ignored 

This table reports the results of M = 10,000 Monte Carlo simulations of the esti- 
mator 62,  with market microstructure noise present but ignored. The column "the- 
oretical mean" reports the expected value of the estimator, as given in (1.17) and 
similarly for the column "theoretical standard deviation" (the variance is given in 
(1.19)). The "sample" columns report the corresponding moments computed over 
the M simulated paths. The parameter values used to generate the simulated data 
are (s2 = 0 . 3 ~  = 0.09 and a2 = (0.15%)~ and the length of each sample is T = 1 
year. 
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15mn I hr 2 hr 
sampling interval A 

Fig. 1.2. RMSE of the estimator 32 when the presence of the noise is ignored 

- Without Noise 
- - - -  With Noise 

15mn lhr 2hr 3hr 
sampling interval A 

1 day 

Fig. 1.3. Comparison of the asymptotic variances of the MLE e2 without and with 
noise taken into account 
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0.6825 0.085 0.0875 0.09 

density 

Fig. 1.4. Asymptotic and Monte Carlo distributions of the MLE (3',ii2) with 
Gaussian microstructure noise 
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density 

density 

6 - 

5 - 

Fig. 1.5. Asymptotic and Monte Carlo distributions of the QMLE ( ( i 2 , ( i 2 )  with 
misspecified microstructure noise 
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0 1  , 

15mn lhr 2 hr 3 hr 1 day 
sampling interval a 

Fig. 1.6. RMSE of the estimator s2 when the presence of serially correlated noise 
is ignored 
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Summary. In this brief note we review some of our recent results on the use of high 
frequency financial data to estimate objects like integrated variance in stochastic 
volatility models. Interesting issues include multipower variation, jumps and market 
microstructure effects. 

2.1 Introduction 

This paper briefly summarises some recent and ongoing work concerning infer- 
ence on stochastic volatility (see, for example, the reviews in Ghysels, Harvey, 
and Renault [14] and Shephard [17]), with the focus on multipower variation 
as a tool for such inference. 

We assume that the log price process is of the form X = Y + Z where Y 
is an Brownian semimartingale (BSM), 

whose quadratic variation [Y], which embodies the volatile character of Y, is 
the main object of interest, while Z expresses effects that may be considered 
in some sense extraneous to the basic dynamics of the financial market. The 
process Z may be a jump process, representing for instance the impacts of 
macroeconomic announcements, or it could represent microstructure noise. 

In (2.1) W is a Brownian motion, the volatility process a is assumed to 
be positive and c&dl&g, a is predictable and locally bounded, and we have the 
well known result that the quadratic variation of Y satisfies 

We shall write, for arbitrary r > 0, 
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and we wish to  device inference procedures for these quantities, particularly 
for o,2* (= [Y] t). 

Although the above formulation is in terms of univariate processes, much 
of the theory extends rather readily to a general multivariate setting. However, 
we shall not consider this further here but refer to the papers Barndorff-Nielsen 
and Shephard [lo], Barndorff-Nielsen, Graversen, Jacod, and Shephard [4] and 
Barndorff-Nielsen, Graversen, Jacod, Podolsky, and Shephard [3]. We shall 
further restrict attention to equidistant sampling schemes; the situation under 
more general schemes are discussed in Barndorff-Nielsen and Shephard [12] 
and Woerner [18]. See also Mykland and Zhang [16]. 

After introducing the concepts of multipower variation (MPV) and gener- 
alised multipower variation in Section 2, we discuss, in Section 3, applications 
of MPV to inference on volatility under BSM models (that is, there we sup- 
pose that Z = 0). Section 4 treats applications of MPV to cases where Z is a 
jump process, both for finite and infinite activity scenarios. The final Section 5 
indicates some work in progress concerning the impact of microstructure noise. 

For numerical and empirical work and illustrations of the theoretical 
results presented here we additionally refer to Barndorff-Nielsen, Hansen, 
Lunde, and Shephard [5, 61, Barndorff-Nielsen and Shephard [8, 9, 111 and 
Barndorff-Nielsen, Shephard, and Winkel [13]. 

2.2 Multipower Variation 

For arbitrary continuous time processes X = {Xt}t>o and equidistant subdi- 
visions of time with lag 6 > 0 we define the 6-discretisation of X by 

where, as usual, LsJ indicates the largest integer less than or equal to a real 
number s. Furthermore, we introduce the realised multipower variation (MPV) 
of order m for X by 

where r is short for r l ,  ..., r,, the rl being nonnegative, and 

We shall also use the normalised version of realised MPV, defined by 
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where r+ = rl + + r,. 
In particular we will discuss applications of the power, bipower, and 

tripower variations (PV, BPV and TPV): 

In the recent paper Barndorff-Nielsen, Graversen, Jacod, Podolsky, and 
Shephard [3] the concept of MPV is generalised to generalised multipover 
variation where one considers realised objects of the form 

where gl ,  ..., gm are real functions satisfying certain regularity conditions, pow- 
ers of absolute values being a special case. While this generalisation opens up 
further potential for applications, the associated central limit theory for (mul- 
tivariate) BSM models, as established in [3], is in effect not more (or less) 
difficult than for the MPV case. In the following Section we draw on results 
from [3] to establish feasible limit theory for multipower variation under the 
BSM specification. 

2.3 MPV for BSM 

Let Y be a Brownian semimartingale as defined in Section 1. Important special 

and 

with the volatility process a satisfying a stochastic differential equation of the 
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where a', a', v are adapted c&dl&g processes, V is a Brownian motion, possibly 
correlated with W, and Z is a LBvy process. This second structure encom- 
passes both the models of Heston type and those of non-Gaussian OU-based 
type introduced by Barndorff-Nielsen and Shephard [7]. 

Without further assumptions we then have the following convergence in 
probability (CiP) and central limit theorem (CLT) for MPV. 

Theorem 1. As 6 -+ 0 

and 
t 

6-1/2 ({Y~, . . . , f i}~ ' -~" l -  aTt*) t % &l a l + d ~ , ,  (2.3) 

where B is a Brownian motion which is independent of Y and where 

m m m-1 k m m-k 

and PT = E {IuIT} for u N(0 , l ) .  The convergence in (2.3) is in fact stable 
as processes, which is stronger than convergence in law. 

This theorem is a special case of the results established in Barndorff- 
Nielsen, Graversen, Jacod, Podolsky, and Shephard [3]. The proofs given there 
are (unavoidably) rather long-winded and use advanced stochastic analysis. 
An explanatory simpler version will be given in Barndorff-Nielsen, Graversen, 
Jacod, and Shephard [4]. 

The independence between Y and B is crucial for the possibility to estab- 
lish statistically feasible CLT results, such as the following : 

where 

and s = (s l ,  ..., sm) with s+ = 2r+. 
In particular, note that for realised PV, BPV and TPV in the case where 

r+ = 2, rj = l / r+ ,  then for example, 
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and 

2.4 MPV for 8SM + Jump Process 

We now consider various extensions of the above results to one-dimensional 
processes of the form 

X = Y + Z ,  

where Y E BSM while Z is a process exhibiting jumps. The processes Y and 
Z are not assumed to be independent. Our discussion is based on Barndorff- 
Nielsen, Shephard, and Winkel [13] and is related to Barndorff-Nielsen and 
Shephard [ll] and Woerner [18]. 

We assume that Y satisfies (2.2) or (2.3) for MPV and consider to which 
extent this limiting behaviour remains the same when Z is added to Y, i.e. 
whether the influence of Z is negligible (in this respect). 

In other words, we ask whether: 

for the CiP case, 

for the CLT case, 

We shall use the fact that Y satisfies 

6-1 /21~s  - qj-l)sl = Op 

uniformly in j. We write max r for max{rl, ..., r,). 

2.4.1 Finite Activity Case 

When Z is a finite activity jump process then pathwise the number of jumps 
of Z is finite and, for sufficiently small 6, none of the additive terms in 
[Xs, ..., X ~ ] [ ' ~ I . . . I ~ ~ ]  involves more than one jump. 

Each of the terms in [Xg, ..., X ~ ] [ ~ ~ ~ . - ~ " ' ~ I  that contains no jumps is of order 
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and any of the terms that do include a jump is of order 

So: 

CiP is not influenced by Z so long as maxr < 2, while CLT continues to 
hold so long as max r < 1. 

The bound maxr < 2 seems quite a tight condition for when m = 1 and 
r = 2  

[ X S ] [ ~ ]  _2: [Y] + [Z] 
i.e. jumps do impact the limit. 

The above CiP and CLT results mean that we can use multipower variation 
to make inference about a:*, integrated variance, in the presence of finite 
activity jump processes so long as maxr  < 1 and r+ = 2. 

An example of this is where m = 3 and we take rl = rz = r g  = 213, that 
is using TPV - Tripower Variation, cf. relation (2.5) above. 

2.4.2 Infinite Activity Case 

In discussing CiP and CLT for the case where Z exhibits infinite activity, 
i.e. infinitely many jumps in any finite time interval, we shall for simplicity 
restrict consideration to the case rl = . . = r, = r .  Detailed calculations, 
using classical inequalities, show that: 

for MPVCiP it suffices that 

....... 
61-r/21 log [ ( 7 ; 1 ) ]  = op(l)  . 

For MPVCLT it suffices that r 5 1 and 

These sufficient conditions are also close to being necessary, as the exam- 
ples below will show. 
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2.4.3 L6vy Jumps 

Now, suppose that the jump process Z is a Levy process. Alternatively, we 
might consider the case of Z being an OU process with BDLP (background 
driving LQvy process) L. However, as shown in Barndorff-Nielsen, Shephard, 
and Winkel [13], the conclusions regarding CiP and CLT for X = Y + Z would 
be the same as for X = Y + L. 

Example 1. Let Z be the r ( v , a )  subordinator, i.e. Z is the LBvy process for 
which the law of Z1 is the gamma distribution with pdf 

This is an infinite activity process and for t 4 0 we have 

whatever the value of p > 0. (Here we have used that tI'(t) -+ 1 as t 4 0.) 
~ h u s  [~s][ ' l  = 0,(1), [ z ~ ,  z ~ ] [ ~ ' ~ ~  = op(d) ,  [ z ~ ,  26, z~]['"'~] = 0p(d2),  etc. 
Consequently: 

0 MPVCiPisvalidfor a l l m =  1,2, ... a n d O < r  < 2 .  
0 MPVCLT is valid for all m = 1,2, .. . and 0 < r < 1. 

On the other hand we have, for example, that BPVCLT does not hold if 
r = 1  a n d Y V Z .  

Example 2. Let Z be the IG($, y) subordinator, i.e. Z is the LQvy process for 
which the law of Z1 is the inverse Gaussian distribution with pdf 

Then, as t 4 0, 

so that, for $ < r < 1 we have [z~][~J'] = Op(b) and [ z ~ ] [ ~ ]  = OP(1). Conse- 
quently: 

0 MPVCiP isvalid for a l l m =  1,2, ... a n d 0  < r  < 2. 
0 MPVCLT is valid for all m if $ < r < 1. 

In particular, MPVCLT holds for tripower variation with r = $. 
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Example 3. Let Z be the NIG(y,  O,O, 4)  LBvy process. This is representable 
as the subordination of a Brownian motion B by the IG(q5, y) subordinator. 
Hence, E {IZtlq) behaves asymptotically as in (2.6) with p = q/2. Conse- 
quently: 

0 MPVCiP is valid for all m = 1,2, . . . and 0 < r < 2. 
0 MPVCLT does not hold for any value of r. 

What decides the possibility of MPVCiP or MPVCLT holding is essen- 
tially the degree of singularity at  0 of the LQvy measure of Z (which may be 
expressed in terms of the Blumenthal-Getoor index). For the three examples 
above the degrees are respectively x-l, x-3/2 and x - ~ .  In the latter case there 
are so many small jumps that the process partly resembles a diffusion, and 
this is what prevents separate inference on the volatility process a. 

2.5 Microstructure Noise 

Zhou [21] seems to be the first paper that manifestly demonstrates the neces- 
sity to take microstructure noise into account when drawing inference on the 
integrated (squared) volatility of the log price process, based on high frequency 
data. In Andersen, Bollerslev, Diebold, and Labys [I] this was emphasised fur- 
ther through the introduction of the volatility signature plot, which made it 
clear that even for five minute lags the influence of the noise is generally 
appreciable. 

However, the precise nature and influence of the noise is far from well 
understood and this constitutes a topic of strong current interest. 

In a recent paper, Zhang, Mykland, and kt-Sahalia [20] address the noise 
problem and proposes a subsampling procedure for estimating the integrated 
volatility of the log price process. Hansen and Lunde [15] have initiated a 
study of how the realised quadratic variation may be bias corrected to allevi- 
ate the noise effect. See also the work of Bandi and Russell [2]. The latter line 
of investigation is continued in joint ongoing work between Barndorff-Nielsen, 
Hansen, Lunde, and Shephard [5,6]. That work considers a general class of ker- 
nel estimators of the quadratic variation of the log price process. It  is shown, 
in particular, that the subsampling procedure for estimation of quadratic vari- 
ation proposed by kt-Sahalia, Mykland and Zhang is a special case of that 
class. However the main thrust of the Barndorff-Nielsen, Hansen, Lunde, and 
Shephard [5] work consists in determining, from optimality criteria, another 
type of kernel estimator that has turned out to yield very accurate estimates 
for almost all lags. The relevance of MPV for the study of microstructure noise 
will also be considered. In some stimulating recent work Zhang [I91 has shown 
that subsampling can be generalised to achieve the same rate of convergence 
as the modified kernel suggested by Barndorff-Nielsen, Hansen, Lunde, and 
Shephard [5]. 
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3.1 Introduction 

In this note, we provide a rather detailed and comprehensive study of the ba- 
sic properties of self-financing trading strategies in a general security market 
model driven by discontinuous semimartingales. Our main goal is to  analyze 
the issue of replication of a generic contingent claim using a self-financing 
trading strategy that is additionally subject to  an algebraic constraint, re- 
ferred to  as the balance condition. Although such portfolios may seem to be 
artificial a t  the first glance, they appear in a natural way in the analysis of 
hedging strategies within the reduced-form approach to credit risk. 

Let us mention in this regard that in a companion paper by Bielecki et 
al. [I] we also include defaultable assets in our portfolio, and we show how to 
use constrained portfolios to  derive replicating strategies for defaultable con- 
tingent claims (e.g., credit derivatives). The reader is also referred to  Bielecki 
e t  al. [I], where the case of continuous semimartingale markets was studied, 
for some background information regarding the probabilistic and financial set- 
up, as well as the terminology used in this note. The main emphasis is put 
here on the relationship between completeness of a security market model 
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with unconstrained trading and completeness of an associated model in which 
only trading strategies satisfying the balance condition are allowed. 

3.2 Trading in Primary Assets 

Let K1, K2, .  . . , Kk represent cash values at time t of k primary assets. We 
postulate that the prices Y1, Y2, .  . . , yk follow (possibly discontinuous) semi- 
martingales on some probability space (0, F, P), endowed with a filtration F 
satisfying the usual conditions. Thus, for example, general LBvy processes, 
as well as jump-diffusions are covered by our analysis. Note that obviously 
IFY C F, where FY is the filtration generated by the prices Y1, Y2 , .  . . , yk 
of primary assets. As it is usually done, we set Xo- = Xo for any stochastic 
process X,  and we only consider semimartingales with c&dl&g sample paths. 
We assume, in addition that at  least one of the processes Y1, Y2, .  . . , y k ,  say 
Y1, is strictly positive, so that it can be chosen as a numeraire asset. We 
consider trading within the time interval [O,T] for some finite horizon date 
T > 0. We emphasize that we do not assume the existence of a risk-free asset 
(a  savings account). 

3.2.1 Unconstrained Trading Strategies 

Let 4 = ($I, $2, . . . , $k) be a trading strategy; in particular, each process @ 
is predictable with respect to the reference filtration F. The component 4: 
represents the number of units of the ith asset held in the portfolio at  time t.  
Then the wealth &($) at  time t of the trading strategy q5 = ($I, 42 , .  . . , 4k)  
equals 

k 

& ( $ ) = C $ x ,  V tE[O,T] ,  (3.1) 
i= 1 

and $ is said to be a self-financing strategy if 

Let @ be the class of all self-financing trading strategies. By combining the 
last two formulae, we obtain the following expression for the dynamics of the 
wealth process of a strategy $ E 0 

The representation above shows that the wealth process V(q5) depends only 

on k - 1 components of $. Note also that, in our setting, the process 

zt2 $tq) ( ~ ) - l  is predictable. 
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Remark 1. Let us note that Protter [4] assumes that the component of a strat- 
egy + that corresponds to the savings account (which is a continuous process) 
is merely optional. The interested reader is referred to Protter [4] for a thor- 
ough discussion of other issues related to the regularity of sample paths of 
processes +I ,  +2 , .  . . , +k and V(+). 

Choosing Y1 as a numeraire asset, and denoting &I(+) = &(+)(ql)-', 
y;J = T ( q 1 ) - l ,  we get the following well-known result showing that the 

self-financing feature of a trading strategy is invariant with respect to the 
choice of a numeraire asset. 

Lemma 1. (i) For any 4 E @, we have 

(ii) Conversely, let X be an &-measurable random variable, and let us  assume 
that there exists x E IR and IF-predictable processes @, i = 2,3,.  . . , k such that 

Then there exists an IF-predictable process such that the strategy + = 

(+I, +2, . . . , +k) i s  self-financing and replicates X . Moreover, the wealth pro- 
cess of + satisfies &(+) = where the process V1 i s  given by formula 
(3.4) below. 

Proof, The proof of part (i) is given, for instance, in Protter [4]. We shall thus 
only prove part (ii). Let us set 

and let us define the process as 

where & = &'ql. From (3.4), we have d&' = ~ f = ~  +: d g " ,  and thus 

From the equality 
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it follows that 

and our aim is to prove that 

The last equality holds if 

i.e., if A&' = ~ : A Y , ~ ~ ' ,  which is the case from the definition (3.4) of V1. 
Note also that from the second equality in (3.9) it follows that the process 4' 
is indeed IF-predictable. Finally, the wealth process of 4 satisfies %($) = V,lql 
for every t E [O,T], and thus VT($) = X. 0 

3.2.2 Constrained Trading Strategies 

In this section, we make an additional assumption that the price process yk is 
strictly positive. Let 4 = ($I, c $ ~ , .  . . , q5k) be a self-financing trading strategy 
satisfying the following constraint: 

for some 1 5 1 5 k - 1 and a predetermined, IF-predictable process 2. In the 
financial interpretation, equality (3.10) means that the portfolio q5 should 
be rebalanced in such a way that the total wealth invested in securities 
y l + l ,  Y1+2,. . . , yk should match a predetermined stochastic process (for in- 
stance, we may assume that it is constant over time or follows a deterministic 
function of time). For this reason, the constraint (3.10) will be referred to as 
the balance condition. 

Our first goal is to extend part (i) in Lemma 1 to the case of constrained 
strategies. Let Q1 (2) stand for the class of all self-financing trading strategies 
satisfying the balance condition (3.10). They will be sometimes referred to as 
constrained strategies. Since any strategy q5 E Ql(Z) is self-financing, we have 
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and thus we deduce from (3.10) that 

Let us write = Y,Z(q1)-I, qitk = y i ( y k ) - l ,  2: = Zt(q l ) - l .  The follow- 
ing result extends Lemma 1.7 in Bielecki et al. [I] from the case of continuous 
semimartingales to the general case. It  is apparent from Proposition 1 that the 
wealth process V($) of a strategy 4 E cDl ( 2 )  depends only on Ic-2 components 
of 4. 

Proposition 1. The relative wealth &I($) = &($)(ql)-I of a strategy 4 E 
cD1 ( 2 )  satisfies 

Proof. Let us consider discounted values of price processes Y l ,  Y2, . . . , Y k ,  
with Y1 taken as a numeraire asset. By virtue of part (i) in Lemma 1, we thus 
have 

The balance condition (3.10) implies that 

and thus 

By inserting (3.13) into (3.12), we arrive at the desired formula (12.2). 

Let us take 2 = 0, so that 4 E cDl(0). Then the balance condition becomes 
~ t = ~ + ~  &Y,"_ = 0, and (12.2) reduces to 
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3.2.3 Case of Continuous Semimartingales 

For the sake of notational simplicity, we denote by yiykl1 the process given by 
the formula 

so that (12.2) becomes 

In Bielecki et al. [I], we postulated that the primary assets Y1, Y2, . . . , yk 
follow strictly positive continuous semimartingales, and we introduced the 
auxiliary processes e ' k l l  = e 'ke-a: 'k ' l ,  where 

In Lemma 1.7 in Bielecki et al. [I] (see also Vaillant [5]), we have shown that, 
under continuity of Y1, Y2, .  . . , Yk, the discounted wealth of a self-financing 
trading strategy q5 that satisfies the constraint c,".~+~ q5iy = Zt can be 
represented as follows: 

where we write z'k'l = &(ytl,k)-lea:'k". The following simple result recon- 
ciles expression (3.16) established in Proposition 1 with representation (3.17) 
derived in Bielecki et al. [I]. 

Lemma 2. Assume that the prices Y l ,  Yi and yk follow strictly positive con- 
tinuous semimartingales. Then we have 
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Proof. In the case of continuous semimartingales, formula (3.15) becomes 

On the other hand, an application of It6's formula yields 

and thus 

One checks easily that for any two continuous semimartingales, say X and Y, 
we have 

Y,-' ( dx t  - Y , - l d ( ~ ,  Y ) ~ )  = d(xtY,-l) - xt dY,-' , 
provided that Y is strictly positive. To conclude the derivation of the first 
formula, it suffices to apply the last identity to processes X = Yi"C and Y = 

Y1tk. For the second formula, note that 

as required. 0 

It  is obvious that the processes Yi*kll and Pivkll are uniquely specified 
by the joint dynamics of Y1, Yi and Yk. The following result shows that the 
converse is also true. 

Corollary 1. The price at time t is uniquely specified by the initial value 
Yt and either 
(i) the joint dynamics of processes Y1, Yk and J i lk>l ,  or 
(ii) the joint dynamics of processes Y1, Yk and ~ ~ 9 ~ 9 ' .  

i ,k -ai..k,l 
Proof. Since e'k'l = Y ,  e t , we have 

and thus 
k ^ i , k , l  a:'"" = ykJi ,k , le( ln  9i*k31,1n yl")t F=Y,Y, e t t 

This completes the proof of part (i). For the second part, note that the process 
Yill satisfies 

y:,l = yGl + y;,k,l 
o (3.18) 

It  is well known that the SDE 
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where H and Y are continuous semimartingales (with Ho = 0) has the unique, 
strong solution given by the formula 

Upon substitution, this proves (ii). 0 

3.3 Replication with Constrained Strategies 

The next result is essentially a converse to Proposition 1. Also, it extends part 
(ii) of Lemma 1 to the case of constrained trading strategies. As in Section 
3.2.2, we assume that 1 5 1 2 k - 1, and Z is a predetermined, IF-predictable 
process. 

Proposition 2. Let an FT-measurable random variable X represent a con- 
tingent claim that settles at time T .  Assume that there exist IF-predictable 
processes @, i = 2,3, .  . . , k - 1 such that 

(3.19) 
Then there exist the IF-predictable processes 4' and 4k such that the strategy 
4 = ($I, 421 . . . , 4k)  belongs to Qil ( 2 )  and replicates X. The wealth process of 
4 equals, for every t E [0, TI, 

Proof. As expected, we first set (note that 4k is IF-predictable) 

and 

Arguing along the same lines as in the proof of Proposition 1, we obtain 
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Now, we define 

where K = KIY,l. As in the proof of Lemma 1, we check that 

and thus the process 4l is IF-predictable. It  is clear that the strategy 4 = 
($I, rn2, . . . , q5k) is self-financing and its wealth process satisfies K(4)  = K for 
every t E [O,T]. In particular, VT(@) = X, SO that 4 replicates X. Finally, 
equality (3.21) implies (3.10), and thus 4 E Q(Z).  

Note that equality (12.3) is a necessary (by Proposition 1) and sufficient 
(by Proposition 2) condition for the existence of a constrained strategy repli- 
cating a given contingent claim X. 

3.3.1 Modified Balance Condition 

It  is tempting to replace the constraint (3.10) by a more convenient condition: 

where Z is a predetermined, IF-predictable process. If a self-financing trading 
strategy 4 satisfies the modified balance condition (3.22) then for the relative 
wealth process we obtain (cf. (12.2)) 

Note that in many cases the integrals above are meaningful, so that a counter- 
part of Proposition 1 with the modified balance condition can be formulated. 
To get a counterpart of Proposition 2, we need to replace (12.3) by the equality 
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where m3, 44, . . . , q5k are IF-predictable processes. We define 

and we set 

Suppose, for the sake of argument, that the processes 4' and 4k defined 
above are IF-predictable. Then the trading strategy 4 = (4') 42 , .  . . , 4k) is 
self-financing on [0, TI, replicates X ,  and satisfies the constraint (3.22). Note, 
however, that the predictability of 4' and c$~ is far from being obvious, and 
it is rather difficult to provide non-trivial and practically appealing sufficient 
conditions for this property. 

3.3.2 Synthetic Assets 

Let us fix i ,  and let us analyze the auxiliary process yilk*l given by formula 
(3.15). We claim that this process can be interpreted as the relative wealth 
of a specific self-financing trading strategy associated with Y1, y 2 , .  . . , yk. 
Specifically, we will show that for any i = 2,3,.  . . , k - 1 the process 
given by the formula 

represents the price of a synthetic asset. For brevity, we shall frequently write 
Pi instead of Pi2k91. Note that the process Pi is not strictly positive (in fact, 
Pi - 

0 - 0). 

Equivalence of Primary and Synthetic Assets 

Our goal is to show that trading in primary assets is formally equivalent to 
trading in synthetic assets. The first result shows that the process can be 
obtained from primary assets Y l ,  Yi and yk through a simple self-financing 
strategy. This justifies the name synthetic asset given to Pi. 
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Lemma 3. For any &xed i = 2,3,.  . . , k - 1, let an fi-measurable random 
variable y; be given as 

Then there exists a strategy $ E @(0) that replicates the claim y;. Moreover, 
we have, for every t E [0, TI, 

Proof. To establish the existence of a strategy $ with the desired properties, 
it suffices to apply Proposition 2. We fix i and we start by postulating that 

= 1 and @ = 0 for any 2 5 j 5 k - 1, j # i. Then equality (3.25) yields 
(12.3) with X = y$, x = 0, 1 = 1 and Z = 0. Note that the balance condition 
becomes 

k 

Let us define and $k by setting 

Note that we also have 

Hence, and $k are IF-predictable processes, the strategy $ = ($I, $ 2 1 . .  . , $k) 
is self-financing, and it satisfies (3.10) with 1 = 1 and Z = 0, so that 4 E @1(0). 
Finally, equality (3.26) holds, and thus VT (4) = Y;. 

Note that to replicate the claim 7; = ?.kk"', it suffices to invest in primary 
assets Y1, Yi and yk. Essentially, we start with zero initial endowment, we 
keep at  any time one unit of the ith asset, we rebalance the portfolio in such 
a way that the total wealth invested in the ith and kth assets is always zero, 
and we put the residual wealth in the first asset. Hence, we deal here with 
a specific strategy such that the risk of the ith asset is perfectly offset by 
rebalancing the investment in the kth asset, and our trades are financed by 
taking positions in the first asset. 

Note that the process Yi*' satisfies the following SDE (cf. (3.18)) 
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which is known to possess a unique strong solution. Hence, the relative price 
qi" at  time t is uniquely determined by the initial value Y:" and processes 
Till and yk*l. Consequently, the price Y,Z a t  time t of the ith primary asset 
is uniquely determined by the initial value Yi, the prices Y1, Yk of primary 
assets, and the price Ti of the i th  synthetic asset. We thus obtain the following 
result. 

Lemma 4. Filtrations generated by the primary assets Y1, Y2, .  . . , yk and by 
the price processes Y l ,  Y2, . . . , y l ,  F1+l ,  . . . , yk- l ,  yk coincide. 

Lemma 4 suggests that for any choice of the underlying filtration IF (such 
that PY C P), trading in assets Y1, Y2, .  . . , yk is essentially equivalent to 
trading in Y1, Y2, .  . . , y l ,  T1+ l ,  . . . ,Vk-l,  yk. Let us first formally define the 
equivalence of market models. 

Definition 1. W e  say that the two unconstrained models, M and G say, 
are equivalent with respect to a filtration IF if both models are defined on a 
common probability space andevery  primary asset i n  M can be obtained by 
trading i n  primary assets i n  M and vice versa, under the assumption that 
trading strategies are IF-predictable. 

Note that we do not assume that models M and G have the same number 
of primary assets. The next result justifies our claim of equivalence of primary 
and synthetic assets. 

Corollary 2. Models M = (Y1, Y2, .  . . , yk; @) and M = (Y1, Y2, .  . . , Y', 
T1+l , .  . . , Tk-l, yk; @) are equivalent with respect to any filtration IF such that 
IFYCIF.  

Proof. In view of Lemma 3, it suffices to  show that the price process of each 
primary asset Yi for i = 1,l + 1,. . . , k - 1 can be mimicked by trading in 
Y1, Ti and yk. To see this, note that for any fixed i = 1 , 1 +  1, .  . . , k - 1, we 
have (see the proof of Lemma 3) 

with 
d q  = dK(q5) = 4; d q l  + d q  + 4: d q k  

Consequently, 
k k Y,Z=-+;ql+q-(bty, 

and 
dY,i = -4; d q l  + d q  - 4; d q k  . 

This shows that the strategy (-$I, 1, -$k) in Y l ,  and yk is self-financing 
and its wealth equals Y2. 0 
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Replicating Strategies with Synthetic Assets 

In view of Lemma 3, the replicating trading strategy for a contingent claim 
X ,  for which (12.3) holds, can be conveniently expressed in terms of primary 
securities Y1,  Y 2 , .  . . , Y' and yk, and synthetic assets F1+l, F1+' y e . . )  Fk-l. 
To this end, we represent (12.3)-(3.20) in the following way: 

Corollary 3. Let X be an FT-measurable random variable such that (3.28) 
holds for some IF-predictable process Z and some P-predictable processes 
q52, q 5 3 , .  . . , $k- l .  Let qi = 8 for i = 2 , 3 , .  . . , k - 1, 

and 

Then 11, = ($I ,  $2, . . . , $k) is a self-financing trading strategy i n  assets 
yl , .  . . , yl, F1+l,. . , , Fk-l, yk. Moreover, @ satisfies $ : ~ , k _  = Zt, t E [O,T], 
and i t  replicates X .  

Proof. In view of (3.28), it suffices to apply Proposition 2 with 1 = k - 1. 

3.4 Model Completeness 

We shall now examine the relationship between the arbitrage-free property 
and completeness of a market model in which trading is restricted a priori to 
self-financing strategies satisfying the balance condition. 
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3.4.1 Minimal Completeness of an Unconstrained Model 

Let M = (Y1, Y2, .  . . , Yk; @) be an arbitrage-free market model. Unless ex- 
plicitly stated otherwise, @ stands for the class of all IF-predictable, self- 
financing strategies. Note, however, that the number of traded assets and 
their selection may be different for each particular model. Consequently, the 
dimension of a strategy #J E @ will depend on the number of traded assets 
in a given model. For the sake of brevity, this feature is not reflected in our 
notation. 

Definition 2. W e  say that a model M i s  complete with respect to IF i f  any 
bounded FT-measurable contingent claim X is attainable i n  M. Otherwise, a 
model M is said to be incomplete with respect to I F .  

Definition 3. A n  IF-complete model M = (Y1, Y2, .  . . , y k ;  @) is said to be 
minimally complete with respect to IF i f  for a 9  choice 2 f  trading strategies 
#Ji E @, i = 1 , 2 , .  . . , k - 1 ,  the reduced model Mkvl = (Y1, p2,. . . , pk-'. , @ 1 
where pi = V(#Ji ) ,  is  incomplete with respect to IF. In  this case, we say that 
the degree of completeness of M equals k .  

Let us stress that trading strategies in the reduced model are pre- 
dictable with respect t%IF, rathzr than with respect to the filtration g~nerated 
by price processes p l ,  Y2, . . . , yk-l. Hence, by moving from M to M " ~  we 
reduce the number of traded asset, but we preserve the original information 
structure IF. Minimal completeness of a model M means, in particular, that 
all primary assets Y1, Y2, .  . . , yk are needed if we wish to generate the class of 
all (bounded) &-measurable claims through IF-predictable trading strategies. 
The following lemma is thus an immediate consequence of Definition 3. 

Lemma 5. Assume that a model M = (Y1, Y2, .  . . , y k ;  @) is complete, but 
not minimally complete, with respect to I F .  Then there exists at least one pri- 
mary asset Yi,2hich is redundant, i n  the sense that there exists a complete 
reduced model M2 for some 1 < k - 1 such that Y i  # pj for j = 1 , 2 , .  . . , l .  

Complete models that are not minimally complete do not seem to describe 
adequately the real-life features of financial markets (in fact, it is frequently 
argued that the real-life markets are not even complete). Also, from the theo- 
retical perspective, there is no advantage in keeping a redundant asset among 
primary securities. For this reasons, in what follows, we shall restrict our at- 
tention to market models M that are either incomplete or minimally complete. 
Lemma 6 shows that the degree of completeness is a well-defined notion, in 
the sense that it does not depend on the choice of traded assets, provided that 
the model completeness is preserved. 

Lemma 6. Let a model M = (Y1, Y2, . . . , yk; @) be minimally complete - -_  
with respect to IF. Let = (F1, F2, . . . , y k ;  @), where the processes YZ = 
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V($i), i = 1 ,2 , .  . . , k represent the wealth processes of some trading strate- 
gies $ I , & ? , .  . . , $1, E @. If a model is complete with respect to IF then i t  is 
also minimally complete with respect to IF, and thus its degree of completeness 
equals k. 

Proof. The proof relies on simple algebraic considerations. By assumption, for 
every i = 1,2 , .  . . , k, we have 

for some family @j, i ,  j 1,2 , .  . . , k of IF-predictable stochastic processes. 
Assume that the model M is complete, but not minimally complete. Then 
there exists 1 5 k- 1 and trading-strategies Gm, m = 1,2 , .  . . , 1 ,  such that the 
reduced model M' = (IHATyl, Y2, .  . . , Y1;@), with asset prices satisfying 

is complete. Clearly, we have 

so that there exist trading strategies Cm, m = 1,2 , .  . . , 1 ,  in primary assets 
y 1 , y 2 , .  . . , yk such that pm = V(Cm) for m = 1,2 , .  . . , 1 .  This contradicts 
the assumption that the model M is minimally complete. 0 

By combining Lemma 6 with Corollary 2, we obtain the following result. 

Corollary 4. A model M = (Y l , Y2, .  . . , Yk;  @) i s  minimally complete if and 
only if a model M = (Y1, Y2, .  . . , y l ,  T1+l,. . . , Tk-l ,  yk; @) has this prop- 
erty. 

As one might easily guess, the degree of a model completeness depends 
on the relationship between the number of primary assets and the num- 
ber of independent sources of randomness. In the two models examined in 
Sections 3.5.1 and 3.5.2 below, we shall deal with k = 4 primary assets, but 
the number of independent sources of randomness will equal two and three 
for the first and the second model, respectively. 

3.4.2 Completeness of a Constrained Model 

Let M = (Y1, Y2, .  . . , yk; @) be an arbitrage-free market model, and let us 
denote by M1 (2) = (Y l ,  Y2, .  . . , yk; Q1(Z)) the associated model in which the 
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class @ is replaced by the class Q1(Z) of constrained strategies. We claim that 
if M is arbitrage-free and minimally complete with respect to the filtration 
P = I F Y ,  where Y = (Y1, Y2, .  . . , y k ) ,  then the constrained model M1(Z)  is 
arbitrage-free, but it is incomplete with respect to IF. Conversely, if the model 
M1(Z)  is arbitrage-free and complete with respect to I F ,  then the original 
model M is not minimally complete. To prove these claims, we need some 
preliminary results. 

The following definition extends the notion of equivalence of security mar- 
ket models to the case of constrained trading. 

Definition 4. W e  say that the two constrained models are equivalent with 
respect to a filtration P i f  they are defined on a common probability space and 
the class of all wealth processes of IF-predictable constrained trading strategies 
i s  the same i n  both models. 

Corollary 5. The constrained model 

is equivalent to the constrained model 

Proof. It  suffices to make use of Corollaries 2 and 3. 0 

Note that the model / \ ; Z k - l ( ~ )  is easier to handle than M1(Z) .  For this 
reason, we shall state the next result for the model Ml (Z)  (which is of our 
main interest), but we shall focus on the equivalent model Mk-1(Z) in the 
proof. 

Proposition 3. (i) Assume that the model M is arbitrage-free and minimally 
complete. Then for any IF-predictable process Z and any 1 = 1,2, .  . . , k - 1 the 
constrained model M1(Z)  is arbitrage-free and incomplete. 
(ii) Assume that the constrained model Ml(Z)  associated with M is arbitrage- 
free and complete. Then M i s  either not arbitrage-free or not minimally com- 
plete. 

Proof. The arbitrage-free property of M1(Z)  is an immediate consequence 
of Corollary 5 and the fact that Qk_l(Z) C @. In view of Corollary 4, it 
suffices to check that the minimal completeness of M implies that Mk-l(Z) 
is incomplete. By assumption, there exists a bounded, Fpmeasurable claim X 
that cannot be replicated in Mk = (Y1, Y2, .  . . , Y1, TlS1,. . . , Tk-l; @) (i.e., 
when trading in yk is not allowed). Let us consider the following random 
variable 

We claim that Y cannot be replicated in MkW1(Z). Indeed, for any trading 
strategy 4 E @k-l(Z), we have 
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and thus the existence of a replicating strategy for Y in Mk- l (Z)  will imply 
the existence of a replicating strategy for X in M k ,  which contradicts our 
assumption. Part (ii) is a straightforward consequence of part (i). 

It  is worth noting that the arbitrage-free property of M1(Z)  does not imply 
the same property for M. As a trivial example, we may take 1 = Ic - 1 and 
Z = 0, so that trading in the asset yk is in fact excluded in M l ( Z ) ,  but it is 
allowed in the larger model M. 

3.5 Jump-Diffusion Case 

In order to make the results of Sections 3.2-3.4 more tangible, we shall now 
analyze the case of jump-diffusion processes. For the sake of concreteness and 
simplicity, we shall take k = 4. Needless to say that this assumption is not 
essential, and the similar considerations can be done for any sufficiently large 
number of primary assets. 

We consider a model M = (Y1, Y2,. . . , Y4; @) with discontinuous asset 
prices governed by the SDE 

for i = 1,. . . ,4, where Wt = (W?, W:, . . . , wtd), t E [0, TI, is a d-dimensional 
standard Brownian motion and Mt = Nt - At, t E [0, TI, is a compensated 
Poisson process under the actual probability P. Let us stress that W and N are 
a Brownian motion and a Poisson process with respect to IF, respectively. This 
means, in particular, that they are independent processes. We shall assume 
that IF = I F W I N  is the filtration generated by W and N. 

The coefficients pi, oi = ((T,!, $, . . . ,ut) and ~i in (3.30) can be constant, 
deterministic or even stochastic (predictable with respect to the filtration 
IF). For simplicity, in what follows we shall assume that they are constant. 
In addition, we postulate that ~1 > -1, so that q1 > 0 for every t E [0, TI, 
provided that Yd > 0. Finally, let Z be a predetermined IF-predictable process. 
Recall that Q1(Z) is the class of all self-financing strategies that satisfy the 
balance condition 

4 

Our goal is to present examples illustrating Proposition 3 and, more impor- 
tantly, to show how to proceed if we wish to replicate a contingent claim using 
a trading strategy satisfying the balance condition. It  should be acknowledged 
that in the previous sections we have not dealt a t  all with the issue of admis- 
sibility of trading strategies, and thus some relevant technical assumptions 
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were not mentioned. Also, an important tool of an (equivalent) martingale 
measure was not yet employed. 

3.5.1 Complete Constrained Model 

In this subsection, it it assumed that d = 1, so that we have two independent 
sources of randomness, a one-dimensional Brownian motion W and a Poisson 
process N .  We shall verify directly that, under natural additional conditions, 
the model M1(Z)  is arbitrage-free and complete with respect to F, but the 
original model M is not minimally complete, so that a redundant primary 
asset exists in M. 

Lemma 7. Assume that 6 := det A # 0, where 

Then there exists a unique probability measure @, equivalent to P on (0, FT), 
and such that the relative prices P211 = P2 /Y1  and F3l1 = P3/Y1 of synthetic 
assets P2 and P3 are F-martingales. 

A 

Proof. Let us write Ft = W t  - a l t  and Mt = Mt - X K . ~ ~ .  By straightforward 
calculations, the relative value of the synthetic asset Pi satisfies, for i = 2,3, 

or equivalently, 

By virtue of Girsanov's theorem, there exists a unique prokability_measure 
@, equivalent to  P on ( 0 ,  &), and such that the processes W and M follow 
F-martingales under @. Under our assumption 6 := det A # 0, the equations 

uniquely specify 8 and v. Using once again-Girsanov's theorem, we show that 
there exists a unique probability measure P, equivalent to P on ( 0 ,  FT) ,  and 
such that the processes @t = @t - 8t = W t  - (a1 + 8)t and 

Gt = KTt - Xvt = Nt - X(1+ 61 + v)t  

are F-martingales under F. We then have, for i = 2,3 and every t E [0, TI, 
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Note that N follows under @ a Poisson process with the constant intensity 
X(1+ 61 + v), and thus M is the compensated Poisson process under @. More- - - 
over, uzder the present assumptions, the processes W and M are independent 
under P. 0 

From now on, we postulate that 6 = det A # 0 and ~i > -1 for every 
i = 1,2, .  . . ,4. Under this assumption, the filtration IF coincides with the 
filtration IFY generated by primary assets. 

In the next result, we provide sufficient conditions for the existence of a 
replicating strategy satisfying the balance condition (3.31). Essentially, Propo- 
sition 4 shows that the model M1(Z)  = (Y1,P2,P3,Y4;@1(Z))  is complete 
with respect to IF . 

Proposition 4. Let X be an FT-measurage contingent claim that settles at 
time T .  Assume that the random variable X ,  given by the formula 

is square-integrable under @, where is the unique probability measure equ@ 
alent to P on ( f 2 , F T )  such that the relative prices E2>l and F3?l are P- 
martingales. Then X can be replicated i n  the model M1(Z) .  

Proof. To prove the existence of a replicating strategy for X in the class 
@l(Z),  we may use either Proposition 2 (if we wish to work with traded 
assets Y1, Y2, Y3, y 4 )  or Corollary 3 and Lemma 7 (if we prefer to work with 
Y1,F2,E3,Y4) .  The second choice seems to be more convenient, and thus 
we shall focus on the existence a trading strategy $ = ($I, $', . . . , g4) with 
the properties described in Corollary 3. In view of (3.28) and Corollary 3, it 
suffices to check that there exist a constant x, and IF-predictable processes 4' 
and 43 such that 

3 ,r 

To show that such pLocesses exist, we shall use Lemma 7. It  is crucial to ob- 
serve that the pair (W, M),  which was obtained in the proof of Lemma 8 from 
the original pair (W, M )  by means of Girsanov's transformation, enjoys the 
predictable representation property (see, for example, Jacod and Shiryaev [3], 
Sections 111.4 and 111.5). Since 2 is square-integrable under @, there exists a 
constant x and IF-predictable processes and r such that 
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Observe that 

and 

Hence, upon setting 

we obtain the desired representation (3.35) for 2. To complete the proof of 
the proposition, it suffices to make use of Corollary 3. 0 

Remark 2. If we take the class Qz(Z) of constrained strategies, instead of the 
class @I (Z), then we need to show the existence of IF-predictable processes +2 

and q53 such that 

To this end, it suffices to focus on an equivalent probability measure under 
which the relative prices Y211 and P39' are @-martingales, and to follow the 
same steps as in the proof of Proposition 4. 

In view of Lemma 7, the reduced model M4 = (Y1, y 2 , v 3 ; @ )  admits a - 
martingale measure P corresponding to the choice of Y' as a numeraire asset, 
and thus it is arbitrage-free, under the usual choice of admissible trading 
strategies (e.g., the so-called tame strategies). By virtue of formula (12.2) in 
Proposition 1, for the arbitrage-free property of the model M1(Z) to hold, it 
suffices, in addition, that the process 

follows a martingale under @. 
Note, however, that the above-rnentioned property does not imply, in gen- 

eral, that the probability measure P is a martingale measure for the relative 
price Y4>'. Since 

( 
K 4  - 61 dK4" = Y,!' (p4 - p1) dt + ( ~ 4  - ~ l ) ( d W t  - ~ l d t )  + - 
1 +61 

( d m  - ~ 'Eld t ) )  , 
(3.37) 

a martingale measure for the relative prices v2>' ,  y3,' and Y4t1 exists if and 
only if for the pair (8, v) that solves (3.33), we also have that 
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This holds if and only if det 2 = 0, where Â  is the following matrix 

Hence, the model M (or, equivalently, the model M )  is not arbitrage-free, 
in general. In fact, M is arbitrage-free if and only if the primary asset Y4 is 
redundant in M. The following result summarizes our findings. 

Proposition 5. Let M be the model given by (3.30). Assume that ~i > -1 
for every i = 1,2, .  . . , 4  and 6 = det A # 0. Moreover, let the process 

follow a martingale under @. Then the following statements hold. 
(i) The model M1(Z)  is arbitrage-free and complete, i n  the sense of Proposi- 
tion 4.  
(ii) If the model M is arbitrage-free then i t  i s  complete, i n  the sense that any 
FT-measurable random variable X such that X(Y;)-l is square-integrable 
under @ is attainable i n  this model, but M is not minimally complete. 

Example 1. Consider, for instance, a call option written on the asset Y4, SO 

that X = (Y; - K)+,  and let us assume that Zt = e. Under assumptions of 
Proposition 5, models M and M1(Z)  are arbitrage-free and the asset y4 is 
redundant. It  is thus rather clear that the option can be hedged by dynamic 
trading in primary assets Y1, Y2, Y3 and by keeping at  any time one unit of 
Y4. Of course, the same conclusion applies to any European claim with Y4 as 
the underlying asset. 

3.5.2 Incomplete Constrained Model 

We now assume that d = 2, so that the number of independent sources of 
randomness is increased to three. In view of (3.30), we have, for i = 1 , .  . . , 4 ,  

We are going to check that under the set of assumptions making the un- 
constrained model M arbitrage-free and minimally complete, the constrained 
model M l ( Z )  is also arbitrage-free, but it is incomplete. To this end, we first 
examine the existence and uniqueness of a martingale measure associated with 
the numeraire Y1. 
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Lemma 8. Assume that det 2 # 0, where the matrix 2 is given as 

Then there exists a unique probability measure @, equivalent to P on (0, f i ) ,  
and such that the relative prices P211 = y2/Y1,  P3>l = Y3/y1 of synthetic 
assets Y2,Y3, and the relative price Y411 of the primary asset Y4 follow mar- 
tingales under @. 
Proof. Let us write 

A 

Wt = Wt - a l t  = (w:, w:) - (a:, a t ) t  

and Mt = Mt - Xlilt. By straightforward calculations, the relative values 
i = 2,3 and Y49' satisfy 

and 

dq4"  = ~ 5 '  ((PI -PI)  dt + (a4 - ol)(dwt - oldt) + - li4 - lil ( d ~ ~  - k l d t ) )  . 1 + ~ 1  

l3y virtue of Girsanov's theorem, there exists a unique prokability_measure 
P, equivalent to P on ( 0 ,  FT) ,  and such that the processes W and M follow 
IF-martingales under 6. Now, let 8 = (el, 8') and v be uniquely specified by 
the conditions 

Another application of Girsanov's theorem yields the existence of a unique 
probability measure @, equivalent to P on (O,FT), such that the processes - A 

Wt = Wt - 8t = Wt - (a1 + r3)t and 

Gt = Gt - Xvt = Nt - X(1+ v ; l +  v)t 

are IF-martingales under @. We then have, for i = 2,3 and every t E [0, TI, 

while - l i q - l i 1  - 
d);"' = qt1 ((a4 - ol)dWt + - d ~ ~ )  . (3.39) 

l + ~ l  

Note that N follows under a Poisson process with the constant intensity 
X(1+ nl + v), and thus M is the compensated Poisson process under @. More- 
over, uzder the present assumptions, the processes and G are independent 
under P. 0 
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It  is clear that the inequality det A" # 0 is a necessary and sufficient condi- 
tion for the arbitrage-free property of the model M. Under this assumption, 
we also have IF = IFY and, as can be checked easily, the model M is minimally 
complete. 

In the next result, we provide sufficient conditions for the existence of a 
replicating strategy satisfying the balance condition (3.31) with some prede- 
termined process Z. In particular, it is possible to deduce from Proposition 6 
that the model M l ( Z )  is incomplete with respect to IF. 

Proposition 6. Assume that det A" # 0. Let X be an fi-measurable_contin- 
gent claim that settles at time T .  Assume that the random variable X ,  given 
by the formula - 

- 
is square-integrable under P, where @ is the unique probability measure, equiv- 
alent to P on  (0,.FT)) such that the relative prices v2p1, Y311 and Y411 follow 
martingales under @. Then X can be replicated i n  M l ( Z )  i f  and only if the 
process 41~ given by formula (3.44) below vanishes identically. 

Proof. We shall use similar arguments as in the proof of Proposition 4. In 
view of Corollary 3, we need to check that there exist a constant x, and IF- 
predictable processes @ and 453 such that 

- - 
Note that the pair (W, M) introduced in the proof of Lemma 8 has the pre- 
dictable representation property. Since 2 is square-integrable under @, there 
exists a constant x and IF-predictable processes J and r such that 

In view of (3.38)-(3.39), we have 

so that there exist IF-predictable processes @i, Ai, Oi, i = 2,3,4 such that 
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Let us set, for i = 2,3,4, 

Suppose first that  4: = 0 for every t E [O,T]. Then, by combining (3.42), 
(3.43) and (3.44), we end up with the desired representation (3.41) for j?. To 
show the existence of a replicating strategy for X in MI (Z), it suffices to apply 
Corollary 3. If, on the contrary, 41~ does not vanish identically, equality (3.41) 
cannot hold for any choice of q52 and qh3. The fact that q54 is non-vanishing for 
some claims follows from Proposition 3. 0 

In general, i.e., when the component qh4 does not vanish, we get the fol- 
lowing representation 

where we set $: = q5: + Zt(55)-l. Hence, as expected any contingent claim 
satisfying a suitable integrability condition is attainable in the unconstrained 
model M .  

Example 2 To get a concrete example of a non-attainable claim in M1(Z), 
let us take X = (Y$ - K)+ and Zt = e. Then, for K = Y:, we obtain 

j? = (Yo4 - Y$)+(Y$)-~, and thus we formally deal with the put option 
written on y4 with strike Y:. We claim that 2 does not admit representation 
(3.41). Indeed, equality (3.41) implies that the hedge ratio of a put option 
with respect to  the underlying asset equals zero. This may happen only if the 
underlying asset is redundant so that hedging can be done with other primary 
assets, and this is not the case in our model. 
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Summary. Empirical volatility changes in time and exhibits tails, which are heavier 
than normal. Moreover, empirical volatility has - sometimes quite substantial - 
upwards jumps and clusters on high levels. We investigate classical and non-classical 
stochastic volatility models with respect to their extreme behavior. We show that 
classical stochastic volatility models driven by Brownian motion can model heavy 
tails, but obviously they are not able to model volatility jumps. Such phenomena 
can be modelled by LBvy driven volatility processes as, for instance, by LBvy driven 
Ornstein-Uhlenbeck models. They can capture heavy tails and volatility jumps. Also 
volatility clusters can be found in such models, provided the driving LBvy process has 
regularly varying tails. This results then in a volatility model with similarly heavy 
tails. As the last class of stochastic volatility models, we investigate a continuous 
time GARCH(1,l) model. Driven by an arbitrary LBvy process it exhibits regularly 
varying tails, volatility upwards jumps and clusters on high levels. 
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4.1 Introduction 

T h e  classical pricing model is the  Black-Scholes model given by the  SDE 

where r E R is the  stock-appreciation rate, a > 0 is t he  volatility and B 
is a standard Brownian motion. The  Black-Scholes model is based on the  
assumption t h a t  the  relative price changes of the  asset form a Gaussian process 
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with stationary and independent increments. The crucial parameter is the 
volatility a ,  which is in this model assumed to be constant. However, empirical 
analysis of stock volatility has already shown in the 1970ies that volatility is 
not constant, quite the contrary, it is itself stochastic and varies in time. 

This observation has led to a vast number of volatility models in discrete- 
time as well as in continuous-time. In this paper we concentrate on continuous- 
time volatility models. Moreover, we are concerned with the so-called stylized 
facts of volatility as e. g. 

volatility changes in time, 
0 volatility is random, 

volatility has heavy tails, 
volatility clusters on high levels. 

Introducing a stochastic volatility extends the Black-Scholes model to 

where V can in principle be any positive stationary stochastic process. 
Within the framework of SDEs quite natural models are easily defined. 

Common examples are the Ornstein- Uhlenbeck (OU) process 

where X,a > 0 and Z is the driving process, often a second Brownian mo- 
tion, independent of B. As this is a Gaussian model, it is not a positive 
process. Alternatively, a Cox-Ingersoll-Ross (CIR)  model has been suggested 
as a volatility model, defined by 

where A, a, a > 0 and Xa 2 a2/2. The parameter a is the long-term mean of 
the process and X the rate of mean reversion. Again in the classical model Z 
is a standard Brownian motion, independent of B. 

Apart from the fact that Gaussian OU processes are not positive, another 
stylized fact is also violated: empirical volatility exhibits heavy tails, conse- 
quently, again the OU model as a Gaussian model seems not very appropri- 
ate. Changing the constant a to a time dependent diffusion coefficient a'[/;' for 
y E [1/2, oo) and including a linear drift yields positive stationary models with 
arbitrarily heavy tails. This has been shown in Borkovec and Kliippelberg [8]. 
Such models are called generalized Cox-Ingersoll-Ross models, a parameter 
y = 112 corresponds to the classical CIR model of (4.3). 

On the other hand, a constant a is attractive, and an alternative way to 
generate heavy tails in the volatility is to replace the driving Gaussian process 
in (4.2) by a Lkvy process with heavier tailed increments. Furthermore, the 
upward jumps often observed in empirical volatility cannot be modelled by a 
continuous process. So LQvy processes with jumps as driving processes seem 
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to be quite natural. Such an OU process is positive, provided the driving LBvy 
process has only positive increments and no Gaussian component; i. e. it is a 
subordinator. This is exactly what Barndorff-Nielsen and Shephard [4, 51 have 
suggested, modelling the (right-continuous) volatility process as a LBvy driven 
0 U process. Their stochastic volatility model is given by 

where a ,  b E R, X > 0 and L is a subordinator, called the background driving 
Lkvy process (BDLP). The price process itself is then driven by an independent 
Brownian motion. 

A completely different approach to obtain continuous-time volatility mod- 
els starts with a GARCH model and derives from this discrete-time model a 
continuous-time model. A natural idea is a diffusion approximation; see e. g. 
Drost and Werker [16] and references therein. This approach leads to stochas- 
tic volatility models of the type 

i. e. V is a generalized CIR model with parameter y = 1. The two processes 
~ ( ~ 1 ,  B ( ~ )  are independent Brownian motions. 

A different approach has been taken by Kliippelberg, Lindner and 
Maller [27], who started with a discrete-time GARCH(1,l) model and re- 
placed the noise variables by a LBvy process L with jumps ALt = Lt - Lt-, 
t > 0. This yields a stochastic volatility model of the type 

where p > 0 and V is left-continuous. The auxiliary c&dl&g process X is 
defined by 

Xt = gt - ln(1 + x ~ T ( A L , ) ~ )  , (4.7) 
O<s<t 

for q > 0 and X 1 0. This continuous-time GARCH(1,l) model is called a 
COGARCH(1,l) model. 

Our paper focuseson the extremal behavior of stationary continuous-time 
stochastic volatility models. This can be described by the tail behavior of 
the stationary distribution and by the behavior of the process above high 
thresholds. 

The tail behavior models the size of the fluctuations of V and deter- 
mines the maximum domain of attraction (MDA) of the model. The notion of 
MDA is defined in Fisher-Tippett's theorem; see Theorem 8. We distinguish 
MDA(@,), MDA(A) and MDA(lli,), for a > 0, respectively. Distribution func- 
tions in MDA(Q3,) have regularly varying tails: they are heavy-tailed in the 
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sense that not all moments are finite; see Definition 3. Distribution functions in 
MDA(A) have tails ranging from semi-heavy tails to very light tails. Distribu- 
tion functions in MDA(!P,) have support bounded to the right. Financial risk 
is usually considered as having unbounded support above, hence MDA(!P,) is 
inappropriate in our context and will play no further role in this paper. 

The description of a continuous-time process above high thresholds de- 
pends on the sample path behavior of the process. When classical volatility 
models driven by a Brownian motion have continuous sample paths with infi- 
nite variation, some discrete-time skeleton is introduced. A standard concept 
is based on so-called 6-upcrossings, see Definition 1, which is only valid for 
processes with continuous sample paths. 

For LBvy driven models large jumps (for instance larger than 1) constitute 
a natural discrete-time skeleton, which can be utilized. Denote by (rk)kEn 
the random time points on [0, co), where the driving LBvy process jumps and 
exceeds a given threshold. The bivariate process ( r k ,  Vr,)kEN is interpreted 
as the coordinates of a point process in [O, co) x R+. As usual we define 
point processes via Dirac measures. Recall that for any Bore1 sets A x B C_ 
[O, co) x R+ the measure CEO=, & i r k ,  Vr,)(A x B )  counts how often rk E A 
and Vrk E B.  

After appropriate normalization in time and space these point processes 
may converge and the limit process may allow for an interpretation, thus pro- 
viding a description of the extreme behavior of the volatility process. Under 
weak dependence in the data we obtain as limit a Poisson random measure 
with mean measure 6 (PRM(6)); see Definition 9. Moreover, the two compo- 
nents of 8 are independent and consist of the Poisson measure in time and 
the negative logarithm of an extreme value distribution in space. Under strong 
dependence the limit is a cluster Poisson random measure. All these consid- 
erations concern the discrete-time skeleton only and ignore the fact that we 
deal with continuous-time processes. 

In the case of a driving LBvy process with jumps, in principle also the small 
jumps can influence the extreme behavior. In a very close neighborhood of a 
jump time rk infinitely many small jumps can happen; they may contribute 
to the extreme behavior around rk. To investigate the influence of these small 
jumps and the Gaussian component, we consider the process V a t  each point 
rk in a surrounding interval Ik. Finally, in certain situations we investigate 
also the process V after it has achieved a local supremum. With each point rk 
an excursion of V over a high threshold starts. Interesting questions concern 
the length of the excursion, the rate of "decrease" after rk, and we shall 
answer such questions a t  least for some models considered in this paper. This 
is done by attaching marks to the point process ( r k ,  Vrk)kEw In our model 
marks are a vector of values of the process V after r k ,  hence it describes the 
finite dimensional distributions of V after rk. The limit process turns out to 
be different in different regimes. 

Our paper is organized as follows. In Section 11 we review the extremal be- 
havior of the generalized CIR model, which can belong to  different maximum 
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domains of attractions; i. e. such models can have arbitrary tails. Unfortu- 
nately, they are not appropriate models in case of high level volatility clusters 
in the data. 

Section 11 deals with LBvy driven OU volatility models. Their extremal 
behavior is characterized by the extremal behavior of the driving LBvy pro- 
cess, so that we have to  distinguish between different classes of BDLPes. In 
Section 4.3.1 this is done for subexponential LBvy processes L = (Lt)t20. Ac- 
cording to  whether L1 E MDA(@,) for some a! > 0 or L1 E MDA(A), the 
extremal behavior of the OU process is quite different. Then, in Section 4.3.2 
we study OU processes with exponential tails. As a prominent example we in- 
vestigate the I'-OU process, i. e. the stationary volatility is gamma distributed. 
As an important larger class we study OU processes, whose BDLP belongs to 
S(y)  for y > 0. This class extends subexponential LBvy processes in a natural 
way; see Definition 5. It  turns out that for all OU processes in Section 11, 
high level volatility clusters are exhibited only in the case of regularly varying 
BDLPes. 

The last class of models reviewed in this paper concerns the CO- 
GARCH process in Section 11. In contrast to the OU processes considered 
earlier, the COGARCH volatility has heavy tails under quite general condi- 
tions on the driving LBvy process L. Furthermore, the COGARCH exhibits 
high level volatility clusters. 

Finally, a short conclusion is given in Section 4.5. Here we compare the 
models introduced in the different sections before. It turns out that there is a 
striking similarity concerning the extremal behaviour of models with the same 
stationary distribution. Here we also discuss briefly some further empirical 
facts of volatility not quite in the focus of our paper. 

As not to  disturb the flow of arguments we postpone classical definitions 
and concepts to an Appendix. Throughout this paper we shall use the follow- 
ing notation. We abbreviate distribution function by d. f. and random variable 
by r. v. For any d. f. F we denote its tail = 1 - F. For two r. v. s X and Y 
with d ,  f. s F and G we write X 2 Y if F = G, and by Tg we denote weak 
convergence for T --+ oo. For two functions f and g we write f (x) N g(x) as 
x -+ oo, if lim,,, f (x)/g(x) = 1. We also denote R+ = (0,oo). For x E R, 

b we let x+ = max{x, 0) and ln+(x) = ln(max{x, 1)). Integrals of the form Ja 

will be interpreted as the integral taken over the interval (a, b]. 

4.2 Extremal behavior of generalized Cox-Ingersoll-Ross 
models 

In this section we summarize some well-known results on classical volatility 
models as defined in (4.3) and (4.5) driven by a standard Brownian motion. 
This section is based on Borkovec and Kliippelberg [8]; for a review see [26], 
Section 3. 
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These models fall into the framework of generalized Cox-Ingersoll-Ross 
(GCIR) models. We restrict ourselves to stationary solutions of the SDE 

where y E [i, m). For A, a ,  a > 0 (in the case y = 112 additionally Xa 2 a2/2 
is needed) these models are ergodic with state space R+ and have a stationary 
density. 

Associated with the diffusion (4.8) is the scale function s and the speed 
measure m. The scale function is defined as 

where z is any interior point of R+ whose choice does not affect the extremal 
behavior. For the speed measure m we know that it is finite for the GCIR 
model. Moreover, m is absolutely continuous with Lebesgue density 

where s' is the Lebesgue density of s. Then the stationary density of V is 
given by 

Proposition 1. Let V be a GCIR model given by equation (4.8) and define 
M ( T )  := SUPtEIO,~] Vt for T > 0 .  Then for any initial value Vo = y E R+ with 
corresponding distribution By and any UT T m, 

lim IP,(M ( T )  5 U T )  - HT ( U T )  I = 0 ,  
T-cc 

where H is a d. f., defined for any z E R+ by 

The function s and the quantity m ( R + )  depend on the choice of z .  

Corollary 1 (Running maxima). 
Let the assumptions of Proposition 1 hold. Assume further that H E M D A ( G )  
for G E {@,,a > 0 ,  A} with norming constants a~ > 0 ,  bT E R .  Then 

lim B ( ~ ? ' ( M ( T )  - bT) 5 x )  = G ( x )  , x E R .  
T--too 

It  is clear that the d. f. H decides about the extremal behavior of V. We 
present four cases. 
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Example 1 (Tail behavior of GCIR models). 
Let V be a stationary GCIR model given by equation (4.8) with stationary 
density f , corresponding d. f. F ,  and d ,  f. H as given in (4.11). Recall that a 
r ( p ,  y )  distributed r. v. has probability density 

for p > 1 and y > 0. 

( 1 )  y = i: The stationary density of V is r (%, 3). The tail of H 
behaves like 

so that the tail of H is that of a r (9 + 1 , s )  distribution. Hence H E 
M D A ( A )  with norming constants 

o2 
a T = -  and 

2X 

( 2 )  < y < 1: The stationary density of V is given by 

2 Xa 
f ( x )  = m5-27 exp (-$ (27_1x-(2~-1)  +- 2 - 2y x2+)) , x > 0 ,  

with some normalizing factor A > 0. The d. f. H has tail 
- 
H ( z )  N BX~( ' -Y)T(X) ,  x -+ 00, (4.13) 

where B > 0. Hence H E MDA(A)  with norming constants 

(3) y = 1: The stationary density of V is inverse gamma, i. e. 

so that E R-2xl ,z-1;  see Definition 3. In this case H ( x )  N ~ x - ~ ~ l ~ ~ - ~  
for x + 00 and some c > 0. Hence H E MDA(@,) for o = 2X/02 + 1 with 
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norming constants aT = ( C T ) " ~ / ( ~ ' + ~ ~ )  and br = 0. 

( 4 )  y > 1: The stationary density f of V has the same form as in ( 2 ) ,  
but is regularly varying of index -27 + 1. Now the tail of H becomes very 
extreme: H ( x )  N ex-'. Hence H E MDA(Q1) with aT = cT and bT = 0. 0 

Since all models (4.8) are driven by a Brownian motion, they have continu- 
ous sample paths; i, e, there is no natural discrete-time skeleton. We follow the 
standard approach to create a discrete-time skeleton of the process; see e. g. 
Leadbetter et al. [29], Chapter 12. This allows for a more profound extreme 
value analysis of V .  

Definition 1. Let V be a stationary version of the diffusion given by (4.8). 
V is said to have an E-upcrossing of the level u at a point r > 0 if 

& < u  for tE ( r - -~ , r )  and V r = u .  

With this definition we can formulate a further result describing the ex- 
treme behavior of a stationary GCIR model. 

Theorem 1 (Point process of E-upcrossings). 
Let V be a stationary version of the diffusion given by (4.8) with d. f. H as i n  
(4.11). Let aT > 0, bT E R be the norming constants as given i n  Example 4.10. 
Let ( r ~ , k ) k . c ~  be the time points on  E%+, where the 6-upcrossings of V of the 
level U T X  + b~ occur. Let (jk)&N be the jump times of a Poisson process with 
intensity e-" for x E R, if i f  E [1 /2 ,1 )  and x - ~  for x > 0 with a = 2X/02 + 1 
i f y = l  a n d a = l  i f y > l .  Then 

As is obvious from this result, 6-upcrossings of V for high levels behave like 
exceedances of i, i. d. data, i. e. such models do not exhibit volatility clusters. 
They can, however, model heavy tails as the running maxima depend on the 
d. f. H. 

4.3 Extremal behavior of OU volatility models 

We start with a precise definition of a positive OU process as a solution 
of (4.4). For more information on LBvy processes we refer to the excellent 
monographs by Sato [35], Bertoin [6] and Cont and Tankov [15]. Let L be 
a subordinator; i. e. L is a LBvy process with increasing sample paths, hence 
they are of bounded variation, and we assume that they are ciidliig. The 
Laplace transform is then the natural transform and has for all t 2 0 the 
representation 
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The Laplace exponent P has representation 

As there is no Gaussian component the characteristic triplet of arbitrary LBvy 
processes reduces to a pair (m, v), where m 2 0 is the drift and the LBvy 
measure v has support on R+ and satisfies 

the solution to the SDE (4.4). Then V becomes a c?idl?ig process. 
A stationary solution of (4.4) exists if and only if Js,l ln(1 +s) v(ds) < oo. 

Note that this condition is only violated for LBvy measures with very heavy 
tails. As all models considered in this paper have tails which are regularly 
varying of some negative index or lighter, all our models satisfy this station- 
arity condition. Stationarity is then achieved, if Vo is taken to be independent 
of the driving LBvy process L and has distribution 

A convenient representation for the stationary version is 

In this  representation^ L is extended to a LBvy process on the whole real 
line, by letting = (Lt)t>o be an independent copy of (Lt)t20, and defining - - 
Lt := -L-t- for t < 0. The parameter X in the process L in (4.14) ensures 
that the stationary marginal distribution of V is independent of A; indeed it 
is given by (4.15). 

The r. v. Vo is infinitely divisible with characteristic pair (mv, vv), where 
m v  = m and 

We are concerned with Levy processes L, which are heavy or semi-heavy 
tailed; i, e. whose tails decrease not faster than exponentially. As indicated in 
(4.21) and (4.24) below, this induces a similar tail behavior on V, which is in 
accordance with empirical findings. 

The structure of an OU volatility process can be best understood when 
considering the following example. 
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Example 2 (Positive shot noise process). 
Let L be a positive compound Poisson process with characteristic pair 
(0, pPF), where p > 0 and PF is a probability measure on E%+ with corre- 
sponding d. f. F .  Then L has the representation 

where (Nt)t>0 is a Poisson process on E%+ with intensity p > 0 and jump times 
(rk)kEN. TG process N is independent of the i. i. d,  sequence of positive r. v. s 
(Ck)kEn with d. f. F. 

The resulting volatility process is then the positive shot noise process 

and from (4.17) we get 

If IEln(1 + J1) < oo, a stationary solution exists in which case V can be 
represented as 

Here, we let (Jk)kE-No and (rk)kE-No be sequences of r. v. s such that (<k)kEa: 
and (rk)kEa: are independent. Furthermore, (<k)kEZ is an i. i. d ,  sequence and 
( - r k ) k E - ~  are the jump times of a Poisson process on R+ with intensity p, 
independent of (rk)kEN; further, we define To := 0. 

The qualitative extreme behavior of this volatility process can be seen in 
Figure 4.1 in detail. The volatility jumps upwards, whenever (NAt)tzo jumps 
and decreases exponentially fast between two jumps. This means in particular 
that V has local suprema exactly a t  the jump times rk/X (and t = 0), i.e. 

Consequently, it is the discrete-time skeleton of V a t  points rk/X that deter- 
mines the extreme behavior of the volatility process. 0 

For a general subordinator L we decompose 

into two independent LBvy processes, where L(') has characteristic pair (0, vl) 
with vl(x,oo) = v(x,oo) l(l,,)(x) and L ( ~ )  has characteristic pair (rn,v2) 
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Fig. 4.1. Sample path of an OU Weibull process with L1 as given in Example 3 
with X = 1, p = 1 and p = 112. 

with vz(x, co) = v (x, 1] l(o,ll(x).  Then again ~ ( l )  is a compound Poisson 
process with intensity v(1, oo) and jump sizes with d, f. v1 /v(l,oo). All the 
small jumps and the drift are summarized in ~ ( ~ 1 .  

What is needed, however, are the precise asymptotic links between the tails 
of V, L and the tail of the LBvy measure v(., co). This implies immediately 
that we have to distinguish different regimes defined by the link between L and 
v(., 00). Any infinitely divisible distribution is asymptotically tail-equivalent 
to its LBvy measure, whenever it is convolution equivalent; see Theorem 7. 
Definitions and results concerning subexponential and convolution equivalent 
distributions are summarized in Appendix A. 

The class S(0) = S of subexponential d, f, s contains all d. f. s with regularly 
varying tails, but is much larger. Subexponential distributions can be in two 
different maximum domains of attractions; see Theorem 8. All d.f.s with 
regularly varying tails are subexponential and belong to MDA(@,). Other 
subexponential d. f. s, as for instance the lognormal and the semi-heavy tailed 
Weibull d. f. s (see Example 3), belong to MDA(A). On the other hand, d. f. s 
as the gamma distribution or d. f. s in S(y)  for y > 0 belong to MDA(A), but 
are lighter tailed than any subexponential distribution. Consequently, we also 
consider such exponential models below. 
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4.3.1 OU processes with subexponential tails 

In this section we are concerned with the OU process given by (4.14), whose 
BDLP is subexponential. This section is based on Fasen [19, 201; an additional 
reference is [18]. 

Proposition 2 (Tail behavior of subexponential models). 
Let V be a stationary version of the OU process given by (4.14) and define 
M ( h )  := I/t for h > 0 .  

(a) If L1  E S n MDA(@,) = R-, , then also Vo E R-, and 

Moreover, 

P ( M ( h )  > x )  N [Xh + a-'1 P ( L ~  > x )  , x -+ oo .  (4.22) 

(b)  If L l  E S n M D A ( A ) ,  then also Vo E S n M D A ( A )  and 

where U is a uniform r. v. on ( 0 ,  I ) ,  independent of L .  In  particular, 
P(Vo > x )  = o, (P(L1 > x ) )  as x -t oo. More precisely, 

4.1 P(V0 > x )  -P(L1 > x ) ,  x -+ 00,  
x 

(4.24) 

where a is  the function from the representation (A.1):  

P(L1 > x )  N cexp [ - i x & d y ]  , x - - + m ,  

for some c > 0 and a : R+ -+ R+ is absolutely continuous with lim,,, a ' ( x )  = 
0 and lirn,,, a ( x )  = oo. Finally, 

Proof. By (4.17) we have 

Assume that L 1  E R-, for some a > 0.  Then by Theorem 7 (i)  we have 
v ( . ,  o o ) / v ( l ,  oo) E R-,. By Karamata's theorem (e, g. Embrechts et al. [17], 
Theorem A 3.6) we obtain 
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This implies in particular that also uv(., m ) / v v ( l , m )  E R-, and hence, 
again by Theorem 7 (i), Vo E R-, and (4.21) holds. 

If L1 E MDA(A) n S  we can only conclude from (4.26) that the right hand 
side tends to  0. To obtain a precise result we proceed as follows. Denote by El 
the jump distribution of the compound Poisson process ~ ( l )  as given in (4.20). 
Taking v (., m )  /u( l ,  m )  E R-, into account and applying 1'Hospital's rule 
yields 

The tail-equivalence (4.23) follows then from the fact that 

as x + co and Theorem 7 (i). 
For proving (4.24), by Theorem 7 (i) we may assume without loss of gen- 

erality that there exists a xo > 0 such that 

" 1 
v(x, m )  = e exp [- lo - dy] , x 2 xo . 

a(y) 

Then v(dx) = (a(x))-'v(x, m )  dx and an application of 1'Hospital's rule shows 
that 

since a(x)/x N at(x) and at(x) -+ 0 as x 4 m .  Theorem 7 (i) then gives (4.24). 
The results for M(h) are based on Theorem 2.1 of Rosinski and Samorod- 

nitsky [34]. They show that for LAh + Vo E S 

implying the result by Theorem 7 (i) . 

Example 9 (Semi-heavy tailed Weibull distribution). 
Let L1 have distribution tail 
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Fig. 4.2. Sample path of an OU process driven by a regularly varying compound 
Poisson process with ,u = 8.5 and X = 0.01. The first plot shows ( L X t ) O s t 5 ~ 5 ~  and 
the second plot shows the corresponding volatility (&)o2 t<z50 ,  indicating the micro- 
behavior of the model. The third plot gives ( & ) o ~ t ~ l o o o o  indicating the macro- 
behavior of the model. 

for some K > 0 and p E (0, l ) .  As a(x) = xl-pip, we obtain from (4.24) 
immediatelv 

Proposition 2 shows that in the regularly varying regime the tail of Vo is 
equivalent to the tail of L1. In contrast to that, in the S n MDA(A) case, the 
tail of Vo becomes lighter, due to the influence of exp(-U). But in both cases 
Vo is subexponential and the tail of M ( h )  is determined by the tail of L1, only 
the constants differ. 

The following result gives a complete account of the extreme behavior of 
the volatility process V driven by a subexponential LBvy process L. There are 
three components considered in (4.28) and (4.29). The first one is the scaled 
jump time process corresponding to  the jumps of (Lxt)tZo, which are larger 
than 1. The second component is the normalized local supremum near that 
jump, and the third component is a vector of normalized values of V after the 
jump. 

Theorem 2 (Marked point process behavior of subexponential mod- 
els). Let V be a stationary version of the 0 U process given by (4.14). Suppose 
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Fig. 4.3. Sample path of an OU Weibull process with p = 0.7, p = 8.5 and 
X = 0.01. The first plot shows (Lxt)o<tlz50 and the second plot the corresponding 
volatility (&)Ost<250,  indicating the micro-behavior of the model. The third plot 
gives  lo^^^ indicating the macro-behavior of the model. 

r = ( r k ) k E N  are the jump times of ~ ( l )  given by (4.20) and I = ( I ~ ) ~ ~ ~ ,  
where = &- [rk-l + rk,rk + r k + l ) ,  ro := O .   or m E N let o = to < t l  < 
- .  < t m .  

(a) Assume that L1 E S n MDA(@,) with norming constants a~ > 0 such 
that 

lim TP(L1 > aTx) = x-" , x > 0 .  
T+W 

(4.27) 

Take r('") = (rk,i)iEN, k E N ,  as i,  i. d. copies of the sequence r and set 
rk,0 = rk,-1 = 0 for all k E W. Let xgl  c{sk ,  Pk)  be a PRM(.r9) with mean 
measure d(dt x dx) = dt x l (o ,W)(x )  dx, independent of the sequence 
(r(k))kEN. Then, 
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(b) Assume that L1 E S n MDA(A) with norming constants aT > 0, b~ E R 
such that 

lim TP(L1 > UTX + bT) = exp(-x) , a: E R 
T-03 

Let E {sk, Pk) be a PRM(19) with 8(dt x dx) = dt x e-" dx. Then 

Moreover, 

We first give an interpretation of (4.29). The limit relations of the first two 
components show that the local suprema of V around the rk/X, normalized 
with the constants determined via LA, converge weakly to the same extreme 
value distribution as LA. Moreover, the third component indicates that for 
to = 0 the second and third component have the same limiting behavior; 
i.e. the supsElk V, behaves like VrkIx, For all ti > 0 the last component is 
negligible, i. e. the process is considerably smaller away from Vr , /~ .  

In the second and third component of (4.28) all points rk and not only 
r k , o  = 0 like in (4.29) may influence the limit. This phenomenon has certainly 
its origin in the very large jumps caused by regular variation. Even though 
the volatility decreases between the jumps exponentially fast, huge jumps can 
have a long lasting influence on excursions above high thresholds. This is 
in contrast to the semi-heavy tailed case, where L is subexponential, but in 
MDA(A). 

Both relations (4.28) and (4.30) exhibit, however, a common effect in the 
third component: if the L6vy process L has an exceedance over a high thresh- 
old, then the OU process decreases after this event exponentially fast. 

Corollary 2 (Point process of exceedances). 
Let the assumptions of Theorem 2 hold. 

(a) Assume that L1 E S n MDA(@,). Let (jk)kEN be the jump times of a 
Poisson process with intensity x-" for x > 0. Let (Ck)kEZ be i. i. d, discrete 
r. v. s, independent of (jk)&N, with probability distribution 



4 Extremal behavior of stochastic volatility models 123 

Then, 

(b) Assume that L1 E S f l  MDA(A). Let ( jk)kEN be the jump times of a 
Poisson process with intensity e-" for x E J R .  Then, 

Again the qualitative difference of the two regimes is obvious. In the case 
of a regularly varying BDLP L the limiting process is a compound Poisson 
process, where a t  each Poisson point a cluster appears, whose size is random 
with distribution (rk)kEN. In contrast to this, in the MDA(A) case, the limit 
process is simply a homogeneous Poisson process; no clusters appear in the 
limit. 

As the next result shows, the running maxima of the volatility process V 
have the same behavior as that of an i. i. d. sequence of copies of LA. 

Corollary 3 (Running maxima). 
Let V be a stationary version of the OU process given by  (4.14), and define 
M(T)  := S U ~ ~ ~ [ ~ , ~ ~  6 for T > 0. 

(a) Assume that L1 E S n MDA(@,) with norming constants a~ > 0 given 
by  (4.27). Then 

lim P (~;$M(T) 5 x) = exp(-x-") , x > 0 .  
T+w 

(b) Assume that L1 E S n MDA(A) with norming constants aT > 0, bT E JR 
given by  (4.29). Then 

lim P (~;;(M(T) -  AT) 5 x) = exp(-e-") , x E R .  
T400 

Finally, we investigate the possibility of volatility clusters in the OU pro- 
cess. As the concept of eupcrossings is only defined for continuous-time pro- 
cesses, which does not fit into our framework, we shall introduce an appropri- 
ate method for describing clusters in continuous-time processes with jumps. 

As our method will be motivated by the discrete-time skeleton of V, we 
recall that in a discrete-time process clusters are usually described by the 
extremal index 0 E (O,l]; see Definition 8. However, continuous-time processes 
are by nature dependent in small time intervals by the continuity and the 
structure of the process. Thus it is not adequate to adopt the extremal index 
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concept for stochastic sequences to describe the dependence structure of the 
continuous-time process on a high level. 

The following concept of an extremal index function has been introduced 
in Fasen [18]. 

Definition 2. Let (&)t>o be a stationary process. For h > 0 define the se- 
quence Mk(h) := S U ~ ( ~ - ~ ) ~ ~ ~ ~ ~ ~  &, k E N. Let B(h) be the extremal index 
of the sequence (Mk(h))kEN. Then we call the function B : (0, oo) + [O, 11 
extremal index function. 

The idea is to divide the positive real line into blocks of length h. By 
taking local suprema of the process over these blocks the natural dependence 
of the continuous-time process is weakened, in certain cases it even disappears. 
However, for fixed h the extremal index function is a measure for the expected 
cluster sizes among these blocks. For an extended discussion on the extremal 
index in the context of discrete- and continuous-time processes see Fasen [18]. 

Corol lary 4 (Ext remal  index function). 
(a) If L1 E S n MDA(@,), then B(h) = ha / (ha  + 1)) h > 0. 
(b) If LL1 E S n MDA(A), then B(h) = 1, h > 0. 

Regularly varying OU processes exhibit clusters among blocks, since 
B(h) < 1. So they have the potential to model both volatility features: heavy 
tails and high level clusters. This is in contrast to OU processes in SnMDA(A), 
where no clusters occur. 

4.3.2 OU processes w i th  exponential  tails 

In this section we investigate OU models having exponential tails, hence are 
lighter tailed than those considered in the previous section. More precisely, 
we will concentrate on two classes of models in C(y), y > 0; see Definition 4. 
The first class concerns the class of convolution equivalent distributions S(y) ,  
y > 0 (Definition 5). Here Theorem 7 provides the necessary relationship 
between the tails of the infinitely divisible d. f. and of its LBvy measure, which 
leads to a comparison between the distribution tail of the stationary r. v. Vo 
and the increment L1 of the BDLP. An important family in S(y)  are d. f. s 
with tail 

where y,  c 2 0, p < 1, I(.) is slowly varying, and if c = 0, then /3 > 1 or 
/3 = 1 and Jy l(x)/x dx < oo (Kluppelberg [25], Theorem 2.1, or Pakes [32], 
Lemma 2.3). The generalized inverse Gaussian distribution (GIGD) with 
probability density 

p(x) = KxO-' exp (- (d2x-' + y2x) /2) ,  x > 0 ,  
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where K is the normalizing constant, P < 0 and 6' > 0, is a prominent 
example in S (y2/2). Further examples for distributions in S(y)  can be found 
e. g. in Cline [14]. 

The second class of processes with exponential tails, which we investigate 
in this section, are r - O U  processes. These are defined as stationary OU pro- 
cesses, where Vo is T(p, y) distributed with probability density as defined in 
(4.12) for p > 1 and y > 0. The gamma distribution is infinitely divisible with 
absolutely continuous LBvy measure given by its density 

Hence, by (4.17) the BDLP L has Levy density 

Except for the factor p this is the probability density of an exponential d. f. 
Hence L is a positive compound Poisson process with Poisson rate p > 0 and 
exponential jumps; for details see Barndorff-Nielsen and Shephard [2]. The 
exponential and gamma laws with scale parameter y > 0 belong to C(y) but 
not to S(y). 

In analogy to the r-OU process, also for OU-S(y) processes with y > 0 
we restrict our attention to positive compound Poisson processes as BDLPs; 
i. e. we work in the framework of positive shot noise processes as defined in 
Example 2. Note that by Proposition 4 (b) all d.f.s in C(y) for y > 0 belong 
to MDA(A). 

Some of the results in this section can be found in Albin [I], who studies 
the extremal behavior for a larger class of OU processes by purely analytic 
methods. 

For BDLPs in S(y)  for y > 0 the relation of the tail of the stationary d.f. 
and its LBvy measure are stated in the following proposition. 

Proposition 3 (Tail behavior of OU-S(y) models for y > 0). 
Let V be a stationary version of the OU process given by (4.14). 

(a) Suppose v ( l , . ]  / v ( ~ , w )  E C(y), 7 > 0. ?''hen vv (1, -1 / v v ( l , ~ )  E C(y) 
with 

(b) Suppose L1 E S(y), y > 0. Then also l41 E S(y),  and 

In  particular, P(Vo > x) = o(P(L1 > x)) as x -+ 00. 
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Fig. 4.4. Sample path of a r -OU process with y = 3, p = 8.5 and X = 0.01. 
The first plot shows (L~t)o<t<250 and the second plot the corresponding volatil- 
ity (&)0<t1250, indicating the micro-behavior of the model. The third plot gives 
(&)olt<~oooo indicating the macro-behavior of the model. 

Proof. (a) By (A.1) the LBvy measure v has representation 

v(x, oo) = C(X) exp [ - ] ~ 2 1 ,  

for functions a ,  c : [1, oo) -+ EX+ with lirn,,, c(x) = c > 0 and lirn,,, a(x) = 
117, lirn,,, ar(x) = 0. Since we are only interested in the tail behavior we 
may assume without loss of generality that v is absolutely continuous and 
c ( . )  f c. Recall from (4.17) that vv(dx) = x-'v (x, oo) dx and let v(dx) = 
vl(x) dx. Part (a) follows by an application of 1'Hospital's rule, since 

(b) We first show that Vi E S(y).  By Theorem 7 (i) it suffices to show that 
YV (1, '1 lv(1, oo) E S(y).  Again, we can assume without loss of generality that 
v is absolutely continuous and has the representation (4.31) with constant 
c(.) = c. For simplicity, we further assume that c = 1 and v(1, oo) = 1; 
the general case follows by a simple dilation. As in part (a) we use that 
vv(dx) = x-lv (x, co) dx. An application of 1'Hospital's rule shows that 
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implying vv ( 1 ,  .] E L(y) .  Denote by v p  the convolution of vv restricted to 
( 1 ,  co) with itself. Then for 1 < y' < x/2  we use the usual decomposition of 
the convolution integral 

In order to show that vv ( 1 ,  .] E S ( y ) ,  we calculate the limit ratio of the densi- 
ties of v p  and vv.  Observe that on every compact set v ( x  - u ,  co) / v  ( x ,  co) 
converges uniformly in u to exp(yu) as x -+ co. For the first summand of 
(4.32) we thus obtain 

For the second summand in (4.32) we estimate 

du 
u(x  - U )  v ( x ,  0;)) 

x v ( 2  - U ,  00) 
v (u ,  co) du . 

v ( 2 , ~ )  

Furthermore, since 

v ( x ,  00) / v1 (x )  = a(x)  - 117, x -+ 0 0 ,  

there exist constants K,xo > 0 such that v ( x ,  co) < K v l ( x )  for x > xo. We 
obtain for y' > xo 

Since v ( 1 ,  .] E S ( y ) ,  the same decomposition as in (4.32) yields (for details 
see e. g. Pakes [32], Lemma 5.5) 



128 Vicky Fasen, Claudia Kliippelberg, and Alexander Lindner 

Furthermore, lirn,~,, lim,,, x / [ y i ( x  - y')] = limy~+, l / y '  = 0. By (4.32)- 
(4.36) we now obtain v F ( d x )  ( 2  eYU u ( d u ) )  v v ( d x )  for x -+ oo, showing 
that v v  ( 1 ,  .] and hence Vo are in S ( y ) .  The assertion on the tail behavior now 
follows from (a) and Theorem 7 (i). 

The following result is an analogon to Theorem 2 and describes the ex- 
tremal behavior of V completely. 

Theorem 3 (Point process of exceedances of exponential models). 
Let V be a stationarg version of the OU process given by (4.14) with L a 
positive compound Poisson process as i n  (4.18). Denote by  ( r k ) & ~  the jump 
times of the positive compound Poisson process L given by (4.18) and define 
Ik := [rk, rk+1), k E N. Let x E " = , { s k ,  Pk} be P R M ( 6 )  with 6 ( d t  x d x )  = 
dt x e-" dx .  

(a) Assume L1 E S(y), y > 0, with norming constants a~ > 0, b~ E R such 
that 

IEeyLl 
lim TP(L1 > a ~ x  + b ~ )  = - exp(-x)  , x E JR . 

T+W IEer Vo 
(4.37) 

Then 

(b) Assume V is  the r ( p ,  7 ) - O U  process. Let a~ > 0, b~ E R be the norming 
constants of a r ( p  + 1, y )  distributed r. v. W, such that 

lim TP(W > a r x  + bT) = p-' exp(-x) , x E R .  
T+00 

(4.39) 

The proof is divided into several steps. We shall utilize classical results for 
the extreme value theory of stationary discrete-time processes. As a discrete- 
time skeleton ( V r k / X ) k E ~  seems to be a good candidate. However, Vrklx = 

k xjTgF e-(rk-rj) [j, k E N, is not stationary. As we will show in Lemma 1 

the process 
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is stationary, where r o  := 0. For increasing k the process e-rk~o tends to 
0. Thus it has no influence on the extremal behavior. We shall show that 
the point process behavior is the same for (VrkIX)kEN and for (Vk)kEN. For 
the proof we also need that the D and D' conditions (Definition 9) hold for 
(Vk)kEN. The highly technical Lemma 2, where this is confirmed, is postponed 
to the Appendix. 

Lemma 1. Let V be a stationary version of the OU process given by (4.14) 
with L a positive compound Poisson process as in (4.18). Then (Vk)kEz as 
defined in (4.41) is stationary. 

d Proof. Let h E R be fixed. Note that ( rh t j  - rh)jEz = ( I ' j ) jE~.  Then 

Similarly, for 1 E N we obtain 

for k l , .  . . , k l  E N. 0 

Proof of Theorem 3. Since V is decreasing between jumps, it follows that 
d 

supsE~,  Vs = VrklX. Recall that Vk = Vrklx + e-rkb = Vo + El and that 
(Vk)kE~ is stationary. We show first that the norming constants a, > 0, b, E R 
given by (4.37) and (4.39) satisfy 

To show this in case (a), observe that P(Vo > x) = o(P(& > x)) for x -+ oo 
by Proposition 3 (b), so that Theorem 7 (i, ii) yields 

From this (4.42) follows immediately, and further we see that Vk E S(y).  
In case (b), Vk is r ( p + l ,  7)  distributed as an independent sum of a r ( p ,  7 )  

and an Exp(7) r,  v., and (4.42) is immediate. The norming constants of a I' 
distribution can be found in Table 3.4.4 of Embrechts et al. [17]. 

Note that in both cases (a) and (b), we have Vk E C(y). Thus, by Lemma 2 
and Leadbetter et al. [29], Theorem 5.5.1, 
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CY) 

{ / p l l  b n ) )  "3 C ~ { s k , ~ k } .  (4.44) 

Define point processes 

and 
00 

K n  := C E { k / ( ~ n ) ,  aG1(VrkP - bn)) . 
k=O 

For E > 0 and I = [s,t)  x (x,oo) R+ x R define I, := [s , t )  x (x ,x+E] .  
Taking into account that Vrklx 5 Vk we have for 6 E (0 , l )  

We shall show below that 

Then by RootzBn [33], Lemma 3.3, the limit behavior of En and K, is the 
same. Relation (4.40) then follows by transforming the time scale as in Hsing 
and Teugels [23] (for details see Fasen [18], Lemma 2.2.4). 

To show (4.45), observe that by (4.44) we have 

€10 lim P(En(I,) > 0) = 1 - exp[(t - s)(exp(-x) - exp(-(x + r)))] - 0 .  
n-CY) 

Furthermore, since 6 < 1, 

lim C P(Fk > un + r a,) 5 lim n6tpP(Vk > an(x + r) + bn) = 0 .  
n--im n+m 

k€[0,n6tp) 

Applying (B.3) we obtain 
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The last summand tends to 0 as n -+ co, since CEO=l l/lc3 < co. More- 
over, there exists an no E N such that an > 1 / ( 2 y )  and ke-k/(2p) 5 112 for 
n, k 2 no. Then the first exponential moment of yke-k/(2p)fo exists, and for 
nQP > no we obtain 

since ELl e-"E12 < CQ. This proves (4.45). 0 

Results (4.38) and (4.40) show that local extremes of such exponential 
models have no cluster behavior on high levels. The following two corollaries 
are immediate from Theorem 3. 

Corollary 5 (Point process of local maxima). 
Let the assumptions of Theorem 3 hold. Denote by ( j k ) k E N  the jump times of 
a Poisson process with intensity e-x for x E R. Then, 

Corollary 6 (Running maxima). 
Let V be a stationary version of the OU process (4.14), where L is a posi- 
tive compound Poisson process as in  (4.18). Define M ( T )  := supoltlr & for 
T > 0 .  

(a) Assume L1 E S ( y ) ,  y > 0 ,  with norming constants given by (4.37). Then 

lim P ( ~ $ ( M ( T )  - b x ~ )  5 x )  = exp(-e-") , x E R .  
T+w 

(b) Assume V is the r ( p ,  7 ) - O U  process with norming constants given by 
(4.39). Then 

lim P ( ~ ~ ; ( M ( T )  - B A T )  < x )  = exp(-e-") , x E R .  (4.46) 
T+w 

For a subexponential OU process and h > 0 fixed the r.v. M ( h )  = 
supoltlh & is tail-equivalent to the increment of the LQvy process; cf. (4.22) 
and (4.25). In the class S ( y ) ,  y > 0 ,  this is much more involved; see Braver- 
man and Samorodnitsky [9]. Although the large jumps of the LQvy process 
determine the tail behavior, small jumps also have a non-negligible influence. 
For any h > 0 ,  the tail of M ( h )  is of the same order of magnitude as the tail 
of the increment of the BDLP, but in general it is only possible to give upper 
and lower bounds on the asymptotic ratio of the two tails. Using Corollary 6 
one can calculate this constant for the OU process explicitly. 
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Corollary 7 (Extremal index function). 
Let V be a stationary version of the OU process given by (4.14), where L is a 
positive compound Poisson process as i n  (4.18). Define M ( h )  := supostlh & 
for h > 0 .  

(a)  Let L1 E S ( y ) ,  y > 0. Then M ( h )  E C ( y )  if and only i f  

P ( M ( h )  > x )  N X ~ I E ~ ~ " ~ [ I E ~ ~ ~ ' ] - ~ P ( L ~  > x ) ,  x -+ co . (4.47) 

I n  that case M ( h )  E S ( y )  and Q ( . )  - 1 .  

(b) Let V be the r ( p ,  7 ) - O U  process with norrning constants given by (4.39) 
and let W be a r ( p  + 1,  y )  r. v. Then 0(.)  = 1 and 

P ( M ( h )  > x )  N XhpP(W > x )  , x -+ c o .  (4.48) 
- 

Proof. (a) First we assume M ( h )  E C ( y ) .  Let En > 0 ,  bn E R and Gn = 

Enx + zn be constants such that 

lim n P ( M ( h )  > Gn) = exp( -x )  . 
n+co 

Denote by Gk an i. i. d. sequence of copies of M ( h ) .  Then we obtain from 
Lemma 2 (b) and Leadbetter et al. 1291, Theorem 3.5.1, for x E R ,  

- - 
lim P ( E i l ( ~ ( n h )  - K n )  5 x )  = lim P(2ii1( max Mk - bn) 5 X )  

n+cc n+m k=l, ..., n 

showing in particular that 0 ( h )  = 1. On the other hand, by Corollary 6, 

lim ~ ( a i : ~ ( ~ ( n h )  - bxnh) 5 x )  = exp(-e-") , x E R .  
n+oo 

Then by the convergence to types theorem (see e. g. Theorem A 1.5 of Em- 
n-+m - n-+w 

brechts et al. [17]),  zn /axnh - 1 and bn - bxnh - 0 .  Applying the 
convergence to types theorem a second time yields 

- 
lim P ( a z h (  max Mk - bxnh) 1 X )  = exp(-e-') , 

n-+m k=l, ..., n 

This implies by Leadbetter et al. [29],  Theorem 1.5.1 that 

- 
with uxnh = U x n h X  + bXnh. By (4.42) also limn,, nP(Vk > ~ ~ n h )  = 

exp( -x ) / (Xph) .  Hence P ( M ( h )  > x )  N h ~ p ~ ( i &  > x )  for x -+ co,  and (4.47) 
follows from (4.43). 

Conversely, if (4.47) holds, then it is clear that L1 E S ( y )  C C ( y )  implies 
M ( h )  E C ( y )  by tail-equivalence. By Lemma 2 (b) follows 0 ( h )  = 1. 

(b) We refer to Albin [ I ] ,  Theorem 3, for (4.48). That Q ( h )  = 1 follows 
then from (4.39), (4.46) and (4.48). 0 



4 Extremal behavior of stochastic volatility models 133 

In both cases the extremal index function is equal to one, so that for 
any h > 0 the sequence Mk = S U ~ ( ~ - ~ ) ~ < ~ < ~ ~  & behaves like i . i ,d .  data. 
Hence such models cannot explain volatility dusters on high levels. 

4.4 Extremal behavior of the COGARCH model 

The volatility of the COGARCH(1,l) process as introduced in (4.6) is the 
(cAglAg) solution to the SDE (4.6), which is given by 

see Kliippelberg, Lindner and Maller [27, 281 for details. This process is a 
solution of the SDE 

where 

is the discrete part of the quadratic variation process of L. Comparing this 
with (4.5) we see that the COGARCH(1,l) can be interpreted as a generalized 
CIR model driven by the discrete part of the quadratic variation process of 
L. An essential feature of the COGARCH(1,l) model is that the same LBvy 
process drives the price process S and the volatility process V. An extension of 
the COGARCH(1,l) process to COGARCH(p, q) process with 1 < p < q was 
recently obtained by Brockwell, Chadraa and Lindner [ll]. There, (4.50) is 
replaced by a CARMA (continuous time ARMA) type stochastic differential 
equation, driven by [L, L ] ( ~ ) .  We shall not go into further details, and by 
COGARCH we shall always mean the COGARCH(1,l) process. 

Denote by v the LBvy measure of L. A stationary version of (4.49) exists 
if and only if 

With the auxiliary cbdl&g process (Xt)t20 defined in (4.7), given for 77 > 0, 
X L O b y  

the stationary volatility process has representation 



134 Vicky Fasen, Claudia Kliippelberg, and Alexander Lindner 

with ,O > 0 and l4~ d ,O JT e-Xtdt, independent of L. The auxiliary process 
( X t ) ~ l o  itself is a spectrally negative LBvy process of bounded variation with 
drift yx = q, no Gaussian component, and LBvy measure vx given by 

We work with the Laplace transform IEecSXt = e t*(~) ,  where the Laplace 
exponent is 

For fixed s 2 0, E e - S X ~ x i s t s  (i. e. is finite) for one and hence all t > 0, 
if and only if the integral appearing in (4.53) is finite. This is equivalent 
to EIL112S < co. Further, if there exists some s > 0 such that @(s) 5 0, 
then (4.51) holds, and hence a stationary version of the volatility process 
exists. 

The qualitative extreme behavior of this volatility process can be seen in 
Figure 4.5, where the driving LBvy process is a compound Poisson process. 
As in the case of a LBvy driven OU process the volatility jumps upwards, 
whenever the driving LBvy process L jumps and decreases exponentially fast 
between two jumps. 

It  is instructive to observe that both, the OU process (4.14) and the right- 
continuous &+ of the COGARCH volatility (4.52) are special cases of the 
generalized OU process 

where (&, ct)t20 is a bivariate LBvy process. The stationarity conditions for 
(Ot)tlo, along with other properties, have been investigated by Lindner and 
Maller [30]. 

Returning to the COGARCH volatility, the next Theorem (cf. [28], Theo- 
rem 6) shows, that under weak conditions on the moments of L, the volatility 
process has Pareto like tails. Since we shall apply a similar argument in the 
proof of Theorem 5, we sketch the idea of the proof. 

Theorem 4 (Pareto tail behavior of COGARCH models). 
Suppose there exists some a > 0 such that 

I E I L ~ I ~ "  ln+ lLll < co and @(a)  = 0 .  (4.54) 

Let V be a stationary version of the volatility process given by (4.49). Then 
for some constant C > 0 we have 

lim xaP(Vo > x) = C . 
X"00 

(4.55) 
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Fig. 4.5. The first plot shows the sample path of a compound Poisson driving 
process ( L t ) O s t s 2 5 0  with rate 1 and normal jumps with mean 0 and variance 1 and 
the second plot the corresponding sample path of the COGARCH volatility process 
( V ~ ) O ~ ~ ~ X , O  driven by this LBvy process. The COGARCH parameters are ,O = 1, 
X = 0.04 and q = 0.0619. Both plots indicate the micro-behavior of the model. The 
third plot gives ( V t ) o g t s l o o o o  indicating the macro-behavior of the model. 

Proof. From (4.52) it is seen that  the stationary volatility process V satisfies 

where Vo is independent of (ewX" -, P Sot eXs-Xt- ds) for any t > 0. Thus the 
stationary solution Vo satisfies for every t > 0 the distributional fix point 
equation 

Vo 2 AtVo + Bt , 
where Vo is independent of (At, Bt)  and 

The result now follows from Theorem (2.1, by choosing t such that  (At, Bt)  
satisfies the assumptions. This is possible because of the structure of the 
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process and condition (4.54); for details see Kluppelberg et al. [28], Theorem 6. 
0 

The following remark gives a simple sufficient condition for (4.54) to hold. 

Remark 1. Let D := {d E [O,co) : 1 ~ 1 ~ ~ 1 ~ ~  < co) and do := supD E [O,co]. 
Suppose do $ D, or that there exists an so > 0 such that 0 < !P(so) < co. Fur- 
ther suppose that (I/t)t>o is strictly stationary. Then (4.54) and hence (4.55) 
hold (cf. Kliippelberg e i  al. [28], Proposition 5.3). 

We aim a t  a precise asymptotic description of the COGARCH model above 
a high threshold like in Section 11. It  is, however, clear from the definition 
of V that the influence of the spectrally negative LBvy process X is hard to 
analyze. In particular, the influence of the small jumps of L to V needs special 
treatment. In this review paper we shall restrict ourselves again to the case 

Nt of a compound Poisson driving process L as given in (4.18) by Lt = Cj=l Jj 
for t 2 0, where J has support on R. 

In this case the auxiliary process X simplifies to 

and the Laplace exponent becomes 

In the stationary volatility model we know that I/t 2 P / q  a.s. and V 
jumps if and only if L jumps (cf. [28], Proposition 3.4 (a)). The jump sizes 
are positive and depend on the level of the process a t  that time. As shown in 
Proposition 3.4 (b,c) of [28], 

and the process decreases exponentially between jumps: 

In analogy to the OU process driven by a compound Poisson process of Ex- 
ample 2, the compound Poisson driven COGARCH process V achieves local 
suprema only a t  the right limits of its jump times (and a t  t = 0). Hence 
it is no surprise that the discrete-time sequence (Vr,+)kGn in combination 
with the deterministic behavior of V between jumps suffices to describe the 
extremal behavior of the continuous-time COGARCH process. Consequently, 
we investigate the discrete-time skeleton 
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Using (4.58) and (4.59) we obtain 

and we see that (Vk)kEW satisfies the stochastic recurrence equation 
- 
v ~ = & V ~ - ~ + E ~  , k L 2 ,  (4.61) 

with independent of (&, gk)  for any k > 2, where 

and ((xk,  Ijk))kGn is an i, i, d. sequence. It  is an interesting observation that 
by (4.62) 

On the other hand, by (4.63) and X, - Xrk = ln(1 + he":) + ~ ( s  - rk)  for 
s 6 ( rk , rk+l ) ,  

Denote by (x, g )  a copy of (XI, El ) ,  independent of L and Vl. Then it follows 
that 

Moreover, 

We are now ready to present the analogue of Theorem 4 for the sequence 
(Vk)kEN. AS can be seen from (4.56), the process (Xrk)kEN is a random walk 
with increments 
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Theorem 5 (Pa re to  ta i l  behavior  of e). 
Suppose there exists some a > 0 such that 

LEI~11~"1n+lLll<m and ! . ? ( a )=O.  (4.65) 

Then a stationary solution (VklkGN of (4.61) exists. Its marginal stationary 
distribution, denoted by PO, is the unique solution of the random fix point 
equation - d -- K,=AK,+E,  

where (A, 5 )  i s  given by (4.64) and independent of L and Vo. Furthermore, 

P(VO > x )  N Ex-" , x + 00, 

where 

Proof. We shall show that conditions (i)-(iv) of Theorem C.l are satisfied: by 

definition, In A -vrl + ln(1 + Xe"?), where rl is exponentially distributed. 
Consequently, (i)  follows. 

To show (ii) note that by the independence of rl and E l ,  for a > 0 we 
have by (4.57) 

by the second assumption in (4.65). 
In order to  prove (iii) note that 

if and only if the first assumption in (4.65) holds, see Sato [35], Theorem 25.3. 
Finally, (iv) follows from 

That the constant E is indeed strictly positive follows from the fact that A, 
and Vo are strictly positive, almost surely. 0 

Remarks.  
(i)  X rk  tends almost surely to 00 if and only if EXr, > 0 or, equivalently, 
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pEln(1 + Xeq J;) < q. Notice that the stationarity condition (4.51) is for this 
model equivalent to EXr, > 0. 

(ii) In a sense it is remarkable that the tail of the stationary r. v. of the 
continuous-time model h and of the discrete-time skeleton ?o are so simi- 
lar. As the discrete-time skeleton considers only local suprema of the process, 
one expects V0 to be stochastically larger. As the Pareto index a is the saFe 
for both models, any difference can only appear in the constants C and C. 
Brockwell et al. [ll] have established a precise relationship between the dis- 
tributions of h and VO, showing that 

d where r = TI is exponentially distributed with parameter p. and independent 
of Vo. Using the classical result of Breiman [lo], it then follows that 

where the last equation follows from (4.57). 

The extremal behavior of solutions to stochastic recurrence equations is 
studied in de Haan et al. [22]. Their results can be applied to the stationary 
discrete-time skeleton of the volatility process (Vk)kEN as defined in (4.60). 

Theorem 6 (Extremal behavior of the COGARCH model). 
Let V be a stationary version of the volatility process given by (4.49) and 
define M(T)  := & for T > 0. Suppose there exists some a > 0 such 
that 

I E I L ~ ~ ~ "  ln' lLll < co and @(a) = 0 

Let 6 be the constant i n  (4.66) and define a~ := (p.T)l/" for T > 0. Then 

lim P(~,'M(T) 5 x )  = exp(-(?'ez-"), x > 0 ,  
T+w 

where for X: = max(0, Xt)  

Denote by (I'k)kEN the jump times of the compound Poisson process L given 
by (4.18) and define Ik := (G, rk+1] for k E N. Let (jk)kGN be the jump times 
of a Poisson process with intensity COX-" for z > 0. Then, 
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where (Ck)kGN are i. i. d. discrete r. v. s, independent of ( jk)kGn,  with probabil- 
ity distribution 

Moreover, 

where co = To 2 TI 2 . . . are the ordered values of the sequence ( - x $ ~ ) ~ ~ ~ .  
Finally, 8 = 81. 

Proof. Since supsEIk Vs = v k ,  Theorem 5 and de Haan et al. [22], Theorem 2.1, 
show that 

and that (?k ) k E ~  has extremal index 0 E (0, I ) ,  given by 

For the first expression for Ok, see de Haan et al. [22], and the second expression 
follows by a similar calculation as above. By an application of Hsing and 
Teugels [23] (see also Fasen [18], Lemma 2.2.4) we transform the time scale, 
such that (4.68) holds. Then we obtain 
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By the Poisson result (4.68) we observe clusters in local extremes of the 
continuous-time process. So the COGARCH is a suitable model for heavy 
tailed volatility models with clusters on high levels. 

4.5 Conclusion 

In this paper we have investigated the extremal behavior of the most popular 
continuous-time volatility models. We have concentrated on models with tails 
ranging from exponential to  regularly varying; i. e. tails as they are found in 
empirical volatility. The quantities derived for such models include 

0 the tail of the stationary volatility Vo and the relation to the tail of the 
distribution governing the extreme behavior, 
the asymptotic distribution of the running maxima, i. e. their MDA and 
the norming constants, 

0 the cluster behavior of the model on high levels. 

We found interesting similarities in the extremal behavior of certain mod- 
els, which was quite unexpected. 

Recall the GCIR model of Example 1, where the tail of the stationary 
distribution F of Vo is compared to the tail of H, the d. f. describing the 
extreme behavior. Example 1 (2) belongs to S n MDA(A), it has stationary 
distribution with a semi-heavy Weibull like tail. Relation (4.24) is mimicked 
by the fact that (4.13) can be rewritten to 

Moreover, as the norming constants in the GCIR examples are calculated 
based on the d ,  f. H ,  analogously, by the above Corollary 3, for the OU process 
in MDA(A), the norming constants are derived from L1 and not from the 
stationary distribution of the process V. 

Analogous results hold for Example 1 (3), which belongs to  S n MDA(@,) 
for some a > 0. Here the tails of F and H are both regularly varying of the 
same index; this corresponds to (4.21). 

Also in the case, where Vo is gamma distributed, the behavior of the run- 
ning maxima of the GCIR model in Example 1 (1) and of the r -OU process 
as given in (4.39) and (4.46), respectively, are identical. 

This means also that, if the stationary distribution of a GCIR model co- 
incides with the stationary distribution of a subexponential OU model, then 
also the norming constants and the behavior of the running maxima coincide. 
The role of M (h) in S(y),  y 2 0, corresponds for the GCIR models to the d. f. 
H ;  the influence of the driving Brownian motion plays no role whatsoever for 
the extreme behavior. 

Concerning volatility clusters, no model in MDA(A) presented in this pa- 
per can model such clusters on high levels. And here there is a profound 
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difference between the GCIR models with regularly varying tails and the reg- 
ularly varying OU models. Whereas all GCIR models fail to model high level 
volatility clusters, regularly varying OU models have the potential to model 
them. 

The COGARCH model resembles the GCIR models only in the sense that 
heavy tails occur, although the driving process can be very light tailed; the 
difference being that the COGARCH model always has heavy tails. There is 
no obvious relationship between the tail behavior of the stationary r. v. Vo 
and L1;  the heavy tails occur by the very intrinsic dependence structure of 
the model. 

With respect to volatility clusters, only regularly varying OU processes 
and COGARCH processes exhibit volatility clusters on high levels, which 
can be described quite precisely by the distribution of the cluster sizes; see 
Corollary 2 and Theorem 6. 

In this paper we have refrained from discussing another important styl- 
ized fact of empirical volatility: it exhibits often long memory in the sense 
that the autocovariance function decreases very slowly. This phenomenon can 
have various reasons, as for instance discussed in Mikosch and St&ric& [31]. 
Certainly an important issue is here a possible non-stationarity of the data. 
On the other hand, long range dependence is an important fact, which should 
not be completely ignored. All models presented in this paper have an expo- 
nentially decreasing covariance functions, which only exhibit some visual long 
memory, when the process is close to non-stationarity. 

For diffusion models like the GCIR models, a remedy, which introduces 
long range dependence in such models, is to replace the driving Brownian 
motion by a fractional Brownian motion. This generates a new class of sta- 
tionary long memory models. Such models have been suggested and analyzed 
in [12, 131. 

For the OU process the exponentially decreasing covariance function is due 
to the exponential kernel function; see (4.16). The often observed long-range 
dependence effect in the empirical volatility cannot be modelled this way. 
There are two ways to introduce long memory into such models. The first one 
is to replace the exponential kernel function by a hyperbolic kernel function 
of the form f (x) N IxI-fi for large x and for some ,f3 E (0.5,l). This introduces 
long memory into the model, which can be modelled by regularly varying LBvy 
driven MA processes. The second method has been suggested by Barndorff- 
Nielsen and Shephard [3]: a superposition of several OU processes (supOU 
processes) can create long memory. Regularly varying supOU processes exhibit 
also volatility clusters; see Fasen [19]. 
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Appendix 

In this Appendix we summarize some definitions and concepts used through- 
out the paper. 

A Basic notation and definition 

For details and further references see Embrechts et al. [17]. 

Definition 3. A positive measurable function u : R -+ R+ is regularly varying 
with index a ,  denoted by u E R, for a E R, if 

4 t x )  lim - = x a ,  x > O .  
t + a  u ( t )  

The function u is said to be slowly varying i f  a = 0 ,  and rapidly varying, 
denoted by u E R-,, if the above limit is 0 for x > 1 and m for 0 < x < 1. 

Definition 4. A d, f. F belongs to the class C ( y ) ,  y 2 0, if for every y E R, 

lim F ( x  - y ) / F ( x )  = eYY . 
1'00 

The class C ( y )  is related to the class R-, by the fact that 
- 

F E C ( y )  if and only if F o In E R-, . 

Thus the convergence of F ( x  - y ) / F ( x )  in Definition 4 is uniform on com- 
pact y-intervals. For an excellent monograph on regular variation we refer to 
Bingham, Goldie and Teugels 171. 

Applying Karamata's representation for regularly varying functions to the 
class C ( y )  we obtain for F E C ( y ) ,  y 2 0 ,  the representation 

- 
F ( x )  = c ( x )  exp 

where a ,  c : R+ -, R+ and lirn,,, c ( x )  = c > 0 and a is absolutely continuous 
with lirn,,, a ( x )  = l / y  and lim,,, a ' (x )  = 0. 

Definition 5 (Convolution equivalent distributions). 
Let y 2 0 and X have d. f. F .  W e  say that F or X belongs to the class S ( y ) ,  
i f  the following properties hold. 
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- 
(ii) lim FI2(") = 2Ry)  < m , 

F ( x )  

where f^(y) = EeyX is the moment generating function of X at y.  The class 
S := S(0) is called the class of subexponential distributions. 

Theorem 7. 

(i)  Let F be infinitely divisible with Le'vy measure v and y 2 0. Then 

(ii) Suppose F E S(y), l i m x + , ~ ( x ) / ~ ( x )  = qi 2 0 and X(y) < m for 
i = 1,2. Then 

If  qi > 0 for some i E {1,2), then also Fi, Fl * F2 E S(y). 

(iii) Let N be a Poisson r ,  v. with mean p and (Xk)kEn be an i. i. d. sequence 
with d, f. F E S(y) .  The r ,  v. Y = C:=, XI, has d. f.  G = e-" CF==o $ F * ~ .  
Then G E S(y)  and 

The following is the fundamental theorem in extreme value theory. 

Theorem 8 (Fisher-Tippett Theorem). 
Let (Xn)nEN be an i. i. d, sequence with d. f.  F and write Mn = maxk=l ,,,,, , Xk. 
Suppose we can find sequences of real numbers a, > 0, bn E IR such that 

lim E"(ai1 ( M ~  - bn) 5 x) = lim Fn(a,x + b,) = G(x) , x E R , n--to3 n+cc 

for some non-degenerate d. f. G (we say F is i n  the maximum domain of 
attraction of G and write F E MDA(G)). Then there are a > 0, b E IR such 
that x H G(ax + b) is one of the following three extreme value d , f .  s: 

Fre'chet @, (x) = x 5 0 7  for a > 0 .  exp ( - x - ~ ) ,  x > 0 ,  

Gumbel A(x) = exp (-e-") , x E IR . 

We summarize some well-known facts related to domains of attraction. 
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Proposition 4. 

(a) The following Poisson characterization holds: F E M D A ( G )  if and only i f  
a ,  > 0 ,  b, E R exist such that 

lim nF(a,x + b,) = - In G ( x )  , x E R . 
n+w 

(b) If F E C ( y )  for y > 0 ,  then F E M D A ( A )  with a, -+ l / y  as n -+ oo and 
ebn E R1/, . 

(c) If F E S n M D A ( A ) ,  then b, -t oo, a ,  -t oo and bn/an -+ oo as n -+ oo. 

(d) If F E MDA(@,) = R-, for a > 0 ,  then b, = 0 ,  a ,  E R1/, and a, -+ oo 
as n -+ oo. 

The following concept has proved useful in comparing tails, 

Definition 6 (Tail-equivalence) . 
Two d, f. s F and G (or two measures p and v )  are called tail-equivalent if 
both have support unbounded to the right and there exists some c > 0 such 
that 

lim F ( x ) / G ( x )  = c or lim v ( x ,  o o ) / p ( x ,  oo) = c .  
x+w 1 ' 03 

Important in the context of our paper is that all the following classes are 
closed with respect to tail-equivalence: M D A ( G )  for G E {@,,a > 0 ,  A ) ,  R-, 
for a E [0, oo),  C ( y )  for y 2 0 ,  S ( y )  for y 2 0 .  Moreover, for two tail-equivalent 
d. f. s in some M D A ( G )  one can choose the same norming constants. 

Definition 7 (Poisson random measure). 
Let (A,  A, 6 )  be a measurable space, where 6 is a-finite, and (0,3, P) be a 
probability space. A Poisson random measure N with mean measure 6 ,  denoted 
by PRM(B) ,  i s  a collection of r. v. s ( N ( A ) ) A E A ,  where N ( A )  : (O ,F ,  P)  --, 
( N o ,  B ( N o ) ) ,  with N ( 0 )  = 0 ,  such that: 

(a) Given any sequence (An)nEN of mutually disjoint sets i n  A :  

(b) N ( A )  is Poisson distributed with mean 6 ( A )  for every A E A. 

(c) For mutually disjoint sets A1,. . . , A ,  E A, n E N,  the r. v. s N ( A 1 ) ,  . . . , 
N(A,)  are independent. 

Definition 8 (Extremal index). 
Let X = (Xn),€z be a strictly stationary sequence and 0 2 0 .  If for every 
T > 0 there exists a sequence u,(T) with 

lim n P ( X 1  > u,(T)) = T and lim P( max X ,  5 u,(T)) = e-eT, 
n-+w n-+w k=l, ..., n 

then 0 is  called the extremal index of X and has value i n  [ O , l ] .  
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B The conditions D,(un) and Df(un)  

Classical results for the  extremal behavior o f  stationary sequences are based 
on  two conditions: the  first one is a specific type  o f  asymptotic dependence, 
and the  second is an anti-clustering condition. 

Definition 9. Let X = (Xn) , ,=~  be a strictly stationary sequence, such that 
for rn = 1 , .  . . , r ,  r E W, the sequences of constants ( ~ i ~ ) ) , ~ ~  and ( u , ) , ~ ~  
satisfy l im n T ( u i m ) )  = dm) and l im nF(u,) = T .  

n+w n-+w 

(a) For any integers p, q and n let 

( 1 )  ( 1 )  ( 9 ) )  such that jl - i, 2 1 and V ,  = ( v ,  , . . . , v$ ) ) ,  W ,  = (w,  , . . . ,wn  
( 1 )  with v:), w e )  E {un  , . . . , u ~ ) } .  Write I = { i l , .  . . , i,}, J = { j l , .  . . , j,}, 

X I  = ( X i l , .  . . , X i p )  and X J  = ( X j , ,  . . . , X j g ) .  If for each choice of indices 
of I ,  J ,  

where a,,l, + 0 as n -t oo for some sequence I ,  = o ( n ) ,  then X satisfies 
the condition D, (u,) . 

(b) X satisfies the condition D1(un) ,  if 

l im l i m s u p n  P(X1 > u, , X j  > u,) = 0 .  
k-00 n+w j=2 

W e  show that  ( ? k ) k € ~  as defined in  (4.41) satisfies the  D,(u,) and D1(un)  
conditions. T h e  result is an analogon for discrete-time MA processes given in  
Rootz6n [33], Lemma 3.2. 

Lemma 2. Let V be a stationary version of the OU process given by (4.19) 
with L a positive compound Poisson process as in (4.18). 

(a)  Assume ?k = Vfilx + e-rkco E C(y), y > 0, such that for a ,  > 0, b, E R 
and u, = a,x + b,, 

l im nP(?k > u,) = e-" , x E R .  
n+w 

For r E N and x = ( x l , .  . . , z,) let u, = (a,zl + b,, . . . , a,x, + b,). Then 
( V k ) k E ~  satisfies the D,(u,) and D1(un)  conditions. 
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(b) Let L1 be in S(y) ,  y > 0. Define for h > 0 fixed Mk := S U ~ ( ~ - ~ ) ~ < ~ ~ ~ ~  Vt 
for k E N. Suppose M1 E C(y) such that for a, > 0, b, E R aKd u, = 

anx + bn, 

lim nP(Mk > u,) = e-" , x E R 
n-00 

For r E N and x = (XI , .  . . , xT) let u, = (anxl + b,, . . . , anxT + b,). Then 
(Mk)kE~  satisfies the D, (u,) and D' (u,) conditions. 

Proof. (a) To show the DT(un) condition, let uLm) = anxm + b,, xm E R, 
(1) (1) m = 1, .  . . , r. Let V, = (v, , . . . , vLp)), W, = ( ~ n  , . . . , 20;')) with v i ) ,  we)  E 

(1) {u, , . . . , u$)} and 1 < il < . . < ip < jl < . . . < jq < n. Define Vc := 
- - 

d = k - ,  - e ( r k - r j ) ~ ,  - VI := (I&, . . . , Gp), V; := (KT,. . . , K:) and, similarly, 

VJ := (Vj,, . . . , Vj,), VS := (c,. . . ,T). Then (Vc)kEz is stationary and 

vPJ is independent of v?" for jl - ip  > [ n q ,  6 > 0. Since P(Ek < 0) = 0, 
we obtain V; < VI. Here, x = (x l , .  . . ,x,) < y = (yl , .  . . , y,) means that 
xi < yi for all i = 1 , .  . . , p .  It  now follows that for any r > 0, 

= P (v y6J < v,) P (vy6J < w,) 

Similarly we can find a lower bound, such that for jl - i, > [nGJ, 

Let Xi := ri - Ti-1 - 1/p, i E N. Then (Xi)iEn is a centered i, i. d. sequence 
such that xy=l  Xi = r, - nip. It follows that there exists a constant K > 0, 
such that for every n E N, 
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Hence, by Markov's inequality there is a constant k > 0 such that for all 
n E N, 

Thus we obtain for n E N, 

Note that the first exponential moment of y/3e-L6nJ/(2p) Fl exists for 
,0e-LsnJ/(2p) < 1. Choose Pn = 2 / ( ~ ( 1 -  6)) Inn. There exists no = no (6, r) E N 
such that ,f3ne-Ln61/(2p) < (1 -6) and an 2: (1 - ~ ) / y  for n > no. The first term 
on the right hand side of (B.4) is by Markov's inequality for n 2 no bounded 
above by 

n~ exp [hy ( ~ - L ~ " J / ( ~ ~ ) V ~ ) ]  e-"eyan5 nlE exp (1 - r)yVl eW2lnn, (B.5) - 1  
which converges to 0 as n -+ oo. Together with (B.l),  (B.2) and (B.4) this 
gives 

r 

so that 
lim an, ln6J 5 lim lim &, LnsJ ,€ = 0 , n-+w a/O n-*w 

which implies the D,(u,) condition by Lemma 3.2.1 in Leadbetter et al. [29]. 
To show the Df(un) condition, let r > 0. Then there exists an xo > 0 such 

that P ( r 2  - rl < xO) = E. Since - is a positive i. i. d. sequence, 
it follows that 

Now choose p such that 112 < P < ( I + ~ - ~ O ) - '  and 6 > 0 such that 1+6 < 2P. 
Then, for any k, n E N, 
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We first show that the first summand, w h ~ n  multiplied by n, tends to 0 as 
n -+ oo. Note that by the independence of Vl and Tj - TI, 

- 
P(V1 > u,, V, > u,) I 2 - I  P(V1 > u,) + 

+P(Vl + 5 > 2un, rj - 2 XO) . (B.7) 

Let V; be an independent copy of Vl. Then 
- 

P (Vl + V, > 2u,,rj - rl t so) 

As p ( l  + e-lo) < 1, the first exponential moment of py((1 + e-"~)Vl + V[) 
exists, and by Markov's inequality the last expression can be bounded above 
by 

Recall that u, = u,(x). Since (n H e-20~un) E Kzp for fixed x, it follows 
that (n H n1+se-2fl~un ) E R(1+6)-2P. We then obtain by (B.l), (B.7)-(B.9) 
and Bingham et al. [7], Proposition 1.5.1, that 

For the second term in (B.6), using the independence of yLn6l  and v?" for 
j > Ln", we obtain 
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Analogously to (B.4) and (B.5), with ,Bn = 3 / ( ~ ( 1  - ~ ) ) l n n ,  we have 

n2IP(1V1 - vPsJ I > fa,) i 0 as n 4 m. Using (B.l), we also have 

lim (n2/k) IP(V1 > u, - = exp(-2(z - ~ ) ) / k ,  
n--100 

(B.12) 

which converges to 0 as k -, m. Then by (B.6), (B.lO)-(B.12), and letting 
E J 0, the D1(un) condition holds. 

(b) To prove condition DT(un) ,  we replace V: in (a) by 

We then obtain an analogue result to (B.2). Further, since 

we obtain for any 6 > 0 that 

Since the first exponential moment of ,&ye-'Ln*Jh~k exists for pe-'LnsJh < 1, 

similar reasoning as in (B.4) and (B.5) shows that limn,, n ~ ( l ~ k  - I > 
E a,) = 0. As in the proof of (a) we then conclude that the DT(un)  condition 
holds. 

For the proof of the D1(un) condition we use 

00 

Mk 5 / sup e-*('-') (s) dLAs 
-m (k-1)hStlkh 

Let j 2 3. Then we have the upper bound 



4 Extremal behavior of stochastic volatility models 151 

Let V: be an independent copy of V1. Then 

The tail of V1 behaves by Proposition 3 (b) and Theorem 7 (ii) like 

so that V 1  E S(y). An analogue result to (B.8) and (B.9) gives 

and argueing similarly as in (B.11) and (B.12), we obtain 

lirn lim sup n x P(M1 > u,, Mj > u,) = 0 .  
k - + a  n+cc j=3 

It  remains to show that 

lim nP(M1 > u,, M2 > un)  = 0 .  
n--too 

(B.13) 

Note that 
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so that 

Furthermore, we have the upper bound 

The three summands are independent, and we shall show that for each of them 
the probability to be greater than u, is of order o(P(J1 > u,)) for n -+ 00, SO 

that by Theorem 7 (ii) 

lim P(M1 > u,, M2 > u,)/P(Jl > u,) = 0 .  (B.15) 
n-+w 

Equation (B.13) and hence condition Df(un) then follow from (B.2)) (B.14) 
and (B.15). 

The rapidly varying tails and Theorem 7 (2) give 

which is the assertion for the first summand. Further, also by the rapidly 
varying tails, Proposition 3 (b) and Theorem 7 (z), 

For the last summand we use that 

where (Ui)iEN, U are i, i. d. uniform on (0 , l )  and independent of L (cf. e. g. 
Sato [35], Proposition 3.4). 

From Theorem 7 (iii) then follows 
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C Stationary solution of a random recurrence equation 

The  following result is the  central result for proving stationarity and the  tail 
behavior of a stochastic process defined by a random recurrence equation; i t  
goes back to seminal work by Kesten [24] and Vervaat [36]. 

Theorem C. l  (Goldie [21], Theorem 4.1, Lemma 2.2). 
Let (Yk)kEN be a stochastic process defined by Yk = AkYk-1 + Bk,  where 
((Ak, B k ) ) k E ~ l  (A, B )  are i. i. d. sequences. Assume that the following condi- 
tions are satisfied for some a > 0: 

(i) The law of In IAl, given IAl # 0, is not concentrated on a lattice - c o n r Z  
for any r > 0.  

(ii) IEIAla = 1. 

(iii) IEIAJ" ln' /A1 < co. 

(iv) IEIBI" < co. 

d Then the equation Y, = AY, + B, where Y, is independent of (A, B ) ,  has 
the solution unique i n  distribution 

d The process ( Y k ) k E ~  with Yo = Y, is stationary and has tails 
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Summary. This paper proposes a unified framework for portfolio optimization, 
derivative pricing, modeling and risk measurement in financial markets with secu- 
rity price processes that exhibit intensity based jumps. It is based on the natural 
assumption that investors prefer more for less, in the sense that for two given port- 
folios with the same variance of its increments, the one with the higher expected 
increment is preferred. If one additionally assumes that the market together with 
its monetary authority acts to maximize the long term growth of the market port- 
folio, then this portfolio exhibits a very particular dynamics. In a market without 
jumps the resulting dynamics equals that of the growth optimal portfolio (GOP). 
Conditions are formulated under which the well-known capital asset pricing model 
is generalized for markets with intensity based jumps. Furthermore, the Markowitz 
efficient frontier and the Sharpe ratio are recovered in this continuous time set- 
ting. In this paper the numeraire for derivative pricing is chosen to be the GOP. 
Primary security account prices, when expressed in units of the GOP, turn out to 
be supermartingales. In the proposed framework an equivalent risk neutral mar- 
tingale measure need not exist. Fair derivative prices are obtained as conditional 
expectations of future payoff structures under the real world probability measure. 
The concept of fair pricing is shown to generalize the classical risk neutral and the 
actuarial net present value pricing methodologies. 
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5.1 Introduction 

This paper proposes an  integrated approach that  can be  applied t o  portfo- 
lio optimization, credit risk and derivative and insurance pricing. I t  uses the 
growth optimal portfolio (GOP) as  the benchmark or reference unit and es- 
tablishes a class of benchmark models with intensity based jumps. In  the  case 
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of diffusions without jumps, Long [23] and Bajeux-Besnainou & Portait [I] in- 
troduced the GOP, first considered in Kelly [20] as the numeraire portfolio. It  
allows for the pricing of derivatives under the real world probability measure. 

Under the standard risk neutral approach a major problem arises in mod- 
eling credit and insurance risk due to  the difficulty in choosing an appropriate 
equivalent risk neutral pricing measure. F'urthermore, actuarial approaches 
have focused over centuries on the modeling and pricing of insurance risk 
under the real world probability measure, see for instance, Gerber [13] and 
Biihlmann [2]. On the other hand, in risk management and investment man- 
agement the quantitative methods rely on the real world probability measure. 
It  has been shown in Platen [29] and Heath & Platen [16, 17, 181 that there 
exist reasonable market models that cannot be treated under the classical risk 
neutral approach. The currently very topical subject of credit risk provides 
an interesting case study on the conflict inherent in pricing under a risk neu- 
tral measure, while calculating risk statistics under the real world measure. 
Here the question of how to reconcile real world probabilities of default with 
credit spreads, which are often interpreted via risk neutral default probabili- 
ties, has become a technical minefield, see Duffie & Singleton [ l l ] .  Challenges 
are therefore emerging from the need to have a consistent approach to the 
modeling of continuous and event driven risk in the combined fields of finance 
and insurance. 

In Markowitz [24] the mean-variance portfolio theory with its well-known 
eficient frontier was introduced. This led to the capital asset pricing model 
(CAPM), see Sharpe [38], Lintner [22] and Merton [25]. The CAPM is based 
on the market portfolio as reference unit and represents an equilibrium model 
of exchange. In a continuous time setting Merton [25] derived the intertem- 
poral CAPM from the portfolio selection behavior of investors who maximize 
equilibrium expected utility. The current paper aims to  avoid equilibrium and 
utility based arguments in deriving the CAPM for a jump diffusion market. 
It  generalizes fundamental results on the Markowitz efficient frontier as well 
as the CAPM and the Sharpe ratio. 

In this paper we construct a class of benchmark models, see Platen [29,30], 
for security prices that follow diffusions with intensity based jumps. One can 
refer to a wide range of literature on derivative pricing for jump diffusions, 
starting with Merton [26] and leading to a considerable variety of papers and 
monographs, see, for instance, Cont & Tankov 171. We will avoid the standard 
assumption on the existence of an equivalent risk neutral martingale measure. 
In this way important freedom is gained for financial modeling, as has become 
clear, for instance, in Heath & Platen [16, 17, 181. 

As in Long [23], where prices denominated in units of the GOP are mar- 
tingales, the fair pricing concept, which we advocate in this paper defines 
benchmarked fair derivative price processes as martingales under the real 
world probability measure. Therefore, derivative prices can be obtained as 
conditional expectations of future benchmarked prices without any measure 
transformation. We will show that fair prices coincide with the correspond- 
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ing risk neutral prices if an equivalent risk neutral martingale measure exists. 
A natural generalization of the standard risk neutral framework is therefore 
obtained by fair pricing under the benchmark approach. Also, the classical 
actuarial pricing methodology turns out to be a particular case of fair pricing 
when the payoff is independent of the GOP. 

Section 5.2 introduces a class of benchmark models with intensity based 
jumps. A portfolio choice theorem is presented in Section 5.3. Capital asset 
pricing with jumps is considered in Section 5.4. Fair contingent claim pricing is 
studied in Section 5.5. Finally, the evolution of the expectation of the market 
portfolio is analyzed in Section 5.6. 

5.2 Benchmark Model with Jumps 

5.2.1 Continuous and Event Driven Uncertainty 

We consider a market containing continuously evolving uncertainty repre- 
sented by m independent standard Wiener processes wk = {w!, t E [O,T]), 
k E {1,2,.  . . , m}, m E {1,2,.  . . , d), d E {1,2,.  . .). These are defined on a fil- 
tered probability space (0, AT,&, P) with finite time horizon T E (0, m) .  We 
also consider events of certain types, for instance, corporate defaults, opera- 
tional failures or specified insured events that are reflected in the movements 
of traded securities. Events of the kth type are counted by the &adapted kth 
counting process pk = {pf , t E [0, TI), whose intensity hk = {hf , t E [0, TI) 
is a given predictable, strictly positive process with 

and 

l T h : d s  < m ,  

almost surely for t E [0, TI and k E {m + 1, .  . . , d). Furthermore, we introduce 
the kth jump martingale wk = {w!, t E [0, TI) with stochastic differential 

for k E {m + 1, . . . , d) and t E [0, TI. It  is assumed that the above jump 
martingales do not jump at  the same time. They represent the compensated 
and normalized sources of event driven uncertainty. 

Let us denote by AT the transpose of a vector or matrix A. The evolution 
of traded uncertainty is modeled by the vector process of independent (4, P)- 
martingales W = {Wt = ( W i , .  . . , Wt)T,  t E [O,T]). Note that W1, . . . , 
Wm are Wiener processes, while Wm+', . . . , wd are compensated normalized 
counting processes. The filtration A = (dt)tEIO,Tl is the augmentation under 
P of the natural filtration AW generated by the vector process W. It satisfies 
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the usual conditions and d o  is the trivial u-algebra, see Protter [34]. Note 
that the conditional variance of the kth source of uncertainty is 

for all t E [O,T], k E {1,2,.  . . , d) and E E [O,T--t]. 

5.2.2 Primary Security Accounts 

A primary security account is a particular investment account, consisting only 
of one kind of security, with all proceeds reinvested. For the securitization of 
the d sources of uncertainty, let us introduce d risky primary security accounts, 
whose values a t  time t are denoted by sf), for j E {1,2 , .  . . , d). Each of 
these contains shares of some kind. These security accounts represent the 
evolution of wealth due to the ownership of assets, with all dividends or income 
reinvested. The 0th primary security account s(O) = {st('), t E [O,T]) is the 
riskless savings account, which continuously accrues the short term interest 
rate rt .  In this case the underlying asset is the domestic currency. 

Without loss of generality we assume that the nonnegative j th  primary 
security account value st') satisfies the stochastic differential equation (SDE) 

for t E [0, TI with initial value SF) > 0 and j E {O,1, . . . , d), see Protter [34]. 
Since st(') is the savings account, we have 

and 
bO"c(t) = 0 , 

for t E [O,T] and k E {1,2,. . . , d l .  One may interpret a roll-over treasure 
bill account as a suitable proxy for the savings account. We assume that the 
processes r ,  a j ,  bj,k and hk are finite and predictable, and that a unique 
strong solution for the system of SDEs (5.5) exists, see Protter [34]. To ensure 
nonnegativity for each primary security account we assume that 

bj>k (t) > - fi , 
for all t E [O,T], j E {1,2 , . . .  ,d )  and k E { m + l , m + 2  , . . .  , d l .  

To securitize the sources of uncertainty properly, we make the following 
assumption. 

Assumption 1. The generalized volatility matrix b(t) = [bjlk (t)]j,k=l is 
invertible for Lebesgue-almost-every t E [0, TI. 
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Assumption 1 allows us to introduce the market price for risk vector 

e(t) = (el ( t ) ,  . . . , ~ ~ ( t ) ) ~  = b-l(t) [a(t) - rt i] , (5.9) 

for t E [0, TI. Here a(t) = (a1 (t), . . . , ~ ~ ( t ) ) ~  is the appreciation rate vector 
and 1 = (1,.  . . , l ) T  the unit vector. Using (5.9), we can rewrite the SDE (5.5) 
in the form 

for t E [0, TI and j E (0, 1, . . . , d). For k E {1,2,. . . , m), the quantity Ok(t) 
expresses the market price for risk with respect to the kth Wiener process wk. 
If k E {m + 1,. . . , d), then Bk(t) can be interpreted as the market price for 
kth event risk. We will see later that the market prices for risk play a central 
role in our modeling framework, and that one needs a further condition on 
the market prices for event risk to avoid arbitrage. 

(4 T The vector process S = {St = (SL0), . . . , St ) , t E [0, TI) characterizes 
the evolution of all primary security accounts. We say that a predictable 
stochastic process 6 = {6(t) = (GO(t), . . . , 6d(t))T, t E [O,T]) is a strategy 
if it is S-integrable, see Protter [34]. The j t h  component of 6 denotes the 
number of units of the j t h  primary security account held a t  time t E [0, TI in 
a portfolio, j E {O,l,. . . , d). For a strategy 6 we denote by s,(') the value of 
the corresponding portfolio process a t  time t,  when measured in units of the 
domestic currency. Thus, we set 

for t E [O,T]. 

Definition 1. A strategy 6 and the corresponding portfolio process s(') = 

{s,('), t E [0, TI) are called self-financing if 

for all t E [0, TI. 

All changes in value of a self-financing portfolio process are due to changes 
in value of underlying primary security accounts. In what follows we will only 
consider self-financing portfolios. Therefore, from now on we omit the phrase 
"self-financing" . 



162 Eckhard Platen 

5.2.3 Growth Optimal Portfolio 

For a given strategy 6 with strictly positive portfolio process s,") let ni(t) 
denote the fraction of wealth that is invested in the j th  primary security 
account at  time t .  It  is defined by the relation 

.$ ( t )  = 6j ( t )  - , sy) 
for t E [0, T ]  and j E {O,1, . . . , d } .  Furthermore, by (5.11) these fractions 
always add to one. That is 

d 

for t E [0, TI. In terms of the vector of fractions n6(t) = (ni( t) ,  . . . , ~ ! ( t ) ) ~  
we obtain for s,'" from (5.12), (5.10), (5.7) and (5.13) the SDE 

for t E [O,T]. Note that a portfolio process s(" remains strictly positive if 
and only if 

d x n$(t) bllk(t) > - 1 ,  (5.16) 
j=1 

a s .  for all k E {m + 1,  m + 2 , .  . . , d }  and t E [0, TI. For a strictly positive 
portfolio process s ( ~ )  we obtain by an application of It6's formula the following 
SDE for its logarithm 

d  l n ( S j 6 ) )  = gs ( t )  dt + n$ ( t )  bjpk ( t )  d ~ :  + 

for t E [0,  TI. The growth rate in this expression is given by 
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for t E [0, TI. Note that for the first sum on the right hand side of (5.18) a 
unique maximum naturally exists because it has a quadratic form with respect 
to the fractions. Careful inspection of the terms in the second sum reveals that, 
in general, a unique maximum growth rate only exists if the market prices of 
event risks are less than the square roots of the corresponding jump intensities. 
This leads to  the following assumption. 

Assumption 2. Assume that 

Assumption 2 guarantees that the market is arbitrage free in the sense 
of Platen [30]. Furthermore, it allows us to introduce the predictable vector 
process c(t) = (cl(t), . . . , ~ ~ ( t ) ) ~  with components 

for k E {1,2,. . . , m) , 
k c (t) = (5.20) 

for t E [0, TI. Note that a divergent jump intensity, with ht t co a s ,  for any 
t E [0, T] and k E {m + 1 , .  . . , d), causes the corresponding component ck(t) 
to approach the market price for jump risk ok(t) asymptotically. In this case 
the component is similar to the market price for risk with respect to a Wiener 
process. 

We now define the fractions of a portfolio s(&*) by the relation 

for t E [0, TI. By (5.15) and (5.20) it follows that s,(&*) satisfies the SDE 

for t E [O,T], with sA6*) > 0. Note from (5.22) that Assumption 2 keeps the 
portfolio process s('*) strictly positive. Let us now define a growth optimal 
portfolio (GOP). 

Definition 2. A portfolio process that maximizes the growth rate (5.18) 
among all positive portfolio processes is called a GOP. 
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There is an increasing literature on the GOP and other related diversified 
portfolios. We refer the interested reader to Korn & Schal [21] and Platen 
[29, 31, 321 for recent information on this topic. The following corollary is a 
consequence of results in Platen [30]. 

Corol lary 1. Under Assumptions 1 and 2 the portfolio process s(**) = 

{s,'**', t E [O,T]) satisfying (5.22), with wealth fractions given by (5.21), is 
a GOP. Furthermore, for any given fixed initial value sf*) > 0, the GOP is 
uniquely determined. 

5.2.4 Benchmark  Mode l  w i th  Intensi ty Based J u m p s  

We use the GOP s(**) as benchmark or numeraire, and call prices expressed 
in units of s(**) benchmarked prices. By the It6 formula, (5.15) and (5.22), a 
benchmarked portfolio process ,?(*I = {,?:*', t E [0, TI), with 

for t E [0, TI, satisfies the SDE 

for t E [O,T]. To obtain a simpler form of the above SDE we write aOlk(t) 
instead of ek(t), for t E [O,T] and k E {1,2,.  . . , d). Now, define the matrix 
process a = {a(t) = [a"k(t)]~,k=o,l, t E [0, TI) by setting 

and 

for t E [0, TI and j E {1,2,. . . , d). Using (5.9) and (5.25) one can then rewrite 
(5.24) as 

d d 

d3,'" = -,?,'!I ri (t -) ajlk (t) d ~ :  , 
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for t E [0, TI. This SDE governs the dynamics of any benchmarked portfolio. 
Note that the right hand side of (5.27) is driftless. Thus, a nonnegative 

benchmarked portfolio S^(6) forms an (A, P)-local martingale. This also means 
that a nonnegative benchmarked portfolio process S^(@ is always an (A, P)- 
supermartingale, see Rogers & Williams [36], that is 

for all T E [0, TI and t E [O, TI. One can show that whenever a nonnegative 
supermartingale reaches the value zero it almost surely remains at  zero. Based 
on this observation the above model is arbitrage free in the sense of Platen 
[29, 301. We call a model of the form prescribed above, which is based on the 
Assumptions 1 and 2, a benchmark model with intensity based jumps. This 
notion acknowledges the fact that for this model the GOP exists and is used 
as the benchmark. A generalization of the benchmark model for event driven 
risk with respect to Poisson jump measures is given in Christensen & Platen 
[dl. 

5.3 Maximizing the Portfolio Drift 

5.3.1 Optimal Portfolios 

Given a strictly positive portfolio ~ ( ~ 1 ,  its discounted value 

satisfies the SDE 

by (5.15) and an application of the It6 formula. Here 

d 

7); (t) = s:!) )C" 7.r: (t-) bivk (t) , (5.31) 
j=l 

for k E {1,2, . . . , d )  and t E [0, TI, is called the kth generalized portfolio 
diffusion coeficient. Obviously, by (5.30) and (5.31) the discounted portfolio 
process S(6) has portfolio drift 
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for t E [O,T]. 
This drift measures the portfolio's time varying trend. The uncertainty 

of a discounted portfolio S(@ can be measured by its aggregate generalized 
diffusion coeficient 

I d 

at time t E [0,  TI. Note that by (5.4) we have normalized variances of incre- 
ments of the driving martingales W1, W2, .  . . , Wd. 

For a given instantaneous level of the aggregate generalized diffusion co- 
efficient y s ( t ) ,  any rational investor who prefers more for less can be assumed 
to aim to maximize the portfolio drift cus(t). Building on the seminal works by 
Markowitz [24] and Sharpe [38] we now aim to capture this objective math- 
ematically for the given benchmark model. More precisely, it is our aim to 
identify the typical structure of the SDEs for the total portfolios of investors 
who prefer more for less in the following sense: 

Definition 3. A strictly positive portfolio process that maximizes the port- 
folio drift (5.32) among all strictly positive portfolio processes with the same 
aggregate generalized diffusion coeficient (5.33) i s  called optimal. 

For the following analysis let us introduce the total market price for risk, 

and the weighting factor 

rcO) ( t )  = C C ek ( t )  b- l jlk ( t )  , 

for t E [0,  TI. As we will see later, if the total market price for risk or the 
weighting factor are zero, then the savings account is the optimal portfolio 
that an investor would naturally prefer. The following natural assumption 
excludes this trivial case. 

Assumption 3. Assume that 

and 
r c O ) ( t )  # o 

almost surely for all t E [0, TI 
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We can now formulate a portfolio choice theorem in the sense of Markowitz 
[24], which generalizes a result in Platen [29] for continuous benchmark mod- 
els. The following theorem identifies the structure of the drift and generalized 
diffusion coefficients in the SDE of an optimal portfolio. 

Theorem C.1. Any discounted optimal portfolio s ( ~ )  satisfies the SDE 

with optimal fractions 

This means that the family of discounted optimal portfolios is character- 
ized by a single parameter, namely the fraction of wealth n:(t) held in the 
savings account. The proof of this theorem is given in the Appendix. 

We obtain a particular optimal portfolio s(~+), which we call the mutual 
fund, by choosing 

$+ ( t )  = i - r ( O )  ( t )  , 
for t E [0, TI. By (5.38) the mutual fund satisfies the SDE 

for t E [0, TI. This portfolio plays an important role in the remainder of the 
paper. 

By Theorem C.1 it follows that any efficient portfolio s (~)  can be de- 
composed a t  any time into a fraction that is invested in the mutual fund 
s (~+)  and a remaining fraction that is held in the savings account. Therefore, 
Theorem C.l can also be interpreted as a mutual fund theorem or separation 
theorem, see Merton [25]. We emphasize that the assumptions of Theorem C.l 
are rather weak and also realistic. 
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5.4 Capital Asset Pricing with Jumps 

5.4.1 Markowitz Efficient Frontier and Sharpe Ratio 

For a portfolio s(') we introduce its aggregate generalized volatility 

and its appreciation rate 

for all t E [0, TI, by inspection of (5.15). If s(" is in fact optimal, then it 
follows by the It6 formula, (5.38) and (5.34) that 

and 
as ( t )  = rt + bs( t )  lO(t) 1 , 

for t E [0, TI. By analogy to the single-period mean-variance portfolio theory, 
developed in Markowitz [24],  we introduce the notion of an eficient  frontier. 

Definition 4. A portfolio $4 is said to lie on the ef icient  frontier i f  i ts  
appreciation rate a s ( t ) ,  as a function of squared aggregate generalized volatility 
( b 6 ( t ) ) 2 ,  is of the form 

for all times t E [0, TI. 

By relations (5.44), (5.45) and (5.46) the following result is directly ob- 
tained. 

Corollary 2. A n  optimal portfolio is always located on  the ef icient  fron- 
tier. 

Corollary 2 can be interpreted as a "local in time" generalization of the 
seminal Markowitz efficient frontier to the jump diffusion setting. Note that 
due to Definition 3 and Theorem C.l it is not possible to form a positive port- 
folio that produces an appreciation rate located above the efficient frontier. 
The best that an investor can do, when searching for the maximum drift while 
maintaining a given generalized diffusion coefficient, is to form a portfolio on 
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the efficient frontier. The only remaining freedom is choosing the fraction of 
wealth that resides in the savings account. This fraction expresses the in- 
vestor's degree of risk aversion. Note that this approach is more general than 
expected utility maximization, where the risk aversion a t  a certain time is 
indirectly specified via the chosen utility function and the given time hori- 
zon. In forthcoming work it will be shown how the above concept of optimal 
portfolios generalizes that of expected utility maximization. 

5.4.2 Sharpe Ratio 

For a portfolio s(" the notation introduced in (5.42), (5.43), (5.32) and (5.33) 
leads to another important investment characteristic, the Sharpe ratio s s ( t ) ,  
which is defined by 

for t E [0, TI, see Sharpe [38]. By (5.44), (5.45), (5.47) and Theorem C.1 we 
obtain the following practically important result. 

Corollary 3. The maximum Sharpe ratio is obtained by optimal portfolios 
and equals the total market price for risk. For all strictly positive portfolios 
s(@, one has 

~ d t )  < P(t)l , (5.48) 

for all t E [0, TI, with equality attained i n  (5.48) when s(@ is optimal. 

The Markowitz efficient frontier and the Sharpe ratio are fundamental 
tools for investment management, whose natural meaning are preserved in 
the benchmark model with intensity based jumps. Note that we have not 
specified any particular dynamics for the stochastic quantities involved. In 
this sense the benchmark model presented so far provides a general jump 
diffusion framework for modeling event driven risk. 

5.4.3 Capital Asset Pricing Model 

Let us define the market portfolio s(") as the portfolio consisting of all 
primary security accounts weighted according to market capitalization. The 
seminal capital asset pricing model (CAPM) was developed by Sharpe [38], 
Lintner [22] and Merton [25] as a utility based equilibrium model of exchange 
with the market portfolio s ( ~ M )  as reference unit. As we will demonstrate 
below we do not need to use any equilibrium or expected utility function ar- 
guments for generalizing the CAPM to the case of a continuous benchmark 
model with intensity based jumps. As in the classical CAPM, one can in- 
troduce the systematic risk parameter ,&(t), called the portfolio beta, for a 
portfolio s(&), It  is here defined as the ratio of the time derivative of the con- 
ditional covariation of the logarithms of the portfolio and the market portfolio 
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over the time derivative of the conditional variance of the logarithm of the 
market portfolio, that is, 

for all t E [O,T]. 
By (5.43) the instantaneous risk premium p6(t) of a portfolio s(') is given 

by the expression 

p d t )  = a d t )  - rt = ~j (t) @ l k  (t) ek (t) , 

for all t E [0, TI. Note that by (5.15) and (5.41) the risk premium equals the 
covariance of the returns of the mutual fund with those of the portfolio. 

As described in the literature, the CAPM states that the portfolio beta 
P6(t) equals the ratio of the portfolio risk premium over the market portfolio 
risk premium see Merton [25]. However, we note from (5.41) by using 

PaM (t) ' 
the mutual fund as reference unit that this fundamental CAPM relationship 
holds true when one uses the mutual fund as reference unit instead of the 
market portfolio, that is, 

$ ( l n ( ~ ( ~ ) ) ,  l n ( ~ ( ~ + ) ) ) ,  - xi=, x;=l iij (t) glk(t)  Ok(t) 
- =- 

$ ( l n ( ~ ( & + ) ) ) ~  
pa(t) , (5.51) 

~ i = l  Pk(t)l2 P6, (t) 

for all t E [0, TI. 
The form of the portfolio risk premium (5.50) and the portfolio beta (5.51) 

are exactly what the intertemporal CAPM suggests if the market portfolio 
equals the mutual fund. In what follows we will identify conditions which 
ensure that the market portfolio equals the mutual fund. This provides a basis 
for the derivation of the CAPM in the presence of intensity based jumps. The 
CAPM then arises purely out of the natural structure of a benchmark model 
with intensity based jumps. We make the following natural assumption. 

Assumption 4. Each market participant constructs an optimal portfolio 
with his or her total available wealth. 

This assumption essentially means that all investors are informed and 
prefer more for less. The total portfolio of the Cth market participant, which is 
optimal by Assumption 4, is denoted by ~ ( ~ l ) ,  C E {1,2,.  . . ,n). The portfolio 
s , ( ~ ~ )  of all market participants is the market portfolio a t  time t with value 
given by the sum 

n 
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for all t E [0, TI. It  is reasonable to assume a strictly positive market portfolio. 

The dynamics of the discounted market portfolio s: '~)  = -$$ is character- 

ized by the SDE 

for t E [0, TI, by Theorem C.1 and (5.52). Thus, by Definition 3 and Theo- 
rem C.l  one can show that the market portfolio is optimal. By (5.41) 

1-,g 
the fraction r,,qty) of the market portfolio is invested in the mutual fund 

s('+) a t  time t E [O,T], and the fraction invested in the domestic savings 
~g (t)-i+r(O)(t) 

account S(') is given by the expression r ( 0 ) ( t )  . By comparing the 
SDEs (5.41) and (5.53) we obtain the following result. 

Corollary 4. Given equal initial values S F M )  = SF) ,  the value of the 
market portfolio 5':'") equals the value of the mutual fund st("+) at all times 
t E [O,T] if and only if their fractions held i n  the savings account are equal, 
that is 

0 0 
%, ( t )  = T'+ ( t )  = 1 - r(O)(t) , (5.54) 

for all t E [O,T]. 

By (5.51), this leads to the following conclusion, which provides a gen- 
eralization of the intertemporal CAPM of Merton [25] to the case of jump 
diffusion markets. 

Corollary 5. As  long as condition (5.54) is satisfied, a generalized in- 
tertemporal CAPM holds. That is for any given portfolio its systematic risk 
parameter, given by (5.51)) captures the ratio of the risk premium of the port- 
folio over that of the market portfolio. 

This means that the well-known CAPM holds under a benchmark model 
with intensity based jumps if the fraction invested in the savings account of 
the market portfolio equals the fraction invested in the savings account of the 
mutual fund. 

There are several lines of argument for justifying condition (5.54). Realis- 
tically, the monetary authorities can be assumed to control the fraction of the 
market portfolio, which is held in the savings account, in such a way that the 
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relationship (5.54) is obtained. This is typically achieved by influencing the 
short rate level or treasury bill supply. As we will see below, if jumps do not 
occur for the GOP, then condition (5.54) is equivalent to the case of having 
a monetary policy that maximizes the growth rate of the market portfolio 
and, thus, that of the economy. This seems to be a natural assumption. Be- 
cause of the highly diversified nature of the market portfolio one could argue 
that jumps are either absent or not significant. Note however that this is an 
empirical issue which needs to be tested. 

5.4.4 Mutual Fund and GOP 

In the case where the GOP does not have jumps, it is clear from (5.22) and 
(5.41) that the GOP and the mutual fund coincide since this only happens 
when all market prices for event risks are zero. Suppose that the market prices 
for event risks are non-zero. From (5.20) and (5.21) we obtain the following 
expressions for the fractions of the GOP: 

for all t E [O,T] and j E {1,2,. . . , d } .  On the other hand, according to (5.39) 
the mutual fund is characterized by the fractions 

d 

ri+ ( t )  = ok(t) b-'jlk(t) , 
k=l 

for all t E [0, TI and j E {1,2,.  . . , d}. Consequently, one obtains 

for t E [0, T] and j E {1,2,. . . , d } .  As already indicated, one notes from 
(5.57) that the mutual fund and the GOP coincide if the market prices for 
event risk are zero. The portfolios s("+) and s('*) are approximately similar 
if the intensities for the event risks are extremely high compared to their 
corresponding market prices for risk. 

5.5 Fair Contingent Claim Pricing 

5.5.1 Fair Pricing 

It  will now be shown that the direct observability of the GOP in the form 
of the market portfolio can be exploited for consistent derivative pricing. As 
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demonstrated in Platen [29, 301, for the class of benchmark models with in- 
tensity based jumps under consideration, one does not, in general, have an 
equivalent risk neutral martingale measure. Therefore, the widely used risk 
neutral pricing methodology may break down for certain benchm_ark models. 
This is the case when the benchmarked savings account process s(O) forms a 
strict local martingale and not a martingale. For realistic benchmark models 
where this happens see Platen[29], Heath & Platen [16, 17, 181 and Miller & 
Platen [27]. 

Since risk neutral pricing is not available, one needs a consistent and re- 
alistic alternative concept for pricing contingent claims that generalizes the 
standard risk neutral approach. To value derivatives uniquely, we apply the 
concept of fair pricing, as introduced in Platen [29]. It  employs the GOP as 
benchmark or numeraire and forms conditional expectations under the real 
world probability measure. In some sense it generalizes the numeraire portfolio 
approach of Long [23], as well as the well-known state price density, deflator, 
pricing kernel and discount factor approaches described in Constatinides [6], 
Duffie [lo] and Cochrane [5], for instance. 

Definition 5. W e  call a price process U = {Ut, t E [O,T]} fair i f  the cor- 
responding benchmarked price process fT = {ct = +, t E 10, TI} forms an 

(4, P)-martingale. That is, it satisfies the conditions 

and 

for all 0 5 t 5 s 5 T. 

Under the presented benchmark model with intensity based jumps we do 
not require the existence of an equivalent risk neutral martingale measure. 
Therefore, standard risk neutral pricing is, in general, not applicable. How- 
ever, fair pricing generalizes standard risk neutral pricing, as shown in Platen 
[29, 31, 321. Furthermore, in a benchmark model a free lunch with vanishing 
risk, in the sense of Delbaen & Schachermayer [8], may arise for certain model 
specifications, see Heath & Platen [16, 17, 181. However, due to the super- 
martingale property of nonnegative benchmarked portfolios, see (5.28), one is 
unable to  generate strictly positive terminal wealth from zero initial capital 
using a nonnegative portfolio. A benchmark model with intensity based jumps 
is arbitrage free in the sense that all nonnegative benchmarked portfolios are 
supermartingales, as described in Platen [29]. 

Definition 6. W e  define a contingent claim H,, which matures at a stop- 
ping time T E [0, TI, as a nonnegative A,-measurable random payoff with 



174 Eckhard Platen 

almost surely. 

With reference to Definition 5, we define the fair price of a contingent 
claim H,, as in Definition 6, by the process UHT = {UH, (t), t E [0, TI), 
determined by 

UH, (t) = st(**) E (5.60) 

for t E [O, T I .  I t  will be shown below that if an equivalent risk neutral mar- 
tingale measure exists, then the fair price coincides with the corresponding 
risk neutral price, see also Platen [29]. The benchmark approach enlarges the 
range of models that can be used if compared to what is possible under the 
risk neutral approach, see Heath & Platen [17]. 

5.5.2 Risk Neutral and Actuarial Pricing 

Let us assume that condition (5.54) is satisfied and the last term in (5.57) 
is negligible. Then the market portfolio is a good proxy for the GOP. The 
direct observability of the market portfolio leads naturally to a practical 
fair pricing methodology, generalizing the well-known arbitrage pricing the- 
ory (APT) introduced by Ross [37], Harrison & Kreps [14] and Harrison & 
Pliska [15]. However, fair pricing does not require an equivalent risk neutral 
martingale measure to exist. Note that the Radon-Nikodym derivative pro- 
cess AQ = {AQ(t), t E [0, TI} for the presumed risk neutral measure Q can be 
expressed as inverse of the discounted GOP, 

for t E [O,T], see Karatzas & Shreve [19]. By the It6 formula and (5.22) we 
obtain the SDE 

d 

dAQ(t) = -AQ(t) sk( t )  d ~ ;  , (5.62) 
k=l 

for t E [O,T] with AQ(0) = 1. This shows that AQ is an (A, P)-local martin- 

gale. Furthermore, by (5.27) it follows that S!*)AQ(~) = $ = ?!*) forms an 

(A, P)-local martingale for any portfolio s(". We emphasize that this does 
not mean that ?(*) is automatically an (A, P)-martingale. 

To demonstrate that the standard risk neutral approach is covered by the 
fair pricing concept of the benchmark approach, let us consider a fair portfolio 
s(@, where by Definition 5 and (5.61) we get 
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for 0 5 t 5 s 5 T. Then, by application of the Girsanov theorem, see Protter 
[34], one obtains the risk neutral pricing formula 

for all t E [0, TI and s E [ t ,  TI, if AQ is in fact an (A, P)-martingale. Here EQ 
denotes expectation under the risk neutral measure Q. 

In the above sense, one recovers the risk neutral pricing methodology of 
the APT as a special case of fair pricing. hrthermore, this approach uses as 
numeraire an observable quantity in form of the market portfolio. As would 
be expected, this is rather important for realistic modeling and contingent 
claim pricing. 

Let us briefly mention some empirical evidence which supports our view 
that we need to go beyond the APT. By (5.61) the putative Radon-Nikodym 
derivative AQ for the candidate risk neutral measure equals the ratio of the 
savings account over the GOP. In the long run the market portfolio and thus 
the GOP is by rational investors expected to outperform the savings account. 
This has been also empirically confirmed by Dimson, Marsh & Staunton [9] 
in a detailed empirical study of all major markets over the last century. This 
finding demonstrates that the trajectory of the process AQ decreases system- 
atically over long periods. The empirical fact of a systematic decline of this 
process for all major currency denominations surely cannot be ignored. As a 
consequence, it is not likely that AQ can in reality be successfully modeled 
as an (A, P)-martingale. This contradicts a core assumption of the APT. We 
emphasize that a decreasing graph for AQ is still consistent with it being a 
nonnegative strict (A, P)-local martingale and hence a supermartingale, see 
Protter [34]. The proposed benchmark approach can accommodate this fully . 
For derivative pricing under the benchmark model with intensity based jumps, 
where no equivalent risk neutral martingale measure is assumed to exist, we 
therefore advocate the fair pricing methodology. 

Fair prices are uniquely determined even in incomplete markets. Under the 
existence of a minimal equivalent martingale measure, see Folmer & Schweizer 
[12], fair prices have been shown to correspond to local risk minimizing prices, 
see Platen [33]. Fair pricing is practicable since one can model and calibrate 
the GOP when interpreted as the market portfolio. This enables us to calculate 
the real world expectations in (5.60) directly. 

For the practically important case where a contingent claim HT is inde- 
pendent of the GOP s?*), one obtains directly the following actuarial pricing 
formula from the fair pricing formula (5.60). 

Corollary 6. For a contingent claim HT that is independent of the GOP 
value s?'), the fair price UHT ( t )  satisfies the actuarial pricing formula 



176 Eckhard Platen 

where P ( t ,T )  denotes the fair price at time t E [O,T] of a zero coupon bond 
with maturity date T. 

One may regard (5.65) as a generalized net present value pricing formula. It  
is still valid when interest rates are stochastic. In various ways formulas of the 
type (5.65) have been used in insurance and other areas of risk management, 
see, for instance, Buhlmann [3] and Gerber [13]. They appear here as a natural 
consequence of the benchmark approach. 

5.6 Expected Discounted Mutual Fund 

We conclude the paper by analyzing the dynamics of the mutual fund, which 
can be interpreted as the market portfolio under appropriate assumptions 
as previously discussed. The SDE (5.41) for the mutual fund reveals a close 
link between its drift and generalized diffusion coefficient. More precisely, the 
risk premium of the mutual fund equals the square of its total aggregate 
generalized volatility. To see this, one can rewrite the SDE (5.41) for the 
mutual fund in discounted form as 

for t E [0, TI. Here, 
d 

1 
dWt = - C ok (t) d ~ :  

lW)l ,=, 
is the stochastic differential of an (A, P)-martingale W with conditional vari- 
ance 

E ((W~+E - ~ t ) ~  I At) = E ,  (5.68) 

for all t E [0, T] and E E (0, T - t], see Protter [34]. If W is continuous, then 
it is a standard Wiener process. Generally, W is a mixture of independent 
martingales that may exhibit some jumps. The SDE (5.66) reveals a useful 
structural relationship between the drift and the generalized diffusion coeffi- 
cient of the mutual fund, which we will exploit below. 

We reparameterize the mutual fund dynamics by using the average change 
per unit of time of the discounted mutual fund value, which is captured by 
the discounted mutual fund drift 

for t E [0, TI. Note that if there are no jumps in the GOP, then we have in 
(5.69) the drift of the discounted GOP. One can interpret a ( t )  as the change 
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per unit time of the accumulated underlying value of the discounted market 
portfolio. Using the parametrization (5.69), we can express the total market 
price for risk in the form 

By substituting (5.69) and (5.70) into (5.66), we obtain the following SDE for 
the discounted mutual fund 

for t 6 [O,T]. The solution of this SDE is a generalized time transformed 
squared Bessel process of dimension four. For the continuous version of this 
process, when W is a standard Wiener process, we refer the reader to Revuz 
& Yor [35]. In the current paper the process is driven by the normalized jump 
martingale W, given in (5.67). 

The transformed time p(t) a t  time t for s(6+) in (5.71) is given by the 
expression 

(5.72) 

with p(0) > 0 as a possibly unobserved random initial value. We emphasize 
the fact that p( t)  is not just one arbitrarily selected time transformation. 
The increment p( t)  - p(0) expresses the change of accumulated underlying 
value in the discounted mutual fund. This is an important economic quantity, 
which appears here naturally in the benchmark setup. In the case where the 
discounted mutual fund does not exhibit jumps, which seems to be a realistic 
assumption, it can be shown, see Platen [32], that the increase in accumulated 
underlying value can be directly observed via the equalities 

for t E [O,T]. This makes the transformed time or accumulated underlying 
value an observable quantity. It  provides important information about the 
evolution of the average economic value of the market portfolio via some 
quadratic variation, which is readily observable, see Platen [32]. 

Let us decompose the discounted mutual fund value a t  time t E [0, TI as 

where M = {Mt, t E [0, TI) is the (A, P)-local martingale 

for t E [O,T]. The discounted mutual fund value si6+) in (5.74) consists 
of a noise part Mt, which models the trading uncertainty of the discounted 



178 Eckhard Platen 

mutual fund and a systematic part cp(t) - c p ( O ) ,  which expresses the increase of 
its accumulated underlying value. As previously mentioned, the accumulated 
underlying value can be interpreted as a measure of the discounted wealth 
that has been generated by the companies listed in the stock market. The 
fluctuating share prices then express the perception of the market about the 
value of each company. Over long periods the evolution of this perceived value 
has to be in line with the corresponding accumulated underlying value. Hence, 
this provides some type of measure of the degree to which the mutual fund is 
over or undervalued. 

Remarkably, when the accumulated underlying value of the market port- 
folio is used as time scale, then by (5.71) the dynamics of the discounted 
mutual fund turn out to be those of a very particular stochastic process, the 
generalized time transformed squared Bessel process of dimension four. This 
is a pleasing result, not only mathematically, but also economically. 

The above relationships lead directly to the following statement, which 
exploits equations (5.74) and (5.72) and is obtained by a realistic martingale 
assumption on the local martingale M. 

Corollary 7. If the local martingale M i n  (5.75) is a true (A,  P)-martingale, 
then the expected change of the discounted mutual fund value over a given time 
period equals the expected change of its transformed time, that is, 

for all t E [O,T] and s E [t ,T]. 

We emphasize that we have not made any major assumptions about the 
particular stochastic dynamics of the mutual fund. In principle, there is much 
modeling freedom that can be explored. However, as shown in Platen [30], 
in the case without jumps a natural dynamics emerges from the fact that 
the change of the transformed time or accumulated underlying value can be 
modeled realistically by a rather smooth increasing quantity. The dynamics of 
the discounted mutual fund is then in physical time that of a squared Bessel 
process of dimension four, see Platen [29, 301. The resulting model with a 
slowly varying deterministic transformed time is called the minimal market 
model ( M M M ) ,  see Platen [28]. It  has major consequences for the nature of 
the dynamics of the supposed Radon-Nikodym derivative AQ. This process is 
under the MMM a strict supermartingale and not a martingale and a core 
assumption of the APT is thus violated. The consequences of this fact were 
discussed in Section 5.5.2. 

Conclusion 

It  has been shown that the growth optimal portfolio plays a central theoret- 
ical and practical role in finance. The paper assumes that investors always 
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prefer more for less which leads them to hold optimal portfolios. A theorem 
is derived that characterizes any optimal portfolio as a mixture of some mu- 
tual fund and the savings account. Under the additional assumptions that the 
monetary authorities aim to maximize the long term growth of the market 
portfolio, assuming negligible jump risk, it has been shown that the market 
portfolio approximates the mutual fund and also the growth optimal portfolio. 
This observation provides a derivation of the capital asset pricing model for 
jump diffusion markets without requiring any equilibrium or expected utility 
maximization arguments. The Markowitz efficient frontier and Sharpe ratio 
follow naturally in a generalized form for the given benchmark model with 
intensity based jumps. 

Without imposing any particular dynamics, the discounted mutual fund 
is identified as a generalized time transformed squared Bessel process of di- 
mension four. The transformed time can be interpreted as the accumulated 
underlying value of the discounted market portfolio. Under appropriate as- 
sumptions the increase in expected discounted value of the market portfolio 
is shown to equal the expected increase of the transformed time. 

For the pricing of contingent claims the GOP and under realistic assump- 
tions its proxy, the market portfolio, can be used as numeraire, with expecta- 
tions to be taken under the real world probability measure. The resulting fair 
pricing methodology applies also for market models where an equivalent risk 
neutral martingale measure does not exist and generalizes risk neutral and 
actuarial pricing. 
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A Appendix 

Proof of Theorem C. l  

According to Definition 3, to identify an optimal portfolio, one maximizes the 
drift (5.32) locally in time, while keeping the diffusion coefficient (5.33) as 
given. Suppressing time dependence, our task is to find $;, $:, . . . , $:, which 

d maximize $2 Ok subject to the constraint Ck=l($;)2 = C,  for some 
given value C > 0. For this purpose we use the Lagrange multiplier X and 
consider the function 
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For $:, I):, . . . , $: to provide a maximum for G(B1,. . . , gk, C, A, $;, . . . , $:) it 
is necessary that the first-order conditions 

( A 4  

are satisfied for all k E {1,2, . . . , d).  Consequently, we must have 

for all k E {1,2, . . . , d) .  We can now use the constraint together with (5.34) 
to obtain the relation 

from (A.3). Then from (A.3) and (A.4) one obtains 

for k E {1,2,.  . . , d ) .  Thus from (5.33), for s(" to be an optimal portfolio, we 
must have 

for t E [O,T]. Now, it follows from Assumption 1, (5.31) and (A.6) that 

Therefore, by (5.14) we get 

with I'(O)(t) as in (5.35), for t E [O,T]. Thus, we have 

Substitution into (A.7) yields (5.39) and, with the aid of (5.35) and (5.30)' 
proves the theorem. 0 
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Summary. This paper summarizes recent research on a new approach, namely, an 
equilibrium approach, to the valuation of fixed-rate mortgage contracts. Working 
in a discrete time setting with the mortgagor's prepayment behavior described by 
a suitable intensity process and with exogenous mortgage rates, the value of the 
contract is derived in an explicit form that can be interpreted as the principal bal- 
ance plus the value of a certain swap. This leads to a nonlinear equation for what 
the mortgage rate must be in a competitive market, and thus mortgage rates are 
endogenous and depend upon the mortgagor's prepayment behavior. The comple- 
mentary problem, where mortgage rates are exogenous and the mortgagor seeks the 
optimal refinancing strategy, is then solved via a Markov decision chain. Finally, the 
equilibrium problem, where the mortgagor is a representative agent in the economy 
who seeks the optimal refinancing strategy and where the mortgage rates are en- 
dogenous, is developed, solved, and analysed. Existence and uniqueness results, as 
well as a numerical example, are provided. 

Key words: mortgage valuation, endogenous mortgage rates, equilibrium, Markov 
decision chain, dynamic programming, intensity process, hazard rate 

6.1 Introduction 

While there is widespread agreement that  the value of a mortgage contract 
subject to  prepayment but not default risk should be given by an  expectation 
of the present value of the cash flow, the devil is in the details. A wide variety 
of approaches have been considered, most of which are commonly classified 
into one of two categories. One kind of approach has been variously called a 
reduced form approach, an exogenous approach, an empirical approach, and 
an econometric approach. The basic idea is to  build a stochastic model for 
interest rates and possibly other economic factors, and then add a statistical 
model describing how the mortgagor's prepayment behavior depends on the 
factors. While such an overall model can be quite complicated, i t  is usually 
straightforward to  use Monte Carlo simulation to  estimate the expected value 
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of the discounted cash flow. Some of the many papers in this category are by 
Schwartz and Torous [16], [17], Deng [I], Deng, Quigley and Van Order [2], 
Kariya and Kobayashi [8], Kariya, Pliska and Ushiyama [9], and Kau, Keenan 
and Smurov [lo]. 

Of significance is that in some of this research, dating back at  least to 
Schwartz and Torous [16], [17], it was recognized that the random time when 
a mortgagor prepays can be described with a hazard rate model, that is, the 
conditional rate of prepayment given the current state of any factors and no 
prepayment to date. Perhaps this development was inspired by the engineer- 
ing literature on reliability theory, as the time of mortgage prepayment is 
clearly analogous to the failure time of a system. In any event, Schwartz and 
Torous [16] used this hazard rate viewpoint in conjunction with a two-factor 
model in order to present a partial differential equation for the value of a 
mortgage contract. Moreover, as will be seen in this paper, recent develop- 
ments involving the hazard rate as a model of a default time in the credit 
risk literature lead to new results, involving intensity processes, for mortgage 
contract valuation. 

The other main kind of approach for the valuation of mortgage contracts 
is called an option-based or a structural approach. The basic idea is to in- 
corporate some kind of optimal behavior with respect to the mortgagor's 
decision about when to refinance. Moreover, the way to do this is to appeal 
to some intuition based upon the theory of the optimal early exercise deci- 
sion for American options, usually leading to a recursive valuation procedure 
that resembles the one used for the binomial option pricing model. For ex- 
ample, Kalotay, Yang, and Fabozzi [7] described the following procedure: first 
build an interest rate lattice, and then, starting with the final scheduled cash 
flows of the mortgage, work backwards through the lattice computing the 
mortgage's value, comparing the value with no refinancing and the value of 
a newly refinanced mortgage, with the latter assumed to be par plus the re- 
financing cost. If the latter is less, then the value of the existing mortgage 
at  the node is replaced by the value of the new mortgage. Some others who 
took an option-based approach are Dunn and McConnell [3], [4], Stanton [18], 
Nakagawa and Shouda [12], Stanton and Wallace [19], Dunn and Spatt [5], 
and Longstaff [l 11. 

The latter three papers are noteworthy because, in contrast to all the other 
option-based papers which assumed mortgage rates are exogenous, Stanton 
and Wallace [19], Dunn and Spatt [5 ] ,  and Longstaff [ll] allowed for endoge- 
nous values of fixed rate mortgages. These authors studied discrete time, fi- 
nite horizon models, with time equal to the age of the mortgage contract. 
The mortgage rates were computed recursively, much like the "binomial op- 
tion pricing'' procedure by Kalotay, Yang, and Fabozzi [7] that was described 
above. But the model assumptions made by Stanton and Wallace [19], Dunn 
and Spatt [5], and Longstaff [ll] are unclear, due in part to the limited use 
of mathematics in their expositions. Suffice it to say that their models are 
significantly different from the one in this paper, as evidenced by the fact 



6 Mortgage Valuation and Optimal Refinancing 185 

that their endogenous mortgage rates seem to depend upon the age of the 
mortgage contract. 

As indicated above, the theory of hazard rates and intensity processes for 
modelling default times in the credit risk literature has advanced considerably 
in recent years. Since the time of a default is analogous to the time when a 
mortgage balance is prepaid, it was natural to translate some of the credit 
risk developments to mortgage valuation. This was recently accomplished by 
Goncharov [6], who worked entirely in a continuous time setting. In particular, 
he showed how to unify the reduced form and the option-based approaches, 
he derived some explicit formulas for a mortgage's value, he derived a variety 
of partial differential equations useful for computing mortgage values, and he 
used an explicit valuation formula to provide a nonlinear equation for the 
endogenous mortgage rate. 

This paper makes several contributions. First, some intensity based valu- 
ation results that Goncharov [6] derived for a continuous time environment 
are here derived for a discrete time financial market. In particular, with the 
mortgagor's prepayment behavior described by a suitable intensity process 
and with exogenous mortgage rates, in Section 2 the value of the contract is 
derived in an explicit form that can be interpreted as the principal balance 
plus the value of a certain swap. This leads in Section 3 to a nonlinear equa- 
tion for what the mortgage rate must be in a competitive market, and thus 
mortgage rates are endogenous and depend upon the mortgagor's prepayment 
behavior. The complementary problem, where mortgage rates are exogenous 
and the mortgagor seeks the optimal refinancing strategy, is then solved in 
Section 4 via a Markov decision chain. Various theoretical results about com- 
putational algorithms and existence of solutions are included. The equilibrium 
problem, where the mortgagor is a representative agent in the economy who 
seeks the optimal refinancing strategy and where the mortgage rates are en- 
dogenous, is developed, solved, and analysed in Section 5. In particular, the 
existence of an equilibrium solution is established. Section 6 provides a simple 
computational example that illustrates various theoretical points, although it 
is probably not realistic enough to draw conclusions about actual mortgage 
markets. Finally, Section 7 provides some concluding remarks. 

It  should be noted that the derivations and proofs of this paper's main 
results are highly abbreviated. The interested reader can find a complete ex- 
position of these missing technical details in the forthcoming companion paper 
(Pliska [14]). 

6.2 Valuation of Mortgage Contracts 

This paper focuses on the valuation of fixed rate mortgage contracts having 
N contracted coupon payments each of amount c dollars. If m is the mortgage 
rate a t  contract initiation (this interest rate is expressed on a per payment pe- 
riod, not necessarily on an annual, basis) and if P(n, m) denotes the principal 
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balance immediately after the nth coupon payment is made, then by simple 
time value of money considerations 

Using this equation recursively one obtains 

Throughout this paper it will be assumed that the mortgage contracts are 
fully amortizing, that is, P ( N , m )  = 0, and so (6.2) implies 

In particular, since P(0 ,m)  is the initial principal, the contracted coupon 
payment c is given in terms of the maturity N of the mortgage and the 
contracted mortgage rate m by 

In accordance with common practice, just after any coupon payment the 
mortgagor can pay the principal balance, thereby terminating the mortgage 
contract. For simplicity it will be assumed that the mortgagor cannot pay 
any amount greater than the contracted coupon payment c unless it is the 
entire principal balance. Thus it will be assumed that immediately after the 
nth coupon payment the mortgagor must either pay the principal balance 
P (n ,  m) or continue with the existing mortgage contract a t  least one more 
period. Also, since the focus of this paper is on the prepayment option, none 
of the mortgages considered here are subject to default. 

From the perspective of the mortgage lender or of a third party considering 
the purchase of the mortgage contract, the value of the mortgage contract 
equals the expectation of the discounted cash flow up through the prepayment 
time or N ,  whichever is less. In accordance with standard financial valuation 
practice, the discounting is respect to the riskless, one-period short rate and 
the expectation is respect to a risk neutral probability measure. So to model 
this it will be assumed there is a probability space ( f l ,T ,  Q, {Tt}t>o), where Q 
is a risk neutral probability measure and where {Tt}t>o is a filtration describing 
how information is revealed to market participants,~he riskless interest rate 
process r = {rt; t = 1,2, ...} is a predictable process, where rt represents 
the one-period riskless interest rate for loans from time t - 1 to time t. And 
measureable on this probability space is the random variable T representing 
the mortgagor's prepayment time; T takes one of the values 1,2, ..., N ,  with 
T = N meaning the mortgage is not prepaid early. Thus the value of the 
mortgage contract a t  contract initiation is given by risk neutral valuation to 
be 
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A similar equation holds for the value of the contract a t  times subsequent to 
contract initiation. 

Remark 1. To develop a practical model like this, one can imagine starting 
with a spot rate model of riskless interest rates that includes various secu- 
rities such as the usual bank account process and zero coupon bonds of all 
maturities. With the mortgage contract and the issue of prepayment excluded, 
this model may or may not be complete. For example, see the lattice, Markov 
chain models in Pliska 1131. Then one would add to this model the mortgage 
contract together with the random prepayment time T .  If the initial riskless in- 
terest rate model is complete, then the final model could be too, in which case 
one has all the usual implications about uniqueness of the risk neutral prob- 
ability measure and replication of contingent claims. But even if the model is 
not complete, the model will be free of arbitrage opportunities that can be 
obtain by trading the various securities. 

To develop an expression for the contract value that is more useful than 
(6.6) it is convenient to introduce the prepayment intensity process y = {yt; t = 
1,2 , .  . . , N) ,  where 

Thus yt can be interpreted as the conditional, risk neutral probability that 
prepayment will occur next period given that it is now time t - 1 and given the 
current history including the fact that prepayment has not yet occurred. Using 
this intensity process, expression (6.6), and basic properties of conditional 
expectation (see Pliska [14] for the details) one obtains the following result: 

Proposition 1. The initial value of a mortgage contract is given by  

This last expression for the initial value of a mortgage contract is still not 
so useful. A better formula is obtained by using (6.1) and (6.6) together with 
a lot of algebra (see Pliska [14] for the details), namely: 

Theorem C.1. The initial value of a mortgage contract is given by  
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Remark 2. Note the factor in the first term will be approximately equal to 
one, so the first term will approximately equal the initial principal. The sec- 
ond term can be interpreted as the discounted value of an amortizing swap, 
where one party pays the fixed mortgage rate m and the other party pays 
the floating rate r ,  and where the swap can terminate in accordance with the 
random prepayment time T .  Thus the initial value of the mortgage contract is 
approximately equal to the initial principal plus the value of a swap. A simi- 
lar expression can be obtained (see Pliska [14]) for the value of the mortgage 
contract at  subsequent times. 

6.3 Endogenous Mortgage Rates 

While the mortgage market might be free of arbitrage opportunities that can 
be achieved by trading fixed income securities and the mortgage contract, it 
can be vulnerable to another kind of arbitrage opportunity if the mortgage 
contract value V is less than the initial principal P(0, m). In other words, why 
would a lending institution offer a loan of P(0, m) in exchange for a cash flow 
that is worth a strictly smaller amount? On the other hand, the possibility 
V > P(0, m) implies attractive, profitable lending opportunities for financial 
institutions, and so it shall be argued that in a competitive market one will 
have V = P(0 ,m) .  

With V = P(0, m) it follows (see Pliska 1141 for the details) from (6.7) that 
the mortgage rate m is endogenous and must satisfy a nonlinear equation, as 
summarized in the following: 

Theorem C.2. In a competitive mortgage market where V = P(0 ,m)  the 
mortgage rate m is endogenous and satisfies 

or, equivalently, 

Remark 3. It  is important to note that the endogenous value of the mortgage 
rate m depends upon the mortgagor's prepayment behavior via the intensity 
process y. So if a mortgagor changes this prepayment behavior, mortgage 
market forces should cause the mortgage rates to change. Hence this leads to 
a certain equilibrium problem, the subject of a later section. Also in a later 
section attention will focus on a special case of the preceding model where 
the spot rate process r is a Markov chain, in which case it is appropriate to 
think of the expectations in (6.8) and (6.9) as being conditional on the values 
of the current state for rl .  
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Remark 4. One sees that the value of m satisfying equation (6.8) must be 
some kind of weighted average of future possible values of the riskless short 
rate r .  In particular, it must be smaller than the biggest possible value of 
the short rate. This suggests that when the short rate is historically high and 
when the yield curve is inverted, the endogenous mortgage rate will actually 
be smaller than the current short rate. 

6.4 Optimal Refinancing 

In this section attention is given to a complementary problem where the mort- 
gage rate is an exogenous stochastic process and the mortgagor seeks to refi- 
nance the loan in an optimal fashion. In contrast to other approaches in the 
literature, the mortgagor here might choose to refinance'several times before 
the loan is ultimately paid off. 

For tractability it will be assumed that the riskless spot rate process 
r  = {r t ;  t = 1 , 2 , .  . . } and the mortgage rate process M = { M t ;  t = 0,1, .  . . } 
together comprise a time-homogeneous Markov chain having a finite state 
space. Here Mt represents the fixed rate for N-period mortgages that are ini- 
tiated a t  time t .  This two-component Markov chain can easily be generalized 
by adding additional factors such as a measure of property value, but this will 
not be done here for the sake of the exposition. 

It  is assumed the transaction cost K ( P )  is incurred if and when the prin- 
cipal balance P is refinanced. Here K(.)  is a specified, deterministic function. 
The decision to  prepay is made immediately after the contracted coupon pay- 
ment c has been paid. If the mortgagor decides to  refinance a t  time t with a 
current principal balance of P ,  then a t  that time an additional K ( P )  dollars 
are paid and a new N-period mortgage is initiated a t  the prevailing mortgage 
rate Mt. Alternatively, if the mortgagor decides to continue with the current 
mortgage contract then the prevailing coupon rate of c dollars will be paid 
for a t  least one more period. The mortgagor can refinance as many times 
as desired, but each time the amount of the new loan must equal the prin- 
cipal balance of the contract being terminated. Thus the mortgagor cannot 
"pull equity out of the property'' by refinancing with a bigger loan. Nor can 
the mortgagor make any periodic payment, either bigger or smaller, than the 
currently contracted coupon payment c. 

It  is important to be mathematically precise about the mortgagor's ob- 
jective. Here it will be assumed that the mortgagor seeks to  minimize the 
expected present value of the cash flow (which includes any transaction costs 
associated with refinancings) until the loan is paid off. In particular, it is as- 
sumed for simplicity that the mortgagor does not prepay early for "external" 
reasons such as selling the property (although this is a strong assumption that 
would be nice to abandon). As usual, the expectation here will be with respect 
to a risk neutral probability measure and discounting will be with respect to  
the spot rate process r .  
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In summary, given the Markov chain (r, M) the mortgagor's problem is to 
find the refinancing schedule having the minimum expected discounted value. 
Hence it is natural to formulate this problem as a dynamic programming 
problem, specifically, as a Markov decision chain (see Puterman [15] for a 
comprehensive treatment of Markov decision chains). For the state variables 
one then needs to have the current values of the two interest rates as well as 
some variables describing the status of the current mortgage contract. There 
are four of the latter variables, namely, the contracted mortgage rate m, the 
number n of payments already made, the current principal balance P ,  and the 
current coupon payment c. However, in view of relationship (6.3), just three 
of these four variables need to be kept track of, say just m, n, and P. Hence 
the Markov decision chain must have five state variables: r,  M, m, n, and P .  

Now it is straightforward to proceed with the formulation of this Markov 
decision chain, but with five state variables the result will be in danger of 
having too many variables for computational tractability. So to reduce the 
number of state variables use will be made of Theorem 3.1 which suggests 
it is appropriate to assume Mt = m(rt+l)  for some deterministic function 
m(-)  (note that since r is a predictable process, at  time t the current state 
provides the value of rt+1). Thus, at  the cost of specifying the function m(.), 
the number of state variables have been reduced to four: r,  m, n ,  and P .  

Let v(n, P, m, r) denote the minimum expected discounted value of the 
cash flow given n payments have been made on a contract having contracted 
mortgage rate m and remaining principal balance P and given that the riskless 
rate of interest for the next period is r. If it is optimal for the mortgagor to 
continue at  least one more period with the current contract, then by (6.1)-(6.4) 

v(n, P(n ,  m), m , r )  = (1 + r)-'[c + ETv(n + 1, P ( n  + 1, m), m, R)] 

where R here is the random short rate next period and the expectation is 
conditioned on the current value r of the short rate. On the other hand, if it 
is optimal to refinance, then 

Hence the dynamic programming equation is 

v(n, P, m, r )  = min K ( P )  + { 
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Now this dynamic programming equation can perhaps be solved, but doing 
so is computationally challenging since there are four state variables, one of 
which is continuous. So to deal with this it is convenient to make one more 
assumption: the transaction cost K ( P )  = k P  for some positive constant k. 
As explained in Pliska [14], this assumption leads to the following result: 

Proposition 2. With K ( P )  = k P  the function v(n, P, m, r )  satisfies dy- 
namic programming equation (6.11) if and only if the function f (n, m, r )  = 
P - b ( n ,  P, m, r )  satisfies the dynamic programming equation 

{ 
l + m  

f (n, m, r )  = min k + f (0, m(r),  r ) ,  
(1 + r ) [ ( l  + m) N-n - 1 I 

With just three state variables, all of which are discrete and take just 
finitely many values, there is reason to be hopeful that dynamic program- 
ming equation (6.12) can be used to solve for the optimal value function f 
and thus v. However, there remain questions about existence and uniqueness 
of a solution, how to compute a solution, and how to identify an optimal 
refinancing strategy. Dynamic program (6.12) is in the infinite horizon cat- 
egory, so a simple recursive procedure starting with f (N, m, r )  = 0 will not 
succeed. There are several standard infinite horizon sub-categories, but it is 
not apparent how to classify the one corresponding to (6.12). However, since 
f (0, m(r),  r )  # k + f (0, m(r) ,  r )  it is straightforward to obtain the following 
useful result: 

Proposition 3. The dynamic programming equation (6.12) is equivalent to 

m ( l  + m)N-n (1 + m)[(l  + m)N-n-l - 
f (n, m, r )  = min { ( l + r ) [ ( l + m ) N - n - l l  + ( l + r ) [ ( l + m ) N - n - l  1 I 

I 

As explained in Pliska [14], the recursive operator defined by (6.13) is 
a contraction, and so by dynamic programming theory (see, for instance, 
Puterman [15]) one concludes the following: 

Theorem C.3. The dynamic programming equation (6.13) has a unique so- 
lution f which can be computed by either the "successive approximations" 
algorithm or the 'policy improvement" algorithm. The corresponding mini- 
mizing argument on the right hand side of (6.13) gives an optimal refinancing 
strategy. 

Remark 5. Each refinancing strategy, including the optimal one, will simply 
be a rule that specifies for each possible value of the state vector (n ,m, r )  
either "continue" or "refinance." 
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6.5 A Mortgage Market Equilibrium Problem 

This section studies an equilibrium problem that combines the ideas of the 
preceding two sections. The riskless short rate r is an exogenous, time homo- 
geneous Markov chain and, for some deterministic function m(.), the mortgage 
rate evolves according to Mt = m(rt+l).  The mortgagor is a representative 
agent in the mortgage market who, based upon the dynamics of the riskless 
short rate r and the mortgage rate function m(.), seeks the best refinancing 
strategy. Meanwhile, based upon the mortgagor's prepayment behavior, the 
competitive forces in the mortgage market act so the mortgage rate func- 
tion m(.) results in mortgage contracts having initial values V equal to  the 
loan amounts P(0, m(rt)).  Thus the solution of this equilibrium problem will 
be a pair consisting of the mortgage rate function m(.) together with the 
mortgagor's refinancing strategy, with the properties that condition (6.9) of 
Theorem 3.1 for endogenous mortgage rates is satisfied for each possible value 
of the short rate r and the mortgagor's refinancing strategy is optimal as per 
Theorem 4.1. 

To compute an equilibrium solution the following "naive" algorithm can 
be considered. Start with an arbitrary refinancing strategy, such as "never 
refinance." This defines an intensity process y, as well as a refinance time 7, 

for each possible initial value of the spot rate process r. Then using equation 
(6.9) of Theorem 3.1 one computes the endogenous mortgage rate m for each 
possible initial value of the spot rate process r; this defines the mortgage rate 
function m(.). Next, one takes m(.) and solves the dynamic programming 
problem of Theorem 4.1 for the optimal refinancing strategy. If this strategy 
is the same as the one immediately before, then stop with an equilibrium 
solution. If not, then proceed with another iteration by using this new strategy 
and (6.9) to compute a new mortgage rate function m(.), and so forth. This 
algorithm will be illustrated by an example in the following section. 

Of course, this or any other algorithm will not converge if there does 
not exist a solution to the equilibrium problem. However, as explained in 
Pliska [14], it is possible to formulate a new Markov decision chain, where 
the short rate process r is the single state variable, where one time period 
is one refinance cycle, and where the decision for each state is the choice of 
the stopping time representing the refinancing time. Moreover, the solution, 
if one exists, immediately provides a solution to the equilibrium problem. But 
as with the dynamic program of Theorem 4.1, the new dynamic program is 
known to always have a solution. Hence one has the following existence result: 

Theorem C.4. The equilibrium problem of this section always has a solution 
consisting of a mortgage rate function m(.) and an optimal refinancing strategy 
for the representative mortgagor. 

Remark 6. The equilibrium solution is not necessarily unique, because for 
some state the mortgagor might be indifferent between continuation and refi- 
nancing. 
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6.6 A Numerical Example 

This section provides a simple numerical example that illustrates the preced- 
ing ideas but is not realistic enough to be taken seriously as a model of actual 
mortgage markets. The mortgage contract has a maturity of N = 5 periods, 
and the refinancing fee is k = 0.03, i.e., 3%. The short rate r takes one of four 
values: 2%, 3%, 4%, or 5%. The corresponding Markov chain has transition 
probabilities 

Note the resulting Markov decision chain has 42 x 5 = 80 states, although 
some, e.g. (1, m(5%), 2%), are not accessible. 

To compute an equilibrium solution the "naive" algorithm is started with 
the trading strategy where the mortgagor does not refinance, regardless of 
the spot rate's value at  contract initiation. To solve for the four endogenous 
mortgage rates, use is made of equation (6.9) which in this case can be written 
as 

1 - (1 + m)-5 5 1 
m 

= [C i= 1 (1 + r l )  . . . (1 + ri) 

This results in the mortgage rate function m(.) taking the values 2.4733010, 
3.0773%, 3.9061%, and 4.5201% corresponding to r = 2%, 3%, 4% and 5%, 
respectively. 

Next, the Markov decision chain is solved for the optimal refinancing strat- 
egy. It turns out that it is optimal to refinance in nine of the 80 states. 
But only two of these nine states are possible, namely, (2,4.5201%, 2%) and 
(3,3.9061%,2%). In other words, with the mortgage rate function as above 
it is optimal to refinance a contract that started with r = 5% if and only 
if r = 2% at  the end of the third period. And it is optimal to refinance a 
contract that started with r = 4% if and only if r = 2% at  the end of the 
second period. But if a contract starts with either r = 2% or r = 3% then it 
should not be refinanced. 

Since the refinancing strategy is new, the "naive" algorithm needs to pro- 
ceed with at  least one more iteration. For r = 2% and r = 3% the values of 
m(r)  will remain as before, but for r = 4% and r = 5% new values of endoge- 
nous mortgage rates must be computed using equation (6.9), which now has 
the form 
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Solving for m for the two cases r = 4% and r = 5% yields m(4%) = 3.9820% 
and m(5%) = 4.5465%. The Markov decision chain is now solved with this new 
mortgage rate function, resulting in the same optimal refinancing strategy as 
with the preceding iteration. Hence the algorithm has converged to a solution 
of the equilibrium problem. Note the corresponding values of f (0, m(r) ,  r )  in 
the solution of the dynamic programming equation (6.13) are 1.00000,1.00000, 
1.00194, and 1.00063 for r = 2%, 3%, 4%, and 5%, respectively. This solution 
and other matters will be discussed in the following section. 

6.7 Concluding Remarks 

The equilibrium problem is like a two-person, nonzero sum game, where one 
player, the representative mortgagor, responds to given mortgage rates by 
choosing a refinancing strategy to minimize the expected present value of 
the cash flow and where the second player, the "market," responds to given 
mortgagor behavior by setting mortgage rates in a competitive fashion. It  is 
interesting to note that as a result the mortgagor might "shoot himself in the 
foot" and force an equilibrium solution that has a higher expected present 
value. In other words, his myopic behavior of ignoring how his refinancing 
strategy affects the mortgage rates may result in an expected present value 
that is higher than necessary. This can be seen from the numerical exam- 
ple. The mortgage's expected present values 1.00194 and 1.00063 a t  contract 
initiation exceed one by precisely the expected present value of the refinanc- 
ing costs. If the mortgagor is content with the strategy of never refinancing, 
then the expected present values of the mortgages will be less, namely 1.0, in 
states r = 4% and r = 5%, even though smaller expected present values can 
be obtained, provided the mortgage rate function m(.) remains the same. 

Although the numerical example is very simple, one thing it and the more 
general model suggest is that, in practice, mortgagors might be too hasty to 
refinance just because mortgage rates have dropped. In practice mortgagors 
probably focus on their monthly coupon payments while ignoring the expected 
present value of the new mortgage. The latter might not be small enough to 
justify refinancing because the new mortgage will have full maturity, whereas 
the existing one is much closer to  maturity. Since mortgage rates have dropped 
the riskless interest rates have probably dropped too, and so the expected 
present values of the more distant new coupon payments might be higher than 
anticipated. I t  is desirable for future research to examine this more carefully 
be producing more realistic computational results, such as for a model having 
180 monthly periods and several dozen levels of the interest rate r. 

Of course actual mortgagors prepay for a variety of reasons, not just be- 
cause they want to refinance the same principal. For example, some might 
choose to keep the principal amount unchanged while taking advantage of 
lower mortgage rates by paying the same monthly coupon amount as before, 
thereby paying off the loan more quickly than before. Others might choose 
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t o  take advantage of increased property values by withdrawing equity and 
increasing the size of the loan. And many others prepay because, for a wide 
variety of circumstances, they sell their property. Given this variety of reasons 
arid the heterogeneity of mortgagors, the equilibrium model and the concept of 
a representative mortgagor should probably not be taken too seriously. O n  the 
other hand, a more realistic goal for future research might be t o  generalize this 
paper's Markov decision chain model for optimal refinancing by incorporating 
additional mortgage prepayment reasons such as those enumerated above. 
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Summary. We consider the problem of finding efficient hedging strategies in mar- 
ket models where prices evolve along discontinuous trajectories as a random jump 
process. We base ourselves on results in [3], that are briefly summarized, and discuss 
relevant computational issues. Numerical results are also presented. 

7.1 Introduction 

Our problem is of the following general form. Consider a market where agents 
may invest in a certain number N of (risky) assets, the prices of which we 
denote by the vector St = (S:, . . . , S p ) .  We assume that St are already 
discounted with respect to a given non-risky asset (money market), thereby 
assuming implicitly that the short rate of interest is zero. We also assume 
that St admits a stochastic differential. We denote by Jt = (J:, . . . , J p )  an 
investment strategy where J; denotes the number of units of asset i ,  (i = 

1,. . . , N) held in the portfolio a t  time t. Let @ be the value, a t  time t, of 
the portfolio corresponding to a given strategy J that we assume to be self 
financing, i.e. such that 

t 

I@ = V$ + 1 J, dS, , V$ given . 

For simplicity we do not consider transaction costs. Given a maturity T, the 
problem in its most general form consists in determining J such that 

E {e (F(sT), v$) ) + min 

for a given function F(.) of the asset price vector a t  maturity and a given loss 
function l(., .). In particular, we are interested in the hedging of a given claim 
F(ST), for which we consider more specifically 
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namely a loss function of the hedging error. We call eficient a strategy that 
achieves the min in (12.3). 

Standard price evolution models are diffusion-type models. However, es- 
pecially on small time scales, the price evolution exhibits a jumping behavior. 
This is also the case in other situations, where one does not necessarily con- 
sider small time scales, like e.g. in the case of default sensitive assets (see [2], 
[51). 

A possible model for such a jumping behavior is 

where ai, bi > 0 and N?, N; are independent Poisson processes with intensi- 
ties A+, A- respectively. A jump of N$ causes an up-movement of the various 
Sf by a factor eat and a jump of N; a down-movement by the factor e-bz. The 
model thus generalizes the classical binomial market model by allowing the up- 
and down-movements to occur a t  random points in time. While the binomial 
model is complete, this one is incomplete. Corresponding to  the multinomial 
generalization of the binomial model, here we could more generally consider 

with N,hl+, N:!- independent Poisson jump processes. 
We assume that the intensities A t ,  A- of N$, N; in (12.4) are constant 

over time. However, we allow them to  be unknown and, taking the Bayesian 
point of view, we consider them as random variables, the distribution of which 
is continuously updated on the basis of the observed price movements. There- 
fore, while the intensities themselves are taken to  be constant over time, their 
Bayesian updating gives them a dynamic aspect. 

Standard approaches to solve the optimization problem (12.3) with (12.1) 
and (12.4) are based either on the method of Dynamic Programming (DP) or 
on the so-called martingale method (see e.g. a survey in [4]). Of the two, DP 
is inherently a dynamic approach. With uncertainty in the jump intensities 
and their dynamic Bayesian updating, DP thus turns out to be the more 
appropriate approach in our setting and this the more so if the purpose is 
to obtain quantitative results. For the standard diffusion-type price evolution 
models, DP leads to the solution of HJB-equations with the emphasis on 
finding explicit analytic solutions. In our context, DP leads to relations of the 
form as they appear in piecewise deterministic control problems (see e.g. [I]) 
and our purpose is to present a computationally feasible solution approach. 
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7.2 The Specific Problem 

We consider the case of a single risky asset so that (12.4) becomes 

with a ,  b > 0 and Nt+, N c  independent Poisson processes with intensities 
X + ,  X- respectively. We allow X+, X- to be unknown and, taking the Bayesian 
point of view, we consider them as random variables. Since, for given t, Nj,,i = 
+, - are Poisson with parameters Xit, a convenient distribution for X2 as 
random variables is a Gamma distribution (conjugate family), i.e. 

In fact, if the prior distribution for Xi is Gamma, all updated distributions of 
Xi are again Gamma : if Xi has a prior with parameters (ah, Po) then, if a t  t 
one has observed Nt+, the updated distribution is Gamma with parameters 

ItG's formula implies that, according to (12.6), one has 

dSt = St- [(ea - l)dN$ + (eVb - l)dN;] (7.9) 

and the self financing property of the strategy c, expressed by (12.1), becomes 

We assume Vo to be given and, in what follows, we shall write Pf whenever 
we want to stress the dependence of the portfolio value on J. For observed 
portfolio values we shall simply write &. 

We shall consider a strategy J to be admissible if it is predictable with 
respect to the filtration generated by St and such that Qrl - c a.s. for a given 
c > 0. Given T > 0, the objective is to minimize 

E {e ( F ( s ~ )  - v:) } 4 min (7.11) 

where we suppose I?(.) to be continuous and !(.) is considered to be a loss 
function, increasing, convex with l (z )  = 0 for z < 0 (e.g. l (z )  = 9 ,  pvl,  for 
z > 0). We shall assume that 

In view of the above, in particular the Bayesian updating, a sufficient 
statistic at  the generic time t is the tuple 
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where u, d are positive integers and t E [0, TI. Concerning the range of values 
for v, let C(u, d) denote the super-hedging capital that depends on the values 
of N: = u, N; = d, but is independent o f t  (see (31). It  is the smallest initial 
capital, beyond which a given claim can always be perfectly hedged with a self 
financing portfolio. Our hedging problem thus looses its meaning for a value 
@ = v larger than C(u, d). Consequently we shall consider v E [-c, C(u ,  d)]. 

We denote by AV,u,d,t the class of admissible strategies over [t, TI, given 
the time t-statistic (v, u, d). Putting 

the admissibility condition &c?l - c then implies 

The optimal value function (minimal expected risk) in (v, u, d, t)  is then 

7.3 Solution Approach 

The solution approach is based on Dynamic Programming (DP). In the case 
of known intensities, putting X := A+ + X-, it leads (see [3]) to the following 
relation for J* (v, u, d, t ) ,  

Intuitively, in (12.13) J* (v, u, d, t) appears as the minimum over the invest- 
ment decision of the "expectation" of the value of J* a t  the next jump whereby 
one takes into account that, over the remaining time to maturity, there may 
be a next jump either upwards or downwards or no jump a t  all. The case of no 
further jump does not affect the minimization; on the other hand, even if the 
price S remains constant between two successive jumps, the horizon shrinks 
and so the strategy changes to take this into account. Finally, notice that 
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The optimal investment decision at  time t E ( r U + d ,  T ~ + ~ + ~ ]  and with v = 
V,,,, is then 

EZ; = arg min A+J*(v + ~ s o e " " - ~ ~ ( e "  - 1) ,u  + l , d , t )  
+A- J*(v  + [ ~ o e ~ ~ - ~ ~ ( e - ~  - I ) ,  U, d + 1, t )  

} (7.18) 

When the intensities are unknown, the relation (12.13) becomes 

J*(v, u, dl t )  = ('TJ*) (v, u, d, t )  := 

iT-t min { p+(u,d, t ,s)  J*(v + < ~ ~ e ~ ~ - ~ ~ ( e ~  - 1) ,u  + l , d , t  + s)  

C E I , , , , ~  +p-(u,d,t, S) J*(v + ~ ~ o e ~ ~ - ~ ~ ( e - ~  - l ) , u , d  + 1, t + S) 

+pO(u + dl t) e ( ~ ( s o e " ~ - ~ ~ )  - V) , (7.19) 

where p+(u, d, t, s),p-(u, dl t ,  s)  are the updated probabilities for an up- re- 
spectively down-jump at  t + s ,  given that N$ = u, N; = d. Notice that, even 
if S remains constant from t to t + s, this still reveals additional informa- 
tion regarding the jump intensities. Furthermore, pO(u + d, t )  is the updated 
probability that no more jumps occur in [t, TI, given N$ = u, NF = d. 

In terms of the updated Gamma distributions for A + ,  A- we have (see [3]) 

where a 0  := a$ + a;. Notice that both expressions have a common factor 
except for a$ + u and a; + d respectively. Furthermore, 

For what concerns the optimal investment decision, its value at  time t has 
an expression that is analogous to the case of known intensities (for explicitly 
computable expressions see S.i)-S.iii), respectively S.il)-S.iii') below). 

7.4 Computational Aspects 

From the previous section it follows that, if one is able to compute the solution 
J* (v, u, d, t)  of (12.13) respectively (12.15) for all tuples (v, u, d, t), then one 
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can compute also the optimal strategy and the given problem is completely 
solved. A direct solution of (12.13) resp. (12.15) is difficult, if not impossible 
to obtain and so in this section we present, extending some of the results in 
[3], a computationally feasible approximation approach, structured along two 
levels: 

i) successive iterations 
ii) quantization coupled with interpolation 

7.4.1 Successive Iterations 

The operator I, defined in (12.13) for the case of known intensities, is a 
contraction operator with contraction constant 1 - e-XT < 1 so that the 
solution J* of (12.13) can be obtained in the limit of successive iterations 
of this same operator I .  However, in the case of unknown intensities, the 
operator 7 in (12.15) contracts with factor 1 - pO(u + d,t)  that, see (7.21), 
tends to 1 (no contraction) in the limit when the total number u+d of observed 
jumps tends to  m .  

This situation can be circumvented as follows. Let Jn be the n-th iterate 
of 7, both for known and unknown intensities, according to 

JO - 0 and, for h 5 n, J~ = I J ~ - ' .  (7.22) 

It  can be shown that, see [3], 

i.e. the n-th iterate can be interpreted as minimal risk in (v, u, d, t)  if a t  most 
n jumps occur in the remaining interval [t, TI. It follows that if one fixes a 
priori a maximum number n of jumps then, both for known and unknown 
intensities, the n-th iterate of 7 suffices to obtain the optimal value under 
this restriction on the number of jumps. 

One can then easily see that, for all (v, u, d, t), 

Having made the assumption that E { Y  (F(ST) + c)) < + m ,  it then follows 
that 

Jn(v ,u ,d , t )  n .  J* (v ,u ,d , t ) ,  (7.25) 

uniformly in (v, t )  for all (u, d). 
Consider now the optimal strategy under the restriction of a t  most n jumps 

that we denote by <;. It is computed as follows, where we consider now only 
the case of unknown intensities and where we take into account the fact that, 
by (7.20), pt(.) and p-(.) have a common factor and distinguish themselves 
only by the factors a$ + u and a; + d respectively: 
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S.i) for t E [0, ?I] and v = Vo put 

a+ ~ n - 1  (V + < ~ ~ e ~ " - ~ ~ ( e ~  - l ) ,  1,O, t )  
Jp = arg min 

+a; Jn-I  (v + < ~ ~ e ~ ~ - ~ ~ ( e - ~  - I) ,  0,1, t) 

S.ii) for t E (?h,7h+l], (1 5 h < n - 2), having observed N& = u, N& = 
d, (u + d = h), V?,, = v, put: 

(a: + U) J ~ - ~ - ' ( v  + <Soeau-bd(ea - I ) ,  u + 1, d, t)  JF = arg min 
+(a; + d) + < ~ ~ e ~ ~ - ~ ~ ( e - ~  - l ) , ~ ,  d + l , t )  

S.iii) if ~ ~ - 1  < T then, for t E (?n-l, TI, put: 

J 0 (ie,  transfer all funds to the money account). 

Let Vp be the wealth process associated with [r, i.e. 

As with (7.24), one can easily see that, in particular a t  the initial time i.e. for 
(v, U, d, t)  = (VO, 0, 0, O), one has 

which is a relation that specifies the sense in which the performance of the 
strategy En is suboptimal. In particular, (7.27) shows that, for n -+ oo, the 
performance of the strategy Jn tends to that of the optimal one J*. 

Concluding this subsection we have found that, by iterating the operator 
I (both for known as well as unknown intensities) a sufficiently large number 
n of times, one can approximate the optimal value and the performance of 
the optimal strategy as closely as possible. It  remains to actually compute the 
iterations with the operator 7 corresponding to the various possible tuples 
(v, u, d, t) .  This is the subject of the next subsection. 

7.4.2 Computation by Quantization 

The iterations with the operator 7 in (12.13) respectively (12.15) have to be 
computed for all possible tuples (v, u, d, t). Given a maximum number n of 
jumps, one has u + d 5 n and so the pair (u, d) takes only a finite number of 
possible values. The pair (v, t )  however takes a continuum of possible values 
with 

v E [-c, a n ) ]  , t E [O, T] , (7.28) 
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where, given n, 
C(n) := max{C(u, d) I u + d < n) (7.29) 

and where C(u,d) is the super-hedging capital introduced after (12.10). To 
make the iteration in (7.22) computable, we have thus to discretize the possible 
values of (v, t)  and we do this by quantization (computation over a grid of 
values) followed by an interpolation, in the same variables, of the computed 
values. 

More precisely, given n, consider a finite grid G 

containing the extremal points of D. Define 

(7J)(v, u, d, t)  , if (v,-t) E G 
(IG J )  (v, u, d, t)  := (7.31) 

cadlag interpolation , else 

where by cadlag interpolation we mean a right-continuous, piecewise constant 
interpolation. 

Let J ~ > ~  denote the n-th iterate of TG according to 

J ~ > ~  0 and, for h 5 n, JhlG = 7 G ~ h - 1 1 G .  (7.32) 

More specifically, denote by vj, ( j  = 0,1, .  . , J) and ti ,  (i = 0,1, .  . . ,I) the 
points in [-c, C(n)] and [O, T] respectively that define the grid G c D and let 
V, := [vj, vj+1), ( j  = 0, .  . . , J - 1). Taking into account the definition of the 
operator 7 in (12.15) and the expressions (7.20), (7.21), the computation of 
the recursions in (7.32) can then be performed according to the formula (see 
also (55) in [3]) 

where 

and where (see again (12.15)) 
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J1lG(vj, u ,  d, ti) = pO(u + d, ti) e ( ~ ( S o e " ~ - ~ ~ )  - vj) 

Denote by cnpG the strategy, defined by analogy to en, but corresponding 
to the iterations of TG and let v , ~ ' ~  be the associated wealth process. More 
precisely, recalling from (7.20) that p+(.) and p-(.) have a common factor and 
distinguish themselves only by the terms (a: + u) and (a; + d) respectively, 
we have (compare with (S.i-S.iii): 

S . )  for t E [O,?l] and v = Vo put 

S.ii') for t E (?h,?h+l], (1 5 h < n - 2), having observed N;~ = u, N< = 
d, (u + d = h), = v, put: 

S.iii') if ~ ~ - 1  < T then, for t E (?n-l,T], put: 

~ r ' ~  = 0 (ie. transfer all funds to the money account), 

With respect to S.i)-S.iii), here we have emphasized the fact that, as a function 
of V, JnlG(v,u, d, t)  remains constant for all values of v between two grid 
points. Notice furthermore that, also as a function of t ,  J ~ ? ~ ( V ,  u, d, t )  remains 
constant between two grid points and so c;lG changes only a t  a jump time as 
indicated in S.i')-S.iii9) or, within a same interval (?h,?h+l], when t crosses a 
grid point (see the numerical results below). 

Since, with (v, t)  E G, the tuples (v, u, d, t )  are now finite in number, the 
values JnlG and the strategies cnlG can actually be computed. 

We next discuss the goodness of the approximation introduced above. 
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7.4.3 Bounds and Convergence 

Given n, let 

En := {(v, u, d, t )  I vq - c, u + d 5 n, t E [0, TI) (7.36) 

and denote by D(En)  the space of cadlag functions on En endowed with the 
sup-norm I I . I I En. 

We have now two facts. The first one follows straightforwardly from the 
continuity of J* (v, u, d, t)  (recall that we had assumed F ( . )  continuous and 
Y(.) convex), namely: 

(7.37) 
for tiG := sup [Iv - v'l + It - t'l] -) 0 .  

( v , ~ ) E D ,  ( d , t l ) € G  

The second follows from results in [3], in particular Corollary 4.3 and Section 5 
(notice that, in the notation of [3], we have H: = HE in Section 5 there), 
namelv: 

Combining (7.37) with (7.38) we have that, for given n, the upper bound in 
(7.38) tends to  zero for tiG -+ 0, i.e. for the grid G becoming finer and finer. 
Notice however that, since limn,,pO(n,O) = 0, the convergence to zero of 
this upper bound becomes slower as n increases. 

To evaluate the goodness of the approximation introduced by the com- 
putable quantities JnlG and en>G that depend on the choice of n and G, 
notice that by analogy to (7.27) we have, at the initial time t = 0, 

which, combined with (7.38) and the fact that the rightmost term tends to  zero 
for n --+ m, specifies the sub-optimality of the performance of the computable 
strategy enlG: having chosen n sufficiently large so that the rightmost term is 
small enough, choose the grid G sufficiently fine so that JnpG(.) is close enough 
to J*(.) in the sense of (7.38). By our approach one can thus approximate 
the optimal value and the performance of the optimal strategy as closely as 
possible. 

7.5 Example and Numerical Results 

7.5.1 Description of the Example 

We consider here an example corresponding to example 5.1 in [3]. More pre- 
cisely, we consider the geometric Poisson price model (12.6) with So = 1 and 
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a, b such that ea = 2, e-b  = 112. Assume the intensities A t ,  A- unknown and 
having as prior distribution a Gamma with parameters (at = 1, Po = 1) and 
(a; = 1, Po = 1) respectively. The claim is supposed to be a European call, 
namely F(ST) = (ST - I)+ and as loss function take a quadratic, namely 
l ( z )  = [max(z, 0)12. Finally, take a horizon of T = 2 and let the lower bound 
for the portfolio value correspond to c = 0.5. In the given situation the value 
of C(n)  in (7.29) is bounded from above by C(n) < 2"-'. As domain D for 
the pair (v, t )  we therefore take the rectangle D(n) = [-0.5, 2n-2] x [O, 21. 

7.5.2 Numerical Results 

For the given example we report here numerical results for portfolio values 
and strategies when the maximum number of jumps is supposed to be either 
n = 5 or n = 8 so that some comparison can be made. The portfolio values 
are reported also for n = 6 and n = 7. We recall from section 7.4.1 that, if the 
actual number of jumps turns out to be larger than the given n, then we put 
J;lG = 0 for t E (?&1,T], i.e. we transfer all funds to the money account. 

Case of n = 5  and quantization given by 
(00 , -  '. ~ 3 )  = (-$, 0 , 1 , 2 , 4 , 8 ) ,  ( t o ,  , t 3 )  = ( 0 ,  i, 1 , 2 )  

The strategy J:lG is described in the following table, where an interval in the 
first column means that the strategy can be assigned any value within that 
interval and where the values for (k = 1,2,3)  are the values on the grid 
that correspond to the left end point of the interval that contains the actual 
value of 

' 1  f o r s ~ [ O , ? ~ ] n [ O , 2 ] , V ~ = O  
[1,2] for s E [O, n [O, 21, VO = 1 
[0,2] for s E [O,?I] n [0,2], VO = 2 
[-2,4] for s E [O,?I] n [O,2],Vo = 4 
0 f o r s ~ [ O , ? ~ ] n [ O , 2 ] , V o = 8  
3 for s E (?1,?2] n [0,2] with u = l , d  = 0, V;., = 1 
1 for s E (?1,?2] n [0,2] with u = l , d  =0 ,  V;, = 2 
0 for s E (?I,%] n [O,2] with u = l , d  = 0, V;., = 8 
0 fors~(?1 ,?2]n[0 ,2]  w i t h u = O , d = 1 , V ~ , ~ { - ~ , 0 , 8 )  
[-2,8] for s E (?1,?2] n [O, 21 with u = 0, d = 1, V& = 2 
[-6,8] for s E (?1,?2] n [O, 21 with u = 0, d = 1, V;., = 4 
0 for s E (?~,?3] n [0,2] with u = l , d  = 1, VP2 E {-+,8) 
1 f o r s ~ ( ? ~ , ? ~ ] n [ O , 2 ]  w i t h ~ = l , d = l , V ; . ~  = O  
[1,2] for s E (?Z7?3]n[o,2] with u =  1 , d =  1, VF2 = 1 
[0,4] for S E  (?2,G]n[O,2] wi thu= 1 , d =  1, V;, = 2  
[-2,4] for s E (72, ?3] n [O,2] with u = 1, d = 1, V& = 4 
0 for S E  (?2,?3]n[1,2] wi thu=2,d=O,  VFz = 8  
1 fors~(?2,?3]n[1,2]  w i t h u = 2 , d = 0 , V F 2 = 4  

,O for S E  (?2,?3]n[o,2] wi thu=O,d=2,  E {-4,0,8) 
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[-8,161 for s E (?2,?3 
[-16,161 for s E (?2,?3 
0 for s E (?3, ?4 
3 
2 for s E (?3, ?4 

1 for s E (?3,?4 
0 for s E (?3,?4 
[-4,8] for s E (?3, ?4 

[-8,8] for s E (?3, ?4 

0 for s E (?3,?4 
0 for s E (F3, 5'4 

[-16,321 for s E (?3,?4 
[-32,321 for s E (?3, ?4 

n [0,2] with u = 0, d = 2, VF2 = 2 
n [0,2] with u = 0, d = 2, = 4 
n[O,2] ~ i t h u = 2 , d = l , V ~ ~ ~ { - : , 8 )  
n [0,2] with u = 2, d = 1, VF3 = 1 
11[0,2] w i t h u = 2 , d =  1, V73 = 2  
n[O,2] w i t h u = l , d = 2 ,  VF3 E {-;,0,8) 
n [0,2] with u = 1, d = 2, VF3 = 2 
n [0 ,2 ]  w i t h u = l , d = 2 ,  VF3=4 
n [0,2] with u = 3, d = 0, VF3 = 8 
n[O,2] w i t h u = O , d = 3 ,  VG E {-:,0,8) 
n [O, 21 with u = 0, d = 3, VF3 = 2 
n [O, 21 with u = 0, d = 3, VF3 = 4 

The values of J51G for the various initial conditions (v, O,0,0) correspond- 
ing to the 5 non-negative grid-values of v are shown on the next table. As 
expected, they are decreasing in v. 

Case of n = 8 and quantization given by 
(vo,... , v g )  = (-; ,0,1,2,4,8,16,32,64),  ( t o , . . .  , t 3 )  = ( 0 , ; , 1 , 2 )  

Corresponding to the previous subsection, in the next table we describe the 
strategy ~ f ' ~  that now is naturally more complex. 

1 for s E [O,?I] n [0,2], Vo = 0 
[1,2] f o r s ~ [ O , ? 1 ] n [ 0 , 2 ] , V ~ = l  
{0,2) f o r s ~  [O,?l]n[0,2], V o = 2  
{0,4) for s E [0, 711 n [o, 21, Vo = 4 
[0,8] f o r s ~ [ O , ? ~ ] n [ 0 , 2 ] , V 0 = 8  
[-8,241 for s E [0,?1]n[0,2], Vo = 16 
[-24,321 for s E [0, ?I] n [O, 21, Vo = 32 
0 for s E [O,?I] n [0,2], VO = 64 
0 for s E (?1,?2]n[0,2] with u =  l , d  = 0 ,  V;-, = 6 4  

fors€(?1 ,?2]n[0 ,2]  w i t h u = 1 , d = 0 , V 7 , = 1  
1 f o r s E  (?1,?z]n[0,2] w i t h u =  l , d = O ,  VF, = 2  

{0,2) for s E (?1,?2]n[0,2] w i t h u =  l , d = O ,  VF, = 4  
[0,4] forsE(?1,?z]n[0,2]  w i t h u = 1 , d = 0 , V 7 , = 8  
0 for s E (?1,?2] n [O, 21 with u = 0, d = 1, VF, E {- :, 64) 
2 for s E (?I,%] n [O, 11 with u = 0 ,d  = l,VF, = 0 
0 for s E (?1,?2] n [ l ,  21 with u = 0, d = l,Vi., = 0 



7 Efficient hedging strategies in discontinuous markets 209 

1 for s E ( ? ~ , % ] n  [0,2] with u = 0 ,d  = 1, V;., = 2 
1 for s E (?I,%] f7 [0,2] with u = 0 ,d  = 1, V;-, = 4 
[0,2] f o r s E ( ? l , ? 2 ] f l [ 0 , 2 ]  w i t h u = O , d = l , V ; , = 8  
[-2,6] for s E (?1,72] fl [0,2] with u = 0 ,  d = 1, V;-, = 16 
[-6,8] for s E (71, ?2] fl [0,2] with u = 0 ,  d = 1, V;-, = 32 
0 for s E ( ? ~ ~ ? 3 ]  fl [0,2] with u = l , d  = 1, V6 E { - $ , 6 4 )  
1 for s E (?2,?3]n[l,2] w i t h u =  l , d  = 1, V;, = O  
[1,2] f o r s ~ ( ? ~ , R ] n [ 0 , 2 ]  w i t h u = l , d = l , V ; - 2 = 1  
{0,2) f o r s ~ ( ? 2 , 7 3 ] n [ 0 , 2 ]  w i t h ~ = l , d = l , V ; - ~ = 2  
[0,4] f o r s E ( 7 2 , 7 3 ] n [ 0 , 2 ]  w i t h u = l , d = l , V ; ;  = 4  
[-4,121 f o r s E ( ? z , 7 3 ] n [ 0 , 2 ]  w i t h u = 1 , d = 1 , V F 2 = 8  
[-12,241 forsE(?2 ,?3]n[0 ,2]  w i t h u = 1 , d = 1 , V F 2  =16 
0 for s E (72,?3] n [1,2] with u = 2,d = 0 ,  VF2 = 64 
1 for s E (72,731 n [1,2] with u = 2,d = 0 ,  VFZ = 4 
[0,2] f o r s ~ ( 7 2 , 7 3 ] n [ 1 , 2 ]  w i t h ~ = 2 , d = O , V ; - ~ = 8  
0 for s E (72 ,731 n [0,2] with u = 0,d = 2, VF2 E {-: ,0 ,64)  
[4,8] for s E ( 7 2 ,  ?3] n [0,2] with u = 0 ,  d = 2, V;, = 1 
[0,8] for s E (?2,?3] n [ O ,  21 with u = 0 ,  d = 2, VF2 = 2 
[-24,561 for s E ( 7 2 ,  ?3] n [O, 21 with u = 0 ,  d = 2, V;, = 8 
[-56,1201 for s E ( 7 2 ,  731 fl [O,  21 with u = 0 ,  d = 2, V;-z = 16 
[-120,1281 for s E ( 7 2 ,  731 n [0,2] with u = 0 ,  d = 2, VF2 = 32 
0 for S E  ($ ,74]n[O,2]  w i t h u = 2 , d =  1, V;; = { - $ , 6 4 )  
3 - 
2 for s E (73,?4] n [O, 21 with u = 2,  d = 1, V;-3 = 1 
1 for s E (73,741 n [0,2] with u = 2,d = 1, VF3 = 2 
[0,2] f o r s ~ ( 7 3 , 7 4 ] n [ 0 , 2 ]  w i t h u = 2 , d = 1 , V F 3 = 4  
[-2,6] for s E ($ ,74]  fl [O,  21 with u = 2, d = 1, V;; = 8 
0 for s E (?3,?4] f l  [0,2] with u = l , d  = 2, VF3 E {-: ,0 ,64)  
[0,4] f o r s ~ ( ? 3 , ? 4 ] n [ 0 , 2 ] w i t h u = l , d = 2 , V ; ~ = 2  
[-4,121 f o r s ~ ( 7 3 , ? 4 ] n [ 0 , 2 ]  w i t h u = 1 , d = 2 , V F 3 = 4  
[-12,281 f o r s ~ ( 7 3 , ? 4 ] f l [ 0 , 2 ]  w i t h u = 1 , d = 2 , V F 3  = 8  
[-28,601 for s E ( 7 3 ,  741 fl [O, 21 with u = 1, d = 2, V;; = 16 
0 for s E (?3,?4] n [O, 21 with u = 3 ,  d = 0 ,  V;, = 64 
1 for s E (73,741 n [0,2] with u = 3 ,  d = 0 ,  V;3 = 8 
0 for s E (73,74341 n [0,2] with u = 0 ,  d = 3 ,  VF3 E {- $ , 0,641 
[-8,321 for s E (6, ?4] n [O, 21 with u = 0 ,  d = 3 ,  VF3 = 2 
[-56,1281 for s E (?3,74] n [O, 21 with u = 0 ,  d = 3 ,  V;., = 8 
[-120,2561 for s E (?3, ?4] n [O, 21 with u = 0 ,  d = 3 ,  VF3 = 16 
[-248,2561 for s E ( 7 3 ,  741 n [O, 21 with u = 0 ,  d = 3 ,  VF3 = 32 
0 for s E (?4,?5] n [0,2] with u = 4,d = 0 ,  VF4 = 64 
1 for s E (74,?5] f l  [0,2] with u = 4,d = 0 ,  VF4 = 16 
0 for s E (74,751 n [0,2] with u = 0,d = 4 ,  VF4 E {-: ,0 ,64)  
[-32,641 for s E ( 7 4 ,  ?5] n [O,2] with u = 0 ,  d = 4 ,  VP4 = 2 
[-128,2561 for s E ( 7 4 ,  751 n [ O ,  21 with u = 0 ,  d = 4 ,  VF4 = 8 
[-256,5121 for s E (74,751 n [O, 21 with u = 0 ,  d = 4 ,  VF4 = 16 
[-512,5121 for s E (?4,?5] n [0,2] with u = 0 ,  d = 4 ,  VG = 32 
0 for s E ( 7 4 ,  751 n [0,2] with u = 2, d = 2, VF4 E {-:, 6 4 )  

,[1,2] f o r s ~ ( 7 4 , ? 5 ] n [ O , 2 ]  w i t h u = 2 , d = 2 , V F 4 = 1  
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for s E (74,751 n [0,2] with u = 2,d = 2, VF4 = 0 
for s E (74,751 n [O, 21 with u = 2,d = 2, VF4 = 2 
for s E (74,751 n [0,2] with u = 2,d = 2, Vih = 4 
for S E  ( 7 4 , 7 5 ] n [ o , 2 ]  w i t h u = 3 , d = l ,  E ( -4 ,641  
for s E (74,751 n [0,2] with u = 3,d = 1, VF4 = 4 
for s E (74,751 n [O, 21 with u = 1, d = 3 ,  VF4 E { - ; ,0 ,64)  
f o r s € ( ? 4 , ? 5 ] n [ o , 2 ]  w i t h u = 1 , d = 3 , V F 4 = 1  
f o r s ~ ( 7 4 , 7 5 ] n [ O , 2 ]  w i t h u = 1 , d = 3 , V F 4 = 2  
forsE(?4 ,?5]n[o ,2]  w i t h u = 1 , d = 3 , V F 4 = 4  
for S E  (74 ,75]n[0 ,2]  w i t h u =  1 , d = 3 ,  VF4 = 8  
for S E  (74 ,75]n[0 ,2]  w i t h u = l , d = 3 ,  VF4 = 16 
for s E ( 7 5 , 7 6 1  n [0,2] with u = 5,d = 0 ,  VF5 = 64 
for s E ( 7 5 ,  761 n [O, 21 with u = 5 ,  d = 0 ,  V;, = 32 
for s E ( 7 5 ,  761 n [0, 21 with u = 0,  d = 5 ,  vF5 E {-a, 0,641 
for S E  (?5,?6]n[o,2] w i t h u = O , d = 5 ,  V;., = 2  
for s E ( 7 5 ,  761 fl [o, 21 with u = 0 ,  d = 5 ,  VF5 = 8 

[-512,10241 for s E ( 7 5 , 7 6 1  n [0,2] with u = 0 ,  d = 5, V;; = 16 
[-1024,10241 for s E ( 7 5 , 7 6 1  n [0,2] with u = 0 ,  d = 5 ,  VF5 = 32 
0 for s E ( 7 5 , 7 6 1  n [o, 21 with u = 4 ,  d = 1, VF5 E (-4,641 
1 for s E (?5,?6]n[o,2] with u = 4 , d  = 1, VF5 = 8  
0 f o r s ~ ( ? ~ , ? 6 ] n [ 0 , 2 ]  w i t h u = 1 , d = 4 , V F 5  E { - ; , 0 , 6 4 )  
[-8,161 for s E ( 7 5 ,  761 n [0,2] with u = 1, d = 4 ,  VF5 = 1 
[-16,321 for S E (%,?el n [O,2] with U = 1,d = 4 ,  Vp5 = 2 
[-32,641 for s E ( 7 5 ,  761 n [O, 21 with u = 1, d = 4 ,  VF5 = 4 
[-64,1281 for s E (?5,?6] n [0,2] with u = l , d  = 4 ,  VF5 = 8 
[-128,2561 for s E (75,761 n [o, 21 with u = l , d  = 4 ,  VF5 = 16 
0 for s E (75,761 n [O, 21 with u = 3,d = 2, V;; E ( -4 ,641  
3 
2 for s E (75,761 n [o, 21 with u = 3,d = 2, VF5 = 1 
1 for s E (75,761 n [0,2] with u = 3,d = 2, VF5 = 2 
0 for s E (75 ,761  n [0,2] with u =  2,d = 3 ,  VF5 E { - $ , 0 , 6 4 )  
[0,41 for s E (75,761 n [0,2] with u = 2,d = 3 ,  V;; = 1 
[-2,81 for s E ( 7 5 ,  761 n [o, 21 with u = 2, d = 3 ,  V F ~  = 2 
[-6,161 for s E ( 7 5 ,  761 n [0,2] with u = 2, d = 3 ,  V;; = 4 
0 for s E  ( ? 6 , 6 ] n [ o , 2 ]  w i t h u = 6 , d = O ,  V;., = 6 4  
1 - 
2 for s E ( ? 6 , 6 ]  n [0,2] with u = 6 ,d  = 0 ,  VF6 = 32 
0 for s E ( ? 6 , 6 ]  f l  [0,2] with u = 0 ,d  = 6 ,  VF6 E { - ; ,0 ,64)  
[-256,5121 for s E ( 7 6 ,  61 fl [O,  21 with u = 0 ,  d = 6 ,  VF6 = 4 
[-1024,20481 for s E (76,771 f l  [O,  21 with u = 0 ,d  = 6 ,  V;., = 16 
[-2048,20481 for s E ( 7 6 ,  771 n [0,2] with u = 0 ,  d = 6 ,  V F ~  = 32 
0 f o r s ~  (?,ii$,'i7]n[O,2] w i t h u = 1 , d = 5 , V F 6  E { - ; , 0 , 6 4 )  
[-16,321 for s E (76,771 n [0,2] with u = l , d  = 5 ,  VF6 = 1 
[-32,641 for s E ( 7 6 , 6 ]  n [o, 21 with u = 1, d = 5 ,  VF6 = 2 
[-64,1281 for s E ( ? 6 , 6 ]  n [ O ,  21 with u = 1, d = 5 ,  V F ~  = 4 
[-128,2561 for 8 E ( 7 6 , 6 ]  n [0,2] with u = l , d  = 5 ,  VF6 = 8 
[-256,5121 for s E ( ? 6 , 6 ]  n [0,2] with u = 1, d = 5 ,  VF6 = 16 
0 for s E ( 7 6 , 6 ] n [ o , 2 ]  with u = 5 , d =  1, VF6 = 6 4  
1 for s E ( 7 6 , 6 ] n [ 0 , 2 ]  with u = 5 , d =  1, VF6 = 16 
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. . . I . . .  
' 0 f o r s ~ ( ? 6 , ? 7 ] ~ [ 0 , 2 ]  withu=3,d=3,Vp6 E{-4,641 
1 for s E (?6,%] n [0,2] with u = 3,d = 3, V;., = 0 
[0,2] for s E (%3,6] n [O, 21 with u = 3, d = 3, V;, = 1 
o for s E (?6,%] n [o, 21 with u = 2, d = 4, vp6 E (-4, 0,641 
[-4,8] for s 6 (ib, ?,I n [O, 21 with u = 2, d = 4, Vp6 = 1 
[-8,161 for s E (?%,%I fl [O, 21 with t~ = 2, d = 4, Vp6 = 2 
[-16,321 for s E (%,%I n [O, 21 with u = 2, d = 4, Vp6 = 4 
0 for s E (?6,?7] n [O, 21 with u = 4,d = 2, VF6 = 64 

&[I,:] forSE(?6,6]fl[0,2] w i thu=4 ,d=2 ,Vp6=4  

In the next table we also show the values of J81G for the various initial 
conditions (v, 0,0,0) corresponding to  the 8 non-negative grid-values of v. 
Since more jumps imply a riskier context, the values of J ~ > ~  are naturally 
larger than the corresponding values for n = 5. 

Finally, without reporting also the strategies for the intermediate cases of 
n = 6 and n = 7, in the next two tables we also show the values of JnyG for 
these cases and for the various initial conditions (v, 0,0,0) corresponding to 
the n non-negative grid-values of v. From these values and those shown above 
for n = 5 and n = 8 one can get a feeling for the increase of the minimal 
expected risk corresponding to an increase in the number of jumps, i.e, to 
an increase of the riskiness of the situation (for one more jump the minimal 
expected risk increases roughly by a factor of 3). 



212 Wolfgang J.Runggaldier and Sara Di Emidio 

7.5.3 Conclusions 

As can be guessed from the numerical results reported above, the calculations 
become increasingly heavier with increasing values of n. The grid on the other 
hand influences less markedly the computational complexity. One may thus 
conclude that the algorithm described in the paper performs sufficiently well 
in situations where one does not expect too many jumps to happen as in the 
case of default sensitive assets. If there are many jumps such as in situations of 
high frequency data and small time scales, then it  may be advisable to  model 
the price evolution by means of continuous trajectories (approximating the 
de facto discontinuous trajectories by continuous ones) and use an algorithm 
tailored to  this latter situation. 
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Summary. This paper is mainly concerned with a single-stage financial index track- 
ing problem under the downside risk constraint where short-selling is allowed. First, 
we formulate the portfolio selection model with the downside probability constraint 
to track the financial index. Due to the convexity of this problem, the optimal 
portfolio is derived analytically by applying the Karush-Kuhn-Tucker optimality 
conditions. Moreover, we extend the risk measure to higher order moment of the 
downside and study the corresponding portfolio optimization problem. 

8.1 Introduction 

In 1950's, Harry M. Markowitz [13] proposed the mean-variance portfolio se- 
lection model, which was the beginning of the modern portfolio theory. In his 
model, the variance of return is regarded as a risk measure and the investor 
should make a trade-off between the risk and the return. 

Since then many financial models for portfolio selection have been pro- 
posed. However, the concept of risk is rather subjective, and different people 
may use different criteria to  measure the risk. Intuitively, it is more sensible 
for an investor to  be concerned with the risk of loss rather than the risk of 
gain. The concept of downside risk apparently has considerable impact on 
the investor's view point. Therefore, in Markowitz's seminal book [14], he 
suggested to  use the semivariance as an alternative measure of risk. In 1972, 

* Supported by the R.GC Earmarked Grant CUHK4233/01E. 
Supported by the RGC Earmarked Grants CUHK 41751003 and CUHK 
42341013. 
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Hogan and Warren [9] used the below-target semivariance as the risk mea- 
sure and formulated a portfolio selection model. Furthermore, the associated 
capital asset pricing model (ES-CAPM) that describes the equilibrium rela- 
tionship between the market portfolio and individual assets was obtained by 
Hogan and Warren in 1974 [lo]. 

In addition, as the semivariance restricts the investors to only one utility 
function, described by a quadratic equation, another downside risk measure, 
named the lower partial moment (LPM), has been proposed by Bawa [I] and 
Fishburn [5] respectively. The lower partial moment is defined as a general 
family of below-target risk measures, which encompasses a significant number 
of utility functions from risk-seeking to risk-neutral to risk aversion. More- 
over, when a riskless asset is included in the portfolio, the capital market 
equilibrium was established by Bawa and Lindenberg [3]. 

Besides the lower partial moment risk measure, stochastic dominance (SD) 
is another very powerful downside risk analysis tool. It  converts the probabil- 
ity distribution of an investment into a cumulative probability curve. In 1969, 
Hadar and Russell [6] showed that the SD rules provide admissible sets of 
alternatives under restrictions on all possible risk-averse utility assumptions. 
Furthermore, the consistence between the mean-semivariance model and sec- 
ond degree stochastic dominance was presented by Ogryczak and Ruszczynski 
in [18]. 

The purpose of this paper is to study the index tracking models based 
on the downside risk measure. Specifically, we first formulate the portfolio 
selection model under the downside probability risk measure to beat the un- 
derlying financial index, where short-selling is allowed and the assets' rates of 
return are assumed to be jointly normally distributed. Then, by applying the 
Karush-Kuhn-Tucker (KKT) optimality conditions, we obtain the analytical 
form of the optimal portfolio. Finally, we introduce higher order moments of 
the downside distribution to measure the risk, and study the index tracking 
problem under the m-th moment downside constraint. 

8.2 Statement of the Problem 

In this section, we will define the downside risk measure, and construct the 
financial index tracking model under this risk measure. Our goal will be to 
beat a certain financial index by forming a portfolio consisting of risky and 
riskless assets, in a single period. The financial index can be the stock index 
itself or a given target. 

Suppose there are n risky assets Sj,  j = 1. .  . , n ,  one riskless asset So 
and a financial index I in the market. For the n risky assets, let Cj be the 
return rate of the j-th asset, assumed to be random variables. For the riskless 
asset, let the return rate be R, which we will assume to be deterministic. For 
the financial index, let the return rate be CO, also assumed to be a random 
variable. Let xj be the proportion of the initial wealth invested into asset Sj. 
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A vector 5 = (xo, XI , .  . . , x,) where Cjn=o x j  = 1 is called a feasible portfolio. 
Therefore, when short-selling is allowed, the feasible region for the portfolio 
optimization problem is the set of all feasible portfolios, namely 

Denoting J := (CI,. . . ,en) and x := (XI , .  . . ,x,), the return rate of the 
portfolio 3 is Rxo + p x .  Let EJ be the mathematical expectation of a random 
variable J, and define 

PO = EJo and c = E?, 

the expected rates of return of the financial index and the risky assets, re- 
spectively. The expected rate of return of a portfolio P = (xo, . . . , x,) is 

E ( R X ~  + p x )  = Rxo + cTx a 

Let the covariance matrix between Jo and Î  be 

where ho is the variance of the financial index, h is thz covariance vector 
between the risky assets and the financial index, and H is the covariance 
matrix of the risky assets. Without loss of generality, we assume H > 0, 
which implies that there is no redundant asset in the market, so any risky 
asset or the financial index can not be expressed as a linear combination of 
the others. The slack random variable is defined as follows. 

Definition 1. The slack random variable of the rate of return on a portfolio 
3 with respect to the financial index I is defined as 

To measure the risk we may use either the probability of the downside of the 
portfolio with respect to the financial index, P{q(x) 2 0), or any higher order 
moment of the downside chance, E(Q(x)+)", m = 1,2 , .  . ., where 

By varying the value of m, we may construct 
models that respond to different risk preferences 

different portfolio selection 
of the investors. 
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8.3 Mean-Downside Chance Index Tracking Model 

In this section, we will discuss the case where the probability of the downside is 
regarded as the risk measure. This risk measure is referred to as the downside 
chance, because only the right tail of the distribution of the slack random 
variable is used in the calculation. 

As usual, we assume that an investor tries to maximize the expected rate of 
return of his investment, while keeping the risk below a certain level. Accord- 
ingly, the portfolio selection model (P )  under the downside chance constraint 
is formulated as follows 

(P)  maximize Rxo + jZTx 
subject to P{q(x) 2 0) 5 6 ,  (8.2) 

zT2 = 1 ,  

where 6 E [0, 11 is the expected downside chance of a potential investor, and 
z = (1,. . . ,1)  with appropriate dimension. A feasible portfolio is said to be 
e f ic ien t  if it is optimal for the Problem (P )  given a certain 6. For such a 
portfolio we denote by p(6) the associated objective value, and the point 
(6, p(6)) is called an e f ic ien t  point. Further, we call e f ic ien t  frontier the set 
of all efficient points, for which Problem ( P )  admits an attainable optimal 
solution. 

8.3.1 Efficient Frontier 

In this section, we will derive an algorithm for approaching the efficient fron- 
tier for Problem (P) .  We now introduce an assumption that will be assumed 
throughout the article. 

Assumption 1. The  return rates of the financial index I and the j - t h  risky 
assets Sj, j = 1, . . . , n, are jointly normally distributed. 

The above assumption stipulates that Jo and r a r e  jointly distributed as 
normal random vectors, and that the slack random variable q(x) follows a 
normal distribution. 

By substituting xo = 1 - xT2, we can rewrite the slack q(x) as 

Obviously, the slack variable has expectation 

and variance 
o2 (q(x)) = ho - 2hTx + xT @x . 

Hence, 
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Then, the downside chance of the rate of return on the portfolio 3 with respect 
to the financial index I can be explicitly expressed as follows 

is the distribution function of the standard normal random variable N ( 0 , l ) .  
Thus, Problem ( P )  is equivalent to the following, 

maximize ( z  - R x ) ~ x  
subject to 1  - @ ( f  ( x ) )  < 6 (8.3) 

where 
po - R -  ( F -  R Z ) ~ X  

f ( x )  := - 
Jho - 2hTx + X T ~ X  

We assume, without loss of generality, that jl^ - Rz is not the zero vector. In 
fact, if this were the case, the solution to our model would be to invest all the 
initial wealth on the riskless asset. 

We may rewrite 

with 
-1 A - 1 

y : = H z ( x - H - l h ) , c  : = H - 2 ( p - R 2 ) ,  

Assuming co > 0  we have the following result. 

Lemma 1. Suppose that co := (6 - ~ z ) ~ f i - l h  - po + R  2 0 .  Then  f ( x )  is 
uniformly bounded and satisfies 

The proof is long with tedious calculations. It  is included in the Appendix. 

On account of the notation just introduced, the optimization problem (8.3) 
becomes 

maximize cTy 
subject to 1 - @( cT < 6 .  (8.4) d-)- 
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As @ ( a )  is increasing, this may be rewritten as 

maximize cry  

subject to " o + " ~  > @-'(I  - 6 )  . (8.5) d- - 

Lemma 2. When & , the portfolio se- 

lection problem ( P )  i s  a convex programming problem. 

Therefore, Problem (8.5)  becomes, 

maximize c T y  
subject to  d- I bTy  + bo , 

where 
C 

b := and bo := 
co 

Q,-l(l- 6 )  ' @ - l ( l  - 6 )  , 

Suppose the feasible set for this problem is not empty, and let y be a feasible 
solution for it. As a0 t 0 and i l b  := *, it follows that JG > 
llyll and bTy + bo I llbll . llyll + bo < llyll + bo. Now y is a solution of (8.6) so 
it satisfies the constraint of the problem, that is 

So, for the feasible set to be nonempty we must assume that bo 2 0. But this 
follows from the assumption that co 2 0. 

As the objective function of Problem (8.6) is linear, we only need to show 
that the constraint of the problem defines a convex set. Put  

which is a convex function due to the convexity of the Euclidean norm. There- 
fore, g ( y )  I 0 is a convex set, which is in fact the intersection of a second 
order cone with an affine space. Consequently, the Problem ( P )  is a convex 
programming problem. 0 

The following theorem describes the optimal solution for the portfolio se- 
lection model ( P ) .  
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Theorem C.1. Depending on the expected downside chance 6, we have the 
following description of the optimal portfolio of the financial index tracking 
model under the downside chance risk: 

(a) if 6 E [l - @(IIcII), 11, the expected rate of return of the optimal portfolio is 
+co; 

and the corresponding return rate is 

there is no feasible portfolio for this 

portfolio selection problem. 

Proof: If 6 E [I - @(- IIcII), 11, then (1 - 6) < - IIcII. According to 
Lemma 1, it follows that the constraint of Problem (8.5) is always satisfied. 
Therefore, the feasible set is the whole space Rn and the optimal value for the 
objective function is +co. 

Suppose now that 6 E [0.5, I-@(- Ilcll)). Then - llcll < P 1 ( l - 6 )  < 0, and 
this is a trivial case for the optimization problem (8.5). In fact, this problem 
becomes 

maximize cTy 
subject to cTy 2 W 1 ( l  - 6 ) d m  - co . 

If llyll - +co the objective function cTy - +co. Now, as P 1 ( l  - 6) 5 0 
and ---+ +co as llyll - +co, it follows that l imllvl l++m @-l (1 - 

6 ) d m  = -co. Hence, when llyll - +co, the constraint of the above 
optimization problem is always satisfied, so the optimal value for the objective 
function is +co. 

If 6 E [l - @(IIcII), O.5), then 0 < @-l (1 - 6) 5 IIcII. Choose y = kc, for 
some fixed value of k. Then 

co + kcTc 
lim f (x) = lim k++m k++m 4- = llcll 7 

so that, 
lim f ( x )  >@-'(I -6). 

k-++m 

This means that, as k - +co, there exist feasible solutions for Problem 
(8.5), while the optimal value for the objective function satisfies 
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2 lim cTy = lim k I I c I I  = +oo. 
k + + w  k + + w  

We proved earlier that when 6 E 1 - @ (T) , 1 - @(llcl l )] ,  Prob- 
L \ / .I 

lem (8.5) is a convex programming problem. We now derive an analytical solu- 
tion for this problem by applying the KKT optimality conditions to Problem 
(8.6). Let 

be the Lagrange multiplier of this problem. Then the optimal solution must 
satisfy 

As c # 0 ,  it follows that X # 0. The optimal value of the objective function is 
attained on the boundary of the feasible set, so the KKT optimality conditions 
may be rewritten as 

From (8.7) and (8.8), we have 

Define 4 = bTy + bo and v2 = c(bT!tbO) . Then y = vlb - v2c and vl 2 0 ,  
v2 2 0 taking (8.8) and (8.9) into account. From (8.8) we obtain 

As = w v l  + A, this last equation is equivalent to the quadratic 
eauation 

whose discriminant is 
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Any solution of Problem (8.6) must satisfy its constraints thus, in particular, 

Hence, it holds 

As llbll < 1, it follows that 1 - bTb 1 0. Now, if a feasible solution for Prob- 
lem (8.6) exists, there also exists a feasible solution for the above inequality. 
Therefore, the discriminant of the quadratic expression in Ily 1 1  on (8.13) should 
be nonnegative, that is, 

so, also, A1 2 0. Therefore the quadratic equation (8.12) has two distinct 
roots 

The corresponding y* is 
b 

Y* = - (v; - bo) , 
bTb 

and the optimal value for the objective function of Problem (8.6) is 

which increases with v;. Hence we select the largest root of (8.12), that is, we 
choose 

to which corresponds the optimal solution of Problem (8.6) 

Accordingly, the optimal allocation of the risky assets is 

and the maximal expected return rate is 
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Remembering the bounds on f (x) from Lemma 1, it follows that the feasible 
set is empty. Therefore, there are no optimal solutions for problem (P). The 
proof is completed. 0 

We have characterized efficient portfolios for a given value of 6. Allowing 
6 to vary we may find the efficient frontier of this portfolio selection model by 
solving a series of convex programs (see Figure 8.1). 

investment Day: 01/06/2002 
0.1 1 

Probablllty of Downolde 

Fig. 8.1. Efficient Frontier of the Mean-Downside Chance Model 

We may compare the efficient frontiers of the Mean-Downside Chance 
Model and the Mean-Variance Model when the financial index to be tracked 
is fixed as a given deterministic target. 
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Theorem C.2. When we track a given target, the optimal portfolio for the 
Mean-Downside Chance Model is also optimal for the Mean- Variance Model. 

Proof: When the financial index is a deterministic value we have ho = 0 
and h = (0,.  . . , 0 ) .  Thus 

a0 = ho - h T k l h  = 0, b = 
W(j2 - Rz) , and bo = 

R - PO 
@ - l ( l  - 6 )  @- l ( l -  6 )  

The optimal solution for Problem ( P )  becomes 

and the corresponding value for the objective function is 

The Mean-Variance Model may be described as 

minimize a x T g x  
subject to R x o  + xTj2 = p* (8.14) 

xo + xTz = 1. 

According to the KKT optimality conditions, the optimal solution of Problem 
(8.14) is 

x = 
(p* - ~ ) H - l ( j 2  - RZ) 
( j 2  - R Z ) ~ -  l ( j 2  - Rz) 

( j 2  - Rz)@-l(j2 - Rz) 

Therefore, the optimal solutions of Problems ( P )  and (8.14) are identical. 
Hence, the efficient frontier for Problem ( P )  is included in the efficient 

frontier for Mean-Variance Model. 0 

8.3.2 Application to the Multi-stage Case 

In this section, we will apply the algorithm for the single-stage financial index 
tracking model with the downside chance constraint to search for a feasible 
strategy for the corresponding multi-stage problem. 
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Consider an investor in an-stage investment period [0, TI, where there are 
m identical sub-investment periods during this time interval. Assume that the 
trading of assets is self-financed, and the transaction costs and consumption 
are ignored. We use to to denote the original decision point (the starting time 
of the whole investment period), ti to denote the i-th decision point (the 
starting time of the i-th sub-investment period), i = 1 , .  . . , m - 1, and tm = T 
to denote the end of the whole investment period. Suppose that the return 
rate of the financial index I i:Jo at  the original decision point to, at  time t l ,  
. . . , and Em at  time t,. Let & := (I l i , .  . . ,Ini) be the return rates of the risky 
assets, and Ri be the riskless rate of return at the instants ti, i = 1 , .  . . , m. We 
define the expected return rates of the financial index I and the risky assets 
a t  time ti as 

poi := ECoi and ci := EJi , i = 1,. . . , m ,  

respectively. The covariance matrix between the financial index and the risky 
assets at  time ti ,  i = 0,1, .  . . , m, is 

where hoi is the variance of the financial index, hi the covariance vector be- 
tween the risky assets and the financial index, and i?i the covariance matrix 
of the risky assets, all a t  i-th decision point ti. Without loss of generality, we 
assume that the covariance matrix Hi, i = 0,1, .  . . , m, is positive definite. 

At the original decision instant to, the investor constructs a portfo- 
lio consisting of riskless and risky assets, and at  each decision instant ti ,  
i = 1 ,2 , .  . . , m - 1, the investor will revise his portfolio. Depending on the 
observed information up to time ti, the investor can change his existing pro- 
portions of the wealth invested in the riskless and risky assets. 

Let Xoi be the proportion of the riskless asset, and xi := (xli, .  . . ,xni) 
be the proportions of the risky assets at  time ti, i = 1,2 , .  . . , m  - 1. The 
portfolio a t  each decision point is a vector of riskless and risky assets 3i := 
(xoi, xl i , .  . . , xni) such that ELo xji = 1. When short-selling of assets is 
allowed, the feasible region for the portfolio selection problem at  time ti, 
i = 0,1, . . . , m, is the set of all feasible portfolios, that is 

We assume that the assets' return rates in different investment periods are 
independent. As xoi = 1 - X ~ Z ,  i = 0,1,.  . . , m, the portfolio optimization 
problem (PT) in the m-stage investment horizon [O,T], under a given risk 
level 6, is formulated as follows, 

(PT) maximize nzil [ji:xi + Ri(l  - x:2) + 11 
m-1 subject to P (n,=, (ti xi + Ri(1- xrz) + 1) t nz1(&,i + 1)) t e-', 
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where FTx~ + Ri(1 - xrz) + 1 is the expected return rate of the portfolio zi ,  
?xi + Ri(1- xTz) + 1 is the return rate of the portfolio & ,  and toi + 1 is the 
return rate of the financial index, all during the i-th sub-investment horizon. 
For this model, our objective is to maximize the expected portfolio rate of 
return at time tm,  subject to the probability that the portfolio rate of return 
is greater than the financial index rate of return a t  time tm = T being greater 
than a certain risk level. 

Consider the i-th single-stage portfolio selection problem (Pi) in the in- 
vestment period [ti, ti+l], i = 0,1 , .  . . , m - 1, 

(Pi) maximize (Fi + Riz)Txi 
subject to P (v(xi) 5 0) 2 1 - $ , 

where v(xi) is the slack random variable a t  the decision point ti, 

Applying the algorithm for solving the single-stage portfolio optimization 
model, we can find a feasible solution for the optimization problem (PT). 

Lemma 3. The optimal strategy for the single-stage financial index tracking 
model (P) in each sub-investment period [ti, &+I],  i = 0,1, .  . . , m- 1, provides 
a feasible strategy for Problem (PT). 

Proof: Taking into account the constraint of Problem (PT), we have 

Therefore, if we optimize Problem (Pi) in each sub-investment period [ti, ti+l], 
the corresponding optimal portfolio a t  each decision point ti, i = 0,1, . . . , m - 
1, also satisfies the constraint of Problem (PT). SO, these portfolios provide a 
feasible solution for this problem. 0 

Although this investment strategy is not optimal, it provides a simple and 
sensible strategy for the investor to invest in a multi-stage investment horizon. 

8.4 Mean-High Order Moment Downside Index Tracking 
Model 

In this section, we will use the m-th moment of the downside chance as the risk 
measure, and study the financial index tracking model under this risk measure. 
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The probability of the downside can be regarded as the zero-th moment of 
the downside of the slack q(x). Obviously, we do not have to be restricted 
to the probability of the downside chance as our risk measure. Any higher 
order moment of the downside can be used if the procedures are appropriately 
modified. In particular, we consider the m-th moment of the downside as an 
investor's risk measure, where the integer m is greater or equal than 1. 

Let E ( ~ ( X ) + ) ~  be the m-th moment of the downside of the slack ~ ( x ) .  
Then for a given risk level 6, the portfolio selection model (P,) for the m-th 
moment downside risk measure is formulated as follows 

(P,) maximize (ji - R z ) ~ x  
subject to E ( ~ ( X ) + ) ~  5 6 .  

(8.15) 

Clearly, the m-th moment of the downside E(q(x)+), is convex on the feasible 
region of x, so we are maximizing a linear function on a convex set. Thus, this 
problem is a convex optimization problem, and standard convex programming 
algorithms can be used to solve it. 

Let x(6) = (XI(@, . . . , x,(6)) be an optimal solution for Problem (P,), 
which, naturally, depends on the parameter 6. Define the optimal objective 
function value for Problem (P,) as 

Theorem C.3. v(6) ia a non-decreasing concave function. 

Proof: Suppose that 61 < 62, then the feasible region for Problem (8.15) 
corresponding to 61 is not larger than the one corresponding to 62. So, the 
optimal solution when 6 = 61 is not greater than the one when 6 = 62. That 
is, v(6) is non-decreasing. 

(1) (1)) We now prove the convexity of 4 6 ) .  For a given 61, let x(l) = (2, , . . . , xn 
be the optimal solution, and ~ ( 6 1 )  the optimal objective function value. Let 

(2) x ( ~ )  = (xl , . . . , xi2)), and ~ ( 6 2 )  be the same for a given 62. Using the con- 
straint of Problem (8.15), we have 

E ( ~ ( X ( ' ) ) + ) ~  < 61, and E ( ~ ( X ( ~ ) ) + ) ~  < 62. 

Let 6 = + (1 - X)62, for some X E [ O , l ] ,  and construct the portfolio 

Then 

E [q(hdl)  + (1 - X)X(~))] < XE ( q ( ~ ( ' ) ) + ) ~  + (1 - X)E ( q ( ~ ( ~ ) ) + ) ~  

5 A61 + (1 - A)&. 

That is AX(') + (1 - x ) x ( ~ )  is a feasible solution corresponding to 6 = A61 + 
(1 - X)S2 with corresponding objective function value Xv(61) + (1 - X)v(62). 
As v(6) is optimal, we have 
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Thus, v(6) is a concave function, which concludes the proof. 17 

The graph of the function v(6) is called the efficient frontier for this port- 
folio selection problem (see Figure 8.2). 

Fig. 8.2. Efficient Frontier of the Mean-Downside High Order Moment Model 

As seen earlier 

so the m-th moment of the downside is 

1 

J2n(ho - 2hTx + x T a x )  

In order to simplify the notation, denote 

p(x) := PO - R - (8 - R Z ) ~ X  , and ~ ( x )  := Jho - 2hTx + x ~ f i x ,  
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Then, we may write 

where 
$00 

F;(X) := 1 sJ$(s) ds, j = 0, 1, . . . , m 

and $(x) is the density function of a standard normal distribution. 
I t  can be difficult to deal with such a risk measure function for m 2 2. 

However, it may still be possible to work with m = 1. In this case, we have 

For a given risk level 6, we construct the portfolio selection model (PI) 
under the downside deviation risk measure as follows, 

(PI) maximize (g - R Z ) ~ X  

subject to p(x)@ (%) + o(x)$ (%) < 6. 
(8.16) 

Using the fact that a(x) > 0, this may be restated as 

maximize (jl - R z ) ~ x  
subject to e(x)@(e(x)) + $(e(x)) 5 & , (8.17) 

where we denote e(x) = %. 
To solve Problem (PI) ,  we only need to find the optimal solution for a 

two-step optimization problem (P f )  stated as follows. 

Step 1. Optimize the following function 

where f (2) is defined in Step 2. 

Step 2. For a fixed parameter 2, solve the optimization problem 

The optimal objective value of this problem is denoted by f (5) .  Then, we 
have the following result. 

Theorem C.4. The two-step optimization problem (P f )  is equivalent to prob- 
lem (PI ) .  
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Proof: Let x* be the optimal solution for Problem (PI)  and v(Pl) = v* 
the corresponding optimal objective function value. Define XI* and v(Pi) = v'* 
analogously with respect to Problem (Pi).  Obviously, x'* is a feasible solution 
for Problem (Pi),  and satisfies the constraints of Problem (8.19). Then XI* also 
satisfies the constraint of Problem (8.17). Therefore, XI* is a feasible solution 
for Problem (PI),  so we have v'* 5 v'. 

Assume now that v'* < v'. For Problem (8.19), let C* = a(x*), so that x* 
is a feasible solution for Problem (8.19) with respect to 2*. Since v* is the 
corresponding objective function value of x*, it follows v'* 2 v*, which is a 
contradiction. So we have v'* = v', and Problem (PI)  is equivalent to Problem 
(Pi).  

As what regards Problem (8.19), denote G(x) = x@(x)+qb(x). Clearly, G(.) 
is an increasing function, so its inverse G-'(x) is also an increasing function. 
Therefore, the last constraint of Problem (8.19) may be re-written as 

Consider now one more optimization problem 

maximize (& - R z ) ~ x  
subject to a(x) = 2.  

For a fixed 2, if the optimal objective function value of Problem (8.21) is 
greater than the right hand side of inequality (8.20), then the optimal solution 
for Problem (8.21) is also the optimal solution for Problem (8.19). Otherwise, 
for this fixed 2 ,  there is no feasible solution for Problem (8.19) and we define 
f (2 )  = -oo. 

Notice that Problem (8.21) is a quadratic optimization problem, so by 
virtue of the KKT optimality conditions, the optimal solution is 

and the corresponding optimal objective function value is 

Consider the function 
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Proposition 1. For any fixed 6 > 0, the function g(3, 6) is a convex and 
coercive function i n  3 ,  that is 

Accordingly, when we fix 6, for any 3 ,  consider a portfolio x. If 3 > 0, this 
portfolio is infeasible for Problem (8.17). For a given risk levei 6, we have the 
following result. 

Lemma 4. For Problem (PI) ,  there exists a J0 such that: 

(a) i f  6 > 60, then there exists Z, such that g(3, 6) 5 0, so the optimal solution 
for Problem (PI) exists; 

(b) if 6 5 JO, then for every 3 we have g(Z,S) > 0, so the feasible set for 
Problem (PI) is empty. 

Proof: As g(Z, 6) is convex in Z, proving that there exists 3 ,  such that 
g(a^,6) 5 0, is equivalent to proving that infag($, 6) 5 0. Notice that 
g(Z, 6) and infa g(3,b) both decrease in 6. Finally, as lim,,-, G(x) = 0 
and limx,+, G(x) = +co, it follows 

lim inf g(Z,6) = - lim inf G-' (613) = -co , 
6++m ti 6++, a 

and 
lim inf g(3,6) = - lim inf G- ' (~ /Z)  = +co . 

6-0+ a 6+0+ a 

Hence, the result follows. 

For finding such a do, we consider the first moment of the downside 
E(rl(x)+ ). 

Lemma 5. There is a lower bound for the first moment of the downside of 
the slack E(q(x)+). 

Proof: For every x E F, we have 

Using Lemma 1, it is easy to prove that is bounded. Denote the upper 41) 
bound for this quotient by E. Then we have 

so the result follows. 0 
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Therefore, we define 
60 := inf E (v(x)+).  

x 

As we proved that E(v(x)+) is a smooth and convex function of x, by using 
Newton's method we can find the minimum value of this function. Hence, for 
a given 6 > do, f (3) is, obviously, an increasing function of 2. We can search 
from the minimum 3 to +w to find the optimal 3*, and the corresponding 
x* is the optimal solution for Problem ( P I ) .  

8.5 Numerical Example 

In this section, we will compare the monthly expected rates of return of the 
optimal portfolios generated by the mean-downside chance model and the 
mean-downside deviation model as well as the monthly expected rate of return 
of the relevant financial index. In the numerical experiments, we choose five 
stocks in the market in every case. First, we pick up the following five stocks: 
CLP Holdings, Henderson Ld. Dev., Hong Kong Electric, Swire Pacific, Whard 
Holdings, whose market values are around the average of the stocks. Second, 
we randomly choose five different stocks from the constituent of the Hang 
Seng Index as follows: Cathay Pacific, Cheung Kong Holdings, China Mobile 
(HK) Ltd., CLP Holdings, Johnson Electric Holdings. In the comparison, the 
investment horizon is from June 2000 to May 2001, and the performance of 
the Hang Seng Index is also included. 

From the numerical results, we conclude that the trend of the monthly ex- 
pected rate of return of the optimal portfolio derived from the mean-downside 
chance model fluctuates less than that of the mean-downside deviation model, 
and the former is closer to the underlying financial index. In addition, we ob- 
serve the monthly expected rate of return graphs, and count the points derived 
from the mean-downside chance model which are below the points generated 
by the Hang Seng Index. Then, we calculate the actual probability of the 
downside being under the mean-downside chance framework. This downside 
probability is quite close to the investor's expected risk level 6. Our experience 
with the portfolio selection model using the downside chance risk measure is 
encouraging. Indeed it is a good and intuitive measure of risk for the investors 
to sense and feel the downside chance, so that they can effectively control 
their risk tolerance level if needed. 

8.6 Conclusion 

In this paper, we have studied the financial index tracking models under the 
downside risk measure. In some sense, the index tracking model with the 
downside risk measure is consistent with the traditional mean-variance model. 
If the financial index to be beaten is fixed as a constant, maximization of the 
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Fig. 8.3. Monthly Rate of Return Using Middle Value Stocks 

index tracking model yields solutions which are efficient for the mean-variance 
model. However, if we randomly pick up an efficient portfolio of the mean- 
variance model, it may not be efficient in terms of the downside index tracking 
rule. In addition, there are many potential research topics to be investigated 
in the future. Such problems include: (1) the downside index tracking problem 
for multistage investment horizon; (2) the downside index tracking problem 
under continuous time investment framework; (3) what happens if the joint- 
normal distribution assumption is dropped? Can one still solve the problem 
a t  least approximately? 

Appendix 
Proof of Lemma 1. 

First we prove that f (x) is a bounded function. We may write 
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Fig. 8.4. Monthly Rate of Return Using Randomly Selected Stocks 

As the matrix [: z] is positive definite, its smallest eigenvalue Xmin is 

strictly positive, so that we have 

Hence, f (x) is bounded from above. Let us now compute sharper lower and 
upper bounds for the function f (x). As f (x) = " o ' " ~  it follows that d-' 

with equality holding if and only if y is parallel to the vector c. The maximum 
of T(x) corresponds to a local maximum of f (x). For simplicity, let 
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Recall that 
ho hT -1 

a0 = [-I hTg-'1 [ a] [hTg-l] , 

so a0 2 0, from the positive definiteness of the matrix, and that co > 0. 
Therefore, the maximum of T(x) is attained when 

to which corresponds y* such that lly*ll = a* - fi = T. At the optimal 
point y is parallel to c, so 

* a0 y = - c .  
co 

The corresponding maximum value of the function f (x) is 

Taking into account that a0 2 0 and co 2 0, we have 

which concludes the proof. 

Proof of Proposition 1. 

We start by proving the convexity in a^. The function being differentiable, we 
compute the second derivative of g with respect to C. 

Put y = g-1(6/Z), then G(y) = $, thus, taking derivatives on both sides, 
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Substituting in the  first expression, we have 

Hence 

-a,/ (j2 - R Z ) T ~ -  l ( c  - Rz) 
a 2 - h o + h @ - l h  

Consequently, t he  function g(G, 6) is convex in 5 .  
For proving lima,+, g (2 ,6 )  = +oo, i t  is enough t o  prove 

Now, this lat ter  statement is t rue  a s  

-CG- (6/$) 
= lim - = +oo. 

u-++cc 
J(p  - ~ z ) ~ B - l ( p  - RZ) 

Thus,  the  function g(C, 6) is coercive. 
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Summary. In liberalized electricity markets prices exhibit features, such as price 
spikes, rarely seen in other commodity markets. Models for electricity spot price, 
such as mean-reverting jump-diffusions and regime-switching models are only par- 
tially successful in modelling price spikes. In this paper we introduce a new approach 
to electricity price modelling: a potential function jump-diffusion model, which al- 
lows for a continuously varying mean-reversion rate and provides a flexible way to 
model price spikes. 

We analyze electricity spot prices from three major European power exchanges: 
Amsterdam Power Exchange, UK Power Exchange and European Power Exchange 
(Germany). The potential function jump-diffusion model is applied to the historical 
spot prices from these exchanges, and its performance is compared to that of the 
mean-reverting jump-diffusion. The potential function approach is able to capture 
price spike behavior and overall characteristics of the data remarkably well, and 
generally better than traditional mean-reverting models. This approach allows for a 
continuum of different reversion rates, and hence provides a richer model structure 
and significantly extends the regime-switching model of Huisman and Mahieu [13]. 

9.1 Introduction 

The recent liberalization of European electricity markets offers benefits to  
both providers and consumers. I t  also presents new modelling, pricing and 
risk management challenges to  researchers and practitioners involved in energy 
markets. 

Electricity is a flow commodity of strategic importance, characterized by 
non-storability, inelasticity of demand and large-scale long-term investments. 
These factors lead to  price features rarely seen in other commodity markets: 
complex seasonal patterns, periods of huge volatility and price spikes. These 
characteristics are unsuited to  the traditional modelling and pricing methods 
of financial analysis. Risks in electricity markets are dramatically more pro- 
nounced: prices can increase by more than 1000% within hours, and return 
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to their normal levels shortly afterwards - a behavior usually referred to as 
spikes. 

Modelling the evolution of the spot price is the core of energy market 
research. The model for the electricity spot price suggested by Lucia and 
Schwartz [17] is a mean-reverting diffusion (with seasonally varying mean). 
This model does not incorporate spikes. However, correctly modelling spikes 
remains the most difficult part of electricity price modelling, because after 
an upward jump, the price has to be forced back to normal levels. Jump- 
diffusions, sometimes suggested for modelling prices of financial assets, are 
now routinely used by many authors for modelling electricity prices (Deng [9], 
Knittel and Roberts [16], Escribano, Pena and Villaplana [Ill ,  Barone-Adesi 
and Gigli [4], Cartea and Figueroa [7]). In such models, Poisson jumps are 
added to a mean-reverting diffusion process. Mean-reverting jump-diffusions 
provide for spike behavior, since the mean-reversion forces the price to return 
to its normal level. However, a high rate of mean reversion is needed to  force 
the price back after a large upward jump. Hence, the degree of mean-reversion 
outside spikes can be grossly misspecified. 

So far, the only model successfully separating mean reversion and spikes is 
the Markov regime-switching model, introduced by Huisman and Mahieu [13]. 
Their model postulates that the price can be in one of three regimes: normal 
mean-reversion, spike regime and return from spike to a normal price level. 
Transitions from one regime to another are governed by a discrete time Markov 
process, with transition probabilities estimated from historical data (as well as 
the model parameters in each regime). A similar approach is taken by Geman 
and Roncoroni [12], where regimes are defined in terms of the price exceeding 
a certain pre-specified threshold. These regime-switching models allow for a 
richer structure than the mean reversion with jumps. However, these model 
did not find widespread acceptance by practitioners, who are accustomed to 
diffusion-like models, preferring them to regime-switching models. 

Here we introduce a new approach for modelling electricity spot prices, 
based on a recently developed potential field model (Borovkova et al. [5]). 
This involves a jump-diffusion with drift given by a potential function derived 
from the process' invariant distribution. The potential forces the price to 
return to its average level (driven by a seasonal component) after an upward 
jump. The potential function model is close in spirit to a mean-reverting jump 
diffusion, with a more general drift term. It  is also a generalization of the 
regime-switching model of Huisman and Mahieu [13], which allows the rate 
of mean-reversion to  be different in each regime. In the potential function 
model, the rate of reversion to an average price level is a continuous function 
of the distance from this level, specified by the model builder. This allows for 
a richer model structure, while still retaining the jump-diffusion framework. 
In fact, the mean-reverting jump-diffusion features in our model as a special 
case. 

The paper is organized as follows. In the next section we review some 
known models for electricity spot prices; and in Section 3 we introduce the 



9 Modelling electricity prices by the potential jump-diffusion 241 

potential function model. Section 4 is devoted to applications to data from 
power markets. We perform an extensive analysis of electricity spot prices from 
three major European markets: The Netherlands, UK and Germany; and test 
the potential function model on the historical prices from these exchanges. We 
compare it with the mean-reverting jump-diffusion model in terms of matching 
characteristics of historical data and simulating new price paths. 

9.2 Stochastic Models for Electricity Spot Prices 

9.2.1 Overview of Available Models 

As mentioned in the introduction, electricity spot prices are characterized by 
complex seasonal patterns, periods of high volatility and price spikes. All these 
features can be seen in Figure 9.1, which shows daily electricity spot prices3 
on three major European electricity exchanges: Amsterdam Power Exchange 
(APX), UK Power Exchange (UKPX, London) and European Energy Ex- 
change (EEX, Leipzig, Germany). On the y-axis is the price in Euros per 
megawatt/hour, and on the x-axis - the number of calendar days since the 
first day in the analyzed dataset (Jan. 1 2001 for APX, Apr. 1 2001 for UKPX 
and Jan. 1 2002 for EEX). Note that the price on the UK power exchange 
is quoted in Euros and not in British pounds - UKPX is managed by the 
Amsterdam Power Exchange (APX) and prices are quoted in Euros to  ensure 
better coordination with other European power exchanges. 

Price spikes dominate the graphs, but seasonal (yearly and weekly) behav- 
ior is also visible. Generally, the average price level is higher in winter and 
summer than during mid-seasons, and higher on weekdays than on weekends. 

The standard approach is to model the spot price P ( t )  or, more often, 
its logarithm Y(t) = In P ( t )  on each day t as the sum of the deterministic 
seasonal component s(t) and a stochastic process X(t):  

The seasonal component s(t) usually consists of two periodic functions: with 
the periods of 1 year and 1 week (sometimes a half-yearly periodic component 
is added as well). 

The specification (9.1) for the (log) price is used by most researchers 
and practitioners working in energy markets (e.g. Lucia and Schwartz [17], 
Sorensen [21], Huisman and Mahieu [13], Pilipovic [20] and many others). The 
particular specification of the stochastic process X( t )  leads to different mod- 
els. For example, in [20], X(t)  is modelled as the stationary mean-reverting 
(Ornstein-Uhlenbeck) process: 

dX(t)  = -aX(t)dt + adW(t) , (9.2) 

We use the so-called baseload price - the daily average of the prices for hourly 
deliveries. 
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Fig. 9.1. APX (01.01-02.04), UKPX (04.01-03.04) and EEX (01.02-05.04) electricity 
spot prices 

where a is the mean-reversion rate, a is the volatility and W(t) is the standard 
Brownian motion. 

Lucia and Schwartz [17] model X( t )  by the sum of two stochastic processes: 
a short-term mean reverting component and a long-term equilibrium price 
level, which follows a geometric Brownian Motion: 

dX(t) = [-aX(t)dt + a d W ~  (t)] + [pdt + qdW~(t ) ]  , (9.3) 

with p being the growth rate and q - the second volatility parameter. 
In mean-reverting jump-diffusion models (studied in the articles mentioned 

in the introduction), X( t )  is decomposed into a mean-reverting diffusion and 
a Poisson jump component: 

where z(t) is the Poisson process with intensity X and J is a random variable 
representing random jump size. 

The regime-switching model by Huisman and Mahieu [13] incorporates 
a regime-switching mechanism in the specification for X( t )  (however, it does 
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not take yearly seasonality into account). Three regimes are defined: "normal" 
mean-reversion, spike initiation and spike reversal regimes. The transition 
from one regime to another is given by Markov transition probability matrix, 
which reflects the fact that the spike initiation regime is usually followed by 
spike reversal. The mean-reversion rate in the spike reversal regime is assumed 
to be much higher than the mean-reversion rate in the "normal" regime. 

Mean-reverting diffusion models of the type (9.2), (9.3) are unrealistic in 
that they do not accommodate spikes. The main drawback of mean-reverting 
jump-diffusion models (9.4) is that the mean-reversion rate is constant, the 
underlying assumption being that all the shocks affecting the price die out a t  
the same rate, regardless of the shock size. This is in conflict with economic 
intuition, which suggests that large shocks should die out more rapidly due 
to powerful forces of supply and demand, while small shocks should slowly 
revert to  the previous price level, due to adjustment of production costs. This 
is also an empirically observed phenomenon: in most markets, the electricity 
price returns towards the mean level more rapidly from greater excursions, 
e.g. an upward jump. 

Hence, for the electricity price it is reasonable to assume a non-constant 
mean-reversion rate, e.g. one that itself depends on the distance from the mean 
level. The regime-switching approach of Huisman and Mahieu [13] allows for 
a non-constant mean reversion rate by specifying a number of regimes, each 
with its own mean-reversion rate (which is still constant within each regime). 
However, a more general way of modelling this, is to allow the mean-reversion 
rate to be a continuous function of the distance to the mean price level. For 
instance, the price return can be a quadratic or exponential function of this 
distance. By this, we would allow for a continium of mean-reverting regimes. 
This can be incorporated into the model by extending the class of possible 
drift forms. In the next section we shall explore this idea, by specifying the 
drift term by means of a potential function. 

9.2.2 Model Estimation Issues 

Estimating the parameters of jump-diffusion models of the type (9.4) is non- 
trivial, and the difficulty in estimation often prevents their implementation 
in applications. This difficulty originates from the problem of determining 
whether movements in the underlying process are part of the continuous dy- 
namics, or whether they are part of the jump dynamics. 

Several estimation methods have been proposed and studied in the lit- 
erature for jump-diffusion processes: the (quasi) maximum likelihood (ML) 
method, the generalized method of moments (GMM) and variations of each. 
In the ML method, the density of the jump-diffusion returns is derived an- 
alytically, by means of characteristic functions or Fourier transforms, or ap- 
proximated by a mixture of normal distributions (see Beckers [2], Ball and 
Torous [3]). In the generalized method of moments, the first few moments 
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are derived analytically4, and the sample moments are set equal to the cor- 
responding population moments. Then the resulting equations are solved for 
the unknown parameters, providing the parameter estimates. 

The maximum likelihood method is efficient and hence more attractive 
than the generalized method of moments. For many models, GMM has been 
shown to have the lower overall estimation efficiency, when compared to  maxi- 
mum likelihood-based methods (Zhou [22]). The main attraction of the GMM 
method is its general applicability; even when the expression for the density 
function is unknown, moment conditions may still be available in analytical 
form for many models of practical interest. 

However, both ML and GMM methods are known to grossly overestimate 
the jump frequency and underestimate the mean jump size (Jiang [14], Huis- 
man and Mahieu [13] and other authors point this out). For example, when 
we applied the maximum likelihood method of Ball and Torous to historical 
power prices from the Amsterdam Power Exchange (APX), we found that 
more than 40% of price moves were identified as jumps (while power mar- 
ket practitioners believe the jump frequency to be around 10%). Moreover, 
such estimation procedures do not explicitly separate jumps from the diffusion 
component, so graphical methods of jump distribution analysis (histograms, 
&&-plots) are inapplicable. 

If there were a way of disentangling the jumps from the diffusion com- 
ponent, then the jumps could be analyzed and the jump parameters more 
accurately estimated. In this paper we shall follow an approach of jump filter- 
ing. We separate price moves that we classify as jumps by applying a simple 
sequential filtering procedure, and estimate separately the parameters of the 
diffusion and the jump components. However, it must be stressed that iden- 
tifying the jumps without any restrictions is always an ad-hoc task by the 
researcher, possibly introducing sample selection error to the model. 

There is an inherent weakness in all estimation procedures for processes 
given by a general stochastic differential equation and observed a t  discrete 
time intervals. In all these procedures, the theoretical stationary distribu- 
tion of the process is matched to the empirical distribution of the observed 
log-returns. However, the exact distribution of the log-returns, given some 
time discretization step, is not the same as the stationary distribution of the 
process, since the discretization of the continuous time stochastic differential 
equation by e.g. the Euler scheme involves higher order terms. For some spe- 
cific models (such as Geometric Brownian Motion) the exact distribution of 
the log-returns can be derived, but for most of general models this distribu- 
tion is not known. Then one can only hope that, for a sufficiently small time 
discretization step, the process' stationary distribution and the log-returns 
distribution are close. This is a reasonable assumption and it is supported by 

Ait-Sahalia [I] points out the importance of matching higher (up to 4th) order 
moments 
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the results on weak convergence of numerical solutions for SDE (Millstein [19], 
Kloeden and Platen [15]). 

A recently introduced approach by Eberlein and Stahl [lo] allows exact 
fitting of the returns generated by the model process to the empirically ob- 
served returns. This approach is based on LBvy processes. It  is particularly 
well suited to power prices, whose distributional characteristics can be mod- 
elled by very flexible generalized hyperbolic distributions, which arise from 
LBvy processes. 

9.3 Potential Function Approach 

The potential function approach was introduced in Borovkova et al. [5] for 
modelling commodity prices that exhibit multiple attraction regions (such 
as oil prices). The potential function model is a diffusion model with the 
drift specified in terms of the potential function. The potential function is 
closely related to the invariant distribution of the process, hence this approach 
can encompass multimodality in price distributions. Here we shall apply the 
potential function approach for a different purpose, namely for modelling a 
varying rate of mean-reversion in the jump-diffusion context. 

The original potential function model postulates that the (log) price pro- 
cess (X(t))t  evolves according to  the stochastic differential equation: 

where U : W - W is a twice continuously differentiable function, such that 
U(x) - m as 1x1 - m ,  and 

These conditions assure that the invariant distribution of the process (X(t)) t  
is the Gibbs distribution with density 

7ir (x) = exp (-9) 
(for proof see e.g. Matkovsky and Schuss [18]). 

The relationship (9.6) means that there is one-to-one correspondence be- 
tween the invariant distribution of the process and the diffusion's drift, given 
by the potential. So characteristics such as multimodality of the price distribu- 
tion can be incorporated into the model by the proper choice of the potential 
function. 

The potential (together with the volatility a )  can be estimated from his- 
torical data by first estimating 

2 
Gr  (x) = U(x) = - ln(n, (x)) a 
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zu (x) = - ln(?(x) ) , 
where ? is some estimate of the observations' marginal density (e.g, a kernel 
estimator or a histogram smoothed by a polynomial or a sum of Gaussian 
densities). 

The volatility a can then be estimated by discretizing the equation (9.5) 
by Euler scheme with At = 1 day and noting that a2 /2  is the linear regression 
coefficient (without intercept) of the increments (Xi+l - Xi) on (Gg(xi)).  

The model (9.5) describes a continuous time process. If we observe time 
series (Xi)iEN, then we can consider it as a realization of this continuous time 
process observed at  discrete time points. The observations (Xi) come from 
the distribution with density nu given by (9.6). 

For a small time interval At, the discretization of the equation (9.5) 

gives an Euler scheme for the numerical solution to the diffusion equation 
(9.5). If we assume that the observation interval is small enough, the approxi- 
mate model motivated by the above Euler scheme for the observed time series 
can be given by 

 xi+^ = Xi - v u ( X i ) h  + e i .  (9.7) 

Here h is the time interval between observations (for power prices h = 1 
day) and the (ei) are the increments of the process aWt over the intervals, so 
they are independent normally distributed random vectors with independent 
components having mean 0 and variance ha2. 

If the underlying process evolves according to (9.5), the exact evolution 
equation for the time series of observations at  discrete intervals is not given by 
(9.7), but by an equation with higher order terms. Conversely, if the exact evo- 
lution of the process is given by (9.7), the density of its invariant distribution 
is no longer nu. However, from the results on weak convergence of numerical 
solutions for SDE (Millstein (1988), Kloeden and Platen (1995)) it follows 
that, under some differentiability conditions on U, for decreasing h, the in- 
variant distribution of Xi converges weakly to the invariant distribution of Xt ,  
i.e., to the Gibbs distribution with the density nu. So for a relatively short 
observation interval, we hope that the invariant distribution is not too far 
away from the Gibbs distribution. However, as noted in the previous section, 
matching the empirical returns distribution to the stationary distribution of 
the underlying process remains here a weak point, just as is the case for all 
models starting with a stochastic differential equation with general diffusion 
coefficients. 

For more detail on the estimation of the potential model and its applica- 
tions to commodity prices see Borovkova et al. [5]. 

In the spirit of mean reverting jump-diffusion models discussed in the 
previous section, we model the stochastic component of the log-price X( t )  by 
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where U(x) is a properly chosen potential function. In the absence of jumps, 
the process is the diffusion with drift given by a potential function. Note that 
the mean-reversion is incorporated into (9.8) as a special case, by taking U(x) 
a quadratic function. 

The invariant marginal distribution of the process X( t )  evolving as in (9.8) 
is no longer the Gibbs distribution (9.6) (due to  the presence of jumps), so the 
direct estimation of U from the empirical distribution of observations on X( t )  
is no longer possible. One way to  proceed is to assume a certain parametric 
form for U. For example, a simple way to model a state-dependent reversion 
rate, is to assume that the potential function is a polynomial of some fixed 
(and even) degree, higher than 2 (the degree 2 corresponds to the constant 
mean-reversion rate). This also assures that the conditions on the potential 
are satisfied. Then all the parameters of the model (9.8) can be simultaneously 
estimated from the observed de-seasoned log-prices (Xi)i by the method of 
maximum likelihood or the generalized method of moments, in the spirit of 
Ait-Sahalia [I]. However, also in this case the jump parameters (frequency 
and mean jump size) may be significantly misspecified. 

Here we follow a different route: we apply a sequential jump filtering proce- 
dure and estimate the diffusion-related parameters (i.e. the potential function 
and the volatility a) from the filtered series, by matching the process' station- 
ary distribution to the empirically observed one, using the relationship (9.6). 
The jump intensity and jump size parameters are estimated from the series 
of observed jumps. 

9.4 Model Estimation and Application to Historical 
Prices 

We shall work everywhere with log-prices; for APX, UKPX and EEX the 
daily log-prices (in log(Euro/MW/hour)) are shown in Figure 9.2, for the 
same periods as in Figure 9.1. The yearly seasonal pattern is much more 
pronounced for the UK prices, while spikes are much more prominent for the 
APX prices. 

We apply the mean-reversion (with and without jumps) and the poten- 
tial jump-diffusion models with seasonal mean to the log-prices shown in 
Figure 9.2. Often all parameters (of the seasonal as well as stochastic com- 
ponents) of a model are estimated simultaneously, by e.g. the maximum like- 
lihood or the Kalman filter. Here we shall adopt a different procedure: a 
stepwise estimation of the model's components, typically used in traditional 
time series analysis. 
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Fig. 9.2. APX, UKPX and EEX log-prices 

4.1 Filtering Spikes and Estimating Seasonalities 

Let denote the historical series of observed log-prices. First, we esti- 
mate and extract from it deterministic trends and seasonalities. At this stage, 
we filter out price spikes so as not to disturb estimates of the seasonal com- 
ponents. For this we use the following sequential filtering procedure. 

At the first step, we consider as jumps those price moves outside j2 f 2G 
prediction intervals, with j2 and 3 given by the 30-days moving average and 
30-days historical volatility of the price moves (30 day window corresponds 
to approx. one calendar month). After removing these jumps, we repeat this 
procedure with the re-estimated 30-days volatility. We continue until no new 
jumps can be identified. For estimating the seasonal component, the jumps 
are replaced in the original series by their cutoff values. 

A similar jump-removal filtering procedure is also used in Clewlow and 
Strickland [8]; there, the overall sample variance of price moves is computed 
and the threshold for identifying jumps is iteratively lowered until the jump 
removal procedure converges. Our procedure is more data-driven and sequen- 
tial in nature, however the principle is similar. 



9 Modelling electricity prices by the potential jump-diffusion 249 

For the purposes of electricity price modelling, upward jumps (price moves) 
are relevant, since they reflect external extremal events and indicate initiation 
of spikes. Downward price moves follow the upward ones and usually do not 
arise separately in case of electricity. Hence, we shall concentrate our analysis 
on the upward price moves. These moves of the log-price identified as jumps 
are shown in Figure 9.3 (in log(Euros/Mw/hour)); on the x-axis is again the 
number of calendar days since the beginning of the dataset. 

M taw Oo l m r o o s m a a , ~  
mm*~Ql.O*1Cm 

Fig. 9.3. Upward log-price moves considered as jumps 

The main advantage of the jump-filtering procedure just described is that 
we explicitly obtain a series of observed upward price jumps (Ji)i .  We then 
can estimate the frequency of Poisson jump component and the parameters 
of the jump size distribution directly from the series (Ji)i, and apply to it 
graphical methods of analysis, such as histograms and QQ-plots. 

Descriptive analysis of inter-arrival jump times showed that for all markets 
the assumption of a Poisson process of jump arrivals is reasonable (i.e. the 
inter-arrival jump times have approximately exponential distribution). The 
estimated jump arrival rates are 10% for APX, 13% for UKPX and 10% for 
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EEX. For comparison: the maximum likelihood estimation procedure of Ball 
and Torous (1983) produced the estimates for jump frequency in the order of 
40% for all three markets, which is clearly a misspecification. 

It  is often proposed to use the lognormal distribution for the jump size. 
For APX market we fitted the lognormal distribution to the distribution of 
the jump size. The resulting fit is shown as the histogram and QQ-plot on 
the leftmost graphs in Figures 9.4 and 9.5. For UKPX and EEX markets, the 
exponential distribution gives a much better fit, as the corresponding QQ- 
plots show. If neither lognormal nor exponential distribution seem suitable, a 
bootstrap method can be used for simulations, i.e. re-sampling the jump sizes 
from their empirical distribution. 

Fig. 9.4. Histograms of observed jump sizes, APX, UKPX and EEX 

Table 9.1 summarizes the distributional characteristics of jumps for the 
three markets. 

The above jump filtering procedure is robust to different choices of the 
time window used to determine the mean and standard deviation. However, 
increasing the number of standard deviations used for the cutoff leads to a 
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Fig. 9.5. QQ-plots of jump sizes, APX (vs lognormal), UKPX (vs exponential) and 
EEX (vs exponential) 

Table 9.1. Distributional characteristics of jumps 

lower number of price moves identified as jumps. To check this, we performed 
jump filtering for APX market with window lengths 60 and 90 days (approx. 
2 and 3 months) and with three standard deviations instead of two. Table 9.2 
presents the estimated jump frequency and mean jump size for various combi- 
nations of the window length (the first riurnber in parenthesis) and the number 
of standard deviations (the second number in parenthesis). The numbers for 
different window lengths are close, if the number of standard deviations is 
kept the same. Increasing this number from 2 to 3 results in an estimated 
jump frequency of 7% instead of 10%. Hence, the factor 2 is more in line with 
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market participants' perceptions that 10% is representative spike frequency 
in electricity markets. 

Table 9.2. 
tions 

Jump characteristics vs. window length and number of standard devia- 

After filtering out jumps, we remove the slowly varying yearly trend from 
each series, estimated by the 12-months moving averages of the log prices. 
These turned out to be not significantly different from constants for all three 
markets: 3.4, 3.3 and 3.2 for respectively APX, UKPX and EEX. After sub- 
tracting these averages, the yearly seasonal component is estimated by the 
least-squares fitting of a trigonometric function 

2 

f (t) = C ( A ~  sin(2nkt) + Bk cos(2nkt)) , (9.9) 
k= 1 

where choosing k = 1,2 captures yearly as well as half-yearly periodicity. The 
estimated functions f (t), together with average weekly log-prices, are shown in 
Figure 9.6 for the three markets (vs the number of weeks since the beginning 
of the dataset). Note that the summer peak is more pronounced for EEX, less 
for UKPX and is absent for APX. 

The price premium corresponding to a particular day of the week is esti- 
mated by the average deviation (over the entire historical dataset) of a par- 
ticular weekday price from the weekly averages. The estimated daily log-price 
premium is shown in Figure 9.7. Note that the weekend premium is negative, 
indicating lower power prices during weekends than the average price level. 

The weekly periodic function w(t) is then modelled by a collection of 
dummy variables 

7 

k= 1 

where {DPk, k = 1, .. . ,7) is the collection of the estimated daily premiums 
and Pt,l = 1 if the day t is Monday and 0 otherwise, &2 = 1 if t is Tuesday 
and 0 otherwise, and so on. 

The estimated yearly periodic function f ( t )  and the daily premium w(t) 
are then subtracted from the original log-price series to  obtain de-trended and 
de-seasoned series ( X i ) g l ,  shown in Figure 9.8. Note that spikes are present 
in these series: they have been filtered out only while estimating seasonalities. 
The series in Figure 9.8 can be considered as realizations of the stochastic 
component X( t )  from eq. (9.1). 
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Fig. 9.6. De-trended weekly log-prices with yearly components, APX, UKPX and 
EEX 

9.4.2 Modelling the Stochastic Component 

We model the stochastic component of the log-price X( t )  in three ways: 
mean-reverting diffusion, mean-reverting jump-diffusion and potential func- 
tion jump-diffusion: 

Model I: dX(t) = a ( p  - X(t))dt + udW(t) , (9.11) 

Model 11: dX(t) = a ( p  - X(t))dt + udW(t) + Jdz(t) , (9.12) 
Model 111: dX(t) = -U1(X(t))dt + adW(t)  + Jdz(t) , (9.13) 

where W(t) is the standard Brownian motion, a is the volatility of the diffusion 
component (assumed constant). The jump component is characterized by z(t): 
a Poisson process with intensity X (i.e, dz(t) = 1 with probability Xdt and 
dz(t) = 0 with probability 1 - Xdt) and by a random jump size J with some 
specified distribution. 

Model I is fitted to the series (Xi)$ (shown in Figure 9.8) by discretizing eq. 
(9.11) and estimating the parameters by the method of maximum likelihood. 
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Fig. 9.7. Estimated daily premiums, APX, UKPX and EEX 

To estimate Models I1 and 111, we apply the jump-filtering procedure de- 
scribed above to the series in Figure 9.8. We then estimate the parameters 
of diffusion components from the filtered series (Z i ) i  = (Xi - Ji)i ,  and the 
parameters of the jump component (frequency of Poisson jumps and the pa- 
rameters of their size distribution) - from the series of obscrved jumps (J i ) i .  
This has a number of advantages: we estimate the rate of mean reversion un- 
der "normal" circumstances, reducing scope for its misspecification. Moreover, 
distributional assumptions regarding jump size and frequency were verified by 
analyzing histograms and QQ-plots. 

Table 9.3 presents the estimated mean-reversion and diffusion parameters 
for Models I and 11, estimated by the method of maximum likelihood from 
the series (Xi)i  (Model I) or (z,)i (Model 11). 

Note that the rate of mean reversion is in all cases higher for Model I, 
although the differences are not very large. This is because for estimating 
Model I1 we excluded all the upward price moves, eliminating by this the 
upward bias in the mean-reversion rate estimate in Model I. The volatility 
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Fig. 9.8. De-seasoned and de-trended log prices, APX, UKPX and EEX 

Table 9.3. Estimated mean-reversion parameters for log prices (standard deviation 
of the estimates is given between brackets) 

estimates are much higher (almost double) for Model I than for Model 11. 
This is because in Model I jumps are considered as a part of the diffusion, 
and their contribution is included in the overall volatility estimate. 

All estimates are expressed as daily quantities, so the yearly rates of mean 
reversion for e.g. APX are 150 (Model I) and 135 (Model 11). This means that 
the average reversion time of the process to a mean level is just over 2.5 days. 
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All the obtained estimates are similar to those reported by other studies (e.g. 
Huisman and Mahieu [13], Carnero et al. [6]). 

To estimate Modcl I11 ( the potential function model), we fit a 4th degree 
polynomial to the log-inverse of the histograms of the filtered series (g2) , .  
The resulting fit is shown in Figure 9.9 for the three markets. The estimated 
potential is plotted vs, the deviation of the log-price from the systematic sea- 
sonal component (on the x-axis). Note that the mean-reverting model would 
amount to fitting a parabola instcad. 

Fig. 9.9. Fitted 4th degree polynomial potential, APX, U K P X  and EEX 

In the absence of jumps, the process is attracted to  the minima of the 
potential, with the force given by the minus of the potential's derivative. The 
diffusion term with volatility a makes sure that the process fluctuates between 
those minima instcad of staying in one of them. When a jump arrives, it places 
the process further away from the minima, in a region of the potential's steep 
slope. So after a jump, the process is revcrtcd back with much greater force, 
given by the higher potential's derivative. 
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The typical shape of the potential's derivative in our model (as a func- 
tion of the log-pricc deviation from the seasonal component) is shown in 
Figure 9.10. I t  is low in the region of "normal" price levels and high further 
away from it. Note that the usual mean-reversion corresponds to  approximat- 
ing the graphs in Figure 9.10 by a straight line. 

In a certain sense, the potential model is an extension of the regime- 
switching model, with a "continuum" of regimes and "continuum" of rever- 
sion rates, rather than a number of regimes (three at  most) each with its own 
mean-reversion rate. 

Fig. 9.10. Rate of reversion (derivative of the potential function), APX,  UKPX 
and EEX 

The estimated volatilities a in the potential function model are 0.33, 0.36 
and 0.24 for respectively APX, UKPX and EEX. Note that these volatilities 
are slightly higher than those from Model I1 (mean-reverting jump-diffusion). 
This is because in the potential model, price evolution in "normal" regions 
is mostly driven by the Gaussian noise arid not by the drift term. On the 
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contrary, in the mean-reverting model, the influence of the drift term is the 
same across all price regions. 

One of the main purposes of the spot price modelling is to provide a mecha- 
nism for simulating price paths (e.g, for scenario simulation, risk management 
applications, planning of energy industry investments). We simulated log-price 
paths for the three markets using all three models (shown in Figures 9.11,9.12 
and 9.13). 

Fig. 9.11. Simulated log-price paths, Model I, APX, UKPX and EEX 

The simulation using Model I1 clearly captures price behavior better than 
Model I. However, distributional characteristics of the simulated and the orig- 
inal log prices do not match so well (especially skewness and kurtosis), as 
Table 9.4 shows. Model I11 captures the characteristic features of the prices 
(such as spike behavior and general volatility levels) remarkably well. This is 
also confirmed by comparing distributional characteristics of the observed and 
the simulated prices, shown in Table 9.4. Note that Model I11 also matches 
skewness and kurtosis of the data much better than Models I and 11. 
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Fig. 9.12. Simulated log-price paths, Model 11, APX, UKPX and EEX 

Table 9.4. Distributional characteristics of the original (0) and simulated log-prices 
(with Models I, I1 and 111) 

Generally, the potential model allows for a much richer model struc- 
ture than mean-reversion or regime-switching models. It  allows for a state- 
dependent reversion rate and gives the model builder a wider range of possible 
specifications of spike behavior. Moreover, the potential model also is capable 
of capturing finer distributional characteristics of the price in "normal" price 
regions, such as multimodality. 

The central question when fitting the potential model in the jump-diffusion 
setting is the extrapolation of the potential into the regions of greater price 
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Fig. 9.13. Simulated log-price paths, Model 111: potential, APX, UKPX and EEX 

moves (i.e. jumps), where not many observations are available. Here we as- 
sumed that the potential has the form of fourth degree polynomial. In prin- 
ciple, the choice of appropriate form for the potential is a matter left to the 
model builder. For some datasets, a polynomial reversion rate might be too 
strong, and other functional forms may be more appropriate. The only matter 
of concern when choosing such a functional form, is that the conditions on 
the potential stated in Section 3 are satisfied. 

A data-driven procedure for choosing the functional form of the reversion 
rate may be feasible. One can investigate how the spike size is related to the 
spike duration, and infer the appropriate functional relationship, which can 
in turn be incorporated into the potential. This data driven procedure as well 
as incorporating more sophisticated functional forms for the potential is the 
subject of current research. 
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9.5 Conclusions and Future Work 

A thorough investigation of the electricity spot prices on three major Euro- 
pean markets has shown that seasonalities and spikes are essential features 
of electricity prices. Mean reverting jump-diffusion models are only partially 
capable of capturing spike behavior. 

The potential function model, introduced here, allows for a much richer 
model specification and is flexible enough to replicate a wide variety of spike 
behavior. The potential's functional form controls the rate of reversion to the 
average price levels. It can be easily estimated from the data, by combining 
the estimate of the process' invariant density with the spike filtering proce- 
dure. Alternatively, the potential can be specified by the model builder to  
incorporate the required functional relationship between the spike's size and 
duration. 

The application of the potential function model with polynomial potential 
to  the three series of electricity spot prices showed that characteristic features 
of the price were captured remarkably well, and generally better than in the 
mean-reverting jump diffusion model. The potential function model, together 
with an estimated seasonal price component, can be used for price forecasting 
and generating hypothetical price paths. 

A number of important issues, related to electricity spot price modelling 
in general and the potential jump diffusion in particular, deserve further in- 
vestigation. 

First, it may be feasible (albeit difficult) to investigate the invariant distri- 
bution of the potential function jump-diffusion and verify whether it is related 
to the potential function, as is the case for the potential function diffusion. 

A data-driven approach for deriving the functional form of the potential, 
and especially its extrapolation into the tails of the price distribution, is de- 
sirable. It  is essential that such functional forms satisfy the conditions on the 
potential. 

A potential function approach is excellently suited to model several (re- 
lated) price series simultaneously, by replacing a potential function by a po- 
tential field in a higher dimensional space. Such a multivariate extension for 
potential function diffusions is extensively studied in Borovkova et al. [ 5 ] ,  and 
by extending it to jump-diffusions we will be able to apply the multivariate 
model to  several electricity prices, e.g. the ones analyzed here. 

An important open problem in electricity price modelling is developing 
models that incorporate spike clustering, often observed in many electricity 
markets. Existing models assume a Poisson process of jump arrival, with con- 
stant or a t  most time-dependent (e.g. seasonal) arrival rate. Extreme weather 
conditions, usually persistent for some time, can be taken as exogenous vari- 
ables affecting the jump arrival rate, as can be other economic, operational 
and environmental variables. Alternatively, time series models (e.g. autore- 
gression) for jump arrival rates and jump sizes can be used. 
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Finally, incorporating time-varying or stochastic volatility into jump- 
diffusion models is the  next step towards more realistic models for electricity 
prices. 
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Summary. In this paper we study a fairly general Wiener driven model for the 
term structure of forward prices. 

The model, under a fixed martingale measure, Q, is described by using two 
infinite dimensional stochastic differential equations (SDEs). The first system is 
a standard HJM model for (forward) interest rates, driven by a multidimensional 
Wiener process W. The second system is an infinite SDE for the term structure of 
forward prices on some specified underlying asset driven by the same W. 

We are primarily interested in the forward prices. However, since for any fixed 
maturity T, the forward price process is a martingale under the T-forward neutral 
measure, the zero coupon bond volatilities will enter into the drift part of the SDE 
for these forward prices. The interest rate system is, thus, needed as input into the 
forward price system. 

Given this setup we use the Lie algebra methodology of Bjork et al. to investi- 
gate under what conditions on the volatility structure of the forward prices and/or 
interest rates, the inherently (doubly) infinite dimensional SDE for forward prices 
can be realized by a finite dimensional Markovian state space model. 

10.1 Introduction 

In this paper we study forward price models and, in particular, we want t o  
understand when the inherently infinite forward price process can be realized 
by means of a (Markovian) finite state space model. 

From a theoretical point of view, term structures of forward prices are 
more complex objects than term structures of interest rates or term structures 
of futures prices. The  extra complexity results from the fact that  forward 
prices, with maturity T, are martingales under the T-forward measure, Q*. 

* I thank my supervisor Tomas Bjork for helpful comments and constant moti- 
vation. I am also indebted to the participants of the Stochastic Finance 2004 
conference for their comments, and in particular to Thorsten Schmidt and an 
anonymous referee for their suggestions on how to improve the earlier version of 
this paper. 
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Under such T-forward measures, zero-coupon bonds (with maturity T )  are 
numeraires which implies that zero-coupon bond prices volatilities will enter 
into the dynamics of forward prices. Consequently, in general, term structures 
of forward prices cannot be studied in isolation, they must be studied under 
some interest rate setting and a needed input to forward price term structures 
is the term structure of interest rates. 

We model the dynamics directly under the risk-neutral measure Q and our 
forward price model is described by using two infinite dimensional stochastic 
differential equations (SDEs), one defining the interest rate setting, another 
defining the forward contract setting. For the interest rate setting we consider 
a standard HJM model for (forward) interest rates, driven by a multidimen- 
sional Wiener process W. For the forward contract setting we use the QT- 
martingale property of forward prices and the bond prices dynamics induced 
by the interest rate setting to get a second infinite SDE for the term struc- 
ture of forward prices, on some specified underlying asset. Without loss of 
generality we consider that the Wiener process W is the same for both SDEs. 

The theoretical literature on term structures of forward prices is not big 
and has mainly focused on understanding under what conditions, on the dy- 
namics of the state space variables (which are assumed to be finite), the term 
structure is of an a priori given specific functional form. Included in this tra- 
ditional approach are the studies on affine and quadratic term structures of 
forward prices (see [ll] for a recent study integrating these two types of term 
structures and references). 

In this paper we choose a fundamentally different approach. We do not 
assume that the state space model is finite, nor that the term structure of 
forward prices is of a given specific function form. Instead, we try to under- 
stand under what conditions, in terms of the volatility of forward prices and 
interest rates, we can have a finite dimensional realization (FDR) of forward 
prices term structure models. 

This more systematic way of thinking about term structures was proposed 
by Bjork and Christensen [4] and Bjork and Svensson [6], and a more geometric 
way of thinking about FDR of term structures, was then introduced. The 
main technical tool of these studies is the Frobenius Theorem, and the main 
result is that there exists a FDR if and only if the Lie algebra generated by the 
drift and diffusion terms, of the underlying infinite dimensional (Stratonovich) 
SDE, is finite dimensional. Filipovib and Teichman [lo] and [9] increased the 
applicability of the geometric approach by showing how the theory can be 
extended to much more general settings than initially considered. Finally, 
Bjork and Landen [5] addressed the question of the actual construction of 
finite-dimensional realizations, making this geometrical analysis interesting 
also from an application point of view. 

The main area of application of these ideas has been (forward) interest 
rate term structures, which was the object of study in all the above mentioned 
papers (for a review study on the geometry of interest rate models see also 
[2]). More recently this geometric machinery has also been applied to study 
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futures prices term structures (see [3]). As far as our knowledge goes, this 
techniques have not yet been applied to study forward prices (or any other 
Q~-martingales). In the present paper we, thus, take this next natural step. 

The main contributions of this paper are as follows. 

We adapt the geometrical analysis of term structures to the case of doubly 
infinite systems. 
We obtain necessary and sufficient conditions for the existence of a FDR 
of forward rate term structure models. 
Given that such conditions are satisfied, we derive the dynamics of the 
underlying finite state space variable. 

The organization of the paper is the following. 
In Section 10.2 we present the basic setup, derive the.doubly infinite SDE 

that will be the object of study and present the main questions to be answered. 
Section 10.3 briefly reviews the basic geometrical concepts behind the method 
of analysis. Sections 10.4, 10.5 and 10.6 are devoted to the actual study of 
forward price models answering the proposed questions. Section 10.7 resumes 
our main conclusions and discusses the applicability of the results. 

10.2 Setup 

The main goal of this study is the study of forward prices in a general stochas- 
tic interest rate setting. 

We, thus, consider a financial market living on a filtered probability space 
(0, F, Q, {&)t20) carrying an rn-dimensional Wiener process W. For rea- 
sons that will soon become clear, the main assets we consider are forward 
contracts (written on some given underlying asset under consideration) and 
zero-coupon bonds2. 

Let fo(t,  T )  denote the forward prices a t  time t of a forward contract 
maturing a t  time T, and po(t, T )  denote the price a t  time t of a zero-coupon 
bond maturing a t  time T. 

Besides the trivial boundary conditions 

where S is the price process of the underlying asset to the forward contract, 
arbitrage arguments yields 

For a textbook discussion of forward contracts and zero-coupon bonds see for 
instance [I]. 
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where R is the short rate of interest and E? [.I, ET [.] denote, respectively, 
expectations, conditional on Ft, under the martingale measure Q and under 
the forward martingale measure Q ~ .  

It is also well-known that under deterministic interest rate settings, or 
complete orthogonality between the underlying and the interest rate random 
sources, forward prices are the same as futures prices (a similar but concep- 
tually easier ~ o n t r a c t ) ~ .  

In this study we focus on forward prices and, in particular, we are inter- 
ested in analyzing the settings where they are not equivalent to futures prices. 
Our analysis will, therefore, assume stochastic interest rates and that there 
are a t  least some common radom sources driving both the interest rates and 
the underlying to the forward contract. 

Thus, in our context, a forward price model  is only fully defined once 
we have specified both forward prices dynamics and interest rates dynamics 
under a same measure (which we choose to be Q) and assumed that these two 
dynamics are, at least partially, driven by common elements of our multidi- 
mensional Wiener process. 

Before we present in detail our setting, we start by reparameterizing our 
variables. A more suitable parameterization for our purposes is the so called 
Musiela parameterization ([7] and [13]). Under the Musiela parameterization, 
forward prices and bond prices are given in terms o f t  and x, where x denotes 
time t o  maturity, in contrast to T which defined time of maturity. Therefore, 
we will use 

f ( t , x ) = f ~ ( t , t + x )  and p ( t , x ) = p o ( t , t + z ) .  (10.3) 

10.2.1 The In teres t  Rate Curve  

We consider a standard HJM model for the (forward) interest rates, driven by 
a multidimensional Wiener process W. Using the Musiela parameterization 
the dynamics for the interest rates, under Q,  are given by4 

where a ( t ,  x) is a given adapted process in Rm and * denotes transpose. 
From the relation between (forward) interest rates and bond prices, we 

can derive the bond price Q-dynamics. 

L e m m a  1. Assume the (forward) interest rates dynamics in (10.4). Then the 
dynamics of the zero-coupon bond prices, using the Musiela parameterization, 
is given by 

For a futures price definition, see for instance [I] or [ll]. 
For a textbook treatment of HJM models and the Musiela parameterization for 
such models, see [I]. 
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where R is the short interest rate5 and the bond prices' volatility, v ,  is obtained 
from the (forward) interest rate volatilities as 

and hence also adapted. 

ProoERecall the standard relation between (forward) interest rates and bond 
prices 

- lx r ( t ,  s )ds  
~ ( t ,  x )  = e 

Let us set y ( t ,  x )  = - J: r ( t ,  s )ds .  Applying the It6 lemma we get 

The result follows from dp( t ,  x )  = p( t ,  x )dy  ( t ,  x )  + $ p ( t ,  x )  [dy ( t ,  x)12 and 
by notting that 

10.2.2 T h e  Forward P r i ce  Curve  

Since the forward prices are QT-martingales (recall (10.2)) ,  we assume QT- 
dynamics of the form 

Recall that in the Musiela parametrization the short rate of interest is R ( t )  = 
r ( t ,  0) .  
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where we also take yo to be a given adapted process. 
Here we use the fact that martingales have zero drift. Note however that, 

by choosing to model the forward price dynamics as in (10.6), forward prices 
with different maturities T are modeled under a different martingale measures 
QT 

Reparameterizing using f (t, x)  = fo(t, t + x) give us 

where T = t + x and y(t ,x)  = yo(t,T). 
It  will also simplify matters if we work with the logarithm of forward prices 

instead of the forward prices themselves. Thus setting 

we have 

Note that analyzing the logarithm of forward prices is equivalent to ana- 
lyzing the forward prices themselves, as we can always use (10.7) to transfer 
any results on the logarithm of forward prices into results on forward prices. 

Finally, to obtain the dynamics of (the logarithm) of forward prices, un- 
der the risk-neutral martingale measure, Q,  we use the change of numeraire 
technique (introduced in [12]). Denoting by L the Radon-Nikodym derivative, 

and recalling the money account B is the numeraire under Q,  we have in 
Musiela parameterization 

where x = T - t. 
Thus, the dynamics of our likelihood process L are given by 

dL(t) = L(t) {-v(t, x)) dw: 

i.e., the Girsanov kernel, for the transition from QT to Q, is the symmetric 
of the volatility of zero-coupon bond price with maturity T or, equivalently, 
with time to  maturity x = T - t. 

Using the above Girsanov kernel, we can easily obtain the (logarithm of) 
forward prices Q-dynamics from (10.8), that is 
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where, w.l.o.g., we can take W to be multidimensional and the same as in 
(10.4). 

Taking a geometrically oriented interpretation of equations (10.4) and 
(10.9), we can see each of these equations as infinite dimensional objects. 
The main infinite dimensional object under study in this paper is (the loga- 
rithm) of the forward price curve, i.e., the curve x -+ q(t,x). This object, 
however, for general adapted processed a and y may depend on, the interest 
rate curve, i.e., the curve x + r(t ,  x), another infinite dimensional object. 

In principle, both adapted processes a and y could depend on q and r .  
It  seems, however, unrealistic to assume that a forward price on a specific 
underlying (be it the price of a stock, or any other asset) should influence the 
interest rate volatility. 

The opposite is true for forward prices. As mentioned before, these prices 
are only interesting to study in stochastic interest rate settings. This tell us 
that, maybe, it is realistic that the forward price volatility depends on the 
interest rates' curve. 

With this basic intuition in mind we set some more structure on the volatil- 
ity processes a and y. 

Assumption 1. The adapted processes y (t, x), and a( t ,  x) have the following 
functional form in terms of r and q 

where, with a slight abuse of notation, the r.h.s. occurrence of y and a denotes 
deterministic mappings 

where 'FI, and 7-l, are special Hilbert spaces of functions where forward price 
curves and interest rate curves live, respectively 6 .  

Note that by imposing Assumption 1, a does not depend on qt (the log- 
arithm of the forward price process) and that we restrict ourselves to the 
study of time homogenous models. Extensions to non-homogeneous models 
have been considered in [3] and turn out to be straightforward generalization 
of the homogeneous results. 

From now on we will use the short-hand notation qt = q(t, x), rt = r( t ,  x) 
where we suppress the x-dependence. This shorter notation will be helpful 

For details on the construction of the Hilbert spaces 7-1, and 7-1, we refer to [6], 
[9] and [lo]. 
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when the expressions get messy and is more intuitive from a geometrical point 
of view. 

Using the short-hand notation and Assumption 1, we can rewrite equations 
(10.4)-(10.9) as 

where a F = -  
dx 

and we can interpret the entire system as an object 

As we can see from equations (10.12)-(10.13), the interest rates equation 
(10.13) does not depend on the forward prices equation (10.12), so the interest 
rates curve r exist and can be studied in isolation. For a survey study on the 
geometry of interest rate models see [2]. In contrast to this, the (logarithm 
of the) forward price equation (10.12), is linked to the interest rate equation 
(10.13) through y(q,r)  and/or ~ ( r ) ~ .  This means, that in general, to study 
forward prices we will have to study the entire system (10.12)-(10.13). 

In the following analysis we will refer to forward price equation when 
referring only to (10.12), to interest rate equation when referring only to 
(10.13), and to forward price system when referring to the entire system 
(10.12)-(10.13). 

We can now formulate our main problems. 

10.2.3 Main Problems 

Problem 1: Under what conditions we have Markovian forward prices? 

Problem 2: Is it possible to have a finite realization for the forward prices 
equation (10.12) but not for interest rates equation (10.13)? 

Problem 3: When can the inherently infinite forward price system (10.12)- 
(10.13) be realized by means of a finite dimensional state space 
model? 

Problem 4: In the cases when a finite dimensional realization (FDR) exists, 
can we determine the finite dimensional state space model? 

The next section introduces the method of analysis. 

' Given the definition of the bond price volatility, v, in (10.5), if a ( t , x )  = u ( r t , x )  
then also v ( t  , x )  = v(rt, x )  . 
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10.3 Method and Basic Geometric Concepts 

In this section we describe the general method we will use to attack the 
presented problems. 

The method relies on geometric results from differential geometry and was 
firstly applied to finance in [4] and [6]. In this section, we adapt the framework 
of [4] and [6] to our doubly-infinite system case. 

To be able to  apply the concepts and intuitions of ordinary differential 
geometry to (stochastic) It6 calculus, we need to rewrite the analysis in terms 
of Stratonovich integrals instead of It6 integrals. 

Definition 1. For given semi martingales X and Y ,  the Stratonovich in- 
tegral of X with respect to Y ,  Sot X, o dY,, is defined as 

where the first term on the r.h.s. i s  the I ts  integral and we can define the 
quadratic variation process (X, Y) can be computed via 

with the usual multiplication rules: d W  . dt = dt dt = 0,  d W  . d W  = dt .  

The Stratonovich formulation is geometrically more convenient because 
the It6 formula, in Stratonovich calculus, takes the form of the standard chain 
rule in ordinary calculus. 

Lemma 2. Assume that a function F ( t ,  y )  is smooth. Then we have 

Let us begin by specifying exactly what we mean with a finite dimensional 
realization for the forward prices generated by volatilities. 

Given the volatility mappings y : Hq x Hr x R+ -+ EXm and a : H ,  x R+ -+ 

Rm from Assumption 1, the forward prices equation will, in general, depend on 
the interest rate curve. Thus, our main object of study will be a Stratonovich 
forward price system of the following form: 

where p^= [:I E Hq x H,. 

In special cases, the forward price dynamics may be independent of the 
interest rate curve, then our object of study is the Stratonovich forward price 
equation, 
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where q E 'H,, and we say that the (logarithm of) forward prices is Marko- 
vian. 

When referring to the forward price model we refer to either (10.16) or 
(10.17), depending on the circumstances. 

In this study, we will consider these two possibilities. 

Definition 2. W e  say that the doubly-infinite SDE (10.16) has a (local) d- 
dimensional realization at = (qO , r O ) * ,  if there exists a point zo E EXd, 

A 

smooth vector fields zAzl 1, bm on some open subset 2 of Rd and a smooth 
(sub manifold) map G : 2 -+ 3-1, x 'H,, such that q  ̂ = ( q  , r )*  has a local 
representation 

where Z is the strong solution of the d-dimensional Stratonovich SDE 

and where W is the same as i n  (10.16). 
Likewise, we say that the SDE (10.17) has a (local) n-dimensional realiza- 

tion at qO, i f  there exist z ,  E Rn, smooth vector fields a ,  bl . . , bm on some 
open subset 2 of Rn and a smooth (sub manifold) map G : Z -t 'H,, such 
that q has a local representation 

where Z is the strong solution of the d-dimensional Stratonovich SDE 

where W is  the same as in  (10.1 7). 

If the SDE under analysis, (10.16) or (10.17), has a finite dimensional 
realization (FDR), we say that our forward rate model admits a FDR. 

The method of studying existence and construction of FDR for forward 
price models, relies on some basic concepts from infinite dimensional differen- 
tial geometry, which we now introduce. 

10.3.1 Basic Geometric Concepts 

The presentation of the needed geometric concepts follows [6]. These basic 
concepts will be presented for a general real Hilbert Space Y and we denote 
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by y an element of Y. In practice, the Hilbert space under analysis will be 
either 'Ftq when studying Markovian forward prices or 'Ft, x 'Ft, when dealing 
with the entire forward price system. 

Consider a real Hilbert space Y. By an n-dimensional distribution we 
mean a mapping F, which to each y E Y associates an n-dimensional subspace 
F(y)  C Y. A mapping (vector field) f : Y -+ Y, is said to lie in F if 
f (y) E F(y)  for every y E Y. A collection f l ,  . . . , fn of vector fields lying 
in F generates (or spans) F if span { f l  (y), . . . , fn(y)} = F(y)  for every 
y E Y, where "span" denotes the linear hull over the real field. The distribution 
is smooth if, for every y E Y, there exist smooth vector fields f l ,  . . . , fn 

spanning F. A vector field is smooth if it belongs to C". If F and G are 
distributions and G(y) C F(y) for all y we say that F contains G, and we 
write G F. The dimension of a distribution F is defined pointwise as 
dim F(y).  

Let f and g be smooth vector fields on Y. Their Lie bracket is the vector 
field [f, g] , defined by 

[f,91 = f '9  - g'f, 

where f '  denotes the F'rechet derivative o f f  at  y, and similarly for 9'. We will 
sometimes write fl[g] instead of f'g to emphasize that the F'rechet derivative 
is operating on g. A distribution F is called involutive if for all smooth vector 
fields f and g lying in F on Y, their lie bracket also lies in F ,  i.e. 

for all y E Y. 
We are now ready to define the concept of a Lie algebra which will play a 

central role in what follows. 

Definition 3. Let F be a smooth distribution on Y. The Lie algebra gener- 
ated by F ,  denoted by {FILA or by C {F}, is defined as the minimal (under 
inclusion) involutive distribution containing F. 

If, for example, the distribution F is spanned by the vector fields f l ,  . . . , fn 

then, to construct the Lie algebra { f l ,  . . . , fnILA, YOU simply form all possible 
brackets, and brackets of brackets, etc. of the fields f l ,  . . . , f,, and adjoin these 
to the original distribution until the dimension of the distribution is no longer 
increased. 

When one tries to compute a concrete Lie algebra the following obser- 
vations are often very useful. Taken together, they basically say that, when 
computing a Lie algebra, you are allowed to perform Gaussian elimination. 

Lemma 3. Take the vector fields f l ,  . . . , f k  as given. I t  then holds that the 
Lie algebra { f l ,  . . .  fie}^^ remains unchanged under the following operations. 

The vector field fi may be replaced by a fi, where a is any smooth nonzero 
scalar field. 
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The vector field fi may be replaced by 

where al ,  . . . , ak are any smooth scalar fields. 

Let F be a distribution and let cp : V -+ W be a diffeomorphism between 
the open subsetd V and W on Y .  Then we can define a new distribution cp,F 
on Y by 

('p* F )  ( c p )  := v'F. 

We now define an useful operator on our Hilbert space Y. 

Definition 4. Let f be a smooth vector field on Y ,  and let y be a fixed point 
i n  Y .  Consider the ODE 

W e  denote the solution yt as e f t y .  

Finally, and for future reference, we define a particular type of functions 
- the quasi-exponential functions - that will turn out useful. 

Definition 5. A quasi-exponential (or QE) function is by definition any 
function of the form 

f (x) = e"~' + C eelx k ( x )  cos (wjx )  + qj ( x )  s in (wjx ) ]  
u j 

where X,,aj,wj are real numbers, whereas pj and qj are real polynomials. 

Important properties of QE functions are given in Lemma 4. 

Lemma 4. The following holds for quasi-exponential functions 

A function is  Q E  if and only i f  i t  is a component of the solution of a vector 
valued linear ODE with constant coeficients. 

a A function is Q E  i f  and only i f  i t  can be written as f (x) = ceAxb. Where 
c i s  a row vector, A is a square matrix and b is  a column vector. 

a I f f  is QE, then f' is QE. 
a I f f  i s  QE, then its primitive function is QE. 
a I f f  and g are QE, then fg  is QE. 
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10.3.2 Main Results from the Literature 

We can now adapt two important theorems from [6] to our forward price prob- 
lem. The first theorem gives us the general necessary and sufficient conditions 
for existence of a FDR. 

Theorem C.1 (Bjork and Svensson). Consider the SDE i n  (10.16) and 
denote 71,. . . , ym and 01, . . . ,am the elements of y and a, respectively. As- 
sume that the dimension of the Lie algebra 

is constant near the initial point p = ( q O  , rO)* E 7-1, x 7-1,. 
Then (10.16) possesses an FDR i f  and only i f  

i n  a neighborhood of p. 
Likewise, for Markovian forward prices we consider the SDE (10.1 7)) and 

assume that the dimension of the lie algebra of {p, 71,. . . , ym)LA is constant 
near go E 7-1,. Then (10.17) possesses and FDR if and only if 

Remark 1. To shorten notation we will sometimes use 

of{[::],[;:],...,["]) and{~,~)~~insteadof{~,y~,-..,^im)~~. 
Om LA 

The second theorem gives us a parameterization of the curves produced 
by the forward price model and is a crucial step to the understanding of the 
construction algorithm. 

Theorem C.2 (BjSrk and Svensson). Assume that the Lie algebra 

is spanned by the smooth vector fields f?, . . . , & i n  7-1, x 7-1,. 
Then, for the initial point p = (go , r O )  *, all forward price and interest rate 
curves produced by the model will belong to the manifold E 7-1, x 7-1,) which 

A A 

can be parameterized as G = (m)[G],  where 
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and where the operator e f ~ a  is given in Definition 4. 
Likewise, in the case of Markovian forward prices, and assuming that the 

Lie algebra {p ,yILA is spanned by the smooth vector fields f l ,  . . . , fd in 'l-t,. 
Then, for the initial point all forward price curves produced by the model 
will belong to the manifold B E 'H, which can be parameterized as B = (m)[G], 
where 

G(zl , .  . . , zd) = efdZd . . . eflZ1 4 O (10.21) 

and where the operator efiZi is given in Definition 4. 

The manifolds and B in the above theorem are obviously invariant under 
the forward price model dynamics. Therefore, they will be referred to as the 
invariant manifolds in the secpel. (!? and G are, thus, local parameteriza- 
tions of the invariant manifolds B and B, respectively. 

The construction algorithm (Bjork and LandBn) introduced in [5] 
is based on idea that, if we are in the case when the forward price system 
generated by the volatilities y : 'H, x 'H, x R+ -+ Rm and a : 'H, x R+ -t Rm 
admits a FDR, we have - - 

and for 
dZ = G(Z)dt + X(Z) 0 dWt , 

it must hold that 

Equivalently for Markovian forward prices, if forward price model gener- 
ated by y : 'H, x R+ -+ Rm admits a FDR, then we have 

and or 
dZ = a(Z)dt + b(Z) o dWt , 

it must hold that, 

G , a = p  and G , b = y .  (10.23) 

Since we can compute (!? and G from (10.20) and (10.21), we can solve the 
system (10.22) for 2 and X, or the system (10.23) for a and b. We note that 
the equations in (10.22) and (10.23) do not necessarily have unique solutions, 
but it is enough to find one solution. 

Note also that by solving (10.22) or (10.23), we obtain the Stratonovich 
dynamics of our FDR. The It6 dynamics, (which, in general, looks nicer) can 
be easily obtained using (10.15). 



10 FDR for forward price models 279 

10.3.3 Strategy of Analysis 

In the next few sections we will address our four main problems. 
In Section 10.4, we answer our problem one characterizing the settings 

when forward prices are Markovian. As it turns out, during this analysis, we 
will also be able to give a partial answer to problem two. 

In Section 10.5, we study existence and construction of FDR for Markovian 
forward prices. 

In Section 10.6, we deal with the cases when forward prices are not Marko- 
vian, studying existence and construction of FDR for the entire forward price 
system. Studying the entire system we are able to give a complete answer to 
question two. 

In sections 10.5 and 10.6, problems three and four we will be answered 
following the scheme. 

Choose a number of vector fields fo, f l ,  . . . that spans the Lie-algebra we 
are interested on. For that purpose Lemma 3 is useful to help simplifying 
the vector fields. 
Conclude under what conditions our Lie-algebra is of finite dimension in 
view of Theorem C.1. 
Assuming that those conditions hold, compute a local parameterization of 
the invariant manifold using Theorem C.2. 
Given that parameterization, solve a system of equations of the type 
(10.22) or (10.23) to obtain the finite state variables dynamics. 

10.4 On the Existence of Markovian Forward Prices 

Having described the setup and the general method, we now start our analysis. 
Recall that our main object of study is the forward price system 

d 
where F = - and v(x, r )  = - LX o(s,  r)ds. ax 

Before we go on, and to e x s d e  patholigical cases from the analysis, we 
need to  impose a regularity condition on forward price models. 

Assumption 2. If yi(qt, rt)  # 0 for some i E (1,. , m), then the following 
regularity condition holds: 
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Given Assumption 2 and by mere inspection of (10.24), we see that the 
answer to our first problem - on whether forward prices can be studied without 
considering the interest rate equation - is yes if and only if the terms y(qt, r t )  
and y (qt , rt)v* (r t  ) do not depend on rt . 
Remark 2. The (logarithm of the) forward price equation is Markovian if and 
only if the mappings y : 7 f q  x X r  x R+ -+ Rm and yv* : 7 f q  x 7 f r  x R+ -+ Rm 
are constant w.r.t. r .  

The first condition - that y cannot depend on r - is quite straightforward, 
but let us take a moment to understand what "yv* constant w.r.t. to r" really 
means. 

Given that y is not dependent on r ,  does this mean that v must also be 
independent of r? The answer to this question is trivially no, when we take into 
consideration the fact that both y and v are multidimensional. The exercise 
of explaining this answer, however, helps to establish crucial notation. 

Recall that our m- dimensional Wiener process W drives both forward 
prices and interest rates, and that a multidimensional Wiener process can be 
seen as a vector of scalar independent Wiener processes. With this in mind, 
it is possible to understand that, depending on the applications, we may face 
all the following situations. 

0 The scalar Wiener processes driving interest rates are orthogonal to the 
scalar Wiener processes driving the forward prices; 

0 The scalar Wiener processes driving interest rates and forward prices are 
the same; 

0 A part of the scalar Wiener processes driving the interest rates also drives 
the forward prices (or vice versa); 

0 Interest rates and forward prices are partially driven by orthogonal scalar 
Wiener processes and partial driven by the same Wiener processes. 

Without loss of generality, we can reorder the scalar Wiener processes 
inside a multidimensional Wiener process. Assumption 3 bellow, give us the 
reordering we will assume for our multidimensional Wiener process W .  

Assumption 3. The Q- Wiener process, W ,  driving both the forward prices 
and the interest rates is m-dimensional, and the same for both processes. Fur- 
thermore, we suppose that W has been reordered as 

where wA, wB and wC are, possibly multidimensional, Wiener process such 
that 

wA drives only the forward prices q, 
W B  drives only the interest rates r ,  
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0 WC drives both forward prices q and interest rates r.  

Finally we establish that i E A means " Wi is a element of WA ", and similarly 
for i E B and i E C.  

Assumption 3 has obvious implications for the matrices y and a which 
become then of the following form. 

thus, using v(x, r )  = - a(s ,  r)ds, we have I" 
and 

From this we see that requiring y and yv* independent of r ,  is nothing 
but requiring that, YA, y~ and vc  do not depend on r. 

The important point here is that no condition is imposed on a B .  

We can now restate Remark 2, using the notation introduced by Assump- 
tion 3. 

Lemma 5. Suppose that Assumptions 2 and 3 holds. The (logarithm of) for- 
ward prices will be Markovian if and only if the volatility mappings y ~ ,  y c  
and ac are constant w.r.t. r .  No condition is imposed on a B .  

ProofI f  y ~ ,  y c  and ac are constant w.r.t. r ,  so are IlrAll, Ilycll, vc  and 
y c v c  The dynamics in of q in (10.24) does not depend on r and forward 
prices are, thus, Markovian. 

To prove the "only if' part we show that dependence of r by y ~ ,  y c  or ac 
suffices, under the regularity conditions of Assumption 2, to guarantee non- 
Markovian forward prices. Suppose, first, that y~ depends on r. Then l l r A  1 1 2  
also depends on r making the forward prices non-Markovian. Suppose now 
that y c  depends on r ,  then l l Y c 1 1 2  and ycvr also depend on r. Assumption 
2 guarantees that there is no full cancelation and the forward prices are non- 
Markovian. Finally suppose that ac depends on r ,  then v, depends on r (since 
the integral is w.r.t. the variable s and we know ac # 0). Since v, depends 
on r so does ycvr and the forward prices are non-Markovian. 0 

Having established conditions for the forward prices being Markovian, we 
can go on and try to answer our second problem - on whether there exist 
models which admit a FDR for forward prices but not for interest rates. It  
turns out that, our unrestricted for Markovian forward prices, together 
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with general results from the previous literature on interest rates FDR, allows 
us to give a partial answer already now. 

From the previous literature on FDR of interest rates we know that only 
some particular functions a : W ,  x R+ -+ Rm will generate interest rate models 
that admit a FDR. Concretely, it is shown in [lo] that every component ai 
must be a weighted sum of quasi-exponential deterministic functions of x, 
weighted by scalar fields in W,. 

Hence, the fact that aB is not driving the forward price equation and can 
be of any form for Markovian forward price models, tell us that, existence 
of FDR for Markovian forward prices is, in some sense, independent from 
existence of FDR for interest rates. This leads us to an early answer to our 
second question. 

Remark 3. As long as there are FDR for Markovian forward prices, there exist 
forward price models that allow for a FDR for forward prices but not for 
interest rates. 

10.5 Markovian Forward Prices 

We now focus on the task of studying FDR for the forward price equation, 
in the special case where we have Markovian forward prices. Thus, in this 
section the following assumption holds (recall Lemma 5). 

Assumption 4. Consider Assumption 1 and 3 We,  assume that the mappings 
YA, YC and ac are of the following special forms, 

Note that the specific functional form of ac implies we have deterministic 
ac-volatilities and we can interpret ai for i E C as constant vector fields in 

7-b 
Given Assumption 4, the Q-dynamics of (the logarithm) of forward prices 

can be written as 

Now, we rewrite equation (10.26) in Stratonovich form and obtain 
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To compute the Stratonovich correction we use the infinite dimensional 
It6 formula (see [8]) to obtain 

and, thus 
d(yi(qt), w;) = y,!(qthi(qt)dt, i E A, C. 

Given the above computations we can write the Stratonovich dynamics of q 
as 

where y2 and yb denotes the F'rechet derivative. The terms yL(qt)-yA(qt) and 
y&(qt)yc(qt) should be interpreted as follows, 

We start by studying the two easier cases: 

(i) the case when y (i.e, YA and yc) is also deterministic (ac is deterministic 
by Assumption 4), and 

(ii) the case when y is not deterministic, but has deterministic direction. 

10.5.1 Deterministic Volatility 

We first consider the case when the functions y~ and y c  do not depend on q, 
so they have the special form 

yi for i E A, C are, thus, constant vector fields in 'FI,. 
Recall from Assumption 4 that ac(r,  x) = ac(x). 
In this case, the Stratonovich correction term is zero, and equation (10.27) 

becomes 
d9t ("1 = d q t ,  x)dt + ~ ( x )  0 dWt , (10.28) 

where 

Since this is a simple case, we choose to include all computations behind 
the results in the main text to exemplify the technique. In the next sections, 
when dealing with more complex cases, most of the computations will instead 
be presented in the appendix, leaving to the main text the intuition behind 
the results and their discussion. 
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Existence of a FDR 

From Theorem C.1 we know that a FDR exists if and only if 

dim {p, yi; i E A, GILA < m 

We, thus, need to compute the Lie-algebra, {p,71LA. Computing the Lie 
brackets we have, for each i 

It  follows that 

Obviously, if a FDR exists, there must exist an ni for each i ,  such that 

where the ci,k are real numbers. 
Proposition 1 tell us under what conditions we will have dim {p, yILA < m. 

Proposi t ion 1. The (logarithm of the) forward price equation (10.28) admits 
a finite dimensional realization (FDR) if and only if each component of y is 
quasi-exponential (QE). No functional restriction is imposed on the determin- 
istic function ac ,  so in particular, ac does not have to be a QE function, it 
can be any deterministic function. 

ProoERecall from Lemma 4 that yi solves the ODE (10.32) if and only if it 
is a QE function. 0 

Note that, for Markovian forward prices, the interest rate volatility plays 
no role in determining existence of FDR. The only restriction on interest rate 
volatility is that gc is deterministic, but that is a result of the Markovian 
property, not an added requirement imposed to guarantee existence. One other 
way to see this is to note that only y shows up in (10.31). As we will soon see, 
this is specific to the totally deterministic setting. 

Remark 4. In the simple deterministic setting, where y : R+ -t Rm, Marko- 
vian realizations of forward prices are generated only by the volatility of for- 
ward prices y. 
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In the next example, and to stress this point, we check existence of FDR 
in a simple model without even specifying the deterministic function ac. 

Example 1. Assume that forward prices are driven by a one-dimensional 
Wiener-process W which also drives the interest rates8. Furthermore, assume 
that the interest rate volatility associated to W is deterministic and that we 
have for the forward price volatility, 

where a ,  a E R. 
In this case, we have A U B = 8, C = (1) and 

Hence, 
{P, Y)LA = span {P, 71, 

and the Lie-algebra {p, yJLA has dimension two. Consequently, there exist a 
FDR for forward prices in this case. We will get back to this example in the 
construction part. 

Finally, we want to make a remark on the exact dimension of the lie- 
algebra. 

Remark 5. It  follows from (10.32) that 

m 

dim {p, yILA = dim {p, ~ * y i  ; k = 0, .  . , ni, i E A, C} I 1 + ni . 
i= 1 

(10.33) 
The "I" in (10.33) just reminds us that, given the possibility of Gaussian 
elimination, there may exist some cancelation effects. 

To a better understanding of the above remark, we take the following 
example. 

Example 2. Suppose that 

y1 (x) = eVbx , y2(x) = xe-bx. 

Thus, n l  = 0, nz = 1, and dim {p ,  y1,y2, Fy2) < 4. 
However since Fy2 = yl - by2, 

Hence, in this case, we actually have dim {p, 7 ) L A  = 3. 

This does not exclude the possibility of more Wiener-processes driving only the 
interest rates. 
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Cons t ruc t ion  of F D R  

We now go on to the construction of FDR, in the totally deterministic volatil- 
ity setup. 

First, we obtain a parameterization G of the invariant manifold 6.  In this 
case we have that 

and we recall yi solves the ODE (10.32). 
Using Theorem C.2 we obtain G by computing the operators exp {pzo} 

and exp { ~ ~ y ~ z ~ , ~ ) .  In order to get exp {pzo) q0 we solve 

for 

Hence by Definition 4, we have 

To obtain the remaining operators we solve 

Because y does not depend on t ,  the solution is 

It  follows that 

From the context, it is clear that eFt : 'FI, -+ 'FI,. From the usual series expansion 
" tn an 

of the exponential function we have, eFt f = -Fn f. In our case, Fn = -, 
n=O n ! dxn 

" tn an f 
so we have [eFt f ]  (x) = I -(z), which is a Taylor expansion of f around 

n = O  
n. axn 

the point x, so for analytic f we have [eFt f ]  (x) = f (x + t). 
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Note that the volatility of interest rates show up (through the terms vi for 
i E C )  only in the deterministic term D defined in (10.34). 

We are now interested in finding a set of factors Z such that 

while Z is given by a strong solution to the SDE 

For that we need to find a solution to 

Simple computations yields 

We can now use the fact that q = G(Z) and that y satisfies the ODE (10.32) 
to get 
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Thus, from G*a = p, we get 

and, since the above expression should hold for all x, while a is not allowed 
to depend on x ,  it is possible to identify the following expressions for a 

Likewise, from G,bi = yi for each i E A, C we get 

and by simple identification of terms 

b;=O, i € A , C ,  
bj,, = 1 , i =  j i , j € A , C ,  

b;,k = 0 ,  for all other j and k .  

In this totally deterministic setting, the Stratonovich and the It8 dynamics 
are equivalent, so we have proved the following result. 
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Proposition 2. Given the initial forward price curve go, the forward prices 
system generated by YA, y c  and ac has a finite dimensional realization given 
by 

4t = G(Zt) ,  

where G is defined as in (10.36) and the dynamics of the state space variables 
Z are given by 

We first take the easiest example: the one-dimensional deterministic con- 
stant volatility. 

Example 3. Assume that forward prices q are driven by a one-dimensional 
Wiener process that also drive the interest rates r ( C  = (1)). Furthermore, 
assume that the forward price volatility y is of the following form 

where a E If%. 
We leave the (scalar) function ac(x) (thus vc(x)) unspecified to stress the 

point that it plays no role determining the dimension of the Lie-algebra or 
constructing the realization. 

Then we know F y  = 0, thus n = 1, cl,o = 0 and the dimension of the 
{ P ,  ?ILA is two. 

The invariant manifold is given by 

for some deterministic function vc. 

Using Proposition 2, we have qt = G(Zt) for the state variable Z = 

with dynamics given by 
dZo = dt , 

dZ1,o = dWt . 
We now recover again Example 1. 

Example 1 (Cont.) Recall that we assumed 

which implies n l  = 0, cl,o = -a. 
Once again we leave ac (thus vc) as an unspecified deterministic function. 
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In the previous comments it was explained that the Lie-algebra is of di- 
mension 2, so the invariant manifold can be obtained from (10.36), 

G(zo, zl,o) = qo(x + zo) + D(x + zo - s)ds + y ( x ) ~ ~ , ~ .  

In this case 

IZO 

- - 1 
--a2e-2ax - ae-axvc(x) . 

2 

Thus, 

and from Proposition 2 it follows that the FDR is given by 

10.5.2 Deterministic Direction Volatility 

We now deal with the second simplest case, that of having deterministic di- 
rection forward prices volatilities. 

Then, we have the following special functional forms for y~ and y c  in 
Assumption 4. 

" l i ( q , ~ ) = X i ( ~ ) ~ i ( q ) ,  i E A , C ,  

where Xi is a deterministic function of x (constant vector field in 'FI,) and cpi 

is a scalar vector field in 'FI, (i.e., it does not depend on x and depends only 
on the current forward price curve). 

Omitting the x-dependence, 

and for future reference we also define 
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On what concerns interest rate volatilities, we maintain the requirement 
that ~ T C  is deterministic (since we are still dealing with Markovian forward 
prices). 

In this particular case, the forward price equation can be rewritten as 

for 

and given the functional form for YA and yc in (10.37) we have the following 
F'rechet derivatives 

We see that p in (10.40) is much more complex than the one previously studied 
(compare to (10.29)), so, the task of actually computing the Lie algebra C = 
{p, 7ILA will not be as straightforward as before. 

Using the specific functional forms of y~ and yc in (10.37) we have 

scalar field 

and, given the possibility of Gaussian elimination (Lemma 3), we see that the 
Lie algebra is in fact generated by the simpler system of vector fields, 

where 
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We now start computing Lie brackets and simplifying. For all i E A, C we 
have 

1 
= FXi - - C Dk 9: [hi] - C V k  P L I ~ I  

w w 
2 k E A 1 C  scalarfield IcEC scalar field 

and using this new field we have for all i ,  j E A, C 

We know realize that the our lie algebra is hard to  handle (even in the one- 
dimensional Wiener process caselo). At this point i t  seems a good idea to  note 
the following. 

Remark 6. The Lie-algebra 

= {CL, Y I L A  

is included in the larger Lie-algebra 

2 = {F, Xi, Di, V, ; i E A , C j  E GILA. (10.42) 

That is 

There are three important points to  make here. 

The fields in the larger Lie-algebra, 2 ,  are simpler than those in C. That 
is, none of the field contains sums. 
From the inclusion C C 2 it is obvious that if 2 has finite dimension 
also C does. So, studying the conditions that guarantee 2 to have finite 
dimension, give us, a t  least, suficient conditions for C to  have also finite 
dimension. 

lo We note once again, that if we consider the Wiener process to be one-dimensional, 
the only interesting case to consider is when that Wiener process drives both 
forward prices and interest rates, i.e. it belongs to the wC set. Otherwise, we fall 
into the futures case already studied in [3]. So, even in that case, we cannot avoid 
having two parcels not easy to simplify. 
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We conjecture that conditions that guarantee to have finite dimension 
are also necessary conditions for C to have also finite dimension. The 
intuition is that since the fields in are all contained in the fields of 
C (as parcels of various sums), if they are "nasty" enough to make the 
dimension of 2 infinite, they should make the fields that contain them in 
C even "nastier". We will formalize this intuition below. 
Finally, even if the analysis of is, in the above sense, equivalent to the 
analysis of C, in the construction sense, studying 2 will, in principle, gen- 
erate finite realizations with state variables of higher dimension. This is 
obviously the price one has to pay for dealing with easier fields. We call 
these realizations non-minimal realizations. An advantage of non-minimal 
realizations is that they are always possible to obtain (as long as the di- 
mension of C is finite). 

The following conjecture formally states the idea behind our third point 
above (and the sketch of the proof, for the one-dimensional case, can be found 
in the appendix). 

Conjecture 1. Consider C in (10.41) and 2 in (10.42). Then the following holds 

These ideas can be applied in a more complex setting. They will be used 
extensively in Section 10.6, when dealing with the entire forward price system. 

We now continue our analysis studying the larger Lie-algebra 2. 

Existence of FDR 

As mentioned before, in the current deterministic direction setting, the larger 
Lie-algebra, E ,  is given by 

thus, the basic fields of the enlarged Lie-algebra are 

Computing the Lie-brackets we have, in the first step, 
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all remaining combinations of lie-brackets from the fields in (10.42) are zero. 
Using the new vector fields, we easily see that 

and again all others lie-brackets are zero. 
Continuing with similar iterations, it is easy to check that 

Thus, for dim(L) < m there must exist orders n;, n? and n j  for which 

where ciSk are real constants, k = 0, . . , n i ,  j E A, C ,  and I = 1,2,3.  
Indeed, if (10.43) holds, 

We now start a brief side discussion on the exact dimension of 2. As before, 
we note that the sign "5" above results from the possibility of Gaussian 
elimination across the various derivatives of various different fields. This is 
particularly relevant for the concrete fields of 2 since V, = Xjv j  and thus 
derivatives of Xj  may help to Gaussian simplify the derivatives of 4. This 
point will be made clear in Example 4 bellow. 

Unfortunately, these simplifications are instance dependent and, thus, in 
an abstract way it is impossible to be more exact about the dimension of 2 
than in (10.43). The consequence is that when doing the abstract construction 
of realizations we cannot take into account case-specific Gaussian eliminations. 
Therefore, when applying the abstract results to  concrete models, we may 
get unnecessarily large realizations. However, since we are considering non- 
minimal realizations anyway (because we analyze C instead of C), this does 
not seem a major disadvantagel1. With this we conclude the side discussion 
and go on with the abstract analysis. 

Proposition 3 give us the necessary and sufficient conditions that guarantee 
dim(2) < co. 
" The unsatisfied reader can always, when faced with a concrete situation, use the 

techniques presented and, whenever possible, derive a smaller realization instead 
of using the abstract results. In Example 4 below, we use both approaches to 
exemplify the kind of difference one can expect. 
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Proposi t ion 3. The dimension of the Lie-algebra 2 in (10.42) is finite if and 
only if each component of X and a c  is QE. 

ProoEIt follows from Lemma 4 that (10.43) holds if and only if X i ,  Di for 
i E A, C and Vj for j E C are QE functions. It  also follows from the properties 
of QE functions that, X i  for i E A, C and aj for j E C QE, suffices to guarantee 
this requirement. To check the last statement note that Xi  QE + Di = X B  QE; 
aj QE, + v j (x )  = - J: aj(s)ds QE; and finally X j  and vj QE + Vj = Xjvj 
QE. 0 

Taking together Propositions 3 and Conjecture 1 we have the following 
general result for forward prices with deterministic direction volatilities. 

Proposi t ion 4. Assume that Conjecture 1 holds. The (logarithm of) forward 
price equation (10.39) admits a finite dimensional realization if and only if 
each component of X and a c  are quasi-exponential. 

We note that, in contrast to the deterministic forward price volatilities 
case, in our present setting of deterministic direction forward price volatilities, 
existence of FDR imposes requirements on the concrete functional form of the 
deterministic function ac:  it must be a QE function. This was to be expected, 
since this time, a c  actually drives the forward price equation indirectly trough 
the fields Vj = Xjvj for j E C.  

The following example gives us one, very simple instance where we have 
a finite dimensional realization for forward prices, considering deterministic 
direction volatilities. 

Example 4. Suppose that forward prices are driven by a one-dimensional 
Wiener process ( i  = 1 )  that also drives interest rates ( i  E C )  and that 

for a ,  p, a, b E R. Then we have 

and 
FX(x) = -bae-bx = -bX(x) + n: = 0 c : , ~  = -b 

FD(x)  = -2ba2e-2bx = -2bD(x) + n: = 0 c : , ~  = -2b 
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so we have 
{p, 7 )LA G {F, A,  D ,  V, FVLA 

Thus, dim {p, ?)LA I. dim {F, A,  D ,  VILA 5 5. 
Alternatively, we may note that 

thus, using Gaussian elimination we can substitute V by v (x )  = e-(a+b)x.  
And since 

and we can compute the exact dimension of {F, A,  D ,  V, FV)  LA, 

dim {F, A, D, V, FV)LA = dim {F, A, D,  ?ILA = 4 .  

Obviously, in either way we are able to conclude that the forward prices admit 
a FDR. 

Construction of F D R  

We would now like to construct a FDR for forward prices, whenever we know 
that it exists. Since we are using the larger Lie-algebra z and we cannot use 
case-specific Gaussian elimination in the general case, we are aiming to get 
non-minimal finite realizations. 

As before we would like the derive a parameterization of the invariant 
manifold and infer, from the functional form of that parameterization, the 
dynamics of the state variables. 

Given the simplicity of the fields spanning 2 ,  it is straightforward to com- 
pute the operators: 
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Thus, 

Hence, in order to find the dynamics of the state variable Z such that q = 
G(z), and as in the previous section, we take the Stratonovich Q-dynamics 
to  be given by 

dZt = i qZ t )d t  + b(Z,) 0 dWt , 

zo = 20 , 
and we solve 

G*ii = p ,  G,b = y 

with p and y  given in (10.37)-(10.40), and G from (10.44), to get a strong 
solution to the SDE (10.45). 

The steps are then the usual ones, but with much more messy computa- 
tions. Using the functional form of G in (10.44), it is possible to compute the 
Frechet derivatives. Then, from the expression for q = G(z) and equations 
(10.43), we can find an concrete expression to the term Fq in our p (equation 
(10.40)). Identification of term in equations (10.46) allows us to determine the 
Stratonovich drift and diffusion terms. And finally, to obtain the It8 dynamics 
we calculate the Stratonovich correction term. Following these steps gives us 
the result in Proposition 5 (the actual computations of can be found in the 
appendix). 

Proposition 5. Given the initial forward price curve go, the forward prices 
system generated by y ~ ,  yc  as i n  (10.37) and c~c deterministic, has a finite 
dimensional realization given by 

where G is defined as i n  (10.44) and the dynamics of the state space variables 
Z are given by 
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1 2 -  
dz;,o = (C:,~Z;,~; - ypj  ( ~ ( 2 ) ) )  dt , j E A, C ,  

dz;,k = (z?,k-l + c:,~z;,~;) dt , j E A , C  I c = l , . . .  ,n:, 

dz;,o = ( C;,OZ;,~; + ~ ( ~ ( 2 2 ) ) )  dt , j E c , 
dz;,x = (zj,k4 + cj,k~;n;) dt , j E C  ~ c = l , . . .  ,n;. 

Example 4 (cont.) Recall that we studied an one-dimensional model where 
A n B = 0, C = (1) and 

As in the first part of the example, we will first directly apply the abstract 
results (in the construction part, that is Proposition 5). Then we derive a 
smaller realization that can be obtained from the case-specific simpler fields. 

We start by directly applying Proposition 5. Recall from previous com- 
putations that we had n i  = 0, c:,, = -b, ny = 0, c:,~ = -2b, n: = 1, 
c:,~ = -(a + b)b and c:,, = -(a + 2b) and 

Using this we get from (10.44) the parameterization of the realization to be 

We now note that in our case cp(q) = q and by Proposition 5 it follows that 
the realization is 

dZo = dt , 

d ~ i , ~  = -bZ:,,dt + G(Z)dwt ,  

dzf,, = (-2b~12,~ - $(G(z ) )~ )  dt , 

dz;,, = (-b(a + b)Z,3,1 + C(Z)) dt , 
d ~ ? , ,  = (2,3,, - (a  + 2 b)~;, ,)  dt . 

Now recall that for this particular model we have 2 = {F, A, D, P} 
L A  

with v (x )  = e-(a+b)x.  Thus another (smaller) parameterization, is given 
by 
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Proposition 5 can@ be used directly, but we can compare the two parame- 
terization~ G and G (of the same invariant manifold) above, to get 

Finally using It6 and simplifying we have 

The two realizations are equivalent. 

10.5.3 The General Case 

In the sections 10.5.1 and 10.5.2, we analyzed existence and construction of 
FDR of Markovian forward prices, under the specific setting of deterministic 
and deterministic direction forward price volatility. 

A natural question a t  this point is: what is the most general functional 
form, for the volatilities y and a ,  consistent with FDR of Markovian forward 
prices? The answer follows from previous results in [lo] and from . In the 
following proposition we adapt it to the Markovian forward prices case. We 
state it in the form of a proposition. 

Proposition 6. Suppose Assumption 1 holds. There exist a FDR of Marko- 
vian forward prices i f  and only if 

where ,Bj are unrestricted deterministic functions, G ~ , X ;  are QE deterministic 
functions, and cpi are scalar vector fields i n  X,. 
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From Proposition 6, we see the most general situation can be attained by 
extending deterministic direction forward price volatilities to finite sums of 
deterministic direction parcels. This represents, of course, a relevant extension 
in terms of model flexibility, but not in terms of complexity of analysis. 

The results from section 10.5.2 extend naturally to this most general case, 
the computations are exactly the same and, in concrete applications, easy to 
derive. In abstract terms, however, computation get much messier given the 
additional indices one must keep track of12. 

We now will consider the case when forward prices are not Markovian. 

10.6 Non-Markovian Forward Prices 

Recall that under Assumption 1 - our basic assumption on the volatility 
processes for forward prices and interest rates y and a, respectively - the 
(logarithm of the) forward price curve q cannot, in general, be studied without 
incorporating in the analysis the interest rate curve r (recall (10.12)-(10.13)). 

In this section, we want to study the circumstances which were not covered 
by Section 10.5. In that case our forward price model is a doubly infinite 
system and we set 

F 

L J 

and q^ belongs to ' H ,  x 'H,. 
The It6 dynamics of ?can, thus, also be written in block matrix notation 

as 

where, as before, we take W to be an m-dimensional Wiener process, and 

In this case the Stratonovich correction term is given by 

Since we have (from the infinite It8 formula) 

l2  We do not present the abstract results and derivations, as we believe the reader 
would spend more time understanding the notation, than extending the results 
of section 10.5.2 to concrete, slightly more general, applications. 



10 FDR for forward price models 301 

with yi, 7:. and a; the partial Frechet derivatives. 
Then for i = l , . . .  ,m  we have 

and the Stratonovich dynamics for q? 

Given that 

we note that 

and 

where 
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We can, finally, identify our main object of study as the following doubly 
infinite Stratonovich SDE 

where 

Given the general functional forms of YA, TC, ag and a~ the study of all 
possible special cases13 would be exhausting. 

In this section, we take, therefore a more agressive strategy: we consider 
immediately the scenario where each element in y and a have deterministic 
direction volatility. 

As before, the situation of deterministic direction volatilities can be ex- 
tended to the case where each element of y and a is a finite sum of determinis- 
tic direction parcels, and that is the most general possible scenario consistent 
with existence of FDR'~.  We omit the analysis of this most general scenario 
because the results can be easily derived from the ones on deterministic direc- 
tion volatilities, and, in abstract terms, notation becomes almost untractable. 

l3 One particular special case would be to take, say, y~ an UB to have deterministic 
direction and yc, uc to be deterministic. 

l4 For details on why this is the most general scenario we refer to [lo]. 
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The deterministic direction setting we will work with is formally stated by 
the next assumption. 

Assumption 5. The mappings yi : W q  x W,. x R+ -, Rm and ai : x 3-1, x JR+ -+ 

Rm are of the following functional form 

where X i ,  pi are deterministic functions of x and pi, cPi are scalar vector fields 
in W ,  x 3-1, (i.e., they do not depend on x and depend only on the current 
forward price and interest rate curves). 

We note that under Assumption 5 

vi(x, r )  = - J x  ~ i ( ~ ,  s)dS = - i s i s  = - 4  P I ( S ) ~ S  ; i E B, C. 
0 

Defining 
I" 

r x  

we, thus, have 
~i ( x )  = ( T )  Bi ( x )  , i E B,  C . 

To check if our forward prices model admits a finite dimensional realiza- 
tion, we need to see if 

dim {B, [7$;;)] < , - 
Considering (10.47)) under Assumption 5 ,  our basic vector fields can be 

written as 
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Following the strategy described in Section 10.3.3, we would now start com- 
puting Lie brackets of all possible combinations of these fields and, through 
Gaussian elimination, hopefully, get to a simple set of generators of our Lie- 
algebra L = {p, ~ 5 ) ~ ~ .  Based on properties of these generators we would, also 
hopefully, be able to understand which y and a would guarantee a FDR for 
forward prices. 

The particular complex expression for p above, and the almost impossi- 
bility of Gaussian elimination that results from having to handle two infinite 
SDE a t  the same time15, leads to the conclusion that our best hope is again 
to study a larger Lie-algebra, 2 ,  and to choose such a Lie-algebra so that the 
basic fields would be simple. 

The following Lemma give us the desired (simple enough) Lie-algebra 2. 
Lemma 6. Consider the following set of fields in 7-l. 

where Xi, Pi and Bi are deterministic functions of x and defined as in (10.49) 
and (10.49) and we further define 

Then the following holds 

ProofFirs t ,  note that 

i r) 1 d ( q 1  r) , &(q, r )  [Xi] ~ i ( q ,  r) i E A, B 7 

$i(r) ,  4 d&(r)[Pi]4i(r), i E B , C ,  

~ i ( q , r ) 4 i ( r )  , 2 E c ,  

l5 To the usual complexity of dealing with multidimensional cases, there is an ad- 
ditional complexity specific of forward price models that results from the fact 
that cpi(q,r) # +i(r). However even under the unrealistic assumption (since the 
forward price volatility could not depend on the forward prices) where we would 
assume cpi(r) = +i(r), the complexity of the Stratonovich correction term would 
not allow us to obtain simple generators for C. 
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are scalar fields in X, x X,. The conclusion now follows using Gaussian Elim- 
ination (Lemma 3). 0 

10.6.1 Existence of FDR 

Computing Lie-brackets on the basic fields of 2 is not hard, and the conclusion 
on the existence of a FDR becomes a straightforward generalization of the 
easier setups studied in previous sections. Proposition 7 give us the needed 
conditions. 

Propos i t ion  7. The lie-algebra 2 is spanned by 

and will have a finite dimension if and only i f  each component of X and p is 
QE. 

Moreover, under those conditions also each component of D, V ,  W i n  
(1 0.51) are Q E  and 

for n: E N, such that, 

ProofGiven the fields of C, we have a FDR if and only if (10.53) hold and 
it follows that (10.52) holds (the "5" in (10.52) accounts for possible case- 
specific Gaussian elimination across terms). Finally, (10.53) can be interpreted 
as ODES whose solution are QE functions, thus Xi, for i E A, C; Dj ,  Vj, for 
j E C and Hk for k E B , C  solve (10.53) if and only if they are QE. It  
remains to show that requiring Xi and ,Oj for i E A, C ,  j E B ,  C is sufficient 
to guarantee that. Given that 

the result follows from Lemma 4. 0 
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10.6.2 Construction of FDR 

Knowing the conditions for existence of a FDR for forward prices, we can 
now construct the finite dimensional realization. Proposition 8 gives us a non- 
minimal (since it is based on 2 and cannot take into account case-specific 
Gaussian elimination) parameterization e of the invariant manifold $. 

Note that our parameterization, q^= E ( z ) ,  will be of the following block 
matrix form 

F'urthermore, by close inspection of (10.50) we realize that the operator 
generated by f O ,  

is the only that will affect both 6 and @. The remaining operators will only 
affect one component at  the time. 

The operators generated by f t ,  f: for i E A, C and f; for j E C,  will only 

affect G 4 .  SO, 

On the other hand, will be affected by the operators generated by f j ,  f: 
for j E B, C and we have 

Once the parameterization has been derived, we can infer the dynamics of 
the finite dimensional realization, exactly as before. The actual construction 
of the realization, though cumbersome (and thus presented in the appendix), 
follow the same ideas of the constructions in previous sections. 

Proposition 8. Suppose Assumption 5 holds. Given the initial forward price 
curve qo and the initial interest rate curve ro, the system generated by forward 
price and interest rate volatilities defined as i n  (1 0.49) has a finite dimensional 
realization, given by 

- 9  

where (? is defined by  
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for &(x) = qo(x+zo) and &(x) = qo(x+zo). 
Moreover, the dynamics of the state space variables Z are given by 

dZo = dt 

d ~ f  3,0 = C~ 3,0 z1 j,nj ,dt + pj (@(z) ,  $(Z))~W! j e A , C  

j E A , C  k = I , . . .  ,n; 

d ~ ; , ~  = {ci0z2j ,  n2 3 - ;$(@(Z), &(z))} dt j t A, c 

dz;,k = {z;,~-, + C ~ , ~ Z : ~ ; }  dt j E A,C ~c = I , . . .  ,n; 

dz;,O = { ~ j , ~ z j , ~  + p ( B q ( ~ ) ,  &(z ) )~ (&(z ) )}  dt j E c 

j E C k = I , . . .  , n j  

dZ4 J>O = C? ~~0 Z4 j,n, 4dt + $j ( ( & ( Z ) ) d ~ j  j E B , C  

d z 4  - c? 2 4  
3.k - { 3.0 j,n;} dt j E B , C  k = I , . . .  ,n4 

ciozf,n; + 4; (&(z))} dt j~ B,C 

The next example may help to understand Proposition 8. 

10.6.3 Example 

Consider a model with the following volatility matrix 

Using the usual notation we have two Wiener processes, one of them of type 
wA and another of type wC. So A = (1) and C = (2). In this example, since 
the is only one element of each type, we write for the reader's convinience ".A" 
instead of "-1" and " v c n  instead of "s2" all over. 
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Moreover, we have 

DA ( x )  = x;(x) = a2e-2bx 
P -ax - Vc(x )  = Xc(x)  B c  ( x )  = -a [e 11 

6 
H C ( x )  = PC(x)BC ( x )  = - - [e-2ax - e-ax] . 

a 

Taking all this into account we easily get 

Given this computations, we see the following fields span 2 

{" [XOA] [XOC] ' [?I ' [?] ' [?I ' [F?] ' [pc] ' [g] ' [Fit] } ' 
(10.55) 

thus we know that our forward price model admits a FDR since 

dim(E) 5 10. 

From (10.54) we get the parameterization 
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and from Proposition 8 we get the Z dynamics 

I dZo = d t ,  

dz;,, = -bzA,,dt+@(z)dw[ , dz&,, = E q ( z ) d w [ ,  

I d z i P o  = ( - 2 b ~ i , ~ - t  ( G ~ ( z ) ) ~ )  d t ,  d ~ ; , ~  = -1 2 ( B ~ ( z ) ) ~  d t ,  

( d ~ : , ,  = (-2a2Z& +@'(z)) dt , d ~ : , ,  = ( ~ ~ , ~ - 3 a Z ~ , ~ )  dt , 
(10.57) 

where (3 and @' are as in (10.57). 
It  is obvious however, from both (10.57) and (10.57), that this realization 

is unnecessarily larger. Using the following change of variables we can find a 
realization of dimension 7 (which is the minimal possible with the fields in 
(10.55))) 

We can then use It6 and (10.57) to derive the dynamics of the new state 
variables. 

10.6.4 FDR of Forward Prices Versus FDR of Interest Rates 

We finish this study giving a complete answer to our problem four - on whether 
there it is possible to have forward price model which allows for a FDR for 
forward prices but not for interest rates16. 

We recall a forward price term structure model consists of the following 
two infinite SDEs. 

l6 Recall the partial answer given in Remark 3. 
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drt = {Frt  - a ( r t ) v * ( r t ) )  dt + a(r t )dWt  . (10.59) 

Proposi t ion 9. In forward price term structure models, inexistence of a FDR 
for the interest rate equation (10.58) and existence of a FDR for the forward 
price equation (10.59), is possible only if forward prices are Markovian and 
the conditions of Proposition 6 hold i.e., 

where w i  are deterministic constants, pi are unrestricted deterministic func- 
tions, $,A$ are QE deterministic functions, and 'P$ are scalar vector fields i n  

7-b. 
Proofdf forward prices are not Markovian, than either y or yv* depend on r .  
If that is the case, we know from Proposition 8 that the dynamics of the state 
variables of type Z1, Z2, Z3 (the ones showing up directly on the parameter- 
ization &) depend on ev. That is, the forward price realization depend on 
the interest rat: realization, indgectly, through the dynamics of the factors 
showing up in Gq. Thus, if r = GT(Z) only holds for infinite 2, the forward 
prices will also be a function on an infinite state variable and, by definition, 
do not admit a FDR. 

If forward prices are Markovian, we know, from Proposition 6 ,  that forward 
prices admit a FDR if and only if (10.60) hold. On the other hand, we see 
(10.60) imposes no restriction on CTB, so we can choose CTB not to be a weighted 
finite sum of quasi-exponential functions, weighted by scalar fields in X,, 
making existence of FDR for interest rates impossible (for further details on 
this result from the previous literature see [ lo]) .  0 

10.7 Conclusions and Applicability 

Forward prices are only interesting objects of study in settings where the for- 
ward measures QT differ from the risk-neutral measure Q. In these settings, 
the study of forward prices depends on zero-coupon bond price volatilities. 
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Using the Lie-algebraic approach of Bjork et al., we have shown that forward 
prices term structure models consist of a system of two infinite dimensional 
SDEs, one describing the dynamics of the forward prices themselves and an- 
other characterizing the interest rate setting and where the interest rate equa- 
tion is an input to the forward price equation. 

Despite the apparent non-Markovian nature of forward prices, we were 
able to show that there exist models for which forward prices are, actually, 
Markovian and identified necessary and sufficient conditions for this Marko- 
vian property to hold. Studying Markovian forward prices we concluded that 
existence of finite dimensional realization (FDR) for Markovian forward prices 
is, in some sense, independent of existence of FDR for interest rates. 

We studied existence and construction of FDR for Markovian forward 
prices and derived general conditions for existence of FDR. We considered with 
special detail the pure deterministic and the deterministic direction volatility 
special cases. iFkom this analysis, we concluded that some results from previ- 
ous literature can be extended to the forward price term structure case, but 
also that forward price term structure models are particularly complex. 

The dynamics of forward prices has a specially complex drift under the 
risk-neutral measure Q. A direct consequence of this complexity is that, as 
soon as we leave the pure deterministic volatility setting, the best we can hope 
for is to study non-minimal Lie-algebras and to find non-minimal FDR. Ex- 
istence of non-minimal realizations is, of course, sufficient to prove existence 
of FDR, but is in general not necessary. We showed, however, that given the 
specificity of the forward price equation drift, and for a specific enlargement 
of the Lie-algebra, existence of FDR for non-minimal realizations is also nec- 
essary for existence of FDR, a t  least for the one-dimensional case. Then we 
conjectured that this hold for the higher dimension case. 

Even if non-minimal Lie-algebras are, in the above sense, satisfactory for 
existence results, they are not as satisfactory for construction results, since we 
are bound to find realizations with too many variables. Despite this fact, we 
exemplified how, given a concrete application, we can use the abstract results 
to obtain a smaller realization (sometimes the minimal one) simply by using 
a smart change of variables and Itb's lemma. 

For non-Markovian forward prices, we showed that whenever there exist 
FDR for the forward price equation, the dynamics of the state variable de- 
pend on the interest rates. Consequently, term structures of forward prices 
will always (indirectly) depend on interest rates, and existence of a FDR for 
the interest rate equation is necessary for existence of a FDR for the forward 
price equation. In order to study non-Markovian forward price term structure 
models, we handle a system of two infinite dimensional SDEs, thus, compu- 
tations get quite cumbersome. Still, most results are the expected ones, given 
the previous literature on FDR of interest rates and the study of the forward 
price equation in the easier Markovian setting. 
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In terms of the applicability of the results presented here, it is, first of 
all, important to stress that the characterization of the conditions that guar- 
antee existence of a FDR for forward price term structure models is crucial, 
in distinguishing the "good" forward price models from the "bad" forward 
price models. After all, a term structure model that do not allow for a FDR 
realization cannot be useful for any practical application. For instance, it is 
impossible to estimate the dynamics of an infinite state variable. 

In addition to  this selection applicability, perhaps, the most important 
application results from the actual local parameterization of the term struc- 
ture. This parameterization can help in understanding what are the needed 
conditions, on the driving volatility vector fields, that will produce term struc- 
tures consistent with case-specific realities, helping to design good models. In 
the present study this design applicability of the Lie-algebraic approach was 
left untouched because it is case dependent, and we have focused on general 
results. 

Finally, let alone forward prices, the results derived here are applicable 
to study term structures of any QT-martingale. For example, swap rates 
and credit spreads are financial instruments with strong connections to  QT- 
martingales. 

Appendix: Technical Details and Proofs 

Conjec ture  1 Proof:[sketch] The implication + follows immediately from 
c 5 2. 

The implication + is much harder to prove. Here, as an illustration, we 
consider the one-dimensional Wiener process case. We will show the equivalent 
result that if dim$) = oo then we must also have dim(C) = co. 

In this case 

for 

and as usual we take v(x) = - J,, a(s)ds. 
From Lemma 3 we know that dim(E) = oo if and only if a t  least one of the 

functions y and a is not QE. So, assume that y and a are not QE functions. 
Then, also D and V are not QE functions. 
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Let us now, have a look a t  the original (smaller) Lie-algebra, C. We will 
try to see if 

C = { P ,  Y)LA = {fo, f i ) L A  < CO. 

Computing lie-brackets and simplifying 

Continuing this way we need to compute [fo, fz]  = fA(q) f 2  - fztfo(q). The 
first parcel, however give us 

and the second parcel (though involving more messy computations) is of the 
form 

f; (q) fo (q) = D . (scalar filed) + V . (scalar field) . 

[ fo ,  fi] = F'X + FD(sca1ar field) + F V  . (scalar field) + 
+D.  (scalar field) + V .  (scalar field) =: f3 

[fo, f3] = F ~ X  +  scalar field) + F'V . (scalar field) + 
+D . (scalar field) + V . (scalar field) , 

It  is now easy to see why the dimension of our C will also be infinite, in 
this case. It  would only be finite if A, D and V were QE functions, but this 
hypothesis is excluded by assumption. 0 

Proposi t ion 5 ProoEUsing C? from (10.44) we have 
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From q = G(Z) and once again the functional form of G in (10.44) we get 

where we omitted the x-dependence and used &(x) = qo(x + zo).  
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We can now use the above expression to substitute into our p (recall 
(10.40)). Thus, G,ii = p becomes 

and G,bi = yi for all i E A, C 

Identification of terms, and again use of q = G(Z) yields 

cpj(G(z)) if i = j and k = 0 
if i # j or k = 1 ,2 , . . . n$  

, j E A , C ,  
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Note that the factors z;,, are driven by the scalar wiener process Wj and 
that all remaining factors have diffusion terms equal to zero. Thus only for 
zjTo the It6 dynamics differ from the Stratonovich dynamics. The above a:,, is 
the Stratonovich drift. Given the form of a:,,, the diffusion for z:,~. We easily 

get the It6 drift to  be simply a;,itb = C:,~Z;,~;. 

Proposi t ion 8 ProofiWe first compute the parameterization z. From The- 
orem C.2 and the special shape of the basic fields in (10.50), we have 

Using 6 from (10.61) we have 

and 
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where we omitted the x-dependence and used &(x) = qO(x + zo), G(x)  = 

ro(x + 20). 
From q = Gq(2),  r = &(z) and once again the functional form of in 

(10.61) we get 

n,' n?j ns 

Fq = Fq"o $ C C F " + ' x ~ ~ , ~  + C x F ~ + ' D ~ G , ~  +x F~+'&z; ,~  
j € A , C  k=O j E A , C  k=O j E C  k=O 
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We can now use the above expressions to substitute into our p, recall we 
have 

Defining 

A 

identification of terms in 2 $ i 4  = pq, GL2 = pr ,  gives us 
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- A .  

To-get the diffusion terms we identify terms in G!bq2 = yi for i E A, C and 
Gib'" C T ~  for i E B, C, 

A. 

bh = 0 ,  

A ( ( z ) ~ @ ( ) ) ,  if i = j l  and k=O1 

otherwise, 
j E A , C 1  

0 1 

Note that this implies that the factors Z!,o, Zj4,0 are driven by the scalar 
wiener process W j  so, in particular for j E C the same Wiener process drives 
the two variables. All remaining factors have diffusion terms equal to zero. 
Thus only for si? and %o, the It6 dynamics differ from the Stratonovich 
dynamics. We easlly get the It6 drifts to be simply 
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-1 It6 = ,I ,I 
' j , o  J , O  j,n3 

--4 It6 4 4 aj,o = c .  z .  4 .  J J J  3,nj 
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Summary. This paper looks at portfolio theory in the presence of costs of transac- 
tions. A fundamental result is given in Morton and Pliska (1995)([15]) where renewal 
theoretic arguments and the theory of optimal stopping are used to derive optimal 
strategies for maximizing the asymptotic growth rate under purely fixed costs which 
are proportional to the portfolio value. Our paper is also devoted to maximizing the 
asymptotic growth rate but here we consider a combination of fixed and proportional 
costs. Motivated by various structural results in the work on optimal portfolio the- 
ory we introduce a class of natural trading strategies which can be described by four 
parameters, two for the stopping boundaries and two for the new risky fractions 
(fraction of the wealth invested in the stock). In this class the problem can be sim- 
plified by renewal theoretic arguments to treating one period between two trading 
times, where we then have to start the new risky fraction process according to the 
invariant distribution. This yields an explicit form for the asymptotic growth rate 
that can be maximized in these four parameters. The computation of best strategies 
in this class thus is simple, and we provide various examples. Preliminary consid- 
erations based on the fundamental results of Bielecki and Pliska (2000)([5]) and 
the results of this paper point out that in fact an allover optimal impulse control 
strategy can be found within this class. 

Introduction 

Typical transaction costs considered in portfolio theory are constant costs, 
fixed costs (proportional to  the portfolio value), and proportional costs (pro- 
portional to  the transaction volume). While the latter penalizes the size of the 
transaction, the first two punish the frequency of trading. So a combination 
of both types is of interest, as well from a practical as a theoretical point of 
view. The trading strategies of interest are so called impulse control strategies 
consisting of a sequence of stopping times a t  which trading takes place and 

* Supported by the Austrian Academy of Sciences 
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the transactions a t  those times. Optimal impulse control strategies can be de- 
scribed as solutions of quasi variational inequalities. Usually, determining such 
solutions leads to very hard problems, and already the numerical evaluation 
can become difficult. As a remedy one can turn to classes of strategies which 
can be handled by probabilistic means and which provide good strategies for 
the problem a t  hand, hopefully even containing an optimal one. 

As we are interested in explicit solutions we shall work within the frame- 
work of the Black Scholes model. We consider an investor who faces propor- 
tional costs and fixed costs. Our objective is the maximization of the asymp- 
totic growth rate 

where Xt is the value of the portfolio a t  time tvO and no the initial fraction 
of Xo invested in the stock. 

Without transaction costs, the problem of maximizing the expected utility 
was solved by Merton, [14]. For logarithmic and power utility, the optimal 
trading strategy is given by a constant $which is the optimal risky fraction 
(i.e. the fraction of wealth invested in the stock). This constant fraction is 
equivalent to the Merton line in the wealth space which consists of the vectors 
of wealth invested in the bond and wealth invested in the stock. To keep the 
risky fraction constant involves continuous trading which, under transaction 
costs, is no longer suitable. 

In the last decade, many excellent papers in portfolio theory dealing with 
transaction costs have appeared. These costs are usually defined in three dif- 
ferent ways: proportionally to  the volume of trade (proportional cost), propor- 
tionally to the portfolio value (fixed cost) or consisting of a constant compo- 
nent and proportional cost (constant plus proportional costs). In a majority of 
these papers an infinite horizon discounted consumption criterion under loga- 
rithmic or power utility is considered. It  has turned out that the structure of 
the solution depends essentially on the type of the transaction costs and only 
to a lesser amount on the optimization criterion or utility function. 

The first type of costs considered were purely proportional costs for which 
the optimal solution is given by a cone in which it is optimal not to trade 
a t  all. This cone corresponds to an interval for the risky fraction. Reaching 
the boundaries, infinitesimal trading occurs in such a way that the wealth 
process just stays in the cone. This kind of behaviour was first stated in [13]. A 
rigorous proof for a discounted consumption criterion can be found in [7] using 
methods of stochastic control theory and showing that the wealth process is 
a diffusion, reflected a t  the boundaries of the cone. [I], [lo], [19] prove under 
weaker assumptions the existence and uniqueness of a viscosity solution for 
the corresponding HJB equation, and [2], [20] derive under somewhat different 
proportional 'costs similar no-transaction regions for the asymptotic growth 
rate. 
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To avoid the occurrence of infinitesimal trading a t  the boundary, it seems 
reasonable to add a constant component to the transaction fee which punishes 
very frequent trading. This was done in another line of papers which deal with 
constant and proportional costs. An investor has now to choose discrete trad- 
ing times and optimal transactions at these times. Thus methods of optimal 
impulse control have to  be used. [8] and [ll] achieve general existence results 
for finite and infinite horizon and determine optimal strategies for maximiz- 
ing the utility of terminal wealth for the identity as utility function and for 
exponential utility. Maximizing the discounted consumption under power util- 
ity for an infinite horizon and allowing for continuous consumption without 
costs, [16] derive quasi-variational HJB inequalities whose solution yields the 
optimal strategy. The insight, already obtained in [ l l ] ,  is that there is still 
some no-transaction region, but reaching the boundary transactions will be 
done in such a way that the wealth process restarts at some curve between 
boundary and Merton line. 

An elegant approach is provided by [15] for purely fixed costs. There it is 
shown that, for the objective of maximizing the expected asymptotic growth 
rate (11.1), a factorization of the wealth process into the wealth gained per 
period is possible which leads under logarithmic utility to an additive repre- 
sentation. Using a reduction to one trading period they proceed by solving 
an optimal stopping problem for linear costs for the risky fraction process. A 
very general cost structure is treated in [5] where a set of quasi variational 
inequalities is derived whose solution yields the optimal trading strategy for 
(11.1) if the costs contain a constant or fixed component. 

The approaches as described above lead to plausible optimal strategies in 
dependence of the type of transaction costs considered. Numerical solutions 
and approximations of optimal strategies are frequently difficult, cf. [3], [5], 
[6], [ll], and it is often not obvious how to use these strategies in practice. 

Our goal is to carry over the results of [15] to transaction costs which have 
proportional costs in addition to the fixed costs which is often the case for 
private investors. To get insight into this situation we introduce a class of nat- 
ural trading strategies which can be described by four parameters (a, b, a ,  P),  
a and b for the stopping boundaries and a, P for the new risky fractions 
(fraction of the wealth invested in the stock). When the risky fraction process 
reaches a or b trading occurs in such a way that the new risky fractions are 
a or p,  respectively. Stopping a t  a corresponds to buying and stopping a t  b 
to selling stocks. This class is motivated by the results discussed above. The 
cone obtained for proportional costs corresponds to an interval for the risky 
fraction process. The results in [15] say that for fixed costs a constant new 
risky fractions is optimal and, by the results for combined constant and pro- 
portional costs, we have to expect that due to the proportional costs we have 
in our case two different new risky fractions, one after buying and one after 
selling. 

In this class the problem can be simplified to one period between two 
trading times by renewal theoretic arguments, where we have to start the new 
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risky fraction process according to the invariant distribution. This yields an 
explicit functional that has only to be maximized in these four parameters. 
The optimality in the greater class of impulse control strategies may then be 
shown afterwards using the explicit structure we derive. 

We proceed as follows: after presenting some notation and the solution 
without transaction costs in Section 11, we introduce the model for the fixed 
and proportional costs in Section 11, first using controls given by stopping 
times and the transactions (amount of money invested in the stock) a t  those 
times. In Theorem C. 1 we then show that a factorization of the wealth process 
is possible when we express the control strategy in terms of the new risky 
fractions instead of the transactions. 

Since the factors in Theorem C.l do not depend on the wealth it is very 
convenient to reformulate the control problem in terms of the risky fractions, 
leading to the definition of NRF-strategies in Definition 2. The equivalence 
of both approaches can be shown. In Section 11 we introduce our subclass of 
natural trading strategies, those trading strategies with constant boundaries 
(CB-strategies) given by four parameters (a ,  b, a, ,O) as described above. 

After collecting some results about the risky fraction process without trad- 
ing, still in Section 11, we approach the problem of maximizing the asymptotic 
growth rate. 

Of course there will be no unique optimal trading strategy, as up to some 
finite time horizon the strategy could be changed without changing the asymp- 
totic growth rate. Only under strong assumptions it is possible to derive gen- 
eral existence and uniqueness results for this criterion which are applicable in 
our situation, e.g. in [4] and [12]. Even in models with countable state space 
there are simple examples that no optimal strategy exists or that no optimal 
strategy is stationary, see [18]. 

For our CB-strategies we can obtain a regenerative structure which allows 
us to reduce the problem with renewal theoretic arguments to one period be- 
tween two buyings. Using the invariant distribution of the embedded Markov 
chain of new risky fractions the problem can finally be reduced to one pe- 
riod between two trading times and provides a manageable expression for the 
asymptotic growth rate. This Theorem C.2 corresponds to [15, Proposition 
3.11. But in our situation we have to integrate over the invariant distribution 
of the Markov chain of the new risky fractions. Then this expression has to  
be maximized over the CB-strategies. Due to  the explicit representation in 
Corollary 1 of the asymptotic growth rate depending only on the four param- 
eters (a, b, a,,O), this can be done numerically quite easily. In Section 11 we 
also provide an existence result and some examples. We close in Section 11 
with a heuristic approach based on [5] how to verify the optimality in the class 
of all impulse control strategies. 
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Trading and Optimization Without Transaction Costs 

We will consider one bond or bank account and one stock with price processes 
(Bt)t,o and (St)t,o, respectively, which evolve according to the Black Scholes 
model. Hence the prices are given for interest rate rqO, trend p E R, and 
volatility a > 0 by Bo = So = 1 and 

dBt = Bt rd t ,  dSt = St(pdt  + adWt) ,  

where (Wt)tqo is a standard Brownian motion on a suitable probability space 
( 0 , 3 ,  P). Let (3t)t,o denote the augmented filtration generated by (Wt)t,o. 

Without transaction costs the trading of an investor may be described by 
the initial capital x > 0 and by the risky fraction process (qt)t,o, where qt is 
the fraction of the total portfolio value (wealth) which the investor chooses 
to hold in the stock at  time t. In this section we call (qt)t,O admissible, if it 
is adapted, measurable, and bounded. Given x and (qt)tso the wealth process 
(X&O is defined self-financing as the continuous solution of 

Our objective is the maximization of the asymptotic growth rate (11.1) over 
all admissible risky fraction processes q = (qt)t,o. Using 

a simple pointwise maximization yields as optimal solution qt = c ,  tqO, where 

A 

q = -  A p - r  and R = R  
a 2  

This constant optimal risky fraction .Tj corresponds to the well known Merton 
line. 

Multiplying the prices by e-Tt we see that we may assume from now on 
r = 0 for simpler notation, so Bt = 1, tqO. Like in (11.3), for general r the 
solution for (1 1 .l) is then obtained by adding the rate r and using p - r instead 
of p. 

Fixed and Proportional Transaction Costs 

Let us now assume that an investor faces transaction fees. With current wealth 
x > 0 there has to be paid for a transaction of volume A E IR the transaction 
costs - 

c(x,A) = 6 x + y I A l ,  (1 1.4) 

where 6 E (0 , l )  and y E [O, 1 - 6). We call 6 x and yl A[ fixed and proportional 
costs, respectively. Note that the definition of the fixed cost is the same as in 
[15]. This type of costs may be interpreted as managing costs. 
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It  is convenient to  use two processes to describe the evolution of the wealth. 
We use the wealth process (Xt)tqo and the risky fraction process   IT^)^,^. 

Since S > 0, the natural class of strategies to consider are impulse control 
strategies where trading occurs at time points TO 5 TI 5 . . ., see [5]. In view 
of (11.4) and [5, Proposition 4.11 we can restrict to trading times which are 
separated. 

Definition 1. 

(i) A n  impulse control strategy (T,, consists of stopping times 0 = 
TO I TI I . . . I oo with respect to (3t)t,o, the trading times, which satisfy 
rn -f oo a.s. and rn < rn+l on  {rn < oo}, and of 3Tn-measurable, IR- 
valued random variables A,, n E N ,  the transactions. 

(ii) The wealth process X and the risky fraction process r controlled by an im- - 
pulse control strategy K = ( T ~ ,  An)nENo are introduced for initial values 
x > 0, n E [O,1] by 

and for n E N on {Tn < O) by 

W e  may use an upper index k to indicate that the processes are controlled 
by ii;, e.g. x!. 

(iii) A n  impulse control strategy k is admissible if X: > 0 and IT! E (0 , l )  
for all tqO. 

So (Xt)t,o and (rt)t,o are defined left continuous with right-hand lim- 
its. We call Vn the new wealth and rl, the new risky fraction. Because 
(1 - rl,-l)Vn-l is the new value invested in the bond and rl,-lVn-l the new 
value invested in the stock a t  time rn-1 these parts evolve without trading 
according to the dynamics of the bond and of the stock, respectively, yielding 
(11.5) and (11.6). At T, the new wealth Vn is the wealth before trading minus 
the transaction costs to be paid, and the new risky fraction qn is the new 
amount IT,X, +An invested in the stock divided by the new wealth, leading 
to (11.7), (11.8). Note that (iii) implies that short selling is not allowed. 

The investor has always to pay a t  least the fixed costs when stopping, 
in particular fees have to be paid a t  TO = 0 even if A. = 0. But the initial 
payment does not matter for our objective, the maximization of 
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over all admissible impulse control strategies k.  We like to find an optimal - 
strategy k* for which R* = sup{RK : k admissible ) = R ~ * .  It  is obvious 
that an optimal impulse control strategy may not exist, e.g. if i j  @ (0 , l ) .  So 
we would like to compare with the following degenerate strategies. 

Lemma 1. Let RO, R1, and E(n) denote the asymptotic growth rates for the 
strategies given by 1-1 = co and qo = 0, qo = 1, and qo = n E (0, l ) ,  respec- 
tively. Then 

RO = 0 ,  R~ = p - a2 /2 ,  and E < max{O, p - 02/2) .  

Proof: For R0 and R1 the result is obvious since the corresponding wealth 
processes are given by Xf = Bt and X: = St. For E(n)  the wealth is given 
by zt = HBt + GSt , where G = (1 - T)& and H = nVo are the constant 
number of stocks and bonds the investor holds for t > 0. So, 

E ln zt < E ln(2 max{H, G St)) 
= In 2 + E max{ln H, In G + ( p  - 02/2)t + a Wt) 

Therefore E = limt,, E lnXt < max{O, p - a2/2). 0 

So we only have to analyze admissible strategies and compare the result 
with max{O, p - a2/2). 

The following theorem provides a factorization of the wealth process and 
hence is basic for the subsequent analysis; compare [5, Theorem 3.61. 

Theorem C.1. Let (T,, An)nEN be an admissible impulse control strategy. 
Then for t > 0 

where Mt = sup{n E No : T, < t )  and An = sign((1 - 6)rl, - n,), n E W. 

Proof: Eliminating Vn in (11.7), (1 1.8), using (11.4), and solving for A, 
yields 

Admissibility requires q, E (0, l ) .  So the denominator is strictly positive, 
hence 

sign(A,) = sign((1 - 6)qn - nn) = An. 

and substituting in (11.7) yields 
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From (11.5), (11.6) we have (1 - nt)Xt = (1 - qn)Vn for all t E (0, m )  n 
( ~ n ,  ~ n + l ] ,  hence 

on { ~ n  < m}, nql .  By induction we obtain 

hence (iii) follows from (11.10) for n = 0 and from (1 -nt)Xt = (1 -qMt)VMt. 
0 

Remark 1. In Theorem C.l the first factor under the product sign corresponds 
to the gainlloss due to the stock holdings in (7,-1, T,] and the second factor 
to the transaction costs paid at  7,. 

So it seems convenient to reformulate the control problem in terms of the 
new risky fractions since the factors of Xt/Xo in Theorem C. l  depend only on 
the risky fractions. Hence it is suitable to reformulate the control problem in 
such a way that the control is given by choosing the risky fraction qn instead of 
the transaction A,. That this can be done in a well defined way is guaranteed 
by the following lemma. 

Lemma 2. 

(i) An impulse control - - strategy k = (T,, An)nEN, is admissible if and only 
if An E V(X:,~;), n E No, where 

Further V(x,n)  # 0 for all x > 0, n E (0 , l )  
n x + A  

(ii) f,(x, n ,  .) : V(x, n) + (0, l ) ,  A H is a bijection for all 
x - 6 x - y l A l  

x - > 0 ,n  E (0 , l ) .  - - 
(iii) q z  = f,(XE, n:, A,) for any admissible impulse control strategy k. 

Proof: (i) follows directly from Definition 1. 
(ii) Since 1-6-yn > Oandx-6x-y IAl > 0, wehavefor al lx > 0 ,n  E (O,l), 
A E V(x,n), A # 0, 
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where a = sign(A). So f, is strictly increasing and continuous on V(x,n). 
Computing 

(-nx, (1 -n -S )x / ( l  - y)), if 1 - n - 6  5 0 ,  
V(x,n)  = 

(-nx, (1 - w - 6)x/(1 +y)) ,  if 1 - n  - 6  > 0 .  

and evaluating f, at  the boundary points yields f, (x, n ,  D(x, n)) = (0 , l ) .  
(iii) follows from (1 1.7), (1 1.8). 0 

So we have a one-to-one correspondence between admissible impulse con- 
trol strategies and NRF-strategies defined below. 

Definition 2. 

(i) A new risky fraction impulse control strategy (NRF-strategy) (T,, qn)nENo 
consists of stopping times 0 = TO I: TI 5 . . . 5 oo with respect to (.Ft)tVo, 
which satisfy T, -t oo a.s. and T, < T,+I on {T, < oo), and of FTn- 
measurable random variables q, with values i n  (0 , l ) .  W e  call T, the nth 
trading time and q, the new risky fraction at 7,. K: will denote the class 
of NRF-strategies. 

(ii) Given an NRF-strategy and initial risky fraction no and new risky frac- 
tion q0 i n  (0, I),  the risky fraction process (~t)t ,o is defined by 

we introduce the type of trading. The wealth process xK for an NRF- 
strategy K = (T,,~,),~N is defined by the representation in Theorem 
C.1. 

(iii) The (one stage) gain function g is 

In Definition 2 (ii) the type of trading A, is only introduced to simplify 
the notation, cf. Theorem C.l Note that A, = -1,0, +1 correspond to selling, 
holding, buying stocks. Using the gain function g and rearranging the factors 
in Theorem C.l we can express the wealth process by 

This yields for P, = P (  lqo = n) 
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By Lemma 2 there is a one-to-one correspondence between admissible impulse 
control strategies and NRF-strategies, hence R* = S U ~ { R ~  : K E K). So we 
are looking for a K *  E K for which R* = R ~ * .  

Advantages of the reformulation in terms of 17 are the easier admissibility 
conditions, the direct use of the representation in Theorem C.l leading to the 
simpler representation (11.1 1) instead of (1 1.9), and that we hence only have 
to control (7rt)tq0. 

Control Strategies with Constant Boundaries 

We shall now introduce our class of good trading strategies given by only 
four parameters, a ,  b to  describe the boundaries of the continuation region 
(no trading region) and a ,  /3 for the new risky fractions when reaching these 
boundaries. 

Definition 3. An NRF-strategy K = (T,, vn)ncno is called a trading strategy 
with constant boundaries (CB-strategy), if there exist a ,  b, a ,  ,B such that 0 < 
a < b < 1 and a < a 5 ,B 5 (1 - S)b, the inter trading times are given by 
stopping times with constant boundaries a ,  b, i.e. 

and the control variable rl, satisfies vo E (a, b) and for n E N 

A CB-strategy will be denoted by (a, b, a ,@) .  By KGB we denote the class of 
CB-strategies and by R2B = sup{RK : K E KGB) the optimal asymptotic 
growth rate in this class. 

Between two trading times no trading occurs. In such a period the risky 
fraction process evolves like the processes in Definition 4, see also [15]. In 
Lemma 3 we gather some results about this process for further reference. 

Definition 4. For the fraction VQ E (0 , l )  after trading and subtracting of 
transaction costs in t = 0 the risky fraction process without trading (7rF)tqo 
is defined by 

7r; = vo st 
1 - vo + vo st ' 

Furthermore we denote for given (a, b, a, P)  E KGB 

r0 = infit70 : n,O $ (a, b)) . 
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Lemma 3. Suppose (a, b, a ,  P)  E ICCB.  For n E [a, b], 

and 

E r r 0  = ho(a) - ho(a)(hl(b) - hl(a)) + hl(a) - hl(n)  , 
ho(b) - ho(a) 

where in the case 5j E (0 , l )  \ {:I 

and in the case f j  = i 

Proof: The risky fraction process without trading (T:)~,~ is a diffusion in 
(0 , l )  with dynamics 

dnp = np(1 - np) ((p - npa2)dt + a dwt) ,  

which can be seen from applying ItG's rule to (T:)~,~. The generator L, of 
(T:)~,~ is given on Cz(0, I),  the two times continuously differentiable functions 
on (0 , l )  with compact support, by 

Solutions of L,ho = 0 and L,hl = 1 on (0 , l )  are, separately for the two cases 
5j E (0 , l )  \ { i )  and 5j = i, those ho, hl given in the proposition. By Doob's 
Optional Sampling Theorem, see e.g. [17, Theorem 11.3.21, the result follows 
with truncation from the fact that (h(.rr;) - Sot L,h(n:)d~)~,~ is a martingale 
for all h E C,!(0, l ) ,  see [17, Proposition VII.1.61. 0 

The Regenerative Structure 

Suppose that a CB-strategy K = (a, b, a ,  P) E KcB is given and T O  is the cor- 
responding stopping time with constant boundaries a ,  b for (n:)tqo as defined 
in Section 11. We always use P, = P (  . lqo = n). Since 

the representation (1 1.11) yields 

1 
R~ (n) = lim inf - E, C g(nTn, un) , n E (0 , l )  , t--too t 

n=l  

where from now on M~ = sup{n E No : rn 5 t). 
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Lemma 4. 

( i )  P?r(~n-.Tn-lE . ~ F T , - ~ ) = P ~ ~ - ~ ( ~ ~ E . ) .  
(ii) Px(n7, E .IFr,) = Pq,-l($o E .). Thus E,[g(nT,,~n)1Fr~~-1] = 

E%-lg(G, v(G')). 
(iii) K is an NRF-strategy satisfying 7, > ~ ~ - 1 ,  Errn < CQ for all n E N ,  

n E ( 0 , l ) .  

Proof: ( i )  and (ii) are immediate from the strong Markov property o f  the 
underlying Brownian motion. (iii) follows from Lemma 3 0 

Proposition 1. The process ( T , , ) , ~ ~  is a homogeneous Markov chain with 
state space {a ,  b), initial distribution P,,(n$ E .). The transition probabilities 
P X , ,  = P,(n, = yl~,-,  = 2) = P,(,)(T,~~ = Y) satisfy PZ, ,  > 0, X , Y  E {a,b). 
The invariant distribution (p, 1 - p)T of (n,),€N is given by  

Pb,a 
P =  

Pu,b Pb,u 

Proof: The Markov property follows from the strong Markov property of  
(Wt) t ,~ ,  the adaptedness of  ( T , , ) , ~ ~ ,  and r], = ~ ( n , ) .  The transition prob- 
abilities can be computed from Lemma 3, which shows that they are strictly 
positive. With the notation in the proposition, the invariant distribution is 
given by 

pb,a pb,b 1 - P  

Definition 5. The measure v on { a ,  <) given by  

p as in Proposition 1, and v zz 1, if a = <, is called the invariant distribution 
of  K .  The probability measure corresponding to v as initial distribution is 

The following lemma contains the technical part of  the proof o f  Proposi- 
tion 2. 

Lemma 5 .  Define NI = in f {n  E N : nr, = a ) .  Suppose that (Zn)nEN is real 
valued, adapted to (Frn)nEn and, for all n E (0, l ) ,  n E N ,  satisfies 

where Z is distributed like 2 1 .  Then for all n E ( 0 , l )  

N1 N1 1 
% r I C z n l < m  and E,CZ,=-E,Z, 

n=l n=l P 

where v = (p, 1 - p)T is the invariant distribution of K .  
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Proof: A computation like below substituting P,(n$ = y) for pa,, yields 
E,I C ~ L ~  ZnI < oo. By Lemma 4 and Proposition 1 

Proposition 2. Define No = 0,  

and 
Nk 

Then 

(i) (Yk, T N ~  - T N ~ - , ) ~ ~ ~ N  are i.i.d. random variables under Pa. 

Proof: The strong Markov property of (Wt)t,o yields (i), since q ~ , ,  = a 
for all k E No. (ii) follows from Lemma 5 using Zn = 1 to obtain the result 
for N1, Zn = rn - rn-l for rN1, and Zn = g(n,,qn) for Yl. 

The regenerative structure in Proposition 2 (i) enables us now, to sim- 
plify the determination of the asymptotic growth rate to one period between 
two buyings. Using (ii) reduces this to one trading period starting with the 
invariant distribution. 
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Theorem C.2. The asymptotic growth rate of K is 

where v is the invariant distribution of K. In particular RK is independent 
of the initial conditions. 

Proof: Let Nk, k E No, and Y,, n E W be given as in Proposition 2. For 
N(t)  = sup{k E No : T N ~  5 t} and M~ = supin E No : T, 5 t}, we have 
NN(t) 5 Mt. Due to the integrability of Yl, its independence of Yk, k > 1, 
and to q~~ = q(nTN1 ) = a, it follows from (1 1.12) for all n E (0 , l )  

RK(n) = lim inf E,Yl - EaYl + E, 
t-+m t 

We will number the terms to which we apply the liminf by '1' to '5'. Term 1 
and term 2 are bounded by Proposition 2, and the boundedness of term 5 
can be shown as in the proof of Lemma 5. For term 4 we refer to the proof 
of [18, Theorem 3.161, in which the convergence ~ E , Y ~ ( ~ ) + ~  -f 0 is proved in 
exactly our situation using the renewal theorem. So only term 3 remains, 

Proposition 2 says that (rN, - T N ~ - ~ ) ~ ~ ~  constitutes under Pa a sequence of 
integrable i.i.d. random variables. Therefore, we are in the setting of renewal 
theory, where N(t) ,  tqO, counts the renewals up to time t. An elementary result 
gives us E N(t)  < cm for all tqO, e.g. [18, Proposition 3.21. Moreover according 
to Proposition 2, with respect to Pa, (Yk)kEN is a sequence of integrable i.i.d. 
random variables and N(t)  + 1 is a stopping time for (Nk)kEN. Thus Wald's 
identity yields . N(t)+l 7 

Application of the elementary renewal equation to term 4 finally shows 

This implies the independence of the initial value n.  The statement follows 
now simply by Proposition 2 (ii): 
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Remark 2. We introduced the wealth simply as the sum of the positions in 
bond and stock. If we instead evaluate the portfolio a t  time T by its utility 
after selling the stocks, this would correspond to a factor (1 - 6 - ynT).  
Since for a CB-strategy E, ln(1 - S - y TT) is bounded we would get the 
same asymptotic growth rate as in our case and hence the same optimal CB- 
strategy. 

Existence of Optimal CB-Strategies 

For a CB-strategy K = (a, b, a , P )  Corollary 1 shows the dependence of the 
asymptotic growth rate on the four parameters explicitly. Based on this rep- 
resentation Theorem C.3 provides an existence result in the class KcB. 

Corollary 1. For K = (a, b, a ,  P) E KcB, 

where 

and ho, hl were defined in Lemma 3 

Proof: From the definition of the invariant distribution, 

So Theorem C.2, Lemma 3 and Proposition 1 yield the representation. 0 

Theorem (2.3. If there exists a CB-strategy K satisfying R~ > max(0, p. - 
a2/2)  then a CB-strategy K* exists which is optimal in  kc^, i. e. R ~ "  = R;B. 

Proof: Suppose p. - a2/2 > 0. Then 2 i j -  1 = 2(p - a2/2)/a2 > 0. Using 
Lemma 3 the denominator in Corollary 1 becomes 

where p is given as in Corollary 1 using ho(n) = -((I  - ~ ) / n ) ~ + l .  Note that 

lim p = - ho (P) E (O,l) ,  l i m p = O .  
b y 1  ho(a) - ho(a) - ho(P) a\O 
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Thus, using (11.13) and keeping the other parameters constant, 

The latter is due to 6 > 0. It  implies < 0 for b --+ a .  Therefore for 
all E > 0 the set 

IC,  = {(a, b, a, p)  E I C C ~  : ~ ( ~ , ~ ~ ~ & p  - s2/2 + E )  

is closed in IR4, hence compact. If there exists K = (a, b, a ,  P) E KGB satisfying 
RK > p - c12/2, then IC, will be non-empty for some €0 > 0 and due to 
compactness, an optimal solution exists in IC, since R is continuous. 

In the cases p - c12/2 < 0 and p - a2/2  = 0 the arguments are similar, 
only that in the latter symmetric case we have to use those ho, hl given for 
fj = $ in Lemma 3. 0 

Remark 3. Let us not allow short selling or borrowing. Then in the case IC,  = 0 
for all E > 0 it will be optimal to invest only in the stock if p - a2/2q0 and to 
invest only in the money market if p - a2/2  5 0, see Lemma 1. In this sense, 
always a strategy exists which is optimal in I C c ~  U {KO, K1), where KO, K 1  
correspond to these extreme strategies. 

Example 1. For parameters p = 0.096, a = 0.4, r = 0 we obtain from (11.3) 
;Tj = 0.6000 and 2 = 0.0288 if no transaction costs have to be paid. For costs 
6 = 0.01%, y = 0.3% we obtain the optimal values 

In Figure 11.1 we analyze the dependency on the choice of the boundaries. In 
Figure 11.1 (i) we compute ~ ( ~ l ~ l ~ * p )  on 0 < a < 8 ,  p/(1-  6) 5 b < 1, and in 
(ii) ~ ( ~ ~ @ ~ f i )  on 2 < a 5 fj, j j  5 p 5 (1 - 6);. The fat lines correspond to the 
optimal parameters, so the optimum lies a t  their intersection. 

In Figure 11.2 (i) we plot the optimal boundaries depending on y for 
constant 6 = 0.01%, where the case y = 0 is the setting of [15], and in (ii) 
depending on 6 for constant y = 0.3%. Note that in the latter case we cannot 
start a t  6 = 0 since the case of purely proportional costs is not covered by our 
model. 

Example 2. In Example 1 we chose parameters p and a such that Fj, the op- 
timal fraction without costs, lies in (0 , l )  far away from the boundaries. If we 
use instead p = 0.159 we get 
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Fig. 11.1. Dependency of R on the choice of (i) b, a and (ii) on ,B, a 

Fig. 11.2. Dependency of the trading regions on the (i) proportional costs y, (ii) 
fixed costs S 

So 2 is only slightly larger than R1 = p - 02/2.  Thus it can be expected 
that under high enough transactions costs no optimal solution in KGB exists, 
i.e. RK < R' for all CB-strategies K. And that is exactly what is happening 
as can be shown numerically by evaluating R~ = ~ ( ~ , ~ @ + f l )  for all possible b 
while choosing the other parameters optimally. 

Numerically it can be shown that, in Example 2, the left-hand derivative 
when b approaches 1 is strictly positive while it is negative in Example 1 as we 
can see from Figure 11.1 (i). Since we know from the proof of Theorem C.3 
that RK converges to R' when b approaches 1, the sign of the left hand- 
derivative a t  1 seems to  be a good criterion for the existence of an optimal 
strategy in KGB.  If it is negative we know from Theorem C.3 that one exists. 
But unfortunately the dependency on p, or equivalently on ij, is not monotone, 
hence an exact criterion is difficult to obtain. 
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Optimality in the Class of Impulse Control Strategies 

We give a short outline how to verify the optimality of an optimal CB-strategy 
in the class of impulse control strategies, using the results of [5]. The rigorous 
and lengthy treatment will be deferred to a forthcoming publication. 

The conditions (C1)-(C4) in [5] are satisfied and [5, Proposition 4.21 can 
be reformulated for our cost structure. Similar as in Section 6 of that paper, 
the quasi variational inequalities, which we have to solve, can - using the 
generator L, defined in the proof of Lemma 3 - be reduced to 

( I )  L,$(n) + ( p  - a2/2n)n - X < 0, n E (0, I ) ,  

( I )  x (IT) = 0 ,  7T E (0, I ) ,  

where for q E (0, I),  n E [ O , l ]  

If r # 0 we have to substitute in ( I )  p - r for p and X - r for A. 

Theorem C.4. Suppose K = (a, b, a ,  P) E KGB and that we can find a solu- 
tion $ for ( I )  with X = RK satisfying (11) = 0 at a ,  b and (IT) < 0 on (a, b), 
and that we can find an extension $ of such that the supremum in (11) 
is attained at a if n E [0, a] and at p if n E [b, 11. ~f $ lies in the Sobolev space 
~ ~ ( 0 , l )  and the corresponding conditions in [5, Theorem 5.11 are satisfied, 
then K is an optimal impulse control strategy, i.e. R* = RK. 

If we have found a CB-strategy K* = (a, b, a ,  P) that is optimal in KGB 
with value RK*,  we can proceed as follows to verify that K* is optimal in K. 

(1) A solution of ( I )  = 0 is given by (use X = RK*) 

(2) Choose C* such that for $c* we have equality in (11) at  a and b. 
(3) Define $ as 

$c* (a)  +c(% n) , n E [O, a )  , 
$ p ( n )  = ~ * h ~ ( n ) + R ~ *  hl(n)+ln(l - n) , n E [a, b] , (11.14) 
$c* (P) +a n) , n E (b, 11 . 

(4) Show (numerically) (11) < 0 on (a, b), that the supremum in (11) is at- 
tained at  @ if n E [b, 11 and at  a if n E [0, a], and that $ is differentiable 
at  a and b. 

(5) Show (numerically) that ( I )  5 0 on (0 , l ) .  
(6) Show that the corresponding conditions in [5, Theorem 5.11 are satisfied. 
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Then 1C, is bounded, lies in H2(0, l ) ,  and ( I )  x (11) = 0 holds on (0 , l )  by 
the definition of 1C,. So K* is optimal in the class of impulse control strategies. 

Example 3. For the parameters of Example 1 an optimal 1C, is given by (11.14), 
where we use the constants R&, 5,  6 ,  f i  obtained in Example 1 and ho, 
hl are given in Lemma 3 using the i j  # from Example 1. As described 
in the algorithm above, we can compute C* = -6.355669 and the smooth 
pasting properties can be verified numerically. In Figure 11.3 we plot (i), left- 

Fig. 11.3. Example 3: Verification of the optimality of the CB-strategy in Exam- 
ple 1. 

hand, the functional in (I) as dotted curve and the supremum in (11) as solid 
curve, and (ii), right-hand, the corresponding maximizer. Note that in (i) the 
region where the solid curve is negative corresponds to the _no-trading region, 
the boundary points where it first touches the axis are 5 , j ,  and that in the 
trading regions the maximizers in (ii) are given by 6 and ,B. 

Remark 4. Comparing with a direct solution of the quasi variational inequali- 
ties our approach has the numerical advantage that due to the explicit struc- 
ture of the asymptotic growth rate as given in Corollary 1 we only have to 
maximize in four parameters. This is much more stable than solving the quasi 
variational inequalities since this would involve finding the parameters C and 
A, the latter corresponding to the optimal growth rate, which is as a func- 
tion of the parameters a, b, a,  ,f3 very flat around the optimal parameters, cf. 
Figure 11.1. 

Remark 5. Our model contains as special case the purely fixed costs (y = O), 
but not the case of purely proportional costs (6 = 0), cf. Figure 11.2. Following 
a heuristic approach like e.g. in [20] it can be shown that the HJB equation 
for the maximization of the asymptotic growth rate for purely proportional 
costs is of the form 
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where equality holds in the first component if no trading is optimal, in the 
second component if buying is optimal, and in the third component if selling 
is optimal. Note that e.g. [I], [7], [lo], [I91 use a different optimization crite- 
rion and [2], [20] use different cost structures and hence they obtain slightly 
different HJB equations. 

Further note that we can obtain these inequalities from ( I ) ,  (11) by taking 
the limit 6 + 0 in (11) and taking the derivatives with respect to n in the 
two cases that we sell and that we buy, observing that 11' is decreasing in the 
no-trading region. Numerically the solutions converge. So the case of purely 
proportional costs can be seen as a limiting case of our model. To make these 
arguments rigorous, including the convergence of the optimal strategies, will 
be the objective of a future publication. 
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Summary. In the framework of stochastic volatility models there is a wide range 
of applications of power, bipower and multipower variation, i.e. the sum of appro- 
priately scaled absolute values of log-returns and neighbouring log-returns raised to 
a certain power. Given high frequency data we can use the concept of power and 
multipower variation in the context of model selection, namely to determine if the 
underlying process possesses a jump component, as well as estimating the integrated 
volatility both in classical and LBvy type stochastic volatility models. 

In this paper we will focus on bipower and multipower variation for classical 
stochastic volatility models. These concepts provide more robustness against jump 
components for estimators needed for pricing classical variance or volatility swaps. 
Furthermore, a combination of power and multipower variation can be used to sep- 
arate the continuous and the jump part of the quadratic variation and hence gives 
insight in determining whether the classical purely continuous stochastic volatility 
model is appropriate. 

Introduction 

In the last years the concept of power variation, i.e. taking 

where Xt denotes the log-price process, or more recently the concept of k- 
power variation, i.e. taking 

became popular as a powerful tool for analyzing high frequency data.  The 
starting point was made when the link between the mathematical concept 
of quadratic variation and integrated volatility was established. Integrated 
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volatility is not only useful as a measure for the level of volatility, but also ex- 
plicitly needed for pricing variance and volatility swaps, cf. Howison et al. [17]. 
These financial instruments became increasingly attractive to investors, since 
they avoid direct exposure to underlying assets, but make it possible to hedge 
volatility risk. Barndorff-Nielsen and Shephard [5, 61 established consistency 
and distributional results for power variation estimates of the p t h  integrated 
volatility in classical diffusion and stable stochastic volatility models respec- 
tively, whereas Woerner [27] considered quite general LBvy type stochastic 
volatility models. 

However, in contrast to this theory, empirical studies (e.g. Andersen and 
Bollerslev [l, 21, Ding, Granger, and Engle [13], Granger and Ding [15], and 
Granger and Sin (141) have shown that estimates in the classical stochastic 
volatility models seem to perform better for p = 1, than for p = 2. Woerner [26, 
281 provided a theoretical explanation for this empirical finding by analyzing 
the power variation estimates in the presence of a jump component. Namely, 
when jumps are present in the mean process of a classical stochastic volatility 
model or as an additive component, the integrated volatility can never be 
estimated consistently for p = 2 by power variation estimates, but depending 
on the activity of the jump component it can be done for p = 1. Hence the 
empirical finding, that p = 2 does not lead to good results, suggests that the 
data either possesses a noise component, which causes jumps in the data, or 
the classical stochastic volatility model is not appropriate but should include 
jumps. 

With the concept of bipower and multipower variation it is however pos- 
sible to overcome this problem and estimate the squared integrated volatility 
consistently also in the presence of jumps, which is important for pricing vari- 
ance swaps. The concept of bipower variation in the presence of a finite activity 
jump component was introduced by Barndorff-Nielsen and Shephard [8] and 
applied to testing for large jumps by Barndorff-Nielsen and Shephard [7]. 

In this paper we focus on extending their result to processes with a more 
general, possibly correlated, mean process and general semimartingale jump 
components, which especially include the popular LBvy processes such as gen- 
eralized hyperbolic ones, NIG and CGMY processes. Hence our result provides 
robust, consistent estimators, allowing for a feasible distributional theory, for 
the squared integrated volatility within a large class of models, including the 
BNS model with leverage (Barndorff-Nielsen and Shephard model, i.e. the 
volatility process follows an Ornstein-Uhlenbeck type process). Furthermore, 
our result combined with the result for power variation can be applied in the 
context of model selection to determine jump components. This provides a 
different approach to the one based on non-normed power variation which 
was suggested in Woerner [26]. 
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Models and Notation 

The concept of power variation in a mathematical framework was introduced 
in the context of studying the path behaviour of stochastic processes in the 
1960ties, cf. Berman [Ill ,  Hudson and Tucker [19] for additive processes or 
Lepingle [21] for semimartingales. Assume that we are given a stochastic pro- 
cess X on some finite time interval [O,t]. Let n be a positive integer and 
denote by Sn = (0 = tngo, tnVl,. . , t,,, = t )  a partition of [0, t], such that 
0 < tn,l < tn,2 < - .  . < tn,n and maxl5k<,{tn,k - tn,k-l) -+ 0 as n -+ co. 
Now the p-th power variation is defined to be 

We are interested in the limit as n -+ co, hence the setting of high frequency 
data. Well established are for convergence in probability the cases for p = 1, 
where finiteness of the limit means that the process has bounded variation, 
and p = 2, called quadratic variation, which is finite for all semimartingale 
processes. However, in the stochastic volatility setting, i.e. for the moment 
assuming that our process is of the form J: v,dB,, only the case p = 2 leads 
to  a non-trivial limit. Obviously, for p > 2 the limit is zero and for p < 2 the 
limit is infinity. Whereas for jump processes we do not have this distinction, 
for p > 2 the p-th power variation converges to the p-th power of the jumps. 
This makes it possible to analyze, with the concept of power variation, if the 
data is derived from a purely continuous process or a process possessing jumps 
(cf. Woerner [26]). 

Returning to the classical stochastic volatility setting, an extension of the 
concept of power variation is to introduce an appropriate norming sequence, 
as it was done in Barndorff-Nielsen and Shephard [6], which allows to  find 
non-trivial limits even in the cases where the non-normed power variation 
limit would be zero or infinity. Let us introduce the following notation for the 
normed p-th power variation 

where y E R and tn,i - tn,i-l = Anpi denotes the distance between the i-th 
and the i - 1-th time-point. When we have equally spaced observations, An,i is 
independent of i and the normed power variation reduces to A;V,(X, S,). As 
long as we stick to a purely continuous stochastic volatility model this exten- 
sion enables us to estimate the p-th integrated volatility for all p, cf. Barndorff- 
Nielsen and Shephard [6]. Whereas, when we have a jump component in the 
mean process, such as for example in the BNS model with leverage, in the 
case p = 2 it is not possible to reach the power integrated volatility, though 
it is the most popular for practitioners. 
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A further extension of power variation is the concept of normed bipower 
or multipower variation, which makes it possible to include also the case for 
the squared or even higher order integrated volatility. This also provides an- 
other possibility to distinguish between purely continuous and processes with 
jumps by comparing the power and multipower variation. Let us introduce 
the following notation for the normed r + s-th bipower variation 

where y, 6 2 0. Analogously for the c,"=, pi-th k-power variation 

When we have equally spaced observations, the normed c,"=~ pi-th k-power 
variation reduces to  Az+".+YkVpl ,.. . , p k  (X, Sn). 

The concept of bipower and multipower variation was introduced by 
Barndorff-Nielsen and Shephard [8] for jump components with only finite ac- 
tivity. In this paper we focus on an extension of their result to general jump 
processes, which makes it possible to get results for the BNS model with 
leverage. 

Let us now briefly review the stochastic processes which we will need in the 
following. We start with a general semimartingale process X ,  which is widely 
used in finance. For an overview both under financial and theoretical aspects 
see Shiryaev 1241. In its canonical representation a semimartingale may be 
written as 

or for short with the predictable characteristic triplet (B(h), (XC),  v), where 
X C  denotes the continuous local martingale component, B(h) is predictable 
of bounded variation and h is a truncation function, behaving like x around 
the origin. Furthermore, p((O,t] x A;w) = C(IA(J(X,)) ,O < s < t ) ,  where 
J(X,) = X, - X,- and A E B(R - {0}), is a random measure, the jump 
measure, and v denotes its compensator, satisfying (x2 A 1) * v E dloc, i.e. the 
process (J~o,tl,a(x2 A l ) d ~ ) ~ > o  - is locally integrable. Semimartingale models 
include the well-established continuous diffusions, jump-diffusions, stochastic 
volatility models, as well as Levy processes. 

LBvy processes are a special class of semimartingales where we have in- 
dependent and stationary increments. They are given by the characteristic 
function via the LBvy-Khinchin formula 
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where a denotes the drift, a2 the Gaussian part and v the LBvy measure. 
Hence a2 and a determine the continuous part and the LBvy measure the 
frequency and size of jumps. If J ( 1  A Ix l )v (dx)  < m the process has bounded 
variation, if J v ( d x )  < oo the process jumps only finitely many times in any 
finite time-interval, called finite activity, it is a compound Poisson process. 
Furthermore, the support of v determines the size and direction of jumps. A 
popular example in finance are subordinators, where the the support of the 
LBvy measure is restricted to the positive half line, hence the process does not 
have negative jumps and the process is of bounded variation in addition. For 
more details see Sato [22].  

A measure for the activity of the jump component of a semimartingale is 
the generalized Blumenthal-Getoor index, 

where dl,, is the class of locally integrable processes. This index ,8 also deter- 
mines, that for p > ,8 the sum of the p t h  power of jumps will be finite. Note 
that if we are in the framework of LQvy processes, being an element of a locally 
integrable process reduces to finiteness of the integral of 1x1' A 1 with respect 
to the L6vy measure, since it is deterministic, cf. Blumenthal and Getoor [12]. 

Let us now introduce the stochastic volatility models. In the Black and 
Scholes framework the logarithm of an asset price Xt  is modelled as a geomet- 
ric Brownian motion or as the solution of the stochastic differential equation 

where p, ,8 and a are constants. One possibility of overcoming the problems 
of the Black-Scholes framework and capturing the empirical facts of excess 
kurtosis, skewness, fat tails and volatility smile, is to  introduce a random 
spot volatility process a leading to the simplest case of a stochastic volatility 
model. Now the logarithm of an asset price Xt  is modelled as the solution to 
the following diffusion equation 

where a is assumed to satisfy a second stochastic differential equation. Trans- 
forming (12.1)  to an integrated form leads to 

up to an additive constant, or in a more general formulation 

where a is some stochastic process. Traditionally, it is assumed that the mean 
process a is of locally bounded variation and Lipschitz-continuous. 
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The main differences between the various stochastic volatility models lie 
in the stochastic differential equation the spot volatility process is assumed 
to satisfy. We will recall different examples, which our estimating results can 
be applied to. 

Example 1. Assume that the price process can be described by the following 
diffusion equation 

dXt = pXtdt + atXtdBt. 

Then Hull and White [20] model a2 by a geometric Brownian motion, i.e. 

where W is a Brownian motion independent of B. 
Scott [23] and Stein and Stein [25] model a by an Ornstein-Uhlenbeck 

process, i.e. 
dat = -6(at - 8)dt + lcdWt, 

where again W is a Brownian motion independent of B. 
Barndorff-Nielsen and Shephard [4] model a2 by an Ornstein-Uhlenbeck 

type process of the form 

Here Z is a subordinator without drift independent of the Brownian motion 
B. The time scale At is chosen to ensure that the marginal law of u2 is not 
affected by the choice of A. Note that though a2 exhibits jumps, X is still 
continuous. 

A possibility of including leverage in this model is to add a jump compo- 
nent of the form of the driving subordinator to the price process. The BNS 
model including leverage, as it was suggested by Barndorff-Nielsen and Shep- 
hard [4] is given by 

where Zt = Zt - E(Zt) .  

Robustness of multipower variation 

In the context of stochastic volatility models in practice neither the structure 
of the underlying spot volatility process is known nor the process is observed 
continuously. This makes it difficult to infer the volatility as it is necessary 
for option pricing and hedging. 

The concept of power variation provides results under quite mild regular- 
ity assumptions on the spot volatility and the mean process, but not in the 
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case p 2 2, when jumps are present. With bipower variation estimates, we 
can consistently estimate all the cases we can deal with power variation and 
besides also the cases p < 4 with jumps. Hence we get a larger class of easily 
computable estimators of the p t h  integrated volatility for p < 4. 

The following theorem is an extension of Barndorff-Nielsen and 
Shephard [8] to a larger class of jump components. Our result makes it possible 
to include a large part of the class of general purely discontinuous semimartin- 
gales as jump component and also more general continuous components which 
both may be correlated to other components of the model. 

Theorem C.1. Let Xt  = Zt + Yt + u,dB,. Suppose that Y = Y(') + Y ( ~ ) ,  

where ~ ( l )  = J: asds is locally Lipschitz-continuous and independent of B. 
Y ( ~ )  is continuous and satisfies for p > 0 as n -+ cm 

Let Z be a semimartingale with Blumenthal-Getoor index P which satisfies 
either 
a)  (2") = 0 ,  i f  1 5 ,O < 2, or 
b) (ZC) = 0 and B ( h )  + ( x  - h )  * v = 0 ,  i f  ,O < 1. 
Furthermore, assume that the volatility process u2 i s  independent of the Brow- 
nian motion B and a.s. locally Riemann-integrable. Then we obtain for r ,  s > 0 
with max(r, s )  < 2 

~ P / Z ~ ( P E )  
as n -+ cm, where pp = E(IuIP) = r(1/2y and u N ( 0 ,  1 ) .  

Proof: We wish to show that in probability as n -+ co 

j A where Z j  = Zjnn - Z(j-l)nn and = Y,an - Y(j-l)nn + J(j-;)an u S d B s .  
Let us assume Y(') = 0 for simplicity first. 

Our proof uses a similar technique as Woerner [28, Theorem 3.11. Since for 
exponents less than or equal to 1 our proof relies on the triangular inequality1 
and for the exponent bigger than 1 on Minkowski's inequality2 we have to  
look a t  three different cases. 

First look a t  0 < r ,  s < 1. Using the triangular inequality we obtain 
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This yields 

and we obtain 
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(12.6) tends to zero as n -+ oo by Barndorff-Nielsen and Shephard [8, Theo- 
rem 51. Hence it  remains to  show that also (12.3), (12.4) and (12.5) tend to 
zero as n -+ oo. 

However, let us first look a t  the other parameter constellations for r and s. 
W.1.o.g. assume that r < s, 0 < r 5 1, s > 1. Using the triangular inequality 
and Minkowski's inequality we obtain 
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This yields 

For r < s with r,  s > 1 we can proceed similarly. For the steps where we used 
the triangular inequality before, we simply have to  perform another transfor- 
mation to  use Minkowski's inequality instead and the triangular inequality for 
the exponent r / s  < 1. Let us look a t  one case for illustration 

We obtain similarly as for the previous case 
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This expression tends to zero under the same conditions as for the other case. 
Hence it remains to show under which conditions on r and s, we obtain in 
probability 

We use the same technique as is Woerner [26], namely splitting the process Z 
in a component with finitely many jumps bigger than epsilon, for which we can 
argue similarly as in Barndorff-Nielsen and Shephard [8], and a process with 
infinitely many small jumps. We define Ij(c) to be one if there are no jumps 
of absolute value bigger than E in the j-th time interval and zero otherwise. 
Furthermore, denote 

where J(Z,) = Z, - 2,-, hence denote the jumps of Z .  It  is clear that 
IZjlSIj(c) 5 1z;lS. 

Now we can proceed with the proof of (12.7) using Holder's inequality with 
l l p  + l / q  = 1  and l l a  + l l b  = 1 and obtain in probability 



n- l 
1- q2 

= lim lim A, lQlr lZj+lIsI j+l(~)  + € 4 0  71'03 j=1 
n- l 

1- y + lim lirn An \&\r\Zj+l\s(l  - I j + l ( ~ ) )  e+O n-+m j=1 

In fact for the first and the third term we know by Barndorff-Nielsen and 
Shephard 16, Theorem I ]  that in probability it tends to (ppr J: o ~ d u ) l / p  and 

(par Jot a ~ ~ d u ) l / ~  respectively. Note that Condition 1 of Theorem 1 is only 
needed for the CLT not for the consistency result. Hence it remains to show 
that the second and the fourth term tend to zero in probability. 

For the second term we can establish as in Woerner [26, Theorem 3.11 
and Hudson and Mason [ la]  that for sufficiently small An, supj IZjl 5 26 and 
An 5 26. We fix 7 ,  E < 7714 and take c E ( P ,  qs)  

n- l 

lim sup x 1Z:+, I C  
n4m j=l 

with some constant Kc independent of E .  Both sums are finite by the con- 
ditions on Z .  Namely under condition a) finiteness in (12.11) is ensured by 
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Lepingle [21], whereas under condition b) finiteness is ensured by Hudson and 
Mason [18]. Note that Hudson and Mason [18] originally formulated their re- 
sult for additive processes, but their arguments can also be applied to general 
semimartingales satisfying condition b). Hence we can let 6 --+ 0 and obtain 
the desired result provided ,B < qs and ,B < 1 + (9.912). This does not impose 
a restriction, since we can always take q sufficiently large and p accordingly 
small. 

For the fourth term we know that the sum is finite, since we only have 
finitely many jumps, hence the term tends to zero as bs < 2. Since from the 
Holder condition we have b > 1 this implies s < 2. As we have to satisfy the 
same for r and s exchanged we get the condition 

Finally it remains to prove (12.8) 

r + s  n-l 
= lim C IZjlrIj(~)lZj+lIsIj+l(~) 

n--too 
j=1 

(12.12), (12.13) and (12.14) can be shown as above. For (12.12) we can use 
Holder inequality for l / a  + l / b  + l / c  = 1 

This does not impose any further restriction on r ,  s since we can always take b 
and c sufficiently large by choosing a close to one. For (12.15) we can use the 
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same argument as in Barndorff-Nielsen and Shephard [8, Theorem 61, namely 
that if we take the partition fine enough there are no contiguous jumps, as 
there are only finitely many ones. This implies that also (12.15) is equal to 
zero, which yields the desired result for Y(') = 0. If we now repeat the same 
argument for V, +Zj  and q(') we obtain the desired result under the condition 
stated for ~ ( ' 1 ,  which completes our proof. 0 

Let us discuss the conditions on the processes Z,  a and Y first. 
Condition b) can be replaced by a simpler one, if Z is an additive process 

with ,O < 1. In this case we can take the truncation function h = 0 and replace 
b) by a2 = p = 0, where a2 denotes the Gaussian part and p the drift of the 
additive process. 

By Barndorff-Nielsen et.al. [3] the condition that a and Yl are independent 
of B may be replaced by assuming that the volatility can be written in the 
following form 

where W is a Brownian motion independent of B and p a Poisson random 
measure, for more details of the notation see Barndorff-Nielsen et.al. [3]. 

As we know from Woerner [27] the condition on Y(') is satisfied if it is 
Holder continuous of the order 112 + y,  y > 0, which implies that we can for 
example add a fractional Brownian motion with Hurst exponent H E (1/2,1]. 

Next we want to discuss the choice of the exponents. The conditions on 
r and s provide us with more potential for robust estimation than the power 
variation method. In contrast to the power variation, where we can estimate 
the p t h  integrated volatility robustly only for p < 2, we can now estimate it 
for p < 4. This means that we can include the case p = 2 as needed for the 
variance swap. However, we can still not estimate the integral of the fourth 
power of the volatility as needed for the asymptotic theory of the quadratic 
variation. 

This problem can be solved by passing to  multipower variation: 

Theorem C.2. Let Xt = Z t + ~ + ~ o t a , d B , .  Suppose that Y, Z and a satisfy 
the same conditions as i n  Theorem C.1. For all 1 5 i 5 k ,  k  > 2 suppose 
ri > 0 with maxi ri < 2, then we obtain as n -+ CQ 

Proof: The proof is analogous to the bipower case. We simply get contri- 
butions from n permutations of the V and Z terms which can be treated in 
the same way using the generalized Holder inequality. 0 
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We can see that with the k-power variation we can estimate the p t h  
integrated volatility consistently for p < 2k. 

Example 2. Let us look a t  a very general model of the form 

where the Y ( ~ )  are Holder continuous processes of the order 1/2+y and Z(j) are 
pure jump processes which all may be correlated with all other components 
of the model. We only need that the Blumenthal-Getoor index is less than 
two, hence we can include the whole class of generalized hyperbolic processes, 
stable processes and CGMY processes with a < 2 and Y < 2 respectively. 
Now we look a t  three most interesting cases from the point of view of option 
pricing: 

Estimation of Sot Io,lds: 
We need the absolute value for pricing volatility swaps. We obtain a con- 
sistent estimator by using the p t h  power variation with p = 1. 

Estimation of Sot 0;d.s: 
We need the squared integrated volatility for pricing variance swaps, as 
well as for the asymptotic variance for the absolutes values. By power 
variation we do not get a robust estimator, but if we move on to bipower 
variation estimates we get a consistent estimator. 

Estimation of Sot 0;ds: 
We need this quantity for the distributional theory of the squared inte- 
grated volatility. Here even the bipower variation estimate is not sufficient, 
but with the tripower variation estimate we get a robust and consistent 
estimator. 

Besides of providing consistent estimators for the integrated volatility, 
Theorem C.1. implies that we can separate the continuous and the jump 
part of the quadratic variation, especially if Z is a purely discontinuous addi- 
tive process without drift and ,!3 < 2. This fact can be used to analyze if we 
have a purely continuous process or some jump component. This was studied 
by Barndorff-Nielsen and Shephard [B] for the finite activity jump case and 
applied to testing in Barndorff-Nielsen and Shephard 171. 

Example 3 (BNS model including leverage). We look again a t  the BNS model 
including leverage 



where Zt = Zt - E(Zt )  and it is assumed that the LQvy process Z is inde- 
pendent of the Brownian motion B. The continuous part of the mean process 
is independent of B and Lipschitz continuous. Hence for the equally spaced 
setting we obtain 

as long as r + s = 2. Hence this provides results even when Z has as much 
activity as a hyperbolic LQvy motion or a Normal Inverse Gaussian process 
which have both ,6 = 1. 

Distributional Theory 

In the previous section we studied consistency and robustness of the mul- 
tipower variation estimators. Now we want to look a t  the distributional 
theory, which makes it possible to construct tests and calculate confidence 
regions. As for the power variation estimates the distributional theory un- 
fortunately does not hold in the same generality as the consistency results. 
Especially we need stronger conditions on the volatility process and on the 
jump component, where we can only allow for jumps with moderate activity, 
namely Blumenthal-Getoor index less than one. Our result is an extension of 
Barndorff-Nielsen and Shephard [8] to a larger class of semimartingale jump 
components. Together with M. Winkel they are currently also working on ex- 
tensions of their results to LBvy jumps with different methods as presented 
here (cf. Barndorff-Nielsen et.al. [ lo ] ,  Barndorff-Nielsen and Shephard [9]). 

Theorem C.3. Let Xt = Zt + Yt + Sot asdBs. Suppose that Yt = asds is 
locally Lipschitz-continuous, additionally Y is independent of B and Z is a 
semimartingale with Blumenthal-Getoor index ,6 < 1 which satisfies ( Z C )  = 0,  
B(h)  + (x - h)  * v = 0. Assume that at > 0 is independent of Bt, locally 
Riemann integrable, pathwise bounded away from zero and has the property 
that for some y > 0 and n -+ co 

for any xnj and qn,j such that 
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Then we obtain for r ,  s > 0 with max(r, s )  < 1 and r + s > P/(2 - P), 

as n -+ oo, where pp = E(IuIP) with u N(O, 1) and C = p2rp2s + 
2 ~ r ~ s ~ r + s  - 3p;~:. 

Proof: The idea is to use the result for the model with no jump compo- 
nent, which we know from Barndorff-Nielsen and Shephard [8] for r = s or 
from Barndorff-Nielsen et.al. [3] for the general case, where the asymptotic 
normality can be deduced straight forward for the independent case from the 
stable convergence towards an integral w.r.t. a Brownian motion. We use the 
same notation as in Theorem (2.1, 

For the last term we know that it converges to N(0, I ) ,  hence we obtain the 
desired result if the first summand tends to  zero in probability. For the nu- 
merator we can proceed as in Theorem C.l,  hence together with the norming 
sequence we have to show that in probability, 

which leads similarly as in Theorem C. l  to 
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1 r+s n-l 
lim x l&lTlz,,,lS 

n+ca j=1 

1 b bs 

x ( o n +  lim lim 2 1zj10 - I ~ + I ( ~ ) ) I ~ ~  
j=1 

The first and the third term tend to a finite limit as in Theorem C.1. For the 
fourth term to tend to zero we need 

This leads to the restriction s < 1, hence max(r, s) < 1. For the second term 
we use the same method as in (12.11)) this implies that we need 

Examining the possible ranges of q and s we obtain that P < 1. For (12.18) 
we can proceed as in Theorem C.1. The part with both components having 
small jumps leads to an additional restriction on r and s, namely we have to 
satisfy simultaneously 

with l / p  + l /q = 1 and l / a  + l / b  = 1. This leads to 
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hence r + s > P/(2 - p).  
This yields the desired result under the stated conditions on P, r and s. 

As for the power variation estimator we have to impose stronger conditions 
for the distributional theory on the different components on the model than 
for consistency. From Barndorff-Nielsen and Shephard [6] we know that the 
condition (12.16) on a is satisfied for the BNS model and for the special 
case r = s = 1 it can be dropped (cf. Barndorff-Nielsen and Shephard [7]). 
By Barndorff-Nielsen et.al. [3] the condition on the volatility process may be 
replaced by 

which is weaker than (12.16) and allows us to skip the condition that a and Y 
are independent of B. Of course, then we do not get asymptotic normality, but 
stable convergence to an integral w.r.t. a Brownian motion as in Barndorff- 
Nielsen et.al. [3]. This implies that our result can also be applied to the Heston 
model, cf. Heston [16]. 

Furthermore, the activity of the jump component must not be too large. 
But anyway we can include compound Poisson processes, Gamma processes, 
inverse Gaussian processes, stable processes with a < 1 and CGMY processes 
with Y < 1. However, as we have the restriction r + s < 2 we do not get 
a distributional result for the squared integrated volatility case by bipower 
variation. As for the consistency we can generalize the result to multipower 
variation. 

Theorem C.4. Let X t  = Zt + +Sot asdBs. Suppose that Y, Z and a satisfy 
the same conditions as in Theorem 3.1. For all 1 < i 5 k, k > 2 and > 0 
with maxi ri < 1 and c & ~  ri > P/(2 - p),  we obtain as n -, oo 

as n -+ oo. Here pp = E(IuIP) with u N(0 , l )  and 

k-1 i. k k-i. 

Proof: The proof is analogous to the previous one relying on the general- 
ized Holder inequality as in Theorem C.2. 0 
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Now we can see that we can get a distributional theory for the squared 
integrated volatility by using tripower variation. 

So far, our results of Theorem C.3 and C.4 are not feasible, since in gen- 
eral we do not know the variance, but it can be made feasible by plugging 
in a consistent and robust multipower estimator as we have deduced in the 
previous section. 

Example 4. Let us look at  a general model of the form 

where the Y is Lipschitz-continuous and independent of B. The ~ ( j )  are pure 
jump processes with Blumenthal-Getoor index less than one, which all may 
be correlated with all other components of the model. Hence we can have 
compound Poisson processes, Gamma processes, inverse Gaussian processes, 
stable processes with a < 1, CGMY processes with Y < 1. Now we look at  
the two most interesting cases: 

Estimation of Sot lu,lds: 
We need the absolute value for pricing volatility swaps. We get a consis- 
tent and robust estimator and the corresponding distributional theory by 
using bipower variation as an estimator for la,lds and for the variance 
term. 

Estimation of u:ds: 
We need the squared integrated volatility for pricing variance swaps. We 
get a consistent and robust estimator and the corresponding distributional 
theory by using tripower variation as an estimator for Sot uids and for the 
variance term. 
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