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Preface

From 26-30 September 2004, the “International Conference on Stochastic Fi-
nance 2004 took place at INSTITUTO SUPERIOR DE ECONOMIA E GESTAO
(ISEG) da Universidade Técnica de Lisboa, in Portugal. The conference was
one of the biggest international forums for scientists and practitioners working
in financial mathematics and financial engineering.

Taking place just before the conference, on 20-24 September 2004 was the
“Autumn School on Stochastic Finance 2004” hosted by the Universidade de
Coimbra. The goal of this event was to present instances of the interaction of
finance and mathematics by means of a coherent combination of five courses
of introductory lectures, delivered by specialists, in order to stimulate and
reinforce the understanding of the subject and to provide an opportunity for
graduate students and researchers to develop some competence in financial
mathematics and thereby simplify their participation in the conference.

At both meetings the organizing and scientific committees worked in close
contact, which was crucial for inviting many leading specialists in finan-
cial mathematics and financial engineering — eleven plenary lecturers and
eleven invited speakers. Besides these presentations, the conference included
more than eighty contributed talks distributed among eight thematic ses-
sions: Mathematical Finance—Stochastic Models, Derivative Pricing, Interest
Rate Term Structure Modelling, Portfolio Management, Integrated Risk Man-
agement, Mathematical Economics, Finance, and Quantitative and Computa-
tional Models and Methods.

Stochastic financial mathematics is now one of the most rapidly developing
fields of mathematics and applied mathematics. It has very close ties with
economics and is oriented to the solution of problems appearing every day
in real financial markets. We recall here an extract from the “Editorial” note
presented in volume 1, issue 1 of the journal Finance and Stochastics that
Springer-Verlag began publishing in 1997:



VI Preface

“Nearly a century ago, Louis Bachelier published his thesis “Théorie
de la speculation”, Ann. Sci. Ecole Norm. Sup. 3 (1900), in which he in-
vented Brownian motion as a tool for the analysis of financial markets.
A.N. Kolmogorov, in his own landmark work “Uber die analytischen
Methoden in der Wahrscheinlichkeitsrechnung”, Math. Annalen 104
(1931), pp.415-458, credits Bachelier with the first systematic study
of stochastic processes in continuous time. But in addition, Bache-
lier’s thesis marks the beginning of the theory of option pricing, now
an integral part of modern finance. Thus the year 1900 may be consid-
ered as birth date of both Finance and Stochastics. For the first seven
decades following Bachelier, finance and stochastics followed more or
less independently. The theory of stochastic processes grew fast and
incorporating classical calculus became a powerful mathematical tool
— called stochastic calculus. Finance lay dormant until the middle
of the twentieth century, and then was resurrected as an offshoot of
general equilibrium theory in economics. With the work in the late
1960s and early 1970s of Black, Merton, Samuelson and Scholes, mod-
elling stock prices as geometric Brownian motion and using this model
to study equilibrium and arbitrage pricing, the two disciplines were
reunited. Soon it was discovered how well suited stochastic calculus
with its rich mathematical structure — martingale theory, It6 calcu-
lus, stochastic integration and PDE’s — was for a rigorous analysis of
contemporary finance, which would lead one to believe (erroneously)
that also these tools were invented with the application to finance in
mind. Since then the interplay of these two disciplines has become an
ever growing research field with great impact both on the theory and
practice of financial markets”.

The aims formulated in this text were the leading ideas for our conference.
Indeed, all talks had, first of all, financial meanings and interpretations. All
talks used and developed stochastic methods or solutions for real problems.
Such joint mutual collaboration was useful both for financial economics and
stochastic theory, and it could bring the mathematical and financial commu-
nities together.

In the present volume the reader can find some papers based on the plenary
and invited lectures and on some contributed talks selected for publication.

The editorial committee of these proceedings expresses its deep gratitude
to those who contributed their work to this volume and those who kindly
helped us in refereeing them.

It is our pleasure to express our thanks to the scientific committee of the
conference, as well as to plenary and invited lecturers and all the participants
of Stochastic Finance 2004; their presence and their work formed the main
contribution to the success of the conference.



Preface VII

A special acknowledgement is due to the Governador do Banco de Por-
tugal (Governor of the Portuguese Central Bank) for his sharp advice and
sponsorship of the event.

We thank the financial supporters:

Arkimed Innovative Technologies,
Associacdo Portuguesa de Seguradores,
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for the viability of the event. We thank the staff that at different moments
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Julia Marmelada (public relations).

Thanks are due to Béatrice Huberty, the cditorial secretary who prepared
this volume, for her proficiency and dedicated work.

Our appreciation goes John Martindale and Robert Saley, editor and as-
sistant editor of Springer, respectively, for their continuous support and active
interest in the development of this project.

We sincerely hope that this volume will be an essential contribution to the
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Albert Shiryaev

Maria do Rosdrio Grossinho

Lisbon, Paulo Eduardo Oliveira
Manuel Leote Esquivel



International Conference
Stochastic Finance 2004
Lisbon, 26-30 September

Chairpersons
- Albert N. Shiryaev - Scientific Committee
Steklov Mathematical Institute, Moscow, Russia

- Maria do Rosdrio Grossinho - Organizing Committee
ISEG, Universidade Técnica de Lisboa, Portugal

Scientific Committee

- Ole Barndorff-Nielsen, University of Aarhus, Denmark
- E'rnst Eberlein, University of Freiburg, Germany
- Albert N. Shiryaev, Steklov Mathematical Institute, Moscow, Russia

Organizing Committee

- Paulo Brito, ISEG, Universidade Técnica de Lisboa, Portugal

- Manuel L. Esquivel, FCT, Universidade Nova de Lisboa, Portugal

- Maria do Rosdrio Grossinho, ISEG, Univ. Técnica de Lisboa, Portugal
- Joao Nicolau, ISEG, Universidade Técnica de Lisboa, Portugal

- Paulo Eduardo Oliveira, Universidade de Coimbra, Portugal



Plenary Lecturers

- Yacine Ait-Sahalia, Princeton University, USA

- Ole E. Barndorff-Nielsen, University of Aarhus, Denmark
- Tomas Bjork, Stockholm School of Economics, Sweden

- Hans Féllmer, Humboldt Universitdt zu Berlin, Germany

- Paul Embrechts, ETH Zurich, Switzerland

- Toannis Karatzas, Columbia University, USA

- Nicole El Karoui, Ecole Polytechnique, Palaiseau, France

- Stanley Pliska, University of Illinois at Chicago, USA

- Marek Rutkowski, Warsaw University of Technology, Poland
- Eckhard Platen, University of Technology, Sydney, Australia
- Albert Shiryaev, Steklov Mathematical Institute, Russia

Invited Speakers

- Bent Jesper Christensen, University of Aarhus, Denmark

- Ernst Eberlein, University of Freiburg, Germany

- Monique Jeanblanc, Université d’Evry Val d’Essonne, France

- Youri Kabanov, Université de Franche-Comté, France

- Claudia Kliieppelberg, Miinchen University of Technology, Germany
- Dmitry Kramkov, Carnegie Mellon University, USA

- Yoshio Miyahara, Nagoya City University, Japan

- Marek Musiela, BNP Paribas Bank

- Wolfgang Runggaldier, Universitd di Padova, Italy

- Walter Schachermayer, Vienna University of Technology, Austria
- Michael Sperensen, University of Copenhagen, Denmark

- Nizar Touzi, CREST, Laboratoire de Finance et Assurance, France
- Xun-Yu Zhou, The Chinese University of Hong Kong



Contents

Part I Plenary and Invited Lectures

1 How Often to Sample a Continuous-Time Process in the
Presence of Market Microstructure Noise
Yacine Ait-Sahalia, Per A. Mykland, Lan Zhang .....................

2 Multipower Variation and Stochastic Volatility
Ole E. Barndorff-Nielsen, Neil Shephard ............................

3 Completeness of a General Semimartingale Market under
Constrained Trading
Tomasz R. Bielecki, Monique Jeanblanc, Marek Rutkowski ............

4 Extremal behavior of stochastic volatility models
Vicky Fasen, Claudia Klippelberg, Alexander Lindner.................

5 Capital Asset Pricing for Markets with Intensity Based
Jumps
Eckhard Platen . ... o e

6 Mortgage Valuation and Optimal Refinancing
Stanley R. Pliska ... ... .. 0 i i e

7 Computing efficient hedging strategies in discontinuous
market models
Wolfgang J.Runggaldier, Sara Di Emidio. ..............cccovunvinn..

8 A Downside Risk Analysis based on Financial Index
Tracking Models
Lian Yu, Shuzhong Zhang, Xun Yu Zhow.........coiviiin ...



XII Contents

Part II Contributed Talks

9 Modelling electricity prices by the potential jump-diffusion
Svetlana Borovkova, Ferry Jaya Permana ......... ... ccovviinnoon.

10 Finite dimensional Markovian realizations for forward
price term structure models
Raquel M. Gaspar. .. ... ... i

11 Good Portfolio Strategies under Transaction Costs: A
Renewal Theoretic Approach
Albrecht Irle, JOrn Sass . ... i e

12 Power and Multipower Variation: inference for high
frequency data
Jeannette H.C. WOETTET ..ot e



List of Contributors

Albrecht Irle
Mathematisches Seminar
Universitidt Kiel

D-24098 Kiel, Germany
irle@math.uni-kiel.de

Alexander Lindner

Center for Mathematical Sciences
Munich University of Technology
D-85747 Garching, Germany
lindner@ma.tum.de

Claudia Klippelberg

Center for Mathematical Sciences
Munich University of Technology
D-85747 Garching, Germany
cklu@ma.tum.de

Eckhard Platen

University of Technology Sydney,
School of Finance & Economics
and Department of Mathematical
Sciences

PO Box 123

Broadway, NSW, 2007, Australia
eckhard.platen@uts.edu.au

Ferry Jaya Permana

Delft University of Technology
Mekelweg 4

2628 CD Delft, The Netherlands
f.j.permana@ewi.tudelft.nl

Jeannette H.C. Woerner
Institut fiir Mathematische
Stochastik, Universitat Gottingen
Maschmiihlenweg 8-10

D-37073 Géttingen, Germany
woerner@math.uni-goettingen.de

Jorn Sass

RICAM, Austrian Academy of
Sciences

Altenberger Str. 69

A-4040 Linz, Austria
joern.sass@oeaw.ac.at

Lan Zhang

Department of Statistics
Carnegie Mellon University
Pittsburgh, PA 15213, USA
lzhang@stat.cmu.edu

Lian Yu

Department of Industrial Engineer-
ing and Operations Research
University of California

Berkeley, CA 94720
liany@ieor.berkeley.edu

Marek Rutkowski

School of Mathematics
University of New South Wales
Sydney, NSW 2052, Australia
marekr@maths.unsw.edu.au



XIV  List of Contributors

Monique Jeanblanc

Département de Mathématiques
Université d’Evry Val d’Essonne
91025 Evry Cedex, France
monique. jeanblanc@univ-evry.fr

Neil Shephard

Nuffield College

Oxford OX1 INF, U.K.
neil.shephard@nuf.ox.ac.uk

Ole E. Barndorff-Nielsen
Department of Mathematical
Sciences, University of Aarhus
Ny Munkegade

DK-8000 Aarhus C, Denmark
oebn@imf .au.dk

Per A. Mykland
Department of Statistics
The University of Chicago
Chicago, IL 60637, USA
mykland@uchicago.edu

Raquel M. Gaspar

Department of Finance, Stockholm
School of Economics

Dept. Finance, P.O. Box 6501

113 83 Stockholm, Sweden
raquel.gaspar@hhs. se

Sara Di Emidio

Dipartimento di Matematica Pura
ed Applicata

Universita di Padova

Padova, Italy
sara.diemidio@gmail.com

Shuzhong Zhang

Department of Systems Engineering
and Engineering Management

The Chinese University of Hong
Kong Shatin

Hong Kong

zhang@se. cuhk.edu.hk

Stanley R. Pliska

Department of Finance, University
of lllinois at Chicago

601 S. Morgan Street

Chicago, IL 60607-7124 USA
srpliskaQuic.edu

Svetlana Borovkova

Delft University of Technology
Mekelweg 4

2628 CD Delft, The Netherlands
s.a.borovkova®ewi.tudelft.nl

Tomasz R. Bielecki

Department of Applied Mathematics
Illinois Institute of Technology
Chicago, IL 60616, USA
bielecki@iit.edu

Vicky Fasen

Center for Mathematical Sciences
Munich University of Technology
D-85747 Garching, Germany
fasen@ma.tum.de

Wolfgang J.Runggaldier
Dipartimento di Matematica Pura
ed Applicata

Universita di Padova

Padova, Italy
runggal@math.unipd.it

Xun Yu Zhou

Department of Systems Engineering
and Engineering Management

The Chinese University of Hong
Kong Shatin

Hong Kong
xyzhou@se.cuhk.edu.hk

Yacine Ait-Sahalia
Bendheim Center for Finance,
Princeton University,
Princeton, NJ 08540, USA

yacine@princeton.edu



Part I

Plenary and Invited Lectures



1

How Often to Sample a Continuous-Time
Process in the Presence of Market
Microstructure Noise*

Yacine Ait-Sahalia, Per A. Mykland, and Lan Zhang

! Bendheim Center for Finance, Princeton University, Princeton, NJ 08540 and

NBER
yacine@princeton.edu

2 Department of Statistics, The University of Chicago, Chicago, IL 60637
mykland@Quchicago.edu

3 Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213
lzhang@stat.cmu.edu

Note: Reprint of: Yacine Ait-Sahalia, Per A. Mykland and Lan Zhang, How
Often to Sample a Continuous-Time Process in the Presence of Market Mi-
crostructure Noise, Review of Financial Studies, published in Volume 18 2
(2005), pages 351-416, Oxford University Press (by permission of Oxford Uni-
versity Press).

Summary. In theory, the sum of squares of log returns sampled at high frequency
estimates their variance. When market microstructure noise is present but unac-
counted for, however, we show that the optimal sampling frequency is finite and
derive its closed-form expression. But even with optimal sampling, using say five
minute returns when transactions are recorded every second, a vast amount of data
is discarded, in contradiction to basic statistical principles. We demonstrate that
modelling the noise and using all the data is a better solution, even if one misspec-
ifies the noise distribution. So the answer is: sample as often as possible.

Over the past few years, price data sampled at very high frequency have
become increasingly available, in the form of the Olsen dataset of currency
exchange rates or the TAQ database of NYSE stocks. If such data were not
affected by market microstructure noise, the realized volatility of the process

* We are grateful for comments and suggestions from the editor, Maureen O’Hara,
and two anonymous referees, as well as seminar participants at Berkeley, Harvard,
NYU, MIT, Stanford, the Econometric Society and the Joint Statistical Meet-
ings. Financial support from the NSF under grants SBR-0111140 (Ait-Sahalia),
DMS-0204639 (Mykland and Zhang) and the NIH under grant RO1 AG023141-01
(Zhang) is also gratefully acknowledged.
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(i.e., the average sum of squares of log-returns sampled at high frequency)
would estimate the returns’ variance, as is well known. In fact, sampling as
often as possible would theoretically produce in the limit a perfect estimate
of that variance.

We start by asking whether it remains optimal to sample the price process
at very high frequency in the presence of market microstructure noise, con-
sistently with the basic statistical principle that, ceteris paribus, more data
is preferred to less. We first show that, if noise is present but unaccounted
for, then the optimal sampling frequency is finite, and we derive a closed-form
formula for it. The intuition for this result is as follows. The volatility of the
underlying efficient price process and the market microstructure noise tend to
behave differently at different frequencies. Thinking in terms of signal-to-noise
ratio, a log-return observed from transaction prices over a tiny time interval
is mostly composed of market microstructure noise and brings little informa-
tion regarding the volatility of the price process since the latter is (at least
in the Brownian case) proportional to the time interval separating successive
observations. As the time interval separating the two prices in the log-return
increases, the amount of market microstructure noise remains constant, since
each price is measured with error, while the informational content of volatil-
ity increases. Hence very high frequency data are mostly composed of market
microstructure noise, while the volatility of the price process is more apparent
in longer horizon returns. Running counter to this effect is the basic statistical
principle mentioned above: in an idealized setting where the data are observed
without error, sampling more frequently cannot hurt. What is the right bal-
ance to strike? What we show is that these two effects compensate each other
and result in a finite optimal sampling frequency (in the root mean squared
error sense) so that some time aggregation of the returns data is advisable.

By providing a quantitative answer to the question of how often one should
sample, we hope to reduce the arbitrariness of the choices that have been
made in the empirical literature using high frequency data: for example, using
essentially the same Olsen exchange rate series, these somewhat ad hoc choices
range from 5 minute intervals (e.g., [5], [8] and [19]) to as long as 30 minutes
(e.g., [6]). When calibrating our analysis to the amount of microstructure noise
that has been reported in the literature, we demonstrate how the optimal
sampling interval should be determined: for instance, depending upon the
amount of microstructure noise relative to the variance of the underlying
returns, the optimal sampling frequency varies from 4 minutes to 3 hours, if
1 day’s worth of data is used at a time. If a longer time period is used in
the analysis, then the optimal sampling frequency can be considerably longer
than these values.

But even if one determines the sampling frequency optimally, it remains
the case that the empirical researcher is not making use of the full data at
his/her disposal. For instance, suppose that we have available transaction
records on a liquid stock, traded once every second. Over a typical 6.5 hour
day, we therefore start with 23, 400 observations. If one decides to sample once
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every 5 minutes, then — whether or not this is the optimal sampling frequency -
this amounts to retaining only 78 observations. Said differently, one is throwing
away 299 out of every 300 transactions. From a statistical perspective, this
is unlikely to be the optimal solution, even though it is undoubtedly better
than computing a volatility estimate using noisy squared log-returns sampled
every second. Somehow, an optimal solution should make use of all the data,
and this is where our analysis goes next.

So, if one decides to account for the presence of the noise, how should one
go about doing it? We show that modelling the noise term explicitly restores
the first order statistical effect that sampling as often as possible is optimal.
This will involve an estimator different from the simple sum of squared log-
returns. Since we work within a fully parametric framework, likelihood is the
key word. Hence we construct the likelihood function for the observed log-
returns, which include microstructure noise. To do so, we must postulate a
model for the noise term. We assume that the noise is Gaussian. In light of
what we know from the sophisticated theoretical microstructure literature,
this is likely to be overly simplistic and one may well be concerned about the
effect(s) of this assumption. Could it do more harm than good? Surprisingly,
we demonstrate that our likelihood correction, based on Gaussianity of the
noise, works even if one misspecifies the assumed distribution of the noise
term. Specifically, if the econometrician assumes that the noise terms are
normally distributed when in fact they are not, not only is it still optimal to
sample as often as possible (unlike the result when no allowance is made for
the presence of noise), but the estimator has the same variance as if the noise
distribution had been correctly specified. This robustness result is, we think,
a major argument in favor of incorporating the presence of the noise when
estimating continuous time models with high frequency financial data, even if
one is unsure about what is the true distribution of the noise term.

In other words, the answer to the question we pose in our title is “as
often as possible”, provided one accounts for the presence of the noise when
designing the estimator (and we suggest maximum likelihood as a means of
doing so). If one is unwilling to account for the noise, then the answer is to
rely on the finite optimal sampling frequency we start our analysis with, but
we stress that while it is optimal if one insists upon using sums of squares of
log-returns, this is not the best possible approach to estimate volatility given
the complete high frequency dataset at hand.

In a companion paper ([43]), we study the corresponding nonparametric
problem, where the volatility of the underlying price is a stochastic process,
and nothing else is known about it, in particular no parametric structure.
In that case, the object of interest is the integrated volatility of the process
over a fixed time interval, such as a day, and we show how to estimate it
using again all the data available (instead of sparse sampling at an arbitrarily
lower frequency of, say, 5 minutes). Since the model is nonparametric, we
no longer use a likelihood approach but instead propose a solution based
on subsampling and averaging, which involves estimators constructed on two
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different time scales, and demonstrate that this again dominates sampling at
a lower frequency, whether arbitrary or optimally determined.

This paper is organized as follows. We start by describing in Section 1.1
our reduced form setup and the underlying structural models that support
it. We then review in Section 1.2 the base case where no noise is present,
before analyzing in Section 1.3 the situation where the presence of the noise is
ignored. In Section 1.4, we examine the concrete implications of this result for
empirical work with high frequency data. Next, we show in Section 1.5 that
accounting for the presence of the noise through the likelihood restores the
optimality of high frequency sampling. Our robustness results are presented
in Section 1.6 and interpreted in Section 1.7. We study the same questions
when the observations are sampled at random time intervals, which are an
essential feature of transaction-level data, in Section 1.8. We then turn to
various extensions and relaxation of our assumptions in Section 1.9: we add
a drift term, then serially correlated and cross-correlated noise respectively.
Section 1.10 concludes. All proofs are in the Appendix.

1.1 Setup

Our basic setup is as follows. We assume that the underlying process of in-
terest, typically the log-price of a security, is a time-homogenous diffusion on
the real line

dXy = u(Xy; 0)dt + odWy, (1.1)

where Xo = 0, W; is a Brownian motion, u(.,.) is the drift function, o2
the diffusion coefficient and 8 the drift parameters, 8 € @ and ¢ > 0. The
parameter space is an open and bounded set. As usual, the restriction that
o is constant is without loss of generality since in the univariate case a one-
to-one transformation can always reduce a known specification o(X;) to that
case. Also, as discussed in [4], the properties of parametric estimators in this
model are quite different depending upon whether we estimate 6 alone, o2
alone, or both parameters together. When the data are noisy, the main effects
that we describe are already present in the simpler of these three cases, where
o? alone is estimated, and so we focus on that case. Moreover, in the high
frequency context we have in mind, the diffusive component of (1.1) is of order
(dt)}/? while the drift component is of order dt only, so the drift component
is mathematically negligible at high frequencies. This is validated empirically:
including a drift actually deteriorates the performance of variance estimates
from high frequency data since the drift is estimated with a large standard
error. Not centering the log returns for the purpose of variance estimation
produces more accurate results (see [38]). So we simplify the analysis one step
further by setting p = 0, which we do until Section 1.9.1, where we then show
that adding a drift term does not alter our results. In Section 1.9.4, we discuss
the situation where the instantaneous volatility ¢ is stochastic.
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But for now,
Xt = O’Wt . (12)

Until Section 1.8, we treat the case where the observations occur at equidistant
time intervals A, in which case the parameter o2 is therefore estimated at
time T on the basis of N + 1 discrete observations recorded at times 79 = 0,
1 =A4,.,7w = NA = T. In Section 1.8, we let the sampling intervals be
themselves random variables, since this feature is an essential characteristic
of high frequency transaction data.

The notion that the observed transaction price in high frequency financial
data is the unobservable efficient price plus some noise component due to the
imperfections of the trading process is a well established concept in the market
microstructure literature (see for instance [10]). So, where we depart from the
inference setup previously studied in [4] is that we now assume that, instead
of observing the process X at dates 7;, we observe X with error:

X, =X. 4+ U, (1.3)

where the U/ s are i.i.d. noise with mean zero and variance a? and are inde-
pendent of the W process. In that context, we view X as the efficient log-price,
while the observed X is the transaction log-price. In an efficient market, X is
the log of the expectation of the final value of the security conditional on all
publicly available information at time ¢. It corresponds to the log-price that
would be in effect in a perfect market with no trading imperfections, frictions,
or informational effects. The Brownian motion W is the process representing
the arrival of new information, which in this idealized setting is immediately
impounded in X.

By contrast, U, summarizes the noise generated by the mechanics of the
trading process. What we have in mind as the source of noise is a diverse ar-
ray of market microstructure effects, either information or non-information re-
lated, such as the presence of a bid-ask spread and the corresponding bounces,
the differences in trade sizes and the corresponding differences in representa-
tiveness of the prices, the different informational content of price changes due
to informational asymmetries of traders, the gradual response of prices to a
block trade, the strategic component of the order flow, inventory control ef-
fects, the discreteness of price changes in markets that are not decimalized,
etc., all summarized into the term U. That these phenomena are real are
important is an accepted fact in the market microstructure literature, both
theoretical and empirical. One can in fact argue that these phenomena justify
this literature.

We view (1.3) as the simplest possible reduced form of structural market
microstructure models. The efficient price process X is typically modelled as
a random walk, i.e., the discrete time equivalent of (1.2). Our specification co-
incides with that of [29], who discusses the theoretical market microstructure
underpinnings of such a model and argues that the parameter a is a summary
measure of market quality. Structural market microstructure models do gen-
erate (1.3). For instance, [39] proposes a model where U is due entirely to
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the bid-ask spread. [28] notes that in practice there are sources of noise other
than just the bid-ask spread, and studies their effect on the Roll model and
its estimators.

Indeed, a disturbance U can also be generated by adverse selection effects
as in [20] and [21], where the spread has two components: one that is due to
monopoly power, clearing costs, inventory carrying costs, etc., as previously,
and a second one that arises because of adverse selection whereby the specialist
is concerned that the investor on the other side of the transaction has superior
information. When asymmetric information is involved, the disturbance U
would typically no longer be uncorrelated with the W process and would
exhibit autocorrelation at the first order, which would complicate our analysis
without fundamentally altering it: see Sections 1.9.2 and 1.9.3 where we relax
the assumptions that the U's are serially uncorrelated and independent of the
W process, respectively.

The situation where the measurement error is primarily due to the fact
that transaction prices are multiples of a tick size (i.e., X,, = mix where &
is the tick size and m; is the integer closest to X, /x) can be modelled as a
rounding off problem (see [14], [23] and [31]). The specification of the model
in [27] combines both the rounding and bid-ask effects as the dual sources of
the noise term U. Finally, structural models, such as that of [35], also give
rise to reduced forms where the observed transaction price X takes the form
of an unobserved fundamental value plus error.

With (1.3) as our basic data generating process, we now turn to the ques-
tions we address in this paper: how often should one sample a continuous-time
process when the data are subject to market microstructure noise, what are
the implications of the noise for the estimation of the parameters of the X
process, and how should one correct for the presence of the noise, allowing for
the possibility that the econometrician misspecifies the assumed distribution
of the noise term, and finally allowing for the sampling to occur at random
points in time? We proceed from the simplest to the most complex situation
by adding one extra layer of complexity at a time: Figure 1.1 shows the three
sampling schemes we consider, starting with fixed sampling without market
microstructure noise, then moving to fixed sampling with noise and concluding
with an analysis of the situation where transaction prices are not only subject
to microstructure noise but are also recorded at random time intervals.

1.2 The Baseline Case: No Microstructure Noise

We start by briefly reviewing what would happen in the absence of market
microstructure noise, that is when a = 0. With X denoting the log-price,
the first differences of the observations are the log-returns Y; = X’n — f(n_l,
i =1,.., N. The observations Y; = o (W-,,, — Wy,) are then i.i.d. N(0,0%4)
so the likelihood function is

I(0?) = —N1n(210%4)/2 — (202A)71Y'Y, (1.4)
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where Y = (Y3, ..., Yn)’.. The maximum-likelihood estimator of o2 coincides
with the discrete approximation to the quadratic variation of the process

1 N
= TZY? (1.5)
i=1

which has the following exact small sample moments:

ZE o N,

T

Var [ = — Var

N
1 N 20%A
E Y2 = 73 (;Zl Var [Yf]) =73 (204A2) ==

and the following asymptotlc distribution

T1/? (6% — o?) P N(0,w), (1.6)
where B
w = AVAR(6?) = AE [-i’(oﬂ)] =204A. (1.7)
Thus selecting A as small as possible is optimal for the purpose of estimating
2
c*.

1.3 When the Observations Are Noisy But the Noise Is
Ignored

Suppose now that market microstructure noise is present but the presence
of the U’s is ignored when estimating 2. In other words, we use the log-
likelihood (1.4) even though the true structure of the observed log-returns
Y/s is given by an MA(1) process since

Y= Xri - X'n‘l
=Xy =X +Ur, = Up,
=0 (Wr ~Wr_,)+Up ~Ur_,
=g+ 121, (1.8)

where the £{s are uncorrelated with mean zero and variance v? (if the U's are

normally distributed, then the €}s are 1.i.d.). The relationship to the original

parametrization (02, a?) is given by

Y3(14n%) = Var[Y;] = 02 A + 202 (1.9)
v*n = Cov(Y;,Yiy) = —a?. (1.10)
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Equivalently, the inverse change of variable is given by

y? = % {2a2 + %A+ /02 A (4a? + aZA)} (1.11)

n= 2%2 {—2a2 — 02A+ /o2 A (4a® 1 UQA)} . (1.12)

Two important properties of the log-returns Y/s emerge from the two
equations (1.9)-(1.10). First, it is clear from (1.9) that microstructure noise
leads to spurious variance in observed log-returns, o2A + 2a? vs. 02A. This
is consistent with the predictions of theoretical microstructure models. For
instance, [16] develop a model linking the arrival of information, the timing
of trades, and the resulting price process. In their model, the transaction
price will be a biased representation of the efficient price process, with a
variance that is both overstated and heteroskedastic as a result of the fact
that transactions (hence the recording of an observation on the process X)
occur at intervals that are time-varying. While our specification is too simple
to capture the rich joint dynamics of price and sampling times predicted by
their model, heteroskedasticity of the observed variance will also arise in our
case once we allow for time variation of the sampling intervals (see Section 1.8
below).

In our model, the proportion of the total return variance that is market
microstructure-induced is

_ 2 1.13)
T 924 1 242 (1
at observation interval A. As A gets smaller, m gets closer to 1, so that a
larger proportion of the variance in the observed log-return is driven by mar-
ket microstructure frictions, and correspondingly a lesser fraction reflects the
volatility of the underlying price process X.

Second, (1.10) implies that —1 < 7 < 0, so that log-returns are (neg-
atively) autocorrelated with first order autocorrelation —a?/(024A + 2a?) =
—m/2. It has been noted that market microstructure noise has the potential
to explain the empirical autocorrelation of returns. For instance, in the simple
Roll model, U; = (s/2)Q: where s is the bid/ask spread and @, the order flow
indicator, is a binomial variable that takes the values +1 and —1 with equal
probability. Therefore Var[U;] = a® = s2/4. Since Cov(Y;,Yi_1) = —a?, the
bid/ask spread can be recovered in this model as s = 2,/=p where p = v%y
is the first order autocorrelation of returns. [18] proposed to adjust variance
estimates to control for such autocorrelation and [28] studied the resulting
estimators. In [41], U arises because of the strategic trading of institutional
investors which is then put forward as an explanation for the observed serial
correlation of returns. [33] show that infrequent trading has implications for
the variance and autocorrelations of returns. Other empirical patterns in high
frequency financial data have been documented: leptokurtosis, deterministic
patterns and volatility clustering.
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Our first result shows that the optimal sampling frequency is finite when
noise is present but unaccounted for. The estimator 62 obtained from maxi-
mizing the misspecified log-likelihood (1.4) is quadratic in the ¥}s : see (1.5).
In order to obtain its exact (i.e., small sample) variance, we therefore need to
calculate the fourth order cumulants of the Y}'s since

Cov (Y2, Y}) = 2Cov (Y;,Y;)* + Cum(Y;, Y;, Y}, Y;) (1.14)

(see e.g., Section 2.3 of [36] for definitions and properties of the cumulants).
We have:

Lemma 1. The fourth cumulants of the log-returns are given by

Cum()/ia Y}'a Yk;, Yi) =
2 Cumy (U] ifi=j=k=I,
(—=1)*CikD Cumy [U], if max(i, 4, k,1) = min(i, 4, k,1) + 1, (1.15)
0 otherwise,

where s(i, 7, k,1) denotes the number of indices among (i, j, k,1) that are equal
to min(%, 4, k,1) and U denotes a generic random variable with the common
distribution of the U s. Its fourth cumulant is denoted Cumy [U].

Now U has mean zero, so in terms of its moments
Cumy [U] = E [UY] -3 (E [U?])*. (1.16)

In the special case where U is normally distributed, Cumy [U] = 0 and as a
result of (1.14) the fourth cumulants of the log-returns are all 0 (since W is
normal, the log-returns are also normal in that case). If the distribution of U
is binomial as in the simple bid/ask model described above, then Cumy [U] =
—s%/8; since in general s will be a tiny percentage of the asset price, say
s = 0.05%, the resulting Cumy [U] will be very small.

We can now characterize the root mean squared error

RMSE [&2] = ((E [&2] - 02)2 + Var [62]>1/2

of the estimator:

Theorem 1. In small samples (finite T'), the bias and variance of the esti-
mator 62 are given by

E[6%] —0® = — (1.17)
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Var [6%] = 2 (0A% +40%Aa® + 62 +2Cumq [U])
TA
2 (2a* + Cumy [U])
T2 '
Its RMSE has a unique minimum in A which is reached at the optimal sam-
pling interval

(1.18)

A = <2a4T>1/3 1~ \/ 2@ Camu)'
o4 2704a8T?
: s (1.19)
eyae——
As T grows, we have
A* = 22:;—‘/‘:/3?/3 +0 <#> : (1.20)

The trade-off between bias and variance made explicit in (1.17)-(1.19) is
not unlike the situation in nonparametric estimation with A~? playing the role
of the bandwidth k. A lower h reduces the bias but increases the variance,
and the optimal choice of h balances the two effects.

Note that these are exact small sample expressions, valid for all T. Asymp-
totically in T, Var [62] — 0, and hence the RMSE of the estimator is dom-
inated by the bias term which is independent of T. And given the form of
the bias (1.17), one would in fact want to select the largest A possible to
minimize the bias (as opposed to the smallest one as in the no-noise case of
Section 1.2). The rate at which A* should increase with T is given by (1.20).
Also, in the limit where the noise disappears (a — 0 and Cumy [U] — 0), the
optimal sampling interval A* tends to 0.

How does a small departure from a normal distribution of the microstruc-
ture noise affect the optimal sampling frequency? The answer is that a small
positive (resp. negative) departure of Cum 4 [U] starting from the normal value
of 0 leads to an increase (resp. decrease) in A*, since

A" = A;ormalJf'
2/3 2/3
<<1+ 1—7?2—“;;> —<1—,/1—7?2—“;;> )
3 91/3,44/371/3, /1 — T22a: o8/3

+0 (Curn4 [U]2> ,

+

Cum4 U]+ (1.21)
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where Ay . is the value of A* corresponding to Cumy [U] = 0. And of
course the full formula (1.20) can be used to get the exact answer for any
departure from normality instead of the comparative static one.

Another interesting asymptotic situation occurs if one attempts to use
higher and higher frequency data (A — 0, say sampled every minute) over a
fixed time period (7 fixed, say a day). Since the expressions in Theorem 1 are
exact small sample ones, they can in particular be specialized to analyze this

situation. With n = T'/A, it follows from (1.17)-(1.19) that

E[5%] = 22?2 +o(n) = gﬁ%—@—ﬂ +o(n), (1.22)
Var [6%] = 2n (6a* +;2(3um4 1) +o(n) = @%ﬂ +o(n), (1.23)

so (T'/2n)6? becomes an estimator of E [U?] = a® whose asymptotic variance
isE [U 4] . Note in particular that 52 estimates the variance of the noise, which
is essentially unrelated to the object of interest o. This type of asymptotics
is relevant in the stochastic volatility case we analyze in our companion paper
[43].

Our results also have implications for the two parallel tracks that have de-
veloped in the recent financial econometrics literature dealing with discretely
observed continuous-time processes. One strand of the literature has argued
that estimation methods should be robust to the potential issues arising in
the presence of high frequency data and, consequently, be asymptotically valid
without requiring that the sampling interval A separating successive observa-
tions tend to zero (see, e.g., [2], [3] and [26]). Another strand of the literature
has dispensed with that constraint, and the asymptotic validity of these meth-
ods requires that A tend to zero instead of or in addition to, an increasing
length of time T over which these observations are recorded (see, e.g., [6], [7]
and [8]).

The first strand of literature has been informally warning about the poten-
tial dangers of using high frequency financial data without accounting for their
inherent noise (see e.g., page 529 of [2]), and we propose a formal modeliza-
tion of that phenomenon. The implications of our analysis are most salient
for the second strand of the literature, which is predicated on the use of high
frequency data but does not account for the presence of market microstruc-
ture noise. Our results show that the properties of estimators based on the
local sample path properties of the process (such as the quadratic variation to
estimate 02?) change dramatically in the presence of noise. Complementary to
this are the results of [22] which show that the presence of even increasingly
negligible noise is sufficient to adversely affect the identification of o2.
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1.4 Concrete Implications for Empirical Work with High
Frequency Data

The clear message of Theorem 1 for empirical researchers working with high
frequency financial data is that it may be optimal to sample less frequently.
As discussed in the Introduction, authors have reduced their sampling fre-
quency below that of the actual record of observations in a somewhat ad hoc
fashion, with typical choices 5 minutes and up. Our analysis provides not only
a theoretical rationale for sampling less frequently, but also delivers a precise
answer to the question of “how often one should sample?” For that purpose,
we need to calibrate the parameters appearing in Theorem 1, namely o, «,
Cumy[U], A and T. We assume in this calibration exercise that the noise is
Gaussian, in which case Cumy[U] = 0.

1.4.1 Stocks

We use existing studies in empirical market microstructure to calibrate the
parameters. One such study is [35], who estimated on the basis of a sample of
274 NYSE stocks that approximately 60% of the total variance of price changes
is attributable to market microstructure effects (they report a range of values
for 7 from 54% in the first half hour of trading to 65% in the last half hour, see
their Table 4; they also decompose this total variance into components due to
discreteness, asymmetric information, transaction costs and the interaction
between these effects). Given that their sample contains an average of 15
transactions per hour (their Table 1), we have in our framework

m=60%, A=1/(15x7 x 252). (1.24)

These values imply from (1.13) that ¢ = 0.16% if we assume a realistic value of
o = 30% per year. (We do not use their reported volatility number since they
apparently averaged the variance of price changes over the 274 stocks instead
of the variance of the returns. Since different stocks have different price levels,
the price variances across stocks are not directly comparable. This does not
affect the estimated fraction m however, since the price level scaling factor
cancels out between the numerator and the denominator).

The magnitude of the effect is bound to vary by type of security, market
and time period. [29] estimates the value of a to be 0.33%. Some authors have
reported even larger effects. Using a sample of NASDAQ stocks, [32] estimate
that about 50% of the daily variance of returns in due to the bid-ask effect.
With o = 40% (NASDAQ stocks have higher volatility), the values

7= 50%, A=1/252

yield the value ¢ = 1.8%. Also on NASDAQ), [12] estimate that 11% of the
variance of weekly returns (see their Table 4, middle portfolio) is due to bid-
ask effects. The values
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T =11%, A=1/52

imply that @ = 1.4%.

In Table 1.1, we compute the value of the optimal sampling interval A*
implied by different combinations of sample length (T') and noise magnitude
(a). The volatility of the efficient price process is held fixed at o = 30% in
Panel A, which is a realistic value for stocks. The numbers in the table show
that the optimal sampling frequency can be substantially affected by even
relatively small quantities of microstructure noise. For instance, using the
value a = 0.15% calibrated from [35], we find an optimal sampling interval
of 22 minutes if the sampling length is 1 day; longer sample lengths lead
to higher optimal sampling intervals. With the higher value of ¢ = 0.3%,
approximating the estimate from [29], the optimal sampling interval is 57
minutes. A lower value of the magnitude of the noise translates into a higher
frequency: for instance, A* = 5 minutes if ¢ = 0.05% and T = 1 day. Figure
1.2 displays the RMSE of the estimator as a function of A and T, using
parameter values ¢ = 30% and a = 0.15%. The figure illustrates the fact that
deviations from the optimal choice of A lead to a substantial increase in the
RMSE: for example, with 7' = 1 month, the RMSE more than doubles if,
instead of the optimal A* =1 hour, one uses 4 = 15 minutes.

1.4.2 Currencies

Looking now at foreign exchange markets, empirical market microstructure
studies have quantified the magnitude of the bid-ask spread. For example, [9]
computes the average bid/ask spread s in the wholesale market for different
currencies and reports values of s = 0.05% for the German mark, and 0.06%
for the Japanese yen (see Panel B of his Table 2). We calculated the corre-
sponding numbers for the 1996-2002 period to be 0.04% for the mark (followed
by the euro) and 0.06% for the yen. Emerging market currencies have higher
spreads: for instance, s = 0.12% for Korea and 0.10% for Brazil. During the
same period, the volatility of the exchange rate was ¢ = 10% for the German
mark, 12% for the Japanese yen, 17% for Brazil and 18% for Korea. In Panel B
of Table 1.1, we compute A* with ¢ = 10%, a realistic value for the euro and
yen. As we noted above, if the sole source of the noise were a bid/ask spread
of size s, then a should be set to s/2. Therefore Panel B reports the values of
A* for values of a ranging from 0.02% to 0.1%. For example, the dollar/euro
or dollar/yen exchange rates (calibrated to o = 10%, a = 0.02%) should be
sampled every A* = 23 minutes if the overall sample length is 7 = 1 day, and
every 1.1 hours if T = 1 year.

Furthermore, using the bid/ask spread alone as a proxy for all microstruc-
ture frictions will lead, except in unusual circumstances, to an understatement
of the parameter a, since variances are additive. Thus, since A* is increasing
in a, one should interpret the value of A* read off 1.1 on the row corresponding
to a = s/2 as a lower bound for the optimal sampling interval.
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1.4.3 Monte Carlo Evidence

To validate empirically these results, we perform Monte Carlo simulations.
We simulate M = 10,000 samples of length 7' = 1 year of the process X,
add microstructure noise U to generate the observations X and then the log
returns Y. We sample the log-returns at various intervals A ranging from 5
minutes to 1 week and calculate the bias and variance of the estimator &2
over the M simulated paths. We then compare the results to the theoretical
values given in (1.17)-(1.19) of Theorem 1. The noise distribution is Gaussian,
o = 30% and a = 0.15% - the values we calibrated to stock returns data above.
Table 1.2 shows that the theoretical values are in close agreement with the
results of the Monte Carlo simulations.

The table also illustrates the magnitude of the bias inherent in sampling at
too high a frequency. While the value of o2 used to generate the data is 0.09,
the expected value of the estimator when sampling every 5 minutes is 0.18,
so on average the estimated quadratic variation is twice as big as it should be
in this case.

1.5 Incorporating Market Microstructure Noise
Explicitly

So far we have stuck to the sum of squares of log-returns as our estimator
of volatility. We then showed that, for this estimator, the optimal sampling
frequency is finite. But this implies that one is discarding a large proportion of
the high frequency sample (299 out of every 300 observations in the example
described in the Introduction), in order to mitigate the bias induced by market
microstructure noise. Next, we show that if we explicitly incorporate the U's
into the likelihood function, then we are back in the situation where the
optimal sampling scheme consists in sampling as often as possible — i.e., using
all the data available.

Specifying the likelihood function of the log-returns, while recognizing that
they incorporate noise, requires that we take a stand on the distribution of
the noise term. Suppose for now that the microstructure noise is normally dis-
tributed, an assumption whose effect we will investigate below in Section 1.6.
Under this assumption, the likelihood function for the Y’s is given by

I(n,7*) = —Indet(V)/2 — NIn(2my?)/2 — (27y*)" YV~ 1Y, (1.25)

where the covariance matrix for the vector Y = (Y1,..., Yn)' is given by v?V/,
where
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1+n? 7q 0 - 0
n 1+n* 7 :
V= [’Uij]i,jzlym,N = 0 n 1472 0 . (1.26)
0 -+ 0 nl+4n?
Further,
1 2N+2

and, neglecting the end effects, an approximate inverse of V is the matrix
2= [wij]i,j=1,...,N where

Wiz = (1 -n )—1 (_T])Ii_jl

(see [15]). The product V2 differs from the identity matrix only on the first

and last rows. The exact inverse is V! = [v¥ ]z’j:l _y Where
-1 -1 i o L
= (1=n2) 7 (U= ) T ()l () — ()2
(1.28)
_ (_n)2N+|i—j|+2+(_n)2N+i—j+2+(_n)2N—i+j+2}

(see [24] and [40]).

From the perspective of practical implementation, this estimator is nothing
else than the MLE estimator of an MA(1) process with Gaussian errors: any
existing computer routines for the MA(1) situation can therefore be applied
(see e.g., Section 5.4 in {25]). In particular, the likelihood function can be
expressed in a computationally efficient form by triangularizing the matrix V,
yielding the equivalent expression:

N 1 N
Z 271'd —§Z

&l"ﬁ;

(1.29)

l\DI;—-\

where )
2 14+ni+ . 4%

L IR S U

and the f’i’s are obtained recursively as Yy = Y; and for i = 2,...N:

Nt D) o
T2 ... 2G0T

Y- -

This latter form of the log-likelihood function involves only single sums as
opposed to double sums if one were to compute Y’V 'Y by brute force using
the expression of V! given above.
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We now compute the distribution of the MLE estimators of ¢2 and a2,
which follows by the delta method from the classical result for the MA(1)
estimators of v and 7 :

Proposition 1. When U is normally distributed, the MLE (62,4?%) is consis-
tent and its asymptotic variance is given by

AVARnorma,l(a'z, dz = (4 064 (40’2 + GZA) + 20'4A —UzAh(A, 0'27 a‘Z) )
[ ]

2 (2a® + 0*A) h(A, 0%,a?)

with

h(A,02,0%) = 2a* + /02 A (da? + 024) + 02 A. (1.30)

Since AVARormal(62) is increasing in A, it is optimal to sample as often
as possible. Further, since

AVAR ormal (62) = 80%aAY? 4 26% A 4 o(A) , (1.31)

the loss of efficiency relative to the case where no market microstructure noise
is present (and AVAR(6?) = 20 A as given in (1.7) if a® = 0 is not estimated,
or AVAR(6?) = 60*A if a® = 0 is estimated) is at order A2, Figure 1.3
plots the asymptotic variances of 62 as functions of A with and without
noise (the parameter values are again ¢ = 30% and a = 0.15%). Figure 1.4
reports histograms of the distributions of 62 and a2 from 10, 000 Monte Carlo
simulations with the solid curve plotting the asymptotic distribution of the
estimator from Proposition 1. The sample path is of length 7' = 1 year,
the parameter values the same as above, and the process is sampled every 5
minutes — since we are now accounting explicitly for the presence of noise,
there is no longer a reason to sample at lower frequencies. Indeed, the figure
documents the absence of bias and the good agreement of the asymptotic
distribution with the small sample one.

1.6 The Effect of Misspecifying the Distribution of the
Microstructure Noise

We now study the situation where one attempts to incorporate the presence
of the U’s into the analysis, as in Section 1.5, but mistakenly assumes a mis-
specified model for them. Specifically, we consider the case where the U’s are
assumed to be normally distributed when in reality they have a different dis-
tribution. We still suppose that the U’s are i.i.d. with mean zero and variance
a’.

Since the econometrician assumes the U’s to have a normal distribution,

inference is still done with the log-likelihood (02, a?), or equivalently I(r, v?)



1 How Often to Sample a Continuous-Time Process ... 19

given in (1.25), using (1.9)-(1.10). This means that the scores [,2 and lg2, or
equivalently (C.1) and (C.2), are used as moment functions (or “estimating
equations”). Since the first order moments of the moment functions only de-
pend on the second order moment structure of the log-returns (Y1,...,Yn),
which is unchanged by the absence of normality, the moment functions are
unbiased under the true distribution of the U’s :

Etrue[l.n] - Etrue [iyz] = 07 (132)

and similarly for {,2 and [,2. Hence the estimator (62,42) based on these
moment functions is consistent and asymptotically unbiased (even though the
likelihood function is misspecified.)

The effect of misspecification therefore lies in the asymptotic variance ma-
trix. By using the cumulants of the distribution of U, we express the asymp-
totic variance of these estimators in terms of deviations from normality. But
as far as computing the actual estimator, nothing has changed relative to Sec-
tion 1.5: we are still calculating the MLE for an MA(1) process with Gaussian
errors and can apply exactly the same computational routine.

However, since the error distribution is potentially misspecified, one could
expect the asymptotic distribution of the estimator to be altered. This turns
out not be the case, as far as 62 is concerned:

Theorem 2. The estimators (62, 42) obtained by mazimizing the possibly mis-
specified log-likelihood (1.25) are consistent and their asymptotic variance is
given by

AVARtrue(a'2’ &2) = AVARnormal(ﬁz, dg) -+ Cum4 {U] <8 g) N (133)

where AVAR ormal(62,8%) is the asymptotic variance in the case where the
distribution of U is normal, that is, the expression given in Proposition 1.

In other words, the asymptotic variance of 52 is identical to its expression
if the U’s had been normal. Therefore the correction we proposed for the
presence of market microstructure noise relying on the assumption that the
noise is Gaussian is robust to misspecification of the error distribution.

Documenting the presence of the correction term through simulations
presents a challenge. At the parameter values calibrated to be realistic, the
order of magnitude of a is a few basis points, say a = 0.10% = 1073, But if U
is of order 1073, Cumy4[U] which is of the same order as U4, is of order 10712,
In other words, with a typical noise distribution, the correction term in (1.33)
will not be visible.

To nevertheless make it discernible, we use a distribution for U with the
same calibrated standard deviation a as before, but a disproportionately large
fourth cumulant. Such a distribution can be constructed by letting U = w7,
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where w > 0 is constant and 7}, is a Student ¢ distribution with v degrees of
freedom. T, has mean zero, finite variance as long as v > 2 and finite fourth
moment (hence finite fourth cumulant) as long as v > 4. But as v approaches
4 from above, F[T}] tends to infinity. This allows us to produce an arbitrarily
high value of Cumy[U] while controlling for the magnitude of the variance.
The specific expressions of a? and Cumy[U] for this choice of U are given by

2

w v
a? = Var[U] = —t (1.34)
Buw? .
Cum4 [U] = m . (130)

Thus we can select the two parameters (w,r) to produce desired values
of (a?,Cumy [U]). As before, we set a = 0.15%. Then, given the form of the
asymptotic variance matrix (1.33), we set Cumy [U] so that Cumy [U] A =
AVARormal(@?)/2. This makes AVARy;ue(@2) by construction 50% larger than
AVARormal(6%). The resulting values of (w,v) from solving (1.34)-(1.35) are
w = 0.00115 and v = 4.854. As above, we set the other parameters to o = 30%,
T =1 year, and A = 5 minutes. Figure 1.5 reports histograms of the distri-
butions of 62 and a2 from 10,000 Monte Carlo simulations. The solid curve
plots the asymptotic distribution of the estimator, given now by (1.33). There
is again good adequacy between the asymptotic and small sample distribu-
tions. In particular, we note that as predicted by Theorem 2, the asymptotic
variance of 62 is unchanged relative to Figure 1.4 while that of 42 is 50%
larger. The small sample distribution of 62 appears unaffected by the non-
Gaussianity of the noise; with a skewness of 0.07 and a kurtosis of 2.95, it is
closely approximated by its asymptotic Gaussian limit. The small sample dis-
tribution of a2 does exhibit some kurtosis (4.83), although not large relative
to that of the underlying noise distribution (the values of w and v imply a
kurtosis for U of 3+ 6/(v — 4) = 10). Similar simulations but with a longer
time span of T' = 5 years are even closer to the Gaussian asymptotic limit:
the kurtosis of the small sample distribution of 4* goes down to 2.99.

1.7 Robustness to Misspecification of the Noise
Distribution

Going back to the theoretical aspects, the above Theorem 2 has implications
for the use of the Gaussian likelihood [ that go beyond consistency, namely
that this likelihood can also be used to estimate the distribution of 62 under
misspecification. With [ denoting the log-likelihood assuming that the U’s are
Gaussian, given in (1.25), —{(62,42) denote the observed information matrix
in the original parameters ¢ and a?. Then

~1
V = mnormal = <—%Z.(6—27 d2)>
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is the usual estimate of asymptotic variance when the distribution is correctly
specified as Gaussian. Also note, however, that otherwise, so long as (62, 42) is
consistent, V is also a consistent estimate of the matrix AVARormal (62, 62).
Since this matrix coincides with AVARue(62,42) for all but the (a?, a?) term
(see (1.33)), the asymptotic variance of TV/2(6% — 0?) is consistently estimated
by Vazgz. The similar statement is true for the covariances, but not, obviously,
for the asymptotic variance of TV/2(a% — a?).

In the likelihood context, the possibility of estimating the asymptotic vari-
ance by the observed information is due to the second Bartlett identity. For a
general log likelihood [, if § = Eiruo[ll’]/N and D = —Eypell]/N (differentia-
tion refers to the original parameters (o2, a?), not the transformed parameters
(v2,7)) this identity says that

S—D=0. (1.36)
It implies that the asymptotic variance takes the form
AVAR = A(DS™'D)~' = AD™ % (1.37)

It is clear that (1.37) remains valid if the second Bartlett identity holds only
to first order, i.e.,
S—D=o0(1) (1.38)

as N — oo, for a general criterion function ! which satisfies Eiruell] = o(N).
However, in view of Theorem 2, equation (1.38) cannot be satisfied. In
fact, we show in Appendix E that

S — D = Cumy [U] gg’ + o(1), (1.39)
where
Al/2
. U(4a2+02A)3;2
9= <§ 22> = 1 A1/20(6a2+02A) . (140)
@ 5t \ 1~ ooy

From (1.40), we see that g # 0 whenever ¢ > 0. This is consistent with the re-
sult in Theorem 2 that the true asymptotic variance matrix, AVAR e (62, 42),
does not coincide with the one for Gaussian noise, AVAR ,orma1 (62, @2). On the
other hand, the 2 x 2 matrix gg’ is of rank 1, signaling that there exist linear
combinations that will cancel out the first column of S — D. From what we
already know of the form of the correction matrix, D! gives such a com-
bination, so that the asymptotic variance of the original parameters (02, a?)
will have the property that its first column is not subject to correction in the
absence of normality.

A curious consequence of (1.39) is that while the observed information
can be used to estimate the asymptotic variance of 2 when a? is not known,
this is not the case when a? is known. This is because the second Bartlett
identity also fails to first order when considering a? to be known, i.e., when
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differentiating with respect to 2 only. Indeed, in that case we have from the
upper left component in the matrix equation (1.39)

Syap2 — Dy2ge = N”lEtrue {l.gzgz (02, a2)2] + N_lEtrue [lazaz (02, az)]
= Cumy [U] (go2)? + 0(1)

which is not o(1) unless Cumy [U] = 0.

To make the connection between Theorem 2 and the second Bartlett iden-

tity, one needs to go to the log profile likelihood
Mo?) = sup I(0?,a?). (1.41)

(12

Obviously, maximizing the likelihood [(c2,a?) is the same as maximizing
A(0?). Thus one can think of o2 as being estimated (when o? is unknown) by
maximizing the criterion function A(c?), or by solving A(6%) = 0. Also, the
observed profile information is related to the original observed information by
A6 =

[(62,a%)~1 (1.42)

] oo’
i.e., the first (upper left hand corner) component of the inverse observed infor-
mation in the original problem. We recall the rationale for equation (1.42) in
Appendix E, where we also show that Fi e [/\] = o(N). In view of Theorem 2,
A(6%) can be used to estimate the asymptotic variance of 62 under the true
(possibly non-Gaussian) distribution of the U’s, and so it must be that the

criterion function A satisfies (1.38), that is
N7 EuuelM02)%] + N7 Ege[A(02)] = o(1). (1.43)

This is indeed the case, as shown in Appendix E.

This phenomenon is related, although not identical, to what occurs in the
context of quasi-likelihood (for comprehensive treatments of quasi-likelihood
theory, see the books by [30] and [37], and the references therein, and for
early econometrics examples see [34] and [42]). In quasi-likelihood situations,
one uses a possibly incorrectly specified score vector which is nevertheless
required to satisfy the second Bartlett identity. What makes our situation
unusual relative to quasi-likelihood is that the interest parameter ¢ and the
nuisance parameter a? are entangled in the same estimating equations (Zgz
and [;» from the Gaussian likelihood) in such a way that the estimate of
0% depends, to first order, on whether a? is known or not. This is unlike
the typical development of quasi-likelihood, where the nuisance parameter
separates out (see, e.g., Table 9.1, page 326 of [37]). Thus only by going to the
profile likelihood A can one make the usual comparison to quasi-likelihood.

1.8 Randomly Spaced Sampling Intervals

One essential feature of transaction data in finance is that the time that sep-
arates successive observations is random, or at least time-varying. So, as in
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[4], we are led to consider the case where A; = 7; — 7y are either deter-
ministic and time-varying, or random in which case we assume for simplicity
that they are i.i.d., independent of the W process. This assumption, while not
completely realistic (see [17] for a discrete time analysis of the autoregressive
dependence of the times between trades) allows us to make explicit calcula-
tions at the interface between the continuous and discrete time scales. We
denote by Nt the number of observations recorded by time T. Np is random
if the A’s are. We also suppose that U, can be written U;, where the U; are
i.i.d. and independent of the W process and the Als. Thus, the observation
noise is the same at all observation times, whether random or nonrandom. If
we define the Y;s as before, in the first two lines of (1.8), though the MA(1)
representation is not valid in the same form.

We can do inference conditionally on the observed sampling times, in light
of the fact that the likelihood function using all the available information is

L(YN7AN7"‘7Y1>A1;ﬂﬂw) = L(YNv"‘7Y1|AN7"‘aA1;/8) X L(AN)aAl»w>

where 3 are the parameters of the state process, that is (02,a?), and ¢ are
the parameters of the sampling process, if any (the density of the sampling
intervals density L (Ayny., ..., 41;19) may have its own nuisance parameters v,
such as an unknown arrival rate, but we assume that it does not depend on the
parameters [ of the state process.) The corresponding log-likelihood function
is

N N-1
S LY, Yi|An, . A B) + > ImL(An, ... Auy),  (1.44)
n=1 n=1

and since we only care about 3, we only need to maximize the first term in
that sum.

We operate on the covariance matrix X of the log-returns Y’s, now given
by

024, + 242 —q? 0 0
—a? 02 Ay + 202 —q?
Y= 0 a2 02 A5 +2a2 . 0 . (1.45)
: ) - ‘. —a?
0 e 0 —a? 0% A, + 2a?

Note that in the equally spaced case, X = v2V. But now Y no longer follows
an MA(1) process in general. Furthermore, the time variation in Ajs gives
rise to heteroskedasticity as is clear from the diagonal elements of X'. This is
consistent with the predictions of the model of [16] where the variance of the
transaction price process X is heteroskedastic as a result of the influence of
the sampling times. In their model, the sampling times are autocorrelated and
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correlated with the evolution of the price process, factors we have assumed
away here. However, [4] show how to conduct likelihood inference in such a
situation.

The log-likelihood function is given by

InL(Yn,...,Y1|4N, ..., 413 8) = (02, a%) (1.46)
= —Indet(X)/2 — NIn(27)/2 - Y'X~1Y/2.

In order to calculate this log-likelihood function in a computationally efficient
manner, it is desirable to avoid the “brute force” inversion of the N x N
matrix X. We extend the method used in the MA(1) case (see (1.29)) as
follows. By Theorem 5.3.1 in [13], and the development in the proof of their
Theorem 5.4.3, we can decompose 3 in the form X = LDLT, where L is
a lower triangular matrix whose diagonals are all 1 and D is diagonal. To
compute the relevant quantities, their Example 5.4.3 shows that if one writes
D == diag(g1, ..., gn) and

10 6 ---0
ke 1 0 °
L=| 0w 10| (1.47)
L)
0.0 kpl

then the gs and }s follow the recursion equation g; = 024 + 2a? and for
1=2,..,N:

ki = —a%/gi1 and 9i = 02 Ay + 20° + Kkia® (1.48)

Then, deﬁnej/ = LY so that Y'X-Y = Y'D~'Y. From Y = LY, it
follows that Y7 = Y7 and, for i = 2, ..., V:
Y, =Y, —r:Yi1.

And det(X) = det(D) since det(L) = 1. Thus we have obtained a computa-
tionally simple form for (1.46) that generalizes the MA(1) form (1.29) to the
case of non-identical sampling intervals:

1 1
(0% a?) = -3 > In(2mg:) — 3 Z
i=1 i=1

We can now turn to statistical inference using this likelihood function. As

usual, the asymptotic variance of T¥/2(5% — 02, 4% — a?) is of the form

ca“'<l

(1.49)

AVAR(6%,8%) = lim P[] 0[]\

L lim . 15 [ law} (1.50)
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To compute this quantity, suppose in the following that §; and (2 can repre-
sent either o2 or a?. We start with:

Lemma 2. Fisher’s Conditional Information is given by

1 9?Indet X
2 0626

To compute the asymptotic distribution of the MLE of (3, 82), one would

E {w I35, /_\.] = (1.51)

then need to compute the inverse of E [—lbzﬁl] =Fa [E [— 16,8, ‘ AH where

E A denotes expectation taken over the law of the sampling intervals. From
(1.51), and since the order of Ex and 8%/98251 can be interchanged, this
requires the computation of

A [Indet ) = Ea [Indet D] = ZEA [In (g:)]

where from (1.48) the g}s are given by the continuous fraction

g1 = 0%Ay + 2a%,

a4

o2 A + 202’
4

go = O'2A2 + 242 —

a

g3 = 02 A3 + 2a°% —

)

2 2 _ a?
024y + 2a TA, T0a7
and in general

at

2 2
; = 0" A + 2a° —
gi ' 02A;_1 +2a% — &

It therefore appears that computing the expected value of In (g;) over the law
of (A1, Ay, ..., 4;) will be impractical.

1.8.1 Expansion Around a Fixed Value of A

To continue further with the calculations, we propose to expand around a
fixed value of A, namely Ay = E [A]. Specifically, suppose now that

Ay = Ao (1+¢e&), (1.52)

where € and Ag are nonrandom, the £/s are i.i.d. random variables with mean
zero and finite distribution. We will Taylor-expand the expressions above
around ¢ = 0, lL.e., around the non-random sampling case we have just fin-
ished dealing with. Our expansion is one that is valid when the randomness
of the sampling intervals remains small, i.e., when Var [4;] is small, or o(1).
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Then we have Ag = E [A] = O (1) and Var [4;) = A2e? Var [¢;]. The natural
scaling is to make the distribution of &; finite, i.e., Var[§;] = O (1), so that
g2 = O (Var [4;]) = o(1). But any other choice would have no impact on the
result since Var [4;] = o(1) implies that the product &2 Var[§;] is o(1) and
whenever we write reminder terms below they can be expressed as O, (5353)
instead of just O (63). We keep the latter notation for clarity given that we
set & = Op (1). Furthermore, for simplicity, we take the &/s to be bounded.

We emphasize that the time increments or durations A; do not tend to
zero length as € — 0. It is only the variability of the 4;’s that goes to zero.

Denote by Xy the value of X when A is replaced by Ag, and let = de-
note the matrix whose diagonal elements are the terms Apé;, and whose off-
diagonal elements are zero. We obtain:

Theorem 3. The MLE (62,4%) is again consistent, this time with asymptotic
variance

AVAR(6%,6%) = A + 243 1 O(e%), (1.53)
where
A(O) _ 4\/0'6.40 (4@2 -+ 02A0) -+ 204A0 —O’zﬂoh(ﬂo, 0'2, a2)
. %—Q (2a2+02A0) h(Ao,UQ,az) ’
and
A(Q) — Var[g] Af,zz)az Afz)az
(402 +200%) \ o A%, )"
with

Afz)oz = —4 (Agas + A3/205 V4a? 4 Aoag) ,

A(zz) Ag/203\/4a2 + Ago? (2(12 + 3A002) + A%04 (Sa2 + 3A002) ,

a%a? T
2
Afz)ag = —Alo? (2a2 + o/ Aov4da? + Ago? + Aooz) .

In connection with the preceding result, we underline that the quantity
AVAR(6?,4?) is alimit as T — oo, as in (1.50). The equation (1.53), therefore,
is an expansion in ¢ after T' — oo,

Note that A is the asymptotic variance matrix already present in Propo-
sition 1, except that it is evaluated at Ay = E[A]. Note also that the second
order correction term is proportional to Var[¢], and is therefore zero in the
absence of sampling randomness. When that happens, A = Ay with proba-
bility one and the asymptotic variance of the estimator reduces to the leading
term A, i.e., to the result in the fixed sampling case given in Proposition 1.
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1.8.2 Randomly Spaced Sampling Intervals and Misspecified
Microstructure Noise

Suppose now, as in Section 1.8, that the U’s are i.i.d., have mean zero and
variance a?, but are otherwise not necessarily Gaussian. We adopt the same
approach as in Section 1.6, namely to express the estimator’s properties in
terms of deviations from the deterministic and Gaussian case. The additional
correction terms in the asymptotic variance are given in the following result.

Theorem 4. The asymptotic variance is given by

AVAR o(6%,0%) = (A + Cumy [U] BO) +
(1.54)
+¢2 (A® + Cumy [U] BA) + 0(*),

where A© and A®) are given in the statement of Theorem 8 and

© (00
5= (0a,)

while
B® — Varle (3522)” b E;) ,
¢ Ba2a2
with
g@ _ 10477 44300 (160" + 1102 Ago? + 24307)
7 (a2 + Ago2)/? (202 + Ago?)>(4a? + Ago?)?
(2) —Ado*

= X

ota? (2a2 + Ago?)*(4a? + A002)5/2

x (\/4(12 + Aoo? (3208 + 64a Aga? + 3502 A%0% + 6430°) +

+AY %0 (11668 + 1260 Ago? + 4702 A2 + 6A306)) ,
16a8A5203 (13a* + 10a2Ag0? 4 2430%)

(2a2+A002)3(4a2+A002)5/2 (2a2+U2A —+/o2A (4a2+02A))

The term A is the base asymptotic variance of the estimator, already
present with fixed sampling and Gaussian noise. The term Cumy [U] B is
the correction due to the misspecification of the error distribution. These two
terms are identical to those present in Theorem 2. The terms proportional
to €2 are the further correction terms introduced by the randomness of the
sampling. A is the base correction term present even with Gaussian noise in
Theorem 3, and Cumy [U] B(? is the further correction due to the sampling
randomness. Both A® and B® are proportional to Var[€] and hence vanish
in the absence of sampling randomness.

13(2) -

a?a?

3 -
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1.9 Extensions

In this section, we briefly sketch four extensions of our basic model. First,
we show that the introduction of a drift term does not alter our conclusions.
Then we examine the situation where market microstructure noise is serially
correlated; there, we show that the insight of Theorem 1 remains valid, namely
that the optimal sampling frequency is finite. Third, we then turn to the case
where the noise is correlated with the efficient price signal. Fourth, we discuss
what happens if volatility is stochastic.

In a nutshell, each one of these assumptions can be relaxed without affect-
ing our main conclusion, namely that the presence of the noise gives rise to
a finite optimal sampling frequency. The second part of our analysis, dealing
with likelihood corrections for microstructure noise, will not necessarily carry
through unchanged if the assumptions are relaxed (for instance, there is not
even a known likelihood function if volatility is stochastic, and the likelihood
must be modified if the assumed variance-covariance structure of the noise is
modified).

1.9.1 Presence of a Drift Coeflicient

What happens to our conclusions when the underlying X process has a drift?
We shall see in this case that the presence of the drift does not alter our earlier
conclusions. As a simple example, consider linear drift, i.e., replace (1.2) with

The contamination by market microstructure noise is as before: the observed
process is given by (1.3). _ B
As before, we first-difference to get the log-returns Y; = X, — X, _, +
U,, — Ur,_,. The likelihood function is now
InL(Yy,...,Y1|AN, ..., A1; 8) = (0%, a2, w)
= —Indet(X)/2 — NIn(2m)/2 — (Y — puAY Z~HY — pd)/2,

where the covariance matrix is given in (1.45), and where A = (A4, ..., An)’.

If 8 denotes either o2 or a?, one obtains
. ox-1
l = AI Y - A 9
wp aﬂ ( M )

so that E[l,5/4] = 0 no matter whether the U’s are normally distributed or
have another distribution with mean 0 and variance a?. In particular,

Eflp) =0. (1.56)

Now let E[l] be the 3 x 3 matrix of expected second likelihood derivatives.

Let E[l] = —TE[A]D + o(T). Similarly define Cov(l,{) = TE[A])S +o(T). As
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before, when the U’s have a normal distribution, S = D, and otherwise that
is not the case. The asymptotic variance matrix of the estimators is of the
form AVAR = E[A]D~1SD~L.

Let D,2 42 be the corresponding 2 x 2 matrix when estimation is carried
out on ¢? and a? for known u, and D, is the asymptotic information on u
for known o2 and a?. Similarly define S,2 42 and AVAR,2 2. Since D is block

diagonal by (1.56),
Dy2ge 0
o= (% 5.)

D-—l . <D;21,a2 0 )
= -1 /-
0’ D

it follows that

Hence
AVAR(6%,&%) = E[A|D,; ;252,42 D}i 4 - (1.57)

The asymptotic variance of (52, 42) is thus the same as if 4 were known, in
other words, as if ¢ = 0, which is the case that we focused on in all the
previous sections.

1.9.2 Serially Correlated Noise

We now examine what happens if we relax the assumption that the market
microstructure noise is serially independent. Suppose that, instead of being
i.i.d. with mean 0 and variance a2, the market microstructure noise follows

where b > 0, ¢ > 0 and Z is a Brownian motion independent of W. UA|Uy

. . . . . - 0 2 a—
has a Gaussian distribution with mean e~*AU, and variance o7 (1 —e 2bA) .

The unconditional mean and variance of U are 0 and a? = g—z The main
consequence of this model is that the variance contributed by the noise to a
log-return observed over an interval of time A is now of order O(A), that is
of the same order as the variance of the efficient price process o4, instead
of being of order O(1) as previously. In other words, log-prices observed close
together have very highly correlated noise terms. Because of this feature, this
model for the microstructure noise would be less appropriate if the primary
source of the noise consists of bid-ask bounces. In such a situation, the fact
that a transaction is on the bid or ask side has little predictive power for
the next transaction, or at least not enough to predict that two successive
transactions are on the same side with very high probability (although [11]
have argued that serial correlation in the transaction type can be a component
of the bid-ask spread, and extended the model of [39] to allow for it). On the
other hand, the model (1.58) can better capture effects such as the gradual
adjustment of prices in response to a shock such as a large trade. In practice,
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the noise term probably encompasses both of these examples, resulting in
a situation where the variance contributed by the noise has both types of
components, some of order O(1), some of lower orders in A.

The observed log-returns take the form

}/; - XTW', - XTq"_l + U’r, - UTvi,_.l 3
=0 (W‘n - WT’L~1) +Un = Uiy,
= W+ Ug,

where the wis are i.i.d. N(0,02A), the u}s are independent of the w}s, so we
have Var[Y;] = 024 + E [u?], and they are Gaussian with mean zero and
variance

1—e~t4)

E [uﬂ =E [(Un - UTV,:_I)Q} = ¢ ( b =c’A+ o(4), (1.59)

)

instead of 2a2.
In addition, the w}s are now serially correlated at all lags since

2 (] — e~bAl-k)
B, = SHECT)

for 1 > k. The first order correlation of the log-returns is now

2 —bA)2 2
c*{l—e b
COV (}/ivlfi—l) = _—_(———’—2' = _'C—Az '+' o (AQ) 9
20 2
instead of .
The result analogous to Theorem 1 is as follows. If one ignores the presence
of this type of serially correlated noise when estimating o2, then:

Theorem 5. In small samples (finite T ), the RMSE of the estimator 62 is
given by

4 —bA\2 4 —bA\2 (T -2bA —2Tb
f21 c(l——e ) c(l—~e ) (Ze —14e )
RMSE [G ] - < b2A2 + T2b2 (1 +e~bA)2
2( ba) 2\ /2
2 9 c’(1—e™
+ TA <a A+ f) (1.60)

be? (02 +c2)* A 1
2 2
= - A+—C2T +O(A)+O<—T2),

so that for large T, starting from a value of ¢ in the limit where A — 0,
increasing A first reduces RMSE [&2] . Hence the optimal sampling frequency
is finite.
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One would expect this type of noise to be not nearly as bad as i.i.d. noise
for the purpose of inferring ¢ from high frequency data. Indeed, the variance
of the noise is of the same order O(A) as the variance of the efficient price
process. Thus log returns computed from transaction prices sampled close
together are not subject to as much noise as previously (O(A4) vs. O(1)) and
the squared bias 32 of the estimator 2 no longer diverges to infinity as A — 0:
it has the finite limit ¢*. Nevertheless, 5% first decreases as A increases from
0, since )

. 9 C4 1— €bA
g = (B[] -0 = o)
and Oby/0A — —bc* < 0 as A — 0. For large enough 7, this is sufficient to
generate a finite optimal sampling frequency.

To calibrate the parameter values b and ¢, we refer to the same em-
pirical microstructure studies we mentioned in Section 1.4. We now have
m = E[u?] /(6?A + E [u}]) as the proportion of total variance that is
microstructure-induced; we match it to the numbers in (1.24) from [35]. In
their Table 5, they report the first order correlation of price changes (hence
returns) to be approximately p = —0.2 at their frequency of observation. Here
p = Cov (Y;,Yi—1) / Var [Y;] . If we match 7 = 0.6 and p = —0.2, with 0 = 30%
as before, we obtain (after rounding) ¢ = 0.5 and b = 3 x 10%, Figure 1.6 dis-
plays the resulting RMSE of the estimator as a function of A and T. The
overall picture is comparable to Figure 1.2.

As for the rest of the analysis of the paper, dealing with likelihood correc-
tions for microstructure noise, the covariance matrix of the log-returns, v2V
in (1.26), should be replaced by the matrix whose diagonal elements are

2(1_ ,—bA
Var [¥7] = B [w?] + B[] = 0?4 + S0
and off-diagonal elements 7 > j are:

Cov (Y;, Y;) = EYiY;] = E [(wi + ue) (wy +uy)]
= Fluu] = E [(Un - Uﬁ—l) (UT]. - UTJH)} )
E [UT,,.‘UT]] - F [Ur,;Urj_l] - F [UT,,;_IUTJ.] + E [UTHUT]H] ,
2 (1 _ e—bA)2 e—bA(I—j—1)
2b

Having modified the matrix v?V, the artificial “normal” distribution that as-
sumes i.i.d. U’s that are N(0,a?) would no longer use the correct second
moment structure of the data. Thus we cannot relate a priori the asymptotic
variance of the estimator of the estimator 62 to that of the i.i.d. Normal case,
as we did in Theorem 2.
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1.9.3 Noise Correlated with the Price Process

We have assumed so far that the U process was uncorrelated with the W
process. Microstructure noise attributable to informational effects is likely
to be correlated with the efficient price process, since it is generated by the
response of market participants to information signals (i.e., to the efficient
price process). This would be the case for instance in the bid-ask model with
adverse selection of [20]. When the U process is no longer uncorrelated from
the W process, the form of the variance matrix of the observed log-returns Y
must be altered, replacing y?v;; in (1.26) with

Cov(Y;,Y;) = Cov (o(Wyr, = Wy,_,) + Up, = Ur,_
+Ury - UT;'~1) ’
= 02 A8y + Cov(o(Wy, — Wy, ), Us, — Uy, )+
+ Cov(o(Wr; = We,_ ), Ur, = Ur, )+
+ Cov(Uy, — Ur,_y\Us, = Us,_,),

0 O(Wey =W, )+

where 0;; is the Kronecker symbol.

The small sample properties of the misspecified MLE for ¢? analogous to
those computed in the independent case, including its RMSE, can be obtained
from

1 N
Bl = £ LB,
1 N 9 N i-1
Var [6%] = 5 > Var [V2] + 55 3 0> Cov (Y2, YF)
i=1 i=1j=1

Specific expressions for all these quantities depend upon the assumptions of
the particular structural model under consideration: for instance, in the [20]
model! (see his Proposition 6), the U’s remain stationary, the transaction noise
U., is uncorrelated with the return noise during the previous observation
period, i.e., Ur,_, — Ur,_,, and the efficient return o (W,, — Wy,_,) is also
uncorrelated with the transaction noises Ur,,, and U,,_,. With these in hand,
the analysis of the RMSE and its minimum can then proceed as above. As
for the likelihood corrections for microstructure noise, the same caveat as
in serially correlated U case applies: having modified the matrix v2V, the
artificial “normal” distribution would no longer use the correct second moment
structure of the data and the likelihood must be modified accordingly.

1.9.4 Stochastic Volatility

One important departure from our basic model is the case where volatility
is stochastic. The observed log-returns are still generated by equation (1.3).
Now, however, the constant volatility assumption (1.2) is replaced by
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dXt = Utth . (161)

The object of interest in much of the literature on high frequency volatility
estimation (see e.g., [8] and [6]) is then the integral

T
/ o2dt (1.62)
0

over a fixed time period [0, T, or possibly several such time periods. The es-
timation is based on observations 0 =ty < t; < ... < t, =T, and asymptotic
results are obtained when max At; — 0. The usual estimator for (1.62) is the
“realized variance”

Z Xiir — Xi)? (1.63)

In the context of stochastic volatility, ignoring market microstructure noise
leads to an even more dangerous situation than when o is constant and T —
oo, We show in the companion paper [43] that, after suitable scaling, the
realized variance is a consistent and asymptotically normal estimator — but of
the quantity 2a2. This quantity has, in general, nothing to do with the object
of interest (1.62). Said differently, market microstructure noise totally swamps
the variance of the price signal at the level of the realized variance. To obtain
a finite optimal sampling interval, one needs that a? — 0 as n — oo, that is
the amount of noise must disappear asymptotically. For further developments
on this topic, we refer to [43].

1.10 Conclusions

We showed that the presence of market microstructure noise makes it optimal
to sample less often than would otherwise be the case in the absence of noise,
and we determined accordingly the optimal sampling frequency in closed-form.

We then addressed the issue of what to do about it, and showed that
modelling the noise term explicitly restores the first order statistical effect
that sampling as often as possible is optimal. We also demonstrated that this
remains the case if one misspecifies the assumed distribution of the noise term.
If the econometrician assumes that the noise terms are normally distributed
when in fact they are not, not only is it still optimal to sample as often as
possible, but the estimator has the same asymptotic variance as if the noise
distribution had been correctly specified. This robustness result is, we think,
a major argument in favor of incorporating the presence of the noise when
estimating continuous time models with high frequency financial data, even if
one is unsure about what is the true distribution of the noise term. Hence, the
answer to the question we pose in our title is “as often as possible,” provided
one accounts for the presence of the noise when designing the estimator.
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Appendix A — Proof of Lemma 1

To calculate the fourth cumulant Cum(Y;, Y;, Y, Yi), recall from (1.8) that the ob-
served log-returns are

Yi=o (WT,,‘, - WT,,;~1) + UT, - UT,‘,,l .

First, note that the 7; are nonrandom, and W is independent of the U’s, and has
Gaussian increments. Second, the cumulants are multilinear, so
Cum(Y;,Y;, Y%, V)
= Cum (o0 (Wr, = Wr,_y) +Ur, = Ur,_y,0 (Wey = Wiy ) + Ur; = Uy,
g (Wﬁc - WTIc—l) + UTk - UTk—wa (WTz - WTz—l) +Un — U"'l——l) ’
=o' Cum(Wy, — Wr, |, We, = Wiy, Woy — Woy Woy — Wo ) +
+0° Cum(Wr, — Wr,_y,Way = Woy |, Woy = Wa Uy — Urp_ )] +
+0® Cum(Wy, — Wi, W, — Wy, Un, — Ur_, ,Uny — Up ) [6] +
+o Cam(Wy, — Wo, |, Ury —Up; | ,Ury = Uy, Urp — Ur 1 )[4] +
+Cum(Uy, ~Ur,_y,Ury = Ury_ Uy = Uny_, Uy = Uny )
Out of these terms, only the last is nonzero because W has Gaussian increments (so
all cumulants of its increments of order greater than two are zero), and is independent

of the U’s (so all cumulants involving increments of both W and U are also zero.)
Therefore,

Cum(}/’i»}/jaykyyl) = Cum(Ur, - UTV,;417UT,‘ - Urjﬁl ) UTk - Urk_l,U-rl - U-rl_l) .

J
If 4=4==Fk=1, we have:

Cum(UTi, - U7’1',_1 3 U‘ri
= Cumy(Ur, — Ur,_,)
= Cumy(U;,) 4+ Cumy(—Ur, )

=2 Cumy [U],

- Uﬂ.—l ’ U"'i - Uﬂ:-l ’ U-, UT'i -1)

i =

with the second equality following from the independence of U, and U, ,, and the
third from the fact that the cumulant is of even order.

If max(i,7,k,1) = min(i, j, k,1) + 1, two situations arise. Set m = min(i, 4, k,1)
and M = max(i, j,k,1). Also set s = s(4,4,k,1) = #{¢,4,k,l = m}. If s is odd, say
s=1withi=m, and j,k,l =M =m+ 1, we get a term of the form

Cum(U"'m - U"'m~1 ) U””m+1 - U‘rm ) U7m+1 - UTm ) U"’m+1 - U‘rm) - Cum4(U‘rm) '

By permutation, the same situation arises if s = 3. If instead s is even, i.e., s = 2,
then we have terms of the form

Cum(U"'m - U"’m—l s UTm - U"’m-—l ) U"'m+1 - UTm ’ U7'm+1 - U’Fm) = Cum4(U7'm) .

Finally, if at least one pair of indices in the quadruple (4, 7,%,1) is more than one
integer apart, then

Cum(Uyr, = U, 1, Ury —Ur; 1, Ury = Un_ |, Ury —Ur 1) =0

J

by independence of the U’s.
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Appendix B —Proof of Theorem 1

Given The estimator (1.5) has the following expected value

N N 2A 22 2
_isppy M) e 2

The estimator’s variance is

N
= %—2 > Cov (Y2, V7).

Var [6°] = % Var
i, j=1

N
S
i=1

Applying Lemma 1 in the special case where the first two indices and the last two
respectively are identical yields

2 Cumy [U] if j=1,
Cum(Y;, Y:,Y;, V) = ¢ Cumg [U] if j=¢+41 or j=i~—1, (B.1)
0 otherwise.

In the middle case, i.e., whenever j =i+ 1 or j = ¢ - 1, the number s of indices that
are equal to the minimum index is always 2. Combining (B.1) with (1.14), we have

N N-
. 1 1
Var[az]zﬁgc v (Y2 Y7 7“_; v (YA YD) + §;Cov Y2, Y2h)
1 N
= 7_Z{wov Y;, Y:)? + 2 Cumy [U]} +
i=1
N-1
1 2Cov (Y;, Yiq1)? + Cumy [U]}
+ 73 {2Cov (Y3, Yiz1)* 4+ Cumy [U}} +
$==1
L &
+T—Zz=;{QCOV Y, Yi—1)? 4 Cumq [U]}
= QT—A; {Var[Y;]* + Cumy4 [U]} + g_(ivi:;_ll {2Cov (Y3, Yi—1)? + Cum4 U]},
with Var[¥;] and Cov (Y5, Yi-1) = Cov (Y3, Yit1) given in (1.9)-(1.10), so that
Var [&2] = ?1“_]\2] {(02.4 + 2a2)2 + Cumy [U]} -+ w {2a4 + Cumy (U]},

2 (0% A% + 402 Aa’ 4 6a* + 2Cumy [U]) 2 (2a* + Cumy [U))
TA B I ’

since N = T'/A. The expression for the RMSE follows from those for the expected
value and variance given in (1.17) and (1.19):

4 4 A2 2 2 4
RMSE [°] = <ila_+ 2(o*A% + 407 Aa® + 60" + 2Cumq [U])

A? TA

2 (2(14 + Cumg [U]) 2
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The optimal value A* of the sampling interval given in (1.20) is obtained by
minimizing RMSE [&2] over A. The first order condition that arises from setting
ORMSE [6?] /0A to 0 is the cubic equation in A :

2 (3a" 4+ Cumy [U]) A 4a'T

A -
ot o4

0. (B.3)

We now show that (B.3) has a unique positive root, and that it corresponds to a
minimum of RMSE [&2] . We are therefore looking for a real positive root in A = z
to the cubic equation

2 +pr—qg=0, (B.4)

where ¢ > 0 and p < 0 since from (1.16):
3a* + Cumy [U] = 3a* + E [U*] =3E[U?]* = E[U?] >o0.
Using Viéta's change of variable from z to w given by z = w —p/(3w) reduces, after
multiplication by w?, the cubic to the quadratic equation
3
2 P
Y oy -5 =0 (B.5)
3

in the variable y = w®.
Define the discriminant

The two roots of (B.5)

y1=§+D”2 and y2=g—D1/2

are real if D > 0 (and distinet if D > 0) and complex conjugates if D < 0. Then the
three roots of (B.4) are

a=u"+u",
1 -31/2
o= L () 2 (), o)

1y 13 BV s g
Z =50 + ¥y T\ T )

(see e.g., Section 3.8.2 in {1}). If D > 0, the two roots in y are both real and positive
because p < 0 and ¢ > 0 imply
Y1 >y2 >0

and hence of the three roots given in (B.6), z; is real and positive and z2 and z3 are
complex conjugates. If D = 0, then 1 = y2 = q/2 > 0 and the three roots are real
(two of which are identical) and given by

a=y" +y" =2,

1 1
n=m=—3 (yi“’ +y;/3) =—3a.
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Of these, z1 > 0 and 23 = 2z3 < 0. If D < 0, the three roots are distinct and real
because

<

Y1 = g‘ + 1(_D)1/2 = reiey Y2 = 5 - ](_D)l/z = Te—iov
SO ) ) )
y;/S — 7"1/36’9/3, yé/S — Tl/Se—lG/B’

and therefore
n +y =2 P eos (0/3), w'* -y = 2P sin (0/3)
so that
21 = 2r*"% cos (6/3)
22 = —13 cos (0/3) + 3/2%/3 sin (0/3)
z3 = —r'/3 cos (0/3) — 3"/ /3 sin (6/3) .

Only 2z is positive because ¢ > 0 and (—D)¥? > 0 imply that 0 < 6 < =/2.
Therefore cos (6/3) > 0, so z1 > 0; sin(6/3) > 0, so z3 < 0; and

1/2
cos (0/3) > cos (n/6) = 3—2~ = 3% sin (7/6) > 3'/*sin (6/3) ,

so zz < 0.
Thus the equation (B.4) has exactly one root that is positive, and it is given by
z1 in (B.6). Since RMSE [6?] is of the form

RMSE [6°]

B <2TA3a4 —24? (2a* —40*To*+ Cumg [U]) +24 (6a*T+2T Cumg [U]) +4a4T2> e
h T2 A2

_ azA® 4+ a2 A% + a1 A+ a0 2
- T2 A2 ’

with asz > 0, it tends to +o0o when A tends to +oo . Therefore that single positive
root corresponds to a minimum of RMSE [&2] which is reached at

* 1/3 1/3
A :y1/ +y2/

_ (2 + D1/2)1/3 + (g - D”Z)I/S.
2 2

Replacing g and p by their values in the expression above yields (1.20). As shown

above, if the expression inside the square root in formula (1.20) is negative, the

resulting A" is still a positive real number.

Appendix C —Proof of Proposition 1

The result follows from an application of the delta method to the known properties
of the MLE estimator of an MA(1) process (Section 5.4 in [25]}, as follows. Because
we re-use these calculations below in the proof of Theorem 2 (whose result cannot
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be inferred from known MA(1) properties), we recall some of the expressions of the
score vector of the MA(1) likelihood. The partial derivatives of the log-likelihood
function (1.25) have the form

_18Indet(V) 1 _,0v!

b=y T T e (€1
and N .
{ __Av oy —1
bp=-gg+aayVY. (C.2)

so that the MLE for 42 is
~2 1 ryy—1
=Y Y. )
V=RV (C.3)

At the true parameters, the expected value of the score vector is zero: E [l,,] =

E [l’.,z] = 0. Hence it follows from (C.1) that

2N N
VT 20lndet(V) _ 20 (1—(1+N)n + Nyt >)
an |- T 7 (1= n2) (1 — 2+ ) !

thus as N — oo

5|v

oyt } 2ny?
E|Y' Y| =———"=+0(1).

% - T
Similarly, it follows from (C.2) that

E[Y'V'Y] = Ny>
Turning now to Fisher’s information, we have

N

s 1 _ N
E[-lyp2] = ~gat BV =

ok (C4)

whence the asymptotic variance of TI/Z(’$/2 —~%) is 2v* A. We also have that
- 1 o) ks n
E |-l =-—F|Y Y=+ 1 .

whence the asymptotic covariance of T/2(3? — %) and T"/2(5 — 1) is zero.

To evaluate K [—l,m] , we compute

. 2
E [_l,m] _107ndet(V) = 1 . [y

2 on? 2y2 on?

and evaluate both terms. For the first term in (C.6), we have from (1.27):

0 Indet(V) 1 2(L+n" +0*N (1-30%) (1 =n"")
on* T (1—mrran)? (1—n?)°

21/-1
0%V Y}

—oNy?N (3 + n“z”) - 4N2772N} (©.7)

_2(1+n?)
_—(—11—;]_2—)—2——%_0(1).
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For the second term, we have for any non-random N x N matrix Q:

EY'QY]|=E[Tr[Y'QY]|=E[Tr[QYY']] =Tr [E[QYY']]
=Tr[QE[YY']] = Tr [Q¥*V] =*Tr [QV],

where Tr denotes the matrix trace, which satisfies Tr[AB] = Tr[BA]. Therefore

8Vt o*v! oY
E [Y' B2 Y} = 'szr[ B2 V} =" (Z B ij)

i=1j=1

5201 N— laZUi,H—l N 21
_ A2
=~ <“377 (1+n )+; o n+; a7 "
_ ~? AT+ 2p® + Y (1 - 4n?)) (1 - 9?T) N
(1 — p2+an)? (1=n?)?
aN (1 2N 6_62 22+2N_3 442N
o QT (660 42 1)) | gy
(1-n%
272N
= ———+o(N). C.8
Ty + o) (C8)
Combining (C.7) and (C.8) into (C.6), it follows that
. 1 _18%Indet(Vw) , 1 0PV N
E {_lﬂ’?] =5 5—8772_—_ + WE Y (97]2 Y N—A—J'oo (1—_—77—2) +O(N) . (09)

In light of that and (C.5), the asymptotic variance of T'/2( — ) is the same as in
the v known case, that is, (1—1?)A (which of course confirms the result of [15] for
this parameter).

We can now retrieve the asymptotic covariance matrix for the original parameters
(0?,a?) from that of the parameters (v%,n). This follows from the delta method
applied to the change of variable (1.9)-(1.10):

(‘;ﬁ) = f(7%,m) = (A_lig%; ’7)2) . (C.10)
Hence \ ,
T/? ((a ) - (Zz)) = N (0,AVAR(6*,a%) ,
where

AVAR(8%,4%) = Vf(v*,1). AVAR(3*, 7).V f(+*, )’

(1+An)2 272(A1+n) <2’)/4A 0 ) (1+An)2 —n
S\ 0 (1-n4a)\ 220im .2

(45 A(4a? + 02A) + 20* A —0?Ah(A4, %, a?)
- . 2 (2a® + 0*A) h(A,0%,d%) )
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Appendix D — Proof of Theorem 2

‘We have that

Egruc [znl,y2] = Covtruc([ny l',y2)

— ki
= CoVirue 222 z]a 24ZYRYIU

3,j=1 k=1

A
= — Z —a—vkl COVtruc(YViX/]’v kai) (Dl)

n
N ”
Z (9'() Cumtruc(mal/ﬂyk!)/l)
gk l=1
+2 COVnuc(’/i, }/]) COVtruc(ka }/l)] .

where “true” denotes the true distribution of the Y’s, not the incorrectly specified
normal distribution, and Cum denotes the cumulants given in Lemma 1. The last
transition is because

COVtruc(Yiny Yle) = Eirue [Yyykyl] - Etrue [Yl}/j] Erue [Yk)/l]

H”kl H” K,kl

HI.J»k.l + Hm k,l[3] - nwnk‘l

— nz,j,k N + Nz kKI + lﬂz’l/ﬁ]’k

= Cumtruc(%) },jy Yk: }/l) + COVtruc(l/iy Yk) COVtrue(}ij Yk)
-+ COVtrue()/i, Yl) COVtrue(ij; Yk) )

since Y has mean zero (see e.g., Section 2.3 of [36]). The need for permutation
goes away due to the summing over all indices (4, j, k,1), and since V™! = [v"] is
symmetric.

When looking at (D.1), note that Cumnoermal (Y3, Y;, Y%, Y1) = 0, where “normal”
denotes a Normal distribution with the same first and second order moments as the
true distribution. That is, if the Y”'s were normal we would have

N 1‘ i

Erormal [l'nl.—yz] = Z 2 Covnormal()/zy Y; ) COVnormaI(Yk7 Yl)]

Also, since the covariance structure does not depend on Gaussianity, Covyre(Y:, Y;) =
CoViormal (Y3, Y;). Next, we have

Enormat [inky| = = Fnormat [l | = = Furuo [l ], (D.2)

with the last equality following from the fact that l;mz depends only on the second
moments of the Y’s. (Note that in general Eyryo [l},l’vz] # —Firue [2;772] because the
likelihood may be misspecified.) Thus, it follows from (D.1) that
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N
Etruc I:lnl»y2:| - Enormal |:lnl—y2] - 4—6 Z B'U UM Cummm(YZ, )/_7, Yk,},[)
ig k=1
N (D.3)
5 1 811 ki
= —Flrue ln—ﬂ - 7% Z v Cum@ruc(Y;:)/]yykyl/l)
[ ] 4 T on
It follows similarly that
CN2 .
Eirue [(ln) :| = Vartruc(ln)
(D.4)
vt okt
= —Erue Z Cumtruc()/z» YJ ) Yks }/l)
[ ] i on on
and
. 2 .
Eorue [(l,yz) } = Variue(l,2)
(D.5)
. 1 N
=~ Bure [lye | + T 2o v Cumine(Y5, Y, Vi, Vi)
ik l=1

We now need to evaluate the sums that appear on the right hand sides of (D‘.?.)),
(D.4) and (D.5). Consider two generic symmetric N x N matrices [v*/] and [w"7].
We are interested in expressions of the form

Z ( s 1,] ki Z Z (——-1)sl/i’jwk’l

ik M=m+1 h=1 1,5,k l:m=h,M=h+1
N-1 3

— Z ( 1)1"1/1 ]wkl

1 r=14,j,k,lim=h,M=h+1,s=r

>
ft

(D.6)

z

{_QVh,h+1wh+l,h+1 _ g LAl Rkl
1
phb bl
_g htLh bk 2Vh,hwh+1,h} A

h+1,h+1wh,h + 4Vh,h+1wh,h+l_

+ 0

It follows that if we set

N
T(Z/,UJ) = Z I/i'jwk’l Cumtruc()/iy S/j, Yk: 1/l) ) (D7)

4,4,k 1=1

then 7'(v,w) = Cumy [U] ¥(v,w) where

N N-1
1 1
Y(v,w) = QZuh’hwh‘h T Z {_QUh,h+1wh+1,h+1 AR S

1 1
+Vh,hwh+1,h+l + I/h+ yh+ wh,h +4yh,h+lwh,h+1_ (D8)

h+1,h, h,h hyh h+1,h
—opht bbb g kb bt }
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If the two matrices [ui'j] and [wi'j] satisfy the following reversibility property:
PNHIZONFI=] _ id apq N H1=0N+I=F i ¢

set), then (D.8) simplifies to:

so long as one is within the index

N N-1
h, } : ) ) B ,
B(v,w) = 22 Yhob ok T {_4I/h Al Rt Lhdl g bbbl bkt +
JopthhtLhtl 4Vh,h+1wh,h+l}.

This is the case for V™! and its derivative 8V ~!/0n, as can be seen from the
expression for v*7 given in (1.28), and consequently for dv*? /8.

If we wish to compute the sums in equations (D.3), (D.4), and (D.5), therefore,
we need, respectively, to find the three quantities ¥(8v/dn,v) (61}/87],81)/817)
and (v, v) respectively. All are of order O(N), and only the ﬁrst term is needed.
Replacing the terms v/ and dv®7 /85 by their expressions from (1.28), we obtain:

_ 2
V) = e AP~ i)

{=@em (1=0) (14207 4 220 4?00
+ N(1-n) (1 +n2) <2+n2N +772(1+N) +6771+2N +2n2+4N)}
= (li]\;)z +o(N), (D.9)
" (?1 v) _2(0@) 42N —n) (1+7°) n (1 +7° + O(*™)) + N*O(n*"))
’ (1= n)*(1+n2)*(1 — 20+M)°
+o(N), (D.10)

AN
(1—n)?®

ov Ov
v (55%)

4 (0(1> +3N (1-7") 7" ((1 +1%)° + 0(772”)) + N20(n?N) + N30(n2N))
302 (1+n) (14 n72)°(1 — n)°(1 — n20+ M)
AN

= ——— + o(N). (D.11)
(1-m*
The asymptotic variance of the estimator (§%,7) obtained by maximizing the
(incorrectly-specified) log-likelihood (1.25) that assumes Gaussianity of the U’s is
given by

1

) =4 (D'S™'D)™,
we have

AVARue (57
where, from (C.4), (C. 5) and (C.9)

=~ Brormat [i] = 5 Bnorman [i1]
= (Ti{ V(1w +O(—’1V)) , (D.12)
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and, in light of (D.3), (D.4), and (D.5),

. —1— 2 w—].— . .
§ = < Burue [u} = -~ Birue [z] +Cuma [U] ¥ = D+ Cumy [U] ¥, (D.13)

where

—1
g T o) s +o(l) (D.14)
1 1) ) .
° Y= n)? +of
from the expressions just computed. It follows that
AVARuue(3%,7) = A (D(D + Cumg [U] ¥) ™' D)™
=4 (D(1d+Cumg U] D7'0)7')
=A (Id+ Cumy [U) D™'w) D!
=A (Id+Cumy [U] D™'¥) D!
= AVARuormal (3%, %) + A Cumy [U] D™'w D1,
where Id denotes the identity matrix and
4 4 —2(1+n)
AVARnormal(’?zyﬁ) = (2’YOA (1 _0 Z)A) ) D_lng_l - < (l_n) 7?1('1*-:737 ) ’
K M Ty

so that

—2(1+n)
2 . 294 ~4. 2l
AR, 1) = A (%3 () £ ) )+ A Cumy [U](“ R, >

¥4 (1=m)

By applying the delta method to change the parametrization, we now recover the
asymptotic variance of the estimates of the original parameters:

AVARe(672,8°)
= Vf(v*,n). AVARurue(5%,9).VF(*,0)’

_ (4/0°A(4a® +0%4) + 20" A —a?Ah(A, 0%, a?)
- ° % (2a® + 0*A) h(4, 0%, a%) + A Cumy [U]

Appendix E —Derivations for Section 1.7

To see (1.39), let “orig” (E.7) denote parametrization in (and differentiation with
respect to) the original parameters o2 and a?, while “transf” denotes parametrization
and differentiation in 4% and 7, and fin, denotes the inverse of the change of variable
function defined in (C.10), namely
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2 119202 4 02A + /024 (4a? 4 52 A)
(7)) =ttty = 2F 007 b ) e
n 7 3 —20° — oA+ \/o2A (4a2+02A)}

and V fi,y its Jacobian matrix. Then, from iorig = V finy (02, ag)/.itransf, we have
[orig = Vf'mv(aza az)lvz.transf-Vfinv(Uzy 052) + H[itransf] )

where H[itransf] is a 2 X 2 matrix Whose terms are linear in jtransf and the seqond par-
tial derivatives of finv- Now Etruc[lorig] = Etrue[ltransf] =0, and so Etrue[H[ltransf]] =
0 from which it follows that
Dorig = N_lEtruc[*z'orig]
= Vfinv((727 az)I-Dtransf-vfinv(azy aZ)

A1/2(2a2+02A Al/2
203(4a2402A 3/2 o(4a?+024 3/2
(eteera) ™ 1 sty | Fo (B2)
* 2a% B (4a2+U2A)3/2

with .
Dtransf = N—lEtrue[_‘ltransf] )

given in (D.12). Similarly,
forigi:)rig =V finv (02, &) Livanstliranse- V finv (07, 7)),
and so
Sorig = V finv (6, &%) .Stranst. V finv (67, &%)
=V finv (02, @) ( Dyranst + Cumy [U] ¥).V finv (02, &%)
= Dorig + Cumy [U] V finv (02, &%) &V finy (6%, &%), (E.3)

with the second equality following from the expression for Sianst given in (D.13).
To complete the calculation, note from (D.14) that

V= gtransf-g'l;ransf + 0(1) ’

where » .
Gtransf = < " ._2(1 a 77) ~2> .
-y (1—n)
Thus
Vfinv(azv az),‘w'vfinv(027 a2) = gorig-g:)yig + 0(1) ) (E4)
where
Al/2
0(4a2+¢72A 372

g = Yorig = vfinv(UZ»QZ)/-gtransf = 1 1 A1/20(6a2+02A2 » (E’S)
2a7 a (4a2+02A)3 2

which is the result (1.40). Inserting (E.4) into (E.3) yields the result (1.39).
For the profile likelihood A, let G2; denote the maximizer of [(0?,a?) for given
o?. Thus by definition A(0?) = I(0?,4%;). From now on, all differentiation takes
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place with respect to the original parameters and we will omit the subscript “orig”
in what follows. Since 0 = I 2(0?,a%,), it follows that

g ; 2 A2
0= Wlaz(a ,ag2)

oy 2 A2 ¥ 2 A2 a&§2
=1,242(0%,802) + lg242(07, 82) —%

002’
so that ) . -
8a(,22 — _{f,zaz(a ,adz) ) (E6)
o la2q2 (02: diz)
The profile score then follows
. . 962
A% = 1,2(0%,6%2) + L2 (0?,422) 363722 , (E.7)
so that at the true value of (¢2,a?),
A(0?) = i,p(0? a?) — Bmelloza2l; 2 02y 1 0, (1), (E.8)
Eiruo[la2q2]

since 4% = a? + Op(N~%) and
Alzgz = N7 202(0%,822) — N7 Eoruell,242] = Op(N ™2,
Alyagr = N7 2,2(0%,822) — N7 Eoruellaza2] = Op(NTY2),
as sums of random variables with expected value zero, so that

_6&32 _ Nwlz.azaz( i
Oc? N“lz.azaz(dz,diz)
]

N~ lEt,ue[laza

+ Alazaz
a2a2 ] -+ Alazaz

N- lEtrue[
Etruc[ o202

i
] . . 172
t (L2 — Alpge) + 0p(N
T ( 2u2 . 2) o )
]
]

Etruc{lazaz + OP(N—l/Z) ,
Etrue[lazaz

while )
la2 (Uz)a‘z) = OP(NI/Z) H

also as a sum of random variables with expected value zero.
Therefore

Buruollg2a2] fp [iee(0®,0%)] + 0(1)

Eruc}\az :Eruoia 02,a2 —_— 7
true[Mo)] = Firue[lo2( )] = Foellaus]

=0(1),

since Eirelly2(02,0?)] = Firue [[az(az,az)] = 0. In particular, Eyuo{A(0?)] = o(N)
as claimed.
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Further differentiating (E.7), one obtains

2 2
Mo?) = [,2,2(0%,822) + ,242(0%,822) ( 6;2) +

N L
+2la2a2(02:a32) 902 az( 27 32) 820'22

" . I2 2(c?a 2)2 9%a2,
_ 2 2 _ toca 2 A2 o
- 10202 (0- !aoz) Z'a2a2 (0_2 (lz ) +l 2( ) 02)

from (E.6). Evaluated at o2 = 62, one gets @2, = 4% and [,2(6%,4%) = 0, and so

: (E.9)

where [l'(&Q,&Z)_l] , , is the upper left element of the matrix 1(6% &%), Thus
(142) is valid.

Alternatively, we can see that the profile likelihood A satisfies the Bartlett iden-
tity to first order, i.e., (1.43). Note that by (E.8),

r . 2
N7 Eirue[A0%)?] = N7 Eirue (z‘,z(az,az) - Miaz(UQ,az) + o,,(1)>
Etrue[l 2 2]

[ 2
= N7 Eoe ([02(02,(12) E““eg“” Buwellora]j |2 4 ))

Etrue a2q2 ]

+o(1)

2
= N_lEtruc [0.2(02,@2)2 + <Etru0[l o’ 2]1 (0'2,(12)) -
Etrue[l 2 2]

_2Etrue[l02a2] ia2 (027 az)l.o_g (0’2, (12)} + 0(1) )

Flirue [i‘azaz]
so that

1 . ana Dyzaz \° D22
N Emm[)\(or Yl =820+ | =72 ) Sp2.2 —2 S22 + 0p(1)
D22 D22

D242 2 Dyzg2
= <D0202 + (—Da2a2> D22 — 2—Da2a2 Dazc,z) +
D g D,
+ Cumy [U] gaz + Zo%d? gu2 - 2= 9029a +op(1),
D242 Daza

by invoking (1.39).
Continuing the calculation,
. DZ 2
N7 B [M0?)?]) = [ Dyzp2 — =292 ) + Cumy [U] { go2 — Dozq2 ge2 | +o(1)
D242 D242

a“a

=1/ [D_l],,zaz +o(1), (E.10)
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since from the expressions for Doyig and gorig in (E.2) and (E.5) we have

D, 2,2
902 — D =

Gu2 =0. (E.11)

a2a
Then by (E.9) and the law of large numbers, we have
N7 EuaeM(e?)] = —1/ [D7] 10 + (1), (B12)

and (1.43) follows from combining (E.10) with (E.12).

Appendix F —Proof of Lemma 2

X ¥~! = Id implies that
ox! 10X
5= F 1—8612 ! (F.1)

and, since X is linear in the parameters o and a? (see (1.45)) we have

8%y
— = -9 F2
9505 (F2)
so that
) <02—1)
062061 0B2 \ 9B
0% 105 108 0% o, 8%y
S sl y b Jchnlly y b GRS » kil y ol y b QU 3 b b
96~ g~ 7 0B B 8500
0% 0% 0% 95
S Ykl y ol y il SN 3 (o Sl SRES=05 S F.3
> e Y o (F3)

In the rest of this lemma, let expectations be conditional on the A’s. We use the
notation E[-] A] as a shortcut for E[| An, ..., A1]. At the true value of the parameter
vector, we have,

0= E[lp,| A]
_ 19Indety 1 08!
b _QE[Y - YH. (F.4)

with the second equality following from (1.46). Then, for any nonrandom @, we have
E [Y’QY] =Tr [QE [YY’]] =Tr(QX] . (F.5)

This can be applied to @ that depends on the A’s, even when they are random,
because the expected value is conditional on the A’s. Therefore it follows from (F.4)
that

Olndet X 0271 _ ox—' ] 0%

with the last equality following from (F.1) and so
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9®IndetX 8 Tr [2_18_2]
2

86:00:  9p2 9p1

3 0%
=Tr |2 (5122
T[aﬁz( am)]
10X 8% -1 8*%
— Ty | p10% 1O 1_______]
T{ 8B~ 9 96200
=-Tr [2‘19—2—2"1‘—95}

00 0B (FD)

again because of (F.2).
In light of (1.46), the expected information (conditional on the A's) is given by

. _18°IndetX 1 /02571
E[— 5,0, A]_Emaﬁzﬁl +§E[Y aﬁzﬁly}A]'
Then,
622—1 822—1
E\Y’ vial=Tr|=—2—-x
[ BN ‘ ] T[aﬂzﬁl }
8% 8% 0% 8%
— Ty |10 102 1__ﬂ1___}
’"[ 95~ 0B " 9B op
L85 0%
=2Tr |Z7 =% 1_—},
r[ 082 061

with the first equality following from (F.5) applied to @ = 82X~ /83201, the second
from (F.3) and the third from the fact that Tr[AB] = Tr[BA]. It follows that

i __! 198 1 0% 1908 1 0%
E[ I8, A]_ 2Tr{2 55 aﬁl]+Tr[Z R
_1 10X 108
—2TT[:2 8,822 3ﬁ1]
_ _18°Indetx
2 066

Appendix G — Proof of Theorem 3
In light of (1.45) and (1.52),
5 =Sy +ed’s, (G.1)
from which it follows that
27 = (B (Id+ 60?551 E))
= (Id+e0?55'5) 7 557
= 5ol —ea? S EEy &%t (5712) 25 + 0, (G.2)

since
(Id+eA) ' =Id—eA+e*A* + O(e%).
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Also,
90X 9%y | 00®

I T T

Therefore, recalling (F.6), we have

Olndet X7 10X
Rt |y
86 [ Gﬁl]

= Tr [(20— —eo? S EN et (550 5) 20t + 0(53))

9% do? :)]
(aﬁl T
oL w1050 0% 1
=Tr [Zolaﬁﬂ —I—eTr[ o zohzolaﬂ" + ; 201:}+
] —_\ 2 — 820 80‘
+ ¥y [04 (Z51=) Eolaﬁ —0253—20 =5y u]
+ 0p(e%). (G.3)

We now consider the behavior as N — oo of the terms up to order 2. The

remainder term is handled similarly.
Two things can be determined from the above expansion. Since the &/s are i.i.d.
with mean 0, E[Z] = 0, and so, taking unconditional expectations with respect to

the law of the Als, we obtain that the coefficient of order ¢ is

E [Tr [w?zglszolaé"’ aﬁ Z‘Ol:H

0bh
11 0Z —
=Tr [E [—0220 =yt gﬂlo ﬁ LO IHH
e o2,
=Tr [—GZEOIE[:]ZOIaﬁO 8[3 IE(E ]}

ll

0.
Similarly, the coefficient of order €2 is

; 4 _1':'2 - i,
E[TT [0 (20 _,) DN 5 o o

- 1r[ote [(5572)) 50 22 - 9 [ (55" 2)|

_ [ 27 1= 1820 80
=Tr o E[():O =) ] (a 5 (%Idﬂ

I - RN _10%,  80?
=Ty -0220 'E [EX 1:} (0220 18—,8? — 5%—161)] .

The matrix E [ZX5'Z] has the following terms

N N
[520_15]1,]' = ZZE”“ [Eo_l]kl By = A3kt [Zo_l]ij ’

=1

b
Il
—



50 Yacine Alt-Sahalia, Per A. Mykland, and Lan Zhang

and since E [§;€;] = 6;; Var[€] (where 8;; denotes the Kronecker symbol), it follows
that

E[EX5'E] = A} Varl¢] diag [257] , (G.4)

where diag [20_1] is the diagonal matrix formed with the diagonal elements of ;!
From this, we obtain that

E [8ln det 2]

W—
=Tr -251?9;‘10“ +
+e*Tr {UZEO“IE (2251 =] (02251%19 - g;—jldﬂ + O(e®)
=Tr :25‘%?—10: + (G.5)

+ &2 A8 Var[g]Tr {0® 55  diag [ 25 ] spyi 0% 07 +0(e%).
0 0 ° B 9B

To calculate E [ibzgl], in light of (1.51), we need to differentiate £ [0 Indet X2/351]
with respect to 2. Indeed

E [_[ﬁzﬁl] =F [E ["zbzﬂl

1 8% Indet X 10 Olndet S
AH_”EE{ 0820 }"_529‘5; (E[ 86, D

where we can interchange the unconditional expectation and the differentiation with
respect to B2 because the unconditional expectation is taken with respect to the law
of the A}s, which is independent of the § parameters (i.e., o and a?). Therefore,
differentiating (G.5) with respect to B2 will produce the result we need. (The reader
may wonder why we take the expected value before differentiating, rather than the
other way around. As just discussed, the results are identical. However, it turns out
that taking expectations first reduces the computational burden quite substantially.)
Combining with (G.5), we therefore have

E [_z.ﬂzﬁl:l

_ 148 (E[(?lndetfj])
2006 0

= 19 TT[E()_]Q—%)-:'-—

208 0B
1 1, _ _10%y 80
— 552&) Var[ﬁ]b—g—z <Tr [0220 Ydiag [%5 1] <0220 1%7? — 5%:1(1)}) +
+ 0(e%)
= ¢ + 20 + 0(%). (C.6)

It is useful now to introduce the same transformed parameters (42,7) as in
previous sections and write Xy = %V with the parameters and V' defined as in
(1.9)-(1.10) and (1.26), except that A is replaced by Ag in these expressions. To
compute ¢¥, we start with
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- Mlazo . —2 —16(’\/2‘/)
Tr I:EO —5,51—] =Tr Y 14 —8,31
_ -1 v a’)/
——TT‘[V ——-aﬁl]JrTr[ y- V“c‘)ﬁ}
10V] on 2 07?
=Tr |V e =L 4 Ny 2L G.7
’"[ an}8ﬁ1+ " o6, (@1

with 8v?/86; and dn/8B1 to be computed from (1.11)-(1.12). If Id denotes the
identity matrix and J the matrix with 1 on the infra and supra-diagonal lines and
0 everywhere else, we have V = n?Id +nJ, so that 8V/dn = 2nld + J. Therefore

[v*la ] =oTr [V +Tr [V 1]

on
N » N-1 o B
:2772”1,1'}' Z {vz,z—l+vz,z+1}+vl,2+UN,N~1
i=1 =2

20 (1-7*" (N (1-7%) +1))
RISt

2n
—(1—_“775 o(1). (G8)

Therefore the first term in (G.7) is O(1) while the second term is O(N) and
hence

1320 _ -28’7

This holds also for the partial derivative of (G.7) with respect to Jz. Indeed, given
the form of (G.8), we have that

since the remainder term in (G.8) is of the form p(N)n?"), where p and ¢ are
polynomials in N or order greater than or equal to 0 and 1 respectively, whose
differentiation with respect to n will produce terms that are of order o(N). Thus it
follows that

9 05T v 0 (207

35 (T [20 amD =Nom (” am) +o(N)
_ 87—-2—6l2 2 82’)’2
=N { 98 95 7" 9808

Writing the result in matrix form, where the (1,1) element corresponds to
(61,82) = (0%,6%), the (1,2) and (2,1) elements to (81,32) = (02,6?) and the
(2,2) element to (B1,82) = (a?,a?), and computing the partial derivatives in (G.9),
we have

} +o(N). (G.9)
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©_ _ 10 (n 151020
0 = ~3a5; (|5 53
Aé/2(2a2+02A())
263(4a2+02A0)3 2 a(4a2+a2A0)3/2

1 _ Aé/2a(6a2+a2Ao)
2a7 (4a2+a2A0)372

1/2
AO

=N

[ ]
As for the coefficient of order €2, that is ¢* in (G.6), define
-1, - 10X Bc?
a=Tr [O‘ZZO 'diag [Eo 1] <0220 la—ﬁ? - L‘Tﬂ?ld)] ,

so that e
(2 _ _
8 = —5 83 Varlel -
We have

1y peel] ge108 i) g e
a=o'Tr [20 'diag [£571] 25 156_3] - 28%1% [£5 diag [25]]

) Fo(N).  (G.10)

(G.11)

- 1, 17,210 (77V) do? 1. -
= oty 5Ty |V diag \% v o5, —023—&7 T v Ydiag v ]
4 —dp ~1 4 -1 —18_V£"_7_
=o'y IT‘[V dlag[V }V 8’0851_+

+ oty L oy Tr [V 'diag [V7]] - Uzgi'y“‘lTr [V~ 'diag [V7']]
001 O
_ 4 -40n -1 3. 10V ]
=gy aI@T'FI:V diag [V V 377_+
4 —68_’72 260 —4 -1 -1
+<a’y a5, ('Ml )Tr[V diag [V7']].
Next, we compute separately
1. - 10V . 10V _
Tr [v 'diag [V V 15-7]-] =Tr [dlag[V v lanv !
_ . OV
= -Tr [dlag [V or ]

N
Zvl z
_ 0(1) —2Ny (1 +n°—n' —n°+ O0(n*")) + N?O(n*")
(1472 (1 —n?)" (1 — g2 tM))°

AR

and
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Tr [V diag [V )] = é (v")°

O() + N (1-7"+0(n*™))
(14 (=) (1)
N
= (—1—:‘772‘55 +o(N).

Therefore

4 —4_317_ —2Nn 4 —68’)’ 280 *4 N
@=TY Ba, ((1~n2)3>+<‘” E Al )((1—n2)2>+O(N)’

which can be differentiated with respect to B2 to produce da/dB2. As above, dif-
ferentiation of the remainder term o(N) still produces a o(N) term because of the
structure of the terms there (they are again of the form p(N)n?™) )

Note that an alternative expression for o can be obtained as follows. Going back
to the definition (G.11),

a =o'Tr [zgldiag (5] 251%%} - zgz Tr[Z5 diag [T57]], (G12)
the first trace becomes
Tr {Z’O_ldiag (25 Ealg—‘gﬂ =Tr [diag [Z5'] 2 122;020 }
=-Tr {diag (5] a(fﬂ“l }
N 1
== > T
N
T EPE
= _%G%ITT (25 diag [251]],
so that we have
o= _04%%% [ diag [£51]] - 02%% (25 " diag [ 25 ']
=_ 4; 821T (25 diag [£571]] — % ((224) Tr [£5 diag [ X5 ']]
= _%8%1 (o' Tr [£5 ' diag [£57']])
_ _%_?_ (o4 [V~ diag [V7]])
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where the calculation of Tr [V ~'diag [V ~']] is as before, and where the o(V) term

is a sum of terms of the form p(N)n?™) as discussed above. From this one can
interchange differentiation and the o(N) term, yielding the final equality above.

Therefore
Ou 1 82 4 —4 < N ))
= R N
5% 298,00 (” g W)

_d_A_f 02 047—4
<(1 wnz)g) +o(N). (G.13)

Writing the result in matrix form and calculating the partial derivatives, we obtain

da N ARVarg] <_2a2 _ (8%-20%40)

- 24
002 (4(12 + 0'2A0)3 __8_0__9_ >+O(N) . (G.14)
Aq

¢ = —2 A3 Varlg

Putting it all together, we have obtained

E [lss]

1
< (67 + % + 0()

=FO 4 2F® 4 0(®) + o(1), (G.15)
where
Ay % (262402 Ag) ay’?
O _ 208 (1a2+0240)""* o(4a?+0240)%/? (G.16)

1 A(l)/zzr 6a2+0'2A0) ’
* a7 <1 T (4e2+0%a0)?
2 2
A2 Varlg] <_2a2 Jﬁ::iuﬂ)

———— ZAQ
(4&2 -+ 02A0) —~8ALO—

F® = (C.17)

The asymptotic variance of the maximum-likelihood estimators AVAR(&?,4?) is
therefore given by

—1

AVAR(6?,3%) = E[A] (F(O’ L EPF® 0(53))

1 ~1
FO (1d +&* [F(O)] F® 0(63)»

1

(
= Ao <1d +¢* [FO] TR@ 0(63)) - (7]
(

I
[
o
—~
u

|
™

L.+
—
B
S
[
L
B
S
o+
)
~
™
w
~
N—
—
B
o
[t
!

-1 -1 -1
where the final results for A = A [F(O)] and A® = —Aq [F(O)] F® [F(O)] ,

obtained by replacing F© and F® by their expressions in (G.15), are given in the
statement of the Theorem.
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Appendix H — Proof of Theorem 4
It follows as in (D.3), (D.4) and (D.5) that

Eirue [iﬁl (52 |A:|
= COVtrue(lﬁl ) l.ﬁz lA)

-1 N -1
= COVtruc (_ Z Yz < ) 7_% Z Yk)/l <%‘) )
iy kl

i,j=1 ¥ k=1
1 ax! 89X~
“%%LX 5, ) (% ) Coverne(Ye¥5, 1 i12)
Yooroxt 05~
= —Ejrue [lﬁ1ﬂ2|A] ijl=1< aﬂl )1 ( 6,32 ) Cumtrue(%a)/})kaVYl;A)
oxt ax~
= —FEirue [lmzlA] + = Cumy [U} ("5‘[3;“, —8‘52—) (H.1)

since Cumygruc(Ys, Y5, Y, Y1|A) = 2, 1, or 0, X Cumgue(U), as in (1.15), and with
1 defined in (D.8). Taking now unconditional expectations, we have

Etrue [1'51 l’ﬁz] = COVtrue([ﬁl ) l.ﬁz)
=F [COVtrue(l.ﬁl ) l'ﬁz |A)} + COV“UC(EWUG Uﬁl |A]’ Etruc[[ﬂ2 |AD
=F [COVtruc([ﬁ1 ) zﬁz |A)]

. 1 ox~! ox-!
= —Etrue [lﬁlﬁz] + Z Cum4 [U] F {?/) <_8_ﬁ—1_—’ W)} (H2)
with the first and third equalities following from the fact that Eiruelis, |4] = 0.

Since
Burue [l0:6214] = Fuormat [I3,6,14]
and consequently
Etrue |:[ﬁl[32:| = Enormal [zblﬁz]

have been found in the previous subsection (see (G.15)), what we need to do to
obtain Firue [l'gll.m} is to calculate

-1 -1
B [w <az 782 )} .
op1 ’ 0B
With 7! given by (G.2), we have for i = 1,2

o' _ 0% 0
96~ 0B 0B

and therefore by bilinearity of 1 we have

(PE5 2D +

0 1 -
528& (04 (25 1:)2 5 1) + 0(e%),
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ox—1 gx? oxyt oxy!
E _—‘_—_7 reye— —t 0 s O pa—
["’( o8: " 08 )} w( 56: " 08s )

8 [0 (50 2 zien) )|

+eE |4 (82 1’0% (o* (z5'2)" = >)][2]+
9

&
+5E[w( (c*55 5557, 35, (2551 251))]+
)

3

O(e (H.3)

)

where the “[2]” refers to the sum over the two terms where 8, and §; are permuted.
The first (and leading) term in (H.3),

w(aﬂo‘l 820“1):¢ o(y*v7) oV
861’ 0B 0B ’ P2

_ e 0V 9y —28V—1>
“w(amv T m em . Y e,
o vl 20V} On Oy 2 1 20V 371)
V —_
¢( a5’ T Tamame et T Tan o

corresponds to the equally spaced, misspecified noise distribution, situation studied

in Section 1.6.
The second term, linear in ¢, is zero since

o5t 9 1 e oxg! 0 -
plo (G a 55755 )| = (G5 B [ (2525

Xyt o 21—y yo—1
—u (% o 05 LA 5))

:07

with the first equality following from the bilinearity of 4, the second from the fact
that the unconditional expectation over the A}s does not depend on the 3 parame-
ters, so expectation and differentiation with respect to 2 can be interchanged, and
the third equality from the fact that £ [Z] = 0.

To calculate the third term in (H.3), the first of two that are quadratic in €, note

that

9zt @ R
Oé1EEI:’(J)(—a—'ﬂ—O—l—-,—a—ﬁ—z-(0-4201:2015201))]

Xyt o o P ] o e
:¢<—5—ﬂ(’l—,a—ﬁ—2—(a4f}0 IE[:EO 1:}201))
:A%Var[gw(aazﬁo_ ,8‘2 (o 55 diag(Z5 ) Zy ))

= A2 Varlely (9(_77;_@"_1,622 (" V" diag(V ")V~ )) (H.4)
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with the second equality obtained by replacing F [5 zy iz ] with its value given in
(G.4), and the third by recalling that S = 7*V. The elements (4,j) of the two
arguments of ¢ in (H.4) are

ij 8(7~2Ui'j) 8’}’_2 05 _gavi’j 87’]

ST em T em DY ey e
and
5 N
kb _ 4 —6 kym, m,m_m,l
w —578;<a'y T;v vy )
6(047_6) al k,m_m,m ml —6 k,m ™™ ml 877
__——W mzzl'l) v —|—O")’ 5"‘ Z %2-,

from which 4 in (H.4) can be evaluated through the sum given in (D.8).
Summing these terms, we obtain

8 ——2v—-1
W ( (V(MI )’5%2_ (047_6V_1diag(V_l)V_1)>
4N (Crv (1 =) + Cav Cav) (Crw (1 — 1n?) + 2Caw Caw (1 + 3n))

= -+ N s
- 1+’ o)
where
_o? _ -2 _ on
Civ = a0 , Cov =7 ’CSV_Oﬂl
9 (o""°) 46 o
ClW———%z—“, CzW—U"Y , Caw = 3[32

The fourth and last term in (H.3), also quadratic in ¢,

aQEE[z/;(aﬂ (225 =551, 8ﬂ (*55'E 1))}

is obtained by first expressing

0 P 0 1 e
¥ (a_ﬂl (551 555") 53 (575 1))

in its sum form and then taking expectations term by term. Letting now

i o - 0 N
v = <8ﬁ (U EO 20 1)) ) WkYI = <5,8—2 (0'220 1:,20 1)) N
ij

kl

we recall our definition of ¥(v,w) given in (D.8) whose unconditional expected value
(over the Ajs, i.e., over =) we now need to evaluate in order to obtain ap.
We are thus led to consider four-index tensors A¥* and to define

N N-1
\) = QZAh,h,h,h + Z {__2)\h‘h+1,h+1,h+l — gARFLAFLRAHL

Jht1ht1 yht-1,k, ) sk,
+)\th +1,h+ +)\h+l + hh+4/\h h+1,hh+1 (HS)

_ophtLhh 2Ah,h,h+l,h} ,
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where A% is symmetric in the two first and the two last indices, respectively, i.e.,
NEL = ATt and AR = A% In terms of our definition of 4 in (D.8), it should be

noted that 9(v,w) = ¥(\) when one takes A% = p»Iw*! The expression we seek
is therefore

az=E [w (8ﬁ (Capraicha 8%2 (&’25‘5250)] =P\, (H.6)

where A¥F! is taken to be the following expected value

L [Vi,jwk,l]

_ 1—=y— 1=

=F (85 (*Z51 255 )) (M (*Z5ESy ))kl]

—E }N: O (5 B (2 )a1) 2 (0755 ke (S o)
7,8,t,u=1 8ﬁ1 o e 0 e 8/32 0 et o

1f
M=
%]Qv

(dz(zgl)ir(xgl)sj) biﬁz— (Uz(zal)kt(z(;l)ul) E [Ersgtu]

= A Varlg) Y 5o (0255 )ur(557)1) g (0755 er (Z50)

with the third equality following from the interchangeability of unconditional ex-
pectations and differentiation with respect to g, and the fourth from the fact that
E[Zrs5t] # 0 only when r = s =t = u, and
E[ErrErr] = Af Varlg].
Thus we have

N
L A? Varl¢] Z a% (027_4(\/—1)"(\/—1%],) i 527_4(1/—1),”(\/—1)”)

r=1
= A2 N_?_ 2—4Mr1i 2, ~4, kol
a8Vl 3 5 (7 g (o ) (H.7)

and

— (8( 2’7_4) 11" 7‘]+ 2 —46( o TJ) a77>x

961 7Y T o
8 ( 27_4) kv, Tl 2 -4 6 (vk Tyt l) 877
X <———————————8ﬁ2 vyt oy ————————an 3[32 .

Summing these terms, we obtain
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- AZVarle] 2N
Y(A) =
(1= (1+n)° (1472
(Cixn (1 =1") (2C5xCon (1 +n+70" +20) + Car (1 = 1*)) +
+2C2xCsa (2057 Cex (14 21+ 4n° + 61° + 5n* + 4n° + 4n°) +
+Cax (L+n+1"+20° —n' =0 —1° —207))) +
+ o(N),
where
] 0,2 —4 B 8
Ciy = ——(—8—[;;——)_’ Cor = 0’77, Csn = -a-g? ,
9 (o*y™ - 19}
C4/\ = _(—.(9,3’72—)’ C5>\ :Uz”y 4, Oﬁ)\ = 5% .

Putting it all together, we have

-1 -1 4 1
E|:¢ <6§‘ﬂ—1 ,a§ﬁ2 >:| :’lj)(aazjﬁol ’882,1602 >+€2(O[1[2]+a2)+0(53)

Finally, the asymptotic variance of the estimator (57,4?) is given by
AVARe(62,8%) = E[4] (D'S™'D)7", (H.8)
where

D

D' = —%Etruc [l] = “‘YV];Enormal [l] = -]lvEnormal [l.l./]
=FO 1 2F® L 0

is given by the expression in the correctly specified case (G.15), with F(® and F(*)
given in (G.16) and (G.17) respectively. Also, in light of (H.1), we have

§ =  Busuo [11] = —%Etm [i] + Cums [U] w = D+ Cums U] ¥,

where

T vt

AT O
=00 4 2 4 0@,

Since, from (H.3), we have

ax—t ax~'\1 _  [9Xy! 0xg! 2 2 3
E[w(—aﬁl_’a—ﬂzﬂ —¢< 06 3[;)2 >+E call + et + 06,

. ) . i C asgt ezl .
it follows that '™/ is the matrix with entries ;¢ Tﬂol_’ #ﬂzL , Le,
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A NG ( . Aé/2(6a2+A002)>

'p(o) _ a'2(4a2+A()o'2) 2a a(4a2+Aoa2)3 2 (4a2+Aoa2)3 n
- . 1 _ A2 o(6a?+Ag0?) _ 2a%(16a%434¢0?)
24% (4a2+Aot72)3/2 (402+A00’2)3
+o(1),
and 1
W(Q) = m (al[Q] +a2) ,
with
1 AB
e [2] = Varlg <. c> +o(1),
with
_248/% (4024 ag02)
0(4(1,2+A0(72)9 2
B — AO((~4a2+A0r72)(4(L2+Aoa2)3/2~A(l)/za(—40u4+2a2Aoa2-}‘A%a‘l))
204 (4a2+a002)"/? ’
C _8A(){72((4(12+A0(12)3/2-—A(1)/2r7(6(1.2+A0r72))
- 11,4(4(L2+A0<72)9 2
1
ma2 = Var[{]
Ag/2(40a ——12a4A02o'4+A0408) A3/2 ( 44a6—~18a4Aoa2+7a2A0206+3A0306)
20 (262 4+ A002)° (4024 4902) " §2a2+A002)3(4a2+A0a2)9 g n
. 243/ 25%(50a2% +42a2 Ag0? +94¢% 0%)
(2a2+A002)3(4a2+A002)9/2
+o(1).

It follows from (H.8) that

AVARe(62,0%) = E[A] (D (D + Cumy [U] ¥)"1 D)™

= 4 (D (Id+ Cumy [U] D-lw)‘l)_
= Ag (Id+ Cumy [U] D )Dw
= Ao (Id+ Cumy [U] D™'W) D™}
= AVARnormal (6%,8%) + A¢ Cumy [U] D™'wD™,
where
AVARnomal(62,8%) = AoD ™ = A® +.£24® 4 0(e®)

is the result given in Theorem 3, namely (1.53).
The correction term due to the misspecification of the error distribution is de-
termined by Cumy [U] times
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AoD'wD™!
= 20 (FO 127 4 0() T (19 + 20 1 0(%)) x
x (F(O) +*F® 4 0(63)) -

= Ao (m — [F(O)] TR g 0(63)) [F“’)] - (wm) 2 4 0(63)) x

—1 —
X (Id - [F“”] FP 4 0(53)> [F(O)]
-1 -1
= Ao [Fm)] g [F(m] T
-1 -1 -1 -1 -1
( <o> AL [F(m] _ [F<o>] £ [Fm)] o [Fm)] _
= [F“’)] ' [F¢ °>]_1 P [F(O)]_l> +0(e%)
= B9 +£2B@ 1 0(c*),
where the matrices are given in the text. The asymptotic variance is then given by
AVAR e (62,8%) = (A<°> + Cumy [U] B<°>) +é (A<2> + Cumy [U] B(Z)) +0(e%),

with the terms A, A® B© and B® given in the statement of the Theorem.

Appendix 1 — Proof of Theorem 5

From

C2 (l __ e-—bA)
b H

it follows that the estimator (1.5) has the following expected value

E[Y?] =E W]+ E[ul] =s*A+

f?
N —bA)
=T
2 (1- e—bA)
B e
=(a2+c)—‘la+0( A%, (L1)

The estimator’s variance is

Var [6%] = —T% Var

N i1

1 &
:ﬁ;Var[ TZZZCOV le,

i=1j=1
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Since the Y;s are normal with mean zero,
Var [Y?] = 2 Var[Y;)? = 2E [¥?)”

and for i > j
Cov (Yiz,sz) =2 Cov (Yi,Y;)? = 2 E [ugu;]?,
since
Cov (Y3, Y;) = E[ViY)] = E[(wi + wi) (w; + ;)] = E [usuy] -

Now we have

uiu] [( - TI 1) (UTJ - UTJ~1):|
[UT»UT]] - [Uﬂ Ufjwl] -E [UTFIUT,-] +E [UT'L—IUUH]
cz (1 ~—bA) ~bA(i—j—1})
2b ’
so that

2
cle—2AG—i-1) (1 _ e—bA)4

262 ’

2 (1 — e~bAY2 gbA(i=j=1) 2
Cov (}/7:2,}/‘72) =2 <_ ( )b >

and consequently

Var [&2] = +

T2 b2 (1 + e~b4)?

2 B 2
—MN<#A+52%;:Q>}, (12)

with N = T'/A. The RMSE expression follows from (I.1) and (I.2). As in Theorem
1, these are exact small sample expressions, valid for all (T, A4).

1 {C4 (1 _ e—bA)z (Ne_ZbA —14 e—szA)
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Tables

Value of a T =1 day T =1 year T = 5 years

Panel A: 0 = 30% Stocks

0.01% 1 mn 4 mn 6 mn
0.05% 5 mn 31 mn 53 mn
0.1% 12 mn 1.3 hr 2.2 hr
0.15% 22 mn 2.2 hr 3.8 hr
0.2% 32 mn 3.3 hr 5.6 hr
0.3% 57 mn 5.6 hr 1.5 day
0.4% 1.4 hr 1.3 day 2.2 days
0.5% 2 hr 1.7 day 2.9 days
0.6% 2.6 hr 2.2 days 3.7 days
0.7% 3.3 hr 2.7 days 4.6 days
0.8% 4.1 hr 3.2 days 1.1 week
0.9% 4.9 hr 3.8 days 1.3 week
1.0% 5.9 hr 4.3 days 1.5 week

Panel B: 0 = 10% Currencies

0.005% 4 mn 23 mn 39 mn
0.01% 9 mn 58 mn 1.6 hr
0.02% 23 mn 2.4 hr 4.1 hr
0.05% 1.3 hr 8.2 hr 14.0 hr
0.10% 3.5 hr 20.7 hr 1.5 day

Table 1.1. Optimal Sampling Frequency

This table reports the optimal sampling frequency A* given in equation (1.20) for
different values of the standard deviation of the noise term @ and the length of the
sample T. Throughout the table, the noise is assumed to be normally distributed
(hence Cumy [U] = 0 in formula (1.20)). In Panel A, the standard deviation of the
efficient price process is ¢ = 30% per year, and at o = 10% per year in Panel B. In
both panels, 1 year = 252 days, but in Panel A, 1 day = 6.5 hours (both the NYSE
and NASDAQ are open for 6.5 hours from 9:30 to 16:00 EST), while in Panel B, 1
day = 24 hours as is the case for major currencies. A value of a = 0.05% means that
each transaction is subject to Gaussian noise with mean 0 and standard deviation
equal to 0.05% of the efficient price. If the sole source of the noise were a bid/ask
spread of size s, then a should be set to s/2. For example, a bid/ask spread of 10
cents on a $10 stock would correspond to a = 0.05%. For the dollar/euro exchange
rate, a bid/ask spread of s = 0.04% translates into a = 0.02%. For the bid/ask
model, which is based on binomial instead of Gaussian noise, Cumy [U] = —s*/8,
but this quantity is negligible given the tiny size of s.
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Sampling Theoretical Sample Theoretical Sample

Interval Mean Mean Stand. Dev. Stand. Dev.
5 minutes 0.185256 0.185254 0.00192 0.00191
15 minutes 0.121752 0.121749 0.00208 0.00209
30 minutes 0.10588 0.10589 0.00253 0.00254
1 hour 0.097938 0.097943 0.00330 0.00331
2 hours 0.09397 0.09401 0.00448 0.00440
1 day 0.09113 0.09115 0.00812 0.00811
1 week 0.0902 0.0907 0.0177 0.0176

Table 1.2. Monte Carlo Simulations: Bias and Variance when Market Microstruc-
ture Noise is Ignored

This table reports the results of M = 10,000 Monte Carlo simulations of the esti-
mator 62, with market microstructure noise present but ignored. The column “the-
oretical mean” reports the expected value of the estimator, as given in (1.17) and
similarly for the column “theoretical standard deviation” (the variance is given in
(1.19)). The “sample” columns report the corresponding moments computed over
the M simulated paths. The parameter values used to generate the simulated data
are o2 = 0.3% = 0.09 and a® = (0.15%)? and the length of each sample is 7" = 1
year.
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Figures

Discrete Sampling Without Noise
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Fig. 1.1. Various discrete sampling modes — no noise (Section 1.2), with noise
(Sections 1.3-1.7) and randomly spaced with noise (Section 1.8)
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Fig. 1.4. Asymptotic and Monte Carlo distributions of the MLE (62,4?%) with
Gaussian microstructure noise
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Summary. In this brief note we review some of our recent results on the use of high
frequency financial data to estimate objects like integrated variance in stochastic
volatility models. Interesting issues include multipower variation, jumps and market
microstructure effects.

2.1 Introduction

This paper briefly summarises some recent and ongoing work concerning infer-
ence on stochastic volatility (see, for example, the reviews in Ghysels, Harvey,
and Renault [14] and Shephard [17]), with the focus on multipower variation
as a tool for such inference.

We assume that the log price process is of the form X =Y + Z where Y
is an Brownian semimartingale (BSM),

¢ t
Y, =Y +/ a,du +/ o dW, (2.1)
0 0

whose quadratic variation [Y], which embodies the volatile character of Y, is
the main object of interest, while Z expresses effects that may be considered
in some sense extraneous to the basic dynamics of the financial market. The
process Z may be a jump process, representing for instance the impacts of
macroeconomic announcements, or it could represent microstructure noise.

In (2.1) W is a Brownian motion, the volatility process ¢ is assumed to
be positive and cadlag, a is predictable and locally bounded, and we have the
well known result that the quadratic variation of ¥V satisfies

t
Y], :/ o2du.
0

We shall write, for arbitrary r > 0,
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t
T* __ r
o} —/ ordu
0

and we wish to device inference procedures for these quantities, particularly
for o2*(= [Y],).

Although the above formulation is in terms of univariate processes, much
of the theory extends rather readily to a general multivariate setting. However,
we shall not consider this further here but refer to the papers Barndorff-Nielsen
and Shephard [10], Barndorff-Nielsen, Graversen, Jacod, and Shephard {4] and
Barndorf-Nielsen, Graversen, Jacod, Podolsky, and Shephard [3]. We shall
further restrict attention to equidistant sampling schemes; the situation under
more general schemes are discussed in Barndorff-Nielsen and Shephard [12]
and Woerner [18]. See also Mykland and Zhang [16].

After introducing the concepts of multipower variation (MPV) and gener-
alised multipower variation in Section 2, we discuss, in Section 3, applications
of MPYV to inference on volatility under BSM models (that is, there we sup-
pose that Z = 0). Section 4 treats applications of MPV to cases where Z is a
jump process, both for finite and infinite activity scenarios. The final Section 5
indicates some work in progress concerning the impact of microstructure noise.

For numerical and empirical work and illustrations of the theoretical
results presented here we additionally refer to Barndorff-Nielsen, Hansen,
Lunde, and Shephard {5, 6], Barndorf-Nielsen and Shephard [8, 9, 11] and
Barndorff-Nielsen, Shephard, and Winkel [13].

2.2 Multipower Variation

For arbitrary continuous time processes X = {X;};>0 and equidistant subdi-
visions of time with lag § > 0 we define the d-discretisation of X by

X = Xy — X516

where, as usual, |s| indicates the largest integer less than or equal to a real
number s. Furthermore, we introduce the realised multipower variation (MPV)
of order m for X by

{t/3]
(X7 = (X)) = (X, Xl = ST g [ g

Jj=m
where r is short for ry, ..., ry, the r; being nonnegative, and
z; = Xjs — X(j-1)s -

We shall also use the normalised version of realised MPV, defined by

(X5 = (x5}l < (X, X mm) = gl /2xg)
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where ry =714+« + 7.
In particular we will discuss applications of the power, bipower, and
tripower variations (PV, BPV and TPV):

[t/8]

Xl = 57yl
j=1

{t/8]

X)) = Z Jej1["fz;°,

[ Lt/5J
Z |5 —2|" |51 @ [

In the recent paper Barndorfl-Nielsen, Graversen, Jacod, Podolsky, and
Shephard {3] the concept of MPV is generalised to generalised multipover
variation where one considers realised objects of the form

[t/8]
Y a6 ey ) g (67 2ay),

j=m

where g1, ..., g, are real functions satisfying certain regularity conditions, pow-
ers of absolute values being a special case. While this generalisation opens up
further potential for applications, the associated central limit theory for (mul-
tivariate) BSM models, as established in {3], is in effect not more (or less)
difficult than for the MPV case. In the following Section we draw on results
from [3] to establish feasible limit theory for multipower variation under the
BSM specification.

2.3 MPYV for BSM

Let Y be a Brownian semimartingale as defined in Section 1. Important special
cases are

t t
:Y0+/ a(s,Ys)ds+/ o(s,Y,) dWWs,
0 0
and

t t
Y, =Y, +/ audu + / o dW,,,
0 0

with the volatility process ¢ satisfying a stochastic differential equation of the

form . . .
o =of +/ alds +/ ol _dV; —I—/ vs—dZs,
0 0 0
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where o/, o/, v are adapted cadlag processes, V is a Brownian motion, possibly
correlated with W, and Z is a Lévy process. This second structure encom-
passes both the models of Heston type and those of non-Gaussian OU-based
type introduced by Barndorfl-Nielsen and Shephard [7].

Without further assumptions we then have the following convergence in
probability (CiP) and central limit theorem (CLT) for MPV.

Theorem 1. As § — 0

{Ksa '--7Y5}[T1, )Tm] - /‘l’Tl ' ':u’T'7no-:+* (2‘2)

and t
672 (¥, oy Yol — gt} 28 / oprdBu,  (23)

0

where B is a Brownian motion which is independent of Y and where

m—k

m
Hr, H H Hrptrigy )

1 l=m =1

m m—1

Huzn (2m—1) Hum +2

k=1

za-

and pr = E{|u|"} for u ~ N(0,1). The convergence in (2.8) is in fact stable
as processes, which is stronger than convergence in law. (]

This theorem is a special case of the results established in Barndorff-
Nielsen, Graversen, Jacod, Podolsky, and Shephard [3]. The proofs given there
are (unavoidably) rather long-winded and use advanced stochastic analysis.
An explanatory simpler version will be given in Barndorfi-Nielsen, Graversen,
Jacod, and Shephard [4].

The independence between Y and B is crucial for the possibility to estab-
lish statistically feasible CLT results, such as the following :

My 1{)/6}[1‘] T+* law

5125ty Vrus“l{Ya}LS]
m
Hr = H Hory
1=1

and s = (s1, ..., 8m) With sy = 2ry.
In particular, note that for realised PV, BPV and TPV in the case where
ry =2,1; = 1/ry, then for example,

N(0,1),

where

2 o
(v} = o?

512\ vapi {5 11

1% N(0,1),
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w2y — o2

027 Jua o {5}

£2/3,2/3,2/3] .-

L% N0, 1),

and
Ha/s[Ys)

9/3,2/3,2/3,2/3,2/3,2/3 MN(O’l)' (2.5)
51/2#5/63\/V4/3,4/3,4/3{Ya}£/ 2/3,2/3,2/3,2/3,2/3]

2.4 MPYV for BSM + Jump Process

We now consider various extensions of the above results to one-dimensional
processes of the form
X=Y+2Z,

where Y € BSM while Z is a process exhibiting jumps. The processes ¥ and
Z are not assumed to be independent. Our discussion is based on Barndorfi-
Nielsen, Shephard, and Winkel [13] and is related to Barndorfl-Nielsen and
Shephard [11] and Woerner [18].

We assume that Y satisfles (2.2) or (2.3) for MPV and consider to which
extent this limiting behaviour remains the same when Z is added to Y, i.e.
whether the influence of Z is negligible (in this respect).

In other words, we ask whether:

for the CiP case,
(X5, oy, Xs}romml _tyy Yyl 6 (1)
for the CLT case,
(X5, Xs}roeomml s Y} mml — o (63/2)
We shall use the fact that Y satisfies
6712Y5 = Y-yl = O, (|log|'/?)

uniformly in j. We write max r for max{ry,...,rm}.

2.4.1 Finite Activity Case

When Z is a finite activity jump process then pathwise the number of jumps
of Z is finite and, for sufficiently small §, none of the additive terms in
(X5, ..., Xs]{r o™l involves more than one jump.

Each of the terms in [X5, ..., X4]">~"m] that contains no jumps is of order

0, ((110g8)+/2)
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and any of the terms that do include a jump is of order

Op ((l1og ap) (s~}
Hence

61—-r+/2 ([Xé]{r] _ [YS][T]) — 61—r+/2op ((5tlog5|)(r+*maxr)/2)
— Op <6l—maxr/2| 10g5|(r+—max7‘)/2> )
So:

e CiP is not influenced by Z so long as maxr < 2, while CLT continues to
hold so long as maxr < 1.

The bound maxr < 2 seems quite a tight condition for when m =1 and
r=2
[X6]? 5 Y]+ (2]

i.e. jumps do impact the limit.

The above CiP and CLT results mean that we can use multipower variation
to make inference about o2*, integrated variance, in the presence of finite
activity jump processes so long as maxr < 1 and ry == 2.

An example of this is where m = 3 and we take r; = rg = r3 = 2/3, that
is using TPV - Tripower Variation, cf. relation (2.5) above.

2.4.2 Infinite Activity Case

In discussing CiP and CLT for the case where Z exhibits infinite activity,
i.e. infinitely many jumps in any finite time interval, we shall for simplicity
restrict consideration to the case r1 = -+ = r,, = r. Detailed calculations,
using classical inequalities, show that:

e for MPVCIiP it suffices that
51-—mr/2[Z6, ”.?ZE][T‘,,..,T} — Op(l)
§tm=Nr210g 6|(Zs, ..., Zs]m " [(T)] = 0p(1)

52 [log 8™ Zs)M [(T)] = 0p(2).
e For MPVCLT it suffices that r < 1 and
(SUEmT)/Z[Z(s, . Z5][T""’T] = Op(l)
§U=0n=1/2| 108 6((Zs, ..., Zs|TL [(T)] = 0p(1)
5172 og 5|1 Zs)l7) ()] =0p(1).

These sufficient conditions are also close to being necessary, as the exam-
ples below will show.
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2.4.3 Lévy Jumps

Now, suppose that the jump process Z is a Lévy process. Alternatively, we
might consider the case of Z being an OU process with BDLP (background
driving Lévy process) L. However, as shown in Barndorff-Nielsen, Shephard,
and Winkel [13], the conclusions regarding CiP and CLT for X = Y +Z would
be the same as for X =Y + L.

Ezample 1. Let Z be the I'(v, @) subordinator, i.e. Z is the Lévy process for
which the law of Z; is the gamma distribution with pdf

al/

)"

V—le—ax

This is an infinite activity process and for ¢ | 0 we have

o v +p)
E{|Z} =« _F(‘t;)—NO(t)

whatever the value of p > 0. (Here we have used that tI'(t) — 1 as t — 0.)
Thus [Zs]I" = O,(1), [Zs, Zs|™7) = 0,(6), |Zs, Zs, Zs|"™") = 0, (62), etc.
Consequently:

e MPVCiPis valid for allm=1,2,...and 0 < r < 2.
e MPVCLT isvalid forallm=1,2,...and 0 <7 < 1.

On the other hand we have, for example, that BPVCLT does not hold if
r=1landY Il Z.

Ezample 2. Let Z be the IG(¢, ) subordinator, i.e. Z is the Lévy process for
which the law of Z; is the inverse Gaussian distribution with pdf

97 =3/2=3 (@7 %)

Var
Then, as t | 0,
o(t) if p>

E{|Z:P} ~ ¢ O(t|logt|) if p=
O(t?P) fo0<p<i

D= D[

(2.6)

so that, for & < r < 1 we have [Zs]""] = 0,(5) and [Zs]l"l = Op(1). Conse-
quently:

e MPVCiPisvalid forallm=1,2,...and 0 <r < 2.
MPVCLT is valid for all m if % <r<l,

In particular, MPVCLT holds for tripower variation with r = %
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Ezample 3. Let Z be the NIG(%,0,0, ¢) Lévy process. This is representable
as the subordination of a Brownian motion B by the IG(¢, ) subordinator.
Hence, E {|Z,|?} behaves asymptotically as in (2.6) with p = ¢/2. Conse-
quently:

e MPVCIP is valid for all m =1,2,... and 0 <r < 2.
MPVCLT does not hold for any value of 7.

What decides the possibility of MPVCiP or MPVCLT holding is essen-
tially the degree of singularity at 0 of the Lévy measure of Z (which may be
expressed in terms of the Blumenthal-Getoor index). For the three examples
above the degrees are respectively z~!, z73/2 and 2~2. In the latter case there
are so many small jumps that the process partly resembles a diffusion, and
this is what prevents separate inference on the volatility process o.

2.5 Microstructure Noise

Zhou [21] seems to be the first paper that manifestly demonstrates the neces-
sity to take microstructure noise into account when drawing inference on the
integrated (squared) volatility of the log price process, based on high frequency
data. In Andersen, Bollerslev, Diebold, and Labys [1] this was emphasised fur-
ther through the introduction of the wvolatility signature plot, which made it
clear that even for five minute lags the influence of the noise is generally
appreciable.

However, the precise nature and influence of the noise is far from well
understood and this constitutes a topic of strong current interest.

In a recent paper, Zhang, Mykland, and Ait-Sahalia [20] address the noise
problem and proposes a subsampling procedure for estimating the integrated
volatility of the log price process. Hansen and Lunde [15] have initiated a
study of how the realised quadratic variation may be bias corrected to allevi-
ate the noise effect. See also the work of Bandi and Russell {2]. The latter line
of investigation is continued in joint ongoing work between Barndorfl-Nielsen,
Hansen, Lunde, and Shephard [5, 6]. That work considers a general class of ker-
nel estimators of the quadratic variation of the log price process. It is shown,
in particular, that the subsampling procedure for estimation of quadratic vari-
ation proposed by Ait-Sahalia, Mykland and Zhang is a special case of that
class. However the main thrust of the Barndorff-Nielsen, Hansen, Lunde, and
Shephard [5] work consists in determining, from optimality criteria, another
type of kernel estimator that has turned out to yield very accurate estimates
for almost, all lags. The relevance of MPV for the study of microstructure noise
will also be considered. In some stimulating recent work Zhang [19] has shown
that subsampling can be generalised to achieve the same rate of convergence
as the modified kernel suggested by Barndorff-Nielsen, Hansen, Lunde, and
Shephard [5].



2 Multipower Variation and Stochastic Volatility 81
Acknowledgments

Ole E. BarndorfF-Nielsen’s work is supported by CAF (www.caf.dk), which
is funded by the Danish Social Science Research Council. Neil Shephard’s
research is supported by the UK’s ESRC through the grant “High frequency
financial econometrics based upon power variation.”

References

[1] Andersen, T. G., T. Bollerslev, F. X. Diebold, and P. Labys (2000). Great real-
izations. Risk 13, 105-108.

(2] Bandi, F. M. and J. R. Russell (2003). Microstructure noise, realized volatil-
ity, and optimal sampling. Unpublished paper, Graduate School of Business,
University of Chicago.

[3] Barndorff-Nielsen, O. E., S. E. Graversen, J. Jacod, M. Podolskij, and N. Shep-
hard (2005). A central limit theorem for realised power and bipower variations
of continuous semimartingales. In Y. Kabanov and R. Lipster (Eds.), From
Stochastic Analysis to Mathematical Finance, Festschrift for Albert Shiryaev.
Springer. Forthcoming. Also Economics working paper 2004-W29, Nuffield Col-
lege, Oxford.

[4] Barndorfl-Nielsen, O. E., S. E. Graversen, J. Jacod, and N. Shephard (2005).
Limit theorems for realised bipower variation in econometrics. Unpublished
paper: Nuffield College, Oxford.

[5] Barndorfl-Nielsen, O. E., P. R. Hansen, A. Lunde, and N. Shephard (2004).
Regular and modified kernel-based estimators of integrated variance: the case
with independent noise. Unpublished paper: Nuffield College, Oxford.

[6] Barndorf-Nielsen, O. E., P. R. Hansen, A. Lunde, and N. Shephard (2005).
Kernel-based estimators of integrated variance: dependent noise. In preparation.

[7] Barndorff-Nielsen, O. E. and N. Shephard (2001). Non-Gaussian Ornstein—
Uhlenbeck-based models and some of their uses in financial economics (with
discussion). Journal of the Royal Statistical Society, Series B 68, 167-241.

[8] Barndorff-Nielsen, O. E. and N. Shephard (2002). Econometric analysis of re-
alised volatility and its use in estimating stochastic volatility models. Journal
of the Royal Statistical Society, Series B 64, 253-280.

[9] Barndorff-Nielsen, O. E. and N. Shephard (2003). Realised power variation
and stochastic volatility. Bernoulli 9, 243-265. Correction published in pages
1109-1111.

[10] Barndorff-Nielsen, O. E. and N. Shephard (2004a). Econometric analysis of
realised covariation: high frequency covariance, regression and correlation in
financial economics. Econometrica 72, 885-925.

[11] Barndorf-Nielsen, O. E. and N. Shephard (2004b). Power and bipower variation
with stochastic volatility and jumps (with discussion). Journal of Financial
Econometrics 2, 1-48.

[12] Barndorff-Nielsen, O. E. and N. Shephard (2005). Power variation and time
change. Theory of Probability and Its Applications. Forthcoming.

[13] Barndorfl-Nielsen, O. E., N. Shephard, and M. Winkel (2004). Limit theorems
for multipower variation in the presence of jumps in financial econometrics.
Unpublished paper: Nuffield College, Oxford.



82 Ole E. Barndorff-Nielsen and Neil Shephard

[14] Ghysels, E., A. C. Harvey, and E. Renault (1996). Stochastic volatility. In
C. R. Rao and G. S. Maddala (Eds.), Statistical Methods in Finance, pp. 119~
191. Amsterdam: North-Holland.

[15] Hansen, P. R. and A. Lunde (2004). An unbiased measure of realized variance.
Unpublished paper: Aarhus University.

[16] Mykland, P. and L. Zhang (2005). ANOVA for diffusions. Annals of Statis-
tics 33. Forthcoming.

[17] Shephard, N. (2005). Stochastic Volatility: Selected Readings. Oxford: Oxford
University Press.

[18] Woerner, J. (2004). Power and multipower variation: inference for high fre-
quency data. Unpublished paper.

[19] Zhang, L. (2004). Efficient estimation of stochastic volatility using noisy obser-
vations: a multi-scale approach. Unpublished paper: Department of Statistics,
Carnegie Mellon University.

[20] Zhang, L., P. Mykland, and Y. Ait-Sahalia (2005). A tale of two time scales:
determining integrated volatility with noisy high-frequency data. Journal of the
American Statistical Association. Forthcoming.

[21] Zhou, B. (1996). High-frequency data and volatility in foreign-exchange rates.
Journal of Business and Economic Statistics 14, 45-52.



3

Completeness of a General Semimartingale
Market under Constrained Trading

Tomasz R. Bielecki*, Monique Jeanblanc!, and Marek Rutkowski

! Department of Applied Mathematics, Illinois Institute of Technology, Chicago,

1L 60616, USA

bielecki@iit.edu

Département de Mathématiques, Université d’Evry Val d’Essonne, 91025 Evry

Cedex, France

monique. jeanblanc@univ-evry.fr

3 School of Mathematics, University of New South Wales, Sydney, NSW 2052,
Australia and
Faculty of Mathematics and Information Science, Warsaw University of
Technology, 00-661 Warszawa, Poland
marekr@maths.unsw.edu.au

3.1 Introduction

In this note, we provide a rather detailed and comprehensive study of the ba-
sic properties of self-financing trading strategies in a general security market
model driven by discontinuous semimartingales, Our main goal is to analyze
the issue of replication of a generic contingent claim using a self-financing
trading strategy that is additionally subject to an algebraic constraint, re-
ferred to as the balance condition. Although such portfolios may seem to be
artificial at the first glance, they appear in a natural way in the analysis of
hedging strategies within the reduced-form approach to credit risk.

Let us mention in this regard that in a companion paper by Bielecki et
al. [1] we also include defaultable assets in our portfolio, and we show how to
use constrained portfolios to derive replicating strategies for defaultable con-
tingent claims (e.g., credit derivatives). The reader is also referred to Bielecki
et al. [1], where the case of continuous semimartingale markets was studied,
for some background information regarding the probabilistic and financial set-
up, as well as the terminology used in this note. The main emphasis is put
here on the relationship between completeness of a security market model

* The research of the first author was supported in part by NSF Grant 0202851
and by Moody’s Corporation grant 5-55411.

! The research of the second anthor was supported in part by Moody’s Corporation
grant 5-55411.
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with unconstrained trading and completeness of an associated model in which
only trading strategies satisfying the balance condition are allowed.

3.2 Trading in Primary Assets

Let Y,',Y;2,..., Y} represent cash values at time t of k primary assets. We
postulate that the prices Y1, Y2,...,Y* follow (possibly discontinuous) semi-
martingales on some probability space ({2, F,P), endowed with a filtration F
satisfying the usual conditions. Thus, for example, general Lévy processes,
as well as jump-diffusions are covered by our analysis. Note that obviously
FY C F, where FY is the filtration generated by the prices Y1, Y2,... Yk
of primary assets. As it is usually done, we set Xo— = Xq for any stochastic
process X, and we only consider semimartingales with cadlag sample paths.
We assume, in addition that at least one of the processes Y'!, Y2 ..., Y* say
Y}, is strictly positive, so that it can be chosen as a numeraire asset. We
consider trading within the time interval [0,7] for some finite horizon date
T > 0. We emphasize that we do not assume the existence of a risk-free asset
(a savings account).

3.2.1 Unconstrained Trading Strategies

Let ¢ = (¢',4%,...,¢%) be a trading strategy; in particular, each process ¢*
is predictable with respect to the reference filtration F. The component ¢!
represents the number of units of the ith asset held in the portfolio at time ¢.
Then the wealth V;(¢) at time t of the trading strategy ¢ = (¢!, ¢2,...,¢")
equals

k
=) Y}, vtelo,1], (3.1)

i=1
and ¢ is said to be a self-financing strategy if

k t
Wio) = Vo(@)+ Y [ ehdvl, veepT), (32)
=1

Let & be the class of all self-financing trading strategies. By combining the
last two formulae, we obtain the following expression for the dynamics of the
wealth process of a strategy ¢ € @

i) = (Vi(o Z G ) (V) v + Z g1 dY; .

=2

The representation above shows that the wealth process V(¢) depends only
on k— 1 components of ¢. Note also that, in our setting, the process (Vt(¢) -

Sk, ¢§}Qi) (Y;))~! is predictable.
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Remark 1. Let us note that Protter [4] assumes that the component of a strat-
egy ¢ that corresponds to the savings account (which is a continuous process)
is merely optional. The interested reader is referred to Protter [4] for a thor-
ough discussion of other issues related to the regularity of sample paths of
processes @', ¢?, ..., ¢ and V().

Choosing Y'! as a numeraire asset, and denoting V,}(¢) = Vi(¢)(¥;!)™1,
vl = YY), we get the following well-known result showing that the
self-financing feature of a trading strategy is invariant with respect to the
choice of a numeraire asset.

Lemma 1. (i) For any ¢ € @, we have

k t
th(cb)=Vol(¢)+Z/0 gLdyil, Vielo,T]. (3.3)
=2

(if) Conversely, let X be an Fr-measurable random variable, and let us assume
that there exists x € R and F-predictable processes ¢*, i =2,3,...,k such that

k T
)
i=2 70

Then there exists an F-predictable process ¢! such that the strateqy ¢ =
(', ¢2%,...,8%) is self-financing and replicates X. Moreover, the wealth pro-
cess of ¢ satisfies Vi(¢) = VIY,!, where the process V1 is given by formula
(3.4) below.

Proof. The proof of part (i) is given, for instance, in Protter [4]. We shall thus
only prove part (ii). Let us set

k t
vtl:x+2/ ¢t dyit, vtelo,T), (3.4)
i=2 70

and let us define the process ¢! as

o

k
o=V -t = oy (- Lot ),
=2

i=2

where V; = VY. From (3.4), we have dV,! = 3%, ¢ dY;"!, and thus

dv, = d(V,'Y}) = VLdY} +YLdV! +d[Y, VT, (3.5)
k . . .
= VY + > i (VL avPt iyt YRy (3.6)
=2

From the equality
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dY$ = (YY) = YA + VLAY +dly Y,

it follows that

k
AV, = VLAY + 3 ¢i(dYy - Y2'aYy) (3.7)
=2
k o k . .
= (VL =Y e vt + Y gayy, (3.8)
§=2 =2

and our aim is to prove that
k . .
dv, = _ ¢} dY;.
i=1
The last equality holds if

k k
op =V =D Y =V =) et (3.9)

=2 1=2

ie., if AV =Y F ) ¢t AY"!, which is the case from the definition (3.4) of V1.
Note also that from the second equality in (3.9) it follows that the process ¢
is indeed F-predictable. Finally, the wealth process of ¢ satisfies V;(¢) = V}Y,!
for every t € [0, T}, and thus Vr(¢) = X. O

3.2.2 Constrained Trading Strategies

In this section, we make an additional assumption that the price process Y* is
strictly positive. Let ¢ = (¢!, #%,...,¢") be a self-financing trading strategy
satisfying the following constraint:

k
S oYL =2, Vtelo,T], (3.10)
i=l+1

for some 1 <[ <k — 1 and a predetermined, [F-predictable process Z. In the
financial interpretation, equality (3.10) means that the portfolio ¢ should
be rebalanced in such a way that the total wealth invested in securities
YL yi+2 | Y* should match a predetermined stochastic process (for in-
stance, we may assume that it is constant over time or follows a deterministic
function of time). For this reason, the constraint (3.10) will be referred to as
the balance condition.

Our first goal is to extend part (i) in Lemma 1 to the case of constrained
strategies. Let @;(Z) stand for the class of all self-financing trading strategies
satisfying the balance condition (3.10). They will be sometimes referred to as
constrained strategies. Since any strategy ¢ € $;(7) is self-financing, we have
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k k
AVi(9) = D BIAYS = Vi(¢) - Y diY,
= =1

and thus we deduce from (3.10) that

k l

(@)= Y =) 4V + 7.
=1 i=1
Let us write V"' = YA(Y;1)™1, Y2 = Yi(YF)~L, Z} = Z,(Y;))~1. The follow-
ing result extends Lemma 1.7 in Bielecki et al. [1 ] from the case of continuous
semimartingales to the general case. It is apparent from Proposition 1 that the
wealth process V(¢) of a strategy ¢ € ¢,(Z) depends only on k—2 components
of ¢.

Proposition 1. The relative wealth V' (¢) = Vi(¢)(Y,))™! of a strategy ¢ €
&,(Z) satisfies

zl
( VO _|_Z/ ¢z Y11+Z / ¢z<yzl dykl>+

=41 -
t 1
Z;
+ / dyk 1 311
0 Y’Cl ( )
Proof. Let us consider discounted values of price processes Y1, Y2, ... Yk,

with ¥'! taken as a numeraire asset. By virtue of part (i) in Lemma 1, we thus
have

k t
Ww=%m+2/¢wmﬁ (3.12)
i=2 v 0

The balance condition (3.10) implies that

k
Z ¢;Y:;1 = Ztla

i=l+1
and thus

8 = (V)" ( Z ¢>tYf_l> (3.13)

i={+1
By inserting (3.13) into (3.12), we arrive at the desired formula (12.2). O

Let us take Z =0, so that ¢ € §;(0). Then the balance condition becomes
Z, 141 #tYE =0, and (12.2) reduces to

l k—1
, : ) . vyl
=y gidvit+ > ¢;(dY3'1 yt_ dY’“) (3.14)
=2

i=l+1 t—
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3.2.3 Case of Continuous Semimartingales

For the sake of notational simplicity, we denote by Y“*:! the process given by

the formula ,
) t ) Yl,l

vt = / <dYJ’1— i dYu’“’l) (3.15)
0 Y,”

U—

so that (12.2) becomes

k-1 t ,
> [ elavitiy
0

i=l4+1

l t
Vi) = Vi@ + 3 / G dYit
i=2 Y0

t Zl
+/ ) (3.16)
0o Y,

U—

In Bielecki et al. [1], we postulated that the primary assets Y!,Y? ..., Y*

follow strictly positive continuous semimartingales, and we introduced the
S ; ik, 1

auxiliary processes Y,;""! = Y*Fe=o™"  where

i
Oé;’k’l — <11’l Yi’k,ll'lyl’k>t :/ (YJ',IC)—I(Yul,k)—-l d(yi,k,yl,k>u )
0

In Lemma 1.7 in Bielecki et al. {1} (see also Vaillant [5]), we have shown that,
under continuity of Y1,Y?2,...,Y*, the discounted wealth of a self-financing
trading strategy ¢ that satisfies the constraint 3%, 1 BYY = Z; can be
represented as follows:

l t k—1 t
VO = @+ Y [ davite 3 [ ararieg
i=2 VO i=i+1 70
t Zl
+/ L dy R, (3.17)
0o Yy
where we write ¢vF! = ¢§(Ytl’k)_16a;'k’l. The following simple result recon-

ciles expression (3.16) established in Proposition 1 with representation (3.17)
derived in Bielecki et al. [1].

Lemma 2. Assume that the prices Y1, Y and Y* follow strictly positive con-
tinuous semimartingales. Then we have

14
; ik, 1 L
)tz)k'l:/ ()ul’k)_lea“' d)uq:’k’l
0

and ' ‘ ‘ ‘
dyvtl,k:,l — (Yil,k)—l(dytl,k) . }/tl,k: da?k,l) )
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Proof. In the case of continuous semimartingales, formula (3.15) becomes

) t ) Yi,l t ) )
YJ"“:/O (dY;»l— ok de’1>:/o (dY! - YR dy,bF)7h).

On the other hand, an application of 1t0’s formula yields

dFPRt = e @yt - () Ty YR,

and thus

(}/tl!k)_lea:,k.l d?J’k’l _ (nl,k)—l(d)/ti,k _ (}/tl,k:>—1d<yi,k’yl,k)t) i
One checks easily that for any two continuous semimartingales, say X and Y,

we have
Yy dX, - Y7 (XY )) = d(X YY) — X dY T

provided that Y is strictly positive. To conclude the derivation of the first
formula, it suffices to apply the last identity to processes X = Y%* and Y =
YLk, For the second formula, note that

ik, 1

Ayt = () Tlen ™ ARt = (1) et a(y e
— (S/;l,k})—l(d}/tl,k _ )/t’L‘k daz,k,l) ,

as required. O

It is obvious that the processes Yo%1 and Y#*! are uniquely specified
by the joint dynamics of Y1, Y? and Y*. The following result shows that the
converse is also true.

Corollary 1. The price Y} at time t is uniquely specified by the initial value
Y{ and either

(i) the joint dynamics of processes Y1, Y* and Yik1, or

(ii) the joint dynamics of processes Y1, Y* and Y¥51,

. S 3 _ k1
Proof. Since Y"*! = yFe=ei™" e have
ap®! = (InY**, YRy, = (In Yok InyhF),
and thus - I .
, ~ ik, ~ ik, ‘
Y} = Ytkyt%kyleat — Ytkytl,kyleﬂnY InytE),

This completes the proof of part (i). For the second part, note that the process
Y1 satisfies .
i,1 i,1 i,k,1 ¢ vl k,1
Y =yl 4y +/ L dY (3.18)
0 Yu

It is well known that the SDE
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¢
Xo=Xo+ Hot | Xud¥a,
0

where H and Y are continuous semimartingales (with Hy = 0) has the unique,
strong solution given by the formula

X, :gt(Y)(XoJr/ote;l(Y) dHu—/OtSJI(Y)dW,H)u).

Upon substitution, this proves (ii). 0

3.3 Replication with Constrained Strategies

The next result is essentially a converse to Proposition 1. Also, it extends part
(ii) of Lemma 1 to the case of constrained trading strategies. As in Section
3.2.2, we assume that 1 <! <k —1, and Z is a predetermined, F-predictable
process.

Proposition 2. Let an Fr-measurable random variable X represent a con-
tingent claim that settles at time T'. Assume that there exist F-predictable
processes @', i = 2,3,...,k — 1 such that

! T k-1 .1 T 71
X =V (:H—Z / A / i Ay P! +/ L dY[“).
2 /0 im17170 0o Y©
(3.19)
Then there exist the F-predictable processes ¢' and ¢F such that the strategy

¢ = (¢',92%,...,8%) belongs to &,(Z) and replicates X. The wealth process of
¢ equals, for every t € (0,77,

l t k—1 t ) ) t 1
i@ =vi(s+ Y [otante X [oavetis [ Znanss).

=5 JO im4170 0o Y,
(3.20)

Proof. As expected, we first set (note that ¢* is F-predictable)
1 k-1
k_ L (. i

o =y (% iﬂzﬂqstn) (3.21)

and
! t 4 k=1 e ' t g1
th:x+2/ ¢ dY / qS;dYu"k‘l—k/ SETAYE
i=2 70 i=i+1Y0 0 Fy-

Arguing along the same lines as in the proof of Proposition 1, we obtain
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k t
W=V [ vt
i=2v0

Now, we define

k k
O = V=Y = o7 (V- o),
=2 §=2

where V; = V,'Y,!. As in the proof of Lemma 1, we check that

k
ol =V =Y g,
i=2
and thus the process ¢' is F-predictable. It is clear that the strategy ¢ =
(¢, ¢2,...,¢") is self-financing and its wealth process satisfies V;(¢) = V; for

every t € [0,T]. In particular, Vp(¢) = X, so that ¢ replicates X. Finally,
equality (3.21) implies (3.10), and thus ¢ € $;(Z). O

Note that equality (12.3) is a necessary (by Proposition 1) and sufficient
{(by Proposition 2} condition for the existence of a constrained strategy repli-
cating a given contingent claim X.

3.3.1 Modified Balance Condition

It is tempting to replace the constraint (3.10) by a more convenient condition:

k
> aYi=12, Vtel,T], (3.22)
=141

where Z is a predetermined, F-predictable process. If a self-financing trading
strategy ¢ satisfies the modified balance condition (3.22) then for the relative
wealth process we obtain (cf. (12.2))

l ¢
Vo) =@+ [ savit
=2 V0
3.23
k=1 . yirl t 71 (3.23)
+ Y / ¢§L<dYJ’1~YZIde*1>+/ Vs dypt.
0 ' 0 Y,

i=l+1 u—

Note that in many cases the integrals above are meaningful, so that a counter-
part of Proposition 1 with the modified balance condition can be formulated.
To get a counterpart of Proposition 2, we need to replace (12.3) by the equality
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{ T .
X =Y%<x+2/ $rdy>! +
i=2 70
k—1 T 1 T 1
; ; Yy k1 Z k1

+ / (pz(dyi,l_ t dy,>_+_/ t dyr ,

2y Iy )

i=I+1

(3.24)

where ¢%, ¢4, ..., ¢* are F-predictable processes. We define
l t
vieary [t
=270
i1
u
ko1

k—1 t v
+ il dyht —
> (o5

i=l41 u—

t Zl
dYuk*1>+ / Ayt
0 Y,

U—

and we set

k—1 k
o) = ;,%(Zt - ¢m>, o=Vl v
t i=l+1 im=2

Suppose, for the sake of argument, that the processes ¢! and ¢* defined
above are F-predictable. Then the trading strategy ¢ = (¢',¢%,...,¢"%) is
self-financing on [0, 7], replicates X, and satisfies the constraint (3.22). Note,
however, that the predictability of ¢! and ¢* is far from being obvious, and
it is rather difficult to provide non-trivial and practically appealing sufficient
conditions for this property.

3.3.2 Synthetic Assets

Let us fix i, and let us analyze the auxiliary process Y1 given by formula
(3.15). We claim that this process can be interpreted as the relative wealth
of a specific self-financing trading strategy associated with Y1, Y?2,... Yk,
Specifically, we will show that for any ¢ = 2,3,...,k — 1 the process Y%,
given by the formula
- 4 ¢ . yirl

yvtz,k:,l _ Y—tll/tz,k,l — thl/ (dyuz,l _ Yu— dY“k,l) ,
0

k1
——
represents the price of a synthetic asset. For brevity, we shall frequently write
Y" instead of Y#%1, Note that the process Y is not strictly positive (in fact,
Yi=0).

Equivalence of Primary and Synthetic Assets

Our goal is to show that trading in primary assets is formally equivalent to
trading in synthetic assets. The first result shows that the process ¥ can be
obtained from primary assets Y1, Y* and Y* through a simple self-financing
strategy. This justifies the name synthetic asset given to Y.
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Lemma 3. For any fized i = 2,3,...,k — 1, let an Fr-measurable random
variable Y} be given as

B ‘ T ‘ yirl
Vi = vivhkl = YTl/ (d)q“ - dYtk’l) . (3.25)
0 Y
Then there exists a strategy ¢ € $1(0) that replicates the claim Yi. Moreover,
we have, for every t € [0,T},

) t i Yi,l .
AOES A4 /0 (dYJ’l - SRt dYu’“> =Y. (3.26)

u—

Proof. To establish the existence of a strategy ¢ with the desired properties,
it suffices to apply Proposition 2. We fix i and we start by postulating that
¢' =1and ¢ =0 for any 2 < j < k — 1, j # i. Then equality (3.25) yields
(12.3) with X =Y}, x = 0,1 =1 and Z = 0. Note that the balance condition
becomes

k
sy, =YL +ofYE =0.
F=2
Let us define ¢! and ¢* by setting
Y :
R AR (L A T
Note that we also have

b = Vi =Y -V = VL

Hence, ¢* and ¢* are F-predictable processes, the strategy ¢ = (¢!, ¢2,...,¢*)
is self-financing, and it satisfies (3.10) with { = 1 and Z = 0, so that ¢ € $,(0).
Finally, equality (3.26) holds, and thus Vr(¢) = Y. 0

Note that to replicate the claim Y = YT”k’l, it suffices to invest in primary
assets Y1, Y? and Y*. Essentially, we start with zero initial endowment, we
keep at any time one unit of the ith asset, we rebalance the portfolio in such
a way that the total wealth invested in the ith and kth assets is always zero,
and we put the residual wealth in the first asset. Hence, we deal here with
a specific strategy such that the risk of the ith asset is perfectly offset by
rebalancing the investment in the kth asset, and our trades are financed by
taking positions in the first asset.

Note that the process Y»! satisfies the following SDE (cf. (3.18))

‘ 4 . t yil
Y=y 470 +/ Y“— dyr?t, (3.27)
0

P

U
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which is known to possess a unique strong solution. Hence, the relative price
Yf’l at time ¢ is uniquely determined by the initial value Yy 'l and processes
Y1 and Y®!. Consequently, the price Y} at time ¢ of the ith primary asset
is uniquely determined by the initial value Yg, the prices Y!,Y* of primary
assets, and the price Y of the ith synthetic asset. We thus obtain the following
result.

Lemma 4. Filtrations generated by the primary assets YL,Y? ..., Y* and by
the price processes Y1, Y2 .. YL Y+ VE-L Yk coincide.

Lemma 4 suggests that for any choice of the underlying filtration F (such
that F¥Y C F), trading in assets Y1,Y?2,... , Y% is essentially equivalent to
trading in Y1, Y2,..., YLV | Ykl Yk TLet us first formally define the
equivalence of market models.

Definition 1. We say that the two unconstrained models, M and M say,
are equivalent with respect to a filtration IF if both models are defined on a
common probability space and every primary asset in M can be obtained by
trading in primary assets in M and vice versa, under the assumption that
trading strategies are F-predictable.

Note that we do not assume that models M and M have the same number
of primary assets. The next result justifies our claim of equivalence of primary
and synthetic assets.

Corollary 2. Models M = (Y1, Y2, ,Y*®) and M = (Y!,Y?,...,Y/,
Yl VE-L YR ®) are equivalent with respect to any filtration F such that
FYCF.

Proof. In view of Lemma 3, it suffices to show that the price process of each
primary asset Y? for ¢ = [,1 4+ 1,...,k — 1 can be mimicked by trading in
Y1, Y and Y*. To see this, note that for any fixed s = ,1+1,...,k— 1, we
have (see the proof of Lemma 3)

Vi =Vi(4) = o1V} + Vi + of Y

with o .
AV} = dVi(¢) = ¢} dY}! + dY} + ¢k dY;E .
Consequently, , .
Y= —glV}! + V) - gfvf
and

dY;} = —¢} dY;}' + d¥j — g dv}.

This shows that the strategy (—¢!,1, —¢*) in Y1, ¥ and Y* is self-financing
and its wealth equals Y. O
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Replicating Strategies with Synthetic Assets

In view of Lemma 3, the replicating trading strategy for a contingent claim
X, for which (12.3) holds, can be conveniently expressed in terms of primary
securities Y1, Y2, ..., Y" and Y*, and synthetic assets Y1, Vi+2 Vk-1,
To this end, we represent (12.3)-(3.20) in the following way:

i T . k-1 T T 71
X =Y} <x+2/ gyt + Y / ¢§dYt"1+/ Y’:l d}ft’“) (3.28)
42 Y0 0 0 '

i=l+1 t—

where V' = ¥/Y} = Y"1 and

l t k—1 t t 1
. . A Z
i@ -1 (e+ Y [otaviie X [obaves [ Zhaver).
i=2

i=l+1 u—
(3.29)

Corollary 3. Let X be an Fp-measurable random variable such that (3.28)
holds for some F-predictable process Z and some F-predictable processes
&%, 00, ..., 8L Let ot = ¢ fori=2,3,..., k-1,

wk__ Zt1 _ Zt
t Yt’El Yt]f_,

and

{ k—1
U AR AR PR AT S A

i=2 d=l+1
l k-1
_yl [AV)! iyl ky k1
SRR P A AR DR AR A
=2 g1

Then v = (Y1, 92,...,9%) is a self-financing trading strategy in assets

Y, .., YLYHL YRS YR Moreover, 1 satisfies YEYE = Z;, t € [0,T},
and it replicates X .

Proof. In view of (3.28), it suffices to apply Proposition 2 with { =k —1. O

3.4 Model Completeness

We shall now examine the relationship between the arbitrage-free property
and completeness of a market model in which trading is restricted a priori to
self-financing strategies satisfying the balance condition.
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3.4.1 Minimal Completeness of an Unconstrained Model

Let M = (Y1, Y?,...,Y*,®) be an arbitrage-free market model. Unless ex-
plicitly stated otherwise, @ stands for the class of all F-predictable, self-
financing strategies. Note, however, that the number of traded assets and
their selection may be different for each particular model. Consequently, the
dimension of a strategy ¢ € @ will depend on the number of traded assets
in a given model. For the sake of brevity, this feature is not reflected in our
notation.

Definition 2. We say that a model M is complete with respect to F if any
bounded Fr-measurable contingent claim X is attainable in M. Otherwise, a
model M is said to be incomplete with respect to IF.

Definition 3. An F-complete model M = (Y1, Y2, ... Y*: ®) is said to be
minimally complete with respect to F if for any chozce of tmdmg strategies
i€, i=1,2,...,k—1, the reduced model M+-1 = (Y1, V2 ... Vk1,9)
where ?i = V(qbi), is incomplete with respect to F. In this case, we say that
the degree of completeness of M equals k.

Let us stress that trading strategies in the reduced model MF=1 are pre-
dictable with respect to IF, rather than with respect to the filtration generated
by price processes Y1, V2, ..., ¥*~1 Hence, by moving from M to M*F~1 w
reduce the number of traded asset, but we preserve the original 1nformat10n
structure F. Minimal completeness of a model M means, in particular, that
all primary assets Y1,Y?2,...,Y¥ are needed if we wish to generate the class of
all (bounded) Fr-measurable claims through F-predictable trading strategies.
The following lemma is thus an immediate consequence of Definition 3.

Lemma 5. Assume that a model M = (Y1, Y2, ... Y*: ®) is complete, but
not minimally complete, with respect to F. Then there exists at least one pri-
mary asset Y?, _which is redundant, in the sense that there exists a complete
reduced model ./\/ll for some l < k— 1 such that Y # yi fori=1,2,...,L

Complete models that are not minimally complete do not seem to describe
adequately the real-life features of financial markets (in fact, it is frequently
argued that the real-life markets are not even complete). Also, from the theo-
retical perspective, there is no advantage in keeping a redundant asset among
primary securities. For this reasons, in what follows, we shall restrict our at-
tention to market models M that are either incomplete or minimally complete.
Lemma 6 shows that the degree of completeness is a well-defined notion, in
the sense that it does not depend on the choice of traded assets, provided that
the model completeness is preserved.

Lemma 6. Let a model M = (YL, Y2%,...,Y* ®) be minimally complete
with respect to F. Let M = (Y, Y?2,...,YF,®), where the processes Y* =
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Vi(gi), 4 = 1,2,...,k represent the wealth processes of some trading strate-

gies ¢1,¢P2,. .., 0 € . If a model M is complete with respect to F then it is
also mintmally complete with respect to IF, and thus its degree of completeness
equals k.

Proof. The proof relies on simple algebraic considerations. By assumption, for
every 1 =1,2,...,k, we have

k
dvi =3 ¢ vy,
j=1

for some family ¢, 4,5 = 1,2,...,k of F-predictable stochastic processes.
Assume that the model M is complete, but not minimally complete. Then
there exists | < k—1 and trading strategies Y™, m = 1,2,...,[, such that the
reduced model M! = (|[HATy!,Y?,...,Y!; &), with asset prices satisfying

{
d}/Lm — Z wznl dyvti’

i=1

is complete. Clearly, we have

1 k k
dY =Ygy e dY] =Y (MdYY,
i=1 =1 j=1

so that there exist trading strategies (™, m = 1,2,...,[, in primary assets
Y1, Y2, ... Y* such that Y™ = V(¢™) for m = 1,2,...,l. This contradicts
the assumption that the model M is minimally complete. 0

By combining Lemma 6 with Corollary 2, we obtain the following result.

Corollary 4. A model M = (Y!,Y2,. .;,Yk; ®) is minimally complete if and
only if a model M = (Y1, Y2,..., YL Y+l Ykl Yk &) has this prop-
erty.

As one might easily guess, the degree of a model completeness depends
on the relationship between the number of primary assets and the num-
ber of independent sources of randomness. In the two models examined in
Sections 3.5.1 and 3.5.2 below, we shall deal with k = 4 primary assets, but
the number of independent sources of randomness will equal two and three
for the first and the second model, respectively.

3.4.2 Completeness of a Constrained Model

Let M = (Y1,Y2,...,Y*, &) be an arbitrage-free market model, and let us
denote by M (Z) = (Y1,Y?,...,Y*,$/(Z)) the associated model in which the
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class @ is replaced by the class &;(Z) of constrained strategies. We claim that
if M is arbitrage-free and minimally complete with respect to the filtration
F =FY, where ¥ = (Y'1,Y?2,...,Y*¥), then the constrained model M;(Z) is
arbitrage-free, but it is incomplete with respect to F. Conversely, if the model
Mi(Z) is arbitrage-free and complete with respect to F, then the original
model M is not minimally complete. To prove these claims, we need some
preliminary results.

The following definition extends the notion of equivalence of security mar-
ket models to the case of constrained trading.

Definition 4. We say that the two constrained models are equivalent with
respect to a filtration F if they are defined on a common probability space and
the class of all wealth processes of F-predictable constrained trading strategies
is the same in both models.

Corollary 5. The constrained model
M(Z) = (YL Y2... Y5 6,(2))
is equivalent to the constrained model
Me_1(Z) = (YL Y2, YLy YRl vk e 1(2)).
Proof. Tt suffices to make use of Corollaries 2 and 3. a

Note that the model My._1(Z) is easier to handle than M;(Z). For this
reason, we shall state the next result for the model M;(Z) (which is of our
main interest), but we shall focus on the equivalent model My_1(Z) in the
proof.

Proposition 3. (i) Assume that the model M is arbitrage-free and minimally
complete. Then for any F-predictable process Z and anyl =1,2,...,k—1 the
constrained model M(Z) is arbitrage-free and incomplete.

(it) Assume that the constrained model M(Z) associated with M is arbitrage-
free and complete. Then M is either not arbitrage-free or not minimally com-
plete.

Proof. The arbitrage-free property of M;(Z) is an immediate consequence
of Corollary 5 and the fact that @..1(Z) C &. In view of Corollary 4, it
suffices to check that the minimal completeness of M implies that My..1(Z)
is incomplete. By assumption, there exists a bounded, Fp-measurable claim X
that cannot be replicated in M* = (YL, Y2 ... YL, Y+ [ V1. 9) (e,
when trading in Y* is not allowed). Let us consider the following random
variable

Y—){Jr/TgidY’c
- o YT

We claim that Y cannot be replicated in M _1(Z). Indeed, for any trading
strategy ¢ € @_1(Z), we have
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k-1 T T »
o _
sz¢wW+Ag?ﬂ@

i=l4+1

! T ‘ ,
V@) = o)+ Y [ diavi+
i=170

and thus the existence of a replicating strategy for Y in My 1(Z) will imply
the existence of a replicating strategy for X in MP¥, which contradicts our
assumption. Part (ii) is a straightforward consequence of part (i). O

It is worth noting that the arbitrage-free property of M;(Z) does not imply
the same property for M. As a trivial example, we may take [ = k — 1 and
Z =0, so that trading in the asset Y'* is in fact excluded in M;(Z), but it is
allowed in the larger model M.

3.5 Jump-Diffusion Case

In order to make the results of Sections 3.2-3.4 more tangible, we shall now
analyze the case of jump-diffusion processes. For the sake of concreteness and
simplicity, we shall take k = 4. Needless to say that this assumption is not
essential, and the similar considerations can be done for any sufficiently large
number of primary assets.

We consider a model M = (Y1,Y2,...,Y% &) with discontinuous asset
prices governed by the SDE

dY] =Y (widt + o dW, + ki dM) (3.30)

for i =1,...,4, where W, = (W}, W2,...,Wg), t € [0,T], is a d-dimensional
standard Brownian motion and M, = N, — M, t € [0,T], is a compensated
Poisson process under the actual probability P. Let us stress that W and N are
a Brownian motion and a Poisson process with respect to IF, respectively. This
means, in particular, that they are independent processes. We shall assume
that F = F"¥ is the filtration generated by W and N.

The coefficients u;, 0; = (0},02,...,0¢) and &; in (3.30) can be constant,
deterministic or even stochastic {predictable with respect to the filtration
F). For simplicity, in what follows we shall assume that they are constant.
In addition, we postulate that k; > —1, so that ¥;! > 0 for every ¢ € 0,77,
provided that Yl > 0. Finally, let Z be a predetermined F-predictable process.
Recall that $,(Z) is the class of all self-financing strategies that satisfy the
balance condition

4
SN YE =2, vVtel0,T]. (3.31)
=2

Our goal is to present examples illustrating Proposition 3 and, more impor-
tantly, to show how to proceed if we wish to replicate a contingent claim using
a trading strategy satisfying the balance condition. It should be acknowledged
that in the previous sections we have not dealt at all with the issue of admis-
sibility of trading strategies, and thus some relevant technical assumptions
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were not mentioned. Also, an important tool of an (equivalent) martingale
measure was not yet employed.

3.5.1 Complete Constrained Model

In this subsection, it it assumed that d = 1, so that we have two independent
sources of randomness, a one-dimensional Brownian motion W and a Poisson
process N. We shall verify directly that, under natural additional conditions,
the model M;(Z) is arbitrage-free and complete with respect to IF, but the
original model M is not minimally complete, so that a redundant primary
asset exists in M.

Lemma 7. Assume that 6 := det A # 0, where

|02 — 04 K2 — kg
03 — 04 K3 — K4 )

Then there exists a unique probability measure ﬁ, equivalent to P on (2, Fr),
and such that the relative prices Y>! = Y2 /Y and Y3! = Y3/Y? of synthetic
assets Y2 and Y3 are P-martingales.

Proof. Let us write Wt = W; — o1t and M\t =M — )\/jlt. By straightforward
calculations, the relative value of the synthetic asset Y satisfies, for { = 2, 3,

dYti,l _ dYtiA,l _ Ytiil(('ui ~ ) dt -
(3.32)

(dM, — )\mdt)) :

Ki — R
+(os — 04)(dW; — o1dt) + T N14

or equivalently,

ATt = Y (s = pa) de o+ (0 = 02) d W+ T D).

i

1+«&
By virtue of Girsanov’s theorem, there exists a unique probability measure
P, equivalent to P on (§2, Fr), and such that the processes W and M follow
F-martingales under P. Under our assumption 0 := det A # 0, the equations
K4 — Kq
14+ &1

g — p; = (04 — 04)0 + vA, 1=2,3, (3.33)

uniquely specify § and v. Using once again Girsanov’s theorem, we show that
there exists a unique probability measure P, equivalent to IP on (§2, Fr), and

such that the processes Wy = Wy — 0t = W, — (01 + 6)t and
JEZM\L—)\Vt:Nt—)\(1+K1+V)t

are F-martingales under P. We then have, for ¢ = 2,3 and every t € [0,77,
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S0l _ vl o5 Ki— K4 o
a7t = v ((ai—04)th+ T th).
Note that N follows under P a Poisson process with the constant intensity
A1+ &1 +v), and thus M is the compensated Poisson process under P. More-

over, under the present assumptions, the processes W and M are independent
under P. ]

From now on, we postulate that 6 = det A # 0 and ; > —1 for every
i = 1,2,...,4. Under this assumption, the filtration F coincides with the
filtration FY generated by primary assets.

In the next result, we provide sufficient conditions for the existence of a
replicating strategy satisfying the balance condition (3.31). Essentially, Propo-
sition 4 shows that the model M;(Z) = (Y!,Y?2, Y3 Y4 ®,(Z)) is complete
with respect to FF .

Proposition 4. Let X be an Fr-measurable contingent claim that settles at
time T'. Assume that the random variable X given by the formula

s X T Zy o, L

X = - ay;” 3.34
Yl o Y'tzi t ( )

1s square-integrable under ]TD, where P is the unique probability measure equiv-

alent to P on (£2,Fr) such that the relative prices Y1 and Y31 are P-

martingales. Then X can be replicated in the model M1(Z).

Proof. To prove the existence of a replicating strategy for X in the class
@1(Z), we may use either Proposition 2 (if we wish to work with traded
assets Y1, Y2 Y3 V%) or Corollary 3 and Lemma 7 (if we prefer to work with
Y1, Y2 Y3 Y%). The second choice seems to be more convenient, and thus
we shall focus on the existence a trading strategy ¥ = (¢!, v%?,...,%*) with
the properties described in Corollary 3. In view of (3.28) and Corollary 3, it
suffices to check that there exist a constant 2, and F-predictable processes ¢?

and ¢ such that
X=z+ Z/ pLdyt. (3.35)
‘=2 /0

To show that such processes exist, we shall use Lemma 7. It is crucial to ob-
serve that the pair (W, M), which was obtained in the proof of Lemma 8 from
the original pair (W, M) by means of Girsanov’s transformation, enjoys the
predictable representation property (see, for example, Jacod and Shiryaev [3],
Sections II1.4 and II1.5). Since Xis square-integrable under IF’, there exists a
constant z and F-predictable processes ¢ and ¢ such that

X:IL'—I-/ g;th"l-/ Ctht.
0 0
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Observe that

— d)—/Z’l dYS’l _ B
th = (5“1 ((Kg — K}4))/Tt’1 - (/‘ig - H4)Tg—l—>21 @f d)/f’l + Qt?) d}/tS,l
t— L
and
o d?S,l dy2,1 B _
dMy = (1+K1)57" ((02 —04)"},%71‘ — (o3 —04)‘{,37>=3 wF Ayt v av
t— t—

Hence, upon setting
07 = &OF + oW, ¢ =60} +a¥,

we obtain the desired representation (3.35) for X. To complete the proof of
the proposition, it suffices to make use of Corollary 3. ]

Remark 2. If we take the class $3(Z) of constrained strategies, instead of the
class @1 (Z), then we need to show the existence of F-predictable processes ¢?
and ¢3 such that

T T
X:m+/ ¢§de*1+/ ¢ dy>! (3.36)
0 0

To this end, it suffices to focus on an equivalent probability measure under
which the relative prices Y2! and Y'®! are F-martingales, and to follow the
same steps as in the proof of Proposition 4.

In view of Lemma 7, the reduced model M* = (Y1, V2 Y3, 0) admits a
martingale measure P corresponding to the choice of Y'! as a numeraire asset,
and thus it is arbitrage-free, under the usual choice of admissible trading
strategies (e.g., the so-called tame strategies). By virtue of formula (12.2) in
Proposition 1, for the arbitrage-free property of the model M;(Z) to hold, it
suffices, in addition, that the process

vz
/Y;‘ dyhl, vtelo,T],
0 u—

follows a martingale under P.

Note, however, that the above-mentioned property does not imply, in gen-
eral, that the probability measure P is a martingale measure for the relative
price Y41, Since

dytt =y ((/M —p1) dt + (o4 — o1 )(dWy — o1 dt) + ,?;:11 (dM, _)\’ﬂldt)) .

] (3.37)
a martingale measure for the relative prices Y21, V3! and Y*! exists if and
only if for the pair (4, v) that solves (3.33), we also have that
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K4 — K1
14 &

p1 ~— g = (0g — 01)0 + vA.

This holds if and only if det A = 0, where A is the following matrix

M1 — U4 01 — 04 K1 — Ky
A= | o~ ta 02 — 04 K3 — Ka
H3 — 4 03 — 04 K3 — K4

Hence, the model M (or, equivalently, the model M) is not arbitrage-free,
in general. In fact, M is arbitrage-free if and only if the primary asset Y* is
redundant in M. The following result summarizes our findings.

Proposition 5. Let M be the model given by (3.30). Assume that x; > —1
for everyi=1,2,...,4 and 6 = det A # 0. Moreover, let the process

t
z
- dy!
oo

follow a martingale under P. Then the following statements hold.

(1) The model M1(Z) is arbitrage-free and complete, in the sense of Proposi-
tion 4.

(if) If the model M is arbitrage-free then it is complete, in the sense that any
Fr-measurable random variable X such that X(Y})™! 4s square-integrable

under P is attainable in this model, but M is not minimally complete.

Example 1. Consider, for instance, a call option written on the asset Y4, so
that X = (Y — K)", and let us assume that Z; = Y;* . Under assumptions of
Proposition 5, models M and M;(Z) are arbitrage-free and the asset Y is
redundant. It is thus rather clear that the option can be hedged by dynamic
trading in primary assets Y'!, Y2, Y3 and by keeping at any time one unit of
Y4, Of course, the same conclusion applies to any European claim with Y4 as
the underlying asset.

3.5.2 Incomplete Constrained Model

We now assume that d = 2, so that the number of independent sources of
randomness is increased to three. In view of (3.30), we have, for ¢ =1,...,4,

dY} =Y} (pidt +of AW} + 0? dWE + ki dM,) .

We are going to check that under the set of assumptions making the un-
constrained model M arbitrage-free and minimally complete, the constrained
model M;(Z) is also arbitrage-free, but it is incomplete. To this end, we first
examine the existence and uniqueness of a martingale measure associated with
the numeraire Y'1.
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Lemma 8. Assume that det A # 0, where the matriz Ais given as

ol — o} 02 — 0% k1 — K4

‘;{M ol _ gl 52 52 R
= a5 0y 05 gy K2 K4
U§—040§—UZK3—I€4

Then there exists a unique probability measure P, equivalent to P on (2, Fr),
and such that the relative prices Y21 = Y?2/Y1, Y31 = V3/Y1 of synthetic
assets Y2, V3, and the relative price Y41 of the primary asset Y* follow mar-
tingales under P.

Proof. Let us write
We =W, — o1t = (W, W2) — (o}, 03)t

aind M\t = M; — Akit. By straightforward calculations, the relative values
Y4l i =2,3 and Y*! satisfy

i i — K4 v
det’l = )’t;l (( M4) dt -+ ( —0'4) th 14 th)

and

Ay =vh 1((u4 — 1) dt+ (04— 01 ) (AW, — o dt) + ’“14;:1 (dM, —)\mdt)) .
1

By virtue of Girsanov’s theorem, there exists a unique probability measure
P, equivalent to P on (2, Fr), and such that the processes W and M follow
F-martingales under P. Now, let § = (9',6%) and v be uniquely specified by
the conditions

“MN, i=2,3,4.
1+Iﬂ71

Another application of Girsanov’s theorem yields the existence of a unique
probability measure P, equivalent to P on (§2, Fr), such that the processes

W, =W, — 0t =W, — (0} + 0)t and

Ha — i = (00— 0)0 + =

M:]/\It—AUtZNt—A(1+K1+I/)t

are F-martingales under P. We then have, for i = 2,3 and every t € [0,T],

dvP" = Y (01 = o0) dW, + S=C0 b ) (3.38)
1

while

dyt =yl ((a4 —oy)dW, + FA T dAZ) . (3.39)
Note that N follows under P a Poisson process with the constant intensity
M1+ &1 +v), and thus M is the compensated Poisson process under . More-
over, under the present assumptions, the processes W and M are independent
under P. O
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It is clear that the inequality det A # 0 is a necessary and sufficient condi-
tion for the arbitrage-free property of the model M. Under this assumption,
we also have F = FY and, as can be checked easily, the model M is minimally
complete.

In the next result, we provide sufficient conditions for the existence of a
replicating strategy satisfying the balance condition (3.31) with some prede-
termined process Z. In particular, it is possible to deduce from Proposition 6
that the model M(Z) is incomplete with respect to F.

Proposition 6. Assume that det A # 0. Let X be an Fr-measurable contin-
gent claim that settles at time T. Assume that the random variable X, given

by the formula
T
X::z-—/ ﬁdYt’ , (3.40)
0

is square-integrable under f”, where P is the unique probability measure, equiv-
alent to P on (02, Fr), such that the relative prices Y1, Y31 and Y41 follow
martingales under P. Then X can be replicated in Mi1(Z) if and only if the
process ¢* given by formula (3.44) below vanishes identically.

Proof. We shall use similar arguments as in the proof of Proposition 4. In
view of Corollary 3, we need to check that there exist a constant z, and IF-
predictable processes ¢? and ¢3 such that

3 .7
X=x+2/ Prdyit. (3.41)
=270

Note that the pair (W M ) introduced in the proof of Lemma 8 has the pre-
dictable representation property. Since X is square-integrable under P, there
exists a constant x and F-predictable processes £ and ¢ such that

T — T —
X=z+ / & dW, + / St dM, . (342)
0 0

In view of (3.38)-(3.39), we have

dawll o TRh e
dWp| =AM | (2Tt |
dM, (v~ tay!

so that there exist F-predictable processes ¥, A}, @, i = 2,3, 4 such that
AW? = A2d¥2' + A3 dvPt + AtayMt, (3.43)
dM; = W2 dV2! + w2 dy>t + vty
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Let us set, for ¢ == 2, 3,4,
6 = €10l + M+ oW, Vie[o,T). (3.44)

Suppose first that ¢f = 0 for every t € [0,T]. Then, by combining (3.42),
(3.43) and (3.44), we end up with the desired representation (3.41) for X. To
show the existence of a replicating strategy for X in M;(Z), it suffices to apply
Corollary 3. If, on the contrary, ¢* does not vanish identically, equality (3.41)
cannot hold for any choice of ¢? and ¢3. The fact that ¢* is non-vanishing for
some claims follows from Proposition 3. 0

In general, i.e., when the component ¢* does not vanish, we get the fol-
lowing representation

X T 54,1 T 4,1
gr=ard [ aante [ ataver, (3.45)
T /o 0

where we set ¢? = ¢ + Z,(Y/1 ). Hence, as expected any contingent claim
satisfying a suitable integrability condition is attainable in the unconstrained
model M.

Ezample 2. To get a concrete example of a non-attainable claim in M;(Z),
let us take X = (Y — K)* and Z; = Y;*. Then, for K = Y, we obtain
X = (Y# — Y (¥2)!, and thus we formally deal with the put option
written on Y4 with strike Y. We claim that X does not admit representation
(3.41). Indeed, equality (3.41) implies that the hedge ratio of a put option
with respect to the underlying asset equals zero. This may happen only if the
underlying asset is redundant so that hedging can be done with other primary
assets, and this is not the case in our model.
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Summary. Empirical volatility changes in time and exhibits tails, which are heavier
than normal. Moreover, empirical volatility has — sometimes quite substantial -
upwards jumps and clusters on high levels. We investigate classical and non-classical
stochastic volatility models with respect to their extreme behavior. We show that
classical stochastic volatility models driven by Brownian motion can model heavy
tails, but obviously they are not able to model volatility jumps. Such phenomena
can be modelled by Lévy driven volatility processes as, for instance, by Lévy driven
Ornstein-Uhlenbeck models. They can capture heavy tails and volatility jumps. Also
volatility clusters can be found in such models, provided the driving Lévy process has
regularly varying tails. This results then in a volatility model with similarly heavy
tails. As the last class of stochastic volatility models, we investigate a continuous
time GARCH(1,1) model. Driven by an arbitrary Lévy process it exhibits regularly
varying tails, volatility upwards jumps and clusters on high levels.

Key words: COGARCH, extreme value theory, generalized Cox-Ingersoll-Ross
model, Lévy process, Ornstein-Uhlenbeck process, Poisson approximation, regu-
lar variation, stochastic volatility model, subexponential distribution, tail behavior,
volatility cluster.
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4.1 Introduction

The classical pricing model is the Black-Scholes model given by the SDE
dS; ZTStdt+GStdBt, So=zecR, (41)

where r € R is the stock-appreciation rate, ¢ > 0 is the volatility and B
is a standard Brownian motion. The Black-Scholes model is based on the
assumption that the relative price changes of the asset form a Gaussian process
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with stationary and independent increments. The crucial parameter is the
volatility ¢, which is in this model assumed to be constant. However, empirical
analysis of stock volatility has already shown in the 1970ies that volatility is
not constant, quite the contrary, it is itself stochastic and varies in time.

This observation has led to a vast number of volatility models in discrete-
time as well as in continuous-time. In this paper we concentrate on continuous-
time volatility models. Moreover, we are concerned with the so-called stylized
facts of volatility as e. g.

o volatility changes in time,

e volatility is random,

o volatility has heavy tails,

e volatility clusters on high levels.

Introducing a stochastic volatility extends the Black-Scholes model to
dSt = T'Stdt + / ‘/tStdBt y

where V' can in principle be any positive stationary stochastic process.
Within the framework of SDEs quite natural models are easily defined.
Common examples are the Ornstein-Uhlenbeck (OU) process

AV, = ~AVidt + odZ, , (4.2)

where A\,o > 0 and Z is the driving process, often a second Brownian mo-
tion, independent of B. As this is a Gaussian model, it is not a positive
process. Alternatively, a Coz-Ingersoll-Ross (CIR) model has been suggested
as a volatility model, defined by

dVi = Ma — V))dt + o/VedZ; , (4.3)

where A, a,0 > 0 and Aa > ¢0%/2. The parameter a is the long-term mean of
the process and A the rate of mean reversion. Again in the classical model Z
is a standard Brownian motion, independent of B.

Apart from the fact that Gaussian QU processes are not positive, another
stylized fact is also violated: empirical volatility exhibits heavy tails, conse-
quently, again the OU model as a Gaussian model seems not very appropri-
ate. Changing the constant o to a time dependent diffusion coefficient oV, for
v € {1/2,00) and including a linear drift yields positive stationary models with
arbitrarily heavy tails. This has been shown in Borkovec and Kliippelberg [8].
Such models are called generalized Coz-Ingersoll-Ross models, a parameter
«v = 1/2 corresponds to the classical CIR model of (4.3).

On the other hand, a constant ¢ is attractive, and an alternative way to
generate heavy tails in the volatility is to replace the driving Gaussian process
in (4.2) by a Lévy process with heavier tailed increments. Furthermore, the
upward jumps often observed in empirical volatility cannot be modelled by a
continuous process. So Lévy processes with jumps as driving processes seem
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to be quite natural. Such an OU process is positive, provided the driving Lévy
process has only positive increments and no Gaussian component; i.e. it is a
subordinator. This is exactly what Barndorff-Nielsen and Shephard [4, 5] have
suggested, modelling the (right-continuous) volatility process as a Lévy driven
QU process. Their stochastic volatility model is given by

dVi = —AVidt + odLy, , (4.4)

where a,b € R, A > 0 and L is a subordinator, called the background driving
Lévy process (BDLP). The price process itself is then driven by an independent
Brownian motion.

A completely different approach to obtain continuous-time volatility mod-
els starts with a GARCH model and derives from this discrete-time model a
continuous-time model. A natural idea is a diffusion approximation; see e.g.
Drost and Werker {16] and references therein. This approach leads to stochas-
tic volatility models of the type

s, = /V,dBW,
aVi = Ma — V,)dt + oV,dB? (4.5)

i.e. V is a generalized CIR model with parameter v = 1. The two processes
B B® are independent Brownian motions.

A different approach has been taken by Kliippelberg, Lindner and
Maller {27], who started with a discrete-time GARCH(1,1) model and re-
placed the noise variables by a Lévy process L with jumps AL, = L; — Ly,
t > 0. This yields a stochastic volatility model of the type

S, = /V,dL,, (4.6)
dViy = Bdt + VieX=d(e™X1)

where 8 > 0 and V is left-continuous. The auxiliary cadlag process X is
defined by

Xe=nt— Y In(l+Ae"(AL,)?), (4.7)
O<s<t
for n > 0 and A > 0. This continuous-time GARCH(1,1) model is called a
COGARCH(1,1) model.

Our paper focuses on the extremal behavior of stationary continuous-time
stochastic volatility models. This can be described by the tail behavior of
the stationary distribution and by the behavior of the process above high
thresholds.

The tail behavior models the size of the fluctuations of V and deter-
mines the maximum domain of attraction (MDA) of the model. The notion of
MDA is defined in Fisher-Tippett’s theorem; see Theorem 8. We distinguish
MDA(®,), MDA(A) and MDA(%,,), for o > 0, respectively. Distribution func-
tions in MDA(®,,) have regularly varying tails: they are heavy-tailed in the
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sense that not all moments are finite; see Definition 3. Distribution functions in
MDA(A) have tails ranging from semi-heavy tails to very light tails. Distribu-
tion functions in MDA (%, ) have support bounded to the right. Financial risk
is usually considered as having unbounded support above, hence MDA(?,,) is
inappropriate in our context and will play no further role in this paper.

The description of a continuous-time process above high thresholds de-
pends on the sample path behavior of the process. When classical volatility
models driven by a Brownian motion have continuous sample paths with infi-
nite variation, some discrete-time skeleton is introduced. A standard concept
is based on so-called e-upcrossings, see Definition 1, which is only valid for
processes with continuous sample paths.

For Lévy driven models large jumps (for instance larger than 1) constitute
a natural discrete-time skeleton, which can be utilized. Denote by (I'%)ken
the random time points on [0, c0), where the driving Lévy process jumps and
exceeds a given threshold. The bivariate process (I, Vi, Jken is interpreted
as the coordinates of a point process in [0,00) x R;y. As usual we define
point processes via Dirac measures. Recall that for any Borel sets A x B C
[0,00) x Ry the measure Y 7o, e{I%, Vi, }(A x B) counts how often I, € A
and Vp, € B.

After appropriate normalization in time and space these point processes
may converge and the limit process may allow for an interpretation, thus pro-
viding a description of the extreme behavior of the volatility process. Under
weak dependence in the data we obtain as limit a Poisson random measure
with mean measure ¥ (PRM(¥)); see Definition 9. Moreover, the two compo-
nents of ¥ are independent and consist of the Poisson measure in time and
the negative logarithm of an extreme value distribution in space. Under strong
dependence the limit is a cluster Poisson random measure. All these consid-
erations concern the discrete-time skeleton only and ignore the fact that we
deal with continuous-time processes.

In the case of a driving Lévy process with jumps, in principle also the small
jumps can influence the extreme behavior. In a very close neighborhood of a
jump time Iy infinitely many small jumps can happen; they may contribute
to the extreme behavior around I'. To investigate the influence of these small
jumps and the Gaussian component, we consider the process V' at each point
I, in a surrounding interval Ij. Finally, in certain situations we investigate
also the process V after it has achieved a local supremum. With each point Iy
an excursion of V' over a high threshold starts. Interesting questions concern
the length of the excursion, the rate of “decrease” after Iy, and we shall
answer such questions at least for some models considered in this paper. This
is done by attaching marks to the point process (I'x, Vi, Jren. In our model
marks are a vector of values of the process V' after Iy, hence it describes the
finite dimensional distributions of V after I'y. The limit process turns out to
be different in different regimes.

Our paper is organized as follows. In Section 11 we review the extremal be-
havior of the generalized CIR model, which can belong to different maximum
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domains of attractions; i.e. such models can have arbitrary tails. Unfortu-
nately, they are not appropriate models in case of high level volatility clusters
in the data.

Section 11 deals with Lévy driven OU volatility models. Their extremal
behavior is characterized by the extremal behavior of the driving Lévy pro-
cess, so that we have to distinguish between different classes of BDLPes. In
Section 4.3.1 this is done for subexponential Lévy processes L = (Li)¢>0. Ac-
cording to whether L; € MDA(®,,) for some o > 0 or L; € MDA(A), the
extremal behavior of the OU process is quite different. Then, in Section 4.3.2
we study OU processes with exponential tails. As a prominent example we in-
vestigate the I'-OU process, 1. e. the stationary volatility is gamma distributed.
As an important larger class we study OU processes, whose BDLP belongs to
S() for v > 0. This class extends subexponential Lévy processes in a natural
way; see Definition 5. It turns out that for all OU processes in Section 11,
high level volatility clusters are exhibited only in the case of regularly varying
BDLPes.

The last class of models reviewed in this paper concerns the CO-
GARCH process in Section 11. In contrast to the OU processes considered
earlier, the COGARCH volatility has heavy tails under quite general condi-
tions on the driving Lévy process L. Furthermore, the COGARCH exhibits
high level volatility clusters.

Finally, a short conclusion is given in Section 4.5. Here we compare the
models introduced in the different sections before. It turns out that there is a
striking similarity concerning the extremal behaviour of models with the same
stationary distribution. Here we also discuss briefly some further empirical
facts of volatility not quite in the focus of our paper.

As not to disturb the flow of arguments we postpone classical definitions
and concepts to an Appendix. Throughout this paper we shall use the follow-
ing notation. We abbreviate distribution function by d. f. and random variable
by r.v. For any d.f. F we denote its tail F = 1 — F. For twor.v.s X and Y

with d.f.s F and G we write X 2 Y if F = G, and by "22° we denote weak
convergence for ' — oo. For two functions f and g we write f(z) ~ g(z) as
x — 00, if lim, o f(x)/g(x) = 1. We also denote Ry = (0,00). For z € R,
we let 27 = max{z,0} and In*(z) = In(max{z,1}). Integrals of the form f:
will be interpreted as the integral taken over the interval (a, b].

4.2 Extremal behavior of generalized Cox-Ingersoll-Ross
models

In this section we summarize some well-known results on classical volatility
models as defined in (4.3) and (4.5) driven by a standard Brownian motion.
This section is based on Borkovec and Kliippelberg [8]; for a review see [26],
Section 3.
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These models fall into the framework of generalized Cox-Ingersoll-Ross
(GCIR) models. We restrict ourselves to stationary solutions of the SDE

AV, = MNa — V,)dt + oV, dB; (4.8)

where v € [,00). For A,a,0 > 0 (in the case v = 1/2 additionally Aa > 02/2
is needed) these models are ergodic with state space R and have a stationary
density.

Associated with the diffusion (4.8) is the scale function s and the speed
measure m. The scale function is defined as

¥ 22 Ya—t
s(x):/ exp(———(ﬁ/ £%—;dt)dy, zeR,, (4.9)

where z is any interior point of R, whose choice does not affect the extremal
behavior. For the speed measure m we know that it is finite for the GCIR
model. Moreover, m is absolutely continuous with Lebesgue density

2

o2z2vs' (x)’ zERy,

m'(z) =
where s’ is the Lebesgue density of s. Then the stationary density of V' is
given by

fl@)=m'(z)/m(Ry), zeRy. (4.10)

Proposition 1. Let V be a GCIR model given by equation (4.8) and define
M(T) := supyejo,r) Vi for T' > 0. Then for any initial value Vo =y € Ry with
corresponding distribution Py and any ur T oo,

A Py (M(T) < ur) - H (ur)| =0,

where H is a d. f., defined for any z € Ry by

H(z) = exp <—m> , T>z. (4.11)

The function s and the quantity m(R..) depend on the choice of z.

Corollary 1 (Running maxima).
Let the assumptions of Proposition 1 hold. Assume further that H € MDA(G)
for G € {Py, 0 > 0, A} with norming constants ar > 0, by € R. Then

Jim Plaz'(M(T) —br) < z) =G(z), z€R.

It is clear that the d.{. H decides about the extremal behavior of V. We
present four cases.
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Example 1 (Tail behavior of GCIR models).

Let V be a stationary GCIR model given by equation (4.8) with stationary
density f, corresponding d.f. F, and d.f. H as given in (4.11). Recall that a
I'(p,7y) distributed r.v. has probability density

"
plx) = Ij(u) e >0, (4.12)

for p > 1 and v > 0.

(1) v = %: The stationary density of V is I’ (27)‘29, (27—’}) The tail of H
behaves like

so that the tail of H is that of a I (%9 +1, 3—%) distribution. Hence H €
MDA (A) with norming constants

2 0.2

o 2)\ A
aT—ﬁ and bT 2)\ |:1 T+ InlnT — 1In <W>:|.

(2) % < v < 1: The stationary density of V is given by

_ 2 2 (2 oy A oy
f(x)—Aazx exp( <27~1 +2_~27x , x>0,

with some normalizing factor A > 0. The d.f. H has tail
H(z) ~ B£20-MF(z), z— o0, (4.13)
where B > 0. Hence H € MDA(A) with norming constants

0.2 0.2(1 _ ,Y) §~2'y
ap = 2*)'\* <————>\—'-‘— lnT) ,

21 = 4 In D InT
bT=<%—ﬁlnT> ! 1—(27 ! ( ) n

2 —2v)2 lnT
+arln 22
r Ac? )’

(3) v = 1: The stationary density of V is inverse gamma, i.e.

2)

2\ —B-1 -1
f(z) = (%) <F (2)\ —|~1>) :v_?%_2exp (—g};—bm_l) , >0,

so that Vo € R_gy/42-1; see Definition 3. In this case H(z) ~ cx—2M -1
for £ — oo and some ¢ > 0. Hence H € MDA(®,,) for o = 2)\/o? + 1 with
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norming constants ap = (cT)"Q/(zM"’z) and by = 0.

(4) «v > 1: The stationary density f of V has the same form as in (2),
but is regularly varying of index —2v + 1. Now the tail of H becomes very
extreme: H(z) ~ cx~!. Hence H € MDA(®;) with ay = cT and by =0. 0O

Since all models (4.8) are driven by a Brownian motion, they have continu-
ous sample paths; i. e. there is no natural discrete-time skeleton. We follow the
standard approach to create a discrete-time skeleton of the process; see e. g.
Leadbetter et al. [29], Chapter 12. This allows for a more profound extreme
value analysis of V.

Definition 1. Let V' be a stationary version of the diffusion given by (4.8).
V' is said to have an e-upcrossing of the level u at a point I' > 0 if

Vi<u for te(l'—¢€I) and Vr=u.

With this definition we can formulate a further result describing the ex-
treme behavior of a stationary GCIR model.

Theorem 1 (Point process of e-upcrossings).

Let V be a stationary version of the diffusion given by (4.8) with d. f. H as in
(4.11). Letap > 0, by € R be the norming constants as given in Example 4.10.
Let (I't x)ren be the time points on Ry, where the e-upcrossings of V' of the
level arx + by occur. Let (jx)ken be the jump times of a Poisson process with
intensity e=® for x € R, if y € [1/2,1) and =% for x > 0 with a = 2\/o? + 1
ify=1anda=11ifvy>1. Then

o0

N e {Ir/T) =X ia{jk}.

k=1 k=1

As is obvious from this result, e-upcrossings of V' for high levels behave like
exceedances of 1.i.d. data, i.e. such models do not exhibit volatility clusters.

They can, however, model heavy tails as the running maxima depend on the
d.f H.

4.3 Extremal behavior of OU volatility models

We start with a precise definition of a positive OU process as a solution
of (4.4). For more information on Lévy processes we refer to the excellent
monographs by Sato [35], Bertoin [6] and Cont and Tankov [15]. Let L be
a subordinator; i.e. L is a Lévy process with increasing sample paths, hence
they are of bounded variation, and we assume that they are cadlag. The
Laplace transform is then the natural transform and has for all £ > 0 the
representation
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Eexp(—AL:) = exp(t¥(A)), A >0.

The Laplace exponent ¥ has representation

T(A) = —mA — / (1—e ) v(dx).
(0,00)

As there is no Gaussian component the characteristic triplet of arbitrary Lévy

processes reduces to a pair {m,v), where m > 0 is the drift and the Lévy

measure v has support on R and satisfies

/ (IAz)v(dz) < .
(0,00)
We denote for A > 0 by

¢
Vi =e MV +/ e M0 dLy,, teR, (4.14)
0

the solution to the SDE (4.4). Then V becomes a cadlag process.

A stationary solution of (4.4) exists if and only if [, In(1+s)v(ds) < co.
Note that this condition is only violated for Lévy measures with very heavy
tails. As all models considered in this paper have tails which are regularly
varying of some negative index or lighter, all our models satisfy this station-
arity condition. Stationarity is then achieved, if Vj is taken to be independent
of the driving Lévy process L and has distribution

d o0
Vo :/ e *dL,. (4.15)
0
A convenient representation for the stationary version is
t
Vi = e"“/ eMdLy,, t>0. (4.16)
-0

In this representation, L is extended to a Lévy process on the whole real
line, by letting L = (L¢)¢>0 be an independent copy of (L;)¢>0, and defining
L; := —L_,_ for t < 0. The parameter X in the process L in (4.14) ensures
that the stationary marginal distribution of V' is independent of A; indeed it
is given by (4.15).

The r.v. Vp is infinitely divisible with characteristic pair (my, vy}, where
my = m and

I/V[x,oo)z/ w vy, c0)du, x>0. (4.17)

We are concerned with Lévy processes L, which are heavy or semi-heavy
tailed; 1. e. whose tails decrease not faster than exponentially. As indicated in
(4.21) and (4.24) below, this induces a similar tail behavior on V, which is in
accordance with empirical findings.

The structure of an QU volatility process can be best understood when
considering the following example.
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Example 2 (Positive shot noise process).

Let L be a positive compound Poisson process with characteristic pair
(0, uPp), where u > 0 and Pp is a probability measure on Ry with corre-
sponding d.f. F. Then L has the representation

Ni
Li=)Y ¢, t>0, (4.18)
j=1

where (N;);>0 is a Poisson process on Ry with intensity 4 > 0 and jump times
(I'k)ken- The process N is independent of the i. 1. d. sequence of positive r.v.s
(fk)keN with d.f. F.

The resulting volatility process is then the positive shot noise process

t Nt
V, = e—)\tvo _I_/ e—A(t—s) dLys = ewkt‘/o + Ze~—>\t+Fj §] , t>0,
0 ;
J=1

and from (4.17) we get

o0
vy [z, 00) :,u/ u'F(u)du, z>0.
T
If Eln(l + &) < oo, a stationary solution exists in which case V can be

represented as
Nae

V= e M Z elig;, t>0. (4.19)

j=—o0

i#0
Here, we let (& )ke—n, and (I'y)re—n, be sequences of r.v. s such that (£x)rez
and {I'y)iez are independent. Furthermore, (& )kez is an i.1. d. sequence and
(—I'k)ke—n are the jump times of a Poisson process on Ry with intensity u,
independent of (I'y)ren; further, we define Iy := 0.

The qualitative extreme behavior of this volatility process can be seen in
Figure 4.1 in detail. The volatility jumps upwards, whenever (Ny;)¢>o0 jumps
and decreases exponentially fast between two jumps. This means in particular
that V has local suprema exactly at the jump times I'y/A (and t = 0), i.e.

Vi =V e Mt e [T/ T /A)

Consequently, it is the discrete-time skeleton of V' at points Iy /A that deter-
mines the extreme behavior of the volatility process. ]

For a general subordinator L we decompose
L=LW4[® (4.20)

into two independent Lévy processes, where L(Y) has characteristic pair (0, )
with v1(2,00) = v(z,00) 1(1,00)(z) and L® has characteristic pair (m,v)
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Fig. 4.1. Sample path of an OU Weibull process with L; as given in Example 3
with A=1,u=1and p=1/2.

with va(x,00) = v(z,1]1¢,1j(z). Then again LM is a compound Poisson
process with intensity v(1,00) and jump sizes with d.f. v1/v(1,00). All the
small jumps and the drift are summarized in L),

What is needed, however, are the precise asymptotic links between the tails
of V, L and the tail of the Lévy measure v(-,00). This implies immediately
that we have to distinguish different regimes defined by the link between L and
v{-,00). Any infinitely divisible distribution is asymptotically tail-equivalent
to its Lévy measure, whenever it is convolution equivalent; see Theorem 7.
Definitions and results concerning subexponential and convolution equivalent
distributions are summarized in Appendix A.

The class §(0) = S of subexponential d. f. s contains all d. f. s with regularly
varying tails, but is much larger. Subexponential distributions can be in two
different maximum domains of attractions; see Theorem 8. All d.f s with
regularly varying tails are subexponential and belong to MDA(®,,). Other
subexponential d.f.s, as for instance the lognormal and the semi-heavy tailed
Weibull d.f. s (see Example 3), belong to MDA(A). On the other hand, d.f.s
as the gamma distribution or d.f. s in S(vy) for v > 0 belong to MDA(A), but
are lighter tailed than any subexponential distribution. Consequently, we also
consider such exponential models below.
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4.3.1 OU processes with subexponential tails

In this section we are concerned with the OU process given by (4.14), whose
BDLP is subexponential. This section is based on Fasen [19, 20]; an additional
reference is [18].

Proposition 2 (Tail behavior of subexponential models).
Let V' be a stationary version of the OU process given by (4.14) and define
M(h) == supye(o, V2 for b > 0.

(a) If Ly € SNMDA(P,,) = R_.q4, then also Vo € R_, and
P(Vo>z)~a ' P(L; >2), z—o00. (4.21)
Moreover,
P(M(h) > )~ [Ah+a ' |P(Ly >2), - 00. (4.22)
(b) If Ly € SNMDA(A), then also Vo € SN MDA(A) and
P(Vo > ) ~ Plexp(-U)L1 > z), x— 00, (4.23)

where U is a uniform r.v. on (0,1), independent of L. In particular,
P(Vo > ) =0, (P(L; > x)) as x — 0o0. More precisely,

P(Vo > ) ~ a—(g-)IP’(Ll >x), &- 00, (4.24)

where a is the funclion from the representation (A.1):

*1
P(L >z)~cexp[—/ ——dy], T — 00,
(L o a(y)

for somec > 0 anda: Ry — Ry is absolutely continuous with limy_,o a'(x) =
0 and lim,, a{z) = 00. Finally,

P(M(h) > z) ~ ARP(L; > ), z — 00. (4.25)
Proof. By (4.17) we have

vy (x,00) [ utw(u, 00) du
v(z,00) v(z,00)

, >0, (4.26)

Assume that L; € R_, for some a > 0. Then by Theorem 7 (i) we have
v(-,00)/v(l,00) € R_q. By Karamata’s theorem (e.g. Embrechts et al. [17],
Theorem A 3.6) we obtain

. l/v(ZL‘,OO) 1
lim ———rt = —,
zooo Y(z,00) «
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This implies in particular that also vy (-, 00)/vy(1,00) € R_, and hence,
again by Theorem 7 (i), Vo € R_, and (4.21) holds.

If Ly € MDA(A)NS we can only conclude from (4.26) that the right hand
side tends to 0. To obtain a precise result we proceed as follows. Denote by &;
the jump distribution of the compound Poisson process L{!) as given in (4.20).
Taking v (-,00) /v(1,0) € R_ into account and applying 1'Hospital’s rule
yields

vy (z,00) L umw(u,00)du [ T (u,00) du
v(1, 00)P(exp(~U)é1 > z) fol v(esz,00) ds B f;e u~ v (u,00) du

-1
N [1__1@E£O_>] 1, 2o
v(z,00)

The tail-equivalence (4.23) follows then from the fact that
v(1,00) Plexp(—U) &1 > x) ~ P(exp(—U)L1 > x)

as ¢ — oo and Theorem 7 (7).
For proving (4.24), by Theorem 7 (i) we may assume without loss of gen-
erality that there exists a xg > 0 such that

S|
I/(x,oo):cexp[—/ —dy], T >0,
iy a‘(y)

Then v(dz) = (a(z))~'v(z, 00) dz and an application of 'Hospital’s rule shows
that
wle,00) —v(z,00)/z
v(z,00)a(z)/z  v(z,00)[a'(z) — a(z)/z]/z — (v(z,00)/a(z))a(z)/x
= [-a'(z) +a(z )/x +1)7

-1, z—o00,

since a(z)/x ~ o’(z) and a'(z) —» 0 as x — o00. Theorem 7 (i) then gives (4.24).
The results for M (h) are based on Theorem 2.1 of Rosinski and Samorod-
nitsky [34]. They show that for Ly, + Vo € S
P(M(h) > 1‘) ~ VLtV (z, OO) y L 00,

implying the result by Theorem 7 (). O

Ezample 3 (Semi-heavy tailed Weibull distribution).
Let Ly have distribution tail

P(Ly > z) ~ Kexp(—zP), z— o0,
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Fig. 4.2. Sample path of an OU process driven by a regularly varying compound
Poisson process with u = 8.5 and A = 0.01. The first plot shows (Lx¢)o<t<2s0 and
the second plot shows the corresponding volatility (V;)o<t<2s0, indicating the micro-
behavior of the model. The third plot gives (Vi)o<i<io000 indicating the macro-
behavior of the model.

for some K > 0 and p € (0,1). As a(z) = z'~P/p, we obtain from (4.24)
immediately

K
P(Vo > z) ~ ;:1:_7’J exp(—zP), x— 0. 0

Proposition 2 shows that in the regularly varying regime the tail of V4 is
equivalent to the tail of L;. In contrast to that, in the S M MDA({A) case, the
tail of V becomes lighter, due to the influence of exp(—U). But in both cases
Vo is subexponential and the tail of M (h) is determined by the tail of L;, only
the constants differ.

The following result gives a complete account of the extreme behavior of
the volatility process V' driven by a subexponential Lévy process L. There are
three components considered in (4.28) and (4.29). The first one is the scaled
jump time process corresponding to the jumps of (Lx¢)¢>0, which are larger
than 1. The second component is the normalized local supremum near that
jump, and the third component is a vector of normalized values of V after the
jump.

Theorem 2 (Marked point process behavior of subexponential mod-
els). Let V be a stationary version of the OU process given by ({.14). Suppose
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Fig. 4.3. Sample path of an OU Weibull process with p = 0.7, ¢ = 8.5 and
A = 0.01. The first plot shows (La¢)o<e<2so and the second plot the corresponding
volatility (Vi)o<i<2s0, indicating the micro-behavior of the model. The third plot
gives (Vi)o<e<io000 Indicating the macro-behavior of the model.

I' = (I't)ken are the jump times of LY given by (4.20) and I = (Iy)ken,
where I = %(Fk_l + e, T+ Teq1), Io:=0. FormeNlet 0 =ty < t; <
e < by

(a) Assume that Ly € S " MDA(P,) with norming constants ar > 0 such
that

lim TP(L1 > arz) =27%, z>0. (4.27)
T—o0

Take I'®) = (I..)ien, k € N, as i.4. d. copies of the sequence I' and set
Iio=1TIk_1=0 for all k € N. Let > 7o, e{sk, Pc} be a PRM(Y) with mean
measure 9(dt x dz) = dt x ax™ 1 1(g,o0)(z) dz, independent of the sequence
(I'®)) pen. Then,

— (I
k — —
doe {ﬁ:aml sup Vs, {%%Vrk/wc,}mo,‘..,m}
k=1 S€ 1k

o0 o0
= Z ZE {sks Poexp(—(Lkj—1 + Ik,;)/2)
k=1j=0

J
{Pgexp (—AMt; — I j) Yi=o,....m } - (4.28)
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(b) Assume that L1 € S " MDA(A) with norming constants ap > 0, by € R
such that

lim TP(Ly > arx + br) =exp(—z), z€R.

T—oo

Let "7 € {sk, Px} be a PRM(V) with 9(dt x dz) = dt X e~ *dx. Then

o0
Iy _

¢ {/\T asp(sup Vs = bar), {a57 (Vi ate, — b)\T)}z’:O,...,m}
k=1 s€ly

5 (4.29)
= =5 ZE{Sk,Pk, P, 0, ...,0)}.
k=1
Moreover,
00 r. _ »
>4 v o sup Vo = bxr), {032 Vi /xets i,
— s€ly
k=t (4.30)

= ZE {sk, Pe, {exp(=At;) }i=o,....m} -
k=1

We first give an interpretation of (4.29). The limit relations of the first two
components show that the local suprema of V' around the Iy /A, normalized
with the constants determined via Ly, converge weakly to the same extreme
value distribution as Ly. Moreover, the third component indicates that for
to = 0 the second and third component have the same limiting behavior;
i.e. the sup,c;, Vs behaves like Vi, /). For all ¢; > 0 the last component is
negligible, i.e. the process is considerably smaller away from Vi, /x.

In the second and third component of (4.28) all points I ; and not only
Iy 0 = 0 like in (4.29) may influence the limit. This phenomenon has certainly
its origin in the very large jumps caused by regular variation. Even though
the volatility decreases between the jumps exponentially fast, huge jumps can
have a long lasting influence on excursions above high thresholds. This is
in contrast to the semi-heavy tailed case, where L is subexponential, but in
MDA(A).

Both relations (4.28) and (4.30) exhibit, however, a common effect in the
third component: if the Lévy process L has an exceedance over a high thresh-
old, then the OU process decreases after this event exponentially fast.

Corollary 2 (Point process of exceedances).
Let the assumptions of Theorem 2 hold.

(a) Assume that L1 € S N MDA(®,). Let (jx)ken be the jump times of a
Poisson process with intensity =% for © > 0. Let ((x)kez be 4. 1. d. discrete
. v. s, independent of (jk)ken, with probability distribution
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mp =P(C = k) = Eexp(—a(lk-1+ I%)/2) ~
~Eexp(—a(lk + [kt1)/2), keN.

Then,

Yo { ot s o ¢ oo B8 Yt
K k=1

(b) Assume that L1 € § N MDA(A). Let (ji)ken be the jump times of a
Poisson process with intensity e™® for x € R. Then,

Z {)\T’a’\T sup Vs — b,\T)} (+ x (z,00)) Toge Zs{jk}.
k=1

sely

Again the qualitative difference of the two regimes is obvious. In the case
of a regularly varying BDLP L the limiting process is a compound Poisson
process, where at each Poisson point a cluster appears, whose size is random
with distribution (7 )ren. In contrast to this, in the MDA(A) case, the limit
process is simply a homogeneous Poisson process; no clusters appear in the
limit.

As the next result shows, the running maxima of the volatility process V
have the same behavior as that of an i.1. d. sequence of copies of L.

Corollary 3 (Running maxima).

Let V' be a stationary version of the OU process given by (4.14), and define
M(T) := sup,cjo,1y Vi for T > 0.

(a) Assume that Ly € S N MDA(®P,,) with norming constants ap > 0 given
by (4.27). Then

Tlim P(ay;M(T) <z) =exp(—z™%), z>0.

(b) Assume that L1 € S " MDA(A) with norming constants ar > 0, by € R
given by (4.29). Then

Jim P (a57(M(T) = bar) < z) =exp(—e™*), z€R.

Finally, we investigate the possibility of volatility clusters in the OU pro-
cess. As the concept of e-upcrossings is only defined for continuous-time pro-
cesses, which does not fit into our framework, we shall introduce an appropri-
ate method for describing clusters in continuous-time processes with jumps.

As our method will be motivated by the discrete-time skeleton of V', we
recall that in a discrete-time process clusters are usually described by the
extremal index 6 € (0, 1]; see Definition 8. However, continuous-time processes
are by nature dependent in small time intervals by the continuity and the
structure of the process. Thus it is not adequate to adopt the extremal index
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concept for stochastic sequences to describe the dependence structure of the
continuous-time process on a high level.

The following concept of an extremal index function has been introduced
in Fasen [18].

Definition 2. Let (V;);>0 be a stationary process. For h > 0 define the se-
quence My(h) := supy_1yn<i<in Vi, & € N. Let 0(h) be the extremal index
of the sequence (My(h))xen. Then we call the function 6 : (0,00) — [0,1]
extremal index function.

The idea is to divide the positive real line into blocks of length h. By
taking local suprema of the process over these blocks the natural dependence
of the continuous-time process is weakened, in certain cases it even disappears.
However, for fixed h the extremal index function is a measure for the expected
cluster sizes among these blocks. For an extended discussion on the extremal
index in the context of discrete- and continuous-time processes see Fasen [18].

Corollary 4 (Extremal index function).
(a)If Ly € SN MDA(®,), then 8(h) = ha/(ha +1), h > 0.
(b) If Ly € SNMDA(A), then 0(h) =1, h > 0.

Regularly varying OU processes exhibit clusters among blocks, since
6(h) < 1. So they have the potential to model both volatility features: heavy
tails and high level clusters. This is in contrast to OU processes in SNTMDA(A),
where no clusters occur.

4.3.2 OU processes with exponential tails

In this section we investigate OU models having exponential tails, hence are
lighter tailed than those considered in the previous section. More precisely,
we will concentrate on two classes of models in £(v), v > 0; see Definition 4.
The first class concerns the class of convolution equivalent distributions S(vy),
v > 0 (Definition 5). Here Theorem 7 provides the necessary relationship
between the tails of the infinitely divisible d. f. and of its Lévy measure, which
leads to a comparison between the distribution tail of the stationary r.v. Vg
and the increment Ly of the BDLP. An important family in S(vy) are d.f.s
with tail

F(z) ~ 2z Pl(x)e™ ™" 1 — o0,

where v, ¢ > 0, p < 1, I(-) is slowly varying, and if ¢ = 0, then 8 > 1 or
B=1and [{°l(z)/xdz < oo (Kliippelberg [25], Theorem 2.1, or Pakes [32],
Lemma 2.3). The generalized inverse Gaussian distribution (GIGD) with
probability density

p(z) = Ko lexp (— (6°z7! +4%2) /2), 2>0,
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where K is the normalizing constant, 8 < 0 and 6% > 0, is a prominent
example in S (¥?/2). Further examples for distributions in S() can be found
e.g. in Cline [14].

The second class of processes with exponential tails, which we investigate
in this section, are I'-OU processes. These are defined as stationary OU pro-
cesses, where Vj is I'(u,y) distributed with probability density as defined in
(4.12) for 4 > 1 and v > 0. The gamma distribution is infinitely divisible with
absolutely continuous Lévy measure given by its density

vy(de) = pr~le”™dx, z>0.
Hence, by (4.17) the BDLP L has Lévy density
v{de) = puye ™ "dz, x>0.

Except for the factor u this is the probability density of an exponential d.{.
Hence L is a positive compound Poisson process with Poisson rate p > 0 and
exponential jumps; for details see Barndorff-Nielsen and Shephard {2]. The
exponential and gamma laws with scale parameter v > 0 belong to £(vy) but
not to S(v).

In analogy to the I'-OU process, also for OU-S(y) processes with v > 0
we restrict our attention to positive compound Poisson processes as BDLPs;
i.e. we work in the framework of positive shot noise processes as defined in
Example 2. Note that by Proposition 4 (b) all d.f.s in £(«) for v > 0 belong
to MDA(A).

Some of the results in this section can be found in Albin [1], who studies
the extremal behavior for a larger class of QU processes by purely analytic
methods.

For BDLPs in S() for v > 0 the relation of the tail of the stationary d.f,
and its Lévy measure are stated in the following proposition.

Proposition 3 (Tail behavior of OU-S(v) models for v > 0).
Let V be a stationary version of the OU process given by (4.14).

(a) Suppose v (1,]/v(1,00) € L(7), ¥ > 0. Then vy (1,:] /vv(1l,00) € L(¥)
with

vy (z,00) ~ ’y—xu(x,oo), T — 00.

(b) Suppose L1 € 8(vy), v > 0. Then also Vy € S(v), and

Eev%o 1

IP(VO > I) ~ W%

P(Ly >z), z— 0.

In particular, P(Vy > ) = o(P(L1 > z)) as z — oo.
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Fig. 4.4. Sample path of a I'-OU process with v = 3, 4 = 8.5 and A = 0.01.
The first plot shows (Lat)o<e<2so and the second plot the corresponding volatil-
ity (Vi)o<i<zso, indicating the micro-behavior of the model. The third plot gives
(Vi)o<t<ioooo indicating the macro-behavior of the model.

Proof.  (a) By (A.1) the Lévy measure v has representation

Uz, 00) = e() exp [— /lz%y)dy}, 2>1, (4.31)

for functions a, ¢ : [1,00) — Ry with limy 0 c(z) = ¢ > 0 and limy .o a(z) =
1/7, limgz_,oo @' (x) = 0. Since we are only interested in the tail behavior we
may assume without loss of generality that v is absolutely continuous and
c(*) = c. Recall from (4.17) that vy (dz) = 27 v (z,00) dz and let v(dz) =
V'(z)dx. Part (a) follows by an application of I'Hospital’s rule, since

vy (z,00) N v{z,00)/x :7[ 1
v(z,00)/(yx) [V (z)z + v(z,00)]/(v2?) a(x

(b) We first show that Vy € S(vy). By Theorem 7 (%) it suffices to show that
vy (1, /v(1,00) € S(7y). Again, we can assume without loss of generality that
v is absolutely continuous and has the representation (4.31) with constant
¢(-) = ¢ For simplicity, we further assume that ¢ = 1 and v(1,00) = 1;
the general case follows by a simple dilation. As in part (a) we use that
vy (dz) = z7'v (z,00) dz. An application of ’'Hospital’s rule shows that

17!
+ = -1, z—00.
) =z
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llv(fll—y,OO) V(x—yaoo)w

—e, - 00,
VV(:E»OO) I/(:l’,',OO) (.%' _y>

implying vv (1,-] € L(v). Denote by v#* the convolution of vy restricted to
(1, 00) with itself. Then for 1 < ¥’ < x/2 we use the usual decomposition of
the convolution integral

v (dz) _/m v (u,00) v (z — u,00) "
dx 1 U xT—U

(4.32)

_ 2/y v (u,00) v (z — u,00) du+/x—y v (u,00) v(z —u,00) du
1 U T U Y U T —u
In order to show that vy (1,-] € §(7), we calculate the limit ratio of the densi-
ties of v2* and vy . Observe that on every compact set v (z — u, o) /v (z, 00)
converges uniformly in u to exp(yu) as ¢ — oo. For the first summand of
(4.32) we thus obtain

i

(] _ v
lim 2/ r v{x—u,o00)v(u,o00) duz2/ ewy(u,oo) du
1 1

=300 z—u v(z,o00) U U (4.33)
Yy '
= 2/ e’ vy (du) < oo.
1
For the second summand in (4.32) we estimate
/”_yl zv (u,00) v (T — u, 00) du
Y u(z — u) v (z,00)
(4.34)

x ey (z — u,0)
< .
SVE=9) / vlao0) V(wo0) du

Furthermore, since
v(z,00) /v (z) =a(z) — 1)y, z— 00,

there exist constants K,zo > 0 such that v (z,00) < Kv/(z) for > xo. We
obtain for ¢’ > xg

x /x”yl v(z —u,00) v (u,00) du
y

vz —y') Jy | v (z,00) (4.35)
Kz ey I/(ZL‘—U,OO)V
< y'(x — y/) /y’ v (z, 00) (dU) .

Since v (1,:] € S(v), the same decomposition as in (4.32) yields (for details
see e. g. Pakes [32], Lemma 5.5)
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2=y, (x — u, 00)

i i =0. 4.
y’h—I»noo xh_{& » v(z,00) v(du) =0 (4.36)
Furthermore, lim,/ o hmm_qoo z/[y'(x —y')] = limy o 1/y’ = 0. By (4.32)-
(4.36) we now obtain v (dz) ~ (2 [;° e'Y“ (dw)) vy (dz) for © — oo, showing
that vy (1, ] and hence Vo are in S(y). The assertion on the tail behavior now
follows from (a) and Theorem 7 (). ]

The following result is an analogon to Theorem 2 and describes the ex-
tremal behavior of V' completely.

Theorem 3 (Point process of exceedances of exponential models).
Let V be a stationary version of the QU process given by (4.14) with L a
positive compound Poisson process as in (4.18). Denote by (I'k)ken the jump
times of the positive compound Poisson process L given by (4.18) and define
I =% [Tk, Tiy1), k € N. Let Y771 e{sk, Pr} be PRM(9) with 9(dt X dz) =
dt x e ®dzx.

(a) Assume Ly € S(v), v > 0, with norming constants ar > 0, by € R such
that

Eevln
hm TP(L; > arx +by) = RV exp(-z), z€R. (4.37)

Then

Z {AT ayt(sup Vs —b,\T)} =8N e (s, P} (4.38)

s€ly k=1

(b) AssumeV is the I'(u, v)-OU process. Let ap > 0,bp € R be the norming
constants of a I'(u+1,v) distributed r.v. W, such that

lim TP(W > arx +by) = =t exp(—2z), z€R. (4.39)

T—o0
Then
oo F _ [e0)
Zs{—)\—%,a;‘}(sup%—b,w)} =g Zs{sk,Pk}. (4.40)
k=0 sely

k=1

The proof is divided into several steps. We shall utilize classical results for
the extreme value theory of stationary discrete-time processes. As a discrete-
time skeleton (Vr,/1)ken seems to be a good candidate. However, Vi /y =

ZJ—;(;» e (D Fl)é k € N, is not stationary. As we will show in Lemma 1
the process

k
Ve= Y e ifilg =vp s +e v, keN, (4.41)

j=—00
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is stationary, where Iy := 0. For increasing k the process e £y tends to
0. Thus it has no influence on the extremal behavior. We shall show that
the point process behavior is the same for (Vi /x)ken and for (Vi)gen. For
the proof we also need that the D and D’ conditions (Definition 9) hold for
(I7k) ren- The highly technical Lemma 2, where this is confirmed, is postponed
to the Appendix.

Lemma 1. Let V be a stationary version of the QU process given by (4.14)

with L a positive compound Poisson process as in ({.18). Then (Vk)kez as
defined in (4.41) is stationary.

Proof. Let h € R be fixed. Note that (Ilyy; — I')jez = (I});ez. Then

k+h k+h 4
Vipn = Z e—(ﬂ«+h—1“j)§j — Z e—(Fk+h“Fh’“(Fj“Fh))€j <
J=—o0 j= o0
k+h k J k B
£ Z e~ (Ne=Timnlg, = Z e~ e=Tig, 4 Z e~ e=le, =V,
j=—o0 j=—00 j=—o0

Similarly, for [ € N we obtain

(Vkl+h7"‘7‘7/€l+h) i (‘7/@17"'7‘7kz)
for k1,..., ki € N. (]

Proof of Theorem 3. Since V is decreasing between jumps, it follows that
sup,er, Vs = Vi/a. Recall that Vi = Vi x + ¢~ g 2 Vo + £ and that

(Vi )ken is stationary. We show first that the norming constants a,, > 0,b, € R
given by (4.37) and (4.39) satisfy

lim nP(Vi > anz + by) = ' exp(~z), z€R. (4.42)
To show this in case (a), observe that P(Vy > z) = o(P(&; > x)) for z — o0
by Proposition 3 (b), so that Theorem 7 (3, ii) yields

P(Vi > ) ~ Ee"PP(¢; > z)
~ B [Ee 571y IP(L) > 2), 2 — 0. (4.43)

From this (4.42) follows immediately, and further we see that Vi € S(v).

In case (b), Vi is I'(u-+1, v) distributed as an independent sum of a I"(u, )
and an Exp(y) r.v., and (4.42) is immediate. The norming constants of a I
distribution can be found in Table 3.4.4 of Embrechts et al. [17].

Note that in both cases (a) and (b), we have Vi € £(7). Thus, by Lemma 2
and Leadbetter et al. [29], Theorem 5.5.1,
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i {k/ ,U«n (‘714 — bn)} nese ifi {Sk,Pk}. (4,44)
k=0 k=1

Define point processes

i {k/(um), a7 (Ve = b2 }

and

Kn .—Z {k/(un), a7 (Vi x = ba)}

For € > 0 and I = [s,t) X (x,oo)~§ R4 x R define I, := [s,t) x (z,z + €.
Taking into account that Vp, /x < Vi we have for 6 € (0,1)
P(rn(I) # En(1))

SPEL(L) >0)+ > P(Vi>un+e€an, Vo < un)

k€[nsu,ntu)
< P(Rn(l) > 0) + Z Vk>un+ean)+ Z ]P’(e_F’“fg>ean).
kefo,néeu) kenStu,nty)

We shall show below that
lim P(k,(I) #R&p(1)) =0. (4.45)

n—0o0

Then by Rootzén [33], Lemma 3.3, the limit behavior of X, and &, is the
same. Relation (4.40) then follows by transforming the time scale as in Hsing
and Teugels [23] (for details see Fasen {18], Lemma 2.2.4).

To show (4.45), observe that by (4.44) we have

lim P(Ra (1) > 0) = 1 — expl(t — s)(exp(~x) — exp(~(z + €)))] <> 0.

n—00
Furthermore, since § < 1,

lim E P(Vi > tn + €an) < him nltuP(Vi > an(x +€) + bp) =
n—0o0 n—oQ
kelo,ndtu)

Applying (B.3) we obtain
Z Ple™* ¢y > eay)

ke[ndtu,ntu)

< Z <P(6”Fk§0 >ean, Iy > %) +]P’(e“F’“§0 >ean, [k < —k—)>

k€ndtu,nty) 2u

/(2 K
< Z Ple™ /ey > cay) + Z R

ke[ndtp,ntp) k€mndtp,ntu)
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The last summand tends to 0 as n — oo, since > po; 1/k* < oco. More-
over, there exists an ng € N such that a, > 1/(27) and ke™*/ %) < 1/2 for
n,k > ng. Then the first exponential moment of yke */(2#)¢; exists, and for
ndtu > ng we obtain

Z Ple /ey > cay) < Z Elexp(vke ™/ (2W)gglekreen

ke[ndtu,nty) ke[ndtu,ntu)
oo
< Elexp(v60/2)] D e ¥ —0, n— oo,
ks=|nftu]
since Y50, e7*/2 < co. This proves (4.45). |

Results (4.38) and (4.40) show that local extremes of such exponential
models have no cluster behavior on high levels. The following two corollaries
are immediate from Theorem 3.

Corollary 5 (Point process of local maxima).
Let the assumptions of Theorem 3 hold. Denote by (jx)ken the jump times of
a Poisson process with intensity e™* for x € R. Then,

(o]

Ze {%,a;}(sup Vs — b,\T)} (- X (z,00)) =y ZE{jk}~

k=1 s€lx k=1

Corollary 6 (Running maxima).

Let V be a stationary version of the QU process ({.14), where L is a posi-
tive compound Poisson process as in (4.18). Define M(T) = supo<,<r V2 for
T>0.

(a) Assume Ly € S(v), v > 0, with norming constants given by (4.37). Then

Tlirn Pay;(M(T) ~bar) < z) = exp(—e™®), z€R.
hade el

(b) Assume V is the I'(u,v)-OU process with norming constants given by
(4.89). Then

Jim P(ay(M(T) ~ bar) < z) = exp(—e™®), =z €R. (4.46)

For a subexponential OU process and h > 0 fixed the r.v. M(h) =
SUpg<;<p, Vi is tail-equivalent to the increment of the Lévy process; cf. (4.22)
and (4.25). In the class S(v), v > 0, this is much more involved; see Braver-
man and Samorodnitsky [9]. Although the large jumps of the Lévy process
determine the tail behavior, small jumps also have a non-negligible influence.
For any h > 0, the tail of M (k) is of the same order of magnitude as the tail
of the increment of the BDLP, but in general it is only possible to give upper
and lower bounds on the asymptotic ratio of the two tails. Using Corollary 6
one can calculate this constant for the OU process explicitly.
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Corollary 7 (Extremal index function).

Let V be a stationary version of the OU process given by (4.14), where L is a
positive compound Poisson process as in (4.18). Define M (h) = supg<,<p Vi
for h > 0. o

(a) Let Ly € S(v), v > 0. Then M(h) € L(7) if and only if
P(M(h) > z) ~ AREe"P [Ee 17 1P(L) > 2), z—o0.  (4.47)
In that case M(h) € S() and 8(:) = 1.

(b) Let'V be the I'(11,v)-OU process with norming constants given by (4.39)
and let W be a I'(p+ 1,7) r.v. Then 6(-) =1 and

P(M(h) > z) ~ MhplP(W > ), z-— 00. (4.48)

Proof. (a) First we assume M(h) € L(v). Let @, > 0, b, € R and T, =
@, -+ b, be constants such that

lim nP(M(h) > Uy,) = exp(—2z).

n—o0

Denote by M), an i.i.d. sequence of copies of M(h). Then we obtain from
Lemma 2 (b) and Leadbetter et al. [29], Theorem 3.5.1, for = € R,

lim P(a; (M(nh) —b,) < z) = lim ]P)(Zi;l(k max My —byp) < )
n—o00 =00 =1,...,n

= exp(__e—~w) )
showing in particular that #(h) = 1. On the other hand, by Corollary 6,
lim P(ay}, (M(nh) — baer) < z) =exp(—e™ ), z€R.

n—oQ
Then by the convergence to types theorem (see e.g. Theorem A 1.5 of Em-
brechts et al. [17]), Gn/arnn "1 and by — bynn —= 0. Applying the
convergence to types theorem a second time yields
lim P(ay), ( max My, = bapp) < z) =exp(—e™%), z€R.
el

n—00 k=1
This implies by Leadbetter et al. [29], Theorem 1.5.1 that
lim nP(M(h) > uxpn) = exp(—2z), z€R,

with uxpn = axpnZ + bann. By (4.42) also lim,eo nP(Ve > uann) =
exp(—xz)/(Auh). Hence P(M(h) > z) ~ h)\u]P’(f/k > z) for x — oo, and (4.47)
follows from (4.43).
Conversely, if (4.47) holds, then it is clear that L; € S(7y) C L(v) implies
M(h) € L(v) by tail-equivalence. By Lemma 2 (b) follows 6(h) = 1.
(b) We refer to Albin [1], Theorem 3, for (4.48). That 8(h) = 1 follows
then from (4.39), (4.46) and (4.48). O
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In both cases the extremal index function is equal to one, so that for
any h > 0 the sequence My = sup(,_1yu<¢<kn Vi behaves like 1.i.d. data.
Hence such models cannot explain volatility clusters on high levels.

4.4 Extremal behavior of the COGARCH model

The volatility of the COGARCH(1,1) process as introduced in (4.6) is the
(caglag) solution to the SDE (4.6), which is given by

t
VimVorpiou [ Vidsa! T VALY, 120, (449
0

O<s<t

see Kliippelberg, Lindner and Maller [27, 28] for details. This process is a
solution of the SDE

dViy = (8 — nVi)dt + Ae Vi dlL, L)\, (4.50)

where
L LY = 3 (AL)?, t>0,

0<s<t

is the discrete part of the quadratic variation process of L. Comparing this
with (4.5) we see that the COGARCH(1,1) can be interpreted as a generalized
CIR model driven by the discrete part of the quadratic variation process of
L. An essential feature of the COGARCH(1,1) model is that the same Lévy
process drives the price process S and the volatility process V. An extension of
the COGARCH(1,1) process to COGARCH(p, q) process with 1 < p < ¢ was
recently obtained by Brockwell, Chadraa and Lindner [11]. There, (4.50) is
replaced by a CARMA (continuous time ARMA) type stochastic differential
equation, driven by [L,L](d). We shall not go into further details, and by
COGARCH we shall always mean the COGARCH(1,1) process.

Denote by v the Lévy measure of L. A stationary version of (4.49) exists
if and only if

/ In(1 4+ Ae"y?) w(dy) < 1. (4.51)
R

With the auxiliary cadlag process (X;);>o defined in (4.7), given for n > 0,
A>0by

Xy=nt— Y In(l+Ae"(ALy)%), t=>0,

0<s<t

the stationary volatility process has representation

t
V, = (g/ e~ ds + V0> e~ Xi- >0, (4.52)
0
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with 8 > 0 and V 4 ﬂfooo e~Xtdt, independent of L. The auxiliary process
(X¢)e>o itself is a spectrally negative Lévy process of bounded variation with
drift «vx = 1, no Gaussian component, and Lévy measure vx given by

vx [0,00) =0, vx (—o0,—z] =v ({y ER: |yl = +/(e® — 1)/()\677)}) z>0.

We work with the Laplace transform Ee™ Xt = e"¥() where the Laplace
exponent is

¥(s) = —ns + /R((l + xe"y?)® — v(dy), s>0. (4.53)

For fixed s > 0, Ee~*X+ exists (i.e. is finite) for one and hence all ¢t > 0,
if and only if the integral appearing in (4.53) is finite. This is equivalent
to E|L1]|?® < oo. Further, if there exists some s > 0 such that ¥(s) < 0,
then (4.51) holds, and hence a stationary version of the volatility process
exists.

The qualitative extreme behavior of this volatility process can be seen in
Figure 4.5, where the driving Lévy process is a compound Poisson process.
As in the case of a Lévy driven OU process the volatility jumps upwards,
whenever the driving Lévy process L jumps and decreases exponentially fast
between two jumps.

It is instructive to observe that both, the OU process (4.14) and the right-
continuous V4 of the COGARCH volatility (4.52) are special cases of the
generalized OU process

t
Ot:e*gt </ eEs— dCs+OO)7 tZO,

0

where (&;,¢:):>0 is a bivariate Lévy process. The stationarity conditions for
(O¢)¢>0, along with other properties, have been investigated by Lindner and
Maller [30].

Returning to the COGARCH volatility, the next Theorem (cf. [28], Theo-
rem 6) shows, that under weak conditions on the moments of L, the volatility
process has Pareto like tails. Since we shall apply a similar argument in the
proof of Theorem 5, we sketch the idea of the proof.

Theorem 4 (Pareto tail behavior of COGARCH models).
Suppose there exists some o > 0 such that

E|L1[**In" |Ly| <00 and ¥(a)=0. (4.54)

Let V' be a stationary version of the volatility process given by (4.49). Then
for some constant C > 0 we have

lim z*P(Vy > z) =C. (4.55)

Tr—00
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Fig. 4.5. The first plot shows the sample path of a compound Poisson driving
process (L¢)o<t<as0 with rate 1 and normal jumps with mean 0 and variance 1 and
the second plot the corresponding sample path of the COGARCH volatility process
{(Vi)o<i<aso driven by this Lévy process. The COGARCH parameters are 8 = 1,
A = 0.04 and 7 = 0.0619. Both plots indicate the micro-behavior of the model. The
third plot gives (Vi)o<t<i0o000 indicating the macro-behavior of the model.

Proof. From (4.52) it is seen that the stationary volatility process V satisfies
t
Vi :e*thVOJrﬂ/ eXo=Xi-ds .t >0,
0

where V; is independent of (e™%i-, 8 fot e+~ Xi- ds) for any t > 0. Thus the
stationary solution V, satisfies for every ¢ > 0 the distributional fix point
equation

Vo2 AVo+ By,
where Vj is independent of (A4;, B;) and

t
fit éi e"}<‘, l?t éi [3‘)/) e"){” ds
0

The result now follows from Theorem C.1, by choosing t such that (A;, B;)
satisfies the assumptions. This is possible because of the structure of the
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process and condition (4.54); for details see Kliippelberg et al. [28], Theorem 6.
0

The following remark gives a simple sufficient condition for (4.54) to hold.

Remark 1. Let D = {d € [0,00) : E|L1]?** < oo} and dp := sup D € [0, o).
Suppose dg € D, or that there exists an sg > 0 such that 0 < ¥(sg) < oco. Fur-
ther suppose that (V;);>0 is strictly stationary. Then (4.54) and hence (4.55)
hold (cf. Kliippelberg et al. [28], Proposition 5.3).

We aim at a precise asymptotic description of the COGARCH model above
a high threshold like in Section 11. It is, however, clear from the definition
of V that the influence of the spectrally negative Lévy process X is hard to
analyze. In particular, the influence of the small jumps of L to V needs special
treatment. In this review paper we shall restrict ourselves again to the case
of a compound Poisson driving process L as given in (4.18) by L; = E;.V::l &
for t > 0, where £ has support on R.

In this case the auxiliary process X simplifies to

Ny
Xp=nt—) In(l+Xe"€}), t>0, (4.56)
k=1

and the Laplace exponent becomes
U(s) = —(ns + p) + pE( + Xe"éD)* (4.57)

In the stationary volatility model we know that V; > 8/n a.s. and V
jumps if and only if L jumps (cf. [28], Proposition 3.4 (a)). The jump sizes
are positive and depend on the level of the process at that time. As shown in
Proposition 3.4 (b,¢) of [28],

Vit — Vi, = Xe"Vr &2, keN, (4.58)

and the process decreases exponentially between jumps:
_B B\ o=(t-rm
Vi = p + | Vit — w)e y t€ Lk, Te] (4.59)

In analogy to the OU process driven by a compound Poisson process of Ex-
ample 2, the compound Poisson driven COGARCH process V' achieves local
suprema only at the right limits of its jump times (and at ¢ = 0). Hence
it is no surprise that the discrete-time sequence (Vp, 4+ )ren in combination
with the deterministic behavior of V' between jumps suffices to describe the
extremal behavior of the continuous-time COGARCH process. Consequently,
we investigate the discrete-time skeleton

Vi :=Vr4, keN. (4.60)
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Using (4.58) and (4.59) we obtain

‘7,“” = Vk (14 )\engz+1)e~(ﬂc+1—ﬂc)n + g (1 + /\eﬂé“]%+1) (1 — e"(Fk—i-l—Fk)n) ,

and we see that (Vi )gen satisfies the stochastic recurrence equation
Vi = AVe1 + By k> 2, (4.61)

with V3 independent of (Zk, Ek) for any k > 2, where

A = (1+ Xe"€d)e k=11 keN, (4.62)
By = g(l + Ae” £2) (1 - e-"(F’f—Fk—1>) , keN, (4.63)

and ((ﬁk, Ek))keN is an i.i.d. sequence. It is an interesting observation that
by (4.62)

k k k
] 4= IA;=-—nli+ ) In(1+X"EF) = —Xr, .
=1 ge=1

j=1

On the other hand, by (4.63) and X, — X, = In(1 + Xe"€2) + n(s — ;) for
S € (Fk, Tiy1),

By=0 eXe X1k ds
Ty

Denote by (ﬁ, E) a copy of (Zl, El), independent of L and V;. Then it follows
that

~ -~ I
AeXn and BL Be=Xn / eX+ds, keN. (4.64)
0
Moreover,
- ~ k _ k " k » _ k _
Vk:VIHAj+ZBi H A; = ¢ X1 V1+ZB7;GXP"7 k>2.
j=2 i=2  jeitl =2

_ We are now ready to present the analogue of Theorem 4 for the sequence
(Vi )ken. As can be seen from (4.56), the process (X, )ken is a random walk
with increments

Xp, ~Xr_, =01k — Tee1) —In(1+ Xe"€2), keEN.
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Theorem 5 (Pareto tail behavior of \7)
Suppose there exists some o > 0 such that

E|LiP*Int|Li| <00  and ¥(a)=0. (4.65)

Then a stationary solution (Vi)ken of (4.61) exists. Its marginal stationary

distribution, denoted by Vo, is the unique solution of the random fix point
equation

‘70 i ;(% + E s
where (Z,E) is given by (4.64) and independent of L and V. Purthermore,
P(Vo >2z)~Cz™®, z— o0,

where
E |(AVo + B) — (AVo)"]
oFE| Ao InT |A]

C = >0. (4.66)
Proof. We shall show that conditions (7)-(iv) of Theorem C.1 are satisfied: by

definition, In A 4 —nI' +1n(1+ Xe"€2), where I is exponentially distributed.
Consequently, (i) follows.

To show (%) note that by the independence of It and &3, for o > 0 we
have by (4.57)

E|A]* = Ee™*"E(1 + Ae” £7)°
1
o op ptan+¥(a)
K+ an p

1
=14 Ua) =1,
Ton (@)

by the second assumption in (4.65).
In order to prove (i) note that

E|A|* In* | 4] < E|1 4 Xe"e?* Int (1 + Xe"€}) < o0,

if and only if the first assumption in (4.65) holds, see Sato [35], Theorem 25.3.
Finally, (iv) follows from

E|B|* < (8/n) |l + Xe"€}|* < o0

That the constant C is indeed strictly positive follows from the fact that Z,
B and Vj are strictly positive, almost surely. o

Remarks.
(i) Xrp, tends almost surely to oo if and only if EXp > 0 or, equivalently,
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pEIn(1 4+ e £%) < . Notice that the stationarity condition (4.51) is for this
model equivalent to EXpr, > 0.

(i) In a sense it is remarkable that the tail of the stationary r.v. of the
continuous-time model V; and of the discrete-time skeleton 170 are so simi-
lar. As the discrete-time skeleton considers only local suprema of the process,
one expects Vj to be stochastically larger. As the Pareto index « is the same
for both models, any difference can only appear in the constants C' and C.
Brockwell et al. [11] have established a precise relationship between the dis-
tributions of ¥ and ‘N/o, showing that

(o=5) £ (-5)
n U

where I' 4r 1 is exponentially distributed with parameter x4 and independent
of V. Using the classical result of Breiman [10], it then follows that

= _npa""’: H N: 1 @
C=B(")" O el = gy O (4.67)

where the last equation follows from (4.57).

The extremal behavior of solutions to stochastic recurrence equations is
studied in de Haan et al. [22]. Their results can be applied to the stationary
discrete-time skeleton of the volatility process (Vi )ren as defined in (4.60).

Theorem 6 (Extremal behavior of the COGARCH model).

Let V' be a stationary version of the volatility process given by (4.49) and
define M(T')