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Preface

VLSI CAD has greatly benefited from the use of reduced ordered
Binary Decision Diagrams (BDDs) and the clausal representation as a
problem of Boolean Satisfiability (SAT), e.g. in logic synthesis, verifi-
cation or design-for-testability. In recent practical applications, BDDs
are optimized with respect to new objective functions for design space
exploration. The latest trends show a growing number of proposals to
fuse the concepts of BDD and SAT.

This book gives a modern presentation of the established as well as
of recent concepts. Latest results in BDD optimization are given, cov-
ering different aspects of paths in BDDs and the use of efficient lower
bounds during optimization. The presented algorithms include Branch
and Bound and the generic A∗-algorithm as efficient techniques to ex-
plore large search spaces.

The A∗-algorithm originates from Artificial Intelligence (AI), and the
EDA community has been unaware of this concept for a long time. Re-
cently, the A∗-algorithm has been introduced as a new paradigm to
explore design spaces in VLSI CAD. Besides AI search techniques, the
book also discusses the relation to another field of activity bordered to
VLSI CAD and BDD optimization: the clausal representation as a SAT
problem.

When regarding BDD optimization, mainly the minimization of dia-
gram size was considered. The present book is the first to give a unified
framework for the problem of BDD optimization and it presents the re-
spective recent approaches. Moreover, the relation between BDD and
SAT is studied in response to the questions that have emerged from the
latest developments. This includes an analysis from a theoretical point
of view as well as practical examples in formal equivalence checking.

This book closes the gap between theory and practice by transferring
the latest theoretical insights into practical applications.
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In this, a solid, thorough analysis of the theory is presented, which
is completed by experimental studies. The basic concepts of new opti-
mization goals and the relation between the two paradigms BDD and
SAT have been known and understood for a short time, and they will
have wide impact on further developments in the field.
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Chapter 1

INTRODUCTION

During the last twenty years, the development of methods and tools
for Computer Aided Design (CAD) of Very Large Scale Integrated (VLSI)
circuits and systems has been a central issue in joint efforts of academia
and industry. The interest in a further completion and improvement of
Electronic Design Automation (EDA) will even grow in the future.

In the progress of this development it is important that computer-
aided techniques keep up with the time. Facing the ever growing com-
plexity of present-day circuits, these methods must still be able to pro-
vide a fault-free design.

The social relevance of EDA is obvious: fields of application vary from
information and automation technology to electrical engineering, traffic
engineering and medical technology.

Main problems of VLSI CAD are the automated synthesis of circuits
and the optimization of circuits with respect to certain objective func-
tions, e.g. chip area or operation frequency. Automated tools for these
tasks have to accomplish the processing of very large amounts of data,
often representable by so-called Boolean functions.

Already in 1938, Shannon proved that a two-valued Boolean algebra
(whose members are most commonly denoted 0 and 1, or false and true)
can describe the operation of two-valued electrical switching circuits.
Today, Boolean algebra and Boolean functions are therefore used to
model the digital logic of circuits where 0 and 1 represent the states
of low and high voltage, respectively. To handle the large amounts of
digital data arising during electronic design, efficient data structures and
algorithms are necessary.
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A well-known data structure for EDA is reduced ordered Binary Deci-
sion Diagram (BDD). BDD is a graph-based data structure for efficient
representation and manipulation of Boolean functions and has been in-
troduced in [Bry86]. It is known that BDDs allow a unique and very
compact representation of Boolean functions. For these reasons, efficient
algorithms for BDD manipulation do exist. Besides the clausal repre-
sentation as a Boolean Satisfiability (SAT) problem, BDD is a state-of-
the-art data structure for applications like equivalence checking, logic
synthesis, formal verification of hardware, test and symbolic representa-
tion of state spaces in general, e.g. during model checking.

BDDs are well-known from hardware verification, e.g. from functional
simulation, see [AM95, MMS+95, SDB97]. BDDs are also used by tech-
niques for logic synthesis [BNNSV97, FMM+98, MSMSL99, MBM01,
YC02] and for test. Here BDDs in particular support approaches to a
synthesis for testability, see [Bec92, Bec98, DSF04].

All these applications benefit from optimization of BDDs with respect
to different criteria, i.e. objective functions. In this, BDD optimizations
happen at a deep and abstract logic level. In a design flow, this is an early
stage before the step of technology mapping. After BDD optimization,
it is often possible to directly transfer the achieved optimizations to the
targeted digital circuits.

In the following, examples of BDD optimization and their applications
are given.

In BDD-based functional simulation, a simulator evaluates a given
function by direct use of the representing BDD. A crucial point here
is the time needed to evaluate a function. Hence, BDD optimizations
have been proposed to minimize evaluation time [LWHL01, ISM03].

One way to synthesize a circuit for a given function is to directly
map the representing BDD into a multiplexor circuit. It is known
that optimizations of the BDD (e.g. BDD size, expected or average
path length in BDDs) directly transfer to the derived circuit (e.g. area
and delay minimization). With that, the targeted applications are in
the field of logic synthesis.

This book presents new work in the field of BDD optimization. Efficient
search algorithms are presented to determine a good or optimal variable
ordering of BDDs. The classical methods are based on different search
paradigms, e.g. hill climbing and Branch and Bound (B&B). A recent
suggestion is to use the generic A∗-algorithm. This is a fundamental
search paradigm in Artificial Intelligence (AI). The use of this concept
in EDA, however, is a recent innovation.
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The classical criterion for the optimality of a BDD is its size, i.e. the
number of nodes in the diagram. Classically, this criterion is addressed
both with exact and heuristic approaches. After that, alternative cri-
teria for BDD optimality are considered. Criteria different from BDD
size have been studied in the classical works of [AM95, MMS+95] and
in the more recent works of [SB00, LWHL01, FD02a, NMSB03, FSD04,
EGD04b]. Applications for these alternative optimizations in logic syn-
thesis, functional simulation and test are given.

The motivation for classical size-driven BDD optimization was the
reduction of memory requirement and run time of the algorithms oper-
ating on BDDs. There has always been a strong demand for BDD size
optimizations since BDDs are sensitive to variable ordering.

That is, dependent on the fixed order, in which input variables are
tested along the paths from the root node to the terminal node, the size
of the diagram may vary from linear to exponential [Bry86].

Hence, many approaches to determine at least a “good” ordering have
been proposed in the past.

These methods can be roughly classified as:

topology-based heuristics

dynamic reordering

simulation-based methods

exact methods

The first class of methods are topology-based heuristics where struc-
tural information about a given circuit is used to determine a good order-
ing of inputs, e.g. see [FOH93]. Yet, these approaches are fast, but are
often designed for classes of circuits with certain structural properties
only and they do not guarantee an optimal result. In fact, experiments
have shown that they can yield results up to 100 times the size of an
optimal solution.

Second, dynamic reordering based on Rudell’s sifting algorithm
[Rud93] has become a widespread and very successful method. Here,
a good ordering is determined dynamically by the system in situations
where the application gets low on memory. This approach computes an
ordering with what essentially is a so-called hill-climbing strategy, known
from AI, e.g. [Ric88]. Since this normally happens fully automated and
does not involve any inputs or actions from the user of such a software
system, this method has become very popular. Today, many applica-
tions based on BDDs benefit from this widespread method. But still
run time is an important issue and there is demand for faster solutions.
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Figure 1.1. PTL multiplexor as wired OR of two NMOS transistors.

Further, simulation-based methods known from AI like Evolutionary
Algorithms (EA) and Simulated Annealing (SA) have been proposed
to obtain better results than the heuristic approaches before [BLW95,
DGB96, DG97, GD00]. While these methods can obtain better results
than mere “rules of thumb”, the run time is usually much higher.

Finally, exact methods have been studied which are the only ap-
proaches that guarantee to determine an optimal variable ordering [FS90,
ISY91, JKS93, DDG00, EGD03a, Ebe03, EGD03b, EGD04a, EGD05].
Except for the last two publications, these methods are all based on the
B&B paradigm.

These classes of methods are given in increasing order of run time
complexity. That is, exact BDD minimization is the hardest problem.
In fact it has been shown that it is NP-complete to decide whether the
number of nodes of a given BDD can be improved by variable reordering
[BW96]. Yet there are applications in logic synthesis where a minimal
number of nodes is needed since a reduction in the number of BDD
nodes directly transfers to a smaller chip area: sub-optimal solutions can
yield multiples of the minimum size and are not acceptable here. These
applications follow multiplexor based design styles like Pass Transistor
Logic (PTL). They allow to consider layout aspects during the synthesis
step and by this guarantee high design quality. Recently, the interest
in these approaches has been renewed, e.g. see [MBSV95, BNNSV97,
FMM+98, MSMSL99, MBM01, DG02, YC02].

Pass Transistor Logic uses only two transistors to realize a multiplexor
(a wired OR of two MOS transistors, see Figure 1.1). However, both
input polarities are needed to drive the pass transistor multiplexor. The
advantages of PTL circuits as an alternative to static CMOS design
are higher energy efficiency (low power), less circuit area and higher
circuit speed. In 1995, Kuroda and Sakurai successfully used hand-
designed PTL circuits to design digital systems [KS95]. A drawback
of this early works however was the lack of automated synthesis tools.
Later, several approaches for automatic PTL synthesis based on BDDs
have been proposed [YSRS96, BNNSV97, CLAB98, SB00]. They all
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Figure 1.2. Mapping from a BDD to a PTL circuit.

benefit from the close correspondence of BDDs and PTL circuits which
can be used for a straightforward mapping (see Figure 1.2).

A disadvantage of PTL designs is the high delay of transistor chains
which is quadratic in the number of transistors used. Therefore, mod-
ern synthesis tools provide automatic buffer insertion and minimization
[ZA01]. A second disadvantage, the possibility of sneak paths, i.e. con-
nections of VDD and ground, already has been overcome with the use
of BDD-based PTL synthesis since circuits derived from BDDs do not
contain sneak paths.

This book starts the study of BDD optimization by presenting clas-
sical and the latest approaches to minimization of the number of nodes
in BDDs. After basic notations and definitions are given in Chapter 2,
algorithms are presented that exactly minimize BDD size in Chapter
3. The approaches vary from classical B&B methods to recent, more
efficient approaches, which utilize extended B&B techniques. The latest
development in the field is the shift to a new algorithmic paradigm, the
generic A∗-algorithm [HNR68, Pea84, Ric88]. While this is one of the
central concepts in AI, the EDA community has been more or less un-
aware of this paradigm for a long time. Recently, this approach has been
suggested for exact size-driven BDD minimization [EGD04a, EGD05].

Besides presentation of the approaches, important algorithmic con-
cepts and the theory behind them are introduced, such as heuristic state
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space search, ordered best-first search and the A∗-algorithm as well as
the use of lower bounds during search.

All presented methods are evaluated by experimental results with
benchmarks. In the case of recent approaches to exact BDD minimiza-
tion, reductions in run time of more than 80% have been observed when
compared to the best classical method. When applying the new method
to arithmetic functions, the gain is even larger, achieving speed-ups of
up to one order of magnitude.

Next, classical and recent approaches to dynamic reordering are given
in Chapter 4, reflecting the latest developments. The latest promising
method is based on Rudell’s sifting algorithm and makes use of lower
bounds to restrict the search space.

After these contributions to classical size-driven BDD optimization,
in Chapter 5 the book focuses on alternative criteria for the optimality
of BDDs. As a growing number of methods require the optimization
of BDDs with respect to different objective functions, these new criteria
become more and more important in comparison to the “classical” notion
of BDD optimality, i.e. small or minimal BDD size.

The new criteria are related to paths in BDDs and they are motivated
by applications in SAT solving, functional simulation, logic synthesis
and synthesis for testability.

First, the minimization of the number of paths in BDDs is considered.
The book gives a theoretical study as well as a minimization algorithm.
The study is completed by experimental results.

Next, recent approaches to optimize BDDs with respect to the ex-
pected path length in BDDs are given and compared to previous ap-
proaches. The latest method is based upon Rudell’s sifting algorithm.
In contrast to the first approach of [LWHL01], the recent method is
based on fully local operations, saving the high cost of touching large
parts of the graph in every step. Experimental results with the new
method are given, showing speed-ups of up to two orders of magnitude
while preserving high quality of the results.

A unifying view is applied to compare the idea and the algorithmic
hardness of the respective path minimization approaches. Then a new al-
gorithm is derived, applying the unified view. The algorithm implements
the minimization with respect to a new criterion for BDD optimality, the
average path length in BDDs. This criterion, among others, has recently
been suggested as a starting point for the synthesis for path delay fault
testable circuits [DSF04]. The presentation of modern BDD optimiza-
tion techniques is finished by giving experimental results for this last
optimization approach.
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State-of-the-art verification tools often use SAT solvers besides BDDs.
Both SAT and BDD are well-established concepts. When looking at the
experienced run times when using both paradigms for particular problem
classes, the two concepts can behave orthogonally. The lastest trends in
current and future research move towards the fusion of SAT and BDD.

In the book, the relation between SAT and BDD is studied in Chap-
ter 6, considering formal equivalence checking as an example. This gives
theoretical insight for a better understanding of the new trend and re-
flects the latest developments in the field.

Finally, concluding remarks are given in Chapter 7.



Chapter 2

PRELIMINARIES

In this chapter, some definitions and basic notations of Boolean alge-
bra and reduced ordered Binary Decision Diagrams (BDDs) are given,
as far as they are used in the following chapters. First, Boolean func-
tions are defined and an important method for their decomposition is
explained. Then a formal definition of BDDs is given.

2.1 Notation
This section explains general notations used throughout this book.

Often sets and power sets are considered. The notation for the power
set of a given set M is

2M = {S|S ⊆ M}.
IN denotes the set of natural numbers not including zero, i.e.

IN = {1, 2, . . .}.
Variables which are assumed to have values in IN are most of the time
denoted by the letters i, j, k, m and n. Then, if the range of these vari-
ables is given by the context, sometimes a specification like “n ∈ IN” is
omitted for simplicity.

When giving a result which expresses a both-way implication “if and
only if” between a left and a right side of the statement, often the
notation “iff” will be used as abbreviation, e.g.

a =
√

b iff a2 = b.

Functions usually are denoted using the identifiers f , g, and h. A func-
tion f is given as a mapping from a domain X to a co-domain Y . Domain
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and co-domain are stated in advance, e.g. f : X → Y . The mapping then
is defined with an expression of the form

f(x) = an expression using x

or

(x1, x2, . . . , xk) �→ an expression using x1, x2, . . . , xk

(e.g., in the case of a function f : IN2 → IN, the function may be given
in the form (x1, x2) �→ x1 · x2).

However, in the case of captions of figures etc. a shorter notation may
be used to save space: the function above might be given in the short
form

f = x1 · x2.

This is done only if domain and co-domain are clear or given by the
context (e.g. if f above is already known to be a Boolean function, it is
clear from the short notation that f : {0, 1}2 → {0, 1}).

2.2 Boolean Functions
Let B:={0, 1} and n ∈ IN. Boolean variables, typically denoted by

Latin letters, e.g. x, y, z are bound to values in B. Variables are referred
to by subscripts which are from the set {1, 2, . . . , n}, e.g.

x1, x2, . . . , xn.

To denote the set {x1, x2, . . . , xn} of “standard” variables we use the
notation Xn. Later, in Chapter 4, also the notation X i

jX = {xi, xi+1, . . .,
xj−1, xj} will be used to refer to several subsets of Xn. The following is
an introduction of notations defining Boolean functions.

Definition 2.1 Let m, n ∈ IN. A mapping

f :Bn → Bm

is called a Boolean function. In the case of m = 1 we say f is a single-
output function, otherwise f is called a multi-output function.

These terms are used because Boolean functions are used to describe
the digital logic of a circuit. A circuit transforms inputs, i.e. a vector
of incoming Boolean signals to a vector of outputs, thereby following a
certain logic. This logic can be described by a Boolean function.

Other properties of a circuit (e.g. critical path delay or area require-
ment) need a more sophisticated representation (e.g. as BDD which is a
special form of a graph). Let f : Bn → Bm be a Boolean function. To
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put emphasis on the arity n of f , we may choose to write f (n) instead
of f . This notation will be used for functions in general, e.g. later on
we use it to denote variable orderings π(n) (see Section 2.4). Sometimes
we may even write f (n,m) to reflect the whole signature of a (Boolean)
function f .

A multi-output function f : Bn → Bm can be interpreted as a family

of m single-output functions (f
(n)
iff )1≤i≤m. The fiff ’s are called component

functions.
To achieve a standard, in this book the set of variables of a Boolean

function f (n) will always be assumed to be Xn. If not stated otherwise,
Boolean functions are assumed to be total (completely specified), i.e. there
exists a defined function value for every vector of input variables. The
Boolean functions constantly mapping every variable to 1 (to 0) are
denoted one (zero), i.e.

one : Bn → Bm; (x1, x2, . . . , xn) �→ 1,

zero : Bn → Bm; (x1, x2, . . . , xn) �→ 0.

A Boolean variable xi itself can be interpreted as a first example of a
Boolean function

xi:B
n → B; (a1, a2, . . . , ai, . . . , an) �→ ai.

This function is called the projection function for the i-th component.

Definition 2.2 The complement of a Boolean variable xi is given by
the mapping

xi: Bn → B; (a1, a2, . . . , ai, . . . , an) �→ ai

where ai = 1 iff ai = 0.

An interesting class of Boolean functions are (partially) symmetric func-
tions. Later, in Chapter 3, algorithms for BDD minimization will be
presented which exploit (partial) symmetry to reduce run time.

Definition 2.3 Let f :Bn → Bm be a multi-output function. Two vari-
ables xi and xj are called symmetric, iff

f(x1, . . . , xi, . . . , xj , . . . , xn)

= f(x1, . . . , xi−1, xj , xi+1, . . . , xj−1, xi, xj+1, . . . , xn).

Symmetry is an equivalence relation which partitions the set Xn into
disjoint classes S1, . . . , Sk called the symmetry sets. A function f is
called partially symmetric, iff it has at least one symmetry set S with
|S| > 1. If a function f has only one symmetry set set S = Xn, then it
is called totally symmetric.
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2.3 Decomposition of Boolean Functions
Definition 2.4 Let f : Bn → Bm be a Boolean function. The cofactor
of f for xi = c (c ∈ B) is the function fxff

i=c: Bn → Bm. For all
variables in Xn it is defined as

fxff
i=c(x1, x2, . . . , xi−1, xi, xi+1, . . . , xn)

= f(x1, x2, . . . , xi−1, c, xi+1, . . . , xn).

A cofactor of f is the function derived from f by fixing a variable of f
to a value in B. Formally, a cofactor of f (n) has the same arity n. In
contrast to all variables different from xi, the variable xi is not free in
the cofactor fxff

i=c. Hence the cofactor does not depend on this variable
(see Definition 2.5).

Despite the generality of the last definition covering multi-output
functions, sometimes only the cofactors of single-output functions
f : Bn → B are of interest. When a multi-output function f (n,m) =

(f
(n)
iff )1≤i≤m is given, we often consider the cofactors of the component

functions fiff only. These cofactors then are single-output functions of
arity n. A cofactor of a multi-output function f can be interpreted as a
family of cofactors of the component functions of f .

A cofactor fxff
i=c is sometimes called a direct cofactor to emphasize

that there is only one variable bound to a value in B. This opposes to
a cofactor in more than one variable. E.g., for k ≤ n, xi1 , . . . , xik ∈ XnXX
and c1, . . . , ck ∈ B, the function fxff

i1
=c1,xi2

=c2,...,xik
=ck

is a cofactor in
multiple variables. This cofactor is equivalent to several direct cofactors,
e.g. to

(fxff
i1

=c1,xi2
=c2,...,xik−1

=ck−1
)xik

=ck
.

In general it is equivalent to

(fxff
i1

=c1,xi2
=c2,...,xij−1

=cj−1,xij+1
=cj+1,...,xik

=ck
)xij

=cj

for any 1 ≤ j ≤ k. A cofactor in multiple variables is uniquely deter-
mined regardless of the order in which we fix these variables. Hence,
these cofactors can also be thought of being obtained by simultaneously
fixing all the involved variables. To obtain increased readability, some-
times a “|” sign is used to separate the function symbol from the list of
variable bindings, e.g. we write fjf |xi1

=c1
for a cofactor in a component

function fjf .

Definition 2.5 Let f : Bn → Bm be a Boolean function and let xi ∈
XnXX . Then function f is said to essentially depend on xi iff

fxff
i=0 �=�� fxff

i=1.
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The set of variables which f essentially depends on, is called the support
of f and is denoted supportn,m(f). Usually n, m are clear from the
context and hence we simply write support(f).

Formally, supportn,m is a mapping {f | f : Bn → Bm} → 2Xn . If
not stated otherwise, a given Boolean function f : Bn → Bm is always
defined over the variable set Xn and always support(f) = Xn is assumed.
The next definition characterizes cofactors of a Boolean function which
are derived by fixing at least one variable of the support of the function.

Definition 2.6 Let f : Bn → Bm be a Boolean (single or multi-output)
function over Xn. A cofactor fxff

i1
=a1,xi2

=a2,...,xik
=ak

with xi1 , xi2 , . . . ,

xik ∈ XnXX , (a1, a2, . . . , ak) ∈ Bk is called true iff

{xi1 , xi2 , . . . , xik} ∩ support(f) �=�� ∅.

Note that true cofactors of a function cannot be equivalent to the func-
tion itself.

Often it is more useful to consider a set of cofactors of a Boolean
function rather than considering just one particular cofactor. This is
reflected by the next definition.

Definition 2.7 Let f :Bn → Bm; f = (f
(n)
iff )1≤i≤m be a Boolean multi-

output function essentially depending on all its input variables and let
I ⊆ Xn. The set of non-constant cofactors of f with respect to the
variables in I is denoted cofn,m(f, I). Formally, a function cofn,m is
given as

cofn,m: {f | f : Bn → Bm} × 2Xn → 2{f |f : B
n→B

m};

(f, {xi1 , . . . , xik}) �→
{fiff |xi1

=a1,...,xik
=ak

non-constant | 1 ≤ i ≤ m, (a1, . . . , ak) ∈ Bk}

for 1 ≤ k ≤ n.

The set cofn,m(f, I) is the set of all distinct (non-constant and single-
output) cofactors of f (f is interpreted as a family of m n-ary single-
output functions) with respect to all variables in I. Note that this is not
a multiset, hence functionally equivalent cofactors are eliminated and
thus do not contribute to |cofn,m(f, I)|.

If n and m are clear from the context, we simply write cof(f, I).
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Next, we restrict this set to contain only cofactors that are true co-
factors of one of the single-output functions fiff .

Definition 2.8 Let f :Bn → Bm; f = (f
(n)
iff )1≤i≤m be a Boolean multi-

output function essentially depending on all its input variables and let
I ⊆ Xn. The set of non-constant true cofactors of f with respect to the
variables in I is denoted tcofn,m(f, I). Formally, a function tcofn,m is
given as

tcofn,m: {f | f : Bn → Bm} × 2Xn → 2{f |f : B
n→B

m};

(f, {xi1 , . . . , xik}) �→
{ fiff |xi1

=a1,...,xik
=ak

non-constant and true cofactor of fiff |

1 ≤ i ≤ m, (a1, . . . , ak) ∈ Bk }
for 1 ≤ k ≤ n.

Let fiff �=�� fjf be two distinct single-output functions in the family

(f
(n)
iff )1≤i≤m. Note that a true cofactor in fiff can be functionally equiva-

lent to a cofactor of fjf that is not true. In other words, the cofactors in
the set tcofn,m(f, I) are not required to be true in every single-output
function, it is only required that at least one such single-output function
exists.

Again if n and m are given from the context, we simply write tcof(f, I).

The following well-known theorem [Sha38] allows to decompose
Boolean functions into “simpler” sub-functions.

Theorem 2.9 Let f : Bn → Bm be a Boolean function (over Xn). For
all xi ∈ Xn we have:

f = xi · fxff
i=1 + xi · fxff

i=0. (2.1)

It is straightforward to see that the sub-functions obtained by subse-
quent application of Theorem 2.9, called the Shannon decomposition,
to a function f are uniquely determined. Note that this ensures the
well-definedness of cofactor set definitions.

2.4 Reduced Ordered Binary Decision Diagrams
Many applications in VLSI CAD make use of reduced ordered Binary

Decision Diagrams (BDDs) as introduced by [Bry86]:
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A BDD is a graph-based data structure. Redundant nodes in the
graph, i.e. nodes not needed to represent f , can be eliminated. BDDs
allow a unique (i.e. canonical) representation of Boolean functions. At
the same time they allow for a good trade-off between efficiency of ma-
nipulation and compactness. Compared to other techniques to represent
Boolean functions, e.g. truth tables or Karnaugh maps, BDDs often re-
quire much less memory and faster algorithms for their manipulation do
exist.

In the following, a formal definition of BDDs is given. We start
with purely syntactical definitions by means of Directed Acyclic Graphs
(DAGs). First, single-rooted Ordered Binary Decision Diagrams
(OBDDs) are defined. This definition is extended to multi-rooted graphs,
yielding Shared OBDDs (SBDDs). Next, the semantics of SBDDs is de-
fined, clarifying how Boolean functions are represented by SBDDs.

After that, reduction operations on SBDDs are introduced which pre-
serve the semantics of an SBDD. This leads to the final definition of
reduced SBDDs that will be called BDDs for short in this book.

Finally, some definitions and notations are given which allow to dis-
cuss various graph-oriented properties of BDDs, among them paths in
BDDs and their (expected) length.

Examples are given to illustrate the formal definitions where appro-
priate.

2.4.1 Syntactical Definition of BDDs
Definition 2.10 An Ordered Binary Decision Diagram (OBDD) is a
pair (π, G) where π denotes the variable ordering of the OBDD and G is
a finite DAG G = (V, E) (V(( denotes the set of vertices and E denotes
the set of edges of the DAG) with exactly one root node (denoted root)
and the following properties:

A node in V is either a non-terminal node or one of the two terminal
nodes in {1, 0}.

Each non-terminal node v is labeled with a variable in Xn, denoted
var(v), and has exactly two child nodes in V which are denoted then(v)
and else(v).

On each path from the root node to a terminal node the variables are
encountered at most once and in the same order.

More precisely, the variable ordering π of an OBDD is a bijection

π: {1, 2, . . . , n} → Xn
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Figure 2.1. Representation of f = x1 · x2 + x1 · x3 by an OBDD and an unordered
BDD.

where π(i) denotes the i-th variable in the ordering. The above con-
dition “in the same order” states that for any non-terminal node v
we have

π−1(var(v)) < π−1(var(then(v)))

iff then(v) is also a non-terminal node and

π−1(var(v)) < π−1(var(else(v)))

iff else(v) is also a non-terminal node.

Even though this might look a bit “over-formal”, the notation is required
in the following to prove the correctness of the algorithms.

Example 2.11 In Figure 2.1 two different types of binary decision dia-
grams are depicted. Solid lines are used for the edges from v to then(v)
whereas dashed lines indicate an edge between v and else(v). In both
diagrams the variables in {x1, x2, x3} are encountered at most once on
every path. Whereas the right diagram is not ordered since the variables
are differently ordered along distinct paths, the left one respects the or-
dering π(1) = x1, π(2) = x2, π(3) = x3. Both diagrams represent the
function f : B3 → B; (x1, x2, x3) �→ x1 · x2 + x1 · x3, as will be explained
in a later section.

Where appropriate, we will speak of an OBDD over Xn to put empha-
sis on the set of variables used as node labels. However, if not stated
otherwise, an OBDD is always assumed to be an OBDD over Xn.

Note that OBDDs are connected graphs, as all nodes must be con-
nected via at least one path to the (only) root node: to see this, assume
the graph consists of more than one connected component. But then,
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due to the graph being finite and acyclic, there must exist a second root
node for the second component graph. This contradicts the assumption
that the graph is single-rooted. Let root ∈ V denote the one root node
of the OBDD.

Formally, a function var: V \ {1,0} → Xn maps non-terminal nodes
to variables and functions then: V \ {1,0} → V \ {root} and else: V \
{1,0} → V \ {root} map non-terminal nodes to child nodes. Both func-
tions are well-defined and total. If not stated otherwise, we will consider
surjective functions var, i.e. every variable in Xn appears as label in the
OBDD. This corresponds to the convention to consider Boolean func-
tions which essentially depend on every variable in Xn. In general none
of these functions is required to be injective, i.e. several nodes can have
the same label and share the same child nodes. Let G = (V, E) be the
underlying graph of an OBDD (. . . , G) and let v ∈ V \ {1,0}. We call
then(v) the 1-child and else(v) the 0-child of v.

For an edge e ∈ E (E ⊆ V × V ), we denote the type of the edge with
t(e), i.e. we have t(e) = 1 for an edge e = (v, then(v)) (called a 1-edge)
and t(e) = 0 for an edge e = (v, else(v)) (called a 0-edge).

Definition 2.12 A Shared OBDD (SBDD) is a tuple (π, G, O). G
is a rooted, possibly multi-rooted DAG (V, E) which consists of a finite
number of graph components. These components are OBDDs, all of
them respecting the same variable ordering π. O ⊆ V \ {1,0} is a finite
set of output nodes O = {o1, o2, . . . , om}. An SBDD has the following
properties:

A node in V is either a non-terminal node or one of the two terminal
nodes in {1, 0}.
Every root node of the component OBDD graphs must be contained
in O (but not necessarily vice versa).

Example 2.13 An example of an SBDD is given in Figure 2.2. The
nodes pointed to by f1, f2ff and f3ff are output nodes. Note that every root
node is an output node (pointed to by f2ff and f3ff ). An output node must
not necessarily be a root node (see the node pointed to by f1).

Also note that in SBDDs multiple graphs can share the same node, a
property which helps to save nodes and to reduce the size of the diagram.
In contrast to the OBDD in Figure 2.1, an SBDD represents multiple
Boolean functions in only one diagram, as will be explained later.

Where appropriate, again we speak of an SBDD over Xn to clarify
the set of node labels.

If there is only one component in G and if O is a singleton (consisting
of the one root node of G), an SBDD specializes to an OBDD. Later, in
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Figure 2.2. A shared OBDD (SBDD).

the case that for some reason single-rooted diagrams must explicitly be
excluded, or to put emphasis on the multi-rooted case, the term “shared
BDD” will be used where a BDD is a “reduced” SBDD (see Definition
2.16 and also Remark 1). Since SBDDs are not necessarily reduced, the
terms “SBDD” and “shared BDD” should not be mixed up.

The idea behind the set O is to declare additional non-terminal, non-
root nodes as nodes representing Boolean functions. This will be clarified
in the next section when the semantics of BDDs is defined. Note that
also SBDDs have at most two terminal nodes which are shared by the
components.

2.4.2 Semantical Definition of BDDs
Definition 2.14 An SBDD (. . . , G,O), over Xn with O = {o1, o2, . . .,

om} represents the multi-output function f := (f
(n)
iff )1≤i≤m defined as

follows:

If v is the terminal node 1, then fvff = one, if v is the terminal node
0, then fvff = zero.

If v is a non-terminal node and var(v) = xi, then fvff is the function

fvff (x1, x2, . . . , xn)

= xi · fthen(ff v)(x1, x2, . . . , xn) + xi · felse(ff v)(x1, x2, . . . , xn).

For 1 ≤ i ≤ m, fiff is the function represented by the node oi.

The expression fthen(ff v) (felse(ff v)) denotes the function represented by the
child nodes then(v) (else(v)). At each node of the SBDD, essentially
a Shannon decomposition (see Theorem 2.9) is performed. In this, an
SBDD recursively splits a function into simpler sub-functions. The first
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Representation of f = x1 · x2 + x1 · x3 and f = x1 · x2 + x1 · x3.

definitions of binary decision diagrams are due to [Lee59] and [Ake78a].
Complemented Edges (CEs) are an important extension of the basic BDD
concept and have been described in [Ake78b, Kar88, MB88, MIY90,
BRB90]. The idea is to use the close similarity between the BDD rep-
resenting a function f and the BDD representing its complement. For
example see Figure 2.3 where a left BDD for f = x1 · x2 + x1 · x3 and a
right BDD for f = x1 · x2 + x1 · x3 is given. The diagrams are identical
except for interchanged terminal nodes.

A CE is an ordinary edge that is tagged with an extra bit (complement
bit): This bit is set to indicate that the connected sub-graph must be
interpreted as the complement of the formula that the sub-graph rep-
resents. CEs allow to represent both a function and its complement by
the same node, modifying the edge pointing to that node instead. As a
consequence, only one constant node is needed. Usually the node 1 is
kept, allowing the function zero to be represented by a CE to 1.

Note that it is not necessary to store the complement bit as an extra
element of the node structure. Instead, a smart implementation tech-
nique can be used which exploits the memory alignment used in present
computer systems: modern CPUs require allocated objects to reside at a
memory address that is evenly divisible by some small constant, e.g. of-
ten this is the constant two or four. Consequently, the least significant
bit of a pointer word is irrelevant for address calculation. Therefore it
can be used to store the complement bit (provided that an appropriate
bit mask is applied before address calculation). Hence using CEs does
not cause any memory overhead. SBDDs with CEs are used today in
many modern BDD packages.

For the sake of a more understandable presentation of the achieved
results, in this book “classical”, unmodified SBDDs without CEs are
used in most of the examples and their illustrations (with the exception
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Figure 2.4. Two different SBDDs for f : (x1, x2, x3) �→ x1 · x2 + x1 · x3.

of Section 5.1 where CEs are discussed explicitly). However, all results
presented throughout the book hold for BDDs with CEs and can easily
be transferred to BDDs without CEs.

Note that in case of using CEs special attention must be drawn to
maintain a so-called “canonical form”, i.e. to achieve uniqueness of the
representation of Boolean functions. This will be addressed again in
Section 2.4.3 where the unique, irreducible form of BDDs is introduced.

2.4.3 Reduction Operations on SBDDs
In the previous sections, we developed syntax and semantics of a spe-

cial form of graphs which are representing Boolean functions. However,
even if the considered variable ordering is fixed, still there exist sev-
eral possibilities of representing a given function: in Figure 2.4 we see
two different SBDDs respecting the same variable ordering π−1(x1) <
π−1(x2) < π−1(x3), representing the same function f : B3 → B;
(x1, x2, x3) �→ x1 · x2 + x1 · x3. Next, we will give reduction opera-
tions on SBDDs which transform an SBDD into an irreducible form,
while the function represented by the SBDD is preserved. This is a cru-
cial technique leading to an SBDD respecting a given variable ordering
which is unique up to graph isomorphism and of minimal size.

A reduced SBDD then is the final form of binary decision diagrams
that will be considered throughout this book, called BDD.

Definition 2.15 Given an SBDD (. . . , G,O), there are the following
two reduction rules which can be applied to G = (V, E):

Deletion Rule: Let v ∈ V be a node with

then(v) = else(v) =: v′.
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Figure 2.5. Deletion Rule for SBDD-reduction.
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Figure 2.6. Merging Rule for SBDD-reduction.

Then the reduction del(v, v′) is applicable to G, resulting in a graph
G[del(v, v′)] obtained by a) redirecting all edges that are pointing to
v to the node v′ and b) inserting v′ into O iff v ∈ O and c) deleting
v from V and O.

Merging Rule: Let v, v′ ∈ V be two nodes with

1) var(v) = var(v′),

2) then(v) = then(v′), and

3) else(v) = else(v′).

Then the reduction merge(v, v′) is applicable to G, resulting in a graph
G[merge(v, v′)] obtained by a) redirecting all edges pointing to v to the
node v′ and b) inserting v′ into O iff v ∈ O and c) deleting v from V
and O.

In both rules with action b) we ensure that output nodes do not “van-
ish”. In Figures 2.5 and 2.6 the application of both reduction rules is
illustrated. It is straightforward to see that the application of one of
the two reduction operations del and merge does not change the func-
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tion represented by the affected SBDD: first, with the Deletion Rule,
redundant nodes are deleted. Let fvff denote the function represented by
node v and let var(v) = x. Provided that the Deletion Rule applies, we
have then(v) = else(v) =: v′. Then, by Definition 2.14,

fvff = x · fthen(ff v) + x · felse(ff v)

= x · fvff ′ + x · fvff ′

= (x + x)fvff ′ = fvff ′ ,

hence deletion of v and redirection of all ingoing edges to the functionally
equivalent node v′ preserves the function represented by the diagram.

Second, with subsequent application of the Merging Rule isomorphic
sub-graphs are identified. Provided that the Merging Rule applies, we
have var(v) = var(v′) := x and the equivalence of the 1-children (0-
children) of v and v′. Functional equivalence of the nodes v and v′

follows directly from Definition 2.14: it is

fvff = x · fthen(ff v) + x · felse(ff v)

= x · fthen(ff v′) + x · felse(ff v′)

= fvff ′ ,

thus using v′ instead of v on every path of the BDD and discarding v
collapses the graph but the represented function is not changed.

Definition 2.16 An SBDD is called reduced iff there is no node where
one of the reduction rules (i.e., the Deletion or the Merging Rule) ap-
plies.

The term “reduced” is used here since it has become common in the
literature. This is done despite the fact that the older and more accurate
term “irreducible” known from the paradigm of rewriting systems could
be applied as well.

Remark 1 In the following, only reduced SBDDs are considered and
for simplicity, they are called BDDs (or shared BDDs when explicitly
excluding single-rooted BDDs).

The size of a BDD F = (. . . , G, . . .) is the number of nodes in the
underlying graph G, denoted |F | (or sometimes also |G|). The following
theorem [Bry86] holds:

Theorem 2.17 BDDs are a canonical representation of Boolean func-
tions, i.e. the BDD-representation of a given Boolean function with re-
spect to a fixed variable ordering is unique up to isomorphism and is of
minimal size.
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This property of BDDs is useful especially when checking the equivalence
of two Boolean functions represented as a BDD. If the functions are in-
deed equivalent, their representation must be isomorphic. Actually, in
modern, efficient BDD packages [BRB90, DB98, Som01, Som02] equiv-
alent functions are represented by the same graph. Once the BDDs for
the functions have been built, equivalence checking can be done in con-
stant time (comparing the address of the root nodes of the representing
graphs).

In a similar manner, it can be decided in constant time whether a
Boolean function is satisfiable or not, once the BDD representing the
function has been built: it suffices to check whether the BDD is the one
for the constant zero function or not. In the latter case, the function
must be satisfiable.

Moreover, it is known that computing a satisfying assignment of the
n input variables can be done in time which is linear in n [Bry86].

The result of Theorem 2.17 is reflected in the next definition intro-
ducing a convenient notation to refer to the one BDD representing a
Boolean function f with respect to a variable ordering π: we use the fact
that the set of all BDDs representing a given Boolean function f (n,m)

can be decomposed into equivalence classes of isomorphic BDDs, i.e. we
have one class for every ordering.

Definition 2.18 Let f (n,m) be a Boolean function and let π(n) a vari-
able ordering. Then BDDn,m(f, π) denotes the equivalence class of BDDs
representing f and respecting π. If n, m are clear, we simply write
BDD(f, π).

We may find it convenient to identify a class BDD(f, π) with an arbitrary
representative, i.e. we speak of the BDD BDD(f, π) instead of the class
of all BDDs isomorphic to the (chosen) representative. Formally, if F is
a class of BDDs, we identify F with F .

An example of this would be using BDD(f, π) as parameter of a func-
tion which is expecting a BDD as argument. This simplification is harm-
less, as long as the following holds: the resulting function value must be
preserved with respect to changes of the class representative. Instead
of declaring a BDD with F ∈ BDD(f, π), this will be done in the form
F := BDD(f, π). This is a relaxed notation, expressing that F is as-
signed a certain, fixed class representative. This notation is used to
support complete abstraction from the details of graph isomorphism.

The introduced terminology directly transfers to BDDs with CEs.
However, as has already been mentioned before in Section 2.4.2, special
care has to be taken here to maintain a canonical form. The reason
is the existence of several functional equivalences of distinct, reduced
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Figure 2.7. Pairs of functions represented as BDDs with CEs that are functional
equivalent.

BDDs with CEs as illustrated in Figure 2.7. A dot on an edge indicates
a complemented edge (otherwise it is a regular edge).

As a remedy, it must be constrained where CEs are used. To achieve
a unique representation it suffices to restrict the 1-edge of every node
to be a regular edge. Thus, in Figure 2.7 always the left member of
each functionally equivalent pair is chosen. It can be shown that this
already guarantees a canonical form. All function-preserving reduction
operations which follow this constraint result in a unique BDD with CEs
which also respects this condition.

2.4.4 Variable Orderings of BDDs
A problem with BDDs however is their sensitivity to variable order-

ing. To illustrate this, an example is reviewed which has been given in
[Bry86].

Example 2.19 Let n ∈ IN be even and let f : Bn → B;

(x1, x2, . . ., xn) �→ x1 · x2 + x3 · x4 + . . . + xn−1 · xn.

A BDD for f respecting the variable ordering π(1) = x1, π(2) = x2, . . .,
π(n − 1) = xn−1, π(n) = xn is given in Figure 2.8: the left BDD is of
size n. Since f obviously depends on all n variables, this is the optimal
size.

However, the right BDD for f respecting the variable ordering π(1) =
x1, π(2) = x3, . . . , π(n/2) = xn−1 , π(n/2 + 1) = x2, π(n/2 + 2) =
x4, . . . , π(n) = xn is of exponential size: it is straightforward to see that
the graph is of size 2(n/2)+1 − 2.

That is, depending on the variable ordering the size of a BDD may vary
from linear to exponential in n, the number of input variables.
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Figure 2.8. Two BDDs for f = x1 · x2 + x3 · x4 + . . . + xn−1 · xn.

To describe approaches to minimization of BDD size (as will be done
in Chapters 3 and 4), a formalism expressing variable orderings, changes
of these orderings and movements of variables is necessary. This section
introduces the notation used throughout this book for this purpose.

In some cases, when considering the variable ordering of a given BDD,
the ordering is not needed explicitly. E.g. this is the case, when a BDD
is given with respect to an initial ordering: considering methods for BDD
size minimization, we are often interested in expressing (or restricting)
the effect of the changes from one ordering to another. In this case we
are not interested in the initial ordering from which a heuristic or an
exact reordering method has been started.

In such cases we omit stating the ordering and thus in all examples,
if not stated otherwise, the “natural” ordering defined by

π(i) = xi (i ∈ {1, 2, . . . , n})
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is assumed. To express movements (shifts) of variables in the ordering,
i.e. changes in the position of a variable and exchanging a variable with
another variable, often permutations have been used. E.g. [FS90], used
bijections

π: {1, 2, . . . , n} → {1, 2, . . . , n}
to express exchanges of variables. Here, variables xi are referred to by
their subscript i. A certain disadvantage is that both positions in the
ordering and variable subscripts are denoted using natural numbers in
{1, 2, . . . , n}, hence they can be mixed up quite easily.

In [DDG00] bijections

π: Xn → Xn

have been used instead. Both formalisms, although mainly designed to
express changes in an ordering, also allow to express a variable order-
ing: for that we assume π is applied to the natural ordering, the result
is then assumed to be the current ordering.

However, a formalism which directly gives the current position of each
variable can be easier to read in most cases. Hence, instead of denoting
orderings as permutations, throughout the book the mapping π from po-
sitions to variables is used, as already introduced in Definition 2.10. For
the outlined historical reasons (see above), this bijection still is named
π.

The next definition will be used later in Chapter 3 to express sets of
orderings which respect a certain condition.

Definition 2.20 Let I ⊆ Xn. Then Πn(I) denotes the set

Πn(I) = {π: {1, 2, . . . , n} → Xn | {π(1), π(2), . . . , π(|I|)} = I}.
A mapping π ∈ Πn(I) is a variable ordering whose first |I| positions
constitute I. Normally we omit the arity n, writing Π(I) instead of
Πn(I), if n is given from the context.

This allows us to focus the attention to variable orderings with the fol-
lowing property: an ordering π(n) ∈ Πn(I) partitions the set of variables
XnXX into a partition (L, R): let (π, G, . . .) be a BDD over Xn. Nodes with
a label in L = I reside in the upper part of G, i.e. in levels 1, 2, . . . , |I|.
Nodes with a label in R = Xn \ I reside in the lower part of G in levels
|I| + 1, |I| + 2, . . . , n. The definition also allows us to force the last |I|
positions of an ordering to constitute I: this holds for all π ∈ Π(Xn \ I).

Here, the term “level” has been used informally. In the next section
a formal definition of the term “BDD level” will be given.
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2.4.5 BDD Levels and their Sizes
In this section additional notations are given which are needed to

formally refer to parts of the BDD, to their sizes and to minimal sizes.

Definition 2.21 A level of a BDD over Xn (or, equivalently, a BDD
level) is a set containing all non-terminal nodes labeled with one par-
ticular variable xi in Xn. Let F = (π(n), . . .) be a BDD over Xn. If
xi = π(k), we speak of the “x“ i-level” as well as the “k“ -th level” or “level
k”.

Definition 2.22 Let

nodesn: {F | F is a BDD over Xn} × Xn → 2{v∈V |(...,(V,E),...) is a BDD};

nodesn(F, xi) = {v | v ∈ V, var(v) = xi where F = (. . . , (V, E), . . .)}.
We straightforwardly extend this definition to also cover sets of variables,
i.e. we define

nodesn: {F | F is a BDD over Xn} × 2Xn → 2{v∈V |(...,(V,E),...) is a BDD};

nodesn(F, X) =
⋃

xi∈X

nodesn(F, xi).

For simplicity, this extension is denoted with the same function sym-
bol. If n is clear from the context, we omit the subscript n, writing
nodes(F, xi) and nodes(F, X) instead of nodesn(F, xi) and nodesn(F, X).
The term nodes(F, xi) denotes the set of nodes in the xi-level of F
whereas the term nodes(F, X) denotes the set of nodes in F labeled
with a variable in X ⊆ Xn.

To express sizes of levels, i.e. the number of nodes in a level, we also
introduce the following function.

Definition 2.23 labeln: {F | F is a BDD over Xn} × Xn → IN;

labeln(F, xi) = |nodesn(F, xi)| ,
and labeln: {F | F is a BDD over Xn} × 2Xn → IN;

labeln(F, X) = |nodesn(F, X)| .
As before, the subscript n is ommited if n is given by the context
and the same function symbol is used both for the basic and the ex-
tended function. Note that the size of the k-th level can be expressed as
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label(F, π(k)). To be able to refer to the set of nodes in the k-th level
in a BDD, we introduce the following definition.

Definition 2.24

level: {F | F is a BDD} × IN → 2{v∈V |(...,(V,E),...) is a BDD};

level(F, k) = {v | v ∈ V, var(v) = π(k) where F = (π, (V, E), . . .)}.
Let F = (. . . , . . . , O) be a BDD. To express the set of nodes in parts
of F covering (the output nodes situated at) several levels we introduce
the following notations. Let

F i
jFF =

⋃
i≤k≤j

level(F, k)

and let

Oi
j = O ∩ F i

jFF .

Due to the ordering restriction imposed on the variables of a BDD, it
is possible to levelize each BDD graph illustration, i.e. to rectify the
graph such that all nodes with the same label appear at the same level
of height in the graph. Later, in Chapter 3, we will need to express the
minimal number of nodes in BDDs or parts of BDDs. This can be done
using the following very flexible definition.

Definition 2.25 Let f be an n-ary Boolean function and let I, J ⊆ Xn.

min costf (I, J) = min
π∈Π(J)

(label(BDD(f, π), I)) ,

i.e., min costf (I, J) denotes the minimal number of nodes labeled with
a variable in I under all BDDs representing f with a variable ordering
whose first |J | elements constitute J . If the function f is given from the
context, we omit it, writing min cost(I, J) for short.

If J = I, all orderings are considered which change the order of variables
within the upper part of the BDD in levels 1, 2, . . . , |I| such that all nodes
in this part remain labeled with a variable in I.

The term min cost(I, I) expresses the size of the upper part for a
“best” of all these orderings, i.e. the minimal size of the upper part with
respect to a partition (I, Xn \ I) of the set Xn.

If J = Xn \ I, all orderings are considered which change the order of
variables within the lower part of the BDD in levels n−|I|+1, n−|I|+
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2, . . . , n such that all nodes in this part remain labeled with a variable
in I.

The term min cost(I, Xn \ I) expresses the size of the lower part for a
“best” of all these orderings, i.e. the minimal size of the lower part with
respect to a partition (Xn \ I, I) of the set Xn.

Instead, we can also consider a partition (I, Xn \I), again considering
all orderings which change the order of variables within the upper part
of the BDD in levels 1, 2, . . . , |I| and then express the minimal size of the
lower part of the BDD under all these orderings: this would be expressed
by the term min cost(Xn \ I, I).

Yet, besides these possibilities, the definition allows to express even
more sophisticated minimal sizes of BDD parts. But throughout this
book, only the above forms will be needed and used.

Formally, min costf is a function

min costf : 2Xn × 2Xn → IN.

The well-definedness follows from Theorem 2.17 which ensures that, for
I ⊆ Xn, the term label(BDD(f, π), I) is uniquely determined by f and
π.

2.4.6 Implementation of BDD Packages
In the previous sections, the concept of BDDs has been introduced.

In practice, the success of BDD-based algorithms relies on the efficient
implementation of this concept. This section describes the basic imple-
mentation techniques used today by modern BDD packages. For more
details see [BRB90, Som01].

In Section 2.4.3 it was explained why for typical applications like a
functional equivalence check only reduced BDDs are of interest. For this
reason it is desirable to avoid generating unreduced BDDs during the
operation of a BDD package. A way of achieving this is to check whether
a node representing a particular function already exists. This is done
before the creation of a node representing this function. For a node v,
the function represented by v, fvff , is uniquely determined by the tuple

(var(v), then(v), else(v)),

containing as its elements all arguments of the Shannon decomposition
(see Theorem 2.9) carried out at v:

fvff = x · fthen(v)ff + x · felse(v)ff

where x = var(v). Of course it would be too time-consuming to compare
the tuple of a new node to all tuples of already existing nodes. Hence,
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Figure 2.9. Node structure.

a global hash table, called the unique table is used which allows to find
the node v for a tuple (x, v1, v0) in constant time. A hash function is
computed on the tuple returning an index into an array of bins each
storing the first node for that hash value. All other nodes with the
same hash value are stored in a collision list. Usually, a next-pointer in
the node structure is used to implement this linked list. Other pointers
stored at each node are the pointers to the 1-child and the 0-child. Note
that only forward-pointers are used to form the DAG, as backward-
pointers would increase the node structure and cause too much memory
overhead. Besides this, also the variable index index (plus flags, i.e. the
complement bit, see Section 2.4.3) and a reference count ref are stored
in the node structure (see Figure 2.9).

The reference count ref gives the information how often a node is used
at the moment. That way it is possible to free a node if it is not used
anymore. This allows the efficient usage of the memory. The count ref
is updated dynamically whenever the number of references from other
nodes or returned user functions changes. If ref has reached its maximum
value, it is frozen, i.e. the node is not deleted during program run and
exists until program termination.

If ref reaches the value zero for a node v, the node is called a dead
node. The reference counts of the descendants of v need to be decreased
recursively. However, the memory of the dead node v is not freed imme-
diately, because there might still exist an entry in the so-called computed
table which points at v.

The computed table is a global cache storing the intermediate and
final results of the recursive algorithms which operate on the DAG of
the BDD. A result in this context means a node of the DAG which is
the root of a sub-graph representing the computed function.

The idea is to trade memory vs. run time: if a result can be found
in the cache, it has been computed before and it is avoided to compute
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it again. As the number of results can be high during a program run
with many BDD operations, the computed table would soon grow too
large if implemented as a standard hash table. Therefore usually it is
implemented as a hash-based cache.

Though the result of a new computation is stored in the cache (again,
in form of a tuple pointing to a node via hashing), the handling is dif-
ferent from that of the unique table: rather than appending a new entry
to a collision chain, an entry is simply overwritten if a collision occurs.
That way a good trade-off between memory requirement and run time
improvement can be achieved. Note that it is no problem if a result node
is a dead node. In this case a reclaim operation, increasing the reference
count, re-establishes the node. The reclaimed node is not a dead node
anymore.

The reference count also allows for an efficient memory management
of the unique table: if a new node is created causing the unique table
to become too full, then there are two possible ways of remediation: as
a first possibility a garbage collection can be performed. This is only
done if the number of dead nodes exceeds a certain threshold. Otherwise
freeing the dead nodes would not result in a sufficient amount of memory
to be recycled, not making the garbage collection worthwile. During
garbage collection, dead nodes are freed and entries in the computed
table pointing to dead nodes are deleted. Second, if not enough dead
nodes are available, both the unique table array and the computed table
cache are increased in size, typically by a factor of two. As a consequence,
all entries must be assigned a new valid position. This happens using the
hash function whose return values have now changed due to the increase
of the table size. This process is called rehashing. During rehashing,
typically also an implicit garbage collection is performed.

Since the tables are increased by a factor of two every time, the re-
hashing operation is involved only logarithmically often. If both methods
to obtain more memory, garbage collection and table size increase with
rehashing, fail, the system returns a NULL pointer to the user. At this
point it is up to the user to save space by freeing nodes.

Another important implementation aspect used by modern BDD pack-
ages is the use of an array of unique tables, one per level i = 1, . . . n.
Index i serves to locate the hash table which stores all nodes for level
i. Then all nodes of level i can be traversed by stepping through all
collision chains, each starting at a hash table array position.
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2.4.7 Basic Minimization Algorithm

Algorithms for the minimization of BDDs make use of basic techniques
such as variable swaps and the sifting algorithm. This method has been
described in [Rud93] and exploits the only local complexity of the swap
operation [ISY91] to achieve good run times. This section gives both
basic techniques as the algorithms for BDD optimization presented in
Chapters 3, 4, and 5 are based on them.

2.4.7.1 Variable swap

This section describes how a swap of adjacent variables can be imple-
mented such that it is performed with a run time which is proportional
to the sizes of the neighboring levels at which the variables are situated,
i.e. a local behavior.

A problem which is encountered when trying to achieve a local behav-
ior during a swap is the following: assume that a variable swap results
in the change of the function represented by a BDD node v. As a con-
sequence, all previous references to v in the DAG are not valid anymore
and need to be corrected. In Section 2.4.6 it has already been described
that modern BDD packages do not maintain back-pointers (from child
nodes to parent nodes) in order to reduce memory requirement. Hence,
to find all references to v from nodes situated above, we would have to
traverse large parts of the DAG, and even then the problem to patch
the references from user functions still remains.

For this reason it is necessary to preserve the function represented
at each node involved in a swap. This is achieved as follows: instead
of constructing a new node in another part of the computer’s memory,
the data of the node in question (i.e. its tuple, see Section 2.4.6) is
overwritten with new values in a function preserving manner. These new
values result from the change in the variable ordering. Besides avoiding
the problem described above, another advantage of this schema is that
no time-consuming memory allocations are needed.

In detail, this is done as follows. Assume a natural variable ordering
and assume that variables xi = π(i) and xi+1 = π(i + 1) are swapped.
Let v be a node situated at level i and let v1, (v0) denote the 1-child
(0-child) of v.

Let fvff denote the function represented by v and let f1 (f0ff ) denote
the positive (negative) cofactor of fvff with respect to xi. Clearly, f1

(f0ff ) is represented by v1 (v0). Further, let f11, (f10) denote the positive
(negative) cofactor of f1 with respect to xi+1. Similarly, let f01ff , (f00ff )
denote the positive (negative) cofactor of f0ff with respect to xi+1. Let
v11 be the node representing f11. This is either the 1-child of v1 (if
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Figure 2.10. Variable swap.

xi+1 is tested at v1) or simply v1, otherwise. Similarly, let v10, and v01,
v00 be the nodes representing f10, and f01ff , f00ff , respectively. The left
side of Figure 2.10 illustrates the most general case where all cofactors
are distinct functions. If some of the cofactors f11, f10, f01ff , and f00ff
are functionally equivalent, the respective representing nodes have been
collapsed by a merge operation before and thus less nodes are involved
in the swap than depicted in Figure 2.10.

Node v is represented by the tuple (xi, v1, v0). Performing the swap
of xi and xi+1, v is overwritten by (xi+1, (xi, v11, v01), (xi, v10, v00)). In-
specting the paths through v shows that the new variable ordering (i.e.,
xi+1 “above” xi) is established (see the right side of Figure 2.10). More-
over, this modification preserves the function represented by v:

(xi+1, (xi, v11, v01), (xi, v10, v00))

= (xi+1, xi · f11 + xi · f01ff , xi · f10 + xi · f00ff )

= xi+1 · (xi · f11 + xi · f01ff ) + xi+1 · (xi · f10 + xi · f00ff )

= xi · xi+1 · f11 + xi · xi+1 · f01ff + xi · xi+1 · f10 + xi · xi+1 · f00ff

= xi · (xi+1 · f11 + xi+1 · f10) + xi · (xi+1 · f01ff + xi+1 · f00ff )

= xi · f1 + xi · f0ff

= fvff

The situation after the swap is illustrated on the right side of Figure 2.10.
Nodes v0 and v1 will only vanish, if no other (external or user) reference
besides those from node v existed. Nodes a and b must be newly created
only if nodes with their tuples did not already exist, otherwise they are
simply retrieved from the unique table (see Section 2.4.6).
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2.4.7.2 Sifting Algorithm

In 1993, Rudell presented an effective algorithm to reduce the size of
a BDD, the sifting algorithm [Rud93]. Every variable is moved up and
down in the variable ordering, i.e. the relative order of the other variables
is preserved. At each position the resulting BDD size is recorded and
in the end the variable is moved back to a best position, i.e. one which
yielded the smallest BDD size. The variable movements are performed
by swaps of variables which are adjacent in the variable ordering, e.g. for
i < j swapping π(i) and π(i+1), π(i+1) and π(i+2) . . . , finally swapping
π(j − 1) and π(j) moves π(i) to the j-th position in the ordering. Note
that π changes with each swap.

In Section 2.4.7.1 it has been shown that a swap of adjacent variables
only affects the graph structure of the two levels involved in the swap.
Since the number of nodes which have to be touched directly transfers
to the run time of the method, this locality of the swap operation is a
main reason for the efficiency of the sifting algorithm: these exchanges
are performed very quickly since only edges must be redirected within
these two levels. Moreover, changes in the graph structure can often
be established simply by updates of the node data, thus saving the cost
of many memory allocations. In this, sifting is based on effective local
operations. Moreover, further reducing the number of swaps obviously
yields reductions in the run time of the method.

In the past, several methods of achieving reductions in the number of
variable swaps have been suggested. A trivial method for example is to
start with moving the variable to the closest end first when moving a
variable to all other positions in the relative order of the variables.

A much more sophisticated method is the use of lower bounds during
sifting, which will be discussed in more detail in Chapter 4.

Another improvement suggested is the idea to start with the vari-
able situated at the level with the largest number of nodes: this helps
to reduce the overall BDD size as early as possible, thus reducing the
complexity of all subsequent steps.

Summarized, the classical sifting algorithm works as follows:

1 The levels are sorted according to their sizes. The largest level is
considered first.

2 For each variable:

(a) The variable is first moved downwards if it is situated closer to
the bottommost variable, otherwise it is first moved upwards.
Moving the variable means exchanging it repeatedly with its suc-
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cessor variable if moved downwards or with its predecessor vari-
able if moved upwards. This process stops, when the variable has
become the bottommost variable (if moved downwards) or the
topmost variable (if moved upwards).

(b) The variable is moved into the opposite direction of the previous
step, i.e. if in the previous step the variable has been moved down-
wards, now it is moved upwards until it has become the topmost
variable. If, however, in the previous step the variable has been
moved upwards, now it is moved downwards until it has become
the bottommost variable.

(c) In the previous steps the BDD size resulting from every variable
swap has been recorded. Now the variable is moved back to the
closest position among those positions which led to a minimal
BDD size.

The algorithm is given in Figure 2.11. For i < j, a call sift down(i, j)
moves a variable from level i down to j (the other procedure calls have
similar semantics). We start with the largest level first, hence in lines
(5), (7), and (9), sl[i] denotes the number of the largest unprocessed
level. In line (9) the tested condition is a check whether the way down
is shorter than the way up. In that case, the algorithm goes down first.
In line (16) the algorithm moves the variable back to a best position.
This is usually done by following a sequence of recorded moves in reverse
order.

Note that the run time of sifting increases, if the BDD becomes large in
intermediate steps of the algorithm. To prevent high run times, moving a
variable into a specific direction can be cancelled if the BDD size exceeds
a certain limit, e.g. a limit of twice the size of the initial BDD.

2.4.8 Evaluation with BDDs
Besides the ability of BDDs to represent a Boolean function, BDDs

can be also used to actually implement an evaluation of the function.
While evaluating functions with BDDs, one has to consider paths in

BDDs, starting at one of the output nodes and ending at a terminal node.
Sometimes also paths to an inner node are considered. Since BDDs es-
sentially are DAGs, they inherit the usual standard notations considering
paths in graphs. Paths in BDDs, as is common for graphs, are denoted
as alternating sequence of nodes vi and edges ei, i.e. (v1, e1, . . . , ek−1, vk).
The length of a path p is the number of non-terminal nodes occurring
on p, denoted λ(p). Next, an evaluation of a BDD with respect to an
assignment is defined in operational terms.
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(1) sifting(BDD F , int n)
(2) proc
(3) sort level numbers by descending level sizes and store

them in array sl;
(4) for i := 1 to n do
(5) if sl[i] = 1 then
(6) sift down(i, n);
(7) else if sl[i] = n then
(8) sift up(i, 1);
(9) else if (sl[i] − 1) > (n − sl[i]) then

(10) sift down(i, n);
(11) sift up(n, 1);
(12) else
(13) sift up(i, 1);
(14) sift down(1, n);
(15) end–if
(16) sift back();
(17) end–for
(18) end–proc

Figure 2.11. Original sifting-algorithm.

An assignment b = (b1, . . . , bn) ∈ Bn denotes the function

b: 2Xn → Bn; xi �→ bi (1 ≤ i ≤ n).

Definition 2.26 An evaluation of a BDD (. . . , (V, E), O) with respect
to an assignment b = (b1, . . . , bn) ∈ Bn starts at one of the output nodes
in O and traverses the path along the edges in E which are chosen ac-
cording to the values assigned to the variables by b. Thereby all variables
which are not tested along the traversed path are ignored.

The evaluation is said to reach a node v ∈ V if v occurs on the
traversed path. The evaluation is said to stop at node v if v is the last
node of the traversed path.

Due to the BDD semantics as a graph where a Shannon decomposition is
carried out at each node, we have f(b1, b2, . . . , bn) = 1 iff the evaluation
stops at 1 and f(b1, b2, . . . , bn) = 0 iff the evaluation stops at 0.

Example 2.27 Consider the left BDD given in Figure 2.12. The eval-
uation for b = (0, 0, 1) starts at the output node for f which is the root
node of the BDD. Assignment b assigns x1 to 0, x2 to 0, and x3 to 1.
According to these values, the path along the corresponding edges labeled



Preliminaries 37

f

1

2

f

2

1

1

3

2

1

x3x

x

x

x3x

1 10 0

x

x

x

e

e

e

Figure 2.12. Two BDDs for f : (x1, x2, x3) �→ x1 · x2 + x1 · x3.

e1, e2, and e3 is chosen (1(( -edges are depicted with solid lines, 0-edges
with dashed lines). This path finally reaches the terminal node labeled 1,
and indeed the function value f(0, 0, 1) equals 1.

Note that the path along e1, e2, and e3 is of maximal length three in the
left BDD whereas the right BDD has a maximal path length of only
two.

Let us consider a BDD respecting a variable ordering π. Sometimes we
may choose to assign values to only the first few variables in the ordering
π, thus considering a possibly shorter prefix a = (b1, . . . , bk) (k ≤ n) of a
(full) assignment b. The operational semantics of an evaluation directly
transfers to this situation in complete analogy. Evaluation of a stops at a
(possibly non-terminal) node v, representing the cofactor fxff 1=b1,...,xk=bk

for which we also write faff .

2.4.9 Paths in BDDs
The optimization of BDDs with respect to different aspects of their

paths will be subject to further discussion in Chapter 5. Thereby CEs
(see Sections 2.4.2 and 2.4.3) will be explicitly considered to distinguish
paths to zero from paths to one. Formally BDDs with CEs have to be
represented by a edge-labeled graph in order to explicitly represent edges
from a node v to then(v) and else(v), respectively. This is necessary as
the following example illustrates.

Example 2.28 Consider the projection function for variable x1 shown
in Figure 2.13. Both outgoing edges of node v lead to the terminal 1.
Therefore they would correspond to a single edge in the graph structure
without labels and the complement could not be properly associated to the
edge leading to else(v). This ambiguity is removed using the edge-labeled
graph that contains two edges.
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Figure 2.13. BDD with CEs for f(x1) = x1.

The following definitions are given for the more difficult case of BDDs
with CEs only. For an edge e ∈ E the attribute CE(e) is true, iff e is a
CE. The edges ei occurring on a path in a BDD may be complemented or
non-complemented. An (implicit) edge e pointing to the root node has
to be considered to represent a function. Such an implicit (possibly com-
plemented) edge into the BDD is used to represent f or f , respectively.
This edge is not explicitly denoted.

The predecessors of a node w are split into those having a CE to w
and those having a regular edge to w, given by two sets (the sets are not
always disjoint):

M1(w) := {v : w can be reached from v via a regular edge}
M0(w) := {v : w can be reached from v via a CE}

Regarding the following terminology for paths in BDDs, it should be
noted that for a BDD with CEs the implicit edge representing a function
has to be considered.

Definition 2.29

Two paths

p1 = (v0, d0, v1, d1, . . . , dl−1, vl),

p2 = (w0, e0, w1, e1, . . . , el−1, wl)

with vi, wi ∈ V and ei, fiff ∈ E are identical, iff

∀i ∈ {0, . . . , l} vi = wi,

∀i ∈ {0, . . . , l − 1} di = ei,

∀i ∈ {0, . . . , l − 1} CE(di) = CE(ei).

Otherwise the two paths are called different.
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Definition 2.30 A path p = (v0, e0, v1, e1, . . . , el−1, vl) is called com-
plemented iff it leads from v0 to vl via an odd number of CEs, i.e.

|{e : (e is an edge in p) ∧ CE(e)}| = 2i + 1

for some i ∈ IN. Otherwise the path is called regular.

Definition 2.31 A path p = (v0, e0, v1, e1, . . . , el−1, vl) is called a 1-
path (“one-path”) from v0 iff the path is regular and vl = 1. A path
p = (v0, e0, v1, e1, . . . , el−1, vl) is called a 0-path (“zero-path”) from v0

iff the path is complemented and vl = 1.

2.4.9.1 Number of Paths

Notation 1 Let f be a Boolean function. P1PP (BDD(f, π)) denotes the
number of all different 1-paths from any of the outputs to the terminal
1 with respect to the variable ordering π. P0PP (BDD(f, π)) denotes the
number of all different 0-paths from any of the outputs with respect to
the variable ordering π. To denote the number of all paths in BDD(f, π),
we use the short notation

α(BDD(f, π)) = P1PP (BDD(f, π)) + P0PP (BDD(f, π)).

Example 2.32 The BDD for the well-known odd-parity or EXOR-
function f : Bn → B; (x1, . . . xn) �→ x1 ⊕ . . . ⊕ xn is of linear size
2n + 1. The corresponding BDD is shown in Figure 2.14. Nonetheless
the number of paths is exponential in n and, even worse, all BDDs rep-
resenting the EXOR-function have a number of paths exponential in n.
Due to the symmetry of the EXOR-function with respect to all variables,
the structure of the BDD is independent of the variable ordering.

Example 2.32 shows that the number of paths can grow exponentially
in n, the number of input variables, even if the size of the BDD grows
only linear in n.

When computing the number of paths in a BDD (see Section 5.1 and
in particular Section 5.3) an exponential run time should be avoided.
An appropriate formula for the number of paths in a BDD F can be
derived from the Shannon decomposition (Theorem 2.9). The following
recurrent equation expresses the number of paths starting at a node v
and ending at a terminal node (this quantity denoted α(v)):

α(v) =

{
1, v ∈ {1,0}
α(then(v)) + α(else(v)), else

(2.2)

The formula simply states that α(v) is one if v is a terminal node (there
is one path of length zero from v to v). Otherwise, the paths starting at
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Figure 2.14. BDD for Example 2.32.

v and ending at a terminal node can be partitioned into the paths via
the 1-child and those via the 0-child, due to the Shannon decomposition
carried out at each node. The sum of the number of paths in these two
partitions yields the total number of paths.

It is straightforward to give an algorithm computing the number of
paths during a graph traversal (an example of the recursive computation
of the α-values is illustrated later in Section 5.3). The number of paths
in a shared BDD F representing a Boolean multi-output function f =
(fiff )1≤i≤m can be computed as the sum of the α-values of the output
nodes representing the m single-output functions:

α(F ) =
m∑

i=1

α(oi) (2.3)

where oi is the output node representing fiff . Note that an output node
oi might be used by multiple, functionally equivalent single-output func-
tions, as circuits sometimes repeat an output signal several times. In
other words, paths emerging from output nodes used for more than one
function are counted several times accordingly.
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2.4.9.2 Expected Path Length

An important problem of VLSI CAD is simulation-based verifica-
tion: here, a circuit is simulated to check whether the design fullfills its
specification. The main difference of cycle-based functional simulation
to classical simulation is that only values of output and latch ports are
computed. Applications in this field repeatedly evaluate logic functions
with different input vectors. This can be done using BDDs as described
in Section 2.4.8.

During evaluation, a path is traversed. Thereby the algorithm moves
from the start node of the path to the end of the path, following the
respectiv edges. Pointers to the respective next node on the path must
be dereferenced repeatedly. Hence, the evaluation time is linear in the
length of the path. In BDD-based functional simulation, the average
evaluation time (and hence the total simulation time) is proportional to
the Expected Path Length (EPL) in the BDD. Next, a formal definition of
the expected path length follows. EPL expresses the expected number
of variable tests needed to evaluate a BDD with respect to an input
assignment along a path from an output node to one of the terminal
nodes, as explained and defined above in Section 2.4.8.

Let F be a BDD and let pi be the i-th path in an enumeration of all
paths from output nodes to one of the terminal nodes in F . Let pr(pi)
be the probability of an evaluation traversing path pi. Then for the EPL
of F , denoted ε(F ), we have

ε(F ) =

α(F )∑
i=1

λ(pi) · pr(pi). (2.4)

In this formula, a path p is weighted with the probability of being chosen
during evaluation. Minimizing ε(F ) means shortening the path lengths
with a high probability, thus minimizing the expected path length or, in
other words, the average evaluation time.

Equation (2.4) is not suitable for use by an efficient algorithm to
compute EPL, as α(F ) can grow exponentially in n, even if the size of
the BDD only grows linear in n: a function and the respective BDD with
this property has already been given in Example 2.32.

Next, a formula is given which is useful for computing EPL in a time
proportional to the BDD size: the following equation expresses the ex-
pected number of variable tests for an evaluation starting from a node
v and ending at one of the terminal nodes (this quantity denoted ε(v)).
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Thereby the probability that a variable x is assigned to a value b ∈ B
is denoted by pr(x = b).

ε(v) =

⎧⎨⎧⎧
⎩
⎨⎨ 0, v ∈ {1,0}

1 + pr(var(v) = 1) · ε(then(v)), else
+ pr(var(v) = 0) · ε(else(v))

This formula simply states that ε(v) is zero if v is already a terminal
node. Otherwise, evaluations starting from v are either via the 1-child
or the 0-child of v. Hence, ε(v) is built by

1) summing up the respective ε-values of the child nodes of v weighted
with the probability of the respective child node being chosen, and

2) adding one since the expected length of all paths starting at v must
be one larger than that of the child nodes of v: this is due to the
additional variable test at v.

Again it is straightforward to compute ε(F ) during a graph traversal. An
example of the recursive computation of the ε-values is illustrated later
in Section 5.2 by the left BDD in Figure 5.8. In analogy to Equation
(2.3), the EPL for a shared BDD F representing a Boolean multi-output
function f = (fiff )1≤i≤m can be computed by use of the ε-values of the
output nodes representing the m single-output functions:

ε(F ) =
1

m

m∑
i=1

ε(oi)

where oi is the output node representing fiff . Again, note that an output
node oi might be used by multiple, functionally equivalent single-output
functions.

2.4.9.3 Average Path Length

In Section 5.3, optimization of BDDs with respect to the following
aspect of their paths will be discussed. The motivation for this is the
mapping of optimized BDDs into fast multiplexor-based circuits.

Let F be a BDD and let λ(F ) denote the sum of the lengths of the
paths in F . Again, let pi be the i-th path in an enumeration of all
paths from output nodes to the terminal node in F . Then λ(F ) can be
expressed as

λ(F ) =

α(F )∑
i=1

λ(pi). (2.5)
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Equation (2.5) can be seen as a special instance of Equation (2.4) where
all path probabilities pr(pi) = 1.

The Average Path Length (APL) of F is denoted λ(F ) and is defined
as

λ(F ) =
λ(F )

α(F )
. (2.6)

Equation (2.6) can be seen as a special case of Equation (2.4), defining
the expected path length: the two equations coincide, if in Equation (2.4)
the term pr(pi) is fixed to 1

α(F ) for each pi.

A recurrent equation that is more useful for the efficient computation
of the sum of the lengths of the paths is derived from the Shannon
decomposition. This equation is given in the next result.

Lemma 2.33 For a node v in a BDD, let λ(v) denote the sum of the
lengths of all paths starting at v and ending at a terminal node. Then
we have

λ(v) =

⎧⎨⎧⎧
⎩
⎨⎨ 0, v ∈ {1,0}

λ(then(v)) + α(then(v))
+ λ(else(v)) + α(else(v)), else

(2.7)

Proof. In the case of v ∈ {1,0} there is nothing to show. Now let v be
an inner node. Let p = (v, e1, then(v), . . . , t) be a path from v via then(v)
onto a terminal node t. Further, let p′ = (then(v), . . . , t) be a path
coinciding with p except that we start at then(v) instead. It is λ(p) =
λ(p′) + 1, i.e. the length of every path via then(v) is increased by one
if started at v instead. There are α(then(v)) such paths. Consequently,
the sum of the lengths of all paths from v via then(v) onto a terminal
node must be λ(then(v)) + α(then(v)). An analogous argument holds
for paths via else(v). The set of all paths starting from v and ending at
a terminal node can be partitioned into those via then(v) and those via
else(v). But then the required result already follows. �

Similar to Equations (5.8) and (2.3), the sum of path lengths for a shared
BDD F representing a Boolean multi-output function f = (fiff )1≤i≤m can
be computed by use of the λ-values of the output nodes representing the
m single-output functions:

λ(F ) =
m∑

i=1

λ(oi)



Chapter 3

EXACT NODE MINIMIZATION

In this chapter, classical and recently published algorithms for the
exact minimization of BDD size are given. The presentation starts with
the method from [FS90]. Here, an important invariant for BDD level
sizes has been observed. The level size is preserved under all variable
movements that follow a certain restriction. The method then exploits
this property and describes a significant reduction of the search space.

The review of classical approaches then continues with the method
proposed in [ISY91]. This is the first method that is completely based
on BDDs. Moreover, the pruning of the search space with the use of
lower bounds has been introduced here. The lower bounds state restric-
tions on the BDD sizes that are achievable from a certain state of the
computation. The bounds are tightened every time respective new infor-
mation becomes available. Later works followed this Branch and Bound
(B&B) paradigm for exact BDD minimization.

In [DDG00], a tighter lower bound has been suggested which dras-
tically reduces the overall run time. By this larger functions can be
handled, e.g. exact solutions for 32-bit adders have been computed suc-
cessfully. A recent work [EGD03b] introduces an effective extension of
the B&B technique that uses more than one lower bound in parallel.
The additional lower bounds are obtained by a generalization of a lower
bound known from VLSI design. The generalized bound can be also
used for bottom-up construction of a minimized BDD. So the new ap-
proach is not restricted to a top-down construction like the approach of
[DDG00]. Moreover, combining the two lower bounds yields a new lower
bound that is used to exclude states earlier than in previous approaches,
resulting in a further speed-up.



46 ADVANCED BDD OPTIMIZATION

Recently, the change to another programming paradigm, ordered best-
first search, i.e. the so-called A∗-algorithm as known from AI, has been
suggested [EGD04a, EGD05]. This step has been prepared by [Ebe03]
which suggests an efficient state expansion technique. Theory and im-
plementation of the method are presented together with experimental
results demonstrating the efficiency of the approach.

This chapter is structured as follows: Section 3.1 gives the B&B-based
methods for exact BDD minimzation. In Section 3.1.1 classical B&B
approaches to exact minimization of BDDs are reviewed. Next, a recent
approach to exact BDD minimization is presented. It makes use of
a new lower bound technique which is described in detail in Section
3.1.2: first, a generalization of a bound known from VLSI design is given
which allows to construct the minimized BDD both bottom-up and top-
down. Second, techniques to prune the state space at an early stage are
described. In Section 3.1.3, a sketch of the code of this most recent B&B-
based algorithm is given and new implementation techniques unique to
the approach are explained. In Section 3.1.4, experimental results are
presented.

Section 3.2 presents the A∗-based approaches to the optimization of
BDD size. Some general background of state space search by A∗ is given
in Section 3.2.1. This section also introduces some notations needed in
later sections. The basics of state space search, heuristic search and
the A∗-algorithm are outlined. In Section 3.2.2 it is explained, how
the problem of finding an optimal variable ordering can be expressed in
terms of minimum cost path search in a state space. It is outlined, how
the generic A∗-algorithm can be used for this task. To ensure efficiency
of A∗-based approaches, the heuristic function used must have an im-
portant property: this is the property of monotonicity. In Section 3.2.3,
motivation and a formal proof of this property are given for the heuristic
function chosen in the new approach. The recent algorithm presented
here makes use of several techniques to improve the basic A∗-paradigm
which are described in detail in Section 3.2.4. First, two techniques to
combine A∗ and B&B are presented. Next, a technique to efficiently im-
plement and maintain a basic data structure for A∗, a priority queue, is
suggested. Then the technique to reduce the memory requirement of A∗

is presented which is based upon the reconstruction of paths. This sec-
tion is finished with a new state expansion technique without expensive
variable shifts. In Section 3.2.5 the approach is generalized from a pure
top-down method to one being able to perform search both top-down
and bottom-up, completing the presentation of the new algorithm. The
last Section 3.2.6 presents experimental results from three test-suites.
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3.1 Branch and Bound Algorithm
Typically, algorithms for exact BDD minimization have to accomplish

search spaces of large, i.e. exponential size. This clearly holds for a naive
brute-force approach which examines all of the n! orderings. An obser-
vation in [FS90] can be used to reduce this size significantly. However,
since it is NP-complete to decide whether the number of nodes of a given
BDD can be improved by variable reordering [BW96], the run time com-
plexity of all exact minimization algorithms presented so far has been
significantly higher (i.e. exponential) than that of mere “rules of thumb”
to find a “good” variable ordering, i.e. heuristics.

Traditionally, this problem has been tackled by B&B methods which
prune the search space with lower and upper bounds to reduce run time.

This section first gives a description of the classical B&B methods.
The presentation of the basic ideas behind them is supported by giving
pseudo code for the most important methods. The stages of development
and the differences between the respective algorithms are clarified.

Next, special emphasis is put on the latest developments: the most re-
cently published exact B&B technique for determining an optimal vari-
able ordering is presented. In contrast to all previous approaches that
only considered one lower bound, this method makes use of a combi-
nation of three bounds and by this avoids unnecessary computations.
The lower bounds are derived by generalization of a lower bound known
from VLSI design. They allow to build the BDD either top-down or
bottom-up.

3.1.1 Classical Approach
In 1987 and 1990, respectively, an approach was presented working on

truth tables [FS90] where the number of considered variable orderings
has been reduced to 2n, a significant improvement over the “naive” ap-
proach considering all n! variable orderings. The reduction of the search
space was based on the following observation:

Lemma 3.1 Let f : Bn → Bm, I ⊆ Xn, k = |I|, and xi ∈ I. Then there
exists a constant c such that label(BDD(f, π), xi) = c for each π ∈ Π(I)
with π(k) = xi.

More informally, this lemma can be rephrased as follows: the number
of nodes in a level is constant if the corresponding variable is fixed in
the variable ordering and no variables from the lower and upper part
are exchanged. Note that this holds independently of the ordering of
the variables in the upper and lower part of the BDD. Using this in-
variant, the approach of [FS90] is capable of excluding many variable
orderings from consideration as they lead to equivalent level sizes.
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(1) compute optimal ordering(BDD F , int n)
(2) proc
(3) min cost(∅, ∅) := 0;
(4) π∅ := an arbitrary initial order;
(5) for k := 1 to n do
(6) for each k-element subset I ⊆ {1, 2, . . . , n} do
(7) Compute min cost(I, I) and πI using the terms

min cost(I \ {xi}, I \ {xi}) and
πI\{xi} (xi ∈ XnX \ I);

(8) end–for
(9) end–for

(10) end–proc

Figure 3.1. The algorithm of Friedman and Supowit.

Next, two new ideas have been introduced in [ISY91]: the use of
BDDs instead of truth tables and the use of upper and lower bounds
on BDD sizes. The idea is to skip examination of BDDs as soon as
a lower bound on the sizes of BDDs achievable from that BDD already
exceeds an upper bound for the minimal size. The problem now is seen
as a search problem in a state space where states are subsets of Xn.
A B&B technique is used to skip large parts of the state space.

This approach has been further enhanced in [JKS93]: the search space
is reduced if the function has symmetric variables (see Definition 2.3)
and a better lower bound is used. The algorithm in [JKS93] also is the
first that is implemented using hash tables.

In [DDG00], a lower bound known from VLSI design has been adapted
for exact minimization. This method also is the first one which applies
a top-down approach (all previous methods were applied bottom-up).
The approach showed a speed-up factor of up to 400 when compared to
[JKS93].

Next the basic minimization algorithm following the framework from
[FS90] is described. Suppose the BDD for a multi-output function
f : Bn → Bm is given.

In brief, the optimal variable ordering is computed iteratively by com-
puting for increasing k’s min cost(I, I) for each k-element subset I of Xn,
until k = n: then, the BDD has a variable ordering yielding a BDD size
of min cost(Xn, XnXX ). This is an optimal variable ordering.

A sketch of the basic algorithm is shown in Figure 3.1. The com-
putation in line (7) is based on a recurrent interrelation that relates



Exact Node Minimization 49

min cost(I, I) and πI to min cost(I \{xi}, I \{xi}) and πI\{xi} where πI

is a variable ordering such that

label(BDD(f, πI), I) = min cost(I, I).

The same framework also has been used in [ISY91, JKS93, DDG00,
EGD03b]. All recent approaches perform BDD operations and make
use of hash tables as the underlying data structure. Next we follow the
presentation of the exact BDD minimization algorithm in [DDG00].

As input, the algorithm receives a BDD F representing a Boolean
multi-output function f : Bn → Bm and n. At step k of the algorithm
given in Figure 3.2, a state I with |I| = k − 1 is retrieved from a hash
table (which holds all states of the previous step k − 1). The algorithm
now generates transitions1

I
xi−→ I ∪ {xi} =: I ′ (xi ∈ Xn \ I),

see line (10) in Figure 3.2. Note that each symmetry set is only con-
sidered once (see the call of macro CHECK-SYMMETRY in line (9) in
Figure 3.2. The macro is given in Figure 3.4). This restricts the search
space if the function is partially symmetric, an optimization which has
also been used in [JKS93]. The subject is to compute min cost(I ′, I ′)
for each successor I ′. This is done by a gradual schema of continuous
minimum updates, using a reccurrent equation following [FS90]:

min cost(I ′, I ′)

= min
xj∈I′

(
min cost(I ′ \ {xj}, I ′ \ {xj}) + label(BDD(f, πj), xj)

)

where πjπ is a variable ordering contained in Π(I ′ \ {xj}) such that
πjπ (|I ′|) = xj .

This recurrence is a consequence of Lemma 3.1, which has been given
at the beginning of this section.

The code implementing the update schema is embraced by the for-
loop starting at line (6) in Figure 3.2: minguess [hash(I)] is updated
until it reaches min cost(I, I). Note that within the loop we always have
k = |I| + 1. The terms min cost(I ′ \ {xj}, I ′ \ {xj}) have been saved in
the hash table in the previous step k − 1 since |I ′ \ {xj}| = k − 1 (see
line (7) in Figure 3.5). Their values are simply retrieved from the hash
table. The only terms still left to compute are label(BDD(f, πj), xj) for
each xj ∈ I ′ (see line (15) in Figure 3.2).

1In the approach of [EGD03a], the transition is generated only if I ′ has not already been
excluded (see Section 3.1.2.2).
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(1) compute optimal ordering(BDD F , int n)
(2) proc
(3) INIT-BB
(4) for k := 1 to n do
(5) next states := ∅;
(6) for each I ∈ states do
(7) reconstruct(F, π[hash(I)]);
(8) for each xi ∈ Xn \ I do
(9) CHECK-SYMMETRY

(10) I ′ := I ∪ {xi};
(11) if I ′ /∈// next states then
(12) minguess [hash(I ′)] := ∞;
(13) end–if
(14) shift xi to level |I| + 1;
(15) newcost :=

label(F, |I| + 1) + minguess[hash(I)];
(16) UPDATE-STATE-DATA-FizZ
(17) UNDO-SHIFT
(18) end–if
(19) end–for
(20) end–for
(21) exclude all states I ′ in next states with

lower bound [hash(I ′)] ≥ upper bound ;
(22) states := next states;
(23) end–for
(24) reconstruct the ordering of upper bound ;
(25) end–proc

Figure 3.2. The algorithm FizZ.

For I := I ′ \ {xj}, let πI be a variable ordering such that πI ∈ Π(I).
Then BDD(f, πjπ ) can be constructed from BDD(f, πI) by shifting vari-
able xj to the (|I| + 1)-th level (see line (14) in Figure 3.2). That way,
the minimized BDD is built top-down, starting with the first level and,
as k increases, repeatedly adding another level below the current level.
In [DDG00], the variable ordering πI∪{xj} resulting by this variable shift
of xj is saved in a hash table for later steps. Since πI∪{xj} again has the
desired property, i.e. it is contained in Π(I ∪ {xj}), this ordering can be
used in the next step like πI was used for I.

To reduce run time and memory requirement, in Figure 3.2 the vari-
able shift of line (14) is undone in line (17), if this shift caused an in-
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(1) INIT-BB
(2) macro
(3) minguess[hash(∅)] := 0;
(4) π[hash(∅)] := an arbitrary initial order;
(5) states[hash(∅)] := ∅;
(6) end–macro

Figure 3.3. Initialization for the B&B-based approach.

(1) CHECK-SYMMETRY
(2) macro
(3) if xi is not top of ((symmetry group of xi) ∩(Xn \ I))

then
(4) continue with for-loop;
(5) end–if
(6) end–macro

Figure 3.4. Checking for the symmetry of variables.

(1) UPDATE-STATE-DATA-FizZ
(2) macro
(3) if I ′ /∈// next states or newcost < minguess[hash(I ′)]

then
(4) minguess[hash(I ′)] := newcost ;
(5) π[hash(I ′)] := current ordering;
(6) upper bound := update upper bound();
(7) next states[hash(I ′)] := I ′;
(8) lower bound [hash(I ′)] := compute lower bound(I ′);
(9) end–if

(10) end–macro

Figure 3.5. Updating the state data in algorithm FizZ.

crease of the BDD size exceeding a threshold (see macro UNDO-SHIFT
in Figure 3.6). This is another improvement compared to the previous
approach from [JKS93].

At the end of step k, all states whose lower bound exceeds or equals
the current upper bound, are excluded (see line (21) in Figure 3.2).
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(1) UNDO-SHIFT
(2) macro
(3) if (|BDD(f, current ordering)| >

1.5 · (size before shifting xi)) then
(4) undo shift of xi;
(5) end–if
(6) end–macro

Figure 3.6. Undoing the variable shifts in algorithm FizZ.

In fact the BDD can also be built bottom-up following the same out-
line. Note that the approaches from [ISY91, JKS93] are bottom-up only
whereas the approach from [DDG00] is top-down only.

3.1.2 Lower Bound Technique
In this section, the basic lower bound techniques of [DDG00] and the

latest B&B-approach from [EGD03b] are given.

3.1.2.1 A Generalized Lower Bound

Before the generalized lower bound is presented, a brief review of
the lower bound used in [DDG00] is given which is an adaptation of
a lower bound known from VLSI design, proposed by [Bry91].

Definition 3.2 Let F be a BDD. For k > 0, let ref(F, k) denote the set
of nodes in levels k + 1, . . . , n of F referenced directly from the nodes
in levels 1, . . . , k of F . If a node has no direct, i.e. only external ref-
erences, it is not contained in ref(F, k). Let ref(F, 0) denote the set
of externally referenced nodes, i.e. the set of nodes which represent user
functions. The set ref(F, 0) is equal to the set of output nodes in F .

Formally, we have

refn: {F | F is a BDD over Xn} × IN → 2{v∈V |(...,(V,E),...) is a BDD};

refn(F, k) =

{
O, k = 0
Rn(F, F 1

kFF ) ∩ F k+1
nFF , k > 0

where F = (. . . , . . . , O) and

Rn: {F | F is a BDD over Xn} × 2{v∈V |(...,(V,E),...) is a BDD} →
2{v∈V |(...,(V,E),...) is a BDD};

Rn(F, N) = {v | (u, v) ∈ E where F = (. . . , (V, E), . . .) and u ∈ N}.
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Figure 3.7. BDD for Example 3.3.

As before, the function ref usually is denoted omitting the subscript n
since n normally is given by the context.

Example 3.3 Consider the BDD F given in Figure 3.7. Note that the
node labels are node identifiers and not variables (which are annotated
at the levels instead). The two outputs are represented by nodes a and
d, thus ref(F, 0) = {a, d}. This set as well as the other sets are given in
the figure.

Lemma 3.4 Let f : Bn → Bm be a multi-output function. Let (L, R) be
a partition of Xn, π ∈ Π(L) and F := BDD(f, π). If |ref(F, |L|)| = c,
then each BDD with a variable ordering in Π(L) representing f has at
least c nodes in levels |L| + 1, . . . , n.

A proof can be found in [Bry91, DDG00]. In exact minimization, this ar-
gument is used to obtain a lower bound based on ref(F, |I|) at each step,
a state I ⊆ Xn is considered. Suppose that the minimized BDD F is
constructed top-down. Further assume that, when computing the lower
bound for a multi-output function f : Bn → Bm, the minimal num-
ber min cost(I, I) of nodes in levels 1, . . . , |I| is already known. Let
cα = |ref(F, |I|)|. Then by Lemma 3.4, the lower bound can be com-
puted as

l bα = min cost(I, I) + max{cα + r lower , n − |I|} + 1. (3.1)

In order not to count some output nodes twice, r lower is the number
of output nodes in levels |I| + 1, . . . , n not already representing a node



54 ADVANCED BDD OPTIMIZATION

in ref(F, |I|) and n− |I| is the number of variables in Xn \ I since there
will be at least one node for each of these variables. The constant node
is always needed (note that we here consider BDDs with CEs).

A detailed analysis reveals that l bα can be defined as a function in
f (n) and I ⊆ Xn. In order to present the most important issues first,
not to get lost in details at this stage of presentation and to obtain a
shorter, more readable definition, this lower bound is not yet defined
as a formal function of I (and F or f , respectively). However, a more
detailed analysis will follow in Section 3.2.2.

The next results enable us to generalize this lower bound such that it
can be also used for bottom-up construction.

Lemma 3.5 Let f : Bn → Bm be a multi-output function. Let I ⊆ Xn,
π ∈ Π(I) and F := BDD(f, π). Then we have |ref(F, |I|)| − r upper ≤
|F 1

|FF I|| where r upper is the number of output nodes in levels 1, . . . , |I| of

F .

Proof. The idea is to calculate the minimal number of nodes needed
to connect the output nodes with the nodes in ref(F, |I|).

For every node v ∈ |F 1
|FF I|| different from the output nodes2, there must

be at least one outgoing edge of a node in |F 1
|I|| leading to v. On the other

hand, there are 2 · |F 1
|FF I|| outgoing edges of nodes in |F 1

|FF I|| in total. Hence,

the number of edges not leading to a node in |F 1
|I|| must be less or equal

to

2 ·
∣∣∣∣∣∣∣F 1

|FF I|

∣∣∣∣∣∣∣ − (
∣∣∣∣∣∣∣F 1

|FF I|

∣∣∣∣∣∣∣ − r upper) =
∣∣∣∣∣∣∣F 1

|FF I|

∣∣∣∣∣∣∣ + r upper .

This number equals the number of references to nodes in ref(F, |I|), thus
we have |ref(F, |I|)| ≤ |F 1

|FF I|| + r upper or

|ref(F, |I|)| − r upper ≤
∣∣∣∣∣∣∣F 1

|FF I|

∣∣∣∣∣∣∣ , (3.2)

completing the proof. �

The main result yielding the new lower bound is a corollary of Lemma
3.5:

Corollary 3.6 Let f : Bn → Bm be a multi-output function. Let
I ⊆ Xn, π ∈ Π(I) and F := BDD(f, π). Then we have |ref(F, |I|)| −
r upper ≤ min cost(I, I) where r upper is the number of output nodes
in levels 1, . . . , |I| of F .

2Note that these nodes cannot be root nodes since any root in a BDD is an output node.
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Proof. Inequality (3.2) stated in Lemma 3.5 holds for every BDD
F with a variable ordering in Π(I). In particular, this also holds for
a BDD F which is optimal for I, i.e. with a variable ordering such that
|F1

|FF I|| = min cost(I, I). It is |ref(F , |I|)|−r upper ≤ min cost(I, I). Now

we claim that the value for the left side of Inequality (3.2) remains the
same for all BDDs F with a variable ordering in Π(I):

By the BDD semantics in Definition 2.14, the number of output nodes
r upper must be the same for every such ordering since otherwise F
would not represent f . The nodes in ref(F, |I|) represent true cofactors
of f in all variables in I3.

Their number remains the same for every variable ordering in Π(I)
since, again, otherwise F would not represent f .

Thus indeed the left side does not change. Consequently we have

|ref(F, |I|)| − r upper = |ref(F , |I|)| − r upper ≤ min cost(I, I)

for all BDDs F respecting a variable ordering π ∈ Π(I). �

Suppose now the minimized BDD is constructed bottom-up. The BDD
must respect a variable ordering in Π(Xn \ I). Let cω = |ref(F, n − |I|)|.
Then a lower bound can be computed as

l bω = min cost(I, Xn \ I) + max{cω − r upper , n − |I|} + 1

where r upper is the number of output nodes in levels 1, . . . , n−|I|. This
lower bound holds since, by Lemma 3.6, cω − r upper is a lower bound
for min cost(Xn \ I, Xn \ I) which is the minimal size of the upper part
of the BDD.

Yet, the term cω corresponds to cα in the lower bound l bα. But this
time the number of direct references from the upper to the lower part
is not used as a lower bound on the number of nodes in the lower part.
Instead it serves as a lower bound on the number of nodes in the upper
part. This is possible by Lemma 3.6 since a key result of this lemma is
that the term ref(F, k), besides expressing a lower bound on the number
of nodes in the last n − k levels, also can be used to express a lower
bound on the number of nodes in the first k levels as well. This appears
counter-intuitive at first sight, and indeed this result is not trivial.

3This follows from the BDD semantics (see Definition 2.14 in Section 2.4), and from Theorem
2.17. Since this can be seen intuitively, we do not give a detailed proof here. However, a
full and detailed proof can be found in Section 3.2.2, Lemma 3.10, Equation (3.5). This
proof does not use previous results. Hence, this postponement of a more detailed proof is
considered to support a better readability rather than being harmful in any way.
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The lower bound l bω, like before l bα, is a function in f (n) and I ⊆
XnXX . This will be shown in detail in Section 3.2.5. Examples for the
computation of l bα and l bω are given in Example 3.7 and Example
3.8.

Example 3.7 In Figure 3.8, an example for the computation of the
lower bound stated in Equation 3.4 is given. The (single-output) func-
tions represented by the BDD are

f1 = x3,

f2ff = x1 · x2 · x3 + x1 · x3 + x1 · x3 · x4,

f3ff = x4.

In the upper part of the BDD, consisting of the first two levels, a minimal
size has already been achieved: we need at least one BDD node on every
level since the function represented essentially depends both on x1 and
on x2. The two nodes in the lower part with direct references from nodes
of the upper part are lighter shaded. In the example, r lower is (only)
one: the output node pointed to by the edge labeled f1 also has a direct
reference from a node in the upper part. Hence it is not counted again.
The (darker shaded) output node pointed to by f3ff however, has no direct
reference from a node in the upper part and hence it is counted. Hence
we have

l bα = min cost({x1, x2}, {x1, x2}) + max{|ref(F, 2)| + 1, 4 − 2} + 1

= 2 + max{3, 2} + 1

= 2 + 3 + 1

= 6.

The lower bound yields six nodes. In the diagram, there is one (constant)
node more, i.e. a total of seven nodes: this is due to the BDD being a
BDD without CEs. Note that we easily can modify the lower bound
accordingly, always adding 2 instead of adding 1 for the one constant
node in BDDs with CEs.

Example 3.8 In Figure 3.9, an example for the computation of the
lower bound stated in Corollary 3.6 is given. The BDD represents the
same functions as in Example 3.7. In the lower part of the BDD, con-
sisting of the last two levels, a minimal size already has been achieved: to
see this, consider the two BDDs in Figure 3.18 for the two possible or-
derings of the variables x3 and x4 in the lower part. Both BDDs show
three nodes in their lower part, hence this size of three is minimal. In
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Figure 3.8. BDD for Example 3.7.

the example, r upper is one since we have one output node in the upper
part (this is the node pointed to by the edge labeled f2ff ).

Again, the two nodes with direct references from nodes in the upper
part are shaded. Now we have

l bω = min cost({x3, x4}, {x1, x3}) + max{|ref(F, 2)| − 1, 2} + 1

= 3 + max{1, 2} + 1

= 3 + 2 + 1

= 6.

The lower bound again yields six nodes (the same remark for CEs holds
as in Example 3.7). Note that only one of the two nodes in the upper
part is “predicted” by the term ref(F, 2) − 1 = 2 − 1 = 1). Computing
the maximum with the term n − 2 = 4 − 2 = 2 however again yields the
exact number of nodes.

In the next section, the introduced lower bounds l bα and l bω will be
combined to a new lower bound which is used to exclude states at an
early stage of the algorithm.

3.1.2.2 Early Pruning

Two techniques to exclude states from further examination as early
as possible are described. These techniques save a significant number
of transitions from one state to another. As transitions involve vari-
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Figure 3.9. BDD for Example 3.8.

able shifts at high computational cost, this is a significant gain for the
discussed algorithm.

The situation in which the techniques are applied is briefly described
for the case of a top-down approach (all techniques directly transfer to
the case of a bottom-up approach). In step k, the algorithm expands
all states I with |I| = k − 1 that have not been excluded in the last
step, to all possible successors. Successor states are being revisited fre-
quently in the progress of step k since many distinct states I, I ′ have
successors in common. When repeatedly revisiting such a successor J ,
min cost(J, J) is gradually computed by continously updating the previ-
ous smallest number of nodes labeled with a variable in J . This number
reaches min cost(J, J) at the end of step k.

It is desirable to

1) avoid transitions to successors which are already known not to con-
tribute to the actualization of the smallest node number,

2) find a means which allows to test every successor for a possible exclu-
sion right after it was generated: in this way, unnecessary repeated
movements to successor states can be avoided.

Regarding the first point 1), consider a transition I
xi−→ I∪{xi} where

I ∪ {xi} is a state that has already been visited before.
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Let FIF be the BDD for I. Since state I was processed in the previous
step, we already have label(FIF , I) = min cost(I, I). The potential suc-
cessor state would be built by e.g. shifting variable xi to level |I| + 1,
resulting in a new BDD F ′. A lower bound on label(F ′, I ∪ {xi}) is

l bcost = min cost(I, I) + 1

since there will be at least one node labeled with the variable xi. Note,
that this lower bound4 can be computed in constant time. If this lower
bound is not smaller than the previous smallest number of nodes labeled
with a variable in I ∪ {xi}, neither is the exact value label(F ′, I ∪ {xi}).
In this case this transition is skipped since revisiting this state does not
contribute to the actualization of its previous minimum.

Regarding the second point 2): at an early stage of step k min cost(I, I)
cannot be used to compute a lower bound since the exact value of the
minimum is not known until step k finishes. Therefore min cost(I, I)
must be estimated.

This can be done both efficiently and effective by combining l bα

and l bω. The idea is to estimate the (yet) unknown exact part of
the lower bound, i.e. min cost(I, I), with the according estimated part
of the opposite lower bound.

The next definition uses a partition (L, R) of Xn rather than states
I ⊆ Xn such that it applies for both the top-down and the bottom-up
approach of exact minimization. In case of starting the minimization
from above, we have I = L at a step considering state I (starting from
below, we have I = R and L = Xn \ I).

A lower bound for the minimal size of the BDD achievable from a par-
tition (L, R) can be computed as follows. Let F be the considered BDD
and cαω = |ref(F, |L|)|. Let

l bcombined = max{cαω + r lower , |R|} + 1 + max{cαω − r upper , |L|}
where r lower is the number of output nodes in levels |L|+ 1, . . . , n not
already representing a node in ref(F, |L|) and r upper is the number of
output nodes in levels 1, . . . , |L|.

All states already excluded “early” by this lower bound are marked by
the method using this technique. Transitions leading to such a marked
state are not followed by the algorithm, saving again the computational
cost for a variable shift.

This combined lower bound is a function in f (n) and L ⊆ Xn. This
property is essentially inherited from the lower bounds combined, l bα

and l bω.

4More precisely, this lower bound can be expressed as a function in f (n) and I ⊆ Xn.
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3.1.3 Algorithm

In this section the implementation techniques used in the latest pub-
lished B&B-approach are described. A sketch of the algorithm called
JANUS is given in Figure 3.10. The algorithm is based on the frame-
work of FizZ which was given in Figure 3.2. The innovation of JANUS
over FizZ is the use of more than one lower bound in parallel and several
unique implementation techniques.

Differences between the two algorithms start at line (7) in Figure
3.10: the subroutine for BDD reconstruction of algorithm JANUS re-
quires the additional parameter |I|. The improved approach to BDD
reconstruction is described in Section 3.1.3.2. In line (14) of Figure 3.10
states can be tested for exclusion from the state space search already
in an earlier stage of progress of the algorithm (see the code of macro
CHECK-EXCLUDED-B&B in Figure 3.11).

The actual exclusion of a state following the “early pruning” tech-
niques is done in line (10) in Figure 3.12. The techniques used here have
been described in Section 3.1.2.2.

Another difference of macros UPDATE-STATE-JANUS and UPDATE-
STATE-FizZ (the latter is given in Figure 3.5) is that the lower bound
is only computed once when visiting a state the first time (see lines (7)
and (9) in Figure 3.12). This improvement will be explained in Section
3.1.3.1.

Next, some new unique implementation techniques applied in the pre-
sented approach are described.

3.1.3.1 Lower Bound Computation

To determine the lower bounds introduced in Section 3.1.2.1 for the cur-
rent BDD F , |ref(F, k)| must be computed where k = |I| for l bα and
k = n − |I| for l bω.

Computation of |ref(F, k)| is done with two different methods: one
touches only the nodes in the upper part, i.e. in the first k levels, the
other touches only the nodes in the lower part, i.e. in the last n−k levels.
If the size of the upper part is smaller than that of the lower part, the first
routine is called (since this is more promising in terms of expected run
time) and vice versa. Since commonly used BDD packages keep and
continously update the level sizes in dedicated variables, the time needed
to determine the size of the upper and lower part is very small, i.e. it
can be neglected.

It is sufficient to calculate the lower bounds only once the first time
a state I is encountered: assuming |I| = k, π ∈ Π(I), F := BDD(f, π)
the nodes in ref(F, k) represent the true cofactors of the single-output
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(1) compute optimal ordering(BDD F , int n)
(2) proc
(3) INIT-BB
(4) for k := 1 to n do
(5) next states := ∅;
(6) for each I ∈ states do
(7) reconstruct(F, π[hash(I)], |I|);
(8) for each xi ∈ Xn \ I do
(9) CHECK-SYMMETRY

(10) I ′ := I ∪ {xi};
(11) if I ′ /∈// next states then
(12) minguess [hash(I ′)] := ∞;
(13) end–if
(14) CHECK-EXCLUDED-B&B
(15) shift xi to level |I| + 1;
(16) newcost :=

label(F, |I| + 1) + minguess[hash(I)];
(17) UPDATE-STATE-DATA-JANUS
(18) UNDO-SHIFT
(19) end–if
(20) end–for
(21) end–for
(22) exclude all states I ′ in next states with

lower bound [hash(I ′)] ≥ upper bound ;
(23) states := next states;
(24) end–for
(25) reconstruct the ordering of upper bound ;
(26) end–proc

Figure 3.10. The B&B algorithm JANUS.

functions (fiff )1≤i≤m in all variables in I. A formal proof and further
discussion is given later in Section 3.2.2 when discussing an exact BDD
minimization algorithm based on the generic A∗-algorithm (see Lemma
3.10). The number of nodes representing such a cofactor is determined
by f and I = {π(1), π(2), . . . , π(k)} only and hence does not depend
on which variable ordering in π ∈ Π(I) is used for F . The algorithm
gains from this as follows: the invariant terms of the lower bounds are
computed separately from min cost(I, I) (and thus they are computed
only once). This optimization is applied in the lines (7) and (9) of macro
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(1) CHECK-EXCLUDED-B&B
(2) macro
(3) if I ′ already excluded or lb cost I′ ≥ minguess [hash(I ′)]

then
(4) continue with for-loop;
(5) end–if
(6) end–macro

Figure 3.11. Checking for exclusion (early pruning).

(1) UPDATE-STATE-DATA-JANUS
(2) macro
(3) if I ′ /∈// next states or newcost < minguess[hash(I ′)]

then
(4) minguess[hash(I ′)] := newcost ;
(5) π[hash(I ′)] := current ordering;
(6) upper bound := update upper bound();
(7) if I ′ /∈// next states then
(8) next states[hash(I ′)] := I ′;
(9) lower bound [hash(I ′)] :=

compute lower bound(I ′);
(10) if lb combined I′ ≥ upper bound then
(11) exclude I ′;
(12) end–if
(13) end–if
(14) end–if
(15) end–macro

Figure 3.12. Updating the state data in algorithm JANUS.

UPDATE-STATE-DATA-JANUS in Figure 3.12. This saves the cost of
unnecessarily repeated computations.

3.1.3.2 Partial BDD Reconstruction

The BDD corresponding to a state is kept in memory only until
the next state is considered since otherwise the memory requirement
would be much too large. Every BDD for the next state processed
(i.e. expanded to its successors) must be reconstructed by variable shifts.

Reconsidering the exact minimization algorithm described in Section
3.1.1, we observe: at step k, a BDD F is appropriate to represent a state
I with I = |k − 1| iff F has a variable ordering π ∈ Π(I).
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In the approach of [DDG00], the variable ordering used for reconstruc-
tion of a BDD for a state I is that of the BDD for I in the previous step
k − 1. This variable ordering π respects the above condition π ∈ Π(I).
The BDD is reconstructed by a series of n upward variable shifts: from
left to right, the variables π(1), . . . , π(n) are shifted to levels 1, . . . , n.

Now suppose, this sequence of variable shifts is reduced to only shift-
ing, from left to right, the variables π(1), . . . , π(|I|) to levels 1, . . . , |I|.
This yields a variable ordering πI which also respects the condition
πI ∈ Π(I). The advantage is that much less shift operations are needed.
A problem is the higher risk of “BDD explosions”. Since only the up-
per parts of the partially reconstructed BDD and the old BDD for state
I coincide, the node number in the lower part of the partially recon-
structed BDD can “blow up” which would result in a slow down of run
time and an increase of memory requirement. In the approach JANUS,
this problem is addressed straightforwardly: whenever 0.7 times the size
of the partially reconstructed BDD exceeds the size of the old BDD, the
method returns to the old variable ordering π which was used to repre-
sent state I in the previous iteration. Note that this technique transfers
directly to the case of bottom-up minimization.

Additionally, before reconstruction, the algorithm examines the BDDs
in a cache holding 10 BDDs and computes the BDD with the smallest
number of variable exchanges to set a required ordering. This is done
in CPU time much less than the variable exchanges in fact would require.
The idea of a BDD cache was introduced by [GD00] and is used here in
exact BDD minimization for the first time.

The approach JANUS significantly gains efficiency by using these
techniques of partial reconstruction.

3.1.4 Experimental Results

All experimental results have been carried out on a system with
an Athlon processor running at 1.4 GigaHz using an upper memory
limit of 300 MByte and a run time limit of 20,000 CPU seconds. The
algorithm presented in the previous sections is called JANUS ↑ if mini-
mization progresses bottom-up using l bω and JANUS ↓ if minimization
progresses top-down using the lower bound l bα. Both approaches use
the “early pruning” techniques of Section 3.1.2.2. The implementation
of the algorithm JANUS is based on the implementation of the algo-
rithm in [DDG00], called FizZ. Both algorithms have been integrated in
the CUDD package [Som02] which also contains an algorithm for exact
BDD minimization [JKS93]. By this it is guaranteed that all algorithms
run in the same system environment.
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In a first series of experiments both algorithms were applied to the set
of benchmark circuits from LGSynth93 [Col93]. The results are given in
Table 3.1. In the first column the name of the function is given. Column
in (out) gives the number of inputs (outputs) of a function. Column opt
shows the number of BDD nodes needed for the minimal representation.
In columns time and space the run time in CPU seconds and the space
requirement in MByte for JUNON and the approach JANUS ↑ as well
as for the approach FizZ and the approach JANUS ↓ are given. The
functions are ordered by ascending run times of the algorithm JANUS ↓.

As the results show, the algorithm JUNON has much longer run
times5 than the bottom-up approach JANUS ↑. It can be seen that
JANUS ↑ often accelerates run time by a factor of up to two orders
of magnitude (see e.g. sct, pcle, tcon) in comparison to JUNON. How-
ever, JANUS ↑ has longer run times than the top-down approaches in
most cases. Note that the order of functions by ascending run times of
JANUS ↑ in some cases is different from that order for JANUS ↓ (which
was chosen for Table 3.1). Moreover, there are cases, in which JANUS ↑
is significantly faster than the top-down approach FizZ, see e.g. cm150a,
mux. For these cases the run time even comes very near to that of
JANUS ↓.

In a second series of experiments, we give more insight in the influ-
ence of the various optimization techniques of JANUS. For this purpose,
the reduction in run time in comparison to FizZ has been determined, as
it has been gained when applying each technique of JANUS ↓ separately.
These techniques have been integrated individually into the implementa-
tion of the algorithm FizZ. The results are given in Table 3.2. The first
four columns coincide with the first four columns of Table 3.1, giving
the function name, the number of inputs and outputs and the number
of BDD nodes needed for the minimal representation.

Column impr. lb states the run times obtained by applying the im-
proved lower bound technique described in Section 3.1.3.1: here the al-
gorithm switches between two different routines for the lower bound
computation, depending on what routine is more promising in terms of
expected run time.

Column cost. lb gives the run times achieved by individually applying
the l bcost lower bound described in Section 3.1.2.2 whereas Column
comb. gives the run times obtained by use of the lower bound l bcombined

5In all cases where a memory requirement, but no run time for algorithm JUNON is given,
the time limit (also) has been exceeded. In the cases where no value is given at all, the system
even failed to allocate the initial amount of memory required by the algorithm.
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Table 3.1. Comparison of JUNON, FizZ and JANUS

bottom-up top-down
name in out opt JUNON JANUS ↑ FizZ JANUS ↓

time space time space time space time space

parity 16 1 17 <0.01s 2M 0.01s <1M <0.01s <1M 0.03s <1M
cmb 16 4 28 0.02s 2M 0.04s <1M 0.01s <1M 0.05s <1M
t481 16 1 21 0.16s 2M 0.15s <1M 0.16s <1M 0.13s <1M
tcon 17 16 25 635s 4M 6.61s 4M 0.52s <1M 0.28s <1M
pm1 16 13 40 1.26s 2M 0.64s <1M 0.55s <1M 0.34s <1M
cm163a 16 5 26 5.23s 2M 1.87s <1M 1.17s <1M 0.78s <1M
cordic 23 2 42 11.2s 258M 5.57s <1M 3.05s <1M 1.82s <1M
pcle 19 9 42 7584s 15M 60.9s 8M 9.02s 2M 5.18s 3M
s208.1 18 9 41 2116s 8M 42.2s 4M 8.44s <1M 5.62s 2M
sct 19 15 48 8453s 15M 53.3s 8M 8.62s 2M 5.97s 3M
s298 17 20 74 934s 4M 25.6s 4M 13.46s 2M 9.06s 3M
i1 25 16 36 – – 74.1s 19M 29.4s 9M 18.77s 10M
vda 17 39 478 822s 5M 99.9s 5M 65.4s 3M 34.4s 3M
cc 21 20 46 – 62M 412s 40M 117s 32M 84.9s 34M
mux 21 1 33 – 62M 348s 35M 610s 32M 311s 35M
cm150a 21 1 33 – 62M 348s 35M 610s 32M 311s 34M
s400 24 27 119 – 537M 3322s 263M 802s 67M 456s 71M
s382 24 27 119 – 537M 3318s 263M 802s 67M 461s 71M
lal 26 19 67 – – 3818s 256M 677s 64M 504s 75M
s444 24 27 119 – 537M 3331s 263M 779s 67M 508s 78M
ttt2 24 21 107 – 537M 5281s 277M 950s 74M 578s 78M
s526 24 27 113 – 537M 6017s 284M 1196s 93M 924s 105M
s349 24 26 104 – 537M 2921s 229M 1447s 99M 950s 105M
s344 24 26 104 – 537M 2923s 229M 1446s 99M 950s 105M
s820 23 24 220 – 258M 2467s 76M 2034s 53M 1235s 56M
s832 23 24 220 – 258M 2541s 69M 2076s 53M 1288s 56M
cps 24 102 971 – 537M 9130s 85M 4396s 48M 2751s 58M
comp 32 3 95 – – 8684s 146M 5606s 99M 3900s 125M

described in the same section. Column early states the run times that
result from applying both “early pruning” techniques of Section 3.1.2.2,
i.e. l bcost and l bcombined .
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Table 3.2. Techniques of JANUS↓

name impr. lb cost lb comb. early shifts cache reconst.

parity <0.01s <0.01s <0.01s <0.01s <0.01s 0.28s 0.22s
cmb 0.02s 0.02s 0.02s 0.01s 0.02s 0.33s 0.29s
t481 0.14s 0.15s 0.14s 0.13s 0.14s 0.45s 0.47s
tcon 0.48s 0.46s 0.51s 0.47s 0.40s 0.82s 0.71s
pm1 0.54s 0.52s 0.51s 0.52s 0.36s 0.92s 0.69s
cm163a 1.16s 1.07s 1.10s 1.05s 0.78s 1.47s 0.99s
cordic 2.77s 3.00s 2.65s 2.64s 2.65s 3.07s 2.71s
pcle 8.56s 8.03s 8.53s 7.65s 6.85s 8.77s 6.92s
s208.1 8.00s 7.95s 7.67s 7.31s 7.15s 8.36s 7.09s
sct 8.04s 8.21s 7.95s 7.77s 6.99s 8.71s 7.35s
s298 13.13s 13.24s 13.05s 12.95s 10.38s 12.55s 10.11s
i1 27.9s 27.2s 27.3s 26.0s 24.0s 28.6s 22.8s
vda 53.5s 65.0s 55.9s 55.9s 54.3s 62.1s 51.0s
cc 116s 111s 115s 111s 91s 111s 92s
mux 602s 521s 564s 478s 487s 560s 429s
cm150a 602s 522s 565s 478s 489s 560s 432s
s400 726s 775s 725s 710s 606s 791s 585s
s382 726s 774s 726s 710s 605s 793s 585s
lal 640s 647s 609s 595s 652s 630s 530s
s444 714s 747s 705s 687s 707s 752s 635s
ttt2 896s 903s 881s 848s 739s 903s 706s
s526 1138s 1173s 1124s 1110s 1047s 1121s 991s
s349 1325s 1407s 1342s 1311s 1322s 1341s 1226s
s344 1325s 1408s 1342s 1311s 1316s 1339s 1227s
s820 1863s 2042s 1876s 1876s 1699s 1920s 1538s
s832 1873s 2076s 1905s 1902s 1729s 1970s 1590s
cps 3999s 4395s 3842s 3833s 4215s 4034s 3700s
comp 5135s 5868s 4978s 5190s 6509s 4274s 4929s

avg. gain (%) 8.0 0.8 9.6 10.2 5.7 10.4 18.5
max. gain (%) 18.2 14.4 14.5 18.8 34.5 23.8 29.2

In column shifts the obtained run times using a much shorter sequence
of variable shifts for BDD reconstruction as described in Section 3.1.3.2
are given. The next column cache states the run times using the BDD
cache as explained in the same section. Finally, in column reconst., the



Exact Node Minimization 67

results of applying these two techniques (shorter shift sequence/cache)
together are presented.

In the last two rows of Table 3.2 the obtained run times with the
obtained average and maximal gain for each technique are summarized.
The “early pruning” techniques of Section 3.1.2.2 yield a gain of up to
18.8% and a reduction in run time of 10.2% on average whereas the
techniques of partial reconstruction of Section 3.1.3.2 result in a gain of
up to 29.2%. On average, the reduction in run time is 18.5%.

Consequently, the top-down approach JANUS ↓ is faster than FizZ,
especially for larger examples achieving a reduction in run time by up
to 49% (see e.g. mux). On average, the reduction in run time is 35.4%.
The results show that the novel threefold lower bound technique together
with efficient implementation techniques is a very robust improvement
that significantly outperforms the original algorithm FizZ.

3.2 A
∗-based Optimization

The latest development in the field of exact BDD optimization is a
shift to a new paradigm, the A∗-algorithm. This is a search technique
frequently used in AI.

In this section, first the theoretical background of the A∗-algorithm is
given. Next, an exact BDD minimization algorithm is presented which is
based on this paradigm. In terms of run time, it is superior to all B&B-
based approaches described in the previous section. Moreover, ordered
best-first search, i.e. the A∗-algorithm, can be combined with a classical
B&B algorithm. This allows to avoid unnecessary computations and to
save memory.

3.2.1 State Space Search by A
∗

-Algorithm
In a nutshell, A∗ operates on a state space. Large parts of it are pruned

by a best-first strategy expanding only the most promising states.
A state space problem consists of determining a sequence of operators

O1−→,
O2−→, . . . ,

On−→

that, when applied to the initial state, yields a goal state. An important
method to guide the search on a state space is heuristic search. With
every state q a quantity h(q) is associated which estimates the cost of
the cheapest path from q to a goal state. This allows us to search
in the direction of the goal states. The A∗-algorithm as introduced by
[HNR68] bases the choice of the next state to expand on two criteria: the
cost of the cheapest known path from the initial state up to state q,
denoted g(q), and the estimate h(q) which for A∗ has to be a lower bound
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on the cost of an optimal path from q to a goal state (this minimal cost is
denoted h∗(q)). A∗ maintains a prioritized queue Open which is ordered
with respect to increasing values ϕ(q) = g(q)+h(q), thus combining the
two criteria

a) cheapest path to q known so far and

b) expected cost of the remaining part of the path from q to a goal state.

The function ϕ is called the evaluation function. In the beginning, this
queue only contains the initial state. In each step, a state q with a mini-
mal ϕ-value is expanded and dequeued. During expansion, the successor
states of q are generated and inserted into the queue according to their
ϕ-values. For this, the values g and h of the successor states are com-
puted dynamically. For a transition q −→ q′ let c(q, q′) denote the cost of
the transition. Then q′ is associated with its cost g(q′) = g(q) + c(q, q′),
i.e. g accumulates transition costs. In this, for a state q, g(q) is com-
puted as the sum of the cost c(r, r′) of all transitions r −→ r′ occurring
on the cheapest known path to q.

A successor state q′ might be generated a second time if q′ has more
than one predecessor state. If a cheaper path from the initial state to q′

is found in this case, g(q′) is updated. These updates of the “g-part” of ϕ
to the costs of a newly found cheaper path to q continously compensate
for the fact that the character of the “h-part” is only estimative. The
cheapest known path to q′ is denoted p(q′) and is also updated respec-
tively. The algorithm terminates if the next state to expand is a goal
state t. The estimate h(t) = h∗(t) must be zero. In this case, the path
found up to t, i.e. p(t), is of minimal cost C∗ which is also expressed
with ϕ∗(t) = g(t) = g∗(t) = C∗. This minimum cost path p(t) = p∗(t)
is reported as solution. A deep analysis of this strategy shows that A∗

always terminates and finds such a minimum cost path to a goal state if
h is admissible, i.e. h never overestimates the true cost [HNR68, Pea84].
Formally, a heuristic function h is admissible iff for all states q, h(q) is
a lower bound on h∗(q).

In AI, a classical example for heuristic state space search is the
((n × n) − 1)-puzzle: ((n × n) − 1) tiles, each labeled with a number
in {1, 2, . . . , n2 − 1}, are placed on a square board with (n × n) fields.
Starting from an arbitrary distribution, the aim is to reach the ordered
goal distribution, see an example for n = 3 in Figure 3.13. A valid move
from one distribution to another is done by shifting a tile upwards, down-
wards, left or right to the one free field of the board. For that, the tile
must be positioned on a field adjacent to this free field (see the sample
move in Figure 3.14).
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Figure 3.13. Solving a ((3 × 3) − 1)-puzzle.

1 1

Figure 3.14. A valid move in the puzzle.

The considered state space is the set of all distributions, each encoded
as one state q. The cost of a transition from one distribution to another,
i.e. the cost of one such move, is considered to be constant, e.g. c(q, q′) =
1 for all moves q −→ q′. Then g(q) maintains the smallest known number
of moves needed to reach a particular distribution q from the initial
distribution.

There are several possible choices for an appropriate heuristic function
h: in the following, two reasonable estimates for use in an A∗-algorithm
to solve the ((n × n) − 1)-puzzle are given:

1) h1(q) = number of tiles on “wrong” positions in q, and

2) h2(q) = sum of the horizontal and vertical distances of the tiles in
q to their positions in the goal distribution.

Clearly, both heuristic functions are lower bounds on h∗(q), i.e. they are
admissible.

In this example it has been illustrated, how the formal framework of
the A∗-algorithm problem can be applied to many problem spaces, i.e. an
example for the choice of the respective quantities has been given. Next,
a more formal example is given to illustrate the flow of the algorithm.
For this purpose, Figure 3.15 illustrates, how a state space is traversed
with the A∗-algorithm: first, an initial state a is expanded and yields
three successor states b, c, and d. The cost of a transition is annotated
at the respective edge, i.e. the transition a −→ c is of cost 2. At a
state q, the values g(q) and h(q) are annotated in the form “g(q)|h(q)”.
In the example, g(c) = 2, h(c) = 4 and thus ϕ(c) = g(c) + h(c) = 6.
After expansion of the initial state a, a is removed from the queue Open

which holds d, b, and c in the order of increasing ϕ-values. The state
with minimal ϕ-value is chosen as the next to expand: this is d with
ϕ(d) = 3. Expansion yields states e and f and d is removed from
the queue Open. This process continues in the next steps depicted in
Figure 3.15. Note the situation in the step before last where states h
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Figure 3.15. State Space Search by A∗.

and f both have minimal total cost ϕ(h) = ϕ(f) = 6. In this case of
a tie between several states some tie-breaking rule must exist to choose
one of the candidates. In the example, state h is chosen as the next
state for expansion. The creation of a state can result from more than
one expansion: in the example, state i has a best known path with a
cost of 6 in the step before last. In the next step, state h is expanded,
yielding state i, introducing a new path to i from the initial state via
h. This path is only of cost 5, and thus both g(i) and p(i) are updated
accordingly. This process terminates as soon as a goal state is found.

Note that not all quantities mentioned in the above description of the
A∗-algorithm are well-defined functions: yet the quantities ϕ, g and p are
associated with a state q, but their values continously change during the
algorithm run (i.e., the algorithm may update the information associated
with states q). Hence ϕ, g, and p should be thought of as temporary
mappings of states to values (in IN or sometimes in IR) which, together
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with other informations, define the state, the computation of the A∗-
algorithm is currently in. It is possible to formalize the process of an A∗-
computation as a sequence of temporal state vectors (sometimes called
interpretations), giving the mappings ϕ, g and p which are valid at
a certain stage of computation. However, all results presented in this
book can be proven without such a formal framework. Throughout the
book, these quantities are thus denoted as function values. The results
presented are inequalities over these values. They express conditions
which hold for all times (during an A∗-computation), in the sense of
a temporal tautology. Hence the outlined formalization with temporal
interpretations is not necessary. Whenever it is noteworthy, it will be
mentioned that the quantities ϕ, g, and p are subject to changes during
the algorithm run.

However, the quantities h and c (heuristic function h and transi-
tion cost function c) indeed must be well-defined functions in every
A∗-algorithm. In our context of exact BDD minimization, this will be
verified in later sections.

A state can be seen as an instance of a subproblem: instead of having
to find an optimal path from the initial state to a goal state, the subject
is to look for a path starting at the considered state. Unlike other search
strategies, A∗ has a maximum capability of avoiding the consideration of
subproblem instances, see [DP87]. To this end, A∗ needs to store all ac-
tive subproblems in Open, making it possible to delay the processing of
subproblems as far as possible while still guaranteeing minimality of the
solution. With this strategy, many subproblems are delayed “forever”,
they are not considered at all during run time. In this sense, the strat-
egy to always choose the most promising subproblem first (based on
the values of the evaluation function) is much more than just a greedy
algorithm using some sort of cost function. A drawback of A∗ however
is the higher memory requirement which is exponential in general: A∗

needs to store the active (i.e. “open”) subproblems whose number can
get large during the algorithm run.

Although the problem of high memory requirement is known in the
context of exact BDD minimization (all algorithms suggested so far show
an exponential space demand), this clearly is a problem which must be
addressed to preserve practicality. Therefore later an effective remedy for
this issue is provided, saving more than 60% of the required memory of
exact BDD minimization. Moreover, this technique yields an advanced
implementation of the generic A∗-algorithm. This optimization can be
transferred to other applications.

A∗ is known to be optimal in the class of heuristic search algorithms
that use the same evaluation function and that are guaranteed to find
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an optimal solution: larger parts of state spaces are pruned by A∗ than
for any other such algorithm [DP87]. More exactly, A∗ is known to
minimize the number of distinct expanded states. In case of a monotone
heuristic function h, every expanded state is “opened” exactly once. If
this assumption of monotonicity is not met, A∗ may reopen a state several
times. In the worst-case this may result in a number of reinsertions of a
state into Open which grows exponentially in N where N is the number
of distinct expanded states. This problem was pointed out and addressed
in a new improved algorithm called B by [Mar77]. This algorithm still
requires O(N2) expansions in the worst-case. 1984, Mér´ o presented the˜
most recent improvement of algorithm B, an algorithm called B ′ [Mo84]
which however has a worst-case complexity of the same order, O(N 2),
as algorithm B.

Hence, to ensure efficiency of A∗-based approaches, the property of
monotonicity of h is strongly desired. It guarantees a worst-case behavior
which is only linear in N . In the next sections a formal definition of
monotonicity will be given and this property is proven for the heuristic
function used in the A∗-approach.

The above criterion for optimality, i.e. the number of state expansions,
establishes a simplified, abstract view which is justified by the fact that
state expansions normally dominate the run time of the algorithm. This
is also true in the context of an A∗-based algorithm for exact BDD min-
imization, as every state expansion involves the following two time con-
suming operations: first, a BDD representing the considered state must
be reconstructed and second, a BDD variable must be shifted. However,
despite the outlined optimality of A∗, of course it is still possible to fur-
ther improve the performance of A∗. In fact in a later section it can
be seen, how combination of A∗ with B&B and other techniques reduce
both memory requirement and run time of the algorithm.

3.2.2 Best-First Search Algorithm

Suppose the subject is to minimize a BDD representing a Boolean
multi-output function f :Bn → Bm. In the latest approach, the A∗-
algorithm is used to search for the optimal variable ordering of a BDD.
Instead of searching the whole set of variable orderings (which contains
n! orderings), the algorithm operates on a state space. This space is
2Xn , the set of variable sets which is a space of a size growing much
slower than n!. A state of this space is a set of variables q ⊆ Xn. This
corresponds to the use of variable sets in B&B methods as described in
Section 3.1. However, instead of an explicit enumeration of all possible
variable sets and the corresponding variable orderings, an exploration
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of only the necessary parts of the state space is performed based on
expansion of the most promising states.

Both in the B&B-based approaches of Section 3.1 and in the recent
best-first search approach, a set q ⊆ Xn represents all orderings of a
BDD in which the first |q| positions (or last |q| positions, respectively)
constitute q. Lemma 3.1 motivates why it is sufficient to consider vari-
able sets instead of considering every single represented ordering.

3.2.2.1 Optimal Ordering by Path Cost Minimization

In the following it is explained how the problem of finding an optimal
variable ordering can be expressed as the problem of finding a minimum
cost path from an initial state to a goal state in this state space. Doing
so, one has to consider paths from the initial state via other states to
the goal state. As there are many paths via one state (their number
is the product of ingoing and outgoing paths) one might expect this to
introduce efficiency problems. Later sections make clear that this is not
the case: by the properties of A∗, the run time is dominated by state
expansions only. Hence, in fact states are explored rather than the paths
through them, making it possible to benefit from the smarter encoding
of the search problem as outlined in the previous section.

Sets of variables q successively growing from ∅ to Xn are considered: q
is extended at each transition by a variable xi ∈ Xn \ q, i.e. q

xi−→
q ∪ {xi}. The algorithm starts in the initial state ∅ and progresses until
the goal state Xn is reached. As is described before in Section 3.2.1,
A∗ finds a path p∗(XnXX ) from ∅ to Xn with minimal cost. This cost is
the accumulated transition cost for the transitions

∅ xi1−→ {xi1 xi1}
xi2−→ · · · xin−→ Xn.

The sequence of variables occurring on path p∗(Xn) defines a variable or-
dering.

The basic idea of the A∗-based approach is the following: we want
the above ordering annotated along the minimum cost path to be opti-
mal, i.e. we want the minimal cost for the goal state Xn (i.e. ϕ∗(XnXX ))
to be the number of nodes in the BDD with this annotated order xi1 <
xi2 < · · · < xin . Then the sequence of variables in p∗(Xn), describing
a minimum cost path from ∅ to Xn, is an optimal variable ordering which
yields the minimal BDD size.

3.2.2.2 Cost Function

For this purpose, an appropriate cost function is chosen. In Section
3.2.2.1 it was explained that the variable sequences annotated along
paths from the initial state to the goal state can be interpreted as variable
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orderings in BDDs. With that notion, the annotations of paths to non-
goal states have the meaning of prefixes of variable orderings, i.e. a path
of length k defines the positions of the first k variables in a variable
ordering. The key idea now is to define the cost function such that the
number of nodes in the first k levels of a BDD is taken as the cost of
this path.

In detail: assume a state q always is associated with a BDD whose first
|q| variables are ordered according to the first |q| positions of the vari-
able ordering which is annotated at the transitions of the currently
considered (i.e., cheapest known) path to q. With that, this BDD re-
spects a variable ordering π with π ∈ Π(q). As cost of the transition

q
xi−→ q ∪ {xi} the nodes labeled with variable xi in the BDD which

corresponds to the successor state q ∪ {xi} are counted. (The variable
xi resides at the (|q|+ 1)-th level of this BDD.) In g the transition costs
along the newly found path to the successor are accumulated. Further,
for the initial state we set g(∅) = 0. Now, by this inductive defini-
tion of g, the accumulated cost g(q) for each state q ⊆ Xn associated
with a BDD F as described above is the number of BDD nodes labeled
with a variable in q. The cost for the goal state Xn now is (as intended)
the size of the BDD associated with it. This BDD has the variable order-
ing annotated along the minimum cost path by construction. Thus, this
variable ordering must be in fact optimal. Figure 3.16 demonstrates the
idea of the construction for a transition q := {x1, x2} x4−→ q ∪ {x4} with
BDDs associated with q and the successor state. Nodes with variables
belonging to the state represented by the BDD are shaded.

With that it is already shown that the problem of finding an optimal
variable ordering can be interpreted and solved as a problem of finding
a minimum cost path.

Typically, in AI the A∗-algorithm is applied to problem domains where

the transition cost function is much simpler than the one described
here, e.g. often the transition cost is constant,

the set of goal states is pre-defined by some terminating condition in
advance, i.e. we “know, what we are looking for”.

E.g., this holds for the ((n×n)−1)-puzzle6 described in Section 3.2.1: ev-
ery move of a tile is considered to have a constant cost of 1, and there
is exactly one pre-defined terminating order of tiles.

Both does not hold when applying the generic A∗-algorithm to exact
BDD minimization: the transition cost essentially depends on the two

6The ((n × n) − 1)-puzzle is known to be NP-complete, e.g. see [Ric88].
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Figure 3.16. BDDs for a transition q := {x1, x2}
x4−→ q ∪ {x4}.

states of the considered transition and there does not exist any pre-
defined condition defining goal states, i.e. we do not know in advance,
towards which variable ordering the search should proceed.

In this, the idea to apply A∗ to the problem of determining an opti-
mal variable ordering of BDDs is not an obvious one. Moreover, when
compared to other problem domains, it is conceptually harder to suggest
good heuristics to guide the search through the state space since we do
not know in advance, what the result (i.e., the optimal ordering) will
look like.

To summarize: A∗ prunes large parts of the state space by a strategy
to always choose the “best”, i.e. most promising state first for the next
state expansion. The decision, whether a state q is “promising” or not,
is made on the basis of the evaluation function ϕ(q) = g(q) + h(q).

It consists of a part keeping track of the currently known minimal cost
for a path to q, g(q), and a heuristic estimate h(q) of (i.e. a lower bound
on) the cost of the (not yet known) path from q to the goal state Xn. It
is computed for every state in a set of “open” states Open. The next
state to expand is a state qnext ∈ Open with

ϕ(qnext) = min{ϕ(q) | q ∈ Open}. (3.3)

The BDD associated with qnext is reconstructed according to the con-
struction described before.
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3.2.2.3 Heuristic Function

Next the heuristic function used in the A∗-based approach is given as
hf,n: 2Xn → IN

hf,n(q) = max (|cof(f, q)| , n − |q|) . (3.4)

The Boolean function f and its arity n are always given from the context.
Hence in accordance with the standard notations in the A∗-related liter-
ature, the heuristic function from now on will be denoted h throughout
the book, omitting the subscripts f and n.

This heuristic function is essentially the one proposed in Section 3.1,
a lower bound adapted from VLSI design. However, unlike in Section
3.1, the lower bound is expressed in Equation (3.4) as a function of f
and the state q only. With that the bound becomes independent of the
graph structure of a BDD representing state q. This can be used for a
more efficient implementation, avoiding unnecessary computations. This
is explained briefly after introducing the lower bound. For a state q, the
lower bound counts the number of cofactors with respect to the variables
in q (see Figure 3.17). The reader may recall that, more formally spoken,
the set cof(f, q) is the set of all distinct (non-constant single-output) co-
factors of f (f is interpreted as a family of n-ary single-output functions)
with respect to all variables in q. Also note that this is not a multiset,
hence functionally equivalent cofactors are eliminated and thus do not
contribute to |cof(f, q)| (see Section 2.3).

Let π ∈ Π(q) and F := BDD(f, π) = (π, . . . , O). As can already
be seen with Figure 3.17, nodes representing the considered cofactors
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cof(f, q) essentially are nodes in the lower part referenced from nodes of
the upper part or they are output nodes in the lower part. More formally,

these are the nodes ref(F, |q|) ∪ O
|q|+1
n (where O

|q|+1
n = O ∩ F

|q|+1
nFF , see

Chapter 2). This intuitive correspondence of the lower bound introduced
in Section 3.1 to the function h(q) is subject to the following formal proof.

Definition 3.9 Let

K: {F | F is a BDD over Xn} × IN → 2{v∈V |(...,(V,E),...) is a BDD};

K(F, k) = ref(F, k) ∪ Ok+1
n

Lemma 3.10 Let f : Bn → Bm, q ⊆ Xn, π ∈ Π(q) and F := BDD(f, π).
Then we have

|ref(F, |q|)| = |tcof(f, q)| ,
|K(F, |q|)| = |cof(f, q)| .

Proof. First let q = ∅. By definition we have |K(F, 0)| = |ref(F, 0)| =
|O| = |tcof(f, ∅)| = |cof(f, ∅)| where F = (π, . . . , O). Now let q ⊃ ∅ and
let g be an n-ary Boolean function. We show7

(∃1v: v ∈ ref(F, |q|) and v represents g ) ⇐⇒ g ∈ tcof(f, q),(3.5)

(∃1v: v ∈ K(F, |q|) and v represents g ) ⇐⇒ g ∈ cof(f, q), (3.6)

then the required existence of a bijection between ref(F, |q|) and tcof(f, q),
respectively K(F, |q|) and cof(f, q), follows.

With π ∈ Π(q) we have q = {π(1), π(2), . . . , π(|q|)}. (∗)

“=⇒== ”:
Let v be the unique node in one of the requirements. By definition,

v is referenced directly from a node in levels 1, 2, . . . , |q| or it is an out-
put node in levels |q| + 1, . . . , n. Since each component of a BDD is
a connected graph, there is at least one path from an output node to
v. Along this path at most variables in q are tested by Equation (∗).
For any variable which is not tested, any binding in B can be assumed
without changing the considered path. Now, along the considered path,
a variable is fixed to a constant iff it is contained in q. But then the
function represented by v must be contained in tcof(f, q), if v is refer-
enced directly from the upper part or otherwise, it must be contained in

7The quantifier symbol “∃1” has the semantic “there exists exactly one . . . ”.
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cof(f, q) by the BDD semantics of Section 2.4.

“⇐=”:⇐⇐
Let g ∈ tcof(f, q) or g ∈ cof(f, q). By Equation (∗) there is an i

(1 ≤ i ≤ n) such that

g = fiff |π(1)=b1,π(2)=b2,...,π(|q|)=b|q|

where bk ∈ B (1 ≤ k ≤ |q|). By the BDD semantics (see Section 2.4),
there must be a node v in F representing g and by Theorem 2.17, this
node v must be unique in F . Moreover, there is a path p from the output
node representing fiff to v. Along path p, at most the variables in levels
1, 2, . . . , |q| are tested, hence

(a) v is directly referenced from a node in levels 1, 2, . . . , |q| or it is an
output node in levels |q| + 1, |q| + 2, . . . , n.

The function g does not essentially depend on a variable in q by defini-
tion. Since v represents g,

(b) v must reside in levels |q| + 1, |q| + 2, . . . , n of F .

The intermediate results (a) and (b) yield v ∈ ref(F, |q|) in the case, v is
referenced directly from the upper part and v ∈ K(F, |q|) otherwise. �

Lemma 3.10 considers BDDs respecting an ordering that preserves
the partition (q, Xn \q) of the input variables. This partition defines the
variables for the upper and lower part of the BDD. The lemma considers
the set of nodes in two forms of “kernels”: a kernel is defined either as
a) the set of nodes directly referenced from nodes in the upper part or
b) as an extension of this kernel by the lower output nodes. The result
of the lemma now is that both kernel sizes are invariant with respect to
the choice of a variable ordering respecting the given partition of input
variables. The constant kernel sizes are given as either the number of
a) true or b) general cofactors of f with respect to variables in q: these
sets of cofactors remain unchanged regardless of the chosen ordering, as
long as the ordering yields the same partition of input variables; and the
nodes in the kernel are needed to represent these cofactors.

By that, this result is stronger than the one stated in Lemma 3.4, as
Lemma 3.4 does not state that the lower bound is constant, i.e. invariant
with respect to choice of an ordering preserving the partition of the
inputs. Moreover, the lower bound is expressed such that it depends on
the graph structure F (which changes with different orderings π ∈ Π(q))
whereas Lemma 3.10 expresses the lower bound depending on f and the
partition only.
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Next it is explained why h(q) is a lower bound on the cost of the re-
maining path from q to the goal state: in the above construction to com-
pute the optimal variable ordering by A∗, a state q has been associated
with a BDD F having a variable ordering

π ∈ Π(q). (3.7)

By construction it suffices to see that h(q) is a lower bound on the
minimal node number min cost(Xn \ q, q) in the “lower part” of F . All
cofactors in cof(f, q) must be represented by nodes in levels |q|+1, . . . , n
by Equation (3.6) in Lemma 3.10 (e.g. the gray nodes in Figure 3.17
represent the cofactors of f1 and f2ff with respect to x1, x2 and x3).

Thus, cof(f, q) is a lower bound on min cost(Xn \ q, q). In every level
from |q|+ 1 to n there is at least one node since f is assumed to depend
essentially on all input variables. This yields the second lower bound
n−|q|. Hence, the maximum of both lower bounds must also be a lower
bound.

This lower bound is tight: the existence of nodes different from the roots
of sub-graphs representing the cofactors is not generally guaranteed.
This is because these root nodes might coincide with nodes of sub-graphs
which are representing other cofactors, e.g. see the gray node labeled
x4 in Figure 3.17: it is both a root node for a cofactor and a node of
a sub-graph representing a second cofactor. Experimental results showed
a large pruning power of this lower bound, resulting in speed-ups of
two orders of magnitude compared to trivial bounds. It can be com-
puted effectively with a top-down graph traversal on the BDD, counting
the number of direct references from the upper nodes to the nodes in
the lower part of the BDD (see Section 3.1.2.1).

The description of the lower bound is finished by briefly explaining its
efficient implementation for the A∗-based approach. Reconsider Equa-
tion (3.4): in contrast to the definition in Section 3.1.2.1 the bound is
expressed as a function of f and state q only. Thus, it must be indepen-
dent of the BDD F representing the state q in a step of the algorithm.
Consequently, if q is encountered a second time during the algorithm
run, h(q) does not require a re-calculation. In particular this holds
even though the graph structure of the BDD F representing q has been
changed in the meanwhile. Yet, as for algorithm JANUS presented in
Section 3.1, F is also required to respect an ordering π ∈ Π(q) in order
to ensure correct calculation of the number of direct references of nodes
in the upper BDD part (i.e. nodes labeled with a variable in q) to nodes
in the lower BDD part (labeled with a variable in Xn \ q). But this
condition π ∈ Π(q) is always met by construction whenever a state q is
encountered a second time (see Equation (3.7)).



80 ADVANCED BDD OPTIMIZATION

3.2.2.4 Exploring Paths during State Space Exploration

In the beginning of Section 3.2.2 it was stated that the algorithm
explores states rather than the paths through them. Next reasons are
given, why considering paths in fact is done with only minor additional
effort in time and space. First, it is not necessary to store all possible
paths to a state. Instead it suffices to store only the cheapest path found
so far as one state attribute p(q). This quantity is continously updated
by the algorithm each time, a cheaper path is found, just as is done with
g(q), the cost of the currently cheapest path. Second, by the properties
of A∗, we have the following result [HNR68, Pea84].

proposition 1 Consider an A∗-algorithm with a monotone8 heuristic
function h. Then, if a state q is expanded, a cheapest path to q has
already been found, i.e. we have g(q) = g∗(q) and therefore p(q) = p∗(q).

Now note that a state q has only |q| potential predecessors, e.g. state
q = {x1, x2, x3} has the possible predecessors

{x1, x2}, {x1, x3} and {x2, x3}.

To determine the cheapest path to q it suffices to examine at most |q|
paths via the predecessors of q. This is because, by Proposition 1,
the paths to a predecessor p must already be optimal at the time of
a transition p −→ q. Moreover, some of the |q| predecessors might even
not be expanded during the algorithm run, further reducing the number
of paths to consider.

The update of p(q) is done based on a simple comparison of the cost
of the path via a new predecessor and the old value of p(q). These up-
dates are operations with only minor run time which can be neglected
compared to other dominating sources of run time complexity, e.g. the re-
construction of a BDD and the shifting of BDD variables, both needed
once for every state expansion.

3.2.3 Monotonicity
In this section, the desired monotonicity of h in the A∗-algorithm

outlined above is proven. The results of this section ensure efficiency
of the A∗-approach to exact BDD minimization. Moreover, in Chapter
4 proofs of soundness and tightness of the best known lower bound for
dynamic reordering are given which are directly based on results of this
section.

8The heuristic function h proposed here is in fact monotone which is shown in Section 3.2.3.
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First, a formal definition of the important property of monotonicity
and a theorem from search theory are given.

Definition 3.11 Consider an A∗-algorithm with the heuristic function
h and the transition cost function c. The Heuristic function h is said to
be monotone if

h(q) ≤ c(q, q′) + h(q′) (3.8)

for every transition q −→ q′.

Note that according to the definition in Section 3.2.1, heuristic functions
h must respect the condition

h(q) = 0 for every goal state q.

This is crucial in the context of monotonicity: e.g., without this condi-
tion, the expected costs of each state could be overestimated by a (huge)
constant c while still keeping Inequality (3.8) valid.

The following important two results can be found in [HNR68, Pea84].

proposition 2 Consider an A∗-algorithm with a monotone heuristic
function h. Then h is also an admissible heuristic function, i.e. h(q) ≤
h∗(q) for all states q. Moreover, q −→ q′ always implies ϕ(q) ≤ ϕ(q′) iff
h is monotone.

Theorem 3.12 Consider an A∗-algorithm with a monotone heuristic
function h. Then a state q is expanded at most once by A∗.

As explained at the end of Section 3.2.1, this is crucial for the efficiency
of A∗, as otherwise states can be expanded “exponentially often” in the
worst-case, making the use of A∗ impractical for larger problems.

For this reason, the desired monotonicity of the heuristic function h
proposed in Section 3.2.1 must be verified. Next, after the introduction
of a notation, a well-known result following [FS90] is given.

Definition 3.13 Let f :Bn → Bm be a Boolean multi-output function
essentially depending on all variables in Xn and let xi ∈ XnXX . The set
of those cofactors of f with respect to variables in q which essentially
depend on xi is denoted with dep(f, q, xi). Formally, the function dep is
given as dep: {f | f : Bn → Bm} × 2Xn × Xn → 2{f |f : B

n→B
m};

dep(f, q, xi) = {c ∈ cof(f, q) | c essentially depends on xi}.
Now a result is stated which is essentially following an analysis in [FS90]:
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Lemma 3.14 Let f : Bn → Bm be a Boolean multi-output function, let
q ⊆ Xn and π ∈ Π(q) such that π(|q|+ 1) = xi and let F := BDD(f, π).
Then we have:

The number of nodes in the (|q|+1)-th level of F is equal
to |dep(f, q, xi)|,

or, more formally,

|level(F, |q| + 1)| = |dep(f, q, xi)| .
A more detailed formulation of this result is9

(∃1v: v is in the xi-level and v represents g ) ⇐⇒ g ∈ dep(f, q, xi).

Example 3.15 Consider the left BDD given in Figure 3.18. The cofac-
tors in the variables in q = {x1, x2} are represented by the shaded nodes.
Annotated are the sets of variables the cofactors essentially depend on.
We have two cofactors depending essentially on x3 and in fact two nodes
residing on the third level for the given ordering π−1(x1) < π−1(x2) <
π−1(x3) < π−1(x4). With the annotated sets of the left BDD it can be
seen already that also two nodes labeled x4 would be situated at the third
level for the ordering π−1(x1) < π−1(x2) < π−1(x4) < π−1(x3) since
also two cofactors essentially depend on x4. The right BDD then rep-
resents the same function using this new ordering, and in fact we have
the forecasted number of nodes labeled x4.

As explained earlier in in Section 3.2.1, A∗ requires the heuristic func-
tion h as well as the transition cost function c to be well-defined.

The property of well-definedness clearly holds for h by definition. The
well-definedness of c is a simple consequence of Lemma 3.14: By construc-
tion the transition cost for a transition q

xi−→ q ∪ {xi} is
label(BDD(f, π), xi) = |dep(f, q, xi)| where π ∈ Π(q) and π(|q|+1) = xi.
Hence the transition cost function

cf,n: { t | t is a transition of the form q
xi−→ q ∪ {xi},

where xi ∈ Xn }→ IN

cf,n(q
xi−→ q ∪ {xi}) = |dep(f, q, xi)|

is given by a well-defined definition. In the following, the cost of a
transition q

xi−→ q ∪ {xi} will be denoted c(q, q ∪ {xi}) as is common in
the A∗-related literature. We are also omitting the subscripts f and n.

9Again the quantifier symbol “∃1” has the semantic “there exists exactly one . . . ”.
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Figure 3.18. BDDs for Example 3.15.

The proof of monotonicity is prepared by the next result:

Definition 3.16 Let f :Bn → Bm be a Boolean multi-output function
essentially depending on all variables in Xn and let xi ∈ Xn. The set of
those cofactors of f with respect to variables in q which do not essentially
depend on xi is denoted with ind(f, q, xi). Formally, the function ind is
given as ind: {f | f : Bn → Bm} × 2Xn × Xn → 2{f |f : B

n→B
m};

ind(f, q, xi) = cof(f, q) \ dep(f, q, xi).

Lemma 3.17 Let f :Bn → Bm be a Boolean multi-output function, let
q ⊂ Xn and xi ∈ Xn \ q. It is

cof(f, q) ⊆ dep(f, q, xi) ∪ cof(f, q ∪ {xi}).

Proof. We have

cof(f, q) = dep(f, q, xi) ∪ ind(f, q, xi)

⊆ dep(f, q, xi) ∪ cof(f, q ∪ {xi}). (3.9)

It is

ind(f, q, xi) ⊆ cof(f, q ∪ {xi}) (3.10)

since functions in ind(f, q, xi) do not essentially depend on xi. Thus,
Equation (3.9) holds. �

The following corollary is a direct consequence of Lemma 3.17.
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Corollary 3.18 Let f :Bn → Bm be a Boolean multi-output function,
let q ⊂ Xn and xi ∈ XnX \ q. It is

|cof(f, q)| ≤ |dep(f, q, xi)| + |cof(f, q ∪ {xi})| .

Proof. By Lemma 3.17 it is

|cof(f, q)| ≤ |dep(f, q, xi) ∪ cof(f, q ∪ {xi})|
≤ |dep(f, q, xi)| ∪ |cof(f, q ∪ {xi})| . (3.11)

Equation (3.11) holds since the cardinality of a set union is at most as
large as the sum of the cardinalities of the sets united (and smaller if
their intersection is non-empty). �

We are now able to prove the monotonicity of h.

proposition 3 Let f :Bn → Bm be a Boolean multi-output function
which essentially depends on every variable in Xn. The heuristic func-
tion h: 2Xn → IN

h(q) = max (|cof(f, q)| , n − |q|)
is monotone with respect to the A∗-algorithm given in Section 3.2.2.

Proof. First we assert that in fact it is h(Xn) = 0 as required by
the definition of heuristic functions. Then we have to show the inequality

h(q) ≤ c(q, q ∪ {xi}) + h(q ∪ {xi}) (3.12)

for every transition q
xi−→ q ∪ {xi} of the algorithm. By construction

of the transition cost function described in Section 3.2.1, every state q
has been associated with a BDD F having a variable ordering π ∈ Π(q).
Thus, by Lemma 3.14, Inequality (3.12) can be restated as

h(q) ≤ |dep(f, q, xi)| + h(q ∪ {xi}). (3.13)

The proof is a careful case analysis of the possible outcomes for the
maximum function in the definition of h.

Case 1):

|cof(f, q)| > n − |q| ,
|cof(f, q ∪ {xi})| > n − |q ∪ {xi}|

Inequality (3.13) follows directly from Corollary 3.18.
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Case 2):

|cof(f, q)| ≤ n − |q| ,
|cof(f, q ∪ {xi})| ≤ n − |q ∪ {xi}|

We have to show

n − |q| ≤ |dep(f, q, xi)| + n − |q ∪ {xi}| .
We have |q ∪ {xi}|−|q| = 1 which simplifies the claim to |dep(f, q, xi)| ≥
1. This clearly holds since f essentially depends on xi by assumption.

Case 3):

|cof(f, q)| > n − |q| ,
|cof(f, q ∪ {xi})| ≤ n − |q ∪ {xi}|

We have to show

|cof(f, q)| ≤ |dep(f, q, xi)| + n − |q ∪ {xi}| .
With the assumption |cof(f, q ∪ {xi})| ≤ n−|q ∪ {xi}| and by Corollary
3.18 we obtain

|dep(f, q, xi)| + n − |q ∪ {xi}| ≥ |dep(f, q, xi)| + |cof(f, q ∪ {xi})|
≥ |cof(f, q)| ,

yielding the required result.

Case 4):

|cof(f, q)| ≤ n − |q| ,
|cof(f, q ∪ {xi})| > n − |q ∪ {xi}|

We have to show

n − |q| ≤ |dep(f, q, xi)| + |cof(f, q ∪ {xi})| .
We have |q ∪ {xi}| − |q| = 1. Furthermore, it is |dep(f, q, xi)| ≥ 1 since
f essentially depends on xi by assumption. With that and with the
assumption |cof(f, q ∪ {xi})| > n − |q ∪ {xi}| we obtain

|dep(f, q, xi)| + |cof(f, q ∪ {xi})| > |dep(f, q, xi)| + n − |q ∪ {xi}|
≥ 1 + n − |q ∪ {xi}|
= n − |q| ,

yielding the required result. �
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Note that by Proposition 2 also the admissibility of h follows. Hence,
this is also a formal proof for a property of h informally explained in
Section 3.2.1: for the considered BDD and state q, h(q) in fact is a lower
bound on the cost of the remaining path from q to a goal state, i.e. on
the number of nodes in levels |q| + 1, . . . , n.

Moreover, the ϕ-values along a path from the initial state to a goal
state must be monotonically increasing (in fact, this property yields
the intuitive term “monotonicity” here). An example for a monotone
heuristic has already been given in Figure 3.15. E.g. for the path a −→
b −→ h −→ k, the series ϕ(a), . . . , ϕ(k) is montonically increasing: 2 ≤
4 ≤ 6 ≤ 7.

3.2.4 Algorithm

The implementation of the algorithm is based on the implementation
of the approaches FizZ and JANUS presented in Section 3.1. Hence,
the A∗-approach uses the techniques that have been applied there.
Among them is the use of symmetries and customized hash tables which
are adapted dynamically. Moreover, BDD “explosions” are avoided by
undoing variable shifts where appropriate. In Section 3.1, among other
aspects, an efficient implementation of the lower bound has been de-
scribed. Moreover, efficient techniques for fast BDD reconstruction have
been proposed here. In the A∗-based approach, all these techniques are
present or have been further developed. A sketch of the algorithm called
Astute is given in Figure 3.19. In the following, a brief comparison of this
algorithm to the previous B&B method JANUS is given.

The B&B-paradigm applied in FizZ and JANUS explores the state-
space “stage-by-stage”, i.e looking at all states with a length k one after
the other, then moving on to k + 1, etc. (see line (4) in Figure 3.10).
Thereby a static schema is used to enumerate the states.

A∗ however progresses the states in an order based on a dynamic
evaluation function. The order is not based statically on the length of
the state like in the B&B-approach. In Figure 3.19 this is done in line (4),
using a counterless “infinite” loop which is exited, if one of two sufficient
termination conditions are met (line (12)). A first sufficient condition
for termination is that the next state to expand is a goal state, i.e. a
state with length n. The second sufficient condition is called “Early
Termination”, a call to the respective macro occurs in line (6). This is a
technique to further prune the search space given later in the respective
paragraph in Section 3.2.4.1. The code for the technique is given as the
macro CHECK-EARLY-TERMINATION in Figure 3.21.

The A∗-based approach uses a technique for state expansions which
allows to determine transition costs without variable shifts. The com-
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putation of the transition costs instead is based on the dependency of
cofactors on certain variables, line (17) shows the respective sub-routine
call. The whole technique will be explained in detail in Section 3.2.4.5.

Lines (18) to (28) in Figure 3.19 correspond to lines (8) to (20) in Fig-
ure 3.10 where the heuristic function h corresponds to the lower bound
lower bound , the currently known path cost g corresponds to minguess,
and the path p corresponds to an ordering π. However, there are also
some differences:

1) No variable shift is needed in algorithm Astute to compute the tran-
sitions cost in line (24) in Figure 3.19.

2) No check for already excluded states is done in the A∗-approach.

3) A different schema for the update of state data is used, see macro
UPDATE-STATE-DATA-ASTAR-TD given in Figure 3.22.

Regarding point 1), this is due to a different technique of state expan-
sion, see Section 3.2.4.5.

Regarding the second point 2): implicitly only states will be expanded
that have a potential to lead to an optimal solution, see Theorem 3.19.
Therefore, when targeting to reduce the number of state expansions, it
would be useless to explicitly exclude states in the A∗-based approach.
However, it would make sense to use an exclusion mechanism to reduce
the number of shifts needed to construct the successor states in an expan-
sion. Such a mechanism in fact will be used in an A∗-based bottom-up
approach, see Section 3.2.5. In the present top-down approach however,
no shifts are performed to construct the successors (see -1)), therefore
no such exclusion takes place here.

By Proposition 1, the optimal cost for the path to a state is already
known at the time of state expansion. This replaces the gradual schema
to update the minimum cost used in FizZ or JANUS (see lines (3) to (4)
in Figures 3.5 and 3.12). Hence, there also is no need for a lower bound
like l bcost .

Finally, regarding the third point 3), the main differences between
UPDATE-STATE-DATA-JANUS (see Figure 3.12) and UPDATE-
STATE-DATA-ASTAR-TD (see Figure 3.22) are the following:

a) Only one position of the current ordering must be stored in the A∗-
based approach (compare line (5) in Figure 3.12 to line (5) in Figure
3.22): this is due to an implementation technique in A∗ described
in Paragraph “Path Reconstruction” in Section 3.2.4.4. This is an
aspect where A∗ even needs less memory than the B&B-approach.

b) In the A∗-based approach, a unique technique to avoid unnecessary
computations of the heuristic function and state insertions is applied
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(see lines (9) and (14)). This technique is called “Delayed State
Insertion” and is described in the respective paragraph in Section
3.2.4.1.

The latter point b) as well as the possibility for an early termination
is a consequence of a combination of A∗ and B&B. For this purpose, in
line (16) of Figure 3.19 the smallest BDD size seen so far is computed
every time to obtain an upper bound. In line (4) in Figure 3.20, the first
upper bound is computed as the size of the initial BDD.

In this comparison of the algorithms JANUS and Astute the main
differences of the two methods have been outlined. Thereby several new
techniques used by the A∗-based approach to exact BDD minimization
have been mentioned. In the remainder of this section these techniques
are described in further detail.

First, a combination of A∗ with B&B is described in Section 3.2.4.1.
This technique results in a further pruning of the search space as well
as a reduction of memory requirement. Moreover, unnecessary com-
putations are avoided. Second, a method for maintaining the set of
open states Open is given which is faster than the usual heap approach.
Next a method to avoid the storing of complete paths is explained which
significantly reduces the memory requirement of A∗. Note that improve-
ments/implementational aspects of A∗ itself are described which can be
transferred to other applications using A∗-based search techniques. Fi-
nally, a unique state expansion technique is suggested that allows to
expand states to its successors without the use of variable shifts. This
technique yields a significant gain in run time compared to previous ap-
proaches to exact BDD minimization in which many time-consuming
variable shifts are needed.

3.2.4.1 Combination with Branch and Bound

In this section two techniques to combine A∗ with B&B are presented.
First, a result from search theory is cited [HNR68, Pea84].

Theorem 3.19 Consider a state q in an A∗-algorithm operating with
evaluation function ϕ. (C(( ∗ again denotes the minimal cost.) Then we
have:

If ϕ(q) > C∗ then state q will not be expanded.

Note that ϕ(q) can change during the algorithm run. In the context of
exact BDD minimization, C∗ + 1 is the minimal BDD size, as f , g, and
h count inner nodes only. Thus, one must be added for the constant
node.
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(1) compute optimal ordering(BDD F , int n)
(2) proc
(3) INIT-ASTAR
(4) while 1 do /* until doomsday */
(5) determine q ∈ Open with minimal

g[hash(q)] + h[hash(q)];
(6) CHECK-EARLY-TERMINATION
(7) if q = Xn then
(8) reconstruct ordering as the sequence of the path

to q;
(9) doomsday:=1;

(10) end–if
(11) if doomsday then
(12) exit while loop;
(13) end–if
(14) reconstruct an appropriate ordering π ∈ Π(q) with

path reconstruction;
(15) establish π on F ;
(16) upper bound := update upper bound();
(17) compute dependencies(F, |q|);
(18) for each xi ∈ Xn \ q do
(19) CHECK-SYMMETRY
(20) q′ := q ∪ {xi};
(21) if q′ /∈// states then
(22) g[hash(q′)] := ∞;
(23) end–if
(24) newcost := label(F, |q′|) + g[hash(q)];
(25) UPDATE-STATE-DATA-ASTAR-TD
(26) UNDO-SHIFT
(27) end–if
(28) end–for
(29) end–while
(30) end–proc

Figure 3.19. Algorithm A
stute.

In a B&B algorithm to determine a minimum (e.g. minimal cost),
a lower and an upper bound on the minimum are constantly updated
during the algorithm run. This happens every time new information is
available to tighten the bounds. Next, the A∗-approach to exact BDD
minimization is combined with B&B by continously updating an up-
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(1) INIT-ASTAR
(2) macro
(3) π[hash(∅)] := an arbitrary initial order;
(4) upper bound := update upper bound();
(5) g[hash(∅)] := 0;
(6) lower bound [hash(∅)] := number of output nodes m;
(7) states[hash(∅)] := ∅;
(8) insert ∅ into Open;
(9) doomsday := 0;

(10) end–macro

Figure 3.20. Initialization for the A∗-based approach.

(1) CHECK-EARLY-TERMINATION
(2) macro
(3) if g[hash(q)] + h[hash(q)] + 1 = upper bound then
(4) reconstruct ordering that yielded upper bound ;
(5) doomsday:=1;
(6) end–if
(7) end–macro

Figure 3.21. Early termination.

per bound (denoted upper bound) during the algorithm run every time
a smaller BDD size is found.

Delayed State Insertion. The integration of B&B into A∗ is based
on the following observation: Clearly, we have

upper bound ≥ C∗ + 1. (3.14)

Now let q be a state with ϕ(q) + 1 > upper bound . With (3.14) we
have

ϕ(q) + 1 > C∗ + 1

and thus, by Theorem 3.19, q will not be expanded by A∗.
In the A∗-based approach, this result is used as follows: a state q is

inserted into Open iff ϕ(q) + 1 ≤ upper bound (see line (14) in Figure
3.22). Otherwise, the insertion is delayed until g(q) has become small
enough (by continuous updates during the algorithm run) to meet this
condition. This strategy avoids the inclusion of many states into Open
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(1) UPDATE-STATE-DATA-ASTAR-TD
(2) macro
(3) if q′ /∈// states or newcost < g[hash(q′)] then
(4) g[hash(q′)] := newcost ;
(5) p(q′) := xi;
(6) if q′ /∈// states then
(7) states[hash(q′)] := q′;
(8) end–if
(9) if h[hash(q′)] not yet computed and

g[hash(q′)] + n − |q′| + 1 ≤ upper bound then
(10) shift xi to level |q| + 1;
(11) upper bound := update upper bound();
(12) h[hash(q′)] := compute lower bound(q′);
(13) end–if
(14) if h[hash(q′)] computed and

g[hash(q′)] + h[hash(q′)] + 1 ≤ upper bound then
(15) if Open too crowded, resize it and

garbage-collect outdated entries;
(16) insert q′ into Open;
(17) end–if
(18) end–if
(19) end–macro

Figure 3.22. Updating the state data in the A∗-based top-down approach.

which never will be expanded. This reduces the memory requirement of
the algorithm. Note that in line (9) in Figure 3.22 also the computation
of h(q) is delayed to save unnecessary computations: by definition n −
|q| ≤ h(q), thus we have g(q) + n − |q| ≤ ϕ(q). Consequently, g(q) +
n − |q| + 1 can be tested instead of ϕ(q) + 1 for being less or equal
upper bound. If this simple test already fails, the failure of the “full”
test ϕ(q) + 1 ≤ upper bound is implied, hence the computation of h(q)
can be delayed. That way, it is possible that for the state q, h is never
needed to compute, avoiding unnecessary computations.

Early Termination. Integrating B&B also allows to further prune
the state space, based on the following consideration: Let q be a state
which is chosen as the next best state, i.e. q will be expanded. Inversion
(and adding one to each side of the resulting inequality) of the statement
in Theorem 3.19, together with Equation (3.14) yields

ϕ(q) + 1 ≤ C∗ + 1 ≤ upper bound . (3.15)
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Now let ϕ(q)+ 1 = upper bound . We have upper bound = C∗ +1 by In-
equation (3.15), i.e. the upper bound has already reached the minimum.

In the A∗-based approach, this result is used as follows: if the total
cost of the state currently considered (plus one, for the constant node)
already equals the upper bound, the algorithm is finished by recon-
structing the variable ordering which yielded this upper bound (see lines
(3)-(6) in Figure 3.21). This “early termination” results in a further
pruning of the search space.

3.2.4.2 Maintaining the Set of Open States

In this section an efficient implementation of the priority queue Open

is described which uses a customized data structure instead of the stan-
dard heap implementation used by previous approaches. As described
in Section 3.2.1, Open, the set of “open” states, implements the set of
states that the algorithm still considers as candidates for state expan-
sion. The only operations applied to Open are deletions of elements
with smallest total cost, i.e. most promising states according to Equa-
tion (3.3) and insertion of elements, i.e. newly generated successor states.
Thus Open is essentially a priority queue which is often implemented as
a heap, e.g. see [Nil80] or [KRR88]. The heap implementation requires
insertions and deletions in O(log NOpenNN ) steps where NOpenNN is the size of
Open [AHU74]. As explained in the previous sections, some (or even
most) of the states contained in Open may eventually be expanded,
i.e. we have Nexp ≤ NOpenNN ≤ NspaceN where Nexp denotes the number of
state expansions and NspaceN denotes the size of the state space.

To obtain a worst-case analysis, the introduced quantities are all as-
sumed to be of the same order:

O(Nexp) = O (NOpenNN ) = O(NspaceN ) (3.16)

In the application investigated here, exact BDD minimization, the size
of the state space is

NspaceN = 2n,

i.e. it grows exponentially with n where n is the number of input variables
of the Boolean function represented by the BDD to minimize. Thus, by
Equation (3.16), insertion and deletion operations of the heap implemen-
tation still show a run time complexity of O(n). In the A∗-based ap-
proach discussed, an even more sophisticated technique has been chosen
to implement the set Open. This technique makes use of a theoretical
result stating that the sequence of minimal costs for the states chosen
to expand is monotonically increasing [Pea84, HNR68]. This property
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allows a fast strategy to lookup the next minimum with an only quasi-
constant effort per expansion. Note that the idea of this technique can
be transferred to other applications using the A∗-algorithm as well: for
some applications, NspaceN even grows proportional to n! where n denotes
the size of the problem instance, i.e. it grows faster than exponentially.
Then, by Equation (3.16) also NOpenNN and Nexp grow that fast. Examples
are the TSP (Traveling Salesman Problem) and other problems of combi-
national optimization. Here, the discussed heap operations, encountered
for every state expansion, may significantly slow down run time and a
quasi-constant method is strongly desirable. Next, after citing a result
from search theory [HNR68, Pea84], the new method and the underlying
data structure are described.

proposition 4 Consider an A∗-algorithm operating with evaluation
function ϕ. Let q be the state which least recently was expanded and
let q′ be the state chosen by the algorithm to be expanded next. Then we
have

ϕ(q′) ≥ ϕ(q).

In addition to this result, we have ϕ(q) ≤ C∗ for all states q being
expanded as a consequence of Theorem 3.19. Thus, the sequence of
cost minima is monotonically increasing within the range ϕ(q0), . . . , C

∗

where q0 is the initial state. For the application here (and for many
other AI applications as well10) this range is an interval which is very
small compared to the number of expansions during the algorithm run
Nexp , i.e. we have

C∗ � Nexp ∈ O(NspaceN ) = O(2n). (3.17)

This result can be used in the following way: Let C ′ be the size of
the BDD initially given to the algorithm. An array Open of size C ′

of (initially empty) state-lists is allocated. Clearly we have C ′ ≥ C∗,
hence the subscripts of the array cover the whole range of possible cost
minima. The idea is to append each newly generated state q to the list
Open[ϕ(q)].

In the beginning, q0 = ∅ is appended to the list Open[m] (which
initially is empty) where m is the number of output nodes. The al-
gorithm starts expanding state q0 = ∅ with currently minimal cost
ϕ(∅) = g(∅) + h(∅) = 0 + m = m. m is stored as the previous minimum

10E.g., for the TSP, C∗ is the length of an optimal tour which typically can be bounded by
c · n where n is the number of cities and c is some (small) constant, e.g. the longest distance
between two cities. Thus, for the TSP there is a similar relation C∗ ≤ c · n 
 Nspace = n!
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prev min for the next expansion and q0 is deleted from Open[m]. More-
over, the newly generated successors of q0, say q1, . . . , qk, are inserted
into Open by appending qi to list Open[ϕ(qi)]. The same schema of
state insertion is used for every successor state generated throughout
the algorithm.

Whenever a new state with minimal cost on Open must be determined
for expansion, the range prev min, . . . , C ′ is scanned by repeatedly in-
creasing a counter cnt each step by one from prev min to C ′, until the
next non-empty list Open[cnt ] is found. Then the state least recently
appended (i.e. the last state of the list Open[cnt ]) is chosen as the next
state q to expand. As in the beginning for q0, after storing ϕ(q) as the
next previous minimum, q is deleted from Open[ϕ(q)].

With the result from Proposition 4, this strategy must be correct since
always a state with the next smaller ϕ-value is determined in the range
of the monotonically increasing series of minima.

Note that adding and deleting elements (i.e. states) from Open re-
quires only constant time. Determining the next state to expand is an
operation with a total time effort for all expansions during the whole
algorithm run which is proportional to C∗. This holds since in one run
of the A∗-algorithm the array Open is only scanned once starting from
Open[ϕ(q0)] to Open[C∗]. Testing a list for non-emptiness each scan-
ning step is done in constant time by maintaining appropriate element
counters. By these considerations, the total time effort for the maintain-
ment of Open is O(Nexp + C∗) (the list Open is accessed Nexp times
during the expansions of the algorithm). This contrasts to an effort of
O(NOpenNN · log NOpenNN ) in the case of a heap-based maintainment of Open

(note that O(NOpenNN ) = O(Nexp) by Equation (3.16)). With Inequality
(3.17) we have O(Nexp + C∗) = O(Nexp), thus the strategy described
can yield significant improvements for all application domains where a
relation similar to Inequality (3.17) can be observed.

3.2.4.3 Maintaining Closed States

In its general description, A∗ selects a most promising state q (i.e. the
state with the smallest ϕ-value) from Open for expansion, generates its
successors and inserts the successors into Open. The state q is inserted
into a list of so-called “closed” states Closed. This list is maintained
for the following reason: there can be more than one path by which
a particular state can be reached from the initial state (see state i in
Figure 3.23, depicting the last step of the example given on page 70).
Cheaper paths can be found after state q has been closed. In the general
case, the heuristic function h can be non-monotone. Thus, q may be
reopened during further progress of the algorithm since Theorem 3.12
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Figure 3.23. Two paths leading to state i.

does not apply in this case. Consequently, states still need to be stored
after expansion in order to be able to update path costs each time a
cheaper path is found.

Additionally, the step of inserting the successors into Open is more
complicated since it also has to be checked for cheaper paths found to
states already contained in Closed, e.g. see [Pea84].

However, in the case of a monotone function h, maintaining closed
states is much simpler, using the result from Proposition 1 [HNR68,
Pea84]: this result states that A∗, guided by a monotone heuristic, finds
optimal paths to all expanded states. In other words, no improved paths
to a state q can be found after q has been expanded. Consequently, no
code managing path cost updates for the states in Closed is necessary
in the algorithm. This significantly simplifies the situation.

Can we do without a list Closed then? With the previous considera-
tion, the answer seems to be “yes”. However, the following situation has
to be considered: Let q be a state which already has been expanded. As-
sume a path from the initial state to q worse than the best (i.e. cheapest)
one known is found after expansion of q. This is possible: Proposition
1 does not state that all paths to q have been considered at the time
of expansion. Proposition 1 only states that the paths considered so far
must already include the best one.

If the algorithm simply deleted q from Open, state q would be treated
as a newly encountered state. Consequently the method inserts q into
Open again. This is because there is no way to detect that q already has
been expanded before. Even worse, since the algorithm now works with
a ϕ-value for q higher than the (minimal) ϕ-value q showed at the time
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of expansion, q may in fact be identified again as minimal on Open and
thus q might be mistakenly expanded again. This is a consequence of the
series of minima being monotonically increasing (see Section 3.2.4.2).

This situation can easily be avoided by marking q as “closed” in the
usual adaptive hash table for states which is used by the framework
of the algorithm. As has been stated before in Section 3.1, basing the
implementation on an adaptive hash table (first suggested in [JKS93,
DDG00]) means an important improvement for the general framework.
Whenever a closed state is encountered again, the theory guarantees
that the newly found path is worse than the best one found at the time
of expansion and the algorithm ignores this state.

3.2.4.4 Reconstruction Techniques

This section describes an implementation technique of the A∗-based
approach to exact BDD minimization which significantly reduces the
space requirement of the A∗-algorithm. This is an effective remedy for
the large space demand of A∗ explained in Section 3.2.1.

In the A∗-based algorithm for exact BDD minimization, a path from
the initial state via a state q is described as a sequence of input vari-
ables. By construction the BDD representing state q respects a variable
ordering π ∈ Π(q) (see Equation (3.7) in Section 3.2.2). A simple ver-
sion of A∗ would store the currently cheapest known path to q in a state
attribute p(q). With the optimization described in this section, this is
not necessary.

All previous algorithms for exact BDD minimization store complete
variable orderings, as BDDs have to be reconstructed frequently during
an algorithm run. This is because storing (and reusing) complete BDDs
instead would cause an intolerable memory overhead.

As mentioned above, the modified version of the A∗-algorithm does
not store complete orderings. Therefore, a special BDD reconstruction
technique is necessary which is given in Paragraph ”BDD Reconstruc-
tion” of this section. This technique turns out to be significantly faster
than previous BDD reconstruction techniques in exact BDD minimiza-
tion.

Path Reconstruction. In algorithm Astute, a large reduction in mem-
ory requirement is achieved by the following strategy: Instead of storing
and continously updating the whole sequence of the cheapest known
path from the initial state to a state q, only one variable is stored in
p(q). This is the variable denoted at the transition of the predecessor to
q which yielded the cheapest path to q known so far.
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In the application of an exact BDD minimization algorithm, this saves
a large amount of memory since the memory requirement for p(q) now
is only O(log n) for one variable identifier instead of O(n · log n) where n
is the number of input variables. Moreover, the previous requirement of
O(n · log n) was the largest for all state attributes. A state q itself can
be encoded in space O(n) and g(q), h(q) are natural numbers requiring
space O(log n).

Of course, the full sequence of a cheapest known path to a state q must
be known at least at termination of an A∗-algorithm, as the optimal path
to a goal state is the solution computed by A∗. In the A∗-based exact
BDD minimization algorithm, the full sequence will be needed even more
frequently during the algorithm run, as is explained in the following
section.

The cheapest known path can be reconstructed as follows: the last
position in the sequence of variables along this path must be p(q) since
this was the variable annotated at the last transition to q. This transition
was

r := q \ {p(q)} p(q)−→ q.

Hence, with an analogous argument, the position before the last position
must be p(r) etc. In this, in a kind of “reverse construction”, the last
up to the first position of the ordering along the cheapest known path
can be reconstructed one after the other.

Assuming a good hashing function designed to access p(q) as entry
in a hash table via key q, i.e. assuming quasi-constant access behavior,
the run time complexity of the described path reconstruction is only
O(n) where n is the number of input variables of the BDD. Hence, this
operation has minor time complexity which is negligible compared to
other dominating operations carried out with each expansion (e.g. vari-
able shifts).

This section is finished with a formal proof that the above technique
is correct, i.e. soundness of the modified A∗-algorithm is preserved.

Lemma 3.20 Consider an A∗-algorithm with the modification that for
each state q only the label of the last transition which was yielding a de-
crease of g(q) is stored in p(q) during the algorithm run. Then the full
sequence π(1), . . . , π(|q|) of a cheapest known path from the initial state
to a state q can be reconstructed as

π(i) = p(q \
|q|⋃

j=i+1

{π(j)})

for 1 ≤ i ≤ |q|.



98 ADVANCED BDD OPTIMIZATION

That is, starting with π(|q|) = p(q), the full sequence π(1), . . . , π(|q|) can
be iteratively reconstructed going from right to left, using all previously
constructed rightmost elements in this sequence.

Proof. The proof is an induction on k := |q|. First, let k = 0. Then
q must be the initial state. The only path from the initial state to q
is the empty sequence which clearly is cost minimal, i.e. the cheapest
known path. Now assume the result holds for k and let |q| = k + 1.
W.l.o.g. let p(q) = xm. Then r := q \ {xm} is the predecessor of q

(i.e. r
xm−→ q) on the cheapest known path from the initial state to q. Let

πr be the cheapest known path from the initial state to r. It is |r| = k,
hence by induction hypothesis, πr can be reconstructed and it is

πr(i) = p(r \
|r|⋃

j=i+1

{πr(j)})

and since r is the predecessor of q on the cheapest known path for q
and, as the key observation, since a cost-minimal path must consist of
cost-minimal sub-paths, we have

πq(i) = p((q \ xm) \
|q|−1⋃
j=i+1

{πq(j)}) (3.18)

for 1 ≤ i ≤ |q| − 1. Now the cheapest known path to q can be recon-
structed by simply appending the variable xm to the sequence of vari-
ables in πr. Consequently, we also have πq(|q|) = xm = p(q), yielding
the claimed result together with Equation (3.18). �

BDD Reconstruction. As all exact BDD minimization algorithms
suggested so far, the A∗-based approach needs to reconstruct BDDs
respecting a certain variable ordering: prior to expansion of a state q,
a BDD respecting an ordering π ∈ Π(q) is reconstructed in line (14) of
algorithm Astute (see also Equation (3.7) in Section 3.2.2). The first |q|
positions of such an ordering are obtained with the path reconstruction
technique of the previous section. The remaining last n − |q| positions
can in principle be chosen arbitrarily.

Unfortunately, this sometimes may result in an unacceptable large
increase of the size of the lower part of the BDD. In Section 3.1.3.2,
discussing the BDD reconstruction method applied in JANUS, a remedy
for this effect was suggested which tries to avoid moving away from
good orderings: whenever the size of the reconstructed BDD exceeds
the original size of the BDD by a certain factor, the remaining positions
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π(|q + 1|), . . . , π(n) are chosen from the old ordering of the reconstructed
BDD. This was possible as previous approaches stored complete variable
orderings.

As complete orderings are not stored in the A∗-based approach (as
explained in the previous section), a more sophisticated technique for
this must be found. The A∗-based method is directly oriented towards
an ordering that is already known to be good. The experiments show
that this is more effective, see Section 3.2.6.

In the following the former approach of Section 3.1.3.2 is compared
to the new BDD reconstruction technique given here in detail. For this,
first the reason behind the effectiveness of the technique used in JANUS
is identified. By this more insight into the problem is gained. Second,
a different method is suggested based on the new view of the problem.

The following holds for all exact BDD minimization algorithms pub-
lished so far: at the start of the algorithm, a good initial ordering is
determined by Rudell’s algorithm for dynamic reordering (see Section
2.4.7.2). This ordering changes during the algorithm run by the shifting
of variables. These shifts either extend orderings by one (next) vari-
able or states are expanded (as in the A∗-based approach to exact BDD
minimization). In top-down approaches like the method presented here,
variables are shifted one after the other from the lower part to the upper
part of the BDD. In this, (with an additional assumption) the following
holds:

The relative order of the variables in the lower part re-
mains the same as in the initial ordering.

(3.19)

Example 3.21 Let the initial ordering π be

π(1) = x1, π(2) = x2, π(3) = x3, π(4) = x4, π(5) = x5.

Let F be a BDD respecting π and let the upper part consist of the first two
BDD-levels. Therefore, the lower part consists of the last three BDD lev-
els. Then, the relative ordering in the lower part is π−1(x3) < π−1(x4) <
π−1(x5).

If x3 is shifted to the second level, i.e. the bottommost level of the
upper part, the resulting ordering is

π(1) = x1, π(2) = x3, π(3) = x2, π(4) = x4, π(5) = x5.

The number of variables in the lower part has decreased by one and the
relative ordering now is π−1(x4) < π−1(x5) for the variables x4 and x5

in the lower part as well as π−1(x4) < π−1(x5) in the initial ordering.

In detail, the situation is as follows: as is common for all recent methods,
all variables in the lower part are shifted to the bottommost position in
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the upper part. These shifts provide all possible extensions of the order-
ing (in the B&B-based approaches) or expansions of the current state
(in the A∗-based approach). After that, the upper part has increased
by one variable and the above is repeated. The above Invariance (3.19)
only holds if the following assumption is met: the shifts to the same
(bottommost) position must be undone, i.e. a variable which was shifted
up must be shifted back to its old position before choosing the next vari-
able to shift (see also the algorithms FizZ and JANUS in Section 3.1).
That way, the original situation is reestablished before each next shift.
Otherwise the relative order of the initial ordering is destroyed more and
more for the variables in the lower part by every variable shift.

Example 3.22 If x4 is shifted to the second level after having shifted
x3 in the above example, the resulting ordering is

π(1) = x1, π(2) = x4, π(3) = x3, π(4) = x2, π(5) = x5.

If now x5 is shifted to the second level, the ordering

π(1) = x1, π(2) = x5, π(3) = x4, π(4) = x3, π(5) = x2

is obtained. In the lower part, the relative ordering is π−1(x3) < π−1(x2)
whereas it is π−1(x2) < π−1(x3) in the initial ordering.

That way, the algorithm stays as close as possible to an example of a good
ordering: the initial ordering. The risk of BDD explosion in the lower
part is kept minimal and non-accumulative, i.e. small increases in size
are not propagated to other BDDs and hence do not sum up to a larger
increase.

In the upper part a new order of the variables is established gradually.
Bad orderings in the upper part yield large sizes and hence soon stop
that ordering from being further examined, either due to exclusion by
bounds (as in B&B methods) or by the evaluation of a cost function
in A∗. Hence, explosions in the upper part can be expected not to be
propagated very far to other BDDs during the algorithm.

Summarized: if BDDs are reconstructed to their old ordering, i.e. the
ordering they had achieved from a previous step (as outlined above),
Invariance (3.19) holds. By this, moving away from good orderings is
avoided.

Unfortunately, the previous assumption that every shift to the bot-
tommost position is undone cannot be met in practice since this in-
volves too many additional, time-consuming variable shifts (see also the
description of the undo-operation in the macro given in Figure 3.6 in
Section 3.1). Hence, in all recent approaches shifts are undone only, if
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the size of the BDD increased too much by shifting. Hence, the strategy
described in Section 3.1.3.2 will fail to address the true cause of the BDD
explosion problem if too many shifts are not followed by an undo.

Now that more insight into the nature of the problem has been gained,
a better solution is almost obvious: at state q, instead of returning to
the old ordering of the BDD to reconstruct for q, the ordering of the vari-
ables in the lower part is directly set such that the same relative order-
ing of these variables as in the initial ordering is established. Therefore,
the initial ordering is stored at start of the method to keep it avail-
able during the whole algorithm run. Since the old ordering of the re-
constructed BDD does not need to be known, this method can easily
be applied together with the path reconstruction method described in
the previous section.

3.2.4.5 State Expansion Technique

In this section a unique state expansion technique is described which
determines the cost of the resulting transitions without involving time
consuming variable shifts.

Suppose a BDD for a Boolean function f is minimized. When a state
q is expanded in algorithm Astute, for all successors q′ = q ∪ {xi} (xi ∈
XnXX \ q) the costs for the transitions q

xi−→ q ∪ {xi} must be computed.
By the construction described in Section 3.2.2 this reduces to computing
the terms label(BDD(f, πi), xi) where πi is a variable ordering such that
πi ∈ Π(q) and πi(|q′|) = xi. A trivial approach to this is the actual con-
struction of the BDDs BDD(f, πi) requiring the shifting of the variable
xi to the (|q|+1)-th level. This is a very time consuming operation with
the potential risk of increasing the number of BDD nodes (“BDD explo-
sion”). The approach given here applies a more sophisticated technique
for this, using an argument which follows Lemma 3.14 in Section 3.2.3.
Reconsider Example 3.15: With the annotated sets of the left BDD in
Figure 3.18 it can be seen without actually shifting a variable that also
two nodes labeled x4 would be situated at the third level for the ordering

π−1(x1) < π−1(x2) < π−1(x4) < π−1(x3).

This argument is used in algorithm Astute in Figure 3.19, line (17) as
follows: a BDD F for q with an ordering π ∈ Π(q) can be assumed
by construction (see above and Section 3.2.2). Computing the terms
label(BDD(f, πi), xi) for all xi ∈ Xn \ q simplifies to counting those co-
factors with respect to a variable in q which essentially depend on xi.
To prepare this, a bottom-up traversal in the levels |q| + 1, . . . , n asso-
ciates with each node a set of those variables which the function repre-
sented by the node essentially depends on. The sets annotated at the
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left BDD in Figure 3.18 demonstrate the idea of this construction: at a
node which is testing a variable xi, the following interrelation derived
from the Shannon decomposition is used:

support(f) = {xi} ∪ support(fxff
i=1) ∪ support(fxff

i=0)

where support(f) again denotes the set of variables in the support of
f , i.e. the set of variables f essentially depends on. The sets are imple-
mented as bit-sets, each bit corresponding to the subscript (index) of a
variable (see variable q in line (5) in Figure 3.24, q is a mask of n bits).
In line (6), the i-th bit is set in mask q if var(v) = xi. Hence, the union
of these sets can be implemented with a simple bitwise or-operation (see
line (8)). After construction of these sets, in top-down manner, the re-
quired cofactors are identified and counted all at once in one traversal
(increasing counters for every variable if a cofactor essentially depends
on that variable, see array label in Figure 3.24). All this can be done
with a procedure traversing the nodes (twice) in the levels |q|+ 1, . . . , n
which does not involve any variable shifts (see Figure 3.24).

3.2.5 Bottom-Up Approach
In the previous sections, an A∗-based approach to exact BDD mini-

mization has been described which should be called a top-down approach
for the following reason: a state q always is associated with a BDD whose
first |q| variables are ordered according to the first |q| positions of the
variable ordering which is annotated at the transitions of the currently
considered path to q (see Section 3.2.2). There is also vital interest in
bottom-up approaches: in Section 3.1.4, experiments have been reported
which show that for arithmetic functions like multipliers a bottom-up
approach can be faster than a top-down approach by one order of mag-
nitude. Moreover, also some benchmark test-cases indicated exceptions
from the general rule that top-down approaches are superior to their
bottom-up counterparts. Similar results were reported in [DDG00].

The conclusion is that e.g. running both a good bottom-up and top-
down approach in parallel on different machines can help to find a so-
lution faster. This is an industrial standard practice often applied if for
a given problem the best of several available algorithms is not known
in advance. Hence, the added flexibility of an approach which can be
applied both top-down and bottom-up would be greatly desirable.

In this section an extension of the A∗-based approach to exact BDD
minimization is described which can be applied bottom-up. The basic
framework remains the same with the following differences: instead of
considering the first |q| variables and positions of the variable orderings
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(1) compute dependencies(BDD F , int level , int n)
(2) proc
(3) for i := n downto level + 1 do
(4) for each node v in level i do
(5) q := 0;
(6) set the (varindex(v))-th bit in q;
(7) if i < n then
(8) set all bits in q which are set in

masks[hash(then(v))] or masks[hash(else(v))];
(9) end–if

(10) masks[hash(v)] := q;
(11) end–for
(12) end–for
(13) set all elements of the array label to 0;
(14) for i := level + 1 to n do
(15) for each node v in level i representing a cofactor

with respect to the first level variables do
(16) for j := 0 to n − 1 do
(17) q := masks[hash(v)];
(18) if the j-th bit is set in q then
(19) label [j[[ ] := label [j[[ ] + 1;
(20) end–if
(21) end–for
(22) end–for
(23) end–for
(24) end–proc

Figure 3.24. Computing the dependencies.

annotated along the currently considered path to q, always the last |q|
variables and respective positions are chosen.

This slightly changes the transition cost function: the cost of a tran-
sition q

xi−→ q ∪ {xi} now is

cf,n(q
xi−→ q ∪ {xi}) = |dep(f, Xn \ (q ∪ {xi}), xi)| .

However, the required well-definedness is preserved. Another difference
lies in the use of the heuristic function h: let (fiff )(1≤i≤m) be the family
of single-output functions constituting a Boolean multi-output function
f : Bn → Bm. Let r upper: Xn → IN; r lower: Xn → IN; be defined as

r upper(q) = |{fiff | ∃x ∈ q: fiff essentially depends on x}|
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and

r lower(q) = |{ fiff |� ∃�� x ∈ q: fiff essentially depends on x and
fiff /∈// cof(f, q) }|.

Now let roots: Xn → IN; roots(q) = r upper(q) + r lower(q). The
bottom-up approach uses the heuristic function

h(q) = max (|cof(f, Xn \ q)| − roots(Xn \ q), n − |q|) .

First, some motivation is given to this notation and definitions: Let
q ⊆ Xn and consider a BDD F representing f and respecting a variable
ordering π with π ∈ Π(q). The term r upper(q) (“upper outputs”)
denotes the number of single output functions which are represented
by a node in the upper part of F , i.e. represented by a node labeled
with a variable in q. The term r lower(q) (“lower outputs”) denotes the
number of single output functions which are represented by a node in
the lower part of F , i.e. they are represented by a node labeled with a
variable in Xn\q, and whose representing nodes do not already represent
a cofactor with respect to the variables in q. The idea behind the last
definition is not to count functions or the respective nodes twice, as the
lower bound used, h(q), already counts the functions (or the representing
nodes, respectively) in cof(f, Xn \ q).

The function h can be interpreted as an acceleration of the well-known
lower bound given in the exact minimization algorithm of [ISY91]: this
bottom-up B&B algorithm uses the number of nodes situated at the
(n − |q| + 1)-th level decreased by the number of output nodes11. The
idea is to calculate a minimal number of nodes in the part of the BDD
above level n − |q| + 1 to connect the root nodes to the nodes of level
n − |q| + 1.

By Lemma 3.14, the nodes in level n−|q|+1 represent cofactors with
respect to the first n−|q| variables of the ordering, i.e. they are a subset
of cof(f, Xn \ q). With that the heuristic function h proposed here for a
bottom-up approach is tighter than that used in [ISY91].

How can it be seen that h(q) is a lower bound on the minimal number
of nodes in levels 1, . . . , |q| then? For now it can simply be remarked that
an idea similar to Lemma 3.5 and Corollary 3.6 applies. No new proof
for this is given here since in the next section a stronger result will be
proven, namely the monotonicity of h. With the result of Proposition
2 in Section 3.2.3, the required result, the admissibility of h, directly
follows.

11In fact, in [ISY91] the bound is actually given only for the case of a BDD representing a
single output function, hence one output node is substracted.
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3.2.5.1 Monotonicity

The proof of the monotonicity of h is prepared with the following two
results. Let roots, r upper and r lower be defined as above.

Lemma 3.23 For q ⊂ q′ ⊆ Xn we have roots(q) ≤ roots(q′).

Proof. It is r upper(q) + r lower(q) ≤ r upper(q′) + r lower(q′) since
“lower outputs” on the left side of the inequality which are not always
counted by definition, turn to “upper outputs” on the right side which
are always counted. �

Lemma 3.24 Let f :Bn → Bm be a Boolean multi-output function, let
q ⊆ Xn and xi ∈ Xn \ q. It is

|cof(f, q ∪ {xi})| ≤ |dep(f, q, xi)| + |cof(f, q)| .

Proof. Functions contained in cof(f, q ∪ {xi}), but not contained in
ind(f, q, xi), must be direct cofactors in xi of functions in cof(f, q) that
are essentially depending on xi. Formally, we have

dcof :=
{
g|xi=b | g ∈ dep(f, q, xi) and b ∈ B

}
⊇ cof(f, q ∪ {xi}) \ ind(f, q, xi).

We have ind(f, q, xi) ⊆ cof(f, q ∪ {xi}) by Equation (3.10) in Section
3.2.3. Hence, the cofactor set cof(f, q∪{xi}) can be partitioned into two
disjoint sets, ind(f, q, xi) and some set subdcof ⊆ dcof . Consequently,

|ind(f, q, xi)| = |cof(f, q ∪ {xi}) \ subdcof |
= |cof(f, q ∪ {xi})| − |subdcof |
≥ |cof(f, q ∪ {xi})| − |dcof |
≥ |cof(f, q ∪ {xi})| − 2 · |dep(f, q, xi)| (3.20)

since 2·|dep(f, q, xi)| is an upper bound for the number of direct cofactors
in xi of functions in dep(f, q, xi). Now we have

|cof(f, q ∪ {xi})| − |dep(f, q, xi)|
= |cof(f, q ∪ {xi})| − 2 · |dep(f, q, xi)| + |dep(f, q, xi)|
≤ |ind(f, q, xi)| + |dep(f, q, xi)| (3.21)

= |cof(f, q)|
and the result follows. Inequality (3.21) holds with Inequality (3.20).

�
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We are now able to prove the desired monotonicity of h.

proposition 5 Let f :Bn → Bm be a Boolean multi-output function
which essentially depends on every variable in Xn. The heuristic func-
tion h: 2Xn → IN

h(q) = max (|cof(f, Xn \ q)| − roots(Xn \ q), n − |q|)
is monotone with respect to the A∗-algorithm outlined in Section 3.2.1.

Proof. Like in the proof to Proposition 3, we first assert that in fact we
have h(Xn) = 0 as required by definition of heuristic functions. Then
we have to show again the validity of Inequality (3.13) in Section 3.2.3,
i.e. we show

h(q) ≤ |dep(f, q, xi)| + h(q ∪ {xi}). (3.22)

Again, the proof is a careful case analysis of the possible outcomes for
the maximum function.

Case 1):

|cof(f, Xn \ q)| − roots(Xn \ q) > n − |q| ,
|cof(f, Xn \ q ∪ {xi})| − roots(Xn \ q ∪ {xi}) > n − |q ∪ {xi}|

Inequality (3.22) follows directly with Lemma 3.24 and Lemma 3.23.

Case 2):

|cof(f, Xn \ q)| − roots(Xn \ q) ≤ n − |q| ,
|cof(f, Xn \ q ∪ {xi})| − roots(Xn \ q ∪ {xi}) ≤ n − |q ∪ {xi}|

We have to show

n − |q| ≤ |dep(f, q, xi)| + n − |q ∪ {xi}| ,
which has already been proven in Case 2) of Proposition 3 in Section
3.2.3.

Case 3):

|cof(f, Xn \ q)| − roots(Xn \ q) > n − |q| ,
|cof(f, Xn \ q ∪ {xi})| − roots(Xn \ q ∪ {xi}) ≤ n − |q ∪ {xi}|

The proof is analogous to the one given for Case 3) of Proposition 3
in Section 3.2.3.



Exact Node Minimization 107

Case 4):

|cof(f, Xn \ q)| − roots(Xn \ q) ≤ n − |q| ,
|cof(f, Xn \ q ∪ {xi})| − roots(Xn \ q ∪ {xi}) > n − |q ∪ {xi}|

The proof is analogous to the one given for Case 4) of Proposition 3
in Section 3.2.3. �

3.2.5.2 Avoiding Transitions to Successor States

The top-down approach described in Section 3.2.4 uses a very effi-
cient state expansion technique (see Section 3.2.4.5). By that technique,
all but one variable shift needed to extend a state q to a successor q′

(i.e. to build the transition q −→ q′) becomes obsolete: the only variable
shift still left to perform only once the first time a successor state q′ is
encountered is the one in line (10) in macro UPDATE-STATE-DATA-
ASTAR-TD in Figure 3.22, triggered by the conditional statement in
line (9). This shift prepares the computation of the heuristic function
h. Without the expansion technique given in Section 3.2.4.5, much more
variable shifts would be necessary: a successor state q′ with |q′| = k is be-
ing visited up to k times in the progress of one step of the minimization
algorithm since k distinct states p ⊂ q with |p| = k−1 have the successor
q′ in common. With the standard approach to state expansion, every
new visit would force a new variable shift. With the suggested expansion
technique, revisiting q′ does not involve any further variable shifts: h(q′)
already has been computed the first time q′ was visited and hence, the
variable shift of line (10) is not executed again.

This idea can be seen as an acceleration of the “early pruning” tech-
niques of the algorithm JANUS presented in Section 3.1: assume a top-
down approach. When revisiting successor states, JANUS avoids re-
peated variable shifts where they can be identified as unneeded. This is
done using two lower bounds. A first lower bound lb cost: 2Xn → IN is
used to decide whether revisiting a state q still contributes to the com-
putation of min cost(q, q), a quantity which corresponds to g∗(q) in the
A∗-based approach. If this is not the case, the algorithm does not visit
q again. A second bound used is lb combined: 2Xn → IN;

lb combined(q) = hα(q) + hω(Xn \ q) + 1 (3.23)

where hα denotes the heuristic function h defined in Section 3.2.1 and
hω denotes the heuristic function h defined in Section 3.2.5. As usual, it
excludes states from further examination. But now this already happens
during the progress of each of the iteration steps. This is possible since
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lb combined(q), in contrast to lower bounds used in previous approaches,
does not depend on the quantity min cost(q, q). Hence, it can already be
computed before min cost(q, q) is determined. That way, state exclusion
is done earlier than for the bounds suggested in former approaches. A
state was excluded by these bounds at the end of each step at the earliest.
As soon as a state is excluded, no further revisits take place.

While JANUS cannot always avoid the expensive variable shift caused
by revisiting a state, the suggested bounds have been shown to be effec-
tive, see Section 3.1.4.

3.2.5.3 Early Pruning

Since the proposed state expansion technique yields a large gain in
run time, it would be desirable to transfer it to the bottom-up approach.
Unfortunately, this seems impossible; in the BDD representing a state
to expand, the required cofactors are not represented by a single BDD
node. Moreover, the set of cofactors to consider changes with every
variable by which a state is extended to a successor state. Hence it can
be conjectured that an efficient graph traversing routine identifying and
counting dependent cofactors is not available.

However, it is possible to use the “early pruning” techniques of JANUS
in the bottom-up approach. Moreover, the method of delaying the com-
putation of h as described in Paragraph “Delayed State Insertion” in
Section 3.2.4.1 can be integrated into the pruning techniques. Assume
a bottom-up approach: a problem is that for a state q, lb combined(q)
can not be used until hω(q) = h(q) is known (see Equation (3.23)).
Therefore, in order to be able to exclude states right from the start,
a weaker form of this lower bound, lb combined weak(w q), is used until
lb combined(q) becomes available. Let hweak

α : 2Xn → IN, hweak
ω : 2Xn →

IN;

hweak
α (q) = max (label(F, |q| + 1), n − |q|) ,

hweak
ω (q) = max (label(F, |Xn \ q| + 1) − roots(Xn \ q), n − |q|) .

These are weaker forms of the heuristic functions proposed before: basi-
cally, in the corresponding “strong” forms, a term |cof(f, q)| for a state
q has been replaced by label(F, |q| + 1). By Lemma 3.14, these nodes
of level |q|+ 1 represent cofactors with respect to the first q variables of
the ordering, i.e. they are a subset of cof(f, q). Thus, we clearly have
hweak

α (q) ≤ hα(q) and hweak
ω (q) ≤ hω(q) for all states q. The weaker

form of the lower bound lb combined weak: 2Xn → IN is now defined
analogously to lb combined(q):

lb combined weak(q) = hweak
α (Xn \ q) + hweak

ω (q) + 1
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A sketch of the resulting code for the bottom-up version of the A∗-
based approach to exact BDD minimization is given in Figure 3.25.
The algorithm is quite similar to the top-down approach in Figure 3.19,
with the following differences: the top-down approach uses the state
expansion technique described in Section 3.2.4.5 (see line (17) in Figure
3.19). Unfortunately, this is not possible for the bottom-up approach as
has been explained before in this section. As a consequence, the bottom-
up approach needs to perform variable shifts to construct the successor
states during a state expansion (see line (24) in Figure 3.25). To be able
to restrict their number with the already known techniques for state
exclusion (as described above in this section and given in Figure 3.26),
in line (26) the macro UPDATE-STATE-DATA-ASTAR-BU is used (see
Figure 3.27 for the code of this macro).

In line (12) of Figure 3.27, the lower bound lb combined is used
if the heuristic function has already been computed, otherwise
lb combined weak is used (line (16) in Figure 3.27).

3.2.6 Experimental Results

All experimental results have been carried out on a machine with
an Athlon processor running at 1.4 GHz, with a main memory of 1.5
GByte and a run time limit of 20,000 CPU seconds. The A∗-based
algorithm in its final stage of development is called Astute. In the exper-
iments also an earlier version of the algorithm has been included with-
out the path and BDD reconstruction techniques described in Section
3.2.4.4: this algorithm is called Astir. Instead of using path reconstruc-
tion, complete paths to states are stored with each state and instead of
the BDD reconstruction technique given in Section 3.2.4.4, the technique
presented in Section 3.1.3.2 is used. In the experiments Astute has been
compared to the best known classical B&B method, called FizZ and to
the approach JANUS. Both have been described in Section 3.1.

The implementation of the A∗-based algorithms Astute and Astir is
based on the implementation of JANUS. All algorithms have been in-
tegrated in the CUDD package [Som02]. By this it is guaranteed that
they run in the same system environment.

In a first series of experiments, a plain B&B-algorithm is stepwise
turned into the A∗-based approach Astute, thereby examining the effect of
the new techniques incorporated into A∗ as explained in Section 3.2.4 in
detail. In the first column of Table 3.3 the name of the function is given.
Column in (out) gives the number of inputs (outputs) of a function.
Column opt shows the number of BDD nodes needed for the minimal
representation. In column B&B, the run time in CPU seconds for a B&B
algorithm for the best plain B&B approach called FizZ (see Section 3.1)
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(1) compute optimal ordering(BDD F , int n)
(2) proc
(3) INIT-ASTAR
(4) while 1 do /* until doomsday */
(5) determine q ∈ Open with minimal

g[hash(q)] + h[hash(q)];
(6) CHECK-EARLY-TERMINATION
(7) if q = Xn then
(8) reconstruct ordering as the sequence of the path

to q;
(9) doomsday:=1;

(10) end–if
(11) if doomsday then
(12) exit while loop;
(13) end–if
(14) reconstruct an appropriate ordering π ∈ Π(Xn \ q)

with path reconstruction;
(15) establish π on F ;
(16) upper bound := update upper bound();
(17) for each xi ∈ Xn \ q do
(18) CHECK-SYMMETRY
(19) q′ := q ∪ {xi};
(20) if q′ /∈// states then
(21) g[hash(q′)] := ∞;
(22) end–if
(23) CHECK-EXCLUDED-ASTAR-BU
(24) shift xi to level n − |q|;
(25) newcost := label(F, n − |q|) + g[hash(q)];
(26) UPDATE-STATE-DATA-ASTAR-BU
(27) UNDO-SHIFT
(28) end–for
(29) end–while
(30) end–proc

Figure 3.25. Bottom-up approach of A
stute.

is given. Column plain A∗ states the run time for what essentially is the
A∗-approach as introduced in Section 3.2.4, but without incorporating
the B&B paradigm. The implementation here was based on JANUS
(which is based on FizZ). Next, column A∗/B&B gives the run time
for the combination of the two paradigms A∗ and B&B. The effect of
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(1) CHECK-EXCLUDED-ASTAR-BU
(2) macro
(3) if q′ already excluded or lb cost(q′) ≥ g[hash(q′)] then
(4) continue with for-loop;
(5) end–if
(6) end–macro

Figure 3.26. Checking for exclusion (early pruning).

(1) UPDATE-STATE-DATA-ASTAR-BU
(2) macro
(3) if q′ /∈// states or newcost < g[hash(q′)] then
(4) g[hash(q′)] := newcost ;
(5) p(q′) = xi;
(6) upper bound := update upper bound();
(7) if q′ /∈// states then
(8) states[hash(q′)] := q′;
(9) end–if

(10) if h[hash(q′)] not yet computed and
g[hash(q′)] + n − |q′| + 1 ≤ upper bound then

(11) h[hash(q′)] := compute lower bound(q′);
(12) if lb combined(q′) > upper bound then
(13) exclude q′;
(14) end–if
(15) else
(16) if lb combined weak(q′) > upper bound then
(17) exclude q′;
(18) end–if
(19) end–if
(20) if h[hash(q′)] computed and

g[hash(q′)] + h[hash(q′)] + 1 ≤ upper bound then
(21) if Open too crowded, resize it and

garbage-collect outdated entries;
(22) insert q′ into Open;
(23) end–if
(24) end–if
(25) end–macro

Figure 3.27. Updating the state data in the A∗-based bottom-up approach.
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Table 3.3. Effect of the techniques in A
stute

name in out opt B&B plain A∗ A∗/B&B expand Astute

cc 21 20 46 117s 65.7s 59.6s 54.3s 51.1s
cm150a 21 1 33 610s 241s 208s 124s 119s
comp 32 3 95 5606s 3859s 3533s 1702s 1477s
cordic 23 2 42 3.05s 2.65s 2.31s 1.43s 1.29s
cps 24 102 971 4396s 2406s 2380s 1590s 1380s
i1 25 16 36 29.4s 21.67s 18.04s 19.93s 18.0s
lal 26 19 67 677s 436s 402s 271s 242s
mux 21 1 33 610s 240s 208s 124s 119s
pcle 19 9 42 9.02s 5.96s 5.37s 4.18s 3.75s
pm1 16 13 40 0.55s 0.62s 0.57s 0.53s 0.54s
s208.1 18 9 41 8.44s 7.23s 6.52s 4.15s 3.72s
s298 17 20 74 13.46s 8.65s 8.43s 6.38s 6.00s
s344 24 26 104 1446s 955s 844s 630s 527s
s349 24 26 104 1447s 959s 844s 631s 527s
s382 24 27 119 802s 503s 469s 460s 390s
s400 24 27 119 802s 501s 469s 460s 390s
s444 24 27 119 779s 484s 461s 395s 324s
s510 25 13 146 13224s 6985s 5791s 3787s 3308s
s526 24 27 113 1196s 631s 600s 445s 391s
s820 23 24 220 2034s 1257s 1194s 847s 733s
s832 23 24 220 2076s 1249s 1193s 847s 730s
sct 19 15 48 8.62s 7.36s 6.74s 4.22s 3.83s
tcon 17 16 25 0.52s 0.73s 0.57s 0.57s 0.52s
ttt2 24 21 107 950s 610s 574s 416s 362s
vda 17 39 478 65.4s 34.8s 32.5s 31.9s 25.8s

using the state expansion technique of Section 3.2.4.5, avoiding many
variable shifts, can be seen in column expand. Finally, the last column
Astute gives the run times of the fine-tuned algorithm in its final stage
of development, using the efficient method for lower bound computation
described in Section 3.1.2.

As expected, the plain B&B method yields the largest run times.
Using the introduced A∗-paradigm with the path reconstruction tech-
nique instead can reduce run time to much less than half the one needed
for B&B (e.g., see cm150a, mux). The improvement is robust, yielding
consistent results. Combining B&B and A∗, thus incorporating the tech-
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niques of delayed state insertion and of early termination as explained
in Section 3.2.4.1, for almost every test-case yields a further, signifi-
cant improvement. If the state expansion technique of Section 3.2.4.5 is
used in addition, the reductions in run time can be high for some of the
larger test-cases (e.g., see comp) and is still significant for most of the
other, smaller test-cases. Due to incorporating some of the fine-tuning
of JANUS, the final algorithm Astute shows a further improvement on all
but the smallest test-cases. These reductions in run time are sometimes
even higher than those obtained by using the improved state expan-
sion technique (see s382, s400). Comparing the final algorithm Astute to
the best known “classical” B&B-method which is following the standard
approach using only one lower bound, called FizZ (see Section 3.1), a
reduction in run time of up to 80.5% has been obtained (see cm150a,
mux). On average, the speed-up is 69.8%. In this, using the optimized
A∗-paradigm instead of a plain B&B-paradigm yields a consistent and
robust reduction in run time of 70-80% (a speed-up of three up to five
times faster), clearly demonstrating the efficiency of the approach.

For arithmetic functions, i.e. adders and multipliers, the reduction in
run time by going from B&B to A∗ can be even higher, as the results
of the next test-suite demonstrate. Moreover, the fact that arithmetic
functions are easily scalable by the number of input variables n, allows
to analyze the development of the speed-up with n.

In a second series of experiments arithmetic functions are considered,
i.e. adders and multipliers (see Tables 3.4, and 3.5). The object of in-
vestigation here was a comparison of the run times for the first to the
last algorithm in the series of methods ranging from plain B&B to the
fine-tuned Astute-approach, as studied in detail in the first series of ex-
periments. First a plain B&B method (i.e. FizZ) and the top-down ap-
proach of Astute, in the following denoted Astute ↓, has been applied both
to adders and multipliers, see Table 3.4. In columns time and space the
run time in CPU seconds and the space requirement in MByte for the
two approaches are given, respectively. In the case of adder functions,
for the set of test-cases, the results show a tremendous speed-up of up
to one order of magnitude when using Astute ↓ instead of plain B&B,
i.e. FizZ has been outperformed significantly. Moreover, both for adder
and multiplier functions the speed-up appears to grow linear with n, the
number of input variables of the arithmetic circuit. This can be seen in
Figure 3.28 and Figure 3.29.

In Table 3.5 the run times for the bottom-up version of Astute, in
the following denoted Astute ↑ when applied to multipliers are compared
to the previous results with Astute ↓. The top-down approach failed to
minimize mult9 within the given time-limit of 20,000 seconds. In Section
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Table 3.4. Minimizing arithmetic functions with B&B and A
stute ↓

name in out opt B&B Astute ↓
time space time space

adder8 16 8 36 0.11s <1 0.39s <1
adder12 24 12 56 1.73s <1 0.92s <1
adder16 32 16 76 15.0s0 <1 4.02s 2
adder20 40 20 96 88.4s 4 17.4s 6
adder24 48 24 116 426s 8 65.3s 19
adder28 56 28 136 1842s 34 214s 38
adder32 64 32 156 8075s 76 645s 142
mult2 4 2 12 0.01s <1 0.34s <1
mult3 6 3 41 0.02s <1 0.38s <1
mult4 8 4 135 0.06s <1 0.37s <1
mult5 10 5 388 0.66s <1 0.62s <1
mult6 12 6 1098 9.21s <1 4.36s 3
mult7 14 7 3082 218.2 <1 85.9s 8
mult8 16 8 8658 13580s 3 3878s 25

Table 3.5. Minimizing multiplier functions top-down and bottom-up

name in out opt Astute ↓ Astute ↑
time space time space

mult2 4 2 12 0.34s <1M 0.32s <1M
mult3 6 3 41 0.38s <1M 0.34s <1M
mult4 8 4 135 0.37s <1M 0.38s <1M
mult5 10 5 388 0.62s <1M 0.61s <1M
mult6 12 6 1098 4.36s 3M 1.88s 3M
mult7 14 7 3082 85.9s 8M 18.45s 8M
mult8 16 8 8658 3878s 25M 422s 23M
mult9 18 9 24326 – – 7340s 71M

3.1.4 it has been demonstrated that, for multipliers, the run time of the
bottom-up approach of JANUS, i.e. JANUS ↑, is significantly shorter
than that of JANUS ↓, achieving speed-ups of one order of magnitude.
Similar results have been observed comparing the bottom-up version
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Figure 3.28. Run times of B&B and A
stute for adder functions.
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Figure 3.29. Run times of B&B and A
stute for multiplier functions.

Astute ↓ with the top-down version Astute ↑, also see Figure 3.30. The
speed-up even grows faster than linear with n in this case.

In a next series of experiments all algorithms have been applied to
the set of benchmark circuits from LGSynth93 [Col93]. The results are
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Table 3.6. Comparison of JANUS, A
stir and A

stute

name JANUS Astir Astute

time space a.s. time space a.s. time space a.s.

cc 84.9s 34M 47.43 51.6s 85M 14.48 51.1s 36M 14.60
cm150a 311s 35M 49.79 120s 88M 7.22 119s 39M 7.63
comp 3900s 124M 126.22 1894s 649M 29.86 1477s 288M 33.96
cordic 1.82s < 1M 25.43 1.35s < 1M 18.82 1.29s < 1M 19.17
cps 2751s 58M 56.13 1373s 186M 39.97 1380s 78M 40.05
i1 18.8s 10M 53.36 17.2s 25M 12.87 18.0s 11M 12.98
lal 504s 75M 74.72 243s 378M 25.01 242s 145M 25.50
mux 311s 35M 74.72 120s 88M 7.24 119s 39M 7.68
pcle 5.18s 3M 22.88 3.61s 6M 12.79 3.75s 3M 13.60
pm1 0.34s < 1M 22.62 0.61s < 1M 10.25 0.54s < 1M 11.23
s208.1 5.62s 2M 24.75 3.84s 4M 17.79 3.72s 3M 17.10
s298 9.06s 2M 29.13 6.17s 6M 17.52 6.00s 3M 17.56
s344 950s 105M 71.44 537s 363M 28.74 527s 146M 29.10
s349 950s 105M 71.44 537s 363M 28.74 527s 146M 29.10
s382 461s 71M 49.41 313s 359M 14.06 390s 143M 14.07
s400 456s 71M 49.41 312s 359M 14.06 390s 143M 14.07
s444 508s 78M 50.58 314s 362M 14.25 324s 144M 14.16
s510 7342s 386M 75.40 3568s 1264M 25.05 3308s 596M 24.55
s526 924s 105M 63.85 365s 365M 30.26 391s 149M 30.25
s820 1235s 56M 60.37 734s 180M 43.46 733s 76M 43.45
s832 1288s 56M 60.09 731s 181M 43.46 730s 76M 43.41
sct 5.97s 3M 27.08 3.86s 6M 19.85 3.83s 3M 19.90
tcon 0.28s < 1M 21.29 0.55s 1M 7.69 0.52s < 1M 7.69
ttt2 578s 78M 55.15 345s 360M 30.55 362s 144M 30.59
vda 34.4s 3M 27.30 26.0s 6M 35.50 25.8s 4M 35.54

given in Table 3.6. In columns time and space the run time in CPU
seconds and the space requirement in MByte for the algorithms are given.
For every algorithm, column a.s. gives the number of variable swaps
needed on average to set the variable ordering for the BDD representing
the next state to “process” (i.e. to extend its corresponding ordering in
the case of JANUS or to expand it to its successor states in the case of
the A∗-based approaches).

As the results in Table 3.6 show, algorithm Astute has a reduced mem-
ory requirement when compared to the earlier version Astir by up to
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stute ↑ for multiplier functions.

61.6% (e.g., see lal), on average the reduction is 57.5%. The technique to
avoid the storing of complete orderings is a significant, non-heuristic and
thus robust improvement successfully addressing the problem of higher
memory consumption of A∗-based approaches. In this, with the mem-
ory configuration of todays computer systems, the A∗-based approach
remains practical. The BDD reconstruction technique of Astute reduces
run time by up to 22.0% compared to Astute (e.g., see comp). This
method successfully avoids BDD explosions and achieves a significant
speed-up. This holds especially for the largest examples which are more
sensitive to variable ordering. Algorithm Astute is much faster than al-
gorithm JANUS. In comparison to JANUS, reductions in run time of
more than 60% can be obtained (e.g., see comp, mux, cm150a). On av-
erage a gain of 50.8% has been achieved. One reason for this large gain
is the reduction in the number of state expansions which can be up to
40.9%: e.g. for s526, Astute expands only 852179 states whereas JANUS
extends 1442625 variable orderings by one variable (which is the equiva-
lent to a state expansion in A∗). As can be expected from search theory,
the best-first strategy can yield large reductions in the number of state
expansions especially for the “harder” instances (more complex circuits)
which directly transfers to a reduction in run time.

In the experiments, a second reason for the high speed-up of Astute

compared to JANUS has been identified: typically, many states with
the same ϕ-value are reconstructed for expansion one after the other.
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Such states are represented by BDDs with a very similar variable or-
dering: to see this, let q, q′ ⊆ Xn be such two states, i.e. we have
|q| = |q′| =: k and ϕ(q) = ϕ(q′). By the definition of the evalua-
tion function, the sum of a) the number of nodes in the first k levels
and b) the number of cofactors referenced by these nodes is the same
for the BDDs representing q and q′. This condition strongly restricts
the possible variable orderings for q and q′, i.e. the orderings are re-
quired to be very “similar”. The situation is different for the classical
B&B algorithms as described in Section 3.1: here the “costs” of orderings
extended one after the other are not required to be equal (it suffices that
these costs are both less than the current upper bound). Hence, there is
no such strong condition restricting the orderings of two states that are
reconstructed one after the other. In the approach Astute, this results in
an average number of swaps needed to transform a given variable order-
ing into the ordering for the next state to expand that is much smaller
than in previous approaches, yielding significant smaller run times for
BDD reconstruction: in the experiments, this average number of vari-
able swaps is reduced by up to 84.7% in comparison to JANUS. E.g. for
cm150a the average number of swaps needed by JANUS is 49.79, but
only 7.63 for Astute. On average, a reduction in the number of variable
swaps of 56.0% has been obtained.

3.3 Summary

In this chapter, classical and recently published methods for exact
BDD minimization have been presented. For this purpose we started
with an observation of [FS90] regarding the invariance of level sizes with
respect to certain restricted variable movements. The first method yield-
ing a significant improvement over a naive brute-force search was based
on this observation.

Next, approaches based on B&B to prune the search space have been
described. The most recent one is called JANUS [EGD03b] and applies
an extended B&B-technique where more than one lower bound is used
in parallel. This technique enables us to often avoid repeatedly visiting
states. The lower bounds have been derived by generalization of a lower
bound known from VLSI design. Moreover, a faster method of lower
bound computation as well as an efficient method of partial BDD recon-
struction, which avoids many time consuming variable shifts have been
given.

The presentation of JANUS was finished by giving experimental re-
sults that clearly demonstrate the efficiency of both the presented top-
down and bottom-up approach. A comparison to the best previous min-
imization algorithm shows that run time can be reduced by up to 49%.
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The bottom-up approach of JANUS achieves speed-ups of two orders of
magnitude compared to the best previous bottom-up approach.

The latest development in exact BDD minimization is the shift to a
new paradigm, the A∗-algorithm. This is a search technique frequently
used in AI.

Recently, an A∗-based approach called Astute has been suggested
[EGD05]. In contrast to the classical approaches, search is reduced to
the computation of an optimal path in a state space. By a best-first
ordering of states, larger parts of the search space can be pruned than in
all approaches presented so far. Techniques to combine the A∗-algorithm
with classical B&B methods have been described, resulting in a further
pruning of states, reduction of memory requirement and less computa-
tions during the algorithm run. A technique to reconstruct paths rather
than persistently storing them was shown to largely reduce memory re-
quirement of A∗-based approaches. In the application of exact BDD
minimization, the reduction is almost 60% on average. A unique BDD
reconstruction technique has been presented which is more effective than
the best previously known technique. Moreover, the best-first ordering
of states speeds up the time-consuming operation of BDD reconstruction
significantly.

The presentation of the A∗-based approach to exact BDD minimiza-
tion is completed by experimental results that clearly demonstrate its ef-
ficiency. A comparison to the most recent B&B-based method JANUS
shows that run time can be reduced by more than 60%.

Search is a task which frequently occurs in different areas of VLSI
CAD. Moreover, applying the paradigm of state space exploration will
often help to reduce the complexity of typical search problems in ad-
vance. The A∗-algorithm, known from AI and well-founded on a thor-
oughly analyzed theory, offers very promising solutions to search tasks
of time-limited nature.



Chapter 4

HEURISTIC NODE MINIMIZATION

This chapter continues the presentation of classical and recent results
achieved in the area of size-driven BDD optimization. The studies de-
scribed in the previous chapter of this book have been aiming at exact
minimization of BDDs. This was motivated by applications in logic syn-
thesis where suboptimal solutions are a significant drawback, because
they lead to increased chip areas. In the remaining part, the focus will
be on heuristic methods. As has been pointed out earlier in Chapter 1, it
is NP-complete to decide whether the number of nodes can be improved
by variable reordering. Hence, it is an obvious idea to look for heuristic
solutions, regardless of the fact that optimal solutions then cannot be
guaranteed.

For many applications of BDDs optimal solutions are not needed,
e.g. formal verification, model checking and symbolic state space repre-
sentation. Using heuristic methods in these fields of application avoids
the high run times of exact methods.

For this, in the past many heuristic approaches have been proposed
that roughly can be classified as follows. The first type of heuristics tries
to determine an appropriate variable ordering in advance, i.e. prior to
BDD construction. These heuristics make use of the knowledge available
about the respective type of problem, for example the structural infor-
mation for a given circuit can be exploited, e.g. see [FOH93]. Heuristics
of this type can be fast. However, they might fail to yield good orderings
in intermediate steps of symbolic algorithms because the function repre-
sented at these steps is different from the one targeted with the heuristic.
An example is the symbolic representation of a state transition relation
with a BDD for its characteristic function. Typically, the represented set
of transitions is increased by new transitions every now and again during
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the construction of the set. As the function represented changes with
every step, the quality of the initial ordering is often degraded. Another
example is the successive creation of a BDD representing a circuit given
as a netlist: again the function evolves and changes with every new BDD
operation during the construction.

The second type of heuristics tackles this problem by dynamic reorder-
ing. Here, no “a-priori”-knowledge about the particular application is
necessary. Instead, a better ordering is determined dynamically by the
system in situations where the application gets low on memory. This
typically happens in a fully automated manner and does not involve any
inputs or actions from the user of such a software system.

The idea of dynamic reordering has been raised in [FMK91] and
[ISY91]. Both works suggest a windows permutation algorithm to per-
form the reordering: basically, an exhaustive search for better orderings
is performed, but only within windows of constant size k. In [Rud93],
Rudell showed the limitations of this approach and suggested to use the
sifting algorithm instead. This algorithm has been presented in detail in
Section 2.4.7.2. Both approaches, the window permutation and the sift-
ing algorithm, were based on the efficient exchange of adjacent variables
(see Section 2.4.7.1).

However, as a BDD-based system may invoke dynamic reordering
very often during the progress of BDD construction, run time was still
an important issue. In many cases dynamic reordering seemed to be too
time-consuming to replace the methods which determine the ordering in
advance. Consequently, the demand for faster, automated solutions was
high.

For this reason in [MS97] an algorithm has been proposed how to
partition the search space by grouping variables to improve sifting run
times. However, this method is known to be strongly dependent on the
initial ordering. Another approach suggested search space partitioning
by means of sampling [SM98], but the quality of the results varies widely
depending on the choice of candidate variables, i.e. the choice of the
sample.

In the struggle for better solutions, very promising results have been
obtained by methods to prune the search space with the use of lower
bounds on BDD sizes during sifting, called lb-sifting and elb-sifting
[DGS01, ED05]. These lower bounds state minimum sizes for certain
orderings that will be considered in the following steps of the sifting
algorithm. They are used to limit the range of possible moves for each
variable, and large reductions in run time are achieved by focusing only
on those parts of the search space where improvements are possible.
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Note that this increases efficiency without changing the quality of the
results, i.e. the sizes of the resulting BDDs are preserved.

This chapter is focused on the method of sifting with lower bounds.
Classical and recently published lower bounds on BDD sizes, applicable
in dynamic reordering, are presented.

Lower bounds that lately have been suggested are derived by adapting
more general lower bounds which have been presented in Chapter 3.
They were originally intended for the use in exact BDD minimization
and now they are transferred to the context of dynamic reordering.

First, deeper insight is gained by looking at the theory of the lower
bounds. Examples are given which show that the lower bounds recently
suggested behave “orthogonally” to the classical lower bounds, i.e. they
are effective in situations where the previous ones are not and vice versa.
This leads to a better understanding of the different impact of lower
bounds on the efficiency of the sifting algorithm.

Since computation of the bounds is expensive, they are restricted to
more efficient forms, following the constraints in practice. This com-
promises between computational complexity and pruning power, i.e. be-
tween run time and quality of the lower bounds.

Finally, a combination of classical and the recently published lower
bounds is introduced, which fuses their capabilities to prune the search
space in different situations. This yields a final lower bound, which
is then incorporated into the sifting algorithm. Experiments show the
significance of the obtained improvement.

4.1 Efficient Dynamic Minimization

A very effective method to reduce the number of variable swaps needed
in sifting is the use of lower bounds on future BDD sizes. The size
obtained by further movement of the considered variable cannot fall
below the size stated by these lower bounds.

The idea is to stop moving the variable in the current direction (down-
ward or upward) as early as possible. We can stop moving if the BDD
size stated by the lower bound already exceeds the smallest BDD size
recorded so far. No further improvement is possible, i.e. no better po-
sition for the considered variable can be found. Hence we can con-
tinue with the next variable without changing the results yielded by the
method. In [DGS01] this idea of lower bound sifting (lb-sifting) has been
introduced, together with effective lower bounds. The lower bounds have
been derived from upper bounds on BDD sizes resulting from variable
movements, as can be found in [BLW96]. Several techniques to derive
the lower bounds have been used, e.g. inversion of equalities and spe-
cialization of general cases.
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The following will be needed when considering lower bounds in dy-
namic reordering.

Definition 4.1 Let f = (fn
iff )1≤i≤m be a Boolean multi-output function.

Two variables xj , xk ∈ Xn are said to be non-interacting iff

� ∃�� 1≤i≤m: xj , xk ∈ support(fiff ).

Otherwise, the variables are said to interact.

In case of adjacency of two variables in the ordering of a BDD, the prop-
erty of non-interaction of two variables is a sufficient condition for a swap
of them being trivial, i.e. a constant operation. Indeed, if two variables
do not interact, there is no arc connecting the two layers. Therefore,
no edges must be redirected, no nodes vanish, etc. Hence the swap can
be performed by exchanging two entries in a table mapping variable
subscripts to the variables, i.e. in constant time. Interactivity of two
variables is a necessary, but not a sufficient condition for non-triviality
of the swap step (see [PS95, Som02] and also Section 2.4.7.1).

We denote the set of variables in Xn interacting with a given variable
xi ∈ XnXX with Ii,nII . Also note that every variable interacts with itself,
i.e. xi ∈ Ii,nII for every variable xi ∈ Xn.

The classical lower bounds as supposed by [DGS01] are stated in the
following result.

Theorem 4.2 Let F be a BDD over Xn, for which we assume the
natural variable ordering π with π(i) = xi (1 ≤ i ≤ n). Let |FjFF ′| de-
note the size of the BDD after moving variable xi to position j. When
moving down a variable xi ∈ Xn, as a lower bound on the size of the
resulting BDD F ′ we have

lb↓(F, xi)
= min

j=i+1,...,n

∣∣∣∣FjFF ′
∣∣∣∣

≥ min
j=i+1,...,n { label(F, X1

i−1) + max{label(F, X i+1
jX \ Ii,nII ) + 1

+ 1
2 · label(F, X i+1

jX ∩ Ii,nII ), label(F, xi)}
+ label(F, Xj+1

j

n )}
= label(F, X1

i−1) + max{label(F, X i+1
n \ Ii,nII ) + 1

+
1

2
· label(F, X i+1

n ∩ Ii,nII ), label(F, xi)},
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Figure 4.1. Result of the swap of neighbored variables.

and when moving up, the lower bound is given as

lb↑(F, xi) = min
j=1,...,i−1

∣∣∣∣FjFF ′
∣∣∣∣

≥ min
j=1,...,i−1 { label(F, X1

jX −1) + label(F, Xj
i−1 \ Ii,nII )

+
∣∣∣∣∣∣∣Xj

iX −1 ∩ Ii,nII
∣∣∣∣∣∣∣ +

label(F, xi)

2|Xj
i−1∩Ii,nII |

+ label(F, X i+1
n ) }

= label(F, X1
i−1 \ Ii,nII ) +

∣∣∣∣∣∣∣X1
iX −1 ∩ Ii,nII

∣∣∣∣∣∣∣ +
label(F, xi)

2|X1
i−1∩Ii,nII |

+ label(F, X i+1
n ).

Next, a summary of the basic ideas behind these bounds is given here,
full proofs can be found in [DGS01].

A first (trivial) lower bound (already used in the BDD package CUDD
[Som02] is the following: Assume variable xi is situated at level i. Mov-
ing xi down to level j, all nodes above level i (i.e. in levels 1, . . . , i − 1)
and all nodes below level j (i.e. in levels j + 1, . . . n) do not change due
to the only local impact of the variable swap on the BDD structure
(see Section 2.4.7.1). An analogous statement holds while moving xi up
to level j. Furthermore, in both cases the following nodes also do not
change: these are the nodes between levels i and j whose variable does
not interact with xi. Thus, the sum of these node numbers constitutes
a first lower bound, counting those nodes, which are not affected by the
swap. A more sophisticated idea is illustrated in Figure 4.1: it can be
proven that the number of nodes in the levels affected by a swap can
be at most reduced by a factor of two (for a proof see [DGS01]). The

terms of the form label(F,∗)
2∗ occurring in the lower bounds given above

are derived by (repeated) use of this argument.
Another idea used in the first lower bound for moving down a variable

xi is the following: let the above BDD F represent a Boolean function f .
Assuming xi is situated at level i, the nodes labeled xi represent cofactors
of f with respect to the first i − 1 variables of the ordering. This set
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of cofactors must still be represented in the diagram after moving xi

downwards since otherwise the diagram would not represent f anymore.
Hence, the number of nodes labeled xi also is a lower bound on the
number of nodes in levels i, . . . , n.

During sifting, when moving into a specific direction, the according
lower bound is used. If the lower bound is larger than the best BDD
size found before, a movement cannot lead to a better position for the
variable.

For I ⊆ Xn, the terms label(F, I) can be computed very efficiently
during sifting since the level sizes are kept in dedicated variables by
modern BDD packages, e.g. see [Som02]. The question, if a variable in-
teracts with xi also can be decided efficiently (i.e., in constant time) with
a pre-computed “interaction matrix” giving the required information for
every pair of variables in question (see [PS95]).

In [DGS01] it has been reported that using these lower bounds during
sifting reduces run time by up to 70%.

4.2 Improved Lower Bounds for Dynamic
Reordering

In this section lower bounds recently published for use in dynamic
reordering are given. They are derived by adapting lower bounds which
previously have been suggested to speed-up exact BDD minimization
(see the approaches presented in Chapter 3) to the context of the sifting
algorithm. Next, preliminary results preparing the proof of an improved
lower bound for dynamic reordering are following.

Lemma 4.3 Let F = (π, . . . , O) be a BDD over Xn, for which we as-
sume the natural variable ordering π with π(i) = xi (1 ≤ i ≤ n). Then,
for all 0 ≤ k ≤ n, we have1

O = K(F, 0) ⊆ nodes(F, X1
k) ∪ K(F, k).

Proof. This can be shown by Lemma 3.17 which states the basic set
inclusion used for the proof of the monotonicity of the heuristic func-
tion used in the A∗-approach to exact BDD minimization, described in
Section 3.2.

Repeated application of Lemma 3.17 to the term K(F, 0), together
with Equation (3.6) and Lemma 3.14, yields the required result.

1The definition of K(F, k) has been introduced in Definition 3.9.
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In detail: by repeatedly applying Lemma 3.17 we obtain

cof(f, ∅) ⊆ dep(f, ∅, x1) ∪ cof(f, {x1})
⊆ dep(f, ∅, x1) ∪ dep(f, {x1}, x2) ∪ cof(f, {x1, x2})
. . .

⊆
(
∪1≤k≤jdep(f, X1

k−1, xk)
)
∪ cof(f, X1

jX ),

which, applying Lemma 3.14 to the term ∪1≤k≤jdep(f, X1
k−1, xk) and

applying Equation (3.6) to the terms cof(f, ∅), and cof(f, X1
jX ), yields

the required result. �

The following result follows from Lemma 4.3 and prepares the proof of
a theorem stating an improved lower bound for dynamic reordering.

Corollary 4.4 Let F = (π, . . . , O) be a BDD over Xn, for which we
assume the natural variable ordering π with π(i) = xi (1 ≤ i ≤ n). Let
1 ≤ i ≤ n. Then, for all 1 ≤ j < i, we have

O ∩ nodes(F, X1
i ∩ Ii,nII )

⊆ nodes(F, X1
jX −1 ∩ Ii,nII ) ∪

(
K(F, j − 1) ∩ nodes(F, Xj

i ∩ Ii,nII )
)

.

Proof. Since j ≥ 1, Lemma 4.3 yields

O ⊆ nodes(F, X1
jX −1) ∪ K(F, j − 1).

By intersection of both sides of this inclusion with nodes(F, X1
i ∩ Ii,nII )

we derive

O ∩ nodes(F, X1
i ∩ Ii,nII )

⊆
(
nodes(F, X1

jX −1) ∪ K(F, j − 1)
)
∩ nodes(F, X1

i ∩ Ii,nII )

(j<i)

⊆ nodes(F, X1
jX −1 ∩ Ii,nII ) ∪

(
K(F, j − 1) ∩ nodes(F, X1

i ∩ Ii,nII )
)

(1≤j)

⊆ nodes(F, X1
jX −1 ∩ Ii,nII ) ∪

(
K(F, j − 1) ∩ nodes(F, Xj

i ∩ Ii,nII )
)

,

proving the required result. �
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Theorem 4.5 Let F = (π, . . . , O) be a BDD over Xn, for which we
assume the natural variable ordering π with π(i) = xi (1 ≤ i ≤ n). Let
|FjFF ′| denote the size of the BDD after moving variable xi to position j.
When moving up a variable xi ∈ Xn, as a lower bound on the size of the
resulting BDD F ′ we have

lb↑(F, xi) = min
j=1,...,i−1

∣∣∣∣FjFF ′
∣∣∣∣ (4.1)

≥ min
j=1,...,i−1 { label(F, X1

jX −1) + label(F, Xj
i−1 \ Ii,nII )

+
∣∣∣∣∣∣∣K(F, j − 1) ∩ nodes(F, Xj

i ∩ Ii,nII )
∣∣∣∣∣∣∣

+ label(F, X i+1
n )} (4.2)

= label(F, X1
i−1 \ Ii,nII ) +

∣∣∣∣∣∣∣O ∩ nodes(F, X1
i ∩ Ii,nII )

∣∣∣∣∣∣∣
+ label(F, X i+1

n ). (4.3)

Equation (4.1) describing the lower bound lb↑(F, xi) states the exact
lower bound as minimum of the BDD sizes resulting from the movements
of variable xi. Of course these exact BDD sizes are not known unless
the variable in fact is moved. The goal however is to avoid as many
variable swaps as possible. Hence, in Inequality (4.2) and finally in
Equation (4.3), the exact lower bound is weakened to a lower bound
which prepares a calculation without any variable movement (achievable
later by a further weakening, see Lemma 4.9).

Inequality (4.2) states a lower bound counting the nodes in the “ker-
nel” K(F, j − 1) as introduced in Section 3.2, which are representing
cofactors. To adapt this lower bound to the new context, it has been
restricted to count nodes in the middle part, consisting of nodes in lev-
els j, . . . , i. In this, the tightest lower bound known from exact BDD
minimization is adapted to the context of dynamic reordering.

Equation (4.3) states a lower bound which only uses output nodes. In
this, the bound might appear less tight than that stated in Inequality
(4.2). The following proof shows that this is not the case, by proving
Equation (4.3). Instead of showing soundness of the final lower bound
in line three directly,

a) the soundness of the lower bound expressed in Inequality (4.2), and
after this,

b) the equality of the lower bound expressed in Inequality (4.2) and in
Equation (4.3)

is shown. Hence, this is a stronger result which implies that no further
increase of tightness can be achieved by considering nodes representing
cofactors instead of output nodes.
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Proof of Theorem 4.5. Conceptually, the BDD can be split into
three parts: an upper part, consisting of the nodes in levels 1, . . . , j − 1,
a middle part, consisting of the nodes in levels j, . . . , i, and a lower part,
consisting of the nodes in levels i + 1, . . . , n.

For Inequality (4.2), variable xi is moved through the middle part
only, hence upper and lower part do not change during variable swaps.
This is due to a swap being an operation with only local effect in the
levels affected. Consequently, the sum of the node numbers in the upper,
non-interacting middle and lower part build a first trivial lower bound
on the size of the BDD resulting from the variable movement of xi to
position j.

In Inequality (4.2), the number of nodes in the following set is added to
this (trivial) lower bound: this is the set of nodes residing in middle and
lower part which either a) have direct references from nodes in the upper
part or b) are output nodes in the middle or lower part, i.e. K(F, j − 1).
Before adding the cardinality of this set to the trivial bound, this set is
intersected with the set of those nodes in the middle part which interact
with xi (expressed by nodes(F, Xj

i ∩Ii,nII )). Since the nodes in K(F, j−1)
represent the cofactors in cof(f, X1

jX −1) by Lemma 3.10, the nodes in this
set represent cofactors which

cannot vanish during movement of xi (since otherwise the function
represented by F would not be preserved) and

are not already counted otherwise in

– the part of the trivial lower bound related to the nodes of the
middle part which are labeled with a non-interacting variable
(since only nodes labeled with an interacting variable are counted)
and in

– the parts of the trivial lower bound related to the upper and
lower part of the BDD (since only nodes in the middle part are
counted).

Hence, adding these nodes to the trivial lower bound yields a sound and
tighter lower bound on the BDD size resulting from the movement of xi.

Equation (4.3) specializes the expression which is minimized in In-
equality (4.2) to the case of j = 1: this is easily seen because O is the
set of output nodes and equals K(F, 0). Hence, Equation (4.3) claims to
obtain the minimum of the expression given in Inequality (4.2) over all
j from 1, . . . , i − 1 in the case of j = 1.
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First note that, by setting j to 1, i.e. by moving xi as far as possible,
the upper part vanishes. Yet, as the upper part vanishes, the middle
part is increased, but it is increased only by levels that belonged to the
upper part and whose nodes are labeled with a non-interacting variable.

Hence, by moving xi from position j to 1 in the ordering, the expres-
sion in Inequality (4.2) is decreased by the number of interacting nodes
in the upper part, i.e. by the term∣∣∣∣∣∣∣nodes(F, X1

jX −1 ∩ Ii,nII )
∣∣∣∣∣∣∣. (4.4)

Moreover, instead of the term
∣∣∣∣∣∣∣K(F, j − 1) ∩ nodes(F, Xj

i ∩ Ii,nII )
∣∣∣∣∣∣∣ oc-

curring in Inequality (4.2) we have the term
∣∣∣∣O ∩ nodes(F, X1

i ∩ Ii,nII )
∣∣∣∣ in

Equation (4.3).

Together with (4.4), we have an increase of∣∣∣∣∣∣∣O ∩ nodes(F, X1
i ∩ Ii,nII )

∣∣∣∣∣∣∣
opposing a decrease of∣∣∣∣∣∣∣nodes(F, X1

jX −1 ∩ Ii,nII ) ∪
(
K(F, j − 1) ∩ nodes(F, Xj

i ∩ Ii,nII )
)∣∣∣∣∣∣∣ .

By Corollary 4.4, for every j with 1 ≤ j < i the stated increase is smaller
or equal than the stated decrease.

This yields Equation (4.3) since now, for every 1 ≤ j < i, the expres-
sion to minimize over all j from 1, . . . , i − 1 in Inequality (4.2) must be
larger than or equal to the expression of Equation (4.3). �

Example 4.6 In Figure 4.2, let both diagrams be BDDs over Xn. An
upward movement of variable x2 in the left BDD F1FF results in the right
BDD F2FF . Theorem 4.5 predicts a lower bound lb↑(F, x2) on the size of
F2FF , thereby looking only at F1FF . Let the sub-graphs A, B and C be non-
isomorphic and let R := label(F1FF , X3

nX ). Hence, lb↑(F1FF , x2) =
∣∣∣∣X1

1 ∩ I2II ,n

∣∣∣∣+∣∣∣∣O ∩ nodes(F1FF , X1
2 ∩ I2II ,n)

∣∣∣∣ + label(F1FF , X3
nX ) = 0 + 3 + R = 3 + R.

This lower bound exactly predicts the correct BDD size, as the right
BDD F2FF in fact has 3 + R nodes. The minimum number of nodes as
given by Theorem 4.2 however is only label(F1FF , X1

1 \I2II ,n)+
∣∣∣∣X1

1 ∩ I2II ,n

∣∣∣∣+
1

2|X1
1
∩I2,n| · label(F1FF , x2) + label(F1FF , X3

nX ) = 0 + 1 + 1
2 · 2 + R = 2 + R, thus

missing the true number.

However, there are also examples where the lower bound of Theorem
4.2 predicts larger node numbers than the new lower bound given in
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Figure 4.2. BDDs for Example 4.6.

Theorem 4.5: this is the case if only few output nodes are opposing
many nodes labeled xi (where xi is the variable moved upwards). For
this reason, in the final suggestion of a new lower bound, the classical
and the newly found lower bounds will always be combined by building
the maximum of the stated node numbers (see later in Section 4.4).

In the following result, another idea from exact BDD minimization is
transferred to the context of dynamic reordering: this time the bottom-
up lower bound of JANUS described in Section 3.1 is used. This is the
tightest lower bound for the bottom-up B&B framework known so far,
improving the previous lower bound from [ISY91].

Theorem 4.7 Let F = (π, . . . , O) be a BDD over Xn for which we
assume the natural variable ordering π with π(i) = xi (1 ≤ i ≤ n).
When moving up a variable xi ∈ Xn, as a lower bound on the size of the
resulting BDD F ′ we have

lb↑(F, xi) = |ref(F, i)| −
∣∣∣∣∣∣∣O1

i

∣∣∣∣∣∣∣ + label(F, X i+1
n ).

Proof. Let F ′ = (. . . , . . . , P ) denote the BDD resulting from the
movement of variable xi and let F , F ′ represent a Boolean function f .
We have

|ref(F, i)| =
∣∣∣∣ref(F ′, i)

∣∣∣∣ =
∣∣∣∣∣∣∣tcof(f, X1

i )
∣∣∣∣∣∣∣ (4.5)

by Lemma 3.10. By upward movements of variable xi the lower part of
F remains unchanged due to locality of the swap operation (∗).

Hence, we have ∣∣∣∣∣∣∣O1
i

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣P 1

iPP
∣∣∣∣∣∣∣ (4.6)
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Figure 4.3. BDDs for Example 4.8.

since otherwise output nodes would have vanished in the upper part,
contradicting that F and F ′ represent the same function. Applying
Lemma 3.5 to F ′ yields

label(F ′, X1
i ) ≥ ∣∣∣∣ref(F ′, i)

∣∣∣∣ − ∣∣∣∣∣∣∣P 1
iPP
∣∣∣∣∣∣∣ . (4.7)

Applying Equations (4.5) and (4.6) to Inequality (4.7) we obtain

label(F ′, X1
i ) ≥ |ref(F, i)| −

∣∣∣∣∣∣∣O1
i

∣∣∣∣∣∣∣ .
By (∗) we now have

label(F ′, X1
i ) + label(F ′, X i+1

nX ) ≥ |ref(F, i)| −
∣∣∣∣∣∣∣O1

i

∣∣∣∣∣∣∣ + label(F, X i+1
n ),

which yields the result since label(F ′, X1
iX ) + label(F ′, X i+1

nX ) = |F ′|. �

Example 4.8 In Figure 4.3, again let both diagrams be BDDs over Xn.
An upward movement of variable x2 in the left BDD F3FF results in the
right BDD F4FF . Let the sub-graphs A, B, C and D be non-isomorphic.
Then the roots of these graphs represent four distinct nodes in ref(F3FF , 2).
Further let R := label(F3FF , X3

n). Hence, Theorem 4.7 predicts a lower
bound lb↑(F3FF , x2) = |ref(F3FF , 2)|−∣∣∣∣O1

2

∣∣∣∣+label(F3FF , X3
nX ) = 4−1+R = 3+R.

Again, this lower bound predicts the correct BDD size, as the right
BDD F4FF in fact has 3 + R nodes. The minimum number of nodes as
given by Theorem 4.2 however is only label(F3FF , X1

1 \I2II ,n)+
∣∣∣∣X1

1 ∩ I2II ,n

∣∣∣∣+
1

2|X1
1
∩I2,n| · label(F3FF , x2)+ label(F3FF , X3

n) = 0+1+ 1
2 ·2+R = 2+R, again

staying below the true number.

4.3 Efficient Forms of Improved Lower Bounds
In [DGS01] it has been pointed out that it is crucial to avoid lower

bounds whose computation is too time-consuming. Unfortunately, this
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is the case for the lower bounds presented in Lemma 4.3 and Theorem
4.7: this is due to the terms

∣∣∣∣O ∩ nodes(F, X1
i ∩ Ii,nII )

∣∣∣∣, |ref(F, i)| and
∣∣∣∣O1

i

∣∣∣∣
occurring in the definition of the bounds.

To compute
∣∣∣∣O1

i

∣∣∣∣, the number of output nodes in every level has to
be maintained with every variable swap. For this, every node in the
levels affected by the swap must be checked for membership in O, the
set of output nodes. This must be done since lists of the numbers of
output nodes on every level have to be updated properly. The most
efficient way to do this membership test would be a hashing schema
which already is too expensive, slowing down the sifting algorithm too
much. Of course, the same holds for the term

∣∣∣∣O ∩ nodes(F, X1
i ∩ Ii,nII )

∣∣∣∣
whose computation is even more complicated.

The most efficient method known to compute a “kernel” |ref(F, i)| in-
volves a traversal of the whole graph (see Section 3.1.2.1), hence actually
using this term in a lower bound results in a great loss of performance.

Therefore, the lower bounds given in the previous section must be
weakened such that

the soundness of the lower bounds is preserved, and

the resulting lower bounds only use terms, for which an efficient
method of computation is available.

The next results give weakened forms of the previously stated lower
bounds, which can be computed efficiently and thus are appropriate for
use in dynamic reordering.

Lemma 4.9 Let F = (π, . . . , O) be a BDD over Xn for which we assume
the natural variable ordering π with π(i) = xi (1 ≤ i ≤ n). When moving
up a variable xi ∈ Xn, as a lower bound on the size of the resulting BDD
F ′ we have

lb↑(F, xi) = label(F, X1
i−1 \ Ii,nII ) +

∣∣∣∣∣∣∣O ∩ nodes(F, X1
i ∩ Ii,nII )

∣∣∣∣∣∣∣
+ label(F, X i+1

n )

≥ label(F, X1
i−1 \ Ii,nII ) + |nodes(F, {x1} ∩ Ii,nII )|

+ label(F, X i+1
n )

= label(F, X1
i−1 \ Ii,nII ) + label(F, {x1} ∩ Ii,nII )

+ label(F, X i+1
n ).
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Proof. The first line of the equation defining the lower bound lb↑(F, xi)
gives the result from Lemma 4.3. It is

O ∩ nodes(F, X1
i ∩ Ii,nII ) ⊇ O ∩ nodes(F, {x1} ∩ Ii,nII )

= nodes(F, {x1} ∩ Ii,nII ). (4.8)

Equation (4.8) holds: nodes in the uppermost BDD level do not have
predecessors, hence nodes in the x1-level must be root nodes. Since
all root nodes are output nodes by definition of SBDDs (see Definition
2.12), the equation follows. �

All terms occurring in the last line of the equation giving the weak-
ened lower bound lb↑(F, xi) can be computed efficiently, as modern BDD
packages maintain level sizes in dedicated variables and interaction tests
can be performed using a pre-computed interaction matrix.

Basically, the lower bound stated in Lemma 4.9 restricts the consider-
ation of output nodes to those being roots. Thus, a decrease in tightness
must only be expected if there are many inner output nodes. However,
in practice often many of the output nodes will be situated as roots at
the first level of the BDD.

Corollary 4.10 Let F = (π, . . . , O) be a BDD over Xn for which we
assume the natural variable ordering π with π(i) = xi (1 ≤ i ≤ n).
When moving up a variable xi ∈ Xn, as a lower bound on the size of the
resulting BDD F ′ we have

lb↑(F, xi) = label(F, X1
i−1 \ Ii,nII ) +

∣∣∣∣∣∣∣X2
iX −1 ∩ Ii,nII

∣∣∣∣∣∣∣
+ label(F, {x1} ∩ Ii,nII ) + label(F, X i+1

n ).

Proof. It is straightforward to see that the term∣∣∣∣∣∣∣X2
iX −1 ∩ Ii,nII

∣∣∣∣∣∣∣ + label(F, {x1} ∩ Ii,nII ) (4.9)

tightens the result from Lemma 4.9 without loss of soundness: at least
one node must remain in each level from 2 to i − 1 after moving xi

upwards. This holds even if moved as far as possible, i.e. if moved to
level 1. To avoid collisions of the summands of term (4.9), we have to
take care for the following: first since we already count the nodes of
the x1-level with the summand label(F, {x1} ∩ Ii,nII ), only the remaining
nodes of levels 2, . . . , i − 1 can be counted in order not to count a node
twice. After moving variable xi upwards to level 1, the output nodes
formerly labeled x1 must be contained in the x1-level and the xi-level,
both of which do not contribute to the first summand of (4.9). Hence
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we assume one node per level for those levels only whose nodes are not
already counted otherwise. Second, as the non-interacting part of the
upper BDD part is already counted in the term label(F, X1

i−1 \ Ii,nII ), we
have to intersect with Ii,nII in both summands of term (4.9). This again
happens to avoid counting nodes twice and to preserve soundness of the
lower bound. �

Lemma 4.11 Let F = (π, . . . , O) be a BDD over Xn for which we as-
sume the natural variable ordering π with π(i) = xi (1 ≤ i ≤ n). When
moving up a variable xi ∈ Xn, as a lower bound on the size of the re-
sulting BDD F ′ we have

lb↑(F, xi)

= |ref(F, i)| −
∣∣∣∣∣∣∣O1

i

∣∣∣∣∣∣∣ + label(F, X i+1
n )

≥
(
label(F, xi+1) −

∣∣∣∣∣∣∣Oi+1
n

∣∣∣∣∣∣∣) −
∣∣∣∣∣∣∣O1

i

∣∣∣∣∣∣∣ + label(F, X i+1
n ) (4.10)

= label(F, xi+1) − |O| + label(F, X i+1
n ).

Proof. The first line of the equation defining the lower bound lb↑(F, xi)
gives the result from Theorem 4.7. Inequality (4.10) holds: nodes in level
i + 1 are either referenced directly from a node in levels 1, . . . , i or they
are output nodes which are contained in Oi+1

i+1 ⊆ Oi+1
n . Consequently we

have ref(F, i) ⊇ level(F, i + 1) \ Oi+1
n , yielding Inequality (4.10). �

Again, all terms occurring in the last line of the equation giving the
weakened lower bound lb↑(F, xi) can be computed efficiently. This also
holds for the term |O| = |ref(F, 0)| since the set ref(F, 0) can be precom-
puted using one single graph traversal, see Section 3.1.2.1. This traversal
always can be used, regardless of the type of BDD application, e.g. VLSI
CAD or symbolic state space search. When focusing on VLSI CAD, a
good idea would be to use the (often slightly larger) number of output
functions pre-declared in the logic level description of a circuit.

Let us again consider the situation illustrated with the BDDs F3FF and
F4FF in Figure 4.3. The lower bound stated in Lemma 4.11 can still exactly
predict the correct BDD sizes, but now this is only the case if we assume
that the root nodes of the sub-graphs A, B,C and D are all labeled
with x3: only then the term label(F3FF , 3) equals four and thus remains as
large as the term ref(F3FF , 2) in Example 4.8. Note that in this case this
weakened bound still is tighter than the one stated in Theorem 4.2.
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4.4 Combination of Improved Lower Bounds with
Classical Bounds

In this section, the tightest lower bounds for dynamic reordering
known so far, given in Theorem 4.2, are combined with the efficient
forms of the improved lower bounds presented in this chapter. By this
a new, tighter lower bound is obtained.

To use the classical and the improved lower bounds in parallel, it is
crucial to carefully avoid counting nodes twice, as this would destroy
soundness of the new combined bound.

Theorem 4.12 Let F = (π, . . . , O) be a BDD over Xn for which we
assume the natural variable ordering π with π(i) = xi (1 ≤ i ≤ n).
When moving up a variable xi ∈ Xn, as a lower bound on the size of the
resulting BDD F ′ we have

lb↑(F, xi)
= max{label(F, X1

i−1 \ Ii,nII ) + max{∣∣∣∣X2
iX −1 ∩ Ii,nII ∣∣∣∣

+ label(F, {x1} ∩ Ii,nII ),
∣∣∣∣X1

iX −1 ∩ Ii,nII ∣∣∣∣
+ 1

2|X1
i−1∩Ii,nII | · label(F, xi)}, label(F, xi+1) − |O|}

+ label(F, X i+1
n ).

Proof. We conceptually divide the BDD into an upper and a lower
part. The upper part is partitioned into a set of nodes with labels
interacting with xi (“interacting upper part”) and the set of remaining
nodes (“non-interacting upper part”). The lower bound is then the sum
of a max-term defining a lower bound on the size of the upper part and
the size of the lower part which does not change during movement of xi.

The two max-terms “parallelize” classical lower bounds with the im-
proved lower bounds given in the previous sections, such that counting
nodes twice by different lower bounds is avoided. Hence, “collisions”
of the different lower bounds do not occur and with that the new lower
bound must be sound and it is formally tighter than the classical bounds.

In detail: the terms describing (a lower bound on the size of) the non-
interacting upper part and the invariant lower part are the well-known
“trivial bounds” as also used in the equation describing lb↑(F, xi) in
Theorem 4.2. The max-term yields the maximum of two terms defining
a lower bound on the size of the upper part. The first term is the
sum of the trivial lower bound on the non-interacting upper part and
a second max-term describing a lower bound on the interacting upper
part. In this, the first term is using the partition of the upper part into
non-interacting and interacting nodes. The second term is the improved
lower bound from Lemma 4.11, describing a lower bound on the size of
the upper part as a whole.
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With the second max-term we obtain the maximum of

the well-known lower bound on the size of the interacting upper part
stated in Theorem 4.2 and

the term
∣∣∣∣X2

iX −1 ∩ Ii,nII ∣∣∣∣ + label(F, {x1} ∩ Ii,nII ),

i.e. the result from Corollary 4.10. �

To see how large the increase of tightness over the best lower bound
known so far actually can be, see the following example.

Example 4.13 Let n ∈ IN be even and let us reconsider a BDD F for
the function f : Bn → B; (x1, x2, . . . , xn) �→ x1·x2+x3·x4+. . .+xn−1·xn,
respecting the variable ordering π(1) = x1, π(2) = x3, . . . , π(n/2) = xn−1,
π(n/2+1) = x2, π(n/2+2) = x4, . . . , π(n) = xn, as given in Figure 4.4.

If variable xn−3 is moved upwards, Theorem 4.12 yields the following
lower bound on the size of the resulting BDDs:

label(F, xn−1) − 1 + label(F, {xn−1, x2, x4, . . . , xn})
= 2(n/2)−1 − 1 + 2n/2 − 1

= 2(n/2)−1 + 2n/2 − 2,

due to the term label(F, xn−1)− 1 being larger than the other arguments
of the outer max-term in the lower bound of Theorem 4.12. The lower
bound given in Theorem 4.2 however yields a lower bound of only

label(F, xn−3)

2(n/2)−2
+ |{x1, x3, . . . , xn−5}|

+ label(F, {xn−1, x2, x4, . . . , xn})

=
2(n/2)−2

2(n/2)−2
+

n

2
− 2 + 2n/2 − 1

= 1 +
n

2
− 2 + 2n/2 − 1

=
n

2
+ 2n/2 − 2.

The new lower bound is larger than the classical lower bound by a number
of nodes, which is exponential in n, the number of input variables.

4.5 Experimental Results
In this section experimental results are given. The experiments have

been carried out on a system with an Athlon processor running at 1.4
GHz and a main memory of 1.5 GByte. The classical sifting algorithm



138 ADVANCED BDD OPTIMIZATION

1

f

3 3

5 5 5 5

n

2 2

n−1 n−1 n−1 n−1

n−3 n−3 n−3n−3

x

x x

x x x x

01

x

x x

x x x x

x x xx

Figure 4.4. Example for the tightness of the new lower bound.

without the use of lower bounds is simply called sifting. The classical
lower bound sifting approach [DGS01] is called lb-sifting. The recently
published enhanced method from [ED05] with the tightened lower bound
for moving upwards as presented in this chapter, is called elb-sifting
(the lower bound used for moving downwards was that of lb-sifting).
The implementation of elb-sifting is based on the sifting routine in the
CUDD package [Som02] which already uses a simple way of computing
lower bounds, and on lb-sifting. All algorithms have been integrated
into the CUDD package, thus running in the same system environment
during the experiments.

In two series of experiments all algorithms have been applied to a set
of benchmark circuits from LGSynth93 [Col93]. For every benchmark
function, a BDD has been built from the logic level description as given



Heuristic Node Minimization 139

Table 4.1. Circuits and initial orderings

name in initial final

c1355 41 43869 30326
c1908 33 23158 7582
c2670 233 254562 14214
c499 41 39377 30459
c5315 178 5247 2611
c7552 207 48887 12684
c880 60 15544 4548
dalu 75 12946 1216
des 256 11835 2994
i10 257 287658 98722
i2 201 334 205
i4 192 420 300
i8 133 3980 1678
pair 173 13845 5857
rot 135 8322 6309
s13207.1 700 8022 3164
s1423 91 3928 1773
s15850.1 611 40647 16591
s38584.1 1464 100502 17371
s5378 199 5218 2405
s9234.1 247 26984 3919

in the BLIF file. Table 4.1 gives the name of the function in the first
column. Column in gives the number of inputs of a function. Column
initial shows the size of the initial BDD for the function. In Column
final, the size of the BDD resulting from applying the sifting algorithm
is given. Obviously, the resulting BDD sizes are the same for all three
sifting approaches: the lower bounds used in the approaches lb-sifting
and elb-sifting are sound, i.e. only those parts of the search space are
pruned, in which no further improvements are possible.

The results of the first series of experiments are given in Table 4.2.
In double column efficient, the number of variable swaps (in columns
swaps) and the run time (in columns time) required when using the
lower bound of Theorem 4.12 are given. Double column expensive states
the results for the expensive lower bounds as given in Theorem 4.5 and
Theorem 4.7. In column swaps the number of variable swaps is given
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Table 4.2. Comparison of the efficient and the expensive lower bound

efficient
(Thm. 4.12)

expensive
(Thms. 4.5, 4.7) gain

name swaps time swaps time swaps time

c1355 1550 3.65s 1538 18.37s -0.8 % 386.0 %
c1908 1047 1.04s 1031 5.87s -1.5 % 414.9 %
c2670 22634 34.93s 21776 530.43s -3.8 % 1364.1 %
c499 1525 2.64s 1523 13.81s -0.1 % 395.0 %
c5315 26128 0.16s 24742 38.16s -5.3 % 23750.0 %
c7552 44947 5.54s 43929 296.13s -2.3 % 5284.2 %
c880 3047 0.18s 2773 4.22s -9.0 % 2244.4 %
dalu 8075 0.24s 7493 12.11s -7.2 % 5165.2 %
des 76412 0.21s 75903 175.89s -0.7 % 83657.1 %
i10 62701 90.12s 59359 2540.63s -5.3 % 2723.2 %
i2 19487 0.12s 19486 23.11s -0.7 % 17676.9 %
i4 20936 0.05s 20936 27.46s 0.0 % 54820.0 %
i8 23598 0.10s 22517 29.37s -4.6 % 29270.0 %
pair 33280 0.32s 32330 76.17s -2.9 % 23703.1 %
rot 15127 0.21s 14612 19.99s -3.4 % 9419.0 %
s13207.1 374379 1.08s 354021 1500.12s -5.4 % 135045.9 %
s1423 10398 0.11s 9822 8.63s -5.5 % 7091.7 %
s15850.1 350888 4.25s 338668 2489.01s -3.5 % 57649.7 %
s38584.1 2741100 11.92s 2540187 32525.56s -7.3 % 275540.3 %
s5378 37403 0.16s 36441 58.29s -2.6 % 38760.0 %
s9234.1 49383 1.04s 47896 147.60s -3.0 % 13566.7 %∑

3924045 158.07s 3676983 40540.93s -6.3 % 25547.5 %

and again column time states the run time needed. When incorporating
the expensive lower bound into the sifting algorithm, these lower bounds
have been combined with the existing lower bounds of Theorem 4.2 in a
way similar to the combination of lower bounds in Theorem 4.12.

As the results show, only the efficient forms of the lower bounds yield
good run times whereas the run times for the expensive forms are far
away from being acceptable in practice. Interestingly, the tighter expen-
sive forms of the lower bounds yield a reduction in the number of the
swaps which is only 6.3% on average. In this it seems that we do not
lose too much pruning power by weakening our bounds to more efficient
forms.
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Table 4.3. Comparison of sifting, lb-sifting and elb-sifting

sifting
lb-sifting

(Thm. 4.2)
elb-sifting

(Thm. 4.12) gain

name swaps time swaps time swaps time swaps time

c1355 3118 4.93s 1620 3.81 1550 3.65s -4.3 % -4.2 %
c1908 2011 1.41s 1101 1.10 1047 1.04s -4.9 % -5.5 %
c2670 69480322.62s 22983 35.59 22634 34.93s -1.5 % -1.9 %
c499 3123 3.75s 1597 2.76 1525 2.64s -4.5 % -4.3 %
c5315 51583 0.41s 26208 0.16 26128 0.16s -0.3 % 0.0 %
c7552 79264 9.27s 45249 5.65 44947 5.54s -0.7 % -1.9 %
c880 6454 1.16s 3207 0.19 3047 0.18s -5.0 % -5.3 %
dalu 10549 0.29s 8211 0.23 8075 0.24s -1.7 % 4.3 %
des 103563 0.24s 76566 0.21 76412 0.21s -0.2 % 0.0 %
i10 121245239.79s 62875 97.81 62701 90.12s -0.3 % -7.9 %
i2 66507 0.38s 19615 0.12 19487 0.12s -0.7 % 0.0 %
i4 64959 0.11s 20985 0.06 20936 0.05s -0.2 %-16.7 %
i8 29711 0.12s 24678 0.10 23598 0.10s -4.4 % 0.0 %
pair 56097 0.40s 33545 0.32 33280 0.32s -0.8 % 0.0 %
rot 33841 0.33s 15204 0.21 15127 0.21s -0.5 % 0.0 %
s13207.1 804157 1.15s 376807 1.07 374379 1.08s -0.6 % 0.9 %
s1423 15469 0.16s 10412 0.12 10398 0.11s -0.1 % -8.3 %
s15850.1 640002 6.49s 352026 4.24 350888 4.25s -0.3 % 0.2 %
s38584.1 3741639 14.88s 2897064 12.58 2741100 11.92s -5.4 % -5.2 %
s5378 72312 0.18s 37476 0.15 37403 0.16s -0.2 % 6.7 %
s9234.1 112561 1.40s 49415 1.05 49383 1.04s -0.1 % -1.0 %∑

6087645609.47s 4086844167.53 3924045158.07s -4.0 % -5.6 %

The results of the second series of experiments are given in Table
4.3. In the first column of Table 4.3 the name of the function is given.
The next three double columns, sifting, lb-sifting and elb-sifting, state
the number of variable swaps (in columns swaps) and the run time
(in columns time) needed for the respective approach. In the last two
columns, the gain in percent by using elb-sifting instead of lb-sifting is
shown, i.e. in column swaps the obtained reductions in the number of
performed variable swaps are given and in column time the reductions
in run time are given.
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In the last row, the values given in each single column are accumu-
lated. For the two columns swaps and time in the double column gain,
the total gain in percents for the whole test-suite, i.e. the average gain,
is given.

As the results in Table 4.3 show, the tighter lower bound is effective,
i.e. both the number of variable swaps and the run time are reduced.
Using elb-sifting instead of lb-sifting saves up to 5.4% of the variable
swaps needed during algorithm run (e.g., see s38584.1). On average, the
improvement is 4.0%. The obtained reductions in run time are in some
cases more than 10% (e.g., see i4, i10). On average, a reduction in run
time of 5.6% has been obtained. Compared to classical, i.e. unbounded
sifting, a reduction in run time of up to 89.2% (c2670) is observed. On
average, the improvement is 74.1%, i.e. more than a factor of three.

While clearly being significant, the achieved improvements are smaller
than those achieved by the use of tightened lower bounds in exact BDD
minimization. One reason for this is that the sizes of the search space
occurring in these two different fields of application, i.e. in exact min-
imization and dynamic reordering, differ drastically. The search space
that has to be maintained during exact BDD minimization is of a size
which is exponential in the number of variables (see Section 3.2.4.2),
while the search space that has to be explored while moving one par-
ticular variable in the sifting algorithm is only linear in the number of
variables (yielding a total search space for all variables which is only of
quadratic size).

As can be deduced from previous results with approaches to exact
BDD minimization (see Chapter 3), the pruning power of the lower
bounds tend to be higher if applied to state spaces of very large sizes.

A second, less important reason is the following: in the course of
an appropriate adaption from exact BDD minimization to dynamic re-
ordering, it is necessary to weaken the lower bounds. Otherwise the
computation of the original lower bounds as given in Lemma 4.3 and
Theorem 4.7 would be too time-consuming when used in an algorithm
as fast as sifting. The situation is different in an algorithm with high
run times like exact BDD minimization: here, other operations carried
out during the algorithm run are of much higher complexity than the
computation of the lower bounds (e.g., BDD reconstruction in exact
BDD minimization). Consequently, the reduction in run time due to
the higher pruning power of tighter bounds exceeds the additional com-
putational effort caused by the higher complexity of the lower bounds.

However, as can be seen from the experiments shown in Table 4.3 and
in Table 4.2, the weakened lower bounds presented are still effective in
the much smaller search space of dynamic reordering. In this, a wide-
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spread and very popular algorithm for heuristic BDD minimization, the
sifting algorithm, can still be noticeably accelerated.

4.6 Summary
In this chapter classical and recently published lower bounds on BDD

sizes for use in dynamic reordering have been presented. The latest
lower bounds in part have been adapted from exact BDD minimization
as described in Chapter 3, Section 3.2. The theory behind these new
lower bounds has been presented and examples have been given, which
gave a deeper insight in the effect of lower bounds on the efficiency
of dynamic BDD minimization. After presenting the improved lower
bounds, proofs of soundness and increased tightness over the classical
lower bounds have been given. Next, following the constraints given
in practice, the improved lower bounds have been restricted to more
efficient forms. The use of the resulting lower bounds during dynamic
BDD minimization has been studied experimentally.

Experimental results with benchmark functions show that reductions
in run time of almost 90% have been obtained when comparing to classi-
cal, unbounded sifting. In comparison to lb-sifting, i.e. sifting using the
classical lower bound, the improved lower bound still yields further re-
ductions in run time of more than 10%. This is achieved while preserving
full quality of the results.



Chapter 5

PATH MINIMIZATION

The classical criterion for the optimality of a BDD is its size, i.e. the
number of nodes in the diagram. This criterion has been addressed in
the last two chapters both with exact and heuristic approaches. In this
chapter, alternative criteria for BDD optimality are considered. These
criteria are related to paths in BDDs.

The number of paths in BDDs as well as their expected and average
length have been formally defined in Section 2.4.8.

When moving from the minimization of BDD size to a minimization
with respect to path criteria, a first obvious question is: in contrast to the
previous minimization of the number of nodes, how can a minimization
with respect to the number of paths be done in BDDs? And: are these
two criteria independent (orthogonal) optimization objectives, or are
they related (correlated) to one another?

The optimization with respect to the number of paths is motivated
by a number of applications in VLSI CAD in different areas and it has
been studied in [FD02a].

BDD Circuits. As has been described in Chapter 1, BDDs can di-
rectly be mapped into circuits by replacing BDD nodes with multiplex-
ors. These circuits are well testable [DSF04]. In particular test pattern
generation with respect to the path delay fault model is efficient for BDD
circuits. The number of paths in the circuit corresponds to the number
of paths in the BDD and is proportional to the number of faults under
the path delay fault model. Therefore minimizing the number of paths
can significantly reduce the time for testing.



146 ADVANCED BDD OPTIMIZATION

DSOP Minimization. A Disjoint Sum of Products (DSOP) is a rep-
resentation of a function as a sum of pairwise disjoint products. DSOPs
are used in several applications in the area of CAD, e.g. the calculation of
spectra of Boolean functions [Fal93, FC99, TDM01] or as a starting point
for the minimization of Exclusive-Or-Sum-Of-Products (ESOPs), e.g. in
[Sas93, MP01]. Some techniques for minimization of DSOPs working on
explicit representations of cubes have been introduced in [FSC93, ST02],
but are only applicable to small instances of the problem.

From a BDD of a Boolean function f a DSOP can easily be derived:
Each path to 1 corresponds to a (partial) assignment to the variables
of f . This directly corresponds to a product over the literals of f . The
products retrieved from different paths to 1 are disjoint. Therefore the
sum of the products collected from all paths to 1 is a DSOP of f . In
[FD02b] this technique has been applied. Experimental results have
shown that the size of the retrieved DSOPs is equal to that of the other
approaches. But due to the implicit representation of the products much
larger functions can be handled.

SAT. Solving the satisfiability problem (SAT problem) for a given
Boolean function f(x1, . . . , xn) means to decide whether there exists
an assignment such that f evaluates to one, or to proof that no such
assignment exists. A large number of problems is solved by reducing the
original problem to a SAT problem. Sophisticated algorithms to solve
SAT problems are known [MSS96, MMZ+01]. They usually work on a
representation of the function in Conjunctive Normal Form (CNF).

The relation of the number of paths in BDDs to SAT-solving is twofold:

The correspondence to the number of back-tracks in a SAT-solver
has been shown in [RDO02]. This important interrelation is studied
in detail in Chapter 6.

The number of paths to 0 is equal to the number of clauses in a CNF,
if a BDD is mapped to a CNF directly, i.e. without logic optimiza-
tions. For example in [CNQ03, GGW+03] techniques to integrate
SAT and BDDs were introduced. There BDDs were used as a start-
ing point for the generation of a CNF.

As a first criteria alternative to diagram size, minimizing the number of
paths in BDDs is studied in this chapter. Theoretical studies show the
exponential dependency on the variable ordering and several instructive
examples are given. The results given here also provide answers to the
above questions that arose from the shift to the new criterion for BDD
optimality. A heuristic technique to minimize the number of paths in
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BDDs is introduced. This technique is applied to sifting (see Section
2.4.7.2) to carry out the minimization. A detailed explanation is given
and the efficiency is underlined by experiments. It is demonstrated that
the number of paths can be significantly reduced for some benchmarks.
At the same time the number of nodes does not necessarily increase and
may even be also reduced. While the experiments show the feasibility of
the approach, it also turns out that minimizing the number of paths can
be much more time-consuming than minimizing the number of nodes.

On the other hand, this increased algorithmic hardness is not present
for a second path-related criterion, the Expected Path Length (EPL). An
approach to minimize the expected path length in BDDs has first been
suggested in [LWHL01]. However, this approach still had a complexity
comparable to the approach for minimizing the number of paths.

Tackling this problem of high run time, two sifting modifications min-
imizing the expected path length have been published independently
[NMSB03, EGD04b] which have the same asymptotic run time com-
plexity as the original sifting algorithm. Minimization of the expected
path length is motivated by applications in two areas of VLSI CAD.

Functional Simulation. In many verification tools methods for func-
tional simulation, BDDs or free BDDs are used [CG85, AM95, MMS+95,
SDB97, LWA98, LWHL01, ISM03, NMSB03, JMB03]. A crucial point
here is the time needed to evaluate a function using a representing BDD.
The evaluation time is proportional to the expected path length in the
BDD (see Section 2.4.8). Thus, in BDD-based functional simulation, the
BDDs yielded by the proposed methods to minimize the EPL can reduce
the run time of the simulation significantly, because logic functions are
repeatedly evaluated with different input vectors.

Boolean functions f : Bn → Bm can be viewed as a Boolean relation
representable by its Characteristic Function (CF). Using a BDD for the
CF of this relation, the evaluation time is O(m + n), see [AM95] and
[SDB97]. The time complexity of function evaluation using shared BDDs
directly representing the function f is higher, O(m · n) [AM95, SDB97].
However, in functional simulation based on BDDs, shared BDDs directly
representing the function f often have to be used instead of BDDs for
CFs since the sizes of BDDs for CFs tend to be too large to preserve
practicality [ISM03]. For this reason, there is a strong demand for algo-
rithms to minimize the EPL, speeding up the evaluation time for shared
BDDs.

Logic Synthesis. Classically, BDD optimization was done with re-
spect to the number of nodes, i.e. BDD size. This reduces the memory
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and run time needed for the representation and manipulation of Boolean
functions. If BDDs are directly mapped into multiplexor circuits (see
Chapter 1), minimization of BDD size directly transfers to a smaller
chip area, but it can lead to chips with poor timing performance, see
[LAB98]. Recently, approaches based on Rudell’s sifting algorithm have
been proposed which optimize BDDs targeting the delay of the result-
ing circuits, see [LAB98] and [SB00]. But these techniques either fail to
achieve strictly local operations during variable swaps [LAB98], result-
ing in high run times, or they apply simplified cost functions [SB00] and
thus can produce results which are far away from the true optimization
objective.

Minimization of the EPL is also suggested for path delay minimization
in multiplexor circuits: assuming a unit delay model [DG02], the maximal
path length (MPL) in BDDs (see Example 2.27) models the delay on a
critical path. In Section 5.2.5 experiments are described showing that
the MPL of the BDDs yielded by minimization of the EPL is almost the
same as for BDDs directly minimized towards a smallest MPL. When
minimizing the EPL, experiments show that reductions in the length of
critical paths of more than 40% can be observed on benchmark functions.
While the same results are obtained with an approach oriented towards
the maximum path length the EPL-oriented method is faster by up to
two orders of magnitude.

It also has been proposed to improve the quality of functional de-
composition (see Section 2.3 and, in particular, [YC02]) by minimiz-
ing the expected path length in BDDs representing the logic functions
[NMSB03].

In this chapter new techniques for BDD minimization with respect
to the expected path length are presented. These techniques are fast
heuristic approaches based on sifting and, unlike previous approaches,
perform variable swaps with the same time complexity as the original
sifting algorithm. Experimental results show speed-ups of up to two
orders of magnitude while preserving high quality of the results.

Comparing the run times of the sifting approaches for minimizing
the number of paths and of those targeting at the EPL, a significant
difference can be seen: in BDDs, it turns out to be much harder to
minimize the number of paths than to minimize the EPL.
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An obvious question is that for the reasons behind this gap. Next in
this chapter, a unifying view is applied to compare minimization of the
EPL to the approaches to minimize

a) the number of paths in BDDs, and

b) the sum of the lengths of the paths in BDDs.

This allows for a characterization of the different problems in terms of
algorithmic hardness. Finally, an algorithm for the minimization of the
Average Path Length (APL) in BDDs can be derived directly from the
approaches targeting the criteria a) and b).

As a side-effect of minimizing the APL in BDDs, the length of the
longest path in the circuit is also reduced. Therefore the minimization
of the APL leads to circuits with a smaller delay on the critical path.
By this, the circuit is optimized for speed [FSD04]. Minimizing the EPL
reduces the average evaluation time for the evaluation of a BDD. This
takes into account, how often a path is chosen for an input vector applied
to the BDD by the environment or to the corresponding circuit, respec-
tively. In this, the APL is defined independently of the environment of
the circuit and seems to have a more direct relation to the circuit struc-
ture and depth. Experimental results are given showing the feasibility
of the approach and the effectiveness of an optimization.

The chapter is organized as follows: starting with the number of paths
in BDDs, first theoretical studies are given in Section 5.1.1. The efficient
minimization algorithm is explained in Section 5.1.2.

In Section 5.2, the study is continued with the EPL. First, basic tech-
niques to minimize the EPL are discussed. Section 5.2.2 then describes
a recent approach to minimize the EPL in BDDs by a sifting method. A
technique to keep track of local changes during variable swaps is intro-
duced as the framework for the new approach. Next, in Section 5.2.3,
attention is turned to node weights that are used in the approach, ex-
plaining a probabilistic interpretation. It is clarified how to compute the
weights and a useful invariance property is deduced. The presentation
of the algorithm is completed by a detailed schema for node updates in
Section 5.2.4. This schema describes what quantities must be refreshed
depending on the situation in the algorithm.

In Section 5.3 an algorithm to minimize the APL in BDDs is given.
First, in Section 5.3.1 a unifying view of BDD optimization problems
is used to derive an approach to minimize the sum of the path lengths
in BDDs. Next, in Section 5.3.2 the algorithm to minimize the APL in
BDDs is given with the help of this newly obtained method.

For all approaches experimental results are given.
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Figure 5.1. Examples of BDDs.

5.1 Minimization of Number of Paths
In this section minimizing the number of paths in BDDs is studied.

Theoretical studies are carried out and an algorithm for path minimiza-
tion is presented.

5.1.1 Theory
An introductory examples briefly clarify the difference between rep-

resenting a function with BDDs of minimal path number or minimal
size. Then, the exponential dependence of the number of paths on the
variable ordering is shown.

5.1.1.1 Examples

In Example 2.32 it has been demonstrated that all BDDs representing
the EXOR-function have a number of nodes linear in n whereas the
number of paths is exponential in n.

Example 5.1 On the other hand the function f = x1x2x3 + x1x2x4 +
x1x2x3x4 + x1x2x3x4 is an example where different variable orderings
lead to a BDD with either a minimal number of nodes (Figure 5.1(a))
or a minimal number of paths to one (Figure 5.1(b)). Note, that the
implicit edge representing f is complemented. While the BDD minimal
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in size has six nodes (including the terminal) and five 1-paths, the BDD
minimal in the number of 1-paths has two more nodes, but only four
1-paths. This relation has already been shown in [DM99].

5.1.1.2 Dependency on the Variable Ordering

As has been demonstrated in Example 2.19, the variable ordering
heavily influences the number of nodes of a BDD. The left BDD in
Figure 2.8 has n inner nodes, but the right BDD, respecting a different
ordering, has an exponential number of nodes. The number of 1-paths
is exponential in n in both cases.

Nonetheless the same influence of the variable ordering can be proven
for the number of 1-paths in a BDD as the following lemma shows.

Lemma 5.2 Let the Boolean function fnff (x1, . . . , x2n), n > 1 be recur-
sively defined:

f1 = x1xn+1

fjf = fjf −1 + (
⋂j−1

i=1 xi)xjxn+j

And let π1 and π2 be two variable orderings:

π1 = (x1, xn+1, x2, xn+2, . . . , xn, x2n)

π2 = (xn+1, x1, xn+2, x2, . . . , x2n, xn)

The BDD(fnff , π1) without CEs with respect to π1 has 2n + 2 nodes and
n 1-paths. But BDD(fnff , π2) without CEs with respect to π2 has 3n + 1
nodes and 2n − 1 1-paths.

Proof. At first the variable ordering π1, i.e. the BDD(fnff , π1) is con-
sidered (for an easier understanding of the proof see the example for
n = 4 in Figure 5.2). The nodes in BDD(fnff , π1) correspond to cofac-
tors in fnff . By construction any cofactor fnff |x1=c1,...xj−1=cj−1,xj=1 where

(c1, . . . cjc −1) = (0�� , . . . , 0) is independent of xj , . . . , xn and xn+j , . . . , x2n.
Furthermore

fnff |x1=0,...,xj−1=0,xj=1 = xn+j .

Thus, for a node v labeled xj always var(then(v)) = xn+j holds, i.e. the
sub-graph representing the positive cofactor has only one node labeled
xn+j . The negative cofactor with respect to xj , fnff |x1=0,...,xj−1=0,xj=0, is

independent of xn+j , so var(else(v)) = xj+1. This cofactor can be con-
structed from fnff |x1=0,...xj=0,xj+1=1 and fnff |x1=0,...xj=0,xj+1=0. Now the

same argumentation can be applied for cofactorization with respect to
xj+1. Therefore exactly one node in BDD(fnff , π1) corresponds to each
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Figure 5.2. BDD(f4ff , π1), variable ordering π1.

variable. Including the two terminal nodes the BDD has 2n + 2 nodes.
Since only cofactors of the form fnff |x1=0,...,xj−1=0,xj=1,xj+1=1 equal func-

tion one, there are n 1-paths in BDD(fnff , π1).
The transformation from variable ordering π1 to π2, i.e. BDD(fnff , π1)

into BDD(fnff , π2) (see Figure 5.3 for an example) takes n swap operations
of pairs (xi, xi+n). Due to the canonicity of BDDs the order of swaps is
arbitrary. Let therefore be (xn, x2n), . . ., (x1, xn+1) the order of pairs.
The swap operations are local operations and are of the type that is
shown in Figure 5.4. Before the swap operation there are

P1(BDD(gi−1, π1)) = 1 + P1(BDD(gi, π1))

1-paths from the topmost node involved, afterwards there are

P1(BDD(gi−1, π2)) = 1 + 2 · P1(BDD(gi, π1))

1-paths from the topmost node involved in the swap as can be seen in
the figure.

Swapping (xn, x2n) does not change the number of paths since gn is
the function zero (i.e. BDD(gn, π1) = BDD(gn, π2) = Gn), the number
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Figure 5.3. BDD(f4ff , π2), variable ordering π2.
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The swap operation applied to a pair (xi, xi+n) of variables.

of 1-paths in the sub-graph is P1(BDD(gn−1, π2)) = 1. Proceeding with
(xn−1, x2n−1) results in

P1(BDD(gn−2, π2)) = 1 + 2 · P1(BDD(gn−1, π2)).

Recursively applying this scheme P1(BDD(g0, π2)) can be calculated:

P1(BDD(g0, π2)) = 1 + 2 · (. . . 1 + 2 · (1 + P1(Gn)) . . .)
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Knowing that gn = zero the result is P1(BDD(g0, π2)) = 2n − 1. Since
g0 = fnff the BDD of fnff with respect to π2 has 2n − 1 1-paths. �

The same dependence is true for BDDs with CEs. The argument
relies on the following two lemmas.

Lemma 5.3 Given are two BDDs without CEs Gf and Gf of functions

f and f , respectively. Then, P0PP (Gf ) = P1PP (Gf ) and P1PP (Gf ) = P0PP (Gf ).

Proof. The graphs of both BDDs are isomorphic, only the terminal
nodes 1 and 0 are exchanged. Therefore a 1-path in Gf becomes a
0-path in Gf and vice versa. �

Lemma 5.4 Given are two implicit edges e and e′ into BDDs Gf and
G′

f of a function f where Gf is a BDD without CEs and G′
f is a BDD

with CEs. If both BDDs have the same variable ordering π, both BDDs
have the same number of 1-paths and 0-paths.

Proof. The proof is carried out by induction over the number of
variables the function f depends on. In the following only the number
of 0-paths is considered, the argument for the number of 1-paths is
analogous.

The BDDs without CEs have only one node for each of the constant
functions one and zero. In both cases the implicit edge e directly points
to the terminal. There is exactly one or no 0-path, respectively. For the
implicit edge e′ into the BDD with CEs for the constant function one,
the attribute CE(e′) is false and points to the terminal 1. For function
zero the edge is complemented and also points to terminal 1. Therefore
the claim is true for constant functions.

Assume, the claim is true for functions depending on n− 1 variables.
Given a function f the Shannon decomposition (see Theorem 2.9) with
respect to the topmost variable x in the order returns f = xf0ff + xf1

where f0ff and f1 are the negative and positive cofactors, respectively.
Both functions depend on n−1 variables. At most one node is introduced
into the BDD at the topmost level. There occur two cases:

1) The new node in G′
f directly represents the function f , thus CE(e′)

is false. Then,

P0PP (Gf ) = P0PP (Gf0ff ) + P0PP (Gf1)

= P0PP (G′
f0ff ) + P0PP (G′

f1
)

= P0PP (G′
f )
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2) The new node in G′
f represents f , thus CE(e′) is true. Then,

P0PP (Gf ) = P1PP (Gf ) (from Lemma 5.3)

= P1PP (Gf0
) + P1PP (Gf1

)

= P1PP (G′
f0

) + P1PP (G′
f1

)

= P1PP (G′
f
) (due to the CE)

= P0PP (G′
f ),

completing the proof. �

In summary, the number of paths in BDDs may drastically change with
the variable ordering. Even an exponential change can occur while the
number of nodes remains linear in the number of input variables. This
shows the potential for an algorithm to minimize the number of paths.

5.1.2 Efficient Minimization
This section proposes the technique to minimize the number of paths

in BDDs. As efficient BDD packages use CEs, also CEs are taken into
account. Basically the technique relies on swapping of adjacent variables
and keeps track of changes in the number of paths due to the swap. Then,
the integration into Rudell’s sifting algorithm is shown.

5.1.2.1 Swapping Variables

Swapping two adjacent variables xi, xj in the variable ordering π
results in the new variable ordering π′ with

π′(k) =

⎧⎨⎧⎧
⎩
⎨⎨ π(k) if k �=�� i, j

π(i) if k = j
π(j) if k = i

.

Let in the following Gπ := BDD(f, π) and Gπ′
:= BDD(f, π′).

The swap operation has only local effects on the BDD regarding the
number of nodes and is therefore used in most of the common reordering
routines for BDDs. The operation influences the nodes in the two levels
i and j but leaves all other nodes untouched. This way it is easy to keep
track of the number of nodes in the BDD. One case that occurs during
the swap of levels is illustrated in Figure 5.5. Due to the swap of xi and
xj three nodes instead of the previous two are needed.

While swapping two variables is a local operation when the number
of nodes is considered (see Section 2.4.7.1), this is not the case when
calculating the number of paths. If the number p1(w) of regular paths
from the outputs to a node w and also the number of regular paths from
w to 1 are known, the number of paths from the outputs to 1 via w
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Figure 5.5. Nodes in a swap operation.

is simply the product of both. (Of course, to get the total number of
1-paths via w one has to also add the number of complemented paths
to w multiplied by the number of 0-paths from w). By keeping track of
all changes, P1PP (Gπ′

) can be calculated, if P1PP (Gπ) is also given. But a
change in p1(w) will affect p1 of all nodes on a path from w to 1 as well
and updating all these values is necessary for the efficient calculation of
P1PP during further swap operations.

Therefore P1PP (Gπ′
) is calculated by keeping track of all the changes

of p1(w) for all nodes w in levels below π(i) during the swap. These
changes are propagated down to the terminal 1 afterwards. Obviously
the number of 1-paths from the outputs to 1, P1PP (Gπ′

), is equal to p1(1)
after the propagation.

For every node w of the BDD the values p0(w) and p1(w) can be
calculated from values p0 and p1 of all predecessors of w:

p0(w) =
∑

v∈M1(w) p0(v) +
∑

v∈M0(w) p1(v) (5.1)

p1(w) =
∑

v∈M1(w) p1(v) +
∑

v∈M0(w) p0(v) (5.2)

At first it is shown how to keep track of the changes and then how the
propagation is done.

5.1.2.2 Keeping Track of Changes

For each node d1(t) (d0(t)) denotes the difference in the number of
regular (complemented) paths from the outputs to t before and after the
swap. Looking at Figure 5.5 again one can see the changes in the number
of paths. The number p0(w) (p1(w)) does not change and therefore d0(w)
(d1(w)) is not changed either. Before the swap the node u did not have v
as a predecessor in previous calculations of p0(u) (p1(u)), so the following
updates are done:

p0(u) := p0(u) + p0(v) (p1(u) := p1(u) + p1(v))

and

d0(u) := d0(u) + p0(v) (d1(u) := d1(u) + p1(v))
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Figure 5.5 is just one case of the changes made to nodes in levels below
the xi-level but the schema of the updates applies to all other cases as
well. By iterating the nodes of the xi-level all the changes are accumu-
lated in the values d0 and d1 of nodes in levels below (consider the case
resulting from going through the example in Figure 5.5 from right to
left).

For efficiency a stack s(k) is assigned to each level k of the BDD. Every
time a value d0(v) or d1(v) is changed the corresponding node v is pushed
onto the stack corresponding to var(v), i.e. stack s(k) where π′(k) =
var(v). Thereby only those nodes are considered during propagation
where a change in the number of paths may have occurred. This method
to keep track of changes does not change the asymptotic time complexity
of the swapping operation since only a constant number of operations
are added, these are additions and lookups on nodes that are touched
anyway.

5.1.2.3 Propagation of Changes

Looking at Equations (5.1) and (5.2) the differences d0(w) and d1(w)
can be calculated from the differences of all predecessors of w, respec-
tively:

d0(w) =
∑

v∈M1(w) d0(v) +
∑

v∈M0(w) d1(v) (5.3)

d1(w) =
∑

v∈M1(w) d1(v) +
∑

v∈M0(w) d0(v) (5.4)

The algorithm works in a different way since efficient implementations
of BDD packages only store information about the children of a node,
but not of its predecessors. All nodes in the stacks are candidates for
a change in the number of paths leading to the node from the outputs.
Figure 5.6 shows the algorithm to propagate the changes. For simplicity
only the algorithm to handle BDDs without CEs is shown, the extension
to handle CEs is straightforward and has been implemented. Subroutine
pop from stacks returns in v the first element in the topmost stack
that is not empty. Here, topmost means associated to the highest level.
This leads to a level-wise propagation of changes. All predecessors of
a node v are visited before the node itself. Thus, Equations (5.3) and
(5.4) have been evaluated correctly when v is visited.

It is checked if d0(v) or d1(v) is different from zero, because v might be
on the stack twice (when pushing v onto the stack it is not checked if v is
an element of the stack already). Then, the counts for the children of v
are updated by calling update counts. If a child is a terminal node no
further propagation is necessary. Otherwise push onto stacks pushes
the child node onto the stack corresponding to the node’s level in the
BDD. After propagating all updates from a node v, d0(v) and d1(v) have
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(1) propagate changes()
(2) proc
(3) while pop from stacks(&v) do
(4) if d0(v) �= 0�� or d1(v) �= 0�� then
(5) w := then(v);
(6) update counts(v,w);
(7) if not IsTerminal(w) then
(8) push onto stacks(w);
(9) end–if

(10) w := else(v)
(11) update counts(v,w);
(12) if not IsTerminal(w) then
(13) push onto stacks(w);
(14) end–if
(15) d0(v) := 0;
(16) d1(v) := 0;
(17) end–if
(18) end–while
(19) end–proc

(20) update counts(node v, node w)
(21) proc
(22) p0(w) := p0(w) + d0(v);
(23) d0(w) := d0(w) + d0(v);
(24) p1(w) := p1(w) + d1(v);
(25) d1(w) := d1(w) + d1(v);
(26) end–proc

Figure 5.6. Algorithm to propagate changes.

to be set to zero before visiting the node a second time and before the
next swap operation.

Despite the application of calculating the number of 1-paths this tech-
nique also calculates the number of 0-paths, P0PP (Gπ) in p0(1), and the
number of all paths in the BDD which is given by P0PP (Gπ) + P1PP (Gπ).

5.1.2.4 Modification of Sifting

With a swapping procedure that calculates the number 1-paths Rudell’s
sifting algorithm can be modified to minimize the number of 1-paths in-
stead of the size of a given BDD. In the original algorithm every variable
is moved up and down in the variable ordering. At each position the size
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of the BDDs is measured and finally the variable is fixed at a position
where the BDD was smallest. All the changes in the variable ordering
are done by swapping adjacent variables.

If the described swapping procedure is used, the number of 1-paths
in the BDD can be used as the criterion which position to choose for a
variable rather than the size of the BDD. After each swap of two adjacent
variables, i.e. after processing all nodes in the two levels, changes are
propagated with the given algorithm. During modified sifting no upper
limit on the number of 1-paths is used to stop the swapping operations.

5.1.3 Experimental Results
Two experiments were made to demonstrate the difference between

the BDDs minimal in the number of 1-paths and those minimal in
size. The first experiment was to enumerate all functions of up to four
variables, in the second experiment the benchmark set LGSynth93 has
been investigated: The modified sifting algorithm has been compared
to Rudell’s sifting algorithm. For the modified algorithm also some sta-
tistical information has been gathered to validate the efficiency of the
technique.

The experiments were carried out on an AMD Athlon 2200+ system
with 512 MB of physical memory. The machine was running under
Linux. The algorithms were integrated into the CUDD package [Som02].
For the comparison with Rudell’s sifting the implementation included in
this package was used. CUDD makes use of lower bounds to prune
parts of the search space during sifting (see Chapter 4). Also sifting
is stopped, as soon as the size of the BDD doubles. No lower bounds
or maximal increase are applied during path minimization. Dynamic
variable ordering was turned off while building the BDDs, then a single
minimization run was carried out.

5.1.3.1 Function Enumeration

For a given function all possible variable orderings have been consid-
ered, collecting all BDDs that were minimal in size or number of 1-paths.
Enumerating all functions of two or three variables gives the following
result:

Lemma 5.5 For all Boolean functions of two or three variables there
exists a BDD that is minimal in size and in the number of 1-paths at
the same time.

This is not true for functions of four variables. Comparing the BDDs
minimal in size with those minimal in the number of 1-paths it can be
observed that 2.3 percent of the functions do not have a BDD that is



160 ADVANCED BDD OPTIMIZATION

minimal in size and the number of 1-paths at the same time. One of the
functions was given in Section 5.1.1.1 already, the corresponding BDDs
are shown in Figure 5.1(a) and 5.1(b), respectively. This leads to:

Lemma 5.6 There are Boolean functions that do not have a BDD that
is minimal in size and in the number of 1-paths at the same time.

5.1.3.2 Benchmarks

Due to the propagation of changes towards the terminal node, the
minimization of paths is more time consuming than minimizing the size.
Not only the descent has to be done but also more memory per node is
needed because of the extra information p1, p0, d1 and d0 associated with
every node and in addition the stacks are needed. The sifting algorithms
were applied after constructing the BDD of a circuit.

In the first experiment statistical information has been collected to
judge the quality of the technique. Table 5.1 summarizes the results
for some circuits of the LGSynth93 benchmarks the algorithm handled
within no more than two hours and no more than 400MByte of memory.
The table allows to evaluate the improvements achieved by storing the
difference in the number of paths due to a swap and the stacks for prop-
agation of these differences. The last line shows the average percentage
of nodes that are visited by the different approaches.

A brute force algorithm would visit the number of nodes listed in
column all nodes: After each swap the brute force algorithm visits all
nodes of the current BDD, even if no change in the number of paths
occurred.

Compared to this, below gives the sum of nodes that would be visited
by an algorithm that only visits nodes below the swapped levels. This is
achieved by using additional memory to keep the extra information p1,
p0, d1 and d0 for every node.

Finally, column visited shows the number of nodes that were visited by
the proposed algorithm from Section 5.1.2, i.e. when the stacking schema
is used to propagate only from those nodes where a change occurred.

Summarized, the modified algorithm on average only had to visit 3.3%
of the nodes a brute force algorithm would visit. Furthermore, for most
of the nodes obviously no change in the number of paths had to be
propagated. The modified algorithm on average visited only 3.3% of the
nodes, while 39.0% of the nodes are below the swapped levels.

In a second run the algorithm was compared to Rudell’s sifting algo-
rithm. On some circuits only Rudell’s sifting algorithm finished within
the given bounds of time and memory, on some benchmarks both al-
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Table 5.1. Statistical results for the modified sifting algorithm

name number of nodes
all nodes below visited

C432 84,639,526 41,321,649 3,511,386
alu4 400,646 193,080 25,911
apex2 19,682,173 8,883,647 693,229
bigkey 704,105,565 221,187,948 88,114
cordic 416,754 161,088 13,789
des 527,491,798 199,389,176 559,577
dk14 5,121 1,354 509
e64 5,974,822 2,819,207 0
frg1 1,636,058 624,702 67,418
frg2 113,200,656 31,657,866 152,382
i4 1052,720,339 507,868,694 1,678,258
i8 66,116,210 26,976,058 201,564
ldd 11,420 2,255 610
pair 1004,753,819 471,731,213 2,629,052
phase decoder 8,941,404 3,475,489 64,326
s1238 2,900,428 967,898 71,600
s298 238,339 103,115 32,029
s510 1,742,733 738,318 179,805
scf 2,927,922 1,243,434 114,109
too large 8,695,072 4,464,052 331,430
x3 28,723,432 10,930,792 58,500
x4 11,671,642 3,802,703 11,753

Average 100.0% 39.0% 3.3%

gorithms did not finish. Table 5.2 lists only results for circuits both
algorithms were able to cope with.

The table shows for both algorithms the number of nodes and the
number of 1-paths of the BDD, respectively, and the CPU time needed
for each circuit. The average factor between the two approaches for
corresponding measures is given in the last line. Reducing the number
of 1-paths comes at a higher computational cost. This is due to the
non-locality of the swap operation with respect to the number of paths.
Another reason is the efficient implementation of sifting in CUDD using
lower bounds (see Chapter 4). On the other hand increased compu-
tation time often is less important than a good final result. This is
especially true for applications like synthesis or test. The size on aver-
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Table 5.2. Comparison of BDDs resulting from Rudell’s and modified sifting

name in out gates Rudell 1-path
size P1PP time size P1PP time

C432 36 7 398 4,244 1.85·1066 1.17 19,799 1.38·1066 1,700.55
alu4 14 8 2,417 599 2,410 <0.01 755 1,544 0.18
apex2 39 3 3,230 882 114,232 0.09 2,056 8,286 9.09
bigkey 487 421 3,464 3,677 8,729 0.21 2,238 7,273 2.18
cordic 23 2 2,104 77 34,804 <0.01 121 26,330 0.06
des 256 245 2,764 3,143 403,487 0.16 4,788 381,927 21.17
dk14 7 8 95 58 95 <0.01 70 69 <0.01
e64 65 65 718 157 65 0.03 1,764 65 0.16
frg1 28 3 206 111 461 0.08 154 167 8.65
frg2 143 139 2,048 1,727 9,456 0.05 2,165 6,010 1.14
i4 192 6 484 823 1.36·107 0.36 1,783 2.30·106 161.09
i8 133 81 1,304 1,336 5,683 0.05 2,235 2,230 1.57
ldd 9 19 126 69 137 <0.01 79 63 <0.01
my adder 33 17 292 243 1.24·106 0.84 83 655,287 4213.40
pair 173 137 2,688 8,022 4.77·106 0.49 9,634 106,532 24.31
phase dec. 59 65 1,661 1,076 5,626 0.02 1,084 1,771 0.20
s1238 33 32 752 636 4,168 0.01 1,179 2,621 0.33
s510 26 13 222 199 308 0.18 208 207 301.48
scf 35 63 694 507 725 0.10 603 518 10.29
too large 38 3 1,152 722 45,904 0.10 937 4,200 2.00
x3 135 99 1,639 744 2,437 0.02 691 873 0.15
x4 94 71 768 373 1,422 0.01 765 790 0.06

Average 1 1 1 1.92 0.54 403

age increased only by a factor of 1.92 when the modified algorithm was
applied. Moreover due to the heuristic approach of sifting the size was
reduced for several circuits, even if the number of 1-paths is minimized
(e.g. “my adder”).

The number of 1-paths was reduced for all the circuits. An average
reduction to 54% of the 1-paths has been achieved. In several cases a
factor of 10 or more was gained. For example consider “pair” where
the number of 1-paths was reduced to only 2.2% compared to sifting.
Thus, the minimization of the number of 1-paths instead of the number
of nodes can result in significant improvements.
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5.2 Minimization of Expected Path Length
In this section basic and advanced techniques for BDD minimization

with respect to the expected path length are presented. The advanced
methods are fast heuristic approaches based on sifting and, unlike previ-
ous approaches, perform variable swaps with the same time complexity
as the original sifting algorithm.

5.2.1 Basic Approaches
In [LWHL01], a first algorithm to minimize the EPL for a given single-

rooted BDD has been suggested.
The minimization is performed with a window permutation algorithm

(see Chapter 4). After each swap of variables, establishing a new variable
ordering, the resulting EPL of the restructured BDD must be determined
again. Re-calculations need to be done in the restructured part of the
BDD covered by the window. Therefore, the window (and with that,
also the BDD) is split into an upper and a lower part. Each part is
updated with one of two different methods, using formulas derived from
Equation (5.7) in Section 2.4.8. Afterwards, this algorithm needs to
determine all direct references from nodes in the upper BDD part to
nodes in the lower BDD part. This is a significant drawback, as this
operation requires touching large parts of the BDD including many levels
(see Section 3.1.2.1). The authors also describe a simplified approach
which computes an estimation of the EPL, computing only the edges
between two adjacent levels. However, this means that a much weaker
delay model is used.

In [NMSB03] it has been suggested to use the framework of the sifting
algorithm (see Section 2.4.7.2), targeting the EPL of BDDs as the ob-
jective function. The authors use the following formula for the expected
path length which can be found in [ISM03]. It relates EPL to quantities
computed for single BDD nodes:

ε(F ) =

|F |−1∑
i=0

P (vi) (5.5)

where P (v) denotes the fraction of all 2n variable assignments such that
the resulting path includes node v. The global epsilon value for the BDD
is determined using the associativity of the sum. For this, it suffices to
maintain all changes in the node probabilities as induced locally by each
variable swap.

In the next sections an approach will be presented which was pub-
lished independently of this approach and follows a similar idea. It also
directly updates the global EPL while visiting the nodes involved during
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a variable swap. That way, expensive graph traversals can be avoided.
It relates a global change in the quantity in question, i.e. the EPL-value
for the BDD, to a local change in the very same quantity, i.e. a change
in the ε-value for a node v currently processed during a swap of levels i
and i + 1.

Let ∆ε denote the global change and ∆εv denote the local change,
respectively. The basic recurrent equation used in the new method is

∆ε =
∑

v is a node
in level i

∆εv · ω(v), (5.6)

where ω(v) is the weight of node v in the global change.
With that the new approach follows a more general schema which can

be used to express other BDD characteristics as well. In particular, the
change in the number of 1-paths that is induced by a variable swap can
be described by a similar equation, see Section 5.3.

Moreover, the algorithmic hardness to reduce BDDs with respect to
this criteria can be characterized by looking at the respective weights:
weights as the above ω for the EPL-characteristic are invariant with
respect to changes in the graph structure as caused by a variable swap.
Other weights lack this property, e.g. 1-path reduction based on sifting
cannot be performed with a local approach, see Sections 5.1 and 5.3.1.

5.2.2 Fast Minimization Approach for Expected
Path Length

In this section the latest method to minimize the EPL in BDDs is
presented, called EPL-sifting. Like the simple method from [LWHL01]
it is based on Rudell’s sifting algorithm.

The main result of this section will be the desired locality of the vari-
able swap operation in the new method: only the nodes in the adjacent
levels affected by a variable swap have to be processed during a swap
(due to the re-calculation of values which have become invalid).

With that, a local behavior as in the sifting algorithm has been
achieved. It is this locality which makes the new approach fast. In
general, it is difficult to obtain locality, e.g. for a sifting modification
targeting MPL (MPL-sifting), a local approach is not known. Later in
Section 5.2.5, a comparison of the run times of the new method and
MPL-sifting is given.
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(1) eps on level(BDD F , int level)
(2) proc
(3) for each node v in level level do
(4) ε(v) := 1 + 1

2(ε(then(v) + ε(else(v)));
(5) end–for
(6) end–proc

(7) eps above level(BDD F , int level)
(8) proc
(9) for i := level to 1 do

(10) eps on level(F , i);
(11) end–for
(12) end–proc

Figure 5.7. Iterative computation of ε(F ).

5.2.2.1 Computation of the Expected Path Length

The computation straightforwardly follows two equations that have
been introduced in Section 2.4.9.2. These are the equations

ε(v) =

⎧⎨⎧⎧
⎩
⎨⎨ 0, v ∈ {1,0}

1 + pr(var(v) = 1) · ε(then(v)), else
+ pr(var(v) = 0) · ε(else(v))

(5.7)

and

ε(F ) =
1

m

m∑
i=1

ε(oi). (5.8)

In Figure 5.7, a graph traversing algorithm to compute the ε-values for
all nodes in a BDD F is given: for a call eps above level(F , n) the
algorithm proceeds bottom-up starting an iteration at the lowest level
n onto the highest level 1. On every level the ε-values of nodes at the
lower levels which already have been computed, are used to compute
the current values. To keep the presentation simple, code handling the
boundary case (v ∈ {1,0}) is omitted and equal probability of one and
zero assignments for every variable is used for the algorithm in Figure
5.7, i.e. pr(x = 0) = pr(x = 1) = 1

2 for every variable x.

Example 5.7 An example for the recursive computation of the ε-values
is illustrated by the left BDD in Figure 5.8. First, the ε-values for the
two terminal nodes 1 and 0 are determined (in both cases, this is the
value 0). Next, the ε-value for the node labeled with x4 is computed
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Figure 5.8. Recursive computation of the ε- and the ω-values.

as 1 + 1
2 · (0 + 0) = 1 since both child nodes of that node are terminal

nodes. In the next step of the algorithm given in Figure 5.7, the ε-value
of the node labeled with x3 then is computed following Equation 5.7 as
1 + 1

2 · (1 + 0) = 3
2 since the 1-child is the node labeled with x4 and the

0-child is the terminal node 0. Next, the ε-value of the node labeled with
x2 is computed as 1 + 1

2 · (3
2 + 0) = 1 + 3

4 = 7
4 , using the ε-values of

the child nodes, i.e. the node labeled with x3 and the terminal node 0.
Finally, the ε-value of the root node labeled with x1 is computed using
the ε-values of the child nodes as 1+ 1

2 ·(3
2 + 7

4) = 1+ 1
2 · 13

4 = 1+ 13
8 = 21

8 .

5.2.2.2 Sifting Algorithm

The basics of the sifting algorithm have already been discussed in
Section 2.4.7.2 (see also Figure 2.11). A swapping operation between
π(i) and π(i + 1) only changes the graph structure of levels i and i + 1,
leaving all other levels unchanged. This is also true regarding the number
of nodes: only the changes in the number of nodes on levels i and i + 1
contribute to the change of the total BDD size.

Now let the above swap be a step in sifting: if the algorithm given
in Figure 5.7 would be incorporated directly into the sifting algorithm,
targeting the minimization of EPL instead of BDD size, we would have to
re-calculate at least all levels above level i after the swap has been done.
This is, because the ε-values for nodes on levels 1, . . . , i − 1 (including
output nodes directly influencing the total ε-value for the BDD, see
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Equation (5.8)) have become invalid since the graph structure below
them has changed. This re-calculation would be very time-consuming,
yielding a delay minimization routine with a time complexity as high as
the one proposed in [LAB98].

5.2.2.3 Keeping Track of Local Changes

To obtain a more efficient algorithm, the new method keeps track of
the local changes in the ε-values of the nodes in the two levels affected
by the variable swap. These changes then contribute to a global change
in the ε-value for the BDD. In this, the asymptotic time complexity of
the swap operation (see Section 2.4.7.1) is not increased: only the nodes
in the affected levels are touched.

The intuition behind Equation (5.6) is the following: both the local
changes ∆εv and the node weights ω(v) can be computed during the
variable swap, looking only at nodes which are touched anyway. The
local changes induce changes in the ε-values of nodes situated at levels
1, . . . , i−1 as can easily be seen by Equation (5.7). In particular, also the
output nodes are affected. The change in their values induces a change
in the global value ε(F ) by Equation (5.8). This is the only change of
interest.

Equation (5.6) directly expresses the impact of the local changes on the
global change. In this the method bypasses all nodes in levels 1, . . . , i−1.
As a consequence, only the nodes situated at levels i, i + 1 must be
considered. Figures 5.9 and 5.10 sketch the framework for the overall
method and for a swap operation following the above idea. Note that in
Figure 5.9 in line (3) all node attributes must be set to initial values and
the initial global ε-value must be computed before sifting starts. While
variables are moved up and down by sifting, these moves are recorded.
In line (7) the variable is moved back to a best position after this position
has been determined. This is done by use of recorded moves.

During sifting, local changes are transferred after each swap to a global
change. Then the respective global ε-value can be updated, see Figure
5.10. In line (5), the variables x and y are initialized as the variables be-
longing to the swapped levels (π denotes the current variable ordering).
For simpler presentation, equal probability of one and zero assignments
are assumed for every variable. Line (10) shows the update of the ε-value
of the re-expressed node v following Equation (5.7). It is straightforward
to use the same equation for nodes situated at levels i + 1, if necessary.
Later in Section 5.2.4.1 the schema for the local updates of the involved
nodes will be discussed in detail. Lines (9) to (12) show the transfer
of the local changes to the global change ∆ε. If the swap is part of an
upward variable movement, in line (15) the ε-values of all nodes situated
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(1) eps sifting(BDD F , int n)
(2) proc
(3) initialize ε- and ω-values of all nodes and ε(F );
(4) for i := 1 to n do
(5) use calls to eps swap to move i-th variable up and

down until a best position is determined;
(6) thereby update ε(F ) by ∆ε as returned by

eps swap;
(7) best := sift back();
(8) eps above level(F , best − 1);
(9) end–for

(10) end–proc

Figure 5.9. Modified sifting algorithm.

(1) double eps swap(BDD F , int x level, int y level, enum
direction siftdir)r

(2) proc
(3) . . .
(4) ∆ε := 0;
(5) x := π(x level); y := π(y level);
(6) for each node v with var(v) = x whose represented

sub-function fvff depends on y do
(7) re-express v as parent of (possibly newly created)

child nodes then and else;
(8) update ε(then), ε(else), ω(then), and ω(else)

following the local update-schema;
(9) εold := ε(v);

(10) ε(v) := 1 + 1
2 · (ε(then) + ε(else));

(11) ∆εv
:= ε(v) − εold;

(12) ∆ε := ∆ε + ∆εv · ω(v);
(13) end–for
(14) if siftdir = up then
(15) eps on level(F , x level − 1);
(16) end–if
(17) return ∆ε;
(18) end–proc

Figure 5.10. Swapping two variables.
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one level above the swapped levels are restored after the swap. This is
necessary to ensure validity of the ε-values in subsequent steps as will
be discussed in Section 5.2.4.2.

5.2.3 Node Weights
Prior to the presentation of update schemas for ω- and ε-values appro-

priate methods to compute both quantities must be known. A recursive
method to compute ε has already been given in Figure 5.7, see also the
left BDD in the example given in Figure 5.8. This method is used in
line (10) of Figure 5.10. In this section the weights ω(v) for a node v
are discussed and it is clarified how to compute them. First, paths from
output nodes to v are considered such that the impact of local changes
on the change for the output nodes can be expressed. Then an intuitive
characterization of the weights is possible. Using this characterization,
a recurrent equation is deduced for the weights. With that the node
weights can be computed and updated using local operations. A brief
comparison to density measures [RS95, RMSS98] is given. Afterwards
an invariance property is deduced which helps to avoid unnecessary com-
putations.

5.2.3.1 Theory of Weights

For the following, always a shared BDD F representing a Boolean
multi-output function f :Bn → Bm; f = (fiff )1≤i≤m is assumed with-
out further mentioning. The following notation has been introduced in
Section 2.4: for an edge e on a path in a BDD, the type of the edge is
denoted with t(e), i.e. we have t(e) = 1 for a 1-edge e and t(e) = 0 for
a 0-edge e.

Lemma 5.8 Let v be a non-terminal BDD node v whose ε-value has
lately been changed by a value ∆εv. Further, assume the structure of the
BDD has not changed above this node, i.e. in levels above the var(v)-
level. Then the ε-value of an output node v′ changes for every path
p = (v′, ev′ , v′′, ev′′ , v′′′, ev′′′ , . . . , u, eu, v) by pr(p) · ∆εv.

Proof. We have

pr(p) = pr
(
var(v′) = t(ev′)

) · . . . · pr(var(u) = t(eu)) (5.9)

for the path probability pr(p) since, for p to be chosen in an evalua-
tion, all variables tested along p must be assigned the according Boolean
values. Now the result follows from Equation (5.7): the product of as-
signment probabilities on the right side of Equation (5.9) is exactly the
factor occurring before the term ε(v) in an expression for ε(v′), derived
with the developed, non-recurrent form of Equation (5.7).
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In detail: by repeated application of Equation (5.7) we obtain

ε(v′) = pr
(
var(v′) = t(ev′)

) · ε(v′′) + . . .

= pr
(
var(v′) = t(ev′)

) · (pr
(
var(v′′) = t(ev′′)

) · ε(v′′′) + . . .
)

+ . . .

. . .

= pr(p)︸ ︷︷︷ ︸︸
factor of the

change

· ε(v)︸︷︷︷ ︸︸
subject to

a change ∆εv

+ . . .︸︷︷︸
the term ε(v)

does not occur here

Note that we ordered the terms on the right sides of the equations such
that the terms being multiplicated with ∆εv (and hence, being influenced
by this change) are written first. Hence, ε(v′) changes by pr(p) ·∆εv . �

In the following, pr(p) is called the weight of v in v′ along the considered
path p from v′ to v.

Next, the weight just introduced is formally defined, as well as addi-
tional weights which are based on the first weight. For this, the Greek
letter ω will be used with one or two arguments. Formally, for a BDD
F = (. . . , (V, E), . . .), the weights ω are functions

ω
(1)
F : V → IR or ω

(2)
F : V × V → IR,

respectively. The BDD F will be given from the context. Thus, to keep
the presentation simple, the subscript F normally will be omitted. Of
course all paths from v′ to v must be considered. To compute the total
change ∆εv′ , the weights along all paths from v′ to v must be summed
up. Let

ω(v, v′) :=
∑

p is a path
from v′ to v

pr(p) (5.10)

denote this total weight of v in v′. We have ∆εv′ = ∆εv · ω(v, v′). By
Equation (5.10), ω(v, v′) can also be interpreted as the overall probability
of an evaluation reaching v from v′. Next, the weight of a non-terminal
node v in the change of the global EPL-value is expressed. This change
and the weight is denoted ∆ε and ω(v), respectively. In analogy to
ω(v, v′), the weight of v in another node v′, ω(v) expresses the overall
probability of an evaluation reaching v from an output node, i.e.

ω(v) :=
1

m

m∑
i=1

ω(oi, v)

where oi is the output node representing fiff .
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Note that by Equation (5.10) the terms ω(oi, v) still depend on an
enumeration of all paths from v′ to v. Fortunately, it is also possible to
express ω(v) independently of path enumerations.

Lemma 5.9 Let v, v′ be non-terminal nodes in a BDD F . Then the
weight of v in the change of ε(F ) can be expressed as

ω(v) =
k

m
+

∑
v is b-child
of v′, b ∈ B

pr
(
var(v′) = b

) · ω(v′) (5.11)

where k is the number of single-output functions fiff which are represented
by v (if any).

Proof. The proof is by induction on the stage of the transitive closure
of the edge relation (constructed as intermediate steps while building
the transitive closure of the graph), combined with a case analysis.
Let S: {F | F is a BDD} × (IN ∪ {0}) → 2{v∈V |(...,(V,E),...) is a BDD} be
defined as

S(F, k) =

{
O, k = 0
{v ∈ V | (u, v) ∈ E and u ∈ S(F, k − 1)}, k > 0

where F = (. . . , (V, E), O). With S, different stages of the transitive
closure of E are obtained for different second arguments k: first, S(F, 0)
yields the set of output nodes in F . These are the starting point of
any evaluation with F , defining the first stage. Then S(F, 1) yields the
image of these nodes, i.e. the set of their child nodes. This corresponds
to testing the first variable on an arbitrary evaluation path and following
the respective edges. In general, S(F, k) (k > 0) is the k-th stage in the
transitive closure of the outlined image relation. S eventually reaches
a fixed point, i.e. S(F, k) = S(F, k + 1) = ∅, corresponding to the fact
that the terminal nodes in {1,0} eventually must be reached by every
evaluation (the set of child nodes of the terminal nodes is empty). First
we assert that ∀v ∈ V : ∃k ≥ 0: v ∈ S(F, k): this is due to all component
graphs of F being connected.

The proof now is by induction on k, the second argument of S. First,
let k = 0. Let v ∈ S(F, 0). Then v must be an output node without
parent nodes, i.e. v is a root node representing an output function.
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By Equation (5.8) it is easily seen that the contribution of an output
node to the global change ∆ε must be k

m (this also expresses the prob-
ability of an evaluation starting at output node v). This is correctly
expressed by Equation (5.11): the sum term

∑
v is b-child
of v′, b ∈ B

pr
(
var(v′) = b

) · ω(v′)

vanishes since v has no parent nodes.

Now assume the claim is shown for all v ∈ S(F, k). Let v ∈ S(F, k+1).
We distinguish two cases:

Case a):

v /∈// O, i.e. v is no output node. By assumption, v must have at least one
parent node and v itself is not an output node. Thus to reach v from any
output node, first a parent node v′ must be reached. Hence v′ ∈ S(F, k)
by definition of S. Moreover, if v is a b-child of v′, var(v′) must be
assigned b to reach v from v′. By induction hypothesis, the weight of
v′ in the change of ε(F ) (or, in other words, the overall probability of
an evaluation reaching v′ from an output node) can be expressed as
ω(v′) as defined in Equation (5.11). Hence, the product of the according
probabilities, ω(v′) and pr(var(v′) = b), expresses the probability of an
evaluation reaching v via v′, starting at an output node. Since these
probabilities are accumulated over all parent nodes, in fact the total
probability of an evaluation reaching v from an output node is obtained.
This is equivalent to the weight of v in the change of ε(F ).

Case b):

v ∈ O, i.e. v is an output node. In Equation (5.11), k
m is added to the

sum term. Hence, with the result for k = 0 and the result from Case a)
it is clear that the case of v being an inner output node is also handled
correctly. �

5.2.3.2 Computation of Weights

An example for the recursive computation of the ω-values is illus-
trated by the right BDD in Figure 5.8. Note that the sum of ω(1) and
ω(0) must always equal 1, as all evaluations either end at 1 or end at 0,
i.e. the sum of the according probabilities must be 1. Next, an algorithm
to compute the ω-values is given. The code in Figure 5.11 assumes that
all values ω(v) are initially set to zero. Starting from the uppermost
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(1) calc omega(BDD F , int n)
(2) proc
(3) for each node v representing an output function do
(4) ω(v) := ω(v) + 1

m ;
(5) end–for
(6) for i := 1 to n do
(7) for each node v in level i do
(8) increase ω(then(v)) and ω(else(v)) by 1

2ω(v);
(9) end–for

(10) end–for
(11) end–proc

Figure 5.11. Iterative computation of the ω-values.

level, the ω-values are propagated down from parent nodes to its child
nodes which are residing on lower levels (see Figure 5.11). Again, code
for handling the boundary case is omitted and equal probability of one
and zero assignments is assumed for every variable to keep the presen-
tation simple. In Section 5.2.4 we will see that this algorithm is only
necessary for the initialization of the weights. In particular, it is not
necessary to use this algorithm after each variable swap and hence the
local behavior of the new approach is preserved. Note that the top-down
algorithm to compute ω has a run time which is linear in the BDD size.
In contrast, node characteristics like density measures [RS95, RMSS98]
are computed bottom-up. They measure the size of a cofactors ONSET
while the weights described here are not related to the ONSET. However,
node weights similar to the weights here have been used in [RMSS98] to
express density changes.

Inspecting Equation (5.11) one might expect a change of ω(v) to in-
fluence ω-changes for all descendants of v. This would be a potential
problem if a sifting modification targeting the EPL must update ω-values
after a swap. Fortunately, the situation is much simpler which is shown
in the next section.

5.2.3.3 Invariance of Weights

The next results are crucial for the desired locality of the new ap-
proach. The probabilistic interpretation of the weights allows to con-
clude a useful invariance property. A first step is to turn attention to
probabilities of variable assignments instead of path probabilities.
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Lemma 5.10 Let F be a BDD representing a Boolean multi-output func-
tion f . Let v be a node on level k in F representing the Boolean function
fvff (a cofactor of f with respect to the first k−1 variables in the ordering).
Further, let b = (b1, . . . , bk−1). Then the weight ω(v) can be expressed
as follows:

ω(v) =
∑

b in B
k−1

with fbff = fvff

pr(x1 = b1) · . . . · pr(xk−1 = bk−1) (5.12)

Remark 2 The following notation was introduced in Section 2.4: if an
evaluation of the BDD with respect to the (partial) assignment a =
(a1, a2, . . . , ak) (k ≤ n) stops at a (non-terminal) node v, v represents
the cofactor fxff 1=a1,...,xk=ak

(due to the semantics of BDDs). This cofac-
tor is also simply denoted faff .

Proof of Lemma 5.10. In the previous section it was clarified that
ω(v) expresses the probability of an evaluation reaching v from an output
node.

Equation (5.12) expresses the same probability using the fact that
every evaluation reaching a node defines a cofactor which is functionally
equivalent to the function represented by the node: previously, the prob-
abilities of an evaluation traversing certain paths have been considered.
Now, as the key observation, the probability of assignments b, such that

fbff = fvff (5.13)

are considered instead (note that here a variable xi is not necessarily
tested along some path in the BDD since simply assignments to the first
k − 1 variables of the ordering are considered). By the BDD semantics
of Section 2.4, an evaluation of F with respect to an assignment must
reach v iff it is satisfying the condition in Equation (5.13). Hence, the
total probability of an evaluation reaching v can be expressed as the
sum of the probabilities of all assignments which satisfy the condition in
Equation (5.13). The probability of such an assignment is the product
of the respective probabilities for the single variable bindings as given
by the assignment. This yields Equation (5.12). �

Still Equation (5.12) depends on the BDD’s graph structure, but now
only because the cofactor fbff must equal the function represented by node
v. In constrast to Equation (5.11), Equation (5.12) expresses ω(v) as a
function of f , fvff , and the level of v only. Since a BDD representing a
fixed f is considered, the following result follows immediately:
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Theorem 5.11 Let F be a BDD representing a Boolean function f and
let v be a node in F . Fixed probabilities are assumed for the variable
assignments to values in B. Then, if a) the function represented by v
and b) the number of the v-level are preserved with respect to a change
in the variable ordering (and thus, in the graph structure) of the BDD,
the value ω(v) also does not change, i.e. ω(v) is invariant with respect
to this change.

The background is that the swap operation of the sifting algorithm re-
expresses nodes v in the upper level of the two levels affected by the
swap. Yet, a node v is expressed by a new tuple (var(v), then(v), else(v)),
but in this case this does not change the function represented (as the
ordering of variables as well has changed, see Section 2.4.6). Even more
important, all nodes in the unaffected levels clearly represent the same
function and stay in their respective levels after the swap. But then
ω(v), as a weight depending on these two quantities only, cannot change
either.

5.2.4 Update Schema
Equations (5.7) and (5.11) are appropriate for a propagation of changes

in the ε- and ω-values of child nodes to their parents or vice versa, respec-
tively. This allows to establish valid values for all nodes in the two levels
involved by a variable swap by local operations, i.e. only the nodes in
these two levels must be touched. For a presentation of the final method
to minimize the expected path length in BDDs the framework shown
in Figure 5.10 still needs refinement. For this purpose, a local update
schema will be presented in Section 5.2.4.1, describing all actions taken
depending on the respective situation.

A problem that has not been addressed so far is that value changes in
levels i, i + 1 may imply changes in levels different from i and i + 1. As
subsequent swaps base their computations on these values, one has to
take care that only valid values are used in these swaps. For this reason
in Section 5.2.4.2 a general update-schema, i.e. a schema for updates
after all swaps for a particular variable have been carried out, is given.
It describes which levels are affected and what values need to be re-
calculated in different situations.

5.2.4.1 Local Update Schema

Let us consider the situation of a variable swap: each swap of two
adjacent levels i and i + 1 =: j changes the local graph structure of
the BDD in these two levels, leaving all other levels unchanged, e.g. see
Figure 5.12. Again equal probability of one and zero assignments for
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Figure 5.12. Swap of two BDD levels i and i + 1 (=: j).

every variable are assumed. Before the swap, xi resides in level i, xj in
level j. The local structural changes cause changes in the ε- and ω-values
of nodes in the affected levels. E.g. see node a in Figure 5.12: after the
swap of levels i and j: node a has become a 1-child of node b. Thus 1

2 ·ω(b)
is added to the old ω-value of a, updating ω(a) following Equation (5.11).
Node b has new child nodes after the swap. Hence ε(b) is re-calculated
using the ε-values of the new child nodes (node a and the root node of
sub-graph C) following Equation (5.7).

Also note that b still represents the same function and still is on
the same level after the swap. Consequently, ω(b) remains unchanged
by Theorem 5.11. The same invariance holds for all nodes outside the
swapped levels. The change in the ε-value of nodes v in level i is the
value ∆εv described in Section 5.2.2.3.

Next all cases to consider during a swap are given in detail with the
respective actions taken.

Changes of ε-Values. First, the changes of ε-values are considered.

Case a):

The ε-values of nodes which were in levels i + 1, . . . , n before the swap
do not change since the levels below them are not touched by the swap
and a node’s ε-value depends on the ε-values of the child nodes only (see
Equation (5.7)).

Case b):

Depending on the functional equivalence of certain nodes on levels below
i + 1, some nodes might have been newly created on level i + 1 during
the swap (for details see Section 2.4.7.1). Hence, an initial ε-value for
these nodes must be computed. Since the ε-values of all levels below
these new nodes are still valid (see Case a)), this can be done with only
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two lookups1 of the ε-values of the 1-child and 0-child. E.g. in Figure
5.12, going from right to left, node b is re-expressed as parent of nodes c
and d, both of which are newly created nodes. The initial value for ε(c)
is computed from the ε-values of the roots of sub-graphs A and C, the
one for node d from the ε-values of the roots of sub-graphs B and C.

Case c):

Nodes in level i need re-calculation of the ε-value during the swap if
they have been re-arranged to connect to newly created or different
child nodes. The values of the child nodes have already been computed
in Case b) or a), hence re-calculation involves only two lookups. E.g. in
Figure 5.12, going from right to left, ε(b) is updated as 1+ 1

2 ·(ε(c)+ε(d)),
following Equation (5.7).

The change in the ε-value of these nodes v in level i is the value ∆εv

described in Section 5.2.2.3. These are the only changes which need to
be transferred to the global ε-value. The changes of ε for the child nodes
in Case b) do not need to be transferred since these changes already
have been transferred to the parent nodes in level i.

Case d):

The ε-values of all nodes in levels 1, . . . , i− 1 have become invalid. This
is because their ε-values depend on child nodes which might have been
changed. Later, discussing the general update schema, it turns out that
re-calculating all of them after every swap can be avoided.

Changes of ω-Values. Now the changes in the weights ω are consid-
ered.

Case a):

The ω-values of all nodes in levels 1, . . . , i − 1 remain valid by the re-
sult of Theorem 5.11 as these levels are not touched and the function
represented by the nodes is not changed during the swap operation.

Case b):

By Theorem 5.11, a node v in level i does not need re-calculation of the
ω-weight either. The node is re-expressed representing the same function
and still is situated at the same level.

1These lookups are implemented with standard hashing techniques. In the experiments, these
operations showed the expected quasi-constant behavior.
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Table 5.3. Levels affected by the swap

changed value affected level

ε-value the levels with numbers i + 1, i, i − 1, . . . , 0
ω-value the level with number i + 1

Case c):

Again, let us consider Figure 5.12, going from right to left. On level
i + 1 new nodes c and d are created during the swap. An initial ω-
value must be computed for these nodes. They are established as child
nodes of node b. The weight of node b is already valid (see Case b).
The weight of a newly created node is initialized with the sum of weight
contributions of the parents: for each parent node on level i with weight
ω, this contribution is 1

2 · ω, following Equation (5.11). In the example,

ω(c) as well as ω(d) are initialized with 1
2 · ω(b).

Nodes that, after the swap, become a new child node of a node in
level i, may have existed before (e.g., see node a in Figure 5.12 when
going from left to right). The function they represent is preserved (this
follows from the Shannon decomposition (see Theorem 2.9) since neither
the variable tested nor the child nodes are changed), but the level on
which these nodes reside changes.

Hence, Theorem 5.11 does not apply in this case and the ω-value of
v has to be updated: After the swap, let v be a re-expressed node on
level i which is parent of a node v′. Following Equation (5.11), 1

2 · ω(v)

is added to ω(v′) (in the example, 1
2 · ω(b) is added to ω(a)).

Case d):

The ω-values of nodes which are in levels i+2, . . . , n need not be updated
after the swap by Theorem 5.11 since the level at which they are situated
as well as the function represented by them remains unchanged: this is
due to locality of the swap operation.

5.2.4.2 General Update-Schema

Table 5.3 summarizes which levels can contain invalid nodes that need
re-calculation of the ε- and ω-value (during or after a swap of the levels
i and i + 1). Updating the nodes with invalid ω-values does not change
the asymptotical complexity of the swap operation since the nodes in
level i + 1 must be touched anyway.
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At a first glance, the updates of the ε-values seem to be a problem as
all levels above the affected levels can contain invalid nodes. Fortunately,
the desired local behavior can still be achieved since the method does
not always require that all values are valid.

To see this, first recall that the sifting algorithm first moves a variable
up and down (or vice versa), then back to its best position. First assume
a variable x being currently at level i is moved down and consider a node
v with var(v) = x. To determine the correct ε-value of v, nothing but
the validity of the ε-values of the child nodes of v is required. Hence,
re-calculation of the ε-value of the invalid nodes in levels 1, . . . , i − 1 is
not necessary during the whole sequence of swaps moving down variable
x.

Suppose now the variable x has reached the bottommost level n − 1.
Now the ε-values of nodes above the last two BDD levels, i.e. on levels
1, . . . , n−2 are invalid. Next, sifting moves variable x upwards. Assume
variable x, on its way up, is situated at level i. The next swap performed
will be one of the levels i − 1 and i. Again, ∆εv is computed for a node
v on level i−1. But then the old ε-value of v before this next swap must
be valid, otherwise the value of ∆εv is incorrect (see lines (9), (11) in
Figure 5.10).

As a remedy, as x is moved up again, it suffices to re-calculate after
each swap the ε-values for the nodes on the level directly above the two
swapped levels. For this reason, whenever the direction of movement is
upwards, eps on level(F , i − 1) is called after a swap of levels i and
i + 1 (see line (15) in Figure 5.10).

This leads to the summary of levels subject to value updates after a
swap of levels i and i + 1 as shown in Table 5.4. Different from Table
5.3, now only a constant number of levels has to be maintained with
every swap. Thus, locality of the desired sifting modification remains.
After having tried all positions by moving a variable xi up and down, xi

is moved back to a best position seen in the previous movements. Let
this position be on level k. To reestablish proper ε-values for subsequent
movements of the other variables, all ε-values of nodes above level k are
re-calculated with a call to eps above level(F , k − 1) (see line (8) in
Figure 5.9). This is an operation touching many levels, i.e. a large part
of the whole BDD. But this only has to be done once after all swaps
to determine the best position for a variable have been performed and
hence does not lead to a higher asymptotical time complexity than that
of the original sifting algorithm.

To summarize: a modification of the original sifting algorithm has been
found which targets the expected path length in BDDs. This algorithm
has the same asymptotical time complexity as the original sifting algo-
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Table 5.4. Levels subject to updates after/during the swap

sifting direction affected levels wrt...
ε ω

moving a variable up i + 1, i, i − 1 i + 1
moving a variable down i, i + 1 i + 1

rithm as a sophisticated schema ensures that no traversal on the whole
graph of the BDD is necessary when performing a variable swap. This
schema consists of keeping track of local changes in the levels affected
by the swap and then directly transferring these changes to a change in
the global EPL-value.

5.2.5 Experimental Results
In this section, experimental results are presented. All algorithms

have been applied to circuits of the LGSynth93 benchmark set [Col93].
The tested methods include EPL-sifting and maximal path length sift-
ing (MPL-sifting), i.e. a sifting modification targeting the maximal path
length in BDDs. For a comparison also the standard sifting algorithm
has been applied. A weaker form of MPL-sifting with a simplified ob-
jective function has been used in [SB00]. As no approach with local
behavior is known for MPL-sifting, this algorithm has high run times.
All algorithms have been integrated into the CUDD package [Som02] and
were tested in the same system environment. A system with an Athlon
CPU running at 1.4 GHz with a main memory of 1.5 GByte has been
used for the experiments. All methods use BDD size as second criterion
in case of ties of the first criterion. In the tests, equal probabilities of
one and zero assignments for every variable have been used. This seems
to be the most realistic approach if specific assumptions about these
probabilities cannot be made. In this, the tests were performed with
the same assumptions as in the approach of [LWHL01] which also used
equal probabilities.

In a first series of experiments MPL- and EPL-sifting have been com-
pared. Therefore both sifting approaches have been applied to the test-
cases given in Table 5.5. In the first column the name of the function
is given. Column in gives the number of inputs of a function. Column
size shows the initial size (given as number of BDD nodes) of the BDD
representing the function. In columns MPL and EPL the maximal path
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length and the expected path length of the initial BDD for a function
are given.

The results of the experiments are given in Table 5.6. In the first
column again the name of the function is given. The next three columns
size, MPL and EPL give the size, the maximal path length and the
expected path length for the BDD after applying the MPL-sifting ap-
proach. The next column time shows the run time of the minimization
by MPL-sifting in CPU seconds. In the next four columns the same
quantities size, MPL, EPL and run time are shown for EPL-sifting.

EPL-sifting is slower than size-driven sifting. This degradation is by
a small factor which remains the same regardless of the number of input
variables of the considered function. This is due to the constant overhead
caused by hash table lookups which are necessary to access the ω- and
ε-values associated with BDD nodes. In this, EPL-sifting is of the same
asymptotical complexity as classical sifting. As the results show, EPL-
sifting achieves the same reduction in MPL as MPL-sifting: both EPL-
and MPL-sifting improve the initial MPL by 8.3% in average and the
improvement can be up to 48.9% (e.g., see dalu). There is no significant
difference in the results of the two methods, i.e. choosing EPL-sifting
instead of MPL-sifting preserves high quality of the results. However,
applying EPL-sifting instead of MPL-sifting has a great advantage: EPL-
sifting is the fastest delay-driven minimization approach preserving high
quality of the results. The total time (average) speed-up factor of EPL-
sifting compared to MPL-sifting is 8.25 and can be up to two orders of
magnitude (e.g., see i7).7

Moreover, EPL-sifting also yields the best starting point for critical
path analysis, [JKCMS97, BMP97, LAB98] as the resulting EPL-values
(corresponding to the average gate delay) are much better than for the
other methods. EPL-sifting reduces the initial EPL by 29.3% on average.
The improvement can be up to 63.4%, especially for larger instances
(e.g., see dalu). EPL-sifting achieves an EPL which is better by 14.5% on
average compared to the EPL yielded by MPL-sifting. The improvement
over MPL-sifting can be up to 40.1% (e.g., see x4).

In a second series of experiments, also “classical” size-driven sifting
has been applied to the set of test-cases. The accumulated results and
total run times of the two series of experiments are given in Table 5.7.
The first column criterion gives the optimization criterion targeted by
the used method (here, the entry “initial” means the BDDs before any
method has been applied). Columns two to four each state the sum of
a BDD characteristic over the BDDs for all test-cases: in column two,
this characteristic is BDD size, in column three it is MPL and in column
four it is EPL. The last column states the total run time for the whole
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Table 5.5. Initial values for the test-cases

name in size MPL EPL

apex6 135 2759 21 3.56
apex7 49 1659 24 5.03
b9 41 177 13 3.17
c1355 41 43869 41 30.76
c3540 50 223227 30 10.94
c499 41 39377 41 29.65
c5315 178 5247 47 4.00
c880 60 15544 42 5.65
cht 47 149 5 2.71
dalu 75 12946 47 16.05
example2 85 468 16 2.54
frg2 143 2230 22 3.00
i3 132 132 32 4.46
i4 192 420 47 6.56
i5 133 311 19 2.50
i6 138 412 4 3.10
i7 199 504 4 3.25
i8 133 3980 16 5.42
i9 88 2270 12 5.48
k2 45 2012 24 5.03
pair 173 13845 49 6.08
rot 107 8322 57 4.27
s5378 199 5218 41 3.70
s641 54 1351 27 3.69
s713 54 1351 27 3.69
s838.1 66 244 55 4.08
x1 51 1296 23 3.88
x3 135 945 20 3.00
x4 94 890 15 3.79

test-suite (the “-” for row initial means nothing has been done here at
all).

All methods also improve BDD size significantly. In this, EPL-sifting
yields only 7.3% more size than MPL-sifting (and classical size sifting) on
average. This can allow higher circuit speed at only low area overhead.
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Table 5.6. Comparison of MPL- and EPL-sifting

name MPL sifting EPL sifting
size MPL EPL time size MPL EPL time

apex6 639 20 2.37 6.59s 662 20 2.33 0.17s
apex7 310 19 2.59 0.54s 274 19 2.25 0.05s
b9 107 13 3.04 0.18s 125 13 2.65 0.02s
c1355 30326 41 26.70 126.11s 39201 41 20.82 64.97s
c3540 73319 30 10.66 1171.64s 46228 30 9.81 131.01s
c499 30459 41 27.41 369.72s 38465 41 20.34 54.71s
c5315 2611 47 3.89 127.28s 3137 47 4.07 1.44s
c880 4865 41 5.27 25.09s 9883 41 4.82 3.49s
cht 89 4 2.63 0.17s 124 4 2.06 0.02s
dalu 1216 24 5.88 24.73s 1006 24 4.94 3.13s
example2 298 14 2.71 1.28s 393 14 2.18 0.06s
frg2 1434 20 2.42 15.98s 1648 20 2.32 0.37s
i3 132 32 4.46 4.57s 132 32 4.46 0.08s
i4 300 47 4.78 15.52s 300 47 4.38 0.21s
i5 133 19 1.98 5.32s 133 19 1.98 0.08s
i6 208 4 3.24 4.69s 274 4 3.05 0.07s
i7 367 4 3.35 15.10s 434 4 3.18 0.13s
i8 1678 13 3.49 25.91s 2495 13 3.40 0.81s
i9 1659 12 5.00 5.48s 1821 10 4.96 0.21s
k2 1355 24 4.03 1.23s 1438 24 4.01 0.14s
pair 5857 49 4.13 197.76s 8775 49 3.76 4.40s
rot 6374 57 4.05 48.82s 15062 59 3.08 7.69s
s5378 2489 33 3.43 65.50s 5975 34 3.11 1.43s
s641 628 25 3.14 0.91s 724 26 2.65 0.11s
s713 628 25 3.14 0.92s 724 26 2.65 0.10s
s838.1 298 38 3.37 0.98s 625 35 2.92 0.10s
x1 487 22 2.80 0.75s 603 22 2.67 0.07s
x3 612 20 2.36 7.14s 669 20 2.34 0.14s
x4 530 15 3.99 2.46s 512 15 2.39 0.07s

5.3 Minimization of Average Path Length
This section discusses the minimization of the average path length in

BDDs. As a by-product it is clarified how other criteria for BDD op-
timality can be expressed by recurrent equations following the general
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Table 5.7. Size, MPL, EPL, and run time sums for different criteria

criterion
∑

size
∑

MPL
∑

EPL total time

initial 391155 821 189.04 –
EPL 181842 753 133.58 275.30s
MPL 169408 753 156.31 2272.37s
size 168914 777 162.85 47.30s

outline of Equation (5.6). In this, a unifying view of sifting modifica-
tions is applied, that targets objective functions different from diagram
size: global changes of the objective function in question are induced by
local changes of the nodes in the topmost level of the two BDD levels
involved in the variable swap.

As a first example consider the minimization of 1-paths in BDDs
which has been studied in Section 5.1. Let ∆1 denote the global change
in the number of 1-paths after a variable swap affecting levels i and i+1.
Further, let (i) ∆1v and (ii) ∆0v denote the local changes in the number
of (i) regular and (ii) complemented paths from node v to 1. Then the
respective weights in the global change are p1(v), the number of regular
paths from output nodes to v and p0(v), the number of complemented
paths from output nodes to v. This results in the following equation:

∆1 =
∑

v is a node
in level i

(∆1v · p1(v) + ∆0v · p0(v))

Minimization of the 1-paths in BDDs using the sifting algorithm can
yield higher run times than classical, size-driven sifing (see Section 5.1).
One reason is that BDDs minimized with respect to 1-paths can be
larger in size than BDDs yielded by classical sifting. Another important
reason is the absence of an invariance result corresponding to Theorem
5.11 for the weights p1(v) and p0(v). Because a change in these weights
for one node v can cause changes in the weights of many descendants,
the weight changes must be propagated down to 1 with every swap (see
Section 5.1).

A classification of criteria for BDD optimality in terms of algorithmic
hardness is possible by means of the invariance property of the respective
weights (or its absence, respectively). This classifies EPL-sifting to be on
the side of “easy” problems and 1-path sifting (as well as other problems,
e.g. the minimization of the sum of the lengths of the paths) to appear on
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Figure 5.13. Recursive computation of α- and ωα-values.

the “hard” side. Next, this unifying view will be used in the presentation
of an algorithm to compute the average path length in a BDD.

5.3.1 Applying the Unifying View
First, the task to minimize BDDs with respect to the number of paths

is reconsidered. Thereby a unifying view helps to understand the algo-
rithmic hardness.

Number of Paths. An example of the recursive computation of the
α-values is illustrated by the left BDD in Figure 5.13. Equation (2.2) is
used for computing the number of paths in a BDD in time proportional
to the BDD size: similar to the algorithm given in Figure 5.7, every node
is visited only once.

A naive incorporation of this strategy into the sifting algorithm would
be to simply re-calculate α(F ) after each swap. But this involves a
traversal of the complete graph of the BDD F , resulting in high run
times.

Next it is examined whether a local method for the computation of the
number of paths can be obtained by transferring the idea of EPL-sifting.

By keeping track of all changes in the values α(v), denoted ∆αv , the
change of the global value α(F ), i.e. ∆α, must be computed. Let ∆α
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denote the global change in the number of paths after a variable swap
affecting levels i and i + 1. A node weight ωα(v) must be found for a
node v such that

∆α =
∑

v is a node
in level i

∆αv · ωα(v). (5.14)

In fact such a node weight exists: for a node v, this is the number of
paths from an output node to v, denoted ωα(v).

The number of paths from an output node via v to a terminal node
is simply α(v) · ωα(v), i.e. the product of ingoing and outgoing paths.
The local change in α(v) is the change which must be transferred to the
global change (by multiplying it with the respective weight ωα(v) and
summing up all the local changes, see Equation (5.14)).

Analogously to the result in Lemma 5.9, we have the following result
for the weight ωα(v).

Lemma 5.12 Let v be a non-terminal node in a BDD F . Then the
weight of v in the change of α(F ) can be expressed as

ωα(v) = k +
∑

v is child
of v′

ωα(v′) (5.15)

where k is the number of single-output functions fiff which are represented
by v (if any).

With k again we account for the fact that one output node may represent
several single-output functions.

An example for the recursive computation of the ωα-values is illus-
trated by the right BDD in Figure 5.13. Note that the sum of ωα(1)
and ωα(0) is 7 and equals α(F ), as denoted at the root node of the left
BDD.

Using Equation (5.15) it is straightforward to derive a graph traversing
algorithm computing ωα(v) similar to the one given in Figure 5.11. (This
is left to the interested reader.)

The outlined approach has local behavior iff the weights ωα(v) respect
an invariance property similar to Theorem 5.11. Unfortunately, this is
not the case: in the terminology of Section 5.1, it is ωα(v) = p1(v)+p0(v).
In the same section it was described how a change in p1(v) (p0(v)) affects
the p1-value (p0-value) of all nodes on a path from v to 1.

The same unifying view helps to understand the algorithmic hardness
of computing the sum of the lengths of the paths in a BDD F , λ(F ).
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(1) lambda on level(BDD F , int level)
(2) proc
(3) for each node v in level level do
(4) α(v) := α(then(v)) + α(else(v));
(5) λ(v) :=

λ(then(v)) + α(then(v)) + λ(else(v)) + α(else(v));
(6) end–for
(7) end–proc

(8) lambda above level(BDD F , int level)
(9) proc

(10) for i := level to 1 do
(11) lambda on level(F , i);
(12) end–for
(13) end–proc

Figure 5.14. Iterative computation of λ(F ).
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Figure 5.15. Recursive computation of λ- and ωλ-values.

Sum of the Lengths of the Paths. For a BDD F , λ(F ) can be
computed by a graph traversal following Equation (2.7), see Figure 5.14.
To keep the presentation simple, code for the handling of the boundary
case (v ∈ {1,0}) is omitted. An example of the recursive computation
of the λ-values is illustrated by the left BDD in Figure 5.15. Again it
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would be inefficient to call the algorithm given in Figure 5.14 with every
variable swap made in the sifting algorithm.

Before the unified view can be applied to examine whether a method
with local behavior is available, the following result is needed. Let the
sum of the lengths of all paths from an output node to a node v be
denoted ωλ(v).

Lemma 5.13 Let v be a node in a BDD. The sum of the lengths of all
paths from an output node via v to a terminal node can be expressed as

ωλ(v) · α(v) + ωα(v) · (λ(v) − 1). (5.16)

Proof. The sum of the lengths of all paths from an output node via
v to a terminal node can be expressed as the sum of two numbers n1

and n2: the first number n1 is the sum of the numbers of nodes on the
“first half” of each path p via v, i.e. the number of nodes on a sub-path
of each such path p, starting at an output node and ending at v. This
number can be expressed as ωλ(v) · α(v): there are α(v) paths emerging
from v, each of which can be combined with one of the paths going into
v. That is, each path emerging from v contributes with ωλ(v) nodes to
n1.

The second number n2 is the sum of the numbers of nodes on the
“second half” of nodes on a sub-path of each path via v, starting at
a child node of v and ending at a terminal node. With an argument
analogous to the one for n1, this number can be expressed as ωα(v) ·
(λ(v) − 1). �

Now a schema for the transfer of local changes to the global change can
be given. Let v again be a node in level i. By keeping track of all changes
in the values α(v) and λ(v), denoted ∆αv and ∆ωv , we can compute the
change of the global value λ(F ), i.e. we can compute ∆λ:

∆λ =
∑

v is a node
in level i

ωλ(v) · ∆αv + ωα(v) · ∆λv
. (5.17)

Note that in Equation (5.16), we had to decrement λ(v) by one in order
not to count node v several times. In the above Equation (5.17) this is
not necessary since only a relative change in the λ-value is considered.

Before examining the question whether this is an approach with local
behavior, it should be ensured that an efficient algorithm for the initial
computation of the weights exists. This algorithm is based on the next
result.

In analogy to the result of Lemma 5.12 and of Lemma 5.9, we have
the following result for the weight ωλ(v).
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(1) calc omega lambda(BDD F , int n)
(2) proc
(3) for each node v representing an output function do
(4) ωα(v) := ωα(v) + 1;
(5) end–for
(6) for i := 1 to n do
(7) for each node v in level i do
(8) increase ωα(then(v)) and ωα(else(v)) by ωα(v);
(9) increase ωλ(then(v)) and ωλ(else(v)) by ωλ(v) +

ωα(v);
(10) end–for
(11) end–for
(12) end–proc

Figure 5.16. Iterative computation of the ωλ-values.

Lemma 5.14 Let v be a non-terminal node in a BDD F . Then the sum
of the lengths of all paths from an output node to v can be expressed as

ωλ(v) = k +
∑

v is child
of v′

ωλ(v′) + ωα(v′) (5.18)

where k is the number of single-output functions fiff which are represented
by v (if any).

An example for the recursive computation of the ωλ-values is illustrated
by the right BDD in Figure 5.15. Note that the sum of ωλ(1) and ωλ(0)
is 21 and equals λ(F ), as denoted at the root node of the left BDD. This
is because λ(F ) and ωλ(1)+ωλ(0) (or simply ωλ(1) if we consider BDDs
with CEs) are expressions summing up the lengths of the very same paths
by definition. Following Equation (5.18), it is straightforward to give a
graph traversing algorithm computing ωλ(v) similar to the one given in
Figure 5.11. This algorithm operates level-wise, i.e. all predecessors of a
node v have been visited before visiting v itself. The code assumes that
all values ωλ(v) and ωα(v) are initially set to zero and is given in Figure
5.16.

The outlined approach following the idea of EPL-sifting has local be-
havior iff the weights respect an invariance result corresponding to The-
orem 5.11. Again, this is not the case since weights ωα(v) are used which
suffer from the absence of such a property. Moreover, the weight ωλ(v)
relies on the weight ωα(v) by definition. Hence we have the same influ-
ence of a change in ωλ(v) on the nodes occurring on paths that emerge
from v.



190 ADVANCED BDD OPTIMIZATION

5.3.2 Algorithm
In the previous section a method to minimize the sum of the lengths

of the paths in BDDs has been derived by transferring the idea of EPL-
sifting. Thereby a unified view of BDD optimization problems has been
applied.

Unfortunately, the obtained method does not show the local behavior
of the EPL-sifting method. The reason for this has been identified as
the absence of invariance properties corresponding to Theorem 5.11 for
the outlined approach. Consequently, the following is done:

Number of Paths. Instead of transferring the local changes ∆αv to
∆α, the algorithm keeps track of all the changes of ωα(v). These changes
are propagated down to the terminal nodes (or to 1 if BDDs with CEs
are used). Thereby the technique described in Section 5.1.2.3 is used.
Then α(F ), the number of paths from an output node to a terminal
node in F , equals ωα(1)+ωα(0) (or simply ωα(1) if BDDs with CEs are
used) which, by definition, expresses the very same number of paths.

Note that this exactly describes the algorithm given in Section 5.1,
but this time as a consequence of the unifying view.

Sum of the Length of the Paths. Since the updates of the weights
ωλ also cannot be avoided, there is no reason not to use them di-
rectly: λ(F ), the sum of lengths of the paths in a BDD F , equals
ωλ(1) + ωλ(0) (or simply ωλ(1) if we consider BDDs with CEs) since
the two expressions sum up the lengths of the very same paths by defi-
nition. Hence, instead of transferring the local changes ∆λv

to ∆λ, the
algorithm keeps track of all changes of ωλ(v). These changes are prop-
agated down to the terminal nodes (or only to 1 if BDDs with CEs are
used), using the following technique.

In Section 5.1 it has been described how the changes of the weights can
be efficiently propogated down to the terminal nodes. This technique
makes use of a levelized stack and only those nodes are considered during
propagation where a change in the number of paths may have occured.

Downward propagation of the weights ωλ is very similar, except that
two more assignments are used for every child w of a node v that is
retrieved from the topmost stack.

dλ(w) := dλ(w) + dλ(v) + dα(v) (5.19)

ωλ(w) := ωλ(w) + dλ(v) + dα(v) (5.20)

These two new assignments (5.19) and (5.20) properly follow Equations
(5.15) and (5.18) since the propagation is done level-wise, i.e. all prede-
cessors of a node v are already visited before visiting v itself.
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Now it is straightforward to give the desired algorithm for minimizing
the average path length.

The algorithm sketched in Figure 5.16 initially computes ωα(1), ωα(0)
as well as ωλ(1), ωλ(0) (or ωα(1) and ωλ(1) in case of BDDs with CEs).
During sifting, variables are moved up and down, using local variable
swaps. After each swap, the propagation routine as outlined above
reestablishes proper values of the ωα- and ωλ-weights of the terminal
node(s).

As has already been explained before, for a BDD F without CEs we
have

λ(F ) = ωλ(1) + ωλ(0),

α(F ) = ωα(1) + ωα(0).

Following Equation (2.6), the new approach to reduce the target criterion
APL by use of sifting recomputes λ(F ) in every step simply as

λ(F ) =
ωλ(1) + ωλ(0)

ωα(1) + ωα(0)
.

After the currently considered variable has been moved back to a best
position, a call calc omega lambda(F ) restores proper weights for all
nodes in the BDD.

This finishes the description of a sifting modification targeting the
objective function λ(F ) for a BDD F .

5.3.3 Experimental Results
In this section, experimental results with two different versions of the

new approach to reduce the average path length in BDDs are presented.
A preliminary version and the final algorithm are applied to test-cases
of the LGSynth93 benchmark set [Col93]. Again, in case of ties of the
APL criterion, BDD size has been used as second criterion.

In the first algorithm, called “brute force”, the propagation technique
as described in Section 5.1.2.3 is not used. The second algorithm is
called “final” and makes use of the propagation technique.

Both algorithms have been integrated into the CUDD package [Som02]
and were tested in the same system environment. A system with an
Athlon CPU running at 1.4 GHz with a main memory of 1.5 GByte has
been used for the experiments.

In a series of experiments, the run times of the two versions of the algo-
rithm have been compared and the BDD sizes and APL-values resulting
from applying APL-sifting to the set of test-cases have been computed.
Therefore both algorithms have been applied to the test-cases given in
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Table 5.8. In the first column the name of the function is given. Column
in gives the number of inputs of a function. Column initial size shows
the initial size (given as the number of BDD nodes) of the BDD repre-
senting the function. In column final size the size of the BDD resulting
from the application of APL-sifting is given. Since both algorithms im-
plement the same method (more or less efficiently), these results are
the same for both algorithms. Column initial APL states the average
path length of the initial BDD for a function whereas column final APL
again states that value after application of APL-sifting. Again, these
final APL-values are the same for the different implementations of the
same approach.

As the results show, APL-sifting yields significant reductions in the
APL of a BDD. The improvement is up to 54.6% (see dalu). On aver-
age, the improvement is 22.9%. However, APL-sifting does not always
improve the size of the BDDs and can yield large increases in BDD size
(e.g., see i3). For one test-case, c5315, the size of the BDD resulting
from APL-sifting even exceeded the node limit of the system (the final
APL given in this case is that of the last BDD that the system was
able to build). This contrasts to the experiences with EPL-sifting (see
Section 5.2.5) where also the BDD size has been improved in most of
the cases and without exception results of only moderate BDD size are
obtained. Table 5.9 shows the run times for the different algorithms. In
the first column the name of the function is given. The two sub-columns
of column time, i.e. columns brute force, and final give the run times in
CPU seconds for the according algorithms.

As expected, algorithm “brute force” yields the highest run times.
Using the propagation technique of Section 5.1.2.3 instead of a brute
force method which has to touch every node below the levels affected by
the swap, large speed-ups are achieved. Compared to algorithm “brute
force”, algorithm “final” can be faster by a factor of two orders of mag-
nitude (e.g., see s5378).2

5.4 Summary
In this chapter, several alternative criteria for BDD optimality which

are different from the classical criterion, BDD size, have been studied.
These new criteria are motivated by several applications in VLSI CAD.

New efficient approaches for the reduction of BDDs with respect to
these criteria have been suggested. They are based on the most success-

2Note that the test-case c5315 has been excluded from the statistics since the size of the
BDD resulting from APL-sifting exceeded the node limit of the system in this case. The
numbers given in brackets show the time when the node limit (10 mio.) was reached.
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Table 5.8. Initial values for the test-cases

name in initial size final size initial APL final APL

apex6 135 2759 1082 15.38 7.77
apex7 49 1659 612 14.06 8.77
b9 41 177 213 7.57 7.12
c1355 41 43869 41768 38.23 37.35
c3540 50 223227 279863 26.77 24.50
c499 41 39377 40488 38.22 37.35
c5315 178 5247 >10 mio. 46.75 41.99
c880 60 15544 21527 29.84 24.57
cht 47 149 120 3.09 2.82
dalu 75 12946 2985 27.62 12.53
example2 85 468 522 8.12 6.73
frg2 143 2230 2917 14.13 10.57
i3 132 132 393216 23.50 21.01
i4 192 420 3603 31.77 28.21
i5 133 311 494 7.35 6.03
i6 138 412 274 3.32 3.31
i7 199 504 366 3.43 3.36
i8 133 3980 4091 11.98 8.10
i9 88 2270 2059 8.17 6.85
k2 45 2012 1690 13.53 8.95
pair 173 13845 37836 28.05 20.24
rot 107 8322 97734 38.96 32.55
s5378 199 5218 12566 35.82 21.74
s641 54 1351 1125 14.84 10.51
s713 54 1351 1125 14.84 10.51
s838.1 66 244 779 44.89 20.69
x1 51 1296 831 13.06 11.20
x3 135 945 1068 13.52 8.15
x4 94 890 720 8.39 7.65

ful approach to dynamic reordering known so far, the sifting algorithm
of Rudell (see Section 2.4.7.2).

First, the number of paths in BDDs has been studied. Several ap-
plications directly benefit from a smaller number of paths in a BDD.
Among these are the minimization of DSOPs, CNF generation and test
of BDD circuits. Theoretical results show that an exponential differ-
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Table 5.9. Run times for APL-sifting in two stages of development

name time

brute force final

apex6 31.08s 0.58s
apex7 1.49s 0.13s
b9 0.51s 0.04s
c1355 415s 85.4s
c3540 4485s 826s
c499 334s 77.7s
c5315 – (16323s)
c880 262s 34.9s
cht 0.47s 0.04s
dalu 127s 9.01s
example2 3.93s 0.11s
frg2 84s 1.29s
i3 14172s 151.3s
i4 189s 2.83s
i5 13.34s 0.24s
i6 11.43s 0.18s
i7 31.03s 0.47s
i8 150s 2.68s
i9 21.19s 0.62s
k2 3.51s 0.42s
pair 3769s 41.4s
rot 5823s 123s
s5378 761s 7.64s
s641 2.55s 0.25s
s713 2.58s 0.25s
s838.1 3.89s 0.70s
x1 2.13s 0.19s
x3 29.01s 0.50s
x4 6.69s 0.18s

ence in the number of paths can result from different variable orderings,
while the number of nodes is linear. Also the variable ordering leading
to the minimal number of nodes can be different from the variable or-
dering leading to the minimal number of paths. An efficient algorithm
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to reduce the number of paths has been introduced and compared to an
algorithm reducing the size. Experiments showed that the overhead in
size is moderate while the number of paths can be reduced by several
orders of magnitude for some benchmarks.

Next, an efficient technique to optimize BDDs with respect to the
expected path length has been presented. This criterion measures the
evaluation time for functional simulation. It also models average gate
delay assuming a unit delay model. The method is based on sifting
and uses a new sophisticated approach to keep track of local changes
and their impact on the global change during a variable swap. Thus
it achieves small run times, staying within the time complexity of the
original sifting algorithm.

Experimental results are reported demonstrating that the proposed
technique also results in BDDs optimized for the synthesis of fast multi-
plexor circuits. This is achieved with a significant smaller run time than
classical approaches.

The two criteria which have been studied, the number of paths and the
expected path length in BDDs, have been compared and characterized
applying a unifying view. With the help of this general framework,
methods to optimize BDDs with respect to other criteria, like the sum
of the lengths of the paths and the average path length in BDDs, can be
derived. Experiments showed the feasibility of the obtained approach to
minimize the average path length in BDDs.



Chapter 6

RELATION BETWEEN SAT AND BDDS

State-of-the-art verification tools are based on efficient operations
on Boolean formulas. Besides BDDs also Boolean Satisfiability (SAT)
solvers are frequently used. In this chapter we study the relation between
SAT and BDDs. Formal equivalence checking is exemplarily considered
as an application.

SAT has received increased attention as a promising technique for
Automatic Test Pattern Generation (ATPG) [Lar92, SBSV92], model
checking [BCCZ99], and equivalence checking. Virtually all SAT tech-
niques rely on the use of the Davis-Putnam procedure (DP) [DP60] and
the Davis-Logeman-Loveland procedure [DLL62] to explore the search
tree. In the following we do not distinguish the two, but simply refer
to the DP procedure. If there is a pattern that differentiates the cir-
cuits under verification, then DP will eventually find it or prove that the
SAT formula is unsatisfiable. Numerous techniques have been proposed
to reduce the search tree. Some of these techniques such as iterated
global implications [SBSV92] and recursive learning [MSG99] are ap-
plied as a preprocessing step, while others are applied during the course
of the application of the DP procedure. For example, clause record-
ing [MS98] and cache-based backtracking [PCK99] are used to avoid
conflicts. Non-chronological backtracking [MSS96] and efficient imple-
mentations [MMZ+01] further improve the performance. An alternative
research trend focuses on identifying variable ordering techniques that
minimize the number of backtracks executed by the DP procedure to
find a satisfying assignment [GN02]. However, especially for unsatisfi-
able formulas often run time is the limiting resource.

On the other hand, BDDs have been traditionally used to solve the
equivalence checking problem due to their canonicity. However, it is this
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requirement for canonicity that makes BDDs inefficient in represent-
ing certain classes of functions. For example, integer multipliers have
displayed exponential memory requirements for any variable ordering
[Bry91].

There has been increased interest in techniques that integrate SAT
and BDDs to reduce the time and space needed to solve the equiva-
lence checking problem [BS98, PK00, RS01]. Though it has been noted
that SAT and BDDs represent the same entity [PCK99], there is lit-
tle understanding of the relation between the two procedures and how
the techniques of one domain can be utilized in the other. First ap-
proaches considered preprocessing a problem using BDDs to reduce the
search space for the SAT solver [CNQ03, GGW+03]. Another idea was
to improve the reasoning capabilities of a SAT solver by using BDDs
[GYA+01].

The presentation in this chapter follows the approach from [RDO02].
The relations between the search tree of a SAT solver and the number
of paths in a BDD are studied. Equivalence checking is considered to
illustrate this relation. The equivalence checking problem is viewed as
a search in the decision trees of the two circuits for a path that leads
to the terminal node 1 (0) in one but leads to the terminal node 0 (1)
in the other. From this perspective, it would be desirable to decrease
the number of paths, thus reducing the number of backtracks and time
needed to solve the problem. A dynamic variable ordering technique
to run the DP procedure is proposed. The technique is geared towards
minimization of the number of backtracks needed to prove the unsatisfi-
ability of the CNF formula that results from proving the equivalence of
two circuits. This method is compared with the greedy variable order-
ing of TEGUS [SBSV92]. Experimental results verify that the proposed
approach results in a dramatic decrease in the number of backtracks and
time needed to solve the problem.

The organization of the chapter is as follows. The DP procedure
is reviewed in Section 6.1 to make the book self-contained. Section
6.2 presents the theoretical foundations for the relation between the
DP procedure and BDDs. Section 6.3 proposes a dynamic BDD-based
variable ordering technique for the DP procedure. Experimental results
are given in Section 6.4, followed up by summary in Section 6.5.

6.1 Davis-Putnam Procedure

A CNF formula ρ is a set of clauses where each clause is the disjunction
of a number of literals where a literal is a variable or its negation. Since
each logic gate can be represented by a number of clauses as shown in
[Lar92], a CNF formula of a logic circuit is the conjunction of the CNF
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Figure 6.1. Circuit for Examples 6.1 and 6.6.

formulas of all the gates. A CNF formula is satisfiable if at least one set
of assignments to the variables of the formula makes it evaluate to 1.

Example 6.1 Consider the circuit in Figure 6.1. The OR-gate is mod-
eled by following three clauses:

(x1 + d) · (x2 + d) · (x1 + x2 + d)

This CNF is only satisfied for an assignment that does not lead to a
conflict at the OR-gate, i.e. that can occur in the actual circuit. In the
same way the AND-gate is modeled by clauses. The conjunction of the
CNFs for the OR-gate and the AND-gate yields a CNF ρ that models
the circuit:

ρ = (x1 + d) · (x2 + d) · (x1 + x2 + d) · (x3 + z) · (d + z) · (d + x3 + z)

Virtually all SAT solvers use the DP procedure [DP60, DLL62] in
their core in order to find a satisfying assignment for the formula or con-
versely to prove the formula unsatisfiable. The DP procedure performs
a backtracking depth-first search in the space of all truth assignments to
find a satisfying assignment for the CNF formula. The performance of
backtracking is greatly improved by employing unit clause propagation:
whenever a unit clause arises, the variable occurring in that clause is
assigned the truth-value that satisfies the clause. The formula is there-
upon simplified which may lead to new unit clauses. Figure 6.2 outlines
the DP procedure. The procedure returns 1 in case the CNF formula is
satisfiable, 0 otherwise. At first a literal to split on is chosen (line 14).
If no literal is left, the CNF is already satisfied and 1 is returned (lines
15-17). Otherwise both possible assignments for the literal are assigned
(lines 18-22 and 24-28). For each assignment the procedure is recursively
called to solve the sub-problems (lines 19 and 25, respectively). In case
both sub-problems are unsatisfiable 0 is returned.

6.2 On the Relation between DP Procedure and
BDDs

In this section we study the relation between the DP procedure and
the BDD representation of the same circuit. We first formalize the var-
ious properties of the CNF formulas generated from multi-level combi-
national logic circuits and show how these properties allow a measure of



200 ADVANCED BDD OPTIMIZATION

(1) assign(sat formula ρ, literal ν)
(2) proc
(3) ν := 1 in ρ;
(4) simplify ρ;
(5) apply unit clause propagation;
(6) if ρ has an empty clause then
(7) return 0;
(8) else
(9) return 1;

(10) end–if
(11) end–proc

(12) DP(sat formula ρ)
(13) proc
(14) choose literal ν to split on;
(15) if ν = NULL then
(16) return 1;
(17) end–if
(18) if assign(ρ, ν) then
(19) if DP(ρ) then
(20) return 1;
(21) end–if
(22) end–if
(23) undo ν assignment;
(24) if assign(ρ, ν) then
(25) if DP(ρ) then
(26) return 1;
(27) end–if
(28) end–if
(29) return 0;
(30) end–proc

Figure 6.2. DP procedure.

flexibility in the search for a satisfying assignment to the formula. Fur-
thermore, the relation between the number of backtracks obtained using
the DP procedure and the number of paths in the corresponding BDD
is proven. This relation allows the calculation of optimal lower bounds
for the number of backtracks needed to prove the equivalence of two
equivalent circuits. We start by introducing some notation to provide a
concise basis for the formalization of the derived results.
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Let ρ be a CNF formula, and V (ρ) denote the set of variables that ρ
depends on. A clause ci ∈ ρ is satisfied if there is some assignment to
its literals such that the disjunction of the literals evaluates to 1. The
CNF formula ρ is satisfied if there is a truth assignment to V (ρ) such
that every clause ci ∈ ρ is satisfied.

Let CCNF denote the set of CNF formulas generated from multi-
level combinational logic circuits. Let ρ ∈ CCNF represent a multi-level
combinational circuit C, and let f be the underlying Boolean function
of C. Since the logic value of all the internal and output signals of C
can be derived from the values of the primary inputs, we consider the
support of f to be the primary inputs only. The set Xn represents the n
primary inputs of ρ. In addition, we introduce the variable z to reference
the primary output of the circuit. The relation between ρ, Xn and V (ρ)
is given by the next lemma.

Lemma 6.2 If ρ ∈ CCNF , then it is possible to find a set of variables
XnXX ⊂ V (ρ) such that ρ can be satisfied by only splitting on the variables
of Xn in the DP procedure.

Proof. Since the internal nodes of a multi-level logic circuit are func-
tions of the primary inputs, it is possible to determine their assignment
given some assignment on the set of primary input variables, Xn. �

Lemma 6.2 enables a reduction of the search space from one in terms
of all the variables of the circuit nodes to one in terms of the primary
inputs. A similar reduction was exploited by the PODEM algorithm for
test pattern generation [Goe81]. In the DP procedure this reduces the
backtracking to be only in terms of the primary inputs. In a typical run
of the DP procedure, a sequence of support variables will be assigned
truth variables during the search of a satisfying assignment to the whole
CNF formula. This subset of currently assigned primary inputs shall
be denoted by S, and their truth assignments by AS . The restricted
Boolean function that results from the application of AS to ρ shall be
denoted by fAff

S
.

In order to avoid fruitless searches, the DP procedure should avoid
assigning truth-values to variables that can make no contribution to the
satisfiability of the formula. This notion is captured by the following
definition.

Definition 6.3 If AS is the truth assignment of a set S ⊆ Xn and
ν ∈ Xn but ν /∈// S, then ν is said to be redundant under AS if

fAff
S
|ν=0 = fAff

S
|ν=1.
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Definition 6.3 simply states that if the restricted Boolean function fAff
S

is insensitive to the change in ν, then there is no point in assigning ν
a truth value. This notion allows us to tailor down the satisfiability of
CCNF formulas as given by the following theorem.

Theorem 6.4 A CNF formula ρ ∈ CCNF is satisfied under a truth
assignment AS of a set S ⊆ Xn if ∀ν ∈ (Xn \ S) : fAff

S
|ν=0 = fAff

S
|ν=1.

Proof. If ∀ν ∈ (Xn \S) : fAff
S
|ν=0 = fAff

S
|ν=1, then no truth assignment

to any element that belongs to (Xn \S) can change the function f(AS).
Since all variables in S are assigned truth values under AS and (Xn \
S) ∪ S = Xn, then it follows from Lemma 6.2 that ρ is satisfied. �

Theorem 6.4 proves that if all the remaining unassigned primary in-
puts are redundant, then there is no need for additional variable as-
signments since the CCNF formula is satisfiable. Another important
property of CCNF formulas is that there is no point in assigning addi-
tional variables if the primary output has already been assigned a truth
value. This is proved in the next theorem.

Theorem 6.5 If ρ ∈ CCNF and z is assigned a truth value under a
truth assignment AS of a set S ⊆ Xn, then ρ is satisfied.

Proof. If z is assigned a truth value, then ∀ν ∈ (Xn \ S) : fAff
S
|ν=0 =

fAff
S
|ν=1. This is true since none of the variables that belongs to (Xn \S)

can change the primary output z corresponding to f . Thus, it follows
from Theorem 6.4 that ρ is satisfied. �

Theorem 6.5 defines our notion of satisfiability for Circuit Satisfiability
(CSAT). In addition, it opens the possibility for the primary output
variable z to be assigned a truth-value while there exist clauses that
are not evaluated to 1 and have some remaining unassigned literals.
Example 6.6 illustrates such a case.

Example 6.6 The CNF formula of the circuit in Figure 6.1 is ρ =
(x1 + d) · (x2 + d) · (x1 + x2 + d) · (x3 + z) · (d + z) · (d + x3 + z). In
this example, the circuit has three primary inputs X3 = {x1, x2, x3} and
the primary output z. Under the partial assignment AS = {x3 = 0},
where S = {x3}, z is assigned the truth value 0 and ρ = (x1 + d) · (x2 +
d) · (x1 + x2 + d). We notice that under AS both fAff

S
|x1=0 ⊕ fAff

S
|x1=1

and fAff
S
|x2=0 ⊕ fAff

S
|x2=1 equal zero since the function output value is

already determined. Furthermore, there exists a truth assignment to
the set of variables Xn \ S that satisfies the remaining clauses. This
truth assignment is however of no interest since the primary output has
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already been assigned a truth-value. As an illustration for Definition
6.3, if AS = {x1 = 1} where S = {x1} then ρ = (x3 + z) · (x3 + z) and
fAff

S
|x2=0 = fAff

S
|x2=1, yet z is not assigned a truth value. Thus, ρ is not

satisfied but x2 is redundant under AS.

We notice that the Deletion Rule from Section 2.4.3 for BDD reduction
is equivalent to Definition 6.3 in the CSAT context and thus tracing a
path from the root to the 1-terminal or 0-terminal in the BDD of circuit
C is equivalent to finding a satisfying assignment to the CNF formula
ρ of C using the same variable ordering of the path in the BDD. This
notion is captured in the following lemma.

Lemma 6.7 Given a BDD F and a CSAT formula ρ for some logic
circuit C, then a truth assignment Ap on a certain path p from the root
of F to the terminal, ρ is satisfiable using the same variable ordering
and truth assignment.

Proof. Assume the set of primary inputs is Xn. Then we can partition
XnXX into two sets, S and T , such that S contains all the variables that
correspond to nodes in p and T contains all the remaining variables. By
the Deletion Rule from Section 2.4.3, T is the set of all redundant nodes.
But due to the equivalence of the Deletion Rule and Definition 6.3, it
follows from Theorem 6.4 that ρ is satisfied. �

From this perspective, the equivalence checking problem between two
circuits can be viewed as a search in the decision trees of the two circuits
for a path that leads to the terminal node 1 (0) in one but leads to the
terminal node 0 (1) in the other. This view allows the introduction
of the relation between BDDs and the DP procedure as given by the
following theorem.

Theorem 6.8 Given a BDD F with a number of paths P and a CCNF
formula ρ for some logic circuit C then if the variable ordering strategy
of the DP procedure follows the same ordering for every path of F , then
DP proves the equivalence of C against an equivalent version in P − 1
backtracks.

Proof. In order to prove the equivalence of two circuits, we have to
check that every assignment that leads to the terminal node 1 (0) in
the BDD of one circuit leads to the same result in the other circuit.
Consequently, if the variable ordering for splitting in the DP procedure
is the same as in the corresponding BDD, then considering an alternative
path in the BDD leads to a backtrack in the DP procedure. Thus, the
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number of paths exceeds the total number of backtracks exactly by one.
�

We now utilize Theorem 6.8 to calculate optimal lower bounds on the
number of backtracks that can be obtained from the DP procedure using
the primary inputs for backtracking.

Searching among the n! different variable orderings for a BDD over
Xn helps identifying the variable ordering(s) that produces the minimal
number of paths. This minimal number of paths allows the calculation
of a lower bound on the number of backtracks in the DP procedure as
given by the following theorem.

Theorem 6.9 Given a DP procedure that operates using Theorem 6.4
and 6.5, then the optimal number of backtracks needed to prove the equiv-
alence of two equivalent circuits is bounded by the number of paths in the
corresponding minimal path BDD.

Proof. Since the number of paths and backtracks are linked by Theo-
rem 6.8 and there exists a variable ordering that minimizes the number
of paths, then the optimal number of backtracks using the DP procedure
can be obtained if we follow the same variable ordering for every path
in the minimal path BDD. �

The importance of Theorem 6.9 is that it allows benchmarking any
static variable ordering strategy for the DP procedure against an optimal
lower bound. We now develop a variable ordering heuristic for the DP
procedure that tries to trace the same variable ordering for every path
in the corresponding minimal path BDD of the circuit.

6.3 Dynamic Variable Ordering Strategy for DP
Procedure

From the previous section, we conclude that the variable ordering
strategy should differ for every path of the decision tree, and furthermore
result in no splitting on a redundant variable under the current partial
assignment. In this section, we propose a structural method that avoids
redundant splitting and tries to make the fewest possible splittings to
satisfy ρ. The method is based on the following theorem.

Theorem 6.10 If a bounded gate lies on every path from the primary
output z to the unassigned primary input ν ∈ (Xn \ S) under a current
partial assignment AS for a set S ⊂ Xn, then fAff

S
|ν=0 = fAff

S
|ν=1.

Proof. The existence of a bounded gate (a gate with a specified
output) in every path to z implies that no value assigned to ν can affect
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the function of the circuit since these bounded gates will suppress the
propagation of the logic value. Thus, since f(AS) remains unchanged
under any assignment to ν, fAff

S
|ν=0 = fAff

S
|ν=1. �

In order to utilize Theorem 6.10, a DP variable ordering strategy was
proposed that is a modification of a BDD variable ordering heuristic by
[Min96]. The method starts by assigning a weight of 1.0 to the primary
output, and continues by propagating this weight to the primary inputs
in the following manner: divide the output weight of each gate among
its inputs, accumulate the weight of the fan-out branches into the fan-
out stem. Next, the primary input with the highest weight is chosen
as the next variable to be split in the DP procedure. By unit clause
propagation, we exclude all the gate outputs of the bounded literals
from the next cycle of weight calculations.

The proposed weight assignment method assigns a weight of zero to
every redundant primary input under the current partial assignment.
Furthermore, the strategy splits on the largest weight input in an effort
to obtain a minimal number of splittings for satisfying the CSAT for-
mula. We illustrate the weight calculation procedure by the following
example.

Example 6.11 Suppose we are proving the circuit shown in
Figure 6.3(a) against an equivalent version of it. In this case we have
to compare if their BDDs are isomorphic or using the DP procedure,
we have to check that every path results in the same output assignment
in both circuits. Applying the previous procedure of weight calculations
to minimize the number of paths being compared, we trace the different
paths of the BDD of the circuit in Figure 6.3(a) in the manner shown
below.

From the initial weights given in Figure 6.3(a), we split on x3 since
it has the highest weight. Suppose x3 is assigned the value 1. Then
by unit clause propagation, gate h becomes bounded to the truth value
0. The weight calculation procedure is executed again but this time by
setting the weights of bounded gates to zero. Figure 6.3(a) illustrates the
new weights. Next, x1, x2 or x3 can be chosen to split on; the resultant
search tree will always produce identical number of backtracks. Notice
that bounded gates are marked with a “∗“ ” in the corresponding figure.
After finishing this half of the decision tree, x3 is flipped and assigned to
0. The new calculated weights are shown in Figure 6.3(d). Since x4 has
the highest weight, we split on x4 thus reaching the terminals.

We now construct the minimum path BDD corresponding to this cir-
cuit as shown in Figure 6.3(d). We notice in the BDD that the splitting
choices made by the previous procedure lead to traversing this BDD in
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Figure 6.3. Circuit from Example 6.11.

exact ordering for each path, thus producing the minimal number of back-
tracks, 5, corresponding to the minimal number of paths, 6.

As was just illustrated, the proposed method has produced optimal
results for the proposed example; however, the method is not in general
optimal since it depends on the structure of the circuit. But as shall
be demonstrated in the next section, the proposed method is capable of
achieving near optimal results.

6.4 Experimental Results
In this section, we present experimental results for our proposed ap-

proach. The experiments have been carried out on a PC with an Intel
Pentium 233 MHz processor and 64MB of physical memory. TEGUS
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Table 6.1. Comparing greedy search to BDD-based ordering for the DP procedure

name output Greedy Search BDD-based Difference BDD
backt. time backt. time backt. time #paths

c0432 370gat Abort 771 943,200 185 95.3% 76.0% 894,606
432gat Abort 770 816,012 235 95.9% 69.5% 798,906
329gat 1.6 · 106 22.50 81,912 5.94 95.0% 73.6% 57,513

c0499 od1 Abort 1,686 Abort 10,351 - - 20 · 106

od18 Abort 1,685 Abort 10,245 - - 23 · 106

od31 Abort 1,691 Abort 10,627 - - 23 · 106

c0880 864 649,741 12.30 164,656 27.50 74.7% -123.6% 89,937
850 37,225 0.60 24,171 3.45 35.1% -475.0% 21,981
874 Abort 498 1.1 · 106 278 94.6% 44.2% 532,793

c1355 1353 Abort 1,921 Abort 8,501 - - 21 · 106

1354 Abort 1,892 Abort 8,427 - - 23 · 106

1355 Abort 1,984 Abort 8,602 - - 23 · 106

c1908 57 Abort 718 147,457 11.90 99.3% 98.3% 134,221
60 Abort 1,708 28,161 20.10 99.9% 98.8% 26,638
66 Abort 2,058 14,249 10.40 99.9% 99.5% 12,638

c3540 399 24,550 0.73 4,528 1.34 81.6% -83.6% 1,636
384 6.1 · 106 652 70997 57.20 98.8% 91.2% 65,535
387 1.6 · 106 213 17312 17 98.9% 92.0% 16,456

C5315 688 Abort 300 23974 13 99.9% 95.7% 13,919
843 Abort 3383 211,181 162 98.9% 95.2% 103,569
818 85,989 3.50 6537 2.18 92.4% 37.7% 2,489

C7522 373 16 0.01 10 0.01 37.5% 0% 10
376 40,952 1.30 15416 4.93 62.4% -279.2% 7,152
359 2.5 · 106 114 585,584 285 76.3% -150.0% 196,592

c6288 2223 157 0.01 102 0.01 35.0% 0% 102
3895 174,315 12.20 106,423 108 38.9% -785.3% 109,668
4591 2.8 · 106 255 1.7 · 106 2,689 39.0% -954.5% 1.8 · 106

[SBSV92] was used as a SAT solver and CUDD [Som02] as decision
diagram package.

In the experiments the equivalence check of the ISCAS85 benchmark
circuits [BF85] against their non-redundant version was considered. The
proposed approach was benmarked against the greedy search approach
of TEGUS. Table 1 gives the results of such a comparison. The first
column lists the circuit name. In the second column, the name of the
output under verification is provided. The next two columns give the
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number of backtracks and time needed to prove the output using the
TEGUS approach. In the next two columns, the number of backtracks
and time needed to prove the output using the proposed approach are
given. The possible “Abort” notation in the third and the fifth column
denotes reaching the 20 million backtrack threshold without reaching a
successful resolution; the subsequent time columns in that case denote
the time needed to reach this limit. Regarding the last three columns,
the first two columns report the percentage decrease in the number of
backtracks and time, respectively. The last column provides the near
minimal number of paths in the corresponding BDD. In obtaining the
number of paths, we only consider a subspace of the possible variable
orderings. We compare the number of paths that result from reducing
the corresponding BDD to a minimum size by sifting (Section 2.4.7.2)
and picking the minimal path. Three outputs are considered for each
circuit.

Comparing the greedy approach to the proposed variable ordering
strategy, we observe that the proposed approach results on the average
in 90% decrease in the number of backtracks. The time needed to com-
plete the backtracks varies from reduction in 13 cases with an average
of 70% decrease to increases in about 7 cases with an average increase
of about 4 times. While at first glance the time results look inconclu-
sive, it can easily be noted that the increases are essentially associated
with low-backtrack, provable outputs, since in these cases the recurring
weight assignment costs cannot be amortized across the small number of
backtracks. The approach improves the performance of large search tree
cases, the main focus of practical interest. We also notice that within
the limit of 20 million backtracks, TEGUS fails to complete on 7 outputs
while the proposed approach proves them in a relatively low number of
backtracks.

As proved in Section 3, the minimum number of paths that can be
obtained from the corresponding BDD is a lower bound on the number
of backtracks that can be obtained in the DP procedure. The number
of paths provides an ability to benchmark various ordering techniques
and also provides an insight on the performance of the DP procedure.
For example, the huge number of paths in case of the c0499 and c1355
circuits (they are functionally equivalent) suggests that they are hard-
to-prove outputs using the DP procedure. In addition, in circuits, like
the c6288, where the variation of the number of paths with respect to
the variable ordering is small, the dynamic weight assignment technique
constitutes a time consuming step with respect to the overall time, as
the number of backtracks varies slightly with respect to the variable
splitting strategy.
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6.5 Summary
In this chapter the relation between the search tree of the DP proce-

dure and the BDD of the corresponding function has been studied. The
direct relation between the number of paths in a BDD and the number
of backtracks needed to prove the equivalence of two functionally equiva-
lent circuits has been established. This relation introduces the ability to
calculate an optimal lower bound on the number of backtracks needed
to prove the equivalence checking problem. In addition, this relation
has led to the conclusion that the capture of the variable ordering of
the minimal path BDD in the DP procedure implies a reduction in the
number of backtracks needed to prove the problem. In order to exploit
this relation, we have devised a variable ordering technique for the DP
procedure that through experimental results has exhibited superior per-
formance in terms of the number of backtracks and time needed to prove
the equivalence problem. The relation between the two procedures of-
fers novel ways of tight integration of different prover approaches in a
verification tool.



Chapter 7

FINAL REMARKS

During the last twenty years, a large number of problems in VLSI
CAD have arisen that can be tackled by the use of Binary Decision Dia-
grams (BDDs). Besides this, also the clausal representation as a Boolean
Satisfiability (SAT) problem has been frequently used. The applications
are in various fields including logic synthesis, formal and simulation-
based verification, and design-for-testability. Facing the ever increasing
design complexity and the growing pressure of time-to-market, new ap-
proaches for design space exploration should be considered. Moving
towards new optimization goals, new efficient algorithms for these tasks
are needed.

Recent methods utilizing BDDs require the optimization of BDDs
with respect to new, alternative objective functions. In addition, the
lastest trends in research move towards the fusion of SAT and BDD
as well-established concepts. However, the relation between the two
paradigms and the basic concepts of new optimization goals have been
known and understood for a short time.

At this point it should not be overseen that Artificial Intelligence
(AI) can be a source of new impulses. In the past, a number of methods
in VLSI CAD have been based on concepts that originally have been
developed in the AI community, e.g. Evolutionary Algorithms (EA) and
Simulated Annealing (SA). Basic search techniques like hill climbing have
been reflected by classical BDD techniques like the sifting algorithm for
dynamic BDD reordering. The latest proposal is to use the paradigm of
the generic A∗-algorithm to reduce the run time of tasks in VLSI CAD
that are of time-limited nature.

In this book, the classical and the latest approaches to the optimiza-
tion of BDDs with respect to the classical criterion, i.e. the size of the di-
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agram, and new, alternative criteria have been presented. Recent meth-
ods can yield reductions in run time of orders of magnitude compared to
classical algorithms. Reflecting a second important trend, the relation
between BDD and SAT has been studied considering formal equivalence
checking. The presented material covers the recent developments and
also includes the established methods.

An important development shows a growing number of methods that
require BDD optimization or work towards a fusion of the concepts BDD
and SAT. Some of them achieve improvements by using classical tech-
niques of AI. Even though still in its early stage, the respective paradigm
shift in VLSI CAD already shows a promising potential. New algo-
rithms have to be developed that cope with challenging design spaces
and emerging optimization objectives. This especially holds in the pres-
ence of the increasing design gap.
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