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Preface

Distributed Sensor Networks (DSN) are large-scale, autonomous, resource-
constrained systems used for gathering data in an intelligent manner. Described
by Business week as one of the twenty-first century, DSN technology is step-
ping out its cradle of laboratories and research papers, and finding increasing
number of applications.

Often powered by advances in the miniaturization of Microelectronic and
Mechanical Structure (MEMS), a DSN is composed of many tiny sensor nodes, all
of which have capabilities for sensing, computing, and communication. Sensor
nodes are often low cost, low power, and small size, and frequently remain
untethered and unattended after deployment. Wireless Sensor Network (WSN)
typically consists of large number of various kinds of unstructured environments.
Usually, a sensor node has a communication range of less than 100 ft. Sensor
nodes can be deployed on the ground, in the soil, underwater, in the air, in
vehicles, or in buildings.

The detection and identification methods must be robust and secure for
persistent and pervasive operations under uncertainty, resource constraints, and
known and unknown operational, environmental, and adversarial perturbations.
This necessitates the development of sensor networks that autonomously form
collaborative clusters for reliable time critical response to natural and man-made
disasters and to more general battlefield environments and are backed by strong
processing power of cyber systems.

In this monograph, the Mathematical Theories of Distributed Sensor Networks
are presented. In Chap. 1, we provide an introduction to the DNS. This
Introduction chapter has been designed to clarify the importance and position of
the area of sensor networks in the context of the network design as its containing
field of research.

Energy efficiency is one of the most critical issues in DNS. Efficient time
complexity of algorithms which are running in different parts of a DSN for various
purposes has a vital role in optimizing the energy consumption of the network.
For example, a poor-quality routing algorithm may lead to node congestion and a
huge energy wastage. In the ‘‘Optimization Methods’’ part, we will address two
famous optimization problems in the context of DSNs in detail: art-gallery
problem and wideband source localization using acoustic sensor networks.
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One of the most famous coverage problems is called the gallery-guarding
problem or generally, Art-Gallery Problem. In Chap. 2, we will see an efficient
approximation algorithm which makes an acceptable solution for the gal-
lery-guarding problem in 3-D when the boundary of guarded region is in the form
of a polygonal mesh.

Another optimization problem which will be addressed in this book is the
wideband source localization using acoustic sensor networks in the presence of
nonuniform noise variances.

In Chap. 3, we present a solution to the problem based on two source locali-
zation algorithms called Stepwise-Concentrated Maximum-Likelihood (SC-ML)
and Approximately Concentrated Maximum-Likelihood (AC-ML).

In Part II of the monograph, we focus on the coverage and connectivity
problems in the context of DNS. Coverage problem is one of the fundamental
issues in DSNs. In this problem, the goal is to determine how well a set of sensors
can monitor a given area. In addition, the connectivity problem in DNS is to
determine whether the graph representation of the network is connected or not.

In Chap. 4, we address the coordinate-free coverage problems in DSNs via
Homology.1 Moreover, in Chap. 5, some discussions regarding the coverage
assessment and target tracking in 3-D domains will be presented.

Finally, in Part III (last) of the book, an interesting security problem in DSNs
will be addressed. More specifically, we propose a novel stochastic preserving
scheme of location privacy either for a static or for a mobile sensor node. After
describing the proposed scheme, we present the privacy assessment of the method
using some mathematical tools.

Features

Here are the unique aspects of our book which address the oblivious network
routing problems:

(1) The book specifies the importance and position of the DNS in the context of
the network design as it contains the field of research. To do this, numerous
concepts in this area are defined precisely using the mathematical tools.

(2) The book provides the basics and mathematical foundations needed to analyze
and address many problems in DNS. More specifically, it introduces some
advanced data structures and tools (in graph theory and probability theory)
which will be deployed for analysis and design of high-performance DNS.

1 Homology is a certain general procedure to associate a sequence of abelian groups or modules
with a given mathematical object such as a topological space or a group.
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Intended Audience

This monograph is suitable for senior undergraduate students, graduate students,
and the researchers working in the related areas.
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Chapter 1
Introduction to Distributed Sensor Networks

Currently, detection and tracking systems use a large number of different types of
sensors. Because of the relatively low cost of sensors, many duplicate sensors of the
same type are used to insure increased fault tolerance. The common practice is to
assign each sensor of sensor cluster to handle on specific task. For example, while
tracking multiple target, one sensor cluster is assigned to track one target only and
any information it may collect about other targets is not utilized.

Thus, there is a great deal of interest in integrating all the sensors so that the
information can be effectively utilized. The sophisticated demands made on the
tracking and surveillance systems have generated a great deal of interest in developing
new architectures that allow for the fusion of the information in the different sensors.
For instance, it should be possible to combine the information given by infrared
sensors with that given by microwave radars. An such integration of sensors implies
the availability of communication networks that allow for the transfer of information
between sensors.

More specifically, the design of spatially distributed target detection and tracking
systems involves the integration of solutions obtained by solving subproblems in
data association and fusion, hypothesis testing, effective computational strategies,
etc. We envision a cooperative resolution of the overall problem using the solutions
of the subproblems available at local sensors. No single sensor or sensors are really
not practicable. Both data collection and control have to be logically and geographi-
cally distributed necessitating the sharing of information and the use of cooperative
problem solving approaches.

Some portion of this chapter has been reprinted with permission from “Distributed Sensor
Networks-Introduction to the Special Section,” Iyengar et al. [1]

S. S. Iyengar et al., Mathematical Theories of Distributed Sensor Networks, 1
DOI: 10.1007/978-1-4419-8420-3_1, © Springer Science+Business Media New York 2014



2 1 Introduction to Distributed Sensor Networks

1.1 What is a Distributed Sensor Network?

A distributed sensor network (DSN) can be defined as a set of spatially scattered
intelligent sensors designed to obtain measurements from the environment, to ab-
stract relevant information from data gathered, and to derive appropriate inferences
from the information gained. DSNs depend on multiple processors to simultane-
ously gather and process information from many sources. Interest in theses systems
stems from a realization of the limitations imposed by relying on a single source of
information to make decisions.

Currently, there has been an increasing interest in the development of DSNs for
the process of information gathering. Availability of new technology makes these
networks economically feasible. The increased complexity of today’s information
gathering tasks has created a demand for such networks. These tasks are usually time-
critical and rely on the reliable delivery of accurate information. Thus, the search
for efficient, fault-tolerant architectures for DSNs has become an important research
area in computer science.

1.1.1 Requirements of Distributed Sensor Networks

ADSN is basically a system of connected, cooperating generally diverse sensors that
are spatially dispersed. The major task of a DSN is to process data possibly noise
corrupted, acquired by the various sensors and to integrate it, reduce the uncertainty
in it, and produce abstract interpretations of it. Three important facts emerge from
such a framework:

(1) The network must have intelligence at each node,
(2) It must accommodate diverse sensors, and
(3) Its performance must not degrade because of spatial distribution.

DSNs are assumed to function under the following conditions:

• Each sensor in the ensemble can see some but not all of the low-level activities
performed by the sensor network as a whole.

• Data is perishable, in the sense that information value depends critically upon the
time required to acquire and process it.

• There should be limited communication among the sensor processors, so that a
communication–computation trade-off can be made.

• There should be sufficient information in the system to overcome certain adverse
conditions (e.g., node and link failures) and still arrive at a solution in its specific
problem domain.

The successful integration ofmultiple, diverse sensors into a useful sensor network
requires the following:

• The development of methods to abstractly represent information gain from sensors
so that this information may easily be integrated.
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• The development of methods to deal with possible differences in point of view on
frames of reference between multiple sensors.

• The development of methods to model sensor signals so that the degree of uncer-
tainty is reduced.

1.1.2 Communication in DSNs

In a typicalDSN, each node needs to fuse the local informationwith the data collected
by the other nodes so that an updated assessment is obtained. Current research in-
volves fusion based on a multiple hypothesis approach. Maintaining consistency and
eliminating redundancy are two important considerations. The problem of determin-
ing what should be communicated is more important than how this communication is
to be effected. An analysis of this problem yields the following classes of information
as likely candidates for being communicated: information about the DSN, informa-
tion about the state of the world, hypothesis, conjectures, and special requests for
specific actions. It is easy to see that different classes of information warrant differ-
ent degrees of reliability and urgency. Further details regarding information fusion
in DSNs may be found in [2–8] (adopted from Iyengar et al. [1]).

1.2 Algorithms and Complexity Issues

Energy efficiency is one of themost critical issues inDSNs. Efficient time complexity
of algorithmswhich are running in different parts of a DSN for various purposes has a
vital role in optimizing the energy consumption of the network. For example, a poor-
quality routing algorithm may leads to node congestion and a huge energy wastage.
In Chaps. 2 and 3, we will address two famous optimization problems in the context
of DSNs in detail. Here, we introduce these two optimization problems:

1.2.1 Gallery-Guarding Problem in 3-D

One of the common types of coverage problems (which will be introduced in Sect.
1.4) is called the gallery-guarding problem or generally, Art-Gallery Problem [9].
The main objective of this problem in 3-D regions is to find a set of points like S in
the geometric region A ⊆ R

3 such that1:

∀X ∈ A:∃Y ∈ S:XY
3 ⊆ A (1.1)

1 For every pair of points X, Y ∈ R
3, XY denotes the line segment connecting X and Y .

http://dx.doi.org/10.1007/978-1-4419-8420-3_2
http://dx.doi.org/10.1007/978-1-4419-8420-3_3
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In other words, any point in regionA can be visible from a point in the solution set
S. It is easy to prove that the following proposition is equivalent to Proposition 1.1:

∀X ∈ ∂A:∃Y ∈ S:XY ⊆ A

where ∂A ⊆ A denotes the boundary of region A.
In Chap. 2, we will see an efficient approximation algorithm which makes an

acceptable solution for the gallery-guarding problem in 3-D when the boundary of
region A is in the form of a polygonal mesh.

1.2.2 Wideband Acoustic Source Localization in the Presence
of Nonuniform Noise Variances

Another optimization problem which will be addressed in this book is the wideband
source localization using acoustic sensor networks in the presence of nonuniform
noise variances.

In Chap. 3, we present a solution to the problem based on two source local-
ization algorithms called stepwise-concentrated maximum likelihood (SC-ML) and
approximately-concentrated maximum likelihood (AC-ML).

1.3 Layered Network Architecture

DSNs (especially, the wireless ones) have typically low-power nodes, with limited
CPU and memory, and the application requirements and network architecture of
DSNs differ greatly from that of traditional computer networks.

In this section, we focus on the network architecture of DSNs using the well-
known layered approach. In the layered network architecture, every layer uses the
services of lower layers and provides with specific services which will be used by
the upper ones. The major differences of DSNs and traditional computer networks
will be addressed in each architecture layer.

1.3.1 Physical Layer

Physical layer is the lowest layer in the layered architecture of a network. All of the
other four layers rely on the services which this layer provides. The main task of
the physical layer is to convert the data (which is intended to be sent through the
network) into the electromagnetic waves at any connection source and do the reverse
conversion at the connection target. These conversions are called as “modulation”

http://dx.doi.org/10.1007/978-1-4419-8420-3_2
http://dx.doi.org/10.1007/978-1-4419-8420-3_3
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and “demodulation,” respectively. In order to propagate data through the network
via different media such as air, copper wires, and optical fibers, we need to do mod-
ulation/demodulation at the sensor nodes of a DSN to transmit the electromagnetic
waves in the connection sessions. In some of the network architectures, data are en-
crypted before modulation at the connection source and decrypted on the other side
of the connection when demodulation occurs.

Regarding the aforementioned power restrictions of DSNs, power optimization is
one of themost critical concerns in the physical layer of aDSN.Especially, inwireless
sensor networks in which sensors may be connected to limited power resources (like
batteries), the physical layer of sensors must be designed to run a low duty cycle,
such that the battery is discharged in pulses. In fact, a battery undergoing pulsed
discharge generally has less power consumption (in long term) than the one which is
constantly being discharged, as the pulsed approach tends to have a form of charge
recovery effect. Further treatment on this layer can be found in [10–12].

1.3.2 Data Link Layer

In the second network layer, the connecting medium is managed as a resource shared
with all the sensor nodes. If the network links are simultaneously used by different
connections in a DSN, they may fail to work properly as the collision occurs between
different connection waves. This urges a media access control (MAC) protocol to
handle different connections which need to use the shared resource at the same time.
There are a number of MAC protocols which deal with the conflicting connections
in different ways. Here, we shortly describe three fixed-assignment strategies used
by MAC protocols:

Time Division Multiple Access (TDMA): In this strategy, the shared resource
(media channel) is dedicated to each connection in a certain time intervals. As
illustration, assume that there are ten different connections which simultaneously
need to use a media channel in time interval [0, 1). Then, the i th one can only
access the channel in interval [0, 1/10). The same strategy can be periodically
repeated for longer time intervals. Note that in this approach, the channel is only
accessible by one connection at any given moment.
Frequency Division Multiple Access (FDMA): Every media channel has a band-
width which can be divided according to the signal frequencies. Regarding our
previous example, all the ten connections can simultaneously access the media
channel without any conflicts if each one use it in a different frequency interval
which is disjoint of the others.
Code Division Multiple Access (CDMA): In this approach, the way of frequency
modulation is manipulated in a way that the channel bandwidth gets larger and
different sensors can communicate concurrently via the same channel.

Note that we can use a hybrid strategy which is a mixture of the above three
ones. For example, the channel bandwidth can be divided to some disjoint frequency
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intervals, in which each interval is used by a number of connections in disjoint time
slices.

In addition to the aforementioned fixed-assignment strategies, theMAC protocols
can be categorized based on the sensor demands. In some strategies, there is a global
controller in the DSN which periodically asks every sensor node if it needs the
shared resource (polling). On the other hand, every sensor node can schedule the
earliest available session on demand by sending some reservation messages. This
strategy which asks the network to transfers two different types of messages (data
and reservation) handles the connection conflicts in a different way (comparing with
polling).

Here are some vital concerns which need to be considered regarding the second
layer of DSNs because of the existing power restrictions:

• Sensor nodes do not have to hear those signals which are not related to them.
Overhearing is an issue that occurs when an inappropriate MAC protocol is used
in DSNs which wastes the power substantially. A possible solution is to define a
sleep mode for a sensor node in which the node disregards all the messages sent
to it.

• In someMACprotocols, some nodes listen to their connectingmedia channelwhen
no traffic is sending to them. This circumstance which is called idle listening may
occur in some MAC protocols which consumes the nodes energy for no reason.

• In some MAC protocols which are too complicated, sensor nodes switch to differ-
ent operational modes frequently which consume the power inefficiently.

• Collision is another issue that results in retransmitting the same packet through
the network and wasting the energy.

1.3.3 Network Layer

The middle layer of the network architecture is called “network layer.” This layer
serves the upper ones as a tool for routing data packets through the network. Every
packet which is transmitted through the network at the connection source needs to
be forwarded by other sensor nodes to reach its destination. Since every node may
have different connections with some specific nodes (its neighbors), the data have to
be forwarded elaborately to reach its destination faster and cheaper.

There are many layer-three protocols which can be classified into two different
classes based on their architectures: centralized routing protocols and distributed
ones. In the first category, one global controller specifies all the data paths; however,
in the second one, each sensor node does its duty as a router and forwards the packet
based on its forwarding table.

The main concern of the network layer protocols in DSNs is to route data in a
congestion-free manner. In other words, the data flow has to be distributed through
the network as the power resource of every sensor node is limited. If the data flow
gets congested in some specific nodes, their battery gets discharged frequently which



1.3 Layered Network Architecture 7

may lead to the network failure. Additionally, the total routing cost needs to be kept
small. These concerns urge the network designers to use oblivious routing algorithms
which balances the traffic load and incurs lower total cost by nature.

1.3.4 Transport Layer

In many real-world examples of DSNs, there exist a group of sensor nodes such that
each group has a base-station. When a node wants to send some data through the
network, it first sends the packet to its nearest base-station using the service provided
by the transport layer [13]. Then, the station forwards the packet using the services
provided by the first three layers. Additionally, when a packet is received by a base-
station, it delivers the data to the appropriate sensor node (destination) using the
fourth layer protocol of the network.

Similar to the third layer, load balancing is a critical concern in this layer. High
data traffic may lead to the queue overloading at the base-station. This will increase
the chance of packet loss and retransmissions which waste the power.

1.3.5 Application Layer

The uppermost layer of DSNs mostly depends on the application we expect. Im-
plementing efficient protocols leads to low-power consumption which is absolutely
vital is DSNs.

1.4 Coverage and Connectivity Problems

Before continuing our discussion regarding the coverage and connectivity, some
preliminaries are presented.

1.4.1 Preliminaries

Undirected graph G is defined as the ordered pair (V, E) such that V and E are
the set of vertices and edges in G, respectively. Moreover, for every edge e in E ,
e = {u, v} where u and v are two distinct vertices which are members of V . Edge e
is called the connecting edge of vertices u and v if e = {u, v}.

For some undirected graph, a simple path is inductively defined in the following
form:

Definition 1.1 In the undirected graph G = (V, E), set p ⊆ E is called a (simple)
path from s ∈ V to t ∈ V if:

p =
{∅ s = t

{{s, v}} ∪ p′ otherwise
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where {s, v} ∈ E undirected graph G is connected if for every pair of vertices
u, v ∈ V , there is a path from u to v.

In Definition 1.1, the undirected graph was introduced. As an extension, we define
the weighted undirected graph.

Definition 1.2 Let G ′ = (V, E) denote an undirected graph. The triple G =
(V, E, w) is defined as the weighted undirected graph corresponding to G ′, such
that V , E , and w:E 	→ R

+ are the vertex set, edge set, and the weight function of
G, respectively. Moreover, the (simple) path between two vertices in G is defined as
the path between them in G ′. Also, G is connected if and only if G ′ is connected.

Here, we assume that any undirected graph (V, E) is equivalent to the weighted
undirected graph (V, E, unit), where ∀e ∈ E :unit (e) = 1. In other words, every
definition or claim about the weighted undirected graph can be extended to the
unweighted graph using this equivalence. Note that in all of the following definitions,
weighted undirected graphs and (unweighted) undirected graphs are simply referred
to weighted graphs and (unweighted) graphs, respectively.

Considering G = (V, E, w) as a weighted graph, the length of simple path p in
G is specified by function lenG :2E 	→ R

+ and is defined in the following equation:

lenG(p) =
∑
e∈p

w(e)

Distance function dG :V 2 	→ R
+ of weighted graph G = (V, E, w) is defined in

the following form:
dG(u, v) = min

p∈P(u,v)
lenG(p) (1.2)

where P(u, v) denotes the set of all the simple paths existing between vertices u and
v in G. Note that if weighted graph G is replaced with its unweighted equivalent,
i.e., if we assume that the weight function of graph G is the unit function, the length
of a path is obtained by the following equation:

lenG(p) =
∑
e∈p

unit (e) =
∑
e∈p

1 = |p|

Hence, the distance between any two vertices of a connected graph is the length
of the shortest path existing between them. Additionally, if graph G is not connected,
as set P(u, v) will be empty for some u, v ∈ V , we need to redefine the distance
function:

dG(u, v) =
{

min
p∈P(u,v)

lenG(p) P(u, v) ←= ∅
+∞ otherwise

The maximum values of all the finite distances in a connected graph is called the
diameter of graph G and is represented by diam(G):
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diam(G) =
{

max
u,v∈V

dG(u, v) G is connected

undefined otherwise

Moreover, an r-neighborhood of vertex v or ball BG(v, r) in the weighted graph
G = (V, E, w) is defined by the following set:

BG(v, r) = {u ∈ V |dG(u, v) ≤ r}

For any set V ′ ⊆ V , the subgraph of graph G = (V, E, w) induced by V ′ is
graph GV ′ = (V ′, E ′, w) where:

E ′ = {{u, v}|u, v ∈ V ′ ∧ {u, v} ∈ E
}

The triple (V, E, loc) is an unweighted geometric graph in the n-dimensional
Euclidean spaceS if (V, E) specifies an unweighted graph; and loc denotes a function
in the form loc:V 	→ S. For every (unweighted) geomtric graph, we define three
types of distances for each pair of vertices. Assuming that u and v are two vertices
of graph G = (V, E, loc), this is the case that:

• Thegraph distancebetweenu andv is denotedbydG(u, v) anddefined asdG ′(u, v)

where G ′ = (V, E) represents the unweighted graph corresponding to G. More-
over, if p denotes a path in G, its length lenG(p) is defined as lenG ′(p).

• The (Euclidean) distance between u and v is denoted by dloc(u, v) and defined as
||loc(v) − loc(u)|| (||X − Y || represents the Euclidean distance2 between points
X and Y in space S).

• The hop-by-hop distance between u and v is represented by δG(u, v) and defined
inductively in the following equation:

δG(u, v) =
{
0 u = v

min{w,v}∈E
{δG(u, w) + ||loc(w) − loc(v)||} otherwise

Regarding the above-defined distances in a geometric graph, it is inferred by the
triangular inequality that for every pair of vertices u and v, the Euclidean distance
dloc(u, v) is not greater than δG(u, v). Also, the pseudo-diameter θ of geometric
graph G = (V, E, loc) is defined in the following way:

θ(G) = max
u∈V

max
v∈V

dG(u, v)

dloc(u, v)

For every point X ∈ R
n and value r ∈ R≥0, the n-dimensional ball B(X, r) ⊆ R

n

is defined by the following equation:

2 Euclidean distance between points X ∈ S and Y ∈ S is denoted by ||X − Y || and defined as the
length of line segment XY : ||X − Y || = |XY |.
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γ = 1
2

a b

γ = min{ ab ,
1
2 }

a
b

γ = 1
2 γ = cot(θ)

θ Arccot ( 12 )

θ

(a) (b)

(c) (d)

Fig. 1.1 Pseudo-convexity of some familiar convex sets. a A circle of unit radius. b An ellipse of
diameters a and b. c A regular hexagon. d A bilateral triangle

B(X, r) = {
Y ∈ R

n
∣∣||X − Y || ≤ r

}

The n-dimensional space S is called to be thoroughly R-covered by geometric
graph G = (V, E, loc) if this is the case that:

S ⊆
⋃
v∈V

B(loc(v),R)

For every convex subset in the Euclidean plane, a number is defined as its pseudo-
convexity factor which is formally defined in Definition 1.3.

Definition 1.3 IfS denotes a convex set of points on theEuclideanplane, thepseudo-
convexity factor γ S is defined as:

γ S = inf
A,B∈S

|AB
⊥ ∩ S|

|AB|

such that line segment AB
⊥
denotes the perpendicular bisecting line segment3 of

AB; and |AB
⊥ ∩ S| is the length of the part of line segment AB

⊥
that is inside set

S.
In the above definition, note that as A and B belong to the convex setS, the result of

expression AB
⊥∩S is always a line segment or a point (line segment of length zero).

In Fig. 1.1, you can see the pseudo-convexity factor of some familiar convex sets in
the Euclidean plane. In this section, assume that γ represents the pseudo-convexity
factor of convex area A over which the routing nodes are distributed.

3 Line segment AB
⊥
is perpendicular bisecting line segment of AB, if and only if AB

⊥ ⊥ AB,

AB bisects AB
⊥
, and AB

⊥
bisects AB.
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y(km )

x(km )

area

Fig. 1.2 Deployment of the sensor nodes (blue circles) and some sensing targets (red rectangles)
on the Euclidean plane. Note that the radius of any gray circle is R. As you see, the sensor nodes
thoroughly R-cover area A

1.4.2 Definition

ADSNcanbe represented as a geometric graph such that every sensor node is denoted
by a vertex and the connection between two nodes is represented by the graph edge
between corresponding vertices. The vertex location is equal to the coordinates of
where the sensor is located in the Euclidean plane/3-D space.

Coverage problem is a fundamental issue in DSNs. In this problem, the goal is
to determine how well a set of sensors can monitor a given area [14, 15]. The Art
Gallery problem which is closely related to the coverage in DSNs will be addressed
in Chap. 2.

The connectivity problem in DSNs is to determine whether the graph representa-
tion of the network is connected or not.

Figure 1.2 illustrates the graph representation of a DSN and some target places
which need to be sensed by the sensor nodes. In this network, every sensor node has
the identical sensing range4 ofR and communication range5 of cR.

We will address the coverage problems in the second part (Chaps. 4 and 5).

4 The maximum Euclidean distance between the sensor location and the target which is sensed by
the sensor.
5 The maximum Euclidean distance between two adjacent sensor nodes.

http://dx.doi.org/10.1007/978-1-4419-8420-3_2
http://dx.doi.org/10.1007/978-1-4419-8420-3_4
http://dx.doi.org/10.1007/978-1-4419-8420-3_5
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1.5 Summary and Outlook

In the first section, we introduced the DSNs. Then, we addressed some famous opti-
mization problems inDSNs in Sect. 1.2. Additionally, we discussed about the layered
architecture of DSNs and the main issues in each layer. Finally, some preliminaries
for the coverage and connectivity problems were introduced.
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Optimization Methods



Chapter 2
Region-Guarding Problem in 3-D Areas

This chapter studies the optimal inspection of autonomous robots in a complex
pipeline system. We solve a 3-D region-guarding problem to suggest the neces-
sary inspection spots. The proposed hierarchical integer linear programming (HILP)
optimization algorithm seeks the fewest spots necessary to cover the entire given 3-
D region. Unlike most existing pipeline inspection systems that focus on designing
mobility and control of the explore robots, this chapter focuses on global planning of
the thorough and automatic inspection of a complex environment. We demonstrate
the efficacy of the computation framework using a simulated environment, where
scanned pipelines and existing leaks, clogs, and deformation can be thoroughly de-
tected by an autonomous prototype robot.

2.1 Introduction

Activemonitoring and frequent inspections are critical tomaintaining pipeline health.
As themost economical way to transport gas, oil, biofuels, water resource, sewer, and
so forth, pipelines have become an indispensable part of our daily lives. However,
pipelines always suffer from aging and damages, which can cause great waste of
resource, environmental pollution, and many other incidence. For example, the leak
of petroleumpipeline causes ocean pollution and ecocatastrophe.Regular inspections
and maintenance of pipelines are essential to keep them functional.

Unfortunately, the difficulty and the cost for human inspection can be extremely
high, especially with the appearance of increasingly complicated pipelines nowadays
(see Fig. 2.1 for illustration). There are several reasons:

This chapter has been reprinted with permission from “On Optimizing Autonomous Pipeline
Inspection,” Xin Li, Member, IEEE, Wuyi Yu, Student Member, IEEE, Xiao Lin, and S. S.
Iyengar, Fellow, IEEE, IEEE Transactions on Robotics, Vol. 28, No. 1, February 2012.

S. S. Iyengar et al., Mathematical Theories of Distributed Sensor Networks, 15
DOI: 10.1007/978-1-4419-8420-3_2, © Springer Science+Business Media New York 2014
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Fig. 2.1 Complex pipeline
system

• Pipeline systems are oftenburied/hidedundergroundor intowalls.Hidingpipelines’
presence from the surrounding environment is necessary for better protection of
pipelines, as well as the elegance of the architecture.

• The structure of pipelines is usually designed long, thin, and complex, in order to
conduct long-distance transportation or circumvent-complicated terrain or limited
space of the architecture structure.

• The environment inside pipelines can be dirty and hazardous: Sewerage water or
hazardous gas can be overflowing.

These factors make direct artificial inspection oftentimes prohibitive and, there-
fore, significantly increase the costs for the maintenance of pipelines. For example,
to inspect the pipelines, people can dig holes in different pipeline sections for the
inspection; high professional competence could be necessary especially when the
environment condition is severe. Indirect methods include placing sensors outside
the pipeline and monitoring parameters such as pressure and temperature. However,
the sensibility is easily affected by environment and the material transmitting in the
pipeline. Pipeline clogs are sometimes directly penetrated with long sticks or wires,
but it can be very difficult if pipes are curved or circumvented; another common
approach is to blow out blockages using air pressure, which fails, however, if pipes
have multiple outlets or cracks. In any case, to apply repair, the suspected area for
clogging or leaking needs to be located. This step usually takes the longest time and
largest cost.

2.1.1 Pipeline Inspection by Autonomous Robots

With the development of autonomous robots and imaginary sensing technologies,
pipeline robots that are equipped with cameras and sensors become ideal candidates
to avoid tedious artificial inspection for automatic pipeline inspection and repair.
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Current robotic inspection systems (see Sect. 2.2) usually have a robot that is
equipped with a camera and sensors; the robot moves around and transmits the cap-
tured images back to a remote monitor for the operator’s inspection. The robot’s
movement and the camera direction need to be manually controlled by a skillful in-
spector. Such an interactive monitoring system provides easier and safer inspection.
However, it can still be labor intensive (costly) and time consuming. In addition,
complex pipeline environments could limit the extensive use of these remotely con-
trolled pipeline robots. The mobility of remotely controlled robots could not meet
the requirement for the inspection in complex pipeline environments, such as the
urban gas pipeline and chemical pipelines. The wired connections also limit the op-
eration range of robots. Furthermore, the thoroughness of the examination may not
be guaranteed and heavily relies on expertise of the operator.

An autonomous robot that can routinely inspect the environment and report cracks,
clogs, or deformationwill, therefore, be highly desirable. If such an inspection system
can be developed reliably and conducted routinely, it will greatly save artificial costs
and prevent the abnormal situations in important pipelines. To develop an efficient
inspection plan for robots, according to different environments, to ensure inspection
reliability (thoroughness) is related to several challenging geometric problems.

2.1.2 Optimal Autonomous Inspection by Region Guarding

Naturally, one wants to ask the following fundamental open problem for autonomous
inspection: How do we conduct the most efficient yet thorough inspection? More
specifically, given an environment to inspect, how many inspection spots are neces-
sary to visually cover the entire region? The solution directly dictates the correctness
and efficiency of an autonomous inspection system and, therefore, is critical.

Visually covering a given 3-D region is an interesting geometric problem called
gallery guarding, defined (see Sect. 2.3 for details) as follows: Given a region whose
boundary is a surface, find the smallest set of points inside the region from which all
the boundary points (i.e., the wall) are visible. This problem, having high complexity,
has been actively studied in 2-D. In general, 2-D polygonal regions, this problem
has been proved to be NP-hard. To the best of our knowledge, on 3-D regions ap-
proximated by polyhedra, which have much higher complexity, this problem is little
explored and no efficient algorithm has been reported.

In this chapter, we design a HILP algorithm to find an approximate optimal so-
lution for the guarding of a given 3-D region. Compared with the greedy and the
optimal algorithms, HILP has a good approximation to the optimal solution (for in-
stance, to guard a region in Fig. 2.3d, an optimal guarding needs 13 guards, the greedy
approach needs 18 points, while our HILP algorithm guards it with 14 points) but is
several orders of magnitude less than the direct optimization on time complexity.

Effective region guarding can greatly benefit the automatic pipeline inspection.
Compared with existing manual inspection systems, the biggest advantage of the
new inspection system built upon optimal guarding is its thorough (therefore, making
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Fig. 2.2 Autonomous
inspection based on region
guarding

the system robust) inspection using fewest (therefore, making the system efficient
and inexpensive) necessary checking spots. The proposed inspection framework is
illustrated in Fig. 2.2, and the pipeline has two steps.

1. Preprocessing Stage: Once pipeline is newly installed or when it is workingwell,
we compute its optimal guarding, e.g., a small set of points {gi }. By checking on
these spots, the entire pipeline can be visually covered. Then, a pipeline robot
only goes to these points, scans the pipe, and builds up sequential height maps
as templates. These height maps characterize the original pipeline geometry.

2. Online Stage: The robot will go into the pipeline to conduct inspection routinely.
Every time, it only needs to move to these spots {gi }, scan the depth information
of the surrounding environment, and compare these height maps with the cor-
responding templates. Abnormal geometry changes such as cracks, clogs, and
deformation can be detected and located immediately.

The main contributions of this work lie in both efficiently finding good approxi-
mate solutions of the NP-hard 3-D guarding problem and its application on robotic
inspection.

1. Optimality: We develop an efficient algorithm to find approximate solution to
3-D region guarding. The solution indicates a smallest set of spots from which
thorough inspection can be most timely and costly efficient.
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2. Autonomy: We design an automatic pipeline inspection system for autonomous
robots. Unlike other existing systems whose inspection quality heavily relies on
manual controls, in our framework, robots can inspect on these fewest guarding
points autonomously yet thoroughly.

3. Generality and Robustness: The algorithm efficacy is demonstrated in our sim-
ulated platform. It is also generally applicable on various robot systems, such as
our pipe robot prototype FAMPER [16], which is equipped with a range sensor
that provides 2.5-D range image with depth information. Furthermore, com-
bined with 2-D image reconstruction techniques, our algorithm can work well
for robots that are equipped with a conventional 2-D camera.

2.2 Background and Related Work

2.2.1 Gallery Guarding

On a geometric region M, we want to find the optimal guarding, which uses the
smallest number of points {gi } inside M so that any boundary point p ⊆ ∂M is visible
to at least one guard. Here, M is a 3-D shape whose boundary ∂M is represented
by a polygonal mesh. For a given guard gi , any point p ⊆ ∂M is visible to gi if
the line segment gi p is entirely located inside M (we consider ∂M ∀ M). Various
versions of this problem are generally called art gallery problems which are known
to be a famous problem with high complexity. Even in the 2-D case, the problem
is known to be NP-complete. “Very little is known about gallery guarding in three
dimensions” [24]. To our best knowledge, no effective approximation algorithm has
been proposed for 3-D regions that are bounded by general polygons, and this is
the first practical algorithm that works for large free-form 3-D domains (such as
complicated pipeline systems) represented by polygonal meshes.

The art gallery problem was first proposed by Klee. Guards can be restricted to
boundary vertices (p ⊆ ∂M), interior vertices (p ⊆ M), or mobile vertices. When
guards are not mobile, they are called stationary guards. If guards are restricted to the
boundary, they are called vertex guards; if there is no boundary restriction, the guards
are referred as point guards. In 2-D, Chavatal [2] and Fisk [13] both showed that a
simple polygon M ∈ R

2 needs at most ∃n/3∅ stationary guards, based onwhichAvis
and Toussaint [12] developed an O(n log n) time algorithm to position ∃n/3∅ guards
in M . When guards are mobile, we call them mobile guards. Furthermore, mobile
guards are called edge guards if they are restricted to boundary vertices. O’Rourke
[5] showed that ∃n/4∅ mobile guards are sufficient for a simple polygon M ∈ R

2.
More results are recapped in Table 2.1.

The aforementioned theoretic work discusses the conservative upper bounds for
necessary guards on various regions. Given a specific region, we are interested in
designing practical algorithm to find its optimal point guards, which depends on
topology and geometry of this region. An effective algorithm to compute the optimal
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Table 2.1 Upper bounds for gallery-guarding problem

Work M type Guard Optimal
type bound

Chvatal [5] Simple, 2D Stationary
⌊ n
3

⌋
Rourke [36, 37] Simple, 2D Mobile

⌊ n
4

⌋
Urrutia [44] Simple, 2D Edge

⌊ n
4

⌋
Kahn et al. [19]
and Rourke [36, 37] Orthogonal, 2D Stationary

⌊ n
4

⌋
Rourke [35] h holes, 2D Vertex

⌊ n+2h
3

⌋
Hoffmann et al. [13] and
Bjorling-Sachs et al. [3] h holes, 2D Point

⌊ n+h
3

⌋
Gyori et al. [24] Orthogonal, h holes, 2D Mobile

⌊ 3n+4h+4
16

⌋

guarding of a given region will benefit many geometric computing tasks. However,
computation of optimal guarding is highly challenging. Finding minimal guards has
been shown to be NP-hard for 2-D polygons with holes [1], 2-D simple polygons
[34], and even 2-D simple orthogonal polygons [27, 39], using either vertex or point
guards. Approximation algorithms have been studied in 2-D to get a close to optimal
result in polynomial time complexity. Ben-Moshe et al. [24] cover 1.5-D terrain using
point guards in O(n2) time, with the optimal factor O(1). Efrat and Har-Peled [21]
find vertex guards for 2-D simple polygonal regions and h-hole polygonal regions
in O(nc2opt log

4 n) and O(nc2opt log
4 n) expected time, with expected O(log copt)

and O(nhcopt3 log
4 n) optimal factors, respectively. Lien [10] computes guarding

for 3-D point cloud data, approximating visibility using δ-view. The algorithm is
based on a randomized greedy approach.

2.2.2 Pipeline Inspection Robots

According to the degree of autonomy, pipeline inspection robots can be classified as
follows [30].

1. No Autonomy: Robots are fully tele-operated by humans via a tether cable.While
the robot is traveling through the pipe, the pipeline condition data are collected
and sent back by the robot and then assessed by human operators.

2. Semiautonomy: Robots are partially controlled by automatic control programs
[33].

3. Full Autonomy: Robots are fully controlled by programs and perform an auto-
matic pipeline condition assessment. However, lacking effective technologies in
efficient analysis of environment hinders the automatic assessment [30].
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2.2.2.1 Manual and Semi-Autonomous Methods

There are many application inspection technologies, such as closed-circuit television
(CCTV), laser surveys, sonar surveys [4], radio frequency identification [7], and
mobile sensor [22]. The introduction of CCTV inspection methods in the 1960s
provided an inexpensive and safe option, and they, thus, have been the most popular
and widely used approaches across the industry for many years. The CCTV provides
rich videos/images information, which is collected by robots for subsequent pipeline
condition assessment. Various CCTV methods have similar principles. The robot is
mounted by a remotely controlled tractor, carries a television camera, and illuminates
the interior of the pipe. The inspector has to identify and categorize defects by the
image displayed on the monitor. When a defect is noticed, the inspector stops the
robot and assesses the condition.

Advances in optical survey techniques have been utilized in the sewer scanner and
evaluation technology (SSET) such as in [23]. Unlike the CCTV inspection system,
the SSET may not need to stop for a zooming-in defect inspection. For instance,
recent work in [45] has advanced the use of automated defect detection systems for
pipelines.

Laser-based systems and ultrasonic-based systems are also used in pipeline in-
spection (see the survey in [25]). Laser-based systems are generally implemented
in two ways: the whole-circle image method and the single-spot scanning method
[9]. The first method projects a full ring of light onto the wall in one go, while the
single-spot scanning method sends point-by-point beams in sequential. These two
methods indicate a trade-off between accuracy and inspection time. The whole-ring
image method allows faster data acquisition but has been found less accurate [46].
Ultrasonic-based systems use high-frequency sound waves to detect pipe proper-
ties such as thickness, shape, and presence/sizes of defects [32]. Laser-based and
ultrasonic-based methods can be combined to obtain higher quality data [40].

2.2.2.2 Autonomous Methods

A few full-autonomous robots have been developed for pipeline inspection. The
Kurt [28] can run in dry clean pipelines guided by maps uploaded into the robot. The
Marko [15] is designed for autonomous navigation in clean pipelines with diameter
ranges from 300 to 600 mm. The Kantaro [30] is used to navigate in pipelines with
diameter ranges from 200 to 300 mm, but only the horizontal mobility is considered.
To design autonomous pipeline inspection robots, the main challenges include their
moving ability, energy, and pipe condition assessment [41].

In this chapter, we use laser range finders to detect the depth (height) information
toward sets of sample directions. The captured 3-D range images provide easy mea-
surement of the environment. We focus on designing the algorithm and architecture
of the effective autonomous inspection system. The guarding and subsequent inspec-
tion can easily extend to various systems that are based on different data acquisition
schemes.
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2.3 3-D Gallery Guarding

The geometric abnormalities of the pipeline can be detected from the robot if the
robot can see this region and measure the distance from itself to the pipe. Suppose
the robot always checks at a set of same spots, and it has premeasured (template)
distance information on each spot toward different directions, then it can tell whether
the current pipeline is normal, i.e., preserving the same shape. These checking spots
need tobe intelligently selected so that fewest comparisons are necessary.Meanwhile,
to guarantee that the entire pipeline is visually covered, we require that these points
together can guard the entire region.

Given a point p inside the region M , suppose we represent the boundary surface
of M using a triangle mesh ∂M = T, V , where V = {v1, v2, . . . , vNV } is the vertex
set, and T = {t1, t2, . . . , tNT } is the set of triangles connecting them. We say that p
is visible to a point q on ∂M (q is not necessary a vertex; it can be a point on a triangle
from T ), if the line segment pq connecting p and q is totally inside M , namely pq
intersects ∂M only on q. We call the set of all visible points on the boundary {q},
q ⊆ ∂M the visible region S(p) of p. Then, we say that a set of points {p} can visibly
guard the entire region, if the union of their visible regions is the entire ∂M. Finding
a smallest guarding set {p} that can cover the entire region is the optimal guarding
problem that we want to solve. Our algorithm is based on the following intuitions.

1. As demonstrated in several medical visualization and virtual navigation appli-
cations (e.g., [14, 31]), medial axes (curve skeletons) usually have desirable
visibility to boundary points (referred as the “reliability” of skeletons). An ef-
fective skeleton can guide the camera navigation, ensuring nice examination
(visibly covered) of the interior of organ surfaces.

2. Hierarchical skeletons or skeletons for a progressively simplified mesh can be
effectively computed and used to reduce the size of the optimization problem,
leading to a computation of better numerical efficiency and stability against
boundary perturbations.

Many effective skeletonization algorithms (see a survey by Cornea et al. [20])
have been developed for 3-D shapes. We use the algorithm in [6] since it efficiently
generates skeletons on medial axis surfaces of the 3-D shapes. Suppose the boundary
surface ∂M of a volumetric region M is represented by a triangle mesh (also denoted
as ∂M) with n vertices, and the output skeleton has k nodes; the guarding problem
is then converted to finding a minimal-size point set G from this k points, such that
all n boundary vertices are visible to G.

2.3.1 Visibility Detection

A basic operation is to detect the visible region S(p) of a given point p. Following
the definition, for a point q ⊆ ∂M, to check its visibility to a point p ⊆ M , one
should check intersection between the line segment pq and ∂M. If the intersection is
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detected on a point q ∪ ⊆ ∂M other than q and the Euclidean distance |pq ∪| < |pq|,
then q is not visible from p. The intersection between the line segment pq and
∂M can be detected by checking the intersection between pq and each triangle face
ti ⊆ T ∀ ∂M.

We need to compute the visibility of p against all the vertices of the mesh of ∂M.
Simply enumerating every pvi to check its intersections with every triangle t ⊆ T
is time consuming: For a single interior point p, it takes O(NV · NT ) = O(N 2

V )

time to check its visibility on all boundary vertices. We develop the following sweep
algorithm to improve the efficiency to O(NT log NT ), i.e., O(NV log NV ).

We create a spherical coordinate system which is originated at p. Each vertex
vi ⊆ V is represented as pvi = (

r(vi ), θ(vi ), γ(vi )
)
, where r(vi ) ≥ 0 and this is

the case that: { −π < θ(vi ) ≤ π

−π
2 ≤ γ(vi ) ≤ π

2

For every i = 1 . . . NT , let ti denote triangle →vi,1vi,2vi,3 ⊆ T . We contract the
following notations: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θmax(ti ) = 3
max
j=1

{θ(vi, j )}

θmin(ti ) = 3
min
j=1

{θ(vi, j )}
γmax(ti ) = 3

max
j=1

{γ(vi, j )}

γmin(ti ) = 3
min
j=1

{γ(vi, j )}

The segment pvk cannot intersect with a triangle t unless they are adjacent:

{
θmin ≤ θ(vk) ≤ θmax(t)
γmin(t) ≤ γ(vk) ≤ γmax(t)

(2.1)

The angle functions θ andγ are not continuously defined on a sphere.When a triangle
t spans θ = π , we duplicate it to ensure that each θ of the original t is in interval⎤
θmin(t) − 2π, θmin(t)

)
and θ of its duplicate is in interval

⎤
θmax(t) − 2π, θmax(t)

)
,

by adding or subtracting θ by 2π . For each triangle t that spans γ = π , we detect and
duplicate it in the sameway.Using θ(vi ) as the primarykey andγ(vi ) as the secondary
key, we then sort all line segments pvi . Then, we sweep all segments following
the angle functions one by one, filtering out triangles not satisfying Condition 2.1.
Specifically, we define a counter ci on every triangle ti . Initially, ci ← 0, when the
segment pv for some v ⊆ ti is being processed, ci ← ci + 1. The following two
cases indicate that the sweep has not reached the neighborhood of the triangle ti , and
subsequently, we do not need to check its intersection with line segment pv.

{
ci = 0 ∞ (

θmin(ti ) > θ(ov)
) ≤ (γmin > γ(ov)

)
ci > 3 ∞ (

θmax(ti ) < θ(ov)
) ≤ (γmax < γ(ov)

) (2.2)
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Therefore, we maintain a list L of neighboring triangles {ti } whose counters have
ci ⊆ {1, 2, 3}. When the sweep segment hits a new triangle t j , we make c j ← 1
and add t j into L; when a counter c j = 3, after processing the current segment, we
remove t j from L .

Given a skeleton point p, for a boundary triangle mesh with NV vertices, it takes
O(NT log NT ) to compute and sort all triangles following their segment angles.
When we are sweeping a segment pvi , if the size of the active triangle list L is m,
it takes O(m) intersection-detecting operations. Therefore, the total complexity is
O(NT log NT + NV · m). The incident triangle around a vertex vi is generally very
small (i.e., m < log NT ). Therefore, the algorithm finishes visibility detection of p
in O(NT log NT ) time. On a skeleton containing k nodes, it takes O(k NT log NT )

precomputation time to compute the visible region for all nodes.

2.3.2 Greedy and Optimal Guarding

Once visibility information for all skeletal nodes is computed, we want to pick a
minimum sized point set that can cover all boundary vertices. It can now be converted
to a set-covering problem which is also NP-complete [8]: Given the universe point
set V = {vi |i = 1, . . . , NV }, and a family S of subsets S j = {s j,k} ∀ V (for every
j = 1, . . . , NS), a cover is a subfamily C ∀ S of sets whose union is V . We want
to find a cover C that uses the fewest subsets in S. Here, V corresponds to the set
of all vertices of ∂M; for each skeletal node p j , j = 1, . . . , NS , S j contains all the
boundary vertices visible to p j . Each C indicates a subset of skeletal nodes that can
guard the entire region. Skeletons generated using medial axis-based methods with
dense enough nodes usually ensure that S itself is a covering. This holds in all of our
experiments. However, if a coarsely sampled skeleton cannot cover the entire V , we
can easily include all those invisible vertices, i.e., their visible regions, into S.

A greedy strategy for the set covering is to iteratively pick the skeletal nodes p that
can cover the largest number of unguarded vertices in V , then remove all guarded
vertices v ⊆ S(p) from V meanwhile, and update S accordingly since the universe
becomes smaller, until V = ∧. The greedy strategy is effective, and it yields O(log n)

approximation [19] to the set-covering problem.
An optimal selection can be computed by 0–1 programming, also called integer

linear programming (ILP). For every skeleton point pi , i = 1, . . . , NS , we assign a
variable xi such that: {

1 if pi is chosen
0 otherwise

The objective function to minimize is then
⎥NS

i=1 xi , as we want to pick the fewest
necessary points. Since every vertex v ⊆ V should be covered, for each such vi ,
at least one of its visible skeletal nodes Pi = {p j |vi ⊆ S(p j )} should be picked.

Therefore, we minimize
⎥NS

i=1 xi subject to:
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xi = {0, 1} ≥
∑

p j ⊆Pi

x j ≥ 1 ⊥vi ⊆ V

This objective function can be minimized using branch-and-bound algorithms.
When the dimension is small (e.g., a few hundreds to a few thousands), we can use
the TomLab optimization package [18] to solve it efficiently.

2.3.3 Hierarchical Guarding

Computing the optimal guarding based on ILP is highly time consuming and it limits
the size of problems that we can handle: General 3-D volumetric shapes can easily
have a number of vertices (20,000–200,000) on its boundary surface, which is too
large for this optimization. On the other hand, the greedy algorithm generates the
guards in a locally optimal manner. Furthermore, the greedy strategy is not robust
against local geometric perturbations. For example, a small bump could lead to
global structural variance of the guarding points. We propose a hierarchical guarding
computation framework which is based on the progressive mesh [43], combining the
0–1 programming optimization and the adaptive greedy refinement.

We simplify the boundary mesh ∂M into several resolutions in the following form
using a progressive mesh [43].

∂Mi = {V i , Fi } ⊥i = 0, . . . , m

In the coarsest level i = m, ILP optimization is performed on all elements v ⊆ ∂Mm ,
and we get the coarsest level guard set Gi = {gi

k}. Then, we progress to i = m − 1
level ∂Mm−1 = (V m−1, Fm−1).

1. Map existing guards Gi+1 = {gk} to the closest finer level skeletal nodes Gi =
{g∪

k} to locally adjust them to maximize their visible region S(g∪
k).

2. Remove the least significant guards
{
g
∣∣ |S(g)| < εNV

}
from Gi .

3. Remove covered vertices {v|v ⊆ S(g) ≥ g ⊆ Gi }.
Then, we solve ILP again on uncovered boundary vertices. With details increase

in finer levels, new guards will be inserted into Gi . Before applying the ILP op-
timization, we further conduct four reduction operations (see in the following) on
uncovered regions to reduce the dimensions of the optimization. This progressive
refinement ends when all boundary vertices are covered on the finest level i = 0.

Reduction: The dimension of the ILP optimization on each level can be reduced
using the following reduction rules, without changing the size of the optimal solution.
Suppose we store the visibility information in an incidence matrix A. If the skeletal
node pi can see the vertex v j , then we let ai j = 1, otherwise (pi cannot see v j ), let
ai j = 0. Originally, the dimension of A is NS × NV . The following four rules are
applied to reduce it.
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1. If column j has only one nonzero element at row i , we must take pi in order
to see v j . Therefore, add pi into G and remove column j . In addition, for all
nonzero element aik , remove column k (we take pi : all points that it sees are
guaranteed to be covered, and thus now can be removed).

2. If for the couple of rows i1 and i2, the following proposition holds:

ai1 j = 1 ∞ ai2 j = 1 ⊥ j,

then pi2 sees all vertices that pi1 can see; and we can remove the entire row i1.
3. If for the couple of columns j1 and j2, the following proposition holds:

ai j1 = 1 ∞ ai j2 = 1 ⊥i,

then guarding v j1 guarantees the guarding of v j2 , and we can remove the entire
column j2.

4. If the matrix A is composed of several blocks, we partition A into several small
matrices {Ak}.

In step 4, after removing vertices that have been seen by the adjusted guards from a
coarser level, remaining boundary vertices could be partitioned to several connected
components far away from each other, which can be optimized separately and more
efficiently.

In our experiments, we simplify the boundarymesh to the coarsest levelwith 5,000
vertices for the first round ILP optimization. Generally, we make each iteration to
add in another 10,000 vertices. When the size of constraints is around 5,000 and
the size of variables (skeletal nodes) is around 1,000, the optimization usually takes
10–50 s to solve.

Our hierarchical scheme together with the reduction processing has the following
important advantages over both the pure greedy strategy and the pure 0–1 optimiza-
tion.

1. It is much faster than the nonlinear ILP optimization. The current framework
can handle large-size geometric shapes.

2. With similar performance, it usually provides better guarding solutions than a
pure greedy strategy.

3. It is hierarchical and therefore is robust and stable against geometric noise. In
our HILP framework, refined local details tend to not change the global structure
of the previously optimized guarding graph in coarser levels.

Figure 2.3 shows some examples of HILP guarding on sculpture data, and Fig. 2.1
shows the run-time statistics. We use these irregular sculpture data to demonstrate
the significant efficacy of our algorithm since our prototype pipelines on hand are
relatively simple. To thoroughly cover and inspect complex pipeline system such as
in Fig. 2.1, using HILP, we can find its guarding point set efficiently.
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Fig. 2.3 Guarding statues using HILP. From left to right guarding on a few sculpture datasets. a
Michelangelo’s David. b Greek. c Cyberware Male. d Female. Small nodes are the guards, where
green nodes are the latest computed guards on the finest level

2.4 Autonomous Pipeline Inspection

Our guarding algorithm computes the set of necessary checking spots for thorough
inspection. The inspection robot only needs to go to each guarding point, construct
the current height maps (see Sect. 4.4.1), and compare them with the precalculated
templates for abnormal identifications. When geometric changes are detected, the
system refines the identification of the abnormal areas (see Sect. 4.4.2) and extracts
the boundary of the damaged region (see Sect. 4.4.3).

2.4.1 Height Maps Acquisition

The geometry of the pipeline environment is measured using laser range finders in
our system. The distance from the robot to a point on the wall is captured and stored.
A range image stores a set of depth information in a rectangle view-port along a
direction, and we call it a height map.

The abnormal detection is based on the comparison between precalculated height
map templates and the current height maps. We compare height maps on each in-
spection point. Suppose the laser scanning has two parameters, the scan range angle
α and the sampling rate s · α decide the field of view of the scanner, and s indicates
the sampling resolution inside the field of view. As Fig. 2.4a shows, given a shooting
direction, the scanner takes a snapshot of the environment, which produces a height
map on a planar square region R, uniformly sampled with s × s points P . Since

http://dx.doi.org/10.1007/978-1-4419-8420-3_4
http://dx.doi.org/10.1007/978-1-4419-8420-3_4
http://dx.doi.org/10.1007/978-1-4419-8420-3_4
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Fig. 2.4 a Shot of the laser scanning. The sample grid density is decided by the sample rate and the
scan range of the laser scanner. Every sample point has a planar coordinate (u, v) corresponding to
the actual intersection point in 3-D space. The laser scanner rotates to a direction and does a snapshot
to project the surface to a planar with a range of 2 tan α. The red point indicates the intersection
result of p in the 3-D region, and the corresponding height data h(p) are stored for detection.
Scanning at every sample point, the height map is constructed. b Motion plan of the scanner. The
scanner rotates to cover the whole spherical area. The red arrowheads are the rotated direction of
γ, and the green is one step of rotation increment of θ

one snapshot can only cover an area within the current view angle, a planed motion
sequence is necessary for the laser scanner to rotate and take pictures to cover the
entire 360∩. The laser scanner with the scan range α and the sample rate s is placed
at a guarding position o which points toward an initial direction L; the height map
acquisition processes can be simply conducted as follows.

1. Using the local spherical coordinate system which is defined at o, given a direc-
tion L(r, γ, θ), L takes a snapshot and gets a depth image P(α, s) (see Fig. 2.4a).
Depth is defined on every point on the image p ⊆ P , whose 2-D coordinate can
be defined as (u, v), for every (u, v) ⊆ [0, 1]2.

2. 3-D position of each boundary point v can be derived from the depth on its
projection p(u, v). The transformation can be represented by a rotation matrix.

3. After taking one depth image, the laser scanner rotates for another height map.
The motion plan of the scanner follows the rotation sequences: first fix γ, rotate
θ for N times, increase πα iteratively, and then increase γ to perform the θ

rotation again until the whole spherical region is covered. The rotation path is
shown in Fig. 2.4b.

4. Finally, we get the set of height maps {HL} collected in the aforementioned steps
and save them together with the starting projection direction on every guarding
point.

In practice, during height map acquisition, the geometry of regions far away
from a guard can be visible but captured less accurately because of the precision
of the range finder or the sampling resolution. To tackle this issue, before guarding
computation, we add a simple parameter dp for each skeleton node p: If a boundary
point q ⊆ ∂M is visible to p but far away, i.e., distance |pq| > dp, we consider
q to be invisible. In other words, a guard only sees points in a bounded distance.
The whole optimization algorithm can be applied exactly in the same way. In long
and thin environments, more guards may be necessary, but each guarding region will
have less long antenna, and the inspection accuracy will be improved. A heuristic
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Fig. 2.5 Height maps comparison. a Template height map. b Height map of an abnormal region.
The missing region indicates a hole

setting for dp can be dp = α · d0
p, where α is a constant parameter, and d0

p is the
distance from p to its nearest visible boundary point.

2.4.2 Abnormal Boundary Detection

After all height maps are obtained, on every guarding point, we compare the precol-
lected template height maps {HL} (see Fig. 2.5a) and the current height maps {H ∪

L}
(see Fig. 2.5b). If the height information changes; i.e., |h(u, v) − h∪(u, v)| > ε,
we consider the region around (u, v) as a defective region and report (u, v) as
a abnormal point. ε is a similarity threshold. In practice, the acquired depth data
could have geometric and topological noise. By adjusting ε, the system can tolerate
small deviations because of certain acquisition noise. On the other hand, a local effi-
cient data preprocessing step in topological denoise or geometric completion/fairing
[17, 38] could also be helpful in cleaning environment noise.

Compared with reporting simply a set of sampled abnormal points, an accurate
estimation of the bad region’s shape is desirable.When a defective region is detected,
in order to “zoom in” to see the shape of the defective region, we need to examine
more sampling points by performing denser scanning around this region. During
the initial scanning of the original pipeline, we may not do very dense sampling;
therefore, with the same number of depth acquisition, we can capture a larger region
in every shot for better efficiency. Regions among sampling points are approximated
using bilinear interpolation h(E):

h(E) ≈ h(u1, v1)

(u2 − u1)(v2 − v1)
(u2 − u)(v2 − v) + h(u2, v1)

(u2 − u1)(v2 − v1)
(u − u1)(v2 − v)

+ h(u1, v2)

(u2 − u1)(v2 − v1)
(u2 − u)(v − v1) + h(u2, v2)

(u2 − u1)(v2 − v1)
(u − u1)(v − v1)
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Fig. 2.6 Quadtree splitting and boundary extraction. a Polygon colored in blue indicates a defective
region on the pipe wall. The green nodes are normal points, and the black ones indicate the abnormal
height data; the boundary extracted from the quadtree without quadtree splitting, colored in red, is
coarse. b Quadtree cells split. c Extracted boundary (red curves) after quadtree refinement

To report a refined boundary shape of an abnormal region, we use a quadtree
[29] subdivision scheme: Near such a region, boundary cells split accordingly to
get the refined geometry. For each new point (u∪, v∪), we detect its height h∪(u∪, v∪)
and compare it with the interpolated height on the template height map h(u∪, vv∪).
Figure 2.5 shows an example. The max level of the subdivision is determined by the
resolution of the laser range finder. The boundary of holes, clogs, and deformations
can be detected/refined using this paradigm, since these geometric changes always
lead to changed height maps.

2.4.3 Boundary Extraction

When the refinement is done, the boundary of the abnormal region can be extracted
and reported. We conservatively link the normal points on boundary cell to form the
boundary: Starting from a normal point on a boundary cell, linking the normal points
in the cell along the edge, getting a neighboring boundary cell, and repeating this
process until all boundary cells are traversed.

Figure 2.6 illustrates the process of quadtree splitting and extraction. In a snapshot,
the grids are the cells, and the green polygon indicates a hole on the pipeline wall.
Normal points are colored in green, while abnormal points are colored in black. In the
coarsest resolution, we get the red boundary shown in (a). We can get finer boundary
shape (b) and the extracted boundary is depicted in red in (c).
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Fig. 2.7 Prototype robot
FAMPER. a, b Robot and its
design. c, d Robot inspecting
a pipe

2.5 Result of Simulated Experiments

Our guarding-driven pipe inspection system can be implemented on the prototype
pipeline robot [16], which can be used for the inspection of pipelines. This robot
consists of four wall-press caterpillars that are operated by two dc motors each
to provide steering capability to go through 45∩, 90∩ elbows, T-branches, and Y-
branches and make a superior performance in all types of complex networks of
pipelines (see Fig. 2.7). The robot is also equippedwith a powerful computing system
that makes it extendable to various sensing and actuating devices, such as in our
experimental system, for localization and laser scanning. The height information
can be obtained using a multislit laser range scanner [11], which has the size of
about 110 m × 90 mm and includes a laser projector and a charge-coupled device
(CCD) camera (the laser projector in [11] is StockerYale Mini-715L, which projects
15 slits, with an adjacent slit angle 2.3∩; the CCD camera is Point Grey Research
Flea2, which measures 330 points). The height information can also be obtained by
laser scanners in [15, 30] or other range cameras (e.g., [26, 42]).

The rotation of the sensor can be controlled by a small mechanical platform
installed in the rear part of the robot; therefore, the scan can be conducted radially
inside the pipe toward different directions. Several effective sensing platforms with
similar mechanism have been developed [30].

We develop a simulated platform for testing our algorithm (see Fig. 2.8), which
simulates the process of inspection. We apply our procedure on this platform using
several complicated 3-D virtual pipelines. The simulated results are convincing and
show the effective inspection on pipeline geometry.
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Fig. 2.8 Simulation environment. The 3-D model of the FAMPHER robot in the pipeline; red
points denote guarding points

Fig. 2.9 Inspection process on a simulated pipeline. a Upper simulated model. Lower regions
guarded by different guard points encoded in different colors. b Damaged pipe with some holes. c
Damages are detected, whose boundaries are extracted and shown in green

2.5.1 Hole Detection

If a hole appears on the pipeline, it can be identified online when the robot reaches the
guarding point that covers this region and matches the captured range depth images
with the stored templates. We simulate this on pipeline meshes M by randomly
generating some missing regions. An experiment is shown in Fig. 2.9. A pipeline
model and the necessary guards are shown in (a), where regions covered by each
guard are rendered in a specific color for the visualization purpose. Any given region
of the pipeline is covered by at least one guard and, therefore, is colorized. The height
maps can then be generated as templates, measuring the “correct” distance from each
guarding site to the pipe wall toward specific directions. This simulates range images
obtained by a laser scanner. Now, we simulate the appearance of defected regions
on the pipeline by generating some missing regions as shown in (b). When the robot
checks height maps on guarding points, these holes can be immediately detected and
illustrated in (c).

Another example is shown in Fig. 2.10; this pipe is guarded by 12 points (a). In
addition, the damaged region of the pipe is big and with complex topology (b). In
this case, the robot should check from more than one guarding points in order to
detect the entire shape of such a big hole. The entire defect geometry is extracted by
composing boundaries detected from different guarding sites. The merged boundary
loop is illustrated in (c).
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Fig. 2.10 Guarding and inspection process on a more complicated pipeline. a Upper simulated
model. Lower guarding points and guarded regions rendered in different colors, respectively. b
Damaged pipe with big and concave holes. c Large holes are detected/extracted from more than
one guarding points; the whole big boundary is composed of several extracted subboundaries and
identified separately from different guarding points, as shown in green

Fig. 2.11 Inspection process on a deformed pipeline. a Upper simulated model. Lower regions
guarded by different guard points encoded in different colors. b Deformed pipe. c Deformations
are detected, whose regions are extracted (and refined) and shown in red

2.5.2 Deformation Detection

Small deformation such as bending and erosion can also be detected in our system
as shown in Fig. 2.11. The detected deformed region is colored in red.

2.5.3 Clogging Detection

Clogging also changes the scanned geometry of the pipeline and can be detected.
Figure 2.12 shows an example. The clogged solid (green) is detected, and its boundary
geometry is reconstructed using height maps as illustrated in dark red. The robot will
report the clogs when it is detected. In this example, the reconstruction merges the
geometry of the blocking stuff from two aspects (from two guarding points) using
their corresponding height maps.
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Fig. 2.12 Left pipeline blocked by a solid (in green). Middle clog detection on the pipeline. Height
maps constructed and merged by detected views from different guarding points. Green regions
indicate normal status,while the red regions indicate the abnormal height information corresponding
to the clog geometry. Right inspection result, which is the reconstructed surface colored in dark
red, describes the location and geometry of the blocking region

2.6 Summary and Outlook

We have proposed an efficient 3-D guarding algorithm that can cover a given com-
plicated environment using as few as possible points. Finding an efficient solution to
the fundamental problem of how to inspect on fewest points yet thoroughly covering
the entire environment can greatly benefit the autonomous design of inspection and
exploration robots. We have developed a simulation system of pipeline inspection
and conducted experiments to evaluate the efficacy of our system. With our optimal
guarding, abnormal geometric changes of the pipeline such as holes, clogs, and de-
formation can be thoroughly detected online. The remaining challenging issue for
the current system is the dynamic environment mapping. The initial geometry of the
pipeline system needs to be scanned to a digital model before the region-guarding
computation. In addition, after the guarding spots are computed, the pipeline wall
needs to be marked so that the robot can localize itself to know whether it is on the
spot. The development of a system that a robot without this prior knowledge can
do simultaneous 3-D mapping (i.e., reconstructing the map of the environment) and
localization will be highly desirable. In the near future, we will study these local-
ization and dynamic environment mapping problems by exploring effective partial
matching of range images.
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Chapter 3
Expectation–Maximization for Acoustic Source
Localization

Wideband source localization using acoustic sensor networks has been drawing a
lot of research interest recently. The maximum likelihood (ML) is the predominant
objective which leads to a variety of source localization approaches. However, the ro-
bust and efficient optimization algorithms are still being pursuit by researchers since
different aspects about the effectiveness of such algorithms have to be addressed
on different circumstances. In this chapter, we would like to combat the source lo-
calization based on the realistic assumption where the sources are corrupted by the
noises with nonuniform variances. We focus on the two popular source localiza-
tion methods for solving this problem, namely the stepwise-concentrated maximum-
likelihood (SC-ML) and approximately concentratedmaximum-likelihood (AC-ML)
algorithms. We explore the respective limitations of these two methods and de-
sign a new expectation–maximization (EM) algorithm. Furthermore, we provide
the Cramer–Rao lower bound (CRLB) for all these three methods. Through Monte
Carlo simulations, we demonstrate that our proposed EM algorithm outperforms the
SC-ML and AC-ML methods in terms of the localization accuracy, and the root-
mean-square (RMS) error of our EM algorithm is closer to the derived CRLB than
both SC-ML and AC-ML methods.

An erratum to this chapter is available at 10.1007/978-1-4419-8420-3_7

©2010 IEEE.Reprinted,with permission, from “Robust Expectation–MaximizationAlgorithm
for Multiple Wideband Acoustic Source Localization in the Presence of Nonuniform Noise
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3.1 Introduction

Localization using low-cost and low-complexity sensor arrays has been the active
research area in the fields of radar, sonar, geophysics, wireless systems, and acoustic
tracking for years [1, 2]. Recently, the wideband source localization in the near field
has drawn a lot of research interest in the signal processing applications [3–6]. Ex-
tensive studies for the wideband source localization can be found in [3, 4]. Among
them, the ML approach in [3] has been regarded as the optimal and robust scheme
for coherent source signals. However, when the multiple sources are present, the ML
approach facilitates a nonlinear optimization problem, which is impractical espe-
cially for the energy-constrained sensor networks. In addition, many of the existing
ML estimators are based on the unrealistic spatially white noise (SWN) assumption
across different sensors [5–7], where the noise process at each sensor is assumed
to be spatially uncorrelated white Gaussian with an identical variance. It is shown
that under this assumption, the ML estimates of the unknown parameters (source
waveforms/spectra and noise variance) can be expressed as the respective functions
of the source locations, and the number of independent parameters to be estimated
is greatly reduced. Thus, this assumption, although unrealistic, substantially reduces
the search space and usually leads to more efficient localization algorithms. Hence,
various wideband ML source location estimators were proposed in [3].

However, this SWN assumption is unrealistic in many applications. In several
practical applications [7], the sensors are sparsely placed so that the sensor noise
processes are spatially uncorrelated. However, the noise variance of each sensor
can still be quite different due to either the variation of the manufacturing process,
the imperfection of the sensor array calibration or the “unquiet” background. As a
result, the spatial noise covariance matrix (across the sensors) can be modeled as
a diagonal matrix where the diagonal elements in general are not identical. Note
that this noise model is definitely not a special case of the ARMA model as was
explained in [8]. Furthermore, the source location estimators derived from the SWN
assumption would often not provide satisfactory results in the real environment since
the algorithms derived from the SWN assumption blindly treat all sensors equally
in the estimated likelihood. Motivated by the arguments above, in [7], two DOA
calculation algorithms, namely SC-ML estimator and AC-ML algorithm, have been
recently proposed for the multiple wideband sources. Although both SC-ML and
AC-ML methods can be extended for the source localization, the robustness issue
still remain challenging in this research area. This is the primary reason why we
would like to dedicate this chapter to address these two issues by designing a new
source localization scheme.

Felder and Weinstein proposed the generic expectation–maximization (EM) al-
gorithm in [9] to estimate the parameters associated with the superimposed signals
and employed it for the array signal processing in [10]. EM-based techniques have
also been applied for the multisensor signal enhancement [11–13]. In addition, EM-
based narrowband source localization algorithms were proposed by [14, 15]. In this
chapter, we modify the EM algorithm to tackle with the general multiple source
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localization problem when the wideband sources are present in the near field, which
evolves from the simple DOA estimation method for the narrowband sources in the
far field in [16]. If the wideband sources are considered, the source signal signature or
characteristics are unavailable at the sensor array, and the method in [14–16] cannot
be applied according to [17, 18]. Therefore, similar to [17, 18], we use the discrete
Fourier transform (DFT) filter bank to decompose the wideband signals collected
by the sensors and then estimate the complete set of parameters involving source
waveforms (or spectra) and source locations. Note that our previous works in [17,
18] can only deal with the source localization problem under the unrealistic SWN
assumption. In this chapter, we reformulate the source localization problem for the
realistic SNWN assumption and design a new EM-based localization algorithm for
multiple wideband sources, and it can be shown that our proposed algorithm is much
more computationally efficient and robust than the existing SC-ML and AC-ML
methods (we have extended the original SC-ML and AC-ML methods in [7] which
could only solve the DOA problem in [8] to combat the source localization problem).

The rest of this chapter is organized as follows. The problem formulation and
the signal model are introduced in Sect. 3.2. The ML source location estimators for
both SWN and SNWN models are introduced in Sect. 3.3. The novel EM algorithm
for wideband source localization in the near field under the SNWN assumption is
derived and discussed in Sect. 3.4. In addition, the Cramer–Rao lower bound (CRLB)
derivation will be manifested in Sect. 3.5. Monte Carlo simulation results for demon-
strating our proposed new EMmethod and illustrating our newly derived robustness
analysis will be provided in Sect. 3.6. Conclusion will be drawn in Sect. 3.7.

Nomenclatures: The sets of all real and complex numbers are denoted byR andC,
respectively. A vector is denoted by A and a matrix is denoted by ˜A. The statistical
expectation operation is expressed as E[ ]. Besides, ˜AT , ˜A⊆, ˜AH , det(˜A), ˜A†, and
trace(˜A) stand for the transpose, conjugate, Hermitian adjoint, determinant, pseudo-
inverse, and trace of the matrix, respectively. In addition, ∀ stands for the Hadamard
matrix product operator, and || || stands for the Euclidean norm.

3.2 Signal Model

According to [3], we consider a randomly distributed array of P sensors to collect the
data from M sources. Since the sources are assumed to be in the near field, the signal
gains are different across the sensors. Thus, the signal collected by the th sensor at
a discrete time instant n is given by:

x p(n) =
M
∑

m=1

a(m)
p s(m)

(

n − t (m)
p

)

+ wp(n) (3.1)

for n = 0, . . . , L − 1, p = 1 . . . , P, m = 1, . . . , M , where a(m)
p is the gain of the

mth source signal arriving at the pth sensor; s(m)(n) denotes the mth source signal
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waveform; t (m)
p is the propagation delay (in data samples) incurred from the mth

source to the pth sensor; wp(n) represents the zero mean independently identically
distributed (i.i.d.) noise process. Several crucial parameters are specified as follows:

• t (m)
p represents the propagation delay from the mth source to the pth sensor:

t (m)
p

def=
Fs

(

||rs
(m) − rp||

)

v

• rs
(m) ∈ R

2×1 denotes the mth source location,
• rp ∈ R

2×1 represents the pth sensor location,
• v denotes the source signal propagation speed in meters/second,
• Fs represents the sampling frequency.

Taking the N -point DFT of both sides in Eq. 3.1 and reserving a half of them due
to the symmetry property, we have:

X(k) = ˜D(k)S(k) + U (k) ∃k = 0, . . . ,
N

2
− 1 (3.2)

where

X(k)
def= [X1(k), . . . , X P (k)]T ∈ C

P×1 (3.3)

and X p(k) is the kth DFT point of x p(n), for every p = 1, . . . , P . The symbols for
the right-hand side of Eq. 3.2 are clarified as follows:

˜D(k)
def=
[

d(1)(k), . . . , d(M)(k)
]

∈ C
P×M (3.4)

consists of M steering vectors, each given by:

d(m)(k)
def=
[

d(m)
1 (k), . . . , d(m)

P (k)
]T ∈ C

P×1 ∃m = 1, . . . , M (3.5)

where

d(m)
p (k)

def= a(m)
p e− j2πkt(m)

p
N (3.6)

and j
def= ∅−1. Note that:

S(k)
def=
[

S(1)(k), . . . , S(M)(k)
]T ∈ C

M×1 (3.7)

consists of M individual source signal spectra, each given by S(m)(k) where S(m)(k)

is the kth DFT point of s(m)(n), for every m = 1, . . . , M .
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In reality, the source signal spectral vector S(k) is unknown and deterministic.
The noise spectral vector is U (k) ∈ C

P×1 is a complex-valued zero-mean spatially
uncorrelated Gaussian process with the following covariance matrix:

˜Q
def= E

[

U (k)U (k)H
]

=

⎡

⎢

⎢

⎢

⎣

q1 0 · · · 0
0 q2 · · · 0
...

...
. . .

...

0 0 · · · qP

⎤

⎥

⎥

⎥

⎦

∈ C
P×P ∃k (3.8)

In general, qps (for every p = 1, . . . , P) are not necessarily identical to each other
under the SNWN assumption. Hence, we need to deal with the realistic source lo-
calization problem in the presence of the nonuniform noise variances thereupon.

3.3 Maximum Likelihood for Source Localization

Prior to the establishment of the log-likelihood for the source localization in the
presence of the nonuniform noise variances as stated by Eq. 3.8, we start from the
conventional ML formulation for the identical noise variance across the sensors.

3.3.1 Conventional Maximum Likelihood for Source Localization
in the Presence of Identical Noise Variance (SWN)

According to the signal model given by Eq. 3.2 together with the noise variance
constraint as ˜Q = σ 2

˜I , where σ 2 is the noise variance and ˜I is a P × P identity
matrix, the ML source localization formulation can be facilitated as [1, 3, 7]. We
highlight the relevant pivotal formula here.

Let rs,˜S, and σ 2 represent all the unknown parameters in Eq. 3.2 necessary to be
estimated, where:

rs
def=
[

rs
(1)T

, . . . , rs
(m)T

, . . . , rs
(M)T

]T ∈ R
2M×1 (3.9)

and

˜S
def=
[

S(0)T , . . . , S

(

N

2
− 1

)T
]T

∈ C
( N M

2 )×1 (3.10)

In addition, we denote the residual vector as:

g(k)
def= [g1(k), . . . , gP (k)]T = X(k) − ˜D(k)S(k) ∈ C

P×1 (3.11)
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Thus, the likelihood function is given by

f (rs,˜S, σ 2)
def= 1

π
P N
2 σ P N

exp

⎧

⎪

⎨

⎪

⎩

− 1

σ 2

N
2 −1
∑

k=0

g(k)2

⎫

⎪

⎬

⎪

⎭

(3.12)

Taking the logarithm of Eq. 3.12 and neglecting all the constant terms, we can
derive the log-likelihood function L(rs,˜S, σ 2) as follows:

L(rs,˜S, σ 2) = − P N

2
log(σ 2) − 1

σ 2

N
2 −1
∑

k=0

||g(k)||2 (3.13)

and the corresponding ML estimates are:

(

r̂s,
̂

˜S,̂σ 2
)

= arg max
(rs ,˜S,σ 2)

{

L(rs,˜S, σ 2)
}

= arg min
(rs ,˜S,σ 2)

⎛

⎜

⎝

N
2 −1
∑

k=0

||g(k)||2
⎞

⎟

⎠

= arg min
(rs ,˜S,σ 2)

⎛

⎜

⎝

N
2 −1
∑

k=0

[

X(k) − ˜D(k)S(k)
]H × [X(k) − ˜D(k)S(k)

]

⎞

⎟

⎠

(3.14)

Thus, according to Eq. 3.14, we can write:

̂S = ˜D(k)†X(k) =
(

˜D(k)H
˜D(k)

)−1
˜D(k)H X(k) (3.15)

and

r̂s = argmin
rs

N
2 −1
∑

k=0

||X(k) − ˜D(k)†X(k)||2 (3.16)

3.3.2 Maximum Likelihood for Source Localization
in the Presence of Nonuniform Noise Variances (SNWN)

In this subsection, we will introduce the nonuniform ML source localization formu-
lation according to the recent literature [7, 8] for a more realistic SNWNmodel. Let
rs,˜S, and q be the parameters to be estimated for this case, where:
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q
def= [q1, . . . , qP ]

T ∈ R
P×1

is the vector consisting of the diagonal elements in given by Eq. 3.8. The likelihood
function of (rs,˜S, q) can be expressed as:

f
(

rs,˜S, q
) def= 1

(

π P det(˜Q)
)

N
2

× exp

⎧

⎪

⎨

⎪

⎩

−
N
2 −1
∑

k=0

g(k)H
˜Q−1g(k)

⎫

⎪

⎬

⎪

⎭

(3.17)

Then, we have the following log-likelihood function L(rs,˜S, q) by taking the
logarithm of Eq. 3.17 and neglecting all the constant terms

L(rs,˜S, q) = − N

2

P
∑

p=1

log(qp) −
N
2 −1
∑

k=0

||ġ(k)||2 (3.18)

where:

ġ(k)
def= ˜Q− 1

2 g(k) = Ẋ(k) − ˜Ḋ(k)S(k) (3.19)

Ẋ(k)
def= ˜Q− 1

2 X(k) (3.20)

˜Ḋ(k)
def= ˜Q− 1

2 ˜D(k) (3.21)

Consequently, we may obtain the ML estimates for (rs,˜S, q) as:

(

r̂s,
̂

˜S, q̂
)

= arg max
(rs ,˜S,q)

L(rs,˜S, q) (3.22)

Similar to the derivation in Sect. 3.1, we can obtain the estimate of the pth element
in q as:

q̂p = 2

N

N
2 −1
∑

k=0

|gp(k)|2 = 2

N
||gp||2 (3.23)

where gp(k) denotes the pth element of the residual vector g(k) and

gp
def=
[

gp(0), . . . , gp

(

N

2
− 1

)]T

∈ C
N
2 ×1 (3.24)

Substituting Eqs. 3.24 and 3.23 into Eq. 3.18, we can convert the log-likelihood
function to a new version in terms of rs and˜S and then get the ML estimators for rs

and ˜S given by:
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(

r̂s,
̂

˜S
)

= arg max
(rs ,˜S)

⎛

⎝−
P
∑

p=1

log ||gp||2
⎞

⎠ (3.25)

and
̂S(k) = ˜Ḋ(k)†˜Ẋ(k) (3.26)

Substituting Eqs. 3.25 and 3.26, we can obtain the ML estimates of rs as:

(

r̂s
) = argmax

(rs )

⎛

⎝−
P
∑

p=1

log ||gp||2
⎞

⎠ (3.27)

where gp is defined by Eq. 3.24, and

g(k) = X(k) − ˜D(k)˜Ḋ(k)†˜Ẋ(k) (3.28)

3.4 EM Widepand Source Localization Algorithm for Distinct
Noise Variances

3.4.1 Individual Likelihood Formulation for Source Localization

The EM algorithm is a well-known iterative algorithm for the ML estimation. The
complicated nonlinear optimization problem in Eqs. 3.22 and 3.27 can be sim-
plified using the EM procedure incorporated with the augmented (complete) data
corresponding to the individual incident source signals. First, we denote the re-
ceived signal spectrum from the mth source to the pth sensor as X (m)

p (k) (for every
p = 1 . . . P, m = 1 . . . M , and k = 0 . . . N − 1). Then, we define the augmented
data as the following set:

{

X (m)(k)
∣

∣m = 1 . . . M ∪ k = 0 . . . N − 1
}

where:

X (m)(k)
def=
[

X (m)
1 (k), . . . , X (m)

P (k)
]T ∈ C

P×1

In addition, the relationship between the observed (incomplete) data X(k) and the
unobserved latent (complete) data is established as:

X(k) =
M
∑

m=1

X (m)(k) (3.29)
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According to Eqs. 3.2, 3.5, 3.7, and 3.29, for a single source signal (the mth source),
we have:

X (m)(k)
def= d(m)(k)S(m)(k) + U (m)(k) ∃k = 0 . . .

N

2
− 1 (3.30)

where U (m)(k) ∈ C
P×1 is the complex-valued zero-mean uncorrelated Gaussian

noise in the sole presence of the mth source.
According to Eqs. 3.22, 3.27, and 3.30, we have:

(

r̂s
(m),̂S

(m)
, q̂(m)

)

= arg max
(

rs
(m),S(m),q(m)

)

L
(

rs
(m), S(m), q(m)

)

∃m = 1 . . . M

(3.31)
where:

S(m) def=
[

S(m)(0), . . . , S(m)(
N

2
− 1)

]T

∈ C
N
2 ×1

and

q(m) def=
[

q(m)
1 , . . . , q(m)

P

]T ∈ C
P×1

is the vector consisting of the diagonal elements in ˜Q(m) which is defined in the
following form:

˜Q(m) def= E

[

U m(k)
(

U (m)(k)
)H
]

∈ C
P×P

Now, let ḋ
(m)

(k) denote the following expression:

ḋ
(m)

(k)
def=
(

˜Q(m)
) 1

2
d(m)(k) (3.32)

and

Ẋ
(m)

(k)
def=
(

˜Q(m)
) 1

2
X (m)(k) (3.33)

According to Eq. 3.24, we denote the pth element of the particular residual vector
g(m)(k) as g(m)

p (k) when only source m is present, where:

g(m)(k) = X (m)(k) − ḋ
(m)

(k)ḋ
(m)

(k)† Ẋ
(m)

(k) (3.34)



46 3 Expectation–Maximization for Acoustic Source Localization

Similar to the derivation in Sect. 3.2, Eq. 3.31 yields:

q̂p
(m) = 2

N

N
2 −1
∑

k=0

∣

∣

[

g(m)
p (k)

]

∣

∣

2 = 2

N

∣

∣

∣

∣gp
(m)
∣

∣

∣

∣

2 (3.35)

where:

gp
(m) def=

[

g(m)
p (0), . . . , g(m)

p

(

N

2
− 1

)]T

∈ C
N
2 ×1 (3.36)

Consequently, the ML estimates r̂s
(m) is given by

(

r̂s
(m)
)

= arg max
(rs

(m))

⎛

⎝−
P
∑

p=1

log
(

||gp
(m)||2

)

⎞

⎠ (3.37)

According to Eq. 3.37, the source localization problem can be formulated as the
independent maximization subproblems with respect to the individual likelihood
functions.

3.4.2 New Expectation–Maximization Algorithm for Source
Localization

In contrast to other existing algorithms for the source localization using the sensor
signals in the presence of noises with identical variance [1, 3, 17, 18], we present a
new EM algorithm here to solve the realistic source localization problem for sensor
signals in the presence of noises with different variances, which has been tackled by
[7] recently. Nevertheless, our proposed EM algorithm can be demonstrated to be
more robust than the method proposed by [7].

The details of our proposed EM algorithm are introduced as follows (since our
proposed algorithm can be decoupled across different sources in each iteration, we
only need to address the steps for the source m and it can be run for other sources as
well in parallel).

Initialization: Randomly initialize [̂rs
(m)][0]. Set the initial values for the entries

in [̂q(m)][0] and [̂q][0] as:
[

q̂(m)
][0] = 1

M
× [11 . . . 1]T ∈ R

P×1 (3.38)

[

q̂
][0] = [11 . . . 1]T ∈ R

P×1 (3.39)

respectively.
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Input (Given) Parameters at Iteration i : [̂q(m)][i−1], [̂rs
(m)][i−1].

Output Variables at Iteration i : [̂q(m)][i], [̂rs
(m)][i].

Given the input parameters, the EM algorithm for the i th iteration is stated next.
Expectation Step (E-Step): Calculate

̂

˜Q
(m) = diag

{

[

q̂(m)
][i−1]}

(3.40)

where diag{} converts the vector inside the associated braces into a diagonal matrix
containing the vector’s entries as the diagonal elements in the same order. Compute

˜Q =
M
∑

m=1

̂

˜Q
(m)

(3.41)

and

α =

[

trace

(

̂

˜Q
(m)
)]2

[

trace
(

̂

˜Q
)]2 (3.42)

Calculate

t (m)
p = Fs

∣

∣

∣

∣

∣

∣

[

r̂s
(m)
][i−1] − rp

∣

∣

∣

∣

∣

∣

v
(3.43)

According to Eqs. 3.4–3.6, 3.43, and a(m)
p = 1, ∃p, based on [7], determine

d(m)(k) and ˜D(k). Next, follow Eqs. 3.20, 3.21, and 3.26 to determine ̂S(k) and
̂S(m)(k), k = 0, . . . , N

2 − 1, where ̂S(m)(k) is the mth element of̂S(k). Then, deter-
mine

̂X
(m) = E

[

̂X
(m)

(k)

∣

∣

∣X(k)
]

= d(m)(k)̂S(m)(k) + α
(

X(k) − ˜D(k)̂S(k)
) ∃k = 0, . . . ,

N

2
− 1 (3.44)

Maximization Step (M-Step): Now, let

t (m)
p = Fs

∣

∣

∣

∣

∣

∣rs
(m) − rp

∣

∣

∣

∣

∣

∣

v
(3.45)

ḋ
(m)

(k) =
(

̂

˜Q
(m)
)(− 1

2 )

d(m)(k) ∃k = 0, . . . ,
N

2
− 1 (3.46)
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which also involves the variable coordinate rs
(m). According to the result from

Eq. 3.44, calculate

̂Ẋ
(m)

(k) =
(

̂

˜Q
(m)
)(− 1

2 )

̂X
(m)

(k) ∃k = 0, . . . ,
N

2
− 1 (3.47)

Then, construct

ĝ(m)(k) = ̂X
(m)

(k) − d(m)(k)d̂
(m)

(k)†̂Ẋ
(m)

(k) ∃k = 0, . . . ,
N

2
− 1 (3.48)

which involves the variable coordinate rs
(m) as well. Denote the pth element of

ĝ(m)(k) as ĝ(m)
p . Facilitate

ĝp
(m) =

[

ĝ(m)
p (0), . . . , ĝ(m)

p

(

N

2
− 1

)]T

(3.49)

which involves the variable coordinate rs
(m) ∈ R

2×1. Carry out

[

r̂s
(m)
][i] = argmin

rs
(m)

P
∑

p=1

log
(

∣

∣

∣

∣ĝp
(m)
∣

∣

∣

∣

2
)

(3.50)

Besides, calculate t (m)
p using Eq. 3.43. Let a(m)

p = 1, ∃p. Enumerate the parameters
given by Eqs. 3.5, 3.6, 3.32, 3.44, 3.47–3.49 in this sequential order. Then, calculate

[

q̂(m)
p

][i] = 2

N

∣

∣

∣

∣ĝp
(m)
∣

∣

∣

∣

2 ∃p = 1, . . . P (3.51)

Thus, obtain
[

q̂(m)
][i] =

[

[

q̂(m)
1

][i]
, . . . ,

[

q̂(m)
P

][i]]T

∈ R
P×1 (3.52)

The above algorithm facilitates a recursive solution to multiple wideband source
localization.

3.5 Robustness Analysis for Source Localization Algorithms

3.5.1 Localization Algorithms

CRLB is often used to characterize the robustness of the estimation methods. In this
section, by extending the CRLB presented in [7] for the simple DOA estimation
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problem, we derive the CRLB for the source localization problem to benchmark our
EM method and the SC-ML/AC-ML schemes as

1

CRLB
= 2R

⎧

⎪

⎨

⎪

⎩

N
2 −1
∑

k=0

{[

˜Ġ(k)H
˜P⊥̃

D(k)
˜Ġ(k)

]

∀ ˜Rs(k)T
}

⎫

⎪

⎬

⎪

⎭

(3.53)

where
˜Ĝ(k)

def= ˜Q− 1
2 ˜G(k) (3.54)

˜G(k)
def=
[

∂

∂rs
(1)

d(1)(k), . . . ,
∂

∂rs
(M)

d(M)(k)

]

(3.55)

˜P⊥̃
D(k)

def= ˜I − ˜Ḋ(k)˜Ḋ(k)† (3.56)

˜Rs(k)
def= S(k)S(k)H (3.57)

Note that ˜Q, d(m)(k), and S(k) are given by Eqs. 3.4, 3.5, 3.7, 3.8, 3.21. We can
rewrite 3.55 as

˜G(k) = ∂˜D(k)

∂rs
T

= − j Fsk
2π

Nv
× ˜F (3.58)

where

Note that rs
(m) def= [χ(m)

s , y(m)
s ]T and rp

def= [χp, yp]T .

3.6 Simulation

The comparison is made among our newly proposed EM-based multiple wideband
source localization scheme, the SC-ML method and the AC-ML method here. The
sampling frequency is 100 kHz. The propagation speed is 345 meters/s. The data are
simulated for a circularly shaped array of five sensors using the recorded acoustic
data acquired from [1] as shown in Fig. 3.1 (squares denote the sensor locations
and circles denote the actual source locations). The sample size is L = 200 and
the DFT size is N = 256. Throughout the simulation, the minimization in our EM
method characterized by (50) is performed by Nelder–Mead direct search [3], while
the optimization steps in both SC-ML and AC-ML methods are performed using the
AM algorithm, which would lead to better performance than Nelder–Mead direct
search in these two schemes [3, 7]. Moreover, the additive noises in all experiments
are randomly generated by a Gaussian process using the computer, and the signal-
to-noise ratio (SNR) is defined according to [7, 8].
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Fig. 3.1 The localization
of two wideband (acoustic)
sources in the near field
corrupted by the noises with
nonuniform variances (SNR
is 10 dB). The initial location
estimates and the ultimate
location estimates resulted
from the EM algorithm (three
iterations are taken) are also
demonstrated

3.6.1 A Localization Layout Example

Then we investigate the performance of the EM algorithm for estimating the two
source locations in the presence of sensor noises with nonuniform variances and
compare with the SC-ML and AC-ML algorithms. The noise processes across dif-
ferent sensors have the covariance matrix as ˜Q = σ 2diag{2, 3, 1, 5, 9}.One hundred
Monte Carlo experiments are carried out using our EM method with randomly ini-
tialized source locations for a particular signal-to-noise ratio (SNR = 10 dB). The
localization result from a certain experiment is depicted in Fig. 3.1, where the ulti-
mate locations are achieved after three iterations of EM algorithm. We default the
number of EM iterations as three in all Monte Carlo experiments.

3.6.2 Root-Mean-Square Errors and Computational Complexities
for Source Localization

For each SNR value ranging from 0 to 40 dB, we fix the initial source location
estimates as depicted in Fig. 3.1 and carry out a hundred Monte Carlo experiments
to obtain the average localization accuracy in terms of the RMS error in meters.
The three corresponding RMS error curves to the three aforementioned schemes
are depicted in Fig. 3.2a. Then, we vary the initial location estimates around the
circular areaswith a one-meter diameter with respect to the two initial source location
estimates depicted in Fig. 3.1 and redo 100 Monte Carlo experiments similar to the
setup generating Fig. 3.2a. The results are depicted in Fig. 3.2b. It is obvious that
the accuracies of all three methods degrade from Fig. 3.2a and b since the initial
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Fig. 3.2 Average RMS localization errors versus SNR and 18 different initial source location
estimates. a Average RMS localization errors versus SNR for the sources corrupted by the noises
with nonuniform variances. The initial location estimates are plotted in Fig. 3.1. b Average RMS
localization errors versus SNR for the sources corrupted by the noises with nonuniform variances.
The initial source location estimates here are randomly chosen within the areas which are one
meter around the initial location estimates used in Fig. 3.1. c The 18 different initial source location
estimates. d Average RMS localization errors versus SNR for the sources corrupted by the noises
with nonuniform variances. The initial source location estimates are plotted in Fig. 3.2c

conditions change. To further study this effect, we spread the initial location estimates
over a broader area as depicted in Fig. 3.2c and redo 100 Monte Carlo experiments
similar to Fig. 3.2b. The average RMS error curves are demonstrated in Fig. 3.2d.
Next, we would like to investigate the performances of the three aforementioned
localization methods for the sensor noises with identical variances (SWN). Thus, we
choose the sensor noise covariance matrix as ˜Q = σ 2diag{1, 1, 1, 1, 1} now. With
this new noise covariance matrix, we redo the Monte Carlo experiments similar to
those generating Fig. 3.2a, b, and d. The corresponding results are plotted in Fig. 3.3a,
b, and c, respectively. According to these two sets of experiments, our proposed EM
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Fig. 3.3 Average RMS localization errors versus SNR. a Average RMS localization errors versus
SNR for the sources corrupted by the noises with identical variances. The initial source location
estimates are plotted in Fig. 3.1. b Average RMS localization errors versus SNR for the sources
corrupted by the noises with identical variances. The initial source location estimates are randomly
drawn from the areas which are one meter around the initial source location estimates in Fig. 3.1. c
Average RMS localization errors versus SNR for the sources corrupted by the noises with identical
variances. The initial source location estimates are plotted in Fig. 3.2c. d CRLBs and simulated
RMS localization errors (actual variances) versus different SNR values for the three schemes in
comparison

algorithm greatly outperforms both SC-ML and AC-ML methods in all conditions.
In addition, the accuracies of all three methods degrade due to the changes in the
initial conditions for the SWN scenario as well. Besides, the performances of all
these three schemes for the SWN case are not much different from those for the
SNWN case, since the SWN model is a particular case of the SNWN model.
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3.6.3 Robustness Analysis of Source Localization

We fix the initial source location estimates as those generating Fig. 3.1 and carry
out a hundred Monte Carlo experiments again. The corresponding CRLBs for our
EM method, the SC-ML (or AC-ML) method, are depicted in Fig. 3.3d. We also
depict the average RMS error curves in the same figure. According to Fig. 3.3d, we
discover that the RMS errors resulted from our EM algorithm are much closer to
the CRLBs than the SC-ML and AC-ML methods. Note that all the three source
localization schemes in comparison are quite sensitive to the initial condition. This
still remains as a very challenging problem for the wideband source localization.
Note that our experimental results illustrated in this chapter can be generalized for
other conditions. It means that if we change the source locations and use all the three
algorithms subject to the same initial conditions, the experimental results under every
different condition specified in Sects. 3.6.1–3.6.3 will be very similar to Figs. 3.2
and 3.3.

3.7 Summary and Outlook

In this chapter, we propose a novel EM-based multiple wideband source localization
scheme in the presence of nonuniform noise variances. For our EM method and the
conventional SC-ML and AC-MLmethods, the performance is rather sensitive to the
initial source location estimates. Our proposed EMalgorithm can lead to an outstand-
ing localization performance given a reasonably good initial condition. Moreover,
our proposed EM algorithm can always outperform the conventional SC-ML and
AC-ML methods when the initial source location estimates are randomly chosen.
The Monte Carlo simulation results demonstrate the superiority of our proposed EM
method. To provide the robustness analysis for the source localization algorithms, we
present the CRLB associated with these three schemes. The CRLB analysis demon-
strates that our proposed EM algorithm is much closer to the achievable minimum
variance than the two other methods in all SNR conditions. In addition, according
to our complexity analysis, the complexity measure for our proposed algorithm is of
O(M2) which is much less than those for the SC-ML and AC-ML methods [both
with a complexity measure of O(M3).
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Coverage Problems



Chapter 4
Coordinate-Free Coverage in Sensor
Networks via Homology

We introduce tools from computational homology to verify coverage in an idealized
sensor network. Our methods are unique in that, while they are coordinate-free and
assume no localization or orientation capabilities for the nodes, there are also no
probabilistic assumptions. The key ingredient is the theory of homology from alge-
braic topology. We demonstrate the robustness of these tools by adapting them to a
variety of settings, including static planar coverage, 3-D barrier coverage, and time-
dependent sweeping coverage. We also give results on hole repair, error tolerance,
optimal coverage, and variable radii. An overview of implementation is given.

4.1 Introduction

Sensor networks are an increasingly essential and pervasive feature of modern com-
putation and automation [15].Within this large topic of active and rapidly developing
research, coverage problems are common. Such problems, involving gaps or holes
in sensor networks, appear in a variety of settings relevant to robotics and networks:
environmental sensing, communication and broadcasting, robot beacon navigation,
surveillance, security, and warfare are common application domains. A specific ex-
ample is as follows. Given a collection of nodes X in a bounded domain D of the
plane, assume that each node can sense, broadcast to, or otherwise cover a region of
fixed coverage radius about the node. The most basic form of coverage problem is
the simple query: given the nodes, does the collection of coverage disks at X cover
the domain D?

We provide a sufficiency criterion for coverage. We do not answer the problem of
how the nodes should be placed in order to maximize coverage—nodes are assumed
to be distributed a priori, yet not according to some fixed protocol. In particular,
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there are no assumptions about random distributions or densities. The coverage cri-
terion we introduce is both computable and, at this time, centralized. We do not
here demonstrate how to reduce the homological criteria of this chapter to a distrib-
uted computation.

4.1.1 Preliminary Assumptions

We assume a complete absence of localization capabilities. Nodes can determine
neither distance nor direction. Only connectivity data between nodes are used. The
only strong assumption we make is on the fence nodes setup along the boundary of
the domain. This strong degree of control along the boundary is not strictly required
(see Sect. 4.6 and also [11]), but it simplifies the statements and proofs of theorems
dramatically.

Assumption A1 Nodes X broadcast their unique ID numbers. Each node can
detect the identity of any node within broadcast radius rb.

Assumption A2 Nodes have radially symmetric covering domains of cover radius
rc ⊆ rb∀

3
.

Assumption A3 Nodes X lie in a compact connected domain D ∈ R
2 whose

boundary ∂D is connected and piecewise-linear with vertices
marked fence nodes X f .

Assumption A4 Each fence node v ∃ X f knows the identities of its neighbors on
∂D and these neighbors both lie within distance rb of v.

To summarize, the sensor data for each node consists of a list of node ID numbers
within signal detection range, as well as a binary flag denoting whether or not it is a
marked fence node.

4.1.2 Results

We claim that, surprisingly, such coarse coordinate-free data are sufficient to rigor-
ously verify coverage in many instances. One constructs the communication graph
whose vertices are the nodes of the network and whose edges represent signal detec-
tion connectivity (at radius rb). From this graph, we build the Rips complex R: the
largest simplicial complexwith the correspondinggraph as its one-dimensional skele-
ton. By Assumption A4, the boundary ∂D can be represented as a one-dimensional
fence cycle F ∈ R, which is canonically identified with ∂D.

Our results are all based on a certain algebraic-topological invariant of these sim-
plicial complexes—homology. The following is the principal criterion for coverage
we derive in this chapter:

http://dx.doi.org/10.1007/978-1-4419-8420-3_4
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Theorem 4.1 The union of the radius rc disks contains D if there is a nontrivial
element of the relative homology H2(R,F) whose boundary is non-vanishing.

See Theorem3.3 for details. The casual reader is advised to think of this homology
H2(R,F) as a vector space which is computed from the network according to some
algorithm. The criterion of the Theorem 4.1 is that, first, this vector space has di-
mension greater than zero, and second, one can find a “good” basis element.

In Sects. 4.4–4.11, we provide several extensions of this result. These include the
following:

1. Criteria for performing “hole repair” in systems for which the coverage criterion
fails;

2. Criteria for localized coverage in an unbounded network resulting from querying
a cycle in the communication graph;

3. Criteria for coverage in domains with multiple boundary components;
4. A homological approach to identifying redundant nodes in a cover;
5. Coverage criteria for systems with varying communication and coverage radii;
6. Coverage criteria for systems with communication errors and faulty nodes;
7. Barrier coverage for 3-D systems in a tunnel-like domain;
8. Pursuit-evasion criteria for time-dependent systems.

Comments on implementation and simulations appear in Sect. 4.12, followed by
a discussion.

4.1.3 Related Work

There is a large literature on the subject of static or “blanket” coverage; see, e.g.,
[4, 17, 29] and references therein. In addition, there are variants on these problems
involving “barrier” coverage to separate regions. Dynamic or “sweeping” coverage
[9] is a common and challenging task with applications ranging from security to
housekeeping.

There are two primary approaches to static coverage problems in the literature.
The first uses computational geometry tools applied to exact node coordinates. This
typically involves computational geometry [23] and Delaunay triangulations of the
domain [27, 29, 38]. Such approaches are very rigid with regard to inputs: one
must know exact node coordinates and one must know the geometry of the domain
precisely to determine the Delaunay complex.

To alleviate the former requirement, many authors have turned to probabilistic
tools. For example, in [25], the author assumes a randomly and uniformly distributed
collection of nodes in a domain with a fixed geometry and proves expected area
coverage. Other approaches [22, 26, 28, 37] give probabilistic or percolation results
about coverage and network integrity for randomly distributed nodes. The drawback
of these methods is the need for a uniform distribution of nodes.

http://dx.doi.org/10.1007/978-1-4419-8420-3_4
http://dx.doi.org/10.1007/978-1-4419-8420-3_4
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More recently, the robotics community has explored how networked sensors and
robots can interact and augment each other: see, e.g., [3, 5, 8, 15] and references
therein. There are several new approaches to networks without localization that come
from researchers in ad hoc wireless networks that are not unrelated to coverage
questions. One example is the routing algorithm of [34], which generally works in
practice but is a heuristic method involving heat-flow relaxation. The papers [6, 18,
31, 35] give methods for localizing an entire network if localization of a certain
portion is known. More recent work of Fekete et al. [16] grows and merges cycles
in a distributed manner to “fill up” a sufficiently well-sampled network to deter-
mine boundaries in a coordinate-free network. This is one example of the work in
computational geometry concerning unit disk graphs.

Themathematical toolswe introduce for coverage problems—homology theory—
date roughly from the 1930s. The use of homology as an effective tool in scientific
computation is more recent: see, e.g., the textbook of [24] and its references. Ho-
mology has recently been used is several applied contexts, from point cloud shape
representation and high-dimensional data analysis [10, 39], vision [1], applied dif-
ferential equations [24, 30], and hybrid controls [2].

4.2 The Rips Complex

Given a collection of nodesX in a domain, wewish to determine the global properties
of U , the union of coverage domains centered at these nodes. However, we are
constrained to use only communication connectivity data between nodes. Instead
of restricting attention to the graph of pairwise-connectivity data, we complete it to
a higher-dimensional complex. This type of simplicial complex was introduced by
Vietoris in the early history of homology theory [36] and has more recently been
reinterpreted by Rips [20] and used extensively in geometric group theory.

Definition 4.1 Given a set of points X = {xα} in a metric space and a fixed ε > 0,
the Rips complex ofX ,Rε(X ), is the abstract simplicial complexwhose k-simplices
correspond to unordered (k + 1)-tuples of points in X , which are pairwise within
distance ε of each other.

Our goal is to compare the topology of the Rips complex R = Rrb (X ) to the
union of covering disks U = Urc (X ). The cover U is necessarily a subset of R2;
the Rips complex, in contrast, may have any dimension, depending on clustering
of nodes. It is best to visualize R as a high-dimensional space that “floats” above
the Euclidean plane: cf. Fig. 4.1. This chapter asserts that topological features of R
suffice to conclude geometric properties of U .

The following lemma demonstrates that the choice of bound for rc in A2 is the
appropriate one.
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Fig. 4.1 A collection of sensor nodes generates a cover in the workspace (bottom). The Rips
complex of the network is an abstract simplicial complex that has no localization or coordinate data
(top). In the example illustrated, the Rips complex encodes the communication network as one-
closed 3-simplex, eleven-closed 2-simplices, and seven-closed 1-simplices connected as shown.
The “holes” in this Rips complex reflect the holes in the sensor cover, below

Lemma 4.1 The convex hull of any collection of nodes in D which form a simplex
of R lies within U .

Proof Any collection of circular disks that meet at a common point x necessarily
covers the convex hull of x and the centers of the disks. So, it suffices to show that
the balls of radius rc intersect. It also suffices to prove this for a 2-simplex of R
thanks to Helly’s theorem [14], which implies that a collection of k ⊆ 4 convex sets
in R

2 has a nonempty common intersection provided only that the same is true for
each subset of size 3.

Therefore, consider a triple of points {xi }31 which span a triangle with side lengths
at most rb. We must show that the three disks of radius rc centered on {xi }31 meet at
a common point. If the triangle is obtuse (or right-angled), then the midpoint of the
longest side is common to all three disks; hence, rc ⊆ rb/2 suffices. If the triangle
is acute, then the largest angle, say θ1 at vertex x1, satisfies π/3 ∅ θ1 ∅ π/2 and so
sin(θ1) ⊆ ∀

3/2. We can compute the circumradius R of the triangle as:

R = ||x2 − x3||
2 sin(θ1)

and hence, we deduce R ∅ rb/
∀
3 ∅ rc. Thus, in this case, the three disks meet at

the circumcenter. ∪�
Remark 4.1 The ratio rc ⊆ rb/

∀
3 is optimal: consider an equilateral triangle of side

length rb.

Unfortunately, the radius-rb Rips complex of a set of nodes inR2 does not always
capture the topologyof the union of radius-rc balls centered on these nodes. Figure4.2
gives examples for which the Rips complex fails to capture the topology of the cover.
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Fig. 4.2 Left The Rips complex has the property that all 2-simplices determine triangles in the
domain which lie within the radius rc cover. However, the Rips complex does not capture the
topology of the cover. A contractible union of rc balls can have Rips complex with nontrivial
homology in dimension one (center in which R is a quadrilateral), two (right in which R is the
boundary of a solid octahedron), or higher

4.3 A Homological Criterion for Coverage

We use the homology of R relative to F to obtain a coverage criterion.
The intuition behind the coverage criterion is very straightforward. Based on

the communication graph alone, it is difficult to “see” potential holes in coverage.
However, upon completing the graph to the Rips complexR, large holes in coverage
would seem to be present in the abstract complex: see Fig. 4.3. One might guess
that showing there are no such holes in R implies coverage. This condition would
be translated into algebraic-topological terms as H1(R) = 0, or, that any cycle in
the communication graph can be realized as the boundary of a surface built from
2-simplices of R, each of which indicates a coverage region thanks to Lemma 4.1.

We use a slightly different criterion than H1(R) = 0: one which is more robust
to extensions and which yields stronger information about the actual cover. The
fence cycle F is canonically identified with the boundary ∂D. If this cycle is null-
homologous—that is, if [F] = 0 in H1(R)—then the 2-chain that bounds F gives
specific information about the cover. Intuitively, this 2-chain has the appearance of
“filling in”Dwith triangles composed of projected 2-simplices fromR, as in Fig. 4.4.
When translated into the language of algebraic topology, such a 2-chain is a relative
2-D homology class, a certain type of generator in H2(R,F).

The following simple algebraic lemmas complete the setup.

Lemma 4.2 Any nonzero 1-cycle ζ ∃ Z1(F) defines a nonzero element of H1(∂D).

Proof By the definition of homology, H1(F) = Z1(F)/B1(F). However, B1(F) =
∂(C2(F)) = 0, since C2(F) = 0 in the simplicial category; hence Z1(F) =
H1(F) = H1(∂D). ∪�
Lemma 4.3 A cycle ζ ∃ Z1(F) is nonzero if and only if it has a nonzero coefficient
at every fence edge.
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Fig. 4.3 In a sensor network with a sufficiently large hole in coverage (left), the communication
graph (center) has a cycle that cannot be “filled in” by triangles. The filled in Rips complex (right)
“sees” this hole, even as an abstract complex devoid of sensor node location data

Fig. 4.4 The coverage criterion is an algebraic-topological formulation of the intuition of “filling
in” the fence cycle F of the communication graph (left) with 2-simplices of the Rips complex R
(center) so as to triangulate the domain D (right)

Proof If ζ is a cycle, then the coefficient of ζ at any pair of adjacent edges is the
same up to a sign, because ∂ζ has coefficient zero at their common vertex. Since the
boundary is connected, ζ has the same coefficient at every edge of F up to a sign.
The lemma follows immediately. ∪�

The following theorem is our principal coverage criterion.

Theorem 4.2 For a set of nodes X in a domain D ∈ R
2 satisfying Assumptions

A1–A4, the sensor cover Uc contains D if there exists [α] ∃ H2(R,F) such that
∂α 	= 0.

For readers who struggle with the homological formalism, the example to keep
in mind is that of a generator [α] ∃ H2(R,F) where α triangulates the domain D
as in Fig. 4.4 (right).

We note (by Lemma 4.3) that the condition ∂α 	= 0 can easily be evaluated by
picking a single fence edge and testing whether the coefficient of ∂α on that edge is
nonzero.

Proof Weconsider the simplicial realizationmapσ:R →← R
2 which sends vertices of

the abstract complexR to the corresponding node points ofX ∈ D and which sends
a k-simplex ofR to the (potentially singular) k-simplex given by the convex hull of



64 4 Coordinate-Free Coverage in Sensor Networks via Homology

the vertices implicated. Via Assumption A4, σ takes the pair (R,F) to (R2, ∂D);
we therefore construct the following diagram from the long exact sequences:

H2(R,F)
δ∞−← H1(F)

≤ σ∞ ≤ σ∞
H2(R

2, ∂D)
δ∞−← H1(∂D)

(4.1)

Here, δ∞ acts on a class [α] ∃ H2(R,F) by taking the boundary: δ∞[α] = [∂α] ∃
H1(F). It follows from the naturality of the long exact sequence that the diagram
of Relation 4.1 is commutative: δ∞σ∞ = σ∞δ∞. The homology class σ∞δ∞[α] is the
winding number of ∂α about ∂D.

By assumption, ∂α 	= 0; hence, byway of Lemma 4.2, we observe thatσ∞δ∞[α] =
σ∞[∂α] 	= 0. By commutativity of Eq. 4.1, δ∞σ∞[α] 	= 0, and thus δ∞[α] 	= 0.

Assume that U does not contain D and choose p ∃ D − U . Since, by Lemma
4.1, every point in σ(R) lies within U , we have that σ:(R,F) →← (R2, ∂D) factors
through the pair (R2 − p, ∂D). However, H2(R

2 − p, ∂D) = 0, as the following
simple computation shows. Let A = R

2 − p and B be a small ball about p, so that
A ∧ B is an open annulus homotopic to S1. Let A≥ = ∂D and B ≥ = ⊥. Using the
relative Mayer–Vietoris sequence, we have

· · · ← H2(S1)
φ∞−← H2(R

2 − p, ∂D) ∩ 0
ψ∞−← H2(R

2, ∂D)
∂∞−← H1(S1)

φ∞−← · · ·
(4.2)

Since (R2, ∂D) deformation retracts to the pair D, ∂D fixing D, we have that:

H2(R
2, ∂D) ≈= H2(D, ∂D) ≈= H2(D/∂D) ≈= H2(S2) ≈= R (4.3)

Since p ∃ D, the homomorphism ∂∞ takes the generator of H2(R
2, ∂D) to that of

H1(S1). Equation 4.2 therefore simplifies to:

· · · ← 0 ← H2(R
2 − p, ∂D) ← R

≈=−← R ← · · · (4.4)

By exactness, H2(R
2 − p, ∂D) = 0 and thus σ∞[α] = 0: contradiction. ∪�

Remark 4.2 This is not a sharp criterion. It is clearly possible to have the criterion
always fail for injudicious choice of rc. For example, if rc is much larger than the
bound in Assumption A3, then there will be many instances of coverage without a
homological forcing. This being said, we note that even if one chooses the minimal
acceptable bounds from Assumption A3, it is still possible to arrange the points to
coverD−C without the homological criterion detecting this, as illustrated in Fig. 4.5.
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Fig. 4.5 Examples of two covers. The homological criterion holds for one (left) but not for the
other (center), because of a 1-cycle inR (right). Note the fragility of the cover (center) within the
1-cycle: a small perturbation of the nodes creates a hole

4.4 Generators for Redundant Covers

Theorem 4.2 guarantees that the covering disks in fact cover the desired area. For
reasons of power conservation, one would like to knowwhich nodes could be “turned
off” without impinging upon the coverage integrity. This is an important problem
with a large literature, see, e.g., [22, 26]. A practical approach to this problem is
implicit in homological methods.

Corollary 4.1 If a homology class in H2(R,F) satisfies the criterion of Theorem
4.2, then the restriction of U to those nodes which make up the representative α
suffice to cover D, for any choice of α in the homology class.

Proof LetUα denote the restriction ofU to the nodes implicated by the representative
α. Assume that Uα does not contain D and choose p ∃ D − Uα. Lemma 4.1
implies that σ(R) ∈ Uα. Thus, σ:(R,F) →← (R2, ∂D) again factors through the
pair (R2 − p, ∂D), which has vanishing homology in dimension two. ∪�

The independence of the choice of representative in the homology class is ex-
tremely important. If one chooses a “minimal” generator α—in the sense that α
minimizes the number of 0-simplices within [α]—then Corollary 4.1 yields a small
subset of nodes which is guaranteed to cover the domain. Existing software packages
for computing homology classes can “shrink” generators (though without rigor in
terms of being truly minimal); hence, this is an implementable strategy. In Sect. 4.12,
we give an example.

4.5 Hole Repair

Since the result of Theorem 4.2 is merely a criterion, one wishes to implement a
strategy for guaranteeing coverage when the criterion fails.We present an elementary
means for doing so via homology, the idea being to compute “minimal” generators
in H1(R) so as detect holes. We consider a sensor network in which all nodes are

http://dx.doi.org/10.1007/978-1-4419-8420-3_4
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initially in a “power saving” mode of low coverage radius rc with the ability to
increase the coverage radii of certain nodes. The following result is most useful in
this setting, where the homological criterion fails, but just barely.

Theorem 4.3 Consider a set of nodes X satisfying Assumptions A1–A4. Let ∂ =
{γi }K

1 be a basis of K generators in H1(R) and let Ni = ||γi || for each i, where || · ||
denotes length of the generator in terms of the number of nodes implicated. Let U ≥
denote the set obtained from the collection U by enlarging all balls based at nodes
in γi to balls of radius

r ≥
c(i) = rb

2
csc

π

Ni
(4.5)

Then, D ∈ U .≥

Thus, for example, any Rips complex that has one or more “holes” of size four [as
in Fig. 4.3 (right)], then the coverage region is guaranteed to containD if we require
rc ⊆ rb

∀
2 for the implicated nodes defining where the hole is.

Proof The quantity r ≥
c(i) represents the minimal radius needed to cover a regular

Ni -gon. We claim that this is the limiting case.
Consider the image L1 = σ(γi ) of the loop γi in D. This is a (not necessarily

embedded) loop inD.A point x ∃ D is enclosed byLi if [Li ] is nonzero in H1(R
2−

x) ≈= Z (this class is the winding number of the loop about x). We demonstrate that
covering each node of γi with a ball of radius r ≥

c(i) covers any such x . For such
an x, it follows that one or more of the Ni edges of L subtends an angle at x of at
least 2π/Ni ; for otherwise there would exist rays originating at x which miss σ(γi )

entirely, making Li contractible in R
2 − x and the winding number zero. Let ab be

such an edge. Taking cosines this inequality becomes:

cos
2π

Ni
⊆ |xa|2 + |xb|2 − |ab|2

2|xa||xb| ⊆ 1 − r2b
2|xa||xb| (4.6)

where we use the AM-GM inequality and the fact that |ab| ∅ rb for the latter
inequality. Since cos(2π/Ni ) = 1 − 2 sin2(π/Ni ), we can rearrange to obtain
|xa||xb| ∅ (

r ≥
c(i)

)2
. Thus, x must lie within distance r ≥

c(i) of the nearer of the
two nodes a, b, as required.

We now create a modified complexR≥ obtained fromR in the following manner.
For each i, sew in an abstract 2-D disk along the loop γi . (If one wishes to remain
in the simplicial category, one can triangulate the disk.) Next, extend the map σ to a
continuous map σ≥:R≥ →← R

2.

The long exact sequence yields a commutative diagram as in Eq.4.1:

H2(R≥,F)
δ∞−← H1(F)

i∞−← H1(R≥)
≤ σ≥∞ ≤ σ≥∞ ≤ σ≥∞

H2(R
2, ∂D)

δ∞−← H1(∂D)
i∞−← H1(R

2)

(4.7)
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Because we have filled in all the generators of H1(R),we have that H1(R≥) = 0 and
δ∞:H2(R≥,F) →← H1(F) is onto. Exactness implies that there exists a generator [α]
of H2(R≥) with ∂α = F .

Assume by way of contradiction that there exists a point p ∃ D − U ≥. If [Li ] 	=
0 ∃ H1(R

2− p) for any i, then p ∃ U ≥ by the argument above. Therefore, assume that
these homology classes vanish for all i. Since the set {γi } forms a basis for H1(R),

there exists a 2-chain ζ in C2(R) such that ∂ζ = F − ∑
i ciγi for some constants

ci . Applying σ to these 1-chains yields the equation ∂σ(ζ) = ∂D − ∑
i ciLi . This

descends to an equation in H1(R
2 − p), since p is assumed to be not in U ≥ and

σ(ζ) ∈ U ∈ U ≥ by Lemma 4.1. We know that [∂D] 	= 0 ∃ H1(R
2 − p) since

p ∃ D. By assumption that all the winding numbers of Li about p vanish, we have
that [∂σ(ζ)] 	= 0 ∃ H1(R

2 − p). However, ζ ∃ C2(R) and is an algebraic sum of 2-
simplices inR.At least one such2-simplex ς of ζ must therefore satisfy sigma(∂ς) 	=
0 ∃ H1(R

2 − p), implying that p ∃ sigma(ζ) ∈ U ∈ U ≥. Contradiction.
It follows from this argument that, if one has the hardware constraint of a fixed

coverage radius rc which is larger that the bound rb/
∀
3, then one can get a better cov-

erage criterion, as follows. Let N be the largest integer forwhich rc ∅ 2rb/ csc(π/N ).

Then, build a version of the Rips complex for the network which has all loops in the
network of length less than or equal to N filled in by abstract 2-cells. Coverage is
guaranteed if the resulting cell complex has a relative cycle in H2 with non-vanishing
boundary. ∪�

4.6 Networks Without Boundaries

Among the conditions on the sensor networks to which these results apply, Assump-
tions A1–A4 on the boundary are the least “natural” for a realistic network. In many
contexts (real and hypothetical), networks are of large enough extent that bound-
ary phenomena are ignorable. The homological criterion of Theorem4.2 adapts to
networks without boundaries in a number of possible ways: we outline the simplest
such extension here.

Consider a cycle γ in the communication graph. One approach is to interrogate
the network coverage with respect to this cycle: is the area bounded by this cycles
projection to the plane covered?Onemust be careful: if the projection ofγ to the plane
is a simple closed curve, then it has a well-defined interior whose coverage can be
queried via a homology computation. Cycles γ which have lots of self-intersection in
the projection to the plane are generally to be avoided in a coverage querying context.
Determining whether a given cycle in the network has a simple closed image is not
trivial. The following simple (and well-known) criterion is efficacious.

Lemma 4.4 Let γ be a 1-cycle in R whose span, ↔γ〉—the largest sub-complex of
R generated by the nodes of γ—is precisely gamma. Then, the projection σ(γ) of γ
to the plane is a simple closed curve.
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Proof Assume that the images of two edges e1 and e2 of γ intersect in their interiors,
forming an “X” in the plane. Since the lengths of these edges are no larger than rb,

it follows that at least one segment of this “X” from e1 and one from e2 have length
no more than 1

2rb. The triangle inequality implies that two end vertices of these
segments are within rb, forming a new edge of ↔γ〉. ∪�
Corollary 4.2 For a planar network satisfying Assumptions A1 and A2, choose a
cycle γ with ↔γ〉 = γ. If H2(R, γ) has a generator [α] with ∂α 	= 0, then the entire
domain bounded by σ(γ) ∃ R

2 lies within the cover Uα.

Proof The argument of Theorem 4.2 suffices, thanks to Lemma 4.4. ∪�

4.7 Domains with Arbitrary Planar Topology

Assumption A3 restricts the topology of the domainD in two features: connectivity
ofD and connectivity of ∂D. It is not difficult to eliminate both of these requirements.
IfD is disconnected, then each connected component ofD can be treated separately.
If ∂D is disconnected, we can succeed if we have some extra information about the
connected components of ∂D.

Theorem 4.4 Consider a set of nodes X satisfying Assumptions A1–A4, with A3
modified as follows:

Assumption A3≥ Nodes X lie in a compact connected domain D ∈ R
2 whose

boundary ∂D is piecewise-linear with vertices marked fence nodes
X f . There is a partition of X f into X+

f � X−
f , representing those

on the outer and inner boundary components, respectively.

The sensor cover Uc contains D if there exists [α] ∃ H2(R,F) such that ∂α is
nonzero on the outermost boundary component.

To evaluate the condition on α, we can pick any edge on the outermost boundary
component and check whether ∂α has a nonzero coefficient at that edge (compare
Lemma 4.3).

Proof This is a modification of the proof of Theorem 4.2. To start with, we can write
the fence sub-complex as a disjoint unionF = F+ �F−, whereF+ is the outermost
fence component, and F− is the union of the inner fence components. Similarly one
can write ∂D = ∂+D � ∂−D for the domain boundary. The condition on α is then
equivalent to the assertion that δ∞[α] 	= 0, where δ∞:H2(R,F) →← H1(F ,F−) ≈=
H1(F+) is the boundary map in the long exact sequence for the triple (R,F ,F−).

This time, we have a simplicial realization map σ:(R,F ,F−) →← (R2, ∂D, ∂ −
D), which gives us the following commutative diagram:

H2(R,F)
δ∞−← H1(F ,F−) = H1(F+)

≤ σ∞ ≤ σ∞ ≤ σ∞
H2(R

2, ∂D)
δ∞−← H1(∂D, ∂−D) = H1(∂

+D)

(4.8)
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The equalities on the right of the diagram come from the excision theorem. Since
σ∞:H1(F+) →← H1∂

+D is an isomorphism, the same is true of σ∞:H1(F ,F−) →←
H1(∂D, ∂−D).

Suppose there exists [α] satisfying the criterion in the theorem, so δ∞[α] 	= 0. By
commutativity of Eq.4.1 and since the middle map σ∞ is an isomorphism, it follows
that δ∞σ∞[α] = σ∞δ∞[α] 	= 0. Now assume, for a contradiction, that there is some
point p ∃ D−U .Since it lies inD, the point p is encircled by the outermost boundary
component ∂+D but not by any of the other boundary components. Since p /∃ U ,

the composite δ∞σ∞ factors as:

H2(R,F)
σ∞−← H2(R

2 − p, ∂D)
i∞−← H2(R

2, ∂D)
δ∞−← H1(∂D, ∂−D) (4.9)

We claim that δ∞i∞:H2(R
2 − p, ∂D) →← H1(∂D, ∂−D) is the zero map, which

gives the required contradiction since it implies that δ∞σ∞[α] = 0.
In fact, δ≥∞ = δ∞i∞ is the boundary map in the long exact sequence for the triple

(R2 − p, ∂D, ∂−D). Consider the following excerpt from that sequence:

· · · ← H2(R
2 − p, ∂D)

δ≥∞−← H1(∂D, ∂−D)
j∞−← H1(R

2 − p, ∂−D) ← · · · (4.10)

By exactness, we can prove that δ≥∞ = 0 by establishing instead that j∞ is one-to-
one. This can be read off from the following commutative diagram with exact rows,
coming from the inclusion map of pairs j :(∂D, ∂−D) →← (R2 − p, ∂−D).

· · · H1(∂D)
i∞−← H1(∂D, ∂−D) · · ·

↗ ≤ i∞ ≤ j∞
H1(∂

−D)
0−← H1(R

2 − p)
k∞−← H1(R

2 − p, ∂−D) · · ·
(4.11)

The geometric content here is that the map H1(∂
−D) →← H1(R

2 − p) is zero,
since the interior boundary cycles do not enclose p, whereas the map H1(∂D) →←
H1(R

2 − p) is onto since the outer boundary cycle does encircle p. It follows that
the two maps labeled i∞ have the same kernel and are both onto. By exactness, the
map labeled k∞ is one-to-one and therefore the same is true of j∞. This is what was
required. ∪�

It is not enough to have ∂α 	= 0 as before. Consider the situation of Fig. 4.6, in
which a small interior boundary component is a loop of four edges. Then, one can
generate a relative 2-cycle consisting of the four boundary nodes along with a single
interior node which is properly situated. This, of course, does not cover the domain.

We leave it to the reader to modify the statements of theorems in the following
sections to accommodate the case of domains which for which connectivity or simple
connectivity fail.
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Fig. 4.6 An example of a small internal boundary component (left) giving rise to a fake relative
2-cycle (right) in the Rips complex

4.8 Opaque Boundaries and Communication Errors

We have not carefully specified the mechanism by which nodes communicate
presence over a distance. From Assumption A1, it follows that communication sig-
nals are picked up purely as a function of distance, permeating the boundary of the
domain if necessary. In certain physical situations, these communication signals may
not be capable of boundary penetration (e.g., if they are visually detected beacons).
One might wish to modify the assumptions with the following opaque boundary
condition: Each node can detect the identity of any node connected by a straight line
in D of length at most rb. One changes the Rips complex to include only those edges
which communicate through unobstructed signals.

This is a particular example of the more general phenomenon of having commu-
nication errors of the form where two nodes within communication distance fail to
establish a link. For the most general case, consider a system satisfying Assumptions
A1–A4 with Rips complex R. Define a Rips complex with omissions, ER, to be
any sub-complex ofR containing F (we assume perfect control of the fence nodes).
This ER may result as a random error in establishing communication links or, as
above, as a systematic failure to establish links near certain types of boundaries.

Theorem 4.5 Consider a set of nodesX in a domainD ∈ R
2 satisfying assumptions

A1–A4 with ER a Rips complex with omissions. The sensor cover Uc contains D if
there exists [α] ∃ H2(ER,F) such that ∂α 	= 0.

Proof Since ER ∈ R, we have:

H2(ER,F)
δ∞−← H1(F)

≤ σ∞ ≤ σ∞
H2(R

2, ∂D)
δ∞−← H1(∂D)

(4.12)

The remainder of the proof follows exactly as in Theorem 4.2. ∪�
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This result implies that the homological coverage criterion relies on the coarse
metric data of Assumption A1 only in the positive sense. The criterion does not use
the fact that a failure to communicate implies a lower bound on the distance between
nodes.

4.9 Variable Radii

Assumptions A1 and A2 on the radial symmetry of sensors are physically unreal-
istic: a more accurate model would incorporate asymmetry and/or variable radii, to
accommodate errors or fluctuations in signals. It is possible to apply the homologi-
cal criterion to systems with asymmetric broadcast domains using the Rips complex
with omissions of Sect. 4.8. One chooses rb to be an upper bound for the broadcast
signal distance and rc ⊆ rb/

∀
3. The communication network then establishes links

between certain nodes, but not purely as a function of distance. While this method
is applicable, there is a wastefulness in the bound on rc in terms of the maximal
broadcast distance.

We therefore consider systems whose radii rc and rb vary from node to node, as
a next step toward dealing with asymmetry in sensor networks. Consider the case
where a system of nodes X = {xi } satisfies a modified set of assumptions:

Assumption V1 Nodes X = {xi } broadcast their unique ID numbers. The identity
of each node can be detected by any node within its broadcast
radius r i

b.

Assumption V2 Nodes have radially symmetric covering domains of cover radius
r i

c ⊆ r i
b/

∀
3.

Assumption V3 Nodes X lie in a compact connected domain D ∈ R
2 whose

boundary ∂D is connected and piecewise-linear with vertices
marked fence nodes X f .

Assumption V4 Each fence node v ∃ X f knows the identities of its neighbors on
∂D and these neighbors both lie within distance r i

b of v.

Wemodify the construction of the Rips complex as follows. For any pair of nodes
xi and x j , there is an edge in R if and only if the distance between xi and x j in
D is less than or equal to the minimum of r i

b and r j
b . The full complex R is then

the maximal simplicial complex for the edge set as defined. The fence cycle F is
defined in the same way as before, with vertex set X f and an edge between each
pair of adjacent nodes along the fence. We define the variable-radius cover Uc in this
context to be the union of closed disks of radii r i

c centered at node xi .

Theorem 4.6 For a set of nodes X in a domain D ∈ R
2 satisfying the variable-

radius Assumptions V1–V4, the variable-radius cover Uc contains D if there exists
[α] ∃ H2(R,F) such that ∂α 	= 0.

http://dx.doi.org/10.1007/978-1-4419-8420-3_4
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Proof The proof of Theorem 4.2 being topological is largely independent of the
geometry of the system. The crucial geometric step is in the application of Lemma
4.1. We now verify that the variable-radius version of this lemma holds.

Consider a triple of points {x1, x2, x3}which span a triangle inRwith side lengths
l12, l13, and l23,where li j ∅ min(r i

d , r j
d ).Wemust show that the three disks of radius

r i
b centered on xi meet at a common point (and hence cover the triangle spanned by

x1, x2, x3).
Consider the continuous function:

f (x) = 3
max
i=1

fi (x) = 3
max
i=1

||x − xi ||
r i

d

Since f (x) ← ∞ as ||x || ← ∞ the function attains a global minimum, say λ =
f (x0). We must show that λ ∅ 1/

∀
3.

The minimizer x0 must lie inside the triangle x1x2x3, because any point x outside
the triangle can be perturbed so as to decrease all three distances ||x − xi || simulta-
neously. In more detail, this argument shows that x0 lies within the convex hull of
its critical vertices, defined as those vertices xi for which f (x0) = fi (x0).

There are two cases. If x0 has two critical vertices xi , x j , then x0 lies on the edge

xi x j and λ = fi (x0) = f j (x0) = li j/(r i
d + r j

d ) ∅ 1/2, which is less than 1/
∀
3.

Otherwise, all three vertices x1, x2, x3 are critical. The largest of the three angles
θi j = ∠xi x0x j satisfies θi j ⊆ 2π/3. The interior bisector of this angle meets the
edge xi x j at a point y which divides the edge in the ratio ||x0 − xi ||:||x0 − x j || or
ri :r j . Using the sine rule for triangle x0yxi we then have:

λri = ||x0 − xi || = ||y − xi || · sin∠x0, yxi

sin
θi j
2

∅ li j ri

ri + r j
· 1

sin π
3

∅ r3∀
3

giving the required bound.
The proof of the theorem now follows that of Theorem 4.2 precisely. ∪�
Of course, the results on minimal generators and Rips complexes with omissions

still apply in this setting as well, as the reader may check.

4.10 Barrier Coverage in 3D

We consider the following modification of the physical workspace of the nodes. Let
the nodes be points in a 3-D tube of the form D × R for D ∈ R

2 as in Assumption
A3, and let the fence nodes lie inD× {0} and satisfy A4. We define U ∈ R

2 ×R by
placing a 3-D ball of radius rc at each xi ∃ X . The problem of barrier coverage is
to determine whether there is a path connecting D × {−∞} to D × {+∞} avoiding
U : see Fig. 4.7.
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Fig. 4.7 Barrier coverage in a 3-D tube means the non-existence of a path from one end of the tube
to the other avoiding 3-D balls of coverage about the nodes. The vestige of the fence cycle F is a
cycle of nodes about the meridian ∂D × {0} (balls of coverage not drawn along F for reasons of
clarity)

We construct a Rips complex as before, connecting nodes if they are within dis-
tance rb inD×R. From A4, it follows that the fence cycle F is precisely ∂D× {0}.
Our homological criterion immediately yields a criterion for barrier coverage.

Theorem 4.7 A collection of nodes in D×R satisfying A1–A4 as above has barrier
coverage if there exists [α] ∃ H2(R,F) with ∂α 	= 0.

Proof We prove a stronger result in the spirit of Corollary 4.1. The proof of Lemma
4.2 holds for the 2-skeleton of the Rips complex: Three points determine a plane
that intersects the balls in disks of radius rc. Hence, the simplicial realization map
σ:R →← D × R takes any 2-cycle α to a subset of Uα, the cover restricted to the
nodes of α.

Let π:R2 × R →← R denote projection to the second factor. Assume that p:R →←
D × R − Uα is a continuous curve with limx←±∞ π ◦ p(x) = ±∞. Since every
point in σ(α) lies within Uα, we have that σ:(α, ∂α) →← (R2 ×R, ∂D×{0}) factors
through the pair (R2 × R − p, ∂D × {0}). However, let A = (R2 × R) − p and
B be a neighborhood of p, so that A ∧ B is an annular tube homotopic to S1. Let
A≥ = ∂D × {0} and B ≥ = ⊥. Consequently, we have

← H2(S1)
φ∞−← H2((R

2 × R) − p, ∂D × {0})
∩ 0

ψ∞−← H2((R
2 × R), ∂D × {0}) ∂∞−← H1(S1) ← (4.13)

Since H2((R
2 × R), ∂D × {0}) ≈= H2(D, ∂D) ≈= R and ∂∞ is an iso-morphism, we

obtain:

· · · ← 0 ← H2((D × R) − p, ∂D × {0}) ← R
≈=−← R ← · · · (4.14)
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Fig. 4.8 A mobile network with fixed fence nodes sampled at five time segments: can an evader
avoid being caught in the time-dependent union of coverage disks?

By exactness, H2((R
2 ×R)− p, ∂D×{0}) = 0 and thus, σ∞[α] = 0: contradiction.

∪�

4.11 Pursuit-Evasion and Mobile Nodes

Consider a situation in which the node positions are a continuous function of time:
X = Xt ∈ D for t ∃ [0, 1]. Assume that the network is sampled to give a finite
sequence of connectivity graphs {∂i }N

0 at times 0 = t0 < · · · < tN = 1, as in
Fig. 4.8. We assume the following:

Assumption T:1 If two nodes are connected at time steps ti and ti+1, then they
remain within the broadcast radius rb for all ti ∅ t ∅ ti+1.

Assumption T:2 Nodes may go off-line or come on-line, represented by deleting
the nodes in the appropriate graph ∂i .

Assumption T:3 Fence nodes always remain fixed and on-line.

We now address the question of whether there can be a “wandering” loss of
coverage. It may be the case that at no time t ∃ [0, 1] does there exist a complete
sensor coverage of the domain; however, the changes may obstruct any sequence
of points from “jumping” from one hole to the next, avoiding the coverage domain.
Verifying the lack of wandering holes is a particular type of pursuit-evasion problem
with relevance to problems in security and defense. Note that this problem is distinct
from the “sweeping” coverage problem, in which one wants to know whether the
union of the cover sets

⋃
t U(t) contains D.
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Fig. 4.9 Subsequent Rips complexes (left) are attached via prisms between matching simplices
(center) to capture the topology of the mobile cover (right)

4.11.1 A Prism Complex

We present a homological criterion for guaranteeing no wandering holes via com-
puting the homology of a certain space derived from the sequence of Rips complexes
Ri .

Definition 4.2 Given a sequence {∂i } of vertex-labeled communication graphs as
above, define the stacked Rips complex SR to be the cell complex obtained from the
disjoint union

⊔
i Ri of the Rips complexes Ri of ∂i by the following operation:

For each k-simplex [vα1 , . . . , vαk+1 ] ofRi which is also a k-simplex on the same
vertices inRi+1, connect these k-simplices by a prismδk ×[0, 1]withδk{0} glued
toRi and δk × {1} glued toRi+1.

We treat the time variable t ∃ [0, 1] as an extra dimension and consider the
problem of evasive coverage in D × [0, 1]. The complex SR has a natural “prism”
structure: SR is a 1-parameter family of simplicial Rips complexes indexed by
t ∃ [0, 1], these “slices” being equal to Ri at ti . See Fig. 4.9. We likewise consider
the moving covers as a 1-parameter family in a 3-D setting. If Ut denotes the radius
rc cover of nodes Xt at time t, embed the time-varying covers into D × [0, 1] via
Ut ∈ D×{t}. The problem of wandering loss of coverage now becomes the question
of whether the complement of the union

⋃
t Ut in D × [0, 1] has a “tunnel” running

from bottom (t = 0) to top (t = 1).

Theorem 4.8 Consider a time-varying set of nodes Xt in a domain D ∈ R
2 satisfy-

ing Assumptions A1–A4 and T1–T3. Then, for any continuous curve p:[0, 1] →← D,

p(t) must lie in Ut for some 0 ∅ t ∅ 1 if there exists [α] ∃ H2(SR,F ×[0, 1]) such
that π∞(∂α) 	= 0, where π:F × [0, 1] →← F is the projection map.

Proof As in the proof of Theorem 4.2, we consider a simplicial realization map
σ:SR →← R

2 × [0, 1]. Define σ as follows. Given the structure of SR as a family of
Rips complexesRt indexed by t ∃ [0, 1], let σ send each slice to σ(Rt ) ∈ D× {t},
where σ is the realization map from the proof of Theorem 4.2 and the vertices are
sent to Xt .

The map σ takes the pair (SR,F ×[0, 1]) to (R2 ×[0, 1], ∂D×[0, 1]), yielding
the following diagram:
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H2(SR,F × [0, 1]) δ∞−← H1(F × [0, 1])
≤ σ̄∞ ≤ σ̄∞

H2(R
2 × [0, 1], ∂D × [0, 1]) δ∞−← H1(∂D × [0, 1])

(4.15)

It follows from Assumption T3 and Lemma 4.2 that π∞σ∞δ∞[α] 	= 0. By commu-
tativity of Eq. 4.1, σ∞[α] 	= 0.

Assume that there exists a continuous curve p:[0, 1] →← D × [0, 1] of points
p(t) ∃ {D × {t} − Ut }. We claim that σ(SR) ∈ ⋃

t Ut . Assume that the nodes
{xi (t)}k+1

i=1 span a k-simplex of Rt ∈ SR at some fixed time t. Then, σ sends this
to the convex hull of these nodes in R

2 × {t}. From Definition 4.2 and Assumption
T1, any edge in Rt implies that the node points implicated by this edge are within
distance rb at time t. An application of Lemma 4.1 then guarantees that the convex
hull of these nodes lies within Ut .

Weconclude from this and the existence of thewandering curve p thatσ:(SR,F×
[0, 1]) →← (R2 ×[0, 1], ∂D×[0, 1]) factors through the pair (R2 ×[0, 1]− p, ∂D×
[0, 1]).However, this has vanishing H2, using the same argument as in Theorem 4.7.
Thus, σ∞[α] = 0: contradiction. ∪�

4.11.2 A Simplicial Model

In practice, computing with the stacked Rips complex is inconvenient. The software
we use is meant for simplicial complexes, not the more general prism complex SR.

We therefore provide a simple means of reducing the stacked Rips complex to a
simplicial object which is much smaller and simpler to encode.

Definition 4.3 Given a collection of network graphs {∂i } as in Definition 4.2, define
the amalgamated Rips complex to be the space obtained from the disjoint union⊔

i Ri of the Rips complexes Ri of ∂i by the following operation:
For each k-simplex [vα1 , . . . , vαk+1 ] ofRi which is also a k-simplex on the same

vertices inRi+1, identify these simplices.

A few observations are in order. First, the amalgamated Rips complex AR is a
cell complex built from simplices. It is not, properly speaking, a (combinatorial)
simplicial complex since there may be, e.g., more than one 1-simplex connecting
two vertices; hence, cells in this complex are not uniquely defined by their faces.
Second, since the fence nodes are assumed stationary, the fence cycle F is fixed in
each Ri and thus is identified to yield a well-defined cycle F ∈ AR.

Proposition 4.1 The pair (SR,F × [0, 1]) is homotopy equivalent to (AR,F).

Proof For each i, consider the maximal sub-complex Si ∈ Ri which is also a sub-
complex ofRi+1. The prism sub-complex Si ×[0, 1] ∈ SR is a properly embedded
sub-complex; hence the collapse of Si × [0, 1] to the simplicial sub-complex Si

in AR is a homotopy equivalence. The amalgamated complex AR is the result of
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applying the sequence of collapses to SR, and the sub-complex F × [0, 1] ∈ SR
is collapsed via projection of the second factor. ∪�

This immediately implies the following:

Corollary 4.3 The homological condition of Theorem 4.8 is satisfied if and only if
H2(AR,F) has a generator [α] with ∂α 	= 0.

These hypotheses are preferable to those of Theorem 4.8 in that the spaces in-
volved are smaller, simplicial, and there is no condition involving the projection of the
boundary of the generator. For a software package that can handle only true combi-
natorial simplicial complexes, there is a simple modification ofAR available. Since
the homological criterion resides in H2, one can identify all k-simplices with the
same boundary for k ⊆ 2. Only the multiple 1-simplices need be distinguished, and
these may be handled by inserting additional vertices and refining the cell structure.

4.12 Computation

Unlike homotopy groups (such as the fundamental group π1), homology is com-
putable, and existing software packages make the homological coverage criteria of
this chapter implementable for reasonable numbers of nodes.We have used the open-
source packagePlex [33],which consists of: (1)C++code formanipulating simplicial
complexes, written by Patrick Perry; (2) C++ code for persistent homology calcu-
lations, written by Lutz Kettner and Afra Zomorodian, published independently as
part of the CGAL project [7]; (3) a MATLAB front-end and script library, designed
and written by Vin de Silva and Patrick Perry.

Since we use pre-existing code for homology computations, a few remarks are in
order with regard to implementation.

1. Plex does not automatically compute relative homology. In order to compute
homology relative to the fence, we use the following simple procedure. To com-
pute H2(R,F), add a disjoint abstract vertex to R and augment this vertex to
every simplex in F . This is called placing a cone over the sub-complex F , and
it yields a complex C(R,F) whose homotopy type is that of the quotient space
R/F . It follows from the Excision Theorem [21] and homotopy invariance that
H∞(R,F) ≈= H∞(R/F) ≈= H∞(C(R,F)) for ∞ ⊆ 1; hence, this faithfully cap-
tures the homology.

2. Common exposition of homology phrases everything in terms of linear algebra on
real vector spaces, for clarity and intuition. In general, homology can be computed
with any coefficient ring. The real coefficients that we use for intuition are not
optimal for computation, since round-off error can impact computation. To avoid
round-off error, we use homology with coefficients in the field Z2. All of our
arguments are independent of the field coefficients used; hence the criterion is
still valid with this assumption.
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Fig. 4.10 A typical simulation: (top) the locations of 212 nodes in D; (center) the image of the
Rips complexR projected toD; (bottom) a simple generator of H2(R,F) extracts 101 nodes which
are guaranteed to cover D, leaving 111 nodes to be safely put into sleep mode

3. We compute generators for homology using the persistent homology algorithm,
with the interior simplices being processed first and the cone simplices being
processed last. Under this ordering, the algorithm is guaranteed to give a unique
homology cycle spanning the fence if any exists (although this uniqueness does
not seem to be significant). The cycle can be read off explicitly from the results
of the computation.

Figure4.10 shows a network in a simply connected domain with 212 nodes that
satisfies the homological coverage criterion of Theorem 4.2. The figure also shows
the image of the Rips complex in R

2 under the realization map σ. A choice of a
“simple” generator shows that 111 of the nodes may be put in sleep mode without a
loss of coverage. Of necessity, this illustration shows the location of the nodes within
the domain. We stress that the algorithms have no knowledge of this data. The input
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to the problem is the network connectivity graph and the fence cycle in that graph.
The generator shown here is the one produced by the homology computation, with
no subsequent optimization. No other geometric data are used.

Wedo not at this time present a complete analysis of the numerical implementation
of the coverage criterion.

4.13 Summary and Outlook

The applicability of homology theory to sensor networks initiated in this chapter
is not as surprising as might at first appear. Indeed, the two fields share several
features. Problems in both homology and sensor networks have as inputs a large
collection of local objects (simplices, sensors) with local interaction rules (faces,
communication). From this collection (chain complex, sensor network), one seeks
to determine global properties of the system (homology, coverage). The primary
point of departure is that chain complexes carry with them a rich algebraic structure
which can be exploited to great effect. We have demonstrated that certain features of
this algebraic structure carry over to answer important questions in coverage, power
conservation, and evasion-detection. This represents a new and powerful importation
of algebraic tools in networks.

4.13.1 Remarks

1. We have not specified communication protocols on the level of hardware, having
concerned ourselves in this chapter with the mathematical tools. We claim, how-
ever, that the Rips complex can be built in a distributed fashion on the hardware
level: see [32].We expect the signal complexity of this operation to be reasonable,
since the Rips complex is completely determined by its 1-skeleton.

2. In this chapter, we have focused on the case where there is complete control over
the fence nodes. In practice, such control may not be available. By endowing
nodes with the capability of detecting the boundary of the domain, it is possible
to reconstruct a fence sub-complex F composed of nodes near the boundary.
Since these are not assumed to be well spaced (as in A4), the proofs of all the
results here are invalid. We demonstrate in [11, 12] how to recover some of the
results of this chapter in that more general case via persistent homology.

3. We stress that the coverage criterion is not if and only if. It is a rigorous test
to guarantee coverage, and thus, any system which is “just barely” covered will
likely fail that test.

4. The test as given in this chapter is centralized: a distributed coverage algorithm
is greatly desirable.
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4.13.2 Questions

This chapter represents merely the first step in applications of algebraic topology to
sensor networks. We comment on possible and probable extensions below.

1. What is the computational complexity of the homological criterion as a function of
number of nodes? The most straightforward algorithm for computing homology
(using Smith normal form) can be quintic in the number of simplices. More
recent algorithms are much faster, but the sub-quadratic algorithm of [13] relies
on duality for Euclidean spaces and is not applicable for arbitrary simplicial
complexes. Our experiments hint at a sub-quadratic run-time, and it may be that
Rips complexes of planar networks have a sufficiently restricted topology tomerit
such a claim.

2. Can one construct an effective homological coverage criterion which is distrib-
uted, allowing nodes with limited computational capabilities to compute local
homology? What are the demands on the nodes’ computational power and mem-
ory in such a system? What demands are made on the communication network
in a distributed homology computation?

3. Can the mobile-network coverage criterion for wandering holes be made asyn-
chronous? Rather than sampling the entire network at once, subsets of nodes
should sample their connectivity and register their network graph with a central
processor. Does a homological criterion holds for such systems?

4. By changing the bound in A2 to rc ⊆ rb, the homological criterion verifies 3-
coverage in a planar network (a simple exercise). Is it possible to verify k-coverage
for any k via homology?Onewants to impose as few restrictions on rc as possible.

5. In practice, coverage and communication domains are not radially symmetric:
elliptical or conical shapes are closer to reality in many cases. Is it possible
to construct a homological coverage criterion for sensors whose communication
and/or coverage domains are not radially symmetric?What additional capabilities
do the sensors require in order to handle such asymmetry?

6. With the exception of the work in Sect. 4.11, we are working in a setting for
which it is desired that there are more than enough sensors necessary to cover the
domain. In such a sensor-rich environment, it is possible for the Rips complex
to attain a very high dimension. This is highly undesirable for computational
reasons. Is there a way to compress the Rips complex in a preprocessing step
without changing the appropriate homology group? This seems reasonable: a
20-dimensional simplex implies a cluster of nodes, most of which should be
redundant.

7. If we endow the nodes with additional capabilities, such as the ability to measure
some angular data about neighboring nodes, what global problems can be solved?
Problems involving degree computation and target isolation are solvablewith only
a very weak form of angular data at the nodes [19].

8. The sensor networks of this chapter are relatively idealized. Real sensors and
real networks have unavoidable stochastic features. Is it possible to develop a

http://dx.doi.org/10.1007/978-1-4419-8420-3_4
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homology theory with “stochastic simplices” which returns rigorous coverage
criteria in the form of, perhaps, “expected” homology classes?
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Chapter 5
Coverage Assessment and Target Tracking
in 3D Domains

Recent advances in integrated electronic devices motivated the use of wireless sensor
networks (WSNs) in many applications including domain surveillance and mobile
target tracking, where a number of sensors are scattered within a sensitive region to
detect the presence of intruders and forward related events to some analysis center(s).
Obviously, sensor deployment should guarantee an optimal event detection rate and
should reduce coverage holes. Most of the coverage control approaches proposed in
the literature deal with two-dimensional zones and do not develop strategies to han-
dle coverage in three-dimensional domains, which is becoming a requirement for
many applications including water monitoring, indoor surveillance, and projectile
tracking. This chapter proposes efficient techniques to detect coverage holes in a 3D
domain using a finite set of sensors, repair the holes, and track hostile targets. To
this end, we use the concepts of Voronoi tessellation, Vietoris complex, and retract
by deformation. We show in particular that, through a set of iterative transforma-
tions of the Vietoris complex corresponding to the deployed sensors, the number
of coverage holes can be computed with a low complexity. Mobility strategies are
also proposed to repair holes by moving appropriately sensors toward the uncov-
ered zones. The tracking objective is to set a non-uniformWSN coverage within the
monitored domain to allow detecting the target(s) by the set of sensors. We show,
in particular, how the proposed algorithms adapt to cope with obstacles. Simulation
experiments are carried out to analyze the efficiency of the proposed models. To our
knowledge, repairing and tracking is addressed for the first time in 3D spaces with
different sensor coverage schemes.

This chapter has been reprinted with permission from “Coverage Assessment and Target Track-
ing in 3D Domains”, Noureddine Boudriga, Mohamed Hamdi, S. S. Iyengar, Sensors, 2011.
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5.1 Introduction

One among the main WSN issues that should be addressed while dealing with target
tracking and monitoring applications, in 3D environments with obstacles, is area
coverage. This is because a sensor can detect the occurrence of events or the presence
of hostile targets only if they are within its sensing range. Coverage reflects howwell
a zone is monitored or a system is tracked by sensors. Therefore, the WSN detection
performance depends on how well the wireless sensors observe the physical space
under control.

Several metrics have been provided in the literature to measure the quality of
coverage. Among these metrics, one can mention the following: (a) the number
of coverage holes; (b) the proportion of uncovered area with respect to the area
under monitoring; and (c) the so-called average linear uncovered length (ALUL),
which has been developed in 2D zones to estimate the average distance a mobile
target can traverse before being detected by one sensor [1]. The ALUL can be used
to assess the detection efficiency of the WSN in more general spaces. However,
the major shortcoming of this approach is its heavy computational load making
it nonconforming with the severe processing and energy limitations characterizing
WSNs.

Obstacles inmonitored 3D domainsmay complicate seriously the role of themon-
itoring sensors, increase their power consumption, and limit the coverage efficiency
of the process providing coverage control [2, 3]. Procedures set up to implement
coverage control and target tracking efficiency should be optimal. They should take
into consideration the geographic nature of the monitored area and cope with the
number and the shape of obstacles.

This chapter proposes a coverage assessment approach amenable to implement
advanced target tracking functionalities. First, it provides a technique based on the
concept of retraction by deformation applied to a special space, called the Rips com-
plex, associated with the deployment of a set of sensors to develop a low-complexity
algorithm for locating coverage holes. Second, it constructs a collaborative mecha-
nism to repair coverage holes, assuming that the sensors have mobility capabilities.
Third, the chapter builds on higher-order Voronoi diagrams to define an efficient
scheme to coordinate tracking activities of single and multiple targets. To the best of
our knowledge, this is the first timewhere retraction by deformation and higher-order
Voronoi tessellations are used for hole assessment and target tracking in 3D domains
with obstacles using sensors. The major contributions of this chapter are as follows:

• The definition proposed to distributively reduce the Rips complex associated with
the sensors is general, in the sense that it applies to a large variety of sensor,
detection techniques, monitored domains, and obstacles.

• The proposed cooperative coverage repairing approach considerably reduces the
uncovered areas and provides efficient handling of obstacles with respect to exist-
ing methods. The detection and localization of holes is done with low complexity.
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• We show that the higher-order Voronoi tessellations we utilize are useful for
performing multiple tasks including activity scheduling and coordination. In addi-
tion, we show that local coverage information, when gathered using the Voronoi
diagram, can be used to implement coverage-preserving mobility models.

The remaining part of this chapter is organized as follows: Sect. 5.2 describes
the state of the art of coverage control in various areas in general and in 3D spaces
in particular. Section 5.3 surveys the definition of the mathematical objects needed
for coverage and tracking control, the Vietoris complex, and the Voronoi diagram
and discusses the retraction by deformation. Section 5.4 discusses different schemes
based on the Vietoris complex to detect and count the coverage holes in 3D domains,
locate these holes, and repair them. It also defines a special procedure to reduce the
complexity of theVietoris complexes withoutmodifying their topological properties.
Section 5.5 sets upmodels for coverage assessment, sensormobility, and target track-
ing. Section 5.6 analyzes the complexity of the algorithms constructed in this chapter
and sets some extensions of our results to more general types of sensors. Section 5.7
develops simulation experiments to evaluate the performance of a monitoring system
implementing our techniques. Section 5.8 concludes this chapter.

5.2 Related Work

Studies on coverage, holes, and boundary detection have been addressed using three
main categories of techniques: geometric methods, statistical/probabilistic methods,
and topological methods.

Studies using probabilistic approaches usually make assumptions on the probabil-
ity distribution of the sensor deployment. Fekete et al. [4] assumeuniformly randomly
distributed sensors inside a geometric region for their boundary detection algorithm.
Their approach hinges on the idea that the boundary nodes would have lower average
degrees than that of the “interior” nodes and statistically provide a degree threshold
to differentiate interior and boundary nodes. Kuo et al. [5] propose an error model
for location estimation using probabilistic coverage, while Ren et al. [6] presents an
analytical model based on probabilistic coverage to trackmoving objects in a densely
covered sensor field. Most of probabilistic approaches have focused on the detection
and tracking of objects in a sensor field. They did not address other related issues
such as location of the holes, number of such holes, and repairing.

A number of literature has addressed the static or “blanket” coverage. Dynamic
or “sweeping” coverage [7] has been also a common and challenging task with
applications ranging from security to housekeeping. Two primary approaches to
static coverage problems in the literature. The first uses computational geometry
tools applied to exact node coordinates. Such approaches are very rigid with regard
to inputs: one, for example, must know exact node coordinates and must know the
geometry of the domain to determine the Delaunay complex. To alleviate the former
requirement, many authors have turned to probabilistic tools. For example, in [8],
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the author assumes a randomly and uniformly distributed collection of nodes in a
domain with a fixed geometry and proves expected area coverage. Other approaches
give probabilistic or percolation results about coverage for randomly distributed
nodes. The drawback of these methods is the fact that uniform distribution of nodes
may not be always realistic.

More recently, the robotics community has explored how networked sensors and
robots can interact and augment each other: (see e.g., [9] for more details). There are
several new approaches to networks without localization that come from research
works in ad hoc wireless networks that are not unrelated to coverage questions. One
example is the routing algorithm of [10], which generally works in practice but is
a heuristic method involving heat-flow relaxation. This work investigates the issues
of maintaining coverage and connectivity by keeping minimum number of sensor
nodes to operate in the active mode. The authors show that if the radio range is
at least twice the sensing range, then complete coverage implies connectivity. A
decentralized and localized density control algorithm, called OGDC, is devised to
control and maintain coverage and connectivity. However, their approach requires
knowledge of node location. The authors claim that this requirement can be relaxed
to that each node knows its relative location to its neighbors. On the other hand, Hsin
and Liu [11] give methods for localizing an entire network if localization of a certain
portion is known.They address the problemof target tracking in face of partial sensing
coverage by considering the effect of different random and coordinated scheduling
schemes. In their coordinated coverage algorithm, a sensor might decide to sleep for
some time after acknowledgments from its neighbor(s) that must be active. These
decisions are not synchronized as individual sensors could negotiate with sponsors
independently.

Since coverage verification is inherently a geometric problem, many research
done in this area are based on computational geometry, and more precisely on the
Voronoi Tessellation (and its dual, DelauneyTriangulation).Motivated from the early
success of the application of geometric techniques to cope with coverage problems
(Art Gallery Problem), researchers have applied these techniques to adhocdistributed
sensor networks ([12–15]).

Themost important drawbackof these approaches is that they are too computation-
ally expensive to be implemented in real-time contexts. Another severe limitation is
the impact of localization uncertainty on the performance of these approaches. These
claims are well documented in ([16]). In fact, to detect coverage holes, the locations
of the sensors must be exactly known. Obviously, this cannot be always provided,
especially when the sensing nodes are mobile. Moreover, equipping sensors with
localization devices may considerably increase the deployment cost of the WSN and
reduce its resources. In the following paragraphs, we summarize the methodologies,
problems addressed, and results of some of the recent, notable studies in the area of
detection and coverage in WSNs.

Meguerdichian et al. [13] study the problem of computing a path along which a
target is least or most likely to be detected. They provide an optimal polynomial time
algorithm that uses graph theoretic and computational geometric (Voronoi diagram)
methods. They address the issues of maximal breach path and maximal support
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path and provide best- and worst-case coverage using computational geometry.
Delaunay triangulation was used to find the best coverage path. In addition, deploy-
ment heuristics are provided to improve coverage. Since computational geometric
methods require location information, the authors implement a location procedure
prior to their coverage scheme. This procedure requires that a few of the deployed
nodes (called beacons) must know their locations in advance (either fromGPS or pre-
deployment). Li et al. [14] uses local Delauney triangulation, relative neighborhood
graph, and the Gabriel graph to find the path with the best-case coverage.

Huang et al. [15] study the problem of k-coverage. They propose solutions to the
k-UCand k-NC (unit disks and non-unit disks) coverage problemswhich aremodeled
as decision problems whose goal is to determine whether reach location of a target
sensing area is sufficiently covered. They present a polynomial time algorithm with
a geometric approach that runs in O(nd log d) time.

Ghrist et al. [17] use topological methods to detect insufficient sensor coverage
and holes. In their seminal work on using homological concepts for addressing hole
detection and coverage, their algorithm detects holes with no knowledge of their
location. Although the approaches by Ghrist et al. have many desirable properties,
the assumption of a static network and the centralized scheme are not suitable for
dynamic networks.

5.3 Mathematics for Coverage and Tracking

The objective of this section is to provide a mathematical model for accurately
gauging the coverage degree of a monitored domain in the 3D spaceR

3 and repairing
the coverage holes. This model uses the Vietoris complex [6, 8].

The following assumptions will be used in the next sections: Let M be a bounded
domain (or manifold) in R3 with nonempty boundary ∂ M . The boundary is assumed
to be an orientable topological surface (i.e., a closed surface homeomorphic to some
number of spheres and some number of connected sum of g tori, for g ⊆ 1, [18]).
Let δ : R

3 × R
3 ∀∈ R

+ denoting the Euclidean distance. We denote by S a set of
sensors deployed in R

3 to monitor M , and by |S| the number of these sensors. We
will designate indifferently by p ∃ S the sensor in S and its location (x p, yp, z p) in
R
3. Let us notice, finally, that the sensors can be deployed inside M or outside it.

5.3.1 Voronoi Diagrams for Spherical Detection Sensors

Let us assume that the sensors in S have identical covered area represented by a
ball with radius θ. For every pair p, q ∃ S, we denote by B(p, q) the plane, in R

3

perpendicular to segment [p, q] and passing by its middle point and by H(p, q)

the half space of R
3 containing the p and delimited by B(p, q). Thus, B(p, q) and

H(p, q) are expressed as follows:
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B(p, q) = {x ∃ R
3|δ(p, x) = δ(q, x)} (5.1)

H(p, q) = {x ∃ R
3|δ(p, x) ∅ δ(q, x)} (5.2)

We also denote by HM (p, q) and BM (p, q) the intersection of H(p, q) and
B(p, q) with M , respectively.

The Voronoi cell generated by p ∃ S is nothing but the common area to the
(|S| − 1) closed half-spaces containing p involving the other sensors. Therefore, the
Voronoi cell generated by p is expressed by:

VS(p) =
⋂

q∃S\p

H(p, q) (5.3)

The Voronoi cell of a sensor is convex and contractible. The common boundary
of two Voronoi cells VS(p) ∪ VS(q) is included in H(p, q). It can be a plane, a
half-plane, an edge, a point, or an empty set. The Voronoi diagram associated with
the set S of sensors deployed to monitor M is the unique subdivision defined in R

3

by the Voronoi cells associated with all sensors. Thus, every cell of the subdivision
contains the nearest neighbors defined in S for a sensor p. The Voronoi diagram of
S is the set of point belonging to all the Voronoi cell. Hence, we have

V D(S) =
⋃
p∃S

VS(p) (5.4)

In particular, the Voronoi diagram V D(S) has no vertices and no edges when the
sensors are located at collinear points. In that case, the faces of the Voronoi diagram
are parallel planes. In addition, one can notice that when p ∃ S lies on the boundary
of the convex hull of S, then the Voronoi cell of p is unbounded in R

3.
Since in this chapter, we are rather interested in partitioning a domain M into cells

according to k-nearest neighbors in S, for a given integer 1 ∅ k ∅ n−1, we turn now
to the definition of the high-order Voronoi diagrams, as they are useful concepts to
define these sets and support target tracking. An order k Voronoi diagram is defined
as follows: Let T ⊂ S containing k sensors, the T -generated cell is defined by:

V (T ) = {x ∃ R
3|∀p ∃ T ∀q ∃ S − T : δ(x, p) ∅ δ(x, q)} (5.5)

The order k Voronoi diagram is given by:

V D
k (S) =

⋃
T →S
|T |=k

V (T ) (5.6)

One can easily see that the order 1Voronoi diagram V D
1 (S) is just V D S, that V (T )

can be empty, and that V D(S) induces a partition on the domain M into bounded
components.
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5.3.2 Vietoris–Rips Complexes

We consider a set of points S = {v1, . . . , vn} corresponding to the locations of a
set of sensor nodes in a 3D space. For brevity, (vi )1∅i∅n will be simply referring
indifferently to as sensor nodes and points. We suppose that each sensor is capable of
covering a disk of radius rc and communicate with the other sensors within a distance
rb ∅ ←

3rc. The total region covered by the sensor network can be represented by:

γ(S) =
⋃
vi ∃S

γvi ,rc (5.7)

where:
γvi ,rc = {x ∃ R

3| ||x − vi || ∅ rc}

A k-simplex (or a simplex of dimension k) π is an unordered set π = {v0, v1, . . . ,
vk} → S, where vi ∞= v j and δ(vi , v j ), for all i ∞= j . A face of the k-simplex π is
a (k − 1)-simplex formed by k elements (or vertices) of π . Clearly, any k-simplex
has exactly k + 1 faces. The collection of all k-simplices of S is called the abstract
associated with γ(S). In fact, an abstract simplicial complex X is a finite collection
of simplices which is closed with respect to the inclusion of faces; meaning that if
π ∃ X , then all faces of π are also in X . It is noteworthy that a simplicial complex
is a generalization of a graph; that is, the connectivity graph is nothing but the set
of 1-simplices of the simplicial complex associated with a set V of points in the 3D
space.

Now, let us discuss the definition of the Vietoris–Rips complex. This complex
captures the features related to connectivity and coverage of WSNs.

Definition 5.1 (Vietoris–Rips complex) Let S be a set of points in a 3D space and a
given radius ε. The Vietoris–Rips complex of S, denoted by Rε(S), is the simplicial
complex whose k-simplices correspond to unordered (k + 1)-tuples of points in S
which are pairwise within Euclidean distance ε of each other.

A subset of k + 1 points in S determines a k-simplex of for the Vietoris–Rips
complex if, and only if, each of these points lies within the intersection of the balls
of radius ε centered at the other k points.

The reader, however, may wonder whether such topological structure can be com-
puted in practice by tinymotes equipped with radio devices and limited storage capa-
bilities. To answer this question, we propose a simple mechanism allowing a fully
distributed construction of the Vietoris–Rips complex. Through a 3-step broadcast
of connectivity information, each sensor node can be aware of what simplices it
belongs to, and what other simplices its neighbors belong to. To this end, we assume
that every sensor node has a unique identifier (typically a layer-2 address) and has
enough space to maintain a table of identifiers. The protocol performs as follows:
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1. Initialization: Every sensor vi broadcasts its identity to its neighbors. Upon receipt
of the message, each sensors builds the list, denoted byαi

0, of 0-simplices formed
by its neighbors.

2. Edge construction: Sensor vi appends its identity to the vertices inαi
0 to construct

the list, say αi
1, of all 1-simplices it belongs to. It also determines the number ni

of its neighbors. Then, it informs its neighbors about the 1-simplices it built.
3. Simplicial iteration: On receiving the information from its neighbors, sensor vi

starts building the lists αi
j , 2 ∅ j ∅ ni , by simply adding appropriately the

structures it has received to the ones it has already constructed.

An informal explanation of the construction algorithm is as follows. Simplices of
higher dimension are constructed iteratively. In the first iteration, the 2-simplices are
constructed by applying the following rule:

≤vi , v j ∧ ∃ αi
1 ≥ ≤vi , vk∧ ∃ αi

1 ≥ ≤v j , vk∧ ∃ α
j
1 ∈ ≤vi , v j , vk ∃ αi

2

for every i , j , and k, provided that i ∞= j , i ∞= k, j ∞= k. The rules used for the
following iterations are similar.

5.3.3 Homotopy and Retraction

Let X and Y be two topological spaces and f, g : X ∀∈ Y be two maps (or
continuous functions). We say that f and g are homotopic if there is a map
F : [0, 1]t imes[0, 1] ∀∈ X such that

F(x, 0) = f (x) ≥ F(x, 1) = g(x) ∀x, y ∃ X

Let x0 ∃ X be a given base point of X . A loop based on x0 is amapα : [0, 1] ∀∈ X ,
such that x0 = α(0) = α(1). An equivalence relation on the set of all loops based at
x0 can be defined by stating that loops α1 and α2 are equivalent if they are homotopic
with respect to x0, meaning that there exists a homotopy F between α1 and α2 such
that

F(0, t) = F(1, t) = x0 ∀t ∃ [0, 1]

We denote the equivalence class of a loop α : [0, 1] ∀∈ X based at x0 by [α]
and call it the based homotopy class of the loop α. The set of equivalence classes
of loops based at x0 is denoted by π1(X, x0) and is called the fundamental group.
It can be equipped with a multiplication defined by [α1] × [α2] = [α1 · α2], for all
loops [α1] and [α2] based at x0, where α1 · α2 is the loop obtained by attaching α1
to α2. A second group of homotopy, denoted by π2(X, x0), can be defined as the set
of homotopy equivalence classes of applications β : [0, 1]2 ∀∈ X , based at x0. It is
an Abelian group, [19].

On the other hand, a map f : X ∀∈ Y is called a homotopy equivalence if there
is a map g : Y ∀∈ X such that f ⊥ g is homotopic to the identity function in X and



5.3 Mathematics for Coverage and Tracking 91

g ⊥ f is homotopy to the identity function Y . Thus, one can say that two spaces are
homotopy equivalent if they have “the same shape.”

A deformation retraction of a space X onto a subspace A → X is a map f :
X × [0, 1] ∀∈ X such that:

f (x, 0) = x ≥ f (x, 1) ∃ A ≥ f (a, t) = a ∀x ∃ X∀a ∃ A∀t ∃ [0, 1]

In other words, the subset A is a retraction by deformation of the space X if,
starting from the original space X at time 0, we can continuously deform X until it
becomes the subspace A at time 1 and deformation is performedwithout ever moving
the subspace A in the process. It is obvious that if A is a retraction by deformation
of X , then X and A are homotopically equivalent.

Finally, let K be complex, a retraction filtration of K is a nested finite sequence
of subcomplexes Ki ,

K0 → K1 → . . . → Kn = K

such that, for all k ⊆ 0, Kk is a retract by deformation of Kk+1: Thus, it can be shown
easily that K0 and Kn have the same type of homotopy and the same homotopy group.

Let T = {p1, . . . , pk} be a simplex and T1 = {p2, . . . , pk} be one of its faces.
Then, A = T − (T1 − ∂T1) be the part of the boundary of T that is not internal to
T1. Then, A is a deformation retract of T .

Let R(S)be theRips complex associatedwith S, repeating the process of retraction
of simplexes that are on the boundary of R(S), with faces external to R(S), would
lead to a filtration of R(S); say Kk , 0 ∅ k ∅ n, such that, for all k ⊆ 0, Kk is a
retract by deformation of Kk+1 and Kk+1 is obtained from Kk by adding one simplex,
external to Kk and belonging to R(S). The object K0 has no simplex with external
face that is retractible.

5.4 Coverage Hole Management of Spherical Sensors

In this section, we propose a novel distributed technique to count the coverage holes
ofWSNusing the retraction theory of spaces. In particular, we show that theVietoris–
Rips complex associated with the WSN can be reduced to a simpler space that is
tightly related to the number of holes.

In the following, let D → R
3 be a compact domain in the 3D space R

3 and ∂ D
be its boundary. We consider that D contains no obstacles. We also consider that
a collection S = {v1, . . . , vn} is deployed over domain D and that the sensors are
equipped with local communication and sensing capabilities. In fact, each sensor
is capable of communicating directly with other sensors in its proximity (within a
given distance rb) and has a limited sensing range ε.
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5.4.1 Reducing the Vietoris–Rips Complex

We assume, in this section, a complete absence of localization capabilities and met-
ric information, in the sense that the sensors in the network can determine neither
distance nor direction. Under these assumptions, we are interested in designing dis-
tributed algorithms for coverage assessment and hole detection.

To this end, we need first to introduce a special procedure, called retract, that
reduces the size of the Vietoris–Rips complex while keeping its type of homotopy.
Repeating this procedure several times will eliminate all the 3 cells of the Vietoris–
Rips complex.

Let Rε(S) be the Vietoris–Rips complex. Let {v0, . . . , v3} be a 3-simplex in Rε(S)

such that one of the 2-cell {v0, v1, v2} does not belong to another 3-simplex in Rε(S).
If such a situation does not exist, then one can easily deduce that Rε(S) has no 3
cells. Let X1 and A1 be the set of points x ∃ Rε(S) belonging to simplex {v0, v1, v2}
and the subset of X1 generated by the other two faces, respectively. Then, it is easy
to construct a map h1 : X1 × [0, 1] ∀∈ X1 such that:

h1(x, 0) = x ≥ h1(x, 1) ∃ A1 ≥ h1(a, t) = a ∀x ∃ X∀a ∃ A1∀t ∃ [0, 1]

Map h1 can be easily extended to a map

Retract : Rε(S) × [0, 1] ∀∈ Rε(S)

such that:

Retract(x, 0) = x ≥ Retract(x, 1) ∃ A ≥ Retract(a, t) = a

∀x ∃ X∀a ∃ A∀t ∃ [0, 1]

where A is
(
Rε(S) − X1

) ∩ A1.
Repeating themapRetract several timeswill lead to eliminating all the 3-simplices

in Rε(S). ThemapRetract can also be reapplied several times to delete all 2-simplices
and 1-simplices that a free face. The resulting space, say Rred

ε .

Proposition 5.1 Let S be a set of sensors. If Rε(S) is path-connected, then Rred
ε (S)

satisfies the following properties:

1. Rred
ε is homotopy equivalent to Rε(S).

2. the number of holes delimited by Rred
ε (S) is equal to the number of holes of the

vietoris space Rε(S)

Proof Applying the map Retract several times helps creating a retraction filtration
of Rε(S) such that:

Rred
ε (S) = K0 → K1 → . . . → Kn = Rε(S)
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where n is number of 3-simplices in Rε(S). Since, for every i , Ki is homotopy
equivalent to Ki+1, we can deduce that Rred

ε (S) is homotopy equivalent to Rε(S).
The second statement of the theorem can be deduced from the following features:

• a holes is a path-connected component that is surrounded by the delimiting space
(Rred

ε (S) and Rε(S)).
• Retracting a 3-simplex in Rε(S) may enlarge a hole but does not eliminate it.
• The retraction process does not create holes since it operates on the simplices that
have free faces.

�

5.4.2 Counting and Locating Coverage Holes

To count and locate holes, we set up a 3-step algorithm. In the first step, we construct
the external boundary of Rε(S). This is the subset of S containing all the nodes
occurring on free faces and facing the boundary ∂ D of the domain. In the second step,
we define an algorithm that detects holes by progressively transforming the external
boundary by retracting all its external simplices. In the third step, the following
process is repeated: one external 2-simplex is deflated, the Retract map is applied
several times to reduce appearing simpliceswith free faces, and the external boundary
is updated. The number of iterations of this process gives the number of coverage
holes.

5.4.2.1 Constructing the Boundary of Rε(S)

Let us assume that the boundary ∂ D of the domain D under monitoring can be seen
(or detected) by the sensors in S and that the nodes in S broadcast periodically their
unique ID numbers. The construction is based on the three following actions:

• Every sensor node detecting a boundary component of D or finding itself on an
external facet sends this information to its neighbors.

• The information related to boundary detection, when received by sensors, should
be put together to form the external boundary of Rε(S), by simply allowing every
sensor node to know which neighbor is on the external boundary.

• The nodes broadcast information related the external boundary of Rε(S) so that
every node on the boundary can have a precise picture of the boundary.

5.4.2.2 Counting Coverage Holes

Counting the coverage holes can be set up by an algorithm that repeats iteratively
the following major procedures:
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• Boundary retraction: Let Cn be a n-simplex on the boundary of Rε(S) and Cn−1
be one of its external faces, then Cn can be retracted using the procedure Retract
and the boundary is updated by adding a new node (the one in Cn − Cn−1), if
n ∅ 2, or by deleting the node occurring in Cn−1, if n = 1.

• Boundary deflation:When all the simplices on the boundary have been retracted, a
preselected node in S (in charge of the counter) selects one of the nodes of the new
external boundary, withdraws it from the boundary, and increments the counter.

5.4.2.3 Locating Coverage Holes

It is worth noticing that when a deflation of a 2-simplex on the boundary Rε(S) is
applied after retraction is complete, a hole is reduced from the coverage zone. This
because the selected node, for deflation, is observing the hole, since it is one of the
nearest nodes surrounding the reduced hole. Thus, this node can start the construction
of the boundary of the reduced hole by determining the list of the nodes surrounding
immediately the hole.

One can conclude, therefore, that any time a deflation is operated, a hole can be
located by simply constructing its boundary using the nearest nodes to that hole.

5.4.3 Repairing Coverage Holes

Let us here assume that the 3D domain D under monitoring has no obstacles and let
us denote by χ (χ = 4πε3/3) the volume of the area covered by a sensor and by
Vol(D) the volume of D. One can state that the number |S| of sensors in S should be
higher than the number N0 = Vol(D)/χ to be able to guarantee full coverage of D,
at least after hole detection and coverage optimization. Therefore, we will assume
in the sequel that this condition is satisfied. Finally, we assume that the sensors are
able to move and detect the external boundary of D, when they are close to it, like
in the above section.

Repairing holes aims at extending the coverage by eliminating the holes, or at least
by shrinking considerably their size. An algorithm can be defined to this purpose. It
can be built based on the following general rules:

• Anode detecting the external boundary ∂ M should keep seeing the boundarywhen
it moves.

• A node on the external boundary of Rε(S) should move toward the uncovered
area, when it does not see the boundary.

• When two neighbor nodes on the external boundary of Rε(S) are separated by a
distance higher than a predefined threshold, say θ1, and one of them is not seeing
the boundary of D, then the sensor unable to see the boundary asks its successor
(i.e., a neighbor involved in the retraction of the simplex containing this sensor)
to move toward the external boundary.
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• A node seeing the boundary should inform its neighbors so that they can move
accordingly.

• When the distance between a sensor s and its neighbors on the boundary of a
hole is lower than a predefined value, say θ2, then s should move in the opposite
direction of the hole, while the other sensors should move toward the hole so that
when they see each other, s can withdraw itself from the minimal surface after
informing its neighbors.

• Anode on the external boundary finding itself unable tomove informs its successor
to move toward its direction.

5.5 Target Tracking in 3D Domains

In this section, we use 3D Voronoi diagrams to optimize sensor coverage and target
tracking performance. We first propose a strategy to measure the uncovered zones
of the monitored region. Then, we develop two mobility models that provide target
tracking using order k Voronoi diagrams and optimize the coverage ratio of a zone
using Voronoi cells. Finally, we extend these models to multiple target tracking. We
assume in this section that the sensors have spherical coverage. The vector-guided
case can be addressed using similar techniques.

5.5.1 Measuring Uncovered Areas

Assume that a location x within the surveillance area is not covered by any sensor.
Let L(x, θ) define the Linear uncovered length (LUL) at location x with direction θ .
This is the undetected path length of a target traveling from location x with direction
θ = (θ1, θ2), for 0 ∅ θ1 ∅ 2π , −π/2 ∅ θ ∅ π/2).

The ALUL, denoted by ALUL(x), introduced in [20, 21], for the 2D space, gives
an approximation of the average distance that can be made by a target, moving in
3D space, before being detected by the sensor network. The ALUL function can be
defined by the following formula:

ALUL(x) =

⎧⎧⎪
⎧⎧⎨
0, if x is covered.

1
(2π)2

π
2⎩

− π
2

2π⎩
0
L(x, θ1, θ2)dθ1dθ2, otherwise.

Moregenerally,when A is a subregionof the 3Ddomainunder supervision, theALUL
related to A, ALUL(A), that a target can travel within A without been detected by a
sensor is given by the expression:

ALUL(A) ≈

⎩
x∃A

ALUL(x)dx

||A|| (5.8)
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where ||A|| is the volume of A.
The ALUL metric was developed to deal with a static deployment, which is not

the case of our study. When a mobility model is implemented, the topology of the
WSN is no longer static. To overcome this, we extend this notion so as to support
sensor nodemobility. The ALUL should also vary according to time and should use a
function, denoted by the L(x, θ, t), that defines the LUL at location x with direction
θ , at time t . Based on this reasoning, we define the metric ALULm(x, t) representing
the ALUL in a location x at time t .

Due to sensor node mobility, the ALUL, over time, in a point x will be
expressed by:

ALULm(x) =
↔⎤
0

ALULm(x, t)dt (5.9)

Finally, ALULm(A) can be computed by Eq. (5.8) by replacing ALUL(x) by
ALULm(x).

From the performance evaluation perspective, two important points should be
highlighted:

• ALULm(A, t) gives information about the coverage-preserving capabilities of the
mobility model. It can be used to state whether the steady state is rapidly reached
and whether the mobility model affect the detection performance of the sensor
network.

• ALULm(A) provides information about the long-term behavior of the mobility
model. It can be used to evaluate the impact of mobility on the possibility for a
target to be undetected within the monitored region.

5.5.2 Mobility Models for Target Tracking

In this section, we show how the Voronoi cells can be used to implement target
tracking using a sensor mobility model. In fact, we define two mobility models:

• The first model is called k-mobility model. Sensor nodes in this model move
toward the regions where the hostile target is supposed to be and collaborate to
keep the target controlled by k sensors all the time. To this end, the order k Voronoi
diagrams are used and maintained all the time.

• The second model is called simplified model. It relies on estimating the uncovered
zones within the Voronoi cells, using the ALUL metrics and moving sensor nodes
toward the “uncovered zones.”

While the first model is triggered by the occurrence of targets, the second model
aims at adapting the covered area so that the targets can be detected with higher
probabilities. Obviously, the k-mobility model is more energy consuming than the
second since it encompasses the prediction of the target position and requires tracking
using k sensor nodes. Therefore, we suppose that the secondmodel can be used when
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energy resources become scarce. The performance of both models will be assessed
in Sect. 5.7. Moreover, one can notice that the prediction function we are using is
tightly related to the coverage of the zones where the targets are expected and that
the mobility models assume that nearest sensor nodes can move to these zones while
reducing the coverage of other zones where targets are not expected. In fact, the
greater is the number of target detection signals, the better is the prediction precision
to command sensor movements.

5.5.2.1 The k- Mobility Model

In the following, we distinguish two cases: (a) a target crossing a k-covered area and
(b) a target crossing non-k-covered zone.

5.5.2.2 For a Target Crossing a k-covered Zone

The mobility algorithm is triggered upon the detection of a target presence. Every
detecting sensor sends its detection signal to the relevant intermediate sensor (called
IS). The latter collects all detection signals, verifies their integrity, deduces the current
zonewhere the target might be, estimates the positions of the target in the next of time
slot, and commands k sensors to move to monitor the new zone to ensure tracking
continuity.

Typically, the selected zone of target presence is taken among other zones (when
more than k sensors detect the target presence). These zones are ordered according
to the probability of presence of the target. The zone selected is the one presenting
the highest probability among those which are k-covered.

The mobility algorithm is defined through five steps:

1. Assume that k′ sensors detect the target (k′ > k). The k′ sensors si, 1 ∅ i ∅ k′,
send their detection data di to an intermediate node under the form:

di = (rt,i , θt,i , τt,i , si )

where rt,i = δ(xi , zt,i ) is the Euclidean distance separating si from the position
zt,i of the target as seen by si , θt,i = (αt,i , βt,i ) is the direction of the vector−−−−−∈
zt,i − xi , and τt,i is the detection instant.

2. In the case where detection signals are sent to different intermediate nodes, the
intermediate nodes coordinate to gather all signals (or at least k of them) at a
unique node IS, which verifies first the authentication of the messages.

3. IS constructs:

• The zone of target presence Z τ
t,i for each sensor based the errors made for the

values reported. This zone is delimited by the following eight points:

(rt,i ± �r, (αt,i ± �α, βt,i ± �β))

as defined by the estimated detection errors.
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• The most likely target presence zone Z τ (t). Several strategies can be used for
this including selecting the largest intersection of k zones of the form Z τ

t,i . It
can also be the largest union of k zones. Let T be the set of k sensors involved
in the definition of Z τ (t).

Then, IS computes the order k Voronoi cell V S(T ). Obviously, it contains Z τ (t).
4. IS estimates the zone Z τ,+(t), where target zt is likely to be in the next time

slot. Several strategies can be used for this estimation including extrapolation of
older positions or some information related to target direction and speed. It also
estimates the most likely new position of zt .

5. IS selects k sensors based on a specific criteria and order them to move toward
Z τ,+(t) to increase its coverage. If no criteria is used, then the order goes to the
sensors in T . A criteria can simply to reduce sensor movement.

When a criteria is applied for the selection of k sensors to cover the new position,
some of the selected sensors (say k′′ sensors) may belong to T and the others (say
k − k′′) have to be added among the neighbors of T . This situation is addressed in
the following section.

5.5.2.3 For a Target Crossing a Non-k-covered Zone

In this case, only k′ (k′ ∅ k) detection signals are received by the intermediate sensor
IS, which should proceed at the construction of the probable current zone of presence
of the target the way the preceding algorithms does. Then, it starts the selection of
the remaining (k − k′) required signals. Then, it orders the movement of the k sensor
providing k monitoring to the target. For this purpose, IS executes the following
steps:

(1) IS computes the most likely zone of target presence; let zt using the k′ reports
from k′ sensors denoted by s1, . . . , sk′ .

(2) For each i ∅ k′, IS selects the nearest k sensors to si . It computes the related
k-Voronoi cell V (k)

i and deduces the intersection zt ∪ V (k)
i

(3) For each i ∅ k′, IS gets the number of sensors k′′
i , 0 ∅ k′′

i < k that have sent
detection signals to IS.

(4) IS classifies the k-Voronoi cells according to the value of k′′
i . The greater k′′

i is,

the most important is the probability of presence of the target in V (k)
i . A small

value of k′′
j induces that the target is going in or out the cell V (k)

i .

(5) IS selects the nearest k sensors involved in ∂V (k)
i , where k′′

i = max j∅k′ k j , and
guides the (k−k′′) added sensors (among the nearest sensors to si ) tomove toward
∂V (k)

i . For that, it sends them a mobility instruction including the probability of
presence of the target. A mobility instruction is defined by the 3-tuple.

(ri , αi , πi )
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where ri ⊆ δ(si , p) such that ∀q ∃ ∂V (k)
i : δ(si , p) ⊆ δ(si , q) and i =

argmax x̂si y where x, y ∃ vi and vi is the set of the vertices of the boundary
∂Vi , πi = k′′/k is the probability of presence of the target in δV (k)

i .

To enhance coveragewhile keepingmoremobility freedom,we implement a group
mobility model in which ground sensors move in groups in order to preserve the k-
coverage. To this purpose, for eachmobility step, the sensors define randomly groups
of k members for each, the latter are not required to be the nearest neighbors. Each
group chooses randomly a head which chooses the first mobility step. The remaining
members of the group take into account this choice to determine their next mobility
step. By this way, every sensor’s mobility will depend on the integrating group.
Furthermore, a sensor may move from one group to another in each mobility step.
This model enables the definition of overlapping k-Voronoi groups which increases
the guarantee of having a k-coverage.

5.5.2.4 Simplified Mobility Model

We propose hereafter a mobility model which is based on the use of simple Voronoi
diagram to identify and reduce coverage holes.

This model can serve to implement a mobility strategy where a sensor node looks
for one or more neighbors that are at least 2φ-distant from it. If such nodes exist, the
sensor node moves toward the most distant neighbor, denoted by n f , with a distance
δ(si ,n f )−2φ

2 .
The following result extends this strategy to the case where the monitored region

is required to be k-covered using the simplified algorithm. It uses a set, denoted by
X (si , V (S)), which defined the set of intersection points expressed as follows:

X (si , V D(S)) = D
(
V D(S \ {si })

) ∪ γ(si , Rsi ) (5.10)

where D, for a region R → R
3, denotes the boundary of R.

For the sake of parsimony, we do not provide proofs for these corollaries in this
chapter.

Lemma 5.1 For si in S, if |N(si , V D(S)
)| < k, where | · | denotes set cardinality,

then V D(si ) is not k-covered. For si in S, if |X(si , V D(S)
)| < k, then V D(si ) is not

k-covered.

This lemma shows how simple Voronoi diagrams can be used to detect the cover-
age holes based on the distance between the sensor node and the edges of its Voronoi
cell. It is based on the concept that the Voronoi tessellation is a partition of the points
belonging to the monitored area according to their proximity to the sensor nodes. In
other terms, if a point is not detected by the sensor node located at the generator of the
Voronoi cell it belongs to, it cannot be detected by any other sensor node. If a sensor
detects that the distance to one among the edges of its Voronoi edges is more than
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its coverage range, it has to move toward this edge to cover the corresponding hole.
The uncovered can therefore be gradually reduced using this distributed strategy.
However, a sensor node can detect that more than one of its Voronoi neighbors do
not fulfill the condition of the lemma; it will therefore move toward the most distant
neighbor.

The major advantage of this strategy, with respect to the advanced strategy, is that
it relies on simple Voronoi diagrams to deal with k-coverage, while the advanced
model proposed in the previous section is based on order k Voronoi tessellations
which are more complex to build.

A more accurate comparison between the two models will be carried out in
Sect. 5.7.

5.5.3 Multitarget Tracking

The two tracking models presented in the above can be extended to the tracking of
multiple targets. To describe the extension, let us assume, for the sake of clarity, only
two targets are detected by sensors in S. Let zt and zt ′ be the reported positions.

The extension of the simplified model considers two cases:

• Only one node has detected the presence of the two targets: In that case, the sensor
keeps monitoring one of the targets and invites the nearest neighbor to the second
target to monitor the second and provides it with relevant information it collects.

• More than one node have detected the targets: In that case, two sensors among
those that have detected the targets are selected to keep monitoring the targets
independently.

On the other hand, the k-mobility model extends in following way: If d nodes
detect the targets, these sensors are divided into two subsets, each in charge of
monitoring one target; then, the subsets are extended so that any of them contains k
sensors.

5.6 Complexity Analysis of Coverage Management and Tracking

5.6.1 Complexity

In this section, we analyze the complexity of the different algorithms we have devel-
oped in the previous sections to detect and locate holes or to repair coverage holes.
Our approach to estimate the complexity can be based on the following metrics:

• The number of messages exchanged between the sensors during the execution of
the algorithm.

• The number of additions and deletions of simplices to the Vietoris complex.
• The number of sensor movements made during the execution of an algorithm.
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Some other operations can be added for a more accurate estimation of complexity.
These metrics may include, for example, the number of storing operations made at
the node level to update the related data structures. The messages exchanged during
the execution of an algorithm can be of different types. In particular, they can be sent
to a neighbor to tell it to change its status from internal (to the Vietoris complex) to
external (i.e., on the boundary ofVietoris complex). They also canbeused to construct
the initial boundary of Rips complex, or used to reduce the external boundary. They
also can be sent after the retraction or the deflation of a simplex, or they are sent by
a leader node the command a coordinated movement of sensors.

For the sake of clarity, we will focus on the complexity on the detection and
counting of coverage hole. In this case, let n be the number of sensors in S, and
e be the number of 1-simplices, f the number of 2-simplices, and t the number
3-simplices in RIPS complex of S. Let also p the number of vertices at the initial
boundary of the Rips complex.

The number of messages sent during the execution of the algorithm should be
lower or equal to the number of messages exchanged if all the polyhedra (external
and internal) have been retracted first and that after deflation, all the facets have been
retracted. In that case, one can state that the number N1 of messages sent is given by:

N = p + ( f − p) + (e − ( f − p)) = p + e ∅ |S| + e

where p is the number of external vertices. This result can be deduced from the
preceding and the fact that p ∅ |S|.

Now let us assume, without loss of generality, that the deployment of sensors
(initial and current) guarantees that every node in the Rips complex of S has at most
v neighbors (v is a fixed value coping with the volume of the area to monitor and the
radius of coverage). Then, one can conclude that e is smaller than v × |S|, and we
deduce that:

N ∅ n + v × |S| ∅ (v + 1)n

Let us notice that the assumption is not mandatory and a direct proof can be given.
This shows that the algorithm to detect and count the coverage holes has a linear
complexity.

5.6.2 Extending Results

The results presented in the previous sections can be extended in two dimensions: the
type of the sensors and the occurrence of obstacles in the domain under monitoring.

Coping with obstacles. The algorithms developed in the preceding sections can
be adapted to the occurrence of obstacles. Obstacles in monitored 3D areas may
complicate seriously the role of monitoring sensors, increase their power consump-
tion, and limit the coverage efficiency. Two particular objects have to be modified in
our algorithms. First, the coverage holes that have to be counted should not contain



102 5 Coverage Assessment and Target Tracking

obstacles. One can assume for this that the sensors are able to recognize an obstacle.
Second, the mobility model used to increase coverage or to provide tracking should
consider moving the sensor vertically as an alternative.

Coping with semispherical. The algorithms developed in the preceding sections
can be extended to semispherical sensors (sensor having a semispherical covered
area). It isworth noticing, at this point, that this type is sufficiently general to represent
various sensor-based applications. In particular, the model can be used to represent
fire and smoking-based sensors or camera-based sensors. To cope with semispherical
sensors, one can notice that the concepts of Vietoris–Rips and Voronoi diagram can
be extended, so that coverage holes can be handled in a similar way. However, when
repairing a hole, the mobility model of the sensor should include rotating a sensor
to increase the coverage of a specific area by the sensor.

It is worth noticing that the additions made to the developed algorithms do not
modify significantly the complexity of the algorithms. In particular, the complexity of
the hole counter remains linear (as shown in the simulation discussed in the following
section).

5.7 Experimental Results

In this section, we carry out a set of experiments to prove the efficiency of the
proposed techniques. We first address the coverage hole problem by evaluating the
performance of the higher-order Voronoi-based strategy for coverage optimization.
To this purpose, we define a metric representing the ratio of uncovered area with
respect to the total area of themonitored region. Second, we assess the target tracking
approach by estimating the maximum linear distance that can be made by a hostile
target without being detected. Finally, we evaluate the complexity of our coverage
control and mobility techniques. We use the number of transmitted messages as a
main criterion to estimate this complexity since data transmission consumes much
more power than computational steps in WSNs.

5.7.1 Coverage Control and Hole Reduction

The first experiment aims at evaluating the hole reduction strategy based on three-
dimensional Voronoi tessellations with spherical coverage. We define the following
metric to evaluate the performance of hole reduction.

μ = Sum_of_hole_volumes

Total_volume_of_the_monitored_area
(5.11)

Figure 5.1 shows the evolution of μ according to the number of iterations of the
coverage hole reduction algorithm. We compared the Voronoi-based hole reduction
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Fig. 5.1 Evolution of the uncovered area proportion according to time. The left plot corresponds
to the spherical coverage, while the right one is related to the semispherical coverage

strategy with the homotopy-based strategy proposed in Sect. 5.4. It can be noticed
that the increase in terms of normalized uncovered proportion is about 15% when
the number of iteration is low. In addition, when the number of iteration exceeds 30,
both approaches performwell since the normalized sum of uncovered areas becomes
higher than 90%.

A similar experiment is conducted for vector-guided sensors, assuming that at
every step of the iteration, the mobility is provided along with an orientation of the
vector to achieve better coverage. Figure 5.1 shows the evolution of μ according
to the number of iterations of the coverage hole reduction algorithm and compares
it to the Voronoi-based hole reduction strategy with the homotopy-based strategy.
One can conclude that while the homotopy-based approach is less complex, since
linear for detection and localization, theVoronoi-basedmethod reaches better results.
In addition, a comparison between the results obtained for spherical sensors and
semispherical sensors shows the following:

• The approach performs better with spherical sensors for the first iterations. Indeed,
the normalized uncovered proportion reaches 70%, with spherical sensors, after
10 iterations, while it stays under 10% for semispherical sensors.

• The approach performs the same for both types of sensors after 30 iterations.

This can be explained by the fact that the density of sensors is the same for both
types; therefore, it takes more time for the semi-spherical sensors to reduce the holes.

5.7.2 Mobility Modeling

The ALUL, denoted by L(x, θ), gives an approximation of the average distance that
can be made by a target, moving in 3D space, before being detected by the sensor
network. The metric ALULm(x, t) representing the ALUL in a location x at time t
is given by:
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Fig. 5.2 Local node density
distribution after 5 mobility
iterations

ALULm(x, t) =

⎧⎧⎪
⎧⎧⎨
0, ifx is covered by a sensor.

1
(2π)2

π
2⎩

− π
2

2π⎩
0
L(x, θ1, θ2, t)dθ1dθ2, otherwise.

From the performance evaluation perspective, ALU Lm(A) provides information
on the coverage-preserving capabilities of the mobility model and the long-term
behavior of the mobility model.

In order to visually illustrate the performance of coverage reduction models, we
use the local node density distribution that gives the number of sensors that cover
every point of the monitored region. Figure 5.2 shows that, in the simple context
where one target is moving within a 100 m2-size monitored zone, the coverage
degree considerably varies according proximity to the mobile target. In fact, after
5 mobility steps, the local sensor density is less than 1 in regions that are far from
the target location (which is (70, 30)) and reaches 2.7 in points that are close to this
target.

More interestingly, Fig. 5.3 addresses the casewhere two targets are presentwithin
the region of interest. We notice that the sensors are initially uniformly distributed.
The density then increases for the three following iterations in the regions where
the targets are. In fact, this proves that our tracking scheme is precise enough to
distinguish between the two different targets.

To confirm these results, we used the ALULm metric to evaluate the evolution
of the uncovered area with respect to time. In fact, this allows to know whether
uncovered regions are created due to the density increase in the zones that are close
to the target. We compared our scheme to four knownmobility models, which are the
random walk model, the random way-point model, the random direction model, and
the Gauss-Markov model. The results of this comparison are depicted in Fig. 5.4.
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Fig. 5.3 Illustration of 3 mobility iterations for a context where two targets are considered. a
Iteration 2, b Iteration 3, c Iteration 4

We notice that the proposed mobility models, denoted by Advanced Voronoi-
based mobility model (AVBMM) and distributed Voronoi-based mobility model
(DVBMM), clearly outperform the existing models. They also return a better perfor-
mance than the density-preserving mobility model. This is because the latter model,
despite its ability to guarantee a nearly uniform node density within the monitored
area, does not take into account the presence of hostile targets in the zone of interest.

5.7.3 Complexity Evaluation

In this section, we evaluate the communication overhead resulting from the proposed
retract-based coverage control approach. To this end, we only consider the complex-
ity of the detection and localization steps in our algorithm and do not address the
complexity of the repair step, since the repair step complexity is mainly dependent
on the first deployment. However, one can easily deduce that if the deployment guar-
antees that holes size do not exceed a threshold, then the linear complexity can be
verified.
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Fig. 5.4 Evolution of the ALULm metric according to time

Fig. 5.5 Illustration of complexity. The leftplot shows thefirst iteration,while the rightone specifies
the second iteration

We considered that the dimensions of the monitored zone are 10m × 10m ×
3m. We varied the number of nodes deployed within this zone, and we measured
the number of messages required to set up our coverage control protocol. We first
supposed that all sensor nodes have a spherical coverage of range 0.5m. Figure 5.5
depicts the number of messages for densities ranging from 0.5 sensors per m2 to 5
sensors per m2. The major remark is that this number is nearly linear with respect to
the number of sensors per area unit.
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Moreover, we considered the case where sensors have semispherical coverage
(with the same range). Figure 5.5 shows that the communication overhead is also
linear in this situation but with a smoother slope.

One can deduce the following statements from the aforementioned figures:

• The number of exchanged messages is independent of the density. It is close
to 4 for the spherical sensors and 10 for semispherical sensors. This fact may
appear strange; however, one can notice that when a deployment is performed, the
detection and location will only search for holes surrounded by the Vietoris space.
The latter is reduced when the density is low.

• The number of messages exchanged by the semispherical sensors for detection
and localization is 2.5 times higher than the number observed for spherical. Two
reasons can be mentioned for this. First, the area covered by a semispherical
sensors is half the area covered by spherical sensors. Second, the guiding vectors
is randomly oriented.

5.8 Summary and Outlook

This chapter developed a low-complexity approach to detect and localize sensing
holes in 3D spaces. It also constructed efficient algorithms to repair holes and track
(multiple targets). Our approach has built on two concepts, the Vietoris complex
and the Voronoi diagram, and demonstrated that the technique called retraction by
deformation achieves low-complexity algorithms for the detection of coverage holes
in WSNs.

Our approach can be easily extended to more general sensors, for which the
Vietoris complex and the Voronoi diagram can be defined. Such sensors can be
called conical sensors or vector-guided sensors and can represent camera sensors.
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Part III
Security Issues



Chapter 6
A Stochastic Preserving Scheme
of Location Privacy

Continued advances in positioning technologies and mobile devices have increased
the demand for location-based services (LBSs) in distributed sensor networks. Every
LBS provider requires the sensor nodes to report their location information as the
quality of service strongly depends on the information.

6.1 Introduction

One major concern in the wide deployment of LBSs is how to preserve the location
privacy of the sensor nodes while providing them with a service based on their loca-
tions. LBS providers can be victims of the privacy attackers to track some sensors, or
they themselves may abuse the sensors’ location information for malicious purposes
[1, 2]. There are two general approaches dealing with the location privacy issue in
LBSs. First, we address the couple of approaches, and then, we will focus on our
contribution.

6.1.1 k-Anonymity Cloaking

In this approach, instead of sending one single node’s LBS request to the server,
including her exact location, k-anonymity cloaking employs a trusted third party
who collects k neighboring nodes’ requests and sends them all together to the LBS
service provider. This approach does not address the case that the node density is high;
in this case, the k nodes’ locations may be very close to each other, and hence, this
approach will still reveal the node’s location privacy to some extent. This approach
was originally proposed by Gruteser and Grunwald [3]. Their work may lead to large
service delay if there are not enough nodes requesting LBSs. Later on, Gedik and Liu
[4] designed a joint spatial and temporal cloaking algorithm which collects k LBS
requests, each from a different node in a specified cloaking area within a specified
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time period, and then sends them to the service provider. A negative point in their
work is that if there are only less than k requests within the predefined time period,
the nodes’ requests will be blocked.

In 2009, Meyerowitz and Choudhury [5] tried to improve the service accuracy by
predicting the nodes’ paths andLBSqueries and send the results to nodes’ before they
submit queries. The main drawback of their approach is the network delay occurred
because of high communication overhead. Formore treatment on k-anonymity cloak-
ing, see [6–11].

6.1.2 Location Obfuscation

We can divide the solutions with this approach into two categories: solutions that
preserve the location privacy of the nodes by inserting some fake LBS requests and
those which deviate a node’s location from the real one in her LBS request to protect
her location privacy.

As examples of the solutions in the earlier category, consider the schemes proposed
by Kido et al. [12], Lu et al. [13], and Duckham and Kulik [14]. In these schemes,
the node generates some fake locations (dummies) using some dummy generation
methods and submits the dummies and its own location to the LBS server. The server
analyzes every submitted query and replies properly. The major drawback of the
solutions in this category is that the server is used inefficiently and may become the
system bottleneck. Additionally, nodes’ location privacy is not preserved in advance.

The second category of solutions like the ones proposed by Ardagna et al. [15],
Pingley et al. [16], and Damiani et al. [17] hide nodes’ real locations, e.g., by sub-
mitting shifted locations. Such schemes trade service accuracy for location privacy.

Finally, in 2013,Ming Li et. al. [2] proposed a location privacy-preserving scheme
called n-CD which does not use a third party and provides a trade-off between the
privacy level and the system accuracy (concealing cost).

6.1.3 Our Contribution

In this chapter, we hide a node’s location in an anonymity zone obtained by the
Voronoi diagram of an n-gon in a 2D plane. The scheme enables the node to specify
the minimum level of privacy (∂) that it desires or the maximum error tolerance (α)
that it is willing to accept when informing the services of its location. The level of
privacy is defined as the probability that the node’s location would not be revealed
by the privacy attackers if they know the anonymity zone and the way in which
the scheme is constructed. Moreover, the error tolerance is defined as the maximum
Euclidean distance between any two points in the anonymity zone in which the node
is located. We will theoretically find a trade-off between ∂ and α in the following
form: The complement of the privacy level is inversely proportional to the cube of
the error tolerance, i.e.,
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1 − ∂ = 1

∂(α3)
(6.1)

The mentioned relation is obtained for the static node (the case addressed by all
the works mentioned in the literature review).

Additionally, in this chapter,weuse a randomwalk in the formofBrownianmotion
process to model the node’s mobility on the plane. To the best of our knowledge,
it is the first work that proposes a location privacy-preserving scheme that hides a
mobile node’s location and movement path in 2D plane by considering a reasonable
stochastic model of his/her movement based on the Brownian motion process. We
theoretically obtain the instantaneous privacy level of the mobile node. The time
complexity of our approach is linear (O(n) where n is the number of vertices of the
initial polygon).

6.2 Problem Specification

Let c denote a mobile node in an Euclidean plane that wants to use a LBS which
is offered by some service provider (say A). For example, assume that client c is
interested in finding a close by five-star restaurant and server A is a search engine
which helps its clients regarding their queries. The server asks any client for its
current location and the places in which the client is interested (such as restaurants
and cinemas). Additionally, it may ask for some criteria like how far the interested
places should be.

Location Privacy Issue

An important challenge in using the mentioned LBS is how to preserve the location
privacy of the clients. A good solution is that server A does not ask for the exact
location of its client; instead, a subset of the Euclidean plane Sc ⊆ R

2 containing
the client’s location can be sent to the server. In this way, the server can estimate the
client’s location and provide some service based on the estimated location. Addi-
tionally, the location privacy of the client will be preserved to some extent.

The Query Format

Regarding the aforementioned concerns, the format of the query message which
client c generates and sends to the service provider A is in the following form:

Qc = ∀IDc, Sc, Ic, Cc∈ (6.2)
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where IDc is the client’s unique ID, Sc ⊆ R
2 denotes the client’s anonymity zone in

which the client is located and parameters Ic and Cc, respectively, denote the list of
places in which the client is interested and the criteria which help the service provider
filter the query results properly.

Anonymity Zone

Considering a Cartesian coordinate system in the plane, we assume that the mobile
node obtains its instantaneous coordinates

(
xc(t), yc(t)

)
using another service (like

GPS). As mentioned before, we assume that server A needs to know an estimation
of the client’s coordinates on the plane when the query is sent; however, because of
the location privacy issues, node c does not want to reveal its exact instantaneous
location represented by locc(t) = (xc(t), yc(t)

)
. This urges the client to generate

some “anonymity zone” Sc ⊆ R
2 and include it in the query message (instead of

sending its precise location). Assuming that the query is sent in time t = 0, this is
the case that

locc(0) ∃ Sc (6.3)

Attack Model

We assume that node c occupies the area inside and on the circle of radius r and
center locc(t) for any time t . As the service only knows that the client is inside the
anonymity zone Sc, it guesses pointG in the anonymity zone. This guess is successful
if and only if1:

G ∃ B
(
locc(t), r

)
(6.4)

for every t . Assuming that node c is located in the anonymity zone Sc for every
t ∅ T , the probability that service A successfully guesses the location of node c in
given time t ∅ T , i.e., it finds node c on the plane, is equal to

Pr
[
G ∃ B

(
locc(t), r

)∣∣∣locc(t) ∃ Sc

]
∪t

Definition 6.1 Considering the anonymity zone Sc, node c has the privacy level of
∂(t) at moment t , if this is the case that

1 In this chapter, the set of points inside or on the circle C(O, r) is called the ball of center O and
radius r and represented by B(O, r).
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P r
[
G ∃ B

(
locc(t), r

)∣∣∣locc(t) ∃ Sc

]
∅ 1 − ∂(t) (6.5)

Moreover, node c has the privacy level ∂ in time interval [0, T ], if this is the case
that

∂ ∅ ∂(t) ∪t ∃ [0, T ] (6.6)

In fact, the privacy level is a real number in [0, 1] andquantifies the locationprivacy
of the node by bounding the probability that the node’s location gets revealed. The
higher value of ∂(t) specifies that the location privacy is preserving with higher
certainty.

Moreover, service A needs to know the node’s location roughly so that the node
can use the LBS. We assume that if the service obtains the node’s location with
higher precision, or equivalently lower error, the quality of service will increase.
This precision is quantified using Definition 6.2.

Definition 6.2 The maximum error tolerance of anonymity zone Sc is represented
by α and defined in the following way:

α = sup
Y,Z∃Sc

||Y − Z || (6.7)

where ||Y − Z || denotes the Euclidean distance between points Y, Z ∃ R
2.

If the maximum error tolerance of an anonymity zone increases, the node’s loca-
tion will be revealed with lower probability. In other words, there is a trade-off
between the error tolerance and the privacy level of an anonymity zone. In the fifth
section, we address this relation in detail.

6.3 The Proposed Scheme for Static Node

In this section, we propose a randomized algorithm to generate an initial anonymity
zone S′

c for static node c which is not moving in time interval [0, T ], i.e.,

locc(t) = O ∪t ∅ T

where O ∃ R
2 is an arbitrary point in the Euclidean plane. We will then make the

main anonymity zone Sc using zone S′
c and then analyze the privacy level of the

generated Sc in the next section.
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Fig. 6.1 The way that
Algorithm 6.1 generates the
initial anonymity zone S′

c. In
this example, n = 7. The red
area specifies the set of all
the possible polygons created
by Algorithm 6.1 in the form
∀A0, A1, . . . , An−1∈. The blue
area determines the initial
anonymity zone

2π
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−→
P

S′
c

In Algorithm 6.1, we assume that every point is specified using a polar coordinate
system of origin O and polar axis

−→
P .

Algorithm 6.1: ZoneGenerator
Input: User’s location O & odd integer n → 3 & scale factor μ > 0
Output: The initial anonymity zone S′

c
for i ← 0 to n − 1 do1

d ← Unif
(
μ cos( 2πn ),μ

)
;2

Ai ← The point of coordinates
(
d, iπ

n

)
;3

li ← The perpendicular bisector of O Ai ;4

ln ← l0;5

for i ← 0 to n − 1 do6

Ci ← li ∞ li+1;7

S′
c ← the polygon with the sequence of vertices8

∀C0 = Cn, C1 = Cn+1, C2, C3, . . . , Cn−1∈;
As you see in Algorithm 6.1, we first draw the n-gon ∀A0, A1, . . . , An−1∈ such

that for every i = 0, . . . , n−1, the distance between the node’s location and point Ai

is a uniformly random distributed variable in interval (μ cos(2π/n),μ) where μ is a
positive real number called the scale factor and n is a positive odd integer not equal
to one (see Fig. 6.1 for illustration). Then, point Ci is obtained by intersecting the
perpendicular bisectors of line segments O Ai

2 and O Ai+1 (assume that An = A0).

2 The line segment between points A ∃ R
2 and B ∃ R

2 is represented by symbol AB.
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The following lemma shows that the sequence of points mentioned in line 10 of
Algorithm 6.1 specifies a convex polygon of identical angles.

Lemma 6.1 The sequence of points obtained by line 8 of Algorithm 6.1 constructs
a convex n-gon containing locc(t) = O (for every t ∅ T ) such that all of its angles
are identical:

�Ci Ci+1Ci+2 = π − 2π

n
∪i = 0, . . . , n − 1 (6.8)

Proof Consider the following figure which specifies the way of finding point Ci . In
this figure,

2π
n

C i

A i

X

A i+1

M YO

N

M X ≤ O Ai and |O M | = |M Ai |. Consequently, this is the case that

|O X | = |O M |
cos
( 2π

n

)

= |O Ai |
2 cos

( 2π
n

)

As a result, regarding the second and third lines of Algorithm 6.1, we obtain the
following inequalities:

μ cos

⎧
2π

n

⎪
< |O Ai | < μ

→μ
cos
( 2π

n

)
2 cos

( 2π
n

) < |O X | <
μ

2 cos
( 2π

n

)

which implies that

|O X | >
μ

2
(6.9)

Additionally, since |O N | = |O Ai+1|/2, this is the case that
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μ cos

⎧
2π

n

⎪
< |O Ai+1| < μ

→μ
cos
( 2π

n

)
2

< |O N | <
μ

2

Regarding the recent inequality and Inequality 6.9, we obtain the following relation:

|O N | < |O X | (6.10)

Moreover, using the similar analysis, we get

|O M | < |OY | (6.11)

Concerning Inequalities 6.10 and 6.11, we conclude that the perpendicular bisectors
of line segments O Ai and O Ai+1 meet each other at Ci . Additionally, considering
quadrangle O MCi N , this is the case that

�MCi N = 2π − π

2
− π

2
− 2π

n
= π − 2π

n

which implies that the quadrangle O MCi N is convex.
As the above analysis is true for every i = 0, . . . , n − 1, the proof is complete. ∧≥

Construction of the Anonymity Zone

Let S′
c = ∀C0 = Cn, C1, . . . , Cn−1∈ denote the n-gon obtained by Algorithm 6.1.

Additionally, assume that for every i = 0, . . . , n, (xi , yi ) represents the coordinates
of point Ci in the Cartesian coordinate system of origin O and x-axis

−→
P which

was mentioned before (note that (x0, y0) = (xn, yn)). Area Sc ⊆ R
2 is called the

anonymity zone of node c and defined in the following form:

Sc =
⎨
(x, y) ∃ R

2
∣∣∣∪i = 0, . . . , n − 1 :

y > −h−1
i x + yi + h−1

i xi ⊥
y < −h−1

i x + yi+1 + h−1
i xi+1

⎩
(6.12)

where
hi = yi+1 − yi

xi+1 − xi
∪i = 0, . . . , n − 1
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Now,we contract some notations. Assume that lines l+0 , l−0 , l+1 , l−1 , . . . , l+n−1, l−n−1
are defined in the following form:

l+i = ⎤(x, y) ∃ R
2
∣∣y = −h−1

i x + yi + h−1
i xi
⎥

(6.13)

and
l−i = ⎤(x, y) ∃ R

2
∣∣y = −h−1

i x + yi+1 + h−1
i xi+1

⎥
(6.14)

for every i = 0, . . . , n − 1. Note that

{
l+i ≤ Ci Ci+1

l−i ≤ Ci Ci+1
(6.15)

In addition, let X+
i and X−

i represent the Euclidean distance between point O and
lines l+i and l−i , respectively (for every i = 0, . . . , n − 1).

Now, we prove that if we know that the static node c is located in zone S′
c, we

deduce that locc(t) ∃ Sc for every t ∃ T , i.e., it is impossible that locc(t) ∃ S′
c − Sc.

Lemma 6.2 If Sc and O, respectively, denote the anonymity zone of static node c
and its location in interval [0, T ], this is the case that

O ∃ Sc (6.16)

Proof Let S′
c = ∀C0 = Cn, C1, . . . , Cn−1∈ represent the initial anonymity zone

corresponding to Sc. Additionally, assume that perp(Z , Ci Ci+1) denotes the unique
line passing through the arbitrary point Z ∃ R

2 and perpendicular to line
←−−→
Ci Ci+1.3

Consider the set of points like Z ∃ R
2 that hold the following condition:

perp(Z , Ci Ci+1) ∞ ←−−→
Ci Ci+1 ∃ Ci Ci+1

i.e., the set of points that the line passing through them and perpendicular to li =←−−→
Ci Ci+1 is crossing li at a point between Ci and Ci+1.

Regarding the Cartesian coordinates of every Ci , it is easy to see that

Ai = {Z ∃ R
2|perp(Z , Ci Ci+1) ∞ ←−−→

Ci Ci+1 ∃ Ci Ci+1}
=
⎨
(x, y) ∃ R

2
∣∣∣y > −h−1

i x + yi + h−1
i xi

⊥ y < −h−1
i x + yi+1 + h−1

i xi+1

⎩
∪i = 0, . . . , n − 1

3 The line passing through points A, B ∃ R
2 is denoted by symbol

←→
AB.
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Ci

Ci +1

A i

Additionally, since the midpoint of line segment O Ai+1 is the intersection of line←→
O Ai and line segment Ci Ci+1, this is the case that

locc(t) = O ∃ Ai ∪i = 0, . . . , n − 1, t ∅ T

or equivalently,

O ∃
n−1⋂
i=0

Ai

On the other hand, concerning Eq. 6.12, area Sc can be written in the following form:

S′ =
n−1⋂
i=0

Ai

which implies that
O ∃ Sc

∧≥
Lemma 6.3 Assuming that S′

c denotes the initial anonymity zone, the anonymity
zone Sc obtained by Eq. 6.12 is a convex m-gon of the following form:

S′ = ∀D0 = Dm, D1, D2, . . . , Dm∈ (6.17)

such that for every i = 0, . . . , m −1, Di Di+1 is a line segment on line l ′i ∃ L− ∩ L+
where

L− = {l−j | j = 0, . . . , n − 1}

and
L+ = {l+j | j = 0, . . . , n − 1}

Additionally, for every i, j = 0, . . . , m − 1, this is the case that

(i ≈= j) ↔ (l ′i ≈= l ′j ) (6.18)
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Proof Proof by construction (see the following greedy algorithm). ∧≥
Here, we propose a greedy algorithm which finds the anonymity zone Sc

corresponding to a given S′
c obtained by Algorithm 6.1. In this algorithm, let X

denote the following set of random variables:

X = X + ∩ X −

where
X + = {X+

i |i = 0, . . . , n − 1}

and
X − = {X−

i |i = 0, . . . , n − 1}

Also, let π′ : {1, 2, . . . , 2n} �→ X represent the increasingly sorted permutation4 of
X members. Additionally, assume that lx denotes the corresponding line of random
variable x ∃ X (we assume that variable X+

i corresponds to line l+i and so on).

Phase 1: Consider lines lπ′
1
, lπ′

2
, and lπ′

3
. If for every pair of lines selected out

of the three, they are not parallel, we will obtain three intersecting points which
make triangle �D0D1D2

5; otherwise, we use line lπ′
4
to construct the convex

quadrangle D0D1D2D3 using the intersecting points. In the earlier case, we set
variable i0 = 4; however, in the second one, i0 = 5.
Phase 2: After constructing the triangle or the convex quadrangle, we call it as the
“basic polygon” and do the following procedure for i = i0, i0 + 1, . . . , 2n: if line
lπ′

i
does not cross the basic polygon or cross it in a single point, start the procedure

with the next i ; otherwise, since line lπ′
i
partitions the plane into two half planes

“accepted” and “rejected,” mark every vertex of the basic polygon as “accepted”
if it is located in the “accepted” half plane and “rejected” otherwise. Also, mark
the intersections of the polygon and line lπ′

i
as two6 additional accepted vertices.

Reconstruct the basic polygon using the accepted vertices (including the pair of
new ones).
The algorithm outputs the basic polygon after we finish running the above proce-
dure for i = 2n.

See Fig. 6.2 as an illustration of how we generate the anonymity zone using the
mentioned greedy algorithm.

4 Permutation π on set M is a total, one-to-one function in the form π : {1, 2, . . . , |M |} �→ M such
that πi denotes the member of M corresponding to integer i ∅ |M |.
5 Although it is possible that the three lines meet each other in one point, the probability of such
event is zero. Henceforth, we do not consider such case.
6 As the basic polygon is convex for every i → i0, its edges have at most two intersecting points
with a straight line.
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Fig. 6.2 The way of
constructing the anonymity
zone Sc using the initial one
(S′

c) obtained by Algorithm
6.1

C0

C1
C2

C3

C4

C5

C6

− →
P

S′
c

Sc

D0D1D2

D3 D4
D5

6.4 Location Retrieval of a Static Node

As mentioned before, service provider A does not know the exact location of the
node; however, it knows that the node is located inside area Sc. Additionally, it is
aware of the details of the procedure in which area Sc has been generated. This
awareness makes the server guess reasonably and not choose a point where it is
impossible for the node to be.

In this section, we deduce some probabilistic information regarding the location
of the static node from the fact that locc(t) ∃ Sc for every t ∅ T , assuming that
the node is not moving in time interval [0, T ]. Since our analysis is restricted to the
nonmobile node, we assume that locc(t) = O for some point O ∃ R

2.

6.4.1 Probability Distribution Over the Anonymity Zone

Let Hi = |O Mi | where Mi ∃ R
2 represents the midpoint of line segment O Ai for

every i = 0, . . . , n − 1 (note that Hn = H0). Taking the second and third lines of
Algorithm 6.1 into account, it is easy to see that for every i = 0, . . . , n − 1, Hi is a
uniformly distributed random variable of the following form:

Hi ∼ Unif

⎧
μ

2
cos

⎧
2π

n

⎪
,
μ

2

⎪
(6.19)

Here, we present two lemmas to conclude the probability distribution of random
variables X+

i and X−
i .
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Fig. 6.3 Calculating the
values of X+

i+1 and X−
i based

on Hi and Hi+1

2π
n θ

Ci

MiO

Mi+1

Lemma 6.4 For every i = 0, . . . , n − 1, random variables X+
i+1 and X−

i can be
written in the following form:

X+
i+1 = Hi − cos

( 2π
n

)
Hi+1

sin
( 2π

n

) ∪i = 0, . . . , n − 1 (6.20)

and

X−
i = Hi+1 − cos

( 2π
n

)
Hi

sin
( 2π

n

) ∪i = 0, . . . , n − 1 (6.21)

Note that X+
0 = X+

n and H0 = Hn.

Proof Consider Fig. 6.3, concerning the contracted notations, this is the case that




|O Mi | = Hi

|O Mi+1| = Hi+1

|Ci Mi | = X−
i

|Ci Mi+1| = X+
i+1

Since O Mi ≤ Mi Ci , we obtain:

|OCi | = |O Mi |
cos(θ)

= Hi

cos(θ)

Additionally, as O Mi+1 ≤ Mi+1Ci , we get

|OCi | = |O Mi+1|
cos
( 2π

n − θ
)

= Hi+1

cos
( 2π

n − θ
)
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0 μ
2 sin(

2π
n )

4
μ sin( 2π

n
) (μ

2 tan(
π
n),

4
μ sin( 2π

n
)
)

x

y

y = fX+
i+1

(x)

Fig. 6.4 Plot of the probability distribution function of random variable X+
i+1

This leads to the following equation:

Hi

cos(θ)
= Hi+1

cos
( 2π

n − θ
)

By simplifying the equation, this is the case that

tan(θ) = Hi+1 − cos
( 2π

n

)
Hi

sin
( 2π

n

)
Hi

Henceforth, we can find the closed form of X−
i :

X−
i = |C Mi |

= tan(θ)|O Mi |
= tan(θ)Hi

= Hi+1 − cos
( 2π

n

)
Hi

sin
( 2π

n

)

Using the similar way, we can conclude the closed form of X+
i+1. ∧≥

Lemma 6.5 For every i = 0, . . . , n − 1, if fX+
i+1

and fX−
i

, respectively, denote the

probability distribution functions of X+
i+1 and X−

i , this is the case that fX+
i+1

(x) =
fX−

i
(x) and Fig. 6.4 specifies the plot of y = fX+

i+1
(x):
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Proof Regarding Lemma 6.4, this is the case that




X+
i+1 = Hi − cos

( 2π
n

)
Hi+1

sin
( 2π

n

)
X−

i = Hi+1 − cos
( 2π

n

)
Hi

sin
( 2π

n

)

or equivalently, 


Hi = X+
i+1 + cos

( 2π
n

)
X−

i

sin
( 2π

n

)
Hi+1 = cos

( 2π
n

)
X+

i+1 + X−
i

sin
( 2π

n

)

This implies that

fX+
i+1X−

i
(x, y) =

∣∣∣∣det
⎧[

csc
( 2π

n

)
cot
( 2π

n

)
cot
( 2π

n

)
csc
( 2π

n

)
]⎪∣∣∣∣

× fHi Hi+1

(
x + cos

( 2π
n

)
y

sin
( 2π

n

) ,
cos
( 2π

n

)
x + y

sin
( 2π

n

)
⎫

= fHi Hi+1

(
x + cos

( 2π
n

)
y

sin
( 2π

n

) ,
cos
( 2π

n

)
x + y

sin
( 2π

n

)
⎫

Since Hi and Hi+1 are independent and uniformly distributed (see Relation 6.19),
this is the case that

fHi Hi+1(h1, h2) =




1
μ2 sin4( π

n )
h̄ ∃
(

μ cos
⎬
2π
n

⎭
2 ,

μ
2

⎫2

0 otherwise

Consequently, the joint probability distribution function of X+
i+1 and X−

i is obtained
by the following equation:

fX+
i+1X−

i
(x, y) =

{ 1
μ2 sin4( π

n )
(x, y) ∃ S

0 otherwise
(6.22)

where S ⊆ R
2 is the subset of 2D plane in the following form:

S =
{

(x, y)
∣∣μ cos

( 2π
n

)
2

∅ x + cos
( 2π

n

)
y

sin
( 2π

n

) ∅ μ

2
⊥ μ cos

( 2π
n

)
2

∅ cos
( 2π

n

)
x + y

sin
( 2π

n

) ∅ μ

2

}
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As we are interested in the marginal probability distribution functions, this is the
case that

fX+
i+1

(x) =
+∞∫

−∞
fX+

i+1X−
i
(x, y)dy (6.23)

and

fX−
i
(y) =

+∞∫
−∞

fX+
i+1X−

i
(x, y)dx (6.24)

By simplifying Eqs. 6.23 and 6.24, we conclude the lemma. ∧≥

6.4.2 Computing the Privacy Level

As mentioned before, if service provider A guesses that node c is in point G ∃ R
2,

the probability that this guess is successful is equal to

Pr
[
G ∃ B

(
O, r
)∣∣∣O ∃ Sc

]

The following lemma proposes an upper bound on this value.

Lemma 6.6 Assuming that X ′
i denotes a random variable equal to the Euclidean

distance between the node’s location (O) and line l ′i (which contains line segment
Di Di+1) for every i = 0, . . . , m − 1, this is the case that

Pr
[
G ∃ B

(
O, r
)∣∣∣O ∃ Sc

]

∅ Pr
[ m−1∧

i=0

(
X ′

i ∃ [πi − r, πi + r ])]

where πi is the Euclidean distance from point G to line l ′i for every i = 0, . . . , m −1.

Proof Let dist(Z , l ′i ) denote the Euclidean distance from arbitrary point Z ∃ R
2 to

line l ′i (for every i = 0, . . . , m − 1). Assuming that G ∃ B(O, r), this is the case
that

|OG| ∅ r (6.25)

Since dist(G, l ′i ) = πi for every i = 0, . . . , m − 1, Inequality 6.25 and the triangular
inequality lead to the following relation:

πi − r ∅ dist(G, l ′i ) ∅ πi + r ∪i = 0, . . . , m − 1
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or equivalently,
m−1∧
i=0

(X ′
i ∃ [πi − r, πi + r ])

Additionally, regarding Lemma 6.2, service provider A knows that O ∃ Sc and does
not guess a point inside area S′

c − Sc. Henceforth, we conclude the lemma. ∧≥
Now, we focus on finding the exact value of the following probability which is a

function of variables π0, π1, . . . , πm−1:

Pr
[ m−1∧

i=0

(
X ′

i ∃ [πi − r, πi + r ])] = f (π0, π1, . . . , πm−1)

Here is the approach of computing the value of function f in four steps:

Step 1
Rewrite the mentioned probability as a product of m terms:

Pr
[ m−1∧

i=0

(
X ′

i ∃ [πi − r, πi + r ])]

= Pr
[
X ′
0 ∃ [π0 − r, π0 + r ]⎛×

Pr
[
X ′
1 ∃ [π1 − r, π1 + r ]∣∣X ′

0 ∃ [π0 − r, π0 + r ]⎛×
...

Pr
[
X ′

m−1 ∃ [πm−1 − r, πm−1 + r ]∣∣
m−2∧
i=0

X ′
i ∃ [πi − r, πi + r ]⎛

Step 2
Simplify the conditional probabilities obtained in the previous step using the follow-
ing lemma.

Lemma 6.7 For every i = 0, . . . , m − 1, random variable X ′
i is independent of

Y ∃ X − (DX ′
i
∩ {X ′

i }) where set DX ′
i

is defined in the following form:

DX ′
i
=
{

{X+
j+1, X+

j+3, X−
j , X−

j+1, X−
j+2} ifX ′

i = X+
j+2

{X−
j , X−

j+2, X+
j+1, X+

j+2, X+
j+3} ifX ′

i = X−
j+1

Proof As H0, H1, . . . , Hn−1 are mutually independent, we directly conclude the
lemma using Eqs. 6.20 and 6.21. ∧≥

To simplify the kth conditional probability, we eliminate the conditions on those
variables that do not belong to DX ′

k
, i.e.,
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Pr
[
X ′

k ∃ [πk − r, πk + r ]∣∣
k−1∧
i=0

X ′
i ∃ [πi − r, πi + r ]⎛

= Pr
[
X ′

k ∃ [πk − r, πk + r ]∣∣ ∧
i=0,...,k−1

X ′
i ∃DX ′

k

X ′
i ∃ [πi − r, πi + r ]⎛

Step 3
After eliminating the unnecessary conditions in Step 2, we compute the probabilities
with no conditions using Lemma 6.5:

Pr
[
X ′

i ∃ [πi − r, πi + r ]⎛ =
πi +r∫

πi −r

fX ′
i
(x)dx

Step 4
In the last step, we compute the conditional probabilities. Every conditional proba-
bility has at most |DX ′

i
| = 5 conditions and is computed similar to one of these three

cases (note that δi = (πi − r, πi + r) for every i = 0, . . . , m − 1):

(i)

Pr
[
X−

k ∃ δi
∣∣X+

k+1 ∃ δ j
⎛ = Pr

[
X−

k ∃ δi ⊥ X+
k+1 ∃ δ j

⎛
Pr
[
X+

k+1 ∃ δ j
⎛

Probability Pr
[
X−

k ∃ δi ⊥ X+
k+1 ∃ δ j

⎛
is computed using the joint probability

distribution function obtained in Eq. 6.22. Additionally, Pr
[
X+

k+1 ∃ δ j
⎛
is

computed using Lemma 6.5.
(ii)

Pr
[
X−

k ∃ δi
∣∣X+

k ∃ δ j
⎛ = Pr

[
X−

k ∃ δi ⊥ X+
k ∃ δ j

⎛
Pr
[
X+

k ∃ δ j
⎛

Value of Pr
[
X+

k ∃ δ j
⎛
is computed using Lemma 6.5. In addition, regarding

Eqs. 6.20 and 6.21, this is the case that

Pr
[
X−

k ∃ δi ⊥ X+
k ∃ δ j

⎛ = Pr
[ Hk+1 − cos

( 2π
n

)
Hk

sin
( 2π

n

) ∃ δi ⊥ Hk−1 − cos
( 2π

n

)
Hk

sin
( 2π

n

) ∃ δ j

]

=
μ
2∫

h= μ
2 cos

⎬
2π
n

⎭

μ
2∫

h′= μ
2 cos

⎬
2π
n

⎭
Pr

⎜
h − (πi + r) sin

( 2π
n

)
cos
( 2π

n

) < Hk

<
h − (πi − r) sin

( 2π
n

)
cos
( 2π

n

) ⊥ h′ − (π j + r) sin
( 2π

n

)
cos
( 2π

n

) < Hk

<
h′ − (π j − r) sin

( 2π
n

)
cos
( 2π

n

) ⎛× ( 1

μ sin2
(

π
n

) )2dh dh′
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=
μ
2∫

h= μ
2 cos

⎬
2π
n

⎭

μ
2∫

h′= μ
2 cos

⎬
2π
n

⎭

μ
2∫

h′′= μ
2 cos

⎬
2π
n

⎭

∣∣∣⎬max
⎤h − (πi + r) sin

( 2π
n

)
cos
( 2π

n

) ,
h′ − (π j + r) sin

( 2π
n

)
cos
( 2π

n

) ⎥
,

min
⎤h − (πi − r) sin

( 2π
n

)
cos
( 2π

n

) ,
h′ − (π j − r) sin

( 2π
n

)
cos
( 2π

n

) ⎥⎭∣∣∣
× ( 1

μ sin2
(

π
n

) )3dh dh′ dh′′

(iii)

Pr
[
X−

k ∃ δi
∣∣(X+

k , X+
k+2) ∃ δp × δq

⎛ = Pr
[
(X−

k , X+
k , X+

k+2) ∃ δi × δp × δq
⎛

Pr
[
(X+

k , X+
k+2) ∃ δp × δq

⎛

= Pr
[
X−

k ∃ δi
⎛
Pr
[
X+

k ∃ δp
∣∣X−

k ∃ δi
⎛

Pr
[
(X+

k ) ∃ δp
⎛

× Pr
[
X+

k+2 ∃ δq
∣∣(X−

k , X+
k ) ∃ δi × δp

⎛
Pr
[
X+

k+2 ∃ δq
⎛

Additionally, since random variables X+
k+2 and X+

k are independent, this is the
case that

Pr
[
X+

k+2 ∃ δq
∣∣(X−

k , X+
k ) ∃ δi × δp

⎛ = Pr
[
X+

k+2 ∃ δq
∣∣X−

k ∃ δi
⎛

The result of above calculations can be simplified using the methods described
in the first and second cases.

After finding function f (π0, π1, . . . , πm−1), the privacy level of the static node’s
location is obtained in the following way:

f (π0, π1, . . . , πm−1) = Pr

⎜
m−1∧
i=0

(
X ′

i ∃ [πi − r, πi + r ])
⎝

Lemma 6.6−−−−−−−→
f (π0, π1, . . . , πm−1) → Pr

[
G ∃ B

(
O, r
)∣∣∣O ∃ Sc

]
Definition 6.1−−−−−−−−→

∂ → 1 − f (π0, π1, . . . , πm−1)

Regarding the described approach which has four steps, the time complexity of
calculating the value of function f (π0, π1, . . . , πm−1) is O(m) = O(n).
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6.5 Privacy Level Versus Error Tolerance

As mentioned before, there is a trade-off between the values of ∂ and α. In this
section, we first bound the values of ∂ and α for a static node. Then, we obtain a
relation between their values, which specifies the trade-off between them.

6.5.1 Upper Bound on the Maximum Error Tolerance

Now, we present a lemma to bind the value of maximum error tolerance for the
anonymity zone Sc which was described previously:

Lemma 6.8 Assuming that the node c is located in point O ∃ R
2 in time interval

[0,T ], this is the case that

Sc ⊆ B
⎬

O,μ sin
⎬π

n

⎭⎭
(6.26)

Proof Regarding the definition of the anonymity zone in Eq. 6.12, we claim the
following relation:

Sc ⊆ M =
⎨
(x, y) ∃ R

2
∣∣∣∪i = 0, . . . , n−1 : y > wi x+zi ⊥y < wi x+z′

i

⎩
(6.27)

where line L+
i : y = wi x + zi (L−

i : y = wi x + z′
i ) is parallel to line l+i (l−i )

and the Euclidean distance between the node’s location and L+
i (L−

i ) is
μ
2 sin
( 2π

n

)
(L+

i ≈= L−
i ).

In order to prove the claim (Relation 6.27), note that since X+
i ∅ μ

2 sin
( 2π

n

)
and

X−
i ∅ μ

2 sin
( 2π

n

)
, the deterministic lines L+

i and L−
i are, respectively, the extreme

cases of the stochastic lines l+i and l−i .
Because of the symmetry, polygon M is a regular 2n-gon which has an inscribed

circle of radius μ
2 sin
( 2π

n

)
. Now, we use Fig. 6.5 to compute the radius of the polygon

circumcircle:
In Fig. 6.5, we obtain the following equation:

|O M| = |O H |
cos
(

π
n

)

Since the inscribed circle is C
(
O,

μ
2 sin
( 2π

n

))
, this is the case that
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Fig. 6.5 Illustration of lines
L+

i and L+
i+1 which are used

to prove Lemma 6.8

O

H

H ′

2π
n

π
n

M
L +
i

L +
i+1

|O H | = μ

2
sin

⎧
2π

n

⎪

→|O M | = μ sin
⎬π

n

⎭

Because of the symmetry, the value of |O M | is equal to the circumradius7 of polygon
M. Consequently, we conclude that

Sc ⊆ M ⊆ B
⎬

O,μ sin
⎬π

n

⎭⎭

∧≥
Lemma 6.8 implies that

sup
Y,Z∃Sc

||Y − Z || ∅ 2μ sin
⎬π

n

⎭

Definition 6.2−−−−−−−−→ α ∅ 2μ sin
⎬π

n

⎭

6.5.2 Lower Bound for the Privacy Level Value

Consider Eq. 6.20 again. For every i = 0, . . . , n − 1, we can write Hi as a linear
function of the following form:

Hi = sin

⎧
2π

n

⎪ ∑n+i−1
j=i (kn)

j−i X+
j+1

1 − (kn)n
∪i = 0, . . . , n − 1 (6.28)

7 Radius of the circumscribed circle.
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such that
X+

j+n = X+
j ∪ j = 0, . . . , n − 1 (6.29)

and

kn = cos

⎧
2π

n

⎪
sin

⎧
2π

n

⎪

Since for every i = 0, . . . , n − 1, Hi is equal to |O Ai |/2, and the length
of line segment O Ai is obtained by the second line of Algorithm 6.1, variables
H0, H1, . . . , Hn−1 are mutually independent. Consequently, the joint probability
distribution function of these random variables is obtained by the following equa-
tion:

fH0,H1,...,Hn−1(h0, h1, . . . , hn−1) =
n−1⎟
i=0

fHi (hi ) (6.30)

Moreover, regarding Relation 6.19, every Hi is uniformly distributed. Assuming that
fu represents the probability distribution function of the uniform random variable
mentioned in Relation 6.19, Eq. 6.30 will be simplified in the following form:

fH0,H1,...,Hn−1(h0, h1, . . . , hn−1) =
n−1⎟
i=0

fu(hi ) (6.31)

As we have already computed every Hi in the form of a linear function of
X+
0 , X+

1 , . . . , X+
n−1 (see Eq. 6.28), we obtain the following joint probability dis-

tribution function:

fX+
0 ,X+

1 ,...,X+
n−1

(x0, x1, . . . , xn−1) (6.32)

= |JF | · fH0,H1,...,Hn−1(y0, y1, . . . , yn−1)

such that |JF | is the absolute value of the determinant of the following Jacobin
matrix:

JF =

⎠


ζF0
ζx0

ζF0
ζx1

· · · ζF0
ζxn−1

ζF1
ζx0

ζF1
ζx1

· · · ζF1
ζxn−1

...
...

. . .
...

ζFn−1
ζx0

ζFn−1
ζx1

· · · ζFn−1
ζxn−1




(6.33)

where

yi = Fi (x0 = xn, x1 = xn+1, . . . , xn−1 = x2n−1) (6.34)

= sin
( 2π

n

)
1 − (kn)n

n+i−1∑
j=i

(kn)
j−i x j+1 ∪i = 0, . . . , n − 1
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and
x j+n = x j ∪ j = 0, . . . , n − 1 (6.35)

By replacing the mutual probability distribution function of variables H0, H1, . . . ,

Hn−1 in Eq. 6.32 with its equivalent expression, we obtain the following relation:

fX+
0 ,X+

1 ,...,X+
n−1

(x0, x1, . . . , xn−1) (6.36)

= |JF | ×
n−1⎟
i=0

fu


 sin

( 2π
n

)
1 − (kn)n

n+i−1∑
j=i

(kn) j−i x j+1




Moreover, regarding Eq. 6.34, matrix JF is simplified in the following form:

JF = [Ji j ]n×n (6.37)

where

Ji j =




sin
( 2π

n

)
(kn) j−i−1

1 − (kn)n
i < j

sin
( 2π

n

)
(kn)n+ j−i−1

1 − (kn)n
i → j

(6.38)

where kn is defined as before. Regarding Eqs. 6.37 and 6.38, it is easy to see that

|JF | =
(

sin
( 2π

n

)
1 − (kn)n

⎫n

×

∣∣∣∣∣∣∣∣∣
det

⎠


(kn)n−1 1 · · · (kn)
n−2

(kn)n−2 (kn)
n−1 · · · (kn)

n−3

...
...

. . .
...

1 kn · · · (kn)
n−1




∣∣∣∣∣∣∣∣∣

=
(

sin
( 2π

n

)
1 − (kn)n

)n × (1 − (kn)n

⎫n−1

= sinn
( 2π

n

)
1 − (kn)n

= sinn
( 2π

n

)
1 − sinn

( 2π
n

)
cosn
( 2π

n

)

As you see, the value of |JF | in Eq. 6.36 does not depend on any of the variables
x0, x1, . . . , xn−1, i.e.,

|JF | = Jn = sinn
( 2π

n

)
1 − sinn

( 2π
n

)
cosn
( 2π

n

) (6.39)



134 6 A Stochastic Preserving Scheme of Location Privacy

Additionally, concerning Eqs. 6.21 and 6.28, every X−
i can be written as the

following linear function:

X−
i = Gi (X+

0 , X+
1 , . . . , X+

n−1)

=
(
(kn)n−1 − cos

( 2π
n

) )
X+

j+1

1 − (kn)n
(6.40)

+

n+ j−1∑
q= j+1

(kn)
q− j−1

(
1 − kn cos

( 2π
n

) )
X+

q+1

1 − (kn)n

for every i = 0, . . . , n − 1.
Now, we present a theorem which proposes a lower bound for the privacy level

value of a static node.

Theorem 6.1 If ∂ denotes the privacy level of the static node in time interval [0,T ],
this is the case that

∂ →


1 − an

⎬
r
μ

⎭n
n ∅ m

1 − bn

⎬
r
μ

⎭m
otherwise

(6.41)

for some real sequences an and bn.

Proof As for every i = 0, . . . , n − 1, X ′
i is the distance of the node’s location from

line l ′i and line l ′i belongs to set L+ ∩ L−, this is the case that

{X ′
i |i = 0, . . . , m} ⊆ ({X+

j | j = 0, . . . , n − 1} ∩ {X−
j | j = 0, . . . , n − 1}) (6.42)

In other words, for every i = 0, . . . , m − 1, there exists some j = 0, . . . , n − 1
such that

X ′
i = X+

j (6.43)

or,
X ′

i = X−
j = G j (X+

0 , X+
1 , . . . , X+

n−1) (6.44)

Henceforth, we can write every X ′
i as a linear function of variables X+

0 , X+
1 , . . . ,

X+
n−1. This implies that

m−1∧
i=0

(
X ′

i ∃ [πi − r, πi + r ])↔ (X+
0 , X+

1 , . . . , X+
n−1) ∃ A (6.45)

where A ∃ R
n is a n-dimensional polyhedron obtained using Eq. 6.43, 6.44, and

6.45. Consequently, this is the case that
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Pr
[ m−1∧

i=0

(
X ′

i ∃ [πi − r, πi + r ])] = Pr
[
(X+

0 , X+
1 , . . . , X+

n−1) ∃ A
]

Regarding Eq. 6.36 which specifies the joint probability distribution function of
variables X+

0 , X+
1 , . . . , X+

n−1, we obtain the following equation:

Pr
[
(X+

0 , X+
1 , . . . , X+

n−1) ∃ A
]

=
∫

· · ·
∫

(x0,x1,...,xn−1)∃A
fX+

0 ,X+
1 ,...,X+

n−1
(x0, x1, . . . , xn−1)dx0dx1, . . . , dxn−1

=
∫

· · ·
∫

(x0,x1,...,xn−1)∃A
Jn ·

n−1⎟
i=0

fu(yi )dx0dx1, . . . , dxn−1

Consequently,

Pr
[ m−1∧

i=0

(
X ′

i ∃ [πi − r, πi + r ])] =
∫

· · ·
∫

(x0,x1,...,xn−1)∃A
Jn ·

n−1⎟
i=0

fu(yi )dx0dx1, . . . , dxn−1

Regarding Lemma 6.6 and the recent equations, we obtain the following inequality:

Pr
[
G ∃ B

(
O, r
)∣∣∣O ∃ Sc

]
∅ Pr

[ m−1∧
i=0

(
X ′

i ∃ [πi − r, πi + r ])]

∅
∫

· · ·
∫

(x0,x1,...,xn−1)∃A
Jn ·

n−1⎟
i=0

fu(yi )dx0dx1, . . . , dxn−1

∅ Jn ·
∫

· · ·
∫

(x0,x1,...,xn−1)∃A

n−1⎟
i=0

fu(yi )dx0dx1, . . . , dxn−1

The recent inequality proposes the following privacy level for the static node:

∂ → 1 − Jn ·
∫

· · ·
∫

(x0,x1,...,xn−1)∃A

n−1⎟
i=0

fu(yi )dx0dx1, . . . , dxn−1 (6.46)

where

fu(x) =




2

μ
(
1 − cos

( 2π
n

) ) x ∃ (μ2 cos ( 2πn ) , μ
2

)

0 otherwise

(6.47)
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By replacing the value of fu(x) in Inequality 6.46, we will get the following
simpler form:

∂ → 1 − Jn

(
1

μ sin2
(

π
n

)
⎫n

|A ∞ B| (6.48)

where B ∃ R
n is defined in the following form:

B =
{

x̄
∣∣∪i = 0, . . . , n − 1: μ

2
cos

⎧
2π

n

⎪
< Fi (x̄) <

μ

2

}

and A is obtained by m pairs of inequalities in either of these two forms:

∪i = 0, . . . , m − 1:
{

πi − r ∅ x j ∅ πi + r if X ′
i = X+

j

πi − r ∅ G j (x̄) ∅ πi + r if X ′
i = X−

j

where each pair specifies the area between two parallel n-dimensional planes.
Now, assume that n ∅ m. Polyhedron A is the intersection of m areas such

that each one is the area between two parallel n-dimensional planes (if X ′
i = X+

j ,

the parallel planes are P+
i : x j → πi − r and P−

i : x j ∅ πi + r ; otherwise,
P+

i : G j (x̄) → πi − r and P−
i : G j (x̄) ∅ πi + r ). Since Gi is a linear function, the

distance between the parallel planes is a factor of r . As the result,

|A| ∅ a′
nrn

which implies that

1 − ∂ ∅ Jn

(
1

μ sin2
(

π
n

)
⎫n

|A ∞ B|

∅ Jn

(
1

μ sin2
(

π
n

)
⎫n

|A|

∅ Jn

(
1

μ sin2
(

π
n

)
⎫n

a′
nrn

∅ an

⎧
r

μ

⎪n

Now, assume the case that n > m. Let X ′ denote the following set of random
variables:

X ′ = {X ∃ X +|∪i = 0, . . . , m − 1 : X ′
i ≈= X} (6.49)

we define n-dimensional polyhedron A′ ⊆ R
n in this form: x̄ ∃ A′ if and only if

x̄ ∃ A and
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0 ∅ xi ∅ μ sin2
⎬π

n

⎭
if X+

i ∃ X ′ (6.50)

Using the similar deduction that we did for n ∅ m, we obtain that

|A′| ∅ b′
nrmμn−m

which implies that

1 − ∂ ∅ Jn

(
1

μ sin2
(

π
n

)
⎫n

|A ∞ B|

∅ Jn

(
1

μ sin2
(

π
n

)
⎫n

|A′|

∅ Jn

(
1

μ sin2
(

π
n

)
⎫n

b′
nrmμn−m

∅ bn

⎧
r

μ

⎪m

∧≥
Regarding Theorem 6.1, if we assume that r ∅ μ, since m → 3 and n → 3, this is

the case that

1 − ∂ ∅ en

⎧
r

μ

⎪3
(6.51)

for some real positive sequence en .

6.5.3 Trade-Off Between the Privacy Level
and the Error Tolerance

In this section, we obtained the following inequality for the maximum error tolerance
of anonymity zone Sc:

α ∅ 2μ sin
⎬π

n

⎭

which implies that

μ → α

2 sin
(

π
n

)

Additionally, regarding the computed lower bound for the value of the privacy level
in Inequality 6.51, we obtain that
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1 − ∂ ∅ bn

⎧
r

μ

⎪3

∅ bn


 r

α
2 sin( π

n )




3

which implies that

1 − ∂ ∅ σn

⎬r

α

⎭3
(6.52)

Inequality 6.52 specifies the trade-off between the maximum error tolerance and
the privacy level of the anonymity zone.

As a numerical example, if we need to increase the low threshold of the privacy
level from 99 to 99.9 %, we have to increase the maximum error tolerance by factor
of 3

√
10 � 2.15. In order to do this, we only need to multiply the value of scale

factor μ by 2.15.

6.6 Location Privacy Preserving of a Mobile Node

In this section, an extension of our scheme to the mobile node will be proposed.
We restrict our consideration to the case that the node has subsequent random close
by destinations. More precisely, the node has a sequence of independently chosen
random destinations in the form D0 = locc(0),D1,D2,D3, . . . such that for every
i → 0, the node moves from point Di ∃ R

2 to Di+1 ∃ R
2 in time interval [ti , ti+1)

such that t0 = 0,
0 < ti+1 − ti ∅ δ ∪i = 0, 1, . . .

for some small real number δ > 0, and assuming that the maximum speed of the
node is represented by Ms , this is the case that

δMs ˆ μ

or equivalently, the distance between two consequent destinations ||Di+1 − Di || is
negligible (compared to the scale factor).

6.6.1 A Stochastic Model of the Node Movement

We define random processes xt and yt in the following form:

{
xt = xc(t) − xc(0)
yt = yc(t) − yc(0)

∪t → 0 (6.53)
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where
(
xc(t), yc(t)

)
denotes the Cartesian coordinates of the node’s location in time

t (locc(t)).
Considering the aforementioned assumptions regarding the node movement on

the plane, we estimate xt and yt using random processes ẋt and ẏt which have the
following properties:

1. Maps g: t �→ ẋt (φ) and g′: t �→ ẏt (φ) are continuous for every φ and t > 0.
2. For every k ∃ N, assuming that 0 ∅ t1 ∅ t2 ∅ · · · ∅ tk , the random variables

belonging to the following set are mutually independent:

{(ẋti+1 − ẋti )| i = 1, . . . , k − 1}

The same proposition is true for the following set:

{(ẏti+1 − ẏti )|i = 1 . . . k − 1}

3. Every increment of processes ẋt and ẏt is stationary, i.e., the probability distrib-
utions of ẋt − ẋs and ẏt − ẏs only depend on t − s for every t, s > 0.

Note that since locc(t) = (xt + xc(0), yt + yc(0)
)
, the first mentioned property

is also true for xt and yt :




xt = lim
w→t+

xw = lim
w→t−

xw

yt = lim
w→t+

yw = lim
w→t−

yw

However, the other two properties are reasonably estimated regarding processes xt

and yt .
Random processes ẋ and ẏ are known as Brownian motion processes, and this is

the case that {
ẋt ∼ N (0,ψ2t)
ẏt ∼ N (0,ψ2t)

(6.54)

Regarding Eq. 6.53, we find an estimation stochastic process for xc(t) and yc(t):

{
xc(t) ∼ N (xc(0),ψ2t)
yc(t) ∼ N (yc(0),ψ2t)

(6.55)

6.6.2 Proposed Scheme for a Mobile Node

Now, we extend our scheme to the case that node c is assumed to be moving in the
way mentioned previously.

Algorithm 6.2 proposes an appropriate procedure which generates an anonymity
zone for mobile node c at time t = 0 and keeps it updated as the node is moving for
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every t → 0. In this procedure, we assume that functionAZGenerator(O, n,μ, γn)

works in the following way: Consider Algorithm 6.1 which generates the initial
anonymity zone for a static node. If we change the second line of this algorithm to
the formofExpression 6.56,we obtain another function calledMobileZoneGener-
ator(O, n,μ, γn) where γn is a positive real number less than 2 sin2

(
π
n

)
. Function

AZGenerator returns the zone generated by applying the greedy algorithm men-
tioned in Section three on the output zone of function MobileZoneGenerator.

d ← Unif

⎧
μ

⎧
cos

⎧
2π

n

⎪
+ γn

⎪
,μ

⎪
(6.56)

Algorithm 6.2: MobileZoneUpdater
Input: privacy level ∂ & odd integer n → 3 & scale factor μ > 0 &

γn < 2 sin2
(

π
n

)
Sc ← AZGenerator(locc(0), n,μ, γn);1

while true do2

t ← Now();3

//Function Now() returns the current time t → 0.
if locc(t) ∃ Sc then4

continue ;5

Sc ← AZGenerator(locc(t), n,μ, γn);6

6.6.3 Computing the Instantaneous Privacy Level

Now, we find a lower bound for the node’s privacy level at any given time t > 0.
Without loss of generality, we assume that the anonymity zone Sc has been generated
at time t = 0 and kept unchanged in time interval [0, T ].

Pr
[
G ∃ B

(
locc(t), r

)∣∣∣locc(t) ∃ Sc

]
=
∫∫
(x0,y0)

∃Sc

Pr
[
G ∃ B

(
locc(t), r

)∣∣∣locc(0)

= (x0, y0) ⊥ locc(t) ∃ Sc

]

× Pr
[
locc(0) = (x0, y0)

⎛
dx0dy0 (6.57)

Additionally, considering the estimated stochastic model of locc(t) = (xc(t), yc(t)
)

in Relation 6.55, we obtain the following relations:
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Pr
[
G ∃B

(
locc(t), r

)∣∣∣ locc(0) = (x0, y0)

⊥locc(t) ∃ Sc

]

= Pr
[
locc(t) ∃ B

(
G, r
)∣∣∣ locc(0) = (x0, y0)

⊥locc(t) ∃ Sc

]

=
∫∫
(x,y)

∃B(G,r)

Pr
[(

xc(t), yc(t)
) = (x, y)

∣∣∣(xc(t), yc(t)
) ∃ Sc

]

∅
∫∫

(x,y)
∃B(G,r)

Pr
[(

xc(t), yc(t)
) = (x, y)

]

Pr
[(

xc(t), yc(t)
) ∃ Sc

]

Since for every t ∅ T, xc(t) and yc(t) are normal distributed random variables of
mean x0 and y0, respectively, this is the case that (O = locc(0) = (x0, y0)):

∫∫
(x,y)

∃B(G,r)

Pr
[(

xc(t), yc(t)
) = (x, y)

]
∅
∫∫
(x,y)

∃B(O,r)

Pr
[(

xc(t), yc(t)
) = (x, y)

]

which implies that

Pr
[
G ∃ B

(
locc(t), r

)∣∣∣ locc(0) = (x0, y0)

⊥locc(t) ∃ Sc

]
∅
∫∫

(x,y)
∃B(O,r)

Pr
[(

xc(t), yc(t)
) = (x, y)

]

Pr
[(

xc(t), yc(t)
) ∃ Sc

]
(6.58)

∅
∫ r

r ′=0

∫ 2π
θ=0

r ′
2πψ2 · e− r ′2

2ψ2 t dr ′dθ

Pr
[(

xc(t), yc(t)
) ∃ Sc

]

Here, we make a claim which will be proved later:

B
(
O, rmin

) ⊆ Sc (6.59)

where
rmin = μγn

2 sin
( 2π

n

) (6.60)

Regarding Relation 6.59, we obtain the following inequality:
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Pr
[
G ∃ B

(
locc(t), r

)∣∣∣ locc(0) = (x0, y0)

⊥locc(t) ∃ Sc

]
∅
∫ r

r ′=0

∫ 2π
θ=0

r ′√
2πtψ2

· e− r ′2
2tψ2 dr ′dθ

Pr
[(

xc(t), yc(t)
) ∃ B

(
O, rmin)

]

∅
∫ r

r ′=0

∫ 2π
θ=0

r ′√
2πtψ2

· e− r ′2
2tψ2 dr ′dθ

∫ rmin
r ′=0

∫ 2π
θ=0

r ′√
2πtψ2

· e− r ′2
2tψ2 dr ′dθ

(6.61)

∅ 1 − e
− r2

2tψ2

1 − e
− r2min

2tψ2

Using Eq. 6.57 and Inequality 6.61, we conclude that

Pr
[
G ∃B

(
locc(t), r

)∣∣∣locc(t) ∃ Sc

]

∅1 − e
− r2

2tψ2

1 − e
− r2min

2tψ2

×
∫∫
(x0,y0)

∃Sc

Pr
[
locc(0) = (x0, y0)

⎛
dx0dy0 (6.62)

Regarding Lemma 6.6, we replace Pr
[
locc(0) = (x0, y0)

⎛
by its upper bound in

Inequality 6.62:

Pr
[
G ∃B

(
locc(t), r

)∣∣∣locc(t) ∃ Sc

]

∅1 − e
− r2

2tψ2

1 − e
− r2min

2tψ2

×
∫∫
(x0,y0)

∃Sc

Pr
[ m−1∧

i=0

X ′
i = dist((x0, y0), l ′i )

⎛
dx0dy0 (6.63)

where line l ′i and function dist are defined as the same as what mentioned previously.
In addition, similar to the proof of Theorem 6.1, we can get the following inequality:

Pr

⎜
m−1∧
i=0

X ′
i = dist((x0, y0), l ′i )

⎝
∅ ςn

⎧
r

μ

⎪3
(6.64)

for some real positive sequence ςn . Inequalities 6.63 and 6.64 imply that

Pr
[
G ∃ B

(
locc(t), r

)∣∣∣locc(t) ∃ Sc

]
∅ 1 − e

− r2

2tψ2

1 − e
− r2min

2tψ2

× ςn

⎧
r

μ

⎪3
|Sc|
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It is easy to see that Lemma 6.8 is also true for the mobile case, i.e., area Sc belongs
to ball B

(
O,μ sin(π

n )
)
. As the result, this is the case that

|Sc| ∅
∣∣∣B ⎬O,μ sin

⎬π
n

⎭⎭∣∣∣
∅ πμ2 sin2

⎬π
n

⎭

Henceforth, we obtain a lower bound for the instantaneous privacy level of mobile
node c:

∂(t) ∅ πμ2 sin2
⎬π

n

⎭
ςn

1 − e
− r2

2tψ2

1 − e
− r2min

2tψ2

×
⎧

r

μ

⎪3

or,

∂(t) ∅ ς ′
n
1 − e

− r2

2tψ2

1 − e
− r2min

2tψ2

×
⎧

r3

μ

⎪
(6.65)

for some positive real sequence ς ′
n .

To complete our analysis, we need to show Relation 6.59. Remember the notation
X ′

i which specifies the Euclidean distance between the static node’s location O and
the i th edge of the polygon Sc for every i = 0, . . . , m − 1. As mentioned before,
for the mobile case, we change the second line of Algorithm 6.1 to Expression 6.56.
The change we made in this algorithm will increase the minimum possible value of
random variable X ′

i from zero to rmin:

rmin = μγn

2 sin
( 2π

n

)

Henceforth, we conclude Relation 6.59.

6.6.4 Concealing the Movement Path

In order to preserve the location privacy of a mobile node, not only we need to
hide its instantaneous location, but we have to conceal its movement path to some
extent. In our stochastic scheme, we quantify the privacy level of the node’s path by
calculating a probabilistic low threshold for random variable T that is the length of
the time interval in which function MobileZoneUpdater (Algorithm 6.2) keeps
the anonymity zone unchanged.

As mentioned before, B(O, rmin) ⊆ Sc. This implies that

sup
t∅t ′

⎤||locc(t) − locc(0)||
⎥ ∅ rmin → T → t ′
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Subsequently, we obtain the following proposition:

sup
t∅t ′

⎤
xc(t) − xc(0)

⎥ ∅ rmin√
2

⊥ sup
t∅t ′

⎤
yc(t) − yc(0)

⎥ ∅ rmin√
2

(6.66)

→ T → t ′

Now, we defined processes Mt and M ′
t in the following form:




Mt ′ = sup
t∅t ′

⎤
xc(t) − xc(0)

⎥

M ′
t ′ = sup

t∅t ′

⎤
yc(t) − yc(0)

⎥ (6.67)

Concerning Proposition 6.66, we obtain the following inequality:

Pr
[
T → t ′

⎛ → Pr
[

Mt ′ ∅ rmin√
2

]
× Pr

[
M ′

t ′ ∅ rmin√
2

]
(6.68)

Processes Mt and M ′
t , respectively, represent the running maximum8 of processes(

xc(t) − xc(0)
)
and
(
yc(t) − yc(0)

)
which have been previously estimated by two

Brownian motion processes of variance ψ2. As the result, this is the case that

{
Pr
[
Mt ∅ m

⎛ = erf
( m√

2tψ2

)
Pr
[
M ′

t ∅ m
⎛ = erf

( m√
2tψ2

) (6.69)

Consequently, we obtain a probabilistic low threshold for random variable T :

Pr
[
T → t ′

⎛ → erf2
⎧

rmin

2
√

t ′ψ2

⎪
(6.70)

6.7 Summary and Conclusion

In this chapter, we defined an initial anonymity zone for any static node first. Then,
we shrank the zone using some geometric deductions. As mentioned, the shrunk
anonymity zone is a convex polygon. We proposed an approach for finding the
stochastic distribution of the node over the obtained anonymity zone. Additionally,
we described the trade-off existing between the privacy level and the error tolerance
of our scheme by obtaining thresholds for both the node’s privacy level and the error

8 Running maximum Mt of the Brownian motion process Bt is a random process which has the
following cumulative density function at the arbitrary time t > 0 (ψ2 represents the variance of
process Bt ): FMt (m) = erf( m√

2tψ2
) for every m → 0.
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tolerance. Moreover, we extended our scheme for a mobile node with random walk
on the 2D plane. In the mobile version, our scheme guarantees a specified minimum
value for the location privacy level while assuring to hide the node’s movement path.
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