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Preface

The idea of writing this book entitled “Cognitive Networked Sensing and Big Data”
started with the plan to write a briefing book on wireless distributed computing
and cognitive sensing. During our research on large-scale cognitive radio network
(and its experimental testbed), we realized that big data played a central role. As a
result, the book project reflects this paradigm shift. In the context, sensing roughly
is equivalent to “measurement.”

We attempt to answer the following basic questions. How do we sense the radio
environment using a large-scale network? What is unique to cognitive radio? What
do we do with the big data? How does the sample size affect the sensing accuracy?

To address these questions, we are naturally led to ask ourselves: What math-
ematical tools are required? What are the state-of-the-art for the analytical tools?
How these tools are used?

Our prerequisite is the graduate-level course on random variables and processes.
Some familiarity with wireless communication and signal processing is useful.
This book is complementary with our previous book entitled “Cognitive Radio
Communications and Networking: Principles and Practice” (John Wiley and Sons
2012). This book is also complementary with another book of the first author
“Introduction to Smart Grid” (John Wiley and Sons 2014). This current book can be
viewed as the mathematical tools for the two Wiley books.

Chapter 1 provides the necessary background to support the rest of the book.
No attempt has been made to make this book really self-contained. The book will
survey many latest results in the literature. We often include preliminary tools from
publications. These preliminary tools may be still too difficult for many of the
audience. Roughly, our prerequisite is the graduate-level course on random variables
and processes.

Chapters 2—5 (Part 1) are the core of this book. The contents of these chapters
should be new to most graduate students in electrical and computer engineering.

Chapter 2 deals with the sum of matrix-valued random variables. One basic
question is “how does the sample size affect the accuracy.” The basic building block
of the data is the sample covariance matrix, which is a random matrix. Bernstein-
type concentration inequalities are of special interest.
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Chapter 3 collects together the deepest mathematical theorems in this book.
This chapter is really the departure point of this whole book. Chapter 2 is put
before this chapter since we want the audience to understand how to deal with
the basic linear functions of matrices. The theory of concentration inequality
tries to answer the following question: Given a random vector x taking value in
some measurable space X (which is usually some high dimensional Euclidean
space), and a measurable map f : X — R, what is a good explicit bound on
P(|f (x) — Ef (x)| > t)? Exact evaluation or accurate approximation is, of course,
the central purpose of probability theory itself. In situations where exact evaluation
or accurate approximation is not possible, which is the case for many practical
problems, concentration inequalities aim to do the next best job by providing
rapidly decaying tail bounds. It is our goal of this book is to systemically deal with
the “next best job,” when the classical probability theory fails to be valid in these
situations.

The sum of random matrices is a sum of linear matrix functions. Non-linear
matrix functions are encountered in practice. This motivates us to study, in Chap. 4,
the concentration of measure phenomenon, unique to high dimensions. The so-
called Lipschitz functions of matrices such as eigenvalues are the mathematical
objects.

Chapter 5 culminates for the theoretical development of the random matrix
theory. The goal of this chapter is to survey the latest results in the mathematical
literature. We tried to be exhaustive in recent results. To our best knowledge, these
results are never used in the engineering applications. Although the prerequisites for
this chapter are highly demanding, it is out belief that the pay-off will be significant
to engineering graduates if they can manage to understand the chapter.

Chapter 6 is included for completion, with the major goal for the readers to com-
pare the parallel results with Chap. 5. Our book “Cognitive Radio Communications
and Networking: Principles and Practice” (John Wiley and Sons 2012) contains
complementary materials of 230 pages on this subject.

In Part II, we attempt to apply these mathematical tools to different applications.
The emphasis is on the connection between the theory and the diverse applications.
No attempt is made to collect all the scattered results in one place.

Chapter 7 deals with compressed sensing and recovery of sparse vectors.
Concentration inequalities play the central role in the sparse recovery. The so-
called restricted isometry property for sensing matrices is another aspect of stating
concentration of measure.

A matrix is decomposed into the eigenvalues and the corresponding eigenvectors.
When the matrix is of low rank, we can equivalently say the vector of eigenvalues are
sparse. Chapter 8 deals with this aspect in the context of concentration of measure.

Statistics starts with covariance matrix estimation. In Chap. 9, we deals with this
problem in high dimensions. We think that compressed sensing and low-rank matrix
recovery are more basic than covariance matrix estimation.

Once the covariance matrix is estimated, we can apply the statistical information
to different applications. In Chap. 10, we apply the covariance matrix to hypothesis
detection in high dimensions. During the study of information plus noise model, the
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low-rank structure is explicitly exploited. This is one justification for putting low-
rank matrix recovery (Chap. 9) before this chapter. A modern trend is to exploit the
structure of the data (sparsity and low rank) during the detection theory. The research
in this direction is growing rapidly. Indeed, we surveyed some latest results in this
chapter.

An unexpected chapter is Chap. 11 on probability constrained optimization. Due
to the recent progress (as late as 2003 by Nemirovski), optimization with proba-
bilistic constraints, often regarded as computationally intractable in the past, may
be formulated in terms of deterministic convex problems that can be solved using
modern convex optimization solvers. The “closed-form” Bernstein concentration
inequalities play a central role in this formulation.

In Chap. 12, we show how concentration inequalities play a central role in data
friendly data processing such as low rank matrix approximation. We only want to
point out the connection.

Chapter 13 is designed to put all pieces together. This chapter may be put as
Chap. 1. We can see that so many problems are open. We only touched the tip of the
iceberg of the big data. Chapter 1 also gives us motivations of other chapters of this
book.

The first author wants to thank his students for the course in the Fall semester
of 2012: ECE 7970 Random Matrices, Concentration and Networking. Their
comments greatly improved this book. We also want to thank PhD students at
TTU for their help in proof-reading: Jason Bonior, Shujie Hou, Xia Li, Feng
Lin, and Changchun Zhang. The simulations made by Feng Lin, indeed, shaped
the conceptions and formulations of many places of this book, in particular on
hypothesis detection. Dr. Zhen Hu and Dr. Nan Guo at TTU are also of help
for their discussions. The first author’s research collaborator Professor Husheng
Li (University of Tennessee at Knoxville) is acknowledged for many inspired
discussions.

The first author’s work has been supported, for many years, by Office of Naval
Research (ONR) through the program manager Dr. Santanu K. Das (code 31). Our
friend Paul James Browning is instrumental in making this book possible. This
work is partly funded by National Science Foundation (NSF) through two grants
(ECCS-0901420 and CNS-1247778), Office of Naval Research through two grants
(N00010-10-10810 and N00014-11-1-0006), and Air Force Office of Scientific
Research, via a local contractor (prime contract number FA8650-10-D-1750-Task
4). Some parts of this book were finished while the first author was a visiting
professor during the summer of 2012 at the Centre for Quantifiable Quality of
Service in Communication Systems (Q2S), the Norwegian University of Science
and Technology (NTNU), Trondheim, Norway. Many discussions with his host
Professor Yuming Jiang are acknowledged here.

The authors want to thank our editor Brett Kurzman at Springer (US) for his
interest in this book. We acknowledge Rebecca Hytowitz at Springer (US) for her
help.

The first author wants to thank his mentors who, for the first time, exposed him
to many subjects of this book: Weigan Lin (UESTC, China) on remote sensing,
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Zhengde Wu (UESTC, China) on electromagnetics, Shuzhang Liu (UESTC, China)
on electromagnetic materials, I-Tai Lu ( Polytechnic Institute of NYU) on radio
propagation, Lawrence Carin (Duke) on physics-based signal processing, Leopold
Felsen on scattering, and Henry Bertoni on radio propagation in wireless channels.
His industrial colleagues at GTE Labs (now Verizon Wireless) and Bell Labs
(Alcatel-Lucent) greatly shaped his view.

Last, but not the least, the first author wants to thank his wife Lily Liman Li
for her love, encouragement, and support that sustains him during the lonely (but
exciting) book writing journey—she is always there; and his children Michelle,
David and Jackie light his life. This is, indeed, a special moment to record a personal
note: This summer his eldest daughter Michelle is going to drive on her own, David
is happy in his high school, and Jackie smiles again. Also this summer will mark
the time of one decade after his moving back to academia—after spending 8 years
in industry. Wring books like this was among his deepest wishes that drove him
to read mathematical papers and books while watching his TV for the last two
decades. Finally, he is in memory of her mother Suxian Li who passed away in
2006. His father Dafu Qiu lives in China. His parents-in-laws Lumei Li and Jinxue
Chen live with him for many years. Their love and daily encouragement really make
a difference in his life.
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Introduction

This book deals with the data that is collected from a cognitive radio network.
Although this is the motivation, the contents really treat the general mathematical
models and the latest results in the literature.

Big data, only at its dawn, refers to things one can do at a large scale that cannot
be done at a smaller one [4]. Mankind’s constraints are really functions of the scale
in which we operate. Scale really matters. Big data see a shift from causation to
correlation, to infer probabilities. Big data is messy. The data is huge, and can
tolerate inexactitude. Mathematical models crunch mountains of data to predict
gains, while trying to reduce risks.

At this writing, big data is viewed as a paradigm shift in science and engineering,
as illustrated in Fig. 1. In November 2011 when we gave the final touch to our
book [5] on cognitive radio network. The authors of this book recognized the
fundamental significance of big data. So at the first page and first section, our section
title (Sect. 1.1 of [5]) was called “big data.” Our understanding was that due to the
spectrum sensing, the cognitive radio network leads us naturally towards big data.
In the last 18 months, as a result of this book writing, this understanding went even
further: we swam in the mathematical domains, understanding the beauty of the
consequence of big data—high dimensions. Book writing is truly a journey, and
helps one to understand the subject much deeper than otherwise. It is believed that
smart grid [6] will use many big data concepts and hopefully some mathematical
tools that are covered in this book. Many mathematical insights could not be explicit,
if the high dimensions were not assumed to be large. As a result, concentration
inequalities are natural tools to capture this insight in a non-asymptotic manner.

Figure 13.1 illustrates the vision of big data that will be the foundation to
understand cognitive networked sensing, cognitive radio network, cognitive radar
and even smart grid. We will further develop this vision in the book on smart
grid [6]. High dimensional statistics is the driver behind these subjects. Random
matrices are natural building blocks to model big data. Concentration of measure
phenomenon is of fundamental significance to modeling a large number of random
matrices. Concentration of measure phenomenon is a phenomenon unique to high-
dimensional spaces.

XXi
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To get a feel for the book, let us consider one basic problem. The large data sets
are conveniently expressed as a matrix

X1 Xig - Xip
Xo1 Xog -+ Xop

c (men

Xml Xm2 e an
where X;; are random variables, e.g., sub-Gaussian random variables. Here m,n
are finite and large. For example, m = 100,n = 100. The spectrum of a random
matrix X tends to stabilize as the dimensions of X grows to infinity. In the last
few years, local and non-asymptotic regimes, the dimensions of X are fixed rather
than grow to infinity. Concentration of measure phenomenon naturally occurs. The
eigenvalues \; (XTX) ,¢ = 1,...,n are natural mathematical objects to study.
The eigenvalues can be viewed as Lipschitz functions that can be handled by
Talagrand’s concentration inequality. It expresses the insight: The sum of a large
number of random variables is a constant with high probability. We can often treat

both standard Gaussian and Bernoulli random variables in the unified framework of
the sub-Gaussian family.

Theorem 1 (Talagrand’s Concentration Inequality). For every product proba-
bility P on {—1,1}", consider a convex and Lipschitz function f : R" — R
with Lipschitz constant L. Let X1, . .., X,, be independent random variables taking
values {—1,1}. Let Y = f (X1,...,X,,) and let MY be a median of Y. Then For
every t > 0, we have

P(]Y = MY| > t) < 4e~*/16L% (1

The random variable Y has the following property
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Var (V) < 16L%, E[Y]—16L < M[Y] <E[Y]+ 16L. )

For a random matrix X € R™*"™, the following functions are Lipschitz functions:

k

k
(D) Amax (X) 5 (2)Amin (X) 5 (3) Tr (X)3(4) D Ai (X)3(5) 3 A (X)

i=1

where Tr (X) has a Lipschitz constant of L = 1/n, and X; (X),i = 1,...,n has
a Lipschitz constant of L = 1/4/n. So the variance of Tr (X) is upper bounded by
16/n2, while the variance of \; (X),i = 1,...,n by 16/n. The variance of Tr (X)
is 1/n smaller than that of \; (X),¢ = 1,...,n. For example, n = 100, their ratio
is 20 dB. The variance has a fundamental control over the hypothesis detection.
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Chapter 1
Mathematical Foundation

This chapter provides the necessary background to support the rest of the book.
No attempt has been made to make this book really self-contained. The book will
survey many recent results in the literature. We often include preliminary tools
from publications. These preliminary tools may be still too difficult for many of the
audience. Roughly, our prerequisite is the graduate-level course on random variables
and processes.

1.1 Basic Probability

The probability of an event is expressed as (-), and we use E for the expectation
operator. For conditional expectation, we use the notation Ex Z, which represents
integration with respect to X, holding all other variables fixed. We sometimes omit
the parentheses when there is no possibility of confusion. Finally, we remind the
reader of the analysts convention that roman letters c, C, etc. denote universal
constants that may change at every appearance.

1.1.1 Union Bound

Let (Q, 7,P) be a probability space, F denotes a o-algebra on the sample space
Q and PP a probability measure on (€2, ). The probability of an event A € F is
denoted by

IP(A):/Ad]P’(w):/QIA (w) dP (w),

R. Qiu and M. Wicks, Cognitive Networked Sensing and Big Data, 3
DOI 10.1007/978-1-4614-4544-9_1,
© Springer Science+Business Media New York 2014
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where the indicator function [4 (w) takes the value of 1 if w € A and 0 otherwise.
The union bound (or Bonferroni’s inequality, or Boole’s inequality) states that for a
collection of events A; € F,i=1,...,n, we have

P(O AZ-) giP(Ai). (1.1)
i=1 =1

1.1.2 Independence

In general, it can be shown that the random variable X and Y are independent if
and only if their joint cdf is equal to the product of its marginal cdf’s:

Fx y(z,y) = Fx(x)Fy (y)for all z and y. (1.2)

Similarly, if X and Y are jointly continuous, then X and Y are independent if and
only if their joint pdf is equal to the product of its marginal pdf’s:

Ixy(w,y) = fx(z)fy(y)forall v and y. (1.3)

Equation (1.3) is obtained from (1.2) by differentiation. Conversely, (1.2) is obtained
from (1.3) by integration.

1.1.3 Pairs of Random Variables

Suppose that X and Y are independent random variables, and let g(X,Y) =
91(X)g2(Y).FindE[g (X,Y)] = E[g1 (X) g2 (Y)]. It follows that

Bl ()= [ g (@) ) / Y i @)y () deldy’

:{/Zgl

e @a [ s o)ar )
91 (X) g2 (Y)]. (1.4)

— 00

Let us consider the sum of two random variables. Z = X + Y. Find Fz(z) and
fz(z) in terms of the joint pdf of X and Y.

The cdf of Z is found by integrating the joint pdf of X and Y over the region of
the plane corresponding to the event P(Z < z) = P(X + Y < z).

00 z—z’
Fy(2) = / / Ixy (2 y)d'dy'.
—oco J—o00
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The pdf of Z is

fz(2) = dizFZ () = /_ fxy (&' 2z —2")da'dy'.

Thus the pdf for the sum of two random variables is given by a superposition
integral.

If X and Y are independent random variables, then by (1.3), the pdf is given by
the convolution integral of the marginal pdf’s of X and Y":

2= [ T by (o — o) da.

Thus, the pdf of Z = X + Y is given by the convolution of the pdf’s of X and Y:

f2(2) = fx(x) * fy(y). (1.5)

1.1.4 The Markov and Chebyshev Inequalities
and Chernoff Bound

These inequalities in this subsection will be generalized to the matrix setting,
replacing the scalar-valued random variable X with the matrix-valued random
variables X—random matrices.

In general, the mean and variance of a random variable do not provide enough
information to determine the cdf/pdf. However, the mean and variance do allow
us to obtain bounds for probabilities of the form P (| X| > t). Suppose that X is
a nonnegative random variable with mean E [X]. The Markov inequality then
states that

E[X]

P(X >a) <
(X >0)< =

for X nonnegative. (1.6)

It follows from Markov’s inequality that if ¢ is a strictly monotonically increasing
nonnegative-valued function, then for any random variable X and real number, we
have [7]

E¢ (X)
¢ (t)
An application of (1.7) with p(x) = 2% is Chebyshev’s inequality: if X is an

arbitrary random variable and ¢ > 0, then

P(X >1t)=P{¢(X)>¢(t)} < (1.7)

_ElX - EX|?  Var[X]

— 2 2
P(|X—EX\>t)_1P(|X—EX| >t) > -
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Now suppose that the mean E [X] = m and the variance Var [X] = 02 of a random
variable are known, and that we are interested in bounding PP (| X — m| > a). The
Chebyshev inequality states that

P(X —m| >a) < ot (1.8)
The Chebyshev inequality is a consequence of the Markov inequality. More
generally, taking ¢ () = 27 (z > 0), for any ¢ > 0 we have the moment bound

E|X — EX|?
IP’(|X—IEX|>t)<%.

(1.9)
In specific examples, we may choose the value of ¢ to optimize the obtained upper
bound. Such moment bounds often provide with very sharp estimates of the tail
probabilities. A related idea is at the basis of Chernoff’s bounding method. Taking
o(z) = e°* where z is an arbitrary positive number, for any random variable X,
and any ¢ € R, we have

EesX
est '

P(X >t)=P{eN > e} < (1.10)
If more information is available than just the mean and variance, then it is possible
to obtain bounds that are tighter than the Markov and Chebyshev inequalities. The
region of interest is A = {t > a}, so let IT4(t) be the indicator function, that is
I4(t) = 1,t € Aand I4(t) = 0 otherwise. Consider the bound T4 (t) < e5(*=%),
s > 0. The resulting bound is

P(X >a)= /O h Ta(t) fx (t)dt < / " estt=a) fx(t)dt

0
= e—sa/ e fx(t)dt = e *E [e*]. (1.11)
0

This bound is the Chernoff bound, which can be seen to depend on the expected
value of an exponential function of X . This function is called the moment generating
function and is related to the Fourier and Laplace transforms in the following
subsections. In Chernoff’s method, we find an s > 0 that minimizes the upper
bound or makes the upper bound small. Even though Chernoff bounds are never as
good as the best moment bound, in many cases they are easier to handle [7].

1.1.5 Characteristic Function and Fourier Transform

Transform methods are extremely useful. In many applications, the solution is given
by the convolution of two functions fi(x)* f(x). The Fourier transform will convert
this convolution integral into a product of two functions in the transformed domains.
This is a result of a linear system, which is most fundamental.
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The characteristic function of a random variable is defined by
Oy (W) =E[e™] = / fx(@)e?“r da,

where j = 4/—1 is the imaginary unit number. If we view ®x (w) as a Fourier
transform, then we have from the Fourier transform inversion formula that the pdf
of X is given by

fx(z) = 1 /OO Py (w)e T dw.

21 J_

If X is a discrete random variable, it follows that

Dy (w) = Z px (x1)e?* "+ discrete random variables.
k

Most of time we deal with discrete random variables that are integer-valued. The
characteristic function is then defined as

Dy (w) = Z px (k)e’* integer-valued random variables. (1.12)
k

Equation (1.12) is the Fourier transform of the sequence px (k). The following
inverse formula allows us to recover the probabilities px (k) from ¢ x (w)

1

T o

27
px (k) / Dx (w)e Fdw k=0,4+1,+2,...
0

px (k) are simply the coefficients of the Fourier series of the periodic function
® x (w). The moments of X can be defined by @ x (w)—a very basic idea. The
power series (Taylor series) can be used to expand the complex exponential e =7«
in the definition of ®x (w):

vx @)= [ rx {1+ fGex o

Assuming that all the moments of X are finite and the series can be integrated term
by term, we have

Dx () = 1+ JWB [X] 4 2 () E [X7] 4 + () B[X") + -

2!

If we differentiate the above expression once and evaluate the result at w = 0, we

w=0
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which yields the final result

Bl =+ () ex (o)

Example 1.1.1 (Chernoff Bound for Gaussian Random Variable). Let X be a
Gaussian random variable with mean m and variance o2. Find the Chernoff bound
for X. O

w=0

1.1.6 Laplace Transform of the pdf

When we deal with nonnegative continuous random variables, it is customary to
work with the Laplace transform of the pdf,

X*(s) = /000 fx(z)e *"dz =E [e *¥]. (1.13)

Note that X *(s) can be regarded as a Laplace transform of the pdf or as an expected
value of a function of X, e=X. When X is replaced with a matrix-valued random
variable X, we are motivated to study

X*(s) = /OOO fx(z)e *dx = E [e”*¥]. (1.14)

Through the spectral mapping theorem defined in Theorem 1.4.4, f(A) is defined
simply by applying the function f to the eigenvalues of A, where f(z) is an arbitrary
function. Here we have f () = e *%. The eigenvalues of the matrix-valued random
variable e ~*X are scalar-valued random variables.

The moment theorem also holds for X*(s):

n
nd *

dS”

EX" = (=1)

1.1.7 Probability Generating Function

In problems where random variables are nonnegative, it is usually more convenient
to use the z-transform or the Laplace transform. The probability generating
function Gy (z) of a nonnegative integer-valued random variables N is defined by

GN(Z):E[,ZN] :ZpN(k;)zk. (1.15)
k=0
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The first expression is the expected value of the function of IV, 2N, The second
expression is the z-transform the probability mass function (with a sign change in
the exponent). Table 3.1 of [8, p. 175] shows the probability generating function for
some discrete random variables. Note that the characteristic function of N is given
by Gn(2) =E [2V] = Gn(e/¥).

1.2 Sums of Independent (Scalar-Valued) Random
Variables and Central Limit Theorem

We follow [8] on the standard Fourier-analytic proof of the central limit theorem
for scalar-valued random variables. This material allows us to warm up, and set
the stage for a parallel development of a theory for studying the sums of the matrix-
valued random variables. The Fourier-analytical proof of the central limit theorem is
one of the quickest (and slickest) proofs available for this theorem, and accordingly
the “standard” proof given in probability textbooks [9].

Let X1, Xo, ..., X, benindependent random variables. In this section, we show
how the standard Fourier transform methods can be used to find the pdf of S,, =
X1+ Xo+ ...+ X,

First, consider the n = 2 case, Z = X 4+ Y, where X and Y are independent
random variables. The characteristic function of Z is given by

Dz (w) = E [47] = E [2C)] = E [eoXerY]
=E[“Y]E[¢/*7] = &x () Py (w),

where the second line follows from the fact that functions of independent random
variables (i.e., ¢/“X and e/“Y) are also independent random variables, as discussed
in (1.4). Thus the characteristic function of Z is the product of the individual
characteristic functions of X and Y.

Recall that ¢ 7 (w) can be also viewed as the Fourier transform of the pdf of Z:

Pz (w) = F{fz(2)}.
According to (1.5), we obtain
Pz (w) = F{fz(2)} = F{fx(@)* fy(y)} = x (w) Py (w). (1.16)

Equation (1.16) states the well-known result that the Fourier transform of a
convolution of two functions is equal to the product of the individual Fourier
transforms. Now consider the sum of n independent random variables:

Sp,=X1+Xo+---+X,.
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The characteristic function of .S, is
s, (w) =K [¢75"] =E [ejw(xl+xz+-~-+xn)} = E [eleX1ei9Xa . g1 Xn]
=E [ej“’Xl} E [ej“XQ] --E [ej“X“]
=&x, (W) Px, (W) Px, (w). (1.17)

Thus the pdf of S,, can then be found by finding the inverse Fourier transform of
the product of the individual characteristic functions of the X;’s:

fo, (@) = FH{®x, (0) Ox, (w) - Px, (w)}. (1.18)

Example 1.2.1 (Sum of Independent Gaussian Random Variables). Let S,, be the
sum of n independent Gaussian random variables with respective means and
variances, mi,ma, ..., my and 021,029, ...,02,. Find the pdf of S,,. The char-
acteristic function of X, is

(I)Xk (w) _ e—&-jwmk—wzaﬁ/Q

so by (1.17),

n
. 2 2
k=1

exp {+jw (m1+ma+---+my) —w® (07 + 05+ +)on}.

This is the characteristic function of a Gaussian random variable. Thus S,, is a
Gaussian random variable with mean m; + ms + - - - + m,, and variance O’% + J% +
it o2, 0

Example 1.2.2 (Sum of i.i.d. Random Variables). Find the pdf of a sum of n
independent, identically distributed random variables with characteristic functions

q)Xk (UJ) =&y (w) for k = 1,2,...,n.
Equation (1.17) immediately implies that the characteristic function .S,, is
Og, (w)=E [ej‘*’Xl] E [eijﬂ ) [eij"] ={dx (w)}".

The pdf of .S,, is found by taking the inverse transform of this expression. (|

Example 1.2.3 (Sum of i.i.d. Exponential Random Variables). Find the pdf of a sum
of n independent exponentially distributed random variables, all with parameter c.
The characteristic function of a single exponential random variable is
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(I)X (UJ) = @

o —jw

From the previous example we then have that

B, () = {Dx (W)} = { « }

a— jw
From Table 4.1 of [8], we see that .S;, is an m-Erlang random variables. [l

When dealing with integer-valued random variables it is usually preferable to
work with the probability generating function defined in (1.15)

GN(Z) =E [ZN] .

The generating function for a sum of independent discrete random variables, N =
X1+"'+X’n,is

Gn(2) =E [0 5] =E [2N] E[2%] = Gx, (2) - Gx, (2). (1.19)

Example 1.2.4. Find the generating function for a sum of n independent, identically
distributed random variables.
The generating function for a single geometric random variable is given by

__pz
C1—gz

Gx(z)

Therefore, the generating function for a sum of n such independent random

variables is
pz "
G = .
~(z) { 1- QZ}

From Table 3.1 of [8], we see that this is the generating function of a negative
binomial random variable with parameter p and n. (]

1.3 Sums of Independent (Scalar-Valued) Random
Variables and Classical Deviation Inequalities:
Hoeffding, Bernstein, and Efron-Stein

We are mainly concerned with upper bounds for the probabilities of deviations

from the mean, that is, to obtain P (S,, — ES,, > t), with S,, = Z X;, where
i=1
X1,...,X,, are independent real-valued random variables.
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Chebyshev’s inequality and independence imply

é Var [X,]

Var [S,,]
S 2 2

P(Sn - ESn 2 t) X

n
In other words, writing 0% = * 21 Var [X,,], we have
1=

P(S, —ES, >1t) < 2.

This simple inequality is at the basis of the weak law of large numbers.

1.3.1 Transform of Probability Bounds to Expectation Bounds

We often need to convert a probability bound for the random variable X to an
expectation bound for XP, for all p > 1. This conversion is of independent interest.
It may be more convenient to apply expectation bounds since expectation can be
approximated by average. Our result here is due to [10]. Let X be a random variable
assuming non-negative values. Let a, b, and h be non-negative parameters. If we
have exponential-like tail

P(X >a+th) <e 't

then, forallp > 1,
EX? < 2(a + bh + bp)”. (1.20)

On the other hand, if we have Gaussian-like tail
P(X >a+th) <e 't

then, forallp > 1,

EXP <3*\/§(a+b\/ﬁ+b\/p/2)p. (1.21)

1.3.2 Hoeffding’s Inequality

Chernoff’s bounding method, described in Sect. 1.1.4, is especially convenient for
bounding tail probabilities of sums of independent random variables. The reason is
that since the expected value of a product of independent random variables equals
the product of the expected variables—this is not true for matrix-valued random
variables, Chernoff’s bound becomes
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P(S, —ES, >1t) <e *E [exp (s Zn: (X; — ]EXZ))}
i=1

. (1.22)
= e 5t [] E [esXi—EX)] by independence.
i=1

Now the problem of finding tight bounds comes down to finding a good upper bound
for the moment generating function of the random variables X; — [EX;. There are
many ways of doing this. In the case of bounded random variables, perhaps the most
elegant version is due to Hoeffding [11]:

Lemma 1.3.1 (Hoeffding’s Inequality). Let X be a random variable with EX =
0,a < X <0b. Then fors >0,

E [eX] < e (=08, (1.23)
Proof. The convexity of the exponential function implies

r—a . b—x .
< et + e’ for a<x <hb.
b—a b—a

ST

Expectation is linear. Exploiting EX = 0, and using the notation p = ;=% we have
—a
sX b _sa _ _a _sb
Ees* < € 2 e

b—
= (1 —p+ pest=9) gpslb=)

2 pou),
where v = s(b — a), and ¢ (u) = —pu + log (1 — p+ pe*). But by direct
calculation, we can see that the derivative of ¢ is
p
¢ (u) = —p+
(®) p+(l—pe™

thus ¢ (u) = ¢’ (0) = 0. Besides,

() = p(l—ple™ }
S ey

Therefore, by Taylor’s theorem, for some 6 € [0, u],

2 2 2
7s(bfa). 0

u2 u
¢ (u) = ¢ (0) + ud’ (0) + 56" (6) < 5= -
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Now we directly plug this lemma into (1.22):

P (S, — ES, > t)

e st H eSQ(bif‘“)Q/S(by Lemma 1.3.1)

i=1

— e—st

242/ 35 (bi—ai)? -
—e & < by choosing s = 4t/ Z (b; — ai)2> .

i=1

n
52 Z (bifai)z/S
i=1

Theorem 1.3.2 (Hoeffding’s Tail Inequality [11]). Ler X1,..., X, be indepen-
dent bounded random variables such that X; falls in the interval [a;,b;] with
probability one. Then, for any t > 0, we have

—202/ 3 (bi—a)?
P(S,—ES,>t)<e i=1 and

~22/ 3% (bi—a:)?
]P(Sn —ES, < 7t) <e i=1 “ .

1.3.3 Bernstein’s Inequality

Assume, without loss of generality, that EX; = 0 forall ¢+ = 1, ..., n. Our starting
point is again (1.22), that is, we need bounds for Ees¥Xi. Introduce 01-2 =E [Xf] s
and

2]E ]

o k-
FZ

o0
Since e5* = 1 + sz + > s*z*/k! and the expectation is linear, we may write
k=2

o0 k k
EeXi = 1 4 sE[X;] + 5 “2kX]
k=
=1+ s%02F; (since E[X;]=0)
< 65201-2F,- .
Now assume that X;’s are bounded such that | X;| < c. Then for each k& > 2,

E [Xlk] < 2ol

?
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Thus,

oo — — k

k=2

e’ —1—sc

;1 > (sc
k'O’? o (50)2 kZ:Q k' (80)2

Thus we have obtained

2 _2e%¢—1—sc

E[eX0] < ¢ oo

Returning to (1.22) and using the notation 02 = (1/n) >_ o2, we have
i=1

n
P (Z X; > t) < enaz(esc—l—sc)/cz—st.
i=1

Now we are free to choose s. The upper bound is minimized for

1 t
s=log<1—|—02>.
c no

Resubstituting this value, we obtain Bennett’s inequality [12]:

Theorem 1.3.3 (Bennett’s Inequality). Ler X,,..., X, be independent real-
valued random variables with zero mean, and assume with zero mean, and assume
that | X;| < c with probability one. Let

1 n
2
i Y
o nZElVar{X}

Then, for any t > 0,

- no? ct

where h(u) = (14 u)log(1l + u) — u for u > 0.

The following inequality is due to Bennett (also referred to as Bernstein’s
inequality) [12, Eq. (7)] and [13, Lemma 2.2.11].

Theorem 1.3.4 (Bennett [12]). Let X1,..., X, be independent random variables
with zero mean such that

E|X;|P < p!MP~ 267 /2 (1.24)
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for some p > 2 and some constants M and o;, i = 1,...,n. Then fort >0

n

1= t) < 2e /2ot HM) (1.25)

witho? = 3" o2,
i=1
See Example 7.5.5 for its application.
Applying the elementary inequality h(u) > u?/ (2 + 2u/3), u > 0 which can
be seen by comparing the derivatives of both sides, we obtain a classical inequality
of Bernstein [7]:

Theorem 1.3.5 (Bernstein Inequality). Under the conditions of the previous
theorem, for any t > 0,

1 & nt?
P(=S"Xi>t)< T 126
(”2 ) o (-5 a75) (20

We see that, except for the term 2ct/3, Bernstein’s inequality is quantitatively right
when compared with the central limit theorem: the central limit theorem states that

2
n (1< 1 e v /2
P/ (=S X —EX ) 2y) = 1-0) < —— :
( o’ (ni—l ) Z/) v var Y

from which we would expect, at least in a certain range of the parameters,
something like

1 n 2 2
P(=S"X,—EX, >t | ~ e /(207

which is comparable with (1.26).

Exercise 1.3.6 (Sampling Without Replacement). Let X be a finite set with N
elements, and let X1, ..., X,, be arandom sample without replacement from X and
Y1,...,Y, arandom sample with replacement from X. Show that for any convex
real-valued function f,

or () <o (52

In particular, by taking f(xz) = e®*, we see that all inequalities derived from the
sums of independent random variables Y; using Chernoff’s bounding remain true
for the sums of the X;’s. (This result is due to Hoeffding [11].)
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1.3.4 Efron-Stein Inequality

The main purpose of these notes [7] is to show how many of the tail inequalities
of the sums of independent random variables can be extended to general functions
of independent random variables. The simplest, yet surprisingly powerful inequality
of this kind is known as the Efron-Stein inequality.

1.4 Probability and Matrix Analysis

1.4.1 Eigenvalues, Trace and Sums of Hermitian Matrices

Let A is a Hermitian n x n matrix. By the spectral theorem for Hermitian matrices,
one diagonalize A using a sequence

of n real eigenvalues, together with an orthonormal basis of eigenvectors
u (A),...,u, (A) e C".
The set of the eigenvalues {\; (A),..., A, (A)} is known as the spectrum of A.

The eigenvalues are sorted in a non-increasing manner. The trace of a n X n matrix
is equal to the sum of the its eigenvalues

Tr(A) = 2": A

The linearity of trace
Tr(A+B)=Tr(A)+Tr(B).

The first eigenvalue is defined as

We have
M (A+B) <A (A)+ A (B). (1.27)
The Weyl inequalities are

Aitj—1 (A+B) <X (A) + 4 (B),
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and the Ky Fan inequality

M (A+B)+ -+ X (A4B) < A (A) +- - 4+X (A) +2 (B) +- -+ (B)
(1.28)

In particular, we have
Tr(A+B)<Tr(A)+Tr(B). (1.29)

One consequence of these inequalities is that the spectrum of a Hermitian matrix
is stable with respect to small perturbations. This is very important when we deal
with an extremely weak signal that can be viewed as small perturbations within the
noise [14].

An n x n density matrix p is a positive definite matrix with Tr(p) = 1. Let S,
denote the set of density matrices on C". This is a convex set [15].

A > 0 is equivalent to saying that all eigenvalues of A are nonnegative, i.e.,
i (A) > 0.

1.4.2 Positive Semidefinite Matrices

Inequality is one of the main topics in modern matrix theory [16]. An arbitrary
complex matrix A is Hermitian, if A = A, where H stands for conjugate and
transpose of a matrix. If a Hermitian matrix A is positive semidefinite, we say

A > 0. (1.30)

Matrix A is positive semidefinite, i.e., A > 0, if all the eigenvalues \;(A) are
nonnegative [16, p. 166]. In addition,

A>0=detA>0and A >0=detA >0, (1.31)

where = has the meaning of “implies.” When A is a random matrix, its deter-
minant det A and its trace Tr A are scalar random variables. Trace is a linear
operator [17, p. 30].

For every complex matrix A, the Gram matrix AA¥ is positive semidefinite
[16, p. 163]:

AAT > 0. (1.32)

1
The eigenvalues of (AA™)? are the singular values of A.

It follows from [17, p. 189] that

TrA = Zn:)\z, det A = ﬁ)\z,
i=1 i=1
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n

TrAF =) M k=12,... (1.33)
i=1

where ); are the eigenvalues of the matrix A € C"*™,
It follows from [17, p. 392] that

1
(det A)/™ < ~TrA, (1.34)

for every positive semidefinite matrix A € C"*",
It follows from [17, p. 393] that

L AX > (det A7 (1.35)
n

for every positive semidefinite matrix A, X € C™"*" and further det X = 1.

1.4.3 Partial Ordering of Positive Semidefinite Matrices

By the Cauchy-Schwarz inequality, it is immediate that
ITr (AB)| < Tr (AAY) Tr (BBY) (1.36)
and
Tr (AA") =0 if and only if A = 0. (1.37)
For a pair of positive semidefinite matrices A and B, we say
B>Aif B-A>0. (1.38)

A partial order may be defined using (1.38). We hold the intuition that matrix B
is somehow “greater” than matrix A. If B > A > 0, then [16, p. 169]

TrB > TrA,detB >detA, B~ < AL (1.39)

If A > 0 and B > 0 be of the same size. Then [16, p. 166]

A +B > B, (1.40)

AYZBAY? >0, (1.41)
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Tr (AB) < Tr (A) Tr (B) (1.42)

4. The eigenvalues of AB are all nonnegative. Furthermore, AB is positive
semidefinite if and only if AB = BA.

A sample covariance matrix is a random matrix. For a pair of random matrices X
and Y, in analogy with their scalar counterparts, their expectations are of particular
interest:

Y>X>0 = EY >EX. (1.43)

Proof. Since the expectation of a random matrix can be viewed as a convex
combination, and also the positive semidefinite (PSD) cone is convex [18, p. 459],
expectation preserves the semidefinite order [19]. (]

1.4.4 Definitions of f(A) for Arbitrary f

The definitions of f(A) of matrix A for general function f were posed by Sylvester
and others. A eleglant treatment is given in [20]. A special function called spectrum
is studied [21]. Most often, we deal with the PSD matrix, A > 0. References [17,
18,22-24].

When f(t) is a polynomial or rational function with scalar coefficients and a
scalar argument, ¢, it is natural to define f(A) by substituting A for ¢, replacing
division by matrix inverse, and replacing 1 by the identity matrix. Then, for example,

_14#

— = f(A)=1-A)""(I+A?) ifl¢A(A). (1.44)

f(t)
Here, A (A) denotes the set of eigenvalues of A (the spectrum of A). For a general
theory, we need a way of defining f(A) that is applicable to arbitrary functions f.
Any matrix A € C™*™ can be expressed in the Jordan canonical form

Z'AZ =J = diag (J1,J2,...,J)) (1.45)
where
M 10
Jp=Jr (M) = o | e cmmE, (1.46)
0 A

where Z is nonsingular and m; +mgo + - - - +m, = n.
Let f be defined on the spectrum of A € C"*™ and let A have the Jordan
canonical form (1.45). Then,
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F(A)2Zf ()27 = Zdiag(f (Jx)) 27", (1.47)

where

(m, ,71)
FOW) S ) -+ B

e FOw) : : (1.48)

f (M)
(%)

Several remarks are in order. First, the definition yields an f (A) that can be shown
to be independent of the particular Jordan canonical form that is used. Second, if A
is diagonalizable, then the Jordan canonical form reduces to an eigen-decomposition
A = Z7DZ, with D = diag ()\;) and the columns of Z (renamed U) eigenvectors
of A, the above definition yields

FAA)=ZfNZ'=UfD)U=UfF(\,) UL (1.49)

Therefore, for diagonalizable matrices, f (A) has the same eigenvectors as A and
its eigenvalues are obtained by applying f to those of A.

1.4.5 Norms of Matrices and Vectors

See [25] for matrix norms. The matrix p-norm is defined, for 1 < p < o0, as

| Ax]|
1Al = max o
1,
1/p
where ||x|[, = (Z |xz|p> . When p = 2, it is called spectral norm ||A||, =
|lA||. The Frobenius norm is defined as
1/2
n n
2
1Al = DD lai] :
i=1j=1

which can be computed element-wise. It is the same as the Euclidean norm on

n
vectors. Let C = AB. Then ¢;; = ) a;by;. Thus
k=1

nmmﬂ%:ZZWQZZZm%

i=1 j=1 1j=1k=1
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Applying the Cauchy-Schwarz inequality to the expression > a;1bs;, we find that
k=1

Leto;,7 = 1,...,n be singular values that are sorted in decreasing magnitude. The
Schatten-p norm is defined as

n 1/p
[Allg, = (Z Uf) for 1<p<oo, and [A[ =[Al,, =01,
i=1

for a matrix A € R™*"™. When p = oo, we obtain the operator norm (or spectral
norm) [|A ||, , which is the largest singular value. It is so commonly used that we
sometimes use ||A || to represent it. When p = 2, we obtain the commonly called
Hilbert-Schmidt norm or Frobenius norm [|Al[|g = [|A[/z. Whenp = 1, [|Allg,
denotes the nuclear norm. Note that ||A|| is the spectral norm, while ||A[ . is
the Frobenius norm. The drawback of the spectral norm it that it is expensive to
compute; it is not the Frobenius norm. We have the following properties of Schatten
p-norm

1. When p < ¢, the inequality occurs: ||A||sq < ||A||sp~
2. If r is arank of A, then with p > log(r), it holds that ||A|| < ||A||Sp <ellA].

Let (X,Y) = Tr (XTY) represent the Euclidean inner product between two
matrices and ||X|| , = (X, X). It can be easily shown that

IX[z= sup Tr(X'G)= sup (X,G).
Gl =1 IGllF=1

Note that trace and inner product are both linear.

For vectors, the only norm we consider is the /s-norm, so we simply denote the
lo-norm of a vector by ||x|| which is equal to /(x, x), where (x,y) is the Euclidean
inner product between two vectors. Like matrices, it is easy to show

x| = sup (x,y) .
lyll=1
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1.4.6 Expectation

We follow closely [9] for this basic background knowledge to set the stage for future
applications. Given an unsigned random variable X (i.e., a random variable taking
values in [0, +00],) one can define the expectation or mean EX as the unsigned
integral

oo
EX = / xdux (z),
0
which by the Fubini-Tonelli theorem [9, p. 13] can also be rewritten as
o0
EX =/ P(X = A)dA.
0

The expectation of an unsigned variable lies in [0, +oc]. If X is a scalar random
variable (which is allowed to take the value oo), for which E | X| < oo, we find X
is absolutely integrable, in which case we can define its expectation as

EX:/RxduX(x)

in the real case, or

EX:/Ca?duX(a?)

in the complex case. Similarly, for a vector-valued random variable (note in finite
dimensions, all norms are equivalent, so the precise choice of norm used to define
| X| is not relevant here). If x = (X7,..., X,,) is a vector-valued random variable,
then X is absolutely integrable if and only if the components X; are all absolutely
integrable, in which case one has

Ex = (EXy,...,EX,).

A fundamentally important property of expectation is that it is linear: if

Xi,...,X,, are absolutely integrable scalar random variables and cy,...,cj are
finite scalars, then ¢; X7, . . ., ¢ X} is also absolutely integrable and
E(01X1—|—-~-—|—Cka) =c1EX) + -+ c EXy. (1.50)

o]
By the Fubini-Tonelli theorem, the same result also applies to infinite sums . ¢; X,
i=1

provided that > |¢;| E | X;] is finite.
i=1
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Linearity of expectation requires no assumption of independence or dependence
amongst the individual random variables X;; that is what makes this property of
expectation so powerful [9, p. 14]. We use this linearity of expectation so often that
we typically omit an explicit reference to it when it is being used.

Expectation is also monotone: if X < Y is true for some unsigned or real
absolutely integrable X, Y, then

EX < EY.

For an unsigned random variable, we have the obvious but very useful Markov
inequality

1
P(X > < EX

for some A > 0. For the signed random variables, Markov’s inequality becomes
1
P(X| > ) < SEIX].

If X is an absolutely integrable or unsigned scalar random variable, and F' is a
measurable function from the scalars to the unsigned extended reals [0, +oc], then
one has the change of variables formula

BF(X) = [ F@)dux (@

when X is real-valued and

BF(X) = [ Fa)dix(@)

when X is complex-valued. The same formula applies to signed or complex F' if
it is known that | F'(x)| is absolutely integrable. Important examples of expressions
such as EF'(X) are moments

E|X|"
for k > 1 (particularly k= 1, 2, 4), exponential moments

E etX

for real ¢, X, and Fourier moments (or the characteristic function)

]Eeth
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for real t, X, or
ejt~x

for complex or vector-valued t,x, where - denotes a real inner product. We shall
encounter the resolvents

1
E
X —z

for complex z.
The reason for developing the scalar and vector cases is because we are motivated
to study

EeX

for matrix-valued X, where the entries of X may be deterministic or random
variables. A random matrix X and its functional f(X) can be studied using this
framework (f(¢) is an arbitrary function of r). For example,

FeXit+X,

is of special interest when X; are independent random matrices.
Once the second moment of a scalar random variable is finite, one can define the
variance

var (X) = E|X —EX/|°.
From Markov’s inequality we thus have Chebyshev’s inequality
var (X)
Az
A real-valued random variable X is sub-Gaussian if and only if there exists C' >
0 such that

P(X —EX|>\) <

Ee!* < Cexp (C’tz)
for all real ¢, and if and only if there exists C' > 0 such that

E|X[" < (Ck)*/?

for all integers k£ > 1.
A real-valued random variable X has sub-exponential tails if and only if there exists
C' > 0 such that

E|X|k < exp (C’kc)

for all positive integers k.
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If X is sub-Gaussian (or has sub-exponential tails with exponent @ > 1), then
from dominated convergence we have the Taylor expansion

1+§: ]EX’f

for any real or complex ¢, thus relating the exponential and Fourier moments with
the kth moments.

1.4.7 Moments and Tails

The quantities E|X|”,0 < p < oo are called absolute moments. The absolute
moments of a random variable X can be expressed as

E|X|P :p/ P(|X| > t)t*~'dt, p>0. (1.51)
0

The proof of this is as follows. Let I xr5) is the indicator random variable: takes
1 on the event | X |p > x and 0 otherwise. Using Fubini’s theorem, we derive

EIX| = [ |X|PdP = [, )" dzdP = [, [ I x50y dodP

= [y Jo LuxppsaydPde = [FP (X" > z)dz
=p [, P(IX| = )P~ dt =p [P (| X| > )P~ tdt,

where we also used a change of variables.

For 1 < p < oo, (E|X\p)1/p defines a norm on the L? (0, P)-space of all
p-integrable random variables, in particular, the triangular inequality

(EIX +YP)V? < (BIXIP)? + (Bl |P)"/? (1.52)

holds for X,Y € L? (Q,P) = { X measurable, E|X|” < oo}.
Let p,q > 1 with 1/p 4+ 1/q = 1, Holder’s inequality states that

1 1
E|XY] < (E|X[))/P(E[Y|9)"

for random variables X, Y. The space case p = ¢ = 2 is the Cauchy-Schwartz
inequality. It follows from Holder’s inequality that for 0 < p < ¢ < oo,

EIXP)? < @Y ]9V
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The function P (|X| > t) is called the tail of X. The Markov inequality is a
simple way of estimating the tail. We can also use the moments to estimate the tails.
The next statement due to Tropp [26] is simple but powerful. Suppose X is arandom
variable satisfying

EIXP)? < apPpt/7, forallp = po
for some constants «, 3, v, pg > 0. Then
P <|X\ > 61/70415) < 567t7/7

The proof of the claim is short. By Markov’s inequality, we obtain for an arbitrary
k>0

E|X|? Vr\?
P <|X| > el/’Yat) < | | 5 < B ap )
(erat) erat

Choose p = ¢ and the optimal value x = 1/ to obtain the claim.
Also the converse of the above claim can be shown [27]. Important special cases

are vy = 1, 2. In particular, if (E|X|p)1/p < 0461/’)[, forall p > 2, then X satisfies
the subGaussian tail estimate

P (|X\ > el/Qat) <Be /2 forallt =2 (1.53)
For a random variable Z, we define its L, norm
E” (Z) = (E|Z|")"/".

We use a simple technique for bounding the moments of a maximum. Consider an
arbitrary set {Z1, ..., Zy} of random variables. We have that

EP (max; Z;) = NY/PmaxEP (Z;).

To check this claim, simply note that [28]

1/p 1/p
(Emax,»ZiV’)”ps(EDZﬁ) <(ZE|Z¢I”> < (N - max;E|Z;[") "

K2

In many cases, this inequality yields essentially sharp results for the appropriate
choice of p.

If X,Y are independent with E[Y] = 0 and k > 2, then [29] E [|X\k} <
E [\X - Y|’“]
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For random variables satisfying a subGaussian tail estimate, we have the
following useful lemma [27]. See also [30].

Lemma 1.4.1. Let X4,..., Xy be random variables satisfying
P(|X;|>t) <Be /2 foralit>v2, i=1,...,N,
for some 3 > 1. Then

E _max |X;| < Csv/In(48N)

ith Cs < /2 L
WHR 6 f+4\/2(46)

Proof. According to (1.51), we have, for some o > V2
Ei:r{lﬁ?’(N IXs| = [, P <ZI{13XN | X;| > t) dt
< Jo Ldt+ [P (izrﬂf“‘.?fz\z'X"' > t) dt
o N
<a+ [[7 X P(X] > t)dt
i=1
<a+NB[F et /24,

In the second line, we used the union bound.
A change of variable gives

o0 2 o0 2 2 o0 2
/ e /24t :/ e~ (W)™ /2qp — g—u /2/ e tuet 2y,
[ 0 0

On the right hand side, using e7** < 1 for t,u > 0 gives

° 2 2 & 2 ™ 2
/ e U124t < e /2/ e V2t = \/76_“ /2,
u 0 2

On the other hand, using e /2 < 1fort > 0 gives

o0 2 2 o0 ]_ 2
/ e 2dt < e /2/ e tudt = —emu /2,
u 0 u

Combining the two results, we have

/ e_tz/th < min {\/?, 1} e_“2/2.
“ 2°u
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Thus we have

P 1
E r{laxN|Xi| <a+Nﬂ/ e*tz/zdt<a+Nﬁ—e*“2/2.
1=1,..., @ «

Now we choose & = 1/2In (43N) > /21In (4) > /2. This gives

E rilax | X5 < 21n(4ﬁN)+m

(f+4fln(4m) VIn(@BN) < Cs+/In (4BN).

d

Some results are formulated in terms of moments; the transition to a tail bound can
be established by the following standard result, which easily follows from Markov’s
inequality.

Theorem 1.4.2 ([31]). Suppose X is a random variable satisfying
EIX)" <a+Byp+ap  forallp>po
for some ., 8,7, pg > 0. Then, fort > py,

IP’(]E|X|>€<0¢+B\/%+WS)) <e?

If a Bernoulli vector y weakly dominates random vector x then y strongly
dominates x. See also [32].

Theorem 1.4.3 (Bednorz and Latala [33]). Let x,y be random vectors in a

separate Banach space (F,|| - ||) such thaty = > w;e; for some vectors u; € F
ix1
and

Pe )| =1) <P y)l = 1) foralp € F*,t > 0.

Then there exists universal constant L such that:

P (x| >t) < LP(|ly|| > t/L) forallt> 0.

1.4.8 Random Vector and Jensen’s Inequality

A random vector x = (X3, ..., Xn)T € R" is a collection of n random variables
X, on a common probability space. Its expectation is the vector

Ex = (EX4,...,EX,)" e R™.
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A complex random vector z = x + jy € C" is a special case of a 2n-dimensional
real random vector (x,y) € R?".

A collection of random vectors x1,...,xy € C™ is called (stochastic ally)
independent if for all measurable subsets Aq,..., Ay C C™,

]P(Xl €A1,...,XN GAN):P(Xl €A1)-~~P(XN GAN).

Functions of independent random vectors are again independent. A random vector
x’ in C" will be called an independent copy of x if x and x’ are independent and
have the same distribution, thatis, P (x € A) =P (x' € A) forall A € C".

Jensen’s inequality says that: let f : C* — R be a convex function, and let
x € C" be arandom vector. Then

f(Ex) <Ef (x). (1.54)

1.4.9 Convergence

For a sequence z,, of scalars to converge to a limit z, for every ¢ > 0, we have
| — x,,| < ¢ for all sufficiently large n. This notion of convergence is generalized
to metric space convergence.

Let R = (R, d) be a o-compact metric space (with the o-algebra, and let X,, be
a sequence of random variables taking values in R. X,, converges almost surely to
X if, for almost every w € 2, X, (w) converges to X (w), or equivalently

[P’(lim d(Xn, X) <5> =1

n—oo

for every € > 0.
X,, converges in probability to X if, for every € > 0, one has

lim infP(d(X,,X)<e) =1,
n—oo

or equivalently if d(X,,,X) < ¢ holds asymptotically almost surely for every
e > 0.

X, converges in distribution to X if, for every bounded continuous function
F : R — R, one has

lim EF (X,) = EF (X).

n—oo

1.4.10 Sums of Independent Scalar-Valued Random
Variables: Chernoff’s Inequality

Gnedenko and Kolmogorov [34] points out: “In the formal construction of a course
in the theory of probability, limit theorems appear as a kind of superstructure
over elementary chapters, in which all problems have finite, purely arithmetic
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character. In reality, however, the epistemological value of the theory of probability
is revealed only by limit theorems. Moreover, without limit theorems it is impossible
to understand the real content of the primary concept of all our sciences—the
concept of probability. In fact, all epistemological value of the theory of probability
is based on this: that large-scale random phenomena in their collective action create
strict, nonrandom regularity. The very concept of mathematical probability would
be fruitless if it did not find its realization in the frequency of occurrence of events
under large-scale repetition of uniform conditions (a realization which is always
approximate and not wholly reliable), but that becomes, in principle, arbitrarily
precise and reliable as the number of repetitions increases.”

The philosophy behind the above cited paragraph is especially relevant to the
Big Data: The dimensions of the data are high but finite. We seek a theory of purely
arithmetic character: a non-asymptotic theory.

We follow closely [35] in this development. Ashlwede and Winter [36] proposed
a new approach to develop inequalities for sums of independent random matrices.

Ashlwede-Winter’s method [36] is parallel to the classical approach to derivation
inequalities for real valued random variables. Let X7, ..., X,, be independent mean
zero random variables. We are interested in the magnitude

Sn:X1+...+Xn:iXi.
i=1

For simplicity, we shall assume that | X;| < 1 almost surely. This hypothesis can be
relaxed to some control of the moments, precisely to having sub-exponential tail.

Fix ¢ > 0 and let A > 0 be a parameter to be determined later. Our task is to
estimate

PEP(S, >t)=P (e >el).
By Markov inequality and using independence, we have

p < e MEASn — g HEeAX,;.

7

Next, Taylor’s expansion and the mean zero and boundedness hypotheses can be
used to show that, for every ¢,

. 2 )
eAXZ g €>\ vaer, O g )\ < 1

This results in

n
_ 2 2
p < e M where o2 £ E var X;.
i=1

The optimal choice of the parameter A ~ min (7'/ 202, 1) implies Chernoff’s
inequality

p < max (e_t2/‘72,e_t/2> .
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1.4.11 Extensions of Expectation to Matrix-Valued
Random Variables

If X is a matrix (or vector) with random variables, then
EX = [EX;;].

In other words, the expectation of a matrix (or vector) is just the matrix of
expectations of the individual elements.

The basic properties of expectation still hold in these extensions.

If A, B, c are nonrandom, then [37, p. 276]

E(AX + BX +¢) = AEX + BEX + c. (1.55)

Define a weighted sum

S, =a1 X1+ +a X, :ZaTX.

i=1

1.4.12 Eigenvalues and Spectral Norm

My is the set of real symmetric d X d matrices. (Cf_llexri denote the set of complex

Hermitian d x d matrices. The spectral theorem state that all A € Cﬁ:rﬁl have d
real eigenvalues (possibly with repetitions) that correspond to an orthonormal set of
eigenvectors. Ay,q. (A) is the largest eigenvalue of A. All the eigenvalues are sorted
in non-increasing manner. The spectrum of A, denoted by spec(A), is the multiset
of all eigenvalues, where each eigenvalue appears a number of times equal to its

multiplicity. We let

IC|= max |Cv] (1.56)
veCd|v|=1
denote the operator norm of C € C%X% (|- | is the Euclidean norm). By the spectral
theorem,
|A] = max {Amax (A) , Amax (—A)} . (1.57)
Using the spectral theorem for the identity matrix I gives:||I|| = 1. Moreover,

the trace of A, Tr (A) is defined as the sum of the sum of the diagonal entries of A.
The trace of a matrix is equal to the sum of the eigenvalues of A, or

See Sect. 1.4.1 for more properties of trace and eigenvalues.
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Given a matrix ensemble X, there are many statistics of X that one may wish to
consider, e.g., the eigenvalues or singular values of X, the trace, and determinant,
etc. Including basic statistics, namely the operator norm [9, p. 106]. This is a basic
upper bound on many quantities. For example, ||A||Op is also the largest singular
value o1(A) of A, and thus dominates the other singular values; similarly, all
eigenvalues \;(A) of A clearly have magnitude at most ||A[|,, since A\;(A) =

o1 (A)2. Because of this, it is particularly important to obtain good upper bounds,
P (”AHop 2 )\) < T

on this quantity, for various thresholds A. Lower tail bounds are also of interest; for
instance, they give confidence that the upper tail bounds are sharp.

We denote |A| the positive operator (or matrix) (A*A)l/ % and by s(A) the
vector whose coordinates are the singular values of A, arranged as s; (A) >
s2(A) = -+ = s, (A). We have [23]

A=[[A[]=s1(A).
Now, if U, V are unitary operators on C"*", then |[UAV| = V*|A|V and hence
[All = [[UAV]

for all unitary operators U, V. The last property is called unitary invariance. Several
other norms have this property. We will use the symbol |||A]|| to mean a norm on
n X n matrices that satisfies

Al = [[[CAV]]] (1.58)

for all A and for unitary U, V. We will call such a norm a unitarily invariant
norm. We will normalize such norms such that they take the value 1 on the matrix
diag(1,0,...,0).

1.4.13 Spectral Mapping

The multiset of all the eigenvalues of A is called the spectrum of A, denoted
spec(A), where each eigenvalue appears a number of times equal to its multiplicity.

When f(t) is a polynomial or rational function with scalar coefficients and a
scalar argument, ¢, it is natural to define f(A) by substituting A for ¢, replacing
division by matrix inversion, and replacing 1 by the identity matrix [1, 20]. For
example,
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= f(A)=I-A)"(I+A)?

if 1 ¢ spec (A).
If f(t) has a convergent power series representation, such as

A R
log(l+t)=t——+———.|t| <1
og(l+t) =t— 5 +5— .l <1,

we again can simply substitute A for ¢, to define

A2 A3 AY

Here p denotes the spectral radius and the condition p (A) < 1 ensures convergence
of the matrix series. In this ad hoc fashion, a wide variety of matrix functions can be
defined. This approach is certainly appealing to engineering communities, however,
this approach has several drawbacks.

Theorem 1.4.4 (Spectral Mapping Theorem [38]). Let f : C — C be an entire

analytic function with a power-series representation f(z) = 5. c;2',(z € C). If all
1>0
¢ are real, we define the mapping expression:

F(A)=) aAl, Accid (1.59)

Herm>
>0

where C3X2 is the set of Hermitian matrices of d x d. The expression corresponds to

a map from (Czexri to itself. The so-called spectral mapping property is expressed as:

spec f (A) = f (spec(A)). (1.60)

By (1.60), we mean that the eigenvalues of f (A) are the numbers f (\) with A €
spec(A). Moreover, the multiplicity of £ € spec (A) is the sum of the multiplicity
of all preimages of £ under f that lie in spec(A).

For any function f : R — R, we extend f to a function on Hermitian matrices
as follows. We define a map on diagonal matrices by applying the function to
each diagonal entry. We extend f to a function on Hermitian matrices using the
eigenvalue decomposition. Let A = UDUY be a spectral decomposition of A.
Then, we define

f(D11) 0
f(A)=TU u”. (1.61)
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In other words, f(A) is defined simply by applying the function f to the
eigenvalues of A. The spectral mapping theorem states that each eigenvalue of
f(A) is equal to f(\) for some eigenvalue A of A. This point is obvious from
our definition.

Standard inequalities for real functions typically do not have parallel versions
that hold for the semidefinite ordering. Nevertheless, there is one type of relation
(referred to as the transfer rule) for real functions that always extends to the
semidefinite setting:

Claim 1.4.5 (Transfer Rule). Ler f : R — Rand g : R — R satisfy f(z) < g(x)
forall x € [l,u] CR. Let A be a symmetric matrix for which all eigenvalues lie in
[, u] (i.e, 1T < A < ul) Then

f(A)<g(A). (1.62)

1.4.14 Operator Convexity and Monotonicity

We closely follow [15].

Definition 1.4.6 (Operator convexity and monotonicity). A function f
(0,00) — R is said to be operator monotone in case whenever for all n, and
all positive definite matrix A, B > 0,

A>B= f(A)> f(B). (1.63)

A function f : (0,00) — R is said to be operator convex in case whenever for all n,
and all positive definite matrixA, B > 0,and 0 < ¢t < 1,

(-t A+tB) < (1-t)f(A)tf(B). (1.64)

The square function f(¢) = ¢ is monotone in the usual real-valued sense but not
monotone in the operator monotone sense. It turns out that the square root function
f(t) = v/t is also operator monotone.

The square function is, however, operator convex. The cube function is not
operator convex. After seeing these examples, let us present the Léwner-Hernz
Theorem.

Theorem 1.4.7 (Léwner-Hernz Theorem). For —1 < p < 0, the function f(t) =
—t? is operator monotone and operator concave. For 0 < p < 1, the function
f(t) = tP is operator monotone and operator concave. For 1 < p < 2, the function

f(t) = —tP is operator monotone and operator convex. Furthermore, f(t) = log(t)
is operator monotone and operator concave., while f(t) = tlog(t) is operator
convex.

f(t) =t~ 1 is operator convex and f(t) = —t~! is operator monotone.
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1.4.15 Convexity and Monotonicity for Trace Functions

Theorem 1.4.8 (Convexity and monotonicity for trace functions). Ler f: R —
R be continuous, and let n be any natural number. Then if t — f(t) is monotone
increasing, so is A +— Tr f(A) on Hermitian matrices. Likewise, if t — f(t) is
convex, so is A +— Tr f(A) on Hermitian matrices, and strictly so if f is strictly
convex.

Much less is required of f in the context of the trace functions: f is continuous and
convex (or monotone increasing).

Theorem 1.4.9 (Peierls-Bogoliubov Inequality). For every natural number n,
the map

A — log {Tr [exp(A)]} (1.65)

is convex on Hermitian matrices.

Indeed, for Hermitian matrices A, B and 0 < t < 1, let ¢(¢) be the function
P(t) : A — log {Tr[exp(A)]}.

By Theorem 1.4.9, this is convex, and hence

t) — (0
w(1) — (o) > L0
for all ¢. Taking the limit ¢ — 0, we obtain
| Tr [eA“‘B} S Tr [BeA} L66
T [eA] T TrleA] (1.66)

Frequently, this consequence of Theorem 1.4.9 is referred to as the Peierls-
Bogoliubov Inequality. Not only are both of the functions H — log [Tr (eH)] and
p — —S (p) are both convex, they are Legendre Transforms of one another. Here
p is a density matrix. See [39] for a full mathematical treatment of the Legendre
Transform.

Example 1.4.10 (A Novel Use of Peierls-Bogoliubov Inequality for Hypothesis
Testing). To our best knowledge, this example provides a novel use of the Peierls-
Bogoliubov Inequality. The hypothesis for signal plus noise model is

7‘[0 y=w

Hiy=x+w
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where x, y, w are signal and noise vectors and y is the output vector. The covariance
matrix relation is used to rewrite the problem as the matrix-valued hypothesis testing

HO:Ryy:wa = A
Hi:Ryy =Rus + Ruyw = A+ B

when z,w are independent. The covariance matrices can be treated as density
matrices with some normalizations: C > % Our task is to decide between
two alternative hypotheses: Hg and H;. This is the very nature, in analogy with the

quantum testing of two alternative states. See [5]. The use of (1.66) gives

Tr [eR”“{wﬂ Tr [Rmewa]
Tr [eRww] ~ T [eRww]

log

Let us consider a threshold detector:

Ho : otherwise
Ty [eRee+Roun]

Tr [eRuww]

Tr [RypePov]

21
Ha:log Tt [eRou]

= To, with TO =

Thus, the a prior knowledge of R, R, can be used to set the threshold of 7j.

In real world, an estimated covariance matrix must be used to replace the above
covariance matrix. We often consider a number of estimated covariance matrices,
which are random matrices. We naturally want to consider a sum of these estimated
covariance matrices. Thus, we obtain

Hy : otherwise

Tr [e(ﬁm,l+~--+Rmm,)+(ﬁww,1+-~+ftww,n)}
Hi : log

- - =Ty
Tr [ewa,lJr---Jerw,n}

with

Tr [(Rm,l N Rm’n) ewavlJf“‘ﬂLwa,n}

To = - -
Tr [ewa,1+--~+wa,n]

If the bounds of sums of random matrices can be used to bound the threshold T,
the problem can be greatly simplified. This example provides one motivation for
systematically studying the sums of random matrices in this book. (|
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1.4.16 The Matrix Exponential

The exponential of an Hermitian matrix A can be defined by applying (1.61) with
the function f(z) = e®. Alternatively, we may use the power series expansion
(Taylor’s series)

exp (A) = e ::I+ZF' (1.67)
k=1

The exponential of an Hermitian matrix is ALWAYS positive definite because of
the spectral mapping theorem (Theorem 1.4.4 and Eq. (1.62)): (%) > 0, where
i (A) is the i-th eigenvalue of A. On account of the transfer rule (1.62), the matrix
exponential satisfies some simple semidefinite relations. For each Hermitian matrix
A, it holds that

I+A <e? and (1.68)

cosh (A) < A2, (1.69)
We often work with the trace of the matrix exponential, Trexp : A +— Tre®. The
trace exponential function is convex [22]. It is also monotone [22] with respect to
the semidefinite order:

A <H= Tre® < Trefl. (1.70)

See [40] for short proofs of these facts.

1.4.17 Golden-Thompson Inequality

The matrix exponential doe not convert sums into products, but the trace exponential
has a related property that serves as a limited substitute.

For n xn complex matrices, the matrix exponential is defined by the Taylor series
( of course a power series representation) as

| —

k
!A.

o

exp(A) = e® = Z
k=0

For commutative matrices A and B: AB = BA, we see that e 1B = ¢A¢B by
multiplying the Taylor series. This identity is not true for general non-commutative
matrices. In fact, it always fails if A and B do not commute, see [40].
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The matrix exponential is convergent for all square matrices. Furthermore, it is
not hard to see for A € M that an eigenbasis of A is also an eigenbasis of exp(A)
and that \; (e®) = M) forall 1 < i < d. Also, for all A € My, it holds that

A
e > 0.

We will be interested in the case of the exponential function f(x) = e*. For any
Hermitian matrix A, note that e® is positive semi-definite. Whereas in the scalar
case e*t? = ¢%¢® holds, it is not necessarily true in the matrix case that eAtB =

e - eB. However, the following useful inequality does hold:

Theorem 1.4.11 (Golden-Thompson Inequality). Let A and B be arbitrary
Hermitian d x d matrices. Then

Tr (6A+B) < Tr (eA . eB) . (1.71)

For a proof, we refer to [23,41]. For a survey of Golden-Thompson and other
trace inequalities, see [40]. Golden-Thompson inequality holds for arbitrary unitary-
invariant norm replacing the trace, see [23] Theorem 9.3.7. A version of Golden-
Thompson inequality for three matrices fails:

Tr (€A+B+C) £ Tr (eAeBeC) .

1.4.18 The Matrix Logarithm

We define the matrix logarithm as the functional inverse of the matrix exponential:
log (eA) := A for all Hermitian matrix A. (1.72)

This formula determines the logarithm on the positive definite cone.
The matrix logarithm interfaces beautifully with the semidefinite order [23,
Exercise 4.2.5]. In fact, the logarithm is operator monotone:

O0<A<H=logA <logH, (1.73)

where 0 denotes the zero matrix whose entries are all zeros. The logarithm is also
operator concave:

Tlog A+ (1 —71)logH < log (tA + (1 —7)H) (1.74)

for all positive definite A, H and 7 € [0,1]. Operator monotone functions and
operator convex functions are depressingly rare. In particular, the matrix exponential
does not belong to either class [23, Chap. V]. Fortunately, the trace inequalities of a
matrix-valued function can be used as limited substitute. For a survey, see [40]which
is very accessible. Carlen [15] is also ideal for a beginner.
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1.4.19 Quantum Relative Entropy and Bregman Divergence

Quantum relative entropy can be interpreted as a measure of dissimilarity between
two positive-definite matrices.

Definition 1.4.12 (Quantum relative entropy). Let X,Y be positive-definite
matrices. The quantum relative entropy of X with respect to Y is defined as

D(X;Y) = Tr[XlogX — XlogY — (X —-Y)]
=Tr[X(logX—-1logY)— (X-Y)]. (1.75)

Quantum relative entropy is also called quantum information divergence and von
Neumann divergence. It has a nice geometric interpretation [42].

A new class of matrix nearness problems uses a directed distance measure called
a Bregman divergence. We define the Bregman divergence of the matrix X from the
matrix Y as

Dy (X;Y) 20 (X) —o(Y)— (Ve (X),X-Y), (1.76)

where the matrix inner product (X,Y) = Re Tr XY*. Two principal examples of
Bregman divergences are the following. When ¢ (X) = 1 ||X||iﬂ, the associated
divergence is the squared Frobenius norm 3 || X — YH?F When ¢ (X) is the
negative Shannon entropy, we obtain the Kullback-Leibler divergence, which is also
known as relative entropy. But these two cases are just the tip of the iceberg [42].
In general, Bregman divergences provide a powerful way to measure the distance
between matrices. The problem can be formulated in terms of convex optimization

minimize D, (X;Y) subjectto X € ﬂk Ch,

where C is a finite collection of closed, convex sets whose intersection is nonempty.
For example, we can apply it to the problem of learning a divergence from data.
Define the quantum entropy function

v (X) =Tr (Xlog X) (1.77)

for a positive-definite matrix. Note that the trace function is linear. The divergence
D (X;Y) can be viewed as the difference between ¢ (X) and the best affine
approximation of the entropy at the matrix Y. In other words, (1.75) is the special
case of (1.76) when ¢ (X) is given by (1.77). The entropy function ¢ given in (1.77)
is a strictly convex function, which implies that the affine approximation strictly
underestimates this (. This observation gives us the following fact.

Fact 1.4.13 (Klein’s inequality). The quantum relative entropy is nonnegative
D(X;Y) >0.
Equality holds if and only if X =Y.
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Introducing the definition of the quantum relative entropy into Fact (1.4.13), and
rearranging, we obtain

TrY > Tr (XlogY — XlogX + X).
When X =Y, both sides are equal. We can summarize this observation in a lemma
for convenience.
Lemma 1.4.14 (Variation formula for trace [43]). Let Y be a positive-definite

matrix. Then,

Y = r)r(l&;ocTr(XlogY —XlogX +X).
>

This lemma is a restatement of the fact that quantum relative entropy is nonnegative.
The convexity of quantum relative entropy has paramount importance.

Fact 1.4.15 (Lindblad [44]). The quantum relative entropy defined in (1.75) is a
Jjointly convex function. That is,

D(tXl + (1 —t)Xz;tYl + (1 —t)Yz) <tD (X1;Y1) + (1 —t)D(XQ;Yz), te [0, 1]7

where X; and Y ; are positive definite for i = 1, 2.

Bhatia’s book [23, IX.6 and Problem IX.8.17] gives a clear account of this approach.
A very accessible work is [45].

A final useful tool is a basic result in matrix theory and convex analysis [46,
Lemma 2.3]. Following [43], a short proof originally from [47] is included here for
convenience.

Proposition 1.4.16. Let f(-;-) be a jointly concave function. Then, the function
y +— max,f (x;y) obtained by partial maximization is concave, assuming the
maximization is always attained.

Proof. For a pair of points y; and ys, there are points 1 and x5 that meet
f(ziiyn) = m;ixf (z;y1) and f(z2;y2) = mgxf (z3y2) -
For each ¢ € [0, 1], the joint concavity of f says that
maxg f (zityr + (L= 1) y2) 2 f (tz1r + (1 — t) 22ity1 + (1 — 1) y2)
>t f(o3y) + (1 —1) f(22592)
=t-max, f (z;y1) + (1 — 1) f (z2392) -

The second line follows from the assumption that f(-;-) be a jointly concave
function. In words, the partial maximum is a concave function. O
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If f is a convex function and o > 0, then the function «f is convex. If f; and fo
are both convex, then so is their sum f; + f>. Combining nonnegative scaling and
addition [48, p. 79], we see that the set of convex functions is itself a convex cone:
a nonnegative weighted sum of convex functions

f=wifi+ -+ wnfm (1.78)

is convex. Similarly, a nonnegative weighted sum of concave functions is concave.
A linear function is of course convex. Let S"*" stand for the set of the n x n
symmetric matrix. Any linear function f : S"*™ +— R can be represented in the
form

f(X)=Tr(CX), Ces™™ (1.79)

1.4.20 Lieb’s Theorem

Lieb’s Theorem is the foundation for studying the sum of random matrices in
Chap. 2. We present a succinct proof this theorem, following the arguments of Tropp
[49]. Although the main ideas of Tropp’s presentation are drawn from [46], his proof
provides a geometric intuition for Theorem 1.4.17 and connects it to another major
result. Section 1.4.19 provides all the necessary tools for this proof.

Theorem 1.4.17 (Lieb [50]). Fix a Hermitian matrix H. The function
A — Trexp (H +log (A))

is concave on the positive-definite cone.

Proof. In the variational formula, Lemma 1.4.14, select
Y =exp(H+logA)
to obtain

Trexp (H+1log A) = r}r{la)O(Tr (X(H+1logA) —XlogX + X).
>

Using the quantum relative entropy of (1.75), this expression can be rewritten as

Trexp(H +1log A) = max [Tr (XH) — (D (X;A) —TrA)]. (1.80)

Note that trace is a linear function.
For a Hermitian matrix H, Fact 1.4.15 says that D (X; A) is a jointly convex
function of the matrix variables A and X. Due to the linearity of the trace function,
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the whole bracket on the right-hand-side of (1.80) is also a jointly convex function
of the matrix variables A and X. It follows from Proposition 1.4.16 that the
right-hand-side of (1.80) defines a concave function of A. This observation
completes the proof. (]

We require a simple but powerful corollary of Lieb’s theorem. This result connects
expectation with the trace exponential.

Corollary 1.4.18. Let H be a fixed Hermitian matrix, and let X be a random
Hermitian matrix. Then

ETrexp (H+ X) < Trexp (H + log (]Eex)) .
Proof. Define the random matrix Y = eX, and calculate that

ETrexp(H+ X) =ETrexp(H +1logY)
< Trexp (H + log (EY))
= Trexp (H + log (Eex)) .

The first relation follows from the definition (1.72) of the matrix logarithm because
Y is always positive definite, Y > 0. Lieb’s result, Theorem 1.4.17, says that the
trace function is concave in Y, so in the second relation we may invoke Jensen’s
inequality to draw the expectation inside the logarithm. (]

1.4.21 Dilations

An extraordinary fruitful idea from operator theory is to embed matrices within
larger block matrices, called dilations [51]. The Hermitian dilation of a rectangular
matrix B is

(1.81)

sO(B)Z[O B]

B* 0

Evidently, ¢ (B) is always Hermitian. A short calculation yields the important
identity

(1.82)

em = | P 0]

0 B*B
It is also be verified that the Hermitian dilation preserves spectral information:

Amax (¢ (B)) =l B)]| = Bl (1.83)

We use dilations to extend results for Hermitian matrices to rectangular matrices.
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Consider a channel [52, p. 279] in which the additive Gaussian noise is a
stochastic process with a finite-dimensional covariance matrix. Information theory
tells us that the information (both quantum and classical) depends on only the
eigenvalues of the covariance matrix. The dilations preserve the “information”.

1.4.22 The Positive Semi-definite Matrices and Partial Order

The matrix A is called positive semi-definite if all of its eigenvalues are non-
negative. This is denoted A > 0. Furthermore, for any two Hermitian matrices
A and B, we write A > B if A — B > 0. One can define a semidefinite order or
partial order on all Hermitian matrices. See [22] for a treatment of this topic.

For any ¢, the eigenvalues of A — ¢TI are A\ — ¢, ..., Ay — t. The spectral norm of
A, denoted as || A ||, is defined to be max; |A\;|. Thus — ||A]| - I< A < ||A - L

Claim 1.4.19. Let A, B and C be Hermitian d X d matrices satisfying A > 0 and
B < C. Then, Tr (A-B) < Tr (A - C).

Notice that < is a partial order and that

ABA B cC¥ A<BandA' <B =A+A <B+B.

Herm>

Moreover, spectral mapping (1.60) implies that

A e Cdxd A2 >0,

Herm>

Corollary 1.4.20 (Trace-norm property). If A > 0, then
Tr(A-B) <|B||Tr(A), (1.84)

where ||B)|| is the spectrum norm (largest singular value).

Proof. Apply Claim 1.4.19 with C = ||B|| - I and note that Tr («A) = aTr (A)
for any scalar a. U

Suppose a real function f on an interval I has the following property [22, p. 60]:
if A and B are two elements of H,,(I) and A > B, then f (A) > f(B). We say
that such a function f is matrix monotone of order n on I. If f is matrix monotone
of order n forn = 1,2, .. ., then we say f is operator monotone.

Matrix convexity of order n and operator convexity can be defined in a similar
way. The function f(¢) = t", on the interval [0, c0) is operator monotone for 0 <
r < 1, and is operator convex for 1 <r < 2and for -1 < r < 0.
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1.4.23 Expectation and the Semidefinite Order

Since the expectation of a random matrix can be viewed as a convex combination
and the positive semidefinite cone is convex, then expectation preserves the
semidefinite order [53]:

X <Y almostsurely = EX < EY. (1.85)

Every operator convex function admits an operator Jensen’s inequality [54]. In
particular, the matrix square is operator convex, which implies that

(EX)* < E (X?). (1.86)

The relation (1.86) is also a specific instance of Kadison’s inequality [23, Theorem
2.3.3].

1.4.24 Probability with Matrices

Assume (2, F,P) is a probability space and Z : Q — C&X¢ is measurable with

respect to F and the Borel o-field on CX? This is equivalent to requiring that all
entries of Z be complex-valued random variables. C&%¢ is a metrically complete
vector space and one can naturally define an expected value E [Z] € C&X%. This

turns out to be the matrix I [Z] € C&X? whose (i, j)-entry is the expected value of
the (i, j)-entry of Z. Of course, E [Z] is only defined if all entries of Z are integrable,
but this will always be in the case in this section.

The definition of expectation implies that trace and expectation commute:
Tr(E[Z]) =E(Tr [Z]). (1.87)

Moreover, one can check that the usual product rule is satisfied: If Z, W : Q —

(Cf_lléi are measurable and independent, then

E[ZW] =E[Z]E[W]. (1.88)
Finally,

ifZ . Q — C? satisfies Z > 0 almost surely (a.s.), then E [Z] > 0,

Herm

which is an easy consequence of another readily checked fact: (v,E[Z]v) =
E([(v,Zv)],v € C¢, where (-,-) is the standard Euclidean inner product.
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1.4.25 Isometries

There is an analogy between numbers and transforms [55, p. 142]. A finite-
dimensional transform is a finite-dimensional matrix.

Theorem 1.4.21 (Orthogonal or Unitary). The following three conditions on a
linear transform U on inner product space are equivalent to each other.

1. U*U =1,
2. (Ux,Uy) = (x,y) forallx andy,
3. |Ux|| = ||x]| for all x.

Since condition 3 implies that
lUx — Uy|| = ||x — y|| forall x and y,

we see that transforms of the type that the theorem deals with are characterized
by the fact that they preserve distances. For this reason, we call such a transform
an isometry. An isometry on a finite-dimensional space is necessarily orthogonal
or unitary, use of this terminology will enable us to treat the real and the complex
cases simultaneously. On a finite-dimensional space, we observe that an isometry is
always invertible and that U~ (= U*) is an isometry along with U.

1.4.26 Courant-Fischer Characterization of Eigenvalues

The expectation of a random variable is EX. We write X ~ Bern (p) to indicate
that X has a Bernoulli distribution with mean p. In Sect.2.12, one of the central
tools is the variational characterization of a Hermitian matrix given by the Courant-
Fischer theorem. For integers d and n satisfying 1 < d < n, the complex Stiefel
manifold

p={vec.vv=r1j

is the collection of orthonormal bases for the d-dimensional subspaces of C", or,
equivalently, the collection of all isometric embeddings of C? into a subspace of
C™. Then the matrix V*AV can be interpreted as the compression of A to the
space spanned by V.

Theorem 1.4.22 (Courant-Fischer). Let A is a Hermitian matrix with dimen-
sion n. Then

A (A) = yin Amax (VFAV)  and (1.89)
Mo (A) = max Ain (V*AV) . (1.90)

vevy
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A matrix V_ € V}! achieves equality in (1.90) if and only if its columns span a
dominant k-dimensional invariant subspace A. Likewise, a matrix V € VI'_ 41
achieves equality in (1.89) if and only if its columns span a bottom (n — k + 1)-
dimensional invariant subspace A.

The =+ subscripts in Theorem 1.4.22 are chosen to reflect the fact that Ay, (A) is the
minimum eigenvalue of V* AV _ and the maximum eigenvalue of V3 AV, . Asa
consequence of Theorem 1.4.22, when A is Hermitian,

A (—A) = =X—k41 (A). (1.91)

In other words, for the minimum eigenvalue of a Hermitian matrix A, we
have [53, p. 13]

)\min (A) = *)\max (*A) . (192)

This fact (1.91) allows us to use the same techniques we develop for bounding the
eigenvalues from above to bound them from below. The use of this fact is given in
Sect. 2.13.

1.5 Decoupling from Dependance to Independence

Decoupling is a technique of replacing quadratic forms of random variables by
bilinear forms. The monograph [56] gives a systematic study of decoupling and
its applications. A simple decoupling inequality is given by Vershynin [57]. Both
the result and its proof are well known but his short proof is not easy to find in the
literature. In a more general form, for multilinear forms, this inequality can be found
in [56, Theorem 3.1.1].

Theorem 1.5.1. Let A be an n x n (n > 2) matrix with zero diagonal. Let x =
(X1,...,Xn),n > 2 be a random vector with independent mean zero coefficients.
Then, for every convex function f, one has

Ef ((Ax,x)) < Ef (4 (Ax,x")) (1.93)

where x' is an independent copy of x.

The consequence of the theorem can be equivalently stated as

Ef i a;; X;iXj | <Ef |4 i aij Xi X,

2,j=1 7,j=1

where x' = (X i, e ,X;) is an independent copy of x. In practice, the indepen-

dent copy of a random vector is easily available but the true random vector is hardly
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available. The larger the dimension n, the bigger gap between both sides of (1.93).
We see Fig. 1.2 for illustration. Jensen’s inequality says that if f is convex,

f(Ez) <Ef(z), (1.94)

provided that the expectations exist. Empirically, we found when n is large enough,
say n > 100, we can write (1.93) as the form

Ef (Ax,x)) < Ef (C (Ax, X)) (1.95)

where C' > 1, say C = 1.1. In practice, the expectation is replaced by an average

of K simulations. The size of K affects the tightness of the inequality. Empirical

evidence shows that K = 100-1,000 is sufficient. For Gaussian random vectors, C

is a function of K and n, or C (K, n). We cannot rigorously prove (1.95), however.
Examples of the convex function f(z) in (1.93) include [48, p. 71]

e Exponential. e®” is convex on R, for any a € R.

e Powers. x® is convex on R, , the set of positive real numbers, when a > 1 or
a <0, and concave for 0 < a < 1.

* Powers of absolute value. |z|P, for p > 1, is convex on R.

e Logarithm. log x is concave on R ;.

* Negative entropy. x log x is convex, eitheron R ;, or R, (the set of nonnegative
real numbers) defined as O for x = 0.

Example 1.5.2 (Quadratic form is bigger than bilinear form). The function f(t) =
|t| is convex on R. We will use this simple function in our simulations below.

Let us illustrate Theorem 1.5.1 using MATLAB simulations (See the Box for
the MATLAB code). Without loss of generality, we consider a fixed n x n matrix
A whose entries are Gaussian random variables. The matrix A has zero diagonal.
For the random vector x, we also assume the Gaussian random variables as its n
entries. An independent copy x’ is assumed to be available to form the bilinear
form. For the quadratic form, we assume that the true random vector x is available:
this assumption is much stronger than the availability of an independent copy x’ of
the Gaussian random vector x (Fig. 1.1).

Using the MATLAB code in the Box, we obtain Fig. 1.2. It is seen that the right-
hand side (bilinear form) of (1.93) is always greater than the left-hand side of (1.93).

Example 1.5.3 (Multiple-Input, Multiple-Output). Given a linear system, we have
that

y=Hx+n

where x = (X7, ..., X,,) is the input random vector, y = (Y71, ...,Y,,) is the output
random vector and n = (Ny,..., N,,) is the noise vector (often Gaussian). The H
is an n X n matrix with zero diagonal. One is interested in the inner product (in the
quadratic form)
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Similarly, if we have the complete information of n, we can form
<Aya Il> - <AHX7 Il> + <AII, Il> s

where A is an n X n matrix with zero diagonal, and (An, n) is the quadratic form.
On the other hand, if we have the independent copy n’ of n, we can form

(Ay,n’) = (AHx,n’) + (An,n’),

where (An,n’) is the bilinear form. Thus, (1.93) can be used to establish the
inequality relation. U
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MATLAB Code: Comparing Quadratic and Bilinear Forms

clear all;
for itest=1:100
K=100;n=10; Q=0; B=0; C=4; Al=randn(n,n); A=Al;

for itry=1:K % We use K Monte Carlo simulations to approximate the
expectation

fori=1:n

A(1,1)=0; % A is an n x n matrix with zero diagonal

end

x=randn(n,1); % random vector x

x1=randn(n,1); % independent copy x’ of random vector x

Q=Q+abs(x'*A*x); % f(x) = |x|P, for p > 1, is convex on R . p=1 is chosen
here.

B=B+abs(C*x1’*A*x); % The prime ’ represents the Hermitian transpose in
MATLAB

end

Q=Q/K; B=B/K; % An average of K Monte Carlo simulations to approximate
the expectation

Qtest(itest,1)=Q; Btest(itest,1)=B;

end

n=1:length(Qtest);

figure(1), plot(n,Qtest(n),’b-',n,Btest(n),’r-*'), xlabel('Monte Carlo Index i’),
ylabel(’ Values for Quadratic and Bilinear’), title(’Quadratic and Bilinear Forms’),
legend('Quadratic’, 'Bilinear’), grid

[

Proof of Theorem 1.5.1. We give a short proof due to [57]. Let A = (aij)zjzl,

and let €1, ...,¢&, be independent Bernoulli random variables with P (¢; = 0) =
Pe;=1) = % Let E. be the conditional expectation with respect to these
random variables €;,4 = 1,...,n. and similarly for the conditional expectation

with respect to random vectors x = (X3,...,X,) and X' = (Xi7 e ,X;). Let
[n] ={1,2,...,n} be the set. We have

<AX, X> = Z ainin = 4]EE Z E; (1 - Ei) (linin.
i,j€[n] i,jE€[n]

By Jensen’s inequality (1.94) and Fubini’s inequality [58, 59],

Ef ((Ax,x)) <EE.f | 4 Z gi (1 —&;) aiy Xi X

1,j€[n]
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We fix a realization of 1, ...,¢&, and consider the subset I = {i € [n] : ¢; = 1}.
Then we obtain

1Y si(l-e)aXiX; =4 Y &l —e)a; XiX;.
i,j€[n] (i,§)€IxIe

where € is the complement the subset I. Since the X, 7 € I are independent of the
Xj,j € I¢, the distribution of the sum will not change if we replace X}, j € I by
their independent copies X J/», j € I¢, the coordinates of the independent copy x of
the x. As a result, we have

Ef (Ax,x)) SEExxf [4 D e (l—e)ay XX,
(i,j5)€IxIc

We use a simple consequence of Jensen’s inequality (1.94): If Y and Z are
independent random variables and [EZ = 0 then

Ef(Y)=Ef(Y +EZ) <E(Y + Z).

Using this fact for

V=4 Y a;XiX;, Z=4 > ;XX

(i,4)€IxIe (i) ¢IxIe
we arrive at
Exsr f(Y)=Exw f(Y +2) = 42 a; XiX; | =Ef (4(Ax,x')).
7,7=1
Taking the expectation with respect to (¢;), we complete the proof. (]

The following result is valid for the Gaussian case.

Theorem 1.5.4 (Arcones and Giné [60]). These exists an absolute constant C
such that the following holds for allp > 1. Let g = (g1, . .., gn) be a sequence of
independent standard Gaussian random variables. If A is a collection of Hermitian
matrices and g' is an independent copy of g, then

p p

E sup Z 9i9jAi; + Z ; < Cp]Eiup Z gig;‘Ai,j

ij=1 €Al =1
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In other words, we have

E sup [(Ag.g) + Tr (Agg”) — Tr (A)|” < CPE sup |(Ag.g')[".
AcA AcA

Theorem 1.5.5 dates back to [61], but appeared with explicit constants and with
a much simplified proof in [62]. Let ||X]| be the operator norm and ||X||» be the
Frobenius norm.

Theorem 1.5.5 (Theorem 17 of Boucheron et al. [62]). Let X be the N x N
matrix with extries x; ; and assume that x;; = 0 (zero diagonal) for all 1 €
{1,...,N}. Let € = {&;}, be a Rademacher sequence. Then, for any t > 0,

1 Bt 2
P E &&aij| >t ] <2exp | —— min{§ o7, . (1.96)
A 64 LI x|

1 9%y 42
P ’ x ’>t <2exp | —— min ﬁ, .
(5 § ) p< 64 {|X|| HX||2F

Let F denote a collection of n X n symmetric matrices X, and ¢1,...,e, are
i.i.d. Rademacher variables. For convenience assume that the matrices X have zero
diagonal, thatis, X;; = O forall X € Fand¢ = 1,...,n. Suppose the supremum
of the Ly operator norm of matrices (X)x¢ r is finite, and without loss of generality
we assume that this supremum equals one, that is,

sup sup z' Xz =1
XEF |z)3<1

forz € R"”.
Theorem 1.5.6 (Theorem 17 of Boucheron et al. [62]). Forallt > 0,

t2
P(ZZE[Z]+t) <exp (_ 32E [YV2] + 65t/3>

where the random variable Y is defined as

o\ 1/2
n n

Y = sup E é‘inj
XeF i=1 \j=1
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1.6 Fundamentals of Random Matrices

Here, we highlight the fundamentals of random matrix theory that will be needed
in Chap.9 that deals with high-dimensional data processing motivated by the
large-scale cognitive radio network testbed. As mentioned in Sect. 9.1, the basic
building block for each node in the data processing is a random matrix (e.g., sample
covariance matrix). A sum of random matrices arise naturally. Classical textbooks
deal with a sum of scalar-valued random variables—and the central limit theorem.
Here, we deal with a sum of random matrices—matrix-valued random variables.
Many new challenges will be encountered due to this fundamental paradigm shift.
For example, scalar-valued random variables are commutative, while matrix-valued
random variables are non-commutative. See Tao [9].

1.6.1 Fourier Method

This method is standard method for the proof of the central limit theorem. Given any
real random variable X, the characteristic function Fx (t) : R — C is defined as

Fx(t) = Ee™.

Equivalently, F'x is the Fourier transform of the probability measure 1 x . The signed
Bernoulli distribution has Fy = cos(t) and the normal distribution A (u, 02) has
Fx(t) = eithe=a’t?/2,

For a random vector X taking values in R™, we define Fix (t) : R™ — C as

Fx(t) = Eejt'x

where - denotes the Euclidean inner product on R™. One can similarly define the
characteristic function on complex vector spaces C™ by using the complex inner
product

(21, ooy 2n) - (W1,...,wy) = Re(z1w1 + -+ + 2,Wy,) .

1.6.2 The Moment Method

The most elementary (but still remarkably effective) method is the moment
method [63]. The method is to understand the distribution of a random variable
X via its moments X¥. This method is equivalent to Fourier method. If we Taylor
expand e/*X and formally exchange the series and expectation, we arrive at the
heuristic identity
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k=0

which connects the characteristic functions of a real variable X as a kind of
generating functions for the moments. In practice, the moment method tends to look
somewhat different from the Fourier methods, and it is more apparent how to modify
them to non-independent or non-commutative settings.

The Fourier phases © — €@ are bounded, but the moment function z — z*
becomes unbounded at infinity. One can deal with this issue, however, as long as
one has sufficient decay:

Theorem 1.6.1 (Carleman continuity theorem). Ler X,, be a sequence of uni-
formly sub-Gaussian real random variables, and let X be another sub-Gaussian
random variable. Then the following statements are equivalent:

1. Foreveryk =0,1,2,..., EXF converges to EX*.
2. X, converges in distribution to X.

See [63] for a proof.

1.6.3 Expected Moments of Random Matrices with Complex
Gaussian Entries

Recall that for £ in R and 0 € ]0, 0o, NV (£, 30) denotes the Gaussian distribution
with mean ¢ and variance 2. The normalized trace is defined as

tr, = —Tr.
n

The first class, denoted Hermitian Gaussian Random Matrices or HGRM(n,o?), is
a class of Hermitian n x n random matrices A = (a;;), satisfying that the entries
A = (a;55),1 < i < j < n, forms a set of %n(n + 1) independent, Gaussian
random variables, which are complex valued whenever ¢ < j, and fulfill that

E(a;;) =0, and E (|a,»j|2) =02, forall i, .

The case 02 = % gives the normalization used by Wigner [64] and Mehta [65],
while the case 02 = % gives the normalization used by Voiculescu [66]. We say that
A is a standard Hermitian Gaussian random n X m matrix with entries of variance
o2, if the following conditions are satisfied:

1. The entries a;;,1 < ¢ < j < n, form a set of %n (n + 1) independent, complex
valued random variables.
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2. Foreachiin {1,2,...,n}, a; is a real valued random variable with distribution
N (0, %02).

3. When i < j, the real and imaginary parts Re (a;;) , Im (a;;), of a;; are indepen-
dent, identically distributed random variables with distribution A" (0, o).

4. When j > i, a;; = Gj;, where d is the complex conjugate of d.

We denote by HGRM(n,o?) the set of all such random matrices. If A is an element
of HGRM(n,o'2), then

E (|aij|2) — o2, forall i, .

The distribution of the real valued random variable a;; has density

1 z?
T mexp(—;?), z eR,

with respect to Lebesgue measure on R, whereas, if ¢ < j, the distribution of the
complex valued random variable a;; has density

1 2
Z Wexp<f;7), zeC,

with respect to (w.r.t.) Lebesgue measure on C. For any complex matrix H, we
have that

Tr (H2) = ihu‘ + QZ |hij\2.
i=1

i<j
The distribution of an element A of HGRM(n,o?) has the density

H L Tr(H?), HeC"™"

Tarar P (— 257

The second class, denoted Gaussian Random Matrices or GRM(m,n,o?), is a
class of m x n random matrices B = (b;;),1 < @ < m,1 < j < n. This
class forms a set of mn independent, complex-valued, Gaussian random variables,
satisfying that

E (b;;) =0, and E (|bij|2) = o2, forall i, .

We say B is a standard Gaussian random matrix of m xn with entries of variance o2,
if real valued random variables Re (b;;),Im (b;;),1 < 4,5 < n, form a family of
2mn independent, identically distributed (i.i.d.) random variables, with distribution
N (0, $0%). This class starts with Wishart [67] and Hsu [68].

We are interested in the explicit formulas for the mean values E (Tr [exp (sA)])
in the Wigner case, and
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E (Tr[B*Bexp (sB*B)])

in the Wishart case, as functions of a complex parameter s. A new and entirely
analytical treatment of these problems is given by the classical work of Haagerup
and Thorbjgrnsen [69] which we follow closely for this section.

1.6.4 Hermitian Gaussian Random Matrices HGRM (n, o)

We need the confluent hyper-geometric function [70, Vol. 1, p. 248] (a,c,z) +—
® (a, ¢, z) that is defined as

oo

a), x" ar ala+1)z
— 142t T
(a¢,2) ch' +c1+c(c—|—1)2+ ’

for a, ¢, z in C, such that ¢ ¢ Z\N. In particular, if a € Z\N, then (z) — @ (a, ¢, x)
is a polynomial in x of degree —a, for any permitted c. For any non-negative integer
n, and any complex number w, we apply the notation

(), = 1, ifn =0,
"l ww+ D) (w+2)---(w+n—1),ifn€N.
For any element A of HGRM(n, 02) and any s € C, we have that

E (Tr[exp (sA)]) =n - exp (028 ) @ (1-n,2;—0%s%).

If (X.,) is a sequence of random matrices, such that X,, € HGRM (n, 1) for all n
in N. Then for any s € C, we have that

lim E (Tr[exp (sX,)]) = = [2 exp (sz)v4 — z2dz,

n— 00 2

and the convergence is uniform on compact subsets of C. Further we have that for
the k-th moment of X,,

lim E(trn Xk =5 / k4 — z2dz,
™

n—roo

and in general, for every continuous bounded function f : R — C,

lim E (tr, [f (X,) 27r/ f(x)v4— a?de.

n—roo
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Often, a recursion formula is efficient in calculation. Let A is an element of
HGRM(n, 1), and for integer k define

C (k,n) =E (Tr [A?*]).

Then the initial values are C (0,n) = n,C (1,n) = n?, and for fixed n in N, the
numbers C'(k,n) satisfy the recursion formula:

4k 42 k(4k% — 1)
1.n)=n- . A —1 > 1.
Ck+1,n)=n T2 C(k,n)+ 2 C(k—-1,n), k
(1.97)
We can further show that C'(k, n) has the following form [71]
k
k |
C(k,n) = ai(k)n* =% keNyneN (1.98)

=0

Here the notation Ny denotes the integer that does not include zero, in contrast with
N. The coefficients a; (k) ,i,k € Ny are determined by the following recursive
formula

1 2k
G/()(k):m(k), kENO
4k 4 2 k(4k% -1
CLi(k‘—Fl):k:—Z-ai(k)—F(k_’_Q)'ai_l(]{J—l), k,i € N.

A list of the numbers of a; (k) is given in [71, p. 459].
From (1.97) and (1.98), we can get [69] for any A in HGRM(n, 1),

etc. If we replace the A above by an element X of HGRM(n, %), and Tr by tr,,
then we have to divide the above numbers by n**!. Finally, for X of HGRM(n, 1),
we have
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E (ir, [A%]) =1,

E (i, [A%]) =2+ 5,

E (tr, [A%]) =5+ 15,

E (i, [A%]) = 14+ 1§ + 2
E (tr, [A'0]) =42+ 420 4 483

etc. The constant term in E (tr,, [A%*]) is

ES]

1 [2k 1 [? ., 5
ag (k) v ) = 5 2x V4 — 2?de,

in concordance with Wigner’s semi-circle law.

1.6.5 Hermitian Gaussian Random Matrices GRM(m,n, o?)

We first define the function ¢ (x) as

o (z) = Thtatn’ &P (—z)| Ly (x), keNo, (1.99)
where L¢ ()
ie.,

ken, 1s the sequence of generalized Laguerre polynomials of order a,

_ d*
LY (x) = (k) "o “exp (z) - o (z"t*exp(—z)), ke Ny.

Here I' () is the Gamma function.

Now we can state a corollary from [69]. Let B be an element of GRM(m, n, 1),
let o (x),a € ]0,00[,k € Ny, be the functions introduced in (1.99), and let
f 10, 00[ — R a Borel function.! If m > n, we have that

E(Tr[f (B*B)]) = / " i) [i (e <x>)ﬂ dz.
1=0

If m < n, we have that

A map f : X — Y between two topological spaces is called Borel (or Borel measurable) if
F~1(A) is a Borel set for any open set A.
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n—1

E(Tr[f (B"B))) = (n —m)f(0) + /Ooo f(z) [Z (er ™" (96))2] dz.

=0

We need to define the hyper-geometric function F'
Q of m x n is an element from GRM(m, n, %). Denote ¢ = 7. We have

E (i, [Q"QJ)

2

E (.(Q'Q) ) =
E(trnQQs): c+3c +c)+cn
E (trn 4) = (* 4+ 66> + 6% + c) + (502 + 50) n=2
E (trn 5) c 5 110c* +20¢3+10¢ +c) (1563—|—4062+15C) n248cn ™4

(1.100)

In general, E (trn(Q*Q)k) is a polynomial of degree [£52] in n =2, for fixed c.

1.7 Sub-Gaussian Random Variables

The material here is taken from [72-74]. Buldygin and Solntsev [74] develops and
N

uses this tool systemically. If Sy = > a;X;, where X; are the Bernoulli random
i=1

variables, then its generating moment function E (e'*) satisfies E (e'~) < e /2,

On the other hand, if X is a Gaussian random variable with mean zero and variance

E (X?) = 02, its moment generating function E (e'X) is ¢?°t’/2_This led Kahane

[75] to make the following definition. A random variable X is sub-Gaussian, with

exponent b, if

E (e/X) < /2 (1.101)
forall —oco < t < 0.

Lemma 1.7.1 (Equivalence of sub-Gaussian properties [72]). Letr X be a ran-
dom variable. Then the following properties are equivalent with parameters K; > 0
that are different from each other by at most an absolute constant.>

1. Tails: P (|X| > t) < exp (1 —t*/K?}), forall t > 0.

2The precise meaning of this equivalence is the following: There is an absolute constant C' such
that property 4 implies property j with parameter K; < CK; for any two properties i, j = 1,2, 3.
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2. Moments: (]E|X\p)1/p < Ky /p, forallp > 1.
3. Super-exponential moment: E [exp (X /K 3)] e.
Moreover, if EX = 0, then properties 1-3 are also equivalent to the
following one:
4. Laplace transform condition: E [exp (tX)] < exp (t*K3) forall t € R.

If Xy,..., Xy are independent sub-Gaussian random variables with exponents
b1, ..., by respectively and a1, . .., ay are real numbers, then [73, p. 109]
N N
E (et(a1X1+..<+aNXN)> _ H otai X < He 2b2/2
i=1

sothata; X1+ - - - +an X is sub-Gaussian, with exponent (a%bf—k oo +a?\,bf\,) 1/2.
We say that a random variable Y majorizes in distribution another random
variable X if there exists a number « € (0, 1] such that, for all ¢ > 0, one has [74]

P(X|>1¢) <P([Y]|>1).
In a similar manner, we say that a sequence of random variables {Y;, 4 > 1} unifo-
rmly majorizes in distribution another sequence of random variables { X;,¢ > 1} if
there exists a number « € (0, 1] such that, for all ¢ > 0, and ¢ > 1, one has

aP (|1X;] > t) <P(|Yi] > ¢t).

Consider the quantity

7(X) = sup
[t]|>0

(1.102)

2InEexp (Xt) L2
t2 '

We have that
7(X)=inf {t > 0: Eexp (Xt) <exp (X*t*/2), teR}.

Further if X is sub-Gaussian if and only if 7 (X) < oo.
The quantity 7 (X) will be called the sub-Gaussian standard. Since one has

1
Eexp (Xt) =1+ tEX + §t2]EX2 +o(t?),
1
exp (a®t?/2) =1+ §t2a2 + o(t?),
as t — 0, then the inequality

Eexp (Xt) <exp (X*t?/2), teR
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may only hold if
EX =0, EX?<da?

This is why each sub-Gaussian random variable X has zero mean and satisfies the
condition

EX? <72 (X).

We say the sub-Gaussian random variable X has parameters (0, 72).
If X is a sub-Gaussian random variable X has parameters (0, 72), then

P(X >t) <exp(—t*/77),
P(-X >t) < exp( t2/72),
P(|X|>t) < 2exp (—t?/7%).

Assume that X1, ..., Xy are independent sub-Gaussian random variables. Then
one has

)z

m
1<?3r)f<n7— (Z X’) (Z Xk)
SURTTR k=1

Assume that X is a zero-mean random variable. Then the following inequality
holds

T (X) < V260 (X),

where

2" . nl
0 (X) = su EXQ"} )
<0 < { (2n)!

We say that a random variable X is strictly sub-Gaussian if X is sub-Gaussian
and EX? = 72 (X).If a € R and X is strictly sub-Gaussian then we have

2 (aX) = a*7? (X) = ®>EX? = E(aX)’.
In such a way, the class of sub-Gaussian random variable is closed with respect to

multiplication by scalars. This class, however, is not closed with respect to addition
of random variables. The next statement motivates us to set this class out.
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Lemma 1.7.2 ([74]). Let X1,...,Xn be independently sub-Gaussian random
variables, and {cy,...,cn} € R. Then zn: c; X; is strictly sub-Gaussian random
variable. =

Theorem 1.7.3 ([74]). Assume that Y is a Gaussian random variable with zero
mean and variance o? (or with parameters (0,0?)). Then

1. If X is a sub-Gaussian random variable with parameters (0,72) and 0 > 72,
then Y majorizes X in distribution.

2. If Y majorizes in distribution some zero-mean random variable X, then the
random variable X is a sub-Gaussian random variable.

Assume that {X;,7 > 1} is a sequence of sub-Gaussian random variable with
parameters (0,77),i > 1 while {Y;,i > 1} is a sequence of Gaussian random
variable with parameters (0, «0?),i > 1, > 1. Then, the sequence {Y;,i > 1}
uniformly majorizes in distribution {X;,7 > 1}.

A random n-dimensional vector x will be called standard sub-Gaussian vec-
tor [74, p. 209] if, in some orthogonal basis of the space R™, its components
XM . X™ are jointly independently sub-Gaussian random variables. Then
we set

Tn (X) = max 7 (X(i)> ,

1<ign

where 7(X) is defined in (1.102). The simplest example of standard sub-Gaussian
vector is the standard n-dimensional Gaussian random vector y.

A linear combination of independent subGaussian random variables is subGaus-
sian. As a special case, a linear combination of independent Gaussian random
variables is Gaussian.

Theorem 1.7.4. Let X1,..., X, be independent centered subGaussian random
variables. Then for any a1, ...,a, € R

P ( Xn: CI,Z‘X,L'
i=1

ct?

>t> <2exp | ——
a;
=1

K2

n

1/2
Proof. We follow [76] for the short proof. Set v; = a;/ (Z af) . We have to
i=1

show that the random variable Y = > v;X; is subGaussian. Let us check the

i=1
Laplace transform condition (4) of the definition of a subGaussian random variable.
Foranyt € R
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n n
E exp (t > viXZ-> = ] Eexp (tv; X;)
i=1 i=1

n
< [T exp (t2v?K3) = exp <t2Kf > vf) = e!"Ki,
i=1 t=1

The inequality here follows from Laplace transform condition (4). The constant in
front of the exponent in Laplace transform condition (4) is 1, this fact plays the
crucial role here. (]

Theorem 1.7.4 can be used to give a very short proof of a classical inequality due
to Khinchin.

Theorem 1.7.5 (Khinchin’s inequality). Let X1, ..., X,, be independent centered
subGaussian random variables. Then for any p > 1, there exists constants Ap, By >

0 such that the inequality
n 1/2 p\ 1/p n 1/2
i=1 = i=1
Proof. We follow [76] for the proof. Without loss of generality, we assume that
n 1/2
<Z a2> = 1. Let p > 2. Then by Holder’s inequality

Sux,
=1
holds for all a4, . ..,a, € R.
n 1/2 n n p\ 1/p
(Z af) =|E ZaiXi < ( ]EZCI,ZXl > 5
=1 1=1 =1

i=1
so A, = 1. Using Theorem 1.7.4, we know that the linear combination ¥ =

o\ 1/2

> a; X, is a subGaussian random variable. Hence,
i=1

1
E[Y )" < Cyp: B,

This is the right asymptotic as p — co.

In the case 1 < p < 2itis enough to prove the inequality for p = 1. Again, using
Holder’s inequality, we can choose B;,, = 1. Applying Khinchin’s inequality with
p = 3, we have

1/2 3/4

B[P = (V]2 V1) < ©v])2 - @IYF) < @IV)Y2 - B3 BV
Thus,

1/2
353(E|Y|2) <E[Y].
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1.8 Sub-Gaussian Random Vectors

Let S™~! denote the unit sphere in R™ (resp. in C™). For two complex vectors
n —
a,b € C", the inner product is (a,b) = > a;b;, where the bar standards for the
i=1
complex conjugate. A mean-zero random vector x on C"™ is called isotropic if for
every @ € S"1,

E|(x,0)[> = 1.
A random vector x is called L-sub-Gaussian if it is isotropic and
P (|(x,0)| > t) < 2exp (—t2/2L?)

forevery 8 € S7=1 and any t > 0. It is well known that, up to an absolute constant,
the tail estimates in the definition of a sug-Gaussian random vector are equivalent
to the moment characterization

1
sup (|(x,0)[")"'" < \/pL.
fesn—1

Assume that a random vector & has independent coordinates &;, each of which
is an L-sub-Gaussian random variable of mean zero and variance one. One
may verify by direct computation that £ is L-sub-Gaussian. Rademacher vectors,
standard Gaussian vectors, (that is, random vectors with independent normally
distributed entries of mean zero and variance one), as well as Steinhaus vectors
(that is, random vectors with independent entries that are uniformly distributed on
{z € C: |z| = 1}), are examples of isotropic, L-subGaussian random vectors for
an absolute constant L. Bernoulli random vectors (X = +1 with equal probability
1/2 for X = +1 and X = —1) are special cases of Steinhaus vectors.

The following well-known bound is relating strong and weak moments. A proof
based on chaining and the majorizing measures theorem is given in [31].

Theorem 1.8.1 (Theorem 2.3 of Krahmer and Mendelson and Rauhut [31]).
Letx1,...,X, € CVN and T € CN. If & is an isotropic, L-sub-Gaussian random

n
vector and Y = Y &;x;, then for every p > 1,
i=1

1/p
(E sup I<t,Y>I”> s¢ <]E sup |(t, G)| + sup <E<t,Y>I”>W) ’
teT teT teT

N

where c is a constant which depends only on L and G = Y g;x; for g1,...,9n
i=1

independent standard Gaussian random variables.
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If p,g € [1,00) satisfy 1/p + 1/q = 1, then the ¢, and £, norms are dual to
each other. In particular, the Euclidean norm is self-dual p = ¢ = 2. Similarly, the
Schatten p-norm is dual to the Schatten g-norm. If ||-|| is some norm on C¥ and B,
is the unit ball in the dual norm of ||-||, then the above theorem implies that

EIYI))? <c (E G+ s <n«:|<t,Y>p>”p) .

1.9 Sub-exponential Random Variables

Some random variables have tails heavier than Gaussian. The following properties
are equivalent for K; > 0

P(|X]|>t) <exp(l—t/K;) forallt > 0;

(E|Y‘p)1/p < Kopforallp > 1;
Eexp (X/K3) <e. (1.103)
A random variable X that satisfies one of the equivalent properties of (1.103)

is called a sub-exponential random variable. The sub-exponential norm, denoted
[ X5, is defined to be the smallest parameter K. In other words,

1 1/
X\, =sup=(E|X")"?.
X1, >I1)p( | XT7)

bz

Lemma 1.9.1 (Sub-exponential is sub-Gaussian squared [72]). A (scalar val-
ued) random variable X is sub-Gaussian if and only if X? is sub-exponential.
Moreover,

2 2 2
X1y, < I1X1y, <20X1,, -

Lemma 1.9.2 (Moment generating function [72]). Let X be a centered sub-
exponential random variable. Then, for t such that |t| < ¢/||X||,,, one has

Eexp (tX) < exp (C’t2 HX||12/11)

where C| c are absolute constants.

Corollary 1.9.3 (Bernstein-type inequality [72]). Let X1,...,Xn be indepen-
dent centered sub-exponential random variables, and let K = max; ||X1||12b1 Then

foreverya = (ai,...,an) € RN and everyt > 0, we have



1.10 e-Nets Arguments 67

P(,,

N
E a; X;
1=1

t2 t
>t] <2exp |—cmin , (1.104)
) [ (K2 [EE Kllallwﬂ

where ¢ > 0 is an absolute constant.

Corollary 1.9.4 (Corollary 17 of Vershynin [72]). Let X1,..., XN be indepen-
dent centered sub-exponential random variables, and let K = max; ||Xz||12/,1 Then,

for everyt > 0, we have
>tN | <2 i - N
> < 2e —cmin | —, =
P KK

]P) <
where ¢ > 0 is an absolute constant.

N
>0
i=1

Remark 1.9.5 (Centering).

The definition of sub-Gaussian and sub-exponential random variables X does not
require them to be centered. In any case, one can always center X using the simple
fact that if X is sub-Gaussian (or sub-exponential), then so is X — EX. Also,

2 2 2 2
X —EX|l, <2IX,, X —EX|, <2[X], .

This follows from triangle inequality || X — EX ||12/)2 < X \\12/)2 + |EX ||12/)2 along
with | EX ||3)2 = |EX| < || X HiQ and similarly for the sub-exponential norm.

1.10 e-Nets Arguments

Let (7, d) be a metric space. Let K C T'. A set V' C T is called an e-net for K if
Vxe K, JyeN d(xy) <e.

Aset S C K is called e-separated if
vxe K, JyeS dx,y)=e

These two notions are closely related. Namely, we have the following elementary
Lemma.

Lemma 1.10.1. Ler K be a subset of a metric space (T, d), and let set N C T be
an e-net for K. Then

1. There exists a 2e-net N' C K such that N7 < N;
2. Any 2e-separated set S C K satisfies S < N;
3. From the other side, any maximal e-separated set S’ C K is an e-net for K.

Let N = |N| be the minimum cardinality of an e-net of 7', also called the covering
number of T at scale «.
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Lemma 1.10.2 (Covering numbers of the sphere). The unit Euclidean sphere
S"=1 equipped with the Euclidean metric satisfies for every € > 0 that

N (5771 e) < <1+§> :

Lemma 1.10.3 (Volumetric estimate). For any € < 1 there exists an e-net such

that N' C S™~1 such that
2\" 3\"
€ €

Proof. Let N be a maximal e-separated subset of sphere S~ 1. Let B} be Euclidean
ball. Then for any distinct points x,y € N

(x + ng) N (y + %B;‘) =0
So,
s (55) = (U (s 51) ) oot (15) ),

which implies

|N|<<1+2) g(g). O
g g

Using e-nets, we prove a basic bound on the first singular value of a random
subGaussian matrix: Let A be an m X n random matrix, m > n, whose entries
are independent copies of a subGaussian random variable. Then

P (s1 > ty/m) < e~ 9™ fort > Cy.

See [76] for a proof.

Lemma 1.10.4 (Computing the spectral norm on a net). Let A be a symmetric
n x n matrix, and let N be an e-net of S"~! for some ¢ € (0,1). Then

|A] = sup [(Ax,x)| < (1—2¢)7" sup [(Ax,x)|.
xeSn—1 xEN

See [72] for a proof.
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1.11 Rademacher Averages and Symmetrization

One simple but basic idea in the study of sums of independent random variables
is the concept of symmetrization [27]. The simplest probabilistic object is the
Rademacher random variable €, which takes the two values £1 with equal prob-
ability 1/2. A random vector is symmetric (or has symmetric distribution) if x
and —x have the same distribution [77]. In this case x and ex, where ¢ is a
Rademacher random variable independent of x, have the same distribution. Let
X;,1 = 1,...,n be independent symmetric random vectors. The joint distribution
of ¢;x;,7 = 1,...,n is that of the original sequence if the coefficients ¢; are either
non-random with values £1, or they are random and independent from each other
and all x; with P (g; = +1) = 1.
N
The technique of symmetrization leads to so-called Rademacher sums > &;x;,
N N =1
where z; are scalars, Y . ¢;x;, where x; are vectors and ) . £;X;, where X; are ma-
trices. Although quité simple, symmetrization is very p(Z)wlerful since there are nice
estimates for Rademacher sums available—the so-called Khintchine inequalities.
A sequence of independent Rademacher variables is referred to as a Rademacher

sequence. A Rademacher series in a Banach space X is a sum of the form

o
g EiX;
i=1

where x is a sequence of points in X and ¢; is an (independent) Rademacher
sequence.
For 0 < p < o0, the [,-norm is defined as

1/p
lIxll, = (Z |$i|p> < 0.
i

|| - ||2 denotes the Euclidean norm. For p = oo,

1]l = lIx[ = sup |z] , p = oo.
(2

We use || - || to represent the case of p = co.
For Rademacher series with scalar coefficients, the most important result is the
inequality of Khintchine. The following sharp version is due to Haagerup [78].

Proposition 1.11.1 (Khintchine). Let p > 2. For every sequence {a;} of complex
scalars,

Z |ai|2‘| 1/27

EP Zfiai <Cp
i
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where the optimal constant

1/p 1/p
Cp = [21,/21();/2),] < (\@) / e "0 /p.

This inequality is typically established only for real scalars, but the real case implies
that the complex case holds with the same constant.

Lemma 1.11.2 (Khintchine inequality [29]). Fora € R", x € {—1,1}" uniform,
and k > 2 an even integer, E [(aTx)k} < HaHIQC - kR/2,

For a family of random variables, it is often useful to consider a number of its
independent copies, viz., independent families of random vectors having the same
distributions.

A symmetrization of the sequence of random vectors is the difference of two
independent copies of this sequence

% =x1 —x®, (1.105)

If the original sequences consist of independent random vectors, all the random
vectors x1) and x(®) used to construct symmetrization are independent. Random
vectors defined in (1.105) are also independent and symmetric.

A Banach space B is a vector space over the field of the real or complex numbers
equipped with a norm || - || for which it is complete. We consider Rademacher

averages Y £;x; with vector valued coefficients as a natural analog of the Gaussian
i

averages Y g;X;. A sequence (g;) of independent random variables taking the

values +1 and —1 with equal probability 1/2, that is symmetric Bernoulli or
Rademacher random variables. We usually call (¢;) a Rademacher sequence or

Bernoulli sequence. We often investigate finite or convergent sums Y . &;x; with
i
vector valued coefficients x;.

For arbitrary m x n matrices, ||A[|g denotes the Schatten p-norm of an m X n
matrix A, i.e.,

[Allg, = llo (A)ll,,
where o € R™*{™:} is the vector of singular values of A, and || - ||, is the usual
lp,-norm defined above. When p = oo, it is also called the spectrum (or matrix)
norm. The Rademacher average is given by

DENIE Oy

S, p
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The infinite dimensional setting is characterized by the lack of the orthogonal
property

E

D%
i

2
= > Elxill?,
2 %

where (X;) is a finite sequence of independent mean zero real valued random
vectors. This type of identity extends to Hilbert space valued random variables, but
does not in general hold for arbitrary Banach space valued random variables. The
classical theory is developed under this orthogonal property.

Lemma 1.11.3 (Ledoux and Talagrand [27]). Let F' : Ry — R, be convex.
Then, for any finite sequence (X;) of independent zero mean random variables in a
Banach space B such that EF (|| X;||) < oo for every i,

EF (; ZEiXi ) <EF (‘ZX > <EF (2 ZeiXi

Rademacher series appear as a basic tool for studying sums of independent random
variables in a Banach space [27, Lemma 6.3].

Proposition 1.11.4 (Symmetrization [27]). Let {X;} be a finite sequence of
independent, zero-mean random variables taking values in a Banach space B. Then

EP(> Xl <2BP|D X,

B

)

B

where €; is a Rademacher sequence independent of { X; }.

In other words [28], the moments of the sum are controlled by the moments of
the associated Rademacher series. The advantage of this approach is that we can
condition on the choice of X; and apply sophisticated methods to estimate the
moments of the Rademacher series.

We need some facts about symmetrized random variables. Suppose that Z is a
zero-mean random variable that takes values in a Banach space 3. We may define
the symmetrized variable Y = Z — Z;, where Z; is an independent copy of Z.
The tail of the symmetrized variable Y is closely related to the tail of Z. Indeed, we
have [28]

P(|Z]g > 2E|Z|g+t) <PV >1t)- (1.106)

The relation follows from [27, Eq. (6.2)] and the fact that Ml (Y") < 2EY for every
nonnegative random variable Y. Here M denotes the median.
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1.12 Operators Acting on Sub-Gaussian Random Vectors

See Sect. 5.7 for the applications of the results here. The proofs below are taken
from [79]. We also follow [79] for the exposition and the notation here. By g, g;,
we denote independent A/ (0, 1) Gaussian random variables. For a random variable
§andp > 0, we put ||€][, = (]E|§|p)1/p. Let ||-||  be the Frobenius norm and ||-[|,,,
the operator norm. By | - | and < -, - > we denote the standard Euclidean norm and
the inner product on R".

A random variable £ is called sub-Gaussian if there is a constant § < oo such
that

I€ll2e < Bllgllze k=12, (1.107)

We refer to the infimum overall all 3 satisfying (1.107) as the sub-Gaussian constant
of £. An equivalent definition is often given in terms of the ¥s-norm. Denoting the
Orlicz function 15 (2) = exp(x?) — 1 by )9, £ is sub-Gaussian if and only if

l€lly, = inf {1 > 0 in(e/1) < 1} < oo. (1.108)

Denting the sub-Gaussian constant of ¢ by f3, a direct calculation will show the
following common (and not optimal) estimate

B <€lly, <Blglly, =BV38/3.

The lower estimate follows since Et(X) > EX2* /! for k = 1,2, .. .. The upper
one is using the fact that Eexp(tg?) = 1/v/1 — 2t fort < 1/2.

Apart from the Gaussian random variables, the prime example of sub-Gaussian
random variables are Bernoulli random variables, taking values +1 and —1 with
equal probability P (§ = +1) =P ({ = —-1) = 1/2.

Very often, we work with random vectors in R™ of the form & = (£1,&s,...,&,),
where &; are independent sub-Gaussian random variables, and we refer to such
vectors as sub-Gaussian random vectors. We require that Var (¢;) > 1 and sub-
Gaussian constants are at most 3. Under these assumptions, we have

EE? > Var (&) > 1 = Eg?,

hence § > 1.
We have the following fact: for any ¢t > 0,

P (|¢] = tv/n) < exp (n (In2— %/ (38%))). (1.109)

In particular, P (|¢| > 38y/n) < e~2". Let us prove the result. For an arbitrary
s> 0and1 <7 <n wehave
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& - 1 2k — B 2k (59)2
Besp (%5 ) = Y- et < X oo - Be (41 ).
k=0 k=0
This last quantity is less than or equal to 2 since, e.g., s = \/§6 . For this choice of s,

P(iflg >t2n) < Eexp <812 <2n:§2 t2n)>
i=1

i=1
7 2
< exp <7tj—2”) I] Eexp (%) < exp (f:%;) -2,
i=1

which is the desired result.

Theorem 1.12.1 (Lemma 3.1 of Latala [79]). Let &1,&o, ..., &, be a sequence of
independent symmetric sub-Gaussian random variables satisfying (1.107) and let
A = (ai;) be a symmetic matrix with zero diagonal. Then, for any t > 1,

P[> atits| = 08 (VHIAIR +tIAll,) | <e,

i<j
where C'is a universal constant.

Proof. By (1.107) and by the symmetry of &;, we immediately get ||a + 0|, <
lla + bBgi||y for any real numbers a, b and a positive integer k. So we have

Zaijfifj < Zaijﬂgiﬁgj =p? Zaijgi X gj

1<j ok 1<j i<j

2k 2k

Using the Hanson-Wright estimate [61], we get

> aiigi % gi| < '8 (VER|A L +2k]All,,)

1<j ok

with some universal constant C’. Taking k = [t/2], then by Chebyshev’s inequality

P> aitis| > eC'8? (VERIAlL + 2k)Al,, ) | < e <o,

i<j

Statement follows, since £ < ¢. O

Theorem 1.12.2 (Lemma 3.2 of Latala [79]). Let &1,¢&s, ..., &, be a sequence of
independent random variables with finite fourth moments. Then for any nonnegative
coefficients b; and t > 0,
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N

n

> b (B - &)

i=1

P

> (2th§]Eg§> <e
=1

n
Proof. We may obviously assume that > b?EE} > 0. For 2 > 0, we have e ™% =
i=1

1=

() < (1+$+$2/2)_1 < 1— 2+ 2%/2. Thus for A > 0,

Eexp (—A&2) <1 —E&? + LN2Ee! Cexp (—AEE2 + LN2EeH) .
7 7 2 ) (2 2 1

Letting S = 3 b; (E€? — &2), we get Eexp (AS) < exp (;)\2 ) b?Efgl), and
=1 i=1
for any v > 0,

u?

P(S>u)<inf Eexp(AS—Au) <exp | ————
2 2y bEES
i=1

O

Lemma 1.12.2 is somewhat special since we assume that coefficients are non-
negative. In the general case one has for any sequence of independent random
variables &; with sub-Gaussian constant at most 5 and ¢ > 1,

p<‘

> ai (B - &)
i=1

> 0B (tl(as) ] + <ai>|)> <et (L110)

We provide a sketch of the proof for the sake of completeness. Let f} be an
independent copy of &;. We have by Jensen’s inequality for p > 1,

n

>ai(¢-8)

i=1

<

X

> a; (B - &7)
=1

p p

Random variables £2 — £2 are independent, symmetric. For k > 1,

& - &

o S 280|715, < 48702 |,

where 7); are i.i.d. symmetric exponential random variables with variance 1. So, for
positive integer k,
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n

i€ -&)

i=1

< 4p? <182 (Kl (@)l + VRl (as)lly)

2k

n
E Q;1;
i=1

2k

where the last inequality follows by the Gluskin-Kwapien estimate [80]. So by
Chebyshev’s inequality

'

and the assertion easily follows.

n

> ai (B - &7)

i=1

> eC1 3% (kH(ai)Hoo + \/E(ai)||2)> <e 2

1.13 Supremum of Stochastic Processes

We follow [33] for this introduction. The standard reference is [81]. See also [27,82].
One of the fundamental issues of the probability theory is the study of suprema
of stochastic processes. In particular, in many situations one needs to estimate the
quantity Esup,.X¢, where sup,.1X; is a stochastic process. T' in order to avoid
measurability problems, one may assume that 7" is countable. The modern approach
to this problem is based on chaining techniques. The most important case of centered
Gaussian process is well understood. In this case, the boundedness of the process is
related to the geometry of the metric space (T, d), where

d(t,s) = (]E(Xt - )(5)2)1/2

In 1967, R. Dudley [83] obtained an upper bound for Esup,.rX; in terms of entry
numbers and in 1975 X. Fernique [84] improved Dudley’s bound using so-called
majorizing measures. In 1987, Talagrand [85] showed that Fernique’s bound may
be reversed and that for centered Gaussian processes (X¢),

1
+72 (T,d) < EsupX; < Ly (T',d),
L teTl

where L is a universal constant. There are many equivalent definitions of the
Talagrand’s gamma function v, for example one may define

Yo (T,d) = infsup » " 2"*d (t,T),

teT =0

where the infimum runs over all sequences 7; of subsets of 7" such that |7p| = 1 and
IT;| = 2%.
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1.14 Bernoulli Sequence

Another fundamental class of processes is based on the Bernoulli sequence [33],
i.e. the sequence (Ei)i>1 of i.i.d. symmetric random variables taking values £1.

For t = {5, the series X; := ) t;e; converges almost surely and for T' € /{5,
i>1
we may define a Bernoulli process (X),cr and try to estimate b(T') = Esup X;.
teT

There are two ways to bound b(T"). The first one is a consequence of the uniform
bound | X;| < ||t]|; = D [ti], so that b(T') < sup||t||,. Another is based on the
i>1 teT

domination by the canonical Gaussian process G := > t;g;, where g; are i.d.d.
i>1

N(0,1) random variables. Assuming the independence of (g;) and (g;), Jensen’s

inequality implies:

2
oT) = Esup Y tip = Bsup 3t >Esup S tieElg| = |/ 2b(7)

teT ;51 €T >1 €T i>1

1.15 Converting Sums of Random Matrices into Sums
of Random Vectors

Sums of independent random vectors [27,74, 86] are classical topics nowadays. It
is natural to convert sums of random matrices into sums of independent random
vectors that can be handled using the classical machinery. Sums of dependent
random vectors are much less understood: Stein’s method is very powerful [87].

N

Often we are interested in the sample covariance matrix % > x; ® x; the sums
i=1

of N rank-one matrices where Xi,...,xy are N independent random vectors.

N
More generally, we consider % >~ X; where X; are independent random Hermitian
i=1
matrices. Let

At

A2
A=| | eR”

An
be a vector of eigenvalues of Y. For each random matrix X;, we have one random
vector A; for all ¢« = 1,..., N. As a result, we obtain N independent random

vectors consisting of eigenvalues. We are interested in the sums of these independent
random vectors
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1 N
NZAZ».
=1

Then we can use Theorem 1.15.1 to approximate characteristic functions with
normal distribution. In [86], there are many other theorems that can be used in this
context. Our technique is to convert a random matrix into a random vector that is
much easier to handle using classical results [27, 74, 86], since very often, we are
only interested in eigenvalues only. We shall pursue this connection more in the
future research.

For example, we use the classical results [86]. Let x1, ..., xy be N independent
random vectors in R™, each having a zero mean and a finite s-th order absolute
moment for some s > 2. Let P stand for Fourier transform of P, the characteristic
function of a probability measure P. We here study P(xl 4otxn) VN the rate

of convergence of the characteristic function of a probability measure, to ®o r
where R is the average of the covariance matrices of X1, ..., x. Here for normal
distribution in R",

. 1
log®or = —3 (y,Ry).

We assume that

R:iiCov(x-):iZR-
N & VN LT

is nonsingular. Then, we define the Liapounov coefficient

N
¥ L E(y,x)l")
lon = sup =1 5/22\7—(5—2)/2 (s > 2). (1.111)
llyll=1 2
H 2 E ()|
It is easy to check that [,  is independent of scale. If B is a nonsingular n x n
matrix, then Bxy, ..., Bxy have the same Liapounov coefficient as x1,...,xy. If
we write

pri =BE(xl["), 1<i<N,

1 N
Pr = ﬁ;pr,ia rZz 0.

according to (1.111), we have that
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lon < N-(5-2)/2 sup syl s = lij N*(sf2)/27
lyi=1 [y, Ry)] Amnin

where A\, 1S the smallest eigenvalue of the average covariance matrix R. In one
dimension (i.e.,n = 1)

If R =1, then

n
|y, i) Z (v, xa)|* <N*21 wly |-

Now we are ready to state a theorem.

Theorem 1.15.1 (Theorem 8.6 of [86]). Letx1,...,XyN be n independent random
vectors in R™ having distribution G1,...,Gy, respectively. Suppose that each
random vector xX; has zero mean and a finite fourth absolute moment. Assume that
the average covariance matrix R is nonsingular. Also assume

lyn <1

Then for all t satisfying
—1/4
6l < 57",

One has

N 1 ,j3
Gi [ —=Bt ) —exp (—1t]? <1+ t>
< (0175) Lyt exp (— 5 1))
2 8 142 6 2
+ [(0.018) 8 x1E]° + 523 wl1e]°] exp { - (0:383) ]}

where B is the positive-definite symmetric matrix defined by B> = R™!, and

N
Z tx7.
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1.16 Linear Bounded and Compact Operators

The material here is standard, taken from [88, 89]. Let X and Y always be normed
spaces and A : X — Y be a linear operator. The linear operator A4 is bounded if
there exists ¢ > 0 such that

[|Az]| < c ||| forallz € X.

The smallest of these constants is called the norm of A, i.e.,

JA] = sup 1421

: (1.112)

The following are equivalent

1. A is bounded.
2. Ais continuous at x = 0, i.e. z; = 0 implies that Ax; = 0.
3. Ais continuous for every x € X.

The space £ (X,Y) of all linear bounded mappings from X to Y with the operator
norm is a normed space. Let A € L(X,Y), B € L(Y,Z); then AB € L (X, Z)
and || AB|| < [lA[|[|B].

Let k € L? ((¢,d) x (a,b)). The integral operator

(Az) (1) ::/bk(t,s)m(s)ds, te(ed), zelab),  (.113)

is well-defined, linear, and bounded from L?(a, b) to L?(c, d). Furthermore,

d b
1Al - < / / s (1, 3) | dsd.

Let k be continuous on [c,d] X [a,b]. Then A is also well-defined, linear, and
bounded from Ca, b] into Clc, d] and

b
|A]l . < max/ |k(s,t)]ds.
tele,d] Jq

We can extend above results to integral operators with weakly singular kernels.
A kernel is weakly singular on [a,b] X [a,b] if k is defined and continuous for all
t,s € [a,b],t # s, and there exists constants ¢ > 0 and « € [0, 1) such that

1

(5, 1)| < e

forallt,s € [a,b],t # s.
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Let k be weakly singular on [a,b]. Then the integral operator A, defined
in (1.113) for [¢, d] = [a, b], is well-defined and bounded as an operator in L?(a, b)
as well as in C|a, b].

Let A : X — Y be a linear and bounded operator between Hilbert spaces.
Then there exists one and only one linear bounded operator A* : Y — X with the

property
(Ax,y) = (z, A%y) forallz € X,y €Y.

This operator A* : Y — X is called the adjoint operator to A. For X =Y, the
operator A is called self-adjoint if A* = A.

The operator I : X — Y is called compact if it maps every bounded set S into
a relatively compact set IC(S). A set M C Y is called relatively compact if every
bounded sequence (y;) C M has an accumulation point in cl (M), i.e., the closure
cl (M) is compact. The closure of a set M is defined as

cl(M) = {x € M : there exists (xy), C M withz = klim :z:k} .
— 00

The set of all compact operators from X to Y is a closed subspace of the vector
space L2 (a,b) where

L% (a,b) = {:c : (a,b) — C : z is measurable and |z|° integrable} .

Letk € L? ((¢,d) x (a,b)). The operator K : L? (c,d) — L? (a,b), defined by
b
(Kzx)(t) := / k(t,s)x(s)ds, te(c,d), xcL?(a,b), (1.114)

is compact from (¢, d) to (a,b). Let k be continuous on (¢, d) x (a,b) or weakly
singular on (a,b) X (a,b) (in this case (¢, d) = (a,b)). Then K defined by (1.114)
is also compact as an operator from C|a, b] to C|c, d].

1.17 Spectrum for Compact Self-Adjoint Operators

The material here is standard, taken from [88, 89]. The most important results in
functional analysis are collected here. Define

N ={z € L?(a,b): z(t) =0 almost everywhere on [a, ]} .

Let £ : X — X be compact and self-adjoint (and # 0). Then, the following
holds:

1. The spectrum consists only of eigenvalues and possibly 0. Every eigenvalue of K
is real-valued. C has at least one but at most a countable number of eigenvalues
with 0 as the only possible accumulation point.
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2. For every eigenvalue A\ # 0, there exist only finitely, many linearly independent
eigenvectors, i.e., the eigenvectors are finite-dimensional. Eigenvectors corre-
sponding to different eigenvalues are orthonormal.

3. We order the eigenvalues in the form

Al = [Xa] = [Az] = -~
and denote by P, : X — N (K — \;I) the orthogonal projection onto the

eigenspace corresponding to \;. If there exist only a finite number A1, ..., A, of
eigenvalues, then

If there exists an infinite sequence \; of eigenvalues, then

(o)
K=> AP,
i=1
where the series converges in the operator norm. Furthermore,
m
K=Y NP = Amial.
i=1

4. Let H be the linear span of all of the eigenvectors corresponding to the
eigenvalues \; # 0 of XC. Then

X=c(H)®&N(K).

Let X and Y be Hilbert spaces and K : X — Y is a compact operator with
adjoint operator K* : Y — X. Every eigenvalue A of K*/C is nonnegative because
K*Ka = Az implies that A (z,2) = (K*Kz,z) = (Kz,Kz) > 0,ie, A > 0.
The square roots o; = y/\; of the eigenvalues \;,7 € J of the compact self-adjoint
operator K*/C : X — X are called singular values of K. Here again, J € N could
be either finite or J = N.

A compact self-adjoint operator is non-negative (positive) if and only if all of
the eigenvalues are non-negative (positive). The sum of two non-negative operators
are non-negative and is positive if one of the summands is positive. If an operator
is positive and bounded below, then it is invertible and its inverse is positive and
bounded below.

Every non-negative compact operator K in a Hilbert space H has a unique non-
negative square root G; that is, if /C is non-negative and compact, there is a unique
non-negative bounded linear map G such that G2 = K. G is compact and commutes
with every bounded operator which commutes with /.
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An operator A : X — Y is compact if and only if its adjoint A* : Y — X is
compact. If A* A is compact, then A is also compact.

Example 1.17.1 (Integral). Let K : L? (0,1) — L? (0, 1) be defined by

(Kx) (t) := /Otx(s) ds, te(0,1), =z L*0,1).

Then

(K*2) (1) = /tly(s)ds and  (KK*2) (t) = /t1 (/Otx(s)ds>dt.

The eigenvalue problem KK*x = Ax is equivalent to

)\x:/tl (/Otx(s)ds>dt, te(0,1).

Differentiating twice, we observe that for A # 0 this is equivalent to the eigenvalue
problem

A" +2=0in(0,1), (1) =2'(0)=0.

Solving this gives

2 21 -1 4
xi(t)\/7005 ! nt, i€N, and\j = ——=—, €N [
v 2 (20 — 1)"m2

Example 1.17.2 (Porter and Stirling [89]). Let the operator X on L5(0,1) be
defined by

VT A+t
VI =i

To show that /C is a positive operator, consider

m@@»=13%\ ot 0<z<).

(Tsé)(w):/m . p(t)dt (0<z<1).

0 r—t

Although the kernel is unbounded function, it is a Schur kernel and therefore 7 is a
bounded operator on Ly (0, 1), with adjoint given by

<T%Mm=/‘ L sdr (0<a<1).

z Vi—=x
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The kernel of 7T * is, for x # t,

min(z,t) 1 n
k(z,t) = ds:log’\/W ,
o Vissvi-s N

the integration being most easily performed using the substitution ©u = /& — s +
v/t — s. Therefore, K = 77T* and T*¢ = 0 = (T*)2¢ =0 = ¢ = 0 gives the
positivity. (]



Chapter 2
Sums of Matrix-Valued Random Variables

This chapter gives an exhaustive treatment of the line of research for sums of
matrix-valued random matrices. We will present eight different derivation methods
in this context of matrix Laplace transform method. The emphasis is placed on the
methods that will be hopefully useful to some engineering applications. Although
powerful, the methods are elementary in nature. It is remarkable that some modern
results on matrix completion can be simply derived, by using the framework of
sums of matrix-valued random matrices. The treatment here is self-contained.
All the necessary tools are developed in Chap. 1. The contents of this book are
complementary to our book [5]. We have a small overlapping on the results of [36].

In this chapter, the classical, commutative theory of probability is generalized
to the more general theory of non-communicative probability. Non-communicative
algebras of random variables (‘“observations”) and their expectations (or “trace”) are
built. Matrices or operators takes the role of scalar random variables and the trace
takes the role of expectation. This is very similar to free probability [9].

2.1 Methodology for Sums of Random Matrices

The theory of real random variables provides the framework of much of modern
probability theory [8], such as laws of large numbers, limit theorems, and proba-
bility estimates for “deviations”, when sums of independent random variables are
involved. However, some authors have started to develop analogous theories for the
case that the algebraic structure of the reals is substituted by more general structures
such as groups, vector spaces, etc., see for example [90].

In a remarkable work [36], Ahlswede and Winter has laid the ground for the
fundamentals of a theory of (self-adjoint) operator valued random variables. There,
the large deviation bounds are derived. A self-adjoint operator includes finite
dimensions (often called Hermitian matrix) and infinite dimensions. For the purpose
of this book, finite dimensions are sufficient. We will prefer Hermitian matrix.

R. Qiu and M. Wicks, Cognitive Networked Sensing and Big Data, 85
DOI 10.1007/978-1-4614-4544-9_2,
© Springer Science+Business Media New York 2014
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To extend the theory from scalars to the matrices, the fundamental difficulty
arises from that fact, in general, two matrices are not commutative. For example,
AB # BA. The functions of a matrix can be defined; for example, the matrix
exponential is defined [20] as e®. As expected, eAB # ¢BA | although a scalar
exponential has the elementary property e® = b, for two scalars a, b. Fortunately,
we have the Golden-Thompson inequality that has the limited replacement for
the above elementary property of the scalar exponential. The Golden-Thompson
inequality

Tr (eA+B) <Tr (eAeB) ,

for Hermitian matrices A, B, is the most complicate result that we will use.

Through the spectral mapping theorem, the eigenvalues of arbitrary matrix
function f(A), are f(\;) where \; is the i-th eigenvalue of A. In particular, for
f(x) = €* for a scalar x; the eigenvalues of e are e, which is, of course, positive
(i.e., e > 0). In other words, the matrix exponential e is ALWAYS positive
semidefinite for an arbitrary matrix A. The positive real numbers have a lot of
special structures to exploit, compared with arbitrary real numbers. The elementary
fact motivates the wide use of positive semidefinite (PSD) matrices, for example,
convex optimization and quantum information theory. Through the spectral mapping
theorem, all the eigenvalues of positive semidefinite matrices are nonnegative.

For a sequence of scalar random variables (real or complex numbers),
Z1,...,%n, We can study its convergence by studying the so-called partial sum
Sp = 1+ ... +x, = Y.,z We say the sequence converges to a limit
value S = E[z], if there exists a limit .S as n — oo. In analogy with the scalar
counterparts, we can similarly define

Sn:X1+...+Xn:§n:Xi,
=1

for a sequence of Hermitian matrices, X1, ..., X,,. We say the sequence converges
to a limit matrix S = E[X], if there exists a limit S as n — oco.

One nice thing about the positive number is the ordering. When a = 0.4 and
b = 0.5, we can say a < b. In analogy, we say the partial order A < B if all
the eigenvalues of B — A are nonnegative, which is equivalent to say B — A is
positive semidefinite matrix. Since a matrix exponential is e® is always positive
semidefinite for an arbitrary matrix A, we can instead study e < eB, to infer
about the partial order A < B. The function z — e** is monotone, non-decreasing
and positive for all s > 0. we can, by the spectral mapping theorem to study
their eigenvalues which are scalar random variables. Thus a matrix-valued random
variable is converted into a scalar-valued random variable, by using the bridge of the
spectral mapping theorem. For our interest, what matters is the spectrum (spec(A),
the set of all eigenvalues).
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In summary, the sums of random matrices are of elementary nature. We
emphasize the fundamental contribution of Ahlswede and Winter [36] since their
work has triggered a snow ball of this line of research.

2.2 Matrix Laplace Transform Method

Due to the basic nature of sums of random matrices, we give several versions of the
theorems and their derivations. Although essentially their techniques are equivalent,
the assumptions and arguments are sufficiently different to justify the space. The
techniques for handling matrix-valued random variables are very subtle; it is our
intention to give an exhaustive survey of these techniques. Even a seemingly small
twist of the problems can cause a lot of technical difficulties. These presentations
serve as examples to illustrate the key steps. Repetition is the best teacher—practice
makes it perfect. This is the rationale behind this chapter. It is hoped that the
audience pays attention to the methods, not the particular derived inequalities.

The Laplace transform method is the standard technique for the scalar-valued
random variables; it is remarkable that this method can be extended to the matrix
setting. We argue that this is a break-through in studying the matrices concentration.
This method is used as a thread to tie together all the surveyed literature. For
completion, we run the risk of “borrowing” too much from the cited references.
Here we give credit to those cited authors. We try our best to add more details about
their arguments with the hope of being more accessible.

2.2.1 Method 1—Harvey’s Derivation

The presentation here is essentially the same as [91,92] whose style is very friendly
and accessible. We present Harvey’s version first.

2.2.1.1 The Ahlswede-Winter Inequality

Let X be arandom d x d matrix, i.e., a matrix whose entries are all random variables.
We define EX to be the matrix whose entries are the expectation of the entries of
X. Since expectation and trace are both linear, they commute:

ETrX]£) P(X=A)> A,;=Y Y P(X=A) A,

:ZZ]P’(XM Za).a:Z]E(Xm) = Tr (EX).
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Let X1, --, X, be random, symmetric' matrices of size d x d. Define the partial
sums

Sn:X1+---+Xn:ZXZ-.

A > 0 is equivalent to saying that all eigenvalues of A are nonnegative, i.e.,
Ai (A) = 0. We would like to analyze the probability that eigenvalues of S,, are

at most ¢, i.e., S,, < tI. This is equivalent to the event that all eigenvalues of

eSn are at most e, ie., eS»* < ML If this event fails to hold, then certainly

TreS»* > TreM, since all eigenvalues of ¢S~ are non-negative. Thus, we have
argued that

Pr [some eigenvalues of matrix S,, is greater than t]
<P (TreS > TreM) @2.1)
<E (Tr es“t) /e’\t,
by Markov’s inequality. Now, as in the proof of the Chernoff bound, we want
to bound this expectation by a product of expectations, which will lead to an

exponentially decreasing tail bound. This is where the Golden-Thompson inequality
is needed.

E (Tr es")‘) =E (Tr eAX’”LAS"‘l) (since S;, = X, + Spn—1)

<E [Tr (e*X” .S 1)] (by Golden - Thompson inequality)

=Ex,,...x,_, {Exn [ (eA . ?Sn- 1)] } (since the X;’s are mutually independent)
=Ex,, .. x,_; {Tr [Exn (eAX" . )} } (since trace and expectation commute)
=Ex,,..x,_1 {Tr [Exn (e)‘X") . e)‘s*“l} } (since X, and S,,_1are independent)

=Ex,,. X, 1 |:HEX,L (ekx“ ) H -Tr (eks”*l)} (by Corollary of trace-norm property)

=[x () By [ ()]

(2.2)
Applying this inequality inductively, we get
E (Tre®*) < [TIEx, ()] Te () = [TIE ()] - T (),
i=1 i=1

The assumption symmetric matrix is too strong for many applications. Since we often deal with
complex entries, the assumption of Hermitian matrix is reasonable. This is the fatal flaw of this
version. Otherwise, it is very useful.
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where 0 is the zero matrix of size d x d. So e*® = T and Tr (I) = d, where I is the
identity matrix whose diagonal are all 1. Therefore,

E(TreS*) <d-[]I[E ()

i=1

Combining this with (2.1), we obtain

Pr [some eigenvalues of matrix S, is greater than t] e M H HE ’\X

We can also bound the probability that any eigenvalue of S,, is less than —¢ by
applying the same argument to —S,,. This shows that the probability that any
eigenvalue of S,, lies outside [—t¢, t] is

P(||Sn| > t) < de™™ {H [E (X)) + T |[E (e=*) } (2.3)
i=1 1=1

This is the basis inequality. Much like the Chernoff bound, numerous variations and
generalizations are possible. Two useful versions are stated here without proof.

Theorem 2.2.1. Let Y be a random, symmetric, positive semi-definite d X d matrix
such that E[Y] = I Suppose ||Y| < R for some fixed scalar R > 1. Let
Y1,..., Y be independent copies of Y (i.e., independently sampled matrices with
the same distribution as Y ). For any € € (0, 1), we have

k
P|(1—¢)1 Z (1+e)I| >1—2d-exp (—<*k/AR).

This event is equivalent to the sample average + 231 Y ; having minimum eigenvalue
1=
at least 1 — € and maximum eigenvalue at most 1 + €.

Proof. See [92]. O

Corollary 2.2.2. Let Z be a random, symmetric, positive semi-definite d x d matrix.
Define U = E[Z] and suppose Z < R - U for some scalar R > 1. Let Z, . .., Zy,
be independent copies of Z (i.e., independently sampled matrices with the same
distribution as Z). For any € € (0,1), we have

k
P{(1-¢)U Z (14+e)U| >1-2d-exp (—c’k/4R) .
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Proof. See [92]. O

2.2.1.2 Rudelson’s Theorem

In this section, we use how the Ahlswede-Winter inequality is used to prove a
concentration inequality for random vectors due to Rudelson. His original proof
was quite different [93].

The motivation for Rudelson’s inequality comes from the problem of approx-
imately computing the volume of a convex body. When solving this problem, a
convenient first step is to transform the body into the “isotropic position”, which
is a technical way of saying “roughly like the unit sphere.” To perform this first
step, one requires a concentration inequality for randomly sampled vectors, which
is provided by Rudelson’s theorem.

Theorem 2.2.3 (Rudelson’s Theorem [93]). Ler x € R? be a random vector such
that E (xx™') = L Suppose ||x|| < R. Let X1, ..., %, be independent copies of x.
Forany € € (0, 1), we have

1 n
IP’( E;xix?—I

Note that R > v/d because

> 5) < 2d - exp (—e°n/4AR?).

d=TrI="Tr [E (XXT)] =E [Tr (XXT)} =E [XTX] ,
since Tr (AB) = Tr (BA).
Proof. We apply the Ahlswede-Winter inequality with the rank-1 matrix X;
1

1
Note that EX; = 0, || X;|| < 1, and
1 2
RO —
1
< g L) ()]
R2
< @E [xix?] (since ||x;]| < R)
I
= 2.4)

Now using Claim 1.4.5 together with the inequalities
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1+y<e,VyeR
eV <1+y+y*Vyel-1,1].
Since ||X;|| < 1, for any A € [0, 1], we have e**¢ < T+ AX; + A2X2, and so
E [e%] <E 1+ AX; + A*X7] < T+ X\°E [X]]

A2E[X2 A2 /4RI
< NEX] ¢ N /ART

by Eq.(2.4). Thus,
[ o]

(

Substituting ¢ = ne/2R? and A = ¢ proves the theorem. U

E [e)‘xi] ’ < N /4R The same analysis also shows that

| < eX*/4R_ Substituting this into Eq. (2.3), we obtain

n

o

=1

> t) < 2d-e M He)‘2/4R2 = 2d-exp (—)\t + n/\2/4R2) .

=1

2.2.2 Method 2—Vershynin’s Derivation

We give the derivation method, taken from [35], by Vershynin.
Let X4, ...,X,, be independent random d X d real matrices, and let

S=X;+ - +X,.

We will be interested in the magnitude of the derivation ||S,, — ES,, || in the operator
norm |-||.

Now we try to generalize the method of Sect.1.4.10 when X; € M, are
independent random matrices of mean zero, where M, denotes the class of
symmetric d X d matrices.

For, A € My, the matrix exponential e is defined as usual by Taylor series.
e® has the same eigenvectors as A, and eigenvalues e*(4) > 0. The partial order
A > B means A — B > 0, i.e., A — B is positive semi-definite (their eigenvalues
are non-negative). By using the exponential function of A, we deal with the positive
semi-definite matrix which has a fundamental structure to exploit.

The non-trivial part is that, in general,

eATB £ eACB,

However, the famous Golden-Thompson’s inequality [94] sates that

Tr (6A+B) <Tr (eAeB)
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holds for arbitrary A,B € M, (and in fact for arbitrary unitary-invariant norm
n

replacing the trace [23]). Therefore, for S,, = X; + .-+ X,, = > X, and for I
i=1
being the identify matrix on M, we have

p=P(S, L) =P (eAS" & e)‘ﬂ) <P (Tr eMSn > 6>\t) < e METr (6)‘8") .
This estimate is not sharp: e*S» £ €' means the biggest eigenvalue of e?Sn exceeds
e, while Tr e*S» > e* means that the sum of all d eigenvalues exceeds the same.

Since S,, = X, + S,,—1, we use the Golden-Thomas’s inequality to separate the
last term from the sum:
ETr (e’\s") <ETr (e’\x"e’\s'"*l) .

Now, using independence and that [E and trace commute, we continue to write

=E, 1Tr [(EneAX") ~e>‘S"‘1} < ||Ene>‘x”

E,oq Tr (eX51),
since
Tr (AB) < |[A[| Tr (B),

for A,B € M.
Continuing by induction, we reach (since TrI = d) to

n
ETr (eAS") <d- H]ET@AX”’.

=1

We have proved that
n
P (S, & tI) < d-HEeAX’?.
i=1

Repeating for —S,, and using that —tI < S,, < tI is equivalent to ||S,| < t we
have shown that

P ([|Snll > t) < 2de™ - [ ] [|Be**
i=1

. 2.5)

As in the real valued case, full independence is never needed in the above
argument. It works out well for martingales.

Theorem 2.2.4 (Chernoff-type inequality). Let X; € My be independent mean
zero random matrices, || X;|| < 1 for all i almost surely. Let
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Sn:X1+"'+Xn:ZXi7
1=1

n

o? =) |lvar X,

i=1

Then, for every t > 0, we have
P(||S,| > t) < d- max (e*t"’/“ie*t/?) .
To prove this theorem, we have to estimate (2.5). The standard estimate
l+y<e? <1+y+y?

is valid for real number y € [—1,1] (actually a bit beyond) [95]. From the two
bounds, we get (replacing y with Y)

I+Y<e¥ <I+Y+Y?
Using the bounds twice (first the upper bound and then the lower bound), we have
Ee¥Y <E(I+Y +Y?) =I+E(Y?) < &Y,

Let 0 < A < 1. Therefore, by the Theorem’s hypothesis,

[z

< HeVE(X?)
~

‘ = M IE(x)

Hence by (2.5),
P([[Snl > t) < 2d- e MY

With the optimal choice of A = min (t /202, 1), the conclusion of the Theorem
follows.

Does the Theorem hold for o2 replaced by i ||IE (Xf) H‘7
i=1

Corollary 2.2.5. Let X; € My be independent mean zero random matrices,
IX; |l < 1forall i almost surely. Let

S, =X;+---+X, :ZXi, E:ZHEXZH
i=1 i=1
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Then, for every € € (0, 1), we have

P(|S, — ES,|| > cE) <d-e = E/4,

2.2.3 Method 3—Oliveria’s Derivation

Consider the random matrix Z,,. We closely follow Oliveria [38] whose exposition
is highly accessible. In particular, he reviews all the needed theorems, all of those are
collected in Chap. 1 for easy reference. In this subsection, the matrices are assumed
to be d x d Hermitian matrices, that is, A € C2*¢, where CEx? is the set of d x d
Hermitian matrices.

2.2.3.1 Bernstein Trick

The usual Bernstein trick implies that for all £ > 0,

vt > 0, (Aa (Zn) > 1) < inf e™E {eswz(%} . 2.6)

Notice that

E |:65‘|Z7L||i| < E [eSAmax(zn)} + ]E |:65)\max(_zn):| — 2E [63/\max(zn)i| (2'7)

since ||Zy, || = max {A\max (Zn) , Amax (—Zy)} and Z,, has the same law as —Z,,.

2.2.3.2 Spectral Mapping

The function  +— e°** is monotone, non-decreasing and positive for all s > 0. It
follows from the spectral mapping property (1.60) that for all s > 0, the largest
eigenvalue of e°Zn is e m=x(Zn) and all eigenvalues of 52~ are nonnegative. Using
the equality “trace = sum of eigenvalues” implies that for all s > 0,

E [enex(®)| = E [y (¢2)] <E [Tr (e721)]. 2.8)
Combining (2.6), (2.7) with (2.8) gives

- —st sZy
vt > 0,P (|| Zn]| >t)<2;g%e E [Tr (e%)]. (2.9)

Up to now, the Oliveira’s proof in [38] has followed Ahlswede and Winter’s
argument in [36]. The next lemma is originally due to Oliveira [38]. Now Oliveira
considers the special case
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n
Z, = ZgiA,«, (2.10)
i=1
where ¢; are random coefficients and Aq,..., A, are deterministic Hermitian

matrices. Recall that a Rademacher sequence is a sequence of ¢;;*_; of i.i.d. random
variables with €; = ¢ uniform over {—1,1}. A standard Gaussian sequence is a
sequence i.i.d. standard Gaussian random variables.

Lemma 2.2.6 (Oliveira [38]). Forall s € R,

23 A2
E [Tr (e%)] = Tr [E (e*?)] < Tr [exp % ‘ @2.11)

Proof. In (2.11), we have used the fact that trace and expectation commute,
according to (1.87). The key proof steps have been followed by Rudelson [93],
Harvey [91,92], and Wigderson and Xiao [94]. O

2.2.4 Method 4—Ahlswede-Winter’s Derivation

Ahlswede and Winter [36] were the first who used the matrix Laplace transform
method. Ahlswede-Winter’s derivation, taken from [36], is presented in detail below.
We postpone their original version until now, for easy understanding. Their paper
and Tropp’s long paper [53] are two of the most important sources on this topic. We
first digress to study the problem of hypothesis for motivation.

Consider a hypothesis testing problem for a motivation

7{02}X1V..,}XK
7{12]31w..,13K
where a sequence of positive, random matrices A;,¢ = 1,...,K and B;,i =

1,..., K are considered.
Algorithm 2.2.7 (Detection Using Traces of Sums of Covariance Matrices).

1. Claim H, if

K K
TrZAk =¢< TrZBk,
k=1 k=1

2. Otherwise, claim H,.
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Only diagonal elements are used in Algorithm 2.2.7; However, non-diagonal
elements contain information of use to detection. The exponential of a matrix
provides one tool. See Example 2.2.9. In particular, we have

TreATB < Tre®eB.

The following matrix inequality

TreAtB+C < Tre®eBeC

is known to be false.
Let A and B be two Hermitian matrices of the same size. If A — B is positive
semidefinite, we write [16]

A>B or B<A. (2.12)

> is a partial ordering, referred to as Lowner partial ordering, on the set of Hermitian
matrices, that is,

1. A > A for every Hermitian matrix A,
2. If A>Band B > A, then A = B, and
3.If A>Band B > C, then A > C.

The statement A > 0 < X*AX > 0 is generalized as follows:
A>B & X*AX > X*BX (2.13)

for every complex matrix X.

A hypothesis detection problem can be viewed as a problem of partially
ordering the measured matrices for individual hypotheses. If many (K') copies of
the measured matrices Ay and By are at our disposal, it is natural to ask this
fundamental question:

Is By + By + - - - + B (statistically) different than A; + Ao 4+ --- + A ?

To answer this question motivates this whole section. It turns out that a new theory
is needed. We freely use [36] that contains a relatively complete appendix for this
topic.

The theory of real random variables provides the framework of much of modern
probability theory, such as laws of large numbers, limit theorems, and probability
estimates for large deviations, when sums of independent random variables are
involved. Researchers develop analogous theories for the case that the algebraic
structure of the reals is substituted by more general structures such as groups, vector
spaces, etc.

At the hands of our current problem of hypothesis detection, we focus on a
structure that has vital interest in quantum probability theory and names the algebra
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of operators? on a (complex) Hilbert space. In particular, the real vector space of
self-adjoint operators (Hermitian matrices) can be regarded as a partially ordered
generalization of the reals, as reals are embedded in the complex numbers.

2.2.4.1 Fundamentals of Matrix-Valued Random Variables

In the ground-breaking work of [36], they focus on a structure that has vital interest
in the algebra of operators on a (complex) Hilbert space, and in particular, the real
vector space of self-adjoint operators. Through the spectral mapping theorem, these
self-adjoint operators can be regarded as a partially ordered generalization of the
reals, as reals are embedded in the complex numbers. To study the convergence of
sums of matrix-valued random variables, this partial order is necessary. It will be
clear later.

One can generalize the exponentially good estimate for large deviations by the
so-called Bernstein trick that gives the famous Chernoff bound [96,97].

A matrix-valued random variable X : Q@ — A, where

A, ={AcA:A=A"} 2.14)

is the self-adjoint part of the C*-algebra .4 [98], which is a real vector space. Let
L(H) be the full operator algebra of the complex Hilbert space H. We denote d =
dim(#), which is assumed to be finite. Here dim means the dimensionality of the
vector space. In the general case, d = TrI, and A can be embedded into £(C d) as an
algebra, preserving the trace. Note the trace (often regarded as expectation) has the
property Tr (AB) =Tr (BA), for any two matrices (or operators) of A, B. In free
probability? [99], this is a (optional) axiom as very weak form of commutativity in
the trace [9, p. 169].
The real cone

Ay ={AcA:A=A">0} (2.15)

induces a partial order < in A,. This partial order is in analogy with the order of
two real numbers a < b. The partial order is the main interest in what follows. We
can introduce some convenient notation: for A, B € A the closed interval [A, B]
is defined as

[A,B] = {X € A, : A <X <B}. (2.16)

2The finite-dimensional operators and matrices are used interchangeably.

3The idea of free probability is to make algebra (such as operator algebras C*-algebra, von
Neumann algebras) the foundation of the theory, as opposed to other possible choices of
foundations such as sets, measures, categories, etc.
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This is an analogy with the interval € [a,b] when ¢ < a < b for a,b € R.
Similarly, open and half-open intervals (A, B), [A, B), etc.

For simplicity, the space €2 on which the random variable lives is discrete. Some
remarks on the matrix (or operator) order is as follows.

1. The notation “<” when used for the matrices is not a total order unless A, the
set of A, spans the entire complex space, i.e., A = C, in which case the set
of self-adjoint operators is the real number space, i.e., As = R. Thus in this
case (classical case), the theory developed below reduces to the study of the real
random variables.

2. A > 0 is equivalent to saying that all eigenvalues of A are nonnegative.
These are d nonlinear inequalities. However, we can have the alternative
characterization:

A > 0 & Vp density operator Tr(pA) > 0 2.17)

< Vr one — dimensional projector Tr(rA) >0 '

From which, we see that these nonlinear inequalities are equivalent to infinitely

many linear inequalities, which is better adapted to the vector space structure
of A,.

3. The operator mapping A — A?, for s € [0,1] and A — log A are defined on
A, and both are operator monotone and operator concave. In contrast, A — A?,
for s > 2 and A — exp A are neither operator monotone nor operator convex.
Remarkably, A — A?, for s € [1,2] is operator convex (though not operator
monotone). See Sect. 1.4.22 for definitions.

4. The mapping A — Trexp A is monotone and convex. See [50].

5. Golden-Thompson-inequality [23]: for A, B € A,

Trexp(A + B) < Tr((exp A)(exp B)). (2.18)

Items 1-3 follows from Loewner’s theorem. A good account of the partial order
is [18,22,23]. Note that a rarely few of mappings (functions) are operator convex
(concave) or operator monotone. Fortunately, we are interested in the trace functions
that have much bigger sets [18].

Take a look at (2.19) for example. Since Hy : A = I+ X, and A € A, (even
stronger A € A,), it follows from (2.18) that

Ho : Trexp(A) = Trexp(I + X) < Tr((expI)(exp X)). (2.19)

The use of (2.19) allows us to separately study the diagonal part and the non-
diagonal part of the covariance matrix of the noise, since all the diagonal elements
are equal for a WSS random process. At low SNR, the goal is to find some ratio or
threshold that is statistically stable over a large number of Monte Carlo trials.
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Algorithm 2.2.8 (Ratio detection algorithm using the trace exponentials).

1. Claim H4, if & = W‘éﬁ)m > 1, where A is the measured covariance
R
Zw T

matrix with or without signals and X = 23

w

2. Otherwise, claim H.

Example 2.2.9 (Exponential of the 2 X 2 matrix). The 2 X 2 covariance matrix for
L sinusoidal signals has symmetric structure with identical diagonal elements

R, = TrR, (I + boy)

o — 01

T \1o
and b is a positive number. Obviously, Tro; = 0. We can study the diagonal
elements and non-diagonal elements separately. The two eigenvalues of the 2 x 2

matrix [100]
b
A= ("
(v2)

Ao = %TrA + %\/ Tr2A —4det A

and the corresponding eigenvectors are, respectively,

() ()
[\ —a) 7 Jluall \ Ao —a )

To study how the zero-trace 2 x 2 matrix o affects the exponential, consider

x;(”ﬂ).
a 0

The exponential of the matrix X, eX, has positive entries, and in fact [101]

where

are

x cosh\/g Vabsinh 2

e =
1 : b b
—— sinh 5 sh \/j
3 S p COS p
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2.2.4.2 Matrix-Valued Concentration Inequalities

In analogy with the scalar-valued random variables, we can develop a matrix-valued
Markov inequality. Suppose that X is a nonnegative random variable with mean
E [X]. The scalar-valued Markov inequality of (1.6) states that

E[X]

P(X >a) < for X nonnegative. (2.20)

Theorem 2.2.10 (Markov inequality). Let X a matrix-valued random variable
with values in A1 and expectation

h&:EXﬁ:E:PﬂXﬁ:X}Y, (2.21)
X

and A > 0 is a fixed positive semidefinite matrix. Then
Pr{X £ A} <Tr (MA™'). (2.22)

Proof. The support of A is assumed to contain the support of M, otherwise,
the theorem is trivial. Let us consider the positive matrix-valued random variable
Y =A~'/2XA~'/2 which has expectation E[Y] = A~'/2E[X] A~'/2, using
the product rule of (1.88): E[XY] = E [X]E[Y]. we have used the fact that the
expectation of a constant matrix is itself: E[A] = A.

Since the events {X < A} and {Y < I} coincide, we have to show that

I) & Tr (E[X

Note from (1.87), the trace and expectation commute! This is seen as follows:

=Y P(Y=0)V=) P(Y=0)Y
Yy

y{1

The second inequality follows from the fact that Y is positive and Y = {Y £ I} U
{¥ > I}. All eigenvalues of Y are positive. Ignoring the event {)) > I} is equiva-
lent to remove some positive eigenvalues from the spectrum of the Y, spec(Y).

Taking traces, and observing that a positive operator (or matrix) which is not less
than or equal to I must have trace at least 1, we find

Tr (E| ZPY V)Tr (Y ZWY'y Y £1)

V&I VLI

which is what we wanted. U
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In the case of H = C the theorem reduces to the well-known Markov inequality
for nonnegative real random variables. One easily see that, as in the classical case,
the inequality is optimal in the sense that there are examples when the inequality is
assumed with equality.

Suppose that the mean m and the variance o2 of a scalar-valued random variable
X are known. The Chebyshev inequality of (1.8) states that

2
P(X —m|>a) < —. (2.23)

The Chebyshev inequality is a consequence of the Markov inequality.

In analogy with the scalar case, if we assume knowledge about the matrix-
valued expectation and the matrix-valued variance, we can prove the matrix-valued
Chebyshev inequality.

Theorem 2.2.11 (Chebyshev inequality). Let X a matrix-valued random vari-
able with values in A, expectation M = EX, and variance

VarX = 8% = E (X - M)?) = E(X?) - M*. (2.24)
For A >0,
P{IX - M| £ A} < Tr (S°A7?). (2.25)
Proof. Observe that
X -M| <A< (X-M)?2<A?

since /() is operator monotone. See Sect. 1.4.22. We find that
P(IX - M| £ A) <P ((X ~M)? A2> < Tr (S2A72).

The last step follows from Theorem 2.2.10. U

If X, Y are independent, then Var(X +Y) = VarX + VarY. This is the same
as in the classical case but one has to pay attention to the noncommunicativity that
causes technical difficulty.

Corollary 2.2.12 (Weak law of large numbers). Let X, X1, Xo, ..., X, be iden-
tically, independently, distributed (i.i.d.) matrix-valued random variables with
values in A, expectation M = EX, and variance VarX = S2. For A > 0,
then
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P{i iﬁlxi ¢ [M—A,M+A}} < 1Tr(s?A7?),

1
n

IP’{ S X, ¢ [nM — /iA, nM — \/EA]} < 1im(s2Aa72).

n=1

(2.26)

Proof. Observe that Y ¢ [M — A, M + A] is equivalent to |[Y — M| &£ A, and
apply the previous theorem. The event [Y — M| £ A says that the absolute values
of the eigenvalues of the matrix Y — M is bounded by the eigenvalues of A which
are of course nonnegative. The matrix Y — M is Hermitian (but not necessarily
nonnegative or nonpositive). That is why the absolute value operation is needed. [J

When we see these functions of matrix-valued inequalities, we see the functions
of their eigenvalues. The spectral mapping theorem must be used all the time.

Lemma 2.2.13 (Large deviations and Bernstein trick). For a matrix-valued
random variable Y, B € A, and T € A such that T*T > 0

P{Y £ B} <Tr [EeTYT**TBT*} . 2.27)

Proof. We directly calculate

P(Y£B)=P(Y-BZ0)
— P(TYT" - TBT" £0)
- p {eTYT*—TBT* % I}
< Tr [EGTYT*—TBT*} .

Here, the second line is because the mapping X — TXT* is bijective and preserve
the order. The TYT* and TBT* are two commutative matrices. For commutative
matrices A, B, A < B is equivalent to e < eB, from which the third line follows.
The last line follows from Theorem 2.2.10. [l

The Bernstein trick is a crucial step. The problem is reduced to the form of
Tr [Eez] where Z = TYT* — TBT* is Hermitian. We really do not know if
Z is nonnegative or positive. But we do not care since the matrix exponential of any
Hermitian A is always nonnegative. As a consequence of using the Bernstein trick,
we only need to deal with nonnegative matrices.

But we need another key ingredient—Golden-Thompson inequality—since for
Hermitian AB, we have eA B #* e . eB, unlike et = @ . b, for two scalars
a, b. For two Hermitian matrices A, B, we have the Golden-Thompson inequality

Tr (eA+B) <Tr (eA . eB) .
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Theorem 2.2.14 (Concentration for i.i.d matrix-valued random variables).

Let X,X1,...,X,, be i.id. matrix-valued random variables with values in A,
Ae A, ThenforT € A, T*T >0

i RN < d-Eljexp — . )
IP’{ZX £ A} d - E|lexp (TXT* — TAT*)|" (2.28)
n=1

Define the binary I-divergence as

D(ullv) = u(logu —logv) 4+ (1 — u)(log(1 — u) — log(1 — v)). (2.29)

Proof. Using previous lemma (obtained from the Bernstein trick) with Y = >~ X;
i=1
and B = nA, we find

P{zn:xi £ nA} < Tr{IEexp _zn:T(XifA) T*]}

i=1 Li=1

= {Trexp Zn:T(Xi—A)T*:|}

Li=1

[n—1

<ETr {exp D> T (Xi-A) T*:l exp [T (X, —A) T*]}

Li=1

n—1
=Ex,, . x, ,Tr {exp {Z T (X;—A)T*

=1

Eexp [T (X,—A) T*]}

n—1
< |Eexp [T (Xn—A)T*]|| - Ex,,.. x,_, Tr {exp {Z T (X;—A) T]}
i=1

< d-[[Eexp [T (Xn—A) T

the first line follows from Lemma 2.2.13. The second line is from the fact
that the trace and expectation commute, according to (1.87). In the third line, we
use the famous Golden-Thompson inequality (1.71). In the fourth line, we take
the expectation on the X,,. The fifth line is due to the norm property (1.84).
The sixth line is using the fifth step by induction for n times. d comes from the
fact Trexp (0) = TrI = d, where O is a zero matrix whose entries are all zero. [J

The problem is now to minimize ||Eexp [T (X,, — A) T*]|| with respect to T.
For a Hermitian matrix 7', we have the polar decomposition T = |T|-U, where Y is
a unitary matrix; so, without loss of generality, we may assume that T is Hermitian.
Let us focus pursue the special case of a bounded matrix-valued random variable.
Defining

D (u]jv) = u (logu — logv) + (1 — u) [log (1 — u) — log (1 — v)]
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we find the following matrix-valued Chernoff bound.

Theorem 2.2.15 (Matrix-valued Chernoff Bound). Let X, Xy,...,X,, be i.id.
matrix-valued random variables with values in [0,1I] € A;, EX < mI A >
al, 1 >a>m > 0. Then

P {Z X; nA} < d-exp(—nD (a||m)), (2.30)

n=1

Similarly, EX > mI, A <al, 0<a<m <1 Then

P <Z X, # nA) < d-exp(—nD (a|]|m)), (2.31)
n=1

1

As a consequence, we get, for EX =M > pland 0 < € < 3, then

2

P{;ixié [(1—6)M,<1+6)M}} < 2d-exp (—n ° “). (2.32)
n=1

212

Proof. The second part follows from the first by considering Y; = X, and the ob-
servation that D (a||m) = D (1 — a||1 — m). To prove it, we apply Theorem 2.2.14
with a special case of T = \/tI to obtain

P{zn:Xi y(nA} gP{iXi ;(nal}

n=1
< d - |[Eexp(tX) exp(—tal)||"
=d - ||Eexp(tX) exp(—ta)||™.

Note exp(—tal) = exp(—ta)I and AT = A. Now the convexity of the exponential
function exp(x) implies that

exp (tz) — 1 o P (t)—1
T h 1

,0<z <Lz e R,

which, by replacing x with matrix X € Ag and 1 with the identify matrix I
(see Sect. 1.4.13 for this rule), yields

exp(tX) — 1 < X (exp (t) — 1).

As a consequence, we have
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Eexp(tX) <I+ (exp(t) — 1) EX. (2.33)

hence, we have

|[Eexp(tX) exp(—ta)|| < exp(—ta) [T + (exp (t) — 1) EX|
< exp(—ta) [T+ (exp (t) — 1) mI]|

= exp(—ta) [1 + (exp (t) — 1) m].

The first line follows from using (2.33). The second line follows from the hypothesis
of EX < ml. The third line follows from using the spectral norm property of (1.57)
for the identity matrix I:||I|| = 1. Choosing

1 —
tzlog(r(;- 1_7:)>0

the right-hand side becomes exactly exp (—D (a||m)).

To prove the last claim of the theorem, consider the variables Y; =
pM 12X, M~1/2 with expectation EY; = pI and Y; € [0,1], by hypothesis.
Since

%ixie[(l—s)M,(l—i—s E”: [(1—¢e)pl, (1+¢)pI]

3\*—‘

we can apply what we just proved to obtain

P{iixigé [(1—5)M,(1+5)M]}

1Sk k0 ond

< d{exp[-nD ((1 —¢) pl|w)] + exp [-nD ((1 + &) pf|p)]}
e2u
< 2d - exp (—n21n2> .

The last line follows from the already used inequality
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2.2.5 Derivation Method 5—Gross, Liu, Flammia, Becker,
and Eisert

Let ||A|| be the operator norm of matrix A.

Theorem 2.2.16 (Matrix-Bernstein inequality—Gross [102]). ler X;,i =
1,...,N be i.id. zero mean, Hermitian matrix-valued random variables of size

N
n x n. Assume o, c € R are such that | X?|| < 03 and | X,|| < p. Set S = > X;
i=1

and let 0® = Nog, an upper bound to the variance of S. Then

2 2
P(IS| > 1) < 2nexp (—— |, t< =,
402 1
) (2.34)
t o
P(||S|| <t <2nexp<—), —_
(ISl <) o u

We refer to [102] for a proof. His proof directly follows from Ahlswede-Winter [36]
with some revisions.

2.2.6 Method 6—Recht’s Derivation

The version of derivation, taken from [103], is more general in that the random
matrices need not be identically distributed. A symmetric matrix is assumed. It is
our conjecture that results of [103] may be easily extended to a Hermitian matrix.

Theorem 2.2.17 (Noncommutative Bernstein Inequality [104]). Ler Xq,..., X,
be independent zero-mean random matrices of dimension dy X ds. Suppose
pi = max{||E(XiX;)||, [|E(X;Xk)||} and || Xgl| < M almost surely for
all k. Then, for any T > 0,

|

Note that in the case that d; = dy = 1, this is precisely the two sided version of the
standard Bernstein Inequality. When the X, are diagonal, this bound is the same
as applying the standard Bernstein Inequality and a union bound to the diagonal
of the matrix summation. Besides, observe that the right hand side is less than

Tz

L

X

k=1

(2.35)

> T] < (di +dg)exp | 72—
> P+ Mr/3
k=1

_3.2 L

(dy +do)exp | =B as long as 7 < 47 > pi. This condensed form of the
> k=1
k=1
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inequality is used exclusively throughout in [103]. Theorem 2.2.17 is a corollary
of an Chernoff bound for finite dimensional operators developed by Ahlswede and
Winter [36]. A similar inequality for symmetric i.i.d. matrices is proposed in [95]
[| - || denotes the spectral norm (the top singular value) of an operator.

2.2.7 Method 7—Derivation by Wigderson and Xiao

Chernoff bounds are extremely useful in probability. Intuitively, they say that a
random sample approximates the average, with a probability of deviation that goes
down exponentially with the number of samples. Typically we are concerned about
real-valued random variables, but recently several applications have called for large-
deviations bounds for matrix-valued random variables. Such a bound was given by
Ahlswede and Winter [36, 105].

All of Wigderson and Xiao’s results [94] are extended to complex Hermitian
matrices, or abstractly to self-adjoint operators over any Hilbert spaces where the
operations of addition, multiplication, trace exponential, and norm are efficiently
computable. Wigderson and Xiao [94] essentially follows the original style of
Ahlswede and Winter [36] in the validity of their method.

2.2.8 Method 8—Tropp’s Derivation

The derivation follows [53].

(2]
:PQ (zax)

—0t
<e 7 -Eexp { max

> (the positive homogeneity of the eigenvalue map)

NgE

0Xi> } (Markov’s inequality)

i=1

= e %  Elmax <exp {Z 0X; }) (the spectral mapping theorem)

=1

n
<e % . ETr <exp { 0X,; }) (the exponential of a Hermitian matrix is positive definite)
i=1

(2.36)
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2.3 Cumulate-Based Matrix-Valued Laplace
Transform Method

This section develops some general probability inequalities for the maximum
eigenvalue of a sum of independent random matrices. The main ingredient is
a matrix extension of the scalar-valued Laplace transform method for sums of
independent real random variables, see Sect. 1.1.6.

Before introducing the matrix-valued Laplace transform, we need to define
matrix and cumulants, in analogy with Sect. 1.1.6 for the scalar setting. At this point,
a quick review of Sect. 1.1 will illuminate the contrast between the scalar and matrix
settings. The central idea of Ahswede and Winter [36] is to extend the textbook idea
of the Laplace Transform Method from the scalar setting to the matrix setting.

Consider a Hermitian matrix X that has moments of all orders. By analogy with
the classical scalar definitions (Sect. 1.1.7), we may construct matrix extensions of
the moment generating function and the cumulant generating function:

Mx (0) := Ee?® and Ex (0) := log Ee?X for 6 € R. (2.37)
We have the formal power series expansions:

Mx () :I+Z%T - (X*) and Ex () =)
k=1 k=1

‘ >

[

k
P

x

The coefficients (EX*) are called matrix moments and Zj, are called matrix
cumulants. The matrix cumulant =, has a formal expression as a noncommutative
polynomial in the matrix moments up to order k. In particular, the first cuamulant is
the mean and the second cumulant is the variance:

1]

1 =E(X) and By =E (X?) — E (X)?,

Higher-order cumulants are harder to write down and interpret.

Proposition 2.3.1 (The Lapalce Transform Method). LetY be a random Hermi-
tian matrix. For allt € R,

> < i —0t . oY .
P (Amax (Y) 2 1) < ér;% {e ETre’> }

In words, we can control tail probabilities for the maximum eigenvalue of a random
matrix by producing a bound for the trace of the matrix moment generating function
defined in (2.37). Let us show how Bernstein’s Laplace transform technique extends
to the matrix setting. The basic idea is due to Ahswede-Winter [36], but we follow
Oliveria [38] in this presentation.

Proof. Fix a positive number 6. Observe that
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P ()‘max (Y) P t) =P ()\max (QY) >9t) =P (e)\max(eY)>€0t> ge_et 'EeAmax(eY)~

The first identity uses the homogeneity of the maximum eigenvalue map. The
second relies on the monotonicity of the scalar exponential functions; the third
relation is Markov’s inequality. To bound the exponential, note that

Amax(0Y) — \ (an) < TrefY.

The first relation is the spectral mapping theorem (Sect. 1.4.13). The second relation
holds because the exponential of an Hermitian matrix is always positive definite—
the eigenvalues of the matrix exponential are always positive (see Sect. 1.4.16 for
the matrix exponential); thus, the maximum eigenvalue of a positive definite matrix
is dominated by the trace. Combine the latter two relations, we reach

P ()‘max (Y) = t) < ;H% {67% -ETr GGY} .
>

This inequality holds for any positive @, so we may take an infimum® to complete
the proof. U

2.4 The Failure of the Matrix Generating Function

In the scalar setting of Sect. 1.2, the Laplace transform method is very effective
for studying sums of independent (scalar-valued) random variables, because the
matrix generating function decomposes. Consider an independent sequence X} of
real random variables. Operating formally, we see that the scalar matrix generating
function of the sum satisfies a multiplicative rule:

M (0) =Eexp | Y 0Xi | =EJ[ e =[] B’ =[] Mx, ().
(%:X’“) K k 2 k

(2.38)
This calculation relies on the fact that the scalar exponential function converts sums
to products, a property the matrix exponential does not share, see Sect. 1.4.16. Thus,
there is no immediate analog of (2.38) in the matrix setting.

“In analysis the infimum or greatest lower bound of a subset S of real numbers is denoted by
inf(.S) and is defined to be the biggest real number that is smaller than or equal to every number in
S. An important property of the real numbers is that every set of real numbers has an infimum (any
bounded nonempty subset of the real numbers has an infimum in the non-extended real numbers).
For example, inf {1,2,3} = 1,inf {z e R,0 <z < 1} = 0.
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Ahlswede and Winter attempts to imitate the multiplicative rule of (2.38) using
the following observation. When X and X, are independent random matrices,

TrMx, 4 x, (0) SETr [efX1e%2] = Tr [(EefX1) (EefX2)] =Tr [Mx, (0) - Mx, (0)] .
(2.39)
The first relation is the Golden-Thompson trace inequality (1.71). Unfortunately,
we cannot extend the bound (2.39) to include additional matrices. This cold fact
may suggest that the Golden-Thompson inequality may not be the natural way to
proceed. In Sect.2.2.4, we have given a full exposition of the Ahlswede-Winter
Method. Here, we follow a different path due to [53].

2.5 Subadditivity of the Matrix Cumulant Generating
Function

Let us return to the problem of bounding the matrix moment generating function of
an independent sum. Although the multiplicative rule (2.38) for the matrix case is
a dead end, the scalar cumulant generating function has a related property that can
be extended. For an independent sequence X, of real random variables, the scalar
cumulant generating function is additive:

E(ZX ) (0) =logEexp (Z HXk> = ZlogEeexk = ZEXk (0), (2.40)
k k k k

k

where the second relation follows from (2.38) when we take logarithms.

The key insight of Tropp’s approach is that Corollary 1.4.18 offers a completely
way to extend the addition rule (2.40) for the scalar setting to the matrix setting.
Indeed, this is a remarkable breakthrough. Much better results have been obtained
due to this breakthrough. This justifies the parallel development of Tropp’s method
with the Ahlswede-Winter method of Sect. 2.2.4.

Lemma 2.5.1 (Subadditivity of Matrix Cumulant Generating Functions). Con-
sider a finite sequence {Xy} of independent, random, Hermitian matrices. Then

E Trexp (Z HXk> < Trexp (Z log Ee‘gxk>f0r9 eR. (2.41)

k k

Proof. Tt does not harm to assume 6 = 1. Let E;, denote the expectation, conditioned
on X4,..., Xg. Abbreviate

By = log (Ek_lex’“) = log (Eex’”‘) ,

where the equality holds because the sequence {X}, } is independent.
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|
—

n

ETreXp(ZXk):Eon- n—1 Trexp Xk—l—X)
k=1

>~
Il
-

5
H

Xk+10g n— 1€Xn)>

3”
[N

=FEy---E,_sTrexp

<Ko Ky 2TFGXP<
( Xk'"'Xn 1+'—'n>

n—2
< IEO e ]En—B Tr exp ( Xk + En—l + En)

< Trexp (i: Ek> .

k=1

The first line follows from the tower property of conditional expectation. At each

step, m = 1,2,...,n, we use Corollary 1.4.18 with the fixed matrix H equal to
m—1
H,, Xy + Z Ep.
k=1 k=m+1
This act is legal because H,,, does not depend on X,,,. O

To be in contrast with the additive rule (2.40), we rewrite (2.41) in the form

= < =
E Trexp < (; Xk,) (0)) Trexp (Z X, (0)) ford € R

k

by using definition (2.37).

2.6 Tail Bounds for Independent Sums

This section contains abstract tail bounds for the sums of random matrices.

Theorem 2.6.1 (Master Tail Bound for Independent Sums—Tropp [53]). Con-
sider a finite sequence {Xy} of independent, random, Hermitian matrices. For all
teR

P ()\max (Z Xk) > t) < (31;% {60t - Trexp (Z logIEegx’“> } . (2.42)
k k

Proof. Substitute the subadditivity rule for matrix cumulant generating functions,
Eq.2.41, into the Lapalace transform bound, Proposition 2.3.1. (]
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Now we are in a position to apply the very general inequality of (2.42) to some
specific situations. The first corollary adapts Theorem 2.6.1 to the case that arises
most often in practice.

Corollary 2.6.2 (Tropp [53]). Consider a finite sequence {Xy} of independent,
random, Hermitian matrices with dimension d. Assume that there is a function g :
(0,00) — [0, 00] and a sequence of {Ay} of fixed Hermitian matrices that satisfy
the relations

EefXr < Eed @Ak for 6 > 0. (2.43)

Define the scale parameter

0= Amax (Z Ak) )

k

Then, For allt € R,

P ()\max (Z Xk> > t) <d-jnf {e—9t+g(">'p}. (2.44)

k

Proof. The hypothesis (2.44) implies that
log e < g(0) - Ay, for 6 > 0. (2.45)

because of the property (1.73) that the matrix logarithm is operator monotone.
Recall the fact (1.70) that the trace exponential is monotone with respect to
the semidefinite order. As a result, we can introduce each relation from the
sequence (2.45) into the master inequality (2.42). For § > 0, it follows that

P (Amax (Z Xk:) = t) < e—0t -Tr €xXp (g(e) : ZAk:>
k k
g 67015 . d . >\max lexp <g(9) ! ZAk>]
k

=e . d-exp (g(@) * Amax <Z Ak>> .
k

The second inequality holds because the trace of a positive definite matrix, such
as the exponential, is bounded by the dimension d times the maximum eigenvalue.
The last line depends on the spectral mapping Theorem 1.4.4 and the fact that the
function g is nonnegative. Identify the quantity p, and take the infimum over positive
6 to reach the conclusion (2.44). O
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Let us state another consequence of Theorem 2.6.1. This bound is sometimes
more convenient than Corollary 2.6.2, since it combines the matrix generating
functions of the random matrices together under a single logarithm.

Corollary 2.6.3. Consider a sequence {Xy,k = 1,2,...,n} of independent,
random, Hermitian matrices with dimension d. For all t € R,

n 1 n
P i — . - 0Xr .
(/\max (Z Xk> > t) <d él;% exp { 0t + n - log Apax (n ZE@ > }
k=1 k=1
(2.46)

Proof. Recall the fact (1.74) that the matrix logarithm is operator concave. For 6 >
0, it follows that

logEe?™* =n - =Y logEe?>* < -1 =N TR
Zog e n n;C)g e n - log n; e

k=1

The property (1.70) that the trace exponential is monotone allows us to introduce
the latter relation into the master inequality (2.42) to obtain

n 1n
P )‘max X >t] < _Qt-T .1 _ EGXk )
(o () 1) < (v (2

To bound the proof, we bound the trace by d times the maximum eigenvalue, and
we invoke the spectral mapping Theorem (twice) 1.4.4 to draw the maximum eigen-
value map inside the logarithm. Take the infimum over positive 6 to reach (2.46).

O
We can study the minimum eigenvalue of a sum of random Hermitian matrices
because

Amin (X) = _>\max (_X) .

As a result,

o (Sx) <)oo e (S 0) )

We can also analyze the maximum singular value of a sum of random rectangular
matrices by applying the results to the Hermitian dilation (1.81). For a finite
sequence {Zy, } of independent, random, rectangular matrices, we have

() oo (o))
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on account of (1.83) and the property that the dilation is real-linear. ¢ means
dilation. This device allows us to extend most of the tail bounds developed in this
book to rectangular matrices.

2.6.1 Comparison Between Tropp’s Method
and Ahlswede—Winter Method

Ahlswede and Winter uses a different approach to bound the matrix moment
generating function, which uses the multiplication bound (2.39) for the trace
exponential of a sum of two independent, random, Hermitian matrices.

Consider a sequence {Xj,k = 1,2,...,n} of independent, random, Hermitian
matrices with dimension d, andlet Y = > Xk The trace inequality (2.39) implies
that

5 ox S ox
TrMy (6) < ETr [er= "X | = TYE [eiS1 ef%n
S ox
=Tt | [Ee= " (Eeex")
X,
STr [Be= " | - Aoy (BefXn) .

These steps are carefully spelled out in previous sections, for example Sect.2.2.4.
Iterating this procedure leads to the relation

Tr My (0 (TrI H)\max ka =d-exp <Z )\max 1og Eeex")

(2.47)

This bound (2.47) is the key to the Ahlswede—Winter method. As a consequence,

their approach generally leads to tail bounds that depend on a scale parameter

involving “the sum of eigenvalues.” In contrast, the Tropp’s approach is based on
the subadditivity of cumulants, Eq. 2.41, which implies that

TrMy (0) < d-exp (Amax <Z log Eeex’“>> . (2.48)
k

(2.48) contains a scale parameter that involves the “eigenvalues of a sum.”
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2.7 Matrix Gaussian Series—Case Study

A matrix Gaussian series stands among the simplest instances of a sum of
independent random matrices. We study this fundamental problem to gain insights.

Consider a finite sequence a; of real numbers and finite sequence {~;} of
independent, standard Gaussian variables. We have

P <Z Veag = t) <e /27 Wwhere o2 = Zai. (2.49)
%

k

This result justifies that a Gaussian series with real coefficients satisfies a normal-
type tail bound where the variance is controlled by the sum of the sequence
coefficients. The relation (2.49) follows easily from the scalar Laplace transform
method. See Example 1.2.1 for the derivation of the characteristic function;
A Fourier inverse transform of this derived characteristic function will lead to (2.49).
So far, our exposition in this section is based on the standard textbook.

The inequality (2.49) can be generalized directly to the noncommutative setting.
The matrix Laplace transform method, Proposition 2.3.1, delivers the following
result.

Theorem 2.7.1 (Matrix Gaussian and Rademacher Series—Tropp [53]). Con-
sider a finite sequence {Ay} of fixed Hermitian matrices with dimension d, and
let vk be a finite sequence of independent standard normal variables. Compute the
variance parameter

, (2.50)

o=

> A%
k

Then, for all t > 0,

P <Am (Z wAk> > t) <d-e /2 2.51)
k

P ( > Ay
k

The same bounds hold when we replace vy, by a finite sequence of independent
Rademacher random variables.

In particular,

> t> <od-e /2 (2.52)
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Observe that the bound (2.51) reduces to the scalar result (2.49) when the
dimension d = 1. The generalization of (2.50) has been proven by Tropp [53] to
be sharp and is also demonstrated that Theorem 2.7.1 cannot be improved without
changing its form.

Most of the inequalities in this book have variants that concern the maximum
singular value of a sum of rectangular random matrices. These extensions follow
immediately, as mentioned above, when we apply the Hermitian matrices to the
Hermitian dilation of the sums of rectangular matrices. Here is a general version of
Theorem 2.7.1.

Corollary 2.7.2 (Rectangular Matrix Gaussian and Radamacher Series—
Tropp [53]). Consider a finite sequence {By} of fixed matrices with dimension
dy X do, and let vy, be a finite sequence of independent standard normal variables.
Compute the variance parameter

0'2 = max {
> t) < (dy +dy) - e 072

)

> B;B;
k

> B;B;
k

Then, for all t > 0,

IP’( Z%Bk
k

The same bounds hold when we replace v, by a finite sequence of independent
Rademacher random variables.

To prove Theorem 2.7.1 and Corollary 2.7.2, we need a lemma first.

Lemma 2.7.3 (Rademacher and Gaussian moment generating functions). Sup-
pose that A is an Hermitian matrix. Let € be a Rademacher random variable, and
let vy be a standard normal random variable. Then

272 272
Ees? < e A/2 and EeVOA = A7/2 for 0 € R.

Proof. Absorbing 6 into A, we may assume § = 1 in each case. By direct
calculation,

EesA = cosh (A) < 6A2/2,
where the second relation is (1.69).

For the Gaussian case, recall that the moments of a standard normal variable
satisfy

2k)!
Ey?*+1 = 0 and Er2F = (k|22€ for k=0,1,2,....
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Therefore,

Qk) A2k o A2/2 k

Ee“’A—I—I-Z = Z

A2/2

The first relation holds since the odd terms in the series vanish. With this lemma, the
tail bounds for Hermitian matrix Gaussian and Rademacher series follow easily. [

Proof of Theorem 2.7.1. Let {&;} be a finite sequence of independent standard
normal variables or independent Rademacher variables. Invoke Lemma 2.7.3 to
obtain

Feft0A < 90)AL where g(0) :=6%/2 for 6 > 0.

= Amax (Z Ai) :
k
Corollary 2.6.2 gives

P (Amax (Z kak:> > t) <d- gr;% {e—9t+9<9)'02} =d.-e V27 (2.53)
k

For the record, the infimum is attained when 0 = /o2,
To obtain the norm bound (2.52), recall that

Recall that

DA%
k

1Y = max {Amax (Y) ; =Amin (Y)} -

Since standard Gaussian and Rademacher variables are symmetric, the inequal-
ity (2.53) implies that

P (—Amin (Z ékAk> > t) =P (Amax (Z (—fk)Ak> > t) <de 2
k k

Apply the union bound to the estimates for Ap,.x and — i, to complete the proof.
We use the Hermitian dilation of the series. O

Proof of Corollary 2.7.2. Let {&;} be a finite sequence of independent standard
normal variables or independent Rademacher variables. Consider the sequence
{&kp (Bk)} of random Hermitian matrices with dimension dy + ds. The spectral
identity (1.83) ensures that
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kaBk = )\max (Qﬂ <Z ngk>> = )\Inax (Z fk@ (Bk)> .
k k k

Theorem 2.7.1 is used. Simply observe that the matrix variance parameter (2.50)
satisfies the relation

> BiB; 0
2 2 k
o= eBr)7|| = .
:max{ ZBkB,’; , ZBZBk }
k k
on account of the identity (1.82). (]

2.8 Application: A Gaussian Matrix with Nonuniform
Variances

Fix a di X do matrix B and draw a random d; X do matrix I' whose entries are
independent, standard normal variables. Let ® denote the componentwise (i.e.,
Schur or Hadamard) product of matrices. Construct the random matrix B ® I', and
observe that its (¢, j) component is a Gaussian variable with mean zero and variance
|b;;|>. We claim that

P{ToB| >t} < (d +do) e /2. (2.54)

The symbols b;. and b.; represent the ith row and jth column of the matrix B. An
immediate sequence of (2.54) is that the median of the norm satisfies

M (T © BJ) < ov/2log (2 (d1 + da))- (2.55)

These are nonuniform Gaussian matrices where the estimate (2.55) for the median

has the correct order. We compare [106, Theorem 1] and [107, Theorem 3.1]

although the results are not fully comparable. See Sect. 9.2.2 for extended work.
To establish (2.54), we first decompose the matrix of interest as a Gaussian series:

F@BZZ’YZJI)ZJCZJ

j
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Now, let us determine the variance parameter o-2. Note that

2 (uCu)(by )" = 3 Zw Cyi = diag (br.), . Ibay:[1*)

j

Similarly,
. 2 2
> (bi;C)" (bi5Cig) = 3 (Zibm ) i = diag (IIball*, . b )
i J i
Thus,
. 2 2 . 2 2
o= max {||diag (Ibr.I, ., b)) | [diag (Wbl -, b)) |}

= max maxi||bi:||2,manHb:jHQ}.

An application of Corollary 2.7.2 gives the tail bound of (2.54).

2.9 Controlling the Expectation

The Hermitian Gaussian series

Y =) Ak (2.56)

is used for many practical applications later in this book since it allows each sensor
to be represented by the kth matrix.

Example 2.9.1 (NC-OFDM Radar and Communications). A subcarrier (or tone)
has a frequency fi,k = 1,...,N. Typically, N = 64 or N = 128. A radio
sinusoid €727+t is transmitted by the transmitter (cell phone tower or radar). This
radio signal passes through the radio environment and “senses” the environment.
Each sensor collects some length of data over the sensing time. The data vector yy,
of length 10° is stored and processed for only one sensor. In other words, we receive
typically N = 128 copies of measurements for using one sensor. Of course, we can
use more sensors, say M = 100.

We can extract the data structure using a covariance matrix that is to be directly
estimated from the data. For example, a sample covariance matrix can be used. We
call the estimated covariance matrix f{k, k=1,2,.., N. We may desire to know the
impact of N subcarriers on the sensing performance. Equation (2.56) is a natural
model for this problem at hand. If we want to investigate the impact of M = 100
sensors on the sensing performance (via collaboration from a wireless network), we
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need a data fusion algorithm. Intuitively, we can simply consider the sum of these
extracted covariance matrices (random matrices). So we have a total of n = M N =
100 x 128 = 12,800 random matrices at our disposal. Formally, we have

n=128,000

YZZ%AkZ Z e Ry
e

k=1

Here, we are interested in the nonasymptotic view in statistics [108]: when the
number of observations n is large, we fit large complex sets of data that one needs
to deal with huge collections of models at different scales. Throughout the book, we
promote this nonasymptotic view by solving practical problems in wireless sensing
and communications. This is a problem with “Big Data”. In this novel view, one
takes the number of observations as it is and try to evaluate the effect of all the
influential parameters. Here this parameter is n, the total number of measurements.
Within one second, we have a total of 105 x 128 x 100 ~ 100 points of data at our
disposal. We need models at different scales to represent the data. 0

A remarkable feature of Theorem 2.7.1 is that it always allows us to obtain
reasonably accurate estimates for the expected norm of this Hermitian Gaussian
series

Y =D A (2.57)
k

To establish this point, we first derive the upper and lower bounds for the second
moment of ||'Y||. Note ||Y]| is a scalar random variable. Using Theorem 2.7.1 gives

E(IYI7) = [ B (1Y) > Vi)t

= 20%log (2d) + 2d [, > log(2d) e™t/20% 4t = 262 log (2ed) .

Jensen’s inequality furnishes the lower estimate:

E(IY)*) =B ([Y?) > [EY?] =

DA%
k

The (homogeneous) first and second moments of the norm of a Gaussian series are
equivalent up to a universal constant [109, Corollary 3.2], so we have

co <E(|[Y]) < o/21og (2¢d). (2.58)

According to (2.58), the matrix variance parameter o2 controls the expected norm
E (]|Y||) up to a factor that depends very weakly on the dimension d. A similar
remark goes to the median value M (||'Y]).
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In (2.58), the dimensional dependence is a new feature of probability inequalities
in the matrix setting. We cannot remove the factor d from the bound in Theorem
2.7.1.

2.10 Sums of Random Positive Semidefinite Matrices

The classical Chernoff bounds concern the sum of independent, nonnegative,
and uniformly bounded random variables. In contrast, matrix Chernoff bounds
deal with a sum of independent, positive semidefinite, random matrices whose
maximum eigenvalues are subject to a uniform bound. For example, the sample
covariance matrices satisfy the conditions of independent, positive semidefinite,
random matrices. This connection plays a fundamental role when we deal with
cognitive sensing in the network setting consisting of a number of sensors. Roughly,
each sensor can be modeled by a sample covariance matrix.

The first result parallels with the strongest version of the scalar Chernoff
inequality for the proportion of successes in a sequence of independent, (but not
identical) Bernoulli trials [7, Excercise 7].

Theorem 2.10.1 (Matrix Chernoff I—Tropp [53]). Consider a sequence
{Xy:k=1,...,n} of independent, random, Hermitian matrices that satisfy

Xip =20 and Apax (Xi) < 1 almost surely.

Compute the minimum and maximum eigenvalues of the average expectation,

Hmin ‘= )\min (711 ;EX;&;) and Hmax = A max ( Z]EXk>

P{ min (1

P{ max (i ) } < d-emmPlelline) for 0 < o < fimax

Then

) } < d . e—’ﬁnD((XH,amin) for 0 < Qa < ﬂmin,

M3HM3

the binary information divergence
D (allu) = a (log (a) —log (u)) + (1 — a) (log (1 — a) — log (1 — u))

fora,u € [0,1].

Tropp [53] found the following weaker version of Theorem 2.10.1 produces
excellent results but is simpler to apply. This corollary corresponds with the usual
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statement of the scalar Chernoff inequalities for sums of nonnegative random
variables; see [7, Excercise 8] [110, Sect.4.1]. Theorem 2.10.1 is a considerable
strengthening of the version of Ahlswede-Winter [36, Theorem 19], in which case
their result requires the assumption that the summands are identically distributed.

Corollary 2.10.2 (Matrix Chernoff II—Tropp [53]). Consider a sequence
{X\ : k=1,...,n} of independent, random, Hermitian matrices that satisfy

X =20 and Amax (Xi) < R almost surely.

Compute the minimum and maximum eigenvalues of the average expectation,

n n
Hmin ‘= )\min <Z EXk) and Mmax = /\max <Z EXk) .
k=1 k=1

Then
n 675 Hmin/R
P )\min ZXk <(1_5)Mm1n gd {W] f0r5€[0,]],
k=1
n 65 Nmax/R
k=1

The following standard simplification of Corollary 2.10.2 is useful:

P{Amin (z Xk) < tumin}< d-e~(=mmn/2R for ¢ € [0,1],
k=1

P{Amax (Z Xk) > tumax}é d- [%]t”""“/R for t>e.
k=1

The minimum eigenvalues has norm-type behavior while the maximum eigenvalues
exhibits Poisson-type decay.
Before giving the proofs, we consider applications.

Example 2.10.3 (Rectangular Random Matrix). Matrix Chernoff inequalities are
very effective for studying random matrices with independent columns. Consider
a rectangular random matrix

7 = [zl zz~--zn}

where {zy, } is a family of independent random vector in C"™. The sample covariance
matrix is defined as

P | 1 —
R=_-77Z"=- x
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which is an estimate of the true covariance matrix R. One is interested in the error
HR — R || as a function of the number of sample vectors, n. The norm of Z satisfies

||Z||2 = Amax (ZZ*) = Amax (Z Zkzz> . (2.59)

k=1

Similarly, the minimum singular value s,,, of the matrix satisfies

Sm(Z)2 = AInin (ZZ*) = Arnin (Z Zk:zlt> .

k=1
In each case, the summands are stochastically independent and positive semidefinite

(rank 1) matrices, so the matrix Chernoff bounds apply. (]

Corollary 2.10.2 gives accurate estimates for the expectation of the maximum
eigenvalue:

n
Hmax < IE)\mam (Z Xk) < C - max {,umam Rlog d} . (260)
k=1

The lower bound is Jensen’s inequality; the upper bound is from a standard calcu-
lation. The dimensional dependence vanishes, when the mean fu,,,« is sufficiently
large in comparison with the upper bound R! The a prior knowledge of knowing R
accurately in Apax (Xj) < R converts into the tighter bound in (2.60).

Proof of Theorem 2.10.1. We start with a semidefinite bound for the matrix moment
generating function of a random positive semidefinite contraction.

Lemma 2.10.4 (Chernoff moment generating function). Suppose that X is a
random positive semidefinite matrix that satisfies Amax (Xi) < 1. Then

E (") <I+ (¢! — 1) (EX) for 6 €R.

The proof of Lemma 2.10.4 parallels the classical argument; the matrix adaptation is
due to Ashlwede and Winter [36], which is followed in the proof of Theorem 2.2.15.

Proof of Lemma 2.10.4. Consider the function

Since f is convex, its graph has below the chord connecting two points. In particular,

@) <fO)+1f Q)= f(0)] -z for zel0,1].
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More explicitly,
e <1+ (e —1) -z for z €0,1].

The eigenvalues of X lie in the interval of [0, 1], so the transfer rule (1.61) implies
that

X<I4 (e —1) X
Expectation respects the semidefinite order, so
Ee”* <I+ (¢! —1) (EX).

This is the advertised result of Lemma 2.10.4. O

Proof Theorem 2.10.1, Upper Bound. The Chernoff moment generating function,
Lemma 2.10.4, states that

Ee?®: <1+ g () (EX) where g (6) = (e — 1) for6 > 0.

As a result, Corollary 2.6.3 implies that

{,\max (Z xk) > } < d-exp (—9t+n~log~>\max (% i (I+g(0) (EXy) )))

k=1

n
:d~exp (—9t+n~10g~>\max (I"l'g(e % Z (Exk ))
k=1

=d-exp(—0t+mn-log- (14 g(0) - imax)) -
(2.61)
The third line follows from the spectral mapping Theorem 1.4.13 and the definition
of [imax. Make the change of variable ¢t — na. The right-hand side is smallest when

0 = log (o/ (1 — ) — log (fimax/ (1 = fimax)) -

After substituting these quantiles into (2.61), we obtain the information divergence
upper bound. [

Proof Corollary 2.10.2, Upper Bound. Assume that the summands satisfy the uni-
form eigenvalue bound with R = 1; the general result follows by re-scaling.
The shortest route to the weaker Chernoff bound starts at (2.61). The numerical
inequality log(1 4+ x) < «, valid for > —1, implies that

P {Amx (Z Xk.) >t} <d - exp (—0t+g(0) - Nfimax) =d - exp (—0t+g(0) - fimax) -
k=1

Make the change of variable ¢t — (1 + §) ftmax, and select the parameter § =
log (1 + §). Simplify the resulting tail bound to complete the proof. O
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The lower bounds follow from a closely related arguments.

Proof Theorem 2.10.1, Lower Bound. Our starting point is Corollary 2.6.3, consid-
ering the sequence {—Xj}. In this case, the Chernoff moment generating function,
Lemma 2.10.4, states that

Ee?(Xn) = Be(=%Xr < T — g(0) - (EX},) where g(f) =1—e~? for 6> 0.
Since Apin (—A) = —Amax (A), we can again use Corollary 2.6.3 as follows.
IP){)\min (i Xk) < t} - II;D{)\max (i (_Xk)) > _t}
k=1 k=1
<d-exp (0t +n-10gAmax | = > (I—g(0) - EXy)

k=1
=d-exp (015 +n - log (1 —g(0) - Amin (% i IEXk)))
k=1
=d-exp(0t+n-log(l—g(f): fimin)) -

(2.62)
Make the substitution ¢ — na. The right-hand side is minimum when
0= IOg (,L_Lmin/ (]- - ﬂmin)) - log (0{/ (1 - Oé)) .
These steps result in the information divergence lower bound. (]

Proof Corollary 2.10.2, Lower Bound. As before, assume that the unform bound
R = 1. We obtain the weaker lower bound as a consequence of (2.62). The
numerical inequality log(1 4+ «) < , is valid for z > —1, so we have

n
P {)\min <Z Xk) < t} <d- €exXp ((9t - 9(6) . nﬁmin) =d- exp (Qt - 9(0) . Mmin) .
k=1

Make the substitution ¢ — (1 — J) timin, and select the parameter § = — log (1 — 0)
to complete the proof. (]

2.11 Matrix Bennett and Bernstein Inequalities

In the scalar setting, Bennett and Bernstein inequalities deal with a sum of
independent, zero-mean random variables that are either bounded or subexponential.
In the matrix setting, the analogous results concern a sum of zero-mean random
matrices. Recall that the classical Chernoff bounds concern the sum of independent,
nonnegative, and uniformly bounded random variables while, matrix Chernoff
bounds deal with a sum of independent, positive semidefinite, random matrices
whose maximum eigenvalues are subject to a uniform bound. Let us consider a
motivating example first.
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Example 2.11.1 (Signal plus Noise Model). For example, the sample covariance
matrices of Gaussian noise, R, satisfy the conditions of independent, zero-mean,
random matrices. Formally

Ryy = R;Ew + wa;

~

R, represent the sample covariance matrix of the received signal plus noise and

~ ~

R, of the signal. Apparently, R, is a zero-mean random matrix. All these
matrices are independent, nonnegative, random matrices. O

Our first result considers the case where the maximum eigenvalue of each
summand satisfies a uniform bound. Recall from Example 2.10.3 that the norm of a
rectangular random matrix Z satisfies

||Z||2 = Amax (ZZ*) = Amax (Z zkzz> . (2.63)
k=1

Physically, we can call the norm as the power.
Example 2.11.2 (Transmitters with bounded power). Consider a practical applica-
tion. Assume each transmitter is modeled as the random matrix {Z}, k= 1,...,n.
We have the a prior knowledge that its transmission is bounded in some manner.
A model is to consider

EZy =M; Mpax (Zr) < Ry, k=1,2,...,n.
After the multi-path channel propagation with fading, the constraints become

IEXk:N, )\max(Xk) <R25 k:1527"'5n'

Without loss of generality, we can always considered the centered matrix-valued
random variable

EX} = 0; Amax (Xk) < Ra k= 1727"' ) T

When a number of transmitters, say n, are emitting at the same time, the total
received signal is described by

n
Y =X+, X, =) X
k=1
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Theorem 2.11.3 (Matrix Bernstein.Bounded Case—Theorem 6.1 of Tropp [53]).
Consider a finite sequence {Xy,} of independent, random, Hermitian matrices with
dimension d. Assume that

EX) = 0; Amax (Xi) < R, almost surely.

Compute the norm of the total variance,

kZiIE(Xi)

Then the following chain of inequalities holds for all t > 0.

{ max(z Xk> > } d-exp (~ 5 h (%)) (i)

<d-exp (~zthars (i)
d-exp (—3t?/80?%) for t < o?/R;
{d exp (=3t/8R)  for t > o?/R.

o=

\_/

N

" (411)

(2.64)
The function h (z) :== (1 +z)log(1+2) —x for x > 0.

Theorem 2.11.4 (Matrix Bernstein: Subexponential Case—Theorem 6.2
of Tropp [53]). Consider a finite sequence {Xy} of independent, random,
Hermitian matrices with dimension d. Assume that

|
EX; = 0;E (X?) < % RP2A2 forp=234,....

Compute the variance parameter

k=1
Then the following chain of inequalities holds for all t > 0.
{ m'}x(zxk> }gd'oxp(_%)

< d-exp (—t?/40?) for t < o?/R;
d-exp(—t/4R)  for t > o?/R.
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2.12 Minimax Matrix Laplace Method

This section, taking material from [43,49,53,111], combines the matrix Laplace
transform method of Sect.2.3 with the Courant-Fischer characterization of eigen-
values (Theorem 1.4.22) to obtain nontrivial bounds on the interior eigenvalues of a
sum of random Hermitian matrices. We will use this approach for estimates of the
covariance matrix.

2.13 Tail Bounds for All Eigenvalues of a Sum of Random
Matrices

In this section, closely following Tropp [111], we develop a generic bound on
the tail probabilities of eigenvalues of sums of independent, random, Hermitian
matrices. We establish this bound by supplementing the matrix Laplace transform
methodology of Tropp [53], that is treated before in Sect. 2.3, with Theorem 1.4.22
and a new result, due to Lieb and Steiringer [112], on the concavity of a certain trace
function on the cone of positive-definite matrices.

Theorem 1.4.22 allows us to relate the behavior of the kth eigenvalue of a matrix
to the behavior of the largest eigenvalue of an appropriate compression of the matrix.

Theorem 2.13.1 (Tropp [111]). Let X be a random, Hermitian matrix with
dimension n, and let k < n be an integer. Then, for allt € R,

P(\ (X)) < inf  min {e—"t-ETreW*XV}. (2.65)
o>0vevr_, .,

Proof. Let 0 be a fixed positive number. Then

P (X)>t) =P (A (0X) > 0t) =P (e %) > 0

< e 0t Bk OX)

— e -Eexp { min - Amax (HV*XV)} .
veun

n—k+1

The first identify follows from the positive homogeneity of eigenvalue maps and
the second from the monotonicity of the scalar exponential function. The final two
steps are Markov’s inequality and (1.89).

Let us bound the expectation. Interchange the order of the exponential and the
minimum, due to the monotonicity of the scalar exponential function; then apply the
spectral mapping Theorem 1.4.4 to see that
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E exp { min - Apax ((‘)V*XV)} =E min Apax (exp (6V*XV))

Vevh i1

< min  Elpax (exp (0V*XV))
< v min  ETr (exp (V*XV)).

n—k+1

The first step uses Jensen’s inequality. The second inequality follows because the
exponential of a Hermitian matrix is always positive definite—see Sect. 1.4.16, so
its largest eigenvalue is smaller than its trace. The trace functional is linear, which is
very critical. The expectation is also linear. Thus we can exchange the order of the
expectation and the trace: trace and expectation commute—see (1.87).

Combine these observations and take the infimum over all positive 6 to complete
the argument. U

Now let apply Theorem 2.13.1 to the case that X can be expressed as a sum of
independent, Hermitian, random matrices. In this case, we develop the right-hand
side of the Laplace transform bound (2.65) by using the following result.

Theorem 2.13.2 (Tropp [111]). Consider a finite sequence {X;} of independent,
Hermitian, random matrices with dimension n and a sequence {A;} of fixed
Hermitian matrices with dimension n that satisfy the relations

E (eX7) < et (2.66)

Let V € V} be an isometric embedding of CF into C™ for some k < n. Then

E Tr exp {Z V*XiV} < Trexp {Z V*AiV} . (2.67)

In particular,

ETrexp{ZXi} éTrexp{ZAl}. (2.68)

Theorem 2.13.2 is an extension of Lemma 2.5.1, which establish the result of (2.68).
The proof depends on a recent result of [112], which extends Lieb’s earlier classical
result [50, Theorem 6]. Here M represents the set of Hermitian matrices of n x n.

Proposition 2.13.3 (Lieb-Seiringer 2005). Let H be a Hermitian matrix with
dimension k. Let V. € V¢ be an isometric embedding of C* into C™ for some
k < n. Then the function

A—Trexp{H+ V" (logA)V}

is concave on the cone of positive-definite matrices in M.



130 2 Sums of Matrix-Valued Random Variables

Proof of Theorem 2.13.2. First, combining the given condition (2.66) with the
operator monotonicity of the matrix logarithm gives the following for each k:

log EeX* < Ay,. (2.69)

Let E; denote the expectation conditioned on the first £ summands, X through Xk.
Then

IETrexp{ZV*XiV} =EE;---E;j_1 Trexps >, V'X;V+4+V~* (logexﬂ)V}
i<J i<j—1
<EE;---E;j_2Trexpq >, VX, V+V* (log ]Eexj) V}

i<j—1

i<j—1

<EE;---E;_oTrexps >, V'X;V4V* (logeAﬂ')V}

=EE; ---Ej_2 Trexp Z V*XiV—FV*AjV}.

i<j—1

The first step follows from Proposition 2.13.3 and Jensen’s inequality, and the
second depends on (2.69) and the monotonicity of the trace exponential. Iterate
this argument to complete the proof. The main result follows from combining
Theorems 2.13.1 and 2.13.2. U

Theorem 2.13.4 (Minimax Laplace Transform). Consider a finite sequence
{X;} of independent, random, Hermitian matrices with dimension n, and let k < n
be an integer.

1. Let {A;} be a sequence of Hermitian matrices that satisfy the semidefinite
relations

E (eexi) < eg(O)AI

where g : (0,00) — [0,00). Then, forallt € R,
il >t) <i i -0t *A ]

P ()\k <zl: XZ> > t) < ;I;EVGQ%{I,CH [e Tr exp {g (@) ZZ:V AZV}]

2.A; 2 VD, — My be a sequence of functions that satisfy the semidefinite
relations

E (eev*xiv) < 9(OAY)

forallV e V7 _, whereg: (0,00) = [0,00). Then, forall t € R,
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. 1 ] 70t . .
P (/\k (21: XZ> > t) < él;f(;VEg]n:lflkH le Trexp {g 9) Z:Az (V)}] .

The first bound in Theorem 2.13.4 requires less detailed information on how
compression affects the summands but correspondingly does not yield as sharp
results as the second.

2.14 Chernoff Bounds for Interior Eigenvalues

Classical Chernoff bounds in Sect.1.1.4 establish that the tails of a sum of
independent, nonnegative, random variables decay subexponentially. Tropp [53]
develops Chernoff bounds for the maximum and minimum eigenvalues of a sum
of independent, positive-semidefinite matrices. In particular, sample covariance
matrices are positive-semidefinite and the sums of independent, sample covariance
matrices are ubiquitous. Following Gittens and Tropp [111], we extend this analysis
to study the interior eigenvalues. The analogy with the scalar-valued random
variables in Sect. 1.1.4 is aimed at, in this development. At this point, it is insightful
if the audience reviews the materials in Sects. 1.1.4 and 1.3.

Intuitively, how concentrated the summands will determine the eigenvalues tail
bounds; in other words, if we align the ranges of some operators, the maximum
eigenvalue of a sum of these operators varies probably more than that of a sum
of operators whose ranges are orthogonal. We are interested in a finite sequence
of random summands {X;}. This sequence will concentrate in a given subspace.
To measure how much this sequence concentrate, we define a function
Uigk<n Y — R that has the property

maxAmax (V*X; V) <9 (V) almost surely for each V € U<, Vii.  (2.70)

Theorem 2.14.1 (Eigenvalue Chernoff Bounds [111]). Consider a finite
sequence {X;} of independent, random, positive-semidefinite matrices with
dimension n. Given an integer k < n, define

M = Ak (Z EXi) ;

andletVy € VI, . and V _ € V} be isometric embeddings that satisfy

[tk = Amax (Z VjEXZ-VJr) = Amin (Z V*]EXZ-V> :
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Then

(Ak <Zx> (1+0)pu )g(nkﬂ).

—s e /w(V-)
IP()\k <ZX> <(1—5)uk> <k- [(1_‘35)15} ford € [0,1],

where 1 is a function that satisfies (2.70).

e

(1 + 5)1+5

5 uk/w(V+)
} foré >0, and

Practically, if it is difficult to estimate ¢ (V1) and ¢ (V_), we can use the weaker
estimates

¥ (V) £ max max|V*X; V| = max ||X;]]
vevr_, L, i i

¥ (V) < max max [|[V*X; V|| = max || X
vevy e i

The following lemma is due to Ahlswede and Winter [36]; see also [53, Lemma 5.8].

Lemma 2.14.2. Suppose that X is a random positive-semidefinite matrix that
satisfies Amax (X) < 1. Then

EefX < exp ((eg —1) (EX)) for 6 € R.

Proof of Theorem 2.14.1, upper bound. Without loss of generality, we consider the
case ¢ (V1) = 1; the general case follows due to homogeneity. Define

A, (Vy)=ViEX,;V andg(0) = e’ — 1.

Using Theorem 2.13.4 and Lemma 2.14.2 gives

<,\k <Zx ) (1+68)p ) < gr;%e*‘)(l”)“k -Trexp {g(G)ZViEXiV_._ }

1

The trace can be bounded by the maximum eigenvalue (since the maximum
eigenvalue is nonnegative), by taking into account the reduced dimension of the
summands:

Trexp {g ) VIiEX; V4 } < (n—k+1) - Amax (exp {g 0> VIEX;Vy })

7

= (n—k+1) - exp {g (6) - Amax <Z VEEX;V ) }

The equality follows from the spectral mapping theorem (Theorem 1.4.4 at Page 34).
We identify the quantity u; then combine the last two inequalities to give
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(Ak (ZX ) (1+6)p > <(—k+1)- gggelwmfe(ua)m.

By choosing 6 = log (1 + ¢), the right-hand side is minimized (by taking care of
the infimum), which gives the desired upper tail bound. U

Proof of Theorem 2.14.1, lower bound. The proof of lower bound is very similar
to that of upper bound above. As above, consider only ¢ (V_) = 1. It follow
from (1.91) (Page 47) that

P (Ak (Z Xi> <(1-9) ,uk) =P (An—kﬂ (Z Xz‘) > —(1-9) ,uk> .

(2.71)
Applying Lemma 2.14.2, we find that, for § > 0,

Eef(-V-rxiv_) — ge(-0)VEX,V_ <exp(g(0) - (E[-V*X;V_]))
=exp(g(0) (V2 (-EX) V).

where g (/) = 1—e¢?. The last equality follows from the linearity of the expectation.
Using Theorem 2.13.4, we find the latter probability in (2.71) is bounded by

f 0= ur *(_EXI V. S
infe r exp 9(9)ZV_( i)V

The trace can be bounded by the maximum eigenvalue (since the maximum
eigenvalue is nonnegative), by taking into account the reduced dimension of the
summands:

Trexp {g(@) > VI (-EXi) V_ } < k- Amax (exp {g (0)> VI (-EXi) V- })
=k -exp {—g (0) - Amin <Z V* (EX;)V_ ) }
— k-exp{—g(6) -}
The equality follows from the spectral mapping theorem, Theorem 1.4.4

(Page 34), and (1.92) (Page 47). In the second equality, we identify the quantity py.
Note that —g(f) < 0. Our argument establishes the bound

(Ak (ZX> (140) ) <k-inf e[01+8)=g(O)]

The right-hand side is minimized, (by taking care of the infimum), when 6§ =
—log (1 — ¢), which gives the desired upper tail bound. O
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From the two proofs, we see the property that the maximum eigenvalue is
nonnegative is fundamental. Using this property, we convert the trace functional
into the maximum eigenvalue functional. Then the Courant-Fischer theorem,
Theorem 1.4.22, can be used. The spectral mapping theorem is applied almost
everywhere; it is must be recalled behind the mind. The non-commutative property
is fundamental in studying random matrices. By using the eigenvalues and their
variation property, it is very convenient to think of random matrices as scalar-
valued random variables, in which we convert the two dimensional problem into
one-dimensional problem—much more convenient to handle.

2.15 Linear Filtering Through Sums of Random Matrices

The linearity of the expectation and the trace is so basic. We must always bear
this mind. The trace which is a linear functional converts a random matrix into a
scalar-valued random variable; so as the kth interior eigenvalue which is a non-linear
functional. Since trace and expectation commute, it follows from (1.87), which says
that

E(TrX) = Tr (EX). (2.72)

As said above, in the left-hand side, Tr X is a scalar-valued random variable, so its
expectation is treated as our standard textbooks on random variables and processes;
remarkably, in the right-hand side, the expectation of a random matrix EX is also a
matrix whose entries are expected values. After this expectation, a trace functional
converts the matrix value into a scalar value. One cannot help replacing EX with
the empirical average—a sum of random matrices, that is,

1 n
EX 2~ =) X, 273
- ; (2.73)

as we deal with the scalar-valued random variables. This intuition lies at the very
basis of modern probability. In this book, one purpose is to prepare us for the
intuition of this “approximation” (2.73), for a given n, large but finite—the n is
taken as it is. We are not interested in the asymptotic limit as n — oo, rather the non-
asymptotic analysis. One natural metric of measure is the kth interior eigenvalues

1 n
Ak E;Xi—]EX

Note the interior eigenvalues are non-linear functionals. We cannot simply separate
the two terms.
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We can use the linear trace functional that is the sum of all eigenvalues. As a
result, we have

Y (;fjxi—Ex) :TY<}L§:Xi—EX>

i=1 i=1

Tr (1 gi;l Xi> — Tr (EX)

> TrX; —E(TrX).

=1

1
n

The linearity of the trace is used in the second and third equality. The property
that trace and expectation commute is used in the third equality. Indeed, the linear
trace functional is convenient, but a lot of statistical information is contained in the
interior eigenvalues. For example, the median of the eigenvalues, rather than the
average of the eigenvalues—the trace divided by its dimension can be viewed as the
average, is more representative statistically.

We are in particular interested in the signal plus noise model in the matrix setting.
We consider instead

E(X + Z) =

3\>—‘

Z (X; + Z;) (2.74)
=1

for
X,Z,Xi,Zi >0 and X,Z,Xi,Zi € (mem7

where X, X represent the signal and Z, Z, the noise. Recall that A > 0 means that
A is positive semidefinite (Hermitian and all eigenvalues of A are nonnegative).
Samples covariance matrices of dimensions m X m are most often used in this
context.

Since we have a prior knowledge that X, X; are of low rank, the low-rank matrix
recovery naturally fits into this framework. We can choose the matrix dimension
m such that enough information of the signal matrices X; is recovered, but we
don’t care if sufficient information of Z; can be recovered for this chosen m. For
example, only the first dominant k eigenvalues of X, X; are recovered, which will
be treated in Sect.2.10 Low Rank Approximation. We conclude that the sums of
random matrices have the fundamental nature of imposing the structures of the data
that only exhibit themselves in the matrix setting. The low rank and the positive
semi-definite of sample covariance matrices belong to these data structures. When
the data is big, we must impose these additional structures for high-dimensional data
processing.

The intuition of exploiting (2.74) is as follows: if the estimates of X, are so
accurate that they are independent and identically distributed X; = X, then we
rewrite (2.74) as

n n

E(X+Z)%%Z(Xi+zi):%Z(X0+Zi):xo+%zzi. (2.75)

i=1 i=1
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Practically, X + Z cannot be separated. The exploitation of the additional low-
rank structure of the signal matrices allows us to extract the signal matrix Xj.

The average of the noise matrices - Z Z; will reduce the total noise power (total
i=1
variance), while the signal power is kept constant. This process can effectively

improve the signal to noise ratio, which is especially critical to detection of
extremely weak signals (relative to the noise power).

The basic observation is that the above data processing only involves the linear
operations. The process is also blind, which means that no prior knowledge of the
noise matrix is used. We only take advantage of the rank structure of the underlying
signal and noise matrices: the dimensions of the signal space is lower than the
dimensions of the noise space. The above process can be extended to more general
case: X,; are more dependent than Z;, where X; are dependent on each other and so
are Z; , but X; are independent of Z;. Thus, we rewrite (2.74) as

Zn: X; + Z;) in+%Zz (2.76)
=1 ) 3

E(X+7Z)=

S|

n
All we care is that, through the sums of random matrices, % > X, is performing

n
statistically better than % >~ Z; . For example, we can use the linear trace functional
i=1
(average operation) and the non-linear median functional. To calculate the median
value of A\, 1 < k < n,

M [)\k (iZ}X+iZ}Z>] :

where M is the median value which is a scalar-valued random variable, we need to
calculate

17L 17l
N x4+-5"2Z, | 1<k<n.

The average operation comes down to a trace operation

% i;TI‘XZ—F’i i;TI‘ Zi,
i= =

where the linearity of the trace is used. This is simply the standard sum of scalar-
valued random variables. It is expected, via the central limit theorem, that their
sum approaches to the Gaussian distribution, for a reasonably large n. As pointed
out before, this trace operation throws away a lot of statistical information that is
available in the random matrices, for example, the matrix structures.
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2.16 Dimension-Free Inequalities for Sums of Random
Matrices

Sums of random matrices arise in many statistical and probabilistic applications,
and hence their concentration behavior is of fundamental significance. Surprisingly,
the classical exponential moment method used to derive tail inequalities for scalar
random variables carries over to the matrix setting when augmented with certain
matrix trace inequalities [68, 113]. Altogether, these results have proven invaluable
in constructing and simplifying many probabilistic arguments concerning sums of
random matrices.

One deficiency of many of these previous inequalities is their dependence on the
explicit matrix dimension, which prevents their application to infinite dimensional
spaces that arise in a variety of data analysis tasks, such as kernel based machine
learning [114]. In this subsection, we follow [68, 113] to prove analogous results
where dimension is replaced with a trace quantity that can be small, even when
the explicit matrix dimension is large or infinite. Magen and Zouzias [115] also
gives similar results that are complicated and fall short of giving an exponential tail
inequality.

We use E;[-] as shorthand for E;[] = E;[ |Xy,...,X;], the conditional
expectation. The main idea is to use Theorem 1.4.17: Lieb’s theorem.

Lemma 2.16.1 (Tropp [49]). Let 1 be the identity matrix for the range of the X;.
Then

E

N N
Tr (exp (Z X; — Zln E; [exp (XZ)]> - I)} <0. 2.77)
i=1 i=1

Proof. We follow [113]. The induction method is used for the proof. For N = 0, it
is easy to check the lemma is correct. For N > 1, assume as the inductive hypothesis
that (2.77) holds with /N with replaced with N — 1. In this case, we have that

E | Tr <exp (é X; — i:;lnﬂ*li [exp (Xi)]> - I)]

o oo (B S momicn) )|
<E |Ex | Tr <exp <Nzl Xi— ilnEi [exp (X)] + InEy exp (XN)> _I>H
—E|Ey |Tr (exp (NZI Xi~ ]flln]Ei lexp (Xi)]) ) I)H
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where the second line follows from Theorem 1.4.17 and Jensen’s inequality. The
fifth line follows from the inductive hypothesis. (]

While (2.77) gives the trace result, sometimes we need the largest eigenvalue.

Theorem 2.16.2 (Largest eigenvalue—Hsu, Kakade and Zhang [113]). For any
a€Randanyt >0

N N
P |:/\max <O¢ZX2' - Zlog E; [exp (aXi)]) > t:|
i=1

i=1

N N .
<Tr <E (—a Z Xi+ Z log E; [exp (oaXi)]>> . (et—t—1> .
i=1 i=1

N N
Proof. Define a new matrix A = a ), X; — > logE; [exp (aX;)].. Note that
i=1 i=1
g(z) = €* — x — 1 is non-negative for all real x, and increasing for © > 0. Let
i (A) be the i-th eigenvalue of the matrix A, we have

P A (A) > 1] (¢!~ = 1) = E[Z (Ao (A) > 1) (¢ £ ~ 1)
< E (Mmex(A) _ ) (A) — 1)
<E(T (W -xm)-1)
<E(Trlexp(A) — A 1))
<Tr(E[-A])

where Z () is the indicator function of x. The second line follows from the spectral
mapping theorem. The third line follows from the increasing property of the function
g(x). The last line follows from Lemma 2.16.1. O

N
When > X; is zero mean, then the first term in Theorem 2.16.2 vanishes, so the

Tr (IE (Z logE; [exp (aXz-)]>>

trace term
i=1

can be made small by an appropriate choice of a.

Theorem 2.16.3 (Matrix sub-Gaussian bound—Hsu, Kakade and Zhang
[113]). Ifthere exists ¢ > 0 and k > 0 such that foralli =1,..., N,
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E;[X;]=0
N _
1 a?52
il E log . . <
)\max <N i og I&; [exp (OtXJ]) 2
N o
1 a?52%R
_ . ) <
E <’I‘r (N ;:1 log E; [exp (aXZ)}>> <

for all o > 0 almost surely, then for any t > 0,

N
1 202t
P ax *5 7
[/\m <N1=1X)> N]

The proof is simple. We refer to [113] for a proof.

Ret(eh—t—1)""

N

Theorem 2.16.4 (Matrix Bernstein Bound—Hsu, Kakade and Zhang [113]).

there exists b > 0, & > 0 and & > 0 such that foralli = 1,. .., N,
E;[X;]=0
Arnax (Xz) g b
1
2 _2

>\max (N ;Ez [X1]> < o

1 2 -
E (Tr <N;Ei [XJ)) <R

almost surely, then for any t > 0,

N —
1 252t bt _
P[Arrlax <NZX1) > ]OV +3J\7‘| <R~t(et—t—l) 1.
=1

The proof is simple. We refer to [113] for a proof.

139

If

Explicit dependence on the dimension of the matrix does not allow straightfor-
ward use of these results in the infinite-dimensional setting. Minsker [116] deals
with this issue by extension of previous results. This new result is of interest to
low rank matrix recovery and approximation matrix multiplication. Let || - || denote
the operator norm ||A|| = max {); (A)}, where )\; are eigenvalues of a Hermitian

(3

operator A. Expectation EX is taken elementwise.

Theorem 2.16.5 (Dimension-free Bernstein inequality—Minsker [116]). Let
Xq,..., Xy be a sequence of n x n independent Hermitian random matrices such
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N

that EX; = 0 and ||X;|| < 1 almost surely. Denote 0 = || > EXZ||. Then, for
anyt >0 =
N Tr (% EX?)
P ( > X[ > t> < 2% exp (=W, () - 7o ()
i=1

_ 2 _ 6
where U, (t) = o743 and r4 (t)=1+ Plog?(11t/o2)"

N
If > EX? is of approximately low rank, i.e., has many small eigenvalues, the

=1
N
Tr< > EX§>

number of non-zero eigenvalues are big. The term =1 , however, is can
be much smaller than the dimension n. Minsker [116] has applied Theorem 2.16.5
to the problem of learning the continuous-time kernel.

A concentration inequality for the sums of matrix-valued martingale differences
is also obtained by Minsker [116]. Let E;_; [-] stand for the conditional expectation

Ei—l [ |X1,...,XZ‘].

Theorem 2.16.6 (Minsker [116]). Let X1,..., Xy be a sequence of martingale
differences with values in the set of n X n independent Hermitian random matrices

N
such that ||X;|| < 1 almost surely. Denote W = E;_1X2. Then, for any
=1

7

t>0,

‘(

where p (t) = min (—t, 1).

N

>x,

i=1

6

1, A (W) <02> <2Tr [p (_%EWN)] exp (—Vs (1)) - (H—\Iﬂi(t)) )

2.17 Some Khintchine-Type Inequalities

Theorem 2.17.1 (Non-commutative Bernstein-type inequality [S3]). Consider a
finite sequence X; of independent centered Hermitian random n X n matrices.
Assume we have for some numbers K and o such that

> EX?

IX;|l < K almost surely, | < o2,

Then, for every t > 0, we have
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P(|X;] > t) < 2n - exp (_’52/2)
s o2+ Kt/3)"
We say &i,...,&n are independent Bernoulli random variables when each ¢;
takes on the values £1 with equal probability. In 1923, in an effort to provide a
sharp estimate on the rate of convergence in Borel’s strong law of large numbers,
Khintchine proved the following inequality that now bears his name.

Theorem 2.17.2 (Khintchine’s inequality [117]). Ler &1, ..., N be a sequence
of independent Bernoulli random variables, and let X1, ..., XN be an arbitrary
sequence of scalars. Then, for any N = 1,2,... and p € (0,00), there exists an
absolute constant C}, > 0 such that

!

N
> GX
i=1

2

P N p/
] <0, <Z|Xi|2> . (2.78)
=1

In fact, Khintchine only established the inequality for the case where p > 2 is an
even integer. Since his work, much effort has been spent on determining the optimal
value of C}, in (2.78). In particular, it has been shown [117] that for p > 2, the value

2\ 1/ 1
cr— (=) p(Ptl
p ™ 2
is the best possible. Here I'(-) is the Gamma function. Using Stirling’s formula, one
can show [117] that C; is of the order pl’/2 forall p > 2.

The Khintchine inequality is extended to the case for arbitrary m x n matrices.
Here [|A[|g ~denotes the Schatten p-norm of an m x n matrix A, ie., [[Alg =

o , where o € i "5 s the vector of singular values of A, and || - ||, is
A)ll,, wh Rmin{mn} s th f singular values of A, and || - ||,
the usual /,-norm.

Theorem 2.17.3 (Khintchine’s inequality for arbitrary m x n matrices [118]).
Let &1,...,EN be a sequence of independent Bernoulli random variables, and let
X1,..., Xy be arbitrary m x n matrices. Then, forany N = 1,2, ... andp > 2,
we have

p

E

N p/2
<2 (Z ||xi||ép> :
i=1

N
> aX,
=1

Sp

N
The normalization ||XZ||25p is not the only one possible in order for a
i—1

1=
Khintchine-type inequality to hold. In 1986, Lust-Piquard showed another one
possibility.
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Theorem 2.17.4 (Non-Commutative Khintchine’s inequality for arbitrary
m X n matrices [119]). Let &1,...,&n be a sequence of independent Bernoulli
random variables, and let X1, . .., X 5 be an arbitrary sequence of m X n matrices.
Then, for any N = 1,2,... and p > 2, there exists an absolute constant vy, > 0
such that

E

p N 1/2|P N 1/2]|P
< yp'max <Z XZXzT> , (Z X?Xz>
i=1

Sp S, i=1 S,

N
> GX,
i=1

The proof of Lust-Piquard does not provide an estimate for -y,. In 1998, Pisier [120]
showed that

W < ap?/?

for some absolute constant o > 0. Using the result of Buchholz [121], we have
a < (m/e)/?jr/t < 1

for all p > 2. We note that Theorem 2.17.4 is valid (with 7y, < apP/? < pP/?) when
&1, ..., &N areii.d. standard Gaussian random variables [121].
Let C; be arbitrary m X n matrices such that

N N
Y Ccli <L, ) ClCi<I,. (2.79)
i=1 =1

So [122] derived another useful theorem.

Theorem 2.17.5 (So [122]). Let &1, ...,EN be independent mean zero random
variables, each of which is either (i) supported on [—1,1], or (ii) Gaussian with
variance one. Further, let Xy, ..., Xy be arbitrary m X n matrices satisfying
max(m,n) > 2 and (2.79). Then, for any t > 1/2, we have

Prob (

N
> aX,
i=1

if&1, ..., &N are i.i.d. Bernoulli or standard normal random variables; and

Prob (

> \/26 (14 t) Inmax {m, n}) < (max {m, n})_t

N
> 6X,
i=1

> /8¢ (1 + t) Inmax {m,n}) < (max {m,n})”"

if&1, ..., En are independent mean zero random variables supported on [—1,1].

We refer to Sect. 11.2 for a proof.
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Here we state a result of [123] that is stronger than Theorem 2.17.4. We deal with

bilinear form. Let X and Y be two matrices of size n x k; and n x ko which satisfy
X"y =0

and let {x;} and {y;} be row vectors of X and Y, respectively. Denote ¢; to be a
sequence of i.i.d. {0/1} Bernoulli random variables with P(¢; = 1) = &. Then, for
p=2

p \ /P
E xTy; <2V2y2 ; ;
£iX; Vi < 2V2y, max x| max ||y | +
i s
? (2.80)
1/2 1/2
212, maax { max i) | Yy Tyi|  max il [ x|t

% Sp A Sp

where «,, is the absolute constant defined in Theorem 2.17.4. This proof of (2.80)
uses the following result

p \ /P
E

E EixiTxi
%

< 2’712, max ||x;||* + &
?

§ T
X; Xi

Sp 4 Sp

forp > 2.
Now consider X7 X = I, then for p > log k, we have [123]
p \ /P

< 0\/5 max 1]
£ 1

where C' = 23/4,/me ~ 5. This result guarantees that the invertibility of a sub-
matrix which is formed from sampling a few columns (or rows) of a matrix X.

1 n
§ : T
E Ikxk — E aixi X;
i=1

S,

Theorem 2.17.6 ([124]). Let X € R"™*", be a random matrix whose entries are
independent, zero-mean, random variables. Then, for p > logn,

1/p

p

p
EIX[")" < co2/Pyp| | |E| max I X |+ E<m?XZX%> |
J i

where ¢y < 23/%\/me < 5.

Theorem 2.17.7 ([124]). Let A € R"*™ be any matrix and A € R™" pe g
random matrix such that

EA=A.
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Then, for p > logn,

(&

where cy<23/4\/me<b.

1/p

p

P
~ 1\ 1/p - -
1/ 2 2
)<y e( e ) (e ) |
J 1

2.18 Sparse Sums of Positive Semi-definite Matrices

Theorem 2.18.1 ([125]). Let A+, ..., AN be symmetric, positive semidefinite ma-
trices of size n X n and arbitrary rank. For any € € (0, 1), there is a deterministic
algorithm to construct a vector'y € RYN with O(n/e?) nonzero entries such that
y > 0and

N N
S ALY uA<(1+e)) A
i=1 =1

i=1

The algorithm runs in O(Nn?/e?) time. Moreover, the result continues to hold if
the input matrices A1, ..., AN are Hermitian and positive semi-definite.

Theorem 2.18.2 ([125]). Let A+, ..., AN be symmetric, positive semidefinite ma-

N
trices of sizen X nand lety = (y1, . . .,yN)T € RN satisfyy > 0and > y; = 1.
i=1

N
For any € € (0,1), these exists x > 0 with Y, x; = 1 such that x has O(n/¢)

i=1
nonzero entries and

N N
1-2)> viAi <> A< (1+)) yiA.
=1 =1 3

2.19 Further Comments

This chapter heavily relies on the work of Tropp [53]. Due to its user-friendly
nature, we take so much material from it.

Column subsampling of matrices with orthogonal rows is treated in [111].
Exchangeable pairs for sums of dependent random matrices is studied by Mackey,
Jordan, Chen, Farrell, Tropp [126]. Learning with integral operators [127, 128]
is relevant. Element-wise matrix sparsification by Drineas [129] is interesting.
See [130, Page 15] for some matrix concentration inequalities.



Chapter 3
Concentration of Measure

Concentration of measure plays a central role in the content of this book. This chap-
ter gives the first account of this subject. Bernstein-type concentration inequalities
are often used to investigate the sums of random variables (scalars, vectors and
matrices). In particular, we survey the recent status of sums of random matrices in
Chap. 2, which gives us the straightforward impression of the classical view of the
subject.

It is safe to say that the modern viewpoint of the subject is the concentration
of measure phenomenon through Talagrand’s inequality. Lipschitz functions are
basic mathematical objects to study. As a result, many complicated quantities can
be viewed as Lipschitz functions that can be handled in the framework of Talagrand.
This new viewpoint has profound impact on the whole structure of this book.
In some sense, the whole book is to prepare the audience to get comfortable with
this picture.

3.1 Concentration of Measure Phenomenon

Increase in dimensionality can often help to mathematical analysis. This is called
blessing of dimensionality. The regularity of having many “identical” dimensions
over which one can “average” is a fundamental tool.

Let X, Xo,...,X, be a sequence of independent random variables taking
values +1 with equal probability, and set, for example,

Sn:X1+"'+Xn~

We think of S,, of the individual variables X;. The classical law of large number
says that S, is essentially constant (equal to 0). By the central limit theorem, the
fluctuations of .S,, are of order /n which is hardly zero. But as S, takes values as
large as n, this is the scale at which one should measure S,,, in which case S,, /n
indeed essentially zero as expressed by the classical exponential bound [131]

R. Qiu and M. Wicks, Cognitive Networked Sensing and Big Data, 145
DOI 10.1007/978-1-4614-4544-9_3,
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S(CI R
n

According to M. Talagrand [131], one probabilistic aspect of measure concentration
is that a random variable that depends (in a smooth way) on the influence of many
independent variables is essentially constant!

Due to concentration of measure, a Lipschitz function is nearly constant [132,
p. 17]. Even more important, the tails behave at worst like a scalar Gaussian random
variable with absolutely controlled mean and variance.

Measure concentration is surprisingly shared by a number of cases that gen-
eralized previous examples: (1) by replacing linear functionals (such as sums of
independent random variables) by arbitrary Lipschitz functions of the samples;
(2) by considering measures that are not of product form. The difference between
the concentration phenomenon and the standard probabilistic views on probability
inequalities and law of large numbers theorems is made explicit by the extension to
Lipschitz (and even Holder type) functions and more general measures. This insight
is simple, yet fundamental. This concept is extended to the matrix setting.

The theory of concentration inequality tries to answer the following question:
Given a random vector x taking value in some measurable space X (which is usually
some high dimensional Euclidean space), and a measurable map f : X — R,
what is a good explicit bound on P (|f (x) — Ef (x)| > t)? Exact evaluation or
accurate approximation is, of course, the central purpose of probability theory
itself. In situations where exact evaluation or accurate approximation is not possible,
concentration inequalities aim to do the next best job by providing rapidly decaying
tail bounds [133].

3.2 Chi-Square Distributions

The x? distribution is a basic probability distribution. Let us first study the y?
distribution to get a feel of concentration in high dimensions.

Lemma 3.2.1. Let (X1,...,Y,) be iid. Gaussian variables, with mean 0 and
variance 1. Let a1, . . ., a, be nonnegative. We set

n
2
i, llall; =,
i=1

lalloe = sup
=1

i=1,....,n

Let

Z:iai(xf—1).
i=1
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Then, the following inequalities hold for any positive t :

P (2 = 2|jal; vi+2alt) < e,
(3.1)
P (z < —2]al, ﬂ) <et.

As an immediate corollary of Lemma 3.2.1, one obtains an exponential inequality
for chi-square distributions. Let Z be a centralized x? statistic with n degrees of
freedom [134]. Then for all £ > 0,
P(Zz n+2m+2t> <el,
(3.2)
P(Z§n72\/ﬂ) <e 7t

The following consequence of this bound is useful [135]: for all x > 1, we have

Z _
P ( LS 43:) < e (3.3)

n

Starting with the first inequality bound of (3.2), setting ¢ = nx gives

Z_
IP( n 22ﬁ+2x) < e
n

Since 4z > 2y/x + 2x for x > 1, we have P (% > 41:) <e "™ forallx > 1.

Proof. Let X a random variable with A/(0,1) distribution. Let v denote the
logarithm of the Laplace transform of X2 — 1,

Y(u) = log [E [exp (u (X? —1))]] = —u— $log (1 — 2u).
Then, for 0 < u < %,

u

P(u) < =20

Indeed, considering the power series expansion, we have

) =22 Y %H(?u)k and (137%) —u2 S (2u)

k>0 k>0
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Thus,

log [E [e*?]] = é log {E {exp (é aiu (X7 - 1))” SIPCL

llalls
— 172Ha\|oou .

We now refer to [136]. It is proved that if
2
VU
log [E [e*4]] < ———
og[ [e ]] ~2(1—cu)’

then, for any positive ¢,
P(Z > ct+2vol) <e.

The first inequality in (3.1) holds.
In order to prove the second inequality in (3.1), we just note that for —1/2 <
u < 0, ¥ (u) < u?. This concludes the proof. O

Given a centralized x2-variate X with n degrees of freedom, then for all t €
(0,1/2), we have

P(X>n(1+t)) <exp (136nt2) ,
5 (3.4)
P(X <n(l-1t)) <exp (—wnt2> ,

The first bound in (3.4) is taken from [137] and the second one from [134].
Wainwright [138] puts these two bounds together.

For a centralized x% variable X with d degrees of freedom, these exists a constant
C > 0, such that [139]

P(X>n(1+1¢)> exp (—nt?/2)

Bl

forall¢ € (0,1).

3.3 Concentration of Random Vectors

Later we need to use the Lipschitz norm (also called Lipschitz constant). For a
Lipschitz function f : R™ — R, the Lipschitz norm defined as

x,y ER" [x — Y||2

We say such a function is || f|| .-Lipschitz.
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Fori =1,...,nlet (X;,|| - |];), be normed spaces equipped with norm || - |;,
let ©2; be a finite subset of X; with diameter at most one and let P; be a probability
measure on €);. Define

X = (Z @Xi>
i=1 2
and
Q=0 xQx---Q,CcX
and let
P=P"™ =P, x Py x --- x P,

be the product probability measure on 2. For a subset A C Q and t € 2 let

¢a(t) =d(t,conv A)
be the distance in X from ¢ to the convex hull of the set A.
Theorem 3.3.1 (Johnson and Schechtman [140]). Rei¢a(®) < ﬁ.
Theorem 3.3.2 (Johnson and Schechtman [140]). Let 2 < p < oo and let f be

a real convex function on the convex hull of the set Q, i.e., conv ). Let o}, be the
Lipschitz constant. Then, for all t > 0,

P(|f—Mf|>t) <de "/ (3.5)

where MLf is the median of f. A similar inequality holds with expectation replacing
the median

P(f —Ef| > 1) < Ke /%

where one can take K = 8,5 = 1/32.

Applied to sums S = X;+. ..+ Xy of real-valued independent random variables
Y7,...,Y, on some probability space (2,.4,P) such that u; < Y; < v;,i =
1,...,n, we have a Hoeffding type inequality

P(S>E(S)+1t) <e /2P (3.6)

where



150 3 Concentration of Measure
Let ||| p be the LP-norm. The following functions are norms in R™
Ix[ly = (Zx2> Axlloe = max ], fIxll, =D fail.
i=1,..., n
i=1 1=1

Consider a Banach space E with (arbitrary) norm |-||.

Theorem 3.3.3 (Hoeffding type inequality of [141]). Let x1,...,XxN be indepen-

dent bounded random vectors in a Banach space (E, ||-||), and let
N
s:x1+...+xN:ij.
j=1
For everyt > 0,
42 2
P({lllsll —E(lls) > t}) < 2¢7/2P 3.7

N
where D* > ‘21 ||X]HiO
j=

Equation (3.7) is an extension of (3.6).
The Hamming metric is defined as

da (x,y) = Zail{mi#yi}, a=(a,...,a,) €RY,
i=1

n

where ||a]| = 3" a?. Consider a function f : Q1 x Qg X - -+ x ,, — R such that
i=1

for every x € 0y x §dp X - - x (), there exists a = a (x) € R"} with [|a|| = 1 such

that forevery y € Q1 x Qg X -+ X Q,

f(x) < f(y) +da(x,y). (3.8)

Theorem 3.3.4 (Corollary 4.7 of [141]). Let P be a product probability measure
on the product space 21 X Qg X -+ X Q, and let f: Q1 X Qg X -+ x Q) = R be
1-Lipschitz in the sense of (3.8). Then, for everyt > 0,

P(|f — Mf| >t) < de t/4

where ML f is a median of f for P.

Replacing f with — f, Theorem 3.3.4 applies if (3.8) is replaced by f (y) < f (x)+
da (x,y).
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A typical application of Theorem 3.3.4 is involved in supremum of linear func-
tionals. Let us study this example. In a probabilistic language, consider independent

real-valued random variables Y7, ..., Y, on some probability space (2, .4, P) such
that for real numbers u;,v;,i =1,...,n,
u; <Y; <wi=1,...,n.
Set
Z = sup ; t;Y; (3.9)
where 7T is a finite or countable family of vectors t = (¢1,...,t,) € R™ such that

the “variance” o is finite

n 1/2
o = sup <Zt12 (vf - u?)) < oo.

teT \;21

Now observe that

and apply Theorem 3.3.4 on the product space [] [u;,v;] under the product
i=1
probability measure of the laws of the Y;,7 = 1, ..., n. Let t achieve the supremum

of f(x). Then, for every x € [] [u;, vq],
i=1

-

f(x) =

n n
tixy < Y0ty 4+ Y [t | — il
=1 =1

i=1

<fy)+o ; Mellazvly oy

K2

Thus, 1f(x) satisfies (3.8) with a = a(x) = L1 (|t1],...,ts]). Combining
Theorem 3.3.4 with (3.7), we have the following consequence.

Theorem 3.3.5 (Corollary 4.8 of [141]). Let Z be defined as (3.9) and denote the
median of Z by M\Z. Then, for everyt > 0,

P(|Z — MZ| > t) < de 114",

In addition,

[EZ - MZ| < 4y/mo  and Var(Z) < 160>
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Convex functions are of practical interest. The following result has the central
significance to a lot of applications.

Theorem 3.3.6 (Talagrand’s concentration inequality [142]). For every product
probability P on [—1,1]", consider a convex and Lipschitz function f : R" — R
with Lipschitz constant L. Let X1, . .., X,, be independent random variables taking
values [—1,1]. Let Y = f(X1,...,X,,) and let m be a median of Y. Then for every
t > 0, we have
P([Y —m| > t) < de /1617,

See [142, Theorem 6.6] for a proof. Also see Corollary 4.10 of [141]. Let us see
how we can modify Theorem 3.3.6 to have concentration around the mean instead
of the median. Following [143], we just notice that by Theorem 3.3.6,

E(Y —m)® < 64L2. (3.10)
Since E(Y — m)? > Var(Y), this shows that

Var(Y) < 64L%. (3.11)

Thus by Chebychev’s inequality,

P(]Y —E[Y]| > 16L) <

-

Using the definition of a median, this implies that
E[Y]—16L <m <E[Y]+ 16L.
Together with Theorem 3.3.6, we have that for any ¢ > 0,
P(Y —E[Y]| > 16L +t) < de~ /217,

It is essential to point that the eigenvalues of random matrices can be viewed as
functions of matrix entries. Note that eigenvalues are not very regular functions
of general (non-normal) matrices. For a Hermitian matrix A € R"*™, and the
eigenvalues \;,7 = 1,...,n are sorted in decreasing magnitude. The following
functions are convex (1) the largest eigenvalue A1 (A), (2) the sum of first k largest

eigenvalues Z Ai (A), (3) the sum of the smallest k eigenvalues Z An—it1 (A).
=1
However, Theorem 3.3.6 can be applied to these convex functlons—not necessarily

linear.
According to (3.10) and (3.11), the Lipschitz constant L controls the mean and
the variance of the function f. Later on in this book, we have shown how to evaluate
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this constant. See [23, 144] for related more general result. Here, it suffices to give
some examples studied in [145]. The eigenvalues (or singular values) are Lipschitz
functions with respect to the matrix elements. In particular, for each k € {1,...,n},
the k-th largest singular value oy, (X) (the eigenvalue Ay (X)) is Lipschitz with
constant 1 if (Xij):jzl is considered as an element of the Euclidean space R
(respectively the submanifold of R corresponding to the Hermitian matrices).
If one insists on thinking of X as a matrix, this corresponds to considering the
underlying Hilbert-Schmidt metric. The Lipschitz constant of oy, (X/+/n) is 1/y/n,
since the variances of the entries being 1/n. The trace function Tr (X) has a
Lipschitz constant of 1/n. Form (3.11), The variance of the trace function is 1/n
times smaller than that the largest eigenvalue (or the smallest eigenvalue). The same
is true to the singular value.

Theorem 3.3.7 (Theorem 4.18 of [141]). Let f : R™ — R be a real-value function
such that || f||; < o and such that its Lipschitz coefficient with respect to the {; -
metric is less than or equal to k, that is

F) = fOI<RY |zi—wil, xyeR™
=1

Then, for everyt > 0,

t 2

P(f>M+1) < Cexp (—;min (57 02))

for some numerical constant C > 0 where M is either a median of f or its mean.
Conversely, the concentration result holds.

Let py, ..., iy be arbitrary probability measures on the unit interval [0, 1] and
let P be the product probability measure P = p11 ® ... ® p, on [0,1]”. We say a
function on R™ is separately convex if it is convex in each coordinate. Recall that a
convex function on R is continuous and almost everywhere differentiable.

Theorem 3.3.8 (Theorem 5.9 of [141]). Let f be separately convex and 1-
Lipschitz on R™. Then, for every product probability measure P on [0,1]", and

everyt > 0,
P({f > /fd[?+t}) <e /4,

The norm is a convex function. The norm is a supremum of linear functionals.
Consider the convex function f : R™ — R defined as

f(x) = Z TV
i=1

, x=(x1,...,2,) ER"
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where v;,4 = 1,...,n are vectors in an arbitrary normed space E with norm || - ||.
Then, by duality, for x,y € R",

|f(x)_f(y)‘ S :Z:l(xz_yz)vz
= s > (@ =) (2. v2) < olx =yl

where the last step follows from the Cauchy-Schwarz inequality. So the Lipschitz
norm is || ||, < o. The use of Theorem 3.3.6 or Theorem 3.3.8 gives the following
theorem, a main result we are motivated to develop.

Theorem 3.3.9 (Theorem 7.3 of [141]). Let n1,...,7n, be independent (scalar-

valued) random variables such that n; < 1 almost surely, fori = 1,...,n, and let
V1i,...,Vy be vectors in a normed space E with norm || - ||. For every t > 0,
n
2 2
P ( Zm—vi > M+t> < et /169
i=1
n
where M is either the mean or a median of || > 1n;v;|| and where
i=1
0% = sup Z z vL

llzl<1 3=

Theorem 3.3.9 is an infinite-dimensional extension of the Hoeffding type
inequality (3.6).

Let us state a well known result on concentration of measure for a standard
Gaussian vector. Let v = ~, be the standard Gaussian measure on R" with
density (271')_"/ 2e=1xI*/2 where |x]| is the usual Euclidean norm for vector x. The
expectation of a function is defined as E f (x f]R" x) dryy, (x).

Theorem 3.3.10 (Equation (1.4) of Ledoux [141]). Let f : R™ — R be a
Lipschitz function and let | f||, be its Lipschitz norm. If x € R" is a standard
Gaussian vector, (a vector whose entries are independent standard Gaussian
random variables), then for all t > 0

2

P(f()2Ef )+ tVflle) e

We are interested in the supremum' of a sum of independent random variables
Zv,Zs,...,Z, in Banach space

IThe supremum is the least upper bound of a set S defined as a quantity M such that no member

of the set exceeds M. It is denoted as sup x.
zeS
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n

S=sup Y g(Z).

9€9 i

Theorem 3.3.11 (Corollary 7.8 of Ledoux [141]). If |g| < n for every g € G and
9(Z1),...,9(Zy) have zero mean for every g € G . Then, for all t > 0,

P(|S—ES|>1t) <3exp <_Ct’7710g <1+02—|i]tmES’>>’ (3.12)

where

o? = sup ZE92 (Z:),
9€9 5=

§=sup> lg(Z)],

9€9 =1

and C > 0 is a small numerical constant.
Let us see how to apply Theorem 3.3.10.

Example 3.3.12 (Maximum of Correlated Normals—Example 17.8 of [146]).
We study the concentration inequality for the maximum of n jointly dis-
tributed Gaussian random variables. Consider a Gaussian random vector x =
(X1,...,Xn) ~N(0,X), where X is positive definite, and let o; = Var (X;) ,i =
1,2,...,n.Let ¥ = AAT.

Let us first consider the function f : R™ — R defined by

f(u) = max {(Au),,...,(Au),}
where (Au), means the first coordinate of the vector Ay and so on. Let oyax =
max;o;. Our goal here is to show that f is a Lipschitz function with Lipschitz

constant (or norm) by o,.. We only consider the case when A is diagonal; the
general case can be treated similarly. For two vectors x,y € R", we have

(Au); = anur = av1 + (a11u1 — a1101) < a1101 + Omax [[u — V||
< max {(Au);, (Au),,...,(Au), } + omax lu — V||

Using the same arguments, for each ¢, we have
(Au); < max{(Au),, (Au),,...,(Au),} + omax [[u — V||

Thus,
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f(u) =max {(Au),,...,(Au),}
< max {(Au), (Au),, ..., (Au),} + omax [[u— V||
= [ (V) + omax [u—v]|.

By switching the roles of u and v, we have f(v) < f(u) + omax |Ju—Vv].
Combining both, we obtain

|f(u) - f (V)‘ < Omax ||l.1 - V” ,

implying that the Lipschitz norm is op,,x. Next, we observe that
max {Xi,...,X,} = max {(Az),, (Az),,...,(Az), } = f(2)

where z is a random Gaussian vector z = (Z1,...,Z,) ~ N (0,X). Since the
function f(z) is Lipschitz with constant ¢,,,., we apply Theorem 3.3.10 to obtain

P (jmax {X1,...,Xp} — E[max {X1,..., Xp}]| > ?)
=P(f(2) ~E[f(2)]| > 1) <" /2mox,

It is remarkable that although X;, Xs,...,X,, are not assumed to be indepen-
dent, we can still prove an Gaussian concentration inequality by using only the
coordinate-wise variances, and the inequality is valid for all n. U

Let us see how to apply Theorem 3.3.11 to study the Frobenius norm bound of
the sum of vectors, following [123] closely.

Example 3.3.13 (Frobenius norm bound of the sum of vectors [123]). Let {; be
i.id. Bernoulli 0/1 random variables with P (¢; = 1) = d/m whose subscript j
represents the entry selected from a set {1,2, ..., m}. In particular, we have

m
_ T
Sp =Y &x]y;
j=1 »
where x; and y; are vectors.

Let (X,Y) = Tr (X"Y) represent the Euclidean inner product between two
matrices and || X|| » = (X, X). It can be easily shown that

IX[|p= sup Tr(XTG)= sup (X,G).
IGlz=1 G| =1

Note that trace and inner product are both linear. For vectors, the only norm we
consider is the ¢y-norm, so we simply denote the ¢2-norm of a vector by ||x||
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which is equal to \/(x,x), where (x,y) is the Euclidean inner product between
two vectors. Like matrices, it is easy to show

x| = sup (x,y) .
lyll=1

See Sect. 1.4.5 for details about norms of matrices and vectors.
Now, let Z; = §ixJTy (rank one matrix), we have

m

Sp = sz = sup Z = sup Z

j=1 F HGHF=1] 1 HGHF—IJ 1

Since Sp > 0, the expected value of S is equal to the expected value of S. That is
ESr = ESp. We can bound the absolute value of g (Z;) as

19(Z))| < [(&xTy;, G)| < [[€x vill - < x5l Iyl
where ||| is the ¢, norm of a vector. We take n = max ||x;|| |ly;|| so that
J
l9(Z;)] < n.
Now we compute the term 02 = sup > Eg? (Z;), in Theorem 3.3.11. Since
9€G i=1
9 T 2 d, T d 7 02
Eg* (Z;) = BG(x[y;, G)" = — (x;¥5, G) < — [lxjy][,.
we have
> _Eg’ (Z EZ Iyl = ZTT(XJ' Yi¥i%;)
=1 mis
d & d oo [ kd )
<2 T )< 2 12T Iy, | =22 :
< ol ) < e | 32 | <

(3.13)
where £k = Tr i ijxj . In the first inequality of the second line, we have
used (1.84) that is rzpeated here for convenience

Tr(A-B) < |B||Tr (A). (3.14)

when A > 0 and ||B|| is the spectrum norm (largest singular value). Prove similarly,
we also have
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d 2 “ da 2
Y E¢*(Z5) < —max|x;|* T | Y y]y; | = — max|x;|”,
i=1 e j=1 e

where o = Tr <Z ijyj) . So we choose

j=1
e fama )| Fmaclly |7 1)
J J

Apply the powerful Talagrand’s inequality (3.12) and note that from expectation
inequality, 02 + nESr < 0ESp + nESr = E2SE we have

P(Sp —ESp >t) < 3exp (—¢; log (1+ ozﬁﬁ))

<3 B
<3exp(—Gmrsy ) -

The last inequality follows from the fact that log (1 + z) > 2z/3 for 0 < z < 1.
Thus, ¢t must be chosen to satisfy nt < E2Sg.

Choose t = C,/log %ESF where C' is a small numerical constant. By some

calculations, we can show that nt < E2Sp as nt < E2Spd > CQMmlog%.
Therefore,

P(Sp —ESp >t) <3exp (—1ogg> = 3.

There is a small constant such that Ci/log 5 = C/log 5 + 1. Finally, we
summarize the result as

P<SF<CH’IOgZ'ESF> 21—6

O
Theorem 3.3.14 (Theorem 7.3 of Ledoux [141]). Let &1, ..., &, be a sequence of
independent random variable such that |§;| < 1 almost surely withi = 1,...,n
and let xy,...,X, be vectors in Banach space. Then, for everyt > 0,
n t2
]P’( ;fixi 2M+t> < 2exp (—1602) (3.16)
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> &ix;|| and

i=1

where M is either the mean or median of

0% = sup Z Y, Xi) .

lyll<13=

The theorem claims that the sum of vectors with random weights is distributed
like Gaussian around its mean or median, with standard deviation 2v/2c. This
theorem strongly bounds the supremum of a sum of vectors x1,Xs, ..., X, with
random weights in Banach space. For applications such as (3.15), we need to bound
max ||x;|| and max ||y;||. For details, we see [123].

(] 3

Let {a;;} be an n x n array of real numbers. Let 7 be chosen uniformly at random
from the set of all permutations of {1,...,n}, and let X = ) a;(;). This class of
i=1
random variables was first studied by Hoeffding [147].

Theorem 3.3.15 ([133]). Let {aij}?j:1 be a collection of numbers from [0, 1]. Let

7 be chosen uniformly at random from the set of all permutations of {1,...,n},

and let X = Z Qin(i)- Let X = Z @ix(i), Where T is drawn from the uniform

distribution over the set of all permutanons of {1,...,n}. Then

2
_ > < [
P(|X —EX|>t) <2exp ( 1 2t>

forallt > 0.

3.4 Slepian-Fernique Lemma and Concentration of Gaussian
Random Matrices

Following [145], we formulate the eigenvalue problem in terms of the Gaussian
process Zy. For u € RY, we define Z, = (-,u). For a matrix X and vectors
u,v € R”, we have

(Xu,v) =Tr(X(veu) =(X,u® v)p, = Zugv (X),
where v ® u stands for the rank one matrix (ulvl)l =1 that is, the matrix of the
map x — (x,v) u. Here (X, Y),, = Tr (XY7) is the trace duality, often called

the Hilzbert—Schmidt scalar product, can be also thought of as the usual scalar product
on R™ . The key observation is as follows
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IX|| = max (Xu,v) = max Zugv (X) (3.17)

u,ve u,vesSn—1

where || - || denotes the operator (or matrix) norm. The Gaussian process Xy v =
Zuev (X),u,v € 871 is now compared with Yy v = Z(u,v), Where (u,v) is
regarded as an element of R” x R® = R?", Now we need the Slepian-Fernique
lemma.

Lemma 3.4.1 (Slepian-Fernique lemma [145]). Let (X;),. and (Y3),cq be two
families of jointly Gaussian mean zero random variable such that

(@) N1Xe—Xuly < Ve =Yully, fort,t' €T
Then

Emax X; < EmaxY;. (3.18)
teT teT

Similarly, if T = UsesTs and

B) X = Xull, < Vi = Yuly, if teTot €Ty with s#5.
(€ NXe= Xl = 1Y = Yoll,, if t,t' €Ty forsome s.

then one has

Emaxmin X, ; < Emaxmin Y ;.
teS teTs tesS teT,

To see that the Slepian-Fernique lemma applies, we only need to verify that, for
u,v,u’, v/ € S !, where S”~ ! is a sphere in R",

uev-u oV <|(uv) - W, v)=[u-u]+v-v|

7

where || is the usual Euclidean norm. On the other hand, for (x,y) € R™ x R", we
have

Z(u,v) (X7 }’) = <X7 ll> + <y7 V>

$0
Zuv ) = .
whax | Zwy (%y) = x| +y]

This is just implying that ||| ;7,10 = [[*le + [[*[lyo. Af K € R™, one has the

gauge, or the Minkowski functional of the polar of K given by maxyexZy =
||| o) Therefore, the assertion of Lemma 3.4.1 translates to
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JIE HG(")

<2 / x| dy (),
RTI,

where v = 7, is the standard Gaussian measure on R"™ with density
(2m)""/2e=1xI*/2 where |x| is the usual Euclidean norm for vector x. Here
G = G is the n x n real Gaussian matrices.

By comparing with the second moment of |x/|, the last integral is seen to be < ne.
|x|? is distributed according to the familiar x2(n) law. The same argument, applied
just to symmetric tensors u® u, allows to analyze A; (GOFE), the largest eigenvalue
of the Gaussian orthogonal ensembles (GOE).

Using the Theorem 3.3.10 and remark following it, we have the following
theorem. Let N denote the set of all the natural numbers, and M the median of
the set. As usual, ®(t) = 71 ((—o0, t)) is the cumulative distribution function of the
N(0, 1) Gaussian random variable.

Theorem 3.4.2 (Theorem 2.11 of [145]). Given n € N, consider the ensembles
of n X n matrices G, and GOE. If the random variable F equals either |G| or
M1 (GOE), then

MF < EF < 2,
where M standards for the median operator. As a result, for any t > 0,
P(F >2+kt) <1—®(t) <exp (—nt*/2), (3.19)

where r = 1 in the case of |G| and k = /2 in the case of \; (GOE).

For the rectangular matrix of Gaussian matrices with independent entries, we
have the following result.

Theorem 3.4.3 (Theorem 2.13 of [145]). Given m,n € N, with m < n, put 8 =
m/n and consider the n. x m random matrix T’ whose entries are real, independent
Gaussian random variables following N (0,1/n) law. Let the singular values be
s1(T), ..., 8m(T). Then

1+ 3 < Esp(T) <Msy(T) <Esy(T) <1+
and as a result, for any t > 0,

max {P (s;(T) > 1+ B+1),P(sy(T) > 1-B—t)} <1—(t) < e .
(3.20)

The beauty of the above result is that the inequality (3.20) is valid for all m, n rather
than asymptotically.

The proof of Theorem 3.4.3 is similar to that of Theorem 3.4.2. We use the second
part of Lemma 3.4.1.

Complex matrices can be viewed as real matrices with a special structure. Let
G (™ denote the complex non-Hermitian matrix: all the entries are independent and
of the form z + jy, where x,y are independent real A/(0,1/2n) Gaussian random
variables. We consider
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1 |G -G 1 10 0-1 /
ale ¢ = (llee[1o]ee)
where G and G/ are independent copies of matrix G (™).

Another family of interest is product measure. This application requires an
additional convexity assumption on the functionals. If 1 is a product measure on
R™ with compactly supported factors, a fundamental result of M. Talagrand [148]
shows that (3.78) holds for every Lipschitz and convex function. More precisely,

assume that 4 = p; ® -+ ® puy,, where each p; is supported on [a, b]. Then, for
every Lipschitz and convex function F' : R” — R,

p({|F = MF| > t}) < 4e™"/40-0)",

By the variational representation of (3.79), the largest eigenvalue of a symmetric
(or Hermitian) matrix is clearly a convex function of the entries.”> The largest
eigenvalue is 1-Lipschitz, as pointed above. We get our theorem.

Theorem 3.4.4 (Proposition 3.3 of [149] ). Let X be a real symmetric n X n matrix
such that the entries X;;,1 < i < j < n are independent random variables with
| X,;| < 1. Then, for anyt > 0,

P (Amax (X) = MAmax (X)] > ¢) < de17/32,

Up to some numerical constants, the median M can be replaced by the mean E.
A similar result is expected for all the eigenvalues.

3.5 Dudley’s Inequality

We take material from [150, 151] for this presentation. See Sect.7.6 for some
applications. A stochastic process is a collection Xy, € T, of complex-valued
random variables indexed by some set 7. We are interested in bounding the
moments of the supremum of Xy, ¢ € T. To avoid measurability issues, we define,

for a subset " C T, the lattice supremum as

Esup | X¢| = sup {E sup | X¢|,F CT,F ﬁnite} . (3.21)
teT teF

We endow the set T with the pseudometric

d(s,t) = (E|Xt - X5|2)1/2. (3.22)

2They are linear in the entries.
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In contrast to a metric, a pseudometric does not need to separate points, i.e.,
d(s,t) = 0 does not necessarily imply s = ¢. We further assume that the increments
of the process X;,t € T satisfy the concentration property

P(|1X, — X,| > ud(t,s) <2 /% u>0,steT. (3.23)

Now we apply Dudley’s inequality for the special case of the Rademacher process
of the form

M
Xy=) e (t), tcT, (3.24)
i=1
where € = (£1,...,e) is a Rademacher sequence and the x; (t) : T — C are

some deterministic functions. We have

d(s,t)Q = E‘Xt — X'S|2 =K % E; (mi (t) —X; (S))

y =1 (3.25)
2 2
= ; (@i (1) — i (5))” =[x () =x(s)[l;,
where x (t) = (x1 (t),...,zp(t)) and || - ||2 is the standard Euclidean norm. So
we can rewrite the (pseudo-)metric as
1/2
d(s,t) = (]E|Xt —XS|2) = |x (t) = x(3)]],- (3.26)

Hoeffding’s inequality shows that the Rademacher process (3.24) satisfies the
concentration property (3.23). We deal with the Rademacher process, while the
original process was for Gaussian process, see also [27,81, 141, 151, 152].

For a subset T C T, the covering number N (T, d, §) is defined as the smallest
integer IV such that there exists a subset £ C T with cardinality |E| = N satisfying

Tc|JBa(t.d), Balt,8) = {s e T,d(t,s) < 5} . (327
tek

In words, T" can be covered by NN balls of radius § in the metric d. The diameter of
the set T" in the metric is defined as

D(T) = s;lepTd(s,t).
S,

We state the theorem without proof.
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Theorem 3.5.1 (Rauhut [30]). Let X, t € T, be a complex-valued process
indexed by a pseudometric space (T, d) with pseudometric defined by (3.22) which
satisfies (3.23) . Then, for a subset T' C T and any point to € T it holds

D(T)
Esup | X; — Xy, | < 16.51 - / VIn(N(T,d,u))du+4.424- D (T). (3.28)
0

teT

Further, for p > 2,

1/p D(T)
(IE sup | Xt — Xt |P) < 6.028'/7 14.372/
teT 0

VIn (N (T, d,w))du + 5.818 - D (T)).
(3.29)

The main proof ingredients are the covering number arguments and the concentra-
tion of measure. The estimate (3.29) is also valid for 1 < p < 2 with possibly
slightly different constants: this can be seen, for instance, from interpolation
between p = 1 and p = 2. The theorem and its proof easily extend to Banach
space valued processes satisfying

P (X, — Xs| > ud(t,s)) <2 /2, u>0,steTl.

Inequality (3.29) for the increments of the process can be used in the following way
to bound the supremum

1/p 1/p
(Esup \Xt|p) < inf (]E sup | Xy — Xy, \p> + (E| Xy, )P
teT toeT teT

D(T
< 6.028"7\/p | 14.372
0

)« /In (N (T, d,u))du + 5.818 - D (T))

+,inf, (E| X |P)'". (3.30)

The second term is often easy to estimate. Also, for a centered real-valued process,
thatis EX; = 0, for all ¢ € T', we have

Esup X; = Esup (X; — X,) < Esup | X: — X4, | - (3.31)
teT teT teT

For completeness we also state the usual version of Dudley’s inequality.

Corollary 3.5.2. Let X;,t € T, be a real-valued centered process indexed by a
pseudometric space (T, d) such that (3.23) holds. Then

D(T)
E sup X, < 30 / /I (N (T, 4, u)) du. (3.32)
0

teT
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Proof. Without loss of generality, we assume that D (T") = 1. Then, it follows that
N (T,d,6) > 2,forall u < 1/2.Indeed, if N (T, d, ) = 1, for some u < 1/2 then,
for any § > 0, there would be two points of distance at least 1 — § that are covered
by one ball of radius u. This is a contradiction to the triangle inequality. So,

o VIn (N (T,d,u))du > v VIn (2)du = \/121172D (T).
0 0

Therefore, (3.32) follows from (3.31) and the estimate

2 x4.424

16.51 + ——— < 30.
VIn2
Generalizations of Dudley’s inequality are contained in [27,81]. O

3.6 Concentration of Induced Operator Norms

n 1/1)
For a vector x € R", we use ||x[|, = (Z |xzp> to denote its £,,-norm. For

=1

a matrix, we use ||X]|,_,, to denote the matrix operator norm induced by vectors
norms ¢, and ¢,. More precisely,

1A, q = e, [ AX]|,-

The spectral norm for a matrix A € R™*" is given by

||A||2~>2 max HAtz =, max {o; (A)},
lIxl,= =1,...,m

where o; (A) is the singular value of matrix A. The ¢,-operator norm is given by

n

= max |Ax] = max 3|4y,
mex
-

1A lloosco N1l o

where A;; are the entries of matrix A. Also we have the norm || X, _,,

Al L, = sup [[Aull,
‘UH1=
= sup sup vIAu
Ivla=1llufl,=1

- All,.
i:Hll,a..).{,d” Il
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The matrix inner product for two matrices is defined as

(A,B) = Tr (AB”) = Tr (ATB) ZX”YU

The inner product induces the Hilbert-Schmidt norm (or Frobenius) norm
[Allp = lAllgs = V(A A).

A widely studied instance is the standard Gaussian ensemble. Consider a random
Gaussian matrix X € R™*4 formed by drawing each row x; € R i.i.d. from an

N (0,%).Or

X1

Xn

Our goal here is to derive the concentration inequalities of —= \F |Xv||5. The emphasis
is on the standard approach of using Slepian-lemma [27,141] as well as an extension
due to Gordon [153]. We follow [135] closely for our exposition of this approach.
See also Sect. 3.4 and the approach used for the proof of Theorem 3.8.4.

Given some index set U x V, let {Yyy,(u,v)eUxV} and
{Zuyv,(u,v) €U x V} be a pair of zero-mean Gaussian processes. Given the

semi-norm on the processes defined via o (X) = (E [X 2])1/ ?, Slepian’s lemma
states that if

0 (Yav — Yw) <0 (Zuy — Zw ) forall (u,v) and (u',v') inU XV,
(3.33)
then

E sup Yyuv<E sup Zyv. (3.34)
(u,v)eUxV (u,v)eEUXV

One version of Gordon’s extension [153] asserts that if the inequality (3.33) holds
for for all (u,v) and (u’,v’) in U x V, and holds with equality when v = v’, then

E [sup inf Y, V} <E {bup inf Z, V] . (3.35)
ueU vev ucU vev

Now let us turn to the problem at hand. Any random matrix X from the given
ensemble can be written as WX/ 2, where W € R™*% is a matrix with i.i.d.
N (0, 1) entries, and =12 is the symmetric matrix square root. We choose the set U
as the unit ball

Sl ={ueR":|ul,=1},
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and for some radius r, we choose V' as the set
Vir)= {v eR": HEI/QV‘L =1L ullf < T} .

For any v € V (r), we use the shorthand v = /2y,

Consider the centered Gaussian processes Y,y = u’ Wv indexed by the set
Sn=1 x V (r). Given two pairs (u,v) and (u,Vv’) in the set S~ x V (r), we
have
0'2 (Yu,v — Yu’,v/) =

5T 15T 15T _u/({,/)TH2

F
=112 2 2 15 =712 2 ~N2 ~T=
9112 fla =l + [l 19 = 97115 +2 (0w’ = [[u’]l3) (19113 —97¥)

(3.36)

Now we use the Cauchy-Schwarz inequality and the equalities: ||ul|, = [[u’[l, =1
and |||, = [|[¥']|,, we have u”u’ — ||u|3 < 0, and ||[¥]2 — ¥7¥ > 0. As a result,
we may conclude that

2 ~ ~/2
o’ (Yuv —Yw,yv) < ||u_u/H2+HV_V/H2~ (3.37)

We claim that the Gaussian process Y,  satisfies the conditions of Gordon’s lemma
in terms of the zero-mean Gaussian process Zy  given by

Zav =gTu+h” (z:”%) , (3.38)

where g € R” and h € R< are both standard Gaussian vectors (i.e., with i.i.d.
N(0,1) entries). To prove the claim, we compute

2 112 1/2 ’ 2

o (Zu,v—Zuzyv,):||u—u||2—|—H2 (V—V)‘Q

2 = =2
= o=y + v =¥];-

From (3.37), we see that
02 (Yu,v - Yu’,v’) S 02 (Zu,v - Zu’,v’) )

says that the Slepian’s condition (3.33) holds. On the other hand, when v = v/, we
see Eq. (3.36) that

2
02 (YUN - Yll/,v’) = Hu - ul||2 = 02 (ZU,V - Zu’.,v/) y
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so that the equality required for Gordon’s inequality (3.34) also holds.

Upper Bound: Since all the conditions required for Gordon’s inequality (3.34) are

satisfied, we have

E [ sup || X3
vev(r)

By convexity, we have

=E sup u’Xv
(W, v)ES™=1xV (r)
<E sup Zuv
| (u,v)eSm=1xV(r)
=E| sup glu| +E
lull;=1 vEV(r)
<E[|gll] +E | sup h”
vev(r)

sup h”

(=)

(=7)|

Ellgl,) < /E[lel] = /ETx (ge7) = /T E (g7g) = v,

since E (ng) = I,,«». From this, we obtain that

E| sup |Xv|3| <vn+E| sup h”
vev(r) vev(r)
Turning to the remaining term, we have
sup |h” (21/2v>‘ < sup HV||1H21/2VH <r
vev(r) veV(r) oo

Since each element (21/

()|

21/2VH

(3.39)

o0

2v) _is zero-mean Gaussian with variance at most p (3) =

?

max X, standard results on Gaussian maxima (e.g., [27]) imply that

B[

} < /3p(X)logd.

o0

Putting all the pieces together, we conclude that for ¢ = 1
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El sup ||Xv||2/\/ﬁ] <1+ [3p(X)logd/n]" ?r. (3.40)
vev(r)

Having controlled the expectation, in the standard two-step approach to establish
concentration inequality, it remains to establish sharp concentration around its
expectation. Let f : R — R be Lipschitz function with constant L with respect to
the ¢1-norm. Thus if w ~ N (0,Ip p) is standard normal, we are guaranteed [141]
that for all ¢ > 0,

P1f ()~ EL W] > 0) < 200 (55 ). G41)

Note the dimension-independent nature of this inequality. Now we use it to the
random matrix W € R™*?_ which is viewed as a standard normal random vector in
D = nd dimensions. Let us consider the function

f(W) = sup ‘W21/2VH /Vn,
vev(r) 2
we obtain that
Valf (W) = W)= sup [WSv] — sup [Wrsty|

veV(r) 2 vev(r) 2

< sop [[=75] 1w - wie
vev(r) 2

=W -W'|jp

since HEl/ 2VH = 1 for all v € V (r). We have thus shown that the Lipschitz
2
constant L < 1/4/n. Following the rest of the derivations in [135], we conclude that

1 1 1/2
%HXVH2 < 3H21/2vH2 + G[Hp(E)logd} [v]l, forall veRe (3.42)

Lower Bound: We use Gordon’s inequality to show the lower bound. We have

— inf |Xv|,= sup —||Xv|,= sup inf u’Xv.
veV(r) ? vev(r) 2 vev(r)uel

Applying Gordon’s inequality, we obtain
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E

sup —|Xv|y| <E| sup inf Zu.
vEV(r) vEV (r)uesSn1

sup h’'x'/2y

—E[ inf gTu] +E
vev(r)

uesSn—1

< —E[lgll,] + [30 () logd]"/?r.

sup hT®/2y
vev(r)
Since |E|gll, —vn| = o(v/n), E|gll, > /n/2 for all n > 1. We divide by
v/n and add 1 to both sides so that

where we have used previous derivation to upper bound E

E| sup (1—|Xv],)/vn| <1/2+ [3p(Z)logd]"?r. (3.43)
vev(r)

Defining

fFW) = sup (1—[Xv],)/Vn,

vev(r)

we can use the same arguments to show that its Lipschitz constant is at most 1/+/n.
Following the rest of arguments in [135], we conclude that

1
vn

For convenience, we summarize this result in a theorem.

1 1 1/2
Xy, > 5“21/%‘]2 - G{np(il)logd} Ivl, forall veR<

Theorem 3.6.1 (Proposition 1 of Raskutti, Wainwright and Yu [135]). Consider
a random matrix X € R"*? formed by drawing each row from x; € R% i =
1,2,...,n iid from an N (0, X) distribution. Then for some numerical constants
¢k € (0,00),k = 1,2, we have

1 1 1/2
ﬁHXsz < 3”21/2vH2 + G[np(E) logd] v, forall ve€R
and

1/2
1 1 1
%HXVH2 > 5“21/2VH2 = 6{np(2)logd} |v|l, forall veR?

with probability 1 — ¢ exp (—can).
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The notions of sparsity can be defined precisely in terms of the £,-balls® for
€ (0, 1], defined as [135]

B, (R,) = {z ER": zlb=> | < Rp} , (3.44)
i=1
where z = (21, 29, ..., 2,)". In the limiting case of p = 0, we have the £y-ball
Bo(k):{zeR": ZI[ZZ»;AO]SI@}, (3.45)
i=1

where [ is the indicator function and z has exactly £ non-zero entries, where k < n.
We see Sect. 8.7 for its application in linear regression.

To illustrate the discretization arguments of the set, we consider another result,
taken also from Raskutti, Wainwright and Yu [135].

Theorem 3.6.2 (Lemma 6 of Raskutti, Wainwright and Yu [135]). Consider a

random matrix X € RN X" with the l5-norm upper-bounded by % < k forall
Zli2
sparse vectors with exactly 2s non-zero entries z € By (2s), i.e.
By (2s) = {zeR”: > I1Zi #0] gzs}, (3.46)
i=1

and a zero-mean white Gaussian random vector w € R™ with variance o2, i.e.,

w~N (07 O'QIan). Then, for any radius R > 0, we have

1 1
P < sup N |WTXZ| > 60 Rk (sogN(n/s)>

lzllg<2s, llzll,<R

< cyexp(—comin{N,slog(n—s)}). (3.47)

In other words, we have

slog (n/s)
T (3.48)

1
sup — ‘WTXZ’ < 60Rk
lzllo<2s, |lzll,<R ™

with probability greater than 1 — ¢q exp (—co min {N, slog (n — s)}).

Proof. For a given radius R > 0, define the set
S(s,R)={zeR": |z[|, <2s, |z|, <R},

and the random variable Zy = Zx (s, R) given by

3Strictly speaking, these sets are not “balls” when p < 1, since they fail to be convex.
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ZN = sup 1 ‘WTXZ’ .
z€S(s,R)

For a given € € (0, 1) to be chosen later, let us upper bound the minimal cardinality
of a set that covers the set S (s, R) up to (Re)-accuracy in ¢2-norm. Now we claim
that we may find a covering set {z',...,z"V} C S(s, R) with cardinality K =
K (s,R,¢)

log K (s, R,¢) < log <2 ) + 2slog(1/e).

To establish the claim, we note that there are <2 ) subsets of size 2s within
s

the set {1,2,...,n}. Also, for any 2s-sized subset, there is an (Re)-covering in
{5-norm of the ball B(R) (radius R) with at most 22¢ log(1/¢) elements [154].

As a result, for each z C S(s,R), we may find some ||z'||; such that
Hz —z! H2 < Re. By triangle inequality, we have

% |WTXZ‘ < % |WTXZZ| + % |WTX (z — z’)|
S % ’WTXZZ| + ”\V/V]‘Viz ||WTX\(/ZN7Zi) 2

Using the assumption on X, we have

Iw*X (2= 2)||,/VN < #]|(z —2)

2
s H2 is 2 distribution with N degrees of freedom, we have

|wll,/VN < 20 with probablhty at least 1 — ¢3 exp (—c2N), using standard tail
bounds (See Sect. 3.2). Putting together the pieces, we have that

||2 < kRe.

Also, since the variate

|WTXz{ < = !wTle’ + 2kReo
with high probability. Taking the supremum over z on both sides gives
Lorsd
ax ‘W Xz ’ + 2k Reo.

We need to bound the finite maximum over the covering set. See Sect. 1.10. First
we observe that each variate w’ Xz!/N is zero mean Gaussian with variance
o2 HleHi /N 2, Under the assumed conditions on z' and X, this variance is at
most o2x2R? /N, so that by standard Gaussian tail bounds, we conclude that
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ZN < okRy/ M + 2k Reo.

(3.49)
=okR < M + 26)

with probability at least 1 — ¢; exp (—co log K (s, R, €)).
Finally, suppose thate = 4/ %’m With this choice and recalling that N < n

by assumption, we have

0og
lOgK(s,R,E) < 28 + slog sloggz/Zs)

N — N N
" 2s slog(n/s)
< N + N

2s+slog(n/s) slog(n/s)
< i + N

where the last line uses standard bounds on binomial coefficients. Since n/s > 2

by assumption, we conclude that our choice of € guarantees that M <
5slog (n/s). Substituting these relations into the inequality (3.49), we conclude

that
Zn < oRk {4\/510g](\7/2s) +2\/510g](\7[1/2s)}’

as claimed. Since log K (s, R, €) > slog (n — 2s), this event occurs with probabil-
ity at least

1—crexp(—comin{N,slog(n—s)}),

as claimed. O

3.7 Concentration of Gaussian and Wishart
Random Matrices

Theorem 3.7.1 (Davidson and Szarek [145]). For k < n, let X € R"*F pe a
random matrix from a standard Gaussian ensemble, i.e., (X;; ~ N(0,1), iid.).
Then, for all t > 0,
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> 2 (\/E—i-t) + (\/E—i—t) + < 2exp (—nt?/2).

(3.50)

1
P HXTX P
n

We can extend to more general Gaussian ensembles. In particular, for a positive
definite matrix 3 € R¥**, setting Y = X+/X gives n x k matrix with i.i.d. rows,
x; ~ N (0,X). Then

1
HYTY -
n

RS

2

is upper-bounded by Apax (X) ||%YTY — IkkaQ. So the claim (3.51) follows
from the basic bound (3.50). Similarly, we have

—1 —1
1 - 1 -
H(YTY> s == <(XTX) Ikxk>2 1z
n n

1 —1
(;XTX> .

so that the claim (3.52) follows from the basic bound (3.50).

2 2

<

5 )\min (E)

Theorem 3.7.2 (Lemma 9 of Negahban and Wainwright [155]). For k < n, let
Y € R"¥* be a random matrix having i.i.d. rows, x; ~ N (0, %).

1. If the covariance matrix 3 has maximum eigenvalue A\ ax (3) < +00, then for

all't > 0,
> s () (2 (\/Z”) - (\/EH)Q))

|
< 2exp (—nt?/2). (3.51)

2. If the covariance matrix 3 has minimum eigenvalue Ay (2) > 0, then for all

s (205 (5 )

1 -1
P (H (YTY> -x!
n
< 2exp (—nt?/2). (3.52)

Fort = \/g, then since k/n < 1, we have

1
Yy - 3%
n

2
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(0 ()

Let us consider applying Theorem 3.7.2, following [138]. As a result, we have a
specialized version of (3.51)

P <H711YTY -% 2 > 8Amax (2) ﬁ) < 2exp(—k/2).

P 1YTY 71—2—1 >78 \/E <92 —k/2 3.53
o o () ol I exp (—k/2). (3.53)

Example 3.7.3 (Concentration inequality for random matrix (sample covariance
matrix)[138]). We often need to deal with the random matrix (sample covariance

2

. -1 . . . ..
matrix) (YTY / n) , where Y € R™*¥ is a random matrix whose entries are i.i.d.
elements Y;; ~ A (0, 1). Consider the eigen decomposition

(YTY /n) ™" = I = UTDU,

where D is diagonal and U is unitary. Since the distribution of Y is
invariant to rotations, the matrices D and U are independent. Since |D|, =

H (YTY/ n) - Irx|| ,the random matrix bound (3.53) implies that

2

P (||DH2 > 8\/k/n> < 2exp (—k/2).

Below, we condition on the event | D||, < 8+/k/n.
Let e; denote the unit vector with 1 in position j, and z = (21, ..., 2;) € R¥ be
a fixed vector z € R¥. Define, for each i = 1,..., k, the random variable of interest

V= el-TUTDUz = ziul—TDuZ- + ul-TD Z ziu;
I#i

where u; is the j-th column of the unitary matrix U. As an example, consider the
variable max; |V;|. Since V; is identically distributed, it is sufficient to obtain an
exponential tail bound on {V; > t}.

Under the conditioned event on ||D||, < 8y/k/n, we have

k
V1| < 8Vk/n|z|+ uf D lz Zlul] : (3.54)
=2
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As a result, it is sufficient to obtain a sharp tail bound on the second term.
E

Conditioned on D and the vector w = [Z zlul], the random vector u; € R*
1=2

is uniformly distributed over a sphere in k¥ — 1 dimensions: one dimension is lost

since u; must be orthogonal to w € R*. Now consider the function

F (u;) = u{ Dw;
we can show that this function is Lipschitz (with respect to the Euclidean norm)
with constant at most || F||, < 8y/k/nvk — 1||z|| . For any pair of vectors u;
and ull, we have

’F(ul) - F (u;)‘ = (u1 - ui)TDw’

’
< [Jur = uy | ID 1wl

[k
<8Vk/ny| X leHul —u
=2

= 8V/k/nVE =Tz us — u}

2

.

[ &
where we have used the fact that ||w|l, = (/> 27, by the orthonormality of the
1=2

{w;} vectors. Since E[F (u;)] = 0, by concentration of measure for Lipschitz
functions on the sphere [141], for all ¢ > 0, we have

2
P(IF ()] > tlzll.) < 2exp (1 (k= 1) i)

2
< 2exp (—cl%) .

Taking union bound, we have

P max [|F(u;)| > |z < 2kexp | —c nt® =2exp | —c nt* + logk
el oo ) = SHEPA T gy ) TP T gk TR )

,,,,,

Consider log (p — k) > logk, if we set t = 256k log(p=k) ' then this probability

vanishes at rate 2 exp (—cz log (p — k)). If we assume n = (klog (p — k)), the
quantity ¢ is order one. O

We can summarize the above example in a formal theorem.

Theorem 3.7.4 (Lemma 5 of [138]). Consider a fixed nonzero vector z € R* and
a random matrix Y € R™** with i.i.d. elements Y;; ~ N (0,1). Under the scaling
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n = Q(klog (p — k)), there are positive constants ¢y and co such that for all t > 0

P (H {(YTY/n)71 - Ikxk] zH > cl||z||oo) <4exp(—cy min{k,log(p — k)})
oo

Example 3.7.5 (Feature-based detection). In our previous work in the data domain
[156, 157] and the kernel domain [158-160], features of a signal are used for
detection. For hypothesis H, there is only white Gaussian noise, while for 71, there
is a signal (with some detectable features) in presence of the white Gaussian noise.
For example, we can use the leading eigenvector of the covariance matrix R as the
feature which is a fixed vector z. The inverse of the sample covariance matrix is
considered R! = (YTY/n) - I « 1, where Y is as assumed in Theorem 3.7 .4.
Consequently, the problem boils down to

Rlz= [(YTY/n)71 - Ikxk] Z.

We can bound the above expression. U

The following theorem shows sharp concentration of a Lipschitz function of
Gaussian random variables around its mean. Let ||y ||2 be the £2-norm of an arbitrary
Gaussian vector y.

Theorem 3.7.6 ([141, 161]). Let a random vector x € R™ have i.id. N(0,1)
entries, and let f : R™ — R be Lipschitz with constant L, (i.e., |f (x) — f (y)| <
Lix— Y“g ,Vx,y € R"). Then, for all t > 0, we have

P(f ()= f(¥)] > 1) < 2exp (—;L) .

Let o1 be the largest singular value of a rectangular complex matrix A. Let

|Al[,, = o1 is the operator norm of matrix A. Let VR be the symmetric matrix
square root, and consider the function

7 (%) = [ Rx], /.

Since it is Lipschitz with constant || R[] ,,//n, Theorem 3.7.6 implies that

nt?
P (|| Rx]l, — E [Rx]l,| > v/nt) < 2exp <_2|IRI|> ) (3.55)
op

for all ¢ > 0. By integrating this tail bound, we find the variable Z = |Rx||, /v/n
satisfies the bound

var (Z) < 4| R ]|, /v/n.
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So that

[EZ% — |EZ|| = | VTr (R) /n — E (IR, /v71) | < 2,/IRIL,,/v7.  (3.56)

Combining (3.56) with (3.55), we obtain

1 /||RH nt?
14/ _ > I TP ) <« I, 57
‘nH RXH2 \/Tr(R)‘ t+2 2 exp HRHOp (3.57)

forall t > 0. Setting 7 = (t — 2/y/n) | /[[R[],,, in the bound (3.57) gives that
p(|5|vRx| - vIr®)| = 7\ /iR, ) <2050 (~gn (1 - Y
< 5 NG
(3.58)

Similarly, considering ¢ =  /||R/[,, in the bound (3.57) gives that with probability

greater than 1 — 2 exp (—n/2), we have

Ixle , [TE) [TE)
et s IR, <4 /IR], 359

Using the two bounds, we have

113 Tr (R) [l Tr (R) || [ Tr (R)

We summarize the above result here.

Theorem 3.7.7 (Lemma 1.2 of Negahban and Wainwright [155]). Given a
Gaussian random vector x ~ N (0, R), for all t > 2/\/n, we have

P E \qug ~Tr (R)‘ > 4t|R||0p] < 2exp <n <t - %>)+26xp (—n/2).

We take material from [139]. Defining the standard Gaussian random matrix
G = (Gij)i<icn, 1<j<p € R™P_ we have the p x p Wishart random matrix

1
W=-G'G -1, (3.60)
n

where I, is the p x p identity matrix. We essentially deal with the “sums of
Gaussian product” random variates. Let Z; and Z5 be independent Gaussian random

. . n ii.d. .
variables, we consider the sum Y X; where Xillv Z175,1 < i < n. The
i=1
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following tails bound is also known [162, 163]

P Ly X

(o

Let w! be the i-th row of Wishart matrix W € RP*P, and g7 be the i-th row of

data matrix G € R"™*P. The linear combination of off-diagonal entries of the first
oW W1

> t) < Cexp (—3nt?/2) ast — 0; (3.61)

n p
a W1 E GJWU = E GM E Gija]—,
i:l j=2

for a vector a = (as,...,a,) € RP~1 Let

1
& = < »gz Gija;
all, " Tall, ||2 Z o

Note that {&;}"_, is a collection of independent standard Gaussian random vari-
ables. Also, {&;},, are independent of {G1},_,. Now we have

(a,w1) —uaHQZth“

which is a (scaled) sum of Gaussian products. Using (3.61), we obtain
P (|(a,w1)| > t) < Cexp (—3nt2/2 ||a||§) . (3.62)
Combining (3.4) and (3.62), we can bound a linear combination of first-row entries.

n
>t>

Noting that Wy, = + 37 (G1;)® — 1is a centered 2, we have
=1
P
> Wija,
j=2

P

Z ijLj

> <P <|$1W11| +
Jj=2

p
2 Wijz;

B (jwix| > 1) = (

P(|$1W11| > t/?) +P <

> t/Q)

< 2max (2,C)exp 7% .
164 z?
i=1
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There is nothing special about the “first” row, we conclude the following. Note that
P
the inner productis (w;,x) = wlx = Y Wz;,i=1,...,pforavectorx € RP.
j=1
Theorem 3.7.8 (Lemma 15 of [139]). Let wl be the j-th row of Wishart matrix

W € RPXP, defined as (3.60). For t > 0 small enough, there are (numerical
constants) ¢ > 0 and C' > 0 such that for all x € R™\ {0},

P (|W1TX| >t) < Cexp <fcnt2/||x||2) , i=1,...,p.

3.8 Concentration of Operator Norms

For a vector a, ||al|,, is the £, norm. For a matrix A € R™*", the singular values are
ordered decreasingly as o1 (A) > 02 (A) > -+ > Owin(m,n) (A). Then we have
Omax (A) = 01 (A), and Orin (A) = Tpin(m,n) (A). Let the operator norm of the
matrix A be defined as [|A[|,, = o1 (A). The nuclear norm is defined as

min(m,n)

Al = Y o),

=1

while the Frobenius norm is defined as

[A]lp =/ Tr(ATA) =

For a matrix A € R™*™2_ we use vector vec(A) € RM, M = m;ms. Given a
symmetric positive definite matrix ¥ € RM*M we say that the random matrix X;
is sampled from the 3-ensemble if

vee(X;) ~ N (0,X).
We define the quantity

P’ () = sup var (u” Xv),
lall,=1,lIvll,=1

where the random matrix X € R %2 is sampled from the 3-ensemble. For the
special case (white Gaussian random vector) ¥ = I, we have p? (£) = 1.
Now we are ready to study the concentration of measure for the operator norm.
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Theorem 3.8.1 (Negahban and Wainwright [155]). Let X € R™1%™2 pe g
random sample from the 3-ensemble. Then we have

E[IXIl,,] < 120(2) [y + vl (3.63)

and moreover

(1K 2 E[IXI,) +1) <o (~5rgs ) b

Proof. The variational representation

1Xll,, = sup ulXv
lully=1,[Iv],=1

is the starting point. Since each (bi-linear) variable u? Xv is zero-mean Gaussian,
thus we find that the operator norm ||X[|,, is the supremum of a Gaussian process.
The bound (3.64) follows from Ledoux [141, Theorem 7.1].

We now use a simple covering argument to establish the upper bound (3.63). For
more details, we refer to [155]. O

Theorem 3. 8 2 (Lemma C.1 of Negahban and Wainwright [155]). The random
matrix {X; } _, are drawn L.i.d. from the 3-Gaussian ensemble, i.e., vec(X;) ~

N (0, ). For a random vector € = (€1, ..., en), if ||€|ly < 2vV/N, then there are
universal constants cg, c1,co > 0 such that

> covp (B (Mml ng) < cpexp (—ca (m1 + m2)).

Proof. Define the random matrix Z as

1 N
= — 5iX
V&

N

% Z eZ-Xi

i=1

P

Since the random matrices {Xl}fil are i.i.d. Gaussian, if the sequence {61}11\;1 are
fixed (by conditioning as needed), then the random matrix Z is a sample from the

I'-Gaussian ensemble with the covariance matrix I' = ”6“2 3. So, if Z € Rmixma

lle ”2 Y -ensemble, we have

).

is a random matrix drawn from the

P (121, > ) <P (|2
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Using Theorem 3.8.1, we have

?|

p (]2 1) <exp(—epat
op op = oxp 01V2p2 (E)

for a universal constant ;. Setting t> = (N_1V2p2 (2) (vm1 + /m2) ) gives
the claim. u

12y/2vp ()
] 2R (i + )

z

and

zE[~

This following result follows by adapting known concentration results for
random matrices (see [138] for details):

Theorem 3.8.3 (Lemma 2 of Negahban and Wainwright [155]). Let X € R™*"™
be a random matrix with i.i.d. rows sampled from a n-variate N (0, X) distribution.
Then for m > 2n, we have

1 1 1
P (amin (7XTX> > 5omin (%), Cmax (7XTX) > 90max (z)) >1—4exp(—n/2).
n n

Consider zero-mean Gaussian random vectors w; defined as w;~N (O, y21m1 Xml)
and random vectors x; defined as x; ~ A (0,X). We define random matrices
X, W as

x| wi
x5 w

X=| "|eR™ and W= |~ |ecRvm, (3.65)
X, W,

Theorem 3.8.4 (Lemma 3 of Negahban and Wainwright [155]). For random
matrices X, W defined in (3.65), there are constants c1,ce > 0 such that

P <71LHXTW||OP > 504/ Omax (2) mler2> < crexp(—cg (M1 +ms)).

n

The following proof, taken from [155], will illustrate the standard approach:
arguments based on Gordon-Slepian lemma (see also Sects.3.4 and 3.6) and
Gaussian concentration of measure [27, 141].

Proof. Let ™' = {ueR™: |lul|, =1} denote the Euclidean sphere in m-
dimensional space. The operator norm of interest has the variation representation
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%HXTWHOPZl sup sup vIXTWu. (3.66)

N yesmi—t vegma-1

For positive scalars a and b, define the random quantity

1
U(a,b)=— sup sup  vIXTWu.
n ucaS™m1—1 yepSma—1

Our goal is to upper bound ¥ (1,1). Note that ¥ (a,b) = ab¥ (1,1) due to the
bi-linear property of the right-hand side of (3.66).
Let
A= {ul,...,uA},B: {ul,...,uB}

denote the 1/4 coverings of S™ ~! and S™2 !, respectively. We now claim that the
upper bound

T(1,1) <4 max (Xv’,Wu"). (3.67)
uceA,vbeB

is valid. To establish the claim, since we note that the sets A and B are 1/4-covers,
for any pair (u,v) € 8™ ! x §™27! there exists a pair (u®,v’) € A x B, such
that u = u® + Au and v = v® + Av, with

max {[|Aull,, [[Av],} < 1/4.
Consequently, due to the linearity of the inner product, we have
(Xv, Wu) = <va, Wu“> + <va, WAu> + (XAv, Wu?) + (XAu, WAYV) .

(3.68)
By construction, we have the bound

(XvP, WAuU)| < ¥ (1,1/4) = i\p(m),
and similarly
(XA, Wu)| < 10 (1,1),
as well as
[(XAu, WAV)| < %\I’ (1,1).

Substituting these bounds into (3.68) and taking suprema over the left and right-
hand sides, we conclude that
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9
P(1,1) < max Xv?, Wut) + —0 (1,1
(1,1 < uaeA,vbeB< > 16 (1,1)
from which (3.67) follows.
Now we need to control the discrete maximum. See Sect. 1.10 related theorems.
According to [27, 154], there exists a 1/4 covering of spheres S™*~! and S™2~1
with at most A < 8™ and B < 82 elements, respectively. As a result, we have

1

n

P (| (1,1)] > 40n) < 8™+™2  max IP’(
uce A, vbenB

(XvP, Wu®) > 5) . (3.69)

The rest is to do obtain a good bound on the quantity
Xv, Wu) = v, X;) (U, w;
n ’ ’

n <
=1

where (u,v) € S™~! x §m2~1 are arbitrary but fixed. Here, x; and w; are,
respectively, the i-th row of matrices X and W. Since x; € R™* hasi.i.d. N (0, V2)
elements and u is fixed, we have

Zi = <u7Wi>NN(0,V2), i=1,...,n.

These variables {Z;}"_; are independent from each other, and of the random matrix
X. So, conditioned on X, the sum

Define the event

Using Theorem 3.8.3, we have
1XTX/nl|,,, < 90max (£)
with probability at least 1 — 2exp(—n/2), which implies that P(7°¢) <

2exp (—n/2). Therefore, conditioned on the event 7 and its complement 7€,
we have
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P(|Z|>t) <P(Z| >t|T)+P(T°)

2
< exp (nM) +2exp(—n/2).
Combining this tail bound with the upper bound (3.69), we obtain

t2

P(|¥(1,1)] > 40n) < 8™F™ exp [ —n
22 (4+2],,)

+2exp(—n/2).

(3.70)
Setting t* = 2002||%|,, ™£™2, this probability vanishes as long as n >
16 (mq + ma). U

Consider the vector random operator ¢ (A) : R™*™m2 — RN with ¢ (A) =
(p1(A),...,on (A)) € RV, The scalar random operator ¢; (A) is defined by

0 (A) = (X;,A), i=1,...,N, (3.71)

where the matrices {Xl}fil are formed from the X-ensemble, i.e., vec(X;) ~

N(0,3).

Theorem 3.8.5 (Proposition 1 of Negahban and Wainwright [155]). Consider
the random operator @(A) defined in (3.71). Then, for all A € R™*™2 the
random operator p(A) satisfies

el V)], - 1202 ({5 + /52 ) 1Al @)

with probability at least 1 — 2 exp (—N/32). In other words, we have

(il )l < VB vee 8], -120(9) (7 22 ) 1,

< 2exp(—N/32). (3.73)

The proof of Theorem 3.8.5 follows from the use of Gaussian comparison inequal-
ities [27] and concentration of measure [141]. Its proof is similar to the proof of
Theorem 3.8.4 above. We see [155] for details.

3.9 Concentration of Sub-Gaussian Random Matrices

We refer to Sect.1.7 on sub-Gaussian random variables and Sect. 1.9 for the
background on exponential random variables. Given a zero-mean random variable
Y, we refer to
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as its sub-exponential parameter. The finiteness of this quantity guarantees existence
of all moments, and hence large-deviation bounds of the Bernstein type.

We say that a random matrix X € R"*P is sub-Gaussian with parameters
(2, 02) if

1. Each row x;fp € RP 4 = 1,...,n is sampled independently from a zero-mean

distribution with covariance X2, and
2. For any unit vector u € RP, the random variable ul'x; is sub-Gaussian with
parameter at most o.

If we a random matrix by drawing each row independently from the distribution
N (0,%), then the resulting matrix X € R"™*P is a sub-Gaussian matrix with

parameters (E, [I%]] where ||A||, is the operator norm of matrix A.

op |

By Lemma 1.9.1, if a (scalar valued) random variable X is a zero-mean sub-
Gaussian with parameter o, then the random variable Y = X2 — E (X 2) is sub-
exponential with [[Y[, < 202. Tt then follows that if X1,..., X, are zero-mean

1.i.d. sub-Gaussian random variables, we have the deviation inequality

p(2 >t <2 o (7t
—_— € —Ccmin —_—
N =t)=eexp 102’ 252

for all¢ > 0 where ¢ > 0is a universal constant (see Corollary 1.9.3). This deviation
bound may be used to obtain the following result.

N
> XP-E(XP)
=1

Theorem 3.9.1 (Lemma 14 of [164]). If X € R"*P! is a zero-mean sub-Gaussian
matrix with parameters (Ew, ag), then for any fixed (unit) vector v.€ RP, we have

ot
P (‘HXVH; —-E ||XVH§’ > nt) < 2exp (—cnmin < 2)) . (3.74)

—I
Og 0%

Moreover, if Y € R" P2 js a zero-mean sub-Gaussian matrix with parameters
2
(Zy, O'y), then

P ("lYTX —cov (yi,X;)
n

t2 t
> t) < 6p1p2 exp <fcnmin <72, 7>> ,
max (ogoy)” 00y

(3.75)

where X; and Y ; are the i-th rows of X and Y, respectively. In particular, if n 2
log p, then
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I
P < > t> < ooy / oep < crexp(—cglogp).
n

(3.76)
The ¢, balls are defined as

1
“YTX — cov (yi, x;)
n

max

B (s) ={veRl:|v|,<s1=0,1,2}.
For a parameter s > 1, use the notation
K(s) ={veR:|vl, <1[vl, < s},

the /y norm |x||, stands for the non-zeros of vector x. The sparse set is
K (s) = By (s) N By (1) and the cone set is

C(s)={veR": vl < Vslvl,}.

We use the following result to control deviations uniformly over vectors in R?.

Theorem 3.9.2 (Lemma 12 of [164]). For a fixed matrix T' € RP*P, parameter
s > 1, and tolerance € > 0, suppose we have the deviation condition

|vT1“v’ <e WwekK(s).

Then

1
vy <27 (v + M) v e

Theorem 3.9.3 (Lemma 13 of [164]). Suppose s > 1 and T is an estimator of 3,
satisfying the deviation condition

)\min (Ex)

K (2s).
54 Vv € K(2s)

NICSSEE
Then we have the lower-restricted eigenvalue condition

v (E-5)] 2 L
2s

1 2 2
= 5)\min (Ew) ||V||2 - )\min (Ew) ”VHI

and the upper-restricted eigenvalue condition

1 2
~—Amax (Xz) ”VHI :

~ 3
T r—zi) ’<—/\max ) vl
v ( V| < DA () VI3 + 5

We combine Theorem 3.9.1 with a discretization argument and union bound to
obtain the next result.
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Theorem 3.9.4 (Lemma 15 of [164]). If X € R"*? is a zero-mean sub-Gaussian
matrix with parameters (2, 02), then there is a universal constant ¢ > 0 such that

0t
P| sup >t)] <2exp (fcn min <—4, 7) +2s logp) .
veK(2s) gr o

We consider the dependent data. The rows of X are drawn from a stationary vector
autoregressive (AR) process [155] according to

1 2 1 2
—||IX —E|—||IX
v -2 [ L 1xvi]

Xi4+1 :AXi+Vi, 1= 1,2,...,71—1, (377)

where v; € RP is a zero-mean noise vector with covariance matrix X, and A €
RP*? is a driving matrix with spectral norm ||A||, < 1. We assume the rows of X
are drawn from a Gaussian distribution with 32, such that

3, =AY AT+ 3,.

Theorem 3.9.5 (Lemma 16 of [164]). Suppose y = [Y1,Ya,...,Y,] € R"isa
mixture of multivariate Gaussians y; ~ N (0,Q;), and let 0® = sup ||Q; |- Then
J

forallt > % we have

2
1 2 1 2” 2) 1 2
= _E|= > < —nft- == - )
P(‘nHyHQ E[n Ivl3]] > 4t0%) < 200 | ~gn(1= =) |+ +20(-n/2)

This result is a generalization of Theorem 3.7.7. It follows from the concentration
of Lipschitz functions of Gaussian random vectors [141]. By definition, the random
vector y is a mixture of random vectors of the form +/Q;x;, where x; ~ N (0,1,).
The key idea is to study the function

fi (%) = 11Qx,/vn

and obtain the Lipschitz constant as [|Q;||,,/ v/n. Also note that f; (x) is a sub-

Gaussian random variable with parameter o7 = 1Qjll,,/v/n- So the mixture

+ Iyl is sub-Gaussian with parameter 0> = = sup||Q;,,. The rest follows
j

from [155].

Example 3.9.6 (Additive noise [164]). Suppose we observe
Z=X+W,

where W is a random matrix independent of X, with the rows w; drawn from a
zero-mean distribution with known covariance matrix X,,. We define
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~ 1
Toa=-2"2-3%,.

n
Note that f‘add is not positive semidefinite. O
Example 3.9.7 (Missing data [164]). The entries of matrix X are missing at

random. We observe the matrix Z € R"*? with entries

7. X;; with probability 1 — p,
Y 0 otherwise.

Given the observed matrix Z € R™*P, we use
. 1~ m 1 e
Toiss = —Z1Z — pdiag (ZTZ)
n n

where Zij = Zz]/ (1 — p) [l

Theorem 3.9.8 (Lemma 17 of [164]). Ler X € R"*? is a Gaussian random
matrix, with rows x; generated according to a vector autoregression (3.77) with
driving matrix A. Let v € RP be a fixed vector with unit norm. Then for all t > %,

P ()VT (f‘ - Zl.) v‘ > 4tg2) < 2exp (—;n<t - \/2%>2> +2exp(—n/2),

2[|Zx |, . .
) 12wl + m (additive noise case) .

S = 1 2. |,
(= pman)® 1-TAT,,

(missing data case) .

Theorem 3.9.9 (Lemma 18 of [164]). Ler X € R"*? is a Gaussian random
matrix, with rows x; generated according to a vector autoregression (3.77) with
driving matrix A. Let v € RP be a fixed vector with unit norm. Then for all t > %,

2
. 2
P| sup |v© (I‘ - Em) v‘ > 4tc? | < 4dexp —cn(t — ) + 2slogp |,
veK(2s) vn

where < is defined as in Lemma 3.9.8.
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3.10 Concentration for Largest Eigenvalues

We draw material from [149] in this section. Let j1 be the standard Gaussian measure
on R™ with density (27r)7"/ 2e=1xI"/2 with respect to Lebesgue measure. Here x|
is the usual Euclidean norm for vector x. One basic concentration property [141]
indicates that for every Lipschitz function F' : R™ — R with the Lipschitz constant
[|F||z <1, and every t > 0, we have

7 ({‘F - /qu‘ > t}) < 2e71°/2, (3.78)

The same holds for a median of I’ instead of the mean. One fundamental property
of (3.78) is its independence of dimension n of the underlying state space. Later on,
we find that (3.78) holds for non-Gaussian classes of random variables. Eigenvalues
are the matrix functions of interest.

Let us illustrate the approach by studying concentration for largest eigenvalues.
For example, consider the Gaussian unitary ensemble (GUE) X: For each integer
n>1X= (Xij)1<z',j<n is an n x n Hermitian centered Gaussian random matrix
with variance 2. Equivalently, the random matrix X is distributed according to the
probability distribution

P(dX) = % exp (— Tr (X?) /20%) dX

2 .. .
on the space H,, = R™ of n X n Hermitian matrices where

dX = [] dXiu [[ dRe(Xi;)dIm (X))

1<i<n 1<i,5<n

is Lebesgue measure on H,, and Z is the normalization constant. This probability
measure is invariant under the action of the unitary group on H,, in the sense that
UXU?¥ has the same law as X for each unitary element U of H,,. The random
matrix X is then said to be an element of the Gaussian unitary ensemble (GUE)
(“ensemble” for probability distribution).

The variational characterization is critical to the largest eigenvalue

Amax (X) = sup uXu? (3.79)
lu|=1

where the function Ay, . is linear in X. The expression is the quadratic form. Later
on in Chap. 4, we study the concentration of the quadratic forms. A\p,.x (X) is easily
seen (see Chap. 4) to be a 1-Lipschitz map of the n? independent real and imaginary
entries
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Xii,1 <i<n,Re(Xy5) /V2,1<i<n,Im(Xy)/V2,1<i<n,

of matrix X. Using Theorem (3.3.10) together with the scaling of the variance 02 =

ﬁ, we get the following concentration inequality on Ayax (X).

Theorem 3.10.1. Foralln > 1andt > 0,
P ({Amax (X) = EAax (X)| > ) < 2e72",

As a consequence, note that

var (Amax (X)) < C/n.
Using Random Matrix Theory [145], this variance is

var (Amax (X)) < C/n/3.

Viewing the largest eigenvalue as one particular example of Lipschitz function of
the entries of the matrix does not reflect enough the structure of the model. This

comment more or less applies to all the results presented in this book deduced from
the concentration principle.

3.10.1 Talagrand’s Inequality Approach

Let us estimate E)\,.x (X). We emphasize the approach used here. Consider the
real-valued Gaussian process

n
Gu=uXu" = 3" Xjuiy,  |uf =1,
i,j=1
where u = (uq,...,u,) € C". We have that for u,v € C",
n
E (|Gu — Gv|2) = g2 Z |u1ﬂj — Uﬂfjjl.
ij=1

We define the Gaussian random processes indexed by the vector u € C™, |u| = 1.
We have that foru € C",|u| =1

Hy = Zgi Re (u;) + Z hi Tm (u;)

=1 =1
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where g1,...,9n, h1,...,h, are independent standard Gaussian variables. It fol-
lows that for every u, v € C", such that |u| = |v| =1,

E <|Gu - Gv|2) < 20°E (\Hu - Hv|2) :

By the Slepian-Fernique lemma [27] we have that

E (sup Gu> < V20E (sup Gu> < 2V20F

lul=1 |luj=1

n 1/2
Zg?]
1=1

When o2 = L, we thus have that

— L
Edmax (X) < V2. (3.80)

Equation (3.80) extends to the class of sub-Gaussian distributions including random
matrices with symmetric Bernoulli entries.
Combining (3.80) with Theorem 3.10.1, we have that for every ¢t > 0,

P ({)\max (X) > V2 + t}) < 9e 2",

3.10.2 Chaining Approach

Based on the supremum representation (3.79) of the largest eigenvalue, we can use

another chaining approach [27, 81]. The supremum of Gaussian or more general

process (Z),c is considered. We study the random variable sup Z; as a function
teT

of the set T" and its expectation E (sup Zt). Then we can study the probability
teT

P (supZt > r) ,r > 0.
teT
For real symmetric matrices X, we have

n
Zu = uXuT = Z Xijuiuj, ‘11‘ = 17
ij=1
where u = (ug,...,u,) € R" and X;;,1 < i < j < n are independent centered
either Gaussian or Bernoulli random variables. Note Z,, is linear in the entries of

Xij,u;, uj. Basically, Z, is the sum of independent random variables. To study the
size of the unit sphere |u| = 1 under the L?-metric, we have that

n
E|Zy — Zy|* = Z luiw; —vivs|, |ul=]v] =1
ij=1
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3.10.3 General Random Matrices

The main interest of the theory is to apply concentration of measure to general
families of random matrices. For measures p on R™, the dimension-free inequality

is defined as
p({‘F/qu‘ 2t}> <Ce /0 >0 (3.81)

for some constant C' > 0 independent of dimension n and every 1-Lipschitz
function F : R™ — R. The mean [ Fdy can be replaced by a median of F.
The primary message is that (3.81) is valid for non-Gaussian random variables.
Consider the example of independent uniform entries. If X = (Xj;), <ij<n isa
real symmetric n X n matrix, then its eigenvalues are 1-Lipschitz functions of the
entries.

Theorem 3.10.2 (Proposition 3.2 of [149]). Let X = (Xj;), <ij<n
symmetric n X n random matrix and Y = (Yi;), <ij<n be a real n X n random
matrix. Assume that the distributions of the random vector X;;,1 <1 < j < nand
Y;j;1<i<j<mnin R™"+D/2 and, respectively, R satisfy the dimension-free
concentration property (3.81). Then, if T is any eigenvalue of X, and singular value
of Y, respectively, for everyt > 0,

be a real

P (|7 (X) — Er (X)| > t) < Ce /2% respectively,Ce /€.

Below we give two examples of distributions satisfying concentration inequalities
of the type (3.81). The first class is measures satisfying a logarithmic Sobolev
inequality that is a natural extension of the Gaussian example. A probability measure
pon R, or R™ is said to satisfy a logarithmic Sobolev inequality if for some constant
C >0,

fPlog frdp<2C | |V f[du (3.82)
R'I‘L R'I‘L

for every smooth enough function f : R” — R such that [ f?du = 1.

The prototype example is the standard Gaussian measure on R™ which satis-
fies (3.82) with C' = 1. Another example consists of probability measures on R™ of
the type

dp (x) = e V®dx

where V — ¢ (|x\2 / 2) is a convex function for some constant ¢ > 0. The measures

satisfy (3.82) for C = 1/c.

Regarding the logarithmic Sobolev inequality, an important point to remember
is its stability by product that gives dimension-free constants. If uq, ..., u, are
probability measures on R” satisfying the logarithmic Sobolev inequality (3.82)
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with the same constant C', then the product measure ;11 ® - -+ ® f, also satisfies it
(on R™) with the same constant.

By the so-called Herbst argument, we can apply the logarithmic Sobolev
inequality (3.82) to study concentration of measure. If p satisfies (3.82), then for
any 1-Lipschitz function F' : R” — Rand any ¢ € R,

/ethN < et [ Fdu+Ct?/2.

In particular, by a simple use of Markov’s exponential inequality (for both F' and

—F), forany ¢t > 0,
(o frof o) 2o

so that the dimension-free concentration property (3.81) holds. We refer to [141] for
more details. Related Poincare inequalities may be also considered similarly in this
context.

3.11 Concentration for Projection of Random Vectors

The goal here is to apply the concentration of measure. For a random vector x € R?,
we study its projections to subspaces. The central problem here is to show that
for most subspaces, the resulting distributions are about the same, approximately
Gaussian, and to determine how large the dimension k& of the subspace may be,
relative to d, for this phenomenon to persist.

The Euclidean length of a vector x € R? is defined by ||x|| = /22 + ..., 22.
The Stiefel manifold* Zik € RFE*d is defined by

Zd,k: {Z:(zl,...,zk) L Z; GRd,<Zi,Zj>:5ij Vl Sl,jfk},

with metric p (Z,Z’) between a pair of two matrices Z and Z'—two points in the
manifold Z; ,—defined by

k 1/2
p(2,2) = <Z ||z—z;-||2> :
=1

The manifold Z; ; preserves a rotation-invariant (Haar) probability measure.

4 A manifold of dimension n is a topological space that near each point resembles n-dimensional
Euclidean space. More precisely, each point of an n-dimensional manifold has a neighborhood that
is homeomorphic to the Euclidean space of dimension n.
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One version of the concentration of measure [165] is included here. We need
some notation first. A modulus of continuity [166] is a function w : [0, co] — [0, o0
used to measure quantitatively the uniform continuity of functions. So, a function
f I — R admits w as a modulus of continuity if and only if

If () = F)l <w(lz =yl

for all = and y in the domain of f. Since moduli of continuity are required to be
infinitesimal at 0, a function turns out to be uniformly continuous if and only if
it admits a modulus of continuity. Moreover, relevance to the notion is given by
the fact that sets of functions sharing the same modulus of continuity are exactly
equicontinuous families. For instance, the modulus w(¢) = Lt describes the L-
Lipschitz functions, the moduli w(t) = Lt* describe the Holder continuity, the
modulus w(t) = Lt(|log(t)| + 1) describes the almost Lipschitz class, and so on.

Theorem 3.11.1 (Milman and Schechtman [167]). For any F' : Z,, ;. — R with
the median MLF' and modulus of continuity wg (t) ,t > 0

P(|F (z1,...,2;) — MF (z1,...,2;)| > wr (1)) < \/ze"f“/g, (3.83)

where P is the rotation-invariant probability measure on the span of z1, . . . , Zg.

Let x be a random vector in R? and let Z € Z, ;. Let
x, = ((x,21),...,(x,21)) € R¥;

that is, x, is the projection of the vector x onto the span of Z. x, is a projection
from dimension d to dimension k.

The bounded-Lipschitz distance between two random vectors x and y is
defined by

dpr (x,y) = sup |Ef (x) —Ef (y)ll,
1711, <1

where

1£1ly = max{[[fllo, I 1]}

with the Lipschitz constant of f defined by || f||, = sup IFGA=F Il
XAy

Ix=yll

Theorem 3.11.2 (Meckes [165]). Let x be a random vector in R?, with Ex = 0,
E [||x||2} = 0%d, and let « = E H||X||2/O'2 — dH If Z is a random point of
the manifold Z, 1, x, is defined as above, and w is a standard Gaussian random
vector, then

k 1 k
dpr (xz,0w) < U\[((jli 1) =2
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Theorem 3.11.3 (Meckes [165]). Suppose that (3 is defined by § = sup E(x, y>2.
yeSd—l

Forz; cRYi=1,....kandZ = (z1,...,2x) € Za, let

dpy (X, 0W) = Sup [Ef ((x,21) 5.0 (%,21)) = Ef (oW, ... ow)|[5
f 1§1

That is, dgy, (x.,0wW) is the conditional bounded-Lipschitz distance from the
random point x, (a random vector in RF) to the standard Gaussian random vector
ow, conditioned on the matrix Z. Then, for t > 27r\/§ and Z a random point of
the manifold (a random matrix in RF*<) Z4 ks

P(|dpr (x-,0w) — Edpy, (x.,0w)| > t) < \/?e—dtz/mﬁ.

Theorem 3.11.4 (Meckes [168]). With the notation as in the previous theorems,
we have

(l{?ﬁ+ﬁ10gd)52/(9k+12) O’(\/E(Oz—i—l)—‘rk’)

Edpr (xz,0w) < C 1273 3273 42/ (3k+0) + d—1

In particular, under the additional assumptions that o« < Co\/d and 3 = 1, then

k + log (d
Edpr (x,,0w) < C’Wm.
The assumption that § = 1 is automatically satisfies, if the covariance matrix of
the random vector x € R? is the identity, i.e., E [xx”| = I xq; in the language
of geometry, this is simply the case that the random vector x is isotropic. The
assumption that o = O(\/ﬁ) is a geometrically natural one that arise, for example,
if x is distributed uniformly on the isotropic dilate of the ¢; ball in R%. The key
observation in the proof is to view the distance as the supremum of a stochastic
process.

Proof of Theorem 3.11.2. This proof follows [165], changing to our notation.
Define the function I : Z; 3 — R by

F(z) = S [Exf (x2) —Ef (ow)]l,

where E, denotes the expectation with respect to the distribution of the random
vector x only; that is,

Exf (x:) =E[f (x2)|Z].

The goal here is to apply the concentration of measure. We use the standard
method here. We need to find the Lipschitz constant first. For a pair of random
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vectors x and x’, which will be projected to the same span of Z, we observe that for
f with || f|]; <1 given,

[Escf (x2) = Ef (ow)]| = [Exf (x}) —Ef (ow)]|
< B (%7) = Exf (2l
=E[|If (x21),. .. (x2,) = f((x,21) . (% 20) | |2, 2]
SE[If (20 —21) 5.0 (%2, — 20)) 12, Z']

k , 2
7z, — 7;
<> - zi||2E<x, i >
2 12—zl
<p(Z,Z)/B.

It follows that

ldpL (xz,0W) — dpr, (X1, oW)| (3.84)

=| sup ||Exf(x:) —Ef(ow)| — sup ||Exf (xz)—Ef(ow)|| (3.85)

£, <1 £, <1
< H}Tgl Exf (x2) —=Ef (ow)[| — [|Exf (x21) — Ef (cw)[| (3.86)
< p(Z,2)\/B. (3.87)

(3.88)

Thus, dpy, (x.,0w) is a Lipschitz function with Lipschitz constant /3.
Applying the concentration of measure inequality (3.83), then we have that

P(|F(z1,...,25) — MF (21,...,2;)| > t) < \/ze_ﬁd/w.

Now, if Z = (21, . ..,2) is a Haar-distributed random point of the manifold Z, j,
then

|EF (Z) —-MF (Z)| < E|F (Z) —-MF (Z)| = /OOO P (|EF (Z) —MF (Z)| > t)dt

oo T 2
< ot d/SB t: é
—/O \/;6 dt=m\g
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Soaslongast > 27 \/g , replacing the median of F’ with its mean only changes the
constants:

P(|F (2) ~ EF (2)| > t) < P(IF () - MF (Z)| > t - [MF (Z) - EF (Z))
< B(F(Z)— MF (Z)] > t/2) < \/Te—'/325,

3.12 Further Comments

The standard reference for concentration of measure is [141] and [27]. We only
provide necessary results that are needed for the later chapters. Although some
results are recent, no attempt has been made to survey the latest results in the
literature.

We follow closely [169,170] and [62, 171], which versions are highly accessible.
The entropy method is introduced by Ledoux [172] and further refined by Mas-
sart [173] and Rio [174]. Many applications are considered [62, 171, 175-178].



Chapter 4
Concentration of Eigenvalues
and Their Functionals

Chapters 4 and 5 are the core of this book. Talagrand’s concentration inequality is
a very powerful tool in probability theory. Lipschitz functions are the mathematics
objects. Eigenvalues and their functionals may be shown to be Lipschitz functions
so the Talagrand’s framework is sufficient. Concentration inequalities for many
complicated random variables are also surveyed here from the latest publications.
As a whole, we bring together concentration results that are motivated for future
engineering applications.

4.1 Supremum Representation of Eigenvalues and Norms

Eigenvalues and norms are the butter and bread when we deal with random matrices.
The supremum of a stochastic process [27, 82] has become a basic tool. The aim
of this section to make connections between the two topics: we can represent
eigenvalues and norms in terms of the supremum of a stochastic process.

The standard reference for our matrices analysis is Bhatia [23]. The inner
product of two finite-dimensional vectors in a Hilbert space H is denoted by (u, v) .
The form of a vector is denoted by |u|| = (u, u)l/ ?. A matrix is self-adjoint or
Hermitian if A* = A, skew-Hermitian if A* = — A unitary if A*A = | =
AA* and normal if A*A = AA~*.

Every complex matrix can be decomposed into

A =ReA+ilmA

where Re A = A+2A* and ImA = A_TA*. This is called the Cartesian
Decomposition of A into its “real” and “imaginary” parts. The matrices Re A and
Im A are both Hermitian.

The norm of a matrix A is defined as

[Al[ = sup [|Ax]].

lIx[l=1

R. Qiu and M. Wicks, Cognitive Networked Sensing and Big Data, 199
DOI 10.1007/978-1-4614-4544-9_4,
© Springer Science+Business Media New York 2014
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We also have the inner product version

A= sup [(y,Ax)]|.

IxlI=llyll=1
When A is Hermitian, we have

[A[l = A [(x, Ax)|.

For every matrix A, we have
A 11/2
Al = o1 (A) = |A*A['2.
When A is normal, we have
|All = max {|\; (A)[}.

Another useful norm is the norm

n 1/2
A= (Z o? <A>> = (TrA*A)"2.
=1

If a;; are entries of a matrix A, then

1/2

n
2
1Al = { D las]

ij=1

This makes this norm useful in calculations with matrices. This is called Frobenius
norm or Schatten 2-norm or the Hilbert-Schmidt norm, or Euclidean norm.
Both ||A|| and ||A|| have an important invariance property called unitary
invariant: we have [UAV|| = ||A|| and |[UAV||; = ||A|| 7 for all unitary U, V.
Any two norms on a finite-dimensional space are equivalent. For the norms ||A]|
and ||A|| s, it follows from the properties above that

A <Al < Vn Al 4.1)

for every A. Equation (4.1) is the central result we want to revisit here.

Exercise 4.1.1 (Neumann series). If ||A| < 1, then I — A is invertible and
(I—A)i1 =T+ A+AZ+... AP

is a convergent power series. This is called the Neumann series.
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Exercise 4.1.2 (Matrix Exponential). For any matrix A the series

1 1.,
eXpA:eA:I+A+§A2+~-~+5Ak+~--

converges. The matrix exp A is always convertible
-1
(eA) =e A

Conversely, every invertible matrix can be expressed as the exponential of some
matrix. Every unitary matrix can be expressed as the exponential of a skew-
Hermitian matrix.

The number w(A) defined as

w(A) = sup |(x, Ax)|

llx||=1
is called the numerical radius of A. The spectral radius of a matrix A is defined as
spr(A) = max {|A(A)|}.

We note that spr (A) < w (A) < ||A||. They three are equal if (but not only if) the
matrix is normal.
Let A be Hermitian with eigenvalues \; > Ay > --- > \,,. We have

A1 = max {(x, Ax) : ||x|| =1},
An = min {(x, Ax) : ||x|| = 1}. 4.2)
The inner product of two finite-dimensional vectors in a Hilbert space H is denoted

by (u, v) . The form of a vector is denoted by ||u|| = (u, u>1/2.
Forevery k=1,2,...,n

k k
Z A (A) = maxz (xi, Ax;),
i=1 i=1
k k
Z i (A) = minz (xi, Ax;),
i=n—k+1 1=1

where the maximum and the minimum are taken over all choices of orthogonal k-
tuples (x1,...,Xx) in H. The first statement is referred to as Ky Fan Maximum
Principle.
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If A is positive, then forevery k = 1,2,... n,

H Ai (A) = min H (xi, Ax;),

i=n—k-+1 i=n—k+1

where the minimum is taken over all choices of orthogonal k-tuples (x1,...,Xx)
in H.
4.2 Lipschitz Mapping of Eigenvalues

The following lemma is from [152] but we follow the exposition of [69]. Let G
denote the Gaussian distribution on R™ with density

dG(x) 1 e
dx  (2mo?)" P 202 |’

and ||x||> = 22 4 --- + 22 is the Euclidean norm of x. Furthermore, for a K-
Lipschitz function F' : R™ — R, we have

[F(x)-F)I<Klx-yl, xyeR",

for some positive Lipschitz constant K. Then for any positive number ¢, we have
that

C2
G({xeR":|F(x) - F(y)| >t}) < 2exp <K2to.2>

where E (F (x)) = [g. F (x)dG (x),and c = .
The case of 0 = 1 is proven in [152]. The general case follows by using the
following mapping. Under the mapping x — ox : R" — R", the composed
function x — F (o) satisfies a Lipschitz condition with constant Ko.
Now let us consider the Hilbert-Schmidt norm (also called Frobenius form and
Euclidean norm) ||-|| > under the Lipschitz functional mapping. Let f : R — R be a

function that satisfies the Lipschitz condition
[f(s)=fOI<SK|s—t], steR.

Then for any n in N, and all complex Hermitian matrices A, B € C™*". We have
that

If (A) = fB)llp < K[|A = Bllp,
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where

ICIl, = (Tr(C*C)"? = (Tr (C?)) "2,

for all complex Hermitian matrix C.
A short proof follows from [179] but we follow closely [69] for the exposition
here. We start with the spectral decomposition

i=1 1=1

where \; and p; are eigenvalues of A, and B, respectively, and where E; and F;
are two families of mutually orthogonal one-dimensional projections (adding up to
I,,). Using Tr (E;F;) > 0 for all ¢, j, we obtain that
If (A) = FB)IF =Tr (£(A)) +Tr (£(B)) = 2Te (f (A) f (B))
= 3 (F ) = f () Tr(EF,)

i1
<K2 3 (A — ) Tr (EF))
ig=1
2
=K*|A-BJ%.

4.3 Smoothness and Convexity of the Eigenvalues of a Matrix
and Traces of Matrices

The following lemma (Lemma 4.3.1) is at the heart of the results. First we recall
that

Tr(f (A)) = Z F (i (A)), 4.3)

where \; (A) are the eigenvalues of A. Consider a Hermitian n x n matrix A. Let
f be a real valued function on R. We can study the function of the matrix, f(A).
If A = UDU*, for a diagonal real matrix D = diag (\1,...,A,) and a unitary
matrix U, then

f(A)=Uf(D)U"

where f (D) is the diagonal matrix with entries f (A1), ..., f (A,) and U* denotes
the conjugate, transpose of U.
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Lemma 4.3.1 (Guionnet and Zeitoumi [180]).

1. If [ is a real-valued convex function on R, it holds that Tr(f (A)) =
> f (X (A)) is convex.
i=1

2. If f is a Lipschitz function on R, A — Tr (f (A)) is a Lipschitz function on R
with Lipschitz constant bounded by \/n|f| .

Theorem 4.3.2 (Lidskii [18]). Let A, B be Hermitian matrices. Then, there is a
doubly stochastic matrix E such that

Ai (A+B) =X (A) <> Eimhi(B)
m=1
In particular,

ZIM(A)—M(B)\ 1A - Bl7 < Zl/\ it B @4

For all integer k, the functional
2
(Aij)lgi,jgn eER” — )\k (A)

is Lipschitz with constant one, following (4.4). With the aid of Lidskii’s theo-
rem [18, p. 657] (Theorem 4.3.2 here), we have

D f O (A) =D F i (B I D 1A (A) = Xi (B)

n 1/2
2
< ﬁf&(Zm (A) =X (B)] )
i=1
< VlfIIA =B p. (4.5)
We use the definition of a Lipschitz function in the first inequality. The second step

follows from Cauchy-Schwartz’s inequality [181, p. 31]: for arbitrary real numbers
a;, b; € R

a1y + agby + - - - 4 anby| g\/a%+a§+---+a,%\/b§+b§+---+b%. (4.6)

In particular, we have used b; = 1. The second inequality is a direct consequence of
Lidskii’s theorem, Theorem 4.3.2. In other words, we have shown that the function

(Aij)1gi,jgn € Rn2 - Z f ()‘k (A))
k=1
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is Lipschitz with a constant bounded above by +/n|f|.. Observe that using
> f(Ak (A)) rather than A, (A) increases the Lipschitz constant from 1 to
k=1

v/n|f|,. This observation is useful later in Sect.4.5 when the tail bound is
considered.

Lemma 4.3.3 ([182]). For a given ny x ng matrix X, let 0; (X) the i-th largest
singular value. Let f(X) be a function on matrices in the following form: f (X) =

m
'Zl a;0; (X) for some real constants {a;}!", . Then f(X) is a Lipschitz function
i=

m
with a constant of \/;a? .
i=1

Let us consider the special case f (¢) = t*. The power series (A + eB)" is
expanded as

Tr (A +B)") = Tr (%) + ek Tr (A*7'B) + 0 (¢2).
Or for small € we have
Tr (A +B)") = Tr (A¥) = ek Tr (AF7'B) + 0 (¢2) = 0, as= = 0. (4.7)
Recall that the trace function is linear.

;ii%% [T (A +eB)") - Tr (AF)] = kT (AFB) = Tv ((A’“)/B>

where (-)" denotes the derivative. More generally, if f is continuously differentiable,
we have

lim, + [_Z FON(A+2B) = Y f (0 (A)| = Tr (/' (4)B).

e—=0 ¢

Recall that > f(\; (A)) is equal to Tr (f (A)). A1 (X) is convex and \,, (X) is

i=1
concave.

Let us consider the function of the sum of the first largest eigenvalues: for & =
1,2,....n

k
Gr(A) =) X it1(A)=Tr(A) - Fi (A). (4.8)
=1
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The trace function of (4.3) is the special case of these two function with k = n.

Now we follow [183] to derive the Lipschitz constant of functions defined
in (4.8), which turns out to be C/| f]| E\/E, where C' < 1. Recall the Euclidean norm
or the Frobenius norm is defined as

1/2 , 1/2

= 2 | X 2
X[ ={ > I1Xil =v2|) + > IXl
V2

i,5=1 i=1 1<i<j<n

Recall also that

n 1/2
Xy = <Z>\? (X)> :

i=1

which implies from (4.1) that A; (X) is a 1-Lipschitz function of X with respect to
X

F}, is positively homogeneous (of degree 1) and Fy, (—A) = —Gj (A) . From
this we have that

| (A) — Fy (B)| < max {F} (A —B),—Gy (A —B)} < VE|A - B[,
|G, (A) — G (B)| < max {Gy, (A — B),—Fj (A — B)} < VE|A - B[
4.9)

In other words, the functions Fj, (A), Gy (A) : R” — R are Lipschitz continuous
with the Lipschitz constant Vk. For a trace function, we have & = n. Moreover,
F, (A) is convex and Gy, (A) is concave. This follows from Ky Fan’s maximum
principle in (4.2) or Davis’ characterization [184] of all convex unitarily invariant
functions of a self-adjoint matrix.

Let us give our version of the proof of (4.9). There are no details about this proof
in [183]. When A > B, implying that \; (A) > A; (B), we have

k k k
[Fi (A) = Fi (B) = |3 A (&) = 3 (B)| = > (A (&) = (B))‘
k k
<A =N B)= (N (A) =X (B)) <3\ (A-B)=F (A-B).

In the second line, we have used the Ky Fan inequality (1.28)
MECH+D)+- + X (C+D) <M (C)+ -+ X (C) + A1 (D) + - + X (D)
(4.10)
where C and D are Hermitian, by identifyingC =B, D=A -B,C+D = A..
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If A < B, implying that \; (B) > X; (A), we have

k

D (A) =i (B))

=1

k k
|Fi (A) = Fi (B)] = |3 i (A) = DX (B)
i=1 =1

k
<D T (A) =X (B)[=D (A (B) =Ai (A) <D Ai (B-A)=F (B-A) = G (A-B).

=1 1=1 i=1

Let us define the following function: fork =1,2,...,n
k
ok (A) =D f(Ni(A)) (4.11)
i=1

where f : R +— R is the Lipschitz function with constant |f|.. We can
k

compare (4.8) and (4.11). We can show [185] that p; (A) = > f(Ni(A))isa
i=1

Lipschitz function with a constant bounded by v/%| f| - It follows from [185] that

k
<1 D2 i (A) = X (B)
k 1/2
< |fﬁx/E<Z i (A) = A (B>|2>

. 1/2
< CWﬁ\/E(Z i (A) = Ai (B)|2>

< O|f1VE|A =Bl p,
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where

< 1.

The third line follows from the triangle inequality for complex numbers [181, 30]:
for n complex numbers

n
D
i=1

In particular, we set z; = X; (A) — X\; (B). The fourth line follows from the
definition for a Lipschitz function: for f : R — R, [f(s) — f(t)] < |f|,|s —t|.
The fifth line follows from Cauchy-Schwartz’s inequality (4.6) by identifying a; =
[Ai (A) = X\; (B)|, b; = 1. The final line follows from Liskii’s theorem (4.4).

=lzt ozt otz <laltlal+oFlml =) lal. 412)

Example 4.3.4 (Standard hypothesis testing problem revisited: Moments as a func-
tion of SNR). Our standard hypothesis testing problem is expressed as

Ho:y=n

(4.13)
=VSNRx+n
where x is the signal vector in C™ and n the noise vector in C". We assume that x
is independent of n. SNR is the dimensionless real number representing the signal
to noise ratio. It is assumed that /V independent realizations of these vector valued
random variables are observed.

Representing
7 ] nf
Y = , X=| 1], N=|[ 1],
Y XN ny
we can rewrite (4.13) as
Ho: Y =N
1:Y=vVSNR-X+N (4.14)

We form the sample covariance matrices as follows:

1< 1 &
Sy = Nz:: viy:, Sw:Ni:ZIXX

(4.15)

==

[[]=
5
ss*

Il
N
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we rewrite (4.15) as
Ho : NS, = NN~
Hi: NS, = YY'= (VSNE-X +N) (VSNR-X +N)
=SNR-XX*"+NN*+VSNR - (XN* 4+ NX*) (4.16)
Ho can be viewed as a function of H; as we take the limit SINR — 0. This function
is apparently continuous as a function of SN R. This way we can consider one
function of H; only and take the limit for another hypothesis. In the ideal case of

N — o0, the true covariance version of the problem is as follows

Ho : Ry = Rn
Hi:Ry=SNR-R, + R,.
Let NN* and N'IN’* are two independent copies of underlying random matrices.
When the sample number N goes large, we expect that the sample covariance
matrices approach the true covariance matrix, as close as we desire. In other words,

%NN* and %N’ N’* are very close to each other. With this intuition, we may
consider the following matrix function

S(SNR,X) = SNR-%XX*—#%\/M-(XN* + NX*)+% (NN* — N'N")
Taking the trace of both sides, we reach a more convenient form

f(SNR,X) =Tr(SS").
f (SNR,X) is apparently a continuous function of SN R. f (SN R, X) represents

hypothesis H as we take the limit SN R — 0. Note that the trace rmT'r is a linear
function. More generally we may consider the k-th moment

g(SNR,X) =Tr {(SS*)’“} .
SS* can be written as a form
SS*=A+¢(SNR)B,
where ¢ (SNR) — 0, SNR — 0. It follows from (4.7) that
Tr ((A + EB)k) —Tr (AF) = ek Tr (A*'B) + O (¢*) = 0, as SNR — 0.

O
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Exercise 4.3.5. Show that SS* has the following form SS* = A + ¢ (SNR) B.

Example 4.3.6 (Moments of Random Matrices [23]). The special case of f (t) = t*
for integer k is Lipschitz continuous. Using the fact that [48, p. 72]

J(x) =log(e™ 4+e" 4 - - 4¢e"")

. . . k
is a convex function of x, and setting )\f = elog A = g, we have

f(x) =log (AT +---+Ay) = log <ZA’“>
=1

is also a convex function.
Jensen’s inequality says that for a convex function ¢

qb (Z aixi> g Zazqﬁ (in), Zai = 1, a; 2 0.

It follows from Jensen’s inequality that

n

f(x) =log (iAf) < znjlogAf = k:zn:log)\i <EY (Ni—1).
=1 =1 1=1

i=1

In the last step, we use the inequality that logz < z — 1,2 > 0.

Since A; (A) is 1-Lipschitz, f (x) is also Lipschitz.

Another direct approach is to use Lemma 4.3.1: If f : R — R is a Lipschitz
function, then

1 n
F—%;f(&)

is a Lipschitz function of (real and imaginary) entries of A. If f is convex on the
real line, then F is convex on the space of matrices (Klein’s lemma). Clearly f (¢) =
t*,a > 1is a convex function from R to R. f (¢) = ¢* is also Lipschitz.

Since < log f (t) =log (t) <t — 1, ¢ > 0 we have

2log|f(:v)—f(y)|<\9f—y|

where f(t) = t°. O
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4.4 Approximation of Matrix Functions Using Matrix
Taylor Series

When f(t) is a polynomial or rational function with scalar coefficients a; and a
scalar argument ¢, it is natural to define [20] f(A) by substituting A for ¢, replacing
division by matrix inverse and replacing 1 by the identity matrix. Then, for example

1442

- = f(A)=1-A)"" (I+A?% ifl¢Q(A).

f®)

Here Q2 (A) is the set of eigenvalues of A (also called the spectrum of A). Note
that rational functions of a matrix commute, so it does not matter whether we write

I—A)"" (I+A?) or (I+A?)(I- A)7'UIf f has a convergent power series
representation, such as

A R
log(l+t)=t——+———+--- |t| <1
og(l+t)=t—+5 -7+ <L,

we can again simply substitute A for ¢ to define

A2 3A A4
log(1+A)=A— —+———+-- p(A) <L

Here, p is the spectral radius of the condition p (A) < 1 ensures convergence of the
matrix series. We can consider the polynomial

f(t):Pn(t):a0+alt+"'+antn,
For we have
f(A):Pn(A>:a0+CL1A+---+anA"_

A basic tool for approximating matrix functions is the Taylor series. We state
a theorem from [20, Theorem 4.7] that guarantees the validity of a matrix Taylor
series if the eigenvalues of the “increment” lie within the radius of convergence of
the associated scalar Taylor series.

Theorem 4.4.1 (convergence of matrix Taylor series). Suppose f has a Taylor
series expansion

& | 7 ()
PO =Y antz e (akz . ) “.17)

with radius of convergence r. If A € C"*™ then f(A) is defined and is given by



212 4 Concentration of Eigenvalues and Their Functionals

Zak —OzI

if and only if each of the distinct eigenvalues \1, ..., \s of A satisfies one of the

conditions

L |Ni—al<r

2. |\i —a| = 7, and the series for =1 (X\) (where n; is the index of \;) is
convergent at the points A = \j,1 =1,2,...,s.

The four most important matrix Taylor series are

eXP(A)—I—FA—F%Q-i-%B—i—
cos(A):If%!z+IZ!4 ‘2!6+‘..7
sin(A):I—é—j—k?ff_137!74_...7

log(I+A)= A—g—f+§_%+...’ p(A) <1,

the first three series having infinite radius of convergence. These series can be used
to approximate the respective functions, by summing a suitable finite number of
terms. Two types of errors arise: truncated errors, and rounding errors in the floating
point evaluation. Truncated errors are bounded in the following result from [20,
Theorem 4.8].

Theorem 4.4.2 (Taylor series truncation error bound). Suppose [ has the Tay-
lor series expansion (4.17) with radius of convergence r. If A € C"*™ with
p (A — al) < r, then for any matrix norm

<1 _ D) E ) _ H
K'OIL%H(A o)X ) (0 4+ (A — aT))|.

F(A) =D ap(A—al)"

H 3
k=1

(4.18)

In order to apply this theorem, we need to bound the term max H (A — aI)K U

(aI+t(A — al))||. For certain function f this is easy. We illustrate using the
cosine function, with « = 0, and K = 2k + 2, and

2k A
T2k: (A) — Z ((_211))' A2’i7
=0 :

the bound of Theorem 4.4.2 is, for the co-norm,
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HCOS (A) — 1oy, ( )H (2k+2 3 01'2?2(1 HA2k+2COS(2k+2 (tA)H

252 s eos2 1)

- (2k+2)! % gt

Now

Joax [|eost® 2 (tA)]

<1+ HAHoo + HA4\'|OC 4= COSh(”AHoo)v

- Orgggl Jcos (tA)]|.

and thus the error is the truncated Taylor series approximation to the matrix cosine
has the bound

|2

[cos (A) — Tox (A)]|, < D

cosh ([[Afl ) -
Consider the characteristic function
det (A —tI) = t" + 1 t" 4 --- 4 ¢,
By the Cayley-Hamilton theorem,

n—1
Aflzfi (An 1+201An i— 1>.
Cn

=1

The ¢; can be obtained by computing the moments
mszr(Ak),k:L...,n

and then solving the Newton identities [20, p. 90]

- 1 |lec m
1 1 1
c m
my 2 2 2
meo Ty 3
ms3 Mg My 4 =
Mp—1 -+ M3 Mo M1 N
| Mn—1 smzman] | e,
Let us consider a power series of random matrices X*, k = 1,..., K. We define

a matrix function F' (X) as
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K
F(X)=aol+a X+ +axg XK =" a,XF,

where a;, are scalar-valued coefficients. Often we are interested in the trace of this
matrix function

Tr (F (X)) = aoTr (I) + a1 Tr (X) + - - - + ax Tr (XX) Z a, Tr (X*)..

Taking the expectation from both sides gives

K K
Tr(E(F (X)) = E(Tr (F (X)) =E Y axTr (X¥) = o, (Tr (XX)).
k=0 k=0

Let us consider the fluctuation of this trace function around its expectation

K
Tr (F (X)) — Tr (EF (X ZakTr (X*) = axE (Tr (X5))
k=0

= a [Tr (XX) - E (Tr (XX))].

k=0

If we are interested in the absolute of this fluctuation, or called the distance
Tr (F (X)) from Tr (EF (X)), it follows that

K
ITr (F (X)) = Tr (BF (X))[< Y ar [Tr (XF) — E (Tr (X*)) ],
k=0

<> {1 (XF)| + [E (T (XF)) [}, @.19)

k=0

since, for two complex scalars a,b, a — b < |a — b < |a| + [b] . E (Tr (X*)) can
be calculated. In fact, |Tr (A)| is a seminorm (but not a norm [23, p. 101]) of A.
Another relevant norm is weakly unitarily invariant norm

7(A) =7 (U*AU), forall A, U € C"*".

The closed form of expected moments E (Tr (XK )) is extensively studied and
obtained [69]. Tr (XK ) can be obtained numerically.

More generally, we can study F' (X) — EF (X) rather than its trace function; we
have the matrix-valued fluctuation
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K K K K
F(X)-E(F(X)=> aX"-E (Z aka> =3 aXF =) aRE (XF)
k=0 k=0 k=0 k=0

Z E(X")). (4.20)

According to (4.20), the problem boils down to a sum of random matrices, which are
already treated in other chapters of this book. The random matrices X* — E (Xk)
play a fundamental role in this problem.

Now we can define the distance as the unitarily invariant norm [23, p. 91] |||-|||
of the matrix fluctuation. We have

[TOUAV]]|| = [[[A]]

for all A of n x n and for unitary U, V.

For any complex matrix A, we use [|Al| | = (A*A)"? to denote the positive
semidefinite matrix [16, p. 235]. The main result, due to R. Thompson, is that for
any square complex matrices A and B of the same size, there exist two unitary
matrices U and V such that

[A+Bl,. <UA[ U+ VB|,V. (4.21)

Note that it is false to write [|A + BJ| . < [[A[ + ||B]|.. However, we can take
the trace of both sides and use the linearity of the trace to get

Tr|A + B|, < Tr|A|l, + Tr|B] ., (4.22)

since TrU*U = I and TrV*V = 1. Thus we have

Tre||XF + B (=X9)[|, < Trl|XF||, + Tr||B (=X") ], . (4.23)
Inserting (4.23) into (4.20) yields
K
TH|F (X) — E(F (X)), <> ax [T XM, + B (-X9)[|, ] @29
k=0

We can choose the coefficients a; to minimize the right-hand-side of (4.19)
or (4.24). It is interesting to compare (4.19) with (4.24). If X* are positive semi-
definite, X* > 0, both are almost identical. If X > 0, then X* > 0. Also note
that

n
TrAk =) " Af(A
=1

where \; are the eigenvalues of A.
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4.5 Talagrand Concentration Inequality

Let x = (X1,...,X,,) be a random vector consisting of n random variables. We
say a function f : R™ — R is Lipschitz with constant K or K-Lipschitz, if

() = FWI<Kx -yl

for all x,y € R™. Here we use the Euclidean norm ||-|| on R".

Theorem 4.5.1 (Talagrand concentration inequality [148]). Let k > 0, and let
X1, ..., X, be independent complex variables with | X;| < k forall 1 < i < n. Let
f : C™ — R be a 1-Lipschitz and convex function (where we identify C™ with R*"
for the purposes of defining “Lipschitz” and “convex”). Then, for any t, one has

P(|f (x) — Mf (x)| > st) < Ce™" (4.25)
and
P(|f (x) —Ef (x)| > kt) < Ce™e"’ (4.26)

for some absolute constants C, ¢ > 0, where MLf (x) is the median of f (x) .

See [63] for a proof. Let us illustrate how to use this theorem, by considering the
operator norm of a random matrix.

The operator (or matrix) norm [|A |, is the most important statistic of a random
matrix A. It is a basic statistic at our disposal. We define

[All,, = sup [JAx]]
xeC™:||x||=1

where ||x|| is the Euclidean norm of vector x. The operator norm is the basic upper
bound for many other quantities.

The operator norm ||A ||, is also the largest singular value oyax (A) or o1 (A)
assuming that all singular values are sorted in an non-increasing order. [|A[[,,
dominates the other singular values; similarly, all eigenvalues A; (A) of A have
magnitude at most [|A[| .

Suppose that the coefficients &;; of A are independent, have mean zero, and
uniformly bounded in magnitude by 1 (v = 1). We consider o (A) as a function

f ((fij)l <ij gn) of the independent complex &;;, thus f is a function from c’

to R. The convexity of the operator norm tells us that f is convex. The elementary
bound is

|A| < ||A|l g or oy (A) < ||A]| g or omax (A) < [|A|l 2 (4.27)
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where
1/2

A= | D> Il

i=1 j=1

is the Frobenius norm, also known as the Hilbert-Schmidt norm or 2-Schatten
norm. Combining the triangle inequality with (4.27) tells us that f is Lipschitz
with constant 1 (X = 1). Now, we are ready to apply Talagrand’s inequality,
Theorem 4.5.1. We thus obtain the following: For any ¢ > 0, one has

P (01 (A) — Moy (A) > t) < Ce™t

and

2

P(oy (A) —Eoy (A) > t) < Ce™ (4.28)

for some constants C', ¢ > 0.
If f : R — R s a Lipschitz function, then

szﬁgmi)

is also a Lipschitz function of (real and imaginary) entries of A. If f is convex on the
real line, then F' is convex on the space of matrices (Klein’s lemma). As a result, we
can use the general concentration principle to functions of the eigenvalues \; (A).
By applying Talagrand’s inequality, Theorem 4.5.1, it follows that

»—
\%

P (711 Z Fa(A)) -E- Z f (N (A)) t> < Ce=t? (4.29)

Talagrand’s inequality, as formulated in Theorem 4.5.1, heavily relies on con-
vexity. As a result, we cannot apply it directly to non-convex matrix statistics, such
as singular values o; (A) other than the largest singular value o (A). The partial

k
sum »_ o; (A), the sum of the first k singular values, is convex. See [48] for more
i=1
convex functions based on singular values.
The eigenvalue stability inequality is

[Ai (A +B) — i (A)] < B,
The spectrum of A + B is close to that of A if B is small in operator norm. In

particular, we see that the map A — A; (A) is Lipschitz continuous on the space of
Hermitian matrices, for fixed 1 < 7 < n.
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It is easy to observe that the operator norm of a matrix A = (&;;) bounds the
magnitude of any of its coefficients, thus

sup [&5] < o1 (A)
1<i,j<n

or, equivalently

P (A)<t)<P| [ l&l<t

1<i,j<n

We can view the upper tail event oy (A) < ¢ as a union of many simpler events
|&ij] <t. In the iid. case §; = &, and setting ¢t = ay/n for some fixed «
independent of n, we have

P (o1 (A) <) < {P(I6] < avim)}" .

4.6 Concentration of the Spectral Measure for Wigner
Random Matrices

We follow [180, 186]. A Hermitian Wigner matrix is an n X n matrix H =

(hij)1<icj<n Such that

1

1
NG

where {z;j,i;,®i;} are a collection of real independent, identically distributed
random variables with Ex;; = 0 and Ez7; = 1/2.

The diagonal elements are often assumed to have a different distribution, with
Ez;; = 0 and Emfj = 1. The entries scale with the dimension n. The scaling is
chosen such that, in the limit n — oo, all eigenvalues of H remain bounded. To see
this, we use

hy; = Tii forall 1<i<n

2 2
EY M =ETH>*=EY > |hj|* = n’E|hy]
k=1 =1 j=1

where A\, k = 1,...,n are the eigenvalues of H. If all A\; stay bounded and of order
one in the limit of large dimension n, we must have ETr H? ~ n and therefore
Elhij|* ~ L Note that a trace function is linear.
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In Sect. 4.3, we observe that using > f (Ax (A)) rather than A\ (A) increases
k=1
the Lipschitz constant from 1 to /n|f| .

Theorem 4.6.1 (Guionnet and Zeitouni [180]). Suppose that the laws of the
entries {x;j,Yi;, T} satisfies the logarithmic Sobolev inequality with constant
¢ > 0. Then, for any Lipschitz function f : R — C, with Lipschitz constant |f|,
andt > 0, we have that

1 1 -2
P (‘n Tr f (H) — E—Tr f (H)‘ > t) < 2e *MIZ, (4.30)
Moreover, forany k = 1,...,n, we have
P(f (M) —Ef ()] >1t) <2 “VIZ, (4.31)

In order to prove this theorem, we want to use of the observation of Herbst that
Lipschitz functions of random matrices satisfying the log-Sobolev inequality exhibit
Gaussian concentration.

Theorem 4.6.2 (Herbst). Suppose that P satisfies the log-Sobolev inequalities on
R™ with constant c. Let G : R™ — R be a Lipschitz function with constant |G| .
Then, for every t > 0,

+2

P(g(x) — Eg(x)| > 1) < 2¢~ 707z

See [186] for a proof.
To prove the theorem, we need another lemma.

Lemma 4.6.3 (Hoffman-Wielandt). Let A, B be n x n Hermitian matrices, with
eigenvalues

We see [187] for a proof.

Corollary 4.6.4. Let X = ({x;,yij,xii}) € R™ and let Ay, (X),k=1,...,nbe

the eigenvalues of the Wigner matrix X = H(X). Let g : R" — R be a Lipschitz

function with constant |g| . Then the map X € R — g (A (X),..., A (X)) €

R is a Lipschitz function with coefficient \/2/n|g| .. In particular, if f : R — R is

a Lipschitz function with constant |f| ., the map X & R™ — S () €ERisa
i=1

Lipschitz function with constant /2| f| ;.

Proof. Let A = (A1,...,\,) . Observe that



220 4 Concentration of Eigenvalues and Their Functionals

|9 (A (X)) =g (A (X)) [<lgl [|A (X) =A (XT) ||

= Il | 2% (%) = X (X[ <lgl /T (H.(X) ~H (X)))?

=gl |D° iy (X) —hi; (XN)P<\/2/nlgl o [ XX

i=1 j=1

Rn2

4.32)

The first inequality of the second line follows from the lemma of Hoffman-Wielandt
above. || X — X'||z.2 is also the Frobenius norm.

Since g (A) =Tr f (H) = i f (Ak) is such that

i=1

9 (A) =g (A< 1F12 D0 A= A

1=

<Vl I1X = Xl
1
it follows that g is a Lipschitz function on R™ with constant \/n|f|,. Combined
with (4.32), we complete the proof of the corollary. (]

Now we have all the ingredients to prove Theorem 4.6.1.

Proof of Theorem 4.6.1. Let X = ({z;,vj,%ii}) € R . Let G (X) =
Tr f (H (X)) . Then the matrix function G is Lipschitz with constant v/2|f| .. By
Theorem 4.6.2, it follows that

n2¢2

P (‘lTrf(H) —]ElTrf(H)‘ > t) <2 *UIE,
n n

To show (4.31), we see that, using Corollary 4.6.4, the matrix function G(X) =
[ (Ax) is Lipschitz with constant y/2/n| f| .. By Theorem 4.6.2, we find that

nt?

P(lf ) —Ef (\e)] =) <2 *V1Z,

which is (4.31). O

Example 4.6.5 (Applications of Theorem 4.6.1). We consider a special case of
f(s) = s. Thus |f|i = 1. From (4.31) for the k-th eigenvalue \j; of random
matrix H, we see at once that, forany k = 1,... . n,

nt?

P(|Ax —EXg| = ¢) < 2e” 4c.

For the trace function % Tr (H), on the other hand, from (4.30), we have

7

n2¢2

1 1 2
Tr(H)—IE’IT(H)‘ >t> <2 E .
n n
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The right-hand-side of the above two inequalities has the same Gaussian tail but with
different “variances”. The k-th eigenvalue has a variance of 02 = 2¢/n, while the
normalized trace function has that of 02 = 2¢/n?. The variance of the normalized
trace function is 1/n times that of the k-th eigenvalue. For example, when n =
100, this factor is 0.01. In other words, for the normalized trace function—viewed
as a statistical average of n eigenvalues (random variables)—reduces the variance
by 20 dB, compared with the each individual eigenvalue. In [14], this phenomenon
has been used for signal detection of extremely low signal to noise ratio, such as
SNR = —34dB.

The Wishart matrix is involved in [14] while here the Wigner matrix is used. In
Sect. 4.8, it is shown that for the normalized trace function of a Wishart matrix, we
have the tail bound of 26_%, similar to a Wigner matrix. On the other hand, for
the largest singular value (operator norm)—see Theorem 4.8.11, the tail bound is
C e—cnt2 .

For hypothesis testing such as studied in [14], reducing the variance of the
statistic metrics (such as the k-th eigenvalue and the normalized trace function)
is critical to algorithms. From this perspective, we can easily understand why the
use of the normalized trace as statistic metric in hypothesis testing leads to much
better results than algorithms that use the k-th eigenvalue [188] (in particular, k = 1
and £k = n for the largest and smallest eigenvalues, respectively). Another big
advantage is that the trace function is linear. It is insightful to view the trace function

n
as a statistic average ~ Tr (H) = L1 > )., where )\ is a random variable. The
n n = )

statistical average of n random Variablés, of course, reduces the variance, a classical
result in probability and statistics. Often one deals with sums of independent
random variables [189]. But here the n eigenvalues are not necessarily independent.
Techniques like Stein’s method [87] can be used to approximate this sum using
Gaussian distribution. Besides, the reduction of the variance by a factor of n by
using the trace function rather than each individual eigenvalue is not obvious to
observe, if we use the classical techniques since it is very difficult to deal with sums
of n dependent random variables.

For the general case we have the variance of 02 = 2c|f |i /n and 0% =
2c|f |i /n? for the k-th eigenvalue and normalized trace, respectively. The general
Lipschitz function f with constant | f| . increases the variance by a factor of | f \i .

If we seek to find a statistic metric (viewed as a matrix function) that has a
minimum variance, we find here that the normalized trace function X Tr (H) is
optimum in the sense of minimizing the variance. This finding is in agreement with
empirical results in [14]. To a large degree, a large part of this book was motivated
to understand why the normalized trace function % Tr (H) always gave us the best
results in Monte Carlo simulations. It seemed that we could not find a better matrix
function for the statistic metrics. The justification for recommending the normalized
trace function = Tr (H) is satisfactory to the authors. O
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4.7 Concentration of Noncommutative Polynomials
in Random Matrices

Following [190], we also refer to [191, 192]. The Schatten p-norm of a matrix A
1/p

is defined as [|A||, = (Tr (AHA)p/Q) . The limiting case p = co corresponds

to the operator (or spectral) norm, while p = 2 leads to the Hilbert-Schmidt (or

Frobenius) norm. We also denote by ||-||,, the L,,-norm of a real or complex random

variable, or £,-norm of a vector in R” or C".

A random vector x in a normed space V satisfies the (sub-Gaussian) convex
concentration property (CCP), or in the class CCP, if

P[If (x) — Mf (x)] > ] < Ce™ (4.33)

for every t > 0 and every convex 1-Lipschitz function f : V' — R, where C,c > 0
are constants (parameters) independent of f and ¢, and M denotes a median of a
random variable.

Theorem 4.7.1 (Meckes [190]). Let X1,...,X,, € C"*™ be independent, cen-
tered random matrices that satisfy the convex concentration property (4.33) (with
respect to the Frobenius norm on C"*") and let k > 1 be an integer. Let P be a
noncommutative x-polynomial in m variables of degree at most k, normalized so
that its coefficients have modulus at most 1. Define the complex random variable

1 1
Zp=TrP|(—=Xy,...,—X,. ).
T (ﬁ R >

Then, fort > 0,
P[|Zp — EZp| > ] < Cosy exp [—cm,k min {tQ, ntQ/k}] .
The conclusion holds also for non-centered random matrices if—when k > 2—we

assume that [EX ||, _q) < CnF/2E=1) for all i.

We also have that for g > 1

, k/2
1Zp —EZp], < Cly  max {ﬁ], (%) } .

Consider a special case. Let X € C™*" be a random Hermitian matrix which
satisfies the convex concentration property (4.33) (with respect to the Frobenius
norm on the Hermitian matrix space), let £ > 1 be an integer, and suppose—when

2(k—1)
k > 2—that Tr (ﬁx) < Cn. Then, for t > 0,
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k

P >t| <Cexp [— min {cth,cntZ/kH .

1 \" 1
Tr | —=X)] —MTr( —=X
' (Jﬁ ) ' (\/ﬁ )
Consider non-Hermtian matrices.

Theorem 4.7.2 (Meckes [190]). Let XeC™*"™ be a random matrix which satisfies
the convex concentration property (4.33) (with respect to the Frobenius norm on
C"*™), let k > 1 be an integer, and suppose—when k > 2—that HEXHQ(kq) <

en®/2=1) Then, for t>0,

() oo ()

P >t| <C (k+1)exp [— min {ckt27 cntQ/kH .

4.8 Concentration of the Spectral Measure for Wishart
Random Matrices

Two forms of approximations have central importance in statistical applica-
tions [193]. In one form, one random variable is approximated by another random
variable. In the other, a given distribution is approximated by another.

We consider the Euclidean operator (or matrix) norm

(@i = (@ij)lloyye = sUp Q> aijway; + Y 27 <1, Y y5 <1
i i j

of random matrices whose entries are independent random variables.
Seginer [107] showed that for any m x n random matrix X = (Xy;),,. i<n
with iid mean zero entries

.. 2
E[(X;)ll < C | Emax ZXij-l-Ejrggx

j<n i<m

where C' is a universal constant.
For any random matrix with independent mean zero entries, Latala [194] showed
that

1/4

E [|(X;) < C | max ZIEX%—ijax > EXZ + | ) EX} ,
J % ]

where C' is some universal constant.
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Reference [183] is relevant in the context.
For a symmetric n x n matrix M, Fy(\) is the cumulative distribution function
(CDF) of the spectral distribution of matrix M

Fu) =23 (nM) <A} ek,

The integral of a function f(-) with respect to the measure induced by Fig is denoted
by the function

Faa(f) = = 577 Ou (M) = =T 7 (M),

For certain classes of random matrices M and certain classes of functions f, it can
be shown that F\g(f) is concentrated around its expectation EFyg(f) or around any
median My (f).

For a Lipschitz function g, we write ||g|| 2 for its Lipschitz constant. To state the
result, we also need to define bounded functions: f : (a,b) — R are of bounded
variation on (a, b) (where —oco < a < b < 0), in the sense that

n

Vi (a,b) = sup sup Z |f (zk) — [ (zk-1)]

n2la<zo<T1<STn

is finite [195, Sect. X.1]. A function is bounded variation if and only if it can be
written as the difference of two bounded monotone functions on (a, b). The indicator
function g :  — {z < A} is of bounded variation on R with V,,(R) = 1 for each
AeR.

Theorem 4.8.1 (Guntuboyina and Lebb [196]). Let X be an m X n matrix
whose row-vectors are independent, set a Wishart matrix S = XTX/m, and

fixf :R—R.

1. Suppose that f is such that the mapping x — f (zz) is convex and Lipschitz,
and suppose that | X; ;| < 1 for each i and j. For all t > 0, we then have

_ nm 2 1
n+mslf (2]

P(’lﬂf(S)—MlTYf(S)’ >t) < dexp
n n

(4.34)

where M stands for the median. [From the upper bound (4.34), one can also
obtain a similar bound for P (’% Trf(S)—ELTrf (S)‘ > t) using standard
methods (e.g.[197])]

2. Suppose that f is of bounded variation on R. For all t > 0, we then have
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P (’iTrf(S) —E;Trf(S)‘ > t) < 2exp

In particular, for each A € R and allt > 0, we have
1 1 2n? ,
Pl|—Trf(S)—E-Trf(S)|>t] <2exp|——1|.
n n m

These bounds cannot be improved qualitatively without imposing additional as-
sumptions. This theorem only requires that the rows of X are independent while
allowing for dependence within each row of X.

Let us consider the case that is more general than Theorem 4.8.1. Let X be a
random symmetric n X n matrix. Let X be a function of m independent random
quantities y1, ..., Ym, 1.6, X = X (y1,-..,Ym) . Write

Xy =X (Y155 Yi-1,Uis Vit Ym) (4.35)

where y; is distributed the same as y; and represents an independent copy of y;.
Vi,t =1,...,m are independent of y1, ..., ¥,,. Assume that

(4.36)

S

HiTrf (X/vm) - %Trf (&i)N@H S

holds almost surely for each ¢ = 1, ..., m and for some (fixed) integer r.

Theorem 4.8.2 (Guntuboyina and Lebb [196]). Assume (4.36) is satisfied for
eachi = 1,...,m. Assume f : R — R is of bounded variation on R. For any
t > 0, we have that

n? 22

AV
(4.37)

PQ;ﬂf@mmo—@jnﬂxw%ﬁ>Q<2wp#

To estimate the integer 7 in (4.35), we need the following lemma.
Lemma 4.8.3 (Lemma 2.2 and 2.6 of [198]). Let A and B be symmetric n X n

matrices and let C and D be m x n matrices. We have

PRI U
n n

o
and

1 T 1 T
HnTrf(C c)-lnmsm D)H < fank(C D)

o0
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Now we are ready to consider an example to illustrate the application.

Example 4.8.4 (Sample covariance matrix of vector moving average (MA) pro-
cesses [196]). Consider an m X n matrix X whose row-vectors follow a vector
MA process of order 2, i.e.,

(Xiw)T =yi+1+By;, i=1,...,m

where y1,...,ym € R™ are m+1 independent n-vectors and B is some fixed n xn
matrix.
Now for the innovations y;, we assume that y; = Hz;,7 = 1,...,m + 1, where

H is a fixed n X n matrix. Write Z as
Z= (21, . 2mi1) =(Zy), i=1,...m+1,j=1,....n

where the entries Z,; of matrix Z are independent and satisfy |Z;;| < 1. The
(random) sample covariance matrix is S = X7 X /m. For a function f such that
the mapping x — f (;vz) is convex and Lipschitz, we then have that, for all £ > 0

n3m 2

n+m8c2|f(2)|z]
.

P(‘lTrf(S)MlTrf(S)‘ 215) < dexp
n n

where C' = (1 + ||BJ|) |H|| with || - || denoting the operator (or matrix) norm.
O

We focus on Wishart random matrices (sample covariance matrix), that is S =
%YYH, where Y is a rectangular p X n matrix. Our objective is to use new
exponential inequalities of the form

Z =g, 0)

where (\;), <i<p 18 the set of eigenvalues of S. These inequalities will be upper
bounds on E [e#~%Z] and lead to natural bounds P (|Z — EZ| > t) for large values
of t.

What is new is following [199]: (i) g is a once or twice differentiable function
(i.e., not necessarily of the form (4.39)); (ii) the entries of 'Y are possibly dependent;
(iii) they are not necessarily identically distributed; (iv) the bound is instrumental
when both p and n are large. In particular, we consider

g A) =D e (). (4.39)
k=1

A direct application is to spectrum sensing. EZ is used to set the threshold for
hypothesis detection [14,200]. Only simple trace functional of the form (4.39) is
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used in [14]. We propose to investigate this topic using new results from statistical
literature [180, 199, 201].

For a vector x, ||x|| stands for the Euclidean norm of the vector x. ||X]||, is the
usual L,-norm of the real random variable X.

Theorem 4.8.5 (Deylon [199]). Let Q be a N X N deterministic matrix, X =
(Xi5),1 <i < N,1<j < nbeamatrix of random independent entries, and set

1
Y = —QxXX*Q.
n

Let A\ — g(\) be a twice differentiable symmetric function on RN and define
the random variable Z = g (\1,...,An) where (A1,...,\n) is the vector of the
eigenvalues of Y. Then

64N N 2
E [e?"BZ] < exp (54 (% + 5272> > :
n n
where
€= 1Qllsup [| X4
7,]

dg
)

Y2 = sup Hv2g ()\)H (matrix norm).
A

Y1 = sup
kA

In particular, for any t > 0

-2
N 2,4 N
P(1Z-E |>t)\2€Xp< 256Nt€ (Wl n€,y2> >

When dealing with the matrices with independent columns, we have Q = I, where
I is the identity matrix.

Theorem 4.8.6 (Deylon [199]). Ler X = (X;;),1 < i < N,1 < j < nbea
matrix of random independent entries, and set

Y = lXXT.
n

Let X — g () be a twice differentiable symmetric function on RY and define the
random variable

Z:g(AhaAN)
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where (A1, ..., \N) is the vector of the eigenvalues of Y . Then
4 2,2
E [¢7"%] < exp (6“71) 7
n

where

_ 99
"= Slip ’3)\1 (>\)

1/2

o= |2
J i

o0

In particular, for any t > 0

E [e” "] < 2exp —LtQ
h 64a*~y? )

Random matrices can be expressed as functions of independent random vari-
ables. Then we think of the linear statistics of eigenvalues as functions of these
independent random variables. The central idea is pictorially represented as

large vector x = matrix A (x) = linear statistic Z fNi(A) =g(x).

(2

For each ¢1, co > 0, let L(cq, ¢2) be the class of probability measures on R that arise
as laws for random variables like w(Z), where Z is a standard Gaussian random
variable and u is a twice continuously differentiable function such that for all z € R

|u'(z) < c1] and |u”(x) < cof .

For example, the standard Gaussian law is in £(1,0). Again, taking v = the
Gaussian cumulative distribution, we see that the uniform distribution on the

unit interval is in £ ((27r)_1/27 (271'6)_1/2) . A random variable is said to be

“in L(c1,c2)” instead of the more elaborate statement that “the distribution of
X belongs to L(cy,c2).” For two random variables X and Y, the supremum of
|P(X € B) —P(Y € B)| as B ranges from all Borel sets is called the fotal varia-
tion distance between the laws of X and Y, often denoted simply by dry (X,Y).

The following theorem gives normal approximation bounds for general smooth
functions of independent random variables whose law are in £(cy1,¢2) for some
finite ¢, co.

Theorem 4.8.7 (Theorem 2.2 of Chatterjee [201]). Let x = (X1,...,X,) be a
vector of independent random variable in L(c1, co) for some finite cq, co. Take any
g € C% (R") and let Vg and V*g denote the gradient and Hessian of g. Let
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4\ 1/2 14
) ,m= EIVeXOIN ke = (B[VPe(x)]")

Suppose W = g (x) has a finite fourth moment and let 0> = Var (W) . Let Z be a
normal random variable with the same mean and variance as W. Then

25 (0162110 + c:f/img)
5 .

drv (W, Z) <

o

If we slightly change the setup by assuming that x is a Gaussian random vector

with mean 0 and covariance matrix 3, keeping all other notations the same, then
the corresponding bound is

25| S)% k1

drv (W, Z) < 5

g
The cornerstone of Chatterjee[201] is Stein’s method [202]. Let us consider a
particular function f. Let n be a fixed positive integer and J be a finite indexing
set. Suppose that for each 1 < i, j, < n, we have a C* map a;; : R? — C. For each
x € R, let A(x) be the complex n x n matrix whose (7, j)-th element is a;;(x).
Let

f(z)= Z by 2"
k=0

be an analytic function on the complex plane. Let X = (X,,), s be a collection
of independent random variables in £(c1, ¢2) for some finite ¢1, co. Under this very
general setup, we give an explicit bound on the total variation distance between
the laws of the random variable Re Tr f (A (x)) and a Gaussian random variable
with matching mean and variance. (Here Re z denotes the real part of a complex
number z.)

Theorem 4.8.8 (Theorem 3.1 of Chatterjee [201]). Let all notations be as above.
Suppose W = ReTr f (A (x)) has finite fourth moment and let 0> = Var (W).
Let Z be a normal random variable with the same mean and variance as W. Then

2\/5 (01621430 + C?Iill€2)
3 .

drv (W, Z) <

g

If we slightly change the setup by assuming that x is a Gaussian random vector
with mean 0 and covariance matrix 3, keeping all other notations the same, then
the corresponding bound is

25| S)% k1

drv (W, Z) < 5

g
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Let us consider the Wishart matrix or sample covariance matrix. Let N < n
be two positive integers, and let X = (Xj;), <i<N.i<j<n D€ a collection of
independent random variables in £(cy, ¢2) for some finite ¢1, co. Let

A= 1XXT.
n

Theorem 4.8.9 (Proposition 4.6 of Chatterjee [201]). Let A be the largest eigen-
value of A.. Take any entire function f and define f, and fo as in Theorem 4.8.8. Let

1/4 1/4
_ (]E (fl()\)4)\2>) and b = (E(f1 (A) + 2N~V2\f, (/\))4) . Suppose
W = ReTr f (A (x)) has finite fourth moment and let 0> = Var (W) . Let Z be a
normal random variable with the same mean and variance as W. Then

VN  clabN
dry (W, Z) < 8\/25 (clcga n ciab ) .
o

n n3/2

If we slightly change the setup by assuming that the entries of x is jointly Gaussian
with mean 0 and nN x nN covariance matrix 3, keeping all other notation the
same, then the corresponding bound is

8V5||IS | 2abN

drv (W, Z) < oy

Double Wishart matrices are important in statistical theory of canonical corre-
lations [203, Sect.2.2]. Let N < n < M be three positive integers. Let X =
(Xij)hicicnicicn ad Y = (Xij); ;e v 1<jcas e a collection of independent
random variables in £(c1,cq) for some finite ¢;,cy. Define the double Wishart
matrix as

A=XXT(YYT)™

A theorem similar to Theorem 4.8.9 is obtained in [201]. In [204], a central limit
theorem is proven for the Jacob matrix ensemble. A Jacob matrix is defined as A =
XXT(XXT+YYT) ~' when the matrices X and Y have independent standard
Gaussian entries.

Let 1 and v be two probability measures on C (or R?). We define [59]

IFll <1

o) = sup / f@h (o) - [ faw (do)]. (4.40)
C
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where f above is a bounded Lipschitz function defined on C with || f|| = sup | f(z)|
zeC

and [ = 111 +sup L=

Theorem 4.8.10 (Jiang [204]). Let X be an n x n matrix with complex entries, and
AL, ..., Ay are its eigenvalues. Let pux be the empirical law of \;,; 1 <1 < n. Let i
be a probability measure. Then p (ux, it) is a continuous function in the entries of
matrix X, where p is defined as in (4.40).

Proof. The proof of [204] illustrates a lot of insights into the function p (ux, 1),
so we include their proof here for convenience. The eigenvalues of X is denoted by
Ai, 1 <4 < n. First, we observe that

/f Jiix (d) = Zf

Then by triangle inequality, for any permutation 7 of 1,2,...,n,

lp (px, 1) — p (py, )| < 2 sup

5 r ) - £ (v)

1l e<ti= =
S 1rg?<Xn Hfs‘|up<1 ZE f ( i (X)) - z; i (Y))’
< Jpax. [ Ar(y (X) = Xi (Y)],

where in the last step we use the Lipschitz property of f : |f(x) — f(y)| < |z — y|
for any = and y. Since the above inequality is true for any permutation 7, we have
that

1P (ux, 1) = p (s )| < min max | Ar(y (X) = X (Y)].

Using Theorem 2 of [205], we have that

min max [Arg) (X) =X (V)] < 275 X =YL (1K, + Y ])'
where ||X||, is the operator norm of X. Let X = (z;;) and Y = (y;;). We know
that | X[, < > |xij|2. Therefore
1<i,j<n

1/(2n)
o (uxs1) = p (s )| <27V X =Y [0S0 Jay — gl

1<i,j<n
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For a subset A C C, the space of Lipschitz functions f : A — R is denoted
by Lip (A). Denote by P(A) the space of all probability measures supported in A,
and by P,(A) be the space of all probability measures with finite p-th moment,
equipped with the L, Wasserstein distance d,, defined by

1/p
) =int ([ x=ylParxy) (4.41)

[|-]| is the Euclidean length (norm) of a vector. The infimum above is over probability
measures 7 on A x A with marginals 1 and v. Note that d, < d, when p < g. The
L, Wasserstein distance can be equivalently defined [59] by

&y (4, ) = sup / F() — F(y)]dp (x) dio(y), 4.42)
f

where the supremum is over f in the unit ball B (Lip (A)) of Lip (A) .
Denote the space of 7 x n Hermitian matrices by M;% .. Let A be a random
n x n Hermitian matrix. An essential condition on some of random matrices used

in the construction below is the following. Suppose that for some C, ¢ > 0,
P(|F(A) —EF(A)| > t) < Cexp [—ct?] (4.43)

for every ¢ > 0 and F' : M?%, — R which is 1-Lipschitz with respect to the
Hilbert-Schmidt norm (or Frobenius norm). Examples in which (4.43) is satisfied

include:

1. The diagonal and upper-diagonal entries of matrix M are independent and each
satisfy a quadratic transportation cost inequality with constant ¢/\/n. This is
slightly more general than the assumption of a log-Sobolev inequality [141,
Sect. 6.2], and is essentially the most general condition with independent en-
tries [206]. It holds, e.g., for Gaussian entries and, more generally, for entries
with densities of the form e~"%#(*) where u;lj () >c>0.

2. The distribution of M itself has a density proportional to e~ T**M) with 4 :

R — R such that «”(x) > ¢ > 0. This is a subclass of the unitarily invariant

ensembles [207]. The hypothesis on u guarantees that M satisfies a log-Sobolev

inequality [208, Proposition 4.4.26].

The first model is as follows. Let U(n) be the group of n x n unitary matrices.
Let U € U(n) distributed according to Haar measure, independent of A, and let
P}, denote the projection of R™ onto the span of the first k basis elements. Define a
random matrix M by

M = P, UAUYP/ (4.44)
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Then M is a compression of A (as an operator on R") to a random k-dimensional
subspace chosen independently of A. This compression is relevant to the spectrum
sensing based on principal component analysis [156, 157] and kernel principal
component analysis [159]. The central idea is based on an observation that under
extremely signal to noise ratios the first several eigenvectors (or features)—
corresponding to the first k basis elements above—are found to be robust.

For an N x N Hermitian matrix X, we define the empirical spectral measure as

1 N
px = §5xi(x)7

where \;(X) are eigenvalues of matrix X, and ¢ is the Dirac function. The empirical
spectral measure of random matrix M is denoted by ung, while its expectation is
denoted by 1t = Eung.

Theorem 4.8.11 (Meckes, E.S. and Meckes, M.W. [192]). Suppose that matrix A
satisfies (4.43) for every 1-Lipschitz function F' : M?%  — R.

nxn

1. If F : M2% . — Ris I-Lipschitz, then for M = P, UAUHPH

P(|F(M) —EF(M)| > t) < Cexp [—cnt?]

foreveryt > 0.
2. In particular,

P (|inl,, —EIM],,

> t) < Cexp [—cnt2]

foreveryt > 0.
3. For any fixed probability measure yi € Py (C) , and I-Lipschitz f : R — R, if

Zf = /fduM—/fdu,

P(|Zy — EZg| > t) < Cexp [—cknt?]

then

foreveryt > 0.
4. For any fixed probability measure i € Py (C),and 1 <p < 2,

B (|dy (1, ) — Ed, (1, v)| > 1) < Cexp [~chnt?]

foreveryt > 0.

Let us consider the expectation Edy (un, B ) -
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Theorem 4.8.12 (Meckes, E.S. and Meckes, M.W. [192]). Suppose that matrix
A satisfies (4.43) for every I-Lipschitz function F : MJ%, — R. Let M =

P,UAUH Pf , and let un denote the empirical spectral distribution of random
matrix M with u = Eun. Then,

o (em,,)” o

Edy (int, Bping) < < :
1( ) (kn)l/S (kn)l/S

and so

"

P <d1 (v, Epnt) > W + t> < Cexp [fckntz]
n

for everyt > 0.

Let us consider the second model that has been considered in free probabil-
ity [209]. Let A, B be n x n Hermitian matrices and satisfy (4.43). Let U be Haar
distributed, with A, B, U independent. Define [192]

M = UAU" 4+ B, (4.45)

the “randomized sum” of A and B.

Theorem 4.8.13 (Meckes, E.S. and Meckes, M.W. [192]). Let A,B satis-
fies (4.43) and let U € U(n) be Haar-distributed with A, B, U independent of
each other. Define M = UAU¥Y + B.

1. There exist C, c depending only on the constants in (4.43) for A and B, such that
if F': MIiS . — Ris I-Lipschitz, then

P(|[F(M)—EF(M)| > t) < Cexp [—cnt?]

foreveryt > 0.
2. In particular,

P (|inl,, —ElM],,

> t) < Cexp [—cntZ]

foreveryt > 0.
3. For any fixed probability measure p € Py (R), and 1-Lipschitz f : R — R, if

Zy Z/fduM —/fdp,
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then
P(|Zy —EZys| > t) < Cexp [—en’t?]

foreveryt > 0.
4. For any fixed probability measure p € P (R) ;and 1 < p < 2,

B (|dy (1, ) — Edy (1, v)| > t) < Cexp [~en®’]

foreveryt > 0.

Theorem 4.8.14 (Meckes, E.S. and Meckes, M.W. [192]). In the setting of The-
orem 4.8.13, there are constants ¢, C,C", C" depending only on the concentration
hypothesis for A and B, such that

c(eml,)” o

1 (n)2/3 (n)2/d

and so

!

P <d1 (unt, Epne) > (fw + t) < C" exp [—en®t?]
n

foreveryt > 0.

Theorem 4.8.15 (Meckes, E.S. and Meckes, M.W. (2011) [192]). For each n, let
A,,B, € M. be fixed matrices with spectra bounded independently of n. Let

U € U(n) be Haar-distributed. Let M,, = UA,UH + B, and let tn = Eum,, -
Then with probability 1,

C
dy (MMnyEMMn) < m

for all sufficiently large n, where C' depends only on the bounds on the sizes of the
spectra of A, and B,,.

4.9 Concentration for Sums of Two Random Matrices

We follow [210]. If A and B are two Hermitian matrices with a known spectrum
(the set of eigenvalues), it is a classical problem to determine all possibilities for
the spectrum of A + B. The problem goes back at least to H. Weyl [211]. Later,
Horn [212] suggested a list of inequalities, which must be satisfied by eigenvalues
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of A + B. For larger matrices, it is natural to consider the probabilistic analogue of
this problem, when matrices A and B are “in general position.” Let

H= A+ UBU#,

where A and B are two fixed n x n Hermitian matrices and U is a random unitary
matrix with the Haar distribution on the unitary group U (n). Then, the eigenvalues
of H are random and we are interested in their joint distribution. Let A\; (A) >
-+« = Ay (A) (repeated by multiplicities) denote the eigenvalues of A, and define
the spectral measure of A as

1 n
pa =~ ; Sxi(A)- (4.46)

Define similarly for pa and pp. The empirical spectral cumulative distribution
function of A is defined as

Fa(z) = #l s} :\Lz = x}-

By an ingenious application of the Stein’s method [87], Chatterjee [213] proved that
for every x € R

— EFu(z)] > 1) < e
P(|Fa(x) — EFg(z)| > t) 2exp( ct logn)’

where c is a numerical constant. The decay rate of tail bound is sub-linear in n.
Kargin [210] greatly improved the decay rate of tail bound to n?. To state his result,
we need to define the free deconvolution [209].

When n is large, it is natural to define

pna B us,

where H denotes free convolution, a non-linear operation on probability measures
introduced by Voiculescu [66].

Assumption 4.9.1. The measure pa H pup is absolutely continuous everywhere on
R, and its density is bounded by a constant C.

Theorem 4.9.2 (Kargin [210]). Suppose that Assumption 4.9.1 holds. Let Fy(x)
and Fg(x) be cumulative distribution functions for the eigenvalues of H = A +

UBUY and for ua B ug, respectively. For all n > exp ((cl/t)4/€) ,

2
P (sgp |Faa(z) — Fin(x)| > t) < exp (t (logn)e) |
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where ¢, and cq are positive and depend only on C, ¢ € (0,2], and K =
max {[|A, [BI]} .

The main tools in the proof of this theorem are the Stieltjes transform method and
standard concentration inequalities.

4.10 Concentration for Submatrices

Let M be a square matrix of order n. For any two sets of integers i1,...,1%
and ji,...,7 between 1 and n, M (i1,...,ik;j1,...,J:) denotes the submatrix
of M formed by deleting all rows except rows i1, ..., and all columns except
columns ji, ..., j;. A submatrix like M (41, ..., 4x; j1,. .., j1) is called a principal
submatrix.

We define Fa(x) the empirical spectral cumulative distribution function of
matrix A as (4.46). The following result shows that given 1 < k < n and any
Hermitian matrix M of order n, the empirical spectral distribution is almost the
same for almost every principal submatrix M of order k.

Theorem 4.10.1 (Chatterjee and Ledoux [214]). Take any 1 < k < n and a
Hermitian matrix M of order n. Let A be a principal submatrix of M chosen
uniformly at random from the set of all k x k principal submatrices of M. Let F'
be the expected spectral cumulative distribution function, that is, F(x) = EFa ().
Then, for eacht > 0,

1
P(|Fa—F|_ >—4+1t) <12Vke tVF/8,
(17 = Pl > 72 +¢)

Consequently, we have

13 + \/glogk
7@ )

Exactly the same results hold if A is a k x n submatrix of M chosen uniformly at
random, and Fa is the empirical cumulative distribution function of the singular
values of A. Moreover, in this case M need not be Hermitian.

El[Fa — Fll, <

Theorem 4.10.1 can be used to sample the matrix from a larger database. In the
example [214] of an n X n covariance matrix with n = 100, they chose £ = 20 and
picked two k x k principal submatrices A and B of M, uniformly and independently
at random. The two distributions F)a and Fp are statistically distinguishable.
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4.11 The Moment Method

We follow [63] and [3] for our exposition of Wigner’s trace method. The idea of
using Wigner’s trace method to obtain an upper bound for the eigenvalue of A,
A (A), was initiated in [215]. The standard linear algebra identity has

The trace of a matrix is the sum of its eigenvalues. The trace is a linear functional.
More generally, we have

N
Tr (A%) =) A (A).
i=1
The linearity of expectation implies

iE (Ni(A)") =E (TrA®).

For an even integer k, the geometric average of the high-order moment
(Tr (A* ))1/ ¥ is the I* norm of these eigenvalues, and we have

o1(A)" < Tr (AF) < noi(A)" (4.47)

The knowledge of the k-th moment Tr (Ak ) controls the operator norm (the also
the largest singular value) up to a multiplicative factor of n'/¥. Taking larger and
larger k, we should obtain more accurate control on the operator norm.

Let us see how the moment method works in practice. The simplest case is that
of the second moment Tr (Ag) , which in the Hermitian case works out to

Tr (A?) =) je” = 1A%

i=1 j=1

n n
The expression . > |&;|° is easy to compute in practice. For instance, for the
i=1j=1
symmetric matrix A consisting of Bernoulli random variables taking random values
of +1, this expression is exactly equal to n?.
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From the weak law of large numbers, we have

ZZ@ = (1 +o(1))n® (4.48)

asymptotically almost surely. In fact, if the &;; have uniformly sub-exponential tail,
we have (4.48) with overwhelming probability.
Applying (4.48) , we have the bounds

(1+0(1)) v < o1 (A) < (1+0(1)) n (4.49)

asymptotically almost surely. The median of oy (A) is at least (1 + o(1)) v/n. But
the upper bound here is terrible. We need to move to higher moments to improve it.

Let us move to the fourth moment. For simplicity, all entries £;; have zero mean
and unit variance. To control moments beyond the second moments, we also assume
that all entries are bounded in magnitude by some K. We expand

Tr (AY) = Z ivin&inizCiniaSisiy-

1<41,12,13,84<n

To understand this expression, we take expectations

n
4
ETr (A*) = Z E&;yi0iniaSigia&inin -
1<i1,42,13,14 <N
One can view this sum graphically, as a sum over length four cycles in the vertex set

{1,...,n}.

Using the combinatorial arguments [63], we have
ETr (A4) <O (ns) + 0 (n2K2) .
In particular, if we have the assumption K = O(y/n), then we have
ETr (A*) <O (n%).

Consider the general k-th moment

ETr(A%) = Y E&y &

1<iy, i SN

We have

ETr (AF) < (k/2)"n*/* max (1, K/\/ﬁ)kf2
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With the aid of (4.47), one has
k—
Eo1(A)F < (k/2)"n*/* max (1, K/v/n)" "7,

and so by Markov’s inequality, we have
1 k k—2
P(o1(A) > 1) < 7 (k/2) 0" max (1, K/v/n)
for all ¢ > 0. This gives the median of o1 (A) at

(0] (nl/kk\/ﬁmax (1,K/\/ﬁ)) .

We can optimize this in k£ by choosing &k to be comparable to log n, and then we
obtain an upper bound O (y/n log n max (1, K//n)) for the median. After a slight
tweaking of the constants, we have

o1 (A) = O (v/nlognmax (1, K/y/n))
with high probability.
We can summarize the above results into the following:

Proposition 4.11.1 (Weak upper bound). Let A be a random Hermitian matrix,
with the upper triangular entries &;;5,1 < j being independent with mean zero and
variance at most 1, and bounded in magnitude by K. Then,

o1 (A) =0 (v/nlognmax (1, K/v/n))

with high probability.

When K < 4/n, this gives an upper bound of O (y/nlogn), which is still off by a
logarithmic factor from the expected bound of O (/) . We will remove this factor
later.

Now let us consider the case when K = o(y/n), and each entry has variance
exactly' 1. We have the upper bound

ETr (AF) < (k/2) /21,

We later need the classical formula for the Catalan number

Cnt1 = Xn: CiCh—;
i=0

Later we will relax this to “at most 1”.
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for all n > 1 with Cy = 1, and use this to deduce that

k!

O = T i) 430

forall k =2,4,6,....
Note that n(n —1)---(n — k/2) = (14 ox (1)) n*/>+1. After putting all the
above computations we conclude

Theorem 4.11.2 (Moment computation). Let A be a real symmetric random
matrix, with the upper triangular elements &5, < j jointly independent with mean
zero and variance one, and bounded in magnitude by o(\/n). Let k be a positive
even integer. Then we have

ETr (Ak) = (Ck/Z + og (1)) nk/QH

where Cy, 5 is given by (4.50).

If we allow the &;; to have variance at most one, rather than equal to one, we obtain
the upper bound

ETr (A¥) < (Chjz + op (1)) n®/2H

Theorem 4.11.2 is also valid for Hermitian random matrices.
Theorem 4.11.2 can be compared with the formula

ES" = (Cijz + ok (1)) n*/?
derived in [63, Sect. 2.1], where
S=X1+-+ X,

is the sum of n i.i.d. random variables of mean zero and variance one, and

k!

Crpz = 2k/2 (k/2)1"

Combining Theorem 4.11.2 with (4.47) we obtain a lower bound
Eoi(A)" > (Ck/Q + oy, (1)) nk/2,
Proposition 4.11.3 (Lower Bai-Yin theorem). Let A be a real symmetric random
matrix, with the upper triangular elements &;;,1 < j jointly independent with mean

zero and variance one, and bounded in magnitude by O(1). Then the median (or
mean) of o1 (A) at least (2 — o(1)) /n.
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Let us remove the logarithmic factor in the following theorem.

Theorem 4.11.4 (Improved moment bound). Ler A be a real symmetric random
matrix, with the upper triangular elements &;;,1 < j jointly independent with mean
zero and variance one, and bounded in magnitude by O(n°*%) (say). Let k be a
positive even integer of size k = O (1og2n) (say). Then we have

ETr (A*) < Cyjon™?™ + 0 (k0(1)2knk/2+0.98)

where Cy, 5 is given by (4.50). In particular, from the trivial bound C’k/2 < 2F one
has

ETr (A%) < (2+ 0(1)) n*/2+1,

We refer to [63] for the proof.

Theorem 4.11.5 (Weak Bai-Yin theorem, upper bound). Let A = (&;;), <ij<n
be a real symmetric random matrix, whose entries all have the same distribution
&, with mean zero, variance one, and fourth moment O(1). Then for every
e > 0 independent of n, one has o1 (A) < (2+ ¢)/n asymptotically almost
surely. In particular, o1 (A) < (24 o(1)) v/n asymptotically almost surely; as
a consequence, the median of o1 (A) is at most (2+ 0 (1)) v/n. (If € is bounded,
we see, in particular, from Proposition 4.11.3 that the median is in fact equal to

(240(1))y/n.)
The fourth moment hypothesis is best possible.

Theorem 4.11.6 (Strong Bai-Yin theorem, upper bound). Let £ be a real random
variable with mean zero, variance one and finite fourth moment, and forall 1 <1 <
J, let &; be an i.i.d. sequence with distribution &, and set &; = ;. Let A =
(&), <ij<n be the random matrix formed by the top left n X n block. Then almost
surely, one has

lim sup o1 (A)

n— 00 \/ﬁ

It is a routine matter to generalize the Bai-Yin result from real symmetric
matrices to Hermitian matrices. We use a substitute of (4.47), names the bounds

<2

n(A) < Tr ((AA)M?) < nov(A),

valid for any n x n matrix A with complex entries and every positive integer k.
It is possible to adapt all of the above moment calculations for Tr (A’C ) in the

symmetric or Hermitian cases to give analogous cases for Tr ((AA*)k/ 2) in the

non-symmetric cases. Another approach is to use the augmented matrix defined as
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s [0A
A=
[A*O]’

which is 2n x 2n Hermitian matrix. If A has singular values o1 (A),...,0, (A),
then A has eigenvalues +0, (A), ..., +0, (A).

o1 (A) is concentrated in the range of [2\/n — O (n™1/%) . 2y/n+ O (n ’1/6)]
and even to get a universal distribution for the normalized expression
(01 (A) — 2y/n) n'/ known as the Tracy-Widom law [216). See [217-221].

4.12 Concentration of Trace Functionals

Consider a random n x n Hermitian matrix X. The sample covariance matrix has
the form XDX* where D is a diagonal matrix. Our goal here is to study the
non-asymptotic deviations, following [180]. We give concentration inequalities for
functions of the empirical measure of eigenvalues for large, random, Hermitian
matrices X, with not necessarily Gaussian entries. The results apply in particular
to non-Gaussian Wigner and Wishart matrices.

Consider

1

vn

X= ((X)ij) 1<ij<n’ X=X Xy = Ay

with
wi= (W 4 jwl) = (Wij) 1< jns Wis = @ig

A= ((A)ij>1<i,j<n’ A=A"

Here, {wi;},c; j<n are independent complex random variables with laws
{Pij}i<; j<n> Fij being a probability measure on C with

Py 1 € ©) = [ Lusjueo Pl (du) PY (do).

and A is a non-random complex matrix with entires {(A) i j} uniformly
1<4,5<n

bounded by, say, a

We consider a real-valued function on R. For a compact set K, denoted by |K|
its diameter, that is the maximal distance between two points of . For a Lipschitz
function f : R¥ — R, we define the Lipschitz constant | f| - by

[f (=) = f(y)l

||z = sup
%y =yl

)
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where ||-|| denotes the Euclidean norm on R¥.
We say that a measure ; on R satisfies the logarithmic Sobolev inequality with
(not necessarily optimal) constant c if, for any differentiable function f,

/lengJJ:jdu <2c/‘f/‘2d,u.

A measure p satisfying the logarithmic Sobolev inequality has sub-Gaussian
tails [197].

Theorem 4.12.1 (Guionnet and Zeitouni [180]).

(a) Assume that the (P;j,i < j € N) are uniformly compactly supported, that is
that there exists a compact set K € C so that forany 1 < i < j < n,
P;; (K°) = 0. Assume f is convex and Lipschitz. Then, for any t > to(n) =
8|Klv/malfl/n >0,

(1T (/ (X)) ~ BT (/ (X)] > 1) < dnexp {_Mt—t(n))}

16[K|%a? |7

(b) If (Pi?", PinJ <je N) satisfy the logarithmic Sobolev inequality with uniform

constant c, then for any Lipschitz function f, for any t > 0,

P(ITr (£ (X))~ ETr (f (X)] > 1) < 2nexp{—”2t2}.

8ca? |f\2L

We regard Tr (f (X)) as a function of the entries (w/?

I
ijr Wi

j)1<i,j<n'

4.13 Concentration of the Eigenvalues

Concentration of eigenvalues are treated in [1-3]. Trace functionals are easier to
handle since trace is a linear operator. The k-th largest eigenvalue is a nonlinear
functional. We consider the quite general model of random symmetric matrices.
Let ;5,1 < i < j < n, be independent, real random variables with absolute
value at most 1. Define z;; = xj; and consider the symmetric random matrix X =
(Xij)Zj:1 . We consider )y, the k-th largest eigenvalue of X.

Theorem 4.13.1 (Alon, Krivelevich, and Vu [1]). For every 1 < k < n,
the probability that A\, (X) deviates from its median by more than t is at most

4e~t"/32K° The same estimate holds for the probability that A, _j4+1 (X) deviates
from its median by more than t.

In practice, we can replace the median M with the expectation E.
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Let z;;,1 <4 < j < n, be independent—but not necessarily identical—random
variables:

o |z < Kforall1 <i<j<n

o E(x;;) =0, forall 1 <i<j<n;

« Var(z;;) =02 forall1<i<j<n.

Define x;; = xj; and consider the symmetric random matrix X = (xij)" We

ij=1"
consider the largest eigenvalue of X, defined as

Amax (X) = sup |VTXV| .
veRn ||v||=1
The most well known estimate on Ay,,x (X) is perhaps the following theorem [222].
Theorem 4.13.2 (Fiiredi and Komlos [222]). For a random matrix X as above,
there is a positive constant ¢ = ¢ (o, K) such that

20v/n — en31Inn < Mpax (X) < 20v/n+ ent/31n n,

holds almost surely.

Theorem 4.13.3 (Krivelevich and Vu [223]). For a random matrix X as above,
there is a positive constant ¢ = ¢ (K) such that for any t > 0

P (|Amax (X) = Edax (X)| = ct) < 4e77/32,
In this theorem, c does not depend on o; we do not have to assume anything about
the variances.
Theorem 4.13.4 (Vu [3]). For a random matrix X as above, there is a positive
constant ¢ = ¢ (o, K) such that

Amax (X) < 204/ 4 en'/*1nn,

holds almost surely.

Theorem 4.13.5 (Vu [3]). There are constants C' and C' such that the following
holds. Let z;;,1 < i < j < n, be independent random variables, each of
which has mean 0 and variance o® and is bounded in absolute value K, where
o> C'n~Y2KIn’n. Then, almost surely,

Amax (X) < 20/ + C(Ko)*n*/*Inn.
When the entries of X is i.i.d. symmetric random variables, there are sharper

bounds. The best current bound we know of is due to Soshnikov [216], which shows
that the error term in Theorem 4.13.4 can be reduced to nt/6+o(1),



246 4 Concentration of Eigenvalues and Their Functionals

4.14 Concentration for Functions of Large Random
Matrices: Linear Spectral Statistics

The general concentration principle do not yield the correct small deviation rate for
the largest eigenvalues. They, however, apply to large classes of Lipschitz functions.
For M € N, we denote by (-, -) the Euclidean scalar product on R™ (or CM). For

two vectors X = (z1,...,zp) andy = (y1,-..,Ym), we have (xX,y) = > x;y;
i=1

(or (x,y) = E x;y7). The Euclidean norm is defined as ||x|| = \/(x, X).

For a Llpschltz function f : RM — R, we define the Lipschitz constant | f| ~ by

flo= sup LSO
x#£y€ERM Ix—yll

)

where ||-|| denotes the Euclidean norm on R . In other words, we have

M

1F () = FODI<IFl D s — wil,

i=1

where ;,y; are elements of the vectors x,y on RM (or CM).

Consider X being a » x n Hermitian matrix whose entries are centered,
independent Gaussian random variables with variance 0. In other words, X is a
Hermitian matrix such that the entries above the diagonal are independent, complex
(real on the diagonal) Gaussian random variables with zero mean and variance o2.
This is so called the Gaussian Unitary Ensembles (GUE).

Lemma 4.3.1 says that: If f : R — R is a Lipschitz function, then

i=1

is a Lipschitz function of (real and imaginary) entries of X. If f is convex on the
real line, then F' is convex on the space of matrices (Klein’s lemma). As a result,
we can use the general concentration principle to functions of the eigenvalues. For
example, if X is a GUE random matrix with variance 02 = - andif f : R - R
is 1-Lipschitz, for any ¢ > 0,

P ({1 /fdu} ) <2 4.51)



4.14 Concentration for Functions of Large Random Matrices: Linear Spectral Statistics 247

n
where 4 = E (}1 >4 >\i> is the mean spectral measure. Inequality (4.51) has the
i=1

n? speed of the large deviation principles for spectral measures. With the additional
assumption of convexity on f, similar inequalities hold for real or complex matrices
with the entries that are independent with bounded support.”

Lemma 4.14.1 ([180,224]). Let f : R — R be Lipschitz with Lipschitz constant
|f| .- X denotes the Hermitian (or symmetric) matrix with entries (X;;) the
map

1<i,j<n’

(Xij)lgi,jgn = Tr (f (X))
is a Lipschitz function with constant \/nlf|,. If the joint law of (Xyj), ., j<n IS
“good”, there is o > 0, constant ¢ > 0 and C' < 0o so that for alln € N

P(|Tr (f (X)) — ETr (f (X)) > t|f],) < Ce .

“Good” here has, for instance, the meaning that the law satisfies a log-Sobolev
inequality; an example is when (X;), <ij<n are independent, Gaussian random
variables with uniformly bounded covariance.

The significance of results such as Lemma 4.14.1 is that they provide bounds
on deviations that do not depend on the dimension n of the random matrix. They
can be used to prove law of large numbers—reducing the proof of the almost sure
convergence to the proof of the convergence in expectation IE. They can also be used
to relax the proof of a central limit theorem: when o« = 2, Lemma 4.14.1 says that
the random variable Tr (f (X)) — ETr (f (X)) has a sub-Gaussian tail, providing
tightness augments for free.

Theorem 4.14.2 ([225]). Let || ||, be the total variation norm,

m

swp 3o (@) = f (@ic)l
Em =2

1l =
T

X is either Wigner or the Wishart matrices. Then, for any t > 0 and any function f

with finite total variation norm so that E ’711 S f( (X))‘ < 00,

i=1

%Zf (Ai (X))‘| > t”f”TV) < Qefﬁti

i=1

P(iif(Ai(X))—E

2The support of a function is the set of points where the function is not zero-valued, or the closure
of that set. In probability theory, the support of a probability distribution can be loosely thought of
as the closure of the set of possible values of a random variable having that distribution.
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where cx = 1 for Wigner’s matrices and M /n for Wishart matrices.

Recall that > f (A; (X)) = Tr (f (X)) . The above speed is not optimal for laws
=1

which have sufficiently fast decaying rates: E f(X)) — [Z fu(X ))} is
of order one. However, it is optimal rate for mstance for matrices whose entries have
heavy tails where the central limit theorem holds for

- (Zm (X))~ E l;sz <x>>D .

In Theorem 4.14.2, we only require independence of the vectors, rather than the
entries.

A probability measure P on E™ is said to satisfy the logarithmic Sobolev
inequality with constant ¢, if for any differentiable function f : R™ — R, we have

/ f? <1og 12 —log / f%lp) <2 / Z ( 8%) (4.52)

(4.52) implies sub-Gaussian tails, which we use commonly. See [141, 226] for a
general study. It is sufficient to know that Gaussian law satisfies the logarithmic
Sobolev inequality (4.52).

Lemma 4.14.3 (Herbst). Assume that P satisfies the logarithmic Sobolev inequal-
ity (4.52) on R™ with constant c. Let g be a Lipschitz function on R™ with Lipschitz
constant |g| ,. Then, for all t € R, we have

/ (Ho-Er(9) gp < P11 /2

and so forallt > 0
P(lg—Ep (9)] > 1) < 27 W1e/2,
Lemma 4.14.3 implies that Ep (g) is finite.

Klein’s lemma is given in [227].

Lemma 4.14.4 (Klein’s lemma [227]). Let f : R — R be a convex function. Then,
if A is the n x n Hermitian matrix with entries (Aij)1<ij<n on the above the
diagonal, the map (function) ¢

(CF (Aij)1gi,jgn € (Cn2 - Zf (Ai (A))

=1
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is convex. If f is twice continuously differentiable with f"(x) > c for all x, 1y is
also twice continuously differentiable with Hessian bounded below by cI.

See [224] for a proof.

4.15 Concentration of Quadratic Forms

We follow [228] for this development. Let x € C™ be a vector of independent
random variables £1, ..., &, of mean zero and variance o2, obeying the uniform
subexponential delay bound E (|¢;| > t%0) < et forallt > ¢y and 1 < i < n,
and some cp,c; > 0 independent of n. Let A be an n X n matrix. Then for any
t > 0, one has

P

x"Ax — > Tr A| > to?(Tr A*A)1/2) < Cet".
Thus

x*Ax = o [TrA +0 (t(TrA*A)lﬂﬂ

outside of an event of probability O (e=°'") .
We consider an example (Likelihood Ratio Testing for Detection) : H; is
claimed if

YRy > vorr

If we have a number of random vectors x;, we can consider the following
quadratic form

foAxi =Tr <Z foxi> = ZTr (xfAx;) = Z’IT (Ax;x})
A (xix)

= Trz (Ax;x7) =Tr =Tr[AX],

7

where X = > (x;x7).

Theorem 4.15.1. Let x and o as the previous page, and let V a d-dimensional
complex subspace of C™. Let Py be the orthogonal projection to V. Then one has

0.9do? < [Py (x)]|* < 1.1do?
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outside of an event of probability O (e*CdC) .

Proof. Apply the preceding proposition with A = Py ;(so Tr A = TrA*A = d)
and t = d'/2/10. O

Example 4.15.2 (f(x) = ||Xv||,). Consider the n x n sample covariance matrix
R = 1X7TX, where X is the data matrix of n x p. We closely follow [229]. We

T n

note the quadratic form

2
viRv = ,
2

1
H —Xv
NG
where v is a column vector. We want to show that this function f(x) = || Xv||,
is convex and 1-Lipschitz with respect to the Euclidean norm. The function f(x)
maps a vector R™ to R and is defined by turning the vector x into the matrix X, by

first filling the rows of X, and then computing the Euclidean norm of Xv. In fact,
for € [0,1] and x,z € R"P,

fOx+ (1 =0)z) = [[(0X + (1= 0)Z) v]l, <[|0Xv], +[|(1 - 0) Zv]|,
=0f(x)+(1-0)f(2)

where we have used the triangular inequality of the Euclidean norm. This says that
the function f(x) is convex. Similarly,

/(%) = f(2)] = |||>S(V£2ll_ 1Zv]lo| S IX = Z)vlly < X = Zlplvly 4 55
= |x —z|,,

using the Cauchy-Schwartz inequality and the fact that Hv||§ = 1. Equation (4.53)
implies that the function f(x) is 1-Lipschitz. O

If Y is an n X p matrix, we naturally denote by Y ; its (i, ) entry and call Y
the matrix whose jth column is constant and equal to Y. ;. The sample covariance
matrix of the data stored in matrix Y is

We have
_ 1. .o 1. .1
Y-Y=(I,—-11" |Y=(I,—-11" | XG
n n

where (I, — 2117 is the centering matrix. Here 1 is a column vector of ones and
I,, is the identity matrix of n x n. We often encounter the quadratic form
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vIxXT (In - 111T> Xv.
n

n—1
So the same strategy as above can be used, with the f defined as

Fx) = 1(X) = H (In - ;uT) Xv

2

Now we use this function as another example to illustrate how to show a function is
convex and Lipschitz, which is required to apply the Talagrand’s inequality.

Example 4.15.3 (f (x) = f(X) = [[(I, — 2117) XVH2). Convexity is a simple
consequence of the fact that norms are convex.
The Lipschitz coefficient is [|v||,|[I, — 2117 ||2 The eigenvalues of the matrix

(In — %llT) are n — 1 ones and one zero, i.e.,

1 1
i (In—11T> =1,i=1,...,n—1, and \, (In—11T> =0.
n n

As a consequence, its operator norm, the largest singular value, is therefore 1, i.e.,
1

Omax (In — 11T) =
n

We now apply the above results to justify the centering process in statistics. In
(statistical) practice, we almost always use the centered sample covariance matrix

1
I, — 117 =1.
n

2

d

S, = (Y-Y) (Y-Y),
in contrast to the (uncenterted) correlation matrix
~ 1
S,=-Y"Y.
n

Sometimes there are debates as to whether one should use the correlation matrix
the data or their covariance matrix. It is therefore important for practitioners to
understand the behavior of correlation matrices in high dimensions. The matrix
norm (or operator norm) is the largest singular value. In general, the operator norm

HSp — ép H does not go to zero. So a course bound of the type
op

Sp_gp

<|

‘)\1 (S,) — At (Sp)

op
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is nor enough to determine the behavior of A; (S,,) from that of A\ (Sp>.

Letting the centering matrix H = I,, — %11T7 we see that
S,-S,=H,Y

which is a linear matrix problem: a product of a deterministic matrix H,, and a
random matrix Y. Therefore, since the largest singular value o, is @ matrix norm,
we have

Omax (Y - Yv) /\/H < Omax (Hn) Omax (Y/\/ﬁ> = Omax (Y/\/ﬁ)

since H,, is a symmetric (thus Hermitian) matrix with (n — 1) eigenvalues equal to
1 and one eigenvalue equal to 0.

The correlation matrix %YTY and covariance matrix nil (Y — Y)T (Y — Y)

have, asymptotically, the same spectral distribution, see [229]. Letting /; denote the
right endpoint of the support of this limiting distribution (if it exists), we have that

liminfo, (Y -Y)/vVn—1>1.
So, when || L YTY|| — i, we have

1

Ly (Y-

—)ll.

op

This justifies the assertion that when the norm of a sample covariance matrix (which
is not re-centered) whose entries have mean O converges to the right endpoint of the
support of its limiting spectral distribution, so does the norm of the centered sample
covariance matrix.

When dealing with S, the mean of the entries of Y does not matter, so we can
assume, without loss of generality, that the mean is zero.

Let us deal with another type of concentration in the quadratic form. Suppose
that the random vector x € R™ has the property: For any convex and 1-Lipschitz
function (with respect to the Euclidean norm) F' : R" — R, we have,

P(|F (x) —mp| >t) < Cexp (—c(n) t2) ,

where mpg is the median of F(x), and C and c¢(n) are independent of the
dimension n. We allow ¢(n) to be a constant or to go to zero with n like n=,0 <
a < 1. Suppose, further, that the random vector has zero mean and variance 3,
E (x) = 0,E (xx*) = X, with the bound of the operator norm (the largest singular
value) given by [|X||,, < log (n).

Consider a complex deterministic matrix M such that [ M|l < &, where
k is independent of dimension 7, then the quadratic form %X*MX is strongly
concentrated around its mean +Tr (M) .
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In particular, if for e > 0,
1 1
log {IF’ (‘ —x*Mx — —Tr (ME)‘ >ty (5)) } = —log (n)' . (4.54)
n n

where < denotes the asymptotics for large n. If there is a non-zero expectation
E (x) # 0, then the same results are true when one replaces x with x — E (x)
everywhere and X is the covariance of x.

If the bounding parameter « is allowed to vary with the dimension n, then the
same results hold when one replace ¢, (¢) by t,, (¢) &, or equivalently, divides M
by €.

Proof. We closely follow [229], changing to our notation. A complex matrix M
can be decomposed into the real part and imaginary part M = M, + jM;,
where M,. and M, are real matrices. On the other hand, the spectral norm of
those matrices is upper bounded by «. This is of course true for the real part since
M, = (M + M*) /2.

For a random vector x, the quadratic form x*Ax = Tr(Axx*) is a linear
functional of the complex matrix A and the rank-1 random matrix xx*. Note that
the trace function Tr is a linear functional. Let A = M,. 4+ 7M. It follows that

x* (M, + jM;) x = Tr (M, + jM,;) xx*)
= Tr (M, xx*) 4+ jTr (M, xx")
=x"M,x + jx*"M;x.

In other words, strong concentration for x*IM,.x and x*M;x will imply strong con-
centration for the sum of those two terms (quadratic forms). x*Ax = Yz} A;;x;,

which is real for real numbers A;;. So x*M,.x is real, (X*er)* = x*M,x and

. <M+M*>
X f X.

Hence, instead of working on M,., we can work on the symmetrized version.

We now decompose (M, + MY) /2 into the positive part and negative part
M, + M_, where M is positive semidefinite and —IM_ is positive semidefinite
(or 0 if (M, +MTZ) /2 is also positive semidefinite). This is possible since
(M, + M) /2 is real symmetric. We can carry out this decomposition by simply
following its spectral decomposition. As pointed out before, both matrices have
spectral norm less than «.

Now we are in a position to consider the functional, which is our main purpose.
The map

¢ x— /x*Mix/\/n
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is K-Lipschitz with the coefficient K = \/x/n, with respect to the Euclidean norm.
The map is also convex, by noting that

6 x = /XM, x/vin = HM;/QX/WLHZ.

All norms are convex. ||Afl, = /> ’Ai)j |2 is the Euclidean norm. O
.3

Theorem 4.15.4 (Lemma A.2 of El Karoui (2010) [230]). Suppose the random
vector z is a vector in R™ with i.i.d. entries of mean 0 and variance o*. The
covariance matrix of z is X. Suppose that the entries of z are bounded by 1.

Let A be a symmetric matrix, with the largest singular value o1(A). Set C,, =
128 exp(4m)oy (A) /n. Then, for all t/2 > C,,, we have

2
P (|%ZTAZ — 152 Tr(A)| > 1)< 8exp(47r)e_n(t/2_c")2/32/(1+2 v 01(2)) for(B
2
48 eXp(M)efn/sz/(Hz,/al(z)) Joi ()

Talagrand’s works [148,231] can be viewed as the infinite-dimensional analogue
of Bernstein’s inequality. Non-asymptotic bounds for statistics [136,232,233] are
studied for model selection. For tutorial, we refer to [161, 234]. Bechar [235]
establishes a new Bernstein-type inequality which controls quadratic forms of
Gaussian random variables.

Theorem 4.15.5 (Bechar [235]). Leta = (a;),_, , andb = (b;),_, , be
two n-dimensional real vectors. z = (z;),_, , is an n-dimensional standard
Gaussian random vector, i.e., z;,t = 1,...,n are L.i.d. zero-mean Gaussian random

variables with standard deviation 1. Set ay = sup { sup {a;} ,O} ,and a_ =

i=1,...,n
sup { sup {—a;}, O} . Then the two concentration inequalities hold true for all
i=1,...,n
t>0,

(a2 +3b2) -Vt +2a4t | <e’

%

(aiz? + bizi) > Za? +2
i=1

||'M:
I

i=1

M=

(a? + %bf) Vt—2a_t]| <et

%

n
(aizf + bizi) < Za? -2
i=1

i=1 1

\i

Theorem 4.15.6 (Real-valued quadratic forms—Bechar [235]). Consider the
random expression z' Az + bTz, where A is n x n real square matrix, b is
an n-dimensional real vector, and z = (z;),_, _, is an n-dimensional standard

Gaussian random vector, i.e., z;,t = 1,...,n are i.i.d. zero-mean Gaussian
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random variables with standard deviation 1. Let us denote by \;,i = 1,...,n

the eigenvalues of the symmetric matrix % (A +AT), and let us put A\, =

sup{ sup {\;}, O} ,and A_ = sup { sup {—\i}, 0} . Then, the following

i=1,....,n i=1,...,n
two concentration results hold true for all t > 0

1 1
P <ZTAz +bTz>Tr(A)+ 2\/4A + AT+ 5||lo|\2 VE+ 2/\+t> <e!

1 1
P <zTAz +bTz < Tr(A) — 2\/4A + AT + 5||b|\2 VE—22_t] <e
(4.55)

Theorem 4.15.6 for quadratic forms of real-valued Gaussian random variables is
extended to the complex form in the following theorem for Bernstein’s inequality.
Let I, be the identity matrix of n X n.

Theorem 4.15.7 (Complex-valued quadratic forms—Wang, So, Chang, Ma and
Chi [236]). Let z be a complex Gaussian with zero mean and covariance matrix I,
ie, z; ~CN (0,1,), Qisann x n Hermitian matrix, andy € C™. Then, for any
t > 0, we have

P (zHQz +2Re (2"y) > Tt (Q) —v201/1|Q p+2lly | -t (Q)) >1-c,

(4.56)
with /\+ (Q) = max {/\max (_Q) 70} :

Equation (4.56) is used to bound the probability that the quadratic form
z7Qz + 2Re (z”y) of complex Gaussian random variables deviates from its
mean Tr (Q).

Theorem 4.15.8 (Lopes, Jacob, Wainwright [237]). Letr A € R"*" be a positive
semidefinite matrix || Al > 0, and let Gaussian vectors z be z ~ N (0,L,xy) .
Then, for any t > 0,

2

TA A
z' Az - Ao,

> <e 2 4.57
Tr(A) Tr(A) c (4.57)

and for any t € (0, AL, — 1) , we have

z" Az A Al 2
et S RV op <e V2 4.58
Tr (A) \/ Tr (A) Tr (A) ¢ (4.58)
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Here ||X||op denote the operator or matrix norm (largest singular value) of matrix

. . A . .
X. It is obvious that %(lk‘)’ is less than or equal to 1. The error terms involve the

operator norm as opposed to the Frobenius norm and hence are of independent
interest.

Proof. We follow [237] for a proof. First f(z) = VzTAz = HA1/22||2 has

Lipschitz constant /[|A[|,, with respect to the Euclidean norm on R". By

the Cirel’son-Ibragimov-Sudakov inequality for Lipschitz functions of Gaussian
vectors [161], it follows that for any s > 0,

P(f(z) <E[f(z)] —s) < exp <_2||1i|52> . (4.59)

From the Poincare inequality for Gaussian measures [238], the variance of f(z) is
bounded above as

var [f(z)] < ||A||op
Since E { f (z)z] = Tr (A), the expectation of f (z) is lower bounded as

Elf(2)] = /Tr (A) - [|All,,-
Inserting this lower bound into the concentration inequality of (4.59) gives
P(f(2) < \/Tr (&) ~ Al ~ ) <exp (-2”1i”52> .
op
Let us turn to the bound (4.57). We start with the upper-tail version of (4.59), that

isP(f(z) >E[f(z)] —s) <exp (—ﬁﬁ) for s > 0. By Jensen’s inequality,
it follows that

E[f (2)) = E [Va"Az| < \/E[z" Az] = /Tx (A),

from which we have P(f(z) > Tr (A) +s) < exp (_QH;H 52) , and setting
5% = t*||A|,, for t > 0 gives the result of (4.57).
O

In Sect.10.18, we apply Theorem 4.15.8 for the two-sample test in high
dimensions. We present small ball probability estimates for linear and quadratic
functions of Gaussian random variables. C' is a universal constant. The Frobenius
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norm is defined as [|A ||, = /> A7, = /Tr (A?2). For a vector x, [|x|| denotes
(2%

the standard Euclidean norm—~#5-norm.

Theorem 4.15.9 (Concentration of Gaussian random variables [239]). Let
a,b € R. Assume that max {|a|,|b|} > a > 0. Let X ~ N (0,1) . Then, fort > 0

P (ja 4 bX| < t) < Ct/a. (4.60)

Theorem 4.15.10 (Concentration of Gaussian random vector [239]). Let a €
R™ A € R"*™. Assume that

max {[|a][y, [[Al[p} = a > 0.
Letz ~ N (0,1,) . Then, fort > 0
P(|la+ Az|, <t) < Ctv/n/a. (4.61)

Theorem 4.15.11 ([239]). Leta € R*, A €¢ R"*". Letz ~ N (u, O'QIn)fOF some
€ R™. Then, fort > 0

P (|la+ Az, < to?||A| ) < Cty/n.
Theorem 4.15.12 (Concentration of quadrics in Gaussian random vari-
ables [239]). Let a € R, b € R" and let A € R"*™ be a symmetric matrix.
Assume that |a| > « > 0. Let z ~ N (0,1,,) . Then, fort > 0
P(ja+z"b+2z"Az| <t) < CtY/5/n/a. (4.62)

Example 4.15.13 (Hypothesis testing ).

Ho:y=x
Hi:y=x+2z
where x is independent of z. See also Example 7.2.13. (]

4.16 Distance Between a Random Vector and a Subspace

Let P = (pij),, <j<n be the n x n orthogonal projection matrix on to V.
Obviously, we have
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(P2 = me =d

and |p;;| < 1. Furthermore, the distance between a random vector x and a subspace
V is defined by the orthogonal projection matrix P in a quadratic form

dist (x, V)? = (Px)" (Px) = x*P*Px = x*PPx = x*P?x = x*Px

= D pub =D palal + Y pukd (4.63)

1<i#j<n i=1 1<i#j<n

n
For instance, for a spectral decomposition of A, A = > )\iuiuf{ , we can define
i=1

P=> uiuf{ , where d < n. For a random matrix A, the projection matrix P is
also alralndom matrix. What is the surprising is that the distance between a random
vector and a subspace—the orthogonal projection of a random vector onto a large
space—is strongly concentrated. This tool has a geometric flavor.

The distance dist (x, V) is a (scalar-valued) random variable. It is easy to show
that Edist (x,V)> = d so that it is indeed natural to expect that with high
probability dist (x, V) is around v/d.

We use a complex version of Talagrand’s inequality, obtained by slightly
modifying the proof [141].

Theorem 4.16.1. Let D be the unit disk {z € C: |z| < 1}. For every product
probability P on D", every convex I-Lipschitz function f : C" — R and every
t>0,

P(|f —M(f)| > t) < de /15,

where M( f) denotes the median of f.

The result still holds for the space Dy x ... x D,,, where D; are complex regions
with diameter 2. An easy change of variable reveals the following generation of this
inequality. If we consider the probability for a dilate K - D" of the unit disk for
some K > 0, rather than D" itself, then for every ¢t > 0, we have instead

P(|f — M(f)| > t) < e /1657, (4.64)

Theorem 4.16.1 shows concentration around the median. In applications, it is more
useful to have concentration around the mean. This can be done following the well
known lemma [141,167], which shows that concentration around the median implies
that the mean and the median are close.

Lemma 4.16.2. Let X be a random variable such that for any t > 0,
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P(IX —M(X)| >t) <de".
Then
IE (X) — M (X)] < 100.

The bound 100 is ad hoc and can be replaced by a much smaller constant.

Proof. Set M = M(X) and let F'(z) be the distribution function of X. We have

M—i+1 5
Z/ 2OF (x) < M +4) |ile™ < M +100.
i

M —i

We can prove the lower bound similarly. (|
Now we are in a position to state a lemma and present its proof.

Theorem 4.16.3 (Projection Lemma, Lemma 68 of [240]). Let x=(&1,...,&,) €
C™ be a random vector whose entries are independent with mean zero, variance 1,

and are bounded in magnitude by K almost surely for some K > 10 (IE|§|4 =+ 1) .

Let 'V be a subspace of dimension d and dist (x, V') be the orthogonal projection
on'V. Then

2
P (’dist (x, V) — \/E‘ > t) < 10exp <_1OtK2> .

In particular, one has
dist (x, V) = Vd + O (K logn)

with overwhelming probability.

Proof. We follow [240, Appendix B] closely. See also [241, Appendix E]. This
proof is a simple generalization of Tao and Vu in [242].

The standard approach of using Talagrand’s inequality is to study the functional
property of f = dist (x, V) as a function of vector x € C". The functional map

x — |dist (x, V)]
is clearly convex and 1-Lipschitz. Applying (4.64), we have that
P (|dist (x, V) — M (dist (x, V))| > t) < de~* /1657

for any £ > 0.
To conclude the proof, it is sufficient to show the following
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M (X) — Vd| < 2K.
Consider the event £, that |dist (x, V)| > v/d 4+ 2K, which implies that

\dist (x, V)| > d + 4KVd 4 4K?.

From the definition of the orthogonal projection (4.63), we have

P(&) <P (ZPMEHQ >d+ 2Kﬂ> +P Z pi ;&€ > 2KVd
i=1

1<ij<n
Set S1 =3 pi; <|§i\2 — 1) . Then it follows from Chebyshev’s inequality that
i=1

. 2> Vd | < > 2KVd <]E<|Sl‘2>
P ;pii|@\ > d+2KVd | <P (|81 > 26Vd) < — -

On the other hand, by the assumption of K,

E(15:°) = zn:p?iE (lel® - 1)2 - ip?i (Ell'-1) < Zn:p?iK — dK.
i=1 i=1

=1

Thus we have

2
P(|51>QK\/E)<]ES;L)<;(<110.

Similarly, set Sy =

Y. pi;&€; | Then we have E (S%) = > |pij\2 < d.
1<i#j<n i#]
Again, using Chebyshev’s inequality, we have

d 1 _1
P<|52| z ZK\/‘E) SWKESE ST

Combining the results, it follows that P (£4.) < £, and so M (dist (x, V)) < Vd +
2K.

To prove the lower bound, let E_ be the event that dist (x, V) < v/d—2K which
implies that dist (x, V) < d — 4K+v/d + K2. We thus have

P(£,) <P (dist (x,V)? < d—2Kx/8> <P (51 < d—K\/&) 4P (51 > wa).
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Both terms on the right-hand side can be bounded by % by the same arguments as
above. The proof is complete. (]

Example. Similarity Based Hypothesis Detection

A subspace V is the subspace spanned by the first k£ eigenvectors (corresponding
to the largest k eigenvalues).

4.17 Concentration of Random Matrices in the Stieltjes
Transform Domain

As the Fourier transform is the tool of choice for a linear time-invariant system, the
Stieltjes transform is the fundamental tool for studying the random matrix. For a
random matrix A of n x n, we define the Stieltjes transform as

1 _
ma (z) = = Tr (A —2I)"", (4.65)
n
where I is the identity matrix of n X n. Here z is a complex variable.
Consider x;,7 = 1,..., N independent random (column) vectors in R". xix;fr

is a rank-one matrix of n x n. We often consider the sample covariance matrix of
n X n which is expressed as the sum of N rank-one matrices

N
S=> xx/ =XX",
i=1

where the data matrix X of N x n is defined as

X1
X:

XN

Similar to the case of the Fourier transform, it is more convenient to study the
Stieltjes transform of the sample covariance matrix S defined as

mg (z) = %Tr (S—21)"

It is remarkable that mg (2) is strongly concentrated, as first shown in [229]. Let
Im [z] = v, we have [229]

P (|ms (2) — Ems (2)| > t) < dexp (—t°n*v?/ (16N)) . (4.66)
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Note that (4.66) makes no assumption whatsoever about the structure of the vectors
{x;};_, , other than the fact that they are independent.

Proof. We closely follow El Karou [229] for a proof. They use a sum of martingale
difference, followed by Azuma’s inequality[141, Lemma 4.1]. We define S, = S —
xj,X; . Let F; denote the filtration generated by random vectors {x;},_, . The first
classical step is (from Bai [198, p. 649]) to express the random variable of interest
as a sum of martingale differences:

ms (z) — Ems (2 ZE ms (2) |[Fi) — E(ms (2) [Fi-1).-

Note that
E (Tr (Sp — 21) " \]—‘k) ) (Tr (Sp — 1) " |]-'k_1) .
So we have that

|E (ms (2) |Fx) — E(ms (2) [Fr—1)]
= [E(ms (2)|7) - (% T (S5—21) ' |7 ) +1E( T (Sy—21) " 1 F 1 )
—E (ms (2) [F—1)|
< ‘E (ms (2) | ) — E (% ICIE IF Y ‘ n ‘IE (% Te(Sk - =) Fis )
“E (ms ()| Fey)]
2

<=
nv

The last inequality follows[243, Lemma 2.6]. As a result, the desired random
variable mg (z) — Emg (2) is a sum of bounded martingale differences. The same
would be true for both real and imaginary parts. For both of them, we apply Azuma’s
inequality[141, Lemma 4.1] to obtain that

P (|Re (ms (z) — Emg (2))| > t) < 2exp (—t*n*v*/ (8N)),

and similarly for its imaginary part. We thus conclude that

P (|ms (z) — Emsg (2)| > t) < P (|Re (ms () — Emg (2))| > t/V2)
+P (|Im (ms (2) —Emsg (2))| > t/\/i)
<4exp( t2n2v?/ 16N)
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The decay rate given by Azuma’s inequality does not match the rate that
appears in results concerning concentration behavior of linear spectral statistics (see
Sect. 4.14). The rate given by Azuma’s inequality is n, rather than /n. This decay
rate is very important in practice. It is explicitly related to the detection probability
and the false alarm, in a hypothesis testing problem.

The results using Azuma’s inequality can handle many situations that are not
covered by the current results on linear spectral statistics in Sect. 4.14. The “correct”
rate can be recovered using ideas similar to Sect.4.14. As a matter of fact, if
we consider the Stieltjes transform of the measure that puts mass 1/n at each
singular values of the sample covariance matrix M = X*X/N, it is an easy
exercise to show that this function of X is K -Lipschitz with the Lipschitz coefficient

K=1/ (\/ niN vz) , with respect to the Euclidean norm (or Frobenius or Hilbert-
Schmidt) norm.

Example 4.17.1 (Independent Random Vectors). Consider the hypothesis testing
problem

Hoiyi:Wi,iil,..,N
Hl Iyi:Xi+Wi,i:1,..,N

where N independent vectors are considered. Here w; is a random noise vector and
s; is a random signal vector. Considering the sample covariance matrices, we have

N N
Ho:S = qu;yzr = ZWiWiT =WW7T
i=1

1=1
N N

Hi:8S= ZYiYiT = Z(Xi +w) (x +wi) ' = (X + W) (X + W)
=1 i=1

Taking the Stieltjes transform leads to

Ho:ms (2) = %Tr (WW7T — 1)~

Hi:ms (2) = %Tr ((X+W) (XJrW)T—zIy1

The Stieltjes transform is strongly concentrated, so
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Ho : P(Ims (2) — Ems (2)| > t) < dexp (—t°n*v?/ (16N)) ,
1 a1 -
where Ems (2) = ~ETr (WW” —21) ' = ~ TrE(WW' — 1),

Hi : P(jms (z) — Emg (2)| > t) < dexp (—t*n?v?/ (16N)),

—1
where Emg (z) = %TrE((X +W) (X +W)" — zI) .

Note, both the expectation and the trace are linear functions so they commute—their
order can be exchanged. Also note that

(A+B) " #£2A ' +B
In fact
A'-B'=A"'B-A)B L
Then we have
T -1 T -1
(WWT —21) 7" — ((X+W) (X +W) —zI)
_ —1
= (WWT —21) " (XX” + XW7 + WXT) ((X +W) (X +W)T - zI) .

Two relevant Taylor series are

1 1 1
log (I+ A) :A—§A2+§A3—1A4+--- p(A) <1,
1 1, 1,4 1 4
I-A) " =A-—-A"+-A"—-A"+--- p(A) <1,
2 3 4
where p (A) is the (spectral) radius of convergence[20, p. 77]. The series for

(I— A)~ " is also called Neumann series [23, p. 7]. O

4.18 Concentration of von Neumann Entropy Functions

The von Neumann entropy [244] is a generalization of the classical entropy
(Shannon entropy) to the field of quantum mechanics. The von Neumann entropy
is one of the cornerstones of quantum information theory. It plays an essential role
in the expressions for the best achievable rates of virtually every coding theorem.
In particular, when proving the optimality of these expressions, it is the inequalities
governing the relative magnitudes of the entropies of different subsystems which
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are important [245]. There are essentially two such inequalities known, the so-
called basic inequalities known as strong subadditivity and weak monotonicity. To
be precise, we are interested in only linear inequalities involving the entropies
of various reduced states of a multiparty quantum state. We will demonstrate
how the concentration inequalities are established for these basic inequalities. One
motivation is for quantum information processing.

For any quantum state described by a Hermitian positive semi-definite matrix p,
the von Neumann entropy of p is defined as

S(p) = —Tr(plogp) (4.67)

A natural question occurs when the Hermitian positive semi-definite matrix p is a
random matrix, rather than a deterministic matrix. For notation, here we prefer using
bold upper-case symbols X, Y, Z to represent random matrices. If X is a symmetric
(or Hermitian) matrix of n x n and f is a bounded measurable function, f (X) is
defined as the matrix with the same eigenvectors as X but with eigenvalues that are
the images by f of those of X; namely, if e is an eigenvector of X with eigenvalues
A, Xe = )e, then we have f (X)e = f())e. For the spectral decomposition
X = UDU?¥ with orthogonal (unitary) and D = diag ()1, ..., \,) diagonal real,
one has

f(X)=Uf(D)U"

with (f (D)),, = f (M) ,i=1,...,n. We rewrite (4.67) as
S(X) = — Tr (X log X) Z Ai (X) log \; (X) (4.68)

where )\;(X),7 = 1,...,n are eigenvalues of X. Recall from Corollary 4.6.4 or
Lemma 4.3.1 that if g : R — R is a Lipschitz function with constant |g| ., the map

X eR" — Z g (M) € Riis a Lipschitz function with constant v/2|g| .. Observe
from (4.68) that

g(t) = —tlogt, teR
is a Lipschitz function with the constant given by

g(s) —g(t slogs —tlogt
9], = sup lgte) = g(8)] = sup Jslogs — tlogt] (4.69)
st |s — ¢ st |s — 1

Using Lemma 4.14.1, we have that
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n2¢2
P ( %Tr (—Xlog X) — E% Tr (—X log X)’ > t) < 2e Iz, (4.70)
where |g| - is given by (4.69).

Consider distinct quantum systems A and B. The joint system is described by a
Hermitian positive semi-definite matrix p 4 p. The individual systems are described
by p4 and pp, which are obtained from p4 g by taking partial trace. We simply use
S(A) to represent the entropy of System A, i.e., S(p4). In the following, the same
convention applies to other joint or individual systems. It is well known that

1S (pa) = S(pB)| < S (pap) < S(pa) + 5 (pB)- 4.71)

The second inequality above is called the subadditivity for the von Neumann
entropy. The first one, called triangular inequality (also known as Araki-Lieb
inequality [246]), is regarded as the quantum analog of the inequality

H(X) < H(X,Y)

for Shannon entropy H (X)) and H(X,Y") the joint entropy of two random variables
X andY.

The strong subadditivity (SSA) of the von Neumann entropy proved by Lieb
and Ruskai [247,248] plays the same role as the basic inequalities for the classical
entropy. For distinct quantum systems A, B, and C, strong subadditivity can be
represented by the following two equivalent forms

S(pac) + S (psc) —S(pa) —S(pp) 20 (SSA)
S(paB) + S (pc) — S (pB) — S(papc) =20 (WM) 4.72)

The expression on the left-hand side of the SSA inequality is known as the (quan-
tum) conditional mutual information, and is commonly denoted as I (A : B|C).
Inequality (WM) is usually called weak monotonicity.

As pointed above, we are interested in only linear inequalities involving the
entropies of various reduced states of a multiparty quantum state. Let us consider
the (quantum) mutual information

I(A:B)2 S (pa) + S (ps) — S (pap)
=—Tr(palogpa) — Tr(palogpa) + Tr(paplogpan). 4.73)

where p4, pp, pap are random matrices. Using the technique applied to treat the
von Neumann entropy (4.67), we similarly establish the concentration inequalities
like (4.70), by first evaluating the Lipschitz constant |I (A : B)|, of the function
I(A:B)and I(A:B|C). We can even extend to more general information
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inequalities [245,249-252]. Recently, infinitely many new, constrained inequalities
for the von Neumann entropy has been found by Cadney et al. [245].

Here, we make the explicit connection between concentration inequalities and
these information inequalities. This new framework allows us to study the informa-
tion stability when random states (thus random matrices), rather than deterministic
states are considered. This direction needs more research.

4.19 Supremum of a Random Process

Sub-Gaussian random variables (Sect. 1.7) is a convenient and quite wide class,
which includes as special cases the standard normal, Bernoulli, and all bounded
random variables. Let (Z1,Zs,...) be (possibly dependable) mean-zero sub-
Gaussian random variables, i.e., E [Z;] = 0, according to Lemma 1.7.1, there exists
constants oy, 09, . .. such that

t20?
Elexp (tZ;)] < exp( 21>7 teR.

We further assume that the supremum of a random sequence is bounded, i.e., v =
supa < ooand kK = 120

Due to concentration of measure, a Lipschitz function is nearly constant [132,
p- 17]. Even more important, the tails behave at worst like a scalar Gaussian random
variable with absolutely controlled mean and variance.

Previously in this chapter, many functionals of random matrices, such as the
largest eigenvalue and the trace, are shown to have a tail like

P(|X|>1t) <exp(1-t/C),

which, according to Lemma 1.7.1, implies that these functionals are sub-Gaussian
random variables. We modify the arguments of [113] for our context.

Now let X = diag (Z;, Zs,...) be the random diagonal matrix with the Z; on
the diagonal. Since E [Z;] = 0, we have EX = 0. By the operator monotonicity of
the matrix logarithm (Theorem 1.4.7), we have that

t2 2 t2 2
log E [exp (tX)] < diag ( ;1, ;2,...).

Due to (1.27): Amax (A + B) < Apax (A) + Amax (B) , the largest eigenvalue has
the following relation
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. t?02 t202
Amax (10g E [exp (tX)]) < Amax (dlag ( 5 5 ))
152012 +2
SSsup 5t = 5,

K3

and

where we have used the property of the trace function (1.29): Tr (A + B) =
Tr (A) +Tr(B).
By Theorem 2.16.3, we have

P (Amax (X) > V201) <k-t(e! =t =1) 7"

Letting t = 2 (7 +logk) > 2.6 for 7 > 0 and interpreting A\p.x (X) as sup Z;,
finally we have that

P
P [ sup Z; > 2<sqpai2> log — +T <e . (4.74)

sup o?
i

Consider the special case: Z; ~ N (0,1) are N i.i.d. standard Gaussian random
variables. Equation (4.74) says that the largest of the Z; is O(log N + 7) with
probability at least 1 — e~7. This is known to be tight up to constants so the
log N term cannot be removed. Besides, (4.74) can be applied to a countably
infinite number of mean-zero Gaussian random variables Z; ~ N (0,02) , or more
generally, sub-Gaussian random variables, as long as the sum of the o is finite.

4.20 Further Comments

Reference [180] is the first paper to study the concentration of the spectral measure
for large matrices.

Concentration of eigenvalues in kernel space [253-255]. We may use a ker-
nel [159] to map the data to the high-dimensional feature space, even if the data
samples are in low-dimensional space. We can exploit the high-dimensional space
for concentration of eigenvalues in kernel space [254,255]. Concentration of random
matrices in the kernel space is studied in [229,230,256,257].
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For dependent random variables, we see [258]. Condition numbers of Gaussian
random matrices is studied in [259]. Noncommutative Bennett and Rosenthal
inequalities [260] is also relevant in this context. Concentration for noncommutative
polynomials is studied in [190].



Chapter 5
Non-asymptotic, Local Theory
of Random Matrices

Chapters 4 and 5 are the core of this book. Chapter 6 is included to form the
comparison with this chapter. The development of the theory in this chapter will
culminate in the sense of random matrices. The point of viewing this chapter
as a novel statistical tool will have far-reaching impact on applications such
as covariance matrix estimation, detection, compressed sensing, low-rank matrix
recovery, etc. Two primary examples are: (1) approximation of covariance matrix;
(2) restricted isometry property (see Chap. 7).

The non-asymptotic, local theory of random matrices is in its infancy. The goal
of this chapter is to bring together the latest results to give a comprehensive account
of this subject. No attempt is made to make the treatment exhaustive. However, for
engineering problems, this treatment may contain the main relevant results in the
literature.

The so-called geometric functional analysis studies high-dimensional sets and
linear operators, combining ideas and methods from convex geometry, functional
analysis and probability. While the complexity of a set may increase with the
dimension, it is crucial to point out that passing to a high-dimensional setting may
reveal properties of an object, which are obscure in low dimensions. For example,
the average of a few random variables may exhibit a peculiar behavior, while the
average of a large number of random variables will be close to a constant with high
probability. This observation is especially relevant to big data [4]: one can do at a
large scale that cannot be done at a smaller one, to extract new insights.

Another idea is probabilistic considerations in geometric problems. To prove the
existence of a section of a convex body having a certain property, we can show that
a random section possesses this property with positive probability. This powerful
method allows to prove results in situations, where deterministic constructions are
unknown, or unavailable.

In studying spectral properties of random matrices, the connection between the
areas is interesting: the origins of the problems are purely probabilistic, while the
methods draw from functional analysis and convexity.

R. Qiu and M. Wicks, Cognitive Networked Sensing and Big Data, 271
DOI 10.1007/978-1-4614-4544-9_5,
© Springer Science+Business Media New York 2014
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5.1 Notation and Basics

K3

n 1/2

We follow [261] for our notation here. In this chapter |x| = ||x||, = (Z mz)
i=1
is the standard Euclidean norm. Sometimes by ||-|| we also denote the standard
Euclidean norm. The vector is bold, lower case. The matrix is bold, uppercase.
We work on R™, which is equipped with a Euclidean structure (-, -) . We write BY
for the Euclidean unit ball and S™~ for the unit sphere. We fix a coordinate system
defined by an orthonormal basis {ey,...,e,}. Volume (n-dimensional Lebesgue
measure) and the cardinality of a finite set are also denoted by | - |. We write w,, for
the volume of B .
Let K be a symmetric convex body in R™. The function

%] x =min{t >0:x € tK}

is a norm on R”. The normed space (R",|x|/,) will be denoted by Xx.
Conversely, if X = (R",|[]-||) is a normed space, then the unit ball Ky =
{x € R" : ||x]| < 1} of X is a symmetric convex body in R".

The dual norm ||-||, of ||| is defined by |ly||, = max {|(x,¥y)
From this definition it is clear that

< 13-

|Gyl < [yl
for all x,y € R™. If X* is the dual space of X, then K, = K% where
Ke={yeR": (x,y)<1lforallx € K}

is the polar body K*° of K.

The Brunn-Minkowski inequality describes the effect of Minkowski addition to
volumes: If A and B are two non-empty compact subsets of R™, then

|A+ B["™ > A" + BV, (5.1)
where A+ B={a+b:a€c A,be B}.Itfollows that, for every A € (0,1),
A+ (L= B > NA" + (1= 0B,
and, by the arithmetic-geometric means inequality,
AA+ (1= ) B > |A]B|" Y.

For a hypothesis testing
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H()ZA
H11A+B

where A and B are two non-empty compact subsets of R™. It follows from (5.1)
that: Claim H if

|A+B|1/7’L _ |B‘1/'IL 2 ’Y 2 ‘A|1/n,

where + is the threshold. Often the set A is unknown in this situation.
The basic references on classical and asymptotic convex geometry are [152, 167,
262,263].

Example 5.1.1 (A sequence of OFDM tones is modeled as a vector of random vari-
ables). Let X;,7 =1,...,n be the random variables X; € C. An arbitrary tone of
the OFDM modulation waveform in the frequency domain may be modeled as X;.
For convenience, we form a vector of random variables x = (X1,...,X,) € C™.

Due to the fading of the multipath channel and the radio resource allocation for
all tones, the random variables X; and X; are not independent. The dependable
random variables are difficult to deal with.

Each modulation waveform can be viewed as a random vector x € C™. We are
interested in a sequence of independent copies X1, ..., Xy of the random vector x.

O

5.2 Isotropic Convex Bodies

Lemma 5.2.1. Let x,y be independent isotropic random vectors in R™. Then
E HXHS =nand B(x,y)* = n.

A convex body is a compact and full-dimensional set, K C R™ with 0 € int (K).
A convex body K is called symmetric if x € K = —x = K. We say that K has a
center of mass at the origin if

/K<X,y>dx=0

foreveryy € S 1.

Definition 5.2.2 (Isotropic Position). Let K be a convex body in R™, and let b(K)
denote its center of gravity. We say that K is in isotropic position if its center of
gravity is in the origin, and for each ¢, j, 1 < i < j < n, we have

1 1,i=j
—— [ xxax={ 'S0 2
vol(K)/lexjdX {071';&]', 6.2
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or equivalently, for every vector y € R",

1 T2 L 2. 2
F(K)/K(y X) dx = vol (K) /K<y,X> dx = [lyl[|". (5.3)

By ||-|| we denote the standard Euclidean norm. Here x; is the ith coordinate of x.
Our normalization is slightly different from [264]; their definition corresponds to
applying a homothetical transformation to get vol(K) = 1. The isotropic position
has many interesting features. Among others, it minimizes ﬁ Jx Htzdx
(see [264]).

If K is in isotropic position, then

1 2
- dx =
vol (K)/K Il dax = .

from which it follows that “most” (i.e., all but a fraction of ¢) of K is contained in
a ball of radius \/§ . Using a result of Borell [265], one can show that the radius
of the ball could be replaced by 2v/2nlog (1/¢). Also, if K is in isotropic position,
it contains the unit ball [266, Lemma 5.1]. It is well known that for every convex
body, there is an affine transformation to map it on a body in isotropic position, and
this transformation is unique up to an isometry fixing the origin.

We have to allow an error ¢ > 0, and want to find an affine transformation
bringing K into nearly isotropic position.

Definition 5.2.3 (Nearly Isotropic Position). We say that K is in e-nearly
isotropic position (0 < € < 1), if
b (K|l <&,

and for every vector y € R,

1
vol (K)

(1—¢) |yl < /Kb(K) (yTx)de <(1+e)|yl* (5.4)

Theorem 5.2.4 (Kannanand Lovasz and Simonovits [266]). Given 0 < §,e < 1,
there exists a randomized algorithm finding an affine transformation A such that
AK is in e-nearly isotropic position with probability at least 1 — §. The number of
oracle calls is

O (In(e6) n®Inn) .

Given a convex body K C R™ and a function f : K — R", we denote by Ex(f)
the average of f over K| i.e.,

B () = oy [ I 0P

We denote by b = b(K) = E(x) the center of gravity of K, and by X (K) the
n X n matrix
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3 (K) = Ex ((x_b) (x_b)T).

The trace of X (K) is the average square distance of points of K from the center of
gravity, which we also call the second moment of K. We recall from the definition
of the isotropic position. The body K C R"™ is isotropic position if and only if

b=0and ¥ (K) =1,
where I is the identity matrix. In this case, we have
Ek (x;) = 0,Ex (x7) = 1,Ex (x;x;) = 0.
The second moment of K is n, and therefore all but a fraction of ¢ of its volume lies

inside the ball \/g B, where B is the unit ball.
If K is in isotropic position, then [266]

V2B C K € n(n r 2)B.
n

There is always a Euclidean structure, the canonical inner product denoted (-, -), on
w1 on R™ for which this measure is isotropic, i.e., for every y € R”,

E(x,y)” = / ey dux) = Iy

5.3 Log-Concave Random Vectors

We need to consider x that is an isotropic, log-concave random vectors in R™ (also
a vector uniformly distributed in an isotropic convex body) [267]. A probability
measure p on R is said to be log-concave if for every compact sets A, B, and
every A € [0, 1],

HOA+ (1= N)B) > (A u(B) .

In other words, an n-dimensional random vector is called log-concave if it has a log-
concave distribution, i.e., for any compact nonempty sets A, B € R” and A € (0, 1),

P(x €M+ (1-A)B)>P(xec A)P(x e B)' ™.
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According to Borell [268], a vector with full dimensional support is log-concave if
and only has a density of the form e~f, where f : R® — (—o00,00) is a convex
function. See [268,269] for a general study of this class of measures.

It is known that any affine image, in particular any projection, of a log-concave
random vector is log-concave. Moreover, if x and y are independent log-concave
random vectors, then so is x + y (see [268,270]).

One important and simple model of a centered log-concave random variable
with Variance 1 is the symmetric exponential random variable £ which has density
f(t) = 5 €Xp (—=v2]|t||,). In particular, for every s > O we have P (|| E||, > s) <

n

1/2
exp (—s/V2). x| = |x|, = (Z xz) is the standard Euclidean norm.

%
=1

Sometimes by ||-|| we denote also the standard Euclidean norm.

Log-concave measures are commonly encountered in convex geometry, since
through the Brunn-Minkowski inequality, uniform distributions on convex bodies
and their low-dimensional marginals are log-concave. The class of log-concave
measures on R” is the smallest class of probability measures that are closed under
linear transformations and weak limits that contain uniform distributions on convex
bodies. Vectors with logarithmically concave distributions are called log-concave.

The Euclidean norm of an n-dimensional log-concave random vector has
moments of all orders [268]. A log-concave probability is supported on some convex
subset of an affine subspace where it has a density. In particular when the support of
the probability generates the whole space R™ (in which case we deal, in short, with
full-dimensional probability) a characterization of Borell (see [268,269]) states that
the probability is absolutely continuous with respect to the Lebesgue measure and
has a density which is log-concave. We say that a random vector is log-concave if
its distribution is a log-concave measure.

The indicator function of a convex set and the density function of a Gaussian
distribution are two canonical examples of log-concave functions [271, p.43].

Every centered log-concave random variable Z, with variance 1 satisfies a sub-
exponential inequality:

for every s > 0, P(|Z| = s) < Cexp(—s/C),

where C' > 0 is an absolute constant [268]. For a random variable Z we define the
11-norm by

1Z)l,, = inf {C > 0: Eexp (2] /C) < 2}

and we say that Z is ¢1 with constant 1, if || Z],,, < ¥.

A particular case of a log-concave probability measure is the normalized uniform
(Lebesgue) measure on a convex body. Borell’s inequality (see [267]) implies that
the linear functionals x +— (x,y) satisfies Khintchine type inequalities with respect
to log-concave probability measures. That is, if p > 2, then for every y € R™,

(EyP) < @ <o(Exyn?) . 6

Very recently, we have the following.
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Theorem 5.3.1 (Paouris [272]). There exists an absolute constant ¢ > 0 such that
if K is an isotropic convex body in R", then

P({xeK:|x|,>cv/nLgt}) <e ™V
foreveryt > 1.

Theorem 5.3.2 (Paouris [272]). These exists constants ¢, C' > 0 such that for any
isotropic, log-concave random vector x in R™, for any p < c\/n,

1 1/2
EIx9)"" < C(Elxl3) (5.6)

5.4 Rudelson’s Theorem

A random vector x = (X7, ..., X,,) is isotropic [93,264,273,274] if EX; = 0, and
Cov (X;, X ;) = 6;5 for all 4, j < n. Equivalently, an n-dimensional random vector
with mean zero is isotropic if

2 2
Ey,x)” = |yl

for any y € R™. For any nondegenerate log-concave vector X, there exists an affine
transformation T such that Tz is isotropic.

1=

n 1/2
For x € R”, we define the Euclidean norm ||x||, as ||x||, = (Z mf) . More

generally, the [, norm is defined as

n 1/17
x|, = <Z|$i|p> :

Consider N random points y1, . ..,y independently, uniformly distributed in the
body K and put

LN
X=x > yioyi,

i=1

which is also sample covariance matrix. If NV is sufficiently large, then with high
probability

Hﬁfz:

’» EZVO%(K)/K(WW),

will be small. Here 3 is also the true covariance matrix. Kannan et al. [266] proved
that it is enough to take N = c"; for some constant c. This result was greatly
improved by Bourgain [273]. He has shown that one can take N = C' () nlog®n.
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Since the situation is invariant under a linear transformation, we may assume that the
body K is in the isotropic position. The the result of Bourgain may be reformulated
as follows:

Theorem 5.4.1 (Bourgain [273]). Let K be a convex body in R" in the isotropic
position. Fix € > 0 and choose independently N random points x1,...,Xy € K,

N > C (&) nlog®n.

Then with probability at least 1 — ¢ for any y € R", one has

2 1 a 2 2
(L=e) Ixll” < 5 > i y)” < (1+2) x|

i=1

The work of Rudelson [93] is well-known. He has shown that this theorem follows
from a general result about random vectors in R™. Let y be a random vector. Denote
by EX the expectation of a random variable X. We say that y is the isotropic
position if

E(y®y) =L (5.7
If y is uniformly distributed in a convex body K, then this is equivalent to the fact

that K is in the isotropic position. The proof of Theorem 5.4.2 is taken from [93].

Theorem 5.4.2 (Rudelson [93]). Let y € R" be a random vector in the isotropic
position. Let N be a natural number and lety1, ...,y N be independent copies of y.
Then,

\/m log N 1/log N
(Elylrs)

B VN

<C- (5.8)

1
N > yieyi —1

i=1
provided that the last expression is smaller than 1.
Taking the trace of (5.7), we obtain that

2
EllylI” = n,
so to make the right hand side of (5.8) smaller than 1, we have to assume that
N > cnlogn.

Proof. The proof has two steps. The first step is relatively standard. First we
introduce a Bernoulli random process and estimate the expectation of the norm

in (5.8) by the expectation of its supremum. Then, we construct a majorizing
measure to obtain a bound for the latest.
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First, let be €1, ...,en be independent Bernoulli variables taking values 1, —1

with probability 1/2 and let y4,...,¥nN, ¥1,-.-,Yn be independent copies of y.
Denote Ey, E. the expectation according to y and €, respectively. Since y; ® y;
Vi ® ¥; is a symmetric random variable, we have

Ey

-
N D Yi®yi — IH
i=1

N
%Z Ry — Vi ®Fi

N
E.EyEy % D Eyi®yi —¥i®Y;
i=1

N
< 2EyE. ||+ 3 &iyi®y:
i=1

To estimate the last expectation, we need the following Lemma

Lemma 5.4.3 (Rudelson [93]). Let y1,...,yn be vectors in R and €1, ..., en
be independent Bernoulli variables taking values 1, —1 with probability 1/2. Then

1/2
Qyil| < Cy/log N - _max lyill - QY
The lemma was proven in [93]. Applying the Lemma, we get
Elly 2 yi®yi = IH <
- 1/2 N 1/2 (5.9)
C- A5 (B, max ||in> : (E ®Yi )

We have

12 N 2/log N\ /2
log N
(B, Ivl) < <E(znyin ) )
1=1,..., i=1 i

1/log N
< NN (s )

Then, denoting

1 N
=E|—+ iQyi —1
N;yé@y

)

we obtain through (5.9)

log N log N\ 1/ 1og NV 1/2
D<C- Yo - (Elly)=") (D +1)".

N
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If
10gN log N 1/log N
C- (Bl Y) T <
VN
we arrive at
log N o 1/log N
D <20 Y2 (Ely|Y)
VN
which completes the proof of Theorem 5.4.2. U

Let us apply Theorem 5.4.2 to the problem of Kannan et al. [266].

Corollary 5.4.4 (Rudelson [93]). Lets > 0 and let K be an n-dimensional convex
body in the isotropic position. Let

N}C’-%-logQﬁ2
€ €

andletyy,...,yn be independent random vectors uniformly distributed in K. Then

E <L e.

1 X
N Z yiQy: — 1
i=1

Proof. It follows from a result of Alesker [275], that

lyI*
Eexp ﬁ < 2

for some absolute constant c¢. Then

By < (Besp (B£))" (B ()= -exp (-22)))

1/2
<V2- (maxtlogN ~e_c-tn) < (CnlogN) =

t=0

Corollary 5.4.4 follows from this estimate and Theorem 5.4.2. By a Lemma of
Borell [167, Appendix III], most of the volume of a convex body in the isotropic
position is concerned within the Euclidean ball of radius c+/n. So, it is might be of
interest to consider a random vector uniformly distributed in the intersection of a
convex body K and such a ball BY. O

Corollary 5.4.5 (Rudelson [93]). Let ¢, R > 0 and let K be an n-dimensional
convex body in the isotropic position. Suppose that R > c+/log 1/e and let

R2
N}CO-T-logn
€
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and let y1,...,ynN be independent random vectors uniformly distributed in the
intersection of K and the ball R\/nBY, i.e., K N R\/nBY. Then

E < e

1 X
N Z yiQy: — 1
i=1

See [93] for the proof.

5.5 Sample Covariance Matrices with Independent Rows

Singular values of matrices with independent rows (without assuming that the
entries are independent) are treated here, with material taken from Mendelson and
Pajor [274].

Let us first introduce a notion of isotropic position. Let x be a random vector
selected randomly from a convex symmetric body in R™ which is in an isotropic
position. By this we mean the following: let L C R” be a convex and symmetric
set with a nonempty interior. We say that K is in an isotropic position if for any
y €R",

1 2, 2
i = vl

where the volume and the integral are with respect to the Lebesgue measure on R”
and (-, -) and ||-|| are, respectively, the scalar product and the norm in the Euclidean
space l5 . In other words, if one considers the normalized volume measure on X and
X is a random vector with that distribution, then a body is in an isotropic position if
for any y € R",

Ely,x)* = lly]l*.

Let x be a random vector on R™ and consider {xi}ij\il which are N independent
random vectors distributed as x. Consider the random operator X : R" —
R defined by

NXxn

where {xi}ilil are independent random variables distributed according to the
normalized volume measure on the body K. A difficulty arises when the matrix
X has dependent entries; in the standard setup in the theory of random matrices,
one studies matrices with i.i.d. entries.
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The method we are following from [274] is surprisingly simple. If N > n, the
first n eigenvalues of XX* = ((x;, xj>)fvj.:1 are the same as the eigenvalues of

N

X*X = Y x; ® x;. We will show that under very mild conditions on x, with high
i=1

probability,

(5.10)

1 N
_ X; Qx; —
v

153 —=1y

tends to 0 quickly as NV tends to infinity, where 3 = E (x ® x). In particular, with

N

high probability, the eigenvalues of % > x; ® x; are close to the eigenvalues of 3.
i=1

The general approximation question was motivated by an application in Com-

plexity Theory, studied by Kannan, Lovasz and Simonovits [266], regarding

algorithms that approximate the volume of convex bodies. Later, Bourgain and

Rudelson obtain some results.

Theorem 5.5.1 (Bourgain [273]). For every ¢ > 0 these exists a constant c(g)
for which the following holds. If K is a convex symmetric body in R™ in isotropic
position and N > c(e)nlogdn, then with probability at least 1 — €, for any 'y €
Sn—l7

1 & 1
2
I-e< NE_ X, Y) :NHE}’H Sl+e

Equivalently, this theorem says that 3 : 1§ — 13 is a good embedding of 3.
When the random vector x has independent, standard Gaussian coordinates it is
known that for any y € ™71,

N
n 1 9 n
VN N;<X YESIEHE

holds with high probability (see the survey [145, Theorem I1.13]). In the Gaussian
case, Theorem 5.5.1 is asymptotically optimal, up to a numerical constant.

Bourgain’s result was improved by Rudelson [93], who removed one power of
the logarithm while proving a more general statement.

Theorem 5.5.2 (Rudelson [93]). There exists an absolute constant C for which the
Sollowing holds. Let y be a random vector in R™ which satisfies thatE (y @ y) = L.
Then,

IOgN los N 1/log N
(Blly =)

<
<C N

1 N
- Xi®XifI
V&
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A proof of this theorem is given in Sect. 2.2.1.2, using the concentration of matrices.
For a vector-valued random variable y and k£ > 1, the v norm of y is

k
91, :inf{(] >0 Eexp <g'k> ) 2},

A standard argument [13] shows that if y has a bounded ;. norm, then the tail of y
decays faster than 2 exp (—tk/ ||y||ik)

Assumption 5.5.3. Let x be a random vector in R™. We will assume that
1/4

1. There is some p > 0 such that for every y € S"~1, <E|<x,y>|4) < p.

2. Set Z = [|x|| . Then || Z]|,, < oo for some a.

Assumption 5.5.3 implies that the average operator 3 satisfies that ||| < p2.
Indeed,

ISI= s (Synyd= s Eoy) (xy2)
yi,y26S"~1 ) Y1,y26S8™—1
< sup E(x,y)” <p%
XES”71

Before introducing the main result of [274], we give two results: a well known
symmetrization theorem [13] and Rudelson [93]. A Rademacher random variable is
a random variable taking values 1 with probability 1/2.

Theorem 5.5.4 (Symmetrization Theorem [13]). Let Z be a stochastic process
indexed by a set F' and let N be an integer. For every i < N, let yu; : F — R
be arbitrary functions and set {Zi}£i1 to be independent copies of Z. Under mild
topological conditions on F and (p;) ensuring the measurability of the events below,

foranyt > 0,
al t
B (0)P (?IEII; ;Zz (N> ) 2P (?22 ZEZ i (f) =i ()| > 2) :

where {ai}ivzl are independent Rademacher random variables and

1)<3)

N
We express the operator norm of Y (x; ® x; — X) as the supremum of an
i=1
empirical process. Indeed, let ) be the set of tensors v ® w, where v and w are
vectors in the unit Euclidean ball. Then,

B (t :mfP(

fer
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N
ZX@X— =sup(x®x—X,y).

i=1 yey

N
Consider the process indexed by ) defined by Z (y) = % > (x; ®x; — 3,y).
i=1

Clearly, for every y, EZ (y) = 0 (the expectation is a linear ogerator), and

sup Z (y)
yey

N
Nz X; @ x; — X)

To apply Theorem 5.5.4, one has to estimate for any fixed y € ),

N
1
P(‘N;(xiébxi—&y} >Nt>.

For any fixed y € ), it follows that
1
var (N Zl (xi ®@%x; — 2,y>> < 5w E|(x,2)|* < p*.

In particular, var (Z (y)) p*/N, implying by Chebychev’s inequality that
4

p

ﬂN(t)QlfNiﬂ-

Corollary 5.5.5. Let x be a random vector which satisfies Assumption 5.5.3 and let
X1,...,XnN be independent copies of x. Then,
< tN
2 )

N N
P ( N ) < 4P (
i=1 i=1
Next, we need to estimate the norm of the symmetric random (vector-valued)

ZXi@Xi_ ZEiXi@)Xi

provided that x > c+\/p* /N, for some absolute constant c.

N

variables ) €;x; ® x;. We follow Rudelson [93], who builds on an inequality due
i=1

to Lust-Piquard and Pisier [276].

Theorem 5.5.6 (Rudelson [93]). There exists an absolute constant c such that for
any integers n and N, and for any x1,...,xy € R" and any k > 1,
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k\ 1/k N 1/2

< cmax{\/logn,\/%} ZXZ' ® x;
=1

N

E €iX; @ X4

i=1

E

| max Il ,

where {sz}fil are independent Rademacher random variables.

This moment inequality immediately give a 1o estimate on the random variable
E EiX; @ X;.
i=1

Corollary 5.5.7. These exists an absolute constant c such that for any integers n
and N, and for any x1,...,xy € R" and any t > 0,

N 2
IP’( ZEiXi@Xi 21&) <2€Xp<—A2>’
i=1
N 1/2
where A = c\/logn|| Y x; @ x; max_||x;]]-
i=1 1<i<N

Finally, we are ready to present the main result of Mendelson and Pajor [274] and
its proof.

Theorem 5.5.8 (Mendelson and Pajor [274]). There exists an absolute constant
¢ for which the following holds. Let x be a random vector in R™ which satisfies
Assumption 5.5.3 and set Z = ||x|| . For any integers n and N let

VIog n(log N)/* p°
) E/Ng ) and Bn.y = L— + |2 A, v

Aoy = 2]y,

%

Then, for any t > 0,

([

where = (1+2/a)  and £ =E (x @ x).

ct
max {Bn,N, AEL’N}

@ x; — )

275]\/') <exp |—

Proof. First, recall that if z is a vector-valued random variable with a bounded ),

norm, and if z;, ...,z are N independent copies of z, then
max z; < |z, log"/*N
e 2 <O ||1pa g )

e

for an absolute constant C'. Hence, for any k,
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1<iKN

1/k
(E max |z] ) < C’kl/o‘||z||¢alogl/aN. (5.11)

Consider the scalar-valued random variables

| N
U= HNZEiXi@)Xz‘

i=1

1
andV:HNZ(xi(X)xi—E)

Combining Corollaries 5.5.5 and 5.5.7, we obtain

P(V > t) <AP(U > t/2) = 4EP. (U > t/2 x1, ..., xn )
< 8Ex ex p( t2N2)

1/2

N
where A = cy/logn|| > x; ® x; max X;|| for some constant c. Setting ¢ to
i=1 1<iKN

be the constant in Corollary 5.5.5, then by Fubini’s theorem and dividing the region
of integration to ¢ < ¢g+/p*/N (in this region there is no control on P (V' > t)) and
t > coy/p*/N, it follows that the k-th order moments are

b= [kt (V > ) dt
= [OVPN BRI (V > ) dt 4 [ RSP (V > ) di
< SV REIP(V > 4 dE -+ 8B [y R exp (G ) at

< (o) e )

for some new absolute constant c.
We can bound the second term by using

N 52 N k/2 k
Ck( })\;;ﬂ) E % ZXi@)Xi max X;
= 1<GEKN
k/2
<o (22) s ( (1| Sxox -+ 1=1) max x*
N N = 1<iKN

N k/2 1/2 1/2
< o (o) (E(wnznk) (g, ™
1<i<N

for some new absolute constant c. Thus, setting Z = ||x|| and using Assump-
tion 5.5.3 and (5.11), we obtain

2

(EVk)l/k ) c% ke (10]%”) 1/2 (logl/aN) 121, ((}EVk)l/k + HZH) 1/2,
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o\ 1/2
for some new absolute constant c. Set 4, y = (101%") <log1/aN) 1Z]l,,, and
B=(1+2/a)"". Thus,

2
EVR)* < el k(|2 Ay + kB A,y (BVF)?F

VN

from which we have

(EVF)E < kb max{p2 =2 A, A }
X \/N n,Nsp N (>

and thus,
HVH% < cmax{BnyN,Ai_’N} ,

from which the estimator of the theorem follows by a standard argument. (]

Consider the case that x is a bounded random vector. Thus, for any a, [ Z]|,, <

logn

sup [|x|| = R, and by taking o — oo one can set § = 1 and A, v = Ry/ %

We obtain the following corollary.

Corollary 5.5.9 (Mendelson and Pajor [274]). These exists an absolute constant
c for which the following holds. Let x be a random vector in R"™ supported in RB3
and satisfies Assumption 5.5.3. Then, for any t > 0

N
ct VN N
P ; i — Xl 2 tN | < ——min{ —/——, —— .
< ;X,L@XZ ) exp( o2 mln{ Togn 10gn}>

The second case is when || Z][,, < c11/n, where x is a random vector associated
with a convex body in an isotropic position.

Corollary 5.5.10 (Mendelson and Pajor [274]). These exists an absolute constant
¢ for which the following holds. Let x be a random vector in R" that satisfies
Assumption 5.5.3 with || Z||,, . < c1y/n. Then, for any t > 0

(o] 2o

N
in RX;—X%
i=1
) 1/2
<exp | —c (1’/ max{p+pc1 (nlogn) logN7c% (nlogn)log N })

VN N N

Let us consider two applications: the singular values and the integral operators.
For the first one, the random vector x corresponds to the volume measure of some
convex symmetric body in an isotropic position.
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Corollary 5.5.11 (Mendelson and Pajor [274]). These exist an absolute constant
1, Ca, C3, C4 for which the following holds. Let K C R™ be a symmetric convex body
in an isotropic position, let X1, . .. , XN be N independent points sampled according
to the normalized volume measure on IC, and set

with non-zero singular values \1, ..., Ay.

1. If N > ¢inlog®n, then for every t > 0,

(nlogn

P(VIZIVN <A < VIFEVN) > 1-exp (Cztl/Q((lc)g;JV)N))l/4> '

2. If N > cgn, then with probability at least 1/2, \1 < ¢4/ N logn.

Example 5.5.12 (Learning Integral Operators [274]). Let us apply the results
above to the approximation of the integral operators. See also [277] for a learning
theory from an approximation theory viewpoint. A compact integral operator with
a symmetric kernel is approximated by the matrix of an empirical version of the
operator [278]. What sample size yields given accuracy?

Let Q € R? and set v to be a probability measure on €. Let ¢ be a random

variable on ) distributed based on v and consider X (t) = > X\;¢;(z)¢;, where
i=1

{¢i};=, is a complete basis in £(€2, u) and {\;};2, € I;.

Let £ be a bounded, positive-definite kernel [89] on some probability space
(€2, ). (See also Sect. 1.17 for the background on positive operators.) By Mercer’s
theorem, these is an orthonormal basis of £(€2, i), denoted by {¢; }-, such that

L(t,s) =D Ni()i(s).
i=1

Thus,
(X(1),X(s)) = L(t,s)

and the square of the singular values of the random matrix X are the eigenvalues of
the Gram matrix (or empirical covariance matrix)

G = (X (t;), X ;)Y

i,7=1
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where t1, ..., ¢y are random variables distributed according to v. It is natural to ask
if the eigenvalues of this Gram matrix G converges in some sense to the eigenvalues
of the integral operator

Ti = / £ (,y) f(y)dv.

This question is useful to kernel-based learning [279]. It is not clear how the
eigenvalues of the integral operator should be estimated from the given data in the
form of the Gram matrix G. Our results below enable us to do just that; Indeed, if

X(t) = io: Aidi ()i, then
=1

o0

E(X®X)=> Xi{bi)¢i =T

i=1

Assume L is continuous and that {2 is compact. Thus, by Mercer’s Theorem,
L(z,y) = ZM@(@@(Q%
i=1

where {)\i}fil are the eigenvalues of 77, the integral operator associated with £
and p, and {¢; };~, are complete bases in £(y). Also T, is a trace-class operator

since i)\i = [L(z,z)dp ().

To apply Theorem 5.5.8, we encounter a difficulty since X (¢) if of infinite
dimensions. To overcome this, define

Xn(t) = Z Aipi ()i,
i=1

where n is to be specified later. Mendelson and Pajor [274] shows that X, (¢) is
sufficiently close to X (t); it follows that our problem is really finite dimensional.
A deviation inequality of (5.10) enables us to estimate with high probability the
eigenvalues of the integral operators (infinite dimensions) using the eigenvalues of
the Gram matrix or empirical covariance matrix (finite dimensions). This problem
was also studied in [278], as pointed out above.
Learning with integral operators [127, 128] is relevant. U

Example 5.5.13 (Inverse Problems as Integral Operators [88]). The inverse prob-
lems may be formulated as integral operators [280], that in turn may be approxi-
mated by the empirical version of the integral operator, as shown in Example 5.5.12.

Integral operator are compact operators [89] in many natural topologies under
very weak conditions on the kernel. Many examples are given in [281].
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Once the connection between the integral operators and the concentration
inequality is recognized, we can further extend this connection with electromagnetic
inverse problems such as RF tomography [282,283].

For relevant work, we refer to [127,284-287]. O

5.6 Concentration for Isotropic, Log-Concave
Random Vectors

The material here can be found in [288-291].

5.6.1 Paouris’ Concentration Inequality

For our exposition, we closely follow [272], a breakthrough work. Let K be an
isotropic convex body in R™. This implies that K has volume equal to 1, its center
of mass is at the origin and its inertia matrix a multiple of the identity. Equivalently,
there is a positive constant L g, the isotropic constant of K, such that

/ (x,y)’dx = L% (5.12)
K

foreveryy € S 1.

A major problem in Asymptotic Convex Geometry is whether there is an absolute
constant C' > 0 such that Lx < ¢ for every n and every isotropic convex body of K
in R™. The best known estimate is, due to Bourgain [292], L% < ¢/nlogn, where
c is an absolute constant. Klartag [293] has obtained an isomorphic answer to the
question: For every symmetric convex body K in R", there is a second symmetric
convex body T in R™, whose Banach-Mazur distance from K is O(logn) and its
isotropic constant is bounded by an absolute constant: L1 < c.

The starting point of [272] is the following concentration estimate of
Alesker [275]: There is an absolute constant ¢ > 0 such that if K is an isotropic
convex body in R”, then

P({x€K:|x|,>ev/nLgt}) <2 (5.13)

forevery t > 1.

Bobkov and Nazrov [294,295] have clarified the picture of volume distribution
on isotropic, unconditional convex bodies. A symmetric convex body K is called
unconditional if, for every choice of real numbers ¢;, and every choice of ¢; €
{-1,1},1 <i<n,

lertier + -+ entnen| = [[trer + - + tnen ||k,
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where ||-|| ; is the norm that corresponds to K and {ei,...,e,} is the standard
orthonormal basis of R™. In particular, they obtained a striking strengthening
of (5.13) in the case of 1-unconditional isotropic convex body: there is an absolute
constant ¢ > 0 such that if K is a 1-unconditional isotropic convex body in R, then

P({x €K :|x|,>cv/nt}) <2 V" (5.14)

for every ¢ > 1. Note that Lx ~ 1 in the case of l-unconditional convex
bodies [264].
Paouris [272] obtained the following theorem in its full generality.

Theorem 5.6.1 (Paouris’ Inequality for Isotropic Convex Body [272]). There is
an absolute constant ¢ > 0 such that if K is an isotropic convex body in R" | then

P({x €K :|x|, > cv/nLyt}) < 2e7V"

foreveryt > 1.

Reference [291] gives a short proof of Paouris’ inequality. Assume that x has a log-
concave distribution (a typical example of such a distribution is a random vector
uniformly distributed on a convex body). Assume further that it is centered and
its covariance matrix is the identity such a random vector will be called isotropic.
The tail behavior of the Euclidean norm ||x||2 of an isotropic, log-concave random
vector x € R, states that for every ¢ > 1,

P (|x|y > ctv/n) < e V™.

More precisely, we have that for any log-concave random vector x and any p > 1,

1 1
x5 ~Elx], + sup (E|y,x)[")"".
yGS"71

This result had a huge impact on the study of log-concave measures and has a lot of
applications in that subject.
Let x € R" be a random vector, denote the weak p-th moment of x by

1
op(x) = sup (E|(y,x)[")"".
yesn—1

Theorem 5.6.2 ([291]). For any log-concave random vector x € R"™ and any
p=1,

E|x|5)" < C (Elx]l, + oy (%)),

where C' is an absolute positive constant.

Theorem 5.6.1 allows us to prove the following in full generality.
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Theorem 5.6.3 (Approximation of the identity operator [272]). Lere € (0,1).
Assume that n > ng and let K be an isotropic convex body in R™. If N >
c(e)nlogn, where ¢ > 0 is an absolute constant, and if X1,...,Xy € R™ are
independent random points uniformly distributed in K, then with probability greater
than 1 — € we have

N
1
(1-¢)L NZ x;,y)? < (14¢) L%,

for everyy € S™ L.

In the proof of Theorem 5.6.3, Paouris followed the argument of [296] that
incorporates the concentration estimate of Theorem 5.6.1 into Rudelson’s approach
to the problem [93]. Theorem 5.4.2 from Rudelson [93] is used as a lemma.

We refer to the books [152, 167, 263] for basic facts from the Brunn-Minkowski
and the asymptotic theory of finite dimensional normed spaces.

Aubrun [297] has proved that in the unconditional case, only C(¢)n random
points are enough to obtain (1 + ¢)-approximation of the identity operator as in
Theorem 5.6.3.

All the previous results remain valid if we replace Lebesgue measure on the
isotropic convex body by an arbitrary isotropic, log-concave measure.

5.6.2 Non-increasing Rearrangement and Order Statistics

Log-concave vectors has recently received a lot of attention. Paouris’ concentration
of mass [272] says that, for any isotropic, log-concave vector x in R™,

P (|||, = Cty/n) < e V™. (5.15)

n 1/2
where |x| = |x[|, = (Z 1:2) . One wonders about the concentration of ¢,

=1 "
norm. For p € (1,2), this is an easy consequence of (5.15) and Holder’s inequality.
For p > 2, new ideas are suggested by Latala [289], based on tail estimates of order

statistics of x.

Theorem 5.6.4 (Latala [289]). Forany § > 0 there exist constants C1(0),Ca(0) <
C6=/2 such that for any p > 2 + 6,

P (||X||p =2 t) <e 011<5>tf0rt > () (8) pnt/?

and
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( ||x||g)1/q <Ca(8) (17 +q) fora>2.

For an n-dimensional random vector x, by | X7| > ... > |X| we denote the
non-increasing rearrangement of | X1|, ..., |X,| . Random variable X;,1 < k < n,
are called order statistics of X . In particular,

| X7 = max {| X1|,...,|Xn|},and | X = min {| Xq|,...,|Xa|}.

Random variables X are called order statistics of X.
By (5.15), we immediately have for isotropic, log-concave vectors x =
(X1,.., Xn)

P(X;>t)<e oV (5.16)
for t > \/Cn/k. The main result of [289] is to show (5.16) is valid for

t > Clog(en/k).

5.6.3 Sample Covariance Matrix

Taken from [298-300], the development here is motivated for the convergence of
empirical (or sample) covariance matrix.

In the recent years a lot of work was done on the study of the empirical
covariance matrix, and on understanding related random matrices with independent
rows or columns. In particular, such matrices appear naturally in two important
(and distinct) directions. That is (1) estimation of covariance matrices of high-
dimensional distributions by empirical covariance matrices; and (2) the Restricted
Isometry Property of sensing matrices defined in the Compressive Sensing theory.
See elsewhere of the book for the background on RIP and covariance matrix
estimation.

Let x € R™ be a centered vector whose covariance matrix is the identity matrix,
and x3,...,xy € R” are independent copies of x. Let A be a random n x N
matrix whose columns are (x;). By A (respectively Apax) we denote the smallest
(respectively the largest) singular value of the empirical covariance matrix AA™ .
For Gaussian matrices, it is known that

)\min )\max n
— < < < —. .
1-Cy) =< NS R <140y % (5.17)

with probability close to 1.

=|=
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Let x;1,...,xny € R"” be a sequence of random vectors on R™ (not necessarily
identical). We say that is uniformly distributed if for some ¢ > 0

sup sup | |(xi, 3] I, <, (5.18)
i<N yesn—1

for a random variable Y € R, [|Y]|,, = inf {C > 0;Eexp (|Y]/C) < 2} . We say
it satisfies the boundedness condition with constant K (for some K > 1) if

P(riri%(|Xi|/\/ﬁ>Krnax{l,(N/n)l/4}> <e VvV, (5.19)

Theorem 5.6.5 (Adamczak et al. [299]). Letr N,n be positive integers and
v, K > 1. Let x1,...,xny € R" be independent random vectors satisfying (5.18)
and (5.19). Then with probability at least 1 — 2¢~°V™ one has

fvi(l<xi,y>|2—xa|<x@»y>l2) <0+ 17§

Theorem 5.6.5 improves estimates obtained in [301] for log-concave, isotropic
vectors. There, the result had a logarithmic factor. Theorem 5.6.5 removes this factor
completely leading to the best possible estimate for an arbitrary N, that is to an
estimate known for random matrices as in the Gaussian case.

As a consequence, we obtain in our setting, the quantitative version of Bai-Yin
theorem [302] known for random matrices with i.i.d. entries.

Theorem 5.6.6 (Adamczak et al. [299]). Let A be a random n x N matrix, whose
columns x1,...,xny € R" be isotropic random vectors satisfying Theorem 5.6.5.
Then with probability at least 1 — 2e~ V™ one has

sup
yesn—1

n Ami A 9 |m
1-C K 2 i < min g max g 1 C K - 3.20
W+E) Yy Sy Sy SIHCO+E) /5 (620
The strength of the above results is that the conditions (5.18) and (5.19) are valid
for many classes of distributions.

Example 5.6.7 (Uniformly distributed). Random vectors uniformly distributed on
the Euclidean ball of radius K+/n clearly satisfy (5.19). They also satisfy (5.18)
with ¢ = CK. (]

Lemma 5.6.8 (Lemma 3.1 of [301]). Let x1,...,xy € R"™ be iid. random
vectors, distributed according to an isotropic, log-concave probability measure on
R™. There exists an absolute positive constant Cq such that for any N < eV™ and
for every K > 1 one has

%%IXA < CoK/n.
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Proof. From [272] we have for every i < N
P (|X;| = Cty/n) < etV
where C and c are absolute constants. The result follow by the union bound. (|

Example 5.6.9 (Log-concave isotropic). Log-concave, isotropic random vectors in
R™. Such vectors satisfy (5.18) and (5.19) for some absolute constants ¢ and K. The
boundedness condition follows from Lemma 5.6.8. A version of result with weaker
was proven by Aubrun [297] in the case of isotropic, log-concave rand vectors under
an additional assumption of unconditionality. (|

Example 5.6.10 (Any isotropic random vector satisfying the Poincare inequality).
Any isotropic random vectors (x;),. € R”, satisfying the Poincare inequality
with constant L, i.e., such that

varf (x;) < L*E|V f (Xi)|2

for all compactly supported smooth functions, satisfying (5.18) with v»v = CL
and (5.19) with K = C'L.

The question from [303] regarding whether all log-concave, isotropic random
vectors satisfy the Poincare inequality with an absolute constant is one of the major
open problems in the theory of log-concave measures. U

5.7 Concentration Inequality for Small Ball Probability

We give a small ball probability inequality for isotropic log-concave probability
measures, taking material from [79, 304]. There is an effort to replace the notion
of independence by the “geometry” of convex bodies, since a log-concave measure
should be considered as the measure-theoretic equivalent of a convex body. Most of
these recent results make heavy use of tools from the asymptotic theory of finite-
dimensional normed spaces.

Theorem 5.7.1 (Theorem 2.5 of Latala [79]). Let A is an nxn matrix and let X =
(&1,...,&n) be a random vector, where &; are independent sub-Gaussian random
variables with var (§;) > 1 and sub-Gaussian bounded by 3. Then, for any’y € R™,
one has

Al 2 1A
P (llax -yl < ) < 2exp (g )
where ¢y > 0 is a universal constant.

A standard calculation shows that in the situation of the theorem, for A = [a;;]
one has

E|Ax —y|* > E|A (x — Ex)| Z%Var &) = ||AlF .
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Proof. Due to the highly accessible nature of this proof, we include the arguments
taken from [79]. Let x’ = (5;, . ,5;) be the independent copy of x and set

z = (Z1,...,Z,) = x — x'. Variables Z; are independent symmetric with sub-
Gaussian constants at most 23. See also Sect. 1.11 for rademacher averages and
symmetrization that will be used below.

Put

=P([Ax —y| < ||A]£/2).
Then

P’ =P (|Ax —y| < [AllF/2.P (|AX —y| < Al £/2))

<SP(lAzl < [Allg)-

Let B = AAT = (b;;). Then b;; = Z afj > 0and
J

|Az|*> = (Bz,z) ZbZ]ZZ_Zb”ZQ+2Zb”ZZ.

1<J

Since Var (Z;) = 2 Var (§;) > 2, so that
> buEZ? > 2Tr(B) = 2||All3.
Thus

p* <P (|Az] <||Al})

P QszJZZ +Zb7z (Z2 ]EZE) g_AH?«“)

1<j

<P ;b”ZZ ||A||%/3> +P<Zbii (2 -EZ7) <—||A||%/3)
1<J [

(5.21)

Note that we have [[(bijdiz)llz < |Bllr = [|[AAT|. < [[A[lIAlz

2
and [|(bij0iz5)ll,, < IBll,, + [(bi;0i=)ll,, < 2[Bl,, < 2[Alj,. So by
Lemma 1.12.1, we get

2

_ A

P (S 0522 = 1A12 /3| < 2exp | —(c7st) (1212} ) (50
1<j ||AHop
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We have || Z,|, < 2/1€]l, < 289, thus
STREZE <486 b < 485 |BIE < 485 A2, Al

Therefore, by Lemma 1.12.2,

'

2
-1{ JJA
> ||A||§/3> < oo [ (7 <||||A||||F>
op

> bii (72} —EZ7)

(5.23)
Thus, combining (5.21)—(5.23), we have
A 2
p? < dexp —(max ", c" 64)_1 Al £ 7
1Al gp
which completes the proof. U

Theorem 5.7.2 (Proposition 2.6 of Latala [79]). Let A is a non-zero n x n matrix
and let x = (g1, ..., 9n) be a random vector, where g; are independent standard
Gaussian N (0,1) random variables. Then, for any t € (0,c1) and any 'y € R",
one has

HAHHS)2

P ([l Ax — yll, < t]Allys) < (TR0
where c1, ca > 0 are universal constants.

Theorem 5.7.3 (Paouris [304]). Let x is an isotropic log-concave random vector
in R™, which has sub-Gaussian constant b. Let A is a non-zero n X n matrix. Then,
foranyt € (0,c¢1) and anyy € R", one has

HAlll—Is)2

c2
P([[Ax =y, <t[|Allgs) < t( b TAlop )

where c1,co > 0 are universal constants.

For a subset A € R"™ we denote the convex hull of A by conv A and the
symmetric convex hull of A is denoted by conv (A U —A). By a symmetric body
B € R™ we mean a centrally symmetric compact subset R with nonempty interior,
i.e., B is a convex body satisfying B = —B. Often, we identify such a symmetric
convex body B with the n-dimensional Banach space (R", ||-|| 3) for which B is
the unit ball. B stands for the Euclidean unit ball in R™. The volume of a body
B € R" is denoted by |B).

In [79, Theorem 4.2], we get estimates of a similar type as in Theorem 5.7.1 for
the probability that Ax belongs to a general convex and symmetric set K rather
than to a Euclidean ball.
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Theorem 5.7.4 (Theorem 4.2 of Latala [79]). Let A is a non-zero n X n matrix
andletx = (g1,...,gn), where §; are independent sub-Gaussian random variables
with Var (§;) > 1 and sub-Gaussian constants at most 3. Let K € R" be a
symmetric convex body satisfying By C K. Then

c |All;
P (Ax € al| Al ViK) < 3exp <_2/34 IAlL,)
op

where Vi = (|K| / |B§L|)1/'n’
o = 36(47‘[“/}{)(0/7}) ln(”AHF/(G'B\/ﬁ))’

and n = ||A||%/ (B*n). Here cy is the constant from Theorem 5.7.1, and C'is a
universal constant.

Example 5.7.5 (Hypothesis Testing). Consider the hypothesis testing

Ho:y=x
Hi:y=s+x

where s € R” is the unknown signal vector and x € R" is the noise vector
x = (&,...,&,) where &; are independent sub-random variables that satisfy the
conditions of the above theorems. Let B be a non-zero n x n matrix. The algorithm
is described by:

lly—Bx|l, :

for BT, < 719, claim Hy.
_Bx .

for HyIIBHFHQ > 7, claim#H;.

We are interested in P (% <7 \’H1) and P (% > 71 |7-l0) which

may be handled by the above theorems. U

Example 5.7.6 (Hypothesis Testing for Compressed Sensed Data). In Sect. 10.16,
the observation vector for compressed sensing is modeled in (10.54) and rep-
eated here

y=A(s+x) (5.24)
where s € R™ is an unknown vector in S, A € R™*" is a random matrix with i.i.d.
N(0,1) entries, and x ~ N (0,0%I,,x,) denotes noise with known variance o2
that is independent of A. The noise model (5.24) is different from a more commonly
studied case

Y = As+x (5.25)
where z ~ N (0,021 5m) -
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Consider the hypothesis testing

Ho:y=x
Hi:y =A(s+x).

For B = A" we have

ly =Bx'll, _ |y —BAx, _ [ly - A" Ax],

1Bl 1Bl Al

The algorithm has become

—AHA

for HyHAFXHQ <719, claimHy.
—AHA

for Hy”A|FXH2 > 71, claim H;.

—APA —AFA
We are interested P ly—A"Ax], <71 |Hi ) and P lly—a”Ax], > 79 [HO |,
A[l 5 IA[l 5
which can be handled by above theorems. When using these theorems, we only
need to replace A by A¥ A In a sense, A A behaves like an identity matrix. [J

For N > n consider N random vectors x; = (&14,824,---,6ni) €
R"™,¢ = 1,...,N, where §; ; are independent sub-Gaussian random variables
with Var (§;) > 1 and sub-Gaussian constants at most 5. Denote the matrix
(&i.5); <n,j<n DY X. See Sect. 1.12 for the notation and relevant background.

5.8 Moment Estimates

For a random matrix X € C™ *"2_ the singular values of the random matrix X
are o1 > 09 = ... = on,n = max{ni,ny}. We can form a random vector o =
(01,09,... ,O’n)T. For N independent copies X,..., Xy of the random matrix
X, we can form N independent copies o1, ..., oy of the random vector o. So we
can use the moments for random vectors to study these random matrices.

5.8.1 Moments for Isotropic Log-Concave Random Vectors

The aim here is to approximate the moments by the empirical averages with high
probability. The material is taken from [267]. For every 1 < g < 4o00,we define ¢*
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to be the conjugate of ¢, i.e., 1/¢ + 1/¢* = 1. Let & > 0 and let v be a probability
measure on (X, ). For a function f : X — R define the ¢,-norm by

111, =i {2> O‘Lexpﬂfl//\)“du <2},

Chebychev’s inequality shows that the functions with bounded t,-norm are
strongly concentrated, namely v {z || f(z)| > At} < C exp (—t®). We denote by D
the radius of the symmetric convex set K i.e., the smallest D such that K C DBZ,
where B3 is the unit ball in R".

Let K € R™ be a convex symmetric body, and ||-||  the norm. The modulus of
convexity of K is defined for any € € (0, 2) by

X+Yy
2

Sk (5)inf{1

H Nl = Lyl = L% - vl > } (5.26)
K

We say that K has modulus of convexity of power type g > 2 if 0 (¢) > ce? for
every ¢ € (0,2). This property is equivalent to the fact that the inequality

q

a 1 <1
<=
2

K A

X+y
2

Xy
2

(Ixl% + Iy ll%)

for all x,y € R™. Here A > 0 is a constant depending only on c and q. We
shall say that K has modulus of convexity of power type ¢ with constant A.
Classical examples of convex bodies satisfying this property are unit balls of finite
dimensional subspaces of L, [305] or of non-commutative L,-spaces (like Schatten
trace class matrices [118]).

Given a random vector x € R™, let x;,...,x; be N independent copies of x.
Let K € R"™ be a convex symmetric body. Denote by

the maximal deviation of the empirical p-norm of x from the exact one. We want
to bound V,(K’) under minimum assumptions on the body /& and random vector
x. We choose the size of the sample [V such that this deviation is small with high
probability.

To bound such random process, we must have some control of the random
variable max; <;<n ||x[|5, Where || - ||2 denotes the standard Euclidean norm. To this
end we introduce the parameter

1
kpn (%) = (Emaxi<ien [x]5)"7
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Theorem 5.8.1 (Guédon and Rudelson [267]). Let K C (R",(-,-)) be a
symmetric convex body of radius D. Assume that K has modulus of convexity
of power type q for some q > 2. Let p > q and q* be the conjugate of q.

Let x be a random vector in R™, and let X1, . ..,xn be N independent copies of
X. Assume that

2/q"
BN (D sy ()7 < 82 - sup Bl )P

Cpa
P N yeK

for some 3 < 1. Then

EV,(K) <28 - sup E|(x,a)|".
acK

The constant C, » in Theorem 5.8.1 depends on p and on the parameter A in (5.26).
That minimal assumptions on the vector x are enough to guarantee that EV,(K)
becomes small for large N. In most cases, k, n (x) may be bounded by a simple
quantity:

N 1/17
Kip, N (X) < <EZ |Xz‘|§) :
=1

Let us investigate the case of x being an isotropic, log-concave random vector in
R™ (or also a vector uniformly distributed in an isotropic convex body). From (5.6),
we have

o\ 1/2
13, < C(Beey)?)
From the sharp estimate of Theorem 5.3.2, we will deduce the following.

Theorem 5.8.2 (Guédon and Rudelson [267]). Let x be an isotropic, log-concave
random vector in R™, and let x1,...,Xx be N independent copies of x. If N <
eV then for any p > 2,

OV if p<logN

_ E ; P 1/10 <
kipN (%) = (Emax; iy [x]3) Coviif p> log .

Theorem 5.8.3 (Guédon and Rudelson [267]). Foranye € (0,1) andp > 2 these
exists ng (g, p) such that for any n > nyg, the following holds: let x be an isotropic,
log-concave random vector in R™, let X1, ...,xx be N independent copies of X, if

N = {Cpn”/2 log n/EQJ

’ 1/17
then for any t > e, with probability greater than 1 — C'exp (— (t/Cpe) ) Sfor
anyy € R"
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(1= E|xy)[" NZ|Xuy L+ E[G,y)["-

The constants C, C’I/J > 0 are real numbers depending only on p.

Let us consider the classical case when x is a Gaussian random vector in R"”.
Let x1,...,xy be independent copies of x. Let p* denote the conjugate of p. For
t=(t,...,tn)7 € RV, we have

1/p
sup Zt Xi,y) (lez,y > :

tEBP* i=1

N
where > t; (x;,y) is the Gaussian random variable.
i=1
Let Z and Y be Gaussian vectors in R™ and R", respectively. Using Gordon’s
inequalities [306], it is easy to show that whenever E| Z|[ , > e 'E||Y|, (i.e. fora

universal constant ¢, we have N > ¢PpP/?nP/2 [cP)

1/p
EllZ][, - E[Y], <E mf <N2|Xuy )

LN 1/p
<E sup <NZ (xi,y)| > <E||Z|‘p+E||Y||27
yesn! =1

where (Enzup +]E||Y||2> / (E||Z||p - EHYHQ) < (1+¢)/(1—¢). Itis there-
fore possible to get (with high probability with respect to the dimension n, see [307])
a family of IV random vectors X1, . .., X such that for every y € R”

N ey
3
Allyll, < ( Z Xi,y) ) <A

This argument significantly improves the bound on m in Theorem 5.8.3 for Gaussian
random vectors.

Below we will be able to extend the estimate for the Gaussian random vector
to random vector x satisfying the ¥s-norm condition for linear functionals y >
(x,y) with the same dependence on N. A random variable Z satisfies the ¢)o-norm
condition if and only if for any A € R

Eexp (A7) < 2exp (X - | 2]3)
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Theorem 5.8.4 (Guédon and Rudelson [267]). Let x be an isotropic random
vector in R™ such that all functionals'y — (x,y) satisfy the 1o-norm condition. Let
X1,...,XN be independent copies of the random vector X. Then for every p > 2
and every N > np/?

1 N 1/p
sup (NZ|<xi,y>|”) <oV
i=1

yeBy

5.8.2 Moments for Convex Measures

We follow [308] for our development. Related work is Chevet type inequality and
norms of sub-matrices [267,309].

Let x € R™ be a random vector in a finite dimensional Euclidean space E with
Euclidean norm ||x|| and scalar product < -,- >. As above, for p > 0, we denote
the weak p-th moment of x by

1
oy (x) = sup (B|(y,x)|")"".
yesn—1

Clearly (E|[x||”)"/” > 0, (x) and by Hélder’s inequality, (E[x[?)"/” > E||x|.
Sometimes we are interested in reversed inequalities of the form

(ElIx[")"? < CLE ||x|| + Cz0,p () (5.27)

for p > 1 and constants C, Cs.

This is known for some classes of distributions and the question has been studied
in a more general setting (see [288] and references there). Our objective here is to
describe classes for which the relationship (5.27) is satisfied.

Let us recall some known results when (5.27) holds. It clearly holds for Gaussian
vectors and it is not difficult to see that (5.27) is true for sub-Gaussian vectors.

Another example of such a class is the class of so-called log-concave vectors. It is
known that for every log-concave random vector x in a finite dimensional Euclidean
space and any p > 0,

Elx[")"" < C E|lxl| + 0, (x))

where C' > 0 is a universal constant.

Here we consider the class of complex measures introduced by Borell. Let x < 0.
A probability measure P on R™ is called x-concave if for 0 < # < 1 and for all
compact subsets A, B € R" with positive measures one has

1/k

P((1—60)A+6B) > ((1—0)P(A)" + 6P(B)) (5.28)

A random vector with a k-concave distribution is called x-concave. Note that a
log-concave vector is also xk-concave for any x < 0.

For k > —1, a k-concave vector satisfies (5.27) forall 0 < (1+¢)p < —1/k
with Cy and C5 depending only on e.
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Definition 5.8.5. Letp > 0,m = [p],and A > 1. We say that a random vector x in
E satisfies the assumption H (p, A) if for every linear mapping A : £ — R™ such
that y = Az is non-degenerate there is a gauge || - || on R™ such that E ||y| < oo
and

EllylI)"? < AE |ly]|. (5.29)

For example, the standard Gaussian and Rademacher vectors satisfy the above
condition. More generally, a sub-Gaussian random vector also satisfies the above
condition.

Theorem 5.8.6 ([308]). Let p > 0 and A > 1. If a random vector X in a finite
dimensional Euclidean space satisfies H(p, \), then

1
Ex|")? < ¢ OE||x]| + 0p(x)),
where c is a universal constant.

We can apply above results to the problem of the approximation of the covariance
matrix by the empirical covariance matrix. For a random vector x the covariance
matrix of x is given by Exx”'. It is equal to the identity operator I if x is isotropic.

N

The empirical covariance matrix of a sample of size IV is defined by % > oxixT,
i=1

where X1, X2, ..., Xy are independent copies of x. The main question is how small

can be taken in order that these two matrices are close to each other in the operator
norm.

It was proved there that for N > n and log-concave n-dimensional vectors
X1,X2,...,XN one has

< _
<O\

1

T
— E x;x; —1
Ni:l

with probability at least 1 — 2 exp (—cy/n), where I is the identity matrix, and [|-[| .,
is the operator norm and ¢, C' are absolute positive constants.

In [310, Theorem 1.1], the following condition was introduced: an isotropic
random vector x € R” is said to satisfy the strong regularity assumption if for
some 77, C' > 0 and every rank r < n orthogonal projection P, one has that for very
t>C

op

P (|[Px|, > tv/r) < C/ (2210140

In [308], it was shown that an isotropic (—1/q) satisfies this assumption. For
simplicity we give this (without proof) with n = 1.

Theorem 5.8.7 ([308]). Letn > 1,a > 0and ¢ = max{4,2alogn}.Letx € R"
be an isotropic (—1/q) random vector. Then there is an absolute constant C' such
that for every rank r orthogonal projection P and every t > C exp (4/a), one has

P (|[Px|l, = tv/7r) < Cmax{(aloga){exp (32/&)} / (')
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Theorem 1.1 from [310] and the above lemma immediately imply the following
corollary on the approximation of the covariance matrix by the sample covariance
matrix.

Corollary 5.8.8 ([308]). Let n > 1,a > 0 and ¢ = max{4,2alogn}. Let

X1,...,XN be independent (—1/q)-concave, isotropic random vector in R™. Then
foreverye € (0,1) and every N > C(g)n, one has

1 N
Nzxi(gxf *Inxn
i=1

where C(e, a) depends only on a and €.

E <e

op

The following result was proved for small ball probability estimates.

Theorem 5.8.9 (Paouris [304]). Let x be a centered log-concave random vector in
a finite dimensional Euclidean space. For every t € (0,c') one has

1/2 o1/
P (IIxII2 < t(]E||x||§) ) < te(BIxI3)"*/o20)

where ¢, > 0 are universal positive constants.

The following result generalizes the above result to the setting of convex distribu-
tions.

Theorem 5.8.10 (Paouris [304]). Letn > 1 and q > 1. Let x be a centered n-
dimensional (—1/q)-concave random vector. Assume 1 < p < min {q,n/2} . Then,
foreverye € (0,1),

P (el < lel) < (1+ <) <2c>"((q_p§12(q_1))3ptp,

whenever E||x||, > 2Co,(x), where c,C are constants.

5.9 Law of Large Numbers for Matrix-Valued Random
Variables

For p < oo, the finite dimensional [, spaces are denoted as ;). Thus [} is the Banach

space (R", ||~Hp>, where
n 1/p
i, = (30t

i=1

for p < oo, and [|x|| , = max;|z;|. The closed unit ball of /,, is denoted by B} :=

{x L xl, < 1} .
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The canonical basis of R™ is denoted by (e1,...,e,). Let x,y € R™. The
canonical inner product is denoted by (x,y) := xTy. The tensor product (outer
product) is defined as x ® y = yx”; thus z = (x,z) y forall z € R™.

Let A = (A;;) be an m x n real matrix. The spectral norm of A is the operator
norm [y — [, defined as

A
Al = sup 1A%2 _ 5 (ay,
S Tl

where o (A) is the largest singular value of A. The Frobenius norm |[|A|| . is
defined as

Al =342 =S 0i(A)?,
ij i

where o; (A) are the singular values of A.

C denotes positive absolute constants. The a = O(b) notation means that a < Cb
for some absolute constant C.

For the scalar random variables, the classical Law of Large Numbers says the
following: let X be a bounded random variable and X1, ..., Xy be independent
copies of X. Then

E

N
1 1
=Y X;-EX|=0 () (5.30)
N i=1 ‘ VN
Furthermore, the large deviation theory allows one to estimate the probability that

N
the empirical mean % > X; stays close to the true mean EX.
i=1
Matrix-valued versions of this inequality are harder to prove. The absolute value
must be replaced by the matrix norm. So, instead of proving a large deviation
estimate for a single random variable, we have to estimate the supremum of
a random process. This requires deeper probabilistic techniques. The following

theorem generalizes the main result of [93].

Theorem 5.9.1 (Rudelson and Vershynin [311]). Let y be a random vector in
R™, which is uniformly bounded almost everywhere: |y|l, < «. Assume for
normalization that ||y ® y||y < 1. Let y1,...,yn be independent copies of y. Let

o= C\/lo;gVN e’

Then
1. If o < 1, then

E < oo.

N

1

N > yigy —E(y®y)
=1 2
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2. Foreveryt € (0,1),

"

Theorem 5.9.1 generalizes Theorem 5.4.2. Part (1) is a law of large numbers,
and part (2) is a large deviation estimate for matrix-valued random variables. The
bounded assumption ||y||, < « can be too strong for some applications and can be
relaxed to the moment assumption E ||y || < «?, where ¢ = log N. The estimate
in Theorem 5.9.1 is in general optimal (see [311]). Part 2 also holds under an
assumption that the moments of ||y||, have a nice decay.

N
1 2 2
N§ yi®y: —E(y ®y) >t}<26“ /e,
=1 2

Proof. Following [311], we prove this theorem in two steps. First we use the
standard symmetrization technique for random variables in Banach spaces, see
e.g. [27, Sect.6]. Then, we adapt the technique of [93] to obtain a bound on a
symmetric random process. Note the expectation E(-) and the average operation

N
% > x;®x; are linear functionals.

ZLelt €1,...,EnN denote independent Bernoulli random variables taking values 1,
—1 with probability 1/2. Let y1,...,¥~,¥1,. .., Y~ be independent copies of y.
We shall denote by E,,[Ey, and E. the expectation according to y;,¥;, and &,
respectively.

Let p > 1. We shall estimate

o= (o

N
- 1 -
Ey(y®y)=Ey (y©¥)=Ey <N ZYi®yZ> :
=1

We put this into (5.31). Since x — |[|x|| is a convex function on R™, Jensen’s
inequality implies that

py 1/p

2)

p\ 1/p
) . (5.31)

2

N
Zy1®y7 -E(yoy)

Note that

N
ZYz®y1_Nz::y y

i=1

E, < <EyEy

Since y; ® y; — ¥; ® ¥; is a symmetric random variable, it is distributed identically
withe; (y; ® yi — ¥: ® ¥i). As aresult, we have

p\ 1/p

2)

N
Z yz®}’z }_'z@yz)

E, < <]EyEy1E5
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Denote
1Y 1Y
Y = NZ&}% ®yiand Y = NZ&}_% QY.

i=1

Then

Y =¥l < (1Yl + [¥],)" < 22 (Y15 + [1Y]])
and E [|Y |5 = E ||Y||5 . Thus we obtain

p\ 1/p
E, <2 (EyIE ) .
2

We shall estimate the last expectation using Lemma 5.4.3, which was a lemma
from [93]. We need to consider the higher order moments:

LN
N Zfi (yi ®yi)
i=1

Lemma 5.9.2 (Rudelson [93]). Let y1,...,yn be vectors in R¥ and €1,. .., en
be independent Bernoulli variables taking values 1, —1 with probability 1/2. Then

<E

Remark 5.9.3. We can consider the vectors y1,...,yx as vectors in their linear
span, so we can always choose the dimension k of the ambient space at most V.

p 1/2

®Yz

p
) < Cov/p+logk -1 max llyills -

| X
~ Zgiyi®Yi
]V.i:l 2

Combining Lemma 5.9.2 with Remark 5.9.3 and using Holder’s inequality, we

obtain
1/2p
E, <2Cy ) . (5.32)

p+log N
VpFIEN zmyz

N

By Minkowski’s inequality we have

1/p N 1/p
( ZYZ®Yz ) SNKE %Zlyi(@yi—]E(y@y) ) HEF oy,
=1 2 1= 2
<N (Ep+1).
So we get
1/2 log N\ /2
E, < 0p2 (Ep+1), where o = 400( O]gv ) a
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It follows that

min (E,,1) < 0/p. (5.33)
To prove part 1 of the theorem, note that o < 1 by the assumption. We thus obtain

F1 < 0. This proves part 1.
To prove part 2, we consider E,, = (EZp)l/ P where

N
1
Z:HN;}%’@}H—E(Y@}’)

2
So (5.33) implies that

(Emin (Z,1)?)"/” < min (E,,1) < 01/p. (5.34)
We can express this moment bound as a tail probability estimate using the following

standard lemma, see e.g. [27, Lemmas 3.7 and 4.10].

Lemma 5.9.4. Let Z be a nonnegative random variable. Assume that there exists a
constant K > 0 such that (IEZp)l/p < K\/pforallp > 1. Then

P(Z >t) < 2exp (—c1t?/K?) forallt > 0.
It thus follows from this and from (5.34) that
P (min (Z,1) > t) < 2exp (—c1t*/K?) forall t > 0.

This completes the proof of the theorem. (]

Example 5.9.5 (Bounded Random Vectors). In Theorem 5.9.1, we let y be a random
vector in R™, which is uniformly bounded almost everywhere: ||y|, < . Since
|All, = o1 (A), where o is the largest singular value. This is very convenient
to use in practice. In many problems, we have the prior knowledge that the
random vectors are bounded as above. This bound constraint leads to more sharp
inequalities. One task is how to formulate the problem using this additional bound
constraint.

5.10 Low Rank Approximation

We assume that A has a small rank—or can be approximated by an (unknown) matrix
of a small rank. We intend to find a low rank approximation of A, from only a small
random submatrix of A.
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Solving this problem is essential to development of fast Monte-Carlo algorithms
for computations on large matrices. An extremely large matrix—say, of the order of
105 x 10°—is impossible to upload into the random access memory (RAM) of a
computer; it is instead stored in an external memory. On the other hand, sampling a
submatrix of A, storing it in RAM and computing its small rank approximation is
feasible.

The best fixed rank approximation to A is given by the partial sum of the Singular
Value Decomposition (SVD)

A:Zaz(A)m@VZ

where o; (A) are the nonincreasing and nonnegative sequence of the singular values
of A, and u; and v; are left and right singular vectors of A, respectively. The best
rank k approximation to A in both the spectral and Frobenius norms is thus A Py,
where Py, is the orthogonal projection onto the top k left singular vectors of A. In
particular, for the spectral norm we have

gt A =Bl = A~ AP, =01 (A). (539
However, computing Py, which gives the first elements of the SVD of a m x n
matrix A is often impossible in practice since (1) it would take many passes through
A, which is extremely slow for a matrix stored in an external memory; (2) this
would take superlinear time in m + n. Instead, it was proposed in [312-316] to use
the Monte-Carlo methodology: namely, appropriate the k-th partial sum of the SVD
of A by the k-th partial sum of the SVD of a random submatrix of A. Rudelson and
Vershynin [311] have shown the following:

1. With almost linear sample complexity O(rlogr), that is by sampling only
O(rlogr) random rows of A, if A is approximiable by a rank r matrix;

2. In one pass through A if the matrix is stored row-by-row, and in two passes if its
entries are stored in arbitrary order;

3. Using RAM space are stored and time O(n + m) (and polynomial in r and k).

Theorem 5.10.1 (Rudelson and Vershynin [311]). Let A be an m X n matrix with
numerical rank r = HAH% / HA||§ .Lete,0 € (0,1), and let d < m be an integer
such that

T T
1> € (555) 02 (i)
Consider a d x n matrix A, which consists of normalized rows of A picked
independently with replacement, with probabilities proportional to the squares
of their Euclidean lengths. Then, with probability at least 1 — 2exp(—c/J), the

Jollowing holds. For a positive integer k, let Py be the orthogonal projection onto
the top k left singular value vectors of A. Then

|A — AP.||, < ore1 (A) + A2 (5.36)

Here and in the sequel, C, ¢, C1, . . . denote positive absolute constants.
We make the following remarks:
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1. Optimality. The almost linear sample complexity O(rlogr) achieved in Theo-
rem 5.10.1 is optimal. The best previous result had O(r?) [314,315]

2. Numerical rank. The numerical rank r = ||A||% / ||AH§ is a relaxation of the
exact notion of rank. Indeed, one always has r(A)rank(A ). The numerical rank
is stable under small perturbation of the matrix, as opposed to the exact rank.

3. Law of large numbers for matrix-valued random variables. The new feature is a
use of Rudelson’s argument about random vectors in the isotropic position. See
Sect. 5.4. It yields a law of large numbers for matrix-valued random variables.
We apply it for independent copies of a rank one random matrix, which is given
by a random row of the matrix A7 A—the sample covariance matrix.

4. Functional-analytic nature. A matrix is a linear operator between finite-
dimensional normed spaces. It is natural to look for stable quantities tied to
linear operators, which govern the picture. For example, operator (matrix)
norms are stable quantities, while rank is not. The low rank approximation in
Theorem 5.10.1 is only controlled by the numerical rank r. The dimension n
does not play a separate role in these results.

Proof. By the homogeneity, we can assume HA||§ = 1. The following lemma
from [314, 316] reduces Theorem 5.10.1 to a comparison of A and a sample A
in the spectral norm.

Lemma 5.10.2 (Drineas and Kannan [314,316]).
|A — AP < or(A) + QHATA - ATAH .
2

Proof of the Lemma. We have

|A-AP|; = sup |Ax|3 = sup (AT Ax, x)
x€ker Py, ||x|l,=1 x€ker Py, |[x[l,=1
< sup <(ATA - ATA) X, x> + sup <ATAX, x>

x€ker Py, ||x||,=1 x€ker Py, [|x[[=1

- HATA - ATAH2+ak+1 (ATA) .

A stands for the kernel or null space of matrix A [16].! By a result of perturbation

theory, |ok11 (ATA) — Okt1 (ATA)‘ < HATA - ATAH . This proves the
2
lemma.
Let x1,...,X,, denote the rows of the matrix A. Then

Let A is a linear transformation from vector V' to vector W. The subset in V'
ker(A) ={v eV : A(v) =0€ W}

is a subspace of V, called the kernel or null space of A.
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ATA = ixi ® X;.

i=1

We shall regard the matrix AT A as the true mean of a bounded matrix valued
random variable, while ATA will be its empirical mean; then the Law of Large
Numbers for matrix valued random variables, Theorem 5.9.1, will be used. To this
purpose, we define a random vector y € R" as

P (y _ ”A”FX.) _ HXiHQ.
1%l Al

Let yi1,...,yn~ be independent copies of y. Let the matrix A consist of rows
ﬁyl, ey ﬁyN. The normalization of A is different from the statement of

Theorem 5.10.1: in the proof, it is convenient to multiply A by the factor ﬁ Al g

However the singular value vectors of A and thus Py, do not change. Then,

N
-~ 1
ATA=E(y®oy),ATA=——=> "y, ayia:=|yl,=Al = Vr.
Ni:1 2 F

We can thus apply Theorem 5.9.1. Due to our assumption on N, we have

/2.
-7‘) < 55261/2 <1.

Thus Theorem 5.9.1 gives that, with probability at least 1 — 2 exp(—c/d), we have

o~ 11/2
|A — AP||, < ot (A) + \/§HATA —ATA|| <o (A) +e.

This proves Theorem 5.10.1. O

Let us comment on algorithmic aspects of Theorem 5.10.1. Finding a good low
rank approximation to a matrix A comes down, due to Theorem 5.10.1, to sampling
a random submatrix A and computing its SVD (actually, left singular vectors are
needed). The algorithm works well if the numerical rank r = HAH?J / HA||§ of the
matrix A is small. This is the case, in particular, when A is essentially a low rank
matrix, since r (A) < rank (A).

First, the algorithm samples N = O(r log r) random rows of A. That is, it takes
N independent samples of the random vector y whose law is

A AR
P(ynA ) N
T2/~ AL
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where A; is the i-th row of A. This sampling can be done in one pass through the
matrix A if the matrix is stored row-by-row, and in two passes if its entries are
stored in arbitrary order [317, Sect.5.1]. Second, the algorithm computes the SVD
of the N x n matrix A, which consists of the normalized sampled rows. This can be
done in time O(Nn)~+ the time needed to compute the SVD of a N x N matrix. The
latter can be done by one of the known methods. This algorithm is takes significantly
less time than computing SVD of the original m x n matrix A. In particular, this
algorithm is linear in the dimensions of the matrix (and polynomial in V).

5.11 Random Matrices with Independent Entries

The material here is taken from [72]. For a general random matrix A with
independent centered entries bounded by 1, one can use Talagrand’s concentration
inequality for convex Lipschitz functions on the cube [142, 148, 231]. Since
Omax (A) = ||A|| (or oy (A)) is a convex function of A. Talagrand’s concentration
inequality implies

P (|omax (A) — M (0ymax (A))] > 1) < 267

where M is the median. Although the precise value of the median may be unknown,
integration of this inequality shows that

|Eamax (A) - M (Umax (A))| <C

Theorem 5.11.1 (Gordon’s theorem for Gaussian matrices [72]). Let A be an
N x n matrix whose entries are independent standard normal random variables.
Then,

\/N - \/’E < IEO'nuin (A) g IIEO’max (A) g \/N + \/H

Let f be a real valued Lipschitz function on R™ with Lipschitz constant K, i.e.
|f(x)— f(y)] < K||x—y|l, for all x,y € R™ (such functions are also called
K-Lipschitz).

Theorem 5.11.2 (Concentration in Gauss space [141]). Let a real-valued func-
tion f is K-Lipschitz on R™. Let x be the standard normal random vector in R".
Then, for everyt > 0, one has

P(f(x) —Ef(x) > t) < et /2K",
Corollary 5.11.3 (Gaussian matrices, deviation; [145]). Let A be an N x n
matrix whose entries are independent standard normal random variables. Then,

for every t > 0, with probability at least 1 — 2e_t2/2, one has

\/N_\/E_tgamin(A) <0max(A) <\/N—|— \/ﬁ"i_t
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Proof. omin (A) and oy (A) are 1-Lipschitz (K = 1) functions of matrices A
considered as vectors in R™. The conclusion now follows from the estimates on the
expectation (Theorem 5.11.1) and Gaussian concentration (Theorem 5.11.2). O

Lemma 5.11.4 (Approximate isometries [72]). Consider a matrix X that satisfies
[X*X —I|| < max (6, 6%) (5.37)
for some § > 0. Then
1 -0 < Omin (A) < Omax (A) < 1+6. (5.38)
Conversely, if X satisfies (5.38) for some 6 > 0, then

|X*X — I|| < 3max (4,6%).

Often, we have § = O (\/W) .

5.12 Random Matrices with Independent Rows

Independent rows are used to form a random matrix. In an abstract setting, an
infinite-dimensional function (finite-dimensional vector) is regarded as a ‘point’
in some suitable space and an infinite-dimensional integral operator (finite-
dimensional matrix) as a transformation of one ‘point’ to another. Since a point
is conceptually simpler than a function, this view has the merit of removing some
mathematical clutter from the problem, making it possible to see the salient issues
more clearly [89, p.ix].

Traditionally, we require the entries of a random matrix are independent; Here,
however, the requirements of independent rows are much more relaxed than
independent entries. A row is a finite-dimensional vector (a ‘point’ in a finite-
dimensional vector space).

The two proofs taken from [72] are used to illustrate the approach by showing
how concentration inequalities are at the core of the proofs. In particular, the
approach can handle the tough problem of matrix rows with heavy tails.

5.12.1 Independent Rows

1
HA*A - IH < max (0,6%) where § = C /% + (5.39)

t
N VN
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Theorem 5.12.1 (Sub-Gaussian rows [72]). Let A be an N xn matrix whose rows
A, are independent, sub-Gaussian, isotropic random vectors in R™. Then, fzor every
t > 0, the following inequality holds with probability at least 1 — 2n - e~ ;

VN — Cv/n —t < 0min (A) < 0max (A) < VN + Cy/n + t. (5.40)

Here C = Ck,c = cxg > 0 depend only on the sub-Gaussian norm K =
max; ||ALH12b2 of the rows.

This result is a general version of Corollary 5.11.3; instead of independent
Gaussian entries we allow independent sub-Gaussian entries such as Gaussian and
Bernoulli. It also applies to some natural matrices whose entries are not independent.

Proof. The proof is taken from [72], and changed to our notation habits. The
proof is a basic version of a covering argument, and it has three steps. The use of
covering arguments in a similar context goes back to Milman’s proof of Dvoretzky’s
theorem [318]. See e.g. [152,319] for an introduction. In the more narrow context of
extremal singular values of random matrices, this type of argument appears recently
e.g. in [301].

We need to control ||Ax||, for all vectors x on the unit sphere S™~*. To this
purpose, we discretize the sphere using the net A (called the approximation or
sampling step), establish a tight control of || Ax||, for every fixed vector x € N with
high probability (the concentration step), and finish off by taking a union bound over
all x in the net. The concentration step will be based on the deviation inequality for
sub-exponential random variable, Corollary 1.9.4.

Step 1: Approximation. Recalling Lemma 5.11.4 for the matrix B = A/ VN
we see that the claim of the theorem is equivalent to

1 9 m t
—_AFA — < = —_ .
H ATA IH < max (6,5 ) where 6 = C' N VN 541

With the aid of Lemma 1.10.4, we can evaluate the norm in (5.41) on a i—net N
of the unit sphere S ! :

1 1
—AFA — < AFA — —
HNAA IH\2f(neaj\>[( <<NAA I)x,x>‘ 2{(113\)/{

To complete the proof, it is sufficient to show that, with the required probability,

1 2
3 laxiz -1

max
xeN

1 2 3
L ax|i - 1\ <
By Lemma 1.10.2, we can choose the net A/ such that it has cardinality |A] < 9™.

Step 2: Concentration. Let us fix any vector x € S™ 1. We can rewrite ||Ax|\§
as a sum of independent (scalar) random variables
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N
|Ax[l; = (A;,x)? ZZQ (5.42)
i=1

where A; denote the rows of the matrix A. By assumption, Z; = (A;, x) are
independent, sub-Gaussian random variables with EZ? = 1 and 1Zilly, < K.
Thus, by Remark 1.9.5 and Lemma 1.9.1, Z; — 1 are independent, centered sub-
exponential random variables with || Z; — 1|, < 2[|Zi[,, < 4[Zil,, < 4K.

Now we can use an exponential deviation inequality, Corollary 1.9.3, to control

the sum (5.42). Since K > || Zi]],,, > 2= (EZ2)"* = L, this leads to

V2
N
(w2
N 2 N £

> zz-1
i=1

\/77

> Z) < 2exp [—% min (8278) N]

= 2exp [7%52N] < 2exp [7% (C’Qn + t2)]
(5.43)

where the last inequality follows by the definition of ¢ and using the inequality
(a+b)* = a®+ b2 fora,b > 0.

Step 3: Union Bound. Taking the union bound over the elements of the net N
with the cardinality |A] < 9", together with (5.43), we have

1 € 2 2j| )
— > 2 < _
]P’(ineaj\)/{ N /2> 9" ZeXp[ i (C n+t) \Qexp( K4t

where the second inequality follows for C' = Ck sufficiently large, e.g., C' =

K?2\/In9/c;.

2
HAXHz -1

O

5.12.2 Heavy-Tailed Rows

Theorem 5.12.2 (Heavy-tailed rows [72]). Let A be an N X n matrix whose rows
A, are independent random vectors in R™. Let m be a number such that | A;||, <
/m almost surely for all i. Then, for every t > 0, the following inequality holds
with probability at least 1 — 2n - et

VN = ty/m < Omin (A) < Omax (A) < VN + ty/m. (5.44)
Here c is an absolute constant.

Recall from Lemma 5.2.1 that E || A; ||§ = n. This says that one would typically use
Theorem 5.12.2 with m = O(y/m). In this case the result has a form

\/7_75\/7 Jmm( )<UmaX(A)<\/N+t\/ﬁa

—c't?

probability at least 1 — 2n - e
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Proof. The proof is taken from [72] for the proof and changed to our notation habits.
We shall use the non-commutative Bernstein’s inequality (for a sum of independent
random matrices).

Step 1: Reduction to a sum of independent random matrices. We first note that
m > n > 1 since by Lemma 5.2.1 we have that E HAZ||§ = n. Our argument
here is parallel to Step 1 of Theorem 5.12.1. Recalling Lemma 5.11.4 for the matrix
B = A/V/'N, we find that the desired inequality (5.44) is equivalent to

1 .., m
HNA AIHgmax(5,52)s, J:t,/ﬁ. (5.45)

Here ||-|| is the operator (or spectral) norm. It is more convenient to express this
random matrix as a sum of independent random matrices—the sum is a linear
operator:

M=

N
1 1
SATA-TI=—-> A;RA -1= ; 4
~ N2 G A ;X (5.46)

1

where X,; = % (A; ® A; —I). Here X; are independent centered n x n random
matrices. Equation (5.46) is the standard form we have treated previously in this
book.

Step 2: Estimating the mean, range, and variance. Now we are in a position
N
to apply the non-commutative Bernstein inequality, for the sum > X;. Since A;

are isotropic random vectors, we have EA; ® A; = I, which inﬁpiies EX; = 0,
which is a required condition to use the non-commutative Bernstein inequality,
Theorem 2.17.1.

We estimate the range of X; using the assumption that || A;||, < y/mandm > 1:

1 1 ) 1 2
1Xill, < (145 @ Adll+ 1) = + (JAil} +1) <+ (m+1) < F = K.

m
N

N

Here ||-||, is the Euclidean norm. To estimate the total variance Y EX?, we first
i=1

need to compute

X21

1
5 ]\/v2<(A1'®Ai)22NAi®Ai+I>-

Then, using the isotropic vector assumption EA; ® A; = I, we have

EX? = % (E(Ai ®A;)? — I) . (5.47)
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Since
2 2
(Ai @ A)" = [|[Aifl; A @ Ay

is a positive semi-definite matrix and HAZ||3 < m by assumption, it follows that
HI[-E(AZ ® Ai)2H <m - ||EA; ® A;|| = m. Inserting this into (5.47), we have

2m

|EX?|| < =5 (m+1) < <Nz

where we used the assumption that m > 1. This leads to

<N - maX||IEX2H = 2m = o2

N
> EX}|| <
=1

Step 3: Applying the non-commutative Bernstein’s inequality. Applying the
non-commutative Bernstein inequality, Theorem 2.17.1, and recalling the defini-
tions of € and 4 in (5.45), we bound the probability in question as

P(H;A*A—Iu%)ﬂ(%xi <o o [cenin (5.
2]

< 2n - exp |[—cmin ( )
=2n-exp |—c- 525” 2n - exp [—ct?/2] .
This completes the proof. (]

Theorem 5.12.3 (Heavy-tailed rows, non-isotropic [72]). Let A be an N x n
matrix whose rows A; are independent random vectors in R™ with the common
second moment matrix ¥ = E (x; ® X;). Let m be a number such that || A;]|, <
\/m almost surely for all i. Then, for every t > 0, the following inequality holds

with probability at least 1 —n - e=t:

HNA A- EH maX(HEHl/Q& 52) whereé—t\/; (5.48)
Here c is an absolute constant. In particular, this inequality gives
IA] < [S[I*VN + ty/m. (5.49)
Proof. Since

1B = IE (A ® A || SEJlA; @ Ayl = EJ|Aq]l; <m
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we have m > ||X||. Then (5.48) follows by a straightforward modification of the
arguments of Theorem 5.12.2. Also, if (5.48) holds, then by triangle inequality

¥ IAlL = |FAA| < 2] + || #A*A - =
<) +[IZ)1M38 + 6%

Taking the square root and multiplying both sides by v/ N, we have (5.49). U

The almost sure boundedness in Theorem 5.12.2 may be too restrictive, and it
can be relaxed to a bound in expectation.

Theorem 5.12.4 (Heavy-tailed rows; expected singular values [72]). Let A be
an N x n matrix whose rows A; are independent, isotropic random vectors in R™.
Let m = Emax;<n ||Al||§ . Then

]EHE}\};{ o (A) — \/N‘ < Cy/mlogmin (N, n)

where C' is an absolute constant.

The proof of this result is similar to that of Theorem 5.12.2, except that this time
Rudelson’s Lemma, Lemma 5.4.3, instead of matrix Bernstein’s inequality. For
details, we refer to [72].

Theorem 5.12.5 (Heavy-tailed rows, non-isotropic, expectation [72]). Let A be
an N x n matrix whose rows A, are independent random vectors in R™ with the
common second moment matrix 3 = E (x; ® x;). Let m = Emax;<n ||AZ||§ .
Then

1., 1/2¢ <2 \/mlogmin (N,n)
il _ < = —_—
IEHNA A ZH < max (HEH 0,9 ) where § = C N

Here C is an absolute constant. In particular, this inequality gives

1/2
(EHAH?) < |I=1?VN + C/mlogmin (N, n).

Let us remark on non-identical second moment. The assumption that the rows
A; have a common second moment matrix X is not essential in Theorems 5.12.3
and 5.12.5. More general versions of these results can be formulated. For example,
if A; have arbitrary second moment matrices

27:E(X1®X1),

=

then the claim of Theorem 5.12.5 holds with 3 = % >
1=1
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5.13 Covariance Matrix Estimation

Let x be a random vector in R™; for simplicity we assume that x is centered,’
Ex = 0. The covariance matrix of x is the n X n matrix

Y=E(x®x).

The simplest way to estimate X is to take some /N independent samples x; from the
distribution and form the sample covariance matrix

1 N
XN = N;Xi@Xi.

By the law of large numbers,
3y — 3 almost surely N — oo.

So, taking sufficiently many samples, we are guaranteed to estimate the covariance
matrix as well as we want. This, however, does not deal with the quantitative
aspect of convergence: what is the minimal sample size N that guarantees this
approximation with a given accuracy?

We can rewrite X as

1 1
IN=v ;Xi ® X; :NX*X’

where
xi
X=|:
Xy
The X is a N x n random matrix with independent rows x;,2 = 1,..., N, but

usually not independent entries.

Theorem 5.13.1 (Covariance estimation for sub-Gaussian distributions [72]).
Consider a sub-Gaussian distribution in R™ with covargiance matrix 3, and let
g € (0,1),t > 1. Then, with probability at least 1 — 2¢~"" ™ one has

IfN > C(t)e)’nthen |Ex — 2| <e. (5.50)

Here C = Ci depends only on the sub-Gaussian norm K = ||x|,,, of a random
vector taken from this distribution.

2More generally, in this section we estimate the second moment matrix E (x ® x) of an arbitrary
random vector x (not necessarily centered).
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Proof. Tt follows from (5.39) that for every s > 0, with probability at least
1—2e=° we have Sy — 2| < max (6 52) where § = C'/n/N + s/V/N.
The claim follows fors = C' t\/n where c = « 18 sufficiently large. O

For arbitrary centered Gaussian distribution in R™, (5.50) becomes
IfN > C(t/e)’nthen |Zy — Z| < || (5.51)

Here C'is an absolute constant.
Theorem 5.12.3 gives a similar estimation result for arbitrary distribution,
possibly heavy-tailed.

Theorem 5.13.2 (Covariance estimation for arbitrary distributions [72]). Con-
sider a distribution in R™ with covariance matrix 3, and supported in some centered

Euclidean ball whose radius we denote \/m. Let ¢ € (0,1), t > 1. Then, with

1‘,2

probability at least 1 —n™" , one has

IfN > C(t/e)*|Z|| 'mlogn, then |Ex — | < e || (5.52)
Here C'is an absolute constant.
Proof. It follows from Theorem 5.12.3 that for every s > 0, with probability at least
1—n-e " wehave |y — 2| < max (||EH1/26 62) where § = s\/m/N.
Thus, if N > (s/e) 1h>] mlogn, then IZxy — 2| < €||X]|. The claim
follows for s = C' t\/@ where C' is a sufficiently large absolute constant. [

Theorem 5.52 is typically met with mm = O (||X|| n). For a random vector x
chosen from the distribution at hand, the expected norm is

2
Elx[l; =Tr (3) <n =[]

Recall that || X|| = o1 (X) is the matrix norm which is also equal to the largest
singular value. So, by Markov’s inequality, most of the distribution is supported
in a centered ball of radius y/m where m = O (||X||n). If all the distribution
is supported there, i.e., if ||x|| = O (||X]|n) almost surely, then the claim of
Theorem 5.52 holds with sample size

N > C(t/e)*rlogn.

Let us consider low-rank estimation. In this case, the distribution in R"™ lies close
to a low dimensional subspace. As a result, a much smaller sample size N is
sufficient for covariance estimation. The intrinsic dimension of the distribution can
be expressed as the effective rank of the matrix 3, defined as

CT(®)
T =T

One always has r (X) < rank (X) < n, and this bound is sharp. For example, for
an isotropic random vector x in R™, we have ¥ = I and r () = n.
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The effective rank » = r (X)) always controls the typical norm of x, since
E Hng = Tr(X) = r|X||. It follows from Markov’s inequality that most of the
distribution is supported within a ball of radius \/m where m = r | X||. Assume that

all of the distribution is supported there, i.e., if ||x|| = O ( T ||E||) almost surely,
then, the claim of Theorem 5.52 holds with sample size

N > C(t/e)?rlogn.

The bounded assumption in Theorem 5.52 is necessary. For an isotropic distribution
which is highly concentrated at the origin, the sample covariance matrix will likely
equal 0. Still we can use a weaker assumption Emax;<n ||xLH§ < m where x;
denote the sample points. In this case, the covariance estimation will be guaranteed
in expectation rather than with high probability.

A different way to impose the bounded assumption is to reject any sample
points x; that fall outside the centered ball of radius y/m. This is equivalent
to sampling from the conditional distribution inside the ball. The conditional
distribution satisfies the bounded requirement, so the results obtained above provide
a good covariance estimation for it. In many cases, this estimate works even for the
original distribution—that is, if only a small part of the distribution lies outside the
ball of radius y/m. For more details, refer to [320].

5.13.1 Estimating the Covariance of Random Matrices

The material here can be found in [321]. In recent years, interest in matrix
valued random variables gained momentum. Many of the results dealing with real
random variables and random vectors were extended to cover random matrices.
Concentration inequalities like Bernstein, Hoeffding and others were obtained in the
non-commutative setting. The methods used were mostly combination of methods
from the real/vector case and some matrix inequalities like the Golden-Thompson
inequality.

The method will work properly for a class of matrices satisfying a matrix strong
regularity assumption which we denote by (MSR) and can be viewed as an analog
to the property (SR) defined in [310]. For an n x n matrix, denote H-||OlD by the
operator norm of A on /3.

Definition 5.13.3 (Property (MSR)). Let Y be an n X n positive semi-definite
random matrix such that EY = I, ,,. We will say that Y satisfies (MSR) if for
some 17 > 0 we have:

c

P(|PYP| >¢t) < e Yt > ¢ - rank (P)

where P is orthogonal projection of R™.
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Theorem 5.13.4 (Youssef [321]). Let X be an n X n positive semi-definite random
matrix satisfying EX = 1,,x,, and (MSR) for some 1 > 0. Then for every ¢ < 1,
taking N = C1 (1) 577 we have

<e

1 N
E N;Xi—lm

op
where X1, ..., Xy are independent copies of X.
We also introduce a regularity assumption on the moments which we denote by
(MWR):

Jp > 1suchthat E(Xz,z)’ <C, VzesS" '

The proof of Theorem 5.13.4 is based on two theorems with the smallest and largest
N
eigenvalues of % >~ X, which are of independent interest.
i=1
Theorem 5.13.5 (Youssef [321]). Let X; n X n independent, positive semi-definite
random matrices satisfying EX; = 1,,«,, and (MWR). Let € < 1, then for

N >16(16C,)Y/ =D

2p—1
gr1

we have

1 N
m1n<NZ >>1€

Theorem 5.13.6 (Youssef [321]). Let X; n X n independent, positive semi-definite
random matrices satisfying EX; = 1,,«,, and (MSR). Then for any N we have

max(ZX) (n—i—N)

Moreover, fore < 1 and N = Cy (n) 557 we have

max( ZX><1+€

Consider the case of log-concave matrices is also covered in [321].
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5.14 Concentration of Singular Values

We primarily follow Rudelson and Vershynin [322] and Vershynin [323] for our
exposition. Relevant work also includes [72,322,324-333].

Let A be an N x n matrix whose entries with real independent, centered random
variables with certain moment assumptions. Random matrix theory studies the
distribution of the singular values o (A), which are the eigenvalues of |A| =
VAT A arranged in nonincreasing order. Of particular significance are the largest
and the smallest random variables

o1 (A)= sup |[Ax],, on(A) = inf [Ax],. (5.53)

x:[|x||,=1 x:[|x[[,=1

Here, we consider sub-Gaussian random variables £&—those whose tails are domi-
nated by that of the standard normal random variables. That is, a random variable is
called sug-Gaussian if there exists B > 0 such that

P(l¢| > t) < 2/ forall t > 0. (5.54)

The minimal B in this inequality is called the sub-Gaussian moment of &.
Inequality (5.54) is often equivalently formulated as the moment condition

(EI¢[P)/? < CB/pforall p > 1, (5.55)

where C' is an absolute constant. The class of sub-Gaussian random variables
includes many random variables that arise naturally in applications, such as normal,
symmetric +1 and general bounded random variables.

In this section, we study N X n real random matrices A whose entries are
independent and identically distributed mean 0 sub-Gaussian random variables. The
asymptotic behavior of the extremal singular values of A is well understood. If the
entries have unit variance and the dimension n grows infinity while the aspect ratio
n/N converges to a constant o € (0, 1), then

o1 (A) on (A)
VN VN
almost surely. The result was proved in [302] for Gaussian matrices, and in [334]

for matrices with independent and identically distributed entries with finite fourth
moment. In other words, we have asymptotically

— 1+ Va, —1—-Va

o1 (A) ~VN+vn,  0,(A)~VN—n. (5.56)

Recently, consider efforts were made to understand non-asymptotic estimates
similar to (5.56), which would hold for arbitrary fixed dimensions N and n.
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Ledoux [149] is a survey on the largest singular value. A modern, non-asymptotic
survey is given in [335], while a tutorial is given in [72]. The discussion in this
section is on the smallest singular value, which is much harder to control.

5.14.1 Sharp Small Deviation

Let A1 (A) be the largest eigenvalue of the n x n random matrix A. Following [336],
we present

P (A (A)>2+1t) < Cent™”

valid uniformly for all n and ¢. This inequality is sharp for “small deviation” and
complements the usual “large deviation” inequality. Our motivation is to illustrate
the simplest idea to get such a concentration inequality.

The Gaussian concentration is the easiest. It is straightforward consequence of
the measure concentration phenomenon [145] that

P (A1 (A) =M\ (A)+1) <e ™Vt >0,Vn (5.57)

where M\, (A) stands for the median of A, (A) with respect to the probability
measure P. One has the same upper bound estimate is the median MA; (A) is
replaced by the expected value EA; (A), which is easier to compute.

The value of MA; (A) can be controlled: for example we have

MM (A) <2+ C/\/ﬁ

5.14.2 Sample Covariance Matrices

The entries of the random matrices will be (complex-valued) random variables &
satisfying the following assumptions:

1. (A1) The distribution of ¢ is symmetric; that is, £ and —¢ are identically
distributed;
2. (A2) E\§|2k < (C’Ok)k for some constant Cjy > 0 (£ has sub-Gaussian tails).

Also we assume that either B¢ = E&€ = 1 or E€2 = 0; E¢€ = 1.
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Theorem 5.14.1 ([324]).

P{|All = 2vn(1+1t)} < Cexp <—ént3/2> ;

5.14.3 Tall Matrices

A result of [337] gives an optimal bound for tall matrices, those whose aspect ratio
a = n/N satisfies « < « for some sufficiently small constant g. Recalling (5.56),
one should expect that tall matrices satisfy

on(A) > ¢V N  with high probability. (5.58)

It was indeed proven in [337] that for a tall &1 matrices one has
P (o—n (A) < cx/ﬁ) <e N (5.59)

where oy > 0 and ¢ > 0 are absolute constants.

5.14.4 Almost Square Matrices

As we move toward square matrices, making the aspect ratio « = n/N arbitrarily
close to 1, the problem becomes harder. One still expect (5.58) to be true as long
as o < 1 is any constant. It was proved in [338] for arbitrary aspect ratios a <
1—c¢/ log n and for general random matrices with independent sub-Gaussian entries.
One has

P (an (A) < cq \/N) <e N, (5.60)

where ¢, > 0 depends on o and the maximal sub-Gaussian moment of the entries.
Later [339], the dependence of ¢, on the aspect ratio in (5.60) was improved
for random 41 matrices; however the probability estimates there was weaker
than (5.60). An estimate for sub-Gaussian random matrices of all dimensions was
obtained in a breakthrough work [340]. For any ¢ > C/ /N, it was shown that

P (Un (A)<e(l-a) (\/N - \/ﬁ)) < (Ce)N T e,

However, because of the factor 1 — «, this estimate is suboptimal and does not
correspond to the expected asymptotic behavior (5.56).
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5.14.5 Square Matrices

The extreme case for the problem of estimating the singular values is for the square
matrices, where N = n. Equation (5.56) is useless for square matrices. However,
for “almost” square matrices, those with constant defect N — n = O(1) is of order
1/ VN, 50 (5.56) heuristically suggests that

c
on(A) > — with high probability. (5.61)
vIN

This conjecture was proved recently in [341] for all square sub-Gaussian matrices:

P (an (A) > — ) <Cete N, (5.62)

VN

5.14.6 Rectangular Matrices

Rudelson and Vershynin [322] proved the conjectural bound for o(A), which is
valid for all sub-Gaussian matrices in all fixed dimensions N, n. The bound is
optimal for matrices with all aspects we encountered above.

Theorem 5.14.2 (Rudelson and Vershynin [322]). Let A be an N x n random
matrix, N > n, whose elements are independent copies of a mean 0 sub-Gaussian
random variable with unit variance. Then, for every t > 0, we have

i <0n (A) <t (x/ﬁ - m)) < (CHNTH pemeN, (5.63)

where C, c depend (polynomial) only on the sub-Gaussian moment B.

For tall matrices, Theorem 5.14.2 clearly amounts to the known estimates (5.58) and
(5.59). For square matrices N = n, the quantity vVN — /N — 1 is of order 1/\/N,
so Theorem 5.14.2 amounts to the known estimates (5.61) and (5.62). Finally, for
matrices that are arbitrarily close to square, Theorem 5.14.2 gives the new optimal
estimate

o (A) > ¢ (\/N - \/ﬁ) with high probability. (5.64)

This is a version of (5.56), now valid for all fixed dimensions. This bound were
explicitly conjectured in [342].

Theorem 5.14.2 seems to be new even for Gaussian matrices.

Vershynin [323] extends the argument of [322] for random matrices with
bounded (4 + ¢)-th moment. It follows directly from the argument of [322] and
[323, Theorem 1.1] (which is Eq. 5.69 below.)
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Corollary 5.14.3 (Vershynin [323]). Let ¢ € (0,1) and N > n be positive
integers. Let A be a random N x n matrix whose entries are i.i.d. random variables
with mean 0, unit variance and (4 + €)-th moment bounded by «. Then, for every
0 > 0 there exists t > 0 and ng which depend only on €, 6 and o, and such that

]P’(crn(A) <t<\/ﬁf nfl)) < 0, foralln > nyg.

After the paper of [323] was written, two important related results appeared on
the universality of the smallest singular value in two extreme regimes—for almost
square matrices [326] and for genuinely rectangular matrices [324]. The result of
Tao and Vu [326] works for square and almost square matrices where the defect N —
n is constant. It is valid for matrices with i.i.d. entries with mean O, unit variance, and
bounded C'-th moment where C' is a sufficiently large absolute constant. The result
says that the smallest singular value of such NV x n matrices A is asymptotically the
same as of the Gaussian matrix G of the same dimensions and with i.i.d. standard
normal entries. Specifically,

Now(A) <t),

Non(G)? < t+ N*C) N

(5.65)
Another result was obtained by Feldheim and Sodin [324] for genuinely rectangular
matrices, i.e. with aspect ratio N/n separated from 1 by a constant and with sub-
Gaussian i.i.d. entries. In particular, they proved

IP(Ncrn(G,)2 gth*C> ~ NP
<P

P (an (A) < (\/N - \/5)2 - tN) < 1—\C/YN7/n€_W3/ g (5.66)

Equations (5.63) and (5.66) complements each other—the former is multiplicative
(and is valid for arbitrary dimensions) while the latter is additive (and is applicable
for genuinely rectangular matrices.) Each of these two inequalities clearly has the
regime where it is stronger.

The permanent of an n X n matrix A is defined as

per (A) = Z a1,7(1)02,7(2) " " An,w(n)>
776871,

where the summation is over all permutations of n elements. If x; ; are i.i.d. 0 mean
variables with unit variance and X is an n X n matrix with entries z; ; then an easy
computation shows that

per (A) = E(det (A, 2 © X))?,
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where for any two n x m matrices A, B, D = A ® B denotes their Hadamard
or Schur, product, i.e., the n x m matrix with entries d; ; = a;; - b;;, and
where Aj/; (i,7) = A(i,§)"%. For a class of matrices that arise from J, -
strongly connected graph, i.e., graphs with good expansion properties, Rudelson
and Zeitouni [343] showed the following: Let G be the n X n standard Gaussian
matrix. The constants C, C, ¢, c, . .. depend only on §, k. For any 7 > 1 and any

adjacency matrix A of a (4, x)-strongly connected graph,

P ([logdet” (A1/> © G)| — E[log det” (A1/2 © G)| > C(rnlogn)*)
<exp(—7) +exp (—cy/n/logn).
and

E log det? <A1/2 © G)‘ +C"\/nlogn.

log det? (Al/g © G)‘ <logper (A) <E

Further, we have

&

For the smallest singular value, they showed that

det2 (A1/2 O] G)

1
% per (A)

> QC’\/nlogn) < exp (—cy/n/logn).

P (s, (AG®G)<ct/vn) <t+e ",
andforanyn/2 <k <mn—4

n—k < t(nfk)/él + efc'n.
n

P(Sk(AQG)<Ct

5.14.7 Products of Random and Deterministic Matrices

We study the B = T"A, where A is a random matrix with independent 0 mean
entries and T" is a fixed matrix. Under the (4 + ¢)-th moment assumption on the
entries of A, it is shown in [323] that the spectral norm of such an N x n matrix B
is bounded by v/N + +/n, which is sharp.

B = I' A can be equivalently regarded as sample covariance matrices of a wide
class of random vectors—the linear transformation of vectors with independent
entries.

Recall the spectral norm ||W/|, is defined as the largest singular value of a matrix

W, which equals the largest eigenvalue of |A| = v AT A. Equivalently, the spectral
norm can be defined as the [, — [ operator norm:

o1(A)= sup [lAx],

xi[|lx[ ;=1

where |[|-||, denotes the Euclidean norm.
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For random matrices with independent and identically distributed entries, the
spectral norm is well studies. Let B be an N x n matrix whose entries are real
independent and identically distributed random variables with mean 0, variance 1,
and finite fourth moment. Estimates of the type

o1 (B) ~ VN + /n, (5.67)

are known to hold (and are sharp) in both the limit regime for dimensions increasing
to infinity, and the non-limit regime where the dimensions are fixed. The meaning
of (5.67) is that, for a family of matrices as above whose aspect ratio N/n converges
to a constant, the ratio o1 (B) / (\/N + \/ﬁ) converges to 1 almost surely [344].

In the non-limit regime, i.e., for arbitrary dimensions n and V. Variants of (5.67)
was proved by Seginer [107] and Latala [194]. If B is an N X n matrix whose
entries are i.i.d. mean 0 random variables, then denoting the rows of B by x; and
the columns by y ;, the result of Seginer [107] says that

Eoy (B) < C (Emax]xi[l, +E max |yl

where C is an absolute constant. The estimate is sharp because o7 (B) is bounded
below by the Euclidean norm of any row and any column of B.

max
A

If the entries of the matrix B are not necessarily identically distributed, the result of
Latala [194] says that

1/4

Eoy1 (B) < C | Emax|xill, +Emax [y, + > b ,
,J

where b;; are entries of the matrix B. In particular, if B is an /N x n matrix whose
entries are independent random variables with mean 0 and fourth moments bounded
by 1, then one can deduce from either Seginer’s or Latala’s result that

Eo, (B) < C (\/N + \/ﬁ) . (5.68)

This is a variant of (5.67) in the non-limit regime.

The fourth moment is known to be necessary. Consider again a family of matrices
whose dimensions N and n increase to infinity, and whose aspect ratio N/n
converges to a constant. If the entries are i.i.d. random variables with mean 0 and

infinite fourth moment, then the upper limit of the ratio o1 (B) / (\/N + \/ﬁ) is
infinite almost surely [344].
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The main result of [323] is an extension of the optimal bound (5.68) to the class
of random matrices with non-independent entries, but which can be factored through
a matrix with independent entries.

Theorem 5.14.4 (Vershynin [323]). Ler ¢ € (0,1) and let m,n, N be positive
integers. Consider a random m x n matrix B = T A, where A is an N x n random
matrix whose entries are independent random variables with mean 0 and (4 + £)-th
moment bounded by 1, and T is an m x N non-random matrix such that o1 (T') < 1.
Then

Eoy (B) < C (¢) (vVm + V) (5.69)

where C () is a function that depends only on €.
Let us give some remarks on Eq. 5.69:

1. The conclusion is independent of N.
2. The proof of Eq. 5.69 gives the stronger estimate

Eoi (B) < C (¢) (01 (T) vim + ||T|ys)

which is valid for arbitrary (non-random) m x N matrix I". Here ||-|| ;5 denotes
the Hilbert-Schmidt norm or Frobenius norm. This result is independent of the
dimensions of I', therefore holds for an arbitrary linear operator I'" acting from
the N-dimensional Euclidean space ' to an arbitrary Hilbert space.

3. Equation 5.69 can be interpreted in terms of sample covariance matrices of
random vectors in R™ of the form I'z, where x is a random vector in R™ with in-
dependent entries. Let A be the random matrix whose columns are n independent
samples of the random vector x. Then B = I" A is the matrix whose columns
are n independent samples of the random vector I'z. The sample covariance
matrix of the random vector I'z, is defined as 3 = %BBT. Equation 5.69
says that the largest eigenvalue of 3 is bounded by C; (g) (14 2), which is
further bound by C5(e) for the number of samples n > m (and independently of
the dimension V). This problem was studied [345, 346] in the asymptotic limit
regime for m = N, where the result must of course dependent on V.

5.14.8 Random Determinant

Random determinant can be used the test metric for hypothesis testing, especially
for extremely low signal to noise ratio. The variance of random determinant is much
smaller than that of individual eigenvalues. We follow [347] for this exposition. Let
A, be an n x n random matrix whose entries a;;, 1 < 7, j < n, are independent real
random variables of 0 mean and unit variance. We will refer to the entries a;; as the
atom variables. This shows that almost surely, log |det (A,,)|is (1/2 + o(1)) nlogn
but does not provide any distributional information. For other models of random
matrices, we refer to [348].
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In [349], Goodman considered random Gaussian matrices where the atom
variables are i.i.d. standard Gaussian variables. He noticed that in this case
the determinant is a product of independent Chi-square variables. Therefore, its
logarithm is the sum of independent variables and thus one expects a central limit
theorem to hold. In fact, using properties of Chi square distribution, it is not very
hard to prove

log |det (A,,)| — 3 log (n —1)!
Q/%logn

In [242], Tao and Vu proved that for Bernoulli random matrices, with probability
tending to one (as n tents to infinity)

— N(0,1). (5.70)

Vnlexp (fc\/nlog n) < |det (A,)] < Vnlw (n) (5.71)

for any function w(n) tending to infinity with n. We say that a random variable £
satisfies condition CO (with positive constants C7, C5) if

P(l¢] > t) < Crexp (—t?) (5.72)

forall ¢ > 0. Nguyen and Vu [347] showed that the logarithm of |det (A, )| satisfies
a central limit theorem. Assume that all atom variables a;; satisfy condition C0 with
some positive constants C7, Cs. Then

log |det (A, — 1y —1)!
sup |P 0g| e( )| QOg(n )gt —<I>(t) glog_l/g"’o(l)n.

tER \/3logn
(5.73)

Here ®(t) =P (N (0,1) < t) = \/% fioo exp (—a%/2)dx. An equivalent form is

P <log det (A%) —log (n —1)! < t) — B(t)

sup < 10g71/3+0(1)n. (5.74)

teR

v2logn

For illustration, we see Fig.5.1.
Example 5.14.5 (Hypothesis testing).

HoZRyZRm
H,:R, =R, + R,

where R, is an n x n random matrix whose entries are independent real random
variables of 0 mean and unit variance, and R s is an positive definite matrix of n x n.
Random determinant can be used the test metric for hypothesis testing, especially
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Empirical CDF
1
Bernoulli matrices ///’
0.9 Gaussian matrices /
standard normal curve /
0.8 //
0.7

N /
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Fig. 5.1 The plot compares the distributions of (log det A% — log (n — 1)!) /1/2log . for random
Bernoulli matrices, random Gaussian matrices, and N(0, 1). We sampled 1,000 matrices of size
1,000 by 1,000 for each ensemble

for extremely low signal to noise ratio. The variance of random determinant is much
smaller than that of individual eigenvalues. According to (5.73), the hypothesis
test is

Ho : log |det (Ry)]
H, : log |det (R, + R.)|

Let A, B be complex matrices of n x n, and assume that A is positive definite. Then
for n > 2 [18, p.535]

det A < |det A| + |det B| < |det (A + B))| (5.75)
It follows from (5.75) that
Ho : log |det (Rz)| = %log (n—1)!
H;i :log|det (Rz + Rs)| = log (det Rs + |det Rz|) > log |det (Rz)| = %log (n—1)!

where R ; is assumed to be positive definite and R, is an arbitrary complex matrix.
Our algorithm claims H; if

1
log |det (R, + Ry)| > 3 log (n — 1)\
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Equivalently, from (5.74), we can investigate

Ho : log det (Ri) ~ log (n — 1)!
H, : logdet (R, + R,)” = logdet (R2 + R? + R,R, + R,R,)

where R, an n X n random matrix whose entries are independent real random
variables of 0 mean and unit variance, and R is an arbitrary complex matrix of

n xn.
(]

5.15 Invertibility of Random Matrix

We follow [350] for this exposition. Given an n X n random matrix A, what is the
probability that A is invertible, or at least “close” to being invertible? One natural
way to measure this property is to estimate the following small ball probability

P(sn (A) <),

where

def 1
oA Al = A=y
In the case when the entries of A are i.i.d. random variables with appropriate
moment assumption, the problem was studied in [239, 241, 341, 351, 352]. In
particular, in [341] it is shown that if the above diagonal entries of A are
continuous and satisfy certain regularity conditions, namely that the entries are i.i.d.
subGaussian and satisfy certain smoothness conditions, then

P(s, (A) <t) < Cynt+e . (5.76)

where ¢, C' depend on the moment of the entries.

Several cases of dependent entries have also been studied. A bound similar
to (5.76) for the case when the rows are independent log-concave random vectors
was obtained in [353,354]. Another case of dependent entries is when the matrix is
symmetric, which was studied in [355-360]. In particular, in [355], it is shown that
if the above diagonal entries of A are continuous and satisfy certain regularity con-
ditions, namely that the entries are i.i.d. subgaussian and satisfy certain smoothness
conditions, then

P[5, (A) < 1] < OVt
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The regularity assumptions were completely removed in [356] at the cost of a n°/?
(independence of the entries in the non-symmetric part is still needed). On the other
hand, in the discrete case, the result of [360] shows that if A is, say, symmetric
whose above diagonal entries are i.i.d. Bernoulli random variables, then

Pls, (A) = 0] < e,

where c is an absolute constant.

A more general case is the so called Smooth Analysis of random matrices, where
now we replace the matrix A by A + I'', where I'" being an arbitrary deterministic
matrix. The first result in this direction can be found in [361], where it is shown that
if A is a random matrix with i.i.d. standard normal entries, then

P(s, (T+A) <t) <Cynt. (5.77)

Further development in this direction can be found in [362] estimates similar to (1.2)
are given in the case when A is a Bernoulli random matrix, and in [356, 358, 359],
where A is symmetric.

An alternative way to measure the invertibility of a random matrix A is to
estimate det(A), which was studied in [242,363,364] (when the entries are discrete
distributions). Here we show that if the diagonal entries of A are independent
continuous random variables, we can easily get a small ball estimate for det(T'+A),
where I' being an arbitrary deterministic matrix.

Let A be an n x n random matrix, such that each diagonal entry A;; is a
continuous random variable, independent from all the other entries of A. Friedland
and Giladi [350] showed that for every n x n matrix I' and every t > 0

P(|det (A +T)| < t) < 2ant,
where « is a uniform upper bound on the densities of A; ;. Further, we have

Pll[A]l < 7] < 2ant,

578
P[s, (A) < t] < (2a) @ D(E | A"~V Cnbyl/2n-1), (5.78)

Equation (5.78) can be applied to the case when the random matrix A is symmetric,
under very weak assumptions on the distributions and the moments of the entries
and under no independence assumptions on the above diagonal entries. When A is
symmetric, we have

|A||= sup (Ax,x) > max |A; .

lxll, =1 Isisn
Thus, in this case we get a far better small ball estimate for the norm

PIA] < 1] < (2a1)".
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Rudelson [76] gives an excellent self-contained lecture notes. We take some material
from his notes to get a feel of the proof ingredients. His style is very elegant.

In the classic work on numerical inversion of large matrices, von Neumann
and his associates used random matrices to test their algorithms, and they specu-
lated [365, pp. 14, 477, 555] that

sn (A) ~ 1/4/n with high probability. (5.79)

In a more precise form, this estimate was conjectured by Smale [366] and proved
by Edelman[367] and Szarek[368] for random Gaussian matrices A, i.e., those with
i.i.d. standard normal entries. Edelman’s theorem states that for every ¢ € (0, 1)

P (s, (A) < t/v/n) ~ t. (5.80)
In [341], the conjecture (5.79) is proved in full generality under the fourth moment

assumption.

Theorem 5.15.1 (Invertibility: fourth moment [341]). Let A be an n x n matrix
whose entries are independent centered real random variables with variances at
least 1 and fourth moments bounded by B. Then, for every 6 > 0 there exist € > 0
and ng which depend (polynomially) only on 6 and B, such that

P(sn (A) < t/\/ﬁ) < dforalln > no.

Spielman and Teng[369] conjectured that (5.80) should hold for the random sign
matrices up to an exponentially small term that accounts for their singularity
probability:

P (sn (A) <t/v/n) <e+c"

Rudelson and Vershynin prove Spielman-Teng’s conjecture up to a coefficient in
front of ¢. Moreover, they show that this type of behavior is common for all matrices
with subGaussian i.i.d. entries.

Theorem 5.15.2 (Invertibility: subGaussian [341]). Let A be an n X n matrix
whose entries are independent copies of a centered real subGaussian random
variable. Then, for every t > 0, one has

P (sn (A) < t/v/n) < Ce+c". (5.81)

where C > 0 and c € (0,1).
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5.16 Universality of Singular Values

Large complex system often exhibit remarkably simple universal patterns as the
numbers of degrees of freedom increases [370]. The simplest example is the
central limit theorem: the fluctuation of the sums of independent random scalars,
irrespective of their distributions, follows the Gaussian distribution. The other
cornerstone of probability theory is to treat the Poisson point process as the universal
limit of many independent point-like evens in space or time. The mathematical
assumption of independence is often too strong. What if independence is not
realistic approximation and strong correlations need to be modelled? Is there a
universality for strongly correlated models?

In a sensor network of time-evolving measurements consisting of many
sensors—vector time series, it is probably realistic to assume that the measurements
of sensors have strong correlations.

Let & be a real-valued or complex-valued random variable. Let A denote the nxn
random matrix whose entries are i.i.d. copies of £. One of the two normalizations
will be imposed on &:

« R-normalization: ¢ is real-valued with E¢ = 0 and E€2 = 1.
+ C-normalization: ¢ is complex-valued with E¢ = 0, ERe (¢)* = EIm (¢)® =
1 and ERe (¢)Im (¢) = 0.

In both cases, £ has mean 0 and variance 1.

Example 5.16.1 (Normalizations). A model example of a R-normalized random
variable is the real Gaussian N'(0,1). Another R-normalized random variable is
Bernoulli, in which £ equals +1 or —1 with an equal probability 1/2 of each.

A model example of C-normalization is the complex Gaussian whose real and
imaginary parts are i.i.d. copies of %/\/’(07 1). O

One frequently views an(A)2 as the eigenvalues of the sample covariance matrix
A A" where * denotes the Hermitian (conjugate and transpose) of a matrix. It
is more traditional to write down the limiting distributions in terms of o2. We
study the “hard edge” of the spectrum, and specifically the least singular value
0, (A). This problem has a long history. It first appeared in the worked of von
Neuman and Goldstein concerning numerical inversion of large matrices [371].
Later, Smale [366] made a specific conjecture about the magnitude of o,,. Motivated
by a question of Smale, Edelman [372] computed the distribution of o,,(§) for the
real and complex Gaussian cases:

Theorem 5.16.2 (Limiting Distribution for Gaussian Models [372]). For any
fixed t > 0, we have, for real cases,

t
P (nan(A)2 < t) = /0 1;—\};56_(”2""‘/5)6&: +0(1) (5.82)
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as well as the exact (!) formula, for complex cases,

P (nan(A)2 < t) = /t e *dx.
0

Both integrals can be computed explicitly. By exchange of variables, we have

t
/ L4V _(a/24v7) g — | — p—t/2-VE (5.83)

Also, it is clear that

t
/ e %dr=1—¢e""t. (5.84)
0

The joint distribution of the bottom & singular values of real or complex A was
computed in [373].

The error term o(1) in (5.82) is not explicitly stated in [372], but Tao and Vu [326]
gives the form of O(n~¢) for some absolute constant ¢ > 0.

Under the assumption of bounded fourth moment E|¢ |4 < o0, it was shown
by Rudelson and Vershynin [341] that

P (nan(A)2 < t) < f (1) +o(1)

for all fixed ¢ > 0, where g(¢) goes to zero as t — 0. Similarly, in [374] it was
shown that

P (non(A)2 > t) <g(t)+o(1)

for all fixed ¢t > 0, where g(t) goes to zero as ¢ — oo. Under stronger assumption
that ¢ is sub-Gaussian, the lower tail estimate was improved in [341] to

P (nan(A)2 < t) <OVi+er (5.85)

for some constant C' > 0 and 0 < ¢ < 1 depending on the sub-Gaussian moments
of £. At the other extreme, with no moment assumption on ¢, the bound

5
P (non(A)2 < n_1_2“_”2> < note®

was shown for any fixed a > 0 in [362].

A common feature of the above mention results is that they give good upper
and lower tail bounds on no,,2, but not the distribution law. In fact, many pa-
pers [341,374,375] are partially motivated by the following conjecture of Spielman
and Teng [369].
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Conjecture 5.16.3 (Spielman and Teng [369]). Let £ be the Bernoulli random
variable. Then there is a constant 0 < ¢ < 1 such that for all £ > 0

P (nan(A)2 < t) <ttt (5.86)

A new method was introduced by Tao and Vu [326] to study small singular values.
Their method is analytic in nature and enables us to prove the universality of the
limiting distribution of na,, 2.

Theorem 5.16.4 (Universality for the least singular value [326]). Let £ be a (real
or complex) random variable of mean 0 and variance 1. Suppose E|§|C° < oo for
some sufficiently large absolute constant Cy. Then, for all t > 0, we have,

¢
P (nan(A)2 < t) = /0 1;_\}fze(”/%”ﬁ)dx +o(n™°) (5.87)

if € is R-normalized, and

P (”Un(A)Q < t) = /Ot e “dx +o(n”°)

if € is C-normalized, where ¢ > 0 is an absolute constant. The implied constants in
the O(-) notation depends on E|¢|°° but are uniform in t.

Very roughly, one can swap & with the appropriate Gaussian distribution gg or
gc, at which point one can basically apply Theorem 5.16.4 as a black box. In other
words, the law of no,2 is universal with respect to the choice of £ by a direct

comparison to the Gaussian models. The exact formula g %e‘ (#/24V%) 4 and

fot e~ *dx do not play any important role. This comparison (or coupling) approach
is in the spirit of Lindeberg’s proof [376] of the central limit theorem.

Tao and Vu’s arguments are completely effective, and give an explicit value
for Cy. For example, Cy = 10% is certainly sufficient. Clearly, one can lower Cy
significantly.

Theorem 5.16.4 can be extended to rectangular random matrices of (n — 1) x n
dimensions (Fig.5.2).

Theorem 5.16.5 (Universality for the least singular value of rectangular matri-
ces [326]). Let g be a (real or complex) random variable of mean 0 and variance
1. Suppose E|¢|7° < oo for some sufficiently large absolute constant Cy. Let | be a
constant. Let

X =n0on_1(A(€))% Xgr = non_i1(Agr))”, Xgc = non—i(Alge))”.

Then, there is a constant ¢ > 0 such that for all t > 0, we have,
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Bernoulli Gaussian
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Fig. 5.2 Plotted above are the curves P (nUn—l (A (¢ ))2 < x) for I = 0,1, 2 based on data from
1,000 randomly generated matrices with n = 100. The curves on the left were generated with §
being a random Bernoulli variable, taking the values +1 and —1 each with probability 1/2; The
curves on the right were generated with £ being a random Gaussian variable. In both cases, the
curves from left to right correspond to the cases | = 0, 1, 2, respectively

P(X<t—n"°) —n°<P(Xgr <t) <P(X<t+n"°)+n"°

if € is R-normalized, and
P(X<t—n"% —n*<P(Xge <t) <P(X<t+n)+n°
if € is C-normalized.

Theorem 5.16.4 can be extended to random matrices with independent (but not
necessarily identical) entries.

Theorem 5.16.6 (Random matrices with independent entries [326]). Let &;; be
a (real or complex) random variables with mean 0 and variance 1 (R-normalized or
C-normalized). Suppose E|€ |C‘J < (4 for some sufficiently large absolute constant
Cy and C. Then, for all t > 0, we have,

t
P (nan(A)2 < t) = /0 1;—\}1{56_(”/24"/5)@6 +o(n™°) (5.88)

if & are all R-normalized, and
t
P (nan(A)2 < t) = / e “dx +o(n™°)
0

if &; are all C-normalized, where ¢ > 0 is an absolute constant. The implied
constants in the O(-) notation depends on E|¢ |C0 but are uniform in t.
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Let us extend Theorem 5.16.4 for the condition number. Let A be an n X n
matrix, its condition number « (X) is defined as

o1 (A)
On (A) )

k(A) =

It is well known [2] that the largest singular value is concentrated strongly around
24/n. Combining Theorem 5.16.4 with this fact, we have the following for the
general setting.

Lemma 5.16.7 (Concentration of the largest singular value [326]). Under the
setting of Theorem 5.16.4, we have, with probability 1 — exp —n®®) | o) (A) =

2+ o(1)) V.

Corollary 5.16.8 (Conditional number [326]). Let &; be a (real or complex)
random variables with mean 0 and variance 1 (R-normalized or C-normalized).
Suppose E|¢ \CO < C1 for some sufficiently large absolute constant Cy and C1.
Then, for all t > 0, we have,

P (zlnn (A(§) > t) N /0 1;};56(”“@@ +o(n™) (5.89)

if & are all R-normalized, and

1 t
P <Ii (A&) > t> = / e Pdx+o(n™°)

2n 0
if &; are all C-normalized, where ¢ > 0 is an absolute constant. The implied
constants in the O(-) notation depends on E|¢|“° but are uniform in t.

5.16.1 Random Matrix Plus Deterministic Matrix

Let £ be a complex random variable with mean O and variance 1. Let A be the
random matrix of size n whose entries are i.i.d. copies of £ and I" be a fixed matrix
of the same size. Here we study the conditional number and least singular value of
the matrix B = I'+ A.. This is called signal plus noise matrix model. It is interesting
to find the “signal” matrix I' does play a role on tail bounds for the least singular
value of I + A.

Example 5.16.9 (Covariance Matrix). The conditional number is a random variable
of interest to many applications [372,377]. For example,

.

S=%4+7Z or Z=3%3-3%
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where X is the true covariance matrix (deterministic and assumed to be known) and
Y= %XX* is the sample (empirical) covariance matrix—random matrix; here X
is the data matrix which is the only matrix available to the statistician. ]

Example 5.16.10 (Hypothesis testing for two matrices).

HotRy:Rn
H;:R, =R, +R,

where R, is an arbitrary deterministic matrix and R, is a random matrix. O

Let us consider the Gaussian case. Improving the results of Kostlan and
Oceanu [366] and Edelman [372] computed the limiting distribution of y/no, (A).

Theorem 5.16.11 (Gaussian random matrix with i.i.d. entries [372]). There is
a constant C' > 0 such that the following holds. Let £ be a real Gaussian random
variable with mean 0 and variance 1, let A be the random matrix whose entries are
i.i.d. copies of €, and let I be an arbitrary fixed matrix. Then, for any t > 0,

P (0, (A) <t) > n'/%t

Considering the more general model B = I'" + A, Sankar, Spielman and Teng
proved [378].

Theorem 5.16.12 (Deterministic Matrix plus Gaussian random matrix [378]).
There is a constant C' > 0 such that the following holds. Let £ be a real Gaussian
random variable with mean 0 and variance 1, let A be the random matrix whose
entries are i.i.d. copies of £, and let T be an arbitrary fixed matrix. B =T + A.
Then, for any t > 0,

P (o, (B) < t) > Cn'/?t.

We say £ is sub-Gaussian if there is a constant o > 0 such that
P (¢ > 1) < 2e7/

for all t > 0. The smallest « is called the sub-Gaussian moment of ¢. For a more
general sub-Gaussian random variable £, Rudelson and Vershynin proved [341] the
following.

Theorem 5.16.13 (Sub-Gaussian random matrix with i.i.d. entries [341]). Let
& be a sub-Gaussian random variable with mean 0, variance 1 and sub-Gaussian
moment o. Let ¢ be an arbitrary positive constant. Let A be the random matrix
whose entries are i.i.d. copies of &, Then, there is a constant C' > 0 (depending on

C

«) such that, for anyt > n=¢,
P (o, (A) <t) > Cn'/?t.

For the general model B =T" + A, Tao and Vu proved [379]
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Theorem 5.16.14 (A general model B = T" + A [379]). Let £ be a random
variable with non-zero variance. Then for any constants C1,C > 0 there exists
a constant Cy > 0 (depending on C1, C, ) such that the following holds. Let A be
the random matrix whose entries are i.i.d. copies of €, and let I" be any deterministic
n x n matrix with norm |T'|| < n®. Then, we have

P (O'n (T+A)< n_CQ) >n" 01,

This theorem requires very little about the random variable £. It does not need to
be sub-Gaussian nor even has bounded moments. All we ask is that the variable is
bounded from zero, which basically means £ is indeed “random”. Thus, it guarantees
the well-conditionness of B = I' + A in a very general setting.
The weakness of this theorem is that the dependence of C5 on C and C, while
explicit, is too generous. The work of [362] improved this dependence significantly.
Let us deal with the non-Gaussian random matrix.

Theorem 5.16.15 (The non-Gaussian random matrix [362]). There are positive
constants c¢1 and co such that the following holds. Let A be the n x n Bernoulli
matrix with n even. For any o > n, there is an n X n deterministic matrix I' such
that |T|| = o and

1

n
P(nI‘ A) < 7)2 .
on (T +A) 1 02\/7»1

The main result of [362] is the following theorem

Theorem 5.16.16 (Bounded second moment on {—Tao and Vu [362]). Let £ be
a random variable with mean 0 and bounded second moment, and let v > 1/2,C >
0 be constants. There is a constant ¢ depending on &,~, C such that the following
holds. Let A be the n X n matrix whose entries are i.i.d. copies of £, T' be a
deterministic matrix satisfying |T|| < n". Then

P (on (F+4) <0700 <o (wCro 1 P(IA] > 0)).

This theorem only assumes bounded second moment on &. The assumption that the
entries of A are i.i.d. is for convenience. A slightly weaker result would hold if one
omit this assumption.

Let us deal with the condition number.

Theorem 5.16.17 (Conditional number—Tao and Vu [362]). Let £ be a random
variable with mean 0 and bounded second moment, and let v > 1/2,C > 0 be
constants. There is a constant c depending on &, v, C' such that the following holds.
Let A be the n X n matrix whose entries are i.i.d. copies of £, I be a deterministic
matrix satisfying ||T|| < n”. Then

P (n (T+A)> 2n(20+2)7) <e (n*C“(l) TP(|A] = m)) .
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Proof. Since k (T' + A)=01 (I'+ A) /o, (T + A), it follows that if x (T + A) >
2n(2¢+2)7 then at least one of the two events o, (I'+ A) < n~(¢+D7 and
o1 (I'+ A) > 2n” holds. On the other hand, we have

o1 (' +A) <o1(T) +o1(A) = [T + [A]l < n7 + [[A]l.

The claim follows. (]

Let us consider several special cases and connect Theorem 5.16.16 with other
existing results. First, we consider the sub-Gaussian case of £. Due to [341], one
can have a strong bound on P (||A|| > n").

Theorem 5.16.18 (Tao and Vu [362]). Let o be a positive constant. There are
positive constants C1,Cy depending on « such that the following holds. Let £ be
a sub-Gaussian random variable with 0 mean, variance one and sub-Gaussian
moment o, and A be a random matrix whose entries are i.i.d. copies of £. Then

P(|All = Civn) < e ",

If one replaces the sub-Gaussian condition by the weaker condition that £ has fourth
moment bounded o, then one has a weaker conclusion that

E|A] < Civn.

Combining Theorems 5.16.16 and 5.16.18, we have

Theorem 5.16.19 (Bounded second moment on {—Tao and Vu [362]). Ler C
and ~ be arbitrary positive constants. Let £ be a sub-Gaussian random variable
with mean 0 and variance 1. Let A be the n x n matrix whose entries are i.i.d.
copies of &, T be a deterministic matrix satisfying |T|| < n”. Then

P (o0 (0 +A) < (Vi + [A])771) <o, (5.90)
For [|A|| = O (y/n), (5.90) becomes
P (o—n (T +A) < n—C—l/Q) < n=Cto), (5.91)

Up to a loss of magnitude n°1), this matches Theorem 5.16.13, which treated
the base case I' = 0.

If we assume bounded fourth moment instead of sub-Gaussian, we can use the
second half of Theorem 5.16.18 to deduce the following, for ||A| = O (v/n),

}P’(an (T+A)< (Vo + ||A||)_1+0(1)) = o(1). (5.92)
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In the case of ||A| = O (y/n), this implies that almost surely o, (' + A) >
n=1/2+o(1)  For the special case of I' = 0, this matches [341, Theorem 1.1], up
to the o(1) term.

5.16.2 Universality for Covariance and Correlation Matrices

To state the results in[380-382], we need the following two conditions. Let X =
(x;5) be a M x N data matrix with independent centered real valued entries with
variance 1/M:

E¢; =0, E& =1 (5.93)

1
Tij = 7W§ija
Furthermore, the entries ;; have a sub-exponential decay, i.e., there exists a constant
1
P(|&;] >t) < — exp (—t"). (5.94)

The sample covariance matrix corresponding to data matrix X is given by S =
XHX. We are interested in the regime

d=dy=N/M, lim d0,1,00. (5.95)
N—o00

All the results here are also valid for complex valued entries with the moment
condition (5.93) replaced with its complex valued analogue:

1 2
vy = =t By =0, E =0, ElE; =1 (5.96)

By the singular value decomposition of X, there exist orthonormal bases

M M
X = Z \/)\T-ul-vZH = Z \/)\Tuf{vi,
i=1 i=1

where Ay > X2 > -+ 2> Ajaxa,ny = 0, Ay = 0 for \; = 0, min{N, M} 4+ 1 <
i < max{N, M}.

Theorem 5.16.20 ([381]). Let X with independent entries satisfying (5.93)
and (5.94). For any fixed k > 0,

My~ (VN +VET) M (VN+VIT) ™™W
,. .. B 1 % 1,
(VEIT) (Gt ) (VRVI) () (5.97)

where TW denotes the Tracy-Widom distribution. An analogous statement holds
for the smallest eigenvalues.
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Let us study the correlation matrix. For a Euclidean vector a € R", define the I3
norm

E 2
a;.

i=1

lall, =

The matrix X7 X is the usual covariance matrix. The j-th column of X is denoted
by x;. Define the matrix M x N X = (Z;;)

- Tij

= . (5.98)
! ||Xj ||2
M
Using the identity EZ?; = ;E ; 7, we have
1
Bz, = I

Let )\, is the eigenvalues of the matrix XH 5(, sorted decreasingly, similarly to \;,
the eigenvalues of the matrix X X.

The key difficulty to be overcome is the strong dependence of the entries of
the correlation matrix. The main result here states that, asymptotically, the k-point
(k > 1) correlation functions of the extreme eigenvalues (at the both edges of the
spectrum) of the correlation matrix X X converge to those of Gaussian correlation
matrix, i.e., Tra~cy—V~Vidom law, and thus in particular, the largest and smallest
eigenvalues of XX, after appropriate centering and rescaling, converge to the
Tracy-Widom distribution.

Theorem 5.16.21 ([380]). Let X with independent entries satisfying (5.93), (5.94)
(or (5.96) for complex entries), (5.95), and (5.98). For any fixed k > 0,

MA - (mww)z M, — (wmm)z .
P 1 — 1,
(/) (o)™ () () )

where TW denotes the Tracy-Widom distribution. An analogous statement holds
for the k-smallest (non-trivial) eigenvalues.

As a special case, we also obtain the Tracy-Widom law for the Gaussian correlation

matrices. To reduce the variance of the test statistics, we prefer the sum of the
k -

functions of eigenvalues »_ f ()\Z) for k¥ < min{M,N} where f : R - R
i=1

is a function (say convex and Lipschitz). Note that the eigenvalues \; are highly
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correlated random variables. Often the sums of independent random variables
are extensively studied. Their dependable counterparts are less studied: Stein’s
method [87,258] can be used for this purpose.

Example 5.16.22 (Universality and Principal Component Analysis). Covariance
matrices are ubiquitous in modern multivariate statistics where the advance of
technology has leads to high dimensional data sets—Big Data. Correlation matrices
are often preferred. The Principal Component Analysis (PCA) is not invariant to
change of scale in the matrix entries. It is often recommended first to standardize
the matrix entries and then perform PCA on the resulting correlation matrix [383].
Equivalently, one performs PCA on the sample correlation matrix.

The PCA based detection algorithms (hypothesis tests) are studied for spectrum
sensing in cognitive radio [156, 157] where the signal to noise ratio is extremely low
such as —20dB. The kernel PCA is also studied in this context [384,385].

Akin to the central limit theorem,universality [370, 380] refers to the phe-
nomenon that the asymptotic distributions of various functionals of covari-
ance/correlation matrices (such as eigenvalues, eigenvectors etc.) are identical to
those of Gaussian covariance/correlation matrices. These results let us calculate
the exact asymptotic distributions of various test statistics without restrictive
distributional assumptions of the matrix entries. For example, one can perform
various hypothesis tests under the assumption that the matrix entries are not
normally distributed but use the same test statistic as in the Gaussian case.

For random vectors a;, w;,y; € C", our signal model is defined as

yi=a,+w;, t=1,...,N

where a; is the signal vector and w; the random noise. Define the (random) sample
covariance matrices as

N N N
H H H
Y:ZY’LY'L 3 A:Zaiai y W:ZW’LWZ .
=1 =1 i=1

It follows that
Y=A+W. (5.100)

Often the entries of W are normally distributed (or Gaussian random variables). We
are often interested in a more general matrix model

Y=A+W+1J (5.101)

where the entries of matrix J are not normally distributed (or non-Gaussian random
variables). For example, when jamming signals are present in a communications
or sensing system. We like to perform PCA on the matrix Y. Often the rank of
matrix A is much lower than that of W. We can project the high dimensional matrix
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Y into lower dimensions, hoping to expose more structures of A. The Gaussian
model of (5.100) is well studied. Universality implies that we are able to use the test
statistic of (5.100) to study that of (5.101). O

We provide the analogous non-asymptotic bounds on the variance of eigenvalues
for random covariance matrices, following [386]. Let X be a m xn (real or complex)
random matrix, with m > n, such that its entries are independent, centered and have
variance 1. The random covariance matrix (Wishart matrix) S is defined as

1
S =-XHX.
n

An important example is the case when all the entries of X are Gaussian. Then
S belongs to the so-called Laguerre Unitary Ensemble (LUE) if the entries are
complex and to the Laguerre Orthogonal Ensemble (LOE) if they are real. All the
eigenvalues are nonnegative and will be sorted increasingly 0 < A\ < -+ - < Ay. ~

We say that .Sy, ,, satisfy condition (CO0) if the real part £ and imaginary part §
of (Sy,n)i,; are independent and have an exponential decay: there are two positive
constants 3; and (35 such that

P(gl>t7) <et and P([E) > 07) <o

fort > Bs.
We assume that (1)

m
<o € —<a
n

where «; and o, are fixed constants and that S is a covariance matrix whose entries
have an exponent decay (condition (C'0)) and (2) have the same first four moments
as those of a LUE matrix. The following summarizes a number of quantitative
bounds.

Theorem 5.16.23 ([386]).

1. In the bulk of the spectrum. Let n € (0,3]. There is a constant C > 0
(depending on m, a1, o) such that, for all covariance matrices S, ,, with
m <i < (1-mn)n,

logn

Var (\;) < C—5-.

n

2. Between the bulk and the edge of the spectrum. There is a constant k. > 0
(depending on o, ae) such that the following holds. For all K > k, for all
n € (0, %], there exists a constant C' > 0 (depending on K,n, a1, ag) such that,
for all covariance matrices Sy, ,,, with (1 —n)n < i <n — Klogn,

log (n — 1)

Var (\;) < C————M+~.
ar( ) n4/3(n—i)2/3
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3. At the edge of the spectrum. There exists a constant C > 0 (depending on
o, ) such that, for all covariance matrices Sy, r,,

1

5.17 Further Comments

This subject of this chapter is in its infancy. We tried to give a comprehensive review
of this subject by emphasizing both techniques and results. The chief motivation is
to make connections with the topics in other chapters. This line of work deserves
further research.

The work [72] is the first tutorial treatment along this line of research. The two
proofs taken from [72] form the backbone of this chapter. In the context of our
book, this chapter is mainly a statistical tool for covariance matrix estimation—
sample covariance matrix is a random matrix with independent rows. Chapter 6 is
included here to highlight the contrast between two different statistical frameworks:
non-asymptotic, local approaches and asymptotic, global approaches.



Chapter 6
Asymptotic, Global Theory of Random Matrices

The chapter contains standard results for asymptotic, global theory of random matri-
ces. The goal is for readers to compare these results with results of non-asymptotic,
local theory of random matrices (Chap. 5). A recent treatment of this subject is given
by Qiu et al. [5].

The applications included in [5] are so rich; one wonder whether a parallel
development can be done along the line of non-asymptotic, local theory of random
matrices, Chap. 5. The connections with those applications are the chief reason why
this chapter is included.

6.1 Large Random Matrices

Example 6.1.1 (Large random matrices). Consider n-dimensional random vectors
y,X,n € R”?

y=x+n

where vector x is independent of n. The components x1,...,x, of the random
vector x are scalar valued random variables, and, in general, may be dependent
random variables. For the random vector n, this is similar. The true covariance
matrix has the relation

R, =R, + R,,

due to the independence between x and n.
Assume now there are IV copies of random vector y:

yi:Xi—&—ni, 22172,7]\[
Let us consider the sample covariance matrix

R. Qiu and M. Wicks, Cognitive Networked Sensing and Big Data, 351
DOI 10.1007/978-1-4614-4544-9_6,
© Springer Science+Business Media New York 2014
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1 & 1 & 1 &
N;Yi(@yi = N;XH@X@‘ +Nzni®ni + junk

i=1

where “junk” denotes two other terms. It is more convenient to consider the matrix
form

Y1 X np
Y=|: , X=| , N=| : :
T T T

YN Nxn XN Nxn ny Nxn

where all matrices are of size n x n. Thus it follows that

1 1 1

—Y'Y = —X*X + —=N*N + junk. 6.1

N N + N =+ jun (6.1)
A natural question arises from the above exercise: What happens if n — oo, N —
00, but % — a? [l

The asymptotic regime
n—>oo,N%oo,but%—>a? (6.2)

calls for a global analysis that is completely different from that of non-asymptotic,
local analysis of random matrices (Chap. 5). Stieltjes transform and free probability
are two alternative frameworks (but highly related) used to conduct such an analysis.
The former is an analogue of Fourier transform in a linear system. The latter is an
analogue of independence for random variables.

Although this analysis is asymptotic, the result is very accurate even for small
matrices whose size n is as small as less than five [5]. Therefore, the result is very
relevant to practical limits. For example, we often consider n = 100, N = 200 with
a = 0.5.

In Sect. 1.6.3, a random matrix of arbitrary N X n is studied in the form of

E [Tr (A’C )} and E [Tr(B*B)k} where A is a Gaussian random matrix (or Wigner
matrix) and B is a Hermitian Gaussian random matrix.

6.2 The Limit Distribution Laws

The empirical spectral distribution (ESD) is defined as

1 n
= - O, 6.3
px n; (X)) (6.3)
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of X, where A\; (X) > --- > A\, (X) are the (necessarily real) eigenvalues of X,
counting multiplicity. The ESD is a probability measure, which can be viewed as a
distribution of the normalized eigenvalues of X.

Let A be the Wigner matrix defined in Sect. 1.6.3.

Theorem 6.2.1 (Semicircle Law). Let A be the top left n x n minors of an infinite
Wigner matrix (&;5), i1 Then the ESDs pa converge almost surely (and hence

also in probability and in expectation) to Wigner semicircle distribution

1 9 1/2 .
o= L (4 al?) e if el <2
0, otherwise.

Almost sure convergence (or with probability one) implies convergence in
probability. Convergence in probability implies convergence in distribution (or
expectation). The reverse is false in general.

When a sample covariance matrix S = %X*X is considered, we will reach the
so-called Marcenko-Pasture law, defined as

7 {27r1 (biw) (zfa)dl', 1fa<x<b7
MP =

T
0, otherwise,

where « is defined in (6.2).

6.3 The Moment Method

Section 1.6.3 illustrates the power of Moment Method for the arbitrary matrix sizes
in the Gaussian random matrix framework. Section 4.11 treats this topic in the
non-asymptotic, local context.

The moment method is computationally intensive, but straightforward.
Sometimes, we need to consider the asymptotic regime of (6.2), where moment
method may not be feasible. In real-time computation, the computationally efficient
techniques such as Stieltjes transform and free probability is attractive.

The basic starting point is the observation that the moments of the ESD pa can
be expressed as normalized traces of powers of A of n X n

/ Fdua(z) = lTr(A)k . (6.4)
R n

where A is the Wigner matrix defined in Sect. 1.6.3. The matrix norm of A is
typically of size O(y/n), so it is natural to work with the normalized matrix ﬁA.
But for notation simplicity, we drop the normalization term.

Since expectation is linear, on taking expectation, it follows that
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/ 2P dE [ua ()] = %E [Tr(A)k} . 6.5)
R

The concentration of measure for the trace function Tr(A)k is treated in Sect. 4.3.
From this result, the E [ ()] are uniformly sub-Gaussian:

E[ua {|z| > t}] < Ce~""

fort > C, where C are absolute (so the decay improves quite rapidly with n). From
this and the Carleman continuity theorem, Theorem 1.6.1, the circular law can be
established, through computing the mean and variance of moments.

To prove the convergence in expectation to the semicircle law ., it suffices to
show that

E
1 1
—E|Tr( —=A) | = | 2"duse 1 6.6
! {wl)] [ i) + 0u(1) ©6)
for k = 1,2,..., where og(1) is an expression that goes to zero as n — oo for

fixed k.

6.4 Stieltjes Transform

Equation (6.4) is the starting point for the moment method. The Stieltjes transform
also proceeds from this fundamental identity

/ ! dua(z) = lTr(A —D! (6.7)
R n

r—z

for any complex z not in the support of pa. The expression in the left hand side is
called Stieltjes transform of A or of ua, and denote it as ma (z). The expression
(A — ZI)il is the resolvent of A, and plays a significant role in the spectral theory
of that matrix. Sometimes, we can consider the normalized version M = inA
for an arbitrary matrix A of n X n, since the matrix norm of A is typically of
size O(y/n). The Stieltjes transform, in analogy with Fourier transform for a linear
time-invariant system, takes full advantage of specific linear-algebraic structure of
this problem, and, in particular, of rich structure of resolvents. For example, one can
use the Neumann series

I-X) " =T+ X+X2 4 X
One can further exploit the linearity of trace using:

Tr(I—X) ' =TI+ TrX + TrX?+ - + TeXF 4.



6.4 Stieltjes Transform 355

The Stieltjes transform can be viewed as a generating function of the moments
via the above Neumann series (an infinite Taylor series of matrices)

1 1 1 11
mm(z) = — TM—;ﬁTrM—n-,

s Al
valid for z sufficiently large. This is reminiscent of how the characteristic function
Ee/*X of a scalar random variable can be viewed as a generating function of the
moments EX*.

For fixed z = a + jb away from the real axis, the Stieltjes transform myg,, (2) is
quite stable in n. When M, is a Wigner matrix of size n X n, using a standard
concentration of measure result, such as McDiarmid’s inequality, we conclude
concentration of my;, (z) around its mean:

P {|mn, (a + jb) — Emm, (a + jb)| > t/v/n} < Ce™"" (6.8)

for all ¢ > 0 and some absolute constants C', ¢ > 0. For details of derivations, we
refer to [63, p. 146].

The concentration of measure says that my,, (2) is very close to its mean. It does
not, however, tell much about what this mean is. We must exploit the linearity of
trace (and expectation) such as

1 n 1 -1

%

where [B],, is the diagonal ii-th component of a matrix B. Because A, is
Wigner matrix, on permuting the rows and columns, all of the random variables

-1
{(\}ﬁAn — zIn> } have the same distribution. Thus we may simplify the above

expression as

(x3

1 —1
E =E|| —=A, —zI, . 6.
SRR EN s [
We only need to deal with the last entry of an inverse of a matrix.

Schur complement is very convenient. Let B,, be an n X n matrix, let B,,_; be
the top left n — 1 X n — 1 minor, let b,,, be the bottom right entry of B,, such that

o[ 2]

*

Y* bun

where x € C"~! is the right column of B,, with the bottom right entry b,,,, removed,
and y* € (C"‘l)* is the bottom row with the bottom right entry b, removed.
Assume that B,, and B,,_; are both invertible, we have that
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1
- (6.10)
bnn - y*Bn—lx

This expression can be obtained as follows: Solve the equation A,,v = e,, where
e, is the n-th basis vector, using the method of Schur complements (or from first
principles).

In our situations, the matrices —=A, —zI, and —=A,_; —zL,_; are
automatically invertible. Inserting (6.10) into (6.9) (and recalling that we normalized
the diagonal of A, to vanish), it follows that

1

EmLAn (Z) =-E

- , (6.11)

-1
z+ %X* (ﬁAn—l - ZIn—l) X — ﬁgnn

where x € C" ! is the right column of A, with the bottom right entry &,,,, removed
(the (ij)-th entry of A,, is a random variable &;;). The beauty of (6.11) is to tie
together the random matrix A, of size n X n and the random matrix A,,_; of size
(n—1) x (n—1).

-1

Next, we need to understand the quadratic form x* ﬁAn_l — zIn_l) X.

We rewrite this as x*Rx, where R is the resolvent matrix. This distribution of
the random matrix R is understandably complicated. The core idea, however, is to
exploit the observation that the (n — 1)-dimensional vector x involves only these
entries of A,, that do not lie in A,,_1, so the random matrix R and the random
vector x are independent. As a consequence of this key observation, we can use the
randomness of x to do most of the work in understanding the quadratic form x*Rx,
without having to know much about R at all!

Concentration of quadratic forms like x*Rx has been studied in Chap. 5. It turns
out that

P{|x*Rx — E (x*Rx)| > tv/n} < Cect’
for any determistic matrix R of operator norm O(1). The expectation E (x*Rx) is

expressed as

n—1ln—1

E (X*RX) = Z Z ]Eginrijgjn

i=1 j=1

where &;,, are entries of x, and r;; are entries of R. Since the &;,, are iid with mean
zero and variance one, the standard second moment computation shows that this
expectation is less than the trace

of R. We have shown the concentration of the measure
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P {|x*Rx — Tr(R)| > t\/n} < Ce™" (6.12)

for any deterministic matrix R of operator norm O(1), and any ¢ > 0. Informally,
x*Rx is typically Tr (R) + O (/n) .

The bound (6.12) was shown for a deterministic matrix R, but by using
conditional expectation this works for any random matrix as long as the matrix R is
independent of random vector x. For our specific matrix

1 —1
Re( Ay~ ) ,
<ﬁ e 1)

we can apply conditional expectation. The trace of this matrix is nothing but the
Stieltjes transformm_1_» () of matrix A,,_;. Since the normalization factor
Vn—1""""

is slightly off, we have

vn_ ( vn
Vn—1 veafeoitp—

By some subtle arguments available at [63, p. 149], we have

Tr(R)=n z).

i

Tr(R) =n (m_1a,_, () +0(1)).

In particular, from (6.8) and (6.12), we see that
x'Rx=n (Em 1A, (2)F 0(1))

with overwhelming probability. Putting this back to (6.11), we have the remarkable
self-consistent equation

1
S ——Y
M (?) Z+ma,(2) +oll)

Following the arguments of [63, p. 150], we see that mLa, (z) converges to a limit
ma (z), as n — co. Thus we have shown that

(=) :
ma(z) = —
A z+ma(z)
which has two solutions
z+Vz22 -4
ma(z) = —
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It is argued that the positive branch is the correct solution

through which we reach the semicircular law

o (4 — xQ)i/Q dxr = pge-

For details, we refer to [63, p. 151].

6.5 Free Probability

We take the liberty of freely drawing material from [63] for this brief exposition.
We highlight concepts, basic properties, and practical material.

6.5.1 Concept

In the foundation of modern probability, as laid out by Kolmogorov, the basic objects
of study are:

1. Sample space §2, whose elements w represent all the possible states.

2. One can select a c—algebra of events, and assign probabilities to these events.

3. One builds (commutative) algebra of random variables X and one can assign
expectation.

In measure theory, the underlying measure space () plays a prominent foun-
dational role. In probability theory, in contrast, events and their probabilities are
viewed as fundamental, with the sample space €2 being abstracted away as much as
possible, and with the random variables and expectations being viewed as derived
concepts.

If we take the above abstraction process one step further, we can view the algebra
of random variables and their expectations as being the foundational concept, and
ignoring both the presence of the original sample space, the algebra of events, or the
probability of measure.

There are two reasons for considering the above foundational structures. First,
it allows one to more easily take certain types of limits, such as: the large n limit
n — oo when considering n X n random matrices, because quantities build from
the algebra of random variables and their expectations, the normalized moments of
random matrices, which tend to be quite stable in the large n limit, even the sample
space and event space varies with n.
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Second, the abstract formalism allows one to generalize the classical commuta-
tive theory of probability to the more general theory of non-commutative probability
which does not have the classical counterparts such as sample space or event space.
Instead, this general theory is built upon a non-commutative algebra of random
variables (or “observables”) and their expectations (or “traces”). The more general
formalism includes as special cases, classical probability and spectral theory (with
matrices or operators taking the role of random variables and the trace taking
the role of expectation). Random matrix theory is considered a natural blend of
classical probability and spectrum theory whereas quantum mechanics with physical
observables, takes the role of random variables and their expected values on a given
state which is the expectation. In short, the idea is to make algebra the foundation
of the theory, as opposed to other choices of foundations such as sets, measure,
categories, etc. It is part of more general “non-commutative way of thinking.!”

6.5.2 Practical Significance

The significance of free probability to random matrix theory lies in the fundamental
observation that random matrices that have independent entries in the classical
sense, also tend to be independent? in the free probability sense, in the large n limit
n — oo. Because of this observation, many tedious computations in random matrix
theory, particularly those of an algebraic or enumerative combinatorial nature, can
be performed more quickly and systematically by using the framework of free
probability, which by design is optimized for algebraic tasks rather than analytical
ones.

Free probability is an excellent tool for computing various expressions of interest
in random matrix theory, such as asymptotic values of normalized moments in the
large n limit n — oo. Questions like the rate of convergence cannot be answered
by free probability that covers only the asymptotic regime in which n is sent to
infinity. Tools such as concentration of measure (Chap.5) can be combined with
free probability to recover such rate information.

As an example, let us reconsider (6.1):

1., 1 . R 1 1. 1
=Y Y_N(XJrN) (X+N)_NX X+NN N+NX N+NN X.

N
(6.13)

The rate of convergence how %X*X converges to its true covariance matrix R,
can be understood using concentration of measure (Chap. 5), by taking advantage of

IThe foundational preference is a meta-mathematical one rather than a mathematical one.

2This is only possible because of the highly non-commutative nature of these matrices; this is not
possible for non-trivial commuting independent random variables to be freely independent.
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low rank structure of the R,,. But the form of Tr(A + B)’c can be easily handled by
free probability.

If A,B are freely independent, and of expectation zero, then E[ABAB|
vanishes, but E [A ABB] instead factors as E [A%] E [B?] . Since

ETr (71] (A+B)" (A + B))k>

can be calculated by free probability [387], (6.13) can be handled as a special case.

Qiu et al. [5] gives a comprehensive survey of free probability in wireless
communications and signal processing. Couillet and Debbah [388] gives a deeper
treatment of free probability in wireless communication. Tulino and Verdu [389] is
the first book-form treatment of this topic in wireless communication.

6.5.3 Definitions and Basic Properties

In the classical (commutative) probability, two (bounded, real-valued) random
variables X, Y are independent if one has

Elf(X)g(¥)]=0

whenever f,g : R — R are well-behaved (such as polynomials) such that all of
E[f (X)] and E[g (Y)] vanish. For two (bounded, Hermitian) non-commutative
random variables X, Y, the classical notion no longer applies. We consider, as a
substitute, the notion of being freely independent (or free for short), which means
that

Elfi(X)g1 (V) fr (X)gx (Y)] =0 (6.14)

where f1,91,..., f, gk : R — R are well-behaved functions such that E [f; (X)],
Efgr (X)], ... E[fx (X)], E [gx (X)] vanish.

Example 6.5.1 (Random matrix variables). Random matrix theory combines
classical probability theory with finite-dimensional spectral theory, with the random
variables of interest now being the random matrices X, all of whose entries have all
moments finite. The normalized trace 7 is given by

1
7 (X) £ E-TrX.
n
Thus one takes both the normalized matrix trace and the probabilistic expectation,

in order to obtain a deterministic scalar. As seen before, the moment method for
random matrices is based on the moments

T (XF) = ELTrXF,
n
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When X is a Gaussian random matrix, the exact expression for 7 (X’“) = E%Ter
is available in a closed form (Sect. 1.6.3). When Y is a Hermitian Gaussian random

matrix, the exact expression for 7 ((Y*Y)k ) = E%Tr(Y*Y)k is also available in
a closed form (Sect. 1.6.3). O

The expectation operator is a map that is linear. In fact, it is *-linear, which means
that it is linear and also that E (X*) = EX, where the bar represents the complex
conjugate. The analogue of the expectation operation for a deterministic matrix is
the normalized trace 7 (X) = 1 TrX.

Definition 6.5.2 (Non-commutative probability space, preliminary definition).
A non-commutative probability space (A, 7) will consist of a (potentially non-
commutative) x-algebra A of (potentially non-commutative) random variables (or
observables) with identity 1, together with a trace 7 : A — C, which is a *-
linear functional that maps 1 to 1. This trace will be required to obey a number
of additional axioms.

Axiom 6.5.3 (Non-negativity). For any X € A, we have 7 (X*X) > 0. (X*X is
Hermitian, and so its trace T (X*X) is necessarily a real number.)

In the language of Von Neumann algebras, this axiom (together with the normal-
ization 7 (1) = 1) is asserting that 7 is a state. This axiom is the non-commutative
analogue of the Kolmogorov axiom that all events have non-negative probability.

With this axiom, we can define a positive semi-definite inner product (, ) ;2 () on
A by

(X, Y) 2y = 7(XY).

This obeys the usual axioms of an inner product, except that it is only positive semi-
definite rather than positive definite. One can impose positive definiteness by adding
an axiom that the trace is faithful, which means that 7 (X*X) = 0 if and only if
X = 0. However, this is not needed here.

Without the faithfulness, the norm can be defined using the positive semi-definite
inner product

1/2

1Xll ey 2 (X XDpagry) = (7 (XX V2,

In particular, we have the Cauchy-Schwartz inequality

| (XY 12| < IRl gy 1Y -

This leads to an important monotonicity:
|T (sz—l)‘l/(%—l) < |T (XQk)‘l/zk < |T (X2k+2)’1/(2k+2)

for any £k > 0.
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As a consequence, we can define the spectral radius p(X) of a Hermitian
matrix as
p(X) = lim |r (X2)["/*

)
k—o0

in which case we arrive at the inequality
k
7 (XF)] < (p(X))

fork =0,1,2,.... We then say a Hermitian matrix is bounded if its spectral radius
is finite. We can further obtain [9]

||XY||L2(T) < p(X) HYHLZ(T)'

Proposition 6.5.4 (Boundedness [9]). Ler X be a bounded Hermitian matrix, and
let P : C — C be a polynomial. Then

IT (P (X))] < sup [P (z)]
z€[—p(X),p(X)]

The spectral theorem is completely a single bounded Hermitian matrix in a
non-commutative probability space. This can be extended to multiple commuting
Hermitian elements. But, this is not true for multiple non-commuting elements.

We assume as a final (optional) axiom a weak form of commutativity in the trace.

Axiom 6.5.5 (Trace). For any two elements X, Y, we have 7 (XY) = 7 (YX).

From this axiom, we can cyclically permute products in a trace
T7(XYZ) =7(2YX).

Definition 6.5.6 (Non-commutative probability space, final definition [9]). A
non-commutative probability space (A, 7) consists of a *-algebra A with identity
1, together with a *-linear functional 7 : A — C, that maps 1 to 1 and obeys the
non-negativity axiom. If 7 obeys the trace axiom, we say that the non-commutative
probability space is tracial. If T obeys the faithfulness axiom, we say that the non-
commutative probability space is faithful.

6.5.4 Free Independence

We now come to the fundamental concept in free probability, namely the free
independence.
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Definition 6.5.7 (Free independence). A collection of Xj,...,X}; of random
variables in a non-commutative probability space (A, 7) is freely independent (or
free for short) if one has

T{lPr Xni) =7 (Pr (X )] -+ [P (Kii) = 7 (P (X3, )]} = 0

whenever P, ..., P, are polynomials and 41, ...,%,, € 1,...,k are indices with
no two adjacent i; equal.
A sequence X, 1,...,X, ) of random variables in a non-commutative

probability space (A, 7) is asymprtotically freely independent (or asymptotically
free for short) if one has

{[P1 (Xn’il) —7(P (Xnn))] [P (Xn’im) —7(Pn (Xn,im))]} —0

as n — oo whenever P, ..., P, are polynomials and i1,...,%,, € 1,...,k are
indices with no two adjacent ¢; equal.

For classically independent commuting random (matrix valued) variables X, Y,
knowledge of the individual moments 7 (Xk) and T (Yk) give complete infor-
mation on the joint moments 7 (Xle) =7 (Xk) T (Yl) . The same fact is true
for freely independent random variables, though the situation is more complicated.
In particular, we have that

T(XY) =7 (X)7(Y),

T (XYX) =7(Y) 7 (X?),

T (XYXY) = 7(X)*7 (Y?) +7 (X)) 7(Y)? = 7(X)*7(Y)%.  (6.15)
For detailed derivations of the above formula, we refer to [9].
There is a fundamental connection between free probability and random matrices

first observed by Voiculescu [66]: classically independent families of random
matrices are asymptotically free!

Example 6.5.8 (Asymptotically free). As an illustration, let us reconsider (6.1):

1. 1 X I 1 . 1. 1
NY Y = N(XJrN) (X+N) = NX X+NN N + NX N+ NN X,
(6.16)
where random matrices X, N are classically independent. Thus, X, N are also
asymptotically free. Taking the trace of (6.16), we have that

IR N S RN R
N’T(Y Y)—NT(X X)—i—NT(N N)+NT(X N)+NT(N X).

Using (6.15), we have that

7(X*N) =7 (X*)7(N) and 7 (N*X) = 7 (N*) 7 (X),
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which vanish since 7 (N) = 7 (IN*) = 0 for random matrices whose entries are
zero-mean. Finally, we obtain that

T(YY)=7(X"X)+7(N*N). (6.17)

O

The intuition here is that while a large random matrix X will certainly correlate
with itself so that, Tr(X*X) will be large, if we interpose an independent
random matrix IN of trace zero, the correlation is largely destroyed; for instance,
Tr (X*XN) will be quite small.

We give a typical instance of this phenomenon here:

Proposition 6.5.9 (Asymptotic freeness of Wigner matrices [9]). LetA,, 1,... A
be a collection of independent n x n Wigner matrices, where the coefficients all
have uniformly bounded m-th moments for each m. Then the random variables
A, ..., A, . are asymptotically free.

A Wigner matrix is called Hermitian random Gaussian matrices. In Sect. 1.6.3.
We consider

A,;=U;D,U,

where D, are deterministic Hermitian matrices with uniformly bounded eigenval-
ues, and the U; are iid unitary matrices drawn from Haar measure on the unitary
group U (n). One can also show that the A, ; are asymptotically free.

6.5.5 Free Convolution

When two classically independent random variables X,Y are added up, the
distribution px .y of the sum X + Y is the convolution px1+y = px ® py of
the distributions px and py. This convolution can be computed by means of the
characteristic function

Fx =1 (e7) :/ejmdux(x)
R

using the simple formula
7 (M) = 7 (1Y) 7 ().

There is an analogous theory when summing two freely independent (Hermitian)
non-commutative random variables A, B; the distribution pa g turns out to be
a certain combination pua H upg, known as free convolution of pua and ug. The
Stieltjes transform, rather than the characteristic function, is the correct tool to use
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Table 6.1 Common random matrices and their moments (The entries of W are i.i.d. with zero
mean and variance %; W is square N x N, unless otherwise specified. tr (H) £ ngx})o % Tr (H))

Convergence laws Definitions Moments
Full-circle law W square N x N
. _ wrwfl om)y _ _1_ [ 2m
Semi-circle law K= Wi tr (K>™) = 15 ( o )
Quarter circle law Q=VvVWWH tr (Q™) = 2:7: (m1+1) (%:f) Vm odd
2 2
Q? i
R=VWHW,
Deformed quarter CNXBN
circle law We
no(m m ;
R? tr(Rzm):%Z(,)(, )Bl
i=1 \ ¢ i—1
_1
Haar distribution T=W(WHWwW) 2

Inverse semi-circle law Y = T + TH

ma () =7 ((a=97") = [ “duxo)

r—z

which has been discussed earlier.

6.6 Tables for Stieltjes, R- and S-Transforms

Table 6.1 gives common random matrices and their moments. Table 6.2 gives
definition of commonly encountered random matrices for convergence laws,
Table 6.3 gives the comparison of Stieltjes, R- and S-Transforms.

Let the random matrix W be square N x N with i.i.d. entries with zero mean
and variance % Let € be the set containing eigenvalues of W. The empirical

distribution of the eigenvalues

1
PH(z)éN|{)\€Q:Re>\<Rez and Im A < Im z}|

converges a non-random distribution functions as N — oo. Table 6.2 lists
commonly used random matrices and their density functions.

Table 6.1 compiles some moments for commonly encountered matrices
from [390]. Calculating eigenvalues A\, of a matrix X is not a linear operation.
Calculation of the moments of the eigenvalue distribution is, however, conveniently
done using a normalized trace since
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Table 6.2 Definition of commonly encountered random matrices for convergence laws (The
entries of W are i.i.d. with zero mean and variance +; W is square N x N, unless otherwise
specified)

Convergence laws Definitions Density functions
1

lz| <1
™
Full-circle law W square N x N pw (2) = § 0 elsewhere

4—22 |z| <2

Semi-circle law K= Wiw? PK (2) = 0 elsewhere
V2
Lyi—gz )Ses?
Quarter circle law Q=VvWWH pqQ (2) = 0 lsewh
elsewhere
271_ To<zx<4
Q2 P2 (2) = elsewhere
4p—(a2-1-p)?
Deformed R = VWIW, PR(:)=q " - esesh
eformed quarter W ¢ CNXBN (1—+/B)"6(z) elsewhere
circle law a:|1—\/B b=1+B
/ —(r—1—_R3)2
R? PRz (2) = P @ <a sk
(1- \/B)+6(:E) elsewhere
1
Haar distribution T=WWIw) 2 pr (2) = % (Izl = 1)
. 1 1 lz| <2
Inverse semi-circle Y=T+TH py (2) =4 7 Va-a?
law 0 elsewhere

N
Z Tr (X™).
Thus, in the large matrix limit, we define tr(X) as

1
tr (X) £ lim — Tr(X).

Table 6.2 is made self-contained and only some remarks are made here. For Haar
distribution, all eigenvalues lie on the complex unit circle since the matrix T is
unitary. The essential nature is that the eigenvalues are uniformly distributed. Haar
distribution demands for Gaussian distributed entries in the random matrix W. This
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condition does not seem to be necessary, but allowing for any complex distribution
with zero mean and finite variance is not sufficient.

Table 6.3% lists some transforms (Stieltjes, R-, S-transforms) and their prop-
erties. The Stieltjes Transform is more fundamental since both R-transform and
S-transform can be expressed in terms of the Stieltjes transform.

3This table is primarily compiled from [390].
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Part 11
Applications



Chapter 7
Compressed Sensing and Sparse Recovery

The central mathematical tool for algorithm analysis and development is the
concentration of measure for random matrices. This chapter is motivated to provide
applications examples for the theory developed in Part I. We emphasize the central
role of random matrices.

Compressed sensing is a recent revolution. It is built upon the observation that
sparsity plays a central role in the structure of a vector. The unexpected message
here is that for a sparse signal, the relevant “information” is much less that what we
thought previously. As a result, to recover the sparse signal, the required samples
are much less than what is required by the traditional Shannon’s sampling theorem.

7.1 Compressed Sensing

The compressed sensing problem deals with how to recover sparse vectors from
highly incomplete information using efficient algorithms. To formulate the proce-
dure, a complex vector x € C¥ is called s-sparse if

Ixllg = [{€ s o # 0} = #{£: ¢ # 0} < s.

where ||x||, denotes the /y-norm of the vector x. The {y-norm represents the total
number of how many non-zero components there are in the vector x. The £,-norm
for a real number p is defined as

N 1/p
I, = (Z in”> ,  l<p<oo
i=1

Given a rectangular complex matrix & € C"*", called the measurement matrix,

the task is to reconstruct the complex vector x € C" from the linear measurements
y = ®x.

R. Qiu and M. Wicks, Cognitive Networked Sensing and Big Data, 371
DOI 10.1007/978-1-4614-4544-9_17,
© Springer Science+Business Media New York 2014
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We are interested in the case n < [V, so that this system is under-determined. It is
well known that without additional structure constraints on the complex vector x,
this linear system problem has no solution. The central message of the compressed
sensing is the surprising discovery that under the additional structure constraint that
the complex vector x € C¥ is s-sparse, then the situation changes.

The naive approach for reconstruction, namely, £y-minimization,

minimize ||z||, subjectto Pz =y, (7.1)

which is NP-hard in general. There are several well-known tractable alternatives—
for instance, ¢;-minimization

minimize ||z||, subjectto Pz =1y, (7.2)

where ||z||, = |21]+ 22|+ -+|zn]| forz = (21, 22,...,2n5) € CV.Equation (7.2)
is a convex optimization problem and may be solved efficiently by tools such as
CVX.

The restricted isometry property (RIP) streamlines the analysis of recovery
algorithms. The restricted isometry property (RIP) also offers a very elegant way
to analyze ¢;-minimization and greedy algorithms.

To guarantee recoverability of the sparse vector x in (7.1) by means of ¢;-
minimization and greedy algorithms, it suffices to establish the restricted isometry
property (RIP) of the so-called measurement matrix ®: For a matrix & € C"*V
and sparsity s < N, the restricted isometry constant J, is defined as the smallest
positive number such that

(1—3,) |Ix]2 < ||®x]|5 < (1+6,) [x]|2 forallx € CV with ||x]|, < s.
(7.3)

In words, the statement (7.3) requires that all column submatrices of ® with at most
s columns are well-conditioned. Informally, ® is said to satisfy the RIP with order
s when the level §, is “small”.

A number of recovery algorithms (Table 7.1) are provably effective for sparse
recovery if the matrix ® satisfies the RIP. More precisely, suppose that the matrix
® obeys (7.3) with

Ops < 0F (7.4)

for suitable constants x > 1 and ¢*, then many algorithms precisely recover any
s-sparse vectors x from the measurements y = ®x. Moreover, if x can be well
approximated by an s sparse vector, then for noisy observations

y = ®x + e, lell, < a, (7.5)

these algorithms return a reconstruction X that satisfies an error bound of the form

1
%as(x)l + Cha, (7.6)

[x =%, <1
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Table 7.1 Values of the constants [391] x and §* in (7.4) that guaran-
tee success for various recovery algorithms

o* References

3~ —
yrwwy B 0.4652 [392-395]

Algorithm K
2

CoSaMP 4 /—2_ 03843 [396,397]
3
3

£1-minimization (7.2)

5+V73
1/2 [395,398]
1/V/3 ~ 0.5774 [399]

Iterative hard thresholding
Hard thresholding pursuit

where

0s(x), ||z1\|1if<s||x z|,
denotes the error of best s-term approximation in ¢; and C7,C > 0 are constants.
For illustration, we include Table 7.1 (from [391]) which lists available values
for the constants x and §, in (7.4) that guarantee (7.6) for several algorithms along
with respective references.
Remarkably, all optimal measurement matrices known so far are random matri-
ces. For example, a Bernoulli random matrix & € R™*V has entries

bjk = €jr/Vn, 1<j<n,1<k<N,

where &;;, are independent, symmetric {—1,1}-valued random variables. Its
restricted isometry constant satisfies

0s <6

with probability at least 1 — 7 provided that
n>C6 % (sln(eN/s)+1n(1/n)),

where C is an absolute constant.

On the other hand, Gaussian random matrices, that is, matrices that have
independent, normally distributed entries with mean zero and variance one, have
been shown [400, 406, 407] to have restricted isometry constants of ﬁ@ satisfy
ds < § with high probability provided that

n > Cé 2slog (N/s).

That is, the number n of Gaussian measurements required to reconstruct an s-sparse
signal of length NV is linear in the sparsity and logarithmic in the ambient dimension.
It follows [391] from lower estimates of Gelfand widths that this bound on the
required samples is optimal [408—410], that is, the log-factor must be present.

More structured measurement matrices are considered for practical considera-
tions in Sect. 7.3.
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Table 7.2 List of measurement matrices [391] that have been proven to be RIP, scaling of sparsity
s in the number of measurements n, and the respective Shannon entropy of the (random) matrix

n X N measurement matrix Shannon entropy RIP regime References
Gaussian nN 1 log (2me) s < Cn/log N [400-402]
Rademacher entries niN s < Cn/log N [400]
Partial Fourier matrix Nlog, N —nlogyn s < Cn/log* N [402,403]
—(N — n)logy(N — n)

Partial circulant Rademacher ~ N 5 < Cn?/3[log?/3 N [403]
Gabor, Rademacher window n s < Cn?2/3 /log®n [404]
Gabor, alltop window 0 s < Cyn [405]

In Table 7.2 we list the Shannon entropy (in bits) of various random matrices
along with the available RIP estimates.

7.2 Johnson-Lindenstrauss Lemma and Restricted Isometry

Property
The Eév-norm of a vector x = (x1,...,7x)T € RY is defined by
N 1/p
> lnl’) L 0<p<os
1%llg, = lIxlloy = (1:1 (1.7)
max |xl| ) p = oo.
i=1,...,N

We are given a set A of points in R™ with NV typically large. We would like to embed
these points into a lower-dimensional Euclidean space R™ which approximately
preserving the relative distance between any two of these points.

Lemma 7.2.1 (Johnson-Lindenstrauss [411]). Lete € (0,1) be given. For every
set A of k points in RN | if n is a positive integer such that n > ng = O (ln k/62),
there exists a Lipschitz mapping f : RN — R™ such that

(1= ) llx— ylPy <16 = F3llys < (1+2) [x — 2y

forx,y € A.

The Johnson—Lindenstrauss (JL) lemma states [412] that any set of k points in
high dimensional Euclidean space can be embedded into O(log(k)/e?) dimensions,
without distorting the distance between any two points by more than a factor
between 1 — € and 1 + €. As a consequence, the JL. lemma has become a valuable
tool for dimensionality reduction.

In its original form, the Johnson—Lindenstrauss lemma reads as follows.
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Lemma 7.2.2 (Johnson-Lindenstrauss [411]). Let ¢ € (0,1) be given. Let
X1,...,X, € RY be arbitrary points. Let m = O (log k/gQ) be a natural number.
Then there exists a Lipschitz map f : RN — R™ such that

(1= &) [l = x;5 < 11 () = f (x5)ll5 < (L) 13 = x5 (7.8)

foralli,j € {1,2,...,k}. Here||-||2 stands for the Euclidean norm in RN or R™,
respectively.

It is known that this setting of m is nearly tight; Alon [413] showed that one must
have

m = Q (2 log(k)log (1/¢)).

In most of these frameworks, the map f under consideration is a linear map
represented by an m x N matrix ®. In this case, one can consider the set of
differences E' = {x; — x;} ; To prove the theorem, one then needs to show that

(1—e)llylls <@yl < (1+e)llyl;, forally € E. (7.9)

When @ is a random matrix, the proof that ® satisfies the JL. lemma with high
probability boils down to showing a concentration inequality of the typev

P ((1—e) X3 < [ @x)3 < (1+€) [x]2) > 1 - 2exp (~cocm) , (7.10)

for an arbitrary fixed x € R™V, where ¢y is an absolute constant in the optimal case,
and in addition possibly dependent on N in almost-optimal sense as e.g. in [414].
In order to reduce storage space and implementation time of such embeddings, the
design of structured random JL embeddings has been an active area of research
in recent years [412]. Of particular importance in this context is whether fast (i.e.
O(N log(N))) multiplication algorithms are available for the resulting matrices.

The map f is a linear mapping represented by an n x N matrix ® whose entries
are randomly drawn from certain probability distributions. A concise description of
this evolution is provided in [415]. As observed by Achlioptas in [416], the mapping
f : RY — R™ may be realized by a random matrix, where each component
is selected independently at random with a fixed distribution. This decreases the
time for evaluation of the function f(x) essentially. An important breakthrough was
achieved by Ailon and Chazelle in [417,418].

Here let us show how to prove the JL lemma using such random matrices,
following [400]. One first shows that for any x € R the random variable

2 2
E (|| @x|f; ) = l1x - (7.11)
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Next, one must show that for any x € R™ the random variable ||<I’X||5n is sharply

. . 2
concentrated a round its expected value (concentration of measure), thanks to the
moment conditions; that is,

P ([l@xlf - Ixl5y | > tlxllfy ) <2e779®, 0<t<1, (7.12)

where the probability is taken over all n x N matrices ® and g(¢) is a constant
depending only on ¢ such that for all ¢t € (0, 1), g(¢) > 0.

Finally, one uses the union bound to the set of differences between all possible
pairs of points in A.

+1/+/n with probability 1/2,
Gij ~ . . (7.13)
—1/y/n with probability 1/2,

or related distributions such as

++/3/n with probability 1/6,
$i; =14 0 with probability 2/3, (7.14)
++/3/n with probability 1/6.

Perhaps, the most prominent example is the n X N random matrices & whose
entries ¢; ;, are independent realizations of Gaussian random variables

pij ~ N <0, i) (7.15)

The verification of (7.12) with g(t) = t?/4 — ¢3/6 is elementary using Chernoff
inequalities and a comparison of the moments of a Bernouli random variable to
those of a Gaussian random variable.

In [415], it is shown that we can also use matrices whose entries are independent
realizations of +1 Bernoulli random variables.

Let (€, F, 1) be the probability space where 1 a probability measure and let Z
be a random variable on 2. Given n and N, we can generate random matrices by
choosing the entries ¢;; as independent realizations of Z. This gives the random
matrices ® (w),w € Q™. Given any set of indices 7" with the number of elements
of the set (cardinality) |T'| < k, denote by Xr the set of all vectors in RY that are
zero outside of 7.

Theorem 7.2.3 (Baraniuk, Davenport, DeVore, Wakin [400]). Ler ® (w),w €
Q"N be a random matrix of size n x N drawn according to any distribution that
satisfies the concentration inequality (7.12). Then, for any set T with the cardinality
|T| =k <nandany0 < 6 < 1, we have

(1-0) %y < @] gy < (140) x|y, forallx € Xy (7.16)
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with probability
>1—2(12/8)Fe90/2n, (7.17)

Proof. 1. Nets of points. It is sufficient to prove (7.16) for the case of ||x]| oy =1
due to the linearity of ®. We choose a finite set of points A7 such that .AT C Xr,
||a\|ég; = 1foralla € Ay, and for all x € X with HXH%\, = 1 we have

mln [x —al[,y <d/4. (7.18)
acA
It is well known from covering numbers (see, e.g., [419]) that we can choose
such a set with the cardinality | A7| < (12/6)".
2. Concentration of measure through the union bound. We use the union bound to
apply (7.12) to this set of points ¢ = §/2. It thus follows that, with probability at
least the right-hand side of (7.17), we have

(1-5/2) Jal?y < [|®all,, < (1+6/2) [y, forallac Ay (7.19)

3. Extension to all possible k-dimensional signals. We define o as the smallest
number such that

|@x

o < <(1+a) ||X||EN , forallx € Xp. (7.20)

The goal is to show that a < é. To do this, we recall from (7.18) that for any
x € Xr we can pick up a point (vector) a € At such that ||x — aH@f < §/4.
In this case we have

| ®x

o < || Pa o+ |®(x—a) o <AQ+6/2)+(1+a)d/4.  (7.21)
Since by definition « is the smallest number for which (7.20) holds, we obtain
a < 6/2 4 (14 «)d/4. Solving for « gives a« < 35/4/ (1 —06/4) < 4, as
desired. So we have shown the upper inequality in (7.16). The lower inequality
follows from this since

1@l > | ®ally, — 19 (x —a) [y > (1—6/2) — (1+6)5/4> 10,

which complements the claim. (]

Now we can apply Theorem 7.2.3 to obtain the so-called restricted isometry
property (RIP) in compressive sensing (CS). Given a matrix ® and any set 7' of
column indices, we denote by ®1 the n x |T'| matrix composed of these columns.
Similarly, for x € RY, we denote by x7 the vector obtained by retaining only the
entries in x corresponding to the column indices 7'. We say that a matrix P satisfies
the restricted isometry property of order k is there exists a d;, € (0, 1) such that
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(1= ) [Ixrllfy < [®rxrify < (14 6) [xrlfy (7.22)

holds for all sets 7" with |T'| < k. The condition (7.22) is equivalent to requiring that
the Grammian matrix ®7.® has all of its eigenvalues in [1 — &y, 1 + 03] (Here &7
is the transpose of ®1.)

The similarity between the expressions in (7.9) and (7.22) suggests a connection
between the JL lemma and the Restricted Isometry Property. A first result in this
direction was established in [400], wherein it was shown that random matrices
satisfying a concentration inequality of type (7.10) (and hence the JL Lemma)
satisfy the RIP of optimal order. More precisely, the authors prove the following
theorem.

Theorem 7.2.4 (Baraniuk, Davenport, DeVore, Wakin [400]). Suppose that
n,N, and 0 < 6 < 1 are given. For x € R, if the probability distribution
generating the n x N matrices ® (w),w € R"™W | satisfies the concentration
inequalities (7.12)

> tx

2 2
P (|1 @x)7, - 1xI7,

Z) <290 (<t (7.23)

then, there exist constant cq,co > 0 depending only on § such that the restricted
isometry property (1.22) holds for ® (w) with the prescribed 6 and any k <
ci1n/ log(N/k) with probability at least 1 — 2e~ 2™,

Proof. From Theorem 7.2.3, we know that for each of the k-dimensional spaces
Xr, the matrix ® (w) will fail to satisfy (7.23) with probability at most

2(12/6)Fe=90/2m, (7.24)

There are <ZZ> < (2N/k)" such subspaces. Thus, (7.23) will fail to hold with
probability (7.23) at most

2(2N/k)F(12/8) 90/ = 2exp [—g (6/2) n + k (log (eN/k) + log (12/6))] .
(7.25)

Thus, for a fixed ¢; > 0, whenever & < ¢in/log (N/k), we will have that the
exponent in the exponential on the right side of (7.25) is at most —caon if

c2 < g(0/2) = [L+ (1 +log (12/6)) /log (N/K)] .

As a result, we can always choose ¢; > 0 sufficiently small to ensure that c; > 0.
This prove that with probability at least 1 — 2e 2", the matrix ® (w) will satisfy
(7.16) for each x. From this one can easily obtain the theorem. O

The JL lemma implies the Restricted Isometry Property. Theorem 7.2.5 below is
a converse result to Theorem 7.2.4: They show that RIP matrices, with randomized
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column signs, provide Johnson—Lindenstrauss embeddings that are optimal up to
logarithmic factors in the ambient dimension. In particular, RIP matrices of optimal
order provide Johnson—Lindenstrauss embeddings of optimal order as such, up to a
logarithmic factor in IV (see Theorem 7.2.5). Note that without randomization, such
a converse is impossible as vectors in the null space of the fixed parent matrix are
always mapped to zero.

For a vector x € R, we denote Dy = (D; ;) € RV*¥ the diagonal matrix
satisfying D ; = x;.

Theorem 7.2.5 (Theorem 3.1 of Krahmer and Ward [412]). Fix n > 0 and
e € (0,1), and consider a finite set E € RN if cardinality |E| = p. Set
k > 40log %p, and suppose that ® € R™ N satisfies the Restricted Isometry
Property of order k and level § < /4. Let & € RN be a Rademacher sequence, i.e.,
uniformly distributed on {—1, 1}N. Then with probability exceeding 1 — 1,

(1—2) x5 < [®Dex|; < (1 +¢) [x]l5 (7.26)

uniformly for all x € E.

The proof of Theorem 7.2.5 follows from the use of three ingredients: (1)
Concentration of measure result: Hoeffding’s inequality; (2) Concentration of
measure result: Theorem 1.5.5; (3) RIP matrices: Theorem 7.2.6.

Theorem 7.2.6 (Proposition 2.5 of Rauhut [30]). Suppose that ® € R™*N has
the Restricted Isometry Property of order 2s and level . Then for any two disjoint
subsets J,L C {1,...,N} of size |T| < s,|L| < s,

H
|2thew| <a

Now we closely follow [29] to develop some useful techniques and at the same
time gives a shorter proof of Johnson-Lindenstrauss lemma. To prove Lemma 7.2.2,
it actually suffices to prove the following.

Lemma 7.2.7 (Nelson [29]). Forany 0 < ¢,0 < 1/2 and positive integer d, there
exists a distribution D over R™ N form = O (5_2 log (1/5)) such that for any
x € RN wirh ||x|, = 1,

i ()||Ax||§ - 1‘ >e) <4

Let x1,...,%x, € RY be arbitrary points. Lemma 7.2.7 implies Lemma 7.2.2,
since we can set 6 = 1/n? then apply a union bound on the vectors
(xi —x;) /||xi — x|, for all i < j. The first proof of Lemma 7.2.2 was given
by Johnson and Lindenstrauss [411]. Later, proofs are given when D can be taken
as a distribution over matrices with independent Gaussian or Bernoulli entries, or
even more generally, {2 (log (1/9))-wise independent entries which each have mean
zero, variance 1/m, and a subGaussian tail. See [416,420-426].
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For A € R™", we define the Frobenius norm as [[Al, = /> A7, =
(2]

/Tr (A2). We also define ||Al[,,, = sup [Ax],, which is also equal to the

lIxll;=1
largest magnitude of an eigenvalue of A when A has all real eigenvalues (e.g., it
is symmetric). We need the Hanson-Wright inequality [61]. We follow [29] for the
proof since its approach is modern.

Theorem 7.2.8 (Hanson-Wright inequality [29,61]). For A € R"*" symmetric
and x € R™ with the x; independent having subGaussian entries of mean zero and
variance one,

P (|x"Ax — Tr (A?)| > t) < Cexp (— min {C’tz/ HA||§;,C’L‘/||A||2_>2}) ,

where C,C" > 0 are universal constants. Also, this holds even if the x; are only
Q (1 + min {tz/ ||A||% ,t/||A||2H2}>—wise independent.

Proof. By Markov’s inequality,

P(|x"Ax —Tr(A)| > t) <t*-E [|XTAX —Tr (A)|a}

forany o > 0. We apply Theorem 7.2.12 with & = min {t2/<256 . ||A||%) ,t/ (256
[Alls)}-

The following theorem implies Lemma 7.2.7.

Theorem 7.2.9 (Sub-Gaussian matrix [29]). For N > 0 an integer and any 0 <
g,0 < 1/2, let A be an m x N random matrix with subGaussian entries of mean
zero and variance 1/m for m = Q (¢72log (1/6)). Then for any x € RN with
1x[ly = 1,

P(’||Ax||§ —1‘ > g) <.

Proof. Observe that

m

1
IAx]y=—->" S mmkziga |, (7.27)

i=1 \ (j,k)€[N]x[N]

where z is an m N -dimensional vector formed by concatenating the rows of v/m- A,
and [N] = {1,..., N}. We use the block-diagonal matrix T € R™N*™N with m
blocks, where each block is the N x N rank-one matrix xx’ /m. Now we get our
desired quadratic form HAng = 2T Tz. Besides, Tr (T) = ||x||§ = 1. Next, we

want to argue that the quadratic form z” Tz has a concentration around Tr (T , for
which we can use Theorem 7.2.8. In particular, we have that
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P (|IAxl3 1] > &) =P (|27 Tz - Tr (T)| > £) <Cexp (= min {C'e*/ [T}, C"e/ITllass}) -

Direct computation yields ||T||§7 = 1/m - ||x||;1 = 1/m. Also, x is the
only eigenvector of the rank one matrix xx” /m with non-zero eigenvalues, and
furthermore its eigenvalue is ||x||§ /m = 1/m. Thus, we have the induced matrix
norm ||Al|,_,, = 1/m. Plugging these in gives error probability ¢ for m =
Q (e72log (1/9)) . O

Lemma 7.2.10 (Khintchine inequality [29]). Fora € R” x € {—1,1}" uniform,
and k > 2 an even integer, E [(aTx)k} < HaH;c - EkR2,

Lemma 7.2.11 (Moments [29]). If X,Y are independent with E[Y] = 0 and k >
2, then E {|X|k] <E [|X - Y\’“].

We here give a proof of Theorem 7.2.8 in the case that x is uniform in {—1,1}™.

Theorem 7.2.12 (Concentration for quadratic form [29]). For A € R™*"
symmetric and x € R™ with the x; independent having subGaussian entries of
mean zero and variance one,

k
E “XTAX —Tr (A)|k} < C* - max {\/E ||A||2F ) kHAH2—>2}

where C > 0 is a universal constant.

Proof. The proof is taken from [29] and we only slightly change some wording
and notation for the sake of our habits. Without loss of generality we can assume
Tr (A) = 0. The reason is that if we consider A’ = A — (Tr(A) /n) - I, then
xT"Ax — Tr (A) = xTA’x, and we obtain ||A’||, < [|A/p, and [|A/[|,_, <
2||All,_,,. We use the induction method. We consider k& a power of 2. For
2 2
ko= 2, E[(XTAX) } = 4% A%, and Al = A7 +2 5 A2 Thus
1<J 7 1<J
E[(x"Ax)"] <2Al}.
Next, we assume the statement of our theorem for k/2 and prove it for the
hypothesis of k. Lemma 7.2.11 is used to establish

E[(x"Ax)"| <E|[[x"Ax-y"Ay|"| =E U(Xer)TA(Xy)‘k} ,

where y € {—1,1}" is random and independent of x.

If we swap x; with y;, then x+y remains constant as does |z; —y;| and that z; —y;
is replaced with its negation. See Sect. 1.11 for this symmetrization. The advantage
of this approach is that we can conditional expectation and apply sophisticated
methods to estimate the moments of the Rademacher series. Let us do averaging
over all such swaps. Let & = ((x + y)TA) ,and 7; = x; — y,. Let z; the indicator

random variable: z; is 1 if we did not swap aznd —lifwedid. Letz = (z1,...,2,).
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Then we have (x +y)” A (x — y) = 3. &m;2;. Averaging over all swaps,

k/2 k/2
[|(X+y)TA (x—y) ] Z&mzl\ <Z 2) kRI2 L kg2 <Z£?) :

k3

The first inequality is by Lemma 7.2.10, and the second uses that |n;| < 2. Note
that

2 2 2
S = A (et v < 2/ Ax]2 + 2| Ayl
and thus
B[(xax)"] <207 B (e axi +2 1AVIE)7] < 442 B [(laxid)?].

with the final inequality using Minkowski’s inequality (namely that |E| X +Y|”| L/ <

[E|X " + E|Y\p£/p for any random variables X,Y and any 1 < poo). Next let us
deal with |[Ax[; = (Ax, Ax) = xTA?x. Let B = A% — Tr (A?) I/n. Then
Tt (B) = 0. Also Bl < [Allp[All,. and [Bll,_, < [|A[2, . The former
holds since

2
IBII7 < (Z A?) - (Zﬁ) /<Y M <Al Al -

The latter is valid since the eigenvalues of Bare \7 — [ > A? | /n foreachi € [n].

The largest eigenvalue of B is thus at most that of A2, and since A? > 0, the smallest

eigenvalue of B cannot be smaller than — ||A||§ -
Then we have that

k/2
IE[(HAXH )’“/2] UHAHF—i—x Bx‘ } \kaax{HAH’;,IE UXTBX‘ ]}
Hence using the inductive hypothesis on B we have that

k ) k
E [|x” Ax|"] < 8 max {VE| AL, C¥2K4[B] . 02k /TBT, ., }
i k
< 8% max { V| All p, K/ /TATATAT, S kAL,

k
= 8C*/2 max {\/EHAHF’ kHAHZHQ} )
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where the final equality follows since the middle term above is the geometric mean
of the other two, and thus is dominated by at least one of them. This proves our
hypothesis as long as C' > 64.

To prove our statement for general k, set k&’ = 21°82k1 Then using the power
mean inequality and our results for k&’ a power of 2,

E[|x"ax|"] < (E [|XTAx|k/Dk/k/ < 128 max { VEIAlLp. KAl o }

O
Example 7.2.13 (Concentration using for quadratic form).
Ho 1y = X, x € R"”
Hi:y=x+12z, zcR"
where x = (x1,... ,xn)T and z; are independent, subGaussian random variables

with zero mean and variance one and z is independent of x. For H,, it follows from
Hanson-Wright inequality that

k
E [yxTAx _ Ty (A)ﬂ < C* - max {@ N[ kHAHM}
where C'is a universal constant. The algorithm claims 7{; if the test metric
E UyTAy —Tr (A)‘k} >y

where ~y is the threshold. A good estimate of the threshold is

k
70 = C* - max {VE A% KAl } 0

7.3 Structured Random Matrices

As pointed out above, remarkably, all optimal measurement matrices known so
far are random matrices. In practice, structure is an additional requirement on
the measurement matrix ®. Indeed, certain applications impose constraints on the
matrix ® and recovery algorithms can be accelerated when fast matrix vector
multiplication routines are available for ®.
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7.3.1 Partial Random Fourier Matrices

Partial random Fourier matrices [406, 427] ® € C™*™ arise as random row
submatrices of the discrete Fourier matrix and their restricted isometry constants
satisfy &5 < § with high probability provided that

m > C6 2slog®slog n.

7.4 Johnson-Lindenstrauss Lemma for Circulant Matrices

Beyond Nyquist: Efficient sampling of sparse bandlimited signals [28] Johnson—
Lindenstrauss notes[29]
A variant of the Johnson—Lindenstrauss lemma for circulant matrices [428]
Johnson-Lindenstrauss lemma for circulant matrices [429]

7.5 Composition of a Random Matrix and a Deterministic
Dictionary

The theory of compressed sensing has been developed for classes of signals
that have a very sparse representation in an orthonormal basis. This is a rather
stringent restriction. Indeed, allowing the signal to be sparse with respect to a
redundant dictionary adds a lot of flexibility and significantly extends the range
of applicability. Already the use of two orthonormal basis instead of just one
dramatically increases the class of signals that can be modelled in this way [430].

Throughout this section, ||x|| denotes the standard Euclidean norm. Signals y
are not sparse in an orthonormal basis but rather in a redundant dictionary dictionary
® ¢ RYK with K > d. Now y = ®x, where x has only few non-zero components.
The goal is to reconstruct y from few measurements. Given a suitable measurement
matrix A € R™*?, we want to recover y from the measurements s = Ay = A®x.
The key idea then is to use the sparse representation in @ to drive the reconstruction
procedure, i.e., try to identify the sparse coefficient sequence x and from that
reconstruct y. Clearly, we may represent s = ¥x with

T = AP € R™*K,

In Table 7.3, two greedy algorithms are listed.
We will assume that A is an n x N random matrix that satisfies

P([IAVI® = 121 > thv]*) < 2e7/2, te (0,1/3) (7.28)
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Table 7.3 Greedy algorithms. Goal: reconstruct x from s = W¥x. Columns of ¥ are
denoted by 1p;, and \IITA is the pseudo-inverse of W5

Orthogonal matching pursuits Thresholding

Initialize: z = 0,r =s,A =0 find: A that contains the indices

find: k = argmax; |(r, ;)| corresponding to the S largest values
update: A = AU {k}, r:sf\IlA\Ilj\s of (s, 4;)|

iterate until stopping criterion is attained. output: x = \I’j\s.

output: x = \II}L\SA

for all v. € R? and some constant ¢ > 0. Let us list some examples of
random matrices that satisfy the above condition: (1) Gaussian ensemble; (2)
Bernoulli ensemble; (3) Isotropic subGaussian ensembles; (4) Basis transformation.
See [430].

Using the concentration inequality (7.28), we can now investigate the isometry
constants for a matrix of the type A®, where A is an n X d random measurement
matrix and ® is a d x K deterministic dictionary, [430] follows the approach taken
in [400], which was inspired by proofs for the Johnson-Lindenstrauss lemma [416].
See Sect. 7.2.

A matrix, which is a composition of a random matrix of certain type and a
deterministic dictionary, has small restricted isometry constants.

Theorem 7.5.1 (Lemma 2.1 of Rauhut, Schnass, and Vandergheynst [430]). Let
A be a random matrix of size n x d drawn from a distribution that satisfies the
concentration inequality (7.28). Extract from the d x K deterministic dictionary ®
any sub-dictionary ® of size S, in R% i.e., |A| = S with (local) isometry constant
Op = p (®). For 0 < 6 < 1, we have set

v =40 + 0 + p0. (7.29)
Then
(1 =) " < |A@Ax]5 < |Ix|I* (14 ») (7.30)
with probability exceeding
1—2(1 +12/5)%e—cd™n/9,
The key ingredient for the proof Theorem 7.5.1 is a finite e-covering (a set of
points') of the unit sphere, which is included below for convenience.

We denote the unit Euclidean ball by B} = {x € R" : ||x|| < 1} and the unit
sphere S"~1 = {x € R™ : ||x|| = 1}, respectively. For a finite set, the cardinality

! A point in a vector space is a vector.
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of A is denoted by |A|, and for a set A € R", conv A denotes the convex hull
of A. The following fact is well-known and standard: see, e.g, [152, Lemma 4.10]
and [407, Lemma 2.2].

Theorem 7.5.2 (c-Cover). Letn > 1 and € > 0. There exists an e-cover I C By
of the unit Euclidean ball By with respect to the Euclidean metric such that By C
(1—¢) ' convD and

T < (142/¢)".
Similarly, there exists I C 8"~ which is an e-cover of the sphere S~ and

T’ < (142/8)".
Proof of Theorem 7.5.1. First we choose a finite e-covering of the unit sphere in
RS, i.e., a set of points Q, with ||q|| = 1 for all @ € Q, such that for all q € Q,

such that for all ||x|| =1
min ||x — <e
min x|
for some ¢ € (0, 1). According to Theorem 7.5.2, there exists such a Q with |Q] <

(1+2/¢)°. Applying the measure concentration in (7.29) with ¢ < 1/3 to all the
points @, q and taking the union bound we obtain

(1—1)||®rq]”® < |A®AQ)® < (1 + 1) |[®rq|®> forall qe Q. (7.31)

with probability larger than

S
2
1— 2(1 + > e~ent’
£

Define v as the smallest number such that
|A®x|* < (1+v)|x|* forall z supported on A. (7.32)

Next we estimate v in terms of ¢, t. Since for all x with ||x|| = 1 we can choose a
point g such that ||x — q|| < € and obtain

|A® x| < ||A‘1’A(11H2+ [A®A (x —q)
< (1402 ||®rql + |[ABA (x - q)
<A+ 1 +60)"Y + (1 +1) %

Since v is the smallest possible constant for which (7.32) holds it also has to satisfy
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Vi+v<VI4+ty/14+0a+ (1+v)e.
Simplifying the above equation gives

1+¢

1—1)?

Now we choose ¢ = 0/6, and ¢t = §/3 < 1/3. Then

1+v<

(1+6a).

1+t  1+46/3 1+6/3 146/3 25/3
= = = 1 1 6.
(I—e) (1-0/6) 1-06/3+0%/36 ~1-0/3 ‘T1i-ep "
Thus,

v< 8+ (149).
To get a lower bound we operate in a similar fashion,

AP x| > ||A‘I)A(11H2_ |A®s (x — g
> (1+0)? | @pq] - AR (x - q)|
> (1 —t)1/2(1 . 5A)1/2 1+ 1/)1/25.

Now square both sides and observe that v < 1 (otherwise we have nothing to show).
Then we finally arrive at

IAB x> (1= 0)'/2( - 52— ev3)

=
> (1—1)(1=6x) —2v2e(1 — )2 (1 — 64)"/? + 222
>1 -0y —t—2V2e>21—-0,—-6>1—v.

This completes the proof. (]

Based on the previous theorem it is easy to derive an estimation of the global
restricted isometry constants of the composed matrix ¥ = A®.

Theorem 7.5.3 (Theorem 2.2 of Rauhut, Schnass, and Vandergheynst [430]).
Let ® € R K be a deterministic dictionary of size K in R? with restricted isometry
constant 55 (®),S € N. Let A € R"*? be a random matrix satisfying (7.28) and
assume

n > C65 2 (Slog (K/S) +log (2e (1 +12/8)) +t) (7.33)

for some & € (0,1) and t > 0. Then with probability at least 1 — e~ the composed
matrix ¥ = A® has restricted isometry constant
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55 (A®) < 0s (®) +6 (1 + 55 (P)). (7.34)

The constant satisfies C < 9/c.

Proof. Using Theorem 7.5.1 we can estimate the probability that a sub-dictionary
Po=(A®), =APs,S={1,...,K}

does not hold for (local) isometry constants dg (A®) < g (P) + 6 (1 + s (D))
by the probability

12\° )
P(ds (A®) > ds (@) + (14 05 (P))) < 2(1 + 5) exp (—c6?n/9) .

By taking the union bound over all (g) possible sub-dictionaries of size S

we can estimate the probability of dg (A®P) = sup or (A®) not
A={1,...,K},|A|=S
satisfying (7.34) by

S
P (65 (A®) > 65 (®) + (1 + 65 (P))) <2 (‘;{) <1 + 22) exp (—c6*n/9) .

Using Stirling’s formula (K) < (eK/S )S and demanding that the above term is

S
less than e~* completes the proof. O

It is interesting to observe the stability of inner products under multiplication
with a random matrix A, i.e.,

(Ax, Ay) =~ (x,y).
Theorem 7.5.4 (Lemma 3.1 of Rauhut, Schnass, and Vandergheynst [430]). Let
x,y € RN with ||x]|,, |y, < 1. Assume that A is an n x N random matrix with
independent N'(0,1/n) entries (independent of x,y). Then for all t > 0

tQ
- >t) < L — _
]P)(|<AX7Ay> <X7Y>| = t) = QQXP( nO1 +02t> 9 (7 35)

with C; = \;16% ~ 2.5044, and Cy = e\/2 ~ 3.8442.

The analogue statement holds for a random matrix A whose entries are
independent +1/+/n Bernoulli random variables.
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Taking x = y in the theorem provides the concentration inequality (7.28) for
Gaussian and Bernoulli matrices. Due to the elementary nature of the method used
in the proof [430], we include the proof here as an example below.

We need Theorem 1.3.4 due to Bennett [12, Eq. (7)].

Example 7.5.5 (Concentration of measure for inner products). Observe that

(Ax, Ay) = Z Z Z 9ekgei LYk

o k=1 =1

where gpr, ¢/ = 1,...,n,k = 1,..., N are independent standard Gaussian random
variables. We consider the random variable

N N
Y =3 gy
k=1j=1

where again g;, k = 1,..., N are independent standard Gaussian random variables.
Now we can write

(Ax,Ay) = Z Y,

where Yy are independent copies of Y.
The expectation of Y is easily expressed as

N

EY =) apyr = (x,y).
k=1

Hence, also E [(Ax, Ay)] = (x,y) . Let
Z=Y-EY =) gigwye + Z — 1)y
k#j

The new random variable Z is known as Gaussian chaos of order 2. Note that
EZ =0.

To apply Theorem 1.3.4, we need to show the moment bound (1.24) for the
random variable Z. A general bound for Gaussian chaos [27, p. 65] gives

MZWgw—n%Mmﬁwé (736)

for p > 2. Using Stirling’s formula, p! = \/27ppPePeltr L_ < R, < L we
have that, for p > 3,
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(p—1)" p/2
E|Z[P= p!eRP—(E|Z‘2)

2w pe—PpP

1\? 62p! 2\ (P—=2)/2 9

p—2)/2
2R\ Z E|Z|?
< (e ||> 2

1/2 (p—2)
gp!(e(E|Z|2> ) \/ZTT

Compare the above with the moment bound (1.24) holds for all p > 3 with

1/2 e

M = e(E Z 2) o =
2| o
and by direct inspection we see that it also holds for p = 2.

Now we need to determine E|Z \2. Using the independence of the Gaussian
random variables gj,, we obtain

E|Z> =E Z Z 959k’ Gr! TjTRT j Ty + QZZgjgk (gi/ — 1) zjzpzjwp
Tk £k 7k K

+ ZZ (g]% — 1) (g]%/ — 1) TrYkTr Yk
kK

Further

ElZ] =) E[¢]E [g7] zjyjmye + Y E [g3]E [g7] 23y}
Jj#k k3

+ 3 E (g2 - 1)"|adnt (7.37)
k
Finally,

E|Z|* nyygﬁﬂkyk + Zx Ui+ QZxkyk

k#j k#j
= ijijkyk + foy;%
Jik gk
2 21,02
= 6y) +xlz Iyl <2 (7.38)

since by assumption ||x||,, ||y||, < 1. Denoting by Z;,¢ = 1,...,n independent
copies of Z, Theorem 1.3.4 gives
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)

<2 1 n2t? 9 t2
exX — | = 2¢X —
P 2n02—|—th P nC1+CQt ’

with C} = j(%mzf < & ~ 25044 and Oy = eV/2 ~ 3.8442.

For the case of Bernoulli random matrices, the derivation is completely analogue.
We just have to replace the standard Gaussian random variables g by ¢, = *1
Bernoulli random variables. In particular, the estimate (7.36) for the chaos variable
Z is still valid, see [27, p. 105]. Furthermore, for Bernoulli variables ¢, = +1 we
clearly have £2 = 1. Hence, going through the estimate above we see that in (7.37)

the last term is actually zero, so the final bound in (7.38) is still valid. O

n

ZZ[ = nt

(=1

B (|(Ax, Ay) — (x,¥)| > )= ]P’(

Now we are in a position to investigate recovery from random measurements
by thresholding, using Theorem 7.5.4. Thresholding works by comparing inner
products of the signal with the atoms of the dictionary.

Example 7.5.6 (Recovery from random measurements by thresholding [430]). Let
A be an n x K random matrix satisfying one of the two probability models of
Theorem 7.5.4. We know thresholding will succeed if we have

in |(Ay,Az;)| > Ay, A .
min [{Ay, Az;)| r;lggK y, Azy)|
We need to estimate the probability that the above inequality is violated

P (mm|(Ay,Az ) < max|(Ay, Azk>\)

<P(mm\<Ay,Az>| min |ty. 2:)| -5 )+P(max|<Ay,Azk>| max\<y,Zk>\+)
keA

The probability of the good components having responses lower than the threshold
can be further estimated as

P(mm(Ay,AZvﬂ min |(y, z >|—§>

<P(EA{|<Ay,Az>| winty,2)| - 5
< IE\P(IQ’,ZQ —(Ay,Az;)| > §)

2/4
< 2|A]exp (_niclic/ﬂﬂ) )

Similarly, we can bound the probability of the bad components being higher than
the threshold,
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P(max|<Ay,AZk> max|<y7zk>\+ )
keA keA

P (o, {Iav.am)l > max iy, 20l + 5}

< Y P((Ay, Azy) — (y,z1)] = 5)
keA

'y t2/4
<2|Afexp ( n01+C2t/2)

N

Combining the these two estimates we obtain that the probability of success for
thresholding is exceeding

t2/4
1—2Kexp( W)

Theorem 7.5.4 finally follows from requiring this probability to be higher than
1 — et and solving for n. O
We summarize the result in the following theorem.

Theorem 7.5.7 (Theorem 3.2 of Rauhut, Schnass, and Vandergheynst [430]).
Let ¥ be a d x K dictionary. Assume that the support of X for a signal y = ®x,
normalized to have ||y |, = 1, could be recovered by thresholding with a margin e,
ie.

min |(Ay, Az;)| > max |[(Ay, Azg)| + .
i€EA kEA

Let A be an n x d random matrix satisfying one of the two probability models of
Theorem 7.5.4. Then, with probability exceeding 1 — e™*, the support and thus the
signal can be reconstructed via thresholding from the n-dimensional measurement
vector w = Ay = A®Px as long as

n > C(e)(log (2K) +t).

where C () = 4C1e72 + 2Cqoe =t and Cy, Cy are constants from Theorem 7.5.4.

7.6 Restricted Isometry Property for Partial Random
Circulant Matrices

Circular matrices are connected to circular convolution, defined for two vectors
x,z € C" by

Z®X szekxka ] - 1



7.6 Restricted Isometry Property for Partial Random Circulant Matrices 393

where
jek=j—kmodn

is the cyclic subtraction. The circular matrix H = H, € C"*" associated with z is
given by

Hx=z®x
. . T
and has entries H;, = zjck. Given a vector z = (29,...,2,-1) € C", we
introduce the circulant matrix
20 Zn—1 21
IR R y
H, = e Cchrn,
Zn—1 Fn—2 """ 20

Square matrices are not very interesting for compressed sensing, so we our attention
to a row submatrix of H. Consider an arbitrary index set @ C {0,1,...,n — 1}
whose cardinality |[2] = m. We define the operator Rg, : C™ — C™ that restricts
a vector x € C" to its entries in Q. Let e = {¢;},_, be a Rademacher vector of
length n, i.e., a random vector with independent entries distributed according to
P (g; = £1) = 1/2. The associated partial random circulant matrix is given by

1
d=—RoH, e R 7.39
\/ﬁ Qlle ( )
and acts on complex vectors x € C” via
@x—LR Hx—LR (e ®@x) (7.40)
Cm T Um ' '

In other words, ®x is a circular matrix generated by a Rademacher vector, where
the rows outside () are removed.

Example 7.6.1 (Expectation of the restricted isometry constant [403]). We study
the expectation of the restricted isometry constant, E [0;5]. The goal is to convert
E [d5] to another form that is easier to bound. Let T denote the set of all s-sparse
signals in the Euclidean unit ball:

T={xeR": x|, <s, x|, <1}. (7.41)

Define a function ||| - ||| on Hermitian n X n matrices via the expression

1A = sup [x” Ax| .
xeT
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Now consider

1857 ® — 1| = sup K(@H@ - 1) x,x>‘ = sup ’||‘I'X||§ —x)?] = 6,. (7.42)
xeT xeT

Let S be the cyclic shift down operator on column vectors in R™. Applying the
power S* to x will cycle x downward by k coordinates:

(Skx)é = Tyok,
; : kYH —k n—k
where © is subtraction modulo n. Note that (S*)" = S™% = S"~*. Then we
rewrite W as a random sum of shift operators,
1 n
vm
k=

d = erRaSF.
1

It follows that

1 & 1 «
3" -T=—>) S "RARS = — ) e STFPS . (7.43)
m m
k£ k£t

where Po = Rg R, is the n x n diagonal projector onto the coordinates in ).
Applying P, to the vector x preserves the values of x on the set €2 while setting the
values outside of € to zero. Combining (7.42) and (7.43), we get the final form

1 n
ds = sup |Gx| where Gx = — Z&ICEgXHS_kPQSZX. (7.44)
xeT m [y

We may regard the restricted isometry constant as the supremum of a random
process indexed by the set 7T defined above. The expected supremum of this
process can be bounded using some sophisticated techniques like Rademacher
chaos, covering number estimates, and chaining [27, 81]. O

The next example is to re-express the random process Gy (defined in (7.44))
in the Fourier domain. This is a key tool. [403] uses a version of the classical
Dudley inequality—Sect. 3.5—for Rademacher chaos that bounds the expectation
of its supremum by the maximum of two entropy integrals that involve covering
numbers with respect to two different metrics. Then they use elementary ideas
from Fourier analysis to provide bounds for these metrics. This reduction allows
them to exploit covering number estimates from the RIP analysis for partial Fourier
matrices [30,402] to complete the argument.

Example 7.6.2 (Fourier representation of the random process [403]). This
approach studied here is elementary and is of independent interest. Let F' be the
n X n discrete Fourier transform matrix whose entries are given by the expression
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F(w,0) = e 2mtn 0 L w b <n— 1.

Here F is unnormalized. The hat symbol denotes the Fourier transform of a vector:
%X = Fx. Use the property of Fourier transform: a shift in the time domain
followed by a Fourier transform may be written as a Fourier transform followed
by a frequency modulation

FS* = M*F,

where M is the diagonal matrix with entries M (w,w) = e~*2™/" for 0 < w <
n — 1. Now we are ready to handle Gx. The random process G has the Fourier
transform representation

1 ¢ .
Gx=— > ereX'M "PoM'%, (7.45)
k#e

where 139 = %FPQF*. The matrix 159 has several nice properties:

1. Pg, is circulant and conjugate symmetric.

2. Along the diagonal Pg, (w,w) = m/n2, and off the diagonal ‘159 (w,w)‘ <
m/n?.

3. Since the rows and columns of P, are circular shifts of one another,

5 oot = S[pac = ol n =i
w ¢

4. Pg, has exactly m nonzero eigenvalues \;,7 = 1,...,m, each of which is equal

to A; = 1/n. As such, f’Q has spectral norm f’Q H = 1/n and Frobenius norm

~

2
PQH =m/n?.
F

These properties immediately follow from the fact that P = RE Ry, is a diagonal
matrix with O-1 entries. The matrix Py, inherits conjugate symmetry from Pg,. Po
is circulant since it is diagonalized by the Fourier transform. Since we form Po
by applying a similar transform to P, they have the same eigenvalue modulo the
scalar factor 1/n. We can further rewrite the random process (7.45) in terms of the
form (7.46) we desire for sophisticated techniques. (]

Example 7.6.3 (Integrability of chaos processes [403]). Let e = (eq,... ,En)T.

The process (7.45) can be written as a quadratic form
Gx = (e,Zxe) where x€T. (7.46)

The matrix Zy has entries
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LeHMFPoMR, k + ¢
Z"(k’g)_{m 0 ’ kiﬁ'

A short calculation verifies that this matrix can be expressed compactly as

7 — % (FH xH PQXF) _ diag (FH xH PQXF) , (7.47)
where X = diag (%X) is the diagonal matrix constructed from the vector X. The term
homogeneous second-order chaos is used to refer to a random process Gy of the
form (7.46) where each matrix Zy is conjugate symmetric and hollow, i.e., has zeros
on the diagonal. To bound the expected supremum of the random process Gy over
the set T, we apply a version of Dudleys inequality that is specialized to this setting.
Define two pseudo-metrics on the index set 1"

di (x,y) = [|Zx — Zy| and dy (x,y) = [|Zx — Zy|| -
Let N (T,d;, r) denote the minimum number of balls of radius 7 in the metric d;, do

that we need to cover the set 7.

Proposition 7.6.4 (Dudley’s inequality for chaos). Suppose that Gy is a homoge-
neous second-order chaos process indexed by a set T'. Fix a point xg € T. There
exists a universal constant C' such that

Esup|Gx—GxO|<Cmax{/ log N (T,dy,r)dr, / \/logN(T,dQ,r)dr}.
0 0

xeT
(7.48)

Our statement of the proposition follows [403] and looks different from the versions
presented in the literature [27, Theorem 11.22] and [81, Theorem 2.5.2]. For details
about how to bound these integrals, we see [403]. O

Immediately following Example 7.6.3, we can get the following theorem.

Theorem 7.6.5 (Theorem 1.1 of Rauhut, Romberg, and Tropp [403]). Let 2 be
an arbitrary subset of {0,1,...,n — 1} with cardinality |} = m. Let ¥ be the
corresponding partial random circulant matrix (7.39) generated by a Rademacher
sequence, and let 05 denote the s-th restricted isometry constant. Then,

$3/2 4o 3
E[ds] < Cy max {1og / n, — logslogn} (7.49)
m V m

where C1 > 0 is a universal constant.

In particular, (7.49) implies that for a given § € (0, 1), we have E [d5] < ¢ provided
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m > (9 max {(5_183/210g3/2n, (5_2810g2nlog28, } , (7.50)

where Cy > 0 is another universal constant.

Theorem 7.6.5 also says that partial random circulant matrices ® obey the RIP
(7.3) in expectation. The following theorem tell us that the random variable §,; does
not deviate much from its expectation.

Theorem 7.6.6 (Theorem 1.2 of Rauhut, Romberg, and Tropp [403]). Let the
random variable 04 defined as in Theorem 7.6.5. Then for 0 <t <1

P(ds 2 E[ds] +1t) < e where o* = Ogilog2510g2n,
m

for a universal constant Cs > 0.

Proof. Since the techniques used here for the proof are interesting, we present the
detailed derivations, closely following [403]. We require Theorem 1.5.6, which is
Theorem 17 in [62].

Let F denote a collection of n X n symmetric matrices Z, and €1, . . . , &, are i.i.d.
Rademacher variables. Assume that Z has zero diagonal, that is, Z(i,i) = 0,7 =
1,...,n. foreach Z € F. We are interested in the concentration variable

n n
Y = sup Z Z exeeZ (kL) .
ZeF =1

Define two variance parameters
" 2
> ez (k) .

U=sup||Z] and V?=Esup Z
ZeF =

ZeFr

Proposition 7.6.7 (Tail Bound for Chaos). under the preceding assumptions, for
allt > 0,

t2

Putting together (7.44), (7.46), and (7.47), we have
ds = sup |Gx| = sup Z ngslzx (kv 6)
xeT xeT 1 f—1
where the matrix Zx has the expression

~

1 e X
Zy = Ay —diag (Ay) for Ay = —FIXHP,XF.
m
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As aresult, (7.51) applies to the random variable J.
To bound the other parameter V2, we use the following “vector version” of the
Dudley inequality.

Proposition 7.6.8 ([403]). Consider the vector-valued random process
hy, =Z,e for xeT.

The pseudo-metric is defined as
dy (x,y) = [|Zx — Zy|| -

For a point xoy € T. There exists a universal constant C' > 0 such that

1/2 00
<IE sup ||hy — hx0|§> < C’/ V/N (T, dy, 7)dr. (7.52)
xeT 0

With x¢ = 0, the left-hand side of (7.52) is exactly V. The rest is straightforward.
See [403] for details. O

Theorem 7.6.9 (Theorem 1.1 of Krahmer, Mendelson, and Rauhut [31]). Ler
P c R™*™ be a draw of partial random circulant matrix generated by a
Rademacher vector €. If

m>cd2s (logzs) (log2n) , (7.53)

2
then with probability at least 1 — n~ 18 n)(log 8), the restricted isometry constant
of ® satisfies 65 < 0, in other words,

P (5, > 6) <n~ (o8 n)(log?s)

The constant ¢ > 0 is universal.

Combining Theorem 7.6.9 with the work [412] on the relation between the restricted
isometry property and the Johnson-Lindenstrauss lemma, we obtain the following.
See [428,429] for previous work.

Theorem 7.6.10 (Theorem 1.2 of Krahmer, Mendelson, and Rauhut [31]). Fix
1,0 € (0,1), and consider a finite set E € R"™ of cardinality |E| = p. Choose

m > C16~2 log (Cop) (loglog (Cop))*(log n)?,

where the constants C1,Co depend only on n. Let ® € R"™*™ be a partial circulant
matrix generated by a Rademacher vector €. Furthermore, let € € R" be a
Rademacher vector independent of € and set D¢/ to be the diagonal matrix with
diagonal € . Then with probability exceeding 1 — 1), for every x € E,
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(1—6) |Ix|12 < |[®@Dex|2 < (1+6) ]2

Now we present a result that is more general than Theorem 7.6.9. The
L-sub-Gaussian random variables are defined in Sect. 1.8.

Theorem 7.6.11 (Theorem 4.1 of Krahmer, Mendelson, and Rauhut [31]). Let
&= {fl-}?zl be a random vector with independent mean-zero, variance one, L-sub-
Gaussian entries. If, for s < nandn,d € (0,1),

m > céfzsmax{(log s)%(logn)?, log (1/77)} (7.54)

then with probability at least 1 — n, the restricted isometry constant of the partial
random circulant matrix ® € R"™*"™ generated by £ satisfies s < 6. The constant
¢ > 0 depends only on L.

Here, we only introduce the proof ingredient. Let Vxz = ﬁPQ (x ® z), where
the projection operator P, : C* — C™ is given by the positive-definite (sample
covariance) matrix

Py = R{ R,
that is,

(Pox), =2 for £€Q and (Pox),=0 for (¢ Q.

Define the unit ball with sparsity constrain
To={xeC: |xI3 < Llixl, < s}.

Let the operator norm be defined as ||[A| = sup | Ax||,. The restricted isometry
Hxl 2:1
constant of @ is expressed as

8. = sup [[Re (€ @x)|” — [Ix[15| = sup [[Pa (x@&)II* — [Ix[5| = sup [[[V<&]* —[Ix]13]-
x€Ts x€Ts x€Ts

The §, is indexed by the ser T of vectors. Since || = m, it follows that

2 1 " = _ 1 Z 2 2
E[Vxel"=_ Y EY Ejkaeejxeej:EZ D lees*=Ixll5

eQ  kil=1 eQk,I=1

and hence

7

b=sup [ V13 -El Vit 3
x€Ts
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which is the process studied in Theorem 7.8.3.

The proof of Theorem 7.6.11 requires a Fourier domain description of ®. Let the
matrix F by the unnormalized Fourier transform with elements F;, = e??™7k/" By
convolution theorem, for every 1 < 5 < n,

Fx®y); =F(x); F(y);

So, we have

1 A
V& = —PoF 1XFE,

§ Jmre €
where X is the diagonal matrix, whose diagonal is the Fourier transform Fz. In
short,

1 ~ -

—PoXF
m Q )
where 159 = PoF~!. For details of the proof, we refer to [31]. The proof ingredient

is novel. The approach of suprema of chaos processes is indexed by a set of matrices,
which is based on a chaining method due to Talagrand. See Sect. 7.8.

Vi =

7.7 Restricted Isometry Property for Time-Frequency
Structured Random Matrices

Applications of random Gabor synthesis matrices include operator identification
(channel estimation in wireless communications), radar and sonar [405,431,431].
The restricted isometry property for time-frequency structured random matrices is
treated in [31,391,404,432,433].

Here we follow [31] to highlight the novel approach. The translation and
modulation operators on C™ are defined by (Ty),; = e”™/™y; = wly;, where

w = e*2™/™ and © again denotes cyclic subtraction, this time modulo m. Observe
that

(Tky)j =yjor and (Mey)j = ei%jz/myj =why;. (7.55)
The time-frequency shifts are given by
II(k,0) = M‘T*,

where (k,0) € 72, = L X T,

= {{0, m—1}{0,...,m—1}}. Fory €
C™\ {0}, the system {II( ,€ y: (k,0)

Z 21, is called a  Gabor system [434,
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435]. The m x m? matrix ¥, whose columns are vectors IT (k, 0) y, (k,£) € Z2, is
called a Gabor synthesis matrix,

T, = M/TFy € C™™ | (k, () € 72, (7.56)

The operators IT (k, /) = M*T¥ are called time-frequency shifts and the system
II (k, £) of all time-frequency shifts forms a basis of the matrix space C™*™ [436,
437]. W, allows for fast matrix vector multiplication algorithms based on the FFT.

Theorem 7.7.1 (Theorem 1.3 of Krahmer, Mendelson, and Rauhut [31]). Let e
be a Rademacher vector and consider the Gabor synthesis matrix ¥, € C™*™
defined in (7.56) generated by y = ﬁe. If

m > 6 2s(log s)*(logm)?,

2
then with probability at least 1 — m~ (%8 m)-(log 5)7 the restricted isometry constant
of Wy, satisfies 0, < 0.

Now we consider € € C” to be a Rademacher or Steinhaus sequence, that is,
a vector of independent random variables taking values +1 and —1 with equal
probability, respectively, taking values uniformly distributed on the complex torus
St ={z € C:|z| = 1}. The normalized window is

1
g_ﬁﬁ.

Theorem 7.7.2 (Pfander and Rauhut [404]). Let ¥, < C™*"" be a draw of
the random Gabor synthesis with normalized Steinhaus or Rademacher generating
vector.

1. The expectation of the restricted isometry constant §; of ¥g, s < n, satisfies

[43/2 3/2]0g3/2
Eds < max {C1 S—\/lognlog S, ng , (7.57)
n

n

where C1, Cy are universal constants.
2. For0 <t <1, we have

: 3/2(log n)log”
P(os 2Ed+1) < et/ where 0* = Css™ (logn)log”s . (7.58)
n

where C3 > 0 is a universal constant.

With slight variations of the proof one can show similar statements for normalized
Gaussian or subGaussian random windows g.
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Example 7.7.3 (Wireless communications and radar [404]). A common finite-
dimensional model for the channel operator, which combines digital (discrete) to
analog conversion, the analog channel, and the analog to digital conversion. It is
given by

H-= Z .Z’(k)g)]._[(k,é).
(k,€)EZy XL,

Time-shifts delay is due to the multipath propagation, and the frequency-shifts are
due to the Doppler effects caused by moving transmitter, receiver and scatterers.
Physical considerations often suggest that x be rather sparse as, indeed, the number
of present scatterers can be assumed to be small in most cases. The same model is
used in sonar and radar.

Given a single input-output pair (g, Hg) , our task is to find the sparse coefficient
vector x. In other words, we need to find H € C"*™ or equivalently x, from its
action y = Hz on a single vector z. Writing

y=Hg= > augl(k()g="V¥gx, (7.59)
(k,€)EZy XLy,

with unknown but sparse x, we arrive at a compressed sensing problem. In this
setup, we clearly have the freedom to choose the vector g, and we may choose it as
arandom Rademacher or Steinhaus sequence. Then, the restricted isometry property
of W, as shown in Theorem 7.7.2, ensures recovery of sufficiently sparse x, and
thus of the associated operator H.

Recovery of the sparse vector x in (7.59) can be also interpreted as finding a
sparse time-frequency representation of a given y with respect to the window g. [l

Let us use one example to highlight the approach that is used to prove
Theorem 7.7.2.

Example 7.7.4 (Expectation of the restricted isometry constant [404]). We first
rewrite the restricted isometry constants Js. Let the set of s-sparse vectors with
unit #5-norm be defined as

2
T=T, = {x e x|, =1/, < 3} .
We express 5 as the following semi-norm on Hermitian matrices

ds = sup ‘XH (\IIHlI' - I) X‘ (7.60)

x€eTy

where I is the identity matrix and ¥ = W. The Gabor synthesis matrix ¥ has the
form
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n—1

U= grAy
k=0
with
A= (IMM?|---M™* 1), Ay = (IMT|M?T|--- |M"'TF)

and so on. In short, for k£ € Z,,,

Ay = (T"MTHMTH| ... | M" 1 TF).

With
n—1
> AfA =l
k=0
it follows that
1 n—1n—1 1 n—1n-—1
Y —1=-1+= e AEA, = = & ,
+HZZGkEkAkAk nzzekekwk,lﬁ
k=0 k’=0 k=0 k’=0
where
ABAL K #E
W, — k ) 9
k' k { O, k= k.

We use the matrix B (x) € C"*",x € Ty, given by matrix entries
B(x), » = xTAL Apx.

Then we have

nEds; = E sup |Zx| = E sup |Zx — Zo|, (7.61)
xe€Ts xeTy
where
Zy = Z 5k/5kaA5Akx =€eB (x) €, (7.62)
k' £k
withx € Ty = {x e C"": x|, = 1,[|x||, < s}. O

A process of the type (7.62) is called Rademacher or Steinhaus chaos process of
order 2. In order to bound such a process, [404] uses the following Theorem, see for
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example, [27, Theorem 11.22] or [81, Theorem 2.5.2], where it is stated for Gaus-
sian processes and in terms of majorizing measure (generic chaining) conditions.

The formulation below requires the operator norm ||Al, ,, = Hnﬁax |Ax||, and
x|[,=1
12
the Frobenius norm [|A|, = Tr (A#A) 2 _ > Ai7j|2> , where Tr (A)
53

denotes the trace of a matrix A. ||z||, denotes the />-norm of the vector z.

Theorem 7.7.5 (Pfander and Rauhut [404]). Let € = (61,...,€n)T be a
Rademacher or Steinhaus sequence, and let

Ty = Z EkzakaAgAkx =e’'B (x) €
k' #k

be an associated chaos process of order 2, indexed by x € T, where assume that
B(x) is Hermitian with zero diagonal, that is, B(X)pr = 0 and B(X)wr =
B(x) ki - We define two (pseudo-)metrics on the set T,

di (%,y) = [IB(x) = B(y) 22,
dy (x,y) = [B(x) = B(y)llp-

Let N (T, d;,r) be the minimum number of balls of radius v in the metric d; needed
to cover the set T. Then, these exists a universal constant C' > 0 such that, for an
arbitrary xg € T,

Esup |Zx — Zx,| ngaX{/ log N (T, dy,r)dr, / logN(T,dg,r)dr}.
xeT 0 0
(7.63)

The proof ingredients include: (1) decoupling [56, Theorem 3.1.1]; (2) the contrac-
tion principle [27, Theorem 4.4]. For a Rademacher sequence, the result is stated
in [403, Proposition 2.2].

The following result is a slight variant of Theorem 17 in [62], which in turn is an
improved version of a striking result due to Talagrand [231].

Theorem 7.7.6 (Pfander and Rauhut [404]). Let the set of matrices B =
{B(x)} € C"™",x € T, where T is the set of vectors. Let € = (e1,...,e,)"
be a sequence of i.i.d. Rademacher or Steinhaus random variables. Assume that
the matrix B(x) has zero diagonal, i.e., B; ;(x) = 0 for allx € T. Let Y be the
random variable

n—1n-—1 2

Y = sup ‘EHB (x)s| = Z Z Tk/akB(x)k,7k
x€T k=1 k/=1
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Define U and V as
U = sup B (x)|y,
xeT

and
2

kaB(X)kf,k

V =Esup ||B (x) ng = E sup Z
xeT T 1

xE k=1

Then, fort > 0,

t2
P(Y >E|Y t) < —_ .
( Y1+ eXp( 32V+65Ut/3>

7.8 Suprema of Chaos Processes

The approach of suprema of chaos processes is indexed by a set of matrices, which
is based on a chaining method.

Both for partial random matrices and for time-frequency structured random
matrices generated by Rademacher vectors, the restricted isometry constants J¢ can
be expressed as a (scalared) random variable X of the form

X A€l — E||Ael3], (7.64)

= sup
AcA

where A is a set of matrices and € is a Rademacher vector. By expanding the
fo-norms, we rewrite (7.64) as

X=s e (AT A
sup ;5161( )

, (7.65)

.7

which is a homogeneous chaos process of order 2 indexed by the positive semidef-
inite matrices A" A. Talagrand [81] considers general homogenous chaos process
of the form

X = sup Z€i67‘Bi,j , (7.66)
BeB | |

where B C C™*™ is a set of (not necessarily positive semidefinite) matrices. He
derives the bound

EY < 0172 (37 ||HF) + 02’72 (87 ||'H2—>2) . (7-67)
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where the Talagrand’s functional +,, is defined below.
The core of the generic chaining methodology is based on the following
definition:

Definition 7.8.1 (Talagrand [81]). For a metric space (7, d), an admissible se-
quence of T"is a collection of subsets of T, {T§ : s > 0}, such that for every s > 1,
|Ts| < 22" and |Tp| = 1. For 3 > 1, define the 5 functional by

v (T, d) = inf sup Z 25/8d (¢, Ty),
teT £

where the infimum is taken with respect to all admissible sequences of 7.

We need some new notation to proceed. For a set of matrices .4, the radius of the
set A in the Frobenius norm

[Allp = /Tr (AT A)
is denoted by dr (A). Similarly, the radius of the set A in the operator norm

Al = sup [[Ax],
Il <1

is denoted by dy_,5 (A). That is,

dp (A) = sup [|Allp,  dasa (A) = sup [[Ally,,.
AcA AcA

A metric space is a set T' where a notion of distance d (called a metric) between
elements of the set is defined. We denote the metric space by (7', d). For a metric
space (T',d) and r > 0, the covering number N (T, d,r) is the minimum number
of open balls of radius r in the metric space (7', d) to cover. Talagrand’s functionals
Y can be bounded in terms of such covering numbers by the well known Dudley
integral (see, e.g., [81]). A more specific formulation for the ,-functional of a set
of matrices .4 equipped with the operator norm is

da2(A)
M) < [ \loN (Al (68

This type of entropy integral was suggested by Dudley [83] to bound the supremum
of Gaussian processes.

Under mild measurability assumptions, if {G; : t € T'} is a centered Gaussian
process by a set ', then

c1v2 (T,d) < Esup Gy < coy2 (T, d), (7.69)
teT
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where ¢; and co are absolute constants, and for every s,t € T,
d? (s,t) = E|Gs — Gy|°.
The upper bound is due to Fernique [84] while the lower bound is due to Talagrand’s

majorizing measures theorem [81, 85].
With the notions above, we are ready to stage the main results.

Theorem 7.8.2 (Theorem 1.4 of Krahmer, Mendelson, and Rauhut [31]). Let
A € R™*™ be a symmetric set of matrices, A = —A. Let € be a Rademacher
vector of length n. Then

E sup [|Acl} ~ E[[Ael] < Cr (dr (A) 72 (A1) + 792 (A 1,0)7) =2 CoE
(7.70)

Furthermore, fort > 0,

2t
P (sup ‘||Ae||§ -E ||Ae||§’ > CoF + t) < 2exp (—Cg min { })7
AcA

V2'U
(7.71)
where
V =dasz (A) 2 (A [ lla0) +dr (A)] and U =dj_5 (A).
The constants C1,Ca, Cg are universal.
The symmetry assumption A = —A was made for the sake of simplicity. The

following more general theorem does not use this assumption.
One proof ingredient is the well-known bound relating strong and weak moments
for L-sub-Gaussian random vectors, see Sect. 1.8.

Theorem 7.8.3 (Theorem 3.1 of Krahmer, Mendelson, and Rauhut [31]). Ler A
be a set of matrices, and let € be a random vector whose entries £; are independent,
mean-zero, variance one, and L-sub-Gaussian random variables. Set

E = (A [l lla52) 2 (A lI-l252) + de (A)] +dr (A) d2a (A),
V =dasz (A) 12 (A, | lla) +dr ()], and U =d3_,, (A).

Then, fort > 0,

2t
P sup ‘HA&H%—EHA‘SH;’ 2B +t) <2exp | —c3ming —, =, ).
AcA v2'uU

(7.72)
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The constants c1, co depend only on L.

Some notation is needed. We write < y if there is an absolute constant ¢ for
which z < cy. © ~ y means that c;z < y < cyy for absolute constants ¢y, co. If
the constants depend on some parameter u, we write © <, y. The L,-norm of a
random variable X, or its p-th moment, is given by

1
I1X1|,,, = (BIX )7,
Theorem 7.8.4 (Lemma 3.3 of Krahmer, Mendelson, and Rauhut [31]). Ler A

be a set of matrices, let € = (&1, ...,&,) be an L-subGaussian random vector, and
let &' be an independent copy of €. Then, for every p > 1,

§L72 (Aa H||2—>2)

Ly

sup + sup ||{AE, AE .
sup ( |, +amlae A9,
The proof in [31] follows a chaining argument. We also refer to Sect. 1.5 for
decoupling from dependance to independence.

Theorem 7.8.5 (Theorem 3.4 of Krahmer, Mendelson, and Rauhut [31]). Let
L>1and € = (&,...,&,), where &,i = 1,...,n are independent mean-zero,
variance one, L-subGaussian random variables, and let A be a set of matrices.
Then, for every p > 1,

sup AL,

Sz (A, ||'||2a2) +dp (-A> + \ﬂad?ﬁ? ('A) )
L,

sup \||A£||2—1E||A5|| | S92 (A lams2) B2 (A Iz + i (A)]
VB2 (A) D2 (A las0) + die (A)] + Py (A)

7.9 Concentration for Random Toeplitz Matrix

Unstructured random matrices [415] are studied for concentration of measure.
In practical applications, measurement matrices possess a certain structure[438—
440]. Toeplitz matrices arise from the convolution process. For a linear time-
invariant (LTT) system with system impulse response h = {hk}fj:l . Let x =
{xk}N+M ! be the applied input discrete-time waveform. Suppose the zj, and hy
are zero-padded from both sides. The output waveform is

Y = Zajxk_j. (7.73)
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Keeping only M consecutive observations of the output waveform, y =
{yk}gjl\%l , we rewrite (7.73) as

y = Xh, (7.74)
where
TN IN-1 - T1
TN+1 TN e X2

X — . A (1.75)

TN4M-1 TN4M-2 - XM
. . . . . N+M-1
is an M x N Toeplitz matrix. Here we consider the entries x = {z;},_]
drawn from an i.i.d. Gaussian random sequences. To state the result, we need the
eigenvalues of the covariance matrix of the vector h defined as

A(0) A1) - AM-1)
. Afl) Afo) -.:-A(M:—2) 276
A(MQ1)A(MQ2)-.'- A@
where
N7
A(r) =Y hihipr, 7=0,1,...,M—1
i=1

is the un-normalized sample autocorrelation function of h € R”. Let ||a||,, be the
Euclidean norm of the vector a.

Theorem 7.9.1 (Sanandaji, Vincent, and Wakin [439]). Let h € R" be fixed.
Define two quantities

M
S A2(R)
max; \; (R) i=1
h)y=—"~+~/ h)="2=L
P =" S VTN

where \; (R) is the i-th eigenvalue of R. Let y = Xh, where X is a random
Toeplitz matrix (defined in (7.75)) with i.i.d. Gaussian entries having zero-mean

and unit variance. Noting that E [Hyﬂg} =M HhH; then for any t € (0,1), the
upper tail probability bound is

P{llyl3 - 21l > et IS} <o (— o) )

M
8p (h)
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and the lower tail probability bound is

M
P {Iyl - M hE < <M B3} < oo (~ i) )

Allowing X to have M x N i.i.d. Gaussian entries with zero mean and unit variance
(thus no Toeplitz structure) will give the concentration bound [415]

2 2 2 M
{IvI53 - 01 1 > 001 13} < 2o (- 52),

Thus, to achieve the same probability bound for Toeplitz matrices requires choosing
M larger by a factor of 2p (h) or 2 (h).
See [441], for the spectral norm of a random Toeplitz matrix. See also [442].

7.10 Deterministic Sensing Matrices

The central goal of compressed sensing is to capture attributes of a signal using very
few measurements. In most work to date, this broader objective is exemplified by
the important special case in which a k-sparse vector x € R™ (with n large) is to
be reconstructed from a small number N of linear measurements with k < N < n.
In this problem, measurement data constitute a vector \/Lﬁq)x, where @ isan N xn
matrix called the sensing matrix.

The two fundamental questions in compressed sensing are: how to construct
suitable sensing matrices ®, and how to recover x from ﬁ@x efficiently. In [443]
the authors constructed a large class of deterministic sensing matrices that satisfy a
statistical restricted isometry property. Because we will be interested in expected-
case performance only, we need not impose RIP; we shall instead work with the
weaker Statistical Restricted Isometry Property.

Definition 7.10.1 (Statistical restricted isometry property). An N x n (sensing)
matrix ® is said to be a (k, 0, £)-statistical restricted isometry property matrix if, for
k-sparse vectors x € R"™, the inequalities

2
2
< (1 +6) [l

1
2
(1=0)[Ix[l; < H\/N‘I)X

hold with probability exceeding 1 — ¢ (with respect to a uniform distribution of the
vectors x among all k-sparse vectors in R™ of the same norm).

Norms without subscript denote ¢s-norms. Discrete chirp sensing matrices are
studied in [443]. The proof of unique reconstruction [443] uses a version of the
classical McDiarmid concentration inequality.



Chapter 8
Matrix Completion and Low-Rank Matrix
Recovery

This chapter is a natural development following Chap. 7. In other words, Chaps. 7
and 8 may be viewed as two parallel developments. In Chap.7, compressed
sensing exploits the sparsity structure in a vector, while low-rank matrix recovery—
Chap. 8—exploits the low-rank structure of a matrix: sparse in the vector composed
of singular values. The theory ultimately traces back to concentration of measure
due to high dimensions.

8.1 Low Rank Matrix Recovery

Sparsity recovery and compressed sensing are interchangeable terms. This sparsity
concept can be extended to the matrix case: sparsity recovery of the vector of
singular values. We follow [444] for this exposition.

The observed data y is modeled as

y =AM) +z, 8.1

where M is an unknown n; X ny matrix, A : R”1*"2 +— R™ is a linear mapping,
and z is an m-dimensional noise term. For example, z is a Gaussian vector with
i1id. N (O, 02) entries, written as z ~ N (0, 021) where the covariance matrix is
essentially the identify matrix. The goal is to recover a good approximation of M
while requiring as few measurements as possible.

For some sequences of matrices A, and with the standard inner product
(A, X) = Tr(A*X) where A* is the adjoint of A. Each A; is similar to a
compressed sensing matrix. We has the intuition of forming a large matrix

R. Qiu and M. Wicks, Cognitive Networked Sensing and Big Data, 411
DOI 10.1007/978-1-4614-4544-9_8,
© Springer Science+Business Media New York 2014
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vec (A1)

vec (As)
A(X) = : vec (X) (8.2)

vec (Am)

where vec (X) is a long vector obtained by stacking the columns of matrix X.

The matrix version of the restricted isometry property (RIP) is an integral tool in
proving theoretical results. For each integer » = 1,2, ..., n, the isometry constant
0, of A is the smallest value such that

(1= 8) IXI7 < JAX)IlZ, < (L+38) 1XI7 (8.3)

holds for all matrices X of rank at most .
We present only two algorithms. First, it is direct to have the optimization
problem

minimize || X]],

subjectto  ||A* (V)| < v (8.4)
v=y-—-AX)
where ||-|| is the operator norm and ||-||, is its dual, i.e., the nuclear norm. The

nuclear norm of a matrix X is the sum of the singular values of X and the
operator norm is its largest singular value. A* is the adjoint of A. ||X] is
the Frobenius norm (the /5-norm of the vector of singular values).

Suppose z is a Gaussian vector with i.i.d. N (0,02) entries, and let n =

max {ny,na}. Then if Cy > 44/(1 + 1) log 12

| A (2)|| < Cov/no, s (8.5)

with probability at least 1 — 2e™“" for a fixed numerical constant ¢ > 0. The scalar
&7 is the restricted isometry constant at rank r = 1.
We can reformulate (8.4) as a semi-definite program (SDP)

minimize Tr(W;) /2 4+ Tr (Wy) /2

) W, X (8.6)
subject to >0

! [x* WJ
with optimization variables X, W1, Wy € R"*"™, We say a matrix Q > 0 if Q is
positive semi-definite (all its eigenvalues are nonnegative).

Second, the constraint ||.A* (v)|| < ~ is an SDP constraint since it can be
expressed as the linear matrix inequality (LMI)
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AL, A*(v)

PRI S

As aresult, (8.4) can be reformulated as the SDP

minimize Tr (Wy) /2 + Tr (Ws) /2

W, X 0 0
X* W, 0 0
0 0 AL, A(v)
0 0 [A(V)]" 9L,

V:y_A(X)7

subject to >0 (8.7)

with optimization variables X, W1, Wy € R"*™,

8.2 Matrix Restricted Isometry Property

Non-Asymptotic Theory of Random Matrices Lecture 6: Norm of a Random Matrix
[445]

The matrix X* is the adjoint of X, and for the linear operator A : R *"2
R™, A* : R™ — R™*"2 ig the adjoint operator. Specifically, if [A(X)], =
(A;,X) for all matrices X € R"™**"2_ then

i=1

for all vectors v = (vy,...,v,)" € R™.
The matrix version of the restricted isometry property (RIP) is an integral tool in
proving theoretical results. For each integer r = 1,2, ..., n, the isometry constant

0, of A is the smallest value such that
(1= 0:) XI5 < JAX)Z, < (1 +6,) X7 (8.8)

holds for all matrices X of rank at most . We say that A satisfies the RIP at rank r
if §,- (or d4,.) is bounded by a sufficiently small constant between 0 and 1.

Which linear maps A satisfy the RIP? One example is the Gaussian measurement
ensemble. A is a Gaussian measurement ensemble if each ‘row’ a;,1 < i < m,
contains i.i.d. A(0,1/m) entries (and the a;’s are independent from each other).
We have selected the variance of the entries to be 1/m so that for a fixed matrix X,
E[AX)Il7, = IX]7-
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Theorem 8.2.1 (Recht et al. [446]). Fix 0 < 6 < 1 and let A is a random
measurement ensemble obeying the following conditions: for any given X &
R™*"2 gnd fixed 0 < t < 1,

P (|11, = 1XI3] > ¢IXI) < Cexp (~em) (8.9)

for fixed constants C,t > O (which may depend on t). Then, if m > Dnr, A satisfies
the RIP with isometry constant 8, < § with probability exceeding 1 — Ce™ %™ for
fixed constants D,d > 0.

If A is a Gaussian random measurement ensemble, ||.A(X)||§2 is distributed as

m~1 ||XH?, times a chi-squared random variable with m degrees of freedom, and
we have

P([IAGOIE, = IXI3] > t1XI3) < 2exp (5 (272 #/3)) . 8.10)

Similarly, A satisfies (8.10) in the case when each entry of each ‘row’ a; has i.i.d.
entries that are equally likely to take the values +1/+/m or —1/1/m [446], or if A
is a random projection [416,446]. Finally, A satisfies (8.9) if the “rows” a; contain
sub-Gaussian entries [447].

In Theorem 8.2.1, the degrees of freedom of ny X ny matrix of rank r is 7(n; +
Nno — ’I").

8.3 Recovery Error Bounds

Given the observed vector y, the optimal solution to (8.4) is our estimator M (v).
For the data vector and the linear model

y=Ax+z (8.11)

where A € R™*" and the z;’s are iid. N (0,0?). Let \; (ATA) be the
eigenvalues of the matrix AT A. Then [448, p. 403]

12f:€quLEHX—XHé =o?Tr ATA - Z}\ (ATA) (8.12)

where X is estimate of x.

Suppose that the measurement operator is fixed and satisfies the RIP, and that
the noise vector z = (z1,...,2,)7 ~ N (0,02L,). Then any estimator M (y)
obeys [444, 4.2.8]

) 1
sup EHM y —MH > nro?. (8.13)
M:rank(M)<r ( ) F 149,
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Further, we have [444, 4.2.9]

~

2
N (y)-M]|

1
)nr02) >1—e /16, (8.14)

sup P ( > —
M:rank(M)<r 2 (]. + 5,~

8.4 Low Rank Matrix Recovery for Hypothesis Detection

Example 8.4.1 (Different convergence rates of sums of random matrices). Consider
n-dimensional random vectors y,x, n € R"

y=X+n

where vector x is independent of n. The components x1,...,x, of the random
vector x are scalar valued random variables, and, in general, may be dependent
random variables. For the random vector n, this is similar. The true covariance
matrix has the relation

R, =R, +R,,

due to the independence between x and n.
Assume now there are IV copies of random vector y:

yi:xi—&—ni, ’L:].,Q,,N

Assume that x; are dependent random vectors, while n; are independent random
vectors.
Let us consider the sample covariance matrix

N
%Zyi@y:_ Zx,®x + — an®n + junk
i=1

where “junk” denotes another two terms. When the sample size N increases,
concentration of measure phenomenon occurs. It is remarkable that, on the right

N
hand side, the convergence rate of the first sample covariance matrix % DX @ X
i=1
N
and that of the second sample covariance matrix + Y. n; ® n; are different! If we
i=1

further assume R is of low rank, R, = ﬁ > x; ® X} converges to its true value
i=1

. N

R, R, Z n; ® n; converges to its true value R,,. Their convergence rates,
=1

however, are dlfferent O
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Example 8.4.1 illustrates the fundamental role of low rank matrix recovery in the
framework of signal plus noise. We can take advantage of the faster convergence of
the low rank structure of signal, since, for a given recovery accuracy, the required
samples N for low rank matrix recovery is O(rlog(n)), where r is the rank of the
signal covariance matrix. Results such as Rudelson’s theorem in Sect. 5.4 are the
basis for understanding such a convergence rate.

8.5 High-Dimensional Statistics

High-dimensional statistics is concerned with models in which the ambient
dimension d of the problem may be of the same order as—or substantially larger
than—the sample size n. It is so called in the “large d, small n” regime.

The rapid development of data collection technology is a major driving force: it
allows for more observations (larger n) and also for more variables to be measured
(larger d). Examples are ubiquitous throughout science and engineering, including
gene array data, medical imaging, remote sensing, and astronomical data. Terabytes
of data are produced.

In the absence of additional structure, it is often impossible to obtain consistent
estimators unless the ratio d/n converges to zero. On the other hand, the advent of
the big data age requires solving inference problems with

d>n,

so that consistency is not possible without imposing additional structure. Typical
values of n and d include: n = 100-2,500 and d = 100-20,000.

There are several lines of work within high-dimensional statistics, all of which
are based on low-dimensional constraint on the model space, and then studying the
behavior of different estimators. Examples [155,449,450] include

» Linear regression with sparse constraints

e Multivariate or multi-task forms of regression

* System identification for autoregressive processes

» Estimation of structured covariance or inverse covariance matrices
* Graphic model selection

* Sparse principal component analysis

e Low rank matrix recovery from random projections

e Matrix decomposition problems

» Estimation of sparse additive non-parametric models

* Collaborative filtering

On the computation side, many well-known estimators are based on a convex
optimization problem formed by the sum of a loss function with a weighted
regularizer. Examples of convex programs include
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e {j-regularized quadratic programs (also known as the Lasso) for sparse linear
regression

* Second-order cone program (SOCP) for the group Lasso

* Semidefinite programming relaxation (SDP) for various problems include sparse
PCA and low-rank matrix estimation.

8.6 Matrix Compressed Sensing

Section 3.8 is the foundation for this section.

For a vector a, the {,-norm is denoted by ||a||,. ||al|2 represents the Euclidean
norm. For pairs of matrices A, B € R™ %2 we define the trace inner product of
two matrices A, B as

(A,B) =Tr (A"B).

mi mo 9
> 3" |agi|”. The element-
i=1j=1

The Frobenius or trace norm is defined as ||A||, =

mi mo
wise ¢1-norm ||A ||, is defined as ||A[|; = > > |agl.
o~

i=1j=

8.6.1 Observation Model

A linear observation model [155] is defined as
Y, = (X;,A) + Z;, 1=1,2,...,N, (8.15)

which is specified by a sequence of random matrices X;, and observation noise Z;.
Of course, Y;, Z; and the matrix inner products ¢; = (X;, A) are scalar-valued
random variables, but not necessarily Gaussian. After defining the vectors

y=[1,.. . Yu2=[Z1,.... Z8) 0 = o1, on] ",
we rewrite (8.15) as
y=¢+z (8.16)
In order to highlight the ¢ as a linear functional of the matrix A, we use
vy =p(A)+z. (8.17)

The vector ¢(A) is viewed as a (high but finite-dimensional) random Gaussian
operator mapping R™1*™2 to R, In a typical matrix compressed sensing [451],
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the observation matrix X; € R™1%*™2 hag i.i.d. zero-mean, unit-variance Gaussian
N(0,1) entries. In a more general observation model [155], the entries of X; are
allowed to have general Gaussian dependencies.

8.6.2 Nuclear Norm Regularization

For a rectangular matrix B € R™1*™2_the nuclear or trace norm is defined as

min{mq,mo}

IBl.= Y. «(B)

=1

which is the sum of its singular values that are sorted in non-increasing order. The
maximum singular value is 0y, = o1 and the minimum singular value oy,;, =
Omin{m.,m»}- The operator norm is defined as HAHOP = o1 (A). Given a collection
of observation (Y;,X;) € R x R™*™2_the problem at hand is to estimate the
unknown matrix A* € &, where S is a general convex subset of R™!*™2_ The
problem may be formulated as an optimization problem

R (1
A cargmin{ o Iy - w83 + Al }- 818
Aes (2N

Equation (8.18) is a semidefinite program (SDP) convex optimization problem [48],
which can be solved efficiently using standard software packages.

A natural question arises: How accurate will the solution A in (8.18) be when
compared with the true unknown A*?

8.6.3 Restricted Strong Convexity

The key condition for us to control the matrix error A* — A between A, the
SDP solution (8.18), and the unknown matrix A* is the so-called restricted
strong convexity. This condition guarantees that the quadratic loss function in
the SDP (8.18) is strictly convex over a restricted set of directions. Let the set
C C R x R™>*™m2 denote the restricted directions. We say the random operator
( satisfies restricted strong convexity over the set C if there exists some « () > 0
such that

1
o oAz > m (@) Al forall Acc. (8.19)

Recall that IV is the number of observations defined in (8.15).
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Let r an integer r < m = min{m,ms} and § > 0 be a tolerance parameter.
The set C(r; ) defines a set whose conditions are too technical to state here.

Another ingredient is the choice of the regularization parameter vy used in
solving the SDP (8.18).

8.6.4 Error Bounds for Low-Rank Matrix Recovery

Now we are ready to state our main results.

Theorem 8.6.1 (Exact low-rank matrix recovery [155]). Suppose A* € S has
rank v, and the random operator  satisfies the restricted strong convexity with

N N
;eixi /N, where {€;};_,

op
are random variables, any optimal solution A to the SDP (8.18) satisfies the bound

|

Theorem 8.6.1 is a deterministic statement on the SDP error.

Sometimes, the unknown matrix A* is nearly low rank: Its singular value
sequence {ai(A*)}i]\Ll decays quickly enough. For a parameter ¢ € (0,1) and a
positive radius R, we define the ball set

respect to the set C(r;0). Then, as long as yn > 2

2
A _ A* <m.

< 8.20
P S h(e) (820

min{mi,m2}
B(R,) = { A e R™M>Xm2 . > o (A)"< Ry (8.21)

i=1

When ¢ = 0, the set B (R) corresponds to the set of matrices with rank at most Ry.

Theorem 8.6.2 (Nearly low-rank matrix recovery [155]). Suppose that A € B
N
Z 51‘Xi /N,
i=1

op
where {ei}ilil are random variables, and the random operator @ satisfies
the restricted strong convexity with parameter r(p) € (0,1) over the set
C(Ry/vynT; ). Then, any solution A to the SDP (8.18) satisfies the bound

(R4)NS, the regularization parameter is lower bounded as yn > 2

A— A

1—q/2
5 N

The error (8.22) reduces to the exact rank case (8.20) when ¢ = 0 and 6 = 0.

Example 8.6.3 (Matrix compressed sensing with dependent sampling [155]).
A standard matrix compressed sensing has the form
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Y, = (X;,A) + Z;, i=1,2,..., N, (8.23)

where the observation matrix X; € R™*™2 has i.i.d. standard Gaussian A'(0, 1)
entries. Equation (8.23) is an instance of (8.15). Here, we study a more general
observation model, in which the entries of X; are allowed to have general Gaussian
dependence.

Equation (8.17) involves a random Gaussian operator mapping R *™2to RV

We repeat some definitions in Sect. 3.8 for convenience. For a matrix A €
R™1Xmz2 we use vector vec(A) € RM M = m;ms,. Given a symmetric positive
definite matrix ¥ € RM*M we say that the random matrix X; is sampled from the
3-ensemble if

vee(X;) ~ N (0,%).

We define the quantity

P’ (E) = sup var (u” Xv),
llall,=1,lIvll,=1

where the random matrix X € R %2 is sampled from the 3-ensemble. For the
special case (white Gaussian random vector) 3 = I, we have p? (£) = 1.

The noise vector € € RY satisfies the bound | e[|, < 2vv/N for some constant v.
This assumption holds for any bounded noise, and also holds with high probability
for any random noise vector with sub-Gaussian entries with parameter v. The
simplest case is that of Gaussian noise N'(0, v2).

Suppose that the matrices {Xi}i]\;l are drawn i.i.d. from the 3-ensemble, and
that the unknown matrix A* € B(R,) NS for some g € (0, 1]. Then there are
universal constant cg, c1, co such that a sample size

N > c1p? (2) R;_Q/Q (my +ma),

any solution A to the SDP (8.18) with regularization parameter

v = cop? () vy 2 ;mQ

2 mip+m a2
> R, (;;2 (V1) (0 (B) /o (2))> )

satisfies the bound

P (HA — A

< cgexp (—cq (my +m2)). (8.24)
For the special case of ¢ = 0 and A of rank r, we have

2 P2 ()% r(my +mg)
= C2 2
(3) N

min

IP’(HA—A* ) < egexp (—eq (Mg +ma)).

(8.25)
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In other words, we have

2 2 2
A Ax P (X)v?r (mi 4+ mo)
A—-A <

F @ J?nin (2) N

with probability at least 1 — c3 exp (—c4 (m1 + ma2)).
The central challenge to prove (8.25) is to use Theorem 3.8.5. ad

Example 8.6.4 (Low-rank multivariate regression [155]). Consider the observation
pairs linked by the vector pairs

yi=Az;, +w;, 1=12,...,n,

where w; ~ N (0, VQImlxmz) is observation noise vector. We assume that the
covariates z; are random, i.e., z; ~ AN (0,X), ii.d. for some mo-dimensional
covariance matrix X > 0.

Consider A* € B(R,) N S. There are universal constants ¢y, ¢, cg such that if
we solve the SDP (8.18) with regularization parameter

v mi +m
IN = 10m7 V Omax (E) %7
1

we have

S ) HI/QR my +ma 'Y’
F~ 02 (3) e n

min

< cgexp (—c3 (mg +ma)). (8.26)

When X = 1,,,, xm,, there is a constant ¢} such that

(o a

When A* is exactly low rank—that is ¢ = 0 and » = Rp—this simplifies further to

“(

In other words, we have

mi + Mo

2 ’
2—q
> v 1R, (
F n

1—q/2
) ) < cgexp (—e3 (M1 +my)) .

~

A*A* 7.2 <m1+m2

2
F}cll/r p )><026Xp(03(m1+m2)).

A — A

2
my + mo
<oV | ———=
F n

with probability at least 1 — ¢ exp (—c3 (m1 + ma)). O
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Example 8.6.5 (Vector autoregressive processes [155]). A vector autoregressive
(VAR) process [452] in m-dimension is a stochastic process {z;};_, specified by
an initialization z; € R™, followed by the recursion

Ziy1 = A¥zy + wy, t=1,2,..,n. (8.27)

In this recursion, the sequence w; € R™ consists of i.i.d. samples of innovation
noise. We assume that each vector w; € R is zero-mean and has a covariance
matrix C > 0, so that the process {z; };._, is zero-mean and has a covariance matrix
3 defined by the discrete-time Ricatti equation

»=A3A) +C.

The goal of the problem is to estimate the unknown matrix A* € R™*" on the
basis of a sequence of vector samples {z;}; _, .

It is natural to expect that the system is controlled primarily by a low-dimensional
subset of variables, implying that A* is of low rank. Besides, A* is a Hankel matrix.

Since z; = [Zy - Ztm]T is m-dimension column vector, the sample size of
scalar random variables is N = nm. Letting k = 1,2, ..., m index the dimension,
we have

Zatiyk = <ekth, A*> + Wik (8.28)

We re-index the collection of N = nm observations via the mapping
(tk)y—i=({t—1)k+k.

After doing this, the autoregressive problem can be written in the form of (8.15)
with Y; = Z(t+1)k and observation matrix X; = ekth.

Suppose that we are given n samples {zt}?zl from a m-dimensional autore-
gressive process (8.27) that is stationary, based on a system matrix that is stable
([[A* ]|, < @ < 1) and approximately low-rank (A* € B (R,)NS). Then, there are

universal constants ¢1, ¢z, c3 such that if we solve the SDP (8.18) with regularization

parameter
 20||Zll,, fm
N (1-a)V n’

then any solution A satisfies

R 2 0.2’ ) 1—q/2 m 1—q/2
P (HA — A~ R > (‘;‘”‘&3) Rq(g) < caexp (—esm) .
(8.29)
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To prove (8.29), we need the following results (8.30) and (8.31). We need the
notation

T T
Z Z5
z z}
X=|_ |eR™ and Y=| = |eR™™
T T
Zn Zn+1

Let W be a matrix where each row is sampled i.i.d. from the N (0, C) distribution
corresponding to the innovation noise driving the VAR process. With this notation,
and the relation N = nm, the SDP objective function (8.18) is written as

1 1
{5 Y = XAT L+ vl .

where v, = yym.
The eigenspectrum of the matrix of the matrix X*X/n is well controlled in
terms of the stationary covariance matrix: in particular, as long as n > c3m, we have

24 max 2
P (omax (XTX/n) > J()> < 2ciexp(—cam), and
I-a (8.30)
P (O'min (XTX/n) < 0.250 min (E)) < 2¢y exp (—cam) .
There exists constants ¢; > 0, independent of n, m, 33, etc. such that
1 col| ]|,
P (HXTWH 5 @l m) <cpexp(—cym).  (831)
n op 11—« n
O
8.7 Linear Regression
Consider a standard linear regression model
y=XB+w (8.32)

where y € R™ is an observation vector, X € R"*d i a design matrix, 3 is
the unknown regression vector, and w € R< is additive Gaussian noise, i.e.,
w~N (0, 0'2Id><d) , where I, ., is the n x n identity matrix. As pointed out above,
the consistent estimation of 3 is impossible unless we impose some additional
structure on the unknown vector 3. We consider sparsity constraint here: 3 has
exactly s < d non-zero entries.
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The notions of sparsity can be defined more precisely in terms of the £,-balls'
for p € (0, 1], defined as [135]

d
B, (R,) = {ﬂ eR:BIF =D IBiI" < Rp} : (8.33)
i=1

In the limiting case of p = 0, we have the ¢y-ball

d
Bo(s){BeRd: 21[51—#0]@}, (8.34)
=1

where [ is the indicator function and 3 has exactly s < d non-zero entries.
The unknown vector 3 can be computed by solving the convex optimization
problem

minize |y — XB|;
(8.35)
subject to HHﬁHg < RpH .

Sometimes we are interested in the vector v whose sparsity is bounded by 2s and
{5-norm is bounded by R

S(s,R)={veR': |v|,<2s, |v|,<R}.

The following random variable Z,, is of independent interest, defined as

1
Zn= sup — ’WTXV| , (8.36)
ves(s,R) T

where X, w are given in (8.32). Let us show how to bound the random variable 7Z,,.
The approach used by Raskautti et al. [135] is emphasized and followed closely here.

For a given € € (0, 1) to be chosen, we need to bound the minimal cardinality of
a set that covers S (s, R) up to (Re)-accuracy in /-norm. We claim that we may find
such a covering set {v',..., v} C S(s, R) with cardinality N = N (s, R, ¢) that
is upper bounded by

log N(s,R,¢) < log (i) +2slog (1/¢e).

IStrictly speaking, these sets are not “balls” when p < 1, since they fail to be convex.
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. . d . i
To establish the claim, we note that there are <2 ) subsets of size 2s within
s

{1,2,...,d}. Also, for any 2s-sized subset, there are an (Re)-covering in ¢3-norm
of the ball By(R) with at most 2251°8(1/) elements (e.g., [154]).

As a result, for each vector v € S(s,R), we may find some v¥ such that
Hv —vk H2 < Re. By triangle inequality, we obtain

% |WTXV| < % |WTXVk| + % |WTX (v — Vk)|

<5 [wEXVE 4 LW [[X (v = vH)

n

Now we make explicit assumption that

1 |X
L Xl <k, forall veBy(2s).
v [lvll

With this assumption, it follows that

X (v = vO)ly/vn < kR][v = V], < .

Since the vector w € R™ is Gaussian, the variate ||WH; /o? is the x? distribution
with n degrees of freedom, we have ﬁ |lw|, < 20 with probability at least 1 —

c1 exp (—can), where ¢1, ¢o are two numerical constants, using standard tail bounds
(see Sect. 3.2). Putting all the pieces together, we obtain

1 1
— ’wTXv| < - |WTXvk| + 2k0Re
n n
with high probability. Taking the supremum over v on both sides gives

1
Zp < max — ‘WTXVk’ + 2k0 Re.
k=1,2,..N n

It remains to bound the finite maximum over the covering set. First, we see that

. . . . . 0112
each variate %WTXV’C is zero-mean Gaussian with variance o2 Hsz H2 /n?. Now
by standard Gaussian tail bounds, we conclude that

Zn < oRk\/3log N(s,R,e)/\/n + 2k0Re
= oRk [\/310gN(S,R,€)/\/ﬁ+26} :

with probability greater than 1 — ¢; exp (—co log N (s, R, €)).

Finally, suppose ¢ = +/slog (d/2s)/+/n. With this choice and assuming that
n < d, we have

(8.37)
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d
S 3 l (S og(d/2s )
1 N(s,R, 28 slog 2
og ( > ) < log(d/2s)

n n n

25 slog(a/s
1 g:L / )

n

N

25425 log(d log(d
< Zot2slon(d)s) | sloaldfs)

where the final line uses standard bounds on binomial coefficients. Since d/s > 2
by assumption, we conclude that our choice of € guarantees that

log N(s,R,¢)

< 5slog(d/s).
- 5slog (d/s)

Inserting these relations into (8.37), we conclude that

7. < 60 Rx {Slog(d/@] ,
n

Since log N (s, R,e) > slog(d — 2s), this event occurs with probability at least
1 — ¢y exp (—comin{n, slog (d — s)}). We summarize the results in this theorem.

Theorem 8.7.1 ([135]). If the {s-norm of random matrix X is bounded by

X . .
ﬁ H\Iv‘II\HQ < Kk for all v with at most 2s non-zeros, i.e., v € By (2s), and
2

w € RY is additive Gaussian noise, i.e., W ~ N (O, GQIan), then for any radius
R > 0, we have

1
sup — |WTXV| < 6okR
Ivilo<2s, [vl,<RT™

)

[slog(d/s)}

with probability at least 1 — ¢y exp (—ca min {n, slog (d — s)}).
Let us apply Theorem 8.7.1. Let 3* be a feasible solution of (8.35). We have

2 2
ly = X8z < lly = X8
Define the error vector e = (3 — ). After some algebra, we obtain
1 2
—|Xv|; < = [w"Xe|
n n

the right-hand side of which is exactly the expression required by Theorem 8.7.1, if
we identify v = e.
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8.8 Multi-task Matrix Regression

We are given a collection of d regression problems in R%!, each of the form
yZ:XIBZ+WZ7 i:1a27"'ad27
where 3, € R? is an unknown regression vector, w; € R”" is the observation

noise, and X € R™*% is the design (random) matrix. In a convenient matrix form,
we have

Y=XB+W (8.38)
where Y = [y1,...,y4,] and W = [wy,..., wg,] are both matrices in R"*92
and B = [Bl, RN ﬁd2] € R4 >4 js a matrix of regression vectors. In multi-task

learning, each column of B is called a task and each row of B is a feature.
A special structure has the form of low-rank plus sparse decomposition

B=6+T

where © is of low rank and I is sparse, with a small number of non-zero entries.
For example, I' is row-sparse, with a small number of non-zero rows. It follows
from (8.38) that

Y=XO®+TI)+W (8.39)
In the following examples, the entries of W are assumed to be i.i.d. zero-mean
Gaussian with variance 2, i.e. W;; ~ N (0,12).

Example 8.8.1 (Concentration for product of two random matrices [453]). Con-
sider the product of two random matrices defined above

Z=X"W e R %

It can be shown that the matrix Z has independent columns, with each column
Zj ~ N (0, VQXTX/ n) Let omax be the maximum eigenvalue of matrix X. Since
HXTXHOP < o2 known results on the singular values of Gaussian random

max?®

matrices [145] imply that

4 (d1 + dg) VO hax
NG

Let x; be the j-th column of matrix X. Let Kpax = max. 1%, ||, be the maximum
J=1,...,a1

P(HXTWqu > ><zexp<—c<d1+d2)).

£5-norm over columns. Since the ¢5-norm of the columns of X are bounded by Kmaxs
the entries of X”'W are i.i.d. and Gaussian with variance at most (vfmax)> /1. As a
result, the standard Gaussian tail bound combined with union bound gives
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P (IXTWI. > 2278 oy (dada) ) < exp (- tog ().

vn

where || A for matrix A with the (i, j)-element a;; is defined as

Al = Jpax, - max |aij] - 0

Example 8.8.2 (Concentration for the columns of a random matrix [453]). As
defined above, w; is the k-th column of the matrix W. The function

wi = [[will,

is Lipschitz. By concentration of measure for Gaussian Lipschitz functions [141],
we have that forall ¢ > 0

ﬁm@)

P (Iwill > Elwilly +0) < exp (<25

Using the Gaussianity of w;, we have

14 14
E||wk|l, < Vd = ——.
|| ||2 \/m 1 \/@

Applying union bound over all dy columns, we conclude that

P lwll, > —= +) < R
ma: W E—— € — O, .
k:l,Z,.).(.,dQ kllo = d2 X €Xp 2,2 g a2

That is, with probability greater than 1 — exp (—t22dV12‘12 + log dg), we have

v . _ logds
max Wiy < i 1 Setting t = 4w, [ GETE gives

v log ds
+4v
Vda didy

> < — .
P (k_ggifdQ [welly = ) < exp (=3logdy) O

Example 8.8.3 (Concentration for trace inner product of two matrices [453]).
We study the function defined as

Z(s) = sup (W, A)].
1AL <V, [1A]<1
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Viewed as a function of matrix W, the random variable Z(s) is a Lipschitz function
with constant ﬁ. Using Talagrand’s concentration inequality, we obtain
142

P(Z(s) >E[Z(s)] +1) < exp( tdld?).

202

: 4sv? did
Setting t? = R log( 122

), we have

2() <2 ()] + o tog (42

with probability greater than at least

1 —exp (—QSlog <d1d2>) .
S

It remains to upper bound the expected value E[Z (s)]. In order to do so, we
use [153, Theorem 5.1(ii)] with (go,q1) = (1,2),n = dyds, and t = /s, thereby

obtaining
2d1d2 v 2d1d2
log <ec——y/sl .
dids \f\/ " > Cdidy 5°g< s )

E[Z(s)] <

Define the notation

1A, = Z 2kl

where ay, is the k-th column of matrix A € R%*492, We can study the function

Z(s) = sup (W, A)]
Al <V5 A]R<1

which is Lipschitz with constant \/dUT' Similar to above, we can use the standard
142

approach: (1) derive concentration of measure for Gaussian Lipschitz functions; (2)

upper bound the expectation. For details, we see [453]. a

8.9 Matrix Completion

This section is taken from Recht [103] for low rank matrix recovery, primarily due
to his highly accessible presentation.
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The nuclear norm || X||. of a matrix X is equal to the sum of its singular values
> 0; (X), and is the best convex lower bound of the rank function that is NP-hard.

Tzhe intuition behind this heuristic is that while the rank function counts the number
of nonvanishing singular values, the nuclear norm sums their amplitudes, much like
how the ¢; norm is a useful surrogate for counting the number of nonzeros in a
vector. Besides, the nuclear norm can be minimized subject to equality constraints
via semidefinite programming (SDP).?

Let us review some matrix preliminaries and also fix the notation. Matrices are
bold capital, vectors are bold lower case and scalars or entries are not bold. For
example, X is a matrix, X;; its (4, j)-th entry. Likewise, x is a vector, and z; its i-th
component. If ug € R™ for 1 < k < d is a collection of vectors, [uy, ..., uy] will
denote the n x d matrix whose k-th column is uy. e; will denote the k-th standard
basis vector in R, equal to 1 in component k and 0 everywhere else. X* and x*
denote the transpose of matrices X and x.

The spectral norm of a matrix is denoted ||X||. The Euclidean inner product
between two matrices is (X,Y) = Tr(X*Y), and the corresponding Euclidean
norm, called the Frobenius or Hilbert-Schmidt norm, is denoted || X|| . That is,

X, = (X,X)%. Or
X[ = (X, X) = Tr (XTX), (8.40)

which is a linear operator of XX since the trace function is linear. The nuclear
norm of a matrix is ||X]||.. The maximum entry of X (in absolute value) is denoted
by || X||, = max;; | X;;|, where of course | - | is the absolute value. For vectors, the
only norm applied is the Euclidean ¢5 norm, simply denoted ||x|].

Linear transformations that act on matrices will be denoted by calligraphic
letters. In particular, the identity operator is Z. The spectral norm (the top singular
value) of such an operator is ||.A|| = supx. A (X)|| »- Subspaces are also
denoted by calligra;l))hic letters|.‘ | st A ’

8.9.1 Orthogonal Decomposition and Orthogonal Projection

We suggest the audience to review [454, Chap. 5] for background. We only review
the key definitions needed later. For a set of vectors S = {v1, ..., v, }, the subspace

span (S) = {a1vy + agvy + -+ + @, v, }

2The SDP is of course the convex optimization. It is a common practice that once a problem is
recast in terms of a convex optimization problem, then the problem may be solved, using many
general-purpose solvers such as CVX.
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generated by forming all linear combinations of vectors from S is called the
space spanned by S. For a subset M of an inner-product space V, the orthogonal
complement M+ of M is defined to be the set of all vectors in V that are orthogonal
to very vector in M. That is,

Mt ={xeV:(mx)=0forallmec M}.
Let uy, (respectively vy) denote the k-th column of U (respectively V). Set
U =span(uy,...,u,), and V =span(vy,...,v,).

Also, assume, without loss of generality, that n; < ns. It is useful to introduce
orthogonal decomposition

R™*m2 = T @ T+

where 7 is the linear space spanned by elements of the form u,y* and xvj,1 <
k < r, where x and y are arbitrary, and 7 is its orthogonal complement. 7+ is
the subspace of matrices spanned by the family (xy*), where x (respectively y) is
any vector orthogonal to U/ (respectively V).

The orthogonal projection P7 of a matrix Z onto subspace 7 is defined as

Pr(Z) = PyZ + ZPy, — P, ZPy, (8.41)

where Py, and Py, are the orthogonal projections onto &/ and V), respectively. While
Py, and Py, are matrices, Py is a linear operator that maps a matrix to another
matrix. The orthogonal projection of a matrix Z onto 7+ is written as

Pri(2) = (I -"Pr)(Z) = (In, = Pu) Z(I,, — Py)
where I; denotes the d x d identity matrix. It follows from the definition
Pr(eqe;) = (Pyeq) ef + e (Pyey)” — (Pye,) (Pyey)”.
With the aid of (8.40), the Frobenius norm of P (e,e;}) is given as’
1P (eIl = (Pr (eaeh) , Pr (eqe;)) =IPueal*+ | Pyey||”
— [ Puel|Pyes|”

(8.42)

In order to upper bound (8.42), we are motivated to define a scalar ;1(WV), called the
coherence of a subspace W, such that

3This equation in the original paper [104] has a typo and is corrected here.
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Pued|® <p@)r/ny,  |Pves| < p(V)r/na, (8.43)
With the help of (8.43), the Frobenius norm is upper bounded by

" ny+n ny+n
IPr (eaep)||F < max {p(U) , u(V)}r——=2 < por———=,  (8.44)
ning ning

which will be used frequently.
For a subspace W, let us formally define its coherence, which plays a central role
in the statement of the final theorem on matrix completion.

Definition 8.9.1 (Coherence of a subspace). Let JV be a subspace of dimension r
and P,y be the orthogonal projection of a matrix onto W. Then, the coherence of
W (using the standard basis (e;)) is defined to be

n

= — Pye; >
pOV) =2 max [Prve

For any subspace, the smallest value which (W) can be is 1, achieved, for
example, if W is spanned by vectors whose entries all have magnitude 1/1/n.
The largest value for p (W), on the other hand, is n/r which would correspond
to any subspace that contains a standard basis element. If a matrix has row and
column spaces with low coherence, then each entry can be expected to provide about
the same amount of information.

8.9.2 Matrix Completion

The main contribution of Recht [104] is an analysis of uniformly sampled sets
via the study of a sampling with replacement model. In particular, Recht analyze
the situation where each entry index is sampled independently from uniform
distribution on {1,...,n1} x {1,...,na}.

Proposition 8.9.2 (Sampling with replacement [104]). The probability that the
nuclear norm heuristic fails when the set of observed entries is sampled uniformly
from the collection of sets of size N is less than or equal to the probability that the
heuristic fails when N entries are sampled independently with replacement.

Theorem 2.2.17 is repeated here for convenience.

Theorem 8.9.3 (Noncommutative Bernstein Inequality [104]). Ler X4,...,X,
be independent zero-mean random matrices of dimension dy x ds. Suppose py =
max {||E (XX, |1E (XiXk) ||} and | Xi|| < M almost surely for all k. Then,
forany T > 0,
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|

Theorem 8.9.4 (Matrix Completion Recht [104]). Let M be an ni X no matrix
of rank r with singular value decomposition USXV . Without loss of generality,
impose the convention ny < ng, 3 € R™" U € R™*" U € R"*"2, Assume that

A0 The row and column spaces have coherences bounded above by some
positive L.

Al The matrix UV has a maximum entry bounded by ji+/r/(ning) in
absolute value for some positive ji1.

Suppose m entries of M are observed with locations sampled uniformly at
random. Then if

L

> X,

k=1

)
/2 (8.45)

~

> T] < (dl + dg)exp

pi + Mrt/3
k=1

m > 32max {43, po } 7 (n1 + n2) Blog” (2n2)
for some 3 > 1, the minimizer to the problem

minimize I1X1],

8.46
subject to X;; = M;;  (4,§) € Q. (846)

is unique and equal to M with probability at least 1 — 6log (n2) (n1 + n2)2_2ﬂ —

ng_z‘/’g.

The proof is very short and straightforward. It only uses basic matrix analysis,
elementary large deviation bounds and a noncommutative version of Bernsterin’s
inequality (See Theorem 8.9.3).

Recovering low-Rank matrices is studied by Gross [102].

Example 8.9.5 (A secure communications protocol that is robust to sparse er-
rors [455]). We want to securely transmit a binary message across a communica-
tions channel. Our theory shows that decoding the message via deconvolution also
makes this secure scheme perfectly robust to sparse corruptions such as erasures or
malicious interference.

We model the binary message as a sign vector mg € {j:l}d. Choose a random
basis Q € Qy. The transmitter sends the scrambled message s) = Qmy, across the
channel, where it is corrupted by an unknown sparse vector cg € RY. The receiver
must determine the original message given only the corrupted signal

zg = Sp + ¢ = Qmy + ¢
and knowledge of the scrambling matrix Q.

The signal model is perfectly suited to the deconvolution recipe of [455,
Sect. 1.2]. The ¢; and /., are natural complexity measures for the structured
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signals ¢y and mg. Since the message my is a sign vector, we also have the side
information |jmg||, = 1. Our receiver then recovers the message with the convex
deconvolution method

minimize lell,,
8.47
subject to [ml[[, =1 and Qm +c =z, (847)

where the decision variables are ¢, m € R<. For example, d = 100. This method
succeeds if (cg, myg) is the unique optimal point of (8.47). O

Example 8.9.6 (Low-rank matrix recovery with generic sparse corruptions [455]).
Consider the matrix observation

Zo=Xo+R (Y()) S Rnxn7

where X has low rank, Y is sparse, and R is a random rotation on R™*",
For example n = 35. We aim to discovery the matrix X, given the corrupted
observation Zg and the basis R.

The Schatten 1-norm ||-|| g, serves as a natural complexity measure for the low-
rank structure of Xo, and the matrix ¢; norm ||-||, is appropriate for the sparse
structure of Y. We further assume the side information v = || Yo|[,,. We then
solve

minimize [ X]||g,

8.48
subject to [Y|, <a and X+ R(Y) = Z. (84%)

This convex deconvolution method succeeds if (X, Yo) is the unique solution
to (8.48). This problem is related to latent variable selection and robust principal
component analysis [456]. O

8.10 Von Neumann Entropy Penalization and Low-Rank
Matrix Estimation

Following [457], we study a problem of estimating a Hermitian nonnegatively
definite matrix R of unit trace, e.g., a density matrix of a quantum system and
a covariance matrix of a measured data. Our estimation is based on n i.i.d.
measurements

(Xlayl)a”-v(Xn»Yn)v (8.49)

where

Yi=Tr(RX,)+W;, i=1,...,n, (8.50)
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Here, X;, i = 1,...,n are random i.i.d. Hermitian matrices (or matrix-valued ran-
dom variables) and W i.i.d. (scalar-valued) random variables with E (W;| X;) = 0.
We consider the estimator

n

. 1
R® =argmin |~ > (¥; — Tr(SX;))* + e Tr(Slog S) | , (8.51)
SGSVYLXVYL n i=1

where S™*™ is the set of all nonnegatively definite Hermitian m x m matrices of
trace 1. The goal is to derive oracle inequalities showing how the estimation error
depends on the accuracy of approximation of the unknown state R by low-rank
matrices.

8.10.1 System Model and Formalism

Let M™*™ be the set of all m x m matrices with complex entries. Tr(S) denotes
the trace of S € M™*™ and S* denotes its adjoint matrix. Let H™*™ be the set of
all m x m Hermitian matrices with complex entries, and let

Sm*m = {8 e H™ ™ (C):S>0,Tr(S) =1}

be the set of all nonnegatively definite Hermitian matrices of trace 1. The matrices
of S™*™ can be interpreted, for instance, as density matrices, describing the states
of a quantum system; or covariance matrices, describing the states of the observed
phenomenon.

Let X € H™*™ (C) be a matrix (an observable) with spectral representation

X =Y AP, (8.52)

where \; are the eigenvalues of X and P; are its spectral projectors. Then, a matrix-
valued measurement of X in a state of R € S € M™*™ would result in outcomes
A; with probabilities A; = Tr (RP;) and its expectation is Eg X = Tr (RX).

Let X4,...,X,, € H™*™ (C) be given matrices (observables), and let R €
S™*™ be an unknown state of the system. A statistical problem is to estimate
the unknown R, based on the matrix-valued observations (X1,Y7),..., (X, Y,),
where Y7, ...,Y,, are outcomes of matrix-valued measurements of the observables
X1,...,X,, for the system identically prepared n times in the state R. In other
words, the unknown state R of the system is to be “learned” from a set of n linear
measurements in a number of “directions” Xy, ..., X,,.

It is assumed that the matrix-valued design variables Xq,...,X,, are also
random; specifically, they are i.i.d. Hermitian m X m matrices with distribution II.
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In this case, the observations (X1,Y7),...,(X,,Y,,) are i.i.d., and they satisfy the
following model:

Yi=Tr (RX;))+W;, i=1,....n, (8.53)

where W;,i=1, ..., n arei.i.d. (scalar-valued) random variables with E (W;| X;) =
0,i=1,...,n.

8.10.2 Sampling from an Orthogonal Basis

The linear space of matrices M™*™ (C) can be equipped with the Hilbert-Schmidt
inner product,

(A,B) = Tr (AB").

Let E;;i = 1,...,m?, be an orthonormal basis of M™*™ (C) consisting
of Hermitian matrices E;. Let X;,7 = 1,...,n, be i.i.d. matrix-valued random
variables sampled from a distribution II on the set E;,i = 1,...,m2. We will refer
to this model as sampling from an orthonormal basis.

Most often, we will use the uniform distribution II that assigns probability #
to each basis matrix E;. In this case,

1
E|(A,X)]” = — ||Al;,

m

where [|-[[, = (-, ->1/ ? is the Hilbert-Schmidt (or Frobenius) norm.

Example 8.10.1 (Matrix Completion). Let {e; : i =1,...,m} the canonical basis
of C™, where e; are m-dimensional vectors. We first define

E;=e®e;,i=1,....m
1 1 (8.54)
E;; = E(ei®ej+ej®ei)a Ej = ﬁ(ei(@ej —e;®e),
fori < 3, 7,7 = 1,...,m. Here ® denotes the tensor (or Kronecker) product of

vectors or matrices [16]. Then, the set of Hermitian matrices {E;; : 1 <4,j < m}
forms an orthogonal basis of H™*™ (C). For ¢ < j, the Fourier coefficients of
a Hermitian matrix R in this basis are equal to the real and imaginary parts of the
entries R;;,4 < j of matrix R multiplied by V/2; for i = j, they are just the diagonal
entries of R that are real.

If now II is the uniform distribution in this basis, then E|(A, X)|> = P ||A||§
Sampling from this distribution is equivalent to sampling at random real and
imaginary parts of the entries of matrix R. O
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Example 8.10.2 (Sub-Gaussian design). A scalar-valued random variable X is
called sub-Gaussian with parameter o, if and only if, for all A € R,

EeMX < e,\202/2_

The inner product (A, X) is a sub-Gaussian scalar-valued random variables for
each A € H™*™ (C). This is an important model, closely related to randomized
designs in compressed sensing, for which one can use powerful tools developed in
the high-dimensional probability.

Let us consider two examples: Gaussian design and Rademacher design.

1. Gaussian design: X is a symmetric random matrix with real entries such that
{X;; : 1 <i < j < m} areindependent, centered normal random variables with

EX} =1i=1,...,m, and EX}, = },i < j.
2. Rademacher design:
X = €4, = 1,..,m, and Xij = %Eij,l' <7,

where €;; : 1 < ¢ < j < m are i.i.d. Rademacher random variables: random
variables taking values 41 or —1 with probability 1/2 each.

In both cases, we have

2 1 2 mxm
E[(A,X)* = — A2, A e H"" (C),
m
(such matrix-valued random variables are called isotropic) and (A, X) is a sub-
. . . . 2
Gaussian random variable whose sub-Gaussian parameter is equal to ||A||5 (up to a
constant). O

8.10.3 Low-Rank Matrix Estimation

We deal with random sampling from an orthonormal basis and sub-Gaussian
isotropic design such as Gaussian or Rademacher, as mentioned above. Assume,
for simplicity, the noise W; is a sequence of i.i.d. N(0,02) random variables
independent of X, ..., X,, € H™*™ (C) (a Gaussian noise).

We write

m

F) =) fN)(¢;®¢,)

i=1
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for any Hermitian matrix S with spectral representation S = E A (¢ ® ¢;) and

any function f defined on a set that contains the spectrum of S. See Sect. 1.4.13.
Let us consider the case of sampling from an orthonormal basis {E1, ..., E,,2}

of H™>*™ (C) (that consists of Hermitian matrices). Let us call the distribution II in

{E1,...,E,,2} nearly uniform if and only there exist constants c;, ¢y such that

max IT({E;}) < ¢y and — e HAHLZ(H) Z e s HAH27 A € H™*™ (C).

1<i<m?

Clearly the matrix completion design (Example 8.10.1) is a special case of sampling
from such nearly uniform distributions.

We study the following estimator of the unknown state R defined a solution of a
penalized empirical risk minimization problem:

R® = argmin 1 Z (Y; — Tr (SX,))? + e Tr (Slog S)| , (8.55)
Sesmxm | M =
where € is a regularized parameter. The penalty term is based on the function
Tr (SlogS) = —£(S), where £ (S) is the von Neumann entropy of the state S.
Thus the method here is based on a trade-off between fitting the model by the least
square in the class of all density matrices and maximizing the entropy of the state.

The optimization of (8.55) is convex: this is based on convexity of the penalty
term that follows from the concavity of von Neumann entropy; see [458].

It is shown that the solution R¢ of (8.55) is always a full rank matrix; see
the proof of Proposition 3 of [457]. Nevertheless, when the target matrix R is
nearly low rank, Re is also well approximated by low rank matrices and the error

HR Re
Lo (IT)

Let ¢ > 0 be fixed, and hence t¢,,, = t + log (2m), and 7,, = t + loglog, (2n).
To simplify the bounds, assume that log log, (2n) < log (2m) (so, 7, < Ti,), that
n > mtmlong, and finally, that o, > #m The last condition just means that the
variance of the noise is not “too small” which allows one to suppress “exponential
tail term” in Bernstein-type inequalities used in the derivation of the bounds. Recall
that R € S"™>™.

We state two theorems without proof.

can be controlled in terms of the “approximate rank” of R.

Theorem 8.10.3 (Sampling from a nearly uniform distribution-Koltchinskii
[457]). Suppose X is sampled from a nearly uniform distribution 11. Then, these
exists a constant C' > 0 such that, for all ¢ € [0, 1], with probability at least 1 —e ™,

c (a (||logp|| Alog (%)) Vowy/ 7:3:) . (8.56)

e -
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In addition, for all sufficiently large D > 0, these exists a constant C' > O such that,
forall e = Do,/ L=, with probability at least 1 — e,

mn’
2 _yrank (S) mt,,log? (mn)

n

RkR(

. 2 2
o < st [218 =Ry + oty m

(8.57)

where a V b = max{a, b}, a A b = min{a, b}.

Theorem 8.10.4 (Sub-Gaussian isotropic matrix—Koltchinskii [457]). Suppose
X is a sub-Gaussian isotropic matrix. There exist constants C > 0;¢ > 0 such
that the following hold. Under the assumptions that T7,, < cn and t,, < n, for all
e € [0, 1], with probability at least 1 — e~

2 Mty

RE—R‘

m
<C (1 Al —)v "
. ( Jlogl Alog ™) v o

V (0w V /) vm (T logn v tm)) . (8.58)

n

Moreover, there exists a constant ¢ > 0 and, for all sufficiently large D > 0, a

constant C' > 0 such that, for e = Do,/ % with probability at least 1 — ™,

HRE_RH < inf [2||S_RH22(H)

2
Ly(IT)  Sesmxm

2 2
LC (aw rank (S) mt,,log® (mn) ym (Tnlogn Vv tm))] .

n n
(8.59)

8.10.4 Tools for Low-Rank Matrix Estimation

Let us present three tools that have been used for low-rank matrix estimation,
since they are of general interest. We must bear in mind that random matrices are
noncommutative, which is fundamentally different form the scalar-valued random
variables.

Noncommutative Kullback-Liebler and other distances. We use noncommutative
extensions of classical distances between probability distributions such as Kullback-
Liebler and Hellinger distances. We use the symmetrized Kullback-Liebler distance
between two states S1,S; € S"™*™ defined as
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K (S1;S2) = Eg, (logS1 — logS2) + Eg, (logSs —log Sy)
=Tr [(Sl — Sg) (lOg Sl — log SQ)]

Empirical processes bounds. Let Xq,...,X,, be i.i.d. matrix-valued random
variables with common distribution. If the class of measurable functions F is
uniformly bounded by a number ©, then the famous Talagrand concentration
inequality implies that, for all ¢ > 0, with probability at least 1 — e ™%,

sup
fer

1Zf<xi>—Ef(X)’

n-<
1=

SY S X) - B (X)

< 2 [Esup

FEF

3

t t
+ 0\/7 +0-—
n n
where 02 = sup Var (f (X)).
feF

Noncommutative Bernstein-type Inequalities. Let X1, ..., X,, be i.i.d. Hermitian
matrix-valued random variables with EX = 0 and 0% = [|[EX?||. We need to study
the partial sum of X; +---+X,, = > X,. Chapter 2 gives an exhaustive treatment

=1
of this subject.

8.11 Sum of a Large Number of Convex Component
Functions

The sums of random matrices can be understood, with the help of concentra-
tion of measure. A matrix may be viewed as a vector in n-dimensional space.
In this section, we make the connection between the sum of random matrices and
the optimization problem. We draw material from [459] for the background of
incremental methods. Consider the sum of a large number of component functions

N
>~ fi (x). The number of components N is very large. We can further consider the
i=1
optimization problem
N
minimize fi (x)
= 5o
subjectto x € X,

where f; : R — R;i = 1,...,N, and X € R”. The standard Euclidean

. 1/2 . . . .
norm is defined as [|x|l, = (x7x) /? There is an incentive to use incremental

methods that operate on a single component f;(x) at each iteration, rather than
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on the entire cost function. If each incremental iteration tends to make reasonable
progress in some “average” sense, then, depending on the value of N, an incremental
method may significantly outperform (by orders of magnitude) its nonincremental
counterparts. This framework provides flexibility in exploiting the special structure
of f;, including randomization in the selection of components. It is suitable for large-
scale, distributed optimization—such as in Big Data [5].

Incremental subgradient methods apply to the case where the component
functions f; are convex and nondifferentiable at some points

xp = Px (xx — axV fi, (X))

where o is a positive stepsize, Py denotes the projection on X', and iy, is the index
of the cost component that is iterated on.

An extension of the incremental approach to proximal algorithms is considered
by Sra et al. [459] in a unified algorithmic framework that includes incremental
gradient, subgradient, and proximal methods and their combinations, and highlights
their common structure and behavior. The only further restriction on (8.60) is
that f;(x) is a real-valued convex function. Fortunately, the convex function class
includes many eigenvalue functions of n x n matrices such as the largest eigenvalue

K
Amax the smallest eigenvalue Ay, the first K largest eigenvalues » © \;, and the last
i=1
K
K largest eigenvalues > A\, _;+1. When K = n, the sum is replace with the linear
i=1
trace function. As a result, Chaps. 4 and 5 are relevant along the line of concentration
of measure.
Some examples are given to use (8.60).

Example 8.11.1 (Sample covariance matrix estimation and geometric functional
analysis). For N independent samples x;,7 = 1,...,N of a random vector
x € R™, a sample covariance matrix of n X n is obtained as

N
R, = E X; @ X,
i=1

which implies that
fi(x) = x; @ %,

where ® is the outer product of two matrices. In fact, x; ® x; is a rank-one,
positive matrix and a basic building block for low-rank matrix recovery. The so-
called geometric functional analysis (Chap. 5) is explicitly connected with convex
optimization through (8.60). This deep connection may be fruitful in the future.
For example, consider a connection with the approximation of a convex body by
another one having a small number of contact points [460]. Let /C be a convex body
in R™ such that the ellipsoid of minimum volume containing it [93] is the standard
Euclidean ball BY. Then by the theorem of John, there exists N < (n+ 3)n/2
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points z1,...,znx € K, ||2;]l, = 1 and N positive numbers ¢, . .., cy satisfying
the following system of equations

N

I = Zcizi ®Zi7

i=1

N
0= E Ci;Z;.
i=1

It is established by Rudelson [93] (Theorem 5.4.2) that N = O(nlog(n)) is
sufficient for a good approximation. By choosing

fix) = % ® x5,

in (8.60), we are able to calculate cy,...,cy, by solving a convex optimization
problem. Recall that a random vector y is in the isotropic position if

RyéEb’i(@}’i] =1

where the true covariance matrix is defined as R,.
For a high dimensional convex body [266] L € R™, our algorithm formulated in
terms of (8.60) brings the body into isotropic positions. a

Example 8.11.2 (Least squares and inference). An important class is the cost

m

function Y f; (x), where f; (x) is the error between some data and the output a
i=1

parametric model, with x being the vector of parameters. (The standard Euclidean

. 1/2 -
norm is defined as [|x||, = (x"x) / .) An example is linear least-squares problem,
where f; has a quadratic structure

N
Z (ajx —b;) +v|x — Z[2, st.x € R",

i=1

where Z is given, or nondifferentiable, as in the /; -regulation

N n
Z (asz—bi)2 —|—’Vz |z;], s.t. (1,...,2,) € R?,
j=1

i=1
More generally, nonlinear least squares may be used
2
fi(x) = (hi ()7,

where h; (x) represents the difference between the i-th measurement (out of N)
from a physical system and the output a parametric model whose parameter vector
is x. Another is the choice
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fix)=g (aiTx - bi) ,

where g is a convex function. Still another example is maximum likelihood
estimation, where f; is a log-likelihood function of the form

fi(x) = —log Py (yi;%),

where y1,...,yn represent values of independent samples of a random vector
whose distribution Py (+; x) depends on an unknown parameter vector x € R that
one wishes to estimate. Related contexts include “incomplete” data cases, where the
expectation-maximization (EM approach) is used. a

Example 8.11.3 (Minimization of an expected value: stochastic programming).
Consider the minimization of an expected value

minimize E [F (x, w)]

subject to x € R",

where w is a random variable taking a finite but very large number of values w;, ¢ =
1, ..., N, with corresponding probabilities ;. Then the cost function consists of the
sum of the N random functions 7; F' (x, w;). O

Example 8.11.4 (Distributed incremental optimization in sensor networks). Con-
sider a network of N sensors where data are collected and used to solve some
inference problem involving a parameter vector x. If f;(x) represents an error
penality for the data collected by the i-th sensor, then the inference problem is of the
form (8.60). One approach is to use the centralized approach: to collect all the data
at a fusion center. The preferable alternative is to adopt the distributed approach:
to save data communication overhead and/or take advantage of parallelism in
computation. In the age of Big Data, this distributed alternative is almost mandatory
due to the need for storing massive amount of data.

In such an approach, the current iterate xj, is passed from one sensor to another,
with each sensor ¢ performing an incremental iteration improving just its local
computation function f;, and the entire cost function need be known at any one
location! See [461,462] for details. O

8.12 Phase Retrieval via Matrix Completion

Our interest in the problem of spectral factorization and phase retrieval is motivated
by the pioneering work of [463, 464], where this problem at hand is connected
with the recently developed machinery—matrix completion, e.g., see [102, 465—
472] for the most cited papers. This connection has been first made in [473],
followed by Candes et al. [463,464]. The first experimental demonstration is made,
via a LED source with 620nm central wavelength, in [474], following a much
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simplified version of the approach described in [464]. Here, we mainly want to
explore the mathematical techniques, rather than specific applications. We heavily
rely on [463,464] for our exposition.

8.12.1 Methodology
Let z,, be a finite-length real-valued sequence, and r,, its autocorrelation, that is,
Tn = Zxkxk—n = (J?k * xn—k) 5 (861)
k

where * represents the discrete convolution of two finite-length sequences. The
goal of spectral factorization is to recover z,, from r,. It is more explicit in the
discrete Fourier domain, that is,

R() = X () X° () = |X () " .62
where
. 1 ;
X (%)== 3 alle ™ weq,
Vin 0<k<n
. 1 :
R() == > rlkle ™, weq.
\/ﬁ Og;gn

are the discrete Fourier Transform of x,, and r,,, respectively. The task of spectral
factorization is equivalent to recovering the missing phase information of X (eJ ‘*’)

from its squared magnitude ’X (ej“’) ]2 [475]. This problem is often called phase
retrieval in the literature [476]. Spectral factorization and phase retrieval have been
extensively studied, e.g. see [476,477] for comprehensive surveys.

Let the unknown x and the observed vector b be collected as

X1 b1

€To b2
X = . and b=

N bN

Suppose x € CV about which we have quadratic measurements of the form
b = [(zi,x)°, i=1,2,...,N. (8.63)

where (c,d) is the (scalar-valued) inner product of finite-dimensional column
vectors c,d. In other words, we are given information about the squared modus
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of the inner product between the signal and some vectors z;. Our task is to find
the unknown vector x. The most important observation is to linearize the nonlinear
quadratic measurements. It is well known that this can be done by interpreting the
quadric measurements as linear measurements about the unknown rank-one matrix
X = xx*. By using this “trick”, we can solve a linear problem of unknown, matrix-
valued random variable X. It is remarkable that one additional dimension (from
one to two dimensions) can make such a decisive difference. This trick has been
systemically exploited in the context of matrix completion.
As a result of this trick, we have

|(zi,x)[> = Tr (\ (zi,x)] ) (trace property of a scalar)
=Tr ((z;x) (z;x)") (definitions of (-,-) and |-|*)
=Tr (z Xx*z;) (property of transpose (Hermitian)) (8.64)
= Tr(z;Xz,) (KEY: identifying X = xx*)
=Tr (z z; X) (cyclical property of trace)
= Tr (A;X) (identifying A; = z,z7).

The first equality follows from the fact that a trace of a scalar equals the scalar
itself, that is, Tr (o) = «. The second equality follows from the definition of the
inner product {(c,d) = c*d and the definition of the squared modus of a scalar,
that is for any complex scalar o, |a|® = aa* = a*a. The third equality from the
property of Hermitian (transpose and conjugation), that is (AB)* = B*A*. The
fourth step is critical, by identifying the rank-one matrix X = xx*. Note that A*A
and A A* are always positive semidefinite, A* A, AA* > 0, for any matrix A. The
fifth equality follows from the famous cyclical property [17, p. 31]

Tr (ABC) = Tr (CAB) = Tr (BCA) # Tr (ACB).

Note that trace is a linear operator. The last step is reached by identifying another
rank-one matrix A; = z,z;.

Since trace is a linear operator [17, p. 30], the phase retrieval problem, by
combining (8.63) and (8.64), comes down to a linear problem of unknown, rank-one
matrix X. Let A be the linear operator that mappes positive semidefinite matrices
into {Tr (A;X) :4=1,...,N}. In other words, we are given N observed pairs
{yi,b; :i=1,..., N}, where y; = Tr (A;X) is a scalar-valued random variable.
Thus, the phase retrievable problem is equivalent to

find X
subject to A (X) = b minimize rank (X)
J X >0 & subject to A(X) b (8.65)
rank (X) = > 0.

After solving the lef-hand side of (8.65), we can factorize the rank-one solution
X as xx*. The equivalence between the left and right-hand side of (8.65) is
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straightforward, since, by definition, these exists one rank-one solution. This
problem is a standard rank minimizing problem over an affine slice of the positive
semidefinite cone. Thus, it can be solved using the recently developed machinery—
low rank matrix completion or matrix recovery.

8.12.2 Matrix Recovery via Convex Programming

The rank minimization problem (8.65) is NP-hard. It is well known that the trace
norm is replaced with a convex surrogate for the rank function [478,479]. This
techniques gives the familiar semi-definite programming (SDP)

minimize Tr (X)
subjectto A (X) =b (8.66)
X >0,

where A is a linear operator. This problem is convex and there exists a wide array
of general purpose solvers. As far as we are concerned, the problem is solved
once the problem can be formulated in terms of convex optimization. For example,
in [473], (8.66) was solved by using the solver SDPT3 [480] with the interface
provided by the package CVX [481]. In [474], the singular value thresholding (SVT)
method [466] was used. In [463], all algorithms were implemented in MATLAB
using TFOCS [482].

The trace norm promotes low-rank solution. This is the reason why it is used so
often as a convex proxy for the rank. We can solve a sequence of weighted trace-
norm problem, a technique which provides even more accurate solutions [483,484].

Choose € > 0; start with Wy = Iand for £ = 0, 1, .. ., inductively define X}, as
the optimal solution to

minimize Tr (W;X)
subjectto A (X) =b (8.67)
X >0.

and update the ‘reweight matrix’ as
W, = (Xj +eD)

The algorithm terminates on convergence or when the iteration attains a specific
maximum number of iterations k,,,,. The reweighting scheme [484, 485] can be
viewed as attempting to solve

minimize f(X) = log (det (X + €I))
subjectto A(X) =b (8.68)
X =0
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by minimizing the tangent approximation to f at each iterate.

The noisy case can be solved. For more details, see [463].

In Sect.8.10, following [457], we have studied a problem of estimating a
Hermitian nonnegatively definite matrix R of unit trace, e.g., a density matrix of
a quantum system and a covariance matrix of a measured data. Our estimation is
based on n i.i.d. measurements

(X1, Y1),..., (X, Yy), (8.69)
where
Y; =Tr (RX) + Wy, i=1,...,n. (8.70)

By identifying R = X, X; = A,, and Y; = b;, our phase retrieval problem is
equivalent to this problem of (8.69).

8.12.3 Phase Space Tomography

We closely follow [474] for our development. Let us consider a quasi-monochromatic
light [486, Sect. 4.3.1] represented by a statistically stationary ensemble of analytic
signal V(r,t). For any wide-sense stationary (WSS) random process, its the
‘ensemble cross-correlation function’ T (ry,r2; 1, t2) is independent of the origin
of time, and may be replace by the corresponding temporal cross-correlation
function. This function depends on the two time arguments only through their
difference 7 = t5 — t1. Thus

(T (r1,re;7)) =E[V* (r1,8) V (re,t +7)] = (V* (r1,t) V (ra,t + 7))

= Tim & [TV (01, 8) V (vg,t + 1) dt.

T—o0

where (-) represents the expectation value over a statistical ensemble of realizations
of the random fields. The cross-correlation function I' (r1, ro; 7) is known as the
mutual coherence function and is the central quantity of the elementary theory of
optical coherence. We set 7 = 0, I" (ry, r; 0) is just the mutual intensity J (r1,rz).
The Fourier transform of I (ry, ro; 7) with respect to the delay 7 is given by

W (r1,ro;w) = /F(rl,rg;T)e*jde.

To make the formulation more transparent, we neglect the time or temporal
frequency dependence by restricting our discussions to quasi-monochromatic il-
lumination and to one-dimensional description, although these restrictions are not
necessary for the following. The measurable quantity of the classical field is the
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intensity. The simplified quantity is called the mutual intensity and is given by
J (21, 22) = (V (21) V7 (22)) -

The measurable quantity of the classical field after propagation over distance z
is [474,486]

I(zo;2) = // dxydzoJ (x1, 22) exp (—i\z (gc% — x%)) exp (j27r$1 ;9172%0) .

8.71)

It is more insightful to express this in operator form as
I=Tr(P,J),

where P, is the free-space propagation operator that combines both the quadratic
phase and Fourier transform operations in (8.71). Here z is the lateral coordinate of
the observation plane. Note that P is an infinite-dimensional operator. In practice,
we can consider the discrete, finite-dimensional operator (matrix) to avoid some
subtlety. By changing variables # = 422 and Az = z; — x; and Fourier
transforming the mutual intensity with respect to x, we obtain the Ambiguity
Function

A (p, Ax) :/u(x—i—Ax/Z)u(x—Ax/2)exp(—j27r;wc)dm.

We can rewrite (8.71) as

I(p;z) = A(p, Azp)

where I (y; z) is the Fourier transform of the vector of measured intensities with
respect to xg. Thus, radial slices of the Ambiguity Function may be obtained from
Fourier transforming the vectors of intensities measured at corresponding propa-
gation distances z. From the Ambiguity Function, the mutual intensity J (x, Ax)
can be recovered by an additional inverse Fourier transform, subject to sufficient
sampling,

J(x,Azx) = /A(y,Ax) exp (j2mxy) dy.

Let us formulate the problem into a linear model. The measured intensity
data is first arranged in the Ambiguity Function space. The mutual density .J is
defined as the unknown to solve for. To relate the unknowns (mutual density .J)
to the measurements (Ambiguity Function A), the center-difference coordination-
transform is first applied, which can be expressed as a linear transform £ upon the
mutual intensity J; then this process is followed by Fourier transform F, and adding
measurement noise. Formally, we have
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A=F-L-J+e.

The propagation operator for mutual intensity P, is unitary and Hermitian, since it
preserves energy. The goal of low rank matrix recovery is to minimize the rank
(effective number of coherent modes). We formulate the physically meaningful
belief: the significant coherent modes is very few (most eigenvalues of these modes
are either very small or zero).

Mathematically, if we define all the eigenvalues A; and the estimated mutual
intensity as J, the problem can be formulated as

minimize rank (j )
subjectto A = F - L - J, (8.72)
A =0 and > A =1

Direct rank minimization is NP-hard. We solve instead a proxy problem: with the
rank with the “nuclear norm”. The nuclear norm of a matrix is defined as the sum
of singular values of the matrix. The corresponding problem is stated as

J

minimize
*k

subjectto A=F-T - J, (8.73)
Ai = 0and Y N\ =1.

This problem is a convex optimization problem, which can be solved using general
purpose solvers. In [474], the singular value thresholding (SVT) method [466] was
used.

8.12.4 Self-Coherent RF Tomography

We follow our paper [487] about a novel single-step approach for self-coherent
tomography for the exposition. Phase retrieval is implicitly executed.

8.12.4.1 System Model

In self-coherent tomography, we only know amplitude-only total fields and the
full-data incident fields. The system model in 2-D near field configuration of self-
coherent tomography can be described as follows. There are N; transmitter sensors
on the source domain with locations lﬁbt, ny = 1,2,..., Ny. There are N, receiver
sensors on the measurement domain with locations 1, , n, = 1,2,..., N;.. The

target domain {2 is discretized into a total number of NV, subareas with the center of
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the subarea located at 1¢ 4o na = 1,2,..., Ng. The corresponding target scattering
strength is 7,,,, ng = 1,2, ..., Ng. If the nt? sensor sounds the target domain and
the nt sensor receives the amplitude-only total field, the full-data measurement
equation is shown as,

Flot (lfh — 1;;T) = Finc (lflt — l;r) + Fscatter (lflt - Q- 1:%) (8.74)
where |Eot (14, — 17, )| is the amplitude-only total field measured by the nt"
receiver sensor due to the sounding signal from the n!" transmitter sensor;
Eine (1L, — 17 ) is the incident field directly from the n{" transmitter sensor to

the ™ receiver sensor; Fcagter (15, — € — 17, ) is the scattered field from the
target domain which can be expressed as,

Na
Escatter (l;, - Q — 1;7) - Z G (lid — l:Lr) Etot (liz,, — lng) Tnd (875)

ng=1

In Eq.(8.75), G (12 — 17 ) is the wave propagation Green’s function from
location 1¢  to location 17, and By (1, — 19 ) is the total field in the target
subarea 1¢ , caused by the sounding signal from the nt® transmitter sensor which
can be represented as the state equation shown as

Ng
Brop (I, =12 ) = By (15, =12+ > G(lid,%lﬁd)

nd/:1,nd/7$nd

Eot (lit — lid,) Ty (8.76)
Hence, the goal of self-coherent tomography is to recover 7,,, nq =

1,2,..., N4 and image the target domain {2 based on Egs. (8.74)—(8.76).
Define eo,m € RNeNe X1 g9

| Evor (17 — 17)]
| Eror (15 — 15)]

€tot,m = ‘Etot (12 — 1?\[1)‘ . (877)
‘Etot (lg - 171A)|

L [Bio (I, = 1)

Define e, m € CVtN-*1 as
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€inc,m = Einc (li — ITNT> . (878)
Einc (th — lq)

A t r
_Emc (th - lNr) J
Define escatter,m € CNt V> as

€scatter,m,1

€scatter,m,2

€scatter,m — : (8.79)
escatt(;r,m,Nt
where based on Eq. (8.75) escatter,m,n, € CNrx1 g described as,
€scatter,m,n; = GmEtot,s,n, T (8.80)
where G, € CV-*Na is defined as
G = 1) GE—1) - G, )
G G (1§ '—> 15) G(1 .—> 1) G (17%. — 13) 550)
G 5T ) G =1y ) G (1, — 1)

and T is

=1 " 1. (8.82)
TNy

Besides, Eiot 5.n, = diag(€tot,s,n,) and €404 5.9, € CNax1 can be expressed as
based on Eq. (8.76),

€iot,s.m, = (I — Gdiag(1)) ™" €inc,s.n, (8.83)

where G € CNe*Na i5 defined as,
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do ) G4 —1) ~--G(lgvd—>lg)

G (19 —1 0 -G8 — 1

G, = <1. 2 . . (Nd. d (8.84)
Gf—14)GAg—1g) 0

and ejpc s, € CNVa¥1 s

Bine (14, = 19)
Eine (15, = 19)

€inc,s,n, = (8.85)
B (1, = 14,)
Define E¢t s € CNeNaxNa gg
diag((I — Godiag(7)) " einc.s.1)
B — diag((I - Gsdifc?g;(T))_1 Cinc,s,2) 5.56)
diag((I — Gsdiag(f))*l Cinc,s. N, )
Define B,,, € CNtN»XNa a9
G, 0 0
0 G- 0
B, = S Eiot,s- (8.87)
0 0 -Gy
From Eqs. (8.77) to (8.87), we can safely express ey, as
€tot,m = |€ine,m + BmT]. (8.88)

8.12.4.2 Mathematical Background

In a linear model for phase retrieval problem y = Ax where y € CM*1 A ¢
CM>m and x € C™*1, only the squared magnitude of the output y is observed,

o; = yil> = lax|*,i=1,2,...,M (8.89)
where

A =[affall .. all]# (8.90)
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y=1luy vl (8.91)
and
o=[of ol ... o], (8.92)

where H is Hermitian olgerator and T is transpose operator.
We assume {o;, ai}iil are known and seek x which is called the generalized
phase retrieval problem. Derivation from Eq. (8.89) to get,

0; = a;x(a;x)

= a; xxHaH

1
= trace(af]a,;xxH) (8.93)

where trace returns the trace value of matrix. Define A; = af{ a; and X = xx.

Both A; and X are rank-1 positive semidefinite matrices. Then,
0; = trace(A;X) (8.94)

which is called semidefinite relaxation.
In order to seek x, we can first obtain the rank-1 positive semidefinite matrix X
which can be the solution to the following optimization problem

minimize

rank(X)

subject to . (8.95)
0; = trace(A;X),i=1,2,..., M

X>0

However, the rank function is not a convex function and the optimization
problem (8.95) is not a convex optimization problem. Hence, the rank function
is relaxed to the trace function or the nuclear norm function which is a convex
function. The optimization problem (8.95) can be relaxed to an SDP,

minimize

trace(X)

subject to (8.96)
0; = trace(A;X), 1 =1,2,...,M

X>0

which can be solved by CVX which is a Matlab-based modeling system for
convex optimization [488]. If the solution X to the optimization problem (8.96)
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is a rank-1 matrix, then the optimal solution x to the original phase retrieval
problem is achieved by eigen-decomposition of X. However, there is still a
phase ambiguity problem. When the number of measurements M are fewer than
necessary for a unique solution, additional assumptions are needed to select one
of the solutions [489]. Motivated by compressive sensing, if we would like to
seek the sparse vector x, the objective function in SDP (8.96) can be replaced by
trace(X) + 6 ||X]|; where [|-||; returns the {; norm of matrix and J is a design
parameter [489].

8.12.4.3 The Solution to Self-Coherent Tomography

Here, the solution to the linearized self-coherent tomography will be given first.
Then, a novel single-step approach based on Born iterative method will be
proposed to deal with self-coherent tomography with consideration of mutual
multi-scattering. Distorted wave born approximation (DWBA) is used here to
linearize self-coherent tomography. Specifically speaking, all the scattering within
the target domain will be ignored in DWBA [490,491]. Hence, Eiqt (lﬁLt — lfL d) in
Eq. (8.76) is reduced to Fit (12,, — lid) = Fine (12,, — lid) and B,, in Eq. (8.87)
is simplified as,

G, 0 --- 0 diag(einc,s,l)
0 G’m 0 diag(einc,s,Q)

B, = . . . . : ' ®5D
0 0o --- Gm diag(einc,s,Nt)

In this way, B,,, is independent of 7 and can be calculated through Green’s
function. The goal of the linearized self-coherent tomography is to recover T given
€tot,m» €inc,m» and B,,, based on Eq. (8.88).

Let 0 = e€tot,m} € = €inc,m; A = By, and x = 7. Equation (8.88) is
equivalent to

o=|c+ Ax] (8.98)
and

0; = |qu + aix|

= trace(A;X) + |;|” + (aix) ¢ + (ax)" ¢; (8.99)

where * returns the conjugate value of the complex number. There are two unknown
variables X and x in Eq. (8.99) which is different from Eq. (8.94) where there is only
one unknown variable X. In order to solve a set of non-linear equations in Eq. (8.98)
to get x, the following SDP is proposed,
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minimize

trace(X) + 6 ||x]|,

subject to

0; = trace(A;X) + |¢i|* + (ax) ¢f + (ax)" ¢;
i=1,2,...,N;N,

{ X x

>0, X>0
le]_ T

(8.100)
where |[|-||, returns the Iy norm of vector and ¢ is a design parameter. The
optimization solution x can be achieved without phase ambiguity. Furthermore, if
we know additional prior information about x, for example, the bound of the real
or imaginary part of each entry in x, this prior information can be put into the
optimization problem (8.100) as linear constraints,

minimize

trace(X) + 4 ||x||5

subject to

0; = trace(A;X) + || + (ax) ¢ + (a;x)* ¢;
i=1,2,...,N,N,

izt < real (x) < bPA”

real

b}ower S imag (X) S b}lpper

1imag mag

{X X] >0; X >0 (8.101)
X

where real returns the real part of the complex number and imag returns the
imaginary part of the complex number. bl°%¢* and b'""" are the lower and upper

real real
bounds of the real part of x, respectively. Similarly, bl°"¢" and b"h*" are the lower

and upper bounds of the imaginary part of x, respectively.

If mutual multi-scattering is considered, we have to solve Eq. (8.88) to obtain
T, i.e., x. The novel single-step approach based on Born iterative method will be
proposed as follows:

1. Set 79 to be zero; t = —1;
2. t=1t+1;get B based on Eqs. (8.87) and (8.86) using 7(*);
(t)

3. Solve the inverse problem in Eq. (8.98) by the following SDP using B, to get
(t+1)
-
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minimize

trace(X) + b1 [x]., + 02 o — ul,

subject to

u; = trace(A;X) + |ei]* + (ax) ¢ + (aix)* ¢
i=1,2,...,N;N,

I < real (x) < b

real

blower < imag (x) < biPPer

1imag mag

{Xx]zuxzo (8.102)

where the definitions of o and u can be referred to Eq. (8.92);
4. If T converges, the approach is stopped; otherwise the approach goes to step 2.

8.13 Further Comments

Noisy low-rank matrix completion with general sampling distribution was studied
by Klopp [492]. Concentration-based guarantees are studied by Foygel et al. [493],
Foygel and Srebro [494], and Koltchinskii and Rangel [495]. The paper [496]
introduces a penalized matrix estimation procedure aiming at solutions which are
sparse and low-rank at the same time.

Related work to phase retrieval includes [463, 464, 473, 474, 497-502]. In
particular, robust phase retrieval for sparse signals [503].



Chapter 9
Covariance Matrix Estimation in High
Dimensions

Statistical structures start with covariance matrices. In practice, we must estimate
the covariance matrix from the big data. One may think this chapter should be more
basic than Chaps. 7 and 8—thus should be treated earlier chapters. Recent work on
compressed sensing and low-rank matrix recovery supports the idea that sparsity
can be exploited for statistical estimation, too. The treatment of this subject is very
superficial, due to the limited space. This chapter is mainly developed to support the
detection theory in Chap. 10.

9.1 Big Picture: Sense, Communicate, Compute, and Control

The nonasymptotic point of view [108] may turn out to be relevant when the number
of observations is large. It is to fit large complex sets of data that one needs to
deal with possibly huge collections of models at different scales. This approach
allows the collections of models together with their dimensions to vary freely,
letting the dimensions be possibly of the same order of magnitude as the number
of observations. Concentration inequalities are the probabilistic tools that we need
to develop a nonasymptotic theory.

A hybrid, large-scale cognitive radio network (CRN) testbed consisting of 100
hybrid nodes: 84 USRP2 nodes and 16 WARP nodes, as shown in Fig.9.1, is
deployed at Tennessee Technological University. In each node, non-contiguous
orthogonal frequency division multiplexing (NC-OFDM) waveforms are agile and
programmable, as shown in Fig.9.2, due to the use of software defined radios;
such waveforms are ideal for the convergence of communications and sensing.
The network can work in two different modes: sense and communicate. They can
even work in a hybrid mode: communicating while sensing. From sensing point
of view, this network is an active wireless sensor network. Consequentially, many
analytical tools can be borrowed from wireless sensor network; on the other hand,
there is a fundamental difference between oursensing problems and the traditional

R. Qiu and M. Wicks, Cognitive Networked Sensing and Big Data, 457
DOI 10.1007/978-1-4614-4544-9_9,
© Springer Science+Business Media New York 2014
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The Vision:

A Dual-Use Communication/Sensing Cognitive Radio Network

Network storage and
cloud-computing
allow for more
e ’ advanced

/ algorithms.
‘\_ _5,"" Main Control Serves,
“q & Data Aggregation Center

' , o And Cloud-Sthie Processing
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Fig. 9.1 A large-scale cognitive radio network is deployed at Tennessee Technological University,
as an experimental testbed on campus. A hybrid network consisting of 80 USRP2 nodes and 16
WARP nodes. The ultimate goal is to demonstrate the big picture: sense, communicate, compute,
and control

wireless sensor network. The main difference derives from the nature of the SDR
and dynamical spectrum access (DSA) for a cognitive radio. The large-scale CRN
testbed has received little attention in the literature.

With the vision of the big picture: sense, communicate, compute and control, we
deal with the Big Data. A fundamental problem is to determine what information
needs to be stored locally and what information to be communicated in a real-time
manner. The communications data rates ultimately determine how the computing
is distributed among the whole network. It is impossible to solve this problem
analytically, since the answer depends on applications. The expertise of this network
will enables us to develop better ways to approach this problem. At this point,
through a heuristic approach, we assume that only the covariance matrix of the
data is measured at each node and will be communicated in real time. More
specifically, at each USRP2 or WARP node, only the covariance matrix of the data
are communicated across the network in real time, at a data rate of say 1 Mbs. These
(sensing) nodes record the data much faster than the communications speed. For
example, a data rate of 20 Mbps can be supported by using USRP2 nodes.

The problem is sometimes called wireless distributed computing. Our view
emphasizes the convergence of sensing and communications. Distributed (parallel)
computing is needed to support all kinds of applications in mind, with a purpose of
control across the network.
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Communications and Sensing
Converge
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Fig. 9.2 The non-contiguous orthogonal frequency division multiplexing (NC-OFDM) wave-
forms are suitable for both communications and sensing. The agile, programmable waveforms
are made available by software defined radios (SDR)

To support the above vision, we distill the following mathematical problems:

1. High dimensional data processing. We focus on high-dimensional data
processing.One can infer dependent structures among variables by estimating the
associated covariance matrices. Sample covariance matrices are most commonly
used.

2. Data fusing. A sample covariance matrix is a random matrix. As a result, a sum
of random matrices is a fundamental mathematical problem.

3. Estimation and detection. Intrusion/activity detection can be enabled. Estimation
of network parameters is possible.

4. Machine learning. Machine learning algorithms can be distributed across the
network.

These mathematical problems are of special interest, in the context of social
networks. The data and/or the estimated information can be shared within the
social networks. The concept is very remote at the writing of this monograph, it
is our belief that the rich information contained in the radio waveforms will make a
difference when integrated into the social networks. The applications are almost of
no limit.

Cameras capture the information of optical fields (signals), while the SDR nodes
sense the environment using the radio frequency (RF). A multi-spectral approach
consists of sensors of a broad electromagnetic wave spectrum, even another physical
signal: acoustic sensors.



460 9 Covariance Matrix Estimation in High Dimensions

The vision of this section is interesting, especially in the context of the Smart
Grid that is a huge network full of sensors across the whole grid. There is an analogy
between the Smart Grid and the social network. Each node of the Grid is an agent.
This connection is a long term research topic. The in-depth treatment of this topic
is beyond this scope of this monograph.

9.1.1 Received Signal Strength (RSS) and Applications
to Anomaly Detection

Sensing across a network of mobiles (such as smart phones) is emerging. Received
signal strength (RSS) is defined as the voltage measured by a receiver’s received sig-
nal strength indicator circuit (RSSI). The RSS can be shared within a social network,
such as Facebook. With the shared RSS across such a network, we can sense the
radio environment. Let us use an example to illustrate this concept. This concept can
be implemented not only in traditional wireless sensor networks, but also wireless
communications network. For example, Wi-Fi nodes and cognitive radio nodes can
be used to form such a “sensor” network. The big picture is “sense, communicate,
compute and control.”

An real-world application of using RSS, Chen, Wiesel and Hero [504]
demonstrates the proposed robust covariance estimator in a real application:
activity/intrusion detection using an active wireless sensor network. They show
that the measured data exhibit strong non-Gaussian behavior.

The experiment was set up on an Mica2 sensor network platform, which
consists of 14 sensor nodes randomly deployed inside and outside a laboratory
at the University of Michigan. Wireless sensors communicated with each other
asynchronously by broadcasting an RF signal every 0.5 seconds. The received
signal strength was recorded for each pair of transmitting and receiving nodes. There
were pairs of RSSI measurements over a 30-min period, and samples were acquired
every 0.5s. During the experiment period, persons walked into and out of the lab
at random times, causing anomaly patterns in the RSSI measurements. Finally, for
ground truth, a Web camera was employed to record the actual activity.

9.1.2 NC-OFDM Waveforms and Applications
to Anomaly Detection

The OFDM modulation waveforms can be measured for spectrum sensing in a
cognitive radio network. Then these waveforms data can be stored locally for
further processing. The first step is to estimate covariance from these stored data.
Our sampling rate is about 20 mega samples per second (Msps), in contrast
with 2 samples per second in Sect.9.1.1 for received signal strength indicator
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circuit (RSSI). The difference is seven orders of magnitude. This fundamental
difference asks for a different approach. This difference is one basic motivation
for writing this book.

For more details on the network testbed, see Chap. 13.

9.2 Covariance Matrix Estimation

Estimating a covariance matrix (or a dispersion matrix) is a fundamental problem in
statistical signal processing. Many techniques for detection and estimation rely on
accurate estimation of the true covariance. In recent years, estimating a high dimen-
sional p X p covariance matrix under small sample size n has attracted considerable
attention. In these large p, small n problems, the classical sample covariance suffers
from a systematically distorted eigenstructure [383], and improved estimators are
required.

9.2.1 Classical Covariance Estimation

Consider a random vector
H
X = (Xl,XQ,...,Xp) y

where H denotes the Hermitian of a matrix. Let x4, .. ., x,, be independent random
vectors that follow the same distribution as x. For simplicity, we assume that the
distribution has zero mean: Ex = 0. The covariance matrix X is the p X p matrix
that tabulates the second-order statistics of the distribution:

¥ =E (xx"). 9.1)

The classical estimator for the covariance matrix is the sample covariance matrix
1 n
S H
Sn=- z;xixi . 9.2)
i=

The sample covariance matrix is an unbiased estimator of the covariance matrix:
ES = 3.

Given a tolerance € € (0,1), we can study how many samples n are typically
required to provide an estimate with relative error ¢ in the spectral norm:

EHE—EH <e|l=. 9.3)

where [|A[| is the I norm. The symbol |||, refers to the Schatten g-norm of a
matrix.:

IAll, 2 [Tr|A]7)"
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where [A| = (AH A)l/ ®_ This type of spectral-norm error bound defined in (9.3)
is quite powerful. It limits the magnitude of the estimator error for each entry of
the covariance matrix; it even controls the error in estimating the eigenvalues of the
covariance using the eigenvalues of the sample covariance.

Unfortunately, the error bound (9.3) for the sample covariance estimator demands
a lot of samples. Typical positive results state that the sample covariance matrix
estimator is precise when the number of samples is proportional to the number of
variables, provided that the distribution decays fast enough. For example, assuming
that x follows a normal distribution:

n>Ce?p = Hz - EH < ¢||=|| with high probability, 9.4)

where C' is an absolute constant.

We are often interested in the largest and smallest eigenvalues of the empirical
covariance matrix of sub-Gaussian random vectors: sums of random vector outer
products. We present a version of [113]. This result (with non-explicit constants)
was originally obtained by Litvak et al. [338] and Vershynin [72].

Theorem 9.2.1 (Sums of random vector outer products [72, 113, 338]). Let
X1,...,XN be random vectors in R™ such that, for some v > 0,

E [XiX;-T ‘Xl, [SPN aXi—l] =1 and
E [exp (ax]) [x1,...,x-1] <exp <||oz||2 7/2) forall oo € R™

foralli=1,... N, almost surely. Forall e € (0,1/2) and § € (0,1),
P (X 1N»T1lc~ AVIN.T110 <6
max | 7 ;xlxi +§ cCe,5,N Or Amin ~ EXM,, < 1 o e, 6, N | <

where

C.s.N=7- <\/32 (Nlog (1+2/¢)) +log (2/0) 2 (N log (1+2/¢) +1log (2/9)) >

N + N

The sub-Gaussian property most readily lends itself to bounds on linear combina-
tions of sub-Gaussian random variables. However, the outer products are in certain
quadratic combinations. We bootstrap from the bound for linear combinations to
bound the moment generating function of the quadratic combinations. From there,
we get the desired tail bound.

For a (scalar-valued) non-negative random variable W. For any 8 € R, we have

Elexp (BW)] — PE[W] -1 = ﬁ/ooo (exp(ft) —1)-P[W >¢t]-dt. (9.5)

The claim follows using integration-by-parts.
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Theorem 9.2.2 (Sums of random vector outer products (quadratic form) [113]).
Let X1, ...,xXn be random vectors in R™ such that, for some v > 0,

E [XinT ‘Xl, SRS aXi—l] =1 and
E [exp (ax] ) [x1,...,%;—1] < exp <||oa||2 7/2) forall oo € R™

foralli = 1,...,N, almost surely. For all & € R"™ such that ||a|| = 1 and all
6 €(0,1),

N
1 2v21og (1 2v1og (1
PlaT<NE xixgp>a>1+ 32y og(/6)+ 7 1og ( /6)]<5and
i=1

N N
N 2
P [aT (;f ZXinT) a<l- 327" log (1/9) 1;)\%(1/6)] < 9.
i=1

We see [113] for a proof, based on (9.5). With this theorem, we can bound the
smallest and largest eigenvalues of the empirical covariance matrix, when we apply
the bound for the Rayleigh quotient (quadratic form) in the above theorem, together
with a covering argument from Pisier [152].

9.2.2 Masked Sample Covariance Matrix

One way to circumvent the problem of covariance estimation in large p, small n is
to assume that the covariance matrix is nearly sparse and to focus on estimating only
the significant entries [130,505]. A formalism called masked covariance estimation
is introduced here. This approach uses a mask, constructed a prior, to specify the
importance we place on each entry of the covariance matrix. By re-weighting the
sample covariance matrix estimate using a mask, we can reduce the error that arises
from imprecise estimates of covariances that are small or zero. The mask matrix
formalism was first introduced by Levina and Vershynin [505].

Modern applications often involve a small number of samples and a large number
of variables. The paucity of data make it impossible to obtain an accurate estimator
of a general covariance matrix. As a sequence, we must frame additional model
assumptions and develop estimators that exploit this extra structure. A number
of papers have focused on the situation where the covariance matrix is sparse or
nearly so. Thus we limit our attention to the significant entries of the covariance
matrix and thereby perform more accurate estimation with fewer samples.

Our analysis follows closely that of [130], using matrix concentration inequalities
that are suitable for studying a sum of independent random matrices (Sect.?2.2).
Indeed, matrix concentration inequalities can be viewed as a far-reaching extensions
of the classical inequalities for a sum of scalar random variables (Sect. 1.4.10).
Matrix concentration inequalities sometimes allow us to replace devilishly hard
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calculations with simple arithmetic. These inequalities streamline the analysis of
random matrices. We believe that the simplicity of the arguments and the strength
of the conclusions make a compelling case for the value of these methods. We
hope matrix concentration inequalities will find a place in the toolkit of researchers
working on multivariate problems in statistics.

In the regime n < p, were we have very few samples, we cannot hope to
achieve an estimate like (9.3) for a general covariance matrix. Instead, we must
instate additional assumptions and incorporate this prior information to construct a
regularized estimator.

One way to formalize this idea is to construct a symmetric p X p matrix M with
real entries, which we call the mask matrix. In the simplest case, the mask matrix
has 0-1 values that indicate which entries of the covariance matrix we attend to.
A unit entry m;; = 1 means that we estimate the interaction between the ith and jth
variables, while a zero entry m;; = 0 means that we ignore their interaction when
making estimation. More generally, we allow the entries of the mask matrix to vary
over the interval [0, 1], in which case the relative values of mn;; is proportional to the
importance of estimating the (¢, j) entry of the covariance matrix.

Given a mask M, we define the masked sample covariance matrix estimator

Mo 3,

where the symbol ® denotes the component-wise (i.e., Schur or Hadamard) product.
The following expression bounds the root-mean-square spectral-norm error that this
estimator incurs:

X 571/2 R 971/2 1/2
[EHM@E—EM <[]EHM®2—M@EH] +[EIMoz-5P]

variance bias

(9.6)
This bound is analogous to the classical bias-variance decomposition for the mean-
squared-error (MSE) of a point estimator. To obtain an effective estimator, we must
design a mask that controls both the bias and the variance in (9.6). We cannot
neglect too many components of the covariance matrix, or else the bias in the
masked estimator may compromise its accuracy. On the other hand, each additional
component we add in our estimator contributes to the size of the variance term.
In the case where the covariance matrix is sparse, it is natural to strike a balance
between these two effects by refusing to estimate entries of the covariance matrix
that we know a prior to be small or zero.

For a stationary random process, the covariance matrix is Toeplitz. A Toeplitz
matrix or diagonal-constant matrix, named after Otto Toeplitz, is a matrix in which
each descending diagonal from left to right is constant. For instance, the following
matrix is a Toeplitz matrix

Y= (%*j)1gi}j<nv 9.7
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Example 9.2.3 (The Banded Estimator of a Decaying Matrix). Let us consider the
example where entries of the covariance matrix 3 decay away from the diagonal.
Suppose that, for a fixed parameter o > 1,

‘(E)ij < |i — j + 1| “for each pair (i, j) of indices.

This type of property may hold for a random process whose correlation are
localized in time. Related structure arises from random fields that have short spatial
correlation scales.

A simple (suboptimal) approach to this covariance estimation problem is to focus
on a band of entries near the diagonal. Suppose that the bandwidth B = 2b+ 1 for a
nonnegative integer b. For example, a mask with bandwidth B = 3 for an ensemble
of p = 5 variables takes the form

11

111
Mband: 111
111
11

In this setting, it is easy to compute the bias term in (9.6). Indeed,

MoX-3%),;

L= =g > b
= 0, otherwise.

Gershgorin’s theorem [187, Sect. 6.1] implies that the spectral norm of a symmetric
matrix is dominated by the maximum /; norm of a column, so

a 2 C
Mo -3 <2) (k+1) <ﬁ(b+1)1 .
k>b

The second inequality follows when we compare with the sum with an integral.
A similar calculation shows

1B <142(—1)""

Assuming the covariance matrix really does have constant spectral norm, it follows
that

Mo X -3 <B™|Z].
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9.2.2.1 Masked Covariance Estimation for Multivariate
Normal Distributions

The main result of using masked covariance estimation is presented here. The norm
||| ., returns the maximum absolute entry of a vector, but we use a separate notation

| ,1as for the maximum absolute entry of a matrix. We also require the norm

1/2
2 2
A, 2 mjax Z |aij|
i

The notation reflects the fact that this is the natural norm for linear maps from [y
into ls.

Theorem 9.2.4 (Chen and Tropp [130]). Fix a p X p symmetric mask matrix M,
where p > 3. Suppose that x is a Gaussian random vector in RP with mean zero.
Define the covariance matrix ¥ and Sin (9.1) and (9.2). Then the variance of the
masked sample covariance estimator satisfies

. 1/2 lmax IZ13 521082\ 7 12|k IM]|logp -1
[e|mos-mos] @Rn linase 12132 ogp> Bl IMITogp log p) ||

[I=] n [[pA]] n
9.8)

9.2.2.2 Two Complexity Metrics of a Mask Design

In this subsection, we use masks that take 0—1 values to gain intuition. Our analysis
uses two separate metrics that quantify the complexity of the mask. The first
complexity is the square of the maximum column norm:

1/2
2 2
M7, = max > Imj
i

Roughly, the bracket counts the number of interactions we want to estimate that
involve the variable j, and the maximum computes a bound over all p variables.
This metric is “local” in nature. The second complexity metric is the spectral norm
|IM]|| of the mask matrix, which provides a more “global” view of the complexity
of the interactions that we estimate.

Let us use some examples to illustrate. First, suppose we estimate the entire
covariance matrix so the mask is the matrix of ones:

M = matrix of ones = ||§]||f_>2 =pand |M]| = p.

Next, consider the mask that arises from the banded estimator in Example 9.2.3:
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M = 0 — 1 matrix, bandwidth B = ||=||}_,, <Band |[M|| < B,

since there are at most B ones in each row and column. When B < p, the banded
matrix asks us to estimate fewer interactions than the full mask, so we expect the
estimation problem to be much easier.

9.2.2.3 Covariance Matrix for Wide-Sense Stationary (WSS)
A random process is wide-sense stationary (WSS) if its mean is constant for all time
indices (i.e., independent of time) and its autocorrelation depends on only the time

index difference. WSS discrete random process z[n] is statistically characterized by
a constant mean

and an autocorrelation sequence
rea[m] = E{z[n +mlz*[n]},
where * denotes the complex conjugate. The terms “correlation” and “covariance”

are often used synonymously in the literature, but formally identical only for zero-
mean processes. The covariance matrix

Tyull Tezl0) i M —1
Ry | Pl 0 el
Tza [M] Tz [M - 1] e Tzx [0]

is a Hermitian Toeplitz autocorrelation matrix of order M, and, therefore, has
dimension (M + 1) x (M + 1). Then, the quadratic form

M M
aR,,a = Z Z almla*[n]re[m —n] =0 (9.9)

m=0n=0

must be positive semi-definite (or non-negative) for any arbitrary M X 1 vector
a if r;,[m] is a valid autocorrelation sequence. From (9.9), it follows that the
covariance matrix R, is positive semi-definite, implying all its eigenvalues must
be non-negative:

Ni(Ry) >0, i=1,...,M.

This property is fundamental for the covariance matrix estimation.
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9.2.2.4 Signal Plus Noise Model

As mentioned above, in the case where the covariance matrix is sparse, it is natural
to strike a balance between these two effects by refusing to estimate entries of the
covariance matrix that we know a prior to be small or zero. Let us illustrate this
point by using an example that is crucial to high-dimensional data processing.

Example 9.2.5 (A Sum of Sinusoids in White Gaussian Noise [506]). Let us sample
the continuous-time signal at an sampling interval T5. If there are L real sinusoids

L
n] = Z Ay sin 2r finTs 4+ 0;) ,
=1

each of which has a phase that is uniformly distributed on the interval O to 2,
independent of the other phases, then the mean of the L sinusoids is zero and the
autocorrelation sequence is

L a2
Tox[M 27 cos (2w fymTy) .

If the process consists of L complex sinusoids

ZA; exp [j 2nfinTs + 6;)],

then the autocorrelation sequence is

L
Texm] = Z A exp (j27 fymTy).
=1

A white Gaussian noise is uncorrelated with itself for all lags, except at m = 0,
for which the variance is 0. The autocorrelation sequence is

Tww[m] = 028[m],
which is a constant for all frequencies, justifying the name white noise. The

covariance matrix is

Ry, =0T=0%| . |. (9.10)
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If an independent white noise process w(n] is added to the complex sinusoids
with random phases, then the combined process

y[n] = x[n] + wn]
will have an autocorrelation sequence

Tyy[m] = raz[m] + rwwm]
L

= ZA% exp (27 fymTy) + o28[m). 9.11)
=1

Equation (9.11) can be rewritten as

L

Ry, = Roo + Ruw = Y Afvar () viy (fi) + 071, (9.12)
=1

where I'is an (M + 1) x (M + 1) identity matrix and

1

xp (727 fi T
var () = ep(J'sz )

exp (j2m fymTy)

is a complex sinusoidal vector at frequency f;.

The impact of additive white Gaussian noise w[n| on the signal is, according
to (9.12), through only diagonals since R.,,, = o?I. This is an ideal model that is
not valid for the “large p, small n” problem: p variables and n data samples—in this
case the sample covariance matrix f{ww, the most commonly encountered estimate
of R, is a positive semi-definite random matrix, that is a dense matrix of full
rank. In other words, f{ww is far away from the ideal covariance matrix o2I. This
observation has far-reaching impact since the ideal covariance matrix R, = I
is a sparse matrix but the sample covariance matrix R is nOt sparse at all. U

Example 9.2.6 (Tridiagonal Toeplitz Matrix [506]). An n X n tridiagonal Toeplitz
matrix T has the form

ba 0---0
ab a
T=10a 0f:
a
L0--- 0 a b]
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where a and b are constants. The eigenvalues of T are

Ak = a + 2bcos (lzr—i—l), k=1,...,n,
and the corresponding eigenvectors are
sin (7%1)

. knm
sn (122)

If an additive Gaussian white noise is added to the signal whose covariance
matrix is T, then the resultant noisy signal has a covariance matrix

Ry, = Rys + Ry = T + 021 =

(ba 007 (10 0 --0]
ab a . 01 0°
=l0a o[+t |00 " 0

a . 0
[0+ 0 a b [0---0 0 1]
(b+02 a O 0

= 0 a 0
. a
0 0 a b+o?]

Only diagonal entries are affected by the ideal covariance matrix of the noise. [

A better model for modeling the noise is

(1 p p--p]
) pl p
Row=|pp " pl

ST

Lp---p p 1]
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where the correlation coefficient p < 1 is typically small, for example, p = 0.01.
A general model for the Gaussian noise is

1+p11 p12 P13 PIM
p21 1+ pa2 pa3 -+ panm
Ry = 02 P31 p32 1+ p33 -+ p3sm ,
pM1 pum2 PMs L4 pum
where p;; < 1,4, = 1,..., M are random variables of the same order, e.g. 0.01.

The accumulation effect of the weak random variables p;; will have a decisive
influence on the performance of the covariance estimation. This covariance matrix is
dense and of full rank but positive semi-definite. It is difficult to enforce the Toeplitz
structure on the estimated covariance matrix.

When a random noise vector is added to a random signal vector

y=x+w,

where it is assumed that the random signal and the random noise are independent, it
follows [507] that

R,, = Rux + Ruw (9.13)

The difficulty arises from the fact that R,, is unknown. Our task at hand is
to separate the two matrices—a matrix separation problem. Our problems will
be greatly simplified if some special structures of these three matrices can be
exploited!!! Two special structures are important: (1) R, is of low rank; (2) R,
is sparse.

In a real world, we are given the date to estimate the covariance matrix of the
noisy signal R,

Ryy = RII + wa; (914)

where we have used the assumption that the random signal and the random noise are
independent—which is reasonable for most covariance matrix estimators in mind.

Two estimators RM, wa are required. It is very critical to remember that their
difficulties are fundamentally different; two different estimators must be used. The
basic reason is that the signal subspace and the noise subspace are different—even
though we cannot always separate the two subspaces using tools such as singular
value decomposition or eigenvalue decomposition.

Example 9.2.7 (Sample Covariance Matrix). The classical estimator for the covari-
ance matrix is the sample covariance matrix defined in (9.2) and repeated here for
convenient:

B=-) xix! (9.15)
=1

SRS
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Using (9.15) for y = x + w, it follows that

~ n
Ry, =5 > yivit =+ 2 (% + W) (% + W,

n n n
1 1 H H
=LY xxf+1 wleH+foiwi Jrfz:wzxZ
=1 i=1 =1 =1
—0,n—00 —0,n—00
(zero mean random vectors)
n n
1 1
=LY xx+ LY wiwl n— oo
i=1 i=1
Our ideal equation is the following:
Ry, = Ryz + Ryw. (9.17)

In what conditions does (9.16) approximate (9.17) with high accuracy? The
asymptotic process in the derivation of (9.16) hides the difficulty of data processing.
We need to make the asymptotic process explicit via feasible algorithms. In other
words, we require a non-asymptotic theory for high-dimensional processing. Indeed,
n approaches a very large value but finite! (say n = N = 10°) For ¢ € (0,1), we
require that

<el|Rywll -

HR’I"I‘ - R]‘T < € ||RTTH and Hwa - wa

To achieve the same accuracy ¢, the sample size n = N, required for the
signal covariance estimator f{m is much less than n = N,, required for the noise
covariance estimator R.,,,. This observation is very critical in data processing.

For a given n, how close does Rm become to R, ? For a given n, how close
does f{ww become to R, ?

Let A, B € CV*V be Hermitian matrices. Then [16]

Ai (A)+An (B) <A (A+B) <A (A)+ A (B). (9.18)

Using (9.18), we have

>\i (Rll) +>\M (wa) < )\i (Ryy) = )\z (RLEI + wa) < Ai (Rll) +)\1 (wa)
(9.19)

for « = 1,...,M. All these covariance matrices are the positive semi-definite
matrices that have non-negative eigenvalues. If R, is of low rank, for ¢ < M, only
the first ¢ dominant eigenvalues are of interest. Using (9.19) ¢ times and summing
both sides of these q inequalities yield
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q q q
Z)\i (Rxa:) +q)\M (ﬁww) < Z)\l (Rxa: + wa) < ZAv (Rmz) +q>\1 (wa) .
=1 =1 i=1 (920)

For ¢ = 1, we have
A1 (Rmm) +Am (ﬁww> <M (Rmx + wa> <A (Rm> + A1 (wa) )
For ¢ = M, it follows that
Tr (Ree ) +MAnr (Ru ) < Tr (Ryy ) = Tr (ReptRovn
<Tr (Rew) +M (Ru)  ©21)
where we have used the standard linear algebra identity:

Tr(A) = Z)\ (A).

More generally

Tr (A%) =) M (A),AcC™" keN.
i=1
In particular, if & = 2,4, ... is an even integer, then Tr (A*) /% is just the I¥ norm
of these eigenvalues, and we have [9, p. 115]

k . k
1A]l5, < Tr (AF) <n A

op?
where ||-||,, is the operator norm.

All eigenvalues we deal with here are non-negative since the sample covariance
matrix defined in (9.15) is non-negative. The eigenvalues, their sum, and the trace of
a random matrix are scalar-valued random variables. The expectation E of these
scalar-valued random variables can be considered. Since expectation and trace are
both linear, they commute [38,91]:

ETr(A) =Tr(EA). (9.22)
Taking the expectation of it, we have
ETr (Rm) +MEMy, (wa) <ETr (Ryy) —ETr (Rzquwa)
<ETr (Rea) +MEX (Ru)
(9.23)
and, with the aid of (9.22),
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Tr (ERM) +MEAy (wa) < Tr (Efiyy)

— Tr (]ERerERW> < Tr (ER,) +ME, (R) L 924

Obviously, EAys (wa) and E\; (f{ww) are non-negative scalar values, since

A (wa) >0,i=1,..., M.
We are really concerned with

K K K
A Ry | = A [ DRy || <eda [ D Ry |- (9.25)
k=1 k=1 k=1

Sample covariance matrices are random matrices. In analogy with a sum of
independent scalar-valued random variables, we can consider a sum of matrix-
valued random variables. Instead of considering the sum, we can consider the
expectation. ]

9.2.3 Covariance Matrix Estimation for Stationary Time Series

We follow [508]. For a stationary random process, the covariance matrix is Toeplitz.
A Toeplitz matrix or diagonal-constant matrix, named after Otto Toeplitz, is a matrix
in which each descending diagonal from left to right is constant. For instance, the
following matrix is a Toeplitz matrix

X0 = (Vi-i)1<ij<ns (9.26)

A thresholded covariance matrix estimator can better characterize sparsity if the
true covariance matrix is sparse. Toeplitzs connection of eigenvalues of matrices
and Fourier transforms of their entries is used. The thresholded sample covariance
matrix is defined as

Yrar = (Fys_tll'Ys—t‘}AT) 1<s,t<T

for Ayp = 2c¢y/logT /T where c is a constant. The diagonal elements are never
thresholded. The thresholded estimate may not be positive definite.

In the context of time series, the observations have an intrinsic temporal order and
we expect that observations are weakly dependent if they are far apart, so banding
seems to be natural. However, if there are many zeros or very weak correlations
within the band, the banding method does not automatically generate a sparse
estimate.
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9.3 Covariance Matrix Estimation

||I-|| is the operator norm and ||-||, the Euclidean norm in R™. For N copies of a
random vector x, the sample covariance matrix is defined as

1 N
XN = NZIXZ*(X)XZ‘.

Theorem 9.3.1 ([310]). Consider independent, isotropic random vectors X; valued
in R™. Assume that x; satisfy the strong regularity assumption: for some Cy,n > 0,
one has

P{HPxing > t} < Cot ™" for t > Cy rank (P) 9.27)
for every orthogonal projection P in R™. Then, for ¢ € (0,1) and for

N >Ce272m.p

one has

E <e. (9.28)

1 N
- in®xi -1
N 1=1

Here, C = 512(48C)*"/"(6 + 6 /)" T*/".

Corollary 9.3.2 (Covariance estimation [310]). Consider a random vector x
valued in R™ with covariance matrix 3. Assume that: for some Coy,n > 0, the
isotropic random vector z = » 2% satisfies

P{||Pxi|\§ > t} < Cot 1" fort > Cyrank (P) (9.29)
for every orthogonal projection P in R™. Then, for ¢ € (0,1) and for
N >Ce272/.p
the sample covariance matrix Sy obtained from N independent copies of x satisfies
EHEN—EH <e|lZ. (9.30)

Theorem 9.3.1 says that, for sufficiently large IV, all eigenvalues of the sample
covariance matrix 3 are concentrated near 1. This following corollary extends to
a result that holds for all V.
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Corollary 9.3.3 (Extreme eigenvalues [310]). Let n, N be arbitrary positive
integers, suppose x; are N independent, isotropic random vectors satisfying (9.27),

. N
and let y = n/N. Then the sample covariance matrix Xy = % > x;®x; satisfies
i=1

1- Olyc g ]EAmin (XA:N) g EAmax (ZA]N> § 1 + Cl (y + yc) . (931)
Here ¢ = 35 Cp = 512(16Co)* "6 +6/n)" ™", and A (EN) ;

Amax (f] N) denote the smallest and the largest eigenvalues of SN respectively.

It is sufficient to assume 2 + 1 moments for one-dimensional marginals rather
than for marginals in all dimensions. This is only slightly stronger than the isotropy
assumption, which fixes the second moments of one-dimensional marginals.

Corollary 9.3.4 (Smallest Eigenalue [310]). Consider N independent isotropic
random vectors x; valued in R". Assume that x; satisfy the weak regularity
assumption: for some Cy,n > 0,

sup | (x;,y)|*7" < Co (9.32)
Iyll,<1

Then, for € > 0 and for
N > Ce 272/ -n,

the minimum eigenvalue of the sample covariance matrix Sy satisfies
EAmin (2]\[) 2 1—e.

Here C' = 40(10C,)*/".

9.4 Partial Estimation of Covariance Matrix

Theorem 9.4.1 (Estimation of Hadamard products [505]). Ler M be an
arbitrary fixed symmetric n X n matrix. Then

. M M
E HM Sy —-M- EH < Clog® (2n) ( L2 | ””) 1=, 9.33)

JN N

Here M does not depend on vy and 3.
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Corollary 9.4.2 (Partial estimation [S05]). Let M be an arbitrary fixed symmetric
n X n matrix such that all of the entries are equal to 0 or 1, and there are at most k
nonzero entries in each column. Then

E HM Sy -M- EH < Clog® (2n) <\\; + N) 1= (9.34)

Proof. We note that [ M|, , < < Vk and |[M|| < k and apply Theorem 9.4.1. O

Corollary 9.4.2 implies that for every £ € (0, 1), the sample size
N > 4C%c2klog® (2n) suffices for E HM Sy -M- EH <X, (9.35)

For sparse matrices M with £ < n, this makes partial estimation possible with
N < n observations. Therefore, (9.35) is a satisfactory “sparse” version of the
classical bound such as given in Corollary 9.29.

Identifying the non-zero entries of 3 by thresholding. If we assume that all non-
zero entries in 3 are bounded away from zero by a margin of h > 0, then a sample
size of

N > h™%log (2n)

would assure that all their locations are estimated correctly with probability
approaching 1. With this assumption, we could derive a bound for the thresholded
estimator.

Example 9.4.3 (Thresholded estimator). An n x n tridiagonal Toeplitz matrix has
the form

ba 0 ---0
aba .0
T a
00--- a b
nxXn
100 ---07 (hh h - h
010 .0 hh h . h
Ruw=100". .0 + | hh . ok
S0 I
l00---01)  Lhh- hhnl

All non-zero entries in X are bounded away from zero by a margin of A > 0. 0
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9.5 Covariance Matrix Estimation in Infinite-Dimensional
Data

In the context of kernel principal component analysis of high (or infinite)
dimensional data, covariance matrix estimation is relevant to Big Data. Let
[|Al|2 denote the spectral norm of matrix A. If A is symmetric, then [|Al|l2 =
max { Amax (A), —Amin (A)}, where Apax (A) and A\, (A) are, respectively,
the largest and smallest eigenvalue of A.

Example 9.5.1 (Infinite-dimensional data [113]). Let x1,...,xy be i.i.d. random
vectors with their true covariance matrix > = [xixiT] ,K=E [xixiTxixT] , and

)

Ix|l, < o almost surely for some o > 0. Define random matrices X; = x;x; — X
. N
and the sample covariance matrix (a random matrix) ¥ = % > xixiT. We have

=1
Amax (Xz) < a? — Amin (XZ) . Also,

1 N
2 2 _ 2
)\max (N P X1> — )\max (K — 2 )

and

E

Tr (;fﬁ;x?)] =Tr (K- %°).

By using Theorem 2.16.4, we have that

N Qt)\max (K*E2) (0427Amin (X’L)) t
)> \/ N * 3N

Tr (K—%?)
Amax (K—%?)

t(ef—t—1)""

X

Since Amax (—Xi) = Amax (E - Xix;»T) < Amax (%), by using Theorem 2.16.4,
we thus have

S 2t>\max (K_EQ) Arnax (E)t Tr (K_EZ) t -1
P (Amax (=-%)> n S S v o UG

Combing the above two inequalities, finally we have that
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P HE . 2 > 2t)\max (K_EQ) +max {a2_>\min (Xz) 7Amax (E)} t
2 N 3N
Tr (K—X? _
 TEE) ey
Amax (K — X7)
52
The relevant notion of intrinsic dimension is %, which can be finite even

when the random vectors x; take on values in an infinite dimensional Hilbert space.
O

9.6 Matrix Model of Signal Plus Noise Y = S 4+ X

We follow [509, 510] for our exposition. Consider a matrix model of signal plus
noise

Y=S+X (9.36)

where S € R™*" is a deterministic matrix (“signal”) and X € R™*" is a centered
Gaussian matrix (“noise”) whose entries are independent with variance 2. Our
goal is to study the non-asymptotic upper and lower bounds on the accuracy of
approximation which involves explicitly the singular values of S. Our work is
motivated for high-dimensional setting, in particular low-rank matrix recovery.

The Schatten-p norm is defined as

n 1/p
[Alls, = (Z /\f> for 1<p<oo, and [A|_ =[Al,, =,
i=1

for a matrix A € R™*"™. When p = oo, we obtain the operator norm [A|,,, which
is the largest singular value. When p = 2, we obtain the commonly called Hilbert-
Schmidt norm or Frobenius norm [|Allg, = [[A|z = [[All,. When p = 1, [[A[|g,
denotes the nuclear norm.

Let the projection matrix P, be the rank-r projection, which maximizes the
Hilbert-Schmidt norm

IPrAllp = [P A, = [PrAllg,.
Let @y, xn,- be the set of all orthogonal rank-r projections into subspaces of R™ so

that we can say P, € O,,x, ». For any A € R™*" its singular values Ai,..., A,
are ordered in decreasing magnitude. In terms of singular values, we have
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IAIE =DA%, IP-AlL =X
i=1 i=1

Let us review some basic properties of orthogonal projections. By definition
we have

P,=P! and P,=P,P,, P,.cS,,.

Every orthogonal projection P, is positive-semidefinite. Let I,., be the identity
matrix of r x r.For ngl), PSQ) € S, with eigendecomposition

pl = UL, UT and P? =UL.,,U7,
we have

Tr (Pg)Pg?)) _ (UITXTUTfJITXTfJT) _ (I"JTUIWUTI"JIW) .

The matrix II = UTUIL,,,UTU is also an orthogonal projection. Since IT is
positive semidefinite, the diagonal entries of IT are nonnegative. It follows that

Tr (P5}>P£.2>) = Tr (ML) = Y II; > 0.
1=1

We conclude that
R0, = e ~) = =287 < VT

Let S*~! be the Euclidean sphere in n-dimensional space. Finally, by the symmetry
of PSQ) — Pgl), we obtain

[PO-PO||, = [PO-PO,, =X (PO-PO) = sup [xT (BE-P()x]

xesn—1

sup [xTP@x—xTPWx| < 1.
x€SN L N—  ———
€[0,1] €[0,1]

The largest singular value (the operator norm) for the difference of two projection
matrices is bounded by 1.

For (9.36), it is useful to bound the trace Tr (XT (P@ —Pﬁ”) s) and

_ 2
HPTYH - ||PTYH2F. Motivated for this purpose, we consider the trace
F
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Tr (AT (Pg) — P&l)) B) for two arbitrary rank-r projections P( ) 9) €Snr,

and arbitrary two matrices A, B € R"*",
First, we observe that

PP P = PP -PPPV+PPPY P = PP (1-P) + (PP —1) P,

According to the proof of Proposition 8.1 of Rohde [509], we have

=

By the Cauchy-Schwarz inequality we obtain

o= [P (1= ), = e -2,

Tr (AT (P$2) _ Pﬁl)) B) =Tr (ATP$2) (1 - p&l)) B) Ty (AT (I _ P,@) P,(«l)B)
< [BaTe®| -[(1-p")BAT| [P (1-p)]
F P .

+pmar] - [BAT (1P| - (P -1) RV

< Vrm=n - \IBATABT |- [P~ PO,

IBATABT||g

r(n—r)-

Je =20
oo F

<V2r (n—r)A1 (A) M (B) HP@ - P HF

Note |[|-||5__ is the largest singular value A;(-). Thus,

Tr (AT (Pg?) - P§}>) B) <V2r(n— A (A) A (B) HP§?> —pW

’

(9.37)

The inequality (9.37) is optimal to the effect for the following case: When, for n >
2r, there are r orthonormal vectors ug,...,u, and Uy, ..., Q, such that we can
form two arbitrary rank-r projection matrices

T I
P = ZuiuiT, and P® = Z (\/ 1—a2ui+aﬁi) (\/ 1—a2ui+aﬁi)T,
i_1 i—1

and

A=ul, B=v (Pf}) - P§?>) :
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In fact, for the case, the left-hand side of the inequality (9.37) attains the upper
bound for any real numbers 0 < o < 1, and p, v > 0.

For the considered case, let us explicitly evaluate the left-hand side of the
inequality (9.37)

i=1

(P~ £ (VImaTuat) (vVimatutai)”)
< (P 3 (VI ) (VImau ) )

Tr (AT (PP -PV)B) =puvTr

i=1
=uv (2r—2Tr (P(f)P(Tl)))
=pv (2r —2r(1—0a?))

=V2uraV2r.

We have used HP&I) — P7(«2)HF = aVv2r and \; (Pgl) — Pg)) = «. Let us

establish them now. The first one is simple since

[P @ = \f1x () - 22 (P~ ) =avar

To prove the second one, we can check that @ and —« are the only non-zero
eigenvalues of the difference matrix Pgl) - P£2) and their eigen spaces are given by

Wa:span{ Loy, — /524, i:l,...,r}

and W_a:span{,/l’Taui—&— daq,, i:l,...,r}.

Since PV — P is symmetric, it follows that
)\1 (Pgl) - P'(r2)) = max ()‘max (PS‘D - P?)) y ’)‘min (Pgl) - P$2)> D = Q.
Now we are in a position to consider the model (9.36) using the process

- 2 - 2
7=y~ 1P = [P s+ X))~ 1P (8 + X015,
for a pair of rank-r projections. Recall that the projection matrix P,. be the rank-r
projection, which maximizes the Hilbert-Schmidt norm
[PrAllp = [[PrAll, = [PrA]g,.

On the other hand, f’r € Oy xn,r is an orthogonal rank-r projections into subspaces
of R™. Obviously, Z is a functional of the projection matrix P,.. The supremum is
denoted by
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Zp, = sup  Zp,
f)re({)nxn,r
where f’r is a location of the supremum. In general, IST is not unique. In addition,
- 2
the differences HPTYHF - HPTYH% are usually not centered.
Theorem 9.6.1 (Upper bound for Gaussian matrices [510]). Let the distribution

of X;j be centered Gaussian with variance o2 and rank(X) > r. Then, for r <
n — r, the following bound holds

1 2r 5 1/2
Loy a2
A A1 "itrt A1 i
EZ <o’ in (25,1 i : L
So'rn mln(/\g, +Uﬁ)+m1n 2 a\/ﬁ’)\z—/\f.H ,

where is set to infinity, if A\r = Art1

)‘1
AZ— >‘$+ 1
Theorem 9.6.1 is valid for the Gaussian entries, while the following theorem is more
general to i.i.d. entries with finite fourth moment.

Theorem 9.6.2 (Universal upper bound [510]). Assume that the i.i.d. entries X;;
of the random matrix X has finite variance o* and finite fourth moment my. Then,
we have

EZ <r(n—r)min (I, ILIIT), (9.38)

where

I:UQ+,/m4+%<a+mi/4),

2
1

00 if Ar=Ari1, (9.39)
A2 2 M i:ir":;#l A 1/4\ .
11 = 35 (0% + i) + \ i (e +mi™) ir >0,
00 if A =0.

Let us consider some examples for the model Y =S + X as defined in (9.36).
Let \1 2 Ao > ... 2 Apand Ay > Ay > ... > A, denote the singular values

~ 2 LN
of Sand Y = S + X, respectively. Recall that HPTY o > A? and ||PTS||2F =
i=1

T ~

> A? with the rank-r projections P, and P,.. The hat version standards for the
i=1
non-centered Gaussian random matrix Y and the version without hat stands for the
deterministic matrix S.



484 9 Covariance Matrix Estimation in High Dimensions

Example 9.6.3 (The largest singular value [509] ).

Consider estimating \?, the largest eigenvalue of S”'S, based on the observation
Y =S + X defined by (9.36). The maximum eigenvalue of YZ'Y is positively
biased as an estimate for, since

~ ~ 2
EX2=E HP1YHF >E|Py Y% = A2 + o2n.

It is natural to consider § = 5\% — 0?n as an estimator for \?. However, the analysis
in [509] reveals that

Es— A2 =EX2 — o%n — A2
is strictly positive and bounded away from zero, uniformly over S € R™*". In fact,
E$ — A} € [cr0?n, ¢z (0%n + ov/nA; (S))]

for some universal constants ¢y, co > 0, which do not depend on n, 0% and S. [
Example 9.6.4 (Quadratic functional of low-rank matrices [509] ).

One natural candidate for estimating HS||% , based on the observation Y = S + X
defined by (9.36), is the unbiased estimator ||Y||?J — o?n?. Simple calculation gives

Var (||Y||2F - 02n2) = 20*n? + 402 ||S|2.. (9.40)
The disadvantage of this estimator is its large variance for large values of n : it
depends quadratically on the dimension. If » = rank (S) < n, the matrix S can be
fully characterized by (2n — r)r parameters as it can be seen by the singular value
decomposition. In other words, if 7 < n, the intrinsic dimension of the problem is
of the order rn rather than n2. For every matrix with r = rank (S) = r, we have

2 2
1SI[F = [IP-S]iz -

2rn unbiasedly estimates ||S||2F , and

Elementary analysis shows that HPTSHQF -0
Var (HPTSH? - 027’71) = 20"rn + 40 ||SH2F . (9.41)

Further, it follows that

IE(||PTS||2F —o%rn — |8]% - 20 T (sz))2 =204,
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that is, o~ * (||PTS||2F —o?rn — ||S||§7) is approximately centered Gaussian with

variance 4 ||SH% if o2rn = o(1) in an asymptotic framework, and 4 ||SH% is the
asymptotic efficiency lower bound [134]. The statistics HP,SH% — o?rn, however,
cannot be used for estimator since P, = P, (S) depends on S itself and is
unknown a prior. The analysis of [509] argues that empirical low-rank projections

. 2
P, Y H —o?rn cannot be successfully used for efficient estimation of ||S ||?J ,even
F

if the rank (S) < n is explicitly known beforehand.
O

9.7 Robust Covariance Estimation

Following [453], we introduce a robust covariance matrix estimation. For i =
1,2,..., N, let x; € R" be samples from a zero-mean distribution with unknown
covariance matrix R, which is positive definite. Suppose that the data associated
with some subsets S of individuals is arbitrarily corrupted. This adversarial
corruption can be modeled as

yi:X1‘+V1‘, iil,...,N,

where v; € R™ is a vector supported on the set S. Let

1 N
R, =+ > vyl
=1

be the sample covariance matrix of the corrupted samples. We define
1
RZ‘ = N Zl XiXZW*Rg;,
1=

which is a type of re-centered Wishart noise. After some algebra, we have

R,=R,+R.+A (9.42)

where

| X | X
T T T
A=< ;:1 vivi +5 ;_1 (xiv] +vix; ).

Let us demonstrate how to use concentration of measure (see Sects. 3.7 and 3.9) in
this context. Let us assume that R, has rank at most . We can write
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N
~ 1
Rz = Q {NZZzZ? _I’I‘XT} QTa

where R, = QQ7, and z; ~ N (0,1, ) is standard Gaussian in dimension r. As a
result, by known results on singular values of Wishart matrices [145], we have [453]

R,

o g, )1 9.43
R, SV 08

with probability greater than 1 — 2 exp (—c17) .



Chapter 10
Detection in High Dimensions

This chapter is the core of Part II: Applications.

Detection in high dimensions is fundamentally different from the traditional
detection theory. Concentration of measure plays a central role due to the high
dimensions. We exploit the bless of dimensions.

10.1 OFDM Radar

We propose to study the weak signal detection under the framework of sums of
random matrices. This matrix setting is natural for many radar problems, such as
orthogonal frequency division multiplexing (OFDM) radar and distributed aperture.
Each subcarrier (or antenna sensor) can be modeled as a random matrix, via, e.g.,
sample covariance matrix estimated using the time sequence of the data. Often the
data sequence is very extremely long. One fundamental problem is to break the long
data record into shorter data segments. Each short data segment is sufficiently long
to estimate the sample covariance matrix of the underlying distribution. If we have
128 subcarriers and 100 short data segments, we will have 12,800 random matrices
at our disposal. The most natural approach for data fusion is to sum up the 12,800
random matrices.

The random matrix (here sample covariance matrix) is the basic information
block in our proposed formalism. In this novel formalism, we take the number of
observations as it is and try to evaluate the effect of all the influential parameters.
The number of observations, large but finite-dimensional, is taken as it is—and
treated as “given”. From this given number of observations, we want algorithms to
achieve the performance as good as they can. We desire to estimate the covariance
matrix using a smaller number of observations; this way, a larger number of
covariance matrices can be obtained. In our proposed formalism, low rank matrix
recovery (or matrix completion) plays a fundamental role.

R. Qiu and M. Wicks, Cognitive Networked Sensing and Big Data, 487
DOI 10.1007/978-1-4614-4544-9_10,
© Springer Science+Business Media New York 2014



488 10 Detection in High Dimensions
10.2 Principal Component Analysis

Principal component analysis (PCA) [208] is a classical method for reducing the
dimension of data, say, from high-dimensional subset of R™ down to some subsets
of R?, with d < n. PCA operates by projecting the data onto the d directions of
maximal variance, as captured by eigenvectors of the n xn true covariance matrix 3.
See Sect. 3.6 for background and notation on induced operator norms. See the PhD
dissertation [511] for a treatment of high-dimensional principal component analysis.
We freely take material from [511] in this section to give some background on PCA
and its SDP formulation.

PCA as subspace of maximal variance. Consider a collection of data points
X;,t =1,..., NinR", drawn i.i.d. from a distribution IP. We denote the expectation
with respect to this distribution by [E. Assume that the distribution is centered, i.e.,
Ex = 0, and that E ||x||§ < 0. We collect {Xi}i]il in a matrix X € RV*", Thus,

x; represents the i-th row of X. Let 3 and 3 = ¥y denote the true covariance
matrix and the sample covariance matrix, respectively. We have

N
.1 1
S =Exx!, ¥:=-—-X'X=_= inx?. 10.1)
N N &

The first principal component of the distribution P is a vector z* € R" satisfying

z* € arg max E(sz)Q, (10.2)

llzll,=1

that is, z* is a direction that the projection of the distribution along which has

maximal variance. Noting that E(sz)2 = E(z"7x) (z"x) = z" (Exx")z,
we obtain
z* € arg Hnﬁax 2z’ Xz, (10.3)
Z 2:1

By a well-known result in linear analysis, called Rayleigh-Ritz or Courant-Fischer
theorem [23], (10.3) is the variational characterization of maximal eigenvectors
of 3.

The second principal component is obtained by removing the contribution form
the first principal component and applying the same procedure; that is, obtaining the
first principal component of x— (z*)Tx z*. The subsequent principal components
are obtained recursively until all the variance in x is explained, i.e., the remainder
is zero. In case of ambiguity, one chooses a direction orthogonal to all the previous
components. Thus, principal components form an orthonormal basis for the eigen-
space of X corresponding to nonzero eigenvalues.
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SDP formulation. Let us derive a SDP equivalent to (10.3). Using the cyclic
property of the trace, we have Tr (z¥z) = Tr(Xzz”). For a matrix Z €
R"*" Z > 0 and rank (Z) = 1 is equivalent to Z = zz” for some z € R".
Imposing the additional condition Tr(Z) = 1 is equivalent to the additional
constraint ||z||, = 1. Now after dropping the rank (Z) = 1, we obtain a relaxation
of (10.3)

z* Tr (SZ). 10.4
Gagzgﬁh)r( ) (10.4)

It turns out that this relaxation is in fact exact! That is,

Lemma 10.2.1. There is always a rank one solution Z = z*(z*)T of (10.4) where
Z2* = Upmax (2).

Any member of the set of eigenvectors of A associated with an eigenvalue is
denoted as ¥ (A). Similarly, ¢, (A) represents any eigenvector associated with
the maximal eigenvalue (occasionally referred to as a“maximal eigenvector”).

Proof. Tt is enough to show that all Z feasible for (10.4), one has Tr (¥Z) <

Amax (). Using eigenvalue decomposition of Z = > A\;u;ul, this is equivalent
i=1

to Y Aiwsu? < Apax (). But this is true, by (10.3) and Y A; = 1. O
i=1 1=1

As the optimization problem in (10.4) is over the cone of semidefinite matrices
(Z > 0) with an objective and extra constraints which are linear in matrix Z, the
optimization problem (10.4) is a textbook example of a SDP [48]. The SDPs belong
to the class of conic programs for which fast methods of solution are currently
available [512]. Software tools such as CVX can be used to solve (10.4).

Noisy Samples. In practice, one does not access to the true covariance matrix 33,
but instead must rely on a “noisy” version of the form

S=%+A (10.5)

where A = Ay denotes a random noisy matrix, typically arising from having only
a finite number N of samples.

A natural question is under what conditions the sample eigenvectors based on 3!
are consistent estimators of their true analogues X. In the classical theory of PCA,
the model dimension n is viewed as fixed, asymptotic statements are established
as N goes to infinity, N — oco. However, such “fixed n, large N scaling may
be inappropriate for today’s big data applications, where the model dimension 7 is
comparable or even larger than the number of observations N, orn < N.
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10.2.1 PCA Inconsistency in High-Dimensional Setting

We briefly study some inconsistency results for PCA, in the high-dimensional
setting where (N, n) — co. We observe data points {xi}f\;l i.i.d. from a distribution
with true covariance matrix ¥ := Ex;x;’. The single spiked covariance model
assumes the following structure on X

S = 82" (z")" + Tn (10.6)

where 8 > 0 is some positive constant, measuring signal-to-noise ratio (SNR). The
eigenvalues of X are all equal to 1 except for the largest one which is 1+ 3. z* is the
leading principal component for 3. One then forms the sample covariance matrix 3!
and obtains its maximal eigenvector Z, hoping that Z is a consistent estimate of z*.

This unfortunately does not happen unless n/N — 0 as shown by Paul and
Johnston [513] among others. See also [203]. As (N,n) — oo, n/N — a,
asymptotically, the following phase transition occurs:

2%, 0, B<Va
) 1— 2
> Tragg B> V.
Note that (Z, z*), measures cosine of the angle between Z and z* and is related to
the projection of 2-distance between the corresponding 1-dimensional subspaces.
Nether case in (10.7) show consistency, i.e., (Z,2*), — 1. This has led to

research on additional structure/constraints that one may impose on z* to allow
for consistent estimation.

(10.7)

10.3 Space-Time Coding Combined with CS

y=Ax+z

y=Hx+1z

where H is flat fading channel MIMO information theory

10.4 Sparse Principal Components

We follow [514,515]. Let x1,...,X, be n i.i.d. realizations of a random variable
x in RV, Our task is to test whether the sphericity hypothesis is true, i.e., that the
distribution of x is invariant by rotation in RY. For a Gaussian distribution, this is
equivalent to testing if the covariance matrix of x is of the form ¢2I for some
known o2 > 0, where Iy is identity matrix.

Without loss of generality, we may assume o2 = 1, so that the covariance matrix
is the identity in R”Y under the null hypothesis. For alternative hypotheses, there



10.5 Information Plus Noise Model Using Sums of Random Vectors 491

exists a privileged direction, along which x has more variance. Here we consider
the case where the privileged direction is sparse. The covariance matrix is a sparse
rank one matrix perturbation of the identity matrix Iy. Formally, let v € RY be
such that ||v||2 = 1,]||v||o < k, and 6 > 0. The hypothesis problem is

Ho:x ~N(0,I)

(10.8)
H, :wa(O,I+9va).

This problem is considered in [157] where v is the so-called feature. Later a
perturbation of several rank one matrices is considered in [158, 159]. This idea is
carried out in a Kernel space [385]. What is new in this section is to include the
sparsity of v. The model under #; is a generalization of the spiked covariance
model since it allows v to be k-sparse on the unit Euclidean sphere. The statement
of #; is invariant under the rotation on the k relevant variables.

Denote 3 the covariance matrix of x. We most often use the empirical covariance
matrix 3 defined by

n
=1
where
T11 T12 - Tin
21 T22 - T2n

IN1IN2 ** " TNnld Ny

where X is an random matrix of N x n. Here 3 is the maximum likelihood
estimation in the Gaussian case, when the mean is zero. Often, 3 is the only data
provided to the statistician.

10.5 Information Plus Noise Model Using Sums
of Random Vectors

A ubiquitous model is information plus noise. We consider the matrix setting:
Ve =Xx+2x, k=1,2,...,n

where xy, represents the information and zy, the noise. Often, we have n independent
copies of Y at our disposal for high-dimensional data processing. It is natural to
consider the matrix concentration of measure:

y1—|—~'~—|—yn:(X1+"'+Xn)+(zl+"'+Zn)a
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where these matrices yg, Xy, Zr may be independent or dependent. The power of
expectation is due to the fact that expectation is valid for both independent and
dependent (matrix-valued) random variables. Expectation is also linear, which is
fundamentally useful. The linearity of expectation implies that

E(yi+--+yn) =Ey1 +---+Ey,
:E(Xl+"'+Xn)+E(Zl+"'+Zn)
=Ex; +- -+ Ex, + Ez; + -+ Ez,.
Consider a hypothesis testing problem in the setting of sums of random matrices:

/

HO:p:Z/l—’_..'—’_zn
Hiio=(x1+  +Xp) + (214 +2).

10.6 Information Plus Noise Model Using Sums
of Random Matrices

A ubiquitous model is information plus noise. We consider the matrix setting:
Y, =X +Zr, k=1,2,...,n

where X, represents the information and Zj, the noise. Often, we have n indepen-
dent copies of Y at our disposal for high-dimensional data processing. It is natural
to consider the matrix concentration of measure:

Y1+-~-+Yn=(X1+--~+Xn)+(Zl+-~-+Zn),

where these matrices Yy, Xy, Z; may be independent or dependent. The power
of expectation is due to the fact that expectation is valid for both independent and
dependent (matrix-valued) random variables. Expectation is also linear, which is
fundamentally useful. The linearity of expectation implies that

E(Y1+ - +Y,)=EY; + - +EY,
=EXi 4+ +Xp) +E(Zy + -+ Zy)
=EX;+---+EX,, +EZ; +---+EZ,.

Consider a hypothesis testing problem in the setting of sums of random matrices:

Ho:p=2,+--+12Z,
Hl:U:(X1+"'+Xn)+(zl+"'+zn)-
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Trace is linear, so
Tro=Tr(X1+ - +X,)+Tr(Z1+ -+ Z,)

Hy -
= (TrXy + -+ TrXp) + (Tr Zy + - + Tr Zy,)

It is natural to consider & — p, as in quantum information processing. We are
naturally led to the tail bounds of o — p. It follows that

o p=(XittXn)+ (Zr e+ o) = (Zyto 4 Z,) . (109)

We assume that the eigenvalues, singular values and diagonal entries of Hermi-
tian matrices are arranged in decreasing order. Thus, \; = Apax, and A\, = Apin.

Theorem 10.6.1 (Eigenvalues of Sums of Two Matrices [16]). Let A, B arenxn
Hermitian matrices. Then

AM(A)+ A (B)<ANA+B) <A (A)+ )M (B).
In particular,

)\1 (A) + )\n (B)
An (A) + An (B)

1(A+B)
n(A+B)

A1 (A) + A (B)

<A
<A /\n(A)+)‘1 (B)

NN

It is natural to consider the maximum eigenvalue of & — p and the minimum
eigenvalue of o — p. The use of Theorem 10.6.1 in (10.9) leads to the upper bound

Amas [(X1 4 Xo) + (Zy o+ Z) + (<2 = = 7, )]

< e (Xt 4+ X)) + (Zy + - + Zn)] + Amax [f (Z'1 +ot Z;,,)}

= Amax [(X1 + -+ + X)) + (Z1 + -+ + Zn)] — Ain (Z'1+~-~+Z;)

< A (X1 o+ X))l + A [(Z 4+ Zo)] = A (21 -+ 2.

(10.10)
The third line of (10.10) follows from the fact that [53, p. 13]
Amin (A) = —Amax (—A),
where A is a Hermitian matrix. In the fourth line, we have made the assumption

that the sum of information matrices (X; +---+ X,) and noise matrices
(Z1 + - - - + Z,,) are independent from each. Similarly, we have the lower bound
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Awin [(X1 4+ 4 Xo) + (Z oo+ Z) + (<2 = = 7,
> Ain [(X1 + 4+ X)) + (Zy 4+ + Z)] + A {f (Z'1+-~+Z'n)}
= Amin (K 4 X) + (Zu o+ Z)] = D (21 + 2 ).

(10.11)
10.7 Matrix Hypothesis Testing
Let us consider the matrix hypothesis testing
Ho :N
Hi:Y=VvSNR-X+N (10.12)

where SN R represents the signal-to-noise ratio, and X and N are two random
matrices of m x n. We assume that X is independent of IN. The problem of (10.12)
is equivalent to the following:

Ho : NN
Hi: YY" = SNR-XX" + NN + VSNR- (XN7 + NX*)  (10.13)

One metric of our interest is the covariance matrix with its trace
F(SNR,X) =Tr ((E (YY) - E (NN7))*). (10.14)

This function is not only positive but also linear (trace function is linear). When
only NV independent realizations are available, we can replace the expectation with
its average form

N N 2
£ 1 H 1 H
f(SNR,X) =Tr (N oYY/ - ¥ ; N;N! ) : (10.15)

i=1

Hypothesis Ho can be viewed as the extreme case of SINR = 0. It can be shown
that f(SN R, X) is a Lipschitz continuous function of SN R and X. f(SNR, X)
is a trace functional of X. It is known that the trace functional is strongly
concentrated [180]. It has the form as follows
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H1=1 SNR=0.00025 N=1000 Prob=0 Mean=0.66644 0.66715 STD=0.00028395 0.00025604

H1=1 SNR=0.001 N=100 Prob=0 Mean=0.66938 0.67215 STD=0.0010314 0.00093119 0.668
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Fig. 10.1 Random matrix detection: (a) SNR = —30dB, N = 100; (b) SNR = —36dB, N = 1,000

P (‘f(SNR, X) — Ef(SNR, X)] >t) < Ceme (10.16)

where C, ¢ are two absolute constants independent of dimension n.

Figure 10.1 illustrates the concentration of the trace function f (SN R, X) around
the mean of hypothesis H( and that of hypothesis 1, respectively. We use the
following: the entries of X, N are zero-mean, Gaussian with variance 1, m =200,
and n=100. We plot the function f(SNR,X) for K = 100 Monte Carlo
simulations since f (SNR,X) is a scalar valued (always positive) random variable.
It is interesting to observe that the two hypotheses are more separated even if
the second case (Fig.10.1b) has a lower SNR—6dB lower. The reason is that
we have used N = 1,000 realizations (measurements) of random matrices, while
in the first case only N = 100 is used. As claimed in (10.16), the fluctuations
f(SNR,X) — Ef(SN R, X) is strongly concentrated around its expectation.

10.8 Random Matrix Detection

When A, B are Hermitian, it is fundamental to realize that the TAT* and TBT*
are two commutative matrices. Obviously TAT* and TBT* are Hermitian since
A* = A B* = B. Using the fact that for any two complex matrices C,D.
(CD)* = D*C*, we get
(TBT*) (TAT*)=TBT*TAT*=(AT")"(TBT*T)"
=TA*(T*T)"(TB)" = TA*T*TB*T" = (TA*T") (TBT"),
(10.17)

which says that TAT*TBT* = TBT*TAT*, verifying the claim.
For commutative matrices C, D, C < D is equivalent to e€ < eP.
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The matrix exponential has the property [20, p. 235] that

if and only if two matrices A, B are commutative: AB = BA. Thus, it follows that

*
BTAT

< TBT" (10.18)

when A, B are Hermitian and T*T > 0. We have that

eTAT +TBT" _ eTAT eTBT ) (1019)

Let A be the C*-algebra. A, is the set of all the self-adjoint (Hermitian) matrices.
So Aj; is the self-adjoint part of A. Let us recall a lemma that has been proven in
Sect. 2.2.4. We repeat the lemma and its proof here for convenience.

Lemma 10.8.1 (Large deviations and Bernstein trick). For a matrix-valued
random variable A, B € A,, and T € A such that T*T > 0

P{A £ B} <Tr [EeTAT*—TBT*} . [Tr ¢TAT"-TBT"| (10.20)

Proof. We directly calculate
P(A£B)-P(A-B#£0)
~P(TAT" - TBT" £ 0)
_p [eTAT*fTBT* % I}

<Tr |:EeTAT*—TBT*:| .

(10.21)

Here, the second line is because the mapping X +— TXT* is bijective and preserves
the order. As shown above in (10.17), when A, B are Hermitian, the TAT* and
TBT* are two commutative matrices. For commutative matrices C,D, C < D is
equivalent to €€ < eP, from which the third line follows. The last line follows from
Chebyshev’s inequality (2.2.11). O

The closed form of E [Tr (ex)] is available in Sect. 1.6.4.
The famous Golden-Thompson inequality is recalled here

Tr (eAB) < Tr (e - €B), (10.22)

where A, B are arbitrary Hermitian matrices. This inequality is very tight (almost
sharp).

Tr(AB) < [|A],Tr (B)
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The random matrix based hypothesis testing problem is formulated as follows:

7‘[0 : A,A 2 0
Hi:A+BA>0B>0 (10.23)

where A and B are random matrices. One cannot help with the temptation of using
P(A+B>A)=P (A8 > ),

which is false. It is true only when A and B commute, i.e., AB = BA. In fact, in
general, we have that

P(A+B>A)#P(eATB > et

However, the TAT* and TBT* are two commutative matrices, when A, B are
Hermitian.
Let us consider another formulation

HoZX,
Hi: C+ X, Cis fixed.

where X is a Hermitian random matrix and C is a fixed Hermitian matrix.
In particular, X can be a Hermitian Gaussian random matrix that is treated in
Sect. 1.6.4. This formulation is related to a simple but powerful corollary of Lieb’s
theorem, which is Corollary 1.4.18 that has been shown previously. This result
connects expectation with the trace exponential.

Corollary 10.8.2. Let H be a fixed Hermitian matrix, and let X be a random
Hermitian matrix. Then

ETrexp (H+ X) < Trexp (H + log (Eex)) . (10.24)
We claim 7, if the decision metric E Tr exp (C + X), is greater than some positive
threshold ¢ we can freely set. We can compare this expression with the left-hand-side
of (10.24), by replacing C with H. The probability of detection for this algorithm is
P(ETrexp (C+X) > 1),
which is upper bounded by

P (Trexp (C + log (Eex)) > t) ,

due to (10.24). As a result, EeX, the expectation of the exponential of the random
matrix X, plays a basic role in this hypothesis testing problem.
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On the other hand, it follows that
E [Tr (eC+X)] <E [Tr (ec . ex)] <E [Tr (ec) Tr (ex)]
=Tr (%) E (Tr (X)) (10.25)

The first inequality follows from the Golden-Thompson inequality (10.22). The
second inequality follows from Tr (AB) < Tr (A) Tr(B) when A > 0and B > 0
are of the same size [16, Theorem 6.5]. Note that the all the eigenvalues of an
exponential matrix are nonnegative. The final step follows from the fact that C is
fixed. It follows from (10.25) that

P (E [Tr (eStX)] > t) <P (Tr (e°) E (Tr (e¥)) > ¢),

which is the final upper bound of interest. The E (Tr (eX)) plays a basic role.
Fortunately, for Hermitian Gaussian random matrices X, the closed form expression
of E (Tr (¢*)) is obtained in Sect. 1.6.4.

Example 10.8.3 (Commutative property of TAT* and TBT*). EXPM(X) is the
matrix exponential of X. EXPM is computed using a scaling and squaring algorithm
with a Pade approximation, while EXP(X) is the exponential of the elements of X.
For example EXP(0) gives a matrix whose entries are all ones, while the EXPM(X)
is the unit matrix whose diagonal elements are ones and all non-diagonal elements
are zeros. It is very critical to realize that EXPM(X) should be used to calculate the
matrix exponential of X, rather than EXP(X).

Without loss of generality, we set T =randn(m,n) where randn(m,n) gives a
random matrix of m x n whose entries are normally distributed pseudorandom
numbers, since we only need to require T*T > 0. For two Hermitian matrices
A, B, the MATLAB expression

expm(T*A*T’ - T*B*T’)*expm( T*B*T’) - expm(T*A*T")
gives zeros, while
expm(A - B)*expm( B) - expm(A)
gives non-zeros. In Latex, we have that

eTAT —TBT eTBT _ eTAT =0.

Since e TAT —-TBT" ;TBT" _ ,TAT" This demonstrates the fundamental role of

the commutative property of TAT* and TBT*:
TAT*TBT* = TBT*TAT".

On the other hand, since A, B are not commutative matrices:

AB + BA,
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the expression eA~BeB £ ¢A Note that the inverse matrix exponential is defined as

(eA)_l =e A,

Also the zero matrix 0 has e® = L. O

The product rule of matrix expectation
EXY)=EX)E(Y)

play a basic rule in random matrices analysis. Often, we can only observe the
product of two matrix-valued random variables X, Y. We can thus readily calculate
the expectation of the product X and Y. Assume we want to “deconvolve” the
role of X to obtain the expectation of Y. This can be done using

E(XY)(E(X)) =E(Y),

assuming (E (X)) exists.!

Example 10.8.4 (The product rule of matrix expectation: E (XY) = E(X)E (Y)).
In particular, we consider the matrix exponentials

X — (TAT*-TBT" Y — ¢TBT"

)

where T', A, B are assumed the same as Example 10.8.3. Then, we have that

E (eTAT* —TBT*) E (eTBT*) —F (XY) —F ( TAT*-TBT" eTBT*)
=E

e
(eTAT* —TBT*+TBT* )
- (6TAT*>

The first line uses the product rule of matrix expectation. The second line follows
from (10.19). In MATLAB simulation, the expectation will be implemented using
N independent Monto Carlo simulations and replaced with the average of the N
random matrices

IThis is not guaranteed. The probability that the random matrix X is singular is studied in the
literature [241,242].



500 10 Detection in High Dimensions

Our hypothesis testing problem of (10.23) can be reformulated in terms of
Ho : (ZTAT*
Hy o TAT HTBT (10.26)

where TT* > 0, and A, B are two Hermitian random matrices. Usually, here A is
a Gaussian random matrix representing the noise. Using Monto Carlo simulations,
one often has the knowledge of E (¢TAT") and E (eTAT +TBT")  Using the
arguments similar to Example 10.8.4, we have that

E (eTAT*+TBT*) E (e—TAT*) - (eTAT*+TBT*e—TAT*)

- (eTAT*+TBT*7TAT*)
) (eTBT*)

If B = 0, then ¢™®T" = T and thus E (¢TBT") = I, since ¢® = L If B is very
weak but B # 0, we often encounter B as a random matrix. Note that

log EeTBT =0

if B = 0, where log represents the matrix logarithm (MATLAB function LOGM(A)
for matrix A). One metric to describe the difference away from zero (hypothesis H)
is to use the matrix norm

HE (eTAT*—i-TBT*) E (e—TAT*>

= Ao (IE (eTAT*+TBT*) E (e—TAT*)) .
op
Another metric is use the trace
Tr (IE (eTAT*JrTBT*) E (efTAT*)> .

Dyson’s expansion [23, p.311]

Claim H; if
Tr (]E (6TAT*+TBT*> E <e—TAT*)) > 7.

~ is set using the typical value of Ho.

1
6A+B . €A _ / 6(1_t)AB€t(A+B)dt
0

A+B

can be used to study the difference e — e®. Our goal is to understand the

perturbation of very weak B.
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10.9 Sphericity Test with Sparse Alternative

Let xy,...,xn be IV i.i.d. realizations of a random variable x in R™. Our goal is to
test the sphericity hypothesis, i.e., that the distribution of x is invariant by rotation in
R™. For a Gaussian distribution, this is equivalent to testing if the covariance matrix
of x is of the form ¢%I,, for some known o2 > 0.

Without loss of generality, we assume o2 = 1 so that the covariance matrix is
the identity matrix in R™. under the null hypothesis. Possible alternative hypotheses
include the idea that there exists a privileged direction, along which x has more
variance. In the spirit of sparse PCA [516,517], we focus on the case where the
privileged direction is sparse. The alternative hypothesis has the covariance matrix
that is a sparse, rank 1 perturbation of the identity matrix I,,. Formally, let v. € R"
be such that ||v|, = 1, [|[v||, < k, and > 0. Here, for any p > 1, we denote by
|||, the I, norm of a vector and by extension, we denote [|v||, by its /o norm, that
is its number of non-zero elements.

The hypotheses testing problem is written as

7—[02XNN(0,In)
Hi:x~N(0,L, +6vv’).

The model under H; is a generalization of the spiked covariance model since it
allows v to be k-sparse on the unit Euclidean sphere. In particular, the statement of
H is invariant under the k relevant variables.

Denote ¥ the covariance matrix of x. A most commonly used statistic is the
empirical (or sample) covariance matrix 3 defined by

1 N
2 = N;XZX?

It is an unbiased estimator for the covariance matrix of x, the maximum likelihood
estimator in the Gaussian case, when the mean is known to be 0. 3 is often the only
data provided to the statistician.

We say that a test discriminates between #, and 7{; with probability 1 — ¢ if the
type I and type II errors both have a probability smaller than J. Our objective is to

find a statistic (fl) and thresholds 79 < 7, depending on (n, N, k, §) such that
]PHU <<p (2) > To) <9
P, (¢ (£) <) <.

Taking 7 € [r9, 71] allows us to control the type I and type II errors of the test
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o(3)=1{s(5) =7}

where 1{} denotes the indicator function. As desired, this test has the property to
discriminate between the hypotheses with probability 1 — §.

10.10 Connection with Random Matrix Theory

The sample covariance matrix 3 has been studied extensively [5,388]. Convergence
of the empirical covariance matrix to the true covariance matrix in spectral norm
has received attention [518-520] under various elementwise sparsity and using
thresholding methods. Our assumption allows for relevant variables to produce
arbitrary small entries and thus we cannot use such results. A natural statistic would
be, for example, using the largest eigenvalue of the covariance matrix.

10.10.1 Spectral Methods

For any unit vector, we have

Amax (In) = 1 and Apax (I, + 0vv’) =1+ 6.

In high dimension setting, where n may grow with IV, the behavior of A\, .x (2)

is different. If n/N — a > 0, Geman [521] showed that, in accordance with the
Marcenko-Pastur distribution, we have

Muax (£) = (14 V)" > 1,

where the convergence holds almost surely [198,383]. Yin et al. [344] established
that E (x) = 0 and E (x*) < oo is a necessary and sufficient condition for this
almost sure convergence to hold. As 32 > 0, its number of positive eigenvalues is
equal to its rank (which is smaller than V), and we have

~ n R N Tr (3
e () e ()5 () > 10

As the sum of nN squared norms of independent standard Gaussian vectors,
Tr (f)) ~ X%N’ hence almost surely, for n/N — oo, we have A\pax (2) — 0
under the null hypothesis.
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These two results indicate that the largest eigenvalue will not be able to
discriminate between the two hypotheses unless 8 > Cn/N for some positive
constant C'. In a “large n/small N scenario, this corresponds to a very strong signal
indeed.

10.10.2 Low Rank Perturbation of Wishart Matrices

When adding a finite rank perturbation to a Wishart matrix, a phase transition [522]
arises already in the moderate dimensional regime where n/N — « € (0,1).
A very general class of random matrices exhibit similar behavior, under finite rank
perturbation, as shown by Tao [523]. These results are extended to more general
distributions in [524]. The analysis of [514] indicates that detection using the
largest eigenvalue is impossible already for moderate dimensions, without further
assumptions. Nevertheless, resorting to the sparsity assumption allows us to bypass
this intrinsic limitation of using the largest eigenvalue as a test statistic.

10.10.3 Sparse Eigenvalues

To exploit the sparsity assumption, we use the fact that only a small submatrix of the
empirical covariance matrix will be affected by the perturbation. Let A be an x n
matrix and fix £ < n. We define the k-sparse largest eigenvalue by

k
)‘max

A) = ko (Ag).
(A) = max A (As)

For a set S, we denote by |S| the cardinality of S. We have the same equalities as
for regular eigenvalues

k
)‘max

(I,) = 1and \*

max

(In + 9VVT) =1+6.

The k-sparse largest eigenvalue behaves differently under the two hypotheses as
soon as there is a k x k matrix with a significantly higher largest eigenvalue.

10.11 Sparse Principal Component Detection

The test statistic ¢ (fl) =\

max

(2) can be equivalently defined as

A (A) = xT Ax (10.27)

max
lIxll,=1,lIx[lo <k

for any A > 0.
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10.11.1 Concentration Inequalities for the k-Sparse
Largest Eigenvalue

Finding the optimal detection thresholds comes down to the concentration
inequalities of the test statistic \* (2) both under the null and the alternative

hypotheses. The concentration of measure phenomenon plays a fundamental role in
this framework.

Consider H; first. There is a unit vector with sparsity &, such that x ~
N (0,1, + 6vvT). By definition of 3, it follows that

N
PL (2) >vis = Jifz; (xiTV)z.

This problem involves only linear functionals. Since x ~ N (0,I, + 6vvT), we
have x!' v ~ N (0,1 +6).
Define the new random variable

1 & 1 2

which has a x?2 distribution. Using Laurent and Massart [134, Lemma 1] on
concentration of the X2 distribution—see Lemma 3.2.1 for this and its proof, we
get for any ¢ > 0, that

P (Y < —zm) <e .

Hence, taking ¢t = log (1/0), we have Y > —24/log (1/0) /N with probability
1 — 6. Therefore, under H1, we have with probability 1 — §

Nox () 2 140 -2(1+0) w. (10.28)

We now establish the following: Under #, with probability 1 — §

)\k

max

(2) <14 4\/klog (9en/lj\)7+ log (1/9) N 4k10g (9en/k) + log (1/6).

(10.29)

We adapt a technique from [72, Lemma 3]. Let A be a symmetric n X n matrix,

and let V, be an e-net of sphere S™ ! for some ¢ € [0, 1]. For e-net, please refer to
Sect. 1.10. Then,

A (A) = sup[(Ax,x)] < (1-22)" sup [(Ax,)].
xeSsn—1 xEN,
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Using a 1/4-net over the unit sphere of R¥, there exists a subset NV}, of the unit
sphere of R, with cardinality smaller than 9%, such that for any A € S$

Aoy (A) < 2 max xT Ax.

max
xEN.

Under Hg, we have

Moo (8) = 1+ g Do (8) =1

where the maximum in the right-hand side is taken over all subsets of {1,...,n}
that have cardinality k. See [514] for details.

10.11.2 Hypothesis Testing with \*

max
Using above results, we have
Py, <<p (2) > 7'0> <4
P, (4 (8) <) <
where

o :1+4\/klog(96n/k]:\)]+log(l/6) +4klog(96n/l;:\)[+log(1/5)

n=1+60-2(1+0) w.

When 7 > 79, we take T € [1g, 71] and define the following test

¢(2) =l{ap(2> >T}.
It follows from the previous subsection that it discriminates between Ho and H;
with probability 1 — 4.
It remains to find for which values of 6, the condition 7y > 7y. It corresponds to
our minimum detection threshold.

Theorem }0.11.1 (Berthet and Rigollet [514]). Assume that k,n, N and § are
such that 0 < 1, where

- klog (9en/k) +log(1/5)  klog(9en/k) +log(1/0) /log (1/6)
0= 4\/ N +4 N +4 N

Then, for any 6 > 0 and for any T € |19, T1], the test 1 (f]) =1 {<p (f]) > 7'}
discriminates between Hg and H1 with probability 1 — 6.



506 10 Detection in High Dimensions

Considering the asymptotic regimes, for large n, N, k, taking § = n=? with 8 > 0,
gives a sequence of tests 1y that discriminate between o and #; with probability
converging to 1, for any fixed # > 0, as soon as

klog (n)

0.
N—>

Theorem 10.11.1 gives the upper bound. The lower bound for the probability of
error is also found in [514]. We observe a gap between the upper and lower bound,
with a term in log(n/k) in the upper bound, and one log(n/k?) in the lower bound.
However, by considering some regimes for n, N and k, it disappears. Indeed, as
soon as n > k%€, for some ¢ > 0, upper bound and lower bounds match up to
constants, and the detection rate for the sparse eigenvalue is optimal in a minimax
sense. Under this assumption, detection becomes impossible if

klog (n/k)
0<C N ,

for a small enough constant C' > 0.

10.12 Semidefinite Methods for Sparse Principal
Component Testing

10.12.1 Semidefinite Relaxation for \*

max

Computing \* __is a NP-hard problem. We need a relaxation to solve this problem.

Semidefinite programming (SDP) is the matrix equivalent of linear programing.
Define the Euclidean scalar product in ST by (A, B) = Tr (AB). A semidefinite
program can be written in the canonical form:

SDP = maximize Tr (CX)
subject to Tr (A;X) < b;, i€{l,...,m}
X >0 (10.30)

A major breakthrough for sparse PCA was achieved in [516], who introduced a
SDP relaxation for \* but tightness of this relaxation is, to this day, unknown.

max?

Making the change of variables X = xx7, in (10.27) yields

k
)‘max

(A) = maximize Tr (AX)
subject to Tr (X) =1, | X[, < 42
X >0,
rank (X) = 1.
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This problem contains two sources of non-convexity: the [y norm constraint and
the rank constraint. We make two relaxations in order to have a convex feasible
set. First, for a semidefinite matrix X, with trace 1, and sparsity k2, the Cauchy-
Schwartz inequality yields ||X||; < k&, which is substituted to the cardinality
constraint in this relaxation. Simply dropping the rank constraint leads to the
following relaxation of our original problem:

SDP;(A) =maximize Tr (AX)
subject to Tr (X) =1, |IX||; <k
X > 0. (10.31)

This optimization problem is convex since it consists in minimizing a linear
objective over a convex set. It is a standard exercise to prove that it can be expressed
in the canonical form (10.30). As such, standard convex optimization algorithms
can be used to solve this problem efficiently. A relaxation of the original problem,
for any A > 0, it holds

)\k

max

(A) < SDP, (A). (10.32)

k

max

Since we have proved in Sect. 10.11.1 that A (5)) takes large values under #1,

this inequality says that using SDP; (A) as a test statistic will be to our advantage
under Hi. Of course, we have to prove this stays small under Hy. This can be
obtained using the dual formulation of the SDP.

Lemma 10.12.1 (Bach et al. [525]). For a given A > 0, we have by duality

SDP; (A) = Jnin {QDmax (A +U)} + KU . (10.33)

Together with (10.32), Lemma 10.12.1 implies that for any z > 0 and any matrix U
such that | U|| < z, it holds

Amax” (A) < SDP; (A) < Amax (A + U) + kz. (10.34)

A direct consequence of (10.34) is that the functional \* _(A) is robust to

perturbations by matrices that have small || - ||oo-norm. Formally, let A > 0 be

such that its largest eigenvector has [y norm bounded by k. Then, for any matrix
W, (10.34) gives

k
/\max

(A+W) < Anax (A + W) = W) +k[W||__ = AL

max
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10.12.2 High Probability Bounds for Convex Relaxation

The SDP; (ﬁ]) and other computationally efficient variants can be used as test

statistics for our detection problem. Recall that SDPy, 2) > Mk E). In view

of (10.32), the following follows directly from (10.28): Under H;, we have, with
high probability 1 — 6,

SDP}, (2) >14+0-2(1+0) W

Similarly, we can obtain (see [514]): Under Hg, we have, with high probability 1—9,

- [12 2 klog (4n*/5
SDP, (2) <142 k log](\jln /(5)_|_2 og (Nn / )+2 log(]%[n/é)+210g(]%]n/5)_

10.12.3 Hpypothesis Testing with Convex Methods
The results of the previous subsection can be written as

Py, (SDPy (£) > 70) <6

Py, (SDPk. (2) < Al) <6,

where 7( and 7, are given by

k2 log (4n?/6) N 2klog (4n?/6) Lo log (2n/6) N 2log (2n/9)

T0:1+2 N N N N

H=1+0-2(1+0) w.

Whenever 71 > 7y, we take the threshold 7 and define the following computation-

ally efficient test
b (2) =1{spPc (B) > r}.

It discriminates between Ho and H; with probability 1 — §. It remains to find for
which values of # the condition 71 > 7y holds. It corresponds to our minimum
detection level.
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Theorem }0.12.2 (Berthet and Rigollet [514]). Assume that n, N,k and § are
such that 0 < 1, where

_, /k210g](\;1n2/5)+2k10g (]i;[nZ/a) +2\/10g(}2\7n/5)+4\/10g](\}/5).

Then, for any 0 > 0, any T € [7o,71), the test 1) (ﬁ]) =1 {SDPk (f]) > 7'}
discriminates between Hy and H1 with probability 1 — 6.

Y]

By considering asymptotic regimes, for large n, N, k, taking § = n~? with g >
0, gives a sequence of tests z/; N 2) that discriminates between Hg and H; with

probability converging to 1, for any fixed # > 0, as soon as

k?log (n)

N — 0.

Compared with Theorem 10.11.1, this price to pay for using this convex relaxation
is to multiply the minimum detection level by a factor of v/k. In most examples, &
remains small so that this is not a very high price.

10.13 Sparse Vector Estimation

We follow [526]. The estimation of a sparse vector from noisy observations is a
fundamental problem in signal processing and statistics, and lies at the heart of the
growing field of compressive sensing. At its most basic level, we are interested in
accurately estimating a vector x € R™ that has at most r non-zeros from a set of
noisy linear measurements

y=Ax -tz (10.35)

where A € R™ " and z ~ N (0,0°I). We are often interested in the under-
determined setting where m may be much smaller than n. In general, one would
not expect to be able to accurately recover x when m < n since there are more
unknowns than observations. However it is by now well-known that by exploiting
sparsity, it is possible to accurately estimate x.

If we suppose that the entries of the matrix A are i.i.d. N'(0,1/n), then one can
show that for any x € By, := {x : ||x||, < k}, ¢, minimization techniques such as
the Lasso or the Dantzig selector produce a recovery X such that

1 ko?
= lx — %) < Co—logn (10.36)
n m

holds with high probability provided that m = Q (klog (n/k)) [527]. We consider
the worst case error over all x € By, i.e.,
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E* (A) = inf sup E [:& % (y) — x||§] . (10.37)

X x€By

The following theorem gives a fundamental limit on the minimax risk which holds
for any matrix A and any possible recovery algorithm.

Theorem 10.13.1 (Candés and Davenport [526]). Suppose that we observe y =
Ax + z where x is a k-sparse vector, A is an m X n matrix with m > k, and
z~N (0, 021). Then there exists a constant C1 > 0 such that for all A,

N ko?
E*(A) > C1——log (n/k). (10.38)
A%
We also have that for all A

2
E*(A) > Ly (10.39)

2

Az

This theorem says that there is no A and no recovery algorithm that does
fundamentally better than the Dantzig selector (10.36) up to a constant (say, 1/128);
that is, ignoring the difference in the factors logn/kand logn. In this sense, the
results of compressive sensing are, indeed, at the limit.

Corollary 10.13.2 (Candes and Davenport [526]). Suppose that we observe y =
A (x + w) where x is a k-sparse vector, A is an m x n matrix with k < m <mn,
and w ~ N (0,0°1). Then for all A

ko?

2
E*(A) > Cl% log (n/k) and E* (A) > (10.40)
The intuition behind this result is that when noise is added to the measurements, we
can boost the SNR by rescaling A to have higher norm. When we instead add noise
to the signal, the noise is also scaled by A, and so no matter how A is designed
there will always be a penalty of 1/m.

The relevant work is [528] and [135]. We only sketch the proof ingredients. The
proof of the lower bound (10.38) follows a similar course as in [135]. We will
suppose that x is distributed uniformly on a finite set of points X C By, where
X is constructed so that the elements of X are well separated. This allows us to
show a lemma which follows from Fano’s inequality combined with the convexity
of the Kullback-Leibler (KL) divergence. The problem of constructing the packing
set X' exploits the matrix Bernstein inequality of Ahlswede and Winter.
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10.14 Detection of High-Dimensional Vectors

We follow [529]. See also [530] for a relevant work. Detection of correlations
is considered in [531, 532]. We emphasize the approach of the Kullback-Leibler
divergence used in the proof of Theorem 10.14.2. Consider the hypothesis testing
problem
Ho:y=12
Hiy=x+z (10.41)
where x,y,z € R™ and x is the unknown signal and z is additive noise. Here only
one noisy observation is available per coordinate. The vector x is assumed to be
sparse. Denote the scalar inner product of two column vectors a, bby (a, b) = a”b.
Now we have that
Hozyi:<y,ai>:(z,ai>:zi, Z=1,7N
Hl Y = <X,a7;>—|—21', = 1,...,N (1042)
where the measurement vectors a;’s have Euclidean norm bounded by 1 and the
noise z;’s are i.i.d. standard Gaussian, i.e., N (0,1). A test procedure based on
N measurements of the form (10.42) is a binary function of the data, i.e., T =

T (a1,y1,.-.,an,yn), withT = ¢ € {0, 1} indicating that T favors T. The worst-
case risk of a test T is defined as

v(T):=Py(T=1) +Hl€3>>{<]P)x (T=0),
where P denotes the distribution of the data when x is the true underlying vector
and the subset X € R™\ {0}. With a prior 7 on the set of alternatives X, the
corresponding average Bayes risk is expressed as

e (T) =Py (T = 1) + E,Py (T =0),

where [E,. denotes the expectation under 7. For any prior 7 and any test procedure
T, we have

Y(T) = 7= (T). (10.43)

T .
For a vector a = (a1,...,a,) , we use the notation

m 1/2 m
|a||=<Za?> =S

i=1 i=1
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to represent the Euclidea norm and ¢;-norm. For a matrix A, the operator norm is
defined as

| Ax|
<]

The 1 denotes the vector with all coordinates equal to 1.
Vectors with non-negative entries may be relevant to imaging processing.

[Al,, = sup
x#0

Proposition 10.14.1 (Arias-Castro [529]). Consider x = 1/+/n. Suppose we take
N measurements of the form (10.42) for all i. Consider the test that rejects Ho when

N
Zyi > 71V N,
=1

where T is some critical value. Its risk against x is equal to

1—(I)(T)+CI)(T—\/]T/TL‘X|),

where ® is the standard normal distribution function. Hence, if T = T,, — 00, this
test has vanishing risk against alternatives satisfying \/N/n |x| — 1, — oo.

We have used the result
1 N
— Sy~ N (x/N/n x|, 1) .
VN i=1

Let us present the main theorem of this section.

Theorem 10.14.2 (Theorem 1 of Arias-Castro [529]). Let X (u, k) denote the set
of vectors in R™ having exactly k non-zero entries all equal to i > 0. Based on N
measurements of the form (10.42), possibly adaptive, any test for Ho : x = 0 versus

Hi:x € X (u, k) has risk at least 1 — \/N/ (8n)kp.

In particular, the risk against alternatives H; : x € X (p, k) with /N/n|x| =
v/N/nku — 0, goes to 1 uniformly over all procedures.

Proof. Since the approach is important, we follow [529] for a proof. We use the
standard approach to deriving uniform lower bounds on the risk, by putting a prior
on the set of alternatives and use (10.43). Here we simply choose the uniform prior
on X (p, k), which is denoted by m. The hypothesis testing is now Hy : x = 0
versus H; : x ~ 7. By the Neyman-Pearson fundamental lemma, the likelihood
ratio test is optimal. The likelihood ratio is defined as

P (a a ) 3 2
.- Pr(anys,. AN, Yy :Eﬂexp<2yi(af><)—(a?x) /2>7

_Po(alvyla"'aaNayN) i=1

where E is the conditional expectation with respect to m, and the test is T' =
{L > 1}. It has the risk
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1
Vr (T) =1 = 5lIPx = Pollpy, (10.44)

where P, = E.Py—the m-mixture of Py— and ||| is the total variation
distance [533, Theorem 2.2]. By Pinsker’s inequality [533, Lemma 2.5]

|IPr —Pollpy < VK (Pr,Po) /2, (10.45)

where K (P, Py) is the Kullback-Leibler divergence [533, Definition 2.5]. We have

K (]P)ﬂ-,]Po) = 7E0 IOgL

<Ex o [y (alx)  (al)*/2
~ B 3B [(afx)’/2

N
= Z EO [a;‘FCaZ]
i=1

< NCll,p

where C = {¢;;} = E, (XXT). The first line is by definition; the second line
follows from the definition of P, /Py, the use of Jensen’s inequality justified by the
convexity of + — —logx, and by Fubini’s theorem; the third line follows from
independence of a;, y; and x (under Py) and the fact that E [y;] = 0; The fourth
is by independence of a;, and x (under Py) and by Fubini’s theorem; the fifth line
follows since ||a;|| < 1 for all 4.

Recall that under 7 the support of x is chosen uniformly at random among the
subsets of size k. Then we have

k
ci = 1Py (23 # 0) = p° - w Vi,
and
k k-1 o
Cij=M2P7r($i750,$j7'50)2/12-5-nil, i # j.

This simple matrix has operator norm [|C|,, = p#*k?/n.
Now going back to the Kullback-Leibler divergence, we thus have

K (Pr,Py) < N - pi2k? /n,
and returning (10.44) via (10.45), we bound the risk of the likelihood ratio test

¥y(T) 21— K (Pr,Py) /8 21— +/N/(8n)kpu.
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From Proposition 10.14.1 and Theorem 10.14.2, we conclude that the following
is true in a minmax sense: Reliable detection of a nonnegative vector x € R™ from
N noisy linear measurements is possible if \/N/n |x| — oo and impossible if

V/N/n|x| — 0.
Theorem 10.14.3 (Theorem 2 of Arias-Castro [529]). Let X (+pu, k) denote the
set of vectors in R™ having exactly k non-zero entries all equal to +pu, with . > 0.

Based on N measurements of the form (10.42), possibly adaptive, any test for Hg :
x = 0 versus Hy : x € X (£, k) has risk at least 1 — \/Nk/ (8n)p.

In particular, the risk against alternatives 7, : x € X (1, k) with N/n|x|* =
(N/n) ku? — 0, goes to 1 uniformly over all procedures.

We choose the uniform prior on X (£, k). The proof is then completely parallel
to that of Theorem 10.14.2, now with C = 2 (k/n) I since the signs of the nonzero
entries of x are i.i.d. Rademacher. Thus ||C||,, = u* (k/n).

10.15 High-Dimensional Matched Subspace Detection

The motivation of this section is to illustrate how concentration of measure plays
a central role in the detection problem, freely taking material from [534]. See also
the PhD dissertation [535]. The classical formulation of this problem is a binary
hypothesis test of the following form

Ho:y=2
’]—[1 ;y:x+z (1046)

where x € R" denotes a signal and z € R” is a noise of known distribution.
We are given a subspace S € R"™, and our task is to decide whether x € S or
x ¢ S, based on measurements y. Tests are usually based on some measure of
the energy of y in the subspace .S, and these “matched subspace detectors” enjoy
optimal properties [536,537]. See also for spectrum sensing in cognitive radio [156,
157,159,384,385,538].

Motivated by high-dimensional applications where it is prohibitive or impossible
to measure x completely, we assume that only a small subset 2 C {1,...,n} of the
elements of x are observed with and without noise. Based on these observations,
we test whether x € S or x ¢ S. Given a subspace S of dimension k¥ < n, how
many elements of x must be observed so that we can reliably decide whether it
belongs to S. The answer is that, under mild incoherence conditions, the number is
O (klog k), such that reliable matched subspace detectors can be constructed from
very few measurements, making them scalable and applicable to large-scale testing
problems.

The main focus of this section is an estimator of the energy of x in .S based on
only observing the elements x; € Q. Let xq be the vector of dimension || x 1
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composed of the elements z;,7 € 2. We form the n x 1 vector x with elements z;
if x; € Qand zeroif i ¢ Q, for¢ = 1, ..., n. Filling missing elements with zero is
a fairly common, albeit naive, approach to dealing with missing data.

Let U be an n x r matrix whose columns span the k-dimensional subspace S.

For any U, define Pg = U(UTU)_lUT. The energy of x in the subspace S is

I|P stg, where P is the projection operator onto .S. Consider the case of partial
measurement. Let U, denote the |(2| x r matrix, whose rows are the |2| rows of U
indexed by the set €2. Define the projection operator

P, = Uq(USUq) ' UE,
where the dagger 1 denotes the pseudoinverse. We have that if x € .S, then
Ix — Pstg = 0 and ||xq — PSQXng = 0, whereas [|X — PSng can signifi-
cantly greater than zero. This property makes || P s)’i||§ a much better candidate esti-
mator than |Pg,xq Hg However, if |Q2] < r, it is possible that ||xq — PSQXQ”g =
0, even if ||[x — Pgx||> > 0. Our main result will show that if || is slightly
greater than r, then with high probability ||xq — PSQXQH; is very close to
1% — Pox|3.
Let |€2| denote the cardinality of 2. The coherence of the subspace S is

n
i (S) = 7 max [Pse;];.

That is, ¢ (S) measures the maximum magnitude attainable by projecting a standard
basis element onto .S. We have 1 < () < . For a vector v, we let z1(v) denote
the coherence of the subspace spanned by v. By plugging in the definition, we have

To state the main result, write
X=y+WwW

where y € S,w € S*+. Again let Q refer to the set of indices for observations of
entries in x, and denote || = m. We split the quantity of interest into three terms
and bound each with high probability. Consider

%o — Psyxalls = [[wo — Ps,wall3 -

Let the k£ columns of U be an orthonormal basis for the subspace S. We want to
show that

1
[wa—Ps,wall; = [[wall; ~WhPs, Wa = [was —wiUo (UL U,) ™ Udwe

(10.47)

is nearly 2 || w/||2 with high probability.

n
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Theorem 10.15.1 (Theorem 1 of Balzano, Recht, and Nowak [534]). Letd > 0
and m > Skpu (S)log (%k) Then with probability at least 1 — 49,

2
(1= a)m — ku(8) &2 m
O — Pax[3 < [lxe — Pogxalls < (1+a) ™ [lx — Pax|

n

where a = \/ 24092 164 (1/5), 8 = /2 (w) log (1/8), and v = /3452 106 (2k/5).

We need the following three equations [534] to bound three parts in (10.47). First,
m 2 2 m 2
(1= ) 2w} < Iwal3 < (1+a) 2wl (1048)

with probability at least 1 — 2. Second,

2 m k(S
[UGwall, < (1 +6>25M Iwlls (10.49)
with probability at least 1 — §. Third,
T —1H < n 1
|(hua) | < T (10.50)

with probability at least 1 — ¢, provided that v < 1. The proof tools for the
three equations are McDiarmid’s Inequality [539] and Noncommutative Bernstein
Inequality (see elsewhere of this book).

10.16 Subspace Detection of High-Dimensional Vectors
Using Compressive Sensing

We follow [540]. See also Example 5.7.6. We study the problem of detecting
whether a high-dimensional vector x € R" lies in a known low-dimensional sub-
space S, given few compressive measurements of the vector. In high-dimensional
settings, it is desirable to acquire only a small set of compressive measurements of
the vector instead of measuring every coordinate. The objective is not to reconstruct
the vector, but to detect whether the vector sensed using compressive measurements
lies in a low-dimensional subspace or not.

One class of problems [541-543] is to consider a simple hypothesis test of
whether the vector x is O (i.e. observed vector is purely noise) or a known signal
vector s:

Ho:x=0 vs. Hi:x=s. (10.51)
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Another class of problems [532, 534, 540] is to consider the subspace detection
setting, where the subspace is known but the exact signal vector is unknown. This
set up leads to the composite hypothesis test:

Ho:x€S vs. Hi:x¢S8. (10.52)

Equivalently, let x; denote the component of x that does not lie in S. Now we have
the composite hypothesis test

Ho: ||xill, =0 vs. Hy:lxy|y,>0. (10.53)
The observation vector is modeled as
y=A(x+w) (10.54)

where x € R"™ is an unknown vector in S, A € R™*" is a random matrix with
i.i.d. A(0,1) entries, and w ~ N (0, 521,,5,,) denotes noise with known variance
o? that is independent of A. The noise model (10.54) is different from a more
commonly studied case

y = Ax +z (10.55)

where z ~ N (0,021, ). For fixed A, we have y ~ N (Ax,02AA”) and
y ~N (Ax, O'QIme). Compressive linear measurements may be formed later
on to optimize storage or data collection.

Define the projection operator Py = UU7. Thenx, = (I — Py) x, where x|
is the component of x that does not lie in S, and x € § if and only if ||xL||§ = 0.

B 2
Similar to [534], we define the test statistic T = H(I —Pgyu) (AAT) 1/2yH
2

based on the observed vector y and study its properties, where B = (AAT) TH2A.
Here Py is the projection operator onto the column space of BU, specifically

Ppy = BU {((BU)TBU)_l(BU)T}

if (BU)"BU exists.

Now are ready to present the main result. For the sake of notational simplicity,
we directly work with the matrix B and its marginal distribution. Writing y =
B (x+w),wehave T = ||(I — Pguy) y||§ Since A isi.i.d. normal, the distribution
of the row span of A (and hence B) will be uniform over m-dimensional subspaces
of R™ [544]. Furthermore, due to the (AAT)_I/ % term, the rows of B will be
orthogonal (almost surely). First, we show that, in the absence of noise, the test
statistic 7 = || (I — Pgy) Bx||} is close to m ||x . ||3 /n with high probability.
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Theorem 10.16.1 (Azizyan and Singh [540]). Let 0 <r <m < n, 0 < oy <
1 and By, B1,B2 > 1. With probability at least 1— exp [(1—ag+ log ag) m/2]
—exp [(1—Bo+log By) m/2]—exp [(1—pB1+1og B1) m/2]—exp [(1— B2+ log B2) /2]

m T m
(a0™ — BB ) IxLl3 < (1= Pou) Bxl; < B [xo 3 (10:56)

The proof of Theorem 10.16.1 follows from random projections and concentration
of measure. Theorem 10.16.1 implies the following corollary.

Corollary 10.16.2 (Azizyan and Singh [540]). If m > cirlogm, then with
probability at least 1 — ¢ exp (—csm),

m m
di[xu ]y < (1= Pou) B[ < da x5

for some universal constants ¢; > 0,¢cq > 0,c3 € (0,1),dy € (0,1),d2 > 1.

Corollary 10.16.5 states that given just over r noiseless compressive measurements,
we can estimate ||x | ||§ accurately with high probability. In the presence of noise, it
is natural to consider the hypothesis test:

Ho
<

T=|(I-Psu)yls 0 (10.57)
Ha

The following result bounds the false alarm level and missed detection rate of this
. . 2
test (for appropriately chosen 1) assuming a lower bound on ||x  ||5 under #;.

Theorem 10.16.3 (Azizyan and Singh [540]). If the assumptions of Corol-
lary 10.16.5 are satisfied, and if for any x € Hy

4 2
N e L
dy

then
P(T = n|Ho) < exp [~cq (m —1)]
and
P (T < n|H1) < caexp[—cgm] + exp [—c5 (m —1)],

wheren = eo? (m — 1), cqs = (e —2) /2,¢5 = (e + log (2e + 1)) /2, and all other
constants are as in Corollary 10.16.5.

It is important to determine whether the performance of the test statistic we proposed
can be improved further. The following theorem provides an information-theoretic
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lower bound on the probability of error of any test. A corollary of this theorem
implies that the proposed test statistic is optimal, that is, every test with probability
of missed detection and false alarm decreasing exponentially in the number of
compressive samples m requires that the energy off the subspace scale as n.

Theorem 10.16.4 (Azizyan and Singh [540]). Ler Py be the joint distribution of
B and y under the null hypothesis. Let Py be the joint distribution of B and y
under the alternative hypothesis where y = B (x + w), for some fixed x such that
x =x and ||x||, = M > 0. If conditions of Corollary 10.16.5 are satisfied, then

1 M?>m
lﬁfﬂﬁ‘ﬁpl (97492 g P [ 202 n]

where the infimum is over all hypothesis tests ¢.

Proof. Since the approach is interesting, we follow [540] to give a proof here. Let
K be the Kullback-Leibler divergence. Then

1
inf max P (¢ # 1) > ge” (0"

oo

(see [533]). Let ¢ be the density of B and p (y; p, ) that of N (u, X). Under P,
y ~ N (0,021,,xm) since rows of B are orthonormal. So,

P(¥30,0 Ly xcm )q(B)
p(¥;Bx,02Ln xm)q(B)

2
= 5,2E5 || Bx];

K (Py, P1) = EgEy log

o v

IxI15 m
_ m. 0

202 n

Corollary 10.16.5 (Azizyan and Singh [540]). If there exists a hypothesis test ¢
based on B and y such that for all n and o2,

irgg)iP (¢ # i|Hi) < Coexp [-C1 (m —7)]

for some Cy, Cy > 0, then there exists some C' > 0 such that
HXLHS >Co*(1—r/m)n

for any x € H; and all n and o>.

Note that r < —=—, from Corollary 10.16.5.

c1 logm?’
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10.17 Detection for Data Matrices

The problem of detection and localization of a small block of weak activation in a
large matrix is considered by Balakrishnan, Kolar, Rinaldo and Singh [545]. Using
information theoretic tools, they establish lower bounds on the minimum number of
compressive measurements and the weakest signal-to-noise ratio (SNR) needed to
detect the presence of an activated block of positive activation, as well as to localize
the activated block, using both non-adaptive and adaptive measurements.

Let A € R"'*"2 be a signal matrix with unknown entries that we would like to
recover. We consider the following observation model under which N noisy linear
measurements of A are available

Yy =Tr (AXZ‘)—FZZ‘, 1= 1,...,N (1058)
where z1,...,zy Y (0,0%), o > 0 known, and the sensing matrices X; satisfy
either ||X;| < 10rE||XZ-||?, = 1. We are interested in two measurement

schemes?: (1) adaptive or sequential, that is, the measurement matrices X; is a
(possibly randomized) function of (y;, X]-)j eli—1p (2) the measurement matrices
are chosen at once, that is, passively.

10.18 Two-Sample Test in High Dimensions

We follow [237] here. The use of concentration of measure for the standard
quadratic form of a random matrix is the primary reason for this whole section.
There are two independent sets of samples {x1,...,X,, } and {y1,...,yn,} € RP.
They are generated in an i.i.d. manner from p-dimensional multivariate Gaussian
distributions A (g1, %) and N (p4, 3) respectively, where the mean vectors f;
and p,, and positive-definitive covariance matrix 3 > 0, are all fixed and unknown.
The hypothesis testing problem of interest here is

Ho: g = gy versus Hy : pg # po. (10.59)

The most well known test statistic for this problem is the Hotelling 72 statistic,
defined by

r’=—"2(z-y'% (x-9), (10.60)

2We use [n] to denote the set ={1,...,n}.
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ni n2

- 1 - 1 & -

where X = - Z:l x;and § = - 2:1 y; are sample mean vectors, X is the pooled
i= i=

sample covariance matrix, given by

ni n2
$= 13 -0 DD (i 9) i -9
=1 =1
and we define n = n; + ny — 1 for convenience.

When p > n, the matrix s singular, and the Hotelling test is not well defined.
Even when p < n, the Hotelling test is known to perform poorly if p is nearly as
large as n. It is well-known that Sisa degraded estimate of X in high dimensions,
allowing for the data dimension p to exceed the sample size n.

The Hotelling T2 test measures the separation of Hy and H; in terms of the

Kullback-Leibler (KL) divergence [546, p. 216] defined by
1 _
Dicp (N (11, ) IV (1, %)) = 587716,

with § = p; — p,. The relevant statistic distance is driven by the length of 8. This
section is primarily motivated by the properties of random matrices. In particular,
we are interested in the so-called random projection method [547]. If a projection
matrix PY € RFEXP is used to project data from R to R¥. After the projection, the
classical Hotelling 72 test, defined by (10.60), is thus used from the projected data.
When this projection matrix is random—random projection method, this random
projection matrix reduce the dimension and simultaneously preserve most of the
length of 4.

- a1
We use the matrix P ¥P;, as a surrogate for ¥  in the high-dimensional
setting. To eliminate the variability of a single random projection, we use the average

. -1
of the matrix P, (P{EP;C) P7T over the ensemble Py, to any desired degree of

. -1
precision. The resulting statistic is proportional to Ep, [P & (PEEP;C) Pf] .

Let z;_, denote the 1 — « quartile of the standard normal distribution, and let
® (-) be its cumulative distribution function. Consider the Haar distribution on the
set of matrices

PIP, =Iixi, P, € RPXF

If P, is drawn from the Haar distribution, independently of the data, then our
random projection-based test statistic is defined by

~ ning _ _\T T -1 T /= —
72 = — ) Ep, |P (P $P ) P —3).
k n1 + 1y (X Y) Py [ E\Tk k k (X Y)

For a desired nominal level a € (0,1), our testing procedure rejects the null
hypothesis H if and only if 77 > t,, where
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2
la = In n+ %\/’E'Zl—av
1- Yn (1 — yn)

yn = k/n and z1_, is the 1 — a quartile of the standard Gaussian distribution. T,f
is asymptotically Gaussian.
To state a theorem, we make the condition (A1).

Al There is a constant y € (0,1) such thaty,, =y + o (ﬁ)

We also need to define two parameters fi,, = 1%“ n, and &, = (13?2" E Vn.
f(n) =0(g(n)) means f(n)/g(n) — 0asn — 0.

Theorem 10.18.1 (Lopes, Jacob and Wainwright [237]). Assume that the null
hypothesis Ho and the condition (A1) hold. Then, as (n,p) — oo, we have the
limit

T2 — fin
Tk T Hn 4 Ar(0,1), (10.61)
fin

d . Lo . ..
(Here — stands for convergence in distribution) and as a result, the critical value
to satisfies

P (T,? > ta> =a+o(1).

Proof. Following [237], we only give a sketch of the proof. Let 7 = % and

z ~ N (0,1, x,). Under the null hypothesis that § = 0, we have X —y = VTE 2,
and as a result,

R N -1
1?2 = 27 5 2Ep, {Pk(P£2Pk) P{} n1/2g, (10.62)

A

which gives us the standard quadratic form T,f = 7T Az. The use of concentration
of measure for the standard quadratic form is the primary reason for this whole
section. Please refer to Sect. 4.15, in particular, Theorem 4.15.8.

Here, A is a random matrix. We may take X — ¥ and 3 to be independent for
Gaussian data [208]. As a result, we may assume that z and A are independent. Our
overall plan is to work conditionally on A, and use the representation

TAz — i TAz — |
p(w@):m(w@m),

O—TL O-'IL

where z € R.
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Let op, (1) stand for a positive constant in probability under p, . To demonstrate

the asymptotic Gaussian distribution of zT Az, in Sect. B.4 of [237], it is shown that
‘ll":ll““p = op, (1) where || - || denotes the Frobenius norm. This implies that the
F

Lyupanov condition [58], which in turn implies the Lindeberg condition, and it then
follows [87] that

zTAz — Tr (A) . B (x
Pz( Al A) )

sup
z€R

= op, (1). (10.63)

The next step is to show that Tr (A) and ||A

| » can be replaced with deterministic

counterparts fi, = t#2-n, and &, = (13‘1;" K /1. More precisely
Tr(A) = fin = 05, (VA1) and [|Alp— 60 =o0p, (VA).  (10.64)

Inserting (10.64) into (10.63), it follows that

T Az — [
p(ﬂ @|A) B (2) = o,
On
and the central limit theorem (10.61) follows from the dominated convergence
theorem. O

To state another theorem, we need the following two conditions:

* (A2) There is a constant b € (0, 1) such that L = b+ o (ﬁ)

* (A3) (Local alternative) The shift vector and covariance matrix satisfy
T8 = 0(1).

Theorem 10.18.2 (Lopes, Jacob and Wainwright [237]). Assume that conditions
(A1), (A2), and (A3) hold. Then, as (n,p) — oo, the power function satisfies

P(T >ty) =@ (—zla +b(1—b)- ,/12% : Ak\/ﬁ> +o(1).  (10.65)

R -1
Ay, = 6"Ep, {Pk(P{EPk) P{} 5.

Proof. The heart of this proof is to use the conditional expectation and the

concentration of quadratic form. We work under the alternative hypothesis. Let

niTng

T = ;”:2 and z ~ N (0,I,,). Consider the limiting value of the power function

P %Tl? > ta). Since the shift vector is nonzero § # 0, We can break the test
statistic into three parts. Recall from (10.62) that
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po o a2 T T -1 T| (= =
Tk_n1+n2(x y) Ep, [Pk(szPk> Pk](x y),

where
-5 =222 49,

and z is a standard Gaussian p-vector. Expanding the definition of ’ff and adjusting
by a factor n, we have the decomposition

1 -
—TZ=I+I1+1II,
n

where
1 T
I=-2TAz (10.66)
n
1
II=2——7zTAR"1/2§ 10.67
nﬁz ( )
1
IIT = —§Ts"12A%"1/2%. (10.68)
ntT
Recall that

. -1
A=3"2Ep, [Pk(P{EPk) P{] /2,
We will work on the conditional expectation Ea with the condition A. Consider
1
P(T7 > toa) = EaP, (I > —t,— 11 —1I1 A) .
n

Working with Tr (£ A) and ||2A[| .. and multiplying the top and the bottom by
\/n, we have

T(A)z—Tr (L L4 Tr (LA) — 17—
P(T]§>to¢>:EAPZ <Z (nA)z Tr(nA)>\/ﬁ(nta Tr(nA> 11 III)| )

VoGl T ViV2|[ G A
(10.69)
Recall the definition of the critical value

2
to = In_ o+ %\/ﬁzl_a.
1- Yn (1 — yn)
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We also define the numerical sequence l,, = i (n o 1) Ag. In Sects. C.1 and C.2
of [237], they establish the limits

P, (\/H‘II|>€|A):OPA (1)7 and \/E(III_ln):O]P’A (1)

where € > (. Inserting the limits (10.64) into (10.69), we have

2yn
ZTA27FPI‘(A)>\/E( n(lfyyn)?’ ’ Zliailnill)

V2lAlly T [ 2iny

P (TZ¢>ta) =EAP:

+op, (1) |A
(10.70)
By the limit (10.63), we have

ZTAZ—TI‘<A)Z 3 n(l—yn)?’ o
z( \/»HAHF -« f (l +II)+ ]P’A( )A>

3
=0 —Z1— Oé+f 'ﬂ +OPA ’

where the error term op, (1) is bounded by 1. Integrating over A and applying the
dominated convergence theorem, we obtain

(1- yn)3
P(TPta) =@ | —2z1—a + V1 !

. . o k n o
Using the assumptions y, = ; = a+o (f) and 2 =b+o (T) we conclude

P(Tﬁma):@(—zlﬁb(l—b)-,/l;y-Am +o(1),
)

which is the same as (10.65). (]

10.19 Connection with Hypothesis Detection
of Noncommuntative Random Matrices

Consider the hypothesis detection of the problem

Ho: A =R,
H,:B=R, +R, (10.71)
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where R, is the true covariance matrix of the unknown signal and R, is the
true covariance matrix of the noise. The optimal average probability of correct
detection [5, p. 117] is

1 1
-+-|A-B
5+ 1A -Bl,
where the trace norm || X||; = Tr v XX is the sum of the absolute eigenvalues.
See also [548,549] for the original derivation.

In practice, we need to use the sample covariance matrix to replace the true
covariance matrix, so we have

H()IA:]?{”
H,:B=R, +R,

where R, is the true covariance matrix of the unknown signal and R, is the true
covariance matrix of the noise. Using the triangle inequality of the norm, we have

48], <[4 -], +]5-5],
1 1 1

Concentration inequalities will connect the non-asymptotic convergence of the
sample covariance matrix to its true value, via. See Chaps.9 and 5 for covariance
matrix estimation.

10.20 Further Notes

In [550], Sharpnack, Rinaldo, and Singh consider the basic but fundamental task of
deciding whether a given graph, over which a noisy signal is observed, contains a
cluster of anomalous or activated nodes comprising an induced connected subgraph.

Ramirez, Vita, Santamaria and Scharf [551] studies the existence of locally most
powerful invariant tests for the problem of testing the covariance structure of a set
of Gaussian random vectors. In practical scenarios the above test can provide better
performance than the typically used generalized likelihood ratio test (GLRT).

Onatski, Moreira and Hallin [552] consider the problem of testing the null
hypothesis of sphericity of a high-dimensional covariance matrix against an alterna-
tive of multiple symmetry-breaking directions (multispiked alternatives).



Chapter 11
Probability Constrained Optimization

In this chapter, we make the connection between concentration of measure and
probability constrained optimization. It is the use of concentration inequality
that makes the problem of probability constrained optimization mathematically
tractable. Concentration inequalities are the enabling techniques that make possible
probability constrained optimization.

11.1 The Problem

We follow Nemirovski [553] to set up the problem. We consider a probability
constraint

Prob{€: A(x,6)eK} >1—¢ (11.1)

where x is the decision vector, K is a closed convex cone, and A (x, £) is defined as

N
A(x,6) = Ao (x) +0 ) &A; (%), (11.2)
=1

where

* A, (+) are affine mapping from R" to finite-dimensional real vector space E;
e &, are scalar random perturbations satisfying the relations

1. &; are mutually independent;
2. E{&} =0;

E {exp (¢/4)} < vV2; (11.3)

R. Qiu and M. Wicks, Cognitive Networked Sensing and Big Data, 527
DOI 10.1007/978-1-4614-4544-9_11,
© Springer Science+Business Media New York 2014
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* ¢ > 0 is the level of perturbations.
¢ Kis aclosed convex cone in E.

For &;, we are primarily interested in the following cases:

e & ~ N (0,1) are Gaussian noise; the absolute constants in (11.3) comes exactly
from the desire to use the standard Gaussian perturbations;
o E{&}=0; [&] < 1s0¢; are bounded random noise.

For the vector space E and the closed pointed convex cone K, we are interested in
the cases: (1) if £ = R, (real), and K = R (positive real); (11.2) is the special case
for a scalar linear inequality. (2) If a real vector space is considered E = R™*!, and

K:{XER7”+1:xm+l>\/m};

here (11.2) is a randomly perturbed Conic Quadratic Inequality (CQI), where the
data are affine in the perturbations. (3) £ = S™ is the space of m X m symmetric
matrices, K = S’/ is the cone of positive semidefinite matrices from S™; here (11.2)
is a randomly perturbed Linear Matrix Inequality (LMI).

We are interested to describe x’s which satisfy (11.2) with a given high
probability, that is:

Prob {£:A(x,€) ¢ K} <e¢, (11.4)

for a given € < 1. Our ultimate goal is to optimize over the resulting set, under the
additive constraints on x. A fundamental problem is that (11.4) is computationally
intractable. The solution to the problem is connected with concentration of measure
through large deviations of sums of random matrices, following Nemirovski [554].

Typically, the only way to estimate the probability for a probability constraint to
be violated at a given point is to use Monte-Carlo simulations (so-called scenario
approach [555-558]) with sample sizes of é; this becomes too costly when ¢ is
small such as 1075 or less. A natural idea is to look for tractable approximations of
the probability constraint, i.e., for efficiently verifiable sufficient conditions for its
validity. The advantage of this approach is its generality, it imposes no restrictions
on the distribution of £ and on how the data enter the constraints.

An alternative to the scenario approximation is an approximation based on
“closed form” upper bounding of the probability for the randomly perturbed
constraints A (x,£) € K to be violated. The advantage of the “closed form”
approach as compared to the scenario one is that the resulting approximations
are deterministic convex problems with sizes independent of the required value
of €, so that the approximations also remain practical in the case of very small
values of . A new class of “closed form” approximations, referred to as Bernstein
approximations, is proposed in [559].

Example 11.1.1 (Covariance Matrix Estimation). For independent random vectors
xg, k = 1,..., K, the sample covariance—a Hermitian, positive semidefinite,
random matrix—defined as
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K
R = Zxkxg, X € R"
k=1

Note that the n elements of the k-th vector x; may be dependent random variables.
Now, assume that there are N + 1 observed sample covariances Rq (x),7 =
0,1,2,..., N such that

N
R(x,€) =Ro(x) +0) &R, (x), (11.5)
i=1
Our task is to consider a probability constraint (11.1)

Prob{ngt(x,g)>o} >1—¢ (11.6)

where x is the decision vector. Thus, the covariance matrix estimation is recast in
terms of an optimization. Later it will be shown that the optimization problem is
convex and may be solved efficiently using the general-purpose solver that is widely
available online. Once the covariance matrix is estimated, we can enter the second
stage of detection process for extremely weak signal. This line of research seems
novel. O

11.2 Sums of Random Symmetric Matrices

Let us follow Nemirovski [560] to explore the connection of sums of random
symmetric matrices with the probability constrained optimization. Let || A || denote
the standard spectral norm (the largest singular value) of an m x n matrix A. We ask
this question.

(Q1) Let X;,1 < i < N, be independent n X n random symmetric matrices with

N

zero mean and “light-tail” distributions, and let Sy = > X;. Under what
i=1

conditions is a “typical value” of ||Sy || “of order 17 such that the probability

for ||Sx || to be > t goes to 0 exponentially fast as ¢ > 1 grows?

Let B; be deterministic symmetric n X n matrices, and &; be independent random
scalars with zero mean and “of order of one” (e.g., & ~ N (0, 1)). We are interested
in the conditions for the “typical norm” of the random matrix

N
Sy =&Bi 4+ By =) 6B,
i=1
to be of order 1. An necessary condition is

E[S%] <o)
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which, translates to

A natural conjecture is that the latter condition is sufficient as well. This answer is
affirmative, as proven by So [122]. A relaxed version of this conjecture has been
proven by Nemirovski [560]: Specifically, under the above condition, the typical
norm of Sy is < O(1)m!/6 with the probability

Prob {||SN|| > tml/ﬁ} < O(1)exp (—O(1)12)

for all ¢ > 0.

We can ask the question.

(Q2) Let&;, ..., &N be independent mean zero random variables, each of which is
either (i) supported on [-1,1], or (ii) normally distributed with unit variance.
Further, let Xy, ..., Xy be arbitrary m x n matrices. Under what conditions
ont > 0 and Xq,...,Xy will we have an exponential decay of the tail
probability

Prob (

N
> oaXi| > t)?
i=1

Example 11.2.1 (Randomly perturbed linear matrix inequalities). Consider a ran-
domly perturbed Linear Matrix Inequalities

N
Ag(x) =) &A; (%) >0, (11.7)

i=1
where A (x),..., Ay (x) are affine functions of the decision vector x taking

values in the space S™ of symmetric n X n matrices, and &; are independent of
each other random perturbations. Without loss of generality, &; can be assumed to
have zero means.

A natural idea is to consider the probability constraint

N
Prob {5 = (&1r 0 EN) T AG (X) = D LA (x) = 0} z1l—¢  (11.8)
i=1

where ¢ > 0 is a small tolerance. The resulting probability constraint, however,
typically is “heavily computationally intractable.” The probability in the left hand
side cannot be computed efficiently, its reliability estimation by Monte-Carlo
simulations requires samples of order of 1/¢, which is prohibitively time-consuming
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when ¢ is small, like 107% or 1078, A natural way to overcome this difficulty
is to replace “intractable” (11.7) with its “tractable approximation”—an explicit
constraint on X.

An necessary condition for x to be feasible for (11.7) is Ag(x) > 0;
strengthening this necessary condition to be Ay (x) > 0, x is feasible for the
probability constraint if and only if the sum of random matrices

N
Sy = &A; (%) A (x) AY (x)
=1

Y;

is < I, with probability > 1 — e. Assuming, as it is typically the case, that
the distribution of &; are symmetric,' this condition is essentially the same as the
condition ||S x| < 1 with probability > 1 — e. If we know how to answer (Q), we
could use this answer to build a “tractable” sufficient condition for ||Sy|| to be < 1
with probability close to 1 and thus could build a tractable approximation of (11.8).

O

Example 11.2.2 (Nonconvex quadratic optimization under orthogonality constr-
aints). We take this example—the Procrustes problem—itrom [560]. In the Pro-
crustes problem, we are given K matrices A[k],k = 1,..., N, of the same size
m X n. Our goal is to look for N orthogonal matrices X [k] of n X n minimizing the
objective

ST JAKIX[K - AKX[E]|;

1<k<k'<N

where [|All, = /Tr (AAT) is the Frobenius norm of a matrix. This problem is
equivalent to the quadratic maximization problem

— . T 1ATr7). nxn Ty _
Pxm,n}ﬁ);qN]{2k§/Tr(A[k]X[k]X &' 1A [k ]).X[k]ER XK XT k=1, k=1, ..., N}.

When N > 2, this problem is intractable. For N = 2, there is a closed form solution.
Equation (11.29) allows for a straightforward semidefinite relaxation. Geometrically
speaking, we are given IV collections of points in R™ and are seeking for rotations
which make these collections as close to each other as possible, the closeness being
measured by the sum of squared distances.

'We say that, X and Y are identically distributed, or similar, or that Y is a copy of X, if
Px (A) = Py (A), where Px (A) = Px (X € A) is a probability measure. A random element
X in a measurable vector space is called symmetric, if X and —X are identically distributed. If X
is a symmetric random element, then its distribution is a symmetric measure.
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Let Y = Y [X][1],...,X[N]] be the symmetric matrix defined as follows: the
rows and the columns in Y are indexed by triples (k, i, j), where k runs from 1
to K and ¢,j run from 1 to n; the entry Yii; pirj in Y is a;[k]xy j/ [k]. Note
Y is a symmetric, positive semidefinite matrix of rank 1. In (11.29), the relation
X [k] X [k] = I, is equivalent to a certain system Sy, of linear equations on the
entries of Y, while the relation X [k]” X [k] = I,, is equivalent to a certain system
Ti. of linear equations on the entries of Y. Finally, the objective in (11.29) is a
linear function Tr (BY) of Y, where B be appropriate symmetric matrix of the
size Kn? x Kn?. Itis seen that (11.29) is equivalent to

Ymga;{x2 Tr(BY) : Y > 0, Ysatisfies Sk, T,k = 1,..., K,Rank (Y) = 1;

cskn
removing the trouble-making constraint Rank (Y) = 1, we have an explicit
semidefinite problem

SDP = max Tr(BY):Y >0, Ysatisfies Sy, T, k=1,..., K
YesKn?

which is a relaxation of (11.29), so that Opt (SDP) > Opt (P) . In fact, we have
Opt (SDP) < O(1) (n1/3 +In K) Opt (P)

and similarly for other problems of quadratic optimization under orthogonality
constraints. O

Theorem 11.2.3 (Nemirovski [560]). Let X1,..., Xy be independent symmetric
n X n matrices with zero mean such that

E [exp (||xi\\2/af)} <exp(l), i=1,...,N

where o; > 0 are deterministic scalars factors. Then

N
> 02 <O()exp (~O(1)¢*/Inn), V¥t >0, (11.10)

=1

Prob { ||Sx | >t

with positive absolute constraints O(1).

Theorem 11.2.4 (Nemirovski [560]). Let &1, ..., En be independent random vari-
ables with zero mean and zero third moment taking values in [—1,1], B;,i =

1,..., N, be deterministic symmetric m x m matrices, and © > 0 be a real number
such that

N

> B <o
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Then

t>7m :>Pr0b{

} %exp (—t2/32) ,

t>7m'% = Prob{

N
> 4B
i=1

e} < 22exp (—t%/32). (11.11)

See [560] for a proof. Equation (11.11) is extended by Nemirovski [560] to hold for
the case of independent, Gaussian, symmetric n X n random matrices X1, ..., Xy
with zero means and ¢ > 0 such that

N
ZE [X?] < 0°L,. (11.12)

Let us consider non-symmetric (and even non-square) random matrices Y;, 7 =

1,..., N. Let C; be deterministic m X n matrices such that
N N
Y ccf <o, Y cfci<er, (11.13)

i=1 i=1

and ¢; be independent random scalars with zero mean and of order of 1. Then

N
t >0 (1)\/In(m + n) = Prob {5 Y GG > t@} < O(1)exp (—O(1)t?) .

i=1
11.14)
Using the deterministic symmetric (m + n) x (m + n) B; defined as (

Cr
Bi:[ci Z}’

the following theorem follows from Theorem 11.2.4 and (11.12).

Theorem 11.2.5 (Nemirovski [560]). Let deterministic m x n matrices C; satis-
fying (11.13) with © = 1., and let &; be independent random scalars with zero first
and third moment and such that either |&;| < 1 forall i < N, or & ~ N(0,1) for
all it < N. Then

N
t>7(m+n)""* = Prob {Z&Ci > t@} < Sexp (—1%/32).

i=1

N
t>7(m+n)"% = Prob {Z&Ci > t@} < 22exp (—12/32).  (11.15)

i=1

We can make a simple additional statement: Let C;,&; be defined as Theorem
11.2.5, then
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N
4
t>4 min(m,n):Prob{ZgiCi>t@}g3exp(_t2/16). (11.16)

i=1

It is clearly desirable to equations such as (11.15) to hold for smaller values of ¢.
Moreover, it is nice to remove the assumption that the random variables &1, ..., &N
have zero third moment.

Conjecture (Nemirovski [560]) Let &, ..., &y be independent mean zero ran-
dom variables, each of which is either (i) supported on [-1,1], or (ii) normally
distributed with unit variance. Further, let Xy,..., Xy be arbitrary m X n
matrices satisfying (11.13) with © = 1. Then, whenever ¢t > O(1)+/In (m + n),

one has
Prob (

It is argued in [560] that the threshold ¢ = (\/ln (m+ n)) is in some sense

the best one could hope for. So [122] finds that the behavior of the random
N
variable Sy = > §;X; has been extensively studied in the functional analysis

N

Z&‘Xi

i=1

> t) < O(1) -exp (—O(1) - £2).

i=1
and probability theory literature. One of the tools is the so-called Khintchine-type
inequalities [121].
We say &5, ...,¢y are independent Bernoulli random variables when each &;
takes on the values =1 with equal probability.

Theorem 11.2.6 (So [122]). Let &1, ...,En be independent mean zero random
variables, each of which is either (i) supported on [-1,1], or (ii) Gaussian with
variance one. Further, let Xq,...,XyN be arbitrary m X n matrices satisfying
max(m,n) = 2 and (11.13) with © = 1. Then, for any t > 1/2, we have

Prob (

N
> aX,
=1

> \/26 (1+t) Inmax {m, n}) < (max {man})_t

if&q, ..., En areiid. Bernoulli or standard normal random variables; and

Prob (

N
> 6X;
=1

> v/8e (1 + t) Inmax {m,n}) < (max {m,n})”"

ifé&1, ..., &N are independent mean zero random variables supported on [-1,1].

Proof. We follow So [122] for a proof. Xy, ..., Xy are arbitrary m X n matrices
N N

satisfying (11.13) with © = 1, so all the eigenvalues of > X, X7 and Y XTX;
i=1 i=1

lie in [0, 1]. Then, we have
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N 1/2 N 1/2
(e T T
i=1 =1

Sp Sp

Let&, ..., &N beii.d. Bernoulli random variables or standard Gaussian random
variables. By Theorem 2.17.4 and discussions following it, it follows that

p p

E <E < pP’? - max {m, n}

N
> GX,
i=1

N
> aX,
i=1

[eS] SP
for any p > 2. Note that ||A|| denotes the spectrum norm of matrix A. Now, by
Markov’s inequality, for any s > 0 and p > 2, we have

o pP/? - max {m,n}

X

P >s| <sP-E

sp

N N
DS D aX,
i=1 =1

By assumption ¢ > 1/2 and max{m,n} > 2, we set

p
oo

oo

s =1/2¢(1 +t)Inmax {m,n},p = s>/e > 2

through which we obtain

P > +/2e (14 t)Inmax {m,n} | < (max {m,n})it

N
> &X,
i=1

oo

as desired.

Next, we consider the case where &;,...,&y are independent mean zero
random variables supported on [—1,1]. Let £1,...,en be i.i.d. Bernoulli random
variables; €1,...,ex are independent of the ¢;’s. A standard symmetrization
argument (e.g., see Lemma 1.11.3 which is Lemma 6.3 in [27]), together with
Fubini’s theorem and Theorem 2.17.4 implies that
D

< 27 - E(E.

Sp
P
Sp }:|

P

E

N
__leﬁixf,

N
i=1

Sp

N 1/2
(z gfxixf)

i=1

N 1/2
<27 - pP/? . B¢ | max ‘ (Z f?xlTXL>
iz

X

Sp

< 27 - pP/2 .max {m,n}.

Example 11.3.2 will use Theorem 11.2.6. A
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11.3 Applications of Sums of Random Matrices

We are in a position to apply the sums of random matrices to the probability
constraints.

Example 11.3.1 (Randomly perturbed linear matrix inequalities [ 560 ][—Continued).
Consider a randomly perturbed Linear Matrix Inequalities

N
Ap(x) =D &GA; (%) >0, (11.17)
1=1

where Aj (x),..., Ay (x) are affine functions of the decision vector x taking
values in the space S™ of symmetric n X n matrices, and &; are independent of
each other’s random perturbations. §;,7 = 1, ..., N are random real perturbations
which we assume to be independent with zero means “of order of 1”” and with “light
tails”—we will make the two assumptions precise below.

Here we are interested in the sufficient conditions for the decision vector x such
that the random perturbed LMI (11.17) holds true with probability > 1 — €, where
€ << 1. Clearly, we have

AO (X) 2 0.

To simplify, we consider the strengthened condition A (x) > 0. For such decision
vector x, letting

B;(x) = Ay 7 (x) A (x) Ay (%),

the question becomes to describe those x such that

N
Prob{Z@»Bi (x)go} >1—e (11.18)
=1

Precise description seems to be completely intractable. The trick is to let the closed-
Jform probability inequalities for sums of random matrices “do the most of the job™!
What we are about to do are verifiable sufficient conditions for (11.18) to hold true.

Using Theorem 11.2.3, we immediately obtain the following sufficient condition:
Let n > 2, perturbations ; be independent with zero means such that

E [exp ({fﬂ <exp(l), i=1,...,N.
Then the condition
2 1
< .
450 exp (1) (In g) (Inm)

N
Ao(x) >0 & 3077 (0 A AT ()|
i=1
(11.19)
is sufficient for (11.17) to be valid with probability > 1 — €.

Although (11.19) is verifiable, it in general, defines a nonconvex set in the space
of decision variables x. The “problematic” part of the condition is the inequality
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N
2
ZHASI/Q (x) A, (x) Ay (X)H <7 (11.20)
on x, 7. Equation (11.20) can be represented by the system of convex inequalities

N
1
—Aq (x) < piAi (x) <Ag(x), pi>0, i=1,...,N, Z—Q\

i:l

Consider another “good” case when A (x) = A is constant. Equation (11.20)
can be represented by the system of convex constraints

|
S
>
N
e
%
N
S
>
|
\’H
=
s
[V}
N
\‘

in variables x, v;, T.

Using Theorem 11.2.3, we arrive at the following sufficient conditions: Let
perturbations &; be independent with zero mean and zero third moments such that
|&] < 1,4 = 1,..., N, or such that § ~ AN(0,1),4 = 1,..., N. Let, further,
e € (0, 1) be such that one of the following two conditions is satisfied

@m (1) > > dom

22 49m1/3
1 >
(®) n( ¢ ) 32

(11.21)

Then the condition

N L , case (a) of (11.21)
-1/2 _ S172 321n( ;)
Ao(x)>0 & ;HAO (0 A (0 A7 2 <{3211<23>’ case(b of (1121)

(11.22)

is sufficient for (11.17) to be valid with probability > 1 — €.
In contrast, (11.19) and (11.22) defines a convex domain in the space of design
variables. Indeed, (11.22) is of the form

N
Ay(x)>0 & [Aj{(;)j:;(();))]>o’ t=1,...,N, and ;Yigc(e)Ao(x)
(11.23)

in variables x, Y. a

Example 11.3.2 (Safe tractable approximation—So [122]). We demonstrate how
Theorem 11.2.6 can be used. Let us consider a so-called safe tractable approxi-
mation of the following probability constrained optimization problem:
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minimize ¢Tx

subject to F(x) <0
N
Prob (AO (x) = Y &GA (x) > 0) >1—¢, (1)
i=1
x € R".

(11.24)

Here, c€ R™ is a given objective vector; F : R” — R/ is an efficiently computable
vector-valued function with convex components; Ag,..., Ay : R — ¢™ are
affine functions in x with Ay (x) > 0 for all x € R™;{;, ..., &N are independent
(but not necessarily identically distributed) mean zero random variables; ¢ € (0, 1)
is the error tolerance parameter. We assume m > 2 so that (11.24) is indeed a
probability constraint linear matrix inequality.

Observe that

Prob < Zfz i ) = Prob (Zfz i < I) ,  (11.25)

where
Ax)=A;"?(x)A; (x) A (x).

Now suppose that we can choose v = v (€) > 0 such that whenever

N
D> A7 (x) <AT (11.26)
=1

holds, the constraint condition (f) in (11.24) is satisfied. Then, we say that (11.26)
is a sufficient condition for (1) to hold. Using the Schur complement [560], (11.26)
can be rewritten as a linear matrix inequality

Ao (x) Aq(x) -+ Apn (%)

A1 (x) 7A0 (x) >0 (11.27)

Ax (%) e

Thus, by replacing the constraint condition () with (11.27), the original prob-
lem (11.24) is tractable. Moreover, any solution x € R™ that satisfies F(x) <0
and (11.27) will be feasible for the original probability constrained problem
of (11.24).

Now we are in a position to demonstrate how Theorem 11.2.6 can be used
for problem solving. If the random variables &7,...,&n satisfy the conditions
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of Theorem 11.2.6, and at the same time, if (11.26) holds for v > 7 (e) =

( 8eln (m/e)) , then for any € € (0,1/2], it follows that

N _ N
Prob (Z GA; (x) < I) = Prob (
i=1 =1

) <1> >1—e (11.28)
We also observe that
N
) > 1) = Prob (
o i=1

Prob ( :1 < (fyixi (x)) > i) .

2
Since Z ( (x)) I, by Theorem 2.17.4 and Markov’s inequality (see the

above proof of Theorem 11.2.6), we have

Prob (

This gives (11.28). Finally, using (11.25), we have the following theorem.

gl H )mw 1/ (869%)) < e

Theorem 11.3.3. Let &y, ..., En be independent mean zero random variables, each

of which is either (i) supported on [-1,1], or Gaussian with variance one. Consider

the probability constrained problem (11.24). Then, for any € € (0, 1/2], the positive
-1

semi-definite constraint with v 2 v (¢) = ( 8eln (m/ e)) is a safe tractable

approximation of (11.24).

This theorem improves upon Nemirovski’s result in [560], which requires v =
(0] (ml/ 6+ /In(1/ e)) before one could claim that the constraint is a safe tractable
approximation of (11.24). a

Example 11.3.4 (Nonconvex quadratic optimization under orthogonality con-
straints [560]—continued). Consider the following optimization problem

(X,BX) <1 (a)

B X, BX)<1, l=1,...,L(b)
P=_ max ¢(X,AX): cxfo o[ 41

I1X] < (d)

where
o M™*" ig the space of m X n matrices equipped with the Frobenius inner product
(X,Y) =Tr (XYT),and |X]|| = m‘z{}X{HXYH2 Y| < 1} is, as always, the

spectral norm of X € M™*"™
e The mappings A, B, B; are symmetric linear mappings from M™*™ into M"™*",
e JBis positive semidefinite,



540 11 Probability Constrained Optimization

e B;,l=1,..., L are positive semidefinite,
* (s alinear mapping from M™*" into RM .

Equation (11.29) covers a number of problems of quadratic optimization under
orthogonal constraints, including the Procrustes problem. For details, we refer
to [560].

We must exploit the rich structure of (11.29). The homogeneous linear con-
straints (c) in (11.29) imply that X is a block-diagonal matrix

X; 0 0
0 . 0
0 0 Xk

with my, x ny, diagonal blocks X,k =1,..., K.

Let us consider a semidefinite relaxation of Problem (11.29), which in general,
is NP-hard. Problem (11.29), however, admits a straightforward semidefinite relax-
ation as follows—following [560]. The linear mapping A in Problem (11.29) can be
identified with a symmetric mn x mn matrix A = [A;; ;] with rows and columns
indexed by pairs (7,j),1 < i <m,1 < j < n satisfying the relation

AX] =D Agj - za.

k=11=1

Similarly, 3, 3; can be identified with symmetric positive semidefinite mn x mn
matrix B, B;, with B of rank 1. Finally, C can be identified with a M X mn matrix
C = [l :

(CX),:,,z'j = Z Z Cluij - Tij. (11.30)

i=1 j=1

Let S™" stand for the mn x mn symmetric matrix, and ST'" stand for the mn x
mn positive semidefinite matrix respectively. For X € M™*™ let vec (X) be the
mn-dimensional vector obtained from the matrix X by arranging its columns into
a single column, and let X (X)) € ST be the matrix vec (X) vec” (X), that is the
mn X mn matrix [2;;T ]

X (X) = vec (X) vee? (X).
Observe that

X (X) >0,

and that >~ 3" ¢;; - x;; = 0if and only if
i=1j=1
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n

chij * Tij ZZZZCU Tij - Ckl Tkl = Tr (X (C)X(X))

i=1 j=1 i=1 j=1k=11=1

3

Further, we have that
(X, AX) =D 3NN A @i o = Tr (AX (X)),
i=1 j=1k=1I=1
and similarly
(X,BX) =Tr (BX (X)), (X,B8X)="TrBX(X)).
Finally, || X|| < 1 if and only if XX < Iy, in other words,
X[ <14 XXT <L,.

Since the entries in the matrix product X X7 are linear combinations of the entries
in X (X), we have

XX" <1, & 8 (X (X)) <Ly,

where S is an appropriate linear mapping from S™" to S™. Similarly, || X|| < 1 if
and only if XX < I,,, which is a linear restriction on X' (X) :

XXT <1, & T (X (X)) <1,

where T is an appropriate linear mapping from S to S™.
With the above observations, we can rewrite (11.29) as

Tr(BX (X)) <1 (a)
CTr(BX (X)) <Li=1,...,L (b)

x| THAX X)) Tr(CLX(X)) —0,u=1,....,M(c) (c) [
S(X (X)) <ILp, T (X (X)) <L (d)

where C* € S is given by
-
Ciiet = Cpmt - Crmt

Since X (X) > 0 for all X, the problem

SDP = max < Tr(AX):

(
(b)
Lo, CrX)=0,u=1,....M Ec) (11.31)
(
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is a relaxation of (11.29), so that Opt (P) < Opt (SDP). Equation (11.31) is a
semidefinite problem and as such is computationally tractable.

The accuracy of the SDP (11.31) is given by the following result [560]: There
exists X € M™*" such that

(+) <5<,A5<> — Opt (SDP) (a) <X,BX> <1
(11.32)
) (X, BX) <0 1=1,....L ()X=0, (d HXH <Q

where

Q = max <1£I}€E%<XK e + /321 (132K), 1/321n (12 (L + 1))) ,
[ = min (7(mk + nk)1/6,4 min (mk,nk.)> .
In particular, one has both the lower bound and the upper bound
Opt (P) < Opt (SDP) < Q% Opt (P). (11.33)

The numerical simulations are given by Nemirovski [560]: The SDP solver mincx
(LMI Toolbox for MATLAB) was used, which means at most 1,000-1,200 free
entries in the decision matrix X (X). O

We see So [122] for data-driven distributionally robust stochastic programming.
Convex approximations of chance constrained programs are studied in Shapiro and
Nemirovski [559].

11.4 Chance-Constrained Linear Matrix Inequalities

Janson [561] extends a method by Hoeffding to obtain strong large deviation
bounds for sums of dependent random variables with suitable dependency structure.
So [122] and Cheung, So, and Wang [562]. The results of [562] generalizes the
works of [122,560, 563], which only deal with the case of where &1,...,&,, are
independent.

The starting point is that for x € R”

N
F(x,8) = Ao (x) + Y &iA; () (11.34)

i=1
where Ag (x),A; (%), -+ ,Ax (x) : R* — 8% are affine functions that take

values in the space S of d x d real symmetric matrices. The key idea is to construct
safe tractable approximations of the chance constraint
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N
]g’ (Ao (x) + Z GiA; (x) £ 0)

N

by means of the sums of random matrices » &;A; (x). By concentration of
i=1

measure, by using sums of random matrices, Cheung, So, and Wang [562] arrive

at a safe tractable approximation of chance-constrained, quadratically perturbed,

linear matrix inequalities

N
PlAo(x)+ > &GAi(x)+ > &&Bu<0|>=1-¢  (1135)
¢ i=1 1<j<k<N

where B, : R" — S% are affine functions for 1 < ¢ < N and 1 < j <

k < Nand¢&,...,&y are i.i.d. real-valued mean-zero random variables with light
tails. Dependable perturbations are allowed. Some dependence among the random
variables &1, . . ., & are allowed. Also, (11.35) does not assume precise knowledge

of the covariance matrix.

11.5 Probabilistically Constrained Optimization Problem

We follow [236] closely for our exposition. The motivation is to demonstrate the
use of concentration of measure in a probabilistically constrained optimization
problem. Let || - || and || - ||r represent the vector Euclidean norm and matrix
norm, respectively. We write x ~ CA (0, C) if x is a zero-mean, circular symmetric
complex Gassian random vector with covarance matrix C > 0.

Consider so-called multiuser multiple input single output (MISO) problem,
where the base station, or the transmitter, sends parallel data streams to multiple
users over the sample fading channel. The transmission is unicast, i.e., each data
stream is exclusively sent for one user. The base station has IV, transmit antennas
and the signaling strategy is beamforming. Let x(t) € CV* denote the multi-antenna
transmit signal vector of the base station at time ¢. We have that

K
x(t) =Y wisk(t), (11.36)
k=1

where wj, € CVt is the transmit beamforming vector for user k, K is the number
of users, and si(t) is the data stream of user k, which is assumed to have zero-

mean and unit power E {|sk (t)\Q] = 1. It is also assumed that s (t) is statistically
independent of one another. For user ¢, the received signal is

yi(t) = hf'x(t) + ni(t), (11.37)
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where h; € C™ is the channel gain from the base station to user i, and n;(t) is an
additive noise, which is assumed to have zero mean and variance o2 > 0.

A common assumption in transmit beamforming is that the base station has
perfect knowledge of hy,...hg, the so-called perfect channel state information
(CSI). Here, we assume the CSI is not perfect and modeled as

hi: i + e, izl,...,K,
where h; is the actual channel, h; € C™* is the presumed channel at the base station,
and e; € CM is the respective error that is assumed to be random. We model the
error vector using complex Gaussian CSI errors,

e; ~CN (0,C;) (11.38)

for some known error covariance C; > 0,7 =1, .., K.
The SINR of user ¢,7 = 1, ..., K is defined as

Bl
SINR; = — .
> [hffwi|” + o7
ki
The goal here is to design beamforming vectors w1, ..., wg € C™ such that

the qualify of service (QoS) of each user satisfies a prescribed set of requirements
under imperfect CSI of (11.38), while using the least amount of power to do so.
Probabilistic SINR constrained problem: Given minimum SINR requirements

1,--+,vkx > 0 and maximum tolerable outage probabilities p1, ..., px € (0,1],
solve
K
. 2
minimize w; 11.39
Jmimimee, 3w (11.39)
subject to P (SINR; > v;) > 1 — p;, i=1,..., K. (11.40)

This is a chance-constrained optimization problem due to the presence of the
probabilistic constrain (11.40).

Following [236], we introduce a novel relaxation-restriction approach in two
steps: relaxation step and restriction step. First, we present the relaxation step.
The motivation is that for each ¢, the inequality SINR; > ; is nonconvex in
w1, ..., Wg; specifically, it is indefinite quadratic. This issue can be handled by
semidefinite relaxation [564, 565]. Equation (11.40) is equivalently represented by
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K
minimize > Tr(W;)
Wi,...,W g eHNt—1

subject to P <(BZ+61)H< W,;— E Wk> (}_11—0—82) > 0'22> > 1—p4, i=1,..., K,
ki

1
Vi
Wi,...,.Wg >0

rank (W;) =1, i=1,...,K

B} )

(11.41)

where the connection between (11.40) and (11.41) lies in the feasible point
equivalence

W, = Wiwﬁ , 1=1

K.

geeey

The semidefinite relaxation (11.41) works by removing the nonconvex rank-one
constraints on W, i.e., to consider the relaxed problem

K
minimize > Tr(W;)
Wi, .\ Wr eHNG=1

subject to P <(1_1i+ei)H<71_Wi— > Wk> (Hi—&-ei) > af) > 1—p;, i=1,...,K,
K k#i
Wi,...,Wg >0.
(11.42)

where HYt denotes Hermitian matrix with size N, by N;. The benefit of this
relaxation is that the inequalities inside the probability functions in (11.42) are
linear in W1, ..., W, which makes the probabilistic constraints in (11.42) more
tractable. An issue that comes from the semidefinite relaxation is the solution
rank: the removal of the rank constraints rank (W;) = 1 means that the solution
(W1,...,Wg) to problem (11.42) may have rank higher than one. A stan-
dard way of tacking this is to apply some rank-one approximation procedure
to (Wy,...,Wg) to generate a feasible beamforming solution (wq,...,wg)
to (11.39). See [565] for a review and references. An algorithm is given in [236],
which in turn follows the spirit of [566].

Let us present the second step: restriction. The relaxation step alone above does
not provide a convex approximation of the main problem (11.39). The semidefinite
relation probabilistic constraints (11.42) remain intractable. This is the moment
that the Bernstein-type concentration inequalities play a central role. Concentration
of measure lies in the central stage behind the Bernstein-type concentration
inequalities. The Bernstein-type inequality (4.56) is used here. Letz = eandy =r

in Theorem 4.15.7. Denote T'(t) = Tr (Q) — v2i1/[|Qll » + 2lly|I> — tA+ (Q).
We reformulate the challenge as the following: Consider the chance constraint

P (e”Qe+2Re (efr) +s>0) > 1—p, (11.43)
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where e is a standard complex Gaussian random vector, i.e., z; ~ CN (0,1, , the
3-tuple (Q, r, s) € H**™ x C™ xR is a set of (deterministic) optimization variables,
and p € (0, 1] is fixed. Find an efficiently computable convex restriction of (11.43).
Here H™*" stands for the set of Hermitian matrices of n x n.

Indeed, for each constraint in (11.42), the following correspondence to (11.43)
can be shown fori=1,..., K

1 1 _
Q=C/? =W, - > W, |C/? r=c/?| -W,-> W, |h,
Vi Py i o

_ 1 _
s =h! fWi—ZWk h, — a7, p=p;.
v ki
(11.44)

Using the Bernstein-type inequality, we can use closed-form upper bounds on
the violation probability to construct an efficiently computable convex function
f(Q,r,s,u), where u is an extra optimization variable, such that

P(e”Qe+2Re (er) +s>0) < f(Q,r,5,1). (11.45)
Then, the constraint

f(Qr,s,u)<p (11.46)

is, by construction, a convex restriction of (11.43).
Since T'(t) is monotonically decreasing, its inverse mapping is well defined. In
particular, the Bernstein-type inequality (4.56) can be expressed as

IP’(eHQe+2Re (eHr) +s> 0) >1- e~ T ' (=5)

As discussed in (11.45) and (11.46), the constraint 1 — e~ (=% < p, or
equivalently,

Tr(Q) — =2 (p)\/|Qll» + 2lly[I* +In(p) - A4 (Q) +s >0  (11.47)

serves as a sufficient condition for achieving (11.43).

At this point, it is not obvious whether or not (11.47) is convex in (Q,r,s),
but we observe that (11.47) is equivalent to the following system of convex conic
inequalities

T (Q)—v/—2In(p)-us +In(p) - us+s =0,
2
<
1QlF +2[lylI” < wa, (1148)
u2In + Q = Oa
ug = 0,

where u1,us € R are slack variables. Therefore, (11.48) is an efficiently com-
putable convex restriction of (11.43).
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Let us introduce another method: decomposition into independent random
variables. The resulting formulation is solved more efficiently than the Bernstein-
type inequality method (11.48). The idea is to first decompose the expression
e’Qe + 2Re (eH r) + s into several parts, each of which is a sum of independent
random variables. Then, one obtains a closed-form upper bound on the violation
probability [562]. Let us illustrate this approach briefly, following [236]. Let Q =
UAV! be the spectral decomposition of Q, where A = diag (\1,...,\,) and
A1, ..., A, are the eigenvalues of Q. Since e; ~ CA (0,1,,), and U* is unitary,
we have € = Ufe ~ CN (0,1,) . As aresult, we have that

¢ =e”Qe+2Re (e”r) = 8" A& + 2Re (e”'r) = ¢y + Y.

Now, let us decompose the € Aé+2 Re (e’’r) into the sum of independent random
variables. We have that

Yg =8"TA8 = "\leil’, ¥ =2Re(efr) =2 (Re{ri}Re{e;} + Im{r;} Im{e;}).
i=1 i=1

The advantage of the above decomposition approach is that the distribution of the
random vector e may be non-Gaussian. In particular, e € R™ is a zero-mean random
vector supported on [— V3, \/ﬂ " with independent components. For details, we
refer to [236,562].

11.6 Probabilistically Secured Joint Amplify-and-Forward
Relay by Cooperative Jamming

11.6.1 Introduction

This section follows [567] and deals with probabilistically secured joint amplify-
and-forward (AF) relay by cooperative jamming. AF relay with N relay nodes is
the simple relay strategy for cooperative communication to extend communication
range and improve communication quality. Due to the broadcast nature of wireless
communication, the transmitted signal is easily intercepted. Hence, communication
security is another important performance measure which should be enhanced.
Artificial noise and cooperative jamming have been used for physical layer security
[568,569].

All relay nodes perform forwarding and jamming at the same time cooperatively.
A numerical approach based on optimization theory is proposed to obtain forward-
ing complex weights and the general-rank cooperative jamming complex weight
matrix simultaneously. SDR is the core of the numerical approach. Cooperative
jamming with the general-rank complex weight matrix removes the non-convex
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rank-1 matrix constraint in SDR. Meanwhile, the general-rank cooperative jamming
complex weight matrix can also facilitate the achievement of rank-1 matrix solution
in SDR for forwarding complex weights.

In this section, physical layer security is considered in a probabilistic fashion.
Specifically speaking, the probability that an eavesdropper’s SINR is greater than
or equal to its targeted SINR should be equal to the pre-determined violation
probability. In order to achieve this goal, probabilistic-based optimization is applied.

Probabilistic-based optimization is more flexible than the well-studied robust
optimization and stochastic optimization. However, the flexibility of probabilistic-
based optimization will bring challenges to the corresponding solver. Advanced
statistical signal processing and probability theory are needed to derive the safe
tractable approximation algorithm.

In this way, the optimization problem in a probabilistic fashion can be converted
to or approximated to the correspondingly deterministic optimization problem.
“Safe” means approximation will not violate the probabilistic constraints and
“tractable” means the deterministic optimization problem is convex or solvable.
There are several approximation strategies mentioned in [236,570], e.g., Bernstein-
type inequality [235] and moment inequalities for sums of random matrices [122].
Bernstein-type inequality will be exploited explicitly here.

11.6.2 System Model

A two-hop half-duplex AF relay network is considered. A source Alice would like
to send information to the destination Bob through N relay nodes. Meanwhile, there
is an eavesdropper Eve to intercept wireless signal. All the nodes in the network are
only equipped with a single antenna. Alice, Bob, and relay nodes are assumed to be
synchronized. Perfect CSIs between Alice and relay nodes as well as between relay
nodes and Bob are known. However, CSIs related to Eve are partially known.
There is a two-hop transmission between Alice and Bob. In the first hop, Alice
transmits information /. In order to interfere with Eve, Bob generates artificial noise
J. I and J are assumed to be independent real Gaussian random variables with zero
mean and unit variance. The function diagram of the first hop is shown in Fig. 11.1.
For the nth relay node, the received signal plus artificial noise is,

Yr,1 = hsrnlgslj + hdrnlgle + Wr,1,N = 17 2: ceey N (1149)

where g;; is the transmitted complex weight for Alice and gg4; is the transmitted
complex weight for Bob; A, 1 is CSI between Alice and the nth relay node; hgy, 1
is CSI between Bob and the nth relay node; w1 is the background Gaussian noise
with zero mean and o7 | variance for the nth relay node. Similarly, the received
signal plus artificial noise for Eve is,

Ye1 = hselgsll + hdelngJ + We1 (1150)
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where hg.1 is CSI between Alice and Eve; hg.; is CSI between Bob and Eve; we;
is the background Gaussian noise with zero mean and o2, variance for Eve. Thus,
SINR for Eve in the first hop is,

|hselgsl |2

SINR,1 = ——MF——
|hczelgd1|2 + 0%

(11.51)
In the second hop, N relay nodes perform joint AF relay and cooperative

jamming simultaneously. The function diagram of the second hop is shown in

Fig. 11.2.

The transmitted signal plus cooperative jamming for the nth relay node is

Sp2 = Gr,2Yr1 + JIr2 (11.52)
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where ¢, o is the forwarding complex weight for the nth relay node and

Jr.2,m=1,2,..., N constitutes cooperative jamming j2,
Jr12
. J'r'22
Jro = ) (11.53)
JTN2

and j,-o is defined as,
jr2 = Uz (11.54)

where U € CN*" r < N is cooperative jamming complex weight matrix and z,
which follows N (0,1), is r-dimensional artificial noise vector. Hence, the trans-
mitted power needed for the nth relay node is |g,, 2hsr, 1951 |2 +19r,2hdr, 1941 |2 +

Tnl

lgr. 2?02 |+ E {\ng \2} where E {-} denotes expectation operator and

E{Jjnal*} = diag {UE {z2"} U} (11.55)
= diag {UU"} (11.56)

where (-)f denotes Hermitian operator and diag {-} returns the main diagonal of
matrix or puts vector on the main diagonal of matrix.
The received signal plus artificial noise by Bob is,

N
Yd2 = Z by, a2 (Gr,2Yr,1 + Jr,2) + Waz (11.57)

n=1

where h,_ 42 is CSI between the nth relay node and Bob; wgs is the background
Gaussian noise with zero mean and 032 variance for Bob. Similarly, the received
signal plus artificial noise for Eve in the second hop is,

N
Yer = D e (Gra2yran + Jr2) + weo (11.58)

n=1

where h,. .o is CSI between the nth relay node and Eve; w.s is the background

Gaussian noise with zero mean and o2, variance for Eve.
In the second hop, SINR for Bob is,

2

N
Z hrn d2gr7,,2hsr” 19s1
SINRgs = n=1

2

N
Z h”‘n d2 ‘]7‘71 2

n=1

N
Z hrnd2g7‘n2hdrn 19d1
n=1

n=1

N
+ > |hmd29m2|203n1+E{

2
} +0d,

(11.59)
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Due to the known information about J, Bob can cancel artificial noise generated
2

can be removed from the denominator in

N
by itself. Thus, | > Ay a20r. 2hdr, 1941
n=1

Eq. (11.59) which means SINR for Bob is

N 2
Z hrn d2.g7*n2hsrn 19s1

=1
SINRg> = — m - . (11.60)
h 02 |+ E P, a2 2
rnd29r,2| O 1 rnd2J7,2 d2
> he,a2gr,2| 07 1 + > hrd +o
n=1 n=1
SINR for Eve is,
N 2
> hrpe2grn2hsr, 1951
n=1
SINR¢2 = ~ 3 ~ ~ 3
> hrpe29rp2hdarp,1941| + 2 |hrnc29rn2\2€7,2.n1+E hope2drp 2 +o2,
n=1 n=1 n=1
(11.61)

Here, we assume there is no memory for Eve to store the received data in the
first hop. Eve cannot do any type of combinations for the received data to decode
information.

Let,
hyg2 = [hrya2 Begaz -+ Brya2) (11.62)
Then,
N 2
E Z hrpaadrn2| ¢ =h.a2UE {zz"} UPh1, (11.63)
n=1
= h,;UUYh, (11.64)
Similarly, let,
hyea = [Arpez hrgen - Bryes] (11.65)
Then,
2

N
Z hrn e2 Jrn2

n=1

E =h,,UUTh%, (11.66)

Based on the previous assumption, hg,, 1, har, 1, and h, 42 are perfect known.
While, hAge1, Rde1, and b, .o are partially known. Without loss of generality, A1,
hde1, and h, .o all follow independent complex Gaussian distribution with zero
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mean and unit variance (zero mean and % variance for both real and imaginary
parts). Due to the randomness of hse1, hae1, and Ay 2, SINR.; and SINR.y are
also random variables.

Joint AF relay and cooperative jamming with probabilistic security consideration
would like to solve the following optimization problems,

find
Ggs1,9d1, grp2,n =1,2,... . N, U
subject to
|grnohsrn1gst) +|grmaharn19a1 >+ gr2| 02 1 +E {\Jrnz\Q} <Pr2,n=12...,N
Pr(SINRe1 > 7e) < 6
Pr (SINRe2 > 7e) < de
SINRa2 > 7a

(11.67)
where P, o is the individual power constraint for the nth relay node; v, is the
targeted SINR for Eve and . is its violation probability; 7, is the targeted SINR
for Bob.

11.6.3 Proposed Approach

In order to make the optimization problem (11.67) solvable, the optimization
problem in a probabilistic fashion need be converted to or approximated to the
correspondingly deterministic optimization problem by the safe tractable approx-
imation approach.

For SINR.1, |hse19s1 |2 and |hge1 ga1 |2 are independent exponentially distributed
random variables with means | gsl|2 and | gd1\2. Pr (SINR.; > 7.) < 6. is equal
to [571],

?76”221 |gsl‘2
eTalt —Mtl <5 (11.68)
911" + Ve |garl
From inequality (11.68), given |gs1 |?, we can casily get,
—’Ye”g
<6 ‘951|21 _56) |gsl‘2
\gar|* > (11.69)

Yede

In this section, we are more interested in equally probabilistic constraints instead
of too conservative or robust performance. In other words, Pr (SINR¢; > 7.) = J.
and Pr (SINR.2 > 7.) = 0. are applied. Hence, | gd1|2 is obtained by equality of
inequality (11.69) to ensure the probabilistic security in the first hop with minimum
power needed for Bob.

For SINR.», Bernstein-type inequality is explored [235,236,572].
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Let

gT12

gT22
gr2 = . y (1170)

gT”NQ
hort = [Rar,1 hsrot <+ hsry1] (11.71)

and

hart = [har1 Pars1 - Rarg1) (11.72)

Define H,,1 = diag {hg1}, Hgq = diag {hg1} and

0?11 0 --- 0
o7 = " 03.21 D (11.73)
0 0 o2,
Based on SDR, define,
X = grgh (11.74)
where X should be rank-1 semidefinite matrix and
Y = UU” (11.75)

where Y is the semidefinite matrix and the rank of Y should be equal to or smaller
than r.
Pr (SINR.2 > v.) < 4. can be simplified as,

Pr (hye2Qhlly > 0257e) < 6. (11.76)
where Q is equal to

Q= HsrlXHgl |gsl|2 - 7@Hd7'1XHcIl{»1 |gd1|2 — Yediag {diag {X}} 022 — 7Y

Then probabilistic constrain in (11.76) can be approximated as, aAL7D
trace (Q) + (—2log (6.))"° a — blog (6c) — 027, < 0
o= 17
b>0
where trace(-) returns the sum of the diagonal elements of matrix; ||-|| return

Frobenius norm of matrix.



554 11 Probability Constrained Optimization

Based on the definition of X and Y, the individual power constraint for the nth
relay node in the optimization problem (11.67) can be rewritten as,

(X)n,n <|hs7*nlgsl‘2 + ‘hd7'nlgd1|2 + Ofnl) + (Y)n,n S P7'n27 n = 17 27 s 7N
(11.79)
where (), ;,; returns the entry of matrix with the 7th row and jth column.
SINRg2 constraint SINR42 > 74 in the optimization problem (11.67) can be
reformulated as,

trace (aHaX) > Y4 (trace (Hf&QHszale) + trace (hrdthrde) + 032)

(11.80)
where
H,q; = diag {hya2} (11.81)
and
a = (diag {HsrlHrd2951})T (11.82)

where (-)7 denotes transpose operator

In this section, we mainly focus on the joint optimization g, 2,7 =1,2,..., N
and U, ie., X and Y, in the second hop based on the given | gsl\ and the
calculated |gq1|°.

In order to minimize the total power needed by N relay nodes, the optimization
problem (11.67) can be approximated as,

minimize
SN (K (s garl* + aragan +021) + (V)

subject to
(X)n,n <|hsrnlgsl‘2 + \hdr"19d1|2 + 03n1> + (Y)n,n S Prn2; n= 17 2a RS N
trace (Q) + (—2log (6.))"* a — blog (6e) — 027e < 0
1Qlp <a
bI—-Q >0
b>0
trace (afaX) > v, (trace (HE,H, 4204, X) + trace (h,«dthrsz) + 032)
X>0
rank(X) =1
Y >0
(11.83)
Due to the non-convex rank constraint, the optimization problem (11.83) is an

NP-hard problem. We have to remove rank constraint and the optimization prob-
lem (11.83) becomes an SDP problem which can be solved efficiently. However,
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the optimal solution to X cannot be guaranteed to be 1. Hence, the well-studied
randomization procedure can be involved. In this section, we propose to use the
sum of the least N — 1 eigenvalues (truncated trace norm) minimization procedure
to find feasible and near-optimal rank-1 solution to X [573]. This whole procedure
will be presented as Algorithm 1.

In Algorithm 1, é. is given, then

Algorithm 1

1. Solve the optimization problem (11.83) without the consideration of rank
constraint to get optimal solution X*, Y*, and minimum total power needed
P*; if X* is the rank-1 matrix, then Algorithm 1 goes to step 3; otherwise
Algorithm 1 goes to step 2;

2. Do eigen-decomposition to X* to get the dominant eigen-vector x* related to the
maximum eigen-value of X*; solve the following optimization problem which is
also an SDP problem,

minimize
Atrace(X) —trace(Xx" (x") ) +((C 0y (XD (s 1961+l har, 1901 +07,,1)
+(Y)nn))—P")
subject to
X)nn (|hsrnlgsl‘2+‘hdrnlgd1|2+0'£"1) +(Y)nn < Pr2,n=12,...,N
trace (Q) 4 (—2log (.))%® a—blog (6.) —027. < 0
QI <a
bI-Q >0
b>0
trace (aHaX) > Yd (trace (HfIdQHTdQU%X) +trace (hrdthngY) +032)
X>0
Y >0
(11.84)
where A is the design parameter; then optimal solution X* and Y* will be
updated; if X* is the rank-1 matrix, then Algorithm 1 goes to step 3; otherwise
Algorithm 1 goes to step 2;
3. Get optimal solutions to g,o and U by eigen-decompositions to X* and Y*;
Algorithm 1 is finished.

In the optimization problem (11.84), the minimization of trace(X) —
trace(Xx* (x*)H) tries to force X* to be a rank-one matrix and the minimization

of (Zfzv:l((x)n,n (|hsrnlgsl‘2 + ‘hdrnlgd1|2 + O—znl) + (Y)n,n)) — P~ tries to
minimize the total transmitted power needed for IV relay nodes.

As mentioned before, we are more interested in equally probabilistic constraints.
If targeted violation probability is set to be §t2r&¢ted which is also to be used as the
parameter J. in the optimization problem (11.83), the violation probability in reality
Sreality by statistical validation procedure will be much smaller than §t2r&eted. Based
on Bernstein-type inequalities, §2°'*Y will be a non-decreasing function of §.. Thus,
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we propose to exploit bi-section search to find suitable §. to make sure 6721 is
equal to stareeted [574,575].

Overall, a novel numerical approach for joint AF relay and cooperative jamming
with the consideration of probabilistic security will be proposed as Algorithm 2.

In Algorithm 2, (5é is set to be 0; §** is set to be 1; and 6gargeted is given; then

Algorithm 2

1. Set d, to be gtarseted;

2. Invoke Algorithm 1 to get optimal solutions to g2 and U;

3. Perform Monte Carlo simulation to get §7#1ty; if greality > stargeted thep 5 js
set to be d,; otherwise 5@ is set to be d,;

4. If & —5é < & where ¢ is the design parameter, Algorithm 2 is finished; otherwise,

(6L+62)
2

dc 1s set to be and Algorithm 2 goes to step 2.

11.6.4 Simulation Results

In the simulation, N = 10; 62 | = 0.15,n = 1,2,...,N;02, = 0.15; 02, =
0.15; 032 = 015 P2 = 2,n = 1,2,...,N; v = 1. hsr,1, har,1, and

Ry d2,mn = 1,2,..., N are randomly generated as complex zero-mean Gaussian
random variables with unit covariance. CVX toolbox [488] is used to solve the
presented SDPs.

In Fig. 11.3, we illustrate the relationship between total power needed by all relay
nodes and the targeted SINR ~, required by Bob. Meanwhile, different violation
probabilities for Eve are considered. The smaller the pre-determined violation
probability for Eve, the more power needed for N relay nodes. In other words,
too conservative or robust performance for security requires a large amount of
total transmitted power. Hence, we should balance the communication security
requirement and total power budget through optimization theory.

In order to verify the correctness of the proposed numerical approach, 10,000
Monte Carlo simulations are run with randomly generated h,_co,n = 1,2,..., N.
Stargeted — ()08, 44 = 20. The histogram of the received SINRs for Eve is shown
in Fig. 11.4. Similarly, if §{2&°t¢d = .12, the histogram of the received SINRs for
Eve is shown in Fig. 11.5.

11.7 Further Comments

Probability constrained optimization is also used in [570]. Distributed robust
optimization is studied by Yang et al. [576,577] and Chen and Chiang [578] for
communication networks. Randomized algorithms in robust control and smart grid
are studied in [579-582].
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Fig. 11.5 The histogram of 0.1212
the received SINRs for Eve 50 i i i
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In [583], distributionally robust slow adaptive orthogonal frequency division
multiple access (OFDMA) with Soft QoS is studied via linear programming.
Neither prediction of channel state information nor specification of channel fading
distribution is needed for subcarrier allocation. As such, the algorithm is robust
against any mismatch between actual channel state/distributional information and
the one assumed. Besides, although the optimization problem arising from our
proposed scheme is non-convex in general, based on recent advances in chance-
constrained optimization, they show that it can be approximated by a certain
linear program with provable performance guarantees. In particular, they only
need to handle an optimization problem that has the same structure as the fast
adaptive OFDMA problem, but they are able to enjoy lower computational and
signaling costs.



Chapter 12
Database Friendly Data Processing

The goal of this chapter is to demonstrate how concentration of measure plays
a central role in these modern randomized algorithms. There is a convergence
of sensing, computing, networking and control. Data base is often neglected in
traditional treatments in estimation, detection, etc.

Modern scientific computing demands efficient algorithms for dealing with
large datasets—Big Data. Often these datasets can be fruitfully represented and
manipulated as matrices; in this case, fast low-error methods for making basic linear
algebra computations are key to efficient algorithms. Examples of such foundational
computational tools are low-rank approximations, matrix sparsification, and ran-
domized column subset selection.

12.1 Low Rank Matrix Approximation

Randomness can be turned to our advantage in the development of methods for
dealing with these massive datasets [584,585].

It is well known that a matrix A; which minimizes both the Frobenious norm
and the spectral norm error can be calculated via the singular value decomposition
(SVD). The SVD takes cubic time, the computation cost of using it to form low-rank
approximation can be prohibitive if the matrix is large.

For an integer n = 2P, forp = 1,2, 3, .. .. the (non-normalized) n x n matrix of
the Hadamard-Walsh transform is defined recursively as,
H, — [Hn/g H, } 7 H, — {+1 +1]
Hn/2 _Hn/2 +1-1

The n x n matrix of the Hadamard-Walsh transform is equal to

1
H=—H, € R"*", (12.1)
NG
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For integers » and n = 2P with r < n and p = 1,2,3,.... an subsampled
randomized Hadamard transform matrix is an 7 X n matrix of the form

0= \/W RHD:; (12.2)
T

* D € R™" is a random diagonal matrix whose entries are independent random
signs, i.e., random variables uniformly distributed on {+1}.

e H € R™ " is a normalized Walsh-Hadamard matrix.

« R € R"™" is a random matrix that restricts an n-dimensional vector to r
coordinates, which are chosen uniformly at random and without replacement.

Theorem 12.1.1 (Subsampled randomized Hadamard transform [584]). Ler
A € R™*™ have rank p. For an integer k satisfying 0 < k < p. Let 0 < e < 1/3
denote an accuracy parameter, 0 < § < 1 be a failure probability, and C > 1 be a
constant. Let' Y = A®T | © is an r x n SRHT matrix with r satisfying

2
602~ [VE + /Slog (n/6)] log (k/6) <7 <.
Then, with probability at least 1 — §C°/24 _ 70,
|A - YY7A|, <(1+50) [|A - Agll,
and

log (n/9)

A-YYHA|.< _08 WO ) A—A, A=Ay,
|> I | Ly e —

6+ (15 +

The matrix Y can be constructed in O (mnlog (r)) time.

12.2 Row Sampling for Matrix Algorithms

We take material from Magdon-Ismail [586]. Let ey, ..., ey the standard basis
vectors in R™. Let A € RY*" denote an arbitrary matrix which represents N
points in R™. In general, we represent a matrix such as A (bold, uppercase) by a
set of vectors a1, ...,ay € R™ (bold, lowercase), so that A = [al as ---ay } T
Here a, is the i-th row of A, which we may also refer to by A (;); similarly we refer
to the i-th column as A(). Let ||| be the spectral norm and |-, the Frobenius
norm. The numerical (stable) rank of S is defined as p (S) = || S||f; /IS
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A row-sampling matrix samples k rows of A to form A= QA :
r] rTA
Q=|:|, A=QA=| : |,
r{ rEA

where r7 A samples the ¢;-th row of A and rescales it. We are interested in random
sampling matrices where each r; is i.i.d. according to some distribution. Define

N

a set of sampling probabilities p1,...,pn, with p; > 0 and > p; = 1; then
i=1

r; = e;/v/kp: with probability p;. The scaling is also related to the sampling

probabilities in all the algorithms we consider. We can rewrite Q7 Q as the sum

of k independently sampled matrices

k
Q'Q=12) rr!
i=1
where r;r! is a diagonal matrix with only one non-zero entry; the ¢-th diagonal entry
is equal to 1/p; with probability p;. Thus, by construction, for any set of non-zero
sampling probabilities, E [ririT] = Inyxn. Since we are averaging k independent
copies, it is reasonable to expect a concentration around the mean, with respect to
k, and in some sense, Q7' Q essentially behaves like the identity.

> =

Theorem 12.2.1 (Symmetric Orthonormal Subspace Sampling [586]). Let
U= [ul UN}T S RN *n

be orthonormal, and D € R™ " be positive diagonal. Assume the row-sampling
probabilities p; satisfy

u/' D2y,
> Bt
pe = Tr (D2?)

Then, if k > (4p (D) /652) In 27”, with probability at least 1 — 6,
|D? - DUTQQUD|| < ¢[|D|*.

A linear regression is represented by a real data matrix A € RY*" which
represents N points in R”, and a target vector y € RY. Traditionally, N > n.
The goal is to find a regression vector x* € R? which minimizes the /5 fit error
(least squares regression)

o 2
E(x) = Ax—yl2 =3 (alx —y,)".
t=1
This problem was formulated to use a non-commutative Bernstein bound. For
details, see [587].
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12.3 Approximate Matrix Multiplication

The matrix product AB” for large dimensions is a challenging problem. Here
we reformulate this standard linear algebra operation in terms of sums of random
matrices. It can be viewed as non-uniform sampling of the columns of A and B.
We take material from Hsu, Kakade, and Zhang [113], converting to our notation.
We make some comments and connections with other parts of the book at the
appropriate points.

Let A = [a;]|---|a, ], and B = [by |- --|b, ] be fixed matrices, each with n
columns. Assume that a; # 0 and b; # O forall j = 1,...,n. If n is very
large, which is common in the age of Big Data, then the standard, straightforward
computation of the product AB” can be too computation-expensive. An alternative
is to take a small (non-uniform) random samples of the columns of A and B,
say a;,,b;,...,a;,,b;,, ora;,b; fori = 1,2,..., N. Then we compute a
weighted sum of outer products'

1 1
T ~ T

AB" = > —a; bl (12.3)
i=1 47
where p;, > 0 is the a priori probability of choosing the column index j; €
{1,...,n} from a collection of N columns. The “average” and randomness do
most of the work, as observed by Donoho [132]: The regularity of having many
“identical” dimensions over which one can “average” is a fundamental tool. The
scheme of (12.3) was originally proposed and analyzed by Drinceas, Kannan, and
Mahoney [313].

Let Xy, ..., Xy be i.i.d. random matrices with the discrete distribution given by
1 bl
]P XZ = — 1(_,) aj J = pJ
Dj bj a; 0
forall j =1,...,n, where
12151/, -
py= IRz 3 b,
j=1
Let
N
L1 0 AB”
M=— X, d M= .
N ; an [BTA 0 ]

'Outer products xy " of two vectors x and y are rank-one matrices.
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The spectral norm error HM — MH is used to describe the approximation of AB”
2

using the average of N outer products pi_aij biTj, where the indices are such that
¥

ji=j & X; =a;b] /p;

forall? = 1,..., N. Again, the “average” plays a fundamental role. Our goal is to
use Theorem 2.16.4 to bound this error. To apply this theorem, we must first check

the conditions.
We have the following relations

0 En a;bT
a. bl e
E[X; 75 i) =1 . =t =M
L ( L, 0 D 3> bTa,

Tr (E [X3]) =Tr (i »; (;Jz

ABTBTA 0
0 BTAABT

ajbfbfaj 0 L] 5 9 5
= — [lay b;||5=2Z
0 wrampr || 72 5 s B sl

j=1%3

=2Tr (ABTBTA).

Tr ((E [X,])?) =Tr (M?) =

Let || - ||z stand for the spectral norm. The following norm inequalities can be
obtained:

1
IXilly < max

s Py
IEX:], = Ml < [[ABT |, < [A,[IBI,

I, < IlAlLIBll,Z

0 a;b
[bfaa J ]H = iHanTH2 ’
B [X3]

Using Theorem 2.16.4 and a union bound, finally we arrive at the following: For
any e € (0,1),and § € (0,1), if

N> (8 +2\/§) (1+ /rarg) (log (4y/7ar5) + log (1/5))

3 g2

9

then with probability at least 1 — § over the random choice of column indices
J 1y--- a] N>

N
1 1
¥ 2 o -aibl — ABT| <c|Al,[Bl;,
j=11"% )
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where
ra=||Al[z /[|A]5 € (1,rank (A)), and rp = |B|%/[B|j € (1,rank (B))

are the numerical (or stable) rank. Here || - || stands for the Frobenius (or Hilbert-
Schmidt) norm. For details, we refer to [113].

12.4 Matrix and Tensor Sparsification

In the age of Big Data, we have a data deluge. Data is expressed as matrices.
One wonders what is the best way of efficiently generating “sketches” of matrices.
Formally, we define the problem as follows: Given a matrix A € R"™*™ and an
error parameter ¢, construct a sketch A € R"*" of A such that

a4, <
2

and the number of non-zero entries in A is minimized. Here || - || is the spectral
norm of a matrix (the largest singular value), while || - || is the Frobenius form. See
Sect. 1.4.5.

Algorithm 12.4.1 (Matrix sparsification [124]).
1. Input: matrix A € R™*" sampling parameter s.
2.Foralll <i,5 <ndo
2, ||A 2 ~
—If AIQJ < IO%L LAlE S”F then Aij = 0,

2 ~
—elself A7, > IALE then A = Ay,

A . P _ SA?,-
_Elseflij = pi; » with probability p;; = W< 1
0, with probability 1 — p;;

3. Output: matrix A € R**",

An algorithm is shown in Algorithm 12.4.1. When n > 300, and

n (logn) (log2 (n/loan))

s=C
o2

then, with probability at least 1 — 1/n, we have
|a-A| <clal,
2

Theorem 2.17.7 has been used in [124] to analyze this algorithm.
Automatic generation of very large data sets enables the coming of Big Data age.
Such data are often modeled as matrices. A generation of this framework permits
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the modeling of the data by higher-order arrays or tensors (e.g., arrays with more
than two modes). A natural example is time-evolving data, where the third mode of
the tensor represents time [588]. Concentration of measure has been used in [10] to
design algorithms.
d times
—
For any d-mode or order-d tensor A € R ™ ™" *™ 'its Frobenius norm ||.Al| - is
defined as the square root of the sum of the squares of its elements. Now we define
tensor-vector products: let x, y be vectors in R™. Then

n
Axix = E Aijk.ati,

i=1

n
AXQX: E Aijk---ll'j,

i=1
n

Ax3x = E .Aijk...lxk, etc.
i=1

The outcome of the above operations is an order-(d — 1) tensor. The above definition
may be extended to handle multiple tensor-vector products,

n
Ax1xx0y = E Aijiax:iy;,
i=1

which is an order-(d — 2) tensor. Using this definition, the spectrum norm is
defined as

Al = sup  |[AX1x1 - XX,
X1,...,Xg ER™
where all the vectors x1,...,x4 € R™ are unit vectors, i.e., ||x;[, = 1, for all
i € [d]. The notation [d] stands for the set {1,2,...,d}.
d times

NXNX:+Xn
R

Given an order-d tensor A € and an error parameter ¢ > 0,

d times

~ —_—N—
construct an order-d tensor sketch A € R ™*™* """ guch that

J4-4], <4,

and the number of non-zero entries in A is minimized.
Assume n > 300, and 2 < d < 0.5 1n n. If the sampling parameter s satisfies

2

352d /21,3
s—Q<d8 st (A)n lnn>,

€
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then, with probability at least 1 — 1/n,

4=l <4,

Here, we use the stable rank st (A) of the tensor

All2
st (A) = | Hg .
1Al
Theorem 3.3.10 has been applied by Nguyen et al. [10] to obtain the above result

12.5 Further Comments

See Mahoney [589], for randomized algorithms for matrices and data.



Chapter 13
From Network to Big Data

The main goal of this chapter is to put together all pieces treated in previous
chapters. We treat the subject from a system engineering point of view. This chapter
motivates the whole book. We only have space to see the problems from ten-
thousand feet high.

13.1 Large Random Matrices for Big Data

Figure 13.1 illustrates the vision of big data that will be the foundation to
understand cognitive networked sensing, cognitive radio network, cognitive radar
and even smart grid. We will further develop this vision in the book on smart
grid [6]. High dimensional statistics is the driver behind these subjects. Random
matrices are natural building blocks to model big data. Concentration of measure
phenomenon is of fundamental significance to modeling a large number of random
matrices. Concentration of measure phenomenon is a phenomenon unique to high-
dimensional spaces. The large data sets are conveniently expressed as a matrix

X1 Xiz2 - Xip

X Xo1 Xog - Xop Cmxn
= . . . €
Xml Xm2 o an

where X;; are random variables, e.g, sub-Gaussian random variables. Here m, n
are finite and large. For example, m = 100,77 = 100. The spectrum of a random
matrix X tends to stabilize as the dimensions of X grows to infinity. In the last
few years, local and non-asymptotic regimes, the dimensions of X are fixed rather
than grow to infinity. Concentration of measure phenomenon naturally occurs. The
eigenvalues \; (XTX) ,¢ = 1,...,n are natural mathematical objects to study.

R. Qiu and M. Wicks, Cognitive Networked Sensing and Big Data, 567
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The eigenvalues can be viewed as Lipschitz functions that can be handled by
Talagrands concentration inequality. It expresses the insight: The sum of a large
number of random variables is a constant with high probability. We can often treat
both standard Gaussian and Bernoulli random variables in the unified framework of
the sub-Gaussian family.

Theorem 13.1.1 (Talagrand’s Concentration Inequality). For every product
probability P on {—1,1}", consider a convex and Lipschitz function f : R™ — R
with Lipschitz constant L. Let X1, . .., X,, be independent random variables taking
values {—1,1}. Let Y = f(X1,...,Xy) and let MY be a median of Y. Then For
everyt > 0, we have

P([Y —MY| > t) < et /1627, (13.1)
The random variable Y has the following property
Var (Y) < 1612, E[Y]-16L <M[Y]<E[Y]+ 16L. (13.2)

For a random matrix X € R"*" the following functions are Lipschitz functions:

k k
(D Amax (X) 5 (2)Amin (X) 5 (3) Tr (X)3 (4) D Ai (X)3(5) 3 A (X)

i=1

where Tr (X) has a Lipschitz constant of L = 1/n, and X; (X),é = 1,...,n has
a Lipschitz constant of L = 1/4/n. So the variance of Tr (X) is upper bounded by
16/n?, while the variance of \; (X),i = 1,...,n by 16/n. The variance of Tr (X)
is 1/n smaller than that of \; (X),é = 1, ..., n. For example, n = 100, their ratio
is 20 dB. The variance has a fundamental control over the hypothesis detection.
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13.2 A Case Study for Hypothesis Detection in High

Dimensions
Let
X1 Y, S1
X Y, So
x=| . 1|; y=1|.1]; s=|.1]; xysecC"
Xn Yn Sn

The hypothesis detection is written as
Ho:y=x
Hi:y =s+x.
The covariance matrices are defined as
R, =E [xx"] R, =E [yy"”] ,R, =E [ss"], R,,R,, R, € R"".
We have the equivalent form

HQ:Ry:RI

Hi : Ry = R; + R; = Low rank matrix + Sparse matrix.

where R, is often of low rank. When the white Gaussian random vector is
considered, we have

Rz:U2Ian202 R ;
D00

which is sparse in that there are non-zero entries only along the diagonal line. Using
matrix decomposition [590], we are able to separate the two matrices even when
o2 is very small, say the signal to noise ratio SN R = 10~5. Anti-jamming is one
motivated example.

Unfortunately, when the sample size N of the random vector x € R” is
finite, the sparse matrix assumption of R, is not satisfied. Let us study a simple
example. Consider i.i.d. Gaussian random variables X; ~ N (0,1),7 = 1,...,n.
In MATLAB code, we have the random data vector x = randn (n, 1) . So the true
covariance matrix is R, = 02I,,«,. For N dependent copies of x, we define the

sample covariance matrix
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a 1 First Two Columns of Random Sample Covariance Matrix b 03 First Two Columns of Random Sample Covariance Matrix
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Fig. 13.2 Random sample covariance matrices of n x n with n = 100 : (a) N=10; (b) N=100

1 T 1 T nxn
RJ;:Ninxi = XX e R,

where the data matrix is X = [xl Xo - XN] € RN The first two columns

of R, are shown in Fig.13.2 for (a) N = 10 and (b) N = 100. The variance
of case (b) is much smaller than that of case (a). The convergence is measured by
R, - R, =R, — 021,,.,,. Consider the regime

as n— oo, N — oo, %%CE(O,I). (13.3)
Under this regime, the fundamental question is
R, — 02L,un?
Under the regime of (13.3), we have the hypothesis detection
Ho : lfly =R,

Hliﬁ,y:RS—FRm

where R, is a random matrix which is not sparse. We are led to evaluate this
following simple, intuitive test

Tr (Ry> >y +Tr (Rm> , claim H;.
Tr (Ry) <+ Tr (Rw) . claim Ho.

Let us compare the classical likelihood ratio test (LRT).
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13.3 Cognitive Radio Network Testbed

Let us use Fig. 13.3 to represent a cognitive radio network of /N nodes. The network
works for a TDMA manner. When one node, say, ¢ = 1, transmits, the rest of the
nodes ¢ = 2, ..., 80 record the data. We can randomly (or deterministically) choose
the next node to transmit.

13.4 Wireless Distributed Computing

For a segment of M samples, we can form a matrix of N x M. For convenience,
we collect the M data samples into a vector, denoted by x € R or x € CM,
For N nodes, we have x1,...,xy. We can collect the data into a matrix X =
[x1,...,%xn]T € RN*M The entries of the matrix X are (scalar) random variables.
So X is a random matrix.

For statistics, we often start with the sample covariance matrix defined as

Z xx! = %XXT.

The true covariance matrix is R,. Of course one fundamental question is to answer
as a function of

the dimension n.

TaBroadeast  \on-asymptotic theory of

Synch accuracy=1 us é random matrix T3 Broadcast X,
Sampling rate=20 Msps A T - _ | X
Ta Broadcast Y- ] e e . . S —— X = .
Real-time VA R T = =7/ Xy
statistics 4 ! ik = /
In-network . . XF [Xl. Xy XN]
processing e
2.5ms ‘
S T4 Broadcast
TN Broadcas - é
N=80 Distributed computing
M=100 a \ Tk amsrka 1:5 B';o.)dcasl

Xy Xy o Xy

0 \é T x e n

i=1,.., min{M,N} : : :
Data storage X Xappoor Xund oo
Tr (X) Concentration of measure MM MN Sy

Fig. 13.3 Complex network model
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When the sample size N is comparable to the dimension n, the so-called
non-asymptotic random matrix theory must be used, rather than the asymptotic
limits when N and n goes to infinity, i.e., N — oco,n — oo. Concentration
of measure phenomenon is the fundamental tool to deal with this non-asymptotic
regime. Lipschitz functions are the basic building blocks to investigate. Fortunately,
most quantities of engineering interest belong to this class of functions. Examples
include the trace, the largest eigenvalue, and the smallest eigenvalue of X
Tr (X) ,Amax (X) , and Apin (X).

Since the random matrix is viewed as the starting point for future statistical
studies, it is important to understand the computing aspects, especially for some
real-time applications. Practically, the sampling rate of the software-defined radio
node is in the level of 20 Mega samples per second (Msps). For a data segment of
M = 100 samples, the required sampling time is 5 us for eachnode i = 1,..., N.

At this stage, it is the right moment to talk about the network synchronization,
which is critical. The Apollo testbed for cognitive radio network at Tennessee
Technological University (TTU) [591-593] has achieved the synchronization error
of less than 1 s.

The raw data that are collected at each node ¢ = 1,..., N are difficult to
be moved around. It is feasible to disseminate the real-time statistics such as the
parameters associated with the sample covariance matrix. To estimate the 100 x 100
sample covariance matrix for each node, for example we need collect a total of
M = 10,000 sample points, which require the sampling time of 500 us = 0.5 ms. It
is remarkable to point out that the computing time is around 2.5 ms, which is five
times larger than the required sampling time 0.5 ms. Parallel computing is needed to
speed up the wireless distributed computing. Therefore, in-networking processing
is critical.

13.5 Data Collection

As mentioned above, the network works for a TDMA manner. When one node,
say, ¢« = 1, transmits, the rest of the nodes ¢ = 2,...,80 record the data. We can
randomly (or deterministically) choose the next node to transmit. An algorithm can
be designed to control the data collection for the network.

As shown in Fig. 13.4, communications and sensing modes are enabled in the
Apollo testbed of TTU. The switch between two modes are fast.

13.6 Data Storage and Management

The large data sets are collected at each node ¢ = 1,...,80. After the collection,
some real-time in-network processing can be done to extract the statistical param-
eters that will be stored locally at each node. Of course, the raw data can be stored
into the local database without any in-network processing.
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Fig. 13.4 Data collection and storage

It is very important to remark that the data sets are large and difficult to move
around. To disseminate the information about these large data sets, we need rely
some statistical tools to reduce the dimensionality, which is often the first thing to
do with the data. Principal component analysis (PCA) is one such tool. PCA requires
the sample covariance matrix as in the input to the algorithm.

Management of these large data sets is very challenging. For example, how to
index these largest data sets.

13.7 Data Mining of Large Data Sets

At this stage, the data is assumed to be stored and managed property with effective
indexing. We can mine the data for the information that is needed. The goals include:
(1) higher spectrum efficiency; (2) higher energy efficiency; (3) enhanced security.

13.8 Mobility of Network Enabled by UAVs

Unmanned aerial vehicles (UAVs) enable the mobility of the wireless network. It is
especially interesting to study the large data sets as a function of space and time.
The Global Positioning System (GPS) is used to locate the 3-dimensional position
together with time stamps.
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13.9 Smart Grid

Smart Grid requires an two-way information flow [6]. Smart Grid can be viewed
as a large network. As a result, Big Data aspects are essential. In another work,
we systemically explore this viewpoint, using the mathematical tools of this current
book as the new departure points. Figure 13.1 illustrates this viewpoint.

13.10 From Cognitive Radio Network to Complex Network
and to Random Graph

The large size and dynamic nature of complex networks [594-598] enable a
deep connection between statistic graph theory and the possibility of describing
macroscopic phenomena in terms of the dynamic evolution of the basic elements
of the system [599]. In our new book [5], a cognitive radio network is modeled
as a complex network. (The use of a cognitive radio network in a smart grid is
considered [592].) The book [600] also models the communication network as a
random network.

So little is understood of (large) networks. The rather simple question “What
is a robust network?” seems beyond the realm of present understanding [601]. Any
complex network can be represented by a graph. Any graph can be represented by an
adjacency matrix, from which other matrices such as the Laplacian are derived. One
of the most beautiful aspects of linear algebra is the notion that, to each matrix, a set
of eigenvalues can be associated with corresponding eigenvectors. As shown below,
the most profound observation is that these eigenvalues for general random matrices
are strongly concentrated. As a result, eigenvalues—which are certain scalar valued
random variables—are natural metrics to describe the complex network (random
graph). A close analogy is that the spectrum domain of the Fourier transform is
the natural domain to study a random signal. A graph consists of a set of nodes
connected by a set of links. Some properties of a graph in the topology domain is
connected with the eigenvalues of random matrices.

13.11 Random Matrix Theory and Concentration
of Measure

From a mathematical point of view, it is convenient to define a graph—and therefore
a complex network—by means of the adjacency matrix X = {x;;}. Thisisa N x N
matrix defined such that

 [Lif(j) €€
i = {0, it (i,7) ¢ € (134
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For undirected graphs the adjacency matrix is symmetric,' z;; = z;;, and therefore
contains redundant information. If the graph consists of NV nodes and L links, then
the V x N adjacency matrix can be written as

X = UAUT (13.5)
where the N x N matrix U contains as columns the eigenvectors uy,...,uy of X
belonging to the real eigenvalues \; > A3 > ... > Ay and where the diagonal

matrix A = diag ()\;). The basic relation (13.5) equates the topology domain,
represented by the adjacency matrix, to the spectral domain of the graph, represented
by the eigensystem in terms of the orthogonal matrix U of eigenvectors and diagonal
matrix UA.

The topology of large complex networks makes the random graph model
attractive. When a random graph—and therefore a complex network—is studied,
the adjacency matrix X is a random matrix. Let G be an edge-independent random
graph on the vertex set [n] = {1,2,...,n}; two vertices v; and v; are adjacent in
G with probability p;; independently. Here {p;;},_, are not assumed to be equal.
Using the matrix notation, we have that

Tij = P (’Ui ~ ’Uj) = Pij- (136)

As aresult, the study of a cognitive radio network boils down to the study of random
matrix X.

When the elements of x;; are random variables, the adjacency matrix X is a
random matrix. So the so-called random matrix theory can be used as a powerful
mathematical tool. The connection is very deep. Our book [5] has dedicated more
than 230 pages to this topic. The most profound observation is that the spectra of
the random matrix is highly concentrated. The surprisingly striking Talagrand’s
inequality lies at the heart of this observation. As a result, the statistical behavior
of the graph spectra for complex networks is of interest [601].

Our useful approach is to investigate the eigenvalues (spectrum) of the random
adjacency matrix and (normalized ) Laplacian matrix. There is connection between
the spectrum and the topology of a graph. The duality between topology and
spectral domain is not new and has been studied in the field of mathematics called
algebraic graph theory [602, 603]. What is new is the connection with complex
networks [601].

The promising model is based on the concentration of the adjacency matrix
and of the Laplacian in random graphs with independent edges along a line of
research [604—-608]. For example. see [604] for the model. We consider a random
graph GG such that each edge is determined by an independent random variable,
where the probability of each edge is not assumed to be equal, i.e., P (v; ~ v;) =
pi;. Bach edge of G is independent of each other edge.

'Unless mentioned otherwise, we assume in this section that the graph is undirected and that X is
symmetric.
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For random graphs with such general distributions, several bounds for the
spectrum of the corresponding adjacency matrix and (normalized) Laplacian matrix
can be derived. Eigenvalues of the adjacency matrix has many applications in
graph theory, such as describing certain topological features of a graph, such as
connectivity and enumerating the occurrences of subgraphs [602, 609].

The data collection is viewed as a statistical inverse problem. Our results have
broader applicability in data collection, e.g., problems in social networking, game
theory, network security, and logistics [610].
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257,523
Euclidean scalar product, 246, 506
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F
Feature-based detection, 177
Fourier transform, 6-10, 54, 77, 261, 352, 354,
394, 395, 400, 444, 447, 448, 474
Free probability
convolution, 364-365
definitions and properties, 360—362
free independence, 362-364
large n limit, 358
measure theory, 358
non-commutative probability, 359
practical significance, 359-360
random matrix theory, 359
Frobenius norms, 21, 22, 156-158, 180, 200,
202, 206, 217, 246, 256-257, 305,
523
Fubini’s inequality, 51
Fubini’s theorem, 286, 513, 535
Fubini-Tonelli theorem, 23, 26

G

Gaussian and Wishart random matrices,
173-180

Gaussian concentration inequality, 155-156

Gaussian orthogonal ensembles (GOE), 161

Gaussian random matrix (GRM), 55, 56, 178,
192, 342, 353, 361, 373, 498, 500

Gaussian unitary ensemble (GUE), 190, 246

Geometric functional analysis, 271

Global positioning system (GPS), 573

GOE. See Gaussian orthogonal ensembles
(GOE)

Golden-Thompson inequality, 38-39, 86, 91,
322,496

Gordon’s inequality, 168—170

Gordon-Slepian lemma, 182

Gordon’s theorem, 313

GPS. See Global positioning system (GPS)

Gram matrix, 18, 288-289

Greedy algorithms, 372, 384-385

GRM. See Gaussian random matrix (GRM)

Gross, Liu, Flammia, Becker, and Eisert
derivation, 106

Guionnet and Zeitouni theorem, 219

H
Haar distribution, 366, 521
Hamming metric, 150
Hanson-Wright inequality, 380, 383
Harvey’s derivation
Ahlswede-Winter inequality, 87-89
Rudelson’s theorem, 90-91
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Heavy-tailed rows
expected singular values, 319
isotropic vector assumption, 317
linear operator, 317
non-commutative Bernstein inequality,
317-318
non-isotropic, 318-319
Hermitian Gaussian random matrices (HGRM)
m, n, o2, 59-60
n, 02, 55-59
Hermitian matrix, 17-18, 85, 86, 361-362
Hermitian positive semi-definite matrix,
265-266
HGRM. See Hermitian Gaussian random
matrices (HGRM)
High dimensional data processing, 459
High-dimensional matched subspace detection
Balzano, Recht, and Nowak theorem, 516
binary hypothesis test, 514
coherence of subspace, 515
projection operator, 515
High-dimensional statistics, 416-417
High-dimensional vectors
Arias-Castro theorem, 512-514
average Bayes risk, 511
operator norm, 512
subspace detection, compressive sensing
Azizyan and Singh theorem, 518-519
composite hypothesis test, 517
hypothesis test, 516
low-dimensional subspace, 516
observation vector, 517
projection operator, 517
worst-case risk, 511
High-dimensions
PCA (see Principal component analysis
(PCA))
two-sample test
Haar distribution, 521
Hotelling T2 statistic, 520-521
hypothesis testing problem, 520
Kullback-Leibler (KL) divergence, 521
Lopes, Jacob and Wainwright theorem,
522-525
random-random projection method,
521
Hilbert-Schmidt inner product, 436
Hilbert-Schmidt norm, 200, 202, 206, 217,
246, 479, 482, 523
Hilbert-Schmidt scalar product, 159
Hoeffding’s inequality, 12-14, 149-150
Holder’s inequality, 26, 303
Homogeneous linear constraints, 540
Hypothesis detection, 525-526
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I
Information plus noise model
sums of random matrices, 492-494
sums of random vectors, 491-492
Intrusion/activity detection, 459
Isometries, 46, 314, 385, 413, 414

J

Jensen’s inequality, 30, 45, 210, 256, 513

Johnson—Lindenstrauss (JL) lemma
Bernoulli random variables, 376
Chernoff inequalities, 376
circulant matrices, 384
Euclidean space, 374
Gaussian random variables, 376
k-dimensional signals, 377
linear map, 375
Lipschitz map, 374-375
random matrices, 375
union bound, 377

K

Kernel-based learning, 289

Kernel space, 491

Khinchin’s inequality, 64, 70-71

Khintchine’s inequality, 140-144, 381, 534

Klein’s inequality, 40-41

Kullback-Leibler (KL) divergence, 510, 511,
513,521

Ky Fan maximum principle, 201

L
Laguerre orthogonal ensemble (LOE), 348
Laguerre unitary ensemble (LUE), 348
Laplace transform, 6, 8, 61, 63, 64, 108,
130-131, 147
Laplacian matrix, 575-576
Large random matrices, 351-352
data sets matrix, 567
eigenvalues, 568
linear spectral statistics (see Linear spectral
statistics)
measure phenomenon, 567
Talagrand’s concentration inequality, 568
trace functions, 249
Liapounov coefficient, 77
Lieb’s theorem, 42-43
Limit distribution laws, 352
Linear bounded and compact operators, 79-80
Linear filtering, 134136
Linear functionals, 134, 146, 151, 153, 253,
264, 276, 302, 307, 504
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Linear matrix inequality (LMI), 412, 528, 536

Linear regression model, 423426
Linear spectral statistics
Euclidean norm, 246
GUE, 246
Klein’s lemma, 248-249
Lipschitz function, 246-247
log-Sobolev inequality, 247, 248
total variation norm, 247
trace functions, 249
Lipschitz functions, 146, 148, 202, 204208,
210, 216, 217, 224, 265-266, 313,
568, 572

Logarithmic Sobolev inequality, 193-194, 219,

244,248
Log-concave random vectors, 275-277,
290-295
Lowner-Hernz theorem, 35
Low rank matrix approximation, 559-560
Low-rank matrix recovery
compressed sensing, 411
error bounds
Gaussian operator mapping, 419
noise vector, 419
SDP, 419-420
standard matrix compressed sensing,
419
Gaussian vector, 412
hypothesis detection, 415-416
linear mapping, 411
RIP, 412
SDP, 412-413
sparsity recovery, 411
tools for, 439-440

M

Machine learning, 459
Marcenko-Pastur distribution, 502
Marcenko-Pasture law, 353

Markov’s inequality, 5, 27, 100-101, 194, 380,

382, 535, 539
Masked covariance estimation

classical bias-variance decomposition, 464

complexity metrics, 466467
decaying matrix, 465

matrix concentration inequalities, 463-464

multivariate normal distributions, 466

root-mean-square spectral-norm error, 464

WSS, 467
Matrix Chernoff I-tropp, 121-122
Matrix Chernoff II-tropp, 122-123
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Matrix completion
Bernsterin’s inequality, 433
convex deconvolution method, 434
Frobenius/Hilbert-Schmidt norm, 430
noncommutative bernstein inequality,
432-433
nuclear norm, 430
orthogonal decomposition and orthogonal
projection, 430-432
Recht analyze, 432
replacement sampling, 432
Schatten 1-norm, 434
SDP, 430
sparse corruptions, 433434
spectral norm, 430
Matrix compressed sensing
error bounds (see Low-rank matrix
recovery)
Frobenius/trace norm, 417
linear observation model, 417-418
nuclear norm regularization, 418
restricted strong convexity, 418419
Matrix concentration inequalities, 463—464
Matrix hypothesis testing, 494-495
Matrix laplace transform method
Ahlswede-Winter’s derivation
Bernstein trick, 97, 102
binary I-divergence, 103
Chebyshev inequality, 101
hypothesis detection, 95-97
Markov inequality, 100-101
matrix order, 98
matrix-valued Chernoff bound, 104-105
partial order, 97
ratio detection algorithm, 99
weak law of large numbers, 101-102
Gross, Liu, Flammia, Becker, and Eisert
derivation, 106
Harvey’s derivation
Ahlswede-Winter inequality, 87-89
Rudelson’s theorem, 90-91
Oliveria’s derivation, 94-95
Recht’s derivation, 106—-107
Tropp’s derivation, 107
Vershynin’s derivation, 91-94
Wigderson and Xiao derivation, 107
Matrix multiplication
Frobenius norm, 564
norm inequalities, 563—564
spectral norm error, 563
sums of random matrices, 562
weighted sum of outer products, 562
Matrix restricted isometry property, 413-414
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Matrix sparsification, 564—565
Matrix Taylor series
convergence of, 211-212
truncation error bound
Cayley-Hamilton theorem, 213
cosine function, 212
matrix function, 213-214
matrix-valued fluctuation, 214-215
Newton identities, 213
oco—norm, 212
positive semidefinite matrix, 215
trace function fluctuation, 214
unitarily invariant norm, 214-215
Matrix-valued random variables
Bennett and Bernstein inequalities,
125-127
Chernoff bounds, 131-134
cumulate-based matrix-valued laplace
transform method, 108—109
dimension-free inequalities, 137-140
expectation controlling, 119-121
Golden-Thompson inequality, 86
Hermitian matrix, 85, 86
Khintchine’s inequality, 140-144
linear filtering, 134-136
matrix cumulant generating function,
110-111
matrix Gaussian series, 115-118
matrix generating function, 109-110
matrix laplace transform method (see
Matrix laplace transform method)
minimax matrix laplace method, 128
nonuniform Gaussian matrices, 118-119
positive semidefinite matrices, 144
random positive semidefinite matrices

Chernoff moment generating function,

123-125
Matrix Chernoff II-tropp, 122-123
Matrix Chernoff I-tropp, 121-122
self-adjoint operator, 85
tail bounds, 111-114, 128-131
McDiarmid’s inequality, 355, 516
Measure concentration
chi-square distributions, 146-148
dimensionality, 145
Dudley’s inequality, 162—165
eigenvalues (see Eigenvalues)
Gaussian and Wishart random matrices,
173-180
Gaussian random variables, 161-162
GOE, 161
Hilbert-Schmidt scalar product, 159
induced operator norms
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Cauchy-Schwarz inequality, 167
concentration inequalities, 166
discretization arguments, 171-173
Gordon’s inequality, 168—170
{so-operator norm, 165
matrix inner product, 166
sparsity, 171
spectral norm, 165
zero-mean Gaussian process, 167
operator norms, 180-185
random vectors
Banach space, 158-159
convex function, 153
Frobenius norm, 156-158
Gaussian concentration inequality,
155-156
Hoeftding type inequality, 149-150,
155
linear functionals, 151
Lipschitz function, 148
median, 151
projections, 194-198
standard Gaussian measure, 154
Talagrand’s concentration inequality,
152-153
variance, 151
Slepian-Fernique lemma, 160-161
sub-Gaussian random matrices, 185—-189
Measure theory, 358
Median, 71, 118, 120, 135, 136, 149, 151-154,
159, 161, 162, 190, 193, 195, 198,
216, 222, 224, 239-242, 244, 252,
258, 313, 325, 568
Mercer’s theorem, 288—289
Minimax matrix laplace method, 128
Minkowski’s inequality, 308, 382
Moment method, 353-354
improved moment bound, 242
k-th moment, 239
lower Bai-Yin theorem, 241
Markov’s inequality, 240
median of o1 (A), 239, 240
moment computation, 241
operator norm control, 238
second moments, 238-239
standard linear algebra identity, 238
strong Bai-Yin theorem, upper bound,
242-243
weak Bai-Yin theorem, upper bound, 242
weak upper bound, 240-241
Monte-Catrlo algorithms, 310
Monte-Carlo simulations, 528, 530
Multi-spectral approach, 459
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Multi-task matrix regression, 427-429

Multiuser multiple input single output (MISO)
problem, 543

Multivariate normal distributions, 466

N

Neumann series, 200, 264, 354, 355

Neyman-Pearson fundamental lemma, 512

Non-communtative random matrices, 525-526

Non-commutative Bernstein inequality,
317-318, 516

Non-commutative polynomials, 222-223

Non-contiguous orthogonal frequency division
multiplexing (NC-OFDM), 457,
459-461

Nonconvex quadratic optimization, 531-532,
539-542

Nonuniform Gaussian matrices, 118-119

Nuclear norm, 22, 180, 412, 418, 430, 449,
453, 479

(0]

Oliveria’s derivation, 94-95

Orthogonal frequency division multiple access
(OFDMA), 558

Orthogonal frequency division multiplexing
(OFDM) radar, 487

Orthogonal matrix, 575

P
Paouris’ concentration inequality, 290-292
Parallel computing, 572
Partial random Fourier matrices, 384
PCA. See Principal component analysis (PCA)
Peierls-Bogoliubov inequality, 36-37
Phase retrieval via matrix completion
matrix recovery via convex programming,
446447
methodology, 444-446
phase space tomography, 447-449
self-coherent RF tomography (see
Self-coherent RF tomography)
Pinsker’s inequality, 513
Poincare inequality, 256, 295
Positive semi-definite matrices, 18-20, 44, 144
Principal component analysis (PCA), 347-348,
573
inconsistency, 490
noisy samples, 489
SDP formulation, 489
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subspace of maximal variance, 488
Probabilistically secured joint amplify-and-
forward relay
cooperative communication, 547
proposed approach
Bernstein-type inequalities, 556
Bernstein-type inequality, 552-553
eigen-decomposition, 555
Frobenius norm of matrix, 553
Monte Carlo simulation, 556
NP-hard problem, 554
safe tractable approximation approach,
552
SDP problem, 554, 555
semidefinite matrix, 553
violation probability, 555
safe means approximation, 548
simulation results, 556558
system model
expectation operator, 550
first and second hop function diagram,
548, 549
optimization problems, 552
received signal plus artificial noise, 548,
550
SINR, 549-551
transmitted signal plus cooperative
jamming, 549-550
two-hop half-duplex AF relay network,
548
tractable means approximation, 548
Probability
Bregman divergence, 40
characteristic function, 7
Chebyshev’s inequality, 5-6
Chernoff bound, 6
Chernoff’s inequality, 30-31
convergence, 30
Courant-Fischer characterization,
eigenvalues, 4647
dilations, 43-44
eigenvalues and spectral norms, 32-33
expectation, 23-26, 32, 45
f(A) definition, 20-21
Fourier transform, 6-8
Golden-Thompson inequality, 38-39
Hermitian matrices, 17-18
independence, 4
isometries, 46
Jensen’s inequality, 30
laplace transform, 8
Lieb’s theorem, 4243
Markov inequality, 5
matric norms, 21-22
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Probability (cont.)
matrix exponential, 38
matrix logarithm, 39
moments and tails, 26-29
operator convexity and monotonicity, 35
partial order, 44
positive semidefinite matrices, 18-20, 44
probability generating function, 8-9
quantum relative entropy, 40-42
random variables, 4-5
random vectors, 29-30
semidefinite order, 45
spectral mapping, 33-35
trace and expectation commute, 45
trace functions, convexity and
monotonicity, 36-37
union bound, 3—4
Probability constrained optimization
chance-constrained linear matrix
inequalities, 542-543
distributed robust optimization, 556
OFDMA, 558
probabilistically secured joint AF relay
(see Probabilistically secured joint
amplify-and-forward relay)
problem
Bernstein-type concentration
inequalities, 545-546
closed-form upper bounds, 546, 547
convex conic inequalities, 546
covariance matrix estimation, 528-529
CSI, 544
decomposition approach, 547
MISO, 543
multi-antenna transmit signal vector,
543
real vector space, 528
semidefinite relaxation, 545
setup, 527
SINR, 544
tractable approximations, 528
sums of random symmetric matrices
(see Sums of random symmetric
matrices)
Probability generating function, 8-9

Q

Quadratic forms, 249-250
Bechar theorem, 254-255
Cauchy-Schwartz inequality, 250
centering matrix, 252
complex deterministic matrix, 252-254
complex-valued quadratic forms, 255
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concentration of quadrics, 257

convex and 1-Lipschitz function, 250, 253

convexity, 251

El Karoui lemma, 254

Euclidean norm, 250

f(x) function, 250-251

Gaussian random variables, 256

Gaussian random vector, 257

Lipschitz coefficient, 251

Lopes, Jacob,Wainwright theorem,

255-257

real-valued quadratic forms, 255-256

uncenterted correlation matrix, 251
Quantum information divergence, 40-42
Quantum relative entropy, 4042

R
Rademacher averages and symmetrization,
69-71
Rademacher random variables, 69, 70, 115,
116, 283, 285, 437
Random access memory (RAM), 310
Randomly perturbed linear matrix inequalities,
530-531, 536-537
Random matrices
Bernoulli random variables, 388, 391
Brunn-Minkowski inequality, 272
commonly encountered matrices, 365
concentration inequality, 385
concentration of singular values
non-asymptotic estimates, 324
random and deterministic matrices,
329-331
random determinant, 331-334
random matrix theory, 324
rectangular matrices, 327-329
sample covariance matrices, 325-326
sharp small deviation, 325
square matrices, 326-327
sub-Gaussian random variables, 324
tall matrices, 326
convergence laws, 365-366
conversion into random vectors, 7678
covariance matrices, independent rows
absolute constant, 286287
bounded random vector, 287
complexity theory, 282
Fubini’s theorem, 286
Gaussian coordinates, 282
integral operators, 288-289
inverse problems, 289-290
isotropic position, 281
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Lebesgue measure, 281
Rademacher random variables, 285
scalar-valued random variables, 286
symmetric random variables, 284
symmetrization theorem, 283-284
vector-valued random variable, 285
covariance matrix estimation
arbitrary distributions, 321-322
Golden-Thompson inequality, 322
MSR, 322-323
MWR, 323
sub-Gaussian distributions, 320-321
dual norm, 272
e-cover, 386-387
Euclidean ball, 385-386
Euclidean norm, 272, 384
Fourier method, 54
free probability (see Free probability)
Gaussian chaos, 389
geometric functional analysis, 271
greedy algorithms, 384-385
HGRM
m, n, o2, 59-60
n, 02, 55-59
independent entries, 313-314
independent rows
Dvoretzky’s theorem, 315
heavy-tailed rows (see Heavy-tailed
TOWS)
infinite-dimensional function, 314
sub-Gaussian, isotropic random vectors,
315
invertibility of, 334-336
isotropic convex bodies, 273-275
isotropic, log-concave random vectors
non-increasing rearrangement and order
statistics, 292-293
Paouris’ concentration inequality,
290-292
sample covariance matrix, 293-294
large (see Large random matrices)
log-concave random vectors, 275-277
low rank approximation
functional-analytic nature, 311
linear sample complexity, 311
matrix-valued random variables, 311
Monte-Carlo algorithms, 310
numerical rank, 311
RAM, 310
spectral and Frobenius norms, 310
SVD, 310, 313
matrix-valued random variables, 305-309
moment estimates
convex measures, 303-305
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isotropic log-concave random vectors,
299-303
moment method, 54-55, 353-354
noncommuntative random matrices,
525-526
noncommutative polynomials, 222-223
non-empty compact, 272-273
OFDM modulation waveform, 273
Rudelson’s theorem, 277-281
small ball probability, 295-299
spectral properties, 271
Stieltjes transform domain, 261-264
Stirling’s formula, 389-390
sums of two random matrices, 235-237
symmetric convex body, 272
threshold, 391-392
universality of singular values (see
Universality of singular values)
Wigner random matrices (see Wigner
random matrices)
Wishart random matrices (see Wishart
random matrices)
Random matrix detection
Chebyshev’s inequality, 496
commutative matrices, 495-497
commutative property, 498-499
Golden-Thompson inequality, 496, 498
hypothesis testing problem, 497
Lieb’s theorem, 497
matrix-valued random variable, 496
Monto Carlo simulations, 499, 500
probability of detection, 497
product rule of matrix expectation, 499-500
Random matrix theory
low rank perturbation, Wishart matrices,
503
sparse eigenvalues, 503
spectral methods, 502-503
Random Toeplitz matrix, 408-410
Random variables, 4-5
Random vectors, 29-30
Banach space, 158-159
convex function, 153
Frobenius norm, 156158
Gaussian concentration inequality, 155-156
Hoeftding type inequality, 149-150, 155
linear functionals, 151
Lipschitz function, 148
median, 151
projections, 194-198
standard Gaussian measure, 154
Talagrand’s concentration inequality,
152-153
variance, 151
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Ratio detection algorithm, 99
Rayleigh-Ritz theorem, 488
Received signal strength (RSS), 460
Recht’s derivation, 106—-107
Recovery error bounds, 414415
Restricted isometry property (RIP), 372,
414415
compressive sensing (CS), 377
Grammian matrix, 378
JL, 378-379
partial random circulant matrices
arbitrary index, 393
Dudley’s inequality for chaos, 396
Euclidean unit ball, 393
Fourier domain, 400
Fourier representation, 394-395
integrability of chaos processes,
395-396
L-sub-Gaussian random variables, 399
Rademacher vector, 393, 398
restricted isometry constant, 399
tail bound for chaos, 397-398
vector-valued random process, 398
randomized column signs, 378-379
time-frequency structured random matrices
Gabor synthesis matrices, 400—403
Hermitian matrices, 402
Rademacher/Steinhaus chaos process,
401, 403-405
Rademacher vector, 401
time-frequency shifts, 400
wireless communications and radar, 402
Root-mean-square spectral-norm error, 464
Rounding errors, 212
Row sampling, 560-561
Rudelson’s theorem, 90-91, 277-281

S
Safe tractable approximation, 537-539
Sample covariance matrix, 471-474
Scalar-valued random variables

Bernstein’s inequality, 14-16

central limit theorem, 9—11

Chebyshev’s inequality and independence,

12

Efron-Stein inequality, 17

expectation bound, 12

Hoeftding’s inequality, 12—14
Scenario approximation, 528
Schatten 2-norm, 200, 202, 206, 217, 246, 523
Schatten-p norm, 21
Schatten g-norm, 461
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SDP. See Semidefinite programming (SDP)
Self-coherent RF tomography
Born iterative method, 454-455
DWBA, 454
Green’s function, 454
Matlab-based modeling system, 453
phase retrieval problem, 452-453
rank function, 453
system model, 449-452
Semicircle law, 353
Semidefinite programming (SDP), 412413,
506-507, 541-542
Semidefinite relaxation, 540
Shannon entropy, 374
Signal plus noise matrix model, 341
autocorrelation sequence, 468, 469
Hilbert-Schmidt norm, 479, 482
orthogonal projections, 480
quadratic functional, low-rank matrices,
484-485
rank-r projections, 481, 482
sample covariance matrix, 471-474
Schatten-p norm, 479
singular value, 484
tridiagonal Toeplitz matrix, 469471
universal upper bound, 483
upper bound, Gaussian matrices, 483
white Gaussian noise, 468, 469
Singular value decomposition (SVD), 310,
312,313
Skew-Hermitian matrix, 201
Slepian-Fernique lemma, 160-161
Smart Grid, 574
Smooth analysis, 335
Space-time coding combined with CS, 490
Sparse principal components
detection
concentration inequalities, k-sparse
largest eigenvalue, 504-505
hypothesis testing with A¥max,
505-506
test statistic, 503
empirical covariance matrix, 491
Gaussian distribution, 490
identity matrix, 490-491
Kernel space, 491
semidefinite methods
high probability bounds, convex
relaxation, 508
hypothesis testing with convex methods,
508-509
semidefinite relaxation, 506-507
sphericity hypothesis, 490
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Sparse vector estimation, 509-510
Spectral mapping theorem, 33-35, 86, 94-95
Sphericity test, 501-502
Spielman-Teng’s conjecture, 336
Standard Gaussian measure, 154
Stein’s method, 347
Stieltjes transform, 237
Azuma’s inequality, 262-263
deterministic matrix, 357
Fourier transform, 354
hypothesis testing problem, 263-264
McDiarmid’s inequality, 355
Neumann series, 264, 354-355
quadratic form, 356
random matrix, 356
R-and S-transforms, 365, 367-368
sample covariance matrix, 261-262
Schur complements, 355-356
semicircular law, 358
spectral theory, 354
sum of martingale differences, 262
sum of N rank-one matrices, 261
Taylor series, 264
Stirling’s formula, 388
Stochastic processes, 75
Strong subadditivity (SSA), 265, 266
Structured random matrices, 384
Sub-exponential random variables, 66—67
Sub-Gaussian random matrices, 185-189
Sub-Gaussian random variables, 60-64
Sub-Gaussian random vectors, 65-66, 72-75
Submatrices, 237
Sums of random symmetric matrices
Khintchine-type inequalities, 534
Nemirovski theorem, 532-534
nonconvex quadratic optimization,
orthogonality constraints, 531-532,
539-542
randomly perturbed linear matrix
inequalities, 530-531, 536-537
safe tractable approximation, 537-539
So theorem, 534-535
typical norm, 529-530
Suprema of chaos processes, 405-408
Symmetrization theorem, 283-284

T

Talagrand’s concentration inequality, 152—153,
191-192, 216-218, 258, 313, 568

Taylor series, 212, 264

Tensor sparsification, 565-566

Trace functionals, 243-244

Tracy-Widom distribution, 345-346
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Tracy-Widow law, 243

Tridiagonal Toeplitz matrix, 469-471
Tropp’s derivation, 107

Truncated errors, 212

U
1-unconditional isotropic convex body, 291
Union bound, 3-4, 28, 106, 117, 176, 187, 295,
315, 316, 376, 377, 379, 386, 388,
427,428, 563
Unitary invariance, 33
Universality of singular values
covariance and correlation matrices
PCA, 347-348
singular value decomposition, 345
Stein’s method, 347
sub-exponential decay, 345
Tracy-Widom distribution, 345-346
deterministic matrix, 341-345
Gaussian models, 337-338
least singular value, 339
normalizations, 337
Poisson point process, 337
rectangular matrices, 339-340
Unmanned aerial vehicles (UAVs), 573

v
Vershynin’s derivation, 91-94
von Neumann algebras, 361
von Neumann divergence, 40-42
von Neumann entropy functions, 264-267
von Neumann entropy penalization
Hermitian matrices, 434-435
low rank matrix estimation
orthogonal basis, 436437
system model and formalism, 435-436

w
Weak law of large numbers, 101-102
Weak monotonicity, 265, 266
‘White Gaussian noise, 468
Wide-sense stationary (WSS), 467
Wigderson and Xiao derivation, 107
Wigner matrix, 353, 355, 364
Wigner random matrices
Guionnet and Zeitouni theorem, 219
Herbst theorem, 219
Hermitian Wigner matrix, 218
Hoffman-Wielandt lemma, 219, 220
hypothesis testing, 221
normalized trace function, 221
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Wigner random matrices (cont.) Deylon theorem, 227-228
scaling, 218 Euclidean operator norm, 223
Stein’s method, 221 Guntuboyina and Lebb theorem, 224-225
Wishart matrix, 221 independent mean zero entries, 223
Wigner semicircle distribution, 353 Jiang theorem, 231-233
Wigner’s trace method, 238 Lipschitz function, 224
Wireless distributed computing, 458, 571-572 low rank perturbation, 503
Wishart random matrices Meckes and Meckes theorem, 233-235
CDF, 224 sample covariance matrix, 226227

Chatterjee theorem, 228-231 WSS. See Wide-sense stationary (WSS)
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