Ashok B. Mehta

SystemVerilog
Assertions and
Functional Coverage

Guide to Language, Methodology and
Applications

Second Edition

EXTRAS ONLINE

SystemVerilog Assertions and
Functional Coverage

Ashok B. Mehta

SystemVerilog Assertions
and Functional Coverage

Guide to Language, Methodology
and Applications

Second Edition

@ Springer

Ashok B. Mehta
Los Gatos, CA
USA

Additional material to this book can be downloaded from http://extras.springer.com.

ISBN 978-3-319-30538-7 ISBN 978-3-319-30539-4 (eBook)
DOI 10.1007/978-3-319-30539-4

Library of Congress Control Number: 2016932750

© Springer International Publishing Switzerland 2014, 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

http://extras.springer.com

To
My dear wife Ashraf Zahedi
and

My dear parents Rukshamani
and Biren Mehta

Foreword

Louis H. Sullivan, an American architect, considered the father of the modern
skyscraper, and mentor to Frank Lloyd Wright, coined the phrase ‘form follows
function.” The actual quote is ‘form ever follows function’ which is a bit more
poetic and assertive than the version that has found its way into the common
vernacular. He wrote those words in an article written for Lippincott’s Magazine
#57 published in March 1896. Here is the passage in that article that contains the
famous quote:

“Whether it be the sweeping eagle in his light or the open apple-blossom, then toiling work
horse, the blithe swan, the branching oak, the winding stream at its base, the drifting clouds—
over all the coursing sun, form ever follows function, and this is the law. Where function does
not change, form does not change. The granite rocks, the ever brooding hills, remain for ages;
the lightning lives, comes into shape, and dies, in a twinkling.

It is the pervading law of all things organic and inorganic, of all things physical and
metaphysical, of all things human and all things superhuman—of all true manifestations
of the head, of the heart, of the soul—that the life is recognizable in its expression, that
form ever follows function. This is the law.”

Earlier in the article, Sullivan foreshadows his thought with this passage:

“All things in nature have a shape, that is to say, a form, an outward semblance, that tells us
what they are, that distinguishes them from ourselves and from each other.”

The precise meaning of this pithy phrase has been debated in art and architecture
circles since Sullivan’s article was first published. However, it is widely accepted to
mean that the form of something—its shape, color, size, etc.—is related to what it
does. Water flows, rocks sit, and birds fly.

In his book ‘The Design of Everyday Things,” (Basic Books 1988) Don Norman
discusses a similar concept, the notion of affordances. Norman defines the term as
‘... the perceived and actual properties of the thing, primarily those fundamental
properties that determine just how the thing could possibly be used.” He cites some
examples: ‘A chair affords (“is for”) support and, therefore, affords sitting. A chair

vii

viii Foreword

can also be carried. Glass is for seeing through, and for breaking. Wood is normally
used for solidity, opacity, support or carving.’

Norman’s idea turns Sullivan’s upside down. He is saying function follows
form. The shape, color, size, etc., of an object affects what it does. Nonetheless,
both men would likely agree that form and function, whichever drives the other, are
inextricably linked.

Software designers have the luxury of choosing the form to fit the function. They
are not as constrained by the laws of physics as say, a cabinetmaker. The cabi-
netmaker must choose materials that will not only look nice, but will withstand the
weight of books or dishes or whatever is to be placed on the shelves. Software
designers have some constraints with regard to memory space and processing time,
but beyond that they have a lot of freedom to build whatever comes to mind.

Sullivan referred to ‘all things physical and metaphysical.” Without much of a
stretch, we can interpret that to include software, a most abstract human creation.
The form of a piece of software is linked to its function. The complex software that
verification engineers build, called a testbench, must be designed before it can be
built. The verification engineer, like an architect, must determine the form of his
creation.

The architecture space is wide open. Computer code, while much more abstract
than say, a staircase or a door handle on a car, has a form and a function. The form
of computer code is the set of syntactic elements strung together in a program. The
function is what the program does when executed, often referred to as its semantics.

A verification engineer is typically presented a set of requirements, often as a
design specification, and asked to build a testbench that meets these requirements.
Because of the tremendous flexibility afforded by the software medium, he must
choose the form carefully to ensure that not only meets the requirements, but is easy
to use, reusable, and robust. He must choose a form that fits the function.

Often an assertion is just the right thing to capture the essence of some part of a
design. The form of an assertion is short sequence of text that can be inserted easily
without disrupting the design. With their compact syntax and concise semantics,
assertions can be used to check low-level invariants, protocols, or end-to-end
behavior.

The function of an assertion, in a simulation context, is to assert that something
is always (or never) the case. It ensures that invariants are indeed invariant.
Assertions can operate as checkers or as coverpoints. The fact that they can be
included in-line in RTL code or in separate checkers and that they can be short or
long for simple or complex checking makes them invaluable in any testbench.

The wise verification engineer uses all the tools as his disposal to create an
effective and easy-to-use testbench. He will consider the function of the testbench
and devise a form that suits the required function. Assertions are an important part
of any testbench.

Ashok Mehta has written a book that makes assertions accessible. His approach is
very pragmatic, choosing to show you how to build and use assertions rather than
engage in a lot of theoretical discussion. Not that theoretical discussion is irrelevant—
it is useful to understand the theoretical underpinnings of any technology. However,

Foreword ix

there are many other books on that topic. This book fills a gap for practicing engineers
where before no text provided the how-tos of building and using assertions in a
real-world context.

Ashok opens up the world of assertions to verification engineers who may have
thought them too opaque to consider using in a real testbench. He does an espe-
cially nice job of deconstructing assertions to show how they work and how to write
them. Through detailed examples, he shows all the pieces that go into creating
assertions of different kinds, and how they fit together. Ashok completes the picture
by demonstrating how assertions and coverage fit together.

Part of the book is devoted to functional coverage. He deconstructs the some-
times awkward SystemVerilog syntax of covergoups and coverpoints. Like he has
with assertions, he takes the mystery out of building a high-quality coverage model.

With the mysteries of assertions unmasked, you can now include them in your
personal vocabulary of testbench forms. This will enable you to create testbenches
with more sophisticated function.

February 2013 Mark Glasser

Preface to the Second Edition

The first edition of this book was well received, and the readers provided many a
good suggestion on further elaboration of language semantics. Readers also pointed
out some errata on the language syntax. I am greatly indebted to the readers and
colleagues for their input and support. In addition, the IEEE 1800-2012 LRM came
along. Many features of the 2012 LRM were missing in the first edition, since the
LRM was not ready yet. This edition incorporates the errata/suggestions from
readers as well as the IEEE 1800-2012 feature set. Among many, features such as
‘checkers,’ ‘let declarations,” past and future global clock sampled value functions,
strong and weak properties, abort properties, and ‘.triggered’ end point detection
method are included. Furthermore, this edition adds many more examples and adds
further clarification of the semantic nuances of the language.
Pleasant reading.

xi

Preface to the First Edition

Having been an end user of EDA tools for over 20 years, I have seen that many new
technologies stay on wayside because either the engineers do not have time to learn
these new technologies/languages or the available material is too complex to digest.
A few years back I decided to tackle this problem by creating a very practical,
application-oriented down-to-earth SystemVerilog Assertions (SVA) and functional
coverage (FC) class for professional engineers. The class was well received, and 1
received a lot of feedback on making the class even more useful. That culminated in
over 500 slides of class material just on SVA and FC. Many suggested that I had
collected enough material for a book. That is how I ended up on this project with
the same goal that the reader should understand the concept clearly in an easy and
intuitive manner and be able to apply the concepts to real-life applications right
away.

The style of the book is such that the concepts are clarified directly in a slide
style diagram with talking points. This will hopefully make it easy to use the book
as a quick reference as well. Applications immediately following a topic will further
clarify the subject matter, and my hope is that once you understand the semantics
and applications of a given topic, you are ready to apply that to your daily design
work. These applications are modeled such that you should be able to use them in
your design with minimal modifications.

This book is meant for both design and verification engineers. As a matter of
fact, I have devoted a complete section on the reasons and practicality behind
having micro-level assertions written by the design engineers and macro-level
assertions written by verification engineers. Gone are the days when designers
would write RTL and throw it over the wall for the verification engineer to quality
check.

The book covers both IEEE 1800-2005 and IEEE 1800-2009/2012 standard
SVA language.

Chapter 1 is introduction to SVA and FC giving a brief history of SVA evo-
Iution. It also explains how SVA and FC fall under SystemVerilog umbrella to
provide a complete assertions and functional coverage-driven methodology.

Xiii

Xiv Preface to the First Edition

Part I: SystemVerilog Assertions (SVA)

Chapter 2 goes in-depth on SVA-based methodology providing detail that you can
right away use in your project execution. Questions such as ‘How do I know I have
added enough assertions?’, ‘What type of assertions should I add’, etc., are
explained with clarity.

Chapter 3 describes immediate assertions. These are non-temporal assertions
allowed in procedural code.

Chapter 4 goes into the fundamentals of concurrent assertions to set the stage for
the rest of the book. How the concurrent multi-threaded semantics work, when and
how assertions get evaluated in a simulation time tick, formal arguments, disabling,
etc., are described here.

Chapter 5 describes the so-called sampled value functions such as $rose, $fell,
$stable, $past, etc.

Chapter 6 is the big one! This chapter describes all the operators offered by the
language including clock delay with and without range, consecutive repetition with
and without range, non-consecutive repetition with and without range, ‘through-
out,” ‘within,” ‘and,” ‘or,” ‘intersect,” ‘first_match,” and ‘if...else,”. Each of the
operator descriptions is immediately followed by examples and applications to
solidify the concept.

Chapter 7 describes the system functions and tasks such as $isunknown and
$onehot.

Chapter 8 discusses a very important aspect of the language that being properties
with multiple clocks. There is not a single design nowadays that uses only a single
clock. A simple asynchronous FIFO will have a read clock and a write clock which
are asynchronous. Properties need to be written such that check in one clock
domain triggers a check in another clock domain. The chapter goes in plenty detail
to demystify semantics to write assertions that cross clock domains. The so-called
CDC (Clock Domain Crossing) assertions are explained in this chapter.

Chapter 9 is probably the most useful one describing local variables. Without
this multi-threaded feature, many of the assertions would be impossible to write.
There are plenty of examples to help you weed through the semantics.

Chapter 10 is on recursive properties. These are rarely used but are very handy
when you want to know that a property holds until another becomes true or false.

Chapters 11-13 describe other useful features such as ‘expect,” ‘assume,” and
detecting end point of a sequence. The .triggered and .matched end points of
sequences are indeed very practical features. Note that .ended (of LRM 2005) is
now deprecated and replaced with .triggered.

Chapter 14 is entirely devoted to very powerful and practical features that do not
quite fit elsewhere. Of main interest, here is the example/testbench for asyn-
chronous FIFO checks, concurrent assertions in procedural code, sequence in
Verilog ‘always’ block sensitivity list, and the phenomenon of a ‘vacuous pass’ !

Chapter 15 is solely devoted to asynchronous assertions. The example in this
chapter shows why you need to be extremely careful in using such assertions.

Preface to the First Edition XV

Chapter 16 is entirely devoted to IEEE 1800 2009-2012 features. There are
many useful features added by the language designers.

Chapter 17 describes 6 LABs for you to try out. The LABs start with simple
example moving gradually onto complex ones.

Note: The LABs are available on Springer download site. All required Verilog
files, testbenches, and run scripts are included for both PC and Linux OS.

Chapter 18 provides answers to the LABs of Chap. 17

Part II: SystemVerilog Functional Coverage (FC)

Chapter 19 provides introduction to functional coverage and explains differences
with code coverage.

Chapter 20 is fully devoted to functional coverage including in-depth detail on
covergroups, coverpoints, and bins including transition and cross coverage.

Chapter 21 provides practical hints to performance implications of coverage
methodology. Do not try to cover everything all the time.

Chapter 22 describes coverage options, which you may keep in your back pocket
as reference material for a rainy day!

Acknowledgements

I am very grateful to many who helped with review and editing of the book, in
particular, Mark Glaser for his excellent foreword and in-depth review of the book,
Vijay Akkati for detailed review of the chapters, Dr. Sandeep Goel for motivation
and editing of the book, and Bob Slee for his sustained support throughout the
endeavor and for facilitating close cooperation with EDA vendors. I would also like
to thank Tom Slee, Kea Hunt, Norbert Eng, Joe Chang, and Frank Lee for all things
verification.

And last but certainly not the least, I would like to thank my wife Ashraf Zahedi
for her enthusiasm and encouragement throughout the writing of this book and
putting up with long nights and weekends required to finish the book. She is the
cornerstone of my life always with a positive attitude to carry the day through up
and down of life.

Xvii

Contents

1 Introduction

1.1
1.2

1.3

2.1
2.2

23
24
2.5
2.6

2.7

2.8
29
2.10
2.11
2.12
2.13

How Will This Book Help You?
SystemVerilog Assertions and Functional Coverage

Under IEEE 1800 SystemVerilog Umbrella
SystemVerilog Assertions Evolution

221
222
223
224
2.2.5

2.2.6

Assertions Improve Observability
Assertions Provide Temporal Domain Functional
Coverage oo
Assertion Based Methodology Allows for Full
Random Verification.
Assertions Help Detect Bugs not Easily Observed

One-Time Effort, Many Benefits.
Assertions Whining. L o o L

2.6.1

Plan

o=

—_
— O O O O W

—_—

11

14

15
15
16
17
19
20
21

22
24
25
26
26
27
28

XiX

http://dx.doi.org/10.1007/978-3-319-30539-4_1
http://dx.doi.org/10.1007/978-3-319-30539-4_1
http://dx.doi.org/10.1007/978-3-319-30539-4_1#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_1#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_1#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_1#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_1#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_1#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_1#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_2
http://dx.doi.org/10.1007/978-3-319-30539-4_2
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec4
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec4
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec5
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec5
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec5
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec6
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec6
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec6
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec7
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec7
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec7
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec8
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec8
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec9
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec9
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec10
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec10
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec11
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec11
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec12
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec12
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec13
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec13
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec14
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec14
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec14
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec15
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec15
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec16
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec16
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec17
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec17
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec18
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec18
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec19
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec19
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec20
http://dx.doi.org/10.1007/978-3-319-30539-4_2#Sec20

XX

Immediate Assertions.

Concurrent Assertions—Basics (Sequence, Property, Assert) . .
4.1 Implication Operator, Antecedent and Consequent
4.2 Clocking Basics

4.3 Sampling Edge (Clock Edge) Value: How Are Assertions

431 Default Clocking Block
432 Gated Clk
44 Concurrent Assertions Are Multi-threaded
4.5 Formal Arguments
4.6 Disable (Property) Operator—‘Disable Iff*.

4.7 Severity Levels (for Both Concurrent and Immediate

ASSErtions).
4.8 Binding Properties
4.8.1 Binding Properties (Scope Visibility).
4.8.2 Assertion Adoption in Existing Design
4.9 Difference Between ‘Sequence’ and ‘Property’.

Sampled Value Functions $rose, $fell, $stable, $past
5.1 $rose—Edge Detection in Property/Sequence
5.1.1 Edge Detection Is Useful Because
5.1.2 $fell—Edge Detection in Property/Sequence. . . .
5.1.3 $rose, $fell—in Procedural.

5.2 $stable
5.2.1 $stable in Procedural Block
5.3 $past.

5.3.1 Application: $past ()
532 $past Rescues $fell!

Operators
6.1 #m—Clock Delay.

6.1.1 Clock Delay Operator: #fm Where m=0
6.2 ##[m:n]—Clock Delay Range

6.2.1 Clock Delay Range Operator: ##[m:n]: Multiple

Threads
6.2.2 Clock Delay Range Operator :: ##[m:n]
m=0;n=9%)
6.3 [*m]—Consecutive Repetition Operator.
6.4 [*m:n]—Consecutive Repetition Range
6.4.1 Application: Consecutive Repetition Range
Operatorc.iiinn...
6.5 [=m]—Repetition Non-consecutive
6.6 [=m:n]—Repetition Non-consecutive Range.
6.6.1 Application: Repetition Non-consecutive

Operator

Contents

... 18

http://dx.doi.org/10.1007/978-3-319-30539-4_3
http://dx.doi.org/10.1007/978-3-319-30539-4_3
http://dx.doi.org/10.1007/978-3-319-30539-4_4
http://dx.doi.org/10.1007/978-3-319-30539-4_4
http://dx.doi.org/10.1007/978-3-319-30539-4_4#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_4#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_4#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_4#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_4#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_4#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_4#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_4#Sec4
http://dx.doi.org/10.1007/978-3-319-30539-4_4#Sec4
http://dx.doi.org/10.1007/978-3-319-30539-4_4#Sec5
http://dx.doi.org/10.1007/978-3-319-30539-4_4#Sec5
http://dx.doi.org/10.1007/978-3-319-30539-4_4#Sec6
http://dx.doi.org/10.1007/978-3-319-30539-4_4#Sec6
http://dx.doi.org/10.1007/978-3-319-30539-4_4#Sec7
http://dx.doi.org/10.1007/978-3-319-30539-4_4#Sec7
http://dx.doi.org/10.1007/978-3-319-30539-4_4#Sec8
http://dx.doi.org/10.1007/978-3-319-30539-4_4#Sec8
http://dx.doi.org/10.1007/978-3-319-30539-4_4#Sec9
http://dx.doi.org/10.1007/978-3-319-30539-4_4#Sec9
http://dx.doi.org/10.1007/978-3-319-30539-4_4#Sec9
http://dx.doi.org/10.1007/978-3-319-30539-4_4#Sec10
http://dx.doi.org/10.1007/978-3-319-30539-4_4#Sec10
http://dx.doi.org/10.1007/978-3-319-30539-4_4#Sec11
http://dx.doi.org/10.1007/978-3-319-30539-4_4#Sec11
http://dx.doi.org/10.1007/978-3-319-30539-4_4#Sec12
http://dx.doi.org/10.1007/978-3-319-30539-4_4#Sec12
http://dx.doi.org/10.1007/978-3-319-30539-4_4#Sec13
http://dx.doi.org/10.1007/978-3-319-30539-4_4#Sec13
http://dx.doi.org/10.1007/978-3-319-30539-4_5
http://dx.doi.org/10.1007/978-3-319-30539-4_5
http://dx.doi.org/10.1007/978-3-319-30539-4_5#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_5#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_5#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_5#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_5#Sec4
http://dx.doi.org/10.1007/978-3-319-30539-4_5#Sec4
http://dx.doi.org/10.1007/978-3-319-30539-4_5#Sec5
http://dx.doi.org/10.1007/978-3-319-30539-4_5#Sec5
http://dx.doi.org/10.1007/978-3-319-30539-4_5#Sec6
http://dx.doi.org/10.1007/978-3-319-30539-4_5#Sec6
http://dx.doi.org/10.1007/978-3-319-30539-4_5#Sec7
http://dx.doi.org/10.1007/978-3-319-30539-4_5#Sec7
http://dx.doi.org/10.1007/978-3-319-30539-4_5#Sec8
http://dx.doi.org/10.1007/978-3-319-30539-4_5#Sec8
http://dx.doi.org/10.1007/978-3-319-30539-4_5#Sec9
http://dx.doi.org/10.1007/978-3-319-30539-4_5#Sec9
http://dx.doi.org/10.1007/978-3-319-30539-4_5#Sec10
http://dx.doi.org/10.1007/978-3-319-30539-4_5#Sec10
http://dx.doi.org/10.1007/978-3-319-30539-4_6
http://dx.doi.org/10.1007/978-3-319-30539-4_6
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec5
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec5
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec6
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec6
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec6
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec7
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec7
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec7
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec8
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec8
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec9
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec9
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec10
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec10
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec10
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec11
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec11
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec12
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec12
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec13
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec13
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec13

Contents XXi
6.7 [->m] Non-consecutive GoTo Repetition Operator 114
6.8 Diftference Between [=m:n] and [->m:n] 115

6.8.1 Application: GoTo Repetition—Non-consecutive
Operator 116
6.9 Sigl throughout Seql 117
6.9.1 Application: Sigl throughout Seql 118
6.10 Seql within Seq2 121
6.10.1 Application: Seql within Seq2 122
6.10.2 ‘within’ Operator PASS CASES. 123
6.10.3 ‘within’ Operator: FAIL CASES. 124
6.11 Seql and Seq2. 124
6.11.1 Application: ‘and’ Operator 127
6.12 Seql ‘0r’ Seq2. 127
6.12.1 Application: or Operator 128
6.13 Seql ‘intersect’ Seq2 131
6.14 Application: ‘intersect’ Operator. 132
6.14.1 Application: intersect Operator (Interesting
Application) 133
6.14.2 ‘intersect’ and ‘and’ :: What’s the Difference? 137
6.15 first_match. 137
6.15.1 Application: first_ match. 138
6.16 1Ot <PrOPETLY EXPI> . o v vttt e e e et e e e e 141
6.16.1 Application: not Operator. 141
6.17 if (expression) property_exprl else property_expr2 143
6.17.1 Application: if thenelse. 145
6.18 ‘i’ and ‘implies’ 145

7 System Functions and Tasks. 147
7.1 $onehot, $onehotO 147
7.2 $isunknown 149
7.3 $countones 150

7.3.1 $countones (as Boolean) 151
7.4 $assertoff, $asserton, $assertkill 151
8 Multiple Clocks 155
8.1 Multiply-Clocked Sequences and Properties. 155
8.1.1 Multiply Clocked Sequences 156
8.1.2 Multiply Clocked Sequences—Legal and Illegal
SeqUENCES . . . vt e 157
8.1.3 Multiply Clocked Properties—‘and’ Operator 158
8.14 Multiply Clocked Properties—‘or’ Operator. 159
8.1.5 Multiply Clocked Properties—‘not’—Operator 161
8.1.6 Multiply Clocked Properties—Clock Resolution 161

8.1.7 Multiply Clocked Properties—Legal and Illegal
Conditions 164

http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec14
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec14
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec15
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec15
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec16
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec16
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec16
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec17
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec17
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec18
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec18
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec19
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec19
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec20
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec20
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec21
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec21
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec22
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec22
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec23
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec23
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec24
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec24
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec25
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec25
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec26
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec26
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec27
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec27
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec28
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec28
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec29
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec29
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec29
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec30
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec30
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec31
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec31
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec32
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec32
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec33
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec33
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec34
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec34
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec35
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec35
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec36
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec36
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec37
http://dx.doi.org/10.1007/978-3-319-30539-4_6#Sec37
http://dx.doi.org/10.1007/978-3-319-30539-4_7
http://dx.doi.org/10.1007/978-3-319-30539-4_7
http://dx.doi.org/10.1007/978-3-319-30539-4_7#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_7#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_7#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_7#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_7#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_7#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_7#Sec4
http://dx.doi.org/10.1007/978-3-319-30539-4_7#Sec4
http://dx.doi.org/10.1007/978-3-319-30539-4_7#Sec5
http://dx.doi.org/10.1007/978-3-319-30539-4_7#Sec5
http://dx.doi.org/10.1007/978-3-319-30539-4_8
http://dx.doi.org/10.1007/978-3-319-30539-4_8
http://dx.doi.org/10.1007/978-3-319-30539-4_8#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_8#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_8#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_8#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_8#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_8#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_8#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_8#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_8#Sec4
http://dx.doi.org/10.1007/978-3-319-30539-4_8#Sec4
http://dx.doi.org/10.1007/978-3-319-30539-4_8#Sec4
http://dx.doi.org/10.1007/978-3-319-30539-4_8#Sec4
http://dx.doi.org/10.1007/978-3-319-30539-4_8#Sec5
http://dx.doi.org/10.1007/978-3-319-30539-4_8#Sec5
http://dx.doi.org/10.1007/978-3-319-30539-4_8#Sec6
http://dx.doi.org/10.1007/978-3-319-30539-4_8#Sec6
http://dx.doi.org/10.1007/978-3-319-30539-4_8#Sec7
http://dx.doi.org/10.1007/978-3-319-30539-4_8#Sec7
http://dx.doi.org/10.1007/978-3-319-30539-4_8#Sec8
http://dx.doi.org/10.1007/978-3-319-30539-4_8#Sec8
http://dx.doi.org/10.1007/978-3-319-30539-4_8#Sec8

XXii

10

11

12
13
14

15
16

Contents
Local Variables 167
9.1 Application: Local Variables 179
Recursive Property. 181
10.1 Application: Recursive Property 182
10.2 Application: Recursive Property 183
Detecting and Using Endpoint of a Sequence. 187
11.1 .triggered (Replaced for .ended) 187
11.2 matched 195
11.2.1 Application: .matched 198
CeXPeCE’ . . . e 201
‘assume’ and Formal (Static Functional) Verification. 205
Very Important Topics and Applications. 207
14.1 Asynchronous FIFO Assertions 207
14.1.1 Asynchronous FIFO Design. 208
14.1.2 Asynchronous FIFO Testbench and Assertions. 210
14.1.3 Testthe Testbench 214
142 Embedding Concurrent Assertions in Procedural Code 217
143 Calling Subroutines., 222
144 Sequence as a Formal Argument 225
14.5 Sequence as an Antecedent 226
14.6 Sequence in Sensitivity List., 227
1477 BuildingaCounter.c.0iiiiinnen... 228
14.8 Clock Delay: What if You Want Variable Clock Delay?. 229
149 What if the ‘Action Block’ Is Blocking? 231
14.10 Interesting Observation with Multiple (Nested) Implications
in a Property. Be Careful. 234
14.11 Subsequence ina Sequence 235
14.12 Cyclic Dependency. 236
14.13 Refinementona Theme 237
14.14 Simulation Performance Efficiency 237
14.15 1It’s a Vacuous World! Huh? 239
14.15.1 Concurrent Assertion—Without—An Implication . .. 239
14.15.2 Concurrent Assertion—With—An Implication 240
14.15.3 Vacuous Pass. What? 241
14.15.4 Concurrent Assertion—with ‘Cover’. 241
14.16 Empty Sequence.ottt 243
Asynchronous Assertions!!!. L. 247
IEEE-1800-2009/2012 Features 251
16.1 Strong and Weak Sequences 251
16.2 Deferred Immediate Assertions. 252

163 S$changed. 256

http://dx.doi.org/10.1007/978-3-319-30539-4_9
http://dx.doi.org/10.1007/978-3-319-30539-4_9
http://dx.doi.org/10.1007/978-3-319-30539-4_9#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_9#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_10
http://dx.doi.org/10.1007/978-3-319-30539-4_10
http://dx.doi.org/10.1007/978-3-319-30539-4_10#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_10#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_10#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_10#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_11
http://dx.doi.org/10.1007/978-3-319-30539-4_11
http://dx.doi.org/10.1007/978-3-319-30539-4_11#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_11#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_11#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_11#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_11#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_11#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_12
http://dx.doi.org/10.1007/978-3-319-30539-4_12
http://dx.doi.org/10.1007/978-3-319-30539-4_13
http://dx.doi.org/10.1007/978-3-319-30539-4_13
http://dx.doi.org/10.1007/978-3-319-30539-4_14
http://dx.doi.org/10.1007/978-3-319-30539-4_14
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec4
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec4
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec5
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec5
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec6
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec6
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec7
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec7
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec8
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec8
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec9
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec9
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec10
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec10
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec11
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec11
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec12
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec12
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec13
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec13
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec13
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec14
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec14
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec15
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec15
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec16
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec16
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec17
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec17
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec18
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec18
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec19
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec19
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec20
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec20
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec21
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec21
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec22
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec22
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec23
http://dx.doi.org/10.1007/978-3-319-30539-4_14#Sec23
http://dx.doi.org/10.1007/978-3-319-30539-4_15
http://dx.doi.org/10.1007/978-3-319-30539-4_15
http://dx.doi.org/10.1007/978-3-319-30539-4_16
http://dx.doi.org/10.1007/978-3-319-30539-4_16
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec3

Contents

17

XXiii
164 Ssampled. 257
16.5 $past_gclk, $rose_gclk, $fell_gclk, $stable_gclk, $changed_
gclk, $future_gcelk, $rising_gclk, $falling_gclk, $steady_gclk,
$changing_gclk L 258
16.6 ‘followed by’ Properties #-# and #=# 261
16.7 ‘always’ and ‘s_always’ Property 262
16.8 ‘eventually’,s_eventually’ 264
16.9 ‘until’, ‘s_until’, “until_with’ and ‘s_until_with> 265
16.10 ‘nexttime’ and ‘s_nexttime’ 267
16.11 ‘case’ Statement. 270
16.12 S$inferred_clock and $inferred_disable 271
16.13 ‘let’ Declarationst iennennnn.. 273
16.13.1 let: Local Scope, 274
16.13.2 let: With Parameters 275
16.13.3 let: In Immediate and Concurrent Assertions 277
16.14 ‘restrict’ for Formal Verification. 280
16.15 Abort Properties: reject_on, accept_on, sync_reject_on,
SYNC_ACCEPL_ON . v v v vttt e et e e e e e e e 280
16.16 S$assertpassoff, $assertpasson, $assertfailoff, $assertfailon,
$assertnonvacuouson, $assertvacuousoff 284
16.17 Sassertcontrol. 285
16.18 Checkers. e 290
16.18.1 Nested Checkers. 295
16.18.2 Checkers: Illegal Conditions. 296
16.18.3 Checkers: Important Points. 298
16.18.4 Checker: Instantiation Rules. 301
SystemVerilog Assertions LABs 305
17.1 LABI: Assertions with/Without Implication and ‘bind’ 305
17.1.1 LABI: ‘bind’ DUT Model and Testbench 306
17.1.2 LABI1: Questionso..o.... 308
17.2 LAB2: Overlap and Non-overlap Operators 310
17.2.1 LAB2 DUT Model and Testbench 310
17.2.2 LAB2: Questionsuuiuuien.... 311
17.3 LAB3: Synchronous FIFO Assertions 313
17.3.1 LAB3: DUT Model and Testbench 313
17.3.2 LAB3:Questionsc.ouuur.... 317
174 LAB4: Countert 321
174.1 LAB4: Questionsuuiuuien.... 324
17.5 LABS: Data Transfer Protocol 327
17.5.1 LABS5: Questions 335
17.6 LAB6: PCI Read Protocol 336

17.6.1 LAB6: Questionsouuuen.... 340

http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec4
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec4
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec5
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec5
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec5
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec5
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec6
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec6
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec7
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec7
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec8
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec8
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec9
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec9
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec10
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec10
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec11
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec11
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec12
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec12
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec13
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec13
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec14
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec14
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec15
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec15
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec16
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec16
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec17
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec17
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec18
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec18
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec18
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec19
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec19
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec19
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec20
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec20
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec21
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec21
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec22
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec22
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec23
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec23
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec24
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec24
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec25
http://dx.doi.org/10.1007/978-3-319-30539-4_16#Sec25
http://dx.doi.org/10.1007/978-3-319-30539-4_17
http://dx.doi.org/10.1007/978-3-319-30539-4_17
http://dx.doi.org/10.1007/978-3-319-30539-4_17#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_17#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_17#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_17#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_17#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_17#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_17#Sec4
http://dx.doi.org/10.1007/978-3-319-30539-4_17#Sec4
http://dx.doi.org/10.1007/978-3-319-30539-4_17#Sec5
http://dx.doi.org/10.1007/978-3-319-30539-4_17#Sec5
http://dx.doi.org/10.1007/978-3-319-30539-4_17#Sec6
http://dx.doi.org/10.1007/978-3-319-30539-4_17#Sec6
http://dx.doi.org/10.1007/978-3-319-30539-4_17#Sec7
http://dx.doi.org/10.1007/978-3-319-30539-4_17#Sec7
http://dx.doi.org/10.1007/978-3-319-30539-4_17#Sec8
http://dx.doi.org/10.1007/978-3-319-30539-4_17#Sec8
http://dx.doi.org/10.1007/978-3-319-30539-4_17#Sec9
http://dx.doi.org/10.1007/978-3-319-30539-4_17#Sec9
http://dx.doi.org/10.1007/978-3-319-30539-4_17#Sec10
http://dx.doi.org/10.1007/978-3-319-30539-4_17#Sec10
http://dx.doi.org/10.1007/978-3-319-30539-4_17#Sec11
http://dx.doi.org/10.1007/978-3-319-30539-4_17#Sec11
http://dx.doi.org/10.1007/978-3-319-30539-4_17#Sec12
http://dx.doi.org/10.1007/978-3-319-30539-4_17#Sec12
http://dx.doi.org/10.1007/978-3-319-30539-4_17#Sec13
http://dx.doi.org/10.1007/978-3-319-30539-4_17#Sec13
http://dx.doi.org/10.1007/978-3-319-30539-4_17#Sec14
http://dx.doi.org/10.1007/978-3-319-30539-4_17#Sec14
http://dx.doi.org/10.1007/978-3-319-30539-4_17#Sec15
http://dx.doi.org/10.1007/978-3-319-30539-4_17#Sec15

XXiv

18

19

20

21

22

Contents
SystemVerilog Assertions—LAB Answers 343
18.1 LABI: Answers: ‘bind’ and Implication Operators 344
18.2 LAB2: Answers: Overlap and Non-overlap Operators 349
18.3 LAB3: Answers: Synchronous FIFO. 353
18.4 LAB4: Answers: Counter 355
18.5 LABS: Answers: Data Transfer Protocol 356
18.6 LABG: Answers: PCI Read Protocol 359
Functional Coverage 361
19.1 Difference Between Code Coverage and Functional
COVETAZE. « o v ottt e e e e 361
19.2 Assertion Based Verification (ABV) and Functional Coverage
(FC) Based Methodology. 362
19.2.1 Follow the Bugs!!. 366
Functional Coverage—Language Features. 367
20.1 Covergroup/Coverpointottt n i i 367
20.2 System Verilog ‘Covergroup’™—Basics 368
20.3 SystemVerilog Coverpoint Basics. 368
20.3.1 Covergroup/Coverpoint Example 371
20.4 System Verilog ‘Bins’—Basics 372
20.4.1 Covergroup/Coverpoint with Bins—Example 374
20.4.2 System Verilog ‘covergroup’—Formal and Actual
Arguments. L 375
20.4.3 ‘covergroup’ ina ‘class’, 376
20.5 ‘cross’ COVEIage. . . v v vttt e e e e 378
20.6 More ‘Bins’. 382
20.6.1 ‘Bins’ for Transition Coverage 382
20.6.2 ‘wildcard bins’ L o 386
20.6.3 ‘ignore_bins’ 386
20.6.4 “illegal_bins’ 387
20.6.5 ‘binsof’ and ‘intersect’. 388
Performance Implications of Coverage Methodology 391
21.1 Know What You Should Cover 391
21.2 Know When You Should Cover. 392
21.3 When to ‘Cover’ (Performance Implication). 392
21.4 Application: Have You Transmitted All Different Lengths
ofaFrame?. 393
Coverage Options. 395
22.1 Coverage Options—Instance Specific—Example. 397
22.2 Coverage Options—Instance Specific Per-Syntactic Level 397
22.3 Coverage Options for ‘Covergroup’ Type—Example. 400

http://dx.doi.org/10.1007/978-3-319-30539-4_18
http://dx.doi.org/10.1007/978-3-319-30539-4_18
http://dx.doi.org/10.1007/978-3-319-30539-4_18#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_18#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_18#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_18#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_18#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_18#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_18#Sec4
http://dx.doi.org/10.1007/978-3-319-30539-4_18#Sec4
http://dx.doi.org/10.1007/978-3-319-30539-4_18#Sec5
http://dx.doi.org/10.1007/978-3-319-30539-4_18#Sec5
http://dx.doi.org/10.1007/978-3-319-30539-4_18#Sec6
http://dx.doi.org/10.1007/978-3-319-30539-4_18#Sec6
http://dx.doi.org/10.1007/978-3-319-30539-4_19
http://dx.doi.org/10.1007/978-3-319-30539-4_19
http://dx.doi.org/10.1007/978-3-319-30539-4_19#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_19#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_19#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_19#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_19#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_19#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_19#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_19#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_20
http://dx.doi.org/10.1007/978-3-319-30539-4_20
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec4
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec4
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec5
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec5
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec6
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec6
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec7
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec7
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec7
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec8
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec8
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec9
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec9
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec10
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec10
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec11
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec11
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec12
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec12
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec13
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec13
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec14
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec14
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec15
http://dx.doi.org/10.1007/978-3-319-30539-4_20#Sec15
http://dx.doi.org/10.1007/978-3-319-30539-4_21
http://dx.doi.org/10.1007/978-3-319-30539-4_21
http://dx.doi.org/10.1007/978-3-319-30539-4_21#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_21#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_21#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_21#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_21#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_21#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_21#Sec4
http://dx.doi.org/10.1007/978-3-319-30539-4_21#Sec4
http://dx.doi.org/10.1007/978-3-319-30539-4_21#Sec4
http://dx.doi.org/10.1007/978-3-319-30539-4_22
http://dx.doi.org/10.1007/978-3-319-30539-4_22
http://dx.doi.org/10.1007/978-3-319-30539-4_22#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_22#Sec1
http://dx.doi.org/10.1007/978-3-319-30539-4_22#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_22#Sec2
http://dx.doi.org/10.1007/978-3-319-30539-4_22#Sec3
http://dx.doi.org/10.1007/978-3-319-30539-4_22#Sec3

About the Author

Ashok B. Mehta has been working in the ASIC/SoC design and verification field
for over 20 years. He started his career at Digital Equipment Corporation
(DEC) working first as a CPU design engineer, moving on to hardware design
verification of the VAX11-785 CPU design. He then worked at Data General, Intel
(first Pentium design team) and, after a route of a couple of startups, worked at
Applied Micro and TSMC. He was a very early adopter of Verilog and participated
in Verilog, VHDL, iHDL (Intel HDL), and SDF (standard delay format) technical
subcommittees. He has also been a proponent of ESL (Electronic System Level)
designs, and at TSMC, he released two industry-standard reference flows that take
designs from ESL to RTL while preserving the verification environment for reuse
from ESL to RTL. Lately, he has been involved with 3DIC design verification
challenges at TSMC which is where SystemVerilog Assertions played an instru-
mental role in stacked die SoC design verification.

Ashok earned an MSEE from University of Missouri. He holds 13 US Patents in
the field of SoC and 3DIC design verification. In his spare time, he is an amateur
photographer and likes to play drums on 1970s rock music driving his neighbors up
the wall.

XXV

List of Figures

Figure 1.1 Verification cost increases as the technology

node shrinks 2
Figure 1.2 Design productivity and design complexity 2
Figure 1.3 SystemVerilog assertions and functional coverage

components under SystemVerilog IEEE 1800-2009

umbrella. o 6
Figure 1.4 SystemVerilog evolution. 7
Figure 1.5 SystemVerilog assertion evolution 7
Figure 2.1 A simple bus protocol design and its SVA property. 10
Figure 2.2 Verilog code for the simple bus protocol 11
Figure 2.3 Assertions improve observability 12
Figure 2.4 SystemVerilog assertions provide temporal domain

functional coverage 12
Figure 2.5 Assertions for hardware emulation 17
Figure 2.6 Assertions and assumptions in formal (static functional)

and simulation. L oo oL 18
Figure 2.7 Assertions and OVL for differentuses 19
Figure 2.8 A simple PCI read protocol. 22
Figure 3.1 Immediate assertion—basics 32
Figure 3.2 Immediate assertions: finer points 33
Figure 4.1 Concurrent assertion—basics. 36
Figure 4.2 Concurrent assertion—sampling edge and action

blocks 37
Figure 4.3 Concurrent assertion—implication, antecedent

and conSequUent 38
Figure 4.4 Property with an embedded sequence. 39
Figure 4.5 Implication operator—overlapping

and non-overlapping. L. ... 40
Figure 4.6 Equivalence between overlapping and non-overlapping

implication operators, 41
Figure 4.7 Clocking basics cv vt 43

XXVii

XXViii
Figure 4.8
Figure 4.9

Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15

Figure 4.16

Figure 4.17
Figure 4.18
Figure 4.19

Figure 4.20
Figure 4.21

Figure 4.22

Figure 5.1
Figure 5.2
Figure 5.3

Figure 5.4
Figure 5.5
Figure 5.6

Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7

List of Figures

Clocking basics—clock in ‘assert’, ‘property’

and ‘SeqUeNCE’.

Assertions variable sampling and evaluation/execution in

a simulation time tick., .. L. L L L
Default Clocking block.
‘clocking’ and ‘default clocking”
Gated clock. L
Multi-threaded concurrent assertions.
Formal and actual arguments.

Formal and Actual arguments—default value and name

based connection

Formal and actual arguments—default value and position

based connection L L L L
Passing event control to a formal.
‘disable iff” operator.o

Severity levels for concurrent and immediate

ASSETtiONSot i
Binding properties o

Binding properties to design ‘module’ internal signals

(scope visibility)

Binding properties to an existing design. Assertions

adoption in existing design
Sampled value functions $rose, $fell—basics.
$rose—DbasiCs

usefulness of ‘edge’ detection and performance

implication
; $rose—finer points.
$fell—basics

$rose and $fell in procedural block and continuous

ASSIGNMENL . . . o ottt e
$stable—basics
$stable in procedural block
$past—Dbasics
$past—gating expression
$past—gating expression—simulation log.
$past application
Spast rescues $fell
##m clock delay—basics
##m clock delay withm=0
##0—application L L
##[m:n] clock delay range.
##[m:n]—multiple threads.
##[m:n] clock delay range with m=0 and n=$..........
##[1:$] delay range application

44
49
50
53
54
55

56

57
57
59

60
62

63

64
68
69

70
70
71

72
73
74
75
76
71
78
79
83
83
84
85
87
95
96

List of Figures

Figure 6.8

Figure 6.9

Figure 6.10
Figure 6.11
Figure 6.12
Figure 6.13
Figure 6.14
Figure 6.15
Figure 6.16
Figure 6.17
Figure 6.18
Figure 6.19
Figure 6.20
Figure 6.21
Figure 6.22
Figure 6.23
Figure 6.24
Figure 6.25
Figure 6.26

Figure 6.27
Figure 6.28
Figure 6.29
Figure 6.30
Figure 6.31
Figure 6.32

Figure 6.33

Figure 6.34
Figure 6.35
Figure 6.36
Figure 6.37
Figure 6.38
Figure 6.39
Figure 6.40
Figure 6.41
Figure 6.42
Figure 6.43
Figure 6.44
Figure 6.45
Figure 6.46
Figure 6.47
Figure 6.48

[*m]—consecutive repetition operator—basics.
[*m] consecutive repetition operator—application
[*m:n] consecutive repetition range—basics
[*m:n] consecutive repetition range—example.
[*m:n] consecutive repetition range—application
[*m:n] consecutive repetition range—application
[*m:n] consecutive repetition range—application
[*m:n] consecutive repetition range—application
Design application
Design application—simulation log
Repetition non-consecutive operator—basics
Non-consecutive repetition operator—example.
Repetition non-consecutive range—basics
Repetition non-consecutive range—application
Repetition non-consecutive range—[=0:$].
GoTo non-consecutive repetition—basics
Non-consecutive repetition—example.
Difference between [=m:n] and [->m:n]
GoTo repetition—non-consecutive

operator—application,
Sigl throughout seql
Sigl throughout Seql—application
Sigl throughout seql—application simulation log
Seql withinseq2.
Seql within seq2—application.
within operator—simulation log

example—PASS cases
within operator—simulation log

example—FAIL cases
Seql and seq2—basics.
and operator—application.
and operator—application-IT
and of eXpressions. . ..o oottt e
Seql orseq2—basics L.
or operator—application. L L.
or operator—application I
or operator—application IIT.
Or Of @XPIesSIONS . . o o v vt vttt it e e e e
Seql intersect s€q2
Seql ‘intersect’ seq2—application
Seql intersect seq2—application IT.
intersect makes sense with subsequences with ranges.
intersect operator: interesting application.
and versus intersect—what’s the difference.

XXIX

XXX

Figure 6.49
Figure 6.50
Figure 6.51
Figure 6.52
Figure 6.53
Figure 6.54
Figure 6.55
Figure 6.56
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4

Figure 8.5

Figure 8.6
Figure 8.7
Figure 8.8
Figure 8.9
Figure 8.10
Figure 8.11

Figure 9.1
Figure 9.2
Figure 9.3
Figure 9.4
Figure 9.5
Figure 9.6

Figure 9.7

Figure 9.8
Figure 9.9
Figure 9.10
Figure 9.11

List of Figures

first_match—application. 139
first_match application, 140
first_match application 140
not operator—basics. 141
not operator—application 142
not operator—application 143
ifooelse ... 144
if... else—application. 144
$onehot and SonehotO 148
$isunknown. 148
$isunknown application 149
$countones—basics and application 150
Application $countones. 150
$countones as boolean 151
$assertoff, $asserton, $assertkill—basics 152
Application assertion control, 152
Multiply clocked sequences—basics. 156
Multiply clocked sequences—identical clocks 157
Multiply clocked sequences—illegal conditions 158
Multiply clocked properties—‘and’ operator

between two different clocks. 159
Multiply clocked properties—‘and’ operator

between same clocks L L. 160
Multiply clocked properties—‘or’ operator 160
Multiply clocked properties—‘not’ operator. 161
Multiply clocked properties—clock resolution 162
Multiply clocked properties—clock resolution—II 162
Multiply clocked properties—clock resolution—III. 163
Multiply clocked properties—Ilegal and illegal

conditionsS. 164
Local variables—basics 168
Local variables—do’s and don’ts. 169
Local variables—and formal argument 170
Local variables—visibility. 171
Local variable composite sequence with an ‘OR’. 171
Local variables—for an ‘OR’ assign local

data—before- the composite sequence 172
Local variables—assign local data in both

operand sequences of ‘OR’. 172
Local variables—*‘and’ of composite sequences 173
Local variables—finer nuances Il 173
Local variables—further nuances IV. 174
Local variable cannot be used in delay range. 174

List of Figures
Figure 9.12

Figure 9.13
Figure 10.1
Figure 10.2
Figure 10.3
Figure 10.4
Figure 10.5
Figure 10.6
Figure 11.1
Figure 11.2
Figure 11.3
Figure 11.4
Figure 11.5
Figure 11.6
Figure 11.7
Figure 12.1
Figure 12.2
Figure 13.1
Figure 14.1
Figure 14.2

Figure 14.3

Figure 14.4

Figure 14.5

Figure 14.6

Figure 14.7

Figure 14.8

Figure 14.9

Figure 14.10
Figure 14.11
Figure 14.12
Figure 14.13
Figure 14.14
Figure 14.15
Figure 14.16
Figure 14.17
Figure 14.18
Figure 14.19
Figure 14.20
Figure 14.21
Figure 14.22
Figure 14.23

XXXI
Local variables—cannot use a ‘formal’ to size a local
variable L 175
Local variables—application 179
Recursive property—basics 182
Recursive property—application. 183
Recursive property—application. 184
Recursive property—further nuances I 185
Recursive property—further nuances IT. 185
Recursive property—mutually recursive 186
.triggered—end point of a sequence 188
triggered with overlapping operator. 189
.triggered with non-overlapping operator. 190
.matched—basics. L 196
.matched with non-overlapping operator 197
.matched—overlapped operator 197
.matched—application 198
‘expect’—basics 202
‘expect’—error conditions. L. 203
‘Assume’ and formal verification. 206
Embedding concurrent assertions in procedural code 217
Concurrent assertion embedded in procedural code is
non-blocking. 218
Embedding concurrent assertions in procedural
code—further nuances 219
Calling subroutines 222
Calling subroutines—further nuances 223
Application: calling subroutines and local variables 224
Sequence as a formal argument 225
Sequence as an antecedent 226
Sequence in procedural block sensitivity list 227
Sequence in ‘sensitivity’ list 228
Application: building a counter using local variables 229
Variable delay—problem statement 230
Variable delay—solution. 231
Blocking action block. L. 232
Blocking versus non-blocking action block 233
Multiple implications in a property. 234
Subsequence in a sequence—clock inference. 236
Subsequence in @ SEQUENCE v v vt vt 236
Cyclicdependency. 237
Refinementsonatheme 238
Simulation performance efficiency 238
Assertion without implication operator 239
Assertion resulting in vacuous pass 240

XXXii

Figure 14.24
Figure 14.25
Figure 14.26
Figure 14.27
Figure 14.28
Figure 15.1

Figure 15.2

Figure 15.3
Figure 16.1
Figure 17.1
Figure 17.2
Figure 17.3
Figure 17.4
Figure 17.5
Figure 18.1
Figure 18.2
Figure 18.3
Figure 18.4
Figure 18.5
Figure 18.6
Figure 18.7
Figure 18.8
Figure 18.9
Figure 19.1

Figure 19.2
Figure 19.3

Figure 20.1
Figure 20.2
Figure 20.3
Figure 20.4
Figure 20.5
Figure 20.6
Figure 20.7

Figure 20.8
Figure 20.9
Figure 20.10
Figure 20.11
Figure 20.12
Figure 20.13

List of Figures

Assertion with ‘cover’ for PASS L. 242
Empty match [*m] wherem =0 243
empty match—example 244
empty match example—II. 245
Empty sequence. Further rules. 245
Asynchronous assertion—problem statement 248
Asynchronous assertion—problem statement analysis

continued 249
Asynchronous assertion—solution 250
$changed 257
LABI: ‘bind’ assertions. Problem definition 306
LAB3: Synchronous FIFO: problem definition. 313
LAB4: counter: problem definition. 322
LABS: data transfer protocol: problem definition. 329
LABG6: PCI protocol: problem definition. 337
LABI: ‘bind’ assertions (answers) 344
LAB1: Q&A on ‘no_implication’ operator (answers) 345
LAB1: Q&A on ‘implication’ operator (answers). 346
LAB1: Q&A on ‘overlap’ operator (answers) 349
LABI: Q&A on ‘non-overlap’ operator (answers) 350
LAB3: FIFO: answersuvienn. .. 353
LAB4: counter: anSwersc..c.venaen... 355
LABS: data transfer bus protocol: answers 357
LABG6: PCI protocol: answers 359
Assertion based verification (ABV) and functional

coverage (FC) based methodology 363
Assertions and coverage closed loop verification

methodology—I. 364
Assertion and functional Coverage closed loop

verification methodology—II. 365
‘covergroup’ and ‘coverpoint’—basics 369
‘coverpoint’—basics.o 370
‘covergroup’/‘coverpoint’ example 371
bins’—basics 373
‘covergroup’/‘coverpoint’ example with ‘bins’. 374
‘covergroup’—formal and actual arguments. 375
‘covergroup’ in a SystemVerilog class (courtesy LRM
1800-2005) . . . o ot 377
Multiple ‘covergroup’ in a SystemVerilog class. 377
‘cross’ coverage—basics. 379
‘cross’ coverage—simulation log 380
‘cross’—example (further nuances) 381
‘cross’ example—simulation log 381
‘bins’ for transition coverage. 382

List of Figures

Figure 20.14
Figure 20.15
Figure 20.16
Figure 20.17
Figure 20.18
Figure 20.19
Figure 20.20
Figure 21.1

Figure 21.2

Figure 22.1
Figure 22.2
Figure 22.3

Figure 22.4
Figure 22.5

Figure 22.6

‘bins’—transition coverage further features
‘bins’ for transition—example with simulation log.
Example of PCI cycles transition coverage
wildcard ‘bins”
‘ignore_bins’—basics.
fllegal_bins™o
‘binsof” and ‘intersect’ L L
Functional coverage—performance implication
Application—have you transmitted all different lengths

Coverage options—reference material.
Coverage options—instance specific—example
Coverage options—instance specific per-syntactic

Coverage options type specific per syntactic level
Coverage options for ‘covergroup’ type

specific—comprehensive example
Predefined coverage system tasks and functions.

XXXiii

List of Tables

Table 2.1
Table 2.2
Table 2.3
Table 6.1

PCI read protocol test plan by functional verification team . . .

PCI read protocol test plan by design team

Conventions used in this book
Concurrent assertion operators

23
24
28
82

XXXV

Chapter 1
Introduction

As is well known in the industry, the design complexity at 16 nm node and
below is exploding. Small form factor requirements and conflicting demands of
high performance and low power and small area result in ever so complex design
architecture. Multi-core, multi-threading and Power, Performance and Area
(PPA) demands exacerbate the design complexity and functional verification
thereof.

The burden lies on functional and temporal domain verification to make sure that
the design adheres to the specification. Not only is RTL (and Virtual Platform level)
functional verification important but so is silicon validation. Days when engineering
teams would take months to validate the silicon in the lab are over. What can you
do during pre-silicon verification to guarantee post-silicon validation a first pass
success.

The biggest challenge that the companies face is short time-to-market to deliver
first pass working silicon of increasing complexity. Functional design verification is
the long poll to design tape-out. Here are two key problem statements.

1. Design Verification Productivity: 40-50 % of project resources go to functional

design verification. The chart in Fig. 1.1 shows design cost for different parts of
a design cycle. As is evident, the design verification cost component is about
40+ % of the total design cost. In other words, this problem states that we must
increase the productivity of functional design verification and shorten the design
< simulate < debug < cover loop. This is a productivity issue, which needs to
be addressed.
Continuing with the productivity issue, the chart in Fig. 1.2 shows that the
compounded complexity growth rate per year is 58 % while the compounded
productivity growth rate is only 21 %. There is a huge gap between what needs
to get done and what is getting done. This is another example of why the
productivity of design cycle components such as functional design verification
must be improved.

© Springer International Publishing Switzerland 2016 1
A.B. Mehta, SystemVerilog Assertions and Functional Coverage,
DOI 10.1007/978-3-319-30539-4_1

2 1 Introduction

140
120 m software Verification
m Validation m Physical

100 m Architecture
80 -

60 -

Design Cost ($M)

40

20

0

350 250 180 130 90 65 45 32 22

Fig. 1.1 Verification cost increases as the technology node shrinks

Potential Design Complexity and Designer Productivity

10000 - 100000 'f;
o
S 1000 - 10000 E
= 58%/Yr. compound =
= lexity growth rate 1000 o
£ 100 compl <
g g
g 10 - 100 i
] >
2 1- - 10 =
2 <
- =
A ol 21%/Yr. compound 1 -‘E
i) productivity growth rate €
9 o.01- o1 3
-
g
0.001 - = 0.01 o

- m (1] P~ -2 - m 0 ~ @ [=) m uy [1]

F 8 & B 8 3 &8 8 &8 8 8 8 8 8 8

- - - - - - - - - - ~ ~ ~N ~ ~

Fig. 1.2 Design productivity and design complexity

2. Design Coverage: The second problem statement states that more than 50 % of
designs require re-spin due to functional bugs. One of the factors that contribute
to this is the fact that we did not objectively determine before tape-out that we
had really covered the entire design space with our testbench. The motto “If it’s
not verified, it will not work” seems to have taken hold in design cycle. Not
knowing if you have indeed covered the entire design space is the real culprit
towards escaped bugs and functional silicon failures.

So, what’s the solution to each problem statement?
1. Increase Design Verification Productivity
a. Reduce Time to Develop

i. Raise abstraction level of tests. Use TLM (Transaction Level Modeling)
methodologies such as UVM, SystemVerilog/C++/DPI, etc. The higher

1

Introduction 3

ii.

iii.

iv.

the abstraction level, easier it is to model and maintain verification logic.
Modification and debug of transaction level logic is much easier, further
reducing time to develop testbench, reference models (scoreboard),
peripheral models and other such verification logic.

Use constrained random verification (CRV) methodologies to reach
exhaustive coverage with fewer tests. Fewer tests mean less time to
develop and debug.

Develop Verification Components (UVM agents, for example that are
reusable). Make them parameterized for adoptability in future projects.
Use SystemVerilog Assertions to reduce time to develop complex
temporal domain and combinatorial checks. As we will see, assertions
are intuitive and much simpler to model, especially for complex tem-
poral domain checks. Verilog code for a given assertion will be much
lengthier, hard to model and hard to debug. SVA indeed reduces time to
develop and debug.

b. Reduce Time to Simulate

I

il.

Again, higher level of abstraction simulates much faster than pure RTL
testbench which is modeled at signal level. Use transaction level test
bench.

Use SystemVerilog Assertions to directly point to the root cause of a bug.
This reduces the simulate < debug < verify loop time. Debugging the
design is time consuming as is, but not knowing where the bug is and
trial and error simulations further exacerbate the already lengthy simu-
lation time.

¢. Reduce Time to Debug

I

ii.

iii.

Use SystemVerilog Assertion Based Verification (ABV) methodology to
quickly reach to the source of the bug. As we will see, assertions are
placed at various places in design to catch bugs where they occur.
Traditional way of debug is at IO level. You see the effect of a bug at
primary output. You then trace back from primary output until you find
the cause of the bug resulting in lengthy debug time. In contrast, an SVA
assertion points directly at the source of the failure (for example, a FIFO
assertion will point directly to the FIFO condition that failed and right
away help with debug of the failure) drastically reducing the debug
effort.

Use Transaction level methodologies to reduce debugging effort (and not
get bogged down into signal level granularity).

Again, Constraint Random Verification allows for fewer tests. They also
narrow down the cone of logic to debug. CRV indeed reduces time to
debug.

4 1 Introduction

2. Reduce Time to Cover and build confidence in taping out a fully verified design.

(i) Use ‘cover’ feature of SystemVerilog Assertions to cover complex tem-
poral domain specification of your design. As we will see further in the
book, ‘cover’ helps with making sure that you have exercised low level
temporal domain conditions with your testbench. If an assertion does not
fire, that does not necessarily mean that there is no bug. One of the
reasons for an assertion to not fire is that you probably never really
stimulated the required condition (antecedent) in the first place. If you do
not stimulate a condition, how would you know if there is indeed a bug in
the design logic under simulation? ‘cover’ helps you determine if you
have indeed exercised the required temporal domain condition. More on
this in later chapters.

(i) Use SystemVerilog Functional Coverage language to measure the ‘in-
tent’ of the design. How well have your testbench verified the ‘intent’ of
the design. For example, have you verified all transition of
Write/Read/Snoop on the bus? Have you verified that a CPUl-snoop
occurs to the same line at the same time that a CPU2-write invalid occurs
to the same line? Code Coverage will not help with this. We will cover
Functional Coverage in plenty detail in the book.

(iii) Use Code Coverage to cover structural coverage (yes, code coverage is
still important as the first line of defense even though it simply provides
structural coverage). As we will see in detail in the section on SV
Functional Coverage, structural coverage does not verify the intent of the
design, it simply sees that the code that you have written has been
exercised (e.g. if you have verified all ‘case’ items of a ‘case’ statement,
or toggled all possible assigns, expressions, states, etc.). Nonetheless,
code coverage is still important as a starting point to measure coverage of
the design.

As you notice from above analysis, SystemVerilog Assertions and Functional
Coverage play a key role in about every aspect of Functional Verification. Note that
in this book, I use Functional Verification to include both the ‘function’ domain
functional coverage as well as the ‘temporal’ domain functional coverage.

1.1 How Will This Book Help You?

This book will go systematically through each of SystemVerilog Assertions
(SVA) and Functional Coverage (FC) language features and methodology com-
ponents with practical applications at each step. These applications are modeled
such that you should be able to use them in your design with minimal modifica-
tions. The book is organized using power point style slides and description to make
it very easy to grasp the key fundamentals. Advanced applications are given for

1.1 How Will This Book Help You? 5

those users who are familiar with the basics. For most part, the book concentrates
on the in-depth discussion of the features of the languages and shows examples that
make the feature easily understandable and applicable. Simulation logs are fre-
quently used to make it easier to understand the underlying concepts of a feature or
method.

The book is written by a design engineer for (mainly) hardware design engineers
with the intent to make the languages easy to grasp avoiding decipher of lengthy
verbose descriptions. The author has been in System and Chip design field for over
20 years and knows the importance of learning new languages and methodologies
in shortest possible time to be productive.

The book concentrates on SVA features of the IEEE 1800-2005 standard.
Author believes that the features of this standard are plenty to designing practical
assertions for the reader’s project(s). However, the author has indeed covered the
entire IEEE 1800-2009/2012 feature set in a standalone Chap. 16 to give an
in-depth look at the new standard. Note that some of the 2009/2012 features were
not supported by popular simulators as of this writing and the examples provided
were not simulated. Please do send your suggestions/corrections to the author
(ashok_mehta@yahoo.com).

1.2 SystemVerilog Assertions and Functional Coverage
Under IEEE 1800 SystemVerilog Umbrella

SystemVerilog assertions (SVA) and Functional Coverage (FC) are part of IEEE
1800 SystemVerilog standard. In other words, SVA and FC are two of the four
distinct language subsets that fall under the SystemVerilog umbrella.

1. SystemVerilog Object Oriented language for functional verification (using
UVM style libraries)

2. SystemVerilog language for Design

3. SystemVerilog Assertions (SVA) language and

4. SystemVerilog Functional Coverage (FC) language to see that the verification
environment/testbench have fully verified your design

As shown in Fig. 1.3, SVA and FC are two of the important language subsets of
SystemVerilog.

In any design, there are 3 main components of verification. (1) Stimulus
Generators to stimulate the design (2) Response Checkers to see that the device
adheres to the device specifications (3) Coverage components to see that we have
indeed structurally and functionally covered everything in the DUT according to the
device specifications.

1. Stimulus Generation. This entails creating different ways in which a DUT needs
to be exercised. For example, a peripheral (e.g. USB) maybe modeled as a Bus
Functional Mode (or a UVM (Universal Verification Methodology) agent) to

http://dx.doi.org/10.1007/978-3-319-30539-4_16

6 1 Introduction

SYSTEM VERILOG
(IEEE 1800 std.)

Test bench Functional System Verilog
Constructs Coverage Assertions
(SVA)
Classes (OOP), covergroup, coverpoint, sequence, property,
Constrained Random, etc. etc. assert, cover, etc.

v

Coverage W
Monitoring

t X

Stimulus Response
Generation DUT Checking

%

(SV for design)

Fig. 1.3 SystemVerilog assertions and functional coverage components under SystemVerilog
IEEE 1800-2009 umbrella

drive traffic through SystemVerilog transactions to the DUT. Different tech-
niques are deployed to achieve exhaustive coverage of the design. For example,
constrained random, transaction based, UVM based, memory based, etc. These
topics are beyond the scope of this book.

2. Response checking. Now that you have stimulated the DUT, you need to make
sure that the device has responded to that stimulus according to the device specs.
Here is where SVA comes into picture along with UVM monitors, scoreboards
and other such techniques. SVA will check to see that the design not only meets
high level specifications but also low level combinatorial and temporal design
rules.

3. Functional Coverage. How do we know that we have exercised everything that
the device specification dictates? Code Coverage is one measure. But code
coverage is only structural. For example, it will point out if a conditional has
been exercised. But code coverage has no idea if the conditional itself is correct,
which is where Functional Coverage comes into picture (more on this later when
we discuss Functional Coverage—See Chap. 19. Functional coverage gives an
objective measure of the design coverage (e.g. have we verified all different
cache access transitions (for example, write followed by read from the same
address) to L2 from CPU? Code Coverage will not give such measure). We will
discuss entire coverage methodology in detail in Chap. 19.

http://dx.doi.org/10.1007/978-3-319-30539-4_19
http://dx.doi.org/10.1007/978-3-319-30539-4_19

1.3 SystemVerilog Assertions Evolution

1.3 SystemVerilog Assertions Evolution

To set the stage, here is a brief history of Verilog to SystemVerilog evolution
(Figs. 1.4 and 1.5). Starting with Verilog 95, we reached Verilog 2001 with
Multi-dimensional arrays and auto variables, among other useful features.
Meanwhile, functional verification was eating up ever more resources of a given

SystemVerilog 3.1a ::

Test bench :: Classes with Methods
and Inheritance, constrained random,
etc.

Assertions (SVA) :: Enhanced
semantics for sequential temporal
expressions, property definition.

Functional Coverage :: Advanced
features for cross coverage,
transitions, etc.

A

Based on :: SystemVerilog 3.0 with
significant enhancements for
testbench, assertions and functional
coverage language enhancements

5

SystemVerilog 3.0 :: Interface (access
control and methods), advanced
Verilog, 'C" data types, etc.

Based on :: Verilog 2001 and
SuperLog

S

VERILOG-2001 :: Multi-D arrays, Auto
variables, etc.

S

Based on :: Verilog 95 and original
effort by IEEE technical
subcommittees

VERILOG 95 :: Hardware Concurrency,
Gate/Switch level, Timing (specify
block), basic programming

Fig. 1.4 SystemVerilog evolution

Based on :: Gateway Design
Automation's original Verilog.

System Verilog Assertions
(SVA)

SUGAR
(IBM)

OVA
(Vera)

PSL

Fig. 1.5 SystemVerilog assertion evolution

e’ CBvV

ForSpec

(Motorola) (Intel)

8 1 Introduction

project. Everyone had disparate functional verification environments and method-
ologies around Verilog. This was no longer feasible.

Industry recognized the need for a standard language that allowed the design and
verification of a device and a methodology around which reusable components can
be built avoiding multi-language cumbersome environments. Enter Superlog, which
was a language with high level constructs required for functional verification.
Superlog was donated (along with other language subset donations) to create
SystemVerilog 3.0 from which evolved SystemVerilog 3.1, which added new
features for design but over 80 % of the new language subset was dedicated to
functional verification. We can only thank the Superlog inventor (the same inventor
as that for Verilog—namely, Phil Moorby) and the Accellera technical subcom-
mittees for having a long term vision to design such a robust all-encompassing
language. No multi-language solutions were required any more. No more rein-
venting of the wheel with each project was required anymore.

As shown in Fig. 1.5, SystemVerilog Assertion language is derived from many
different languages. Features from these languages either influenced the language or
were directly used as part of the language syntax/semantic.

Sugar from IBM led to PSL. Both contributed to SVA. The other languages that
contributed are Vera, ‘e’, CBV from Motorola and ForSpec from Intel.

In short, when we use SystemVerilog Assertions language, we have the benefit
of using the latest evolution of an assertions language that benefited from many
other robust assertions languages.

Chapter 2
SystemVerilog Assertions

2.1 What Is an Assertion?

Introduction: This chapter will start with definition of an assertion with simple
examples, moving on to its advantages as applied to real life projects, who and what
types of assertions need to be added for a given SoC project and the methodology
components to successfully adopt assertions in your project.

An assertion is simply a check against the specification of your design that you
want to make sure never violates. If the specs are violated, you want to see a failure.

A simple example is given below. Whenever FRAME_ is de-asserted (i.e. goes
High), that the Last Data Phase (LDP_) must be asserted (i.e. goes Low). Such a
check is imperative to correct functioning of the given interface. SVA language is
precisely designed to tackle such temporal domain scenarios. As we will see in
Sect. 2.2.1, modeling such a check is far easier in SVA than in Verilog. Note also
that assertions work in temporal domain (and we will cover a lot more on this later);
and are concurrent as well as multi-threaded. These attributes are what makes SVA
language so suitable for writing temporal domain checks.

Figure 2.1 shows the assertion for this simple bus protocol. We will discuss how
to read this code and how this code compares with Verilog in the immediately
following Sect. 2.2.1.

2.2 Why Assertions? What Are the Advantages?

As we discussed in the introductory section, we need to increase productivity of the
design/debug/simulate/cover loop. Assertions help exactly in these areas. As we will
see, they are easier to write than standard Verilog or SystemVerilog (thereby
increasing design productivity), easier to debug (thereby increasing debug produc-
tivity), provide functional coverage and simulate faster compared to the same asser-
tion written in Verilog or SystemVerilog. Let us see these advantages one by one.

© Springer International Publishing Switzerland 2016 9
A.B. Mehta, SystemVerilog Assertions and Functional Coverage,
DOI 10.1007/978-3-319-30539-4_2

10 2 SystemVerilog Assertions

FRAME_

LDP_ | |

When FRAME_ is de-asserted (high), LDP_ (last data phase)
(low) must be asserted within the next 2 clocks

property ldpcheck;

@(posedge clk) Srose (FRAME_) |-> ##[1:2] Sfell (LDP_);
endproperty
aP: assert property (ldpcheck) else Sdisplay(“ldpcheck FAIL”);
cP: cover property (ldpcheck) Sdisplay(“ldpcheck PASS");

Fig. 2.1 A simple bus protocol design and its SVA property

2.2.1 Assertions Shorten Time to Develop

Referring to the timing diagram in Fig. 2.1, let us see how SVA shortens time to
develop. The SVA code is very self-explanatory. There is the property ‘ldpcheck’
that says “at posedge clock, if FRAME_ rises, it implies that within the next
2 clocks LDP_ falls”. This is almost like writing the checker in English. We then
‘assert’ this property, which will check for the required condition to meet at every
posedge clk. We also ‘cover’ this property to see that we have indeed exercised the
required condition. But we are getting ahead of ourselves. All this will be explained
in detail in coming chapters. For now, simply understand that the SV assertion is
easy to write, easy to read and easy to debug.

Now examine the Verilog code for the same check (Fig. 2.2). There are many
ways to write this code. One of the ways at behavioral level is shown. Here you
‘fork’ out two procedural blocks; one that monitors LDP and another that waits for
2 clocks. You then disable the entire block (‘ldpcheck’) when either of the two
procedural blocks complete. As you can see that not only is the checker very hard to
read/interpret but also very prone to errors. You may end up spending more time
debugging your checker than the logic under verification.

2.2 Why Assertions? What Are the Advantages? 11

Verilog Code I

always @(posedge FRAME_)
begin:ldpcheck
@(posedge clk);
fork
begin
@(negedge LDP_) disable ldpcheck;
end
begin
repeat (2) @(posedge clk); Sdisplay(“ldpcheck FAIL");
disable ldpcheck;
end
join
end

Fig. 2.2 Verilog code for the simple bus protocol

2.2.2 Assertions Improve Observability

One of the most important advantage of assertions is that they fire at the source of
the problem. As we will see in the coming chapters, assertions are located local to
temporal conditions in your design. In other words, you don’t have to back trace a
bug all the way from primary output to somewhere internal to the design where
the bug originates. Assertions are written such that they are close to logic
(e.g. @ (posedge clk) stateO |-> Read); Such an assertion is sitting close to the state
machine and if the assertion fails, we know that when the state machine was in
state0 that Read did not take place. Some of the most useful places to place
assertions are FIFOs, Counters, block to block interface, block to IO interface, State
Machines, etc. These constructs are where many of the bugs originate. Placing an
assertion that check for local condition will fire when that local condition fails,
thereby directly pointing to the source of the bug (Fig. 2.3).

Traditional verification can be called Black Box verification with Black
Box observability, meaning, you apply vectors/transactions at the primary input of
the ‘block’ without caring for what’s in the block (blackbox verification) and you
observe the behavior of the block only at the primary outputs (blackbox observ-
ability). Assertions on the other hand allow you to do black box verification with
white box (internal to the block) observability.

2.2.3 Assertions Provide Temporal Domain Functional
Coverage

Assertions not only help you find bugs but also help you determine if you have
covered (i.e. exercised) design logic, mainly temporal domain conditions. They are
very useful in finding temporal domain coverage of your testbench. Here is the
reason why this is so important (Fig. 2.4).

12 2 SystemVerilog Assertions

| f
STIMULUS L |RESPONSE
p—
3% RTLBUG -
ASSERTION |

i With Assertions, effect of internal | R - gy i = e :

: ; Without Assertions, effect of
Hug Iabservecrdirecy. at the internal bug is observed at the

e ___output or another part of logic
i(black box verification with white! ! (black box verification with black
_____ boxobservability) i i box observability) |

Fig. 2.3 Assertions improve observability

ASSERTION

over' input, intra-module and external :
BUSes to see if you have verified key
_temporal domain conditions |

I “'cover FIFO, Counter, State transition
i conditions to see if corner cases have
_beenexercised il

v ABY assertions can also be ‘cover’ed for functional coverage providing valuable dual usage.
¥ ABY reveals internal coverage in both combinatorial and (more importantly) temporal domain
v ABY produces actionable metrics to improve coverage

Fig. 2.4 SystemVerilog assertions provide temporal domain functional coverage

Let us say, you have been running regressions 24 * 7 and have stopped finding
bugs in your design. Does that mean you are done with verification? No. Not
finding a bug could mean one of two things. (1) There is indeed no bug left in the

2.2 Why Assertions? What Are the Advantages? 13

design or (2) you have not exercised (or covered) the conditions that exercise the
bugs. You could be continually hitting the same piece of logic in which no further
bugs remain. In other words, you could be reaching a wrong conclusion that all the
bugs have been found.

In brief, coverage includes three components (we will discuss this in detail in the
chapter on Functional Coverage). (1) Code Coverage (which is structural) which
needs to be 100 % (2) Functional Coverage that need to be designed to cover
functionality (i.e. intent) of the entire design and must completely cover the design
specification (3) temporal domain coverage (using SVA ‘cover’ feature) which
need to be carefully designed to fully cover all required temporal domain conditions
of the design.

Ok, let us go back to the simple bus protocol assertion that we saw in the
previous section. Let us see how the ‘cover’ statement in that SVA assertion works.
The code is repeated here for readability.

property ldpcheck;

@(posedge clk) Srose (FRAME_) |-> ##[1:2] Sfell (LDP_);
endproperty
aP: assert property (ldpcheck) else Sdisplay(“ldpcheck FAIL”);
cP: cover property (ldpcheck) Sdisplay(“ldpcheck PASS");

In this code, you see that there is a ‘cover’ statement. What it tells you is “did
you exercise this condition” or “did you cover this property”. In other words, and as
discussed above, if the assertion never fails, that could be because of two reasons.
(1) you don’t have a bug or (2) you never exercised the condition to start with! With
the cover statement, if the condition gets exercised but does not fail you get that
indication through the ‘pass’ action block associated with the ‘cover’ statement.
Since we haven’t yet discussed the assertions in any detail, you may not completely
understand this concept but determination of temporal domain coverage of your
design is an extremely important aspect of verification and must be made part of
your verification plan.

To reiterate, SVA supports the ‘cover’ construct that tells you if the assertion has
been exercised (covered). Without this indication and in the absence of a failure,
you have no idea if you indeed exercised the required condition. In our example, if
FRAME_ never rises, the assertion won’t fire and obviously there won’t be any bug
reported. So, at the end of simulation if you do not see a bug or you do not even see
the “ldpcheck PASS” display, you know that the assertion never fired. In other
words, you must see the ‘cover property’ statement executed in order to know that
the condition did get exercised. We will discuss this further in coming chapters. Use
‘cover’ to full extent as part of your verification methodology.

14 2 SystemVerilog Assertions

2.2.4 Assertion Based Methodology Allows for Full Random
Verification

Huh! What does that mean? This example, I learnt from real life experience. In our
projects, we always do full random concurrent verification (i.e. all initiators of the
design fire at the same time to all targets of the design) after we are done with
directed and constrained random verification. The idea behind this is to find any
deadlocks (or livelock for that matter) in the design. Most of the initiator tests are
well crafted (i.e. they won’t clobber each other’s address space) but with such
massive randomness, your target model may not be able to predict response to
randomly fired transactions. In all such cases, it is best to disable scoreboards in
your target models (unless the scoreboards are full proof in that they can survive
total randomness of transactions) BUT keep assertions alive. Now, fire concurrent
random transactions, the target models will respond the best they can but assertions
will pin point to a problem if it exists (such as simulation hang (deadlock) or simply
keep bouncing between two state machines without advancing functionality
(livelock)).

In other words, assertions are always alive and regardless of transaction stream
(random or directed), they will fire as soon as there is the detection of an incorrect
condition.

e Example Problem Definition:

— Your design has Ethernet Receive and Video as Inputs and is also a PCI
target.

— It also has internal initiators outputting transactions to PCI targets, SDRAM,
Ethernet Transmit and Video outputs.

— After you have exhausted constrained random verification, you now want to
simulate a final massive random verification, blasting transactions from all
input interfaces and firing transactions from internal masters (DMA, Video
Engine, Embedded processors) to all the output interfaces of the design.

— BUT there’s a good chance your reference models, self-checking tests,
scoreboards may not be able to predict the correct behavior of the design
under such massive randomness.

e Solution:

— Turn off all your checking (reference models, scoreboards, etc.) unless they
are full proof to massive random transaction streams.

— BUT keep Assertions alive.

— Blast the design with massive randomness (keep address space clean for each
initiator).

— If any of the assertions fire, you have found that corner case bug.

2.2 Why Assertions? What Are the Advantages? 15

2.2.5 Assertions Help Detect Bugs not Easily Observed
at Primary Outputs

This is a classic case that we encountered in a design and luckily found before
tape-out. Without the help of an assertion, we would not have found the bug and
there would have to be a complex software workaround. I will let the following
example explain the situation.

e The Specification:
— On a store address Error, the address in Next Address Register (NAR) should
be frozen the same cycle that the Error is detected.
e The Bug:

— On a store address error, the state machine that controls the NAR register
actually froze the next address the next clock (instead of freezing the current
address the same clock when store address error occurred). In other words,
an incorrect address was being stored in NAR.

e So, why were the tests passing with this bug?

— The tests that were triggering this bug used the same address back to back. In
other words, even though the incorrect ‘next’ address was being captured in
NAR, since the ‘next’ and the ‘previous’ addresses were the same, the logic
would seem to behave correct.

— The Assertion: An assertion was added to check that when a store address
error was asserted the state machine should not move to point to the next
address in pipeline. Because of the bug, the state machine actually did move
to the next stage in pipeline. The assertion fired and the bug was caught.

2.2.6 Other Major Benefits

e SVA language supports Multi-Clock Domain Crossing (CDC) logic

— SVA properties can be written that cross from one clock domain to another.
Great for data integrity checks while crossing clock domains.

e Assertions are Readable: Great for documenting and communicating design
intent

— Great for creating executable specs.
— Process of writing assertions to specify design requirements and conducting
cross design reviews identify

Errors, Inconsistencies, omissions, vagueness

— Use it for design verification (test plan) review.

16

2 SystemVerilog Assertions

Reusability for future designs

— parameterized assertions (e.g. for a 16-bit bus interface) are easier to deploy
with the future designs (with a 32-bit bus interface).

— Assertions can be modeled outside of RTL and easily bound (using ‘bind’) to
RTL keeping design and DV logic separate and easy to maintain.

Assertions are always ON

— Assertions never go to sleep (until you specifically turn them off).

— In other words, active assertions take full advantage of every new
test/stimulus configuration added by monitoring designs behavior against the
new stimulus.

Acceleration/Emulation with Assertions

— Long latency and massive random tests need acceleration/emulation tools.
These tools are beginning to support synthesizable assertions. Assertions are
of great help in quick debug of long/random tests. We will discuss this
further in coming sections.

Global Severity Levels ($Error, $Fatal, etc.)

— Helps maintain a uniform Error reporting structure in simulation.

Global turning on/off of assertions (as in $dumpon/$dumpoff)

— Easier code management (no need to wrap each assertion with an on/off
condition).

Formal Verification depends on Assertions

— The same ‘assert’ions used for design are also used directly by formal ver-
ification tools. Static formal applies its algorithms to make sure that the
‘assert’ion never fails.

— ‘assume’ allows for correct design constraint important to formal.

One language, multiple usage

— ‘assert’ for design check and for formal verification
— ‘cover’ for temporal domain coverage check
— ‘assume’ for design constraint for formal verification

2.3 How Do Assertions Work with an Emulator?

This section is to point out that assertions are not only useful in software based
simulation but also hardware based emulation. The reason you can use assertions to
fire directly in hardware is because assertions are synthesizable (well, at least the

2.3 How Do Assertions Work with an Emulator? 17

XYZ EMULATOR

RTB DUT
Testbench ><

Stop/Trace
On

- Trigger 1—
Assertion
Assertion Synthesized
b SVA
Reports

Fig. 2.5 Assertions for hardware emulation

'y

simpler ones). Even though assertion synthesis has ways to go, there is enough of a
subset covered by synthesis and that is sufficient to deploy assertions in hardware.

In Fig. 2.5 a generic emulation system is shown. Synthesizable assertions are
part of the design that get synthesized and get partitioned to the emulation hard-
ware. During emulation, if the design logic has a bug, the synthesized assertion will
fire and trigger a stop/trace register to stop emulation and directly point to the cause
of failure.

Anyone who has used emulation as part of their verification strategy, very well
know that even though emulator may take seconds to ‘simulate’ the design, it takes
hours thereafter to debug failures. Assertions will be a great boon to the debug
effort. Many commercial vendors now support synthesizable assertions.

On the same line of thought, assertions can be synthesized in silicon as well.
During post-silicon validation, a functional bug can fire and a hardware register can
record the failure. This register can be reflected on GPIO of the chip or the register
can be scanned out using JTAG boundary scan. The output can be decoded to
determine which assertion fired and which part of silicon caused the failure.
Without such facility, it takes hours of debug time to pin point the cause of silicon
failure. This technique is now being used widely. The ‘area’ overhead of synthe-
sized assertion logic is negligible compared to the overall area of the chip but the
debug facilitation is of immense value. Note that such assertions can make it easier
to debug silicon failures in field as well.

2.4 Assertions in Static Formal

The same assertions that you write for design verification can be used with static
functional verification or the so-called hybrid of static functional plus simulation
algorithms. Figure 2.6 shows (on LHS) SVA Assumptions and (on RHS/Center)
SVA Assertions. As you see the assumptions are most useful to Static Functional
Verification (aka Formal) (even though assumptions can indeed be used in

18 2 SystemVerilog Assertions

Assumptions System Verilog Assertions
(V)

l Simulation;

DuT
(Block level)

puT
(Full Chip or Block level)

v v Y

Formal Hybrid
Static Functional (Static Functional plus
Verification Simulation) VCS (Synopsys),

Questa (Mentor),
NC-Verilog (Cadence),

Jasper-Gold(Jasper-DA)

Magellan(Synopsys),
0-in(Mentor),
Incisive(Cadence)

i
E Simulation
1
H

Property(assertion)
Pass/Fail

Fig. 2.6 Assertions and assumptions in formal (static functional) and simulation

Simulation as well, as we will see in later sections) while SVA assertions are useful
in both Formal and Simulation.

So, what is Static Functional Verification (also called Static Formal Functional
or simply Formal)? In plain English, static formal is a method whereby the static
formal algorithm applies all possible combinational and temporal domain stimulus
possibilities to exercise all possible ‘logic cones’ of a given logic block and see that
the assertion(s) are not violated. This eliminates the need for a testbench and also
makes sure that the logic never fails under any circumstance. This provides 100 %
comprehensiveness to the logic under verification. So as a side note, why do we
ever need to write a testbench? The static formal (as of this writing) is limited by the
size of the logic block (i.e. gate equivalent RTL) especially if the temporal domain
of inputs to exercise is large. The reason for this limitation is that the algorithm has
to create different logic cones to try and prove that the property holds. With larger
logic blocks, these so-called logic cones explode. This is also known as ‘state space
explosion’ problem. To counter this problem, simulation experts came up with the
Hybrid Simulation technique. In this technique, simulation is deployed to ‘reach’
closer to the assertion logic and then employ the static functional verification
algorithms to the logic under assertion checking. This reduces the scope of the # of
logic cones and their size and you may be successful in seeing that the property
holds. Since static functional or hybrid is beyond the scope of this book, we’ll leave
it at that.

2.5 One-Time Effort, Many Benefits 19

2.5 One-Time Effort, Many Benefits

Figure 2.7 shows the advantage of assertions. Write them once and use them with
may tools.

We have discussed at high level the use of assertions in Simulation, Formal,
Coverage and Emulation. But how do you use them for Testbench Generation/
Checker and what is OVL assertions library?

Testbench Generation/Checker: With ever-increasing complexity of logic
design, the testbenches are getting ever so complex as well. How can assertions
help in designing testbench logic? Let us assume that you need to drive certain
traffic to a DUT input under certain condition. You can design an assertion to check
for that condition and upon its detection the FAIL action block triggers, which can
be used to drive traffic to the DUT. Checking for a condition is far easier with
assertions language than with SystemVerilog alone. Second benefit is to place
assertions on verification logic itself. Since verification logic (in some cases) is even
more complex than the design logic, it makes sense to use assertions to check
testbench logic also.

OVL Library: Open Verification Library. This library of predefined checkers
was written in Verilog before PSL and SVA became mainstream. Currently the
library includes SVA (and PSL) based assertions as well. The OVL library of
assertion checkers is intended for use by design, integration and verification
engineers to check for good/bad behavior in simulation, emulation and formal
verification. OVL contains popular assertions such as FIFO assertions, among

r“-,'-,—,--,-ri Assertion Libraries

.’ﬁ- OVL (Accelera)

Assertions

System Verilog Assertions (SVA) Specification

e | Simulation |
——Pp Formal |
B Coverage |
§>| Emulation |
—_— Testbench Generation |

Fig. 2.7 Assertions and OVL for different uses

20 2 SystemVerilog Assertions

other. OVL is still in use and you can download the entire standard library from
Accellera website. http://www.accellera.org/downloads/standards/ovl.

We will not go into the detail of OVL since there is plenty of information
available on OVL on net. OVL code itself is quite clear to understand. It is also a
good place to see how assertions can be written for ‘popular’ checks (e.g. FIFO)
once you have better understood assertion semantics.

2.6 Assertions Whining

Maybe the paradigm has now shifted but as of this writing there is still a lot of
hesitation on adopting SVA in the overall verification methodology. Here are some
popular objections.

e [don’t have time to add assertions. I don’t even have time to complete my
design. Where am I going to find time to add assertions?

— That depends on your definition of “completing my design”. If the definition
is to simply add all the RTL code without—any—verification/debug features
in the design and then throw the design over the wall for verification, it will
take significantly longer to debug your design for it to work as specified.

— During design you are already contemplating and assuming many conditions
(state transition assumptions, inter-block protocol assumptions, etc.). Simply
convert your assumptions into assertions as you design. They will go a long
way in finding those corner case bugs even with your simple sanity
testbenches.

e [don’t have time to add assertions. I am in the middle of debugging the bugs
already filed against my design.

— Well, actually you will be able to debug your design in shorter time, if you
did add assertions as you were designing (or at least add them now) so that if
a failing test fires an assertion, your debug time will be drastically short.

— Assertions point to the source of the bug and significantly reduce time to
debug as you verify your block level, chip level design.

— In other words, this is a bit of chicken and egg problem. You don’t have time
to write assertions but without these assertions you will spend a lot more
time debugging your design!

e [sn’t writing assertions the job of a verification engineer?

— Not quite. Design Verification (DV) engineers do not have insight into the
micro-architectural level RTL detail. But the real answer is that BOTH
Design and DV engineers need to add assertions. We will discuss that in
detail in upcoming section.

http://www.accellera.org/downloads/standards/ovl

2.6 Assertions Whining 21

e DV engineer says: I am new to assertions and will spend more time debugging
my assertions than debugging the design

— Well, don’t you spend time in debugging your testbench logic? Your ref-
erence models? What’s the difference in debugging assertions? If anything,
assertions have proven to be very effective in finding bugs and cutting down
on debug time.

— In my personal experience (over the last many SoC and Processor projects),
approximately 25 % of the total bugs reported for a project were
DV/Testbench bugs. There are significant benefits to adding assertions to
your testbench that outweigh the time to debug them.

o The designer cannot be the verifier also. Doesn’t asking a designer to add
assertions violate this rule?

— As we will discuss in the following sections, assertions are added to check
the ‘intent’ of the design and validate your own assumptions. You are not
writing assertions to duplicate your RTL. Following example makes it clear
that the designer does need to add assertions.

— For example,

For every ‘req’ issued to the next block, I will indeed get an ‘ack’ and that I
will get only 1 ‘ack’ for every ‘req’. This is a cross module assumption
which has nothing to do with how you have designed your RTL. You are not
duplicating your RTL in assertions.

My state machine should never get stuck in any ‘state’ (except ‘idle’) for
more than 10 clocks.

2.6.1 Who Will Add Assertions? War Within!

Both Design and Verification engineers need to add assertions...

e Design Engineers:

— Micro architectural level decisions/assumptions are not visible to DV engi-
neers. So, designers are best suited to guarantee uArch level logic
correctness.

— Every assumption is an assertion. If you assume that the ‘request’ you send
to the other block will always get an ‘ack’ in 2 clocks; that’s an assumption.
So, design an assertion for it.

— Add assertions as you design your logic, not as an afterthought.

22

2 SystemVerilog Assertions

e DV Engineers:

— Add assertions to check macro functions and Chip/SoC level functionality.

2.7

Once the packet has been processed for L4 layer, it will indeed show up in

the DMA queue.
A machine check exception indeed sets PC to the exception handler address.

Add assertions to check Interface 10 logic

After Reset is de-asserted none of the signals ever go ‘X’.

If the processor is in Wait Mode and no instructions are pending that it must
assert a SleepReq to memory subsystem within 100 clocks.

On Critical Interrupt, the external clock/control logic block must assert
CPU_wakeup within 10 clocks.

A Simple PCI Read Example—Creating an Assertions
Test Plan

Let us consider a simple example of PCI Read. Given the specification in Fig. 2.8,
what type of assertions would the design team add and what type would the
verification team add? The tables below describe the difference. I have only given
few of the assertions that could be written. There are many more assertions that

FRAME. \ /—O

C_BE_ —<busCmd>< BE_'s

[1~ [

IRDY_ \ ﬁ % / \ ﬁ
" " m

& & = = - =]

& £ £ /—';"—\ £ g £

TRDY_ \ 3 o o

DEVSEL_ \ \

AD W data-1> ::j::< data-2>< data-3 >—e—

i
Ry

S
—
—
——

Fig. 2.8 A simple PCI read protocol

2.7 A Simple PCI Read Example—Creating an Assertions Test Plan 23

need to be written by verification and design engineers. However, this example will
act as a basis for differentiation.

Designers add assertions at micro-architecture level while verification engineers
concentrate at system level, specifically the interface level in this example.

We will model the assertions for this PCI protocol later in the book under LAB6
exercise. It is too early to jump into writing assertions without knowing the basics at
this stage.

The PCI protocol is for a simple READ. With FRAME_ assertion, AD address
and C_BE_ have valid values. Then IRDY __ is asserted to indicate that the master is
ready to receive data. Target transfers data with intermittent wait states. Last data
transfer takes place a clock after FRAME_ is de-asserted.

Let us see what type of assertions need to be written by design and verification
engineers (Tables 2.1 and 2.2).

Note that in the table there are two columns. (1) Did the property FAIL? (2) Did
the property get covered? There is no column for the property PASS. That is
because, ‘cover’ in an assertion triggers only when a property is exercised but does
not fail; in other words, it passes. Hence, there is no need for a PASS column. This
‘cover’ column tells you that you indeed covered (exercised) the assertion and that
it did not fail. When the assertion FAILs, it tells you that the assertion was exercised
(covered) and that it Failed during the exercise.

Table 2.1 PCI read protocol test plan by functional verification team

PCI: basic read protocol test plan: verification team

Property name Description Property Property
FAIL? covered?
Protocol interface assertions
checkPCI_AD_CBE On falling edge of FRAME_, AD
(checkl) and C_BE_ bus cannot be
unknown
checkPCI_DataPhase ‘When both IRDY_ and TRDY_ are
(check2) asserted, AD or C_BE_ bus cannot
be unknown
checkPCI_Frame_Irdy FRAME can be de-asserted only if
(check3) IRDY_ is asserted
checkPCI_trdyDevsel TRDY_ can be asserted only if
(check4) DEVSEL_ is asserted
checkPCI_CBE_during_trx Once the cycle starts (i.e. at
(checks) FRAME_ assertion) C_BE_ cannot
float until FRAME _ is de-asserted

24 2 SystemVerilog Assertions

Table 2.2 PCI read protocol test plan by design team

PCI: basic read protocol test plan: design team

Property name Description Property Property
FAIL? covered?

Microarchitectural assertions

check_pci_adrcbe_St PCI state machine is in ‘adr_cbe’ state the
first clock edge when FRAME_ is found
asserted

check_pci_data_St PCI state machine is in ‘data_transfer’
state when both IRDY_ and TRDY_ are
asserted

check_pci_idle_St PCI state machine is in ‘idle’ state when
both FRAME_ and IRDY_ are de-asserted
check_pci_wait_St PCI state machine is in ‘wait’ state if either
IRDY_ or TRDY_ is de-asserted

2.8 What Type of Assertions Should I Add?

It is important to understand and plan for the types of assertions one needs to add.
Make this part of your verification plan. It will also help you partition work among
your team.

Note the ‘performance implication’ assertions. Many miss on this point. Coming
from processor background, I have seen that these assertions turn out to be some of
the most useful assertions. These assertions would let us know of the (e.g.) cache
read latency upfront and would allow us enough time to make architectural
changes.

e RTL Assertions (design intent)
— Intra Module

Illegal state transitions; deadlocks; livelocks;
FIFOs, onehot, etc.

e Module interface Assertions (design interface intent)

— Inter-module protocol verification; illegal combinations (ack cannot be ‘1’ if
req is ‘0’); steady state requirements (when slave asserts write_queue_full,
master cannot assert write_req);

e Chip functionality Assertions (chip/SoC functional intent)

— A PCI transaction that results in Target Retry will indeed end up in the Retry
Queue.

2.8 What Type of Assertions Should I Add? 25

e Chip interface Assertions (chip interface intent)

Commercially available standard bus assertion VIPs can be useful in com-
prehensive check of your design’s adherence to std. protocol such as PCle,
AXI, etc.

Every design assumption on IO functionality is an assertion.

e Performance Implication assertions (performance intent)

29

Cache latency for read; packet processing latency; etc. to catch performance
issues before it’s too late. This assertion works like any other. For example,
if the ‘Read Cache Latency’ is greater than 2 clocks, fire the assertion. This is
an easy to write assertion with very useful return.

Protocol for Adding Assertions

e Do not duplicate RTL

White box observability does not mean adding an assertion for each line of
RTL code. This is a very important point, in that if RTL says ‘req’ means
‘grant’, don’t write an assertion that says the same thing!! Read on.
Capture the intent

For example, a Write that follows a Read to the same address in the request
pipe will always be allowed to finish before the Read. This is the intent of the
design. How the designer implements reordering logic is not of much
interest. So, from verification point of view, you need to write assertions that
verify the chip specifications.

A note here that the above does not mean you do not add low-level asser-
tions. Classic example here is FIFO assertions. Write FIFO assertions for all
FIFOs in your design. FIFO is low-level logic, but many of the critical bugs
hang around FIFO logic and adding these assertions will provide maximum
bang for your buck.

e Add assertions throughout the RTL design process

They are hard to add as an after-thought.
Will help you catch bugs even with your simple block level testbench.

e If an assertion did not catch a failure...

If the test failed and none of the assertions fired, see if there are assertions
that need to be added which would fire for the failing case.

The newly added assertion is now active for any other test that may trigger it.
Note: This point is very important towards making a decision if you have
added enough assertions. In other words, if the test failed and none of the
assertions fired, there is a good chance you still have more assertions to add.

26 2 SystemVerilog Assertions

e Reuse

— Create libraries of common ‘generic’ properties with formal arguments that
can be instantiated (reused) with ‘actual’ arguments. We will cover this
further in the book.

— Reuse for the next project.

2.10 How Do I Know I Have Enough Assertions?

e It’s the “Test plan, test plan, test plan...”

— Review and re-review your test plan against the design specs.
— Make sure you have added assertions for every ‘critical’ function that you
must guarantee works.

o If tests keep failing but assertions do not fire, you do not have enough assertions.

— In other words, if you had to trace a bug from primary outputs (of a block or
SoC) without any assertions firing that means that you did not put enough
assertions to cover that path.

e ‘“formal’ (aka static formal aka static functional verification) tool’s ability to
handle assertions

— What this means is that if you don’t have enough ‘assertion density’
(meaning if a register value does not propagate to an assertion within 3-5
clocks—resulting in assertions sparsely populated within design), the formal
analysis tool may give up on the state/space explosion problem. In other
words, a static functional formal tool may not be able to handle a large
temporal domain. If the assertion density is high, the tool has to deal with
smaller cone of logic. If the assertion density is sparse, the tool has to deal
with larger cone of logic in both temporal and combinatorial space and it
may run into trouble.

2.11 Use Assertions for Specification and Review

e Use assertions (properties/sequences) for specification
— DV (Design Verification) Team:

Document as much of the ‘response checking’ part of your test plan as
practical directly into executable properties.
Use it for verification plan review and update.

2.11 Use Assertions for Specification and Review 27

— Design Team:

Document micro-arch. level assertions directly into executable properties.
Use it for design reviews.

e Assertions Cross-Review
— Review:

DV team reviews macro, chip, interface level assertions with the design
team.

— Cross Review

Block A designer reviews ‘module B’ interface assertions
Block B designer reviews ‘module A’ interface assertions

— Mis-assumptions, incorrect communication are detected early on.

2.12 Assertion Types

There are three kinds of assertions supported by SVA. In brief, here’s their
description. We will discuss them in plenty detail throughout this book.

e Immediate Assertion
Concurrent Assertion
Deferred Assertion (aka Deferred Immediate Assertion) (introduced in IEEE
1800-2009)

Immediate Assertions

e Simple non-temporal domain assertions that are executed like statements in a
procedural block,

e Interpreted the same way as an expression in the conditional of a procedural ‘if’
statement,

e Can be specified only where a procedural statement is specified.

Concurrent Assertions

e These are temporal domain assertions that allow creation of complex sequences
using clock (sampling edge) based semantics.

e They are edge sensitive and not level sensitive. In other words, they must have a
‘sampling edge’ on which it can sample the values of variables used in a
sequence or a property.

Deferred Assertions (introduced in IEEE 1800-2009)

e Deferred assertions are a type of Immediate assertions. Note that immediate
assertions evaluate immediately without waiting for variables in its combina-
torial expression to seftle down. This also means that the immediate assertions

28 2 SystemVerilog Assertions

are very prone to glitches as the combinatorial expression settles down and may
fire multiple times. On the other hand, deferred assertions do not evaluate their
sequence expression until the end of time stamp when all values have settled
down (or in the reactive region of the time stamp). Detailed explanation is in
Sect. 16.2.

If some of this does not quite make sense, that’s OK. That is what the rest of the
book will explain. Let us start with Immediate assertions and understand its
semantics. We then move on to Concurrent assertions and lastly Deferred asser-
tions. The book focuses on concurrent assertions because that is really the main gist
of SystemVerilog Assertion Language.

2.13 Conventions Used in the Book

Note that the level sensitive attribute of a signal is shown as a ‘fat’ High and Low
symbol. 1 could have drawn regular timing diagrams but saw that they look very
cumbersome and does not easily convey the point. Hence, I chose the fat arrow to
convey that when the fat arrow is high, the signal was high before the clock; at
the clock and after the clock. The same applies for the fat low arrow (Table 2.3).

Table 2.3 Conventions used in this book

LEVEL SENSITIVE HIGH: This symbol means that the signal is detected HIGH
(level sensitive) at the clock edge noted in a timing diagram. It could have been
high or low the previous clock and may remain high or low after the clock edge.
It does NOT however mean that a ‘posedge’ is expected on this signal at the

noted clock edge.

LEVEL SENSITIVE LOW: This symbol means that the signal is detected LOW
(level sensitive) at the clock edge noted in a timing diagram. It could have been
high or low the previous clock and may remain high or low after the clock edge.
It does NOT however mean that a ‘negedge’ is expected on this signal at the

noted clock edge.

signal.

EDGE SENSITIVE LOW: This symbol means that a negedge is expected on this
signal.

PROPERTY PASSes: This symbol means that a sequence/property match is
detected here (i.e. the sequence/property PASSes).

PROPERTY FAIlLs: This symbol means that a sequence/property did not match
here (i.e. the sequence/property FAILs).

EDGE SENSITIVE HIGH: This symbol means that a posedge is expected on this

http://dx.doi.org/10.1007/978-3-319-30539-4_16

2.13 Conventions Used in the Book 29

For edge sensitive assertions, I chose the regular timing diagram to distinguish
them from the level sensitive symbol.
A high (thin) arrow is for PASS and a low (thin) arrow is for FAIL.

Chapter 3
Immediate Assertions

Introduction: This chapter will introduce the ‘Immediate’ assertions (immediate
‘assert’, ‘cover’, ‘assume’) starting with a definition and leading to detailed nuances
of its semantics and syntax.

Immediate assertions are simple non-temporal domain assertions that are exe-
cuted like statements in a procedural block. Interpret them as an expression in the
condition of a procedural ‘if” statement. Immediate assertions can be specified only
where a procedural statement is specified. The evaluation is performed immediately
with the values taken at that moment for the assertion condition variables. The
assertion condition is non-temporal, which means its execution computes and
reports the assertion results at the same time.

Figure 3.1 describes the basics of an immediate assertion. It is so called because
it executes immediately at the time it is encountered in the procedural code. It does
not wait for any temporal time (e.g. ‘next clock edge’) to fire itself. The assertion
can be preceded by a level sensitive or an edge sensitive statement. As we will see
that concurrent assertions can only work on a ‘sampling/clock edge’ sensitive logic
and not level sensitive logic.

We see in Fig. 3.1 that there is an immediate assertion embedded in the pro-
cedural block that is triggered by @ (posedge clk). The immediate assertion is
triggered after @ (posedge d) and checks to see that (b || ¢) is true.

We need to note a couple of points here. First, the very preceding statement in
this example is @ (posedge d), an edge sensitive statement. However, it does not
have to be. It can be a level sensitive statement also or any other procedural
statement. The reason I am pointing this out is that concurrent assertions can work
only off of a sampling ‘edge’ and not off of a level sensitive control. Keep this in
your back pocket because it will be very useful to distinguish immediate assertions
from concurrent assertions when we cover the latter. Second, the assertion itself
cannot have temporal domain sequences. In other words, an immediate assertion
cannot consume ‘time’. It can only be combinatorial which can be executed in zero
time. In other words, the assertion will be computed and results will be available at

© Springer International Publishing Switzerland 2016 31
A.B. Mehta, SystemVerilog Assertions and Functional Coverage,
DOI 10.1007/978-3-319-30539-4_3

32 3 Immediate Assertions

« Immediate assertion statement is a test of an expression performed when
the statement is executed in a procedural code.

» The expression is non-temporal.

The ‘else’ clause applies to the ‘assert’ Immediate assertion. Combinational
| statement. If the ‘assert’ fails, the only; no temporal domain sequence. If
action specified with ‘else’ will be the ‘assert’ evaluates to true, the

taken action specified with it is taken.

always @(posedge clk)
begin
if (a)
begin
@(posedge d);
boRc : assert (b || <) $display("\n",$stime,,, “%m assert
passed\n");
selse //This 'else' is for the 'assert’; not for the 'if (a)’
$fatal("\n",$stime,,,"%m assert failed \n");

end

end
An optional statement label can be provided (very Can use one of assertion severity level
useful with %m display format). system tasks in the assertion action block.
For example, assuming the module name containing T_hese LE'VGLS are _Sfatal,_Sermr, Swarning,
the assertion is ‘test_immediate’, the Sdisplay will Sinfo (discussed in detail later...)
print the following, if the assertion passes ::
40 test_immediate.bORc assert passed.

Fig. 3.1 Immediate assertion—basics

the same time that the assertion was fired. If the ‘assert’ statement evaluates to 0, X,
Z then the assertion will be considered to FAIL else it will be considered to PASS.

We also see in the figure that there is (what is known as) an Action Block
associated with FAIL or PASS of the assertion. This is no different than the
PASS/FAIL logic we design for an ‘if...else’ statement.

From syntax point of view, an immediate assertion uses only “assert” as the
keyword in contrast to a concurrent assertion that requires “assert property”.

One key difference between immediate and concurrent assertions is that con-
current assertions always work off of the sampled value in preponed region (see
Sect. 4.3) of a simulation tick while immediate assertions work immediately when
they are executed (as any combinatorial expression in a procedural block) and do
not evaluate its expression in the preponed region. Keep this thought in your back
pocket for now since we haven’t yet discussed concurrent assertions and how
assertions get evaluated in a simulation time tick. But this key difference will
become important to note as you learn more about concurrent assertions.

Finally, as we discussed above, the immediate assertion works on a combina-
torial expression whose variables are evaluated ‘immediately’ at the time the
expression is evaluated. These variables may transition from one logic value to
another (e.g. 1 to 0 to 1) within a given simulation time tick and the immediate

http://dx.doi.org/10.1007/978-3-319-30539-4_4

3 Immediate Assertions 33

always @(posedge clk)
begin
if (busack)
begin
checkbusReq: assert (busReq && !reset)
$display("\n",$stime,,,"“%m passed\n™);

E- T (V%

$fatal("\n", $stime,,,"%m failed \n");
: machinecheck = 1'b1; //DON'T PUT EXECUTABLE RTL HERE..
i end ;

g
end

ENTIRE ‘assert’ block is ignored by
synthesis. So, DO NOT PLACE ANY
EXECUTABLE RTL CODE IN THE ASSERT
‘pass’ OR ‘fail' ACTION BLOCK

l Immediate Assertion :: lllegal in non-procedural statement

Iasgign arb = assert (a || b); //ILLEGAL

)

Immediate assertion cannot be used in continuous assign
because that’s a non-procedural statement. This will
result in a compile time Error.

Fig. 3.2 Immediate assertions: finer points

assertion may get evaluated multiple times before the expression variable values
‘settle’ down. This is why immediate assertions are also known to be ‘glitch’ prone.
This is where the ‘deferred immediate’ assertions come into picture. We will
discuss those in Sect. 16.2.

To complete the story, there are three types of immediate assertions.
immediate assert
immediate assume
immediate cover

Note also that the book contains a lot more information on other types assertions
that can be called from a procedural block (just as you call immediate assertions).
For example, you can call a ‘property’ or a ‘sequence’ (or ‘restrict’ for formal
verification—see Sect. 16.15) from a procedural block.

http://dx.doi.org/10.1007/978-3-319-30539-4_16
http://dx.doi.org/10.1007/978-3-319-30539-4_16

34 3 Immediate Assertions

‘assume’, ‘cover’ are too early to discuss. And also I haven’t discussed
‘property’ and ‘sequence’ yet (see Chap. 4).

Moving on,

Figure 3.2 points out a couple of finer points. First, do not put anything in the
so-called action block (PASS or FAIL) of the immediate assertion. Most synthesis
tools will simply ignore the entire immediate assertion with its action blocks (which
makes sense) and with it will go your logic that (if) you were planning on putting in
your design. This is rather obvious but easy to miss.

Note that an immediate assertion cannot be used in a continuous assignment
statement because continuous assign is not a procedural block.

Lastly, please note that IEEE-1800 2009-2012 LRM also defines another type of
immediate assertion, which is called Deferred Assertion. We will discuss deferred
assertion under Sect. 16.2.

http://dx.doi.org/10.1007/978-3-319-30539-4_4
http://dx.doi.org/10.1007/978-3-319-30539-4_16

Chapter 4
Concurrent Assertions—Basics (Sequence,
Property, Assert)

Introduction: This chapter introduces basics of concurrent assertions namely
‘sequence’, ‘property’, ‘assert’, ‘cover’ and ‘assume’. It discusses fine grained
nuances of Clocking of concurrent assertions and also implication operators,
multi-threaded semantics, formal arguments, ‘bind’ing of assertions, severity levels,
among other topics.

Concurrent assertions are temporal domain assertions that allow creation of
complex sequences which are based on clock (sampling) edge semantics. This is in
contrast to the immediate assertions that are purely combinatorial and do not allow
temporal domain sequences.

Concurrent assertions are the gist of SVA language. They are called concurrent
because they execute in parallel with the rest of the design logic and are
multi-threaded. Let us start with basics and move onto the complex concepts of
concurrent assertions.

Let us first learn the basic syntax of a concurrent assertion and then study its
semantics.

In Fig. 4.1 we have declared a property ‘prl’ and asserted it with a label ‘reqGnt’
(label is optional but highly recommended). The figure explains various parts of a
concurrent assertion including a property; a sequence and assertion of the property.

The ‘assert property (prl)’ statement triggers property ‘prl’. ‘prl’ in turn waits
for the antecedent ‘cStart’ to be true at a (posedge clk) and on it being true implies
(fires) a sequence called ‘srl1’. ‘srl’ checks to see that ‘req’ is high when it is fired
and that 2 ‘clocks’ later ‘gnt’ is true. If this temporal domain condition is satisfied,
then the sequence ‘srl’ will PASS and so will property ‘prl’ and the ‘assert
property’ will be a PASS as well. Let us continue with this example and study other
key semantics.

As explained in Fig. 4.2, following are the basic and mandatory parts of an
assertion. Each of these features will be further explored as we move along.

© Springer International Publishing Switzerland 2016 35
A.B. Mehta, SystemVerilog Assertions and Functional Coverage,
DOI 10.1007/978-3-319-30539-4_4

36 4 Concurrent Assertions—Basics (Sequence, Property, Assert)

SPEC: At posedge clk, if cStart is High, that ‘req’ is high the same clock and 'gnt’ is
high 2 clocks later.

DECLARE a sequence :: sequence
‘sr1’ states that “req be true this
sequence sri; «— | clock; that gnt must be true 2

req #i#2 gnt; clocks later”
endsequence
DECLARE a property ::
property pri; property “pr1” triggers the
@(posedge clk) cStart |->sri; ‘sequence sr1’ when cStart is
endproperty true at posedge clk

rec[Gnt: assert property (pr1) Sdisplay(Sstime,,,\t\t %m PASS"); else
Sdisplay($stime,,, \t\t %m FAIL");

ASSERT a property:: A
property on it’s own is never

evaluated. It must be gnt ﬁ
‘assert’ed (or covered or

assumed). ﬁ

req
LABEL a property::Optional but
highly recommended for debug

cStart ﬁ
purpose.
If it’s not given, the simulator will ak |
assign one for reporting purpose | | | |

Fig. 4.1 Concurrent assertion—basics

N =

‘assert’—you have to assert a property; i.e. invoke or trigger it.

. There is an action block associated with either the pass or fail of the assertion.

. ‘property prl’ is edge triggered on posedge of clk (more on the fact that you
must have a sampling edge for trigger is explained further on).

. ‘property prl’ has an antecedent which is a signal called cStart, which if
sampled high (in the preponed region) on the posedge clk, will imply that the
consequent (sequence srl) be executed.

. Sequence srl samples ‘req’ to see if it is sampled high the same posedge of clk
when the sequence was triggered because of the overlapping implication
operator and then waits for 2 clocks and sees if ‘gnt’ is high.

. Note that each of ‘cStart’, ‘req’, ‘gnt’ are sampled at the edge specified in the

property which is the posedge of ‘clk’. In other words, even though there is no

edge specified in the sequence, the edge is inherited from property prl.

Note also that we are using the notion of sampling the values at posedge clk

which means that the ‘posedge clk’ is the ‘sampling edge’. In other words, the

sampling edge can be anything (as long as it’s an edge and is not level sensi-

tive), meaning it does not necessarily have to be a synchronous edge such as a

clock. It can be an asynchronous edge as well. However, be very careful about

using an asynchronous edge unless you are sure what you want to achieve.

I have devoted a complete example (see Chap. 15) on the pitfalls of using an

asynchronous edge as the sampling edge. It’s too soon to get into that. This is a

http://dx.doi.org/10.1007/978-3-319-30539-4_15

4 Concurrent Assertions—Basics (Sequence, Property, Assert) 37

SPEC: At posedge clk, if cStart is High, that 'req’ is high the same clock and
‘gnt’ is high 2 clocks later.

sequence sri; ‘cStart', ‘req’ and ‘gnt’ are sampled at the
req ##2 gnt; sampling edge (which is posedge clk in this
endsequence example).

* Must define a clock edge on which

property pri; assertion variables are sampled.

@(posedge clk) cStart |-> sr1;
endproperty

reqGnt: assert property (pr1) E Sdisplay($stime,,,"\t\t %m PASS"); i else

begh dobugteg e coohend]

ACTION On FAIL:
Special note for FPGA emulation ACTION BLOCK(S): You can attach

L. . (optional) action_block(s) on the Pass or
Synthesize §1mple assertior_is and_ use the Fail of the property.
FAlLure action block to assign failure status to
a debugReg and then JTAG it out. This can be an elaborate ‘begin..end’

. block or call to a task/function or just a

Or you may encode the failure status on an simple display statement as shown here.
unused output bus

Or you may trigger an interrupt to an ISR for
the failure.

In short, you can take a meaningful action to
convey the cause of failure to shorten your

debug time.

Fig. 4.2 Concurrent assertion—sampling edge and action blocks

very important concept in concurrent assertions and should be well understood.
However, do not worry, you will get much more insight as we move further.

Now, let us slightly modify the sequence ‘srl’ to highlight Boolean expression
in a sequence or a property and study some more key elements of a concurrent
assertion.

As shown in Fig. 4.3 there are three main parts of the expression that determines
when an assertion will fire, what it will do once fired and time duration between the
firing event and execution event.

The condition under which an assertion will be fired is called an ‘antecedent’.
This is the LHS of the implication operator.

RHS of the assertion that executes once the antecedent matches is called the
‘consequent’.

The way to ‘read’ the implication operator is “if there is a match on the ante-
cedent that the consequent will be executed”. If there is no match, consequent will
not fire and the assertion will continue to wait for a match on the antecedent. The
‘implication’ operator also determines the time duration that will lapse between the
antecedent match and the consequent execution. In other words, the implication
operator ties the antecedent and the consequent in one of two ways. It ties them with

38 4 Concurrent Assertions—Basics (Sequence, Property, Assert)

| IMPLICATION OPERATOR |

sequence sri; | ANTECEDENT I e] CONSEQUENT |

req ##2 | (gnt==1 && req==0);

endsequence

property pri;
@(posedge clk) cStart
endproperty

-> sri;

reqGnt: assert property (pr1) S$display(Sstime,,,"\t\t %m PASS"); else
Sdisplay(Sstime,,,"\t\t %m FAIL");

Boolean Expressions

+ Variables in the expression are all sampled values at the sampling edge (in
Preponed region)

+ The outcome of the eval of the expression is a boolean and is interpreted the
same as the conditional expression of the procedural ‘if’ statement.

+ If the expression evaluates to ‘x’ or ‘z’ or ‘0’, the expression is evaluated to
False; else it is True

+ Expressions can include function calls

Fig. 4.3 Concurrent assertion—implication, antecedent and consequent

an ‘overlapping’ implication operator or a ‘non-overlapping’ implication operator.
More on this coming up...

One additional note on Boolean Expressions before we move on. Following

types are not allowed for the variables used in a Boolean Expression.

dynamic Arrays

class

string

event

real, shortreal, realtime,
associative Arrays
chandle

Here are explicit rules that govern Boolean Expressions

An expression must result in a type that is cast compatible with an integral type.
Subexpressions need not meet this requirement as long as the overall expression
is cast compatible with an integral type.

Elements of dynamic arrays, queues, and associative arrays that are sampled for
assertion expression evaluation may get removed from the array or the array
may get resized before the assertion expression is evaluated. These specific array

4 Concurrent Assertions—Basics (Sequence, Property, Assert) 39

I IMPLICATION OPERATOR (more on this coming soon...) I

ANTECEDENT I CONSEQUENT
A\

property pr1; \ L ogmeeeeeees e S N Ao
®(posedge clk) cStart |-> ireq ##2 (gnt==1 && req==0); "
endproperty

reqGnt: assert property (pr1) Sdisplay($stime,,,"\t\t %m PASS");
else

Sdisplay(Sstime,,,"\t\t %m FAIL");

This figure is simply to point out that you don't have to declare a 'sequence’ to
create a property. You can have a complex sequence embedded directly into
the ‘antecedent’ and/or the ‘consequent’ part of the 'property’ itself.

It is however recommended that a complex property be broken down into
smaller sequences (ease of coding, reading and debug).

We'll see many examples of how to break down a complex property into
smaller sequences ...

Fig. 4.4 Property with an embedded sequence

elements sampled for assertion expression evaluation must continue to exist
within the scope of the assertion until the assertion expression evaluation
completes.

Expressions that appear in procedural concurrent assertions may reference
automatic variables. Otherwise, expressions in concurrent assertions shall not
reference automatic variables. Procedural concurrent assertions are discussed in
Sect. 14.2.

Expressions must not reference non-static class properties or methods.
Expressions must not reference variables of the chandle data type.

Functions that appear in expressions must not contain output or ref arguments
(const ref is allowed).

Figure 4.4 further explains the antecedent and consequent. As shown, you don’t
have to have a sequence in order to model a property. If the logic to execute in
consequent is simple enough, then it can be declared directly in consequent as
shown. But please note that it is always best to break down a property into smaller
sequences to model complex properties/sequences. Hence, consider this example
only as describing the semantics of the language. Practice should be to divide and
conquer. You will see many examples, which seem very complex to start with, but
once you break them down into smaller chunks of logic and model them with
smaller sequences, tying all those together will be much easier then writing one
long complex assertion sequence.

http://dx.doi.org/10.1007/978-3-319-30539-4_14

40 4 Concurrent Assertions—Basics (Sequence, Property, Assert)

4.1 Implication Operator, Antecedent and Consequent

Implication operator ties the antecedent and consequent. If antecedent holds true it
implies that the consequent should hold true.
There are two types of implication operators as shown in Fig. 4.5

OVERLAPPING
OPERATOR
property pri;
@(posedge clk) cStart |-> (req ##2 gnt);
endproperty
baseP: assert property (pri);

ant 1T

If ‘cStart’ is true at (posedge clk), it
implies that ‘req’ must be true at the
-same- posedge clk && ‘gnt’ must be

T ‘r true 2 clocks later.
cStart

clk |

req

NON-OVERLAPPING
OPERATOR

property pri;
®(posedge clk) cStart |=> (req ##2 gnt);

endproperty

baseP: assert property (pr1);

ant 111

req TT If ‘cStart’ is true at (posedge clk), it

implies that ‘req’ must be true at the
TT -next- posedge clk && ‘gnt’ must be
true 2 clocks later.

cStart

|
clk | :|| |

Fig. 4.5 Implication operator—overlapping and non-overlapping

4.1 Implication Operator, Antecedent and Consequent 41

1. Overlapping Implication Operator: Referring to Fig. 4.5, the top most property
shows the use of an overlapping operator. Note its symbol (|->), which differs
from that of the non-overlapping operator (|=>). Overlapping means that when
the antecedent is found to be true, that the consequent will start its execution
(evaluation) the ‘same’ clk. As shown in the figure, when cStart is sampled High
at posedge of clk that the req is required to be High at the ‘same’ posedge clk.
This is shown in the timing diagram associated with the property.

a. So, what happens if ‘req’ is sampled true at the next posedge clk after the
antecedent (and false before that)? Will the overlapping property pass?

2. Non-overlapping Implication Operator: In contrast, non-overlapping means that
when the antecedent is found to be true that the consequent should start its
execution, one clk later. This is shown in the timing diagram associated with the
property.

a. So, what happens if ‘req’ is sampled true at the same posedge clk as the
antecedent (and False after that)? Will the non-overlapping property pass?

Answer to both l.an and 2.a is NO.

Figure 4.6 further shows the equivalence between overlapping and
non-overlapping operators. ‘|=>’ is equivalent to ‘|-> ##1’. Note that ##1 is not the
same as Verilog’s #1 delay. ##1 means one clock edge (sampling edge). Hence
‘|-> ##1° means the same as ‘|=>’.

OVERLAPPING OPERATOR I

property pri;
®(posedge clk) cStart ||-> ##1 |(req ##2 gnt);
endproperty

;\
gnt 1T
- Tr

cStart ﬁ
clk i I I |
NON-OVERLAPPING OPERATOR l '

property pri; v
@(posedge clk) cStart |=> (req ##2 gnt);
endproperty - -

baseP: assert property (pr1);

baseP: assert property (pr1);

[T L L LLL L LI LT TR T

Fig. 4.6 Equivalence between overlapping and non-overlapping implication operators

42 4 Concurrent Assertions—Basics (Sequence, Property, Assert)

Suggestion: To make debugging easier and have project wide uniformity, use the
overlapping operator in your assertions. Reason? Overlapping is the common
denominator of the two types of operator. You can always model non-overlapping
from overlapping and but you cannot do vice versa. What this means is that during
debug everyone would know that all the properties are modeled using overlapping
and that the # of clocks are exactly the same as specified in the property. You do not
have to add or subtract from the # of clocks specified in the chip specification. More
important, if everyone uses his or her favorite operator, debugging would be very
messy not knowing which property uses which operator.

Finally, do note that concurrent assertions can be placed:

1. in ‘always’ procedural block

2. in ‘initial’ procedural block

3. standalone (static)—outside of the procedural block—which is what we have
seen so far. 1 and 2 are described in Sect. 14.2.

4.2 Clocking Basics

As mentioned before, a concurrent assertion is evaluated only on the occurrence of
an ‘edge’, known as the ‘sampling edge’. The reason for continually mentioning
this ‘edge’ as ‘clk’ is because it is best to have this ‘edge’ synchronous to either
posedge or negedge for a signal. You can indeed have an asynchronous edge as
well. BUT be very careful. I have devoted a complete example precisely to explain
how an assertion with an asynchronous edge works. In Fig. 4.7, we are using a
non-overlapping implication operator, which means that at a posedge of clk if cStart
is high, then one clock later srl should be executed.

Let us revisit ‘sampling’ of variables. The expression variables cStart, req and
gnt are all sampled in the preponed region (see Sect. 4.3) of posedge clk. In other
words, if (e.g.) cStart = 1 and posedge clk changed at the same time, the sampled
value of cStart in the ‘preponed region’ will be equal to ‘zero’ and not ‘one’. We
will soon discuss what ‘preponed region’ really means in a simulation time tick and
how it affects the evaluation of an assertion, especially when the sampling edge and
the sampled variable change at the same time.

Note again that ‘sequence srl’ does not have a clock in its expression. The clock
for ‘sequence srl’ is inherited from the ‘property prl’. This is explained next using
Fig. 4.8.

As explained in Fig. 4.8, the ‘clk’ as an edge can be specified either directly in
the assert statement or in the property or in the sequence. Regardless of where it is
declared, it will be inherited by the entire assertion (i.e. the assert, property and
sequence blocks).

Suggestion: As noted in Fig. 4.8, my recommendation is to specify the ‘clk’ in a
property. Reason being you can keep sequences void of sampling edge (i.e. ‘clk’)
and thus make them reusable. The sampling edge can change in the property but

http://dx.doi.org/10.1007/978-3-319-30539-4_14
http://dx.doi.org/10.1007/978-3-319-30539-4_4

4.2 Clocking Basics

‘cStart’ ‘req’ and ‘gnt’ are
sampled at the sampling edge
(which is posedge clk in this
example).

Sequence SH’ T —
req ##2 gnt;
endsequence

43

property pri; Must define a clock edge on which

—
@(posedge clk) cStart |=> sr1; assertion variables are sampled.
endproperty

reqGnt: assert property (pr1) S$display($stime,,,"\t\t %m PASS"); else
Sdisplay($stime,,,"\t\t %m FAIL");

:: CLOCKING BASICS ::
+ A concurrent assertion is evaluated only at the occurrence of a clock tick.
« The definition of a clock is explicitly specified by the user.

« Assertion without a clock (or a sampling edge) will result in a compile Error.

+ The clock expression can be more complex than just a single signal name. E.g.,
you can have (CLK && Gating_signal).

Fig. 4.7 Clocking basics

sequence sri; Clock specified
@(posedge clk) req ##2 gnt; |ina ‘sequence’ 11 CLOCKING BASICS ::
endsaquence « As shown in the example on the
left, the clock can be specified
roperty pri; i ;
pcsfm!i‘i sr; either in the sequence or in the
endproperty property or during ‘assert’ion. (Multi
clock properties will be discussed
reqGnt: assert property (pr1); later).
sequence sri; Clock specified
req ##2 gnt; in a ‘property’
endsequence ﬂh N
Suggestion:
property pri; . s
@(posedge cik) cStart [=5 s1; :l'o rmprovc;- the reusability of a
endproperty sequence’ you may want to .
specify the clocking event with a
reqGnt: assert property (pr1); property.
sequence sri; Clock specified
req ##2 gnt; in ‘assert
endsequence
property pri;
cStart |=>sr1;
endproperty
reqGnt: assert property (@(posedge clk) pr1);

Fig. 4.8 Clocking basics—clock in ‘assert’, ‘property’ and ‘sequence’

44 4 Concurrent Assertions—Basics (Sequence, Property, Assert)

sequence (or cascaded sequences) remain untouched and can change their logic
without worrying about the sampling edge. Note that it is also more readable when
the sampling edge ‘clk’ is declared just before the antecedent in a property. “At
posedge of clk, if cStart is high, trigger srl”.

Note that (as described in Sect. 14.2), a clock can be contextually inferred from a
procedural block for a concurrent assertion. For example,

always @(posedge clk) assert property (not (FRAME_ ##2 IRDY));

Here the concurrent assertion is fired from a procedural block. The clock is @
(posedge clk), inferred from the ‘always @(posedge clk)’ statement.

There is also an entire Sect. 8.1 devoted to multi-clock properties. It is too early
to delve into its detail.

4.3 Sampling Edge (Clock Edge) Value: How Are
Assertions Evaluated in a Simulation Time Tick?

How does the so-called sampling edge sample the variables in a property or a
sequence is one of the most important concept you need to understand when
designing assertions. As shown in Fig. 4.9 the important thing to note is that the
variables used in assertions (property/sequence/expression) are sampled in the
preponed region. What does that mean? It means (for example) if a sampled

From previous time
slot

variables used in
Assertions are ! N_E:A | ﬁ\ss:rt'iczshare
sampled here |, .2 T T o0 S B R 4 evaluate ere
i Observed I'//
1 ¥
: Reactive Execute Assertion
| F\‘\ ‘Action’ block
: : (i.e. pass/fail)
I 1
I 1
: Postponed }—t— To next time slot |
]
]
I

Values are sampled at the end of previous time step I

Sl

Fig. 4.9 Assertions variable sampling and evaluation/execution in a simulation time tick

http://dx.doi.org/10.1007/978-3-319-30539-4_14
http://dx.doi.org/10.1007/978-3-319-30539-4_8

4.3 Sampling Edge (Clock Edge) Value: How Are Assertions ... 45

variable changes the same time as the sampling edge (e.g. clk) that the value of the
variable will be the value it held—before—the clock edge.

@ (posedge clk) a |=> la;

In the above sequence, let us say that variable ‘a’ changes to ‘1’ the same time
that the sampling edge clock goes posedge clk (and assume ‘a’ was ‘0’ before it
went to a ‘1”). Will there be a match of the antecedent ‘a’? No! Since ‘a’ went from
‘0’ to ‘1’ the same time that clock went posedge clk, the sampled value of ‘a’ at
posedge clk will be ‘0’ (in the preponed region) and not ‘1°. This will not cause the
property to trigger because the antecedent is not evaluated to be true. This will
confuse you during debug. You would expect ‘1’ to be sampled and the property
triggered thereof. However, you will get just the opposite result.

This is a very important point to understand because in a simulation waveform
(or for that matter with Verilog $monitor or $strobe) you will see a ‘1’ on ‘a’ with
posedge clk and would not understand why the property did not fire or why it failed
(or passed for that matter). Always remember that at the sampling edge, the ‘pre-
vious’ value (i.e. a delta before the sampling edge in the preponed region) of the
sampled variable is used. To reiterate, preponed region is a precursor to the time
slot, where only sampling of the data values take place. No value changes or events
occur in this region. Effectively, sampled values of signals do not change through
the time slot.

Note that a named event can also act as a clock. For example:

module eventtrig;
event e;

always @(posedge clk) -> e;
al: assert property (@e a |=>b);

endmodule

Following is to establish what is not sampled. As you read the book further, you
will better understand what this means. For now, keep it in your back pocket.
Following are NOT sampled in the pre-poned region of the time tick.

e Assertion local variables
Assertion action blocks (pass and fail)
Clocking event expression (e.g. @(posedge clk); here clk is not sampled—but
the current value of clock is used)

e Disable condition (variables of conditional expression) of ‘disable iff” (more on
this in Sect. 4.6—this concept is important to understand)

e Actual arguments passed to ‘ref’ or ‘const ref’ arguments of subroutines
attached to sequences.

e The sampled value of a const cast expression is defined as the current value of
its argument. For example, if ‘a’ is a variable, then the sampled value of
const’(a) is the current value of a. When a past or a future value of a const cast

http://dx.doi.org/10.1007/978-3-319-30539-4_4

46 4 Concurrent Assertions—Basics (Sequence, Property, Assert)

expression is referenced by a sampled value function, the current value of this
expression is taken instead.

e Sampled value of the .triggered event property and the sequence methods .trig-
gered and .matched (see Chap. 11) is defined as the current value returned by the
event property or sequence method. For example, if ‘a’ is a static module variable,
‘s’ is a sequence, and ‘f” is a function, the sampled value of f (a, s.triggered) is the
result of the application of ‘f” to the sampled values of ‘a’ and s.triggered, i.e., to
the value of ‘a’ taken from the Preponed region and to the current value of s.
triggered.

Here is a complete example including the testbench and comments that explain
how sampling of variables in the preponed region affect assertion results.

module assert1;
reg A, B, C, D, clk;
property ab;
@ (posedge clk) !A |-> B;
endproperty
aba: assert property (ab) else Sdisplay ($stime,,, "ab FAIL");
abc: cover property (ab) Sdisplay(Sstime,,, "ab PASS");
initial begin
clk=0; A=0; B=0; //Note: A and B are equal to ‘0’ at time 0.
forever #10 clk=! clk;
end
initial begin
‘ifdef PASS

/* Following sequence of events will cause property 'ab' to PASS because even though A=0 and B=1 change
simultaneously they had settled down because of #1 before posedge clk. Hence when @ (posedge clk) samples
A, B; A=0 and B=1 are sampled. The property antecedent ‘!A’ is evaluated to be true and at that same time
(overlapping operator) B==1. Hence the property passes */

A=0;
B=1;

#1;

http://dx.doi.org/10.1007/978-3-319-30539-4_11

4.3 Sampling Edge (Clock Edge) Value: How Are Assertions ... 47

@ (posedge clk)
‘else

/* Following sequence of events will cause property 'ab' to FAIL. Here’s the story. A=0 and B=1 change at the
same time as posedge clk. This causes the sampled value of B to be equal to ‘0’ and not ‘1’ because the sampling
edge (posedge clk) samples the variable values in the preponed region and B was equal to '0' in the preponed
region. Note that A was equal to '0' in the preponed region because of its initialization in the "initial' block above.
So, now you have both ‘A’ and ‘B’ == 0. Since A is 0, !A is true and the property evaluation takes place. Property
expects B==1 the same time (overlapping operator) that !A is true. However, ‘B’s sampled value is ‘0’ and the
property fails. */

@ (posedge clk)

“endif

@ (negedge clk)
Sfinish(2);
end

endmodule

Here are some detailed rules on how variables and expressions are sampled (at a
clock edge). Keep this in your back pocket. At this time, you may not understand
them well. But once you better familiarize yourself with how sampled values of
variables (local, automatic, normal) take place, this will be good reference.

The definition of a sampled value of an expression is based on the definition of a
sampled value of a variable. The general rule for variable sampling is as follows:

— The sampled value of a variable in a time slot corresponding to time greater than
0 is the value of this variable in the Preponed region of this time slot.

— The sampled value of a variable in a time slot corresponding to time O is its
default sampled value.

This rule has the following exceptions:

— Sampled values of automatic variables, local variables and active free checker
variables (see Sect. 16.19 for checker variables) are their current values.
However,

— When a past or a future value of an active free checker variable is referenced by
a sampled value function (e.g. $past), this value is sampled in the Postponed
region of the corresponding past or future clock tick;

— When a past or a future value of an automatic variable (automatic variable is a
SystemVerilog construct and not discussed in this book) is referenced by a
sampled value function, the current value of the automatic variable is taken
instead.

http://dx.doi.org/10.1007/978-3-319-30539-4_16

48 4 Concurrent Assertions—Basics (Sequence, Property, Assert)

The sampled value of an expression is defined as follows:

— The sampled value of an expression consisting of a single variable is the
sampled value of this variable.

— The sampled value of the triggered event property and the sequence methods .
triggered and .matched (see Sect. 11.2) is defined as the current value returned
by the event property or sequence method.

— The sampled value of any other expression is defined recursively using the
values of its arguments. For example, the sampled value of an expression el &
e2, where el and e2 are expressions, is the bitwise AND of the sampled values
of el and e2. In particular, if an expression contains a function call, to evaluate
the sampled value of this expression, the function is called on the sampled
values of its arguments at the time of the expression evaluation.

4.3.1 Default Clocking Block

For a long chain of properties and sequences in the file, you can also use the default
clocking block as explained in Fig. 4.10. The figure explains the different ways in
which clocking block can be declared and the scope in which it is effective. The top
block of the figure shows declaration of ‘default clocking cbl’ which is then
inherited by the properties ‘checkReqGnt’ and ‘checkBusGrant’ that follow. This
default clocking block will be in effect until another default clocking block is
defined. The bottom part of the figure is interesting. Here the properties are directly
embedded in the default clocking block. I don’t recommend doing that though. The
clocking block should only contain clock specifications, which will keep it modular
and reusable. Use your judgment call wisely on such issues.

Figure 4.11 declares two clocking blocks, namely ‘cbl’ and ‘cb2’ in a stan-
dalone Verilog module called ‘design_clocks’. This is a great way to organize your
clocking strategy in one module. Once defined, you can use any of the clocking
block that is required simply by referring to it by its hierarchical instance name as
shown in the figure.

Here’s some food for thought. I have outlined a couple of pros and cons of using
a default-clocking block. It is mostly advantageous but there are some caveats.

Pros: The argument towards default block is reusability. You may change the
clocking relation in the default block and it will be applicable to all the following
blocks. You do not have to individually change clocking scheme in each property.
This is indeed a true advantage and if you plan to change the clocking scheme in the
default block without affecting the properties that follow, do use the default block
by all means.

Cons: Readability/debuggability: When you see a property without any sampling
edge, you have to scroll back to ‘someplace’ above the property to see what
sampling edge is being used. You have to find the very preceding clocking block

http://dx.doi.org/10.1007/978-3-319-30539-4_11

4.3 Sampling Edge (Clock Edge) Value: How Are Assertions ...

default clocking cb1
@(posedge clk);

endclocking \

property checkReqGnt;
req ##2 gnt;
endproperty
property checkBusGrant; * 2
bgack |-> not ($isunknown(busgnt));
endproperty ;
v
reqGntP: assert property (checkRegGnt);
bgackP: assert property (checkBusGrant);

-\-‘—\"“'\._\\

49

T asserts will inherit clock

These properties and

from the default
clocking block cb1.

default clocking cb1 <
@(posedge clk);
-Eproperty checkRéant; ‘
i req ##2 gnt;
:endproperty

You can put properties
directly inside the

iproperty checkBusGrant;
i bgack |-> not (Slsunknown(busgnt)),
iendproperty

endclocking «

reqGntP: assert property (checkReqGnt);
bgackP: assert property (checkBusGrant);

Fig. 4.10 Default Clocking block

clocking block as well.

and can’t just go to the top of the file. I like properties that are mostly self-contained
with the sampling edge. Sure, it’s a bit more typing but a lot more readable.
Here’s an example of how you can use the ‘default’ clocking block but also

override it with explicit (non-default) clocking.

module default_explicit_clocking;

default clocking negedgeClock @(negedge clk1); endclocking

clocking posedgeClock @(posedge clk2); endclocking

d2: assert property (x |=>y); //will inherit default clock-negedgeClock
d3: assert property (z [=2] |-> a); //will inherit default clock—negedgeClock
nd1: assert property (@posedgeClock b |=> c); //will use non-default clocking

posedgeClock

endmodule

50 4 Concurrent Assertions—Basics (Sequence, Property, Assert)

module top;
design_clocks design_clocks();
endmodule

module design_clocks;

bit clk;
clocking cbie———
@(posedge PCI_clk); \
ce;cclill?‘cgklr;gz | Declare 'clocking’ blocks
@(posedge AXI_clk); and use one as 'default
endmodule

module busModule (input logic req, gnt, bgack, busgnt, clk);
-

default clocking top.design_clocks.cb1; *—

property checkReqGnt;
req ##2 gnt;
endproperty

property checkBusGrant;
bgack |-> not ($isunknown(busgnt));
endproperty

reqGntP: assert property (checkReqGnt);
bgackP: assert property (checkBusGrant);
endmodule

Fig. 4.11 ‘clocking’ and ‘default clocking’

Obviously, you don’t have to declare the ‘clocking’ block as shown above. You can
simply use @ (posedge clk2) directly in the property assertion, as shown below.

module default_explicit_clocking;

default clocking negedgeClock @(negedge clk1); endclocking

d2: assert property (x |=>y); //will inherit default clock-negedgeClock

d3: assert property (z [=2] |-> a); //will inherit default clock—negedgeClock

nd1: assert property (@(posedge clk2) b |=> c); //explicit declaration of clock—clk2

endmodule

Or you can model the same clocking structure as follows, using a property with its
own explicit clock.
module default_explicit_clocking;

default clocking negedgeClock @(negedge clk1); endclocking

4.3 Sampling Edge (Clock Edge) Value: How Are Assertions ... 51

property nClk; @(posedge clk2) b |=> c; endproperty

d2: assert property (x |=>y); //will inherit default clock-negedgeClock

d3: assert property (z[= 2] |-> a); //will inherit default clock-negedgeClock
nd1: assert property (nClk); //explicit declaration of clock—clk2

endmodule
Note the following rules that apply to a clocking block:

1. Multiclocked sequences and properties (Chap. 8) are not allowed within the
clocking block.

2. If a named sequence or property that is declared outside the clocking block is
instantiated within the clocking block, the instance is singly clocked and its
clocking event is identical to that of the clocking block.

3. An explicitly specified leading clocking event in a concurrent assertion state-
ment supersedes a default clocking event.

Note the following example that shows the application of above rules and points
to Legal and Illegal cases (courtesy LRM)

property q1;
Srose(a) |-> ##[1:5] b;
endproperty

property q2;
@(posedge clk) q1;
endproperty

default clocking posedge_clk @(posedge clk);

property g3;
Sfell(c) |=>q1; // legal: 1 has no clocking event
endproperty

property g4;
Sfell(c) |=>q2; // legal: g2 has clocking event identical to that of the clocking block
endproperty

sequence s1;
@(posedge clk) b[*3]; // illegal: explicit clocking event in clocking block
endsequence

endclocking

Following may not be too intuitive at this stage since we haven’t seen concurrent assertions in practice. But
these are important legal and illegal conditions which will help avoid unnecessary debugging. Examples are for
properties that does not have a default clocking block.

http://dx.doi.org/10.1007/978-3-319-30539-4_8

52 4 Concurrent Assertions—Basics (Sequence, Property, Assert)

module examples_NO_default (input logic a, b, c, clk);
property q1;

Srose(a) |-> ##[1:5] b;
endproperty

property g5;
@(negedge clk) b[*3] |=> lb;
endproperty

property g6;
qland g5;
endproperty

a5: assert property (q6); // illegal: no leading clocking event
a6: assert property (Sfell(c) |=> g6); // illegal: no leading clocking event

sequence s2;
Srose(a) ##[1:5] b;

endsequence

cl: cover property (s2); // illegal: no leading clocking event

c2: cover property (@(negedge clk) s2); // legal: explicit leading clocking event, @(negedge clk)

sequence s3;
@(negedge clk) s2;
endsequence

c3: cover property (s3); // legal: leading clocking event, @(negedge clk), determined from declaration of s3

endmodule

4.3.2 Gated Clk

Figure 4.12 shows an interesting modeling application of using a gated clk as the
sampling edge for a property. Note that assign is out of the scope of assertion. But
it’s assigned value ‘clkstart’ can indeed be used in the property. In general, any
variable declared in a given scope in which the property/sequence is defined is
available to the assertion. If the assertions are declared out of the module but bound
to the module using ‘bind’ method, the same rule applies. More on ‘bind’ statement

coming up soon.
In this example, the sampling edge will be the posedge of (clk && cGate). In the

preponed region of this sampling edge, the variables in property and sequence will

be sampled.

4.4 Concurrent Assertions Are Multi-Threaded 53

assign clkstart = clk && cGate; ‘_*{ Gated Clock. I
sequence sr1; \
req ##2 gnt; |
endsequence /
property pri;
@(posedge clkstart) cStart |-> sr1;
endproperty
reqGnt: assert property (pr1);

Fig. 4.12 Gated clock

4.4 Concurrent Assertions Are Multi-threaded

This is about the most important concept you need to grasp when it comes to
concurrent assertions. We all know SystemVerilog is a concurrent language but is
it multi-threaded (except when automatic variables are used)? SVA by default is
concurrent and multi-threaded.

In Fig. 4.13, we have declared the same assertion that you have seen before,
namely at posedge clk, if cStart is sampled high that sr1 will be triggered at the
same posedge clk which will then look for ‘req’ to be high at that clock and ‘gnt’ to
be sampled high two clocks later.

Now, let us say that cStart is sampled high (S1) at a posedge of clk and that ‘req’
is also sampled high at that same edge. After this posedge clk, the sequence will
wait for 2 clocks to see if ‘gnt’ is high.

But before the two clocks are over, clk cStart goes low and then goes high (S2)
exactly two clocks after it was sampled high. This is also the same edge when our
first trigger of assertion will look for gnt to be high (S1). So, what will the assertion
do? Will it re-fire itself because it meets its antecedent condition (S2) and ignore
‘gnt’ that it’s been waiting for from the first trigger (S1)? No, it will not ignore
‘egnt’. It will sample ‘gnt’ to be high (S1) and consider the first trigger (cStart (S1))
to PASS. So, what happens to the second trigger (cStart (S2))? It will start another
thread. It will again wait for 2 clocks to check for ‘gnt’. So far so good. We see one
instance of SVA being threaded.

But life just got more interesting.

After S2, the very next clock cStart is sampled high again (S3). And ‘req’ is high
as well (req(S3)). Now what will the assertion do? Well, S3 will thread itself with
S2. In other words, there are now two distinct threads of the same assertions waiting
to sample ‘gnt’ two clocks after their trigger. The figure perfectly (!) lines up ‘gnt’
to be high two clocks after both S2 as well as after S3 and all 3 triggers of the same
assertions will PASS.

This has many implications in terms of design of assertions and performance
thereof. We will discuss this further when we discuss edge triggered antecedent.

54 4 Concurrent Assertions—Basics (Sequence, Property, Assert)

sequence sri;
req ##2 gnt;
endsequence

property pri;
@(posedge clk) cStart |-> sr1;
endproperty

reqGnt: assert property (pr1) Sdisplay(Sstime,,,"\t\t %m PASS");
else Sdisplay($stime,,,"\t\t %m FAIL");

- W R W

T

=
e T LU\

clk

Fig. 4.13 Multi-threaded concurrent assertions

In other words, the way the property in our example is coded, it will drag your
simulation performance because every time the property sees cStart to be high at
posedge of clk, it will start a new thread. But if you want to evaluate the property
only at the first rise of cStart and then ignore it if it stays high (unless it goes low
and goes high again) then you have to use edge sensitive antecedent. More on this
in Chap. 5. In addition, the concept of multi-threaded language gets much more
interesting as you will see in Sect. 6.2.1.

Here’s an explanation of further nuances of concurrent assertions.

It is important that the defined clock behavior be glitch free. Otherwise, wrong
values can be sampled.

If a variable that appears in the expression for clock also appears in an
expression with an assertion, the values of the two usages of the variable can be
different. The current value of the variable is used in the clock expression, while the
sampled value of the variable (in preponed region) is used within the assertion.
This concept is especially important to understand if your ‘sampling edge’ is not a
synchronous clock but an ‘asynchronous edge’. We will cover this concept via an
explicit example in Chap. 15.

http://dx.doi.org/10.1007/978-3-319-30539-4_5
http://dx.doi.org/10.1007/978-3-319-30539-4_6
http://dx.doi.org/10.1007/978-3-319-30539-4_15

4.5 Formal Arguments 55

4.5 Formal Arguments

One of the key features of assertions is that they can be parameterized. In other
words, assertions can be designed with formal arguments to keep them generic
enough for use with different actual arguments.

Figure 4.14 is self-explanatory. Notice that the formal arguments can be spec-
ified in a sequence and in a property.

The application shows the advantage of formal arguments in reusability.
Property ‘noChangeSig’ has 3 formal arguments, namely pclk, refSig and Sig. The
property checks to see that if refSig is sampled low at posedge pclk, that the Sig is
‘stable’. Once such a generic property is written you can invoke it with different clk,
different refSig and Sig. CheckRd is a property that uses sysClk and OE_ and
RdData to check for ‘stable’ condition while CheckWr uses WE_ and WrData to
check for WrData to be ‘stable’.

In any project, there are generic properties that can be reused multiple times by
passing different actual arguments. This is reusable not only in the same project but
also among projects.

Companies have created libraries of such pool of properties that projects look up
and reuse according to their needs.

Formal arguments can Argument ‘type’ can be declared. If no ‘type’ is
be used both in declared the formal will take the ‘type’ of the
‘sequence’ and in actual.

‘property’.

[Actual arguments are passed during instantiation. I

logic req, gnt;

A J
sequence sr1 (a,b);
a##2b;
endsequence

property pr1 (logic pa, logic pb);
@®(posedge clk) cStart |-> sr1 (pa,pb);
endproperty

reqGnt: assert property (pri(req,gnt)) $display($stime,,,"\t\t %m PASS"); else
$display($stime,,,"\t\t %m FAIL");

| application I

property noChangeSig (pclk, refSig, StableSig);
@(posedge pclk) !refSig |-> $stable(StableSig);

endproperty

CheckRd: assert property (noChangeSig (sysClk, OE_, RdData)) $display ($stime,,,"PASS");
CheckWr: assert property (noChangeSig (sysClk, WE_, WrData)) $display ($stime,,,"PASS");

Fig. 4.14 Formal and actual arguments

56 4 Concurrent Assertions—Basics (Sequence, Property, Assert)

default value assigned
to a formal

logic req, gnt; /

property pr1 (enb=1'b1, logic pa, logic pb);
@(posedge clk) enb |-> pa ##2 pb;
endproperty

reqGnt: assert property (pri(cStart,req,gnt));

1

position based connections... I

reqGnt: assert property (pr1 (.enb(cStart), .pa(req), .pb(gnt)));
1
name based connections... I

Fig. 4.15 Formal and Actual arguments—default value and name based connection

As shown in Fig. 4.15, properties can be both position based as well as name
based. I highly recommend name based to make sure that actuals are connected to
correct formals without ambiguity. This rule is the same as that we have been using
for Verilog port connections.

Figure 4.16 describes the following points

1. Default values can be assigned to the formal arguments.
a. If actual and formal both specify a ‘default’ value, the actual will overwrite
the formal default value.
b. You may leave passing an actual to a formal if the formal has a default value.
Please refer to Fig. 4.16.

This is a very interesting feature and very useful at that for reusability. A formal
can be used for event control as well. A sampling edge can be passed as an actual to
a formal and the actual can be used as a sampling edge in the property. We are
passing ‘posedge clk’ as an actual to the formal ‘csig’. The property uses @ (csig)
as it’s sampling edge. ‘@ (csig)’ will change to ‘@ (posedge clk)’ when the
property ‘prl’ is called with ‘posedge clk’ as the actual argument. Please refer to
Fig. 4.17 for clarity on this point. Such properties can indeed be part of a common
pool of properties that individual projects can reuse with their own sampling edge
specification.

4.5 Formal Arguments 57

default value assigned
to a formal

logic req, gnt;

property pr1 (enb=1'b1, logic pa, logic pb);
@(posedge clk) enb |-> pa ##2 pb;
endproperty

position based
reqGnt: assert property (pri(cStart,req,gnt)); | connections...

reqGnt: assert property (pr1 (.pa(req), .pb(gnt))); |

You may leave the formal with default value
unconnected. Here we have not passed an ‘actual’
on the formal 'enb’ since it has a default value
assigned during it's formal declaration.

reqGnt: assert property (pr1 (,req,gnt);

You may leave the formal with default value
unconnected. But (as in Verilog), for position based
connections, you need to leave a ,” for the
unconnected formal.

Fig. 4.16 Formal and actual arguments—default value and position based connection

a formal for an
event control

logic req, gnt;
property pr1 (csig, enb=1'b1, logic pa, logic pb);

@(csig) enb |-> pa ##2 pb;

e
endproperty

reqGnt: assert property (pri1(posedge clk, cStart, req, gnt));

f

you can pass event control as an actual
argument

Fig. 4.17 Passing event control to a formal

58 4 Concurrent Assertions—Basics (Sequence, Property, Assert)

Ll{l])" ILLEGAL :: Cannot use a ‘formal’ to size a local variable in a property. Size can only be a
) constant (or parameter) because it needs to be known at elaboration time.

property pr1 (int dSize, csig, enb=1'b1, logic pa, logic pb);
logic [dSize:0] Ldata,
@(csig, Ldata=data) enb |-> pa ##2 pb;

endproperty

reqGnt: assert property (pri1('d31, posedge clk, cStart, req, gnt));

Note also that you cannot pass a variable as an actual to size a local variable (see
Chap. 9) in the property prl. The size parameter needs to be a constant for sizing a
local parameter.

Here are a some more rules governing binding between formal and actual.

A formal argument is said to be untyped if there is no type specified prior to its
declaration in the port list. There is no default type for a formal argument.

The supported data types for sequence formal arguments are the types that are
allowed for operands in assertion expressions and the keyword untyped.

Note that you can also use ‘$’ as an actual argument. The terminal ‘$’ may be an
actual argument in an instance of a named sequence, either declared as a default
actual argument or passed in the list of arguments of the instance. If ‘$’ is an actual
argument, then the corresponding formal argument must be untyped and each of its
references will be an upper bound in a cycle_delay_const_range_expression.

4.6 Disable (Property) Operator—‘Disable Iff’

Of course, you need a way to disable a property under conditions when the circuit is
not stable (think Reset). That’s exactly what ‘disable iff” operator does. It allows
you to explicitly disable the property under a given condition. Note that ‘disable iff”
reads as ‘disable if and only if’. The example in Fig. 4.18 shows how you can
disable an assertion during an active Reset. There is a good chance you will use this
Reset based disable method in all your properties throughout the project.

Ok, so what happens if a property has started executing and the ‘disable iff’
condition occurs in the middle of its execution?

The property in Fig. 4.18 checks to see that sdack_ falls (i.e. contained) within
soe_ (don’t worry, we’ll see how such properties work in later chapters—see
Sect. 6.10). It also has the ‘disable iff (! reset)’ condition. Disable this property if
reset is asserted (active low).

Let us examine the simulations logs.

In the LHS simulation log, reset is never asserted and the assertion completes
(and passes in this case).

http://dx.doi.org/10.1007/978-3-319-30539-4_9
http://dx.doi.org/10.1007/978-3-319-30539-4_6

4.6 Disable (Property) Operator—‘Disable Iff’

sequence sdack_;
Idack_[*7];
endsequence

sequence soe_;

Sfell (oe_) ##1 (loe_[*8]) ;
endsequence

property pwin;

sdack_ within soe_;
endproperty

@(posedge clk) disable iff (Ireset) S$fell(bMode) |=>

disable assertion testing if
‘reset’ is low.

Allowed only ina
‘property’ before
‘antecedent’

59

| NOT allowed in a ‘sequence’

entire check is discarded.

if disable condition is detected mid-way through checking of the assertion, the

run -all

0 clk=1 reset=1 bMode=1 oe_=1 dack_=1
10 clk=1 reset=1 bMode=1 oe_=1 dack_=1
reset=1 bMode=0 oe_=1 dack_=1

reset=1 bMode=0 oe_=0 dack_=0 :

90 clk 1
100 clk=1 reset=1 bMode=0 oe_=0 dack_= 0

110; clk=1 reset=1 bMode=1 oe_=0 dack_=0;

120" "property pdiff PASS
120 clk=1 reset=1 bMode=1 oe_=0 dack_=1
130 clk=1 reset=1 bMode=1 oe_=1 dack_=1
140 clk=1 reset=1 bMode=1 oe_=1 dack_=1

reset=1 bMode=0 oe =0 dack_=1
reset=1 bMode=0 ce_=0 dack_=1 :
reset=1 bMode=0 oe_=0 dack_=0 :

reset=1 bMode=0 oe_=0 dack_=0 !
reset=1 bMode=0 oe_=0 dack_=0 :
reset=1 bMode=0 oe_=0 dack_=0 :

run -all

0 clk=1 reset=1 bMode=1 oe_=1 dack_=1
10 clk=1 reset=1 bMode=1 oe_=1 dack_=1
20 iclk=1 reset=1 bMode=0 oe_=1 dack_=1 '
30 iclk=1 reset=1 bMode=0 oe_=0 dack_=1 |
40 ‘clk=1 reset=1 bMode=0 oe_=0 dack =0
50 iclk=1 reset=1 bMode=0 oe_=0 dack_=0 :
60 iclk=1 reset=1 bMode=0 oe_=0 dack_=0 |
70 iclk= 1 bMode=0 oe_=0 dack_=0 |
80 iclk= 1M bMode=0 oe_=0 dack_=0

90 iclk=1 reset= 0 bMode=0 oe_ -0 dack_ -0

110 clk=1 reset= 0 bMode-1 oe_= 0 dack_=
120 clk=1 reset=0 bMode=1 oe_=0 dack_=1
130 clk=1 reset=0 bMode=1 oe_=1 dack_=1
140 clk=1 reset=0 bMode=1 oe_=1 dack_=1

Fig. 4.18 ‘disable iff” operator

In the RHS simulation block, reset is asserted in the middle of check “sdack_
within soe” and the entire assertion is discarded. You will not see pass/fail for this
assertion because it has been discarded. Entire assertion is disabled if the disable iff
condition occurs in the middle of an executing assertion. Some folks mistake such

discard as a failure, which is incorrect.

Once an assertion has been disabled with ‘disable iff’ construct, it will re-start
only after the ‘disable iff” condition is not true anymore.
Note below the rules governing ‘disable iff’

1. ‘disable iff” can be used only in a property—not in a sequence
‘disable iff” can only be used before the declaration of the antecedent condition.
3. ‘disable iff” expression is not sampled at a clock edge as with other expressions
in the concurrent assertion. The expressions in a disable condition are evaluated
using the current values of variables (not sampled). ‘disable iff” expression can

60

4 Concurrent Assertions—Basics (Sequence, Property, Assert)

be thought of as asynchronous, it can trigger in between clock events or at clock
event. This is an important point because we will be discussing a lot about
sampled values and this here is an exception. In our example, we have disable iff
('reset). Here the ‘reset’ signal is not sampled. The disable iff condition will
trigger as soon as ‘reset’ goes low.

. Nesting of ‘disable iff’ clauses, explicitly or through property instantiations, is

not allowed.

. We haven’t discussed .triggered or .matched methods but here’s the rule for

your reference later. ‘disable iff” may contain the sequence Boolean method .
triggered. But it cannot not contain any reference to local variables or to the
sequence method .matched.

As we will discuss in Sect. 7.4, there are system tasks that provide global control

over execution of assertions.

4.7 Severity Levels (for Both Concurrent and Immediate

Assertions)

Assertions also allow error reporting with different severity levels. $fatal, $error
(default), $warning and $info. Figure 4.19 explains meaning of each.

sequence sr1;

endsegquence
property pri;

®(posedge clk) cStart |-> sr1;
endproperty

reaGnt: assert property (pr1) else W

You can also use one of the following SV system tasks in the fail
statement.

-$fatal € run time fatal (quit simulation)

$error <€ run time Error. Default according to SV 3.la LRM. Vendor
specific command Tine options may change this behavior.

$warning € run time warning.

$info € means this assertion failure carries no specific severity.

reqGnt: assert property (pr1) else $fatal($stime,,,"%m Assert Fail");

!

Fig. 4.19 Severity levels for concurrent and immediate assertions

http://dx.doi.org/10.1007/978-3-319-30539-4_7

4.7 Severity Levels (for Both Concurrent and Immediate Assertions) 61

$error is default, meaning if no failure clause is specified in the assert statement,
$error will kick in and provide a simulator generated error message. If you have
specified a label (and you should have) to the assertion, that will be (most likely)
displayed in the $error message. I say most likely because the SystemVerilog LRM
does not specify exact format of $error. It is simulator vendor specific. $warning
and $info are self-explanatory as described in Fig. 4.19.

4.8 Binding Properties

‘bind’ allows us to keep design logic separate from the assertion logic. Design
managers do not like to see anything in RTL that is not going to be synthesized.
‘bind’ helps in that direction.

There are three modules in Fig. 4.20. The ‘designModule’ contains the design.
The ‘propertyModule’ contains the assertions/properties that operate on the logic in
‘designModule’. And the ‘test_bindProperty’ module binds the propertyModule to
the designModule. By doing so, we have kept the properties of the ‘propertyModule’
separate from the ‘designModule’. That is the idea behind ‘bind’. You do not have to
place properties in the same module as the design module. As mentioned before, you
should keep your design void of all constructs that are non-synthesizable. In addi-
tion, keeping assertions and design in separate modules allow both the design and
the DV engineers work in parallel without restrictions of a database management
system where a file cannot be modified by two engineers at the same time.

In order for ‘bind’ to work, you have to declare either the instance name or the
module name of the designModule in the ‘bind’ statement. You need the design
module/instance name, property module name and the ‘bind’ instance name for
‘bind’ to work. In our case the design module name is designModule, its instance
name is ‘dM’ and the property module name is propertyModule.

The (uncommented) ‘bind’ statement uses the module instance ‘dM’ and binds it
to the property module ‘propertyModule’ and gives this ‘bind’ an instance name
‘dpM’. It connects the ports of propertyModule with those of the designModule.
With this the ‘property rcl’ in propertyModule will act on designModule ports as
connected.

The commented ‘bind’ statement uses the module name ‘designModule’ to bind
to the ‘propertyModule’ whereby all instances of the ‘designModule’ will be bound
to the ‘propertyModule’.

In essence, we have kept the properties/assertions of the design and the logic of
the design separate. This is the recommended methodology. You could achieve the
same results by putting properties in the same module as the design module but that
is highly non-modular and intrusive methodology. In addition, as noted above,
keeping them separate allows both the DV and the Design engineer to work in
parallel.

62 4 Concurrent Assertions—Basics (Sequence, Property, Assert)

module containing the design
module designModule (da,db,dclk); (designModule)

input da,dclk;
output logic db;

always @(posedge dclk) db <= da;
endmodule

module containing properties
module propertyModule (pa,pb,pclk); (propertyModule)

property rci;
pa [-> pb;
endproperty

baseP: assert property (@(posedge pclk) (rc1)) else $display($stime,,, \tproperty
FAIL");
endmodule

module that binds propertyModule to designModule I

module test_bindProperty; |

logic ta, tb, tclk; b_ind wit._‘i module
(i.e. all instances of
designModule dM (.da(ta), .db(tb), .dclk(tclk)); the module)

//bind designModule propertyModule dpM (.pa(da),.pb(db),.pclk(dclk));

bind dM propertyModule dpM (.pa(da),.pb(db),.pclk(dclk));
.

endmodule bind with one ‘instance’
L — | of designModule ...

name of ‘bind’
instance

The port names in the ‘bind’ statement MUST associate propertyModule
port names with those of the designModule port names

Fig. 4.20 Binding properties

4.8.1 Binding Properties (Scope Visibility)

But what if you want to bind the assertions of the propertyModule to internal

signals of the designModule? That is quite doable.

As shown in Fig. 4.21, ‘rda’ and ‘rdb’ are signals internal to designModule.
These are the signals that you want to use in your assertions in the
‘propertyModule’. Hence, you need to make ‘rda’ and ‘rdb’ visible to the

4.8 Binding Properties 63

module designModule (da,db,dclk); (designModule)
input da,dclk;
output logic db;

module containing the design I‘

rda and rdb internal reg to
designModule

always @(posedge dclk) db <= da; /

always @(posedge dclk) rdb <= rda;
endmodule

reg rda, rdb; «

module containing properties |
module propertyModule (pa,pb,pclk); (propertyModule)
input pa, pb, pclk;

property rci;
pa |-> pb;
endproperty

baseP: assert property (@(posedge pclk) (rc1)) else Sdisplay(Sstime,,,"\tproperty
FAIL");
endmodule

module that binds propertyModule to -
module test_bindProperty; designModule
logic ta, tb, tclk;

//bind designModule propertyModule dpM (.pa(da),.pb(db),.pclk(dclk));

bind designModule propertyModule dpM (.pa{rd.a), .pb(rdb), .pclk(dclk));

endmodule \

designModule
internals bound to
property Module ports

Fig. 4.21 Binding properties to design ‘module’ internal signals (scope visibility)

‘propertyModule’. However, you do not want to bring ‘designModule’ internal
variables to external ports in order to make them visible to the ‘propertyModule’.
You want to keep the ‘designModule’ completely untouched. To do that, you need
to add input ports to the ‘propertyModule’ and bind those to the internal signals of
the ‘designModule’ as shown in Fig. 4.21. Note that in our example we bind the
propertyModule ports ‘pa’ and ‘pb’ to the designModule internal registers ‘rda’ and
‘rdb’. In other words, you can directly refer to the internal signals of designModule
during ‘bind’. ‘bind’ has complete scope visibility into the bound module

64 4 Concurrent Assertions—Basics (Sequence, Property, Assert)

‘designModule’. Note that with this method you do not have to provide the entire
hierarchical instance name when binding to ‘propertyModule’ input ports.

4.8.2 Assertion Adoption in Existing Design

Figure 4.22 shows that if you have an existing design, you can effectively use the
‘bind’ construct to write assertions outside of the design scope and bind them. This
can be very useful, if you are bringing in legacy blocks in your new SoC and want
to make sure that the legacy blocks work well in your new design. This figure is a
methodology component. Upfront in your project, determine your ‘bind’ method-
ology. See that all the assertions are outside RTL and not a messy mix of some in
RTL and some bound with external properties file.

Other advantage of keeping assertions in a separate file is that they can be
independently verified without the need to have control of RTL files. A big
advantage when you want to make sure that both the design and verification pro-
gress in parallel.

- —~ Interface assertions

]

]

can simply be ina :

ABIf_assertions chiplf_assertions “include file I
hierarchically referencing !

the interface signals’ |

]

]

Verilog Design Verilog

v Testbench

module A module B

-8
|

Existing Environment \

. If you are using System
Verilog, you can embed the /

interface assertions into
module A_assertions module B_assertions the ‘interface’ block
property .. endproperty properties... f

bind A A_assertions bind B B_assertions
endmodule endmodule

Fig. 4.22 Binding properties to an existing design. Assertions adoption in existing design

4.9 Difference Between ‘Sequence’ and ‘Property’ 65

4.9

Difference Between ‘Sequence’ and ‘Property’

Now that we have seen assertions using sequences and properties, it is good to
recap and clearly understand the differences between the two.

e ‘sequence’

A sequence is a building block. Think of it as a macro or a subroutine where
you can define a specific relationship for a given set of signals.

A sequence on its own does not trigger. It must be ‘assert’ed.

A named sequence may be instantiated by referencing its name. The refer-
ence may be a hierarchical name.

A sequence does not allow implication operator. Simply allows temporal
(or combinatorial) domain relationship between signals.

A sequence can have optional formal arguments

A clocking event can be used in a sequence

A sequence can be declared in a module, an interface, a program, a clocking
block, a package, a compilation-unit scope, a checker and a generate block
(but—not—in a ‘class’).

e ‘property’

A property also does not trigger by itself until ‘assert’ed (or ‘cover’ed or
‘assume’d).

Properties have implication operator that imply the relationship between an
antecedent and a consequent.

Sequences can be used as building blocks of complex properties.

Clocking event can be applied in a property, in a sequence, or in both.
The formal and actual arguments can also be ‘property expressions’—
meaning you can pass a property as an actual to a formal of type ‘property’.
Local variable arguments (see Chap. 9) can only be ‘local input’.

A property can be declared in a module, an interface, a program, a clocking
block, a package (but—not—in a ‘class’).

http://dx.doi.org/10.1007/978-3-319-30539-4_9

Chapter 5
Sampled Value Functions $rose, $fell,
$stable, $past

Introduction: This chapter introduces and provides applications for Sampled Value
Functions $rose, $fell, $past, $stable. Note that there are also quite a few new
sampled value functions introduced in 2009/2012 LRM (e.g. $changed, $rose_gclk,
$sampled, etc.). These are covered in Chap. 16 which is solely devoted to the entire
2009/2012 LRM feature set.

These sampled value functions allow for antecedent and/or the consequent to be
edge triggered. $rose means that the least significant bit of the expression (in $rose
(expression)) was sampled to be ‘0’ (or ‘x’ or ‘z’) at the previous clk edge (previous
meaning the immediately preceding clk from current clk) and that it is sampled ‘1’
at this clk edge. For $fell, just the opposite need to take place. Preceding value
should be sampled ‘1’ (or ‘x’ or ‘z’) and current sampled value ‘0’. As explained
with examples below, one needs to understand the difference between level
sensitive sample versus edge sensitive sample.

But why do we call these functions ‘sampled value’? That’s because they are
triggered only when the sampled value of the expression in the preponed region
differ at two successive clock edges as described above. In other words, $rose(abc)
does not mean ‘posedge abc’ as in Verilog. $rose(abc) does not evaluate to true as
soon as abc goes from O to 1. $rose(abc) simply means that abc was sampled ‘1° at
the current clock edge (in preponed region) and that it was not sampled a ‘1’ at the
immediately preceding clock edge.

Note also that both $rose and $fell work only on the Least Significant Bit of the
expression. You will soon see what happens if you use a bus (vector) in these two
sampled value functions.

© Springer International Publishing Switzerland 2016 67
A.B. Mehta, SystemVerilog Assertions and Functional Coverage,
DOI 10.1007/978-3-319-30539-4_5

http://dx.doi.org/10.1007/978-3-319-30539-4_16

68 5 Sampled Value Functions $rose, $fell, $stable, $past

5.1 $rose—Edge Detection in Property/Sequence

property ‘checkiack’ in the top logic/timing diagram will (Fig. 5.2) PASS because
both the ‘inter” and ‘iack’ signals meet the required behavior of $rose (value at two
successive clks are different and are ‘0’ followed by ‘1’). However, the logic in the
bottom diagram fails because while $rose(intr) meets the requirement of $rose,
‘tack’ does not. ‘iack’ does not change from ‘0’ to ‘1’ between the two clk edges
(Fig. 5.1).

Important Note: To reiterate the points made above. $rose does notr mean
posedge and $fell does not mean negedge. In other words, the assertion won’t
consider $rose(intr) to be true as soon as a posedge on ‘intr’ is detected. The $rose
(/$fell() behavior is derived by ‘sampling’ the expression at two successive clk
edges and see if the values are opposite and in compliance with $rose() or $fell().

In other words, the fundamental of concurrent assertions specifies that
everything must be sampled at the sampling edge. Behavior is based on sampled
value.

5.1.1 Edge Detection Is Useful Because ...

This is a very imporant example. It explains the difference between use of level
sensitive sampled values versus edge sensitive. Both are correct to use, except that

| Returns True if the least significant bit of the
expression changed to ‘1’ from the previous
tick of the clocking event. Otherwise it returns
False.

$rose (expression [, clocking event]);

Returns True if the least significant bit of the
expression changed to ‘0’ from the previous
tick of the clocking event. Otherwise it returns
False.

$fell (expression [, clocking event]);

Notes:

» The [, clocking event] is optional and usually derived from the clocking event of the
assertion or from the inferred clock of the procedural block where the function is used

« If these functions are called at or before the first clock tick, then (obviously) their current
sampled value is compared against ‘X’

«These functions can be used in property/sequence as well as in procedural code as
expressions

Fig. 5.1 Sampled value functions $rose, $fell—basics

5.1 $rose—Edge Detection in Property/Sequence 69

Clocking event for | This will PASS ... I
Srose
[property checkiack; <
—@(posedge clk) $rose(intr) |=> $rose(iack); . E
endproperty 2 ———,7

Srose(mySig) is true if the sampled

value of ‘mySig’ changed to 1 from q i

it’s sampled value at the previous I | I |

tick of clk (i.e. 0->1, x->1, z->1 as in
posedge).

Fig. 5.2 $rose—basics

you need to know which to use when. As shown in Fig. 5.3, level sensitive
evaluation is a superset of edge sensitive evaluation. But when you use level
sensitive sample, you will degrade simulation performance, if in fact you meant for
an edge sensitive evaluation.

In the above property, the following would be more appropriate if all you wanted
to do was to check for iack to go from inactive ‘0’ state to active state ‘1’ once
edge-sensitve intr is asserted. After that, the state of intr does not matter. Following
is a better way to write the property if your intention was to check for riging edge of
iack one clock after rising edge of intr.

property checkiack;
@ (posedge clk) Srose(intr) |=> Srose(iack);
endproperty

But what if you decide to do the following (as shown in Fig. 5.4)? Now you are
courting real trouble. As Fig. 5.4 explains, since ‘intr’ is level sensitive sample,
when it is sampled high it will look for the edge sensitive ‘iack’. BUT since ‘intr’
is level sensitive and high the very next clock, it will start a new thread and check
for $rose(iack) every clock. Since iack did not go from ‘0’ to ‘1’on this second
thread, the property fail. There is very good chance you did not want to see this
failure.

In short, as simple as these functions look, you have to be careful in their usage
and also keep in mind performance implications.

70 5 Sampled Value Functions $rose, $fell, $stable, $past

property checkiack; CHECK THIS PROPERTY VERY CAREFULLY !!
@(posedge clk) intr |=> iack; property will indeed check to see that ‘iack’ is
endproperty found asserted 1 clock after ‘intr’.
aP: assert property (checkiack); It will not check to see “when” ‘iack’ was
asserted. You may get unintended results.

[This will PASS ... | [s0 will this! |

jack j fack
4 intr 4

pigEgigh JENE pEpE

:: Performance Implication ::

intr

)

[so, with the property coded as "@(posedge clk) intr |=> iack;",
every clock that 'intr’ is found high, the property will check for 'iack’
to be high the next clock. What we really wanted to check was that
at the rising edge of ‘intr‘, that 'iack’ is asserted the next clock.
After that spec. is met, we don’t really care if intr remains asserted.

Fig. 5.3 usefulness of ‘edge’ detection and performance implication

property checkiack; So, you decide to use Srose(iack) to
@(posedge clk) intr |=> make sure that iack indeed was low

Srose(iack); before it was detected to be high.

endproperty

aP: assert property (checkiack); But.... intr is still level sensitive...

iack s
intr [~
L LIy L

Fig. 5.4 ; $rose—finer points

5.1 $rose—Edge Detection in Property/Sequence 71

5.1.2 $fell—Edge Detection in Property/Sequence

See Fig. 5.5.

5.1.3 Srose, $fell—in Procedural

$rose and $fell are very useful not only in concurrent assertions but also in
sequential procedural blocks. They work exactly the same way as in concurrent
assertions. Please see the examples in Fig. 5.6.

Since every assertion requires a clocking event (i.e. sampling edge), when you
use a concurrent assertion in a procedural code without an explicit clocking event
associated with them, the simulator looks for a clocking event in the code that
precedes the concurrent assertion. We will discuss more on use of concurrent
assertions in procedural code, under the Advanced Topics (Chap. 16).

In Fig. 5.6, $(posedge clk) is the preceding clocking event and acts as the
sampling edge for $rose(iStreamDone) (example at the top of the figure).

‘ Clocking event for Sfell I

sequence sfell(a);
$fell(a);

>
endsequence /
property srose; req

@(posedge clk) Sfell(req) |=>
sfell(gnt); f : I I
endproperty | }
Sfell(a) is true if the sampled value
of ‘a’ changed to 0 from it’s sampled

value at the previous tick of clk (i.e.
1->0, x->0, z->0 as in negedge).

application I

property checkWrData;
@(posedge clk) ($fell(we_)) |-> not (Sisunknown(wData)) ;
endproperty

Fig. 5.5 $fell—basics

http://dx.doi.org/10.1007/978-3-319-30539-4_16

72 5 Sampled Value Functions $rose, $fell, $stable, $past

Inferred Clocking event for $rose I

/

always @(posedge clk)
CoreDone <= Cend & $rose(iStreamDone);

Multiple edge detection in a single
expression...

always @(posedge clk) /
sysexp <= Srose(intr1) & Srose(intr2);

Explicit Clocking event for Srose

assign clearlintr = $fell(intr, @(posedge clk));
assign setintr = $rose(intr, @(posedge clk));

Fig. 5.6 $rose and $fell in procedural block and continuous assignment

Note the use of $rose and $fell in continuous assignment statement. Since
continuous assign cannot have an edge behavior, you have to explicitly embed a
clocking event with $rose() and/or $fell(). This is the same rule that applies to other
sampled value functions.

5.2 S$stable

$stable(), as the name implies, looks for its expression to be stable between two
clock edges (i.e. two sampling edges). It evaluates the expression at current clock
edge and compares it with the value sampled at the immediately preceding clock
edge. If both values are same, the check passes (Fig. 5.7).

Note the use of $stable in continuous assignment statement. Since continuous
assign cannot have an edge behavior, you have to explicitly embed a clocking event
with $stable. This is the same rule that applies to other sampled value functions.

But what if you want to check if the signal has been stable for more than 1
clock? Read on... $past () will solve that problem.

5.2 $stable 73

Sstable(StableSig [,clocking_event]);

returns true if the value of the expression (StableSig) did not change from it’s sampled
value at the previous clock tick.

[.clocking event] is optional and usually derived from the clocking event of the assertion or from the
inferred clock of the procedural block where the function is used

property noChangeSig (pclk, refSig, StableSig);
@(posedse pclk) refSig |-> $stable(StableSig);

endproperty

assert noChangeSig (svsClk, ConfigRd, ConfigRdParm); else failmsg;

$stable in continuous assign | Explicit Clocking event for $stable I

P
assign stableVal = ($stable(ConfigSig), ®(posedge ::Ik))) ? sigVal : errorVal; ‘

If ConfigSig has been stable since last clock; assign sigVal to stableVal.
If ConfigSig did change since the last clock; assign errorVal to stableVal.

Fig. 5.7 $stable—basics

5.2.1 $stable in Procedural Block

As in $rose() and $fell(), $stable can also be embedded in the procedural code and
works the same way as in a property or a sequence. As shown in the example
above, $stable samples the value of expression (‘a’ and ‘b’ in this example) at the
current and the immediately preceding edge (posedge clk in this example) to see if
the value of the expression did not change. At time 15, ‘b’ has been stable, at time
25 ‘a’ has been stable and so on (Fig. 5.8).

5.3 $past

$past () is an interesting function. It allows you to go into past as many clocks as
you wish to. You can check for an ‘expressionl’ to have a certain value, number of
clocks (strictly prior time ticks) in the past. Note that number of ticks is optional. If
you do not specify it, the default will be to look for ‘expressionl’ one clock in the
past.

Another caveat that you need to be aware of is when you call $past in the initial
time ticks of simulation and there are not enough clocks to go in the ‘past’. For
example, you specify “a |-> $past (b)” and the antecedent ‘a’ is true at time ‘0’

74 5 Sampled Value Functions $rose, $fell, $stable, $past

always @(posedge clk)

begin
if ($stable(a)) Sdisplay (Sstime,,,"\t ‘a’ stable from previous clock");
if (Sstable(b)) $display (Sstime,,,"\t 'b' stable from previous clock");
if (Sstable(a) && Sstable(b))

Sdisplay (Sstime,,,"\t 'a’ AND 'b’ Stable this clock™);

end

run -all

5 clk=1 a=1 b=0

15 clk=1 a=0 b=0

15 b’ stable from previous clock

25 clk=1a=0 b=1

25 'd’ stable from previous clock

35 clk=1a=1 b=0

45 clk=1a=1 b=1

45 ‘a’ stable from previous clock

55 clk=1a=1 b=1

55 ‘@’ stable from previous clock

55 'b'stable from previous clock

55 'a' AND ‘b’ Stable this clock

Fig. 5.8 $stable in procedural block

There isn’t a clock tick to go in the past. In that case, the assertion will use the
‘initial’ value of ‘b’. What is the initial value of ‘b’? It’s not the one in the ‘initial’
block, it’s the value with which the variable ‘b’ was declared (as in “logic
b =1’bl1;”). In our case, if ‘b’ was not initialized in its declaration, the assertion will
fail. If it was declared with an initial value of 1°bl, the assertion will pass.

You can also ‘gate’ this check with expression2. The example in Fig. 5.10 shows
how $past works. We are using a gating expression in this example. It is not a
requirement as noted in the Fig. 5.9, but it will most likely be required in your
application. If expression2 is not specified, no clock gating is assumed.

If you understand the use of $past with a gating expression, then its use without
one will be straightforward to understand.

Figure 5.10 asserts the following property

assert property (@ posedge clk) done |-> IV (mySig,2, enb, lastVal) Sdisplay(....);
And the property IV models the following

property IV(Sig, numClocks, enb, lastV);
(lastV == Spast (Sig, numClocks, enb));
endproperty

5.3 $past 75

Spast (expression1, [, number_of_ticks] [,expression2] [,clocking_event]);

Spast returns the sampled value of the expression1 that was present
number_of_ticks prior to the time of evaluation of Spast

[,number_of_ticks] specifies the number of clock ticks in the past (default = 1)

[,expression2] is used as a gating expression for the clocking event of
expressiont

[,clocking event] is optional and usually derived from the clocking event of the
assertion or from the inferred clock of the procedural block where the function
is used

$past function returns value (and NOT a boolean
pass/fail as returned by Srose,Sfell,Sstable)

bit [3:0] a,b,c;
always @(posedge clk)
begin
if (Spast(a) == 4'h5) Sdisplay ($stime,,,"\t 'Past a' = %h",Spast(a));
if (Spast(b) == 4'ha) Sdisplay ($stime,,,"\t 'Past b’ = %h",Spast(b));
c = (Spast(a) & Spast(b));
end
1
‘c’ is assigned the bit wise ‘&’ of the past values of
aand b

run -all
15 clk=1 a=5 b=a
25 clk=1 a=0 b=0

25 ‘Pasta’'=5
25 'Pastb'=a

T

Fig. 5.9 $past—basics

The property says check on Sig, numClocks in the past and see if it has the value
‘lastV’ and do this check if and only if ‘enb’ (the gating expression) is high when
you start the check (i.e. when antecedent done=1 in the assert statement). Let me
re-emphasize that the gating expression is checked when the ‘antecedent’ is true.
When you start the check, the gating expression need to be true. Many seem to miss
this point. Let us look at the simulation log which will explain this concept.

76 5 Sampled Value Functions $rose, $fell, $stable, $past

(lastV == $past(Sig, numClocks, enb));
checks for the ‘lastV’ on Sig, numClocks in the past, gated by ‘enb’

property IV(Sig,numClocks,enb,lastV);
|_AlastV == Spast(Sig, numClocks, enb));
endproperty

assert property (@(posedge clk) done |-> IV(mySig, 2, enb, lastVal)) else
Sdisplay($stime,,,"FAIL Expected lastVal=%h\n",lastVal);

cover property (@(posedge clk) done |-> [V(mySig, 2, enb, lastVal))
Sdisplay($stime,,,"PASS Expected lastVal=%h\n",lastVal);

always @(posedge clk)
$display($stime,,,"clk=%b mySig=%h past=%h enb=%h done=%b", clk, mySig,
Spast(mySig, 2, enb), enb, done);

‘enb’in (lastV == Spast(Sig,numClocks,enb)); means ::
sampling of ‘Sig’ is performed based on it’s clock gated by ‘enb’.

In other words, Spast evaluates ‘Sig’ iff ‘enb’ is true.

Fig. 5.10 $past—gating expression

The example from previous page is repeated here with lastV=‘ha when we
assert/cover the property ‘IV’ (stands for Last Value) for easy reference to the
simulation log (Fig. 5.11).

Let us examine the simulation log carefully to see how $past works. At time 30,
done=1 for the first time which means that the antecedent of the property is true
implying that the property 1V be executed. 1V has formal arguments which are
replaced by the actual arguments from the assert statement.

So, at time 30, the property first checks to see if the gating signal (‘enb’) is true.
Since it is indeed true, the property now evaluates the value of mySig 2 clocks in
the past. It sees that it is indeed h’a (at time 10 in the simulation log). The property
passes.

At time 50, done=1 and enb=1 but 2 clocks in the past (at time 30), mySig was
not equal to h’a and the property fails.

At time 80, done=1, but the gating signal ‘enb’ is a ‘0’. The interesting thing to
note here is that the property FAILs even though the value of mySig is indeed h’a
two clocks in the past at time 60. That’s because the gating expression enb=0 at the
current clock tick (when antecedent ‘done’ is true) and the $past () does not
evaluate itself. In other words, $past() did not look for mySig 2 clocks in the past,
instead returned its previously evaluated value h’5. The property compares this
value of h’5 with expected value of h’a and fails.

5.3 $past

77

property V(Sig, numClocks, enb, lastV);
(lastV == Spast(Sig, numClocks, enb));
endproperty

assert property (@(posedge clk) done |-> IV(mySig, 2, enb, ‘ha)) else
Sdisplay($stime,,,"FAIL Expected lastVal=%h\n",lastVal);

cover property (@(posedge clk) done |-> IV(mySig, 2, enb, ‘ha))
Sdisplay($stime,,,"PASS Expected lastVal=%h\n",lastVal);

always @(posedge clk)
Sdisplay($stime,,,"clk=%b mySig=%h past=%h enb=%h done=%b", clk, mySig,

Spast(mySig, 2, enb), enb, done);

run -all
10
20
30
30

40
50
50

60
70
80
80

FoE R T o RE W R R R W W

clk=1 mySig=a past=0 enb=1 done=0
clk=1 mySig=5 past=0 enb=1 done=0
clk=1 mySig=5 past=a enb=1 done=1
PASS Expected lastVal=a

clk=1 mySig=5 past=5 enb=1 done=0
clk=1 mySig=a past=5 enb=1 done=1
FAIL Expected lastVal=a

clk=1 mySig=a past=5 enb=1 done=0
clk=1 mySig=5 past=5 enb=0 done=0
clk=1 mySig=5 past=5 enb=0 done=1
FAIL Expected lastVal=a

A time 80 :

Even though mySig’s $past(2) value (at time 60) is “a”, &&
enb=1, the property fails at 80 when evaluated (with done=1)
because enb=0 at the current clock tick and the lastV retains
the previously sampled value of “5” and the comparison with “a”
fails.

Fig. 5.11 $past—gating expression—simulation log

Without a gating signal, the property will always evaluate whenever the ante-
cedent is true and look for the required expression value N number of clocks in the

past.

Note also the use of $past in the $display statement which is a procedural
statement. This is an excellent debug feature. You can always display what hap-
pened in the past to debug the current state of design.

78 5 Sampled Value Functions $rose, $fell, $stable, $past

5.3.1 Application: $past ()

Figure 5.12 is self-explaining. Note that $past is used in consequent in the appli-
cation at the top of the figure and used as an antecedent in the bottom application.

5.3.2 $past Rescues $fell!

Figure 5.13 shows the difference between $rose/$fell with $past. Recall that $fell
(or $rose) samples only the LSB of the expression/signal whose value we are
evaluating. In contrast, $past evaluates the entire expression. Hence, if you want to
check (for example) the value of an entire ‘bus’, you have to use $past. As shown in
the figure, $fell will give an incorrect evaluation of the 32-bit bus ‘dBus’ if in fact

Specification:

If current 'state’ is cacheRead, the past state cannot be cachelnv (you can never
Read from an invalid line)

property RdCachelnv;
@(posedge clk) (state == cacheRead) |-> (Spast(state) != cachelnv);
endproperty

Specification:

If pipe stall is asserted and data was ready to be sent the last clock that the
current state must be data hold.

property dHoldCheck;
@(posedge clk) ((pipeStall)
&&
(Spast(State)==dataSend)
)

|->
(State == dataHold);

endproperty

Fig. 5.12 $past application

5.3 $past 79

PROBLEM

Recall that Sfell returns a boolean pass/fail based only on the sampled change
of the LSB of the signal.

e.g.

logic [31:0] dBus;

property dAck2dBus; You will get incorrect pass if you were
dAck |-> $fell(dBus); looking for the entire dBus to transition
endproperty \ to ‘0. Sfell returns pass/fail result by
detecting a change only on the LSB of
- dBus.

If dBus changed from 32'h ffff_ffff to
32'h ffff_fff0, Sfell won't fail.

SOLUTION
logic [31:0] dBus;

property dAck2dBus;
dAck |-> (Spast(dBus) != 32'b0) &8& (dBus == 32'b0);
endproperty

Compare the value of entire dBus using
$past to get correct pass/fail result.

Fig. 5.13 $past rescues $fell

you want to check how the entire bus evaluated at some number of clocks in the
past. The figure explains how you can use $past to solve this problem which $fell
could not.

Chapter 6
Operators

Introduction: This chapter is the big one! This chapter describes all the operators
offered by the language (both for a ‘sequence’ and a ‘property’) including Clock
Delay with and without range, Consecutive repetition with and without range,
non-consecutive repetition with and without range, ‘throughout’, ‘within’, ‘and’,
‘or’, ‘intersect’, ‘first_match’, if...else’, etc. Each of the operator description is
immediately followed by examples and applications to solidify the concept.
Following lists all the operators offered by the language (IEEE-1800, 2005). We
will discuss features of1800-2009/2012 LRM in a separate chapter (see Chap. 16).
We will examine each operator in detail since these operators are the stronghold of

the language (Table 6.1).

6.1 ##m—Clock Delay

Clock delay is about the most basic of all the operators and probably the one you
will use the most! First of all, note that ##m means a delay of ‘m’ number of
sampling edges. In this example, the sampling edge is a ‘posedge clk’, hence ##m
means m number of posedge clks (Fig. 6.1).

The property evaluates antecedent ‘z’ to be true at posedge clk and implies the
sequence ‘Sab’. ‘Sab’ looks for ‘a’ to be true at that same clock edge (because of
the overlapping operator used in the property) and if that is true, waits for two
posedge clks and then looks for ‘b’ to be true.

In the simulation log, we see that at time 10, posedge of clk, z=1 and a=1.
Hence, the sequence evaluation continues. Two clks later (at time 30), it checks to
see if b=1, which it finds to be true and the property passes.

© Springer International Publishing Switzerland 2016 81
A.B. Mehta, SystemVerilog Assertions and Functional Coverage,
DOI 10.1007/978-3-319-30539-4_6

http://dx.doi.org/10.1007/978-3-319-30539-4_16

82

6 Operators

Table 6.1 Concurrent assertion operators

Operator Description

##m Clock delay

##[m:n]

[*m] Repetition—consecutive

[*m:n]

[=m] Repetition—non consecutive
[=m:n]

[->m] GoTo repetition—non consecutive
[->m:n]

Sigl throughout seql

Signal sigl must be true throughout sequence seql

Seql within seq2

Sequence seql must be contained within sequence seq2

Seql intersect seq2

‘intersect” of two sequences; same as ‘and’ but both
sequences must also ‘end’ at the same time

Seql and seq2

‘and’ of two sequences. Both sequences must start at the
same time but may end at different times

Seql or seq2

‘or’ of two sequences. It succeeds if either sequence

succeeds.

first_match complex_seql Matches only the first of possibly multiple matches

not <property_expr> If <property_expr> evaluates to true, then not

<property_expr> evaluates to false; and vice versa

if (expression) property_exprl If...else within a property
else property_expr2

|-> Overlapping implication operator

|=> Non-overlapping implication operator

Similar scenario unfolds starting time 40. But this time, b is not equal to 1 at time
60 (two clks after time 40) and the property fails.

We can see that ##m is absolute delay. Can you have ‘m’ to be a variable? Short
answer is No. But there is an interesting way to make it variable using a ‘counter’
technique. Please see Sect. 14.8.

Now, let us look at what happens if m=0. That would mean ##m is equal to
##0... hmmm, no delay!

6.1.1 Clock Delay Operator: #%#m Where m=0

We examine the property as before but with m=0. As expected, the sequence ‘Sab’
looks for ‘a’ to be true and then at the same clock looks for ‘b’ to be true. In
addition, in this property we are using overlapping implication operator, which
means when ‘z’ is true, ‘a’ should be true and so should be ‘b’—all at the same
time. This is one of the ways you can check for multiple expressions to be true at
the same sampling edge (or ‘clk’ edge) (Fig. 6.2).

http://dx.doi.org/10.1007/978-3-319-30539-4_14

6.1 ##m—Clock Delay

83

sequence Sab;

##m is ‘m’ # of clock delays.

a ##2 b;
endsequence

property ab;
®(posedge clk) z |-> Sab;
endproperty

baseP: assert property (ab) else abFail;
coverP: cover property (ab) abPass;

task abFail;
Sdisplay($stime,,,”\t property ab FAIL");

endtask
R
task abPass;

Sdisplay(S$stime,,,”\t property ab PASS”);

+‘m’ can be 0 (no delay)

«‘m’ must be a positive integer.

Do not confuse this with Verilog #
<delay>

run -all

#0 CLK#1:
#10 CLK# 2 :: :
#:20 CLK# 3 :: clk=12=0 a=0b=0 |
#;30 CLK # 4 :: clk=1 z=0 a=0 b=1

endtask

_________________ B et

Similar block of code is used in future
examples; but won’t be shown...

Fig. 6.1 ##m clock delay—basics

#:40 CLK #5 :: clk=12=1 a=1b=0 |
#:50 CLK# 6 :: clk=12=0 a=0 b=0 |
#160 CLK# 7 :: clk=1z=0 a=0 b=0
property ab FAIL

#70 CLK # 8 :: clk=1 z=0 a=0 b=0

sequence Sab;
a ##0 b;
endsequence

property ab;
@(posedge clk) z |-> Sab;
endproperty

##0 acts as overlapping delay.

In this example, ‘a’ and ‘b’ must be
‘1’ at the same edge of clk.

run -all

0 CLK #1 ::clk=1 z=0 a=0 b=0
10 CLK # 2 :: clk=1 z=1 a=1 b=1
10 property ab PASS

20 CLK# 3 :: clk=1 z=0 a=0 b=0
30 CLK# 4 :: clk=1z=1 a=1b=0

30 property ab FAIL

40 CLK #5 :: clk=1 z=0 a=0 b=1
50 CLK # 6 :: clk=1 z=0 a=0 b=1

Fig. 6.2 ##m clock delay with m=0

S
-

84 6 Operators

application
Application

##0 can be used as a overlapping delay operator, when within a complex sequence
you need to guarantee that two events take place on the same clock.

For example, if tagError is detected that tErrorBit is Set the next clock and mCheck
is asserted on the same clock.

@(posedge clk) Srose(tagError) |=> Srose(tErrorBit) #;#0 Srose(mCheck);

mCheck I
tErrorBit _l__
tagError I

Fig. 6.3 ##0—application

Here’s a good application where, in a complex sequence, you can effectively use
##0. Note that you could have also used ‘& &’ in place of ##0, obviously.

6.1.1.1 Application: Clock Delay Operator :: #fm (m=0)

See Fig. 6.3.

6.2 ##[m:n]—Clock Delay Range

Since it is quite necessary for a signal or expression to be true in a given range of
clocks (as opposed to fix number of clocks), we need an operator that does just the
same.

##[m:n] allows a range of sampling edges (clock edges) in which to check for
the expression that follows it. Figure 6.4 explains the rules governing the operator.
Note that here also, m and n need to be constants. They cannot be variables.

The property ‘ab’ in the figure says that if at the first posedge of clk that ‘z’ is
true that sequence ‘Sab’ be triggered. Sequence ‘Sab’ evaluates ‘a’ to be true the

6.2 ##[m:n]—Clock Delay Range 85

sequence Sab; ##[m:n] is a range of clock delays.
a ##[1:3] b;
endsequence
+‘m’ can be 0 (no delay)
property ab; g D T,
®(posedge clk)z |-> Sab; n’ can be ‘0’ or ‘S’ (infinite).
endproperty «##[0:0] is the same as ##0

« ‘m’ and ‘n’ must be 0 or greater.

e L. The property will match the very
L3 L first time ‘b’ is true.

Tor
T
2Fis
| 181

property readPerf;
@(posedge clk) ReadReq |-> ## [1:5] (dataReady || dataAbort);

endproperty

Fig. 6.4 ##[m:n] clock delay range

same clock that ‘z’ is true and then looks for ‘b’ to be true delayed by either 1 clk or
2 clks or 3 clks. The very —first- instance that ‘b’ is found to be true within the 3
clocks, the property will pass. If b’ is not asserted within 3 clks, the property will
fail.

Note that in the figure you see 3 passes. That simply means that whenever ‘b’ is
true the first time within 3 clks that the property will pass. It does not mean that the
property will be evaluated and pass 3 times. To reiterate, the property will pass as
soon as (i.e. the first time) that ‘b’ is true.

6.2.1 Clock Delay Range Operator: ##[m:n]: Multiple
Threads

Back to multiple threads! But this is a very interesting behavior of multi-threaded
assertions. This is something you really need to understand.

86 6 Operators

Atsl, ‘rdy’ is high and the antecedent is true. That implies that ‘rdyAck’ be true
within the next 5 clks. sl thread starts looking for ‘rdyAck’ to be true. The very
next clock, rdyAck is not yet true but luck has it that ‘rdy’ is indeed true at this next
clk (s2). This will fork off another thread that will also wait for ‘rdyAck’ to be true
within the next 5 clks. The ‘rdyAck’ comes along within 5 clks from sl and that
thread is satisfied and will pass.

But the second thread will also pass at the same time, because it also got its
‘rdyAck’ within the 5 clks that it was waiting for.

This is a—very-important point to understand. The range operator can cause
multiple threads to complete at the same time. This is in contrast to what we saw
earlier with ##m constant delay where each thread will always complete only after
the fixed ##m clock delays. There is a separate end to each separate thread. With the
range delay operator multiple threads can end at the same time.

IMPORTANT: Let us further explore this concept since it can indeed lead to
false positive. How would you know if rdyAck that satisfied both ‘rdy’s is for
which ‘rdy’? Also, if you did not receive ‘rdyAck’ for the second ‘rdy’ you will
indeed get a false positive.

One hint is to keep the antecedent an edge sensitive function. For example, in the
above example, instead of “@ (posedge clk) rdy” we could have used “@ (posedge
clk) $rose(rdy)” which would have triggered the antecedent only once and there
won’t be any confusion of multiple threads ending at the same time. This is a
performance hint as well. Use edge sensitive sampled value functions whenever
possible. Level sensitive antecedent can fork off unintended multiple threads
affecting simulation performance.

But a better solution is to use Local Variables to ID each ‘rdy’ and ‘rdyAck’.
This will indeed make sure that you received a ‘rdyAck’ for each ‘rdy’ and also that
each ‘rdyAck’ is associated with the correct ‘rdy.

Now, I haven’t explained Local Variables yet! Please refer to the chapter on
Local Variables (see Chap. 9) to get familiar with it. That chapter is in-depth study
of Local Variables. But you don’t need to understand that entire chapter to
understand the following example. Just scan through the initial pages and you will
understand that Local Variables are dynamic variables with each instance of the
sequence forking off another independent thread. Very powerful feature. You don’t
need to keep track of the pipelined behavior. The local variable does it for you.
Having understood that, you should be able to follow the following example.

http://dx.doi.org/10.1007/978-3-319-30539-4_9

6.2 ##[m:n]—Clock Delay Range 87

property rdyProtocol;
@(posedge clk) rdy |-> ##[1:5] rdyAck;
endproperty

Evaluation of both threads will end at
the same time because both were
expecting rdyAck’ to occur in a range’
of delays. rdyAck’ occurred within that
range for both thfgads.

rdyAck i Tl
g [T

Fig. 6.5 ##[m:n]—multiple threads

Problem Statement:

Please refer to Fig. 6.5. Two ‘rdy’ signals are asserted on consecutive clocks
with a range of clocks during which a ‘rdyack’ must arrive. ‘rdyack’ arrives that
satisfies the time range requirements for both ‘rdy’s and the property passes. We
have no idea whether a ‘rdyack’ arrived for each ‘rdy’. The PASS of the assertion
does not guarantee that. In this example, I am also using the concept of attaching
subroutines, which is not covered so far. Please see Sect. 14.3 to get a high level
glimpse of it; but it is quite intuitive and you should be able to understand
attachment of $display statements in the example.

This example simulates the property and shows that both instances of ‘rdy’ will
PASS with a single ‘rdyAck’.

http://dx.doi.org/10.1007/978-3-319-30539-4_14

88

module range_problem;
logic clk, rdy, rdyAck;

initial

begin
clk=1'b0; rdy=0; rdyAck=0;
#500 Sfinish(2);

end

always begin

#10 clk=!clk;
end
initial
begin
repeat (5) begin @(posedge clk) rdy="rdy; end
end

initial Smonitor(Sstime,,,"clk=",clk,,,"rdy=",rdy,,,"rdyAck=",rdyAck);

initial

begin
repeat (4) begin @(posedge clk); end
rdyAck=1;

end

sequence rdyAckCheck;

(1'b1,$display($stime,,,"ENTER SEQUENCE rdy ARRIVES")) ##[1:5]

(Srose(rdyAck),Sdisplay($stime,,,"rdyAck ARRIVES"));

endsequence

6 Operators

6.2

##[m:n]—Clock Delay Range

gcheck: assert property (@(posedge clk) Srose (rdy) |-> rdyAckCheck) begin Sdisplay(Sstime,,,"PASS");
end

else begin Sdisplay(Sstime,,,"FAIL"); end

endmodule

/* Simulation log
0 clk=0 rdy=0 rdyAck=0
10 clk=1 rdy=1 rdyAck=0
20 clk=0 rdy=1 rdyAck=0
30 ENTER SEQUENCE rdy ARRIVES € First ‘rdy’ is detected
30 clk=1 rdy=0 rdyAck=0
40 clk=0 rdy=0 rdyAck=0
50 clk=1 rdy=1 rdyAck=0
60 clk=0 rdy=1 rdyAck=0
70 ENTER SEQUENCE rdy ARRIVES € Second ‘rdy’ is detected
70 clk=1 rdy=0 rdyAck=1
80 clk=0 rdy=0 rdyAck=1
90 clk=1 rdy=1 rdyAck=1

90 rdyAck ARRIVES € ‘rdyack’ detected for both ‘rdy’s and the property PASSes.

90 PASS
*/
Solution:

module range_solution;

logic clk, rdy, rdyAck;

byte rdyNum, rdyAckNum;

initial

begin
clk=1'b0; rdy=0; rdyNum=0; rdyAck=0; rdyAckNum=0;
#500 S$finish(2);

end

89

90 6 Operators

always
begin
#10 clk=!clk;
end
initial
begin
repeat (4)
begin
@(posedge clk) rdy=0;
@(posedge clk) rdy=1; rdyNum=rdyNum+1;
end

end

initial
Smonitor(Sstime,,,"clk=",clk,,,"rdy=",rdy,,,"rdyNum=",rdyNum,,,"rdyAckNum",rdyAckNum,,,"rdyAck=",rd
yAck);
always
begin
repeat (4)
begin
@(posedge clk); @(posedge clk); @(posedge clk);
rdyAck=1; rdyAckNum=rdyAckNum+1;
@(posedge clk) rdyAck=0;
end

end

6.2 ##[m:n]—Clock Delay Range 91

sequence rdyAckCheck;

byte localData; //local variable ‘localData’ declaration. Note this is a dynamic variable. For every entry
into the

//sequence it will create a new instance of localData and follow an independent thread.
(1'b1,localData=rdyNum,
Sdisplay($stime,,,"ENTER SEQUENCE",,,"LOCAL rdyNum=",localData))
##[1:5)
((rdyAck && rdyAckNum==localData),

Sdisplay(Sstime,,,"rdyAck ARRIVES ",,,"LOCAL",,,"rdyNum=",localData,,,
"rdyAck=",rdyAckNum));

endsequence

gcheck: assert property (@(posedge clk) Srose (rdy) |-> rdyAckCheck) begin Sdisplay(Sstime,,,"PASS");
end

else begin Sdisplay(Sstime,,,"FAIL",,,"rdyNum=",rdyNum,,,"rdyAckNum=",rdyAckNum); end
endmodule
/*
0 clk=0 rdy=0 rdyNum= 0 rdyAckNum O rdyAck=0
10 clk=1 rdy=0 rdyNum= 0 rdyAckNum O rdyAck=0
20 clk=0 rdy=0 rdyNum= 0 rdyAckNum O rdyAck=0
30 clk=1 rdy=1 rdyNum= 1 rdyAckNum O rdyAck=0

40 clk=0 rdy=1 rdyNum= 1 rdyAckNum O rdyAck=0

50 ENTER SEQUENCE LOCAL rdyNum= 1 € First ‘rdy’ arrives. A ‘rdyNum’ (generated in your
testbench

as shown above) is assigned to ‘localData’. This ‘rdyNum’ is a unique number for each
invocation of the sequence and arrival of ‘rdy’.

50 clk=1 rdy=0 rdyNum= 1 rdyAckNum 1 rdyAck=1
60 clk=0 rdy=0 rdyNum= 1 rdyAckNum 1 rdyAck=1
70 rdyAck ARRIVES LOCAL rdyNum= 1 rdyAck= 1

70 PASS € When ‘rdyAck’ arrives, the sequence checks to see that its ‘rdyAckNum’ (again,
assigned in

the testbench) corresponds to the first rdyAck. If the numbers do not match the
property fails. Here they are indeed the same and the property PASSes.

92 6 Operators

70 clk=1 rdy=1 rdyNum= 2 rdyAckNum 1 rdyAck=0
80 clk=0 rdy=1 rdyNum= 2 rdyAckNum 1 rdyAck=0

90 ENTER SEQUENCE LOCAL rdyNum= 2 €= Second ‘rdy’ arrives. localData is assigned the
second

‘rdyNum’. This redNum will not overwrite the first rdyNum. Instead a second thread is
forked off and ‘localData’ will maintain (store) the second ‘rdyNum’.

90 clk=1 rdy=0 rdyNum= 2 rdyAckNum 1 rdyAck=0
100 clk=0 rdy=0 rdyNum= 2 rdyAckNum 1 rdyAck=0
110 clk=1 rdy=1 rdyNum= 3 rdyAckNum 1 rdyAck=0
120 clk=0 rdy=1 rdyNum= 3 rdyAckNum 1 rdyAck=0
130 ENTER SEQUENCE LOCAL rdyNum= 3

130 clk=1 rdy=0 rdyNum= 3 rdyAckNum

N

rdyAck=1
140 clk=0 rdy=0 rdyNum= 3 rdyAckNum 2 rdyAck=1
150 rdyAck ARRIVES LOCAL rdyNum= 2 rdyAck= 2

150 PASS € When ‘rdyAck’ arrives, the sequence checks to see that its ‘rdyAckNum’ (again,
assigned in

the testbench) corresponds to the second rdyAck. If the numbers do not match the
property fails. Here they are indeed the same and the property PASSes. This is what we
mean by pipelined behavior, in that, the second invocation of the sequence maintains
its own copy of ‘localData’ and compares with the second ‘rdyAck’. This way there is no
question of which ‘rdy’ was followed by which ‘rdyAck’. No false positive. Rest of the
simulation log follows the same chain of thought.

= Can you figure out why the property fails at #2707? Hint: Start counting clocks at
time #170 when fourth ‘rdy’ arrives. Did a ‘rdyAck’ arrive for that ‘rdy’?

6.2 ##[m:n]—Clock Delay Range 93

150 clk=1 rdy=1 rdyNum= 4 rdyAckNum 2 rdyAck=0
160 clk=0 rdy=1 rdyNum= 4 rdyAckNum 2 rdyAck=0
170 ENTER SEQUENCE LOCAL rdyNum= 4

170 clk=1 rdy=1 rdyNum= 4 rdyAckNum 2 rdyAck=0
180 clk=0 rdy=1 rdyNum= 4 rdyAckNum 2 rdyAck=0
190 clk=1 rdy=1 rdyNum= 4 rdyAckNum 2 rdyAck=0
200 clk=0 rdy=1 rdyNum= 4 rdyAckNum 2 rdyAck=0

210 clk=1 rdy=1 rdyNum= 4 rdyAckNum 3 rdyAck=1
220 clk=0 rdy=1 rdyNum= 4 rdyAckNum 3 rdyAck=1
230 rdyAck ARRIVES LOCAL rdyNum= 3 rdyAck= 3

230 PASS

230 clk=1 rdy=1 rdyNum= 4 rdyAckNum 3 rdyAck=0
240 clk=0 rdy=1 rdyNum= 4 rdyAckNum 3 rdyAck=0
250 clk=1 rdy=1 rdyNum= 4 rdyAckNum 3 rdyAck=0

260 clk=0 rdy=1 rdyNum= 4 rdyAckNum

w

rdyAck=0
270 FAIL rdyNum= 4 rdyAckNum= 3

270 clk=1 rdy=1 rdyNum= 4 rdyAckNum 3 rdyAck=0
280 clk=0 rdy=1 rdyNum= 4 rdyAckNum 3 rdyAck=0
290 clk=1 rdy=1 rdyNum= 4 rdyAckNum 4 rdyAck=1

*/

Sequence ‘rdyAckCheck’ is explained as follows.

Upon entry in the sequence, a copy of localData is created and a rdyNum is
stored into it. While the sequence is waiting for #[1:5] for the rdyAck to arrive
another ‘rdy’ comes in and sequence ‘rdyAckCheck’ is invoked. Again, the
localData is assigned the next rdyNum and stored. This is where dynamic variable
concept comes into picture. The second store of rdyNum into localData does not
clobber the first store. A second copy of the localData is created and its thread will
also now wait for #[1:5]. This way we make sure that for each ‘rdy’ we will indeed
a unique ‘rdyAck’. Please carefully examine the simulation log to see how this
works. I’ve placed comments in the simulation log to explain the operation.

94 6 Operators

6.2.2 Clock Delay Range Operator :: ##[m:n] (m=0; n=3)

In Fig. 6.6 we are going extreme at both ends of the range, from 0 to infinity
(‘$’ means infinite delay). As explained above, the sequence ‘Sab’ will look for ‘b’
to be true the same time as ‘a’ or expect it to be true any time until the simulator
ends. It is fine and good if it finds ‘b’ to be true before simulation ends. If not, the
simulator will (should) give a Warning that this assertion remains incomplete
(Fig. 6.7).

This example is similar to what we saw earlier. But in this example, we expect
‘tErrorBit’ to rise in a certain range of clock delays. The figure explains how the
assertion works. Note also that you could use ‘&&’ in place of ##0 to achieve the
same results. Since assertions are mainly temporal domain, I prefer to tie in
everything with temporal domain constructs. But that’s a matter of preference.

Note also the following two semantically equal statement but with different
syntax. These are short forms.

— ##[*] is used as an equivalent representation of ##[0:$].
— ##[+] is used as an equivalent representation of ##[1:$].

6.3 [*m]—Consecutive Repetition Operator

As depicted in Fig. 6.8 the consecutive repetition operator [*m] sees that the
signal/expression associated with the operator stays true for ‘m’ consecutive clocks.
Note that ‘m’ cannot be $ (infinite # of consecutive repetition).

The important thing to note for this operator is that it will match at the end of the
last iterative match of the signal or expression.

The example in Fig. 6.8 shows that when ‘z’ is true that at the next clock,
sequence’ Scl’ should start its evaluation. ‘Scl’ looks for ‘a’ to be true and then
waits for 1 clock before looking for 2 consecutive matches on ‘b’. This is depicted
in the simulation log. At time 10 ‘z’ is high; at 20 ‘a’ is high as expected (because
of non-overlapping operator in property); at time 30 and 40, ‘b’ remains high
matching the requirement b[*2]. At the end of the second high on ‘b’ the property
meets all its requirements and passes.

The very next part of the log shows that the property fails because ‘b’ does not
remain high for 2 consecutive clocks. Again, the comparison ends at the last clock
where the consecutive repetition is supposed to end and then the property fails.

Figure 6.9 shows an interesting application where we effectively use the ‘not’ of
the repetition operator. At posedge busClk, if ADS is high that starting the same
busClk (overlapping operator), ADS is checked to see if it remains high consecu-
tively for 2 busClk(s). If it does, then we take a ‘not’ of it to declare that the

6.3 [*m]—Consecutive Repetition Operator 95

sequence Sab; ##[0:5] means (clock) delay range
a ##[0:5] b; from ‘0’ (no delay) to infinite delay.
endsequence
property ab; ‘a’ being true requires that ‘b’ must
@®(posedge clk) z |-> Sab; be true anytime from the clock edge

endproperty that ‘a’ is true until the end of
simulation.
The property will match the very
first time ‘b’ is true.

run -all

0 CLK #1 :: clk=1 z=0 a=0 b=0
10 CLK # 2 :: clk=1 z=1 a=1 b=1
10 property ab PASS

20 CLK # 3 :: clk=1z=1 a=1b=0

30 CLK# 4 :: clk=12=0 a=0 b=1 # .'r‘ o

30 property ab PASS =
CLK#5 :: clk=1 z=1 a=1 b=0 -@-

50 CLK#6 :: clk=12z=0 a=0 b=0

60 CLK# 7 :: clk=1z=0 a=0 b=0 M

70 CLK # 8 :: clk=1 z=0 a=0 b=1

70 property ab PASS

80 CLK#9 :: clk=1z=0 a=0 b=1 1—|_.é—|_,f_|_,i

TR R R R I I I I [

Simulator may report an Error if ‘b’ is
never found asserted until the end of

sequence Sab; Simulation.

a ##[0:$] b;
endsequence OR
property ab; Simulator may report this as an
@(posedge clk) z |-> Sab; Incomplete assertion.
endproperty
\

] Note that we will discuss ‘strong’ properties under the chapter on 1800-2009
that determines what happens if we run out of simulation time before the
property reaches its end.

Fig. 6.6 ##[m:n] clock delay range with m=0 and n=$

property has failed. This is a very useful property, as simple as it looks. In many
protocols one needs to make sure that certain signals follow very strict protocol.
This application models just such a protocol. Note also the use of parameterized

property.

96 6 Operators

‘S’ can be very useful when in a complex sequence you do not really know when a
certain signal/sequence will follow another sequence but you do need to make sure
that it does occur.

For example, if tagError is detected but the pipeline latencies are such that you don’t
really know exactly when tErrorBit will be asserted. But whenever it is asserted that
the mCheck is asserted the same clock.

@(posedge clk) Srose(tagError) |-> ##[1:$] (Srose(tErrorBit) ##0 Srose(mCheck));

mCheck \ ; |
tErrorBit] m

tagError —WL

Fig. 6.7 ##[1:$] delay range application

sequence Sc1; b [*m] means that signal ‘b’ must be
a ##1 b[*2]; true on ‘m’ consecutive clocks.
endsequence

‘m’ must be >= 0

property ab; ‘m’ can not be ‘§’

®(posedge clk) z |=> Sc1; The overall repetition sequence matches

endproperty at the end of the last iterative match.

a ##1 b[*2] is equivalent to MUST BE TRUE ON CONSECUTIVE
a##tib##1 b CLOCKS

run -all A

0 clk=1 z=0 a=0 b=0

10 clk=12=1 a=0b=0 T Tbl

20 clk=12z=0 a=Tb=0

30 clk=12z=0 a=0 b=1 la

40 clk=1z=0 a=0 b=

40 Sc1 PASS L

50 clk=12z=1 a=0 b=0 T UL
60 clk=12=0 a=Tb=0 p
70 clk=1z=0 a=0 b=1

80 clk=12z=0 a=0 b=

80 Sc1 FAIL

T I I W I

Fig. 6.8 [*m]—consecutive repetition operator—basics

6.3 [*m]—Consecutive Repetition Operator 97

| application I

Specification: Verify that the address strobe (ADS) is not asserted for
consecutive 2 clocks.

property checkConsecutive (clk,Sig,numClk);
@(posedge clk) disable iff (rst) Sig |-> not (Sig[*numClk]);

endproperty
checkADS: assert property (checkConsecutive(busClk, ADS,2))

else Sdisplay(Sstime,,,” Error: ADS asserted consecutively for 2 Clocks");
5 busClk=1 ADS=1
15 busClk=1 ADS=1
15 Error: ADS asserted

consecutively for 2 Clocks
25 busClk=1 ADS=0
35 busClk=1 ADS=1
45 busClk=1 ADS=1
45 Error: ADS asserted
consecutively for 2 Clocks
55 busClk=1 ADS=1
55 Error: ADS asserted
consecutively for 2 Clocks

Fig. 6.9 [*m] consecutive repetition operator—application

Interesting note is that if ADS is high for 3 consecutive clocks, the property will
fail twice during those 3 clocks. Please see if you can figure out why. Hint, ‘Sig’ is
level sensitive.

What if you use [*m] on the antecedent side? Here’s an example that explains
that.

property cons_on_antecedent;
@(posedge clk) a[*2] |-> ((##[1:3] c) or (d |=> e));
endproperty

Property ‘cons_on_antecedent’ says that if ‘a’ holds and ‘a’ also held last cycle,
then either ‘c’ must hold at some point one to three cycles after the current cycle or,
if ‘d’ holds in the current cycle, then ‘e’ must hold one cycle later. Note that here
a[*2] means that the ‘a’ should have been consecutively held asserted for 2 clocks
at the posedge clk.

98 6 Operators

6.4 [*m:n]—Consecutive Repetition Range

This is another important operator that you need to understand carefully how it
works, as benign as it appears to be.

Let us start with the basics. sig[*m:n] means that sig should remain true for
minimum ‘m’ number of consecutive clocks but no more than maximum ‘n’
number of consecutive clocks. That is simple enough. But here’s the first thing that
differs from the sig[*m] operator we just learnt. The consecutive range operator
match ends at the first match of the sequence that meets the required condition.
Note this point carefully. It ends at the first match of the range operator (in contrast
the non-range operator [*m] which ends at the last match of the ‘m’).

Figure 6.10 outlines the fact that b[*2:5] is essentially an OR of four different
matches. When any one of these four sequences matches that the property is
considered to match and pass. In other words, the property first waits looking for

sequence Sc1; b [*m:n] means that signal ‘b’ must
a ##1 b[*2:5]; be true on
end:=quenice minimum ‘m’ consecutive clocks and
% g 4
property ab; maximum ‘n’ consecutive cycles.
@(posedge clk) z |-> Sci; ‘m’ must be >= 0;
sidisoperty ‘n’ can be >=0 or §

a ##1 b[*2:5] is equivalent to The overall repetition sequence

matches at the first match of the

Fig. 6.10 [*m:n] consecutive repetition range—basics

a#f1b# b I sequence that meets the required
a#t I bHI bHA b Il condition.
ati I b#1 bEI b HA D I
afMmib# b I b I bEN b
<)
IMPORTANT POINT :: # run -all
The ‘max’ value (:5) in this example has # 90 clk=12z=0 a=0 b/=0
meaning only if there is a qualifying event - # 110 clk=1 z=1 a=1 b=0
after- b[*2:5]. # 130 clk=1z=0 a=0 b=1
150 clk=1z=0 a=0b=1,
asin, a ##1 b[*2:5] ##1 c; # 150 Sc1 PASS
170 clk=1 z=0 a=0 b=1
In other words, if there isn't a “##1 c”, the # 190 clk=1 z=0 a=0 b=1
sequence will simply wait for the first 2 # 210 clk=1 z=0 a=0 b=1
Consecutive b’ and it will pass if it found # 230 clk=12=0 a=0b=0 —
them or fail if it didn't. # 250 clk=1 z=1 a=1 b=0
270 clk=1z=0 a=0 b=1
It would never wait for the max :5, # 290 clk=1z=0 a=0 b=0
because this is an OR. # 290 Sc1 FAIL
So how does “:5” work???

6.4 [*m:n]—Consecutive Repetition Range 99

two consecutive high on ‘b’. If it finds that sequence, the property ends and passes.
If it does not find the second ‘b’ to be true, the property will fail. It does not wait for
the third consecutive high on ‘b’ because there isn’t a third consecutive ‘b’ if it
wasn’t consecutively high in the second clock. The chain was already broken. So, if
‘b’ arrives in the second clock, the property will pass. If ‘b’ was not true in the
second clock, the property would fail. It will not wait for the max range.

Back to the range b[*2:5]. If you think about it, :5 will never get executed!! If ‘b’
is true for 2 consecutive clocks, the property matches and ends (because the
property ends at first match). And if ‘b’> wasn’t true for 2 consecutive edges, the
property will fail. Please study simulation log in Fig. 6.10 carefully.

So, why do we need the max range? When does the maximum range :5 come
into picture? What does :5 really mean? See Fig. 6.11, it will explain what max
range :5 means and how it gets used.

Note that we added ‘##1 ¢’ in sequence Scl. It means that there must be a ‘c’
(high) 1 clock after the consecutive operator match is complete. Ok, simple enough.

Now let’s look at the simulation log. Time 30-90 is straightforward. At time 30,
z=1 and a=1, the next clock ‘b’=1 and remains ‘1’ for two consecutive clocks and
then 1 clock later c=1 as required and the property passes. But what if ‘c’ was not
equal to ‘1’ at time 90?7 That is what the second set of events show.

Z=1 and a=1 at time 110 and the sequence Scl continues. OK. b=1 the next
2 clocks. Correct. But why doesn’t the property end here? Isn’t it supposed to end at
the first match? Well, the reason the property does not end at 150 is because it needs
to wait for c=1 the next clock. OK, so it waits for C=1 at 170. But it does not see a
c=1. Shouldn’t the property now fail? NO. This is where the max range :5 comes
into picture. Since there is a range [*2:5], if the property does not see a c=1 after the
first two consecutive repetitions of ‘b’, it waits for the next consecutive ‘b’ (total
3 now) and then looks for ‘c=1". If it does not see c=1 it waits for the next
consecutive b=1 (total 4 now) and then looks for c=1. Still no ‘c’? It finally waits
for max range 5th b=1 and then the next clock looks for c=1. If it finds one, the
property ends and passes. If not, the property fails.

Continuing with the simulation log, the last part shows how the property would
fail. One way it would fail is what I have described above. The other way is shown
in the log file. I have repeated the log file here to help us concentrate only on that
part of the log file.

250 clk=12=1 a=1b=0c=0
270 clk=12z=0 a=0b=1c=0
290 clk=12z=0 a=0b=1c=1
310 clk=12=0 a=0 b=0 c=0
310 Scl FAIL

At time 250, z=1 and a=1 so the sequence evaluation continues to consecutive
operator. ‘b’ is equal to 1 for the next two consecutive clocks. Good. But at time

100

6 Operators

sequence Sc1;
a ##1 b[*2:5] ##1 c;
endsequence

property ab;
@(posedge clk) z |-> Sc1;
endproperty

a ##1 b[*2:5] is equivalent to

a1 b##1 b #ic ||
attib#i bt bt c ||
at ba I b1 b b ¢ ||

a ##1 b #11 b ##1 b ##1 b ##1 b ##1 ¢

Requirement: After at least 2
consecutive High on ‘b’, if ‘b’ goes
Low, that ‘c’ must go High the next
clock.

But ‘c’ is low at #310 and the property
fails.

b [*m:n] means that signal ‘b’ must
be true on

minimum ‘m’ consecutive clocks and
maximum ‘n’ consecutive cycles.
‘m’ must be >= 0;

‘n’ can be >=0 or $

The overall repetition sequence
matches at the first match of the

sequence that meets the required
condition.

A

T TR R

10 clk=12z=0 a=0 b=0c=0
130 clk=12z=1 a=1b=0c=0:
i50 clk=12z=0 a=0 b=1c=0 !
i70 clk=12=0 a=0 b=1¢=0 :
90 clk=1z=0 a=0 b=0 c=1
190 Sc1 PASS
110 clk=12z=1 a=1b=0c=0:
130 clk=12z=0 a=0 b=1¢=0!
150 clk=12z=0 a=0 b=1¢=0'
170 clk=12z=0 a=0 b=1¢c=0'
190 clk=12z=0 a=0 b=1¢=0!
210 clk=12=0 a=0 b=1¢=0':
230 clk=12z=0 a=0 b=0c=1:
o Sc1 PASS :

250 clk=1z=1 a=1 b=0c=0:

270 clk=1z=0 a=0 b=1¢=0:

290 clk=12=0 a=0 b=1c=1:

310 clk=12z=0 a=0 b=0c=0:

310 Sc1 FAIL :

Fig. 6.11 [*m:n] consecutive repetition range—example

310, b=0 and—also—c=0. Hence the property fails. After two consecutive ‘b’,
there should be either a third ‘b’ or a ‘c=1’. Neither of them is present and the
property fails. If C=1 at time 310, the property would pass. If b=1 and c¢=0 at time
310, the property would continue to evaluate until it sees 5 consecutive ‘b’ or a c=1

6.4 [*m:n]—Consecutive Repetition Range 101

before 5 consecutive ‘b’ are encountered. Or after 5 consecutive ‘b’ that there is a
c=1 as shown in the previous part of the simulation log file.

Confusing? That could be the case at first. However, please see the next few
applications and this concept will be clear. This is one of the most useful operators
in the language and the better you understand it, the more productive you will be.

Note also following new shortcuts introduced in LRM 2009.

##[*] is an equivalent representation of ##[0:$]
##[+] is an equivalent representation of ##[1:$]
[*] is an equivalent representation of [*0:$]
[+] is an equivalent representation of [*1:$]

6.4.1 Application: Consecutive Repetition Range Operator

This application is again on the same line that we have been following. Reason to
carry on with the same example is to show how specification can change around
seemingly similar logic.

Property in Fig. 6.12 says that at $rose(tagError), check for tErrorBit to remain
asserted until mCheck is asserted. If tErrorBit does not remain asserted until
mCheck gets asserted, the property should fail.

application l

Application
Specification says that

if tagError is detected, 1 clock later tErrorBit must be asserted and remain asserted
until mCheck is asserted.

®@(posedge clk) Srose(tagError) |-> ##1 Srose{tErrorBlt} ##0 tErrorB1t[‘1 S] ##0
Sro'Se(mCheckl, .

mCheck ;-

* » ‘. l, ey - i e e

R (G IR
tErrorBit—Jrﬂes\l
tagError

RS REEE .

Fig. 6.12 [*m:n] consecutive repetition range—application

102 6 Operators

application I

Specification:

PCI Special cycle requires that DEVSEL_ should remain high (deasserted) during
the special cycle.

property checkDevSelSpecialCycle;
@(posedge clk)
Sfell(FRAME_) && (CMD == 4’b0001) |-> DEVSEL_ [*1:$] ##0 Srose(FRAME_);

endproperty

HINT: You can mix Edge Sensitive and Level Sensitive expressions in a logic
condition.

Fig. 6.13 [*m:n] consecutive repetition range—application

So, at $rose(tagError) and one clock later we check to see that $rose(tErrorBit)
occurs. If it does, then we move forward at the same time (##0) with tErrorBit[*1:
$]. This says that we check to see that tErrorBit remains asserted consecutively (i.e.
at every posedge clk) until the qualifying event $rose(mCheck) arrives. In other
words, the qualifying event is what makes consecutive range operator very
meaningful as well as useful. Think of the qualifying event as the one that ends the
property. This way, you can check for some expression to be true until the quali-
fying event occurs (Fig. 6.13).

A PCI cycle starts when FRAME_ is asserted (goes Low) and the CMD is valid.
A CMD == 4’b0001 specifies the start of a PCI Special cycle. On the start of such a
cycle (i.e. the antecedent being true), the consequent looks for DEVSEL_ to be high
forever consecutively at every posedge clk until FRAME_ is de-asserted (goes
High). This is by far the easiest way to check for an event /expression to remain true
(and we do not know for how long) until another condition/expression is true
(i.e. until what I call the qualifying event, is true).

Note also that you can mix edge sensitive and level sensitive expressions in a
single logic expression. That is indeed impressive and useful.

Property in Fig. 6.14 states that if the currentState of the state machine is not
IDLE and if the currentState remains stable for 32 clocks that the property should
fail.

6.4 [*m:n]—Consecutive Repetition Range 103

application I

Specification:

Make sure that the state machine does not get stuck in current state except
‘IDLE’.

property StuckState;
®(posedge clk) disable iff (rst)
((currentState != IDLE) && Sstable(currentState))[*32] |=> 1’b0;

endproperty

/

HINT: You can simply delcare your consequent as a failure. I

Fig. 6.14 [*m:n] consecutive repetition range—application

There are a couple of points to observe.

Note that the entire expression ((currentState != IDLE) && $stable
(currentState)) is checked for consecutive repetition of 32 times because we need
to check at every clock for 32 clocks that the currentState is not IDLE and whatever
state that existed in previous clock still remains the same (i.e. $stable). In other
words, you have to make sure that within these 32 clocks, the current State does not
go back to IDLE. If it does, then the antecedent does not match and it will start all
over again to check for this condition to be true (i.e. the antecedent to be true).

Note that if the antecedent is indeed true it would mean that the state machine is
indeed stuck into the same state for 32 clocks. In such a case, we want to assertion
to fire. That is taken care of by a hard failure in the consequent. We simply program
consequent to fail without any pre-requisite.

As you notice, this property is unique in that the condition is checked for in the
antecedent. The consequent is simply used to declare a failure (Fig. 6.15).

This application states that the state machine matches the state transition spec-
ification. If we are in ‘readStart state that after 1 clock, the state machine should be

104 6 Operators

Specification:

Make sure that the state machine follows the specified transitions

*define readStart (read_enb ##1 readStartState)
*define readID (readStartState ##1 readIDState)
*define readData (readIDState ##1 readDataState)
“define readEnd (readDataState ##1 readEndState)

sequence checkReadStates;

@(posedge clk)

“readStart ##1

“readID [*1:8] ##1

‘readData [*1:8] ##1

‘readEnd .
endsequence

Fig. 6.15 [*m:n] consecutive repetition range—application

in “readID state and stays in that state until the state machine reaches “readData
state. It then is expected to stay in ‘readData state until “readEnd arrives. In short,
we have made sure that the state machine does not stray and do an illegal transition
until it reaches “readEnd.

Here’s complete SystemVerilog code with built-in testbench and simulation log
that exemplifies above property. Code is simple and self-explanatory. I tactfully (!)
crafted the testbench such that the property passes.

Exercise: See if you can tweak the testbench to make the property fail. That will
further solidify your concepts.

Note the use of “define to establish temporal relationship between signals and
states. This makes the code very readable.

6.4 [*m:n]—Consecutive Repetition Range 105

module state_transition;

int readStartState, readlDState, readDataState, readEndState;

logic clk, read_enb;

‘define readStart (read_enb ##1 readStartState)
‘define readID (readStartState ##1 readIDState)
‘define readData (readIDState ##1 readDataState)

‘define readEnd (readDataState ##1 readEndState)

property checkReadStates;

@(posedge clk)
‘readStart #i#t1l
‘readID [*1:$] ##1
‘readData[*1:S] ##1
‘readEnd ;

endproperty

sCheck: assert property (checkReadStates) else Sdisplay (Sstime,,,"FAIL");

cCheck: cover property (checkReadStates) Sdisplay (Sstime,,,"PASS");

initial
begin

read_enb=1; clk=0;

106 6 Operators

@(posedge clk) readStartState=1;
@(posedge clk) @(posedge clk); readIDState=1;
@(posedge clk) @(posedge clk); readDataState=1;

@(posedge clk) @(posedge clk); readEndState=1;

end

initial Smonitor(S$stime,,,"clk=",clk,
"read_enb=%0b",read_enb,,,
"readStartState=%0b",readStartState,,
"read|DState=%0b",read|DState,,
"readDataState=%0b",readDataState,,

"readEndState=%0b",readEndState);

always #10 clk=!clk;

endmodule

/*

0 clk=0Oread_enb=1 readStartState=0 readIDState=0 readDataState=0 readEndState=0
10 clk=1read_enb=1 readStartState=1 read|DState=0 readDataState=0 readEndState=0
20 clk=Oread_enb=1 readStartState=1 readIDState=0 readDataState=0 readEndState=0
30 clk=1read_enb=1 readStartState=1 readIDState=0 readDataState=0 readEndState=0
40 clk=0Oread_enb=1 readStartState=1 read|DState=0 readDataState=0 readEndState=0

50 clk=1read_enb=1 readStartState=1 readlDState=1 readDataState=0 readEndState=0

6.4 [*m:n]—Consecutive Repetition Range 107

60 clk=0Oread_enb=1 readStartState=1 readIDState=1 readDataState=0 readEndState=0
70 clk=1read_enb=1 readStartState=1 readIDState=1 readDataState=0 readEndState=0
80 clk=0read_enb=1 readStartState=1 readIDState=1 readDataState=0 readEndState=0
90 clk=1read_enb=1 readStartState=1 readIDState=1 readDataState=1 readEndState=0
100 clk=Oread_enb=1 readStartState=1 read|DState=1 readDataState=1 readEndState=0
110 clk=1read_enb=1 readStartState=1 readIDState=1 readDataState=1 readEndState=0
120 clk=0Oread_enb=1 readStartState=1 readIDState=1 readDataState=1 readEndState=0
130 clk=1read_enb=1 readStartState=1 read|DState=1 readDataState=1 readEndState=1
140 clk=0read_enb=1 readStartState=1 readIDState=1 readDataState=1 readEndState=1
150 PASS

150 clk=1read_enb=1 readStartState=1 read|DState=1 readDataState=1 readEndState=1
160 clk=0read_enb=1 readStartState=1 readIDState=1 readDataState=1 readEndState=1
170 PASS

170 clk=1read_enb=1 readStartState=1 readIDState=1 readDataState=1 readEndState=1
180 clk=0read_enb=1 readStartState=1 readIDState=1 readDataState=1 readEndState=1
190 PASS

190 clk=1read_enb=1 readStartState=1 read|DState=1 readDataState=1 readEndState=1

*/

Let us examine one more application as follows (Figs. 6.16 and 6.17).

6.5 [=m]—Repetition Non-consecutive

Non-consecutive repetition is another useful operator (just as the consecutive
operator) and used very frequently. In many applications, we want to check that a
signal remains asserted or de-asserted a number of times and that we need not know
when exactly these transitions take place. For example, (as we will see in Fig. 6.21),
if there is a non-burst READ of length 8, that you expect § RDACK.
These RDACK may come in a consecutive sequence or not (based on read latency).
But you must have 8 RDACK before read is done.

108

6 Operators

Specification:

« grant must remain asserted as long as request is asserted.

+ When request is asserted that grant is asserted the very next clock.
« grant must have been de-asserted prior to it’s assertion.

« grant must de-assert the very next clock after request is de-asserted.

B

| application .

endproperty

baseP: assert property (req_gnt) else Sdisplay($stime,,,"FAIL");

property req_gnt; \ :
@®(posedge clk)
Srose(request) |-> ##1 Srose(grant) ##0 grant[*1:5] ##0 Sfell) ##1 $fell(grant);

Fig. 6.16 Design application

run -all

5 clk=1 request=0 grant=0
7715 clk=1 request=0 grant=0
25 clk=1 request=1 grant=0
i 35 clk=1 request=1 grant=1
i 45 clk=1 request=1 grant=1
i 55 clk=1 request=1 grant=1
65 clk=1 request=0 grant=1
clk=1 request=0 grant=0
75 PASS
85 clk=1 request=0 grant=0
i 95 clk=1 request=1 grant=0
i 105 clk=1 request=1 grant=1
i 115 clk=1 request=1 grant=1
+ 125 clk=1 request=1 grant=1

i 135 clk=1 request=1 grant=1 '
i 145 clk=1 request=1 grant=0 <++—

TR TR TR T TR TR R R
|
w

grant falls before request. Hence the
| 145 FAIL ! property fails.

Fig. 6.17 Design application—simulation log

6.5 [=m]—Repetition Non-consecutive

109

property ab;
@®(posedge clk) a |=> b [=2];
endproperty

b [=m]

means that signal ‘b’ must be true on

‘m’ clocks, not necessarily
consecutive (i.e. there can be a delay

a |=> b[=2]; is equivalent to
a##lb##1 ...b

of 1 or more clocks between one
match of the operand and the next

successive match and no match
strictly in between).

| Will this property ever FAIL ?? I m must be >= 0 (cannot be “$”)
_¢'The overall repetition sequence
/| matches “at or after the last
run -all

5 clk=1 294 b=0 iterative match” of the operand

15 clk=1 a=0 b=1+."

#

;L

25 clk=1 a=0 b=0 NON-CONSECUTIVE CLOCKS.

P 35 clk=1 a=0 b=0 Note that the first occurrence of ‘b’ does
v not necessarily have to happen exactly 1

j 45 clk=1 a=0 b=1+ clock after ‘a'. /

#

55 clk=12=0b=0 ¥ o

65 clk=1ax1b=0 " Tol Tof
75 cks1a=0b=0 !

85 clk=1 a=0 b=1%---~ i Tal

: ;
#
#

95 clk=1 a=0 b=0

e | TILTLTCIF L

Fig. 6.18 Repetition non-consecutive operator—basics

In Fig. 6.18, property ‘ab’ says that if ‘a’ is sampled high at the posedge of clock
that starting next clock, ‘b’ should occur twice not necessarily consecutively. They
can occur any time after the assertion of ‘a’. The interesting (and important) thing to
note here is that even though the property uses non-overlapping implication
operator (i.e. the first ‘b’ should occur 1 clock after ‘a’=1), the first ‘b’ can occur
any time after 1 clock after ‘a’ is found high. Not necessarily exactly 1 clock after
‘@’ M

In the simulation log, the first part shows that ‘b’ does occur 1 clock after ‘a’ and
then is asserted again a few clocks later. This meets the property requirements and
the assertion passes.

But note that second part of the log. ‘b’ does—not—occur 1 clock after ‘a’,
rather 2 clocks later. And then it occurs again a few clocks later. Even this behavior
is considered to meet the property requirements and the assertion passes.

Based on the description above, do you think this property will ever fail? Please
experiment and see if you can come up with the answer. It will also further confirm
your understanding. Hint: There is no qualifying event after ‘b[=2].

Continuing with the same analogy, refer to the example below. Here again, just
like in the consecutive operator, the qualifying event (##1 C in the example below)
plays a significant role.

110 6 Operators

The example in Fig. 6.19 is identical to the previous except for the ‘##1 C’ at the
end of the sequence. The behavior of ‘a |=>b[=2] is identical to what we have seen
above. ‘##1 ¢’ tells the property that after the last ‘b’, ‘c’ must occur once and then
it can occur any time after one clock after the last ‘b’. Note again that even though
we have ‘##1 ¢’, ‘c’ does not necessarily need to occur 1 clock after the last ‘b’. It
can occur after any # of clks after 1 clock after the last ‘b’—as long as—no other ‘b’
occurs while we are waiting for ‘c’. Confusing! Not really. Let us look at the
simulation log in Fig. 6.19. That will clarify things.

In the log, a=1 at time 5; b=1 at time 25 and then at 45. So far so good. We are
marching along just as the property expects. Then comes in c=1 at time 75. That
also meets the property requirement that ‘c’ occurs any time after last b=1. BUT
note that before c=1 arrived at time 75, ‘b’ did not go to a ‘1’ after its last
occurrence at time 45. The property passes. Let us leave this at that for the moment.
Now let us look at the second part of the log.

a=1 at time 95; then b=1 at 105 and 125; we are doing great. Now we wait for c=1
to occur any time after last ‘b’. C=1 occurs at time 175. But the property fails before
that!! What is going on? Note b=1 at time 145. That is not allowed in this property.
The property expects a c=1 after the last occurrence of ‘b’ but before any other b=1
occurs. If another b=1 occurs before c=1 (as at time 145), then all bets are off.

property abc; b [=m] ##1 c;
@ = = -

wiial (f::::jée clk)a |=> b [=2] ##11 <; means that signal ‘b’ must be true
P on ‘m’' non-consecutive clocks and

‘c’ needs to match after any number

of clocks -after- at least one clock

run -all after the last match of ‘b’

5 clk=1 a=1 b=0c=0
15

35 ks i

i 35 clk=1 a=0 b=0 c=0 */_\.I

.45 clk=12a=0Db=1¢c=0 i ‘c’ needs to match any time after the

55 clk=1 a=0 b=0 c=0 last match of ‘b’ (and ‘b’ should not

65 clk=12a=0 b=0 c=0 J match in-between last match of ‘b’

75 clk=1 a=0 b=0 c=1*+— and ‘c)

75 property abc PASS —_ ,

85 clk=1 a=0 b=0 c=0 TRUE ON NON- \
clk=1 a=1 b=0 c=0 |‘ CONSECUTIVE CLOCKS \

105 clk=1 a=0 b=1 c=0 u

115 clk=1 a=0 b=0 c=0

{125 clk=12a=0b=1c=0 ——

{135 clk=1a=0b=0¢=0 |~

1145_clk=12=0 b=1¢c=0+ - - -|o-

145 property abc FAIL TBT

165 clk=1 a=0 b=0 c=0 //
Fig. 6.19 Non-consecutive repetition operator—example

R
)

T xR R T ETITRTRTTETT TR R R
]
w

175 clk=1 a=0 b=0 c=1«—

6.5 [=m]—Repetition Non-consecutive 111

Property does not wait for the occurrence of c=1 and fails as soon as it sees this extra
b=1. In other words, (what I call) the qualifying event “##1 c” encapsulates the
property and strictly checks that b[=2] allows only 2 occurrences of ‘b’ before ‘c’
arrives.

6.6 [=m:n]—Repetition Non-consecutive Range

Property in Fig. 6.20 is analogs to the non-consecutive (non-range) property, except
that this has a range. The range says (in the example above) that ‘b’ must occur
minimum 2 times or maximum 5 times after which ‘c’ can occur one clock later any

property abc; b [=m:n] ##1 c;
®(posedge clk) a |=> b [=2:5] ##1 c;
endpro;ep:tsye Rechoe == bl] S means the property matches over an
interval of clocks provided ‘a’ is true
on the first clock tick, ‘c’ is true on
; :-1-55- cc[::(_-11 Z;L 2;2(;% the last clock tick and there are at
25 kel 250 beD c=0 | least 'm’ and at most ‘n’ not-
35 clk=1 a=0 b=0 c=0 necessarily consecutive clocks strictly
45 clk=1 20 b=1.c=0 = o in-between the first and the last on
kssmcuk:fa;b‘B;b‘é;b_“" which ‘b’ is true (LRM :: SV 3.1a)
65 clk=1 a=0 b=0 c=0 m must be >= 0 (cannot be “$”)
75 clk=1 a=0 b=0 c=1 wen
75 property abc PASS n must be >= 0 (can be “S”)
run -all
5 clk=1 a=1 b=0¢=0 # run -all
15 clk=12=0b=0¢=0 .5 clk=1a=1b=0c=0
125 clk=1a=0 b=1 c=0 115 clk=1 a=0 b=1 ¢=0
135 clk=1a=0 b=1c=0 ! 125 clk=1 a=0 b=0 c=0
145 clk=12a=0b=0c=0 ! 135 clk=1a=0 b=1 ¢c=0
55 clk=12=0 b=1 =0 /_\ 45 clk=12=0 b=0 c=0
165 clk=12a=0b=0c=0

:55 clk=1 a=0 b=1 ¢=0
65 clk=1 a=0 b=0 c=0
175 clk=1a=0 b=1 c=0
585 clk=1 a=0 b=0 c=0
195 clk=1a=0b=1¢=0__:
105 clk=1 a=0 b=0 c=0
115 clk=1 a=0 b=1 ¢c=0 + - -
115 property abc FAIL:: # of
sedge b’ = 6
125 clk=1 a=0 b=0 ¢=0
135 clk=1 a=0 b=0 ¢=0
145 clk=1 a=0 b=0 c=1

' clk=1 a=0 b=1 ¢=0
185 clk=1 a=0 b=0 c=0
195 clk=12a=0b=1c=0__
105 clk=1 a=0 b=0 c=0
115 clk=1 a=0 b=0 c=0
125 clk=1 a=0 b=0 c=
125 property abc PASS

IR I I T R R O R O W W W |
~J
w

H:h?d:'g T A O R R TR W R

Fig. 6.20 Repetition non-consecutive range—basics

112 6 Operators

time and that no more than maximum of 5 occurrences of ‘b’ occur between the last
occurrence of b=1 and c=1.

First simulation log (Top left) shows that after a=1 at time 5, b occurs twice (the
minimum # of times) at time 15 and 45 and then c=1 at time 75. Why didn’t the
property wait for 5 occurrences of b=1? That is because after the second b=1 at time
45, c=1 arrives at time 75 and this c=1 satisfies the property requirement of min-
imum of two b=1 followed by a c=1. The property passes and does not need to wait
for any further b=1. In other words, the property starts looking for ‘c=1" after the
minimum required (2) ‘b==1". Since it did find a ‘c=1" after two ‘b=1", the property
ends there and passes.

Similarly, the simulation log on bottom left shows that ‘b’ occurs 5 (max) times
and then ‘c’ occurs without any occurrence of b. The property passes. This is how
that works. As explained above, after two ‘b=1’, the property started looking for
‘c==1". But before the property detects ‘c==1", it sees another ‘b==1’. That’s OK
because ‘b’ can occur maximum of five times. So, after the third ‘b==1’, the
property continues to look for either ‘c==1" or ‘b==1" until it has reached maximum
of five ‘b==1". This entire process continues until five ‘b’s are encountered. Then
the property simply waits for a ‘c’. While waiting for a ‘c’ at this stage, if a 6th ‘b’
occurs, the property fails. This failure behavior is shown in simulation log in the
bottom right corner of Fig. 6.20.

6.6.1 Application: Repetition Non-consecutive Operator

Here is a practical example of using non-consecutive operator. The specs are
provided in Fig. 6.21.

The property RdAckCheck will wait for nBurstRead to be high at the posedge
clk. Once that happens, it will start looking for 8 RdAck before ReadDone comes
along. If ReadDone comes in after 8 RdAck (and not 9) the property will pass. If
ReadDone comes in before 8 RdAck come in the property will fail. Note that this
will guarantee that the non-burst protocol is completely adhered to.

Following is an interesting example, just for fun... (Fig. 6.22).

The first case is interesting. At time 5 ‘a’ is 1 (antecedent is true) which triggers
the consequent. At time 15, c=1 and the property passes. But there was no occur-
rence of ‘b’. b[=0] is an empty sequence which states that ‘b’ should not occur. We’ll
discuss empty sequences later in the book (see Sect. 14.16). The log from time 35-65
is quite straightforward. ‘a==1" at time 35; ‘b==1" at 55 and ‘c==1" at time 65. Since
the property states b[=0:$] and since ‘b’ did occur once followed by a ‘c’, the
property passes.

But let us examine the log from time 75. At time 75, a=1 so the consequent fires.
At time 85, both b=1 and c=1 and property passes! How? Note again that b[=0] part
of the b[=0:$] range states that ‘b’ may never occur. That property is satisfied at
time 75 (i.e. ‘b’ does not occur) and 1 clock later ‘c’ arrives, hence the property
passes. Once you learn a bit more about the empty sequences, you will better

http://dx.doi.org/10.1007/978-3-319-30539-4_14

6.6 [=m:n]—Repetition Non-consecutive Range

| application I

Specification:

« If nonBurst Read of length 8 is asserted that the RdAck must be asserted 8
times and ReadDone must be asserted anytime after the last Read and that there
are no more RdAck’s between the last RdAck and ReadDone.

property RdAckCheck (int length);
@(posedge clk) nBurstRead |=> RdAck [=length] ##1 ReadDone;

endproperty

aP: assert property (RdAckCheck (8));

Fig. 6.21 Repetition non-consecutive range—application

property abc; b [=0:5] ##1 c;

e dge clk)a | => b [=0:3] means that the signal ‘b’ should be

true either at no time 1 clock (after
‘a’ is true in this example) or it can
be true infinite times until ‘c’ is
asserted.

##1 c;
endproperty

Will this property ever fail?? I

run -all

5 clk=1 a=1 b=0¢c=0

15 clk=1 a=0 b=0 c=1

15 property abc PASS
35 clk=1 a=1 b=0¢c=0
45 clk=1 a=0 b=0 c=0

55 clk=1 a=0 b=1 c=0
65 clk=1 a=0 b=0 c=1

65 property abc PASS
75 clk=1 a=1 b=0 c=0
85 clk=1 a=0 b=1 c=1
85 property abc PASS
95 clk=1 a=0 b=1 c=1

Fig. 6.22 Repetition non-consecutive range—[=0:$]

114 6 Operators

understand this example. But the point here is that you need to be careful using the
minimum and maximum range in an operator. The results may not be that apparent.
Empty sequences are discussed in Sect. 14.16

6.7 [->m] Non-consecutive GoTo Repetition Operator

This is the so-called non-consecutive goto operator! Very similar to [= m]
non-consecutive operator. Note the symbol difference. The goto operator is [->2].

In Fig. 6.23, b[->2] acts exactly the same as b[=2]. So, why bother with another
operator with the same behavior? It is the qualifying event that makes the difference.
Recall that the qualifying event is the one that comes after the non-consecutive or
the ‘goto’ non-consecutive operator. I call it qualifying because it is the end event
that qualifies the sequence that precedes for final sequence matching.

b [-> m] means that signal ‘b’ must be

propery ag;(osedge clk) a |=> b [-> 2]; true on ‘m’ clocks, not necessarily
endproperty R ’ consecutive (i.e. there can be a delay
of 1 or more clocks between one

a |=> b[-> 2]; is equivalent to
a##lb## ... b

#

5 clk=1 a=1 b=0
15 clk=1 a=0 b=1
25 clk=1 a=0 b=0
35 clk=1a=0b=0
45 clk=1 a=0 b=1% ;
45 property abc PASS
55 clk=1 a=0 b=0 2

65 clk=1 36;:0 F\

75 clk=1 a=0 b=0
85 clk=1 a=0 b=+~
95 clk=12a=0 b=0
105 clk=1 a=0 b=1
115 property abc PASS

I o R W R W

__.'The overall repetition sequence
~ /| matches “at the last iterative” match

match of the operand and the next
successive match and no match
strictly in between).

m must be >= 0 (cannot be “$”)

of the operand.

Matches ON NON-
CONSECUTIVE CLOCKS

N

giglgigEnl

NOTE:: Since there is no qualifying event -after- b[-> 2]; in this example, there
is no difference between this example and the one with b[=2] without a
qualifying event. It’s the qualifying event that differentiates between non-
consecutive [= m] and the goto [-> m] constructs. Next slide...

Fig. 6.23 GoTo non-consecutive repetition—basics

http://dx.doi.org/10.1007/978-3-319-30539-4_14

6.7 [->m] Non-consecutive GoTo Repetition Operator 115

property ab; b [-> 2] ##1 c;
®(posedge clk) a |=> b [-> 2] ##1 ; means that signal ‘b’ must be true

endproperty on 2 clocks, not necessarily
consecutive -and-

‘c’ must be asserted exactly 1 clock
run -all after the “last iterative” match of
5 clk=1 a=1 b=0c=0 ‘b’.

15 clk=1 a=0 b=0 c=0

125 clk=1a=0 b=1¢=0 !
' 35 clk=1 a=0 b=0 c=0 i ‘c’ needs to match exactly 1 clock
| after the last match of ‘b’ (and ‘b’
: should not match in-between last

#
i
#
#
#
#
55 property abc PASS match of ‘b’ and ‘c) A
65 clk=1a=1 b=0 c=0
75 clk=1a=0 b=0 c=0 VRUE SN HOW-
85 ClKeT 3s0 BT e0 CONSECUTIVE CLQ\CKS
195 clk=1a=0 b=0 c=0 ﬁ;"ﬁ .’ /
1105 clk=1a=0 b=1¢=0 : | >
115 clk=1"a=0 b=0 c=0+ - J - ;'I S el
115 property abc FAIL b b
125 clk=1 a=0 b=0 c=1 = T\r TT
W

JERENE RSN

Fig. 6.24 Non-consecutive repetition—example

In Fig. 6.24, we have the so-called qualifying event ‘##1 c’. The property says
that on finding a=1 at posedge clk, b must be true 2 times (1 clock after a=1)
non-consecutively and ‘c’ must occur exactly 1 clock after the last occurrence of
‘b’. In contrast, with “b[=2] ##1 c”, ‘¢’ could occur any time after 1 clock after the
last occurrence of ‘c’. That is the difference between [=m] and [->m].

The simulation log in Fig. 6.24 shows a PASS and a FAIL scenario. PASS
scenario is quite clear. At time 5, a==1, then two non-consecutive ‘b’ occur and
then exactly 1 clock after the last “b=1", ‘c=1" occurs. Hence, the property passes.
The FAIL scenario shows that after 2 occurrences of b==1, c==1 does not arrive
exactly 1 clock after the last occurrence of b=1. That is the reason the b[->2] ##1 c
check fails.

6.8 Difference Between [=m:n] and [->m:n]

The simulation log in Fig. 6.25 is quite self-explaining. The left and the right side
properties are identical except that the LHS uses [=2:5] and RHS uses [->2:5].
The LHS log, i.e. the one for b[=2:5] PASSes while the one for b[->2:5] fails
because according to the semantics of “b[->2:5] ##1 c’, ‘c’ must arrive exactly
1 clock after the last occurrence of ‘b’.

116 6 Operators

property abc; property abc;
@(posedge clk) a |=> b [=2:5] ##1 c; @(posedge clk) a |[=> b [-> 2:5] ##1 c;
endproperty endproperty

5 clk=1 a=1 b=0c=0
15 clk=12a=0b=0¢c=0
25 clk=1a=0b=1 c=0
35 clk=12a=0b=1 c=0!
45 clk=1a=0b=0c=0:
55 clk=1a=0b=1c=0"
65 clk=12a=0b=0c=0;
75 clk=1a=0b=1 c=0;
85 clk=1a=0b=0c=0/
95 clk=12a=0b=1c=0;
105 clk=1 a=0b=0c=0
115 clk=1 a=0 b=0 c=0
125 clk=1 a=0b=0 c=1
125 property abc PASS

5 clk=1 a=1b=0c=0
.15 _clk=1.a=0b=0c=0
125 clk=1a=0b=1c=0;
135 clk=1a=0b=1 c=0
145 clk=1a=0b=0 c=0;

*55 clk=1a=0b=1 c=0;

165 clk=12a=0b=0 c=0

175 clk=1a=0b=1 c=0:

185 clk=1a=0 b=0 c=0!

95 _clk=12=0b=1c=0,

105 clk=1 a=0b=0c=0

105 property abc FAIL

115 clk=1 a=0b=0 c=0

125 clk=1 a=0b=0 c=1

HTH BRSNS
~l
w

HH TR
~
wn

After the last match of ‘b’, ‘c’ can After the last match of ‘b’, ‘c” must
assert after any number of clocks after assert the very next clock because
minimum of 1 clock (because of ##1 c) the qualifying event is

and that 'b’ does not go high between “Hi1 ",

the last match of ‘b’ and assertion of ¢’

Fig. 6.25 Difference between [=m:n] and [->m:n]

Now here is a very important point. Note that ‘c’ is expected to come in 1 clk
after the last occurrence of b = 1 because of ‘##1 c’. But what if you have ‘##2 ¢’ in
the property?

b[=m] ##2 C : This means that after ‘m’ non-consecutive occurrence of ‘b’, ‘c’
can occur any time after 2 clocks. If ‘c=1" arrives before 2 clocks, the property will
fail. b[->m]##2 c: This means that after ‘m’ non-consecutive occurrence of ‘b’, ‘¢’
must occur exactly after 2 clocks. No more no less.

6.8.1 Application: GoTo Repetition—Non-consecutive
Operator

The application says that at the rising edge of ‘req’, after 1 clock (because of
non-overlapping operator) ‘ack’ must occur once and that it must de-assert (go low)
exactly 1 clock after its occurrence. If ‘ack’ is not found de-asserted (low) exactly
1 clock after the assertion of ‘ack’, the property will fail (Fig. 6.26).

Example: Once an Ethernet Frame starts transmitting, that exactly 16 packets are
sent between ‘frame_start’ and ‘frame_end’. ‘packet_sent’ is asserted every time a
packet is sent.

6.8 Difference Between [=m:n] and [->m:n] 117

application

Specification:

+ For every req you must get at least 1 ‘ack’ and ‘ack’ must clear the next clock.

property ReqAckCheck;
@(posedge clk) Srose(req) |=> ack[->1] ##1 lack;
endproperty

aP: assert property (reqAckCheck);

Fig. 6.26 GoTo repetition—non-consecutive operator—application

Solution:
Frame_check:

assert property (frame_start) |=>
('frame_end throughout packet_sent [->16] ##1 !packet_sent) ##1 frame_end;

‘throughout’ operator is explained in Sect. 6.9. The property reads as: frame_end
must remain deasserted ‘throughout’ the sequence where non-consecutive
16 packets are sent and packet_sent is deasserted. Once frame_end remains deas-
serted ‘throughout’ this sequence that it is found asserted 1 clock after the sequence
is over.

6.9 Sigl throughout Seql

The ‘throughout’ operator makes it that much easier to test for condition (signal or
expression) to be true throughout a sequence. Note that the LHS of ‘throughout’
operator can only be a signal or an expression, but it cannot be a sequence (or
subsequence). The RHS of ‘throughout’ operator can be a sequence. So, what if you
want a sequence on the LHS as well? That is accomplished with the ‘within’
operator, discussed right after ‘throughout’ operator (Fig. 6.27).

Let us examine the application in Fig. 6.28 which will help us understand the
throughout operator.

118 6 Operators

‘T throughout Seq1’ matches along a finite interval of consecutive clock
ticks provided Seq1 matches along the interval and T evaluates true at
each clock tick of the interval

SV expression or signal (but Seq1 subsequence must
cannot be another match during the time
subsequence) | interval when T is expected
l to match
|

! l 3
ey —-

JEREREREREREREERARRN RS

Useful when you want to describe that a logical condition must hold
true (or not) throughout a transaction.

Fig. 6.27 Sigl throughout seql

6.9.1 Application: Sigl throughout Seql

In Fig. 6.28 the antecedent in property pbrulel requires bMode (burst Mode) to fall.
Once that is true, it requires checkbMode to execute.

checkbMode makes sure that the bMode stays low ‘throughout’ the data_transfer
sequence. Note here that we are, in a sense, making sure that the antecedent remains
true through the checkbMode sequence. If bMode goes high before data_transfer is
over, the assertion will fail. The data_transfer sequence requires both dack_ and oe_
to be asserted (active low) and to remain asserted for 4 consecutive cycles.
Throughout the data_transfer, burst mode (bMode) should remain low.

There are two simulation logs presented in Fig. 6.29. Both are for FAIL cases!
FAIL cases are more interesting than the PASS cases, in this example! The first
simulation log (left hand side) shows $fell(bMode) at time 20. Two clocks later at
time 40, oe_=0 and dack_=O0 are detected. So far so good. oe_ and dack_ retain their
state for 3 clocks That’s good too. But in the 4th cycle (time 70), bMode goes high.
That’s a violation because bMode is supposed to stay low throughout the
data-transfer sequence, which is 4 clocks long.

The second simulation log (Right hand side) also follows the same sequence as
above but after 3 consecutive clocks that the oe_ and dack_ remain low, dack_ goes

6.9 Sigl throughout Seql

application I

1. When Burst Mode (bMode) is asserted, oe_ and dack_ must be found asserted after 2 clocks.
2. oe_ and dack_ must remain asserted for minimum of 4 clocks after both are found asserted.
3. bMode must remain asserted throughout the duration of oe_ && dack_ assertion.

119

sequence data_transfer;
##2 ((dack_==0) && (oe_==0)) [*4];
endsequence

sequence checkbMode;
(!bMode) throughout data_transfer;

endsequence
» , property pbrulei;
\swt}e”r(:*:::egv.a-l ?:re 3 ®@(posedge clk) $fell(bMode) |-> checkbMode;
sequence sridproperty
‘checkbMode’ starts
v | ((dack_==0) && (ce_==0)) [*4] I
|
J /7\
bMode ke i IJII \
< #2 > [
oe_ / 'I \

"SRR

N
dack_ 1 2 3 4 [

pipipSpiplpkplipipipiph

Fig. 6.28 Sigl throughout Seql—application

high at time 160. That is a violation because data_transfer (oe_=0 and dack_=0) is

supposed to stay low for 4 consecutive cycles.

This also points to a couple of other important points

. Both sides of the throughout operator must meet their requirements. In other
words, if either the LHS or the RHS of the throughout sequence fails, the
assertion will fail. Many folks assume that since bMode is being checked to see
that it stays low (in this case), only if bMode fails that the assertion will fail. Not
true as we see from the two failure logs.

. Important Point: In order to make it easier for the reader to understand this burst
mode application, I broke it down into 2 distinct subsequences. But what if

someone just gave you the timing diagram and asked you to write assertions for
it?

Break down any complex assertion requirement into smaller chunks. This is

probably the most important advice I can part to the reader. If you look at the entire
AC protocol (the timing diagram) as one monolithic sequence, you will indeed
make mistakes and spend more time debugging your own assertion then debugging

the design under test.

120 6 Operators

bMode goes High a clock too early. I

#0 CLK #1 :: clk=1 bMode=1 oe_=1 dack_=1
#10 CLK #2 :: clk=1 bMode=1 oe_=1 dack_=1
#20 CLK #3 :: clk=1 bMode=0 oe_=1 dack_=1
#30 CLK #4 :: clk=1 bMode=0 oe =0 dack =1 _
#40 (CLK #5 :: clk=1 bMode=0 oe =0 dack =0 :
#50 !CLK #6 :: clk=1 bMode=0 oe_=0 dack =0
#60 (CLK #7 :: clk=1 bMode=0 oe =0 dack =0 :

#70 property pbrule1 FAIL
#70 CLK #8 :: clk=1 bMode=1 oe_=0 dack_=0

| (dack_==0 && oe_==0) does not hold for 4 clocks

#100 CLK #11 :: clk=1 bMode=1 oe_=1 dack_=1

#110 CLK #12 :: clk=1 bMode=0 oe_=1 dack_=1

#120 CLK #13 :: clk=1 bMode=0 oe_ =0 dack =1
#130 CLK #14 :: clk=1 bMode=0 ce =0 dack =0
#140 | CLK #15 :: clk=1 bMode=0 oe_=0 dack_=0 |
#150 ; CLK #16 :: clk=1 bMode=0 oe =0 dack =0
#160 property pbrule1 FAIL

#160 CLK #17 :: clk=1 bMode=0 ce_=0 dack_3=1
#170 CLK #18 :: clk=1 bMode=0 oe_=0 dack_=1

#180 CLK #19 :: clk=1 bMode=0 oe_=0 dack_=1

#190 CLK #20 :: clk=1 bMode=1 oe_=1 dack_=1

Fig. 6.29 Sigl throughout seql—application simulation log

Exercise: How would you model this application using only the consecutive
repetition [*m] operator? Please experiment to solidify your concepts of both the
throughout and the [*m] operators.

One more application, derived from PCI protocol.

Specification:

1. If Frame_ is high then Frame_ must be low the very next cycle (1 clock pulse)
and remain low until the next strictly subsequent cycle in which IRDY _ is high.

2. IRDY_ can be high only if Frame_ was high and that IRDY_ was not high in
any of the intervening cycles.

Solution:
1. Frame_to_IRDY: assert property (

Frame_ |=>!Frame_ throughout IRDY_ [->1]
);
2. IRDY_to_Frame_: assert property (
IRDY_ |=>!IRDY_ throughout Frame_ [->1]
);

6.9 Sigl throughout Seql 121

Please study the solution and you will see the symmetry between Frame_ and
IRDY_ functionality.

6.10 Seql within Seq2

Analogous to ‘throughout’, the ‘within’ operator sees if one sequence is contained
within or of the same length as another sequence. Note that the ‘throughout’
operator allowed only a signal or an expression on the LHS of the operator. ‘within’
operator allows a sequence on both the LHS and RHS of the operator.

The property ‘within’ ends when the larger of the two sequences end, as shown
in Fig. 6.30.

Let us understand ‘within’ operator with the application in Fig. 6.31.

‘Seq1 within Seq2’ matches along a finite interval of consecutive
clocks ticks provided that Seq2 matches along the interval and Seq1
matches along some sub-interval of consecutive clock ticks.

Note that both Seq1 and Seq2 can be sequences.

The start point of the match The end point of the match
of Seq1 must be no earlier of Seq1 must be no later
than the start point of the than the end point of the
match of Seq2 match of Seq2 X

Seq1

——q Seq2 p—

Fig. 6.30 Seql within seq2

122 6 Operators

6.10.1 Application: Seql within Seq2

In Fig. 6.31, we again tackle the nasty protocol of burst mode! When burst mode is
asserted, the master transmits (smtrx) must remain asserted for 9 clocks and the
Target Ack (tack) must remain asserted for 7 clocks and that the ‘tack’ sequence
occurs within the ‘smtrx’ sequence. This makes sense because from the protocol
point of view, the target responds only after the master starts the request and the
master completes the transaction after target is done.

In Fig. 6.31, the assertion of bMode ($fell(bMode)) implies that ‘stack’ is valid
‘within’ ‘smtrx’. Now, carefully see the implication property “@ (posedge clk)
$fell(bMode) | => stack within smtrx;”

LHS and RHS sequences start executing once the consequence fires. ‘stack’ will
evaluate to see if it’s condition remains true and ‘smtrx’ starts its own evaluation.
At the same time, the ‘within’ operator continually makes sure that ‘stack’ is

Specification:
« Assertion of burst Mode (bMode) requires that Master Tx and Target Ack cycles
follow the protocol below.

+ Master Trx: mtrx must assert the clock after bMode and remains asserted for 9
clocks.

« Target Ack: tack must remain asserted for 7 clocks within mtrx transaction.

sequence stack;
Sfell(tack) ##0 ltack[*7];
endsequence

sequence smtrx;
Sfell (mtrx) ##0 (!mtrx[*9]) ;
endsequence

property pwin;
@(posedge clk) Sfell(bMode) |=> stack within smtrx;

endproperty

Sfell(bMode) | | Sfel(mtrx) | | Sfellitack) || (imtrx[*9)); | | (ttack[*7)); |

¥ : |
bMode ! : 5
=> 4 iy } v ¢
LJ .' i &
mtrx 1 A3 4 5 6 718 9 |

tack 1

Fig. 6.31 Seql within seq2—application

6.10 Seql within Seq2 123

contained with ‘smtrx’. The annotations in Fig. 6.31 show how the property handles
different parts of the protocol. Simulation logs are presented in Fig. 6.32.

6.10.2 ‘within’ Operator PASS CASES

On the left hand side of Fig. 6.32, bMode is ‘1’ at time O (not shown) and at time
10, it goes to ‘0’. That satisfies $fell(bMode). After that the consequent starts
execution. Both ‘stack’ and ‘smtrx’ sequences start executing. As shown in the left
side simulation log, ‘mtrx’ falls and stays low for 9 clocks, as required. ‘tack’ falls
after ‘mtrx’ falls, stays low for 7 clocks and goes high the same time when ‘mtrx’
goes high (i.e. both sequences end at the same time). In other words, ‘tack’ is
contained within ‘mtrx’. This satisfies the ‘within’ operator requirement and the
property passes. Note that the operator ‘within’ can have either sequences start or
end at the same time. Similarly, the right side log shows that both sequences start at
the same time and ‘tack’ is contained within ‘mtrx’ and the property passes. Now
let us look at fail cases.

10 CLK #2 :: clk=1 bMode=0 mtrx=1 tack=1
20 CLK #3 :: clk=1 bMode=0 mtrx=0 tack=1
30 CLK #4 :: clk=1 bMode=0 mtrx=0 tack=1
40 CLK #5 :: clk=1 bMode=0 mtrx=0 tack=0
50 CLK #6 :: clk=1 bMode=0 mtrx=0 tack=0 mtrx and tack deassert at the same.
60 CLK #7 :: clk=1 bMode=0 mtrx=0 tack=0 That's OK, as long as tack did

70 CLK #8 :: clk=1 bMode=0 mtrx=0 tack=0 remain asserted for required clocks
80 CLK #9 :: clk=1 bMode=0 mtrx=0 tack=0 within mtrx.

90 CLK #10 :: clk=1 bMode=0 mtrx=0 tack=0
100 CLK #11 :: clk=1 bMode=0 mtrx=0 tack=0
110 property pwin PASS
110 CLK #12:: clk=1 bMode=1 mtrx=1 tack=1

140 CLK #15 :: clk=1 bMode=1 mtrx=1 tack=1
150 CLK #16:: clk=1 bMode=0 mtrx=1 tack=1
160 CLK #17:: clk=1 bMode=0 mtrx=0 tack=0
170 CLK #18 :: clk=1 bMode=0 mtrx=0 tack=0
180 CLK #19 :: clk=1 bMode=0 mtrx=0 tack=0
190 CLK #20 :: clk=1 bMode=0 mtrx=0 tack=0
200 CLK #21 :: clk=1 bMode=0 mtrx=0 tack=0
210 CLK #22 :: clk=1 bMode=0 mtrx=0 tack=0
220 CLK #23 :: clk=1 bMode=0 mtrx=0 tack=0
230 CLK #24 :: clk=1 bMode=0 mtrx=0 tack=1
240 CLK #25 :: clk=1 bMode=0 mtrx=0 tack=1
250 property pwin PASS
250 CLK #26 :: clk=1 bMode=1 mtrx=1 tack=1

|}mtr>< and tack assert at the same.
That's OK, as long as tack did remain
asserted for required clocks within
mtrx.

Fig. 6.32 within operator—simulation log example—PASS cases

124 6 Operators

6.10.3 ‘within’ Operator: FAIL CASES

The simulation logs show different cases of failure. In the top log of Fig. 6.33, ‘tack’
is indeed contained within ‘mtrx’, but ‘tack’ does not remain asserted for required 7
clocks and the property fails.

In the bottom log, again ‘tack’ is contained within ‘mtrx’ but this time around,
‘mtrx’ is asserted 1 clock too less.

The last log shows both ‘tack’ and ‘mtrx’ asserted for their required clks but
‘tack’ starts one clk before the falling edge of ‘mtrx’, thus violating the ‘within’
semantics. Sequences on either side of ‘within’ can start at the same time or end at
the same time but the sequence that is to be contained within the larger sequence
cannot start earlier or end later than the larger sequence.

Another important point to note from these simulation logs is that the property
ends when the larger of the two sequences end. In our case, the property does not
end as soon as there is a violation on ‘stack’. It waits for ‘smtrx’ to end to make a
judgment call on pass/fail of the property ‘pwin’.

6.11 Seql and Seq2

As the name suggests, ‘and’ operator expects both the LHS and RHS side of the
operator ‘and’ to evaluate to true. It does not matter which sequence ends first as
long as both sequences meet their requirements. The property ends when the longer
of the two sequences ends. But note that both the sequences must start at the same
time.

The ‘and’ operator is very useful, when you want to make sure that certain
concurrent operations in your design, start at the same time and that they both
complete/match satisfactorily. As an example, in the processor world, when a Read
is issued to L2 cache, L2 will start a tag match and issue a DRAM Read at the same
time, in anticipation that the tag may not match. If there is a match, it will abort the
DRAM Read. So, one sequence is to start tag compare while other is to start a
DRAM Read (ending in DRAM Read Complete or Abort). The DRAM Read
sequence is designed such that it will abort as soon as there is a tag match. This way
we have made sure that both sequences start at the same time and that both end. Let
us look at the following cases to clearly understand ‘and’ semantics. The figures are
self-explaining with annotation within the figures (Figs. 6.34, 6.35 and 6.36).

6.11 Seql and Seq2

10
20
30

R B RIR R T R R

I T [I

0 CLK #1 :: clk=1 bMode=1 mtrx=1 tack=1
CLK #2 ::
CLK #3 ::
CLK #4

_CLK #5 ::
CLK #6 ::
CLK #7 ::
CLK #8 ::

clk=1 bMode=1 mtrx=1 tack=1
clk=1 bMode=0 mtrx=1 tack=1
:: clk=1 bMode=0 mtrx=0 tack=1
clk=1 bMode=0 mtrx=0 tack=0

clk=1 bMode=0 mtrx=0 tack=0
clk=1 bMode=0 mtrx=0 tack=0

CLK #9 :: clk=1 bMode=0 mtrx=0 tack=0

CLK #10 :: clk=1 bMode=1 mtrx=0 tack=0

100 CLK #11 :: clk=1 bMode=1 mtrx=0 tack=1
110 CLK #12 :: clk=1 bMode=1 mtrx=0 tack=1

property pwin FAIL

clk=1 bMode=0 mtrx=0 tack=0 |

tack is asserted for 1
clock too less.

xR R E R R R R R RRR
&

CLK #29 ::
 CLK#30:: ¢
CLK #31 :: cl
CLK #32 ::
CLK #33 ::
CLK #34 ::
CLK #35 ::
CLK #36 ::
CLK #37 ::
CLK #38 ::
_CLK#39 ::

clk=1 bMode=1 mtrx=1 tack=1

“bMode=0 mtrx=1 tack=

CLK #40 :: clk=1 bMode=1 mtrx=1 tack=1
property pwin FAIL

bMode=1 mtrx=1 tack=1 _

clk=1 bMode=0 mtrx=0 tack=1 !
clk=1 bMode=0 mtrx=0 tack=0 :

clk=1 bMode=0 mtrx=0 tack=0 :
clk=1 bMode=0 mtrx=0 tack=0 :
clk=1 bMode=0 mtrx=0 tack=0 :

mtrx is asserted 1 clock
too less ...

clk=1 bMode=0 mtrx=0 tack=0 !
clk=1 bMode=1 mtrx=0 tack=0 :
clk=1 bMode=1 mtrx=0 tack=0 !

TR O W W W W ™R ™™™

140
150
160
170
180
190
200
210
220
230

250

tack is asserted for 7 clocks but
started a clock too early, so was

asserted 1 clock earlier 'within' the

mtrx sequence

CLK #15 ::
CLK #16 ::
CLK #17 ::
CLK #18 ::
CLK #19 ::
CLK #20 ::
CLK #21 ::
CLK #22 ::
CLK #23 ::
CLK #24 ::
CLK #25 ::
CLK #26 ::
property pwin FAIL

clk=1
clk=1
clk=1
clk=1
clk=1
clk=1
clk=1
clk=1
clk=1
clk=1
clk=1
clk=1

bMode=1 mtrx=1 tack=1
bMode=1 mtrx=1 tack=1
bMode=0 mtrx=1 tack=0
bMode=0 mtrx=0 tack=0
bMode=0 mtrx=0 tack=0
bMode=0 mtrx=0 tack=0
bMéde=0 mtrx=0 tack=0
bMode=0 mtrx=0 tack=0
bMode=0 mtrx=0 tack=0
bMode=1 mtrx=0 tack=1
bMode=1 mtrx=0 tack=1
bMode=1 mtrx=0 tack=1

Fig. 6.33 within operator—simulation log example—FAIL cases

125

126

6 Operators

‘Seq1 and Seq2’ match if

+ Both sequences match

« Both sequences start at the same time
« The end time of each sequence can be different.

The end time is the end time of either Seq1 or Seq2, whichever matches last.

Seq1 and Seq2 must start
at the same time.

A match occurs whenever
both match (at the end
point of the longer
sequence)

L L LML L L Lf

Fig. 6.34 Seql and seq2—basics

sequence ab;
a ##2 b;
endsequence

sequence cde;
c ##2 d ##2 e;
endsequence

sequence abcde;
ab and cde;
endsequence

property ands;
@(posedge clk) z |-> abcde;
endproperty

=l
)

property ‘ands’ PASS (at the end
point of the longer sequence ‘cde’).

N T O n T w
i)

Fig. 6.35 and operator—application

property ‘ands’ FAIL because ‘a’ and
‘c’ did not assert at the same time, so
‘ab and ‘cde’ sequences did not start
at the same time.

6.11 Seql and Seq2 127

6.11.1 Application: ‘and’ Operator

In Fig. 6.37, we ‘and’ two expressions in a property. In other words, as noted
before, an ‘and’ operator allows a signal, an expression or a sequence on both the
LHS and RHS of the operator. The simulation log is annotated with pass/fail
indication (Fig. 6.37).

6.12 Seql ‘or’ Seq2

‘Or’ of two sequences means that when either of the two sequences match its
requirements that the property will pass. Please refer to Fig. 6.38 and examples that
follow to get a better understanding.

The feature to note with ‘or’ is that as soon as either of the LHS or RHS
sequence meets its requirements that the property will end. This is in contrast to
‘and’ where only after the longest sequence ends that the property is evaluated.

Note also that if the shorter of the two sides fails, the sequence will continue to
look for a match on the longer sequence. Following examples make this clear.

sequence ab;
a ##[1:5] b; = T
endsequence b o
sequence cde;

c##2 d #¥2 e; c E.

endsequence
sequence abcde; @.

ab and cde; . Tor
endsequence
T
property ands;
®(posedge clk) z |-> abcde;
endproperty m I I J LI—]IL

property ‘ands’ PASS (at the end
a ‘m‘ point of the longer sequence ‘ab’).

N

property ‘ands’ FAIL because ‘b’ does
El not assert within 1:5 clocks after
‘a’. Property waits for 5 clocks after

m l ‘a’ and fails when it does not detect
—— | asserted ‘b’.

Fig. 6.36 and operator—application-II

128

property ands;

@(posedge clk) z |-> (a==b) and (c==d);

5 CLK #1 :: clk=1 z=0 a=0 b=0 c=0 d=0

endproperty

run -all
#

15
25
25
35
45
45
55
65
65
75
75

CLK # 2 :: clk=1 z=0 a=0 b=0 c=0 d=0
CLK # 3 :: clk=1 z=1 a=1 b=1 ¢=0 d=0
property ands PASS

CLK # 4 :: clk=1 z=0 a=0 b=0 c=1 d=1
CLK #5 :: clk=1 z=1 a=1 b=1 c=1 d=1
property ands PASS

CLK # 6 :: clk=1 z=0 a=0 b=1 c=
CLK # 7 :: clk=1 z=1 a=1 b=0 c=
property ands FAIL

- O

CLK # 8 :: clk=1 z=1 a=1 b=1 ¢=0 d=1
property ands FAIL

6 Operators

of the two.

Note that you can do an ‘and’ of sequences or expressions or a combination

Fig. 6.37 and of expressions

6.12.1 Application: or Operator

A simple property is presented in Fig. 6.39. Different cases of passing of the
property are shown. On the top right of the figure, both ‘ab’ and ‘cde’ sequences
start at the same time. Since this is an ‘or’, as soon as ‘ab’ completes, the property
completes and passes. In other words, the property does not wait for ‘cde’ to

complete anymore.

On the bottom left corner, we see that ‘ab’ sequence fails. However, since this is
an ‘or’ the property continues to look for ‘cde’ to be true. Well, ‘cde’ does turn out

to be true and the property passes (Figs. 6.40, 6.41 and 6.42).

6.12 Seql ‘or’ Seq2 129

‘Seq1 or Seq2’ match if

« operand ‘or’is used when at least one of the two operand sequences is
expected to match.

Seq1 —

Fig. 6.38 Seql or seq2—basics

sequence ab;
a##2 b;
endsequence

sequence cde;
C##2 d ##2 e;
endsequence

T a n o o
nl;:
L —1

sequence abcde;

ab or cde;
endsequence W
property ands; |]—l
@(posedge clk) z |-> abcde; LI N,
endproperty
Matches of both ‘ab’ and
z TZT ‘cde’ are recognized.
c = Property PASSes on the
. ‘-[:?T‘ S match of ‘ab’
b ~Jol,

)

d B — d ‘ab’ and ‘cde’ both start the same
L‘-\—-_.__.T;r clock as ‘z’ (as required by |->

€ operator). But ‘ab’ fails, so the
property continues to look for a
match on ‘cde’ and PASS when sees a
match on ‘cde’

Fig. 6.39 or operator—application

130

sequence ab;
a ##2 b;
endsequence

sequence cde;
c ##2 d ##2 e;
endsequence

sequence abcde;
ab or cde;
endsequence

property ands;
@(posedge clk) z |-> abcde;

endproperty

o o N

[=%

6 Operators

Here ‘a’ is asserted 1 clock later and ‘ab’ does satisfy it's requirement, but
‘a’ was not asserted the same time as ‘z’ (as required by overlap
implication). however, ‘c’ was indeed asserted when ‘z’ was asserted, the
property is looking for ‘cde’ to match. Since ‘cde’ does match, the property
passes at the end of ‘cde’ (and not at the end of ‘ab’).

sequence ab;
a ##2 b;
endsequence

sequence cde;
c ##2 d ##2 e;
endsequence

sequence abcde;
ab or cde;
endsequence

property ands;
@(posedge clk) z |-> abcde;
endproperty

~

o o

Here, ‘ab’ does not match; but property keeps looking to see if ‘cde’ matches.
But when ‘e’ does not follow 2 clocks after d, ‘cde’ also fails and the property
FAILs at that time.

Fig. 6.40 or operator—application II

6.13 Seql ‘intersect’ Seq2 131

sequence ab;
a ##[1:5] b;
endsequence

sequence cde;
Cc##2 d ##2 e;
endsequence

(Sl

5¢

o o
<}
w
&

5>

sequence abcde; =
ab or cde; JdT

endsequence Tel

propety ors pigigigigiigh

®(posedge clk) z |-> abcde;
endproperty property ‘ors’ FAIL because ‘c’ is not
asserted the same clock as ‘2’ (so ‘cde’
fails). ‘a’ is indeed asserted at ‘z’ and ‘ab’
eval does start but ‘b’ does not arrive in

a

F4 TzT 1:5 clocks. ‘ors’ FAIL at the end of ‘ab’
sequence because it’s the longer one...

a Tl ! :
b 1 2 3 4 5
c c

T Both ‘a’ and ‘c’ are asserted the
d dT same clock as ‘z’, so the eval of both
" j;r ‘ab’ and ‘cde’ sequences start. ‘cde’

matches first and the property ‘ors’
I—mm—le—L PASS - even though, ‘ab’ never
actually matches.

Fig. 6.41 or operator—application III

6.13 Seql ‘intersect’ Seq2

So, with ‘throughout’, ‘within’, ‘and’ and ‘or’ operators who needs another oper-
ator that also seem to verify that sequences match (Fig. 6.43)?

“Throughout’ or ‘within’ or ‘and’ or ‘or ‘does not make sure that both the LHS
and RHS sequences of the operator are exactly the same. They can be of the same
length but the operators do not care as long as the signal/expression or sequence
meets their requirements. That’s where ‘intersection’ comes into picture. It makes
sure that the two sequences indeed start at the same time and end at the same time
and satisfy their requirements. In other words, they intersect.

As you can see, the difference between ’and’ and ‘intersect’ is that ‘intersect’
requires both sequences to be of the same length and that they both start at the same
time and end at the same time, while ‘and’ can have the two sequences of different
lengths. I have shown that difference with timing diagrams further down the
chapter. But first, some simple examples to understand ‘intersect’ better.

132 6 Operators

property abcde;
@(posedge clk) z |-> (a==b) or (c==d);

endproperty
5 CLK #1 :: clk=1 z=0 a=0 b=0 c=0 d=0
15 CLK # 2 :: clk=1 z=1 a=1 b=1 ¢=0 d=0
15 property abcde PASS
25 CLK # 3 :: clk=1 z=0 a=0 b=0 c=1 d=1
35 CLK # 4 :: clk=1 z=1 a=1 b=0 c=0 d=1
35 property abcde FAIL
45 CLK #5 :: clk=1 z=0 a=0 b=1 c=0 d=1
55 CLK # 6 :: clk=1 z=1 a=1 b=0 c=1 d=1
55 property abcde PASS

65 CLK # 7 :: clk=1 z=1 a=1 b=1 c=0 d=1

— # 65 property abcde PASS
application .

Spec : If Write Burst Length is == 2; Write Length can only be 1or 3or 7 or 15

property BurstLengthRestrict;
@(posedge clk) disable iff (Irst)
((bLength==2) |->
(rwlen==1) or (rwlen==3) or (rwlen==7) or (rwlen==15)) ;
endproperty
aP: assert property(BurstLengthRestrict);

Fig. 6.42 or of expressions

6.14 Application: ‘intersect’ Operator

Figure 6.44 shows two cased of failure with the ‘intersect’ operator.

Property ‘isect’ says that if ‘z’ is sampled true at the posedge clk that sequence
‘abcde’ should be executed and hold true. I have broken down the required
sequence into two subsequences. Sequence ‘ab’ requires ‘a’ to be true at posedge
clk and then ‘b’ be true any time from 1 to 5 clks. Sequence ‘cde’ is a fixed
temporal domain sequence which requires c to be true at posedge clk, then d to be
true 2 clocks later and ‘e’ to be true 2 clocks after ‘d’.

Top Right timing diagram in Fig. 6.44 shows that both ‘ab’ and ‘cde’ meet their
requirements but the property fails because they both do not end at the same time
(even though they start at the same time). Similarly, the bottom left timing diagram
shows that both ‘cde’ and ‘ab’ meet their requirements but don’t end at the same
time and hence the assertion fails.

In Fig. 6.45 we show a PASS case of the same property (repeated here for the
sake of convenience). Both ‘ab’ and ‘cde’ meet their requirements and end at the
same time. Hence the assertion passes.

Now let’s look at the example in Fig. 6.46. This one does not use a range
operator in sequence ‘ab’ (as in the above example). It is obvious that without the

6.14 Application: ‘intersect’ Operator 133

‘Seq1 intersect Seq2’ match if

« Both sequences start at the same time

« Both sequences must match

« The lengths of the two matches of the operand sequences must be the same.

The end time is when both sequences match and end at the same time.

The main difference between ‘and and ‘intersect’ is the requirement on the
length of the two sequences. For ‘and’ each sequence can be of any length. For
‘intersect’ they must be of the same length.

Seq1 and Seq2 must START
at the same time.

>

\

Seq1 and Seq2 must END at
the same time.

- /

S 2s92

(R U I 2 I I

Fig. 6.43 Seql intersect seq2

range operator that the two sequences with fixed lengths and ending at different
times, the intersect property will never pass. Hence, it makes sense to use subse-
quences with a range while using an ‘intersect’ operator.

6.14.1 Application: intersect Operator (Interesting
Application)

OK, I admit this property could have been written much simpler, as (Fig. 6.47)
@ (posedge clk) Srose(Retry) |- > Retry ##[1:4] Srose(dataRead);

So, why are we making it complicated? I just want to highlight an interesting
way to use ‘intersect’.

When $rose(Retry) is true, the consequent executes. The consequent uses
‘intersect’ between “true[*1:4] and (Retry ##[1:$] $rose(dataRead). The LHS of
‘intersect’ says that it will be True for consecutive 4 cycles. The RHS says that
$rose(dataRead) should occur anytime (##[1:$]) after ‘Retry’ has been asserted.
Now, recall that ‘intersect’ requires both the LHS and RHS to be of ‘same’ length.

134 6 Operators

sequence ab;
a ##[1:5] b;
endsequence a T;r
sequence cde; b Tt_iT
c##2d ##2 e; . el
endsequence W
d
sequence abcde; e TE'T
ab intersect cde; TT
endsequence z z

property isect; mm_

®(posedge clk) z |-> abcde;

endproperty property ‘isect’ FAILs because

even though both ‘ab’ and ‘cde’
a ET do meet their requirements, they
b TDT don't end at the same time.

o)

e ‘I?I' property ‘isect’ FAILs because

Tz\[. even though both ‘ab’ and ‘cde’
to meet their requirements,

they don't end at the same

I I O I)

Fig. 6.44 Seql ‘intersect’ seq2—application

sequence ab;

a ##[1:5] b; TET

a
endsequence

b b
iy el ¢ —Ll =
endsequence d d

e e
sequence abcde; TT

ab intersect cde; z z

endsequence

property isect;

®(posedge clk) z |-> abcde;

endproperty property ‘isect’ PASSes because
both ‘ab’ and ‘cde’ meet their
requirements, and they both end
at the same time.

Fig. 6.45 Seql intersect seq2—application 11

6.14 Application: ‘intersect” Operator 135

sequence ab; - - =
a ##2 b; Will this property ever pass ??? I

endsequence

sequence cde;
cH##2 d ##2 e;
endsequence

‘a ##2 b’ matches; but ‘cde’ did not end on
the match of ‘a ##2 b’; so the property FAILs

sequence abcde;
ab intersect cde;
endsequence

#75 CLK # 8 :: clk=1 z=1; a=1 b=0 c=1 d=0 e=0
#85 CLK # 9 :: clk=1 z=0; a=0 b=0 c=0 d=0 e=0
#95 CLK # 10 :: clk=1 z=0; a=0 b=1 ¢=0 d=1 e=0
#95 property ab intersect cde FAIL

#105 CLK # 11 :: clk=1 z=0; a=0 b=0 c=0 d=0 e=0
#115 CLK # 12:: clk=1 z=0; a=0 b=0 ¢=0 d=0 e=1

property isectt;
®(posedge clk) z |-> abcde;
endproperty

This property will never pass
because both sequences are of fixed
length and end at different times.

<)

| Hence, it makes sense to use ‘intersect’ with subsequences with ‘ranges’. I

Fig. 6.46 intersect makes sense with subsequences with ranges

Specification:

See that dataRead is asserted within 4 clocks after a rising edge on Retry.

“define true 1’b1
property retryCheck;
@(posedge clk) Srose(Retry) |-> “true[*1:4] intersect
(Retry ##[1:$] Srose(dataRead)) ;

endproperty

If the subsequence “(Retry ##[1:5] Srose(dataRead))” does not match within 4
clocks, the sequence “ true[*1:4]” will end and the property will Fail.

Fig. 6.47 intersect operator: interesting application

If $rose(dataRead) does nor arrive in 4 cycles, the RHS will continue to execute
beyond 4 clocks. But since “true[*1:4] has now completed and since ‘intersect’
requires both sides to complete at the same time, the assertion will fail.

136 6 Operators

If $rose(dataRead) does occur within 4 clks, the property will PASS. Why? Let
us say $rose(dataRead) occurs on the third clock. That sequence will end and at the
same time “true[*1:4] will end as well, since it is “true anytime within the four
clocks. This satisfies the requirements of ‘intersect’ and the property passes.

So, what’s the practical use of such a property. Any time you want to contain a
large sequence to occur within a certain period, it is very easy to use the above
technique. A large sequence may have many time domains and temporal com-
plexities, but with the above method, you can simply superimpose “true construct
with ‘intersect’ to achieve the desired result.

One more example.

Specification:

See that once the CPU starts a cycle (for a certain instruction), that two READs are
issued in order and one WRITE is issued. Condition is that the WRITE must
complete at the end of the second READ. In other words, the WRITE completion
and the second READ completion must happen simultaneously.

Solution:

property checkRW;
@(posedge clk)

Srose(CPU_Start) |=>WRITE_complete [->1] intersect READ_complete [-> 2];
endproperty

This property will start consequent evaluation at $rose(CPU_Start) and check to
see that WRITE_complete occurs at least once and the READ_complete occurs at
least twice. And that the completion of the WRITE intersects (i.e. ends at the same
time) with the completion of second READ.

Continuing with above example, here’s another variation of it.

Specification:

Between CPU_Start and CPU_End commands, there must be at least 3 READs and
2 WRITEs.

Solution:

property checkNumRW,;
@(posedge clk)

Srose(CPU_start) |-> READ_complete[=3] intersect WRITE_complete[=2]
intersect Srose(CPU_End);

endproperty

The example exhibits multiple intersects. 3 READs must intersect with 2
WRITEs which intersect with the end of CPU command (CPU_End).

6.14 Application: ‘intersect” Operator

| ‘intersect’ I Seq1 and Seq2 must START

at the same time.

137

A match occurs only when
both sequences end at the
same time. If Seq2 ends at
a different time, there
won’t be a match

‘and’ I Seq1 and Seq2 must start

at the same time.

A match occurs whenever
the longer sequence ends.

Fig. 6.48 and versus intersect—what’s the difference

6.14.2 ‘intersect’ and ‘and’ :: What’s the Difference?

See Fig. 6.48.

6.15 first_match

first_match(Seq)

of Seq.

* matches only the first of possibly multiple matches of the eval

« useful for detecting the first occurrence in a delay range.

138 6 Operators

6.15.1 Application: first_match

In Fig. 6.49, property ‘fms’ says that on the first_match of ‘bcORef’, ‘a’ should
rise. As you notice, the sequence ‘bcORef’ has many matches because of the range
operator and an ‘or’. As soon as the first match of ‘bcORef” is noticed, the property
looks for $rose(a). In the top log, that is the case and the property passes. Note that
rest of the matches are now ignored. In the bottom log, $rose(a) does not occur and
the property fails—even though (and as noted in the log, of Fig. 6.49), (b &&c) is
indeed true 3 clocks after d==1 and even though the fact that this is an ‘or’, the
first_match looks for the very first match of either of the sequences in ‘bcORef” and
looks for $rose(a) right after that. So, as soon as (e &&f) is true, the property looks
for $rose(a)—which does not occur and the property fails.

Figure 6.50 further explains ‘first_match’. Annotations explain what’s going on.

Figure 6.51 application clarifies $first_match further. This is the classic PCI bus
protocol application. As the figure shows, the first time frame_ && irdy_ are high
(de-asserted) that the bus goes into IDLE state. Note that once frame_ and irdy_ are
de-asserted the bus would remain in IDLE state for a long time. But we want the
very first time that the bus transaction ends (indicated by frame_ && irdy_ high)
that the bus goes into IDLE state. We do not want to evaluate any further busldle
conditions.

So, what would happen if you removed ‘first_match’ from the above property?
The property will continue to look for state==busidle every clock that frame_ &&
irdy_ is high. Those will be totally redundant checks.

Note that in all the examples above, we have used first_match() in the ante-
cedent. Why? Because the consequent (RHS) of a property behaves exactly like
first_match by definition. The consequent is not evaluated once its first match is
found (without the use of first_match). But the antecedent will keep firing every
time there is a match of its expression.

Note the following ‘cover’ property. That further explains use of first_match.
Problem Statement:
abcProp: cover property (@ (posedge clk) a ##[1:4] b ##1 c);

Let us say, ‘a’ is true at time 10 and ‘b’ is true at time 20, thus meeting its
requirement and then ‘c’ is true at time 30. The entire sequence matches and will be
considered ‘covered’ (exercised). But if ‘b’ remains true at time 20, 30, 40 and ‘¢’
remains true at 30, 40, 50, the coverage report will show multiple ‘coverage’ of this
sequence. Something we do not really want. The following will solve the problem.
Solution:

abcProp: cover property (@ (posedge clk) first match (a ##[1:4] ##1 b ##1 c));
In this case, as soon as ‘a’ is true and ‘b’ is true the first time in ##[1:4] that °c’ is
evaluated to be true the next clock, the property is considered covered. No further
evaluation of this sequence will take place until ‘a’ is found asserted again.
In short, there can be many matches of a sequence but you want the evaluation to
stop on the very first match that you use ‘first_match’.

6.15 first_match

sequence bcORef;
((##[2:5] (b && c)) or
(##[2:5] (e &&)
)
endsequence

property fms;
first_match (bcORef) |=> Srose(a);
endproperty

baseP: assert property (®(posedge clk) d |-> fms) else gotoFail;
coverP: cover property (®(posedge clk) d |-> fms) gotoPass;

run -all

#5 CLK# 1 ::clk=1d=0 b=0c=0 e=0f=0 a=0
#15 CLK # 2 :: clk=1 d=1 b=0¢=0 e=01f=0 a=0
#25 CLK # 3 :: clk=1d=0 b=0c¢=0 e=0f=0 a=0
#35 CLK # 4 :: clk=1 d=0 b=1c=1 e=0f=0 a=0
#45 CLK # 5 :: clk=1d=0 b=1c¢=1 e=0f=0 a=1
45 property fms PASS

On t.‘-w-f;-rst match of {b && c), the property looks
for Srosefa) the next clock; finds it and PASSes

55 CLK # 6 :: clk=1 d=1 b=0c=0 e=0 f=0
65 CLK#7 ::clk=1d=0 b 1 f=1
75 CLK # 8 :: clk=1d=0 b=1c=1 e=0f=0
85 CLK#9::clk=1d=0 b

85 property fms PASS

TR R R

After d==1; (e && f) is found to be true but not in the
required [2:5] clock range; the property next finds (b
&& c) to be true and Srose(a) the next clock; so it
PASSes

95 CLK# 10 :: clk=1 d=1 b=0c¢=0 e=0f=0 a=0

105 CLK # 11 :: clk=1d=0 b=0c=0 e=0f=0 a=0
115 CLK #12 :: clk=1d=0 b=0c=0 e=1f=1 a=0
125 CLK #13 :: clk=1d=0 b=1c=1 e=0f=0 a=0
125 property fms FAIL

135 CLK # 14 :: clk=1d=0 b=0c=0 e=0f=0 a=1

(e && f) is true 2 clocks after d==1; but $rose(a) is not
true 1 clock later. So the property FAILs. Note that (b
&& c) is true 3 clocks after d==1 and Srose(a) true 1
clock later. But since (e && f) was true FIRST, that
Srose(a) had to be true the next clock.

Fig. 6.49 first_match—application

139

140

6 Operators

sequence bc;
endsequence
property fms;

endproperty

(##[0:5] (b && c), Sdisplay($stime,,,"FIRST MATCH b&#&c"));

=R

Helpful Hint::

You can attach a

first_match (bc) | => S$rose(a);

baseP: assert property (@(posedge clk) d |->fms) else gotoFail;
coverP: cover property (®(posedge clk) d |-> fms) gotoPass;

subroutine with an
expression ina
‘sequence’.

More on this later....

On the first match of (b && c), the

property looks for Srose(a) the next clock;

finds it and PASSes

5 CLK#1 ::
15 CLK#2::
25 CLK# 3 ::
35 CLK# 4::
CLK#5::
55 CLK # 6 ::
65 CLK#7::

TR R R
Y
(O

clk=1 d=0 b=0 c=0 a=0
clk=1 d=1 b=0 c=0 a=1
clk=1 d=0 b=0 c=1 a=0
clk=1 d=0 b=1 c=0 a=0
clk=1 d=0 b=0 c=1 a=1
clk=1 d=0 b=1 c=0 a=0

clk=1 d=0 b=1c=1 a=0
65 FIRST MATCH b&&c
75 CLK # 8 :: clk=1 d=0 b=1c=1 a=1
75 property ab PASS

(b && c) is true the same clock as d==1;
and since the implication is overlapping in
the assert statement, first match occurs
the same clock. Property FAILs because
Srose(a) is not true the next clock.

185 CLK # 19 :: clk=1 d=1 b=1 c=1 a=1
185 FIRST MATCH b&&c

195 CLK # 20 :: clk=1 d=0 b=1 c=1 a=0
195 property ab FAIL

I}] W W

Fig. 6.50 first_match

application

application

busldle);
endproperty

sequence busldleCheck;
(##[2:$] (frame_ && irdy_));
endsequence

property fms;
@(posedge clk) first_match (busldleCheck) |-> (state ==

baseP: assert property (fms) ;

The first time PCl bus goes IDLE, the state machine should
transition to busldle state.

Fig. 6.51 first_match

application

6.16 not <property expr> 141

6.16 not <property expr>

The ‘not’ operator seems very benign. However, it could be easily misinterpreted
because we are all wired to think positively—correct?

Figure 6.52 shows a use of ‘not’. Whenever ‘cde’ is true the property will fail
because of ‘not’ and pass if ‘cde’ is not true. Please refer to an example in Fig. 6.53
and then an application thereafter.

6.16.1 Application: not Operator

First, please refer to “vacuous pass’ in the Sect. 14.15 to understand the following
application.

Figure 6.53 shows a classic mistake engineers make when using ‘not’ operator.
Without the ‘not’ in this example if the antecedent “a ##1 b” does not match, the
property vacuously passes (vacuous pass is discussed in Sect. 14.15) but nothing
really happens. The property simply waits for the antecedent to be true so that the
consequent can start its execution. However, since the antecedent has a ‘not’ in
front of it, as soon as the property sees that the antecedent does not match it will fail

not (property_expr);

+ If the property_expr evaluatesto True, then the not (property_expr) evaluates to False.

+ If the property_expr evaluatesto False, then the not (property_expr) evaluates to True.

sequence cde;

c##1 d ##1 e;

endsequence
If ‘cde’ matches, the property fails. If ‘cde’

property nots; ’

@ ige clk) a |-> (not(cde)); does not match, the property passes

endproperty —

baseP: assert property (nots) else

gotoFail;

coverP: cover property (nots)

gotoPass;

sequence ‘cde’ fails; so property ‘nots’ sequence ‘cde’ passes; so property

PASSes ‘nots’ FAILs

#15 CLK # 2 :: clk=1 2=1 b=0 c=1 d=0 e=0 115 CLK # 12 :: clk=1 a=1 b=0 c=1 d=1 e=1

#25 CLK # 3 :: clk=1 a=0 b=0 c=0 d=0 e=0 125 CLK # 13 :: clk=1 a=0 b=0 c=0 d=1 e=0

25 property nots PASS 135 CLK # 14 :: clk=1 a=0 b=1 c¢=1 d=0 e=1

135 property ab not cde FAIL

Fig. 6.52 not operator—basics

http://dx.doi.org/10.1007/978-3-319-30539-4_14
http://dx.doi.org/10.1007/978-3-319-30539-4_14

142 6 Operators

Specification:
sequence “cd” should never follow sequence "ab"

property notab2cd;
not (a ##1 b |-> c ##1 d);

endproperty

So, what's wrong with this property ? ba’
Recall the “"vacuous pass” phenomenon!!

If "a ##1 b" does not take place, then the antecedent does not
match and the property passes vacuously.

BUT you are also using the 'not’ operator here...

So, the property will now FAIL whenever the ‘antecedent’ (i.e. a
##1 b) does not match. You don't want such false failures...

S .“"L
property notab2cd;
not (a ##1 b ##0 c ##1 d);

endproperty

Simply replace the overlapping operator |-> with ##0.
Now, you'll get the desired effect.

Fig. 6.53 not operator—application

(not of vacuous pass). That is indeed detrimental to your design results where many
false failures would pop up.

As shown at the bottom of the figure, simply remove the implication operator
“|->" and replace it with ##0, which has the same desired effect as the overlapping
operator. However, since there is no implication operator, there is no vacuous pass.

Application in Fig. 6.54 is a very useful application. The specification says that
once req is asserted (active high) that we must get an ack before getting another
request. Such a situation occurs in many designs.

Let us examine the assertion. Property strictlyOneAck says that when ‘req’ is
asserted (active high) that !ack[*0:$] remains low until $rose(req). If this matches
than the property fails (because of the ‘not’).

In other words, we are checking to see that ack remains low until the next req,
meaning if ack does go high before req arrives that the sequence (lack[*0:$] ##1
$rose(req)) will fail and the ‘not’ of it will make it pass. That is the correct behavior
since we do want an ack before the next req.

Or looking at it conversely (and as shown in the log), if ‘ack’ does remain low
until the next ‘req’ arrives that the sequence (!ack[*0:$] ##1 $rose(req)) will pass
and the ‘not’ of it will fail. This is correct also, because we do not want ack to
remain low until next req arrives. We want ‘ack’ to arrive before the next ‘req’
arrives.

6.16 not <property expr> 143

Specification:
Once 'req' is asserted that you must get an 'ack’ -before- the
next request.

property strictlyOneAck;
@(posedge clk) Srose(req) |=> (not (lack[*0:$] ##1 Srose(req)));
endproperty
strictlyOneAckP: assert property (strictlyOneAck)
else Sdisplay($stime,,,"\t Error: strictlyOneAck FAIL");

KERNEL: 0 clk=1 req=0 ack=0
KERNEL: 10000 clk=1 req=1 ack=0
KERNEL: 20000 clk=1 req=0 ack=0
KERNEL: 30000 clk=1reg=0 ack=0
KERNEL: 40000 clk=1 req=1 ack=0
KERNEL.: 40000 Error: strictlyOneAck FAIL
KERNEL: 50000 clk=1 req=0 ack=1

Fig. 6.54 not operator—application

May seem a bit strange and this property can be written many different ways but
this will give you a good understanding of how negative logic can be useful.
Exercise: What is a simpler way to write this property?

6.17 if (expression) property_exprl else property_expr2

‘if” ‘else’ constructs are similar to their counterpart in procedural languages and
obviously very useful. As the Fig. 6.55 annotates, we are making a decision in
consequent based on what happens in the antecedent. The property ‘if” states that
on ‘a’ being true, either ‘b’ or ‘c’ should occur at least once, any time one clock
after ‘a’. If this antecedent is true, the consequent executes. Consequent expects ‘d’
to be true if ‘b’ is true and ‘e’ to be true if ‘b’ is false or ‘c’ is true.

The simulation log in the bottom left of Fig. 6.55 shows that at time 15, ‘a==1"
and 1 clock later ‘b’ is true as required. Since ‘b’ is true, ‘d’ is true 1 clock later at
time 45. Everything works as required and the property passes. In the bottom right
simulation log, ‘a==1" at time 55 and ‘c’ goes true at 85. This would require ‘e’ to
be true 1 clock later, but it’s not and the property fails. This is just but one way to
use if-else and tie in antecedent with consequent.

Based on the analogy of the Fig. 6.55, a practical application is given in
Fig. 6.56.

144 6 Operators

if (expression) property_expri;
OR

if (expression) property_expr1 else property_expr2;

property ife;
g(::;;sedge ck)a# ® || o) [->1] |-> The property reads as follows::
(##1 d) @(posedge clk) ‘a’ followed by at least
else one ‘b’ OR ‘C,;
(##1 e);
endproperty implies (|->)
baseP: assert property (ife) else gotoFail; that if ‘b’ is true than 1 clock later ‘d’ is
coverP: cover property (ife) gotoPass; true else 1 clock later ‘e’ is true.
5 CLK # 1 :: clk=1 a=0 b=0 ¢=0 d=0 e=0 55 CLK #6 :: clk=1 a=1 b=0 c=0 d=0 e=0

15 CLK # 2 :: clk=1 a=1 b=0 c=0 d=0 e=0 65 CLK #7 :: clk=1 a=0 b=0 c=0 d=0 e=0
25 CLK # 3 :: clk=1 a=0 b=0 c=0 d=0 e=0 75 CLK #8 :: clk=1 a=0 b=0 c=0 d=0 e=0
35 CLK #4 :: clk=1 a=0 b=1 c=0 d=0 e=0 85 CLK #9 :: clk=1 a=0 b=0 c=1 d=0 e=0
45 CLK #5 :: clk=1 a=0 b=0 ¢c=0 d=1 e=0 95 CLK # 10 :: clk=1 a=0 b=0 c=0 d=0 e=0
45 property PASS 95 property FAIL

Fig. 6.55 if... else

Specification :
On a TagCompare,

if there is a TagHit, start mesiCompare
else start an allocRead

application I

property tagCheck;
@(posedge clk) (State == TagCompare) ##1 (TagHit | | TagMiss) |->

if (TagHit)
##1 (State == mesiCompare)

else
##1 (State == allocRead);

endproperty

baseP: assert property (tagCheck) else gotoFail;
coverP: cover property (tagCheck) gotoPass;

Fig. 6.56 if... else—application

6.17 if (expression) property_exprl else property_expr2 145

6.17.1 Application: if then else

This property is self-explaining. On a TagCompare, if it’s a hit, start MESI compare
else start a Read Allocation cycle.

6.18 ‘iff’ and ‘implies’

p iff q is an equivalence operator. This property is true iff properties ‘p’ and ‘q’ are
both true. When ‘p’ and ‘q’ are Boolean expressions ‘el’ and ‘e2’, then el iff e2 is
equivalent to el <-> e2.

p implies q is an implication property. So, what’s the difference between ‘im-
plies’ and the implication operator ‘|->’? In case of p |-> g, the evaluation of ‘q’
starts at the match of ‘p’. ‘p’ is a sequence and ‘q’ is a property. In case of p implies
g, both are properties and both ‘p’ and ‘q’ start evaluating at the same time and the
truth results are computed using the logical operator ‘implies’. There is no notion of
a match of antecedent to trigger the consequent.

For example,

X ##2 y |-> a ##2 b;
VS.
X ##2 y implies a ##2 b;

In the case of implication operator “|->”, evaluation of ‘a ##2 b’ starts at the match
of ‘x ##2 y’. In the case of ‘implies’, evaluation of both ‘x ##2 y’ and ‘a ##2 b’ start
at the same clock tick.

Chapter 7
System Functions and Tasks

Introduction: This chapter discusses in detail the System Functions and Tasks such
as $onehot, $onehot0, $isunknown, $countones and Abort System Functions and
Tasks such as $assertoff, $asserton, $assertkill. Note that the 2009/2012 LRM
introduces quite a few new abort functions such as $assertpasson, $assertfailon,
$assertvacuosoff, $assertcontrol, etc. These are described in their entirety in
Sects. 16.17 and 16.18.

7.1 $onehot, $onehot0

$onehot and $onehotO are quite self-explaining as shown in the Fig. 7.1. Note that if
the expression is ‘Z’ or ‘X’ that that $onehot or $onehot0 will fail. But will not fail
if there are ‘x’s and ‘7’s on the bus but—at least—one ‘1’. Read on.

A simple application is described in the Fig. 7.1. For any acknowledge of a bus
grant there can only be one bus grant. This is very easily accomplished by $onehot
as shown.

Note the results at time 25 and 35. There is an ‘X’ and a ‘z’ on the bus but since
there is only one bit ‘1°, it meets $onehot requirement and the property passes.
What if that’s not the result you want. You don’t want an ‘x’ or a ‘z’ when
searching for that one ‘1°.

The next section covers $isunknown, but here’s the solution to above dilemma.
Write the property as follows and it will guarantee that the bus is indeed in a known
state on—all-bits of the bus and that there is only one ‘1°.

property bgcheck;
(@posedge clk) bgack |-> !Sisunknown(busgnt) && Sonehot(busgnt);
endproperty

© Springer International Publishing Switzerland 2016 147
A.B. Mehta, SystemVerilog Assertions and Functional Coverage,
DOI 10.1007/978-3-319-30539-4_7

http://dx.doi.org/10.1007/978-3-319-30539-4_16
http://dx.doi.org/10.1007/978-3-319-30539-4_16

148 7 System Functions and Tasks

| $onehot (<expression>) Returns True if only one bit of the
expression is a ‘1’ (high).

property bgcheck; # run -all

@(posedge clk) bgack |-> 5 clk=1 bgack=1 busgnt=xxxxxxxx
Sonehot(busgnt); 5 property bgcheck FAIL
endproperty

15 clk=1 bgack=1 busgnt=00000001
15 property bgcheck PASS

25 clk=1 bgack=1 busgnt=x0000001
25 property bgcheck PASS

35 clk=1 bgack=1 busgnt=z0000001
35 property bgcheck PASS

45 clk=1 bgack=1 busgnt=11111111
45 property bgcheck FAIL

55 clk=1 bgack=1 busgnt=00000000
55 property bgcheck FAIL

xR TR R ®

Returns True if all bits of the expression
are ‘0’ OR only one bit of the expression
isa'1.

| Sonehot0 (<expression>)

Fig. 7.1 $onehot and $onehotO

Returns True if any bit of the expression

| Sisunknown (<expression>)
is ‘X'or ‘2’

property ucheck;
@(posedge clk) bgack |->

Sisunknown(busgnt); # run -all

endproperty 15 clk=1 bgack=1 busgnt=z0000001

15 property bgcheck PASS

25 clk=1 bgack=1 busgnt=x0000001
25 property bgcheck PASS

35 clk=1 bgack=1 busgnt=00000001
35 property bgcheck FAIL

45 clk=1 bgack=1 busgnt=z1111111
45 property bgcheck PASS

55 clk=1 bgack=1 busgnt=x1111111
55 property bgcheck PASS

65 clk=1 bgack=1 busgnt=11111111
65 property bgcheck FAIL

Tk B e R T 3 R R R R 3 R e ol W N

Fig. 7.2 $isunknown

7.2 S$isunknown 149

7.2 S$isunknown

$isunknown passes if the expression is unknown (‘X’ or ‘Z’). In other words, if the
expression is not unknown then the property will fail! Hence, if you do want a
failure on detection of an unknown (‘X or ‘Z’) then you have to negate the result of
Sisunknown. Simple but easy to miss.

Simulation log in Fig. 7.2 clarifies the concept. Property ‘ucheck’ states that if
‘bgack’ is true that the ‘busgnt’ is unknown. What? This is simply to show what
happens if you use $isunknown without a ‘not’.

Application $isunknown Figure 7.3 shows two simple applications. First is
identical to the one we just discussed, but with a ‘not’.

@ (posedge clk) bgack |-> not (Sisunknown(busgnt));

It says, if bgack is true (high) that busgnt must not be in unknown state. Again,
note that $isunknown returns a true on detection of an unknown. Therefore, if you
want a failure, you have to negate the result. This is shown in the simulation log

Practical Note: Since Sisunknown returns a true on detection of ‘z’ or ‘x’in an
expression, you may want to negate the results if you want a FAlLures on ‘x’ or ‘z’
detection.

property ucheck;
@(posedge clk) bgack |-> not
(Sisunknown(busgnt));

endproperty 15 clk=1 bgack=1 busgnt=z0000001

15 property bgcheck FAIL

25 clk=1 bgack=1 busgnt=x0000001
25 property bgcheck FAIL

35 clk=1 bgack=1 busgnt=00000001
35 property bgcheck PASS

45 clk=1 bgack=1 busgnt=z1111111
45 property bgcheck FAIL

55 clk=1 bgack=1 busgnt=x1111111
55 property bgcheck FAIL

65 clk=1 bgack=1 busgnt=11111111
65 property bgcheck PASS

It % % e 3 e G Fr % G e e e 3 I e A |

| Application I

Specification :: Once a Cycle Starts, the control signals should not go
Unknown.

property validControl;
@(posedge clk) disable iff (busldle || rst) adrStrobe |->
not (Sisunknown({cBE, cWrtAdr, cWrtData}));
endproperty

Fig. 7.3 S$isunknown application

150 7 System Functions and Tasks

above. The second application (bottom of Fig. 7.3), says that if ‘adrStrobe’ is High
that the control signals cannot be unknown.

7.3 $countones

$countones is very simple but powerful feature Note that the system function can be
used in a procedural block as well as in a concurrent property/assertion.

Figure 7.4 shows an application which states that if there is a bus grant
acknowledge (bgack) that there can be only 1 bus grant (busgnt) active on the bus.
Note that we are using $countones in a procedural block in this example. Note also
that if the entire ‘busgnt’ is unknown (‘X’) or tristate (‘Z’), the assertion will fail.
Figure 7.5 shows a very simple way to check for Gray Code compliancy.

| $countones (<expression>) | Counts Fhe number of ‘1's in a bit vector
expression.

An ‘x'or a ‘2’ is NOT counted towards the
number of 1's

application I
SPECIFICATION: If Bus Grant Ack (bgack) is asserted there can only be 1 Bus Gnt (busgnt).

always @(posedge clk)
begin
if (bgack)
begin
cones = Scountones(busgnt);
if {cones = 1 || cones = 0),
Sdisplay(Sstime,,,"\t\t FAIL:Number of 1's = %0d",cones);

else
Sdisplay(Sstime,,,"\t\t PASS:Number of 1's = %0d",cones);
end
end # 5 clk=1 bgack=1 busgnt=xxxxxxxx
5 FAIL:Number of 1's =0
15 clk=1 bgack=1 busgnt=00000001
15 PASS:Number of 1's =1
25 clk=1 bgack=1 busgnt=00000000
25 FAIL:Number of 1's =0
35 clk=1 bgack=1 busgnt=11111111
35 FAIL:Number of 1's =8
Fig. 7.4 $countones—basics and application
[application I
| SPECIFICATION: Check that a bus conforms to Gray Code Transition I

property CheckGrayCode (mySig);
@(posedge clk) (Scountones (Spast (mySig) ~ mySig) <= 1);
endproperty

CGrayProp: assert CheckGrayCode (PipePointer);

Fig. 7.5 Application $countones

7.3 $countones 151

Scountones returns the # of 1's in an expression. It can also be
used to determine 'true’'ness of the expressions.

In other words, it can be used for pass/fail indication.

If there is at least One '1’, it's a pass, else it's a fail

property bgcheck;
@(posedge clk) bgack |-> Scountones(busgnt);
endproperty

15 clk=1 bgack=1 busgnt=00000001
15 property bgcheck PASS

25 clk=1 bgack=1 busgnt=00000000
25 property bgcheck FAIL

35 clk=1 bgack=1 busgnt=000000x1
35 property bgcheck PASS

45 clk=1 bgack=1 busgnt=000000z1
45 property bgcheck PASS

So s A R A L

Fig. 7.6 $countones as boolean

7.3.1 $countones (as Boolean)

See Fig. 7.6.

7.4 $assertoff, $asserton, $assertkill

There are many situations when you want to have a global control over assertions
both at module and instance level. Recall that ‘disable iff’ provides you a local
control directly at the source of the assertion.

As noted in Fig. 7.7, $assertoff temporarily turns off execution of all assertions.
Note that if an assertion is under way when $assertoff is executed, the assertion
won’t be killed. You restart assertion execution on a subsequent invocation of
$asserton. $assertkill will kill all assertions in your design including already
executing assertion. And it won’t automatically restart when the next assertion starts

152 7 System Functions and Tasks

Sassertoff (level,[list of module, instance or assertion_identifier]); I

Sassertoff stops the checking of all specified assertions until a subsequent
Sasserton.

Note: If an assertion is already executing, it won’t be affected.

Sassertkill (level,[module/module instance or
assertion_identifier]);

Sassertkill shall abort execution of any currently executing specified assertions and
then stop the checking of all specified assertions until a subsequent Sasserton

Sasserton (level,[module/module instance or
assertion_identifier]);

Sasserton shall re-enable execution of all specified assertions.
By default assertions are ON with an ‘assert’ statement

‘level’ = 0 turns on/off assertions at ALL levels under the given module/instance
=m (m>0) turns on/off assertions only at ‘m’ levels of hierarchy below the

specified module / instance level.

assertion_identifier :: Name of the property or the label used with ‘assert’

module, instance name :: Can be relative or full hierarchical

Fig. 7.7 $assertoff, $asserton, $assertkill—basics

Example shows that assertions are turned OFF during ‘reset_'; are turned ON after reset_
and are Killed OFF when a machine check exception is detected.

module assertion_control{input
reset_,machinecheck_exception);
initial begin
@(negedge reset_) Sassertkill(0,top.pcim,top.axim) | ‘instance’ level I
@(posedge reset_) Sasserton(0,top.pcim,top.axim);

/I @(negedge reset_) Sassertkill(0,top); ‘module’ level I
/] @(posedge reset_) Sasserton(0,top);

@(machinecheck_exception)
Sassertoff(0,top.datamodule.array);

@(machinecheck_ISR_return)
Sasserton(0,top.datamodule.array);
endmodule

medule top();

pcimaster pcim(.*);

aximaster axim(.*);

assertion_control ac{reset_, mchinecheck_exception);
endmodule

Fig. 7.8 Application assertion control

7.4 $assertoff, $asserton, $assertkill 153

executing. It will restart executing only on the subsequent $asserton. $asserton is the
default. It is required to restart assertions after a $assertoff or $assertkill.

Figure 7.8 shows a typical application deployed by projects to suppress
execution of assertions during reset or during an exception, if so required.

Chapter 8
Multiple Clocks

Introduction: This chapter describes multiply-clocked sequences and properties and
clock flow semantics (how does clock flow from one clock domain to another). It
also discusses all the operators that work on multiply-clocked properties such as
‘and’, ‘or’, ‘not’ etc. It also describes nuances of Legal and Illegal conditions of
such properties and sequences.

8.1 Multiply-Clocked Sequences and Properties

There are hardly any designs anymore that work only on a single clock domain. So
far we have seen properties that work off of a single clock. But what if you need to
check for a temporal domain condition that crosses clock boundaries. The so-called
CDC (clock domain crossing) issues can be addressed by multiple clock assertions.

We’ll thoroughly examine how a property/sequence crosses clock boundary.
What’s the relationship between these 2 (or more) clocks? How are sampling edges
evaluated once you cross the clock domain. Note that in a singly clocked system,
the sampling edge is always one—that is mostly the clock posedge or negedge.
Since there are two (or more) clocks in multiply clocked system, we need to
understand how the sampling edges cross boundary from one clock to another.
I think it is best to fully understand the fundamentals before jumping into
applications.

Note that there are differences in the way a ‘sequence’ behaves for multiple
clocks and the way a property behaves. Read on ...

Figure 8.1 shows a simple multiply clocked sequence. It says at (posedge clkO)
A is true and the very next nearest strictly subsequent (posedge clkl) B is true. Note
the emphasis on ‘very next’. That is because when you join two subsequences each
of which runs on a different clock, you can transition only from one clock domain’s
sampling edge to the next clock domain’s very next available sampling edge. This
will be clearer when we dive a bit more into detail.

© Springer International Publishing Switzerland 2016 155
A.B. Mehta, SystemVerilog Assertions and Functional Coverage,
DOI 10.1007/978-3-319-30539-4_8

156 8 Multiple Clocks

Multiply-clocked sequences are built by concatenating singly-clocked subsequences using the
delay concatenation operators ##1 and ##0.

sequence mclocks;
@(posedge clk0) A ##1 ®(posedge clk1) B;

A
1 ¥

endsequence

“##1 @(posedge clk1)” here does -not- necessarily mean a delay of one clock.

It means on a match of ‘A’ @(posedge clk0), the ##1 moves the time to the nearest strictly
subsequent posedge clk1 and the sequence ends at that point with a match of B.

B

e EEEEE
N
- T
clki i f | I |

Fig. 8.1 Multiply clocked sequences—basics

Jumping ahead a bit, this “very next nearest strictly subsequent edge’ semantic is
why we use ##1 to cross clock boundaries. So, can you use ##2 when crossing
clock boundaries? Keep this question in mind as you learn basics of multiply
clocked sequences and properties.

8.1.1 Multiply Clocked Sequences

The timing diagram in Fig. 8.1 shows that at (posedge clk0), ‘A’ is true. The clocks
are out of phase, so the very next clock edge of clkl is half a clock delayed from
posedge clkO. At the posedge of clkl, ‘B’ is sampled true and the sequence
‘mclocks’ passes. The point here is that ‘##1 @ (posedge clkl)’ waited only for Y4
clkl and not a full clkl because the very next nearest strictly subsequent posedge
clkl arrived within %2 clock period. The next clock can come in any time after
clockO and that will be the ‘very next’ edge taken as the sampling edge for that
subsequence.

Important Note:

The LRM 2005 requirement of ##l1 between two subsequences have been
removed from 1800-2009/2012. In the 2009/2012 standard you can have both ##1
and ##0 between two subsequences with different clocks. More on this coming up.

8.1 Multiply-Clocked Sequences and Properties 157

I/ASSUME clk0 is identical to clk1

sequence mclocks;
@(posedge clk0) A ##1 @(posedge clk1) B;
//(Or @(posedge clk0) A ##1 @(posedge clk0) B;)
endsequence

If both clocks are identical then the clocking event does not change after the ##1 delay and
the above sequence is equivalent to

@(posedge clk0) A ##1 B;

B

A

clko L L LT
clk1 o L LT L

Fig. 8.2 Multiply clocked sequences—identical clocks

So, what happens if clkO and clkl are in phase? See Fig. 8.2. The explanation is
in the figure itself. As self-evident, the sequence will wait for one full clk before
sampling ‘B’. But more importantly note that, if the clocks on the clock crossing
boundary are identical (in phase and same period), then the following is true.

@ (posedge clk0) A ##1 @ (posedge clkl) B; is identical to
@ (posedge clk0) A ##1 @ (posedge clk0) B; is identical to
@ (posedge clk0) A ##1 B;

8.1.2 Multiply Clocked Sequences—Legal and Illegal
Sequences

Before we move onto multiply clocked properties and based on our observations,
let us quickly examine the legal and illegal cases of multiply clocked sequences.
Again, these cases apply only to sequences and not to properties.

As LRM puts it, Multiclocked sequences are built by concatenating singly clocked
subsequences using the single-delay concatenation operator ##1 or the zero-delay
concatenation operator ##0. The single delay indicated by ##1 is understood to be
from the end point of the first sequence, which occurs at a tick of the first clock, to the
nearest strictly subsequent tick of the second clock, where the second sequence
begins. The zero delay indicated by ##0 is understood to be from the end point of the

158 8 Multiple Clocks

J/ILLEGAL This is illegal because you can’t have any other
sequence mclocks; clock delay except ##1 or ##0 between the two

3(905“!0 Ell‘?) A ff} @(posedge i'ﬂ) B; subsequences if the clocks are different on each side.
endsequence
//LEGAL This is legal because the clocks are SAME on both
sequence mclocks; sides and this is equivalent to

@(posedge clk0) A ##2 @(posedge clk0) B;

" senoans ses sequence mclocks;
endsequence @(posedge clk0) A #42 B;

endsequence
/NILLEGAL
@(posedge clk0) A ##2 ®(posedge clk1) B; ALL ILEEGAL |

@(posedge clk0) A intersect @(posedge clk1) B;
@(posedge clk0) A and @(posedge clk1) B;
@(posedge clk0) A or @(posedge clk1) B;
@(posedge clk0) A not (@(posedge clk1) B);

In short, for a “sequence”, the only operator allowed between two subsequences with
different clocks is ##1 or ##0

Fig. 8.3 Multiply clocked sequences—illegal conditions

first sequence, which occurs at a tick of the first clock, to the nearest possibly over-
lapping tick of the second clock, where the second sequence begins.

Bottom line is that you can only have ##1 or ##0 between two subsequences
with different clocks. If the clocks are the same on both sides, then there is not such
restriction. Figure 8.3 makes it clear.

8.1.3 Multiply Clocked Properties— ‘and’ Operator

Note again that here we are discussing multiply clocked ‘and’ in a property and not
a sequence. As mentioned above, such an ‘and’ in a sequence is illegal.

The concept of ‘and’ of two singly clocked properties have been discussed
before. But what if the clocks in the properties are different? The important thing to
note here is the concept of the very next strictly subsequent edge. In Fig. 8.4, at the
posedge of clkO0, ‘a’ is sampled high. That triggers the consequent that is an ‘and’ of
‘b’ and ‘c’. Note that ‘b’ is expected to be true at the very next edge of clkl (after
the posedge of clk0). In other words, even though there is a non-overlapping
operator in the property, we don'’t quite wait for 1 clock. We simply wait for the
very next posedge of clkl to check for ‘b’ to be true. The same story applies to ‘c’.
When both ‘b’ and ‘c’ occur as shown in Fig. 8.4, the property will pass. As with

8.1 Multiply-Clocked Sequences and Properties 159

property mclocks;
@(posedge clk1) b and @(posedge clk2) c;
endproperty

baseP: assert property (@(posedge clk0) a |=> mclocks) else
gotoFail;
coverP: cover property (@(posedge clk0) a |=> mclocks) gotoPass;

‘B'and ‘C’ must be true at immediate
next posedge of clk1 and clk2 respectively
after the posedge of clkO

¢ L m

8 IB]
, T

wo (LML
aa | L5 L] |

ci2 | |]

Fig. 8.4 Multiply clocked properties—*‘and’ operator between two different clocks

the singly clocked ‘and’, the assertion passes at the match of the longest (so to say)
sequence ‘c’.

Figure 8.5 shows another scenario to solidify the concept of ‘and’ for multiply
clocked assertions. The ‘and’ is between two subsequences which use the same
clock. The behavior is obvious but interesting. This is because “@ (posedge clkl) b
and @ (posedge clkl) c” acts essentially like “@ (posedge clkl) b and c”. Hence,
both the ‘b’ and the ‘c’ must now occur at the very next posedge of clkl.

In short, as we saw before, “@ (posedge clkl) b and @ (posedge clkl) c” is
identical to “@ (posedge clkl) b and c”.

8.1.4 Multiply Clocked Properties—‘or’ Operator

All the rules of ‘and’ apply to ‘or’—except as in singly clocked properties—when
either of the sequence (i.e. either the LHS or RHS of the operator) passes that the
assertion will pass. The concept of ‘the very next strictly subsequent clock edge’ is
the same as with ‘and’.

Please refer to Fig. 8.6 for better understanding of ‘or’ of multiply clocked
properties. The property passes when either @ (posedge clkl) b or @ (posedge
clk2) ¢ occurs. In other words, if @ (posedge clk2) c occurs before @ (posedge
clkl) b, the property will pass at @ (posedge clk2) c.

160 8 Multiple Clocks

property mclocks;
4—”"—-—--__ ‘ »
~ ShA) b Bnd S(pos clk?)/c;’—more that ‘and’ is between identical clocks l

endproperty

baseP: assert property (@(posedge clk0) a | => mclocks) else gotoFail;
coverP: cover property (@(posedge clk0) a | => mclocks) gotoPass;

Note that since property mclocks now uses the
same clock (clk1), both ‘B’ and ‘C’ needs to be
High at the very next posedge of clk1.

C

Ter
B 8T
A —
clk1 [—| T—‘

Fig. 8.5 Multiply clocked properties—*and’ operator between same clocks

property mclocks; (| ‘or’ is between two different clocks. I
@(posedge clk1) b or @(posedge clkl) c;
endproperty

baseP: assert property (@(posedge clk0) a | => mclocks) else gotoFail;
coverP: cover property (@(posedge clk0) a | => mclocks) gotoPass;

‘B’ for ‘C’) must be true at immediate next
posedge of clk1 (or clk2) respectively and after

the posedge of clk0

¢ . »

: -l

A — B

clkl I | T | | |

clk2 | | [|

Fig. 8.6 Multiply clocked properties—‘or’ operator

8.1 Multiply-Clocked Sequences and Properties 161

8.1.5 Multiply Clocked Properties— ‘not’—Operator

‘not’ is an interesting operator when it comes to multiply clocked assertions.

The assertion in Fig. 8.7 works as follows. At posedge clk0, ‘a’ is true which
triggers the consequent mclocks. The property mclocks specifies that @ posedge
clkl ‘b’ needs to be true and ‘c’ should—not—be true @ posedge clk2. The timing
diagram shows that ‘a’ is true at posedge clk0. At the subsequent edge of clkl ‘b’
should be true and since it is indeed true, the property moves along. Because of an
‘and’ it looks for ‘c’ to be not true at the very next subsequent posedge clk2. Well,
‘c’ is indeed true but since we have a ‘not’ in front of @ (posedge clk2), the
property will fail. The concept of ‘not’ is the same as that of singly clocked
properties except for the edge of the clock when it is evaluated. The simulation log
clarifies the concept.

8.1.6 Multiply Clocked Properties—Clock Resolution

These rules are important to follow when you are dealing with multiply clocked
properties (Fig. 8.8).

Figures 8.9 and 8.10 illustrate other important concepts. How do clocks apply
(or flow) from one part of property to another? The description in the figure
explains how this works.

property mclocks;
@(posedge clk1) b and (not (®@(posedge clk2) c));
endproperty

baseP: assert property (®@(posedge clk0) a | => mclocks) else gotoFail;
coverP: cover property (®(posedge clk0) a | => mclocks) gotoPass;

: # run -all
¢ - T T I A, .
: i #1 0 clko,1,2=111 a=0 b=0 c=0 '
B T8 #' 10 clk0,1,2=101 a=1 b=0 c=0 |
| : # | 16 clk0,1,2=010 a=1 b=1¢=0 i
A — &= 4 20 clk0,1,2=110 a=1 b=1¢=0 '
WL # ! 24 clko,1,2=101 a=1b=1c=1 |
clk0 : # 24 property mclocks FAIL 1

ae [Lf LT 1
a2 []

30 clk0,1,2=101 a=1 b=1 c=0
32 clk0,1,2=111 a=1 b=1 ¢=0
clk0,1,2=100 a=0 b=0 c=0
48 clk0,1,2=011 a=1 b=1 c=0
48 property mclocks PASS

S
+a
(=]

Fig. 8.7 Multiply clocked properties—not’ operator

162

8 Multiple Clocks

property mclocks;
@(posedge clk0) A |->
if (D) @(posedge clk0) B;
endproperty

This is equivalent to
@(posedge clk0) A |-> if (D) B;

property mclocks;
@(posedge clk0) A |->
if (D) @(posedge clk0) B
else ®(posedge clk0) (-B);
endproperty

This is equivalent to
@(posedge clk0) A |-= if (D) B else (~B) ;

property mclocks;
@(posedge clk0) A |->
if (D) @(posedge clk0) B
##1 ®(posedge clk1) Z
else ®@(posedge clk0) (-B);
endproperty

This is equivalent to
@(posedge clk0) A |-> if (D) B ##1 @(posedge clk1) Z
else (~B) ;

Fig. 8.8 Multiply clocked properties—clock resolution

property mclocks;

c

endproperty

L3 k] &
@(posedge clk0) A ##1 (b ##1 @(posedge clk1) C) |=> D;

/lenclosing parenthesis”.

Here clk0 flows through ‘A’ then in the parenthesis to ‘B’ but not through ‘C’;
But once out of the parenthesis, it then flows through ‘D’

//LRM: System Verilog 3. 1a, Page 244:

//"The scope of a clocking event flows into parenthesized sub expressions and, if

/1 the sub expression is a sequence, also flows left-to-right across the parenthesized
//sub expression. However, the scope of a clocking event does not flow out of

sequence s1;
@(posedge clk0) b ##1 c;
endsequence

sequence s2;
@(posedge clk1) d ##1 e;
endsequence

sequence s;

endsequence

~
@(posegge clk) a ##1 s1 ##1 s2 ##1 f;

Fig. 8.9 Multiply clocked properties—clock resolution—II

8.1 Multiply-Clocked Sequences and Properties 163

property mclocks;
@(posedge clk1) @(posedge clk0) a |-> @(posedge clk0) b:‘//\

endproperty \

This is equivalent to

property mclocks;
@(posedge clk0) a |-> @(posedge clk0) b;
endproperty

Because, @(posedge clk1) is overridden immediately by @(posedge clk0)

Fig. 8.10 Multiply clocked properties—clock resolution—III

1. In Fig. 8.9, property ‘mclocks’, (posedge clk0) applies to ‘A’ as well as ‘B’ since
‘B’ does not have an explicit clock. So far so good.

2. Then (posedge clkl) applies to ‘C’. That also makes sense.

3. But which clock is applied to ‘D’ in the consequent since ‘D’ does not have its
own explicit clock?

4. According to the 1800-2005 LRM, ‘D’ will inherit (posedge clkO) and not the
(posedge clk1). This is not quite intuitive. But LRM makes it very clear that “the
scope of a clocking event does not flow out of enclosing parenthesis”.

5. In our case, (‘B’ ##1 @ (posedge clkl) C) is in parenthesis. So once we are out
of that parenthesis, (posedge clkl) does not flow forward but (posedge clkO)
moves forward to the consequent ‘D’.

Similarly, the bottom example in Fig. 8.9 shows how the clock would ‘flow’
when we have multiple subsequences each with its own clock. Note that there are
three different clocks in this sequence. (posedge clk) flows through ‘a’. Then ‘s1’
and ‘s2’ use their own clocks as sampling edges (clocks) for their sequences. But
once out of ‘s2’, (posedge clk) is applied to ‘f>—not—the (posedge clkl) of ‘s2’.

Figure 8.10 shows another interesting property. What will happen if you need to
transition from one clock to another before checking for an expression/sequence?
Well, you cannot quite do that. In Fig. 8.10, we show that (posedge clkl) is
immediately followed by (posedge clk0). This does not mean that the property will
wait first for (posedge clk1) then for (posedge clkO) and then apply (posedge clkO)
to ‘a’. It will simply override (posedge clk1) with (posedge clk0) and directly apply
(posedge clk0) to ‘a’. This is shown in the bottom of the figure in the equivalent

property.

164 8 Multiple Clocks

8.1.7 Multiply Clocked Properties—Legal and Illegal
Conditions

Figure 8.11 is a recap as an easy reference to legal and illegal semantics of multiply

clocked properties.

The top most example shows that it’s ok to have different clocks between the
antecedent and the consequent, as long as the implication operator is

non-overlapping.

Multiply clocked properties can be formed in a number of ways... and allow boolean
operators ‘and’, or’ and ‘not’

Ioc?,/ "‘,‘ Basic property shows the use of non-overlapping
@(posedge clk0) A | => @(posedge clk1) B; operator “ |=> “ that allows specification of
different clocks on each side of the operator.

property mc Thrs ussz go be illegal in LRM 2005. But in 2012, it is
@(posedge clk0) A | -> Q[posedge clk1} B; legal and reads as follows.

endproperty +at each match of A the nearest posedge clk1 is

awaited. If it happens immediately

sthen B is checked without delay, otherwise its check
starts at the next posedge clk1 as in case with |=>.

property mclocks; 3 LEGAL :: Because same clock is used on
@(posedge clk0) A"|- 5 @(posedge clkO) both sides of the overlapping

B; implication operator.

endproperty

This is equivalent to

@(posedge clk0) A |-> B;

property mclocks; » ¢ N LEGAL :: Because “ |-> ##1 “

@(posedge clk0) A |-> ##1 @(posedge clk1) B; is equivalent to “ |=> “ non-
endproperty overlapping operator which
can have different clocks on

each side.

Fig. 8.11 Multiply clocked properties—legal and illegal conditions

8.1 Multiply-Clocked Sequences and Properties 165

In 2012 LRM, the multiclocked overlapping implication |-> has the following
meaning: at the end of the antecedent the nearest tick of the consequent clock is
awaited. If the consequent clock happens at the end of the antecedent, the conse-
quent starts checking immediately. Otherwise, the meaning of the multiclocked
overlapping implication is the same as the meaning of the multiclock nonover-
lapping implication.

Also as shown in the third example, overlapping operator is perfectly legal if the
clocks on both sides of the overlapping operator are the same.

And the last example is quite intuitive in that “=" is equivalent to “|-> ##1”.
Hence, you can have different clocks on each side of overlapping operator.

Note also that as in the overlapping operator, the semantics of multiclocked
if/if-else operators is similar to the semantics of the overlapping implication.

For example,

@(posedge clk0) if (b) @(posedge clkl) c else @(posedge clk2) d

has the following meaning: the condition b is checked at posedge clkO. If b is true,
then ‘c’ is checked at the nearest, possibly overlapping posedge clkl, else ‘d’ is
checked at the nearest possibly overlapping posedge clk2.

To summarize: clock flow provides that in a multiclocked sequence or property,
the scope of a clocking event flows left to right across linear operators (e.g.,
repetition, concatenation, negation, implication, followed-by, and the nexttime,
always, eventually operators) and distributes to the operands of branching operators
(e.g., conjunction, disjunction, intersection, if—else, and the until operators) until it
is replaced by a new clocking event.

Here’s an interesting example of how clock flows and how that makes a sig-
nificant difference. What’s the difference between the following two properties?

Al: assert property (
@(posedge clkl1) Frame_ |-> nexttime @(posedge clk2) IRDY);
A2: assert property (

@(posedge clkl) Frame_ |-> ##1 @(posedge clk2) IRDY;

In case of Al, (posedge clkl) flows through to ‘nexttime’, which means
‘nexttime’ causes advance of (posedge clkl) to the strictly nearest (posedge clkl),
after which it looks for a subsequent nearest (posedge clk2) to evaluate IRDY. So,
the clock flow is (posedge clkl) to (posedge clkl) to (posedge clk2).

In case of A2, ##1 is the synchronizer, so after Frame_ is found high at (posedge
clk1), the clock flows to (posedge clk2) which means IRDY will be evaluated at the
very next strictly nearest (posedge clk2). Here the clock flow is (posedge clkl) to
(posedge clk2).

Exercise: Can you figure out clock flow in the following property?

A3: assert property (
@(posedge clkl) Frame_ |-> @(posedge clk2) nexttime IRDY;

166 8 Multiple Clocks

Here is one more example to nail down the concepts of ‘clock flow’ in multiply
clocked properties.

al: assert property
(@(posedge clk) en && Srose(req) |=> gnt);
a2: assert property

(@(posedge clk) en && Srose(req, @(posedge sysclk)) |=> gnt);

Both assertions al and a2 read: “whenever en is high and ‘req’ rises, at the next
cycle ‘gnt’ must be asserted.” In both assertions, the rise of ‘req’ occurs if and only
if the sampled value of ‘req’ at the current posedge of clk is 1°’bl and the sampled
value of ‘req’ at a prior point is different from 1°bl. So where do the assertions
differ? The assertions differ in the specification of the prior point. In al the prior
point is the preceding posedge of clk, while in a2 the prior point is the most recent
prior posedge of sysclk.

As another example,

always_ff @(posedge clk1)

Dreg <= Srose(Xreg, @(posedge sysclk));

Here, Dreg is updated in each time step in which posedge clkl occurs, using the
value returned from the $rose sampled value function in that time step. $rose
compares the sampled value of the LSB of Xreg from the current time step (one in
which posedge clkl occurs) with the sampled value of the LSB of Xreg in the
strictly prior time step in which posedge sysclk occurs.

Chapter 9
Local Variables

This chapter is entirely devoted to the dynamic Local Variables. Without the
dynamic multi-threaded semantics and features of Local Variables, many of the
assertions would be impossible to write. The chapter also lays out how operators
such as ‘or’ and ‘and’ affect the workings of parallel threads forked off by Local
Variables based assertions. There are plenty of examples and applications to help
you weed through the semantics.

Local variable is a feature you are likely to use very often. They can be used both
in a sequence and a property. They are called local because they are indeed local to
a sequence and are not visible or available to other sequences or properties. Of
course, there is a solution to this restriction, which we will study further into the
section. Figure 9.1 points out key elements of a local var. The most important and
useful aspect of a local variable is that it allows multi-threaded application and
creates a new copy of the local variable with every instance of the sequence in
which it is used. User does not need to worry about creating copies of local
variables with each invocation of the sequence. Above application says that
whenever ‘RdWr’ is sampled high at a posedge clk, that ‘rData’ is compared with
‘wData’ 5 clocks later. The example shows how to accomplish this specification.
Local variable ‘int local_data’ stores the ‘rData’ at posedge of clk and then com-
pares it with wData 5 clocks later. Note that ‘RdWr’ can be sampled true at every
posedge clk. Sequence ‘data_check’ will enter every clock; create a new copy of
local_data and create a new pipelined thread that will check for local_data+’hff with
‘wData’ 5 clocks later.

Note that the sampled value of a local variable is defined as the current value.

Moving along, Fig. 9.2 shows other semantics of local variables. Pay close
attention to the rule that local variable must be ‘attached’ to an expression while
comparison cannot be attached to an expression!!

As shown in Fig. 9.2, a local variable must be attached to an expression when
you store a value into it. But when you compare the value stored in a local variable,
it must not be attached to an expression.

© Springer International Publishing Switzerland 2016 167
A.B. Mehta, SystemVerilog Assertions and Functional Coverage,
DOI 10.1007/978-3-319-30539-4_9

168 9 Local Variables

Local variables are dynamic variables.

They are dynamically created when needed within an instance of a sequence
and removed when the end of the sequence is reached.

‘local vars’ is one of the most powerful features of SVA language because it
allows checking of complex pipelined behavior of the design.

sequence rdC;
##[1:5] rdDone;
endsequence

1
a new copy of local_data is created
with every instance of dataCheck

sequence dataCheck;
int local_data;

(rdC,local_data=rData) ##5 (wData == (local_data+hff));
endsequence

baseP: assert property (@(posedge clk) RAWr |-> dataCheck) else gotoFail;

sequence datraCheck reads as ::

on matching ‘rdC’, store rData in the local var called local_data
and ##5 clocks later wData must match local_data+'hff

Note that dataCheck is triggered when ‘RdWr’ is true. ‘RdWr’ can be true every
clock and dataCheck would be triggered every clock. For every trigger of
dataCheck, a new copy of local_data is created which will store rData and
check for wData 5 clocks later.

Fig. 9.1 Local variables—basics

In the topmost example, “local_data=rData) is attached to the sequence ‘rdC’. In
other words, assignment “local_data=rData” will take place only on completion of
sequence ‘rdC’. Continuing with this story of storing a value into a local variable, what if
you don’t have anything to attach to the local variable when you are storing a value? Use
1’b1 (always true) as an expression. That will mean whenever you enter a sequence, that
the expression is always true and you should store the value in the local variable. Simple!

Note that local variables do not have default initial values. A local variable
without an initialization assignment will be unassigned at the beginning of the
evaluation attempt. An initialization assignment to a local variable uses the sampled
value of its expression in the time slot in which the evaluation attempt begins. The
expression of an initialization assignment to a given local variable may refer to a
previously declared local variable. In this case the previously declared local variable
must itself have an initialization assignment, and the initial value assigned to the

9 Local Variables

169

sequence rdC;

##[1:5] b;
endsequence

You may initialize sequence dataCheck;

a local variable int local_data = 0;

local var must be
attached to an endsequence

(rdC,local_data=rData) ##5 (wData == (local_data+hff));

‘expression’

Comparison should
NOT be attached
to an expression

sequence dataCheck;

This will eive an int local_data;
ERROR 3 — (local_data=rData) ##5

(rdg , wData == (local_data+'hff));

endsequence
This will give an
ERROR
e Detach ‘rdC’ and check for wData
g‘,.?..'r" after ##0. That will solve it...
sequence dataCheck;
This will WORK. int local_data;
Attach an “always |— (1'b1, local_data=rData) ##5 (rdC)##0 (wData ==
true” expression. (local_data+'hff));
endsequence

Fig. 9.2 Local variables—do’s and don’ts

previously declared local variable will be used in the evaluation of the expression

assigned to the given local variable. More on this later.

Ok, so what if you want to compare a value on an expression being true? As
shown in Fig. 9.2, you can indeed accomplish this by ‘detaching’ the expression as
shown. The resulting sequence (the last sequence in the Fig. 9.2) will read as “on
entering dataCheck, store rData into local_data, wait for 5 clocks and then if ‘b’ (of

sequence rdC) is true within 5 clocks, compare wData with stored local_data +
Figure 9.3 points out a couple of other important features. First, there

Ghﬁ”
is no

restriction in using a local variable in either a sequence or a property. In addition,
you cannot declare a local variable as a formal and pass as an actual from another

sequence/property. That makes sense, else why would it be called ‘local’?

170 9 Local Variables

local variables can be used in ‘sequence’ or ‘property’]

sequence dataCheck;
int local_data;

(rdC,local_data=rData) ##1 (wData == (local_data+hff));
endsequence

property dataCheck;
int local_data;

(rdC,local_data=rData) |=> (wData == (local_data+hff));
endproperty

)

4]]

ERROR:: local var Ldata cannot be
declared here because it is used as a
formal argument.

sequence L_seq(Ldata);
int Ldata; «

(rdC, Ldata=rData);
endsequence

Fig. 9.3 Local variables—and formal argument

In Fig. 9.4, we see that a local variable in a sequence is not visible to the
sequence that instantiates it. The solution is quite straightforward. Instead of poking
at the local variable directly, simply pass an argument to the sequence that contains
the local variable. When the sequence L_seq updates the argument locally, it will be
visible to the calling sequence (H_seq). Note that Ldata is not declared as a local
variable in sequence L_seq (else that would be an error as we discussed). L_seq
simply updates a formal and passes it to the calling sequence, where the actual is
declared as a local variable. This is shown in the bottom of Fig. 9.4.

Figures 9.5, 9.6, 9.7, 9.8 and 9.9 shows finer rules. Keep them as reference
when you embark upon complex assertions. Annotation in the figure explains the
situation(s).

Figure 9.6 describes the semantics governing local variables when they are used
in the OR of two sequences. The local variable must be assigned in both the
sequences of an OR. However, what if you cannot really do that? There are a couple
of solutions presented in Fig. 9.7.

Figure 9.9 describes semantics that govern an ‘and’ of two sequences. In contrast
to an ‘or’ of two sequences, a local variable must not be attached to both sequences
involved in an ‘and’. The first solution is identical to that for an ‘or’. Assign the
local variable outside of the ‘and’ of the two sequences as shown in the figure.
Alternatively, simply assign to the local variable in only 1 of two sequences, which
is an obvious solution. Figure 9.9 shows solution #2 in addition to the solution #1 in
Fig. 9.8.

9 Local Variables

local variables declared in one sequence are -not- visible in the sequence
where it gets instantiated.

sequence L_seq;
int lv_data;
(rdC, lv_data=rData);

171

d
endsequence //ERROR :: lv_data is not

sequence H_seq; { visible in H_seq

c ##1 L_seq ##1 (wData == lv_data);

endsequence
o

Solution | NOTE:: local var
sequence L_seq(Ldata);---------" Ldata is NOT
T (FdC, Ldata=rData)y; ——————— [| declared here
endsequence because it is used as

a formal argument.

sequence H_seq; ~pnges

int Hdata; < = NOTE:: local var
¢ ##1 L_seq(Hdata) ##1 (wData == Hdata); Hdata is declared
endsequence here.

Fig. 9.4 Local variables—visibility

//ERROR :: Composite sequence;
local var is assigned only in one
t operand sequence.

sequence s1;
int x;

(

** Error: test_localvar_or.sv(14):

s v) Local variable x referenced in
: {:r#m b,x=data]i expression where it does not flow
i (d##e)

)

##1 (datal==x+1)
)i
endsequence

Two parallel threads are created here by ‘or’ but local var ‘x’ is
assigned in only one of them. So (as LRM puts it) the data does not flow
out of the composite sequence. In plain English, since both threads are
evaluated in parallel, one of the threads may not have still assigned the
value to ‘x’ and it may complete which will complete the composite
sequence and you may end up comparing against unassigned ‘x’.

Fig. 9.5 Local variable composite sequence with an ‘OR’

9 Local Variables

Solution1 :: assign local data -before- the composite
sequence

sequence s1;

int x;
(
(1'b1,x=data) ##0 local_data is assigned before

##1 (datal==x+1)
);
endsequence

(the composite sequence ‘or’
afEip)y

Icnr j f— /
(d#e)

)

Fig. 9.6 Local variables—for an ‘OR’ assign local data—before- the composite sequence

Solution2 :: assign local data in both operand sequences of ‘or’ J

sequence s1;
int x;
(

(

(a ##1 b,x=data)

local var ‘x’ assigned in both
o > subsequences of ‘or’
(d ##1 e,x=data)

)

##1 (datal==x)
)
endsequence

Another example :: assign local data in both operand s

equences of ‘or’ I

sequence s1;
int x;

(

(

(a ##1 b,x=data) local

v > subsequences of ‘or’ with
(d ##1 e,x=data2) different data...

var ‘x’assigned in both

)

##1 (datal==x)
)
endsequence

Fig. 9.7 Local variables—assign local data in both operand sequences of ‘OR’

9 Local Variables

173

sequence s1;
int x;

(

##1 (datal==x+1)
)i
endsequence

(
{'(a ##1 b,x=data)’

//ERROR :: Composite sequence;
local var is assigned in BOTH

operand sequence.

Local variable x referenced in
expression where it does not flow

** Error: test_localvar_or.sv(14):

Solution1 :: assign local data -before- the composite sequence

sequence s1;
int x;
((1'b1,x=data) ##0

local_data is assigned before

the comlposite sequence ‘and’

##1 (datal==x+1));
endsequence

Fig. 9.8 Local variables—*and’ of composite sequences

sequences of ‘and’

Solution2 :: assign local data in ONLY ONE operand

sequence s1;
int x;
(

(

and
(d ##1 e)
)
##1 (datal==x+1)
);

endsequence

(a ##1 b,x=data) +———— |local var ‘x’assigned only in

one subsequence of ‘and’

Fig. 9.9 Local variables—finer nuances III

174

sequence rdC;
##[1:5] b;
endsequence

sequence dSeq;
##2 d #H2 e,
endsequence

sequence dataCheck;
int ldata1, ldata2; {

(dSeq, ldata2 = (ldata2+'hff)) ##0 <

//(wData == |data1, wretryData==Idata2);

(wData == |data1) ##0
(wretryData == ldata2);

endsequence

baseP: assert property (@(posedge clk) a |=>
dataCheck) else gotoFail;

9 Local Variables

_| assign to multiple

local var

(rdC, Idatal=rData, 'Idata2=retryData) ##5 |

_...—1 increment local var I

subexpression!

ERROR: Cannot check
multiple in the same

.| a separate subexpression

SOLUTION: Check for each in

with ##0

Fig. 9.10 Local variables—further nuances IV

Figure 9.10 describes further rules governing local variables. First, you can
assign to multiple local variables, attached to a single expression. Second, you can
also manipulate the assigned local data in the same sequence (as is the case for
ldata2). But as before, there are differences in assigning to (storing to) local

property checkDelay;
int lv;

endproperty

(readReq, lv=dataDelay) |=> ##[0:lv] readData;

):‘1

ILLEGAL : cannot use a local variable in a delay range.

In general, a delay range cannot have variable delays. They must be
constants (or formals that get assigned with a ‘constant’ actual).
Delay range operators need to be known at elaboration time. Hence

they cannot be variables.

Fig. 9.11 Local variable cannot be used in delay range

9 Local Variables 175

ILLEGAL :: Cannot use a 'formal’ to size a local variable in a property.
Size can only be a constant (or parameter) because it needs to be
known at elaboration time.

<)

'f)roperty pri (int dSize, csig, enb=1'b1, logic pa, logic pb);

logic [dSize:0] Ldata;
@(csig, Ldata=data) enb |-> pa ##2 pb;

endproperty

reqGnt: assert property (pri('d31, posedge clk, cStart, req, gnt));

Fig. 9.12 Local variables—cannot use a ‘formal’ to size a local variable

variables and comparing their stored value. You cannot compare multiple local
variable values in a single expression in a sequence as is the case in the line
“// (wData == ldatal, wretryData==!ldata2)”. This is illegal. Of course, there is
always a solution as shown in the figure. Simply separate comparison of multiple
values in two subsequences with no delay between the two. The ‘Solution’ anno-
tation in the figure makes this clear.

Figure 9.11 shows that you cannot use a local variable in the range operator. But,
it’s not the local variables fault. It’s the fact that we cannot have variable delay in
either #m or #[m:n] delay operators. From software point of view, the delay range
operators need to be known at elaboration time. Hence they cannot be ‘variables’.
From hardware point of view, this is a bummer!

Figure 9.12 shows that you cannot use a ‘formal’ to size a local variable. Again,
‘size’ of a vector (bus) declaration can only be a constant. Again, there is a software
reason and a hardware reason.

Following points out further cases of legal/illegal declarations of local variables.

property illegal_legal_declarations;

data; // ILLEGAL. ‘data’ needs an explicit data type.

logic data = 1’b0; // LEGAL. Note that unlike SystemVerilog variables, local vari-
ables have no default initial value. Also, the assignment can be any expression and
need not be a constant value

byte data []; // ILLEGAL — dynamic array type not allowed.

endproperty

Also, you can have multiple local data variable declarations as noted above. And
a second data variable can have dependency on the first data variable. But the first
data variable must have an initial value assigned. Here’s an example.

176 9 Local Variables

property legal_data_dependency;
logic data = data_in, data_add = data + 16’h FF;

endproperty
property illegal_data_dependency;

logic data, data_add = data + 16'FF;

endproperty

sequence illegal_declarations (

output logic a, // illegal: ‘local’ is not specified with direction.

local inout logic b, ¢ = 1’b0, // default actual argument illegal for inout

local d = expr, // illegal: type must be specified explicitly

local event e, // illegal: ‘event’ type is not allowed

local logic f = g // illegal: ‘g’ cannot refer to the local variable declared below. It
must be resolved upward from this declaration

);

Note one more example of how you can declare a local variable used for ini-
tialization directly as an input. First, the sequence with the traditional way of
initializing BSize.

ONE:

sequence burst (logic FRAME_, BurstSize = 4)
logic abc = 1’b0, BSize = BurstSize;
@(posedge clk)

FRAME_ |=>....
endsequence

Since, the BurstSize is solely used for sizing the local variable BSize, you can
parameterize it as follows, where now the actual will determine the BSize.

TWO:

sequence burst (logic FRAME_, local input logic BSize)
logic abc = 1'b0;

@(posedge clk)

FRAME_ |=> ...
endsequence

The keyword ‘local’ specifies that BSize is an ‘argument local variable’ (as LRM
puts it) while the direction ‘input’ specifies that BSize will receive its initial value
from the actual argument expression.

9

Local Variables 177

Note that in the first sequence the BSize initialization takes place @(posedge

clk). Here the declaration assignments are performed when the evaluation reaches
alignment with @(posedge clk) and at that point the value in the formal argument
BurstSize is assigned to BSize as its initial value. In the second sequence, the
initialization of BSize takes place when the actual changes its value assigns to
formal BSize. Similarly, an ‘output’ ‘argument local variable’ outputs its value to
the actual argument whenever the sequence matches. For ‘inout’, it obviously acts
both as ‘input’ and ‘output’. So, the rules specified for ‘input’ applies when it acts
as an ‘input’ and the rules for ‘output’ apply when it acts as an ‘output’.

Note that ‘argument local variables’ precede the ‘body local variables’. If a

sequence or property has both ‘input’ ‘argument local variables’ and the ‘body local
variables’ with declaration assignments, the initialization assignment of the ‘input’
‘argument local variables’ are performed first.

On the similar line of thought, the following rules also apply. See the ‘sequence’

below.

sequence local_lO (

local byte a;

local inout byte b;
local input logic c;
local output byte d;

);

endsequence

Following rules apply to the local variables of sequence local_IO.

. If a direction is specified for an argument, then the keyword ‘local’ must also be

specified.

If the keyword ‘local’ is specified, then the data type must also be explicitly
specified.

If the keyword ‘local’ is specified without a direction, then a default direction of
‘input’ is understood.

An ‘input’ argument local variable may be declared with an optional default
actual argument which can be any expression.

An ‘output’ or ‘inout’ argument local variable cannot be declared with a default
actual argument because the actual argument must specify the local variable
that will receive the ‘output’ value.

An ‘argument local variable’ can also be declared as ‘output’ or ‘inout’, but
only in a sequence declaration. An ‘argument local variable’ of a property must
be of direction ‘input’.

An ‘output’ ‘argument local variable’ outputs its value to the actual argument
whenever the sequence matches.

178 9 Local Variables

8. An ‘input’ receives its initial value from the actual argument.

9. For ‘inout’, it obviously acts both as ‘input’ and ‘output’ and the rules for
‘input’ apply when it is of direction ‘input’ and the rules for ‘output’ apply
when it is of direction ‘output’.

10. As stated above, it is important to understand that the ‘sampled’ values are used
for all terms that are not ‘local’ while the ‘current’ values are used for terms that
are ‘local’.

11. The actual argument bound to an ‘argument local variable’ of direction ‘output’
or ‘inout’ must itself be a local variable.

A special note on the use of method ‘.triggered’ with a local variable. A local
variable passed into an instance of a named sequence to which sequence method
(.triggered) is applied, is not allowed. For example, the following is illegal.

sequence check_trdy (cycle_begin);
cycle_begin ##2 irdy ##2 trdy;

endsequence
property illegal_use_of local_with_triggerd;

bit local_var;
(1’b1, local_var = CB) |-> check_trdy(local_var).triggered;

endproperty

Some more rules on referencing local variables.
A local variable can be referenced in expressions such as:

Array indices

Arguments of task and function calls
Arguments of sequence and property instances
Expressions assigned to local variables
Boolean expressions

Bit-select and part-select expressions

However, a local variable cannot be referenced in following:

Clocking event expressions (even though LRM is ambiguous on this)
The reset expression of a ‘disable iff’

e The abort condition of a reset operator (accept_on, sync_accept_on and the
reject forms of these expressions. See Sect. 16.16)

e Expressions that are compile time constants. E.g. [*n], [n], ##n, [=n], etc.
and the constant expressions of ranged forms of these operators

e An argument expression to a sampled value function ($rose, $fell, $past, etc.)

http://dx.doi.org/10.1007/978-3-319-30539-4_9_16

9.1 Application: Local Variables 179

9.1 Application: Local Variables

The application in Fig. 9.13 is broken down as follows.
(Srose(read),locallD=readID

On Srose(read), the readID is stored in the locallD.
not ((Srose(read) && readID==locallD) [*1:5])

Then we check to see if another read ($rose(read)) occurs and it’s readID is the
same as the one we stored for the previous Read in locallD. We continue to check
this consecutively until

##0 (Srose(readAck) && readAcklD == locallD) occurs.

If the consecutive check does result in a match, that would mean that we did get
another $rose(read) with the same readID with which the previous read was issued.
That’s a violation of the specs. This is why we take a ‘not’ of this expression to see
that it turns false on a match and the property would end.

If the consecutive check does not result in a match until ##0 ($rose(readAck)
&& readAckID == locallD) arrives then we indeed got a readAck with the same
readAckID with which the original read was issued. The property will then pass.

In short we have proven that once a ‘read’ has been issued that another ‘read’
from the same readID cannot be re-issued until a ‘readAck’ with the same ID has
returned.

Example: This example shows a simple way to track time. Here, on falling edge of
Frame_, rising edge of IRDY cannot arrive for at least MinTime.

Once a ‘read’ has been issued, another ‘read’ for the same readID
cannot be re-issued until a readAck with the same ID has returned.

property checkRead;
int locallD;
(Srose(read),locallD = readID) |=>
not ((Srose(read) && readID==locallD) [*1:5]) ##0
(Srose(readAck) && readAcklD == locallD);
endproperty

baseP: assert property (checkRead) else
Sdisplay(Sstime,,,"\tproperty FAIL");

Fig. 9.13 Local variables—application

180 9 Local Variables

Solution:

property FrametolRDY (integer minTime);
integer localBaseTime;

@(posedge clk) (Sfall(Frame_), localBaseTime = Stime)
|=>
Srose(IRDY) && Stime >= localBaseTime + minTIme);

endproperty
measureTime: assert property (FrametolRDY (.minTIme (MINIMUM_TIME)));

Local variable examples are scattered throughout the book. Some are found in
following sections.

Section Clock delay range operator: ##[m:n]: multiple threads 6.2.1
Section FIFO TESTBENCH AND ASSERTIONS 14.1.2

Section Calling subroutines 14.3

Section Building a counter 14.7

Section Clock Delay: What if you want variable clock delay? 14.8.

http://dx.doi.org/10.1007/978-3-319-30539-4_6
http://dx.doi.org/10.1007/978-3-319-30539-4_14
http://dx.doi.org/10.1007/978-3-319-30539-4_14
http://dx.doi.org/10.1007/978-3-319-30539-4_14
http://dx.doi.org/10.1007/978-3-319-30539-4_14

Chapter 10
Recursive Property

Recursive property simply states that a condition holds. The property calls itself
with a correct non-overlapping implication operator and correct antecedent and
consequent relation. As shown in Fig. 10.1 (top “property rc1”), if ‘ra’ is true and at
next clock rcl(ra) is true that ‘rc1’ should recur on itself. Note that the antecedent in
‘rcl’ is 1’bl, meaning the antecedent is always true. This allows for an easy and
correct ‘and’ of an expression with an antecedent/consequent implication. Note also
that you must use a non-overlapping operator in a recursive property.

The topmost example in Fig. 10.1 (baseP: assert property (@ (posedge clk) $fell
(rst_) |-> rcl(bStrap)) else gotoFail;) specifies that when $fell(rst_) is true, the
consequent rcl(bStrap) is invoked. ‘rcl’ property takes ‘bStrap’ as the input and
does an ‘and’ of the input with (1°b1 |=> rc1(ra)). This means that the implication
1’bl is always true and that rc1(ra) will be called every posedge of clk to recur on
itself. The property will continue to go into loop on itself until bStrap is sampled O.
In that case the ‘and’ will fail and so would the property. In other words, we have
checked to see that after $fell(rst_), the ‘bStrap’ (bootstrap signal) does not get
de-asserted (i.e. go Low).

Note: If you use an overlapping operator, the property will recur on itself in zero
time, essentially trapping the simulator in a zero delay loop causing simulation to
hang.

But, what good does the property in Fig. 10.1 really do. It will check for a signal
to hold forever. How do you apply such a model to real world? What you really
need to check is that a condition holds until another condition remains true. If that
happens, the property passes, else it fails. Now that is more practical. Let us
understand this with the following example.

© Springer International Publishing Switzerland 2016 181
A.B. Mehta, SystemVerilog Assertions and Functional Coverage,
DOI 10.1007/978-3-319-30539-4_10

182 10 Recursive Property

A named property is recursive if it’s declaration involves an instantiation of itself
(LRM:SV3.1a : P236)

non-overlapping implication Recursive call to named
operator property ‘rc1’

property rci(ra); /
raand (1’b1 |=> rc1(r$))

endproperty

baseP: assert property (@(posedge clk) $fell(rst_) |-> rc1(bStrap))
else gotoFail;

property “rc1” states that signal ‘ra’
must hold at every cycles.

overlapping implication What happens if we change the non-
operator overlapping operator to overlapping
/ operator as shown here ??

property rc1(ra);/
ra and (1’b1 |-> rci(ra)) ;

endproperty

baseP: assert property (®@(posedge clk) $fell(rst_) |-> rc1(bStrap))
else gotoFail;

)You’ll have a ‘0’ delay infinite loop...
recursion will be stuck in time checking
‘ra’ over and over again at the same

cycle.... (run time Error)

Fig. 10.1 Recursive property—basics

10.1 Application: Recursive Property

As shown in Fig. 10.2, with an ‘or’ condition, the recursive property becomes
useful. The specification says that we need to make sure that ‘intr’ is held true until
‘iack’ is asserted. Let’s see how that works. property rcl says that either iack is true
or intr is true that the property calls rcl recursively. Now, if the ‘intr’ falls (goes
low) before an iack, the (intr and (‘true |=> rcl(intr, iack))) will fail because this
is an AND with ‘intr’. On the other hand, if iack arrives first, the “iack or ...”
condition will pass because this is an OR. In other words, we are recursive on ‘intr’
to see that it holds true until iack arrives.

10.1 Application: Recursive Property 183

Specification:
intr must hold true until iack is asserted.

property rci(intr,iack);
iack or (intr and (true |=> rc1(intr,iack)));
Endproperty

run -all

75 CLK # 8 :: clk=1 intr=1 iack=0
85 CLK# 9 :: clk=1 intr=1 iack=0

95 CLK # 10 :: clk=1 intr=1 iack=0 — e srainy
105 CLK # 11 :: clk=1 intr=0 iack=0 intr’ did not hold until ‘fack

was true.

5 CLK# 1 :: clk=1 intr=1 iack=0

15 CLK # 2 :: clk=1 intr=1 iack=0

25 CLK# 3 :: clk=1intr=1 iack=0

35 CLK # 4 :: clk=1 intr=1 iack=0

45 CLK # 5 :: clk=1 intr=1 iack=0

55 CLK # 6 :: clk=1 intr=0 iack=1

55 property PASS - ‘intr’ held until ‘jack’ was
65 CLK# 7 :: clk=1 intr=1 iack=0 true
#

#

#

#

#

105 property FAIL

Fig. 10.2 Recursive property—application

At time 55 in the simulation log, iack=1 and intr=0. Since intr was equal to ‘1’
the previous clock, it held itself until iack arrived. Hence, the property passes. On
the other hand, at time 105, intr goes ‘0’ before iack goes 1. In other words, intr did
not hold itself until iack arrived and the property fails. Figure 10.3 shows another
interesting application.

10.2 Application: Recursive Property

The specification of this property reads as “on detection of missAlloc, see that
wdataH is held until readC is true”. In Fig. 10.3, property ‘s_rcl’ checks to see that
‘misAlloc’ is true, upon which it triggers ‘rcl’. Property rcl in turn holds true (i.e.
recursive) until readC is true. If ‘wdataH’ goes low before readC goes high, the
property (and hence the entire assertion) will fail (because wdataH is the LHS of an
‘and’ condition in sequence rcl). If readC arrives before wdataH, the ‘or’ condition
in the sequence rcl passes and hence the assertion will pass.

This way we have made sure that wdataH is held until readC completes. If this is
not quite apparent at first, please refer to Fig. 10.2 to understand how ‘property rcl’
works.

184 10 Recursive Property

Specification:
For a Dcache write miss (missDCache), start miss allocation (allocStart)
the next clock and issue a readMem the clock after.

Check to see that above matches and on a match make sure that Write
Data is Held (wDataH asserted) until mem read completes (readC)

sequence missAlloc; ——
missDCache ##1 allocStart ##1 readMem; }
endsequence

sequence rci(ra,rb);
rb or (ra and ("true |=>rc1(ra,rb)));
endsequence

property s_rc1(genericSeq,sra,srb);
(genericSeq,tdisp) |=> rc1(sra,srb);
endproperty

baseP: assert property (@(posedge clk) s_rc1(missAlloc,wdataH,readC))
else gotoFail;

task tdisp;
Sdisplay(Sstime,,,“Dcache Miss to Alloc to Read Mem sequence matches");
endtask

“

sequence missAlloc” is passed as an actual parameter to “property s_rc1”. Only on a
match of the missAlloc the check for Write Data Hold until Read complete is triggered.

Fig. 10.3 Recursive property—application

Note that we are passing the entire sequence ‘missAlloc’ as an actual to the
formal ‘genericSeq’ of property s_rcl. This is a very useful way to use a sequence
as an actual to sequence formal.

Further nuances are described in Fig. 10.4 with annotations.

Figure 10.5 shows that ‘disable iff’ is not allowed in a recursive property. Well,
there is a simple solution to that problem, which is shown in the bottom of the
figure. Separate the requirement of ‘disable iff’ and the recursive nature of the
property in two properties. The recursive property does not contain ‘disable iff” and
the ‘property rillegal’ disables rLegal with the ‘disable iff” condition.

Figure 10.6 shows that two recursive properties can indeed be mutually recur-
sive. ‘cPhase2’ calls ‘cPhasel’ and ‘cPhasel’ in turn calls ‘cPhase2’. Why would
this not end up in a zero delay loop? First of all, there is the 1 clock wait because of
the non-overlapping operator in both properties. Second, each property has an
antecedent and the property will execute only if the antecedent is true. So, if

10.2 Application: Recursive Property 185

Operator ‘not’ cannot be applied to recursive property instances. I
property rllligal; **Error:
c |-> a and ("true |=> not (rilligal)); test_recursive_restrictions.sv(18):
P B Operator "not” can not be applied
endproperty to recursive properties.

If p is a recursive property, then, in the declaration of p, every instance of p
must occur after a positive advancement in time

property riLegal; **Error: (vsim-8312)
c |-> a and ("true |-> riLegal); test_recursive_restrictions.sv(61):
7 Use of recursion in property rLegal
endproperty without positive advance in time is
illegal.

Fig. 10.4 Recursive property—further nuances I

Operator ‘disable iff’ cannot be used in the declaration of a recursive property. J

S
property rllligal; //Error:
disable iff (b) (a and ("true |=> rllligal)); | | test_recursive_restrictions.sv(28)
Ff G //Disable iff can not be used inside
endproperty recursive properties.
ce b
g_f«.""r
2 ey rilligal SOLUTION to restriction on
prope ritigat; ‘disable iff’
disable iff (b) rLegal; disable iff’
endproperty

property rlLegal;
a and ('true |=> rLegal);
endproperty

Fig. 10.5 Recursive property—further nuances 11

‘cPhase2’ calls ‘cPhasel’, then ‘cPhasel’ will first wait for ‘c’ to be true and then
trigger the recursive part of the property. The same happens when ‘cPhasel’ calls
‘cPhase2’.

Also note that the operators accept_on, reject_on, sync_accept_on, and
sync_reject_on (Sect. 16.16) have not been covered yet, but they may be used

http://dx.doi.org/10.1007/978-3-319-30539-4_16

186 10 Recursive Property

Recursive properties can be mutually recursive I

“define true 1'b1
property cPhase1;

c |-> aand ("true |=> cPhase2);
endproperty

property cPhase2;
d |-> b and ("true |=> cPhase1);
endproperty

Fig. 10.6 Recursive property—mutually recursive

inside a recursive property. Also, strong operators s_nexttime, s_eventually,
s_always, s_until, and s_until_with cannot be applied to any property expression
that instantiates a recursive property.

Chapter 11
Detecting and Using Endpoint
of a Sequence

Introduction: This chapter describes the endpoint sequence detection methods such
as .triggered (.ended in 2005 LRM) and .matched and their operation with over-
lapping and non-overlapping operators. Legal, illegal conditions and plenty of
examples and applications are presented.

11.1 .triggered (Replaced for .ended)

Before we learn how .triggered works, here’s what has changed in the
1800-2009/2012 standard.

The 2009/2012 standard gets rid of .ended and in place supports .triggered. In
other words, .triggered has the same exact meaning as .ended, only that .triggered
can be used both where .ended gets used as well as where .triggered was allowed
in previous versions. In other words, .triggered can be used in a sequence as well
as in procedural block and also in level sensitive ‘wait’ statement.

Following from the LRM:

IEEE Std 1800-2005 17.7.3 required using the .ended sequence method in sequence
expressions and the .triggered sequence method in other contexts. Since these two
constructs have the same meaning but mutually exclusive usage contexts, in this
version of the standard, the .triggered method is allowed to be used in sequence
expressions, and the usage of .ended is deprecated and does not appear in this
version of the standard.

Note that the entire discussion devoted to .triggered in this chapter applies
directly to .ended. In other words you can replace .triggered with .ended in this
chapter and you will get the same results.

If you are mainly interested in the end of a sequence regardless of when it
started, .triggered is your friend. The main advantage of methods that detect the
endpoint of a sequence is that you do not need to know the start of the sequence. All
you care for is, when a sequence ends.

© Springer International Publishing Switzerland 2016 187
A.B. Mehta, SystemVerilog Assertions and Functional Coverage,
DOI 10.1007/978-3-319-30539-4_11

188 11 Detecting and Using Endpoint of a Sequence

Figure 11.1 shows that behavior. Sequence ‘branch’ is a complete sequence for a
branch to complete. It could have started any time. The property endCycle wants to
make sure that the ‘branch’ sequence has indeed ended when endBranch flag goes
high. In other words, whenever $rose(endBranch) is detected to be true that the next
clock, branch must end. This is indeed very powerful and useful feature. This
makes the assertion intuitive as well.

But what if you simply write the assertion as “at the end of ‘branch’ see that
endBranch goes high” as in “branch(a, b, ¢, d) |=> $rose(endBranch)”. What’s wrong
with that? Well, what if $rose(endBranch) goes high when the ‘branch’ is still exe-
cuting? That $rose(endBranch) would go unnoticed until the end of the sequence
‘branch’. The .triggered operator would catch this. If endBranch goes high when
sequence ‘branch’ is still executing, the property will fail. That’s because the property
endCycle expects ‘branch’ to have ended when endBranch goes high. Since endBranch
could have risen prematurely, the property will see that at $rose(endBranch) the
‘branch’ sequence has not ended and the property would fail. The forward looking
property would not catch this. This is a very important point. Please make a note of it.

Also, note that the clock in both the source and destination sequence must be the
same. But what if you want the source and destination clocks to be different? That is
what ‘.matched’ does, soon to be discussed.

.triggered is a method on a sequence (that returns true or false).

Whenever the end point of a sequence is reached, .triggered will be
true -regardless- of when the sequence started.

« .triggered allows another way to create smaller subsequences leading to more
complex ones.

Any sequence that will have a method attached to it must have an explicit
clock.

“Use of a method on an unclocked sequence is illegal”.

| application I

sequence branch(a ,b ,c ,d);
* @(posedge clk) Sfell(a) ##[1:5] Srose(b) ##1 c [=2] ##1 d;
endsequence

property endCycle;
., @(posedge clk) Srose(endBranch) |=> branch(a, b ,c , d).triggered;
endproperty

<)

Fig. 11.1 .triggered—end point of a sequence

The source and destination clocks -must- be the same. I

11.1 .triggered (Replaced for .ended) 189

sequence aRb(aFell, bRose);
@(posedge clk) Sfell(aFell) ##1 Srose(bRose);

endsequence overlapping implication I
property endCycle;

@(posedge clk) Srose(c) |-> aRb (a, b).triggered;
endproperty

baseP: assert property (endCycle) else gotoFail;

Srose(¢) |->aRb(a, b).triggered means
that aRb must end the same clock that ‘C’
rises.

b 4 ~———————— Does not matter when the
< sequence aRb starts... its endpoint
is what we are interested in...

. =

Fig. 11.2 .triggered with overlapping operator

Figure 11.2 explains further nuances.

In the example, $rose(c) implies that the sequence aRb must have ended. Key
point to note here is that the implication operator is overlapping. This means that
when $rose(c) occurs that at the same clock, sequence aRb should end. As shown in
Fig. 11.2, when $rose(c) is true that at the same clock $rose(b) must occur and the
previous clock $fell(a).

Figure 11.3 describes the same example but with the non-overlapping operator.

You have to understand this very carefully, as simple as it looks. Non-
overlapping states that when $rose(c) is true that ar the next clock the sequence aRb
must end. Hence, as shown is the figure, the property looks for aRb to end one
clock after $rose(c). This is intuitive but easy to miss.

Let us revisit an example I had presented in Fig. 6.15: [*m:n] Consecutive
Repetition Range—Application. This figure is again depicted here for easy ref-
erence. Note that in this example, we see how a ‘consecutive repetition’ operator
allowed us to design a property for state transition checks. What if you want to
model the same property using .triggered?

http://dx.doi.org/10.1007/978-3-319-30539-4_6

190 11 Detecting and Using Endpoint of a Sequence

sequence aRb (aFell , bRose);
@(posedge clk) Sfell(aFell) ##1 Srose(bRose);

sndsacpence non-overlapping implication I
property endCycle;

@(posedge clk) Srose(c) |=> aRb(a ,b).triggered;
endproperty

baseP: assert property (endCycle) else gotoFail;

Srose(¢) |=>aRb(a , b).triggered means that
the sequence aRb must end one clock -
after- ‘C’ rises.

Does not matter when the
sequence aRb starts... its
endpoint is what we are
interested in...

Fig. 11.3 .triggered with non-overlapping operator

First, state transition checks using ‘consecutive repetition’ operator—same as
shown in Fig. 6.15.

application I

Specification:

Make sure that the state machine follows the specified transitions

“define readStart (read_enb ##1 readStartState)
“define readID (readStartState ##1 readIDState)
*define readData (readiDState ##1 readDataState)
“define readEnd (readDataState ##1 readEndState)

sequence checkReadStates;

@(posedge clk)

“readStart ##1

“readID [*1:8] ##1

‘readData [*1:8] ##1

‘readEnd :
endsequence

Next, the same property written using ‘.triggered’ method.

http://dx.doi.org/10.1007/978-3-319-30539-4_6

11.1 .triggered (Replaced for .ended) 191

Specification:

Make sure that the state machine follows the specified transitions

sequence readStart; @(posedge clk) read_enb ##1 readStartState; endsequence
sequence readlD; @(posedge clk) readStartState ##1 readlDState; endsequence
sequence readData; @(posedge clk) readIDState ##1 readDataState; endsequence

sequence readEnd; @(posedge clk) readDataState ##1 readEndState; endsequence

property checkReadStates;
@(posedge clk)
readStart.triggered ##[1:$]
readID.triggered ##[1:$]
readData.triggered ##[1:5]
readEnd

»

endproperty

sCheck: assert property (checkReadStates) else $display ($stime,,,"FAIL");
cCheck: cover property (checkReadStates) $display ($stime,,,"PASS");

Let us examine the property using .triggered. Instead of using ‘define, we have to
explicitly declaring different sequences for state transitions (because the .triggered
method can only be attached to a named sequence). Also, note that in each sequence
there is an explicit @(posedge clk). This is because .triggered method cannot be
attached to a non-clocked sequence. The main property checkReadStates shows
how .triggered is used in place of the consecutive repetition operator. We wait for
each sequence to ‘end’ and see that the next sequence then ends within 1 clock to
whenever, since we don’t know how long will the next state transition (e.g. from
readStart to readID) will take place. This is the reason for ##[1:$] after each
.triggered sequence. And that each of these ‘ends’ occur in a specified order. This
example also illustrates how multiple sequences are used in a property and as I’ve
said before, it is best to break down a complex property (as this) in multiple small
sequences and then build the master property.

Here’s the entire testbench with the property and the simulation log. Please study
the simulation log to solidify your concept of .triggered.

192 11 Detecting and Using Endpoint of a Sequence

module state_transition;
int readStartState, read|DState, readDataState, readEndState;

logic clk, read_enb;

sequence readStart; @(posedge clk) read_enb ##1 readStartState; endsequence
sequence readID; @(posedge clk) readStartState ##1 readIDState; endsequence
sequence readData; @(posedge clk) readIDState ##1 readDataState; endsequence

sequence readEnd; @(posedge clk) readDataState ##1 readEndState; endsequence

property checkReadStates;
@(posedge clk)
readStart.triggered ##[1:9]
readID.triggered ##[1:9]
readData.triggered ##[1:9]
readEnd

endproperty

sCheck: assert property (checkReadStates) else Sdisplay (Sstime,,,"FAIL");

cCheck: cover property (checkReadStates) Sdisplay (Sstime,,,"PASS");

initial
begin
read_enb=1; clk=0;
@(posedge clk) readStartState=1;
@(posedge clk) readIDState=1;
@(posedge clk) @(posedge clk); readDataState=1;
@(posedge clk) @(posedge clk); readEndState=1;

end

11.1 .triggered (Replaced for .ended)

initial Smonitor(Sstime,,,"clk=",clk,,

"read_enb=%0b",read_enb,,,

"readStartState=%0b",readStartState,,

"readIDState=%0b",readIDState,,

"readDataState=%0b",readDataState,,

"readEndState=%0b",readEndState);

always #10 clk=!clk;

endmodule

/*

10 clk=1read_enb=1
20 clk=0read_enb=1
30 clk=1read_enb=1
40 clk=0read_enb=1
50 clk=1read_enb=1
60 clk=0read_enb=1

70 clk=1read_enb=1
80 clk=0read_enb=1

90 clk=1read_enb=1
100 clk=0 read_enb=1
110 clk=1read_enb=1
120 clk=0 read_enb=1
130 PASS

130 clk=1read_enb=1
140 clk=0read_enb=1
150 PASS

150 clk=1read_enb=1
160 clk=0read_enb=1
170 PASS

*/

readStartState=1 read|DState=0 readDataState=0 readEndState=0

readStartState=1 readIDState=0 readDataState=0 readEndState=0

readStartState=1 readIDState=1 readDataState=0 readEndState=0

readStartState=1 readIDState=1 readDataState=0 readEndState=0

readStartState=1 readIDState=1 readDataState=0 readEndState=0

readStartState=1 readIDState=1 readDataState=0 readEndState=0

readStartState=1 readIDState=1 readDataState=1 readEndState=0

readStartState=1 readIDState=1 readDataState=1 readEndState=0

readStartState=1 read|DState=1 readDataState=1 readEndState=0

readStartState=1 read|DState=1 readDataState=1 readEndState=0

readStartState=1 readIDState=1 readDataState=1 readEndState=1

readStartState=1 readIDState=1 readDataState=1 readEndState=1

readStartState=1 readIDState=1 readDataState=1 readEndState=1

readStartState=1 read|DState=1 readDataState=1 readEndState=1

readStartState=1 read|DState=1 readDataState=1 readEndState=1

readStartState=1 readIDState=1 readDataState=1 readEndState=1

193

194 11 Detecting and Using Endpoint of a Sequence

The .triggered method may be applied to a named sequence instance, with or
without arguments, an untyped formal argument, or a formal argument of type
sequence, as follows:

sequence_instance.triggered
or
formal_argument_sequence.triggered

When method .triggered is evaluated in an expression, it tests whether its
operand sequence has reached its end point at that particular point in time. The
result of .triggered does not depend upon the starting point of the match of its
operand sequence.

Here’s an example of .triggered usage in a procedural assignment using level
sensitive control.

sequence busGnt;
@ (posedge clk) req ##[1:5] gnt;
endsequence
initial begin
wait (busGnt.triggered) Sdisplay($stime,,, ”Bus Grant given”);
end
Here’s an example that shows the use of .triggered in sequences.
sequence abc;
@ (posedge gclk) a ##[1:5] ##1 b [*5] ##1 c;
endsequence
sequence myseq;
@ (posedge gclk) d ##1 abc.triggered ##1 !d;
endsequence
Another example:

Upon detection of IRDY End, Tabort must remain de-asserted until Frame_ End.
Solution:

sequence |RDY;

IRDY_start ##2 IRDY_end;
endsequence
sequence Frame_;

Frame_Start ##[1:16] Frame_end;
endsequence
busyPr: assert property (@(posedge clk)

IRDY |-> ITabort until Frame_.triggered;

11.1 .triggered (Replaced for .ended) 195

Finally, following is illegal.
logic x,y,z;
/...
Xillegal: assert property (@(posedge clk)
Z |-> (x ## 3).triggered

Why is this illegal? Recall that .triggered can only be applied to a ‘named
sequence instance’ or a formal argument. (x ## 3) is neither of the two.

Following is illegal as well because the clocks on two sides of the implication
differ. They need to be the same.

sequence clk1Seq;
@(posedge clk1) x ##2 y;
endsequence
Zillegal: assert property (@(posedge clk) z |-> clk1Seq.triggered);
Also, note that .triggered can be used as a subexpression. Here’s an example:
default clocking @(posedge clk); endclocking
sequence ab;
a##2b;
endsequence
sequence cd;
c ##2 d;
endsequence
sequence cdtr;
z ##[2:5] cd.triggered;
endsequence
ftr: assert property (ab |-> nogo until cdtr.triggered);

The order of execution for the consequent is cd, cdtr, ftr. Note that the order of
sequence evaluation is statically determined at compile time. A proper order of
evaluation must always be found.

11.2 .matched

The main difference between .triggered and .matched is that .triggered requires both
the source and destination sequences have the same clock. .matched allows you to
have different clocks in the source and destination sequences.

Since the clocks can be different, understanding of .matched gets a bit compli-
cated. But it follows the same rules as that for multiply clocked properties. As
shown in Fig. 11.4, sequence ‘el’ uses ‘clk’ as its clock while sequence ‘€2’ uses

196 11 Detecting and Using Endpoint of a Sequence

.matched is a method on a sequence (that returns true or false).

.matched is used when the clocks of the sequences are different. To reiterate,
.ended (or .triggered) can be used only when the clocks of the source and destination
sequences are the same.

“Unlike .ended (or .triggered), .matched uses synchronization between the two
clocks, by storing the result of the source sequence match until the arrival of the first
destination clock tick after the match.

sequence el(a, b, c); 1 evaluated at clock
@(posedge clk) Srose (a) ##1 b ##1 ¢; ~——— wqun s Aea ancod

endsequence

Sequence @2; e,
|» @(posedge sysclk) reset ##1 inst ##1! e1 (ready.pmd,procz) matched [=1] ##1
/ branck_back; ssscec=nzes o

endsequence
I destination sequence e2 evaluated at clock “sysclk” |

This means that sequence el is tested to
match (i.e. it should have completed) at the
first clock tick after * inst ",

As in .ended (or .triggered), the .matched
only tests for the end point of the sequence
and has no bearing to the starting point of
Source :: System Verilog 3.1a LRM I the sequence.

Fig. 11.4 .matched—basics

‘sysclk’ as it’s clock. Sequence ‘e2’ says that after ‘reset’; 1 clock later; ‘inst’ must
be true and 1 clock later sequence ‘el’ must match (i.e. end) at least once and 1
clock later branch_back must be true. This is very interesting way of ‘inserting’ a .
matched (or .triggered for that matter) within a sequence. Sequence ‘el’ is running
on its own. What we really care for is that it matches (ends) when we expect it to.

Let us look at some examples that will make the concept clearer.

Figure 11.5 shows that on the rising edge of ‘c’ we want to see that aRb sequence
matches. Let us look at the timing diagram. When, $rose(c) is true at posedge of clk1
(clkl = 3), it looks for the end of the sequence ‘aRb’. Sequence ‘aRb’ started during
clk = 3 and it ends at clk = 4. Note that the end of ‘aRb’ [i.e. match of $rose(bRose)]
is exactly at the very next ‘clk’ edge after clkl edge. That’s what the property asked
for “@ posedge clkl) $rose (c) |=> @ (posedge clk) aRb(a, b).matched;”

The key point to note here (as in multiply clocked properties) is the clock
crossing boundary. From clkl to clk with 1 clock delay in-between (as implied
by |=> non-overlapping implication) does not mean 1 full clock. It simply means
the very next edge of ‘posedge clk’ after ‘posedge clkl’. Please refer to multiply
clocked properties (Sect. 8.1) if this concept is not clear.

Figure 11.6 uses overlapped implication and identical (in-phase) clocks (the
clocks have to be the same because we are using overlapping implication). Hence
when S$rose(c) is true, it looks for the very next (posedge clk) overlapping with its

http://dx.doi.org/10.1007/978-3-319-30539-4_8

11.2 .matched

sequence aRb(aFell,bRose); han-overlapbin
@(posedge clk) Sfell(aFell) ##1 Srose(bRose); o “.mn.mfp 3
endsequence P
property endCycle;

@(posedge clk1) Srose(c) |=> @(posedge clk) aRb(a,b).matched;
endproperty ——
baseP: assert property (endCycle) else gotoFail; | T

| Different clocks I—

197

@(posedge clk1) Srose(c) looks for the very
subsequent "clk” where aRb(a,b).matched

must end.
i i |/ ! ;
¢ A H—
a i A it
ck |1 12 |3 4 5
gici 1L i21 i3 fai fsi.

Fig. 11.5 .matched with non-overlapping operator

sequence aRb(aFell,bRose); overlapping
@(posedge clk) Sfell(aFell) ##1 Srose(bRose); implication
endsequence
property endCycle;
@(posedge clk) Srose(c) |-> @(posedge clk) aRb(a,b).matched;
Sadproperty e e =< SAME clocks (because
baseP: assert property (endCycle) else gotoFail; of overlapping
implication

@(posedge clk) Srose(¢) looks for the
very subsequent "clk” where
aRb(a,b).matched must end.

b !]

4 |
‘ |
[i
] T
Pt |

Fig. 11.6 .matched—overlapped operator

198 11 Detecting and Using Endpoint of a Sequence

(posedge clk). But the very next (posedge clk) is (obviously) 1 clock later. So, 1
clock after $rose(c), the sequence sees that aRb has matched (i.e. ended).

11.2.1 Application: .matched

In Fig. 11.7, sequence ‘RdS’ uses Busclk while the property checkP uses sysclk.
“@ (negedge sysclk) RdS.matched” means that at the negedge of sysclk, the
sequence RdS (which is running off of Busclk) must end. ‘RdS’ could have
completed slightly (i.e. when the very preceding posedge of Busclk would have
arrived) earlier than the negedge sysclk. That is ok because we are transitioning
from Busclk to sysclk (as long as the sequence RdS completes at the immediately
preceding posedge Busclk).

Let us now look at how clock ‘flows’ or gets inferred in sequences and prop-
erties that use .triggered and .matched methods.

sequence RdS;
@(posedge Busclk) Sfell (as_) ##1 rd ##[1:5] oe_;
endsequence

property checkP;

@(negedge sysclk) RdS.matched |=> rdDatalLatch ##0 (Sisunknown
(data) == 0);
endproperty

The matched value of sequence RdS is sampled at the negedge
of sysclk and if it is true (i.e. the sequence has completed) it
implies that rdDatalatch is asserted the next negedge sysclk
and that the data is not unknown at that clock

Fig. 11.7 .matched—application

11.2 .matched 199

module clock_inference;
logica, b, c, d;

default clocking cb @(posedge clk_d); endclocking

sequence e4;
Srose(b) ##1 ¢;
endsequence

al: assert property (@(posedge clk_a) a |=> e4.triggered);
//Since the leading edge in ‘al’ is posedge clk_a, ‘e4’ infers posedge clk_a as per clock flow rules

sequence e5;
@(posedge clk_el) a ##[1:3] ed.triggered ##1 c;
endsequence
/* Note that the leading clock edge here is ‘clk_el’. So, ‘e4’ will infer posedge clk_e1 as per clock flow rules
wherever e5 is instantiated (with/without a method)

*/

a2: assert property (@(posedge clk_a) a |=> e5.matched);

/* Here, ‘a2’ triggers ‘e5.matched’ with the leading clock as ‘posedge clk_a’. ‘e5’ in turn triggers ‘e4.triggered’
with the leading clock as ‘posedge clk_e1’. Hence, by clock flow rules, ‘e4’ infers ‘posedge clk_el’ from
sequence ‘e5’.

*/

sequence e6(f);
@(posedge clk_e2) f;
endsequence

a3: assert property (@(posedge clk_a) a |=> e6(e4.triggered));
/*Similar to argument above, the clock flows from ‘posedge clk_a’ to ‘posedge clk_e2’ and sequence ‘e4’ infers
‘posedge clk_e2’

*/

always @(posedge clk_a) begin
@(ed);
d=a;

end

/* This is very interesting and important to understand. Sequence ‘e4’ infers ‘default clocking cb @(posedge
clk_d); endclocking’ and not posedge clk_a as there is more than one event control in this procedure.

*/

endmodule

Chapter 12
‘expect’

Introduction: This chapter describes the procedurally blocking statement ‘expect’
and its differences with the ‘assert’ statement.

‘expect’ takes on the same syntax (not semantics) as ‘assert property’ in a
procedural block. Note that ‘expect’ must be used only in a procedural block. It
cannot be used outside of a procedural block as in ‘assert’ or property/sequence
(recall that ‘assert property’ can be used both in the procedural block as well as
outside). So, what’s the difference between ‘assert property’ and ‘expect’?

‘expect’ is a blocking statement while ‘assert property’ is a non-blocking
statement. Blocking means, the procedural block will wait until ‘expect’ sequence
completes (pass or fail). For ‘assert property’ non-blocking means that the proce-
dural block will trigger the ‘assert property’ statement and continue with the next
statement in the block. ‘assert property’ condition will continue to execute in
parallel to the procedural code. Note that ‘assert property’ behavior is the same
whether it’s outside or inside a procedural block. It always executes in parallel on
its own thread with the rest of the logic.

Please refer to the simulation log in Fig. 12.1. You notice that the procedural
code waits for ‘expect’ to complete (i.e. blocks execution of procedural code) and
only on completion of ‘expect’ that it executes the subsequent $display. Figure 12.2
highlights further nuances of ‘expect’ semantics. Annotations in the figure are
self-explanatory. Key point is that ‘expect’ does not inherit a clock from its pre-
ceding procedural clock. It needs an explicit clock in the sequence (or property) it
‘expects’ or with its own declaration.

© Springer International Publishing Switzerland 2016 201
A.B. Mehta, SystemVerilog Assertions and Functional Coverage,
DOI 10.1007/978-3-319-30539-4_12

202 12 ‘expect’

‘expect’ statement is a procedural blocking statement that allows waiting on
a property evaluation.

The ‘expect’ statement accepts the same syntax used to assert a property.

The ‘expect’ statement can accept a named property as well.

initial < | (or an “always’ block) |
begin
$display($stime,,,"Hello before expect”); What would happen if you
changed ‘expect’ with an
expect (@(posedge clk) c |-> c ##2 d ##2 e) ‘assert’ ?

Sdisplay(Sstime, ,,"\texpect pass");
else
Sdisplay(Sstime, ,,"\texpect fail");

Sdisplay($stime, ,,"Goodbye after expect”);
end
endmodule

0 Hello before expect

5 CLK#1 :: clk=12a=0 b=0 c=1 d=0 e=0
15 CLK # 2 :: clk=1a=1 b=0¢=0 d=0e=0
25 CLK # 3 :: clk=12a=1 b=0¢=0 d=1 e=0
35 CLK # 4 :: clk=1a=0 b=0c=0 d=0e=0
45 CLK #5 :: clk=1a=0 b=0¢=0 d=0 e=1
45 expect pass

45 Goodbye after expect

55 CLK # 6 :: clk=1a=0 b=0c=0 d=0e=1

oW W W R

Fig. 12.1 ‘expect’—basics

Finally,

The expect statement can appear anywhere a wait statement can appear. Because
it is a blocking statement, the property can refer to automatic variables as well as
static variables.

12 ‘expect’

sequence abc;
a ##2 b ##2 c;
endsequence

property dP;

203

@(posedge clk) d |=> abc;

This is OK because clk is
specified as part of ‘expect’

This is also OK because clk is
specified in the property
itself.

endproperty

initial

begin
expect (@(posedge clk) (abc));
expect dP;
@(posedge clk) expect (abc); «—

//ERROR
end

NOT OK because ‘sequence
abc’ does not have a clock
(clk is specified before
‘expect’).

sequence abc;
a ##2 b ##2 c;

w
"
I
I
I

4

endsequence

always @(posedge clk)
begin

expect (abc); //ERROR +——
end

NOT OK because ‘sequence
abc’ does not have a clock
and clk is NOT inherited from
the always block.

Fig. 12.2 ‘expect’—error conditions

For example, the task below waits between 1 and 10 clock ticks for the variable
data to equal a particular value, which is specified by the automatic argument value.
The second argument, ‘success’, is used to return the result of the expect statement:

1 for success and O for failure.

integer data;

task automatic wait_for (integer value, output bit success);

expect (@(posedge clk) ##[1:10] data == value) success = 1;

else success = 0;
endtask

initial begin
bit ok;
wait_for (23, ok); // wait for the value 23

end

Chapter 13
‘assume’ and Formal (Static Functional)
Verification

Introduction: This chapter describes ‘assume’ statement and its usage for ‘static
formal’ (or ‘static functional’) and ‘constrained random’ methodologies.

This is an interesting operator. ‘assume’ specifies the property as an assumption
for the environment. They may be used by simulators to constrain the random
generation of free checker variable values or by formal tools to constrain the formal
computation. The most useful environment for ‘assume’ is that of static formal
verification. Static formal is a method whereby the formal algorithm exercises all
possible combinational and temporal possibilities of inputs to exercise all possible
‘logic cones’ of a given logic block and checks to see that the assertion holds.
During such verification if you do not specify any constraints (i.e. for a 5 input (a, b,
¢, d, e) block, if you don’t specify any constraints such as ‘assume’ a=0and b= 1)
then the static formal will try to explore all possible combinations of the 5 input
both in combinatorial and temporal (if required) domain. Without any constraints
provided via ‘assume’, the static formal tool may experience something called ‘state
space explosion’ problem. As the description suggests, the tool may give up if too
many inputs are unconstrained. This is where the ‘assume’ statement comes into
picture.

© Springer International Publishing Switzerland 2016 205
A.B. Mehta, SystemVerilog Assertions and Functional Coverage,
DOI 10.1007/978-3-319-30539-4_13

206 13 ‘assume’ and Formal (Static Functional) Verification

‘assume’ is useful mainly for ‘static formal’ and ‘constrained random’ dynamic
simulation where you need to constraint the environment using the conditions
specified in a property.

+ ‘assume’ statement allows properties to be considered as assumptions.

* When a property is ‘assume’d the tools constrain the env. so that the property
holds.

* For ‘formal’ analysis, there is no obligation to verify that the assumed property
holds. The statement is simply assumed true and the scope of formal is constrained
according to the assumed property.

* For simulation, the ‘assume’d property must be checked (as in ‘assert’) and
reported if it fails to hold.

For Formal; if ‘req’ is an input, this simple

property gntNreg; assume helps reduce the static cone of logic
@(posedge clk) gnt |=> Ireq; | because it will assume that assertion on ‘gnt’
endproperty will always result in the de-assertion of ‘req’
aP1: assume property (gntNreq); the next clock.
For Simulation; this property will Fail if it
does not hold
property req2ack;
@(posedge clk) req |-> req[*1: A
@ 8 Jreq | ##g[5 cl?'] l—| Another simple ‘assume’on ‘req’. It states
d ’ that if ‘req’ is asserted that it will remain
endproperty asserted until ack is asserted.

aP2: assume property (req2ack);

Fig. 13.1 ‘assume’ and formal verification

So, how does it behave in simulation? The examples in Fig. 13.1 simply shows
that ‘assume’ without any other property reliant on assumed property will act like
‘assert’. If the property associated with the assume statement is found to be false,
the simulation fails.

Chapter 14
Very Important Topics and Applications

Introduction: This chapter addresses many important topics such as
Asynchronous FIFO assertions, triggering concurrent assertions from procedural
blocks, calling subroutines, sequences as formal arguments, as antecedent and as
triggering condition in a sensitivity list. It also describes further nuances such as
how to design ‘variable delay’ using a ‘counter’, effects of blocking nature of an
‘action’ (pass/fail) block, cyclic dependencies, vacuous pass of an assertion, empty
sequences, etc.

14.1 Asynchronous FIFO Assertions

Asynchronous FIFO (compared to synchronous FIFO) is a difficult proposition
when it comes to writing assertions. The Read and the Write clocks are asyn-
chronous which means the most important property to check for is data transfer
from Write to Read clock. Other assertions are to check for fifo_full, fifo_empty,
etc. conditions.

First we present a comprehensive design of the asynchronous fifo. A bit com-
plicated but you don’t need to go into its detail. Next we see a testbench within
which I have designed the assertions. Yes, you can have assertions in the design
(RTL) (but not recommended), testbench (as in this example), in a systemverilog
Interface, in a systemverilog Program and in a file on its own [this is where the
‘bind’ comes into picture (this is highly recommended)].

This FIFO design and testbench are available on Springer server.

© Springer International Publishing Switzerland 2016 207
A.B. Mehta, SystemVerilog Assertions and Functional Coverage,
DOI 10.1007/978-3-319-30539-4_14

208 14

14.1.1 Asynchronous FIFO Design

module asynchronous_fifo (

// Outputs

fifo_out, full, empty,

// Inputs

wclk, wclk_reset_n, write_en,
rclk, rclk_reset_n, read_en,

fifo_in

)

“define FF_DLY 1’b1

parameter D_WIDTH = 20;
parameter D_DEPTH = 4;
parameter A_WIDTH = 2;

input wclk_reset_n;
input rclk_reset_n;
input wclk;

input rclk;

input write_en;
input read_en;

input [D_WIDTH-1:0] fifo_in;

output [D_WIDTH-1:0]

output
output

reg [D_WIDTH-1:0]
reg [A_WIDTH:0]
reg [A_WIDTH:0]
reg [A_WIDTH:0]
reg [A_WIDTH:0]
reg [A_WIDTH:0]
reg [A_WIDTH:0]
reg [A_WIDTH:0]
reg [A_WIDTH:0]

reg
reg

wire [A_WIDTH:0]
wire [A_WIDTH:0]
wire [A_WIDTH:0]
wire [A_WIDTH:0]

fifo_out;
full;
empty;

reg_mem[0:D_DEPTH-1];
wr_ptr;

wr_ptr_gray;
wr_ptr_gray_rclk_g;
wr_ptr_gray_rclk_q2;
rd_ptr;

rd_ptr_gray;
rd_ptr_gray_wclk_g;
rd_ptr_gray_wclk_q2;

full;
empty;

nxt_wr_ptr;
nxt_rd_ptr;
nxt_wr_ptr_gray;
nxt_rd_ptr_gray;
wr_addr;

wire [A_WIDTH-1:0]
wire [A_WIDTH-1:0]
wire
wire

rd_addr;
full_d;
empty_d;

assign wr_addr = wr_ptr[A_WIDTH-1:0];
assign rd_addr = rd_ptr[A_WIDTH-1:0];

always @ (posedge wclk)
if (write_en) reg_mem[wr_addr] <= # FF_DLY fifo_in;

assign fifo_out = reg_mem[rd_addr];

always @ (posedge wclk or negedge wclk_reset_n)
if (Iwclk_reset_n) begin

Very Important Topics and Applications

14.1 Asynchronous FIFO Assertions 209

wr_ptr <= # FF_DLY {A_WIDTH+1{1'b03};

wr_ptr_gray <= # FF_DLY {A_WIDTH+1{1'b0}};
end else begin

wr_ptr <= #"FF_DLY nxt_wr_ptr;

wr_ptr_gray <= # FF_DLY nxt_wr_ptr_gray;
end

assign nxt_wr_ptr = (write_en) ? wr_ptr+1 : wr_ptr;
assign nxt_wr_ptr_gray = ((nxt_wr_ptr>>1) * nxt_wr_ptr);

always @ (posedge rclk or negedge rclk_reset_n)

if (Irclk_reset_n) begin

rd_ptr <= # FF_DLY {A_WIDTH+1{1'b0}};

rd_ptr_gray <= # FF_DLY {A_WIDTH+1{1'b03};
end else begin

rd_ptr <= # FF_DLY nxt_rd_ptr;

rd_ptr_gray <= # FF_DLY nxt_rd_ptr_gray;
end

assign nxt_rd_ptr = (read_en) ? rd_ptr+1 : rd_ptr;
assign nxt_rd_ptr_gray = (nxt_rd_ptr>>1) " nxt_rd_ptr;

// check full
always @ (posedge wclk or negedge wclk_reset_n)
if (!wclk_reset_n)
{rd_ptr_gray_wclk_q2, rd_ptr_gray_wclk_q} <= # FF_DLY {{A_WIDTH+1{1'b0}}, {A_WIDTH+1{1'b03}};
else
{rd_ptr_gray_wclk_q2, rd_ptr_gray_wclk_q} <= # FF_DLY {rd_ptr_gray_wclk_q, rd_ptr_gray};

assign full_d = (nxt_wr_ptr_gray == {~-rd_ptr_gray_wclk_q2[A_WIDTH:A_WIDTH-1],
rd_ptr_gray_wclk_g2[A_WIDTH-2:01});

always @ (posedge wclk or negedge wclk_reset_n)
if (!wclk_reset_n)
full <= # FF_DLY 1'b0;
else
full <= # FF_DLY full_d;

/1 check empty
always @ (posedge rclk or negedge rclk_reset_n)
if (Irclk_reset_n)
{wr_ptr_gray_rclk_q2, wr_ptr_gray_rclk_q} <= # FF_DLY {{A_WIDTH+1{1'b0}}, {A_WIDTH+1{1'b0}3}};
else
{wr_ptr_gray_rclk_q2, wr_ptr_gray_rclk_q} <= # FF_DLY {wr_ptr_gray_rclk_q, wr_ptr_gray};

assign empty_d = (nxt_rd_ptr_gray == wr_ptr_gray_rclk_q2);

always @ (posedge rclk or negedge rclk_reset_n)
if (Irclk_reset_n)
empty <= # FF_DLY 1b1;
else
empty <= # FF_DLY empty_d;

endmodule

210 14 Very Important Topics and Applications
14.1.2 Asynchronous FIFO Testbench and Assertions

module test_asynchronous_fifo

(
fifo_out, full, empty,
wclk, wclk_reset_n, write_en,
rclk, rclk_reset_n, read_en,
fifo_in

parameter D_WIDTH = 20;
parameter D_DEPTH = 4;
parameter A_WIDTH = 2;

output wclk_reset_n;
output rclk_reset_n;
output wclk;

output rclk;

output write_en;
output read_en;

output [D_WIDTH-1:0] fifo_in;

logic wclk_reset_n;
logic rclk_reset_n;
logic wclk;

logic rclk;

logic write_en;
logic read_en;

logic [D_WIDTH-1:0] fifo_in;

input [D_WIDTH-1:0] fifo_out;
input full;
input empty;

asynchronous_fifo aff1

(
fifo_out, full, empty,

wclk, wclk_reset_n, write_en,
rclk, rclk_reset_n, read_en,
fifo_in
);
/*
Following property checks to see if the FIFO is full that the wr_ptr does not
change.

This assertion can be written other ways too (using for example ‘empty’ con-
dition). Please try them out and see if the results match with this assertion.

*/

14.1 Asynchronous FIFO Assertions 211

property check_full;
@ (posedge wclk) disable iff (!wclk_rstn)
(full) |=> @ (posedge wclk) aff1.wr_ptr == Spast (aff1.wr_ptr);
endproperty
cfull : assert property (check_full) else $display($stime,,,"%m Check wr_ptr full FAIL");
cfullc : cover property (check_full) $display($stime,,,"%m Check wr_ptr full PASS");
/%

Following property checks to see that if the FIFO is empty that the rd_ptr does
not change. ‘empty’ means that the rd_ptr remains the same as its value at the last
clk—thus guaranteeing that the rd_ptr have not changed. BUT note that we are
using !$isunknown and passing it $past as an expression. Why? If FIFO is empty,
the rd_ptr in the past could be ‘X’. So we make sure that rd_ptr is the same as the
past value and that it is not unknown.

This assertion can be written other ways too (using for example ‘full’ condition
or without the use of $past). Please try them out and see if the results match with
this assertion.

*/
property check_empty;
@ (posedge rclk) disable iff (! rclk_rstn)
(empty) |=> @ (posedge rclk)
if (!Sisunknown(Spast (aff1.rd_ptr)))
(aff1.rd_ptr == Spast (aff1.rd_ptr));
endproperty
cempty : assert property (check_empty) else $display($stime,,,"%m Check rd_ptr empty FAIL");

cemptyc : cover property (check_empty) Sdisplay($stime,,,"%m Check rd_ptr empty PASS");

/*

This is a very important assertion for an asynchronous FIFO. Check that the data
that is written at a wr_ptr is the same data that is read when rd_ptr reaches that
wr_ptr. Simple! Let us look at the assertion step by step

*/

212 14 Very Important Topics and Applications

/*

In the assertion, data_check property checks to see that FIFO is not full. If so,
saves wr_ptr into the local variable ‘ptr’ and the data from fifo into local variable
‘data’ and display that so that we can easily see how the assertion is progressing
during simulation.

If the antecedent is true, the consequent says that the first match of rd_ptr being the
same as wr_ptr (note wr_ptr was stored in local variable ptr) that the read datais the same
as the write data (note write data were stored in local variable data in the antecedent).

Sequence rd_detect(ptr) is used as an expression to first_match. It says that wait
from now until forever until you detect a read and it’s rd_ptr is equal to the wr_ptr
(which is stored in the local variable ‘ptr’ in the antecedent).

Please note that these are multi-clocked properties since we have a wr_clk and a
rd_clk.

So, in this property, we see

— multi-clock property (wclk and rclk)

— use of local variables for storing/comparing

— first_match

— attaching a subroutine (here a $display) to an expression for effective debugging
— effective use of ##0 to create overlapping condition in a sequence.

Try out different ways to write the assertion. Refer to different operators, sam-
pled value functions etc. and see if you can write an equivalent assertion. There
isn’t just one way to write an assertion. But there is indeed a right way and a wrong
way. You will get that through practice.

*/

sequence rd_detect(ptr);
##[0:5] (read_en && !empty && (aff1.rd_ptr == ptr));
endsequence

property data_check(wrptr);
integer ptr, data;
@ (posedge wclk) disable iff (Iwclk_reset_n || !rclk_reset_n)
(write_en && !full, ptr=wrptr, data=fifo_in,
Sdisplay($stime, "\t Assertion Disp wr_ptr=%h data=%h”, aff1.wr_ptr, fifo_in))

|=>

@ (negedge rclk) first_match(rd_detect(ptr),
Sdisplay($stime,,,"” Assertion Disp FIRST_MATCH ptr=%h Compare data=%h fifo_out=%h", ptr,
data, fifo_out))
##0 (fifo_out === data);
endproperty

dcheck : assert property (data_check(aff1.wr_ptr)) else Sdisplay(Sstime,,,"FAIL: DATA

CHECK");
dcheckc : cover property (data_check(aff1.wr_ptr)) Sdisplay($stime,,,"PASS: DATA CHECK");

[*

14.1 Asynchronous FIFO Assertions 213

Following property is quite self-explanatory. But note that this is also a
multi-clocked property and since the write and read clocks are different clocks, we
must use the non-overlapping operator |=>.

This is a mutex property. What are the different ways you can write this?

*/

property full_empty;

@ (posedge wclk) disable iff (!wclk_reset_n)
@ (posedge wclk) (full) |=> @ (posedge rclk) (!empty);
endproperty

few: assert property (full_empty) else $Sdisplay(Sstime,," FAIL: Full and Empty BOTH asserted");
cfew: cover property (full_empty) Sdisplay(Sstime,,” PASS: Full and Empty check ");

Following property is quite self-explanatory. But note that this is also a
multi-clocked property and since the write and read clocks are different clocks, we
must use the non-overlapping operator |=>.

This is a mutex property. What are the different ways you can write this?

*/

property empty_full;
@ (posedge wclk) disable iff (!wclk_reset_n)
@ (posedge rclk) (empty) |=> @ (posedge wclk) (!full);

endproperty
efw: assert property (full_empty) else $display(Sstime,,, "FAIL: Full and Empty BOTH
asserted");
A
rclk_reset_n Check on rclk
T !

Following property checks to see that empty pointer is high (i.e. empty) when
you reset the FIFO

*/

214 14 Very Important Topics and Applications

property reset_n_rclk;
@ (posedge rclk) !rclk_reset_n |-> empty;
endproperty

reset_nrclkA: assert property (reset_n_rclk) else Sdisplay($stime,,,"FAIL: FIFO not empty
during rclk_reset_n");

reset_nrclkC: cover property (reset_n_rclk) Sdisplay($stime,,,"PASS: FIFO empty during
rclk_reset_n");

Following property checks to see that the FIFO is not full when you reset the
FIFO. FIFO can only go Empty during reset, not Full.

*/
property reset_n_wclk;
@ (posedge wclk) !wclk_reset_n [-> !full;
endproperty
reset_nwclkA: assert property (reset_n_wclk) else $display($stime,,,"FAIL: FIFO FULL during
wclk_reset_n");
reset_nwclkC: cover property (reset_n_wclk) Sdisplay($stime,,,"PASS: FIFO FULL during
rclk_wstn");
endmodule

14.1.3 Test the Testbench

module
/*

Following assertions are important to note. We are checking our own testbench!
Yes, that is important. This is a simple testbench but the idea is that as your
testbench develops complex code that there is a good chance you will make mis-
takes. So why not use assertions to catch those errors as well.

14.1 Asynchronous FIFO Assertions 215

For example, in the first assertion we are checking that if FIFO is full that we do
not keep writing to it, since this particular FIFO does not have a pushback signal.

Similarly, the second assertion checks to see that if the FIFO is empty that we do
not keep reading it!

*/

property check_full_write_en;
@ (posedge wclk) disable iff (Iwclk_reset_n)
full |-> !write_en;
endproperty

check_full_write_enA : assert property (check_full_write_en) else $display($stime,,,"%m FAIL:
check_full_write_en");

check_full_write_enC : cover property (check_full_write_en) Sdisplay($stime,,,"%m PASS:
check_full_write_en");

property check_empty_read_en;

@ (posedge rclk) disable iff (!rclk_reset_n)

empty |-> lread_en;

endproperty
check_empty_read_enA: assert property (check_full_write_en) else Sdisplay(Sstime,,,"FAIL: %m
check_full_write_en");
check_empty_read_enC: cover property (check_full_write_en) $display($stime,,,"PASS: %m
check_full_write_en");

integer i, seed1, wclk_width, rclk_width, loopcount, base;

/*
Following is regular Verilog testbench code which you are very familiar with

*/

216 14 Very Important Topics and Applications

initial begin
loopcount = 50;
seed1 = 12345;
wclk = 1'b1; write_en=1'b1;
rclk = 1'b0; read_en=1;

fork
begin wclk_reset_n = 1'b0; #100; wclk_reset_n = 1'b1; write_en=1'b1; end
begin rclk_reset_n = 1'b0; #100; rclk_reset_n = 1'b1; read_en=1'b0; end

for (i=0; i<loopcount; i++)

begin
/Irclk_width = ({Srandom} % 40) + 5;
//wclk_width = ({Srandom} % 40) + 5;

rclk_width = 40; wclk_width = 40;
//rclk_width = 10; wclk_width = 40;
/ /rclk_width = 40; wclk_width = 10;

Sdisplay($stime,,, "wclk_width=%0d rclk_width=%0d",wclk_width,rclk_width);
#1000#i;

end

join

Sfinish(2);
end

always #rclk_width rclk=!rclk;
always #wclk_width wclk=!wclk;

always @ (wclk,rclk,write_en,read_en,full,empty,aff1.wr_ptr,aff1.rd_ptr,fifo_in,fifo_out)
begin
Sstrobe(Sstime,,,"\t\twclk=%b rclk=%b write_en=%b read_en=%b full=%b empty=%b wr_ptr=%d
rd_ptr=%d fifo_in=%h fifo_out=%h",
wclk,rclk,write_en,read_en,full,empty,aff1.wr_ptr,aff1.rd_ptr,fifo_in,fifo_out);
end

always @ (negedge wclk) begin
if (rclk_reset_n) begin
if (!full) begin
write_en=1'b1;
fifo_in = Srandom({seed1});
end
else
write_en=1'b0;
end
end

always @ (posedge rclk) begin
if (rclk_reset_n) begin
if (lempty) begin
read_en=1b1;
//Sstrobe($Sstime, ,,"READ: Pointer=%h data=%h",aff1.rd_ptr,fifo_out);
end
else
read_en=1b0;
end
end

always @ (wclk_reset_n) Sstrobe(Sstime,,,"\twclk_reset_n=%b",wclk_reset_n);
always @ (rclk_reset_n) Sstrobe(Sstime,,,"\trclk_reset_n=%b",rclk_reset_n);

endmodule

14.2 Embedding Concurrent Assertions in Procedural Code 217

14.2 Embedding Concurrent Assertions in Procedural
Code

Yep, you can indeed assert a property from a procedural block. Note that property
and sequence itself are declared outside of the procedural block.

Off the bat, what is the difference than between immediate assertion and
embedding a concurrent assertion in the procedural block? Well, immediate
assertion is invoked with ‘assert’ while embedded concurrent assertion is invoked
with ‘assert property’. A concurrent assertion that is embedded in a procedural
block is the regular concurrent assertion ‘assert property’ (i.e. it can be temporal). In
other words, an immediate assertion embedded in the procedural code will complete
in zero time, while the concurrent assertion may or may not finish in zero time. But
is the concurrent assertion in the procedural code blocking or non-blocking? Hang
on to this thought for a while.

Figure 14.1 points out that the ‘condition’ under which you want to fire an
assertion is already modeled behaviorally and do not need to be duplicated in an
assertion (as an antecedent). The example shows both ways of asserting a property.
ifdef P shows the regular way of asserting the property that we have seen
throughout this book. “else shows the same property being asserted from an always

« Allows a flexible control over determining when to fire an assertion.
« Great for writing assertions without having to duplicate control logic
property prg(req,gnt);
req ##2 gnt; Note that you can
endproperty ‘cover' the property
outside of the
cP: cover property (@(posedge clk) (bState == CycleStart) |-> prg(req,gnt))+ procedural block,
Sdisplay (Sstime, ,,"PASS"); even if it is asserted
inside the procedural
“ifdef P block.
aP: assert property (@(posedge clk) (bState == CycleStart) |-> prg(req,gnt)) Asserting a property
else Sdisplay(Sstime, ,, FAIL"); outside of procedural
block
“else
always @(posedgeclk) ~—----------------------- * Clock inferred from the always block
in sensitivity list.
if (bState == CycleStart)
aP: assert property (prg(req,gnt)) else Sdisplay (Sstime,,,FAIL"); | l
end ‘property’ asserted inside a procedural
S andit block.
J

Fig. 14.1 Embedding concurrent assertions in procedural code

218 14 Very Important Topics and Applications

block. But note that in the procedural block the assertion is preceded by ‘if
(bState == CycleStart)’ condition. In other words, a condition that could be already
in the behavioral code is used to condition an assertion. If the property was
‘asserted’ outside of the procedural block (as we have done until now in the book)
you would have to duplicate the condition in the procedural block as an antecedent
in the property.

Let us turn our attention back to embedded concurrent assertion being blocking
or non-blocking. What happens when you fire a concurrent assertion from the
procedural code and it does not finish in zero time? What happens to the procedural
code that follows the concurrent assertion? Will it stall until the concurrent assertion
finishes (blocking)? Or will the following code continue to execute in parallel to the
fired concurrent assertion (non-blocking)? That’s what Fig. 14.2 explains.

There are two properties ‘prl’ and ‘pr2’. They both ‘consume’ time, i.e. they
advance time. The procedural block ‘always @ (posedge clk) asserts both these
properties one after another without any time lapse between the two. How will this
code execute? The procedural code will encounter ‘assert property (prl ...)" and fire
it. ‘prl’ will start its evaluation by looking for cstart to be high and follow on
through with the consequent. In other words, ‘prl’ is waiting for something to
happen in time domain. But the procedural code that fired it won 't wait for ‘prl’ to

property pri(req,gnt);
cstart | => req ##2 gnt;

endproperty
property pr;

Sfell(aStrobe) | => $fell(Wenb) | | $fell(Renb); Procedural trigger of a
endproperty concurrent assertion runs as a

separate parallel thread to the
procedural code (in other
words, it is non-blocking).

cP: cover property (@(posedge clk) pri(req,gnt))
Sdisplay ($stime,,,"PASSpr1”);

cA: cover property (®(posedge clk) pr2)
Sdisplay ($stime,,,"PASSpr2");

These two assertions will fire in

always @(posedge clk) parallel.
begin
if (CheckWrite) begin
assert property (pri(req,gnt)) else
Sdisplay(Sstime,"FAILpr1");

Second assertion will NOT wait
for the first one to complete

assert property (pr2) else Sdisplay(Sstime,"FAlLpr2");

end

end

10 clk=1 cstart=0 req=0 gnt=0 aStrobe=1 Wenb=1 Renb=1

30 clk=1cstart=1 req=0 gnt=0 aStrobe=0 Wenb=1 Renb=1
50 clk=1 cstart=0 req=1 gnt=0 aStrobe=1 Wenb=0 Renb=1
50 PASSPr2 e -

70 clk=1 cstart=0 req=0 gnt=0 aStrobe=0 Wenb=1 Renb=1
90 clk=1 cstart=0 req=0 gnt=1 aStrobe=1 Wenb=1 Renb=0
90 PASSpr1 «————

90 PASSpr2 «—

Fig. 14.2 Concurrent assertion embedded in procedural code is non-blocking

14.2 Embedding Concurrent Assertions in Procedural Code 219

complete. It will move on to the very next statement which is ‘assert property (pr2.)’
and fire it as well. So, now you have ‘prl’ that is already under execution and ‘pr2’
that is just fired both executing in parallel and the procedural code moves on to
other code that sequentially follows.

In short, a concurrent assertion in procedural code is non-blocking.

As shown in the simulation log, at time 10, (@ posedge clk) we fire ‘prl’. At the
same time [since the very next statement is ‘assert property (pr2 ...)’] we fire ‘pr2’.
At time 30, ‘cstart == 1’ and ‘aStrob == 0’. This means the antecedent condition of
both ‘prl’ and ‘pr2’ have been met. At 50, ‘Wenb == 0’ which completes the
property ‘pr2’ and the property passes as shown at time 50 in simulation log.
Therefore, the first thing you notice here is that even though ‘prl’ was fired first,
‘pr2’° finished first. In other words, since both properties were non-blocking and
executing on their own parallel threads, there is no temporal relationship between
them or among ‘prl’, ‘pr2’ and the procedural code. Following the same line of
thought, see why both ‘prl’ and ‘pr2’ pass at the same time at 90.

See the rules on inferring clock edge for the assertion in the procedural block. In
addition, other nuances of semantic are noted in Fig. 14.3. In short, the clock
inference for the embedded assertion comes from the ‘always’ block edge

always begin <«—
if (bState == CycleStart)
@(posedge clk);
aP: assert property (prg(req,gnt)) else
Sdisplay(Sstime, ,,"FAIL");
end

NO CLOCK in always sensitivity list

//ERROR: test_procedural_assertion.sv(39):
always block must be sensitive to a clock as it
has concurrent assertions in it.

always begin
@(posedge clk);
if (bState == CycleStart)
aP: assert property (prg(req,gnt)) else
Sdisplay(Sstime,,,"FAIL");
end

always @(posedge clk) begin
if (bState == CycleStart)

@(negedge regCheck) e’/—j
aP: assert property (prg(req,gnt)) else

Sdisplay($stime, ,,"FAIL"); //ERROR:

end test_procedural_assertion.sv(40):
concurrent assertion can not be specified
after a timing control statement.

always @(posedge clk) begin
#1;
if (bState == CycleStart)
aP: assert property (prg(req,gnt)) else
Sdisplay(Sstime,,,"FAIL");
end

Fig. 14.3 Embedding concurrent assertions in procedural code—further nuances

220 14 Very Important Topics and Applications

sensitivity. It is not derived from any other temporal domain condition (edge or
level) that is embedded in the procedural code.

Note that procedural code in context of placing concurrent assertion means only
the ‘initial” and the ‘always’ (including ‘always_comb’) blocks.

One note on ‘automatic’ variables in the procedural code and their use in an
assertion (in contrast to ‘static’ variables that we have used so far). An ‘automatic’
variable is sampled at the time the assertion attempt is started. This is in contrast to
‘static’ variable, which in the assertion expression are always sampled at the
sampling edge as with any other concurrent assertion that we have seen so far. To
reiterate, since this is a very important point, the value of an ‘automatic’ variable is
not sampled at the sampling edge rather captured at the time it arrives at the
assertion attempt that value of the variable is then used throughout the assertion
evaluation.

Note further Legal and Illegal conditions when it comes to embedding con-
current assertions in procedural code. Concurrent assertions can only be placed in
an ‘initial’ or an ‘always’ block.

property q1;
Srose(a) |-> ##[1:5] b;
endproperty

property q2;
@(posedge clk) q1;
endproperty

property qg5;

@(negedge clk) b[*3] |=> Ib;
endproperty
always @(negedge clk)
begin

al: assert property (Sfell(c) |=> q1); // legal: contextually inferred leading clocking event,
@(negedge clk)

a3: assert property (Sfell(c) |=> q2); // illegal: multiclocked property with contextually inferred
leading clocking event

a4: assert property (q5); // legal: contextually inferred leading clocking event, @(negedge clk)
end

Following are all illegal. Their clocks cannot be inferred.

always @(clk) begin
a=b+c;

al: assert property (z |=>d | e);

end

14.2 Embedding Concurrent Assertions in Procedural Code 221

In the above example, we don’t have any edge operators (posedge or negedge).
Hence, a leading clock cannot be inferred, i.e. “clk” will not be applied to property
al. An event expression without an edge operator is not allowed.

always @(posedge (dma_intr | intr) begin
intrln = intr;

al: assert property (z [=>d | e);

end

Here, ‘intr’ is reused in the procedural code. Hence, @(posedge dma_intr|intr)
cannot be considered the leading clock for the assertion. Clock is not inferred in this
case.

always @(posedge dma_intr or posedge intr) begin

end

Here there are two edges. Hence which one should be the leading clock? That
cannot be determined and there won’t be any clock inference. Only one valid event
expression can be specified in the event control for the inferred clock.

Here’s a quick note on how procedural concurrent assertions work in a ‘for
loop’.

logic [7:0] a;
logic [15:0] b;

always @(posedge clk) begin
If (reset) begin

for (inti=0;i<4; i++) begin

z1: assert property (a [i] ##[1:16] b[i]);
end
end

end

In this example, four assertions, z1_1, z1_2, z1_3 and z1_4 are initiated when
“for loop’ starts executing. Clock inferred is @(posedge clk).

222 14 Very Important Topics and Applications

14.3 Calling Subroutines

Attaching a subroutine to an expression is an excellent feature and a great boon to
debugging effort and other applications. The subroutine calls, like local variable
assignments, appear in the comma-separated list that follows the sequence. The
subroutine calls are said to be attached to the sequence. It is an error to attach a
subroutine call to a sequence that admits an empty match.

For example, if you’d like to know exactly when an expression is executed in a
complex sequence (this is just but one example), you can ‘attach’ a Verilog task to
the expression and display the conditions you are interested in. Figure 14.4 explains
this scenario.

As shown in the figure, you can attach a subroutine to an expression, a sequence
or to an expression or subsequence within a sequence. Note that the attached
subroutine will execute on successful completion of either the expression or the
sequence to which it is attached. For example, (not(cde,tdispl)) in the topmost
example of Fig. 14.4 means that ‘tdispl’ will execute when ‘cde’ reaches its true
conclusion. Else, it won’t execute.

A subroutine attached to the expression

sequence cde; | in @ property -|
c##1d ##1 e _
endsequence T A subroutine attached to a

sequence call

property nots;) \ /'
@(posedge clk) (a,tdisp) |-> ((not(cde,tdisp1)));
endproperty

baseP: assert property (nots) else gotoFail;

A subroutine attached to the expression
in a sequence

sequence cde; v
c ##1 d ##1 (e,tdisp1);
endsequence

task tdisp1;
Sdisplay($stime,,,”%m c=%b d=%b e=%b”,c,d,e);
endtask

Fig. 14.4 Calling subroutines

14.3 Calling Subroutines 223

sequence lvar_seq(pin,pout);
int local_data;
(Srose(ptrue),local_data = pin,S$display(Sstime,,,"pin=%0d",pin))

;{,l AAAAAAAAAANAAAAANAAANAANAAANAANANAN

/1 This will be executed when Srose(ptrue) is detected..
#H5
(pout == (local_data+5),Sdisplay(Sstime,,, "pout=%0d",pout));

,l"{ AAMAAAANAANAAAANANANAAAAANMAMAAAAAAAAAAAANANN

/1 This will be executed ONLY IF

1 the sequence MATCHES.

endsequence

property lvar;
@(posedge clk) cStart |-> lvar_seq(pipe_in,pipe_out);
endproperty

Fig. 14.5 Calling subroutines—further nuances

Figure 14.5 further explains when a subroutine is executed. First, at the top of
the figure you notice that we ‘attach’ a local variable as well as a subroutine
($display task). Since $rose(ptrue) is the sequence to which the subroutine is
attached, it will execute only when $rose(ptrue) is true. Similarly, the next part of
the figure shows (pout == (local_data + 5), $display (...)), where (pout == (local_-
data + 5)) is the expression to which the $display subroutine is attached. Again, the
subroutine $display will execute only if (pout == (local_data + 5)) is true.

You will also notice that $display in this figure (for most part) displays local
variables. This is one of the important use of $display as a subroutine because local
variables cannot be accessed from an action block (pass or fail).

In Fig. 14.6, the subroutine is a Verilog ‘task’—Ilvar_seq_trigger which in turn
contains a $display. But I don’t want you to run away with the idea that the only
subroutine you can attach is the one that $displays something! For example, you
can use a subroutine to collect coverage information (using covergroups and cov-
erpoints). We will see this with an example when we discuss Functional Coverage.
Since the attached subroutine can be task, you can think of many possible
applications.

The idea behind attaching a ‘task’ to the expression is that you can do whatever
that Verilog allows you to do in a ‘task’ except that you cannot access the local
variables of the sequence that invoked the ‘task’. But you can indeed pass a local
variable as an argument to the ‘task’ as shown in Fig. 14.6.

‘sequence lvar_seq’ has a local variable called ‘local_data’. This local variable is
passed to ‘Ivar_seq_trigger’ as an actual argument. ‘task lvar_seq_trigger’ in turn
uses that as an input ‘ldata’ and displays it. This is one way you can pass a local
variable to the attached subroutine.

224 14 Very Important Topics and Applications

sequence lvar_seq(pin,pout);
int local_data;
(Srose(ptrue),local_data = pin,lvar_seq_trigger(local_data))
#45
(pout == (local_data+5),lvar_seq_match(pin,pout,local_data));
endsequence

property lvar;
@(posedge clk) ptrue |-> Ivar_seq(pipe_in,pipe_out);
endproperty

baseP: assert property (lvar) else gotoFail;
coverP: cover property (lvar) gotoPass;

task lvar_seq_trigger;
input ldata;
Sdisplay($stime,,,"%m ldata=%0d",ldata);

/15display(Sstime,,,"%m ldata=%0d",lvar_seq.pin);
/1 ** Error: Hierarchical access to formal parameter pin’ of ‘lvar_seq' is illegal.
endtask

task lvar_seq_match;
input tpin,tpout,ldata;

Sdisplay(Sstime,,,"%m pin=%0d pout=%0d ldata=%0d",tpin,tpout,ldata);
endtask

Fig. 14.6 Application: calling subroutines and local variables

But note that you cannot access a variable (local or not) hierarchically from the
attached subroutine (for example, task lvar_seq_trigger). This is shown with an
ERROR in the figure. Here we tried to hierarchically access variable ‘pin’ in
‘sequence lvar_seq’ by using ‘lvar_seq.pin’. That is a violation.

To recap:

All subroutine calls attached to a sequence are executed at every successful match
of the sequence.

For each successful match, the attached calls are executed in the order they appear
in the list.

Assertion evaluation does not wait on or receive data back from any attached
subroutine. The subroutines are scheduled in the Reactive region, like an action
block.

Actual argument expressions that are passed by value use sampled values of the
underlying variables and are consistent with the variable values used to evaluate the
sequence match.

An automatic variable may be passed as a constant input for a subroutine call from
an assertion statement in procedural code. An automatic variable cannot be passed

14.3 Calling Subroutines 225

by reference nor passed as a nonconstant input to a subroutine call from an assertion
statement in procedural code.

Local variables can be passed into subroutine calls attached to a sequence. Any
local variable that is assigned in the list following the sequence, but before the
subroutine call, can be used in an actual argument expression for the call. If a local
variable appears in an actual argument expression, then that argument must be
passed by value.

Tasks, task methods, void functions, void function methods, and system tasks can
be called at the end of a successful non-empty match of a sequence.

Finally, arguments passed to a subroutine must be by value or by reference (‘ref’ or
‘const ref”).

14.4 Sequence as a Formal Argument

System Verilog assertions are indeed powerful as evident from this feature. You can
send an entire sequence as an actual argument to a property or another sequence.
One obvious advantage is that you may reuse a sequence in different properties as
an actual to the property’s formal argument. One example of this is the Reset
Sequence as shown in Fig. 14.7. Reset sequence is often used in different properties
as an antecedent. Write it once and pass it to different properties as an actual

sequence ‘seq’ as a formal I ‘ actual sequence RstSeq I
/ |

sequence RstSeq;
Irst ##2 rst;
endsequence

property s_rc1(seq,sra,srb);
seq |=> sra ##1 srb;
endproperty

baseP: assert property (@(posedge clk) s_rc1 (RstSeq, L1ifaceReady,
L1RdRequest)) else gotoFail;

For example, the ‘reset sequence’ can be used as a generic sequence to
trigger different checks.

Here when reset sequence matches, we check to see the L1 interface Ready
(L1ifaceReady) is asserted the clock after reset sequence match and L1 issues
a Read Request (L1RdRequest) the clock after L1ifaceReady.

Fig. 14.7 Sequence as a formal argument

226 14 Very Important Topics and Applications

argument. That is reusability with observability and debuggability. The sequence
that is passed to a property can (obviously) be used on both the antecedent and
consequent side.

14.5 Sequence as an Antecedent

Since a sequence can be passed as an actual argument there are many advantages.
We saw one in Fig. 14.7. Here’s another. Here, we define a simple sequence ‘seq’
and pass it to property ‘s_rcl’. In this property, we use ‘seq’ (i.e. c_seq in the
property) as an antecedent (Fig. 14.8).

As with any antecedent, the property will wait for antecedent to be true and then
imply the consequent. Now, with many operators (e.g. ‘throughout’) we have
observed that the LHS and RHS of the operator is equally responsible for failure. If
either side fails that the operator and hence the sequence/property fails. Important
thing to note here is that in the cases of ‘throughout’ the operator was used in the
consequent and not in antecedent. Anything that fails in consequent causes the
property to fail. Here, a sequence is used in the ‘antecedent’ meaning even if the

sequence seq;
c ##1d ##1 e;
endsequence

property rci(ra,rb);
rbor (ra and (" true |=> rci(ra,rb)));
endproperty

property s_rc1(c_seq,sra,srb);7
—— (c_seq,tdisp) |=> rci(sra,srb);
endproperty

baseP: assert property (@(posedge clk) s_rc1(seq,a,b)) else gotoFail;

Important Point on sequence used as antecedent ::

Since c_seq is on the LHS of the implication, that the property "WAITS”
until it is true before implying rci.

In other words, if c_seq fails, the property won't fail.
property s_rc1 simply waits until sequence 'seq’ matches and then fires

evaluation of the consequent. If 'seq’ does not match, the property won't
fail and won't start evaluation of the consequent.

Fig. 14.8 Sequence as an antecedent

14.5 Sequence as an Antecedent 227

sequence in antecedent fails, the property will not fail. Instead, the property will
simply wait for the sequence ‘c_seq’ to be eventually true, after which it will
execute the consequent. This makes sense because consequent fires only when
antecedent is sampled to be true.

Short end of the story is that no matter what you have in the antecedent, it will
not cause a failure. Antecedent’s job is to evaluate its expression/sequence and on
sampling it to be true, imply the consequent.

14.6 Sequence in Sensitivity List

Let us take the use of a ‘sequence’ even further. Guess what? You can use a
sequence for event control either in the sensitivity list or as an explicit edge sen-
sitive control in an initial block. You can use this feature very effectively because
designing a temporal domain condition in SVA is far easier than using behavioral
Verilog. You can design certain condition as a sequence and then use it in your
procedural behavioral Verilog code as shown in Figs. 14.9 and 14.10.

Figure 14.9 shows that the ‘always’ block waits for sequence ‘srl’ to complete
after which it display its PASS result. Can you figure out why there is no FAIL
report? Was “always @ (srl)” triggered when ‘gnt’ did not follow ‘req’ after 2
clocks? Please experiment and see what happens.

sequence sri;
@(posedge clk) req ##2 gnt;
endsequence

always @(sr1)
Sdisplay($stime,,,"req ##2 gnt PASS");

Using sequence as an event trigger for
always block.

5 clk=1 req=0 gnt=0
15 clk=1 req=1 gnt=0
25 clk=1 req=0 gnt=0
#
#

Triggers only when the sequence matches.

35 clk=1 req=0 gnt=1
35 req ##2 gnt PASS

45 clk=1 req=1 gnt=0
clk=1 req=0 gnt=0
65 clk=1 req=0 gnt=0

B
n
i

75 clk=1 req=1 gnt=0
85 clk=1 req=0 gnt=0
95 clk=1 req=0 gnt=1
95 req ##2 gnt PASS

o W

Fig. 14.9 Sequence in procedural block sensitivity list

228 14 Very Important Topics and Applications

sequence ReadComplete;
@(posedge clk) Srose(read) ##0 [-> 1] readC;

endproperty
initial
begin

@(ReadComplete)

begin

-> issueNextRead;

end
end

When "ReadComplete” reaches it's end
point, the event control
“@(ReadComplete)” in the ‘initial’ block is
triggered.

Fig. 14.10 Sequence in ‘sensitivity’ list

The sequence in Fig. 14.10 says that @ (posedge clk) if $rose(read) is sampled
high (edge) that there should be at least 1 readC (read complete). The ‘initial” block
waits for this sequence to complete (using @ (ReadComplete)) and then issues the
next Read.

As you can see, this feature is extremely powerful in using the power of
sequence in designing your SystemVerilog testbench code.

14.7 Building a Counter

Ok, that is enough of sequences (for a while, at least). Let us see how we can
effectively use local variables and the consecutive repetition operator to build
something!

Let us build a counter. Why? There are many applications where you will be
able to use this example. For example, you want to make sure that an incoming
packet on a network generates an interrupt when it’s payload reaches a maximum
threshold.

The property checkCounter declares a local ‘int’ called ‘LCount’. It waits for a
rising edge on ‘startCount’ and on this rising edge, it stores ‘initCount’ into
‘LCount’ (initCount is defined elsewhere in your procedural code).

It then waits for 1 clock and increments LCount by 1 and continues to do so at
every clock until LCount reaches maxCount. The consecutive repetition operator
[*0:$] does the counting. In other words, “LCount = LCount + 1” repeats at every

14.7 Building a Counter 229

posedge clk until you reach “LCount == maxCount”. Once the maxCount is
reached, the antecedent implies at the same clock (overlapping implication) that the
intr be asserted.

Quick Note: In this book, as you have noticed, instead of giving large appli-
cations and then describe a limited set of SVA features, I have chosen to describe
each operator with simple applications so that you clearly understand the workings
of the operator and apply the operator features to design your assertions.

14.8 Clock Delay: What if You Want Variable Clock
Delay?

Figure 14.11 built a counter which can be used to create a variable delay model.
Note that SVA allows only constant fixed delays with its delay operator. So, the
example in Figs. 14.12 and 14.13 demonstrates a strategy to get around this
limitation.

Figure 14.12 describes a typical specification. We need to check for variable
latency based on the position of a ‘read’ in the read queue. In other words, if the
‘read’ is at the end of the queue, ‘read’ will complete with maximum latency. On
the contrary if it’s at the beginning of the queue, it will complete with minimum
latency. Or with a latency anywhere in the middle.

Since the delay (or range delay) operator does not allow variable delay, how
would you model this with one generic assertion? You do not want to create a
separate assertion for each of the fixed latency. That is the problem statement. Now
let us see how we solve this. Consider this example as an idea generator.

Following is an example of how to build a counter using the consecutive
repetition operator [* m]

property checkCounter;
int LCount;
@(posedge clk) disable iff (Irst_n)

(
(Srose(startCount), LCount=initCount) ##1
(1, LCount = LCount+1)[*0:5] ##1 (LCount == maxCount) |->
(Intr == 1'b1)
)
endproperty

assert property (checkCounter);

Fig. 14.11 Application: building a counter using local variables

230 14 Very Important Topics and Applications

sequence Sab; Recall that in ##<delay>
a##lb; « s
endsequence :gre.::r:t;nust be a positive integer (a
property ab;
@(posedge clk) z |-> Sab;
endproperty

But what if you want to have variable clock delay in a property ? I

Consider the following application

Check for read latency which varies depending on the position of read in a queue.
« If it's at the end of the queue, it carries maximum latency

« if it's at the beginning of the queue, it carries minimum latency

« and something in-between carries in-between latency.

How would you code it ?

One way would be to have a different property for every possible latency; each
property using a fixed latency.

Another would be to simply check for 'max’ latency which catches all cases. But
this could be dangerous in critical mission applications where min. latency must
also be met.

Wouldn't it be better to have a single property which can use a 'variable’ for
##<variable> where the 'variable’ can be assigned different values ?

Fig. 14.12 Variable delay—problem statement

The concept in Fig. 14.13 is identical to building a counter example. Here
instead of incrementing the local variable we decrement it until it reaches zero. In
this application readLatency is defined in your procedural code and it changes based
on the position of Read in the read queue. That part of the code is not shown here.

When the property ‘read_latecncy_check’ is asserted, it will assign the
readLatency to Ldelay on assertion ($fell(rd_)) and decrement it at every posedge
clk, until it reaches 0.

(1, Ldelay = Ldelay-1)[*0:$] ##1 (Ldelay ==0)

Ldelay is decremented consecutively at every posedge clk until Ldelay == 0.
Need for ‘1’ in (1, Ldelay = Ldelay — 1)? Why? Recall that we can assign to a local
variable when that assignment is attached to an expression. Since we do not have
any explicit expression, we simply use ‘always true’ as an expression.

You can continue to change readLatency from procedural code based on the
position of ‘read’ in your read queue and use the same property to check for
different latencies of read in the read queue.

This simple example has very powerful application capabilities.

14.9 What if the ‘Action Block’ Is Blocking?

231

Here's pseudo-code of what you want to accomplish : NOTE this is just pseudo-code and
WON'T work because SVA does not allow variable ## delay

property read_latency_check;
@(posedge clk) disable iff (Irst_n) (S$fell(rd_)) |->
##[readLatency] (read_data == expected_data);

endproperty
NOT ALLOWED:
assert property (read_latency_check); variable 'readLatency’
as ## delay.

Possible Solution: I

property read_latency_check;
int Ldelay;
®(posedge clk) disable iff (Irst_n)

(
($fell(rd_), Ldelay=readLatency) ##1

(1, Ldelay = Ldelay-1)[*0:5] ##1 (Ldelay==0) |->

(read_data == expected_data)
);
endproperty
assert property (read_latency_check);

Fig. 14.13 Variable delay—solution

14.9 What if the ‘Action Block’ Is Blocking?

property pri;
@(posedge clk) req |-> ##2 gnt ;
endproperty

reqGnt: assert property (pr1) else failtask;

task failtask;
Sdisplay(Sstime,,,"FROM failtask - 0");

@(posedge clk) Sdisplay(Sstime,,,"FROM failtask - 1");
@(posedge clk) Sdisplay(Sstime,,,"FROM failtask - 2");
@(posedge clk) Sdisplay($stime,,,"FROM failtask - 3");
@(posedge clk) Sdisplay(Sstime,,,"FROM failtask - 47);

endtask

232 14 Very Important Topics and Applications

We have seen that the assertion of a property (“assert property”) allows you two
‘action’ blocks. One is triggered when the property passes and the other when it
fails.

This action block can contain any procedural code that SystemVerilog supports.
The procedural block can have temporal domain ‘delay’ (e.g. @ (posedge cc) or
‘wait sig’, etc.). That is when you need to carefully weigh in the consequences. If
there is no ‘delay’ in the block, life is straightforward. The “assert property” triggers
the block without any delay; the block executes in O time; returns and the property
moves along with its execution. But if there are delays in the action block, here’s
what happens.

The property at top left of Fig. 14.14 says “assert property (prl) else failtask”. If
the property fails, call a task called ‘failtask’. ‘failtask’ in turn waits for 4 @
(posedge clk) and returns from the task. The 4 clock delay is just an example for
temporal delay.

Now let us look at the simulation log. At time 30, req = 1, so the property prl
moves along. At time 70, gnt = 0 which is a failure condition because gnt should
have been ‘1’ at that time. Since there is a failure, the ‘failtask’ is invoked at time 70
(the time of failure). The ‘failtask’ waits for 4 posedge clks, which are displayed in
the log file at time 90, 110, 130, 150. While the ‘failtask’ was waiting for its clocks
to complete, at time 110, req goes high again. So, the property starts executing and
expects ‘gnt’ to be high at 150. And again gnt is ‘0’, so the property should fail. But
it does not!! Why? Because at time 150, the ‘failtask’ was still completing its 4th
clock wait. Since the 4th clock wasn’t over by the time the ‘gnt’ based failure came

10 clk=1 req=0 gnt=0
30 clk=1 reqg=1 gnt=0
First FAlLure at time 70 is reported because ‘req’ is 50 clk=1 req=0 gnt=0
asserted at time 30 but 'gnt’ is not asserted 2 ™ 70 clk=1 req=0 gnt=0
clocks later at 70 ... 70 FROM failtask - 0
90 clk=1 req=0 gnt=0
90 FROM failtask - 1
Second FAlLure at time 150 is NOT reported o 110 clk=1 reqg=1 gnt=0
because ... 110 FROM failtask - 2
130 clk=1 req=0 gnt=0
When ‘req” was asserted at time 110, the property 130 FROM failtask - 3

eval should have started. But the action_block ™ 150 clk=1 req=0 gnt=0
(‘failtask’) associated with FIRST FAlLure was still 150 FROM failtask - 4

executing at time 110. Hence the property eval 170 clk=1 req=0 gnt=0
was blocked and it does not show failures at time 190 clk=1 req=0 gnt=0
150. 210 clk=1 reqg=0 gnt=0

See the next slide to see that the second failure
does get reported when we remove the ‘posedge
clk’ temporal domain blocking statements from
‘failtask’.

Fig. 14.14 Blocking action block

14.9 What if the ‘Action Block’ Is Blocking? 233
property pri; property pri;
®(posedgeclk) req |-> ##2 gnt ; ®(posedgeclk) req |-> ##2 gnt ;
endproperty endproperty

reqGnt: assert property (pr1) else failtask; reqGnt: assert property (pri) else
failtask;
task failtask;

Sdisplay(Sstime,,,"FROM failtask - 0"); task failtask;

Sdisplay($stime,,,"FROM failtask - 0");

@(posedge clk) $display($stime,,,"FROM failtask - 17); | endtask
@(posedge clk) $display($stime,,,"FROM failtask - 2);
@(posedge clk) $display(Sstime,,,"FROM failtask - 3);
@(posedge clk) $display(Sstime,,,"FROM failtask - 4);
endtask
— 10 clk=1 req=0 gnt=0 10 clk=1 reg=0 gnt=0
30 clk=1 req=1 gnt=0 » 30 clk=1 reqg=1 gnt=0
50 clk=1 req=0 gnt=0 » 50 clk=1 req=0 gnt=0
70 clk=1 req=0 gnt=0 70 clk=1 req=0 gnt=0
;’g FFOM failta(s)k -0 : 70 FROM failtask - 0
clk=1 req=0 gnt= |+ 90 clk=1 req=0 gnt=0
90 FROM failtask - 1 '—'_'_'_'_'d_._'_’_ﬁ_,_,__._a-ffo clk=1 req=1 gnt=0
110 clk=1 req=1 gnt=0 M= 130 clk=1 =0 ent=0
110 FROM failtask -2 —| - Cih= -req=il gNt=
130 clk=1 req:O gntzo / 150 clk=1 rec}:ﬂ gﬂt=ﬂ
130 FROM failtask -3 —| ? _— = = 150 FROM failtask - 0
150 clk=1 req=0 gnt=0 T 170 clk=1 req=0 gnt=0
150 FROM failtask - 4 4 = < 190 clk=1 req=0 gnt=0
170 clk=1 req=0 gnt=0 210 clk=1 req=0 gnt=0
190 clk=1 req=0 gnt=0
210 clk=1 reg=0 gnt=0

Fig. 14.15 Blocking versus non-blocking action block

along at 150, the failure got suppressed because first invocation of ‘failtask’ wasn’t
over.

The point is, if you call a procedural block that does not complete in ‘0’ time,
and if the next trigger of the property antecedent comes along causing another
pass/fail, the next trigger of the action block associated with pass/fail won’t happen.
So, be careful in using time lapse in your action block(s).

Figure 14.15 simulation logs highlight the same point. There is one example
with time lapse in the action block and another without.

As shown in Fig. 14.15, the properties on LHS and RHS are identical, except
that LHS action block calls a ‘failtask’ that elapses time (4 clocks). The RHS on the
other hand calls ‘failtask’ that does not elapse any time.

The ‘req’ condition is also identical in both simulation logs. But the RHS shows
two invocations of ‘FROM failtask—0’ while the LHS log shows only one invo-
cation (as explained above for Fig. 14.14) because the action block is ‘blocking’
and does not allow reentry into an already executing action block.

234 14 Very Important Topics and Applications

14.10 Interesting Observation with Multiple (Nested)
Implications in a Property. Be Careful

Can you have multiple implications in a property? Sure you can. However, you
need to very carefully understand the consequences of multiple implications in a
property. Some also call, multiple implications as nested implications. You decide.
Let us look an example and understand how this works.

In Fig. 14.16, the property mclocks (at first glance) looks very benign. But play
close attention and you will see two implications. @ (posedge clk) if ‘a’ is true that
implies “‘bSeq’ ##1 ¢”, which implies ‘dSeq’. One antecedent implies a consequent
which acts as the antecedent for another consequent.

sequence bSeq;
##[1:5] b;
endsequence

sequence dSeq;
#42 d #42 e;
endsequence

property mclocks;
@(posedge clk) a |-> bSeq ##1 c |-> dSeq;

endproperty

165 CLK# 17 :: clk=1 a=0 b=0 c=0 d=0 e=1

175 CLK# 18 :: clk=1 a=1 b=0 c=1 d=0 e=0 //a=1 so start
185 CLK# 19 :: clk=1 a=0 b=1 ¢=0 d=0 e=0

//b=1 next clock; so 'bSeq’ matches

195 CLK# 20 :: clk=1 a=0 b=0 c=0 d=0 e=0
//But ¢ NE 1 the next clock
//and the property does NOT fail.

205 CLK# 21 :: clk=1 a=0 b=0 c=0 d=0 e=0
215 CLK# 22 :: clk=1 a=0 b=0 c=1 d=0 e=0

//So, when 'c’ does go "1’ a couple of clocks later, the 'dSeq’ seq

//won’t start eval at that time. The fact that 'c’ did not go "1’

//the very next clock after 'bSeq’ matches that the entire

//property will simply not get evaluated for pass or fail; until //'a’ is asserted
again.

225 CLK# 23 :: clk=1 a=0 b=0 c=0 d=0 e=0
235 CLK# 24 :: clk=1 a=0 b=0 c=0 d=1 e=0
245 CLK# 25 :: clk=1 a=0 b=0 c=0 d=0 e=0
255 CLK# 26 :: clk=1 a=0 b=0 c=0 d=0 e=1
265 CLK# 27 :: clk=1 a=0 b=0 c=0 d=0 e=1

W R "

Fig. 14.16 Multiple implications in a property

14.10 Interesting Observation with Multiple (Nested) Implications ... 235

Now, let us look at the simulation log. At time 175, a = 1, so the property starts
evaluation and implies “bSeq ##1 ¢”. At time 185 ‘bSeq’ matches, so the property
now looks for ##1 c. At time 195, c is —not- equal to ‘1’ but the property does not
fail. Wow! Reason? Note that ‘bSeq ##1 ¢’ is now an antecedent for ‘dSeq’ and as
we know if there is no match on antecedent that the consequent won’t be evaluated
and the property won’t fail. Here that seems to apply even though ‘bSeq ##1’ is a
consequent, it is also an antecedent. Language anomaly? Not really, but the
behavior of such properties is not quite intuitive. Since ‘bSeq ##1c¢’ did not match,
the entire property is discarded and the property again waits for the next “a == 1" to
start all over again.

Confusing? Well, it is. Hence, please don’t use such multiple implication
properties unless you are absolutely sure that that’s what you want. I’ve seen
engineers use it because the logic seems intuitive, but the behavior is not.

My suggestion is to use only a single implication. It will keep your code
unambiguous. For example, following two properties are equivalent.

P1: assert property (@posedge clk) req |-> ##2 gnt |-> ##2 gntAck;
P1: assert property (@posedge clk) req ##2 gnt |-> ##2 gntAck;
Following two are equivalent too.

P2: assert property (@posedge clk) req |=>gnt |=> gntAck;

P2: assert property (@posedge clk) req ##1 gnt |=> gntAck;

And finally following two are equivalent

P3: assert property (@posedge clk) a |->b |->¢;

P3: assert property (@posedge clk) a##0 b |->c;

So, as you can see, it is indeed possible to write properties with a single
implication operator. Keep it simple.

14.11 Subsequence in a Sequence

A sequence can be embedded in another sequence. The embedded sequence can be
called a subsequence. Figure 14.17 shows that sequence ‘abc’ is embedded into
sequence ‘abcRule’. The embedded subsequence infers the clock from the parent
sequence, if the subsequence does not have an explicit clock of its own.

Also, as shown in Fig. 14.18, a sequence can be used both as an antecedent
and/or a consequent.

As shown, the antecedent is sequence ‘sl1’, which implies sequence ‘s2’ as
consequent. Here, each sequence has its own explicit clock. However, if that were
not the case, the subsequences would inherit (inference) the clock from property sl
to s2.

236

Clock inference

clock for ‘abc’
inferred from
‘abcRule’

14 Very Important Topics and Applications

Named sequence used as a
subsequence

sequence abc;
2 ##1 b ##1 c;
‘endsequence

{ | sequence abcRule;

|- @(posedge clk);

endsequence

cycleStart ##1 abc ##1 cycleEnd

Fig. 14.17 Subsequence in a sequence—clock inference

Use as
antecedent

sequence s1;

@(posedge clk) a ##1 b ##1 c;

endsequence

sequence s2;

@(posedge clk) d ##1 e;

endsequence

property s1tos2;

@(posedge clk) s1 |=> s2;

‘sequence’ can be used either as an antecedent or as a consequent or both. I

Fig. 14.18 Subsequence in a sequence

The reason for pointing out this usage is, again, to emphasize that it’s best to
break down a property into smaller sequences and then build the larger overall
property. The smaller the sequence, the better it is for debuggability and

controllability.

14.12 Cyclic Dependency

As shown in Fig. 14.19, you can indeed have cyclic dependency between properties
but not among sequences. But note that the cyclic dependency between properties is
only between consequent of the property, not the antecedent.

What is the use of this feature? If you want to check for continuous toggle
between two states of a state machine, you can use this property. The property as
shown in this example will never complete until simulation ends.

14.12 Cyclic Dependency 237

l Cyclic dependency in a sequence

~

sequence s1;
@(posedge clk) a ##1 b ##1 s2;
endsequence [

:t ILLEGAL ::

Cyclic dependency NOT
allowed between sequences...

sequence s2;
@(posedge clk) c ##1 d ##1 s1;
endsequence

| Cyclic dependency in a property I
—_—)
')

property p1;
@(posedge clk) a |=> p2;

endproperty Cyclic dependency allowed
between properties...

A
/ :: LEGAL ::

property p2;
@(posedge clk) c |=> p1;
endproperty

p2c: assert property (p2);

Fig. 14.19 Cyclic dependency

Note also that you cannot do something like “c|=>d ##1 e ##1 pl”. You cannot
use another property as a subsequence for cyclic dependency. You will get the
following Error

**Error: massert.v(42): Illegal SVA property value in RHS of ‘##’ expression.

14.13 Refinement on a Theme

See Fig. 14.20

14.14 Simulation Performance Efficiency

In Fig. 14.21, the top property rdyProtocol says that if rdy is true then you must get
a rdyAck. We have designed that using the constant delay range. Nothing wrong
with that, but (as seen from simulation results), the infinite range based design runs

238

14 Very Important Topics and Applications

clock delay). Simple enough

sequence ‘abc’ states that ‘a’ is followed by ‘b’ followed by ‘c’ (all with a single

sequence abc;

endsequence

@(posedge clk) a ##1 b ##1 c;

The sequence here will do the trick ...

In many applications, however, it maybe required that ‘a’ remains asserted
when b is asserted and then ‘a and b’ remain asserted when ‘c’ is asserted.

a##ltakb##1akbtkec;
OR (with good use of parenthesis)
a ##1 (a & b) ##1 (a & b &c);

OR if it is required that ‘a’ and ‘b’ must get deasserted the very next clock
after they are found asserted, then this sequence will do the trick.

a##1lakb##1lak!békc;
OR
a##1 (lakb)##1 (la&!b &c);

Fig. 14.20 Refinements on a theme

property rdyProtocol;

endproperty
assert property(rdyProtocol);

Avoid long or infinite time ranges. I

@(posedge clk) rdy |-> ##[1:$] rdyAck;

property rdyProtocol;

@(posedge clk) rdy |-> rdyAck [-> 1];
endproperty
assert property(rdyProtocol);

A more simulation efficient way of
expressing the ‘infinite’ range
requirement...

Fig. 14.21 Simulation performance efficiency

slower than the one that does not use such a range. This by no means prohibits use
of ##[1:$], but if you can find a better way to solve the problem, you will get better
simulation efficiency. The bottom part of Fig. 14.21 shows the alternate way. It uses
the ‘goto’ operator, which models the same behavior, namely, that there will be at

least 1 rdyAck after a rdy.

14.15 1It’s a Vacuous World! Huh? 239

14.15 It’s a Vacuous World! Huh?

This section could have gone much earlier in the book but I did not want the reader
to get confused from the get go. Once you go through this example, you will see
why the ‘implication’ operator is (almost) a must in an assertion. The example
figures below have detailed annotation for ease of understanding.

Here we go.

14.15.1 Concurrent Assertion—Without—An Implication

Let us examine Fig. 14.22.

There is no implication operator in property prl. As Fig. 14.22 shows, property
‘prl’ reads as “@ (posedge clk) req should be true and 2 clocks later gnt should be
true”. Note that we have not used implication operator in the property. Hence, read
the property carefully. It does-not—say that “if” req is true that the property should
check for gnt. It simply says that ‘req’ be true at the posedge clk and 2 clks later gnt
be true. Hence, every clock that req is not true the property FAILs. Is that what we
really want? I don’t think so. That’s where an implication operator comes into
picture.

property pri; | Look! NO IMPLICATION |

®(posedge clk) req ##2 gnt;
endproperty

reqGnt: assert property (pr1) S$display(Sstime,,,"\t\t %m PASS"); else
Sdisplay($stime,,,"\t\t %m FAIL");

#10 clk=1 req=0gnt=0 Whenever ‘req’is Low, the assertion FAlLs

#10 test_basic_property.reqGnt FAIL X
proparsy-req That's because, a sequence simply says that

#30 clk=1 req=0 gnt=0 ‘req’ be true at the clock edge and that gnt
#30 test_basic_property.reqGnt FAIL must be true 2 clocks later.

It does NOT say check the sequence “Only

#30.‘clir! requt.gnt=0 If ‘req’ is true at posedge clk”.

#70 clk=1 req=0gnt=0 But you really don’t care for result when
#70 test_basic_property.reqGnt FAIL ‘req’ is Low.

#90 clk=1 req=0gnt=1 20N
#90 test_basic_property.reqGnt FAIL & ‘ J
#90 test_basic_property.reqGnt PASS
That’s where an implication operator
#110 clk=1 req=0 gnt=0 comes into picture...

#110 test_basic_property.reqGnt FAIL

Fig. 14.22 Assertion without implication operator

240 14 Very Important Topics and Applications

More importantly, do you notice that at time 90, the property PASSes as well as
FAILs!! Amazing! The property passes because at time 50, req = 1 so the property
looks for gnt = 1 at 90. It does find gnt = 1 at 90, so it PASSes. But since req = 0 at
90, it also FAILs. Amazing, again!

My suggestion, do NOT use properties without implication, unless you are
absolutely sure of what you are doing. Read On. The story does not quite end with
implication either ... but there is hope.

14.15.2 Concurrent Assertion—With—An Implication

Ok, so we decide to add an implication operator as in “@ (posedge clk) req|->##2
gnt;” so that we don’t get false failures. But wait! See the simulation log in
Fig. 14.23 carefully. Now the assertion passes whenever req = 0. What’s going on?

Everything seems Ok. If the antecedent is not true, the consequent won’t fire.
But when the antecedent is not true, the properties PASS action block triggers and
tells us that the property PASSes. Read on.

IMPLICATION OPERATOR
(OVERLAPPING)
ANTECEDENTI ' ‘| CONSEQUENT I
property pri; \ 1 l
@(posedge clk) req |-> ##2 gnt;

endproperty

reqGnt: assert property (pr1) Sdisplay($stime,,,"\t\t %m PASS"), else
Sdisplay(Sstime,,,"\t\t %m FAIL");

#10 clk=1 req=0 gnt=0

#10 test_basic_property1.reqGnt PASS In this example, we moved'a part of the

#30 clk=1 req=1 gnt=0 sequence as an antecedent to imply a
consequent.

#50 clk=1 req=0 gnt=0 With an implication operator, the

#50 test_basic_property1.reqGnt PASS ‘antecedent’ MUST be TRUE to evaluate the

consequent. Hence, whenever ‘req’ is Low,

S0 el [Foqed goted the antecedent is false and the implication

#70 test_basic_property1.reqGnt PASS ; : ! .

#70 test_basic_property1.reqGnt PASS simply does _not fire anfi there is no failure
message as in the previous example.

#90 clk=1 reg=1gnt=0 BUT WAIT... S

#100 clk=1 req=0 gnt=0 Now the property PA§Ses whenever ‘req’ is

#100 test_basic_property1.reqGnt PASS Low.

2, i 222
#130 clk=1 req=0 gnt=0 What's golng onii

#130 test_basic_property1.reqGnt FAIL

Fig. 14.23 Assertion resulting in vacuous pass

14.15 1It’s a Vacuous World! Huh? 241

14.15.3 Vacuous Pass. What?

IMPLICATION OPERATOR
(OVERLAPPING)

ANTECEDENT

CONSEQUENT
property pri;

@(posedge clk) req |-> ##2 gnt;
endproperty

reqGnt: assert property (pr1) Sdisplay(Sstime,,,"\t\t %m PASS"); else
Sdisplay($stime,,,"\t\t %m FAIL");

LRM 3.1a (Page 232) ::

“If there is no match of the antecedent sequence_expr, then evaluation of
the implication succeeds vacuously and returns true”

A couple of ways to get around this...

One is to simply not use the action_block associated with ‘pass’ (duh...) of the
property, so that you don’t get pass indication vacuously

But what if you do want to know when the property passes...

The reason we get a PASS on the antecedent failure is that according to the LRM
“If there is no match of the antecedent sequence_expr, then evaluation of the
implication succeeds vacuously and returns true”. Hence, whenever you see ‘req’
low, you get a ‘vacuous’ pass which triggers the PASS action block and we get the
PASS display.

Ok, so what is the solution? Why did not we see this behavior until now with all
the examples we have been through? Read on ...

14.15.4 Concurrent Assertion—with ‘Cover’

There are two ways to overcome this behavior that we do not want. One is to simply
ignore the PASS action block on ‘assert’ of a property, i.e. simply do not have a
PASS action block. That way if there is a vacuous pass, our log will not be cluttered
with misleading PASS messages. Note that ignoring the so-called vacuous pass is
harmless. This is the obvious solution.

242 14 Very Important Topics and Applications

Mo action_block associated
property pri; with true eval of the property.

@(posedge clk) req |-> ##2 gnt;
endproperty

A_reqGnt: assert property (pr1) else $display($stime,,,"\t\t %m FAIL");

C_reqGnt: cover property (pr1) Sdisplay($stime,,,"\t\t %m PASS");

You may use a ‘cover’ statement to cover the same property that is
asserted. ‘cover’ does not report vacuous pass. Note that ‘cover’ does not
allow an action_block if the property fails.

#10 clk=1 reg=0 gnt=0 ; R

#30 clk=1 req=1 gnt=0 In this example, we removed the action
#50 clk=1 req=0 gnt=0 block associated with the true (i.e. pass)
#70 clk=1 req=0 gnt=1 evaluation of the property to avoid the
#70 test_basic_property2.C_reqGnt PASS vacuous Sdisplay.

#90 clk=1 req=1 gnt=0 If you do need an action block for a match
#110 clk=1 req=0 gnt=0 (i.e. Pass) of a property, you may use a
#130 clk=1 req=0 gnt=0 ‘cover’ statement to cover the same
#130 test_basic_property2.A_reqGnt FAIL property that is asserted.

Fig. 14.24 Assertion with ‘cover’ for PASS

But what if you do want to know when the property PASSes? That’s where
‘cover’ comes into picture.

The solution with ‘cover’ allows us to see if the property is indeed covered (i.e.
exercised). ‘cover’ does not have the vacuous pass property. It indicates at the end
of the assertion if it has been covered. When it is covered, it triggers a PASS action
block. In this action block you may put a $display statement to indicate that the
property has been covered or that it has ‘passed’.

Note that ‘cover’ simply does not have a FAIL action block and does not have
the vacuous pass property.

This way, with ‘assert’ and ‘cover’, we have a method to code an assertion that
gives us the required FAIL and PASS indication without any other message. Please
read the simulation log carefully in Fig. 14.24 to see the behavior of the property.

NEW TO IEEE-1800 2012 LRM. So, for all this ‘vacuous’ pass dilemma,
2012 LRM came up with a clean solution. They have introduced a new System
Task called $assertcontrol. I have devoted complete Sects. 16.18 and 16.17 to
describe this task. But here’s an example of how you can turn OFF the vacuous pass
indication.

Sassertcontrol (VACUOUSOFF, CONCURRENT | EXPECT);

This systasks affect the whole design so no modules are specified. Disable
vacuous pass action for all the concurrent asserts and ‘expect’ in the design. Also
disable vacuous pass action for expect statements.

http://dx.doi.org/10.1007/978-3-319-30539-4_16
http://dx.doi.org/10.1007/978-3-319-30539-4_16

14.15 1It’s a Vacuous World! Huh? 243

The 2012 LRM also introduces a specific system task simply to disable vacuous
pass indication.

$assertvacuousoff system task turns off the PASS indication based on a vacuous
success. An assertion that is already executing is not affected. By default, we get a
PASS indication on vacuous pass.

Note also the use of “%m” in the $display task. This good old Verilog feature
displays the entire path to the assertion. This is one way to distinguish two prop-
erties with same name in two separate scopes.

14.16 Empty Sequence

In Fig. 14.25, we are using the consecutive operator ‘*’ but with ‘0’ repetition [*0].
In other words, we are saying ‘b’ should not repeat ever. In yet other words, that
means ‘b’ simply does not exist (empty) even though it is part of the property.
Hence, “b[*0] ##1 !a” simply means check for empty sequence ‘b’ and 1 clock later
check for ‘!la’. Since, empty sequence does not mean anything, we are basically
checking for “!a’ 1 clock after $rose(a).

Following examples are given for the sake of completeness. Regard them as
Reference Material.

sequence b_low_a; b [*0] is an Empty Sequence
Ib[*0] ##1 la

endsequence It will not match over any # of clocks

Ib[*0] ##1 !a is equivalent to
property ab;

@(posedge clk) Srose (a) |=> (b_low_a); || ##1 1a
endproperty

10 clk=1 a=0 b=0
20 clk=1 a=1 b=1
30 clk=1 a=0 b=0
30 PASS

40 clk=1a=0 b=0
50 clk=1 a=1 b=1
60 clk=1a=0 b=1
60 PASS

70 clk=1 a=0 b=0 : “Ih[*07"
80 clk=1 a=1 b=1 Even though b=0 at time 90, “1b["0]

90 clk=1 a=1 b=0+ is an empty match and a don’t care.
90 FAIL Hence, since a=1 at 90, the sequence
100 clk=1a=0 b la does not match at 90 and the

110 clk=1 a=1 b property fails.

120 clk=1a=1 b

120 FAIL

- - O

TE R O R OO WO O T H I oW oW WM

Fig. 14.25 Empty match [*m] where m = 0

244 14 Very Important Topics and Applications

(empty #f#in seq), where nis > 0, is
equivalent to (##(n-1) seq)

(seq ##in empty), where nis > 0, is
equivalent to (seq ##(n-1) "true)

sequence SC1,
i - NS
N a ##11b[*0:$] ##1 c; |

endsequence
property ab; 30 clk=1z=1 a=1 b=1 c=0
@(posedge clk) z |-> Sc1; 50 clk=12z=0 a=0 b=0 c=1
endproperty 50 Sc1 PASS
70 clk=1z=1 a=1 b=0c=1
90 clk=12z=0 a=0 b=1 c=1
90 Sc1 PASS

110 clk=1 z=1 a=1 b=0c=0
130 clk=1 z=0 a=0 b=1 c=0
150 clk=1z=0 a=0 b=1 c=0
190 clk=1 z=0 a=0 b=0c=1
190 Sc1 PASS

250 clk=1z=1 a=1b=1c=0
270 clk=1z=0 a=0 b=1 c=0
290 clk=1z=0 a=0 b=1 c=0
310 clk=1 z=0 a=0 b=0 c=0
310 Sc1 FAIL

T oI R I R R i 3 T o R i i W 3 o

Fig. 14.26 empty match—example

Figure 14.26 is indeed interesting. LRM provides two rules on how to interpret
(seq ##n empty) and (empty ##n seq) both with n > 0. The explanation is noted at
the top of Fig. 14.26. To make that clear, let us go through the example.

Property ‘ab’ says that if the antecedent ‘z’ is true that the consequent sequence
‘scl’ should execute. Sequence ‘scl’ says that ‘a’ be true when ‘z’ is true; then
(according to the LRM rule (seq ##n empty == seq##(n — 1) “true), the sequence
can be read as ‘a’ be true; then ‘b’ may not be true (i.e. empty—does not exist) at all
or will continue to repeat forever until ¢ ==1.

Let us look at the simulation log to see if the new definition holds.

At 30, z = 1 so the property looks for ‘a’ = 1 at the same time. ‘a’ = 1 at 30. ‘b’ is
also equal to ‘1’—which does not really matter because ‘b’ can have zero match, as
long as there is c == 1 at 1 clock after the last ‘b’ or ‘a’. In our case which started at
30, we do have ¢ == 1 at 50 which is one clock after ‘a == 1" as well as ‘b == 1".
Hence the property passes.

At70,z=1,a=1butb=0. That’s an empty match. Hence, the property looks
for c == 1 after the last “a’. It finds that at 90 and the property passes.

At 110,z=1,a=1, b =0. Next clock at 130, a =0 and c is also equal to ‘0’—
but ‘b’ = 1. As we saw before, ‘b’ may not match or may continually match forever
until “c == 1. Since ¢ == 0 at time 130, the property continues to look for b == 1

14.16 Empty Sequence

245

property ab;

endproperty

@(posedge clk) a |=> b [=0];

b [=0]

means that the signal ‘b’ should
never be true (in other words, it
means that the # of non-consecutive
occurrences are ZERO).

oW R Lo

I R oW

5 clk=1 a=1 b=0
15 clk=1 a=0 b=0
15 property ab PASS

35 clk=1 a=1 b=0
45 clk=1 a=0 b=0
45 property ab PASS
55 clk=1 a=0 b=1

65 clk=1 a=1 b=0
75 clk=1 a=0 b=1
75 property ab FAIL

Fig. 14.27 empty match example—II

until ¢ == 1. That happens at time 150 (b == 1) and 190 (c == 1) and the property

passes.

At 250,z =1, a=1 and b = 1. The next clock at 270, c is still zero, so the
property continues to see that b remains ‘1°. At 290, b == 1, so we move on. But at
time 310, ‘b’ does not remain asserted and ‘c’ is not equal to ‘1’ either. ‘c’ should
have been ‘1’ (to satisfy b[*0:$] ##1 c)—or—b’ should have remain asserted.
Neither happens and the property fails.

SystemVerilog 3.1a LRM; Page 210

(empty ##0 seq) does not result in a match
(seq ##0 empty) does not result in a match
(empty ##n seq), where n is > 0, is equivalent to (##(n-1) seq)

(seq ##n empty), where n is > 0, is equivalent to (seq ##(n-1) "true)

Examples:

b ##1 (a[*0] ##0 c) - will never produce a match

b ##1 a[*0:1] ##2 c is equivalent to
(b ##2 c) or (b ##1 a ##2 c)

Fig. 14.28 Empty sequence. Further rules

246 14 Very Important Topics and Applications

The example in Fig. 14.27 can be used effectively when you want to check that if
a certain sequence takes place that another never takes place. You can do that with
non-zero consecutive repetition operator also, but the [*0] or [=0] makes it that
much easier.

For example, in the following example,

@ (posedge clk) a [=>b[= 0];

means that on ‘a’ being true, one clock later, ‘b’ should never occur. In other words,
‘b’ should be negated (zero) forever. This is quite straightforward to read/interpret.
The behavior is shown in simulation log in Fig. 14.27.

So, how else would you write this property?

@ (posedge clk) a |=>Ib[*1:S];

Same meaning. Once ‘a’ is true that starting next clock ‘b’ should remain ‘!b’
consecutively forever.

Following is purely reference material. Keep it in your back pocket. It will be
useful on a rainy day ! (Fig. 14.28.)

Chapter 15
Asynchronous Assertions!!!

Introduction: This chapter is solely devoted to Asynchronous Assertions, meaning
the sampling edge of the assertion is not a synchronous clock rather an asyn-
chronous edge. Special focus is on pitfalls of using an asynchronous assertion both
as the sampling edge as well as an antecedent expression variable.

So far in the book we have always used a synchronous clock edge as the
sampling edge for the assertion. That is for good reason. The example presented
here uses an asynchronous edge (perfectly legal) as the sampling edge. The problem
statement goes something like ~ whenever (i.e. asynchronously)
L2TxData == L2ErrorData that L2Abort is asserted. Now that looks very logical to
implement without the need for a clock. So, we write a property as shown in the
Fig. 15.1. We simply say that @ (L2TxData) (i.e. whenever L2TxData changes)
that we compare L2TxData == L2ErrorData and if that matches we imply that
L2Abort ==1.

This sounds very logical. What is wrong with it? Hmm... many things. The
annotation in Fig. 15.1 takes you systematically on what is going on. Please study it
carefully to see why there is a problem. We will not repeat that explanation of the
figure again. But here’s the high level hint on the problem. The ‘sampling edge’
(namely, @ (L2TxData)) is also used in the comparison expression
(L2TxData == L2ErrorData). Since the value of variables in an expression are
always sampled in the preponed region that the value of L2TxData in the expres-
sion won’t be the same as when @ (L2TxData) changed. In other words, @
(L2TxData) uses the ‘current’ value of L2TxData, while the L2TxData in the
expression (L2TxData == L2ErrorData), is the ‘sampled’ value. When such is the
case, | strongly recommend against using an asynchronous assertion.

We continue the analysis in Fig. 15.2. The annotation explains the reasons.

In order to circumvent the problem, we just described in Fig. 15.2, we can
continue with the asynchronous sampling edge, only that we put all the comparison
expressions/variables as part of asynchronous sampling edge. This is shown in
Solution 1 that will take care of the problems we first encountered. Think through
and you will see why (Fig. 15.3).

© Springer International Publishing Switzerland 2016 247
A.B. Mehta, SystemVerilog Assertions and Functional Coverage,
DOI 10.1007/978-3-319-30539-4_15

248 15 Asynchronous Assertions!!!

EXAMPLE ON ASYNCHRONOUS ASSERTIONS ::

Whenever (i.e. asynchronously) L2TxData == L2ErrorData that
L2Abort is asserted (i.e. you want to check this condition irrespective of the
clock).

You may be tempted to write the property as follows:

property CheckData;
@(L2TxData) (L2TxData == L2ErrorData) |-> (L2Abort == 1);

endproperty

:: Let us analyze how this property works ::

« First, recall that the values of expression variables in an assertion are
evaluated in the pre-poned region (i.e., variable value is that which existed
a delta before the sampling edge (i.e. clock edge))

+ Now, let us assume that L2TxData changes and is now equal to L2ErrorData.
This is what will happen

@(L2TxData) is triggered
and (L2TxData == L2ErrorData) expression is evaluated.
BUT

« The value of L2TxData compared in this expression is the value -before-
L2TxData became equal to L2ErrorData. So, the expression won't match and
implication won't trigger.

OK, so let's move on

« Now when L2TxData changes again (i.e. now it is NOT equal to L2ErrorData,
assuming L2ErrorData did not change)

@(L2TxData) is triggered again

« and again, the value of L2TxData and L2ErrorData used in the expression are
the ones -before- L2TxData changed (when they did actually match). So now
the experssion will match and the implication will trigger checking for L2Abort

« But, what have you really proven? Read on

Fig. 15.1 Asynchronous assertion—problem statement

Why do we have assign #1 in solution 2? That way when L2TxData or
L2ErrorDataW or L2ABortW change that there is a 1 time unit delay which will
allow the new value to settle down and ‘sample’ the settled value—before—you
check for (L2TxData == L2ErrorData).

This is a (convoluted) way to get around the check of these variables in the
preponed region. If all this looks confusing, do not be daunted. I strongly advice
you against using asynchronous edges as sampling edges when the same
edge/expression is also used in the antecedent or the consequent. Again, if you are

15 Asynchronous Assertions!!! 249

property CheckData;
@(L2TxData) (L2TxData == L2ErrorData) |-> (L2Abort == 1);

endproperty

:: Continuing with the story ... ::

« You have basically checked for L2Abort == 1 at the very last temporal
moment when L2TxData == L2ErrorData !

* What' wrong with that? Here...
« What if L2ErrorData changed in the middle before L2TxData changed again?

« What if L2Abort changed (to 0) while you were waiting for L2TxData to
change again?

[so,IsTHEREASOLUTION? | \ \
U

)
=
[let peace prevail ... I “?A/
=7

Fig. 15.2 Asynchronous assertion—problem statement analysis continued

comfortable with using them, please do so, but be careful. Refer to the example
above to help you with the behavior of asynchronous sampling edge. Note that I
have shown all three solutions with asynchronous assertion (so much for my
opposition to it!). How would you model this as a synchronous assertion? Please try
and see if you succeed. Assume ‘posedge clk’ as your sampling edge.

250 15 Asynchronous Assertions!!!

Solution 1 :: I_Jr
property CheckDéta;

@(L2TxData or L2ErrorData or L2Abort) (L2TxData == L2ErrorData)
|-> (L2Abort == 1);

endproperty

Solution 2 :: I : .,

wire L2TxDataW, L2ErrorDataW, L2AbortW;

assign #1 L2TxDataW = L2TxData;
assign #1 L2ErrorDataW = L2ErrorData;
assign #1 L2AbortW = L2Abort;

property CheckData;
@(L2TxDataW or L2ErrorDataW or L2AbortW) (L2TxData ==
L2ErrorData) |-> (L2Abort == 1);
endproperty

& “| Solution 3 :: Good old Verilog comes to rescue ...

always @(L2TxData or L2ErrorData or L2Abort)
begin
if (L2TxData == L2ErrorData)
begin
if (L2Abort) Sdisplay("L2Abort Check PASS")
else $display("L2Abort Check FAIL");
end
end

Fig. 15.3 Asynchronous assertion—solution

Solution 3 uses a procedural block to determine when you do the check. Notice
that I have not used assertions in this solution. Point being, sometimes it is better
and ok to simply use Verilog which will be more intuitive and give the results you
desire. I recommend pure Verilog for asynchronous assertions and SVA for all
other types of assertions.

Chapter 16
IEEE-1800-2009/2012 Features

Introduction: This chapter describes all the new features of the 2009/2012 LRM. In
that sense, it is a long chapter. It describes features such as ‘strong’ and ‘weak’
properties, abort system tasks, deferred immediate assertions, past and future global
clock based sampling functions such as $rose_gclk, $fell_gclk, $rising_gclk,
$falling_gclk, etc. It further covers ‘followed by’ property operators, ‘always’,
‘eventually’, ‘until’, ‘nexttime’, ‘case’, S$inferred_clock and Sinferred_disable.
Finally, it goes into detail of the ‘let’ construct and ‘checkers’.

16.1 Strong and Weak Sequences

IEEE-1880-2009/2012 adds the notion of a strong and weak operator applied to
sequence expressions. The idea behind these ‘strengths’ is very simple.
Here’s an example

property a_wait_b;
@ (posedge clk) A |-> (A ##[1:5] B);
endproperty
awb: assert property (strong(a_wait_b)) else Sdisplay($stime,"a_wait_b FAIL"); //default ‘weak’

awbc: cover property (weak(a_wait_b)) Sdisplay(Sstime,"a_wait_b PASS"); //default ‘strong’

‘strong’ sequence means that if you run out of simulation ticks (at the end of
simulation, for example), the ‘strong’ sequence will FAIL. In other words, ‘strong’
will evaluate to true only if there is a non-empty match of the sequence expression.

© Springer International Publishing Switzerland 2016 251
A.B. Mehta, SystemVerilog Assertions and Functional Coverage,
DOI 10.1007/978-3-319-30539-4_16

252 16 1EEE-1800-2009/2012 Features

And in yet other words, the ‘strong’ operator requires ‘enough’ ticks to witness a
success. In our example, if ‘B’ never arrives until the end of simulation, the
property will FAIL. By default, an ‘assert’ (or ‘assume’) is ‘weak’ and as we have
seen so far, if you run out of simulation ticks the sequence will not fail (a simulator
may still give an indication of an incomplete sequence).

On the other hand, ‘cover’ is strong by default. Analogous to ‘assert’, if the
property does not complete, the evaluation of sequence expression does not succeed
and the ‘cover’ will be considered to FAIL (i.e. not covered). In other words, an
incomplete ‘cover’ sequence will not give us a ‘PASS’ or ‘cover’ indication,
because there haven’t been enough ticks to reach a ‘success’ state. That is exactly
what we want because we do not want an incorrect ‘cover’ of a sequence that never
completes. On the other hand, if you use ‘weak’ operator with ‘cover’ and the
sequence never completes, the ‘cover’ will be considered to have completed or
covered (this is simulator dependent from author’s experience, so take the
description of cover with a ‘weak’ operator with a grain of salt).

In short, by default, a property is weak in the context of an ‘assert’ (or an
‘assume’) and is strong in the context of a ‘cover’.

16.2 Deferred Immediate Assertions

Deferred immediate assertions are a type of ‘immediate’ assertions. Recall that
‘immediate’ assertions evaluate immediately without waiting for variables in its
combinatorial expression to settle down. This also means that the immediate
assertions are very prone to simulation glitches as the combinatorial expression
settles down (for example, an expression evaluates to ‘0’ then to ‘1’ then back to ‘0’
to settle down on ‘0’), the immediate assertion may fire multiple times. On the other
hand, deferred assertions do not evaluate their sequence expression until the end of
time tick when all values have settled down (or in the reactive region of the time tick).

The syntax for deferred immediate assertion is “assert #0” or “assert final”. It’s
the #0 (or ‘final’) that distinguishes deferred immediate assertion from the imme-
diate assertion.

Let us examine the following example (2009 LRM).

assign not_a = la;
always_comb begin:bl

al: assert (not_a !=a) //immediate

a2: assert #0 (not_a !=a); //Deferred immediate
a3: assert final (not_a !=a) //Deferred immediate

end

16.2 Deferred Immediate Assertions 253

Let us examine the difference between immediate and deferred immediate
assertions in this example. As soon as ‘a’ changes, always_comb wakes up and both
the immediate and deferred assertions fire right away. When the immediate asser-
tion fires, the continuous assignment “not_a = !a” may not have completed its
assignment. In other words, ‘a’ has not been inverted yet. But the immediate
assertion expects an inverted ‘a’ on ‘not_a’. The assertion will fail. This is why
immediate assertions are known to be glitch prone.

On the other hand, the deferred assertion will wait until all expressions in the
given time stamp have settled down (in other words, it was put in the deferred
assertion report queue). In our case, the continuous assign would have completed its
evaluation by the end of time stamp (meaning when the deferred assertion queue
will be flushed); and ‘not_a’ would indeed be = !a. This is the value the deferred
assertion will take into account when evaluating its expression. The deferred
assertion will pass.

To reiterate, in a simple immediate assertion, pass and fail actions take place
immediately upon assertion evaluation. In a deferred immediate assertion, the
actions are delayed until later in the time step, providing some level of protection
against unintended multiple executions on transient or “glitch” values.

Note that there is a limitation on the action block that a deferred immediate
assertion has. The action block can only be a single subroutine (a task or a func-
tion). The requirement of a single subroutine call also implies that no begin-end
block can surround the pass or fail statements, as begin is itself a statement that is
not a subroutine call. A subroutine argument may be passed by value as an input or
passed by reference as a ref or const ref. Actual argument expressions that are
passed by value, including function calls, will be fully evaluated at the instant the
deferred assertion expression is evaluated. It is also an error to pass automatic or
dynamic variables as actuals to a ref or const ref formal.

For example, following action block is illegal with deferred assertions because
either they contain more than one statement or are not subroutine calls.

frameirdy: assert #0 (!frame_ == irdy) else begin interrupt=1; Serror (“FAlLure”);
end //ILLEGAL
frameirdy: assert #0 (!/frame == irdy) else begin Serror(“FAlLure”); end //ILLEGAL

Following are legal.

frameirdy: assert #0 (!frame == irdy) else Serror(“FAlLure”); //LEGAL (no begin-end)
frameirdy: assert #0 (!frame == irdy) Sinfo(“PASS”); else Serror(“FAlLure”); //
LEGAL

frameirdy: assert #0 (!frame == irdy); //LEGAL — no action block

Another feature of deferred immediate assertion to note is that it can be declared
both in the procedural block as well as outside of it (recall that immediate assertion

254 16 1EEE-1800-2009/2012 Features

can only be declared in procedural block). For example, following is legal for
deferred immediate assertion but not for immediate assertion.

module (x,y,z);

z1: assert #0 (x ==y | |z);
endmodule

This is actually equivalent to

module (x,y,z);
always_comb begin
z1: assert #0 (x ==y| |z);
end

endmodule

Analogous to ‘assert’, we also have deferred ‘cover’ and ‘assume’. Again, the
idea is the same as that for immediate ‘cover’ and ‘assume’ you want the final
values of the combinatorial logic before evaluating ‘cover’ or ‘assume’.

A deferred ‘assume’ will often be useful in cases where a combinational con-
dition is checked in a function, but needs to be used as an assumption rather than a
proof target by formal tools. A deferred cover is useful to avoid crediting tests for
covering a condition that is only met in passing by glitch values.

assigna=c|| d;
assignb=e || f;
always_comb begin:b1
al: cover (b !=a) //immediate
a2: cover #0 (b !=a); //deferred cover
a3: cover final (b !=a) //deferred cover
end
and for ‘assume’
assigna=c || d;
assignb=e || f;
always_comb begin:bl
al: assume (b !=a) //immediate
a2: assume #0 (b !=a); //deferred assume

a3: assume final (b !=a) //deferred assume

end

16.2 Deferred Immediate Assertions 255

Some more nuances of deferred assertions are further explained below.

Disabling a deferred assertion.

The following example illustrates how user code can explicitly flush a pending
assertion report. In this case, failures or successes of ‘al’ are only reported in time
steps where ‘NoGo’ does not settle at a value of 1.

always @(NoGo or Go)

begin : bl
al: assert final (Go) else $fatal(1, "Sorry");
if (NoGo)
begin
disable a1;
end
end

On the similar line of thought, the following example illustrates how user code
can explicitly flush all pending assertion reports on the deferred assertion queue of
process ‘b2’:

always @(a or b orc)

begin : b2
if (c == 8'hff)
begin
a2: assert final (a && b);
end
else begin
a3: assert final (a | | b);
end
end

always @(NoGo)
begin : b3

disable b2;
end

Finally, unlike immediate assertions, the deferred immediate assertion can be
placed outside of procedural code. When declared outside a procedural block, the
deferred immediate assertion is treated semantically as if the assertion were
enclosed with an always_comb block.

For example, here’s the code with always_comb:

assign Frame_ = !Frame_ && IRDY;
assign ACK = Req && Gnt;
always_comb al: assert #0 (Frame_ || ACK);

256 16 1EEE-1800-2009/2012 Features

The same deferred immediate assertion can be written as follows:

assign Frame_ = !Frame_ && IRDY;
assign ACK = Req && Gnt;
al: assert #0 (Frame_ || ACK);

16.3 $changed

SystemVerilog 2009/2012 adds $changed sampled value function (Fig. 16.1) in
addition to the ones we have already seen such as $past, $rose, $fell and $stable.

Here’s a simple example of where $changed is helpful.

Specification: Make sure that ‘toggleSig’ toggles every clock. In other words,
see that ‘toggleSig’ follows the pattern 101010... or 010101...

Solution: First inclination will be to write the assertion as follows.

tP: assert property (@(posedge clk) toggleSig ##1 !toggleSig);

Schanged(expression [, clocking Returns True if the expression changed
event]); from the previous tick of the clocking
event. Otherwise it returns False.

Notes:

« The [, clocking event] is optional and usually derived from the clocking event
of the assertion or from the inferred clock of the procedural block where the
function is used
» When this function is called at or before the simulation time step in
which the first clocking event occurs, the results are computed by
comparing the sampled value of the expression with its default sampled
value
*This function can be used in property/sequence as well as in procedural code as
expression

«Schanged(expr) is true if the sampled value of ‘expr’ in the pre-poned
region of current time stamp changed from the sampled value in the pre-
poned region of the previous time stamp.

Fig. 16.1 $changed

16.3 $changed 257

But will this work? No. This property simply states that toggleSig be true every
clock that it is false the next clock. What that also means is that the next clock, we
are checking for toggleSig to be both true and false at the same time! Totally
contradictory.

Clocking event for
. Schanged

| This will PASS ... |

property checka;
~ @(posedge clk) Srose(b) |=> $changed(a);

endproperty
a i

p—
This will FAIL | [This will pass ... |
a L — wr 8
b
.

Here’s where $changed comes to rescue. Following property will verify the
toggle specification.
tP: assert property (@(posedge clk) ##1 Schanged(toggleSig));

16.4 $sampled

$sampled simply does—explicitly—what we have seen assertions do. In other
words, the expressions in an assertion are always sampled in the preponed region of
a time stamp. $sampled does exactly the same. It returns the value of an expression
sampled in the preponed region of the simulation time stamp in which the function
is called.

So, for concurrent assertions $sampled function is redundant. Following two are
equivalent

z1 : assert property (@ (posedge clk) $Ssampled(a) == Ssampled(b));
z1 : assert property (@ (posedge clk) a == b));

258 16 IEEE-1800-2009/2012 Features

The reason they are the same is that in the concurrent assertion (as we have seen
throughout the book) the expressions are always sampled in the preponed region of
the time stamp in which they are sampled. $sampled function also returns value of
expression in the preponed region.

However, there are places where $sampled can be useful for debug purpose. For
example, in a simultaneously changing event situation, you can find out the sam-
pled value of an expression (i.e., the value in the preponed region). Let us say, you
have an assertion where you want to make sure that ‘gnt’ is asserted on a posedge
clk. If ‘gnt’ and posedge clk went high at the same time, the property will fail.
That’s because the sampled value of ‘gnt’ is 0 in the preponed region. In such a case
you can have a $display(“gnt=%b”, $sampled(gnt)); This will tell you right away
that the sampled value was ‘0’ which is why the assertion failed.

Important note: The assertion system function $sampled does not use a clocking
event (note that in the 2005 standard, the explicit clocking event was indeed
required but that requirement was removed from the 2012 standard). And as we
know, for a sampled value function other than $sampled, the clocking event will be
explicitly specified as an argument or inferred from the code where the function is
called.

From LRM:

IEEE Std 1800-2005 required that an explicit or inferred clocking event argument
be provided for the $sampled assertion system function. In the 2012 version of the
standard, the semantics of $sampled have been changed to a form that does not
depend on a clocking event. Therefore, the syntax for defining the clocking event

argument to $sampled is deprecated and does not appear in this version of the
standard.

Also, the use of $sampled in a ‘disable iff” clause is meaningful since the disable
condition by default is not sampled. ‘disable iff” by default is asynchronous. So
what if you want to make it synchronous, i.e. sampled on a clock edge? Here’s how

property synclff;
(@posedge clk) disable iff (Ssampled(rst)) a |=> b;
endproperty

16.5 $past_gclk, $rose_gclk, $fell_gclk, $stable_gclk,
$changed_gclk, $future_gclk, $rising_gclk,
$falling_gclk, $steady_gclk, $changing_gclk

As the name suggests, these sampled value functions work off of a global clock.
Before we look into these functions, let us see what a global clock is.

16.5 $past_gclk, $rose_gclk, ... 259

module top_pd;
logic clk;

global clocking sys_clk @ (clk); endclocking

endmodule

‘sys_clk’ is now considered a global clocking event. It is defined to occur (trigger)
if there is a change in ‘clk’. You can access global clock using the system function
$global_clock. This system function does not take any arguments but returns the
event expression specified in the global clocking declaration. Note that the speci-
fication of the name sys_clk in the global clocking declaration is optional since the
global clocking event may be referenced by $global_clock. The $global_clock
system function will be used to explicitly refer to the event expression in the
effective global clocking declaration.

A reference to $global_clock is understood to be a reference to a clocking_event
defined in a global clocking declaration. A global clock behaves just as any other
clocking event. Thus, in the following example:

global clocking @clk; endclocking
assert property(@S$global_clock a);

the assertion states that a is true at each tick of the global clock. This assertion is
logically equivalent to:

assert property(@clk a);

Global clocking is a SystemVerilog feature and a detailed explanation is beyond the
scope of this book. However, here are some high level points.

e A clocking block may be declared as global clocking for all or part of the design
hierarchy. In other words, such a specification may be done for a whole design,
or separately for different subsystems in a design.

e Global clocking may be declared in a module, an interface, a checker, or a
program. A given module, interface, checker, or program can contain at most
one global clocking declaration.

e Although more than one global clocking declaration may appear in different
parts of the design hierarchy, at most one global clocking declaration is effective
at each point in the elaborated design hierarchy.

Let us revert to the system functions. These functions can only be used if there is
a global clock defined in your testbench (hence the suffix _gclk). They are sampled
value functions as we have seen before and they sample their expression value at
the global clock tick that you have defined. These sampled value functions are
divided into two groups. One group looks in the past (these are identical in func-
tionality with the sampled value functions we have seen previously only that
the _gclk sampled value functions work off a global clock event). The other group

260 16 IEEE-1800-2009/2012 Features

has “future’ sampled value functions. They sample the value of the expression in the
time step that subsequently (and immediately) follows the time step in which the
function is called. Note that the ‘past’ sampled value functions have a non-global
clock counterpart as we have seen. However, for the ‘future’ sampled value func-
tions, there is no non-global clock counterpart. They work only if you have defined
a global clock.

The past sampled value functions are

Spast_gclk (expression)
srose_gclk (expression)
sfell_gclk (expression)
$stable_gclk(expression)
$changed_gclk(expression)

The future sampled value functions are

Sfuture_gclk(expression)
Srising_gclk(expression)
$falling_gclk(expression)
$steady_gclk(expression)
Schanging_gclk(expression)

As mentioned before the globally clocked past sampled value functions work the
same way as the non-global clocking sampled value function.

If you recall, these past sampled value functions take an explicit clocking event.
So, $rose_gclk (expr) is equivalent to $rose(expr, @ $global_clock). Please refer to
the non-global clocking past sampled value functions to understand how these
functions work (Chap. 5).

The future sampled value functions are also similar except that they use the
subsequent (future) value of the expression. Here’s a brief explanation of each.

$future_gclk(expression) returns the sampled value of expression at the next global
clocking tick.

$rising_gclk(expression) returns a Boolean True if the sampled value of the least
significant bit of the expression changes to 1 at the next global clocking event. Else
it returns false.

$falling_gclk(expression) returns a Boolean True if the sampled value of the least
significant bit of the expression changes to O at the next global clocking event. Else
it returns false.

$steady_gclk(expression) returns a Boolean True if the sampled value of the
expression does not change at the next global clocking event. Else it returns false
$changing_gclk (expression) returns a Boolean True if the sampled value of the
expression changes at the next global clocking event. Else it returns false.

An example:

Specification: Frame_ signal should be stable between two consecutive clock ticks.
Frame_ can change only at the positive edge of clock — no glitch in-between.

http://dx.doi.org/10.1007/978-3-319-30539-4_5

16.5 $past_gclk, $rose_gclk, ... 261

Solution:
aframe_ : assert property (@ Sglobal_clock disable iff (lirdy)
Schanging_gclk(Frame_) |-> Srising_gclk(Frame_));

Exercise: Can you write the same assertion using $changed and $rose? Please
experiment to solidify your understanding of past sampled value functions and
future sampled value functions.

Execution of the action block of an assertion containing global clocking future
sampled value functions is delayed until the global clocking tick that follows the
last tick of the assertion clock for the attempt.

Following are illegal conditions for the global clocking future sampled value
functions:

1. The ‘future’ sampled value functions cannot be used outside of concurrent
assertions.

2. They cannot be nested (for example, $future_gclk ($falling_gclk(gnt) &&
req)). But do not confuse this with the following which is legal
F1: assert property (@$ global _clock $rising_gclk(sigl) |-> $falling_gclk
(sig2));

3. They cannot be used in a ‘reset’ condition (for example, “disable_iff
($falling_gclk (reset_)”).

4. The global clocking future sampling functions cannot be used in an assertion
action block (pass or fail).

16.6 ‘followed by’ Properties #-# and #=#

The followed by properties has the following form.

sequence_expression #-# property_expression
sequence_expression #=# property_expression

#-# is the overlapped property and #=# is the non-overlapped, just as in |-> and
|=> but there are differences between the implication operators and the followed by
operators.

For ‘followed by’ to succeed both the antecedent sequence_expression and the
consequent property_expression must be true. If the antecedent sequence_expres-
sion does not have any match, then the property fails. If the sequence_expression
has a match, then the consequent property_expression must match.

This is the fundamental difference between the implication operators (|-> and
|=>) and the followed by operators. Recall that with implication operators, if the
antecedent does not match, you get a vacuous pass and not a fail.

For overlapped followed-by, there must be a match for the antecedent
sequence_expr, where the end point of this match is the start point of the evaluation

262 16 1EEE-1800-2009/2012 Features

of the consequent property_expr. For nonoverlapped followed-by, the start point of
the evaluation of the consequent property_expr is the clock tick after the end point
of the match.

Obviously, #-# being an overlapped operator, it starts the consequent evaluation
the same time that the antecedent match ends (and succeeds). Consequently, the
= # non-overlapped operator will start the consequent evaluation the clock after
the antecedent match ends and succeeds.

Here’s a simple example

property p(a, b)
@ (posedge clk) a #=# b;

endproperty
assert property (p(req[*5],gnt));

Request need to remain asserted (high) for 5 consecutive clocks. One clock later
gnt must be asserted (high). If request does not remain asserted for 5 consecutive
clocks, the assertion will fail. If it does remain asserted for 5 clocks and the next
clock gnt is not asserted, the assertion will fail. If both the antecedent and conse-
quent match in the required temporal domain, the property will pass.

If you think about it, a #-# b behaves pretty much like a ##0 b. So what’s the
difference? a ##0 b requires that ‘b’ is a sequence while a#-#b allows ‘b’ as a
property. The same discussion applies to a #=# b, which is equivalent to a ##1 b,
except that ‘b’ can be a property.

16.7 ‘always’ and ‘s_always’ Property

‘always’ property behaves exactly as you would expect. The syntax for ‘always’
(and its variations) is

1. always property_expression (weak form)

2. always [cycle delay constant range expression] property_expression (weak
form with unbounded range)

3. s_always [constant_range] property_expression (strong form with bounded
range)

So, let us see how ‘always’ works. As LRM puts it “A property ‘always
property_expression’ evaluates to true if and only if the property_expression holds
at every current and future clock tick”. Rather self-explaining. Here’s a simple
example.

property reset_always;
@ (posedge clk) POR[*5:10] |=> always !reset;
endproperty

16.7 ‘always’ and ‘s_always’ Property 263

The property says that once POR (power on reset) signal has remained high for
minimum 5 clocks or maximum 10, that starting next clock, reset would remain
de-asserted ‘always’ (forever).

‘always’ makes it simple to specify the continuous longevity of an assertion.

Next, let us see how always [cycle delay constant range] works.
property p1l;

@ (posedge clk) a |-> always [3:5] b;

endproperty

property pl says that if ‘a’ is true that ‘b’ will be true 3 clocks after ‘a’ and will
remain true ‘always’ (forever) after the 3 clocks. Note that ‘always[n:m]’ allows an
unbounded range.

In contrast ‘s_always’ allows only bounded range.

So, let us see what s_always does
property p2;

@ (posedge clk) a |->s_always [3:10] b;
endproperty

The property says that if ‘a’ is true that ‘b’ remains true from 3rd clock to 10th
clock after ‘a’ was detected true. This is a ‘strong’ property. Recall strong property
that we discussed earlier. This ‘s_’ property also works the same way. In other
words, if you run out of simulation ticks for ‘s_always’, the property will indeed
fail.

BUT, why do we need ‘always’? Don’t the concurrent assertions always execute
at every clock tick? The answer is yes which means we do not always need an

‘always’ operator with a concurrent assertion. It is redundant. For example, in the
following, ‘always’ is redundant.

P1: assert property plp (@ (posedge clk) always bstrap1==0);

There is no reason for an ‘always’ in the above concurrent assertion. It is the
same as

P1: assert property plp (@ (posedge clk) bstrap1==0);
‘always’ can be useful in ‘initial” block, however. See the example below
initial
begin
P1: assert plp (@ (posedge clk) always bstrap1==0);

end

264 16 1EEE-1800-2009/2012 Features

Note that the immediate assertion noted above is slated to execute only once. In
our case though once it is asserted, it will then look for bstrap1==0 at every posedge
clock.

As LRM puts it: The concept of weak and strong operators is closely related to
an important notion of safety properties. Safety properties have the characteristic
that all their failures happen at a finite time. For example, the property always a is a
safety property since it is violated only if after finitely many clock ticks there is a
clock tick at which a is false, even if there are infinitely many clock ticks in the
computation.

16.8 ‘eventually’, ‘s_eventually’

There are two types of this operator, the ‘weak’ kind (‘eventually’) and the ‘strong’
kind (‘s_eventually’). Here are three forms of these two properties.

s_eventually property_expr (strong property without range)
s_eventually [cycle_delay_constant range] property_expr (strong property with
range)

e the constant_range can be unbounded
eventually [constant_range] property_expr (weak property with range)
e the constant_range must be bounded
Some examples
property pl;
s_eventually Sfell(frame_);
endproperty

Eventually PCI cycle will start with assertion of frame_ (frame_ goes low). If
frame_ does not assert until the end of simulation time, the property will fail since
this is a strong property. Note that frame_ can be true in current clock tick or any
future clock tick.

property p2;
s_eventually [2:5] Sfell(frame_);
endproperty p2;

A new PCI cycle must start (frame_ goes low) within the range of 2 clocks from
now (i.e. frame_ cannot assert earlier than the 2nd clock) and eventually by Sth
clock (2nd and 5th clock inclusive). Note that as with any strong property,
s_eventually[n:m] property_expr evaluates to true if, and only if, there exist at least
n+1 ticks of the clock of the eventually property, including the current time step,

16.8 ‘eventually’, ‘s_eventually’ 265

and property_expr evaluates to true beginning in one of the n+1 to m+1 clock ticks,
where counting starts at the current time step.

Exercise: Is the following property ‘p3’ equivalent to ‘p2’ above? Hint: Simulate
from ‘initial’ condition to know the subtle difference.

property p3;
frame_ |-> ##[2:5] Sfell(frame_);
endproperty
Following is s_eventually with unbounded range.
property p4;
s_eventually [2:5] Sfell(frame_);
endproperty

A new PCI cycle must start (from the current clock tick) 2 clocks from now (i.e.
frame_ cannot assert earlier than the 2nd clock) or any time after that.

property p4;

eventually [2:5] Sfell(frame_); //ILLEGAL. Weak property must be bound.
endproperty
property p4;

s_eventually always a;

endproperty

‘a’ (Boolean) will eventually (starting current clock tick) go high and then
remain high at every clock tick after that until the end of simulation.

16.9 ‘until’, ‘s_until’, ‘until_with’ and ‘s_until_with’

There are 4 forms of ‘until’ property

1. property_expressionl until property_expression2 (weak form—non-overlapping)
2. property_expressionl s_until property_expression2 (strong form—
non-overlapping)
. property_expression1 until_with property_expression2 (weak form—overlapping)
4. property_expressionl s_until_with property_expression2 (strong form—
overlapping)

(98]

Let us start with ‘until’.

266 16 IEEE-1800-2009/2012 Features

property p1l;
req until gnt;
endproperty

property pl is true if ‘req’ is true until ‘gnt’ is true. In other words, ‘req’ must
remain true as long as ‘gnt’ is false. ‘req’ need not be true at the clock tick when
‘gnt’ is found to be true (but it can be). In other word, until is nonoverlapping. An
until property of the non-overlapping form evaluates to true if ‘req’ evaluates to
true at every clock tick beginning with the starting clock tick of the evaluation
attempt and continuing until at least one tick before a clock tick where ‘gnt’
evaluates to true. If ‘gnt’ is never true, ‘req’ will remain true at every current and
future clock tick. Since until is of weak form, if this property never completes
(i.e. ‘gnt’ is never true), the property will not fail.

property pl;
req s_until gnt;
endproperty

s_until is identical to until except that if ‘gnt’ never arrives and you run out of
simulation time, the property will fail.

To reiterate the difference between strong and weak properties, an ‘until’ property
of one of the strong forms requires that a current or future clock tick existzs at which
‘gnt’ evaluates to true, while an ‘until’ property of one of the weak forms does not
make this requirement. Strong properties require that some terminating condition
happen in the future, and this includes the requirement that the property clock ticks
enough time to enable the condition to happen. Weak properties do not impose any
requirement on the terminating condition, and do not require the clock to tick.

property pl;
req until_with gnt;
endproperty

property pl is true if ‘req’ is true until and including a clock tick when ‘gnt’ is true.
In other words, ‘req’ must remain true as long as ‘gnt’ is false. ‘req’ must be true at
the same clock tick when ‘gnt’ is found to be true. If ‘gnt’ is never true, ‘req’ will
remain true at every current and future clock tick. In other words, until_with is an
overlapping property. Since ‘until_with’ is of weak form, if this property never
completes (i.e. ‘gnt’ is never true), the property will not fail.

In short, property ‘until_with’ requires ‘req’ and ‘gnt’ to be true at the same
clock tick when ‘gnt’ is found to be true. “until’ does not have this requirement.

property pl;
req s_until_with gnt;

endproperty

16.9 ‘until’, ‘s_until’, ‘until_with’ and ‘s_until_with’ 267

Same as until_with but if you run out of simulation tick (end of simulation, for
example), and if ‘gnt’ is never found to be true, this property will fail.

16.10 ‘nexttime’ and ‘s_nexttime’

‘nexttime’ property_expression evaluates to true, if property_expression is true at
time t+1 clock tick.
There are 4 forms of ‘nexttime’.

nexttime property_expression (weak form)

The weak nexttime property nexttime property_expr evaluates to true if, and
only if, either the property_expr evaluates to true beginning at the next clock tick or
there is no further clock tick.

s_nexttime property_expression (strong form)

The strong nexttime property s_nexttime property_expr evaluates to true if, and
only if, there exists a next clock tick and property_expr evaluates to true beginning
at that clock tick.

nexttime [constant_expression] property_expression (weak form)

The indexed weak nexttime property nexttime [constant_expression] prop-
erty_expr evaluates to true if, and only if, either there are not constant_expression
clock ticks or property_expr evaluates to true beginning at the last of the next
constant_expression clock ticks.

s_nexttime [constant_expression] property_expression (strong form)

The indexed strong nexttime property s_nexttime [constant_expression] prop-
erty_expr evaluates to true if, and only if, there exist constant_expression clock
ticks and property_expr evaluates to true beginning at the last of the next
constant_expression clock ticks.

Let us examine the following simple example.

property pl;
@ (posedge clk) nexttime req;
endproperty

The above property says that the property will pass, if the clock ticks once more
and ‘req’ is true at the next clock tick (t+1). In addition, since this is the weak form,
if you run out of simulation ticks (i.e. there is no t+1), this property will not fail.

Some examples.

What if you want to check to see that ‘req’ remains asserted for all the clocks
following the next clock? Following will do the trick.

268 16 1EEE-1800-2009/2012 Features

property p1l;
@ (posedge clk) nexttime always req;
endproperty

Or what if you want to see that starting next clock, ‘req’” will eventually become
true? Following will do the trick.

property pl;
@ (posedge clk) nexttime eventually req;
endproperty

What if you want to see that ‘req’ is true after a certain exact # of clocks?
Following will do the trick

property p1;
@ (posedge clk) nexttime[5] req;
endproperty

This property says that ‘req’ shall be true at the fifth future clock tick (provided
that there are indeed 5 clock ticks in future, of course).

property p1l;
@ (posedge clk) s_nexttime req;
endproperty

Same as ‘nexttime’ except that if you run out of simulation ticks after the
property is triggered (i.e. there is no (t+1), the property will fail. Other way to look
at this is that there exists a next clock and ‘req’ should be true at that next clock,
else the property will fail.

Similarly, the following property says that there must be at least 5 clock ticks
and that ‘req’ will be true at the fifth future clock tick.

property pl;
@ (posedge clk) s_nexttime [5] req;

endproperty
property

@ (posedge clk) (seq 1.matched nexttime seq_expr == ‘hff);
endproperty

When ‘seq 1’ ends(matches) at ‘t’ that the next time tick (‘t+1”) ‘seq_expr’ must
be equal to ‘hff’.

16.10 ‘nexttime’ and ‘s_nexttime’ 269

One more real life issues we face that can be solved with nexttime. Initial ‘x’
condition can always give us false failures. This can be avoided with the use of
nexttime. For example,

Let us say you are using $past to do a simple ‘xor’ of past value and present
value (Gray encoding).

property
@(posedge clk)

Sonehot (fifocntr A Spast (fifocntr);
endproperty

At time ‘initial” $past (fifocntr) will return ‘x” (unknown) and the ‘xor’ would
fail right away. This is a false failure and you may spend unnecessary time
debugging it. Here’s how nexttime can solve that problem.

property
@(posedge clk)

nexttime Sonehot (fifocntr A Spast (fifocntr);
endproperty

nexttime will avoid the initial $past value of fifocntr and move the comparison to
the next clock tick when (hopefully) you have cleared the fifocntr and the com-
parison will not fail due to the initial ‘x’.

Similarly, if you want to know that a signal stays stable forever (e.g. bootstrap
signals). You may write a property as follows

property
@(posedge clk)

Sstable (bstrap);
endproperty

BUT, this will sample the value ‘x’ (e.g. for a ‘logic’ type which has not been
explicitly initialized) at time tick O and then continue to check to see that it stays at
‘x’. You end up checking for a stable ‘x’. Completely opposite of what you want to
accomplish. Again, nexttime comes to rescue.

property
@(posedge clk)

nexttime Sstable (bstrap);
endproperty

This will ensure that you start comparing the previous value of bstrap with the
current value, starting next clock tick. Obvious, but easy to miss.

We discussed multi-clock properties in Chap. 8. Here’s an example of how
nexttime can be used in a multi-clock property.

http://dx.doi.org/10.1007/978-3-319-30539-4_8

270 16 1EEE-1800-2009/2012 Features

N1: assert property
@(posedge clkl) x |-> nexttime @(posedge clk2) z;

It is very important to understand how this property works. The ‘posedge clk1’
flows through to ‘nexttime’—in other words, ‘nexttime’ does not use ‘@ (posedge
clk2)’ to advance time to next tick. So, when ‘X’ is true at (‘posedge clk1’), the
‘nexttime’ causes advance to the next occurrence of ‘posedge clkl’ strictly after
when ‘x’ was detected true before looking for a concurrent or subsequent occur-
rence of ‘posedge clk2’ at which to evaluate ‘z’.

Exercise: How would the following property contrast with the one above?
N1: assert property

@(posedge clkl) x |-> @(posedge clk2) nexttime z;

16.11 ‘case’ Statement

The case statement in assertions is the same as the one we use in systemverilog
language. There is no difference, only that in systemverilog assertions, you use the
case statement in a property. The case property statement is a multi-way decision
making mechanism that tests a Boolean expression and sees if it matches one of a
number of Boolean expressions. On a match, it will take action specified for that
case statement. We are all familiar with this functionality of case. The ‘default’
statement is optional.
Here is a simple example.

property CycleCase (logic [1:0] CycleType);
case (CycleType)
2’b00: Sfell(frame_)
2'b01: Sfell(frame_)
2’b10: Sfell(frame_) ##1 (cmd==TABORT);
2’b11: $fell(frame_)
default: Sfell(frame_) ##1 (cmd==ILLEGAL); //default is optional

##1 (cmd==READ);
##1 (cmd==WRITE);

##1 (cmd==MABORT);

endcase

endproperty

Note that if the default statement is not given and all of the comparisons fail,
then none of the case item property statements are evaluated. In addition, as we
know if “assert property ()” antecedent does not evaluate to true that we get a
vacuous pass. The same applies here.

If there is no default and no case branch match, we get a vacuous pass.

16.12 S$inferred_clock and $inferred_disable 271

16.12 Sinferred clock and $inferred_disable

Many times while developing assertion logic, we define default blocks for clock
and reset. These default blocks based clock and reset are then available in properties
that follow. Please refer to the Sect. 4.3.1 on Default Clocking for further under-
standing of a default-clocking block.

The inferred clocking event expression is the current resolved event expression
that can be used in a clocking event definition. It is obtained by applying clock flow
rules to the point where $inferred_clock is called. If there is no current resolved
event expression when S$inferred_clock is encountered then an error is issued.

The inferred disable expression is the disable condition from the default disable
declaration whose scope includes the call to S$inferred_disable. If the call to
$inferred_disable is not within the scope of any default disable declaration, then the
call to $inferred_disable returns 1°b0 (false).

— $inferred_clock returns the expression of the inferred clocking event.
— Sinferred_disable returns the inferred disable expression.

Let us say you have the following default blocks:

module (...,clk, rst,...);
default clocking @ (negedge clk); endclocking
default disable iff rst;

One of the ways to use this default clocking and reset blocks is as follows.
property inferB(a, b, c, clk=Sinferred_clock, reset=Sinferred_disable);
@ (clk) disable iff (reset) a |=>b || ¢;

endproperty
assert property (inferB(x, vy, z));

The formal parameters of property inferB uses default clocking and reset from
their respective default blocks. In other words, “@ (clk)” is now “@ (negedge clk)”.
Similarly, “disable iff (reset)” is now “disable iff (rst)”.

Note that if property ‘inferB’ is invoked as follows, the $Sinferred_clock will not
take effect—but the actual clocking event ‘posedge clk’ will take effect.

assert property inferB (a, b, c, posedge clk, reset);

@ (clk) in property inferB will be ‘@ (posedge clk)’ and not ‘@ (negedge clk)’ as
in the default clocking block. In other words, the actual overwrites the formal
argument, as always.

From the above we can see that the inferred clocking event expression is the
current resolved event expression that can be used in a clocking event. Of course, if
you use $inferred_clock and there is no default clocking block defined, you will get
an Error.

Here’s simple Verilog code that exemplifies above description.

http://dx.doi.org/10.1007/978-3-319-30539-4_4

272 16 1EEE-1800-2009/2012 Features

module inferred_clock;

logic a,b,c,rst,clk,reset,x,y,z;

default clocking negclock @ (negedge clk); endclocking

default disable iff rst;

property inferB (a, b, ¢, clk=Sinferred_clock, reset = Sinferred_disable);

@ (clk) disable iff (reset) a |=>b || ¢

endproperty

assert property (inferB (x, y, z, clk, reset)) else Sdisplay (Sstime,,,”FAIL”);
cover property (inferB (x, vy, z, clk, reset)) Sdisplay (Sstime,,,”PASS”);
initial

begin

clk=0; reset=0;
x=1; y=0; z=0;
#40; y=1;

end

always #10 clk = !clk;
initial Smonitor(Sstime,,,”clk="clk,,’reset="reset,,”a="x,,”b="y,” c="z);
endmodule

/*

0 clk=0 reset=0 a=1 b=0c=0
10 clk=1 reset=0 a=1b=0c=0
20 FAIL

20 clk=0 reset=0 a=1 b=0 c=0
30 FAIL

30 clk=1 reset=0 a=1 b=0c=0
40 FAIL

40 clk=0 reset=0 a=1b=1c=0
50 PASS

50 clk=1 reset=0 a=1 b=1c=0
60 PASS

60 clk=0 reset=0 a=1b=1c=0

*/

16.12 S$inferred_clock and $inferred_disable 273

Here are the nuances:

A call to an inferred expression function may only be used as the entire default
value expression for a formal argument to a property or sequence declaration.

A call to an inferred expression function cannot appear within the body
expression of a property or sequence declaration.

If a call to an inferred expression function is used as the entire default value
expression for a formal argument to a property or sequence declaration, then it is
replaced by the inferred expression as determined at the point where the property or
sequence is instantiated. Therefore, if the property or sequence instance is the
top-level property expression in an assertion statement, the event expression that is
used to replace the default argument $inferred_clock is that as determined at the
location of the assertion statement. If the property or sequence instance is not the
top-level property expression in the assertion statement, then the event expression
determined by clock flow rules up to the instance location in the property
expression is used as the default value of the argument.

16.13 ‘let’ Declarations

We have all used the compiler directive “define (as a global text substitution macro).
Note the word global—it is truly global spanning across all scopes of your design
modules and files. For example, “define intr 3°b111 will substitute “intr with 3’b111
where-ever it sees “intr either within the local scope or global scope. This can be
good and bad. Good is that you have to define it only once and it will span across
module/file boundaries. Bad is you cannot redefine “intr (well actually you can, but
with consequences). For example, if you change the definition of “intr in a package,
you will get a warning and also the new definition will overwrite all the previous
ones. Also, “define cannot be parameterized.

That is where ‘let’ comes into picture. ‘let’ not only allows local scope but also
allows parameterization (or as LRM puts it, it has “ports’) (as in a sequence or a
property). Parameterization is a big advantage as you can imagine towards devel-
oping modular and reusable code.

To reiterate, let declarations can be used for customization and can replace the
text macros in many cases. The ‘let” construct is safer because it has a local scope,
while the scope of compiler directives is global within the compilation unit. A ‘let’
declaration defines a template expression (a let body), customized by its ports (aka
parameters). A ‘let’ construct may be instantiated in other expressions.

The syntax for ‘let’ is

let_declaration ::= let let_identifier [([let_port_list]) = expression;

Let us see each feature of ‘let’ one by one.

274 16 1EEE-1800-2009/2012 Features

16.13.1 let: Local Scope

First let us see an example using ‘let’

module example;
logic r1,r2, r3,r4,clk,clkl;
let exDeflet =r1 || r2;
always @ (posedge clk) begin: ablock
let exDeflet = r1 & r2; //exDeflLet has a local scope of ‘ablock’
r3=exDeflet;
end
always @ (posedge clk1) begin: bblock
r4=exDeflLet; // exDeflLet will take the definition from the scope that is visible to it. Here
//it is the outer most scope definition of (r1 || r2);
end
endmodule

We have defined ‘exDefLet’ in two different scopes. One in the always block
‘ablock’ and another at the outermost scope ‘module example’. Note that their
definition (expression) is different in each block. Since ‘let’ can have local scope,
each of the definition of ‘let” will be preserved in its local block. The above code
will look like the following after ‘let’ substitutions take place

module example;

logic r1,r2, r3,r4,clk,clk1;
always @ (posedge clk) begin :ablock

r3=rl & r2;

end
lways @ (posedge clk1) begin: bblock

rd=rl || r2;
end
endmodule
If the same design was modeled using “define, here’s how the code would look
like

module example;
logic r1,r2, r3,r4,clk,clkl;
‘define exDeflet rl || r2;

16.13 ‘let’ Declarations 275

always @ (posedge clk) begin :ablock

‘define exDeflet r1 & r2;
r3="exDeflet;

end
always @ (posedge clk1) begin: bblock

r4="exDeflet;

end
endmodule

In this example, since there are two “define for the same variable, the compiler
will complain right off the bat and use the second definition r1&r2 (it’s the latest in
lexical order) as the global definition of exDefLet. The above code will look like the
following after “define substitutions

module example;
logic r1,r2, r3,rd,clk,clkl;
always @ (posedge clk) begin: ablock

r3=rl & r2;

end
always @ (posedge clk1) begin: bblock

rd=rl&r2;

end
endmodule

As you see ‘let’ is very useful from scoping point of view. It follows the normal
scoping rules. You can parameterize it (or as LRM puts it, it can have ‘ports’) and
reuse the ‘let’ expression repeatedly with different parameters. Let us now see some
more usage/advantages of ‘let’.

16.13.2 let: With Parameters

As mentioned before, ‘let’ can be parameterized which is its significant advantage
over “define which is purely a text substitution macro (global compiler directive).
Note that instantiation of ‘let’ is quite different from a ‘parameterized function’.
With ‘let’ you replace the instance with entire ‘let’ body. With ‘function’ you
simply pass the parameters and the function executes using those parameters.
Function does not replace the instance of function call.

276 16 1EEE-1800-2009/2012 Features

Ok, let us see a simple example.

module abc;
logic clk, x, y, j;
logic [7:0] r1;
let Ixor (p, g=1'b0) = p”q;
always @ (posedge clk) begin
for (i = 0; i <= 256; i++) begin
rl = Ixor(i); //After expanding the ‘let’ instance, this will be r1 =i * 1’b0;
end
end

endmodule

For each value of ‘i’ r1 will get the ‘xor’ of ‘i’ and ‘q = 1"b0’. Note that the formal
parameter ‘q’ is assigned a default value of ‘1°b0’. That being the case, when “rl =
Ixor(i)” is executed, the actual ‘i’ replaces the formal ‘p’ in Ixor and ‘q’ takes on its
assigned default value of ‘1°b0’. You could have also specified “rl = Ixor(i, j)” and
the formal ‘q’ will now take the value of ‘j” (whatever j’ is).

Note that some rules apply to the formal arguments.

1. Note again that the ‘let’ body gets expanded with the actual arguments (which
replace the formal arguments) and the body (RHS of ‘let’) will replace the
instance of ‘let’. That being the case, once the body of ‘let’ replaces the instance
of ‘let’, all required semantic checks will take place to see that the expanded ‘let’
body with the actual arguments is legal.

2. The formal arguments can have a default value (as we saw in the example above).

3. The formal arguments can be typed or un-typed. The typed arguments will force
type compatibility between formal and actual (cast compatibility). In other
words, the actual argument will be cast to the type of the formal argument before
being substituted. Un-typed formal in that case is more flexible.

4. If the formal argument is of ‘event’ type, then the actual argument must be an
event_expression. Each reference to the formal argument shall be in a place
where an event_expression may be written.

5. The self-determined result type of the actual argument must be cast compatible
with the type of the formal argument. The actual argument must be cast to the
type of the formal argument before being substituted for a reference to the
formal argument.

If the variables used in ‘let’ are not formal arguments to the ‘let’ declaration,
they will be resolved according to the scoping rules of the scope in which ‘let’ is
declared.

16.13 ‘let’ Declarations 277

16.13.3 let: In Immediate and Concurrent Assertions

Yes, ‘let’ can be used in an immediate (‘assert’) as well as concurrent (‘assert
property’) assertions in a procedural block.

Let us start with a very simple example of ‘let’ usage in a sequence. Note that
‘let’ expression can only be structural or with sampled value function (as in $past).
We will see ‘let’ with sampled value function in the next section.

module abc;

logic req, gnt;

let reqack = req && gnt;
sequence reqGnt;

regack;

endsequence
endmodule

After expanding the ‘let’ instance

module abc;
logic req, gnt;
sequence reqGnt;

Ireq && gnt; //

endsequence

endmodule

Here’s another example.

module abc;

logic clk, r1,r2,req,gnt;

let xxory (x,y) = x A y; //bit wise xor
let rorg =req || gnt;

P1: assert property (@ (posedge clk) (rorg)); //concurrent assertion
always_comb begin

al: assert (xxory (r1,r2)); //immediate assertion

a2: assert (rorg);

end

endmodule

After expansion (showing complete hierarchical scope)

module abc;

logic clk, r1,r2,req,gnt;

P1: assert property (@ (posedge clk) (abc.req || abc.gnt)); //concurrent assertion
always_comb begin

278 16 1EEE-1800-2009/2012 Features

al: assert (abc.rl A abc.r2)); //immediate assertion
a2: assert (abc.req || abc.gnt);

end

endmodule

Now, here’s an example that uses the sampled value functions $(rose) and

$(fell).

module abg;

logic clk,r1,r2,req,gnt,ack,start;
let arose(x) = Srose(x);

let afell(y) = Sfell (y);
always_comb begin

if (ack) s1: assert(arose(gnt));
if (start) s2: assert(afell(req));
end

Another intended use of let is to provide shortcuts for identifiers or subexpres-
sions. For example, (LRM):
task write_value;

input logic [31:0] addr;
input logic [31:0] value;

endtask
let addr = top.block1.unitl.base + top.blockl.unit2.displ;

write_value(addr, 0);

But note that hierarchical references to ‘let’ expressions are not allowed. For
example, following is illegal.

assign e = Top.CPU.my_let(a)); //lllegal

Also, Recursive ‘let’ instantiations are not permitted.
Here’s an example of how the ‘let’ arguments bind in the declarative context.

module sys;
logic req =1'b1;
logic a, b;

lety =req;

always_comb begin
req = 1'b0;
b=aly;

end

endmodule: sys

16.13 ‘let’ Declarations 279

The effective code after expanding let expressions:

module sys;
logic req =1'b1;
logic a,b;

always_comb begin

req = 1'b0;

b =a| (sys.req); //NOTE:y binds to preceding definition of ‘req’ in the declarative context of ‘let’
end
endmodule : top

Following is an example of ‘let’ with typed formal arguments. The example
shows how type conversion works when the type of a formal is different from the
type of an actual (partially from LRM).

First, module 'm’ with ‘let’ declarations. Note the typed formals in ‘let’ decla-
rations and the mismatch between ‘let’ instance ‘actuals’ and ‘formals’.

module m(input clock);
logic [15:0] a, b;
logicc, d;

typedef bit [15:0] bits;

let ones_match(bits x, y) = x ==y;
let same(logic x, y) = x ===vy;

always_comb
al: assert(ones_match(a, b));
//Note: the actuals ‘a’ and ‘b’ are of type ‘logic’, while the formals ‘x’, ‘y’ are of type ‘bits’

property toggles(bit x, y);
same(x, y) |=> Isame(x, y);
//Note: the actuals ‘x’, ‘y’ are of type ‘bit’, while the formals ‘¥, ‘y’ are of type ‘logic’

endproperty

a2: assert property (@(posedge clock) toggles(c, d));
endmodule : m

After expanding the ‘let’ macro, the code looks as follows:

module m(input clock);
logic [15:0] a, b;
logicc, d;

typedef bit [15:0] bits;

// let ones_match(bits x, y) = x == y;
// let same(logic x, y) =x ===vy;

always_comb
al:assert((bits'(a) == bits'(b)));

property toggles(bit x, y);
(logic'(x) === logic'(y)) |=>! (logic'(x) === logic'(y));
endproperty

a2: assert property (@(posedge clock) toggles(c, d));
endmodule : m

280 16 IEEE-1800-2009/2012 Features

Finally, here’s where a ‘let’ can be declared:

A module

An interface

A program

A checker

A clocking block

A package

A compilation-unit scope

A generate block

A sequential or parallel block
A subroutine

16.14 ‘restrict’ for Formal Verification

The ‘restrict’ property is strictly for Formal (static functional) verification.
Simulators do not check this property. Since we are not covering Formal Verification
in this book, this property is noted here for the sake of completeness. Note that we
have immediate ‘assert’, ‘cover’ and ‘assume’ but there is no immediate ‘restrict’
assertion statement. As we saw with the ‘assume’ property, formal verification
requires some assumption or restriction in order for it to restrict the logic cones to
process and not explode in the state space. ‘restrict’ has the same semantics as
‘assume’, only that ‘restrict’ does not have an action block. Here is the syntax.

restrict property (property_spec); /Note, no action block.

For example, for Formal Verification you need to restrict the checking of an assertion
which has 5 inputs (a, b, ¢, d,) and 2 control bits (X, y). If {x, y} =2°b00, the inputs a, b
are of no use for the static formal check. So, we restrict the property as follows:

restrict property (@ (posedge clk) {x, y} == 2’b00);

Note again that the property is ignored by simulation. In other words, {x,y} ==
2’b00 is not enforced during simulation.
Please refer to the Chap. (13) on ‘assume’ to further understand usage of ‘restrict’.

16.15 Abort Properties: reject_on, accept_on,
sync_reject_on, sync_accept_on

Recall ‘disable_iff” disable condition (Sect. 4.6), which preempts the entire asser-
tion, if true. ‘disable_iff’ is an asynchronous abort (or reset) condition for the
entire assertion. It is also asynchronous in that it’s expression is not sampled in the
pre-poned region but the expression is evaluated at every time stamp

http://dx.doi.org/10.1007/978-3-319-30539-4_13
http://dx.doi.org/10.1007/978-3-319-30539-4_4

16.15 Abort Properties: reject_on, ... 281

(i.e. in-between clock ticks as well as at the clock ticks) and whenever the ‘disable_
iff” expression turns true that the entire assertion will be abandoned (no pass or fail).

With that background, 1800-2009/2012 adds four more abort conditions.
‘reject_on’ and ‘accept_on’ are asynchronous abort conditions (as in disable_iff) and
‘sync_reject_on’ and ‘sync_accept_on’ are synchronous (i.e. sampled) abort condi-
tion. Note that ‘accept_on’ is an abort condition for PASS, even though that may
seem a bit counterintuitive at first. In other words, if ‘accept_on’ aborts an evaluation,
the result is a PASS. If ‘reject_on’ aborts an evaluation, the result is FAIL.

The syntax for all four is the same.

accept_on (abort condition expression) property_expression
sync_accept_on (abort condition expression) property_expression
reject_on (abort condition expression) property_expression
sync_reject_on (abort condition expression) property_expression

Before we see examples, here are high-level points to note

1. One note off the bat to distinguish ‘disable_iff’ from the abort properties is that
‘disable_iff > works at the ‘entire concurrent assertion’ level while these abort
properties work at the ‘property’ level. Only the property_expression associated
with the abort property will get ‘aborted’—not the entire assertion as with
‘disable_iff’. More on this later.

2. The operators ‘accept_on’ and ‘reject_on’ work at the granularity of simulation
time step (i.e. asynchronously).

3. In contrast, the operators ‘sync_accept_on’ and ‘sync_reject_on’ do not work at
the granularity of simulation time-step. They are sampled at the simulation time
step of the clocking event.

4. You can nest the four abort operators ‘accept_on’, ‘reject_on’, ‘sync_accept_on’,
‘sync_reject_on’. Note that nested operators are in the lexical order ‘accept_on’,
‘reject_on’, ‘sync_accept_on’ and ‘sync_reject_on’ (from left to right). While
evaluating the inner abort property, the outer abort property takes precedence
over the inner abort condition in case both conditions occur at the same time tick.

5. Abort condition cannot contain any reference to local variables or the sequence
methods .triggered and .matched.

Now let us look at some examples to nail down the concepts.
property pl;
@ (posedge clk) SfelllbMode) |-> reject_on(bMode) data_transfer[*4];

endproperty
assert property (pl);

The above example specifies that on the falling edge of burst Mode (bMode),
data_transfer should remain asserted for 4 consecutive clocks and that the bMode
should —not- go high during those 4 data transfers. The way the property reads is;
look for the falling edge of bMode and starting that clock reject (fail) the property

282 16 1EEE-1800-2009/2012 Features

“(data_transfer[*4])” if at any time (i.e. asynchronously—even between clock ticks)
it sees bMode going high. As noted before, ‘reject_on’ abort means failure. Hence
consequent will FAIL and so will the property pl.

The important thing to note here is that the evaluation of the abort property
namely “data_transfer[*4]” and the reject condition reject_on(bMode) start at the
same time. In other words, (as shown below), this is like a ‘throughout’ operator
where the LHS is checked to see if it holds for the entire duration of RHS.
Similarly, here we check to see that while we are monitoring “data_transfer[*4]” to
hold that ‘bMode’ should not go high. If it does go high at any time during
“data_transfer[*4]” the property will be rejected i.e. it will fail.

The same property can be written using sync_reject_on, only that the “bMode”
will not be evaluated asynchronously (any time including in-between clock ticks)
but will be sampled only at the sampling edge, clock tick.

Note that the above property can be written using ‘throughout’ as well. Please
refer to Sect. 6.9 on ‘throughout’ operator to see a similar example.

property p1l;
@ (posedge clk) SfelllbMode) |-> !(bMode) throughout data_transfer[*4];

endproperty
assert property (pl);

Let us look at an example of ‘accept_on’
property reqack;
@ (posedge clk) accept_on(cycle_end) req |-> ##5 ack;

endproperty
assert property (reqack);

This property uses “accept_on(cycle_end)” as the abort condition on the prop-
erty “req |-> ##5 ack”. When ‘req’ is sampled high on a posedge clk, the property
“req |-> ##5 ack” starts evaluating waiting for ack to arrive after 5 clocks. At the
same time, ‘cycle_end’ is also monitored to see if it goes high. Here are the
scenarios that take place.

‘cycle_end’ arrives within the 5 clocks that the property is waiting for ‘ack’. The
accept_on condition will be true in that case and the property will be considered to
pass. The next evaluation will again start the next time ‘req’ is sampled high on
posedge clk.

‘cycle_end’ does not arrive within 5 clocks when the property is waiting for
‘ack’. The property will evaluate as with any concurrent assertion and if ‘ack’ does
not come in high at 5th clock, the property will fail. If ‘ack’ does come in high at
5th clock, the property will pass.

‘cycle_end’ arrives exactly the same time as ‘ack’ within the 5 clocks. The abort
condition takes precedence. Since in this case, both ‘ack’ arrived and the accept_on
was triggered at the same time, the accept_on aborts the evaluation with a pass and

http://dx.doi.org/10.1007/978-3-319-30539-4_6

16.15 Abort Properties: reject_on, ... 283

so the assertion will pass. What if we used ‘reject_on’ instead of ‘accept_on’ in
such a scenario?

In short, the property evaluation aborts on ‘accept_on’ (and passes) or
‘reject_on’ (and fails) OR it will finish on its own (and pass/fail) if the abort
condition does not arrive.

Here are some more examples courtesy 1800-2009/2012 LRM.

property p; (accept_on(a) pl) and (reject_on(b) p2); endproperty

Note that we are using an ‘and’ operator here between two properties pl and p2.
Note that for an ‘and’ to succeed both the LHS and RHS of ‘and’ must complete
and pass. If ‘a’ becomes true, then p1 will abort and pass. But since there is an ‘and’
we will wait for the second property to complete as well. If ‘b’ becomes true during
the evaluation of p2, p2 will be aborted and considered to fail and since this is an
‘and’ the property ‘p’ will fail. What if we used an ‘or’ instead?

property p; (accept_on(a) pl) or (reject_on(b) p2); endproperty

Recall that ‘or’ requires either the LHS or the RHS to complete and pass. In the
same scenario as above, if ‘a’ becomes true first during the evaluation of p1, pl is
aborted and will be pass (i.e. accepted) and the property ‘p’ will pass.

Note that nested operators are in the lexical order ‘accept_on’, ‘reject_on’,
‘sync_accept_on’ and ‘sync_reject_on’ (from left to right). If two nested operator
conditions become true in the same time tick during the evaluation of the property,
then the outermost operator takes precedence.

property p; accept_on(a) reject_on(b) p1; endproperty

Note there is no operator between accept_on and reject_on.

If ‘a’ goes high first, the property is aborted on accept_on and will pass. If ‘b’
goes high first, the reject_on succeeds and the property p will fail. If both ‘a’ and ‘b’
go high at the same time during the evaluation of pl, then accept_on takes
precedence and ‘p’ will pass.

Another simple example.

Frame_accept_reject: assert property (
@(posedge clk)
accept_on (Frame_)
Cycle_start |=> reject_on(Tabort)
)

else Sdisplay (“Frame_ FAIL);

This is another example of nested asynchronous aborts. The outer abort
(accept_on (Frame_)) has the scope of the entire property of the concurrent

284 16 1EEE-1800-2009/2012 Features

assertion. The inner abort (reject_on(Tabort)) has the scope of the consequent of
|=>. The inner abort does not start evaluation until Cycle_start is true. Note that the
outer abort takes precedence over the inner abort.

Exercise: Try the same property with s_accept_on and s_reject_on and note the

differences. Try both examples with different triggers of Frame_ and Tabort and see

when/how the property passes and fails. I’ll leave this for you as an exercise.
Finally, note the following points

e A disable condition (disable iff) may use the method .triggered (attached to the
sequence used in disable condition). But an abort condition (the ones described
above) cannot use .triggered method
Either disable or abort properties cannot refer to local variables
Either of the reset conditions may not use the method .matched attached to the
sequence used in reset conditions.

16.16 $assertpassoff, $assertpasson, $assertfailoff,
$assertfailon, $assertnonvacuouson,
$assertvacuousoff

These system tasks add further control over assertion execution during simulation.
We have seen $asserton, $assertoff and $assertkill (refer to Sect. 7.4) before. Here’s
a brief explanation of what these new system tasks do.

$assertpassoff : This system task turns off the action block associated with PASS of
an assertion. This includes PASS indication because of both the vacuous and
non-vacuous success (Sect. 14.15). To re-enable the PASS action block, use
$assertpasson. It will turn on the PASS action of both the vacuous and
non-vacuous successes (Sect. 14.15). If you want to turn on only the non-vacuous
PASS, then use $assertnonvacuouson system task. Note that these system tasks do
not affect an assertion that is already executing.

$assertfailoff: This system task turns off the action block associated with the FAIL
of an assertion. In order to turn it on, use $assertfailon. Here also, these system
tasks do not affect an assertion that is already executing.

$assertvacuousoff system task turns off the PASS indication based on a vacuous
success (Sect. 14.15). An assertion that is already executing is not affected. By
default, we get a PASS indication on vacuous pass.

All the system tasks take arguments, as we have seen before with $asserton,
$assertoff and $assertkill (refer to Sect. 7.4). The first argument indicates how many
level of hierarchy below each specified module instance to apply the system tasks.
The subsequent arguments specify which scopes of the model to act upon (entire
modules or instances).

http://dx.doi.org/10.1007/978-3-319-30539-4_7
http://dx.doi.org/10.1007/978-3-319-30539-4_14
http://dx.doi.org/10.1007/978-3-319-30539-4_14
http://dx.doi.org/10.1007/978-3-319-30539-4_14
http://dx.doi.org/10.1007/978-3-319-30539-4_7

16.17 $assertcontrol 285

16.17 $assertcontrol

LRM IEEE-1800 (2012) introduces a new system task $assertcontrol. This system
task can be used in lieu of above mentioned individual system tasks.

The S$assertcontrol system task controls the evaluation of assertions. The
$assertcontrol system task can also be used to control the execution of assertion
action blocks associated with assertions and expect statements.

This system task provides the capability to enable/disable/kill the assertions
based on assertion type or directive type. Similarly, this task also provides the
capability to enable/disable action block execution of assertions and expect state-
ments based on assertion type or directive type.

The violation reporting for unique, uniqueO and priority if and case constructs
can also be controlled using these tasks. I will refrain from explain unique, uniqueQ
and priority if and case since these are SystemVerilog constructs and not assertions
constructs. Please refer to the SystemVerilog LRM for their description.

Here’s the syntax:

Sassertioncontrol (control_type [, [assertion_type] [, [directive_type] [, [levels]
[, list_of _scopes_or_assertions]]] 1);

where:

— control_type: This argument controls the effect of the $assertcontrol system
task. This argument is an integer expression. The valid values for this argument
are

Control_type value Effect

Lock
Unlock

On

Off

Kill

PassOn
PassOff
FailOn
FailOff
NonvacuousOn
VacuousOff

NeoRNeNIEN N N RO, T N NN USSR

—_| —
— O

Now let us see what does each of the ‘effect” mean (LRM):

— Lock: A value of 1 for this argument prevents status change of all specified
assertions, expect statements, and violation reports until they are unlocked.
Once an S$assertcontrol with control_type of value 1 (Lock) is applied to an
assertion, expect statement, or violation report, it becomes locked and no

286 16 IEEE-1800-2009/2012 Features

$assertcontrol will affect it until the locked state is removed by a subsequent
$assertcontrol with a control_type value of 2 (Unlock).

— Unlock: A value of 2 for this argument will remove the locked status of all
specified assertions, expect statements, and violation reports.

— On: A value of 3 for this argument will re-enable the execution of all specified
assertions. A value of 3 for this argument will also re-enable violation reporting
from all the specified violation report types. This control_type value does not
affect expect statements.

— Off: A value of 4 for this argument will stop the checking of all specified
assertions until a subsequent $assertcontrol with a control_type of 3 (On). No
new attempts will be started.

Attempts that are already executing for the assertions, and their pass or fail
statements, are not affected. In the case of a deferred assertion (Sect. 16.2), currently
queued reports are not flushed and may still mature, though further checking is
prevented until a subsequent $assertcontrol with a control_type of 3 (On). In the
case of a pending procedural assertion instance, currently queued instances are not
flushed and may still mature, though no new instances may be queued until a
subsequent $assertcontrol with a control_type of 3 (On). A value of 4 for this
argument will also disable the violation reporting from all the specified violation
report types.

Currently queued violation reports are not flushed and may still mature, though
no new violation reports will be added to the pending violation report queue until a
subsequent $assertcontrol with a control_type value of 3 (On). The violation
reporting can be re-enabled subsequently by $assertcontrol with a control_type
value of 3 (On). This control_type value does not affect expect statements.

— Kill: A value of 5 for this argument will abort execution of any currently
executing attempts for the specified assertions and then stop the checking of all
specified assertions until a subsequent $assertcontrol with a control_type of 3
(On). This also flushes any queued pending reports of deferred assertions or
pending procedural assertion instances that have not yet matured. A value of 5
for this argument will also abort violation reporting from all the specified vio-
lation report types. Currently queued violation reports that have not yet matured
are also flushed, and no new violation reports shall be added to the pending
violation report queue until a subsequent $assertcontrol with a control_type
value of 3 (On). This control_type value does not affect expect statements.

— PassOn: A value of 6 for this argument will enable execution of the pass action
for vacuous and nonvacuous success of all the specified assertions and expect
statements. An assertion that is already executing, including execution of the
pass or fail action, is not affected. This control_type value does not affect
violation report types.

— PassOff: A value of 7 for this argument will stop execution of the pass action for
vacuous and nonvacuous success of all the specified assertions and expect
statements. Execution of the pass action for both vacuous and nonvacuous
successes can be re-enabled subsequently by $assertcontrol with a control_type

16.17 $assertcontrol 287

value of 6 (PassOn), while the execution of the pass action for only nonvacuous
successes can be enabled subsequently by $assertcontrol with a control_type
value of 10 (NonvacuousOn). An assertion that is already executing, including
execution of the pass or fail action, is not affected. This control_type value does
not affect violation report types.

FailOn: A value of 8 for this argument will enable execution of the fail action of
all the specified assertions and expect statements. An assertion that is already
executing, including execution of the pass or fail action, is not affected. This
task also affects the execution of the default fail action block. This control_type
value does not affect violation report types.

FailOff: A value of 9 for this argument will stop execution of the fail action of
all the specified assertions and expect statements until a subsequent $assert-
control with a control_type value of 8 (FailOn). An assertion that is already
executing, including execution of the pass or fail action, is not affected. By
default, the fail action is executed. This task also affects the execution of default
fail action block, i.e., $error, which is called in case no else clause is specified
for the assertion. This control_type value does not affect violation report types.
NonvacuousOn: A value of 10 for this argument will enable execution of the
pass action of all the specified assertions and expect statements on nonvacuous
success. An assertion that is already executing, including execution of the pass
or fail action, is not affected. This control_type value does not affect violation
report types.

VacuousOff: A value of 11 for this argument will stop execution of the pass
action of all the specified assertions and expect statements on vacuous success
until a subsequent $assertcontrol with a control_type value of 6 (PassOn). An
assertion that is already executing, including execution of the pass or fail action,
is not affected. By default, the pass action is executed on vacuous success. This
control_type value does not affect violation report types.

The assertion action control tasks or $assertcontrol with control_type values of 6

(PassOn) to 11 (VacuousOff) do not affect statistics counters for the assertions. The
details related to the behavior of $assertcontrol for assertions referring to global
clocking future sampled value functions are explained in Sect. 16.5.

assertion_type: This argument selects the assertion types and violation report
types that are affected by the $assertcontrol system task. This argument shall be
an integer expression. The valid values for this argument are

Assertion_type value Types of assertions affected
1 Concurrent
2 Simple Immediate

4 Observed Differed Immediate
8 Final Differed Immediate

16 Expect

32 Unique

(continued)

288 16 1EEE-1800-2009/2012 Features

(continued)

Assertion_type value Types of assertions affected
64 UniqueO

128 Priority

Note that multiple assertion_type values can be specified at a time by OR-ing
different values. For example, a task with assertion_type value of 3 (which is the
same as Concurrent|Simplelmmediate) will apply to concurrent and simple
immediate assertions. Similarly, a task with assertion_type value of 96 (which is
same as Unique[Unique0) will apply to unique and unique0 if and case constructs.

If assertion_type is not specified, then it defaults to 255 and the system task
applies to all types of assertions, expect statements, and violation reports.

— directive_type: This argument selects the directive types that are affected by the
$assertcontrol system task. This argument will be an integer expression.

The valid values for this argument are

Directive_type values Type of directives affected
1 Assert directives

2 Cover directives

3 Assume directives

Multiple directive_type values can be specified at a time by OR-ing different
values. For example, a task with directive_type value of 3 (which is same as Assert|
Cover) shall apply to assert and cover directives.

If directive_type is not specified, then it defaults to 7 (Assert|Cover|Assume) and
the system task applies to all types of directives.

— levels: This argument specifies the levels of hierarchy, consistent with the
corresponding argument to SystemVerilog $dumpvars system task. If this
argument is not specified, it defaults to 0. This argument will be an integer
expression.

— list_of_scopes_or_assertions: This argument specifies which scopes of the
model to control. These arguments can specify any scopes or individual
assertions.

Now, let’s see how S$assertcontrol maps to the individual controls that were
described in the previous section. Note that these individual system tasks are still
supported in 2012 LRM for backward compatibility.

— S$asserton[(levels[, list])] is equivalent to $assertcontrol(3, 15, 7, levels [,list])
— Sassertoff[(levels[, list])] is equivalent to $assertcontrol(4, 15, 7, levels [,list])
— Sassertkill[(levels[, list])] is equivalent to $assertcontrol(5, 15, 7, levels [,list])

16.17 $assertcontrol 289

And as I just mentioned, assertion action control tasks $assertpasson, $assert-
passoff, $assertfailon, $assertfailoff, $assertvacuousoff, and $assertnonvacuouson
are also provided for backward compatibility. Following example from LRM.

These tasks can be defined as follows:

— $assertpasson[(levels[, list])] is equivalent to $assertcontrol(6, 31, 7, levels
[list])

— Sassertpassoff[(levels[, list])] is equivalent to $assertcontrol(7, 31, 7, levels
[list])

— $assertfailon[(levels[, list])] is equivalent to $assertcontrol(8, 31, 7, levels
[Llist])

— Sassertfailoff[(levels[, list])] is equivalent to $assertcontrol(9, 31, 7, levels
[Llist])

— S$assertnonvacuouson((levels[, list])] is equivalent to $assertcontrol(10, 31, 7,
levels [,list])

— $assertvacuousoff[(levels[, list])] is equivalent to S$assertcontrol(11, 31, 7,
levels [,list])

Examples:
Sassertcontrol (VACUOUSOFF, CONCURRENT | EXPECT);

This systasks affect the whole design so no modules are specified. Disable
vacuous pass action for all the concurrent asserts, covers and assumes in the design.
Also disable vacuous pass action for expect statements.

Sassertcontrol (OFF);

Disable concurrent and immediate asserts and covers. This system task does not
affect expect statements as control type is Off using default values of all the
arguments after first argument. This will also disable violation reporting.

Sassertcontrol (ON, CONCURRENT|S_IMMEDIATE|D_IMMEDIATE, ASSERT|COVER|
ASSUME, 0);

This system task enables assertions. This will not enable violation reporting.
Sassertcontrol (KILL, CONCURRENT, ASSERT, 0);

Kill currently executing concurrent assertions but do not kill concurrent
covers/assumes and immediate/deferred asserts/covers/assumes using appropriate
values of second and third arguments.

Sassertcontrol (LOCK, ALL_ASSERTS, ALL_DIRECTIVES, 0, al);
Sassertcontrol (ON); //enable all the assertions except al
Sassertcontrol (UNLOCK, ALL_ASSERTS, ALL_DIRECTIVES, 0, al);

Enable all the assertions except al. To accomplish this, first we’ll lock al and
then we’ll enable all the assertions and then unlock al as we want future assertion
control tasks to affect al.

290 16 IEEE-1800-2009/2012 Features

16.18 Checkers

Checkers provide a way to group several assertions together into a bigger block
which acts with its well defined functionality and interfaces providing modularity
and reusability. In addition to bundling assertions, you may also put modeling code
in these blocks that the assertions or covergroups need. A checker allows you to
place all such logic in a well-defined block. One of the intended use of checkers is
to serve as verification library units.

But wait. Don’t we have ‘modules’ and ‘interfaces’ that do the same thing? Sure,
you can have a ‘module’ or ‘interface’ which can keep assertions separate from
RTL code and bind them °‘externally’. But there are significant advantages to
keeping assertions grouped into a checker.

1. A checker can be instantiated from a procedural block as well as from outside
procedural code as with concurrent assertions. On the other hand, and as we are
familiar with, a module cannot be instantiated in a procedural block. It can only
be instantiated outside of a procedural block.

2. The formal arguments of a checker can be sequences, properties or other edge
sensitive events. Module I/O ports do not allow this.

3. Synthesis tools normally ignore the entire checker block while in a module you
have to use conditional compile if you have synthesizable code mixed with
assertions.

Here’s the syntax for a checker. A checker is declared using the keyword
‘checker’ followed by a name and optional formal argument list, and ending with
the keyword ‘endchecker’.

checker checker_identifier [([checker_port_list])];
{checker_or_generate_item}
endchecker [: checker_identifier]

Let us start with a simple example where we show the advantages of grouping
assertions in a ‘checker’ versus a ‘module’.

1. module: First we’ll define a ‘module’ which holds properties and sequences for
a simple bus protocol.

2. module testbench: Then we’ll define a testbench module that instantiates this
‘module’.

3. Checker: Then we’ll see how to put all these properties in a ‘checker’ (instead of
a ‘module’).

4. Checker Testbench: And finally we’ll see how the testbench ‘instantiates’ this
‘checker’ from procedural code.

ONE: Assertions in a ‘module’

16.18 Checkers 291

module checkerModule #(burstSize =4) (dack_, oe_, bMode, bMode_in, clk, rst);
input dack_, oe_, bMode , bMode_in, clk, rst;
sequence data_transfer;
##2 ((dack_==0) && (oe_==0)) [*burstSize];
endsequence
sequence checkbMode;
('bMode) throughout data_transfer;
endsequence
property pbrulel;
@ (posedge clk) disable iff (rst) bMode_in |-> checkbMode;
endproperty
checkBurst: assert property(pbrulel) else Sdisplay(Sstime,,, ”Burst Rule Violated”);

endmodule

module checkerModule is a simple bus protocol checker that is fashioned on the
PCI bus. When bMode(burst mode) is asserted (active low) for 2 clocks consecu-
tively that we need to make sure that it remains low throughout data_transfer which
is 4 clocks long. We have seen a very similar model in (Sect. 6.9) while studying
throughout. Please refer to the AC specs (timing diagrams) for this module in that
section. Note that we have parameterized the ‘burstSize’ which is a practical way to
model a property that can be reused for different burst lengths.

Now let us see how do we instantiate this checkerModule module from our
testbench.

TWO:

module test_checkerModule;
logic dataAck_, outputEn_;
logic bMode, bMode_send, rst, clk;
always @ (posedge clk or negedge rst) begin
if (!rst) begin
dataAck_=1'b0; outputEn_=0; bMode=0;
end

/*Following block generates a ’bMode’ that is Low for 2 clocks consecutively. If so, we send
‘bMode_send’ to the checkerModule module. */

always @ (posedge clk && rst) begin
if (!bMode) begin
@ (posedge clk);
If (lbMode) bMode_send=bMode;
end
end
//Now let us instantiate module ‘checkerModule’

checkerModule (#8)
ck1(.dack_(dataAck_),.oe_(outputEn_),.oMode(bMode),.bMode_in(bMode_send),

.clk(clk), .rst(rst));

endmodule

http://dx.doi.org/10.1007/978-3-319-30539-4_6

292 16 1EEE-1800-2009/2012 Features

A few things to note here.

1. We had to explicitly create a ‘sequence’ using an ‘always’ block (to check that
‘bMode’ is Low for 2 consecutive clocks) in behavioral code since we cannot
pass sequences to a module

2. We have to explicitly pass clk and rst to the module checkerModule since a
module instance won’t infer clk or rst from its context. In other words, clk and
rst cannot be inferred from the module test_checkerModule

3. You cannot pass an edge control to a module (we all know how
modules/instances work... so some of these points are probably obvious). Since
an edge cannot be passed to a port, you have to make sure that you send the right
polarity on these ports (clk for posedge clk) and (!clk for negedge clk)

Now let us model the same checkerModule ‘module’ as a ‘checker’
THREE:

checker checkerM #(burstSize =4) (dack_, oe_, bMode, bMode_in, rst, event clk=Sinferred_clock);
input dack_, oe_, bMode ,bMode_in, rst;
sequence data_transfer;
##2 ((dack_==0) && (oe_==0)) [*burstSize];

endsequence
sequence checkbMode;

('bMode) throughout data_transfer;
endsequence
property pbrulel;

@ (clk) disable iff (rst) bMode_in |-> checkbMode;
endproperty
checkBurst: assert property (pbrulel) else Sdisplay(Sstime,,, ”Burst Rule Violated”);

endchecker

Note that ‘clk’ is now inferred from the context from which checkerM is
instantiated (see the next module test_checkerM). Also, a sequence
‘bMode_Sequence’ will be explicitly assigned to port ‘bMode_in’ from the
test_checkerM module. Neither of these two features are possible if we model our
assertions in a Verilog module.

16.18 Checkers 293

Here’s the test_checkerM module that calls the ‘checker checkerM’ module
FOUR

module test_checkerM;
logic dataAck_, outputEn_, bMode;
logic cycle_start, rst, clk;
/*Following block generates a bMode that is Low for 2 consecutive clocks. */
sequence bMode_Sequence;

IbMode[*2]
endsequence
//Now let us call the checker ‘checkerM’ from a procedural block
always @ (posedge clk or negedge rst) begin

if (!rst) begin

dataAck_=1'b0; outputEn_=0;bMode=0;

end
else

checkerM (#8) ckl (.dack_(dataAck_), .oe_(outputEn_), .bMode(bMode),
.bMode_in(bMode_Sequence) .rst(rst));

endmodule

Note

1. We did not explicitly pass ‘clk’ to the checker checkerM. The clk was inferred
from the context of the procedural block from which it was called (just as in
concurrent assertion that is called from a procedural block). We could have done
the same for ‘rst’.

2. We passed a sequence bMode_Sequence to checkerM on bMode_in port.

As you noticed, it is much more practical, modular and easier to code and bundle
assertions in a checker than in a module.

Now let us study further language features and nuances of a ‘checker’.

Once again, the clock and reset (disable iff) contexts are inherited from the scope
of the checker instantiation. Here is another simple example.

294 16 1EEE-1800-2009/2012 Features

module test;
default clocking @ clk; endclocking
default disable iff reset;
checker test_bMode;
//directly inherits @ clk and ‘reset’ from the higher level context of module test
endchecker
checker test_cMode; //Note this is a new checker
//Redefines the default blocks. Point is that you can infer/inherit or redefine what is
//inherited
default clocking @ clk1; endclocking //Note that the default clocking block is for @ clk1
default disable iff reset_system; //The default disable iff condition is ‘reset_system’
endchecker

endmodule

The example shows a testbench called ‘module test’ which defines a clk and a

reset at ‘module test’ level. The first checker ‘test_bMode’ inherits the clk and reset
from its higher-level scope (which is ‘module test’). The second checker
‘test_cMode’ defines its own clk1 and reset_system. This enables it to have its own
local definition of clk1 and reset_system. It will not inherit the default clk and reset
from the top level module ‘module test’.

A checker body may contain the following elements:

Declarations of ‘let’ constructs, sequences, properties, and functions

Deferred assertions (see Sect. 16.2)

Concurrent assertions (see Chap. 4)

Checker declarations

Other checker instantiations

Covergroup declarations and instances

‘always’ (‘always_comb’,‘always_latch’,‘always_ff"), ‘initial” and ‘final’ procedures
‘generate’ blocks

‘default clocking’ and ‘default disable iff’ statements

Checker variable declarations and assignments

A checker body cannot contain the following elements:

‘if’, ‘case’, ‘for’, ‘continuous assignment’ etc. type of procedural conditional
and loop statements are not allowed.

‘immediate’ assertions are not allowed, as such. Immediate assertions are
allowed only in the ‘action’ blocks of assertions and its final procedural blocks.
‘initial” block can only contain concurrent or deferred assertions and a procedural
event control statement ‘' @’. All other statements are forbidden in the ‘initial” block.
An ‘always’ block also has similar restrictions. It can only contain concurrent or
deferred assertions, checker variable assignments and procedural timing control
statement ‘@’. All other statements are forbidden in the ‘always’ block.
modules, interfaces, programs and packages cannot be declared inside a checker.

http://dx.doi.org/10.1007/978-3-319-30539-4_4

16.18 Checkers 295

Further illegal constructs are described in coming sections.

16.18.1 Nested Checkers

As mentioned earlier, a checker can embed another checker thus making checkers
nested. Here is an example following the examples above.
checker ckil(irdy, trdy, frame_, event clk=Sinferred_clock, event reset = Sinferred_disable);
default clocking @ clk; endclocking
default disable iff reset;
property checkl;
irdy |-> ##2 trdy;
endproperty
property check2;
Srose(irdy) |=>frame_;
endproperty
checker ck2; //nested checker
property checkl; //Redefinition of checkl within the local scope of checker ck2
Srose(trdy) |-> irdy;
endproperty
property check3;
Sfell(irdy) |-> lframe_;
endproperty
checkp1l: assert property checkl;
checkp3: assert property check3;
checkp2: assert property check2;
endchecker : ck2
ck2 ck2i; //instantiate ck2

endchecker : ck1

Points to note:

1. Checker ckl properties are visible to checker ck2. Hence checker ck2 is able to
‘assert’ check2 of checker ckl

2. Checker ck2 redefines property checkl for its local scope use. Since ck2 is
instantiated in ckl, property checkl of checker ck2 is not directly visible to
checker ckl

3. The inferred clk and reset of checker ckl are visible to checker ck2

296 16 IEEE-1800-2009/2012 Features

16.18.2 Checkers: Illegal Conditions

Following is—not—allowed in the checker body (this is as far as the author knowl-
edge permits, since the simulators did not support checkers as of this writing to
validate the following)

e A checker cannot be instantiated in a concurrent procedural construct such as
fork..join, fork...join_any or fork...join_none.
Continuous assignment.
Procedural conditional and loop statements (if, case, for, etc.) are not allowed in
checkers!

e Declaring nets in a checker body is illegal.

e Using blocking procedural assignments to checker variables is illegal. Such
assignments can only be non-blocking.

e ‘initial’ procedural block may only contain concurrent, deferred and event
control @. Nothing else.

= For example, following is illegal

checker myCheck;
bit myBit;
initial begin myBit=1"b1; //’initial’ assignment to a variable is ILLEGAL
end

endchecker

We assigned a checker variable in the initial block — that is illegal.
Following will work

checker myCheck;
bit myBit=1"b1; //This is Legal
endchecker

Following is illegal as well!

checker myCheck (a, b, c);
bit myBit;

endchecker

module myMod;

mycheck mck1(a, b, c);

Sdisplay(mck1.myBit);//Hierarchical reference to checker variable is
//ILLEGAL

endmodule

16.18 Checkers

e Following is illegal as well !!

checker myCheck(a,b,c);
logic myBus[7:0];
always @ (posedge clk) begin
myBus[1:0] = 2’b0;
myBus[7:1] = 6’b1;

// Multiple assignments to the same variable is ILLEGAL. Bit
// myBus[1] is common and assigned twice.
end
endchecker

BUT the following is legal

checker myCheck(a,b,c);
logic myBus[7:0];
always @ (posedge clk) begin
myBus[1:0] = 2’b0;
myBus(7:2] = 6'b1; //Multiple assighments to bits of myBus is assigned
//only once.
end
endchecker
e Following is illegal as well!
checker myCheck(bus,i);
bit [3:0] bus, i;
initial begin
@ (posedge clk) i=0;
bus[i]=4'b1111;
end
endchecker
module myMod
logic [3:0] busindex;
logic [3:0] datafromBus;
myCheck m1 (datafromBus,busindex);
//busindex is non-constant ILLEGAL
myCheck m2(datafromBus,4’b0); //busindex is constant - LEGAL

endmodule

297

298 16 IEEE-1800-2009/2012 Features

e So, with all these restrictions on checker variable assignments what is one
supposed to do? One of the solution is to use functions, as in the example below.
checker myCheck(a, b);
bit a, b;
initial begin
@ (posedge clk);
a=returnAvalue;
end
function (bit a) returnAvalue;
return a+1;
endfunction

endchecker

In this example, since we cannot assign a value to ‘a’ directly in the ‘initial’
block, we called the function ‘returnAvalue’ to accomplish the same. Note that ‘a’
is visible in the function ‘returnAvalue’. Since function ‘returnAvalue’ is within the
scope of checker mycheck, all the variables available to ‘mycheck’ are also visible
to ‘returnAvalue’. As evident, procedural control statements are allowed in a
function.

16.18.3 Checkers: Important Points

1. A checker can be declared in a

module

interface

program

checker (nested checkers)
. package

generate block

. compilation unit scope

©me po o

2. ‘type’ and ‘data’ declarations within the checker are local to the checker scope
and are static.

3. Clock and ‘disable iff” contexts are inherited from the scope of the checker
declaration.

4. You can modify/access DUT variables from a ‘checker’! But my suggestion is
to not overdo it. Checker code will not be portable and may result in spaghetti
code. Try to keep a checker modular and reusable.

5. Checker formal arguments cannot be of type ‘local’.

6. Checker formal argument cannot be an ‘interface’.

16.18

Checkers 299

7. The connectivity between the actual arguments and formal arguments of a
checker follow exactly the same rules as those for modules, namely,

o op

positional association
explicit named association
implicit named association
wildcard name associations.

Author leaves it to the reader to know of these techniques since they are age old
Verilog.
8. A checker body may contain the following elements (LRM 1800-2009/2012)

o

. Declarations of ‘let’ constructs, sequences, properties and functions

b. Deferred assertions

. Concurrent and Deferred assertions

i. A checker can contain only concurrent and deferred assertions.
Immediate assertions are allowed only in the ‘action’ blocks of asser-
tions and in the final procedural blocks

Nested checkers are allowed

Covergroup declarations and assignments. One or more ‘covergroup’ dec-
larations are permitted in a checker. These declarations and instances cannot
appear in any procedural block in a checker. A ‘covergroup’ may reference
any variable visible in its scope, including checker formal arguments and
checker variables. But it is indeed an Error if a formal argument referenced
by a ‘covergroup’ has a ‘const’ actual argument. Please refer to Chap. 20 on
Functional Coverage to see how ‘covergroups’ are defined. The same def-
inition can be directly embedded in a checker.

f. Default clocking and disable iff declarations are allowed

g.

initial, always and final procedural blocks are allowed in a ‘checker’ body.

i. An ‘initial” procedure in a checker body may contain let declarations,
immediate, deferred, and concurrent assertions, and a procedural
timing control statement using an event control only. Similarly, an
‘always’ procedural block also may contain concurrent, deferred
assertions, variable assignments and event control ‘@’. Nothing else.

ii. The following forms of ‘always’ procedures are allowed in checkers:
always_comb, always_latch, and always_ff. Checker ‘always’ proce-
dures may contain the following statements:

Blocking assignments;
Nonblocking assignments;
Loop statements;

Timing event control,
subroutine calls,

‘let’ declarations.

S

http://dx.doi.org/10.1007/978-3-319-30539-4_20

300 16 1EEE-1800-2009/2012 Features

iii. Except for the variables used in ‘event’ control, all other expressions in
‘always_ff” procedures are ‘sampled’ (in preponed region). Similarly,
the expressions in immediate and deferred immediate procedural
blocks are also ‘sampled’.

iv. However, the expressions in ‘always_comb’ and ‘always_latch’ pro-
cedures are not ‘sampled’ and the assignments in these procedures use
the ‘current’ value of their expressions. This is an important point to
note because it will matter when you debug your results.

For example, (partially, courtesy LRM):

checker mycheck(a, b, ¢, clk, rst);
logic x,y,z,v,t;
assign x=a; //current value of ‘@’

always_ff @(posedge clk or negedge rst) //current values of ‘clk’ and ‘rst’

begin
al:assert (b); //sampled value of ‘b’
If (rst) //current value of ‘rst’
z<=b; //sampled value of ‘b’
else
z<=¢; [/sampled value of ‘¢’
end

always_comb

begin
a2: assert (b); //currentvalue of ‘b’
If (a) //current value of ‘@’
v=b; //currentvalue of ‘b’
else
v=c; //currentvalue of ¢’
end
endchecker

h. Generate blocks, containing any of the above elements are allowed.

9. Checker variables can be ‘rand’ (free variables).

10. The semantics of ‘checker’ formal arguments is similar to the semantics of
‘property’ arguments. Almost all formal argument types allowed in properties
are also allowed in ‘checkers’. BUT they cannot have ‘local’ qualifier.

16.18 Checkers 301

11. Just as in properties, you can also use inference system functions such as
$inferred_clock and $inferred_disable for checker argument initialization.

Eg.,
checker checker_args
(sequence start,
property end,
string message = “”,
event clk = Sinferred_clock,
rst = Sinferred_disable

);

12. You can use ‘let’ declarations in a checker. (see Sect. 16.14 for ‘let’)
13. The RHS of a checker variable assignment may contain the sequence method.
triggered

checker myCheck(a, b, c);

sequence busSeq ; ...; endsequence
always @ (posedge clk) begin a <= busSeq.triggered; end

endchecker

16.18.4 Checker: Instantiation Rules

We have already covered Nested Checker rules. This section provides guidelines on
checker instantiation rules.

As noted above, a checker can be instantiated anywhere a concurrent assertion
can be, except that a checker cannot be instantiated in a procedural construct such
as fork..join, fork...join_any or fork...join_none. The mechanism for passing actual
arguments to the formal arguments of a checker is the same as that for passing
actual arguments to a ‘property’. It is important to note that it’s the ‘sampled’ value
(i.e. the value in the preponed region) of an actual that is assigned to the formal of
the checker (this rule is also the same as that for a property).

Here are the rules for ‘formal’ and ‘actual’ of a checker and checker instantia-
tion. Again, they are similar to those applied to a ‘property’ or a ‘sequence’. But
some are repeated here for the sake of completeness.

e A ‘formal’ argument of a checker can be optionally preceded by a direction
qualifier: ‘input’ or ‘output’.

e If no direction is specified explicitly then the direction of the previous argument
will be inferred.

302 16 IEEE-1800-2009/2012 Features

If the direction of the first checker argument is omitted, it will default to ‘input’
Obviously, an ‘input’ checker formal argument cannot be modified by a checker.
The legal data types of a checker formal arguments are the same as those legal
for a property.

The type of an ‘output’ argument cannot be of type ‘untyped’, ‘sequence’ or
‘property’.

You cannot omit the type of a formal argument, if you have assigned an explicit
direction qualifier.

If you do omit the type of a checker formal argument and if it’s the first
argument of the checker, then it will be assumed to be ‘input untyped’.

If you do omit the type of a checker formal argument and it is not the first
argument, then the type of the ‘previous’ formal argument will be inferred.

A checker declaration may specify a ‘default’ value for each singular input.

A checker declaration may also specify an initial value for each of its singular
output using the same syntax as the default value specification for input arguments.

There is a difference between a checker instantiation inside a procedural block or

outside. Let us study this via an example

‘define MAX_SUM 256
checker c1(logic[7:0] a, b);
logic [7:0] add;
always @ (posedge clk) begin
add <=a+1'bl;
p0: assert property (add < "MAX_SUM);
end
pl: assert property (@ (posedge) clk add < "MAX_SUM);
p2: assert property (@ (posedge clk) clk a !=b);
endchecker
module m(input logic rst, clk, logic en, logic[7:0] in1, in2, in_array [20:0]);
c1 check_outside(inl, in2); //Concurrent (static) instantiation of ‘c1’ checker
always @ (posedge clk) begin
automatic logic [7:0] v1=0;
if (en) begin
c1 check_inside(in1, v1); //Procedural instantiation of ‘c1’
end
for (inti=0;i<4;i++) begin
vl =v1+5;
if (i != 2) begin
cl check_loop (in1, in_array [v1]); //Procedural (Loop) instantiation of ‘c1’
end
end
end

endmodule: m

16.18 Checkers 303

Points to note in the above example

1.

check_outside is a static instantiation, while check_inside and check_loop are
procedural. Total of three instantiations of ‘c1’.

. Each of the three instantiation of ‘c1’ has its own copy of ‘add’ — which is rather

obvious because without it, one instance of ‘add’ would clobber the ‘add’ of
another instance. This copy of ‘add’ is updated at every positive clock edge,
regardless of whether that instance was visited in procedural code. Even in the
case of check_loop, there is only one instance of ‘add’, and it will be updated
using the sampled value of ‘inl’.

. Each of the three instantiations will queue an evaluation of ‘p0’ at every

posedge of the clock. This evaluation will report a violation during any time step
when ‘add’ is not less than MAX_SUM, regardless of the behavior of the
procedural code in module ‘m’.

. For checker instance ‘check_outside’, ‘pl’ and ‘p2’ are checked at every

posedge clock. For checker instance ‘check_inside’, ‘p1’ and ‘p2’ are queued
for evaluation anytime ‘en’ is true (on posedge clk).

. For check_loop, three procedural instances of ‘pl’ and ‘p2’ are queued (for I =

0,1,3) and they will evaluate at every posedge clk. For ‘p1’, all three instances
are identical using the sampled value of ‘add’; but for ‘p2’, the three instances
compare the sampled value of ‘inl’ to the sampled value of ‘in_arry’ indexed by
constant ‘v1’ values of 5,10,20 respectively.

. Since ‘cl’ (check_outside) instance is static (concurrent), the assertion state-

ments in ‘checker cl’ are continually monitored and begin execution on any
time step when their sampling edge (clock event) occur.

Please note: Checkers for Formal verification are not covered in this book since

it is beyond the scope of the book. Specifically, ‘assume property’ is not explored
beyond its context in simulation.

Chapter 17
SystemVerilog Assertions LABs

Introduction: This chapter through six labs with increasing difficulty to solidify the
practical features of properties and sequences. The LABs are as follows:

1. ‘bind’ and implication operators
2. Overlap and non-overlap operators
3. Synchronous FIFO

4. Counter

5. Data Transfer Protocol

6. PCI Read Protocol

Each of these completely self-contained LABs is included on the Springer server
whose information is provided with the book. Each LAB includes, the
DUT/Testbench models, LAB Questions, ‘run’ scripts for both Linux and Windows
and of course, the .solution directory with all required models so that you can
simply execute the ‘run’ scripts and understand the results and answer the LAB
questions.

17.1 LABI1: Assertions with/Without Implication
and ‘bind’

Please note again that everything noted below (and for all the LABs) is provided on
the Springer server. You do not need to rewrite any of the following to run the
LABs. The overall view of LAB objectives/questions is given here. Required run
scripts/logs/etc. are on the server. The answers for each LAB are included in the .
solution directory. The answers are included in the book as well.

© Springer International Publishing Switzerland 2016 305
A.B. Mehta, SystemVerilog Assertions and Functional Coverage,
DOI 10.1007/978-3-319-30539-4_17

306 17 SystemVerilog Assertions LABs

17.1.1 LABI: ‘bind’ DUT Model and Testbench (Fig. 17.1)

3k 3k 3k sk 3k 3k 3k 3k 3k 3k 3k 3k 3k sk ok sk 3k 3k 3k 3k sk 3k 3k sk 3k sk 3k 3k sk 3k sk 3k 3k sk 3k sk 3k ok sk 3k sk 3k 3k sk 3k sk 3k 3k ok ok ok sk 3k ok ok ok ok ok ok

LAB1 :: Objective

3k 3k 3k 3k 3k 3k ok 3k 3k 3k ok 3k 3k 3k ok 3k 3k 3k ok 3k 3k 3k 3k 3k 3k 3k ok 3k 3k 3k ok 3k 3k 3k >k 3k 3k 3k ok 3k 3k 3k ok %k 3k 3k ok %k 3k %k %k %k 3k Kk kk ok k

How to bind a design module to a property module that carries assertions for the design module.
And further confirm your understanding of writing a property with/without implication.

sk ok sk sk sk o o ok ok ok sk sk ok s ok ok ok ok ok ok ok o ok ok sk sk sk ok o ok ok sk sk ok s o ok ok ok sk sk ok sk o K ok ok ok ok ok o ok ok sk sk ok ok ok ok

LAB1 :: What you will do...
3k 3k 3k 3k sk ok ok 3k 3k sk ok ok ok 3k sk sk ok ok ok 3k sk sk ok 3k ok sk sk ok 3k 3k 3k sk ok ok 3k ok sk ok ok 3k 3k sk sk ok 3k ok 3k sk ok ok 3k ok ok ok ok %k ok ok ok
1) 'bind' the design module 'dut’ with its property module 'dut_property'
2) Compile/simulate according to instructions given below.
3) Study simulation log.
4) Answer questions embedded in the simulation log file

3k 3k 3k 3k 3k % 3k 3k 3k 3k 3k 3k %k 3k ok 3k 3k %k ok ok 3k 3k ok 3k ok 3k 3k ok ok ok ok 3k ok %k 3k ok 3k 3k ok 3k 3k 5k 3k %k %k ok ok 3k ok ok %k ok ok ok ok %k %k ok ok

LAB1 :: Database
3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k >k 3k 3k 3k >k 3k 3k 5k 3k 3k 3k 3k 3k 5k 3k 5k 3k 5k 3k >k 3k 3k 3k >k 3k >k 5k %k ok ok ok sk ok sk ok sk kk kk kkkk kok ok
FILES:
dut.v :: Verilog module that drives a simple req/gnt protocol.
dut_property.sv : File that contains 'dut' properties/assertions.
test_dut.sv :: Test-bench for the 'dut'.
This is the file in which you'll 'bind' the 'dut' with 'dut_property'

sk sk ok sk sk ok ok sk ok ok ok s ok sk sk ok ok sk ok sk sk sk ok ok sk ok sk sk ok ok sk ok sk sk sk ok sk sk ok sk sk ok sk ok ok sk ok sk ok ok sk ok skok sk ok ok sk ok

dut.v

sk sk ok sk sk ok ok sk ok ok sk sk ok sk sk ok sk sk ok sk sk sk ok sk sk ok sk sk ok sk sk ok sk sk sk ok sk sk ok sk sk ok sk sk ok sk sk sk ok ok skok ok sk ok ok sk sk ok

module test_dut _________________ .

module dut module
dut_property

sys_gnt

gnt » pgnt
Sys_red » req —» Preq
sys_clk
¥ » clk » pclk

Fig. 17.1 LABI1: ‘bind’ assertions. Problem definition

17.1 LABI: Assertions with/Without Implication and ‘bind’ 307

/* Behavioral Verilog model that acts as the DUT driving a simple req/gnt protocol
*/

module dut (clk, req, gnt);
input logic clk,req;
output logic gnt;

initial
begin

gnt=1'b0;
end

initial
begin
@ (posedge req);
Q@ (negedge clk); gnt=1'b0;
@ (negedge clk); gnt=1'bl;

@ (posedge req);
@ (negedge clk); gnt=1'b0;
@ (negedge clk); gnt=1'b0;
end

endmodule

3k 3k 3k 3k sk ok ok sk ok sk ok sk ok ok ok ok sk ok sk ok ok sk ok sk ok sk ok ok sk ok sk ok sk 3k ok ok ok sk ok sk ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok sk ok ok

dut_property.sv
3k 3k % 3k ok %k ok 3k 3k 3k 3k 3k %k %k %k %k ok 3k 3k 3k 3k 3k % %k %k %k ok 5k 3k 5k 3k %k %k %k %k %k 5k 5k 5k 3k 3k %k %k %k %k ok %k 5k %k >k %k %k k %k k >k Kk *kk

module dut property(pclk,preq,pgnt) ;
input pclk, preq, pgnt;

‘ifdef no_implication
property prl;
@ (posedge pclk) preqg ##2 pgnt;
endproperty
preqGnt: assert property (prl) S$display($stime,,,"\t\t %m PASS");
else S$display($stime,,,"\t\t %m FAIL");

‘elsif implication
property prl;

@ (posedge pclk) preg |-> ##2 pgnt;
endproperty

preqGnt: assert property (prl) $display($stime,,,"\t\t %m PASS");
else $display($stime,,,"\t\t %m FAIL");

‘elsif implication_novac
property prl;

@ (posedge pclk) preqg |-> ##2 pgnt;
endproperty

pregGnt: assert property (prl) else S$display(S$stime,,,"\t\t %m FAIL");

property pr2;
@ (posedge pclk) preq ##2 pgnt;
endproperty
cpreqGnt: cover property (pr2) $display($stime,,,"\t\t %m PASS");
“endif

endmodule

308 17 SystemVerilog Assertions LABs

17.1.2 LABI: Questions

3k 3k 3k 3k 3k 3k 5k >k >k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k ok 3k 3k ok %k 3k 5k 3k 3k 3k 3k 3k 3k ok 3k 3k 5k >k 3k 5k >k ok 3k 3k ok 3k 3k ok %k 5k %k %k sk k k ok kK
test_dut.sv

sk ok sk sk ok sk ok sk ok sk ok sk ok sk sk sk ok sk ok sk ok sk ok sk sk sk ok sk sk ok sk ok sk sk sk ok sk sk sk ok sk ok sk sk ok sk sk ok sk ok sk sk sk ok sk ok sk skok

module test_dut;
bit sys_clk,sys_req;
wire sys_gnt;

/* Instantiate 'dut' */

dut dutl (
.clk(sys_clk),
.req(sys_redq),
.gnt (sys_gnt)

)i
T
// LAB EXERCISE - START
/7 -

//

// Add your code to bind 'dut' with 'dut_property' here.

// You need to know the names of the ports in the design as well as the
// property module to be able to bind them. So, here they are:

/] ===

// Design module (dut.v)

//

// module dut (clk, req, gnt);

// input logic clk, req;
// output logic gnt;

[/ e
// Property module (dut_property.sv)
//

//module dut_property (pclk,preq,pgnt);
//input pclk,preq, pgnt;

/- — —

always @ (posedge sys_clk)
$display ($stime,,, "clk=%b reg=%b gnt=%b",sys_clk, sys_req, sys_gnt);

always #10 sys_clk = !sys_clk;

initial
begin
sys_req = 1'b0;

(posedge sys_clk) sys_req = 1'bl; //30
(posedge sys_clk) sys_req = 1'b0; //50
(posedge sys_clk) sys_req = 1'b0; //70
(posedge sys_clk) sys_req = 1'bl; //90
(posedge sys_clk) sys_req = 1'b0; //110
(posedge sys_clk) sys_req = 1'b0; //130

®e®®® ®

@ (posedge sys_clk);
@ (posedge sys_clk); $finish(2);
end

endmodule

17.1

LABI1: Assertions with/Without Implication and ‘bind’

B T

IABl - QUESTTIONS (based on simulation log)

B R

/* +define+no_implication

run -all

KERNEL: 10 clk=1 reg=0 gnt=0

KERNEL: 10 test_implication FAIL

KERNEL: 30 clk=1 reg=1 gnt=0

KERNEL: 50 clk=1 reg=0 gnt=0

KERNEL: 50 test_implication FAIL

KERNEL: 70 clk=1 reg=0 gnt=1

KERNEL: 70 test_implication FAIL

KERNEL: 70 test_implication PASS
Q: WHY DOES THE PROPERTY FAIL -AND- PASS AT TIME (70) ??

KERNEL: 90 clk=1 reg=1 gnt=0

KERNEL: 110 clk=1 reg=0 gnt=0

KERNEL: 110 test_implication FAIL

KERNEL: 130 clk=1 reg=0 gnt=0

KERNEL: 130 test_implication FAIL

KERNEL: 130 test_implication FAIL
Q: WHY ARE THERE 2 failures AT TIME (130) ??

*/

/* +define+implication

run -all

KERNEL: 10 clk=1 reg=0 gnt=0

KERNEL: 10 test_implication PASS

KERNEL: 30 clk=1 reg=1l gnt=0

KERNEL: 50 clk=1 reg=0 gnt=0

KERNEL: 50 test_implication PASS

KERNEL: 70 clk=1 reg=0 gnt=1

KERNEL: 70 test_implication PASS

KERNEL: 70 test_implication PASS
WHY ARE THERE 2 PASSes AT TIME 70 ??

KERNEL: 90 clk=1 reg=1 gnt=0

KERNEL: 110 clk=1 reg=0 gnt=0

KERNEL: 110 test_implication PASS

KERNEL: 130 clk=1 reg=0 gnt=0

KERNEL: 130 test_implication FAIL

KERNEL: 130 test_implication PASS
WHY IS THERE A PASS —-and- a FAIL AT TIME 130 ??

*/

/* +define+implication_novac

run -all

KERNEL: 10 clk=1 reg=0 gnt=0

KERNEL: 30 clk=1 reg=1l gnt=0

KERNEL: 50 clk=1 reg=0 gnt=0

KERNEL: 70 clk=1 reg=0 gnt=1

KERNEL: 70 test_implication PASS
KERNEL: 90 clk=1 reg=1 gnt=0

KERNEL: 110 clk=1 reg=0 gnt=0

KERNEL: 130 clk=1 reg=0 gnt=0

KERNEL: 130 test_implication FAIL

*/

309

310 17 SystemVerilog Assertions LABs

17.2 LAB2: Overlap and Non-overlap Operators
17.2.1 LAB2 DUT Model and Testbench

s ok sk sk sk sk ok sk ok sk sk sk ok sk sk sk ok sk ok ok sk sk sk sk ok ok sk sk sk sk ok sk sk sk sk sk sk sk ok sk ok sk sk sk ok sk ok sk sk ok sk ok ok ok sk ok sk ok

LAB: Objective

s ok sk sk sk sk ok sk sk sk sk sk ok sk ok sk sk sk ok sk sk sk sk sk ok sk sk sk sk sk ok sk sk sk sk sk sk sk ok sk ok sk sk sk ok sk ok sk sk ok sk ok sk ok sk ok sk ok

1) Learn how overlapping implication operator works
2) Learn how non-overlapping implication operator works
3) Learn how pipelined threads work in SVA.

stk ok sk sk sk sk sk ok ok sk ok sk ok ok ok sk ok ok sk ok sk ok sk ok ok sk ok sk ok skeak sk ok sk okok sk ok sk ok sk ok sk ok ok sk ok sk ok sk ok sk ok sk ok ok ok

LAB: Database

stk ok sk ok sk ok sk ok ok sk ok sk ok ok sk sk sk ok sk ok sk ok sk ok ok sk ok sk ok skeak sk ok sk okok sk ok sk ok sk ok sk sk ok sk ok sk ok sk ok sk ok sk ok ok ok

test_overlap_nonoverlap.sv :: This file contains the properties, sequences and the test-bench required

to simulate the DUT.
3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k >k 3k 5k >k 3k %k 3k >k %k 5k 3k 5k >k sk 5k %k 5k 3k 5k 3k 3k >k 3k 3k 3k 3k 3%k %k 3k %k %k %k 3k %k %k 5k %k %k %k >k kk

test_overalp_nonoverlap.sv

3k 3k 3k 3k ok 3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k ok ok 3k 3k 3k 3k 3k 3k 3k ok 3k ok 3k ok 3k 3k ok 3k 3k 3k 3k 3k 3k ok ok 3k ok sk ok ok 3k ok ok 3k 3k ok ok ok ok ok ok k ok
module test_overlap_nonoverlap;

bit clk,cstart,req,gnt;

always @ (posedge clk)
$display($stime,,, "clk=%b cstart=%b reg=%b gnt=%b",clk,cstart,req,gnt);

always #10 clk = !clk;

sequence srl;
req ##2 gnt;
endsequence

‘ifdef overlap
property prl;

@ (posedge clk) cstart |-> srl;
endproperty

//Note that if a simulator supports filter on vacuous pass for a 'cover'
//the following property is not needed. You can simply use "property prl"
//for 'cover' as well.

property prl_for_cover;
@ (posedge clk) cstart ##0 srl;
endproperty

“elsif nonoverlap
property prl;

@ (posedge clk) cstart |=> srl;
endproperty
//Note that if a simulator supports filter on vacuous pass for a 'cover'
//the property prl_for_cover is not needed. You can simply use "property prl"
//for 'cover' as well.

property prl_for_cover;

@ (posedge clk) cstart ##1 srl;
endproperty
“endif

17.2 LAB2: Overlap and Non-overlap Operators 311

reqGnt: assert property (prl) else $display($stime,,,"\t\t %m FAIL");
cregGnt: cover property (prl_for_cover) S$display($stime,,,"\t\t %m PASS");

initial

begin
{cstart,req,gnt}=3'b000;

end

initial
begin
@ (negedge clk); {cstart,req,gnt}=3'b100;

@ (negedge clk); {cstart,req,gnt}=3'bl10;
@ (negedge clk); {cstart,req,gnt}=3"'b000;
@ (negedge clk); {cstart,req,gnt}=3"'b001;
@ (negedge clk); {cstart,req,gnt}=3'bl10;
@ (negedge clk); {cstart,req,gnt}=3'b1l10;
@ (negedge clk); {cstart,req,gnt}=3"'blll;
@ (negedge clk); {cstart,req,gnt}=3'b010;
@ (negedge clk); {cstart,req,gnt}=3"'b000;
@ (negedge clk); {cstart,req,gnt}=3'b001;
@ (negedge clk); $finish(2);

end

endmodule

17.2.2 LAB2: Questions

kKoK oK ok o KK oK oK ok o KK oK oK oK o KKK oK oK o KK KoK oK ok ok o KK oK oK ok o K KK K oK ok R R KK oK R R R K oK

LAB Questions based on simulation log
3k 3k 3k 3k 3K >k 3k 3k >k 3k 3k 3k >k 3k 5k 3k 3k 3k 5k >k 3k 3k >k >k 3k 5k %k 3k 3k >k 3k 5k >k 3k 3k >k >k 3k 5k >k >k 3k >k 3k 5k >k 3k 3k >k >k 3k 3k >k %k %k >k *k %k k
khkhkhkhkhkkhhhkhhkhhhhhkhhkhrhhhhhkhdkhhhrhhhhdhhkhkdkhkrdhkdhrhkhhkhkrhkhhhkhhkxk

Simulation Log - QU E S TION S

R R R R

/* +define+overlap

run -all

KERNEL: 10 clk=1 cstart=0 reg=0 gnt=0

KERNEL: 30 clk=1 cstart=1 reg=0 gnt=0

KERNEL: 30 test_overlap_nonoverlap FAIL

Q: WHY DOES THE PROPERTY FAIL at 30?

KERNEL: 50 clk=1 cstart=1 reg=1l gnt=0

KERNEL: 70 clk=1 cstart=0 reg=0 gnt=0

KERNEL: 90 clk=1 cstart=0 reg=0 gnt=1

KERNEL: 90 test_overlap_nonoverlap PASS

312

KERNEL:
KERNEL:
KERNEL:
KERNEL:

KERNEL:
KERNEL:

KERNEL:
KERNEL:

KERNEL:

*/

17 SystemVerilog Assertions LABs

Q: WHY DOES THE PROPERTY PASS at 907?

110 clk=1
130 clk=1
150 clk=1
150

cstart=1 reg=1 gnt=0

cstart=1 reg=1 gnt=0

cstart=1 reg=1 gnt=1
test_overlap_nonoverlap PASS

Q: WHY DOES THE PROPERTY PASS at 1507?

170 clk=1
170

cstart=0 reg=1 gnt=0
test_overlap_nonoverlap FAIL

Q: WHY DOES THE PROPERTY FAIL at 170?

190 clk=1
190

cstart=0 reg=0 gnt=0
test_overlap_nonoverlap FAIL

Q: WHY DOES THE PROPERTY FAIL at 190?

210 clk=1

/* +define+nonoverlap

run -all
KERNEL:
KERNEL:
KERNEL:
KERNEL:
KERNEL:

KERNEL:
KERNEL:

KERNEL:
KERNEL:
KERNEL:
KERNEL:
KERNEL:

KERNEL:
KERNEL:

KERNEL:
KERNEL:

*/

10 clk=1
30 clk=1
50 clk=1
70 clk=1
70

cstart=0 reg=0 gnt=1

cstart=0 reg=0 gnt=0

cstart=1 reg=0 gnt=0

cstart=1 reg=1 gnt=0

cstart=0 reg=0 gnt=0
test_overlap_nonoverlap FAIL

Q: WHY DOES THE PROPERTY FAIL at 707?

90 clk=1
90

cstart=0 reg=0 gnt=1
test_overlap_nonoverlap PASS

Q: WHY DOES THE PROPERTY PASS at 907?

110 clk=1
130 clk=1
150 clk=1
170 clk=1
170

cstart=1 reg=1 gnt=0

cstart=1 reg=1 gnt=0

cstart=1 reg=1 gnt=1

cstart=0 reg=1 gnt=0
test_overlap_nonoverlap FAIL

Q: WHY DOES THE PROPERTY FAIL at 170?

190 clk=1
190

cstart=0 reg=0 gnt=0
test_overlap_nonoverlap FAIL

Q: WHY DOES THE PROPERTY FAIL at 190?

210 clk=1 cstart=0 reg=0 gnt=1

210

test_overlap_nonoverlap PASS

Q: WHY DOES THE PROPERTY PASS at 2107

17.3 LAB3: Synchronous FIFO Assertions 313

17.3 LAB3: Synchronous FIFO Assertions

17.3.1 LAB3: DUT Model and Testbench

LAB3

We saw an example of an asynchronous FIFO in Sect. 14.1 and assertions
thereof. For this LAB, I have chosen a simpler Synchronous FIFO for which you
will exercise writing assertions. This way you will be familiar with writing asser-
tions for both styles of FIFO. Note that one of the most important set of assertions
that you may write for your project are the FIFO assertions. Like it or not, FIFOs
always give trouble! (Fig. 17.2).

LAB Overview I

A simple synchronous FIFO design is presented. FIFOs
are some of the most commonly used design elements which
require close scrutiny. FIFO assertions deployed directly at the
source of a FIFO can greatly reduce the time to debug since
these assertions point to the exact instance of fifo where an
assertion fires.

LAB Objectives |

1. You will learn how to model various FIFO assertions
that will be applicable to most any FIFO.

2. You will learn use of boolean expressions and sampled
value functions as part of this exercise.

LAB Design Under Test (DUT) |
A simple synchronous FIFO design is presented as the DUT.

« FIFO is 8 bit wide and 8 deep.

* FIFO INPUTS
fifo_write, fifo_read, clk, rst_ and
fifo_data_in[7:0]

« FIFO OUTPUTS
fifo_full, fifo_empty, fifo_data_out[7:0]

Fig. 17.2 LAB3: Synchronous FIFO: problem definition

http://dx.doi.org/10.1007/978-3-319-30539-4_14

314 17 SystemVerilog Assertions LABs

FIFO Specs

« fifo maintains a wr_ptr and a rd_ptr

« wr_ptr increments by 1 everytime a write is posted to the
fifo on a fifo_write request

« rd_ptr increments by 1 everytime a read is posted to the
fifo on a fifo_read request

« fifo maintains a ‘cnt’ that increments on a write and
decrements on a read. It is used to signal fifo_full and

fifo_empty conditions as follows

« When fifo ‘cnt’ is >= 7, fifo_full is asserted
« When fifo ‘cnt’ is 0, fifo_empty is asserted.

(wr_ptr)
fifo_write fifo_full

fifo_data_in fifo_data_out
—_—t 0 | 1 2 (3| 4|5]| 6| 7F—F—>»

clk —

S

fifo_empty fifo_read
(rd_ptr)

17.3 LAB3: Synchronous FIFO Assertions 315

3k 3k 3k 3k 3k ok ok ok ok %k 3k 3k 3k 3k 3k 3k 3k 3k sk 3k 3k 5k %k %k 3k 3k 3k 3k 3k 3k 3k 3k sk ok %k %k %k ok ok 3k 3k 3k 3k 3k 3k %k %k ok %k ok %k ok ok ok ok k ok ok ok

LAB3 :: Database

3k 3k 3k 3k 3k 3k 3k Sk sk ok ok ok ok ok ok ok ok 3k 3k 3k sk Sk Sk ok ok ok ok ok ok 3k ok 3k 3k ok sk sk Sk ok ok ok ok ok ok 3k 3k 3k ok ok ok ok ok ok ok ok ok ok ko ok

| LAB: Database I

FILES:

1. fifo.v :: Verilog RTL for 'fifo’

2. fifo_property.sv :: SVA file for fifo assertion.s
This is the file in which you will add your assertions.

3. test_fifo.sv :: Testbench for the fifo.
Note the use of 'bind’ in this testbench.

3k 3k 3k 3k 3k 3k 3k ok 3k ok sk ok sk ok ok sk sk ok ok sk sk ok ok ok ok ok sk ok ok ok ok ok 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k K 3k %k XK X K K Kk

fifo.v
3k 3k 3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k ok sk sk ok ok sk 3k ok 3k ok >k 5k 3k ok 5k 3k 3k >k 5k 3k ok 3k 3k %k 3k 3k 3k 3k 3k 3k 3k ok ok 3k 3k ok ok ok ok sk k kok k-

module fifo (fifo data out,fifo full,fifo empty,fifo write,fifo read,clk,rst_,
fifo_data_in);

parameter fifo_ depth=8;
parameter fifo width=8;

output logic [(fifo width-1):0] fifo data out;
output logic fifo full, fifo empty;

input logic fifo write, fifo read, clk, rst ;
input logic [(fifo width-1):0] fifo data in;

logic [(fifo_width-1):0] fifomem [0: (fifo depth-1)];

logic [3:0] wr_ptr, rd ptr;
logic [3:0] cnt;

always @ (posedge clk or negedge rst)
if (!rst_) begin
rd ptr <= 0;
wr_ptr <= 0;
cnt <= 0;
“ifndef checkl
fifo empty <= 1;

316 17 SystemVerilog Assertions LABs

“endif
fifo_full <= 0;
end
else begin
case ({fifo_write, fifo_read})
2'b00: ; // everyone's sleeping!
2'pb01: begin // read
if (cnt>0) begin
rd_ptr <= rd_ptr + 1;
cnt <= cnt - 1;
end
‘ifdef check2
if (cnt==0) fifo_empty <= 1;

‘else
"ifdef check5
if (cnt==1) fifo_empty <= 1;
rd_ptr <= rd_ptr+l;
‘else
if (cnt==1) fifo_empty <= 1;
“endif
“endif

fifo_full <= 0;
end
2'bl0: begin // write
if (cnt< fifo_depth) begin
fifomem[wr_ptr] <= fifo_data_in;
wr_ptr <= wr_ptr + 1;
cnt <= cnt + 1;
end
“ifdef check3
if (cnt>(fifo_depth-1)) fifo_full <= 1;
‘else
"ifdef check4
if (cnt>=(fifo_depth-1)) fifo_full <= 1;
wr_ptr <= wr_ptr+l;
“else
if (cnt>=(fifo_depth-1)) fifo_full <= 1;
“endif
“endif
fifo_empty <= 0;
end
2'bll: // write && read
//You cannot write if cnt is full; so read only
if (cnt>(fifo_depth-1)) begin
rd_ptr <= rd_ptr + 1;
cnt <= cnt - 1;
end
//You cannot read if cnt is empty; so write only
else if (cnt<l) begin
fifomem[wr_ptr] <= fifo_data_in;
wr_ptr <= wr_ptr + 1;
cnt <= cnt + 1;
end

17.3 LAB3: Synchronous FIFO Assertions 317

//else write and read both

else begin
fifomem[wr_ptr] <= fifo_data_in;
wr_ptr <= wr_ptr + 1;
rd_ptr <= rd_ptr + 1;

end

endcase
end

assign fifo_data_out = fifomem[rd_ptr];

endmodule

17.3.2 LAB3: Questions

LAB: Assertions to Code I

Code assertions to check for the following conditions in the "fifo’ design.

CHECK # 1. Check that on reset
rd_ptr=0; wr_ptr=0; cnt=0; fifo_empty=1 and fifo_full=0

CHECK # 2. Check that fifo_empty is asserted when fifo 'cnt’ is 0.
Disable this property "iff (Irst)’

CHECK # 3. Check that fifo_full is asserted any time fifo ‘cnt'is greater than 7.
Disable this property "iff (Irst)’

CHECK # 4. Check that if fifo is full and you attempt to write (but not read) that
the wr_ptr does not change.

CHECK # 5. Check that if fifo is empty and you attempt to read (but not write) that
the rd_ptr does not change.

CHECK # 6. Write a property to Warn on write to a full fifo

CHECK # 7. Write a property to Warn on read from an empty fifo

318 17 SystemVerilog Assertions LABs

sk ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok sk ok ok ok sk sk ok skok ok ok sk ook ok ok ok sk ok ok sk ok ok ok ok ok ok ok ok ok

LAB3: Questions — Assertion Questions embedded in the fifo_property.sv
3k 3k 3k 3k 3k 3k 5k 3k 3k 3k 3k >k 3k 3k 5k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k >k 3k 3k ok %k 3k 5k >k 3k 3k 3k ok 3k 5k 3k >k 3k ok 3k ok %k ok ok sk ok k ok kk ok k ok

| have provided the fifo_property.sv file. All you have to do is write your assertions in this file and simulate. |
have coded ‘dummy’ properties so that you can compile the code. The .solution directory contains correct
assertions and simulation log against which you can compare your results. Note that there is not just but one
way to write an assertion and your assertion could look different from the one you see in the .solution directory.
But the results must match with the simulation log in the .solution directory

‘define rd_ptr test_fifo.fil.rd_ptr
“define wr_ptr test_fifo.fil.wr_ptr
‘define cnt test_fifo.fil.cnt

module fifo_property (
input logic [7:0] fifo_data_out,
input logic fifo_full, fifo_empty,
input logic fifo_write, fifo_read, clk, rst_,
input logic [7:0] fifo_data_in
)i

parameter fifo_depth=8;
parameter fifo_width=8;

//

// 1. Check that on reset,

// rd ptr=0; wr_ptr=0; cnt=0; fifo empty=1 and fifo full=0
//

“ifdef checkl
property check_reset;
@ (posedge clk) !rst_ |-> ‘rd_ptr==0; //DUMMY... remove this line and
//replace it with correct check
endproperty
check_resetP: assert property (check_reset) else $display(S$Sstime, "\t\t
FAIL::check_reset\n");

“endif

//

// 2. Check that fifo_empty is asserted the same clock that fifo 'cnt'
// is 0. Disable this property 'iff (!rst)'

//

‘ifdef check2
property fifoempty;
@ (posedge clk) !rst_ |-> ‘rd_ptr==0; //DUMMY... remove this line and
//replace it with correct check
endproperty
fifoemptyP: assert property (fifoempty) else $display($stime,"\t\t FAIL::fifo_empty
condition\n");

“endif

//

// 3. Check that fifo full is asserted any time fifo 'cnt'
// is greater than 7. Disable this property 'iff (!rst)’'
/7

“ifdef check3
property fifofull;
@ (posedge clk) !rst_ |-> ‘rd_ptr==0; //DUMMY... remove this line and

17.3 LAB3: Synchronous FIFO Assertions 319

//replace it with correct check
endproperty
fifofullP: assert property (fifofull) else $display($stime, "\t\t FAIL::fifo_full
condition\n");

“endif

//

// 4. Check that if fifo is full and you attempt to write (but not read)
// that the wr_ptr does not change.

//

“ifdef check4
property fifo_full write_stable_wrptr;
@ (posedge clk) !rst_ |-> ‘rd_ptr==0; //DUMMY... remove this line and
//replace it with correct check
endproperty
fifo_full write_stable_wrptrP: assert property (fifo_full write_stable_wrptr)
else S$display(Sstime,"\t\t FAIL::fifo_full_write_stable_wrptr condition\n");
“endif

"ifdef check5

//

// 5. Check that if fifo is empty and you attempt to read (but not write)
// that the rd ptr does not change.

//

property fifo_empty read_stable_rdptr;
@ (posedge clk) !rst_ |-> ‘rd_ptr==0; //DUMMY... remove this line and
//replace it with correct check
endproperty
fifo_empty_read_stable_rdptrP: assert property (fifo_empty_read_stable_rdptr)
else $display($stime, "\t\t FAIL::fifo_empty_read_stable_rdptr condition\n");
“endif

//

// 6. Write a property to Warn on write to a full fifo
// This property will give Warning with all simulations
//

“ifdef check6
property write_on_full_fifo;
@ (posedge clk) !rst_ |-> ‘rd_ptr==0; //DUMMY... remove this line and
//replace it with correct check
endproperty
write_on_full fifoP: assert property (write_on_full fifo)
else $display($stime, "\t\t WARNING::write_on_full_fifo\n");

“endif

//

// 7. Write a property to Warn on read from an empty fifo
// This property will give Warning with all simulations

/7

320 17 SystemVerilog Assertions LABs

“ifdef check?7
property read_on_empty_fifo;

@ (posedge clk) !rst_ |-> ‘rd_ptr==0; //DUMMY... remove this line and
//replace it with correct check

endproperty
read_on_empty_fifoP: assert property (read_on_empty_ fifo)

else S$display($stime, "\t\t WARNING::read_on_empty_ fifo condition\n");

“endif
endmodule

sk ok ok ok sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok skok sk ok ok ok ok ok ok sk ok ook ok sk sk ok sk ok sk ok ok ok ok sk ok ok ok ok ok ok k ok k ok

test_fifo.sv
3k 3k 3k 3k 3k 3k ok 3k ok %k 3k 3k 3k 3k ok 3k 3k ok ok 3k ok 5k 3k 5k 3k 3k 3k %k 3k 5k 3k 3k 3k %k 3k 3k 5k ok >k %k 3k 3k 3k ok ok ok ok %k sk ok ok sk ok sk k ok k ko

module test_fifo;
wire [7:0] fifo_data_out;
wire fifo_full, fifo_empty;

logic fifo_write, fifo_read, clk, rst_;
logic [7:0] fifo_data_in;

parameter fifo_depth = 8, fifo_width = 8;
fifo #(fifo_depth,fifo_width) fil
(fifo_data_out,fifo_full,fifo_empty,fifo_write,fifo_read,clk,rst_,

fifo_data_in);

bind fifo fifo_property #(fifo_depth,fifo_width) filbind

(fifo_data_out,fifo_full,fifo_empty,fifo_write,fifo_read,clk,rst_,fifo_data_i

n);

initial
begin

clk=0;

fiforeset;

fifowrite(10);

fiforead(9);

@ (posedge clk);

@ (posedge clk);

@ (posedge clk); $finish(2);
end

always #5 clk=!clk;

task fiforeset;
fifo_write=0; fifo_read=0; rst_=1;
@ (negedge clk); rst_=0;
@ (negedge clk);
@ (negedge clk); rst_=1;
endtask

task fifowrite;

17.3 LAB3: Synchronous FIFO Assertions 321

input int nwrite;
fifo_read=0;
for (int i=0; i<=nwrite-1; i++)
begin
@ (negedge clk); fifo_write=1; fifo_data_in=i;
//$display ($stime,,,"fifo Write Data = %0d",fifo_data_in);
end
endtask

task fiforead;
input int nread;
fifo_write=0;
repeat (nread)
begin
@ (negedge clk); fifo_read=1;
//$display($stime,,,"fifo Read Data = %0d",fifo_data_out);
end
endtask

always @ (posedge clk)
Sdisplay ($stime,,, "rst_=%b clk=%b fifo_write=%b fifo_read=%b fifo_full=%b
fifo_empty=%b wr_ptr=%0d rd_ptr=%0d cnt=%0d",
rst_,clk,fifo_write,fifo_read,fifo_full, fifo_empty,fil.wr_ptr,fil.rd_ptr, £fil.
cnt) ;

endmodule

17.4 LAB4: Counter

See Fig. 17.3.

| LAB: Database I

FILES:

1. counter.v :: Verilog RTL for a simple counter.

2. counter_property.sv :: SVA file for counter properties
This is the file in which you will add your assertions.

3. test_counter.sv :: Testbench for the counter.
Note the use of 'bind’ in this testbench.

322 17 SystemVerilog Assertions LABs

LAB Overview I

A simple UP/DOWN COUNTER design is presented.
Counter assertions deployed directly at the source can greatly
reduce the time to debug since these assertions will point to the
exact cause of a Counter error without the need for extensive
back-tracing debug when design fails.

LAB Objectives |

1. You will learn use of sampled value functions.

2. Alternate ways of modeling an assertion.

LAB Design Under Test (DUT) |

A simple UP/DOWN COUNTER design is presented as the DUT.

*) The counter has 8 bit data input and 8 bit data output
*) When Id_cnt_ is asserted (active Low), data_in is loaded and output
to data_out

*) When count_enb (active High) is enabled (high) and
*) updn_cnt is high, data_out = data_out+1;
*) updn_cnt is low, data_out = data_out-1;

*) When count_enb is LOW, data_out = data_out;

Fig. 17.3 LAB4: counter: problem definition

17.4 LAB4: Counter 323

sk ok sk sk sk ok sk sk sk ok sk ok sk ok sk sk sk ok sk sk ok sk sk sk sk sk ok sk ok sk ok sk sk sk sk sk sk ok sk ok sk sk sk ok ok sk sk sk sk sk sk skok sk ok sk ok skok

counter.v
3k 3k 3k 3k sk ok 3k sk ok ok ok sk ok ok ok ok ok ok sk ok sk ok sk ok ok ok ok ok ok sk ok sk ok sk ok ok ok ok ok ok sk ok sk ok ok ok sk ok ok sk ok ok ok ok ok ok ok ok ok

module counter (
input clk, rst_, 1ld_cnt_, updn_cnt, count_enb,
input [7:0] data_in,

output logic [7:0] data_out
)i

always @ (posedge clk or negedge rst_)
begin
if (!'rst_)
begin
“ifndef checkl
data_out <= 0;
“endif
end
else
begin

//LOAD DATA
if (!1ld_cnt_)
data_out <= data_in;

//HOLD DATA

“ifndef check2

else if (!count_enb)
data_out <= data_out;

“endif

//COUNT DATA
“ifdef check3
else
case (updn_cnt)
1'bl: data_out <= data_out - 1;
1'b0: data_out <= data_out + 1;
endcase
“else
else
case (updn_cnt)
1'bl: data_out <= data_out + 1;
1'b0: data_out <= data_out - 1;
endcase
“endif

end
end
endmodule

324 17 SystemVerilog Assertions LABs

| LAB: Assertions to Code I

Code assertions to check for the following conditions in the
‘counter’ design.

CHECK # 1. Check that when ‘rst_’ is asserted (==0) that
data_out == 8'b0

CHECK # 2. Check that if ld_cnt_ is deasserted (==1) and
count_enb is not enabled (==0) that data_out HOLDS it's
previous value.

Disable this property if rst is low.
CHECK # 3. Check that if ld_cnt_ is deasserted (==1) and

count_enb is enabled (==1) that if updn_cnt==1 the count
goes UP and if updn_cnt==0 the count goes DOWN.

Disable this property if rst is low.

17.4.1 LAB4: Questions

sk sk ok ok ok sk okok ok ok ok ok ok ok ok ok skook ok ok sk sk ook sk sk ok sk skook ok sk ok skok ok ok ok ok ok skeok ok ok ok ok sk ok skok ok ok ok ok

LAB4: Questions embedded in counter_property.sv
3k 3k 3k 3k 3k 3k 3k %k 5k % 3k 3k %k 3k % 3k 5k % 3k % 3k 5k %k 3k 3k %k 5k %k 3k 5k %k 5k %k 3k 5k %k 5k %k 3k 5k %k 3k %k 3k 3k %k 3k %k %k 5k %k %k %k Kk ok kokk
module counter_property (

input clk, rst_, ld_cnt_, updn_cnt, count_enb,

input [7:0] data_in,

input logic [7:0] data_out

)i

V4

// CHECK # 1. Check that when 'rst_ ' is asserted (==0) that
// data_out == 8'b0

/7

“ifdef checkl
property counter_reset;
@ (posedge clk) data_in |=> data_out; // DUMMY - REMOVE this line and code
// correct assertion
endproperty

17.4 LAB4: Counter 325

counter_reset_check: assert property(counter_reset)
else $display($stime,,,
"\t\tCOUNTER RESET CHECK FAIL:: rst_=%b data_out=%0d \n",
rst_,data_out);
“endif

//
// CHECK # 2.Check that if 1ld cnt_ is de-asserted (==1) and count_enb is not
// enabled (==0) that data out HOLDS its previous value.

// Disable this property 'iff (!rst)'

//

“ifdef check2
property counter_hold;
@ (posedge clk) data_in |=> data_out; // DUMMY - REMOVE this line and code
//correct assertion
endproperty

counter_hold_check: assert property(counter_hold)
else $display($stime,,, "\t\tCOUNTER HOLD CHECK FAIL:: counter HOLD \n");
“endif

//

//CHECK # 3. Check that if 1ld _cnt_ is de-asserted (==1) and count_enb is
// enabled (==1) that if updn_cnt==1 the count goes UP and if
// updn_cnt==0 the count goes DOWN.

// Disable this property 'iff (!rst)'

//

"ifdef check3
property counter_count;
@ (posedge clk) data_in |=> data_out; // DUMMY - REMOVE this line and code
//correct assertion
endproperty

counter_count_check: assert property(counter_count)
else $display($stime,,,
"\t\tCOUNTER COUNT CHECK FAIL:: UPDOWN COUNT using $past \n");
“endif

endmodule

sk sk sk ok ok ok sk sk ok sk sk sk sk skl sk ok ok sk ok sk sk sk sk sk sk sk ok ok ok stk sk sk sk sk sk sk sk ok ok ok ok ok ok sk sk sk sk skok sk ok ok ok ok ok

test_counter.sv
3k 3k 3k 3k 3k 3k 3k 3k ok 3k 3k 3k 3k sk ok 3k ok 3k 3k ok 3k 3k 3k 3k ok sk sk ok 3k 3k 3k ok 3k sk ok ok sk ok ok 3k ok sk ok ok ok ok ok ok ok ok ok kook koo k koK

module test_counter;
logic clk, rst_, 1ld_cnt_, updn_cnt, count_enb;
logic [7:0] data_in;

wire [7:0] data_out;

int seedl;

326 17

counter upc(
clk, rst_,
data_in,
data_out
)i

1d_cnt_, updn_cnt, count_enb,

bind counter
clk, rst_,
data_in,
data_out
)i

counter_property bind_inst (
ld_cnt_, updn_cnt, count_enb,

initial
begin
clk=1"b0;
counter_init;
count_up(100,10);
repeat (2) @ (posedge clk);
count_down (100, 10) ;

repeat (2) @ (posedge clk);
@ (posedge clk); $finish(2);
end
always @ (posedge clk)

Sdisplay ($stime,,, "rst_=%b clk=%b count_enb=%b 1ld_cnt_=%b updn_cnt=%b

DOUT=%0d",

rst_, clk, count_enb, 1ld_cnt_, updn_cnt, data_in,

always #5 clk=!clk;

task counter_init;

SystemVerilog Assertions LABs

DIN=%0d

data_out) ;

rst_=1"'bl; 1ld_cnt_=1'bl; count_enb=1'b0; updn_cnt=1'bl;
@ (negedge clk); rst_=1'b0;
@ (negedge clk);
@ (negedge clk); rst_=1'bl;
@ (negedge clk); data_in=8'b0; 1ld_cnt_=1'b0;
@ (negedge clk);
endtask

task count_up;
input logic [7:0]
input int count;
@ (negedge clk);
@ (negedge clk);

din;

data_in=din;
ld_cnt_=1'bl;

ld_cnt_=1'b0;
count_enb=1"'bl;

repeat (count-1) @ (negedge clk);
@ (negedge clk); count_enb=1'b0;
endtask

task count_down;
input logic [7:0]
input int count;
@ (negedge clk);
@ (negedge clk);

din;

data_in=din;
1ld_cnt_=1"'bl;

repeat (count-1) @ (negedge clk);
@ (negedge clk); count_enb=1'b0;
endtask

endmodule

1d_cnt_=1'b0;
count_enb=1"bl;

updn_cnt=1"'bl;

updn_cnt=1"'b0;

17.5 LABS: Data Transfer Protocol 327

17.5 LABS: Data Transfer Protocol

See Fig. 17.4.

LAB: Database

FILES:

1. bus_protocol.v :: bus_protocol module that drive a simple
bus protocol
2. bus_protocol_property.sv :: SVA file for bus_protocol
assertions.
Note that this file is only an empty module shell.
You will add properties that meet the specification
described ablve.

3. test_bus_protocol.sv :: Testbench for the bus_protocol
module.
Note the use of 'bind’ in this testbench.

328 17 SystemVerilog Assertions LABs

| LAB Objectives I

Bus interfaces are common to any design and this lab will show
you how to model assertions for common bus protocol
specification.

You will learn

1. Modeling temporal domain assertions for bus interface
type logic.

2. Reinforce understanding of Edge sensitive and sampled
value functions, consecutive repetition, boolean
expressions, etc.

LAB: Assertions to Code

Code assertions to check for the following conditions in the 'bus protocol’ design.

CHECK # 1. Check that once dValid goes high that it is consecutively
asserted (high) for minimum 2 and maximum 4 clocks

CHECK # 2. Check that data is not unknown and remains stable after dValid goes high
and until dAck goes high.

CHECK # 3. Check that ‘dAck’ and ‘dValid’ relationship is maintained to complete the
data transfer.

In other words,

‘dack’ going high signifies that target have accepted data and that master must
de-assert ‘dValid’ the clock after ‘dack’ goes high.

Note that since data must be valid for minimum 2 cycles, that ‘dack’ cannot go High

for at least 1 clock after the transfer starts (i.e. after the rising edge of ‘dValid’) and
that it must not remain low for more than 3 clocks (because data must transfer
in max 4 clocks).

17.5 LABS: Data Transfer Protocol 329

LAB Overview I

Specification for a simple data transfer protocol.

+ dValid must remain asserted for minimum of 2 clocks but no
more than 4 clocks.

« 'data’ must be known when ‘dValid' is High.

« 'dack’ going high signifies that target have accepted data and
that master must de-assert 'dValid' the clock after 'dack’ goes
high.

« Note that since data must be valid for minimum 2 cycles,
that ‘dack’ cannot go High for at least 1 clock after the
transfer starts (i.e. after the rising edge of 'dValid’) and
that it must not remain low for more than 3 clocks (because
data must trasnfer in max 4 clocks).

T 2todclksT

|1 2 ' 3

dVvalid

-

data

dack

Fig. 17.4 LABS: data transfer protocol: problem definition

330 17 SystemVerilog Assertions LABs

sk sk s ok ok sk ok sk sk ok ok sk ok sk sk ok ok sk ok ok sk ok sk sk ok ok sk ok sk sk ok ok sk ok sk sk ok sk sk ok sk skok sk sk sk ok skok sk sk okok skok sk ok ok ok

bus_protocol.sv
3k 3k sk 3k 3k 3k ok ok ok ok sk ok ok koK ok 3k ok ok ok ok ok ok ok ok ok ok ok ok k 3k sk K 3k 3k ok ok 3k 3k sk ok ok ok ok ok ok ok ok ok 3k ok ok ok ok ok ok ok okok

/* bus_protocol.v module

This module drives the bus protocol

timing diagram.

This module acts as the bus interface unit of

your design whose protocol you are trying to verify.

*/
module bus_protocol (input bit clk, reset,
output bit dvalid, dAck,

output logic [7:0] data

initial

begin
$display ("SCENARIO 1");
@ (negedge clk); dvalid=1'b0; data=8'h0; dAck=1'DbO;
@(negedge clk); dvalid=1'bl; data=8'h0; dAck=1'DbO;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'Db0;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'bl;
@ (negedge clk); dvalid=1'b0; data=8'h0; dAck=1'DbO;

@ (negedge clk); dValid=1'b0; data=8'h0; dAck=1'Db0;

17.5 LABS: Data Transfer Protocol 331

Sdisplay ("\n");

$display ("SCENARIO 2");

@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'bl;
@ (negedge clk); dvalid=1'b0; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'b0; data=8'h0; dAck=1'b0;

Sdisplay ("\n");

$display ("SCENARIO 3");

@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'Db0;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'bl;
@ (negedge clk); dvalid=1'b0; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'b0; data=8'h0; dAck=1'Db0;

Sdisplay ("\n");

"ifdef nobugs
Sdisplay ("SCENARIO 4");
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;

@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;

332 17 SystemVerilog Assertions LABs

@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'bl;
@ (negedge clk); dvalid=1'b0; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'b0; data=8'h0; dAck=1'Db0;
Sdisplay ("\n");
“else

$display ("SCENARIO 4");

@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'bl;
@ (negedge clk); dvalid=1'b0; data=8'h0; dAck=1'b0;
Sdisplay ("\n");

“endif

"ifdef nobugs

$display ("SCENARIO 5");

@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'Db0;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'bl;
@ (negedge clk); dvalid=1'b0; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'b0; data=8'h0; dAck=1'b0;
Sdisplay("\n");

“else

17.5 LABS: Data Transfer Protocol 333

$Sdisplay ("SCENARIO 5");

@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'bl;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'b0; data=8'h0; dAck=1'b0;
Sdisplay("\n");

“endif

“ifdef nobugs
Sdisplay ("SCENARIO 6");
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'bl;
@ (negedge clk); dvalid=1'b0; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'b0O; data=8'h0; dAck=1'b0;
Sdisplay ("\n");

‘else
Sdisplay ("SCENARIO 6");
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'b0; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'b0; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'b0; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'b0; data=8'h0; dAck=1'b0;

Sdisplay ("\n");

334 17 SystemVerilog Assertions LABs

“endif

“ifdef nobugs
Sdisplay ("SCENARIO 7");
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'bl;
@ (negedge clk); dvValid=1'b0; data=8'h0; dAck=1'Db0;
Sdisplay("\n");

“else
Sdisplay ("SCENARIO 7");
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'bl; data=8'hx; dAck=1'bl;

@ (negedge clk); dvalid=1'b0; data=8'h0; dAck=1'b0;

@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'b0;
@ (negedge clk); dvalid=1'bl; data=8'hl; dAck=1'b0;
@ (negedge clk); dvalid=1'bl; data=8'h0; dAck=1'bl;

@ (negedge clk); dvalid=1'b0; data=8'h0; dAck=1'b0;

@ (negedge clk);
@ (negedge clk);
Sdisplay ("\n");

“endif

@ (negedge clk);
S$finish(2);

end

endmodule

17.5 LABS: Data Transfer Protocol 335

17.5.1 LABS5: Questions

3k 3k sk sk ok ok ok ok ok 3k 3k ok ok sk ok ok ok ok ok ok ok sk sk sk ok ok ok ok ok ok sk ok sk Sk sk ok ok ok sk ok ok 3k ok ok ok ok ok ok ok 3k ok Kook ok ok sk k k ok

bus_protocol_property.sv : Questions embedded in the file
3k 3k sk sk sk ok ok ok ok 3k 3k ok ok k ok ok ok ok 3k ok Kok ok Sk Sk ok 3k 3k 3k 3k 3k ok Sk 3k 3k 3k ok 3k 3k 3k 3k 3k 3k 3k ok 3k 3k 3k 3k 3k 3k Kok sk ok ok ok ok ok

/* Properties (assertions) for bus_protocol.v

*/

module bus_protocol_property (input bit clk, dvalid, dAck, reset,
input logic [7:0] data

)i

CHECK # 1. Check that once dValid goes high that it is consecutively
asserted (high) for minimum 2 and maximum 4 clocks.

Check also that once dValid is asserted (high) for 2 to 4 clocks that
it does de-assert (low) the very next clock.

*/

“ifdef checkl
property checkValid;
@ (posedge clk) dvalid |-> dvalid; //DUMMY - REMOVE this line and code

//correct assertion
endproperty

assert property (checkValid) else

$display ($stime,,, "checkvalid FAIL");
“endif

J*
CHECK # 2. Check that data is not unknown and remains stable after
dValid goes high and until dAck goes high

*

/

“ifdef check2
property checkdatavalid;
@ (posedge clk) disable iff (reset)
@ (posedge clk) dvalid |-> dvalid; //DUMMY - REMOVE this line and

//code correct assertion
endproperty

assert property (checkdataValid) else

Sdisplay ($stime,,, "checkdatavalid FAIL");
“endif

336 17 SystemVerilog Assertions LABs

CHECK # 3.
'dack' going high signifies that target have accepted data and that master
must de-assert 'dValid' the clock after 'dack' goes high.

Note that since data must be valid for minimum 2 cycles, that 'dack' cannot
go High for at least 1 clock after the transfer starts (i.e. after the
rising edge of 'dValid’) and that it must not remain low for more than 3
clocks (because data must transfer in max 4 clocks).

“ifdef check3
property checkdAck;
@ (posedge clk) dvalid |-> dvalid; //DUMMY - REMOVE this line and code
//correct assertion
endproperty

assert property (checkdAck) else $display($stime,,, "checkdAck FAIL");
“endif

Endmodule

3k 3k 3k 3k ok ok ok ok 3k ok 3k ok ok ok ok ok ok ok ok ok 3k sk 3k 3k 3k ok ok sk sk sk sk sk sk 3k k k ok ok sk 3k ok 3k 3k k ok sk ok ok ok 3k ok Kok sk k sk k ok ok

test_bus_protocol.v

3k 3k sk sk ok ok ok ok ok 3k 3k K ko ok ok ok ok ok ok Kok sk sk sk ok ok 3k ok 3k 3k sk Sk Sk Sk Sk ok 3k 3k 3k 3k 3k ok 3k ok ok 3k 3k 3k 3k 3k Kook ok ok sk ok ok ok

module test_bus_protocol (output bit clk, reset,
input logic dvalid, dAck,
input logic [7:0] data);

bus_protocol bpl(.*);
bind bus_protocol bus_protocol_property bpbl (.*);
initial begin clk=1l; reset=1; end
always #5 clk=!clk;
initial
begin
@ (negedge clk); reset=1;

@ (negedge clk); reset=0;
end

always @ (posedge clk)
Sdisplay($stime,,, "clk=%b dvValid=%b data=%h dAck=%b",
clk,dvalid, data,dAck) ;

endmodule

17.6 LABG6: PCI Read Protocol

See Fig. 17.5.

17.6 LABG6: PCI Read Protocol 337

| LAB Overview I

A simple system with a PCI Master and PCl Target modules
designed to do a simple basic PCI Read operation.

The LAB shows how to derive and write simple but effective
assertions for a PCI type bus.

LAB: Database

FILES:

pci_master.v :: A (very) simple PCl Master module driving only a
simple Read cycle.

pci_target.v :: A (very) simple PCl Target module responding to
a simple Read Cycle.

pci_protocol_property.v :: SVA file for PCI Read cycle
assertions.

Note that this file is only an empty module shell.
You will add properties that meet the specification
described below.

test_pci_protocol.sv :: Testbench for the pci_protocol module.

Fig. 17.5 LAB6: PCI protocol: problem definition

| LAB Objectives

1) Learn how to model temporal domain assertions for bus
interface type logic.

2) Reinforce understanding of Edge sensitive sampled value
functions, consecutive
repetition, boolean expressions, etc.

338 17 SystemVerilog Assertions LABs

i (interface signals directly connected to an
iinstance of pci_protocol_property

module
test_pci_protocol
module
pci_protocol_property
module { module
pci_master pci_target
FRAME_ i+ "|FRAME_
IRDY_ —+—"IRDY_
C_BE_ —+——C_BE_
TRDY_ f—————{TRDY_
DEVSEL fe————IDEVSEL__
AD f————AD
reset_ o reset_ —» reset_
clk clk » clk

17.6 LABG6: PCI Read Protocol 339

CLK 1 2 3 4 5

FRAME. T\ o
RoY. 0\

S
TRDY_ \

wait

data tra’ﬁer
ZEGT

wait
data trahsfer

:}Jmt

DEVSEL _

340 17 SystemVerilog Assertions LABs

17.6.1 LABG: Questions

LAB: Assertions to Code I

Property Name Description
checkPCI_AD_CBE On falling edge of FRAME_, AD or C_BE_ bus cannot be
(check1) unknown
checkPCl_DataPhase When both IRDY_ and TRDY_ are asserted, AD or C_BE_

bus cannot be unknown
(check2)
checkPCl_Frame_lrdy FRAME can be de-asserted only if IRDY_ is asserted
(check3)
checkPCI_trdyDevsel TRDY_ can be asserted only if DEVSEL_ is asserted
{check4)

checkPCI_CBE_during_trx Once the cycle starts (i.e. at FRAME_ assertion) C_BE_
(checks) cannot float until FRAME_ is de-asserted.

3k 3k 3k ok 3k sk ok 3k ok ok ok ok sk ok ok ok ok sk ok sk ok sk ok ok sk ok sk ok ok sk ok ok ok sk ok ok ok ok sk ok sk sk sk ok sk ok ok sk ok ok ok ok ok ok ok ok k ok ok

pci_protocol_property.sv- LAB6 Questions embedded in code
a3k ok 3 ok ok ok ok ok 3 ok 3k ok ok ok o ok 3k ok 3k ok o ok 3 ok K ok ok ok 3 ok ok ok ok ok o ok ok ok ok ok o ok ok ok ok o ok ok ok ok ok ok ok ok ok K ok

module pci_protocol_property (input logic clk, reset_, TRDY_, DEVSEL_, FRAME_,
IRDY_,
input logic [3:0] C_BE_,
input logic [31:0] AD

CHECK # 1. On falling edge of FRAME , AD or C BE_
cannot be unknown.

“ifdef checkl

property checkPCI_AD_CBE;

@ (posedge clk) disable iff (!reset_)
FRAME_ |-> 1'bl; //DUMMY -REMOVE this line and code correct
//assertion

endproperty

assert property (checkPCI_AD_CBE) else
Sdisplay ($stime,,, "CHECKI1:checkPCI_AD_CBE FAIL\n");

39

The information contained herein is the exclusive property of Ashok B. Mehta, and shall not be distributed, reproduced, or disclosed in whole or in part
without prior written permission of Ashok B. Mehta.

17.6 LABG6: PCI Read Protocol 341

CHECK # 2. When IRDY and TRDY are asserted (low) AD
or C_BE cannot be unknown.
_____________________________ —x/

"ifdef check2
property checkPCI_DataPhase;
@ (posedge clk) disable iff (!reset_)
FRAME_ |-> 1'bl; // DUMMY - REMOVE this line and code correct
//assertion

endproperty

assert property (checkPCI_DataPhase) else
Sdisplay($Sstime,,, "CHECK2:checkPCI_DataPhase FAIL\n");
“endif
/* — — — —

CHECK # 3. FRAME can go High only if IRDY is asserted.
In other words, master can signify end of cycle
only if IRDY 1is asserted.

____________________ */

"ifdef check3
property checkPCI_Frame_Irdy;
@ (posedge clk) disable iff (!reset_)
FRAME_ |-> 1'bl; // DUMMY - REMOVE this line and code correct
//assertion

endproperty

assert property (checkPCI_Frame_Irdy) else
Sdisplay($stime,,, "CHECK3:checkPCI_frmIrdy FAIL\n");
“endif
2 R —————

CHECK # 4. TRDY_ can be asserted (low) only if DEVSEL
is asserted (low)

__ */
"ifdef check4
property checkPCI_trdyDevsel;
@ (posedge clk) disable iff (!reset_)
FRAME_ |-> 1'bl; // DUMMY - REMOVE this line and code correct

//assertion
endproperty
assert property (checkPCI_trdyDevsel) else
sdisplay ($Sstime,,, "CHECK4:checkPCI_trdyDevsel FAIL\n");
“endif

/*,,,, — — — —
CHECK # 5. Once the cycle starts (i.e. at FRAME assertion)
C_BE_ should not float until FRAME is de-—-asserted

_______ _——— _——— —————————— e/

“ifdef check5

property checkPCI_CBE_during_trx;

@ (posedge clk) disable iff (!reset_)
FRAME_ |-> 1'bl; // DUMMY - REMOVE this line and code correct
//assertion

endproperty

assert property (checkPCI_CBE_during_trx) else
Sdisplay ($stime, ,, "CHECK5:checkPCI_CBE_during_trx FAIL\n");
“endif
Endmodule

Chapter 18
SystemVerilog Assertions—LAB Answers

This chapter provides answers to all the LAB questions posed in previous chapter,
namely, answers for the following LABs are presented.

1. ‘bind’ and implication operators
2. Overlap and non-overlap operators
3. Synchronous FIFO

4. Counter

5. Data Transfer Protocol

6. PCI Read Protocol

© Springer International Publishing Switzerland 2016 343
A.B. Mehta, SystemVerilog Assertions and Functional Coverage,
DOI 10.1007/978-3-319-30539-4_18

344 18 SystemVerilog Assertions—LAB Answers

18.1 LABI1: Answers: ‘bind’ and Implication Operators

See Figs. 18.1, 18.2 and 18.3.

LAB 1 : Code snippet from test_dut.sv showing 'bind’ between
‘dut’ and 'dut_property’

bind dut dut_property dut_bind_inst (
.pclk(clk),
-preq(req),
-pgnt(gnt)
);
module
i bind :
U -
module | 7T module
dut_property
sys_gn
g pgnt
sys_re L,
req pre
sys_cl
cl pclk

Fig. 18.1 LABI: ‘bind’ assertions (answers)

18.1 LABI: Answers: ‘bind’ and Implication Operators

LAB 1 : Code snippet for "no_implication” I

345

property pri;
@(posedge clk) req ##2 gnt;
endproperty
reqGnt: assert property (pr1) Sdisplay(Sstime,,,"\t\t %m PASS");

else $Sdisplay(Sstime,,,"\t\t %m FAIL");

LAB 1 : Q&A on "no_implication” I

run -all

KERNEL:
KERNEL:
KERNEL:
KERNEL:
KERNEL:
KERNEL:
KERNEL:
KERNEL:

/* +define+no_implication

10 clk=1 req=0 gnt=0
10 test_implication FAIL
30 clk=1 req=1 gnt=0
50 clk=1 req=0 gnt=0

50 test_implication FAIL
70 clk=1 req=0 gnt=1

70 test_implication FAIL
70 test_implication PASS

Q: WHY IS THERE A FAIL -AND- A PASS AT TIME (70) 7?

A: The FAIL at 70 is for the thread starting at time 70.
At 70, req==0 and since there is no implication, the property fails
because without an implication there is no antecedent to match before
the check begins. Whenever at posedge clk, 'req’ is detected low,
the property will fail.

The PASS at 70 is for the thread that starts at 30.

At 30, req==1, so property eval proceeds.

At 70 (i.e. 2 clocks later) gnt==1 as required by the property and the
property PASSes.

Fig. 18.2 LABI: Q&A on ‘no_implication’ operator (answers)

346 18 SystemVerilog Assertions—LAB Answers

LAB 1 : Code snippet for "no_implication” I

property pri;
®(posedge clk) req ##2 gnt;
endproperty
reqGnt: assert property (pr1) $display($stime,,,"\t\t %m PASS");
else Sdisplay($stime,,,"\t\t %m FAIL");

‘ LAB 1 : Q&A on "no_implication” I

KERNEL: 90 clk=1 req=1 gnt=0
KERNEL: 110 clk=1 req=0 gnt=0

KERNEL: 110 test_implication FAIL
KERNEL: 130 clk=1 req=0 gnt=0

KERNEL: 130 test_implication FAIL
KERNEL: 130 test_implication FAIL

Q: WHY ARE THERE 2 FAILs AT TIME (130) 7?

A: The first failures is for the thread starting at time 90
At 90, req==1, so property eval proceeds.
At 130 (i.e. 2 clocks later) gnt==0 which violates the property and the
property FAILs.

The second failure is for the thread starting at time 130.

At 130, req==0 and since there is no implication, the property fails
because without an implication there is no antecedent to match before
the check begins. Whenever at posedge clk, 'req’ detected low,

the property will fail.

Fig. 18.3 LABI: Q&A on ‘implication’ operator (answers)

18.1 LABI: Answers: ‘bind’ and Implication Operators

LAB 1 : Code snippet for "implication” I

347

property pri;
@(posedge clk) req |-> ##2 gnt;
endproperty

reqGnt: assert property (pr1) Sdisplay(Sstime,,,"\t\t %m PASS");

else Sdisplay($stime,,,"\t\t %m FAIL");

run -all

KERNEL:
KERNEL:
KERNEL:
KERNEL:
KERNEL:
KERNEL:
KERNEL:
KERNEL:

LAB 1 : Q&A on "implication” I

10 clk=1 req=0 gnt=0
10 test_implication PASS
30 clk=1 req=1 gnt=0
50 clk=1 req=0 gnt=0

50 test_implication PASS
70 clk=1 req=0 gnt=1

70 test_implication PASS
70 test_implication PASS

Q: WHY ARE THERE 2 PASSes AT TIME 70 7?7

A: The first pass is for the thread starting at time 30.
At 30, req==1, so property eval proceeds.
At 70 (i.e. 2 clocks later) gnt==1 as required by the property and the
property PASSes.

The second pass is for the thread starting at time 70.

At 70, req==0 and since there is implication, the consequent eval won't
start. However, there is a PASS action_block associated with the
property which triggers because of the vacuous pass phenomenon. In
other wods, whenever ‘req’ is low, the antecedent won't match and the
property will pass vacuosly.

Fig. 18.3 (continued)

348

18 SystemVerilog Assertions—LAB Answers

LAB 1 : Code snippet for "implication” I

property pri;
@(posedge clk) req |-> ##2 gnt;

endproperty

reqGnt: assert property (pr1) $display($stime,,,"\t\t %m PASS");

else Sdisplay(Sstime,,,"\t\t %m FAIL");

LAB 1 : Q&A on "implication” I
KERNEL: 90 clk=1 req=1 gnt=0

KERNEL: 110 clk=1 req=0 gnt=0

KERNEL: 110 test_implication PASS

KERNEL: 130 clk=1 req=0 gnt=0

KERNEL: 130 test_implication FAIL

KERNEL: 130 test_implication PASS

Q: WHY IS THERE A PASS -and- a FAIL AT TIME 130 77

A: The failure is for the thread starting at time 90.
At 90, req==1, so property eval proceeds.
At 130 (i.e. 2 clocks later) gnt==0 which violates the property and the
property FAlLs.

The pass is for the property stating at 130.

At 130, req==0 and since there is implication, the consequent eval won't
start. However, there is a PASS action_block associated with the
property which triggers because of the vacuous pass phenomenon. In
other words, whenever 'req' is low, the antecedent won't match and the
property will pass vacuosly.

18.2 LAB2: Answers: Overlap and Non-overlap Operators

18.2 LAB2: Answers: Overlap and Non-overlap
Operators

See Figs. 18.4 and 18.5.

LAB 2 : Code snippet with "overlap"” operator I

sequencesri;
req ##2 gnt;
endsequence

property pri;
@(posedge clk) cstart |-> sri;
endproperty

property pri_for_cover;
@(posedge clk) cstart ##0 sr1;
endproperty

349

| LAB 2 : Q&A on “overlap” operator I

run -all
KERNEL: 10 clk=1 cstart=0 req=0 gnt=0
KERNEL: 30 clk=1 cstart=1 req=0 gnt=0
KERNEL: 30 test_overlap_nonoverlap FAIL
Q: WHY DOES THE PROPERTY FAIL at 30?
A: At time 30, cstart=1; so antecedent matches and consequent eval starts
At time 30, req is NOT equal to 1 as required by overlapping implication
and the consequent fails right away and the property FAILs.
KERNEL: 50 clk=1 cstart=1 req=1 gnt=0
KERNEL: 70 clk=1 cstart=0 req=0 gnt=0
KERNEL: 90 clk=1 cstart=0 req=0 gnt=1
KERNEL: 90 test_overlap_nonoverlap PASS
Q: WHY DOES THE PROPERTY PASS at 90?
A: At time 50, cstart=1; so antecedent matches and consequent eval starts
At time 50 (i.e, the same clock as required by overlapping implication),
req=1; so consequent eval continues
At time 70, gnt=1 as required by the property and the consequent
matches and the property PASSes.

Fig. 18.4 LABI1: Q&A on ‘overlap’ operator (answers)

350 18 SystemVerilog Assertions—LAB Answers

| LAB 2 : Q&A on "overlap" operator I

KERNEL: 110 clk=1 cstart=1 req=1 gnt=0
KERNEL: 130 clk=1 cstart=1 req=1 gnt=0
KERNEL: 150 clk=1 cstart=1 req=1 gnt=1
KERNEL: 150 test_overlap_nonoverlap PASS

Q: WHY DOES THE PROPERTY PASS at 150?

A: At time 110, cstart=1; antecedent matches and consequent eval starts.
At time 110 (i.e, the same clock as required by overlapping
implication), req=1; so consequent eval continues
At time 150 (i.e 2 clocks after 110), gnt=1 as required by the property
so the consequent matches and the property PASSes

KERNEL: 170 clk=1 cstart=0 req=1 gnt=0
KERNEL: 170 test_overlap_nonoverlap FAIL

Q: WHY DOES THE PROPERTY FAIL at 170?

A: At time 130, cstart=1;antecedent matches and consequent eval starts
At time 130 (i.e, the same clock as required by overlapping implication),
req=1; so consequent eval continues
At time 170 (i.e 2 clocks after 130), gnt is NOT equal to O as required by
the property so the consequent does not match and the property FAILs

KERNEL: 190 clk=1 cstart=0 req=0 gnt=0
KERNEL: 190 test_overlap_nonoverlap FAIL

Q: WHY DOES THE PROPERTY FAIL at 1907

A: At time 150, cstart=1; antecedent matches and consequent eval starts
At time 150 (i.e, the same clock as required by overlapping implication),
req=1; so consequent eval continues
At time 190 (i.e 2 clocks after 150), gnt is NOT equal O as required by
the property so the consequent does not match and the property FAILs

Fig. 18.5 LABI1: Q&A on ‘non-overlap’ operator (answers)

18.2 LAB2: Answers: Overlap and Non-overlap Operators 351

LAB 2 : Code snippet with "non-overlap” operator l

sequencesri;
req ##2 gnt;
endsequence

property pri;
@(posedge clk) cstart |=>sr1;
endproperty

property pri_for_cover;
@(posedge clk) cstart ##1 sr1;
endproperty

{ LAB 2 : Q&A on "non-overlap” operator I

KERNEL: 10 clk=1 cstart=0 req=0 gnt=0
KERNEL: 30 clk=1 cstart=1 req=0 gnt=0
KERNEL: 50 clk=1 cstart=1 req=1 gnt=0
KERNEL: 70 clk=1 cstart=0 req=0 gnt=0
KERNEL: 70 test_overlap_nonoverlap FAIL

Q: WHY DOES THE PROPERTY FAIL at 70?

A: This failure is for the thread that started at time 50 (and not 30).
At time 50, cstart=1; so antecedent matches and consequent eval starts
At time 70 (i.e, one clock later as required by nonoverlapping
implication), req is NOT EQUAL to 1; so consequent does not match and
the property FAILs

KERNEL: 90 clk=1 cstart=0 req=0 gnt=1
KERNEL: 90 test_overlap_nonoverlap PASS

Q: WHY DOES THE PROPERTY PASS at 90?

A: This pass is for the thread that started at time 30 (and not 50).
At time 30, cstart=1; so antecedent matches and consequent eval starts
At time 50 (i.e, one clock later as required by nonoverlapping
implication), req == 1; so consequent eval continues
At time 90 (i.e, two clocks later as required by the property),
gnt == 1; so consequent matches and the property PASSes.

Fig. 18.5 (continued)

352

18 SystemVerilog Assertions—LAB Answers

LAB 2 : Q&A on “non-overlap” operator I

KERNEL:
KERNEL:
KERNEL:
KERNEL:
KERNEL:

KERNEL:
KERNEL:

KERNEL:
KERNEL:

110 clk=1 cstart=1 req=1 gnt=0
130 clk=1 cstart=1 reg=1 gnt=0
150 clk=1 cstart=1 req=1 gnt=1
170 clk=1 cstart=0 req=1 gnt=0
170 test_overlap_nonoverlap FAIL

Q: WHY DOES THE PROPERTY FAIL at 170?

A: This failure is for the thread that started at time 110
At time 110, cstart=1; antecedent matches and consequent eval starts
At time 130 (i.e, one clock later as required by nonoverlapping
implication), req is EQUAL to 1; so consequent eval continues.
At time 170 (i.e, two clocks later as required by the property),
gnt is NOT EQUAL to 1; so consequent does not match and
the property FAILs.

190 clk=1 cstart=0 req=0 gnt=0
190 test_overlap_nonoverlap FAIL

Q: WHY DOES THE PROPERTY FAIL at 1907

A: This failure is for the thread that started at time 130
At time 110, cstart=1; so antecedent matches and consequent eval starts
At time 150 (i.e, one clock later as required by nonoverlapping
implication), req is EQUAL to 1; so consequent eval continues.
At time 190 (i.e, two clocks later as required by the property),
gnt is NOT EQUAL to 1; so consequent does NOT match and
the property FAILs.

210 clk=1 cstart=0 req=0 gnt=1
210 test_overlap_nonoverlap PASS

Q: WHY DOES THE PROPERTY PASS at 2107

A: This pass is for the thread that started at time 150
At time 150, cstart=1; antecedent matches and consequent eval starts
At time 170 (i.e, one clock later as required by nonoverlapping
implication), req is EQUAL to 1; so consequent eval continues.
At time 210 (i.e, two clocks later as required by the property),
gnt is EQUAL to 1; so consequent matches and the property PASSes.

18.3 LAB3: Answers: Synchronous FIFO

18.3 LAB3: Answers: Synchronous FIFO

See Fig. 18.6.

353

LAB 3 : fifo_property.sv I

1/
1 1. Check that on reset,
I rd_ptr=0; wr_ptr=0; cnt=0; fifo_empty=1 and fifo_full=0
"
“ifdef check1
property check_reset;
@®(posedge clk)

(Irst_ |-> ("rd_ptr==0 && “wr_ptr==0 && fifo_empty==1 && fifo_full==0));
endproperty
check_resetP: assert property (check_reset) else Sdisplay(Sstime,"\t\t
FAIL::check_reset\n");
*endif

1/
/i 2. Check that fifo_empty is asserted the same clock that fifo ‘cnt' is 0.
I Disable this property 'iff (Irst)’
1/
“ifdef check2
property fifoempty;

@(posedge clk) disable iff (Irst_)

("cnt==0 |-> fifo_empty);

endproperty
fifoemptyP: assert property (fifoempty) else Sdisplay($stime,"\t\t
FAIL::fifo_empty condition\n”);
“endif

1/
I 3. Check that fifo_full is asserted any time fifo ‘cnt’ is greater than 7.
/" Disable this property 'iff (Irst)’
1/
“ifdef check3
property fifofull;
@(posedge clk) disable iff (Irst_)
(" cnt>(fifo_depth-1) |-> fifo_full);
endproperty
fifofullP: assert property (fifofull) else Sdisplay(Sstime, \t\t FAIL::fifo_full
condition\n");
" endif

Fig. 18.6 LAB3: FIFO: answers

354 18 SystemVerilog Assertions—LAB Answers

[LAB 3 : fifo_property.sv

7 4. Check that if fifo is full and you attempt to write (but not read) that
1 the wr_ptr does not change.
“ifdef check4

property fifo_full_write_stable_wrptr;
@(posedge clk) disable iff (Irst_)
(fifo_full && fifo_write && !fifo_read |=> Sstable(wr_ptr));
endproperty
fifo_full_write_stable_wrptrP: assert property (fifo_full_write_stable_wrptr)
else Sdisplay(Sstime,\t\t FAIL::fifo_full_write_stable_wrptr condition\n");
“endif

“ifdef check5
1/ emmeessmmaaas
1 5. Check that if fifo is empty and you attempt to read (but not write) that
'/ the rd_ptr does not change.
1/ emmmemmemeaeaas
property fifo_empty_read_stable_rdptr;
@(posedge clk) disable iff (Irst_)
(fifo_empty && fifo_read && !fifo_write |=> $stable(rd_ptr));
endproperty
fifo_empty_read_stable_rdptrP: assert property (fifo_empty_read_stable_rdptr)
else Sdisplay(Sstime,"\t\t FAIL::fifo_empty_read_stable_rdptr
condition\n");

“endif

1! memeennees

1 6. Write a property to Warn on write to a full fifo

I/ This property will give Warning with all simulations

“ifdef checké
property write_on_full_fifo;
@(posedge clk) disable iff (Irst_)
fifo_full | -> Ififo_write;
endproperty
write_on_full_fifoP: assert property (write_on_full_fifo)
else Sdisplay(Sstime, \t\t WARNING::write_on_full_fifo\n");
“endif

18.3 LAB3: Answers: Synchronous FIFO

l LAB 3 : fifo_property.sv

355

1/ - =

1 7. Write a property to Warn on read from an empty fifo
Vi This property will give Warning with all simulations
7 . .

“ifdef check?7

property read_on_empty_fifo;
@(posedge clk) disable iff (Irst_)
fifo_empty |-> Ififo_read;
endproperty
read_on_empty_fifoP: assert property (read_on_empty_fifo)
else Sdisplay($stime,™\t\t WARNING::read_on_empty_fifo condition\n");

* endif

18.4 LAB4: Answers: Counter

See Fig. 18.7.

LAB 4 : counter_property.sv I

1/
" CHECK # 1. Check that when 'rst_' is asserted (==0) that data_out == 8'b0
1/
“ifdef check1
property counter_reset;

@(clk) disable iff (rst_) Irst_ |=> (data_out == 8'b0);
endproperty

counter_reset_check: assert property(counter_reset)
else Sdisplay($stime,,,\t\\COUNTER RESET CHECK FAIL:: rst_=%b data_out=%0d \n",
rst_,data_out);

“endif

1

" CHECK # 2. Check that if Id_cnt_ is deasserted (==1) and count_enb is not enabled
" (==0) that data_out HOLDS it's previous value.

i Disable this property "iff (Irst)’

I

“ifdef check2
property counter_hold;
@(posedge clk) disable iff (Irst_) (Id_cnt_ & lcount_enb) |=> data_out ===
Spast(data_out);
endproperty

counter_hold_check: assert property(counter_hold)
else $display($stime,,,\t\tCOUNTER HOLD CHECK FAIL:: counter HOLD \n");
" endif

Fig. 18.7 LAB4: counter: answers

356 18 SystemVerilog Assertions—LAB Answers

| LAB 4 : counter_property.sv I

1
/1 CHECK # 3. Check that if ld_cnt_ is deasserted (==1) and count_enb is

/1 enabled (==1) that if updn_cnt==1 the count goes UP and if updn_cnt==0 the
// count goes DOWN.

1

“ifdef check3
property counter_count;

@(posedge clk) disable iff (!rst_) (Id_cnt_ & count_enb) |->
if (updn_cnt) ##1 (data_out-8'h01) == Spast(data_out)
else ##1 (data_out+8'h01) == Spast(data_out);

endproperty

counter_count_check: assert property(counter_count)

else Sdisplay(Sstime,,, \t\tCOUNTER COUNT CHECK FAIL:: UPDOWN COUNT using
Spast \n");
" endif

1
// Alternate way of writing assertion for CHECK # 3
/1 Check for count using local variable
1
‘f‘
“ifdef check3
property counter_count_local;
logic[7:0] local_data;
@(posedge clk) disable iff (Irst_) (Id_cnt_ & count_enb, local_data = data_out)

|->

if (updn_cnt) ##1 (data_out == (local_data+8'h01))

else ##1 (data_out == (local_data-8'h01));
endproperty

counter _count_check: assert property(counter_count)
else Sdisplay(Sstime,,,"t\tCOUNTER COUNT CHECK FAIL:: UPDOWN COUNT using
Spast \n");

| “endif
1

18.5 LABS5: Answers: Data Transfer Protocol

See Fig. 18.8.

18.5 LABS: Answers: Data Transfer Protocol

LAB Overview I

Specification for a simple data transfer protocol.

« dValid must remain asserted for minimum of 2 clocks but no
more than 4 clocks.

+ 'data’ must be known when 'dValid' is High.

« 'dack’ going high signifies that target have accepted data and
that master must de-assert 'dValid' the clock after 'dack’ goes

high.

+ Note that since data must be valid for minimum 2 cycles,
that ‘dack’ cannot go High for at least 1 clock after the
transfer starts (i.e. after the rising edge of 'dvalid’) and
that it must not remain low for more than 3 clocks (because
data must trasnfer in max 4 clocks).

Nipigigigigiginh

dvalid 1 2 iy |14 __

data

dack

LAB 5 : bus_protocol_property.sv I

"

CHECK # 1. Check that once dValid goes high that it is consecutively
asserted (high) for minimum 2 and maximum 4 clocks.
Check also that once dValid is asserted (high) for 2 to 4 clocks that
it does de-assert (low) the very next clock.
*

“ifdef check1
property checkValid;
@®(posedge clk) disable iff (reset) Srose(dValid) |=> (dValid) [*2:4] ##1 $fell(dValid);
endproperty
assert property (checkValid) else $display($stime,,,"checkValid FAIL");
" endif

"~

CHECK # 2. Check that data is not unknow and remains stable after dValid goes
high and until dAck goes high.

*
“ifdef check2
property checkdataValid;
®(posedge clk) disable iff (reset)
Srose(dValid) |=> (!Sisunk (data) && Sstable(data)) [*1:5] ##0 $rose(dAck);

endproperty
assert property (checkdataValid) else $display($stime,,,"checkdataValid FAIL");
" endif

Fig. 18.8 LABS: data transfer bus protocol: answers

357

358 18 SystemVerilog Assertions—LAB Answers

LAB 5 : bus_protocol_property.sv I

I*

CHECK # 3. Check that 'dAck’ and ‘dValid’ relationship is maintained to complete the
data transfer. In other words,

‘dack’ going high signifies that target have accepted data and that master must de-
assert ‘dValid® the clock after ‘dack’ goes high.

Note that since data must be valid for minimum 2 cycles, that ‘dack’ cannot go High

for at least 1 clock after the transfer starts (i.e. after the rising edge of ‘dvalid’) and
that it must not remain low for more than 3 clocks (because data must trasnfer in max 4
clocks).

*/

“ifdef check3
property checkdAck;
@(posedge clk) disable iff (reset)
Srose(dValid) |=> (dValid && !dAck) [*1:3] ##1 Srose (dAck) ##1 S$fell (dvalid);
endproperty
assert property (checkdAck) else $display($stime,,,"checkdAck FAIL");
“endif

18.6 LABG6: Answers: PCI Read Protocol 359

18.6 LABG6: Answers: PCI Read Protocol

See Fig. 18.9.

LAB 6 : pci_protocol_property.sv I

I*

CHECK # 1. On falling edge of FRAME_, AD or C_BE_ cannot be unknown.
*
)

“ifdef check1

property checkPCI_AD_CBE;

®@(posedge clk) disable iff (Ireset_) Sfell(FRAME_) |-=
I(Sisunknown(AD) || $isunknown(C_BE_)) ;

endproperty

assert property (checkPCI_AD_CBE) else
Sdisplay($stime,,,"CHECK1:checkPCI_AD_CBE FAIL\n");
“endif

"I'
CHECK # 2. When IRDY_ and TRDY_ are asserted (low) AD or C_BE_ cannot be

unknown.
*f

“ifdef check2

property checkPCl_DataPhase;

@(posedge clk) disable iff (Ireset_) (!IRDY_ && ITRDY_) |->
I($isunknown(AD) || $isunknown(C_BE_)) ;

endproperty

assert property (checkPCl_DataPhase) else
Sdisplay(Sstime,,,"CHECK2:checkPCI_DataPhase FAIL\n");
“endif

P
CHECK # 3. FRAME_ can go High only if IRDY_ is asserted.
In other words, master can signify end of cycle only if IRDY_ is

asserted.
*f

“ifdef check3
property checkPCl_Frame_|rdy;
®(posedge clk) disable iff (Ireset_) Srose(FRAME_) |-> lIRDY_;
endproperty
assert property (checkPCI_Frame_Irdy) else
Sdisplay($stime,,,"CHECK3:checkPCI_frmirdy FAIL\n");
*endif

Fig. 18.9 LABG: PCI protocol: answers

360 18 SystemVerilog Assertions—LAB Answers

LAB 6 : pci_protocol_property.sv I

Vi -

CHECK # 4. TRDY_ can be asserted (low) only if DEVSEL_ is asserted (low)
*
/

“ifdef check4
property checkPCI_trdyDevsel;
@®@(posedge clk) disable iff (Ireset_) ITRDY_ |-> IDEVSEL_;
endproperty
assert property (checkPCI_trdyDevsel) else
Sdisplay(Sstime,,,"CHECK4:checkPCI_trdyDevsel FAIL\n");
" endif

I*
CHECK # 5. Once the cycle starts (i.e. at FRAME_ assertion)
C_BE_ should not float until FRAME_ is de-asserted
*
/

“ifdef check5

property checkPCI_CBE_during_trx;

@(posedge clk) disable iff (Ireset_)
Sfell(FRAME_) |-> !(Sisunknown(C_BE_)) [*0:$] ##0 Srose(FRAME_);

endproperty

assert property (checkPCI_CBE_during_trx) else
Sdisplay($stime,,,"CHECK5:checkPCI_CBE_during_trx FAIL\n");
“endif

Chapter 19
Functional Coverage

Ah, so you have done everything to check the design. But what have you done to
check your testbench? How do you know that your testbench has indeed covered
everything that needs to be covered? That’s where Functional Coverage comes into
picture. But first let us make sure we understand difference between the good old
Code Coverage and the new Functional Coverage methodology.

19.1 Difference Between Code Coverage and Functional
Coverage

e Code Coverage

— Derived directly from the design code; not user specified.

— Evaluates to see if design structure has been covered (i.e., assign, branch,
expression, state transition, etc.)

— But does not evaluate the infent of the design

If the user specified busGnt = busReq && (idle || !(reset));

instead of the real intent busGnt = busReq && (idle && !(reset));

Code coverage won’t catch it. For intent, you need both a robust testbench to
weed out functional bugs and a way to objectively predict how robust the
testbench is.

e Functional Coverage

— User specified

— Based on design specification (as we have already seen with ‘cover’ of an
assertion).

— Measures coverage of design intent

— Control-oriented coverage

© Springer International Publishing Switzerland 2016 361
A.B. Mehta, SystemVerilog Assertions and Functional Coverage,
DOI 10.1007/978-3-319-30539-4_19

362 19 Functional Coverage

Have I exercised all possible protocols that read cycle supports (burst,
non-burst, etc.)?
Transition coverage

e Did we issue transactions that access Byte followed by Qword followed
by multiple Qwords. (use SystemVerilog transition coverage).

e A Write to L2 is followed by a Read from the same address (and
vice-versa). Again, the transition coverage will help you determine if you
have exercised this condition.

Cross coverage

e Tag and Data Errors must be injected at the same time (use
SystemVerilog cross coverage).

— Data-oriented coverage

Have we accessed cache lines at all granularity levels (odd bytes, even bytes,
word, quad-word, full cache line, etc.)?

19.2 Assertion Based Verification (ABV) and Functional
Coverage (FC) Based Methodology

First let us examine the components of SystemVerilog language that contribute to
Functional Coverage.

First component is the ‘cover’ statement associated with an assertion. This
‘cover’ statement allows us to measure temporal domain functional coverage.
Recall that ‘assert’ checks for failures in your design and ‘cover’ sees if the
property did get exercised (i.e. got covered). Pure combinatorial coverage is not
sufficient. What I call ‘low level’ temporal domain conditions such as every req
should be followed by a gnt. If this assertion does not fail, it could be because the
logic is correct or because you never really asserted ‘req’ to start with. ‘cover’
completes this story. We ‘cover’ exactly the same property that we ‘assert’. In the
req/gnt example, if ‘cover’ passes we know that the property did get exercised by
the testbench and it did not fail (if ‘assert’ did not fail).

Second component is the Functional Coverage language which is the gist of this
entire section. Functional coverage allows you to specify the ‘function’ you want to
cover via the so-called coverpoints and covergroups. More importantly, it also
allows you to measure transition as well as cross coverage to see that we have
indeed covered finer details of our design. This section will clarify all this.

Figure 19.1 clearly shows the different components of SystemVerilog as well as
code coverage that all ties together to determine if a design have indeed been
completely verified.

19.2 Assertion Based Verification (ABV) and Functional Coverage ...

SYSTEM VERILOG

System Verilog Assertions

Functional
Coverage

‘assert’ ‘cover' St A

‘coverpoint, etc.

\/ i

363

Design Check DV CHECK
(is the design good?) (have we verified everything?)

—

- s

CAN WE FREEZE LOGIC ?

|

|

I
Code I
Coverage |
|

|

|

|

Fig. 19.1 Assertion based verification (ABV) and functional coverage (FC) based methodology

Here are some more points from project methodology point of view.

e Your test plan is (obviously) based on what functions you want to test (i.e.

cover).

e So, create a Functional Cover Matrix based on your test plan that includes each
of the functions (control and data) that you want to test.

— Identify in this matrix all your functional covergroups/coverpoints (more on

that coming soon)

— Measure their coverage during verification/simulation process
— You may even automate updating the matrix directly from the coverage

reports. That methodology is depicted in

Fig. 19.2.

e Measure effectiveness of your tests from the coverage reports. To reiterate what
we just discussed above since the following points are indeed the gist of what
functional coverage allows you to accomplish.

— For example, if your tests are accessing mostly 32 byte granules in your
cache line, you will see byte, word, quadword coverage low or not covered.
Change or add new tests to hit bytes/words, etc. Use constrained random
methodology to narrow down the target of your tests. Constrained random is
a very powerful methodology and goes hand in hand with Functional
Coverage. Constrained random is beyond the scope of this book.

364 19 Functional Coverage

1. Create Properties and Coverage Tables as part of your test plan.

2. Property and Covergroup names in design/DV logic match those in the Properties/Coverage
tables.

3. Automate upate of these tables from the Coverage Database created from simulation runs.

Assertions Properties Table |
. Property Property Property Covered 7
property pri; Name | Description
®(posedge clk) Rd |-> ##2 RdAck Amrﬂ?on Covered ?
3 » FAIL
endpropergl/—\ rdAckCheck | Rd implies No Yes
- . RdAckin 2
rdAckCheck: assert property (pr1); m_______/ clocks
crdAckCheck: cover property (pri1); Yes Don't
Care
Functional Coverage Coverage Table |
covergroup PCICommands ®(posedge clk); - .| Covergroup | Coverpoint | Description [Covered?
coverpoint PClwriteCmds; PCiCommands pcmnw.:mds] Write, Yes
coverpoint PCireadCmds PClreadeds 10Write
endgroup PCireadcmds | Read,I0Read | No

e =2
Coverage
Database

Fig. 19.2 Assertions and coverage closed loop verification methodology—I

Automated update of

Simulation Properties/Coverage Table

— Or that the tests do not fire transactions that access Byte followed by Qword
followed by multiple Qwords. Check this with transition coverage.

— Or that Tag and Data Errors must be injected at the same time (cross cov-
erage between Tag and Data Errors)

e ‘cover’ temporal domain assertions.
e And add more coverpoints for critical functional paths through design.

— For example, a Write to L2 is followed by a Read from the same address and
that this happens from both processors in all possible write/read
combinations.

e Remember to update your Functional Cover plan as verification progresses.

— Just because you created a plan in the beginning of the project does not mean
it’s an end in itself.

— As your knowledge of the design and its corner cases increase, so should the
exhaustiveness of your test plan and the functional cover plan.

— Continue to add coverpoints for any function that you didn’t think of at the
onset.

Figures 19.2 and 19.3 show an assertion and coverage driven methodology.

19.2 Assertion Based Verification (ABV) and Functional Coverage ... 365

ﬁ SPECIFICATIONS
i

TEST PLAN& ACERTRNS
COVERGROUPS
TESTBENCH Plan & Design LOGIC DESIGN

i
K« SIMULATION /

2 Sag

ENHANCE DV Update Update DEB';'_S{{;ES'GN
LOGIC Coverage || Assertions
(COVERAGE) Plan Plan (ASSERTIONS)

Coverage

Assertion Failues?
Complete ? . oA

| LOGIC FREEZE

Fig. 19.3 Assertion and functional Coverage closed loop verification methodology—II

1. For every ‘assert’ in a property, have an associated ‘cover’. Give meaningful
names to the property and assert Labels.

2. Create a Properties Table which automatically reads in your assertions and
creates a FAIL/Covered matrix. If the assertion FAILs, well, fill in the FAIL
column. If not and if gets covered, fill in the Covered column. How do we fill in
this matrix? Read on ...

3. Create a Functional Coverage plan with covergroup and coverpoint. Again give
meaningful names to covergroup and coverpoint(s).

4. Create a Coverage Table that automatically derives the covergroup/coverpoint
names from step 3 and creates a matrix for “Covered” results. This matrix is for
those functions that are not covered by assertion ‘cover’ nor are they covered by
code coverage. So, you need to carefully design your covergroups and
coverpoints.

5. Simulate your design with assertions and functional cover groups.

6. Simulation will create a “coverage database”. This database has all the infor-
mation about failed assertions and ‘cover’ed properties and covered covergroups
and coverpoints

7. Using EDA vendor provided API, shift through this database and update the
Properties Table and Coverage Table

8. Loop back.

366 19 Functional Coverage

Advantage of such methodology is that you continually know if you are spinning
the wheel without increasing coverage. Without such continual measure you may
keep simulating; bugs don’t get reported; you start feeling comfortable only to
realize later that the functional coverage was really inadequate. You were basically
running the tests that target the same logic over and over again. If you have a
methodology as described above, you will have a correct notion of what functional
logic to target to increase bug rate.

19.2.1 Follow the Bugs!!

e So, when do you start collecting coverage?

— Code and Functional Coverage add to simulation overhead.

— So, don’t turn on code/functional coverage at the very ‘beginning’ of the
project.

— But what does ‘beginning’ of the project mean? When does the ‘beginning’
end?

e That’s where the bugs come into picture!

— Create Bug Report charts

— During the ‘beginning’ time, bug rate will (should) be high. All low hanging
fruits are being picked ©

— When the Bug Rate starts to drop; the ‘beginning’ has come to an ‘end’

— That’s when your existing test strategy is running out of steam ®

— That’s when you start code and functional coverage to determine

If new tests are simply exercising the same logic repeatedly
And which part of logic is not yet covered

— Develop tests for the uncovered functionality. Use constrained random
methodology.
— Your Bug Rate will again go up (guaranteed! ©).

Chapter 20
Functional Coverage—Language Features

Introduction: This chapter covers the entire language “Functional Coverage”. We
will cover the following features in the upcoming sections.

covergroups and coverpoints for variables and expressions

automatic as well as user-defined coverage bins

‘bins’ for transition coverage,

‘wildcard bins’, ‘illegal_bins’, ‘ignore_bins’

Cross Coverage

Coverage Options

Flexible coverage sample—events, sequences, procedural

Directives to control and query coverage

Application: Coverage Methods and procedural activation of coverage methods.

RSP i

20.1 Covergroup/Coverpoint

What is a covergroup?
I am taking the definition directly from the LRM since it is indeed well worded.

e ‘covergroup’ is a user defined type that allows you to collectively sample all those
variables/transitions/cross that are sampled at the same clock (sampling) edge.

e “The ‘covergroup’ construct encapsulates the specification of a coverage
model.”

e A ‘covergroup’ can be defined in a ‘package’, ‘module’, a ‘program’, an
‘interface’ or a ‘class’.

What Is a Coverpoint?
e A coverpoint is a variable or an expression that functionally covers design

parameters (reg, logic, enum, etc.)

© Springer International Publishing Switzerland 2016 367
A.B. Mehta, SystemVerilog Assertions and Functional Coverage,
DOI 10.1007/978-3-319-30539-4_20

368 20 Functional Coverage—Language Features

e Each coverpoint includes a set of bins associated with its sampled value or its
value transition.

e The so-called ‘bins’ can be defined by the user or created automatically by an
EDA tool. A bin tells you the actual coverage measure.

OK, that’s all fundamentals from the LRM. [The LRM authors did do a good job in
writing some of this in English that hardware types can understand (like myself) ...;)].
Figure 20.1 makes it plenty simpler to explain covergroup and coverpoint.

20.2 System Verilog ‘Covergroup’—Basics ...

Figure 20.1 is self-explanatory with its annotations. Key syntax of the covergroup
and coverpoint is pointed out. A few points to reiterate are as follows.

1. covergroup without a coverpoint is useless and the compiler won’t give an Error
(at least the simulators that the author has tried)

2. covergroup, as the name suggests, is a group of coverpoints, meaning you can

have multiple coverpoints in a covergroup.

You have to instantiate the covergroup.

Actual arguments are evaluated when the new operator is executed

5. You may provide (not mandatory) a sampling edge to determine when the
coverpoints in a covergroup get sampled. If the clocking event is omitted, you
must procedurally trigger the coverage sample window using a built-in method
called sample(). We will discuss sample() later in the chapter.

6. A ‘covergroup’ can be declared in
a. package

interface

module

program

class (we’ll see an example soon).

hali

oo o

Other points are annotated in Fig. 20.1. Carefully study them so that the rest of
the chapter is easier to digest.

20.3 SystemVerilog Coverpoint Basics

Syntax:

cover_point ::=

[[data_type_or_implicit] cover_point_identifier:] coverpoint expression [iff
(expression)] bins_or_empty

Coverpoint and bins associated with the coverpoint do all the work. The syntax
for coverpoint is as shown in Fig. 20.2. ‘covergroup g1’ is sampled at (posedge clk).

20.3 SystemVerilog Coverpoint Basics 369

Declare a covergroup:

‘g1’ is the name of the End a covergroup
covergroup (required). (endgroup)

bit [1:0] offset;

S ‘0315[70] addr; Clock (or not) the covergroup:
L R An explicit clocking event is specified.
covergroup g1 @(posedge clk); It defines the event at which the

coverage goints are samgn‘ed.

If the clocking event is omitted, you
must procedurally trigger the

coverage sampling using the built-in
sample() method.... discussed later....

I* oc : coverpoint offset;
ac : coverpoint addr;

endgroup <

gl gi_inst=new; «—— |

Declare coverpoint(s): Instantiate a covergroup:
‘oc’ and ‘ac’ are the labels for the You have to instantiate a
coverpoints (optional). covergroup using the new
operator.
‘offset’ and ‘addr’ are coverpoint
yariables. | Covergroup can contain one
or more coverpoint

Note that covergroup -without- a coverpoint is useless. You won’t get a compile error,
but there is nothing to cover without a coverpoint. More on coverpoints later....

Fig. 20.1 ‘covergroup’ and ‘coverpoint’—basics

‘oc’ is the coverpoint name (or label). This is the name by which simulation log
refers to this coverpoint. ‘oc’ covers the 2-bit variable ‘offset’.

We haven’t yet covered ‘bins’, so please hang on with the following description
for a while. We will cover plenty of ‘bins’ in the upcoming sections. So, in this
example, you do not see any ‘bins’ associated with the coverpoint ‘oc’ for variable
‘offset’. Since there are no bins to hold coverage results, simulator will create those
for you. In this example, the simulator will create 4 bins because ‘offset’ is a 2 bit
variable. If ‘offset” were a 3 bit vector, there would be 8 bins and so on. We will
discuss a lot more on ‘bins’ in upcoming sections and hence I am showing only the
so-called auto bins created by the simulator.

I haven’t shown the entire testbench but the simulation log (at the bottom of
Fig. 20.2) shows that there are 4 auto generated bins called ‘bin auto[0]” ... ‘bin
auto[3]’. Each of these bins covers 1 value of ‘offset’. For example, auto[0] bin
covers ‘offset == 0’. In other words, if ‘offset == 0’ has been simulated, then auto[0]
will be considered covered. Again, this will become clearer when we go through
basics of ‘bins’. Since all 4 bins of coverpoint ‘oc’ have been covered, the cov-
erpoint ‘oc’ is considered 100 % covered, as shown in the simulation log. Now let
us look at a real life example of covergroup/coverpoint.

370 20 Functional Coverage—Language Features

bit [1:0] offset; The “iff” construct specifies an optional
condition that disables coverage for that
covergroup g1 @(posedge clk); coverpoint.

oc : coverpoint offset iff (Ireset) { }

In this example, we haven’t specified explicit
endgroup bins, hence the simulator creates 4 auto
: generated bins (because ‘offset’ is a 2 bit
g1 g1_inst = new; | variable).
|
‘\ Note: You can specify { } OR ; but not { };
coverpoint variable I —
Following means that “bin auto[0]” will keep
track of how many times offset{0] has been
covered, etc.. More on this later...
COVERGROUP COVERAGE:
Covergroup Metric Goall Status
TYPE /test_covergroup_1/g1 100.0% 100 Covered
Coverpoint g1::0c 100.0% 100 Covered
bin auto[0] 475175 1 Covered
bin auto[1] 475143 1 Covered
bin auto[2] 474189 1 Covered
bin auto[3] 473936 1 Covered

Fig. 20.2 ‘coverpoint’—basics

A data type for the coverpoint may also be specified explicitly or implicitly in
data_type_or_implicit. In either case, it is understood that a data type is specified
for the coverpoint. The data type must be an integral type. If a data type is specified,
then a cover_ point_identifier must also be specified.

If a data type is specified, then the coverpoint expression must be assignment
compatible with the data type.

Values for the coverpoint will be of the specified data type and will be deter-
mined as though the coverpoint expression were assigned to a variable of the
specified data type.

If no data type is specified, then the inferred data type for the coverpoint will be
the self-determined type of the coverpoint expression.

The expression within the iff construct specifies an optional condition that dis-
ables coverage for that coverpoint.

If the guard expression evaluates to false at a sampling point, the coverage point
is ignored.
covergroup AR;

coverpoint s0 iff(!reset);
endgroup

In the preceding example, coverage point sO is covered only if the value of
‘reset’ is low.

20.3 SystemVerilog Coverpoint Basics 371

20.3.1 Covergroup/Coverpoint Example ...

PCI protocol consists of many different types of bus cycles. We want to make sure
that we have covered each type of cycle. The enum type pciCommands (Fig. 20.3)
describes the cycle types. The covergroup specifies the correct sampling edge (that
being the ‘negedge FRAME_’) for the PCI Commands. In other words, the sam-
pling edge is quite important for performance reasons. If you sampled the same
covergroup @ (posedge clk), there will be a lot of overhead because FRAME_ will
fall only when a PCI cycle is to start. Sampling unnecessarily will indeed affect
simulation performance.

In this example we have not specified any bins. So the simulator creates 12 auto
bins for the 12 bus cycles types in the enum. Every time FRAME_ falls that the
simulator will see if any of the cycle types in ‘enum pciCommands’ is simulated.
Each of the 12 auto bin corresponds to each of the enum type. When a cycle type is
exercised, the auto bin corresponding to that cycle (i.e. that ‘enum’) will be con-
sidered covered. Now, you may ask why wouldn’t code coverage cover this. Code
coverage will indeed do the job. But I am building a small story around this
example. We’ll see how this covergroup will be then reused for transition coverage
which cannot be covered by code coverage. Ok. now on to ‘bins’.

Requirement: Cover all PCI Cycle Types I

// PCI C/BE Commands
enum {iack, SpecialC, |ORead, |I0Write, MemRead, MemWrite, ConfRead, ConfWrite,
MemRMult, DualAddr, MemReadLine, MemWrlnv} pciCommands;

covergroup pciCommands_cover @(negedge FRAME_);
pciCmdCover : coverpoint pciCommands;
endgroup 4

IMPLICIT set of 12 auto generated bins are l'l
created for 12 values in the enumerated
type “pciCommands”.

Performance Implication: &=

Note the use of a 'well qualified’ trigger
edge. This will trigger the covergroup only
when PCI Cycle starts and the cycle
command is valid. This will reduce the
overhead to the simulation engine.

Fig. 20.3 ‘covergroup’/‘coverpoint’ example

372 20 Functional Coverage—Language Features

20.4 System Verilog ‘Bins’—Basics ...

What’s a ‘bin’? A ‘bin’ is something that collects coverage information (collect in a
‘bin’). bins are created for coverpoints. A coverpoint that is covering a variable (let’s
say the 8 bit ‘adr’ as shown in Fig. 20.4) and would like to have different values of
that variable be collected in different collecting entities, the ‘bins’ will be those
entities. ‘bins’ allows you to organize the coverpoints sample (or transition) values.

You can declare bins many different ways for a coverpoint. Recall that bins
collect coverage. From that point of view, you have to carefully choose the dec-
laration of your bins.

OK, here’s the most important point very easy to misunderstand. In the following
statement, how many bins will be created? 16 or 4 or 1 and what will it cover?

bins adrbinl = {[0:3]};
Answer: 1 bin will be created to cover ‘adr’ values equal to ‘0’ or ‘1’ or ‘2’ or ‘3.

Note that ‘bins adrbinl’ is without the [] brackets. In other words, ‘bins adrbin1’
will not auto-create 4 bins for ‘adr’ values {[0:3]}, it will rather create only 1 bin to
cover ‘adr’ values ‘0’,°1°, ‘2°, ‘3’.

Very important point: Do not confuse {[0:3]} to mean that you are asking the
bin to collect coverage for adrO to adrl5. {[0:3]} literally means ‘adr’
value =0, =1, =2, =3.

Another important point. What ‘bins adrbinl = {[0:3]};” also says is that if we
hit either of the ‘adr’ value (‘0°,1°,2” or ‘3’) that the single bin will be considered
completely covered. Not very intuitive, I agree. But that’s what the language
semantics dictate. Again, you don’t have to cover all four values to have “bins
adrbinl” considered covered. You hit any one of those 4 values and the “adrbinl”
will be considered 100 % covered.

But what if you want each value of the variable ‘adr’ be collected in separate
bins so that you can indeed see if each value of ‘adr’ is covered explicitly. That’s
where ‘bins adrbin2[] = {[4:5]};” comes into picture. Here ‘[]’ tells the simulator to
create two explicit bins called adrbin2[1] and adrbin2[2] each covering the 2 ‘adr’
values = 4 and =5. adrbin2[1] will be considered covered if you exercised adr == 4
and adrbin2[2] will be considered covered if adr == 5 is exercised.

Other ways of creating bins are described in Fig. 20.4 with annotation to
describe the nuances. Note that you can have ‘less’ or ‘more’ # of bins than the
‘adr’ values on the RHS of a bins assignment. How will ‘bins’ be allocated in such
cases is explained in the figure. Note also the case {[31:$]} called ‘bins heretoend’.
What does ‘$’ mean in this case? It means [32:255] since ‘adr’ is an eight bit
variable.

Rest of the semantics is well described with annotation in the figure. Do study
them carefully, since they will be very helpful when you start designing your
strategy to create ‘bins’.

Here’s an example of how you may end up making mistakes and get Warnings
from a simulator (courtesy LRM).

20.4 System Verilog ‘Bins’—Basics ... 373

A coverpoint includes a set of explicit or implicit bins that allow you to
organize the coverpoints sample (or transition) values.

bins BinName = {Range in coverpoint

variable}; SINGLE bin to cover adr values 0,1,2,3 I

bit[7:0] adr; INDIVIDUAL bins adrbin2[1] and adrbin2[2]
covergroup g1 ®(posedge clk); for EACH adr value (4,5) ([] implies auto-
generated by SV).

ac: coverpoint adr iff (Ireset) Fixed array of bins (here with # of bins

less than range value :: ‘adr’ value 6 is in
bin ‘adrbin3[1]’ while ‘adrbin3[2]’ contains
| 7,8

{
bins adrbin1 = {[0:3]};

bins adrbin2 [] = {[4:5]}; e ————————
Fixed array of bins (here with # of bins

bins adrbin3 [2] = {[6:8]}; greater than range value :: ‘adr’ value 9
’ will be covered in bin ‘adrbind[1]’; ‘adr’
bins adrbind [3] = {[9:10]}; = value 10 in ‘adrbr'Mﬂ}' while ‘adrbiM[S}'

will remain empty.

bins adrbin5 [] = {[9:12],[11:16]}; +—_| | Overlapping values OK. Will create an array
of 8 bins for ‘adr’ values from 9 to 16

bins heretoend = {[31:5]}; '\\\\\4 From 31 to eternity @ I

Bl cthers = defarllt; x and everything else that's not covered (for

} d the coverpoint ‘adr’) by bins above, ends up
::‘ :1"0;""‘ in bins ‘others’

_inst = new;

Fig. 20.4 ‘bins’—basics

bit [2:0] p1; //values 0 to 7
bit signed [2:0] p2; //values-4 to 3
covergroup g1 @(posedge clk);
coverpoint pl {
bins bl ={1, [2:5], [6:10] };
bins b2 ={-1, [1:10], 15 };
}
coverpoint p2 {
bins b3 = {1, [2:5], [6:10] };
bins b4 ={-1, [1:10], 15 };
}

endgroup

Exercise: See if you can figure out why these Warnings are issued? Note that p2 is

‘signed’.

— For b1, a warning is issued for the range [6:10]. b1 is treated as though it had the
specification {1, [2:5], [6:7]}.

— For b2, a warning is issued for the range [1:10] and for the values —1 and 15. b2
is treated as though it had the specification {[1:7]}.

— For b3, a warning is issued for the ranges [2:5] and [6:10]. b3 is treated as
though it had the specification {1, [2:3]}.

374 20 Functional Coverage—Language Features

— For b4, a warning is issued for the range [1:10] and for the value 15. b2 is
treated as though it had the specification {—1, [1:3]}.

Following shows how the ‘with’ clause comes in handy to further restrict the
creation of bins.

The ‘with’ clause specifies that only those values that satisfy the given expression
are included in the bin. In the expression, the name ‘ifem’ is used to represent the
candidate value. The candidate value is of the same type as the coverpoint.
Consider the following example:

a: coverpoint x

{
bins mod3(] = {[0:255]} with (item % 3 == 0);
}
This bin definition selects all values from 0 to 255 that are evenly divisible by 3.
The ‘with’ clause is actually a SystemVerilog construct (e.g. its usage in con-
straint random verification). Please refer to SystemVerilog LRM to understand its
further nuances.

20.4.1 Covergroup/Coverpoint with Bins—Example ...

Recall the example on PCI that we started in previous section. Its story continues here.
In Fig. 20.5 we are assigning different groups of PCI commands to different bins.

| Requirement: Cover all PCI Cycle Types. I

/1 PCI C/BE Commands
enum {iack, SpecialC, |IORead, |I0Write, MemRead, MemWrite, ConfRead, ConfWrite,
MemRMult, DualAddr, MemReadLine, MemWrinv} pciCommands;

covergroup pciCommands_cover @(negedge FRAME_);

pciCmdCover : coverpoint pciCommands

{
bins pcireads []={IORead, MemRead, ConfRead, MemRMult, MemReadLine};

bins pciwrites [] = {IOWrite, MemWrite, ConfWrite, MemWrinv};
bins pcimisc [] = {iack, SpecialC};
3

endgroup

EXPLICIT bins to categorize PCl cycles in
different bins. So, for example, when
pcireads bins are 100% covered, we know
that all PCI Read type cycles have been
exercised.

Fig. 20.5 ‘covergroup’/‘coverpoint’ example with ‘bins’

20.4 System Verilog ‘Bins’—Basics ... 375

Recall that [] means auto generated bins. Hence, for example, since ‘bins pci-
reads[]” in Fig. 20.5 has 5 variables (enum type in this example), 5 bins will be
created—one for each enum type. This way of creating bins is very useful because
in the complex maze of features to cover, it is sure nice to have a clear distinction
among different functional groups. Here pcireads[] (5 bins) covers all PCI Read
Cycles; pciwrites[] (4 bins) covers all PCI Write Cycles and for the special cycles,
there is the pcimisc[] (2 bins).

20.4.2 System Verilog ‘covergroup’—Formal
and Actual Arguments

Figure 20.6 outlines the following points.

1. Covergroup can be parameterized for reuse.

2. You have to use ‘ref’ type since covergroup ‘gc’ has been instantiated twice.

‘Ref’ type is required when you pass variables as actual to a formal. In other

words, if you were passing a constant you would not need a ‘Ref” type as shown

in Fig. 20.6.

Actual arguments are passed when you instantiate a covergroup.

4. This is an example of reusability. Instead of creating two covergroups; 1 for
‘adrl’ and another for ‘adr2’, we have created only 1 covergroup called ‘gc’
which has a formal called ‘address’. We pass ‘adrl’ to ‘address’ in the instance
gcadrl and pass ‘adr2’ to ‘address’ In the instance gcadr2. We also pass the

(98]

l Formal arguments I

bit[7:0] adr1, adr2; / \

covergroup gc (int low, int high, ref bit [7:0] address)
@(posedge clk);

ac: coverpoint address { \ ‘ref’ type is required because we

biow sdetiol] ~{[iowshehl; ith o iferent varkie. 4 ‘et
} type allows a different variable
to be sampled by each instance

endgroup
of the covergroup.

gc gcadr1 = new (0,127,adr1)‘;
gc gcadr2 = new (128,255,adr2)?

I

Actual arguments must be Actual arguments for formal of type ‘ref’
passed with the ‘new’ must be variables. They cannot be
operator constants

Fig. 20.6 ‘covergroup’—formal and actual arguments

376 20 Functional Coverage—Language Features

range of adrl and adr2 to be covered with each instance. In short, it is a good

idea to create parameterizable covergroups, as the situation permits. They can be

useful not only within a project but also across projects.

An output or inout is illegal as a formal argument.

6. Since a covergroup cannot modify any argument to the new operator, a ref
argument will be treated the same as a read-only const ref argument.

7. The formal arguments of a covergroup cannot be accessed using a hierarchical
name (the formals cannot be accessed outside the covergroup declaration).

8. If an automatic variable is passed by reference, behavior is undefined.

e

Exercise: How many bins will be created for ‘bins adrbin[]’ for each instance
(‘gcadrl’ and ‘gcadr2’) of covergroup ‘gc’?

20.4.3 ‘covergroup’ in a ‘class’

So where do you use or declare this ‘covergroup’? One of the best places to embed
a coverage group is within a ‘class’. Why a class? Here are some reasons. (Note—
discussion of ‘class’ is beyond the scope of this book. The author is assuming
familiarity with SystemVerilog ‘class’).

e An embedded covergroup defines a coverage model for protected and local
properties.

e Class members can be used in coverpoint expressions, coverage constructs,
option initialization (we’ll see option initialization in Chap. 22), etc.

e By embedding a coverage group within a class definition, the covergroup
provides a simple way to cover a subset of the class properties.

e This style of declaring covergroups allow for modular verification environment
development.

e An embedded covergroup can define a coverage model for protected and local
class properties without any changes to the class data encapsulation.

e Class members can be used in coverpoint expressions or can be used in other
coverage constructs, such as option initialization.

OK, let us see what Fig. 20.7 depicts.

‘covergroup xyzCover’ is sampled on any change on variable ‘m_z’. This
covergroup contains two coverpoints, namely ‘m_x’ and ‘m_y’. Note that there are
no explicit bins specified for the coverpoints. How many bins for each coverpoint
will be created? As an exercise, please refer to previous sections to figure out.

Note that covergroup is instantiated within the ‘class’. That makes sense since
the covergroup is embedded within the class. Obviously, if you do not instantiate a
covergroup in the ‘class’, it will not be created and there will not be any sampling of
data.

Finally, a ‘class’ can indeed have more than one ‘covergroup’ as shown
Fig. 20.8.

http://dx.doi.org/10.1007/978-3-319-30539-4_22

20.4 System Verilog ‘Bins’—Basics ... 377

class xyz;
bit [3:0] m_x;
int m_y;
bit m_z;

covergroup xyzCover @(m_z);
coverpoint m_x;
coverpoint m_y;
endgroup

function new();
xyzCover xyzCovinst = new;
endfunction
endclass

+ By embedding a ‘covergroup’ within a class definition, the ‘covergroup’
provides a simple way to cover as part of class definition the class
properties (modular development)

« A'class' can have more than one ‘covergroup*

Fig. 20.7 ‘covergroup’ in a SystemVerilog class (courtesy LRM 1800-2005)

class xyz;
bit [3:0] m_x;
int m_y;
bit m_z, m_a;

covergroup m_xCover @(m_z) coverpoint m_x;
covergroup m_yCover @(m_a) coverpoint m_y;

endgroup

function new();
m_xCover m_x_Covinst = new;

endfunction

function new();
m_yCover m_y_Covinst = new;
endfunction
endclass

Fig. 20.8 Multiple ‘covergroup’ in a SystemVerilog class

378 20 Functional Coverage—Language Features

Following is an example of hierarchical accessibility (courtesy LRM).

Following is an example of hierarchical accessibility (courtesy LRM).

class Helper;
int m_ev;
endclass

class MyClass;
Helper m_obj;
intm_a;
covergroup Cov @(m_obj.m_ev);
coverpoint m_a;
endgroup

function new();
m_obj = new; //coverage group Cov uses m_obj, m_obj must be instantiated before Cov
Cov = new; // Create embedded covergroup after creating m_obj

endfunction

endclass

In this example, covergroup Cov is embedded within class MyClass, which
contains an object of type Helper class, called m_obj. The clocking event for the
embedded coverage group refers to data member m_ev of m_obj. Because the
coverage group Cov uses m_obj, m_obj must be instantiated before Cov.

20.5 ‘cross’ Coverage

‘cross’ is a very important feature of functional coverage. This is where code
coverage completely fails. Figure 20.9 describes the syntax and semantics.

Syntax:
cover_cross :: = [cross_identifier:] cross list_of cross_items [iff (expression)]
cross_body

Two variables ‘offset’ and ‘adr’ are declared. Coverpoint for ‘offset’ creates four
bins called ofsbin[0] ... ofsbin[3] for the four values of ‘offset’ namely, 0,1,2,3.
Coverpoint ‘adr’ also follows the same logic and creates adrbin[0] ... adrbin[3] for
the four values of ‘adr’ namely, 0,1,2,3.

adr_ofst is the label given to the ‘cross’ of ar, ofst. First of all, the ‘cross’ of ‘ar’
(label for coverpoint adr) and ‘ofst’ (label for coverpoint offset) will create another
set of 16 bins (four bins of ‘adr’ * four bins of ‘offset”). These ‘cross’ bins will keep
track of the result of ‘cross’. However, what does ‘cross’ mean?

Four values of ‘adr’ need to be covered (0,1,2,3). Let us assume adr == 2 has
been covered (i.e. adrbin[2] is covered). Similarly, there are four values of ‘offset’
that need to be covered (0,1,2,3) and that offset == 0 has also been covered (i.e.
ofsbin[0] has been covered). However, have we covered ‘cross’ of adr = 2 (adrbin

20.5 ‘cross’ Coverage 379

+ ‘cross’ coverage is specified between two (or more) ‘coverpoint’s or variables.

» ‘cross’ of N coverpoints is defined as the coverage of all combinations of all bins associated with the
N coverpoints.

+ ‘cross’ coverage is allowed only between coverpoints defined within the same covergroup.

« Expressions cannot be used directly in a cross

bit [1:0] offset, adr;

covergroup cgl1 @(posedge clk);

s CH R ST | 4 bins for 4 values (0,1,2,3) of ‘offset’ I

ar: coverpoint adr { bins adrbin[] = {[0:3]}; }] 4 bins for 4 values (0,1,2,3) of ‘adr’ I

» adr_ofst: cross ar, ofst;

endgroup cross of adr and offset gives 16 coverpoints |
i - ‘ »
cg1 cglinst = new; e

optional label
for the ‘cross’
coverpoint

What ‘cross’ really means is ...

Assume that adr==0 has been covered and offset==0 also has been covered but if
adr==0 && offset==0 never happened together (not necessarily at the same clock)
then the ‘cross’ of adr[0] and offset[0] will be empty.

Fig. 20.9 ‘cross’ coverage—basics

[2]) and offset = O (ofsbin[0])? Not necessarily. ‘cross’ means that adr = 2 and
offset = O must be true ‘together’ at some point in time. This does not mean that
they need to be ‘covered’ at the same time. It simply means that (e.g.) if adr = 2 that
it should remain at that value until offset = O (or vice versa). This will make both of
them true ‘together’. If that is the case, then the ‘cross’ of adrbin[2] and ofsbin[0]
will be considered ‘covered’.

In the simulation log in Fig. 20.10, we see that both adrbin[2] and ofsbin[0] have
been individually covered 100 %. However, their ‘cross’ has not been covered.

Let us look at the simulation log further.

First, you will see the 4 bins (ofsbin[0] to ofsbin[3]) of coverpoint cgl::ofst. All
4 bins are covered and hence coverpoint cgl::ofst is 100 % covered. Next, you will
see the 4 bins (adrbin[0] to adrbin[3]) of coverpoint cgl::ar. All bins are covered
here as well and so is the coverpoint cgl::ar.

Now let us look at the ‘cross’ of 4 * 4 bins = 16 bins coverage. Both ‘ofst’ and
‘ar’ are 100 % covered—but—the 3 cases that follow (among many others) are not
covered because whatever values the testbench drove, these bins never had the
same value at any given point in time (e.g., adrbin[2] is ‘2’ at time t, then ofsbin[0]
should be ‘0’ either at time t or any time after that, as long as adrbin[2] = 2°).

380 20 Functional Coverage—Language Features

Covergroup Metric Goal/ Status
TYPE /test_covergroup_crossi/cgl 81.3% 100
Uncovered
Coverpoint cg1::ofst 100.0% 100 Covered
bin ofsbin[0] 7 1 Covered
bin ofsbin[1] 4 1 Covered auto-generated bins for
bin ofsbin[2] 4 1 Covered <+ coverpoint labeled
bin ofsbin[3] 6 1 Covered ‘ofst’
Coverpoint cg1::ar 100.0% 100 Covered
bin adrbin[0] 5 1 Covered
bin adrbin[1] 4 1 Covered :
bin adrbin[2] 4 1 Covered <+ ﬁﬁﬁﬁ?ﬁﬁiﬁﬁﬂ’fﬁ
bin adrbin[3] 8 1 Covered
Cross cg1::adr_ofst 43.8% 100
Uncovered
bin <adrbin[0],ofsbin[0]> 5 1 Covered
bin <adrbin[1],o0fsbin[0]> 2 1 Covered
bin <adrbin[2],o0fsbin[0]> 0 1 ZERO
bin <adrbin[3],o0fsbin[0]> 0 1 ZERO),
bin <adrbin[0],ofsbin[1]> 0 1 ZERO” || NOTE: Even though all
bin <adrbin[1],ofsbin[1]> 2 1 Covered the coverpoints of
bin <adrbin[2],ofsbin[1]> 2 1 Covered ‘ofst’ and ‘ar’ are
bin <adrbin[3],o0fsbin[1]> 0 1 ZERO-»" covered, many of
bin <adrbin[0],ofsbin[2]> 0 1 ZERO their ‘cross’
bin <adrbin[1],0fsbin[2]> 0 1 ZERO coverpoints are not
bin <adrbin[2],0fsbin[2]> 2 1 Covered covered.
bin <adrbin[3],0fsbin[2]> 2 1 Covered
bin <adrbin[0],ofsbin[3]> 0 1 ZERO
bin <adrbin[1],ofsbin[3]> 0 1 ZERO
bin <adrbin[2],ofsbin[3]> 0 1 ZERO
bin <adrbin[3],ofsbin[3]> 6 1 Covered

Fig. 20.10 ‘cross’ coverage—simulation log

Hence,
bin <adrbin[2], ofsbin[0] > 0 1 ZERO

Similarly, there are other cases of ‘cross’ that are not covered as shown in the
simulation log. Such a log will clearly identify the need to enhance your testbench.
To reiterate, such ‘cross’ cannot be derived from code coverage.

Figure 20.11 shows how cross is achieved between an enum type and a bit type.
Idea is to show how cross coverpoint/bins are calculated. The figure describes
different ways ‘cross’ bins are calculated.

Recall that a ‘cross’ can be defined only between N coverpoints, meaning you
must have an explicit coverpoint for a variable in order to cross with another
coverpoint. That is where there is an anomaly when it comes to enum type. The
enum type ‘color’ has no coverpoint defined for it. Yet, we are able to use it in
‘cross’. That is because the language semantics implicitly creates a coverpoint for
the enum type ‘color’ and track its cross coverage. Other than an enum type, you
must create a coverpoint of a variable in the covergroup, if you need to ‘cross’ it
with another variable coverpoint. Note also that you use the ‘label’ of each cov-
erpoint in the ‘cross’ statement, not the name of the variable. Again, the exception

20.5 ‘cross’ Coverage 381

enum {r,g,b} color; |
bit [3:0] adr; auto-generated bins (4 bins because offset is

bit [1:0] offset; 2bit wide)

I
covergraup cet @(posedgfﬁ/ Explicit set of bins. ‘ar1’ covers ‘adr’ values 0

to 7 while ‘ar2’ covers ‘adr’ values 8 to 15.
ofst: coverpoint offset;
ar: coverpoint adr / I

‘cross’ between coverpoints ‘ar’ and ‘ofset’.
bins ar1 = {[0:7]}; Total cross coverpoints = 8 (4 of ‘offset’
bins ar2 = {[8:15]}; crossed with 2 of ‘adr’)

} I
/ ‘cross’ between enumerated variable color
adr_ofst: cross ar,” ofst; and coverpoint ar.
clr_adr: cross color, ar; < 15¢a/ cross coverpoints = 6 (3 of “color’
endgroup crossed with 2 of ‘adr’)

SV implicitly creates a coverpoint
for the variable ‘color’ in order to
track it’s cross coverage.

cg1 cglinst = new;

Fig. 20.11 ‘cross’—example (further nuances)

Covergroup Metric Goall Status
TYPE /test_covergroup_cross/cgl 96.7% 100
Uncovered
Coverpoint cg1::ofst 100.0% 100 Covered
bin auto[0] 8 1 Covered
bin auto[1] 3 1 Covered < | auto-generated bins for
bin auto[2] 5 1 Covered coverpoint labeled ‘ofst’
bin auto[3] 4 1 Covered
Coverpoint cg1::ar 100.0% 100 Covered
bin art 11 1 Covered _ | | Explicit bins ‘ar1’ and ‘ar2’
bin ar2 9 1 Covered of coverpoint labeled ‘ar’
Coverpoint cg1::color 100.0% 100 Covered
bin auto[r] 2 1 Covered -
bin auto[g] 1 1 Covered .| | auto-generated bins for
bin auto[b] 17 1 Covered enum variable ‘color’
Cross cg1::clr_adr 83.3% 100 Uncovered
bin <autofr],ar1> 1 1 Covered ‘cross’ between coverpoint
bin <auto[g],ar1> 1 1 Covered +—| «,.» ; . ’
bin <auto[b],ar1> 9 1 Covered ar' wnd voriable “calor
bin <auto[r],ar2> 1 1 Covered
bin <auto[g],ar2> [1] 1 ZERO «f— g'; P
bin <auto[b],ar2> 8 1 Covered b‘z;i;‘::;:f;:g: gs ez
Cross cgl::adr_ofst 100.0% 100 Covered
bin <art,auto[0]> 4 1 Covered
bin <art,auto[1]> 2 1 Covered
bin <ari,auto[2]> 3 1 Covered 7 " z
bin <arf,autof3§> 2 1 Covered +f—| lcress between c.ov?rpo:{rt
bin <ar2,auto[0]> 4 1 Covered ar’ and coverpaint ‘ofst
bin <ar2,auto[1]> 1 1 Covered
bin <ar2,auto[2]> 2 1 Covered
bin <ar2,auto[3]> 2 1 Covered

Fig. 20.12 ‘cross’ example—simulation log

382 20 Functional Coverage—Language Features

here is the enum type for which we use the enum type name, as in ‘color’ (because
we didn’t have to create a coverpoint for it—so there is no coverpoint name).

Please study this and other figures carefully since they will act as guideline for
your projects. A simulation log of this example is presented in Fig. 20.12. The
annotations describe what’s going on.

20.6 More ‘Bins’

20.6.1 ‘Bins’ for Transition Coverage

As noted in Fig. 20.13, this is by far the most useful feature of functional coverage.
Transaction level transitions are very important to cover. For example, did CPU
issue a read followed by write-invalid? Did you issue a D$miss followed by a D$hit
cycle? Such transitions are where the bugs occur and we want to make sure that we
have indeed exercised such transitions.

Figure 20.13 explains how the semantics work. Note that we are addressing both
the ‘transition’ as well as the ‘cross’ of ‘transition’ coverage.

There are two transitions in the example.

bins arl = (8’h00 => 8’hff); which means that adrl should transition from ‘0’ to ‘ff’
on two consecutive posedge of clk. In other words, the testbench must exercise this
condition for it to be covered.

A very important feature of functional coverage is the ability to see if
required ‘transitions’ in a design have been exercised.

This temporal domain coverage is not possible with code coverage (except
for state transition coverage which is restricted strictly to the state
machines ‘derived’ by the code coverage tool).

bit[7:0] adr1;
bit adr2;

This means that adr1 is 00’ at this posedge clk
and it should be ‘ff’ the next posedge clk (since
‘posedge clk’ is the sample point).

covergroup gc @(posedge clk);
ac: coverpoint adr1

bins ar1 = (8'h00 => 8'hff);
} This means that adr2 is "1’ followed by ‘0’ at

dc: coverpoint adr2 successive sample points (i.e. successive posedge
clk in this example).

bins ar2 = (1'b1 => 1'b0); -/
}

This means that if the following condition is met
that the cross will be covered;

acdc: cross ac,dc; «

adr1=00 && adr2=1 at this posedge clock
endgroup and at the next posedge clock
gc gelnst = new; adr1=ff && adr2=0

Fig. 20.13 ‘bins’ for transition coverage

20.6 More ‘Bins’ 383

Similarly, there is the ‘bins ar2’ that specifies the transition for adr2 (1 => 0).

The cross of transitions is shown at the bottom of the figure. Very interesting
how this works. Take the first values of each transition (namely, adrl = 0 &&
adr2 = 1). This will be the start points of cross transition at the posedge clk. If at the
next (posedge clk) values are adrl = “ff* && adr2 = 0, the cross transition is
covered.

More on the ‘bins’ of transition is shown in the Fig. 20.14. In the figure, different
styles of transitions have been shown. ‘bins adrb2’ requires that ‘adrl’ should
transition from 1=>2=>3 on successive posedge clk. Of course, this transition
sequence can be of arbitrary length. ‘bins adrb3[]’ shows another way to specify
multiple transitions. The annotation in the figure explains how we get 4 transitions.

‘bins adrb5’ is (in some sense) analogous to the consecutive operator of asser-
tions. Here ‘hf [*3] means that adrl = ‘hf should repeat 3 times at successive
posedge clk.

Similarly, the non-consecutive transition (‘ha [->3]) means that adrl should be
equal to ‘ha, 3 times and not necessarily at consecutive posedge clk. Note that just
as in non-consecutive operator, here also ‘ha need to arrive 3 times with arbitrary
number of clocks in-between their arrival and that ‘adrl’ should not have any other
value in-between these 3 transitions. The simulation log shows the result of a
testbench that exercises all the transition conditions.

This means that adrb2 covers ‘1’ followd by ‘2’

bit[7:0] adr1; followed by ‘3’ at successive sample points. This
covergroup gc @(posedge clk); sequence can be ot arbr‘rrcrz Iensrh.
ac: coverpoint adr1 This is equal to four transitions (1=>3, 1=>4,
{ 2=>3, 2=>4)
bins adrb2 = (1=>2=>3); | Four bins are created, one for each transition

—_—

bins adrb3[] = (1,2 => 3,4); CONSECUTIVE Transitions
_— = (*hf => ‘hf => ‘hf);

bins adrb5 = (hf [*3]); «—

NON-CONSECUTIVE Transitions
bins adrbé = (ha [-> 3]+ | |~ (... ‘ha => ... ‘ha => ... ‘ha);

Where ... means any transition that does not
contain the value ‘ha (i.e. non-consecutive)

Covergroup Metric Goal/ Status
Coverpoint gc::ac 100.0% 100 Covered
bin adrb2[1=>2=>3] 2 1 Covered

bin adrb3[2=>4] 4 1 Covered
bin adrb3[2=>3] 3 1 Covered
bin adrb3[1=>4] 2 1 Covered
bin adrb3[1=>3] 4 1 Covered
bin adrb5[15[*3]] 1 1 Covered
bin adrbé 1 1 Covered

Fig. 20.14 ‘bins’—transition coverage further features

384 20 Functional Coverage—Language Features

One more example of transition coverage in Fig. 20.15.

This figure shows a very interesting semantic feature of transition. Note that
‘bins adrb3[] = (1,2 => 3,4)’ is not the same as ‘bins adrb4[] = (1=>3, 1=>4, 2=>3,
2=>4);’.

‘bins adrb3[] = (1,2 => 3,4)’ means transitions (I=>3, 1=>4, 2=>3, 2=>4). BUT
‘bins adrb4[] = (1=>3, 1=>4, 2=>3, 2=>4) means

[1=>3=>4=>3=>4]
[1=>3=>4=>2=>4]
[1=>3=>2=>3=>4]
[1=>3=>2=>2=>4]
[1=>1=>4=>3=>4]
[1=>1=>4=>3=>4]
[1=>1=>2=>3=>4]
[1=>1=>2=>2=>4]

Is that intuitive? I don’t think so. However, the following will explain.

‘bins adrb4[] = (1=>3, 1=>4, 2=>3, 2=>4)’ is equivalent to
‘bins adrb4[] = (1=>(3, 1)=>(4, 2)=>(3, 2)=>4)’

covergroup gc @(posedge clk); ﬂ This is equal to four transitions (1=>3, 1=>4,
ac: coverpoint adr1 2=>3, 2=>4)
But this is NOT the same as (1,2 => 3,4)
bins adrb3[] = (1,2 => 3,4);
bins adrb4[] = (1=>3, 1=>4, Think of it as the following to understand it’s
2=>3, 2=>4); <[transitions
} /ibins adrb[] = (1=> (3,1) => (4,2) => (3,2) =>4);
Covergroup Metric Goal/ Status
Coverpoint gc::ac 100.0% 100 Covered
bin adrb3[2=>4] 4 1 Covered
bin adrb3[2=>3] 3 1 Covered o
bin adrb3[1=>4] 2 1 Covered |4
bin adrb3[1=>3] 4 1 Covered /
bin adrb4[1=>3=>4=>3=>4] 1 1 Covered -,
bin adrb4[1=>3=>4=>2=>4] 1 1 Covered
bin adrb4[1=>3=>2=>3=>4] 1 1 Covered
bin adrb4[1=>3=>2=>2=>4] 1 1 Covered
bin adrb4[1=>1=>4=>3=>4] 1 1 Covered
bin adrb4[1=>1=>4=>2=>4] 1 1 Covered
bin adrb4[1=>1=>2=>3=>4] 1 1 Covered-’
bin adrb4[1=>1=>2=>2=>4] 1 1 Covered

Fig. 20.15 ‘bins’ for transition—example with simulation log

20.6 More ‘Bins’ 385

If you see the equivalent definition, you will be able to understand the transition.
Study them carefully, you will figure out why the transitions look the way they do.

In short, you need to be careful how you specify transition coverpoints.

Now let us turn back to our favorite PCI example that we have been following.
We started with simple coverage, moved to ‘bins’ coverage and now we will see the
‘transition’ coverage. This is the reason we were building on the same example
showing how such a coverage model can be written starting with a simple model.

Figure 20.16 shows the same enum type and same bins. But in addition, it now
defines two transition bins named R2W (for Read to Write) and W2R (for Write to
Read).

bins R2ZW means that all possible Read cycles types are followed by all possible
Write cycles. In this example that means we must cover the following transactions

IORead => IOWrite; IORead => MemWrite; IORead => ConfWrite;

MemRead => IOWrite; MemRead => MemWrite; MemRead => ConfWrite;
ConfRead => IOWrite; ConfRead => MemWrite; ConfRead => ConfWrite;
MemReadLine => IOWrite; MemReadLine => MemWrite; MemReadLine
=> ConfWrite;

Same type of transitions for bins W2R[].

As you notice, this is quite powerful. Many bugs occur when there is a transition
from one transaction type to the next. You have to make sure that your testbench
indeed covers such transitions.

‘ Requirement: Cover all PCI Cycle Types and transitions among Read and Write cycles. I

// PCI C/BE Commands
enum {iack, SpecialC, IORead, IOWrite, MemRead, MemWrite, ConfRead, ConfWrite,
MemRMult, DualAddr, MemReadLine, MemWrinv} pciCommands;

covergroup pciCommands_cover @(posedge clk);
pciCmdCover : coverpoint pciCommands
{
bins pcireads [] = {IORead, MemRead, ConfRead, MemRMult, MemReadLine};
bins pciwrites [] = {IOWrite, MemWrite, ConfWrite, MemWrinv};
bins pcimisc [] = {iack, SpecialC};

bins R2ZW [] = (IORead, MemRead, ConfRead, MemRMult, MemReadLine =>
|OWrite, MemWrite, ConfWrite, MemWrinv);

bins W2R [] = (IOWrite, MemWrite, ConfWrite, MemWrinv => |ORead,
MemRead, ConfRead, MemRMult, MemReadLine);

3

endgroup

Fig. 20.16 Example of PCI cycles transition coverage

386 20 Functional Coverage—Language Features

20.6.2 ‘wildcard bins’

Since no one likes to type a sequence repeatedly, we create don’t care (or as the
functional coverage lingo calls it ‘wildcard’ bins). Self-explanatory. As shown in
Fig. 20.17, you can use either an ‘x’ or a ‘z’ or ‘?’ (doesn’t this look familiar to
Verilog?) to declare ‘wildcard’ bins. Note that such bins must precede with the
keyword ‘wildcard’. ‘wildcard bins ainc’ specifies that adrl values 1100, 1101,
1110, 1111 need to be covered.

Note also ‘wildcard bins adrb1[]’ and ‘wildcard bins adrb2’. One creates implicit
([1) 4 bins while the other creates only 1 bin. The one that creates 4 explicit bins will
check to see that—each of the—4 transitions take place. While adrb2 that creates
only 1 bin will be considered covered if—any—of the 4 transitions take place.

20.6.3 ‘ignore_bins’

‘ignore_bins’ is very useful when you have a large set of bins to be defined. Instead
of defining every one of those, if you can identify the ones that are not of interest,

‘wildcard’ is a keyword associated with ‘bins’.
wildcard characters are ‘x’ or ‘2’ or ‘?’ each of which evaluate to 0 and 1.

1bmsafnc= 1100, 1101, 1110, 1111 |

covergroup gc @(posedge clk);
ac: coverpoint adr1 adrb1 is qual to 00=>10, 00=>11, 01=>10,

{ 01=>11
wildcard bins ainc = { 4'b 1127 }; o m— - -
wildcard bins adrb1[] = (2'b0x => 2'b1x); || Note :: Since adrbi[] s used for bins,
wildcard bins adrb2 = (2'b0x => 2'b1x); the simulator _wpll create 1 bin for -each-
’ of the 4 transitions. In other words, you
} need ALL 4 transitions to completely
endgroup cover adrbi[]

gc gelnst = new();

In contrast, only 1 bin ‘adrb2’ is used for the
transitions.

As soon as ONE of the 4 transitions is detected,
the bins adrb2 is covered 100%

Covergroup Metric Goall Status
TYPE /test_covergroup_6/gc 100.0% 100
Covered
Coverpoint gc::ac 100.0% 100 Covered
bin ainc 2 1 Covered

bin adrb1[1=>3] 1 1 Covered
bin adrb1[1=>2] 1 1 Covered
bin adrb1[0=>3] 1 1 Covered
bin adrb1[0=>2] 1 1 Covered
bin adrb2 4 1 Covered

Fig. 20.17 wildcard ‘bins’

20.6 More ‘Bins’ 387

then you can simply define ‘ignore_bins’. The ones that are specified to be ignored,
will indeed be ignored and rest will be covered.

As we noted at the onset of this chapter, when there is no explicit ‘bins’ defined
for a coverpoint, the simulator creates all possible bins that the ‘covered’ variable
requires. In Fig. 20.18, only ‘ignore_bins’ are specified in the coverpoint adrl but
no ‘bins’. This means that the simulator will first create all 16 bins (adrl is 4 bit
wide) for adrl. Then it will ignore value 4,5 and 6,7,8,9,10,11,12,13,14,15 and
cover only adrl = 0,1,2,3. This is reflected in the simulation log at the bottom of
Fig. 20.18.

20.6.4 fillegal_bins’

‘illegal_bins’ is interesting in that it will complain, if you do cover a given scenario.
In Fig. 20.19, we refer to the same old ‘adrl’. 16 auto bins are created for cov-
erpoint ‘adrl’ since we don’t explicitly declare any bins for it. And we say that if
the testbench ever hits adrl == 0, that it should be considered illegal. Coverage of
adrl == 0 should not occur. As seen from the simulation log, coverage of adrl =0
results in an Error.

All values or transitions associated with ‘ignore_bins’ are excluded from
coverage.

bit[3:0] adr1; First note that since no ‘bins' is specified,

SV will create 16 ‘auto’ bins, one for each

covergroup gc @(posedge clk); of the 16 adr1 bits

ac: coverpoint adr1

1

{ —
ignore_bins igvalues0 = {4,5}; ..__l Ignore coverage for addr1=4, 5 I
ignore_bins igvalues1 = {[6:5]};
el}ldgroup R Ignore coverage for addr1 =6 to 15 (last
gc gelnst = new(); value of 4 bit adr1)
Covergroup Metric Goal/ Status
TYPE /test_covergroup_7/gc 100.0% 100 Covered
Coverpoint gc::ac 100.0% 100 Covered
ignore_bin igvalues0 0 ZERO
ignore_bin igvalues1 0 ZERO
bin auto[0] 4 1 Covered
bin auto[1] 1 1 Covered
bin auto[2] 2 1 Covered
bin auto[3] 1 1 Covered

Fig. 20.18 ‘ignore_bins’—basics

388 20 Functional Coverage—Language Features

All values or transitions associated with ‘illegal_bins’ are excluded from coverage
and will give a run time ERROR if encountered.

bit[3:0] adr1; First note that since no ‘bins’ is specified,
SV will create 1 ‘auto’ bin for each of the
covergroup gc @(posedge clk); "] 16 adr1 bits
ac: coverpoint adr1
S
: o o If adr1 == ‘0’ ever during simulation, this
' illegal_bins ilvalues0 = {0}; « will give a run time ERROR
endgroup #** Error: Illegal range bin value=b0000
gc gelnst = new(); got covered.
illegal_bins ilvaluesO = {0},

TYPE /test_covergroup_7/gc 33.3% 100 Uncovered
Coverpoint gc::ac 33.3% 100 Uncovered
illegal_bin ilvalues0 4 Occurred
bin auto[1] 2 1 Covered
bin auto[2] 2 1 Covered
bin auto[3] 2 1 Covered
bin auto[4] 0 1 ZERO
bin auto[5] 0 1 ZERO
bin auto[6] 0 1 ZERO
bin auto[7] 0 1 ZERO
bin auto[8] 0 1 ZERO
bin auto[9] 2 1 Covered
bin auto[10] 0 1 ZERO
bin auto[11] 1 1 Covered
bin auto[12] 0 1 ZERO
bin auto[13] 0 1 ZERO
bin auto[14] 0 1 ZERO
bin auto[15] 0 1 ZERO

Fig. 20.19 ‘illegal_bins’

Illegal bins take precedence over any other bins, that is, they will result in a
run-time error even if they are also included in another bin. Specifying an illegal
value has no effect on a transition that includes the value. Illegal transition bins
cannot specify a sequence of unbounded or undetermined varying length.

20.6.5 ‘binsof’ and ‘intersect’

Ok, now we are in some seriously esoteric territory! Figure 20.20 shows that
‘coverpoint b’ has two bins; one is called ‘bb’ and has value from 0 to 12 of ‘b’.
bins cc on the other hand has values 13,14,15,16 of ‘b’ that need to be covered. So
far so good. Then we declare a ‘cross’ of a, bc. So, let us first see what this cross
looks like.

20.6 More ‘Bins’

389

bit [1:0] a,c;
bit [3:0] b;

covergroup gc ®(posedge clk);
bec: coverpointb { bins bb = { [0:12] };

bins cc = {13,14,15,16};
} /

"

ic:crossa,bc <+

bins isect_ab = binsof (bc) intersect {[0;1]}; <

bins isect_nab = I(binsof (bc) intersect {[0:3]});
] »

endgroup

gc gelnst = new();

All possible cross products of “cross a,bc” are
auto bins of ‘a’ crossed with bb and cc bins of
‘bc‘
<a[0],bb> <a[0],cc>
<a[1],bb> <a[1],cc>
<a[2],bb> <a[2],cc>
<a[3],bb> <a[3],cc>

These are the desired set of values to
intersect with. This can be a single value, a
range of values or an open range

open range can be

[$:value] (i.e. set of values less than or equal
to value

[value:$] (i.e. set of values greater or equal
to value)

isect_ab is a user defined cross bin. It specifies
that it should include only those cross
products from all possible cross products of
(a,bc - noted above) that intersect binsof be
with the values 0 or 1.
//So0, isect_ab includes only 4 cross products;

<a[0],bb>

<a[1],bb>

<a[2],bb>

<a[3],bb>

Fig. 20.20 ‘binsof’ and ‘intersect’

Similarly, here isect_nab selects only those
cross products that do not intersect binsof bc
with values 0,1,2,3

/150, isect_nab includes only 4 cross products;
<a[0],cc>
<a[1],cc>
<a[2],cc>
<a[3],cc>

‘a’ has 4 implicit bins a[0], a[1], a[2], a[3] for four values 0,1,2,3 and ‘bc’ has
two bins ‘bb’ and ‘cc. So the ‘cross a,bc’ produces

<a[0],bb> <a[0],cc>
<a[1],bb> <a[1],cc>
<a[2],bb> <a[2],cc>
<a[3],bb> <a[3],cc>

We are moving along just fine—right? But now it gets interesting. We don’t
want to cover all ‘cross’ bins into our ‘cross’ of ‘a’ and ‘bc’. We want to ‘intersect’
them and derive a new subset of the total ‘cross’ set of bins.

bins isect_ab = binsof (bc) intersect {[0:1]};

says that take all the bins of ‘bc’ (which are ‘bb’ and ‘cc’) and intersect them
with the ‘values’ O and 1. Now note carefully that ‘bb’ carries values {[0:12]}
which includes the values 0 and 1, while ‘cc’ does not cover 0 or 1. Hence, only
those cross products of ‘bc’ that cover ‘bb’ are included in this intersect. Note that
the below mentioned subset is selected from the ‘cross’ product shown above.

<a[0],bb>, <a[1],bb>, <a[2],bb>, <a[3],bb>

Now onto the next intersect.

390 20 Functional Coverage—Language Features

bins isect_nab = !(binsof (bc) intersect {[0:3]})

Similarly, first, note that here we are using negation of binsof. So this’bins’
statement says, take the intersect of binsof (bc) and {[0:3]} and discard them from
the ‘cross’ of a, bc. Keep only those that do not intersect. Note that {[0:3]} again
fall into the bins ‘bb’ and would have resulted in exactly the same set that we saw
for the non-negated intersect. Since this one is negated it will ignore cross with ‘bb’
and only pick the ‘bins cc’ from the original ‘cross’ of a, bc.

<a[0],cc>, <a[1],cc>, <a[2],cc>, <a[3],cc>

Chapter 21
Performance Implications of Coverage
Methodology

Introduction: This chapter describes the methodology components of Functional
Verification. What you should cover, when you should cover, performance impli-
cations and applications on how to write properties that combine the power of
assertions with power of Functional Coverage.

21.1 Know What You Should Cover

e Don’t cover the entire 32-bit address bus.

— Cover only the addresses of interest (e.g., Byte/word/dword aligned;
start/end address; bank crossing address, etc.)

e Don’t cover the entire counter range
— Cover only the rollover counter values (transition from all 1’s to all 0’s)
e No need to cover the entire 2K Fifo

— Cover only fifo full, fifo empty, fifo full crossed with fifo_push, fifo empty
crossed with fifo read, etc.

e Auto generated bins are both a convenience and a nuisance. They may create a
lot of clutter with auto-generated bins that may not be relevant. Be judicious in
usage of auto generated ‘bins’

e Use ‘cross’ and ‘intersect’ to weed out unwanted ‘bins’. Also, ‘illegal_bins’ and
‘ignore_bins’.

© Springer International Publishing Switzerland 2016 391
A.B. Mehta, SystemVerilog Assertions and Functional Coverage,
DOI 10.1007/978-3-319-30539-4_21

392 21 Performance Implications of Coverage Methodology

21.2 Know When You Should Cover

e Enable your cover points only when they are meaningful

— Disable coverage during ‘reset’

— Cover ‘test mode’ signals only when in test mode (for example, JTAG TAP
Controller TMS asserted)

— Make effective use of coverage methods such as ‘start’, ‘stop’, ‘sample’
(more on this later...)

— Do not repeat with covergroups what you have covered with SVA ‘cover’

— Make effective use of covergroup ‘trigger’ condition

— Make effective use of the ‘action’ block associated with ‘cover’ to activate a
covergroup

If some of these points (e.g. ‘trigger’) don’t quite make sense, please hold on.
We will be covering such features in upcoming sections.

21.3 When to ‘Cover’ (Performance Implication)

Functional coverage should be carefully collected as discussed above. The language
does allow tasks that allow you to control when to start collecting coverage and
when to stop. These tasks can be associated with an instance of a covergroup and
invoked from procedural block.

Figure 21.1 shows the covergroup ‘rg’ with two coverpoints ‘pc’ and ‘gc’. ‘pc’
covers all the pending requests and ‘gc’ covers the number of masters on the bus
when those requests are made. ‘my_rg’ is the instance of this covergroup.

covergroup rg;
pc: coverpoint pendreq;
gc: coverpoint numMasters;
endgroup

rg my_rg = new;

always @(posedge req) Start collecting coverage information
my_rg.start(); « when ‘req’ is asserted.

Stop collecting coverage information
when ‘gnt’ is asserted.

always @(posedge gnt)
my_rg.stop();

always @(posedge clk) |

begin In-between assertions of ‘req’ and ‘gnt’
my_rg.sample(); «——— collect coverage information at every
end posedge clk.

Fig. 21.1 Functional coverage—performance implication

21.3 When to ‘Cover’ (Performance Implication) 393

Since we want to start collecting pending requests at the assertion of req. When
the requests are granted, we don’t want to cover pending requests and number of
masters any more. ‘gnt’ related cover can be another covergroup.

Simple control but very good performance improvement. Use it wisely to speed
up your simulation and a more meaningful coverage log.

Lastly, there is the sampling edge task sample() which derives its sampling edge
from “always @ (posedge clk)” and applies it to ‘my_rg’ as its sampling edge. This
also tells us that we can have covergroup specific sampling edges. Very good
feature. Note that my_rg.sample() will ‘start’ when my_rg.start() is executed and
will stop when my_rg.stop() is executed. This is about as easy as it gets when it
comes to controlling collection of coverage information.

Note that optionally, there is also a ‘strobe’ option (see Section 22) that can be
used to modify the sampling behavior. When the strobe option is not set (the
default), a coverage point is sampled the instant the clocking event takes place, as if
the process triggering the event were to call the built-in sample() method. If the
clocking event occurs multiple times in a time step, the coverage point will also be
sampled multiple times. The ‘strobe’ option can be used to specify that coverage
points are sampled in the Postponed region, thereby filtering multiple clocking
events so that only one sample per time slot is taken. The strobe option only applies
to the scheduling of samples triggered by a clocking event.

21.4 Application: Have You Transmitted All Different
Lengths of a Frame?

This good application combines local variables, subroutine calls, covergroups and
interaction with procedural code outside of the assertion. Here’s how it works
(Fig. 21.2).

Read this example bottom up.

Property frameLength says that when the rising edge of TX_EN is sampled that
we should check the length of the transmitted frame using sequence frmLength.

Sequence frmLength declares a local variable ‘cnt’ and at TX_EN==1, initializes
cnt=1. One clock later (##1) it increments cnt forever ((TX_EN, cnt++)[*0:$]) until
TX_EN deasserts (falls). At that time, we call a task (i.e. a subroutine) called
store_Frame_Lngth(cnt) and provide it the final count as a parameter. This final
count is the length of the Frame that started with TX_EN assertion.

The task store_Frame_Lngth takes the ‘cnt’ as input and assigns it to ‘logic’ type
FrameLngth and triggers a named event called measureFrameLength.

Now the covergroup length_cg triggers at ‘measureFrameLength’ edge, which
we just triggered explicitly from task store_Frame_Lngth. The coverpoint covers
FrameLngth.

In short, we measure the Frame Length starting assertion of TX_EN until
deassertion of it. We measure the frame length between assertion and deassertion of

394 21 Performance Implications of Coverage Methodology

This application exemplifies the use of

« local variables

« subroutine call associated with an expression to update a variable
« covergroup triggered from an explicit event.

logic [7:0] FrameLngth = 0;
event measureFramelLength;

covergroup length_cg @(measureFramelLength);
coverpoint FrameLngth;
endgroup

task store_Frame_Lngth;
input [7:0] x;

FrameLngth = x;

-> measureFramelLength;
endtask

sequence frmLength;

int cnt;
(TX_EN, cnt=1) ##1 ((TX_EN, cnt++)[*0:5])
##1 (ITX_EN, store_Frame_Lngth(cnt))
endsequence

property framelLength;
@(posedge TX_CLK) Srose(TX_EN) |-> frmLength;
endproperty

fLength: assert property (framelLength);

Fig. 21.2 Application—have you transmitted all different lengths of a frame?

TX_EN and cover it. With every new assertion of TX_EN, we measure the length
of a new frame.

Note that “coverpoint FrameLngth” does not specify any explicit bins. That will
create 256 explicit bins each containing a frame length. This way we make sure that
we have covered all (i.e. 256) different frame lengths.

Chapter 22
Coverage Options

Introduction: This chapter describes the Coverage Options offered by the language.
Options for ‘covergroup’ type (both instance specific and instance specific
per-syntactic level) are described. Practical project methodology based examples
are provided that you can directly deploy in your project (Fig. 22.1).

© Springer International Publishing Switzerland 2016 395
A.B. Mehta, SystemVerilog Assertions and Functional Coverage,
DOI 10.1007/978-3-319-30539-4_22

396 22 Coverage Options

The syntax for specifying these options in the covergroup definition is
option.option_name = expression;

Option Name Default Description

weight = number 1 If set at the covergroup syntactic level, it specifies the weight of this
covergroup instance for computing the overall instance coverage of the
simulation. If set at the coverpoint {or cross) syntactic level, it specifies the
weight of a coverpoint (or cross) for computing the instance coverage of
the enclosing covergroup.

goal = number 90 Specifies the target goal for a covergroup instance, or a coverpoint or a
cross of an instance,

name = 3tr|'ng unique name Specify a name of the covergroup instance. If unspecified, a unique name
for each instance is automatically generated by the tool.

comment = séring Ll Acomment that appears with the instance of a covergroup, or a coverpoint
or cross of the covergroup instance. The comment is saved in the coverage
database and included in the coverage report,

at least = number 1 Minimum number of hits for each bin. A bin with a hit count that is less than
number s not considered covered.
detect_overlap = boolean 0 When true, a wamingis issued if there is 2n overlap between the range list
(or transition list) of two bins of a coverpoint
auto bin max = number b4 Maximum number of automatically created bins when no bins are explicitly
- T defined for a coverpoint

cross_auto_bin_max = number | unbounded | Maximumnumber of automatically created cross product bins for a cross.

cross_num _print_missing = 0 Humber of missing (not covered) cross product bins that must be saved to
number the coverage database and printed in the coverage report.
per_instance = boolean 0 Each instance contributes to the overall coverage information for the

covergroup type. When true, coverage information for this covergroup

instance is tracked as well.
LRM: SystemVerilog 3.1a, Table
20-1

Fig. 22.1 Coverage options—reference material

22.1

Coverage Options—Instance Specific—Example

397

bit [7:0] adr;
bit [1:0] offset;

covergroup cg1 (int iW, string iComment)
@(posedge clk);

option.per_instance = 1;
option.comment =iComment; «— |

ar: coverpoint adr
{ option.auto_bin_max = 4;

} \
ofst: coverpoint offset 8

{ option.weight = iW;
3

endgroup

cg1 cglinst = new(2,"Coverage for cg1inst”);

L

Track coverage information for each
instance of ‘cg1’in addition to the
cumulative coverage information for
covergroup ‘cgl’

Comment for each instance of this
covergroup (see the formal argument
‘iComment’ where you send instance
specific comment)

Create maximum 4 automatic bins for
coverpoint labeled ‘ar’ (performance
implication)

cg1 cg2linst = new(3,"Coverage for cg2inst");

This coverpoint (labeled ‘ofst’)
contributes ‘iW’ times as much to the
coverage of an instance of ‘cg1’ than
coverpoint ‘ar’.

T

Two instances of ‘cg1’ each providing
instance specific comment and weight

Fig. 22.2 Coverage options—instance specific—example

22.1 Coverage Options—Instance Specific—Example

See Fig. 22.2.

22.2 Coverage Options—Instance Specific Per-Syntactic

Level

See Figs. 22.3 and 22.4.

398 22 Coverage Options

The following table summarizes the syntactical level (covergroup, coverpoint, or cross) at
which instance options can be specified. All instance options can be specified at the
covergroup level. Except for the weight, goal, comment, and per_instance options, all other
options set at the covergroup syntactic level act as a default value for the corresponding
option of all coverpoints and crosses in the covergroup. Individual coverpoint or crosses can
overwrite these default values. When set at the covergroup level, the weight, goal,
comment, and per_instance options do not act as default values to the lower syntactic levels.

Option Name Allowed in Syntactic Level
covergroup coverpoint | cross
name Yes No No
weight Yes Yes Yes
goal Yes Yes Yes
comment Yes Yes Yes
at_least Yes (default for coverpoints & crosses) Yes Yes
detect_overlap Yes (default for coverpoints) Yes No
auto_bin_max Yes (default for coverpoints) Yes No
cross_auto_bin_max Yes (default for crosses) No Yes
cross_num_print_missing Yes (default for crosses) No Yes
per_instance Yes No No
LRM: SystemVerilog 3. 1a,
Table 20-2

Fig. 22.3 Coverage options—instance specific per-syntactic level

22.2 Coverage Options—Instance Specific Per-syntactic Level 399

The following table lists options that describe a feature of the ‘covergroup’
type as a whole.
type_option.option_name = expression;

Option Name Default Description

weight = constant_number 1 If set at the covergroup syntactic level, it specifies the weight of this
covergroup for computing the overall cumulative (or type) coverage of the
saved database. If set at the coverpoint (or cross) syntactic level, it
specifies the weight of a coverpoint (or cross) for computing the cumulative
{or type) coverage of the enclosing covergroup.

goal = constant_number 90 Specifies the target goal for a covergroup type, or a coverpoint or cross of
a covergroup type.
comment = string literal e Acomment that appears with the covergroup type, or a coverpaint or cross

of the covergroup type. The comment is saved in the coverage database and
included in the coverage report

strobe = constant number 0 If set to 1, all samples happen at the end of the time slot, tike the Sstrobe
system task.
LRM: SystemVerilog 3.1a, Table
20-3
Coverage type-options per LRM: SystemVerilog 3.1a, Table
Syntactic Level 20-4
Option Name Allowed Syntactic Level
covergroup COVEFpOirIt Cross
weight Yes Yes Yes
goal Yes Yes Yes
comment Yes Yes Yes
strobe Yes No No

Fig. 22.4 Coverage options type specific per syntactic level

400 22 Coverage Options

bit [7:0] adr;

Comment for the covergroup cg1 as a whole.
bit [1:0] offset;

~a

All samples in this covergroup happen at the
END of the time slot (same as with SV Sstrobe

covergroup cgl1 (int iW, string iComment) system task)

@(posedge clk);

Specifies the weight of this covergroup for
computing the overall cumulative coverage of
the saved database. (must be a constant;
can't do type_option.weight=iW)

type_option.comment =
"Coverage model for CG1 Bus";
type_option.strobe = 1;

type_option.weight = 3; Track coverage information for each instance

i i i // of ‘cg1’ in addition to the cumulative
option.per_instance = 1; coverage information for covergroup ‘cg1’
option.comment = iComment; 3 s

\ Comment for each instance of this covergroup
ar: coverpoint adr (See the fﬂrm?flargumeﬂt ‘iW’ where you send
instance specific comment)

{ option.auto_bin_max = 4;
1 \ Create maximum 4 automatic bins for

ofst: coverpoint offset ™ coverpofnt labeled ‘ar’
{ option.weight = iW; -_________\‘_-
3 — This coverpoint (labeled ‘ofst’) contributes
endgroup ‘iW’ times as much to the coverage of an

instance of ‘cg1’ than coverpoint ‘ar’.

cg1 cglinst = new(2,"Coverage for cg1lnst”);
cg1 cg2inst = new(3,"Coverage for cg2lnst”); T~ Two instances of ‘cg1’ each providing
instance specific comment and weight

Fig. 22.5 Coverage options for ‘covergroup’ type specific—comprehensive example

22.3 Coverage Options for ‘Covergroup’ Type—Example

See Figs. 22.5 and 22.6.

22.3 Coverage Options for ‘Covergroup’ Type—Example

401

Predefined coverage system tasks and functions

$set_coverage_db_name (<name>);

Sets the filename of the coverage database into which
coverage info. is saved at the end of a simulation run

Sload_coverage_db (<name>);

Load from a given filename the cumulative coverage

information for all the coverage group types.

Sget_coverage ();

Returns a real number in the range of 0 to 100 the overall
coverage of all covergroups.

Pre-defined coverage methods used in LRM: SystemVerilog 3.1a,
procedural code Table 20-5
Method Can be called on Description
covergroup | coverpoint | cross

void sample() Yes No No | Triggers sampling of the covergroup

real get_coverage() Yes Yes Yes | Calculates type coverage number (0...100)

real get_inst_coverage() Yes Yes Yes | Calculates coverage number (0...100)

void set_inst_name Yes No No | Sets the instance name to the given string

(string)

void start() Yes Yes Yes | Starts collecting coverage information

void stop() Yes Yes Yes | Stops collecting coverage information

real query() Yes Yes Yes | Returnsthe cumulative coverage information (for the
coverage group type as a whole)

real inst_query() Yes Yes Yes | Returnsthe per-instance coverage information for
this instance.

Fig. 22.6 Predefined coverage system tasks and functions

Index

#

##0, 82

#=#, 261

#-#, 2601

##[*], 94, 101
##[+], 94, 101
##[0:$], 94
##[1:3], 94

##m, 81, 82, 84
##[m:n], 82, 84, 94

$

$assertcontrol, 242
$assertfailoff, 251, 284
$assertfailon, 251, 284
$assertkill, 151
$assertnonvacuouson, 251, 284
$assertoff, 151

$asserton, 151
$assertpassoff, 251, 284
$assertpasson, 251, 284
$assertvacousoff, 284
$assertvacuousoff, 243
$changed_gclk, 258, 260
$changing_gclk, 258, 260
$countones, 150
$countones (as Boolean), 151
$error, 60

$falling_gclk, 258, 260
$fatal, 60

$fell, 67, 71

$fell—in Procedural, 71
$future_gclk, 258, 260
$inferred_clock, 271
$inferred_disable, 271
$info, 60

$isunknown, 149
$onehot, 147

$onehot0, 147

© Springer International Publishing Switzerland 2016

$past, 73

$past_gclk, 258, 260
$rising_gclk, 258, 260
$rose, 67, 71

$rose — edge detection, 68
$rose_gclk, 258, 260
$sampled, 257

$stable, 72

$stable_gclk, 258, 260
$stable in procedural block, 73
$steady_gclk, 258, 260
$warning, 60

.matched, 195

.matched — overlapped operator, 197
.matched with non-overlapping operator, 197
.triggered — end point of a sequence, 188
.triggered (replaced for .ended), 187
.triggered with non-overlapping operator, 190
.triggered with overlapping operator, 189

[

[*], 101

[*m:n], 82, 98
[*m], 82, 94, 98
[+], 101

[->m], 82, 114
[-> m:n], 82, 111
[=m], 82, 107

I

|->, 11, 74, 82
|=>, 82

A

Abort properties, 280
ABYV adoption in existing design, 64
Accept_on, 280

403

A.B. Mehta, SystemVerilog Assertions and Functional Coverage,

DOI 10.1007/978-3-319-30539-4

404

Always, 262
And, 124
Antecedent, 37, 39, 40
Application
‘and’ operator, 127
asynchronous FIFO assertions, 207
building a counter using local variables,
229
calling subroutines and local variables, 224
clock delay operator, 84
consecutive repetition range operator, 101
first_match, 138
GoTo repetition—non-consecutive
operator, 116
have you transmitted all different lengths of
a frame?, 393
if then else, 145
'intersect' operator, 132
intersect operator (interesting application),
133
local variables, 179
.matched, 198
'not' operator, 141
'or' operator, 128
recursive property, 182, 183
repetition non-consecutive operator, 112
seql within seq2, 122
sigl throughout seql, 118
Applications and important topics, 207
Application assertion control, 152
Application $countones, 150
Application $isunknown, 149
Assert #0, 252
Assert, 35
$Assertcontrol, 285, 288, 289
Assert final, 252
Assertion, 9
advantages, 9
evolution, 7
for specification and review, 26
improve observability, 12
in an emulator, 16
in static formal, 17
major benefits, 15
shorten time to develop, 10
types, 24
Assertion and coverage driven methodology,
364
Assertion based verification (ABV) and
functional coverage (FC) based
methodology, 362
Assume #0, 254
Assume, 119, 201, 205
Assume final, 254

Index

Asynchronous abort, 280

Asynchronous assertions, 247

Asynchronous FIFO assertions, 207

Asynchronous FIFO testbench and assertions,
210

B

Bind, 61

Binding, 62

Binding properties, 61

Binding properties to design module internal
signals, 63

Bins, 372, 382

Blocking action block, 232

Blocking statement, 201

Blocking vs. non-blocking action block, 233

Building a counter, 228

C
Calling subroutines, 222
Case statement, 270
Checkers, 290
nested, 295
illegal conditions, 296
important points, 298
instantiation rules, 301
Chip functionality assertions, 24
Chip interface assertions, 25
Clock delay, 81, 180, 229
Clock delay range, 84
Clock delay range operator, 94
Clock domain crossing (CDC), 155
Clock edge, 44
Clocking basics, 42
Clocking block, 48
Code coverage, 361
Concurrent assertion, 35
Concurrent assertion —with- an implication,
240
Concurrent assertion — with ‘cover’, 241
Consecutive repetition operator, 94, 228
Consecutive repetition range, 98
Consecutive repetition range operator, 101
Consequent, 37, 39, 40
Conventions, 28
Cover #0, 254
Cover final, 254
Coverage
follow the bugs, 366
Covergroup, 367
Covergroup/coverpoint example, 371
Covergroup/coverpoint with bins, 374
Covergroup — formal and actual arguments,
375

Index

Covergroup in a 'class', 376
Coverpoint, 367
Cyclic dependency, 236

D

Default clocking block, 48

Deferred ‘assume’, 254

Deferred ‘cover’, 254

Deferred immediate assertions, 252

Detect bugs, 15

Detecting and using endpoint of a sequence,
187

Difference between [=m:n] and [->m:n], 115

Disable iff, 58

Disable (property) operator, 58

E

Edge detection, 68, 71

Embedding concurrent assertions in procedural
code, 217

Empty sequence, 243

End event, 114

Enough assertions?, 26

Eventually, 264

Expect, 201

F
FIFO assertions, 207
First_match, 137
First_match complex_seql, 82
Followed by, 261
Formal, 205
Formal arguments, 55
Functional coverage, 5, 11, 16, 366, 385, 401
bins for transition coverage, 382
binsof and intersect, 388
control-oriented, 361
cross coverage, 378
data-oriented, 362
ignore_bins, 386
illegal_bins, 387
performance, 1, 53, 69, 70, 86, 371, 391
performance implication, 392
PCI cycles transition coverage, 385
predefined coverage system tasks and
functions, 401
wildcard bins, 386
Functional coverage — language features, 367
Functional coverage options, 395, 397
Functional coverage options for ‘covergroup’
type - example, 400
Functional coverage options—instance specific
—example, 397
Future sampled value functions, 260

405

G

Gated CIk, 52

Gating expression, 74
Glitch, 33, 54, 253, 260
Global clocking, 260, 287
GoTo repetition, 114

I

IEEE 1800 SystemVerilog, 5

IEEE-1800-2009/2012 features, 251

if (expression) property_exprl else
property_expr2, 82, 143

if then else, 145

Immediate assertions, 31

Implication operator, 37, 40

Intersect, 131

Intersect and and :: What’s the difference?, 137

L
LAB Answers, 343
LABI1
assertions with/without implication and
‘bind’, 305
LAB2
overlap and non-overlap operators, 310
LAB3
synchronous FIFO assertions, 313
LAB4
counter, 321
LABS
data transfer protocol, 327
LAB6
PCI read protocol, 336
Let declarations, 273
Let
in immediate and concurrent assertions, 277
local scope, 274
with parameters, 275
Local variable composite sequence with an
‘OR’, 171
Local variables, 167
Local variables — ‘and’ of composite
sequences, 173

M

Module interface assertions, 24

Multiple clocks, 155

Multiple implications, 234

Multiple threads, 85

Multiply clocked properties
‘and’ operator, 158
‘and’ operator between same clocks, 160
‘and’ operator between two different clocks,

159

406

clock resolution, 161
legal and Illegal conditions, 164
legal and illegal sequences, 157
‘not’- operator, 161
‘or’ operator, 159
Multiply-clocked sequences and properties,
155
Multi-threaded, 53

N

Nested implications, 234

Nexttime, 267

Non-blocking statement, 201
Non-consecutive, 107, 111
Non-consecutive GoTo repetition, 114
Not operator, 141

Not <property expr>, 141

Not <property_expr>, 82

(0}
Observability, 12
Operators, 81
Or, 127
OVL

Library, 19

P
Past sampled value functions, 260
PCI read

assertions test plan, 22
Performance, 237
Performance Implication assertions, 25
Preponed region, 44, 45
Property, 65
Protocol for adding assertions, 25

Q
Qualifying event, 102, 109, 111, 114, 115

R

Random verification, 14

Recursive property, 181

Recursive Property — mutually recursive, 186
Refinement on a theme, 237
Reject_on, 280

Repetition non-consecutive, 107
Repetition non-consecutive range, 111
Restrict, 280

Reusability, 16

RTL assertions, 24

S
S_always, 262

Index

Sampled value, 45

Sampled value functions, 67
Sampled variable, 45

Sampling edge, 42, 44

Scope visibility, 62

Seql and seq2, 82, 124

Seql intersect seq2, 82

Seql or seq2, 82, 127
Sequence, 65

Sequence as a formal argument, 225
Sequence as an antecedent, 226
Sequence in sensitivity list, 227
Seql within seq2, 82
S_eventually, 264

Severity levels, 60

Sigl throughout seql, 82
Simulation glitches, 252
Simulation performance efficiency, 237
Simulation time tick, 44
S_nexttime, 267

Static functional, 205

Strong and weak sequences, 251
Subsequence in a sequence, 235
S_until, 265, 266

S_until_with, 265
Sync_accept_on, 280
Synchronous FIFO, 313
Sync_reject_on, 280

System functions and tasks, 147
SystemVerilog assertions, 5
System Verilog ‘bins’ — basics, 372

T

Test the testbench, 214
Throughout, 117

Time to cover, 4

Time to debug, 3
Time to develop, 2
Time to simulate, 3

U
Until, 265
Until_with, 265-267

\'%

Vacuous pass, 241
Vacuous world, 239
Variable delay?, 229

W

Weak sequences, 251
What is an assertion, 9
Within, 121

	Foreword
	Preface to the Second Edition
	Preface to the First Edition
	Acknowledgements
	Contents
	About the Author
	List of Figures
	List of Tables
	1 Introduction
	1.1 How Will This Book Help You?
	1.2 SystemVerilog Assertions and Functional Coverage Under IEEE 1800 SystemVerilog Umbrella
	1.3 SystemVerilog Assertions Evolution

	2 SystemVerilog Assertions
	2.1 What Is an Assertion?
	2.2 Why Assertions? What Are the Advantages?
	2.2.1 Assertions Shorten Time to Develop
	2.2.2 Assertions Improve Observability
	2.2.3 Assertions Provide Temporal Domain Functional Coverage
	2.2.4 Assertion Based Methodology Allows for Full Random Verification
	2.2.5 Assertions Help Detect Bugs not Easily Observed at Primary Outputs
	2.2.6 Other Major Benefits

	2.3 How Do Assertions Work with an Emulator?
	2.4 Assertions in Static Formal
	2.5 One-Time Effort, Many Benefits
	2.6 Assertions Whining
	2.6.1 Who Will Add Assertions? War Within!

	2.7 A Simple PCI Read Example—Creating an Assertions Test Plan
	2.8 What Type of Assertions Should I Add?
	2.9 Protocol for Adding Assertions
	2.10 How Do I Know I Have Enough Assertions?
	2.11 Use Assertions for Specification and Review
	2.12 Assertion Types
	2.13 Conventions Used in the Book

	3 Immediate Assertions
	4 Concurrent Assertions—Basics (Sequence, Property, Assert)
	4.1 Implication Operator, Antecedent and Consequent
	4.2 Clocking Basics
	4.3 Sampling Edge (Clock Edge) Value: How Are Assertions Evaluated in a Simulation Time Tick?
	4.3.1 Default Clocking Block
	4.3.2 Gated Clk

	4.4 Concurrent Assertions Are Multi-threaded
	4.5 Formal Arguments
	4.6 Disable (Property) Operator—‘Disable Iff’
	4.7 Severity Levels (for Both Concurrent and Immediate Assertions)
	4.8 Binding Properties
	4.8.1 Binding Properties (Scope Visibility)
	4.8.2 Assertion Adoption in Existing Design

	4.9 Difference Between ‘Sequence’ and ‘Property’

	5 Sampled Value Functions $rose, $fell, $stable, $past
	5.1 $rose—Edge Detection in Property/Sequence
	5.1.1 Edge Detection Is Useful Because …
	5.1.2 $fell—Edge Detection in Property/Sequence
	5.1.3 $rose, $fell—in Procedural

	5.2 $stable
	5.2.1 $stable in Procedural Block

	5.3 $past
	5.3.1 Application: $past ()
	5.3.2 $past Rescues $fell!

	6 Operators
	6.1 ##m—Clock Delay
	6.1.1 Clock Delay Operator: ##m Where m=0
	6.1.1.1 Application: Clock Delay Operator :: ##m (m=0)

	6.2 ##[m:n]—Clock Delay Range
	6.2.1 Clock Delay Range Operator: ##[m:n]: Multiple Threads
	6.2.2 Clock Delay Range Operator :: ##[m:n] (m=0; n=$)

	6.3 [*m]—Consecutive Repetition Operator
	6.4 [*m:n]—Consecutive Repetition Range
	6.4.1 Application: Consecutive Repetition Range Operator

	6.5 [=m]—Repetition Non-consecutive
	6.6 [=m:n]—Repetition Non-consecutive Range
	6.6.1 Application: Repetition Non-consecutive Operator

	6.7 [- greaterthan m] Non-consecutive GoTo Repetition Operator
	6.8 Difference Between [=m:n] and [- greaterthan m:n]
	6.8.1 Application: GoTo Repetition—Non-consecutive Operator

	6.9 Sig1 throughout Seq1
	6.9.1 Application: Sig1 throughout Seq1

	6.10 Seq1 within Seq2
	6.10.1 Application: Seq1 within Seq2
	6.10.2 ‘within’ Operator PASS CASES
	6.10.3 ‘within’ Operator: FAIL CASES

	6.11 Seq1 and Seq2
	6.11.1 Application: ‘and’ Operator

	6.12 Seq1 ‘or’ Seq2
	6.12.1 Application: or Operator

	6.13 Seq1 ‘intersect’ Seq2
	6.14 Application: ‘intersect’ Operator
	6.14.1 Application: intersect Operator (Interesting Application)
	6.14.2 ‘intersect’ and ‘and’ :: What’s the Difference?

	6.15 first_match
	6.15.1 Application: first_match

	6.16 not lessthan property expr greaterthan
	6.16.1 Application: not Operator

	6.17 if (expression) property_expr1 else property_expr2
	6.17.1 Application: if then else

	6.18 ‘iff’ and ‘implies’

	7 System Functions and Tasks
	7.1 $onehot, $onehot0
	7.2 $isunknown
	7.3 $countones
	7.3.1 $countones (as Boolean)

	7.4 $assertoff, $asserton, $assertkill

	8 Multiple Clocks
	8.1 Multiply-Clocked Sequences and Properties
	8.1.1 Multiply Clocked Sequences
	8.1.2 Multiply Clocked Sequences—Legal and Illegal Sequences
	8.1.3 Multiply Clocked Properties—‘and’ Operator
	8.1.4 Multiply Clocked Properties—‘or’ Operator
	8.1.5 Multiply Clocked Properties—‘not’—Operator
	8.1.6 Multiply Clocked Properties—Clock Resolution
	8.1.7 Multiply Clocked Properties—Legal and Illegal Conditions

	9 Local Variables
	9.1 Application: Local Variables

	10 Recursive Property
	10.1 Application: Recursive Property
	10.2 Application: Recursive Property

	11 Detecting and Using Endpoint of a Sequence
	11.1 .triggered (Replaced for .ended)
	11.2 .matched
	11.2.1 Application: .matched

	12 ‘expect’
	13 ‘assume’ and Formal (Static Functional) Verification
	14 Very Important Topics and Applications
	14.1 Asynchronous FIFO Assertions
	14.1.1 Asynchronous FIFO Design
	14.1.2 Asynchronous FIFO Testbench and Assertions
	14.1.3 Test the Testbench

	14.2 Embedding Concurrent Assertions in Procedural Code
	14.3 Calling Subroutines
	14.4 Sequence as a Formal Argument
	14.5 Sequence as an Antecedent
	14.6 Sequence in Sensitivity List
	14.7 Building a Counter
	14.8 Clock Delay: What if You Want Variable Clock Delay?
	14.9 What if the ‘Action Block’ Is Blocking?
	14.10 Interesting Observation with Multiple (Nested) Implications in a Property. Be Careful
	14.11 Subsequence in a Sequence
	14.12 Cyclic Dependency
	14.13 Refinement on a Theme
	14.14 Simulation Performance Efficiency
	14.15 It’s a Vacuous World! Huh?
	14.15.1 Concurrent Assertion—Without—An Implication
	14.15.2 Concurrent Assertion—With—An Implication
	14.15.3 Vacuous Pass. What?
	14.15.4 Concurrent Assertion–with ‘Cover’

	14.16 Empty Sequence

	15 Asynchronous Assertions!!!
	16 IEEE-1800-2009/2012 Features
	16.1 Strong and Weak Sequences
	16.2 Deferred Immediate Assertions
	16.3 $changed
	16.4 $sampled
	16.5 $past_gclk, $rose_gclk, $fell_gclk, $stable_gclk, $changed_gclk, $future_gclk, $rising_gclk, $falling_gclk, $steady_gclk, $changing_gclk
	16.6 ‘followed by’ Properties #-# and #=#
	16.7 ‘always’ and ‘s_always’ Property
	16.8 ‘eventually’, ‘s_eventually’
	16.9 ‘until’, ‘s_until’, ‘until_with’ and ‘s_until_with’
	16.10 ‘nexttime’ and ‘s_nexttime’
	16.11 ‘case’ Statement
	16.12 $inferred_clock and $inferred_disable
	16.13 ‘let’ Declarations
	16.13.1 let: Local Scope
	16.13.2 let: With Parameters
	16.13.3 let: In Immediate and Concurrent Assertions

	16.14 ‘restrict’ for Formal Verification
	16.15 Abort Properties: reject_on, accept_on, sync_reject_on, sync_accept_on
	16.16 $assertpassoff, $assertpasson, $assertfailoff, $assertfailon, $assertnonvacuouson, $assertvacuousoff
	16.17 $assertcontrol
	16.18 Checkers
	16.18.1 Nested Checkers
	16.18.2 Checkers: Illegal Conditions
	16.18.3 Checkers: Important Points
	16.18.4 Checker: Instantiation Rules16.18.4 Checker: Instantiation Rules16.18.4 Checker: Instantiation Rules16.18.4 Checker: Instantiation Rules16.18.4 Checker: Instantiation Rules16.18.4 Checker: Instantiation Rules16.18.4 Checker: Instantiation Rules16.18.4 Checker: Instantiation Rules16.18.4 Checker: Instantiation Rules

	17 SystemVerilog Assertions LABs
	17.1 LAB1: Assertions with/Without Implication and ‘bind’
	17.1.1 LAB1: ‘bind’ DUT Model and Testbench (Fig. 17.1)
	17.1.2 LAB1: Questions

	17.2 LAB2: Overlap and Non-overlap Operators
	17.2.1 LAB2 DUT Model and Testbench
	17.2.2 LAB2: Questions

	17.3 LAB3: Synchronous FIFO Assertions
	17.3.1 LAB3: DUT Model and Testbench
	17.3.2 LAB3: Questions

	17.4 LAB4: Counter
	17.4.1 LAB4: Questions

	17.5 LAB5: Data Transfer Protocol
	17.5.1 LAB5: Questions

	17.6 LAB6: PCI Read Protocol
	17.6.1 LAB6: Questions

	18 SystemVerilog Assertions—LAB Answers
	18.1 LAB1: Answers: ‘bind’ and Implication Operators
	18.2 LAB2: Answers: Overlap and Non-overlap Operators
	18.3 LAB3: Answers: Synchronous FIFO
	18.4 LAB4: Answers: Counter
	18.5 LAB5: Answers: Data Transfer Protocol
	18.6 LAB6: Answers: PCI Read Protocol

	19 Functional Coverage
	19.1 Difference Between Code Coverage and Functional Coverage
	19.2 Assertion Based Verification (ABV) and Functional Coverage (FC) Based Methodology
	19.2.1 Follow the Bugs!!

	20 Functional Coverage—Language Features
	20.1 Covergroup/Coverpoint
	20.2 System Verilog ‘Covergroup’—Basics …
	20.3 SystemVerilog Coverpoint Basics
	20.3.1 Covergroup/Coverpoint Example …

	20.4 System Verilog ‘Bins’—Basics …
	20.4.1 Covergroup/Coverpoint with Bins—Example …
	20.4.2 System Verilog ‘covergroup’—Formal and Actual Arguments
	20.4.3 ‘covergroup’ in a ‘class’

	20.5 ‘cross’ Coverage
	20.6 More ‘Bins’
	20.6.1 ‘Bins’ for Transition Coverage
	20.6.2 ‘wildcard bins’
	20.6.3 ‘ignore_bins’
	20.6.4 ‘illegal_bins’
	20.6.5 ‘binsof’ and ‘intersect’

	21 Performance Implications of Coverage Methodology
	21.1 Know What You Should Cover
	21.2 Know When You Should Cover
	21.3 When to ‘Cover’ (Performance Implication)
	21.4 Application: Have You Transmitted All Different Lengths of a Frame?

	22 Coverage Options
	22.1 Coverage Options—Instance Specific—Example
	22.2 Coverage Options—Instance Specific Per-Syntactic Level
	22.3 Coverage Options for ‘Covergroup’ Type—Example

	Index

