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Preface

This book is about compiling the Esterel language. One of us (Berry) created
Esterel in the early 1980s for programming embedded reactive systems. Over
time, we and others have developed both academic and commercial compilers
for it that generate software and hardware. The newest version of Esterel,
called Esterel V7, is being standardized by the IEEE as of 2006.

This book had its genesis in 2002 as Potop-Butucaru’s thesis. Written
under Berry and Robert de Simone, it made two main contributions: the
first semantics for Esterel that included data manipulation (long a part of
the language, this was its first formalization), and a very sophisticated code
generation technique that remains one of the best developed so far.

At Potop-Butucaru’s thesis defense, held during the SYNCHRON work-
shop in La Londes les Maures, France in November 2002∗, Edwards, a jury
member, remarked that the thesis would make a good book. Potop-Butucaru
interpreted this as meaning only that the thesis would make a good start-
ing point for the book. Thus, one of us (Edwards) expected to have a book
within a few months, but instead it took years.

Little more than the general outline of the original thesis remains at this
point; much has been added and clarified. We added chapters on the behav-
ioral semantics of Esterel (Chapter 4), recently-developed compilation tech-
niques used in the Columbia Esterel compiler (Chapter 10), and appendices
on the extra constructs in the language that are not covered formally but must
be handled by all compilers (Appendix A), the first formal language reference
manual for the dialect of Esterel described in this book (Appendix B), the
C language interface (Appendix C), and a description of the new Esterel V7
dialect of Esterel (Appendix D).

How to read this book

We divided this book into three parts. In the first part (Chapters 1–2), we
provide an intuitive description of the Esterel language—enough to familiarize
the reader with Esterel’s synchronous model of time and the implications it

∗A major side benefit of working on Esterel is that most of the meetings take place
along the Côte d’Azur, which, not coincidentally, includes the Esterel region after which
the language was named.
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viii Preface

has for compilation. This should also be enough to get one started writing
Esterel programs, but it does not presume to be a comprehensive tutorial on
coding in Esterel.

The second part (Chapters 3–6) describes the formal semantics of Esterel,
extending the work of Berry [7]. Why do we need three very different presen-
tations of Esterel semantics? Each takes a different approach to describing
how an Esterel program is to be executed and is appropriate for addressing
different issues in code generation. The behavioral semantics (Chapter 4)
is the simplest we present and most clearly addresses some of the thornier
aspects of Esterel’s rich control constructs and intra-cycle data dependencies.
Unfortunately, it is a poor starting point for implementing the language as
it represents control by rewriting the program. This makes for a convenient
formalism but would make for an extremely inefficient implementation.

The practical shortcomings of the behavioral semantics lead us to the
operational semantics (Chapter 5), which uses a more complicated formalism
that represents program state by decorating the program text with all manner
of diacritical marks. It is a much more complicated formalism as a result,
but much closer to a practical implementation that represents program state
as some sort of persistent marking of a program.

Unlike the behavioral and operational semantics, which use Plotkin’s
structural operational style, the third style presented in the second part—the
circuit translation—shows how to translate an Esterel program into a circuit
netlist. While this may appear surprising for a compiler that produces soft-
ware, it turns out to be quite effective as the semantics of the circuit model
very closely match those of Esterel and are much simpler. In fact, all the
efficient compilation techniques that we present in the third part of the book
start from GRC—a circuit-netlist-like intermediate representation.

Finally, the third part of the book (Chapters 7–10) gets at our main point:
how to translate Esterel programs into efficient software implementations.
After an overview, we present the GRC intermediate format (Chapter 8)—a
representation developed by Potop-Butucaru as part of his thesis work that
has become the foundation for a number of compilers. GRC is a hybrid rep-
resentation that resembles both a traditional control-flow graph and a circuit
netlist; it embodies all that we have learned about the structure of Esterel
semantics in the past twenty years. Generating efficient code from it is nat-
ural; we describe the basic translation in Chapter 9. Finally, in Chapter 10,
we describe how a slight variant of the representation has been used as the
basis of two back ends in the open-source Columbia Esterel compiler.

The four appendices contain information that had previously been scat-
tered in various technical reports and tutorials. Appendix A discusses parts of
the language that are not usually included in the formal presentation of the
language semantics, including valued signals, the pre operator, concurrent
trap-exit abortion handling, and task control. Most amount to syntactic
sugar, but deserve the more formal treatment we give them here.
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Appendix B is the first semi-formal language reference manual for the V5
dialect of Esterel we use in this book. Previously, this information has been
presented in a less formal tutorial style that was not as suitable for writing
a compiler. See the Esterel V5 primer [8].

Appendix C presents the C language interface used by all the compilers
described in this book. This interface was first used in the INRIA compiler
and has since become the de facto standard for code generated from Esterel.
The appendix explains, among other things, how to interface with the C code
generated by any Esterel compiler and actually make use of it, which in some
sense is the whole point of this book.

Finally, Appendix D presents the new Esterel V7 dialect, which has been
under development at Esterel Technologies since 2001 as a broad extension
of Esterel V5. The compilation techniques presented in this book are being
applied to this dialect, as its core semantics remain the same. The Esterel
V7 language is open (not proprietary) and its language reference manual [29]
has been submitted for IEEE standardization.
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1

Introduction to Esterel

Esterel is a synchronous programming language tailored for the development
of control-dominated embedded reactive applications in both hardware and
software. In this chapter, we explain what this means. We explain what a
reactive system is, introduce the key concepts of synchronous reactive sys-
tem programming, and give a short overview of the Esterel language and
framework.

1.1 Reactive Systems

Reactive systems, defined in the 1980s [41, 40, 39], are computer systems
that continuously react to input events from their environment by produc-
ing appropriate output events in a timely manner. They differ from trans-
formational systems, which emphasize data computation instead of system-
environment interaction; and from interactive systems, which react to envi-
ronment requests at their own rate instead of at the rate required by the
environment. For instance, an airplane autopilot is reactive while a web
browser is interactive. Classical programming and verification techniques
were originally geared to transformational systems and later extended to in-
teractive systems. Unfortunately, they turn out to be inadequate for reactive
systems. It is just too much of a stretch.

To address this problem, several groups in the 1980s developed specific
techniques geared to the design and verification of reactive systems. One
technique, the synchronous approach, is based on mathematical semantics
and has generated a variety of languages and compilers that are now widely
used in applications ranging from safety-critical embedded systems in avion-
ics, automotive, and railways to electronic circuit design.

Reactive systems have two essential traits: concurrency and determinism.
They are invariably composed of concurrent components that react concur-
rently to their environment. While interactive systems may also have this
structure, there is a fundamental philosophical difference between the two:

3
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The concurrent pieces in a reactive system are mostly concerned with co-
operating and communicating in a deterministic way. The concurrency in
an interactive system usually involves much more competition over shared
resources, which is resolved in a nondeterministic way. Such nondetermin-
ism renders classical concurrent programming techniques such as the shared
memory and locks model inadequate for reactive systems.

The synchronous approach to reactive systems, embodied in the Esterel,
Lustre, and Signal languages [39, 3, 4, 58] is among the solutions that have
been proposed for the development of reactive systems. This concurrent
model provides determinism and convenient mechanisms for cooperation.
Furthermore, its crisp formal semantics simplifies verification. The Esterel
synchronous language is the focus of this book.

Reactive systems are often embedded in objects that interact with the
physical world, e.g., airplanes or automotive controllers, and their correct
function is very often safety-critical. A system crash in an airplane is a much
more literal problem than one on a desktop computer. Thus, validation and
certification of reactive systems is an absolute must. Experience has shown
that the synchronous approach can greatly improve the verification process,
in particular by being well-suited to formal verification.

Reactive systems are also made of heterogeneous hardware and software
components. A further advantage of the the synchronous approach, and of
Esterel in particular, is that it applies equally to hardware and software. The
Esterel V7 production compiler generates C/C++/SystemC code as well as
VHDL/Verilog code with exactly the same behavior. The same verification
algorithms apply to both. This does not solve the issue of hardware/software
partitioning, but is an enabler for it: when writing a module, one does not
need to decide upfront whether it will be implemented in hardware or soft-
ware. One can use a unique programming style instead of two widely different
ones (e.g., C and register-transfer-level Verilog).

1.2 The Synchronous Hypothesis

The synchronous hypothesis, the fundamental principle on which Esterel is
based, states that a system reacts to environmental events in no time. Fur-
thermore, communication among system components is also done instanta-
neously. The synchronous hypothesis thus separates the notion of physical
time, which arises from the physics of the environment, from the execution
time of the system, which is largely a side-effect of how it is implemented. An
Esterel specification only refers to physical time, and assumes implementation
time is exactly zero. This is a brutal but effective way to separate concerns,
simplify the semantics, and to reconcile concurrency and determinism. It is
the interference between physical and implementation time that makes clas-
sical asynchronous concurrent programs nondeterministic, hard to analyze,
and difficult to write. For more on this philosophy, see Berry [9]. When
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Compute

Read Inputs

Write Outputs

Wait

Figure 1.1: The execution cycle of the synchronous model

programming in a synchronous way, one concentrates on the functionality,
postponing implementation details. Of course, one must check that the syn-
chronous hypothesis is “correctly approximated” by the final implementation.
We later show how this can be done.

Esterel relies on another fundamental principle: the discretization of
time. The synchronous hypothesis as stated above applies equally well to
continuous- and discrete-time systems. However, computer applications are
most ofen based on discrete time. The discretization of time is ubiquitous in
control and signal theory. It also applies to newer systems such as man-
machine interfaces (e.g., cockpit displays), where the environment sends
discrete events. Therefore, Esterel adopts a discrete model of time, where
programs only react at discrete instants. At each reaction instant, a program
reads its inputs, computes the outputs, and sends them to the environment,
conceptually in no time.

1.3 Implementation Issues

Esterel is not just a specification language; it is meant to be implemented and
used in actual systems. The object of this book is to present practical tech-
niques for implementing theoretical zero-delay behavior, which is not obvious
since any real computation takes time. The central idea is to approximate
zero-delay reactions using the cycle-based model of computation pictured in
Figure 1.1.

At any instant where the program should react, we perform a compu-
tation cycle: we sample the input, compute the output, and deliver it to
the environment. Each of these operations takes some time. If the cycle
computation is over before the next cycle should start, we have avoided
input/computation interference exactly as required by the zero-delay model,
and we can consider the computation as correct in practice.

Think of people talking to each other in a room. They can (and do) neglect
the speed of sound, because the room is small enough to make communication
practically instantaneous. By analogy, an Esterel implementation has two
goals.

Speed. Efficiently fit the “people” inside the “room.” That is, schedule the
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various computing elements of the system so that they perform their
computations and communications fast.

Timing predictability. Make sure that the resulting system behaves like
a “small room” where the communication speed can be neglected, so
that reactions are predictable, and meet their timing constraints.

This book concentrates on speed issues; we do not address the important
issue of predictability, which involves many non-trivial techniques such as
worst-case execution time analysis (WCET), which can be performed using
abstract interpretation and precise processor models. See for instance [42]
for WCET analysis applicable to synchronous programs.

To respect the semantics, the execution of a cycle should be atomic. In an
implementation, the environment should not be allowed to change during the
cycle, and cycles should not overlap. Therefore, computations are performed
on a frozen input snapshot taken during the input phase.

1.4 Causality

Causality among events is the key link between the zero delay model and a
practical implementation. Roughly, an abstract event A causes an event B
if the occurrence or non-occurrence of A determines the occurrence or non-
occurrence of B. In the zero-delay model, events are determined by causal
chain reactions among concurrent system components. In implementations,
events are determined by sequences of computations that implement such
causal reaction chains. Thus, compiling Esterel amounts to finding a way to
implement causality chains with instruction sequences. This can be done in
many ways, leading to the variety of implementation techniques studied here.

Unfortunately, not all synchronous programs are automatically causal.
For instance, the logical contradiction “emit A if and only if A is not emit-
ted” can be expressed as a synchronous program that is syntactically correct
but has no synchronous semantics (note the similarity with the classical liar
paradox). The theory of causal and non-causal programs is not a simple one;
it is the subject of a separate book [7]. In practice, non-causal programs
should be rejected by compilers with appropriate error messages. Most com-
pilers take a conservative approach, sometimes rejecting projects that could
be viewed as causal, but the conservative approach appears adequate in prac-
tice. In this book, we formally describe causality requirements and discuss
which rejection algorithms are suitable for practical applications.

1.5 Related work

Esterel is only one of the synchronous languages; Argos [49], Lustre/Scade [38,
22], Signal [46], SyncCharts [1], and Quartz [62] also take the synchronous
approach and benefit from the simplicity of the synchronous hypothesis. A



a first esterel example 7

key difference among these languages is the class of applications they tar-
get. Among these others, SCADE (“Safety-Critical Application Development
Environment”), is perhaps the most successful. It is a graphical version of
Lustre dedicated to safety-critical embedded software systems, and especially
to certified avionics systems: flight control, cockpit display, engine control,
brake control, etc. The SCADE compiler itself has been certified by avionics
authorities, which greatly simplifies the laborious process of certifying the
avionics software [24]. The simplicity and rigor of synchronous semantics
and compiling techniques is the key to such a compiler certification.

Similar abstractions have lead to the development of quasi-synchronous
formalisms such as Statecharts [40] or the synthesizable subset of the hard-
ware description languages Verilog [44] and VHDL [51].

In compiler technology, the static single-assignment (SSA) intermediate
representation [23, 45] requires that each variable has a single, non-recursive
definition, so that it has a unique value throughout the execution. This is
similar to synchronous causality, and facilitates various analysis and code
generation techniques.

Synchrony is also commonly used for hardware design. In the Register
Transfer Level (RTL) model, one describes circuits using gates that conceptu-
ally compute in zero time. After mapping the gates to hardware components,
placing these components in space and routing the interconnect wires, one
can statically analyze the timing of the circuit, i.e., compute the maximal
time it takes for signals to stabilize. Then, the circuit behaves as in the
zero-delay model if the period of the circuit clock is larger than the maximal
stabilization time.∗ Unfortunately, although it is implicit in the definition of
the synthesizable subset of VHDL [51], the zero-delay hardware model and
its precise relation with timed models have not yet been formalized; the se-
mantics of hardware description languages such as Verilog or VHDL remain
informal.

1.6 A First Esterel Example

ABRO is perhaps the simplest interesting Esterel program. This program has
three inputs, A, B, and R, and one output, O. It waits for the last of A and B
to occur and then immediately emits O. The entire process restarts when R
occurs. If R occurs at the same time as A or B, the reset takes priority. The
Esterel code is as follows.

module ABRO:
input A, B, R ;
output O ;
loop

∗If we refer to our “small room” analogy, such static timing analysis determines the
room size that allows us to neglect communication time.



8 introduction to esterel

Instant Inputs Outputs Comment

0
1 A,B O
2 A Signal A ignored
3 R Reset
4 A Still waiting for B
5 B O
6 A,B,R Reset, A and B ignored

Figure 1.2: A possible execution trace for ABRO

[ await A || await B ];
emit O

each R
end module

This simple example features the four main ingredients of Esterel: sig-
nalling, concurrency, and preemption. It is actually a pattern commonly
found in reactive designs: think of ABRO as a memory write controller, with
A the address, B the value, O the write command, an R a synchronous reset.

Figure 1.2 presents a possible execution of ABRO. This trace is an indexed
sequence of execution instants. At each instant, the input event tells which
input signals have arrived, and the reaction determines whether to emit the
output signal O. Note that input signals can arrive simultaneously.

At instant 0, no input arrives and no output is produced. The control
enters the program, forks at the parallel statement, and is blocked at the con-
current await statements. At instant 1, the arrival of A and B makes both
await statements terminate. Then, their parallel composition immediately
terminates and passes control to the next statement in sequence: the state-
ment emit O. This is immediately executed and outputs O. Then, control
blocks, awaiting R. At instant 2, the input A is simply ignored because noth-
ing is observing it. At instant 3, signal R arrives, the loop body is restarted,
and ABRO waits again for A and B. When A arrives at instant 4, “await A”
terminates. The parallel statement does not yet terminate; it is waiting for
its right branch to terminate. This occurs at instant 5 because B arrives. O
is immediately emitted. At instant 6, A, B, and R arrive at the same time.
Then the “loop...each R” statement preempts is body and performs the
reset, ignoring A and B.

1.7 Causality Cycles

Unfortunately, it appears the simplicity of synchrony comes at the price of
the thorny problem of causality cycles. Reactions are computed by chains of
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instantaneous elementary actions, such as signal reception, statement termi-
nation, parallel synchronization, and signal emission. Control transmission
makes these actions belong to causal chains. The problem is that the syntax
of Esterel makes it possible to write cyclic causal chains that have no obvious
meaning. For instance, it is easy to introduce a causality cycle to to ABRO
example:

module Cycle :
input I;
output O;
signal A in
run ABRO

||
await O; emit A

end signal
end module

In Cycle, we remove A from inputs and declare it as a scoped local signal.
The run statements instantiates ABRO, automatically connecting its inputs
and outputs by name. The second parallel branch waits for O from ABRO
to instantaneously feed A back to ABRO. The causality cycle is as follows:
within ABRO, emission of O depends on reception of A; within the second
parallel branch, emission of A depends on reception of O; both dependencies
are instantaneous. The program makes no sense and should be rejected. The
classical solution to avoiding causality cycles is to cut any instantaneous cycle
by inserting a delay. This condition is indeed sufficient and useful in practice,
but we will also study much finer conditions that have also proven useful.
Formal semantics are essential to understanding the causality problem and
for developing algorithms to reject non-causal programs with error messages
that point to the root cause of the problem.

1.8 Code Generation

Three main techniques have been developed to translate Esterel programs
into hardware or software: expansion to explicit state machines, translation
into circuits, and direct software generation. In this book we shall focus on the
generation of software. We shall not cover distributed software generation,
studied for instance by Girault et al. [19], and we will address issues related
to hardware generation only when they are relevant to generating software.

1.8.1 Translation to Explicit State Machines

The first INRIA compilers Esterel V2 (1985) and Esterel V3 (1988) trans-
lated Esterel programs into explicit finite automata, specifically Mealy state
machines. These compilers explicitly enumerate all the reachable states and
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switch(state){
case 0: state=1;

break;
case 1: if (!R) if (A) if (B) {O=1; state=4;}

else state=2;
else if (B) state=3;
break;

case 2: if (R) state=1;
else if (B) {O=1; state=4;}
break;

case 3: if (R) state=1;
else if (A) {O=1; state=4;}
break;

case 4: if(R)state=1;
}

Figure 1.3: The automaton and explicit FSM code for the ABRO example

transitions of a program. This state machine is then encoded into C. We call
this form of code (explicit) FSM code.

Figure 1.3 shows the state graph of ABRO along with its implementation
in C. Notice the number of times A, B, R, and O appear in the state graph.
With its constructs for concurrency and preemption, Esterel can be much
more succinct than explicit finite automata for the same behavior. This is
an essential advantage for clean and maintainable specifications.

The FSM code is very fast, since only the active code is evaluated in
each instant. However, FSM translation is subject to exponential state space
explosion.∗ The method can only be applied to small- and medium-sized
programs.

Esterel V2 is based on Brzozowski’s residual technique [17] to translate
regular expressions into automata. Transitions are computed using a direct
interpretation of the Esterel semantic rules, given in Plotkin’s Structural
Operational Semantics (SOS) style [5], and states were represented by tex-
tual Esterel programs. Causality analysis was simplistic and limited. Es-
terel V3 uses a more elaborate operational semantics due to Gonthier and
Berry [10, 35], a much finer causality analysis that accepts many more pro-
grams, and an efficient bit-vector representation of states. Compilation is
orders of magnitude more efficient in time and space than with Esterel V2,
but the generated code is about the same and still subject to state explosion.

1.8.2 Translation to Circuits

The INRIA Esterel V4–V6 compilers (1992–1999) and the Esterel Studio
commercial compiler use a very different technique: direct translation of an
Esterel program into a digital circuit, developed by Berry [6, 7].

Figure 1.4 shows the standard form of a synchronous circuit. It is divided

∗The FSM for ABRO has 5 states. Adding “await C” in the parallel construct produces 9
states. Further adding “await D” produces 17 states. In general, waiting for n signals in
an ABRO-like program leads to an FSM with 2n + 1 states.
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Figure 1.4: The standard representation of sequential circuits

RESET = R & !BOOT
A TEST TRIGGER = A REG OUT & !RESET
A TEST THEN = A TEST TRIGGER & A
A TEST ELSE = A TEST TRIGGER & !A
A TERMINATED = A TEST THEN | ! A TEST TRIGGER
A REG IN = BOOT | RESET | A TEST ELSE
B TEST TRIGGER = B REG OUT & !RESET
B TEST THEN = B TEST TRIGGER & B
B TEST ELSE = B TEST TRIGGER & !B
B TERMINATED = B TEST THEN | ! B TEST TRIGGER
B REG IN = BOOT | RESET | B TEST ELSE
ACTIVE = A TEST TRIGGER | B TEST TRIGGER
O = A TERMINATED & B TERMINATED & ACTIVE

Figure 1.5: Circuit code for ABRO (the reaction function)

into combinational logic, which computes the outputs and new states from
the inputs and current state, and sequential logic (registers), which stores
the state. A global clock ticks off the instants by triggering state updates.
The circuit for ABRO is pictured in Figure 6.1, page 105.

The circuit translation technique scales to large programs since state is
held in registers and encoded compactly, hence eliminating the exponential
code-size explosion.

The circuit can be translated into VHDL or Verilog for implementation
in hardware. After applying sequential optimization techniques developed
by Toma et al. [69, 63] to improve the size and speed of the circuit, one
gets very efficient circuits that are often better than manually designed ones.
Sequential optimization does not scale to big programs, but can be applied
on a per-module basis and produce reasonable results.

Software code is generated by topologically sorting the circuit gates and
translating their function into C (or C-based languages such as C++ and
SystemC), as pictured in Figure 1.5. We call this form of generated code
circuit code. Compared to automaton code, circuit code is slower because in
every instant it executes every equation, even those corresponding to inactive
states.

The causality of the generated circuit is now well-studied. That the
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ABRO start() { //called in the initial simulation instant
await A active=true ; await B active=true ;

}

ABRO resume() { //called when ABRO is resumed
if (R) { ABRO start() ; }
else {

if (await A active || await B active) {
if (await A active && A) { await A active=false ; }
if (await B active && B) { await B active=false ; }
if ((!await A active)&&(!await B active)) { emit O ; }

}
}

}

Figure 1.6: Control-flow (pseudo-)code for ABRO

combinational logic be acyclic is the simplest criterion, but such cyclic cir-
cuits may also be causal if every cycle is effectively broken at each instant by
input or current state values. Cyclic circuits have been studied by Malik [48]
and Berry and Shiple [65]. The latter showed that constructive logic can be
used to model circuits with cycles. Such constructive analysis of circuits was
later extended to the constructive semantics of the Esterel language itself [7]
and implemented in the Esterel V5 compiler. The constructive semantics of
Esterel is the subject of the second part of this book.

1.8.3 Direct Compilation to C Code

To improve upon circuit code, Edwards [26, 27], Closse and Weil [21, 72], and
Potop-Butucaru [57, 56] developed new compilers based on control flow graph
construction and optimization. These techniques will be explained in detail
in this book. The commercial Esterel V7 commercial compiler embodies a C
code generator based on Potop-Butucaru’s technique.

The main idea in these compilers is to generate C code that compute only
the active part of the Esterel program in each reaction, as does FSM code,
while representing the state in a compact bit vector form, as done in circuit
code. We call this form of generated code control-flow code. Figure 1.6 shows
control-flow code similar to what Edwards’s and Potop-Butucaru’s compilers
produce.

1.9 Executing the Generated Code

The code generated from an Esterel synchronous program is generally exe-
cuted in a standard sequential framework where events come asynchronously.
Since its execution does take time, running the code in a way that respects
the synchronous requires some care. It basically requires the definition and
implementation of an external execution shell that gather inputs from the
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Figure 1.7: A possible run of ABRO in an asynchronous environment

environment, builds logical input events for the reaction functions, and per-
forms the actual output actions. To date, all Esterel code generators have
relied on a simple execution shell structure that has remained practically
unchanged since its initial definition for Esterel V2.

The generated code is organized around a reaction function that effec-
tively computes the transition function of the underlying FSM. The reaction
function is called at each logical instant. Conceptually, it takes environmental
inputs and the current state as parameters and produces outputs and the next
state. The actual implementation is a bit more detailed; see Appendix C.

The execution shell is responsible for repeatedly triggering the reaction
function. There are a variety of choices for how to do this. The reaction
function may be called periodically, typical in automatic control; when any
input signal arrives, an event-driven style; when a particular signal arrives,
in which case that signal acts as a clock; or immediately after the previous
reaction has been computed. The only restriction imposed by the synchrony
hypothesis is that the computations of successive reactions do not overlap
and that the state of the inputs does not appear to change during a reaction.
Checking that reactions do not overlap in the periodic case can be done done
through worst-case execution time (WCET) analysis.

One way to keep the inputs constant is for the execution shell to buffer
inputs, effectively synchronizing them. One simple strategy is to freeze the
input buffers when the reaction function is called and start recording in-
put events again when it returns. If the implementation respects the syn-
chrony hypothesis, these may be simple single-place buffers that simply record
whether an event has been observed since the last instant. Figure 1.7 shows
a possible run of a software implementation of ABRO that corresponds to
the synchronous trace of Figure 1.2. The reaction function is called at the
numbered times. Of course, other execution schemes are possible.

1.9.1 Existing Solutions

The execution shell assumed by Esterel compilers has remained practically
unchanged from the first compilers. Its API, called the host language interface
is a de facto standard shared by the different existing compilers. We present
it in Appendix C.
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The main research effort in Esterel compilation has focused on the syn-
thesis of reaction functions. The goal is a practical compilation process that
generates correct, fast, and compact reaction functions for all Esterel pro-
grams. In practice, different compilation schemes have different advantages
and disadvantages.

More recent techniques attempt to combine the advantages of previous
ones. They generate code that simulate the reactive features of the language
at run-time. We shall call such a target code control-flow code of the Es-
terel description. The control-flow code is small—comparable in size to the
circuit—and evaluates only active statements in an instant—as the FSM code
does. The difficulty comes in scheduling program fragments that respect the
language semantics, more specifically the causality relations. Code to ensure
the correct activation of such fragments is a significant part of the generated
code.

As the example of Figure 1.6 shows, efficient sequential code is obtained
by statically scheduling the reaction operations. The results are excellent:
the code is smaller than that from the circuit technique and approaches the
speed of explicit FSM code. The drawback is that this technique cannot
handle all correct Esterel programs. Specifically, to statically schedule an
Esterel program, the control- and data-flow structure of the program must
be statically acyclic, a stronger restriction than necessary. In particular, the
order may depend on the program state and inputs, meaning completely
static scheduling is impossible. More importantly, each translation technique
defines “acyclicity” of the control- and data-flow structure in a slightly dif-
ferent way and optimizations may add or remove cycles. Thus, the class of
accepted programs depends on the chosen compiler and optimization level.
We shall give a detailed overview of existing control-flow code generators in
Chapter 7.
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The Esterel Language

Esterel is an imperative synchronous language for the programming of re-
active applications. Developed by a team lead by Gérard Berry, its first
version was defined more than twenty years ago [12]. This book describes
version 5 (V5) of the language [7, 13]. The current commercial version of
Esterel is 7 [29]—a broad syntactic extension of V5 with little change to its
semantics.

This chapter is devoted to an intuitive presentation of the language that
omits details and certain constructs. We cover these later in the reference
manual in Appendix B. Furthermore, we defer a detailed discussion of the
Esterel semantics to the second part of the book. Instead, we concentrate
on the description of the mechanisms that allow the definition of high-level
reactive behaviors.

The presentation is roughly divided in two: The first part focuses on the
expressive power of the language; the second covers practical issues such as
modular development and interfacing with the real world. The first part
starts with an overview of the language constructs, followed by the definition
of the primitive statements of Esterel. Next, we show examples to familiarize
the reader with the notions of cyclicity, schizophrenia, and reincarnation,
which present key challenges in the code generation process.

The second part of the chapter defines the notions of host language and
module and defines the general structure of an Esterel specification.

2.1 Syntax and Näıve Semantic Principles

An Esterel program consists of a declaration header followed by a reactive
body statement. The header defines the interface of the program: input
and output signals, data types, variables, and external data manipulation
routines. Esterel offers a wide variety of statements that may appear in the
imperative body. Among them are the primitive language constructs, also
called kernel statements, on which the language semantics is defined. The

15
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rest of the statements are syntactic sugar derived from the kernel statements,
which prove convenient for the development of practical applications.

We now take a short tour of the language features. We have divided
our presentation into several steps, each introducing a certain class of lan-
guage constructs. The complex issues are clarified at each step through small
examples.

Control flow

Esterel provides classical control-flow constructs. It has a no-operation state-
ment (nothing), parallel (p || q) and sequential (p ; q) composition, and
iterative sequential loop (loop p end). Once executed, a parallel statement
terminates when all of its branches have terminated. A loop runs forever
unless terminated by an explicit exit or preempted by its environment. The
body of a loop is not allowed to terminate instantly when first executed to pre-
vent unbounded computation and guarantee the completion of synchronous
reactions. Compilers reject programs that contain such loops.

The trap statement “trap T in p end” defines an instantaneous exit
point for its body. The termination of the trap statement is triggered by
“exit T” statements, where T is a trap label. If “exit T” executes inside
p, the entire trap statement terminates immediately. Notice that we use the
specific “trap” word instead of the better known “exception” word used in
some languages. We think that “exception” is much less precise, since it also
covers arithmetic exceptions such as zero-divide that are not covered by trap.

Classical sequential variables can be defined in Esterelas follows.

var v := expr : type in p end

Such variables can be assigned

v := expr

and tested

if cond then p else q end

Here, v is a variable name, expr is an expression, and cond is a Boolean
expression involving variables, such as “v < 10.” The variable declaration
statement defines the sequential variable v of type type. The scope of v is
the statement p. When the declaration statement is executed, the initializing
expression is computed and the result is assigned to the variable as initial
value before control is passed to the body p.

Variable initialization is required to ensure the macrostep determinism of
the language, but it can be skipped to simplify the code when no initialization
is needed (i.e., when an assignment is always executed before the variable is
read).

Concurrent access to sequential variables is restricted syntactically. When
one branch of a parallel statement assigns a sequential variable, none of the
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other branches is allowed to read or assign the same variable. Esterel thus
prohibits both write-write and read-write conflicts. For example, Esterel
compilers reject the following compound statements.

w := 10 || w := 11

v := 10 || w := v

if u = 0 then v := 10 end || if u <> 0 then w := v end

The first example contains a write-write conflict. A read-write race is present
in the second. The third example emphasizes the syntactic nature of the
restriction enforced by compilers. While the guards prevent the read and
write actions from occurring simultaneously, the fragment is still rejected.

Division of behavior in reactions

The pause statement and its numerous derivatives are used to divide the
behavior of the program into successive instants. When the sequence

emit A ; pause ; emit B

is started, it emits A, then pauses (freezes) until the next execution instant,
where it resumes execution to emit B and terminate.

Signal communication

Parallel branches may communicate (synchronize with each other) through
signals. Two types of signals exist in Esterel:

• pure signals, which only have a status of present (true,1) or absent
(false,0); and

• valued signals, which carry a typed signal value in addition to the
Boolean status.

The statement “signal S in p end” declares the pure signal S for the scope
of p. It is emitted by “emit S” and its status can be tested with a wide
variety of constructs, including the following.

• “present signal-expr then p else q end” is the regular branching test,
where signal-expr is a signal expression, obtained by combining signal
names with the Boolean operators and, or, and not.

• “suspend p when signal-expr” is the primitive preemption test. In in-
stants where the test expression is true, the suspend statement prevents
its body from running. The state of the body is held unchanged in such
instants.



18 the esterel language

• “await signal-expr” is a derived statement that blocks execution until
the signal expression is true. It always blocks for at least one instant.

• “abort p when signal-expr” is a derived preemption statement. When
the test expression is true, the abort statement preempts its body,
resets its state to inactive, and gives control in sequence.

When the statement declaring the pure signal S is started or resumed (e.g.,
in a loop), the status of S is unknown. It becomes present for the current
instant as soon as S has been emitted. It is set to absent only when it can be
determined without speculation that none of the “emit S” statements can
be executed in the current instant. A test statement can read the status of
S only after its presence/absence has been established.

The following example shows how the simple signal- and data-handling
statements introduced earlier can be used to define a signal occurrence counter.
The Esterel statement await 10 I has the following expansion over these
simpler constructions.

trap T in
var v := 0 : integer in
suspend
loop
pause ;
v := v + 1 ;
if v = 10 then exit T end

end
when [not I]

end
end

When this statement starts, the integer variable v is set to 0 and control
freezes at the pause statement. In all subsequent instants, the signal I is
either absent, which suspends the inner loop, or present, in which case v is
incremented and the loop body is restarted. When v equals 10, the trap T
is exited, causing the whole statement to terminate instantly.

Valued signals

A valued signal S of type type can be seen as a pair consisting of a pure signal
with the same name (S) and a persistent shared data variable, named ?S, of
type type. The valued signal S is declared with a construct of the form

signal S := expr : combine type with c in p end

The data expression expr of type type gives the initial value of ?S. We will
explain later how an associative and commutative combine function

c : type× type→ type
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is used to deterministically handle write-write conflicts for valued signals.
Note that Esterel compilers do not require the initialization of valued

signals, nor the use of a combine function. This allows the user to write
simpler code in cases where it is clear that the initial value is never read
or when a valued signal cannot be emitted twice during a reaction. In the
examples in this book, we shall use the abbreviated actual syntax where
convenient. However, all the semantic developments use the full version of
the statement with initialization and a combine function.

Pure signal emission and shared variable assignment can only be per-
formed together by the valued signal emission statement “emit S(expr).”
The type of the data expression expr must match that of the signal S.

The pure signal component may be used in signal test expressions as if
it were a non-valued signal, and the shared variable ?S may be used in data
expressions. Unlike sequential variables, valued signals allow data communi-
cation between parallel branches. We shall see later that they are subject to
synchronization rules that may lead to deadlocks.

While the pure signal and the shared variable are syntactically linked for
programming style reasons, the situation is different at the semantic level.
In fact, the two objects follow different synchronization rules and we will
dissociate them completely for analysis and code generation. The pure signal
part follows the lazy synchronization rules defined on page 18. By contrast,
the shared variable is subject to strong synchronization to ensure that its
value is the same in all the expressions that read it throughout each instant.
The variable can be read in an instant only after all corresponding “emit”
statements have either been executed or ruled out as unreachable. In in-
stants where the valued signal is not emitted, the value of the variable does
not change. If exactly one emission of the signal occurs during an instant,
then the value is given by the evaluation of the expression of the single emit
statement that is executed. When multiple emissions occur, the correspond-
ing values are combined into the new value of ?S using the associative and
commutative combine function c.

In the example below, the value of the variable v will be 11 in the first
execution instant, 11 in the second, and 7 in the third.

signal S : combine integer with + in
emit S(5) ; pause ; pause ; emit S(7)

||
emit S(6) ; pause ; pause

||
loop v := ?S ; pause end

end

The values 5 and 6, emitted for S in the first instant, are combined with the
function “+” before the execution of the assignment.

The next example is incorrect because it contains a causality cycle that
amounts to a deadlock: the value of S can only be read after its emission
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while the sequence (;) requires the assignment to be executed first.

v := ?S ;
emit S(6)

The following artificial example shows how valued signals and sequential
variables are used together to compute complex functions, here, the suite of
partial sums of the series Σn(2 ∗ In + I2

n), where the values {In}n are given
to the program through the integer input signal I:

module SUM:
input I : integer ; output SUM : integer ;
signal TERM : combine integer with + in
suspend
loop pause ; emit TERM(2*?I) end

||
loop pause ; emit TERM(?I*?I) end

||
loop
var acc :=0 : integer in
pause ;
acc = acc + ?TERM ;
emit SUM(acc)

end
end

when [not I]
end module

The program initializes itself in the first instant: the status of I is ignored,
and O is not emitted. In subsequent instants where I is not emitted by the
environment, the program does not change its state. When I is present,
the accumulator acc is updated and the computed sum is passed back to
the environment through SUM. The value of I is read by the first two parallel
branches, which compute each one part of the term. The results are then
combined and read by the third branch, which updates the partial sum and
sends it to the environment.

2.2 The Kernel Esterel Language

Kernel Esterel is the subset of the Esterel language defined by the primitive
(kernel) Esterel statements. We use it to simplify the formal definition of the
language semantics; only the semantics of the kernel statements are given
directly. The semantics of the remaining derived statements are defined in
terms of kernel statements. For instance, the derived statement “await S”
is expanded into
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trap T in
loop
pause;
present S then exit T else nothing end

end
end

The semantics of an Esterel program is given by its expansion into a
Kernel Esterel program.

The Esterel translation schemes defined in this book are also based on the
kernel language, as structural translation patterns are only defined for the
language primitives. The various compilers actually translate a slightly larger
number of constructs to generate better code. For instance, the translation
of “await S” is usually based on the following (non-kernel) expansion:

suspend
pause

when [not S]

Such implementation details, covering non-kernel constructs, will be pre-
sented in Appendix A. There, we shall cover signal expressions such as “not
S,” the pre operator, etc.

The kernel-based approach is natural to Esterel, as many of the language
features are “syntactic sugar” meant only to facilitate the task of the devel-
oper. The same approach is used by Berry [7] to define the semantics and
the hardware translation of the data-free subset of Esterel, henceforth named
Pure Esterel.

To obtain a full set of primitives, we extend Berry’s Pure Esterel Kernel
with data-handling statements. Of the sixteen primitives that form Kernel
Esterel, eleven are the Pure Esterel primitives listed in Table 2.1.

The choice of data manipulation primitives is not obvious, as the valued
signals of Esterel are difficult to model. We mentioned before that the valued
signals are hybrid data/control constructs that follow two synchronization
rules: lazy for the status and strict for the value.

The Pure Esterel signal and the shared variable that compose a valued
signal are syntactically linked in declaration and emission, but are otherwise
independent. The signal is present and ready to be read as soon as it has
been emitted. The Boolean operations over signal statuses are lazy: A or
B is true as soon as one of A and B has been emitted. However, the shared
variable can be read only after all the emissions of the valued signal have
been either executed or ruled out by the control flow. The operations over
signal values are strict: if A and B are Boolean valued signals, then ?A or ?B
can be computed only when both ?A and ?B are known.

The difference is illustrated by the following two short and very artificial
examples. The first one is semantically correct:
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nothing signal S in p end

pause emit S

p ; q present S then p else q end

p || q suspend p when S

loop p end trap T in p end

exit T

Table 2.1: The primitives of Pure Esterel, as defined by Berry [7]. Here, p
and q are Esterel statements, S is a signal name, and T is a trap name. We
will extend the trap notation in Section 3.3.4 to facilitate the presentation of
semantic and code generation issues.

signal A : combine boolean with or in
emit A(true) ;
present A then emit O end ;
emit A(true)

end

When the control reaches the signal test, we already know that the A is
present. Thus, we emit O and, a second time, A. The second example is
incorrect:

signal A : combine boolean with or in
emit A(true) ;
if ?A then emit O end ;
emit A(true)

end

Here, the test of ?A occurs while the second emit statement has not yet been
executed. The causality cycle cannot be resolved in this case and therefore
the compiler rejects this example.

In the definition of the kernel language, we separate the pure signal part
of a valued signal from the data part. We do this by introducing independent
primitives for the manipulation of shared variables. These primitives are not
part of the Esterel language per se; they are only used for semantic analysis
purposes and for defining the code generation schemes.

Here, we list the five data-handling kernel statements. In these definitions,
v and vi are non-shared variable names, s and si are shared variable names,
and p and q are Esterel statements.
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• “var v := expr : type in

p end” is the non-shared variable definition, defined earlier in this
chapter.

• “shared s := expr : combine type with c in p end” corresponds
to the data part of an Esterel valued signal declaration and is not ac-
tual Esterel syntax. It declares p as the scope of the persistent shared
Boolean variable s. The variable has the type type and is initialized with
the expression expr when the statement is started. Write-write conflicts
are resolved by composing the concurrent write actions (defined below)
using the associative and commutative binary operator c—the combine
function of s. Read-write conflicts are resolved by requiring that all
write actions are either executed or ruled out by the control flow before
s is read.

• “v := f(s1, . . . , sn, v1, . . . , vm)” awaits the completion of the compu-
tation of its shared variable arguments (s1, . . . , sn), and then assigns
the value of the function to the sequential variable v. Recall that the
synchronous abstraction assumes that the computation of f takes zero
time, which means that it fits inside the computation of the reaction.

• “s <= f(s1, . . . , sn, v1, . . . , vm)” awaits the completion of the computa-
tion of its shared variable arguments, and then generates a write action
on the shared variable s. Again, the computation of f is assumed to
be performed in zero time. This is not actual Esterel syntax.

• “if v then p else q end” is the classical conditional with the Boolean
non-shared variable v as condition.

All the constructions of Esterel can be represented through macro-definitions
over the kernel language. Appendix B gives the full set of expansion rules.
Here, we only show how valued signals are expanded into combinations of
pure signals and shared variables.

Each valued signal S is represented using a pure signal with the same
name (S) and a shared variable named Svar. Then, the declaration

signal S := expr : combine type with c in p end

is expanded into

signal S in
shared Svar := expr : combine type with c in

p′

end
end

where p′ is obtained by replacing all the instances of ?S in p with Svar and
all the instances of “emit S(data-expr)” with

emit S ; Svar <= data-expr
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Notation

For the rest of this book we shall abbreviate the variable declaration state-
ments as follows.

• “var v in p end” declares the non-shared variable v of type typev and
initialing expression initv.

• “shared s in p end” declares the shared variable s of type types, ini-
tializing expression inits, and combine function cs.

We will use these abbreviations in the semantic formulas, but not in the
Esterel code examples. Note that the var construct is standard Esterel but
the shared construct is an internal concept.

2.3 Esterel Through Examples

Here, we present through examples the main semantic problems that will
require attention in the later parts of the book. Later, we will analyze some
of the examples extensively when considering certain code generation tech-
niques. Each example we present here is complete in the sense that it includes
the declaration header. We will explain the behavior of each example intu-
itively; later, we will be more formal.

Esterel is a parallel language. The easy-to-use signal communication sup-
ports a programming style based on fine-grained parallelism and synchro-
nization, where complex behaviors are constructed hierarchically. Our first
example is a Pure Esterel program designed to include many of its these
features in little space.

module MainExample:
input I, J, KILL, SUSP; output O; % interface declarations
suspend
trap T in % performs the preemption
signal END in
loop % basic computation loop
await I ; emit O ; await J ; emit END

end
||
% preemption protocol, triggered by KILL
await KILL ; await END ; exit T

end
end;

when SUSP % suspend signal
end module

The program models a cyclic computation (like a communication protocol)
that can be interrupted between cycles and suspended. When started, the
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Instant Inputs Outputs Comment

0 any All inputs discarded
1 I O
2 KILL Preemption protocol triggered
3 Nothing happens
4 J,SUSP Suspend, J discarded
5 J END emitted, T exited, program terminates

Figure 2.1: A possible execution trace of MainExample

await statement waits for the next clock cycle where its signal is present, i.e.,
it always delays at least one cycle. All the other statements in our example
execute in a single clock cycle, so the await statements are the only places
where control can be suspended between instants (they preserve the state of
the program between cycles). One consequence is that the I and J signals
must arrive in different clock cycles, otherwise J will be ignored.

The loop is preempted by the trap statement trap when “exit T” ex-
ecutes. In this case, the trap terminates instantly, control is passed to the
next instruction in sequence, and the program terminates. The preemption
protocol is triggered by the input signal KILL, but T is exited only when END
is emitted. The program is suspended—no computation is performed and
the state is kept unchanged—in cycles where the SUSP signal is received. A
possible execution trace for this program is given in Figure 2.1.

The computation of each reaction is instantaneous but causal. The ele-
mentary computations defining the reactive behavior of a program are con-
nected through three types of causal dependencies: control flow (sequencing),
signal communication, and access to shared variables. In MainExample,

• sequencing requires that the statement “exit T” is always executed
after the preemption test on the signal END; and

• signal synchronization through END requires that the test on END is
executed after the test on J, whenever the two are executed in the
same instant.

The computation of every instant is performed causally, but not all causal
dependencies apply in every instant. For instance, the dependency on END
only applies when “await J” and “await END” are both active.

Understanding the system of causal dependencies is essential to generate
sequential code. When the dependencies are acyclic, the elementary compu-
tations of the program can be totally ordered in a way that satisfies the causal
dependencies in all instants. Thus, good sequential code can be generated
using static scheduling techniques. Like most of our examples, MainExample
falls in this category.
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Cyclicity

In some cases, however, the causal dependency system is cyclic. We say that
the program is cyclic, or that it contains a causality cycle. The following
example illustrates this.

signal S,T in
present I then emit S else emit T end

||
present S then call f1()() ; emit T end

||
present T then call f2()() ; emit S end

end

Here, the status of signal S statically depends on the status of T and vice versa.
Consequently, the order in which the functions f1 and f2 are called depends
on the input signal I. The function calls must be dynamically scheduled.

Cyclic programs are difficult to handle. Proving their correctness requires
expensive analysis. Perhaps more importantly, it is difficult to generate effi-
cient code for them. In the general case, dynamic scheduling is required and,
as in the following example, not-yet-executed code may have to be evaluated
before execution to determine the absence of a signal.

signal B1, B2 in
emit A ;
present B2 then emit O1 else emit O2 end ;
present A then emit B1 else emit B2 end

end

Here, after the emission of A, the execution is blocked on the test on B2.
But A is present, so the test on it cannot take the “else” branch, so B2
is not emitted, so it is absent. Then, we execute the test on B2 and emit
O2, we pass in sequence, we execute the test on A and emit B1. Note that
determining that B2 is absent involves no speculative computation and, since
the control is blocked, no actual execution of code. Instead, computation
proceeds by invalidating test branches based on the status of signals that
have already been computed. We call this kind of forward evaluation potential
computation.

But the first problem related to cyclic programs is the formal definition
of what “cyclic” means. We shall see later that the definition is generally
given at the level of graph-based intermediate compiler representations. Un-
fortunately, this means slightly different definitions are associated with each
intermediate representation and therefore each variant compilation technique.
The following program, for instance, is considered acyclic by some compilers
and can be statically scheduled, while other compilers reject it as cyclic.
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module Monster:
output O;
signal S,A,B in
emit S;
[
present A else pause end

||
present B else emit O end

];
present S else emit A end;
emit B

end
end module

The exact reasons for this behavior are complex and their understanding
requires knowledge of translation details that we will present later. In Sec-
tion 9.1, we analyze this problem and derive a partial answer to what cyclic
really means.

Cyclic Programs Can Be Useful Our last correct cyclic program is the
bus arbiter example. This handles the bus access requests of n users. At each
instant, control is given to exactly one of the users that request it. It is a
fair arbiter: a user requesting control during n consecutive instants receives
control at least once. For simplicity, we have written the code for n = 2, but
it can easily be modified to support any fixed number of users.

module Cell:
input REQ; output ACK;
input GRANT IN; output GRANT OUT;
input TOK IN; output TOK OUT;
loop
present TOK IN then pause;emit TOK OUT
else pause end

end
||
loop
present [TOK OUT or GRANT IN] then
present REQ then emit ACK else emit GRANT OUT end

end ;
pause

end
end module

module Arbiter2:
input REQ1,REQ2;
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Figure 2.2: Interconnections between Cell modules in Arbiter2

output ACK1,ACK2;
signal GR1,GR2,TOK1,TOK2 in
emit GR1 ; emit TOK2

||
run Cell[signal REQ1/REQ,ACK1/ACK,GR1/GRANT IN,

GR2/GRANT OUT,TOK1/TOK IN,TOK2/TOK OUT]
||
run Cell[signal REQ2/REQ,ACK2/ACK,GR2/GRANT IN,

GR1/GRANT OUT,TOK2/TOK IN,TOK1/TOK OUT]
end
end module

Each user communicates through REQ and ACK signals with one of the in-
stances of the Cell module. A token is used to ensure fairness. In each
instant, the token is passed from one module to the other through the signals
TOK IN and TOK OUT. During an instant, a request to a Cell having the token
determines an acknowledgment. However, if access is not requested at that
cell, another cell may grant access upon request. The cells grant each other
control through the signals GRANT IN and GRANT OUT. Figure 2.2 shows how
the two Cell modules are connected. The first parallel branch of the main
module initializes the system. Here, the static causality cycle is the depen-
dencies that link the signals GR1 and GR2 by means of causal dependencies
internal to the Cell modules.

Causality errors

All previous cyclic examples were correct—at each instant the static cycle is
broken. This is not the case for all programs, however. As in many concurrent
formalisms, it is easy to build Esterel programs that deadlock. Such programs
are considered incorrect and are usually called non-constructive to reflect that
they cannot be evaluated completely in a constructive manner. The exact
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definition of non-constructivity shall be given in the second part of this book.

Schizophrenia and Reincarnation

The last semantic property that we describe here is the reincarnation of
signals and control. The following example illustrates signal reincarnation.

loop
signal S in
present S then emit O1 else emit O2 end
pause ;
emit S ;
present S then emit O1 else emit O2 end

end
end

In the first instant, O2 is emitted and the pause statement activated. When
the statement is resumed in the second instant, the signal S is emitted, and
the second test on it emits O1. Then, the signal statement terminates and is
instantly restarted with a fresh copy of S. The fresh signal is not emitted so
it is absent. The program then emits O2. We say that the signal S has been
reincarnated because two independent copies of it exist within an instant.
We also say that it is schizophrenic because it has more than one status in
an instant.

More complicated examples of reincarnation are possible. For example,
a single statement can be executed with different inputs and with different
results several times in an instant. In the following example, the presence
test on S is executed twice in the second instant, with different results.

module REINCARNATION:
output O1,O2;
loop
signal S in trap T in
pause ; emit S ; exit T

||
loop
present S then emit O1 else emit O2 end ;
pause

end
end end

end
end module

We say that the statement is schizophrenic and that it is reincarnated once
in the execution of the second instant.

In the previous examples, only two instances of a signal or statement
coexist inside an instant. But Esterel programs can be built that require any
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bounded number of instances of a signal or statement. Consider the following
example, inspired from Berry [7].

module MULTIPLE REINCARNATION:
output O1,O2,O3,O4 ;
loop
trap T1 in signal S1 in
pause ; emit S1 ; exit T1

||
loop
trap T2 in signal S2 in
pause ; emit S2 ; exit T2

||
loop
present S1 then
present S2 then emit O1 else emit O2 end

else
present S2 then emit O3 else emit O4 end

end ;
pause

end
end end

end
end end

end
end module

In the second execution instant it will execute the “present S1” statement
3 times, in different signal contexts, resulting in the emission of the signals
O1, O2, and O4.

This form of duplication might appear not to comply with the synchronous
model, which requires that every signal has exactly one status during a given
execution instant. However, the reincarnation mechanisms included in the
semantics of Esterel allows the correct interpretation of such compact defini-
tions, which allow for a bounded number of instances of a signal or statement
to be evaluated inside an instant. Reincarnation can sometimes simplify the
task of the programmer by allowing more compact representations of algo-
rithms. In general, various instances (incarnations) of a schizophrenic signal
or control operator must be expanded through a bounded unrolling before
any serious analysis or code generation can take place.

While the execution of different incarnations of a statement is always real-
ized in a given order, reincarnation is not a simple signal re-initialization and
loop: The potential function computation may evaluate future incarnations
of a statement/signal before control enters them. For any natural number
n, examples can be constructed where n future incarnations of a statement
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must be explored in order to make a decision about the currently executing
one.

2.4 Host Language

Esterel relies on general-purpose languages such as C or C++ in two ways.
First, for portability, most Esterel compilers generate C instead of assembly
or some other executable representation. Such generated code provides an
interface for passing events between the environment and the running pro-
gram. Second, Esterel allows the use of data types and functions defined
externally (e.g., in C) to be used within an Esterel program.

The language used for these purposes is called host language. The host
language interface is the application programming interface (API) that spec-
ifies how data types and routines defined in the host language are imported
for use in Esterel, and how the host language code can trigger synchronous
reactions, emit and receive signals, etc.

To allow interaction between the Esterel code and the host language,
the host language interface involves both Esterel constructs (the program
interface, defined in the next section), and host language constructs. The C
language API is presented in Appendix C.

2.5 Program Structure and Interface

The basic programming unit in Esterel is the module. All declarations and
statements must be part of a module, so there are no global declarations
of types, variables, signals, etc. Nested module declarations are also not
allowed. An Esterel specification is a set of modules contained in one or
more files. The modules of a specification are organized hierarchically. Using
the run pseudo-statement, described in this section, a unique root module can
instantiate other modules, which can in turn instantiate other modules. In
this respect, modules behave like parameterized templates. Recursive module
instantiation (i.e., a run statement directly or indirectly calling its enclosing
module) is prohibited.

The general structure of a module is

module module-name :
interface
body

end module

Program body

The body of a program is an Esterel statement that defines the behavior
of the module. To facilitate the hierarchical composition of modules, body
statements may not have free traps, that is, exit statements that have no
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corresponding trap declaration super-statement; or free sequential variables.
Thus, inter-module communication can be performed only through sig-

nals. The following statement cannot be a program body since it has a free
trap and two free sequential variables.

v := 10 ;
w := v+1 ;
exit T

Program interface

In this section, we describe the interface, which declares two types of objects:

• input and output signals, which are the only communication lines be-
tween the module and its environment, as well as signal relations spec-
ifying simple assumptions over the behavior of the environment; and

• the data structures and data handling routines that are defined and
implemented in the host language and used in the module—types, con-
stants, procedures, functions, and tasks.

Declarations can be freely mixed, but an object must be declared before it is
used.

2.5.1 Data Handling

The type system of Esterel is rudimentary, with no type constructors or
subtyping. A type declaration simply specifies a name. Type checking is
strict, based on the name. The following example declares three types—T1,
T2, and T3.

module Example:
type T1, T2;
constant C1 : T1, C2 = false : boolean;
type T3;
procedure P(boolean,T3)(T2), PrintT1()(T1);
function Length(string):integer;
task Tsk(T2,string)(string);
...

end module

All such declared objects, including types, must be defined in the host
language, following the rules of Appendix C.

Constant declarations specify the constant name, its type, and possibly a
value, which is another constant or a literal of one of the predefined types.

Procedure declarations specify the procedure name and two formal pa-
rameter lists. The first contains parameters that are passed by reference; the
second contains pass-by-value parameters.
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Function declarations specify the function name, its parameter list, and
its return type. All function parameters are passed by value.

Each execution of a function, procedure, or predefined operator is as-
sumed to execute within a single clock cycle. Thus, it can be considered
“instantaneous,” is non-interruptible, and can be fully described in the Es-
terel semantic framework. However, it is often the case that complex data
computations or system/environment interactions do not fit within a sin-
gle execution instant. The Esterel language offers specific constructs, called
tasks, adapted to these cases. As the previous example showed, tasks are
declared much like procedures, the only difference being the use of the task
keyword instead of procedure. Details concerning task semantics and their
use are in Appendix A.4.

Predefined types and operators

Esterel defines common types, constants, and operators. There are five pre-
defined types: boolean, integer, float, double, and string.

The predefined Boolean constants (literals) are true and false.
Details of the predefined numerical types depend on the host language

implementation (e.g., C). In the INRIA Esterel V5 compiler, legal numeric
literals are specified by the regular expression

[0–9]+ ([.][0–9]∗)? ([e|E][-|+]?[0–9]+)?

Integer literals are specified by the regular expression [0–9]+, but correct code
is generated only for literals that fit the target architecture. Floating point
literals contain one decimal point and/or an exponent. To differentiate float
literals from double literals, an “f” is appended to the former. Thus, 0.1 is
a double literal, whereas 1e3f is a float literal. Current implementations
of Esterel do not check the size of floating-point literals; they simply copy
them into the host language.

Strings are single-line sequences of characters delimited by double quotes.
The only escape sequence is "", which is transformed into a single double
quote. Different implementations introduce various limitations, such as the
maximum length of a string. See Appendix C for details.

For all types, including user-defined ones, the assignment :=, equality =,
and inequality <> operators can be used. Implementations of these operators
for user-defined types must be provided in the host language.

Boolean constants and variables can be manipulated using and, not, and
or operators. As usual, not binds tighter than and, which binds tighter than
or.

The built-in numeric types support the +, -, *, /, <, <=, >, and >= oper-
ators. The modulo operator mod can be used only on integers. Unary - has
the highest priority, followed by *, /, and mod, followed by + and binary -.
The semantics of each operator is the same as the corresponding one in the
host language. There is no implicit conversion among numerical types.
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2.5.2 Signal and Signal Relation Declarations

Every Esterel module has one predefined signal called tick that is present
in every cycle. It can be thought of as the clock of the module.

Every signal that is used must either be declared in the module body
or in its interface. Interface signals represent the only means for an Esterel
module to communicate with its environment. Five classes of interface signals
exist, distinguished by the keywords input, output, inputoutput, return,
and sensor. Here, we give the intuition behind them; we defer the formal
definition to Appendix B.

The most common are input, output, and inputoutput signals, which
can be read and emitted within the module body. In addition, input signals
can be emitted by the environment, output signals emitted within the mod-
ule body are visible to the environment, and signals of class inputoutput
behave as both input and output. We will define the module-environment
communication mechanisms in the next section, where we describe the the
run pseudo-statement.

The signals of classes return and sensor can be read but not emitted by
the module body. Signals of class return are used to mark the completion of
tasks, described in Appendix A.4. Sensor signals represent pure data input.
Their present/absent status cannot be read, only their value. In this sense,
they can be seen as shared variables that cannot be emitted by the module.

A signal declaration specifies its name and class. A declaration of a valued
signal also specifies its type, the initial value, and its combine function. The
initial value and combine function can be omitted.

Signal relations declare simple relationships among the present/absent
status of input, inputoutput, and return signals. It is assumed that the
environment guarantees these relationships, making it possible to avoid speci-
fying irrelevant behaviors. Two types of properties can be specified: exclusion
and implication. For example,

relation I => J, I # K # L ;

states J must be present when I is present, and that I, K, and L are mutually
exclusive, i.e., if one is present, the others are not.

2.5.3 The run Pseudo-Statement

Due largely to its complex semantics, the Esterel language has no mecha-
nism for separate compilation or pre-compiled component libraries. However,
users may assemble modules to build complex specifications through sub-
module instantiation. The run pseudo-statement instantiates such modules.
As suggested by the term instantiation, the mechanism is similar to macro
or template instantiation. Here, the templates are the modules themselves,
and the template parameters are the signals, etc. declared in the module in-
terface. Instantiating a module inside another consists of expanding the run
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module FIFO:
type FifoType ;
input DataIn : FifoType ; output BlockIn ;
output DataOut : FifoType ; input BlockOut ;
signal Data1:FifoType,Data2:FifoType,Block1,Block2 in
run Cell[type FifoType/CellType ;

signal Data1/DataOut, Block1/BlockOut]
||
run Cell[type FifoType/CellType ;

signal Data1/DataIn, Block1/BlockIn,
Data2/DataOut, Block2/BlockOut]

||
run Cell[type FifoType/CellType ;

signal Data2/DataIn, Block2/BlockIn ]
end signal
end module

module Cell:
type CellType ;
input DataIn : CellType ; output BlockIn ;
output DataOut : CellType ; input BlockOut ;
loop
var v : CellType in
await immediate DataIn ; v:=?DataIn ;
abort pause ; sustain BlockIn when [not BlockOut] ;
emit DataOut(v)

end var
end loop
end module

Figure 2.3: A 3-cell FIFO in Esterel. It is required that the environment
respects the FIFO protocol by not presenting new input on DataIn when
BlockIn is present (such input would be lost).
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statement of the caller module into the statement body of the instantiated
module. The body of the instantiated module is rewritten in the process to
take into account the actual parameters of the run construct.

Here, we present the intuition behind the instantiation mechanism; we
defer the formal semantics to Appendix B.

A run statement consists of the run keyword∗ followed by the module
name and an optional renaming list. The renaming list is delimited by square
brackets and its items are separated by semicolons. Each item starts with
one of the keywords type, constant, function, procedure, task, or signal,
and is followed by a list of comma-separated renamings of the correct type.

Figure 2.3 illustrates the run construct. This example is a FIFO that
deals with messages of type FifoType. The FIFO accepts inputs through
DataIn when BlockIn is false and writes output on DataOut when BlockOut
is false. It takes one clock cycle for a message to traverse a FIFO cell that is
not blocked. This FIFO is of length 3, but it can be easily scaled from 1 to
any fixed integer by adding or removing cells—FIFOs of size 1.

Here, the run statement is used to combine three Cell modules into a
FIFO. The first instance of run is the entry cell of the FIFO. It sets the type
of cell data CellType to FifoType, and links the DataOut and BlockOut sig-
nals to local FIFO signals, which are connected with the second cell. Since
the DataIn and BlockIn signals of the Cell module are to be linked to
identically-named signals of the FIFO module, no explicit renaming is neces-
sary; the connections are made automatically.

Constant, function, procedure, task, and signal instantiations are subject
to strict type checks, which are realized after the type instantiations. In the
instantiation of constants, either both constants must have identical assigned
values (literal), or none may have an assigned value. In the instantiation of
valued signals, the type check is performed on the signal type (including the
possible combine function). A renaming list can contain as many sections as
desired, but no interface object can be renamed more than once.

If an interface object of the instantiated module is not renamed in the
run statement, there are two cases: for signals of all types, the caller module
must define in its interface a signal with the same name and type; and for
data-related objects (types, constants, functions, procedures, and tasks) the
caller module can contain no such definition, in which case it is assumed that
the environment (another module or the host language) defines it.

Module instantiation

Instantiating a sub-module using the run construct involves two basic oper-
ations: the renaming of interface objects according to the parameters of the
run statement; and the encapsulation, using connection code, of input and
output signals according to their direction.

∗The deprecated copymodule keyword is equivalent.
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The first transformation applies to types, constants, functions, proce-
dures, tasks, and to signals of type sensor, return, and inputoutput for
which a renaming exists. The renaming takes place hierarchically in the in-
stantiated module body. By default, if a signal in the instantiated module
was not renamed, it is connected to an identically-named object in the scope
in which it was instantiated. It is an error for no such object to exist.

The second operation applies to all interface signals of type input or
output, regardless of whether a renaming is given. For input signals, the
connection code prevents internal emissions from being passed to the exterior.
If the input interface signal Loc of type type is renamed Glob, the connection
code is

trap T in signal Loc : type in
instantiated-body ; exit T

||
every immediate Glob do emit Loc(?Glob) end

end end

For output signals, external emissions will not be received in the instantiated
module. The connection code is equivalent to

trap T in signal Loc : type in
instantiated-body ; exit T

||
every immediate Loc do emit Glob(?Loc) end

end end

While the previous patterns give the general intuition, the construction of
the actual connection code is more complex. In particular, it is assumed that
a name assignment step has previously changed the names of the interface
signals so that none of them corresponds to the name of a signal used in the
run renamings∗.

In practice, various compilers deviate from these rules. For example,
the INRIA Esterel V5 front-end simply ignores signal directions, treating all
interface signals as inputoutput. The instantiation of a submodule discards
the signal relations of its interface.

∗The patterns would otherwise produce erroneous code if directly applied to statements
such as “run M[signal I/J, J/I, K/K]”.
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Introduction to Esterel
Semantics

The next four chapters, almost a third of the book, are dedicated to a detailed
presentation of the semantics of Esterel. This is considerable for a book ded-
icated to the compilation of a programming language, but we believe this is
justified by the nature and use of Esterel. First, programs written in the Es-
terel language have formally defined semantics, which must be respected by
any implementation. Second, given the complex control propagation mecha-
nisms of Esterel, only a detailed understanding of the semantics provides the
basis for a truly efficient implementation. Indeed, despite its size, our pre-
sentation of Esterel’s semantics only covers those aspects that are necessary
from the perspective of code generation—the constructive semantics and the
digital circuit translation. For a broader presentation, see the reference book
by Berry [7].

3.1 Intuition and Mathematical Foundations

The semantics of Esterel deal with two intertwined notions: control flow prop-
agation among statements and the propagation of signal statuses. Control
flow propagation formally defines which statements are executed in an instant
and what they do. Except pause, all kernel statements act instantaneously,
i.e., execute within a single instant. Signal status propagation determines
how signals are set present or absent. The two interact as follows: control
flow propagation sets signals present by executing emit statements and can
also compute signal value; signal statuses and values affect control flow prop-
agation through present and if statements. In each instant, the status and
value of each signal must be determined in a unique way, ensuring behavioral
determinism. So we need careful rules about when we may consider a signal
absent.

41



42 introduction to esterel semantics

We take the view that a signal S is absent by default and is only present if
an “emit S” statement is executed or if it is received from the environment
(provided it is an input). The main idea is that we set a signal absent in an
instant as soon as the execution status of the program makes the execution of
all the instances of “emit S” impossible. Therefore, we do not only propagate
the control positively, we also consider which statements cannot be executed
in an instant to determine when a signal cannot be emitted and set it absent.
How to do this has evolved as the Esterel semantics have developed. We
describe the current solution, the constructive approach, below. We will
mention other solutions later.

Consider the following Esterel statement.

signal S, T in
present I then emit S end

||
present S then nothing else emit T end

end

If the input I is present, S is emitted and set present. The test for S exe-
cutes its then branch and terminates. This tells us that “emit T” will not
execute this instant, which means that T can no more be emitted and can
be set absent. If I is present, then “emit S” will not run and S can be set
absent. The test for S then takes its else branch and T is emitted and set
present. Of course, the above explanation is still informal. The real difficulty
lies in choosing understandable rules for pruning statements that cannot be
executed.

Even with consistent rules for pruning unrunnable statements, there may
be unsolvable problems called causality cycles. Consider the following Esterel
statement.

signal S in
present S then emit O1 else emit O2 end ;
emit S ;
present S then emit O1 else emit O2 end

end

The statement is syntactically correct, and could be given a meaning in a
classical control-flow setting. If S were a conventional variable, S would first
be found absent by the first present statement, emitted and set present by
the emit S statement, and found present by the second present statement.
However, this contradicts the synchrony assumption since S should not be
considered both present and absent in the same instant. In Esterel this
program is considered causally incorrect. The constructive approach amounts
to prohibiting the emission of a signal from depending on a test for the same
signal. Here, what depends means is quite subtle. One can take strong
criteria such as dependency graph acyclicity, which is the primary criterion
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signal R in
emit S ;
present R then emit O1 else emit O2 end ;
present S else emit R end

end

Figure 3.1: A correct, but complex Esterel example

for synchronous data-flow languages such as Lustre [38] and has been adopted
in Esterel V7∗. Alternately, one can employ a more dynamic criteria that only
requires input- and state-dependent dependency acyclicity, which is the basis
of the constructive semantics (see Berry’s book [7]). Constructive semantics
is elegant, based on the classical mathematical theories of constructive logic
rules and three-valued signal propagation, and has deep relations with the
safe propagation of currents in cyclic digital circuits, see Berry and Shiple [65].
Another criterion was proposed by Gonthier [5, 35] and used in the Esterel
V3 compiler, but is now considered obsolete.

3.1.1 The Constructive Approach

Intuition

As is standard in constructive logics, the constructive semantics of Esterel
is based on the propagation of established facts to determine other facts. A
fact is knowledge about the presence or absence of signal or about whether a
statement will or cannot be executed in the current instant. It is convenient
to use the Scott three-valued logic to denote signal facts. In this logic, a
signal can be unknown, present, or absent, written ⊥, 1, and 0. Except for
inputs, all signals start off unknown. Constructive propagation can set the
status to present or absent. It so happens that once changed, a signal status
cannot be changed again in the current reaction, i.e., fact propagation is
monotonic. Within a reaction, signal present tests effectively block while
the status of the tested signal remains undefined. Programs are rejected as
non-constructive if all control threads are blocked simultaneously.

Consider the example of Figure 3.1. Execution proceeds as follows: The
“signal” statement is started and the status of R is set to unknown. Next,
signal S is emitted, making it present, and the control reaches the test of R.
Since the status of R is undefined, control flow is blocked. However, since S
is present, we know the else branch of the test of S cannot be executed and
may be pruned. Therefore, “emit R” cannot be executed, and we can safely
conclude R is absent. This unblocks the test of R, which proceeds to emit O2,
performs the test of S, and terminates execution.

Applied to the example on page 42, similar reasoning finds the execution

∗We will say more about this criterion in Chapter 9.
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remains blocked forever at the first presence test, since the execution of
“emit S” cannot be ruled out by established fact propagation.

Constructive propagation of facts forbids any speculation. Consider the
following example.

signal S in
present S then emit S else emit S end

end

When this statement is started, the status of S is unknown, and control
blocks on the presence test. At this point, the instances of “emit S” cannot
be pruned based on known facts, which implies that S cannot be set absent.
However, since S is unknown, the control flow is blocked on “present S,”
implying S cannot be emitted and set present. This last rule is enforced
even though every control flow path starting from the blocking state includes
“emit S” we are not allowed to speculate on the status of S and deduce that
it would always be set present. Therefore, the example is rejected as being
non-constructive.∗

Fact propagation is a monotonic process. Once a fact such as “S is
present” has been determined, it cannot change during the rest of the in-
stant. Therefore, complete evaluation of a program is a form of fixed-point
computation of facts that runs until no new facts can be determined. At this
point, the program is correct w.r.t. a set of inputs if all signals have been
assigned a present or absent status.

Theoretical foundations

Berry [7] borrowed the term “constructive” from logic, where intuitionistic
constructive logic [43, 71] prohibits speculation as a means of reasoning and
requires that all proof objects are effectively built. Intuitionists reject the law
of the excluded middle† “p∨¬p = true” because it corresponds to speculating
over the truth value of p, which may be unknown when the rule is applied.

In an intuitionistic proof, the truth or falsehood of each intermediate proof
result is determined in a causal fashion. This form of causality provides a
sound semantic basis for automated logical reasoning and for reasoning about
computer programs. Consider the following Esterel statement.

present I then emit O else emit O end

Here, signal O is present (emitted) only after the statement has been started
and the status of I has been determined. This is faithfully represented with
the following intuitionistic propositional calculus formula.

O ≡ ((START ∧ I) ∨ (START ∧ ¬I))
∗However, this example is considered logically correct in the sense of Berry [7]. The

logical semantics does not appear practical to compile and is thus only of theoretical
interest.

†And its applications, such as proof by reductio ad absurdum.
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Assigning a value present or absent to O corresponds to proving either O or ¬O,
by using the previous formula as a hypothesis and the formulas corresponding
to the input valuation, i.e., I for present, and ¬I for absent.

The formula ¬O can be proven only when we assume ¬START, which cor-
responds to the case where the statement is not executed. The formula O can
be proven when we assume START and either I or ¬I, which corresponds to
when the statement is executed and the status of I is known. Neither O nor
¬O can be proven with a lesser hypothesis, which would leave the constructive
computation blocked.

The constructive approach also gives a clear formal basis for rejecting
programs as semantically incorrect. In the following statement a causality
loop is formed by the emission and test of S.

signal S in
present S then emit S end

end

The computation of signal S is represented by the following formula.

S ≡ (START ∧ S)

The statement is semantically incorrect since the status of S cannot be es-
tablished before the presence test. This translates into the impossibility of
proving either S or ¬S assuming START, which corresponds to assuming that
the statement is executed. Note that solutions exist in classical logic: both
S = true and S = false make the formula true. No solution exists in intu-
itionistic logic since it would require the proof of S to depend on itself.

Finally, for “present S then emit S else emit S,” the equation is

S ≡ ((START ∧ S) ∨ (START ∧ ¬S))

If START is true, the equation reduces to S ≡ S ∨ ¬S, which has no solution
in constructive logic, in which the law of excluded middle does not apply.

Ternary circuit simulation

Computing the reaction of an Esterel program can be done by determining
the values satisfying the associated constructive logic formula, which in turn
can be easily done by representing the formula as a Boolean circuit where the
variables become circuit wires and logical operators become gates. Figure 3.2
shows circuits for a pair of intuitionistic formulas. This approach is the basis
of the constructive circuit translation of Esterel, presented in Chapter 6.

For a circuit, the computation of an instant involves determining the
status of every wire based on the status of the inputs. While the status
of each input wire is fixed before the circuit is evaluated, all others start off
marked with ⊥, which corresponds to when no execution or pruning has been
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START

O

I S

START

O ≡ ((START ∧ I) ∨ (START ∧ ¬I)) S ≡ START ∧ S

Figure 3.2: Boolean circuits for two intuitionistic formulas

x y x ∧ y x ∨ y ¬x

⊥ ⊥ ⊥ ⊥ ⊥
⊥ 0 0 ⊥ ⊥
⊥ 1 ⊥ 1 ⊥
0 ⊥ 0 ⊥ 1
0 0 0 0 1
0 1 0 1 1
1 ⊥ ⊥ 1 0
1 0 0 1 0
1 1 1 1 0

Figure 3.3: Truth table for ternary logic (B⊥) operators

performed on the Esterel code. The circuit state changes when a gate is given
enough input information to compute its output.

For ternary simulation, the computations are all performed in three-
valued logic B⊥ = {⊥, 0, 1}, with operators ∧, ∨, and ¬ given in Figure 3.3.

The set B⊥ is also endowed with a Scott domain structure where ⊥ � 0
and ⊥ � 1. Like fact propagation, ternary simulation is monotonic with
respect to the order on B⊥. Once a circuit wire has been set to 0 or 1, i.e.,
once a new a fact has been determined, the evaluation process cannot change
its value. Ternary simulation is a fixpoint computation, which runs until
no more wires change their value. The process is finite, and the associated
program is correct for the given state and input if every circuit wire has been
assigned a final value of 0 or 1.

More information on constructive circuits and ternary simulation will be
given in Chapter 6.

Other approaches

The constructive approach is both mathematically well-founded and natural
for defining the operational semantics of Esterel. It can be implemented
using BDD-based Boolean techniques, using classical dual-rail encoding of
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ternary logic (see Shiple, Berry, and Touati [65]). However, symbolic causality
analysis does not scale to big designs. Also, general constructive causality
limits the scope of code analysis and optimization techniques. In particular,
widely-accepted optimization techniques in both software and hardware do
rely on the law of the excluded middle. Consider the statement

present I then emit O else emit O end

which might be translated into C as

if (I present)
O present = 1;

else
O present = 1;

At this point, it is tempting to factor out the code fragment “O present =
1,” thus removing the dependency between the test of I and the assignment of
O. This is valid for a well-determined input, but not for a not-yet determined
local or output signal. In complex cases, this transformation could change
the semantics of the statement, i.e., by giving it a behavior instead of causing
the program to be rejected. Similar transformations are performed by most
digital circuit optimizers.

To scale to big programs and support arbitrary source-code transforma-
tions, the simplest way is to require topological acyclicity, which is strictly
stronger than constructive causality. This is what is done by production
compilers such as Esterel Studio. Similarly, there is little point in generating
cyclic circuit since most synthesis systems reject them.

Nevertheless, finding other compromises remains interesting. Several at-
tempts have been made to extend the semantics of Esterel for optimization
or proof purposes. Such examples are the Esterel variant Quartz developed
by Schneider [62, 61]. Non-constructive transformations are sometimes used
in the Saxo-RT Esterel compiler, presented in Section 7.5. We do not present
these semantic approaches in this book, but rather explain their implications
in the code generation process.

3.2 Flavors of Constructive Semantics

The constructive semantics of Esterel comes in three main flavors that serve
different purposes. The constructive behavioral semantics (CBS), defined in
Chapter 4, is the simplest and most abstract. It succinctly defines what
a program means, and could be used to build interpreters and compilers.
However, they would be inefficient. The constructive operational semantics
(COS), defined in Chapter 5, is a microstep semantics that analyzes the fine
structure of control and signal propagation throughout a reaction and serves
as basis for sequential code generation. The constructive circuit semantics,
defined in Chapter 6, translates an Esterel program into a digital circuit
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endowed with three-valued logic simulation semantics. The circuit semantics
is used to generate actual hardware and to interface to formal verification
tools.

While it is generally accepted that the three variants of the constructive
semantics are equivalent, the formal equivalence proofs have not been fully
completed. It would be very interesting to prove them in formal verification
systems such as Coq [15] or HOL [36], used by Schneider [60, 59] to prove
the correctness of its Quartz variant of Esterel.

Constructive Behavioral Semantics

The main differences among the three semantics come in how they encode
control flow and the propagation of facts. Control flow can be viewed as a
form of fact propagation.

The constructive behavioral semantics, due to Berry [7], takes this ap-
proach and computes the reaction of a statement or program by mainly using
recursive fact-propagation routines called potential functions.

• The Must function encodes control flow propagation. It recursively de-
termines which statements are executed and which signals are emitted
by a statement given the status of each input signal and the current
knowledge about control and signal facts.

• The Can function performs code pruning. Given a statement and a cur-
rent facts about signals, it prunes inaccessible statements and reports
which signals can be declared absent.

• The Can+ function combines the control flow and code pruning into a
single potential function. Given a statement and a signal context, it
reports all the signals that must be emitted or can be emitted knowing
that the statement will be executed.

In Berry [7], Can and Can+ were grouped in a single function Canm to factor
out rules. Here, we split the definitions so we can reuse and extend Can in
the COS.

The final output behavior of the program is determined using recursive
calls to Must, Can, and Can+. The correctness of the program is also deter-
mined in the process: a program is rejected as incorrect for the given state
and signal context if the calls leave the status of any signal unknown.

Once the input/output behavior of the program has been determined, a
second step computes the resulting program state. This part of the semantics
is given in the inference-rule style of Plotkin’s [54] structural operational
semantics.

Relying on potential functions for the representation of control flow leads
to relatively few inference rules. The main inconvenience is that the macro-
step approach is unable to discern intra-instant causality and concurrency,
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so that dealing with data is problematic and hence using the CBS as a basis
for code generation does not appear practical.

Constructive Operational Semantics

To generate fast sequential C code from Esterel programs, we wish to execute
only active statements in each reaction. To this end, the constructive oper-
ational semantics represents statement execution using classical control flow
notation instead of a Must potential function. Transition rules represent the
elementary execution and synchronization steps that form the computation
of an instant. For determining signal absence through code pruning, it still
relies on the Can potential function, but control flow and code pruning can
be separated, so that the combined Can+ is no longer necessary.

The V3 semantics introduced by Berry and Gonthier [10] was the first
operational semantics for Esterel. That semantics is a subset of the current
constructive semantics, based on more restrictive and more complex poten-
tial analysis techniques. Its determinism was formally proven by Gonthier.
However, once the current simpler and more scalable constructive approach
was adopted as the basis for Esterel, a new operational semantics was needed.
The constructive operational semantics, due to Potop-Butucaru [56], is fully
compatible with the constructive behavioral semantics. It has the fine grain
needed to represent the causality and concurrency of data computations
and therefore allows the definition of the semantics of data-handling Esterel
programs.

The COS can be considered as the link between the CBS and code gen-
eration. On one hand, it is a refinement of the CBS based on a more direct
presentation of Must by control-flow propagation using microsteps. To de-
termine the reaction of an instant or the non-constructiveness of a program,
microsteps are chained into executions. On the other hand, we shall see
in Chapter 8 how the control structures of the COS directly correspond to
the different elements of the GRC intermediate format, upon which efficient
Esterel compilers are based.

To facilitate understanding and to introduce concepts and structures in a
gradual way, we present the constructive behavioral semantics in Chapter 4
and the COS in Chapter 5. The CBS first defines computation cycles, re-
activity and determinism, which form the minimal requirements any other
semantics must obey. Then, the COS refines the notation and the transition
rules to give an operational way of computing them.

Constructive Circuit Semantics

In Section 3.1.1, we explained that the semantics of Esterel can be defined by
representing programs with constructive logic formulas. Ternary simulation
of the associated circuit representation can be used to determine the correct-
ness and the reaction of a program for given state and input. This approach
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forms the basis of the constructive circuit semantics of Esterel, where Es-
terel programs generate Boolean circuits. At the circuit level, semantics and
correctness are defined by constructive logic rules or equivalently by ternary
simulation. Shiple, Berry, and Touati [65] proved the equivalence between the
three-valued simulation semantics and the up-bounded inertial delay model
due to Brzozowski and Seger [18], a realistic, but very conservative model of
digital circuits.

In practice, the circuit semantics is used by the Esterel Studio compiler
to generate efficient circuits from Esterel V7 programs. Although the lan-
guage has richer data-manipulation constructs, compiling control structures
is like that in V5. For hardware applications, generated circuits are usually
required to be acyclic. They can be fed into hardware synthesis systems and
model checkers for formal verification. For acyclic circuits, binary simulation
suffices. The circuit semantics are also used by the INRIA and Esterel Stu-
dio compilers to generate C. The C code is essentially a C representation of
the circuit gates, topologically sorted to guarantee that dependencies are re-
spected during the evaluation. Ternary circuit simulation has also been used
to compile Esterel programs to C. The INRIA compiler includes a ternary
simulator to evaluate the reaction of a constructive cyclic circuit to an input
by fact propagation. For such C code generation from either cyclic or acyclic
circuits generated from Esterel, there is an intrinsic inefficiency: all gates
must be evaluated, including the ones that do not affect outputs. Evaluation
time is linear in the size of the program, mostly irrespective of behavior.

The INRIA Esterel compiler also includes a BDD-based ternary model
checker that tests for constructiveness and replaces the cyclic circuit by a
behaviorally equivalent acyclic one. It can be used for hardware or software
generation, but it does not scale well to very large programs.

The circuit semantics presented here, due to Potop-Butucaru, is slightly
different from the original circuit semantics of Berry [7]. Potop-Butucaru’s
thesis [56] gives a detailed comparison and proves their equivalence.

3.3 Conventions and Preliminary Definitions

3.3.1 Global Correctness of an Esterel Program

The various formal semantics of Esterel, including the ones presented in this
book, concentrate on defining the behavior and correctness (constructivity)
of a program for a given state and status of input signals.

We say that a program is globally constructive if the program is correct
for every reachable state and for any input signal combination compatible
with the signal relations specified in the program interface.

In the third part of the book, we shall show that checking the global
correctness of a program is a complex issue unless dependencies are acyclic.
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3.3.2 Restriction to Kernel Esterel

In defining the semantics of Esterel with data, we restrict ourselves to the
Kernel Esterel language, defined in Section 2.2. The derived statements get
their semantics as macro definitions over the kernel language. The same
approach is used in the circuit translation definition, where direct translation
rules are only given for the kernel language primitives. However, actual
compilers use more efficient rules for certain derived statements.

3.3.3 Signal Events

To represent the status of each signal visible to a statement, we rely on
signal events. Given a set Σ of signals, also called a sort, an event E over
Σ associates a status E(S) ∈ B⊥ = {⊥, 0, 1} with every signal S ∈ Σ. The
sort of E is denoted Sort(E). The valuation E(S) = 1 corresponds to S
being present, while E(S) = 0 corresponds to S being absent. The valuation
E(S) = ⊥ corresponds to the case where the status of S has not yet been
determined by the constructive semantics. In this case, we say that the status
of S is unknown.

To improve the readability of the semantic rules, we use a set-like notation
for events. The notation ignores the sort and the unknown signal statuses.
Thus, {S1, P 1, Q0} represents the event where S and P are present, Q is
absent, and all the other signals have ⊥ status. Of course, {S1, S0} is not
an acceptable signal event, since a signal cannot have status 0 and 1 at the
same time. We write Sm ∈ E if E(S) = m and we denote with ∅ the event
where all signals have unknown status. The set-like notation also supports
the intuition that events of support Σ are also events of support Σ′ ⊇ Σ, the
extra signals having status unknown in the larger support. The set of events
of a given sort is partially ordered by ≤ in a pointwise way on signals: E ≤ E′

means E(S) ≤ E′(S) for all S. Note that ≤ is the partial order induced by
the partial order on the B⊥ domain.

Given a signal set Σ, a signal S ∈ Σ, and E an event of sort Σ, we write
E \ S for the event of sort Σ \ {S} that coincides with E on its sort. Given
an event E of sort Σ, a signal S, and m ∈ B⊥, we denote by E ∗Sm the event
of sort Σ ∪ {S} with E ∗ Sm(S) = m and E ∗ Sm(Q) = E(Q) for all Q 
= S.
Notice that the status of S in E is lost in E ∗Sm if S ∈ Sort(E). This means
that declarations of identically-named signals can be safely nested without a
stack, e.g., “signal S in signal S in p end end.”

3.3.4 Trap Handling and Completion Codes

First introduced by Gonthier [35] as part of the Esterel V3 semantics, the
integer encoding of statement completion status is key to understanding the
semantics and generating efficient code. The idea is to assign a distinct
integer to each way a statement may terminate to deal with the interaction
between traps and parallel synchronization.
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An Esterel statement that is started or resumed during an execution in-
stant completes its execution instant by doing exactly one of the following:

• terminate its execution normally and pass on the control to the next
statement in sequence;

• pause, that is retain the control flow in one or more pause sub-statements
(so that it can be resumed in a subsequent instant), without exiting any
trap; or

• exit a trap. In case several traps are exited simultaneously, only the
highest-level one is reported to the enclosing statement.

The completion codes of statements running in parallel need to be composed;
the integer codes have been chosen to make this a simple “max” operation.

• 0 is the code for normal termination;

• 1 is the code for pause; and

• k + 2 is the code associated with trap T, if k other trap declarations
have to be traversed before reaching the declaration of T.

Consider the statement in Figure 3.4 in the instant where it starts. The
completion code of “nothing” is 0, as the statement instantly terminates;
“pause” completes with code 1, as it retains control; and “exit T” produces
code 2, as the declaration of T is the first enclosing trap declaration. The
two “exit U” statements produce different completion codes. The first is
separated from the declaration of U by the declaration of T. Therefore, it
exits with code 3. The second instance of “exit U” exits with code 2.

The parallel statement takes the maximum of the completion code of all
its branches, which by design is exactly all the synchronization it is required
to do. Consider a parallel statement p || q, and assume that p returns k and
q returns l. There are three possibilities:

• the parallel terminates if and when both branches have terminated,
since max(k, l) = 0 is equivalent to k = l = 0;

• the parallel pauses if one branch pauses and the other one does not exit
a trap, since max(k, l) = 1 implies k = 1 and l ≤ 1 or vice-versa; or

• the parallel exits a trap if one branch does. If both branches exit traps,
the parallel only propagates the outermost one. This follows from the
encoding of exit statements that starts with code 2 and increases by 1
for each enclosing trap.

In our example, the four-branch parallel completes with code 3 in the first
instant.
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trap U in % code 0
trap T in % code 2

nothing % code 0
|| % code 3

pause % code 1
||

exit T % code 2
||

exit U % code 3
end

|| % code 2
exit U % code 2

end
; % code 1
pause % code 1

Figure 3.4: Completion codes in the start instant of a simple statement

When the body of a trap declaration terminates or pauses (completion
codes 0 or 1), the trap declaration itself does the same. The trap declaration
statement is also the handler of the trap it defines. It terminates when it
receives the completion code 2 from its body, which corresponds to the body
exiting the declared trap. In this case, the trap declaration preempts its body
and terminates. The body producing a completion code k ≥ 3 corresponds
to a higher-level trap being exited. To report the exit to the environment,
the trap declaration completes with code k − 1. The decrement corresponds
here to the traversal of one trap declaration (which is consistent with the
definition of the completion codes).

In our example, the declaration of “trap T” completes with code 2, as
its body completes with code 3. Then the innermost parallel statement com-
pletes with code 2 and the trap is handled by the declaration of U, whose
body is preempted. Therefore, that the first “pause” statement does not
retain control between instants. Control is passed to the next instruction in
sequence and it pauses in the second “pause” statement. Consequently the
top-level sequence statement pauses (code 1).

If the statement is resumed in the following execution instant, the second
“pause” statement terminates (code 0), and the entire sequence terminates.
The other statements produce no codes since they do not execute.

Program completion

As explained in Section 2.5, the body statement of a module can have no
free trap. Therefore, a program can complete only with code 0, representing
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program termination, or 1, which tells us that the program paused (i.e., that
it did not terminate and will be resumed in the future). The reaction function
produced by Esterel compilers returns this code to the environment.

Notation

Certain choices of notation prove useful in defining the semantics of Es-
terel. We shall annote the statement “exit T” with a completion code,
e.g., “exit T(k)”, where k 
∈ {0, 1} is the completion code associated with T
at the given place in the Esterel program.

Parallel synchronization is represented by the max operator; we need to
extend it to sets of completion codes.

max(K, L) =
{ ∅ if K = ∅ or L = ∅
{max(k, l) : k ∈ K, l ∈ L} if K, L 
= ∅

The downshift operator (↓) decrements trap codes when they traverse a
trap declaration. Again, we define the operator on single values

↓ k =

⎧⎨
⎩

0 if k ∈ {0, 2}
1 if k = 1
k − 1 otherwise

and sets
↓ K = {↓ k | k ∈ K}.
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Constructive Behavioral
Semantics

In this chapter, we define the semantic terms representing the state of an
Esterel statement; analyze potentials, including the full set of rules for com-
puting the three potential functions; and give the structural induction rules
used to compute the behavioral transitions. The following sections explain
how program transitions are derived from those of its body, and investigate
some correctness issues.

4.1 Behavioral Transitions

4.1.1 Transition syntax

The CBS formalize a reaction of a program P as a macro-step behavioral
transition of the form

P ′ ↪
O−→
I

P ′′.

Here, P ′ and P ′′ are decorated program texts that represent possibly identical
successive execution states of P . Representing program states by program
text is standard for rules in structural operational semantics rules [54, 52].

The input event I gives the present/absent status of each input signal
(provided by the environment). The output event O gives the status of each
output signal as computed by the program.

The actual computation of the reaction is done using an auxiliary state-
ment transition relation, which has the form

p ↪
E′, k−−−→

E
p′,

where p is a statement, p and p′ are terms defining the state of p before and
after the transition, E is the input signal event of the transition, E′ is the

55
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output event of the transition, and k is the integer completion code returned
by p following the definition in Chapter 3.

The two transition systems are related as follows: p and p′ in the second
relation are states of the body of P , with the interface stripped away. To
handle output signals of P given I, the input environment E for the body
transition must be computed with care because P ’s outputs are also fed back
to the body. This will be explained in Section 4.7.

As we explained in the last chapter, the computation of the statement
transition relation for a given statement, state, and signal event is performed
in two steps. First, the analysis of potentials uses the functions Must, Can,
and Can+ to determine the correctness of the statement, its output event,
and its completion code. In the second step, the full statement transition
relation, which also defines the resulting program state, is computed using
structural induction rules.

4.1.2 States as Decorated Terms

Consider the term p = pause ; pause ; emit S. In the CBS, the idea is to
keep the shape of the statement constant and to decorate it to indicate where
control pauses between reactions. Only occurrences of pause are decorated:∗

we write ̂pause instead of pause to indicate that execution has paused and
will resume from there in the following instant. The other statements do not
need to be decorated since they are instantaneous. Using these decorations,
the execution—the sequence of reactions—of p is

pause ; pause ; emit S ↪
∅, 1−−→
∅

̂pause ; pause ; emit S

↪
∅, 1−−→
∅

pause ; ̂pause ; emit S

↪
{S}, 0−−−−→

∅
pause ; pause ; emit S

The boot statement

There is a slight problem if we assume the previous statement is the entire
body of a program. Indeed, in the above example, the fourth term is p3 =
pause ; pause ; emit S, which is the same as the initial term p0. However,
the program should be considered terminated in p3 but not in p0. Using
such a rewriting would assume the environment in which the program runs
differentiates between the “terminated” state and “not yet started.”

All current approaches to compiling Esterel instead place the burden on
the program itself. This done by replacing the initial statement p0 with the
decorated term “ ̂pause ; p0.” Then, control initially resumes from the first

∗In the full language, other statements can be decorated, for example await, every, and
loop-each. The expansion of each of these user-level statements involves exactly one pause
statement, which makes decoration unambiguous.
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̂pause statement, called the boot statement. An undecorated program such
as p3 is considered terminated. In this approach, the extended program term
is never started, but only resumed. With the boot ̂pause statement added,
the execution sequence becomes

̂pause ; pause ; pause ; emit S ↪
∅, 1−−→
∅

pause ; ̂pause ; pause ; emit S

↪
∅, 1−−→
∅

pause ; pause ; ̂pause ; emit S

↪
{S}, 0−−−−→

∅
pause ; pause ; pause ; emit S

We could have used a termination marker instead of a boot statement,
but the boot statement is more natural in the circuit translation and avoids
the need for a new symbol.

4.1.3 State Syntax

In the definition of the semantics, the letters p and q represent Kernel Esterel
statements. To simplify the definition of the semantic rules, we generalize
the decoration of pause statements to all kernel statements. I.e., p̂ is a state
of p where one or more of its pause statements are decorated. Here, we also
say that the statement p is selected for execution in the next reaction, or
simply selected. We write p to indicate a term over p that may or may not
be selected,. In other words, p represents either a selected term p̂, or the
unselected term p. The grammar of states and terms is

p̂ ::= ̂pause
| present S then p̂ else p end
| present S then p else p̂ end
| suspend S when p̂
| p̂ ; p
| p ; p̂
| loop p̂ end
| p̂ || p
| p || p̂
| trap T in p̂ end
| signal S in p̂ end

p ::= p
| p̂

Notice that a subterm is selected if and only if it contains a selected pause
statement ̂pause. In a selected term such as present S then p̂ else q end,
the only selected subterm is p̂. Such a state is reached when the test has
taken its left branch in some previous instant and execution of this branch
has not yet terminated (and has not been preempted). There is no term of
the form present S then p̂ else q̂ end because one cannot be in the then
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and else branches at the same time. Similarly, there is no term of the form
p̂ ; q̂ since it is not possible to pause in both components of a sequence at the
same time.

A branch of a selected parallel statement may or may not be selected.
In p̂ || q̂, both p̂ and q̂ are selected: the parallel has been started in some past
instant and both branches are still active. A term of the form p̂ || q represents
the case where the second branch of the parallel has terminated while the first
one is still active. For example, the term ( ̂pause ; pause) || ̂pause becomes
(pause ; ̂pause) || pause in the following instant.

4.2 Analysis of Potentials

Consider a program P with body p in state p̂, and let I be an input event
that associates a present/absent/undefined status to every input signal. As
explained in Chapter 3, the constructive behavioral semantics determines the
status of the output signals and the completion code of the program through
calls to the potential functions Must, Can, and Can+. The computation of
the functions is performed through recursive calls that follow the control flow
structure of the program.

Execution—The Must Function

The Must function determines which signals will be emitted when executing
a statement in a given signal context. If the execution of the program does
not block for the given input event and program state, the Must function
also determines the completion code of p. The Must function has the form

Must(p, E) = 〈F , K 〉.

Here, E is the signal context—a signal event that associates a status (1, 0,
or ⊥) with every input or output signal of p. The signal event F gives the
set of signals that p must emit. It only assigns statuses 1 and ⊥. The set
K is empty if the execution of p̂ blocks for the input event E. If execution
completes with code k, then K = {k}. To independently manipulate the
components of the result pair, we identify them using subscripts:

Must(p, E) = 〈MustS(p, E) , MustK(p, E) 〉.

Code Pruning—The Can Function

The function Can(p, E) is used to prune impossible paths and determine
which signals and completion codes could possibly be produced after pruning.
Its form is similar to that of Must:

Can(p, E) = 〈CanS(p, E) , CanK(p, E) 〉.
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Here, CanS(p, E) is the set of emit statements that have not been invalidated
by the given signal context E∗. Similarly, CanK(p, E) computes the set of
not-invalidated completion codes.

Combined Potential—The Can+ Function

The Must function only represents execution and the Can function only rep-
resents code pruning over not-yet-started statements. However, it is often
the case that the execution blocks inside a statement and we still need to de-
termine what the not-yet-executed code can do. To reason about such cases,
we use the Can+ function, which combines execution and code pruning. The
form of Can+ is similar to that of the other potential functions:

Can+(p, E) = 〈Can+
S (p, E) , Can+

K(p, E) 〉.

Here, Can+
S (p, E) includes all the signals that must be emitted by p and all

the signals that can be emitted after the execution is blocked if it does.

Notation

We extend the inclusion predicate ⊆ and the union operator ∪ component-
wise on pairs 〈F , K 〉. We also extend the signal restriction operator to
pairs:

〈F , K 〉 \ S =def 〈F \ S , K 〉.
For presentation reasons, we shall use the vertical and horizontal pair notation
interchangeably when representing potential functions:

〈F , K 〉 =
〈

F
K

〉
.

Example

Consider the statement p from Figure 3.1:

signal R in
emit S ;
present R then emit O1 else emit O2 end ;
present S else emit R end

end

Assume the execution of p starts in a context where the signal S is already
present (i.e., emitted by the environment). The first step is to prune unreach-
able code. Here, because the else branch of “present S” cannot be taken,

∗Section 4.6 shows how upper bounds for CanK(p, E) can be defined for use in the
current code generation schemes.
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signal R cannot be emitted and hence cannot be present. This implies that
O1 cannot be emitted. Therefore

Can(p, E) = 〈 {S1, O21} , {0} 〉.
Since R cannot be emitted (R1 
∈ CanS(p, E)), we can set it absent (0).
Execution proceeds by emitting S, and performing the two signal tests, which
results in O2 being emitted. Therefore,

Must(p, E) = 〈 {S1, O21} , {0} 〉.
Since the execution does not block, we also have Can+(p, E) = Must(p, E).

Now assume the execution of p starts in a context F where S has not been
emitted by the environment. Since the status of S is still unknown (⊥), no
code can be pruned and we have

Can(p, F ) = 〈 {S1, T1, O11, O21} , {0} 〉.
The control flow simulation, i.e., the Must computation, starts by setting the
status of R to unknown (⊥). Then, “emit S” is executed, S is emitted and
control flow blocks on the first signal test. We have

Must(p, F ) = 〈 {S1} , ∅ 〉.
The Can+ potential, which combines execution and code pruning, is

Can+(p, F ) = 〈 {S1, T1, O11, O21} , {0} 〉.
The first computation of the potential functions is completed, but not

the potential computation step. Indeed, we determined new information:
the fact that S is emitted in the context F . We need to feed this information
back by adding it to the input environment and recomputing the potential
functions. Notice that the new environment E = F ∪ {S1} corresponds to
the first case we considered.

It is important to note how the potential computation advances by suc-
cessively enriching the environment of each statement. In our example, in
the second case the initial call with environment F is followed by a call with
environment F ∪{S1}. Potential computation stops when no new information
can be determined through calls to the potential functions. The monotonicity
property is essential for ensuring the convergence of the computation.

4.2.1 The Definition of Must, Can, and Can+

This section defines the three potential functions for the kernel language
statements. We first define the potential functions for non-decorated terms,
used when a statement is started. Then, we reduce the potential computation
over decorated terms (corresponding to statement resumption) to the non-
decorated case.
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Non-decorated terms

The definitions of the three functions coincide for signal emissions and for
basic completion code generators.

Must(nothing, E) = Can(nothing, E) = Can+(nothing, E) = 〈 ∅ , {0} 〉
Must(pause, E) = Can(pause, E) = Can+(pause, E) = 〈 ∅ , {1} 〉

Must(exit T(k), E) = Can(exit T(k), E) = Can+(exit T(k), E) = 〈 ∅ , {k} 〉
Must(emit S, E) = Can(emit S, E) = Can+(emit S, E) = 〈 {S1} , {0} 〉

Now, consider a signal test “present S then p else q end” and an
event E. First, for both Must and Can, the definitions are easy if the status
of S in E is either 1 or 0: we recursively analyze the first branch if the
status is 1 and the second branch if the status is 0. If the status of S in E
is unknown, Must and Can behave very differently. For Must, we return
the empty signal set and the empty completion code set since none of the
branches must be taken. For Can, we return the union of the sets of signals
that the branches can emit and the union of the sets of completion codes the
branches can return. Since nothing is executed, Can+ behaves like Can:

Must(present S then p else q end, E) =

⎧
⎪⎨

⎪⎩

Must(p, E) if S1 ∈ E

Must(q, E) if S0 ∈ E

〈 ∅ , ∅ 〉 if S⊥ ∈ E

Can(present S then p else q end, E) =

⎧
⎪⎨

⎪⎩

Can(p, E) if S1 ∈ E

Can(q, E) if S0 ∈ E

Can(p, E) ∪ Can(q, E) if S⊥ ∈ E

Can+(present S then p else q end, E) =

⎧
⎪⎨

⎪⎩

Can+(p, E) if S1 ∈ E

Can+(q, E) if S0 ∈ E

Can(p, E) ∪ Can(q, E) if S⊥ ∈ E

When started, a suspension statement acts like its body:

Must(suspend S when p, E) = Must(p, E)
Can(suspend S when p, E) = Can(p, E)

Can+(suspend S when p, E) = Can+(p, E).

For a sequence p ; q, we analyze q only if p must (resp. can) terminate, in
which case the completion code 0 of p is discarded. Note the complexity of
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the Can+ definition, whose cases correspond to cases of both Must and Can:

Must(p ; q, E) =⎧⎪⎨
⎪⎩

Must(p, E) if 0 
∈ MustK(p, E),
〈

MustS(p, E) ∪MustS(q, E)
MustK(q, E)

〉
otherwise.

Can(p ; q, E) =⎧⎪⎨
⎪⎩

Can(p, E) if 0 
∈ CanK(p, E),
〈

CanS(p, E) ∪ CanS(q, E)
CanK(p, E) \ {0} ∪ CanK(q, E)

〉
otherwise.

Can+(p ; q, E) =⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Can+(p, E) if 0 
∈ Can+
K(p, E),

〈
Can+

S (p, E) ∪ Can+
S (q, E)

Can+
K(p, E) \ {0} ∪ Can+

K(q, E)

〉
if 0 ∈ Can+

K(p, E)
and 0 ∈ MustK(p, E),

〈
Can+

S (p, E) ∪ CanS(q, E)
Can+

K(p, E) \ {0} ∪ CanK(q, E)

〉
otherwise.

The result of MustK(p, E) is either empty or a singleton, meaning execu-
tion is deterministic. Note that in the definition of Must(p ; q, E), we could
also write the predicates using set comparisons, i.e., as MustK(p, E) 
= {0}
and MustK(p, E) = {0}.

Note that in the semantics of p ; q, the signals emitted by p are not fed
into q at the level of the sequence potential functions. This could be done,
but we prefer obtaining the same semantics while maintaining a strict separa-
tion of concerns. In our framework, signal feedback is only performed at the
level of signal declaration statements. The global feedback effect is obtained
by performing successive calls of the potential functions, with increasing en-
vironments. See the handling of signal declaration below.

A loop is an infinite sequence of occurrences of the loop body. However,
the body cannot be instantaneous, so that only its first instance must be
traversed by the potential functions. The fact that the body cannot terminate
will be ensured by the inference rules over transitions.

Must(loop p end, E) = Must(p, E)
Can(loop p end, E) = Can(p, E)

Can+(loop p end, E) = Can+(p, E)

The signal potential of a parallel is the union of the signal potentials of
the branches. The completion code potential is obtained by combining the
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potentials of the branches using the max operator, as explained in
Section 3.3.4:

Must(p || q, E) =
〈

MustS(p, E) ∪MustS(q, E)
max(MustK(p, E),MustK(q, E))

〉

Can(p || q, E) =
〈

CanS(p, E) ∪ CanS(q, E)
max(CanK(p, E),CanK(q, E))

〉

Can+(p || q, E) =
〈

Can+
S (p, E) ∪ Can+

S (q, E)
max(Can+

K(p, E),Can+
K(q, E))

〉

Note that the completion codes of both branches are required to compute
the completion code of the parallel. In other terms, MustK(p || q, E) is
non-empty, and therefore a singleton set, if and only if MustK(p, E) and
MustK(q, E) are non-empty.

Using the max set operation in the definition of control propagation en-
sures that a parallel cannot terminate if one of its branches cannot. This
property would be lost if max were replaced by a simple union, and this
would lead to abnormally rejecting constructively correct programs such as

[
present S then emit O end

||
pause

] ; emit S

where the parallel statement pauses in the first instant because of its second
pause branch, breaking the potential cycle on S.

For traps, we apply the appropriate operators, defined in Section 3.3.4,
to the completion codes returned by the body:

Must(trap T in p end, E) = 〈MustS(p, E) , ↓ MustK(p, E) 〉
Can(trap T in p end, E) = 〈CanS(p, E) , ↓ CanK(p, E) 〉

Can+(trap T in p end, E) = 〈Can+
S (p, E) , ↓ Can+

K(p, E) 〉.

Signal rules for non-decorated terms

The rules for the local signal declaration operator “signal S in p end” are
very different for Must and Can. For Must, because of the way the recursion
works, the rule is used only if we already know that “signal S in p end”
must be executed. Since we have no information yet about the status of S,
we first set this status to ⊥ and we compute what we must and cannot do.
If we find that p must emit S, we take this fact for granted and re-analyze p
with status 1 for S. If we find that p cannot emit S, we know that S must
be absent and we re-analyze p with status 0 for S. Otherwise, we cannot
progress. In each case, we enforce the scoping rule by removing the status of
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the local S from the emitted signal set:

Must(signal S in p end, E) =⎧⎨
⎩

Must(p, E ∗ S1) \ S if S1 ∈ MustS(p, E ∗ S⊥),
Must(p, E ∗ S0) \ S if S1 
∈ Can+

S (p, E ∗ S⊥),
Must(p, E ∗ S⊥) \ S otherwise.

For Can, we first analyze the body p with the status of S set to ⊥. If the
signal cannot be emitted, we can consider the signal absent and we re-analyze
the statement with the status of S set to 0. If the signal cannot be considered
absent, we simply return the result of the first analysis:

Can(signal S in p end, E) ={
Can(p, E ∗ S0) \ S if S1 
∈ CanS(p, E ∗ S⊥),
Can(p, E ∗ S⊥) \ S otherwise

The combined potential function Can+ combines the analysis of Must and
Can:

Can+(signal S in p end, E) =⎧⎨
⎩

Can+(p, E ∗ S1) \ S if S1 ∈ MustS(p, E ∗ S⊥)
Can+(p, E ∗ S0) \ S if S1 
∈ Can+

S (p, E ∗ S⊥)
Can+(p, E ∗ S⊥) \ S otherwise

The last rules make the difference between Can and Can+ explicit. The
latter is allowed to recursively call Must to represent execution, whereas Can
is just a pruning function that can only call itself.

Extension to state terms

When applying Must and Can to decorated state terms, i.e., to statements
that held control from the previous instant, the computation must be driven
towards the active sub-statements. The rules effectively isolate the non-
decorated terms representing the transition function of the current reaction.

A selected pause statement behaves like nothing. Regardless of the en-
vironment, the statement terminates and no signal is produced:

Must( ̂pause, E) = Can( ̂pause, E) = Can+( ̂pause, E) = 〈 ∅ , {0} 〉.

When a selected present statement is resumed, the test signal is ignored
and the statement behaves like its selected branch. Therefore, the potentials
of the present statement are the potentials of the selected sub-statement:

Must(present S then p̂ else q end, E) = Must(p̂, E)
Can(present S then p̂ else q end, E) = Can(p̂, E)

Can+(present S then p̂ else q end, E) = Can+(p̂, E)
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Must(present S then p else q̂ end, E) = Must(q̂, E)
Can(present S then p else q̂ end, E) = Can(q̂, E)

Can+(present S then p else q̂ end, E) = Can+(q̂, E).

If the test signal is present in the environment (S1 ∈ E), a selected
suspend statement freezes the state of its body and pauses (completion
code 1). No signal is emitted. In this case, all three potential functions
return the pair 〈 ∅ , {1} 〉. When the test signal is absent (S0 ∈ E), the
suspend statement behaves like its body. When the status of S is not yet
known (S⊥ ∈ E), no execution takes place, so the Must function returns the
empty pair. However, the body still can be executed or preempted. There-
fore, Can and Can+ return the union of the potentials of the first two cases:

Must(suspend S when p̂, E) =

⎧⎪⎨
⎪⎩
〈 ∅ , {1} 〉 if S1 ∈ E

Must(p̂, E) if S0 ∈ E

〈 ∅ , ∅ 〉 if S⊥ ∈ E

Can(suspend S when p̂, E) =

⎧⎨
⎩
〈 ∅ , {1} 〉 if S1 ∈ E
Can(p̂, E) if S0 ∈ E
〈 ∅ , {1} 〉 ∪ Can(p̂, E) if S⊥ ∈ E

Can+(suspend S when p̂, E) =

⎧⎨
⎩
〈 ∅ , {1} 〉 if S1 ∈ E
Can+(p̂, E) if S0 ∈ E
〈 ∅ , {1} 〉 ∪ Can(p̂, E) if S⊥ ∈ E.

If the second term of a sequence is selected, then the sequence behaves
like its selected branch (control cannot reach the first branch without first
exiting the sequence):

Must(p ; q̂, E) = Must(q̂, E)
Can(p ; q̂, E) = Can(q̂, E)

Can+(p ; q̂, E) = Can+(q̂, E).

When the first branch of the sequence p ; q is selected, we analyze q
only if p must (resp. can) terminate, in which case the completion code 0
of p is discarded. Note the complexity of the Can+ definition, whose cases
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correspond to cases of both Must and Can:

Must(p̂ ; q, E) =⎧⎨
⎩

Must(p̂, E) if 0 
∈ MustK(p̂, E),〈
MustS(p̂, E) ∪MustS(q, E)
MustK(q, E)

〉
otherwise.

Can(p̂ ; q, E) =⎧⎨
⎩

Can(p̂, E) if 0 
∈ CanK(p̂, E),〈
CanS(p̂, E) ∪ CanS(q, E)
CanK(p̂, E) \ {0} ∪ CanK(q, E)

〉
otherwise.

Can+(p̂ ; q, E) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Can+(p̂, E) if 0 
∈ Can+
K(p̂, E),〈

Can+
S (p̂, E) ∪ Can+

S (q, E)
Can+

K(p̂, E) \ {0} ∪ Can+
K(q, E)

〉
if 0 ∈ MustK(p̂, E),〈

Can+
S (p̂, E) ∪ CanS(q, E)

Can+
K(p̂, E) \ {0} ∪ CanK(q, E)

〉
otherwise.

A loop is the infinite sequence of instances of a given statement. There-
fore, the rules for loop are derived from those of the sequence by taking into
account the knowledge the loop body cannot terminate instantaneously:

Must(loop p̂ end, E) =⎧⎪⎨
⎪⎩

Must(p̂, E) if 0 
∈ MustK(p̂, E),
〈

MustS(p̂, E) ∪MustS(p, E)
MustK(p, E)

〉
otherwise.

Can(loop p̂ end, E) =⎧⎪⎨
⎪⎩

Can(p̂, E) if 0 
∈ CanK(p̂, E),
〈

CanS(p̂, E) ∪ CanS(p, E)
CanK(p̂, E) \ {0} ∪ CanK(p, E)

〉
otherwise.

Can+(loop p̂ end, E) =⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Can+(p̂, E), if 0 
∈ Can+
K(p̂, E),

〈
Can+

S (p̂, E) ∪ Can+
S (p, E)

Can+
K(p̂, E) \ {0} ∪ Can+

K(p, E)

〉
if 0 ∈ MustK(p̂, E),

〈
Can+

S (p̂, E) ∪ CanS(p, E)
Can+

K(p̂, E) \ {0} ∪ CanK(p, E)

〉
otherwise.

When only one of the branches of a parallel statement is selected, its
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resumption behavior is given by that of the selected branch:

Must(p̂ || q, E) = Must(p̂, E)
Can(p̂ || q, E) = Can(p̂, E)

Can+(p̂ || q, E) = Can+(p̂, E)

Must(p || q̂, E) = Must(q̂, E)
Can(p || q̂, E) = Can(q̂, E)

Can+(p || q̂, E) = Can(q̂, E).

When both branches of the parallel are selected, the signal potential of
the parallel statement is the union of the signal potentials of the branches.
The completion code potential is computed using the max function, as we
explained earlier:

Must(p̂ || q̂, E) =
〈

MustS(p̂, E) ∪MustS(q̂, E)
max(MustK(p̂, E),MustK(q̂, E))

〉

Can(p̂ || q̂, E) =
〈

CanS(p̂, E) ∪ CanS(q̂, E)
max(CanK(p̂, E),CanK(q̂, E))

〉

Can+(p̂ || q̂, E) =
〈

Can+
S (p̂, E) ∪ Can+

S (q̂, E)
max(Can+

K(p̂, E),Can+
K(q̂, E))

〉
.

The potential functions for selected trap declarations follow the definition
of the potentials of the non-selected terms but replace the unselected body
with a selected one:

Must(trap T in p̂ end, E) = 〈MustS(p̂, E) , ↓ MustK(p̂, E) 〉
Can(trap T in p̂ end, E) = 〈CanS(p̂, E) , ↓ CanK(p̂, E) 〉

Can+(trap T in p̂ end, E) = 〈Can+
S (p̂, E) , ↓ Can+

K(p̂, E) 〉.
The same is true for the selected signal declarations:

Must(signal S in p̂ end, E) =⎧⎨
⎩

Must(p̂, E ∗ S1) \ S if S1 ∈ MustS(p̂, E ∗ S⊥),
Must(p̂, E ∗ S0) \ S if S1 
∈ Can+

S (p̂, E ∗ S⊥),
Must(p̂, E ∗ S⊥) \ S otherwise.

Can(signal S in p̂ end, E) ={
Can(p̂, E ∗ S0) \ S if S1 
∈ CanS(p̂, E ∗ S⊥),
CanS(p̂, E ∗ S⊥) \ S otherwise.

Can+(signal S in p̂ end, E) =⎧⎨
⎩

Can+(p̂, E ∗ S1) \ S if S1 ∈ MustS(p, E ∗ S⊥)
Can+(p̂, E ∗ S0) \ S if S1 
∈ Can+

S (p̂, E ∗ S⊥)
Can+

S (p̂, E ∗ S⊥) \ S otherwise.
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4.2.2 Elementary Properties

For any statement p in state p under event E, the inductive definitions of the
potential functions ensure

Must(p, E) ⊆ Can+(p, E) ⊆ Can(p, E).

This expresses the intuition that execution is only performed on statements
that cannot be invalidated by code pruning. When the execution of a state-
ment does not block (a completion code is produced), the Must and Can+

functions give the same result:

MustK(p, E) = {k} ⇒ Can+(p, E) = Must(p, E).

The Must potential function is monotonic. More precisely, if E1 and E2
are events such that E1 ⊆ E2, then

E1 ⊆ E2 ⇒ Must(p, E1) ⊆ Must(p, E2).

This amounts to saying the execution can only progress when additional
information is available.

The Can and Can+ functions are also monotonic but contravariant, as
more statements are invalidated when more information is available:

E1 ⊆ E2 ⇒
{

Can(p, E1) ⊇ Can(p, E2)
Can+(p, E1) ⊇ Can+(p, E2)

.

4.3 Semantic Rules

Once a statement has been determined correct and its completion code and
output event computed, we use deduction rules to determine the resulting
program state and to represent the behavior of the statement under the form
of a behavioral transition.

The rules are split into two categories: s-rules start executing a fresh
statement p; r-rules resume execution from an existing state p̂. When two
similar rules apply to both a state p̂ and a standard statement p, we group
them into a single sr-rule acting on a term p (e.g., rules (sr-seq1) and (sr-seq2)
below).

nothing ↪
∅, 0−−→
E

nothing (s-nothing)

k 
∈ {0, 1}
exit T (k) ↪

∅, k−−→
E

exit T (k)
(s-exit)

emit S ↪
{S1}, 0−−−−→

E
emit S (s-emit)
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pause ↪
∅, 1−−→
E

̂pause (s-pause)

̂pause ↪
∅, 0−−→
E

pause (r-pause)

S1 ∈ E p ↪
E′, k−−−→

E
p′

present S then p else q end ↪
E′, k−−−→

E
present S then p′ else q end

(s-present+)

S0 ∈ E q ↪
E′, k−−−→

E
q′

present S then p else q end ↪
E′, k−−−→

E
present S then p else q′ end

(s-present−)

p̂ ↪
E′, k−−−→

E
p′

present S then p̂ else q end ↪
E′, k−−−→

E
present S then p′ else q end

(r-then)

q̂ ↪
E′, k−−−→

E
q′

present S then p else q̂ end ↪
E′, k−−−→

E
present S then p else q′ end

(r-else)

p ↪
E′, k−−−→

E
p′

suspend S when p ↪
E′, k−−−→

E
suspend S when p′

(s-suspend)

S1 ∈ E

suspend S when p̂ ↪
∅, 1−−→
E

suspend S when p̂

(r-suspend+)

S0 ∈ E p̂ ↪
E′, k−−−→

E
p′

suspend S when p̂ ↪
E′, k−−−→

E
suspend S when p′

(r-suspend−)
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p ↪
E′, k−−−→

E
p′ k 
= 0

p ; q ↪
E′, k−−−→

E
p′ ; q

(sr-seq1)

p ↪
E′, 0−−−→

E
p q ↪

F ′, l−−−→
E

q′

p ; q ↪
E′∪F ′, l−−−−−→

E
p ; q′

(sr-seq2)

q̂ ↪
E′, l−−−→
E

q′

p ; q̂ ↪
E′, l−−−→
E

p ; q′
(r-seq3)

p ↪
E′, k−−−→

E
p′ k 
= 0

loop p end ↪
E′, k−−−→

E
loop p′ end

(sr-loop)

p̂ ↪
E′, 0−−−→

E
p p ↪

E′′, k−−−→
E

p′ k 
= 0

loop p̂ end ↪
E′∪E′′, k−−−−−−→

E
loop p′ end

(r-do-loop)

p ↪
E′, k−−−→

E
p′ q ↪

F ′, l−−−→
E

q′

p || q ↪
E′∪F ′, max(k,l)−−−−−−−−−−→

E
p′ || q′

(s-par-both)

p̂ ↪
E′, k−−−→

E
p′ q̂ ↪

F ′, l−−−→
E

q′

p̂ || q̂ ↪
E′∪F ′, max(k,l)−−−−−−−−−−→

E
p′ || q′

(r-par-both)

p̂ ↪
E′, k−−−→

E
p′

p̂ || q ↪
E′, k−−−→

E
p′ || q

(r-par-left)

q̂ ↪
E′, l−−−→
E

q′

p || q̂ ↪
E′, l−−−→
E

p || q′
(r-par-right)

p ↪
E′, k−−−→

E
p′ k = 0 or k = 2

trap T in p end ↪
E′, 0−−−→

E
trap T in p end

(sr-trap-term)
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p ↪
E′, 1−−−→

E
p̂

trap T in p end ↪
E′, 1−−−→

E
trap T in p̂ end

(sr-trap-pause)

p ↪
E′, k−−−→

E
p′ k > 2

trap T in p end ↪
E′, ↓k−−−−→

E
trap T in p′ end

(sr-trap-prop)

S ∈ MustS(p, E ∗ S⊥) p ↪
E′, k−−−→
E∗S1

p′

signal S in p end ↪
E′\S, k−−−−−→

E
signal S in p′ end

(sr-sig+)

S 
∈ Can+
S (p, E ∗ S⊥) p ↪

E′, k−−−→
E∗S0

p′

signal S in p end ↪
E′\S, k−−−−−→

E
signal S in p′ end

(sr-sig−)

These rules formalize the intuitive semantics given in Chapter 2:

• The rules concerning the simple statements—(s-nothing), (s-exit),
(s-emit), (s-pause), and (r-pause)—are trivial.

• The presence test start rules (s-present+) and (s-present−) give control
to a branch based on the presence of the signal. The resume rules
(r-then) and (r-else) restart the selected test branch after it paused.

• The suspend start rule (s-suspend) gives control to its body and returns
the completion code and output event generated by the body. The sus-
pend resume rule (r-suspend+) describes the case where the suspending
signal is present so the body is frozen. The rule (r-suspend−) applies
when the signal is absent.

• Rule (sr-seq1) states a sequence pauses if p pauses and that the se-
quence propagates the traps exited by p. Rule (sr-seq2) states control
is instantaneously transferred to q if p terminates. Rule (r-seq3) shows
how control is dispatched to the second branch when it is selected.

• When the body of a loop terminates, the rule (r-do-loop) immediately
restarts it. In all other cases, the rule (sr-loop) applies, requiring the
loop body to not terminate instantaneously.

• The rules (s-par-both) and (r-par-both) apply when both branches of a
parallel execute during an instant (i.e., when the parallel is started or
when both branches continue running). In both cases, the completion
codes of the branches are combined using the max operator. When
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only one of the branches of a parallel is selected, rules (r-par-left) and
(r-par-right) apply.

• Rule (sr-trap-term) applies when the body of a trap declaration ter-
minates or exits the declared trap, in which case the entire construct
terminates. When the body of a trap declaration pauses, the trap does
too, as expressed by rule (sr-trap-pause). In all other cases, a trap code
must be decremented and propagated to the environment, using rule
(sr-trap-prop).

• The rule (sr-sig+) establishes a signal present; (sr-sig−) establishes
a signal absent. Both rules apply at the level of signal declaration
statements: a decision about a signal is only made in the context of the
complete scope of a signal—the body of a signal declaration.

4.4 Proof

As in any logic, a constructive behavior proof is a sequence of deductions
using the rules above. As usual, proofs are represented by stacking inferences.
For example,

emit S ↪
{S1},0−−−−→

E
emit S

p ↪
E1,0−−−→

E
p q ↪

E2,k−−−→
E

q

p ; q ↪
E1∪E2,k−−−−−−→

E
p ; q emit T ↪

{T 1},0−−−−→
E

emit T

emit S ; emit T ↪
{S1,T 1},0−−−−−−→

E
emit S ; emit T

As we shall see in the next chapter, the constructive operational semantics
offers another way to determine the behavioral transition of a statement.

4.5 Determinism

All the deduction rules and potential function definitions are deterministic.
Therefore, the constructive semantics itself is deterministic, meaning that it
assigns at most one behavior to any statement or program for given state
and input event:

p ↪
E′, k′
−−−→

E
p′

p ↪
E′′, k′′
−−−−→

E
p′′

⎫⎪⎬
⎪⎭⇒

⎧⎨
⎩

E′ = E′′

k′ = k′′

p′ = p′′

Furthermore, there is a unique proof for every transition.
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4.6 Loop-Safe Programs. Completion Code Potentials

In rule (r-do-loop), the side condition k 
= 0 prevents the body of a loop from
starting, terminating, and then starting again during the same instant. Such
cases are rejected as incorrect, as they correspond to loops that would have
to perform an unbounded number of iterations in an instant.

Esterel compilers generally prohibit instantaneous loops through a simple
static restriction. This makes the side condition superfluous. For this, we
define the set Ks(p) of potential start completion codes of p as follows.

Ks(nothing) = {0}
Ks(pause) = {1}

Ks(exit T(k)) = {k}
Ks(emit S) = {0}

Ks(present S then p else q end) = Ks(p) ∪Ks(q)
Ks(suspend S when p) = Ks(p)

Ks(p ; q) =

⎧⎨
⎩

(Ks(p) \ {0}) ∪Ks(q),
if 0 ∈ Ks(p)

Ks(p), otherwise
Ks(loop p end) = Ks(p) \ {0}

Ks(p || q) = max(Ks(p), Ks(q))
Ks(trap T in p end) = ↓ Ks(p)

Ks(signal S in p end) = Ks(p).

We symmetrically define the potential resumption completion code set of p,
called Kd(p). It is the set of codes that p can return in all instants but the
first.
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Kd(nothing) = ∅
Kd(pause) = {0}

Kd(exit T(k)) = ∅
Kd(emit S) = ∅

Kd(present S then p else q end) = Kd(p) ∪Kd(q)
Kd(suspend S when p) = Kd(p) ∪ {1}

Kd(p ; q) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Kd(p), if 0 
∈ Ks(p) ∪Kd(p)
Kd(q) ∪Kd(p),

if 0 ∈ Ks(p) \Kd(p)
(Kd(p) \ {0}) ∪Ks(q) ∪Kd(q),

otherwise
Kd(loop p end) = Kd(p ; p)

Kd(p || q) = max(Kd(p), Kd(q))
Kd(trap T in p end) = ↓ Kd(p)

Kd(signal S in p end) = Kd(p).

Following the inductive definition of the semantics, it is easy to see that
Ks(p) is a superset of the set of completion codes a statement can return in its
first execution instant, and that Kd(p) is a superset of the set of completion
codes a statement can return in instants where it is resumed:

p ↪
E′, k−−−→

E
p′ ⇒ k ∈ Ks(p)

p ↪
E′, k−−−→

E
p′ ⇒ k ∈ Kd(p).

We can now define loop-safe programs.

Definition 1 A program P of body p is loop-safe if, for each sub-statement
“loop q end” of p, 0 
∈ Ks(q).

In practice, loop-safety is not a very restrictive condition and it makes life
easier. However, we know of one case where users find it a little annoying.
Assume that two input signals I and J are known to be incompatible, i.e.,
never present in the same instant. In full Esterel, this is asserted by writing

relation I # J;

Then, the following loop-unsafe program is correct because the direct path
from loop to “end loop” cannot be taken.

loop
present I else
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p % non-instantaneous
end present;
present J else

q % non-instantaneous
end present

end loop

A workaround to make any program statically loop-safe is to add a pause
statement in parallel with the loop body.

loop
present I else

p % non instantaneous
end present;
present J else

q % non instantaneous
end present

||
pause

end loop

4.7 Program Behavior

We have now completed the definition of the constructive behavioral seman-
tics for Esterel statements. In this section we explain how the transitions of
the body statement of a program translate into transitions of the program
itself.

The semantics of a program is most easily defined when no interface signal
is both emitted and tested. We start by defining the semantics in this case,
and then we explain how the more complex cases can be reduced to the
simple one.

Let P be a Kernel Esterel program with body p where no interface signal
can be both tested and emitted. Assume that I is the set of input signals of
P , and that O is the set of output signals. Let EI be an event over I (an
input event) and EO an event over O. Then

P ′ ↪
EO−−→
EI

P ′′ ⇔ ∃k ∈ {0, 1},∃E such that p′ ↪
E, k−−→
EI

p′′ and E/O = EO

where p′ (resp. p′′) is the state of p in P ′ (resp. P ′′), and where E ranges
over events over I ∪O.

Now, consider when an input signal can be emitted or an output signal
can be tested by the program body. In that case, the above definition is
not appropriate since it does not generate the needed feedback of the output
signals back to the body execution environment. The following two Esterel
programs illustrate the problem.
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module IN PROBLEM:
input I;
output O;

emit I ;
present I then emit O end

end module

module OUT PROBLEM:
output O1, O2;

emit O1
||
present O1 then emit O2 end

end module

In the first case, with only the current rules, the signal I would be emitted
but the present statement would not be informed since the sequence rule
(sr-seq2) performs neither signal feedback nor potential computations. Signal
O would not be emitted if the environment does not produce the input signal
I. In the second example, signal O1 would emitted, but not O2.

To correctly define the semantics of such programs, we need to add feed-
back for interface signals. We do that by transforming the programs by
interface signal duplication and addition of trivial connection code, so that
no interface signal can be both tested and emitted by the program body.
The transformation is straightforward. If the input signal I can be internally
emitted by the body statement p, we replace p with

signal I local in
p′

||
loop present I then emit I local ; pause end

end

where p′ is obtained from p by replacing all occurrences of I by I local. If
the output signal O can be internally tested by p, then p becomes

signal O local in
p′

||
loop present O local then emit O ; pause end

end

where all occurrences of I are replaced in p′ with I local.
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The previous transformations can be applied only on programs having
no inputoutput signal or shared variable. In cases where such signals are
present, we need to replace each of them with a pair formed of an input signal
and an output signal.



5

Constructive Operational
Semantics

The previous chapter showed how macrostep transitions can be used to rep-
resent the behavior of a statement during an execution instant. A reaction
corresponds to one behavioral transition. Such a presentation of the seman-
tics has the advantage of succinctness, but does not define the key notions
of activation, execution, and causality, which are essential for efficient code
generation. The objective of the constructive operational semantics is to de-
fine the three notions while remaining fully compatible with the constructive
behavioral semantics. The COS computes a reaction by chaining elementary
microsteps whose aggregation computes the behavioral transition. Techni-
cally, the COS borrows many components from the CBS and its rules can be
viewed as refinements of the behavioral ones.

Handling data is important for compiling actual Esterel programs; the
COS includes data. We did not address data in the constructive behav-
ioral semantics because it would be very tedious to handle in that
setting.

The chapter is organized as follows. We first define the COS terms,
which refine the behavioral terms with a notation for control flow. Then
we explain how data is represented in stores. Next, we define the seman-
tic rules and explain how the Can potential function is used to determine
signal absence and shared variable synchronization. Finally, we explain
how microsteps are chained together into full reactions and define the rela-
tionship between the Operation Semantics and constructive behavioral
semantics.

79
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5.1 Microsteps

The constructive operational semantics of Esterel gives the semantics of a
statement or program with microstep transition rules of the form

ṗ, data
e,k−−→
E

ṗ′, data′.

In these rules, ṗ and ṗ′ are obtained by adding bullets to p at instantaneous
control flow positions, which act as program counters. In the COS, transitions
perform elementary control flow propagation. Many of them must be chained
to compute a complete behavioral transition, as in the following data-less
example

•(emit S ; emit T ; pause)
⊥,⊥−−−→
E

(•emit S) ; emit T ; pause

S,⊥−−→
E

emit S ; (•emit T ) ; pause

T,⊥−−→
E

emit S ; emit T ; •pause
⊥,1−−→
E

emit S ; emit T ; ̂pause.
The bullet progresses to represent the execution of the statement and disap-
pears when the reaction is complete.

The terms ṗ and ṗ′ not only represent the status of the pause statements
but also store the intermediate control flow between microsteps within the
computation instant. The stores data and data′ define the value of the data
variables used in p, before and after the microstep. The input event E defines
the signal environment. If the transition represents the completion of state-
ment p for the current execution instant, then k is the integer completion
code. Otherwise, k = ⊥. If p emits the signal S during the transition, then
e = S. Otherwise, e = ⊥. In the COS, at most one signal can be emitted
during one micro-step.

The COS refines the control and potential structures of the constructive
behavioral semantics. The constructive behavioral semantics is organized
around the analysis of potentials, which determines statement correctness,
signal behavior, and completion codes. In the COS, the focus shifts to mi-
crostep rules: the Must potential calculation is replaced with actual calcula-
tion, and Can alone is needed to determine signal absence and shared variable
synchronization; the Can+ potential becomes useless.

5.2 COS Terms

The tags that decorate the semantic terms represent two complementary
types of control information: the behavioral state of the Esterel program,
defined in the previous chapter (the status of its pause statements between
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reactions); and the microstep execution status, which is the current control
flow progress during the execution of a reaction.

The double decoration of the semantic terms is complex, but not without
reason. Intuitively, the behavioral status of a statement completely deter-
mines the computation of an instant if the statement is executed during that
instant. On the other hand, even if our statement retained control from
the previous instant, its resumption in the current instant is subject to pre-
emption. The execution of the preemption tests and the actual execution of
statements must respect the hierarchy of the Esterel program. This order
is enforced using “program counter” decorations, representing control flow
progress.

In Chapter 8, we show how the two classes of decorations correspond to
components of our GRC intermediate representation for Esterel programs,
i.e., the state representation and the control-flow graph.

5.2.1 Control Flow Propagation

The microstep execution status is represented by bullets that act as program
counters. The following example shows how a reaction is constructed through
control propagation.

•(emit S ; emit T )
⊥,⊥−−−→
E

(•emit S) ; emit T

S,⊥−−→
E

emit S ; •emit T

T,0−−→
E

emit S ; emit T .

The process includes three microsteps. First, the sequence starts by start-
ing its first component. The program counter (the bullet) changes its posi-
tion. No signal is emitted during the transition, and there is no completion
code. Next, “emit S” is executed and signal S is emitted. There is no
completion code because the execution of the sequence statement is not com-
pleted. The next step completes the execution of the instant with code 0 and
generates the signal T.

Compare the previous sequence of microsteps with the deduction of the
corresponding macrostep transition in the constructive behavioral semantics,
given in Section 4.4. The sequence of microsteps can be seen as an operational
way to construct the transition.

5.2.2 State-Dependent Behavior

Recall from Section 4.1.2 that the state of an Esterel program, which is
transmitted from one execution instant to the next, is defined by the status of
its pause statements. A pause statement is tagged as ̂pause to indicate that
the control flow paused there. In this case the pause statement is selected.
The notion of selection is extended naturally to composed Esterel statements:
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a statement is selected if it contains a tagged ̂pause statement. We also say
in this case that the selection status of the statement is true.

The execution of a selected statement always starts with the decoding
of the program state. The program counter(s) descend the hierarchy of the
syntax tree, from a selected statement to its selected children. The decoding
ends at selected ̂pause statements or when a preemption test succeeds. The
following example illustrates the decoding process.

•( ̂pause ; pause)
⊥,⊥−−−→
E

(• ̂pause) ; pause

⊥,⊥−−−→
E

pause ; •pause
⊥,1−−→
E

pause ; ̂pause
The program counter first decodes the state of the sequence statement

and descends to the selected ̂pause statement. Then, it resumes that ̂pause
statement, which terminates and passes control to the second (unselected)
pause statement. This one pauses, i.e., completes with code 1 and receives a
tag, so that the sequence pauses. The microstep sequence is completed since
there is no bullet left to propagate. The corresponding macrostep transition
in the CBS is a collapse of these three microsteps.

̂pause ; pause ↪
∅,1−−→
E

pause ; ̂pause
The next example illustrates preemption. Here, the state of the sequence

statement is not decoded; the presence of signal S preempts the process.

•suspend pause ; ̂pause when S
⊥,1−−→
{S}

suspend pause ; ̂pause when S

The corresponding transition in the reference semantics is

suspend pause ; ̂pause when S ↪
∅,1−−→
{S}

suspend pause ; ̂pause when S.

5.2.3 Syntax of Semantic Terms

The terms of the COS extend the behavioral terms defined in Section 4.1.2.
With the same definition, the term p̂ represents a selected term over the
statement p, while p represents a term over p that may or may not be selected.

The term ṗ represents a term over p containing a “program counter”
(bullet). We write p̈ to indicate that we do not know whether p contains a
program counter. Semantic terms are obtained by combining the two nota-
tions, so we classify the semantic terms over p into nine classes, listed in the
following table.
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Contains Is selected

bullets no yes maybe

no p p̂ p

yes ṗ ˙̂p ṗ

maybe p̈ ¨̂p p̈

For example, ˙̂p represents a selected term over p that contains one or more
bullets. When confusion is possible in a semantic rule or in a longer deriva-
tion, we add indices to indicate different terms of the same kind.

We defined the behavioral terms p̂ and p in Section 4.1.2, so here we only
give the syntax of the control and combined terms. In addition to “program
counter” bullets, these terms may also contain decorations that represent the
current status of signals, parallel statements, and loops.

ṗ ::= •p
| ṗ ; p
| p ; ṗ
| ṗ ⊥||⊥ ṗ
| ṗ ⊥||l p
| p k||⊥ ṗ
| p k||l p
| looplstat ṗ end
| suspend ṗ when S
| present S then ṗ else p end
| present S then p else ṗ end
| trap T in ṗ end
| var v in ṗ end
| shared s in ṗ end
| signal Ssstat in ṗ end

p̈ ::= ṗ
| p

The decorations on the || operator give the current completion status of
each branch: ⊥ means that the branch did not yet complete its computation
for the current reaction. An integer code denoted by k or l in these rules
represents a branch that completed with the given code. The term q k||l r
represents an uncompleted parallel whose branches have completed. A par-
allel in this state requires one more microstep to synchronize the completion
codes of its branches and produce its final completion code max(k, l).

The status lstat associated with each loop is used to semantically prohibit
the instantaneous execution of the loop’s body and thus avoid diverging com-
putation. The status can be stop or go; stop indicates the body must not
be restarted in the current reaction. When the loop statement in started in
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an instant, its status is set to stop. If it is resumed, then its status is set to
go since the loop body can be restarted once. Note that this mechanism is
not needed in the constructive behavioral semantics, where transitions cover
entire execution instants. Reasoning about individual microsteps exposes the
problem of instantaneous loop body termination, which any implementation
needs to address.

The status sstat of a signal can be ⊥ (not yet defined), 1 (present), or 0
(absent). The status is set to ⊥ when the signal statement is started or
resumed. It becomes 1 if it is emitted, and 0 if all emissions have been ruled
out by the control flow.

5.3 Data Representation

The ability to handle data and its non-constructive causality is a fundamental
advantage of the COS. Whenever we define the semantics of a statement that
manipulates data, we represent the status of the variables using stores. The
following transition shows how an assignment changes the value of a non-
shared variable v.

•v := expr, data
⊥,0−−→
E

v := expr, data[v ← [[expr]]]

Here, [[expr]] is the value obtained by evaluating the expression expr in the
data context data. Note how the flow of control determines a change in the
value stored for v. The value, of type typev, associated by the store data to
the non-shared variable v can be read with data(v).

Things are more complicated for shared variables, where we also encode
the needed synchronization information on the store. For every Esterel shared
variable s, we use two variables on the store. The store variable svalue gives
the value of s, and the store variable sstatus gives its synchronization status,
telling us whether svalue can be read or updated. The possible values of sstatus
are

ready , meaning all write actions on s have either been executed or invali-
dated by control flow. Thus, we can read its value with data(svalue).

old , meaning no write action has been yet executed, so the variable still
has the value of the former reaction. It cannot be read because write
actions may still be executed.

new , meaning the variable has already been modified by write actions, but
it cannot yet be read because other actions may still modify it.

Shared variables and their synchronization also require changing the po-
tential function Can. In addition to the two components (CanS and CanK)
used in the Constructive Behavioral Semantics, we need a third one: CanV .

Can(ṗ, E) =< CanS(ṗ, E),CanK(ṗ, E),CanV (ṗ, E) >
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The new component determines which shared variable assignments are not
yet invalidated by the current state and input event. When a shared variable
cannot be assigned again within a reaction, its status can be changed to
ready, allowing it to be read. We define the CanV function in Section 5.5.

5.4 Semantic Rules

With sixty transition rules, the COS is far larger than the constructive be-
havioral semantics. This is because behaviors are divided into basic compu-
tations so all common control flow operations (start, completion, etc.) are
represented separately for each statement. All the rules are necessary to
ensure the completeness of the semantics.

To facilitate the understanding of the semantics and emphasize the rela-
tion with the constructive behavioral semantics, we divide the rules in two
sets: those for Pure Esterel and those that handle data.

Statements in the first set do not change or read the stores (sub-statements
can, however). Furthermore, removing all reference to data rules results in a
dataless constructive operational semantics for Pure Esterel.

5.4.1 Rules for Pure Esterel Primitives

Rule for the no-operation statement

A no-operation statement nothing simply relinquishes control. No variables
are changed.

•nothing, data ⊥,0−−→
E

nothing, data (1)

Pause rules

Reaching a pause pauses execution. Variables are unchanged.

•pause, data ⊥,1−−→
E

̂pause, data (2)

When resumed, a selected ̂pause statement behaves like a nothing statement.
It terminates instantly. The selection mark is deleted.

• ̂pause, data ⊥,0−−→
E

pause, data (3)

Sequence rules

Starting a sequence consists of starting its first branch. This does not modify
variables.

•(p ; q), data
⊥,⊥−−−→
E

(•p) ; q, data
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Similarly, resuming a sequence when the first branch is selected, gives control
to the first branch and does not modify data.

•(p̂ ; q), data
⊥,⊥−−−→
E

(•p̂) ; q, data

These two transition rules can be merged:

•(p ; q), data
⊥,⊥−−−→
E

(•p) ; q, data (4)

We will often use this trick to reduce the number of rules.
Internal transitions of a sub-statement are transformed into transitions of

the composite statement itself. The transformation can be “passive,” mean-
ing the composed statement merely informs the environment about the evo-
lution of its child. The following rule shows how internal transitions of the
first branch of a sequence become transitions of the sequence itself.

ṗ, data
e,k−−→
E

p̈, data′ k 
= 0

ṗ ; q, data
e,k−−→
E

p̈ ; q, data′
(5)

Every compound statement has a similar rule.
More interesting are the transitions where computation is performed by

the statement. The following rule states that control is given to the second
branch of the sequence when the first terminates.

ṗ, data
e,0−−→
E

p, data′

ṗ ; q, data
e,⊥−−→
E

p ; (•q), data′
(6)

This involves not only a transition of the first branch, but also control passing
through the sequence.

The resume rule applies when the second branch is selected.

•(p ; q̂), data
⊥,⊥−−−→
E

p ; •q̂, data (7)

The last sequence rule performs microsteps of the second branch.

q̇, data
e,k−−→
E

q̈, data′

p ; q̇, data
e,k−−→
E

p ; q̈, data′
(8)

Parallel rules

Starting a parallel starts its branches and initializes the status of each branch
to ⊥ (not completed). The variables are not modified.

•(p || q), data ⊥,⊥−−−→
E

(•p) ⊥||⊥ (•q), data (9)
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Resuming a parallel statement requires three rules, corresponding to both
branches being selected, or only one (left or right). When both branches are
selected, control is distributed to both. The synchronization decorations on
the parallel are set to ⊥ for both branches, signaling that the completion of
both branches is needed to complete the instant.

•(p̂ || q̂), data ⊥,⊥−−−→
E

(•p̂) ⊥||⊥ (•q̂), data (10)

When only the left branch is selected, only it receives control. The syn-
chronization decoration of the right branch is set to 0, as for a terminated
branch. Thus, the synchronization rule (13) gives the correct result when the
execution of the left branch is completed.

•(p̂ || q), data ⊥,⊥−−−→
E

(•p̂) ⊥||0 q, data (11)

Similarly, for the case where the right branch is selected,

•(p || q̂), data ⊥,⊥−−−→
E

p 0||⊥ (•q̂), data (12)

When the execution of the active parallel branches completes (i.e., when
all the synchronization decorations are different from ⊥), the parallel itself
completes.

p k||l q, data
⊥,max(k,l)−−−−−−−→

E
p || q, data (13)

Microsteps of the branches are interleaved arbitrarily to form executions
of the parallel statement. The rule that transforms microsteps of the left
branch into microsteps of the parallel statement is

ṗ, data
e,k−−→
E

p̈, data′

ṗ ⊥||m q̈, data
e,⊥−−→
E

p̈ k||m q̈, data′
(14)

For the right branch,

q̇, data
e,k−−→
E

q̈, data′

p̈ m||⊥ q̇, data
e,⊥−−→
E

p̈ m||k q̈, data′
(15)

Although the interleaving is arbitrary, the result is deterministic.

Loop rules

When a loop is started, its status is initialized to stop to forbid the instan-
taneous termination of the body and therefore its instantaneous restart.

•loop p end, data
⊥,⊥−−−→
E

loopstop •p end, data (16)
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If the body terminates while the loop status is stop, execution is blocked
and the program is incorrect. No rewriting rules handle this configuration.

The body of a loop is allowed to terminate in instants where the loop is
resumed. The status is initialized to go.

•loop p̂ end, data
⊥,⊥−−−→
E

loopgo •p̂ end, data (17)

In such cases, the loop body is instantaneously restarted upon termi-
nation. The loop status is set to stop to prohibit a second instantaneous
termination of the body.

ṗ, data
e,0−−→
E

p, data′

loopgo ṗ end, data
e,⊥−−→
E

loopstop •p end, data′
(18)

A loop statement completes its execution when its body pauses or exits
an trap.

ṗ, data
e,k−−→
E

p, data′ k 
∈ {⊥, 0}

loopm ṗ end, data
e,k−−→
E

loop p end, data′
(19)

The loop body performs microsteps as follows:

ṗ
e,⊥−−→
E

(ṗ)′, data

loopm ṗ end
e,⊥−−→
E

loopm (ṗ)′ end, data′
(20)

Trap-exit rules

Starting or resuming a trap statement gives control to its body.

•trap T in p end, data
⊥,⊥−−−→
E

trap T in •p end, data (21)

Internal microsteps of the body become microsteps of the trap statement.

ṗ, data
e,⊥−−→
E

(ṗ)′, data′

trap T in ṗ end, data
e,⊥−−→
E

trap T in (ṗ)′ end, data′
(22)

A trap instruction handles completion code 2 by preempting its body.
This corresponds to the locally-handled trap exiting (Section 3.3.4). Here,
all the decorations of the semantic term are removed to represent the pre-
emption. It is important to note that the trap operator is the only one that
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globally modifies the selection status of a term.

ṗ, data
⊥,2−−→
E

p, data′

trap T in ṗ end, data
⊥,0−−→
E

trap T in p end, data′
(23)

When the body of the trap terminates, the resulting term is the same.

ṗ, data
e,0−−→
E

p, data′

trap T in ṗ end, data
e,0−−→
E

trap T in p end, data′
(24)

The trap statement pauses when its body pauses.

ṗ, data
⊥,1−−→
E

p̂, data

trap T in ṗ end, data
⊥,1−−→
E

trap T in p̂ end, data
(25)

When the trap body exits a trap that cannot be handled locally (code
k ≥ 3), the trap statement updates the code and passes it to its environment.

ṗ, data
⊥,k−−→
E

p, data k ≥ 3

trap T in ṗ end, data
⊥,↓k−−−→

E
trap T in p end, data

(26)

The definition of the function ↓ appears in Section 3.3.4.
Raising a trap produces the given completion code k 
∈ {0, 1}.

•exit T (k), data
⊥,k−−→
E

exit T (k), data (27)

Signal scope rules

Starting or resuming a signal declaration statement gives control to its body
and sets the status of the declared signal to ⊥ (undefined).

•signal S in p end, data
⊥,⊥−−−→
E

signal S⊥ in •p end, data (28)

The signal S becomes present when the body of the signal statement
first emits it without instantly completing execution. Later emissions of S
have no further effect.

ṗ, data
S,⊥−−−−→

E∗Sm
(ṗ)′, data m ∈ {⊥, 1}

signal Sm in ṗ end, data
⊥,⊥−−−→
E

signal S1 in (ṗ)′ end, data
(29)
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The signal status is set to absent if it has not yet been emitted and all its
emissions have been ruled out by Can potential analysis performed on the
current control state.

S 
∈ CanS(ṗ, E ∗ S⊥)

signal S⊥ in ṗ end, data
⊥,⊥−−−→
E

signal S0 in ṗ end, data
(30)

The potential function CanS is an extension of the potential function of
the same name in the constructive behavioral semantics. Similarly, it decides,
based on the current microstep state and input event, which signals can be
emitted by p. We give the full definition of CanS in Section 5.5.

Non-completing microsteps of the body that do not generate S can gen-
erate either e = ⊥ or e = T for some other signal T . This event e is returned
by the signal declaration.

ṗ, data
e,⊥−−−−→

E∗Sm
(ṗ)′, data′ e 
= S

signal Sm in ṗ end, data
e,⊥−−→
E

signal Sm in (ṗ)′ end, data′
(31)

The following rule handles statement completion when no event is gen-
erated or the generated event must be passed to the environment. Control
leaves the statement.

ṗ, data
e,k−−−−→

E∗Sm
p, data′ k 
= ⊥, e 
= S

signal Sm in ṗ end, data
e,k−−→
E

signal S in p end, data′
(32)

The next rule handles statement completion when the internal emission
of S is hidden, because no further microstep can read it.

ṗ, data
S,k−−−−→

E∗Sm
p, data′ k 
= ⊥

signal Sm in ṗ end, data
⊥,k−−→
E

signal S in p end, data′
(33)

Signal emission

The signal emission rule produces both a signal event and a completion code.
Note that in the COSif a transition rule produces both a signal event and
a completion code, then the code is 0 and it comes from a signal emission
sub-statement.

•emit S, data
S,0−−→
E

emit S, data (34)
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Suspension rules

Two statements make control flow decisions based on signal status: suspend
and present. The suspension test preempts the resumption of a statement
if the guard signal is present.

S1 ∈ E

•suspend p̂ when S, data
⊥,1−−→
E

suspend p̂ when S, data
(35)

When the signal is absent, control is given to the body, which is resumed.

S0 ∈ E

•suspend p̂ when S, data
⊥,⊥−−−→
E

suspend •p̂ when S, data
(36)

Signal tests block while the status of the signal is ⊥ because no semantic
rule covers that case.

When started, suspend gives control to its body.

•suspend p when S, data
⊥,⊥−−−→
E

suspend •p when S, data (37)

Once the body takes control, the entire suspend statement behaves like
its body, including transitions where the body completes.

ṗ, data
e,k−−→
E

p̈, data′

suspend ṗ when S, data
e,k−−→
E

suspend p̈ when S, data′
(38)

Signal test rules

When started, the signal presence test starts one of its branches depending
on the signal status. If the signal is present, the “then” branch is started.

S1 ∈ E

•present S then p else q end, data
⊥,⊥−−−→
E

present S then •p else q end, data

(39)
When the signal is absent, control is given to the “else” branch.

S0 ∈ E

•present S then p else q end, data
⊥,⊥−−−→
E

present S then p else •q end, data

(40)
Control blocks while the status of the signal is ⊥ since no rule applies.
When resumed, the statement resumes its selected branch.

•present S then p̂ else q end, data
⊥,⊥−−−→
E

present S then •p̂ else q end, data

(41)
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•present S then p else q̂ end, data
⊥,⊥−−−→
E

present S then p else •q̂ end, data

(42)
Once one of the branches take control, the entire present statement be-

haves like that branch, including in transitions where the branch completes.
Here are the microsteps of the “then” branch:

ṗ, data
e,k−−→
E

p̈, data′

present S then ṗ else q end, data
e,k−−→
E

present S then p̈ else q end, data′

(43)
And here are the microsteps in the “else” branch:

q̇, data
e,k−−→
E

q̈, data′

present S then p else q̇ end, data
e,k−−→
E

present S then p else q̈ end, data′

(44)

5.4.2 Rules for Data-Handling Primitives

Shared variable scope rules

Starting the statement declaring the shared variable s evaluates inits, initial-
izes svalue with the result, sets sstatus to old, and gives control to the body.
If inits is defined by the function call f(v1, . . . , vn, s1, . . . , sm), the rule is

∀1 ≤ i ≤ m, data(si
status) = ready

•shared s in p end, data
⊥,⊥−−−→
E

shared s in •p end, data′
, (45)

where the new status data′ of the store is

data
[

sstatus ← old
svalue ← f(data(v1), . . . , data(vn), data(s1

value), . . . , data(sm
value))

]
.

Resuming a shared variable declaration does not modify the variable
value, but changes its status to old.

•shared s in p̂ end, data
⊥,⊥−−−→
E

shared s in •p̂ end, data[sstatus ← old] (46)

To decide that a shared variable can be read, we test whether write actions
can affect it. If this is not possible, the status of the variable is changed to
ready. This decision is based on the result of the potential function CanV .

s 
∈ CanV (ṗ, E) data(sstatus) ∈ {old,new}
shared s in ṗ end, data

⊥,⊥−−−→
E

shared s in ṗ end, data[sstatus ← ready]
(47)
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Internal microsteps of the body are microsteps of the statement.

ṗ, data
e,k−−→
E

p̈, data′

shared s in ṗ end, data
e,k−−→
E

shared s in p̈ end, data′
(48)

Shared variable emission rules

When the first write action is performed on a shared variable in a given
execution instant, its status changes from old to new and its new value is
the result of the function call. The function computation (and the execution
of the microstep) can only occur after all the shared variable arguments are
ready to be read.

data(sstatus) = old ∀1 ≤ i ≤ m, data(si
status) = ready

•s <= f(v1, . . . , vn, s1, . . . , sm), data
⊥,0−−→
E

s <= f(v1, . . . , vn, s1, . . . , sm), data′
,

(49)
where the new status data′ of the store is

data
[

sstatus ← new
svalue ← f(data(v1), . . . , data(vn), data(s1

value), . . . , data(sm
value))

]
.

On subsequent write actions, the status is preserved and the value is
updated using the combine function cs.

data(sstatus) = new ∀1 ≤ i ≤ m, data(si
status) = ready

•s <= f(v1, . . . , vn, s1, . . . , sm), data
⊥,0−−→
E

s <= f(v1, . . . , vn, s1, . . . , sm), data′
,

(50)
where data′ is obtained from data by assigning to svalue the value

cs(svalue, f(data(v1), . . . , data(vn), data(s1
value), . . . , data(sm

value))).

Sequential variable rules

Starting the statement declaring the non-shared variable v evaluates initv,
initializes v with the result, and gives control to the body. If initv is defined
by the function call f(v1, . . . , vn, s1, . . . , sm), then the rule is

∀1 ≤ i ≤ m, data(si
status) = ready

•var v in p end, data
⊥,⊥−−−→
E

var v in •p end, data′
, (51)

where data′ is obtained from data by assigning to v the value

f(data(v1), . . . , data(vn), data(s1
value), . . . , data(sm

value)).
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Resuming the statement only gives control to the body.

•var v in p̂ end, data
⊥,⊥−−−→
E

var v in •p̂ end, data (52)

Once started, the sequential variable declaration behaves as its body.

ṗ, data
e,k−−→
E

p̈, data′

var v in ṗ end, data
e,k−−→
E

var v in p̈ end, data′
(53)

Here is the variable test rule, when the value of the test variable is true.
When the “then” branch is started,

data(v) = true

•if v then p else q end, data
⊥,⊥−−−→
E

if v then •p else q end, data
. (54)

When the variable is false, the “else” branch is started.

data(v) = false

•if v then p else q end, data
⊥,⊥−−−→
E

if v then p else •q end, data
(55)

When resumed, a test resumes its selected then or else branch.

•if v then p̂ else q end, data
⊥,⊥−−−→
E

if v then •p̂ else q end, data (56)

•if v then p else q̂ end, data
⊥,⊥−−−→
E

if v then p else •q̂ end, data (57)

A test propagates internal transitions of its branches.

ṗ, data
e,k−−→
E

p̈, data′

if v then ṗ else q end, data
e,k−−→
E

if v then p̈ else q end, data′
(58)

q̇, data
e,k−−→
E

q̈, data′

if v then p else q̇ end, data
e,k−−→
E

if v then p else q̈ end, data′
(59)

The non-shared variable assignment updates the store with the new value
of the variable. The transition can only occur after all its shared variable
arguments are ready.

∀1 ≤ i ≤ m, data(si
status) = ready

•v := f(v1, . . . , vn, s1, . . . , sm), data
⊥,0−−→
E

v := f(v1, . . . , vn, s1, . . . , sm), data′
,

(60)
where the new status of the data variables is defined by

data′ = data[v ← f(data(v1), . . . , data(vn), data(s1
value), . . . , data(sm

value))].
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5.5 Analysis of Potentials

We saw in the previous section how incremental execution is explicitly rep-
resented in the COSas opposed to the use of the Must potential function in
the constructive behavioral semantics. Therefore, the scope and complexity
of the analysis of potentials is reduced here to code pruning, which is needed
to decide signal absence and the end of the computation of shared variables.

To represent code pruning, the COS preserves the corresponding Can
potential function of the constructive behavioral semantics and extends it to
cover partially-executed terms, which contain “program counters” and data-
handling statements. The form of the Can potential function is

Can(ṗ, E) =< CanS(ṗ, E),CanK(ṗ, E),CanV (ṗ, E) >,

where

• CanS(ṗ, E) tells us which signals can be emitted by p starting in its
current state;

• CanK(ṗ, E) determines the completion codes p can generate; and

• CanV (ṗ, E) determines which shared variables have assignment state-
ments that are neither executed nor invalidated by the control flow.

The first two components of Can play the same role as their constructive
behavioral semantics counterparts. The third component is an essential part
of the data access synchronization protocol. A shared variable can be read
only when all its assignments have been executed or invalidated. Hence, the
status of a shared variable s can be set to ready, using rule (47), only when
s 
∈ CanV (ṗ, E).

The Can function extends the constructive behavioral semantics function
of the same name, meaning that for statements containing no control (terms
of the form p), the components CanS and CanK are given by the rules in
Section 4.2. When computing the potential of partially-executed terms of
the form ṗ, certain statements may need to be pruned due to the current
control state. To take this into account, we compute the potential of such
terms in two phases: the the not-yet-executed part of the statement is iso-
lated (the computation is reduced to non-dotted terms); then the potential
of non-dotted terms is computed using the rules borrowed from the reference
semantics and their data-handling extensions, defined below.

Notation

The inclusion predicate ⊆ and the union operator ∪ are extended component-
wise on triplets < F, K, V >. We also extend the signal restriction operator
to triplets:

< F, K, V > \S =def< F \ S, K, V > .
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We also define the similar shared variable restriction operator:

< F, K, V > \s =def< F, K, V \ {s} > .

For presentation reasons, we shall use both vertical and horizontal pre-
sentation for the potential function triplets:

< F, K, V >=

〈
F
K
V

〉

5.5.1 Reduction to Non-Dotted Terms

The reduction to non-dotted terms is based on the elementary dot-removal
rule:

1. Can(•p, E) = Can(p, E)

The remaining dot-removal rules only take argument terms over derived
statements. In these cases, the potential computation is reduced to poten-
tial computations over sub-statement terms. The recursive decomposition
process ends with an application of the elementary dot-removal rule.

The rules for tests are the simplest ones; the behavior of such statements
is that of the branch containing control.

2. Can(present S then ṗ else q end, E) = Can(ṗ, E)

3. Can(present S then p else q̇ end, E) = Can(q̇, E)

4. Can(suspend ṗ when S, E) = Can(ṗ, E)

5. Can(if v then ṗ else q end, E) = Can(ṗ, E)

6. Can(if v then p else q̇ end, E) = Can(q̇, E)

More complicated rules handle sequencing. For instance, when control is
in the first branch we have to compose the potential of the two branches:

7. Can(ṗ ; q, E)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Can(ṗ, E) if 0 
∈ CanK(ṗ, E)
〈 CanS(ṗ, E) ∪ CanS(q, E)

(CanK(ṗ, E)\{0}) ∪ CanK(q, E)
CanV (ṗ, E) ∪ CanV (q, E)

〉
if 0 ∈ CanK(ṗ, E)

8. Can(p ; q̇, E) = Can(q̇, E)

The potentials of parallel branches are composed using the following rule.
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9. Can(ṗ ⊥||⊥ q̇, E) =

〈 CanS(ṗ, E) ∪ CanS(q̇, E)
max(CanK(ṗ, E),CanK(q̇, E))

CanV (ṗ, E) ∪ CanV (q̇, E)

〉

10. Can(ṗ ⊥||k q, E) = < CanS(ṗ, E), max(CanK(ṗ, E), {k}),CanV (ṗ, E) >

11. Can(p k||⊥ q̇, E) = < CanS(q̇, E), max({k},CanK(q̇, E)),CanV (q̇, E) >

12. Can(p k||l q, E) = < ∅, {max(k, l)}, ∅ >

The rule for loop is derived from the rule of the sequence. If the body can
terminate and m = go, the potential of the loop also includes the potential
of the second incarnation of the body.

13. Can(loopm ṗ end, E)

=

⎧⎪⎪⎨
⎪⎪⎩

〈 CanS(ṗ, E) ∪ CanS(p, E)
(CanK(ṗ, E)\{0}) ∪ CanK(p, E)

CanV (ṗ, E) ∪ CanV (p, E)

〉
if

⎧⎨
⎩

0 ∈ CanK(ṗ, E)
and

m = go
Can(ṗ, E) otherwise

The potential of the started signal declaration statement is that of its
body, when the environment is enriched with the current status of the de-
clared signal.

14. Can(signal Sm in ṗ end, E) = Can(ṗ, E ∗ Sm) \ S

Note how this is simpler than the non-dotted rule on page 64. There,
we needed to perform signal feedback at the level of the signal declaration
within the potential computation. Here, specific microsteps determine signal
absence perform signal feedback.

The other scope declarations also need simple rules:

16. Can(trap T in ṗ end, E) = < CanS(ṗ, E), ↓ CanK(ṗ, E),CanV (ṗ, E) >

17. Can(var v in ṗ end, E) = Can(ṗ, E)

18. Can(shared s in ṗ end, E) = Can(ṗ, E) \ s

5.5.2 Non-Dotted Terms over Dataless Primitives

Given that the CanS and CanK components of these functions have been
defined for the constructive behavioral semanticsin Section 4.2. Here, we
only define the shared variable component CanV .

19. CanV (pause, E) = CanV ( ̂pause, E) =

CanV (emit S, E) = CanV (exit T (k), E) = ∅
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20. CanV (signal S in p end, E)

=

{
CanV (p, E ∗ S⊥) if S1 ∈ CanS(p, E ∗ S⊥)

CanV (p, E ∗ S0) otherwise

21. CanV (present S then p else q end, E)

=

⎧⎪⎨
⎪⎩

CanV (p, E) if S1 ∈ E

CanV (q, E) if S0 ∈ E

CanV (p, E) ∪ Can(q, E) if S⊥ ∈ E

22. CanV (present S then p̂ else q end, E) = CanV (p̂, E)

23. CanV (present S then p else q̂ end, E) = CanV (q̂, E)

24. CanV (suspend p when S, E) = CanV (p, E)

25. CanV (suspend p̂ when S, E) =

{ ∅ if S1 ∈ E

CanV (p̂, E) otherwise

26. CanV (trap T in p end, E) = CanV (p, E)

27. CanV (p || q, E) = CanV (p, E) ∪ CanV (q, E)

28. CanV (p̂ || q̂, E) = CanV (p̂, E) ∪ CanV (q̂, E)

29. CanV (p̂ || q, E) = CanV (p̂, E)

30. CanV (p || q̂, E) = CanV (q̂, E)

31. CanV (p ; q, E) =

{
CanV (p, E) ∪ CanV (q, E) if 0 ∈ CanK(p, E)

CanV (p, E) otherwise

32. CanV (p ; q̂, E) = CanV (q̂, E)

33. CanV (loop p end, E) = CanV (p, E)

34. CanV (loop p̂ end, E)

=

{
CanV (p̂, E) ∪ CanV (p, E) if 0 ∈ CanK(p̂, E)

CanV (p̂, E) otherwise
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5.5.3 Non-Dotted Terms over Data-Handling Primitives

We complete the definition of the potential function with its expression on
the newly-introduced data-handling primitives.

35. Can(v := f(v1, . . . , vn, s1, . . . , sm), E) = < ∅, {0}, ∅ >

36. Can(s <= f(v1, . . . , vn, s1, . . . , sm), E) = < ∅, {0}, {s} >

37. Can(var v in p end, E) = Can(p, E)

38. Can(if v then p else q end, E) = Can(p, E) ∪ Can(q, E)

39. Can(if v then p̂ else q end, E) = Can(p̂, E)

40. Can(if v then p else q̂ end, E) = Can(q̂, E)

41. Can(shared s in p end, E) = Can(p, E)\s

5.6 Behaviors as Sequences of Microsteps

To define the behavior of a statement, we need to chain microstep transitions
into reactions. The chaining process must respect both the constructive syn-
chronization of the signals and the classical causality of data accesses. We
define a new relation describing the composition of microsteps:

ṗ, data
E′,k
−−→∗

E
p̈, data′

which holds, by definition, when there exists a sequence

ṗ, data
e1,⊥−−−→

E
(ṗ)1, data1

e2,⊥−−−→
E

. . .
en−1,⊥−−−−−→

E
(ṗ)n−1, datan−1

en,k−−−→
E

p̈, data′

with E′ = {ei | ei 
= ⊥}. If the sequence of rewriting steps that defines

ṗ, data
E′,k
−−→∗

E
p̈, data′ is maximal in the given signal context E, we also write

ṗ, data
E′,k−−−→→

E
p̈, data′.

We are now able to define the notion of constructiveness in the new oper-
ational framework (effectively extending the notion to programs with data).∗

Definition 2 A statement p in the (macrostep) state p is constructive in the
context E and for the store data if there exist p′, data′, E′, and k 
= ⊥ such
that

•p, data
E′,k−−−→→

E
p′, data′

∗Recall that in this book correct is synonymous with constructive.
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The program is non-constructive if the resulting term contains bullets.
This corresponds to the situation where control blocked during the execution
because the status of a signal or shared variable cannot be established. We
describe the relation between the CBS and COS definitions of constructive-
ness in Section 5.7.

Determinism of the COS

While the result is not fully proven, we assume the COS of Esterel is deter-
ministic, as stated by the following conjecture.

Conjecture 1 (Rewriting confluence) For any term ṗ and for any envi-
ronment E we have

ṗ, data
E′

1,k1−−−−→→
E

(p̈)1, data1

ṗ, data
E′

2,k2−−−−→→
E

(p̈)2, data2

⎫⎪⎬
⎪⎭⇒

⎧⎪⎪⎨
⎪⎪⎩

k1 = k2
E′

1 = E′
2

(p̈)1 = (p̈)2
data1 = data2

As its name suggests, the determinism result is actually a confluence
result that concerns the result of maximal transition sequences. The se-
quences themselves do not need to be identical, and non-identical derivations
can be easily built, because parallel branch concurrency is modeled by non-
deterministic interleaving, and deciding the absence of a signal (using the Can
function) can be usually done at several different points during a derivation.

The previous conjecture is intuitive, given the construction of the COS.
However, it is difficult to prove because the complexity of proving the conflu-
ence of term rewriting is augmented by the necessity of proving the confluence
of the side effects on the data store; and the proof involves a large number of
(usually simple) cases, corresponding to the different statements and to the
corresponding transition rules.

Program behavior

In Section 4.7, we explained how the behavior of a program is defined based on
the behavior of its body. We also explained why certain restrictions must be
satisfied by the program interface to relate the behaviors of the program and
of its body and we gave the semantics-preserving program transformations
that ensure these restrictions are met.

This presentation was done with the constructive behavioral semantics,
but the approach is easily extended to cope with data in the COS. In fact, the
only difference concerns the valued signals and sensors of the interface. These
signals, or the associated primitive (kernel) objects—the interface shared
variables—must be treated the same as pure signals. Connection code must
be added in cases where an interface signal or shared variable can be both
read and emitted in an instant.
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When the needed connection code is added, we define a new program
behavior relation as follows. Let P be a Kernel Esterel program of body p
that cannot both test and emit an interface signal or shared variable during a
reaction. Assume I is the set of input signals of P and O is the set of output
signals. Let EI be an event over I (an input event) and EO an event over O.
Then

P ′, data′ EO−−→→
EI

P ′′, data′′ ⇔
∃k ∈ {0, 1},∃E such that •p′, data′ E,k−−→→

EI

p′′, data′′ and E/O = EO

where p′ (resp. p′′) is the state of p in P ′ (resp. P ′′) and E ranges over events
over I ∪ O. The initial status of the data store must be consistent with the
synchronization protocol on input and output shared variables. The status
of input variables must be ready, and the status of output variables must be
old.

5.7 COS versus CBS

In this section we discuss the differences between between the two flavors of
direct constructive semantics of Esterel. Naturally, the comparison can only
be made on Pure Esterelsince the constructive behavioral semantics cannot
handle data. This allows us to simplify the COS notation by discarding
all references to data in the semantic terms, transition rules, and potential
functions.

On Pure Esterel, microstep transitions are written ṗ
e,k−−→
E

p̈, and the rules

describing composition of microsteps have the forms ṗ
E′,k
−−→∗

E
p̈ and ṗ

E′,k−−−→→
E

p̈.

The potential function is

Can(p̈, E) = 〈CanS(p̈, E) , CanK(p̈, E) 〉.

With these simplifications, we are ready to state that the Constructive
Behavioral and the COS are equivalent on Pure Esterel. The following con-
jectures state that we introduced a language extension, but have not created
a completely new language. A Pure Esterel program has the same meaning
in the COS as in the constructive behavioral semantics.

As for the determinism results of the previous section, we do not have a
proof of our statements. We therefore present them as conjectures.

Conjecture 2 (Equivalence to reference semantics) For any term p,
completion code k 
= ⊥, and events E and E′, we have

p ↪
E′,k−−−→

E
p′ ⇔ •p E′,k−−−→→

E
p′.
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The proof of the result makes use of a series of intermediate results of
which we mention only one, for it gives insight in the strong relation existing
between execution and potential computations.

Conjecture 3 (Potential function characterization) If •p E′,k−−−→→
E

p̈, then

Can(p, E) = Can(•p, E)

Must(p, E) = 〈E′ , {k}\{⊥} 〉

Can+(p, E) =

{
Must(p, E) ∪ Can(p̈, E) if k = ⊥

Must(p, E) if k 
= ⊥

The result emphasizes the operational aspect of our semantics where po-
tential analysis is restricted to code pruning.



6

Constructive Circuit Translation

In Chapter 3 we explained the semantic principles that allow us to represent
a Pure Esterel program as a constructive logic formula. We also explained
that ternary circuit simulation provides an operational way of determining
the solutions of such formulas. These solutions determine the reactions, i.e.,
the behavior of the program.

In this chapter, we explain how the basic constructive circuit model is
extended to represent the data-handling primitives of Esterel, and we then
show how Esterel programs can be translated into such Boolean circuits.
Thus, we obtain a circuit version of the source behavior amenable to hardware
synthesis and software generation; and an entry point to a large class of
circuit-level verification, simulation, and optimization techniques.

In the next chapter (Section 7.3), we present the INRIA compiler, whose
software code generation schemes are based on the simulation of the resulting
circuits. As the following chapters will show, circuits with data form the
semantic domain where the formal semantics of the GRC compilation format
is given. Stating or proving the correctness of GRC-level optimization and
code generation techniques relies on a fine understanding of the circuit model.

This chapter is divided into two parts. In the first, we present the no-
tion of constructive circuit with data, which was introduced by the Esterel
Group [32] to partially extend the use of circuit-level techniques to the full
Esterel language. In circuits with data, the evaluation of wires may trigger
data actions, which are routines that read and assign data variables. Some
actions are tests whose Boolean return value can be taken into account in
the computation of wire values.

Although circuits with data can represent non-deterministic behavior, by
construction, circuits obtained from constructive Esterel programs are deter-
ministic. To achieve determinism, these circuits employ data dependencies
to ensure an ordering of actions consistent with the desired side effects.

In the second part of this chapter, we present the circuit translation
scheme in detail. The main principles behind the circuit translation of Esterel
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have not changed since they were first defined by Berry [6, 7].
Control flow and code pruning are represented in the Boolean circuit by

the propagation of 1 and 0 values respectively.
The control state of the program between execution instants (the status

of its pause statements) is stored in Boolean registers, i.e., memory elements
whose output at a cycle is the input at previous cycle.

The circuit translation uses wires for signals and control paths and reg-
isters for pause statements. This approach allows the definition of simple,
structural translation scheme where the circuit associated with a statement
is obtained by composing the circuits of its sub-statements into predefined
patterns.

Many semantically-equivalent circuit translations can be defined that are
consistent with these guidelines. Among them, the translation presented
in this book has been designed for simple presentation. More precisely, we
use the digital circuit representation to connect the direct COS to interme-
diate compilation representations. The components of a generated circuit
correspond to the control flow structures of the COS. Moreover, the GRC in-
termediate representation of an Esterel program (defined in Chapter 8) can
be seen as an abstraction of the corresponding circuit. Its formal semantics
are given in the circuit with data domain. In Appendix B, we explain how
more complex translations support experimental language primitives.

6.1 Digital Circuits with Data

Esterel programs are translated into digital circuits at the logic gate level. At
this level, the circuits are composed of two types of objects:

• combinational gates (AND, OR, NOT, etc.), which are the elementary
components in the computation of a reaction; and

• Boolean registers, which store the status of the program between
reactions.

Gates and registers are connected by wires that carry values from a source
gate to an arbitrary number of destination gates. A circuit for ABRO (an
example first presented on page 7) is given in Figure 6.1.

The dotted boxes show the gates for each statement. The leftmost box
corresponds to the preemption test for R; the rightmost one to the parallel
synchronization; the two remaining boxes correspond to the “await A” and
“await B” statements.

6.1.1 Circuit Semantics. Constructive Causality

To execute Esterel programs, digital circuits are endowed with constructive
semantics [7], based on a constructive value propagation model. There are
two equivalent ways to present constructive evaluation of gates (see Berry [7]).
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module ABRO:
input A, B, R ;
output O ;
loop
[
await A

||
await B

];
emit O

each R
end module

START

R

A

O

B

Figure 6.1: A possible circuit translation for ABRO

The first way is to use logical rewrite rules such as 1∨ x→ 1 and 1∨ x→ x.
Since only constructive rules are considered, the excluded midde law x∨¬x =
1 is not applicable. The second way is to compute wire values in the 3-valued
model B⊥ = {⊥, 0, 1}, with the same rules as above where x is a value in B⊥.
These rules first appeared on page 46.

x y x ∧ y x ∨ y ¬x

⊥ ⊥ ⊥ ⊥ ⊥
⊥ 0 0 ⊥ ⊥
⊥ 1 ⊥ 1 ⊥
0 ⊥ 0 ⊥ 1
0 0 0 0 1
0 1 0 1 1
1 ⊥ ⊥ 1 0
1 0 0 1 0
1 1 1 1 0

Note that a gate can compute its result based on incomplete input infor-
mation (for instance ⊥ ∨ 1 = 1). These approaches are equivalent, as shown
in Berry [7]. Here, we take the second approach.

We assume the values on the input wires are defined at the beginning of
the reaction and hold throughout. Constructive value propagation works as
follows. We first mark all non-input wires with ⊥. This corresponds to when
no gate has performed any computation. Then, we propagate the values of
gates that have enough input information to compute a defined output value.
The values are always mechanically constructed from inputs, never guessed.
In this process, gate outputs can only change from ⊥ to 0 or 1, never from
0 to 1 or 1 to 0, meaning the computation is monotonic. Since the number
of wires is finite, the computation reaches a fixpoint after a finite number of
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0
⊥

1

⊥
⊥

0
1

0
1

0
1 1

0 0
0

0⊥
⊥

0
1

0
1

0
1 1

0 0
0

0

⊥

Figure 6.2: The two possible evaluation sequences for a small circuit

1
⊥

1

⊥
⊥

0
1

0
1

1

0
1

1

1

1

Figure 6.3: Causality in circuit evaluation

gate evaluations. This fixpoint is the constructive result of the circuit for the
given inputs.

An essential property is that the fixpoint is independent of the order in
which gates are evaluated. Figure 6.2 presents two evaluation sequences for a
small circuit with the same inputs, illustrating how the results is independent
of evaluation order. For simplicity, we assume in the sequel that the evalua-
tion of the circuit is performed gate by gate, and we shall call the evaluation
of a gate an evaluation step.

Another important property is that wire dependencies can order the eval-
uation of different wires. For instance, only one evaluation sequence exists
for the input valuation of Figure 6.3. Indeed, the AND gate must await the
computation of its second argument to start. This is the constructive causal-
ity we will exploit in the next section where we define circuits with data.

Sequential behavior

In Esterel, the pause statement is responsible for dividing the program be-
havior into successive reactions. The Boolean register plays this role in digital
circuits.

A Boolean register is a circuit component with one input wire (IN), one
output wire (OUT), and an initial value (V).

OUTIN v

If INi and OUTi are the values of the input and output wires during the
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S

START

Figure 6.4: A simple sequential circuit

ith reaction (clock cycle), then the behavior of the register is defined by

OUTi =
{

V, if i = 0
INi−1 otherwise.

Most registers used in the translation of Esterel into digital circuits have
an initial value of 0, so we will not bother to write the initial value on most
registers.

The translation of an Esterel statement into a digital circuit is performed
by using one Boolean register for each pause statement. For instance, con-
sider the kernel expansion of “sustain S”.

loop
emit S ;
pause

end

In the generated circuit, we use a 1 to indicate both execution and signal pres-
ence. Under this encoding, Figure 6.4 is one way to implement this program.
We set the START wire to 1 in the first reaction and set it to 0 in all others.
The program resumes from the pause statement when the corresponding reg-
ister output is 1. When the program is started or when the pause statement
is resumed, the signal S is emitted by setting the corresponding wire to 1 and
the pause statement is activated by setting its register input is set to 1.

More complex examples will be presented later. In general, the translation
of pause wraps its register a sub-circuit that freezes or preempts the control
flow as required by enclosing preemption structures.

6.1.2 Extension to Circuits with Data

Data actions

A major advantage of the constructive evaluation approach is that it can be
extended to support data operations, necessary for handling the full Esterel
language. To see how, consider adding a signal test and some data handling
code to the previous example.

var v := 0 : integer in
loop
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S

PRINT

START v:=0
v:=v+1

?S<=v

Figure 6.5: Circuit with data, first example

v := v + 1 ;
present PRINT then emit S(v) end ;
pause

end
end

This can translated into the circuit with data of Figure 6.5. The protocol on
START is the same as before. The signal S is emitted only in reactions where
PRINT is present. The data actions “v:=0,” “v:=v+1,” and “?S<=v” are per-
formed during reaction evaluation whenever their associated wire becomes 1
and before evaluation propagates this value further. By this mechanism, con-
structive evaluation orders actions in instants where both are executed. For
instance, in reactions where control resumes from the register and PRINT is
present, the identity gates controlling the data actions are evaluated as shown
in Figure 6.3, and the assignment is performed before the test.

Data dependencies

For valued signals, the constructive evaluation of the control flow wires are
not enough to ensure a correct scheduling of the data actions. Consider the
following Esterel fragment.

?S <= 10 || v := ?S

When this is started, the shared variable assignment must be executed before
the sequential variable v is assigned to guarantee that the current value of
S is assigned to v to match the Esterel semantics. Since the data actions
belong to different branches of the parallel, the constructive evaluation of the
control wires in Figure 6.6(a) is not sufficient to ensure the correct ordering
of the actions. We need to introduce additional data dependency arcs, drawn
as dashed arrows. Such arcs mark scheduling constraints due to data and
not implied by the constructive evaluation of the regular circuit wires.

Although for convenience, we have explicit data dependencies (i.e., the
dotted lines) in our formalism, it is not strictly necessary. The same effect
can be achieved with additional standard gates. For example, Figure 6.6(b)
shows how to replace the dotted data-dependency link by three additional
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v:=?S

START

START
(b)

(a)
TERM

TERM

?S<=10

?S<=10

v:=?S

Figure 6.6: Circuit with data, second example

v=10START v:=v+1

TERM

O1

O2

Figure 6.7: Circuit with data, third example

gates that propagate an auxiliary 1 and together imply the same dependency.
The extra gates allow the action “v:=?S” to be started only when its trigger
is set to 1, i.e., after “?S<=10” executes or when we have determined that it
will not.

Test actions

Circuits with data not only drive the execution of data actions, but may
also make decisions based on data tests. When gate driving a test action
becomes 1, the action is executed, and the output wire is set to the Boolean
result value of the test. In other words, a wire with a test action may actually
have a different output value than its input. Figure 6.7 shows the circuit for
the following example, which includes the data test v = 10.

v := v + 1;
if v = 10 then emit O1 else emit O2 end

Data abstraction issues

In the circuit-with-data representation, we separate data from control and
do not generate gates for data computations. This common abstraction
enables much more aggressive analysis. For instance, Sentovich et al. [63]
show how to perform sequential optimizations on the control circuit, which
would be impossible on the full circuit with data since the state space would
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immediately explode. In practice, a reasonable strategy for synthesizing a
circuit in which gates also handle data is to optimize the control circuit sep-
arately, then sew it together with circuitry for the datapath. The Esterel V7
compiler does this.

6.1.3 Formal Definitions

A digital circuit with data C is a set W of wires, a subset I ⊆ W of input
wires, a set V of variables, gate definitions, and a set Causal of explicit causal
dependencies.

The set of wires contains the circuit inputs, whose value are provided
by the environment, and the output wire of each gate. The output wire
w ∈ W \ I of each gate has a constructive logic expression over the values of
the other wires, denoted fw : BW

⊥ → B⊥. The function fw is monotonic with
respect to B⊥.

Each variable v has a type Type(v). To simplify the evaluation algo-
rithm, we assume that every wire w triggers one action actw when set to 1.
Based on the current status of the variables, actw may assign new values to
some variables, as defined by the associated function valw :

∏
v∈V Type(v)→∏

v∈V Type(v). The call to actw also produces a Boolean value with the test
function testw :

∏
v∈V Type(v) → B. Intuitively, the action of a wire w is a

test action when testw is not constant 1. The set Causal of causal action
ordering relations is composed of pairs of wires. If (w1, w2) ∈ Causal, then
the evaluation of w1 must be performed before the evaluation of w2.

Because we are mostly interested in the evaluation of a single reaction, our
definitions only concern the combinational part of the circuit. We represent
registers as a pair of wires: one wire for the output of the register and one
for the input.

An evaluation of the circuit C = 〈W, I,V,Causal〉 is a sequence of circuit
valuations Ċi = 〈Ẇi, datai〉, 1 ≤ i ≤ n, where Ẇi : W → B⊥ and datai are
stores representing the status of all variables (datai(v) ∈ Type(v)). At each
step of the evaluation process one gate is evaluated and one wire changes its
status from ⊥ to either 0 or 1. If the ith evaluation step corresponds to the
evaluation of wire w, we write Ċi w−→ Ċi+1 for the state transition.

The evaluation steps are subject to causal restrictions. If Ẇi(w) = ⊥ and
fw(Ẇi) 
= ⊥, we can evaluate w during the ith evaluation step if either

• fw(Ẇi) = 0, in which case datai+1 = datai and

Ẇi+1(w′) =
{ Ẇi(w′) if w′ 
= w

0 if w′ = w;
or

• fw(Ẇi) = 1 and all the explicit causal dependencies are satisfied (for
all (w′, w) ∈ Causal, we have Ẇi(w′) 
= ⊥). In this case,

datai+1 = valw(datai)
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Ẇi+1(w′) =
{ Ẇi(w′) if w′ 
= w

testw(datai) if w′ = w.

An evaluation of the circuit C is any sequence of evaluation steps.

Ċ1 w1−−→ Ċ2 w2−−→ · · · wn−−→ Ċn+1

By construction, any evaluation sequence is finite. For a general circuit
with data, the evaluation process is not necessarily confluent, i.e., does not
lead to a uniquely defined state, largely because side-effects may be non-
commutative. However, our translation process for Esterel produces a con-
fluent circuit by adding data dependencies to avoid this problem.

Constructiveness of dataless circuits

Note that classical dataless circuits can be represented in our model. A
circuit in our model is dataless when its variable and causal dependency sets
are empty and all test functions are constant 1. In this case, we can simplify
the notation. First of all, the variable and causal dependency sets can be
omitted from the circuit tuple C = 〈W, I〉. Furthermore, a circuit valuation
coincides with the valuation of its wires Ċ = 〈Ẇ〉.

When considering dataless circuits, we fall onto the classical definitions
of constructiveness as given in Section 3.1.1. The monotonicity of the logic
gate functions fw ensures that the evaluation of the circuit is monotonic
and confluent for any given input. The circuit is constructive when for any
input valuation the ternary simulation associates a 0 or 1 value with every
circuit wire.

Definition 3 (dataless constructiveness) Let C = 〈W, I〉 be a dataless
circuit and let Ẇ be an initial valuation that assigns 0 or 1 values to all
inputs and ⊥ with all other wires. C is constructive for the initial valuation
Ẇ when any maximal evaluation of C starting in Ẇ assigns a value of 0 or
1 to every wire. C is constructive when it is constructive for every initial
valuation Ẇ.

When the dataless circuit is associated with a Pure Esterel program, its
constructiveness means it can compute the reaction of the program in any
state and for any input.

Figure 6.8(a) shows a dataless non-constructive circuit. When the input
is set to 1, the output cannot be constructively assigned a value of 0 or 1.
The circuit corresponds to the following Pure Esterel statement.

present S then emit S end
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1

(b)

v:=?S ?S<=7
1

(a)

1

(c)

v:=6

v:=7
1

1
⊥ ⊥ ⊥

Figure 6.8: Incorrect circuits

Constructiveness of circuits with data

Defining constructiveness is far more complex for circuits with data. We
expect termination and determinism from circuits obtained from Esterel
programs.

Definition 4 (Termination, Determinism, and Constructiveness)
Let C = 〈W, I,V,Causal〉 be a circuit with data, let d be a valuation of the
variables, and let Ẇ be the initial values of the wires.

1. C terminates for the initial values Ċ = 〈Ẇ, d〉 when any maximal circuit
evaluation starting in Ċ assigns a value of 0 or 1 to every wire.

2. C is deterministic, or confluent, for the initial values Ċ when all maxi-
mal circuit evaluations starting in Ċ finish with the same wire and store
values.

3. C is constructive for the initial values Ċ if it is both deterministic and
terminating for those values.

All dataless circuits are deterministic, and all constructive dataless cir-
cuits are constructive for any input valuation. When data is involved, things
become more complicated. Figure 6.8(b) presents a circuit that is determin-
istic for any input valuation, but does not terminate when its input is set to
1. The circuit corresponds to the Esterel program

v := ?S ; emit S(10)

Figure 6.8(c) presents a circuit that terminates for any input but is not
deterministic when the input wire is set to 1.

Later, we will require circuits generated from constructive Esterel pro-
grams to be constructive for consistent states of the program.

6.2 Translation Principles

An Esterel program is translated into a Boolean circuit structurally. Each
statement of the program is associated with a small circuit. The circuit for a
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composite statement comes from composing the circuits of its sub-statements.
The translation of a program is performed in a bottom-up fashion, starting
at simple statements emit, pause, and exit.

There is one pattern for each kernel Esterel statement. Derived statements
can first be dismantled into kernel statements, but in practice using special
patterns for derived statements produces better circuits. All compilers take
this route, but we will not provide the details here.

Our circuit translation reuses the three main notions of the Esterel oper-
ational semantics:

1. Selection is the notion describing the state encoding of Esterel. A
statement is selected for execution in an instant if control paused on
an enclosed pause in the previous instant. Thus, pause statements are
the basic Boolean state holders. In the circuit, selection will be derived
by OR-ing selection wires out of the pause registers.

2. The start behavior, also called surface behavior, is the computation
of a statement when the microstep control flow reaches it while it is
not selected. The start behavior does not need to read the selection
statuses of its sub-statements, for they are known (not selected). Due to
the complex phenomenon of reincarnation, a statement can be started
several times during a single execution instant.

3. The resumption behavior, also called depth behavior, is the computation
of a statement resumed when currently selected. The computation of
the depth behavior depends on the computation of the selection statuses
of its sub-statements and it may itself lead to start or resumption of
these sub-statements. Note that statements such as emit that contain
no pause have no state, are never resumed, and therefore exhibit no
depth behavior.

A statement can only be resumed once during an execution instant. How-
ever, because of loops, the statement p in “loop p end” is resumed and started
in the same instant when it loops.∗ In complex reincarnation cases, a state-
ment can be restarted several times in the same instant, as explained in
Section 2.3, page 30.

Our translation scheme will associate with each statement three
structurally-defined circuits, corresponding to the three notions listed above.
For a statement p, we define

1. the selection circuit CSelect(p), which preserves the state of the state-
ment between successive clock cycles and computes the selection sta-
tuses of all the (sub-)statements of p;

2. the surface circuit CSurf(p), which computes the start behavior of p;
and

∗Note that the loop body is no longer selected when it is restarted.
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3. the depth circuit CDepth(p), which computes the resume behavior of p
and is activated only in instants where the statement is selected.

The surface and depth circuits are combinational. All registers appear in the
selection circuit, whose wires depend solely on registers and not on inputs.
Therefore, in constructive evaluation, selection gates can be computed before
surface and depth gates.

In the remainder of this section, we define the translation interfaces of each
of these circuits and we explain how to generate the global program circuit
by connecting the selection, surface, and depth circuits for the program body.

6.2.1 The Selection Circuit

Section 6.1 explained how we use Boolean registers to implement pause state-
ments. Our translation generates one Boolean register per pause statement,
plus a boot register for the whole program, corresponding to an implicit
leading pause selected at first instant.

In addition to the registers, the selection circuit associated with a state-
ment uses a tree of OR gates to compute the selection status of all its sub-
statements. Consider the following Esterel program.

module Small:
input I,K;
output J;
trap T in
await I ; pause ; sustain J

||
await K ; exit T

end trap
end module

The selection circuit of Small is pictured in Figure 6.9. The special boot
register is associated with the full program. The other registers are generated
by pause statements: one for the explicit pause, and three for the implicit
pausees: two for await and one for sustain.

All registers except the boot register have initial value 0, which makes
the initial state of the Esterel program the case where the initial pause is
selected. The boot register outputs 1 in the first reaction of the program and
outputs 0 in all later reactions because its input wire is set to 0.

Given a statement p, the inputs of the selection circuit CSelect(p) are the
register input wires RIN(rp), where rp ranges over all the registers generated
by the pause statements of p. When p is a program and rp is its boot pause,
RIN(rp) is always set to 0. The outputs of CSelect(p) are the SEL(p) wires,
where p ranges over all the sub-statements of p, including p itself.

For the Small example, the derived Esterel statements await and sustain
each generate one register. The standard kernel expansion of more complex
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first parallel branch

SEL(await I)

SEL(pause)

SEL(sustain)

SEL(await K)

SEL(br1)

SEL(body)

program body

SEL(boot)
1

RIN(await I)

RIN(pause)

RIN(sustain)

RIN(await K)

SEL(prog)

0

Figure 6.9: The selection circuit of a simple example

CSurf(p)

KiGO

RIN(rp)

IN(S) OUT(S)

CDepth(p)

RES Ki

SEL(sp) RIN(rp)

IN(S) OUT(S)

(a) (b)

Figure 6.10: The interface of the surface (a) and depth (b) circuits associated
to a statement p in our translation.

derived statements such as “every immediate” would generate two registers,
which is unnecessary. For each derived statement, there is an optimized
translation with only one register.

6.2.2 The Surface and Depth Circuits

The surface and depth circuits for a statement implement the function of
each reaction using combinational gates. In the next section, we show how
they are connected to the state-holding selection circuit to generate the full
sequential behavior of an Esterel program.

Consider a statement p. As pictured in Figure 6.10(a), the inputs of
CSurf(p) are the wires GO and IN(S), where S ranges over the signals that
visible from p, excluding its local signals. The GO wire is set to 1 in cycles
where p is started to trigger the start behavior. The IN(S) wires collect the
status of each signal from the environment.

The outputs of CSurf(p) are the wires Ki, RIN(rp), and OUT(S), where
i ranges over the set Ks(p) of potential completion codes of p, see definition
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CDepth(body)

K1

K1

K0

K0

GO

RES

TERM

PAUSE

RIN(r) SEL(s)

SEL(boot) RIN(r)

RIN(r)SEL(s)

IN(I )
IN(I )

IN(I )

OUT(O) OUT(O)

OUT(O)

SEL(body)

CSelect(prog)

CSurf(body)

Figure 6.11: The global translation context

in Section 4.6; rp ranges over the pause statements of p; and S ranges over
signals that can be emitted but are not declared by p.

The Ki wire is set to 1 to represent p’s completion with code i. In instants
where GO is 1, exactly one of the Ki wires is set to 1. The wire RIN(rp) is
the input of the rp selection register; it is set to 1 when control pauses on
the corresponding pause statement. The wire OUT(S) is set to 1 when the
signal is emitted by p. It is set to 0 when p does not emit S.

The depth circuit associated with p is denoted CDepth(p). Its interface
(Figure 6.10(b)) is richer than that of CSurf(p). The wires SEL(sp) are
inputs that decode the current state of its sub-statements (sp ranges over p’s
immediate sub-statements). The resumption wire RES is 1 in cycles in which
p is resumed.

6.2.3 The Global Context

The circuit representing the full sequential behavior of an Esterel program
combines the surface and depth circuits of the program body with the pro-
gram’s selection circuit following the pattern in Figure 6.11. This distributes
the inputs to the surface and depth circuits and collects the outputs.

The output SEL(boot) of CSelect(prog) is connected to the input GO of
CSurf(body); this triggers the first instant, where the implicit pause respon-
sible for booting the circuit is selected. In all the other instants, CSurf(body)
has value 0. While the program is still active (while SEL(body) = 1) the re-
sumption is triggered since SEL(body) is connected to RES. The resumption
also reads the selection statuses of the different statements of the program,
which are computed by CSelect(prog). The status of the registers RIN(r) is
computed by CSurf(body) in the start instant and by CDepth(body) in the
other instants.

An output signal O is emitted by the program when either CSurf(body)
or CDepth(body) sets the corresponding wire OUT(O) to 1. The program
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K1GO

RIN(p)
RES

K0

RIN(p)

SEL(p)

(a) (b)

Figure 6.12: Surface (a) and depth (b) circuits for pause

GO K0

Figure 6.13: Surface circuit for nothing

terminates when the completion code wire K0 is set to 1 by either the surface
or depth circuits.

The global context circuit pictured here assumes that the input and out-
put signal sets are disjoint, meaning there are no inputoutput signals. It
also assumes that wrapper code has been added for any input signals that
are also emitted by the program (see Sections 4.7 and 5.6).

6.3 Translation Rules

6.3.1 Dataless Primitives

Pause

When the statement p = pause is started by setting the wire GO to 1, the
surface circuit (Figure 6.12(a)) sets the register output RIN(p) and the K1
completion code wires to 1.

The depth circuit (Figure 6.12(b)) produces the completion code K0 (“ter-
minate”) when resumed while being selected (both RES and SEL(p) set to 1).
When the statement is selected, but not resumed (i.e., suspended), the reg-
ister output is set to 1 to preserve the status of the register.

Nothing

The statement nothing is instantaneous and therefore only has a surface cir-
cuit: Figure 6.13. The circuit simply copies GO to completion code wire K1.
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CSurf(p)

KiGO

RIN(rp)

IN(S) OUT(S)

GO

IN(S)

Ki

RIN(rp)

OUT(S)

Figure 6.14: Surface circuit for “loop p end”. The index i ranges over the
set Ks(p), which must not contain code 0 (cf. Section 4.6).

CSurf(p)

Ki Ki
Ki

RES

GOK0

IN(S)
IN(S) RIN(rp) IN(S) RIN(rp) RIN(rp)

OUT(S)OUT(S)OUT(S)RES

SEL(sp)
SEL(sp)

CDepth(p)

Figure 6.15: Depth circuit for “loop p end”. The index i ranges over the
set Kd(loop p end) (which does not contain 0).

Loop

Starting a loop amounts to starting its body, so the surface circuit of “loop
p end” is simply the surface circuit of p. Its K0 is 0 since the body of a loop
statement cannot terminate instantaneously.

The depth circuit, Figure 6.15, is more complex because it embodies the
solution to the reincarnation problem described in Section 2.3. When re-
sumed, the body of a loop can terminate. In that case it must be instantly
restarted. We generate a copy of CSurf(p) for the depth of the loop circuit,
triggered by the K0 output of CDepth(p). This copy is specific to the loop
depth—distinct from that for the surface. The induced replication of the
surface circuit of p is called circuit reincarnation. It ensures that each eval-
uation of p’s surface inside a given execution instant is performed by a fresh
instance of either CDepth(p) or CSurf(p).

Our translation scheme may replicate code even when doing so is unnec-
essary. Static analysis techniques like those used in the circuit-based INRIA
compiler can reduce the degree of replication, but we shall not investigate
this problem here. Instead, we shall exploit the simplicity of the scheme by
allowing the definition of a simple link between the circuit translation and the
compilation schemes defined in the third part of the book, and facilitating
the task of optimization algorithms by producing simpler control and data
dependencies.
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CSurf(q)

IN(S) IN(S)

OUT(S) OUT(S)

RIN(rp) RIN(rq)

K0 GO

Ki

GO

IN(S)

GO
K0

Ki

OUT(S)

Ki

K0

RIN(rq)

RIN(rp)

CSurf(p)

Figure 6.16: Surface circuit for the two-way sequence “p ; q”. The index i
ranges over Ks(p ; q) \ {0} .

CDepth(p)

IN(S)
IN(S)

IN(S)

OUT(S) OUT(S)

RES

RES

SEL(sq)
SEL(sq)

RES

SEL(p)

SEL(q)

RIN(rp) RIN(rq)

RIN(rq)

K0

K0GOK0SEL(sp)
SEL(sp)

Ki

Ki

Ki

IN(S) OUT(S)

K0

Ki

OUT(S)

RIN(rq)

RIN(rp)

CSurf(q)

CDepth(q)

Figure 6.17: Depth circuit for the binary sequence “p ; q” (i ranges over
Kd(p ; q) \ {0}) .

Sequence

Figure 6.16 shows the surface circuit for the binary sequence “p ; q.” Once
started, the sequence starts its first branch by triggering its surface circuit
CSurf(p). If p terminates (K0=1), the second branch is started immediately.

Figure 6.17 shows the depth for “p ; q.” When resumed, the sequence
resumes its active sub-statement, determined by the selection status inputs
SEL(p) and SEL(q). When p terminates, we trigger an incarnation of q’s
surface circuit.

Parallel

Figure 6.18 shows the surface circuit for the parallel statement p = p1 || . . . || pn.
To simplify the figure, we only drew a single sub-circuit (for branch pj) as
well as all the common gates. Common gates are represented using the ex-
tensible gate convention used by Berry [7]. We mark extensible gates with
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....

....

RIN(rp)

Ki

Ki

Ki(pj)

Ki

GO
GO

CSurf(pj)

IN(S)
IN(S) OUT(S)

RIN(rp)

Branch(pj)

Sync

OUT(S)

Figure 6.18: Surface circuit for “p1 || . . . || pn” (i ranges over
⋃n

j=0 Ks(pj))

....

....

Dead(pj)

RES Ki

Ki

Ki(pj)

Ki
SEL(pj)

RES

Branch(pj)

IN(S)

SEL(sp)
SEL(sp) RIN(rp)

OUT(S)IN(S)

CDepth(pj)

Sync

OUT(S)

RIN(rp)

Figure 6.19: Depth circuit for “p1 || . . . || pn” (i ranges over
⋃n

j=0 Kd(pj))

“. . . .” Extensible gates and sub-circuits accept input from all the branches,
even though our figure pictures only the wires coming from branch pj . For
instance, the OUT(S) output of the surface circuit is the disjunction of all
the OUT(S) outputs of the branches pj , 1 ≤ j ≤ n. Also, the synchronizer
sub-circuit Sync, detailed next, has as inputs the Dead(pj) and Ki(pj) wires
output by all the branches.

The behavior of the surface circuit is simple. When the global GO input
is 1, all the branches are started by triggering their surface circuits CSurf(pj).
The Sync sub-circuit synchronizes the completion codes of the branches to
produce the completion code of the parallel statement.

The depth circuit (Figure 6.19) works similarly except only selected
branches of the parallel are resumed. For the unselected branches, the Sync
sub-circuit is simply informed of their inactivity.

The synchronizer sub-circuit Sync implements the completion code syn-
chronization operation specified by the semantics of the parallel statement.
The synchronizer has two functions:

• Determining the maximum of the completion codes produced by the
active branches. To represent the control flow propagation of the COS,
1’s are propagated through the synchronizer.
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........ .... ............ ....

Dead(pj)

K0 K1 K2

K0(pj) K1(pj) K2(pj)

Branch(pj)
Carry1(pj) Carry2(pj) Carry3(pj)

Figure 6.20: The circuit-level parallel synchronizer

OUT(S)

K0GO

Figure 6.21: Surface circuit for “emit S”

• Pruning the control paths corresponding to completion codes that are
constructively determined as unreachable. The computation of the
Can potential function is represented by propagation of 0’s through
the synchronizer.

Figure 6.20 shows the synchronizer circuit, which is carefully arranged to al-
low the parallel, constructive computation of the maximum completion code.
When used in the surface translation pattern of the parallel, the Dead(pj)
inputs are set to constant 0, i.e., they are not connected.

Signal declaration and emission

The signal emission statement is instantaneous so it only generates the surface
circuit in Figure 6.21, which sets the OUT(S) wire whenever GO is set.

Figure 6.22 shows the surface and depth circuits for signal declaration.
Their main characteristic is the feedback from the output OUT(S) of the
declared signal back onto the corresponding input IN(S).

Signal test statements

Figures 6.23 and 6.24 shows the surface and depth circuits for both signal
and data test statements. Their function is simple: to start the test state-
ment, the GO wire is set to 1, which triggers the Test sub-circuit. This
sub-circuit determines whether the test expression is true or false, and sets
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CSurf(p)

Ki

RIN(rp)

IN(U ) OUT(U )

OUT(S)IN(S)

IN(U )

Ki

RIN(rp)

OUT(U )

GO
GO

CDepth(p)

RES Ki

SEL(sp) RIN(rp)

IN(U ) OUT(U )

OUT(S)IN(S)

RES

SEL(sp)

IN(U )

Ki

RIN(rp)

OUT(U )

(a) (b)

Figure 6.22: Surface (a) and depth (b) circuits for “signal S in p end” (i
ranges over Ks(p) in the surface, and over Kd(p) in the depth circuit).

CSurf(q)

RES

RES Ki

OUT(S)

Ki

OUT(S)

RIN(rq)

GO F

T

RIN(rp)

RIN(rq)

RIN(rp)

OUT(S)

Ki

GO

IN(S)
IN(S)

IN(S)

IN(S)

CSurf(p)

Test

Figure 6.23: Surface circuit for the signal and data tests (i ranges over Ks(r),
where r is the test statement).
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CDepth(q)

IN(S)
IN(S)

RES

RES

SEL(sq)
SEL(sq)

RES

SEL(p)

SEL(q)

RIN(rp)

SEL(sp)
SEL(sp)

IN(S) RIN(rq)

Ki

OUT(S)

Ki

OUT(S) OUT(S)

RIN(rp)

Ki

RIN(rq)

CDepth(p)

Figure 6.24: Depth circuit for the test statements (i ranges over Kd(r), where
r is the test statement).

IN(S)

GO
T

F

Figure 6.25: Signal test circuit (present statement)

the corresponding output to 1, which in turn triggers the surface circuit of
the corresponding branch.

The depth circuit resumes the already selected sub-statement. It uses the
selection status wires of the two branches to decide which one is selected, and
then sets the corresponding RES to 1. Only one branch can be selected at
a time.

The only difference between signal and data tests appear in the Test sub-
circuit. Figure 6.25 shows the version for “present S then p else q end.”
The next section will give the version for variable tests. More complex test
sub-circuits will be presented in Appendix A.1, where we introduce signal
expressions.

Suspend

When started, a suspend statement behaves like its body, so the associated
surface circuit (Figure 6.26) simply instantiates the surface circuit of the
body statement.

When resumed, suspend performs the suspension test. If the test expres-
sion evaluates to 1, control is preempted, the state of the body is frozen by
setting the RES wire to 0, and the suspend statement completes with code
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CSurf(p)

KiGO

RIN(rp)

IN(S) OUT(S)

GO

IN(S)

Ki

RIN(rp)

OUT(S)

Figure 6.26: Surface circuit for “suspend p when expr” (i ranges over Ks(p))

RIN(rp)

IN(S)

RES

T

F

SEL(sp)

CDepth(p)
Ki

Ki

K1

K1

OUT(S)
OUT(S)

RIN(rp)

IN(S)

RES
GO

IN(S)

Test

SEL(sp)

Figure 6.27: Depth circuit for “suspend p when expr” (i ranges over
Kd(suspend p when expr) \ {1}).

K1 (Figure 6.27). We use a Test sub-circuit that can also handle the more
general case of signal expressions (see Appendix A.1).

Trap exit and handling

The exit statement is instantaneous, so it only generates a surface circuit
(Figure 6.28). When triggered, the circuit of exit T(i) sets the completion
code wire Ki to 1.

Figures 6.29 and 6.30 show the surface and depth circuits for the trap dec-
laration statement. Both perform the two essential operations that together
form the trap preemption operation: they convert the completion code 2 in
normal termination (code 0) and decrement remaining trap codes, and when
the body completes with code 2 (K2 = 1), they set all register outputs to 0.

GO Ki

Figure 6.28: Surface circuit for “exit T(i)”
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GO

OUT(S)
OUT(S)

IN(S)
IN(S)

RIN(rp) RIN(rp)

Ki Ki−1

K1 K1

K0
K0K2

CSurf(p)

GO

Figure 6.29: Surface circuit for “trap T in p end” (i ranges over Ks(p) \
{0, 1, 2}).

K2

OUT(S)
OUT(S)

IN(S)

RES
RES

SEL(sp)
SEL(sp)

IN(S)

CDepth(p)
RIN(rp) RIN(rp)

Ki Ki−1

K1 K1

K0
K0

Figure 6.30: Depth circuit for “trap T in p end” (i ranges over Kd(p) \
{0, 1, 2}).
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GO K0assign action

Figure 6.31: Surface circuit for the variable assignment and shared variable
emission.

6.3.2 Data-Handling Primitives

Data encoding

The translation encodes the two types of Esterel-level variables onto circuit-
level variables in the data store. The encoding is different from that of the
COS (Section 5.3), since data dependencies implied by the complex synchro-
nization rules must be represented here using logic gates and dependency
arcs.

An unshared variable v is encoded on v val of type typev. A shared
variable s is encoded using two variables (s val and s stat) and the causal
dependencies defined below.

• s val, of type types, holds the actual variable value.

• The Boolean variable s stat controls the use of the combine function
that solves the write-write concurrency. At each evaluation step it is
initially 0, and is set to 1 when s has already been assigned to with a
statement “s <= f(. . .)”.

• Causal dependencies link every assignment “s <= f(. . .)” with every
action that reads the value of s. The dependencies are generated at the
level of the shared signal declarations.

To represent the data actions, we use small C code fragments that test
and modify data variables and return a Boolean result. The return value is
only used for test actions.

Note that in typical circuits from Esterel, few wires carry actual data
actions. In our formal model, the others carry a trivial action that does not
modify the state and returns the value true when called.

Data assignment statements

Variable assignment statements are instantaneous, so they only generate the
surface circuit in Figure 6.31. The the assign action handles the difference
between the shared and sequential variable assignments. According to the
previously-defined encoding, the translation of “s<=f(s1, . . . , sn, v1, . . . , vm)”
generates the following action.
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CSurf(p)

RES Ki

IN(S)

Ki

OUT(S)

RIN(rp)

IN(S)

RIN(rp)

OUT(S)

GO init act

Figure 6.32: Surface circuit for variable declaration statements (i ranges over
Ks(p)).

svar emit(s):
if (s stat==0) {
s stat = 1;
s val = f(s1 val,. . .,sn val,v1 val,. . .,vm val);

} else {
s val = cs(s val,f(s1 val,. . .,sn val,v1 val,. . .,vm val));

}
Note that a commutative and associative operator cs is needed to combine
multiple emissions of a shared variable into a single result (Section 2.2).

The action for “v := f(s1, . . . , sn, v1, . . . , vm)” is simpler:

var assign(v):
v val=f(s1 val,. . .,sn val,v1 val,. . .,vm val) ;

Variable declaration statements

Figure 6.32 shows the surface circuit generated for variable declaration state-
ments. The initializing action is performed just before starting the body
statement p. In the case of a declaration of the sequential variable v, the
initializing action is

var init(v):
v val = initv;

When the statement declares the shared variable s, the initializing action
is

shared init(s):
s val = inits;
s stat=0;

When the shared variable declaration circuit is instantiated, we generate
an arc from every svar emit(s) action to every action that reads s in the
surface.

Figure 6.33 gives the depth circuit of variable declaration statements. The
reset action is empty for a sequential variable declaration; the action for a
declaration of the shared variable s is
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CDepth(p)

RES Ki

SEL(sp)

IN(S)

Ki

OUT(S)

RIN(rp)

reset actRES

SEL(sp)

IN(S)

RIN(rp)

OUT(S)

Figure 6.33: Depth circuit for variable declaration statements (i ranges over
Kd(p)).

test actionGO

T

F

Figure 6.34: Variable test circuit (if statement)

shared reset(s):
s stat = 0;

For shared variables, we also add dependency arcs in the depth just as we
do in the surface.

Variable tests

The variable test statement uses the same pattern as the present statement;
Figure 6.34 shows the test circuit. When translating the primitive variable
test statement “if v then p else q end,” the test action is

test action(v):
return v val;

More complex test expressions generate more complex circuits.

6.4 Circuit Translation versus COS

In this section we explain how evaluating a circuit with data represents the
behavior of the source program according to the COS. Specifically, we will
show the start behavior is performed by evaluating the surface circuit and
the depth behavior is performed by the depth circuit.

In what follows, P is a Kernel Esterel program of body statement p, I
is the input signal set of P , O the output signal set, IS the set of input
shared variables, and OS is the set of output shared variables. S is the set
of shared variables of p, and V is the set of sequential variables in p. We
assume I ∩O = ∅ and that each variable in the program has a unique name.
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Data encoding

The stores used by the COS to express the behaviors of P assign the variables
of OpVar = V ∪ {sstatus, svalue | s ∈ S}. Let OpStores be the set of store
valuations over OpVar, in the encoding of Section 5.3.

The stores built by the circuit translation use a different encoding of the
shared variable synchronization. These stores assign the variables of CVar =
V ∪ {s stat, s val | s ∈ S}. Let CStores be the set of store valuations over
CVar, as defined in Section 6.3.2.

Given data ∈ OpStores, we define its image [data] in CStores by

[data](v) = data(v)
[data](s val) = data(svalue)

[data](s stat) =
{

0, if data(sstatus) = old
1, otherwise

for all v ∈ V and s ∈ S.

Start behavior representation

Start behaviors of the considered program are defined as maximal COS
derivations.

•p, data
E′,k−−−→→

E
p̈, data′

We represent this derivation through an evaluation of the surface circuit
CSurf(p) associated with the program body.

In the sequel, we assume WS is the wire set of CSurf(p) and WD is the
wire set of CDepth(p). The initial state of the circuit, where the evaluation
starts, is defined to correspond to the initial state and input event of the
COS derivation.

˙CSurf(p)0 = 〈Ẇ0
S , [data]〉

where the wire statuses define the initial circuit valuation

Ẇ0
S(w) =

⎧⎨
⎩

E(w) if w ∈ I,
1 if w = GO, and
⊥ otherwise.

.

Starting in this state, we let the circuit perform a maximal evaluation se-
quence, and let

˙CSurf(p)1 = 〈Ẇ1
S , data1〉

be its final valuation.
The relation is defined by the following conjecture.

Conjecture 4 The evaluation sequence assigns a value of 0 or 1 to every
circuit wire iff the term p̈ contains no control. In this case,
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1. for all w ∈ O we have E′(w) = Ẇ1
S(w);

2. k = 0 iff Ẇ1
S(K0) = 1;

3. k = 1 iff Ẇ1
S(K1) = 1;

4. the pause statement rp is selected in p̈ iff Ẇ1
S(RIN(rp)) = 1;

5. for all v ∈ V , data1(v) = data′(v); and

6. for all s ∈ S, data1(s val) = data′(svalue).

Resumption behavior representation

Resumption behaviors of a program are defined as maximal COS derivations.

•p̂, data
E′,k−−−→→

E
p̈, data′

We represent this derivation through an evaluation of the surface circuit
CDepth(p) associated with the program body.

The initial state of the circuit, where the evaluation starts, is defined to
correspond to the initial state and input event of the COS derivation.

˙CDepth(p)0 = 〈Ẇ0
D, [data]〉

where the wire statuses define an initial circuit valuation

Ẇ0
D(w) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E(w) if w ∈ I,
1 if w = RES,
1 if w = SEL(sp) and sp selected in p̂,
0 if w = SEL(sp) and sp not selected in p̂, and
⊥ otherwise.

Starting in this state, we let the circuit perform a maximal evaluation
sequence, and let

˙CDepth(p)1 = 〈Ẇ1
D, data1〉

be its final valuation.
Then the relation is defined by the following conjecture.

Conjecture 5 The evaluation sequence assigns a value of 0 or 1 to every
circuit wire iff the term p̈ contains no control. In this case,

1. for all w ∈ O we have E′(w) = Ẇ1
D(w);

2. k = 0 iff Ẇ1
D(K0) = 1;

3. k = 1 iff Ẇ1
D(K1) = 1;

4. the pause statement rp is selected in p̈ iff Ẇ1
D(RIN(rp)) = 1;

5. for all v ∈ V , data1(v) = data′(v); and

6. for all s ∈ S, data1(s val) = data′(svalue).
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Sequential behavior

The evaluation of CSurf(p) with GO set to 0 sets all the non-input wires
(including the outputs) to 0, and triggers no data computation. Similarly,
the evaluation of CDepth(p) with RES set to 0 sets all outputs to 0 and
triggers no data computation. The sequential behavior of the global circuit
associated to a program (cf. Figure 6.11) combines the evaluations of the
surface, depth, and selection circuits associated to the program. The surface
circuit performs the computation of the first instant and the depth circuit
computes all the other instants.



Part III

Compiling Esterel



7

Overview

The first two parts of this book presented the Esterel language and its for-
mal semantics. We started with a description of the synchronous/reactive
paradigm and an overview of Esterel’s syntax. In the second part, we pre-
sented the formal semantics of Esterel and described its translation into
circuits.

In this part, we explain how to compile the Esterel language by showing
how its semantics can be mapped into efficient sequential C code. In this
chapter, we give an overview of existing compilation techniques. Details
follow in subsequent chapters.

7.1 Compiler Classes

As explained in Section 1.3, all current software implementations of Esterel
have the same global structure: an executive repeatedly calls a reaction func-
tion that computes the reaction of an instant. Compilers differ in the struc-
ture and efficiency of the code they generate for the reaction function.

All current Esterel compilation techniques can be divided into three broad
classes based on the intermediate representation they use, which in turn
influences the form of the generated code. Figure 7.1 illustrates these classes,
which correspond roughly to the three semantics defined in the second part
of this book.

Explicit FSM code is generated by symbolically interpreting the program
to produce a global, flat, and unstructured (Mealy) finite state machine,
which is then encoded in C. This corresponds to explicitly determining
all behavioral semantics transitions the program can make in all of its
reachable states.

Circuit code is generated by interpreting the Esterel program as a netlist.
Software is generated that simulates this netlist, i.e., that computes the
value of all wires and registers in an ordered manner at each reaction.

135
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Control-flow

Semantics

Implementation

Behavioral
semantics

Operational
semantics

Circuit
code

FSM
code code

Circuit
translation

Figure 7.1: Esterel implementation flavors and the corresponding semantic
control flow paradigms .

Control-flow code is generated by directly translating the operations and
control flow propagation of the COS. The goal is to translate it into
a more highly structured model whose semantics more closely match
that of the target processor.

We compare the outputs of the various compilation techniques in Sec-
tions 9.4 and 10.3.

7.2 A Brief History

The first Esterel compilation techniques (Esterel V2, Esterel V3) generated
FSM code. FSM code is theoretically as fast as possible since all state tran-
sitions are pre-computed. Unfortunately, this makes the size of the gener-
ated code grow rapidly with the specification size (potentially exponentially),
which makes the method intractable for real-size applications.

The second generation of Esterel compilers (Esterel V4, Esterel V5) gen-
erated circuit code so large programs could be compiled. The use of a digital
circuit as an intermediate representation also provided a strong link with
existing tools for digital circuit design. The main drawback of circuit code
generators is the low speed of the generated code. In particular, the com-
piled circuit simulators evaluate every circuit gate at each execution instant,
meaning the reaction time grows linearly with the specification size rather
than the amount of work the program tries to accomplish in each reaction.

The next breakthrough came in the late 1990s, when two research teams
[27, 21] independently developed compilers that generated executables that
were both small and fast. The new techniques followed from the observa-
tion that much of Esterel’s COS is based on classical control flow. Thus, it
seemed natural to design a compilation technique that relied on direct trans-
lation of the sequential operations in the language, making use of the native
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control-flow constructs of the sequential language (C) into which Esterel is
translated. Such a control-flow code combines advantages of the FSM and
circuit code generators, and can be seen as intermediate between the two.

As in the FSM-based compilers, speed is achieved by efficiently struc-
turing the generated code so that only code for semantically-active parts
of the program is traversed. The difference is that the new techniques do
not perform the potentially exponential FSM expansion, relying instead on
structural information preserved from the initial Esterel specification.

As in the circuit code generators, the translation is largely syntax-driven,
and of quasi-linear complexity. The difference is that most of the program
structure is preserved and that the intermediate representations are close to
the Esterel semantic level, which allows more compact representations that
can be easily encoded into efficient software.

In all approaches, control-flow code is comparable in size to, or smaller
than the circuit code, while approaching the speed of the explicit FSM code.

Defining a control flow-based approach involves two main difficulties. The
first is the choice of an intermediate representation level that has high-level
operators that can be easily encoded into efficient software, allows efficient
code transformations and optimizations, and allows a clear mapping of the
formal Esterel semantics at the intermediate level.

The second problem is to correctly schedule the computation of paral-
lel branches with minimal overhead. The first control flow code generators
were based on static scheduling of the reactive operations, meaning that only
acyclic Esterel specifications could be handled. One issue is that defining
“acyclic” is not simple. We discuss this issue in Section 9.1.

Subsequent research on Esterel compilation has concentrated on defining
new representations and associated scheduling techniques.

In the remainder of this chapter, we shall give an overview of existing
compilers. The next three chapters provide a detailed description of three
significant control flow code generators.

7.3 The INRIA Compiler

The development of the INRIA compiler began in the 1980’s and continued
for over twenty years by the Esterel team lead by Gérard Berry at the École
des Mines de Paris and INRIA Sophia Antipolis, France. Part of this team,
including Berry, left academia in 2001 to join Esterel Technologies, a company
that develops and commercializes the Esterel Studio graphical development
environment based on Esterel V7. Esterel V7 is a considerable extension of
the Esterel V5 dialect. We present it in Appendix D.

Starting in 1984, the Esterel team developed several Esterel compilers,
organized on a common platform. As shown in Figure 7.2, all the compilers
of the platform share the front-end and the final code generation stages. The
front-end takes Esterel sources, translates them into a high-level primitive
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. . .
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Intermediate
code

GRC code

Netlist

Explicit FSM

Reaction function

sources
Esterel

Associated definitions

User-supplied definitions
Esterel runtime

Linked code

Decomposition into primitives

High-level linking

Control flow expansion

FSM expansion

C language encoding

C compiler, linker

Netlist expansion

.strl .strl

.ic .ic

.lc

executable code

.c, .h .c, .h

.oc

.sc

.gc

Figure 7.2: The flow of the INRIA compiler. Not pictured are the optimiza-
tion transformations associated with the GRC, netlist, and explicit FSM
representation levels. Boxes list filename extensions.
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language (known as intermediate code or IC), and performs sub-module in-
stantiation. The output of this phase is a single linked intermediate code
file (LC). The front-end checks the syntactic correctness of the Esterel spec-
ification and performs simple semantic checks, not a full constructiveness
analysis.

The final code generation stages take the reaction function and the as-
sociated definitions (state encoding, etc.) produced by the Esterel compiler
and links together with the Esterel runtime and any user-supplied libraries
to generate the executable code. The final stages of the compilation process
are performed by a compiler for the host language (usually C or C++).

The main work in Esterel compilation is the synthesis of the reaction
function. Hence the large number of methods for translating the LC repre-
sentation into the host language. The first compilers generated explicit FSM
code. The FSM expansion was performed first by direct simulation of the pro-
gram source, then by simulation of a high-level intermediate representation
(LC [35] or netlist [6]).

Starting in the early 1990’s, compilation was based on the circuit trans-
lation [6]. This interpretation, performed at the LC level, is similar to the
circuit translation presented in Chapter 6. Examples of the resulting netlist
and netlist code are shown in Figures 6.1 and 1.5.

The last component of the INRIA compiler is the GRC-based control-flow
code generator that was added in 2002 [56]. We describe it in Chapters 8–9.

7.4 The Synopsys Compiler

The Synopsys compiler [27, 26] was the first to adapt the use of traditional
compiling techniques to the compilation of Esterel. It tries to take advan-
tage of the source program structure to produce well-structured code. The
example in Figure 7.3 shows how a simple Esterel fragment is translated into
code that closely follows the initial program structure. The state is encoded
in a hierarchical logarithmic way in the variable s. When control reaches an
Esterel “pause” statement, the state changes and the fragment pauses. The
C code for the “pause” assigns a new value to the state variable and then
branches to the end of the code. The preemption test is activated in instants
where the “abort” statement is selected (when s&0x3==3).

However, the translation is not direct. The compiling process starts with
the LC representation described earlier. The LC is first translated into a
concurrent control-flow graph (CCFG) intermediate representation. In the
CCFG, arcs define control and data dependencies, while the nodes define
computing actions: assignments, tests, and computation related to paral-
lel branch synchronization. The Figure 7.4 shows a code fragment and the
CCFG for it.

The state of the program is encoded on the integer variables s0, s1, and
s2. The first encodes the global status of the program; s1 and s2 encode the
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pause;
pause;
abort

pause;
pause;
pause;
pause;
pause

when A

Start: goto L1;
Resume:
switch (s & 0x3) {
L1: s=1; goto Join;
case 1: s=2; goto Join;
case 2: goto L2;
case 3: if(!A)
switch (s>>2 & 0x7) {
L2: s = 3 | 0<<2; goto Join;
case 0: s = 3 | 1<<2; goto Join;
case 1: s = 3 | 2<<2; goto Join;
case 2: s = 3 | 3<<2; goto Join;
case 3: s = 3 | 4<<2; goto Join;
case 4: ;
}
s=0; goto Join;

case 0: ;
}

Join:

Figure 7.3: Esterel fragment and part of its Synopsys translation into C.
After Edwards [26].

status of the two parallel branches. The variable s0 is 2 when the program
starts and 1 otherwise; s1 is 0 when the first parallel branch is not selected
(terminated), 1 when the first “pause” is selected, and 2 when the second
“pause” is selected.

The solid arc in Figure 7.4 indicate flow. The dashed arc is a signal
dependency between the emission and the test of S. The code begins by
decoding the state through a cascade of conditionals that test both state
variables and signals (for, e.g., abort statements). The next instant’s state
is set by assigning to state variables.

Once the CCFG constructed, it is statically scheduled into sequential C.
While it only accepts acyclic intermediate specifications, the scheduling al-
gorithm generates high-quality code by exploiting the exclusivity of control-
flow paths. This limits the overhead of context-switching code so the result
is compact.

7.5 The Saxo-RT Compiler

The central challenge in compiling Esterel for a single-threaded processor
(as opposed to hardware) is the need to interleave the execution of multiple
threads of control within a single instant. The Saxo-RT compiler, developed
by a group at France Telecom R&D [14, 21, 72], uses a technique based
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signal S in
abort
pause;
emit S;
pause

||
loop
pause;
present S then
emit O

end;
pause

end
when A

end signal

0

s0

s1:=1

s2:=1

s0:=1s0:=0s0:=1

s2:=1s2:=2

O

A

s1:=2 s1:=0

S
S

s2s1

2

2

1

21
1

Figure 7.4: A small program and the concurrent control flow graph (CCFG)
built by the Synopsys compiler for it.

roughly on the behavior of discrete event simulators (French [33] describes
the general architecture of such simulators along with a way to accelerate
them).

Unlike the Synopsys compilation technique, which is built around a clas-
sical CCFG representation, the Saxo-RT compiler uses an event graph (EG)
representation that allows instructions to be scheduled and removed from the
schedule in both the current cycle and the next. EG nodes represent small
segments of the Esterel program that can execute atomically (i.e., do not
cross a pause or signal test). The arcs of the EG represent four types of
control dependence. The compiler generates code by ordering the nodes ac-
cording to control and data dependencies and generating a small C function
for each node. The reaction function consists of a hard-coded scheduler that
steps through the functions and call each if it is currently active.

Control dependence arcs come in four flavors: enabling and disabling for
the current and next cycle. Enabling in the current cycle is the simplest: in
Figure 7.6, if signal I is present and node f3 is active (runs), the weak abort
and sustain R instructions should run in the same cycle (sustain R has
been transformed into emit R with a self-loop). The “enable current” arcs
from f3 to f7 and f4 indicate this.

“Enable next” arcs implement the behavior of instructions such as pause
and await, which wait a cycle before proceeding, by activating their targets
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signal R, A in
every S do
await I;
weak abort sustain R when immediate A;
emit O

||
loop
pause; pause;
present R then emit A end present

end loop
end every

end signal

Figure 7.5: A simple Esterel module modeling a shared resource. The first
thread generates internal requests (R) in response to external requests (I),
and the second thread acknowledges them (A) in alternate cycles. The S
input resets both threads.

in the next cycle. For example, when the outer “every S” statement runs,
it starts the two threads that begin with “await I” and pause. The “enable
next” arcs leading from f0 to f2 and f3 activate these statements in the next
cycle. The f0 node also uses such an arc to schedule itself in the next cycle,
which ensures signal S is checked in the next cycle.

By default, active nodes whose conditions are not met (e.g., f3 is active
but signal I is not present) remain active in the next cycle. Thus, when a
statement does run, it usually disables itself. Self-loops with disable arcs,
such as those on f5, f2, and f6, accomplish this.

Preemption instructions also use disable arcs. For example, when f7 is
active and signal A is present, f7 preempts its body (which contains f1 and f4)
by disabling them in both the current and next cycles. Node f0, which pre-
empts most of the program, has many such disable arcs.

The compiler encodes the event queue as a bit vector. Each node is
assigned a bit in an integer variable, using multiple words if the number of
nodes exceeds the processor’s word size. Logical operations on these variables
add and remove nodes from the event queue.

Nodes are ordered according to control and data dependencies to generate
the final linear schedule. For example, nodes f1 and f4 both emit the R signal
and node f6 checks it, thus f6 appears later in the schedule than f1 or f4.
Control dependencies also impose ordering constraints. Because f7 is a weak
abort, which only preempts its body (f1 and f4) after it has had a chance to
execute for the cycle, f7 appears after f1 and f4.

The Saxo-RT compiler rejects program whose nodes have no linear order.
We discuss different compilers’ notions of acyclicity in Section 9.1.
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f5

f0

f2

f6

f7f8

f4

f3

f1

signal R,A in

every S do

parallel begin
await I

emit R

pause

emit R

weak abort
...

when
immediate A

emit O

parallel end

pause

pause

present R

emit A

enable now

enable next cycle
disable now

disable next cycle

#define F0 (1 << 0)
#define F1 (1 << 1)
/* ... */
#define F8 (1 << 8)

static unsigned int curr = F5;
static unsigned int next = 0;

static void f0() {
if (!S) return;
complete = 0;
curr &= ˜(F0 | F2 | F6

| F3 | F4 | F1 | F7 | F8);
next &= ˜(F0 | F2 | F6

| F3 | F4 | F1 | F7 | F8);
next |= F0 | F2 | F3;

}
static void f1() {

emit(R);
curr &= ˜F1;
next &= ˜F1; next |= F1;

}
static void f2() {

curr &= ˜F2;
next &= ˜F2; next |= F6;

}
static void f3() {

if (!I) return;
curr &= ˜F3; curr |= F4 | F7;
next &= ˜F3;

}
static void f4() {

emit(R);
curr &= ˜F4;
next &= ˜F4; next |= F1;

}

static void f5() {
R = 0; A = 0;
curr &= ˜F5;
next |= F0;

}
static void f6() {

if (R) emit(A);
curr &= ˜F6;
next &= ˜F6; next |= F2;

}
static void f7() {

if (!A) return;
emit(O); complete++;
curr &= ˜(F1 | F4); curr |= F8;
next &= ˜(F1 | F4);

}
static void f8() {

if (complete != 2) return;
complete = 0;
curr &= ˜F8;

}
void tick()
{

if (curr & F0) f0();
if (curr & F1) f1();
if (curr & F2) f2();
if (curr & F3) f3();
if (curr & F4) f4();
if (curr & F5) f5();
if (curr & F6) f6();
if (curr & F7) f7();
if (curr & F8) f8();

curr |= next;
next = 0;

}

Figure 7.6: (top) The event graph the Saxo-RT Esterel compiler generates
for the program in Figure 7.5. Each gray area is a node that becomes a
single function in the generated code (bottom). Control and communication
dependencies between these groups dictates the order in which they appear
in the reaction function, named tick().
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7.6 The Columbia Esterel Compiler

The Columbia Esterel Compiler (CEC) is a compiler system developed at
Columbia University by the research group of Stephen A. Edwards. Starting
from an effort to extend the Synopsys compiler, the compiler system now
includes a number of novel techniques, which we present in Chapter 10.
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The GRC Intermediate Format

Digital circuits (i.e., gate-level schematics) form a natural model for reason-
ing about the reactive behavior of Esterel programs (but not their structure).
Perhaps the most direct definition of Esterel’s semantics is given through
translation into constructive circuits. Also, among the sequential code gen-
eration schemes available today, the one based on circuit simulation is the
most used. Unfortunately, three characteristics make circuit netlists a bad
starting point for the generation of fast C code for a variety of reasons.

The fine grain of the representation is one problem. The C code that
simulates a netlist uses large numbers of Boolean “wire” variables, computed
from one another using lots of low-level Boolean operators.

The lack of structure is another. The constructive simulation of a circuit
involves the evaluation of every gate at each execution instant.

Finally, the state encoding, based on registers, requires each memory
component to be re-initialized at each execution instant.

To preserve some of the desirable properties of circuits in a formalism
that is more adapted to sequential code generation, the control-flow code
generators have defined new representations with larger operators such as
tests and procedure calls.

Here, we present the GRC (“GRaph Code”) format and the associated
code optimization and code generation techniques used in the control-flow
code generator of the INRIA compiler. GRC can be seen as more abstract
than similar formalisms used in the Synopsys and Saxo-RT compilers. Fewer
encoding choices are made at the GRC level, allowing more optimizations to
be performed prior to software generation. Finally, the GRC also preserves a
strong link with the circuits so it clearly reflects the constructive semantics
of Esterel in an operational fashion.

Variants of the GRC format are used in the Columbia Esterel compiler,
presented in Chapter 10, and in the Esterel V7 compiler used in the Esterel
Studio graphical development environment presented in Appendix D.

A specification in the GRC format defines two things: a control/data
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flowgraph and a hierarchical state representation called the selection tree.
These two are connected through primitives that indicate how the flowgraph
tests and updates the state representation. A set of variables represents
user-defined variables. Additional variables hold the hierarchical state repre-
sentation, i.e., the selection status of every statement in the program.

We can see GRC specifications as an intermediate step of the circuit trans-
lation where the hierarchical state has not yet been flattened and encoded
using latches and logic gates, and behavioral constructs like tests or parallel
synchronization have not yet been expanded into gates.

The operators in GRC are similar to those in the intermediate representa-
tions of the Synopsys [27] and Saxo-RT [21] compilers. Yet when we interpret
a GRC specification using constructive semantics we obtain a model capable
of representing the entire class of Esterel programs. This model is valuable
as it allows us to reason at the level of GRC. It makes it possible to define
and prove properties such as the correctness of code optimizations.

The translation of Esterel into GRC is structural, pattern-based, and
very similar to the circuit translation of Chapter 6. The resulting GRC
specifications can be optimized using three types of techniques:

• general constructive circuit optimizations that still apply, such as sweep-
ing and constant value propagation;

• general control-flow optimizations, such as the removal of dependencies
between branches of a test; and

• Esterel-specific optimizations, based on static analysis of the hierarchi-
cal state representation.

In the end, C code is generated by scheduling the computation of the
flowgraph nodes.

This chapter presents the GRC format in two parts. The first defines the
format, the structural translation of Esterel into GRC, and the formal simu-
lation semantics of GRC. The second part presents some GRC optimization
techniques.

8.1 Definition and Intuitive Semantics

GRC is a textual format that also has a graphical representation. We use the
graphical form to explain, but present some textual examples in Section 8.1.3.

8.1.1 The Hierarchical State Representation

The state representation of a GRC specification is based on a tree structure
called the selection tree, composed of typed selection nodes. More precisely,
the selection tree is a parallel/exclusive abstraction of the abstract syntax
tree of the Esterel program. The selection tree has the same structure as the
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module MainExample:
input I, J, KILL, SUSP; output O; % interface declarations
suspend
trap T in % performs the preemption
signal END in
loop % basic computation loop
await I ; emit O ; await J ; emit END

end
||
% preemption protocol, triggered by KILL
await KILL ; await END ; exit T

end
end;

when SUSP % suspend signal
end module

Figure 8.1: A simple Esterel program modeling a cyclic computation (like
a communication protocol) that can be interrupted between cycles and
suspended.

state representation of the circuit translation (the selection circuit, defined in
Section 6.2), but stores more information—most notably exclusions—needed
to generate efficient software.

Pause statements generate leaf nodes, sequential composition and tests—
present or if—produce exclusive nodes, while parallel constructs are pre-
served as such. Composite statements with only one argument (e.g., loop,
suspend) generate reference selection nodes with only one child. Instanta-
neous statements, such as nothing and emit, are ignored because they do
not hold control between execution instants.

We use MainExample as a running example. Its source is in Figure 8.1;
its selection tree is Figure 8.2.

Each label indicates the statement corresponding to the node. Squares
represent pause statements. Exclusive nodes are marked with #; the unique
parallel node is marked with ||. The indices are from enumerating the nodes,
a process we present on page 154. We will define the meaning of the nodes
of indices 0 and 1 in Section 8.2. Selection nodes may later be tagged for
optimization and code generation purposes (see Section 8.1.3).

Each selection node implicitly defines a Boolean flag that records the cur-
rent selection status of its associated Esterel statement. By extension, the
flag is called the selection status of the associated selection node, hence the
designation “selection tree.” The GRC-level selection status bits are checked
and modified by state access primitives triggered from the flow graph. As for
an Esterel statement, we say that a selection node is selected if its selection
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||

0
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program

seq

seq

await Jawait I

await ENDawait KILL

loop

signal

trap

suspend

par

boot pause

#

#

#

Figure 8.2: The selection tree of MainExample

(d)

# ## #

pause1 pause2

sequence

(a)

1

01 1

1

0 0 0

0

(b) (c)

Figure 8.3: Selection tree and selection flags for a small example

status is true. Otherwise we say it is not selected.
To see how the encoding works, consider the statement “pause ; pause.”

Its selection tree is pictured in Figure 8.3(a). The selection status bits as-
sociated to nodes to represent the (macrostep) states “ ̂pause ; pause” and
“pause ; ̂pause” are pictured in Figure 8.3(b) and (c) respectively. The
remaining valid valuation of the selection status bits, corresponding to the
statement being not selected, is pictured in Figure 8.3(d). Note that not
every valuation of the selection status bits represents a program state. We
say a valuation of the selection status bits is consistent if a selection node
is selected iff it is a selected pause node or it has a selected child and an
exclusive node never has more than one selected child.

The computation of a reaction always starts with the selection status
bits having a consistent valuation. The status bits may be changed during
computation, but are left consistent at the end of the reaction. Consistency
is essential to the following definitions.

The GRC flowgraph (defined later) reads and updates the selection flags
using five state access primitives: enter, exit, test, switch, and sync. Each
primitive is associated with a selection node. A switch is always associated
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K0(br1)

K0

K0

K0(br2)

GO

?S<=7

v:=?S v:=10

I

I

Figure 8.4: Simple GRC flowgraph

with an exclusive node. Similarly, a sync always has a parallel node.
The state is decoded by the control-flow graph through calls to the state

decoding primitives test and switch. The first one simply returns the status
of its argument. Switch returns the unique selected child of the argument.
The control-flow graph decodes the state hierarchically: the status of the root
node is tested first. If it is selected, the status bits of its children are tested,
etc. The decoding stops at unselected nodes and at leaves.

The control-flow graph updates the state using the state update primitives
enter and exit. A call to enter sets the the selection status of its argument to
true. Executing exit sets to false the selection status bits of all the nodes in
the sub-tree rooted in the argument node. For instance, to change the state
of “pause ; pause” from “ ̂pause ; pause” to “pause ; ̂pause,” one has to
execute “exit(pause1)” and “enter(pause2).”

The state update is performed by the control-flow graph only after state
decoding. Thus, state decoding primitives always check the consistent initial
valuation of the selection status bits, before they can be modified by state
update primitives.

The sync primitive decides whether a parallel statement terminates or
pauses in an instant. A parallel terminates when all its branches terminate.
The result of sync is true if at least one child of the parallel argument selection
node is still selected and false otherwise. I.e., if the result is false the parallel
does not pause (it either terminates or exits a trap).

8.1.2 The Control/Data Flowgraph

The flowgraph is defined by connecting typed computation nodes with arcs
that define the static causal dependencies. The flowgraph in Figure 8.4 cor-
responds to

emit S(7) || present I then v:=?S else v:=10 end
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hub

emissions

receptions

(a) (b)

Figure 8.5: Possible representations of signal dependencies. Our choice (a) is
to connect every emission with every reception. Another approach (b) is to
introduce hub nodes, which minimizes the number of dependencies but can
affect optimization.

The six types of computation nodes are Tick, Test, Join, Call, Switch,
and Sync. An arc is either a control arc or a data arc. We define each
type of node and arc below; we define the correspondence between Esterel
statements and GRC nodes in Section 8.1.3.

Each type of node has a specific interface that consists of named input
and output ports. A node gathers the control information needed for its com-
putation through its input ports. Control input ports receive the incoming
control flow (the bullets in our COS) and signal input ports, present only on
test nodes, are used to collect the status bits of the signals involved in the
test expression.

A node is executed in an instant if it receives control through at least one
input port. In this case, the node will activate exactly one of its output ports
after the completion of its execution and based on its result. The output ports
are responsible for signal emission and for passing control to other nodes.

Output ports are connected to input ports through control arcs. Each
control arc connects one output port to one input port, but each port may
have zero or more incident arcs. When activated, an output port activates
all its outgoing control arcs. If the destination of an activated arc is a control
input, the destination port receives control. If the destination is a signal input
port (of a test node), then the signal is considered present in the evaluation
of the test. Signal dependencies are control arcs that correspond to signal
emission.

The number of signal dependencies is potentially large: one for every
emission-test pair for each signal (Figure 8.5(a)). In practice, the number
of dependencies remains reasonable for our largest applications, but signal
dependencies can be factored by introducing hub objects connected to all
emissions and receptions of a signal. This approach is shown in Figure 8.5(b)
and has been adopted in the Esterel V7 compiler. We adopt the non-factored
form because it allows individual dependencies to be removed one by one.

A node may carry data access operations called actions. Data arcs, like
the data dependencies in circuits with data, link these actions to impose an
evaluation order that ensures the correct computation of the data variables.
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An action can be the source or destination of one or more data dependency
arcs.

Below, we list the types of computation nodes and their interfaces.

1. A unique Tick node marks the control entry point in each specification.
It bears no input ports and a single output port called CONT. This
triggers the execution of the specification at each computation instant.
We draw Tick nodes as

CONT

2. A Test node has an input port named GO—the test trigger—and two
output ports—THEN and ELSE. Exactly one of these receives control
after test executes. The test expression may involve signal status bits or
actions—user data tests or selection test primitives. For every signal in
the test expression, the Test node bears a supplementary signal input
port.

...

expr

GO

THENELSE

signals

3. Join nodes reassemble exclusive control flows (e.g., the branches of a
test). They have a single input port, called GO, where all incoming
control arcs link, and one output port, called CONT. When triggered
by one of the incoming arcs, the Join node instantly passes control to
the CONT port.

GO

CONT

4. Call nodes perform data updates. A Call node has a single input
port “GO” and one output port “CONT.” The data update operation
performed by the Call is called an action. This action can be a user
data operation or a state update primitive. It is executed between when
the node receives control and passes control to the output port CONT.

GO

CONT

action

5. Switch nodes perform a choice associated with exclusive selection-tree
nodes. Intuitively, they pass control to the selected branch of a sequence
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or test statement. The switch state decoding primitive is triggered
through the unique GO input port. It corresponds to a particular se-
lection node. For every child x of the selection node—for every possible
choice—the Switch has one output port called [x], through which con-
trol is passed. For space considerations, we abbreviate in the graphical
representation switch(node) with node.

...

[p]

[p1] [pn]

GO

6. Sync nodes implement the complex parallel branch synchronization
operation defined in Section 3.3.4. They collect the selection status
and the completion codes of the parallel branches through input ports
and compute the completion status of the parallel statement.

Dead([pj ])Ki([pj ])

Sync([p])
Ki

Every Sync node is associated with a parallel selection node, which
corresponds to an Esterel parallel statement. The children of the par-
allel node correspond to the branches of this parallel statement. The
input ports of the synchronizer gather completion codes for each branch
using the selection children as indices. If x is a child of the parallel se-
lection node, then the input port named Dead(br) collects the negated
selection status of the associated parallel branch. When it is set to 1
the statement produces no completion code. The input port named
Ki(br) collects completion levels of i for the associated branch.

Once the Sync computes the completion code of the parallel, it passes
control to the relevant handler through output completion code ports
Ki. There is one output port per possible completion code. A Sync
node may also carry a sync state access primitive that is used in the
code generation process. The computation of the sync primitive is
redundant in a Sync node, but it sometimes allows a better encoding
of the synchronization in sequential code.

In addition to the previous nodes, which have textual counterparts, the
graphical representation also uses a Fork construct to represent places where
control forks at the beginning of parallel branches.



definition and intuitive semantics 153

Dead(10)

enter 2

enter 3

enter 5

5

enter 8

enter 7

enter 6

exit 1

I J KILL END

107

6 10
enter 4

enter 11

enter 9

emit O

exit 8 exit 9

emit END

enter 8

enter 12

exit 11 exit 12

exit 0

exit 2

exit 3

K1(6) K1(10) K1(6) K1(10) K2(10)

K1 K2

K0 (program terminates)K1 (program pauses)

K1

0

SUSP

5

[1] [2]

[12][8] [9] [11]

enter 10

Sync(5)Sync(5)
Dead(6)

Figure 8.6: The flowgraph of MainExample

...
node id

Control forks are only used in the graphical representation. In textual
GRC, the node is replaced with a list of successor ports placed everywhere
the control fork node needs to be triggered.

Not every specification formed with these elements is meaningful. The
Esterel to GRC translation presented in the next section ensures certain
well-formedness properties. Essential to code generation, these properties
are assumed and preserved by the simplification algorithms. First, the state
access primitives must always be called by the flowgraph in a “consistent”
order. In particular, state flags are decoded before they are modified within
an instant. Furthermore, the graph must be acyclic after removing signal de-
pendencies. In the sequel, we only consider well-formed graphs obtained from
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Esterel programs. Figure 8.6 shows a well-formed graph for MainExample.
The arguments of the selection primitives are pointers to nodes in the selec-
tion tree of Figure 8.2. Most of the port names have been omitted for space
reasons. Section 8.1.3 gives fragments of the textual representation of the
graph.

8.1.3 Implementation Issues

The GRC format follows the general structuring patterns used in all the in-
termediate formats developed by the Esterel group [32]. A GRC specification
is a text file organized as a sequence of tables. Each table defines all objects
of a given type and refers to other objects using integer indices. Most tables
are common to all Esterel intermediate formats. Also called data tables, they
define data of general use: module instantiation hierarchy, signals and vari-
ables, functions and procedures, etc. Each format also defines its own table
formats; GRC defines three: the selection node table, the (action) call table,
and the (control-flow graph) node table.

Selection tree representation

The selection node table (also called selnode table) defines the selection tree.
The textual representation of the selection tree of MainExample is

selnodes: 13
sel:0 exclusive: ( sel:1 , sel:2 )
sel:1 boot: pause:
sel:2 ref: ( sel:3 )
sel:3 ref: ( sel:4 )
sel:4 ref: ( sel:5 )
sel:5 parallel: ( sel:6 , sel:10 )
sel:6 ref: ( sel:7 )
sel:7 exclusive: ( sel:8 , sel:9 )
sel:8 pause:
sel:9 pause:
sel:10 exclusive: ( sel:11 , sel:12 )
sel:11 pause:
sel:12 pause:
end:

The table header gives the type of the table (selnodes:) and its size.
The selection nodes are indexed by numeric selection indices. The node of
index sel:0 is always the root of the selection tree. Keywords indicate the
type of each node; children are listed in parentheses.

We defined the selection node types pause:, exclusive:, and parallel:
earlier in this chapter. Nodes of type ref: have only one non-void child. Such
nodes correspond to composed statements like loop or signal that only have
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one direct sub-statement and statements with multiple branches where only
one branch has a non-void selection node.

Nodes of type void: correspond to statements that cannot be selected.
They are preserved only as reminders of the initial program structure. Sec-
tion 8.4 explains them in more detail.

Other tags, such as nonterm:, can be added by the analysis and opti-
mization algorithms. These will be described in Section 8.4.

Flowgraph representation

Control and data dependencies are represented separately in the node and
call tables. This separation is motivated by the fundamental difference be-
tween signal and data causality in Estereland facilitates analysis and code
generation. The call table represents data accesses and data causality; the
node table represents constructive control flow and signal dependencies.

The call table lists all the data accesses of the reaction function and
all data dependencies among them. Data accesses—procedure and function
calls, signal initializations, signal emissions, and state accesses—are dubbed
“action calls,” hence the name “call table.” Action calls are activated from
the control-flow graph. The following fragment belongs to the GRC rep-
resentation of the wristwatch example (part of the INRIA Esterel V5 92
distribution).

calls: 825
...
call:7 init:sig:4
...
call:169 swap:sig:2
...
call:383 exit:sel:63
call:384 sync:sel:6
call:385 test:sel:64
call:386 switch:sel:65
call:387 exit:sel:66
call:388 call:act:46
...
call:398 demit:sig:25(incarn:1) act:42
call:399 dumb:(call:609,call:677,call:695,

call:698,call:730,call:733,call:750)
call:400 pemit:sig:15(incarn:1)
call:401 enter:sel:68
...
end:

Each call has an index and may have a list of data dependencies: indices
of calls whose execution must wait until the current call has either been exe-
cuted or ruled out. For example, the call of index call:399 must be always
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executed or invalidated before the calls of indices 609, 677, 695, 698, 730, 733,
and 750.

There are several types of calls:

• Selection calls execute one of the five state test or update primitives on
a specific selection node (represented by its index).

• call: entries execute a user-defined action.

• dumb: entries do not perform computation but can define data de-
pendencies. Such entries are generated in the automated translation
process.

• The signal (re-)initialization calls init: and swap: mark the beginning
of a signal scope at statement start and resume respectively. They
are employed in the optimized encoding of signals for sequential code
generation.

• The valued signal emission calls demit: represent the update of shared
variables. Pure signal emission calls pemit: represent the action asso-
ciated with the emission of pure output signals.

The node table represents the flowgraph nodes—the control flow that
drives the calls. Below is a fragment of the node table of MainExample.

nodes: 45
node:0 Tick:(cont: go:@node:1)
node:1 SelSwitch:call:0 (sel:1 go:@node:2)

(sel:2 go:@node:14)
node:2 Call:call:1(cont: go:@node:3)
node:3 Call:call:2(cont: go:@node:4)
...
node:19 Test:( sig:3(incarn:1) ) (then: go:@node:20)

(else: go:@node:21)
...
node:21 Call:call:19(cont: go:@node:22)
node:22 Call:call:20(cont: go:@node:23 go:@node:33)
...
node:29 Test:( sig:1(incarn:1) ) (then: go:@node:30)

(else: go:@node:32)
node:30 Call:call:26(cont: go:@node:31

sig:6(incarn:1)@node:38)
node:31 Call:call:27(cont: k:1(sel:6)@node:40)
...
node:33 Test:( call:29 ) (then: go:@node:34)

(else: dead:(sel:10)@node:40)
node:34 SelSwitch:call:30 (sel:11 go:@node:35)
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(sel:12 go:@node:38)
node:35 Test:( sig:2(incarn:1) ) (then: go:@node:36)

(else: k:1(sel:10)@node:40)
...
node:38 Test:( sig:6(incarn:1) ) (then: go:@node:39)

(else: go:@node:37)
node:39 Call:call:33(cont: k:2(sel:10)@node:40)
node:40 Sync:sel:5 call:34 (k:1 ) (k:2 go:@node:41)
node:41 Call:call:35(cont: go:@node:42)
...
end:

The textual definition of a node consists of its index, its type and param-
eters, and a list of named output ports. Tick and Join nodes do not have
parameters. A Call node takes a call index parameter. A Switch node takes
the call index that points to the appropriate switch selection primitive as a
parameter. The Test nodes have a test expression parameter, which is com-
posed from atoms—signal port names and call indices—with the operators
not:, and: and or:. A Sync node takes the selection index pointing to the
associated parallel node as a parameter. It may also take the call index of
a sync primitive as a parameter. There are no explicit Fork nodes in the
textual representation; they are implicit in places where control forks, such
as the cont: output port of the Call of node:22.

Each output port definition consists of the port name and a list of destina-
tion port references. For example, the output port cont of the Call node 30
is linked to two input ports: the control input port go of the node 31, and
the signal port sig:6(incarn:1) of the node 38. This cont output port cor-
responds to the “emit END” statement of the MainExample program, which
gives control in sequence to the parallel synchronizer (code K1, represented
by flowgraph node 31) and emits the signal END which is read by the test of
the second parallel branch (node 38).

A node does not list its input ports; this information can be obtained by
a forward traversal of the flowgraph. For example, the Test node 38 has the
input ports go and sig:6(incarn:1).

The definition of a signal port, e.g., sig:6(incarn:1) includes the signal
name, as a reference to the signal table (sig:6, which points to the definition
of signal END), and the incarnation index incarn:1. The incarnation index
is useful mostly for tracing. It identifies the copy number of each signal pro-
duced during the translation process. We describe this form of reincarnation,
similar to the circuit-level reincarnation mechanism presented in Section 6.3,
in the next section. In our example, sig:6(incarn:1) is the depth instance
of the END signal.
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Figure 8.7: The Esterel to GRC translation interface

8.2 Esterel to GRC Translation

In this section, we show how Esterel programs are translated into GRC. The
translation is fundamentally based on the COS: the selection tags of the
COS are organized to form the selection tree, and the GRC control/data
flowgraph represents all possible paths that program counters can take dur-
ing the execution of an instant (more precisely, a syntactically-determined
super-set).

The control flow unfolding that transforms the Esterel source in the inter-
mediate flowgraph closely follows the circuit translation of Chapter 6. This
results in important topological similarities that prove useful during analysis
and code generation. In particular, these similarities will allow us to relate
the notion of cyclicity defined at the circuit level with that at the GRC level
(Section 9.1).

8.2.1 Translation Principles

The translation is structural and very similar to the circuit translation of
Chapter 6. With every statement p it associates the selection (sub-)tree
Tree(p); the surface flowgraph Surf(p), representing the start behavior of our
statement; and the depth flowgraph Depth(p), which represents the behavior
of p at instants where it is restarted.

As in the circuit translation, instantaneous statements have no depth
code. We associate a selection node with every statement except the simple
instantaneous ones (exit, emit, and variable assignment). We denote the
selection node associated with a statement p by [p].

To ensure correct signal links, for every signal used in p but declared
outside its scope, we maintain the set of input ports reading it and the set
of output ports corresponding to its emission. This must be done separately
for the surface and depth graphs. For a given signal S, we call the four signal
link sets SurfIn(S)(p), SurfOut(S)(p),DepthIn(S)(p), and DepthOut(S)(p).
By convention, the signal link sets are not defined for a statement p and
signal S when p does not read or write S.

Figure 8.7 shows the interface of the generated graphs. The selection tree
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Depth(p)
enter [p] exit [p]

GOSurf(p)

K1

Tree(p)

[p]
K0

RES

Figure 8.8: The translation of p=“pause”

Tree(p) is rooted at [p]. The input and output arcs of Surf(p) and Depth(p)
represent the input and output ports, which form the control interface. Giv-
ing control to the input port labeled GO corresponds to starting the state-
ment; giving control to RES resumes it. The activation of the output port
labeled Ki corresponds to the completion of the computation of an instant
with code i. As in the circuit translation, i ranges over the set of poten-
tial completion codes of p, as over-approximated by Ks(p) and Kd(p) in the
surface and the depth graphs, respectively (cf. Sections 4.6 and 6.3).

The encoding of Esterel-level data onto the stores is identical to that used
in the circuit translation (Section 6.3.2). Netlist-level actions are called in
the GRC by Call and Test nodes.

Keeping the surface and depth flowgraphs separated involves some code
duplication when Esterel statements are shared between the start and resume
behaviors. The duplication follows the same rules as our circuit reincarnation
of Section 6.3. Based on the property that the body of a loop cannot be
instantaneous, it ensures that no control arc of the flowgraph is traversed by
control more than once in an instant.

Our translation scheme may replicate code even when doing so is seman-
tically unnecessary. Static analysis techniques like those used in the circuit-
based INRIA compiler and the Esterel V7 compiler of Esterel Studio can
reduce the degree of replication. We preferred the current solution because
it is simple to define and implement, it allows the definition of a simple link
between the circuit translation and the compilation schemes defined in the
following chapters, and it greatly simplifies the control and data dependency
system and hence the optimization, encoding, and scheduling into sequential
code.

8.2.2 Translation Rules

Pause

The translation of pause, Figure 8.8, maps directly to the semantics of the
statement. When started, the status of the statement is 1 (selected) and
completion code 1 is generated. When selected and resumed, the status of
the statement is 0 and completion code 0 is generated. Since pause does not
read or emit signals, no signal link sets are defined.
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Figure 8.9: The translation of p=”nothing” and p=“emit S”
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Figure 8.10: The translation of p=“loop q end”

Nothing

The statement nothing is instantaneous, so it only generates a surface graph,
given in Figure 8.9. Since nothing does not read or emit signals, no signal
link sets are defined.

Loop

The translation of the loop primitive follows the translation and reincarna-
tion technique used in the circuit translation (cf. Section 6.3, Figures 6.14
and 6.15). The associated GRC is presented in Figure 8.10. The signal link
sets are:

SurfIn(S)(p) = SurfIn(S)(q)
SurfOut(S)(p) = SurfOut(S)(q)
DepthIn(S)(p) = DepthIn(S)(q) ∪ SurfIn(S)(q)

DepthOut(S)(p) = DepthOut(S)(q) ∪ SurfOut(S)(q)

Sequence

The GRC translation of the sequence (Figure 8.11) follows the same reincar-
nation pattern. The pattern in the figure is for the binary sequence; using it
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Figure 8.11: The translation of p=“q ; r.” The completion code index i
ranges over the potential completion codes of p, except 0 (cf. Section 4.6).

to translate n-ary sequences is inefficient—code duplication may be O(n2).
Instead, this pattern is easily extended so the surface of each branch is du-
plicated at most once (compilers implement this optimized version). The
signal link sets are obtained by uniting the signal link sets of the composed
sub-graphs:

SurfIn(S)(p) = SurfIn(S)(q) ∪ SurfIn(S)(r)
SurfOut(S)(p) = SurfOut(S)(q) ∪ SurfOut(S)(r)
DepthIn(S)(p) = DepthIn(S)(q) ∪DepthIn(S)(r) ∪ SurfIn(S)(r)

DepthOut(S)(p) = DepthOut(S)(q) ∪DepthOut(S)(r) ∪ SurfOut(S)(r)

Parallel

Figure 8.12 is the code generated for p=q || r. The Sync nodes gather
the completion codes from the branches. In the depth, they also gather the
Dead() wires that are activated if the corresponding branches have terminated
in previous instants. In the depth graph, selection tests verify if the branch
code must receive control. The signal link sets are obtained by uniting the
signal link sets of the composed sub-graphs:

SurfIn(S)(p) = SurfIn(S)(q) ∪ SurfIn(S)(r)
SurfOut(S)(p) = SurfOut(S)(q) ∪ SurfOut(S)(r)
DepthIn(S)(p) = DepthIn(S)(q) ∪DepthIn(S)(r)

DepthOut(S)(p) = DepthOut(S)(q) ∪DepthOut(S)(r)
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Figure 8.12: The translation of p=“q || r.” Index i ranges over the po-
tential completion codes of the branches. Index j ranges over the potential
completion codes of the parallel, except 0.

Signal declaration and emission

The emit statement is instantaneous, so it only generates a surface graph like
the nothing statement (Figure 8.9). Only the SurfOut(S)(p) = {J.CONT}
signal link set is not empty, where J.CONT is the CONT output port of the
Join node generated for p (the K0 output port of the pattern).

The generation of the GRC for the signal declaration statement starts by
encapsulating the GRC of its body in a shell by adding the extra selection
node and corresponding state update calls. Figure 8.13 shows this.

The second translation phase performs the signal link. In the surface

Depth(p)

exit [p]exit [p]

enter [p]

Ki Ki

Ki Ki

K0 K0

K0 K0

Surf(q) Depth(q)
RESGO

GO RES

[p]

Tree(q)

Tree(p) Surf(p)

Figure 8.13: The translation of p=“signal S in q end.” Index i ranges over
the potential completion codes of p except 0.
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Figure 8.14: The translation of p=“present S then q else r end” and
p=“if v then q else r end.” Index i ranges over the potential completion
codes of p except 0.

graph, it adds a control arc between every output port of SurfOut(S)(q)
and every input port of SurfIn(S)(q). In the depth graph, it adds a control
arc between every output port of DepthOut(S)(p) and every input port of
DepthIn(S)(p). All the signal link sets corresponding to signals U 
= S are
transmitted unchanged from q to p. The signal link sets corresponding to S
are all set to ∅ in p.

Test statements

Figure 8.14 shows the GRC generated for signal and data test statements.
The difference between the two appears in the test expression and the signal
input ports on the Test node.

For a signal test, the Test node has an input port for the test signal
S. For a test on the sequential variable v, the expression is the test action
test action(v), as defined in Section 6.3.2. The four signal link sets for a
variable test statement are the union of the corresponding branch sets, for
all signals U :

SurfIn(U)(p) = SurfIn(U)(q) ∪ SurfIn(U)(r)
SurfOut(U)(p) = SurfOut(U)(q) ∪ SurfOut(U)(r)
DepthIn(U)(p) = DepthIn(U)(q) ∪DepthIn(U)(r)

DepthOut(U)(p) = DepthOut(U)(q) ∪DepthOut(U)(r)

In the case of the signal test, only the definition of SurfIn(S)(p) changes:

SurfIn(S)(p) = SurfIn(S)(q) ∪ SurfIn(S)(r) ∪ {T.IN(S)}
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Figure 8.15: The translation of p=“suspend q when expr.” Index i ranges
over the potential completion codes of p except 0 and 1.

void:
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Surf(p)Tree(p) GO

Ki

Figure 8.16: The translation of p=“exit T (i)”

where T.IN(S) is the IN(S) input port of the test node T .

Suspend

Figure 8.15 shows the GRC for the suspend statement. All the signal link
sets, with the exception of DepthIn(S)(q), are passed unchanged from q to p.
The exception set is

DepthIn(S)(p) = DepthIn(S)(q) ∪ {T.IN(S)},

where T.IN(S) is the IN(S) input port of the generated test node T .

Trap exit and handling

The exit statement is instantaneous. It only generates a surface graph (Fig-
ure 8.16). The signal link sets are empty.

Figure 8.17 shows the GRC for the trap statement. Like the circuit trans-
lation pattern, the GRC pattern converts completion code 2 to normal ter-
mination (code 0), decrements the remaining trap codes, and resets the state
of the statement when the body completes with code 2. The signal link sets
are transmitted unchanged from q to p.



esterel to grc translation 165

K1

enter [p]

exit [p]exit [p]

GO

GO

[p]

Tree(q)

Tree(p) Surf(p)

RES

RESDepth(p)

K0

K2K0Ki

Ki−1

K1

K1

Depth(q)Surf(q)

K0

K2K0Ki

Ki−1

K1

Figure 8.17: The translation of p=“trap T in q end.” Index i ranges over
the potential completion codes of q, except 0, 1 and 2.
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void:

Figure 8.18: The translation of a variable assignment statement p

Data assignment

Variable assignment statements are instantaneous. Therefore, we only need
the surface graph: Figure 8.18. According to the data encoding defined
in Section 6.3.2, the assign action is svar emit(s) if p=“s <= f(. . .)” and
var assign(v) if p=“v := f(. . .).” The signal link sets are empty.

Variable declaration statements

Figure 8.19 shows the GRC for variable declaration statements. The initial-
izing action is performed just before starting the body statement p and the
reset action is performed just before resuming it.

If the translated statement is p=“shared s in q end,” then the initial-
ization action is shared init(s) and the reset action is shared reset(s).
When p=“var v in q end,” then the initialization action is var init(v) and
the reset action does nothing.

When the shared variable declaration ”shared s in q end” is translated
into GRC, we also need to generate the data dependency arcs linking the
actions that write s with the actions that read s. Linking is done separately
for the surface and depth graphs. In each case, one data dependency arc is
generated from every call of svar emit(s) to every action that reads s.

All the signal link sets are passed from q to p unchanged.
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Figure 8.19: The translation of a variable declaration statement p of body
statement q. Index i ranges over the potential completion codes of p except 0.
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Figure 8.20: The global translation context
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Figure 8.21: Circuit counterpart for the Test node

8.2.3 The Global Context

After generating surface and depth code, which define the behavior of the
program at different execution instants, we have to link them into a single
flowgraph representing the global behavior of the program. To do so, the
selection tree and the surface and depth code are placed into the context of
Figure 8.20. The boot selection node is selected to mark the program start
instant.

8.3 Formal Simulation Semantics and Translation Correctness

While our intermediate format has a control flow graph as its central com-
ponent, classical control flow semantics cannot handle the full semantics of
Esterel(see our arguments in Section 3.1).

To correctly represent the correct semantics of the programs, the GRC
flowgraph is given constructive operational semantics by extending the pre-
viously defined semantics of the circuits with data. The computation of an
instant is an evaluation process where the control arcs (like the circuit wires)
change their status bits from ⊥ (undefined) to either 0 or 1. The evaluation
of certain nodes require the execution of data actions. Data arcs impose sup-
plementary causal constraints on the execution of data actions. The program
is incorrect (not constructive) if we cannot set every arc to a value of 0 or 1.
This evaluation policy is general enough to support the evaluation of mixed
circuit-flowgraph specifications.

To define the function of the GRC nodes, we give circuit counterparts
that perform the same computation under constructive semantics. This not
only simplifies the definition, which can be complex, but also emphasizes the
strong link between the two representations. Figures 8.21 and 8.22 give the
circuit counterparts of the complex GRC nodes.

The circuit associated to Sync is the circuit parallel synchronizer in Fig-
ure 6.20. The Tick do not generate gates.
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Figure 8.22: Circuit counterpart for the Switch node

State encoding is the only difference between the circuits obtained by cir-
cuit expansion of the GRC flowgraph and those generated by directly follow-
ing the rules of Section 6.3. In GRC-generated circuits, all current selection
status bits are circuit inputs since the selection tree is not present. Their
computation is performed using the Boolean selection status bits (variables)
and the enter/exit primitives. At the beginning of each instant, the selec-
tion circuit inputs are set according to the associated selection status bits.
Note that this implies that the state of each statement is decoded at each in-
stant prior to program execution. While for performance reasons this can be
avoided at code generation time for most programs, Section 9.3 shall present
a (cyclic) Esterel example whose simulation requires it.

Translation correctness

The circuit expansion of GRC and the direct circuit translation of a given
program result in circuits with data that are identical up to the state repre-
sentation. Then, the simulation of an instant for given state and input event
produces the same output signals in both circuits and leaves user data with
the same values.

Therefore, proving the full equivalence between the GRC-based circuit
expansion and the direct expansion consists in proving that the following two
properties are true in the end of each execution instant where the simulation
set a value of 0 or 1 to every circuit wire: the output selection flags produced
by the evaluation of the GRC-generated circuit are consistent and the flags
corresponding to the “pause” statements are equal to the input values of the
corresponding registers.

If we assume that the circuit translation of Chapter 6 is correct with
respect to the direct semantics, the equivalence between the GRC-based cir-
cuit translation and the direct circuit translation proves the correctness of
the Esterel translation to GRC.

8.4 Format Optimizations

As usual with syntax-directed translation, GRC produced by structural trans-
lation from Esterel programs is often far from optimal because subprograms
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are translated in a way that allows them to operate in any context, not just
in their specific context. It is therefore important to optimize the intermedi-
ate code. Support for optimization was a main motivation behind the design
of GRC.

The problem is not specific to our technique; structural translation to
hardware also generates redundant circuits. The use of optimizations is im-
perative in the generation of efficient circuit code. State-of-the-art tools exist
(e.g., SIS [64]) that implement well-studied combinational and sequential op-
timization techniques like those described by Hachtel and Somenzi [37]. Sen-
tovich, Toma, and Berry [63] and Touati and Berry [70] study the application
of such optimizations to circuits generated from Esterel and show impressive
results: circuits can shrink to as little as 10% of their original size. See also
the Ph.D. theses of Fornari and Toma [69, 32]. This can improve the size and
speed of the generated (software) circuit code to the point that it competes
with control flow-based compilers. The computational cost of good circuit
optimizations is an issue here. These techniques are often global, and may
require computing the reachable state space (usually using a BDD), which
can be prohibitively costly on large programs. More recently, the Esterel V7
circuit compiler supports modular compilation of Esterel programs to circuits
with independent local optimizations for each module, which is less costly but
not as effective.

The first control-flow code generators (Synopsys, Saxo-RT) present a dif-
ferent picture: unlike the simple, well-studied mathematical model of digital
circuits, their intermediate formats involve complex computation graphs and
custom state encodings tailored to the form of the generated code. The inter-
mediate representations include partial C-language mappings, and the com-
pilers usually include fast, software-specific optimizations. The algorithms
are similar to those used in the compilation of traditional imperative lan-
guages: dead code removal and control and data dependency simplification.

The GRC-based compiler advanced the state of the art by adapting fast
existing optimization techniques while defining new, Esterel-specific opti-
mizations based on a deeper understanding of the program semantics.
Adapted techniques include dead code removal and sweep-like constant prop-
agation. New Esterel-specific algorithms simplify the state representation.
All the GRC optimizations are able to handle cyclic specifications and re-
spect the constructive semantics of the format.

All the algorithms adapted or defined for use with GRC are fast. Their
complexity is low-exponent polynomial in the size of the GRC graph. In
practice, the full optimization cycle takes less than one minute on our largest
example. Some of the techniques can be refined to use “expensive” informa-
tion, such as the reachable state space structure, but this direction has not
been explored. The optimizer is an independent, optional compiler module
that is fast enough to use always.

Given that GRC can be seen as a step towards circuit translation, all
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the optimization techniques defined in this section are general enough to be
adapted to optimizing Esterel-generated circuits. While this is obviously true
for techniques borrowed from the circuit world, the novel state representation
simplifications also give good results, as shown by experiments presented
elsewhere [55].

We move now to the actual description of the algorithms. They are
grouped in two classes, depending on whether they operate mainly on the
selection tree or the flowgraph.

Selection tree analysis determines a number of static activation properties,
such as the fact that a given statement never terminates. Once determined,
these properties are represented on the selection tree and later used as basis
for flowgraph simplifications and, at code generation time, to improve the C
language encoding of the state representation.

Flowgraph simplifications are the actual optimizations that reduce the
number of nodes, calls, and dependencies.

The two classes of algorithms are not independent since modifications of
one structure need to be reflected in the other. Not only must the coher-
ence between between the selection tree and flowgraph be preserved between
optimization steps, but results of one optimization class may lead to improve-
ments in the other. The optimization script alternates between the two types
of algorithms a fixed number of times.

8.4.1 State Representation Analysis

The selection tree of a GRC specification is an abstraction of the syntax tree
of the Esterel source; the hierarchy is enriched with tags representing static
selection node properties. Part of the tags, describing the syntactic paral-
lel/exclusive structuring of the state representation, are set in the Esterel to
GRC translation—pause:, ref:, exclusive:, and parallel:. The remain-
ing two (nonterm: and void:), which also represent properties with great
impact on optimization and code generation, are computed through static
analysis of the GRC. The analysis can also lead to the modification of tags
generated in the translation process. Below, we explain the meaning of the
new tags and how they are computed.

Statements that do not hold state

While translating Esterel programs, it is important to identify which state-
ments do not retain control between instants. Such statements do not require
a state representation and are never resumed. Obviously, all the construc-
tions that do not implicitly contain a pause, such as “emit S” and “present
S then emit O1 end,” fall in this class. With the use of traps, however, in-
stantaneous statements containing pause can be constructed. For example,

trap T in
pause
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||
exit T

end

Here, when the first parallel branch pauses, the second branch causes the
instantaneous preemption of the entire construct. While we do not expect
anyone to write this particular example, composing library modules often
produces something similar.

Current analysis techniques are able to identify some of these instanta-
neous statements. The information is preserved by tagging the associate
selection nodes with void:.

Nonterminating statements

The following example illustrates the second property that proves important
in practice: the non-termination of parallel branches.

[
sustain S ;

||
await I ; exit T

]

Here, neither branch terminates (i.e., completes execution with comple-
tion code 0). The first always pauses. The execution of the second branch
can only finish by raising trap T, in which case the entire parallel statement
is preempted. Consequently, the selection status bits for the two branches
and that for the parallel statement are always equal. Instead of three bits,
we only need one: the one belonging to “await.” Furthermore, the state
test/update protocol can be simplified, since no selection test is needed in
the depth for the parallel branches and the enter/exit primitives that access
redundant flags are also unnecessary.

This kind of redundancy arises naturally from the Esterel programming
style that encourages hierarchical composition of preemption and
non-terminating behaviors. Table 8.1 gives some statistics on redundancy
in typical programs. The table lists the percentage of parallel branches that
were found nonterminating according to an algorithm presented below. The
figures could be higher since these algorithms are only approximate (they do
not take signaling into account). We mark the selection nodes corresponding
to parallel branches that cannot terminate with nonterm:.

Tag computation

The best source of information about the behavior of the selection tree is
the reachable state space of the Esterel program, but its computation can
be intractable even for medium-size examples. We need cheaper ways to
compute the tags.
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Example Percentage of nonterminating branches

1-tcint 97%
2-wristwatch 97%
6-fuel 98%
7-cabine 87%
8-global 70%

Table 8.1: Parallel branch status redundancy statistics

Establishing nonterm: flags requires us to identify parallel branches that
never terminate. The current technique is based on a simple analysis of GRC
Sync nodes. Let q be a branch of the parallel statement p. Through transla-
tion, p produces a number of Sync nodes that have as inputs completion code
arcs output by q. If none of these Sync nodes receives an arc corresponding
to completion code K0 from q, we know q cannot terminate and mark its selec-
tion node with “nonterm:.” This analysis is a form of potential propagation,
which gives a static approximation of the dynamic Can computation.

We also mark the root selection node with nonterm: if we determine that
the program cannot terminate (i.e., if there are no more calls to “exit 0”).

Note that the tagging process should be repeated after each flowgraph
optimization step because removing completion code arcs may reveal new
non-terminating parallel branches.

The computation of void: flags relies on several criteria. We mark the
following with void:.

• Nodes that are not pause: and that only have void: children or no
child at all. These are the composed statements with instantaneous
bodies/branches.

• Parallel nodes with a child tagged with both void: and nonterm:.
In this case falls “pause || exit T,” since the second branch is both
instantaneous, and cannot terminate.

• Nodes for which no enter primitive exists within the control-flow graph.
They correspond to dead code—statements that contain “pause” state-
ments but are never started, e.g., “exit T ; pause.”

Existing tags can be updated to reflect finer understanding of the selection
tree properties. In particular, the tags exclusive: and parallel: are not
interesting and deleted from nodes that have at most one non-void child. The
exact transformations are the following.

• When the void: tag is set on a selection node, the existing pause:,
ref:, exclusive:, or parallel: tags are deleted. Nodes tagged with
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Figure 8.23: Tagged tree for MainExample

void: do not have a state representation so the other tags are mean-
ingless.

• When a node tagged with parallel: or exclusive: has exactly one
non-void child, the existing tag is replaced with ref:. Again, this
reflects the fact that void: selection nodes do not take part in the
actual encoding.

The computational complexity of the algorithms in this section is linear
in the size of the GRC specification. Figure 8.23 presents the selection tree
of MainExample after tagging.

8.4.2 Flowgraph Optimizations

Simplifications of the GRC (removal of arcs and nodes) are performed at the
level of the control/data flowgraph. “Simplification” describes the approach
better than “optimization” since no complex re-encoding is performed to
reduce the redundancy of the specification. The algorithms described below
only remove nodes, calls, and signal/data dependencies, but otherwise do not
change the topology of the graph.

The graph simplification algorithms are divided in two processing phases,
each exploiting a different source of information. First, the flowgraph is
trimmed taking into account properties stored in the selection tree as de-
scribed above. Then, a complex propagation mechanism finds and removes
internal flowgraph redundancies without analyzing or changing the selection
tree.

Selection-based simplifications

The following four simplifications are performed based on the selection tags.
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• Calls to selection primitives on void: selection nodes are deleted. In
the case of test primitives, we also delete the calling Test node and
replace it with a Join node linking the input GO port with the ELSE
port of the test.

• The test primitive calls on nonterm: selection nodes are deleted. The
calling Test nodes are replaced with Join nodes linking the ports GO
and THEN.

• The Switch nodes are simplified by erasing the outputs corresponding
to void: branches (such nodes cannot receive control, so their code can
be erased). If only one output remains, the switch call and Switch
node are deleted.

• The sync calls on parallel nodes that have at least one nonterm: child
are deleted. Such calls were used to determine whether or not unfinished
branches still exist, in order to determine the status of the parallel
statement itself. As the status of the parallel is known to be equal to
any of the nonterm: branches, we no more need these calls.

In addition to nodes deleted using the nonterm: and void: tags, we can
also exploit the hierarchical structure of the selection tree and delete all the
enter and exit calls situated on a parallel branch whose output leads to
no Ki(br) wires with i ≤ 1. State operations are useless in this case since
in the end they are overridden by some higher-level trap. Note that this
simplification can only be applied if the corresponding parallel synchronizer
has not been optimized out.

Selection-independent simplifications

In the second phase we perform three simplifications that do not use infor-
mation from the selection tree.

The first is the so-called constructive sweep that corresponds to a classical
dead code sweep. It consists of determining, through static propagation of
false values, which arcs are always set to false. These arcs can be deleted and
so can be some of the adjacent nodes. More precisely, we delete Call, Test,
Switch, and Join nodes whose GO input port no longer admits incoming
arcs, as well as Sync nodes left without incoming arcs (dead code); and Test
nodes whose expression has been uniformly set to true or false when input
signals are no longer emitted. For instance, in the following fragment

signal S in
pause ; emit S ;
pause ; present S then emit O1 else emit O2 end

end

the code corresponding to the “present” statement is simplified to
“emit O2.”



format optimizations 175

Useless code simplification consists of deleting code that does not drive
actions on data (state changes, output signal emissions, or user data update).
For instance, Join and Sync nodes whose outputs are not connected to other
nodes can be deleted. In the code generated for the following program, the
Sync nodes can be deleted because they perform an unnecessary function.

module simple:
output O1, O2;
[ sustain O1 || sustain O2 ]
end

Dependency simplification consists of removing signal and data depen-
dencies between nodes belonging to exclusive control threads. This uses
exclusivity relations on the outputs of a Test, Switch, or Sync. The sim-
plest case concerns the Switch. In every circumstance, we can remove signal
and data dependencies between statements separated by pause statements.
In the following example, the automatic translation scheme will link with a
signal arc the emission of S with its test.

pause; emit S ;
pause; present S then emit O1 end

This is a false dependency that can be removed. Note that the way we
encoded dependencies, defined in Section 8.1.2, greatly influences the ability
to perform this optimization. In our case, the false dependency can always
be removed, as its representation only involves the emitting and the receiver
port. In the Esterel V7 compiler, this is not the case. There, hub nodes
gather all emissions of a signal before distributing it to all reception ports
(Figure 8.5). Consequently, the ability to remove a false dependency depends
on the context. For instance, putting the previous statement in parallel with
the next one makes dependency removal impossible.

pause; present S then emit O2 end ;
pause; emit S ;

The situation is more complex for tests. For instance, if I is an input
signal, we can remove the dependency between the emission of S and its test
in the following example.

present I then
emit S

else
present S then emit O1 else emit O2 end

end

Removing the dependency is incorrect in the general case, as the following
fragment shows.
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signal S,T,U,V in
present V then
present U then
present S then emit T ; emit U ; emit V end

else
present T then emit S ; emit U ; emit V end

end
end

end

The example is non-constructive; there is no way to decide the status of
the signals S, T, and U without speculation. However, removing the depen-
dencies on S and T makes the GRC constructive (even acyclic, if a pass of
constructive sweep is performed).

The previous non-constructive example is logically correct in the sense
of Berry [7], meaning that in classical logic its system of logical relations
has a single solution: all signals absent. Moreover, all non-constructive ex-
amples whose GRC becomes constructive through dependency simplification
are logically correct.∗ Based on this argument, the Saxo-RT compiler accepts
programs such as our last example. Our choice is to reject such programs,
because accepting them changes the causality and transforms program cor-
rectness into an algorithmic issue depending on compiler internals.

Consequently, we restrict the use of the dependency simplification to cases
where it is not dangerous. Dependency simplification is correct

1. between nodes situated on different branches of a data test when at
least one of the considered nodes is not on the same strongly connected
component (SCC)† of the GRC flowgraph as the test node;

2. between branches of a signal test if none of the signal wires are part of
the same cycle as the test node itself, or if the node is not part of any
cycle;

3. between branches of a state test (this case is not interesting since the
current code generation scheme never puts code on the false branches
of such tests); or

4. between output branches of a Sync node if it is not part of a cycle.

We did not explore other cases where dependency simplifications can be
performed. Other simple cases exist where we could use them, such as in the
following fragment where the dependency on T is useless when S is an input
signal.

∗Proof sketch: Removing the dependency amounts to using the law of the excluded
middle to simplify the logical expression of the test node outputs. Applying the excluded
middle does not change the set of Boolean fixpoints of the program/circuit.

†A Strongly Connected Component (SCC) of a directed graph is a maximal set of
nodes such that there is a path connecting in any order any two of its nodes.
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Figure 8.24: Simplified graph for MainExample

[
present S then emit T end

||
present S else present T then emit O1 else emit O2 end

]

Figure 8.24 shows the result of simplifying the control-flow graph of
MainExample. The selection tests corresponding to nonterm: branches have
disappeared, as have the corresponding enter and exit primitive calls. The
interface of the Sync node was simplified and the sync call has disappeared.



9

Code Generation from GRC

In this chapter, we present the technique used in the INRIA compiler to gen-
erate efficient sequential (C) code from GRC specifications. In this compiler,
dubbed grc2c, code generation is based on statically scheduling the GRC
flowgraph nodes into well-structured sequential code. In this sense, grc2c
follows the approach of the Synopsys and Saxo-RT compilers described in
Chapter 7, but pushes the efficient encoding of the state and reactive opera-
tions further.

Static scheduling is possible only when the GRC flowgraph is acyclic. The
notion of an acyclic intermediate representation is therefore central in this
code generation scheme, just as it is in the other circuit and control-flow code
generators. This is why we dedicate the first part of this chapter to better
understand what “acyclic” means at both circuit and GRC levels. Based on
this analysis, we are able to view acyclicity independently from particular
intermediate representations (GRC, netlist, etc.), making it a well-defined
correctness criterion.

The second part of the chapter defines the code generation technique,
which is based on static scheduling.

The last part of the chapter defines an extension of the static schedul-
ing approach that allows code generation for all Esterel programs that are
syntactically correct. This generates code that performs dynamic scheduling
of each strongly connected component (SCC) in the flowgraph. The code
associated to an SCC is embedded in the (now) globally acyclic graph and
triggered by the latter during reactions where control traverses the SCC.
Static scheduling can now be applied to the global GRC flowgraph. For sim-
plicity, the semantic evaluation is performed at the circuit level, as explained
in Section 8.3.

179
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9.1 Defining “Acyclic”

The notion of a cyclic specification is central to most Esterel compilation
techniques, including the control flow- and circuit-based techniques. Here,
we explain the importance of the notion, emphasize its problems, and then
propose a partial solution.

Section 2.3 discussed an intuitive source-level definition of “cyclic.” There,
signal and data dependencies may chain into static causality cycles that com-
plicate the execution by requiring dynamic scheduling. Cyclic specifications
may have semantic problems since some are non-constructive.

Formally, cycles are defined at the level of intermediate graph-based
formats—digital netlists or the intermediate format of one of the control-flow
code generators. For instance, we say that a GRC specification is acyclic if
its flowgraph is acyclic.

Acyclic representations have specific qualities. First, acyclicity at any of
the above-mentioned levels enforces correctness with respect to constructive
causality. Moreover, acyclicity at the circuit level is equivalent to construc-
tiveness when the lazy ternary logic operators of Figure 3.3 are replaced with
their strict counterparts. As most real-life programs generate acyclic inter-
mediate representations, it is easy to declare them correct without relying
on expensive reachable state space exploration algorithms [69]. Also, acyclic
specifications can be statically scheduled into fast code. Chapter 7 described
how some control-flow code generators do this. The circuit code generators
also produce better (faster) code for acyclic circuits [32].

Unfortunately, the definition of acyclicity is a problem because it is not
a property of program syntax, and the flowgraph that must be acyclic varies
according to details of the translation scheme. It is then very difficult to
compare the classes of programs accepted by different compilation techniques.
Each existing Esterel compiler accepts a slightly different class of programs.

The Esterel example of Figure 9.1(a), for instance, has a cyclic GRC rep-
resentation (Figure 9.1(b)), but an acyclic circuit (Figure 9.1(c)). This occurs
because of the finer decomposition of the GRC-level parallel synchronizer into
gates, despite similar translation patterns.

Further optimizations may also interfere with acyclicity properties, as the
following example shows.

pause ; present S then emit T end ;
pause ; present T then emit S end

Both the circuit and GRC generation schemes produce cyclic representations
for this program. However, the optimization techniques we defined earlier can
break the cycles by observing that the two tests are never executed in the
same instant. The INRIA, Synopsys, and Saxo-RT control-flow code genera-
tors implement this optimization, but not the INRIA circuit code generator.

Our goal is to define acyclicity in a compiler-independent way. Among
the existing intermediate formats, digital circuits have a privileged position
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[
nothing

||
present I
then
present S
then
pause

else
pause

end
end

];
emit S

S
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I

K0
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Figure 9.1: Esterel program (a) for which the GRC-level cycle (b, empha-
sized) is resolved at the circuit level (c). The dotted boxes mark the corre-
spondence between GRC nodes and netlist gates. State encoding/decoding
components have been omitted because they never determine cycles.
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Figure 9.2: Simplified surface translation patterns for present

in this respect. Having the finest-grain representation, they offer a notion of
acyclicity that is only approximated by the other formats (GRC included).
Intuitively, a program generating an acyclic GRC representation should al-
ways produce an acyclic circuit. When this does not happen in practice, the
cause is either a significant variation of the structural translation (reincarna-
tion) pattern or a more aggressive optimization of the GRC code that is not
applied on the circuit.

In the sequel, we shall compare the circuit and GRC translations from this
point of view. We find the acyclicity of the GRC flowgraph implies an acyclic
circuit. The strong topological similarity of the two schemes also allows us to
identify a simple refinement of the basic GRC that unifies the two versions of
acyclicity. The equivalence is preserved if the (refined) GRC and the circuit
are both optimized using techniques described in the previous chapter.

This equivalence result is weak in its formulation, since it concerns partic-
ular translations. Nevertheless it can be useful in practice because it offers a
roadmap for developing “compatible” circuit and control-flow code generators
that accept the same classes of programs.

GRC format refinement

In circuits and GRC specifications derived from Esterel programs, we can
identify a class of components whose only role is to encode the state of the
program in the next instant. In GRC, these components are the enter and exit
calls; the RIN wires and their driving gates perform this function in circuits.
The state encoding components are never involved in cycles. Therefore, we
can perform our analysis using simplified translation patterns, such as the one
in Figure 9.2. Figure 9.1 shows an example of translation using the simplified
patterns.

In circuits, we shall also overlook gates that compute the SEL wires
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starting from the register outputs. These gates, organized in a tree with
the register outputs as leaves, also cannot be part of a cycle.

After the simplification of unneeded state encoding components, a sim-
ple correspondence exists between GRC nodes and arcs and circuit gates
and wires. In fact, the Esterel translation into circuits can now be factored
into the Esterel translation to GRC followed by the expansion of the nodes
into gates, as defined in Section 8.3. By expanding the nodes of the simpli-
fied GRC code into gates, we obtain a circuit that is identical to the circuit
translation except for wires and gates that correspond to Esterel-level signal
communication. The difference comes from the fact that the GRC translation
uses no “hub” OR gates to group signal wires before distributing them. In-
stead, individual wires (the signal control arcs) connect every emission place
with every test. Note that the result is the same with respect to causal
emission/reception dependencies, at least until optimizations are applied.

Figure 9.1 is an example of the mapping. There, gates associated with
specific nodes are grouped in dashed boxes.

The simplified GRC is an abstracted version of the circuit, so an Esterel
program that produces an acyclic GRC specification will produce an acyclic
circuit. However the converse is not true. Below we discuss when an Esterel
program can become an acyclic circuit from a cyclic GRC specification.

Cycles disappear from the dependency graph only when GRC parallel
synchronizer Sync nodes are expanded into gates; expanding other types of
nodes does not affect the cyclicity of the circuit. The analysis is performed
case by case, according to node type.

• Tick nodes generate no circuit components.

• Call nodes are translated into buffer gates that preserve the GRC-level
causal dependencies between input and output.

• Each Test node is translated into two gates, but these preserve the
GRC-level causal dependencies of one of the test node output ports.

• Switch nodes, like the test nodes, preserve through expansion all the
GRC-level causal dependencies between inputs and outputs.

Thus, only expanding Sync nodes can remove causal dependencies and
eliminate cycles. Unfortunately, the circuit expansion of a synchronizer is
complex (Figure 6.20) and thus best avoided when generating sequential code.

Here, we propose a technique that allows us to split the synchronizers into
a minimal number of components, which can thereafter be easily encoded into
software sequential code. This technique is useful when the circuit is acyclic
but the GRC is not.

Our minimal refinement follows from the internal structure of the par-
allel synchronizers: the static dependencies between synchronizer ports that
disappear after circuit expansion are Ki(pj) → Kn with n < i. Every other
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Figure 9.3: Example of synchronizer refinement. The index i ranges over
completion codes of the parallel, and pj ranges over the selection indices of
the parallel branches.

dependency is preserved, namely Ki(pj)→ Kn for n ≥ i and Dead(pj)→ Kn.
The indices i and n range here over possible completion codes; pj ranges over
the selection indices of the parallel branches.

When a GRC synchronizer is part of a cycle, static dependencies link
synchronizer outputs to synchronizer inputs: Kn → Ki(pj) for some i and
n. If the circuit expansion breaks the cycle, then n < i for every such
dependency. Otherwise, the cycle cannot be broken by circuit expansion.
Thus, we are looking for the minimal expansion of a synchronizer under
constraints of the form Kn → Ki(pj) with n < i.

We will split the synchronizers into parts that correspond to sets of con-
secutive completion codes. Consider a parallel synchronizer Sync handling
completion codes from 0 to m. For the set of splitting completion codes
0 < k1 < . . . < kr ≤ m we shall divide Sync into the r + 1 partial synchro-
nizers Sync(0, k1−1), . . . ,Sync(kr, m). The partial synchronizer Sync(a, b),
a ≤ b, handles the completion codes from a to b. Its inputs are the comple-
tion code wires Kn(pj), for a ≤ n ≤ b; if a = 0, the wires Dead(pj); or if
a 
= 0, the carry wires Carrya(pj). Its outputs are Kn for a ≤ n ≤ b and
Carryb+1(pj).

Thus, our problem is to determine a minimal sequence 0 < k1 < · · · <
kr ≤ m such that for each static dependency Kn → Ki(pj) (n < i) that
determines a cycle there exists n ≤ kt ≤ i. The algorithm that determines
this list is given next. It takes as parameter the set of dependencies DEPEND
and returns in LIST the list of splitting completion codes. The set DEPEND
is filled in with all the pairs (n,i), n < i, such that Kn → Ki(pj) for some
parallel branch index pj .

LIST = empty list
for i = 0 to m do

if (n, i) ∈ DEPEND for some n then
append i to LIST
remove broken dependencies from DEPEND
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The proof of minimality for this algorithm rests on the fact that split
points are only appended to the list where they are necessary. For instance,
if only one dependency exists (such as in Figure 9.1), the synchronizer must be
split. A more complex example is given in Figure 9.3. There, the synchronizer
is split according to the dependency set {K0 → K2(p1), K1 → K3(p1), K2 →
K3(p0)}.

9.2 Code Generation for Acyclic Specifications

We now present the technique used in the INRIA compiler to generate control-
flow code from acyclic GRC specifications. It employs state encoding and
greedy static scheduling of the flowgraph to generate sequential code with
near-automaton speed and size similar to that of circuit code.

An acyclic specification allows the evaluation of GRC nodes to be sched-
uled statically. Each such schedule satisfies control flow and signal dependen-
cies. In particular, the value of any signal can be read only after all the nodes
that can emit it have been evaluated. Thus, no complex “propagation of non-
execution” is needed; we can replace the constructive evaluation scheme with
simple concurrent control-flow propagation. To generate sequential code, the
“threads” defined by the control flow arcs are statically interleaved, using
variables to perform the context switches.

The translation is performed in two steps. First, the static properties
of the selection tree are used to replace the generic state representation of
the GRC specification with a hierarchical bitwise representation on actual C
variables. This step also determines a transformation of the flowgraph where
the numerous state test and update primitives are replaced by a smaller
number of data variable accesses. Every operation on the encoded state
representation generally performs several primitive operations.

The second translation step consists of the actual scheduling of the
control/data flowgraph into sequential code and C language structures.

9.2.1 State Encoding

The state encoding technique is an improved version of Edwards’s [27]. Here,
we define it and compare it with the state encoding used in the circuit trans-
lation and software circuit code.

We use a hierarchical state representation instead of a flat one such as
that used in the circuit translation. In circuits, the memory elements (regis-
ters) correspond to “pause” statements. In our representation, the memory
elements (C variable bits) correspond to decisions in the control-flow graph.
Deciding where memory elements—sequential variable bits—are needed, and
how many, is based on the analysis of the selection tree.

In our case, state decoding is embedded in the top-down resumption pro-
cess. Statements that are suspended or not selected do not receive control
and thus do not decode their state because in acyclic specifications, the status
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Figure 9.4: Bit allocation for our first small example

of a statement is decoded by the control flow, using a test or switch primitive,
only after the status of each of its parents has been decoded (and found in
each case to be true).

The re-encoding of the next state works on the same set of state variables
as the decoding process. This is possible because all GRC graphs from Esterel
are well-formed, so a state update primitive “enter [p]” or “exit [p]” is only
called when no more state decoding primitive can be executed on Tree(p).
Thus, the state update primitives enter and exit can safely make their local
updates on the state variables without changing the outcome of subsequent
state tests.

This contrasts with the state encoding in the circuit translation. In cir-
cuits, the value of every register is recomputed instant, even for those registers
corresponding to inactive statements. State decoding works bottom-up start-
ing with the registers and proceeding through the OR gates of the selection
circuit and the various selection status wires. There is one further difference
in the software code: two full sets of state variables are maintained: one for
the current state and one for the next. At the end of each execution instant,
the next state is copied onto the current state.

First example

Our first example shows how a selection tree without nonterm: decorations
is encoded. The selection tree, pictured in Figure 9.4 along with its encoding,
corresponds to the following Esterel fragment.

[
pause; pause; pause; pause

||
emit S

||
pause; pause; pause

]
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3rd pause active on 3rd branch

10111 11
not boot instant

program active

1st parallel branch active

3rd pause active on 1st branch

1 1 1 1 1 0 X
not boot instant

1st parallel branch active

program active

1

X

4th pause active on 1st branch

3rd parallel branch active

3rd parallel branch inactive

don’t care

Figure 9.5: State encoding examples for our first small example

Here, the leftmost bit determines whether the program has not termi-
nated, i.e., if the root selection node is selected. If the program is still run-
ning, we need another bit to indicate whether we are in the boot instant. If
we are not, we need one bit to determine whether the first parallel branch is
selected and two bits (encoded logarithmically) to choose the selected pause
statement.

The second branch bears the void: tag, but the encoding algorithm
ignores it. For the third branch, the simple encoding uses one bit for branch
selection and another two to decide which pause is selected. Thus, we need
an eight-bit C variable to encode the state of our program. Figure 9.5 gives
two actual state encoding examples. Note that not every bit of the state
variable is used in every instant.

We could improve the encoding for the third parallel branch. Here, the
logarithmic encoding of the selected pause choice leaves the bit configuration
00 unused. This configuration could be used to represent the state where the
parallel branch is not selected, so that we only need seven bits to represent the
state of our program. However, we have not implemented this optimization.
Determining when we can use the incompleteness of a branch representation
to represent its selection is not a simple issue, as it may involve a space/speed
trade-off, e.g., testing multiple bits that span several C variables is more
expensive than testing a single bit.

Second example

The MainExample example on page 147 illustrates how the nonterm: tags
are exploited to improve the encoding. Figure 9.6 shows its selection tree
and bit assignment.

The leftmost bit indicates whether the program has terminated. The next
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Figure 9.6: Bit allocation for MainExample

boot instant

011

XX01

program active

not boot instant

first pause active on first branch

first pause active on second branch

program active

don’t care

0

Figure 9.7: State encoding examples for MainExample

one indicates whether we are in the boot instant. If we are not in the boot
instant, the nonterm: flags tell us that both parallel branches are selected.
We only need two more bits to complete the representation: one for each
parallel branch to define its internal state. Figure 9.7 gives two encoding
examples.

Third example

The third example of tree encoding illustrates how representations of exclu-
sive branches are multiplexed on the same bits to reduce the size of the state
representation. Consider the following Esterel fragment, whose selection tree
with its encoding are shown in Figure 9.8.

pause
;
[ await T || await S ]

;
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Figure 9.8: Bit allocation for the third small example

1st sequence branch active

01 1 01 1program active

not boot instant

2nd sequence branch active

1st parallel branch inactive

2nd parallel branch active

111111

1 1 0 1 XX

not boot instant

program active

last pause active

program active

not boot instant

don’t care

3rd sequence branch active

Figure 9.9: State encoding examples for the third small example

[ pause ; pause ; pause ]

Here, the last two bits of the representation are shared between the second
and third branches of the sequence. Depending on the state of the program,
these bits will be decoded by different flowgraph nodes. Figure 9.9 gives three
encoding examples.

The encoding algorithm

The complexity of the state encoding algorithm is linear in the number of
selection tree nodes. The algorithm performs a bottom-up traversal of the
selection tree that incrementally computes the size of the representation for
each of the selection sub-trees followed by a top-down traversal that actually
assigns to selection nodes the integer constants (bit sequences) that will be
used in the encoding of selection primitives.

For every program, the routine produces a bitwise representation pattern
that is mapped on a sequence of actual C language variables. Table 9.1 gives
statistics on the encoding algorithm run on some examples.

In addition to the number of state bits required, the table lists the number
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Example Circuit Bits in C Redundant
registers variables selection bits

1-tcint 82 20 1
2-wristwatch 36 15 1
6-fuel 656 355 8
7-cabine 917 449 118
8-globalopt 1449 986 473

Table 9.1: State encoding results on some typical examples

of registers used to represent state in the circuit translation. This is a good
measure of the redundancy of the circuit translation and, implicitly, of the
circuit code. It also lists the number of bits used to represent branch selection,
which could be optimized out as explained for the first example. For the two
largest examples in particular, the implementation of this optimization may
drastically improve the quality of the encoding.

9.2.2 Flowgraph Transformations

The encoding of the state representation on actual C variables determines
which transformations are allowed. For each state access primitive, we must
provide a sequence of C operations that perform the required task. The
resulting code is a concurrent control-flow graph ready for scheduling.

The test primitives are the simplest to translate. They are only applied
to parallel branch selection nodes that do not carry the nonterm: flag and
are transformed into code that returns the status of the associated parallel
branch.

Similarly, a switch primitive reads the associated choice bits from the
appropriate state variable. To the calling Switch node, it returns the integer
encoded on the bits, i.e., the index of the selected parallel branch. Thus, we
are able to use switch C statements to dispatch control to the unique selected
branch.

A sync primitive refers to a parallel: node with no nonterm: child. It
tests the status of all the parallel branches and returns 1 (true) if at least
one is selected. Otherwise it returns 0, informing the the calling Sync node
that the parallel has terminated.

The most complex part of the primitive encoding concerns the state up-
date primitives enter and exit, as most will generate no code. The reason
for this is twofold: the logarithmic encoding of the choice makes most exit
calls redundant: entering a branch of a sequence or test exits all the other
branches as a side-effect, and in many cases successive enter calls can be
“packed” into unique C variable assignments.
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Figure 9.10: Bit allocation for pause ; pause
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don’t care 2nd pause active

don’t care

terminated

Figure 9.11: Possible states for pause ; pause and their encoding

A simple example

The following simple example illustrates the encoding steps.

pause ; pause

Figure 9.10 shows the the selection tree and bit assignment for this exam-
ple. Figure 9.11 lists the encoding of the four possible (macrostep) program
states.

We are mainly interested in the associated GRC flowgraph, presented in
Figure 9.12(a) and in the flowgraph obtained after state encoding, given in
Figure 9.12(b). In the latter, the GRC state switch nodes have been re-
placed with state variable tests; the sequences of state update calls have each
been replaced by single state variable assignments. Note the correspondence
between the assign values and the codes of Figure 9.11.

Algorithm description

The only exit primitives that generate code are the ones corresponding to
parallel branches that have a selection bit in the new encoding. The generated
code sets the bit to 0.

Generating code for the enter primitives is more complex.

1. For a selection tree that has no parallel internal nodes, we only preserve
the enter calls corresponding to the leaves. Each of them will perform
an assignment of all the state variable bits, as in the previous example.
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state[2]enter 2

enter 3

exit 1
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(a) (b)

state:=110

state:=000

state[1]
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state:=111

Figure 9.12: Flowgraph transformation due to state encoding

2. When a tree also contains parallel nodes, we reduce the problem to the
previous case by partitioning the selection tree into disjoint sub-trees,
each having the property that all its leaves are exclusive. On each of
the sub-trees, we only keep enter calls corresponding to the leaves.

The partitioning algorithm produces sub-trees with the required prop-
erty by cutting the arcs linking parallel nodes with their children.

• When a parallel node has no nonterm: child, then all arcs are
deleted.
• When the parallel node has at least a nonterm: child, then all

arcs are deleted save one, which must correspond to any of the
nonterm: children.

The partitioning algorithm produces maximal sub-trees with the de-
sired leaf exclusiveness property, which improves the quality of the state
encoding.

Note that the partitioning process may have multiple solutions when a
parallel node has multiple nonterm: children. One possible partition of the
selection tree of MainExample is given in Figure 9.13. There is a second one,
where the sub-tree rooted in node 0 contains the second parallel branch, not
the first. Choosing which is best is not obvious.

9.2.3 Scheduling

We use a simple hierarchical greedy approach to statically schedule the flow-
graph operators. Interleaving uses one auxiliary Boolean variable for every
triggering condition. Figure 9.14 shows the C code generated for the GRC
flowgraph of Figure 8.24, which corresponds to the MainExample program.
We renamed variables to make their roles clearer.
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Figure 9.13: A partition of the selection tree of MainExample

The integer variable state 0 holds the state representation. The state
access and update code is separated for easier understanding and debugging.
The internal signal variable END 1 corresponds to the single copy (of incarna-
tion index 1) of the internal signal END that is needed. The variable SYNC 1
is set to 1 when trap T is exited. The two parallel branches are interleaved
using the variable CS 1. The scope of all internal variables is determined at
code generation time. In our case, no variable is declared/initialized in the
boot instant or if the signal SUSP is present.

9.3 Code Generation for Cyclic Specifications

Certain GRC specifications remain cyclic after the application of our simplifi-
cation techniques. In this class fall all the non-constructive Esterel programs
and also the correct Esterel programs that, like the bus arbiter example of
page 27, are intrinsically cyclic. Generating control-flow code for such speci-
fications, for implementation or debugging purposes, involves two challenges:
extending the techniques of the previous section with dynamic scheduling
methods able to evaluate the cyclic parts of a specification; and at runtime,
cheaply deciding when a program is non-constructive in a given context, to
report it to the environment.

In this section, we suggest ways to generate fast control-flow code for syn-
tactically correct Esterel program. We assume that expensive constructive-
ness check techniques, such as that developed by Toma [69], are impractical
since they simply cannot handle large examples.
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/* STATE VARIABLES, BOOT STATE */
unsigned long state_0 = 1u;

/* STATE ACCESS/UPDATE */
/* test the global program status */
bool test_0() { return state_0&1u; }

/* terminate the program */
void exit_0() { state_0&=˜1u; }

/* test if the program is in the boot state */
unsigned long switch_expr_0() { return (state_0>>1)&1u; }

/* first parallel branch -- switch and state change */
unsigned long switch_expr_7() { return (state_0>>2)&1u; }
void enter_8() { state_0&=˜6u; state_0|=2u; }
void enter_9() { state_0&=˜6u; state_0|=6u; }

/* second parallel branch -- switch, and state change */
unsigned long switch_expr_10() { return (state_0>>3)&1u; }
void enter_11() { state_0&=˜8u; state_0|=0u; }
void enter_12() { state_0&=˜8u; state_0|=8u; }

/* THE REACTION FUNCTION */
int MainExample() {

if (switch_expr_0()) { /* boot instant test */
if (!SUSP) { /* suspension test */

/* auxiliary scheduling variables */
bool SYNC_1 = 0; bool CS_1 = 0;
/* local signal variables */
bool END_1 = 0;

/* 2nd parallel branch */
if (switch_expr_10()) CS_1=1; /* interleaving */
else if (KILL) enter_12();

/* 1st parallel branch */
if (switch_expr_7()) { if (J) { END_1=1; enter_8(); } }
else if (I) { EMIT_O(); enter_9(); }

/* 2nd parallel branch, second part */
if (CS_1) { if (END_1) SYNC_1=1; }

/* parallel synchronization */
if (SYNC_1) { exit_0(); }

}
} else { enter_8(); enter_11(); }
__MainExample__reset_input();
return test_0();

}

Figure 9.14: Code generated from the flowgraph of Figure 8.24, which corre-
sponds to the MainExample program.
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Constructive simulation is needed

When a GRC specification is cyclic, we do not have a guarantee of its cor-
rectness (constructiveness). Perhaps more important for code generation, no
static schedule (topological ordering) of the flowgraph nodes guarantees the
correct computation of reactions for all possible state and input event. In the
absence of code duplication/resynthesis, the correct evaluation of reactions
requires a constructive simulation of the flowgraph.

Reduction to SCCs

Unfortunately, practice shows that constructive simulation is an expensive
process regardless of the domain in which it it performed (GRC, digital
netlists, etc.). This is due to the necessity of dynamic node scheduling and
to the use of the ternary logic operators we defined in Figure 3.3 instead of
the Boolean operators implemented by most microprocessors.

Consequently, to generate efficient code, we need to be clever about per-
forming constructive simulation. One obvious approach is to limit it to places
where it is absolutely necessary, i.e., the strongly connected components
(SCCs) of a specification. Nodes in an SCC have no static ordering with-
out resynthesis or further dependency simplifications to remove static cycles.

Once the SCCs are identified, the cyclic flowgraph is transformed into an
acyclic one by replacing each SCC with a unique flowgraph node representing
its computation. The newly generated node, of a special “SCC” type, inherits
all the dependencies relating SCC nodes to exterior ones. The new acyclic
graph can now be scheduled using the techniques of the previous section, and
we still have to define the constructive evaluation code needed to compute
the behavior of the SCCs.

We illustrate how constructive evaluation code is embedded in the globally
acyclic scheme with the following example.

signal S,T in
pause ; present S then emit T end ;
pause ; present T then emit S end

end

This code fragment is constructive. Figure 9.15 shows its selection tree
and flowgraph. Note that the dependency simplifications of Section 8.4.2
would have removed the cycle, but we did not apply them for illustration
purposes.

The cycle (in the dotted box) is formed by the signal test nodes. It
does not disappear after circuit expansion (Figure 9.16), so the technique of
Section 9.1 cannot be applied. We have to generate constructive evaluation
code for the SCC.

When we isolate the cycle as an SCC node, we obtain the flowgraph of
Figure 9.17. Applying the static scheduling technique of the previous section
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Figure 9.16: The SCC at GRC and circuit level
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Figure 9.17: Globally acyclic graph for our cyclic example

gives the following.

if (switch expr 0()) { /* boot instant test */
bool SCC IN 0 = 0; bool SCC IN 1 = 0;
bool SCC OUT 0 = 0; bool SCC OUT 1 = 0;
if (switch expr 2()) SCC IN 1=1; /* second pause */
else SCC IN 0=1; /* first pause */

/* SCC evaluation code goes here */

if(SCC OUT 0) enter 4();
if(SCC OUT 1) exit 0();

} else enter 3();

To complete the code we have to generate the dynamically-scheduled code
associated with the SCC itself.

)

Code generation for SCCs—netlist simulation

The constructive semantics of GRC flowgraph nodes is given by circuit trans-
lation, so we perform constructive simulation of the SCC nodes at the netlist
level. For example, the code generated for the SCC block of our small exam-
ple is a simulator for the circuit of Figure 9.16(b).

The simplest approach to constructive netlist simulation is the one used
in the INRIA compiler, with the “-I” option of the Esterel V5 92 circuit
code generator.
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The circuit associated with a GRC-level SCC is always combinational and
corresponds to a single SCC in the circuit. To compute its behavior for given
Boolean inputs, we may evaluate the gates that are not part of the circuit-
level SCC with Boolean logic, but we must use three-valued constructive logic
for the gates in the cycle.

To do this in software, we encode the wire values with Boolean variables.
We use the usual dual-rail encoding: we associate two Boolean variables—
w true and w false—to each wire w in the circuit-level SCC. The encoding
is as follows.

w true w false w

0 0 ⊥
1 0 true
0 1 false
1 1 -

The other wires are directly evaluated in the Boolean domain; we assign
a single Boolean variable, with the same name, to each such wire. For clarity,
we shall use the names w, wi for SCC wires, and the names v, vi for wires
that do not belong to the SCC. The Boolean variables associated with v and
vi are denoted v and v i.

Every three-value circuit gate becomes one or two assignment statements:

w = w1 ∨ . . . ∨ wn ∨ v1 ∨ . . . ∨ vm

w true = w 1 true|...|w n true|v 1|...|v m
w false= w 1 false&...&w n false&!v 1&...&!v m

v = w1 ∨ . . . ∨ wn ∨ v1 ∨ . . . ∨ vm

v=w 1 true|...|w n true|v 1|...|v m
w = w1 ∧ . . . ∧ wn ∧ v1 ∧ . . . ∧ vm

w true=w 1 true&...&w n true&v 1&...&v m
w false=w 1 false|...|w n false|!v 1|...|!v m

v = w1 ∧ . . . ∧ wn ∧ v1 ∧ . . . ∧ vm

v=w 1 true&...&w n true&v 1&...&v m
w = ¬ w1

w true=w 1 false;w false=w 1 true;
w = ¬ v1

w true=!v 1;w false=v 1;
v = ¬ w1

v=w 1 false;
v = ¬ v1

v=!v 1;

Wires that are not part of the circuit-level SCC are evaluated either before
or after the evaluation of the SCC. The nodes in the SCC are evaluated
by a stabilization loop, which repeatedly evaluates the equations in a fixed
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order until no wire value (variable) changes. Since constructive evaluation is
monotonic, this process always terminates. In fact, since it is easy to bound
the number of iterations required for this process to converge for a particular
SCC, we can instead run each loop a fixed number of times computed at
compile time. For instance, twice is enough for our two-gate cycle example.

/* SCC evaluation code */
bool v 0 = 0, v 1 = 0;
bool w 0 true = 0, w 0 false = 0;
bool w 1 true = 0, w 1 false = 0;
for (int cnt = 0 ; cnt<2 ; cnt++) {

w 0 true = w 1 true & SCC IN 0;
w 0 false = w 1 false | !SCC IN 0;
w 1 true = w 0 true & SCC IN 1;
w 1 false = w 0 false | !SCC IN 1;

}
if (!((w 0 true | w 0 false) & (w 1 true | w 1 false)))
ERROR();

v 0 = w 1 false & SCC IN 0; v 1 = w 0 false & SCC IN 1;
SCC OUT 0 = w 0 true | v 0; SCC OUT 1 = w 1 true | v 1;

The line of code following the stabilization loop performs the run-time
constructiveness check. If at least one SCC wire remains undefined
(w true|w false==0) after two iterations of the evaluation loop, it calls an
error-handling function. The constructiveness check can be safely removed if
the program is proven to be constructive, e.g., using sccausal [69].

The number of iterations required to stablize an SCC depends on its
structure and the wire evaluation order. As explained in Section 6.1, eval-
uating the body of the loop for a number of times equal to the the number
of SCC gates is sufficient. However, this is overkill for large SCCs since the
evaluation time will increase quadratically in the SCC size. Instead, more
efficient iteration strategies can be used, such as the one proposed by Bour-
doncle [16]. Such techniques order the gates in an SCC to improve the speed
of their convergence.

Other approaches

Edwards [25, 53] proposes new approaches to generating simulation code for
cyclic netlists. These use efficient resynthesis based on loop unrolling instead
of the exact algorithms of Toma [69].

Lukoschus [47] proposes a source-to-source transformation that removes
cycles by introducing new signals and duplicating code.
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9.4 Benchmarks

This section describes the benchmarks we used to compare the grc2c com-
piler with other code generators. The testbench contains eight examples
ranging from Berry’s wristwatch to industrial-size examples of more than
13000 lines.

1-tcint turbochannel bus controller
2-wristwatch the digital watch model part of the INRIA distribution
3-atds100 video generator
4-mca200 shock absorber [20]
5-chorus operating system model [72]
6-fuel avionics fuel controller
7-cabine avionics cockpit interface
8-global avionics man-machine interface

The following table gives an idea of the specification size, initial (in LC and
GRC form) and optimized (GRC), for the eight examples. It also gives the
optimization time, measured on the test system—a PentiumIII/1GHz/128Mo
running Linux.

Example LC GRC nodes GRC, optimized time

nodes init sweep nodes %GRC %LC (s)
(1) (2) (3) (4) (5) (6) (7)

1-tcint 516 924 798 375 46.9% 72.6% 1.06
2-ww 533 1025 834 366 43.8% 68.6% 1.04
3-atds100 1122 2307 2119 1059 49.9% 94.3% 2.30
4-mca200 3769 4897 4562 3596 78.8% 95.4% 6.58
5-chorus 4751 7385 6299 3539 56.1% 74.4% 7.90
6-fuel 4986 10449 8544 4516 52.8% 90.5% 10.20
7-cabine 10991 24359 18872 8037 42.5% 73.1% 23.10
8-global 15831 36525 18852 13253 70.3% 83.7% 55.59

The first column gives the LC statement counts produced by the front-
end of the INRIA compiler for our eight examples. This is a good measure
of the complexity of the initial Esterel specification and corresponds roughly
the to number of source code lines. Column (2) gives the size (node count)
of the GRC specifications that are obtained by control flow expansion∗. Due
to the inherent redundancy of the structural translation scheme the (large)
figures are misleading. The third column gives a better estimate of the com-
plexity of the initial GRC specification—the GRC node counts after a pass
of selection-independent simplifications (similar to the sweep operation used
in circuit optimizers). The next three columns give the size of the optimized

∗Bear in mind the structure of the INRIA compiler, given in Figure 7.2.
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GRC specification and compare it with the figures of the columns (1) and
(3). The last column gives the time (in seconds user time) taken by the full
optimization process for these examples.

The optimized size figures suggest the efficiency of our optimization tech-
nique may vary greatly from one example to the other. The optimization time
figures show that these algorithms are indeed fast—apparently quasi-linear
in the specification size.

Next, we compare the efficiency of the GRC-based control-flow code with
the efficiency of code coming from four other code generators described in
Chapter 7:

• the circuit-based compiler of the Esterel V5 92 system from INRIA
(Gates);

• the same circuit-based compiler, when aggressive circuit optimizations
are applied before C code generation using the SIS/blifopt script
(Gates opt);

• the Synopsys compiler developed by Stephen Edwards;

• the Saxo-RT compiler developed at France Telecom R&D.

The resulting C files were compiled using “gcc -O” and run for one million
cycles on the same input event sequences.

The results are summarized in Tables 9.2 and 9.3. Missing figures are due
to one of three cases: for the Gates code, they mean that gcc exhausted the
system memory during compilation. For the Gates opt code, they mean
that SIS/blifopt was not able to optimize the circuit. For the Synopsys
code, a missing figure simply means that the code was not available for tests.
The best figures are emphasized for each example.

As expected, the non-optimized circuit code gives bad figures. For all our
eight examples it is the slowest and biggest. The control-flow code generators
(Synopsys, Saxo-RT, and grc2c) give similar figures in both speed and
size. They are always faster than the circuit code, optimized or not. Among
them, grc2c generates faster code. Both Gates opt and Synopsys give
good object file sizes for small examples. The differences in size between the
control-flow code generators do not seem to be relevant.
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Example Gates Gates opt Synopsys Saxo-RT grc2c

1-tcint 1.97 0.66 0.25 0.36 0.25
2-wristwatch 2.71 1.4 1.26 1.29 0.95
3-atds100 14.8 3.69 0.14 0.12 0.08
4-mca200 46.49 48.19 2.61 3.68 1.88
5-chorus 54.29 − 2.76 5.30 1.10
6-fuel 37.66 − − 16.81 15.65
7-cabine − − − 31.97 29.26
8-global − − − 57.45 43.27

Table 9.2: Code speed (user time sec. for 1Mcycle)

Example Gates Gates opt Synopsys Saxo-RT grc2c

1-tcint 27.0 11.4 11.5 15.3 17.5
2-wristwatch 22.9 11.2 13.3 16.1 14.7
3-atds100 64.2 31.3 21.7 33.9 33.7
4-mca200 182.9 171.8 70.2 78.9 67.7
5-chorus 230.3 − 99.5 104.1 98.6
6-fuel 201.4 − − 147.5 168.7
7-cabine − − − 256.1 196.8
8-global − − − 309.1 273.9

Table 9.3: Object code size, in Kb
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The Columbia Compiler

One of the authors (Edwards) and his group have developed the Columbia
Esterel Compiler at Columbia University starting in 2001. It is a separate
code base from the INRIA compilers described in Section 7.3 and deliberately
uses different compilation technology.

In this chapter, we describe two of the code-generation techniques in the
Columbia Esterel Compiler (hereafter CEC). The first is a clever dynamic
technique that manipulates very efficient linked lists of code fragments that
need to be executed. In this sense, it resembles the Saxo-RT compiler from
France Telecom R&D, but tries to reduce the asymptotic running time by
only doing work for code that actually runs.

The second technique blasts apart the GRC representation of an Esterel
program and then re-forms it in a program dependence graph (PDG) [31],
a very abstract form of a concurrent control-flow graph that exposes even
more concurrency than the GRC representation. Such granularity allows
the compiler to restructure the code in such a way to reduce the amount
of context-switching-related overhead and produce even faster code. The
main novelties here are the application of the the program dependence graph
(PDG) formalism to an Esterel context and the algorithm, presented later,
for generated sequential code from the concurrent PDG.

10.1 The Dynamic Technique

This technique, originally presented at the SLAP workshop in 2004 [28], was
inspired in part by Maurer’s Event-Driven Conditional-Free paradigm [50],
although his implementation is geared to logic network simulation and does
not appear applicable to Esterel . Interestingly, he writes his examples using
a C-like notation that resembles the gcc computed goto extension used in
CEC, but apparently he uses inlined assembly instead of the gcc extension.

The technique also resembles that in the Synopsys compiler [26], but this

203
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technique uses a more dynamic scheduler. During a cycle, the Synopsys
compiler maintains a set of state variables, one per running thread. At each
context switch point, the compiler generates code that performs a multi-
way branch on one of these variables. While this structure is easier for the
compiler to analyze, it is not able to quickly skip over as much code as the
dynamic technique presented here.

Esterel’s semantics require any implementation to deal with three issues:
the concurrent execution of sequential threads of control within a cycle, the
scheduling constraints among these threads due to communication dependen-
cies, and how (control) state is updated between cycles.

The dynamic technique generates C code that executes concurrently-
running threads by dispatching small groups of instructions that can run
without a context switch. These blocks are dispatched by a scheduler that
uses linked lists of pointers to code that will be executed in the current cycle.
The scheduling constraints are analyzed completely by the compiler before
the program runs and affects both how the Esterel programs are divided into
blocks and the order in which the blocks may execute. Control state is held
between cycles in a collection of variables encoded with small integers.

10.1.1 An Example

We illustrate the operation of the CEC compiler on the small Esterel program
in Figure 10.1. It models a shared resource using three groups of concurrently-
running statements. The first group (await I through emit O) takes a request
from the environment on signal I and passes it to the second group of state-
ments (loop through end loop) on signal R. The second group responds to
requests on R with the signal A in alternate cycles. The third group simply
makes Q a delayed version of R.

This simple example illustrates many challenging aspects of compiling
Esterel. For example, the first thread communicates with and responds to
the second thread in the same cycle, i.e., the presence of R is instantaneously
broadcast to the second thread, which, if the present statement is running,
observes R and immediately emits A in response. In the same cycle, emit-
ting A causes the weak abort statement to terminate and send control to
emit O.

As is often the case, the inter-thread communication in this example
means that it is impossible to execute the statements in the first thread
without interruption: those in the second thread may have to execute part-
way through. Ensuring the code in the two threads executes in the correct,
interleaved order at runtime is the main compilation challenge.

CEC translates Esterel into a variant of the GRC format called GRCCEC.
A GRCCEC representation, like GRC, consists of a selection tree that repre-
sents the state structure of the program and an acyclic concurrent control-flow
graph that represents the behavior of the program in each cycle. We invite
the user to compare it with the definitions of Chapter 8.
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module Example:
input I, S;
output O, Q;

signal R, A in
every S do

await I;
weak abort
sustain R

when immediate A;
emit O

||
loop
pause;
pause;
present R then
emit A

end present
end loop

||
loop
present R then
pause;
emit Q

else
pause

end present
end loop

end every
end signal

end module

Figure 10.1: A simple Esterel module modeling a shared resource. Here,
the first thread waits for I and responds by sustaining R (request) until A
(acknowledge) is returned by the second thread. The third thread makes Q
a delayed version of R.
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Figure 10.2: The (simplified) GRCCEC graph for the program in Figure 10.1.
It consists of a selection tree (left) and a control-flow graph (right).



the dynamic technique 207

The selection tree

The selection tree (left of Figure 10.2) is the simpler half of a GRCCEC
representation. The tree consists of three types of nodes: leaves (circles)
that represent atomic states, e.g., pause statements; exclusive nodes (double
diamonds) that represent choice, i.e., if an exclusive node is active, exactly one
of its subtrees is active; and fork nodes (triangles) that represent concurrency,
i.e., if a fork node is active, all of its subtrees are active.

Although the selection tree is used during the optimization phase of CEC,
for the purposes of code generation it is just a complicated way to enumerate
the variables needed to hold the control state of an Esterel program between
cycles. Specifically, each exclusive node represents an integer-valued variable
that stores which of its children may be active in the next cycle. In Fig-
ure 10.2, these are labeled s1 through s6. We encode these variables in the
obvious way: 0 represents the first child, 1 represents the second, and so forth.

The control-flow graph

The control-flow graph (right of Figure 10.2) is a much richer object and the
main focus of the code-generation procedure. It is a traditional flowchart
consisting of actions (rectangles and pointed rectangles, indicating signal
emission) and decisions (diamonds) augmented with fork (triangles), join
(inverted triangles), and terminate (octagons) nodes.

The control-flow graph is executed once from entry to exit for each cycle of
the Esterel program. The nodes in the graph test and set the state variables
represented by the exclusive nodes in the selection tree and test and set
Boolean variables that represent the presence/absence of signals.

The fork, join, and terminate nodes are responsible for Esterel’s concur-
rency and trap constructs. When control reaches a fork node, it is passed to
all of the node’s successors. Such separate threads of control then wait at the
corresponding join node until all the incoming threads have arrived.

Esterel’s structure induces properly nested forks and joins. Specifically,
each fork has exactly one matching join, control does not pass among threads
before the join, and control always reaches the join of an inner fork before
reaching a join of an outer fork. In Figure 10.2, each join node has two
corresponding forks, and the topmost two forks are owned by the lowest join.

Together, join nodes—the inverted triangles in Figure 10.2—and their
predecessors, terminate nodes—the octagons—implement two aspects of Es-
terel’s semantics: the “wait for all threads to terminate” behavior of concur-
rent statements and the “winner-take-all” behavior of simultaneously-thrown
traps. Each terminate node is labeled with its integer completion code, as
defined in Section 3.3.4. Once every thread in a group started by a fork
has reached the corresponding join, control passes from the join along its
outgoing arc labeled with the highest completion code of all the threads.

Consider the behavior of the program in Figure 10.1 represented by the
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control-flow graph on the right of Figure 10.2. The topmost node tests state
variable s1, which is initially set to 1 to indicate the program has not yet
started. The test of S immediately below the nodes that assign 0 to s1
implements the every S statement by restarting the two threads when S is
present (indicated by the label P on the arc from the test of S). The test of s2
just below S encodes whether the body of the every has started and should
be allowed to proceed.

The fork just below the rightmost s2=1 action resumes the three con-
current statements by sending control to the tests of state variables s3, s4,
and s5. Variable s3 indicates whether the first thread is at the await I (=2),
sustaining R while checking for A (=1), or has terminated (=0). Variable s6
could actually be removed. It is a side effect arising from how our compiler
translates the weak abort statement into two concurrent statements, one of
which tests A. The variable s6 indicates whether the statement that tests A
has terminated, something that can never happen.

When s3 is 1 or s3 is 2 and I is present, these two threads emit R and
test A. If A is present, control passes through the terminate 3 node to the
inner join. Because this is the highest exit level (the other thread, which
emits R, always terminates at level 1), this causes control to pass from the
join along the arc labeled 3 to the node for emit O and to the action s3=0,
which effectively terminates this thread.

The second thread, topped by the test of s4, either checks R and emits A
in response, or simply sets s4 to 0 so it will be checked in the next cycle.

The third thread, which starts at the test of s5, initially emits Q if s5 is 1,
then sets s5 to 1 if R is present.

Although the behavior of the state assignments, tests, and completion
codes is fairly complicated, it is easy to translate into imperative code. Un-
fortunately, concurrency complicates things: because two of the threads can-
not be executed atomically since the presence of signals R and A must be
exchanged during their execution within a cycle. Generating sequential code
that implements this concurrency is the main trick in the CEC dynamic code
generation technique.

Differences between GRC and GRCCEC

Although the semantics of the two GRC variants are identical and their over-
all structure is the same, there are several subtle differences. The most visible
is the replacement of Sync GRC nodes with the combination of terminators
and join nodes in GRCCEC. This implies, for instance, that a GRCCEC flow-
graph cannot be translated into a circuit by replacing each operator with a
small circuit independently of the other nodes. Specifically, a join node must
be translated together with the associated terminators.

Maybe more important, GRCCEC makes more encoding choices than
GRC, explicitly using a logarithmic encoding of state variables. Thus, a
GRCCEC representation can be seen as intermediate between its GRC
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#define sched1a next1 = head1, head1 = &&C1a
#define sched1b next1 = head1, head1 = &&C1b
#define sched2 next2 = head1, head1 = &&C2
#define sched3a next3 = head1, head1 = &&C3a
#define sched3b next3 = head1, head1 = &&C3b
#define sched4 next4 = head2, head2 = &&C4
#define sched5a next5 = head3, head3 = &&C5a
#define sched5b next5 = head3, head3 = &&C5b
#define sched5c next5 = head3, head3 = &&C5c
#define sched6a next6 = head4, head4 = &&C6a
#define sched6b next6 = head4, head4 = &&C6b
#define sched6c next6 = head4, head4 = &&C6c
#define sched7a next7 = head5, head5 = &&C7a
#define sched7b next7 = head5, head5 = &&C7b

int cycle() {
void *next1;
void *next2;
void *next3;
/* other next pointers */

void *head1 = &&END_LEVEL_1;
void *head2 = &&END_LEVEL_2;
/* other level pointers */

if (s1) { s1 = 0; goto N26; }
else {

s1 = 0;
if (S) {

s2 = 1; code0 = -1;
sched7a; sched1b; sched3b;
s3 = 2; sched6b;

} else {
if (s2) {

s2 = 1; code0 = -1; sched7a; sched1a; sched3a;
switch (s3) {
case 0: sched6c; break;
case 1: s3 = 1; code1 = -1; sched6a; sched2; goto N38;
case 2:

if (I) {
s3 = 1; code1 = -1; sched6a; sched5a;

N38: R = 1; code1 &= -(1 << 1);
} else { s3 = 2; sched6b; }
break;

} } else {
N26: s2 = 0; sched7b;

} } }
goto *head1;

C1a: if (s5) Q = 1;
C1b: if (R) s5 = 1;

else s5 = 0;
code0 &= -(1 << 1);
goto *next1;

C2: if (s6) sched4;
else s6 = 0;
goto *next2;

C3a: if (s4) s4 = 0;
else {

if (R) A = 1;
C3b: s4 = 1;

}
code0 &= -(1 << 1);
goto *next3;

END_LEVEL1: goto *head2;

Figure 10.4: The code CEC generates for the first two levels of Figure 10.3:
clusters 0, 1, 2, and 3 (reformatted to fit space).
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counterpart and the result of the state encoding phase in the INRIA control-
flow code generator (cf. Section 9.2 and Figure 9.12).

While not a part of the GRC format itself, the reincarnation scheme used
in the CEC and INRIA control-flow code generators are different. CEC at-
tempts to minimize code duplication. This is why two fork nodes correspond
to a single join node in our small example.

10.1.2 Sequential Code Generation

The dynamic code generation technique relies on the following observations:
while arbitrary clusters of nodes in the control-flow graph cannot be executed
without interruption, many large clusters often can be; these clusters can be
chosen so that each is invoked by at most one of its incoming control arcs;
because of concurrency, a cluster’s successors may have to run after some
intervening clusters have run; and groups of clusters without any mutual
data or control dependency can be invoked in any order (i.e., clusters are
partially ordered).

The key trick comes from this last observation: because the clusters within
a level can be invoked in any order, it suffices to use an inexpensive singly-
linked list to track which clusters must be executed in each level. By contrast,
most discrete-event simulators [2] are forced to use a more costly data struc-
ture such as a priority queue for scheduling.

The overhead in this scheme approaches a constant amount per cluster
executed. By contrast, the overhead of the Saxo-RT compiler is proportional
to the total number of clusters in the program, regardless of how many actu-
ally execute in each cycle, and the overhead in the netlist compilers is even
higher: proportional to the number of statements in the program.

CEC divides a concurrent control-flow graph into clusters of nodes that
can execute atomically and orders these clusters into levels that can be exe-
cuted in any order. The generated code contains a linked list for each level
that stores which clusters need to be executed in the current cycle. The code
for each cluster usually includes code for scheduling a cluster in a later level:
a simple insertion into a singly-linked list.

Figure 10.3 shows the effect of running the clustering algorithm on the
control-flow graph of Figure 10.2. The algorithm identified eight clusters, but
this is no ideal: a better algorithm would have combined clusters 4 and 5,
but it is not surprising that our simple-minded algorithm misses the optimum
since the optimum scheduling problem is NP-complete (see Edwards [27]).

After eight clusters were identified, our levelizing algorithm, which uses a
simple relaxation technique, grouped them into the six levels listed at the top
of Figure 10.3. It observed that clusters 1, 2, and 3 have no interdependencies,
can be executed in any order, and placed them together in the second level.
The other clusters are all interdependent and must be executed in the order
identified by the levelizing algorithm.

The main trick is the semi-dynamic scheduler based on a sequence of
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linked lists. The generated code maintains a linked list of entry points for
each level. In Figure 10.4, the head1 variable points to the head of the linked
list for the first level (the complete code has more such variables) and the
next1 through next3 variables point to the successors of clusters 1 through 3.

The code in Figure 10.4 takes advantage of gcc’s computed goto extension
to C. This makes it possible to take the address of a label, store it in a void
pointer (e.g., head1 = &&C1a) and later branch to it (e.g., goto *head1)
provided this does not cross a function boundary. While not strictly necessary
(in fact, we include a compiler flag that changes the generated code to use
switch statements embedded in loops instead of gotos), using this extension
substantially reduces scheduling overhead since a typical switch statement
requires at least two bounds checks plus either a jump table lookup or a
cascade of conditionals.

Figure 10.5 illustrates the behavior of these linked lists. Figure 10.5(a)
shows the condition at the beginning of every cycle: every level’s list is
empty—the head pointer for each level points to its END LEVEL block. If no
blocks where scheduled, the program would execute the code for
cluster 0 only.

Figure 10.5(b) shows the pointers after executing sched3a, sched1b, and
sched4 (note: this particular combination cannot occur in practice). Invoking
the sched3a macro (see Figure 10.4) inserts cluster 3 into the first level’s
linked list by setting next3 to the old value of head1—END LEVEL1—and
setting head1 to point to C3a. Invoking sched1b is similar: it sets next1
to the new value of head1—C3a—and sets head1 to C1b. Finally, invoking
sched4 inserts cluster 4 into the linked list for the second level by setting
next4 to the old value of head2—END LEVEL2—and setting head2 to C4.
This series of scheduling steps produces the arrangement of pointers shown
in Figure 10.5(b).

Because clusters in the same level may be executed in any order, clusters
in the same level can be scheduled cheaply by inserting them at the beginning
of the linked list. The sched macros do exactly this. Note that the level of
each cluster is hardwired since this information is known at compile time.

A powerful invariant that arises from the structure of the control-flow
graph is the guarantee that each cluster can be scheduled at most once during
any cycle. This makes it unnecessary for the generated code to check that it
never inserts a cluster in a particular level’s list more than once.

As is often the case, both cluster 1 and 3 have multiple entry points. This
is easy to support because the structure of the graph guarantees that at most
one entry point for each cluster will be be scheduled each cycle.

CEC uses the dominator-based code structuring algorithm described in
Edwards [27] to generate structured code for each cluster. Some gotos are
necessary to avoid duplicating code. Figure 10.4 has two: N26 and N38.
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Level 0 /* Cluster 0 */
...
goto *head1;

Level 1 C1a:
C1b:
...
goto *next1;

C2:
...
goto *next2;

C3a:
C3b:
...
goto *next3;

END LEVEL1:
goto *head2;

Level 2 C4:
...
goto *next4;

END LEVEL2:
goto *head3;

(a)

Level 0 /* Cluster 0 */
...
goto *head1;

Level 1 C1a:
C1b:
...
goto *next1;

C2:
...
goto *next2;

C3a:
C3b:
...
goto *next3;

END LEVEL1:
goto *head2;

Level 2 C4:
...
goto *next4;

END LEVEL2:
goto *head3;

(b)

Figure 10.5: Cluster code and the linked list pointers. (a) At the beginning
of a cycle. (b) After executing sched3a, sched1b, and sched4.
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1: add the topmost control-flow graph node to F , the frontier set
2: while F is not empty do
3: randomly select and remove f from F
4: create a new, empty pending set P
5: add f to P
6: set Ci to the empty cluster
7: while P is not empty do
8: randomly select and remove p from P
9: if p is not clustered and all of p’s predecessors are then

10: add p to Ci (i.e., cluster p)
11: if p is not a fork node then
12: add all of p’s control successors to P
13: else
14: add the first of p’s control successors to P
15: add all of p’s successors to F
16: remove p from F
17: if Ci is not empty then
18: i = i + 1 (move to the next cluster)

Figure 10.6: The clustering algorithm. This takes a control-flow graph with
information about control and data predecessors and successors and produces
a set of clusters {Ci}, each of which is a set of nodes that can be executed
without interruption.

10.1.3 The Clustering Algorithm

Figure 10.6 shows our clustering algorithm. It is heuristic and certainly could
be improved, but is correct and produces reasonable results.

One important modification is made to the control-flow graph before our
clustering algorithm runs: all control arcs leading to join nodes are removed
and replaced with data dependency arcs, and a control arc is added from
each fork to its corresponding join. This guarantees that no node ever has
more than one active incoming control arc (before this change, each join had
one active incoming arc for every thread it was synchronizing). Figure 10.3
partially reflects this restructuring: the additional arcs off the forks have
been omitted to simplify an already complex diagram. This transformation
also simplifies the clustering algorithm, which would otherwise have to handle
joins specially.

The algorithm manipulates two sets of CFG nodes. The frontier set F
holds the set of nodes that might start a new cluster, i.e., those nodes with
at least one clustered predecessor. F is initialized in line 1 with the first node
that can run—the entry node for the control-flow graph—and is updated in
line 15 when the node p is clustered. The pending set P , used by the inner
loop in lines 7–16, contains nodes that could be added to the existing cluster.
P is initialized in line 5 and updated in lines 12–14.

The algorithm consists of two nested loops. The outermost (lines 2–18)
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selects a node f at random from the frontier F (line 3) and tries to start a
cluster around it by adding it to the pending set P (line 5). The innermost
(lines 7–16) selects a node p at random from the pending set P (line 8) and
tries to add it to the current cluster Ci.

The test of p’s predecessors in line 9 is key. It ensures that when a node p is
added to the current cluster, all its predecessors have already been clustered.
This ensures that in the final program, all of p’s predecessors will be executed
before p. If this test succeeds, p is added to the cluster under construction
in line 10.

All of p’s control successors are added to the pending set in line 12 if
p is not a fork node, and only the first if p is a fork (line 14). This test
partially breaks clusters at fork nodes, ensuring that all the nodes within
a cluster are connected with sequential control flow, i.e., they do not run
concurrently. Always choosing the first successor under a fork is arbitrary
and may not be the best. In general, the optimum choice of which thread to
execute depends on the entire structure of the threads. But even the simple-
minded rule of always executing the first thread under a fork, as opposed to
simply scheduling it, greatly reduces the number of clusters and significantly
improves performance.

10.2 The Program Dependence Graph Approach

The second code generation technique we describe from the Columbia Esterel
Compiler translates a GRCCEC representation into the well-known program
dependence graph (PDG) representation [31], then generates efficient code
for it. While some PDG-to-sequential-code algorithms already existed before
CEC, the novelty of our algorithm is that it can translate all legal PDGs,
not just those that could be translated into sequential code without adding
additional predicates. This technique was first published in 2004 [73].

CEC first performs a syntax-directed translation of an Esterel program
into the GRCCEC representation. It then converts this into a PDG using
a slight modification of the algorithm due to Cytron et al. [23] to handle
Esterel’s concurrent constructs.

The main advance here is an algorithm that restructures a program de-
pendence graph with arbitrary acyclic data dependencies into one that has a
direct translation into sequential code. Unlike a PDG generated from purely
sequential code, it is not usually possible to translate the PDG produced from
Esterel directly into sequential code because communication patterns in the
Esterel program may force concurrently-running threads to be interleaved.
This can be solved by either duplicating code, a potentially costly operation
that may produce an exponential increase in code size, or by inserting addi-
tional guard variables and predicates. CEC takes the second approach, using
heuristics to choose where to cut the PDG and introduce predicates, and
produce a semantically equivalent PDG that does have a simple sequential
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representation. CEC uses a modified version of Simons and Ferrante’s algo-
rithm [67] to produce a sequential control-flow graph from this restructured
PDG and finally generate sequential C code from it.

Ferrante and Mace [30] were the first to propose an algorithm for gener-
ating sequential code from an acyclic PDG, but their technique only works
when no node duplication (or equivalently, the addition of predicates) is nec-
essary. Later, Simons and Ferrante [67] presented an efficient algorithm for
generating sequential code from an acyclic PDG. Their major contribution
is a technique for computing “external edge” information for each node and
using this during the synthesis procedure. The input to their algorithm is
limited to a graph with only control dependencies; they assume data depen-
dencies have somehow been incorporated into the control dependencies.

Building on Simons and Ferrante’s work, Steensgaard [68] removed the
requirement that the control dependencies in the PDG be acyclic, thereby
allowing loops in the generated code (earlier work assumed that loops had
somehow been removed), but still assumed that the generated code did not
require either node duplication or the insertion of additional predicates. CEC
does not use Steensgaard’s cyclic extensions because they are unnecessary for
Esterel.

This technique extends Simons and Ferrante’s in two ways. First, it uses a
cutting algorithm that restructures the PDG and inserts additional predicate
nodes before it is passed to Simons and Ferrante’s basic algorithm, making
it work for all valid acyclic PDGs. Second, it considers data dependencies to
generate correct code for all valid PDGs.

The algorithm works in three phases (see Figure 10.8). First, it compute
a schedule—a total order of all the nodes in the PDG (Section 10.2.2). This
procedure is exact in the sense that it always produces a correct result, but
heuristic in the sense that it may not produce an optimal result. Second, this
schedule is used to guide a procedure for restructuring the PDG that slices
away parts of the PDG, moves them elsewhere, and inserts assignments and
tests of guard variables to preserve the semantics of the PDG (Section 10.2.3).
Finally, CEC uses a slightly enhanced version of the sequentializing algorithm
due to Simons and Ferrante to produce a control-flow graph (Section 10.2.4).
Unlike Simons and Ferrante’s algorithm, the variant used here always com-
pletes because of the restructuring phase. The experimental results presented
in Section 10.3 show this technique can produce code that runs as much as
thirty times faster than the (reference) circuit code generated by the INRIA
compiler.

10.2.1 Program Dependence Graphs

This code generator models the Esterel program using a variant of Ferrante,
Ottenstein and Warren’s [31] program dependence graph. The PDG for a
program is a directed graph whose nodes represent statements and whose
arcs represent the partial ordering among statements that must be followed
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Figure 10.7: A program dependence graph requiring interleaving. Diamonds
are predicate nodes, triangles are forks, and rectangles are statements. Solid
lines are control arcs; dashed lines are data.

to preserve the program’s semantics. In some sense, the PDG removes the
maximum number of dependencies among statements without changing the
program’s meaning.

A PDG is a rooted, directed acyclic graph G = (S, P, F, r, c, D). S, P ,
and F are disjoint sets of statement, predicate, and fork nodes. Together,
these form the set of all vertices in the graph, V = S ∪ P ∪ F . r ∈ V is the
distinguished root node. c : V → V ∗ is a function that returns the vector
of control successors for each node (i.e., they are ordered). Each vertex may
have a different number of successors. D ⊂ V × V is a set of data edges. If
c(v1) = (v2, v3, v4), then node v1 can pass control to v2, v3, and v4. The set
of control edges can be defined as C = {(m, n) : c(m) = (. . . , n, . . . )}, i.e.,
(m, n) is a control edge if n is some element of the vector c(m). If a data
edge (m, n) ∈ D, then m can pass data to node n.

The semantics of the graph rely mostly on the vertex types. A statement
node s ∈ S is the simplest: it represents a computation with a side-effect (e.g.,
assigning a value to a variable) and has no outgoing control arcs. A predicate
node p ∈ P also represents a computation but has outgoing control arcs.
When executed, a predicate arc passes control to exactly one of its control
successors depending on the outcome of the computation it represents. A
fork node f ∈ F does not represent computation; instead it merely passes
control to all of its control successors. We call them fork nodes to emphasize
that they represent concurrency; other authors call them “region nodes,”
although they mean the same thing.

In addition to being rooted and acyclic, the structure of the directed graph
(V, C) satisfies two important constraints.

The predicate least common ancestor rule (PLCA) requires that for any
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node n ∈ V with two different control paths to it from the root, the least
common ancestor (LCA) of any pair of distinct predecessors of n is a predicate
node. PLCA ensures that there is at most one active path to any node. If
the LCA node was a fork, control could conceivably follow two paths to n,
implying multiple executions of the same node, something we explicitly wish
to prohibit.

The no post-dominance rule: if n is a descendant of a node m then there
is some path from m to some statement node that does not include n. This
is because we insist that the PDG has eliminated unnecessary control depen-
dencies among nodes. Otherwise, m and n would have been placed under a
common fork.

10.2.2 Scheduling

Building a sequential control-flow graph from a program dependence graph
requires ordering the concurrently-running nodes in the PDG. In particular,
the children of each fork node are semantically concurrent but must be ex-
ecuted in some sequential order. The main challenge is dealing with cases
where data dependencies among children of a fork force their execution to be
interleaved.

Figure 10.7 shows a PDG that illustrates the challenge. In this graph,
data dependencies require n3 to be executed after n2 and n7 to be executed
after n4. Thus, the two subtrees under node n0 cannot be executed one
after the other; they must be interleaved. The generated code must ensure
nodes n2, n3, n4, and n7 execute in that order. This example is fairly straight-
forward, but such interleaving can become very complicated in large graphs
with lots of data dependencies and reconverging control-flow such as that at
node n10.

Duplicating certain nodes in the PDG of Figure 10.7 could produce a
semantically equivalent graph with no interleaving but it also could cause an
exponential increase in graph size. Instead, we restructure the graph and add
predicates that test guard variables. Unlike node duplication, this introduces
extra runtime overhead, but it can produce much more compact code.

The CEC approach inserts guard variable assignments and tests based on
cuts implied by a topological ordering of the nodes in a PDG. A cut represents
a switch from an incompletely-scheduled child of a fork to another child of
the same fork. It divides the nodes under a branch of a fork into two or more
subgraphs.

To minimize the runtime overhead introduced by this technique, CEC
tries to add few guard variables by making as few cuts as possible. Ferrante,
Mace, and Simons [30] showed this minimum cut problem is NP-complete,
so CEC attempts to solve it cheaply with heuristics.

CEC first computes a schedule for the PDG then follows this schedule
to find cuts where interleavings occur. It uses a heuristic to choose a good
schedule, i.e., one implying few cuts, that tries to choose a good order in which
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procedure Main
Clear the visited set
PriorityDFS(root node of G)
Clear the schedule and visited set
ScheduleDFS(root node of G)
Restructure()
Fuse guard variables
Generate sequential code from G′

Figure 10.8: The Main procedure

to visit each node’s successors. CEC identifies the cuts while restructuring
the graph.

Ordering node successors

To improve the quality of the generated cuts, CEC uses the heuristic algo-
rithm in Figure 10.9 to influence the scheduling algorithm. It computes an
order for successors of each node that the DFS-based scheduling procedure
in Figure 10.10 uses to visit the successors.

CEC assigns each successor a priority vector of three integers (p1, p2, p3)
computed using the procedure described below, and later visit the successors
in descending priority order while constructing the schedule. Priority vectors
are totally ordered: (p1, p2, p3) > (q1, q2, q3) if p1 > q1, or p1 = q1 and
p2 > q2, or if p1 = q1, p2 = q2, and p3 > q3. For each node n, the A array
holds the set of nodes at or below n that have any incoming or outgoing
data arcs.

The first priority number of si (the ith subgraph under node n) counts the
number of incoming data dependencies. It is the number of incoming data
arcs minus the number of outgoing data arcs to/from any other subgraphs
under node n.

The second priority number counts the number of elements that “pass
through” the subgraph si. Specifically, it decreases by one for each incoming
data arcs from a subgraph sj to a node in si with a node m that is a descen-
dant of si that has an outgoing data arc to another subgraph sk (j 
= i and
k 
= i, but k may equal j).

The third priority counts incoming and outgoing data arcs connected to
any nodes in sibling subgraphs. It is the total number of incoming data arcs
minus the number of outgoing data arcs.

Finally, a node without any data arc entering or leaving its descendants
is assigned a minimum first priority number.

Under these definitions, the priority of the left branch under n0 in Fig-
ure 10.7 is (0,−1, 0), and that the right branch is (0, 0, 0). Arcs from n2 to n3
and from n4 to n7 both affect the first priority number, but their effects cancel
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procedure PriorityDFS(n)
if n has not been visited then

add n to the visited set
for each control successor s of n do

PriorityDFS(s)
A[n] = A[n] ∪A[s]

for each control successor s of n do
ComputeSuccPriority(n, s)

if n has any incoming or outgoing data arcs then
add n to A[n]

procedure ComputeSuccPriority(n, s)
(a, b, c) = (0, 0, 0) {initialize priorities}
if s has neither incoming nor outgoing data arcs then

a = minimum priority number
return

for each j ∈ A[s] do
x = 0, y = 0
for each data predecessor p of j do

if there is a path from n � p then
increase a by 1
if there is not a path s � p then

increase x by 1
increase c by 1

for each data successor i of j do
if there is a path n � i then

decrease a by 1
decrease c by 1

if x 
= 0 then
for each k ∈ A[j] do

for each data successor m of k do
if n � m but not s � m then

increase y by 1
decrease b by x · y

set the priority vector of s under n to (a, b, c)

Figure 10.9: Successor Priority Assignment
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procedure ScheduleDFS(n)
if n has not been visited then

add n to the visited set
for each ctrl. succ. i of n in descending priority do

ScheduleDFS(i)
for each data successor i of n do

ScheduleDFS(i)
insert n at the beginning of the schedule

Figure 10.10: The Scheduling Procedure

1: procedure Restructure
2: Clear the currently-active branch of each fork
3: Clear master-copy(n) and latest-copy(n) for each node n
4: for each n in scheduled order starting at the root do
5: D = DuplicationSet(n)
6: for each node d in D do
7: DuplicateNode(d)
8: for each node d in D do
9: ConnectPredecessors(d)

Figure 10.11: The Restructure procedure

out. The path n2→ n3→ n4→ n7 affects the second priority number of the
left branch. Under our definitions, the right branch has highest priority and
will be visited first during the depth-first search used for scheduling.

Similarly, node n9 will be visited before n7 because the first priority
number of n7 is smaller due to the data arc n10 → n11. Finally, n5 will be
visited after n4 because n5 has minimum priority.

Constructing the schedule

The scheduling algorithm (Figure 10.10) uses a depth-first search to topo-
logically sort the nodes in the PDG. The control successors of each node are
visited in order from highest to lowest priority (assigned by Figure 10.9). Ties
are broken arbitrarily, and data successors are visited in an arbitrary order.
The label on each node in Figure 10.7 indicates its position in the schedule:
n1 is first, followed by n2, n3.

10.2.3 Restructuring the PDG

The scheduling algorithm presented in the previous section totally orders
all the nodes in the PDG. Data dependencies often force the execution of
subgraphs under fork nodes to be interleaved (control dependencies can-
not directly induce interleaving because of the PLCA rule). The algorithm
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1: function DuplicationSet(n)
2: D = {n}
3: Clear the visited set
4: DuplicationVisit(n)
5: return D

6: function DuplicationVisit(n)
7: if n has not been visited then
8: Mark n as visited
9: if latest-copy(n) is undefined then

10: Include n in D
11: for each predecessor p of n do
12: if p is a fork and p→ n is not currently active then
13: Include n in D
14: if DuplicationVisit(p) then
15: Include n in D
16: return true if n ∈ D

Figure 10.12: The DuplicationSet function. A node is in the duplication set
if it is along a path from a fork node that leads to n but whose active branch
does not.

described in this section restructures the PDG by inserting guard variables
(specifically, assignments to and tests of guard variables) according to the
schedule to produce a PDG where the subgraphs under fork nodes are never
interleaved.

The restructuring algorithm does two things: it identifies when a subgraph
must be cut away from an existing subgraph according to the schedule and
reattaches the cut subgraphs to nodes that test guard variables to ensure the
behavior of the PDG is preserved.

The restructure procedure

The Restructure procedure (Figure 10.11) steps through the nodes in sched-
uled order, adding a minimal number of nodes to the graph under construc-
tion that ensures each node in the schedule can be executed without inter-
leaving the execution of subgraphs under any fork. It does this in three
phases for each node. First, it calls DuplicationSet (Figure 10.12, called from
line 5 in Figure 10.11) to establish which nodes must be duplicated in order
to reconstruct the control flow to the node n. The boundary between the
set D and the existing graph can be thought of as a cut. Second, it calls
DuplicateNode (Figure 10.13, called from line 7 of Figure 10.11) on each of
these nodes to create new predicate nodes that reconstruct control using a
previously-cached result of the predicate test. Finally, it calls ConnectPre-
decessors (Figure 10.14, called from line 9 of Figure 10.11) to connect the
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1: procedure DuplicateNode(n)
2: if n is a fork or a statement then
3: Create a new copy n′ of n
4: else {n is a predicate}
5: if master-copy(n) is undefined then {making first copy}
6: Create a new copy n′ of n
7: master-copy(n) = n′

8: else {making second or later copy}
9: Create a new node n′ that tests vn

10: if master-copy(n) = latest-copy(n) then {second copy}
11: for i = 0 to (the number of successors of n) − 1 do
12: Create a new statement node a′ assigning vn = i
13: Attach a′ to the ith successor of master-copy(n)
14: for each successor f ′ of master-copy(n) do
15: Find a′, the assignment to vn under f ′

16: Add a data-dependence arc from a′ to n′

17: Attach a new fork node under each successor of n′

18: for each successor s of n do
19: if s is not in D then
20: Set latest-copy(s) to undefined
21: latest-copy(n) = n′

Figure 10.13: The DuplicateNode procedure. This makes either an exact
copy of a node or tests cached control-flow information to create a node
matching n.

1: procedure ConnectPredecessors(n)
2: Let n′ = latest-copy(n)
3: for each predecessor p of n do
4: Let p′ = latest-copy(p)
5: if p is a fork then
6: Add a new successor p′ → n′

7: Mark p→ n as the active branch of p o
8: else {p is a predicate}
9: for each arc of the form p→ n do

10: Let f ′ be the corresponding fork under p′

11: Add a successor f ′ → n′

Figure 10.14: The ConnectPredecessors procedure. This connects every pre-
decessor of n appropriately, possibly using nodes that were just duplicated.
As a side-effect, it remembers the active branch of each fork.
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predecessors of each of the nodes in the duplication set, which incidentally
includes n, the node being synthesized.

The main loop in Restructure (lines 4–9) maintains two invariants. First,
each fork maintains its currently-active branch, i.e., the successor in whose
subgraph a node was most recently added. This information, tested in line 12
of Figure 10.12 and modified in line 7 of Figure 10.14, is used to determine
whether a node can be added to an existing part of the new graph or whether
the paths leading to it must be partially reconstructed to avoid introducing
interleaving.

The second invariant is that the latest-copy array holds, for each node
that appears earlier in the schedule, the most recent copy of each node. The
node n can use these latest-copy nodes if they do not come from forks whose
active branch does not lead to n.

The DuplicationSet function

The DuplicationSet function (Figure 10.12) determines the subgraph of nodes
whose control flow must be reconstructed to execute the node n. It is a
depth-first search that starts at the node n and works backward to the root.
Since the PDG is rooted, all nodes in the PDG have a path to the root node
and therefore DuplicationVisit traverses all nodes that are along any path
from the root to n.

A node n becomes part of the duplication set D under three circum-
stances. The first case, tested in line 9, occurs when the latest copy of a node
is undefined, which can happen when a node is duplicated but its successor is
not. lines 18–20 (Figure 10.13) clear the latest-copy array for the successors
of a node.

The second case, tested in line 12, is when the immediate predecessor p of
n is a fork but n is not the currently active branch of the fork. This indicates
that to execute n would require interleaving because the PLCA rule tells us
that there cannot be a path to n from p through the currently-active branch
under p.

The final case, line 14, occurs when any of n’s predecessors are also in the
duplication set.

As a result, every node in the duplication set D is along some path that
leads from a fork node f to n that goes through a non-active branch of f ,
or leads from a node that has not been copied “recently.” These are exactly
the nodes that must be duplicated to reconstruct all paths to n.

The DuplicateNode procedure

Once the DuplicationSet function has determined which nodes must be du-
plicated to reconstruct the control paths to node n, the DuplicateNode pro-
cedure (Figure 10.13) actually makes the copies. Duplicating statement or
fork nodes is trivial (line 3): the node is copied directly and the latest-copy
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array is updated (line 21) to reflect the fact that this new copy is the most re-
cent version of n, something that is later used in ConnectPredecessors. Note
that statement nodes are only ever duplicated once, when they appear in the
schedule. Fork nodes may be duplicated multiple times.

The main complexity in DuplicateNode comes when n is a predicate
(lines 5–17). The first time a predicate is duplicated (i.e., the first time
it appears in the schedule), the master-copy array entry for it is undefined
(it was cleared at the beginning of Restructure—line 3 of Figure 10.11), the
node is copied directly, and this copy is recorded in the master-copy array
(lines 6–7).

After the first time a predicate is duplicated, its duplicate is actually
a predicate node that tests vn, a variable that stores the decision made at
the predicate n (line 9). There is just one special case: the second time a
predicate is copied (and only the second time—CEC does not want to add
these assignments more than once), assignment nodes are added under the
first copy (i.e., the master-copy of n in the new graph) that save the result
of the predicate in the vn variable. This is done in lines 11–13.

An invariant of the DuplicateNode procedure is that every time a predi-
cate node is duplicated, the duplicate version of it has a new fork node placed
under each of its successors (line 17). While these are often redundant and
can be removed, they are useful as an anchor point for the nodes that cache
the results of the predicate and in the uncommon (but not impossible) case
that the successor of a predicate is part of the duplicate set but that the
predicate is not.

The ConnectPredecessors procedure

Once DuplicateNode runs, all nodes needed to run n are in place but uncon-
nected. The ConnectPredecessors procedure (Figure 10.14) connects these
duplicated nodes to the appropriate nodes.

For each node n, ConnectPredecessors adds arcs from its predecessors, i.e.,
the most recent copies of each. The only minor trick occurs when the prede-
cessor is a predicate (lines 9–11). First, DuplicateNode guarantees (line 17
of Figure 10.13) that every successor of a predicate is a fork node, so Con-
nectPredecessors actually connects the node to this fork, not the predicate
itself. Second, it can occur that a single node can have a particular predicate
node appear two or more times among its predecessors. The foreach loop in
lines 9–11 connects all of these explicitly.

Examples

Running this procedure on Figure 10.7 produces the graph in Figure 10.15.
The procedure copies nodes n1–n5. At this point, n0 → n3 is the active
branch under n0, which is not on the path to n6, so a cut is necessary.
DuplicationSet returns {n1, n6}, so n1 will be duplicated. This causes
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Figure 10.15: The restructured PDG from Figure 10.7. This example only
adds the single guard variable v1. Some unary fork nodes generated by
Restructure have been omitted for clarity.

DuplicateNode to create the two assignments to v1 under n1 and the test
of v1. ConnectPredecessors then connects the new test of v1 to n0 and n6 to
the test of v1. Finally, the algorithm just copies nodes n7–n13 into the new
graph.

Figure 10.16 illustrates the operation of the procedure on a more com-
plicated example. The PDG in (a) has some bizarre control dependencies
that force the nodes to be executed in the order shown. The dizzying num-
ber of forced interleavings generates a fairly complex final result, shown in
Figure 10.16e.

The algorithm behaves simply for nodes n0–n8. The state after n8 has
been added is shown in (b).

Adding n9, however, is challenging. DuplicationSet returns {n9, n6, n5}
because n8 is the active node under n4, so DuplicateNode copies n9, makes
a second copy of n6 (labeled n6′), creates a new test of v5, and adds the
assignments to v5 under n5 (the fork under the “0” branch from n5 has been
omitted for clarity). Adding n9’s predecessors is easy: it is just the new
copy of n6, but adding n6’s predecessors is more complicated. In the original
graph, n6 is connected to n3 and n5, but only n5 was duplicated, so n6′ is
connected to v5 and to a fork off the copy of n3.

Figure 10.16d adds n10, which is simple because although n3 was the
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Figure 10.16: (a) A complex example. (b) After adding nodes n0–n8. (c)
After adding n9, (d) n10, and (e) n11.
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active branch under n1, n10 only has it as a predecessor.
Finally, (e) shows the addition of n11, completing the graph. Duplica-

tionSet returns {n11, n6, n3}, so n3 is duplicated and assignment nodes to
v3 are added. Again, n6 is duplicated to become n6′′, but this time n3 was
duplicated.

Fusing guard variables

An unfortunate choice of schedule clearly illustrates the need for guard vari-
able fusion. Consider the correct but non-optimal schedule n0, n1, n2, n6,
n9, n3, n4, n5, n7, n8, n10, n11, n12, n13 for the PDG in Figure 10.7. Fig-
ure 10.17 depicts the effect of so many cuts. The main waste is the cascade
of conditionals along the right side of the graph (predicates on v1, v6, and
v9). For efficiency, we replace such predicate cascades with single multi-way
conditionals.

Figure 10.18 illustrates the effect of fusing guard variables. The predicate
cascade has been replaced by a single multi-way branch that tests the fused
guard variable v169 (formed by fusing predicates v1, v6, and v9). Similarly,
group assignments to these variables are fused, resulting in three single as-
signments to v169 instead of three group concurrent assignments to v1, v6,
and v9.

10.2.4 Generating Sequential Code

After the restructuring procedure described above, the structure of the PDG
allows the subgraphs under each fork node to be executed in a particular
order. This order is non-obvious when there is reconvergence in the graph,
and appears to be costly to compute. Fortunately, Simons and Ferrante [67]
developed the external edge condition (EEC) as an efficient way to compute
this ordering. Basically, the nodes in eec(n) are executed whenever any node
in the subgraph under n is executed.

In what follows, X < Y denotes G(X) must be scheduled before G(Y );
X > Y denotes G(X) must be scheduled after G(Y ); Y ∼ X denotes any
order is acceptable; Y 
= X denotes no order is acceptable. Here, G(n)
represents n and all its control descendants.

CEC reconstructs the graph by ordering fork successors. Given the EEC
information, it uses the rules in Steensgaard’s decision table [68] to order
pairs of fork successors. When the table says any order is acceptable, we
order the successors based on data dependencies. However, if, say, the EEC
table says G(X) must be scheduled before G(Y ), yet the data dependencies
indicates the opposite order, the data dependencies win and two additional
nodes are inserted, one that sets a guard variable and the other that tests it.
Figure 10.19 illustrates the procedure.

In Figure 10.15, data dependency forces n11 > n10, but the external
edge condition could require n10 > n11 if there were a control edge from a
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Figure 10.17: The reconstructed PDG from Figure 10.7 induced by a different
schedule.

descendant of n11 to a descendant of n10 (i.e., if there were more nodes under
n10). In this case, n10 
= n11, so our algorithm will cut the graph at n11 and
add a guard there.

This produces a sequential control-flow graph for the concurrent program.
CEC generates structured C code from it using the algorithm described in
Edwards [27].

10.3 Benchmarks

This section presents some experimental results for the two compilation
schemes presented in this chapter.

The dynamic approach

Table 10.1 shows the experimental speed results for the dynamic technique
implemented in the CEC compiler. Table 10.2 provides some statistics on
the Esterel examples.

The results are mixed: Potop-Butucaru’s grc2c beats CEC on four of
the five examples, but CEC is substantially faster on the largest example,
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Example CEC1 CEC2 grc2c Saxo (fast) EC V3 V5

1-tcint 0.28 0.34 0.14 0.34 0.25 0.18 0.25 1.3
2-wristwatch 0.78 0.93 0.61 0.89 0.87 0.86 0.62 2.1
3-atds100 0.11 0.13 0.03 0.11 0.08 0.10 - 66.0
4-mca200 1.66 2.75 1.47 2.62 2.35 1.79 - 29.0
5-chorus 0.94 1.52 1.54 1.42 1.29 1.76 - 51.0

Table 10.1: Experimental results for the dynamic approach. Time, in seconds,
to run 1 000 000 iterations of the generated code on a 1.7 GHz Pentium 4
(shorter is better, best values are emphasized). The columns CEC1 and
CEC2 respectively correspond to the CEC compiler generating computed
gotos or switch statements. The (fast) column is for the fast version of the
Saxo-RT compiler. EC is the Synopsys compiler of Edwards. V3 represents
FSM code generated by the INRIA compiler, which can only be generated
for two of the examples. The V5 column lists times for code generated by
the circuit code generated by the INRIA compiler.

Example Size Clusters Levels C/L Threads

1-tcint 357 101 19 5.3 85
2-wristwatch 360 87 13 6.7 87
3-atds 622 156 16 9.8 138
4-mca200 5354 148 15 9.9 135
5-chorus 3893 662 22 30.1 563

Table 10.2: Statistics for the examples. Size is the number of Esterel source
lines after run statement expansion and pretty-printing. Clusters is the num-
ber of clusters found by the algorithm in Figure 10.6. Levels is the number of
levels the clusters were compressed into. C/L is the ratio of clusters to levels.
Threads is the number of concurrent threads as reported by the Synopsys
compiler [27].
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Figure 10.18: The PDG of Figure 10.17 after guard variable fusion

Chorus. Furthermore, CEC is faster than the Saxo-RT compiler on the three
largest examples (5-chorus, 4-mca200, and 2-wristwatch). This is expected:
the CEC technique should become faster than the Saxo-RT compiler on larger
examples since our (similar) technique has less overhead for unexecuted parts
of the program.

The number of clusters and levels in Table 10.2 suggests why the CEC
technique is better on some programs and worse on others. A key trick is
the use of one linked list per level for scheduling. The more clusters there
are per level (measured, e.g., by the C/L average in Table 10.2), the more
the dynamic technique differentiates itself from the Saxo-RT compiler. The
results bear this out: 5-chorus, which has the largest number of clusters per
level on average, exhibits the largest improvement over the other techniques.

The circuit code generated by the INRIA compiler for these examples
produces far worse run-times. The results for 2-wristwatch show the least
variance because it calls the most user-defined functions, something none of
these compilers attempt to optimize.

These timing results were obtained by applying a random sequence of
inputs to the code generated by each compiler and measuring the time it took
to execute 1 000 000 reactions. Note that the ratio of these measured times
differ noticeably from those reported in Section 9.4. This can be attributed
to a variety of factors including a different processor (Potop-Butucaru used a
P3, these results are on a P4), different C compilers and optimization flags,
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procedure OrderSuccessors(G)
for each node n do

if n is a fork node then
original-successors = control successors of n
clear the control successors of n
for each X in original-successors do

for each control successor Y of n do
if X ∼ Y then

if ∃(m, n) ∈ D, m ∈ G(X), n ∈ G(Y ) then
insert X before Y in n’s successors

else if Y < X then
if ∃(m, n) ∈ D, m ∈ G(Y ), n ∈ G(X) then

Cut Y
insert X before Y in n’s successors

else if Y > X then
if ∃(m, n) ∈ D, m ∈ G(X), n ∈ G(Y ) then

Cut X
else

insert X before Y in n’s successors
else if Y 
= X then

if ∃(m, n) ∈ D, m ∈ G(X), n ∈ G(Y ) then
Cut Y
insert X before Y in n’s successors

else
Cut X

if X was not inserted then
append X to the end of n’s successors

Figure 10.19: The successor ordering procedure
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Example Lines Average cycle time (seconds)

V5 CEC1 CEC3

1-tcint 687 11 2.8 2.4
3-atds100 948 45 7.7 1.3
multi6 113 10 2.3 1.4
multi8 62 1.1 1.7 0.63
greycounter 82 6.0 3.9 0.94
abcd 111 5.2 1.5 1.7

Table 10.3: Experimental Results. CEC3 is the PDG-based approach. CEC1
is the dynamic technique implemented in CEC.

and perhaps different stimulus.

The PDG-based approach

Here are some experiments that compare the speed of the code generated by
this technique to that of the other CEC compilation line, and to the reference
circuit code generated by the INRIA compiler.

To obtain the average cycle times shown in Table 10.1, we ran the gener-
ated C code from all three compilers (compiled with gcc -O3) for 10 million
cycles on a 2.5 GHz Intel Pentium 4 running Linux. Most examples are fairly
small, but 1-tcint and 3-atds100 (both bus controllers) are reasonably large
and, we believe, illustrative of our technique.
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Language Extensions

The full Esterel V5 language includes the Kernel Esterel primitives and de-
rived statements whose semantics are given by structural expansion into the
primitives. The full language also includes a number of constructs that ex-
tend the primitives in non-elementary ways. We describe these here along
with semantic and code generation hints.

A.1 Signal Expressions

In Kernel Esterel, presence or preemption tests only involve single signals. In
the full language, such tests may involve arbitrarily complex signal expres-
sions constructed using the operators and, or, not, and pre, parenthesis (),
and the predefined signal tick, which is always present. Some examples:

• Await the next instant where A and B are both present

await [A and B]

• If C is present and none of A, B, or C were present in the previous instant,
then start p, else start q

present [C and not pre(A or B or C)] then p else q end

• Abort the execution of p the instant following the one where A is first
present

abort p when pre(A)

• Await the next clock tick. Equivalent to pause.

await tick

235
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A.1.1 Syntactic Aspects and Limitations

Esterel uses the usual precedence rules to limit the number of parentheses
necessary in signal expressions. The not operator binds most tightly, followed
by and and finally or. So the following two expressions are equivalent.

not A and B or C ((not A) and B) or C

The pre operator is not subject to precedence rules; its argument must always
be enclosed in parenthesis.

There are many limitations on the use of pre: only the INRIA compiler
can handle it, and that compiler does not allow nested pre operators, so,
e.g., pre(pre(A)) is not allowed; pre cannot be used on sensors, task return
signals, or traps; and pre(tick) is not allowed.

A signal expression must be enclosed in brackets except for two cases:
when it is the argument of a present statement and when it consists of a
single pre operator.

A.1.2 Combinational Expressions

We start the formal description of signal expressions by considering expres-
sions that only include the and, or, and not operators.

Implementation

The simplest way of giving the formal meaning of combinational expressions is
by translation into digital circuits. The translation of a signal expression test
fits perfectly into the framework defined in Chapter 6. The only difference is
that the Test sub-circuits represent here the complex test expression instead
of a simple signal or data test. We illustrate the translation process with
a simple example that shows how the Test sub-circuit is obtained from the
signal expression through a simple mapping. Consider the statement

present [C and not (A or B or C)] then p else q end

The corresponding Test sub-circuit is pictured in Figure A.1. The test gates
(gray) are driven by the dashed box, which contains the sub-circuit corre-
sponding to the signal expression. The structural correspondence between
Esterel operators and gates is obvious. Note that the Test subcircuit has an
input for each signal it uses.

Things are even simpler for GRC, as test expressions are simply copied
inside the corresponding Test node. The structural translation rules of the
statements present and suspend, given in Section 8.2, are amended by
changing the definition of the signal link sets. In both cases, instead of
adding a single signal input port to the corresponding signal link set, we
need to add one port per signal used in the signal expression and not covered
by a pre.
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IN(B)

GO

T
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IN(A)

IN(C)

AND

OR NOT

Figure A.1: Test sub-circuit for the expression “C and not (A or B or C)”

Semantics by kernel expansion

To remain inside the Esterel semantic framework, we also give meaning to
combinational expressions by translation into Kernel Esterel. While not use-
ful in practice, this transformation illustrates how a digital circuit can be
encoded in Esterel.

The first step is to reduce the translation problem to the case of sim-
ple present statements. We do this by introducing an auxiliary signal, for
example, for an abort statement:

abort p when signal-expr

which becomes

trap T in signal AUX in
abort p when AUX ; exit T

||
loop present signal-expr then emit AUX end ; pause end

end end

At this point, our problem is to encode into Kernel Esterel statements
the instantaneous computation of AUX = signal-expr(S1, . . . , Sk), where Si,
1 ≤ i ≤ k are the signals involved in signal-expr . A brute force encoding
suffices: associate one new signal to each sub-expression of signal-expr that
is not an existing signal. Let Sk+1, . . . , Sn be the new signals, and assume that
Sn corresponds to the global expression signal-expr . Then put in parallel the
computations of all sub-expressions Si, k + 1 ≤ i ≤ n from their immediate
factors:

signal Sk+1,. . .,Sn in
present Sn then emit AUX end

||
the factors, put in parallel

end

where
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• if Si = Sj or Sk, the factor for Si is

present Sj then emit Si end
||
present Sk then emit Si end

• if Si = Sj and Sk, the factor for Si is

present Sj then present Sk then emit Si end end

• if Si = not Sj , the factor for Si is:

present Sj else emit Si end

Consider signal-expr=A and not B. In this case, the statement

present A and not B then emit AUX end

can be replaced with its kernel expansion

signal S1, S2 in
present S2 then emit AUX end

|| % the factor for S 2 = A and S 1
present A then present S1 then emit S2 end end

|| % the factor for S 1 = not B
present B else emit S1 end

end

A.1.3 The pre Operator

pre(S) gives the present/absent status of the signal S in the previous instant.
Note that here, “previous execution instant” refers to the base clock of the
statement in whose scope S is defined, not the global clock. The previous
status pre(S) can be seen as signal with the same scope as S: a local decla-
ration or the entire module. The formal semantics of pre is given by kernel
expansion:

signal S in p end

becomes

trap T in
signal S, preS in

p′ ; exit T
||
loop
present S then
pause ; emit preS
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#

trap

parallel

nonterm:loop

present

nonterm:

Tree(p′)
pause pause

||

Figure A.2: The tagged selection tree generated for the kernel expansion of
pre .

else
pause

end present
end loop

end signal
end trap

where p′ is obtained from p by replacing all occurrences of pre(S) by preS.
Translating the pre operator using this expansion rule results in redun-

dant code. Consider the case of the GRC code whose selection tree is given
in Figure A.2. In the light of the analysis realized in Section 8.4, the asso-
ciated GRC flowgraph can be simplified and C code can be generated (cf.
Section 9.2) where the encoding of the two pause statements is performed
on a single bit of the state encoding. This corresponds to the intuition that
the Boolean status of a signal is preserved from an instant to the next using
a single state element. Similar transformations can be performed at netlist
level, where only one register suffices to preserve the signal status.

Valued signals

The pre operator can also return the previous value of a valued signal: if S is
a valued signal, pre(?S) is the value of S in the previous execution instant.
Again, the formal semantics is given by kernel expansion:

signal S : TYPE in p end

becomes

trap T in
signal S, preS : TYPE in

p′ ; exit T ||
loop
present S then
var v := ?S : TYPE in pause ; emit preS(v) end
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else
pause

end present
end loop

end signal
end trap

where p′ is obtained from p by replacing all occurrences of pre(S) by preS,
and all occurrences of pre(?S) by ?preS.

The value pre(?S) should not be used before the initialization of ?S
(through declaration or first emission). However, current implementations of
Esterel V5 do not check this. The return value of such illegal reads is unspec-
ified. The Esterel V7 compiler of Esterel Studio does check the initialization
and can formally verify that a non-initialized signal value is never read.

Signal expressions and pre

The operator pre can be applied to any combinational expression. To define
the semantics of pre on the simple negation pre(not S), we develop on the
expansion of pre(S), given above. We introduce another signal preNotS with
the same scope as S and preS. Then, we replace the loop defining preS with

loop
present S then pause ; emit preS
else pause ; emit preNotS
end present

end loop

Finally, the definition of p′ also changes: all occurrences of pre(not S) are
replaced by preNotS.

When the argument of pre is a more complex combinational expression,
we start by using De Morgan’s laws to move not operators to the leaves
(signals). For instance, not (B or not C) becomes not B and C. Then,
the following two expansion rules move the pre operators onto the leaves:

pre(expr1 and expr2) = pre(expr1) and pre(expr2)

pre(expr1 or expr2) = pre(expr1) or pre(expr2)

This completes the definition of the semantics of pre.
pre@pre!dangers of

Dangers

The pre operator should be used with caution. First of all, adding a pre adds
not only a register, but also the complex logic controlling it, as the following
example shows. Here, we emit the signal A, and in the next execution instant
we test pre(A).
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emit A ; pause ; present pre(A) then emit O end

While intuition may tell us that O is emitted in the second instant regardless
of the context, this is not true. Indeed, if we suspend the statement for one
instant (with emit S), then the test on pre(A) will not emit O.

signal A,S in
pause ; emit S

||
suspend
emit A ; pause ; present pre(A) then emit O end

when S
end

Maybe more important, if a signal AUX is defined in the scope of p

signal AUX in
loop
present expr then emit AUX ; pause else pause end

end
||

p
end signal

the expressions pre(AUX) and pre(expr) may not be equivalent in p, for
example, if suspend statements separate the declaration of AUX from the
declarations of the signals in expr . In other words, pre over complex expres-
sions cannot be handled with traditional retiming.

A.1.4 Delay Expressions. Preemption Triggers

Delay expressions are the triggers of the preemption statements such as
suspend or abort. A delay expression is a signal expression, possibly prefixed
with one modifier. In this section, we present the syntax and intuitive mean-
ing of delay expressions. Their exact semantics depends on the statement
that uses them; details are in Appendix B.

When the delay expression is a simple signal expression, the preemption
test is performed from the second execution instant on.

await signal-expr

For instance, if signal-expr is true in the start execution instant, the given
statement will discard it.

When the signal expression is prefixed with immediate, the test is also
performed in the first instant.

await immediate signal-expr
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If signal-expr is true in the start execution instant, the statement will in-
stantly terminate.

When the signal expression is prefixed with an integer data expression,
we say that we have a counter (or counted) delay. Counter delays facilitate
the programming of behaviors where preemption occurs after a given number
of occurrences of the same event. The immediate modifier cannot be used
with a counted delay. For example,

await c+3 [A and B]

When this statement is started, the integer expression c+3 is evaluated. If
it not positive, it is taken to be 1. This value is used to initialize a counter
that is decremented on every occurrence of the given event (here, both A and
B present in the same instant) that occurs after the first instant. When the
counter reaches zero, the await terminates.

A.2 Traps and Trap Expressions

Valued traps are like valued signals. Defining the semantics and code gen-
eration for the complex variants of the trap and exit statements requires a
non-trivial expansion.

The simplest form of the trap statement is the primitive form defined
earlier

trap T in p end

This simple form defines an alternate exit point, named T, from statement p.
When

exit T

is executed inside p, the entire trap construct terminates and passes control
to the next instruction in sequence.

The trap declaration statement also allows the definition of a trap han-
dler statement q, executed if the trap is exited, but not when the body p
terminates normally or is preempted.

trap T in p handle T do q end

A kernel expansion of this statement requires a non-trivial rewriting of both
the trap construct and any “exit T” statements in q. We need to introduce
a new trap for cases where the trap body terminates normally (code 0).
Assume that trap name U is available for this trap. In this case, the trap
construct is expanded into

trap U in
trap T in

p ; exit U
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end ;
q

end

A.2.1 Concurrent Traps and Trap Expressions

Nested traps have an implicit precedence. When two traps are exited simul-
taneously, the outermost has higher priority and hides any inner ones. The
full Esterel language also provides so-called concurrent traps to allow two
or more to be visible at once. Such traps are declared using a single trap
statement.

trap T1,. . .,Tn in
p

handle trap-expr1 do q1
...
handle trap-exprk do qk

end

Here, we declared the concurrent traps T1,. . . , Tn. All trap names in a con-
current trap definition must be unique.

Of course, defining concurrent exit points is only useful when we can
define multiple, concurrent exit points (handlers). Esterel allows users to
define handlers that are activated upon Boolean combinations of traps. More
precisely, handler triggers are trap expressions obtained by combining the
trap identifiers Ti, 1 ≤ i ≤ n, with the Boolean connectors and, or, and not.
For instance, to activate handler q1 when both traps T1 and T2 are exited
inside p, we set trap-expr1 to be T1 and T2.

When at least one of the concurrent traps is exited inside the concurrent
trap definition, the body p is preempted, all the trap expressions are evalu-
ated, and control is given to all the branches whose handler is true. These
branches run in parallel. When all activated handlers have terminated, the
trap statement terminates and control is given in sequence.

No restriction is imposed on the number of trap handlers or the complexity
of the trap handler expressions, but certain compilers warn when a given
condition/trap is handled twice.

Semantics by expansion

Unlike normal nested traps, concurrently-defined traps share a single trap
code, so no priority is defined among them. Instead, the expansion adds aux-
iliary signals that indicate which traps were actually raised. In the definition
of the following expansion, we assume that the signal names T1,. . ., Tn, and
the trap name T are not already used inside p.

signal T1,. . .,Tn in
trap T in
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p′

end ;
[
present trap-expr1 then q1 end

||
. . .

||
present trap-exprk then qk end

]
end

The unique trap code is represented here by T, while the trap names are
represented by the new signals. The body p′ is obtained from p by rewriting
every instance of “exit Ti” into

emit Ti ; exit T

A.2.2 Valued Traps

Like exceptions in other programming languages, Esterel allows traps to carry
a data value. More precisely, a type can be specified for every declared trap.
The rules for declaring valued traps are the same as those for declaring valued
signals (i.e., declared traps can be of simple or combined type, initialized
or not). Just like valued signal emission statements, the associated exit
statements specify both the trap that is exited and a data value or expression.
The value of a trap T can be used only in the handlers of the trap statement
that declared T.

For example,

trap T1 : integer, T2 := 3.0 : combine double with +,
T3 (integer), T4 in
await I1 do
exit T1(10)

||
present I2 then exit T2(7.0) end

end
||
await I3 do exit T2(10.0) end

||
await I4 do exit T3(10) end

||
await I5 do exit T4 end

handle T1 and T3 do emit O1(??T1+??T3)
handle T2 do emit O2(2.0*??T2)
handle T4 and not T2 do emit O2(??T2)
handle not T1 do emit O1(??T1)
end
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Three of the four traps declared here are valued. The value of trap T
is used in handlers as “??T.” As for valued signals, one must take care not
to read uninitialized traps that have not been exited since no checks are
performed at compile time. For instance, the handler for “not T1” emits
an unspecified (random) value.∗ In the handler for “T4 and not T2,” the
trap T2 is not exited, but its value is initialized with value 3.0. Finally, note
that the type of T2 is combined. Like for valued signals, this means that
the values produced by concurrent exit statements are combined in a single
trap value, using the provided combine operator “+.” When a trap T is not
combined, the user must take care not to allow the concurrent execution of
several “exit T(. . .)” statements.

Semantics by expansion

The expansion of the general case valued trap declaration follows from the
expansion of the concurrent trap definition. The differences are

• the trap types are copied to the corresponding signals,

• the body p is rewritten into p′ by replacing instances of
“exit Ti(data-expr)” with

emit Ti(data-expr) ;
exit T ;

• the handler qi is rewritten into q′
i by replacing instances of “??Ti” with

“?Ti.”

Again, this assumes that no name conflict appears due to expansion. Other-
wise, some renaming must be performed.

A.3 The finalize Statement

The finalize statement was introduced in the experimental Esterel version
6 compiler, and is now part of the proposed Esterel version 7 standard. The
finalize statement facilitates the writing of “cleanup code” that needs to
be executed when a statement is terminated or preempted. Typical cleanup
actions free allocated resources or inform other statements that the finalized
statement has terminated. We have included the presentation of finalize
in this book because it simplifies the definition of tasks, given in the next
section. We did not include it in the reference manual (Appendix B).

∗As for valued signals, the Esterel V7 compiler checks initialization and makes it pos-
sible to formally verify that a non-initialized trap value is never read.
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Syntax and intuitive semantics

The finalize statement has the following form:

finalize p with q end

The statements p and q are called the body and the finalizer of the finalize
construct. Statement q must be instantaneous. When started, the finalize
statement behaves like p until it terminates or until the entire construct is
preempted by some enclosing statement. In this case, the finalizer is executed.

For instance, consider the following fragment, which models a simple bus
access protocol. A request is emitted, and the BusGrant signal is awaited be-
fore starting the communication. The communication may end when
PerformCommunication terminates, or when the ExternalInterrupt sig-
nal is set. In both cases, we need to release the bus. The following code
guarantees that BusRelease is emitted in either case.

abort
emit BusRequest ;
await BusGrant ;
finalize
run PerformCommunication

with
emit BusRelease

end
when ExternalInterrupt

When a complex statement is preempted, the finalizers of the different
statements that have control are executed in a bottom-up fashion. The in-
nermost are executed first; the finalizer of the root statement is last.

When an incarnation of a statement terminates and/or is preempted,
its finalizer must be executed exactly once, even when several causes may
determine its termination, e.g., when several enclosing traps are activated.

Problems

The finalize statement induces semantic problems and makes code gen-
eration difficult. For both reasons, the framework defined in this book is
insufficient to handle the new statement.

The problem is that the finalize statement allows control to enter state-
ments that are preempted. From a semantic point of view, this means that
a new type of control flow must be added to the COS, which traverses pre-
empted statements before their state is reset to execute the finalizer code.
This requires fundamental modifications to both the CBS and the COS.

From a code generation point of view, in both netlists and GRC, the
finalize statement introduces control paths that do not follow any existing
structural rules. Perhaps more importantly, finalizers complicate the causal
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dependencies of a GRC or netlist specification because they are activated by
and give control to many different points depending on their trigger. Finally,
it is difficult to generate well-structured efficient software code that enters
preempted code.

The solution adopted in the Esterel V7 compiler of Esterel Studio is the
systematic duplication of finalize code in all places it can be executed. This
reduces the problem to the case treated in this book, where only two control
entry points exist for each statement.

A.4 Tasks

A task is a piece of code written in the host language designed to run con-
currently with the Esterel program. Tasks are designed to represent complex
computations that cannot be represented as functions or procedures because
they run for more than a single execution instant. Typical tasks are com-
plex data computations or interactions with the asynchronous environment,
such as the ones used in robotics. Tasks are hybrid concepts at the bound-
ary between Esterel’s synchronous semantics and the unspecified (possibly
asynchronous) environment.

We explained in Chapter 2 that tasks are declared much like procedures.
The full syntax is given in Appendix B. A task has two lists of parameters:
one passed by reference, the other by value. For example, the task keyword
declares a task

task MyTask(integer, MyType)(integer, string) ;

and exec statement starts its execution

exec MyTask(v1, v2)(10, "abc") return R ;

The external routine is launched when the exec statement receives con-
trol. The Esterel program pauses at the exec statement and remains paused
until the task completes its execution or is preempted.

If and when the external task completes, the execution shell indicates this
instant by raising the return signal R. This synchronization allows the pro-
gram to react by updating the reference parameter variables with the results
of the task computation, so that they are safely recovered; and terminating
the exec statement and giving control in sequence to the following state-
ment. Note that aborting the exec statement must kill the external task to
be consistent with Esterel semantics.

Suspending a task sends it a suspension signal in each instant it is sus-
pended. How the task and environment handles this signal is unspecified; it
may be difficult for an operating system running the Esterel program and
the task asynchronously to correctly interpret sequences of suspension com-
mands. The execution shell may need to convert the instant-wise suspension
information into suspend/resume information for the operating system.
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The mechanisms for task launching and signaling are largely
implementation-dependent. The only constraint is that it must respect the
Esterel logical view during the start, completion, and preemption execution
instants. The following section presents in an intuitive fashion the synchro-
nization rules ensuring the coherency of the logical view.

A.4.1 Task Synchronization Semantics

The protocol for managing task execution is best understood by represent-
ing each of its operations with a separate procedure, which not incidentally
mimics the host language task interface.

Encoding an exec statement

In this section, we consider an Esterel program that contains one task and
one exec statement:

exec MyTask(ref params)(val params) ;

Five procedures represent the five task operations:

1. The task is launched by a procedure that takes all the parameters of the
task call as by-value parameters. By-value is used exclusively because
the task cannot access its reference parameters during the execution
of the reaction without interfering with the execution of the Esterel
program.

procedure Launch MyTask()(ref params,val params);

2. Another procedure updates reference parameters. Called when the task
completes, this takes the results of the execution of the task and assigns
them to the reference parameters of the task call:

procedure Update MyTask(ref params)();

3. Another procedure kills the tasks if it is not already finished and does
nothing otherwise.

procedure Kill MyTask()();

4. Another procedure suspends the asynchronous execution of the task,
assuming it has not already terminated. The execution shell calls this
when MyTask is suspended in the Esterel program in the current reac-
tion but was not suspended in the previous reaction.

procedure Suspend MyTask()();
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terminated

R = any, KILL/Kill

KILL = any, R, RES/Update,Kill

not started

GO/Launch

running
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/Suspend RES/Resume

RES/

/

RES = any, KILL/Kill

GO,KILL/

Figure A.3: The life cycle of a task

5. The last procedure resumes the execution of a suspended task, assuming
it has not already terminated. The execution shell calls this when the
task is resumed after being suspended.

procedure Resume MyTask()();

How these procedures are implemented is not specified, only the order in
which they are called during the execution of the Esterel program.

With these, we can represent the protocol governing the life cycle of a
task in the form of an automaton: Figure A.3. Here, GO, RES, KILL
correspond to the Esterel statement being started, resumed, or killed.

The implementation may render suspension and resumption meaningless,
e.g., when asynchronous tasks are non-interruptible. In this case, we can use
the first three procedures to give an Esterel expansion of the exec statement.
The expansion uses the finalize statement defined in the previous section.

finalize
abort
call Launch MyTask()(ref params,val params) ;
halt

when R do
call Update MyTask(ref params)()

end
with
call Kill MyTask()()

end

Immediate restart of an exec statement

An exec statement can be immediately restarted after being aborted or ter-
minated. Consider the fragment
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loop
abort
exec MyTask(...)(...) return R

when I
end

Assume that signal I arrives before the completion of MyTask, or at the
same time as R. Then, Esterel calls Kill MyTask to signal to the environment
that the current running instance of MyTask should be killed. Then, it calls
Launch MyTask to signal that a fresh instance of MyTask should be started
right away.

In cases where several incarnations of an exec statement are started in
a single instant, the rules of reincarnation tell us that at most one of them
completes the instant without being killed. If we refer to the protocol of
Figure A.3, at most one of the started instances (GO = 1) calls Launch and
goes to the running state. All the others directly terminate because they are
also killed (KILL = 1). Therefore, at most two instances of a task can be
active in a given reaction. When two instances are active, one is terminating
execution and the other is starting.

Tasks and preemption

Using this representation of the task, its is easy to understand its properties.
Consider the statement

abort
exec MyTask(ref params)(val params) return R

when I

If R occurs before I, the reference parameters are updated and the whole
statement terminates. If I occurs before R, then the execution of MyTask is
aborted. If I and R occur simultaneously, the task completed its execution
so that the call to Kill MyTask will have nothing to do, but Update MyTask
is not called, so the reference variables are not updated with the results. If
we replace abort with weak abort in the previous statement, the reference
parameters are updated.

Return signal properties

The return signal of an exec statement is bound to the global clock of the
program, not to the clock of the exec statement. Therefore, it is possible to
test the completion of a task even if it is strongly aborted:

abort
exec MyTask(ref params)(val params) return R

when I do
present R then ... else ... end

end
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This property of the return signals also leads to less natural situations.
If the signals I and R arrive simultaneously in the following fragment, the
return signal is lost and the statement remains blocked.

suspend
exec MyTask(ref params)(val params) return R

when I

In our procedure-based encoding of “exec,” this corresponds to the case
where the entire construction is suspended when R arrives, so that the control
remains blocked on halt.

Return signals can carry data information, as they can be valued signals
(even of combined type). There are only two restrictions concerning return
signals: no two exec statements of an Esterel program can have the same
return signal, and the rule must hold after sub-module instantiation; and
return signals cannot be emitted by the Esterel program itself.

Multiple instances of a task

The previously-defined encoding is correct for Esterel programs where each
task is executed by a single exec statement. However, when two or more exec
statements can launch the same task concurrently, the different instances
must be distinguished, using instance identifiers that are given as a parameter
to all the synchronization operations (for clarity, we presented the simpler
version).

A.4.2 Multiple exec

The multiple exec statement makes it possible to control several tasks simul-
taneously. It has the following form:

exec
case T1(...)(...) return R1 do p1
...
case Tn(...)(...) return Rn do pn

end

The section “do pi” can be omitted if pi is reduced to nothing.
All tasks are launched simultaneously and concurrently when the state-

ment executes, and it terminates when at least one return signal is received.
Any unfinished tasks are aborted. If several return signals have been re-
ceived, the completed task of lesser index updates its variables, and the exec
statement terminates. Due to this exclusiveness property, variables can be
shared among reference parameter lists of the n tasks.
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In this appendix, we define the full Esterel language. Its grammar is given in a
variant of the Backus-Naur form; the semantics of Kernel Esterel statements
has already been given in the second part of this book. Here, we give the
semantics of the derived statements by showing how to expand them into
kernel statements.

B.1 Lexical Conventions

B.1.1 Tokens

There are five kinds of tokens: identifiers, keywords, literals, operators, and
separators. In general, whitespace (blanks, tabs, newlines, form-feeds) and
comments are ignored except that they can separate tokens.

Esterel’s scanner uses the usual longest-token rule: if the input stream
has been parsed into tokens up to a given character, the next token is the
longest string of characters from that point that could be a token.

B.1.2 Comments

Single-line comments start with % and go to the end of a line. If the character
immediately following a % is {, this starts a multi-line token that terminates
at the first pair of }% characters encountered.

B.1.3 Identifiers

Identifiers are sequences of letters, digits, and underlines ( ) and must start
with a letter. Identifiers are case-sensitive. No limit is placed on the length
of the identifier.

In the definition of the Esterel language grammar, identifiers are covered
by the terminal ident. As such, it will be used in lists, defined below.
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ident-list:
non-empty-ident-listopt

non-empty-ident-list:
ident
non-empty-ident-list , ident

More often we use typed identifiers, which are syntactically identical but
more suggestive. All named Esterel objects will have such a typed identi-
fier terminal: signal-ident , type-ident , function-ident , proc-ident (procedure
names), trap-ident , task-ident , var-ident , constant-ident , module-ident .

B.1.4 Reserved Words

In Esterel, the following words are reserved and cannot be used as identifiers.
They include the statement and interface keywords, as well the Boolean lit-
erals and predefined functions and procedures. It is important to note that
other words, such as tick and integer, predefined by Esterel in certain
namespaces, so their use is subject to restrictions in these namespaces only.

abort and await call case
combine constant copymodule do each
else elsif emit end every
exec exit false function halt
handle if immediate in input
inputoutput loop mod module not
nothing or output pause positive
present procedure relation repeat return
run sensor signal suspend sustain
task then timeout times trap
true type upto var watching
weak when with

The end keyword, which terminates a statement, can be followed with the
statement name. For instance, “loop p end loop” is equivalent to “loop
p end.” For weak abort, the end keyword can be replaced by both “end
abort” and “end weak abort.”

B.1.5 Literals

Numeric literals

All numeric literals in Esterel are decimal and unsigned. Their syntax is
defined by the following regular expression:

[0–9]+ ([.][0–9]∗)? ([e|E][-|+]?[0–9]+)?

When no decimal dot and no exponent part are present, the literal is inter-
preted as integer. When a fraction or an exponent part is present, the literal
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is floating-point. A floating literal is treated as a float if it is immediately
followed by an f and is otherwise treated as a double.

integer: 1973, 0
float: 17e-1f, 0.11f, 0.314e1f
double: 17e-1, 0.11, 0.314e1

String literals

Strings are single-line sequences of characters delimited by double quotes.

"this is a string literal"
"Hello, world!"

The only escape sequence is "", which is transformed into a single double
quote sign. Example:

"""Hello, world!"" is a string literal"

Different Esterel compilers may introduce various limitations on string size.
Appendix C lists such limitations for the INRIA compiler.

Boolean literals

The two Boolean literals are keywords:

boolean-literal: one of
false true

B.2 Namespaces and Predefined Objects

There are eight namespaces in Esterel V5: signals and sensors, traps, vari-
ables and constants, functions, procedures, tasks, types, and modules. Thus,
the same name can be given to an entity of each of these types without error.
Here is a nonsensical, but correct, illustration.

module A:

type A;
function A() : integer;
procedure A(integer)(boolean);
task A(integer)(integer);
constant A : integer;
input A;

trap A in
signal A in % Hides input A
var A : integer in % Hides constant A
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nothing
end var

end signal
end trap

end module

By contrast, the Esterel V7 dialect uses a single namespace so no identifier
can be reused for another object in the same scope.

B.2.1 Signals and Sensors

Signals and sensors are Esterel’s fundamental objects. There are three main
types: pure signals, which only carry presence and absence information; sen-
sors, which only carry a data value; and valued signals, which carry both
presence/absence information and a value.

Pure and valued signals may be part of the interface of a module, or may
be declared within the module using the signal construct. Sensors may only
be declared as part of an interface.

The presence/absence status of pure and valued signals does not persist
between instants. A signal is absent in an instant unless an emit statement
(or the equivalent) for the signal runs. However, the data associated with
a valued signal does persist between instants, i.e., once it is set, its value
persists until set differently.

The value of a sensor may change at the beginning of each instant; it is
under the control of the environment.

The value of valued signals and sensors is accessed with the ? operator.
The value of a valued signal can be set by the emit statement.

All but one signal is user-defined. The predefined signal tick is always
present in each instant.

signal-name:
signal-ident
tick

B.2.2 Variables and Constants

Variables are objects with a name and a type whose value may be assigned.
Constants are named objects whose value is set once when the program starts
running, either by the program or by the environment. The value of a con-
stant may be read like a variable but not assigned. Variables are declared
within a module; constants are declared as part of the interface of a module.

B.2.3 Traps

A trap is a named exit point for a block of code. There are two types of
traps: pure traps, which do no carry a value, and valued traps, which carry
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a value. The value of a valued trap can be read with the ?? operator and is
set by the exit statement.

B.2.4 Types

Esterel predefines five basic types: boolean, integer, float, double, and
string. The user can define named types, whose implementation must be
provided in the host language at code generation time. To Esterel, all types
are abstract, type checking is always strict, and no implicit conversion is
performed, even among predefined numerical types. Objects of the same
type can be assigned and compared.

type-name:
type-ident

Predefined type names are not keywords and can be reused. For instance,
it is possible, but inadvisable, to call a signal float or integer.

B.2.5 Functions and Procedures

The user can define functions and procedures, whose definitions are given in
the host language. A function has a return type and zero or more pass-by-
value arguments. It can be used in expressions. A procedure has zero or
more pass-by-value arguments and zero or more pass-by-reference arguments
(usually results). Procedure calls are primitive statements starting with the
call keyword. Functions and procedures are assumed to always terminate
within the synchronous execution instant in which they are called.

A number of functions are predefined under the form of operators over
the predefined Boolean and numerical types.

function-name:
function-ident
predefined-operator

predefined-operator: one of
and or not < > <= >= <> = + - * / mod

B.2.6 Tasks

A task is a name for a potentially multiple-cycle routine defined in the host
language. Like a procedure, it has zero or more pass-by-value arguments and
zero or more pass-by-reference arguments.

When invoked with the exec statement, a task starts and may execute
for zero or more instants. Special interface signals are used to notify the
program of the task termination. See Appendix A.4 for more information
about tasks.
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B.3 Expressions

B.3.1 Data Expressions

Data expressions are formed from data atoms using functions and predefined
operators. Type-checking is strict, and no implicit conversion is performed
between the different types.

The atomic data expressions are the literals, the constants, the variables,
the current (?S) and previous (pre(?S)) values of valued signals and sensors,
the values of valued traps (??T), and the functions with no arguments. Recall
that accessing an undefined signal or trap value is an error, but the compiler
is unable to check it.

Complex expressions are formed by combining functions, the predefined
operators, and parentheses “().” Parentheses are not always necessary be-
cause of the operator precedence rules defined in Section 2.5.1.

data-expr:
identifier
string-literal
unsigned-literal
boolean-literal
( data-expr )
? signal-ident
pre ( ? signal-ident )
?? trap-ident
predefined-operator data-expr
data-expr predefined-operator data-expr
function-ident ( data-expr-listopt )

data-expr-list:
data-expr
data-expr-list , data-expr

B.3.2 Constant Atoms

When named constants are defined in Esterel, they can be assigned a value.
To define such values, called constant atoms, Esterel largely restricts the
syntax of data expressions.

constant-atom:
constant-ident
predefined-constant
string-literal
-opt unsigned-literal
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B.3.3 Signal Expressions

Signal expressions are presented in Appendix A.1 along with their limitations
in existing compilers.

signal-expr:
signal-ident
( signal-expr )
not signal-expr
signal-expr and signal-expr
signal-expr or signal-expr
pre-expr

pre-expr:
pre ( signal-expr )

B.3.4 Delay Expressions

Delay expressions are presented in Appendix A.1.

delay-expr:
delay-event
immediate delay-event
data-expr delay-event

delay-event:
signal-ident
pre-expr
[ signal-expr ]

delay-expr:
signal-expr
immediate signal-expr
data-expr signal-expr

B.3.5 Trap Expressions

Trap expressions are used in conjunction with concurrent traps, as defined
in Appendix A.2. Trap expressions allow the execution of a handler when a
combinational expression of the concurrent trap codes is true.

trap-expr:
trap-ident
( trap-expr )
not trap-expr
trap-expr and trap-expr
trap-expr or trap-expr
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B.4 Statements

statement:
control-flow-operator
abort
await
procedure-call
do-upto (deprecated)
do-watching (deprecated)
emit
every-do
exec
exit
halt
if-test
loop
loop-each
nothing
pause
present
repeat
run
signal-decl-statement
suspend
sustain
trap
var-decl-statement
weak-abort

control-flow-operator:
sequence
parallel
block
assignment

B.4.1 Control Flow Operators

sequence:
statement ; statement
sequence ; statement

parallel:
statement || statement
parallel || statement
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block:
[ statement ]

assignment:
var-ident := data-expr

The sequence and parallel operators are associative, so their multi-way
versions can be defined by expansion using the two-way versions and the
parenthesis. The sequence operator ’;’ binds tighter than ’||’. Therefore,
the brackets are unnecessary in “[ p ; q ] || r.”

B.4.2 abort: Strong Preemption

abort:
abort statement when delay-expr
abort statement when abort-instance end-abort
abort statement when abort-case-list end-abort

abort-instance:
delay-expr
delay-expr do statement

end-abort:
end abortopt

abort-case-list:
abort-case-listopt abort-case

abort-case:
case abort-instance

The simplest form of the strong preemption statement is

abort p when d

When the delay expression d is not immediate, the meaning of the statement
is given by

trap T in
suspend p when d ; exit T

||
await d ; exit T

end

As its expansion shows, abort terminates either when p itself terminates, or
when d becomes true and p is preempted. Upon preemption, control does
not enter the statement p, the statement being suspended.

When d=“immediate s,” where s is a signal expression, control can be
preempted during the start instant, before it enters p. In this case, the
expansion is
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present s else
abort p when s

end

Like await, an extended form of the statement allows code to be executed
upon preemption

abort p when d do q end

This is a short-hand for:

abort p when d ;
present s then q end

where s is the signal expression part of the delay expression d.
The multi-way form of abort allows us to give multiple preemption con-

ditions. The form of the statement is

abort p when
case d1 do q1
...
case dn do qn

end

The statement p is preempted when at least one of the triggers is satisfied,
and the corresponding qi is started. If several triggers become true at the
same time, the first one in the list activates the corresponding qi. The multi-
way abort statement is a short-hand for

abort
...
abort

p
when dn do qn end

...
when d1 do q1 end

B.4.3 await: Strong Preemption

await:
await delay-expr
await abort-instance end-await
await abort-case-list end-await

end-await:
end awaitopt

The await statement waits for a specified delay, then either terminates
or runs the statement after the appropriate do clause. Its simplest form is
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await d

When d=“n s,” with n a data expression and s a signal expression, the
semantic expansion of the statement is

suspend
repeat n times pause end

when [not s]

The delay expires in the instant where s becomes true for the nth time in
instants following the start of the statement (the start instant is not counted).
When d has no counter, the expansion is that of “await 1 d.”

When d=“immediate s,” with s a signal expression, the statement can
terminate during the start instant. Its expansion is

present s else await s end

The extended form of the statement allows code to be executed upon
completion

await d do q end

Its expansion is

await d ;
present s then q end

where we assumed that s is the signal expression part of d.
The multi-way form of await allows waiting for the first of a set of events.

The form of the statement is

await
case d1 do q1
...
case dn do qn

end

The statement terminates when at least one of the triggers is satisfied.
Then, the corresponding qi is started. If several triggers become true at
the same time, the corresponding qi of lesser index is started. We give the
semantic expansion of the multi-way await using the multi-way abort:

abort
halt

case d1 do q1
...
case dn do qn

end
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B.4.4 call: Procedure Call

procedure-call:
call proc-ident ( var-ident-list )( data-expr-list )

A procedure call awaits the computation of all the valued signals (shared
variables) involved in the data expression list. Then, it evaluates the data
expressions provided as value parameters, it performs its computation and
stores the results in the sequential variables provided as reference parameters.

B.4.5 do-upto: Conditional Iteration (deprecated)

do-upto:
do statement upto delay-expr

The expansion of “do p upto d” is “abort p ; halt when d.”

B.4.6 do-watching: Strong Preemption (deprecated)

do-watching:
do statement watching delay-expr do-watching-endopt

do-watching-end:
timeout statement end timeoutopt

This is a deprecated form of the abort statement. Its general form is

do p watching d timeout q end

equivalent to

abort p when d do q end

The short version, without a handler statement q, expands into the short
version of the abort statement.

B.4.7 emit: Signal Emission

emit:
emit signal-ident
emit signal-ident ( data-expr )

The semantic expansion of the valued signal emission along with pertinent
semantic considerations is presented on page 23.
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B.4.8 every-do: Conditional Iteration

every-do:
every delay-expr do statement end everyopt

Similar to loop...every, with the exception that it awaits the trigger
event in order to start the body the first time. Moreover, since the body
cannot instantly restart upon normal termination, immediate triggers can be
used.

Consider the general form of the statement “every d
do p end.” When d is not an immediate delay-expr, the semantic expansion
is

await d ;
loop p each d

When t=“immediate s,” the expansion is

await d ;
loop p each s

B.4.9 exec: Task Execution

exec:
exec task-instance end-exec
exec exec-case-list end-exec

task-instance:
task-ident ( var-ident-list ) ( data-expr-list ) return-handle

exec-case-list:
exec-case-listopt exec-case

exec-case:
case task-instance

return-handle:
return signal-ident
return signal-ident do statement

exec-end:
end execopt

Tasks and the exec statement are described, along with their semantics,
in Appendix A.4.
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B.4.10 exit: Trap Exit

exit:
exit trap-ident
exit trap-ident ( data-expr )

Traps and the exit statement are described, along with their semantics,
in Appendix A.2.

B.4.11 halt: Wait Forever

halt:
halt

Waits forever (until preempted). Its expansion is

loop pause end

B.4.12 if: Conditional for Data

if-test:
if data-expr then-partopt elsif-part-listopt else-partopt end ifopt

elsif-part-list:
elsif-part-listopt elsif-part

elsif-part:
elsif data-expr then-partopt

then-part:
then statement

else-part:
else statement

Data test. The simplest form of the statement is

if data-expr then p else q end

Either the then or else branch may be missing. A missing branch is
equivalent to nothing as body. The kernel expansion of the statement is

var v:Boolean in
v:=data-expr ;
if v then p else q end

end
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This assumes that v does not cause a naming conflict.
The general form of the statement is

if data-expr1 then p1
elsif data-expr2 then p2
...
elsif data-exprk then pk

else pk+1
end

Its semantic expansion is

if data-expr1 then p1 else
if data-expr2 then p2 else
...
if data-exprk then pk else pk+1 end

...
end

end

B.4.13 loop: Infinite Loop

loop:
loop statement end loopopt

Loop the body indefinitely. The body statement p must be statically
non-instantaneous (cf. Section 4.6).

B.4.14 loop-each: Conditional Iteration

loop-each:
loop statement each delay-expr

The semantic expansion of “loop p each t” is

loop
abort

p ; halt
when t

end

When started, the statement starts p. Then, each time t becomes true,
the body is preempted and instantly restarted. If p terminates its execution
before preemption, the control is retained by the halt statement. To ensure
the absence of causality cycles, the trigger must not be instantaneous (current
compilers ignore the immediate keyword).
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B.4.15 nothing: No Operation

nothing:
nothing

Instantly passes control in sequence.

B.4.16 pause: Unit Delay

pause:
pause

Retain control until the next reaction.

B.4.17 present: Conditional for Signals

present:
present present-event then-partopt else-partopt end presentopt
present present-case-list else-partopt end presentopt

present-event:
signal-expr
[ signal-expr ]

present-case-list:
present-case-listopt present-case

present-case:
case present-event
case present-event do statement

The simplest form of the statement is

present signal-expr then p else q end

One (or both) of the branches can be absent. A missing branch is equiv-
alent to nothing. Note that the statement with no branch does have an
influence through constructive causality constraints, i.e., it awaits the mo-
ment where the present/absent status of the test expression is known.

The multi-way form of the present statement is

present
case signal-expr1 do p1
case signal-expr2 do p2
...
case signal-exprk do pk

else q
end
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The else branch may be omitted. The order of cases is important, as shown
by the semantic expansion:

present signal-expr1 then p1 else
present signal-expr2 then p2 else
...
present signal-exprk then pk else q end
...

end
end

The present and if statements are semantically similar. They have been
merged in the Esterel V7 language.

B.4.18 repeat: Iterate a Fixed Number of Times

repeat:
positiveopt repeat data-expr times statement end repeatopt

Repeat the body statement a fixed number of times, given by the value
of the integer data expression. Like for the basic loop statement, the body
must be statically non-instantaneous (cf. Section 4.6).

The simplest form of the statement is

repeat data-expr times p end

In this case, the kernel expansion is:

trap T in
var v:=data-expr:integer in
loop
if v>0 then v:=v-1 ; p else exit T end

end
end

end

A variant of the statement repeats its body at least once, even if the
evaluation of the expression produces a negative or 0 value:

positive repeat n times p end

In the kernel expansion, this amounts to adding the following statement just
before the loop.

if v<=0 then v:=1 end ;
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B.4.19 run: Module Instantiation

run:
run name-renaming
copymodule name-renaming (deprecated)
run name-renaming [ renaming-list ]
copymodule name-renaming [ renaming-list ] (deprecated)

name-renaming:
module-ident
module-ident / module-ident

renaming-list:
renaming
renaming-list ; renaming

renaming:
type type-renaming-list
constant const-renaming-list
function function-renaming-list
procedure proc-renaming-list
task task-renaming-list
signal signal-renaming-list

type-renaming-list:
type-renaming
type-renaming-list , type-renaming

type-renaming:
type-name / type-ident

const-renaming-list:
const-renaming
const-renaming-list , const-renaming

const-renaming:
constant-atom / constant-ident

function-renaming-list:
function-renaming
function-renaming-list , function-renaming

function-renaming:
function-name / function-ident
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proc-renaming-list:
proc-renaming
proc-renaming-list , proc-renaming

proc-renaming:
proc-ident / proc-ident

task-renaming-list:
task-renaming
task-renaming-list , task-renaming

task-renaming:
task-ident / task-ident

signal-renaming-list:
signal-renaming
signal-renaming-list , signal-renaming

signal-renaming:
signal-name / signal-ident

The semantics of the run statement is given in Section 2.5.3. The depre-
cated copymodule keyword is equivalent to run.

Note sub-modules can also be renamed, which is useful when debugging
an application. Different instances of the same module can be given different
names.

Renaming sections can be mixed freely in the renaming list of a run
statement. Any renaming section must contain at least one renaming. The
same object may not be renamed twice. No other restrictions are placed on
the number or size of renaming sections.

B.4.20 signal: Local Signal Declaration

signal-decl-statement:
signal signal-decl-list in statement end signalopt

signal-decl-list:
signal-decl
signal-decl-list , signal-decl

signal-decl:
signal-ident channel-descriptionopt

channel-description:
: channel-type
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( channel-type )
:= data-expr : channel-type

channel-type:
type-name
combine type-name with function-name

The local signal declaration statement is described and decomposed into
kernel statements in Section 2.2. Here, we only provide some clarifications.

The first two definitions of channel-description are semantically equiva-
lent; the version with : is preferred.

The declaration of multiple signals is done with

signal signal-decl1,. . .,signal-declk in
p

end

which expands into

signal signal-decl1 in
...
signal signal-declk in

p
end
...

end

B.4.21 suspend: Preemption with State Freeze

suspend:
suspend statement when delay-expr

The primitive form of the suspend statement, defined in Section 2.2, is
the fundamental strong preemption primitive from which all other strong
preemption statements are derived.

In the general form of the statement, the single signal can be replaced
with a general delay expression d:

suspend p when d

When d is a delay-event, the semantics of suspend are given by the fol-
lowing expansion, which can be further transformed into a kernel statement
according to the expansion of signal expressions given in Appendix A.1.

signal Aux in
suspend p when Aux

||
loop present d then emit Aux end ; pause end

end
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When d=“immediate s,” where s is a delay-event, the body of suspend
is only started when s becomes false. The expansion is

await immediate [not s] ;
suspend p when s

Counted delay expressions should not be used with suspend. However,
compilers such as the INRIA Esterel V5 compiler accept them.

B.4.22 sustain: Emit a Signal Indefinitely

sustain:
sustain signal-ident
sustain signal-ident ( data-expr )

When started, the sustain statement emits its signal at all instants until
it is preempted. The signal is not emitted at instants where the statement is
suspended. The kernel expansion of “sustain S” is

loop emit S ; pause end

B.4.23 trap: Trap Declaration and Handling

trap:
trap trap-decl-list in statement trap-handler-list end trapopt

trap-decl-list:
trap-decl
trap-decl-list , trap-decl

trap-decl:
trap-ident channel-descriptionopt

trap-handler-list:
trap-handler-listopt trap-handler

trap-handler:
handle trap-expr do statement

Traps and the trap declaration statement are described in Appendix A.2.

B.4.24 var: Local Variable Declaration

var-decl-statement:
var var-decl-list in statement end varopt

var-decl-list:
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var-decl
var-decl-list , var-decl

var-decl:
var-init-list : type-ident

var-init-list:
var-init
var-init-list , var-init

var-init:
var-ident
var-ident := data-expr

The local variable declaration statement is described in Section 2.2. The
semantic expansion of multiple variable declaration is trivial.

B.4.25 weak abort: Weak Preemption

weak-abort:
weak abort statement when delay-expr
weak abort statement when abort-instance end-weak-abort
weak abort statement when abort-case-list end-weak-abort

end-weak-abort:
end abortopt

end weak abort

Weak preemption is syntactically similar to abort. It allows the body
statement to perform its computation during the execution instant where it
is preempted. Its simplest form is

weak abort p when d

Regardless of the form of the trigger d, the semantic expansion of the
statement is

trap T in
p ; exit T

||
await d ; exit T

end

The extended form of the statement allows code to be executed upon
preemption

weak abort p when d do q end
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In this form, the expansion is

weak abort p when d;
present s then q end

where s is the signal-expr part of d.
The multi-way form of weak abort allows multiple preemption condi-

tions. The form of the statement is

weak abort p when
case d1 do q1
...
case dn do qn

end

Like the multi-way abort, the weak version activates only one of the
handlers, as shown by its expansion.

signal T1,...,Tn in
weak abort

p
||
await d1 do emit T1 end

||
. . .

||
await dn do emit Tn end

when [T1 or. . .or Tn] do
present T1 then q1 else

. . .
present Tn then qn end

. . .
end

end
end

B.5 Modules

module:
module module-ident : module-interfaceopt statement end-module

end-module:
end module
. (deprecated)

module-interface:
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module-interfaceopt interface-decl ;

In Esterel, the basic programming unit is the module. The description
of modules is in Section 2.5. Below, we give the syntax of the interface
declarations.

B.5.1 Interface Declarations

interface-decl:
interface-signal-decl
sensor-decl
relation-decl
type-decl
constant-decl
function-decl
procedure-decl
task-decl

Signals and Sensors

interface-signal-decl:
interface-signal-type signal-decl-list

interface-signal-type:
input

output

inputoutput

return

sensor-decl:
sensor sensor-list

sensor-list:
sensor
sensor , sensor

sensor:
signal-ident : type-name
signal-ident ( type-name )
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Relations

relation-decl:
relation relation-list

relation-list:
relation
relation-list , relation

relation:
signal-ident => signal-ident
incompatibility-list

incompatibility-list:
signal-ident # signal-ident
incompatibility-list # signal-ident

Types

type-decl:
type type-ident-list

type-ident-list:
type-ident
type-ident-list , type-ident

Constants

constant-decl:
constant one-type-constant-decl-list

one-type-constant-decl-list:
one-type-constant-decl
one-type-constant-decl-list , one-type-constant-decl

one-type-constant-decl:
constant-list : type-ident

constant-list:
constant
constant , constant-list

constant:
constant-ident = constant-atom
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constant-ident

The first form of the last rule binds a literal or other constant to the given
constant identifier. The second form only defines the name and type of the
constant; the generated code simply uses the identifier verbatim, assuming
the value will be defined in the host language.

Functions

function-decl:
function function-list

function-list:
function
function-list , function

function:
function-ident ( ident-list ) : type-name

A function declaration specifies the function name, its parameter list, and
its return type.

Procedures

procedure-decl:
procedure procedure-list

procedure-list:
procedure
procedure-list , procedure

procedure:
proc-ident ( ident-list ) ( ident-list )

Procedure declarations specify the procedure name and two formal pa-
rameter lists. The first list contains the types of parameters that are passed
by reference (i.e., that can be modified by the procedure). The second con-
tains the types of parameters passed by value.

Tasks

task-decl:
task task-list

task-list:
task
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task-list , task

task:
task-ident ( ident-list ) ( ident-list )



C

The C Language Interface∗

The INRIA compiler system defined a C language interface that has become
the de facto standard for generated code, providing a way to use different
Esterel compilers without modifying the run-time environment.

The main object in the generated code is the reaction function, which
inherits the name of the compiled Esterel module. Inputs and outputs are
communicated through input and output functions whose names are auto-
matically computed from the module and signal names. The run-time in-
terface is purely procedural. No assumption is made about any operating
system interface.

The interface is designed to allow a user to provide inputs at the beginning
of a reaction and call the reaction function, which calls user-defined output
functions as a result. Such an interface obviously does not make assumptions
about sources of inputs or the destination of outputs; this makes it possible
to use the generated code in fairly arbitrary environments.

As explained in Section 1.3, the generated C code may require user-
supplied code to define the types, constants, functions, procedures, and tasks
used in the module body. This is called data-handling code. In addition, an
execution shell is necessary to interface at run-time with the outside world,
i.e., to detect input events, call the reaction function, and perform output
actions.

From this point on, we assume that the generated C code of an Esterel
program named PROG has been placed in PROG.c.

C.1 Overview

If the Esterel source program refers to user-defined types, constants, func-
tions, procedures, or tasks, the user must link the generated code with some
data-handling code that defines the implementation of these objects.

∗Much of this chapter is from the manual of the INRIA compiler, by Berry et al. [13].

281
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Definitions of user-defined types must be supplied when compiling the
generated PROG.c file. These type definitions must appear in a file PROG.h,
which is automatically #included by PROG.c. In addition to type definitions,
the PROG.h file can contain inline definitions of constants, functions, and
procedures by #define directives. Constants, functions and procedures not
defined this way can appear in another C file, typically named PROG data.c.

For execution, the generated code must also be linked with the execu-
tion shell that realizes the interface with the outside world, i.e., detects
input events, calls the reaction function, and realizes output events.
The way the execution shell performs these actions is implementation- and
user-dependent.

If the user wishes the PROG module to react to an input event composed
of two simultaneous input signals I1 and I2, where I2 is a valued signal to
be passed the value given by the C expression exp, the user first calls the two
automatically generated input C functions PROG I I1 and PROG I I2 in any
order

PROG_I_I1();
PROG_I_I2(exp);

then calls the reaction function:

PROG();

Notice that absence is the default. As in Esterel, nothing needs to be called
to indicate an absent signal.

Reactions are not reentrant and must be executed atomically. In par-
ticular, during the execution of the reaction function, neither user input C
functions nor the reaction function itself should be called.

During its execution, the reaction function may call user-supplied C data-
handling functions that implement the functions, procedures, and tasks de-
clared in the Esterel program. It may also read a sensor S1 by calling the
user-supplied sensor C function PROG S S1, which should return the sensor’s
value.

If the Esterel program emits the output signal O1, the generated C code
calls the user-supplied output C function PROG O O1. If O1 is valued, the
value is passed as the lone argument to PROG O O1.

To summarize, the user must write functions to read sensors, named
PROG S xx, and output functions, named PROG O xx. The reaction function
PROG and the input functions PROG I xx are generated by the Esterel com-
piler. All functions related to program input, output, or execution are pre-
fixed with the program name, but the data-handling function names and the
module names are not. Therefore, C reserved words (e.g., switch, while)
and standard library function names (e.g., printf) should not be used as
Esterel function or module names.
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C.2 C Code for Data Handling

C.2.1 Defining Data-handling Objects

If PROG is the name of the Esterel module, then a directive of the form

#include "PROG.h"

is included in the PROG.c file if the Esterel input file declares a type, a
constant, a function, a procedure, or a task.

The PROG.h file must contain the code needed to compile the gener-
ated PROG.c C file separately. Therefore, PROG.h must at least contain the
C definition of the user-defined types used in the source program. It can
also contain inline constant, function, and procedure definitions by #define
directives.

The constants, functions, and procedures used in the Esterel source pro-
gram but not #defined in PROG.h are automatically declared extern in
PROG.c and can be defined in other C files.

The C names of types, constants, functions, and procedures must match
those in the Esterel file.

C.2.2 Predefined Types

The basic type integer is implemented as int. The basic type boolean is
also implemented as int, with constants false = 0 and true = 1. The basic
types float and double are implemented by their eponymous C types.

There are some peculiarities for the basic type string, since there is no
real string type in C. It is implemented as follows: the type itself is declared
as char*; a variable VAR of type string is declared as an array of characters
and is allocated in the generated code by the declaration

char __PROG_Vxx[STRLEN];

where xx is some allocation number. In PROG.c STRLEN is defined with

#define STRLEN 81

which may be modified or overridden by a compilation command of the form

cc -DSTRLEN=125 -c PROG.c

String assignment is done by copy using the C strcpy function.

C.2.3 User-defined Types

The file PROG.h must contain a type definition for each user-declared type
in the source program. The C names must match the names in the Esterel
file. Any declaration of a variable or signal of type T in the source program
generates a C declaration of the form
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T __PROG_Vxx;

The C typedef construct is intended for declaring types. This is compulsory
for structures. For example,

typedef struct {
int hours;
int minutes;
int seconds;

} TIME;

Assignment Functions

If T is a user-defined type, the declaring module can make use of the pre-
defined assignment, equality, and inequality operators for objects of type T.
When one of these operators is used, the user must supply a C definition for
it, as follows.

A call to the assignment operator is generated when

• there is an explicit assignment or variable initialization of type T, i.e.,
the assignment symbol “:=” is used somewhere for a variable of type
T;

• there is a valued signal of type T, either in the main module or in one
of its submodules (emitting valued signals requires assignment); or

• an exec statement calls a task with a reference parameter of type T.

If at least one of the above conditions is met, the user must write an assign-
ment function for the user-defined type T. This C function takes two argu-
ments, the first one of type T*, the second one of type T. The return value of
the function should be void. For example, the source Esterel assignment

X := exp

where X and exp are of type T generates a call of the form

_T(&__PROG_Vxx, exp)

In the case of structured data types, it is recommended that assignment
functions perform a complete (recursive) copy of the source. Strange behav-
iors can appear otherwise. If C natively supports assignment for type T, then
T can be simply defined as

#define _T(x,y) (*(x)=y)

As usual, the parentheses avoid operator precedence errors. With this macro,
an assignment of the form X := exp becomes

(*(&__PROG_Vxx) = exp)

which is interpreted as PROG Vxx = exp by the C compiler.
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Equality Functions

A reference to the equality function of type T is generated when at least a
comparison “=” between objects of type T appears in the Esterel source.

In this case, an equality function named eq T must be supplied. This C
function is passed two arguments of type T and is expected to return an int.
For example, the definition of equality for type TIME could be

int _eq_TIME(TIME t1, TIME t2)
{
return t1.hours == t2.hours &&

t1.minutes == t2.minutes &&
t1.seconds == t2.seconds;

}

Similarly, a reference to the inequality function of type T is generated
if and only if a comparison “<>” between objects of type T appears in the
module or one of its submodules. If a comparison is used, an inequality
function named ne T must be defined. This C function has the same type
as eq T and may be defined as the negation of eq type.

An Array Example

Consider the following example involving an array encapsulated in a struct.
Note the use of the assignment and inequality C functions of the underlying
TIME type (described above).

typedef struct {
TIME array[10];

} ARRAY_10_OF_TIME;

/* assignment */
_ARRAY_10_OF_TIME(ARRAY_10_OF_TIME *pa, ARRAY_10_OF_TIME a)
{
int i;
for (i = 0; i < 10; i++)
_TIME(&(pa->array[i]), a.array[i]);

}

/* equality */
int _eq_ARRAY_10_OF_TIME(ARRAY_10_OF_TIME a1,

ARRAY_10_OF_TIME a2)
{
int i;
for (i = 0; i < 10; i++)
if (_ne_TIME(a1.array[i], a2.array[i])) return 0;
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return 1;
}

/* inequality */
int _ne_ARRAY_10_OF_TIME(ARRAY_10_OF_TIME a1,

ARRAY_10_OF_TIME a2)
{
int i;
for (i = 0; i < 10; i++)
if (_ne_TIME(a1.array[i], a2.array[i])) return 1;

return 0;
}

C.2.4 Constants

Each constant used but not initialized in the Esterel program must be defined
with the same name in C. A constant can be defined either by a #define
directive in PROG.h or by a standard C variable definition. If not #defined,
a constant is automatically declared extern in PROG.c. It can therefore be
defined in any other file. Consider the example

constant NUMBER_OF_PERSONS : integer,
LUNCH_TIME : TIME;

Then PROG.h could contain

#define NUMBER_OF_PERSONS 45

and PROG data.c could contain

TIME LUNCH_TIME = { 12, 0, 0 };

C.2.5 Functions

Each function called by the Esterel program must be defined in C as either a
macro (a #define directive in PROG.h) or as a C function. If not #defined,
the C function is automatically declared extern in the generated file PROG.c.

The type of a C function must match its type in the Esterel code. For
example, consider defining the Esterel function declared as

function FETCH(ARRAY_10_OF_TIME, integer) : TIME;

A possible definition is

TIME FETCH(ARRAY_10_OF_TIME a, int i)
{

return a.array[i];
}
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C.2.6 Procedures

Each procedure called in the Esterel program must be defined either as a
macro (a #define directive in PROG.h) or as a C function. If not #defined,
the C function is automatically declared to be extern in PROG.c.

An Esterel procedure has two argument lists: the first contains pass-by-
reference arguments; the second has of pass-by-value arguments. In C, the
two lists are concatenated into a single list of arguments. The reference
arguments are passed by pointers and the value arguments are passed by
value. For example, for the Esterel procedure declaration

procedure PROC(T1)(T2);

the corresponding C function PROC has two arguments: a pointer to type T1
and an object of type T2. A consistent C declaration is

void PROC(T1 *pt1, T2 t2)
{

/* ... */
}

Here is another example.

procedure STORE(ARRAY_10_OF_TIME)(integer, TIME);

can be declared in C as

void STORE(ARRAY_10_OF_TIME *pa, int i, TIME t)
{

_TIME(&(pa->array[i]), t);
}

Note the use of the assignment function TIME.
There is an exception for strings. Since they are already pointers, pass-

by-reference arguments are passed the same as pass-by-value. For example,

procedure STORE_CHAR(string)(integer, CHAR);

can be implemented by

void STORE_CHAR(char *s, int i, CHAR c)
{

s[i] = c;
}

where CHAR is a user type implemented by char. The declaration “char *s”
is used instead of “string *s,” which would be the case for a user-defined
type.
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C.3 The Reaction Interface

The reaction function generated by the Esterel compiler for a program PROG
is called PROG. The generated code also contains a function for each input
and inputoutput signal; the user is responsible for providing a function or
macro for each output, inputoutput, and sensor.

C.3.1 Input Signals

For each input signal IS, the Esterel compiler generates an input C function
called PROG I IS, which takes an argument of the appropriate type if the
signal IS conveys a value. For example, from the Esterel declarations

input WATCH_MODE_COMMAND;
input WATCH_TIME (WATCH_TIME_TYPE);
return R;

appearing in a module named DISPLAY, the compiler generates the following
functions:

void DISPLAY_I_WATCH_MODE_COMMAND() { ... }
void DISPLAY_I_WATCH_TIME(WATCH_TIME_TYPE __V) { ... }
void DISPLAY_I_R() { ... }

The objective here is to match the execution mechanism presented in Sec-
tion 1.3, Figure 1.7. When a program PROG should react to an input event
composed of one or more input signals, the associated input C functions
should be called before calling the reaction function PROG.

More precisely, the input event corresponding to the current call of the
reaction function is formed of all the input signals XX whose input C functions
PROG I XX have been called since the previous reaction function call.

The input function of an input signal can be called several times by the
execution engine for a single execution instant. When the signal is pure
(not valued), the first call sets the signal as present, and subsequent ones do
nothing. When the signal is valued and combined, the values provided by
the multiple calls are combined using the combine function. When the signal
is valued but not combined, the last call to the input function sets the value
of the signal for the current reaction (previous values are discarded).

The order in which input functions are called between two calls of the
reaction function does not matter.

For example, assume that some signals have arrived from the external
world, say a pure signal IS1 and an integer-valued signal IS2 conveying the
integer value 3. To perform the corresponding program reaction, one must
first call the two automatically generated input functions PROG I IS1 and
PROG I IS2 and then call the C function PROG. One can execute the following
sequence:
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PROG_I_IS1(); /* input IS1 is present */
PROG_I_IS2(3); /* input IS2 is present with value 3 */
PROG(); /* reaction function */

If IS is a combined integer signal, with “+” as its combine operator, then
the execution of the following sequence

PROG_I_IS(1);
PROG_I_IS(2);
PROG();

corresponds to the execution of the Esterel program PROG in the context
where IS is present with value 1 + 2 = 3. This sequence is equivalent to the
following:

PROG_I_IS(3);
PROG();

C.3.2 Return Signals

Return signals are particular input signals used to signal the completion of
external tasks. In the generated C code, return signals are handled exactly
as standard input signals.

C.3.3 Output Signals

For each output signal OS, the user must write a void output C function
PROG O OS. When the signal OS is valued with type T, then PROG O OS must
take an argument of type T. This function is automatically called by the
reaction function PROG if the signal is emitted.

The order of the output function calls performed by the reaction function
is arbitrary and unspecified. Assume that a reaction causes the output of a
pure signal OS1 and of an integer signal OS2 with value 4. Then PROG calls the
user-defined C functions PROG O OS1 and PROG O OS2 with the appropriate
arguments; the following two calls will be executed in some unpredictable
order in the body of PROG.

PROG_O_OS1();
PROG_O_OS2(4);

The user-provided C functions PROG O OS1 and PROG O OS2 are responsible
for the communication with the actual environment.

C.3.4 Inputoutput Signals

For an inputoutput signal IOS, an input C function PROG I IOS is automati-
cally generated as for an input signal, and the user must write an output C
function PROG O IOS as for an output signal.
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An inputoutput signal IOS received by the reactive program behaves as
if it was emitted by it, and is therefore re-emitted outside whenever received
in a reaction.

• If IOS is a pure inputoutput signal then PROG O IOS is called if IOS is
received or emitted by the program. Therefore, PROG O IOS is always
called by the reaction function if PROG I IOS was called before.

• If IOS is a non-combined signal, there are two cases:

– If IOS is received by the program, it should not be emitted twice
(either by the environment or the program) in the same reac-
tion. The function PROG O IOS is called with argument the value
received by PROG I IOS.

– If IOS is not received, then PROG O IOS is called when IOS is
emitted by the program. The argument of PROG O IOS is the
emitted value.

• If IOS is a combined signal, then all the emitted or received values are
combined using the signal’s combine function. The output function
PROG O IOS is called after all internal emissions have been executed,
with the combined value as argument.

C.3.5 Sensors

The reaction function accesses the current value of sensors by calling a user-
supplied function. Let SE be a sensor of type T. If the program needs the
current value of SE to perform its reaction, it calls the argumentless user-
supplied sensor C function PROG S SE. This must return a value of type T,
which is the sensor current value. To ensure sensor value consistency, the
program calls each sensor C function at most once in a reaction. Here is an
example:

int PROG_S_TEMPERATURE()
{
return measure() ; //calls a library function

}

C.3.6 Reaction and Reset

For the Esterel main module PROG, the Esterel compiler generates three void
argumentless C functions:

• the reaction function PROG

• the signal reset function PROG reset input, which resets the input
event construction process, according to the internal encoding of the
execution shell
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• the program reset function PROG reset, which resets the program by
assigning the state variables their initial value

The reset function should be called before any reaction is performed, and it
calls in turn the signal reset function. The last line of the reaction function
is a call to the signal reset function, to allow the correct acquisition of the
input event for the next reaction. To perform a program reaction, one calls
the input C functions and then calls the reaction function, e.g.,

PROG_I_IS1();
PROG_I_IS2(3);
PROG();

Programs often contain instantaneous initial statements, such as signal emis-
sions or variable initializations, to be performed during the first reaction. To
perform them, it is often useful (but not mandatory) to generate a “blank”
initial event by calling the reaction function once before calling any input C
function. This is equivalent to running the Esterel program for one reaction
with a void input event.

C.3.7 Notes

The relations between input signals specified in the source program are not
checked when the reaction function is called. The code may behave strangely
if called with inputs which do not satisfy the relations. However, the exe-
cution shell may enforce these relations, like in the debugging-oriented code
generated by the INRIA compiler (option “-I”).

The combine functions associated with combined signals must be commu-
tative and associative. Otherwise, the results of signal combinations can be
arbitrary since the combination order depends on the action schedule chosen
by the compiler.

The reaction function is not reentrant and its execution must be atomic.
Therefore, during a call to the reaction function, it is not legal to call it again,
or to call input C functions. Arbitrarily strange behaviors can arise otherwise.
In particular, interrupt handling routines should never call directly input C
functions or the reaction function. They should instead fill event queues
to be read when the reaction function call terminates. One can also mask
interrupts during the reaction function execution.

Access to uninitialized variables and uninitialized signal values are not
checked when the reaction function is called.
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C.4 Task Handling∗

In this section, we describe the interface for exec statements. This code
concretely reflects at C level the abstract task interface and synchronization,
as described in Appendix A.4. It is organized in two layers. The low-level
layer is a direct interface to run-time C data structures that contain all the
required information about the status of exec statements. The optional
higher-level layer provides the user with a functional interface. The functional
interface is fairly simple but inflexible. The low-level interface provides more
control but is more detailed.

Recall from Appendix A.4 that although the task interface speaks of con-
trolling asynchronously-running processes, it does not actually run any. In-
stead, it generates and receives events which it assumes the user uses to
control, say, threads provided by an operating system. The actual mapping
between asynchronous events and synchronous events is performed by the
execution shell.

C.4.1 The Low-level Layer: ExecStatus

If the main module is called PROG, the following generated C function returns
the number of exec statements in the compiled program:

int PROG_number_of_execs();

The following generated function returns the number of exec statements
associated with a task named TASK in the compiled program:

int PROG_number_of_execs_of_TASK();

The ExecStatus Structure

Each exec statement, which is uniquely identified by its return signal, is
associated with a C structure of type __ExecStatus that contains all relevant
information about the exec status just after a reaction. This structure can
be recovered in three ways:

By name: For each exec of return signal R, the generated C code contains
a variable PROG exec status R declared as

__ExecStatus PROG_exec_status_R = /* ... */;

By absolute number: The generated code declares an array of pointers to
the __ExecStatus variables, of size PROG number of execs(), which
has one entry for each exec statement:

∗Tasks are probably the least-used feature in Esterel. We include this description for
completeness and note that we have not addressed the issue of compiling Esterel programs
with tasks.
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__ExecStatus *PROG_exec_status_array[] = /* ... */;

By relative number: For each task TASK, the generated code contains an
array of pointers to the execStatus variables, with one entry for each
exec of that task. The size of the array is given by the function
PROG number of execs of TASK():

ExecStatus *PROG exec status array of TASK[] = /* ... */ ;
Here is the definition of the __ExecStatus structure:

typedef struct {
unsigned int start : 1;
unsigned int kill : 1;
unsigned int active : 1;
unsigned int suspended : 1;
unsigned int prev_active : 1;
unsigned int prev_suspended : 1;
unsigned int exec_index;
unsigned int task_exec_index;
void (*pStart)(); /* takes a function as argument */
int (*pRet)(); /* may take a value as argument */

} __ExecStatus;

The meanings of these fields is as follows.

start is 1 when the exec statement starts and is not immediately killed
(otherwise, it is 0). In that case, a new instance of the task code should
be started in the current instant. See below for how to recover the
actual parameter values from the pStart field.

kill is 1 when the exec statement is killed in the current instant. Then,
the currently running instance of the task should be killed; notice that
kill can only be 1 if there is such a running instance.

active is 1 when the exec statement is active in the current instant. This
means that the exec is started in the current instant or has been started
before, has not yet been killed, and that the task code has not yet
returned.

suspended is 1 when the exec statement is active and suspended in the
current instant by an enclosing suspend statement.

prev active is 1 when the exec was already active in the previous Esterel
instant.

prev suspended is 1 when the exec was suspended in the previous instant.
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exec index is an integer uniquely identifying the exec statement. This index
ranges between 0 and n − 1 if the Esterel program contains n exec
statements after full submodule instantiation.

task exec index is an integer uniquely identifying the exec statement among
those referring to the same task. This index ranges between 0 and p−1
if the Esterel program contains p exec statements for this task after
full submodule instantiation.

pStart is an auxiliary function pointer to be used at start time, i.e., when
start is 1.

pRet is a pointer to the return function PROG I R associated with the return
signal, if the name of the main module is PROG and the name of the
return signal is R (recall that a return signal is just an input signal).

The function pointed to by pStart takes a user-provided function as
argument, and the reference and value arguments are passed to this user
function with the same convention as for a procedure (reference arguments
as pointers; value arguments as values). A typical use is

if (exec_status.start)
(*exec_status.pStart)(my_start);

This will call the user-provided function my start with arguments corre-
sponding to arguments passed to the task at start time.

The user-provided function my start should perform two actions: start-
ing the task in the environment and saving the pointers to the reference
arguments for their update at return time.

Calling the *pRet or PROG I R function in the execution shell amounts to
emitting R to signal the Esterel program that the task is completed. If the
return signal is valued, the return function takes its value as argument. The
return function can be called either directly using its full name PROG I R or
indirectly through the pRet pointer.

When the return function is called, the locations pointed by the pointers
passed at start time for reference arguments must contain the values updated
by the task.

Notice that there are redundancies between the fields of __ExecStatus.
For example, prev active and prev suspended could be computed directly
by the user. They were included because they are easy to compute within
the Esterel program and convenient for the user.

Reincarnation of exec Statements

An exec statement can be killed and restarted in the same instant. For
example, by executing
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loop
exec T()() return R

each I

Here, when I occurs, there may be two active occurrences of the task code
that the user has to manage properly. The first one is the one being killed;
the second is the one being started. There can be no more than two such
occurrences.

Handling Reference Arguments

Consider an Esterel variable X implemented as a C variable of location X,
and assume that X is passed by reference in an exec statement over task TSK.

At starting time, the contents of X are copied into another location L
whose address is passed to the user-level task starting function my start.
During task execution, the code of the task may freely modify the contents
of L. At return time, i.e., when PROG I R (or equivalently *pRet) and then
PROG are called, the contents of L are automatically copied back to X.

This copy-restore mechanism is necessary because it is possible to kill exec
statements: if reference arguments could be modified in place at location X
before an exec is killed, the value of X would change in the Esterel program,
which is forbidden by the Esterel semantics, as explained in Appendix A.4.

Update of reference arguments must be performed in place in the location
L passed to the user starting function my start; this is why these pointers
should be saved by my start. Actual update of X by L is triggered only
when the reaction function PROG is called with return signal R present (and
of course only if the exec statement is not killed by an enclosing abortion
statement).

C.4.2 The Functional Interface to Tasks

We now describe the much simpler functional interface. The user must pro-
vide four C functions:

• A user start function to start the task. This function receives the
reference and value parameters plus a pointer to the __ExecStatus
record of the exec statement as the last parameter; this is useful to in-
dex process-id tables associated with asynchronously running operating
systems tasks, using the exec index fields.

• A kill function that is called when a task is killed, with a pointer to the
__ExecStatus structure as argument.

• A suspend function that is called when the task becomes suspended,
i.e., is now suspended but was not suspended in the previous instant
(suspended=1, prev suspended=0). This function also receives a pointer
to the __ExecStatus structure as argument.
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• A resume function that is called when the task should resume, i.e.,
when it was suspended at previous instant and it is neither suspended
nor killed in the current instant. This function also receives a pointer
to the __ExecStatus structure as argument.

To use the functional interface, one simply has to write a call to a specific
STD EXEC library macro with the return signal name and the user functions
as arguments, once for each exec and right after each call to the reaction
function:

#include "exec_status.h"

my_start() { /* ... */ }
my_kill() { /* ... */ }
my_suspend() { /* ... */ }
my_resume() { /* ... */ }

/* ...context that calls the reaction function... */
PROG(); /* perform a transition */
STD_EXEC(R1, PROG,

my_start_1, my_kill_1,
my_suspend_1, my_resume_1);

STD_EXEC(R2, PROG,
my_start_2, my_kill_2,
my_suspend_2, my_resume_2);

A special __DUMMY__ function can be used if a user function is not necessary,
e.g., if there is no suspend statement in the Esterel program:

STD_EXEC(R2, PROG,
my_start_2, my_kill_2, __DUMMY__, __DUMMY__);

Finally, one can also write

STD_EXEC_FOR_TASK(TASK, PROG,
my_start, my_kill,
my_suspend, my_resume);

This calls STD EXEC for all return signals of task TASK.
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Esterel V7

Esterel V7, which has been developed at Esterel Technologies since 2001,
is an evolution of Esterel V5. It was originally developed in cooperation
with Michael Kishinevsky at Intel Strategic Cad Lab Portland, USA [11].
The extensions were mostly developed for hardware circuit design, but the
language can also be used for software design. The Esterel V7 language is
open (not proprietary) and its Language Reference Manual [29] has been
submitted for IEEE standardization.

Esterel V7 extends the original Esterel V5 language in many respects:
support for data definition, mostly eliminating the need for host data types,
functions, and procedures (which are still available if needed); support for
arrays of any base type and number of dimensions; definition of extensible
interfaces to separate concerns between interface and behavior specification;
support for registered signals using next instead of pre, and for temporary
valued signals that do not preserve their value over time; support for oracles
to model non-determinism; extension of the emit and sustain statements to
support rich forms of concurrent and conditional emissions, directly extending
Lustre equations [38]; support for extended tests that freely mix signal status
and values; support of a new “weak suspend” statement that directly models
clock-gating in circuits and can be implemented as such; last but not least,
support for multiclock circuit design. To handle all these new features, Esterel
V7 adds three new unit kinds to the Esterel V5 basic module one: data,
interface, and multiclock units.

Because the generation of datapath components is easy for software tar-
gets, compiling Esterel V7 to software code is not much different from com-
piling Esterel V5, except for the new “weak suspend” statement, which is
reasonably simple to add. Therefore, the contents of this book are also appli-
cable to compiling Esterel V7 into software. Compiling the control portion of
Esterel V7 to hardware is also very similar, but data-handling does become
a more delicate issue.

297
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D.1 Data Support

D.1.1 Basic Data Types

The former boolean type is renamed bool as in most languages, with con-
stants true or ’1 and false or ’0. The mux(b,c,y) operator takes a Boolean
b and two values x and y of the same arbitrary type and returns x if b is true
and y if b is false; mux is undefined if b is.

The float, double, and string types are as in Esterel V5. They are not
meant to be synthesizable in hardware.

The main change is for integers, which now come in two flavors: unsigned
and signed, each with a given range. For instance, unsigned<23> is the
range [0..22], which has 23 elements, while signed<23> is the range
[−23..22], which has 46 components. The abbreviations unsigned<[M]> and
signed<[M]> respectively denote unsigned<2**M> and signed<2**(M-1)>,
which both have 2M elements and fit in M bits. The abbreviation unsigned
and signed denote unsigned<[32]> and signed<[32]> respectively. Unlike
Esterel V5, where declared types are always externally defined in the host
language, one can locally define types using the type definition.

type Pixel = unsigned<[8]>;

The Esterel V5 externally defined types are now accessed through the
host keyword.

host type Time;

The signed and unsigned primitive types support exact arithmetic. Given
two operands, the type of the result is the least type that can accommodate
all possible results. For instance, unsigned addition and signed multiplication
have the following types:

unsigned<M> + unsigned<N> → unsigned<M+N-1>
signed<M> * signed<N> → signed<M*N+1>

These types are determined as follows: for unsigned addition, the worst case
is (M − 1) + (N − 1) = (M + N − 1) − 1. for signed multiplication, the worst
case is −M ∗ −N = (MN + 1) − 1. The full rules are given in the V7 reference
manual [29].

D.1.2 Arrays

One can declare arrays and arrays of arrays of any type and any number of
dimensions. For example, X : Pixel[12] is an array of 12 unsigned values
in [0..255]; Y : Pixel[12][6] is a two-dimensional array of the same values.

Partial indexing is possible in expressions: with the above definitions
above, Y[2] is an array of dimension 6. Slicing can be done at any dimension
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and multiple slices are allowed. For example, the slice Y[2..9][2] is an
array of dimension 8, itself indexed from 0 to 7, while the multiple slice
Y[2..7][3..5] is an array of dimension 6 by 3. For full slices, one can omit
the bounds, as for the column slice Y[..][2].

All operators are extended pointwise to arrays, using square brackets. For
instance, if X and Y are unsigned arrays of the same type and dimension, then
“X [+] Y” is an array of the same dimension where each component is the
sum of the corresponding X and Y components.

Named types are very useful for arrays and arrays of arrays:

type Byte = bool[8];
type Word = bool[32];
type Memory = Word[1000]

Array literals can be defined either directly, such as {1,1,1,0,1,0,1,0},
or using repetition factors, such as {2{1}, 3{1,0}}, that denotes the same
array. Multidimensional constants can also be defined: an example is {{0,0},
{1,1}} of type unsigned[2][2], which can also be written {{2{0}}, {2{1}}}.
Parameters can occur in constant definitions, as for {{N{0}}, {N{1}}} where
N is an unsigned constant.

D.1.3 Generic Types

In Esterel V5, a type declared using the “type T” declaration can be either
generic, i.e., substituted at module run time, or host, i.e., defined in the host
language. The same holds for constants, functions, procedures, and tasks.
In Esterel V7, data objects can be generic, defined, or host. Generic objects
are declared using the generic keyword and host objects are declared with
host:

generic constant WordWirdth : unsigned;
type Word = bool[WordWidth];
host type Time;

D.1.4 Bitvectors

Single-dimensional arrays of base type bool, such as bool[32], are called
bitvectors. They are ubiquitous in hardware and protocol design. They
support special operations such as compact constant declaration, shifting,
and concatenation.

Bitvector constants can be declared either using the normal array con-
stant notation, e.g., {’0,’1,’1}. They can also be declared in binary, e.g.,
’b110, octal, e.g., ’o364, and hexadecimal, e.g., ’xA2F7. Notice in binary,
the higher-order bit is given first, so ’b110 is the same as {’0,’1,’1}.

To decompose composite word structures, one can name bits and fields:
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type Word = bool[32];
map Word {
sign bit[31], // single bit
low half word[0..15]; // low-order slice
high half word[16..31]; // high-order slice

}
Map fields can overlap. For multiple decomposition, one can use sev-

eral maps for a single bitvector type. One can also name a map, e.g.,
“map Halves: Word {...}.”.

D.1.5 From Numbers to Bitvectors and Back

Since the binary number system is hardly the only interesting one in hardware
design, bitvectors are not implicitly treated as numbers. Conversion is done
by predefined or user-defined functions.

The predefined conversion function u2bin of type unsigned<[M]> →
bool[M] writes an abstract unsigned number into a concrete bitvector, while
bin2u of type bool[M] → unsigned<[M]> performs the reciprocal binary-
system reading from a bitvector to a number. The functions u2gray and
gray2u do the same for Gray code instead of binary, and the functions
u2onehot and onehot2u do the same for one-hot encoding. For unsigned<3>,
one-hot encoding is 0→ 0001, 1→ 0010, 2→ 0100, and 3→ 1000. The type
of u2onehot is unsigned<M>→ bool[M+1]. Note that bin2u(u2onehot(n))
is a good way to compute 2n.

The user can also define its own encoding using auxiliary functions u2code
and code2u that take the code name as an additional argument. The actual
encoding and decoding functions should then be provided in the synthesis-
or run-time library.

D.1.6 Data Units

Data declarations can be grouped into data units, which are extensible:

data D1 :
type Byte = bool[8];
type Word = bool[32];

end data

data D2 :
extends D1;
generic MemSize : unsigned;
type Memory = Word[MemSize];

end data

The extends declaration imports all objects from D1 in D2. Data can
also be directly declared and data units be extended in interface, module,
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and multiclock definitions.

D.2 Signals

Esterel V7 provides the user with new signal attributes that are important
for efficient hardware synthesis. We briefly describe them here.

D.2.1 Value-only Signals

Esterel V5 signals can be either pured or valued, with an extra interface signal
type called the sensor. Esterel V7 replaces sensors by value-only signals,
which have no status. This a frequent case for hardware signals, for which
the optional status is often called a valid bit. A value-only signal is declared
using the value keyword:

output MemData : value Word;

D.2.2 Temporary Signals

In Esterel V5, the value of a valued signal is persistent between instants. This
is natural for software but often too costly for hardware because of register
area and power consumption. In Esterel V7, persistence is still the default,
but a signal can also be declared temporary using the temp keyword. In this
case, its value is not saved between instants∗. For temporary valued signals,
the value is available when the status is present ; it may be either the previous
value or undefined at other instants. For statusless value-only signals, it is
the user’s responsibility to know when the value is available; for instance, this
could be due to the presence of another signal or on some Boolean condition
on other signal values. Here is an example:

output MemData : temp value Word;

D.2.3 Registered Signals

In Esterel V5, one can only emit a signal S for the current instant and read
its current and previous status S and pre(?S) and its current and previous
values ?S and pre(?S) if valued. Esterel V7 adds registered signals, which
can only be local or output. Registered signals are emitted for the next
instant. They are very important for hardware design since they are (most
often) outputs of registers, which implies much better electrical properties
than default combinational signals, and in particular the ability to cut critical
paths. Let R and RV be declared by

output R : reg,
RV : reg unsigned<[8]>;

∗The temp value association is so frequent that it may become the default in the
future.
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R is pure registered. It is emitted using the statement “emit next R;”
when emitted, its status becomes true only at next instant. The valued
registered signal RV is emitted by “emit ?RV <= exp,” which sets the status
and value for the next instant. For both R and RV, emission has no impact
on the current status and value expressions R, RV, and ?RV. The status and
value emitted in an instant for the next instant can be read at emission
instant using the expressions next(R), next(RV), and next(?RV).

D.2.4 Signal Initialization

Signals and signal arrays can be initialized at declaration time. Here are
some examples:

input I : unsigned<16> init 0;
//default value until I received

output O : bool[4] init ’b0101;
signal X : temp unsigned<16>[4] init 0,

//0 for all components
Y : unsigned<[32]>[5] init 0,1,2,3,4 in ... end

For a persistent signal such as O or Y above, initialization is performed at
signal declaration time. For a temporary signal such as X above, initialization
is performed in every instant the signal is alive.

D.2.5 Oracles

Oracles are new signals used to model and formally verify non-deterministic
behavior. They are not meant for synthesis.

An oracle is declared in a signal declaration with oracle keyword instead
of signal. Conceptually, an oracle is not under user control and can take
any status and value in each instant. On can view it as a locally declared
extra input. Here is a way to model a non-deterministic choice between two
statements p and q using a pure oracle:

oracle ArbitraryChoice in
if ArbitraryChoice then

p
else

q
end if

end oracle

Oracles are regular signals with a unique status and value at each instant.
If several tests for the same oracle are evaluated in the same instant, they will
all take the same branch. This helps in structuring models and controlling
the amount of non-deterministic, which is key to formal verification success.
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D.3 Interfaces

D.3.1 Interface Declaration

Interfaces group signal declarations for later reuse. Here are read and write
interfaces for a memory:

interface ReadIntf :
input Read;
output DataOut : Word;

end interface

interface WriteIntf :
input Write;
input DataIn : Word;

end interface

The full memory interface can be built in two ways. The first way is to
use interface extension, which simply imports all components of an interface
into a bigger one:

interface MemIntf :
extends ReadIntf;
extends WriteIntf;

end interface

In this case, MemIntf has the four signals declared by ReadIntf and
WriteIntf. The other structuring choice is to declare ports typed by inter-
faces:

interface MemPortIntf :
port ReadPort : ReadIntf;
port Write : WriteIntf;

end interface

The signals are now called ReadPort.Read, ReadPort.DataOut,
WritePort.Write, and WritePort.DataIn.

D.3.2 Interfaces and Modules

The extends declaration imports an interface into a module:

module Memory :
extends interface Intf; // or simply extends Intf
output ReadError;
...

end module
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Note that the ReadError signal is declared directly in Memory. The in-
terface of the Memory module can then be used as an interface in another
module:

module ParityMemory :
extends interface Memory;
ouput ParityError;
...

end module

D.3.3 Mirroring an Interface

The mirror “mirror Intf” of an interface Intf is the interface obtained by
swapping the input and output direction of signals in Intf. For example,
Read is an output of “mirror MemIntf,” which is typically extended by the
module that communicates with the memory.

D.3.4 Interface Refinement in Modules

Only directions, types, and temp features of signals can be declared in an
interface. The reg and init features can only appear in modules. A signal
declared in an interface extended by a module can be refined in the module
using a refine declaration. Here is an example:

module Memory :
extends MemoryIntf;
refine DataOut : reg init ’0;
...

end module

When extending Memory’s interface by “extends interface Memory,”
the refined features are discarded since they belong to the Memory module
body and not to its interface.

D.4 Statements

D.4.1 Expressions and Tests

Esterel V7 drops the distinction between status and Boolean expressions,
which can now be freely mixed. For instance, to test whether a signal I
is present with a positive value, one writes “I and (?I>0)”. Consequently,
there is no more need for the distinction between present and if tests; only
if remains.

D.4.2 Static Replication

Sstatic statement replication is a powerful new feature of EsterelV7. It copies
code under the control of a static variable called an iterator. Here is a simple
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way to emit all elements of an array in succession, each after a number of
ticks that corresponds to its position in the array, starting from 1:

for i < N dopar
await i+1 times tick;
emit X[i]

end for

A for-dopar clause acts as a parallel, which as usual terminates when all
components have terminated. Therefore, the above for static loop terminates
after N+1 steps if X is of size N.

Static for loops replicate arbitrary statements. They are particularly
useful to replicate submodule calls. Assume a module M has two inputs I and
J and an output O. Then one can generate one copy of M for each matching
components of arrays A, B, and X by writing:

for i < N dopar
run M [A[i] / I, B[i] / J, X[i] / O]

end for

D.4.3 Enhanced Emit and Sustain Statements

In Esterel V7, emit and sustain statements now drive concurrent comma-
separated emissions, which take a new equational form borrowed from Lus-
tre [38]. A pure signal emission is simply denoted by the signal name, as
for Esterel V5; it may be conditioned by a Boolean expression acting as an
equation right-hand-side, as for “X <= exp”. A valued emission has the form
“?S <= exp”, where exp is an arbitrary expression of the same type as the
signal. Pure and valued emissions can be conditioned by if clauses, with
the possibility of defining a case list using the ‘|’ symbol. Finally, equation
blocks can themselves be conditioned by if statements to share conditions
between equations. Here are examples.

sustain {X, Y}

emit {
X <= I and (?I>0),
Y if I and (?I>0) // equivalent

}

emit {
?V <= 0 if ?I = 1 // cases taken in order

| 1 if ?I < 5
| 2,

?W <= ?V+2
}
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sustain {
if ?I>0 then // if-case also allowed
X,
?Y <= 3

else
Z

end
}

Static for loops can appear within emit and sustain:

emit {
for i < 5 do
X[i] <= (?S < i) if I

end for
}

All equations are concurrent in such a for loop. This does not make
it possible to propagate carries. The seq sequential variant of emit and
sustain computes equations sequentially to allow carry propagation. Here
is the definition of a binary adder on pure signal arrays:

main module Adder :
constant N : unsigned = 4;
input A[N], B[N];
output S[N+1];
signal C[N+1] in // C[i] carry out of stage i

// C[0] absent since not emitted
sustain seq {
for i < N doup
S[i] <= A[i] xor B[i] xor C[i],
C[i+1] <= (A[i] and B[i]) or

(B[i] and C[i]) or (C[i] and A[i])
end for,
S[N] <= C[N]

}
end signal

end module

Within a sequential emission, do must be replaced by doup or dodown to
specify the order in which the indices are evaluated.

D.4.4 Explicit and Implicit Assertions

There are two kinds of verification assertions in Esterel V7: explicit assertions
and implicit assertions. Both can be verified dynamically during simulation
or statically by formal verification.
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Explicitly named assertions are declared using the assert keyword, among
signal equations in emit or sustain statements:

await A;
emit {
A received,
assert Apos = ?A>0

};
pause;
abort
sustain {
waiting for B.
assert Xpos = ?X>0 if X

}
when B

A named assertion needs no other declaration that its definition within
emit or sustain. Note that it can be duplicated by static for loops or
by reincarnation of signal declarations or parallel statements. An assertion is
only checked during the lifetime of its emit or sustain statement. Here, Apos
is only checked at first instant, while Bpos is checked from second instant on
until one instant before B occurs.

Unnamed explicit assertions are generated by assert arithmetic opera-
tions. For instance, for exp of unsigned type, assert<M>(exp) checks that
the value of exp is less than M.

Other implicit assertions are generated by arithmetic operations (e.g.,
the quotient of a division is non-zero) and by indexing arrays (the index is
withing the array bounds).

D.4.5 Weak Suspension

Suspension of a statement by a suspend statement is strong: when sus-
pended, a statement does not receive the control and performs no action. A
weak suspend milder form of suspension is available in Esterel V7. It was
originally introduced by Schneider in his variant of Esterel called Quartz [62].
The weak suspend statement is syntactically similar to the suspend
statement:

weak suspend
p

when exp

As for suspend, the guard exp is not tested in the first instant, and the
whole statement terminates when its body does. After the first instant, the
guard is evaluated at each instant. If it is false, the body acts normally and
the whole statement terminates, pauses, or exits a trap if its body does. If
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exp is true, the body p is also executed for the instant but does not update its
internal state. The weak suspend statement pauses if p terminates or pauses
(termination is discarded). In that case, in the next instant p is restarted
from the same control points and with the same values for all local signals
and variables it declares local. At any instant, if p exits a trap, that trap is
propagated irrespective of SUSP’s presence, and the weak suspend is weakly
aborted. Here is a basic example:

module M :
input SUSP;
output {X, Y} : unsigned init 0;
output Done;
weak suspend
signal S : unsigned init 0 in
pause;
emit ?X <= pre(?X) + 1;
pause;
emit {
?S <= pre(?S) +1,
Y <= ?S

}
end signal

when SUSP;
emit Done;

end module

Here is an execution sequence:

;
% Output: none
SUSP;
% Output: X=1
SUSP;
% Output: X=2
;
% Output: X=3
SUSP;
% Output: Y=1
SUSP;
% Output: Y=1
;
% Output: Y=1 Done

Since the weak suspend body always runs, there is an output in every
instant but the first. Control and local data state does not change and
termination is preempted when SUSP is present. Therefore, control stays at
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the first pause and “emit X” is executed in steps 2 and 3, until step 4, where
SUSP is absent. Since Y is declared outside the weak suspend, its value is not
subject to suspension and is changed at steps 2, 3, and 4 Similarly, control
stays at second pause and “emit Y” is executed until step 7 where the weak
suspend statement terminates. However, since S is declared within weak
suspend, its persistent value pre(?S) of S does not change and remains 0
at steps 5, 6, and 7. At this steps, the current value ?S is 1 by the ?S <=
pre(?S) +1. That current value does not survive the suspension instants.

This behavior may look awkward for a software programmer, but it is
natural for a hardware designer since it is exactly the effect of clock-gating
the internal registers of p by not(SUSP). Clock gating is key to power savings
in circuits; weak suspend provides direct semantics for it.

There is also an immediate form, where the guard is also evaluated in the
first instant:

weak suspend
p

when immediate exp

The immediate form can be derived from the default delay form using a
non-trivial macro-expansion described in the V7 reference manual [29].

D.4.6 Signal Connection by Module Instantiation

Esterel V7 takes module instantiation much more seriously than Esterel V5.
In Esterel V5, a run statement is purely syntactic: the text of the run sub-
module is written in place of the run statement, with syntactic replacement
of interface signals as specified in the renaming list. In Esterel V7, submodule
signals keep their individuality and are appropriately connected to caller sig-
nals. The behavior differs in several cases, and in particular in a suspension
context. Consider the following program:

module Sub :
input SubI;
output Y;
sustain Y <= pre(SubI)

end module

module Main :
input I, SUSP;
output X, Y;
{
sustain X <= pre(I)

||
suspend
run Sub [ I / SubI ]
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when SUSP
}

end module

In Esterel V5, I in Main captures SubI in Sub, and X and Y always have
equal status. In Esterel V7, I in Main and SubI in Sub are different signals,
with a connection that sets SubI present when I is present and Sub is active,
i.e., SUSP is absent. The computation of pre(SubI) in Sub is subject to
suspension: pre(SubI) is the last status of SubI when Sub was active, i.e.,
the last status of I when SUSP was absent. Here is an Esterel V7 execution
sequence:

;
% Output: none
I;
% Output: none
I SUSP;
% Output: X
;
% Output: X Y
I SUSP;
%Output: none
;
%Output: X Y in v5 and X in v7

Note that Y is absent at last non-SUSP tick, unlike for Esterel V5.

D.5 Multiclock Design

Esterel execution behavior is cycle-based, with the Esterel cycle mapped to
the hardware clock cycle in the standard hardware translation. The clock
is implicit in each module, and its instants are called ticks and uniformly
represented by the tick signal. However, the single-clock approach is too
limiting for modern circuits, where playing with clocks has become the rule.
Several clocks are used to drive several parts of the circuits, and clocks can
be gated (i.e., suspended) to save power. The relationship between two given
clocks can be quite varied. On one extreme, the clocks can be mutually inde-
pendent and fully asynchronous; on the other extreme, they can be linked by
tight frequency and phase constraints; many intermediate schemes allowing
relative frequency changes and variable phase and jitter can also be used.

There are two issues when dealing with multiclock design. On the phys-
ical side, one must deal with metastability, which occurs when a register
sample its input right at the time a clock front occurs. Metastability is in-
evitable when the sender and receiver clocks of a signal are asynchronous
enough [34]. Special protocol devices called synchronizers are used to resolve
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it at the price of some latency. On the logical side, assuming metastability
has been resolved, designing multiclock circuits becomes much more complex
since multiple clock introduce a new level of behavioral asynchrony. Usual
hardware description languages give little help in controlling and verifying
designs of this type. Fortunately, clean and verifiable multiclock design has
been added to Esterel V7 without adding much to its syntax and without
changing its semantics. The new weak suspend statement is instrumen-
tal here. Below, we give a brief explanation of the Esterel V7 multiclock
extension.

D.5.1 Clocks and Multiple Units

Esterel V7 introduces a new kind of unit called multiclock. This unit can
declare standard interface and local signals plus a new kind of signal called
a clock. In its body, only few statements are allowed: instantiation of a
module explicitly driven by a clock, instantiation of another multiclock unit,
clock gating or muxing, and purely combinational equations on signals. A
multiclock unit has no clock by itself. Therefore, no pause statement and no
pre expression an appear in its body. Here is an example, where M1 and M2
are conventional modules, with inputs I and outputs O and Y for M1 and input
I and output O for M2:

multiclock Multi :
input {C1, C2} : clock;
input A, B, C;
output X, Y, Z;
signal {C3, C4} : clock, S in
sustain Z <= X or Y // ok since combinational

||
clock {
C3 <= C1 if A, // clock gating
C4 <= mux(B, C1, C2) // C4 is C1 is B=1 and C2 if B=0
}

||
run M1 [ clock C3; A / I, S / O, Y / Y ]

||
run M2 [ clock C4; S / I, X / O ]

end signal
end multiclock

Note that the local signal S is generated by M1, which is clocked by C3,
and received by M2, which is clocked by C4. Such a signal is called a clock
domain crossing signal. Typically, S is registered in M1 to make it electrically
clean (glitch-free) and to insert a synchronizer between M1 and M2 if C3 and
C4 are asynchronous. Details are outside the scope of this presentation.
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The Esterel V7 multiclock design style ensures a clean separation of con-
cerns between the distribution of clocks and signals, performed by multiclock
units, and the execution of statements, performed by modules. This is in the
GALS (Globally Asynchronous Locally Synchronous) style [66]. Since each
module is driven by exactly one clock, there is no need for any change in
module definitions. Note that a module has no knowledge of the clock that
controls it and simply calls it tick, as in the single clock setting. Note also
that each module can gate its clock locally using weak suspend.

D.5.2 Simulation of Multiclock Designs by Single-clocked Designs

Thanks to the introduction of weak suspend, it is easy to give the semantics
and software implementation of a multiclock design by translating it into a
single-clocked one. The implicit clock of the translated single-clocked design
acts as a fictitious simulation clock faster than all actual implementation
clocks. This simulation clock does not exist in a hardware implementation.

The translation simply consists in replacing clocks by pure signals and en-
closing run statement for modules into immediate weak suspend statements.
No change is needed for module interfaces and bodies. Here is the translation
of our example:

module Multi :
input C1, C2;
input A, B, C;
output X, Y, Z;
signal C3, C4, S in
sustain Z <= X or Y // sustain ok since combinational

||
sustain {
C3 <= C1 if A, // clock gating
C4 <= mux(B, C1, C2) // C4 is C1 is B=1 and C2 if B=0
}

||
weak suspend
run M1 [A / I, S / O, Y / Y ]

when immediate not C3
||
weak suspend

run M2 [ S / I, X / O ]
when immediate not C4

end signal
end module

As far as software implementation is concerned, the translated program
can now be compiled by the standard single-clock compiler. A translation
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to single clock hardware can also be useful to simulate the multiclock circuit
using a single-clock FPGA (Field Programmable Gate Array).
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d’Orsay, Paris, France, March 1988. 〈10, 42, 51, 139〉

[36] M. Gordon and T. Melham. Introduction to HOL: A Theorem Proving
Environment for Higher-Order Logic. Cambridge University Press, 1993.
〈48〉

[37] Gary Hachtel and Fabio Somenzi. Logic Synthesis and Verification Al-
goritms. Kluwer Academic Publishers, 1996. 〈169〉

[38] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
dataflow programming language Lustre. In Proceedings of the IEEE,
volume 79(9), pages 1305–1320, 1991. 〈6, 42, 297, 305〉

[39] Nicolas Halbwachs. Synchronous Programming of Reactive Systems.
Kluwer academic Publishers, 1993. 〈3, 4〉

[40] David Harel. Statecharts: A visual formalism for complex systems. Sci-
ence of Computer Programming, 8, 1987. 〈3, 7〉

[41] David Harel and Amir Pnueli. On the development of reactive systems.
In K. Apt (ed.), Logics and Models of Concurrent Systems, NATO ASI,
pages 477–498, New York, 1985. Springer-Verlag. 〈3〉

[42] Reinhold Heckmann, Marc Langenbach, Stephan Thesing, and Reinhard
Wilhelm. The influence of processor architecture on the design and the
results of WCET tools. Proceedings of the IEEE, 91(7), July 2003. 〈6〉

[43] Arend Heyting. Intuitionism: An Introduction. North-Holland Publish-
ing, Amsterdam, 1971. Third Revised Edition. 〈44〉



bibliography 319

[44] IEEE, 345 East 47th Street, New York, NY 10017-2394, USA. IEEE Std
p1364-2001, IEEE Standard Hardware Description Language Based on
the Verilog c©Hardware Description Language, 2001. 〈7〉

[45] Hamoudi Kalla, Jean-Pierre Talpin, David Berner, and Loic Besnard.
Automated translation of C/C++ models into a synchronous formalism.
In Proceedings of the IEEE International Conference on the Engineering
of Computer-Based Systems (ECBS), Potsdam, Germany, 2006. 〈7〉

[46] P. LeGuernic, T. Gauthier, M. LeBorgne, and C. LeMaire. Programming
real-time applications with Signal. In Proceedings of the IEEE, volume
79(9), pages 1321–1336, 1991. 〈6〉

[47] Jan Lukoschus. Removing Cycles in Esterel Programs. PhD thesis,
Christian-Albrechts-Universität Kiel, Department of Computer Science,
2006. 〈199〉

[48] Sharad Malik. Analysis of cyclic combinational circuits. In Conference
on Computer Aided Design (ICCAD), pages 618–625, Santa Clara, CA,
USA, November 1993. IEEE Computer Society. 〈11〉

[49] Florence Maranichi. The Argos language: Graphical representation of
automata and description of reactive systems. In IEEE Workshop on
Visual Languages, Kobe, Japan, 1991. 〈6〉

[50] Peter M. Maurer. Event driven simulation without loops or conditionals.
In Proceedings of the IEEE/ACM International Conference on Computer
Aided Design (ICCAD), pages 23–26, San Jose, California, November
2000. 〈203〉

[51] Stanley Mazor and Patricia Langstraat. A Guide to VHDL. Kluwer,
1992. 〈7, 7〉

[52] R. Milner. Communication and Concurrency. Series in Computer Sci-
ence. Prentice Hall, 1989. 〈55〉

[53] Osama Neiroukh, Stephen Edwards, and Xiaoyu Song. An efficient algo-
rithm for the analysis of cyclic circuits. In Proceedings of the Symposium
on VLSI (ISVLSI), Karlsruhe, Germany, 2006. 〈199〉

[54] Gordon Plotkin. A structural approach to operational semantics. Tech-
nical Report report DAIMI FN-19, University of Aarhus, 1981. 〈48, 55〉

[55] Dumitru Potop-Butucaru. Fast redundancy elimination using high-level
structural information from Esterel. RR 4330, INRIA, 2001. 〈169〉

[56] Dumitru Potop-Butucaru. Optimizations for Faster Simulation of Es-
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of cyclic circuits. In Proccedings EDTC, Paris, France, 1996. 〈11, 42, 46,
49〉

[66] Sandeep K. Shukla and Michael Theobald. Special issue on formal meth-
ods for globally asynchronous and locally synchronous (GALS) systems.
guest editorial. Formal Methods in System Design, 28(2), March 2006.
〈311〉

[67] Barbara Simons and Jeanne Ferrante. An efficient algorithm for con-
structing a control flow graph for parallel code. Technical Report TR–
03.465, IBM, Santa Teresa Laboratory, San Jose, California, February
1993. 〈215, 216, 228〉



bibliography 321

[68] Bjarne Steensgaard. Sequentializing program dependence graphs for ir-
reducible programs. Technical Report MSR-TR-93-14, Microsoft, Octo-
ber 1993. ftp://ftp.research.microsoft.com/pub/TR/TR-93-14.ps
〈216, 228〉

[69] Horia Toma. Analyse constructive et optimisation séquentielle des cir-
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execution speed, 230, 233
execution time, 202
parallel branch redundancy, 171,

172
state encoding, 190

expressions, 257–259
combinational, 236–238
data, 258
delay, 241, 259, 261, 272
signal, 235–242, 258
trap, 242, 243, 259

extends, 300, 303, 304
external

constant, 286
function, 286
procedure, 287
type, 298

external edge condition, see EEC

false, 33, 254
FEIF, see DEI
Field-Programmable Gate Array,

see FPGA
fields

named, 299
overlapping, 300

file
PROG.c, 281, 283
PROG.h, 281, 283
PROG.strl, 281
PROG data.c, 281, 283

finalize, 245–247
fixpoint, 106
float, 33, 257, 283, 298
for, 304, 306
FPGA, 312
FSM

expansion, 9
FSM code, 135
function, 257, 281

#define, 281, 283, 286
assignment, 284
Can, 48, 49, 56, 58–68, 79,

80, 84, 85, 90, 92, 95–102,
121, 172

Can+, 48, 49, 56, 58–68, 71,
80, 102

combine, 19, 290
definition, 286
equality, 285
example, 286
extern, 283, 286
in expressions, 258
inequality, 285
inline, 286
input, 281, 282, 288, 289
kill task, 295
Must, 48, 49, 56, 58–68, 71,

80, 95, 102
names, 282
output, 281, 282, 289
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potential, see potential
function

reaction, 135, 139, 141, 148,
155, 194, 281, 282, 288,
290

reset, 290
resume task, 296
return signal, 289
sensor, 282, 290
start task, 295
suspend task, 295

function, 254, 270, 278

GALS, 311
generated code, see C interface
generic, 299
generic types, 299
Globally Asynchronous Locally Syn-

chronous (GALS), 311
gray2u, 300
GRC format, 145–177

computation nodes, 149
control-flow graph, 207–208
flowgraph, 145
in CEC, 204–211
node interface, 150
operators, 146
optimization, 146
selection tree, 145–148, 153–

156, 158, 167, 170, 172–
174, 185, 186, 188, 189,
191, 193, 195, 206, 207

guard variable, 215, 216, 218, 221,
228

fusion, 228
guessing, 105

halt, 254, 266
handle, 242, 254, 273
history, 136–137
HOL, 48
host, 298, 299
host language, 13, 15, 31

data types, 297
interface, 13, 31

identifiers, 253
if, 23, 94, 96, 99, 128, 163, 254,

266, 304
immediate, 241, 254, 261, 263
in, 254
index, 305
inequality function, 285
init:, 156
inline

constant, 286
function, 286
procedure, 287

input
event, 13, 55, 281, 282
function, 281, 282, 288
function (example), 288
order, 288

input, 254, 276
input/output buffering, 13
inputoutput

input function, 289
output function, 289

inputoutput, 254, 276
INRIA compiler, ix, 137–139, 211
integer, 33, 257, 283
integer ranges, 298
interactive system, 3
interface, 302

mirroring, 304
interface, 302, 304
interrupt, 291
intuitionistic constructive logic, 44

kernel Esterel, 15, 20, 21, 51, 57,
75, 101, 128, 235, 237, 253

restriction to, 51
kernel expansion

of concurrent traps, 243
of general trap, 245
of pre, 238
signal expressions, 237

keywords, 253, 254

La Londes les Maures, vii
LC format, 137, 139, 200
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LCA, 217
least common ancestor, see LCA
levelizing, 211
linked list, 203, 204, 211–213, 231
literals, 33, 253–255

Boolean, 255
numeric, 254
string, 255

logic
combinational, 104
gate, 104
intuitionistic constructive, 44
three-valued, 46

logically correct, 44
loop

instantaneous, 73
preempted, 25
safety, 73, 74

loop, 16, 22, 57, 62, 66, 70, 73, 74,
83, 87, 88, 97, 98, 118,
160, 254, 265, 267

loop-each, 267
Lustre, 6, 42, 297, 305

macro-step, 55
map, 299
mathematical foundation, 41
metastability, 310
microsteps, 47, 49, 79–83, 87, 88,

90, 92, 93, 97, 99, 101,
113

mirror, 304
mod, 254, 257
module, 15, 31

instantiation, 34, 36, 270, 309
module, 31, 254, 275
multi-way await, 263
multiclock, 297
multiclock, 310–313
multiple exec, 251
Must, 48, 49, 56, 58–68, 71, 80, 95,

102

namespaces, 255
next, 297, 302

non-constructive, 100, 111
non-deterministic, 100
non-interruptible reaction, 6
nondeterminism, 72, 100, 103, 297
nonterm:, 155, 170–172, 174, 177,

186, 187, 190, 192
not, 235, 243, 254, 257, 259
nothing, 16, 22, 52, 61, 68, 73,

74, 85, 117, 160, 162, 254,
268

onehot2u, 300
operator, 33, 253

*, 257
+, 257
-, 257
/, 257, 270
<, 257
<=, 257
<>, 257
=, 257
=>, 277
>, 257
>=, 257
?, 19, 256, 258, 302
??, 256, 258
#, 277
and, 235, 254, 257, 259
mod, 254, 257
not, 235, 254, 257, 259
or, 235, 254, 257, 259
pre, 235, 238, 239, 258
precedence, 258
predefined, 257, 258

or, 235, 243, 254, 257, 259
oracle, 302
output

event, 282
function, 281, 282, 289
order, 289

output, 254, 276

parallel, 52, 161, 172, 190
associativity, 261
behavior, 9
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branch redundancy, 171, 172
children, 192
communication, 17, 19
completion codes, 52, 120, 152
construct, 16
cyclic dependencies, 183
data actions, 108
decorations, 83
depth circuit, 120
example, 8, 10, 20, 28, 53, 171,

192
false dependencies, 175
fine-grained, 24
for-dopar, 305
fork node, 152
loop safety and, 75
node, 147, 148, 154, 172
non-deterministic interleaving,

100
non-terminating branches, 171,

172
potential functions, 96
preemption, 171
reincarnation of assert, 307
resuming, 66, 87
rules for, 86
scheduling, 137
selection, 58, 67
selection node, 152
selection tree, 146, 147, 154
semantic rules for, 71
signal potential, 62
simplification, 192
state encoding, 187, 191
statement, 16, 119
status, 83, 139, 190
structure, 170, 174
surface circuit, 120
sync node, 157, 174
sync primitive, 149
synchronization, 8, 51, 54, 63,

87, 104, 139, 146, 152
synchronizer, 120, 121, 157, 167,

180, 183, 190

splitting, 183–185
synchronizer refinement, 184
syntax, 260
traps, 243

parallel:, 154, 170, 172, 190
parameter

by-reference, 278
by-value, 278

pause, 17, 22, 41, 52, 53, 56–58,
61, 63, 64, 69, 73, 74, 80–
82, 85, 97, 104, 106, 107,
113, 114, 117, 148, 149,
159, 254, 263, 268

PDG, 203, 215–219, 221, 222, 224,
226, 228, 233

code generation from, 216
cutting, 216
data dependencies, 216
definition, 216–218
node duplication, 224–225
nodes, 217
restructuring, 215, 222–224
scheduling, 216, 218–228
semantics, 217
structure, 217

PLCA, 217, 221, 224
positive, 254, 269
potential function, 48, 60, 95

Can, 79, 90, 92
Can+, 48, 59, 60
CBS, 55, 101
characterization, 102
code pruning, 102
completion codes, 73
control-flow, 48
COS, 80, 101
COS vs. CBS, 101
cycle, 63
data, 99
definition, 60
derived statements, 96
deterministic, 72
inductive definitions, 68
loop, 62, 97
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Must, 49, 68
notation, 59
parallel, 67, 96
parallel synchronizer, 120
pause, 64
sequence, 62
sequencing, 96
shared variables, 84
signal, 62
signal absence, 90
signal declaration, 97
suspend, 65
trap, 67
triplets, 96

potentials
analysis of, 56, 58

pre, 235, 238, 239, 258, 297
pre

and signal expressions, 240
and valued signals, 239

predefined type, 283
predefined types, 33
predicate least common ancestor,

see PLCA
preemption, 25

with suspend, 272
present, 17, 22, 57, 61, 64, 65, 69,

73, 74, 83, 91, 92, 96, 98,
123, 163, 254, 263, 268,
304

procedure, 257, 281
#define, 281, 283, 287
call, 264
definition, 287
example, 287
extern, 283, 287
inline, 287
reference argument, 287
value argument, 287

procedure, 254, 270, 278
PROG, 281
program dependence graph, see PDG
proof, 100

equivalence, 48

example, 72
intuitionistic, 44
of determinism, 72

pure Esterel, 21, 22, 24, 85, 101,
103, 111

Quartz, 47, 48

reaction, 5, 135, 136, 139, 231
active code in, 12, 49
atomic, 6
behavioral transition, 79
bullet, 80
causality, 6, 25
CBS, 48, 55
combinational gates for, 104,

110
completion status, 83
computing, 8, 45, 55
constructive circuit semantics,

103
constructiveness, 111
control propagation in, 81
control-flow, 16, 80
execution in the next, 57
execution shell and, 13
first, 114
function, 12, 13, 53, 281, 282,

288
example, 288

function atomicity, 282
host language, 31
inputs at beginning, 105
microsteps, 49, 79, 99
non-interruptible, 6
output of, 8
overlapping, 13
pause and, 17, 56, 106
predictable, 6
register values, 106
restarting, 83
semantics of, 49
shared variable, 84
signal emission in, 19
signal propagation, 47
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signal status in, 43
START wire, 107
static scheduling and, 14
surface and depth, 115
ternary simulation, 50
transition function, 64
variable values across, 84
zero-time, 5, 23

reactive system, 3
reductio ad absurdum, 44
reg, 301
Register Transfer Level, see RTL
reincarnation, 15, 29–31, 113, 211

and tasks, 250
multiple, 29

relation, 254
relations, 34, 277
repeat, 254, 263, 269
reserved words, 254
reset, 290
return, 34, 254, 265, 276
return function, 289
RTL, 7
run, 34, 36, 254, 270
run-time, see C interface

Safety-Critical Application Devel-
opment Environment, see
SCADE

Saxo-RT, 47, 140–143, 145, 146,
169, 176, 179, 180, 201–
203, 211, 230, 231

Saxo-RT compiler, 140–142
SCADE, 6
SCC, 176, 179, 195–197

code generation from, 197–199
scheduling, 137, 140–142, 146, 159,

179, 185, 190, 212
clusters, 211, 212
constraints, 204
dynamic, 179, 180, 195
NP-completeness, 211
of GRC, 192–193
overhead, 212
PDG, 218–228

priority queue, 211
static, 179, 180, 185, 195
under forks, 215

schizophrenia, 15, 29–31
Schneider, Klaus, 47
Scott domain, 46
selection circuit, 114
semantics

circuit, 104
circuit vs. COS, 128–131
constructive, 42, 104
constructive behavioral, 47–49,

55–77, 79–81, 84, 85, 90,
95, 97, 100, 101

constructive circuit, 47, 49–50,
103–131

constructive operational, 49,
79–102

COS vs. CBS, 101–102
flavors, 47
notation, 54, 59
structural operational, 55

sensor, 34, 254, 276
sensor function, 282, 290
sensors, 256, 301
separators, 253
seq, 306
shared, 23, 24, 83, 92, 93, 97, 99,

165
shared variable, 92–93

assignment, 84
Can, 95
connection code, 100
declaration, 165
dependency, 128
encoding, 126
initialization, 127
interface, 100, 128
non-constructive, 100
ordering, 108
potential function, 84
potentials, 95
restriction operator, 95
synchronization, 79, 80, 84
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transformations, 76
updates, 156

signal, 17–20, 32, 34, 256, 276
arrays, 306
dependencies, 150
equational form, 305
event, 51
expressions, 235–242, 258
expressions and pre, 240
hubs, 150
initialization, 302
link set, 158–165, 167
oracle, 302
pure, 17, 19, 256
registered, 301
relation, 34
simultaneous, 288
temporary, 301
tick, 34
value-only, 301
valued, 17–20, 256

signal, 17, 22, 51, 57, 63, 64, 67,
71, 73, 74, 83, 89, 90, 97,
98, 122, 162, 254, 256, 270,
271

Signal (language), 6
signed, 298
simplification, 153, 169, 170, 173–

176, 183, 193, 195, 200
simulation

constructive, 195
ternary, 45, 46

SLAP workshop, 203
slicing, array, 298
speculation, 44
SSA, 7
state decoding, 149, 185

in circuits, 186
state encoding, 139, 145, 182, 185–

190
complexity, 189
in circuits, 186

state update, 149
Statecharts, 7

statement
boot, 56

statements, 260–275
static scheduling, 14
Static Single Assignment, see SSA
STD EXEC, 296
strcpy, 283
string, 33, 257, 298
string, 283

as procedure argument, 287
assignment, 283
strcpy, 283
STRLEN, 283

STRLEN, 283
strongly-connected component, see

SCC
structural operational semantics, 55
surface, 113–121, 123, 124, 126–

131
suspend, 17, 22, 57, 61, 65, 69,

73, 74, 82, 83, 91, 96, 98,
124, 164, 254, 263, 272

suspension
weak, 307

sustain, 254, 273, 297, 305, 306
switch primitive, 148, 190
sync primitive, 148, 190
SyncCharts, 6
SYNCHRON, vii
synchronization, 19
synchronizer, see parallel synchro-

nizer
synchronous

circuit, 6
hypothesis, 4
language, 6

Synopsys compiler, 139–140, 146,
203

task, 34, 247–251, 257, 265, 281
active field, 293
exec index field, 294
execStatus, 292
functional interface, 295
interface, 292
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kill field, 293
kill function, 295
low-level interface, 292
multiple instances, 251
preemption, 250
pRet field, 294
prev active field, 293
prev suspended field, 293
pStart field, 294
reference argument, 295
reincarnation, 294
resume function, 296
return signal, 250
start field, 293
start function, 295
STD EXEC macro, 296
suspend function, 295
suspended field, 293
suspension, 247
task exec index field, 294

task, 254, 270, 278
temp, 301
terms

decorated, 56, 57, 60, 63, 64
ternary circuit simulation, 45, 46
test primitive, 148, 190
then, 254, 266
theoretical foundation, 44
thesis

Fornari’s, 169, 180
Gonthier’s, 42, 51
Lukoschus’s, 199
Potop-Butucaru’s, vii
Toma’s, 169, 180, 193, 199

tick, 34, 256, 310
timeout, 254
times, 254, 263, 269
tokens, 253
topological sort, 47
transformational system, 3
transition

behavioral, 55
system, 56

transition rules, 49

microstep, 47, 49, 79–83, 87,
88, 90, 92, 93, 97, 99, 101,
113

translation
constructive circuit, 45

trap, 242–245, 256
concurrent, 243–244
encoding, 51
expressions, 243, 259
handler, 242
pure, 256
valued, 242, 244, 256, 258

trap, 16, 22, 57, 63, 67, 70, 71,
73, 74, 83, 88, 89, 97, 98,
125, 165, 242, 254, 273

true, 33, 254
type, 32, 257, 281

#define, 284
assignment function, 284
boolean, 283
checking, 36, 257, 258
definition, 281, 283
double, 283
equality function, 285
example, 285
float, 283
generic, 299
inequality function, 285
inline assignment, 284
integer, 283
of signal, 271
predefined, 33, 257, 283
string, 283
struct, 284
typedef, 284
user-defined, 257, 283

type, 254, 270, 277, 298, 299

u2bin, 300
u2code, 300
u2gray, 300
u2onehot, 300
underscores in identifiers, 253
unsigned, 298
upto, 254
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user-defined type, see C interface

V2–V7, see Esterel V2–V7
V7

interface, 302
modules, 309
multiclock, 310
oracles, 302

value, 301
var, 16, 24, 83, 93, 94, 97, 99, 165,

254, 273
variable, 16, 93–94, 256

guard, see guard variable
initialization, 16
sequential, 93–94
shared, 76, 79, 80, 84, 92–93, 95

verification assertions, 306
VHDL, 7
void:, 155, 170–174, 187

watching, 254
WCET analysis, 13
weak

abort, 274
suspend, 297

weak, 254, 274
weak suspend, 307
when, 254, 261, 263, 272
whitespace, 253
with, 254
Worst-Case Execution Time

(WCET), 13
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